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Sum m ary

This thesis considers the issues involved in providing user interfaces to libraries of numerical 

software, for use in symbolic computation packages; in particular, it discusses and analyses the 

experience of the author in providing such interfaces for IRENA (a link from the REDUCE 

computer algebra system to NAG Fortran libraries), placing this in the context of both the 

earlier NAG Library link from Macsyma (Naglink) and the recent, more basic link from Axiom 

(NAGlink).

Design goals for the reparameterisations of NAG routines in IRENA were th a t these should be 

informative, regular, orthogonal and minimal. The thesis examines the methods used to achieve 

these goals and analyses the resulting simplification in the routines’ user interfaces.

The complexity of the original Fortran interface of a NAG routine may be expected to influence 

the magnitude of the reparameterisation task. A statistical analysis of the relationship between 

the amount of code required to carry out the reparameterisation and the number of param eters 

in the NAG routine reveals strong evidence of considerable nonlinearity in this relationship, 

which appears to include substantial quadratic and cubic components. (As these are of opposite 

sign, the net effect is to produce a curve which, over the range considered, departs from linearity 

most strongly near the origin.)

Other points covered include the need to consider both numeric and symbolic issues in designing 

interfaces, the possible unification of the various IRENA subsystems in future projects, the utility 

of developing a library of Fortran “jackets” for the NAG Libraries as part of such a project and 

the suitability of various strategies and languages for interface redefinition.
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Background and design issues
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C hapter 1

Introduction

1.1 T he IR E N A  project

IRENA was a joint project between the University of Bath and NAG, to provide an Interface 

from R ED U CE (see [14]) to the N A G  Fortran Library (see, for instance, [26]). It had the dual 

objectives of providing a common environment for symbolic and numeric com putation and of 

simplifying the use of the NAG Library by providing it with a more m athem atical, less Fortran 

specific interface. This is discussed in greater detail in [4], [5], [6] and [32].

In particular, most of the systems code was developed by M.C. Dewar, as part of his Ph.D. 

thesis [5] at Bath -  this was based on design work by both Dewar and the present author. 

Design features attributable to the present author will be described in later chapters. The main 

responsibilities of the present author were to generate IRENA user interfaces for a large number 

of NAG Fortran routines1 -  although, as will be seen, this also involved significant extensions 

to Dewar’s original code -  and to test the overall system2.

In what follows, reference is made to IRENA-0, meaning the basic system, as developed by 

Dewar, and IRENA-1, the first version actually released by NAG. However, in the m anner of

1 Interfaces were originally developed for about 350 top-level NAG routines, of which 160 are included in the  
in itial release of IRENA.

2 In term s of code developed, this proved a fairly equitable division of labour, w ith Dewar providing about 0.59  
M bytes o f source code in various languages, compared to Richardson’s 0.54 M bytes. A sum m ary of the various 
item s included in this toted is presented in appendix A. The various terms used there will be m et as this thesis 
develops and are also summarised in the glossary.
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all cooperative projects, ours was the subject of simultaneous developments on both fronts. 

Thus, most of the extensions mentioned above were made to a basic system which was still 

under development, so that IRENA-0 represents, at most, a conceptual stage in IRENA’s 

evolution. The term  is used here as a convenient fiction, representing th a t part of the IRENA 

code developed (but not entirely specified) by Dewar.

1.2 E xperience w ith  Naglink

The “Naglink” package, developed by Broughan (see [2]), was an early attem pt to produce a 

symbolic-numeric interface system, using Macsyma as the symbolic engine and, initially, the 

NAG Mark 11 Fortran Library [20] for the numerics. Since NAG was intended to  m arket this 

package, the present author spent a considerable length of time working with Naglink, prior to 

the start of the IRENA project.

Early attem pts by the present author to develop demonstrations of Naglink revealed a 

number of deficiencies, which convinced him of the need for thorough in-house testing of this 

package’s facilities. Consequently, he embarked on a programme of translating the example 

programs, which form part of the description of each routine in the NAG Library Manual, into 

M acsyma/Naglink code. This involved translating approximately 500 Fortran programs and 

was his m ajor occupation for about a year.

In Naglink, most routines followed the NAG param eterisation3, although in some instances 

different parameterisations were introduced on an ad hoc basis. For instance, in some routines 

individual end-points of ranges of integration had to be provided as separate param eters, in 

others, an interval representing the range was required. Similarly, for some routines, the NAG 

naming conventions were followed, for others, they were not. Since the docum entation of Naglink 

largely consisted of a subset of the m aterial in the NAG Manual and, in general, only indicated

3 However, input parameters defining dimensions of arrays and the like, which could be readily determ ined  
w ithin M acsyma, were not required. For som e NAG parameters, defaults were provided; these were not included  
as part of the function call but could be reset in the M acsyma environment, where they existed  as pre-variables. 
On output, m ost Naglink functions returned that NAG param eter deem ed the m ost im portant, w ith other output 
param eters available in  the M acsyma environment as post-variables-, where several NAG param eters were required 
to define the m ain result, these were returned in a list. The use o f NAG param eter nam es m eant that when an  
in p u t/ou tp u t param eter was handled as pre- find post-variables, the default setting  was lost after the function  
call, so could not im m ediately be used on a subsequent call. The one general exception to  this was the NAG  
error handling param eter IFAIL, whose input value indicates the action to  be taken on encountering an error and  
whose output value is an error index; the input form of this was renamed s o f t f a i l .

3



the names and types of parameters, it was essential to consult the full NAG Manual and often 

use considerable ingenuity in interpreting it, in order to understand the purpose of the Naglink 

parameters.

Although, as will be seen in later chapters, the NAG Library’s own interfaces are not always 

entirely consistent -  so that redefining them is certainly a legitim ate activity -  the au thor’s 

experience with Naglink convinced him of the need for a much more systematic approach in 

both providing and documenting symbolic interfaces to NAG routines. This eventually had 

a significant impact on the design of IRENA. A comparison of NAG, Naglink and IRENA 

param eterisations of a specimen routine is given in appendix B, which illustrates some of the 

problems addressed by IRENA.

It should be stressed that the author’s experience of Naglink also had positive aspects; features 

which influenced IRENA included the notion of environmental values, allowing param eters to 

take their value from settings of global variables, and range param eters which were generalised 

in IRENA as “rectangles” .

1.3 IR E N A -0 design activ ity

The IRENA project began with a period of intense consultation between Dewar and the present 

author, in which they attem pted to define the prerequisites for a successful symbolic interface 

package for the NAG Library. Here, the initial “division of labour” between IRENA’s two 

authors was also determined, with Dewar largely being responsible for developing the system 

code, in the framework of REDUCE, and Richardson having responsibility for the individual 

interfaces to NAG routines and the provision of test examples for these interfaces.

One area in which the present author contributed to the design of IRENA-0 was th a t of data  

representation. This was particularly influenced by his knowledge of the rather unsystematic 

representation of various types of matrices in the NAG Library and led to the specification of a 

set of types which would cover m atrix usage in the Library, and to  the jazz system for interface 

redefinition (see sections 3.1, 7.2 and 7.3, chapter 11 and appendix D). A further contribution 

was in the specification of the transformations which would be required in the defaults system, 

to convert information derivable from a subset of NAG param eters into values for others. These 

features are described in the succeeding chapters.

4



It must be stressed th a t the detailed design and implementation of these areas was Dewar’s; 

Richardson’s contribution was largely limited to a specification of required functionality, with 

occasional contributions to the code.

Later in the development of IRENA, it became apparent that there was a need for a simpler 

extension mechanism for jazzing, since additional jazz functions were frequently required to 

provide special transformations for only a small number of NAG routines’ param eters. This 

mechanism, described in section 7.3, was designed and implemented by Dewar and widely used 

by the present author to program new jazz functionality.

1.4 B asic design considerations

The basic philosophy driving the design of user interfaces in IRENA was to make the use of 

the NAG Library’s numerical analysis routines as simple as possible4. For the present stage 

of the project, this was to be accomplished largely through interfaces to single routines or 

closely related sets of routines -  it was envisaged that building higher level interfaces to  entire 

numerical analysis subject areas would form further projects5, built on this foundation (see, 

however, section 13.1). Reasons for this approach included

•  work which had already been carried out on autom atic routine selection had indicated 

th a t this was still a very open area -  see for instance [34];

•  the large number and variety of NAG routines suggested th a t even the development of 

individual interfaces would be a m ajor project and

•  commercial considerations clearly indicated th a t an incremental approach to  the 

development, with exploitable intermediate products, was to be preferred to an open ended 

commitment to producing a fully comprehensive system.

4 Sim plicity of the interfaces, in turn, allows their docum entation to  be much more straightforward. The  
com plexity of the NAG docum entation, particularly for those who are not native English speakers, has been  
remarked on by a number of users of the Library: some instances of docum entation which could be im proved  
m ay be found in chapter 2 and in sections 4.2, 11.1.2, 16.1.8 and 16.4.1; an area where IRENA has already led  
directly to improvements in NAG docum entation is described in section 7.1.

5 One such project now being undertaken at Bath is investigating fin expert system s approach to the selection  
of numerical routines, which m ay then be executed using technology similar to  IRENA’s. This is described in  [10].
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At the inception of the project, the most widely used and extensive NAG Library was the Fortran 

77 Library and so this was chosen as the potentially most useful subject for the development of 

simpler user interfaces. The contents of the Library fall into two main areas -  numerical analysis 

and statistics. It fairly soon became obvious that the task of developing interfaces to all of the 

routines in the Library would be impracticable on a reasonable time scale and, since natural 

interfaces for much of the statistical content already existed in the form of statistical packages 

such as Genstat and GLIM, [11] and [30], it was decided th a t the statistical routines would be 

om itted from IRENA. (An even more restricted set of routines, based on the later “Foundation 

Library” , was eventually chosen for the first release: this is discussed in section 8.1.)
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C hapter 2

D esign  philosophy

Shneiderman, on page 143 of [35], gives six “basic goals of language design”

(B l) precision

(B2) compactness

(B3) ease of writing and reading

(B4) speed of learning

(B5) simplicity to reduce errors

(B6) ease of retention over time

and six “higher level goals”

(H I) close correspondence between reality and the notation

(H2) convenience of carrying out manipulations relevant to users’ tasks

(H3) compatibility with existing notations

(H4) flexibility to accommodate novice and expert users

(H5) expressiveness to encourage creativity

(H6) visual appeal

(the labels B l to B6 and HI to H6 are the present au thor’s).



The higher level goals, in particular, correspond quite closely to our original objectives in building 

IRENA, although these were not expressed in precisely Shneiderman’s terms. For instance, one 

of our high level goals was to provide a “more m athem atical” interface to the NAG Fortran 

Library, with parameters reflecting m athematical rather than computing constructs: this reflects 

all of HI, H2 and H3. H4 may be seen in our decision to provide default values wherever possible 

for NAG parameters, whilst also providing users with a simple means to override these defaults, 

wherever this was meaningful. Goals H5 and H6 are more problematical for a system such as 

IRENA; however, a system which empowers the use of a m ajor body of technical software, such as 

the NAG Library, by a less technically sophisticated audience should, one hopes, encourage the 

creativity of th a t audience; the question of visual appeal is, perhaps, marginal for a  command 

driven system 1 but, even here, it could be argued that an IRENA function call, with a few 

param eters identified by keywords, is more visually appealing than its Fortran 77 equivalent, 

with its multiplicity of positional parameters.

(The goal of providing a truly mathem atical interface will only be fully realised when many more 

“m ulti-routine” IRENA functions are built, corresponding to classes of NAG routines handling 

related problems. For instance, a single interface for all integration routines could provide 

a general n u m eric_ in teg ra te  function, instead of separate functions which reflect the eleven 

quadrature routines in the Foundation Library -  or, potentially, the 25 in the full library. At
. 3present, to integrate the function e~x , say, from x  =  1 to x  =  2, could be achieved in IRENA 

using d O la jf  ( ra n g e = [ l:2 ]  , f  (x )= ex p (-x ~ 2 )) ; whereas integrating the same function from 

x  =  1 to x  =  oo requires the call d01anrf(range= [l:* ] , f  (x )= ex p (-x ~ 2 )) ;  utilising a different 

function. Such higher level system integration is a longer term goal of the research project2 of 

which IRENA forms a necessary building block; although not fully realisable at this stage, the 

objectives listed below were nevertheless a m ajor consideration in the design of the individual 

interfaces for IRENA and were, to a considerable extent, realised, as can be seen in the example 

a t the end of this chapter.)

1 However, this was a consideration in the design of the later Axiom-NAG interface, NAGlink, in  which the  
principal input m echanism  provided for the initial release, as suggested by the present author, was the use of 
A xiom ’s visual tem plates. See also section 17.1.

2 See also [10].



To achieve ease of use in the IRENA interfaces, the author attem pted to provide 

param eterisations with the following properties (the relevant Shneiderman goals are appended 

in parentheses):

•  informative:

— the meaning of parameters should be clear (B l, B5, H5) and

— the usage of each routine should be easily learnt (B4, HI);

•  regular:

— similar data  items in the same or different routines should be 

similarly parameterised (B4, B6);

•  orthogonal:

— distinct items of information should be kept separate (B3, B4);

•  minimal:

— data should be simple to input (B2, B3),

— information should only be obtained when required (B2, HI),

— proliferation of parameters should be avoided (B3).

The underlying NAG routines can fail to meet these criteria to varying degrees, as shown in the 

following examples (from the Mark 15 Library).

In form ative nam ing

Due in part to  the restriction in Fortran 77 of the length of names to  six characters, some names 

in NAG routines are very cryptic: in the routine D01GCF, a set of “optimal coefficients” may be 

provided in an array VK. This name may have some explanation in the underlying theory but, 

if so, this is not apparent from the description. In IRENA, any structure (including this one) 

in which a set of coefficients is to be supplied is called coefficients. Another example is the 

param eter KPLUS1, mentioned under “Minimality” below: this is one more than the degree of 

the required polynomial approximation to a set of data  points. In IRENA, this is replaced by 

a param eter Maximum degree of polynomial fit required, aliased as degree (and, for the 

benefit of those familiar with the NAG routine, as k), from which its value is inferred.
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R egu larity

In five routines, the parameter specifying the required tolerance in the location of a solution 

is called EPS, in five others it is called XTOL: in IRENA this param eter is called location 
tolerance (and aliased as loctol) throughout. Another instance of IRENA’s enhanced 

regularity will be found in the uniform treatm ent of finite and infinite intervals, mentioned 

under “Orthogonality” , below.

M in im ality

Throughout the Library, there any many parameters which specify the length of input arrays. 

In principle, these lengths can be deduced from the size of the actual dataset and, in IRENA, 

this is done. However, in Fortran 77, a separate param eter is required to allow the dimension 

of an array to be declared within a routine. In some routines, extra param eters allow the 

use of output arrays whose dimensions do not match those of the data -  for instance, in the 

polynomial interpolation routines E02ADF and E02AGF, the param eter NROWS specifies the leading 

dimension of the output array A; for the m atrix stored in this array, however, the corresponding 

dimension is always given by the NAG parameter KPLUS1 and, since IRENA creates its own 

output structures, the NROWS param eter is eliminated in the IRENA interface (and given the 

value KPLUS1 in the Fortran code which IRENA generates).

O rth ogon ality

NAG routines commonly pack several objects into a single array. An extreme example of this 

is the param eter W in D02YAF, whose description in the NAG m anual was as follows (the IW2 
mentioned here is an input parameter):

Before entry, W (I,1), I =  1,2,...,N must contain the derivative of Y(I) a t T  =  X.

On exit, W(I,1), I =  1,2,...,N is unchanged; W(I,2), I =  1,2,...,N contains the entry 

value of Y(I); W(I,3) =  W(I,1), I =  1,2,...,N. The exit values of W (I,J), I =  1,2,...,N, 

J.G T.3 depend on the value of IW2. The possible values are IW2 =  4, IW2 =  6 and 

IW 2.GE.7. If IW2 =  4, W(I,4), I =  1,2,...,N is used as working space.

If IW2 =  6, W(I,4), I =  1,2,...,N contains a local error estim ate for the solution 

obtained from Euler’s method on the step T  =  X t o T  =  X +  H; W(I,5), I =  1,2,...,N 

contains an estim ate of the local error in Y(I) obtained from Merson’s m ethod on 

the step T  =  X to LT =  X +  H; W (I,6), I =  1,2,...,N contains a marker to  indicate
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the significance of the error estimate contained in W(I,5) -  if W(I,6) =  0.0, then 

W(I,5) is to be considered as a significant error estimate, otherwise W(I,6) =  1.0.

If IW2.GE.7, W(I,4) and W(I,5), I =  1,2,...,N are unchanged on exit, whilst W(I,6) 

and W (I,7), I =  1,2,...,N play the role of W(I,5) and W (I,6), I =  1,2,...,N respectively 

in the discussion of the case IW2 =  6 above.

W (I,J), I =  1,2,...,N, J.G T.7 are unchanged on exit.

In IRENA, all such arrays are “disentangled” into functionally distinct components.

NAG scalar parameters may also serve more than one role -  usually with particular values used 

as flags. An example is the parameter NP in D02GAF which, if greater than three, specifies the 

length of a (user-supplied) initial mesh over which an ordinary differential equation is to be 

integrated but, if zero, indicates that a default, equispaced mesh of length 4 is to  be used. In 

IRENA, distinct optional parameters -  use default mesh and initial mesh -  handle these 

two roles.

How the criteria were met in IRENA will be discussed in detail in chapter 5 -  th a t they were met 

is exemplified in the calls to dOlajf and dOlamf above, in which the param eter names ran g e  and 

in te g ra n d  (whose alias f was used in the calls) are certainly informative, naming the precise 

m athem atical objects which they represent, are regular across these routines (and indeed across 

all of the quadrature routines) and are minimal, with two required input param eters rather than 

the eight of each of the NAG routines. The NAG routines are not so regular -  D01AJF specifies 

the range of integration by two parameters giving its endpoints, whereas D01AMF3 uses a m ethod 

which also serves to illustrate lack of parameter orthogonality: here, the range is specified by 

means of two parameters, INF and BOUND with INF indicating the type of range (-1 meaning an 

infinite lower bound, 1 meaning an infinite upper bound and 2 meaning both bounds infinite) 

and BOUND giving the numerical value of the finite bound, whether upper or lower. Thus, BOUND 
can represent one of two distinct quantities, depending on the value of INF -  the exposition 

of this in the NAG documentation is further obscured by INF being located before BOUND in 

the routine’s param eter list and, therefore, its description. This may be contrasted with the 

IRENA param eterisation in which a single param eter range covers all cases, with “unbound” 

being represented by an asterisk (*) -  a general convention throughout IRENA.

3 An even more com plicated parameterisation is used in the routine D01BBF; details of this and how it is 
rationalised in IRENA will be found in sections 10.1.4 and 11.1.4.
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C hapter 3

O utline o f the IR E N A  system  

design

3.1 Overall design

The overall design of the IRENA system is discussed in detail in [5]. However, it is probably 

worthwhile to recapitulate some of the m ajor features of the design here, to provide a basis of 

terminology for later use.

IRENA consists of an extended version of the REDUCE computer algebra system (see, for 

example, [14], [19] or [31]), in which a REDUCE function is supplied to  provide an interface to 

each included NAG routine1.

Each IRENA-function simply consists of a call to  a single, standard interface function called 

“interface” (written in the REDUCE system language, RLISP) to which the name of the NAG 

routine is a parameter; all have associated code causing uniform IRENA conventions to  be 

obeyed in their parsing, allowing, for example, a keyword syntax to be used.

Results are returned to REDUCE using that package’s Standard Lisp based foreign function 

interface system, oload. Unfortunately, this can handle at most five parameters, whilst NAG 

routines often return more than five objects: thus, some form of packing is required to make

1 In what follows, in order to distinguish these functions from other utilities provided by IRENA, the interface  
functions are referred to as IR E N  A-functions.
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the results of NAG Fortran calls available to oload. Essentially, this was achieved by regarding 

the values returned by the Fortran routine as a single array, having previously generated an 

associated array of pointers which indicate the start positions of the various Fortran output 

param eters. Since Fortran does not provide a natural means of generating such an array of 

pointers, a small C interface was used to provide this functionality. Additionally, the C interface 

provides error handling facilities, should Fortran run time failures occur.

Among other actions, the RLISP “interface” function

•  reads a routine-specific information file (the infofile) which provides details of the 

param eters of the NAG routine,

•  reads a, jazz file, which defines the mappings between NAG and IRENA parameters,

•  assigns values to the NAG parameters by interpreting the value associated with each key 

in the IREN A-function call, by taking values from a defaults file and, possibly, by taking 

the values of REDUCE global variables and by prompting the user,

•  uses the REDUCE G E N TR A N  subsystem (see [12]) to generate both the Fortran code to 

call the appropriate NAG routine and the C interface to link this to the parent REDUCE 

session,

•  uses GENTRAN to generate Fortran code for any subprograms called as param eters by 

the NAG routine,

•  compiles the Fortran and C code,

•  uses the REDUCE oload system to load the compiled code into the parent session,

•  runs the compiled code,

•  transfers the generated results into the appropriate output objects and

•  displays a list of output object names.

As well as the code to carry out the above actions, IRENA comprises a number of utility 

functions which will be described later, for the definition and m anipulation of a variety of data  

structures, and the various special files mentioned here: the infofiles, the jazz files, the defaults 

files and the C and Fortran templates.

The infofile and tem plates for each routine are generated automatically from a more general 

specification in the specfile, a provisional version of which is itself generated autom atically
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from the NAG documentation database. This two-stage process allows anomalies in the 

generated m aterial to be corrected at a single location, the specfile. Such anomalies can arise 

from typographical errors in the NAG documentation -  for instance, in a number of cases, 

commas missing at line ends in NAG param eter lists caused the specfile generating program 

to malfunction -  or may be due to anticipated exceptions such as unrecognised or misclassified 

ASPs ( “Argument Subprograms” -  see section 3.2). Tailoring of the specfile was also undertaken 

when alternatives to the standard NAG routines were utilised (see section 12.3).

The flow of information during the generation of the various files mentioned here and the use of 

th a t information by a running IRENA-function are shown in figures 3-1 and 3-2, respectively. 

Not shown in the former is the generation of templates for those subprograms called as 

param eters of the NAG routines, since this was not usually done on a routine-by-routine basis. 

This is discussed further in section 3.2.

Jazzing, the (manual) specification of the required conversion between the NAG and IRENA 

param eter representations, and defaults file specification together formed a m ajor component 

of the au thor’s contribution to IRENA. An im portant but less time-consuming activity was the 

generation of the definitive specfiles: this was originally intended as a once only activity but in 

practice it had to be repeated whenever a new mark of the NAG Library was released, both to 

process new routines and to identify instances where parameters were reclassified (for instance 

from workspace to output or from input to dummy -  see chapter 4); also, as already mentioned, 

individual specfiles were reprocessed when alternatives to NAG routines were introduced.

3.2 G E N T R A N  use

The application of GENTRAN in IRENA deserves some further mention, as it touches on areas 

of some difficulty in providing symbolic-numeric interfaces.

To quote the GENTRAN User’s Manual [13]:

GENTRAN is an autom atic code GENerator and TRANslator which runs under 

REDUCE and VAXIMA. It constructs complete numerical programs based on sets 

of algorithmic specifications and symbolic expressions. Form atted FORTRAN, 

RATFOR or C code can be generated through a series of interactive commands 

or under the control of a tem plate processing routine.
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As mentioned in the previous section and shown in figure 3-1, GENTRAN tem plates are used to 

generate both the Fortran program corresponding to an IRENA-function call and the C interface 

which returns the Fortran results to REDUCE. Many NAG routines have param eters which are 

themselves subprograms (that is, Fortran functions or subroutines). These are referred to in 

IRENA terminology as ASPs  (Argument 5ubProgram s). As well as code to call the NAG 

routine, IRENA must provide the Fortran code which defines the ASPs.

Unfortunately, there is great variety among ASPs -  Dewar, in [5], mentions the existence of over 

seventy types and this number continues to grow, with eighty utilised in IRENA-1. By means of 

some fairly complex manipulations, Dewar managed to represent the m ajority of these with only 

ten GENTRAN templates, although, in IRENA-1, a further nineteen templates are required for 

individual ASP types.

In producing the IRENA specfiles, an autom atic classification of ASPs is attem pted, by pattern  

m atching techniques applied to the description of the ASP in the NAG library docum entation, 

using a database built up (by hand) from previous known instances. However, this procedure is 

somewhat error-prone: at times it misclassifies ASPs, leading to errors in the run-tim e system 

which are difficult to diagnose; also, at times, slight changes in the NAG description, between 

releases of the library, have prevented recognition of the types of previously classified ASPs.

3.2.1 G entranopt

GENTRAN provides a switch, g en tran o p t, which is designed to  optimise the generated 

Fortran source code, by recognising common sub-expressions and assigning these to  interm ediate 

variables. Initially, IRENA was set up with this facility enabled but, as illegal Fortran was 

sometimes found to result, g en tra n o p t was set to default to o f f  in the released version. In 

many cases this should cause no significant deterioration in IREN A ’s efficiency, since modern 

Fortran compilers usually provide an equivalent facility.

(In later releases of REDUCE a fuller optimisation may be performed, using the SCOPE package. 

See [15].)
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C hapter 4

C lassification o f N A G  

param eters

4.1 C lassification in NAG  Library docum entation

In the NAG Fortran Library manuals, [24] and [26], each param eter of any NAG Fortran 

Library routine is classified as input, output, input-output, external procedure, workspace, user 

workspace or dummy.

In IRENA, the input and output roles of input-output parameters were treated separately, in 

order to preserve input data  objects.

External procedures (ASPs, in IRENA terminology) are generated autom atically from 

m athem atical objects, each of which serves as an input param eter for IRENA.

Workspace arrays are provided automatically in IRENA, generally with no intervention from the 

user, since in most cases any sufficiently large workspace will suffice. (For a few, exceptional, 

routines, notably in the D01 -  integration -  chapter1 of the NAG Library, the length of a 

workspace array can affect the behaviour of the algorithm used, by controlling the degree of

1 NAG Fortran 77 routines fire classified into chapters, such as D01, following the schem e of the ACM m odified  
SHARE classification index [l] . Routines in each chapter are nam ed by following this alphabetic-numeric-numeric 
prefix by two further letters and a final letter specifying the type o f library -  in our case an  F, indicating “standard  
precision Fortran” .
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subdivision available for quadrature2: for these routines only, users can easily override the 

default workspace length.)

User workspace arrays exist in a few NAG routines to provide an alternative to COMMON blocks for 

communication between the user’s program and user-supplied external procedures. In IRENA, 

since the user workspace parameters did not have any obvious role in autom atically generated 

code, they were treated as (redundant) workspace parameters of minimal size -  th a t is, of 

dimension 1.

Dummy parameters have no effect on the functioning of NAG routines; they are occasionally 

found in, for instance, routines which have been internally revised between releases of the NAG 

Library, serving to maintain the previous interface (in which they would have had an input 

function). Apart from appearing in the routine call in the generated Fortran, they are essentially 

ignored in IRENA.

4.2 Functional classification o f NAG  input param eters

Exam ination of the input parameters of a typical Fortran 77 routine shows th a t these can be 

classified into three main types (although, as we shall see later, the boundaries between these 

are sometimes vague):

•  d a ta  parameters, which define the problem to be solved,

•  c o n tro l  parameters, which control aspects of the solution process and

•  h o u sek e ep in g  parameters, which are logically dependent on other param eters but which 

are included either to meet the requirements of the Fortran language or for its more efficient 

use.

For example, the routine C02AFF, which determines the zeroes of a complex polynomial, has 

three purely input parameters: A, the array of polynomial coefficients (data), N, the degree of 

the polynomial (derivable from A and so classified as housekeeping) and SCALE, which indicates

2 The NAG usage here fails to m eet at least two of the IRENA design objectives -  it is neither inform ative 
nor orthogonal. A lthough this is not expected to be a frequently used feature, IRENA attem pts to  im prove 
the situation  on the former count slightly, by using as the full nam e of the param eter main workspace len g th  
( r e s t r i c t s  s u b d iv is io n ) , instead of NAG’s LH, to indicate why this m ay be necessary. At a later release it  m ay  
be feasible to introduce instead a parameter which explicitly controls the level of subdivision and from which the  
length of this array m ay be derived by IRENA.
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whether or not autom atic scaling should be performed on A to avoid over- and underflow when 

the coefficients differ by a large factor (control). It can be seen, from the example IRENA- 

function description document in appendix C, that the equivalent of A is an “essential input 

param eter” for IRENA, the equivalent of SCALE is an “optional input param eter” and there is 

no equivalent for N.

D ata param eters require little further explanation -  they include such possibilities as

•  the coefficients of a set of simultaneous equations which is to be solved,

•  the m atrix of points to which an approximating curve is to be fitted and

•  the function whose integral is to be approximated, together with

•  the range of integration.

Control param eters appear in many NAG routines: common types are

•  switches, determining which of a number of calculations the routine should perform or 

which of a choice of strategies it should adopt,

•  convergence criteria, in the form of acceptable error levels,

•  iteration limits,

•  monitoring levels (for intermediate output) and

• IFAIL, a param eter whose input value determines the action to be taken in the event of 

failures detected within the routine.

(IFAIL also has an important output role, in returning a coded indication of routine-detected 
errors.)

The most common housekeeping parameters are the dimensions of data  arrays. The dimensions 

necessary for workspace arrays can also normally be determined from other dimensions of the 

problem (but see below) and, in this case, should be regarded as housekeeping.

One practical significance of this classification is the treatm ent of default values. This concept is 

meaningless for (pure) data  parameters, for which the user should always be expected to provide 

a value. Suitable defaults often exist for control parameters but should be easily overridden. In 

contrast, housekeeping param eters’ values may always be determined mechanically and there
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should never be a need for the user to override these. In IRENA-1, default values for control 

param eters and values for housekeeping parameters are provided in each routine’s defaults file. 

(These “values” may, in fact, be quite complicated formulae depending on the actual values of 

other parameters.)

As indicated earlier, a param eter may exhibit features of more than one of the above categories 

-  examples are

•  weights in fitting routines which, in being either all equal or otherwise, act as control 

param eters distinguishing unweighted from weighted fitting but, when unequal, form part 

of the data  and

•  lengths of workspace parameters which, occasionally, act as control param eters by limiting 

the number of iterations which are possible.

In such cases, the highest appropriate level of the hierarchy data >  control >  housekeeping must 

be accommodated.

In an arbitrary selection of eight of the routines3 included in IRENA-1, the relative abundance of 

the three types of input parameters mentioned here (with the higher level being taken in doubtful 

cases) was 26 data parameters, 12 control parameters and 16 housekeeping param eters.

This set of routines provides several examples of alternative possible classification...

INF in D01AMF (a routine for integration over a semi-infinite or infinite range) specifies whether 

the range is left-, right- or doubly infinite and so could be thought of as a control 

param eter, determining the type of integration to be performed. However, it may also 

be thought of as specifying one or both of the actual endpoints of the range and so being 

a d ata  param eter. A strong reason for adopting the latter interpretation is th a t it leads 

to a regular param eterisation (see page 9) of the range as an interval -  or, in IRENA 

terminology a rectangle -  in which finite endpoints are represented by numeric values and 

infinite endpoints by an asterisk (*) -  the standard IRENA symbol for unbounded. This 

corresponds to the form adopted in IRENA for the range in routines for integration over 

finite ranges, as can be seen in the examples on page 8.

W in E01BGF -  a weight param eter with both control and d ata  aspects, as discussed above.

3C02AFF, D01AMF, E01BGF, E02DDF, F01RCF, F04ASF, S13AAF and S17ADF -  actually, a  paged sam ple, obtained by 
random ly selecting one routine am ong the first twenty and including every twentieth routine thereafter.
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M in S17DLF (a routine for calculating Hankel functions) specifies the type of Hankel function
- t f O ) or H - required and so could be regarded as control or data. Similarly 

FNU and N in this routine specify the range of orders of Hankel functions required and 

SCALE indicates whether scaled or unsealed Hankel functions are required.

In addition, the parameters LAMDA, NX, N, MU and WRK in E02DDF (which calculates a bicubic 
spline approximation to a set of scattered data) all contain data if START has the value W but 
are ignored (and so would be classed as housekeeping) if it has the value C. This routine also 
provides examples of two parameters misclassified in the manual [26] - WRK, which is described as 
workspace but which is actually input-output, and IWRK, also described as workspace, which may 
contain valuable diagnostic data in the case of a failure and so should be output. Finally, the 
same routine illustrates the difficulties which may be encountered in trying to extract information 
automatically from a source meant for human reading: the manual’s description of NXEST and 
NYEST includes the paragraphs:

In most practical situations, NXEST =  NYEST =  4 -f- \ / m / 2 is sufficient. See also

Section 8.3.

Constraint-. NXEST > 8 and NYEST > 8.

In fact, these two parameters determine the dimension of the m atrix  containing the coefficients 

of the spline approximation, which can be deduced from the description of another param eter, 

C. Section 8.3 provides the equivalent information th a t they are upper bounds on the numbers 

of knots in the x  and y directions but gives no further advice about suitable values. In IRENA 

these are treated as control parameters, with default values equal to max(4 +  y / m / 2 , 8) (where 

m  is obtained as the value of the corresponding NAG param eter, M). T hat they may not be 

housekeeping param eters becomes apparent in the section “Error Indicators and Warnings” 

which leaves open the possibility th a t the condition IFAIL =  3 may be caused by these default 

values being too small.
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C hapter 5

Strategy for m eeting th e design  

objectives

Recalling th a t the design objectives for the IRENA interfaces to NAG routines were that these 

should be:

•  informative

•  regular

•  orthogonal and

•  minimal

we shall now examine, in somewhat more detail, the strategy used to achieve these.
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5.1 Inform ativeness

This was expanded in chapter 2 to:

•  the meaning of parameters should be clear and

•  the usage of each routine should be easily learnt.

There is, of course, a tension between the requirements for clarity and simplicity, the former 

tending to make the names of parameters longer, the latter shorter. This was resolved by having

1. short, simple key-entries (keys and keywords) on input,

2. descriptive prompting when parameters are omitted,

3. optional prompting for defaulted parameters,

4. key-entries related to prompts,

5. optional user defined key-entries,

6. descriptive names for output objects,

7. a simple output accessing function to avoid typing long names and

8. optional user defined alternative output names.

Thus, for input, a “full” version of each key or keyword was used in prom pting, assisting 

in comprehension and learning, with simple, clearly related abbreviations being available for 

keys and keywords. For output, informative names were again used but the <D output function 

(described in section 9.3.1) provides a simple, alternative means to refer to ou tput objects. Users 

have, in addition, a simple means to define their own, alternative, input and output names.

5.2 R egularity

“Regularity” was defined to mean th a t different routines should be similarly parameterised.

In the NAG library, naming conventions, conventions on the storage of d a ta  and the style of 

problem decomposition all vary considerably between -  and even within -  chapters. (Some 

examples appear in table 5.1.)
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In developing the individual routine interfaces, naming conventions were m aintained by making 

periodic checks on the total collection of names in use, with ruthless pruning of redundant 

choices. (This discipline could usefully be adopted in any area where names occur in the user 

interfaces of collections of software.)

To overcome the irregularities in the NAG Library’s data storage conventions, structures were 

defined which reflected the objects in use, with autom atic conversion to NAG param eter 

requirements.

Uniformity of style of problem decomposition was achieved, in part, by the emphasis on 

orthogonality (see below).

The following table shows the number of occurrences, in all “jazzed” routines, of various names 

corresponding to a small selection of the param eter names used in IRENA. Several NAG names 

appearing on one line indicate that these parameters together carry the same information as the 

single corresponding IRENA parameter.

Input Names
IRENA name NAG names frequency
Coefficients A 15

C 12
TRIG 7
CR, Cl, BR, Bl, AR, AI 1
D, E 1
VK 1

Location tolerance EPS 5
XTOL 5

Starting point X 21
ELAM, Y 1

Output Names
IRENA name NAG names frequency
Eigenvalue or R 7
eigenvalues RR, RI 5
(as appropriate) ELAM 1

ALFR, ALFI, BETA 1

Table 5.1: Correspondence between IRENA and NAG param eter names
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5.3 O rthogonality

Whereas NAG routines commonly pack several objects into a single array, IRENA aims for one 

object per structure.

NAG scalar parameters may also serve more than one role -  usually with particular values used 

as flags. For example, as we saw on page 11, the param eter NP in D02GAF represents:

if NP >  3 the length of (user-supplied) initial mesh, over which the ODE is to be integrated; 

if NP =  0 that a default, equispaced mesh of length 4 is to be used.

If the user does not supply a mesh, it is not clear whether IRENA should prom pt or use the 

default. This is resolved by asking the user, so th a t NP gives rise to two IRENA param eters, 

one indicating whether or not to use the default, the other (possibly) specifying a mesh. (If the 

user supplies a mesh we can, of course, deduce both.)

Disentangling instances of non-orthogonality such as this requires a clear understanding -  by 

a human agent -  of the possible ways in which the facilities provided may be utilised, for 

appropriate jazzing of the routine in question to be achieved.

5.4 M inim ality

M inimality of param eter requirements is achieved by:

•  not requiring housekeeping parameters,

•  providing defaults for control parameters,

•  not requiring users to specify output parameters and

•  merging param eters defining partial structures.

Two examples will illustrate the final point.

As Fortran-77 has no double length complex data  type, corresponding to the real DOUBLE 
PRECISION type, NAG routines often store the real and imaginary elements of a complex 

structure in separate arrays. For instance, in the routine C06ECF, which computes the discrete
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Fourier transform of a sequence of complex values, two one-dimensional arrays X and Y are used, 

on input, to hold the real and imaginary parts of the sequence and, on output, to hold these 

parts of the transform. In IRENA these are replaced by complex structures called, for input, 

sequence and, for output, fo u r ie r .t r a n s fo rm 1.

In routines which are designed to handle sparse matrices, the non-zero elements and their 

locations are specified separately. For example, in the routine F01BRF, the elements are 

specified by the user in a one-dimensional array called A (a widely used NAG nam e for an 

arbitrary m atrix). The row and column positions of these elements are specified in the one

dimensional arrays IRN and ICN, respectively. In IRENA, these three arrays are replaced by a 

single param eter (also known as A, for consistency with NAG practice). This param eter may 

be supplied either as a list of triples {row-address, column-address, value} or, m ainly for the 

convenience of those who already have data in the NAG form at, as the corresponding list of 

three lists.

1 In fact, the situation  is slightly more com plicated, in that C06ECF can also, with the assistance of the routine  
C06GCF, calculate the inverse Fourier transform. In IRENA, this assistance is provided autom atically by using  
a jacketed Fortran routine (see section 12.1) whenever the user specifies the keyword in v e rse . In this case, the  
IRENA output param eter is renamed in verse_ f ourier_transform .



C hapter 6

Param eter representation in 

IR E N A

In a number of ways, the NAG parameterisation of data  is not ideal for the representation of 

objects in a m athem atical package. As well as lacking regularity and orthogonality, as touched 

on in chapter 5, the NAG parameters may, for largely historical considerations of efficiency, use 

lower level structures than might appear natural: for example, matrices are sometimes stored 

as one-dimensional objects with essential structural information (such as the dimensions or, for 

irregular band matrices, the band width for each row) being given separately.

A m ajor contribution of the present author to the original IRENA design was to specify many 

of the requirements for data  representation. Three specific areas of input data  representation 

which grew out of this specification are described in this chapter, together with some aspects of 

output data handling.
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Type Representation
W ith row lists: The uppermost row is first, throughout; the row and column 

indices are represented by i and j , respectively.
full
symmetric

skew-symmetric

Hermitian

strict upper triangular

upper triangular 
upper Hessenberg 
strict lower triangular

lower triangular
lower Hessenberg
general band 
(variable bandwidth)
symmetric band 
(variable bandwidth)

each inner list specifies 
each inner list specifies 
each inner list specifies
each inner list specifies 
each inner list specifies
each inner list specifies 
each inner list specifies
each inner list specifies 
empty)
each inner list specifies
each inner list specifies
each inner list specifies 
empty)
each inner list specifies
each inner list specifies
each inner list specifies 
and is packed out with
each inner list specifies 
for which i > j

a row
row elements for which i >  j  or
row elements for which i < j
row elements for which i > j  or
row elements for which i < j
row elements for which i > j  or
row elements for which i < j
row elements for which i < j  (final list

row elements for which i < j
row elements for which i < j  + 1
row elements for which i > j  (initial list

row elements for which i > j
row elements for which i > j  — 1
row elements, lying within the envelope, 
zeroes for symmetry about the diagonal
row elements, lying within the envelope,

W ith diagonal lists: The uppermost diagonal is first, throughout.
band (fixed bandwidth)
symmetric band 
(fixed bandwidth)

each inner list specifies a “diagonal”
only the superdiagonal and diagonal (or diagonal and 
sub diagonal) lists are given

Sparse:
sparse

long sparse

symmetric sparse 

symmetric long sparse

three inner lists, each in the same arbitrary order, containing: 
first list -  row indices of non-zero elements 
second list -  column indices of non-zero elements 
third list -  non-zero elements

a list of triples {r, c, v} representing the row index, column index 
and value, respectively, of the non-zero elements (in arbitrary 
order)

as sparse, restricted to either upper or lower triangle. 

as long sparse, restricted to either upper or lower triangle

Table 6.1: IRENA m atrix representations
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6.1 IR E N A  m atrix representation

All m atrix  processing in IRENA is handled by functions (one for each m atrix  representation) 

which take two parameters, the m atrix name and its value. Each function updates the 

appropriate property lists for the particular m atrix. In addition, there are functions to convert 

IRENA matrices (of any type) to REDUCE matrices and REDUCE matrices to  IRENA 

rectangular matrices.

All IRENA matrices are represented as lists of lists. In most cases, the inner lists represent all 

rows (or partial rows) in the natural order; more rarely they represent diagonals. Generally, 

the same function is used to introduce upper and lower forms, since the form can be detected 

automatically. For strict lower and strict upper triangular matrices, the first or last inner list, 

respectively, is empty; this empty list may optionally be omitted, for matrices whose order is 

more than two (as there is then no possibility of confusion between upper and lower matrices).

As mentioned in section 5.4, two representations of sparse matrices are allowed: the first emulates 

the NAG convention of using three separate arrays, by having a list of three lists; the second, 

“long” , form uses a list of triples, to give a more natural representation. A full list of IRENA 

m atrix types appears in table 6.1. There is, additionally, a vector type, represented as a single 

list. There is no separate “diagonal” type, as this can easily be represented by a band m atrix: 

{a, 6, c, d , . . . ,  z} has little advantage over {{a, b ,c ,d , . . . ,  z}}.

The vector and m atrix  facilities of IRENA, including a number of further utilities provided by 

the present author, are fully described in appendix A of [33].

6.2 “R ectangular” regions

In a number of areas, particularly integration and constrained optimisation, a region of interest 

is defined by a pair of bounds in one or several dimensions. In NAG routines, such a region 

is usually specified by means of two scalars or two one-dimensional arrays, one containing the 

lower bounds and the other the upper bounds. In IRENA, we have the concept of a rectangle, 

in which upper and lower bounds occur together, separated by a colon. Pairs of bounds are 

delimited by commas and the whole is enclosed in square brackets. For example, translating the 

standard NAG example for D01FCF (in a system in which IRENA’s monitoring is switched off 

and the precision of printing floating point numbers is set to six digits) gives:
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1: dOlfcf(1(zl,z2,z3,z4)=4*zl*z3“2*e~(2*zl*z3)/(l+z2+z4)~2, 
1: range= [0:1,0:1,0:1,0:1])$

{integral,relative_error_estimate,number_of_function_evaluations}

2: integral;

0.575362

Wherever it is meaningful, an asterisk1 (*) may be used to indicate unbounded (±oo). Thus, a 

call to the bounded optimisation routine E04JAF might appear as:

e04jaf(f(w,x,y,z)=(w + 10*x)~2 + 5*(y - z)~2 + (x - 2*y)~4 + 10*(w - z)~4, 
bounds=[l:3,-2:0,*:*,l:3], vec start {3,-1,0,1})$

Rectangles are set up in IRENA as REDUCE objects, so it is also possible to define them  outside 

the key line, for instance with

bounds := [1:3,-2:0,*:*,1:3];

6.3 Function fam ilies

6.3.1 U ser-defined functions

The only common situation in which the user must provide information to specify an ASP 

(see section 3.2) is when this defines a function or family of functions. In this case, defining 

the functions (using appropriate dummy arguments) in the IRENA-function call is sufficient to 

define the ASP. For example, continuing the session begun in the previous section, we can use

1 REDUCE interprets the asterisk as TINES. This is reinterpreted with fin appropriate value by the jazz system  
when the IR ENA-function is processed.
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D01AJF to determine the integral p2n
I x 2 sin x dx

Jo

as follows2:

3: dOlajf(1(x)=x~2*sin(x),range=[0:2*pi])$

{integral,absolute.error.estimate,number_of_subintervals.used}

4: integral;

- 39.4784

6.3.2 Single param eter function fam ilies

In some cases, it is necessary to specify a family of functions rather than a single function. 

For example, D02BBF integrates a system of n first order ordinary differential equations. The 

derivatives, which depend on the independent variable t and the n dependent variables x \  to 

x n , may be specified by the user as functions 11, . .., fn.

As a concrete example, consider the case of a simple harmonic oscillator, subject to damping 

which decays exponentially with time. Taking some simple values (10, 0, 0.5, 4 and 2.5) for the 

various physical parameters, the behaviour of the oscillator over the first 10 units of tim e and 

its state at time t = 50 may be obtained as follows:

5: d02bbf( range=[0:50],
5: vec initial.values {10,0},
5: fl(t,xl,x2)= x2,
5: f2(t,xl,x2)= -0.5*xl - 4*e~(-t/2.5)*x2,
5: vec output.points {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} )$

{solution.point,solution,solution.at.output.points,error.control.used 

}

2 The p i here is evaluated in the Fortran by means of a  ceill to the NAG routine X01AAF, using the sam e 
m echanism  as in defaults processing, discussed in section 7.1. That no specific action is required from the user 
to specify how -re should be evaluated illustrates how sym bolic and numeric com ponents m ay be integrated to  
provide a natural interface.

32



6: solution_at_output.points;

8.95653 1.49471

7.26678 1.85794

5.2848 - 2.07993

3.17412 2.1004

1.17739 1.84286

- 0.413047 - 1.29323

- 1.33963 - 0.538857

[ - 0.94373 0.793941
[
[ - 0.0287051 0.962179

7: solution;

[ - 0.0107723]
[ ]
[ - 0.871786 ]

1.4842 0.233599



In some problems, large families of related functions may occur and, in this case, it would be 
impracticable to specify each function separately. For this reason, I R E N A  allows such a family 
to be specified as a single entity - an fset -  either in the keyline or at the R E D U C E  level3.

The standard N A G  example program for the routine C05NBF solves the tridiagonal set of 
equations

(3 — 2x{)x\ — 2x2 +  1 =  0

—x,-_i 4- (3 —  2 Xi)xi — 2xi+\ 4- 1 =  0 2 <  t < 8

- x 8 4-  (3 -  2x 9) x 9 4- 1 =  0

To solve this using I R E N A  requires functions to be defined representing the left-hand sides of 
these equations.

W e  can define these as fsets, as follows4:

8: fset f [1] (x[l :9] ) = (3 - 2*x(l))*x(l) - 2*x(2) + 1;

9: fset f[i=2:8](x[l:9]) = -x(i-l) + (3 - 2*x(i))*x(i) - 2*x(i+l) + 1;

10: fset f[9](x[l:9]) = -x(8) + (3 - 2*x(9))*x(9) + 1;

If fsets are defined at the R E D U C E  level, as these were, they may be displayed in an expanded 
form by means of the f display operator:

11: fdisplay f;

3 In the case of function nam es with m ultiple subscripts, described in section 6.3.3, only the fset notation  is 
available.

4 Note that an fset definition uses the equals sign (=) rather then the REDUCE assignm ent operator (:= ). This 
allows sim pler internal processing, since REDUCE does not attem pt to evaluate the expression on the left. It 
also serves to  distinguish the definition from an assignment, since the fset does not exist as an object which can  
be accessed or m anipulated directly by users: it should, perhaps, rather be regarded as resem bling a  REDUCE  
rule.
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2
F[l]= - 2*X(2) - 2*X(1) + 3*X(1) + 1

2

F[2] = - 2*X(3) - 2*X(2) + 3*X(2) - X(l) + 1

2

F[3]= - 2*X(4) - 2*X(3) + 3*X(3) - X(2) + 1

2

F[4]= - 2*X(5) - 2*X(4) + 3*X(4) - X(3) + 1

2

F[5]= - 2*X(6) - 2*X(5) + 3*X(5) - X(4) + 1

2

F[6]= - 2*X(7) - 2*X(6) + 3*X(6) - X(5) + 1

2

F[7]= - 2*X(8) - 2*X(7) + 3^X(7) - X(6) + 1

2

F[8]= - 2*X(9) - 2*X(8) + 3*X(8) - X(7) + 1

2

F[9]= - 2*X(9) + 3*X(9) - X(8) + 1
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Note that the two end functions, 11 and 19, were also defined using fset notation. It is not 
possible to mix the suffixed (In) and fset notations in defining a single family of functions.

