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ABSTRACT

The stated aim of this DERA funded research project was “to prepare and 

characterise polysiloxane bearing transition metal species that may catalyse the 

decomposition of chemical warfare agents”.

A general and facile methodology for preparing metallated organofunctional tri- 

and polymeric siloxanes has been developed. This has been achieved by a two step 

procedure involving firstly the modification of a range of readily available bi- and 

tridentate nitrogen-donor ligands, by the addition of either a 1 -propenyl or 1 -hexenyl 

chain. In the second step the modified ligands, and a commercially available 

alkenylated monodentate ligand, were attached to a siloxane backbone via a platinum 

catalysed hydrosilylation reaction. All new products were characterised by 

microanalyses and spectroscopic measurements.

The free ligands, alkenylated ligands, and both model and poly-organofunctional 

siloxanes have been metallated with copper(II) salts. The crystal and molecular 

structures of two ligand/copper(II) chloride, four alkenylated-ligand/copper(II) 

chloride, and one alkenylated-ligand/copper(II) nitrate complexes have been 

determined by single crystal X-ray crystallography, in order to reveal details of the 

primary coordination sphere around the metal centre. All of the copper(II) chloride 

adducts are five-coordinate, with those containing bidentate ligands exhibiting 

chloride bridges. The copper(II) nitrate complex is six-coordinate.

The catalytic activities of several of the copper(II) complexes prepared in this 

study, for the hydrolytic decomposition of an organophosphate, have been assessed in 

facilities provided at the Ministry of Defence establishment, Porton Down, during 

brief visits in the final year of this programme. Copper(II) complexes of



trimethylethylenediamine and its alkenylated analogues were found to be the most 

active catalysts. Attachment of a copper containing alkenylated ligand to a trisiloxane 

moiety resulted in little diminution in catalytic activity, and a polymeric siloxane 

analogue was also catalytically active.
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1. INTRODUCTION

1.1 THE DEVELOPMENT OF CHEMICAL WARFARE AGENTS

Chemical warfare has been used in many forms throughout history, from toxic smokes 

and caustic solutions1, to the wide range of nerve agents available to warring parties 

today. During the 1st World War regular use was made of both chlorine and phosgene to 

disable the enemy, through the adverse effects of these gases on the respiratory system 

and the eyes. As with some of the earliest agents, these non-persistent gases were blown 

away or dissipated in the air fairly quickly. However, protection from inhalation and 

contact with the eyes was essential.

In 1915, mustard gas (2,2’-dichlorodiethyl sulphide, HD (1)) was unleashed with 

devastating effect upon Allied troops at Ypres , whereupon the UK acquired a chemical 

warfare capability to combat this threat and retaliate in kind. HD is a liquid blistering 

agent (b.p. 217°C3) that attacks the mucous membranes and is lethal at high doses, due to 

its reactivity with protein and DNA4. HD is able to penetrate leather and fabrics, inflicting 

painful bums on the skin after contact. Unlike the gases used previously, HD is a 

persistent threat until physically removed or made into a non-toxic compound by 

chemical reaction (chemical decontamination).

l



The UK’s chemical warfare capability was revived during World War 2 when British 

forces had access to weapons containing phosgene, HD and a tear gas, bromobenzyl 

cyanide (C6H5 CHBrCN)5. However, neither the Allies nor the Axis Powers deliberately 

employed chemical weapons during World War 2, despite the accumulation of enormous 

stockpiles by both sides.

In 1936, during studies of possible pesticides, the German chemist Gerhard Schrader 

discovered a new chemical warfare agent based on phosphorus(V), Tabun (N,N- 

dimethylphosphoroamidocyanidate, GA (2)). Although never used for fear of retaliation 

in kind, about 12,000t of GA was produced and stockpiled. Other ‘G-Agents’, Sarin (2- 

propyl methylphosphonofluoridate, GB (3)) and Soman (3,3-dimethyl-2- 

butylmethylphosphonofluoridate, GD (4)), were also prepared on a much smaller scale. 

Once this line of research was discovered, the Allied countries, notably the U.K, U.S.A 

and Russia, extended the range of phosphorus based agents to include O-ethyl S-2- 

(diisopropylamino)ethylmethylphosphonothiolate, VX (5).

N O

GA (2) GB (3)

GD (4) VX (5)
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These compounds are orders of magnitude more toxic than HD. Their inhibition of 

the enzyme acetylcholinesterase causes the respiratory system to fail and death to occur 

within minutes 6,7.

HD is relatively easy to prepare and huge stockpiles can be quickly built up. The

o
earlier producers of HD favoured the Levinstein Process , which involves bubbling dry 

ethene through sulphur dichloride, allowing the mixture to settle, and distilling the 

remaining material. More recent production methods involve reaction of thiodiglycol, a 

relatively common material with a dual use as an ingredient in some inks, with hydrogen 

chloride9. This method, known as the Runcol process, does not result in the solid by

products of the Levinstein Process, and the reactive mixture can be more easily distilled.

(HOCH2 CH2)2S + 2 HC1 -------------- ► (C1CH2 CH2)2S + 2H20

A method for the production of GB is from the precursor, methylphosphorus 

oxodichloride, which is prepared by the reaction of chloromethane with phosphorus 

trichloride, in the presence of aluminium trichloride and water (Step l)10. 

Methylphosphorus oxodichloride reacts with hydrogen fluoride to produce an equimolar 

mixture of methylphosphorus oxodichloride and methylphosphorus oxodifluoride (Step 

2), and this mixture is then reacted with isopropyl alcohol to produce GB (Step 3).

Step 1 : CH3C1 + PCI3 --------------► CH3POCI2 + Cl2

Step 2 : CH3POCI2 + 2 HF --------------► CH3P0C12 + CH3POF2 + 2HC1

Step 3: CH3POCI2 + CH3POF2 + 2 C3H7OH ► 2C3H7 0(P0)CH3F + 2HC1

3



Recently large quantities of agents have been declared as being stockpiled in at 

least two countries, the US (25000 t, the three major agents being HD, GB and VX) and 

Russia (420001)11.

1.2 DISPOSAL OF CHEMICAL AGENT STOCKPILES

Since the end of the 1st World War, two major treaties have been produced to limit the

1use, or implement the destruction of chemical weapon stockpiles . The Geneva Protocol, 

prohibiting use of chemical weapons in warfare, was signed in 1925. Several nations, the 

United States included, signed with a reservation forswearing only the first use of the 

weapons and reserved the right to retaliate in kind if chemical weapons were used against 

them. 132 countries signed the Chemical Weapons Convention in 1993, when it was 

agreed that all chemical warfare agents should be destroyed within 1 0  years of ratification 

of the treaty. 143 States have now ratified the treaty, with the US and Russia, the only 

open possessors of chemical weapons, ratifying in 1997.

After World War 2 the UK and German stocks of G-agents were, in general, disposed 

of by incineration or by dumping at sea. By the mid 1950’s the UK decided that mustard 

should also be disposed of by incineration, with the exhaust gases scrubbed by sodium 

hydroxide solution before being released13. In 1982 the US Army also turned to 

incineration as the preferred method of stockpiled agent disposal11. However, in the 

summer of 1994, in response to public concern and recommendations from the National 

Research Council, investigations into other methods of disposal were initiated14.



Therefore other procedures were sought for converting the huge stockpiles of agents 

into non-toxic products, which could be safely disposed of directly, or post-processed into 

useful materials. Simultaneously, the means of providing better protection for personnel, 

who might accidentally or deliberately be exposed to these agents, were sought.

The decontamination of chemical warfare agents is not only a military necessity but is 

also important in laboratories and pilot plants where chemical agent production, storage 

and destruction occur. It also has relevance to the detoxification of insecticides and 

similar residues, which might accumulate in potable water supplies15.

The agents 1-5 are persistent and hazardous for a considerable time after the initial 

contamination of a surface. This is especially true for ‘thickened’ agents, where 5-10% of 

polymer is mixed with the agent. This type of agent is more viscous and adheres better to 

a surface than the ‘neat’ agents, making them more persistent and difficult to remove.

The decontamination of agents can be achieved by either reactive or non-reactive 

methods. Non-reactive systems involve the physical removal of contaminants including 

mechanical forces, dissolution, evaporation or absorption. For example, scrubbing, 

spraying with a soap solution or steam jet, covering with carbonaceous materials or other 

absorbent powders, such as Fullers Earth. Whilst allowing the agent to be removed from 

surfaces that are likely to cause an immediate hazard to personnel, the problem is only 

transferred elsewhere. As a result, reactive systems, which destroy the agent at the site of 

decontamination, are preferable. Some of the reactive systems that have been developed 

since 1915 are described in section 1.3 below.

5



1.3 REACTIVE DECONTAMINANTS

1.3.1 General Decontaminants

The first decontaminants used were bleaching powders, most commonly 2-6 wt % 

NaOCl in water. As described later in section 1.4, HD reacts with the hypochlorite anion 

via a series o f oxidation and elimination reactions16, and when used in excess, this 

oxidant is a very efficient decontaminant for both neat and thickened HD. By 1939, 

superchlorinated bleaches, such as those in Table 1, were the most commonly used 

decontaminants15.

Table 1: Hypochlorite Decontaminants

DECONTAM INANT COMPOSITION APPLICATION

Bleach 2-6 wt% NaOCl in water Skin and equipment

HTH (high test hypochlorite) Ca(OCl)Cl + Ca(OCl)2 as a solid powder or a 

7% aqueous slurry

Equipment and terrain

STB (super tropical bleach) Ca(OCl)2 + CaO as a solid powder or as 7, 

13, 40, 70 wt% aqueous slurries

Equipment and terrain

Dutch powder Ca(OCl)2 + MgO Skin and equipment

ASH (activated solution of 

hypochlorite)

0.5% Ca(OCl)2 + 0.5% sodium dihydrogen 

phosphate buffer + 0.05% detergent in water

Skin and equipment

SLASH (self-limiting activated 

solution o f hypochlorite)

0.5% Ca(OCl)2 + 1.0% sodium citrate + 0.2% 

citrate acid + 0.05% detergent in water

Skin and equipment

Following the discovery o f the G-agents, new decontamination processes were 

required. Bleach solutions, suitable for HD destruction, rapidly detoxify the G-agents 

through a chlorine-catalysed hydrolysis reaction in aqueous solution17, and were also 

found to react with VX . It would appear that a single solution to the general problem of

6



decontamination had been found. However, alkaline bleach solutions have several 

important disadvantages:

a) the active chlorine content of most bleach solutions gradually decreases with

storage time so that a fresh solution has to be prepared prior to each use;

b) large amounts of bleach are required as a large excess is required;

c) bleaches are corrosive to many surfaces and harmful to personnel;

d) bleach solutions are much less effective at low temperature; and,

e) undesirable and toxic by products are formed with some agents.

Due to these problems, the search for new decontaminants began. Developments 

initiated in 1951 resulted in the adoption of the new general purpose decontaminant, DS2, 

in I96019. This is a polar, non-aqueous liquid, composed of 70% diethylenetriamine, 28% 

ethylene glycol monomethyl ether and 2% sodium hydroxide (w/w). It is a ready to use 

decontaminant, with long-term storage stability and a large operating temperature range 

of between -26°C and 52°C. At ambient temperatures it reacts very quickly with all the 

agents mentioned.

Whilst DS2 is a highly effective decontaminant and non-corrosive to most metal 

surfaces, damage can be caused to paints, plastics, rubber, and leather goods, and it is also 

corrosive to skin. In order to minimise these problems, the contact time with paints is 

kept to 30 minutes and then the surface is washed with water. Personnel handling DS2 are 

required to wear respirators, eye shields and protective gloves, in order to avoid skin 

contact and ingestion. It was also found that long exposure to air, or relatively large 

amounts of water, degrade the decontaminant. Although not perfect, DS2 and STB are 

still the major general decontaminants used by the military today.

7



1.3.2 Decontaminants for Skin and Personal Equipment

The search for better personal decontaminants has been ongoing. The first such 

decontaminants were bleaches, used in dry form, in which the hydrochlorite salt was 

diluted with an inert solid such as silica. Later, personal decontaminant kits, reputed to be 

very efficient against thickened GD, were developed in the Soviet Union. These were 

copied by the Americans to produce the M258 system in 1974, which was updated in the 

1980’s to the M258A1 and M280 systems15.

These kits consist of two sealed packets, the first containing a towelette prewetted with 

a solution of 72% ethanol, 10% phenol, 5% NaOH, 0.2% ammonia, and about 12% water 

by weight. The other contains a towelette impregnated with chloramine-B, 

PhS(0 )2NClNa, and a sealed glass ampule filled with a solution of 5% ZnCh, 45% 

ethanol, and 50% water by weight. Towelette 1 is effective against G-agents and towelette 

2, after breaking the ampule and wetting it immediately prior to use, against HD and VX. 

The two towelettes are used consecutively to wipe the skin and personal items such as 

masks, hoods, gloves, overboots and weapons.

1.4 THE CHEMISTRY OF DECONTAMINATION

As noted above, both DS2 and STB feature prominently in current decontamination 

technology, despite their health hazards, and further investigation into new decontaminant 

systems for personal and battlefield use is required. If a system can be developed that is 

effective for both uses, then this will be a bonus.



The McKay criterion defines an effective decontamination system as one where

90destruction of an agent occurs within a cigarette break . Thus the half-life of reaction 

(ti/2) for an effective system, the time taken for the concentration of agent to fall to half 

the original value, would be expected to be in the order of two minutes or less. When 

developing a new decontamination procedure, the nature and reactivity of the agents, the 

effects of the decontaminant on the surroundings, and factors such as cost, ease of 

production and stability, as well as rate of reaction, are also important considerations.

Many reactions can be used to detoxify agents, but only a few are feasible for practical 

decontamination. Nucleophilic substitution (including hydrolysis) and oxidation are the 

two preferred chemical reactions that can detoxify most agents under ambient conditions, 

as discussed below. These reactions are attractive for conversion to catalytic processes, 

and they have formed the basis of the investigations reported herein. Electrophilic 

oxidation is important in the decontamination of agents such as HD and VX, which 

contain sulphur(II) centres. Hydrolysis is conveniently used for the decontamination of G- 

agents, but it may also be used for some other agents.

As all the agents have different properties, solubilities and reactivites, the media in 

which the reaction takes place is important. Aqueous systems are cheap, water is 

generally readily available and is convenient for mixing with powdered decontaminants. 

However, not all the common agents are water miscible, especially thickened agents, and 

micelles and micro-emulsion technologies are being developed to overcome this problem. 

All common agents are readily soluble in organic solvents, but many of these solvents 

tend to be expensive and/or flammable and toxic, and they are not readily available under 

all circumstances. Although homogeneous reactions are preferred, two phase systems,

9



with the agent as the organic phase and ionic reactants in the aqueous phase, are also 

worthy of investigation.

The sections below highlight some of the decontamination reactions of agents, with 

particular respect to oxidation and hydrolysis.

1.4.1 Oxidation Reactions

1.4.1.1 Oxidation of HD

Under oxidising conditions, the sulphur(II) centre in HD may be readily oxidised, 

initially to the +4 (sulphoxide, (6 )) state, and then to the + 6  (sulphone, (7)) state. The 

sulphoxide of HD is the chemical goal for its oxidative decontamination because of its 

low toxicity. However, the sulphone is itself a vesicant, although it is less harmful than 

HD, as it is a solid that poses no vapour hazard21.

(6) (7)

The first decontaminants, bleaching powders, react very vigorously with HD, both in 

the neat and thickened form. HD is converted into a series of oxidation and elimination 

products as shown in the reaction scheme below16. The major oxidation products are the 

sulphoxide and sulphone:



Other oxidation and elimination products include:

The sulphoxide (6 ) forms first followed by the sulphone (7), both of which can 

undergo HC1 elimination in the strongly basic medium to afford the monovinyl and 

divinyl sulphoxides and sulphones above. This is not an ideal method of decontamination 

as the oxidation process is difficult to control and results in some sulphone formation.

Although quantitative oxidation of HD to the sulphoxide can be achieved under 

ambient conditions with some oxidants, e.g. concentrated HNO321, many such reagents 

are completely unsuitable for practical decontamination purposes.

The oxidative process occurring between HD and the personal decontamination 

systems M280 and M258A1, mentioned in 1.3.2, are outlined below . Chloramine-B, on 

the towelette, dissolves in the water added from the ampule and ZnCh buffers the 

solution to between pH5-6. The sulphur in HD is susceptible to electrophilic attack by 

(8 ), and reacts rapidly to form the sulphimide (9), which may be hydrolysed by water to 

form the sulphoxide. A mixture of the sulphimide and sulphoxide is produced, but no 

sulphone formation is observed . The reaction is not catalytic and so a new set of 

reactants is required for each decontamination procedure.



'Cl
Na

+ H20 / X

-HCI

+ OH" + Na+ 
S '  Cl

o

(8)

(9)

o

- s— NH,

II
0

Cl

Studies using hydrogen peroxide as oxidant have also been undertaken24. The 

oxidation of HD by this reagent is slow in the absence of a catalyst, but fast in the 

presence of some metal ions. In a homogeneous solution of 50 vol% ^-butanol and 0.9M 

H2 O2 both oxidation and hydrolysis of HD occurs at the interface, the ti/2 for oxidation 

being 3 hours at 22°C. In a 50/50 mix of water/N-cyclohexyl-2-pyrrolidinone with 1% 

H2O2 at 21°C, HD has a half-life of 6  hours producing the sulphoxide as the only product. 

However, in the presence of a 0.01M solution of [VO(acac)2 ] 25 ,26 in acetonitrile, 1M 

H2O2 completely oxidises CH3SCH2CH2CI (0.1M) to the sulphoxide in less than two 

minutes at 20°C. If this result can be replicated with HD, then this system may prove to 

be very effective for the oxidative decontamination of HD.
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The commercial oxidant Oxone is a mixture of three salts, 2 KHSO5/KHSO4/K2 SO4 ,

stronger oxidant than H2O2 . However, although it first oxidises HD rapidly at the 

interface to the sulphoxide, the sulphone is the only final product.

The brominating agent NBO (3-N-bromo-4,4’-dimethyl-2-oxazolidinone) (10) is 

effective as a mild oxidising agent, producing the sulphoxide from HD as the 

predominant product. However this reagent is soluble to the extent of only 0.5% in 

aqueous solution, which is a major problem for its use .

Other organic oxidising agents, including dimethyl sulphoxide (DMSO), have been

• 70

found to oxidise HD. The mechanism for DMSO oxidation is shown below .

which produce the active ingredient [HSO5]' in aqueous solution24, and it is a much

o

(10)

Cl
s.

Cl Determining Cl

Rate

(11)

cr DMSO
Cl

(12)

Cl

0

.sII
X

(13)

X = Cl, OH, 0-S(CH3)2 X = cr, H20, DMSO
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This SNlprocess is very slow and even after 30 days unreacted HD is present. The first 

step o f the mechanism involves the sulphur(II) centre in HD internally cleaving a C-Cl 

bond and forming a transient cyclic ethylenesulphonium ion (11), which then reacts with 

DMSO to form 12. Subsequent sulphur assisted displacement o f dimethyl sulphide occurs 

in 12 to form the four-membered ring in 13. Due to ring strain this compound reacts 

rapidly with any nucleophile present, such as chloride ion or water, to produce a 

sulphoxide. DMSO is effective as an oxidant in this case because o f its ability to act as a 

nucleophile, and the importance o f 11 in further nucleophilic substitution reactions is 

explained in section 1.4.2.

In experiments using half-mustard, an oil in water microemulsion, containing a 2-fold 

excess o f hypochlorite, oxidised the sulphide to the sulphoxide exclusively. It was found 

that as much as 1 ml o f sulphide could be oxidised by 15 ml o f microemulsion, and that 

reaction times were less than 15 seconds29. The microemulsion used was stabilised by a 

long-chain surfactant, and an alcohol cosurfactant (14). It is thought that an alkyl 

hypochlorite forms at the oil / water interface where the cosurfactant is known to reside. 

Subsequent oxidation then proceeds in or on the droplets as in 14a below.

HOCI

H3.

CYCLO-
HEXANE

WATER

(14) (14a)
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The speed of the reaction may be attributable to the huge contact area available, and 

the system is very promising, as it is cheap, stable and readily available. However, the 

system is not catalytic, as hypochlorite is consumed stoichiometrically, and larger scale 

decontamination experiments caused the formation of 32-45% of the sulphone product.

Another attractive approach is to activate the oxygen in the air via a catalytic process 

in order to decontaminate HD. However, although there are known catalysts for this 

process, their activity is insufficient at ambient temperature for rapid HD 

decontamination30.

1.4.1.2 Oxidation of VX

VX can also be oxidatively detoxified in aqueous solution. However, for a given 

oxidant, the sulphoxide of VX forms much more slowly than that of HD. Once formed, 

the VX sulphoxide immediately hydrolyses in the presence of water to form a mixture of 

phosphonic and sulphonic acids, as the P-S bond is broken under these conditions. 

However, VX follows a number of reaction paths depending upon the nature of the 

solvent present. In anhydrous conditions, e.g. organic solvents, the nitrogen of VX is 

oxidised at a reasonable rate, but oxidation of sulphur is extremely slow . In acidic 

solution the nitrogen in VX is protonated and is not readily oxidised. In basic and neutral 

aqueous conditions, oxidation to the stable N-oxide occurs more rapidly than oxidation of 

sulphur. When only nitrogen is oxidised, VX is not detoxified, as the N-oxide product is 

also toxic.

Aqueous bleaches are very effective at oxidising VX in acid, neutral or alkaline 

conditions e.g. pH 4 tj/2= 1.2 min, pHIO (calcium hypochlorite) t]/2= 1.5 min18. However,
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the reaction is non-catalytic and the corrosive nature of these oxidants mitigates against 

them being used on skin or metal. At high pH, VX becomes much less soluble than in 

neutral or acidic solutions, and so acidic conditions are preferred for its oxidation.