An fset definition consists of the word Iset, followed by an optional list of subscripts in square 

brackets, a list of parameters in parentheses, an equals sign and an expression.

The list of subscripts consists of individual integers, or ranges of integers of the form m : n, 

separated by commas.

The list of parameters consists of individual identifiers and sets of identifiers, separated by 

commas, where a set of identifiers has the form name [fc: /], k and / being integers.

The expression is any valid REDUCE arithmetic expression. It may include individual members 

of any sets of identifiers which appear to the left of the equals sign. These are denoted by the 

name, followed by an integer subscript, in parentheses.

The following version of the C05NBF example demonstrates the use of fsets in the IRENA keyline:

12: c05nbl(Iset 1[1](x[l:9]) = (3-2*x(l)) * x(l) - 2*x(2) + 1,
12: fset f[j=2:8](x[l:9]) = -x(j-l) + (3-2*x(j)) * x(j) - 2*x(j+l) + 1,
12: fset f[9](x[l:9]) = -x(8) + (3-2*x(9)) * x(9) + 1,
12: vec start {-1,-1,-1,-1,-1,-1,-1,-1,-1} );

{zero,res iduals,location_tolerance.used}

13: zero;

[ - 0.570655]
C 3
[ - 0.681628]
[ ]

[ - 0.701732]
[ ]
[ - 0.704213]
[ ]
[ - 0.701369]
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]
- 0.691866]

]
- 0.665792]

]
- 0.596034]

]
- 0.416412]

14: residuals;

[ 0.00000000656011

[ - 0.00000000417547 

[ - 0.00000000519317 

[ - 0.00000000239601 

[ 0.00000000202249

[ 0.00000000481792

[ 0.0000000025795

[ - 0.00000000388374 

[ - 0.000000000135886



The usefulness of fsets is increased by the possibility of referring to REDUCE global variables, 

and in particular REDUCE matrices, in the defining expression. For instance, the NAG E04FDF 
example generates least-square estimates of X \ ,  X 2 and X 3  in the model

Y  =  X  4- Tl
1 ^  X 2 T2 +  X3T3

from 15 sets of values of Y  and the Ts. The user must provide a set of functions in which fi  

calculates the residual for the zth set of data -  that is, the difference between the observed Y  and 

the value calculated from the observed Ts, expressed as a function of arbitrary As. Specifying 

the y  and T  values in a REDUCE m atrix allows the functions to be defined as an fset, as in 

the following5:

15: y := mat((0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39,
15: 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39))$

16: tl := mat((1, 2, 3, 4, 5, 6 , 7, 8 , 9, 10, 11, 12, 13, 14, 15))$

17: t2 := mat((15, 14, 13, 12, 11, 10, 9, 8 , 7, 6 , 5, 4, 3, 2, 1))$

18: t3 := mat((l, 2, 3, 4, 5, 6 , 7, 8 , 7, 6 , 5, 4, 3, 2, 1))$

19: off asp!-loops;

20: fset residual[j=l:15](xl,x2,x3) =
20: xl + tl(l,j)/(t2(l,j)*x2 + t3(l,j)*x3) - y(l,j)$

21: vec start {0.5,1,1.5}$

6The sw itch a sp -lo o p s is turned off at line 19. This is necessary if m atrix elem ents are to be used in an fset 
definition, since this technique is incom patible with the normal IRENA m ode of processing fsets, which builds 
Fortran loops to  produce more com pact code. W ith the switch left on, the individual elem ents of the various 
REDUCE m atrices would not be evaluated in the generated Fortran. The data vectors here are defined using  
the REDUCE mat function, with each m atrix consisting of a single row, since REDUCE has no d istinct concept 
of a  vector.
A certain lack of m inim ality and orthogonality was introduced into IRENA itself, here, as the connection between  
using m atrix elem ents to  define an fset (at the im m ediate user level) and the a sp -lo o p s  sw itch which controls 
the style o f Fortran generation (of less direct interest to m any users) is not necessarily im m ediately apparent. 
Unfortunately, the present author only becam e aware of this particular design decision late in the developm ent 
of IRENA, at which point it was not feasible to attem pt its rectification.
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22: e04fdf()$

{ lo c a t  ion .of.m in im um , minimum_sum_of .s q u a r e s , 

s in g u la r .v a lu e s _ o f_ e s tim a te d _ ja c o b ia n .o f_ f ,  

r ig h t.s in g u la r_ v e c to rs _ o f_ e s tim a te d _ ja c o b ia n .o f_ f}

23: m inim um .sum .of.squares;

0.0082149

24: lo ca tio n .o f.m in im u m ;

[0.082411]
[ ]
[1.133 ]
[ ]
[ 2.3437 ]

25: on a s p ! - lo o p s ;

In this example, the f s e t  functions were called r e s id u a l ,  rather than  f , reflecting the quantities 

which they actually calculate. In fact, either name may be used for the functions used by the 

corresponding ASP.

6.3.3 M ore general function fam ilies

Fsets are not restricted to a single subscript: occasionally doubly subscripted functions are 

required. We could, for example, define

fset g[i=l:2,j=l:3](x,y) = i*x~j/y;

-  as can be seen from this example, the ranges of the various subscripts on the left of the 

definition are simply separated by commas.
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It is also possible to use fset notation to define a single function, in the REDUCE environment, 

which can be recognised by IRENA, provided th a t the envsearch switch is on (the default). In 

this case, the subscripting information may be om itted completely -  for instance:

fset h(x,y,z) = x~2 + y“2 + z~2 ;

6.4 D ata input from files

It is possible to input a file of IRENA commands (as with any REDUCE commands) by 

using the REDUCE construct in  filename. In addition to this, IRENA provides a facility 

whereby the value of any parameter may be stored in a file and substituted in the keyline or in 

response to a prom pt by using the form !?"filename"6. For example, if the contents of the file 

data/f 02aaf .data. 1 were

{{ 1, 2, 3, 4, 5},
{ 6, 7, 8, 9>,

•CIO, 11, 12},
{13, 14},

{15}}

then the eigenvalues of the symmetric m atrix which these values represent could be obtained by 

means of the call f02aaf(sym!-mat a ! ?"data/f02aaf .data. 1").

6.5 O utput nam ing

As well as using informative names for output parameters, IRENA provides a means for users to 

distinguish between identically named output parameters produced by different functions. This 

is accomplished by defining the full name of any output param eter (the long form ) to  consist 

of the name displayed in the function’s output list (the short form), prefixed with the name 

of the function and a hyphen. The short form is, in fact, an alias, which may be reused by 

other routines. The long form, however, is preserved (until the next call to the function which 

generated it), so th a t the user retains access to the earlier result without having to  take any 

special action.

6 In this, the exclam ation mark is present as REDUCE’s lei ieriser -  that is, as an escape character.
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6.6 N on-param etric output

In a number of NAG routines, notably in the D02 (ordinary differential equations) chapter, 

intermediate values of the computed solution are printed at a set of points determined by a 

user-supplied subroutine. In an interactive environment such as IRENA, it is much more useful 

to users to have access to such results in a structure; this was achieved by writing the results to 

a tem porary file and reading this back into REDUCE in the form of a m atrix, which was then 

treated as an additional IRENA output parameter.

The ASP specifying the desired points was constructed automatically from an array of points 

specified by the user. (Users requiring a more powerful means of determining the set of output 

points -  for example, in terms of the previous point and value -  still have the option, as with any 

IRENA ASP, of specifying the required NAG subroutine directly, in a Fortran file. However, it 

is anticipated that in most cases the loss of generality in the IRENA ASP will be outweighed 

by its ease of use, at least in the initial investigation of a problem; should a more sophisticated 

subroutine later be required, that generated by IRENA is available to the user as a template; 

this is expected to be of particular use to those programmers who are not highly expert in 

Fortran.)
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C hapter 7

D efaults and jazzing in IR E N A -0

7.1 T he defaults system

The IRENA “defaults” system allows appropriate default values for NAG routine param eters 

to be specified, as constants or functions of other parameters, by the system developers or the 

user1. Similar defaults may be defined for “quasi-NAG” parameters, introduced by the jazz 

commands s c a la r  and v ec to r .

The functionality of the defaults system was originally specified by the present author; apart 

from a few small additions by him (such as the housekeeping  entry, the sum function and the 

role of u n se t as a unit), the detailed design and implementation was entirely Dewar’s.

The defaults system allows for the presence of both system and user defaults files for each 

routine, with the latter taking precedence over the former (and runtime user-supplied values, of 

course, taking precedence over both).

The defaults for a routine are specified using a simple language with the following features:

•  entries may be signalled as “housekeeping” , to distinguish them from “control” param eters 

(see sections 4.2 and 9.2.6);

•  as in REDUCE, comments may be introduced using the percent sign ('/,);

1 One effect of the IRENA project has been the formalisation of how “suggested values” of param eters are 
presented in the NAG Fortran Library Manual. W hereas, previously, such suggestions were dispersed throughout 
the routines’ descriptions, from Mark 14 on, a special section of the parameter description has been provided for 
this purpose.
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Function Value

abs(X)
dim(X) 
dim (X ,1) 
dim (X,2)

have(X)

le n g th (S )
m atrixp(X )

max(X)
max(Xl, . . . ,  Xn) 
min(X)
m in(X l, . . . ,  Xn) 
m u lt ip l ic i ty (X )

n th -ro o t(X ,Y ) 
params(X)

rec tan g lep (X )

sca laxp(X )

sum(X)
sum(XI, . . . ,  Xn)

absolute value of X
the length of the one-dimensional array X
the first dimension of the two-dimensional array X
the second dimension of the two-dimensional array X
if the first param eter of dim evaluates to u n se t then the 
result is u n se t
t r u e  if X  has a value (including u n se t) , defined in the 

key line or the defaults file, 
f a l s e  otherwise
(have(X) and X ”= u n se t tests for an actual value)
the length of the string S
t r u e  if X  exists as a REDUCE m atrix,
f a l s e  otherwise
(Note th a t vector and m atrix results are returned by IRENA 
as REDUCE matrices.)
the largest element of the array X  
the largest number among X I , . .. ,Xn
the smallest element of the array X  
the smallest number among X I , , Xn
the number of functions called X I , . . . ,  Xn  supplied in an 
IRENA-function call
the n th  root of X,  where n is the integer part of Y
the number of parameters of the function X  supplied in an 
IRENA-function call
t r u e  if X  exists as an IRENA rectangle, 
f a l s e  otherwise
t r u e  if X  exists as a REDUCE scalar, 
f a l s e  otherwise
the sum of the elements of the array X  
the sum of the numbers X I , . . . ,  Xn

For the forms max(X), min(X) and sum(X) to work, the array X m ust exist 
(perhaps aliased) as a REDUCE or IRENA object. In a few cases, the NAG 
array may have been constructed from separate REDUCE or IRENA level 
components, by means of a “jazz-function” -  see appendix D: in this case X 
exists only in the Fortran generated and so cannot be processed by IRENA.

For max, min and sum, u n se t acts as a unit: that is, parameters which evaluate 
to  u n se t are ignored, unless or until there is a single parameter, in which case 
the value u n se t is returned.

Table 7.1: Functions available in defaults files
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Name Routine
called

Value

a s e ts z X02CAF estimated active set size (paged environments) or else zero
defnad X04AAF Fortran unit number for advisory messages
d e fn e r X04ABF Fortran unit number for error messages
fp b ase X02BHF the base used in the com puter’s arithmetic
fp d ig s X02BEF the number of decimal digits which can be relied on in 

floating point numbers
fpemax X02BLF the maximum exponent in floating point numbers
fpem in X02BKF the minimum exponent in floating point numbers
fp ep s X02AJF the smallest number which, added to 1, yields a number > 1
fphuge X02ALF the largest floating point number
fp p rec X02BJF the precision (in base fp b ase  digits)
fp rn g e X02AMF the smallest positive floating point number z  such that, for 

any x  in [z, 1/z], the following may be “safely” calculated: 
- x ,  1/x, SQRT(x), LOG(x), EXP(LOG(x)) and 
y **(LOG(x)/LOG(y)) for any y

fp rn d s X02DJF .TRUE. if rounding is always correct in the final bit, 
.FALSE, otherwise

fp t in y X02AKF the smallest positive floating point number
m axint X02BBF the largest integer

P i X01AAF 7T
scmaxa X02AHF the largest number for which SIN and COS return a result 

with some meaningful accuracy
u fe v n t X02DAF .FALSE, if underflowing numbers are simply set to zero, 

.TRUE. otherwise

Table 7.2: NAG constants available in defaults files
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•  arithm etic may be performed on the values of both NAG and “quasi-NAG” parameters;

•  conditional values may be specified;

•  antecedents of conditionals may involve relational operators and tests on the existence of 

param eter values;

•  functions exist to provide the dimensions of arrays, the maxim um  and minimum of arrays 

or sets of values, the number of parameters in a user-specified function and the size of a 

set of related functions provided by the user;

•  a special value u n se t takes account of the situation where a NAG param eter will not be 

accessed on a particular call; note that this is considered a valid value (for instance, in 

checking whether a value has been set);

•  special symbols * u se rab se rr* , * u s e r re le r r* ,  * u serm ix err*  and * u se r in p u t e r r*

provide a second level default mechanism, in th a t they are set globally and used to  specify 

param eter defaults. Their values may be reset at the REDUCE level by the user, thereby 

redefining default values throughout the system;

•  a special value ca n ce ld e f a u l t  allows a user defaults file to undo the effect of a setting in 

the system defaults file, without setting another value; this is distinct from u n se t.

A full list of the functions available in specifying defaults is given in table 7.1.

In addition to the special symbols mentioned above, IRENA provides a number of other symbols, 

representing m athem atical and “machine” constants, which may be used in specifying defaults. 

These are implemented by inserting calls to appropriate NAG routines in the Fortran code 

generated by IRENA. They are listed in table 7.2. (Not all of these are used in IRENA system 

defaults files -  see the footnote on page 77.)

Note th a t the definitions in table 7.2 relate to a Fortran environment. The “value” entries 

corresponding to X02 routines are merely descriptions: precise definitions may be found in 

the X02 chapter of the NAG Fortran Library Manual [26] or Foundation Library Reference 

Manual [24].

As already noted, the standard REDUCE commenting convention applies in defaults files -  th a t 

is, any text occurring after a percent sign ('/,) on any line is ignored.

Annotated examples of system defaults files, chosen to illustrate various features of the defaults 

system, will be discussed in chapter 10.
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7.2 T he basic jazz system

The IRENA “jazz” system is used to redefine the forms of NAG parameters, to help meet the 

objectives set out in chapter 5.

For each NAG routine within IRENA, there is an individual jazz file, containing descriptions 

of the conversions between NAG and IRENA parameters. Each entry in this file consists of a 

jazz command name, enclosed in curly brackets, generally followed by a list of NAG variable 

names, a colon and a list of the names of IRENA structures. The use of curly brackets was 

adopted to help visually distinguish the various parts of a jazz command and to serve as an 

implicit term inator for the previous command. Logically, it is not strictly necessary, since the 

components of IRENA lists are separated by commas; a new command may be recognised when 

an atom  is encountered which is not preceded by a comma.

The mapping between the NAG and IRENA parameters is determined by the particular jazz 

command. There are conceptually two classes of jazzing, applicable to input and output 

param eters respectively.

For input parameters, with a very few exceptions, it is not necessary for users to adopt the jazzed 

form of parameters. Thus, a user who is familiar with the Fortran routine may continue to use 

the NAG param eter names and definitions2 (although the jazzed names have the advantage of 

greater uniformity). Additionally, multiple jazzings of parameters are allowed, so th a t alternative 

interfaces may be designed in situations where there is more than one natural representation 

of a problem. In principle, tailored interfaces could also be provided for specific sets of users; 

initially, this will probably be limited to the choice of alternative, discipline-specific names for 

particular objects.

For output parameters, use of the jazzed form is obligatory, since it would be confusing to return 

the same object in several different ways. However, it is possible, where necessary, to define more 

than one output object containing the same information -  for example, where a single element 

of an array contains information of interest to the user but the entire array is needed for input 

to a different NAG routine.

2 In contrast, in the initial release of NAGlink, the Axiom-NAG link described in section 17.1, only a NAG-like 
param eterisation was provided, so that a  working interface could be released more quickly. In the higher level 
NAGlink functions, provided by the present author for the second release, more natural param eterisations are 
used. However, the question of nam es does not arise there, except in docum entation, since Axiom  functions have 
purely positional param eters. In NAGlink, the alternative interfaces fire provided by separate functions, so the  
higher and lower level features cannot be m ixed in a single function cedi.
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A limited subset of jazzing is available to users in the alias system, which allows alternatives 

to NAG or IRENA names to be defined by users. As a user may wish to have different names 

for input and output aspects of a NAG inpu t/ou tpu t parameter, two commands are provided 

for use in alias files: in  provides an input alias and out an output alias. The syntax of these 

commands is similar to th a t used for jazz commands:

{ in}  existingname : newname

and

{out} existingname : newname

where existingname is a NAG or IRENA name for the object being aliased and newname is the 

alias which the user wishes to establish. Naturally, IRENA input and output names, respectively, 

must be used with in  and out.

As with defaults files, the standard REDUCE commenting convention applies in jazz and alias 

files.

Brief descriptions of individual jazz commands may be found in appendix D and examples of 

their use are presented in chapter 11.

7.3 T he extended  jazz system

As mentioned in section 1.3, special transformations were often required for application to a 

small number of routines. Most commonly, these concerned NAG array param eters although, 

at times, scalars were also involved.

As the original jazzing mechanisms were rather deeply embedded in the IRENA systems code, 

Dewar was asked to provide a more easily extensible system for defining new jazz functionality. 

The necessary components for defining new input and output jazz commands are described 

below.

7.3.1 Jazz-functions

New input jazz commands can be defined by jazz-functions. These commands are slightly 

restricted in form, compared to general jazz commands, in that only a single NAG nam e is 

allowed. Thus, each instance represents a means of defining a single NAG param eter in term s 

of IRENA objects. On the other hand, rather than a simple list of IRENA structures, any valid 

Lisp object is allowed on the right of the colon.
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A further restriction is that this system was not designed to produce REDUCE objects but only 

to generate Fortran code defining the NAG parameter: the intention behind this was to avoid 

creating large, temporary REDUCE structures, corresponding to NAG parameters, which the 

user would be unlikely to want to access.

To define a new jazz command, three REDUCE procedures were normally needed: 

a check-function, to determine whether any necessary structures had not yet been provided, 

a dim-function, to define the dimensions if the NAG param eter was an array and 

the jazz-function itself, which generated Fortran assignments, defining the NAG param eter.

(In his thesis [5], Dewar refers to the jazz-functions as trans-functions.)

In cases where several NAG parameters were derived from one IRENA object, the various jazz- 

functions would all be associated with the same check-function.

The restriction to processing a single NAG parameter and the difficulty of generating REDUCE 

objects meant that the system was rather inefficient for processing single IRENA structures 

which represented several NAG parameters, since similar sections of code often had to be written 

for the various NAG parameters and the associated check-function would be invoked for each 

them.

In principle, it would have been possible to create intermediate REDUCE structures in the 

check-functions but, in practice, this did not prove a very satisfactory approach, since the logic 

of IRENA itself determines when a check-function is called, making it difficult to ensure th a t 

such objects are created before they are needed by other jazz commands.

7.3.2 O utput-functions

New output jazzing functions are defined by output-functions. In this case, considerations 

of redundant REDUCE objects do not arise and the functions which can be defined are less 

restricted than general jazz commands, since, rather than a list of IRENA names, any valid Lisp 

list is allowed.

No associated functions are required in this case.
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Part II

D evelopm ent o f IR E N A -1
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C hapter 8

O verview  o f IR E N A -1 

developm ent

8.1 Choice o f routines for IR EN A -1

At the onset of the project, around 1987, NAG’s principal numerical library was the Mark 12 

Fortran Library, which contained 688 user-callable routines. At the time, it seemed a tractable 

task to define simplified interfaces for the m ajority of these routines, if not for them  all.

However, as IRENA began to take shape and the practicalities of producing individual interfaces 

were better understood, the true scale of this task became apparent. Whereas the few simple 

routines initially considered as test cases had required little redefinition of their interfaces, when 

more complex routines were considered it soon became clear th a t the amount of work required 

to produce a natural interface to a routine increased more than linearly with its size (see section 

8.3). W hat was perhaps more significant was th a t the incremental time to expand the processed 

set of routines increased considerably with the number of routines already processed, due to 

several factors:

•  a t times it was necessary to revisit earlier routines to adjust their jazzing, for stylistic 

consistency with what was found to be necessary for later additions;

•  as the size of the set of processed routines grew, more errors were uncovered in REDUCE,
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GENTRAN and IRENA’s own system code; (errors were also discovered in the NAG 

Library and its documentation but these tended to be uncovered as each routine was 

processed); corrections for these errors and other modifications of the underlying software 

at times caused previously satisfactory jazzing to fail;

•  new routines at times required extensions to jazzing facilities; again, this could require 

adjustm ents for earlier routines.

From each of these causes, the amount of extra work incurred by processing one further routine 

increased with the number already processed.

A further problem was th a t the NAG Fortran Library presented a moving target. The library 

is updated on a roughly 18 month cycle: not only are a significant number of routines replaced 

at each mark and further routines added, to provide new functionality, but corrections and 

refinements are made to the documentation, on which the generation, both autom atic and 

manual, of IRENA components is based. An example of this is the reclassification of “workspace” 

param eters as “ou tpu t” , when some intermediate result stored there is found to have a practical 

use -  this is perhaps one of the worst causes of “tangled” output, such as th a t described in 

section 2 for the param eter W in the routine D02YAF (the name W is a clue to the original use of 

this param eter as workspace).

After the obvious strategy of ignoring those routines which were “scheduled for withdrawal” , the 

first reduction in the IRENA “target set” (for which individual interfaces would be produced) 

was the dropping of the statistical chapters of the NAG Library, for two m ain reasons:

•  as mentioned in section 1.4, a natural interface already existed for much of this m aterial 

in the form of statistical packages and

• the types of “natu ral” structures in statistics differ considerably from those which occur in 

numerical analysis, so that a disproportionate amount of effort was expected to be involved 

in catering for the relatively small num ber1 of statistical routines.

However, as the project developed, the difficulties of “catching up” with even the non-statistical 

part of the NAG Library became ever more apparent and a decision was eventually taken to 

concentrate on the routines of the “NAG W orkstation Library” , which presented both a smaller

1This has rem ained fairly stable, at about 20% of the user-callable routines: 125 statistical routines from a  
total o f 688 at mark 12 of the Library, 244 from a tota l of 1134 at mark 16.
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and a more stable target set (the first release, in 1986, contained 112 non-statistical routines -  see 

[21] -  the second, which was in preparation when this decision was taken, was eventually released 

in 1992 as the “NAG Foundation Library” and contained 173 “fully documented” non-statistical 

routines).

As well as the statistical chapters, two chapters of NAG utilities (X04 -  In pu t/O u tpu t Utilities 

and X05 -  Date and Time Utilities) were excluded from IRENA as irrelevant or redundant in 

the REDUCE-IRENA environment. In addition, the routine C05ZAF was excluded: its function 

is to “check [the] user’s routine for calculating 1st derivatives” ([25]). Since IRENA generates 

the equivalent of such a routine automatically, using REDUCE’s symbolic differentiation, there 

is no need for this routine nor any opportunity for users to apply it.

The only function of the four routines E04D JF, E04DKF, E04UDF and E04UEF is to supply optional 

param eters to other routines (E04DGF and E04UCF). In IRENA-1, this functionality was om itted, 

on account of time constraints, although it was later provided by incorporating these four 

routines into jackets written for E04DGF and E04UCF (see section 12.1), so th a t all of the NAG 

optional parameters were made explicit. Where appropriate, they could then be given defaults 

equivalent to the internal NAG defaults by the usual IRENA mechanism. Naturally, these four 

routines do not appear separately in IRENA.

The Foundation Library also includes 83 “Fundamental Support Routines” which are 

“documented in compact form” . In general, separate IRENA interfaces were not provided for 

these, the only exceptions being the two routines in the X01 (M athematical Constants) chapter. 

Interfaces for these already existed, before the decision to restrict the initial version of IRENA 

to the Foundation Library was taken and, since REDUCE does not explicitly provide Euler’s 

constant, 7, which is calculated by X01ABF, this routine was included. Since a decision had been 

taken that, in general, routines from the Foundation Library would be included in IRENA on a 

chapter by chapter basis, the only other routine in this chapter, X01AAF which calculates a value 

for 7r, was also included (although clearly redundant at the user level).

Additionally, 167 other top level routines from the full NAG Library are included, as auxiliaries, 

in the Foundation Library. These are listed in the Foundation Library Handbook bu t are 

otherwise undocumented there. One of these routines, AOOAAF, provides precise details of the 

version of the Library in use, in particular for use in reporting errors, and was included in 

IRENA for the same reason. One other routine from this set, C02AJF, was used in the pre

release version of the Foundation Library, in the example program of another routine, and so 

was included in the IRENA target set, to allow the equivalent usage. This usage was eliminated
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from the Foundation Library before its final release and so the C02AJF interface was also removed 

from IREN A-1.

Finally, the routine D03FAF, which solves the three-dimensional Helmholz differential equation, is 

the only NAG routine which uses a three-dimensional Fortran array. As none of the GENTRAN 

code in IRENA was designed to handle this case and, in fact, an assumption th a t at most two- 

dimensional structures would occur was fairly deeply embedded in Dewar’s code, this routine 

(and so the entire D03 chapter, which contains two other routines) was excluded from the target 

set. As any future version of IRENA is likely to have a completely reworked jazzing mechanism, 

it was not considered worthwhile to attem pt to extend the dimensionality of the present version, 

to accommodate this one routine.

The effect of the decision to concentrate on the Foundation Library, on work already performed, 

was th a t 122 fully processed routines and another 67 for which only defaults files had been 

produced were not included in the original release. However, the jazz files for these routines 

have largely been maintained to reflect general changes and most could be made available with 

little extra work.

8.2 D ifficulties encountered in com pleting IR E N A -1

The previous section mentioned how the work involved in processing any NAG routine for 

inclusion in IRENA tended to increase with the number of routines already processed. Several 

other factors also slowed down the development of the system.

• Frequently, when an additional NAG routine was processed, it was found th a t its ASPs did 

not fit into the existing structure, so th a t their functionality had to be analysed, a natural 

representation chosen and new code written to convert this to a GENTRAN tem plate.

•  A similar situation frequently occurred with other parameters, in th a t existing jazzing 

commands failed to map between the natural representation and the required NAG 

parameters, so that new jazz functions had to be written. (See, for example, cm plxquots 

and o u tp u t con j  in section 11.1.1.)

•  The existing system did not always provide the necessary control of the interface and, 

as it evolved, became complex and awkward to use. An example of this lack of control, 

discussed further in section 9.2.5, was th a t no general means was available to determine the
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order in which IRENA would issue prompts, so that designing a logical basis for interaction 

between the system and the user could be very difficult2.

•  Changes to underlying software outside of the project’s control, such as compilers and

loaders, at times disrupted the functioning of the system. In particular, a change to the 

internal representation of real numbers, introduced in REDUCE 3.5, invalidated much 

of the original system code, which was written using the earlier representation: the 

ramifications of this extended for a considerable period.

From the first three of these points, it can be seen that the process of creating IRENA interfaces

involved a great deal of coding of special cases. Due to the overall strategy adopted for IRENA, 

which was written as an extension of REDUCE, this code was written in the REDUCE system 

language RLISP and so is not portable outside of the REDUCE environment.

Functions available in the version of Lisp used to implement RLISP are transparently available 

in RLISP, even if they do not form part of the RLISP definition. In our case, the RLISP was 

implemented in PSL (Portable Standard Lisp) and the difficulty of possibly porting IRENA 

code is further increased, even in RLISP environments, because PSL functions are used in the 

IRENA code. Although PSL is the traditional basis of RLISP, there is a growing number of 

implementations based on varieties of Common Lisp, as well as some early implementations in 

Cambridge Lisp. Porting IRENA in its present form to such REDUCE platforms would involve 

detecting and recoding the PSL function usage. Fortunately, a different strategy, discussed in 

chapter 15 and in particular in section 15.3, offers a much more portable alternative for much 

of the system.

8.3 T he effect o f NAG  routine com plexity  on IR E N A  

developm ent

In an attem pt to quantify the effect of the complexity of the underlying NAG routines on 

the development of the corresponding IRENA interfaces, GLIM [11] was used to examine the 

relationship between the size of the IRENA jazz and defaults files and the number of param eters 

of the NAG routine, for the routines included in IRENA-1.

2This illustrates a “lack of scalability” , analogous to that found in the investigation discussed in section 8.3, 
in that, for the simpler routines initially investigated, the order of prom pting did not constitute a problem . A 
more general mechanism  to control the prom pting order would be difficult to graft onto the existing system , since 
IRENA increm entally determines which parameters are required at any point, in term s of what is already known, 
m aking prediction of the dependencies difficult. This feature is quite deeply em bedded in the system  design.
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Initially, only the total param eter count of the NAG routines was used.

In figure 8-1 the sums of the lengths of pairs of jazz and defaults files3 are plotted against the 

number of NAG parameters. By eye, the trend appears quite linear.
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Figure 8-1: Plot of IRENA file sizes versus NAG param eter numbers

Using GLIM to fit a straight line through the origin gave the relation I =  5.292p, with a standard 

error of 0.1723 in the coefficient of p. Adding a quadratic term  gave a small (6%) but significant 

improvement in fit and the relation / =  3.924p+ 0.08515p2, with standard errors of 0.4690 and 

0.02727, respectively, in the coefficients. This model accounted for 70% of the deviance about 

the mean in the observations. (The effects of higher-order terms were not significant, here.)

3The results for the sizes of the jazz and defaults files separately are very similar and are not presented here.
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For the routine with the greatest number of parameters (29) the estim ate of the quadratic effect 

is about 63% of that of the linear term; the average is about 28%.

The wide scatter of the points in figure 8-1, representing the residual 30% of the deviance, 

suggests that one or more other factors may have influenced the size of the jazz and defaults 

files; in other words, the complexity of the task of processing a NAG routine for IRENA requires 

a more complex measure than simply the number of parameters. For instance, another possible 

consideration was the number and complexity of the NAG ASPs.

To provide data  for a more detailed investigation, a C program was written which analysed the 

specfiles of the routines and produced counts of the numbers of param eters in the categories 

“input” , “output” , “inpu t/ou tpu t” , “workspace” and “dummy” . For the further categories 

“function” and “subroutine” , the total number of NAG routine param eters in the category 

and the total number of parameters of those parameters were counted4. These are shown in 

appendix E as “main” and “2nd level” respectively.

Using these extended data, a further GLIM analysis was carried out; a transcript of this appears 

in appendix F. In this, output parameter counts for function routines and param eter counts 

for function ASPs were augmented by one, to give the value returned by the function the same 

consideration as other output values, returned in parameters. During the run, as the significance 

of the output param eter count was only moderately high, the input, output and inpu t/ou tpu t 

totals were combined, with the inpu t/ou tpu t figure being doubled, since both input and output 

roles contribute to the effort of jazzing these parameters.

Not surprisingly, the effects of the number of dummy parameters was insignificant -  these require 

no m anual intervention in their processing (and, in any case, only two occur in the Foundation 

Library). The workspace param eter count also proved to  be insignificant -  the only m anual 

operation involved in connection with these was the transcription of the values of associated 

workspace length parameters into the defaults file; however, these param eters are classified as 

input.

Perhaps more surprisingly, the effect of the ASPs was not great -  there is a linear effect from 

the to tal ASP size (calculated as the total of the number of ASPs and of their parameters, 

augmented by one for each function ASP) but this is dominated by the effect of the ordinary

4 The program also, incidentally, identified the only occurrence in the routines used in  IREN A -1 of an external 
(that is, subroutine or function) parameter with no user-supplied parameters o f its own. D01BBF takes as its  first 
param eter the nam e of a  NAG supplied subroutine, determ ining which of four possible quadrature rules should  
be applied. This illustrates how unique parameterisations occur in individual NAG routines, frustrating attem p ts  
at autom atic processing.
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input and output parameters, which, in contrast to the previous analysis, has both quadratic 

and cubic components. The final relationship was / =  1.758s +  0.5104/2 — 0.01177t3 where 

I is again the combined lengths of the jazz and defaults files, s is the above measure of 

the to tal ASP size and t is the combined inpu t/ou tpu t ( “transput” ) param eter count5. The 

standard errors in the three coefficients were, respectively, 0.3188, 0.02446 and 0.001007 and 

the model accounted for 82% of the total deviance about the mean. A clearer impression 

of the relative sizes of the various effects may be gained by rewriting the relationship as 

/ =  1.758s +  (0.7144*)2 -  (0.2275*)3.

The t dependency has a maximum at about t = 29 which is close to the largest value (32) of t 

which occurs. In fact, the data  in this region are rather sparse, with only five values above 23, 

so little reliance should be placed on the exact form of the fitted expression at high t values. 

The behaviour for small t values is of more interest -  and is much more reliable, since the data 

here are much denser, with more than half of the observations having t values of 9 or less.

For a more striking demonstration of this non-linearity, without the assumption of any particular 

model, the values of sum (/) and io t  (<) were sorted into increasing i o t  order and the ratio  of 

total values of sum and i o t  was calculated for each quartile. The respective values were 2.206, 

3.563, 4.433 and 5.569; a linear dependence of / on t would be expected to result in approximately 

equal values of this ratio in the four quartiles.

A factor which would be expected to influence the difficulty of processing a routine and 

which may account for some of the nonlinearity observed is the interconnectedness of the 

NAG parameters, in the sense th a t the meaningful jazzing of one param eter may involve an 

understanding of the roles of others. It is, however, difficult to see how this might be quantified.

5 Although there is no linear com ponent in t,  the interaction of the quadratic and cubic com ponents, which 
have opposite curvatures, produces a long, alm ost linear, centred section in the graph of I against t.



C hapter 9

M odifications to  IR E N A -0

A general description of IRENA-0 may be found in [4] or [6] or (with some IRENA-1 features) 

in [32] -  a more complete account exists in [5]. Listed below are a number of general features 

which were added to this by the present author, to improve the general user interface.

9.1 Sw itches

Switches are a feature of REDUCE allowing a general level of user control over various aspects of 

the system, most commonly over the mode of evaluation or display of categories of expressions. 

Switches are essentially bivalued, are global in scope and are commonly (but not exclusively) 

represented by global system variables; switch settings may occur in the same context as any 

other REDUCE instructions, including in the user’s REDUCE initialisation file, which is read 

on REDUCE startup. They can thus be used to tailor REDUCE’s default behaviour to the 

user’s needs.

Various switches added to  IRENA to improve the user interface are described here.
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Verbose

It was felt th a t some users would not wish to receive the standard instructions on how to supply 

param eter values, from each incomplete IRENA-function call, nor on how to access the output 

list, in every case. A switch verbose was therefore introduced to allow these to be turned 

off. It does not, however, inhibit other, less common, messages nor those generated by m onit, 

described next. By default, verbose is on.

M onit

A significant time lapse occurs between the call of an IRENA-function and the return of the 

output list (see figure 9-1). On the original system at NAG, running on a Sun-3, this was 

typically half a minute. To reassure users during this period, messages indicating the stages of 

the IRENA process were added, controlled by the switch m onit, which is on, by default.

Irena-tim ing

This switch, m eant mainly as a development tool, extends the function of m onit to include 

processor and elapsed timing information. The processor times are obtained from the PSL tim e 

function, which according to its documentation [36], returns “CPU time in milliseconds since 

login tim e” but, in fact, appears to include only time spent in PSL processes, since REDUCE 

was loaded, not in external processes (such as compilation) nor in processes loaded with oload 

(such as the Fortran execution). No attem pt was made to circumvent this, since plans for 

the next release of IRENA included running the Fortran as a separate process, possibly on 

a remote machine. An additional reason was that, for an interactive system, obtaining an 

objective measurement of elapsed times was considered more significant than investigating 

Fortran processor time, especially since enhancement in the performance of the Fortran was 

not within the remit of the project.

Typical i r e n a - t im in g  output is shown in figure 9-1.

It can be seen th a t the elapsed time is dominated by the time to load from the NAG Library. 

In this example, the full Mark 15 Library was used. In the released version of IRENA, this 

was replaced by the smaller Foundation Library, giving a significant reduction in the elapsed
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IRENA timings

processor elapsed
Beginning code generation ... 

time taken ............... 1 s
Beginning compilation ... 

time taken ............. 6 s
Beginning loading ...

time taken ............. . . . . 51 ms 26 s
Beginning execution ...

time taken ............... . . . . < 1 ms < 1 s

Fortran execution time is not included in the above processor times.

Figure 9-1: IRENA Timing O utput

time, from 26 to 11 seconds, reflecting the relative sizes of the two libraries (1038 and 423 

routines, respectively). Thus, for interactive use, there is a clear tradeoff between the diminished 

functionality and the shorter response times which result from using a smaller numeric library.

Prom ptall

This switch is discussed in section 9.2.6.

M nem prom pts

The IRENA mnemonic functions provide an alternative means of calling NAG routines which 

return a single value, mimicking the syntax of normal REDUCE procedures. They also, at 

times, provide a single interface to several NAG routines. In this latter case, control param eters 

may occur for some routines but not others: these have system default values which might 

conceivably be cancelled by the user. To avoid the possibility of confusion in such a case, since 

the user is generally unaware of the underlying routine being used, the switch mnemprompts, 

tem porarily reset in the code of the mnemonic function, allows p ro m p ta ll to operate for the 

routine in question, regardless of its actual setting. (The same effect could probably be obtained 

by a local resetting of p ro m p ta ll.)
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Fortinclude

In IRENA-0, solving a series of similar problems involved running through IRENA’s complete 

generate-compile-execute-load cycle for each problem, which soon increases the elapsed time to 

unacceptable levels for interactive use. The design of IRENA makes it difficult to  avoid repeating 

this cycle1; however, a partial solution is provided by the f o r t in c lu d e  switch, which allows the 

user to specify two lists of filenames: it is assumed th a t the files contain Fortran fragments, to  be 

inserted after the automatically generated non-executable Fortran statem ents (type declarations 

etc.) and before the automatically generated executable statements. The contents of the files 

in the first list are inserted in the main program and in all subprograms, those from the second 

list in the main program only. 99999 CONTINUE is inserted as the last executable statem ent in 

the main program.

This facility is meant mainly for use in generating free-standing programs (with the switch 

codeonly  on). It allows, among other things, the construction of loops in the main program, to 

handle different data values (for which a READ may be provided) and the communication of data  

values into ASPs via COMMON blocks. An example of its use is given in Keady and Richardson 

[17].

9.2 Prom pting

A number of enhancements were made to the IRENA-0 prompting mechanism, some of which 

are described below.

9.2.1 N am e substitution

The most radical prompting enhancement was to allow the use of fi, in place of the name of 

the object being requested -  for instance, in IRENA m atrix references such as the use of vec 

below. (An outline of IRENA m atrix types was given in section 6.1 -  for a full description, 

see Appendix A of the IRENA User Guide [33]). This feature allowed much more meaningful 

prom pts to be introduced without requiring the user either to remember a shorter alias or to

1 In the later Axiom  “NAGIink” , drawing on experience with IRENA, part of this cycle is elim inated by not 
recom piling those code com ponents which are unchanged, following in part the suggestions m ade in section 15.3.3, 
below. This will be discussed in section 17.1.
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re-type the prompt-alias. For instance, in e04naf, in response to the prompt

(R eal v e c to r )  l i n e a r  term  c o e f f ic ie n ts ?  

it is possible to reply 

vec 0 { 1 ,1 ,3 ,2 ,5 } ;

(where vec introduces the IRENA vector type, mentioned in section 6.1.)

In the case of matrices, the user may wish to provide a reply of the above form or simply refer 

to a REDUCE algebraic object, l t c ,  say, by typing

© =ltc;

The © mechanism thus provides a simple means of avoiding problems which could have arisen 

in simply allowing the omission of names whose position is variable.

For objects other than matrices, the user’s response would always have begun with the name of 

the object followed by an equals sign. In these cases, IRENA-1 now appends ©= to its prom pt.

9.2.2 B oolean variables

In many NAG routines numeric or string variables are used as switches. For a more natural 

interactive interface, these were identified by the jazz command boolean , which indicates that 

the prom pt type should be set to Y o r N. This feature was introduced much earlier than  the 

more general s e t - ty p e ,  described below, and its use was later replaced by instances of th a t 

command. An associated p ro m p t-a lia s  command is normally used to supply a prom pt in the 

form of a question requiring a “Yes” or “No” answer.

(For keyline use, keywords equivalent to these answers are required. Providing both these and the 

boolean prom pt, using the standard IRENA jazzing and default facilities, is quite complicated 

and an autom atic mechanism for generating the necessary commands was developed. An 

example appears in section 15.2. Normally, when keywords are defined, IRENA prom pts with 

a choice of these. To inhibit this in the “boolean” case, a variant jazz command qkeyword was 

added.)
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In some NAG routines, one exceptional parameter value indicates a non-standard problem, other 

possible values represent normal data -  this case is handled by introducing an IRENA s c a la r  

-  essentially an additional, quasi-NAG parameter, and treating this as described above.

9.2.3 Prom pt types

In IRENA-0 prompting, the name of the required object is prefixed with a parenthesised type 

description which is determined automatically, initially from information in the infofile, where 

the Fortran type of each NAG parameter, whether it is an array and, in particular, whether it 

is a vector are specified. To extend this feature to new data types defined by jazz-functions, 

the procedures s e t - ty p e  and g e t- ty p e  were added, the former to be used in defining the 

jazz-function’s associated check-function (see section 7.3.1), signalling the type of any as yet 

unavailable objects, the latter for use in setting the prom pt type.

Occasionally, the autom atic determination of prom pt type in IRENA-0 had infelicitous results: 

for example, for some of the built-in jazz commands the type of a jazzed object differs from that 

of its NAG counterpart but this information was not available to the prom pting mechanism. 

To overcome such problems, the jazz commands { s e t- ty p e }  and {se t-ty p e© }  were added, to 

override the autom atic type. The second of these is used to indicate cases where fi= should be 

added to the end of the prompt. Considerable use was later made of these facilities, to tailor 

prom pts to match the type of response required from the user without having to include this 

information in a param eter’s prompt-alias.

To allow maximum flexibility, when the autom atic type is overridden the type is not printed in 

parentheses. If the parentheses are required, they may be included as part of the supplied type 

(which has the form of a REDUCE string). An example of printing such a type description is 

given in section 9.2.4.

9.2.4 Keywords

W hen prom pting for a variable for whose values keywords had been defined, IRENA-0 simply 

displayed the string (One o f th e  fo llo w in g ) , followed by a list of possible keywords, which 

could run on to continuation lines. Here again there was a tension between the need for long, 

mnemonic keywords and short, easily typed replies. To overcome this without interfering with
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the underlying mechanism, in most cases pairs of keywords were introduced with the same 

meaning. The keyword prom pt was modified so that two keywords appeared on each line, to 

help associate these pairs, and any string defined by a set-type command was first displayed on 

a separate line. For instance, the integer-valued param eter ISELCT in F04MCF controls the form 

of the left-hand side of the system of equations to be solved: with promptall on, the prom pt 

generated for this parameter is

Form of left-hand side
(one of the following) l*d*l-transpose*x, 1 1,

l*d*x, 1 2,
d*l-transpose*x, 13, 
l*l-transpose*x, 14, 
l*x, 15,
l-transpose*x, 16?

(The visual tem plate interface style used in NAGlink -  see section 17.1 -  allows a similar facility 

to be implemented rather more neatly there, with the forms of equation allowed being displayed 

adjacent to a set of “radio buttons” , only one of which can be activated at any time.)

9.2.5 Phased-prom pt

One m ajor difficulty in controlling the interaction between IRENA and the user was th a t the 

order in which IRENA issued its prom pts was determined by the previous overall history of its 

param eter processing in the current call. This could result in unfortunate prom pting sequences 

-  for example, in d 0 2 ra f the prom pt for the NAG param eter X (Initial mesh?) could occur 

before th a t for INIT (Do you wish to supply an initial mesh?)

In some simple situations, it was possible to control the prompting order via the dependencies 

among the various parameters defaults; however, defaults were specified in terms of the original 

NAG parameters, so that, where the routine had been reparameterised for IRENA, this m ethod 

was not available. Thus, without a m ajor redesign of the system, it was not always possible to 

arrange for prompts to occur in a logical order.
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This was particularly troublesome in cases where a single NAG routine could operate in different 

modes, with a single NAG param eter serving both to input a d a ta  value for a “normal” mode

of operation and as a flag to signal an “abnormal” mode, by taking an “impossible” value

(such as -1 for a scaling parameter). In this case, the param eters in question were originally 

replaced in IRENA with distinct “flag” and “data” parameters, which, unfortunately, were often 

prom pted for in the wrong order. To overcome this, a new jazz command phased-prompt was 

introduced, to replace the direct reparameterisation with a two stage prom pting mechanism: 

first, a prom pt is issued, expecting a reply of either Y or H, one of which corresponds to  the 

special, flag value, with the other triggering a second prom pt for the param eter itself. In some 

cases, further action is required to set up the “special” value.

For example, in the jazz file for d 0 2 c jf , we have2

{phased!-prompt} G : determine! where! an! end!-point! criterion! is! zero
(n > unset) end!-point! criterion

which means that, if the user replies N to the prompt:

(Y or N) determine where an end-point criterion is zero?

the function G is given the value unset; if the user replies Y, however, the further prom pt 

(Function) end-point criterion?

is issued, to obtain an actual function definition. The normal use of the special value unset is 

to inhibit the generation of Fortran assignments for the param eter in question; however, in this 

particular case, G must be the dummy NAG routine D02CJV -  this is organised by trapping the 

unset value in the GENTRAN tem plate for G’s ASP3.

2The exclam ation mark ( ! )  is REDUCE’s escape character or “letteriser” , which is used ensure that the  
following character represents itself and not, for exam ple, an arithm etic operator or (in the case of a  space) the  
end of a  token.

3 This technique is used in various cases where a specific NAG dum m y routine is required. It slightly extends 
the m eaning of un set to include “set to a dum m y” . This does not interact w ith the normal use o f u n set, which 
is only concerned with inhibiting the generation of Fortran assignm ents, and the only cost is the need to include  
the appropriate code when developing the A SP ’s tem plate -  whose use, however, tends to  be restricted to  the 
sm all set of routines requiring this facility.
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9.2.6 Prom ptall

IRENA does not normally prompt for parameters for which default values are provided. W hilst 

this is completely appropriate for housekeeping parameters, in other cases users may sometimes 

wish to reset defaulted parameters and, therefore, need to be reminded of their names. Other 

aspects of this topic are discussed in section 15.1.

As there was, at this point, no internal IRENA help, the p ro m p ta ll switch was introduced: 

its function is to cause IRENA to include prompts for the values of defaulted param eters not 

currently identified as housekeeping in the system defaults file. (This identification sometimes 

includes parameters for which IRENA would already prompt, if they were required -  these may 

be thought of as conditionally housekeeping. Flagging them as housekeeping does not, of course, 

inhibit IRENA from prompting for them when they are required.) The user has the option of 

overriding the system declaration of which parameters are housekeeping, as part of the user 

defaults system. An example of a housekeeping entry in a defaults file will be presented in 

section 10.1.1.

When the user wishes to retain the default value of a parameter, during an IRENA run, this 

can be accomplished by providing a null response to the prompt; if no default exists, IRENA 

will say so and prom pt again. An obvious enhancement for a future release would be to display 

default values if the user so requested.

A program to automatically generate lists of the most obvious housekeeping parameters, those 

derivable from the dimensions of input arrays, was written by a NAG sandwich student, 

N. A tta, to the present author’s specification and under his guidance. Additionally, this program 

generated default values for these parameters and also extracted suggested values for param eters 

defining workspace dimensions from the NAG documentation. This program used technology 

similar to th a t developed by Dewar for generating the GENTRAN tem plates -  see [5].

At present, not all defaults files have been processed to include a housekeeping  entry and those 

which have do not all include conditionally housekeeping parameters. Full implementation of 

this scheme has now been deferred until a later release of IRENA, when it may be revised to 

allow the distinction of housekeeping, control and data parameters, as discussed in section 15.1.

To take advantage of p ro m p ta ll, the IRENA jazz files include prom pts for defaulted 

parameters.
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9.3 O utput enhancem ents

9.3.1 O utput indexing

To meet the goal of “informative naming” , described in chapter 2, the names of objects output 

by IRENA-functions, as well as those of input parameters, should be as meaningful as possible. 

However, few users are likely to be happy typing long names to  refer to  these objects so a new 

function ® was introduced to provide indexed access to the output list of IRENA-functions. This 

allows the nth item of the output list to be referred to as On. In case the length of the output 

list should make this mechanism inconvenient, GO provides an index to it. In normal usage, 

IRENA briefly indicates how to use this mechanism before printing the output list, although, 

as indicated in section 9.1, this may be turned off using the verbose switch.

These displays may be demonstrated by the following call, based on the standard NAG Library 

example, of d02ra f, which solves a two-point boundary problem for a system of ordinary 

differential equations:

d02raf(range=[0:10],
slopel(x,yl,y2,y3,eps)= y2, 
slope2(x,yl,y2,y3,eps)= y3,
slope3(x,yl,y2,y3,eps)= - yl*y3 - 2*(1 - y2*y2)*eps, 
left_hand_boundary_conditionl(y1,y2,y3,eps)= y1, 
left_hand_boundary_condition2(y1,y2,y3,eps) = y2, 
right_hand_boundary_conditionl(yl,y2,y3,eps)= y2 - 1)$

This generates the display:

For an index to the following list, please type ‘GO;*. The values of its 
entries may be accessed by their names or by typing *01;’, ‘02;* etc.

{f inal_mesh,solution_on_final_mesh,absolute_error_estimates,

overestimate_of_final_continuation_parameter_increment}
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and typing 00 produces the further display:

1: Final_mesh 
2: Solution_on_final_mesh 
3: Absolute_error_estimates
4: Overestimate_of_final_continuation_parameter_increment

Additionally, it is possible to produce a complete, titled print-out of all items in the output 

list, using the form 00. As this would generally be too extensive for interactive use, it is not 

mentioned in the output display but is documented in [33].

9.3.2 Hidden output

It is sometimes the case th a t the NAG routine returns parameters which are redundant for the 

IRENA user -  for instance, the number of output values of a particular type returned in an 

array which, in IRENA, is trimmed to contain only these values. However, such param eters 

may still be required by IRENA for its own processing -  for example, to define the elements of 

this trim med array.

In order to prune such parameters from the output list, the convention was adopted th a t no 

output param eter whose name began with *noname* would appear in the output list4. The 

standard IRENA jazz command output could then be used to  rename unnecessary parameters. 

This facility was often used with the conditional renaming mentioned in section 9.3.3 to 

conditionally inhibit output parameters on occasions when they held no useful information: 

for instance, error related output when no error had occurred.

9.3.3 Enhanced conditional output

The specification of IRENA-0 allowed for conditional renaming of NAG output param eters, 

depending on the value of some NAG parameter. As originally implemented, this took the form: 

{o u tp u t}  nagname : case ( valuelisi) namelist

and had the effect that the IRENA name used for the output object was taken as the element 

of namelist corresponding in position to the input value of the param eter nagname in valuelisi;

4 This is consistent with the normal REDUCE convention that nam es which include non-alphanumeric 
characters may be freely used as system  variables and that users should avoid such nam es.
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optionally, an additional, final entry in namelist provided a default name. This was adequate 

to handle the case where a NAG routine would calculate different quantities, depending on the 

setting of some input parameter which served as a switch. However, as more routines were 

processed, examples were found in which the content of a NAG output param eter would be 

indicated by the value of some other output param eter (often IFAIL, the error indicator). To 

accommodate this, the syntax of this construct was modified, allowing out (valuelist) as an 

alternative to valuelisi, signalling that output values should be used in the test.

A less common situation, where the same information might conditionally be located in different 

NAG structures, led to the introduction of the cond-out jazzing command, described in 

section 11.3 (and briefly in appendix D).

9.4 T he IR E N A  help system

As already mentioned, IRENA tries to make the use of its functions as transparent as possible, 

by using English language prompts and descriptive output parameter names. It is also part of 

IRENA’s basic design that, when a failure occurs in running a NAG routine, instead of displaying 

the NAG IFAIL error code, it displays text based on the Fortran Library M anual’s description 

of the meaning of the particular IFAIL value.

It was not, in general, practicable to recast these messages in terms of IRENA parameters, so, 

in order make them intelligible, a help facility was introduced in IRENA, to provide details of 

the relations between the NAG parameters and IRENA’s. This makes use of a free-standing C 

program, specified by the present author but partly written by N. A tta  and completed by M. 

Me Gettrick (a teaching company associate at NAG). The interface to IRENA, which makes use 

of the REDUCE system  command to run the program, was provided by the present author.

The help system also allows users to check the default settings of NAG parameters.

The system consists of four functions, callable from within IRENA:

• jazzing

•  d e f a u l t

•  d e t a i l s  and

• e x p la in
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Jazzing

The syntax of this function is ja z z in g  (NAG parameter name, * IRENA-function name)5 or 

ja zz in g (A A G  parameter name,®). The first form generates a listing of all jazz entries for 

IRENA-function name which involve NAG parameter name; the second form does this for the 

most recently called IRENA-function. Thus, a call to dO lapf might give the error message

** On entry, B.le.A or ALFA.ie.-l or BETA.le.-l or KEY.lt.1 or KEY.gt.4:
A = 2.00000D+00 B = 1.00000D+00 ALFA = 0.00000D+00
BETA = 0.00000D+00 KEY = 1

** ABNORMAL EXIT from NAG Library routine D01APF: IFAIL = 4
** NAG soft failure - control returned

On entry, B <= A, 
or ALFA <= -1,
or BETA <= -1,
or KEY < 1,
or KEY > 4.

from which it is obvious that the problem lies with A and B. W hat this means in terms of IRENA 

param eters can now be determined:

71: jazzing(A,©);

{rectangle} A,B : range

in other words, the problem lay in the use of the rectangle range, which m ust have been defined 

as [2 :1 ] instead of [1 :2 ].

5It is necessary to quote the function nam e with an apostrophe ( ’) to  prevent IRENA from attem pting to  
obey the function.
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D efault

The syntax of this function is default (N A G  parameter name,* IRENA-function name) or 

default{NAG parameter name ,©). The first form prints out the default setting of N AG  

parameter name for the function IRENA-function name; the second form does this for the 

most recently called IRENA-function.

The error message displayed in the previous section might cause the user to wonder what setting 

of ALFA had been used. If this (or its IRENA equivalent, alpha) was not set in the IRENA call, 

it must have taken the default value

72: default(alfa,<D) ;

ALFA : 0

(so this was not the cause of the problem).

D etails

The syntax of this function is details (AAG parameter name,*IRENA-function name) or 

details (N A G  parameter name,®). It produces output equivalent to the jazzing and default 
functions together, thus:

73: details(beta,Q);

dOlapf has no jazzing for beta.

Default Information:

BETA : 0
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Explain

Having received the output of the jazzing function, the user might wish for clarification of a 

jazz command occurring there. This may be obtained with explain.

The syntax of this function is explain (jazz command). It produces a brief description of 

the particular jazz command. For instance, continuing the previous example (and using the 

REDUCE facility to omit parentheses around a single argument):

74: explain rectangle;

RECTANGLE : (Input jazz) defines tvo NAG scalars (or array elements) or
two linear arrays as equivalent to sin IRENA 
rectangle

The explain function references a partial database of descriptions of jazz commands, produced 

by the author. Certain of the less common and more complicated jazz commands are not yet 

documented -  the priority for completing this work will depend on user response.

9.5 M nem onically nam ed functions

IRENA functions normally return a list of the names of objects which have been created in 

the REDUCE environment. In cases where this list contains only a single object, additional 

“mnemonically named” functions, which return th a t object, were defined. These are described 

more fully in chapter 13.

9.6 H andling H erm itian sequences

The C06 chapter of NAG routines is largely concerned with the calculation of discrete Fourier 

transforms of both real and complex sequences. Several of these routines are designed to  process 

Hermitian sequences, packed as real sequences of the same length. (A Hermitian sequence 

consists of a real number followed by a sequence of complex numbers, this complex subsequence 

being conjugate to itself reversed.) The packed sequences can be stored as real IRENA vectors, 

REDUCE single column matrices etc. Functions were provided in IRENA for the convenient
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handling of Hermitian sequences: d is p la y -h e rm it ia n  takes a packed Hermitian sequence and 

displays it in full:

1 : vec h { 1 ,2 ,3 ,4 ,5 ,6 ,7 } ;

2 : d i s p l a y !-h e rm it ia n  h;

1

2 + 7*1

3 + 6*1

4 + 5*1 

4 - 5*1 

3 - 6*1 

2 - 7*1

Functions herm itian 2 p ack ed  and p acked2herm itian  were also provided, for converting 

between the two representations. The latter provides the same functionality as the NAG routine 

C06GSF, without the overhead of the IRENA Fortran cycle.

9.7 Zero-filling arrays

In addition to  providing code to improve IRENA’s user interface, the present author also, at 

times, corrected faults and infelicities in the design and implementation of the IRENA-0 system 

code. Perhaps the most fundamental of these was the following.

A number of the GENTRAN templates for IRENA-0 ASPs on occasion produced incorrect 

results, which were found to be due to the presence of Fortran arrays with unassigned elements. 

In most ASPs, all elements were assigned automatically but, in these particular cases, a dense 

representation was being used for a sparse m atrix, in order th a t an available NAG routine could 

be used to  perform a transform ation required by the ASP.
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In other instances, where sparse matrices were being used in general routines, large am ounts of 

code were being generated which consisted entirely of zero assignments. Even in the reasonably 

sized examples provided with the NAG library, the length of the Fortran source was at times 

sufficient to break early versions of the NAG Fortran 90 compiler; “real-life” problems would 

almost certainly have caused similar difficulties for many compilers, as well as adding significantly 

to the compilation time for the generated code.

To overcome these problems, all local and input arrays generated by IRENA were initially 

zero-filled, the former by generating appropriate DATA statements, the latter by means of DO 
loops. Code was then added to the array-translation facilities in IRENA to filter numerically 

zero values from the array element assignments.
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C hapter 10

D efault system  usage in 

IR E N A -1

In this chapter, annotated examples of some moderately sized system defaults files, chosen 

to illustrate various features of the defaults system, are presented and described. Although 

REDUCE (and IRENA) are not, normally, case sensitive, a convention generally adopted to 

simplify the understanding of IRENA files is th a t NAG names appear in upper case and IRENA 

names in lower case. T hat convention is followed in these examples.

The jazz files corresponding to defaults files examined in this chapter are displayed in chapter 11. 

M aterial from these chapters will be reexamined in section 15.2, which considers how the 

activities of defaults specification and jazzing are interrelated.

10.1 D escriptions o f selected  defaults files

10.1.1 F02BJF

F02BJF calculates the eigenvalues and, optionally, the eigenvectors of the generalised 

eigenproblem A x =  ABx where A and B are real, square matrices.



'/, Defaults for F02BJF

housekeeping : N, IA, IB, IV

N : min(dim(A,2),dim(B,2),IA,IB) '/, The order of the 
'/, matrices A and B.

IA : dim(A,1) 

IB : dim(B,l)

The first dimensions 
'/, of the Fortran arrays 
*!% A and B.

EPS1 : fpeps '/, A tolerance for treating 
V, small elements of the 
% transformed matrices as zero.

matv!-key : 1 '/, An IRENA scalar, used to 
'/, communicate with the jazz 
'/, system.

MATV : if matv!-key = 1 
then TRUE 

else if matv!-key = 2 
then FALSE

*/, A NAG scalar used to 
Vt indicate whether the 
V, eigenvectors should be 
'/, found.

IV : N '/, The first dimension 
*/, of an output array.

end;

Figure 10-1: Annotated defaults file for F02BJF

Taking each entry in its defaults file in turn: 

housekeeping : N, IA, IB, IV

This IRENA-1 feature, previously mentioned in section 9.2.6, was added by 

the present author. Originally, it was intended only to inhibit prom pting for 

housekeeping parameters, when the promptall switch1 was on. However, for more 

complex routines, where there are varieties of ways of specifying some parameters, it 

may be used to inhibit unnecessary prompting for any items in the following list. If 

a value is required for a member of the list (usually because it is needed to  calculate 

the value for a NAG param eter, which the user has not provided) then the normal 

prom pting mechanism takes effect.

1 W hich perm its the issuing of prom pts for defaulted variables, providing the user with fin additional m echanism  
to  override defaults: see section 9.2.6.
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Here, housekeeping introduces a list which consists of the NAG housekeeping 

parameters, N, IA, IB and IV (which can be automatically flagged as housekeeping, 

since they are derivable from array dimensions -  see section 9.2.6). The user should 

never need to override the default settings for the above NAG parameters.

Note that, even with promptall on, IRENA does not prom pt for objects defined by 

the jazz commands scalar and vector (unless these are required to calculate the 

default values of NAG parameters). For example, although we never want to prom pt 

for the scalar matv-key (whose function is described below), it is not necessary to 

include it in the housekeeping list.

N : min(dim(A,2),dim(B,2),IA,IB)

Such entries may be generated largely automatically, as described in section 9.2.6. A 
and B represent square matrices but, since NAG allows oversized arrays, a decision 

was taken at the start of the project to take the minimum of the dimensions in 

cases such as this. In fact, as IRENA users may be expected to supply the matrices 

rather than the equivalent of the NAG arrays and, especially, as the NAG Fortran 

Library manual no longer emphasises this feature, taking this minimum is largely 

redundant. However, since taking such m inim a adds very little overhead to the 

process of generating values for the NAG parameters and may still, occasionally, be 

appropriate, no action has been taken to remove them.

IA : dim(A,l)
IB : dim(B,1)

The first dimensions of the arrays A and B are required as NAG input param eters I A 
and IB.

EPS1 : fpeps

EPS1 is a tolerance for regarding small elements of the transformed matrices as zero. 

Here, it is given the value fpeps which translates in the generated Fortran into a 

call to the NAG routine X02AJF2. This returns the smallest number representable in 

Fortran which, when added to 1, yields a result greater than 1.

2 Fpeps is one of several “fp ” constants available in the IRENA defaults system  to  obtain “m achine  
characteristics” via NAG X02 routines; these are included in table 7.2. Of the fp  constants, only fp ep s and  
fphuge -  the largest floating point number -  are used in IRENA-1 system  defaults files.
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matv!-key : 1

The scalar m atv-key is introduced (in the jazz file) to allow keyword settings for MATV, 
corresponding to the values .TRUE, and .FALSE ., whilst keeping a direct “(Y or N)” 
style of prom pt for MATV itself, rather than a prom pt for a choice of the keywords (see 

section 15.2). Setting the actual default here, rather than in the MATV entry, keeps 

the operation of specifying the default separate from that of defining the meanings 

of the keys.

MATV : if matv!-key = i then TRUE else if matv!-key = 2 then FALSE

This translates the representation of keywords as matv-key values (defined in the 

jazz file) into settings of MATV. The actual default, which comes from the default 

setting of matv-key, is .TRUE., meaning that eigenvectors should be found.

IV : N

The first dimension of the output array V (in which the eigenvectors are returned) is 

required as a NAG input parameter. It is given the value of the NAG param eter N.

10.1.2 E04GCF

E04GCF finds the unconstrained minimum of the sum of squares of M nonlinear functions of N 
variables. Its system defaults file (figure 10-2) involves only housekeeping parameters.

Defaults file entries illustrating additional features are:

M : multiplicity(LSFUN2)

Multiplicity returns the number of functions defined by the user in the family 
LSFUN2.

ns : 7*N + 2*M + M*N + (H*(N+l))/2 + 1 + max(l,(H*(N-1))/2)

This IRENA scalar is used in the jazz file to give tractable expressions in output 
and reshape-output commands, which reorganise the contents of the supposed 

workspace array W.
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% Defaults for E04GCF

housekeeping : M, N, LIW, LW

M : multiplicity(LSFUN2) '/, The number of functions 
'/, to be included in the 
'/, sum of squares.

N : dim(X) '/, The number of variables 
*/. in the system.

LIW : 1 '/, The required length of the 
'/, integer workspace array IW.

LW : if N = 1 '/, The required length of the 
then 11 + 5*M */t real workspace array W. 

else
8*N + 2*N*N + 2*M*N + 3*M

ns : 7*N + 2*M + M*N + 
(N*(N+l))/2 + 1 + 
max(l,(N*(N-1))/2)

'/, An IRENA scalar which 
*/. identifies the position of 
'/. useful output information in 
V% the real "workspace" array.

end;

Figure 10-2: Annotated defaults file for E04GCF

10.1.3 E02A D F and E02AEF

E02ADF computes weighted least-square polynomial approximations of a range of degrees to sets 
of data points and E02AEF3 evaluates such an approximation at a single point.

Features of interest in the E02ADF file are:

W(0) : 0

This d u m m y  default is used to establish, for IRENA, that W is a one-dimensional 
array, as this cannot be otherwise deduced.

3 Since som e of the entries in the defaults files of E02AEF and the succeeding exam ples are quite long, these  
files have not been annotated in the figures. Where necessary, the purpose of the param eters is explained in the  
body o f the text.



*/, Defaults for E02ADF

housekeeping : M, NROWS

M : min(dim(X),dim(Y)) '/, The number of data points.

NROWS : KPLUS1 */» The first dimension of 
*U the output array A.

W(0) : 0

»(*) : 1 '/• The weights.

xmin

xmax

: min(X) 

: max(X)

'/, IRENA scalars used to build an 
'/, output rectangle defining the 
*/, domain of applicability of the 
'/, approximation.

end;

Figure 10-3: Annotated defaults file for E02ADF

'/. Defaults for E02AEF

housekeeping : NPLUS1, XCAP

NPLUS1 : dim(A)

XCAP : if ((x “= unset) and (xmax "= unset) and (xmin “= unset)) 
then ((x - xmin) - (xmax - x))/(xmax - xmin)

•H have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp(normalized! x) then unset

xmin : if have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp(normalized! x) then unset

xmax : if have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp(normalized! x) then unset

end;

Figure 10-4: Defaults file for E02AEF



W(*) : 1

This defines the default value 1 for every element of the array W; thus, the default 

gives unweighted fitting4. Note that a single * here means “every array element” ,

however many dimensions the array in question may have.

xmin : min(X)
xmax : max(X)

These values are used in the defaults file of E02AEF to transform a set of arguments

of the polynomial, supplied by the user, to the normalised form required by th a t

routine.

The minimum and m a x i m u m  values must, in fact, occur as the first and last elements 
of X; however, the defaults system does not provide a means of obtaining the values 
of particular array elements; to avoid introducing such a major new feature, min and 
max were used. This approach also allows consistent defaults coding to be used in 
E02ADF and in those other fitting routines which do not insist on ordered data sets.

Interesting features in the E02AEF file are:

XCAP : if ((x "= unset) and (xmax "= unset) and (xmin "= unset))
then ((x - xmin) - (xmax - x))/(xmax - xmin)

Here, x is the point at which the user wishes the interpolant to be calculated and 

xmin and xmax represent the ends of the domain of applicability of the approximation 

-  these will probably have come from E02ADF. Like any defaults file instruction, this 

only takes effect when all of the quantities on the right have values. If x, xmin and 

xmax do have values and provided th a t none of them is the special value unset this 

instruction uses them to calculate XCAP, which represents x normalised to the domain 

of applicability, as required by E02AEF. The particular form of the calculation is th a t 

recommended by the NAG manual as guaranteeing a loss of accuracy of at most four 

times the machine precision.

x : if have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp(normalized! x) then unset 

xmin : if have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp (normalized! x) then unset

4 The IRENA docum entation and the test program for e02adf draw attention  to this particular default and  
point out that c a n c e ld e f  a u lt  m ay be used in the user’s defaults file, to  override it.
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xmax : if have(XCAP) or scalarp(XCAP) or scalarp(normalized_x) 
or scalarp(normalized! x) then unset

These commands prevent IRENA from prompting for x, xmin and xmax when they 

are not required -  th a t is, when the user has provided the NAG param eter XCAP 
directly. The have test checks whether a value has already been established for XCAP; 
effectively, this means in the keyline or through defaults processing. The scalarp 
tests check whether XCAP or any of its aliases exist as global REDUCE scalars, when 

envsearch is on. (This conditionality of scalarp on envsearch was added by the 

present author.)

The check for the existence of aliased versions of a param eter could obviously be carried out 

automatically; however, the use of scalarp is sufficiently infrequent that this has not yet been 

considered worthwhile.

10.1.4 D 01B B F

D01BBF, which calculates appropriate weights and abscissae for use in the multidimensional 
quadrature routine D01FBF, is unusual, in that it has no housekeeping parameters.

As remarked in section 8.3, D01BBF uses a unique parameterisation of the range of integration 

(and, in the case of semi-infinite ranges, of the choice of quadrature formula). The defaults file 

is used here to convert the more regular representation used in IRENA into the form required 

by the NAG routine:

D01XXX : if lowerlimit = unset and upperlimit = unset then ’D01BAW 
else if (lowerlimit = unset or upperlimit = unset) 

and formula = 2 
then ’DOIBAY
else if lowerlimit = unset or upperlimit = unset then ’D01BAX 
else ’D01BAZ

This assumes the IRENA default interpretation of * as unset. If both endpoints of 

the range of integration are specified as * then a doubly infinite range is required, 

implying Gauss-Hermite quadrature, specified to D01BBF by giving the param eter 

the value D01BAW, the name of the appropriate NAG auxiliary routine. A single * 

specifies a semi-infinite range; in this case, the IRENA scalar formula is used to 

discriminate between the two possible quadrature formulae available, the values 1 

and 2 corresponding to keywords defined in the jazz file to specify Gauss-Laguerre
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'/, Defaults for D01BBF

D01XXX : if lowerlimit = unset and upperlimit = unset then ’D01BAW 
else if (lowerlimit = unset or upperlimit = unset) 

and formula = 2 
then ’D01BAY
else if lowerlimit = unset or upperlimit = unset then ’D01BAX 
else ’D01BAZ

A : if lowerlimit '= unset then lowerlimit
else if upperlimit = unset then parameter_a else upperlimit

B : if lowerlimit ~= unset and upperlimit "= unset then upperlimit 
else parameter_b

ITYPE : if D01XXX = ’D01BAW or D01XXX = ’D01BAX then 1 else unset 

N : 64

end;

Figure 10-5: Defaults file for D01BBF

and Gauss-rational quadrature, respectively. The appropriate auxiliary is specified 

in each case. The remaining case corresponds to a finite range, for which only Gauss- 

Legendre quadrature is available, again specified by the choice of auxiliary.

A : if lowerlimit "= unset then lowerlimit
else if upperlimit = unset then parameter.a else upperlimit 

B : if lowerlimit unset and upperlimit "= unset then upperlimit 
else parameter_b

Here, the alternative uses of the NAG parameters A and B are accommodated. Where 

either limit is finite (so not u n se t)  the corresponding NAG param eter takes th a t 

limit as its value; otherwise, the NAG param eter must represent a param eter of the 

quadrature formula and takes its value from an appropriately named IRENA scalar.

The NAG param eter ITYPE allows a choice of two mathem atically distinct weighting strategies 

for Gauss-Laguerre and Gauss-Hermite quadrature: “normal weights” and “adjusted weights” 

-  the latter was chosen as the default.

N specifies the number of points to be used in the quadrature; the maximum allowed is used as 

the default.
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10.1.5 F04M AF

F04MAF solves a sparse, symmetric, positive-definite system of linear equations, whose coefficient 
matrix has been pre-factorised by F01MAF.

*/. Defaults for F04MAF

housekeeping : N, LICN, LIRN, ACC, NOITS 

N : min(dim(B),dim(WKEEP)/3,dim(IKEEP)/2)

LICN : max(min(dim(AVALS),dim(ICN)),(NZ - N + informl))

LIRN : max(dim(IRN),inform2)

ACC(l) : cc

cc : !*userabserr!*

ACC(2) : unset 

NOITS(l) : mni 

mni : 100 

N0ITS(2) : unset

IFAIL : 100*ifailc + 10*ifailb + 1 

ifailb : 0 

ifailc : 0

end;

Figure 10-6: Defaults file for F04MAF

Novel features are displayed by the following entries:

ACC(l) : cc 
ACC(2) : unset

The NAG array ACC consists of two elements: the first is used to input a convergence 
tolerance, the second to output the final value of the quantity to which this tolerance 
applies (the 2-norm of the residual of the normalised equations). To decouple these 
on input, an IRENA scalar cc - the “convergence criterion” - is used to obtain the 
value of the first element whilst the second is specified as unset.
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cc : !*userabserr!*

The default value of the tolerance is set to * u se rab se rr* , the general default for 

absolute error tolerances, discussed in section 7.1. If not reset by the user, this takes 

the value 0.0001.

NOITS(l) : mni 
mni : 100
N0ITS(2) : unset

The two-element array NOITS is used to control and report on the number of 

iterations, in a similar manner to ACC’s use for the tolerance. In this case, the 

IRENA scalar mni, “maximum number of iterations” , is given a numerical default 

directly.

IFAIL : 100*ifailc + 10*ifailb + 1 
ifailb : 0 
ifailc : 0

F04MAF is one of a small number of NAG routines (seven occur in the IRENA-1 
subset) in which IFAIL takes a three-digit value on input, each digit having a 

separate significance. The last digit serves the normal input function of IFAIL, 
so th a t setting this to 1 gives a soft failure, meaning that the NAG routine does 

not term inate the calling program on detecting an error. The middle digit, if zero, 

suppresses the output of error messages by the routine and this was selected as the 

default, since IRENA itself prints similar messages when an error return from F04MAF 
occurs. A zero value of the first digit suppresses warning messages: the authors felt 

that, in general, displaying a potentially large number of warning messages was 

not appropriate in interactive use, so the inhibition of such messages was uniformly 

chosen as the default behaviour. The introduction of the IRENA scalars if ailb and 

ifailc allows the user to override the error and warning defaults separately (using 

meaningful keywords defined in the jazz file).
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C hapter 11

Jazz usage in IR E N A -1

An outline of the function of each jazz command is given in appendix D. Some examples of jazz 

files are examined in this chapter, which adopts the same approach as th a t used in chapter 10; 

in particular the convention that NAG names appear in upper case and IRENA names in lower 

case is also adopted here. We begin with the jazz files corresponding to some of the defaults 

files examined in chapter 10; some additional jazz files are then examined, to display points 

not covered in this initial set. In general, only those entries in each file which exhibit features 

not already discussed in this chapter are described in detail. Finally, a particularly complicated 

output parameterisation, which occurs in a small number of routines, is examined.

Except where otherwise indicated, the files are shown as supplied with the IRENA system, 

although the annotation of certain obscure points is removed to the body of the text. (For the 

purposes of this chapter, larger files have been split into multiple figures, either by separating 

input and output commands or simply by splitting the file into sections.)
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11.1 Jazz files for the routines discussed in chapter 10

11.1.1 P02B JF

For this routine, the input and output commands in the jazz file are shown separately.

{prompt!-alias} EPS1 : tolerance! for! negligible! elements 

{key!-alias} EPS1 : tne

{prompt!-alias} MATV : Are! eigenvectors! required 

{set!-type} MATV : "(Y or N)"

{local} MATV [TRUE] : y 

{local} MATV [FALSE] : n 

{scalar} matv!-key

{qkeyword} matv!-key [1,1,1,2,2,2] : eigenvectors_required, vectors, v,
no_eigenvectors_required, novectors, nov

Figure 11-1: F02BJF jazz file -  input jazz commands 

Explanation of input jazzing entries:

{prompt!-alias} EPS1 : tolerance! for! negligible! elements

This exemplifies the standard command used in IRENA to define the name to be used 

in prom pting for a parameter. As described in section 9.2.3, IRENA itself prefixes 

the name with a type, so that the prom pt (including IRENA’s usual preliminary 

display) appears as

Please supply values for the following variables using the usual key-line 
syntax. ‘<D’ may be used instead of the name of the current variable.
Each input should be terminated with a character.
Replying *!!;<cr>’ to any prompt will abort the call.
To use the default value, simply reply *;<cr>’.

(Real scalar) tolerance for negligible elements? ©=
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However, since a default value is defined for this parameter, this prom pt will appear 

only if the promptall switch is on.

The value of this param eter may be supplied in the keyline using the prom pt-alias 

as a key. To avoid the need for repeated use of the REDUCE escape character (!) , 

the present author added an autom atic alias feature, which allows the underline 

character to be used in place of the spaces which occur in the prompt-alias, so th a t 

an alternative key is tolerance_for_negligible_elements. Autom atic aliases are 

documented only at a general level, in the IRENA User Guide, [33].

{key!-alias} EPS1 : tne

This defines an abbreviated key, based on the initials of the significant words in 

the prompt-alias. For the benefit of those already familiar with the NAG routine, 

IRENA also accepts the NAG name EPS1 as a key.

{prompt!-alias} MATV : Are! eigenvectors! required 
{set!-type} MATV : ”(Y or N)"
{local} MATV [TRUE] : y 
{local} MATV [FALSE] : n 
{scalar} matv!-key
{qkeyword} matv!-key [1,1,1,2,2,2] : eigenvectors.required, vectors, v,

no_eigenvectors_required, 
novectors, nov

This block of instructions was originally generated -  together with the MATV and 

matv-key defaults discussed in section 10.1.1 -  by the program mentioned in 

section 15.2 and was later modified to  use the set-type command, rather than 

boolean.

The first of these commands sets the prom pt used by IRENA, as already discussed. 

The second overrides the type with which IRENA would prefix this prom pt, so th a t 

the whole appears as 

(Y or N) Are eigenvectors required?
The third and fourth allow the use of the “very local constants” y and n, to represent 

the Fortran logical constants . TRUE . and . FALSE . as values of the param eter MATV, 
thus perm itting the user to respond naturally to the prom pt for this param eter. 

The fifth of this set of commands defines an IRENA scalar, for communication
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with the defaults system, and the last provides for the representation of the two 

possible values of this scalar by various keywords, usable in the function call. The 

defaults file translates the two values into the actual values (. TRUE. and . FALSE.) 
required for MATV. This instruction uses qkeyword rather than keyword in order to 

bypass IRENA’s normal prompting mechanism for keywords, which offers the user a 

choice of the possible keywords; here we wish to use the prom pt Are eigenvectors 
required? instead.

{output} A : !*noname!*a 

{output} B : !*noname!*b

{cmplxquots} ALFR, ALFI, BETA : ’((getval ’N)
eigenvalues
ini inite_eigenvalue_waraing 

" ‘Eigenvalues* includes one or more infinite values, denoted **’."
indeterminate_eigenvalue_warning 

" ‘Eigenvalues’ includes ratios of small numbers, denoted ' * / , * , which may 
represent indeterminate values. The presence of any indeterminate value 
casts doubt on the validity of all calculated values. Please inspect 
‘eigenvalue_numerators’ and ‘eigenvalue.denominators* for small values."

indeterminate_eigenvalue_warning 
" ‘Eigenvalues’ includes ratios of small numbers, denoted which may
represent indeterminate values. The presence of any indeterminate value 
casts doubt on the validity of all calculated values. Please inspect 
‘eigenvalue.numerators’ and ‘eigenvalue.denominators’ for small values.

‘Eigenvalues’ also includes one or more infinite values, denoted **’."
eigenvalue.numerators 
eigenvalue_denominators)

{outputconj} ALFI, V : ’((or (equal (getval ’MATV) ’TRUE)
(equal (caaar (caadr (getval ’MATV))) ’y)) 

normalized_eigenvectors_as_columns)

{output} ITER : iterations_for_each_eigenvalue

{output!-order} eigenvalues,
infinite_eigenvalue_waraing, 
indeterminate_eigenvalue_warning, 
eigenvalue_numerators, 
eigenvalue_denominators, 
normalized_eigenvectors_as_columns, 
it erat ions_f or_each_e igenvalue

Figure 11-2: F02BJF jazz file -  output jazz commands
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Explanation of output jazzing entries:

{output} A : !*noname!*a 
{output} B : !*noname!*b

The parameters A and B are described in the NAG Library manual as Input/Output 

but the only description of their output role is “the array is overwritten” .

These commands prevent the appearance of A and B in the output list generated by 

IRENA, as described in section 9.3.2. An alternative approach would have been to 

hand tailor the specfile, as described in chapter 3, so th a t A and B were treated as 

purely input parameters when the various system files were generated. However, the 

present approach requires less manual intervention, especially if files are regenerated 

at a later release of the NAG Library, and allows for any possible later definition of 

information held here on output to be handled by a minimal change to the jazz file 

only.

The Input/Output description in the NAG documentation was probably introduced 

by the skeleton document generator1 used by NAG to partially autom ate the 

production of routine documents by processing Fortran sources.

{cmplxquots} ALFR, ALFI, BETA : '((getval ’N)
eigenvalues
infinite.eigenvalue.warning 

" ‘Eigenvalues’ includes one or more infinite values, denoted

‘Eigenvalues’ also includes one or more infinite values, denoted
e igenvalue_numerators 
eigenvalue.denominators)

This command takes the three NAG output arrays, ALFR, ALFI and BETA and builds 

an IRENA output vector of extended complex numbers, called eigenvalues, as a 

REDUCE column m atrix, whose length is given by the input value of the NAG 

param eter N. The vector eigenvalues is calculated as (ALFR+ i ALFI)/BETA, with 

the point at infinity represented by * and possibly indeterminate values by */,. Values

1A less sophisticated version of this generator is a com ponent of NAG ’s “NAGWare f77 Tools” , described in, 
for instance, [23].
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are regarded as “possibly indeterminate” if the corresponding elements of all three 
of the arrays ALFR, ALFI and BETA are less than a threshold value2, set to 10“ 10.

If infinite values but no possibly indeterminate values occur, an extra IRENA output 

param eter called inf inite_eigenvalue_waming is generated, containing the first 

text string shown:

‘Eigenvalues* includes one or more infinite values, denoted ‘**.

The presence of possibly indeterminate values similarly generates an extra IRENA 

output param eter called indeterminate_eigenvalue_warning: in the absence of 

infinities, this contains the second of the text strings:

‘Eigenvalues* includes ratios of small numbers, denoted ‘%*, 
which may represent indeterminate values. The presence of 
any indeterminate value casts doubt on the validity of all 
calculated values. Please inspect ‘ eigenvalue .numerators * 
and ‘eigenvalue-denominators* for small values.

in their presence, it contains the third text string, which repeats the second but also 

contains a separate paragraph regarding the infinities:

‘Eigenvalues’ also includes one or more infinite values, 
denoted **’.

When possibly indeterminate values are present, two further output vectors, called 

eigenvalue_numerators and eigenvalue_denominators, are generated. The 

intention here, as implied by the message texts, is th a t the user should inspect 

the small values in these structures, to decide what further action is required.

{outputconj} ALFI, V : ’((or (equal (getval ’MATV) ’TRUE)
(equal (caaar (caadr (getval ’MATV))) *y)) 

normalized_eigenvectors_as_columns)

This command unpacks a special, compressed NAG representation for complex 

eigenvectors, stored in the columns of the two-dimensional array V, in which

2 Ideally, users calling the N A G  Library from Fortran programs would perform s im i la r  checks on their results
from this routine. The inclusion of special sym bols for possibly troublesome results and of output param eters
which draw attention  to the presence of these should increase the likelihood of users taking appropriate action
in doubtful causes.
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real-valued vectors are represented as themselves but conjugate pairs of complex
valued vectors are represented by the real part and the imaginary part of one of the 
vectors. Here, ALFI is acting as an indicator: a zero entry signals the presence of a 
real eigenvector in the corresponding column.

The NAG parameters are processed to produce a complex-valued output matrix, 

whose name is given by the second element of the Lisp list on the right, only if the 

first element of list evaluates to T. This corresponds to the NAG input param eter 

MATV having the value .TRUE., which indicates th a t eigenvectors are to be produced, 

and is normally recognised by testing for equality between the REDUCE copy of this 

param eter and the IRENA constant TRUE; this test is carried out in the first disjunct 

of the or. However, MATV may be set to .TRUE, via the “very local constant” y. As 

implemented by Dewar, this does not cause the REDUCE copy of the param eter 

to be set to TRUE but is, instead, detected and interpreted directly a t the Fortran 

generation stage; consequently, we also test (in the second disjunct) for y, which 

REDUCE stores as a “standard quotient” , (*sq  ( ( ( (y . 1) . 1) )  . 1) ) .

{ou tpu t}  ITER : i te ra tio n s .!o r_ e a c h _ e ig e n v a lu e

Here, o u tp u t is used in its simplest mode, renaming a NAG output param eter to be 

more descriptive.

{ o u tp u t!-o rd e r}  e ig e n v a lu e s ,

in f in i te .e ig e n v a lu e .w a rn in g ,  

in d e te n n in a te .e ig e n v a lu e .w a ra in g , 

e ig e n v a lu e .n u m e ra to rs , 

e ig en v a lu e .d e n o m in a to rs , 

n o rm a liz e d .e ig e n v e c to rs .a s .c o lu m n s , 

i t e r a t io n s . f o r .e a c h .e ig e n v a lu e

The o u tp u t-o rd e r  command determines the order in which the names of actual 

IRENA output parameters are displayed in the output list. The eventual display 

consists of those of the listed names which have actually been used for output 

objects, followed by the names of any other output objects (although, in fact, the 

o u tp u t-o rd e r  lists in the IRENA-1 jazz files are believed to be exhaustive).
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11.1.2 E04GCF

This jazz-file illustrates two new output commands, i2o and reshape-output, and a new use 
of output.

'/, e04gcf jazz file

{prompt!-alias} M : number! of! residuals

{key!-alias} M : noresids

{prompt!-alias} X : starting! point

{key!-alias} X : start

{output} X : location_of.minimum

{output} FSUMSQ : minimum_sum_of.squares

{prompt!-alias} LSFUN2 : residual

{key!-alias} LSFUN2 : f

{i2o} M : !*noname!*number_of.residuals

{scalar} ns

{output} W[ns : ns + N - 1] : singular.values.of.estimated.jacobian.of.f

{reshape!-output} W : ’((iname .
right.singul2Lr_vectors.of .estimated, jacobian.of.f) 
(rowtrim . (((plus (getval *ns) (getval ’N)) .

(plus (getval ’ns)
(getval ’H)
(times (getval ’N) (getval ’N)) 
(minus 1)))))

(dims . ((getval ’N) . (getval ’N))))

{output!-order} location.of.minimum, minimum.sum.of.squares, 
singular-, value s.of. estimated, jacobian.of.f, 
right.singular.vectors.of.estimated.jacobian.of.f

end; */, of e04gcf jeizz file

Figure 11-3: E04GCF jazz file

93



{i2o} M : !*noname!*number_of_residuals

The i2o command makes a copy of a NAG input param eter available as an IRENA 

output parameter -  that is, as a REDUCE object. It is used in this case because a 

call to E04GCF may be followed by one to E04YCF, to obtain the variance-covariance 

m atrix of the regression coefficients used by E04GCF; this requires the input value of 

M used by E04GCF as one of its parameters. Since this is not of interest to potential 

users as an output parameter, it is given a *nonarae* prefix to inhibit its appearance 

in the output list.

{output)- W[ns : ns + N - 1] : singular_values_of_estimated_jacobian_of_f

This form of output takes the indicated section of the one-dimensional 

“workspace” array W and converts it into an IRENA output object called 

singulax_values_ol_estimated_jacobian_of_f. This and the output param eter 

generated by the next entry are also required for E04YCF but since, unlike M, their 

value is not trivially apparent to the user they are also made available as normal 

output parameters.

The value of the IRENA scalar ns, used in defining the required section of W, was 

calculated in the corresponding defaults file (an example of using an interaction 

between the defaults and jazzing systems, to be discussed in section 15.2).

{reshape!-output} W : ’((iname .
right_singular_vectors_of_estimated_jacobian_of_f) 
(rowtrim . (((plus (getval ’ns) (getval ’N)) .

(plus (getval ’ns)
(getval ’N)
(times (getval ’N) (getval ’N)) 
(minus 1)))))

(dims . ((getval *N) . (getval ’N))))

This command extracts a m atrix of column vectors from a section of the one

dimensional array W. It was written by the present author as a “mock-up” for 

a possible second generation general IRENA output jazzing facility and, as such, 

simulates a “key and value” syntax by using dotted key and value pairs in the Lisp 

list on the right. (In other words, this is an association list.) The “key” iname 
specifies the name of the IRENA output m atrix, rowtrim the range of rows (or
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elements, in this case) of W to be used and dims the dimensions of the output m atrix.

Other “keys” are described in appendix D.

The fact th a t the last two items contain useful information is documented in the NAG m anual 

only under E04YCF.

11.1.3 E02A D F and E02AEF

New features in these files are the input jazzing command newscalar, the output command 

lower and the use of a selection of commands to extract and pass the information, needed to 

normalise X in the E02AEF defaults file, from E02ADF to E02AEF.

Dealing first with the E02ADF jazz file:

{newscalar} KPLUS1 [degree+1] : degree
{prompt!-alias} degree : maximum! degree! of! polynomial! lit! required 
{key!-alias} degree : k

The NAG routine requires the user to supply the param eter KPLUS1 which is one 

more than the maximum degree of polynomial approximation required. IRENA 

instead works with the maximum degree and uses the prom pt maximum degree 
of polynomial fit required. The names degree, defined by the newscalar 
command, and k, defined by key-alias, are available as alternative keys.

{lower} A : chebyshev.coefficient.sets

This command extracts from the two-dimensional NAG array A the lower triangular 

m atrix  chebyshev_coeff icient_sets.

{build!-rectangle} : ’((iname . domain_of.definition)
(lower . ((in xmin)))
(upper . ((in xmax))))

This output command takes the values determined in the E02ADF defaults file for the 

IRENA scalars xmin and xmax and combines them into a “rectangle” , the natural 

IRENA structure for storing interval information in any number of dimensions. It 

uses the same syntactic style as re shape-output. The values defined by the lower 
and upper keys are specified to be input param eter values, since IRENA scalars 

mimic NAG input parameters.
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'/, e02adf jazz file

{newscalar} KPLUS1 [degree+1] : degree

{prompt!-alias} degree : maximum! degree! of! polynomial! fit! required

{key!-alias} degree : k

{prompt!-alias} X : old! points

{key!-alias} X : points

{prompt!-alias} Y : old! values

{key!-alias} Y : values

{scalar} xmin, xmax

{build!-rectangle} : ’((iname . domain_of.definition)
(lower . ((in xmin)))
(upper . ((in xmax))))

{prompt!-alias} W : weights

{lower} A : chebyshev.coefficient.sets

{output} S : root_mean_square_residuals

{output!-order} chebyshev_coefficient_sets, root_mean_square_residuals 

end; '/, of e02adf jazz file

Figure 11-4: E02ADF jazz file

In the E02AEF jazz file:

{rectangle} xmin, xmax : x.range

This input jazz command defines a rectangle to represent the two IRENA scalars. 

The name defined here is effectively a key-alias; the prompt-alias is defined by the 

next command:

{prompt!-alias} x.range : domain! of! definition

to be the same as the name used for this structure by the E02ADF jazz file.

96



*/, e02aef jazz file

{newscalar} NPLUS1 [degree+1] : degree 

{key!-alias} degree : n

{prompt!-alias} A : chebyshev! coefficients

{key!-alias} A : coefficients

{key‘-alias} A : coefs

{scalar} xmin, xmax, x

{rectangle} xmin, xmax : x.range

{prompt!-alias} x_range : domain! of! definition

{prompt!-alias} x : new! point

{prompt!-alias} XCAP : normalized! x

{output} P : new_value

end; */. of e02aef jazz file

Figure 11-5: E02AEF jazz file

Of course, xmin and xmax are defined as scalars in both jazz files. The use of a rectangle 
to represent these means that, if their values are required and not supplied to e02aef, it will 
prompt for this natural structure.

11.1.4 D 01B B F

This jazz file illustrates the use of the input jazz command keyword and the use of case in the 
output command.

{keyword} formula [1,1,2,2] : gauss.laguerre, gla,
gauss.rational, gra 

{qkeyword} formula [1,2] : laguerre, rational

The I R E N A  scalar formula is used in the defaults file to select one of the two 
quadrature formulae available for semi-infinite ranges. (For finite and doubly-infinite 
ranges, D01BBF offers no choice of quadrature formula.)
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*/, dOlbbf jazz file

{scalar} lowerlimit, upperlimit, formula, parameter_a, parameter_b

{keyword} formula [1,1,2,2] : gauss.laguerre, gla,
gauss.rational, gra

{qkeyword} formula [1,2] : laguerre, rational

{rectangle} lowerlimit, upperlimit : range

{keyword} ITYPE [0,0,1,1] : normal.weights, nw, adjusted.weights, aw 

{i2o} ITYPE : itype

{output} itype : case ITYPE (0,1) type.of_weighting.used,
type.of_weighting.used,
!*noname!*itype

{prompt!-alias} N : number! of! points! to! be! used

{output} WEIGHT : weights

{output} ABSCIS : abscissae

{output!-order} weights, abscissae

end; V, of dOlbbf jazz file

Figure 11-6: D01BBF jazz file

The keyword command, as well as allowing the specified strings to  be used as 

keywords in the IRENA keyline, also causes them  to be offered as alternatives if 

IRENA prom pts for formula; the prom pt is produced with two options per line, 

to  emphasise th a t these form pairs with a common meaning. In this case, the 

abbreviated form uses three letters, to avoid confusion between Gauss-Laguerre 

quadrature and Gauss-Legendre, used for finite ranges.

The qkeyword command here provides a third choice of form for each keyword, 

which users may employ in the keyline, om itting the redundant gauss, component. 

As previously noted, qkeyword does not affect the generated prompt.
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{i2o} ITYPE : itype
{output} itype : case ITYPE (0,1) type.of.weighting.used,

type.of.weighting.used,
!*noname!*itype

As D01BBF offers a choice of weighting strategies on semi-infinite ranges, of which one 

is chosen as the IRENA default, the input param eter ITYPE is re-output by IRENA, 

to inform the user of the strategy used. The case construct in the output command 

will give the output parameter itype the name type.of.weighting.used when the 

input param eter ITYPE has the value 0 or 1 (the possible values when there is a choice 

of strategy); the name *noname*itype will be used to hide this output param eter 

otherwise. Except when there is a choice of strategy, the defaults file gives ITYPE 
the value unset.

In fact, a better interface could be provided, by implementing a scalar version of the 

i n t e r p r e t  output jazz command, which replaces numeric codes in an output array 

with strings interpreting these codes. 001BBF was processed a t quite an early stage 

of the IRENA project, before the i n t e r p r e t  command was added; when in t e r p r e t  

was added, its potential applicability to this routine was apparently overlooked. The 

D01BBF jazz file has been commented to suggest the use of this strategy in a future 

release.

11.1.5 F04M AF

Here again, for convenience of display, the jazz file has been split between two figures, respectively 

showing input and output commands.

In pu t

{ragged!-in} INFORM : ’((iname . details_of_factorization) 1)
{ragged!-in} informl : ’((iname . details.of.factorization) scalar- 1 1)

{ragged!-in} IKEEP : ’((iname . details.of.factorization) 7)

Most of the input information required by this routine is output by F01MAF, which 

is used to pre-factor the coefficient m atrix. As this information is not designed to 

be readily meaningful to human readers, it is packed into a single ragged array by
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{prompt!-alias} N : order! of! matrix! A 

{key!-alias} N : aorder 

{scalar} informl, inform2

{ragged!-in} INFORM : ’((iname . details.of.factorization) 1) 

{ragged!-in} informl : ’((iname . details.of.factorization) scalar 1 1)

{ragged!-in} inform2 : ’((iname . details.of.factorization) scalar 1 2)

{ragged!-in} NZ : ’((iname . details.of.factorization) scalar 2 1) 

{ragged!-in} AVALS : ’((iname . details.of.factorization) 3)

{ragged!-in} IRN : ’((iname . details.of.factorization) 4)

{ragged!-in} ICN : ’((iname . details.of.factorization) 5)

{ragged!-in} WKEEP : ’((iname . details.of.factorization) 6)

{ragged!-in} IKEEP : ’((iname . details.of.factorization) 7)

{prompt!-alias} B : right!-hand! side

{key!-alias} B : rhs

{silent!-alias} B : right.hand.sides

{silent!-alias} B : rhss

{scalar} cc, mni

{prompt!-alias} cc : convergence! criterion

{prompt!-alias} mni : maximum! number! of! iterations

{scalar} ifailb, ifailc

{keyword} ifailb [1,1,0,0] : error.messages, em, no.error.messages, noem 

{keyword} ifailc [1,1,0,0] : monitoring, mon, no_monitoring, nomon

Figure 11-7: F04MAFjazz file -  input jazz commands
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FOlMAF’s jazz file, using the ragged-out command, and unpacked here using 

ragged-in; this allows a single structure, details_of_f actorization, to be passed 

between the two IRENA-functions. The RLISP functions which provide this 

functionality are designed to be easily generalised to allow higher dimensional arrays 

as components.