Chloramine-B, within towelette n, is only able to react with VX when the solution is 

sufficiently acidic so that both reactants are protonated. VX does not react with towelette 

II because the pH of the solution appears to be increased by VX. It is thought that VX is 

removed from skin simply by the wiping action and solubilisation in the solution32. 

Studies using an unbuffered aqueous solution of 0.2M chloramine-B showed that about 

50% of the 0.01M VX was hydrolysed within a few days, however, this reaction is too 

slow for practical use .

i t
VX is not oxidised by H2O2 but reacts rapidly with Oxone . The sulphur is first 

oxidised followed by hydrolysis at the P-S bond, with a ti/2 of 1.9 min in 0.1M Oxone at 

21°C. Oxone acts as an acidic buffer (pH 1.9) and can dissolve large amounts of VX, due 

to protonation at nitrogen, and only three equivalents of oxidant are required for one 

equivalent of VX as illustrated below.

Although this method is better than using bleach, the procedure is still very corrosive 

and the weight of inert salts present is a major disadvantage in Oxone use. Milder 

conditions using NBO (10) have been attempted at pH 9.6 in a detergent, and im  as low 

as 0.2 min can be obtained. However, 12-18 moles of NBO per 1 mole of VX are needed
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for complete reaction, and combined with the low solubility of VX and low stability of 

the solution this makes for a poor detoxification procedure. The same drawback applies to 

oxidations using potassium permanganate, in which a 20-fold molar excess is required35.

Recent studies using ozone as an oxidising agent have been undertaken36. VX reacts 

similarly to a tertiary amine, with oxidation occurring at carbon atoms adjacent to 

nitrogen. A variety of novel VX derivatives possessing intact P-S bonds is generated, and 

as such, retain formidable toxicity. Thus, this process is not very suitable for the practical 

elimination of VX.

1.4.2 Nucleophilic Substitution Reactions

Of the nucleophilic substitution reactions, hydrolysis is the most effective method of 

decontamination for the G-agents, HD and VX. However, the rate and completeness of 

this reaction for each agent depends critically upon solubility, structure, pH and 

temperature.

1.4.2.1 Hydrolysis of G-Agents

GB is completely miscible with water, and GA and GD have solubilities of 7.2 g and

2.1 g per 100 ml of water at 20°C respectively37. Hydrolysis under acidic, neutral and 

basic conditions has been reported, and rate enhancements occur for GB below pH4 and 

above pH6.5. Thus for GB at 25°C, \m  = >100 hrs at pH 6.5 and <5 minutes at pH 1038,39.

The G-agents undergo base-catalysed hydrolysis in water to form their corresponding 

phosphonic acids and an equivalent of HF (see below for GB) 40. Hydrolysis is thought to 

proceed by nucleophilic attack at phosphorus via an Sn2 mechanism41, and determination

17



of the rates of hydrolysis at varying pH may be used to indicate any deviations from this 

simple mechanism42.

O O
B ase Catalysed

>
+ HF

> O F

+ H20
Hydrolysis O OH

Although further rate enhancements occur under strongly alkaline conditions e.g. 

NaOH, pH13, ti/2= < 1 second, or in the presence of the hypochlorite ion17, which is 

found to act as a catalyst for this reaction, these conditions are far too corrosive for use 

under battlefield conditions.

Slight increases in the rate of hydrolysis were found for two simulants, diisopropyl 

fluorophosphate (DFP) and diethyl fluorophosphate (DEFP), in the aqueous phase in the 

presence of imidazole, histidine, pyridine and certain of their derivatives43. The half-lives 

of DFP and DEFP in water are 50 hours and 8 hours respectively. On addition of 

imidazole, values are reduced to 2.5 hours and 50 minutes, and with pyridine to >6 

hours and 80-100 minutes for mohmol ratios of 1:7.5 for DFP solutions, and 1:10 for 

DEFP solutions respectively. More recent studies have shown that the hydrolysis of GB is 

catalysed by primary amines, particularly ethylenediamine and hydrazine, and that the rate 

of reaction follows the rate equation below44.

The reactivity shown for mono-protonated 1,2-ethanediamine is thought to arise from 

intramolecular acid-base catalysis on the bipyramidal transition state of a water co

-d[GB]/dt = k2[GB] [amine] + kOH[GB][OH']
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ordinated to GB. Concerted proton abstraction from the co-ordinated water by the 

unprotonated nitrogen o f the amine, and hydrogen donation to the equatorial phosphoryl 

oxygen by the protonated portion occurs, as illustrated below.

✓
' " Q✓

/

F

Metal salts, especially those o f copper, were found to accelerate the hydrolysis 

reaction even further. Subsequently copper(II) complexes o f  various amino acids, 

imidazole, ethylenediamine and 2,2’-dipyridyl were prepared and shown to be highly 

active catalysts for the hydrolysis o f G-agents45. Significant rate enhancements for DFP 

were noted as shown in Table 2.

Table 2: Comparison of the Rates of Hydrolysis of DFP With Various Catalysts in 
Bicarbonate-CO? Buffer, pH7.6 and at 38°C

COMPLEXING AGENT HALF-LIFE OF HYDROLYSIS (MINUTES)
No Catalyst >2500
Ethylenediamine 16
Imidazole 14
2,2’-Dipyridyl 4.5

Many other investigations have taken place into the effect and mechanism o f various 

metal ion systems for the catalytic hydrolysis of nerve agents46-65, and the most effective 

catalysts have been shown to be based on copper(II) ions. The observed first order rate 

coefficient for the catalysed path was determined to follow the relationship given below:
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kobs = k2 [Off] [M"+] + khyd

where [M"+] = metal ion concentration, [OH ] = hydroxide ion concentration and khyd =

cn
spontaneous hydrolysis rate coefficient . The mechanism of the copper(II) catalysed 

hydrolysis of G-agents and their simulants follow a similar scheme to that for the 

hydrolysis of a phosphate ester by the copper(II) nitrate/2,2’-bipyridine (BPY) complex,

as shown below158-61

[Cu(BPY)(H20 )2]2+ + OH-

(15)

-H ,0

po2(OR)2-

OH

,N— c l -------H20

I
_N 

(16)

OH

N Cu 0  Rr OR
\

OR

)R

HO

.N—cl O

i

OR

p;— o r

ORl \

[Cu(BPY)0H(H20)]+

(16)

OP(OR)3

h2o

OH

/ OR

,N— Cu 0 = P < — OR

OR
N

On dissolution of the copper(II) nitrate/2,2 ’-bipyridine complex in water it forms the 

diaqua complex (15) and is in equilibrium with the active hydroxo-aqua species (16), 

which in turn is in equilibrium with the dihydroxo-bridged dimer (17, see below). 17 is 

inactive in the hydrolysis reaction , and reduces the rate of agent hydrolysis as its
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concentration in solution increases63. The hydrolysis reaction is a ‘push-pull’ type of

mechanism, in which the copper(II) ion polarises the P=0 bond by its Lewis acid effect to 

give a phosphorane intermediate, and the copper(II) then delivers a coordinated hydroxide 

ion in an intramolecular reaction. Decay to the products then occurs by loss of OR' here, 

or F' when agent is used.

The effects of ligand type and number, overall charge, steric effects, and complex 

stability have all been investigated in order to define the mechanism of copper(II) 

catalysed agent hydrolysis and to determine the relative activities of a series of copper(II)

species, that neutral bidentate ligands induce more activity than tridentate and 

quadridentate ligands, and that a 1:1 mole ratio of bidentate ligand to copper(II) produces 

better catalytic activity.

Maximum catalytic activity is favoured for metal chelates in which the copper(II) 

centre has maximum electropositivity. The more positive the metal ion in the chelate, the 

greater will be its tendency to hydrolyse to give the active hydroxo-aqua species and its 

residual affinity for polarising the P=0 bond from the phosphate group.

In order to facilitate the process of intramolecular attack of M-OH on a co-ordinated 

phosphodiester, it has been postulated that two cis-oriented coordination sites must be 

available on the metal65. For tri- and especially quadridentate ligands, this may not be

+ N,
H

.0,
2+

2

(16) (17)

complexes64. It was found that chelating diamines form the most active copper(II)
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possible, and so rates are low. Overall, the tetramethylethylenediamine/copper(II) 

combination has been found to be one o f the most effective metal catalysts o f this type.

The process o f metal ion catalysed hydrolysis has been developed in a number o f 

different directions, in particular through the production o f metallomicelles and metal 

loaded polymers. A long chain chelate o f the cupric ion, Atlanta-2 (18), has been 

prepared66, and when dissolved in water above its critical micelle concentration it forms 

metallomicelles. In these the Stem region is filled with cupric ion and consists o f 

approximately 40 molecules.

(18)

It is thought that the agent binds to the surface of the micelle where the active species 

are concentrated. This allows reaction via the mechanism described above, and for GD at 

25°C and pH 7, tj /2 is 0.85 minutes as opposed to 60 hours without the catalyst.

Similar long chain diamines have been made such that the chain facilitates attachment 

to a polymer support20,67, as in the example below (19). Polystyrene has been frequently 

used as the support material and catalytic turnovers were observed for these polymer 

catalysts, with tj /2 = 2.7 minutes at pH8.0 and 25°C for the most active system.

M\  /  \
@ - H 2CO(H2C)6 ' '  2/  (CH2)13CH3

Cu

(1 9 )
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A long chain near the active centre has been shown to facilitate activity, and a 6- 

carbon spacer chain accelerates hydrolysis of the GD simulant, 4-nitrophenyl diphenyl 

phosphate (NPDPP), 8-fold compared to the analogue in which the diamine is attached to 

the polystyrene support through just one carbon atom. This is an important consideration 

in respect of the supported catalysts that were to be developed in this project.

There has been a great deal of interest shown in the potential of o-iodosobenzoic acid 

as a catalyst for the hydrolysis of G-agents ' . When solubilised, o-iodosobenzoic acid 

is able to exist in its 1-hydroxy-l,2-benziodoxolin-3-one tautomeric form (20) and is in 

equilibrium with l-oxido-l,2-benziodoxol-3(lH)-one (20a), a strong oxygen nucleophile, 

which rapidly cleaves esters or phosphates with true catalytic turnover. The hydrolysis 

reaction with the simulant PNPDPP (p-nitrophenyl diphenyl phosphate) is summarised 

below.

.COOH
-H* PN PDPP

OH

(20 ) (20a) OH'
OPh

OH'OH

OH'

-COOH

’OH
PhOvOPh

BV
/ \

HO OPh

OPh

PhO,

OPh
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These o-iodosobenzoic acid systems are also good catalysts for the hydrolysis of G- 

agents, reducing t \/2 of hydrolysis for GD, GB and GA to minimum values of 29, 51 and 

1056 seconds respectively. However, these systems are not effective for VX and are only 

stoichiometric at sulphur with HD. As o-iodosobenzoic acid is relatively easy to modify, 

micellar69,70 and solid-supported iodosobenzoate catalysts have also been prepared, 

including polystyrene and polyacrylate74, silica75, titanium dioxide and nylon76 supported 

versions, described in 1.5.1.

1.4.2.2 Hydrolysis of HD

HD has a solubility of 0.092 g dm'3 in water at 22°C. It dissolves in water at a rate of

1.2 x 1 O'5 g cm'2 minute'1 11, and it is the rate of mass transfer that controls the rate of 

hydrolysis. Although HD has been reported to have ti /2 of 5 minutes at 25°C in water, 

with hydrolysis occurring via an SnI mechanism , the rate of mass transfer is so slow 

that HD cannot be detoxified by treatment with water alone. The chemical goal for 

decontamination by reaction with water is the thiodiglycol (21) below.

(21)

HD will react at the water interface to form a complicated set of products that diffuse 

rapidly into the bulk water phase, as below79.
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The formation of the ethylenesulphonium ion (11) is the key intermediate for the 

initial stages of the reaction, as it is in the oxidation reaction with DMSO. This ion may 

then react further to form 21, which itself reacts further forming the other products. The 

final products HTG, CH-TG and H-2TG are stable in water but HTG is believed to be 

quite toxic80.

SIThe ethylenesulphonium ion also reacts easily with nucleophiles , and this forms the

S'?basis of other decontamination reactions e.g. with micellar oximes . However, it is noted 

that the formation of the ethylenesulphonium ion is greatly reduced in less polar solvents, 

reducing the rate of reaction83. Further investigations using detergents, such as alkyl 

sulphonates, and micelles have shown similar reductions in the rate of reaction84.
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1.4.2.3 Hydrolysis of VX

VX has a solubility of 3% by weight in water and dissolves at a rate of 4 x 10’ g cm' 

min"1, with the addition of detergents seemingly ineffective at increasing this rate77. The 

mechanism of hydrolysis is dependent on the pH of the solution, with hydrolysis far 

slower between pH 7-10, e.g. under the same conditions ti/2= 2900 minutes at pH 9.5 and 

140 minutes at pH 12. Hydrolysis of the P-S bond is the desired route for 

decontamination of VX. However, hydrolysis can occur via P-0 or C-S bond cleavage,

Off
where cleavage of the P-0 bond gives a product that is still deadly , as below.

-cA oh
HS S  S

A /-o s

P -S  C le a v a g e

C -S  C le a v a g e

.0'

X

X
P-0 Cleavage h/ V ^ A

n+:

+ EtOH

\ __ /
N <

Reaction of excess hydroxide ion (aqueous 0.1 M NaOH) with 0.01 M VX has ti# of 

31 minutes at 22°C, with products from both P-S cleavage (87%) and P-0 cleavage 

(13%) . Speed of reaction, the caustic nature of the solutions used, and the products 

formed by this process mean that this method cannot be used as a useful decontamination 

process for VX.
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Due to the associated problems of P-0 bond cleavage in the above reactions, the 

peroxyhydrolysis of VX has been studied as an alternative method of decontamination34. 

Peroxyhydrolysis of VX with [H C y involves quantitative P-S cleavage at rates, 30 to 40 

times quicker than that with [OH]‘, where Ua = 0.75 minutes for [HO2]" reaction. No 

evidence of P-O bond cleavage was found. Only the phosphonate and sulphonate ions, 

and the neutral disulphide are formed as shown below. This is an excellent method for 

decontamination of VX, however the reaction is not catalytic.

— s \ /
N

\

V /

A ^ \
V

- o / \ -

0 3s

1.4.3 Other Nucleophilic Substitution Reactions

The G-agents have been found to undergo non-catalytic nucleophilic reactions with

Q fJ  OQ OQ AA
phenols , catechols , oximes and hydroxamic acids . Investigations of reactions 

between HD, VX and micellar oxime systems ’ have also been investigated. However, 

as this study concentrates on catalytic reactions, these will not be discussed here.

1.5 CATALYST SUPPORTS

There are many factors to be taken into consideration when developing new 

decontaminant systems. The single most important factor is the speed of elimination of
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the particular hazard. Further considerations to be taken into account include the cost and 

ease of production of the decontaminants, their stability, ability to work under a range of 

climatic conditions, their generality and environmental impact.

The nature of the surface on which the agent may be deposited is also a major 

consideration. Variables such as the surface contamination density, surface porosity and 

type must be taken into account. There must be enough decontaminant to eliminate the 

entire hazard, it must be able to penetrate to where the agent exists, and most importantly 

the decontaminant must be non-corrosive, so as not to damage the surface.

Most of the systems mentioned earlier in this chapter need a liquid phase in which to 

react. This will require the transport of large amounts of liquid under field conditions. An 

ideal decontaminant is one which can be carried and applied to the surface easily, and 

which uses the minimum of additional solvent to decontaminate all available agents. A 

catalyst system, which can be attached to a surface to present a preventative shield, is the 

most desirable therefore, as it would still be effective after the initial use and does not 

need to be reapplied. Catalytically active species have been incorporated onto silica and 

also polystyrene supports, for example, because solid decontaminants are easy to handle, 

potentially fast and efficient, and lend themselves to continuous recycling.

1.5.1 Existing Support / Catalyst Systems

As described above, o-iodosobenzoic acid derivatives are active in the 

decontamination of some agents whilst solubilised in aqueous micellar solutions. 

Analogues have been attached to polystyrene polymers via quaternary ammonium ion 

extender units74.
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•CH2NMe2CH2CH2NMe2CH2CH20-

These materials have been found to be active against GD. However, these functional 

polymers are not easy to prepare, nor are they compatible with the normal aqueous 

conditions used for agent decontamination.

In contrast, silica based o-iodosobenzoic acid catalysts are more polar, wettable, 

cheaper and easier to prepare via silylation of silica’s surface hydroxy groups75,91.

;SiCH2CH2CH2NCH2CH20

Me

This reagent behaves as a true catalyst turning over in the presence of excess simulant, 

PNPDPP. It is very active against GD, where Xm = 4.2 minutes in 0.05M pH8 phosphate 

buffer, with 5 mmol of GD and 100 mg of supported catalyst. Its activity is about 4 times 

greater than an analogous polystyrene catalyst and compares to a tj/2 of 67 minutes for the 

simulant in the buffer alone.

This basic idea may be extended to produce a catalytically active coating that can be 

applied to a surface as a preventative measure. Coatings can be incorporated into 

appropriate paints, and applied directly onto the surface of the item to be protected. They 

will also fill the pores and cracks where agents might otherwise not be deactivated.
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o-Iodosobenzoic acid reagents have also been immobilised on titanium dioxide (22), 

an important constituent of various paints, and nylon (23), a principal element of 

synthetic fabrics used for clothing76.

(Ti02)

(Ti02)

Me

\
Br'

0 — —SiCH2CH2CH2NCH2CH20

(Ti02)------ 0  I
Me

NH(CH2)3NMe2CH2,

(22) (23)

Both reagents are good catalysts for cleavage of the simulant PNPDPP under 

heterogeneous aqueous conditions at pH8, exhibit turnover capability, and are true 

catalysts. These catalysts may be washed with buffer, dried and recycled at least four 

times with little or no loss in their activity.

Polymer attachment has been extended to incorporate the active copper(II)/ligand used 

in the metallomicellular decontamination reactions described in section 1.4.2.1. 

Polystyrene polymers incorporating long hydrocarbon chains terminated with an active 

copper(II)/ethylenediamine derivative have been prepared as outlined below20.

1e j  v Me
\  /  \  /  BuLi, THF, -10°C

N N ------------ -* ■

H \
R

R = -CH3 and -(CH2)i 3CH3 STE P 1

Mea Mg Me y v l\
\  / \  /  Br(CH2)6OH \  /  \ M/  NaH. THF. reflux

\  THF. 0°C
R HOJCH^e

STEP 2

\

Me.
\ / \ /

N

•0(CH2)6 R

Me 0—

Me. / ---------v Me\  /  \  /A A/  \  /  \CHjO(CH2)6 " C u2+n r

c h 2ci

\ / — \ / '  
/ N V

Me CuCI2,EtOH-THF

P s )-------- CH£)(CH2)6

30



The spacer chain linking the amine to the polystyrene can be varied depending upon 

the length of the alkyl chain, attached to the alcohol functional group, in step 2. The 

deprotonated amine, formed by step 1, can also be added directly to the polystyrene 

support to minimise the chain length. However, it has been shown that a longer spacer 

chain between support and active metallated amine centre has a positive effect on the rate 

of hydrolysis as described in section 1.4.2.120.

These metallated polymers accelerate the rate of hydrolysis of GD and some 

simulants. For example the hydrolysis of the simulant NPIPP proceeds 1460 times faster 

than in the absence of the polymer. It is difficult to compare heterogeneous reactions with 

the homogeneous metallomicelle catalysed reactions, but if it is assumed that the entire 

polymer generates an equivalent copper(II) concentration to that in an equivalent amount 

of the metallomicelle system, the former does not quite achieve the rates obtainable by 

the latter. However, the solid-state nature of polymeric catalysts permits catalyst removal 

by filtration, agent decontamination within a flow reactor, and other options unavailable 

for water soluble catalysts.

Another way of preparing polymer-supported systems is to polymerise a monomeric 

unit already bearing the desired active group, in order to create a less random polymer. 

However, only a small number of groups may end up on the polymer surface, the others 

being effectively buried, so seriously impairing the chemical activity of the polymer. This 

is a major problem for insoluble polymers lacking porosity. As a result, a synthesis based 

on the polymerisation of a ‘water pool’ system has been developed as below. After 

polymerisation of the product from the procedure below, high surface area polystyrenes, 

in which most of the reactive sites are on the polymer surface, are produced .
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The total content of amine in the resulting polymers may be determined by total 

nitrogen analysis, and the fraction of amine at the surface can be measured by the 

polymer’s ability to complex copper(II) ions from solution. It was found using the 

procedure above that 100% amine incorporation occurred, and that after polymerisation 

some 89% of the diamine groups were exposed at the surface of the polymer. At pH8 and 

25°C, an amount of polymer containing 2.5 x 10'5 M of copper(II), hydrolysed 2.5 x 10"4 

M of phosphate ester in aqueous solution with ti/2 = 2.5 hours .

In more recent studies a range of polymer supported bidentate amine copper(II) 

complexes has been prepared93. These include linear styrene, acrylate and methacrylate 

polymer structures, and crosslinked resins derived from vinylbenzyl chloride, glycidyl 

methacrylate and methacrylic acid. Hydrogels based on hydroxyethyl methacrylate, 

hydroxyethyl acrylate and hydroxypropyl acrylate, each copolymerised with a diamine 

containing monomer, have also been prepared. All the polymer supported copper(II) 

complexes showed good catalytic activity, relative to the rate of uncatalysed hydrolysis 

reactions, based on the measured half-lives for the hydrolysis of GB. The linear 

polymethacrylate based catalysts were identified as the most active species, where ti/2 = 

2.6 and 3.2 minutes for the copper(II) chloride and nitrate species respectively.

These examples prove that the addition of a support does not stop the catalyst’s ability 

to promote hydrolysis of agents. The supports also add an extra dimension to the catalysts

32



in that they can facilitate attachment to a surface, be removed and re-used and, subject to 

the chemistry of the ligand, allow specific functionality to be controlled and manipulated 

to suit requirements.

1.5.2 Siloxanes As Catalyst Supports

From many points of view, siloxanes containing the -[SiR2(0)]n- repeat unit provide 

an ideal backbone or support for this type of use:

i) they are relatively cheap and commercially available;

ii) the basic polymers are chemically inert, non-toxic, and have good thermal 

stabilities;

iii) they are easily fimctionalised with a wide range of side arm substituents that 

can be used as property modifiers for use in new applications;

iv) they are highly permeable to gases and vapours;

v) polymers can be prepared in forms as diverse as mobile hydrophobic fluids 

through to thin, cross-linked elastomeric films that can be immobilised on 

many surfaces, including natural fibres and inorganic solids; and,

vi) a variety of additives may be incorporated in the polymer in order to improve 

its performance.

One reason for this unique combination of properties can be traced to the great 

strength of the Si-0 bond, typically 480 kJ mol'1 according to Emsley94, which 

demonstrates the high affinity of silicon for oxygen. Also, the Si-0 skeletal bond has a 

bond length of 1.64A, whereas the C-C single bond present in most organic 

homopolymers has a bond length of 1.53A. The longer Si-0 bond tends to reduce steric
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hindrance between substituents, although this is partly negated by the larger size of Si 

compared to C, but not completely. Other reasons include the great flexibility of the Si- 

O-Si linkage and the very low rotational energy of the Si-C bond. The Si-O-Si bond angle 

of approximately 143° is much more open than the usual tetrahedral bonding occurring in 

C-O-C systems. In addition, this bond angle can be greatly deformed without significant 

loss of bond energy95.

This combination of properties has a profound effect on the melting point of the 

polymer (Tm), and poly(dimethylsiloxane), PDMS, has a very low Tm of -40°C. The more 

flexible a chain, the more it can be cooled before the chains lose their flexibility and 

mobility. As a result organosiloxanes generally have low glass transition temperatures, 

for example Tg for PDMS ca -125°C, and so PDMS can be exposed to very low 

temperatures and not become brittle96.

Also important in determining Tg is the mobility and size of the side chains attached to 

the siloxane backbone. Large side groups or polar interactions between side groups will 

cause the groups to repel or attract each other, so lowering the mobility of the groups and 

hence increasing Tg. For example the addition of a phenyl side groups increases Tg to 

-86°C for (PhSiMeO)n and ca 0°C for (Ph2 SiO)n. Variation in the groups can be used as a 

means of controlling the flexibility of the polymer chains, and thus the physical properties

07 Qfiof the materials as required for a large number of uses ’ .

1.5.3 Preparation of Organofunctional Siloxanes

The simplest and most readily available polymer is polydimethylsiloxane, 

Me3Si(SiMe2(0))n0SiMe2. Various methods may be used to incorporate a given mole%
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of active side-arm substituents onto the siloxane backbone, and produce organofunctional 

siloxanes of the type, Me3 SiO(Me2 SiO)x(MeRSiO)ySiMe3 . These methods are 

exemplified in the sections below.

1.5.3.1 Direct Modification of the Si-Me Group of PDMS

This method is not widely used for the production of organosiloxanes, as the Si-Me 

group of PDMS is relatively unreactive. The reagents needed to induce reactivity in this 

group generally cleave a Si-0 bond, rather than removing a proton from a Si-Me group, to 

produce the required intermediate. However, it has been reported that f-butyl lithium 

deprotonates one of the Si-Me groups of hexamethyldisiloxane, and the resultant product 

reacts with Cp2ZrCl2 , where Cp = cyclopentadienyl, and Cp*ZrCl3 , where Cp* = 

pentamethylcyclopentadienyl, to produce the functionalised siloxanes 

Cp2Zr(CH2SiMe2 0 SiMe3 )2  and Cp*ZrCl2(CH2 SiMe2 0 SiMe3)299, which may prove useful 

for further synthetic elaboration.

1.5.3.2 Ring Opening Polymerisation

This method involves ring opening copolymerisation of an organofunctional monomer 

with a cyclodimethylsiloxane ring and a chain terminating agent such as hexamethyl 

disiloxane100. A suitable organofunctional dihalosilane is hydrolysed to form siloxane 

prepolymers consisting of linear and cyclic materials, which are combined with cyclic 

dimethylsiloxanes and an end-blocker as illustrated below. The process typically utilises 

strongly acidic or basic catalysts, which open the cyclic monomers and redistribute the 

siloxane bonds101.

h 2o
m(X2SiMeR) ----------- ► (MeRSiO)m + 2mHX
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H or OH Catalyst
(M e3S i)20  +  (M e2SiO)n + (M eRSiO)m ------------------------^  M e3SiO [M e2SiO]x[M eRSiO]ySiM e3

Acid catalysed siloxane polymerisation can be achieved using proton or Lewis acids. 

The mechanism for this process is described below and starts with the protonation of the 

oxygen of the highly polar Si-O-Si bond, which subsequently undergoes scission.

H+ +
= Ri 0  S i ^ =  -----------►---= Si-------0 ----- S i = =  + X'  ► ^ = S i ------ OH + ^ = S i -------- X

H

Condensation reactions then reverse the scission by forming new siloxane bonds. This 

whole process occurs many times to form the final products. The driving force for this 

reaction is the change in entropy, as the linear polymer has a higher degree of molecular 

freedom than that of the ring compound. Without the addition of the chain terminators, 

polysiloxanes with Si-OH and Si-X terminal end groups are formed.

= Ri--------OH + = fij-------- X  ► ^ = S i ------- O------ S i ^ =  + HX

= = qi------- OH + = = = = Si------ OH -----------------------► = = = S i ------- O------ S i ^ =  + h20

= = = S i  X + h2o   = Si--------0H + HX

A further reaction may take place to reorganise the siloxane chains. The siloxane 

oxygen of a non-protonated molecule adds nucleophilically to a protonated species 

followed by scission and re-formation of Si-O-Si linkages.

+

:si1 o  Si2̂ =

;sid O S r ^ =
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The base catalysed mechanism is promoted by an activated intermediate formed by 

addition of a hydroxyl group to the siloxane bond, which then cleaves, and the fragments 

form new Si-O-Si bonds by condensation. The catalyst causes continuous scission and re

formation of the siloxane bond, and thus further growth of the siloxanes.

OH"ESi1 O si=  -----------► = = S i ------ 0 ——g j ^ =  + X" -----------►-- ^ = S i ------ OH + ^ = S i ' ------- O"

OH
K+

ESi1 0 ----- Si2̂ =    = S i 2----- OH + = S i 1-------OK

The choice of catalyst is important in order to minimise interaction with the reactive 

group on the functional monomer. For example, if the final copolymer contains amine 

groups then the catalyst would normally be a strong base102’103, and if the final copolymer 

contains thiol groups, then a strong acid is selected104. This process is not limited to the 

addition of one type of functional group on silicon. Indeed, as long as the chemistry is 

compatible, then any combination of functional groups is possible, although very difficult 

to control. This type of reaction gives rise to co-polymers with a wide range of molecular 

weights with a random distribution of co-monomer units in the polymer chain, and thus 

this reaction is not suitable for the preparation of specific polymers with defined and 

reproducible loadings and structure.

1.5.3.3 Reaction of Primary Alcohols with Si-H Moieties

Poly(methylhydrosiloxanes), (Me3SiO(MeSi {H} 0 )x(Me2Si0)ySiMe3), are 

commercially available with a wide range molecular weights and loading of Si-H (ratio of 

x:y), as are primary alcohols containing other functionalities. The condensation reaction
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between Si-H and hydroxyl compounds, such as primary alcohols, takes place in the 

presence of a variety of metal catalysts to form Si-O-C containing species with 

elimination of hydrogen. The most commonly used catalysts are zinc octanoate, iron 

octanoate, and dibutyltin dilauratel105,106, but platinum species are also effective.

C atalyst
Me3Si0(M eSi[H ]0)x(Me2S i0 )ySiMe3 + HO R ------------------ ►  Me3SiO(M eSiO)x(Me2SiO)ySiM e3 + H2

OR

Although high loadings are readily achieved, the resultant poly(organosiloxanes) 

contain Si-O-C linkages, which are more reactive than Si-C-C linkages formed by the 

hydrosilylation process outlined below.

1.5.3.4 Hvdrosilvlation Reactions

Hydrosilylation reactions involve the reaction of a =Si-H moiety with a 1-alkenyl 

group attached to the functional group required, to form silicon-carbon bonds as detailed 

below107'109. The hydrosilylation reaction may be radical or photochemically initiated, or 

catalysed by one of a number of transition metal complexes. One of the most commonly 

used catalysts is Speier’s catalyst, hexachloroplatinic acid in isopropanol.

p tu
Me3S i0 (M eS i(H )0 )x(M e2S i0 )ySiM e3 + ^  | ^ “  ► M e3SiO (M eSiO )x(Me2S iO )ySiM e3

L = Ligand

The mechanism of the reaction is not well understood. In the first proposed

mechanism, suggested by Harrod and Chalk110, the reaction was thought to be
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homogeneous. However, work by Lewis and Lewis111 has shown that it is often 

heterogeneous, with the active platinum species in the colloidal state. This basic cycle 

involves reduction of Pt(IV) to Pt(0) by the silane, oxidative addition of Si-H to the 

metal, coordination by the alkene, rearrangement to a cr-bonded alkyl complex, and 

reductive elimination of the product as outlined below. The isomeric branched silane 

product is often a minor product in this reaction109,112’113.

Oxidative
Addition

This precious metal catalyst is susceptible to poisoning, difficult to recover or remove, 

and catalyses secondary reactions involving the solvent, isopropanol. Given the 

disadvantages of this catalyst, more active platinum catalysts, which are soluble in non- 

hydroxylic solvents, and contain the metal in the divalent or zero oxidation state, are 

often preferred and are very efficient.

A range of functionalised model tri- to penta- siloxanes, Me3SiO(MeOSiH)nSiMe3 (n 

= 1 to 3) have been prepared previously using hydrosilylation procedures114. The model 

siloxanes mimic the reactions of polymer species and can be used to explore the best 

conditions for addition of side chains. Functional side chains added previously include
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entities such as perfluoroethers112,115, CH=CH2 , -CN and -PPh2 114. Some of these have 

been metallated using metal halide and metal carbonyl moieties, and the products isolated 

and characterised116, for example [(Me3SiO)2 SiMe(CH2CH2PPh2)]RhCl and 

[(Me3SiO)2SiMe(CH2CH2Ph)]Mo(CO)3.

As Si-H containing prepolymers, polymers and cyclics are commercially available, 

well defined organofunctional polymeric siloxanes may be prepared via hydrosilylation 

reactions. There is a wide range of effective catalysts to choose from116 and a wide 

number of organosiloxanes have been produced for many different purposes using this 

method. Side chain functionalities that have been incorporated onto polysiloxanes include 

silyl ketene acetals118, cyclic carbonates119 crown ethers120, amines, ethers and 

esters121,122.

The physical and chemical properties of organofunctional polymers can be 

modified further through control of the degree of ligand loading, and incorporation of 

cross-linking moieties in order to prepare siloxane films. The Si-H groups on the 

polysiloxanes can be completely converted to functional side chains or, under careful 

control of the reaction, precise amounts of side chain can be added in order to control the 

amount of functionality of the polymer. The remaining Si-H groups can be used to add

171another type of side chain, or more commonly, to prepare cross-linked membranes . 

Cross-linking can be achieved using long chain silanol terminated 

poly(dimethylsiloxane), (H0-[Si(Me)2-0-]m-H), in the presence of tetraethoxysilane, 

(Si[OEt]4), promoted by a dibutyltin dilaurate catalyst for example, to give a membrane 

as in the diagram below.
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The studies referenced above have shown that after attachment of the required 

functional groups to a siloxane backbone, metal salts may complexed with the suitable 

functional side chain, to produce metal containing organosiloxanes that can then be used 

for further applications. These methods have formed the basis of the procedures used to 

prepare the organofunctional, and subsequent metallated siloxanes that have been 

produced in this study.

1.5.3.5 Nucleophilic Attack of Chloroalkvl Functional Siloxanes

A less frequently used method of preparing organofunctional siloxanes involves 

nucleophilic attack on chloroalkyl functional siloxanes. Chloroalkyl siloxane monomers 

may be synthesised from the appropriate cyclic precursors via a hydrosilylation reaction. 

Ring opening copolymerisation may then be used to prepare a chloroalkyl functional 

siloxane polymer. Displacement of the chloride ion has been accomplished using amines 

or carboxylates123,124 for example, and is a potential route to materials that cannot be 

formed by direct hydrosilylation. However, this method has a major disadvantage in that 

nucleophilic attack on the siloxane backbone may also occur, resulting in chain scission.
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Pt
(M eSiO)4

(Me3Si)20
Me3SiO(M eSiO )x(Me2SiO)ySiMe3 R N Me3SiO(M eSiO)x(Me2SiO)ySiMe3

(MeHSiO)4 + CH2=CHCH2CI
(Me2SiO), (CH2)3CI (CH2)3

(CH2)3CI
NR3+CI'

Me3SiO(M eSiO)X(Me2SiO)ySiMe3

(CH2)3OCOR'

+ NaCI

1.5.4 Uses of Polvoreanosiloxanes

There are numerous applications of such organofunctional siloxanes. In relation to 

practical uses in fields related to this research, these polymers have been found to be 

particularly useful in textile treatments100, selective liquid extraction125, and in 

permselectivity processes122.

Silicones have been used for many years as a water repellent treatment for clothing. 

The addition of side chains to the polymer can effectively modify the behaviour of the 

siloxane. For example, the addition of an amine side chain has been effective in 

preventing the shrinkage of silicone treated wool during wash cycles126. As selective 

liquid extractants, crown ether containing siloxanes are fluids, and can be made 

completely miscible with water at high loadings and short polymer chain lengths125. Thus, 

the hydrophobic/hydrophilic balance of a silicone can be modified by side-arm 

fimctionalisation.

Paints can be applied to numerous surfaces that require protection, and functional 

siloxanes may be incorporated into both water or organic solvent based paints, depending 

on the properties of the functional siloxane polymer. Once incorporated, and the paint 

applied, an appropriately fimctionalised polymer may be able to facilitate the 

decontamination of agents on the paint surface. Alternatively, the functional siloxane 

polymer catalyst may be dissolved in a solvent, the solution applied to a surface and the
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solvent evaporated in order to coat the surface with an active coating. Reactive cross- 

linked siloxane membranes can also be made. Such membranes will allow gases and 

liquids to permeate through them, and as organosiloxanes are normally hydrophobic, a 

toxic agent may be expected to dissolve in the membrane, so bringing it into intimate 

contact with either a metal catalyst or other decontaminating agent. Alternatively, the 

organofunctionality of the polymer may be chemically modified to create a surface barrier 

that repels agents, in order to stop it permeating into a surface and affecting the 

underlying material.

In summary, the physical properties of siloxane polymers, and the facility with which 

they can be modified to meet the chemical and physical requirements of chemical warfare 

agent decontamination procedures, make these systems promising for use as supports for 

decontamination catalysts. Incorporation, at the molecular level, of the catalyst systems 

shown to be most active against agents (section 1.4) may produce siloxane polymer 

systems that are extremely useful in this respect, both on the battlefield and in an 

industrial setting.
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2. EXPERIMENTAL

2.1 SYNTHETIC METHODS AND INSTRUMENTATION

2,2'-Dipyridylmethane (L4) was prepared in 58% yield by the reduction of 2 ,2 - 

dipyridylketone with hydrazine hydrate and sodium hydroxide. (2,2'-Dipyridyl) 

methylamine (L5) was prepared in 41% yield via the reaction of 2-chloromethylpyridine 

with 2 -aminomethylpyridine following modified literature methods as noted 

below127'128.

6 -Bromo-l-hexene was purchased from Fluka. Triethylene glycol monomethyl ether 

(L I8 ), platinum divinyltetramethyldisiloxane (C2), all model siloxanes and siloxane 

copolymers were purchased from Fluorochem. All other solid reagents were purchased 

from Aldrich and used without further purification. Solvents and liquid reagents, 

including 4-vinyl pyridine (L14) and allyl imidazole (L13) (from Aldrich), were dried as 

necessary using molecular sieves. A vinyltrimethylsiloxane platinum(O) catalyst (C l) of 

research quality was obtained from Dow Coming, and dichloro(l,5- 

cyclooctadiene)platinum(II) (C3) was prepared elsewhere at Bath University and used 

without further purification.

All distillations were carried out under reduced pressure using a Kugelruhr 

apparatus. Spectra were recorded on the following instruments: Nicolet 51 OP FT-IR (I.R 

spectra), JOEL GX270 and EX400 ( ‘H, 13C and 29Si N.M.R spectra) and VG 70-70E 

(mass spectra). N.M.R spectra were recorded as CDCI3 solutions unless otherwise 

stated. Chemical shifts are quoted in ppm, relative to TMS = 0. For all 29Si N.M.R 

samples, [Cr(acac)3] was used as a relaxation agent.
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All experimental procedures carried out at Bath were performed only after their 

potential hazards had been evaluated. Experiments carried out at Porton Down, under 

the immediate supervision of Dr. N. Blacker, conformed with DERA safety protocols.

Dr. M.F. Mahon carried out all solid-state structure determinations. All data were 

measured on a CAD 4 automatic four-circle diffractometer in the range 2<0<24° at room 

temperature. Data were corrected for Lorentz and polarisation, but not for absorption, in 

all cases.

2.1.1 Preparation of N-Donor Ligands

2.1.1.1 2,2I-Dipyridvlmethane (L4f

2,2'-Dipyridylketone (5.00 g, 27 mmol) was added to a hot solution of potassium 

hydroxide (3.14 g, 56 mmol) in diethylene glycol (100 ml), giving a dark red solution. 

Hydrazine hydrate (3.0 ml, 62 mmol) was added, resulting in the solution boiling, and 

the solution was further heated under reflux for four hours to give a clear orange 

solution. On cooling, water (100 ml) was added, and the solution extracted with 

dichloromethane ( 8  x 20 ml). The extracts were dried over MgS0 4  and evaporated under 

reduced pressure, leaving a yellow liquid. Hydrobromic acid (46-48% aqueous solution, 

5 ml) was then added to this residue. On dilution with ethanol (100 ml) and standing, 

colourless crystals of the dihydrobromide salt of the product formed. The salt was 

dissolved in water (50 ml), neutralised with potassium carbonate, and extracted with 

chloroform ( 8  x 10 ml). The combined extracts were dried over magnesium sulphate, 

the solvent was then removed, and the resultant oil distilled at 110°C and 0.05 mbar to 

give 2,2'-dipyridylmethane as a colourless liquid (2.69 g, 58%). Analysis (%): Found 

(Required for Cn H 10N2)-  C, 77.3 (77.6); H, 5.92 (5.92); N, 16.3 (16.5). I.R (cm-1): 

v(pyridine rings), 1589, 1568. N.M.R (ppm) (CDC13): !H, 4.34 (s, 2H, CH2), 7.08-7.12 

(m, 2H, aromatic), 7.24-7.27 (d, J = 7.69 Hz, 2H, aromatic), 7.55-7.61 (m, 2H,
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aromatic), 8.53-8.55 (m, 2H, aromatic); 13C, 46.9 (bridging CH2), 121.2, 123.3, 136.3,

149.0, 159.1 (aromatics). Mass spectrum (70eV C.I. m/z): 170 (M+).

2.1.1.2 (2.2,-Dipyridvl)methvlamine (L5)

2-Chloromethylpyridine hydrochloride (10.0 g, 61 mmol) in water (20 ml) was 

neutralised with a saturated solution of potassium carbonate. The free base was then 

added to an ethanolic solution (25 ml) of 2-aminomethylpyridine (15.0 g, 140 mmol) 

and kept at 40-45°C for one hour. The solvent was removed and the remaining oil 

redissolved in a strong aqueous solution of potassium hydroxide. The solution was then 

extracted with ether ( 8  x 1 0  ml), the extract dried with magnesium sulphate and the 

solvent removed to leave a red oil. This was distilled at 140°C (0.1 mbar) to produce the 

required product as a yellow oil (5.00 g, 41%). Analysis (%): Found (Required for 

C 12H 13N3)- C, 71.4 (72.3), H, 6.47 (6.58), N, 20.9 (21.1). I.R (cm-1): v(N-H) 3122; 

v(pyridine rings) 1591, 1570. N.M.R (ppm) (CDC13): 2.74 (s, 1H, NH), 3.89-3.98

(m, 4H, CH2), 7.13 (m, 2H, aromatic), 7.33-7.36 (m, 2H, aromatic), 7.59-7.62 (m, 2H, 

aromatic), 8.54 (m, 2H, aromatic); 13C, 54.6 (N-CH2), 121.7, 122.0, 136.2, 149.1, 159.6 

(aromatics). Mass spectrum (70eV C.I. m/z): 199 (M+).

2.1.2 Ligand Alkenvlation Reactions

An N - or C - alkenyl group (1-propenyl or 1-hexenyl) was introduced into the 

following ligands so that the products could be used in hydrosilylation reactions.