Entire rows of the ragged array may be extracted by ragged-in to provide NAG 

one-dimensional input arrays; individual elements of rows can be used to provide 

NAG scalars. In the scalar case, the word scalar precedes the address of the scalar 

in the ragged array. The information that a scalar is being processed is required so 

th a t a scalar assignment may be generated as part of the Fortran code: otherwise 

a sequence of array element assignments must be generated. As ragged-in is used 

here, the presence of a scalar could be detected automatically by means of its two- 

component address; however, in principle, the elements of the list which forms the 

ragged array could be lists nested to any depth, so that this technique would preclude 

later generalisation.

As the first two elements of INFORM are needed in calculations in the defaults file, 
ragged-in is used to extract these separately into the I R E N A  scalars informl and 
inform2, as well as to extract the entire array INFORM.

{silent!-alias} B : right_hand_sides
{silent!-alias} B : rhss

The silent-alias command is a minor feature of IRENA which allows an alias 

to be used without being explicitly documented by the IRENA skeleton document 

generator -  it is otherwise completely equivalent to the key-alias command. It 

is used mainly where singular and plural forms of the same word form the natural 

param eter name in related routines, to allow the alternative form, for consistency, 

and in quadrature routines, where the names range and region are appropriate for 

one- and multi-dimensional quadrature, respectively, again to allow the alternative. 

The possibility of such forms is documented at a general level in [33].
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{i2o} cc : convergence_criterion_used

{output} ACC(2) : rms.residual.of.normalized.equations

{output} N0ITS(2) : number_of.iterations

{output} W0RK(1) : lower.bound.on.condition.number.of_a

{output!-order} solution,
convergence.criterion.used, 
rms.residual.of.normalized.equations, 
lower.bound.on.condition.number.of.a, 
number.of.iterations

Figure 11-8: F04MAF jazz file -  output jazz commands

O utpu t

{output} ACC(2) : rms.residual.of.normalized.equations

This demonstrates the use of output to extract a NAG array element into a REDUCE 

scalar.
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11.2 Further jazz files

11.2.1 E04M BF

E04MBF is described in [27] as “an easy-to-use routine for solving linear programming problems 

or for finding a feasible point . . .  not intended for large sparse problems.”

'/, e04mbf jazz file

{prompt!-alias} ITMAX : maximum! number! of! iterations

{key!-alias} ITMAX : maxits

{key!-alias} ITMAX : mni

{set!-type} MSGLVL : "Please select monitoring level"

{keyword} MSGLVL [-1,-1,0,0,1,1,2,2] : no_printing, np,
error.printout, ep, 
solution.printout, sp, 
full.diagnostics, fd

{phased!-prompt} A : Are! there! general! linear! constraints 
(n > unset) linear! constraint! coefficients

{qkeyword} A [unset,unset] : no_linear_constraints, nlc

{key!-alias} A : lcc

V, Separating "bounds on variables" from "bounds on general linear constraints"

{vector} lbv, lblc, ubv, ublc

{concatenate} BL : ’(lbv lblc)

{local} BL [-fphuge] : times

{prompt!-alias} lbv : lower! bounds! on! variables

{prompt!-alias} lblc : lower! bounds! for! linear! constraints

Figure 11-9: E04MBF jazz file -  part 1
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{concatenate} BU : ’(nbv ublc)

{local} BU [fphuge] : times

{prompt!-alias} ubv : upper! bounds! on! variables

{prompt!-alias} ublc : upper! bounds! for! linear! constraints

{rectangle} lbv,ubv : bv

{prompt!-alias} bv : bounds! on! variables 

{rectangle} lblc,ublc : blc

{prompt!-alias} blc : bounds! for! linear! constraints

{phased!-prompt} CVEC : Do! you! only! want! a! feasible! point
(y > unset) objective! function! coefficients

{key!-alias} CVEC : ofc

{key!-alias} CVEC : c '/, Used in the mathematical description of this, 

{qkeyword} CVEC [unset, unset] : feasible_point_only, fpo 

{prompt!-alias} X : starting! point 

{key!-alias} X : start

{output} X : case LINOBJ (TRUE) x !*location_of.minimum,
x !*feasible.point

{output} x !*location_of.minimum : case IFAIL out(2,3,4) final.point,
final_point, 
final_point, 
location_of.minimum

{output} x !*feasible.point : case IFAIL out(l)
point.of_least_infeasibility, 
feasible.point

Figure 11-10: E04MBF jazz file - part 2
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{interpret} ISTATE : ’((iname status.of.constraints.on.variables
status_of_linear_constraints)

(retain . !*noname!*istate)
(trim ((1 . (getval ’N)))

(((pins 1 (getval ’N)) . (getval ’NCTOTL)))) 
(keys (-2 . lower! violation)

(-1 . upper! violation)
( 0 . free)
( 1 . lower! limit)
( 2 . upper! limit)
( 3 . equality! held)
( else . error!:! please! inform! nag)))

{output} OBJLP : case LINOBJ (TRUE) objlp!*of,
objlp!*suminf

{output} objlp!*of : case IFAIL out(2,3,4)
obj e ct ive_funct ion_at_f inal_po int, 
objective.function.at.final.point, 
objective_function.at_final_point, 
minimum.value

{output} objlp!*suminf : case IFAIL out(l) sum.of.infeasibilities,
!*noname!*ob jlp!*suminf

{output} CLAMDA[1:N] : lagrange.multipliers.for.constraints.on.variables

{output} CLAMDA[N+1:NCTOTL] :
lagrange.multipliers.for_general.linear_constraints

{output!-order} X , OBJLP,
status.of_constraints_on_variables, 
status.of.linear.constraints,
lagrange.multipliers.for.constraints.on.variables, 
lagrange.multipliers.for.general.linear.constraints

end; *A of e04mbf jazz file

Figure 11-11: E04MBF jazz file -  part 3
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As well as providing more examples of various commands already covered, some of them 

illustrating additional features or use in more complex situations, the jazz file for E04MBF also 

illustrates the use of phased-prompt and interpret:

{set!-type} MSGLVL : "Please select monitoring level"
{keyword} MSGLVL [-1,-1,0,0,1,1,2,2] : no_printing, np,

error_printout, ep, 
solution_printout, sp, 
full.diagnostics, fd

Here, set-type is used to insert a preamble to an IRENA prom pt which is not, 

in itself, a type (and so not enclosed in parentheses). When used in this way in 

conjunction with a keyword instruction, set-type causes the defined preamble to 

be displayed, followed by a variant of the usual keyword prompt:

Please select monitoring level
(one of the following) no_printing, np,

error.printout, ep, 
solution.printout, sp, 
full_diagnostics, fd?

{phased!-prompt} A : Are! there! general! linear! constraints
(n > unset) linear! constraint! coefficients 

{qkeyword} A [unset,unset] : no_linear_constraints, nlc 
{key!-alias} A : lcc

If no value has been supplied for A, the phased-prompt command first causes the 

initial prom pt

(Y or N) Are there general linear constraints?
to be issued. If the response to this is n, A is given the value unset, otherwise the 

prompt-alias linear constraint coefficients is used in the normal prom pting 

mechanism. A qkeyword command is used to provide keys corresponding to  the n 
response and a key-alias defines an alternative key using the initials of the prom pt- 

alias.

The next section of the jazz file deals with replacing the NAG param eterisation of various 

bounds. E04MBF requires two input arrays BL and BU, respectively holding lower and upper
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bounds; in each case, bounds on variables are followed by bounds on linear constraints. The 

number of variables (and of bounds on these in each array) is given in a separate param eter N.

In the parameterisation chosen for IRENA, the bounds on variables are represented separately 

from the bounds on linear constraints; in each case, the lower and upper pairs are supplied in a 

rectangle. (The value of N, needed by the NAG routine, can then be autom atically determined 

from the length of the rectangle bounds on v a r ia b le s ,  in the defaults file.)

{v ec to r}  lb v , l b l c ,  ubv, u b lc

This introduces the non-scalar local variables which will serve as intermediaries 

between the IRENA and NAG parameterisations.

{co n ca ten a te}  BL : ’ ( lb v  lb lc )

{co n ca ten a te}  BU : ’ (ubv u b lc )

The NAG arrays are formed by concatenating the entries in the appropriate 

intermediaries.

{ lo c a l}  BL [-fphuge] : tim es 

{ lo c a l}  BU [fphuge] : tim es

E04MBF recognises entries less than —1020 and greater than 1020, respectively, as 
representing the absence of a lower or upper bound. Other NAG routines use a 

different “cut-off” point in this context; in some cases, this is determined by the 

user. For simplicity, all IRENA jazz files use the largest “safely” representable 

floating point number, fphuge3, (or its negative) here; this is certainly greater 

than 1020. Specifying * (which REDUCE interprets as tim es) as a “very local 

constant” meaning fphuge therefore allows * to represent “unbounded” in the user’s 

specification of the bounds.

{ re c ta n g le }  lb v ,u b v  : bv 

{ re c ta n g le }  l b lc ,u b lc  : b lc

The intermediaries are obtained as the components of the IRENA “rectangles” whose 

key-aliases are bv and b lc .

3 See fphuge in the glossary.
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{prompt!-alias} bv : bounds! on! variables
{prompt!-alias} blc : bounds! for! linear! constraints

The names used by IRENA in prompting for the rectangles are defined here. The 

other prompt-aliases, for the quantities lbv, lblc, ubv and ublc, are only used in 

prom pts in the (unlikely) event th a t the user has supplied upper or lower bounds 

alone; they also serve a minor documentation role in the jazz file.

The next block of output commands shows how compound conditionals may be handled in the 
renaming of output parameters:

{output} X : case LINOBJ (TRUE) x !*location_of.minimum,
x !*feasible.point

{output} x!*location_of.minimum : case IFAIL out(2,3,4) final.point,
final.point, 
final.point, 
location.of.minimum

{output} x!*feasible.point : case IFAIL out(l)
point.of.least.infeasibility, 
feasible.point

E04MBF ma y  be used either to minimise the specified objective function or to find a 
feasible point, depending on the input value of LINOBJ. The first output command 
distinguishes between these two cases, (temporarily) renaming X on output to an 
appropriate identifier in each case.

If the routine returns a non-zero IFAIL value, X will contain information indicating 
how far the solution process has progressed, otherwise it contains the solution to the 
chosen problem. The second and third output commands select names appropriate 
to unsuccessful and successful solution of the two types of problem, conditional on 
the output value of IFAIL.

IRENA provides the means of replacing coded values in an output array with descriptive strings, 

by means of the interpret command:
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■(interpret} ISTATE : ’((iname status.of_constraints_on_variables
status.of_linear_constraints) 

(retain . !*noname!*istate)

(getval ’NCTOTL))))
(trim ((1 . (getval ’N)))

((plus 1 (getval ’N))
(keys (-2 . lower! violation)

-1 . upper! violation)
0 . free)
1 . lower! limit)
2 . upper! limit)
3 . equality! held)
else . error!:! please! inform! nag)))

The NAG output parameter ISTATE is split into two REDUCE column matrices, 

status.of.constraints_on_variables and status_of_linear_constraints, 
using the information specified in the trim option. The retain option specifies 

that the REDUCE equivalent of the NAG output param eter should also be formed, 

but, because of the *noname* prefix, om itted from the output list; this provides for 

the param eter’s use on input by other routines. The actual text strings to be used 

to replace the various output values are specified by the keys option: each of the six 

possible values given in the NAG documentation is transformed into a descriptive 

string; a seventh string indicates that an undocumented value has been detected.

11.2.2 E01SEF and E01SFF

E01SEF generates a C 1, piecewise polynomial, two-dimensional surface interpolating a set of 

scattered data  points; E01SFF evaluates the interpolant at a given point.

The IRENA function eOlsff extends E01SFF by using an outer Fortran subprogram (IE01SF) 
-  otherwise referred to as a jacket -  which makes multiple calls to the NAG routine and so 

evaluates the interpolant at a grid of points. This serves both to provide a simpler user interface 

and to lim it the time taken in processing a sequence of interpolations. (This is discussed further 

in section 12.1.)

The function eOlsff is an exception to the general IRENA rule th a t the NAG form of 

input param eters should remain acceptable, in that a single interpolation point must also be 

represented as a grid, not by the two parameters PX and PY.
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'/, eOlsef jazz file 

{tuples1} X : ’data_set 

{tuples2} Y : ’data_set 

{tupies3} F : *data_set

{prompt!-alias} data_set : original! data! set 

{key!-alias} data_set : ds

{prompt!-alias} RNW : radius! for! zero! weights

{key!-alias} RNW : rzw

{output} RNW : radius_for_zero_weights

{prompt!-alias} RNQ : local! data! radius

{key!-alias} RNQ : ldr

{output} RNQ : local_data_radius

{prompt!-alias} NW :
average! number! of! points! within! radius! for! zero! weights

{key!-alias} NW : nrzw

{prompt!-alias} NQ :
average! number! of! points! within! local! data! radius

{key!-alias} NQ : nldr

{output} FNODES : quadratic_nodal_function_coefficients

{message} MINNQ : *(data_density.warning (evallessp (fortran!-value ’MINNQ) 5)

"Fewer than 5 data points sure local to some node(s), in whose 
vicinity linear, not quadratic, interpolation has been used."

fewest_local_data_points)

{output!-order} quadratic_nodal_function_coefficients,
local_data_radius, radius_for_zero_weights, 
fewest_local_data_points, data_density_warning

end; */, of eOlsef jazz file

Figure 11-12: E01SEF jazz file 
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'/, eOlsff jazz file 

{tuples1} X : ’data_set 

{tuples2} Y : ’data_set 

{tuples3} F : ’data_set

{prompt!-alias> data_set : original! data! set 

{prompt!-alias} RNW : radius! for! zero! weights 

{key!-alias} RNW : rzw

{prompt!-alias} FNODES : quadratic! nodal! function! coefficients

{template} ieOlsf : grid 
{template} ieOlsf : "grid

{gridfirst} GX : ’new_points

{gridsecond} GY : ’new_points

{prompt!-alias} new_points : new! points

{output} PF : !*noname!*pf

{output} GF : new_values

end; '/, of eOlsff jazz file

Figure 11-13: E01SFF jazz file

These jazz files illustrate the use of template, grid and tuples in input jazzing and of message 
in ou tput jazzing.

{tuples1} X : ’data_set 
{tuples2} Y : ’data_set 
{tuples3} F : *data_set
{prompt!-alias} data.set : original! data! set 
{key!-alias} data_set : ds

The NAG param eters X, Y and F, representing the coordinates of the data  points, 

may be supplied to the IRENA functions as a “list of n-tuples” -  th a t is, a list of 

lists of the same length - with the prompt-alias original data set and key-aliases
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d a ta^ se t and ds. (The key-alias ods has since been added to the jazz files of this and 

similar routines, to reflect the policy that an abbreviated key-alias should correspond, 

where feasible, to the initials of the prompt-alias.)

{message} MINNQ : ’ (d a ta .d e n s ity .w a rn in g  (e v a l le s s p  ( f o r t r a n ! - v a lu e  ’MINNQ) 5) 

"Fewer them 5 d a ta  p o in ts  a re  lo c a l  to  some n o d e (s ) ,  in  whose 

v i c i n i ty  l i n e a r ,  no t q u a d ra t ic ,  in te r p o la t io n  has been u se d ."

f e w e s t . lo c a l .d a ta .p o in t s )

The IRENA output parameter data_density_w arning is generated if the output 

value of the NAG parameter MINNQ is less than 5; the fact th a t linear interpolation is 

used locally in this case is mentioned in the “Description” section of the NAG E01SEF 

routine document but does not generate a warning IFAIL value. The param eter 

MINNQ itself is renamed as f  ew est_ local_data_po in ts.

The message mechanism provides a useful two-level error mechanism, in th a t the 

variable name which appears in the output list, in the event of a warning being 

necessary, is suggestive of the cause of the problem and the content of the variable is 

a fuller description of this. Extending this mechanism to replace the present method 

of dealing with non-zero IFAIL returns could usefully be considered for a future 

project, although, for a system as comprehensive as IRENA, generating the message 

names and contents might be rather labour-intensive.

{ tem p la te}  ie O ls f  : g r id  

{ tem p la te}  ie O ls f  : “g r id

The first form of the tem p la te  command indicates th a t templates corresponding to 

the jacketed routine IE01SF should be used in place of those for E01SFF if the key 

g r id  appears in the keyline; the second form indicates that these tem plates should 

be used if the key g r id  does not appear; together, they ensure th a t the IE01SF 

m aterial is used unconditionally.

IE01SF provides the interface which accepts a grid of evaluation points, rather than 

a single point; for this routine, the effort required to allow either a single point or 

a grid, and thus m aintain the NAG interface, was not considered worthwhile, as a 

very simple representation of a single point as a grid is provided (see below).
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{gridfirst} GX : ’new_points 
■fgridsecond} GY : ’new_points

The two one-dimensional NAG input arrays GX and GY may be obtained from the 

IRENA grid new_points. This is simply a list with two entries, each of which may 

be a single number or a list of numbers; thus, a single point is represented as a pair 

of values, a transect parallel to an axis by a value and a list, and a general grid by 

two lists. To emphasise the manner in which the two lists define a grid, the examples 

supplied with IRENA display the second list vertically, as in

eOlsff(new_points={{ 3, 6, 9, 12, 15, 18, 21},
* 2 ,

5 ,

8 ,

11 ,

14,
17 }})$

11.2.3 D01ALF

D01ALF evaluates a definite integral over a finite range; the integrand may have singularities at 
a finite number of points, which the user is expected to specify.

Its jazz file illustrates the use of the fort-dims input command and the precedence and 

out-dims output commands and of a pair of output case constructs to generate different 

forms of output in different circumstances.

{fort!-dims} POINTS : ’((getval ’NPTS) . 1)

The fo r t-d im s  input command provides a means of specifying the dimensions to 

be used for an array in the generated Fortran, where the correct values cannot 

be determined automatically by IRENA. In this case, POINTS is shown in the 

specification section of the D01ALF routine document, from which its dimension would 

normally originally be deduced, as an assumed-size array -  th a t is, with dimension *.

As for the output use of A and B in F02BJF, this could be rectified in the specfile but 

processing it in the jazz file requires less manual intervention and is more permanent.
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■(prompt!-alias} F : integrand

{rectangle} A,B : range

{silent!-alias} range : region

{prompt!-alias} POINTS : break! points

{key!-alias} POINTS : bp

{fort!-dims} POINTS : ’((getval ’NPTS) . 1)

{prompt!-alias} EPSABS : absolute! accuracy! required 

{key!-alias} EPSABS : absacc

{prompt!-alias} EPSREL : relative! accuracy! required

{key!-alias} EPSREL : relacc

{output} RESULT : integral

{output} ABSERR : absolute_error_estimate

{precedence} IW

{output} IW(1) : iwl

{output} iwl : case IFAIL out(O) number_of_subintervals_used, !*noname!*iwi

{output} IW(1) : !*noname!*iwla

{out!-dims} W : ’((aeval ’!*noname!*iwla) . 2)

{output} W : case IFAIL out(O) !*noname!*W, subintervals

{output} W[2*!*noname!*iwla+l : 3*!*noname!*iwla] : e_list

{output} e_list : case IFAIL out(O) !*noname!*e_list,
error_estimates_for_subinterval_approximations

{output} W[3*!*noname!*iwla+l : 4*!*noname!*iwla] : r.list

{output} r_list : case IFAIL out(O) !*noname!*r_list,
integral_approximations_on_subintervals

{prompt!-alias} LW : main! workspace! length! !(restricts! subdivision!)

{key!-alias} LW : workspace

Figure 11-14: Body of D01ALF jazz file 
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{precedence}- IW

The NAG output parameters mentioned in precedence commands are moved to  the 

head of the list of output variables for which IRENA equivalents are to be generated; 

this is necessary if the output jazzing for other parameters depends on the values of 

these. In this case, the processing of W depends on th a t of IW, so that the latter must 

be processed first.

{out!-dims} W : *((aeval *!*noname!*iwla) . 2)

The value stored in IW(1), which is transferred into *noname*iwla, gives the number 

of subintervals used in the quadrature. The first section of W of this length contains 

the lower endpoints of the subintervals, the next section (of the same length) the 

upper endpoints; the out-dims command effectively converts these elements of W 
into a REDUCE m atrix whose dimensions are given by this value and 2. (The entire 

NAG array remains available to other output jazzing commands.)

The value of IW(1) must be stored in *noname*iwla as well as in one of 

number_of_subintervals_usedand *noname*iwl, since the aeval in the out-dims 
command will be applied unconditionally to its argument.

{output} iwl : case IFAIL out(O) number_of_subintervals_used, !*noname!*iwl 
{output} W : case IFAIL out(O) !*noname!*W, subintervals

The respective positions of the *noname* components in these complementary 

o u tp u t commands ensure that, when the routine term inates successfully, with IFAIL 
having the output value 0, the user is informed of the number of subintervals used 

but, in case of failure, the diagnostic information stored in the restricted W -  th a t is, 

the actual subintervals -  is made available instead.

115



11.3 Cond-out

The output jazzing command cond-out, as used for the routine F02XEF, provides an example 

of how complex individual jazzing commands can become.

F02XEF performs the singular value decomposition of a complex m  x n m atrix; it can return 

various components of the decomposition, depending on the settings of NAG input parameters: 

the singular values are always returned; if WANTQ is .TRUE, then the m atrix of left-hand singular 

vectors is returned; if WANTP is .TRUE., the conjugate transpose of the m atrix  of right-hand 

singular vectors is returned.

The main difficulty in providing IRENA output lies in the fact th a t the singular vectors are stored 

in different locations, depending on the characteristics of the problem; what is stored where is 

detailed in the NAG manual in the On exit sections of the descriptions of the param eters A, Q 
and PH -  it is, perhaps, most easily understood as a contingency table, as in figure 11-15.

Location of singular vectorsm  > nWANTQ WANTP
right (conjugate transpose)left

PH

Figure 11-15: Location of singular vectors in F02XEF output
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When the design of the original jazz functionality was undertaken, the possibility of the same 

information being output in different locations was not considered; however, the output-function 

facility provided the means to add the required functionality, through cond-out, which includes 

conditional output, trimming the NAG arrays and optionally forming the conjugate transpose. 

For wider applicability, the ability to form upper and lower triangular matrices and diagonal 

matrices was included. The cond-out command is used in four IRENA-1 jazz files; its use for 

F02XEF is shown in figure 11-16.

{cond!-out} A, Q, PH : ’((left_hand_singular_vectors_as_columns
(cond ((and (evalgeq (getval ’M) (getval ’N)) 

(evalequal (getval ’WANTQ) ’TRUE))
’((A (1 . 1) ((getval ’M) . (getval ’N))))) 

((and (evallessp (getval ’M) (getval ’N)) 
(evalequal (getval ’WANTQ) ’TRUE))

* (Q))
(t nil)))

((right_hand_singular_vectors_as_columns 
. (conjugate transpose))

(cond ((and (evallessp (getval ’M) (getval ’N)) 
(evalequal (getval ’WANTP) ’TRUE))

’((A (1 . 1) ((getval ’M) . (getval ’N))))) 
((and (evalgeq (getval ’M) (getval ’N)) 

(evalequal (getval ’WANTQ) ’FALSE) 
(evalequal (getval ’WANTP) ’TRUE))

’((A (1 . 1) ((getval ’N) . (getval ’N))))) 
((and (evalgeq (getval ’M) (getval ’N)) 

(evalequal (getval ’WANTQ) ’TRUE) 
(evalequal (getval ’WANTP) ’TRUE)) 

’(PH))
(t nil))))

Figure 11-16: Cond-out usage in the F02XEF jazz file
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11.4 Conclusion

A range of examples of the commoner input and output jazzing commands and of a number of 

the less common commands has been presented.

W ith the availability of the output-function mechanism, there is no intrinsic problem with 

output jazzing -  output functions can be written to transform NAG output into whatever form 

is required. There remains, of course, the question of defining a sufficiently compact notation 

to handle this at an appropriate level of generality and of implementing this in an integrated 

system; re sh a p e -o u tp u t represents a prototype for some of the facilities required.

Input jazzing can be more complicated, since different representations of the same information 

are possible. Such cases are, in general, handled by possibly introducing extra param eters as 

IRENA s c a la r s  or v ec to rs  and setting the parameters which are not required to u n se t. In 

such cases, it may be necessary to control the order of prompting if prom pts for redundant 

param eters are to be avoided; unfortunately, IRENA did not provide such a facility -  the need 

for this was, in large measure, handled by means of phased-prom pt and to some extent by 

reordering entries in the defaults file. However, in complicated cases, unwanted prom pts may 

still occasionally be induced by certain combinations of keyline entries. Should this occur, users 

may respond with the value *, meaning unset; however, it would be preferable in a future design 

if this whole area could be simplified by including a general prom pting dependency control for 

input jazzing.
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C hapter 12

Jacketed routines

As mentioned briefly in section 11.2.1, a Fortran jacket is a Fortran subprogram which provides 

an alternative interface for one or more calls to other (usually pre-existing) Fortran subprograms. 

In this context, the pre-existing subprograms are NAG Library routines.

Initially, Fortran jackets were provided for a number of NAG routines as a “last resort” , to 

provide additional functionality which could not easily be obtained through “standard” IRENA 

features such as the jazz and defaults systems. However, this proved a very powerful tool and 

its use will certainly be extended in future versions of IRENA and similar systems.

12.1 R easons for developing jackets

The typical elapsed time for IRENA to go through its code generation, compilation and loading 

phases, when loading from the complete Mark 15 NAG Library, was about about half a m inute 

(see section 9.1). The execution time, of course, is problem dependent but is usually negligible 

for small problems.

W hilst a half m inute turnaround of a function call, with progress reports to the user, is just 

acceptable for a single call, for problems requiring multiple calls of NAG routines it soon 

becomes extremely tedious for the user and is inefficient in utilising computing resources for 

m ultiple compilations and loading operations. (The further inefficiency of IRENA’s repeatedly
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interpreting the same control files and converting the same data structures, whilst aesthetically 

unattractive, usually accounts for few of the resources required to produce a solution, as is 

exemplified in figure 9-1.) Therefore, in a number of cases, Fortran “jackets” were developed, 

to handle multiple NAG routine calls in a single IRENA-function call.

C06EAF C06FPF C06FUF E01BHF E02DAF
C06EBF C06FQF E01BFF E01SBF F04MCF
C06ECF C06FRF E01BGF E01SFF M01EAF

Table 12.1: NAG routines jacketed in IRENA 1.0

The jacketed routines in IRENA 1.0 are shown in table 12.1. The detailed reasons for developing 

jackets varied with the NAG Library “chapter” .

C06 The C06 routines calculate finite Fourier transforms. For each routine there is a 

“complementary” routine (sometimes itself) which, if prefaced or followed or both by an 

appropriate complex conjugate finding routine (for general, Hermitian or multiple Hermitian 

sequences), calculates the inverse transform. For these, the alternative, jacketed procedure, 

invoked by the keyword inverse, consists of the sequence of routines required to calculate the 

inverse transform. An example is provided in figure 12-1.

SUBROUTINE IC06EA(X,N,IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N)
EXTERNAL C06EAF, C06GBF

C
IFAIL = -1
CALL C06EAF(X,N,IFAIL)
IF (IFAIL.NE.O) RETURN 
IFAIL = -1
CALL C06GBF(X,N,IFAIL)
IF (IFAIL.NE.O) IFAIL = IFAIL + 100000 

C above should never happen!
RETURN
END

Figure 12-1: “Inverse” jacket for C06EAF
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E01 One set of E01 routines calculates interpolating functions, another evaluates these a t a 

set of points (one-dimensional interpolation) or a single point (two-dimensional interpolation). 

The E01 jackets, used in IRENA calls corresponding to routines in the second (evaluation) set, 

include the corresponding routines from both sets and are invoked by the keyword s e tu p  (or, 

to be more precise, by the absence of no_setup).

To allow setup information generated by jackets to be output for later reuse, the input param eters 

which normally carry this information are redefined as inpu t/ou tpu t in the NAG routines’ 

specfiles and the infofile is regenerated, as described in section 12.3.

The jackets for the routines in the E01S subchapter replace a single call of the evaluating routine 

by calls over a rectangular grid of points, specified in the Fortran by a pair of one-dimensional 

arrays. The output, in this case, is a rectangular array of values, as opposed to the scalar value 

output by the NAG routine. An example is provided in figure 12-2.

SUBROUTINE IEO1SB(M,X ,Y ,F ,TRIANG,GRADS,MGX,MGY,GX,GY,GF,IFAIL) 
INTEGER M, TRIANG(7*M), MGX, MGY, IFAIL
DOUBLE PRECISION X(M), Y(M), F(M), GRADS(2,M), GX(MGX), GY(MGY), 
* GF(MGX,MGY)
EXTERNAL E01SBF

C Local scalar
INTEGER IF3CNT

C
IF3CNT = 0 
DO 40 I = 1, MGX 

DO 20 J = 1, MGY 
IFAIL = -1
CALL E01SBF(M,X,Y,F,TRIANG,GRADS,GX(I),GY(J),GF(I,J),IFAIL) 
IF (IFAIL.EQ.l .OR. IFAIL.EQ.2) RETURN 
IF (IFAIL.EQ.3) IF3CNT = IF3CNT + 1 

20 CONTINUE 
40 CONTINUE

IF (IF3CNT.GT.0) IFAIL = 3
RETURN
END

Figure 12-2: Jacket for E01SBF

The distinction between the handling of the various IFAIL values is due to the fact th a t the values 

1 and 2 signal an error in an E01SBF call but 3 is merely a warning (that extrapolation has been 

necessary). W hilst the occurrence of an error should term inate the execution of the jacket, a 

warning should certainly not do so. A more ambitious jacket might also return values indicating 

at which boundaries of the grid extrapolation was used. This example shows how, although the
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jackets produced for IRENA were generally as modest as the particular need allowed, even here 

some human understanding could be required: this requirement would be increased for more 

ambitious jackets.

For reasons discussed in section 12.3, the jacketed E01S routines are called unconditionally, 

unlike some others for which, as we have seen, IRENA keyword parameters determine whether 

the jacket or the original NAG routine should be used.

E02DAF This routine, which generates a bicubic spline, requires indexing information, normally 

provided by E02ZAF, specifying an advantageous ordering of an internal m atrix. The jacket 

performs an autom atic call to E02ZAF, signalled by the se tu p  keyword. It is also advantageous 

to  interchange the roles of X and Y if the length of the grid of knots is greater in the Y than 

in the X direction. This is also done by the jacket, if allowed by the keyword swap. Finally, 

if requested with the keyword s o r t ,  the jacket uses M01EAF and M01ZAF to sort the input data  

into the “panel order” determined by the knot set. This is by far the most comprehensive of 

the IRENA-1 jackets and is used unconditionally.

E04 For the two routines E04DGF and E04UCF only, the NAG Library provides its own “default 

param eter” mechanism, for a large selection of “optional parameters” which users occasionally 

wish to reset. The ability to reset the default values is provided for each of these routines by 

means of two auxiliary routines; for instance, in the case of E04DGF, the auxiliary E04DJF allows 

the user to specify the Fortran channel to which a file of param eter values is connected whilst 

E04DKF allows individual param eter values to be respecified by means of a character string 

argument; a corresponding pair of routines exists for E04UCF. These auxiliaries communicate 

the redefined param eter values to their principals by means of COMMON blocks. If users are to 

be provided with access to the full functionality of these routines -  in particular, to optional 

param eters -  jackets become essential. This contrasts with earlier examples, where jackets were 

simply a means of enhancing the user interface.

In fact, jackets were not provided for these two routines in IRENA-1, so the NAG defaults could 

not be overridden, there. However, a jacket for E04DGF was developed by the author shortly 

after th a t release and formed the basis of similar jackets, for both routines, in the Axiom-NAG 

interface, “NAGlink” , (see section 17.1). These jackets allow the optional param eters to  be 

treated in the same manner as all other parameters, with default values provided by the normal 

IRENA (or NAGlink) mechanism.
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In the jackets, additional Fortran parameters corresponding to the “optional param eters” are 

introduced; the IRENA default values for these are empty character strings. A non-blank string 

provided as a value for any of these parameters produces a call to the auxiliary which resets 

individual param eter values. A further, additional param eter allows the user to specify the name 

of a file of values, mimicking the E04D JF style of operation; a non-blank value for this param eter 

causes the named file to be opened on a channel number not normally used in a NAG context 

and calls the other auxiliary with this channel number as a parameter.

F04MCF F04MCF solves a system of linear equations whose coefficient m atrix  has previously been 

factored by F01MCF. This is analogous to the E01 case.

M01EAF M01EAF sorts a one-dimensional array into the order determined by a predefined set 

of ranks. If a vector of ranks is not provided, the jacket allows this to be determined, using 

M01DEF, from columns of a m atrix, represented as a two-dimensional array. It then sorts the 

two-dimensional array by applying M01EAF to a sequence of its sections. The jacket is used 

unconditionally.

12.2 O ther potential uses for jackets

In chapters 10 and 11, we encountered a number of pairs of NAG routines which are naturally 

used together and which would be obvious candidates for inclusion in jackets in a later release 

of IRENA or any similar system: D01BBF and D01FBF, E02ADF and E02AEF, E04GCF and E04GYF; 

these are, in general, typical of sections of their respective chapters in which routines are 

naturally used in pairs. As well as these, there are several other areas where an enhanced 

user interface could be produced for NAG Library m aterial by developing an appropriate jacket.

12.2.1 M odular routines

The full NAG Library includes a number of routines for the solution of stiff ordinary differential 

equations; however, none of these is included in the Foundation Library. The appropriate sub

chapter of the Library (D02M-D02N) takes a modular approach to  the solution of these equations 

-  the introduction to this sub-chapter in the manual [26] indicates th a t the general form of a 

program calling a NAG stiff solver should include the steps:
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call linear algebra setup routine 

call integrator setup routine 

call integrator

call integrator diagnostic routine (if required)

call linear algebra diagnostic routine (if appropriate and if required).

In an extended IRENA, covering this material, the user interfaces would clearly benefit from the 

provision of jackets, potentially handling these five calls in each case. Interfaces for the individual 

routines would be awkward to use and would provide little advantage over a user-written Fortran 

program.

12.2.2 U ser control of error tolerance

In a number of routines, mainly in the D02 chapter, the user has only indirect control of the 

accuracy achieved: for example, in several of the D02 routines, the documentation indicates 

th a t, for any particular problem, the error in the integrand should be proportional to the input 

param eter TOL and suggests that the accuracy achieved may be estim ated by comparing the 

results of a call in which TOL equals the desired accuracy and one in which TOL’s value is an 

order of m agnitude smaller.

It would be straightforward to program such a double call and accuracy determ ination in a 

jacket. It would then be a short additional step to compare the accuracy achieved with that 

specified and, if necessary, to make a further call, with a setting of TOL which should achieve 

the desired accuracy.

If the relationship between TOL and the accuracy achieved is genuinely linear, no further 

processing should be required; if not, it might in principle be necessary to iterate this process.

12.2.3 R everse com m unication

Two of the routines in the D02M-D02N sub-chapter, D02NMF and D02NNF, use reverse 

communication -  th a t is, they are designed to be embedded in a loop of code which takes 

appropriate action (perhaps performing some subsidiary calculation) following the previous call 

to the routine, then makes another call, if necessary. Like the other reverse communication 

routines in the NAG Library, they are not appropriate for immediate use in an interactive 

system such as IRENA. However, such routines could, in principle, be included in IRENA, if 

embedded in appropriate jackets.
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12.2.4 Error recovery

In some NAG routines’ documentation, the explanation of non-zero IFAIL values which indicate 

an unsuccessful call includes advice on how to try to circumvent the problem: the suggested 

strategies could often be incorporated into a jacket, removing from the user the odium of 

recasting the problem.

For example, in E02GAF, which calculates an li solution for an over-determined system of 

equations, the description of IFAIL =  2 is “The calculations have term inated prematurely due 

to rounding errors. Experiment with larger values of TOLER or try scaling the columns of 

the m atrix  (see Section 8).” Section 8 describes how the m atrix columns should be scaled and 

the eventual solutions rescaled to take account for this -  “This should . . .  enable the param eter 

TOLER to perform its correct function” (which is to determine when small numbers can be 

regarded as “essentially zero” ).

In this case, a reasonable strategy to encode in a jacket would be, after detecting IFAIL =  2, to 

first rescale each column of the m atrix and then, if IFAIL =  2 recurred, repeatedly double TOLER 

until either a successful call occurred or some predefined limit on the number of doublings was 

reached, finally rescaling the solution. As well as the normal NAG parameters, the jacket would 

have an extra input param eter by which the user could set this limit (with -1  meaning “no lim it” ) 

and an extra input-output parameter, in which the user could indicate whether rescaling should 

be allowed and the jacket could signal whether it had occurred; it would also trea t TOLER as an 

input-output param eter, in which the final value used could be returned. IRENA could then 

use its standard conditional output and message jazz facilities, respectively, to produce output 

quantities called, say, re s e t_ z e ro _ to le ra n c e  and « a rn in g _ re sc a lin g _ u se d o n  detecting that 

TO LER  had changed or th a t rescaling had occurred.

This example illustrates a significant, additional advantage of using jackets: it is easy to arrange 

th a t the extended interface, provided by the jacket, itself interfaces cleanly with standard IRENA 

jazz facilities. This greatly facilitates the provision of a user interface to the underlying NAG 

routine which meets such IRENA design objectives as ease of use and being informative to  the 

user; in the case of routines with unusual features, the ease of this approach contrasts with the 

considerable effort which may otherwise be needed to modify the jazzing system itself; such 

modification, in turn, is likely to reduce the uniformity and ease of use of the jazzing system.
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In other routines, a particular IFAIL value often indicates that a particular solution tolerance 

could not be met. In these cases, a similar strategy to that described above would allow users 

to indicate whether a larger tolerance should be tried and to learn whether it had been.

12.2.5 H andling special features

W ith hindsight, greater use of jackets could have considerably reduced some of the problems 

encountered in trying to accommodate unusual features of NAG routines.

To take a single example, as we saw in section 10.1.4, the routine D01BBF, used in quadrature 

calculations, has a highly non-orthogonal representation of the range of integration, the 

quadrature formula to be used and the parameters of this formula. Although the final versions 

of the jazz and defaults files for this routine may appear fairly straightforward, the process of 

arriving at them was quite involved. In particular, various aspects of the defaults sytem had to 

be modified to take account of the fact that the names of various NAG auxiliary routines could 

form the value of the param eter D01XXX; literal values occur in no other IRENA-1 defaults file. 

At the simplest level, a jacket which used a numeric coding for these names would have avoided 

this necessity.

In a more comprehensive jacket, separate parameters could have been used to flag whether the 

lower and upper endpoints of the range were infinite and to specify the choice of quadrature 

formula, its param eters and the finite endpoints, wherever any of these was appropriate. 

Although the logic of this jacket would be essentially that of the defaults file, choosing to 

develop such a jacket would have isolated the problem of orthogonalising the parameters: a clear 

protocol for decomposing complicated tasks (such as rationalising the interface of this routine) 

will usually lead to the desired end result with less effort. Once the orthogonal param eterisation 

was achieved, simple jazzing facilities could be used to give the final form desired for the user 

interface.
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12.3 Effectiveness o f jackets

For the purposes listed in section 12.1, a Fortran jacket could be implemented quickly and easily. 

The 15 jackets used in IRENA 1.0 ranged in size from 12 to 79 lines of Fortran (the median was 

20 and the mean 22 lines).

Once a jacket was written, it was compiled and copied to a separate library, searched on loading 

after the main NAG Library. The mechanism provided by Dewar for using alternative routines 

-  in particular, jackets -  required that C and Fortran templates (see, for instance, figures 3-1 

and 3-2) be provided for these routines. Furthermore, the NAG routine’s infofile had to include 

information on any parameters of the jacket which were not parameters of the original routine.

When the jacket completely replaced the original NAG routine, the procedure was comparatively 

straightforward: a specfile appropriate to the jacket was produced (usually by editing the NAG 

routine’s own specfile) and templates and an infofile were generated from this by the usual 

autom atic mechanism. The NAG routine’s infofile was then replaced by the jacket’s newly 

generated infofile.

When either the original routine or the jacket could be called the situation was slightly more 

complicated, since it was considered advisable to provide additional functionality within the 

context of the established NAG name, in order to allow users to arrive at an appropriate choice 

of routine from norm al NAG sources and to avoid possible conflicts with the names of future 

NAG routines. In this case, the same three files could be generated autom atically but the 

infofile had to be merged with that of the NAG routine and would have information about input 

param eters of both the NAG routine and the jacket, since, of course, the infofile is read a t the 

start of the IRENA process, before it decides, using criteria in the jazz file, whether a jacket will 

be used (see figure 3-2). Those input parameters which were not applicable to  the particular 

routine in use were defaulted to u n se t (so that no Fortran assignments were generated for them ), 

conditional on the presence or absence of the keyword used to invoke the jacket.

No corresponding mechanism is available when the output parameters of the jacket did not 

m atch those of the NAG routine; in these cases, complete replacement of the NAG routine by 

the jacket was necessary. This lead to the only failures of the original design objective that 

the NAG param eterisation of non-housekeeping input parameters should remain available (with 

some essential renaming to avoid REDUCE’s reserved names). However, by this point in the 

project, it had become apparent th a t the amount of effort required to meet this objective was 

probably not justified.
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12.3.1 U tility  to users

Jackets constitute one of the tools used in IRENA to provide a simpler interface to NAG routines, 

suitable for users who are not, necessarily, themselves Fortran programmers. The question 

naturally arises whether, since the jackets are Fortran routines, they might usefully be provided 

as part of the NAG Library, to provide similar simplification for Fortran programmers.

In some cases, the jackets would provide significantly simpler interfaces for Fortran users, a t the 

cost of some further increase in the size of NAG Library, and would form a natural part of the 

existing NAG trend to supply alternative “fully comprehensive” and “easy to use” versions of 

routines. Examples here could include the existing C06 and E02DAF jackets and the potential 

jackets described for E02GAF and the D02 routines.

On the other hand, where the main function of the jacket is to avoid multiple IRENA cycles, 

there is less reason to  expect it to be beneficial to Fortran programmers. A case in point would be 

the E01S routines, where the jacket replaces a single evaluation of an interpolant with evaluation 

at the points of a rectangular grid. Whilst this is a common requirement, it is certainly not 

exhaustive and writing the loops required to handle it in Fortran is straightforward.
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C hapter 13

R E D U C E -like interfaces

Some NAG routines, notably in the S (Special Functions) chapter, return a single value. In these 

cases (and as a tem plate for users wishing to define their own NAG-based functions) it seemed 

appropriate to attem pt to  provide a more REDUCE-like interface, with IRENA functions which 

return the value in question, rather than a list of one value. A list of all of these functions 

may be found in appendix B of [33]. For consistency with the rest of IRENA, the “standard” 

functions were also retained.

The code required to produce these extra functions was basically very straightforward. (They 

were, in fact, programmed as REDUCE “algebraic” or user-level functions -  rather than at the 

“symbolic” or system level -  at a quite early stage of IRENA development.) For example, for the 

NAG routine S01EAF, which requires a single complex argument and returns its exponential1, 

the following was sufficient:

1This particular IRENA function is clearly superfluous, since REDUCE itse lf can com pute com plex 
exponentials w ith arbitrary accuracy; it was, however, included in line with the policy that interfaces should  
be provided for fill or none of the routines in any given chapter of the NAG Library.
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procedure nagexp ! *nag! -ranemon! -paraml! ♦$ 
begin scalar !♦verbose;

!♦verbose := nil;
return first sOleaf(z=!*nag!-mnemon!-paraml!♦) end$

Those routines which can only take a real argument need to be protected against attem pts to 

use a complex argument. For instance, for S11ACF, which computes the inverse hyperbolic cosine 

of a real value, we have:

procedure nagarccosh !*nag!-mnemon!-paraml!♦$ 
begin scalar !♦verbose;

•♦verbose := nil;
if impart !*nag!-mnemon!-paraml!♦ neq 0
then write "Real argument required for nagarccosh"
else return first sllacf(x=!*nag!-mnemon'-paraml!*) end$

For routines with more than one real parameter, similar tests are carried out for each. (The 

author was not, at this point, aware of the REDUCE ty p e r r  function.)

In some cases, NAG offers one routine for real arguments and another for complex arguments. 

As these generally return real and complex results, respectively, the argument of the IRENA 

function was tested (in the REDUCE code of the function) and the appropriate NAG routine 

called. In this way, we avoided the possibility of obtaining a result in the real case with a very 

small imaginary component, due to Fortran rounding errors, and possibly gained slightly more 

efficiency (whilst adhering to our goals of regularity and minimality).

For example, the Airy function Ai is calculated by S17AGF in the real case and S17DGF in the 

imaginary case. The code for this:

procedure nagai !*nag!-mnemon!-paraml!*$ 
begin scalar !*verbose;

!♦verbose := nil;
if impart !*nag!-mnemon!-paraml!* = 0
then return first s17agf(x=!♦nag!-mnemon!-paraml!*)
else return first sl7dgf(z=!*nag!-mnemon!-paraml!*) end$

dem onstrates a typical test for a real parameter, in the REDUCE code.
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It may also happen th a t users have a choice of what object should be returned by a particular 

NAG routine, the choice being signalled by the setting of an auxiliary input param eter. For 

example, S17DGF may be used to calculate either the function Ai or its derivative. In the 

above example, we relied on the fact that the IRENA default is to  calculate the function. A 

further complication in this case is that, for real arguments, NAG adopts a different strategy and 

provides a separate routine to calculate the derivative of Ai. IRENA enhances the uniformity 

of this situation by hiding the different forms required:

procedure nagdfai !*nag!-mnemon!-paraml!*$ 
begin scalar !*verbose;

!*verbose := nil;
if impart !*nag!-mnemon!-paraml!* = 0
then return first sl7ajf(x=!*nag!-mnemon!-paraml!*)
else return first sl7dgf(z=!*nag!-mnemon!-paraml!*,derivative) end$

Probably the most demanding part of this exercise was to find a set of names which were both 

reasonably mnemonic and reasonably short. To avoid conflicts with built-in REDUCE function 

names, the names of the IRENA functions were prefixed with nag.

13.1 A n experim ental higher level interface

Some time after producing the set of functions just described, the author decided to code 

a unified interface for the whole of the C02 chapter, which calculates zeroes of polynomials, 

in the form of the function nagpolysolve. In part, this was an early investigation of the 

feasibility of generating a higher level and more mathem atical interface. Higher level, because 

the chapter provides four separate routines, for real and imaginary polynomials, with quadratics 

as special cases, and more m athem atical in th a t polynomials could be supplied in the standard 

REDUCE form, such as x“5 - 3*x“2 + 2*x -  1 , rather than as, for example, the dense arrays 

of coefficients (possibly including many zeroes), required by the general NAG routines.

The representation of polynomials here demonstrates the general improvement in regularity 

which is found in IRENA. Each of the four NAG C02 routines uses a different param eterisation 

of the set of coefficients. The quadratic solvers express these as individual real scalars (three in 

the real case, six in the complex), the general real solver has a one-dimensional real array and the
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general complex solver uses an unusual representation with a real array of dimension (n + 1 ) x 2 

(where n is the degree of the polynomial). As a consistent representation is inherited from the 

underlying individual c02 IRENA-functions, no special code is required in n ag p o ly so lv e  to 

provide regularity here.

The n ag po lyso lve  function also includes code to handle degenerate cases and is written so th a t 

special REDUCE constants, such as PI, occurring in coefficients are converted to numeric form. 

This, rather unnecessarily, saves and restores various REDUCE switch settings -  which could 

have been done more simply by having local copies of the switch variables, declared as f lu id .

Like the functions described in the previous section, the top level function here was written in 

algebraic mode; however, the lower level function to convert the coefficients required rather more 

complex manipulations and so, like the remainder of IRENA, was written in symbolic mode.

The full version of the code for this function is given in appendix G. In the released version of 

IRENA-1, since the special routines for the quadratic case are not present in the Foundation 

Library, the code for handling quadratics as a special case was removed.