2.1.2.1 Alkenvlation of 2.2I-Dipyridvlamine (LI)

LI (1.71 g, 10 mmol) was added to a solution of potassium t-butoxide (1.12 g, 10 

mmol) in THF (50 ml) and the mixture stirred at room temperature for one hour. Allyl 

bromide (0.95 ml, 11 mmol) was then added, and the solution stirred for a further hour,
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during which time a suspension of potassium bromide in a bright yellow solution 

formed. The suspension was filtered off, the solvent removed, and the remaining 

solution chromatographed on a silica gel (70-230 mesh) column using a 9:1 (v/v) 

mixture of 60°-80° petroleum ether and ethyl acetate as elutant. The product was 

isolated from the first fraction as a light yellow liquid and was identified as the required 

N-alkenylated compound, L8, (0.74 g, 35%). Analysis (%): Found (Required for 

C13H 13N3)- C, 73.9 (73.9); H, 6.36 (6.20); N, 19.6 (19.9). I.R (cm-1): v(C=C), 1643. 

N.M.R (ppm) (CDCI3): iH, 4.85-4.89 (m, 2H, N-CH2), 5.07-5.21 (m, 2H, CH=CH2), 

5.97-6.06 (m, 1H, CH=CH2), 6.83-6.86 (m, 2H, aromatic), 7.14-7.17 (m, 2H, aromatic), 

7.49-7.55 (m, 2H, aromatic), 8.32-8.34 (m, 2H, aromatic); 13C, 50.0 (N-CH2), 115.4 

(CH=CH2), 134.5 (CH=CH2), 114.2, 116.7, 136.8, 147.8, 156.7 (aromatics). Mass 

spectrum (70eV E.I. m/z): 211 (M+).

The N-hexenyl substituted dipyridylamine analogue, L15, was prepared via a similar 

experimental method using 6 -bromo-l-hexene ( 1 0  mmol) instead of allyl bromide. 

Yield, 0.71 g, 28%. Analysis (%): Found (Required for C 16H 19N3)- C, 76.4 (75.9); H, 

7.77 (7.56); N, 16.6 (16.6). I.R (cm'1): v(C=C), 1639. N.M.R (ppm) (CDC13): 1H, 1.39- 

1.50 (m, 2H, CH2), 1.66-1.78 (m, 2H, CH2), 2.03-2.11 (m, 2H, CH2), 4.16-4.22 (m, 2H, 

N-CH2), 4.89-5.00 (m, 2H, C H C H ^, 5.70-5.86 (m, 1H, CH=CH2), 6.80-6.85 (m, 2H, 

aromatic), 7.06-7.09 (d, J = 8.43 Hz, 2H, aromatic), 7.46-7.52 (m, 2H, aromatic), 8.32- 

8.34 (m, 2H, aromatic); 13C, 26.3, 27.7, 33.5 (CH2), 48.0 (N-CH2),114.3 (CH=CH2), 

136.9 (CH=CH2), 114.6, 116.7, 138.8, 148.2, 157.4 (aromatics). Mass spectrum (70eV 

E.I. m/z); 253 (M^).

2.1.2.2 Alkenvlation of 2-1 r2-(Dimethvlamino)ethyl1methvlamino} ethanol (L2)

Potassium /-butoxide (1.12 g, 10 mmol) was dissolved in THF (50 ml) and L2 (1.46 

g, 1 0  mmol) was added slowly, and the reaction mixture left stirring under a dinitrogen
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atmosphere for two hours. Allyl bromide (0.95 ml, 11 mmol) was then added, causing 

the precipitation of potassium bromide. After stirring for a further hour at room 

temperature, the suspension was filtered off and the solvent removed from the filtrate to 

leave an orange liquid. The liquid was then purified by column chromatography, on a 

deactivated alumina column, using a mixture of acetone and 60°-80° petroleum ether 

(1:9 v/v). After removal of the solvent the required allylether, L9, was obtained as a 

yellow liquid (1.23 g, 6 6 %). Analysis (%): Found (Required for C10H22N2 O)- C, 64.4 

(64.5); H, 12.0 (11.9); N, 14.1 (15.0). I.R (cm-1): v(C=C), 1647. N.M.R (ppm) (CDC13): 

JH, 2.23-2.25 (m, 6 H, N-Me2), 2.30-2.33 (m, 3H, N-Me), 2.38-2.43 (m, 2H, N-CH2CH2- 

N), 2.51-2.56 (m, 2H, N-CH2CH2-N), 2.60-2.65 (m, 2H, N(Me)CH2), 3.52-3.59 (m, 2H, 

CH2 CH2-0), 3.97-4.00 (m, 2H, CH2-CH=CH2), 5.14-5.30 (m, 2H, CH=CH2), 5.84-5.98 

(m, 1H, CH=CH2); 13C, 42.9 (N-Me), 45.6 (N-Me2), 55.8 (CH2-N-CH2), 57.1 (N- 

CH2 CH2-N), 68.1 (CH2CH2-0), 71.8 (CH2 -0-CH2), 116.6 (CH=CH2), 134.6 (CH=CH2). 

Mass spectrum (70eV C.I. m/z): 186 (M+).

2.1.2.3 Alkenvlation of Trimethylethvlenediamine (L3)

To a solution of L3 (1.53 g, 15 mmol) in diethyl ether (50 ml), w-butyllithium, 1.6M 

in hexanes, (9.5 ml, 15 mmol) was added drop wise at 0°C under a dinitrogen 

atmosphere. After stirring for 15 minutes, allyl bromide (1.4 ml, 16 mmol) was added 

and the mixture left stirring for three hours at room temperature. Lithium bromide was 

filtered off and the solvent removed from the filtrate leaving an orange liquid, which 

was purified on a deactivated alumina column using a 2 % solution of methanol in 

dichloromethane. The product, L10, was isolated from the first fraction as a yellow 

liquid after the solvent was removed (0.79 g, 37%). Analysis (%): Found (Required for 

C8H 18N2)- C, 6 6 . 6  (67.6); H, 13.0 (12.8); N, 18.7 (19.7). I.R (cm-1): v(C=C), 1643. 

N.M.R (ppm) (CDC13): 1H, 2.24 (s, 9H, N-Me), 2.40-2.46 (m, 4H, NCH2 CH2N), 3.01-

48



3.03 (m, 2H, CH2-CH=CH2), 5.10-5.20 (m, 2H, CH CFh), 5.80-5.95 (m, 1H, 

CH=CH2); 13C, 42.3, 45.7 (N-Me) 54.8, 57.4, (N-CH2CH2 -N), 61.4 (CH2CH=CH2),

117.3 (CH=CH2), 135.6 (CH=CH2). Mass spectrum (70eV C.I. m/z): 142 (M+).

The N-hexenyl derivative of L3 was prepared by a similar method using 6 -bromo-l- 

hexene (15 mmol) instead of allyl bromide, and purification was achieved by distillation 

at 130°C and 0.05 mbar to yield L16 (1.55 g, 56%). Analysis (%): Found (Required for 

C 11H24N2)- C, 71.3 (71.6); H, 13.3 (13.1); N, 15.2 (15.2). I.R (cm’1): v(C=C), 1641. 

N.M.R (ppm) (CDC13): ‘H, 1.38-1.49 (m, 4H, CH2), 2.05-2.07 (m, 2H, CH2), 2.23-2.25 

(m, 9H, N-Me), 2.32-2.47 (m, 6 H, CH2, N-(CH2)2-N), 4.91-5.03 (m, 2H, C H C lfc), 

5.72-5.85 (m, 1H, CH=CH2); 13C, 26.5,26.7, 33.5, 55.5 (CH2), 57.4, 58.1 (N-CH2-CH2- 

N), 42.5, 45.7 (N-Me), 114.3 (CH=CH2), 138.6 (CH=CH2). Mass spectrum (70eV E.I. 

m/z): 184 (M 1).

2.1.2.4 Alkenvlation of 2<2,-Dipyridvlmethane (L4)

A 1.8 molar solution of phenyllithium in cyclohexane:ether (7:3 v/v) (5.6 ml, 10 

mmol) was added slowly to a solution of L4 (1.70 g, 10 mmol) in dry diethyl ether (50 

ml) under a dinitrogen atmosphere at 0°C causing orange crystals of the lithium salt to 

separate. After stirring for thirty minutes, allyl bromide (1.0 ml, 11 mmol) was added 

drop-wise and the mixture stirred for a further four hours at room temperature, during 

which time the solution became lighter, with a red-orange tint. Water (20 ml) was added 

and the organic layer extracted with dilute hydrochloric acid ( 8 x 5  ml). The acidic 

liquor was neutralised with potassium carbonate and then extracted with ether (8 x 1 0  

ml). The combined extracts were dried over magnesium sulphate and then the solvent 

removed to leave a yellow oil, which was purified by column chromatography on a 

silica gel (70-230 mesh) column using a mixture of ethyl acetate and 60°-80° petroleum 

ether (1:4 v/v). The product, L l l ,  was isolated as a yellow oily liquid from the first
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fraction from the column (1.37 g, 65%). Analysis (%): Found (Required for C 14H14N2)- 

C, 79.1 (80.0); H, 6 . 6 8  (6.71); N, 13.6 (13.3). I.R (cm-1): v(C=C), 1641. N.M.R (ppm) 

(CDC13): iH, 3.00-3.05 (m, 2H, CH-CH2), 4.36-4.40 (t, J = 7.81 Hz, 1H, CH bridge), 

4.90-5.05 (m, 2H, CH=CH2), 5.69-5.79 (m, 1H, CH=CH2), 7.07-7.10 (m, 2H, aromatic), 

7.32-7.34 (m, 2H, aromatic), 7.55-7.60 (m, 2H, aromatic), 8.55-8.56 (m, 2H, aromatic); 

13C, 38.3 (CH2), 55.6 (CH bridge) 116.3 (CH2=C), 136.2 (CH=CH2), 121.4, 123.0,

136.3, 149.1, 162.0 (aromatics). Mass spectrum (70eV C.I. m/z): 210 (M+).

The C-hexenyl substituted derivative of L4 (L I7) was prepared in the same manner 

using 6 -bromo-l-hexene ( 1 0  mmol) instead of allyl bromide, and purified by distillation 

at 135°C and 0.05 mbar. Yield, 1.72 g, 6 8 %. Analysis (%): Found (Required for 

C 17H20N 2)- C, 80.2 (80.9); H, 8.26 (7.99); N, 11.3 (11.1). I.R (cm-1): v(C=C), 1639. 

N.M.R (ppm) (CDCI3): ‘H, 1.21-1.38 (m, 2H, CH2), 1.41-1.49 (m, 2H, CH2), 1.96-2.04 

(m, 2H, CH2), 2.21-2.30 (m, 2H, CH2), 4.23-4.29 (t, J = 7.79 Hz, 1H, CH bridge), 4.85-

4.97 (m, 2H, C H C H 2), 5.67-5.82 (m, 1H, CH=CH2), 7.05-7.10 (m, 2H, aromatic), 

7.31-7.36 (m, 2H, aromatic), 7.53-7.60 (m, 2H, aromatic), 8.54-8.56 (m, 2H, aromatic); 

13C, 27.2,28.7,33.4,34.2 (CH2), 56.0 (CH bridge), 114.1 (CH=CH2), 138.7 (CH=CH2),

121.3, 122.9, 136.2, 149.1, 162.8 (aromatics). Mass spectrum (70eV C.I. m/z): 252 

(M+).

2.1.2.5 Alkenvlation of 2<2l-(Dipvridvlmethvl)amine (L5)

L5 (1.20 g, 6.0 mmol) was dissolved in THF (20 ml) and added to a solution of 

potassium ^-butoxide (0.68 g, 6.1 mmol) in THF (20 ml), turning the solution dark 

purple. After stirring for an hour, allyl bromide (0.55 ml, 6.4 mmol) was added and the 

solution left stirring for a further 2 hours. The grey precipitate formed was filtered off to 

leave an orange filtrate. This was then dissolved in 40°-60° petroleum ether (5 ml) and 

purified on a deactivated alumina column using a mixture of 40°-60° petroleum ether:
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ethyl acetate (3:2 v/v). The product, L12, was collected as a yellow oil from the first 

fraction. Yield, 0.80 g, 56%. Analysis (%): Found (Required for C 15H 17N3)- C, 75.0 

(75.3); H, 7.41 (7.16); N, 17.0 (17.6). I.R (cm-1): v(C=C), 1643. N.M.R (ppm) (CDC13): 

]H, 3.18-3.20 (d, J = 6.23 Hz, 2H, N-CH2CH=CH2), 3.83 (s, 4H, CH2-N-CH2), 5.15-

5.27 (m, 2H, CH=CH2), 5.87-5.99 (m, 1H, CH=CH2), 7.12-7.16 (m, 2H, aromatic),

7.53-7.56 (m, 2H, aromatic), 7.62-7.68 (m, 2H, aromatic), 8.51-8.53 (m, 2H, aromatic); 

13C, 57.1 (N-CH2CH=CH2), 59.7 (CH2-N-CH2), 117.8 (CH=CH2), 135.2 (CH=CH2), 

121.7, 122.7, 136.3, 148.8, 159.5 (aromatics). Mass spectrum (70eV C.I. m/z): 239 

(M+).

2.1.3 Siloxane Functionalisation via Hydrosilylation Reactions

Hydrosilylation reactions between alkenylated ligands and trisiloxanes, containing 

either a terminal or central Si-H group, were carried out in sealed vessels, in an inert 

atmosphere, and under rigorously anhydrous conditions. Products were purified by 

distillation. Hydrosilylations involving Si-H containing co-polymers were carried out 

similarly. The degree of functional group loading of each product polymer was 

determined by proton N.M.R and elemental analysis.

2.1.3.1 Reactions of Ligands with 1.1.1.3.3,5.5-Heptamethvltrisiloxane (MSI)

A mixture of MSI (0.84 g, 3.75 mmol), the alkenylated substrate (3.75 mmol) and 

toluene (2 ml) were put in a flame dried tube under a dinitrogen atmosphere. Two drops 

of the platinum catalyst, C l, were added, and the tube was then sealed. The mixture was 

heated at 80°C for 24-48 hours. For long reactions, an additional aliquot of catalyst was 

added after 24 hours. The solvent and unreacted volatiles were removed by rotary 

evaporation, and the remaining crude products of the reactions were purified as follows:
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(a) Reaction with L 8  -  The product was distilled at 175°C and 0.05 mbar to yield 

MSL1, as a clear liquid (0.88 g, 54%). Analysis (%): Found (Required for 

C2oH33N 30 2 Si3)- C, 55.5 (55.4); H, 8.35 (8.13); N, 9.70 (9.69). I.R (cm"1): S(Si-O-Si), 

1047. N.M.R (ppm) (CDC13): ‘H, -0.03 (s, 6 H, 0-Si(Me)2-0), 0.04 (m, 15H, Si-Me3, 

Si(Me)?-CH2). 0.55-0.60 (m, 2 H, Si-CH2), 1.68-1.76 (m, 2 H, Si-CHrCtfc), 4.12-4.16 

(m, 2H, CH2-N), 6.79-6.82 (m, 2H, aromatic), 7.06-7.08 (d, J = 8.55 Hz, 2H, aromatic), 

7.46-7.50 (m, 2H, aromatic), 8.31-8.32 (m, 2H, aromatic); 13C, 0.00, 1.04, 1.63 (Si-Me),

15.2, 21.7, 51.1 (CH2 chain), 114.5, 116.6, 136.8, 148.1, 157.3 (aromatics); 2 9Si, 7.49 

(Si-Me3), 7.15 (Si(Me)2-CH2), -20.79 (-0-Si(Me)2 -0-).

(b) Reaction with L9 -  The product was distilled at 135°C and 0.075 mbar to yield a 

clear liquid as the required product, MSL2, (1.40 g, 91%). Analysis (%): Found 

(Required for C n H ^ N ^ S ij) -  C, 49.5 (49.9); H, 11.1 (10.8); N, 6.60 (6.85). I.R (cm-1): 

S(Si-O-Si), 1047. N.M.R (ppm) (CDC13): 'H, -0.07 (s, 6 H, 0-Si(Me)2-0), -0.01 (s, 6 H, 

Si(Me)2-CH2), 0.00 (s, 9H, Si-Me3), 0.41-0.47 (m, 2H, Si-CH2), 1.45-1.60 (m, 2H, Si-C- 

CH2), 2.15 (s, 6 H, N-Me2), 2.21 (s, 3H, N-Me), 2.32-2.35 (m, 2H, CH2-N-CH2 ), 2.43-

2.54 (m, 4H, N-CH2-CH2 -N), 3.31-3.33 (t, J = 6.05 Hz, 2H, Cth-O-CH^, 3.43-3.47 (t, J 

= 7.14 Hz, 2H, CH2-0 -CH2 ); 13C, -0.05, 1.09, 1.65 (Si-Me), 14.1, 23.3 (Si-CH2-CH2),

43.0, 45.7 (N-Me), 56.0 (N-CH2CH2-0), 57.2, 57.3 (N-CH2-CH2-N), 6 8 .8 , 76.5 (CH2- 

0-CH2); 2 9Si, 7.45 (Si-Me3), 6.96 (Si(Me)2-CH2), -21.02 (0-Si(Me)2-0).

(c) Reaction with L10 -  The product was distilled at 130°C and 0.05 mbar to yield 

the required product, MSL3, as a clear liquid (0.86 g, 63%). Analysis (%): Found 

(Required for Ci5H4 oN2 0 2 Si3)- C, 48.7 (49.4); H, 11.2 (11.1); N, 7.55 (7.68). I.R (cm-1): 

S(Si-O-Si), 1049. N.M.R (ppm) (CDC13): 'H, -0.01-0.06 (m, 21H, Si-Me), 0.44-0.49 (m, 

2H, Si-CH2), 1.40-1.49 (m, 2H, Si-CHj-CHj), 2.15-2.21 (s, 9H, N-Me), 2.30-2.45 (m,
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6 H, CH2-N-(CH2 )2-N); 13C, 0.00, 1.13,1.66 (Si-Me), 15.7, 20.8, 55.5 (CH2 chain), 42.4,

45.7 (N-Me), 57.4 (N-CH2 -CH2-N) ,61.8 (N-CH2 -CH2-N); 2 9Si, 7.49 (Si-Me3), 7.15 

(Si(Me)2-CH2), -20.8 (0-Si(Me)2-0-).

(d) Reaction with L l l  -  The product was distilled at 160°C and 0.07 mbar to yield 

the required product, MSL4, as a yellow tinted oil (1.09 g, 67%). Analysis (%): Found 

(Required for C2 iH36N20 2 Si3)- C, 57.8 (58.3); H, 8.40 (8.38); N, 6.50 (6.47). I.R (cm-1): 

5(Si-0-Si), 1047. N.M.R (ppm) (CDC13): ‘H, -0.07 (s, 6 H, 0-Si(Me)2-0), -0.01 (s, 6 H, 

Si(Me)?-CH?). 0.03 (m, 9H, Si-Me3), 0.57-0.61 (m, 2H, Si-CH2), 1.24-1.32 (m, 2H, Si- 

Clfe-Cth), 2.23-2.30 (m, 2H, Cth-CH), 4.27-4.31 (t, J = 7.78 Hz, 1H, CH bridge), 7.05- 

7.08 (m, 2H, aromatic), 7.33-7.35 (m, 2H, aromatic), 7.53-7.58(m, 2H, aromatic), 8.52-

8.54 (m, 2H, aromatic); 13C, 0.05, 1.12, 1.73 (Si-Me), 18.1,21.4, 38.2 (CH2 chain), 55.9 

(CH bridge), 121.3, 122.9, 136.3, 149.1, 162.9 (aromatics); 2 9Si, 7.19 (Si-Me3), 7.07 

(Si(Me)2 -CH2), -20.94 (-0-Si(Me)2-0-).

(e) Reaction with L13 -  The product was distilled at 130°C and 0.05 mbar to yield 

the required product, MSL5, as a clear liquid (0.79 g, 64%). Analysis (%): Found 

(Required for C,3H3 0N2O2Si3)- C, 47.3 (47.2); H, 9.41 (9.15); N, 8.30 (8.47). I.R (cm'1): 

5(Si-0-Si), 1049. N.M.R (ppm) (CDC13): 1H, -0.05-0.05 (m, 21H, Si-Me), 0.40-0.45 (m, 

2H, Si-CH2), 1.72-1.78 (m, 2H, Si-CH^CIfc), 3.83-3.87 (m, 2H, N-CH2), 6.84 (m, 1H, 

ring), 6.99 (m, 1H, ring), 7.40 (s, 1H, ring); 13C, 0.00, 1.17, 1.74 (Si-Me), 15.0, 25.3,

49.7 (CH2 chain), 118.6, 129.2, 137.0 (ring); 2 9Si, 7.34 (Si-Me3), 6.92 (Si(Me)2-CH2), - 

20.48 (-0-Si(Me)2 -0-).

(f) Reaction with L16 -  This reaction was carried out in the same fashion as those 

above, this time using C2 as the catalyst. Distillation at 130°C and 0.04 mbar yielded 

MSL6  as a clear liquid (1.03 g, 6 8 %). Analysis (%): Found (Required for
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C 18H46N 20 2 Si3)- C, 52.6 (53.1); H, 11.5 (11.4); N, 6.80 (6.89). I.R (cm-1); 8(Si-0-Si), 

1049. N.M.R (ppm) (CDC13): 'H, -0.10-0.04 (m, 21H, Si-Me), 0.48 (m, 2H, Si-CH2),

1.27 (m, 6 H, Si-CH2(CH2)3CH2), 1.41 (m, 2H, Si-(CH2)4 CH2), 2.18-2.19 (m, 9H, N- 

Me), 2.27-2.29 (m, 2H, N-CH^CH^s), 2.35-2.41 (m, 4H, N-(CH2 )2-N); 13C, 0.00, 1.08, 

1.63 (Si-Me), 18.1, 23.0, 27.0, 27.1, 33.2, 55.5 (CH2 chain), 42.5, 45.7 (N-Me), 57.4,

58.4 (N-(CH2)2 -N); 2 9Si, 7.42 (Si-Me3), 7.03 (Si(Me)2-CH2), -21.1 (0 -Si(Me)2 -0 ).

(g) An analogous reaction was carried out between 6 -bromo-l-hexene and MSI, 

using C3 as catalyst. The required product, MSL7, was isolated after distillation at 

175°C and 0.02 mbar as a clear liquid (1.33 g, 92%). Analysis (%): Found (Required for 

Ci3H33Br0 2 Si3)- C, 40.8 (40.5); H, 8.85 (8.63). I.R (cm-1): 5(Si-0-Si), 1049. N.M.R 

(ppm) (CDC13): ‘H, 0.02 (s, 6 H, 0-Si(Me)2-0), 0.06 (s, 6 H, Si(Me)2 -CH2), 0.09 (s, 9H, 

Si-Me3), 0.52-0.56 (m, 2H, Si-CH2), 1.32-1.36 (m, 4H, chain Si-CH ^CH ^), 1.42-1.45 

(m, 2H, SKCH ^-Clfc), 1.82-1.89 (q, J = 7.10 Hz, 2H, Si-(CH2)4CH2), 3.39-3.42 (t, J = 

6.87 Hz, 2H, CH2 -Br); 13C, 0.00, 1.10, 1.63 (Si-Me), 18.0, 22.9, 27.7, 32.3, 32.6, 33.8 

(chain CH2); 2 9 Si, 7.34 (Si-Me3), 7.11 (Si(Me)2-CH2), -20.94 (-0-Si(Me)2-0-).

2.1.3.2 Reactions of Ligands with 1,1.1,3,5,5.5-Heptamethvltrisiloxane (MS2)

A mixture of MS2 and alkenylated substrate, in 1:1 mole ratio, toluene (3 ml) and C2 

(4 drops) were put in a flame dried sealed tube under a dinitrogen atmosphere and 

heated at 80°C for up to 48 hours. Another portion of catalyst was added after 24 hours 

if all Si-H had not reacted (monitored by I.R spectroscopy). Once reaction was 

complete, the solvent was removed and the products purified as follows:

a) Reaction with L15(1.30g, 5.1 mmol) -  The product was distilled from the residue 

at 185°C and 0.05 mbar to yield MSL8  as a clear liquid (2.06 g, 8 6 %). Analysis (%):
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Found (Required for C23FLnN3 0 2 Si3)- C, 58.3 (58.1); H, 8.80 (8 .8 6 ); N, 9.04 (8.83). I.R 

(cm'1): 8(Si-0-Si), 1047. N.M.R (ppm) (CDC13): ]H, -0.03 (s, 3H, Si-Me), 0.07 (s, 18H, 

Si-Me3), 0.40-0.44 (m, 2 H, Si-CH2), 1.31 (m, 6 H, Si-CH2(CH2)3), 1 .6 6 - 1 . 6 8  (m, 2 H, Si- 

(CH2)4 CH2 ), 4.14-4.18 (m, 2 H, N-CH2), 6.81-6.84 (m, 2 H, aromatic), 7.06-7.08 (m, 2 H, 

aromatic), 7.47-7.51 (m, 2H, aromatic), 8.32-8.34 (m, 2H, aromatic); 13C, 0.00, 2.16 (Si- 

Me), 17.9, 23.4, 27.1, 28.5, 33.3, 48.7 (chain CH2), 115.0, 117.1, 137.3, 148.6, 157.8 

(aromatic); 2 9 Si, 6.92 (Si-Me3), -21.13 (Si-Me).

b) Reaction with L9 (1.12 g, 6  mmol) -  The product was distilled at 120°C and 0.05 

mbar to give MSL9 as a clear liquid (1.76 g, 72%). Analysis (%): Found (Required for 

Ci7H44N2 0 3 Si3)- C, 49.0 (49.9); H, 10.7 (10.8); N, 6.75 (6.85). I.R (cm'1): S(Si-O-Si), 

1039. N.M.R (ppm) (CDC13): 'H, -0.06-0.05 (m, 21H, Si-Me), 0.39 (m, 2H, Si-CH2),

1.53 (m, 2H, Si-ClfeCFh), 2.17-2.20 (m, 6 H, N-Me2), 2.23-2.25 (m, 3H, N-Me), 2.35 

(m, 2H, N -CH ^CH ^), 2.47-2.56 (m, 4H, N-(CH2)2-N), 3.31-3.33 (m, 2H, O- 

CH2CH2=CH), 3.47-3.48 (m, 2H, CH2 -0-(CH2)2); l3C, 0.00, 2.25 (Si-Me), 14.0, 23.6 

(Si-(CH2)2), 43.6, 46.3 (N-Me), 56.5 (N-CH2CH2-0), 57.8 (N-(CH2)2-N), 69.3, 74.3 

(CH2 -0-CH2); 2 9Si, 7.15 (Si-Me3), -21.6 (Si-Me).

c) Reaction with L16 (1.14 g, 6.2 mmol) - MSL10 was distilled at 120°C and 0.04 

mbar as a clear liquid (1.35 g, 54%). Analysis (%): Found (Required for 

Ci8H4 6N2 0 2Si3)- C, 52.6 (53.1); H, 11.3 (11.4); N, 6.80 (6.89). I.R (cm-1): 8(Si-0-Si), 

1049. N.M.R (ppm) (CDCI3): ‘H, -0.06-0.04 (m, 21H, Si-Me), 0.40 (m, 2H, Si-CH2), 

1.26 (m, 6 H, Si-CH2(CH2)3), 1.41 (m, 2H, Si-(CH2)4CH2 ), 2.19-2.20 (m, 9H, N-Me), 

2.30-2.31 (m, 2H, N -C H ^O ys), 2.36-2.40 (m, 4H, N-(CH2)2-N); 13C, 0.00, 2.14 (Si- 

Me), 17.9, 23.3, 27.5, 27.6, 33.5, 55.9 (CH2 chain), 42.9, 46.2 (N-Me), 57.8, 58.8 (N- 

(CH2)2 -N); 2 9Si, 6.84 (Si-Me3), -21.3 (Si-Me).
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d) Reaction with L17 (0.48 g, 1.9 mmol) - MSL11 was distilled at 135°C and 0.01 

mbar, and was isolated as a yellow liquid (0.74 g, 83%). Analysis (%): Found (Required 

for C24H42N202Si3)- C, 60.6 (60.7); H, 8.93 (8.92); N, 5.99 (5.90). I.R (cm'1): 5(Si-0- 

Si), 1049. N.M.R (ppm) (CDC13): 1H, -0.18-0.06 (m, 21H, Si-Me), 0.31-0.34 (m, 2H, 

Si-CH2), 1.12-1.25 (m, 8 H, Si-CH2 (CH2 )4), 2.13-2.18 (q, J = 7.63 Hz, 2 H, 

Si(CH2)5CH2), 4.16-4.20 (t, J = 7.63 Hz, 1H, bridging CH), 6.98-7.01 (m, 2H 

,aromatic), 7.26-7.28 (d, J = 7.63 Hz, 2H, aromatic), 7.47-7.51 (triplet of doublets, J = 

1.83 Hz (doublets), J = 7.63 Hz (triplet), 2H, aromatic), 8.46-8.47 (m, 2H, aromatic); 

l3C, 0.00, 2.14 (Si-Me), 17.8, 23.3, 28.1, 29.6, 33.4, 34.9 (chain CH2), 56.5 (bridging 

CH), 121.7,123.3,136.6,149.5,163.3 (aromatic); 2 9Si, 6.84 (Si-Me3), -21.1 (Si-Me).

e) An analogous reaction between L2 (1.46 g, 10 mmol) and MS2 (2.23 g, 10 mmol), 

using C3 as catalyst, stirred together in a flame dried flask at 90°C for 24 hours, yielded 

MSL12 as the product after distillation at 95°C and 0.04 mbar (3.18 g, 87%). Analysis 

(%): Found (Required for CnHsg^OsSis)- C, 45.9 (45.9); H, 10.6 (10.4); N, 7.75 

(7.64). I.R (cm-1): 8(Si-0-Si), 1055. N.M.R (ppm) (CDCI3): 'H, -0.03-0.09 (m, 21H, Si- 

Me), 2.13-2.17 (m, 6 H, N-Me2), 2.22-2.23 (m, 3 H, N-Me), 2.31-2.34 (m, 2H, N- 

OfcCH^O), 2.45-2.52 (m, 4H, N-(CH2)2-N), 3.68-3.71 (m, 2H, CH2 -0); l3C, -3.90, 

1.58 (Si-Me), 43.1,45,7 (N-Me), 56.1, 57.3, 59.5, 60.0 (CH2); 2 9 Si, 8.30 (Si-Me3), -56.9 

(Si-Me).

2.1.3.3 Reactions of Ligands with (3-4%)-Methvlhvdro-(96-97%)-dimethvlsiloxane 
Copolymer (CPI)

Using !H N.M.R and microanalysis, it was found that CPI required 6.7 equivalents 

of ligand for complete reaction. Reactions between CPI and L9 and L15 were carried 

out using the general procedure below. Microanalysis and lH N.M.R spectroscopy were
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used to determine the loading and degree of Si-H replacement of the functionalised 

polymer product.

A mixture of CPI (1.33 g, 0.4 mmol), alkenylated ligand (2.8 mmol), toluene (4 ml) 

and 5 drops of C2 were heated together for 48 hours in a flame dried sealed tube, under 

a dinitrogen atmosphere at 80°C. Addition of extra catalyst took place after 24 hours. 

The toluene was removed using a rotary evaporator, and the remaining polymer/ligand 

mix was washed with a large excess of cold methanol. Filtration of the polymer through 

celite removed any remaining platinum and any traces of solvent were finally removed 

by pumping. This yielded the products PL1 and PL2 as below:

a) The reaction with L9 produced a viscous clear liquid, PL1, which was found to 

have 75% of the available reactive Si-H sites replaced. From JH N.M.R and 

microanalysis, the polymer was shown to be loaded with 2.8 mol% of L9. Analysis (%): 

Found (Required for 75% replacement)- C, 34.3 (34.6); H, 8.47 (8.46); N, 1.00 (1.00). 

I.R (cm-1): S(Si-O-Si), 1008. N.M.R (ppm) (CDC13): ‘H, 0.04-0.09 (m, Si-Me), 0.45-

0.51 (m, Si-CH2), 1.58 (m, Si-CH2 CH2), 2.23 (s, N-Me2), 2.39 (s, N-Me), 2.40-2.43 (m, 

N-CH2CH2-O), 2.51-2.62 (m, (N-(CH2 )2N), 3.34-3.39 (m, CH2-0), 3.50-3.54 (m, O- 

CH2); 13C, 1.03 (Si-Me), 13.5, 23.3 (Si-(CH2)2), 43.2,45.8 (N-Me), 56.0, 57.4 (N-CH2- 

CH2-N), 69.0, 73.9 (CH2-0-CH2); 2 9Si, -21.86 (0-Si(Me)2-0), -21.56 (0-Si(Me)(CH2)- 

O), 7.34 (Si-Me2).

b) The reaction with L15 produced a viscous yellow liquid, PL2, which had 94% of 

the available Si-H sites replaced, based on the !H N.M.R and microanalysis results. The 

polymer contained 3.5 mol% functionalisation. Analysis (%): Found (Required for 94% 

replacement)- C, 36.8 (37.3); H, 8.15 (8.16); N, 1.83 (1.82). I.R (cm-1): S(Si-O-Si), 

1016. N.M.R (ppm) (CDC13): *H, -0.03-0.02 (m, Si-Me), 0.42 (m, Si-CH2), 1.25 (m, Si-
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CH2(CH2)3), 1.65 (m, Si-(CH2)4CH2), 4.10 (m, N-CH2), 6.78 (m, aromatic), 7.01 (m, 

aromatic), 7.42 (m, aromatic), 8.23 (m, aromatic); 13C, 1.02 (Si-Me), 17.7, 23.0, 26.8,

28.3, 34.2, 48.4 (chain CH2), 114.7,116.8, 137.0, 148.3, 157.6 (aromatics).

2.1.3.4 Reactions of Ligands with (15-18%)-Methylhvdro-(82-85%)-dimethvlsiloxane 

Copolymer (CP2)

It was found from ]H N.M.R and microanalysis results, that on average, CP2 

required a 1:3.5 mole ratio of polymer: ligand for complete reaction.

a) A mixture of copolymer (1.5 g, 0.75 mmol), CP2, alkenylated ligand, L9, (2.7 

mmol), toluene (3 ml) and two drops of C2, in a flame dried, sealed tube under a 

dinitrogen atmosphere were heated together at 85°C for 24 hours. All Si-H groups were 

found to have reacted as indicated by IR monitoring. The toluene was removed by rotary 

evaporation, and the excess ligand was removed by distillation at 95°C and 0.02 mbar to 

yield the product, PL3, as a clear liquid. This was found to have 74% of the reactive 

sites replaced, producing a polymer with 7.9 mol% functionalisation. Analysis (%): 

Found (Required for 74% replacement)- C, 38.3 (38.5); H, 9.17 (9.06); N, 2.65 (2.66).

I.R (cm-1): b(Si-O-Si), 1020. N.M.R (ppm) (CDC13): *H, -0.17-0.07 (m, Si-Me), 0.44- 

0.50 (m, Si-CH2), 1.60 (m, Si-CH^Fh), 2.21 (s, N-Me2), 2.27 (s, N-Me), 2.40-2.48 (m, 

N-CFhCH^O), 2.51-2.60 (m, N-(CH2)2-N), 3.33-3.38 (t, J = 6.96 Hz, CH2-0), 3.48-

3.53 (t, J = 6.06 Hz, 0-CH2).

Reactions between CP2 and L2 and L18 were also carried out whereby a mixture of 

CP2 (1.5 g, 0.75 mmol) and ligand (2.7 mmol) were stirred with a catalytic amount of 

C3 in a flame dried flask at 90°C for 12 hours, or until the reaction proceeded no
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further. The remaining reaction mixture was distilled at 100°C and 0.1 mbar to remove 

the excess ligand. The residue was then filtered through celite yielding the 

functionalised products described below.

b) The reaction with L2 yielded the product, PL4, a yellow liquid that analysis 

showed to contain 8 6 % of the available Si-H groups replaced, producing a 9.1 mol% 

functionalised polymer. Analysis (%): Found (Required for 8 6 % replacement)- C, 36.5 

(37.1); H, 8.98 (8.92); N, 3.15 (3.15). I.R (cm 1): S(Si-O-Si), 1020. N.M.R (ppm) 

(CDCI3): 1H, 0.02-0.08 (m, Si-Me), 2.27 (s, N-Me2), 2.31 (s, N-Me), 2.34-2.39 (m, N- 

CH2CH2-O), 2.48-2.58 (m, N-(CH2)2 -N), 3.74-3.79 (m, CH2-0).

c) The reaction with LI 8  produced a clear liquid, PL5, which was shown to have had 

91% Si-H replacement by L18, affording a 9.7 mol% functionalised polymer. Analysis 

(%): Found (Required for 91% replacement)- C, 36.7 (35.9); H, 8.61 (8.54); N, 0.00 

(0.00). I.R (cm-1): S(Si-0-Si), 1020. N.M.R: ‘H, 0.02-0.09 (m, Si-Me), 3.35 (s, CH3),

3.53-3.63 (m, CH2), 3.81 (m, CH2).

d) A mixture of CP2 (1.81 g, 0.91 mmol), L15 (0.47 g, 1.86 mmol), toluene (3 ml) 

and five drops of C2 were stirred in a flame dried sealed tube under a dinitrogen 

atmosphere at 85°C for 24 hours, after which time no alkenylated substrate was 

detected. The solvent was removed on a rotary evaporator and the resulting mixture was 

then heated at 90°C with L I 8  (excess) in a flame dried flask under a flow of nitrogen 

until the intensity of the Si-H stretch in the I.R spectrum decreased no further. Excess 

L18 was removed by distillation at 95°C and 0.02 mbar, and the yellow product, PL 6 , 

was found to have reacted at 8 6 % of the available sites of which L15 occupied 57.1% 

(6.1 mol%) and L18 28.6% (3.0 mol%). Analysis (%): Found (Required for the above 

replacement)- C, 41.0 (36.5); H, 8.16 (8.69); N, 3.10 (3.10). I.R (cm'1): 5(Si-0-Si),
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1016. N.M.R (ppm) (CDC13): ‘H, 0.10-0.19 (m, Si-Me), L15- 0.56 (m, Si-CH2), 1.41 

(m, Si-CH2(CH2)3), 1.77 (m, Si-(CH2)4CH2), 4.22-4.28 (t, J = 7.60 Hz, N-CH2), 6 .8 6 -

6.97 (m, aromatic), 7.14-7.18 (d, J = 8.43 Hz, aromatic), 7.56-7.61 (t, J = 8.29 Hz, 

aromatic), 8.41 (m, aromatic), L18- 3.47-3.48 (m, CH3), 3.65-3.74 (m, CH2), 3.93 (m, 

CH2).

2.1.3.5 Reactions of Ligands with (30-35% VMethvlhvdro-(65-70% Vdimethylsiloxane 

Copolymer (CP3)

Both *H N.M.R and microanalysis results indicated, that on average CP3 required at 

least 9 equivalents of ligand for total replacement. Reactions between L2 and L18 and 

CP3 were carried out, using 6 . 8  mmol of ligand, following the procedure used for the 

analogous reactions with CP2 above.

a) The reaction with L2 yielded a yellow liquid, PL7, as the product, with 54 mol% 

replacement of Si-H by L2, so affording a polymer with 16.3 mol% loading. Analysis 

(%): Found (Required for 54% replacement)- C, 37.1 (39.1); H, 8.94 (9.23); N, 5.45 

(5.43). I.R (cm'1): 5(Si-0-Si), 1032. N.M.R (ppm) (CDCI3): 1H, 0.04-0.06 (m, Si-Me), 

2.19-2.20 (m, N-Me2), 2.25 (m, N-Me), 2.35-2.37 (m, N-CH2 CH2-0), 2.47-2.53 (m, N- 

(CH2)2-N), 3.73-3.75 (m, CH2-0).

b) The reaction with L18 yielded a clear liquid, PL 8 , as the product that had 8 6 % of 

the available Si-H groups replaced, so producing a polymer with 25.7 mol% loading of 

ligand. Analysis (%): Found (Required for 8 6 % replacement)- C, 38.6 (41.0); H, 8.36 

(8.77); N, 0.00 (0.00). I.R (cm'1): S(Si-O-Si), 1022. N.M.R (ppm) (CDC13): 1H, 0.05- 

0.10 (m, Si-Me), 3.36 (m, Q-CH3), 3.63 (m, CH2), 3.80 (m, CH2).
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2.1.4 Metallation Reactions

2.1.4.1 Metallation of Ligands and Ligand-Functionalised Trisiloxanes

The ligands L1-L17 and model trisiloxanes MSL1-MSL6 and MSL8-MSL11 were 

metallated with copper(II) chloride, and in some cases copper(II) nitrate, following the 

general procedure below:

An ethanolic solution of copper(II) salt (5 ml solvent, 10 mmol copper salt) was 

added to an ethanolic solution of ligand ( 1 0  ml solvent, 1 0  mmol ligand), and the 

mixture stirred vigorously for 30 minutes. The metallated ligands were then purified as 

follows:

a) The ligands LI, L3-L8 and L10-L17 produced metallated salts that were insoluble 

in ethanol. They were filtered off, dried and analysed without further purification. 

Products from the reactions involving L2 and L9 were soluble, and so isolation and 

purification of the products was undertaken as follows.

Dichloromethane was added to the metallated salt of L2 to precipitate the product, 

which was filtered off and analysed. (Note: If the metallation reaction is carried out 

using MeCN as a solvent, then the product may be collected by filtration from the 

reaction mixture)

The metallated salt of L9 was redissolved in the minimum amount of methanol and 

then ether was added to initiate crystallisation. On standing, the pure product that was 

formed was filtered off and analysed. The analytical data for these products are given in 

Tables 8  & 9, section 3.1.3.

b) The model siloxanes, MSL1-MSL6, MSL8-MSL11, gave products that were 

soluble in ethanol. Ethanol was removed from the reaction medium by rotary 

evaporation, and the residue treated with excess dichloromethane. Filtration removed 

any excess copper(II) salt, and evaporation of the filtrate afforded the pure product.
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The experimental data for these reactions are summarised in Table 10, section 3.1.3.

2.1.4.2 Metallation of Functionalised Polymers

The functionalised polymers PL1 and PL2 were metallated with CuC^. An ethanolic 

solution of the polymer ( 1 0  ml solvent, 1 0  mmol equivalent of functionalised ligand) 

and an ethanolic solution of copper(II) chloride (10 ml solvent, 9 mmol copper(II) 

chloride) were mixed and stirred for 24 hours in order to produce a metallated polymer 

with a maximum of 90% of the available ligands metallated. Ethanol was evaporated 

and the metallated polymer was washed with cold water ( 3 x 1 0  ml) to remove any free 

copper(II) chloride.

2.2 X-RAY CRYSTALLOGRAPHIC STUDIES

Dr. M.F. Mahon, Department of Crystallography, carried out solid-state structure 

determinations on CuCh complexes of L2, L4, L9, L10, L12, L17 and a Cu(NC>3 )2  

derivative of L10 using single crystal X-ray diffraction. Molecular structures are 

illustrated in section 3.2, Figures 1-7. All data were measured on a CAD 4 automatic 

four-circle diffractometer in the range 2<0<24° at room temperature and the relevant 

crystallographic data are presented in Table 4. Data were corrected for Lorentz and 

polarisation but not for absorption in all cases. The thermal ellipsoids in Figures 1-7 are 

shown at the 30% probability level.