As has already been seen, the regularity of the standard IRENA-functions is a considerable 

advantage in writing higher level functions such as nagp o ly so lv e  and should encourage the 

production of other such high level interfaces.

The most complicated aspect of this exercise was the transformation of the representation of 

polynomials, which, nevertheless, only required about a hundred lines of code (and would, no 

doubt, have needed less if coded by a more experienced RLISP programmer). Although this 

was also quite encouraging for the prospects of producing higher level interfaces for other sets of 

related routines, no further work was devoted to that end as part of the present project, due to 

the very heavy effort required to produce the basic IRENA interfaces for other NAG routines.

The nonlinearity found in section 8.3, in the relationship between the number of parameters 

of a routine being processed and the amount of code to provide its interface, is suggestive of a 

possible more general nonlinearity between the size of a body of software to be interfaced and the 

interface code required and, at the very least, suggests caution in attem pting to provide higher 

level interfaces more widely. A sensible approach would be to treat the problem incrementally, 

choosing individual problem areas for interfacing and gradually increasing the size of the sets of 

routines for which unified interfaces are developed.
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One disadvantage of the approach adopted here is that the code developed is only applicable 

to REDUCE (and could possibly require significant maintenance as later releases of REDUCE 

occur). A different approach, using Fortran 90 jackets to provide interfaces, is discussed in 

section 15.3. As Fortran 90 is a stable, generally applicable language, this approach should 

overcome the problems associated with using a package specific language such as RLISP. 

Although the discussion in section 15.3 will concentrate on interfaces for individual routines, 

the same advantages would apply to higher level interfaces: this approach may well be adopted 

in future to provide higher level interfaces for the Axiom-NAG link.
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C hapter 14

D ocum entation  o f IR E N A -1

One of the present au thor’s principal dissatisfactions with the earlier Naglink system, described 

in section 1.2, was the low utility of the documentation for users not already familiar with 

the underlying Macsyma system and, especially, with the routines of the NAG Library which 

it utilised. Consequently, the design objectives formulated for IRENA included making the 

software self-documenting, where possible, and otherwise making the documentation as self- 

contained as possible. Some of the design decisions taken for IRENA itself reflect these concerns 

-  as noted earlier:

• the system explains how to respond to its prompts and to access its results, at appropriate 

points in its use;

•  it produces error messages automatically, rather than requiring users to interpret error 

codes by consulting the documentation;

•  the help system relates these error messages to an IRENA context;

•  “self-documenting” naming conventions were adopted.

However, separate documentation was still required, to describe general points relating to the 

use of the system, to explain the functionality of the various IRENA-functions, to  document 

the various param eters in more detail, in particular those parameters for which defaults were
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provided, and to present examples of the usage of each IRENA-function. In fact, about 10% of 

the to tal effort expended on IRENA was devoted to producing its docum entation.1

Since IRENA was developed as a REDUCE “package” , it was natural to adopt the same LaTeX 

based approach to documentation as is used in the rest of REDUCE; this is straightforward 

and appropriate to a command-driven system such as REDUCE (or IRENA), as well as being 

compatible with the basic documentation style of other NAG products.

The documentation for IRENA-1 consists of two main components: a User Guide and

individual description documents for each IRENA-function. Except where otherwise noted, 

the documentation was developed by the present author.

14.1 T he U ser Guide

This publication [33] was designed to provide sufficient background information to allow users 

to make effective use of IRENA; it consists of (iv +  70) pages, whose LaTeX source occupies 

139378 bytes. In addition to a Preface and Bibliography, it contains fifteen chapters and seven 

appendices; the content of each of these is described briefly here.

Production of the User Guide occupied several weeks.

14.1.1 The chapters 

In tro d u ctio n

This chapter describes how IRENA simplifies NAG routine use and provides basic information 

essential for its use or not covered elsewhere:

•  how IRENA is accessed through REDUCE,

•  how to recover from failures,

•  IRENA-function nomenclature and

•  (for advanced REDUCE users) how to incorporate IRENA-functions in compiled REDUCE 

procedures.

1In a personal com munication, R. W . Brankin, Deputy Divisional Manager of NA G ’s Numerical Libraries 
D ivision, estim ates that the corresponding figure for new Fortran Library m aterial is in the range 5% to  20%, 
so, in  this respect, IRENA seems reasonably comparable to the NAG Library.

135



S im p le IR E N A  usage

This chapter explains how to call IRENA-functions using the keyline, how to access the results 

and how to respond to prompts for parameters om itted from the keyline, when envsearch  is 

on.

V ectors and m atrices

This chapter explains how vectors and matrices may be represented using a special collection 

of functions in IRENA, pointing to appendix A for full details of these; it shows how structures 

defined using this representation may be converted to REDUCE matrices, whilst pointing out 

th a t this is not normally necessary; it also points out that, in general, either representation may 

be used for IRENA input parameters but that output vectors and matrices are represented as 

REDUCE matrices.

D efau lts

This chapter introduces the IRENA defaults system, distinguishing between defaults for 

housekeeping and control parameters, and explains that, of these, only the control parameters 

are documented (as “Optional Parameters”) in the function description documents. It also 

introduces the second level default variables * u se rab se rr* , * u s e r re le r r* ,  * userm ixerr*  and 

♦ u se r in p u t e r r*  and explains that these may be reset during an interactive session or in the 

startup  file.

E N V S E A R C H  and PR O M PT V A L

This chapter explains the effect of the envsearch  and prom ptval switches -  respectively to take 

the values of unspecified parameters from the REDUCE environment and to prom pt for these if 

default are not provided -  and explains how they may be reset. It also introduces the p ro m p ta ll 

switch -  which extends p rom ptval’s effect to non-housekeeping parameters with defaults -  and 

mentions that p ro m p ta ll and the associated identification of housekeeping param eters are still 

under development.
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I n p u t  ja z z in g

This chapter briefly describes the philosophy behind jazzing and describes the main types of 

input jazzing under the headings

•  Aliases,

•  Keywords,

•  Trimmed arrays and

•  “Rectangular” regions.

It also mentions th a t some additional, specialised forms give rise to the data  types described in 

appendix F.

O u tp u t  ja zz in g

This chapter explains how the jazzing philosophy relates to  output param eters, explains that 

the IRENA output param eter names are obligatory, introduces the concepts of long and short 

forms of these names and mentions the user alias facility.

D a ta  in p u t  fro m  files

This chapter explains how data stored in files may be read into an IRENA-function. 

A rg u m e n t s u b p ro g ra m s  (A S P s)

This chapter points out that, in many cases, users need not be aware of the use of ASPs by 

IRENA-functions -  but th a t an im portant case where the use of an ASP affects the IRENA user 

interface is user-defined functions and families of functions, which may be supplied as REDUCE 

expressions or IRENA f se ts . It describes the replacement of the OUTPUT subroutine, which is 

present in many NAG routines to print out values at intermediate points (for example, in the 

solution of differential equations) by an IRENA input vector output points and an output 

m atrix  so lu tio n _ a t_ o u tp u t_ p o in ts .  The chapter also mentions th a t users have the option of 

writing the code for ASPs in Fortran (or modifying the Fortran generated for these by IRENA) 

and specifying this in the IRENA call, as well as describing the use of fortinclude.
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S etu p  files

This chapter describes how the REDUCE setup file may be used as a convenient means of 

setting IRENA switches and second level defaults and of specifying the location of various 

system directories.

P erson a l alias files

This chapter describes how the user can specify new input and output names for param eters 

and change the location of the directory which contains the alias files.

P erson a l defau lts files

This chapter describes the structure of defaults files and how to specify and cancel defaults; 

it points out that a housekeeping  entry in a defaults file (like any other entry) overrides the 

system ’s setting, explains how to change the location of the user’s defaults directory and mentions 

the formal defaults syntax in appendix E.

H E L P  in  IR E N A

This chapter explains why a help system is necessary, to aid in the interpretation of some error 

messages, and describes the four functions

• jazzing,

• default,

• details and

• explain.

A ccessin g  th e  Fortran

This chapter explains how to retain the Fortran code generated by IRENA, how to arrange for 

this to be produced in the form of a self-contained program and how to change the directory 

in which it is stored. It also points out th a t the system can be used to cross-generate Fortran 

programs to be run on different computers and mentions how, for some machines, single precision
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Fortran variables may be appropriate and can be produced by turning off the REDUCE switch 

double.

Source cod e o p tim isa tion

This chapter describes the effect of the GENTRAN switch g en tra n o p t, which performs source 

code optimisation in the generated Fortran (as described in section 3.2.1), and discusses some 

advantages and disadvantages of this, in particular the occasional generation of illegal Fortran.

14.1.2 The appendices

Most of the appendices are adequately described by their titles:

A Vector and m atrix  facilities in IRENA 

B Mnemonically named functions based on NAG routines 

C NAG constants available in defaults files 

D Functions available in defaults files 

E Formal defaults syntax 

F IRENA function descriptions 

G Keyline switches

A p p en d ix  F

This describes how the individual function descriptions are organised, provides a glossary of 

input data  types, lists the IRENA-functions in IRENA-1 and concludes with a ficticious function 

description, to illustrate all of the components of such descriptions in brief and without the need 

to understand the details of a particular function.

A p p en d ix  G

This describes an additional feature, added by Dewar shortly before the release of IRENA-1, 

whereby IRENA switches may be reset in the keyline for the duration of an IRENA-function 

call.
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14.2 Function descriptions

Following the style of NAG Library documentation, a separate function description document 

was provided for each IRENA-function, with the exception of aOOaaf, which only serves to 

identify the version of the NAG Library being used and which is documented in the User Guide.

The information needed to document the functions is, in principle, present in the NAG Library 

documentation and the various IRENA system files, such as the jazz and defaults files and ASP 

sources. However, the conversion from NAG to IRENA parameterisations of the user interfaces 

means th a t much of the NAG documentation cannot be used directly, as there is far from a 

one-to-one mapping between parameters: cross-references to other param eters in a param eter 

description are particularly troublesome to resolve automatically. Since there are many IRENA 

ASP types and jazz-functions which are of limited applicability, the effort likely to be involved in 

writing a nearly autom atic document convertor would have been considerable. Moreover, since 

a rationalisation of jazzing would be a priority in any future revision of IRENA, such a convertor 

would have little chance of reuse. For these reasons, a mixed autom atic and m anual approach to 

documentation was adopted, with “skeleton” function documents being produced automatically, 

as previously mentioned in chapter 11, but with considerable manual modification and extension 

of these being required to resolve difficult points and to deal with those areas which were not 

considered to be worth automating.

The autom atic skeleton document generator was written by Dewar and G. Nolan, a Teaching 

Company Associate at NAG. It took as its starting point the NAG Concise Reference manual 

[22], to provide descriptions of the purpose of each routine and of the NAG parameters. 

Information from the routine’s specfile was used to eliminate workspace and dummy parameters, 

to identify the types of ASPs, to determine whether the NAG routine was a function (so needing 

an extra return param eter in its IRENA representation) and to flag other NAG param eters as 

input, output or both. The mapping from NAG to IRENA parameters was obtained from the 

jazz file and an attem pt was made to analyse whether or not input param eters were “essential” 

or “optional” , using information from the defaults file, which also provided default values. A 

facility was provided to mark parameters in the defaults file as “essential” or “optional” but this 

was little used -  especially as, at this level, it referred to NAG rather than IRENA parameters. 

Functionality was included to read IRENA param eter descriptions embedded in the local version 

of the jazz file2 -  this allowed recurrent param eter descriptions to be provided through a set

2 These descriptions were stripped out in the released version of IRENA.
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of LaTeX macros developed by the present author. A similar system allowed descriptions of 

ASPs, in IRENA terms, to be read from the REDUCE source code definitions of the ASP types. 

Finally, the IRENA test example was included, preceded by the standard description of the 

corresponding NAG example program, on which it was based.

Each function document consisted of five sections

1. Purpose

2. Essential Input Parameters

3. Optional Input Parameters

4. O utput Parameters

5. Example

Although the skeleton documents provided a useful starting point, little in them could actually 

be relied on as IRENA documentation, especially as the NAG documentation was, at th a t time, 

written in the typesetting language TSSD [16] and the NAG TSSD to LaTeX convertor, which 

was then under development, could not always handle mathem atical typesetting correctly.

Probably the item requiring least modification was the Purpose section, although, even here, 

occasional mentions of the parameterisation used had to be amended. The text here was also 

occasionally revised for greater clarity, by including additional information from the Description 

section of the NAG routine document (which is considerably more comprehensive than the 

Purpose section of either that document or the Concise Reference entry), to correct m athem atical 

typesetting and for greater consistency across documents. (The revised Purpose sections could, 

in future, be used for other products where more self-contained descriptions of incorporated 

routines are required; in the context of the NAG Library documentation, the present form 

may, perhaps, be preferred, since the additional information incorporated for IRENA is already 

present elsewhere in the same document. The m athematical typesetting produced by the TSSD 

convertor has since been corrected.)

The example description was, similarly, fairly reliable although the need to correct m athem atical 

m aterial was greater here. Names of NAG routines mentioned in the description had to be 

replaced (not necessarily on a one-to-one basis) by the IRENA-functions used in the IRENA 

test example. The example itself did not, generally, require modification, apart from occasional 

attention to its layout.
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Due to the radical reparameterisation carried out in IRENA, the skeleton documents provided 

little more than a basic structure for the parameter description sections: except where the 

IRENA param eter corresponded to one of the NAG parameters, the text describing the 

param eters was often inapplicable in the IRENA context and was largely replaced. Even when 

there was an exact m atch between a NAG and an IRENA parameter, some revision could be 

required when other parameters were mentioned in the description.

The analysis of input parameters into “Essential” and “Optional” was, at best, tentative and 

did not take account of much of the reparameterisation.

The facility to provide general descriptions of ASPs was little used since, for the m ajority of 

these, the number of instances was very small and it proved simpler to deal with these as they 

arose in the document, especially as it was then possible to describe the function of the ASP 

in context. The skeleton document’s handling of ASPs was, however, useful in stripping out 

mention of those ASPs for which no user input was required.

Development of the function description documents occupied the present author for several 

months -  on average, each probably required nearly a day’s work to complete (although a few 

complicated routines contributed disproportionately to this average).

14.3 O ther docum entation

In common with other NAG products, IRENA was provided with an Installers’ Note [28], 

explaining how to m ount the system.

14.4 C om parison w ith  NAG  docum entation

14.4.1 The U ser Guide

The IRENA User Guide does not have a close equivalent in terms of NAG Library documentation 

-  after all, most NAG Library users are already familiar with Fortran, whereas new IRENA users 

would certainly not be familiar with the use of IRENA and might well not even be familiar with 

REDUCE.
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In term s of the Foundation Library, on which it is based, the nearest equivalent to the User 

Guide is perhaps the Foreword and Introduction, which together occupy 82 pages, slightly more 

than the User Guide. However, discounting the “List of Routines” and “Keywords in Context” 

section, this falls to 18 pages, considerably less than the User Guide.

A closer parallel may be found in the more recent NAG Fortran 90 Library m anual [29], which, 

like IRENA, addresses the problems of a possibly unfamiliar language and of a number of 

conventions peculiar to itself. The first two sections of this, the Essential Introduction and 

Tutorial, which are reasonably comparable to the IRENA User Guide, together occupy 58 pages, 

quite close to the length of the User Guide (the body of which occupies 68 pages, with a similar 

print area).

14.4.2 The function docum ents

A feature of the NAG Library which tends to intim idate users is the extent of the 

docum entation3. Because of the rationalised user interfaces and the consequently simplified 

examples, IRENA function documents are considerably reduced in size, compared to their NAG 

counterparts -  a subjective estim ate is “less than half the size” .

This reduction is due to a number of factors:

•  the Specification section of the NAG routine documents, which shows the Fortran 

declarations of the routine and its variables, is unnecessary for IRENA;

•  the Error Indicators and Warnings section is also unnecessary, since the interpretation of 

these is built into IRENA;

•  there are usually fewer parameters and, as their names are descriptive, they require less 

documentation;

•  the IRENA example is usually considerably shorter than its NAG equivalent.

3For exam ple, the Mark 16 m anual, which describes 1134 routines, is supplied in 12 A4 m anuals, each of 
about 500 pages, which in toteil occupy some 70 cm of shelf space.
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However, the NAG documents also include other sections which have no counterpart in the 

IRENA function documents, namely

•  Description

•  References

•  Accuracy and

•  Further Comments

(although some of the information in these is incorporated in the IRENA interface, in the jazzing 

process). IRENA users requiring these details are, in fact, referred to the NAG documentation.

As a result of the relative reduction in the size of the function description documents, the 

m ajority (108 of 159) of these occupy less than two pages of A4 paper -  it would be interesting 

to contrast this with the NAG “routine documents” . In an attem pt to quantify this reduction, at 

least approximately, the number of pages of documentation, excluding the sections mentioned 

above as having no IRENA counterpart, were measured for a small paged sample of NAG 

routines4 and compared to the corresponding IRENA documents. The m aterial in the NAG 

documents was found to occupy 29.9 pages, that in the IRENA documents 17.3 pages, giving a 

raw figure of ju st under 60% for the ratio of the sizes of IRENA and NAG documents.

Both forms of docum entation use the same font size. However, the IRENA documents were 

originally designed for photo-reduction before printing and consequently have wider margins 

than  their NAG equivalents, so that the height of the IRENA print area is about 90% of NAG’s 

and the width about 87%, with the total available print area being about 79%. Adjusting the 

ratio  of the document sizes by this factor gives a revised figure of 46%. There are a number of 

factors biasing these figures: for example, many lines in both sets of documentation are shorter 

than  the width of the page, so the comparative line lengths are less influential than might be 

assumed; on the other hand, there appears to be more white space in the IRENA documents, 

especially in cases where vectors or a succession of results are printed in the example, since here 

the NAG version generally prints a table but the IRENA results occur on individual lines, with 

additional spacing inserted by REDUCE. Overall, the subjective estim ate of a more than 50% 

reduction in the volume of documentation appears plausible.

4C06EAF, D01BBF, E01SEF, E04DGF, F02ADF, F04HAF, S14BAF and S18DCF. For E04DGF the sections of the NAG  
docum entation concerned with optional parameters were excluded, as these were not incorporated in IRENA-1.
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In an attem pt to obtain a more accurate measure, the LaTeX sources of the two forms were 

compared. This allowed the sizes of the “descriptive” sections of the documentation (that is, 

with the example program removed) and the examples to be compared separately. The results 

are shown in tables 14.1 and 14.2.

Routine

Documentation 
(excluding example) 

LaTeX source

Example run

NAG Library IRENA
A: NAG B: C: D: E: F: Full G: Input
Library IRENA Program Data Results example (data-free)

C06EAF 3071 1185 2058 104 570 1088 266
D01BBF 5200 2478 962 0 289 752 195
E01SEF 5758 2771 2385 1055 573 2870 386
E04DGF 14688 1476 1879 108 2093 2743 196
F02ADF 3991 1199 1157 236 85 858 185
F04MAF 10431 4906 3269 0 468 2527 1561
S14BAF 3110 1302 857 88 332 836 402
S18DCF 5819 1605 1172 173 526 941 385

Total 52068 16922 13739 1764 4936 12615 3576

Table 14.1: Sizes in bytes of NAG and IRENA documents

Routine
Relative sizes (percentages) 

-  see table 14.1
B /  A F /  (C +  D +  E) G / C

C06EAF 39 40 13
D01BBF 48 60 20
E01SEF 48 72 16
E04DGF 10 67 10
F02ADF 30 58 16
F04MAF 47 68 48
S14BAF 42 65 47
S18DCF 28 50 33
Overall 32 62 26

Table 14.2: Size ratios of IRENA and NAG documents
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T h e d escr ip tive  tex t

In the NAG versions, the sections which have no IRENA equivalent were excised; in the IRENA 

versions, text (but not layout) macros developed for IRENA were expanded: as a result, the 

two forms should be fairly comparable, since the NAG documentation also uses tailored layout 

macros.

As can be seen from the first column of table 14.2, compared to the NAG m aterial, the IRENA 

LaTeX source is reduced by between 52% (E01SEF) and 90% (E04DGF) with an overall figure of 

68%. The exceptional reduction in the case of E04DGF is largely due to the extensive descriptions 

of error indicators in the NAG documentation; this and the highly skewed distribution of the 

ratios suggests th a t the median value (60%) may be a better indicator than the mean for these 

results. It is worthy of note that the reduction is, in every case, greater than 50%.

E xam ples

In the case of the examples, IRENA differs from the NAG Library in having its data  embedded 

in the example, rather than in a separate file; the IRENA example runs, as documented, also 

display their results. For these reasons, the size of each IRENA example was compared to the 

to tal size of the NAG example program, data and results.

As shown in the second column of table 14.2, in this case the range of reductions in size is from 

28% to 60% but the values were much more uniformly distributed, giving an overall mean of 

38% and a median of 37%.

As much of the volume of the examples is due to the data and results, it is interesting to compare 

the sizes of the code alone, although this is not strictly a m atter of documentation. Copies of the 

IRENA example inputs were prepared in which, for those cases where a NAG data file existed, 

the d ata  values were stripped out. The final column of table 14.2 compares the sizes of these 

with the NAG programs, showing reductions ranging from 52% to 90%, with a mean of 74%. 

Once more the distribution is highly skewed -  perhaps even bimodal5 -  with a median of 82%. 

Here again, the reduction is, in every case, more than 50%.

5In the S chapter exam ples, the NAG program takes the form of a  read-call-write loop, whereas, for clarity, 
a separate IR ENA-function call was defined for each data point. The F04MAF situation resembles th is in  that, 
for greater transparency in the IRENA exam ple, the data m atrix was generated directly from the problem  
description, w ith each non-zero element specified separately; in the NAG exam ple, identical values were assigned  
in loops. (To have adopted the NAG approach, in IRENA, would have required the use of an interm ediate  
structure to hold the data  values find locations, prior to the definition of a  sparse m atrix using these.)
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Part III

Conclusions and  

recom m endations
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C hapter 15

C onsiderations for the design o f  

future IR E N A -like system s

15.1 Precedence o f non-housekeeping defaults

15.1.1 Param eter evaluation strategy in IR EN A-1

In IRENA, if both envsearch  and prom ptval are on, the value of a param eter is determined 

according to the precedence:

1. keyline specification,

2 . user defaults file specification,

3. system defaults file specification,

4. REDUCE value (global, or a loop control variable),

5. response to an IRENA prom pt.

W hilst this is certainly the correct order for housekeeping parameters (for which entries 4 and 

5 should in any case be irrelevant), the situation for other parameters is more problematical.
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15.1.2 Control param eters

The author envisages th a t most users will be happy either to use the system defaults for control 

param eters or to specify permanent defaults of their own. Occasionally, however, some users 

may wish to experiment with varying control parameters to explore the behaviour of a NAG 

routine or the underlying algorithm. Whilst this can be done by varying a keyline value in 

a loop, doing so adds a level of indirection to the code, which the user may prefer to avoid. 

Certainly, the meaning of

f o r  each e r ro r_ c o n tro l  in  {0 .0 1 , 0 .0 0 1 , 0.0001} do 

«  d02bbf () $ . . .  » ;

is more immediate than th a t of

f o r  each ec in  {0 .0 1 , 0 .0 0 1 , 0.0001} do 

«  d 0 2 b b f(e rro r_ co n tro l= ec ) $ . . .  » ;

Admittedly, this is a m atter of personal preference; the point, however, is th a t users should not 

be constrained to use the second form.

15.1.3 D ata param eters

Normally, there is no need to provide defaults for data  parameters; the commonest exception is 

that, where a routine allows the weighting of data values, there is an obvious default setting of 

equal weighting; other examples include the use of equispaced grids in interpolation etc.

Dewar, in a personal communication, argues that such parameters should be classified as control; 

the present author feels that, at most, they could be said to be data  param eters with a particular 

value serving a control function. Although the distinction has no practical effect in IRENA-1, 

if some form of extended user control, as described in section 15.1.4, is introduced in a later 

system, it would seem an unfortunate side effect if, say, a user electing not to be prompted for 

defaulted control parameters thereby inhibited prompting for some param eters with a possible 

d a ta  role.

In any case, it is unlikely th a t a user working in envsearch  mode would want a default value to 

override a data  value in the REDUCE environment. This was prevented in IRENA-1 by making 

such defaults conditional on the absence of any REDUCE object of the appropriate type with a 

name corresponding to the param eter in question. This is not altogether satisfactory, since with
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several possible aliases representing the parameter the defaults entry can become quite lengthy. 

Further, there is a danger of redefining an alias (in the jazz file) and om itting to adjust the 

conditional default to take account of this. (In particular, this could apply in the case where a 

user chooses to rename a parameter.)

15.1.4 R ecom m endation for future enhancem ents

The switch p ro m p ta ll (described in Section 9.2.6) was added to IRENA to allow prompting 

for defaulted, non-housekeeping parameters. To accomplish this, it was necessary to flag which 

param eters were to be considered housekeeping. An obvious extension to this would be to allow 

param eters to be flagged as control or data.

Once this was done, it would be possible to replace the envsearch , prom ptval and p ro m p ta ll 

switches with a unified system, allowing users to specify the precedences for evaluating the three 

categories of parameters separately and to redefine to which category any param eter should be 

assigned. The author’s own preference, for both control and data  parameters, would be for 

REDUCE values to take precedence over defaults and this is suggested as a possible default 

setting.

Should such a system be introduced, there is clearly a need to separate the control and data 

roles of some parameters. If this is done at an IRENA, rather than a Fortran, level, then the 

ability to classify parameters ought to apply to the resulting IRENA parameters, rather than to 

the NAG parameters which they replace. (In general, users should be able to remain unaware of 

the underlying NAG parameters of a routine and should only be concerned with the param eters 

of the IRENA-function.) However, a strong case exists for such interface redefinition to be 

implemented in Fortran jackets; this will be discussed in section 15.3.

It can be seen from the above discussion that the set of controls, used in IRENA-1 to handle 

the precedence of parameters values from different sources, evolved into a form which lacked a 

cohesive design. This is characteristic of the way in which the design of experimental software 

systems can be subverted by considerations which were not initially apparent. With hindsight, 

the original design of this area of IRENA should probably have been discarded and replaced by 

a more unified approach earlier in the project; although system developers are naturally aware 

of their investment in any system and so may be reluctant to change the status quo, failure to 

make such a change when necessary will result in an even greater investment eventually being 

abandoned.
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15.2 Are defaults d istinct from jazzing?

In IRENA-1 there are separate mechanisms for “jazzing” and setting defaults -  at first sight, this 

seems eminently sensible, since jazzing is used to redefine the user interface to a function which 

appears to be quite a different activity to defining a default value for a param eter. However, 

closer inspection reveals that both are aspects of the same activity -  defining NAG param eter 

values in terms of a different (not necessarily disjoint) set of parameters. It m ight be thought 

th a t the default setting activity is distinguished by the subset of parameters required to define 

a default value being empty -  however, this is by no means always the case as may be seen from 

the default for LWORK in the routine E04UCF:

LWORK : if NCLIN = 0 and NCNLN = 0 then 
20*N

else if NCNLN = 0 then 
2*N*N + 20*N + 11*NCLIN 

else
2*N*N + N*(NCLIN + 2*NCNLN + 20) + 11+NCLIN + 21*NCNLN

in which the values of three other NAG parameters are involved in the calculation. Thus, simple 

numerical defaults such as

JOB : 1

(for C06EKF) are simply a limiting case (and rather the exception).

It might be argued th a t defaults only involve the values of scalar param eters -  this is true 

of IRENA-1 but, in fact, represents a deficiency in th a t system: for instance, in the (now 

superseded) optim isation routine E04JBF, the NAG Library M anual’s suggested value for ETA is

0.5, except when N is 1 or when “for all except one of the variables the lower and upper bounds 

are equal” , in which case it is 0.0. The calculation of this default (if it were possible in IRENA-1) 

would involve the values stored in the arrays BL and BU, which contain the bounds. IRENA-1 

does, however, adm it tests for the existence of non-scalar parameters in defaults so, even there, 

this distinction is blurred.

A perhaps more valid distinction is that jazzing commands tend to describe “structural” 

relationships between NAG and IRENA parameters, in the sense of mappings between different 

d ata  types, whereas default specifications describe arithm etic relationships. However, some
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arithm etic relationships are handled by the input jazzing command n ew sca la r and a general 

arithm etic ability is provided by the output jazzing command c a lc u la te .  Thus, there appears 

to  be no intrinsic reason th a t input jazzing should not also provide a general facility.

A further argument for considering jazzing and defaults setting to be intim ately connected is 

th a t, in IRENA-1, it is often necessary to use an interaction of the two systems to obtain a 

desired effect. Several examples of this were encountered in chapters 10 and 11.

•  MATV in F02BJF is jazzed so that it may be specified either by means of keywords or in 

response to a “Yes or no” question. This requires an IRENA scalar m atv-key to be defined 

in the jazz file; defaults for this scalar and for MATV itself, in terms of the scalar, are also 

required.

•  W in E04GCF is restructured on output. An intermediate variable ns is introduced in the 

jazz file, given a value in terms of the NAG input parameters M and N in the defaults file and 

finally used in the jazz file to help define the dimensions of the restructured components 

of W.

•  XCAP in E02AEF is reparameterised in terms of more natural quantities x, xmin and xmax, 

easily obtainable from the output of E02ADF. The reparameterisation, being a scalar 

calculation, is carried out in the defaults file but refined (by converting xmin and xmax 

into a “rectangle”) in the jazz file.

•  D01XXX, A and B in D01BBF are completely reparameterised in terms of the rectangle range, 
the IRENA scalars parameters and parameters and the keywords gauss JLaguerre and 

gauss-rational. This parameterisation is defined in the jazz file but the redefinition of 

the NAG parameters in terms of the scalars underlying these structures is carried out in 

the defaults file.

•  ACC, NOITS and IFAIL in F04MAF all represent combinations of logically distinct items. The 

separate items which they represent are introduced in the jazz file but mapped onto the 

NAG param eters in the defaults file; additionally, keywords corresponding to the meanings 

of the components of IFAIL are defined in the jazz file.

•  N in E04MBF can only be given a default because the NAG param eters BL and BU are split 

into their logical components in the jazz file.

The case of MATV in F02BJF, mentioned above, exemplifies a frequently occurring situation in 

IRENA, in which we wish to handle a NAG param eter functioning as a switch by issuing a
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prom pt in the form of a question to which the answer is Y or K. Further, as in this case, we 

may wish to allow the user to include keywords in the IRENA-function call, equivalent to these 

Y/N responses and we may require one value to be the default. To allow both the keyword and 

prom pting approaches, we must define an IRENA “scalar” and associate with two (arbitrary 

bu t distinct) numerical values of this scalar the desired keywords, define the prom pt, indicating 

th a t it should request Y/N responses, and associate Y and N with the appropriate NAG values. 

(So far, these are all jazzing operations.) Finally, we must give a “default” value to the NAG 

param eter which associates the correct values with those chosen to represent the scalar via 

keywords and, if a genuine default is to be established, set an appropriate default value for the 

scalar to accomplish this.

As a further example, the relevant section of C02AFF’s jazz file, dealing with the param eter 

SCALE, is

{prompt’-alias} SCALE : scale! the! polynomial 

{set!-type} SCALE : M(Y or N)"

{local} SCALE [!.true!.] : y 

{local} SCALE [!.false!.] : n 

{scalar} scale!-key

{qkeyword} scale!-key [1,1,2,2] : scaled, s, unsealed, u

and the entries in the defaults file are 

scale!-key : 1

SCALE : if scale!-key = 1 then TRUE else if scale!-key = 2 then FALSE

If IRENA is used with the switch promptall on and SCALE has not been set by the user, the 
resulting prom pt is

(Y or N) scale the polynomial?
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This type of situation occurs sufficiently frequently1 -  and the interplay of jazzing and defaults is 

sufficiently confusing -  that a small (270 line) C program was written to allow the more common 

cases to be specified interactively. This interrogates the programmer to determine which features 

are required in a particular case and then generates appropriate fragments of jazz and defaults 

files.

In conclusion, there appears to be no clear dividing line between the activities of setting default 

values and jazzing -  and the whole task of redefining routine interfaces would be simplified if 

a uniform system for setting “derived parameter values” were introduced. One possible such 

system is described in section 15.3. Similarly, the facilities currently available to users, to redefine 

input and output names and reset default values, could be duplicated in a unified system in which 

three commands, in p u t, o u tp u t and d e f a u l t ,  were used in a single file, although the resulting 

subsystem might feel rather more natural if a fourth, c a n c e ld e fa u lt ,  were added, to replace 

the use of c a n c e ld e fa u lt  as a value in default setting. However, a new, combined system, 

suggested in section 15.4, is sufficiently straightforward th a t allowing users access to its full 

functionality might be considered practicable.

15.2.1 Im pact on specfiles

A further question which naturally arises is whether the remaining point of hum an intervention in 

setting up an IRENA-function, namely, revision of the autom atically generated specfile, should 

also be incorporated in a unified system.

There are several advantages in carrying out this further integration:

•  all programming activities in the definition of IRENA-functions would then be carried out 

in one location, which is simpler and should reduce opportunities for the introduction of 

errors;

•  the introduction of additional “quasi-NAG” parameters becomes much more natural, since 

these can be specified analogously to the actual NAG parameters; this would eliminate 

a fertile source of IRENA system errors, attributable to attem pting to introduce such 

parameters in the jazz file, as part of the s c a la r  and v e c to r  mechanism;

•  similarly, the elimination of an unnecessary output role for some inpu t/o u tp u t param eters 

could be accomplished more naturally than with the *noname* facility; as discussed in

1T he approach described here is used for 28 of the 160 routines in the IRENA-1 subset and, quite often, for 
m ore them one parameter in a routine.
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section 11.1.1, changing the specfile to accomplish this was avoided, as the specfile was 

regarded as fixed and allowing rare changes to it could have resulted in maintenance 

problems if these were overlooked at a later date;

•  necessary changes to input array dimensions -  for example, when these are “assumed-size” 

in the NAG routine, or differ there from those of the underlying object -  may also then be 

made to the automatically generated specfile settings, with less hesitation; this has been 

avoided previously, for the reasons just given;

•  modification to the NAG error messages, to reflect the IRENA param eterisation, is 

more likely to be carried out if these messages are visible in the same file in which 

the reparameterisation is defined; making such modifications would be facilitated by not 

attem pting to m aintain the NAG interface as an alternative in the IRENA-function.

As in the case of parameter precedence in section 15.1.4, this discussion illustrates the need 

at times to abandon an early design and replace it with a more unified version. In this case, 

activities which were initially conceived of as having very distinct roles -  setting defaults, jazzing 

and to, some extent, creating specfiles -  prove to be instances of a more general function, th a t 

of reparameterising a user interface. Recognition of such unities can bring about considerable 

simplification in the design of a system.

15.3 G eneralising interface design

To generalise interface design for compatibility with a variety of host systems, it becomes 

essential to avoid, as far as possible, the system dependence described in section 8.2. This 

implies that, whilst it may be necessary to produce some code in the host system ’s language 

to enable connection to the interface, this should be kept to the minimum practicable. The 

remainder of the interface should be coded in a “neutral” language. W hat this language should 

be is open to debate: given the objective of providing links from host systems to NAG numerical 

software, which is written in Fortran, there is a strong a priori case for using Fortran (and, in 

particular, Fortran 90) for at least the “NAG end” of the interface.

To some extent, this occurred in IRENA. As described more fully in section 12.1, Fortran jackets 

were provided for a number of routines, to enable common combinations of NAG routines or 

m ultiple calls of the same routine to be handled in a call to a single IRENA-function. When the 

desired transformations could be carried out in Fortran, this technique proved very efficient, in
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term s of the coding effort required. W hat is not immediately obvious is whether Fortran would 

be a suitable tool for building most of the interface.

A complete interface between a host system and a numerical library must handle a number of 

distinct processes. One possible order for these would be:

1. elicit data;

2. select appropriate routine(s);

3. transform d ata2 to routine’s format;

4. transm it to Library machine;

5. handle multiple calls;

6. transm it output data;

7. transform output data;

8. display results.

(After process 2 there may need to be a further interaction with the user, to determine essential, 

routine specific control parameters. This will be dealt with in section 15.3.2; it does not influence 

the present discussion.)

Processes 1 and 8 are obviously dependent on the host system but none of the others needs be.

Processes 3 and 4 and, respectively, 6 and 7, could be reversed in order - in other words, the 

d a ta  transform ations could be carried out on either the host machine or the Library machine. 

The better choice here depends on the chosen language of implementation -  as suggested above, 

this should probably not be the language of the host system, for portability considerations, in 

which case it is likely to be either Fortran or a general systems language such as C. Fortran 

would certainly be available on the Library machine, C would probably be present on both, 

other languages might be more problematical.

If the data  transform ation modules were provided in Fortran or a Fortran callable form, they 

could be distributed as an adjunct to the NAG Library and might find more general use. A 

sensible first approach, then, seems to be to investigate the extent to which Fortran compatible 

data  transform ation could be provided.

2 N ote that the data  being transformed may include functions find other item s required by ASPs; the im pact 
of this on the recom m ended solution is exam ined in section 15.3.3.

156



15.3.1 Analysis of IR E N A  jazz com m and usage

A sum m ary of the use of input jazz commands in IRENA is provided in tables 15.1 and 15.2 

with the corresponding output jazzing analysis in tables 15.3 and 15.4. (See appendix D

Command FL FL+ Command FL FL +
p ro m p t-a lia s 402 612 sparsecolum n 3 3
k e y -a l ia s 272 413 spaxserow 3 3
lo c a l 105 137 sp a rse v a lu e s 3 3
s e t- ty p e 80 88 column-mat 2 5
s c a la r 75 95 sb an d len g th s 2 3
fo r t-d im s 67 74 sbandvalues 2 3
qkeyword 66 72 cm at2ivec 2 2
keyword 55 70 cm at2rvec 2 2
re c ta n g le 43 80 d iag o n a l 2 2
s i l e n t - a l i a s 30 55 rowmat2vec 2 2
co n ca ten a te 19 28 tr im -m a tr ix 2 2
tem p la te 19 23 ra g g e d le n g th s -1 1 2
phas ed-prom pt 13 13 rag g ed v alu es 1 2
v e c to r 10 13 maxragg ed len g th s 1 1
g r i d f i r s t 10 10 row-mat 1 1
g rid seco n d 10 10 sum raggedlengths 1 1
ra g g e d -in 9 9 tr im -v e c to r 1 1
t u p le s 1 8 8 unpack 0 3
tu p le s 2 8 8 h i-d -d im s 0 2
com plex-in 6 14 h i-d - im -v a ls 0 2
mat2vec 6 10 h i - d - r e - v a ls 0 2
tu p le s 3 6 6 e x te r io rp o ly g o n  * 0 1
i i l l - k n o t s 4 4 polygonx * 0 1
new scalar 4 4 polygony * 0 1
r e c t2 s c a la r 4 4

Key: FL Frequency of usage in Foundation Library jazz files
FL-f Frequency of usage in all jazz files
* not yet implemented

Table 15.1: Frequencies of input jazz commands

for brief descriptions of the functionality of the jazz commands used in IRENA-1.) Totals are 

given for the frequencies of occurrence of commands in IRENA-1, as released, and for all NAG 

routines processed at the time of the IRENA-1 release. This second category includes about 

100 further routines from the NAG Mark 15 Fortran Library. These routines were not subject 

to the final harmonisation process which the IRENA-1 contents underwent, so the frequencies 

may not reflect “m ature” usage. They are included because they represent a wider range of 

structures than occurs in IRENA-1. Unless otherwise indicated, the rest of this discussion will 

refer to the IRENA-1 jazz files.
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Number of Number of
Category commands instances

FL FL+ FL FL+

Renaming parameters 3 3 704 1080
Naming special values 3 3 226 279
One IRENA =£• many NAG 21 28 127 188
Controlling prompting 2 2 93 101
Local objects 2 2 85 108
Reset Fortran dimensions 1 1 67 74
IRENA =>■ part NAG 3 3 22 34
Alternative routine 1 1 19 23
More natural object 4 4 16 20
Accessing substructure 2 2 3 3

Key: FL Usage in Foundation Library jazz files 
FL+ Usage in all jazz files

Table 15.2: General input jazzing classification (principal uses)

From table 15.2, it can be seen th a t the m ajority of instances of input jazzing are concerned with 

simply renaming variables and that this rises to more than two thirds when the naming of special 

values is included. These are not operations which could be easily carried out in Fortran 77, 

with its purely positional param eter list and fixed array sizes; however, in Fortran 90 they seem 

considerably more feasible, given the introduction of optional arguments, the intrinsic function 

PRESENT and autom atic arrays. We should note, however, th a t the commands prompt-alias 
and set-type are involved in the data  elicitation process; prompt-alias could also be involved 

in defining the name of an alternative Fortran 90 param eter but, although Fortran 90 allows 

names of up to 31 characters, some IRENA prompts are considerably longer than this. As some 

renaming m ust, therefore, be carried out before a Fortran program is invoked, the most natural 

solution is to  treat renaming operations purely in the data  elicitation module. W ith prom pting 

control included, data elicitation then accounts for 80% of input jazzing instances (but only 19% 

of the types of commands).

Disregarding those jazz commands which are essentially type declarations for local objects, the 

next most common input jazz command is fort-dims, accounting for 26% of the remaining 

instances. This command is used to ensure th a t a NAG array has the correct dimensions, 

for instance, when the NAG routine uses an assumed-size array whose dimensions cannot be 

determined directly from those of input objects. Usually, the dimensions are m axima or m inim a 

of the values of objects’ actual dimensions and arithmetic functions of other NAG parameters. 

Coding this in Fortran 90 would present no difficulty.
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The next most common command is re c ta n g le ,  which effectively translates a list of pairs, 

representing bounds in one or more dimensions, into two NAG scalars or one-dimensional arrays. 

This is just one instance of the type of input jazzing, categorised as mapping one IRENA object 

to  many NAG objects, whose members together comprise 50% of all the remaining instances of 

input jazzing. These are obviously candidates for Fortran 90 derived types.

The next most frequent categories are input jazzing commands used to build a NAG array from 

IRENA components (9%) and tem p la te , which specifies the use of an alternative routine or 

jacket(7%). Commands for accessing a substructure of an IRENA object account for a further 

1%. These are natural operations in Fortran 90.

Remaining are the 6% of commands which are used to allow parameters to be expressed as 

“more natural objects” . These turn out to be concerned with converting IRENA matrices into 

one-dimensional Fortran arrays, performing simple arithmetic on scalars and padding out arrays 

with multiple copies of certain elements -  all straightforward in Fortran3.

Thus, it appears that, apart from its data elicitation role, all of the functionality of input jazzing 

could be provided more or less simply in Fortran 90 jackets. We have also seen that, although 

data  elicitation accounts for 80% of all IRENA input jazzing, it involves less than 20% of the 

range of input jazz commands, suggesting that it is a more easily defined process than data  

transform ation, for which the ratios are approximately reversed.

We shall now consider the tasks carried out by output jazzing. The commonest form of output 

jazzing, renaming, can again involve long, descriptive names, the choice of which may depend 

on the values of input and output parameters. As Fortran does not provide any facility for the 

optional generation of output parameters, at first sight, such renaming must again be carried 

out in the host system. However, the decision on the choice of name is easily performed in 

Fortran and this is where the actual values of all input parameters are most readily accessible -  

some of these may have existed only symbolically in the host system. A suitable mechanism for 

ou tput naming might, then, be to associate with each NAG param eter two jacket param eters 

components, one containing the value and the other (a character string) the eventual name to

3 T he one exception is jazzing representing “high-dim ensionality” arrays -  structures which m ay represent sets 
of data  in any number of dim ensions, depending on the user’s problem. These occur in  the routine C06FJF -  
for multi-dimensioned finite Fourier transforms -  which does not form part of IRENA-1. However, a query on 
the NAG electronic bulletin board, asking for inform ation from users on the types of data sets to which they  
applied this routine elicited a single response, from a user all of whose data are three-dim ensional. Thus, it would 
seem  that not m uch would be lost if  this routine were provided w ith a special interface for the three-dim ensional 
case, as a  separate IRENA-function, whilst the general IREN A-function would retain this particular data  set in  
its NAG form -  that is, with the data points and dimensions provided separately. If there proved to  be a user 
requirement for them , other low dim ensional interfaces could also be provided.
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Command FL FL+ Command FL FL+
ou tp u t 395 594 upandslow 2 2
o u tp u t-o rd e r 81 108 o u tp u t- re  c t  ang le 1 2
precedence 19 22 cmplxquots 1 1
i2o 18 34 elem ents 1 1
out-dim s 16 23 low er 1 1
message 16 19 m a te ls 2 1 is t 1 1
com plex-out 13 20 m atoverlay 1 1
rag g ed -o u t 6 6 ou tp u tco n j 1 1
vec2rowmat 5 5 o u t- tu p le 1 1
c a lc u la te 5 5 upandlow ldiag 1 1
cond-out 4 4 append 0 2
upldiagandlow 3 6 sup+dinv2up 0 2
b u i ld - re c ta n g le 3 4 cuhessandlow 0 1
re sh a p e -o u tp u t 2 4 in te rp s 0 1
in t e r p r e t 2 3

Key: FL Frequency of usage in Foundation Library jazz files 
FL+ Frequency of usage in all jazz files

Table 15.3: Frequencies of output jazz commands

Number of Number of
Category commands instances

FL FL+ FL FL+
Renaming or subsetting 3 3 412 618
Control output display 1 1 81 108
More natural object 7 7 32 38
Many NAG => one IRENA 7 9 26 39
Controlling evaluation order 1 1 19 22
Reflect input 1 1 18 34
One NAG => many IRENA 4 6 7 12
Conditional output 1 1 4 4

Key: FL Usage in Foundation Library jazz files 
FL+ Usage in all jazz files

Table 15.4: General output jazzing classification (principal uses)
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be used. An empty string could be used to indicate that the param eter should be suppressed. 

For ease of handling, the two components should probably form a single param eter of derived 

type. The other function of the jazz command o u tp u t, namely subsetting, is, here as for input, 

a natural candidate for Fortran processing.

Of the remaining output jazzing categories, controlling the output display (o u tp u t-o rd e r)  must 

be carried out in the host system.

The generation of “more natural objects” largely reflects the input situation. The least obvious 

cases are perhaps the commands message and ex p la in . E xp lain  replaces an array of coded 

information (usually integers) with an array of text strings, containing the same information 

in decoded form; in fact, this could also be easily achieved in Fortran. Message generates an 

extra IRENA output parameter, with an appropriate name, such as e r ro r_ co n tro l_ w arn in g , 

when some output parameter has an abnormal value. The extra param eter contains the text 

of a message, interpreting the meaning of the abnormal value. In fact, this forms a two level 

warning mechanism: the appearance of the warning param eter in the output list (usually as 

its first element) being enough to alert experienced users of a routine to the problem; those 

less experienced can obtain a detailed explanation by examining the value of the param eter, by 

simply typing ®1;. If the message text is placed in a Fortran string, the situation here becomes 

similar to that of the o u tp u t command, except that an additional param eter is generated.

For the many-one (and one-many) mappings between IRENA and NAG objects, the same 

arguments hold as for input jazzing. Controlling the evaluation order occurs naturally where the 

evaluation is performed. To reflect input values again requires access to their numerical, rather 

than  symbolic, values and so takes place naturally at the Fortran level. The final category, 

conditional output, represents the situation where a mathem atical object may be stored in 

one of a variety of locations (or may not be generated at all), depending on a combination of 

values of input and output parameters. In principle this introduces no new complications for 

Fortran level implementation -  in fact, however, this approach was probably adopted to optimise 

memory usage in solving very large problems, so duplicating storage for output arrays might be 

considered unfortunate. However, if the Fortran were carefully generated to exhibit an input- 

processing-output modularity, the rare occasions when it was essential to work at the lim its of 

memory could be handled by excising the processing module and running this as a free-standing 

program.
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15.3.2 R outine selection

Generally, for the solution of a particular class of problem, NAG provides several routines, each 

applicable to particular instances of the class.

As we saw in section 13.1, the choice of routine in some instances may easily be made on the 

basis of simple, objective criteria such as the degree of a polynomial or whether a param eter is 

real or complex. In such a case, a “super-jacket” in, say, Fortran 90, could be w ritten to  include 

the selection process, implemented as a simple sequence of logical decisions; param eters would 

need to be of the most general type -  for instance, complex rather than real -  with coercion to 

a less general type where needed for a call to a specific NAG routine.

In other cases, as discussed by Dewar [5] and Davenport and Dupee [10], the criteria for routine 

selection may be subjective ( “Is the function fairly smooth?” ) or may involve m anipulations 

which are more easily performed analytically than numerically4, such as determining whether 

the derivative of a function has singularities in a given range.

Determining a more precise meaning for subjective criteria is sometimes feasible, given a 

sufficiently detailed reading of the NAG documentation and, possibly, access to the author of 

the routine in question; for example, Dewar introduces 10 different concepts describing varying 

forms of smoothness (or its lack) which may be used in routine selection. In other instances, or 

even, as Dewar points out, when the information on which to base a decision could in principle 

be obtained analytically, the most efficient approach may be to try  one routine and, if this either 

fails or does not converge in an acceptable length of time, to try  another.

In summary, although some decisions can be made at the Fortran level, others need the power of 

a symbolic m anipulation package; some problems are most efficiently handled by a combination 

of routines (including, of course, some for which multi-routine jackets already exist). A sensible 

“division of labour” , then, might be to handle cases which require multiple routine calls (but no 

intervening symbolic calculation) in Fortran jackets but to leave the actual choice of (possibly 

jacketed) routine to the host package.

An additional advantage of keeping the routine selection in the host system, together with data  

elicitation, is th a t the case where different routines require different param eters can be dealt 

with more tidily, without the need for additional communication between running Fortran code

4 Of course, not all calculations required in routine selection are best performed sym bolically. The choice o f a 
NAG routine to  solve a system  of ordinary differential equations depends on the stiffness of the system ; Dupee  
handles this by initiating a separate numerical calculation which uses a  NAG routine to  obtain the eigenvalues 
of the Jacobian of the system , since the stiffness may be defined in term s of ratios of these eigenvalues.

162



and the host system. This even applies to instances where additional information is required by 

some calls of a particular routine but not others: for example, D01BBF offers the user a choice 

of two quadrature formulae for semi-infinite ranges but not otherwise. If this user choice were 

to be maintained in the overall interface, the decision on whether the range was semi-infinite 

would have to be made as part of the data elicitation process.

15.3.3 C om pilation and A SPs

We have seen that much of the processing carried out in IRENA jazzing could be performed in 

a Fortran 90 jacket in which the appropriate NAG routine calls were embedded. As with the 

IRENA-1 jackets, these “jazzing jackets” would be precompiled; in fact, there seems to be no 

reason in principle why the Fortran programs to run these jackets should not, themselves, be 

precompiled, reading their data, rather than having it embedded in the program as in IRENA-1. 

In this way, the significant proportion of IRENA processing time spent in program compilation 

and, especially, loading from the NAG Library could be eliminated, at the cost of requiring 

storage space for these precompiled programs.

We have not yet considered whether ASPs have any impact on the scheme suggested above; the 

question of precompilation brings us naturally back to this subject, since at least some ASPs 

represent input information which could not easily be represented as Fortran 90 data.

About 20% of ASP types can be represented by fixed bodies of code (which could be obtained 

from IRENA); about another 10% require a matrix, vector or rectangle to be specified and could 

probably be rewritten as predefined subprograms having a corresponding array as an argument. 

However, 55% of all ASP types require a function or function family for their definition and, 

for these, Fortran code corresponding to function definitions in the host system will have to 

be generated by GENTRAN or some similar system, at run time. The remaining ASP types 

are concerned with supplying derivatives of known functions: since the determ ination of the 

derivatives is an obvious area for the application of symbolic techniques, this will naturally be 

carried out in the host system and the Fortran must again be generated at run time.

Thus, for about 30% of cases, a permanent body of Fortran 90 code could be produced, and 

this would enable a worthwhile saving of effort to be made in implementing ASPs for future 

systems. (The code would not, of course, be a jacket as it would not call any pre-existing 

routine.) However, for the remaining 70% of cases, a GENTRAN-like generator will be required 

in (or accessible to) the host system.
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The direct impact of ASPs on the “jazzing jackets” is that, where the ASPs have data 

requirements, these must be propagated up, to integrate with those of the parent routine.

15.3.4 Conclusion

Returning to the main routines, once the more “deterministic” aspects of routine selection have 

been coded in a jacket, there is still a need for analytic functionality in choosing the appropriate 

jacket. The sequence of processes outlined at the start of section 15.3 and their recommended 

location is thus modified as follows:

•  pre-processing on host system:

1. elicit data;

2. select appropriate jacketed routine(s);

3. generate code of variable ASPs;

4. transm it code and data to “numerical server” ;

•  processing on numerical server:

5. compile ASPs;

6. link complete F90 program;

7. run this program

(which incorporates a jacket to

- transforms data  to routine’s format,

- handle multiple routine calls by calling F90 jacket and

- transform output data);

8. transm it output data;

•  post-processing on host system:

9. display results.

Fortran 90 compilers, produced by both NAG and other vendors, already exists for the m ajority 

of machines on which the NAG Library is mounted and the language will undoubtedly become 

even more widely available in the future. There would seem to be a strong case for developing 

any future “jazzing” in Fortran 90, as an extension of the NAG Library.
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Where jazzing is to be used as part of the interface to some host package, data acquisition and 

display modules appropriate to that package must be generated. These might be in a “neutral” 

language, such as C, in the package’s own system language or in a combination of the two.

Obviously, the programmer defining an interface to a NAG routine does not want to be 

concerned with generating code in a variety of languages and locations. A better solution is 

to write a control file in a customised control language and process this to derive the necessary 

components automatically. One of these components would be a Fortran 90 jacket, the others 

should probably be coded descriptions of the input and output requirements of the jacket which 

could be automatically processed by package specific programs to generate the appropriate data 

acquisition and display functionality (either interpretively or in a fully integrated form).

15.3.5 Exam ple

To dem onstrate the feasibility of the approach described in section 15.3.1, a Fortran 90 jacket 

for the (comparatively simple) NAG routine D01AJF was generated by hand, together with a 

module defining the “name and value” output structures suggested in th a t section. (For clarity, 

the “second level” defaults for error control parameters were also coded in a separate module; 

as these quantities may be changed by users at any time, if such a module were included in the 

final scheme, it could only be compiled at run time. However, it seems more sensible to  resolve 

any use of them as part of the “data  elicitation” stage, in the host system.) As suggested in 

section 15.2, jazzing and default specification were naturally handled together in the jacket.

This particular routine’s only ASP represents a (m athematical) function as a Fortran FUNCTION 

-  as already pointed out, in a live application this would have been generated at run time. 

Similarly, if run time compilation is to be kept to a minimum, the non-ASP data (specifying the 

range of integration, in this case) would be read, rather than assigned.

The code described here, together with a simple test program and its output, is displayed 

in appendix H. Note that the choice of parameter names for the jacket is arbitrary: the 

names seen by the user in an eventual product would be determined in the data  elicitation 

and display modules. In an automatically generated jacket, some regular choice of names, 

such as ja c k e t_ e ssen tia l_ in p u t_ n , ja c k e t  .o u tp u t _n and ja c k e t  jop tiona l_ inpu t_n , would 

presumably be made.
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15.4 Considerations for the design o f a revised jazzing  

system

The present jazz system exhibits a number of deficiencies:

•  there has been a proliferation of commands,

•  the syntax is irregular,

•  commands are not, generally, composable,

•  complicated manipulations -  often requiring interaction with the defaults system -  can be 

required to achieve comparatively simple results,

•  control of the order of prompts in the user interface is not available,

•  the dimensionality of arrays (for example, to distinguish vectors from matrices) is not 

readily available,

•  the system is not suitable for non-specialist use, especially as it relies on an ability to 

program in REDUCE symbolic mode for functionality outside its rather lim ited original 

core,

• when a param eter of an IRENA-function is itself a function, there is no means of indicating 

its param eter requirements in a prom pt5.

In addition, as discussed in section 15.1.3, in the present defaults system, the detection of values 

set in the REDUCE environment is unduly complex and potentially error prone, both for the 

jazz programmer and for users of the alias system.

Any new, combined jazzing and defaults system should provide a general, uniform, structure 

m anipulating language. Ideally, this should define mappings, rather than objects, to avoid 

producing large intermediate structures.

The decision to attem pt to retain NAG parameterisations and param eter names in IRENA, 

in addition to the IRENA parameterisation, although reasonable when taken (to address the 

needs of existing NAG users) was, with hindsight, a misjudgement which added considerably

6 To do so fully, inform ation on the numbers of various types of parameters is required -  these numbers are 
generally deducible from the value of some parameter of the NAG routine so, here again, control over the order 
of prom pting for parameters is required.
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to the complexity of the task of IRENA’s authors. As will be seen in what follows, the system 

now suggested makes no such attem pt -  rather, it is assumed that, generally, even the names 

of param eters will change (although the mechanism of defining IRENA parameters does not 

prevent reuse of a NAG name, should this be appropriate). In the later Axiom NAGlink facility, 

separate functions are supplied, providing NAG-like and higher-level interfaces; see sections 7.2 

and 17.1.

As we saw in section 15.2.1, the most efficient way of achieving a desired change of interface 

is sometimes to modify the specfile but, as this was seen to be exceptional and consequently 

error-prone for maintenance purposes, it was avoided as far as possible and jazzing functionality 

provided instead.

One area which was seen to be particularly troublesome was the introduction of “NAG-like” 

additional parameters; the jazzing system attem pted to provide these through the s c a la r  and 

v e c to r  commands, which also specified parameters local to just the jazz and defaults systems; 

the conflict between these two uses was a frequent source of system errors. If adjustm ents 

to the specfile had been accepted as normal, these problems could have been avoided -  any 

extra param eters required could have simply been declared there in the same manner as NAG 

parameters.

As the specfile is designed to be human readable and as the new system being proposed would 

generate host system code and Fortran 90 jackets automatically from a preliminary file, it seems 

reasonable to combine the functionality of this proposed new file with th a t of the specfile, 

thus gaining the extra flexibility th a t freer modification of the specfile would introduce. As 

the present functionality of the specfile would be retained but th a t of the jazzing and defaults 

systems replaced, a natural approach is to subsume the system jazz and defaults files in the 

specfile. Specimens of an IRENA-1 specfile and the corresponding proposed new specfile, as 

potentially generated automatically and in its final form, are provided in appendix I.

The suggested syntax borrows from both Fortran-90 and Axiom conventions. Although the 

following description is couched in the present tense, to  avoid repetitious use of conditionals, 

this should not be taken to imply th a t such a system exists -  it is as yet only a proposal. 

The suggested functionality appears to overcome the deficiencies mentioned above, whilst being 

sufficiently versatile to duplicate the capabilities of the present jazz and defaults systems.
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15.4.1 General features

In addition to the sections at present labelled TYPE, SPECIFICATION, (NAG) PARAMETERS and 

IFAIL VALUES, an IRENA PARAMETERS section is added, before IFAIL VALUES. Descriptions of 

any ASPs are provided in a final section and mirror the structure previously used for the main 

routine. It may be possible to extend the parameter redefinition system defined below to cover 

the coding of ASPs: in particular, this would require the inclusion of a differentiation operator 

(relying on the functionality of the underlying symbolic system), since many ASPs are concerned 

with the forming of Langrangians, Hessians and other derivatives. However, this has not yet 

been investigated in detail and no attem pt has been made to include this in the examples.

The IRENA PARAMETERS section would consist of subsections for

Input parameters,

Intermediate input objects,

Input redefinition (including defaults),

Output parameters,

Intermediate output objects,

Output redefinition.

For clarity, declaration of objects’ types are kept separate from their definition, in the 

p a ram e te rs  subsections.

End of line is taken as a term inator, unless a bracket is open there. Brackets are ( . . . )  and if 
. . .  e n d if  (see below). For simplicity of processing, Fortran continuation characters are retained 

in the routine specification. Spacing is otherwise cosmetic throughout.

Comments are introduced by any percent sign ('/,) which does not occur within a character string 

and extend from '/, to the end of the line, only.
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15.4.2 Type declarations

Type declarations for NAG parameters consist of a name, followed in the case of a non-scalar by 

a parenthesised list of dimensions, the operator : and a type specification with two components: 

a “general” Fortran type, chosen from

in te g e r  

r e a l  

complex 

lo g ic a l  and

c h a ra c te r (n )  (where n is the length of the character string).

and an indicator of dimensionality, chosen from

scalax

v e c to r

m a trix

3 a rray

4 a rra y

The first component is used directly in generating Fortran code; the second is clearly redundant 

but its presence unifies the form of NAG and IRENA param eter declarations and removes the 

need to analyse the dimensions more than once.

IRENA input declarations consist of the name of an object, the operator : and a two or three 

component specification. The first component may be one of:

s c a la r

v e c to r

m a tr ix  (host system type)
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m a tr ic e s  of the various IRENA types

r e c ta n g le  (n) (the (n ), which is optional, specifies the number of pairs defining the rectangle; 

if present, it allows additional verification of the user-supplied value)

tuple

list {component type) 

grid (of 2 or more dimensions) 

ragged (ragged array) 

function 

f set

or a choice of these, denoted as a ? b ? . . .

-  for example, where a sparse m atrix A is required, we might indicate th a t any of the IRENA 

sparse m atrix types should be provided by a declaration of the form:

A : sparse-mat ? lspaxse-mat ? ssparse-mat ? slsparse-mat...

The second component is one of the words

data

control

housekeeping

and, where a param eter can be recognised autom atically as housekeeping, this is inserted in the 

specification; otherwise, a comment is inserted th a t the programmer should choose one option.

The optional third component -  which has the form suppliedAs(prompt, list of allowed aliases)

-  specifies the prom pt to be used for the object to which this is assigned and a list of allowable 

aliases (in addition to those implied by the prom pt); prompt may be qualified by '.type, which 

is used as in the present set-type command. Where the third component is om itted, the name 

of the IRENA object is used in prompting. Param eter lists for function aliases in suppliedAs 
are assumed to be the same as for the prompt. Users may choose any dummy param eters in 

supplying the function but those specified here will appear in prom pting6.

6 This contrasts w ith the present system  in which, as was noted in the footnote on page 166, there is no  
m echanism  in to allow inform ation concerning the parameters required in a data  function to be provided to  the
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The In p u t param eters  section includes those ASP data requirements which can be (tentatively) 

inferred automatically.

IRENA output declarations are similar to input declarations without the final component and 

with choices disallowed. The dimensions of IRENA output matrices etc. should be specified; 

an asterisk (*) may be used for “obvious” dimensions (for example, the second dimension of a 

m atrix  formed from a vector, when the first is given, or the dimensions of a m atrix  formed by 

concatenating vectors). IRENA output names may coincide with NAG names.

“O utput order” is defined implicitly by the order in which IRENA output param eters are 

specified.

It is anticipated that output matrices will commonly be specified as native host system structures 

but the possibility of the IRENA representation is retained to deal with, for example, sparse 

matrices.

15.4.3 R edefinitions

The code in the redefinition sections is obeyed sequentially. The operator := is used in 

redefinition.

Any name on the right hand side of an assignment is taken as an IRENA name unless it is the 

argument of one of the functions in  or ou t (see below).

Any redefinition may be regarded as a parallel assignment of elements on its right to those on 

its left; any structure is considered to have an implied order attached to its elements, in general, 

this is a row-major order; details of the implied orders for all structures are not given here 

but may be summarised as last index changing fastest in some “natural” representation of the 

structure (for example, a re c ta n g le  would be regarded as an n x 2 array, so the elements would 

be taken in the order in which they appear in defining a rectangle). Structures consisting of 

nested lists are effectively flattened. A consequence of this is th a t more than one object may 

appear on either side of an assignment; commas ( , )  separate the individual objects.

user, only the name of a  function being displayed when prom pting. Here, when, for instance, the number of 
param eters is fixed, they may easily be displayed in a manner which suggests their m eaning, as in  prom pting for 
a function to define a second derivative in terms of the coordinates find first derivative w ith f ( x , y , y ’ >? Even  
when the number of parameters is variable, the form used could be more more suggestive them at present, as in  
f ( x l , . . , x n , t ) ?
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In the redefinitions, the Fortran 90 convention on array sections is assumed -  th a t is, a pair 

m: n in the place of an array dimension specifies the desired range of values for th a t dimension. 

In addition, certain functions (diagonal, upperTriangle and lowerTriangle, see below) are 

used to specify subsets of elements of structures. These conventions may be utilised on the left 

or the right of an assignment, in each case specifying the elements to be processed and the order 

of their processing.

The input redefinition section is used to supply definitions for all NAG param eters in term s of 

declared IRENA input and intermediate parameters and constants. Where param eters can be 

autom atically recognised as housekeeping, values may be provided automatically. Default values 

are introduced by = as in N := irena_n = dim(A,l).

An i f  .. . th e n  . . .  e l s e i f  . . .  th en  . . .  e ls e  . . .  en d if construct is provided, with the standard 

numerical comparison operators.

The usual arithm etic operators operate componentwise on conformable structures; when one 

operand is a scalar the operation is applied to the lowest level components of the other.

The imaginary element i is represented as %i.

The following functions are available; unless otherwise indicated, they may be used in both input 

and output redefinition:

absent(p) (input only) returns true if the irena parameter p has not been supplied by the user 

in the keyline (or its host system equivalent) -  or in the global environment if the user 

requires this to be searched for this class (data or control) of param eter.

co n c a te n a te  (list) concatenates the flattened elements of list] if the last element of list is u n se t, 

all trailing elements on the left hand side are u n se t. If the object on the left hand side of 

the assignment has dimensionality greater than zero, the objects on the right are flattened, 

from the inside out, until objects of dimension one less than the left hand’s are produced.

c o p ie s (x ,n )  provides n copies of x.

d ia g o n a l( name, r ,  c) supplies a list of the elements of name, on the diagonal through (r,c). 

d im (name, n) (input only) the nth dimension of the vector, matrix, array or fset name. 

g lo b a l  (host system variable name) supplies the value of the host system global variable. 

im ag(x) supplies x with each bottom-level component replaced by its imaginary part.
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in(nagname) (output only) the input value of the named NAG parameter.

keyword (A:) (input only) true if the keyword k is present in the keyline or its host system 

equivalent.

le n g th ( r )  supplies the top-level length of x.

lo w e rT ria n g le (name, r, c) supplies a list of the elements of name, on and below the diagonal 

through (r,c), in row-major order.

map(/un, object) applies fun  to each top-level component of object.

max (/) (input only) supplies the maximum element of the numeric-valued structure /.

m in (0  (input only) supplies the minimum element of the numeric-valued structure /.

out (.nagname) (output only) the output value of the named NAG parameter.

p r e s e n t (P )  (input only) returns t r u e  if the irena param eter P  has been supplied by the user 

in the keyline (or its host system equivalent) -  or in the global environment if the user 

requires this to be searched for this class (d a ta  or c o n tro l)  of param eter.

prompt I f  U ndefinedQ  (input only) causes a prom pt for the variable to which it is assigned to 

be generated if that variable does not already have a value.

r e a l ( r )  supplies x with each bottom-level component replaced by its real part.

sum(/) (input only) sums the elements of the numeric-valued structure I.

t ra n s p o s e (m ) the transpose of the m atrix m.

upperTriangle( name, r, c) supplies a list of the elements of name, above and on the diagonal 

through (r,c), in row-major order.

Note that, in applying these functions, intermediate objects need not be explicitly calculated -  

for example,

transpose(upperTriangle(transpose(X),1,1))
which gives the lower triangle of X in column-major order should not generate the object 

t r a n s p o s e (X) but should simply redefine the order of a subset of X as part of an overall 

transform ation. However, as a considerable additional programming effort would probably be 

required to avoid the creation of intermediate objects in a general manner and a set of ad hoc 

m anipulations is undesirable, an initial system would probably accept the overhead of creating 

these objects, so that their impact on efficiency and utility could be determined.
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A table of IRENA input parameter values is built up by

1. taking keyline values,

2. taking environmental or default values for those parameters in the classes (control and/or 

d a ta ) , for which the user has specified that this source has precedence over prompting, 

according to the specified precedence,

3. performing a single pass through the redefinition code and prom pting for any required 

IRENA parameters, as these are encountered.

At stage (3), Fortran code for NAG parameter values will be generated. Thus, representations 

for all IRENA input parameters but no NAG parameters will exist in the host system; initially, 

the revised specfile generator provides a one-to-one correspondence between those NAG and 

IRENA input parameters which cannot be automatically classified as housekeeping -  the jazzing 

programmer will remove those which are unnecessary -  and includes values for those which can 

be so classified.

As an example of how the old jazzing commands map onto the new, phased-prompt would 

require a new IRENA input variable which would be tested before the main variable was 

processed, so, to mimic the effect of the present command

{phased!-prompt} INIT : do! you! wish! to! supply! an! initial! approximation
(n > unset) initial! approximation! to! solution

with keywords no_initial_approximation and noia also being allowed, we would have: 

under Input parameters:

irena_init_flag : scalar control suppliedAs("Do you wish to supply am
initial approximation":"(Y or N)",
«  » )

irena_init : vector data suppliedAs("Initial approximation", «  ip » )
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under Input redefinition:

i r e n a _ in i t_ f la g  :=

i f  p r e s e n t ( i r e n a _ in i t )  th en  u n se t

e l s e i f  k ey w o rd (n o _ in itia l_ ap p ro x im atio n ) th en  ’N

e l s e i f  keyw ord(noia) th en  *N

e ls e  p ro m ptIfU ndefined ()

en d if

i r e n a . i n i t  := i f  i r e n a _ in i t_ f la g  

e ls e  

en d if

INIT := i r e n a _ in i t

This allows the various possibilities -  keys, prompts, necessary and unnecessary param eters -  

to be thought through in a straightforward, sequential way and programmed accordingly.

The assignment of u n se t to i r e n a _ in i t_ f  la g  could equally well have been *N but this would 

be less transparent for those reading the code.

In a data-reading Fortran based system, such as that suggested in section 15.3.3, u n se t would 

probably be handled in the Fortran by having an auxiliary variable read first, with actual data  

values only read when the auxiliary variable has an appropriate value.

= ’Y th en  p rom ptIfU ndefined () 

u n se t
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C hapter 16

R ecom m endations for N A G  

Library developm ent

The development of IRENA led to the identification of a number of areas in the design of 

NAG software and documentation which could usefully be revised, to  enable the m aterial to be 

incorporated more simply into packages.

Section 16.1 is a slight paraphrase of a paper, given at the end of 1992 to members of NAG’s 

Numerical Libraries Division, who are the principal developers of the NAG Library.

16.1 Software guidelines for library developm ent

The main requirement in NAG Library software, revealed by the IRENA project, can be summed 

up briefly as maximum consistency in the interfaces of the Library routines.

Some of the more notable problems attributable to the Library itself, experienced in developing 

IRENA, are described below.
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16.1.1 Argum ent Subprogram s

The large (and growing) variety of ASPs was a major component in slowing the development 

of IRENA. Each variant requires detailed individual programming at the RLISP level, to allow 

a symbolic description of its functionality to be mapped into Fortran code. This is an area in 

which strict adherence to a limited set of models would provide substantial benefits for derived 

products.

16.1.2 Option setting

Those E04 routines which use option setting had to be om itted from the first release of IRENA, 

since the mechanisms required to handle their parameters differ completely from those built into 

IRENA for normal routines.

16.1.3 U ncontrollable term ination

The non-standard error reporting mechanism in the F07 chapter breaks IRENA if it is invoked. 

Library routines should never term inate a program without allowing a user override.

16.1.4 N atural data representations

Are far as is practicable, NAG parameters should correspond to individual m athem atical objects. 

The most troublesome departures from this precept are the cases where the location of a 

particular item of data is variable. Examples are the array W in D02YAF and the location of 

the singular vectors in F02WEF.

A notable instance of an unnatural parameter representation is that, in a number of D01 routines, 

the length of a workspace array, which would normally be considered a housekeeping param eter, 

has a control role, in th a t it restricts the degree of subdivision allowed in the quadrature. A 

more natural approach would be to provide a parameter which specified the degree of subdivision 

allowed and define the length of workspace array required in term s of this.

(Another example, which does not in itself affect package development but which does present 

users with an unnatural interface, is the parameter D01XXX in D01BBF, where the choice of 

quadrature formula must be specified by supplying the name of a NAG auxiliary routine -  a
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technique perhaps adopted to avoid increasing the size of the load module, at a time when 

memory efficiency was an im portant consideration. This choice could now be specified much 

more naturally by a string-valued parameter indicating the name of the required formula.)

16.1.5 M atrix representations

The many alternative m atrix representations in the Library caused us to decide, at an early stage, 

largely to ignore these and build a set of IRENA m atrix types in their place. For instance, our 

symmetric m atrix type allows the specification of either triangle and autom atically supplies the 

other. If a minimal set of representations had existed in the Library, this would not have been 

necessary. For the benefit of future package builders, such a set should be adopted, building 

on the existing commitment to a consistent representation of symmetric, skew-symmetric and 

Hermitian matrices on input (and, preferably, extending this to allow either triangle to be 

supplied in every case).

16.1.6 Com plex quantities

There is a variety of representations of complex-valued structures in the Library -  as complex 

valued arrays, pairs of real (usually DOUBLE PRECISION) arrays and real arrays with an extra 

dimension, 2. Ideally, a single representation should be chosen and since, for Fortran 77, the 

requirements for higher precision rule out the use of COMPLEX, the present most common solution 

-  to use a pair of real arrays -  should be adopted uniformly in the Fortran 77 Library. As a 

special case, complex scalars should be represented as a pair of real scalars. (This problem does 

not, of course, arise in the case of Fortran 90 developments, where developers have sufficient 

control of the precision.)

16.1.7 N am ing conventions

One of the aims of IRENA is to achieve a high degree of consistency in the naming of equivalent 

objects throughout the package. The use of alternative names for similar objects is a minor 

problem, provided that it is recognised. More serious is the use of the same name for different 

objects: for instance, matrices to be processed by NAG routines are almost always called A. 

However, this name is sometimes used for a single component of the description of a m atrix  -  

usually a set of values, without full information on their location.
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In IRENA, we reserve A for the name of the m atrix itself -  thus risking possible confusion by 

users familiar with the Library. (We do, of course, draw special attention to these cases in the 

docum entation.) Ideally, in the case described, an alternative name such as AVALS should be 

adopted in the Library.

16.1.8 M isclassification and m isplaced inform ation

In a number of instances, parameters have been described as Input in the routine document 

when they have, in fact, been Input/Output. This, of course, causes problems in the autom atic 

processing of the information. This type of error is probably best avoided by coding the 

param eter descriptions into the source of the routines, as they are written -  effectively 

“declaring” param eters as input etc. This information could then be autom atically extracted in 

generating the documentation.

Harder to detect, and therefore more troublesome, are cases where there are errors in the 

specification section -  such as missing commas after parameter names at line ends or (in F04AXF) 

IKEEP(N,5) instead of IKEEP(N*5). Some of these errors could be detected by autom atically 

parsing any Fortran fragments included in the routine documents.

In some routines, parameters are described as Workspace -  but a different routine document 

reveals th a t this workspace contains useful information. For instance, the information in the 

“workspace” param eter W of E04FDF is described in E04YCF’s routine document but not in its 

own.

16.1.9 Special data representations

The frequency of such special representations is a m ajor problem -  in fact, this must compete 

with the variety of ASP types as the single factor which most delayed the appearance of IRENA. 

The representations in question range from the case of C02AJF, which, unlike the other C02s, 

requires the coefficients to be specified as scalars and which does not return all the roots in 

the same array, through HMAX in D02KEF, in which the first row contains data  and the second 

is workspace (most other m ulti-part input matrices are partitioned by columns), to the various 

three-dimensional arrays of coefficients in D03ECF.

Also worthy of note are routines with non-standard documentation (in particular, the F 0 6 S 1) .

1See section 16.4.1.
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16.1.10 A ssum ed-size arrays

Where assumed-size (*) dimensions occur, the presence of constraint information is very helpful 

in processing them (but is not always present).

16.1.11 Summ ary

The task of any package developer is simplified by the extent to which the underlying 

components’ parameters meet the desiderata which were recognised in the design of IRENA 

param eters -  namely, th a t they should be:

•  Informative

parameters should have meaningful names 

routine usage should be easily learnt

•  Regular

different routines should be similarly parameterised

•  Orthogonal

distinct items of information should be kept separate

and

•  Minimal

information should be simple to input 

information should only be obtained when required 

the proliferation of parameters is to be avoided.
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16.2 M aterial for direct inclusion in sym bolic packages

Many symbolic packages already offer some internal numeric capability; where NAG m aterial is 

being considered for incorporation in such a package, there are, at least, two possible approaches 

-  the existing NAG Library routines could be interfaced in some way to the package, as has 

been done for IRENA and the Axiom-NAG link, or the NAG code could be translated into the 

package’s own system language and incorporated directly.

In the longer term, the second approach has much to commend it, since a more integrated 

product is likely to result. However, such an approach also has implications for the longer term  

development of NAG numerical software. Since the philosophy behind symbolic com putation 

does not, generally, adm it to fixed precision computation and, even less, to com putation where 

the actual precision of the result is known only approximately, there is a need to  concentrate 

on the development of techniques for which precise error bounds can be calculated and which, 

ideally, are capable of being applied with arbitrary precision.

In reality, the requirement for arbitrary precision may, in some situations, be usefully relaxed. 

A distinction can be made between “m athem atical” and “engineering” style applications. The 

former, which would include pure m athematics and some areas of theoretical science, may 

genuinely require arbitrary precision -  but, of the areas traditionally covered by the NAG 

Library, this is likely to affect only a relatively small number, for example, the calculation 

of standard transcendental functions and, possibly, some linear algebra. For “engineering” 

applications (which would include most other areas, such as applied science and finance) it is 

usually adequate to obtain results which are known to be correct to a few significant figures; 

however, given the premise th a t the results of symbolic packages’ computations should be, in 

some sense, provably correct, even for these applications only algorithms which produce exact 

error bounds should be incorporated.

In the symbolic package it is, of course, essential to distinguish between the two types of result: 

for example, in Axiom they could belong to different (formal) types.
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16.3 Packages as sources o f library m aterial

In sections 12.2.4 and 12.3.1, mention was made of how IRENA jackets could simplify the use 

of NAG routines. Future IRENA-like projects are likely to make increasing use of such jackets, 

probably written in Fortran 90, to provide simple user interfaces to existing NAG routines; 

these should not be overlooked as a possible source of code for the NAG Fortran 90 Library. 

Duplication of effort may be avoided if NAG library and package developers collaborate in 

specifying such jackets.

16.4 Structure o f N AG  docum entation

The documentation of the NAG Library was the single most im portant external component 

in the production of IRENA, providing information both for autom atic generation of IRENA 

components and for the manual activities such as jazzing and defaults definition. The ease 

or difficulty with which this information can be used is critically dependent on how well it is 

structured: the nature and extent of each distinct item of information should be clearly marked 

(facilitating both machine and human analysis of its content) and a consistent structure is needed 

throughout.

One area where IRENA has led to an improved structuring of the Library m anual has already 

been remarked on in section 7.1, namely the specification of “suggested values” . However, there 

remain instances where this information is embedded in general text, rather than being explicitly 

flagged. For example, in the F01BRF routine document, the description of LICH states th a t it 

“should ordinarily be 2 to 4 times as large as NZ” but no formal suggested value is given. For 

IRENA, the default value was set as 

LICN : 4*NZ

-  in such cases, safe values should be made explicit in the NAG documentation.

Another, similar regularisation in the Library manual, due to IRENA, is the presentation of 

constraints on param eter values. Although this information is now better structured, instances 

remain where it is not explicitly presented in the appropriate location.

At times, the constraint information is presented as an English language description, rather 

than  as a m athem atical inequality. For example, the constraint given for the param eter H in 

C05AVF is “either X +  H or X - H must lie inside the closed interval [BOUNDL,BOUNDU] 

(see below)” . This could be used much more easily in autom atic processing if expressed as 

“BL - X <  H <  BU - X or X - BU <  H < X - BL” .
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Further, “obvious” constraints (such as requiring a step size to be positive) are sometimes 

om itted. Although these may be considered to be apparent to users, this is a subjective 

judgem ent; in any case, they should be certainly made explicit for autom atic processing systems.

The NAG docum entation’s “Error Indicators and Warnings” sections are another area where 

improved structuring would be helpful to package developers who need to base error messages 

for derived packages on those of the incorporated NAG routines. Here, related headings are 

sometimes grouped -  for instance, for the routine C05AGF, the IFAIL values 5 and 6  are described 

together: they “Indicate that a serious error has occurred in C05AVF or C05AZF respectively” .

Fairly extensive internal cross-referencing also occurs here; for example, C05AJF’s description of 

IFAIL =  4 includes the remark th a t “This error exit can occur because NFMAX is too small 

. . .  or for either of the reasons given under IFAIL =  3 above” . Other cross references may also 

need to be expanded, for instance, the common “see Section . . . ” at very least needs to become 

“see Section .. .of the appropriate NAG routine document” if it is to be used as the basis of a 

package’s error message.

In recent marks of the Library, a facility has been added for many routines to print their own error 

messages; as this develops, the messages may be expected to become much more self-contained 

and, provided th a t the internal message forms are also utilised in the documentation, they 

should provide a better basis for error messages in derived packages. For direct use to be made 

of such messages in packages, they should describe what has occurred in term s of m athem atical 

objects, rather than Fortran parameters; it may be that this could best be achieved by allowing 

an additional input IFAIL value to indicate that this style of output was required.

A further improvement, which would be useful in processing exceptions, would be to make an 

explicit distinction among IFAIL values, classifying them as “structural errors” (that is, due to 

the detection of the violation of a stated constraint), “execution errors” (in effect, all other errors 

-  for example, a failure to converge) and “warnings” . In a system which is set up automatically, 

structural errors are very unlikely to occur in housekeeping param eters and it is probable th a t 

no special action would be needed to process these; furthermore, it is unlikely th a t the facility to 

express error messages mathematically, mentioned in the previous paragraph, would be required 

for such cases. If a package uses a technique, such as IRENA’s jackets, which may involve 

m ultiple NAG routine calls from a single command, the action required when an error occurs 

will almost certainly be different to th a t taken in response to a warning; distinguishing between 

these would increase the ease of autom atic processing.
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16.4.1 F06 docum entation

In section 16.1, mention was made of the documentation of the F06 (linear algebra support) 

chapter. This is arranged quite differently to the documentation of other chapters, probably 

because the m aterial here is meant mainly to provide an efficient linear algebra underpinning 

for use in other NAG routines and is expected to be only secondarily of interest to end users. 

However, the m aterial is of some interest to end users and may also be required for internal 

incorporation in packages, for instance, in the provision of ASPs. Unfortunately, this non

standard organisation completely frustrates any attem pt at autom atic processing which is not 

designed specifically for this chapter (and also makes the task of users, including package 

developers, who need to incorporate this material considerably more difficult).

In outline, the F06 documentation is organised as follows.

Section 1 consists of a single sentence, outlining the scope of the chapter.

Section 2 gives the background to the problems in the entire chapter.

Section 3 gives the purpose of each routine: here, the routines are arranged into four 

categories:

scalar

vector

matrix-vector and m atrix 

m atrix-m atrix

each with a subsection of “Basic Linear Algebra Subprograms” 2  (BLAS) and, except for 

the last, another of “other routines” .

Section 4 contains the routine descriptions, now arranged in five categories, again with 

the “BLAS” and “others” subdivision. Descriptions of uniformly named param eters 

are usually given at the beginning of the section describing each category, although the 

correspondence between similarly named variables in section 2  and param eters here tends 

to be implicit and the description may consist, wholly or partly, of a cross-reference to a

2The Basic Linear Algebra Subprograms are an agreed, standard set of num erical linear algebra utilities, 
designed for efficient im plem entation in both  sequential and parallel com puting environm ents, to serve as the  
basis on which efficient user-orientated numerical linear algebra software m ay be built. See [7], [8], [9] and [18].

184



similarly named parameter in an earlier section; descriptions of param eters applicable to 

a single routine or closely related group of routines are given in the description of those 

routines.

Section 5 lists routines which have been withdrawn or are scheduled for withdrawal.

W ithin any subsection, routines are arranged alphabetically by the fifth letter of their names, 

which has the effect that equivalent routines with real or complex param eters appear together 

-  there may be more than two versions, since more than one param eter may be involved; the 

fourth letter of the names appears to depend only on the sequence in which the routines were 

introduced and so does not aid in determining their positions within the chapter.

The style of organisation of the information in this chapter has the effect of making the task 

of understanding a routine’s usage particularly time-consuming, since the information is so 

scattered.
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C hapter 17

Im pact o f IR E N A  on other N A G  

software

17.1 Im pact on th e A xiom -N A G  link

The experience gained from the development of IRENA influenced the development of 

the Axiom-NAG link in a number of ways, affecting both its overall design and detailed 

implementation.

For the overall design of the new link, a less ambitious and more incremental approach was 

adopted. This resulted in a first release of the link with the following characteristics.

•  The set of routines was based on th a t adopted for IRENA-1, but was slightly smaller, since 

the A00 (Library identification), MOi (sorting) and X01 (m athem atical constants) routines 

were om itted (although the three Foundation Library D03 -  partial differential equation -  

routines were included).

•  A more Fortran-like interface was accepted for this first release: in this, all non

housekeeping input parameters were visible (as well as certain housekeeping param eters, 

as described in the next item).

•  Axiom includes a facility for visual tem plates to be provided for command construction, 

with each param eter having its own input area in the tem plate. At the suggestion of the
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present author, user interfaces were developed for the linked routines, based on this facility, 

so th a t default values could be displayed as initial settings in the corresponding input areas. 

(In fact, this idea was taken further by the link’s developers and initial settings equivalent 

to the standard NAG example program were displayed for all visible param eters.) As a 

means of controlling the sizes of the arrays’ input areas, those housekeeping param eters 

corresponding to array sizes were made visible in this interface.

•  The execution of the NAG routines was decoupled from Axiom, the two processes 

communicating through sockets, using the xdr protocol. This avoided the use of 

proprietary software items such as o load, (whose interaction with the Sun loader caused 

considerable difficulty in IRENA) and allows Axiom and the NAG routines to be run 

on different machines, if desired. As suggested in section 15.3.3, precompiled programs 

calling the NAG routines were used, where feasible, to reduce the time required to process 

calls (in particular, that taken for loading from the NAG Library which, as we have seen, 

usually dominates the processing time). However, the main programs were produced 

(autom atically from the IRENA specfiles) in C, to allow communication through x d r and 

for control of error handling (since no general error recovery mechanism is available in 

Fortran for run-time failures). To reduce the volume of m aterial stored, these programs 

were not retained permanently but were compiled on the first occasion they were required 

in any session and retained throughout th a t session.

IRENA components were reused wherever possible. In particular, the specfiles were available 

as a reliable source of routine-specific information, from which, as has already been mentioned, 

C main programs for the routines could be produced. In addition, default values, some jackets 

and the classification and logic of the ASPs were utilised.

Drawing on the experience of IRENA, additional jackets were written (by Dewar) to avoid some 

of the irregularities which IRENA had revealed, for instance, allowing the choice of quadrature 

formula in D01BBF to be specified as a number rather than as the name of a NAG routine.

Where the interface was changed, no attem pt was made to provide a completely NAG-like 

interface as an alternative. This decision was encouraged by the ease with which function names 

can be overloaded in Axiom, where functions with the same name but different signatures -  th a t 

is, lists of the types of the parameters -  are regarded as distinct. This meant that, if required 

later, more and less NAG-like versions of routine interfaces could be produced as separate 

functions which could, if desired, both retain the NAG name. In fact, the NAG name was only 

retained for the NAG-like interfaces, produced for the first release of the link.
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The present author has only recently become involved in the detailed development of the link: 

in particular in developing Axiom-like interfaces for the second release of the link. The functions 

providing these are given names which indicate their purpose, prefixed with nag to indicate their 

use of NAG routines (and consequent limitations on their accuracy, implicit in the numerical 

algorithms which these routines implement). These interface functions call their NAG-like 

counterparts: where different NAG routines provide the same functionality for distinguishably 

(in Axiom) different data  types, separate Axiom functions with identical names are developed; 

where the distinction in the input data is more subtle -  for example, between symmetric and 

asymmetric matrices -  branches to the appropriate NAG-like function calls are coded in a single 

interface function.

This approach allows the NAG-like and Axiom-like interfaces to be kept separate, unlike the 

situation in IRENA, which attem pted to provide the equivalents of these as alternatives in each 

IRENA-function (see section 15.4).

The IRENA experience has already proved useful in this exercise, in a number of ways. For 

example, in planning the (Axiom-like) command line interface, the present author was able to 

characterise this in about one working day, mainly by drawing on the classification of input 

param eters into essential and optional in the IRENA function description documents, adopting 

a strategy based largely on the model of the IRENA “mnemonically-named functions” , discussed 

in chapter 13.

Rather than attem pting to provide natural interfaces to a large fragment of the NAG Library, 

he has chosen to identify areas in which Axiom’s numerical capabilities need extension and 

to concentrate on providing uniform interfaces in those areas. At the time of writing, the 

areas which have been covered are the NAG special functions chapter, quadrature for functions 

approximated by polygons, discrete Fourier transforms and m atrix eigenvalues and eigenvectors; 

other areas (such as interpolation and optimisation) will be identified and interface packages 

written, as time permits, until the release of the new version.

The NAG Fourier transform code makes frequent use of “Hermitian sequences” ; the IRENA 

(RLISP) code for handling these, described in section 9.6, proved to  be almost directly 

translatable into “Axiom extension language” (Axiom-XL) code as part of this exercise.
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17.2 Im pact on other software

17.2.1 Fortran 90 Library

At the time th a t the interfaces for the routines of the Fortran 90 library were being designed, a 

complete set of IRENA function description documents was made available to the designers, as 

an indication of the minimum logical requirements for input to the existing Fortran 77 routines.

It is worth remarking th a t the facilities in Fortran 90 for keywords and optional param eters bear 

a closer resemblance to the design of IRENA than to that of Fortran 77.

17.2.2 The N AG  Product Inform ation D atabase

One by-product of IRENA was the abstraction from the NAG docum entation of inform ation on 

the routines in the Library, in a machine processable form (the specfiles). The need for such 

information to be available on a wider basis, in a form easily analysable for incorporation in 

derived products such as IRENA, was a major consideration behind the development of the 

NAG Product Information Database (NPID), as the basic repository of information on NAG 

products, including (but not limited to) the Library documentation.

The development of the NPID could also be regarded as the logical extension of the revision of the 

m anual already described in section 7.1 and the further revision suggested in section 16.4, in th a t 

the information on the routines was further decoupled from their docum entation requirements. 

In particular, information generated in the IRENA project, such as versions of error descriptions 

with cross-references resolved and reliable default values for param eters (as opposed to “usually 

adequate” suggestions), was incorporated.

17.2.3 The M ATLAB gateway generators

This collection of software was developed, after IRENA, to provide access to  NAG routines from 

the MATLAB numerical computation environment. It was able to draw on the inform ation in 

the NPID (and so, indirectly, on IRENA) as the basis of its development.
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C hapter 18

Final overview

A number of the principal conclusions drawn in the body of this thesis are reiterated here and 

further conclusions are presented.

18.1 Effort required w ith  m ore com plex interfaces

Perhaps the most interesting of the earlier conclusions is the lack of scalability, discussed in 

sections 8.2 and, especially, 8.3, of experience drawn from using or processing simpler Fortran 

routines to more complex cases. In particular, there is good evidence for a marked nonlinearity 

in the relationship between the complexity of the interface of a Fortran routine and the am ount 

of effort required to redefine th a t interface. In practical terms, this may be summarised by 

saying th a t Fortran routines with few parameters give a deceptively encouraging picture of the 

ease with which the redefinition may be carried out: the slope of the graph of effort (measured as 

the am ount of code required) to redefine an interface against param eter count increases rapidly 

for the first few parameters and only then becomes reasonably constant.

It seems reasonable to suggest th a t this experience may be generalised to imply th a t the effort 

required to  use a library procedure also increases rapidly with the number of param eters of th a t 

procedure and th a t there is a rational basis for the preference of library users for interfaces with 

few parameters. To understand and use a pair of procedures, each with four input parameters, 

may well be expected to be a considerably easier task than to do the same for a single procedure 

with eight: provided th a t the transfer of data between the two is hidden from the user, there
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seems no reason why splitting a complicated procedure into smaller units should result in an 

increase in the total number of input parameters required.

Of course, IRENA also produced an absolute decrease in the number of param eters required in 

using many routines; this is discussed further in the next section.

A related issue is the additional effort required to produce a single interface to a number of 

related routines. Appendix G illustrates a fairly simple example of this, in which a REDUCE-like 

interface is provided to a set of four IRENA-functions for the solution of polynomial equations 

(two of which correspond to routines in the full NAG Library which are absent from the Fortran 

Foundation Library).

The entire interface in this case required only 150 lines of RLISP code (including blank lines). 

This may be contrasted with the individual interfaces provided for the four NAG routines -  

these required jazz and defaults files totalling 102 lines. It seems that the task of providing 

a common interface may require an additional effort similar to th a t of providing the original, 

individual interfaces; the somewhat greater amount of code for the common interface may be 

attributed to RLISP being a rather “lower-level” language than the IRENA jazz and defaults 

languages.

However (especially in view of the lack of scalability mentioned above) no strong conclusion 

should be drawn from this single example. It is worth noting that most of the RLISP code (111 

lines) was concerned with converting sparse REDUCE coefficient sets to the dense representation 

required for NAG -  essentially, defining an additional jazzing operation; in view of the small 

am ount of code required for the rest of the interface it is certainly worth investigating common 

interfaces further at an early stage of any future project in this area.

18.2 Ease o f use

Reported experience of IRENA users suggests th a t it represents a considerable advance in ease 

of use on the original NAG Library routines. The analysis in section 14.4 gives an objective 

basis for this impression, in that, for the routines examined, both the individual documentation 

and the program required to use the routine were reduced in size by more than 50% in every 

case. A factor in this is the reduction in the number of input param eters required by an IRENA-

function, compared to its underlying NAG routine. In addition, users of NAG routines must

define workspace parameters and output arrays of the correct dimensions for the routines’ use.
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The relative numbers of parameters requiring user-supplied information are listed in table 18.1, 
for the routines considered in section 14.4. For this table, EXTERNAL subprograms have 

been included as input parameters, although they may, of course, require considerably more 

specification than other input parameters; the NAG error param eter IFAIL has also been 

included as an input-output parameter.

Routine

Numbers of user-supplied parameters

NAG Library IRENA

Input and I/O Workspace O /P  arrays Essential Optional

C06EAF 3 1 0 1 1

D01BBF 6 0 2 4 2

E01SEF 9 1 1 1 4
E04DGF 4 4 1 2 4
F02ADF 6 1 1 2 0

F04MAF 14 0 1 2 4
S14BAF 4 0 0 2 1

S18DCF 5 0 1 3 1

Overall 51 7 7 17 17

Table 18.1: Numbers of user-supplied parameters, NAG and IRENA

From this table it may be seen that, overall, for the routines in question, the number of 

param eters which must be specified in IRENA is between 26% and 52% of the number required in 

the corresponding NAG routine calls. Given th a t some of the NAG param eters are themselves 

user-supplied subprograms, which may require significant effort in their specification, there 

appears to be adequate justification for the reported simplification of usage, especially as the 

effect of the number of parameters may be expected to be amplified by the non-linear relationship 

seen in section 8.3.

A further factor in the simplification which is not apparent in this table is the increased 

consistency of parameterisation in IRENA, compared to the NAG routines.

As was noted in section 5, to m aintain the standardisation of param eter names, it was necessary 

to periodically review the names in use. This same discipline was, of course, extended to the 

actual parameterisations used, although there was less likelihood of divergence here, due to our 

decision to match the parameters to m athem atical objects as closely as possible.
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In this way, divergences of approach, particularly in naming conventions, were detected and 

rectified in a number of areas1: similar consistency reviews are recommended in the development 

of any body of software presenting a number of interfaces to users.

To reiterate a final point concerning interface simplification, it is sometimes possible to achieve 

a considerable improvement in ease of use by accepting a slight loss of generality. An example 

of this was seen in section 6.6, with the user-supplied OUTPUT subroutine -  required by some D02 

routines to specify when solution values should be printed -  being replaced by a simple vector 

of output points. It is particularly worthwhile accepting such a trade-off when, as in this case, 

the means of “repairing” the loss of generality can also be provided.

Additionally, the development task itself may be considerably simplified by the decision to accept 

some loss of generality: this was particularly evident in the effort required to m aintain the NAG 

param eterisations in IRENA-functions. As was pointed out in section 15.2.1, maintaining this 

dual interface inhibited the translation of NAG error messages to refer to IRENA parameters; 

this, in turn, led to the development of an entire additional subsystem, the IRENA help system, 

described in section 9.4.