The structures of L2, L10, L 1 2 /CuCl2 and L 1 0 /Cu(NO3 )2  were solved by Patterson 

methods and L9, L17/CuCl2 were solved by Direct methods, all being refined using the 

SHELX129’130 suite of programs. The structure of L 4 /CuCl2 was solved using 

SHELX8 6 130 and refined using SHELX93131. In the final least squares cycles all atoms 

were allowed to vibrate anistropically. Hydrogen atoms were included for:
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L2 /CuCl2 - at calculated positions on the carbon atoms, the hydroxyl protons could 

not be located satisfactorily.

L 4 /CuCl2 -  at calculated positions where relevant, except on the solvent molecule.

L 9 /CuCl2 - at calculated positions in all cases except for the allylic protons (H9, 

H I01, HI 02) which were located in the penultimate Difference Fourier and refined at a 

fixed distance of 1.07 A from the parent atoms (C9, CIO). The chiral integrity of the 

molecule as presented is considerably greater than 99% based on the Hamiltonian 

significance test.

L 1 0 /CuCl2 - in an advanced Difference Fourier map and refined at a fixed distance 

(0.98 A) from the relevant parent atoms.

L 1 0 /Cu(NC>3 )2  - at calculated positions except in the case of H51, H61 and H62 

(attached to C5 and C6  respectively). These protons were located in an advanced 

Difference Fourier and refined at a distance of 0.96 A from the relevant parent atoms.

L 1 2 /CuCl2 - at calculated positions except forH141, H151 and H I52 (attached to 

olefinic carbons C14 and C l5). These protons were located in an advanced Difference 

Fourier and refined at a distance of 0.96 A from the relevant parent atoms. The lattice 

was also contained some residual solvent straddling the centre of symmetry at 0, 0.5, 

0.5. Due to disorder, this fragment did not approximate to anything recognisable, and 

the best results were obtained by ‘mopping-up’ this electron density as partial isotropic 

carbon atoms (C l’, C2’ with occupancies 0.48 and 0.31 respectively).

L17/CuCl2 - at calculated positions in all cases except for C l5, C16 and C l7. The 

difference electron density map exhibited some smudging in the Cl 6 /C 17 region. This 

was largely due to the disorder in the positions of these 2 atoms with C l6 a and Cl 7a in 

the ratio 62:38.
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Table 3: Crystallographic Data for Molecular Structures Determined by X-Ray 
Diffraction

L2/CuCI2 L4/CuCl2 L9/CuCl2 L10/CuCl2
Empirical
Formula

C7H18N2C12OCu C nH 10Cl2N2Cu.l4CH3OH C 10H22N2OCI2Cu C8H18N2C12Cu

Formula
Weight

280.71 320.67 320.7 276.7

Space Group P2,/a P-l (No.2) P2.2.2, P2,/n
Crystal System Monoclinic Triclinic Orthorhombic Monoclinic
Unit Cell 
Dimensions
a (A) 8.030(3) 8.3490(10) 8.284(1) 8.546(1)
b (A) 39.480(8) 10.005(2) 11.609(2) 11.992(2)
c (A) 8.357(2) 15.425(3) 15.042(1) 12.542(2)
a(deg) 99.35(2)
P(deg) 118.82(3) 89.95(2) 101.61(1)
Y(deg) 99.59(2)
Volume (A3) 2321.3 1253.1(4) 1446.6 1259.1
Z 4 4 4 4
Density 
(calc,gem'3)

1.60 1.70 1.47 1.46

F(000) 1160 648 668 572
Absorption
Coefficient
(|a(Mo-Ka))
(c m 1)

23.2 cm 2.149mm'1 18.7 21.3

Goodness of 
Fit

0.958

R 0.0680 0.0418 0.0386 0.0388
R« 0.0700 0.0970 0.0365 0.0381

L10/Cu(NO3)2 L12/CuCl2 L17/CuCl2
Empirical Formula C 8H ,8N 40 6C u C 15H 17N3C12C u C 17H20N 2C12C u

Formula Weight 329.8 373.8 386.8
Space Group P2,/n P2,/n P2,/n
Crystal System Monoclinic Monoclinic Monoclinic
Unit Cell Dimensions
a (A) 8.594(2) 9.031(1) 9.753(2)
b (A) 13.675(3) 13.518(2) 12.414(2)
c (A) 12.510(3) 13.891(1) 14.520(2)
a(deg)
P(deg) 105.92(9) 109.307(9) 97.79(2)
Y(deg)
Volume (A3) 1413.8 1650.3 1741.8
Z 4 4 4
Density (calc,gem'3) 1.55 1.50 1.47
F(000) 684 764 796
Absorption Coefficient 
(M flVVK JH cm 1)

15.7 16.5 15.6

Goodness of Fit
R 0.0357 0.0322 0.0322
Rw 0.0388 0.0369 0.0348
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2.3 KINETIC STUDIES

2.3.1 Initial Studies

An assessment of the potential of a number of the copper(II) complexes for 

catalysing the hydrolysis of agents was conducted at the Ministry of Defence 

laboratories at Porton Down, under carefully regulated safety conditions. Dr Nick 

Blacker undertook all addition of neat agent to reaction mixtures. The activity of these 

complexes was identified using pH-stat techniques, through measurement of the 

percentage of a known quantity of GB (sarin) hydrolysed by a given complex in 30 

minutes. Sodium hydroxide, of a known concentration, was mechanically titrated 

against the HF liberated on hydrolysis of GB. The reaction was kept at 20°C and a 

constant pH of 6.5. The pH-stat equipment used was a Radiometer Titralab with ABU91 

autoburette, ref. 201 reference electrode, and G2040B pH electrode.

B ase Catalysed

Hydrolysis

The copper(II) complexes L l-L ll ,  L13/CuCl2 and L 8 -L 1 1 /Cu(N(>3 )2  were prepared 

as above and used without further purification. The activities of the model metallated 

siloxane, L 9 /CuCl2  and the copper(II) chloride complexed polymer, PL1, were also 

assessed. A stock solution (3.9 x 10' 3 M) of each copper(II) salt was prepared in 

deionised water and adjusted to pH6.5 in readiness for the hydrolysis reaction, which 

was carried out using 1 ml of the stock copper(II) solution and an excess (200:1) of 

agent. The hydrolysis reaction was followed quantitatively for 30 minutes. The results 

and discussion of these studies are given in section 3.3.1.
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2.3.2 Kinetic Studies

Kinetic studies were also conducted as above in the Ministry of Defence laboratories, 

Porton Down, on the catalytic hydrolysis of GB mediated by a number of siloxane 

supported copper(II) catalysts. However, studies involving the copper(II) complexes of 

MSL8-MSL11 were quickly abandoned when it was discovered that the siloxane- 

containing materials interfered with the fluoride electrode being used to monitor the 

reaction. Thus studies using copper(II) complexes of L9, L15-L17 were carried out in 

order to assess the rates of decomposition of GB and their relative half-lives of reaction. 

The equipment used was a ref. 201 reference electrode, PHM95 pH/Ion meter and 

Radiometer ISE25F fluoride electrode.

Reactions were carried out under similar conditions to those described above, but the 

pH of the solution was maintained at 6.5 through the use of a buffer. A fluoride 

electrode was used to determine the amount of liberated fluoride, and the copper(U) 

complexes were used in approximately 17:1, copper(II) complexiagent molar excess. 

The hydrolysis reaction was followed quantitatively until all agent had been hydrolysed, 

or for 30 minutes, whichever was the shorter. The results of these pseudo-first order 

reaction studies are described in section 3.3.2.
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3. RESULTS AND DISCUSSION

The chemistry involved in the decomposition o f G-agents (GB, GD, GA) is fairly well 

defined, and this study concentrated on developing siloxane supported metal catalysts to 

promote their hydrolysis. If a suitable supported catalyst could be produced for G-agent 

hydrolysis, then chemical manipulations of the support and/or metal centre might be carried 

out in a future study to produce catalysts for the decontamination o f other agents, such as 

VX and HD.

Section 1.4.2.1 highlighted copper(II) complexes containing N-donor ligands as being 

extremely effective catalysts in promoting the hydrolytic decomposition o f G-agents and 

phosphate esters, which are sometimes used as simulants for G- agents20,42,45'50,57'67. For 

example, ti /2 for the hydrolysis o f the phosphotriester, 2,4-dinitrophenyldiethyl phosphate, 

is 52 days for a control sample, but only 1.2 minutes in the presence o f a copper(II)/2,2’- 

dipyridylamine catalyst61. Table 4 summarises the catalytic effect o f various copper(II) 

catalysts on the Uu o f this phosphotriester.

Table 4: Relative Catalytic Effects of Copper(H) Complexes on the Hydrolysis of 2,4- 
Dinitrophenyldiethvl Phosphate at 34°C

COM PLEXING AGENT pH kobs (S ) ti /2 (min)

N,N,N ’ ,N ’ -tetramethylethylenediamine 7.0 4.48 x 10'3 2.6

N,N,N’ -trimethylethylenediamine (L3) 7.0 1.88 x 10’3 6.1

2,2’-dipyridylamine (LI) 7.0 9.21 x 10'3 1.2

Imidazole (L6) 7.0 4.89 x 10‘4 23.6

2,2’-bipyridine 7.0 1.51 x 10‘4 76.5

Control 7.0 1.55 x 10'7 52 days
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As a result, the ligands L1-L7, and their copper(II) derivates, were chosen as the basis 

for the synthetic, structural and catalytic investigations reported in this thesis. For ligands 

L1-L5, facile alkenylation reactions can be carried out on the bridging atoms between the 

aromatic rings of LI (-NH-) and L4 (-CH2-), the -OH group of L2, and the -NH groups of 

L3 and L5. Alkenylated forms of L6 and L7 can be purchased and used for further 

synthetic elaboration directly. Alkenylation permits attachment of the ligand to a siloxane 

support using a hydrosilylation procedure, as described previously.

3.1 CATALYST PREPARATION

3.1.1 Alkenylation Reactions of Ligands LI -  L5

Deprotonation of the ligands was achieved using the strong bases, potassium /-butoxide, 

H-butyllithium or phenyllithium to remove a proton from -NH (LI, L3, L5), bridging 

-CH2- (L4), or -OH (L2) groups. This was followed by addition of either allyl bromide or 

6 -bromo-l-hexene to the ligand anion, as described in Chapter 2. The difference in the 

alkenyl chain length allowed for an investigation into the effects on reactivity of both short 

(3 carbons) and long ( 6  carbons) spacer chains, between the ligand and the support. After 

work-up, the alkenylated products were isolated as stable liquids that were easily purified 

and handled. Table 5 summarises the analytical data on the products L8-L12 and L15-L17.

M e3S i0 (M eS i(H )0 )x(M e2S i0 )ySiMe3 + x

n

M e3SiO (M eSiO )x(Me2SiO)ySiM e3 

L = L igand
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Table 5: Analytical Data on Alkenylated Products L8-L12, L15-L17

LIGAND REACTANTS YIELD v(C=C)
(c m 1)

'H  N.M.R 
(CH=CH2)

'H  N.M.R 
(CH=CH2)

,3C N.M.R 
(CH=CH2)

13C N.M.R 
(CH=CH2)

L8
LI + potassium 
t-butoxide / allyl 
bromide

35% 1643 5 .07 -5 .21 5.97 -  6.06 115.4 134.5

L9
L2 + potassium 
/-butoxide / allyl 
bromide

66% 1647 5 .1 4 -5 .3 0 5 .8 4 -5 .9 8 116.6 134.6

L10
L3 + n-butyl 
lithium / 
allyl bromide

37% 1643 5 .1 0 -5 .2 0 5 .8 0 -5 .9 5 117.3 135.6

L l l
L4 + phenyl 
lithium / allyl 
bromide

65% 1641 4 .9 0 -5 .0 5 5 .6 9 -5 .7 9 116.3 136.2

L12
L5 + potassium 
t-butoxide / allyl 
bromide

56% 1643 5 .1 5 -5 .2 7 5 .8 7 -5 .9 9 117.8 135.2

L15
L I + potassium 
/-butoxide / 6- 
bromo-l-hexene

28% 1639 4 .8 9 -5 .0 0 5 .7 0 -5 .8 6 114.3 136.9

L16
L3 + w-butyl 
lithium / 
6-bromo-l- 
hexene

56% 1641 4 .9 1 -5 .0 3 5 .7 2 -5 .8 5 114.3 138.6

| L17
L4 + phenyl 
lithium / 6- 
bromo-l-hexene

68% 1639 4 .8 5 -4 .9 7 5 .6 7 -5 .8 2 114.1 138.7

Products were purified by column chromatography, with the exception o f LI 6 and LI 7, 

as this technique gave better separation than distillation. Moderate yields o f the required 

products were achieved in most cases, but only low yields o f L8, L10, and L15. The low 

yields o f products L8 and L I5 can be accounted for by multiple product formation from 

[Ll-H]', as both N-alkenylation and C-alkenylation o f the aromatic rings is likely, as is 

apparent from the canonical forms for [Ll-H]" shown below.
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The IR spectrum of all the alkenylated products showed the alkene stretching mode 

between 1639 and 1647 cm'1, typical of 1-alkenes132. The C-H stretching vibration of the 

alkenylated ligands, which normally occurs in the region 3050 -  3150 cm' 1 133, was 

observed between 3067 -  3080 cm' 1 in L8-L17. Thus, the infrared spectral properties of the 

alkene group are not affected to any great extent by the ligand terminus.

13C N.M.R spectra of the hexenyl substituted ligands showed -CH=CH2 and -CH=CH2 

resonances with chemical shifts between 114.1-114.3 ppm and 136.2-138.7 ppm 

respectively, and for the allyl substituted ligands, between 115.4-117.8 ppm and 134.5-

136.2 ppm. The equivalent chemical shifts for 1-hexene occur at 114.1 and 139.1 ppm, and 

for propene at 115.4 and 135.7 ppm133.

Proton chemical shifts for -CH=CH? and -CH=CH2 groups in 1-alkenes occur in the 

regions 4.6-5.0 ppm and 5.2-5.7 ppm respectively132. In comparison to these typical values, 

variances are observed in the !H spectra of the alkenylated ligands. The allyl modified 

ligands, L8-L12, show chemical shifts significantly downfield of the above values i.e. 5.07- 

5.30 ppm compared to 4.6-5.0 ppm, and 5.80-6.06 ppm compared to 5.2-5.7 ppm. This can 

be ascribed to the electron withdrawing nature of the nitrogen (L8, L10, LI 2) and oxygen 

(L9) atoms to which the short alkenyl chains are attached. The downfield chemical shifts
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for L l l  are smaller as the carbon to which the allyl chain is attached is less electron 

withdrawing than the heteroatoms in the other ligands.

A similar but much weaker effect is observed in hexenyl-substituted ligands, in which 

the heteroatoms and -CH=CH2 moieties are separated by a -(CH2)4 - chain. Changes in 

electron density on alkenylation of the ligands may also affect the positive charge at the 

copper(II) centres on complexation. As a result, the activity of complexes derived from 

alkenylated ligands (particularly those with C3 chains) may be adversely affected compared 

with their non-alkenylated analogues, as the most active catalytic systems have the most 

electropositive metal ions, as described in section 1.4.2.164. Both the steric bulk, and in one 

case the H-bonding capability, of the alkenylated and non-alkenylated ligands will also 

differ. These other factors may also play a significant role in modifying the catalytic 

properties of their copper(II) derivatives.

3.1.2 Siloxane Functionalisation Reactions

Hydrosilylation reactions between the alkenylated ligands and the model trisiloxanes, 

1,1,1,3,3,5,5-heptamethyltrisiloxane (MSI) and 1,1,1,3,5,5,5-heptamethyltrisiloxane 

(MS2), were successful under carefully controlled conditions, and the products were 

generally isolated in reasonable yields. All of the model siloxane/ligand products are stable 

liquids, which are easily stored, handled and are miscible with common organic solvents. A 

summary of the products, purification methods, and analytical data are given in Table 6 .

Yields of between 54% and 67% were achieved in the addition of ligands with a spacer 

chain length of 3-carbon atoms, with the exception of MSL12, which is detailed below. 

However, with the exception of LI6 , spacer chain lengths of 6 -carbon atoms afforded
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products in higher yields of 72% - 92%. It is probable that the steric bulk of the ligands, in 

close proximity to the unsaturation in of the short chain compounds, may impede the 

hydrosilylation reaction.

Table 6: Summary of the Model Siloxane Hydrosilylation Reactions

PRODUCT
(Length o f  

spacer chain)
REACTANTS PURIFICATION YIELD

C,  H, N ANALYSIS 
ACTUAL % (EXPECTED %) 

C H N
MSL1 (3) MS1+L8 Distilled at 175°C and 

0.05 mbar
54% 55.5

(55.4)
8.35

(8.13)
9.70

(9.69)
MSL2 (6) MS1+L9 Distilled at 135°C and 

0.075 mbar
91% 49.5

(49.9)
11.1

(10.8)
6.60

(6.85)
MSL3 (3) MS1+L10 Distilled at 130°C and 

0.05 mbar
63% 48.7

(49.4)
11.2

(H .l)
7.55

(7.68)
MSL4 (3) MS1+L11 Distilled at 160°C and 

0.07 mbar
67% 57.8

(58.3)
8.40

(8.38)
6.50

(6.47)
MSL5 (3) MS1+L13 Distilled at 130°C and 

0.05 mbar
64% 47.3

(47.2)
9.41

(9.15) 0° 
oo

 
Ifc. 

u>
w 

°

MSL6 (6) MS1+L16 Distilled at 130°C and 
0.04 mbar

68% 52.6
(53.1)

11.5
(11.4)

6.80
(6.89)

MSL7 (6) MS1+
6-Brom o-l-
Hexene

Distillation at 175°C 
and 0.02 mbar

92% 40.8
(40.5)

8.85
(8.63)

0.00
(0.00)

MSL8 (6) MS2+L15 Distilled at 185°C and 
0.05 mbar

86% 58.3
(58.1)

8.80
(8.86)

9.04
(8.83)

MSL9 (6) MS2+L9 Distilled at 120°C and 
0.05 mbar

72% 49.0
(49.9)

10.7
(10.8)

6.75
(6.85)

MSL10 (6) MS2+L16 Distilled at 120°C and 
0.04 mbar

54% 52.6
(53.1)

11.3
(11.4)

6.80
(6.89)

MSL11 (6) MS2+L17 Distilled at 135°C and 
0.01 mbar

83% 60.6
(60.7)

8.93
(8.92)

5.99
(5-90)

MSL12 (3) MS2+L2 Distilled at 95°C and 
0.04 mbar

87% 45.9
(45.9)

10.6
(10.4)

7.75
(7.64)

As steric effects seem to affect hydrosilylation, then it was anticipated that the 3-spacer 

chain products MSL1, 3, 4, 5 may not prove as effective hydrolysis catalysts after 

metallation as their analogues containing a 6 -carbon spacer chain. It is relevant to note that 

Menger et al.2Q reported that a catalyst, with a 6 -carbon spacer chain between a polystyrene 

support and a diamine ligand supporting the active metal centre, accelerates hydrolysis of 

the GD simulant, NPDPP, by 8 -fold compared to an analogue with just one carbon atom
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between the support and ligand. It was hoped that kinetic studies could be carried out to 

resolve this issue, but as described in 3.3.2, these studies could not be completed.

An additional reaction was carried out using L2, in which the -OH functional group was 

reacted directly with the Si-H site on the model siloxane, MS2. This gave the product 

MSL12, in a yield of 87%.

M e ^  Me 

N

Me H Me
M. \  ------------  /Me I I I

N N + , S K  S K  . S K

M e ^  v

.N
Pt Catalyst /  \

Me | 0  | O | Me
Me Me Me

SOH

Me

Me O Me

/ sj \  / s| \  / si \Me O O | Me
Me Me Me

MSL12

This is a facile method for the addition of functional groups to siloxanes, and a good 

yield was obtained. The reaction does not involve alkene hydrosilylation, and so the 

reaction is not so readily inhibited by a bulky substituent. As alkenylation of ligands is not 

always viable, this route provides an alternative method for the modification of siloxanes. 

Its disadvantage is the formation of a Si-O-C, rather than a Si-C-C bond. The former is 

more susceptible to nucleophilic attack and hydrolysis than the latter, and so this may be a 

drawback under some conditions.

The successful reactions between the model trisiloxanes and alkenylated ligands 

indicated that the commercially available polymers, CPI, CP2, and CP3 could also be 

loaded with these ligands, to produce functionalised polyorganosiloxanes. The range of 

concentration of active hydrosilylation sites allows the loading of a given ligand on the
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polymer to be controlled. This in turn allows the concentration of copper(II) on the polymer 

to be adjusted to produce the optimum catalyst for a given reaction.

Me H Me Me

Before use, !H N.M.R and microanalysis were used to confirm the H-content of the three 

polysiloxane polymers CPI, CP2 and CP3 and showed:

CPI -  (3-4%) methylhydro-(96-97%)-dimethylsiloxane; y ~ 172, x ~ 6.7, Mw = 13,320 

CP2 -  (15-18%) methylhydro-(82-85%)-dimethylsiloxane; y ~ 27.5, x ~ 3.5, Mw = 2,412 

CP3 -  (30-35%) methylhydro-(65-70%)-dimethylsiloxane; y ~ 19, x ~ 9, Mw = 2,112

Initial loading of each polymer involved a single ligand present in small excess, to 

ensure complete reaction with all Si-H groups. The ligands L9 and L I5 were attached using 

hydrosilylation reactions, and L2 by reaction of its -OH terminus with the -Si-H groups in 

the polymer. Triethylene glycol monomethyl ether, LI 8, was also reacted with the polymers 

in order to determine how this side-chain modified the solubility of the functionalised 

polymer in polar solvents, including water. A combinational approach was used with 

sequential loading of L15 and L18 onto CP2, to afford PL6, in order to investigate a route 

to multi-functional group loading.

These reactions gave the polymer products PL1 to PL8 after purification by washing the 

products with cold methanol to remove any unreacted ligand, and pumping the products in 

vacuo to remove all volatiles. Infrared spectroscopy and *H N.M.R were used to confirm
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the absence of any reactants. Microanalysis and !H N.M.R were used to characterise the 

functionalised polymer, and a summary of these data are given in Table 7.

Table 7: A Summary of the Results of Polymer Functionalisation

PRODUCT REAGENTS
FUNCTIONALITY

(% Available Sites 
Occupied)

MOLAR
EQUIVALENT

LOADING

C, H, N ANALYSIS 
ACTUAL % (EXPECTED %) 

C H N
PL1 CP1+L9 75% 2.8% 34.3

(34.6)
8.47

(8.46)
1.00

(1.00)
PL2 CP1+L15 94% 3.5% 36.8

(37.3)
8.15

(8.16)
1.83

(1-82)
PL3 CP2+L9 74% 7.9% 38.3

(38.5)
9.17

(9.06)
2.65

(2.66)
PL4 CP2+L2 86% 9.1% 36.5

(37.1)
8.98

(8.92)
3.15

(3.15)
PL5 CP2+L18 91% 9.7% 35.9

(36.7)
8.61

(8.54)
0.00

(0.00)
PL6 CP2+L15+

L18
86% 

(L15 57%, 
L18 29%)

9.1% 
(L15 6.1%, 
L18 3.0%)

41.0
(36.5)

8.16
(8.69)

3.10
(3-10)

PL7 CP3+L2 54% 16.3% 37.1
(39.1)

8.94
(9.23)

5.45
(5.43)

PL8 CP3+L18 86% 25.7% 38.6
(41.0)

8.36
(8.77)

0.00
(0.00)

The loading of each polymer was first calculated from the analytical data for nitrogen, 

using the basic polymer information listed above. Once a loading figure had been calculated 

this way, carbon and hydrogen microanalytical results, and !H N.M.R intensities were 

compared with the theoretical loading based on the nitrogen content. There was close 

agreement for these data (Table 7), and so these loading figures were used subsequently in 

copper(II) complexation reactions. Detailed examples can be found in Appendix B. For the 

polymers PL5 and PL8, where no nitrogen analysis is available, a composition which best 

fitted the !H N.M.R intensities was determined, and then compared to the microanalysis 

results to confirm the composition of the product.

Yields of the organofunctional products were similar to those obtained using trisiloxanes 

and the same alkenylated ligand, with the exception of PL7. It appears that a high degree of
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cross-linking occurred during this reaction. No Si-H moieties were present in PL7 at the 

end of the reaction, as would be expected had only 54% of the polymer Si-H sites 

undergone reaction. This may be due to the presence of trace amounts of water in the 

reaction mixture, and highlights the need for absolutely anhydrous conditions in these 

reactions.

By using polymers with differing Si-H contents, it has been shown that functional group 

loadings from 2.8 mol% (or less) to 25.7 mol% can be achieved. Thus the properties of the 

polymer may be altered specifically to suit the needs of the application. Ligand loadings can 

be increased through the use of polymers with a greater Si-H content, such as commercially 

available Me3Si0(Si(H)(Me)0)nSiMe3, where n = ca 35. The degree of loading can be 

controlled, within limits, by the amount of ligand added to the reaction mixture and further 

synthetic manipulation of the product is possible. This has been demonstrated by attaching 

both L I5 and L I8 to CP2, to produce the product PL6 (below). Both N.M.R and 

microanalysis confirmed a w:x:y:z ratio of approximately 1:27.5:2:0.5 for this polymer. 

Detailed information of this calculation is given in Appendix B.

Me Me Me

O'Me' Me
Me Me Me Me Me

PL6
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In excess of 95% of the LI 5 added reacts with the polymer, however LI8 fails to cap the 

majority of remaining reactive sites, as occurs in the other polymers prepared involving this 

ligand. This may be due to steric hindrance caused by the ligand already present on the 

polymer.

All of the functionalised polymers are immiscible with water, but it was hoped that a 

high loading of triethylene glycol monomethyl ether (L I8) would significantly increase 

hydrophilicity. However, even polymer CP3, containing 25.7 mol% of LI8, was still 

essentially immiscible with water. Even so, the ether side-chain may promote the catalytic 

activity of metallated polymers as it creates a hydrophilic environment adjacent to the 

ligand/metal centres, whilst leaving the siloxane backbone unaffected and lipophilic. This 

would be an ideal scenario as increased hydrolytic activity is expected whilst the benefits of 

a water immiscible support, suitable for application in coatings, is retained. Surfaces so 

treated might then catalytically neutralise G-agents in the presence of water.

The ethylenediamine derivative L2 was also chemically bonded, via its -OH terminus, 

to the polymers CP2 and CP3. Obviously L2 may be added as one of a number of 

functional side chains, and it may also be used to ‘scavenge’ any Si-H sites left after 

hydrosilylation reactions with the alkenylated ligands, in order to cap these remaining 

reactive sites with a ligand and so prevent cross-linking of the linear polymeric strands.

3.1.3 Metallation Reactions

Metallation of the ligands and functionalised siloxanes was undertaken using copper(II) 

salts, as this metal ion has been reported to be the most active species for the catalytic 

hydrolysis of G-agents63. Copper(II) chloride was used to metallate all ligands, and in
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addition some copper(II) nitrate complexes were prepared, in order to investigate anion 

effects on the rate of agent hydrolysis (see section 3.3).

Products formed from the non-alkenylated ligands (L1-L7) and copper(II) salts, after 

reaction in a 1:1 mole ratio ligand:copper(II), are summarised below in Table 8. The 

products from these reactions are easily separated by filtration from the reaction mixtures 

with the exception of L 2 /Cu(N0 3 )2 , which was isolated after removal of solvent, and 

recrytallisation of the residue from dichloromethane. No further purification of the other 

products was found necessary, as they were analytically pure after washing and drying. The 

complexes were generally formed in high yields, as air-stable, easily handled solids, which 

are soluble in water.

Table 8: Summary of the Metallation Reaction Products for Ligands LI -  L7

REACTANTS RECOVERY YIELD
(%)

C, H, N ANALYSIS* 
ACTUAL % (EXPECTED %) 
C H N

LI + CuCl2 Filter from reaction solution 97 38.8 2.87 13.7
(39.3) (2.97) (13.7)

LI + C u(N 03)2 Filter from reaction solution 86 33.8 2.54 19.5
(33.5) (2.53) (19.5)

L2 + CuCl2 Use MeCN as solvent and filter 81 29.8 6.47 10.0
off product (30.0) (6.49) (9.98)

L2 + C u(N 03)2 Remove ethanol, add 77 23.9 5.76 15.9
dichloromethane and filter (23.9) (5.73) (15.9)

L3 + CuCl2 Filter from reaction solution 89 25.3 6.07 11.8
(25.4) (5.97) (11.8)

L3 + C u(N 03)2 Filter from reaction solution 56 20.7 4.91 19.4
(20.7) (4.87) (19.3)

L4 + CuCl2 Filter from reaction solution 97 43.3 3.31 8.79
(43.4) (3.63) (9.19)

L4 + C u(N 03)2 Filter from reaction solution 70 35.2 2.99 15.0
(35.6) (3.22) (14.9)

L5 + CuCl2 Filter from reaction solution 91 42.6 3.98 12.5
(43.2) (3.93) (12.6)

L6 + CuCl2 Filter from reaction solution 79 17.6 1.98 13.5
(17.8) (1.99) (13.8)

L7 + CuCl2 Filter from reaction solution 92 40.9 3.37 9.56
(41.0) (3.45) (9.58)

* Calculated values refer to anhydrous 1:1 adducts, except for L2/Cu(N03)2 and L4/Cu(N03)2, which are 1:1 
monohydrate adducts (-OH absorption evident in IR spectrum), and L7/CuC12, which is a 2:1 anhydrous 
complex.
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Similar reactions were carried out between copper salts and the allyl- (vinyl in the case 

of L7) and hexenyl- chain modified ligands, L8 -  L17. Pure complexes were isolated by 

filtration as before and their analytical data are given below in Table 9. The IR spectra of all 

of the complexes with -CH=CH2 containing ligands show absorptions in the region 1633- 

1653 cm'1 for the C=C stretching mode of the free alkenyl group, which is within the range 

typical for this group131.

Table 9: Summary of the Metallation Reaction Products for Ligands L8 -  L17

REACTANTS RECOVERY YIELD
(%)

u(C=C)
C, H, N ANALYSIS* 

ACTUAL % (EXPECTED %) 
C H N

L8 + CuCl2 Filter from reaction solution 98 1653 44.9
(45.2)

3.73
(3.79)

12.0
(12.2)

L8 + C u(N 03)2 Filter from reaction solution 53 1641 39.2
(39.2)

3.19
(3.29)

17.6
(17.6)

L9 + CuCl2 Remove ethanol, redissolve 
in MeOH, precipitate diethyl 
ether

85 1635 37.4
(37.4)

6.99
(6.91)

8.51
(8.73)

L9 + C u(N 03)2 Remove ethanol, redissolve 
in MeOH, precipitate diethyl 
ether

78 1643 32.4
(32.1)

6.24
(5.93)

15.0
(15.0)

L10 + CuCl2 Filter from reaction solution 51 1641 34.6
(34.7)

6.61
(6.56)

10.0
( io .i)

L10 + C u(N 03)2 Filter from reaction solution 80 1643 29.2
(29.1)

5.45
(5.50)

17.0
(17.0)

L l l  + CuCl2 Filter from reaction solution 74 1641 48.4
(48.8)

4.05
(4.09)

8.00
(8.13)

L l l  + C u(N 03)2 Filter from reaction solution 78 1633 40.4
(40.4)

3.90
(3.88)

13.4
(13.5)

L12 + CuCl2 Filter from reaction solution 68 1643 48.3
(48.2)

4.61
(4.59)

11.3
(11.2)

L13 + CuCl2 Filter from reaction solution 54 1645 30.9
(29.7)

3.39
(3.33)

11.9
(11.6)

L14 + CuCl2 Filter from reaction solution 95 1633 48.5
(48.8)

4.09
(4.17)

8.05
(8.13)

L15 + CuCl2 Filter from reaction solution 78 1641 49.4
(49.6)

4.88
(4.94)

10.8
(10.8)

L16 + CuCl2 Filter from reaction solution 85 1643 40.3
(41.4)

7.79
(7.59)

8.87
(8.87)

L17 + CuCl2 Filter from reaction solution 87 1639 52.7
(52.8)

5.24
(5.21)

7.10
(7.24)

* Calculated values refer to anhydrous 1:1 adducts, except for L ll/C u (N 0 3)2, which is a 1:1 monohydrate 
adducts, and L14/CuC12, which is a 2:1 anhydrous complex.
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The final set of metallation reactions involved the functionalised model siloxanes and 

polymers. Again successful metallation occurred following reactions in a 1:1 

ligand:copper(II) molar ratio, with little problem either in the preparation or isolation of the 

end products. All metallated functionalised model trisiloxanes were purified by dissolution 

in dichloromethane, and the solution filtered in order to remove excess copper(II) salts. 

Evaporation of the solvent afforded pure products. A summary of the microanalytical 

results on these products is provided in Table 10.

Table 10: Summary of Analysis for the Metallation Reaction Products of 
Functionalised Siloxanes

REACTANTS
ORIGINAL

LIGAND
C, H, N ANALYSIS 

ACTUAL % (EXPECTED %)
C H N

MSL1 + CuCl2 L8 42.2 (42.3) 6.24 (6.21) 7.35 (7.39)

MSL2 + CuCl2 L9 37.4 (37.6) 8.28 (8.16) 4.69 (5.16)

MSL3 + CuCl2 L10 35.9 (36.1) 8.18(8.08) 5.64 (5.61)

MSL4 + CuCl2 L l l 44.4 (44.5) 6.47 (6.40) 4.84 (4.94)

MSL5 + CuCl2 L13 32.0 (32.3) 6.91 (6.68) 5.83 (5.80)

MSL8 + CuCl2 L15 44.9 (45.3) 6.66 (6.77) 6.88 (6.89)

MSL8 + Cu(N 0 3)2 L15 41.8(41.6) 6.16(6.23) 10.7 (10.6)

MSL9 + CuCl2 L9 37.4 (37.6) 8.37 (8.16) 4.90 (5.16)

MSL10 + CuCl2 L16 39.7 (39.9) 8.58 (8.57) 4.97 (5.18)

MSL10 + Cu(N 0 3)2 L16 34.0 (36.4) 7.44 (7.80) 9.54 (9.43)

MSL11 + CuCl2 L17 47.3 (47.3) 7.09 (6.95) 4.61 (4.60)

The end products were all waxy solids, which are soluble in water and in many common 

organic solvents, including ethanol and dichloromethane. The product MSL5/CuCl2 

appeared to be a monohydrate from the analytical data, and its IR spectrum revealed -OH
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absorptions. All products were formed in good yield, and the addition of the siloxane 

terminus did not have an adverse effect on the complexation of the ligands, although it did 

not prove possible to obtain crystalline samples of them for X-ray structural analysis.

The polymers PL1 and PL2 were both metallated with CuCh by stirring the reactants 

together in ethanol for 24 hours. The resulting blue polymer was washed with water to 

remove excess copper(II) salts. It was noted that subsequent aqueous washings also 

contained traces of copper, indicating that metal ions may be leached slowly from the 

polymer by excess water, and specific studies confirmed that leaching of copper(II) did 

indeed occur. However, due to time limitations it was not possible to quantify the rate of 

leaching. Thereafter each metallated polymer was washed twice with a large excess of cold 

water (50 cm3) before its activity was assessed in the studies reported in 3.3. The metallated 

polymers were also soluble in organic solvents, which would allow these materials to be 

cast as films or deposited as a coating on a solid surface, although this was not attempted in 

this study.

3.2 X-RAY CRYSTALLOGRAPHIC STUDIES

In order to define the coordination geometry around the copper(II) centre, X-ray studies 

were carried out on a number of model compounds. As attachment of the alkenyl spacer 

chain to a polymeric framework is unlikely to significantly affect the primary coordination 

sphere around the metal centre, the structure determinations reported below reveal 

important features about the solid-state metal coordination sphere of the copper complexes, 

which on dissolution yield catalytically active species. Crystals of the copper(II) chloride 

derivatives of L2, L4, L9, L10, LI2, LI7 and a copper(II) nitrate adduct of L10 were
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prepared for single crystal X-ray diffraction studies, as described in section 2.2. The 

structures of these molecular complexes are shown in Figures 1-7 below.

As can be seen from the figures, all of the CuCh adducts exhibit 5-coordination around 

the copper atom. In the CuCh adducts of L2, L9, and L I2 the ligand acts as a tridentate, 

and the compounds contain two Cu-Cl terminal linkages. In the other complexes, in which 

the N-donor ligand cannot act as a tridentate, 5-coordination is achieved by the formation of 

one terminal Cu-Cl bond and two Cu-Cl bridges. A similar structural theme occurs in other 

copper(II) halide complexes134,135. In the single nitrate-complex investigated 

(L1 0 /Cu(NO3)2) the metal centre attains 6-coordination with each nitrato-group behaving as 

a bidentate ligand.
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Figure 1: Structure of L2/Copper(II) Chloride Dimer*

* Unfortunately, the hydroxyl protons could not be located satisfactorily.
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Figure 2: Structure of L9/Copper(II) Chloride
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Figure 3: Structure of L4/Copper(II) Chloride Dimer
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By far the largest group of five-coordinate copper(II) complexes exhibit structures based

I
on regular square-based pyramidal or trigonal bipyramidal geometries . There is a striking 

resemblance between the two geometries if the trigonal bipyramid is viewed down the C2

117axis and the square planar structure down the C4  axis . However, the idealised geometry 

of either of these two geometries is rarely found in practice, and structures are normally 

distorted from the idealised forms.

C 4  C2

120 °
120 °

90°

90°

There have been many attempts to explain what factors govern the structure of a given 

penta-coordinate copper(II) complex. These include consideration of the relative stability of 

the two idealised forms138, consideration of the interaction between bonding electron pairs 

and non-bonding d-electrons of the metal139, and 71-bonding factors140. The results of these 

studies gave rise to the definition of three forms of distortion from an idealised square 

pyramidal structure to describe the formation of intermediate, distorted species, and 

ultimately the idealised trigonal bipyramidal structure141.

1. All four basal bonds depressed from apical atom to give a distorted square pyramid.

2. Two basal bonds depressed away from the apical atom towards a trigonal 

bipyramidal geometry.

3. One basal bond is distorted from the apical atom to give an intermediate structure.
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The degree o f distortion of the structures determined in this study are assessed using a 

measure x, which is a measure o f the trigonal distortion away from an idealised square 

pyramidal stereochemistry. The value o f x is defined in the equation below, where 100% 

distortion means that the complex is exactly trigonal bipyramidal in shape142.

x = 9 - ([) x 100
60

A summary o f the key bond lengths and angles in the immediate coordination sphere 

around the copper(II) metal centres o f the six copper(II) chloride complexes, whose 

structures were determined in the course o f the project, are listed below in Table 11.
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Table 11: Sum m ary o f the Bond Lengths and Angles in the Coordination Sphere Around the Copper(II) Centre o f the CuCh  
Com plex Structures D efined*

COM PLEX Cu-N,

BOND LENGTHS (A)

C u-N2 Cu-Cl, Cu-Cl2 Cu-X** a (° )

BOND ANGLES

<t>0 T(%)

L2/CuC12 2.068 (9) 2.108(14) 2.307 (7) 2.253 (5) 2.383 (9) 173.7(3) 157.9 (3) 26.3
(2 molecules in 

asymmetric unit) 2.056 (9) 2.072(14) 2.266 (7) 2.260 (5) 2.474(10) 171.3 (3) 157.4 (3) 23.2

L4/CuC12 2.027 (5) 2.029 (5) 2.311 (2) 2.259 (2) 2.630 (2) 176.1 (2) 153.0(14) 38.5

L9/CuC12 2.079 (8) 2.088 (7) 2.254 (4) 2.264 (4) 2.393 (7) 169.0 (2) 155.2 (2) 23.0

L10/CuC12 2.098 (7) 2.050 (7) 2.303 (4) 2.260 (4) 2.764 174.0 (2) 150.3 (2) 39.5

L12/CuC12 2.004 (5) 2.084 (5) 2.270 (3) 2.467 (3) 2.003 (5) 163.3(1) 145.7(1) 29.3

L17/CuC12 2.016(5) 2.048 (5) 2.264 (3) 2.284 (3) 2.789 175.9(1) 155.3(1) 34.3

*Complete details o f all bond lengths and angles in these structures are listed in Appendix A.

**X = N (L12/CuC12), O (L2/CuC12, L9/CuC12), Cl (L4/CuC12, L10/CuC12, L17/CuC12)
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3.2.1 The Structures of L2/CuCl? and L9/CuCb

The structure of L2/CuCl2 (Figure 1) consists of two molecules within the unit cell. 

These are bound together by a hydrogen-bond between the proton attached to 0(2) and 

atom C l(l)  (unfortunately, the hydroxyl protons could not be located satisfactorily). As a 

consequence the pair of molecules in the asymmetric unit are not identical. The Cu(l)- 

C l(l)  bond length of 2.307(7) A, is slightly longer than the other Cu-Cl bonds in the 

structure (2.253(5)-2.266(7) A). In addition, the Cu(2)-0(2) bond length of 2.474(10) A is 

much longer than the comparative Cu(l)-0(1) separation of 2.383(9) A. The lengthening of 

these bonds can be ascribed to the hydrogen-bonding between the two molecules in the unit 

cell.

L2/CuCl2 is based on a square pyramid and the N(2)-Cu(l) bond is depressed out of the 

basal plane, away from the apical 0(1) atom. The undistorted angle of 180° has been 

compressed to 157.9(3)° along N(2)-Cu(l)-Cl(l). The N(l)-Cu(l)-Cl(2) bond is relatively 

undistorted at 173.7(3)°. The average value of t for the two molecules of L2/CuCl2 is 

24.8%, showing moderate distortion of the square pyramid structure towards a trigonal 

bipyramidal structure.

The molecular structure of L9/CuCl2 (Figure 2) is essentially similar to that of 

L2/CuCl2, with respect to the primary coordination sphere around the metal atom. 

However, no hydrogen-bonding occurs following the addition of the alkenyl chain to the 

apical oxygen atom of the ligand. The Cu-N and Cu-Cl bond lengths for L9/CuCl2 and 

L 2 /CuCl2 lie between 2.056(9)-2.108(14) A and 2.253(5)-2.307(7) A respectively (Table 

11). These distances fall within the ranges observed for other typical 

ethylenediamine/copper(II) complexes143"145. The Cu(l)-0(1) bond length of 2.393(7) A in
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L9/CuCl2 is very similar to that found in L2/CuCl2 at 2.383(9) A. Both bonds involving 

apical oxygen atoms are, as expected, longer than those found for basal Cu-0 bonds146'148.

Trigonal distortion of the L9/CuCl2 complex takes place along the N (l)-Cu(l)-Cl(l) 

bond, such that the undistorted angle of 180° is compressed to 155.2(2)°. The Cl(2)-Cu(l)- 

N(2) bond in L9/CuCl2 at 169.0(2)° is slightly less than the equivalent N(l)-Cu(l)-Cl(2) 

angle of 173.7(3)° in L2/CuCl2. This may indicate depression of all four basal bonds, and 

the distortion ratio, x, of 23.0%, which is slightly less than that for L2/CuCl2 would support 

this. However, the major distortion occurs by depression of one bond (Cu(l)-N(l) away 

from the apical atom), as in L 2 /Q 1CI2 .

Both L2/CuCl2 and L9/CuCl2 have two ds-orientated coordination sites, containing 

labile Cl atoms, which after Cl" loss in aqueous solution, would be available to facilitate the 

copper(II) catalysed hydrolysis of G-agents by the mechanism described previously65. 