18.3 U nification o f control m echanism s

In section 15.2 we examined the interconnections of the defaults and jazzing mechanisms and 

saw how a more natural facility for redefining interfaces could result if these were merged; a 

further simplification could be achieved by subsuming this merged system in the “specfile” , 

the first point at which human intervention becomes necessary in the production of an IRENA 

interface to a NAG routine.

A general lesson which may be drawn is that, where more than one control mechanism exists, 

consideration should be given to the possibility that these represent different aspects of the 

same process and could be merged. As this may not be apparent from the outset, the periodic 

reviews recommended in the previous section for the maintenance of consistent interfaces should 

be extended to consider, at times, the possibility of unifying the internal mechanisms used in 

system development.

1A by-product of this, the consistent nam ing of variables in the code of jazz- and output-functions, was found  
by the author to be helpful in the later translation of these into interface functions for the Axiom-NAG link.
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18.4 Functionality and m ultiple num eric calls

One of the initial objectives given to the authors of IRENA was the creation of simplified 

interfaces to the entire NAG Fortran Library. However, as was seen in section 8.1, this was soon 

found to be impracticable and a considerably reduced target set of routines was adopted. In 

this context, the revised objective was phrased as supplying such interfaces to all the routines of 

entire Library chapters, albeit to the considerably smaller chapters of the Foundation Library. 

Even this now seems too broad a strategy -  a more selective approach, based on identifying 

functionality missing from the host package and building interfaces to those NAG routines 

which can supply this functionality, is clearly much more effective as a means of enhancing the 

host package and has been adopted by the author in providing Axiom-like interfaces to NAG 

Foundation Library routines, on a very restricted time-scale of only a few months, prior to the 

next release of Axiom (the first release on PCs).

In contrast to the approach of supplying interfaces to particular NAG routines, section 12.2 of 

this thesis considered various areas in which enhanced user interfaces could result from using 

the potential of IRENA-functions to produce several calls to NAG routines -  possibly calls to a 

number of distinct routines or multiple calls to the same routine. Similarly, calls to alternative 

routines, chosen according to characteristics of the problem, could result from the same IRENA- 

function. A particular example of the potential for multiple calls, in which a second routine call 

could be made after a failure, was discussed in section 12.2.4 -  in the chosen example, the 

same routine would be re-called with adjusted parameters but, of course, in other instances an 

alternative routine might equally well be called.

In the context of section 12.2, multiple calls would have been achieved through a Fortran jacket. 

However, a similar approach may be taken in any sufficiently versatile language: for the Axiom- 

NAG link, the technique of using a second routine where the first fails was used, in interfaces 

written in the Axiom system language Axiom-XL, to provide user interfaces for the generalised 

eigenproblem, using routines from the NAG F02 chapter. In this chapter, there are separate 

routines for solving the generalised real eigenproblem A x =  ABx -  efficiently when both the 

matrices A and B are symmetric and B is positive-definite -  or less efficiently, otherwise.

W hilst it is possible in principle to test algebraically whether matrices are positive-definite, this 

is impracticable for large matrices. However, the NAG routines for the positive-definite case 

test this property (numerically) at an early stage of the processing and return an IFAIL value
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of 1  if it does not apply. The author’s strategy, in the NAGlink interfaces, is, if both matrices 

are symmetric, to call the routine for the positive definite case then test for IFAIL = 1 and, if 

so, use the more general routine, F02BJF.

An example of the output from such a run, in which only eigenvalues are calculated, follows. (The 

appropriate NAG routine for eigenvalues only, in the positive-definite case, is F02ADF.) In this 

run, results of type FormalFraction Complex DoubleFloat are produced -  FormalFraction 
is an Axiom type constructor introduced by the author to allow users to inspect quotients whose 

components are calculated separately, before evaluating them as DoubleFloat quantities, in case 

there are components small enough to cast doubt on the evaluated quotient2.

(1) -> outputGeneral 5

(2) -> mA := matrix [[ 0,.5 , 1.5 , 6.6 , 4.8], _
C 1.,5 , 6.5 , 16.2 , 8.6], _
[ 6,.6 , 16.2 , 37.6 , 9.8], _
[ 4..8 , 8.6 , 9.8 , -17.1]];

(3) -> mB := matrix[[-1 ,, 3 , 4 , 1], .
C 3 ,, 13 , 16 , U], .
[ 4 ,, 16 , 24 , 18], _
[ 1 ,, 11 , 18 , 27]];

Type: Void

Type: Matrix Float

Type: Matrix Integer
(4) -> eVals := nagEigenvalues(mA,mB) 
nagman:acknowledging request for f02adf 
nagman:connection successful to nags8.nag.co.uk 
nagman:receiving results from nags8.nag.co.uk

** ABNORMAL EXIT from NAG Library routine F02ADF: IFAIL = 
** NAG soft failure - control returned 

nagman:acknowledging request for f02bjf

2This provides an alternative solution to that adopted in  IRENA, described in  section 11.1.1, in which the  
sym bols * and X were used to  denote infinite find possibly indeterm inate eigenvalues, respectively, w ith the 
num erators find denominators m ade available for inspection in separate m atrices.
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nagman:connection successful to nags8.nag.co.uk 
nagman:receiving results from nags8.nag.co.uk

(5)
18.733159837707458 16.822508301752684

[ ,  ,

5.3498132860013889 10.873889792812092
0.29040238760251624 + 1.5317884314528465*/,i

7.0465137397020676 
0.14557828081124119 - 0.76788324041837752*/,i
 ]

3.5324067560446304
Type: Union(b: List FormalFraction Complex DoubleFloat,,..)

(In this example there are no entries with components small enough to be questionable, so the 

output could next be coerced to type List Complex DoubleFloat.)

Thus, we have seen th a t enhanced user interfaces can result when the narrow view of matching 

interfaces to individual NAG-routines is abandoned in favour of a more user-centered approach, 

designed to provide a general m athem atical capability.

18.5 Sym bolic-num eric interaction

Another lesson, which is illustrated by the IRENA project and others, is that, when numeric 

functionality is incorporated in a symbolic system, there is scope for using both the symbolic 

and numeric capabilities of the combined system in providing appropriate interfaces. Examples 

of this can be seen, at an elementary level in the code for n ag po lyso lve  in appendix G, where 

REDUCE functionality was used to recognise distinct cases and to  transform the coefficient set 

from a sparse to a dense representation, and at a considerably more advanced level in the work 

of Dupee and Davenport, [10].

Conversely, the symbolic component of the combined system may need to be modified, to 

take account of properties of the numeric methods being used. This may be seen in the 

interfaces provided for F02BJF in both REDUCE and Axiom, discussed in sections 11.1.1 and 18.4
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respectively. In the former, representations for infinite and potentially indeterminate numeric 

quotient values were introduced in the output m atrix of eigenvalues; in the latter, a new Axiom 

type was introduced, to allow the quotients to be displayed without simplification.

In general, it is necessary to apply both numeric and symbolic expertise to the production of 

such interfaces.

18.6 Conclusion

Although the IRENA project was rather overambitious in its scope, it has had several useful 

outcomes.

For NAG, as well as developing in-house expertise in symbolic systems generally and 

symbolic-numeric interfaces in particular, it revealed a number of areas in both software and 

documentation which could be enhanced -  the former, particularly by improvements in the 

consistency of interfaces, evidenced in the Fortran 90 Library, the latter by making additional 

aspects of the descriptions of routines explicit in the structure of the documentation.

More concretely, data and code from the IRENA project were reused, either directly or in 

translated form, in a commercial NAG product, the Axiom-NAG link, and have the potential 

for further use in this and future products.

From the users’ point of view, IRENA represents a system which is significantly easier to use than 

the Fortran routines on which it is built, with considerable simplification having been achieved 

both in the software itself and its documentation. This simplification has already begun to be 

reflected elsewhere, in the new interfaces produced for the Axiom-NAG link.

The IRENA project has demonstrated that a considerable improvement in the ease of use 

of numerical software is possible, through the careful definition of user interfaces which take 

account of the m athem atical structure of the problems being addressed and through adherence 

to the design objectives of informativeness, regularity, orthogonality and minimality in their 

param eterisation.
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Part IV  

A ppendices
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A ppendix A

C ode size and authorage

A .l  Code attribution

The table overleaf shows the contributions to IRENA, in terms of source code, of the principal 

authors, Dewar (MCD) and Richardson (MGR).

Most items have been classified as having a single principal author, although the other author 

may also have contributed code -  for example, many of Richardson’s enhancements to IRENA-0, 

described in chapter 9, took the form of additional code in Dewar’s in t e r f a c e . r e d  RLISP 

source. Since some ASP tem plate files contain significant amounts of code from both authors, 

these are ascribed to “MGR +  MCD” . Contributions to the code by A tta  (NA) and McGettrick 

(MMcG) (see sections 9.2.6 and 9.4) are also included in the table.

In the “language” column, “RLISP” is the REDUCE system language -  see chapters 16 and 18 

of [14]; “PSL” is Portable Standard Lisp, the language originally underlying RLISP -  see [36]; 

“GENTRAN” is G ates’s extension to REDUCE which provides autom atic code generation in 

a variety of languages -  see [12] and [13]; “IRENA” represents code w ritten in the REDUCE 

“algebraic” (that is, user level) language, with the IRENA authors’ extensions; “jazz” and 

“defaults” are the purpose-built languages defined for coding the correspondingly named IRENA 

files.

The defaults and jazzing languages are introduced in chapter 7 and their usage is exemplified 

in chapters 10 and 11. The problem of constructing ASP templates is introduced in section 3.2 

and discussed further in various places in this thesis.
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Hand coded material distributed with IRENA-1

Source Principal Number Size
Component language author(s) of items in bytes

System RLISP MCD 2 2 406543
source MGR 3 124395

PSL MCD 2 8657
C MCD 1 1589

NA +  MMcG 1 4675

Jazzing jazz MGR 160 119604

Tests IRENA MGR 195 96728

Defaults defaults MGR 129 44504

ASP GENTRAN MCD 18 18687
templates MGR 3 3429

MCD +  MGR 8 8415

Undistributed source m aterial for IRENA-1

Source Principal Number Size
Component language author(s) of items in bytes

Setup C MCD 4 148097
programs NA 1 40958

MGR 1 7280

Jackets Fortran MGR 15 9962

Material for routines not included in IRENA-1

Component
Source
language

Principal
author(s)

Number 
of items

Size 
in bytes

Jazzing jazz MGR 1 2 2 44064

Tests IRENA MGR 115 37441

Defaults defaults MGR 151 28869

J ackets Fortran MGR 8 6189

Table A .l: Principal contributions to IRENA code
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The m aterial described as “setup programs” includes the code to generate specfiles from NAG 

documentation, and infofiles and GENTRAN templates from specfiles, described in chapter 3, 

the code to generate skeleton default files, described in section 9.2.6 (but little used, in practice) -  

see figure 3-1 for all of these -  and the code for generating jazz and default fragments appropriate 

to NAG parameters which function as switches, described in section 15.2.

The use of Fortran jackets is described in chapter 12.

Ascribing each file to its principal author and the jointly authored ASP tem plates to the two 

principal authors in the same proportions as the individually authored templates gives an 

approxim ate measure of total code contribution as 590,715 bytes by Dewar and 543,965 bytes 

by Richardson.

A .2 D istributed  size o f IR E N A -1

The to tal size of REDUCE 3.5, with IRENA loaded, is 5.7 Mbytes, of which about 0.9 Mbyte 

represents compiled IRENA code. Interpreted elements of the IRENA system (jazz and defaults 

files, C and Fortran GENTRAN templates, and infofiles) distributed with IRENA-1 total 

0.76 Mbyte, of which 89% was generated automatically, as described in chapter 3.

Other m ajor components of the IRENA-1 distribution were the NAG Foundation (Fortran) 

Library, of 0.63 Mbyte, and the NAG Fortran 90 compiler, of 1.07 Mbytes.

As with REDUCE, system source, documentation source, test programs and results for IRENA 

were also distributed with the system, giving a total size for the distribution (including REDUCE 

m aterial) of about 16 Mbytes.
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A ppendix B

N A G , N aglink and IR E N A  

param eterisations o f a specim en  

routine

As many of the routines in the NAG Foundation Library, on which IRENA-1 is based, had not 

been introduced at the time of the Naglink project, there is a rather limited choice of routines 

which can be used to contrast the parameterisations in these systems. However, the NAG 

(Fortran 77) routine F02AXF, which calculates the eigenvalues and eigenvectors of a Hermitian 

matrix, serves to illustrate some of the contrasts, without having an unmanageably large number 

of parameters.
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B .l  E xam ple calls

B . l . l  NAG  (Fortran 77) call

DOUBLE PRECISION A R (4,4), A I(4 ,4 ) ,  V R (4,4), V I(4 ,4 ) ,

+ R (4 ), WK1(4), WK2(4), WK3(4)

N = 4

READ(NIN,*) ( (AR(I, J ) , A I ( I , J ) ,  J=1,N ), 1=1,N)

* Where th e  d a ta  f i l e  c o n ta in s :

* 0 .50  0 .00  0 .00  0 .00  0 .00  0 .00  0 .00  0 .00

* 0 .00  0 .00  0 .50  0 .00  0 .00  0 .00  0 .00  0 .00

* 1.84 -1 .3 8  1.12 -0 .8 4  0 .50  0 .00  0 .00  0 .00

* 2 .08  1.56 -0 .5 6  -0 .4 2  0 .00  0 .00  0 .50  0 .00

IFAIL = 1

CALL F02AXF(AR,N,AI,N,N,R,VR,N,VI,N,WK1,WK2,WK3,IFAIL)

B .1.2  N aglink call

ar : (C 0.50, 0.0 , 0.0 , 0.0 3,
C 0.0 , 0.50, 0.0 , 0.0 3,
[ 1.84, 1.12, 0.5 , 0.0 3,
[ 2.08, -0.56, 0.0 , 0.50 3);

ai : ([ 0.0 , 0.0 , 0.0 , 0.0 3,
c 0.0 , 0.0 , 0.0 , 0.0 3,
[ -1.38, -0.84, 0.0 , 0.0 3,
[ 1.56, -0.42, 0.0 , 0.0 3);

r e s u l t  : f 0 2 a x f ( a r , a i ) ;



B .1.3  IR EN A  call

'/, The layout here is cosmetic.

2.08 -1.56*i >, 
0.56 +0.42*i >, 
0 . 0  >,  

0.5 » $

f02axf()$

herm!-mat a {{ 0.5, 0.0, 1.84 +1.38*i,
{ 0.5, 1.12 +0.84*i, -
{ 0.5

B .2 M atrix defining param eters

To define the input m atrix in the NAG call requires the first five param eters of the call which 

specify, respectively, the real parts of the lower triangle of the m atrix (in a rectangular array), 

the first dimension of th a t array, the imaginary parts of the lower triangle (in a rectangular 

array), the first dimension of that array and the order of the m atrix.

In Naglink, this is reduced to two matrices, which retain the NAG names AR and AI. The Naglink 

docum entation did not specify what these represented: the user is left to  infer th a t they are 

square matrices whose lower triangles contain the appropriate entries.

In IRENA this is further reduced to a single, complex m atrix, described in the docum entation 

as a Hermitian matrix; this is an IRENA datatype, which may be specified by either its upper 

or lower triangle, at the choice of the user.

B .3 A ccessing th e results

In the NAG call, the eigenvalues are returned in the one-dimensional array R; the real and 

im aginary parts of the eigenvectors are returned in the two-dimensional arrays VR and VI (whose 

leading dimensions must appear after the array names in the routine call).

Naglink returns a list, the documentation of whose components retains the names R, VR and VI, 
describing the first as “a list of real numbers” and the others as “matrices with real entries” . 

The individual entries may be accessed using the Macsyma get function.
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IRENA displays a list:

{EIGENVALUES,NORMALIZED_EIGENVECTORS_AS_COLUMNS>

naming its output objects, which exist in the REDUCE environment. These may be most 

conveniently accessed as © 1  and ©2 , respectively; unless the user has specified otherwise, the 

display of the list is preceded by general instructions explaining this mode of access.

(In the notional IRENA-0, the © output feature was not available and the output objects would 

have had shorter and rather less mnemonic names.)

B .4 W orkspace param eters

The parameters WK1 , WK2  and WK3 are required by the NAG routine for workspace -  both Naglink 

and IRENA handle this automatically.

B.5 O ther param eters

The remaining NAG param eter IFAIL indicates, on input, whether or not errors should cause 

the program to terminate; on output, its value either indicates th a t the run was error free or 

indexes the type of error which occurred.

In Naglink, the system is retained, with the input functionality being carried by the Macsyma 

“pre-variable” softfail and the output functionality by the “post-variable” ifail. Both of 

these quantities are present as Macsyma variables.

In IRENA, errors recognised by the NAG routine are never allowed to term inate the program, 

as the diagnostic information would then be lost. If a non-zero value is returned (indicating an 

error) IRENA prints a diagnostic, rather than returning an unexplained index to the user.
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A ppendix  C

E xam ple IR E N  A -function  

description

The command print-precision, which occurs in the example in section 5, was provided in 

REDUCE by Professor J. H. Davenport, early in the IRENA project, in response to a request 

from  the present author for a mechanism to allow the output o f numeric results with a precision 

matching their expected accuracy.

c02aff

1 Purpose

Finds all the roots of the complex polynomial equation P (z ) =  ao2 n + a i 2 n - 1  +  . . .+ a „ _ iz + a n =  

0, using a variant of Laguerre’s method.

2 E ssential Input Param eters

1 Coefficients (highest order first) (alias coefficients, coefs) the coefficients a,-, 

stored in the order ao to an with ao ^  0 .
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3 O ptional Input Param eters

1 S cale  the polynom ial (alias s c a le )  indicates whether the polynomial is to be scaled to 

avoid overflow/underflow. Possible values y, n may be represented as keywords: 

sc a le d  s 

u n sea le d  u 

The default value is sca led .

4 O utput Param eters

1 Zeroes the roots of the polynomial.

5 Exam ple

To find the roots of the polynomial aoz5+ a i 2 4 + a 2 ^3 -\-a^z2+ 0 4 2 + 0 5  =  0, where a 0 

ai =  (30.0 +  20.Oi), 0 2  =  —(0.2 +  6.0i), 0 3  =  (50.0 -f lOOOOO.Oi), 0 4  =  —(2.0 

0 5  =  (10.0 +  l.Oi).

'/, c02aff example 

on rounded$ 

print!-precision 5$

c02aff(vec coefficients { 5  + 6*i,
30 + 20*i,
-0.2 - 6*i,
50 + 100000*i,
-2 + 40*i,
10 + i » $

For an index to the following list, please type ‘GO;’. The values of its 
entries may be accessed by their names or by typing ‘ C l ; ’ , ‘®2;’ etc.

{ZEROES}

=  (5 .0+6.00, 

— 40.Oi) and
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zeroes;

[ -24.328 - 4.8555*1

5.2487 + 22.736*1

14.653 - 16.569*1

-0.0069264 - 0.0074434*1

[0.0065264 + 0.0074232*1 

print!-precision(-l)$ 

off rounded$



A ppendix  D

B rief descriptions o f jazzing  

com m ands

Where not otherwise indicated, the commands marked “built-in” were provided by Dewar as 

part of IRENA-0; those marked “jazz-function” or “output-function” (see sections 7.3.1 and 

7.3.2) were added by the present author. Commands which have become redundant, due to the 

withdrawal of the NAG routines to which they applied, are excluded.

The commands in each section are ordered mainly according to decreasing frequency of usage, 

with related commands grouped together in the input jazzing section. The precise usage 

frequencies may be found in tables 15.1 and 15.3.

For convenience in locating individual commands, an index of these is given overleaf, in table D .l.
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command page

Append 225
Build-rectangle 222
Calculate 221
Cmat2ivec 217
Cmat2rvec 217
Cmplxquots 223
Column-mat 216
Complex-in 214
Complex-out 220
Concatenate 213
Cond-out 221
Cuhessandlow 225
Diagonal 217
Elements 223
Fill-knots 215
Fort-dims 212
Gridfirst 213
Gridsecond 214
Hi-d-dims 219
Hi-d-im-vals 218
Hi-d-re-vals 218
I2o 220
Interpret 223
Interps 225
Key-alias 211
Keyword 212
Local 211
Lower 224
Mat2vec 215
Matels21ist 224
Matoverlay 224
Maxraggedlengths 218
Message 220
Newscalar 215
Out-dims 220
O utput 219
Outputconj 224
O utput-order 219

command page
Output-rectangle 223
Out-tuple 224
Phased-prompt 213
Precedence 220
Prompt-alias 211
Qkeyword 212
Ragged-in 214
Raggedlengths-1 218
Ragged-out 221
Raggedvalues 217
Rect2scalar 215
Rectangle 213
Reshape-output 222
Row-mat 216
Rowmat2vec 215
Sbandlengths 216
Sbandvalues 216
Scalar 212
Set-type 211
Silent-alias 211
Sparsecolumn 216
Sparserow 215
Sparsevalues 216
Sumraggedlengths 218
Sup+dinv2up 225
Template 213
Trim-matrix 217
Trim-vector 217
Tuples 1 214
Tuples2 214
Tuples3 214
Unpack 218
Upldiagandlow 221
Upandlowldiag 225
Upandslow 223
Vec2rowmat 221
Vector 212

Table D .l: Index of jazz commands
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D .l  Input jazzing com m ands

Unless otherwise qualified, “vector” (or “general vector” ) below means an object which may be 

an IRENA vector or a row or column vector represented as a REDUCE m atrix.

Prom pt-alias

Built-in command.

Specifies the principal alternative IRENA name for a NAG or IRENA param eter. The name 

specified is used in prompting the user when prom ptval is on.

K ey-alias

Built-in command.

Specifies an alternative IRENA name for a NAG or IRENA param eter.

Silent-alias

Built-in command, added by the present author.

Specifies an additional alias for a parameter, which will not be separately documented. Used to 

allow singular and plural forms to be used interchangeably, where appropriate.

Local

Built-in command.

Specifies a “very local constant” -  that is, a name which may be used as an IRENA value to 

represent a particular value of a NAG parameter. Commonly used to allow * to represent the 

value or values chosen in a particular NAG routine to mean “unbounded” .

S et-typ e

Built-in command, added by the present author.

Overrides the default type, generated by IRENA for an input object and used in prom pting.
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Scalar

Built-in command.

Introduces a scalar quantity which mimics an additional NAG param eter. Also used for 

communication between and within the jazz and defaults files.

Vector

Built-in command.

Similar to s c a la r  but introducing a non-scalar quantity.

Fort-dim s

Built-in command, added by the present author.

Specifies the dimensions to be used for an array in the generated Fortran program: these may 

depend on the values of other parameters. Used where the dimensions could not be generated 

autom atically or where the automatically generated values would be inappropriate -  for instance, 

where a NAG input array (which would normally be given dimensions based on the IRENA 

object from which it is constructed) is specified as being of a certain minimum size, greater than 

th a t necessarily implied by the data which it contains.

Keyword

Built-in command.

Specifies an IRENA keyword to represent a particular value of a NAG param eter. The possible 

keywords will be used in generating an IRENA prom pt for “one of the following:” if it is 

necessary to prom pt for the parameter in question.

Q keyword

Built-in command, added by the present author.

Specifies an IRENA keyword, which represents a particular value of a NAG param eter but which 

will not be used in generating a prompt. Used, for example, where it is more appropriate to ask 

a “Yes or no?” question as the prompt.
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R ectangle

Built-in command.

Defines an IRENA “rectangle” to represent a pair of NAG scalars or one-dimensional arrays.

C oncatenate

Jazz-function.

Several objects -  which may be vectors, IRENA scalar parameters, IRENA local scalars, 

constants (including * meaning “unset” ) or repeated constants -  are concatenated to form a 

NAG one-dimensional array.

Tem plate

Built-in command.

Indicates th a t a different Fortran routine to th a t which shares the name of the IRENA-function 

should be used to generated the Fortran code. So called since it causes the specified name to be 

used in selecting the C and Fortran templates.

Phased-prom pt

Built-in command, added by the present author.

Specifies a two-level prompting mechanism, in which the response to the first prom pt either sets 

a “special” value (often u n se t)  for a NAG parameter or triggers a second prom pt to elicit a 

“normal” value.

Gridfirst

Jazz-function.

A “grid” is used to specify a rectangular grid of points as a pair, each element of which may be 

a single value or a list of values, with gridpoints occurring at each combination of values from 

the two elements. G r id f i r s t  converts the first element of the pair into a one-dimensional NAG 

array, optionally padded at each end with a specified number of copies of a specified entry.

213



G ridsecond

Jazz-function.

Similar to g r i d f i r s t ,  processing the second element of the pair.

Ragged-in

Jazz-function.

Unpacks a ragged array to produce a specified member of a set of NAG scalars and one

dimensional arrays. Used in passing details of a m atrix factorisation, generated by an associated 

routine, to a linear system solver.

T uplesl

Jazz-function.

Takes a list of lists, each representing an n-tuple, and generates a one-dimensional NAG array 

consisting of the tuples’ first elements.

Tuples2

Jazz-function.

Similar to tu p l e s l  but extracting the second elements.

Tuples3

Jazz-function.

Similar to t u p l e s l  and tu p le s 2  but extracting the third elements.

C om plex-in

Built-in command.

Takes an IRENA complex-valued vector or m atrix  and generates a pair of real-valued NAG 

arrays or a single real-valued NAG array with an extra dimension of 2.
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M at2vec

Jazz-function.

Takes a m atrix and generates a one-dimensional NAG array with elements in Fortran (th a t is, 

column m ajor) order.

R ow m at2vec

Jazz-function.

Takes a m atrix and generates a one-dimensional NAG array with elements in row m ajor order. 

Fill-knots

Jazz-function.

Takes a vector and generates a one-dimensional NAG array, adding three repetitions of the first 

and last elements to provide the form required for a set of “knots” by various NAG spline fitting 

routines.

N ew scalar

Built-in command.

Specifies an IRENA scalar from which a NAG scalar parameter may be calculated, allowing, for 

example, the user to provide N as a means of specifying the NAG param eter NPLUS1.

R ect2scalar

Jazz-function.

Extracts a NAG scalar from a specified position in an IRENA rectangle.

Sparserow

Jazz-function.

Takes an Irena sparse or symmetric sparse m atrix  and extracts the row address vector (of the 

upper triangle, in the latter case) to provide a one-dimensional NAG array.
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Sparsecolum n

Jazz-function.

Similar to sparserow , this extracts the column address vector.

Sparsevalues

Jazz-function.

Similar to sparserow  and sparsecolum n, this extracts the values of the m atrix  elements into a 

one-dimensional NAG array.

C olum n-m at

Jazz-function.

Originally written by Dewar to illustrate the use of jazz-functions, it took several IRENA vectors 

and used them  as the columns of a NAG m atrix. Later rewritten by Richardson to accept general 

vectors as input.

R ow -m at

Jazz-function.

Similar to column-mat, it constructs the rows of a NAG m atrix from vectors.

Sbandvalues

Jazz-function.

Takes a symmetric band m atrix and generates a one-dimensional NAG array containing the 

entries within the band, in row m ajor order.

Sbandlengths

Jazz-function.

Takes a symmetric band m atrix and generates a one-dimensional NAG array containing the 

lengths of the rows within the band. Optionally also generates £n IRENA output param eter 

with a *noname* prefix, for later re-input to other routines.
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Cm at2rvec

Jazz-function.

Takes a complex m atrix and generates a one-dimensional real-valued NAG array consisting of 

the real parts of its entries, with elements in column m ajor order.

C m at2ivec

Jazz-function.

Similar to cm at2rvec, producing an array of imaginary parts.

Diagonal

Jazz-function.

Creates a one-dimensional NAG array from a diagonal (or sub- or super-diagonal) of a REDUCE 

or IRENA m atrix.

Trim -vector

Jazz-function.

Takes an IRENA vector and generates a one-dimensional NAG array, consisting of elements in 

a specified range. Used for sorting routines, to isolate the part of a vector to be processed; this 

is later reinserted in the original vector. Duplicates Fortran’s facility for processing part of an 

array in siiu.

Trim -m atrix

Jazz-function.

Similar to tr im -v e c to r ,  processing a m atrix and generating a two-dimensional array.

Raggedvalues

Jazz-function.

Takes a ragged array and generates a one-dimensional NAG array containing the same entries.
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R aggedlengths-1

Jazz-function.

Takes a ragged array and generates a one-dimensional NAG array whose entries are one less 

than the row lengths.

M axraggedlengths

Jazz-function.

Takes a ragged array and generates a NAG scalar equal to the maximum of the row lengths, 

plus an optional adjustment, if specified.

Sum raggedlengths

Jazz-function.

Takes a ragged array and generates a NAG scalar equal to the sum of the row lengths, plus an 

optional adjustm ent, if specified.

Unpack

Built-in command.

Specifies an IRENA vector to represent a set of NAG scalar parameters.

H i-d-re-vals

Jazz-function.

Takes a “hi-d” structure (a structure of nested lists, representing a multi-dimensional object) 

and generates a one-dimensional NAG array of the real parts of its entries, with elements in 

column m ajor order.

H i-d-im -vals

Jazz-function.

Similar to  h i - d - r e - v a ls ,  taking the imaginary parts of the entries.
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H i-d-dim s

Jazz-function.

Generates a one-dimensional NAG array giving the dimensions of a “hi-d” structure.

D .2 O utput jazzing com m ands

The output-function mechanism provided by Dewar requires all output-functions to process a 

list specifying at least one NAG output parameter; the parameters in the list are autom atically 

removed from the IRENA output list, so th a t they must, occasionally, be actively reinstated as 

IRENA output parameters.

Other NAG input and output parameters may be accessed by an output-function in defining 

IRENA output parameters, any number of which can be created by one output-function. Where 

NAG input parameters are allowed, this implicitly includes “quasi-NAG” parameters defined by 

the input jazzing commands s c a la r  and v ec to r .

Unless otherwise indicated, the various objects built by the commands below are structures, 

available at the REDUCE level, whose names are displayed in the IRENA-function’s output 

list.

O utput

Built-in command.

Dewar’s principal output jazzing command, designed mainly for processing output arrays. It 

builds IRENA output objects from elements, partial columns and rectangular subarrays of 

arrays. Additionally, it provides (as a separate instance of the command) a renaming facility 

including a case  construct, originally controlled by input param eter values only but extended 

by the present author to  allow control by output values.

O utput-order

Built-in command.

Specifies the order in which the names of possible output objects should be displayed in the 

ou tput list; objects not explicitly named here appear at the end of the output list. It was
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modified by the present author to inhibit the display of names listed in the command which do 

not correspond to actual output objects -  for example, as the result of conditional renaming 

with an o u tp u t command -  and of names which begin with the string *noname*.

Precedence

Built-in command.

Imposes a jazz processing order on a set of the NAG output parameters.

I2o

Built-in command.

Builds an IRENA output object from a NAG input parameter.

O ut-dim s

Built-in command.

Converts a one-dimensional NAG output array, assumed to represent a m atrix  in column m ajor 

order, into a m atrix of the specified dimensions.

M essage

Output-function.

Creates an IRENA output object containing a fixed text string if a specified criterion is true. 

Optionally, produces an IRENA output object corresponding to the specified NAG scalar 

param eter.

C om plex-out

Built-in command.

Converts a pair of NAG real arrays or scalars or an n x 2 array into a complex IRENA output 

object. Allows subarrays to be processed.
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Ragged-out

Output-function.

Collects various NAG arrays, subarrays and scalars to form a ragged array, to which a conditional 

transform ation may be applied, as an IRENA output object. (The only transform ation used at 

present is to conditionally reverse the order of the lists in a two-list ragged array.)

Vec2rowm at

Output-function.

Uses the values, stored in row m ajor order, in a NAG one-dimensional array to produce a 

REDUCE m atrix of specified dimensions as an IRENA output object.

C alculate

Output-function.

Obeys an arbitrary Lisp program. Usually used to perform simple arithmetic, possibly 

conditionally, on NAG scalar param eter values.

C ond-out

Built-in command.

Designed to handle the case where different NAG output param eters may hold a particular 

structure, depending on the value or relative values of other parameters, it also has facilities 

mimicking various other output commands, enabling it to join fragments of various NAG 

structures, transformed in a variety of ways, to produce the eventual IRENA output structure.

U pld iagandlow

Output-function.

Transforms the strict upper triangle of a two-dimensional NAG array into an upper triangular 

REDUCE m atrix in which each entry on the diagonal is 1 and transforms the lower triangle of 

the NAG array into a lower triangular REDUCE matrix.
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B uild-rectangle

O utput-function.

Conditionally builds an IRENA rectangle as an output object, constructing it either from two 

one-dimensional NAG arrays or from two lists of scalars, each element of which may be a NAG 

input or output parameter or a REDUCE global (set up separately as a *noname* object, using 

c a lc u la te ) .

R eshape-output

Output-function.

Takes the elements of sections of any number of one- or two-dimensional NAG arrays and from 

these builds a m atrix of specified dimensions as an IRENA output structure.

This command was written as a “mock-up” for a possible second generation general IRENA 

output jazzing facility and, as such, simulates a “key and value” syntax by using dotted key and 

value pairs in the Lisp list which is its principal control; in one case, a freestanding keyword is 

allowed, represented by the atom p a ire d .

Possible entries in the Lisp list are given in table D.2. The value sections referring to  the input 

arrays may be repeated, in which case each instance refers to one of a list of NAG arrays (or a 

pair of p a ire d  arrays). Use of a single instance indicates that the same value should be applied 

to all of the NAG arrays. Default settings are provided and are invoked by using the value n i l .

Key Value signifies

iname
row trim
c o l t r im
dims
m ajo rin
maj o ro u t
sh ap e in
shapeou t
f i l l
p a ir e d

the name of the IRENA output m atrix 
the first and last rows required from the input array 
the first and last columns required from the input array 
the dimensions of the output m atrix
the elements of the input array are to be taken in row or column m ajor order
the output m atrix is to be built in row or column m ajor order
the shape of the required section of the input array; only f u l l  is currently allowed
the shape of the required output m atrix to be built from the array elements
an entry used as fill for the diagonal or throughout the output m atrix
if ’p a ire d  present, input arrays are to be processed as (real, imaginary) pairs

Table D.2: Keys in the re sh a p e -o u tp u t control list
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Interpret

Output-function.

Builds an IRENA output m atrix, corresponding to a section of a NAG two-dimensional array, 

w ith numeric values replaced by text strings according to a specified key. Optionally retains the 

equivalent of the original NAG m atrix as an IRENA output object.

Upandslow

O utput-function.

Unpacks a NAG two-dimensional array into upper triangular and strict lower triangular 

REDUCE matrices.

O utput-rectangle

Built-in command.

Converts a pair of NAG output scalars or one-dimensional arrays into an IRENA output 

rectangle.

C m plxquots

O utput-function.

Takes three equal length NAG real one-dimensional arrays, representing the real and im aginary 

parts of the numerators and the real denominators of a vector of extended complex numbers 

and constructs th a t vector as an IRENA output object. The point at infinity is represented by 

* and possibly indeterminate values appear as '/,. (Any component less than 10“ 10 is considered 

to possibly represent zero.) If there are infinities or indeterminate values, a warning message is 

also returned.

E lem ents

O utput-function.

Extracts from a NAG one-dimensional array a number of IRENA output scalars or from a two- 

dimensional array a number of single column matrices. Optionally, all or an initial segment of 

the NAG array may also be made into an IRENA output object.
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Lower

Built-in command.

Extracts the lower triangle of a m atrix represented as a square, two-dimensional NAG array.

M atels2list

Output-function.

Builds a list, containing specified elements from a NAG two-dimensional array, as an IRENA 

output object.

M atoverlay

Output-function.

Replaces a specified section of one NAG array with another, to build an IRENA output m atrix. 

(Used to mimic Fortran in situ sorting.)

Outputconj

Output-function.

Takes as input a one-dimensional, real NAG “indicator” array and a square, two-dimensional 

real array, the columns of which represent either real column vectors (for zero elements in the 

indicator) or the real and imaginary parts of conjugate vectors, and builds the corresponding 

complex m atrix, as an IRENA output structure.

O ut-tuple

O utput-function.

Builds an IRENA output object consisting of a list of tuples from a set of equal-length NAG one

dimensional arrays. Provides compatibility between the output of a spline coefficient generating 

IRENA-function and the input of spline evaluation IRENA-functions.
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U pandlow ld iag

Output-function.

Transforms the upper triangle of a two-dimensional NAG array into an upper triangular 

REDUCE m atrix and transforms the strict lower triangle into a lower triangular REDUCE 

m atrix  in which each entry on the diagonal is 1.

A ppend

Built-in command.

Transforms a number of NAG scalar parameters into a single column m atrix.

Sup+dinv2up

Output-function.

Builds a REDUCE upper triangular m atrix from the strict upper triangle, stored as part of a 

NAG two-dimensional array, and the diagonal, the inverses of whose elements are stored in a 

NAG one-dimensional array.

Cuhessandlow

Output-function.

Takes two NAG two-dimensional arrays, the upper trapezia of which represent the real and 

im aginary parts of a complex upper Hessenberg m atrix and the remaining lower triangles the 

real and imaginary parts of a complex lower triangular m atrix, and builds these m atrices as 

REDUCE objects.

Interps

Output-function.

W ritten by Dewar to illustrate the use of output-functions, it transforms a one-dimensional NAG 

array, which represents an upper triangular array in row m ajor order, into an upper triangular 

m atrix.
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A ppendix  E

D ata  used in the com plexity  

analysis

Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

aOOaaf 0 0 0 0 0 0 0 0 0 0 0

c02aff 3 1 1 1 0 0 0 0 0 25 11

c02agf 3 1 1 ‘ 1 0 0 0 0 0 23 11

c05adf 4 1 1 0 0 1 1 0 0 17 7

c05nbf 2 1 3 1 0 0 0 1 4 25 11

c05pbf 3 2 3 1 0 0 0 1 6 27 13

c06eaf 1 0 2 0 0 0 0 0 0 14 9

c06ebf 1 0 2 0 0 0 0 0 0 15 9

c06ecf 1 0 3 0 0 0 0 0 0 15 9

c06ekf 2 0 3 0 0 0 0 0 0 20 9

c06fpf 3 0 3 1 0 0 0 0 0 24 13

c06fqf 3 0 3 1 0 0 0 0 0 24 13

c06frf 3 0 4 1 0 0 0 0 0 32 13

c06fuf 3 0 5 1 0 0 0 0 0 35 15

c06gbf 1 0 2 0 0 0 0 0 0 7 7

* An asterisk under “output” indicates a function (which returns a value through its name).
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Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

c06gcf 1 0 2 0 0 0 0 0 0 7 7

c06gqf 2 0 2 0 0 0 0 0 0 11 9

c06gsf 3 2 1 0 0 0 0 0 0 13 9

dOlajf 6 4 1 0 0 1 1 0 0 51 14

dOlakf 6 4 1 0 0 1 1 0 0 51 14

dOlalf 8 4 1 0 0 1 1 0 0 57 18

dOlamf 6 4 1 0 0 1 1 0 0 51 22

dOlanf 8 4 1 0 0 1 1 0 0 60 16

dOlapf 9 4 1 0 0 1 1 0 0 68 29

dOlaqf 7 4 1 0 0 1 1 0 0 57 14

dOlasf 7 7 1 1 0 1 1 0 0 51 17

dOlbbf 4 2 1 0 0 0 0 1 0 28 24

dOlfcf 6 2 2 1 0 1 2 0 0 32 16

dOlgaf 3 2 1 0 0 0 0 0 0 13 7

dOlgbf 6 2 3 0 0 1 2 0 0 54 29

d02bbf 3 0 4 1 0 0 0 2 5 40 11

d02bhf 4 0 4 1 0 1 2 1 3 47 11

d02cjf 4 0 3 1 0 1 2 2 5 40 13

d02ejf 4 0 4 1 0 1 2 3 8 45 15

d02gaf 9 1 3 2 0 0 0 1 3 85 30

d02gbf 7 1 6 2 0 0 0 2 4 89 30

d02kef 5 0 6 0 0 0 0 4 18 161 28

d02raf 10 1 5 2 0 0 0 6 31 111 51

eOlbaf 5 2 1 1 0 0 0 0 0 17 9

eOlbef 3 1 1 0 0 0 0 0 0 13 5

eOlbff 5 1 2 0 0 0 0 0 0 29 13

eOlbgf 5 2 2 0 0 0 0 0 0 33 13

eOlbhf 6 1 1 0 0 0 0 0 0 27 9

eOldaf 5 5 1 1 0 0 0 0 0 27 7
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Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

eOlsaf 4 2 1 0 0 0 0 0 0 17 7

eOlsbf 10 1 1 0 0 0 0 0 0 28 16

eOlsef 6 2 1 0 0 0 0 0 48 13

eOlsff 10 1 1 0 0 0 0 0 0 30 18

e02adf 6 2 1 2 0 0 0 0 0 31 17

e02aef 3 1 1 0 0 0 0 0 0 25 19

e02agf 15 4 1 1 0 0 0 0 0 62 25

e02ahf 8 2 1 0 0 0 0 0 0 26 15

e02ajf 9 1 1 0 0 0 0 0 0 25 17

e02akf 7 1 1 0 0 0 0 0 0 19 11

e02baf 5 2 2 0 0 0 0 0 25 14

e02bbf 4 1 1 0 0 0 0 0 0 13 7

e02bcf 5 1 1 0 0 0 0 0 0 15 9

e02bdf 3 1 1 0 0 0 0 0 0 11 7

e02bef 8 2 5 0 0 0 0 0 0 43 31

e02daf 11 5 8 3 0 0 0 0 0 102 40

e02dcf 11 2 7 0 0 0 0 0 0 60 35

e02ddf 11 4 6 0 0 0 0 0 0 58 54

e02def 8 1 1 2 0 0 0 0 0 17 11

e02dff 11 1 1 2 0 0 0 0 0 17 19

e02gaf 4 4 3 1 0 0 0 0 0 26 13

e02zaf 9 1 1 1 0 0 0 0 0 17 15

e04dgf 1 3 2 4 0 0 0 1 8 27 7

e04fdf 4 2 2 1 0 0 0 1 4 42 15

e04gcf 4 2 2 1 0 0 0 1 6 42 15

e04jaf 4 1 4 2 0 0 0 1 3 27 21

e04mbf 13 3 2 2 0 0 0 0 0 112 42

e04naf 20 3 3 2 0 0 0 1 7 138 66

e04ucf 11 4 6 4 0 0 0 2 19 127 43

228



Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

e04ycf 6 1 2 1 0 0 0 0 0 39 17

fOlbrf 8 3 4 1 0 0 0 0 0 146 39

fOlbsf 11 2 2 1 0 0 0 0 0 69 27

fOlmaf 5 3 6 1 0 0 0 0 0 95 39

fOlmcf 4 2 1 0 0 0 0 0 0 13 9

fOlqcf 3 1 2 0 0 0 0 0 0 11 11

fOlqdf 9 0 2 1 0 0 0 0 0 46 61

fOlqef 6 0 2 1 0 0 0 0 0 35 54

fOlrcf 3 1 2 0 0 0 0 0 0 11 11

fOlrdf 9 0 2 1 0 0 0 0 0 46 60

fOlref 6 0 2 1 0 0 0 0 0 35 54

f02aaf 2 1 2 1 0 0 0 0 0 9 9

f02abf 4 2 1 1 0 0 0 0 0 11 11

f02adf 3 1 3 1 0 0 0 0 0 13 11

f02aef 4 2 3 2 0 0 0 0 0 17 13

f02aff 2 3 2 0 0 0 0 0 0 11 9

f02agf 4 5 2 0 0 0 0 0 0 14 13

f02ajf 3 2 3 1 0 0 0 0 0 11 11

f02akf 5 4 3 1 0 0 0 0 0 15 15

f02awf 3 1 3 3 0 0 0 0 0 13 11

f02axf 7 3 1 3 0 0 0 0 0 13 15

f02bbf 6 4 2 6 0 0 0 0 0 30 13

f02bjf 6 5 3 0 0 0 0 0 0 56 19

f02fjf 8 1 4 3 0 1 8 2 15 93 41

f02wef 9 4 3 0 0 0 0 0 0 88 53

f02xef 9 4 3 1 0 0 0 0 0 93 46

f04adf 6 1 2 1 0 0 0 0 0 29 15

f04arf 3 1 2 1 0 0 0 0 0 25 9

f04asf 3 1 2 2 0 0 0 0 0 25 9
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Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

f04atf 5 2 1 2 0 0 0 0 0 29 11

f04axf 7 1 1 1 0 0 0 0 0 48 11

f04.faf 2 0 4 0 0 0 0 0 0 53 9

f04jgf 5 4 3 0 0 0 0 0 0 46 15

f04maf 10 1 4 0 0 0 0 0 0 63 31

f04mbf 8 7 2 3 0 0 0 2 16 100 30

f04mcf 9 1 4 0 0 0 0 0 0 47 28

f04qaf 10 9 2 3 0 0 0 1 9 105 23

f07adf 3 2 1 0 0 0 0 0 0 13 11

f07aef 7 1 1 0 0 0 0 0 0 35 17

f07fdf 3 1 1 0 0 0 0 0 0 16 11

f07fef 6 1 1 0 0 0 0 0 0 27 13

mOlcaf 3 0 2 0 0 0 0 0 0 25 11

mOldaf 4 1 1 0 0 0 0 0 0 29 11

mOldef 7 1 1 0 0 0 0 0 0 33 21

mOldjf 7 1 1 0 0 0 0 0 0 29 17

mOleaf 10 1 2 0 0 0 0 0 0 59 31

mOlzaf 2 0 2 0 0 0 0 0 0 15 7

sOleaf 1 * 0 1 0 0 0 0 0 0 5 0

sl3aaf 1 * 0 1 0 0 0 0 0 0 5 0

sl3acf 1 * o 1 0 0 0 0 0 0 5 0

sl3ad f 1 * 0 1 0 0 0 0 0 0 5 0

sl4aaf 1 * o 1 0 0 0 0 0 0 5 0

sl4ab f 1 * o 1 0 0 0 0 0 0 5 0

sl4baf 2 1 0 0 0 0 0 0 11 5

sl5ad f 1 * 0 1 0 0 0 0 0 0 5 0

sl5aef 1 * 0 1 0 0 0 0 0 0 5 0

sl7acf 1 * 0 1 0 0 0 0 0 0 5 0

sl7ad f 1 * 0 1 0 0 0 0 0 0 5 0
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Routine Parameter counts Jazz

file

line

count

Defaults

file

line

count

in

put

out

put
*

i/o work

space

dummy function subroutine

main 2nd

level

main 2nd

level

sl7aef 1 * 0 1 0 0 0 0 0 0 5 0

sl7aff 1 * 0 1 0 0 0 0 0 0 5 0

sl7agf 1 * 0 1 0 0 0 0 0 0 5 0

sl7ahf * 0 1 0 0 0 0 0 0 5 0

sl7ajf 1 * 0 1 0 0 0 0 0 0 5 0

sl7akf 1 * 0 1 0 0 0 0 0 0 5 0

sl7dcf 4 2 1 1 0 0 0 0 0 19 9

sl7def 4 2 1 0 0 0 0 0 0 19 9

sl7dgf 3 2 1 0 0 0 0 0 0 18 7

sl7dhf 3 1 1 0 0 0 0 0 0 14 7

sl7dlf 5 2 1 0 0 0 0 0 0 27 9

sl8acf 1 * 0 1 0 0 0 0 0 0 5 0

sl8adf 1 * 0 1 0 0 0 0 0 0 5 0

sl8aef 1 * 0 1 0 0 0 0 0 0 5 0

sl8aff 1 * 0 1 0 0 0 0 0 0 5 0

sl8dcf 4 2 1 0 0 0 0 0 0 19 7

sl8def 4 2 1 0 0 0 0 0 0 19 7

sl9aaf 1 * 0 1 0 0 0 0 0 0 5 0

sl9abf 1 * 0 1 0 0 0 0 0 0 5 0

sl9acf 1 * 0 1 0 0 0 0 0 0 5 0

sl9adf 1 * 0 1 0 0 0 0 0 0 5 0

s20acf 1 * 0 1 0 0 0 0 0 0 5 0

s20adf 1 * 0 1 0 0 0 0 0 0 5 0

s21baf 2 * 0 1 0 0 0 0 0 0 5 0

s21bbf 3 * 0 1 0 0 0 0 0 0 5 0

s21bcf 3 * 0 1 0 0 0 0 0 0 5 0

s21bdf 4 *  0 1 0 0 0 0 0 0 7 0

xOlaaf 0 *  o 0 0 1 0 0 0 0 5 6

xOlabf 0 * 0 0 0 1 0 0 0 0 5 6
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A ppendix  F

M ain GLIM run

GLIM 4, update 8 lor SGI Iris 4D / Irix on 22 Mar 1995 at 11:26:07 
(copyright) 1992 Royal Statistical Society, London

? $c GLIM prompts end with a question mark (?); comments appear in $
? $c this form. Blank lines have been added to this transcript, to $
? $c facilitate its reading. $

? $c Each row of the data matrix refers to a single NAG routine, $
? $c included in IRENA: the names and meanings of column vectors are: $
? $c in number of input parameters $
? $c fn_flag a flag (0 for a subroutine, 1 for a function) $
? $c out number of output parameters $
? $c io number of input/output parameters $
? $c work number of workspace parameters $
? $c dummy number of dummy parameters $
? $c function number of external function parameters $
? $c fn_param total number of parameters of these functions $
? $c subroutn number of external subroutine parameters $
? $c sr_param total number of parameters of these subroutines $
? $c jazz total number of lines in the jazz file $
? $c default total number of lines in the defaults file. $
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? $c First set a default length for data vectors: 
? $units 160 $

$

? $c Now define the names of these vectors, then read the data matrix $
? $c from a file (nominally on "channel 1"): $
? $data in fn.flag out io work dummy function 
? fn_param subroutn sr_param jazz default $dinput 1 $
File name? complexity_data

? $c Add together the lengths of jazz and defaults files: $
? $calc length = jazz + default $

? $c Allow for returned function values. $
? $c The colon (:) repeats the previous command. $
? $calc out = out + fn_flag : fn_param = fn_param + function $

? $c Define the dependent variate: $
? $y length $

? $c Now use the standard GLIM starting model (a constant only, $
? $c represented in GLIM as "1") to display the estimated total $
? $c deviance about the mean. (Deviance is a generalisation of $
? $c variance, equal to it for the model used here): $
? $fit $display e $ 

deviance = 288784.

residual df = 159

estimate 
1 46 .50

scale parameter 1816.

s.e. parameter 
3.369 1
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? $c Add in potential explanatory variables, to see their effect on $
? $c the deviance, and display GLIM’s parameter estimates (with their $
? $c standard errors), using the "e" option of "display". $
? $c (The scale parameter is not relevant to this model.) $
? $fit + in + out + io $display e $

deviance = 6 6 4 8 5 .  (change = -222299.)

residual df = 1 5 6  (change = - 3  )

estimate s.e. pearai
1 -18.24 3.375 1
2 7.506 0.5731 IN
3 3.147 1.212 OUT
4 12.53 1.223 10

scale parameter 426.2

? $c Comparing the standard error of an estimate with the estimate $
? $c itself enables us to judge its significance. In this case, the $
? $c significance of "out" is somewhat low - below the 99% level - so $
? $c let us combine the input, output and input/output counts: $
? $calc io_total = in + out + 2*io $

? $c Start fitting again, with just a constant and this combined term: $ 
? $fit 1 + io_total $display e $ 

deviance = 69900.
residual df = 158

estimate
1 -19.45
2 6.446 

scale parameter 442.4

s.e. parameter
3.399 1
0.2898 I0.T0TAL

234



? $c Add in the effects of workspace and dummy parameters: $
? $fit + work + dummy $display e $

deviance = 68690. (change = -1210.)
residual df = 156 (change = -2 )

estimate s.e. parameter
1 -20.63 3.492 1
2 6.520 0.3309 I0.T0TAL
3 0.1739 1.909 WORK
4 25.11 15.18 DUMMY

scale parameter 440.3

? $c The high relative standard errors indicate that the significance $
? $c of these terms is very low - remove them: $
? $fit - work - dummy $

deviance = 69900. (change = +1210.)
residual df = 158 (change = +2 )

? $c Now consider subroutine and function parameters: $
? $fit + subroutn + function $display e $

deviance = 57684. (change = -12216.)
residual df = 156 (change = -2 )

estimate s.e. parameter
1 -17.13 3.141 1
2 5.907 0.2814 I0.T0TAL
3 12.08 2.175 SUBROUTN
4 5.078 5.294 FUNCTION

scale parameter 369.8
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? $c Although the significance of function is very low, it is retained $ 
? $c for later regrouping. Next, try the effects of functions’ and $ 
? $c subroutines’ own parameters: $

? $fit + sr_param + fn_param $display e $ 
deviance = 56714. (change = -969.7)

residual df = 154 (change = -2 )

estimate s.e. parameter
1 -16.24 3.188 1
2 5.808 0.2893 I0.T0TAL
3 4.335 5.513 SUBROUTN
4 3.852 10.13 FUNCTION
5 1.617 1.100 SR.PARAM
6 0.8551 3.058 FN.PARAM

scale parameter 368.3

? $c Neither of these is significant alone - try regrouping $
? $calc sr_total = subroutn + sr_param $
? $calc fn_total = function + fn_param $
? $fit - subroutn - sr_param - function - fn.param 
? + sr_total + fn_total $display e $

deviance = 56820. (change = +105.3)
residual df = 156 (change = +2 )

estimate s.e. parameter
1 -16.07 3.145 1
2 5.803 0.2840 I0.T0TAL
3 2.016 0.3607 SR_T0TAL
4 1.550 1.261 FN.T0TAL

scale parameter 364.2
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? $c The fn_total effect is still insignificant - combine it with 
? $c sr_total as sp_total ("subprogram-total"):
? $calc sp_total = sr_total + fn_total $
? $fit - sr_total - fn_total + sp_total $display e $ 

deviance = 56862. (change = +42.43)
residual df = 157 (change = +1 )

estimate s.e. parameter
1 -16.16 3.124 1
2 5.804 0.2832 I0_T0TAL
3 1.966 0.3276 SP.TOTAL

scale parameter 362.2

? $c Are there any higher order effects?
? $calc io2 = io_total*io_total : sp2 = sp_total*sp_total $ 
? $fit + io2 + sp2 $display e $

deviance = 56755. (change = -107.0)
residual df = 155 (change = -2 )

estimate s.e. parameter
1 -17.47 5.303 1
2 6.038 0.8821 IO.TOTAL
3 2.269 0.7946 SP.TOTAL
4 -0.009200 0.03062 102
5 -0.01192 0.02828 SP2

scale parameter 366.2



? $c Apparently not - but a negative constant term is implausible here $ 
? $c - what happens if we remove it? $
? $fit - 1 $display e $

deviance = 60726. (change = +3971.)
residual df = 156 (change = +1 )

estimate s.e. parameter
1 3.347 0.3431 I0_T0TAL
2 2.545 0.8148 SP_T0TAL
3 0.07204 0.01870 102
4 -0.01775 0.02911 SP2

scale parameter 389.3

? $c Now the io2 term’s effect is significant. What about the higher $ 
? $c order terms in io_total? $
? $calc io3 = io_total*io2 $fit - sp2 + io3 $display e $ 

deviance = 53425. (change = -7302.)
residual df = 156 (change = 0 )

estimate s.e. parameter
1 0.3231 0.7289 I0_T0TAL
2 1.780 0.3234 SP.T0TAL
3 0.4730 0.08790 102
4 -0.01084 0.002325 103

scale parameter 342.5
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? $c These are still highly significant. Further powers? $
? $calc io4 = io2*io2 : io5 = io2*io3 $fit + io4 + io5 $display e $ 

deviance = 52868. (change = -556.6)
residual df = 154 (change = -2 )

estimate s.e. parameter
1 2.936 2.576 I0.T0TAL
2 1.795 0.3263 SP.T0TAL
3 -0.3510 0.7224 102
4 0.07369 0.06960 103
5 -0.003439 0.002742 104
6 0.00004790 0.00003769 105

scale parameter 343.3

? $c These are not significant - remove them and the now $
? $c insignificant io_total $
? $fit - io4 - io5 - io_total $

deviance = 53492. (change = +623.8)
residual df = 157 (change = +3 )

? $c Do the higher power terms account for the previous negative $
? $c constant? $
? $fit + 1 $display e $

devicince = 53408. (change = -84.30)
residual df = 156 (change = -1 )

estimate s.e. parameter
1 1.350 2.720 1
2 1.777 0.3220 SP.TOTAL
3 0.4947 0.03995 102
4 -0.01126 0.001434 103

scale parameter 342.4
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? $c Yes - the effect of the constant term is now insignificant 
? $fit - 1 $

deviance = 53492. (change = +84.30)
residual df = 157 (change = +1 )

? $c This looks like a good model - how much of the devicince is 
? $c explained? (Calculate the fraction remaining.)
? $calc 53408/288784 $

0.1849 
? $c 82'/, accounted for.

? $c Ve should, perhaps, recheck work and dummy:
? $fit + work + dummy $display e $

devicince = 52816. (change = -676.2)
residual df = 155 (change = -2 )

estimate s.e. parameter
1 1.859 0.3305 SP.T0TAL
2 0.5221 0.02649 102
3 -0.01204 0.001036 103
4 -1.995 1.725 WORK
5 10.49 13.05 DUMMY

scale parameter 340.7 

? $c They are still insignificant,

? $fit - work - dummy $
devicince = 53492. (change = +676.2)

residual df = 157 (change = +2 )
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? $c Take a last look at the residuals: $
? $calc res = length - '/,fv $plot res '/,fv $

I
I R
I
I

I R
50. + 2 R R

I R R
I 2

I R R
1 2 R ]El 2 R
1 2R R 2 R RR
12 3 R 2 4 2 2 R 2 R R R R
+R 922 6 8 2 R 3 2 R R
1 R R 4 R R2 R 2R 2 R R
1 2 R R 2 2 R2 R R
1 2 3 R 2 R R R
1 R 2 R ]
I R R
I R R

-50. +
+------------------------ +-------------------------- +------------------------- +-------------

0. 50. 100. 150.
? $c These axe pretty well scattered (if a bit non-uniform). $

? $c Recall what the final parameter values were: $
? $display e$

estimate s.e. parameter
1 1.758 0.3188 SP.TOTAL
2 0.5104 0.02446 102
3 -0.01177 0.001007 103

scale parameter 340.7

241



? $c Express the estimates as coefficients of io_total ('/.pe contains $ 
? $c the parameter estimates, '/,b and V.c axe scalar variables): $
? $ extract '/,pe $
? $calc */,b = '/,sqrt('/,pe(2)) : '/,c = -'/,exp('/,log(-'/,pe(3) )/3) $look */,b */,c $ 

0.7144 -0.2275
? $c So we can express the relationship as $
? $c length = 1.758*sp_total $
? $c + (0.7144*io_total)**2 - (0.2275*io_total)**3 $
? $c and avoid the false impression that third order effect is small. $

? $c Now look at length/io_total ratios in the io_total inter-quartile $ 
? $c ranges. (The "sort" command sorts the contents of the second $ 
? $c vector into the first, by applying the permutation which would $ 
? $c arrange the last in ascending order.) $
? $sort srtd_len length io_total : srtd_iot io_total $
? $c The output from the next command has been edited to remove lines $ 
? $c of no immediate interest, leaving those sections where values $ 
? $c change to those at the quartiles. Hissing sections are indicated $ 
? $c by lines containing only a colon (:). $
? $look srtd_iot $c to find where the quartiles lie. $

SRTD.IOT 
1 0.000

34 5.000
35 6.000
36 6.000
37 6.000
38 6.000
39 6.000
40 6.000
41 6.000
42 6.000
43 6.000
44 6.000
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45
46

72
73
74
75
76
77
78
79
80
81
82

117
118
119
120

121

122

123
124
125
126

160

6.000
7.000

8 .0 00

9.000
9.000
9.000
9.000
9.000
9.000
9.000
9.000
9.000 

10.000

12.000

13.000
13.000
13.000
13.000
13.000
13.000
13.000
13.000
14.000

32.000
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

$c Define lengths for the subrange- and inter-quartile-range-total $
$c (q) vectors (and the ratio of the latter): $
$variate 7 tot_len tot_iot : 4 qtot_len qtot_iot ratlenio $

$c Now calculate the totals over the various ranges C/.cu is the $
$c cumulative sum, temp is a vector variable; the endpoints of the $
$c ranges bracketing the quartiles came from the above "look"): $
$calc temp = ’/,cu(srtd_len) $ 

tot_len(l) = temp(34) $
tot_len(2) = temp(45) - temp(34) $
tot_len(3) = temp(72) - temp(45) $
tot_len(4) = temp(81) - temp(72) $
tot_len(5) = temp(117) - temp(81) $
tot_len(6) = temp(125) - temp(117) $
tot_len(7) = temp(160) - temp(125) $
temp = '/,cu(srtd_iot) $ 
tot_iot(l) = temp(34) $
tot_iot(2) = temp(45) - temp(34) $
tot_iot(3) = temp(72) - temp(45) $
tot_iot(4) = temp(81) - temp(72) $
tot_iot(5) = temp(117) - temp(81) $
tot_iot(6) = temp(125) - temp(117) $
tot_iot(7) = temp(160) - temp(125) $
qtot_len(l) = tot_len(l) + 6/ll*tot_len(2) $
qtot_len(2) = 5/ll*tot_len(2) + tot_len(3) + 8/9*tot_len(4) $
qtot_len(3) = l/9*tot_len(4) + tot_len(5) + 3/8*tot_len(6) $
qtot_len(4) = 5/8*tot_len(6) + tot_len(7) $
qtot_iot(l) = tot_iot(l) + 6/ll*tot_iot(2) $
qtot_iot(2) = 5/ll*tot_iot(2) + tot_iot(3) + 8/9*tot_iot(4) $
qtot_iot(3) = l/9*tot_iot(4) + tot_iot(5) + 3/8*tot_iot(6) $
qtot_iot(4) = 5/8*tot_iot(6) + tot_iot(7) $
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? $c ... and, finally, the desired quartile ratios:
? $calc ratlenio = qtot_len/qtot_iot $look ratlenio $ 

RATLENIO 

1 2.206
2 3.563
3 4.433
4 5.569 

? $stop $
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A ppendix  G

Source o f nagpolysolve

procedure nagpolysolve pn;

begin scalar templist, degree, purereal, !*verbose, result; 
share !*verbose;

!*nag!-mnemon!-paraml!* := first (templist := polycoefs pn) ;
degree := second templist;
purereal := third templist;
lisp(!*verbose := nil);
if degree = -1 then

«  write "*** Zero polynomial supplied: solution indeterminate"; 
return

»
else if degree = 0 then

«  write("*** ", pn, " = 0  has no solution"); 
return

»
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else if degree = 1 then
return -!♦nag!-mnemon!-paraml•♦(2,1)/!+nag!-mnemon!-paraml!♦(1,1) 

else if degree = 2 then 
if purereal then

return first c02ajf(coefficients=!♦nag!-mnemon!-paraml!♦) 
else

return first c02ahf(coefficients=!♦nag!-mnemon!-paraml!♦)
else

«  on mnemprompts; '/, c02aff and c02agf have non-housekeeping defaults 
'/, (switched off again automatically) 

result := if purereal then
first c02agf(coefficients=!+nag!-mnemon!-paraml!♦)

else
first c02aff(coefficients=!♦nag!-mnemon!-paraml!♦);

return result
»

end$

symbolic operator polycoefs; 

symbolic procedure polycoefs pn;

begin scalar purereal, saverounded, savecomplez, savefactor, savedmode, 
saveiidvalfn, pp, !+numval, npn, num, den, degree, result, 
term, oldvbl, vbl, coef, coefs, oldexpnt, expnt;

purereal := ’t;

savefactor := !♦factor; 
off factor;
pp := algebraic (print i-precision(-l)); */, Otherwise affects functioning of simp
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'/, The following code gets rid of Pis and Es

*/, First save settings associated with ROUNDED and COMPLEX

saverounded := !*rounded; 
savecomplex := !*complex; 
savedmode := dmode!*; 
saveiidvalfn := get(’i,’idvalfn);

*/, Now mimic ON COMPLEX, ROUNDED

!*rounded : = t ;
!*complex := t; 
dmode!* := ’!:cr!:; 
put(’i ,*idvalfn,’mkdcrn); 
rmsubs();

!*numval := ’t ;
npn := prepsq!* simp pn; '/, npn is now the complex, rounded equivalent of pn

'/, easier to work with rationals in REDUCE, so mimic OFF ROUNDED

!*rounded := nil; 
dmode!* := *!:gi!:; 
put(’i ,*idvalfn,’mkdgi); 
rmsubs();

npn := simp npn; 
num := car npn; 
den := cdr npn;
if not numberp den then typerr(pn, "a polynomial");
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if null num then 
«  degree := -1;

result := ’mat . list list 0; 
go to tidyup

»

else if numberp num or complex!-integerp num then 
«  degree := 0;

result := ’mat . list list quotient(num,den); 
go to tidyup

» ;
term := car num; 
num := cdr num; 
oldvbl := caar term;
if not atom oldvbl then typerr(oldvbl, "a variable"); 
oldexpnt := (expnt := cdax term);
if not numberp expnt then typerr(expnt, "a real exponent"); 
degree := expnt; 
coef := cdr term;
if not(numberp coef or complex!-integerp coef) then 

typerr(pn, "a univariate polynomial"); 
if complex!-integerp coef then purereal := nil; 
coefs := list list prepsq!*(coef . den); 
while expnt neq 0 do 
«  if null num then 

«  expnt := 0; 
coef := 0 

»
else if numberp num or complex!-integerp num then 

«  expnt := 0; 
coef := num;

num := nil
»

else
«  term := car num;
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vbl := caar term;
if not atom vbl then typerr(vbl, "a variable");
if vbl neq oldvbl then typerr(pn, "a univariate polynomial");
expnt := cdar term;
if not numberp expnt then typerr(expnt, "a real exponent"); 
coef := cdr term;
if not(numberp coef or complex!-integerp coef) then 

typerr(pn, "a univariate polynomial"); 
num := cdr num;

» ;
while expnt neq oldexpnt - 1 do 
«  oldexpnt := oldexpnt - 1; 

coefs := list 0 . coefs
» ;
oldexpnt := expnt;
if complex!-integerp coef then purereal := nil; 
coefs := list prepsq!*(coef . den) . coefs

» ;
result := ’mat . reverse coefs; 
tidyup :
if savefactor then on factor;
!*rounded := saverounded;
!*complex := savecomplex; 
dmode!* := savedmode; 
put(’i ,’idvalfn,saveiidvalfn); 
rmsubs();
if pp then algebraic(print!-precision pp); 
return list(’list.result,degree,purereal);

end$

symbolic procedure complex!-integerp n; 
begin return eqcar(n,’!:gi!:) end;
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A ppendix H

Fortran 90 jacket for D 01A JF  

and related m odules

In a fully developed system, each jacket would USE the modules displayed in sections H .l and 

H.3, extended to provide COMPLEX analogues of the REAL types. If the strategy used in IRENA-1, 

of constructing and compiling an entire program for each run, were again adopted, this would 

also apply to the module displayed in section H.2; however, as mentioned in section 15.3.5, the 

“second level defaults” may be changed by users at any time, so, if such a module were included 

in the final scheme, it could only be compiled at run time. In contrast, if a future IRENA- 

like system uses the potentially more time-efficient strategy of building and compiling a partial 

Fortran program for each IRENA-function when the system is built (leaving only ASPs to  be 

built, compiled and linked in at run time) and supplying param eter values as d ata  to  READ, this 

module would not be required.
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H .l General precision settin g

MODULE irena_kinds
INTEGER, PARAMETER :: ireal = KIND(IDO)
END MODULE irena_kinds

H.2 Second level defaults

MODULE global.defaults 
USE irena_kinds
REAL(KIND=ireal), PARAMETER :: user.abs.err = 0.0001, ft

user_rel_err = 0.0001, ft

user.mix.err = 0.0001, ft

user_input_err = 0.0001
END MODULE global.defaults

H .3 D erived types for nam ed output

MODULE output_types

USE irena_kinds

TYPE integer_output_scalar 
CHARACTER(LEN=120) : : name 
INTEGER :: value 

END TYPE integer.output.scalar

TYPE real.output.scalar 
CHARACTER(LEN=120) : : name 
REAL(KIND=ireal) : : value 

END TYPE real.output.scalar
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TYPE real_output_array_l 
CHARACTER(LEN=120) : : name 
REAL(KIND=ireal), POINTER, DIMENSIONS) 

END TYPE real_output_array_l

TYPE real_output_array_2 
CHARACTER(LEN=120) :: name 
REAL(KIND=ireal), POINTER, DIMENSION(:,: 

END TYPE real_output_array_2

END MODULE output_types

H .4 Jacket for D 01A JF

MODULE jackets 

CONTAINS

SUBROUTINE d01ajf_jac(

! Essential input parameters: 

f , a_with_b,

! Output parameters:

:: value

) :: value

ft

ft

result_with_name, abserr_with_name, iw_l_with_name, 
w_l_with_name, w_2_with_name, w_3_with_name,

ft

ft



! Optional input parameters:

absolute_accuracy, relative_accuracy, workspace.length ft

)

USE irena_kinds 
USE output_types 
USE global.defaults

! Combine a and b into a single PARAMETER (a (1 x 2) 2-d array since 
! we shall in general use (n x 2) 2-d arrays for "rectangles"):

REAL(KIND=ireal), DIMENSI0N(1,2) :: a_with_b

! Allow for defaults:

INTEGER, OPTIONAL :: workspace.length
REAL(KIND=ireal), OPTIONAL :: absolute.accuracy, relative.accuracy

! Make workspace allocatable:

INTEGER, DIMENSION(:), ALLOCATABLE :: iw 
REAL(KIND=ireal), DIMENSION(:), ALLOCATABLE :: w

! Other dOlajf parameters:

INTEGER :: lw, liw, ifail
REAL(KIND=ireal) :: f, a, b, epsabs, epsrel, result, abserr 
EXTERNAL f
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! Output parameters:

TYPE(integer_output_scalar) :: iw_l_with_name 
TYPE(real_output_scalar) :: result_with_name, abserr_with_name 
TYPE(real_output_array_l) :: w_2_with_name, w_3_with_name 
TYPE(real_output_array_2) : : w_l_with_name

! Local variable:

INTEGER :: n

! Unpack a and b:

a = a_with_b(l,1) 
b = a_with_b(l,2)

! Incorporate defaults for epsabs, epsrel and lw:

IF (PRESENT(absolute_accuracy)) THEN 
epsabs = absolute_accuracy

ELSE
epsabs = user_abs_err 

END IF

IF (PRESENT(relative.accuracy)) THEN 
epsrel = relative_accuracy

ELSE
epsrel = user_rel_err 

END IF

IF (PRESENT(workspace.length)) THEN 
lw = workspace_length
lw = MAX(lw,4) ! Deals with constraint.
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ELSE

lw = 2000 
END IF

! Eliminate liw:

liw = lw/4 ! Can ignore constraint here since lw/4 already >= i.
ALL0CATE(w(l:lw))
ALLOCATE(iw(l:liw))

! Now call the NAG F77 routine: 
ifail = -1
CALL dOlaj f(f,a ,b ,epsabs,epsrel,result,abserr,w ,lw,iw,liw,ifail)

! Have structures for result and abserr, with names as text strings:

result_with_name '/, value = result 
result_with_name */, name = ’Integral’

abserr_with_name '/, value = abserr 
abserr_with_name '/, name = ’Absolute_error_estimate’

IF (ifail == 0) THEN

! use this:

iw_l_with_name '/, value = iw(l)
iw_l_with_name V, name = ’Number_of_subintervals_used’

! but not these:

w_l_with_name '/, name = ’ ’ ! empty names indicate
w_2_with_name '/, name = ’ ’ ! "unused" output parameter
w_3_with_name ’/, name = ’ ’ ! structures
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ELSE

! want diagnostic outputs - use these: 

n = iw(l)

ALLOCATE(w_l_with_name '/, valued:n,2))
ALLOCATE(w_2_with_name '/, valued:n))
ALLOCATE(w_3_with_name '/, valued :n))

w_l_with_name '/, valued,1) = w(l:n) 
w_l_with_name '/, value(:,2) = w(n+l:2*n) 
w_l_with_name '/, name = ’Subintervals*

w_2_with_name '/, value = w(2*n+l:3*n)
w_2_with_name '/, name = ’Integral_approximations_on_subintervals’ 

w_3_with_name '/, value = w(3*n+l:4*n)
w_3_with_name '/, name = ft

’Error_estimates_for_subinterval_approximations*

! but not this:

iw_l_with_name V* name = ’ ’

END IF 

RETURN

END SUBROUTINE dOlajf.jac 

END MODULE jackets
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H .5 Test program

USE irena.kinds 
USE output_types 
USE global_defaults 
USE jackets

REAL(KIND=ireal) : : integrand 
EXTERNAL integrand
REAL(KIND=ireal), DIMENSI0N(1,2) :: range 
TYPE(integer_output_scalar), DIMENSION(l) :: ios
TYPE(real_output_scalar), DIMENSI0N(2) :: ros
TYPE(real_output_array_l), DIMENSI0N(2) :: oal
TYPE(real_output_array_2) : : oa2

ranged, 1) = 0.0 
range(1,2) = 1.0

testloop: DO itest = 1,2 
IF (itest == 1) THEN

WRITE(*, ’(/A)’, ADVANCE=’N0’) ’Normal run: ’
CALL d01ajf_jac(integrand, range, ros(l), ros(2), ios(l), ft

oa2, oal(l), oal(2))
ELSE

WRITE(*, ’(/A/)’) ’Abnormal run: D01AJF output on error channel..’ 
CALL d01ajf_jac(integrand, range, ros(l), ros(2), ios(l), ft

oa2, oal(l), oal(2),workspace_length=20)
WRITE(*, ’(/14X)’, ADVANCE=’N0’)

ENDIF
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! Print those output parameters with non-empty names: 

WRITE(*,*(A/)’) ’Test program output on standard channel..’

DO I = 1,2
IF (ros(i) ’/. name /= ” ) THEN

WRITE(*,’(A46,” = ",(E25.17))’) ros(i)
WRITE(*,*)

ENDIF
ENDDQ

IF (ios(l) */. name /= ” ) THEN
WRITE(*,’(A46," = ",19/)’) ios(l)

ENDIF

IF (oa2 '/. name /= ” ) THEN
jmax = UB0UND(oa2 V» value, 1)
WRITE(*, ’(A46," = "/(24X,2E25.17))’) ft

oa2 */, name, ((oa2 '/, value(j,k),k=l,2),j=l,jmax)
! value written thus as stored in column-major orderZZ 

WRITE(*,*)
ENDIF

DO I = 1,2
IF (oal(i) */. name /= ” ) THEN

WRITE(*, ’(A46," = ", E25.17, /(49X,E25.17))’) ft

oal(i) '/, name, oal(i) '/, value 
WRITE(*,*)

ENDIF
ENDDO

ENDDO testloop

END
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REAL(KIND=ireal) FUNCTION integrand(x)

USE irena.kinds

REAL(KIND=ireal) :: x 
integrand = 1/sqrt(l-x**2)
RETURN

END

H .6 Test program output

Normal run: Test program output on standard channel..

Integral = 0.15707963267867724E+01

Absolute_error_estimate = 0.16694195379418630E-05

Number_of_subintervals_used = 6

Abnormal run: D01AJF output on error channel..

♦* The maximum number of subdivisions (LIMIT) has been reached:
LIMIT = 5 LW = 20 LIW = 5

** ABNORMAL EXIT from NAG Library routine D01AJF: IFAIL = 1
** NAG soft failure - control returned
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Test program output on standard channel.

Integral =

Absolute_error_estimate =

Subintervals =
0.00000000000000000E+00 
0.50000000000000000E+00 
0.75000000000000000E+00 
0.87500000000000000E+00 
0.93750000000000000E+00

Integral_approximations_on_subintervals =

Error_estimates_for_subinterval_approximations =

0.15650556432179701E+01 

0.16793990427787381E+00

0.50000000000000000E+00 
0.75000000000000000E+00 
0.87500000000000000E+00 
0.93750000000000000E+00 
0.10000000000000000E+01

0.29093955163239531E-14 
0.18028920694018435E-14 
0.12078450271614016E-14 
0.83314318610740795E-15 
0.16793990427786695E+00

0.52359877559829893E+00 
0.32446330338318213E+00 
0.21737373752925832E+00 
0.14993930859393378E+00 
0.34968051811329698E+00
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A ppendix  I

Current and extended specfiles

This appendix illustrates the current specfile for dO la jl, and a hypothetical, new style specfile, 

as described in section 15.4. The new style specfile is presented in its autom atically generated 

“skeleton” form and in a final form incorporating jazzing and completed default setting.

To facilitate comparison of the three forms, they are interleaved, with each section introduced 

by a line of the form

ijk--------------------------------------------------------------------------------------------------------------------------------

where i may be -  or 1, j  may be -  or 2 and k may be -  or 3: the presence of 1 indicates th a t 

the following section applies to the current specfile, 2 to the skeleton new style specfile and 3 to 

the completed new style specfile.

Differences in layout have been ignored.
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123--------------------------------------------
#### TYPE ####

SUBROUTINE

1----------------------------------------------
#### SPECIFICATION ####

//DOl A JF// (F, A , B , EPSABS, EPSREL, RESULT, 
1 ABSERR,W,LW,IW,LIW,IFAIL)

C INTEGER LW,IW(LIW),LIW,IFAIL
C //real// F ,A ,B ,EPSABS,EPSREL,RESULT,
C 1 ABSERR,W(LW)
C EXTERNAL F

-23--------------------------------------------
#### SPECIFICATION ####

D01AJF(F,A,B,EPSABS,EPSREL,RESULT,
1 ABSERR,W,LV,IW,LIW,IFAIL)

1----------------------------------------------
#### PARAMETERS ####

**** INPUT PARAMETERS:

A
B
EPSABS
EPSREL
LW
LIW

-23--------------------------------------------
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#### NAG PARAMETERS ####

**** INPUT PARAMETERS:

A : real scalar
B : real scalar
EPSABS : real scalar 
EPSREL : real scalar 
LW : integer scalar 
LIW : integer scalar

1----------------------------------------------

**** OUTPUT PARAMETERS:

RESULT
ABSERR
W®
IW®

-23-------------------------
**** OUTPUT PARAMETERS:

RESULT : real scalar
ABSERR : real scalar
W(LW) : real vector
IW(LIW) : integer vector

1--------------------------------------------------

**** INPUT/OUTPUT PARAMETERS:

IFAIL
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-2 3 -------------------------------------------

**** INPUT/OUTPUT PARAMETERS:

IFAIL : integer scalar

1-------------------------------------------------

**** WORKSPACE PARAMETERS:

None.

-2 3 -------------------------------------------

**** WORKSPACE PARAMETERS:

'/, none

1--------------------------------------------------

**** DUMMY PARAMETERS:

None.

-2 3 -------------------------------------------

**** DUMMY PARAMETERS:

'/, none

! --------------------------------------------

**** FUNCTIONS:

NAME: F
SUPPLIER: USER 
TYPE: 1

//real// FUNCTION F(X) 
//real// X
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-23-------------------------
**** FUNCTIONS:

D01AJF_F : real function

1--------------------------------------------

**** SUBROUTINES:

None.

-23-------------------------
**** SUBROUTINES:

•/. none

-23-------------------------
#### IRENA PARAMETERS ####

- 2 ------------------------------------------

**** INPUT PARAMETERS:

irena_a scalar data/control/housekeeping '/, delete two options
irena_b scalar data/control/housekeeping '/, delete two options
irena_epsabs scalar data/control/housekeeping % delete two options
irena_epsrel scalar data/control/housekeeping */, delete two options
irena_lw scalar data/control/housekeeping '/, delete two options
irena_liw scalar data/control/housekeeping '/, delete two options
irena_ifail scalar data/control/housekeeping '/, delete two options

'/, promote requirements of D01AJF_F . .. includes 

irena_f(x) : function
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— 3----------------------------------------------------------------------------------
**** INPUT PARAMETERS:

region : rectangle(l) data suppliedAs(region, «  range » )
irena_epsabs : scalar control suppliedAs(absolute accuracy required,

«  absacc, aar » )
irena_epsrel : scalar control suppliedAs(relative accuracy required,

«  relacc, rar » )
irena_liw : scalar control suppliedAs(

maximum number of subintervals allowed, 
«  maxints, mnsa » )  

irena_f : function data suppliedAs(integrand(x), «  f » )

-23----------------------------------------------------------------------------------
**** INTERMEDIATE INPUT OBJECTS:

'/, none

- 2 ----------------------------------------------------------------------------------------------------------------------------------------

**** INPUT REDEFINITION:

A := irena_a
B := irena_b
EPSABS := irena_epsabs
EPSREL := irena_epsrel
LW := irena_lw
LIW := irena_liw = irena-lw/4 '/, Suggested value
IFAIL := irena.ifail := -1

— 3------------------------------------------------------------
**** INPUT REDEFINITION:

A := region(l,l)
B := region(l,2)
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EPSABS := irena.epsaps = global(*userabserr*)
EPSREL := irena_epsrel = global(*userrelerr*)
LW := 4*LIW
LIW := irena_liw = 500
IFAIL := -1

-2-------------------------------------------------
**** OUTPUT PARAMETERS:

irena_result : scalar 
irena.abserr : scalar 
irena_w : vector 
irena_iw : vector

**** OUTPUT PARAMETERS:

integral
absolute error estimate 
number of subintervals used 
subintervals
integral approximations on subintervals 
error estimates for subinterval approximations :

: scalar 
: scalar 
: scalar
: list(rectangle(l)) 
: list(scalar)
: list(scalar)

**** INTERMEDIATE OUTPUT OBJECTS:

'/, none

— 3--------------------- --------------------------
**** INTERMEDIATE OUTPUT OBJECTS: 

ivl : scalar
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- 2 -------------------------------------

**** OUTPUT REDEFINITION

irena_result
irena_abserr
irena_w
irena_iw

= RESULT 
= ABSERR 
= W 

= IW

**** OUTPUT REDEFINITION

integral := RESULT

absolute error estimate := ABSERR

ivl := IV(1)

number of subintervals used := if out(IFAIL) = 0 then iwl
else unset 
endif

subintervals := if out(IFAIL) "= 0 then W(l:2*iwl) 
else unset 
endif

error estimates for subinterval approximations
:= if out(IFAIL) "= 0 then W(2*iwl+1:3*iwl) 

else unset 
endif

integral approximations on subintervals
:= if out(IFAIL) ~= 0 then W(3*iwl+1:4*iwl) 

else unset 
endif
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123----------------------------------------------------------------------
#### IFAIL VALUES ####
#EQ1

12--------------------------------------------------------------------------------------------------------------------

The maximum number of subdivisions allowed with the given 
workspace has been reached without the accuracy requirements

— 3-----------------------------------------------------------------------------------------------------------

The maximum number of subdivisions allowed
has been reached without the accuracy requirements

123-----------------------------------------------------------------------------------------------------------

being achieved. Look at the integrand in order to determine the 
integration difficulties. If the position of a local difficulty 
within the interval can be determined (e.g. a singularity of 
the integrand or its derivative, a peak, a discontinuity, etc.) 
you will probably gain from splitting up the interval at this 
point and calling the integrator on the subranges. If 
necessary, another integrator, which is designed for handling 
the type of difficulty involved, must be used. Alternatively,

12---------------------------------------------------------------------------------------------------------------------

consider relaxing the accuracy requirements specified by EPSABS 
and EPSREL, or increasing the amount of workspace.

— 3------------------------------------------------------------------------------------------------------------

consider relaxing the absolute or relative accuracy requirements 
or increasing the maximum number of subintervals allowed.
Please note that divergence may have occurred.

123------------------------------------------------------------------------------------------------------------

#EQ2

Roundoff error prevents the requested tolerance from being 
achieved. The error may be under-estimated. Consider relaxing

12---------------------------------------------------------------------------------------------------------------------

the accuracy requirements specified by EPSABS and EPSREL, or 
increasing the amount of workspace.
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Please note that divergence can occur with any non-zero value 
of IFAIL.

— 3-------------------------------------------------------------------------
the absolute or relative accuracy requirements or increasing the 
maximum number of subintervals allowed.
Please note that divergence may have occurred.

123-------------------------------------------------------------------------

#EQ3
Extremely bad local integrand behaviour causes a very strong 
subdivision around one (or more) points of the interval. Look 
at the integrand in order to determine the integration 
difficulties. If the position of a local difficulty within the 
interval cam be determined (e.g. a singularity of the integrand 
or its derivative, a peak, a discontinuity ...) you will 
probably gain from splitting up the interval at this point and 
calling the integrator on the subranges. If necessary, another 
integrator, which is designed for handling the type of 
difficulty involved, must be used. Alternatively, consider

12--------------------------------------------------------------------------------------------------------------------------

relaxing the accuracy requirements specified by EPSABS and 
EPSREL, or increasing the amount of workspace.
Please note that divergence can occur with any non-zero value 
of IFAIL.

— 3--------------------------------------------------------------------------
relaxing the absolute or relative accuracy requirements 
or increasing the amount of maximum number of subintervals allowed. 
Please note that divergence may have occurred.

123--------------------------------------------------------------------------

#EQ4
The requested tolerance cannot be achieved, because the 
extrapolation does not increase the accuracy satisfactorily; 
the returned result is the best which can be obtained. Look at
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the integrand in order to determine the integration 
difficulties. If the position of a local difficulty within the 
interval can be determined (e.g. a singularity of the integrand 
or its derivative, a peak, a discontinuity ...) you will 
probably gain from splitting up the interval at this point and 
calling the integrator on the subranges. If necessary, another 
integrator, which is designed for handling the type of 
difficulty involved, must be used. Alternatively, consider

12--------------------------------------------------------------------------------------------------------------------------

relaxing the accuracy requirements specified by EPSABS and 
EPSREL, or increasing the amount of workspace.
Please note that divergence can occur with any non-zero value 
of IFAIL.

— 3-------------------------------------------------------------------------
relaxing the absolute or relative accuracy requirements 
or increasing the amount of maximum number of subintervals allowed. 
Please note that divergence may have occurred.

123-------------------------------------------------------------------------

#EQ5
The integral is probably divergent, or slowly convergent.

12--------------------------------------------------------------------------------------------------------------------------

Please note that divergence can occur with any non-zero value 
of IFAIL.

#Eq6

On entry, LW < 4,
or LIW < 1. Please note that divergence can occur with
any non-zero value of IFAIL.

-23-------------------------------------------------------------------------

#### ASPs ####
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### TYPE ### 

real FUNCTION 

### SPECIFICATION ### 

D01AJF_F(X)

### NAG PARAMETERS ###

**** INPUT PARAMETERS:

X : real scalar

**** OUTPUT PARAMETERS:

'/, none

**** INPUT/OUTPUT PARAMETERS 

V, none

**** WORKSPACE PARAMETERS:

V, none

**** DUMMY PARAMETERS:

'/, none

**** FUNCTIONS:

'/. none



**** SUBROUTINES:

'/, none

### */. end of D01AJF.F 

#### '/. end of D01AJF



G lossary

Please note that non-alphabetic characters have been ignored in collating the entries in this

glossary.

A lias file A user-supplied file, specific to each IRENA-function, which

allows the introduction of additional aliases for input parameters 

and the renaming of output parameters.

A S P  Argument Sub-Program. A param eter to a Fortran subprogram,

which is itself a subprogram. Also, the specification of such a 

subprogram in terms of mathem atical objects such as matrices 

and functions.

A u x ilia ry  ro u t in e  A routine in the NAG Library, which is not intended to be directly

called by users. The term covers both the component routines 

which provide the underlying functionality of the top level routines 

and routines which are intended to be used as external parameters 

to NAG routines, providing alternative functionality (as in the 

case of D01BAW, D01BAX, D01BAY and D01BAZ which handle different 

quadrature formulae for D01BBF) or a default functionality (for 

example, E04NFU provides a m atrix x vector multiplication facility 

for E04NFF which is dependent on a standard representation being 

used for the matrix). If the default functionality is null, the 

routine is described as “dummy” .
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C hapter

C olum n m ajor order

C ontrol param eter

D ata  param eter

D efa u lts  file

D u m m y param eter

D u m m y rou tin e

E nvsearch

In the NAG Library a “chapter” is a subset of routines, concerned 

with the same area of numerical calculation and sharing a common 

prefix based on the extended SHARE classification [1]. This prefix 

usually consists of a letter followed by two digits -  for example, 

D01 for quadrature routines -  although the “special functions” are 

considered to form a single S chapter.

An ordering used in storing the entries in a m atrix  or other two- 

dimensional structure, in which complete columns of entries are 

stored in succession. The standard ordering for Fortran two- 

dimensional arrays.

A non-data parameter (in a Fortran routine) which controls the 

behaviour of the underlying algorithm or other aspects of the 

routine, such as the frequency of displaying interm ediate results. 

Common examples are convergence criteria and error tolerances.

A parameter specifying the actual data  which a routine is to 

process.

A routine-specific file, defining default values for NAG param eters 

as constants or functions of other parameters.

A parameter in a NAG routine which is not accessed by the 

routine. Dummy parameters are sometimes used to preserve the 

NAG interface of a routine whose internal functioning has been 

revised.

An “auxiliary” routine, in the NAG Library, which may be used 

as an external parameter to a top level Library routine, when the 

functionality which that parameter allows is not required.

An IRENA switch which, if on, permits values in the REDUCE 

environment to be recognised as param eters of IRENA-functions.
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F ortinclude

F p ep s

F p hu ge

F set

G E N T R A N

H ousekeep ing

An IRENA switch which, if on, prompts the user for the 

names of two files of fragments of Fortran code which may 

contain, respectively, code to be inserted in all the Fortran 

subprograms (including the main program) and in the main 

program only, immediately before the executable statem ents 

generated by GENTRAN.

The smallest floating point number, “safely” representable in 

a particular Fortran implementation, which, when added to 1 

produces a value different to 1 . “Safely representable” means th a t 

both the number and its negative can be represented and th a t 

certain arithmetic operations yield a result; see [26] for further 

details. This symbol, normally used in IRENA defaults files, 

produces a call to the NAG routine X02AJF in the generated 

Fortran.

The largest floating point number “safely” representable in a 

particular Fortran implementation. The symbol fphuge, used in 

IRENA function calls (usually represented as *) or in defaults 

files, produces a call to the NAG routine X02ALF in the generated 

Fortran.

An IRENA notation for defining an indexed family of functions, 

principally used to satisfy the requirements of ASPs.

A REDUCE package for converting REDUCE code to  Fortran, C 

and other languages. Originally developed for Macsyma. See [12].

An entry in a defaults file specifying which param eters are to 

be regarded as housekeeping parameters; prom pts will not be 

generated for these, even with p ro m p ta ll on, unless their values 

are unspecified but are required to establish values for NAG 

parameters.
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H ousekeep ing param eter

IFAIL

Infofile

IR E N A -fu n ction

Jacket

Jazz

Jazz file

A parameter which is required, not by the logic of the problem 

being solved but only for the correct functioning of the Fortran 

routine. Common examples are param eters specifying workspace 

arrays and those giving the dimensions of data  arrays.

An input-output parameter in most NAG routines. Its input value 

controls the behaviour of the routine on detecting an error (in 

IRENA, it is always set to -1, to take advantage of any English 

error messages which the routine may print and to allow a return 

to the calling Fortran, after an error is detected. An output value 

of zero indicates successful completion of the routine call, different 

non-zero values indicate different causes of failure.

A file, generated automatically from the specfile as part of the 

IRENA setup process, to provide routine-specific inform ation in 

IRENA.

A function provided within IRENA to generate and run Fortran 

code which calls one or more NAG routines. O ther (REDUCE) 

functions provided by the IRENA package, including those which 

call IRENA-functions, are not described as IRENA-functions.

A subprogram which calls one or more other subprograms, 

to provide these with an alternative interface. Some IRENA 

functionality was provided by writing Fortran jackets for NAG 

routines.

The IRENA system whereby the user interfaces of routines are 

redefined.

A file of jazz commands, redefining the user interface of a 

particular routine.
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Ja z z -fu n c tio n

K ey  or K ey -a lias

K e y lin e

K ey w o rd

L ong  fo rm  (output name)

N A G lin k

An RLISP function written to provide additional input jazzing 

functionality not present in the original IRENA system. In 

conjunction with each jazz function, two other RLISP functions 

must be provided, to deliver the dimensions of the NAG param eter 

being processed and to check whether all of the objects needed to 

specify that parameter are available.

In contrast with the original jazz commands, which only require 

the names of the NAG and IRENA param eters between which a 

mapping is being defined, its use requires the provision of a Lisp 

object as the final syntactic element. This may simply be the 

name of an IRENA input parameter but, in some instances, is 

considerably more complex.

A symbol which may be used in a call to an IRENA-function to 

introduce a value for a particular param eter, using the syntax 

key=value. If envsearch is on, it also defines the name of a 

REDUCE variable which may be used to supply the param eter 

value, prior to the function call.

The collection of parameter definitions in an IRENA-function, 

initially supplied by the user in the function call.

A symbol whose appearance in an IRENA keyline or in response to 

an IRENA prompt defines a fixed value for a particular param eter, 

without the value being explicitly specified there.

An alternative name, automatically generated for each IRENA 

output parameter, in which the normal output name is prefixed by 

the name of the generating routine. This provides extra security 

when parameters are passed between paired IRENA-functions 

and allows users to automatically retain synonymous output from 

related functions.

Symbolic-numeric link, between Axiom release 2 and the NAG 

Fortran Library, developed a t NAG under the auspices of the 

Teaching Company Scheme.
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N aglink

nagm an

*nonam e*

O u tp u t-fu n ction

P rom p t-a lia s

P rom p tval

P SL

R ecta n g le

R o u tin e

Early symbolic-numeric link, between Macsyma and the NAG 

Fortran Library, developed at the University of Waikato. See [2].

A module incorporated in Axiom, as part of the mechanism of 

providing a link to the NAG Foundation Library, which handles 

communication between Axiom and the numeric server.

A prefix used in IRENA output names to indicate th a t the name 

of the object generated should not be displayed in the output list.

An RLISP function written to provide additional output jazzing 

functionality not present in the original IRENA system.

In contrast with the original jazz commands, which only require 

the names of the NAG and IRENA param eters between which a 

mapping is being defined, its use requires the provision of a Lisp 

list as the final syntactic element. This may simply contain the 

name of an IRENA output parameter but, in some instances, is 

considerably more complex.

A string used by IRENA in prompting, to identify a particular 

parameter. It may also be used, with spaces optionally replaced 

by underline characters, as an additional key-alias.

An IRENA switch which, if on, causes IRENA to prom pt for 

parameter values not otherwise supplied.

Portable Standard Lisp: the version of Lisp underlying some 

versions of REDUCE, including that on which IRENA is built. 

See [36].

A data structure consisting of a list of paired upper and lower 

bounds, which usually maps into two NAG scalars or one

dimensional arrays.

A term used by NAG to indicate a Fortran function or subroutine: 

usually, a function or subroutine occurring in the NAG Library.
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R ow  m a jo r  o rd e r

S ca la r (jazz command)

S eco n d  lev el d e fau lts

S pecfile

T e m p la te

U n se t

U se r  d e fa u lts  file

An ordering used in storing the entries in a m atrix or other two- 

dimensional structure, in which complete rows of entries are stored 

in succession.

This sets up local scalar variables, emulating extra NAG routine 

parameters, commonly for communication between the jazz and 

defaults systems.

The four special symbols * u se ra b se rr* , * u s e r re le r r* ,  

♦userm ixerr*  and * u se r in p u te r r*  provide a second level default 

mechanism, in that they are set globally and used to specify 

parameter defaults. Their values may be reset at the REDUCE 

level by the user, thereby redefining default values throughout the 

system.

An intermediate file containing routine-specific information, which 

is derived automatically from NAG documentation, to provide a 

single target for manual correction or modification, prior to the 

generation of the infofile and templates.

In GENTRAN, a partial program from which a complete program 

is generated by expanding REDUCE formulae. IRENA uses a 

Fortran template, defining the program which calls the NAG 

routine, and a C template, defining the interface between this 

program and REDUCE, for each included NAG routine.

A special “value” for parameters in IRENA, normally indicating 

that no Fortran assignments are to be produced for a particular 

parameter. In the case of ASPs, it may signal th a t a NAG dummy 

routine is to be used.

A user-supplied file, specific to each IRENA-function, which 

allows the introduction of additional defaults or the cancellation 

of the system-supplied defaults.
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V ector (jazz command)

V ery  lo ca l c o n s ta n t

This sets up local non-scalar variables, emulating extra NAG 

routine parameters, commonly for communication between the 

jazz and defaults systems.

A symbol, introduced by the IRENA jazz command lo c a l ,  which 

represents a specific input value of a particular NAG param eter. 

For example, to supply a “very large number” representing 

unbounded in a constrained optimisation routine, the symbol * 

might be used to represent the quantity fphuge.
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