Therefore the tridentate behaviour of L2 and L9 should not impede the activity of either 

complex, as the Cu(l)-0(1) bond is formed in the axial position.

3.2.2 The Structures of L4/CuCl?. L17/CuCl? and LlO/CuCl?

The chloride bridged structures adopted by L4/CuCl2 (Figure 3), LIO/CUCI2 (Figure 6), 

and L17/CuCl2 (Figure 4), exhibit very similar geometries and primary coordination 

spheres. The structures consist of discrete dimeric [Cu(ligand)Cl2 ]2  units, which are well 

separated from each other. The bridging Cu( 1 )-C 1 (1 )-Cu( 1 *)-Cl(l *) (L4 /Q 1CI2 , 

LlO/CuCb) and Cu(l)-Cl(2)-Cu(r)-Cl(2’) (L I7 /Q 1CI2) arrangements are strictly planar; 

there being a crystallographic inversion centre in the middle of each dimeric unit.
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After a detailed literature search, it was found that the structure o f L4/CuCl2 had been 

reported previously149. A comparison o f the parameters o f the reported structure, and the 

structure determined for L4/CuCl2 in this study, is given below in Table 12.

Table 12: Com parison of the Literature and Determined L4/CuCh Structures

PROPERTY LITERATURE L4/CuCI2 DETERMINED L4/CuC12
Empirical Formula CnH10Cl2N2Cu C 11H10C12N 2Cu. V2C H3OH
Space Group P2,/c P-l
Crystal System Monoclinic Triclinic
Unit Cell Dimensions
a (A) 8.7444(25) 8.3490(10)
b (A) 12.1243(36) 10.005(2)
c (A) 11.6478(22) 15.425(3)
P(deg) 104.425(19) 89.95(2)
Volume (A3) 1195.96(53) 1253.1(4)
Z 2 4
Density (calc, g cm'3) 1.69 1.70
Bond Lengths
(Annotation as per derived structure)
C u(l)-N (l) 2.033(2) 2.027(5)
Cu(l)-N(2) 2.034(2) 2.029(5)
C u(l)-C l(l) 2.315(1) 2.311(2)
Cu(l)-Cl(2) 2.261(1) 2.259(2)
Cu(l)-Cl(l#) 2.629(1) 2.630(2)
Bond Angles
(Annotation as per derived structure)
N (l)-C u(l)-C l(l) 175.3(1) 176.1(2)
N(2)-Cu(l)-Cl(2) 150.7(1) 153.02(14)
N(2)-Cu(l)-Cl(l#) 102.7(1) 96.93(14)
Cl(2)-Cu(l)-Cl(l#) 106.6(1) 109.81(6)
Maximum deviation from 90.0° between 
equatorial and axial atoms

4.2° 4.75°

The product reported in the literature was prepared by addition o f anhydrous CuCh to a 

degassed solution o f ligand in freshly distilled methanol in a 1:1 mole ratio. The reaction 

mixture was refluxed under a dinitrogen atmosphere and the structure determined on the 

dark green crystals formed on cooling the solution. Our product was prepared as described 

in 2.1.4, and it was recrystallised from a methanol/diethyl ether mix held at 5°C. The 

product formed in this study crystallises with methanol in the lattice, which accounts for
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differences in the basic crystal data such as space group, crystal system and unit cell 

dimensions.

The structures from the two determinations have the same basic shape, described as a 

distorted trigonal bipyramidal in the literature report149. Atoms Cl(l) and N(l) occupy the 

axial positions with the equatorial positions occupied by Cl(2), N(2) and Cl(l#). 

Measurements made in the literature structure show that the equatorial atoms define a plane 

with a deviation of no more than 0.015 A, and attempts to define a square planer geometry 

using N(l), N(2), 0 (1 )  and 0 (2 ) as a base, give a poorly defined plane with a deviation of 

more than 2 A for most of the atoms.

Corresponding bond lengths in the two structures are very similar (Table 12), but bond 

angles differ noticeably in a number of cases, and by over 5° in the case of N(2)-Cu(l)- 

Cl(l#). These differences may reflect the presence of the methanol molecule, and indicate 

that deformations are influenced by minor changes in the bonding forces operative in the 

solid-state.

It would seem that two basal bonds distort towards a trigonal bipyramidal geometry to 

give a distortion ratio of 38.5%, which describes only a moderate distortion from a square 

planar arrangement. A ratio of over 50% would be expected if  the structure were better 

described as distorted trigonal bipyramidal, and so the structure is better described as a 

distorted square pyramid using this method.

The geometry around the copper(II) atom in L17/CuCl2 is similar to that found in 

L4/CuCl2, and bond angles around the copper are also similar. The hexenyl derivative, 

L17/CuCl2, shows slightly longer Cu(l)-Cl(l and 2) bond lengths than those in L4/CuCl2, 

and the L17/CuCl2 Cu(l)-Cl(l#) bond length is significantly longer at 2.789 A, compared
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to 2.630 A for L 4 /C11CI2 (Table 11). The C u(l)-N (l and 2) bonds appear to be more tightly 

bound in L17/CuCl2, as they show slightly shorter bond lengths o f 2.016(5) A and 2.048(5) 

A compared with those in L4/CuCl2, at 2.027(5) A and 2.029(5) A. This effect may result 

from the weak electron donating effect o f the hexenyl chain, so increasing the electron 

donating capacity o f the pyridinyl nitrogen atoms. The 13C N.M.R data provide some 

support for this conjecture, as the chemical shift o f the bridging carbon (C l) increases with 

the addition and lengthening of the alkenyl chain, as does the shift o f C2 (Table 13). This 

effect alone is expected to reduce the electropositivity o f the copper(II) centre, and so 

moderate the reactivity of 2,2’-dipryidylmethane/copper(II) complexes.

CH

C1
C2

Table 13: 13C Chem ical Shifts of Selected Carbon Atoms in 2,2’-Dipyridylm ethane 
and Analogues

2,2’-Dipyridylmethane 2,2’-Dipyridylmethane, 
Allylic Derivative ( L l l )

2,2’-Dipyridylmethane, 
Hexenyl Derivative (L I7)

C l (as above) 46.9 55.6 56.0

C2 (as above) 159.1 162.0 162.8

The ability o f both L4/CuCl2 and L17/CuCl2 to adopt chlorine-bridged structures in the 

solid-state indicates that, sterically at least, both have the ability to form inactive hydroxy-

97



bridged compounds in aqueous solution. This would reduce their overall activity as 

catalysts for the hydrolysis of phosphate esters.

The N-allyl derivative of the trimethylethlyenediamine copper(D) complex, LlO/CuCL 

(Figure 6), is also a chlorine-bridged dimer and has a similar geometry to those of the 

dipyridylmethane complexes, L4/CuCl2 and L17/CuCl2. Distortion occurs through the 

depression of the N(l) and Cl(2) atoms, and the distortion ratio of 39.5% again supports the 

argument that the geometry is best described as a distorted square pyramid, although it does 

show the greatest distortion of this group of complexes towards trigonal bypyramidal. The 

base of the square pyramid is formed by N(l), N(2), Cl(2) and C l(l’), with 0 (1 ) in the 

apical position. The N(2)-Cu(l)-Cl(l’) bond angle is relatively undistorted at 174.0(2)°, 

whereas the N(l)-Cu(l)-Cl(2) angle at 150.3(2)°, compared with the regular angle of 180°, 

indicates significant distortion towards a trigonal bypyramid.

The Cu-Cu’ separations of 3.797 A (LlO/CuCL) and 3.752 A (L I7 /Q 1O 2) and out-of

plane Cu-Cl(1’) (L10/CuC12), Cu-Cl(2’) (L17/CuC12) distances of 2.764 A and 2.789 A 

respectively fall within the range of values observed for other known dichloro-bridged 

complexes144,150,151. The in-plane Cu-Cl distances of 2.303(4), 2.260(4) A, for LIO/Q1CI2 , 

and 2.264(3), 2.284(3) A, for L17/CuCl2, are normal, with the bridging Cu-Cl bond slightly 

longer, as expected (Table 11). The Cu-N(l and 2) bond lengths in LIO/Q 1CI2 are similar 

to those in the previous structures.

Ligands such as 2.2’-bipyridine and 2,2’-bipyridylamine generally form shorter Cu-N 

bonds than ethylenediamine ligands, due to the additional electron density available for 

bonding to the copper from the delocalised 71-system of the pyridine ring152'155. The Cu-N(l 

and 2) bond lengths of 2.016(5)-2.048(3) A in the dipyridylmethane/copper(II) complex,
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L I 7 /C11CI2 , are noticeably shorter than those in the trimethylethylenediamine complex, 

LIO/C11CI2 , as expected. Thus the copper(II) ion will become less electropositive, and so it 

is expected that the complexes containing pyridine ring systems will be less active as 

hydrolysis catalysts than analogous ethylenediamine complexes64.

3.2.3 The Structure of L12/CuCl?

On first sight L12/CuCl2 (Figure 5) also shows distortion from a trigonal bipyramidal 

geometry, with Cl(2), Cl(l) and N(2) in the equatorial plane and N (l) and N(3) in axial 

positions. The N(2)-Cu(l)-Cl(l) bond, at 145.7°, shows the least angular distortion from 

the expected trigonal bipyramidal equatorial angle of 120°. However, the angle between the 

axial atoms, N(l)-Cu(l)-N(3) at 163.3(1)° (Tablell), deviates more than those found in the 

other defined structures in this study. This indicates distortion through depression of all 

four basal atoms to produce a distorted square pyramidal geometry. The value of x at 29.3% 

would support this, and it is notable that the apical Cu-Cl(2) bond length of 2.467(3) A is 

almost 0.2 A longer than the basal Cu-Cl(l) bond.

The Cu-Cl(l), Cu-N(l) and Cu-N(3) bonds at 2.270(3), 2.004(5) and 2.003(5) A (Table 

11) are within the range expected156, whilst the Cu-N(2) bond is a little longer at 2.084(5) A 

than the Cu-N (1 and 3) bonds.

3.2.4 The Structure of L10/Cu(NQV)?

The structure of the only nitrate complex investigated crystallographically, 

L10/Cu(NO3)2 (Figure 7), reveals 6-coordination for copper, with two asymmetrically 

bound bidentate nitrate ligands. Vibrational spectroscopy may often be used to distinguish 

between unidentate and bidentate nitrate ligands157, as for bidentate coordination the 

separation between the two high frequency stretching modes is greater than for unidentate
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coordination. The I.R. spectrum of L10/Cu(NO3)2 shows three bands centred at 1460 

v(N=0), 1271 v a(NC>2), and 1016 cm'1 v S(N02), giving a difference of 189 cm'1 between 

the v (N=0) and v a(N02) modes. This is in keeping with the bidentate nature of the ligand 

found in the solid-state structure, in which the bidentate nitrate groups are strongly 

asymmetric with the Cu-0(3) and Cu-0(6) bonds (2.441(5) and 2.402(4) A) much longer 

than the equivalent Cu-O(l) and Cu-0(4) bonds (2.011(5) and 2.022(5) A). Similar 

observations have been made in related structures, and all bond lengths in L10/Cu(NC>3)2 

fall within the published ranges for analogues158'160. The Cu-N(l) and Cu-N(2) bond 

lengths are slightly shorter than the analogous bonds in LlO/CuC^.

Appendix A contains further details of bond lengths and angles for all structurally 

characterised complexes. Knowledge of the structures, coordination spheres and especially 

the structural and electronic effects of ligands and alkenyl chains on the electropositivity of 

the copper(II) centres, contribute to an understanding of the relative catalytic activity of the 

complexes towards agents, even though the active solution species will differ from the 

chloro- and nitrato- complexes characterised in the solid-state.

Attachment of ligands to a trisiloxane unit seems unlikely to prevent dimerisation of 

their copper(II) chloride analogues through anion bridges. The flexibility of linear siloxane 

supports may also be sufficient to allow dimerisation of polymer attached analogues, but 

that remains speculation.
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3.3 STUDIES OF CATALYTIC HYDROLYSIS REACTIONS

Two sets of studies, including kinetic studies, have been undertaken in order to identify 

the relative catalytic activities of the copper complexes described herein for the hydrolysis 

of G-agents. The activities of the metallated ligands L1-L7, a number of their alkenylated 

derivatives, and an example of each of the metallated fimctionalised model and polymer 

siloxane species have been investigated as catalysts for the hydrolysis of the nerve agent, 

Sarin (GB). This investigation was carried out with Dr N. Blacker (DERA project 

supervisor), at the Ministry of Defence laboratories, Porton Down.

3.3.1 Catalytic Activity Studies

Initial studies were undertaken in order to obtain catalytic activity information for each 

ligand complex, and hence identify which are the best catalysts for hydrolysis of GB. These 

studies were also intended both to identify any trends on changing anion from Cl" to [NO3 ]", 

and elucidate the effect of adding an alkenyl chain to the ligand. Reactions were carried out 

using an agent:catalyst mole ratio of 200:1, except for experiments involving PL1, in which 

a small sample of metallated polymer (0.1 g) was added directly to the reaction solution, 

approximating to a 20:1 ratio of agent:metal centre.

Reactions were carried out under standard conditions of pH (6.5) and temperature 

(20°C). The temperature was maintained by the use of a water insulated reaction vessel, 

through which water was circulated. The pH was kept constant by addition of a standard 

solution of 2M sodium hydroxide from an auto-titrator, to neutralise the HF and phosphonic 

acid produced when GB is hydrolysed, as shown in the reaction below. All reactions were 

carried out for 30 minutes, except for the polymer catalyst reaction, where the reaction time



was 120 minutes. The amount of agent hydrolysed was calculated from the consumption of 

the standard NaOH solution.

Cu catalyst

For pH > 6.5, the half-life of GB in water at any temperature and constant pH can be 

calculated from the equation,

logU  = 5039-8.035 -p H  
T

where ty2 is the half-life in hours and the temperature, T, is in K161. For a 10°C change in 

temperature, an approximate fourfold change in the rate of alkaline hydrolysis, at a given 

pH, is observed37. The hydrolysis of GB is at a minimum at pH 6.5 in water, when it has a 

half-life of approximately 460 hours at 20°C.

In order to calculate the amount of agent hydrolysed in 30 minutes, the theoretical 

amount of NaOH needed to neutralise the HF and the phosphonic acid produced from 

100% decomposition of GB has to be calculated. GB has a molecular weight of 140.1 

daltons, and a density of 1.088 g cm' . During the reaction, exactly 0.1 ml of neat agent is 

added to the reaction solution. Given this,

Mass of GB (g) = Volume of GB (ml) x Density of GB (g cm'3) = 0.1 x 1.088 = 0.1088 g

and so, the number of moles of GB can be calculated as 7.77 x 10'4.
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Before the catalyst was added, a pre-titration was carried out to neutralise traces of 

acidic impurities within the GB sample. This volume was measured and the equivalent 

number of moles of GB left for decomposition calculated using the equation below:

No. Moles GB Remaining After Pre-Titration (A) =

7.77 x 10'4 - Volume NaOH Used in Pre-Titration (ml) 
1000

J* 1.999

Two equivalents of NaOH are needed to neutralise the HF and the phosphonic acid 

produced by the hydrolysis reaction, consequently 2X  moles of NaOH are required for total 

neutralisation. Therefore, the amount of agent decomposed during the reaction can be 

calculated using the formula below.

% Agent Decomposed = Vol. NaOH Used During Hydrolysis (ml) x 0.1999
I X

In order to check that the results were repeatable, reactions involving L5/CuCl2 and 

L9/CuCl2 were duplicated, and the data were found to be very similar. For L5/CuCl2, the 

amount of agent hydrolysed was 6.5% and 6.2% in 30 minutes and for L9/CuCl2, 73.6% 

and 73.5%. Reaction time for L5/CuCl2 was extended to 60 minutes in one reaction, as 

little activity compared to complexes containing the other ligands was observed. Reaction 

times for MSL9/CuCl2 and PLl/CuCk were also extended in order to increase the amount 

of data collected.

Summaries of the data for the reactions undertaken are given in Table 14 and graphical 

representations are given in Figures 8-24.
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Table 14: The Decomposition of GB Using Conner(H) Catalysts at pH 6.5, 20°C in the
Agent:Catalyst Ratio 200:1

CATALYST
(Figure No.)

VOL. NaOH 
USED IN PRE
TITRATION

(ml)

VOL. NaOH  
FOR TOTAL 

HYDROLYSIS
(ml)

VOLUM E  
NaOH USED IN 

REACTION
(ml)

% AGENT  
DECOMPOSED  
IN 30 MINUTES

Unmodified Catalysts
L1/CuC12 (8) 0.0237 0.7300 0.7078 97.0

L2/CuC12 (9) 0.0241 0.7292 0.3726 51.1

L3/CuC12 (10) 0.0247 0.7280 0.5881 80.8

L4/CuC12 (11) 0.0243 0.7288 0.5328 73.1

L5/CuC12 (12) 0.0293 0.7188 0.0470 6.5

L5/CuCl2 
After 60 minutes

0.0286 0.7202 0.0450
0.0806

6.2
11.2

L6/CuCl2 (13) 0.0173 0.7428 0.2836 38.2

L7/CuCl2 (14) 0.0190 0.7394 0.2875 38.9

Alkenvlated Catalysts
L8/CuCl2 (15) 0.0237 0.7300 0.5940 81.4

L8/Cu(N03)2 (16) 0.0194 0.7386 0.6086 82.4

L9/CuCl2 (17) 0.0230 0.7314 0.5380 73.6

L9/CuCI2 0.0248 0.7278 0.5351 73.5

L9/Cu(N 03)2 (18) 0.0240 0.7294 0.5644 77.4

L10/CuCl2 (19) 0.0198 0.7378 0.6045 81.9

L10/Cu(NO3)2 (20) 0.0178 0.7418 0.6513 87.8

L ll/C uC l2 (21) 0.0171 0.7432 0.5839 78.6

L ll/C u(N 03)2 (22) 0.0195 0.7384 0.5882 79.7

L13/CuCl2 0.0223 0.7328 0.2488 34.0

Functionalised 
Siloxane Catalysts
MSL9/CuCl2 (23) 
After 60 minutes

0.0262 0.7250 0.5168
0.6204

71.3
85.6

PLl/CuCl2 (24) 
(120 minutes, 20:1)

0.0191 0.7392 0.4989 67.5
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Figures 8 to 14 show the progress o f the decomposition of GB for the unmodified ligand complexes.

Figure 8 Figure 9
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Figure 12
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Figures 15 to 22 show the progress o f reaction for the alkenylated ligand complexes.

Figure 15 Figure 16
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Figure 19

D e c o m p o s i t io n  o f  GB U s in g  L 10/C uC I2 a s  C a ta ly s t
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Figures 22 and 23 highlight the progress of reaction for the model siloxane and polymer catalysts tested.

Figure 23 Figure 24
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The decomposition of GB under these conditions shows that all complexes act as true 

catalysts, and a number of trends are apparent from the graphical results.

1. The rate of hydrolysis by the copper(IT) reagents follows the general sequence:

Bidentate donors > monodentate donors > tridentate donors.

The monodentate and tridentate complexes, whilst not ineffective, were considerably 

slower at catalysing the hydrolysis of GB. The best only decomposed 39% of GB in 30 

minutes, whereas all the bidentate complexes (with the exception of L2 /CUCI2) 

decomposed >70% GB in 30 minutes.

Courtney et al. reviewed the effects of ligands, charge, denticity of ligands and the 

influence of complex stability on the rates of decomposition of GB in copper(II) catalysed 

hydrolysis64. He noted that bidentate ligands were the most effective and increased denticity 

of the ligand reduced the effectiveness of the metal chelate as a catalyst i.e. bidentate > 

tridentate > tetradentate ligands, as partially confirmed in this study. Monodentate systems 

were not studied by Courtney, but other studies45,61 have shown that for common 

monodentate ligand systems, a copper(II):imidazole molar ratio of 1:2 shows maximum 

activity for simulants. The imidazole complexes used in our study had a 

copper(II):imidazole mole ratio of 1:1. The low activity of the copper(II) complex with an 

imidazole ligand may be due to the formation in solution of a complex with a higher 

ligand:copper(II) mole ratio. It was noted that when the imidazole complexes (L6 /CUCI2 

and L13/ CuCb) were dissolved in water at pH6.5 the solution became cloudy, possibly due 

to the precipitation of copper(II) hydroxide, so reducing the aqueous copper(D) 

concentration.
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The copper(II) chloride/pyridine complex (L7 /C11CI2) contained a 1:2 metal:ligand 

molar ratio, and 38.9% of GB was decomposed in 30 minutes. Thus the activity of the 

pyridine complex was slightly better than that of the imidazole complexes. However, at pH 

6.5 this complex also precipitated copper(II) hydroxide. The unstable nature of aqueous 

solutions of copper(II) complexes with monodentate donor ligands, under the conditions 

used, indicates that these systems are not suitable for use as polymer supported catalyst.

2. Of the bidentate species the rate of hydrolysis follows the general order: 

Trimethylenediamine complexes > dipyridylamine complexes > Dipyridylmethane 

complexes > (dimethylaminoethyl)methylamino ethanol complexes.

The most active complex was the 2,2’-dipyridylamine/copper(II) chloride complex (LI/ 

C uC y, which decomposed 97% GB in 30 minutes. A similar trend has been observed in a 

previous study61.

The activity of complexes relates to their stability and the charge on the aqueous 

copper(II) complex42,64. A positive metal ion centre facilitates hydrolysis to the active 

hydroxy-aqua complex, which interacts with GB forming the reaction intermediate, prior to 

intramolecular attack by the hydroxide ion. This mechanism is reproduced below.

OCH(CH,)2

OCH(CH3>2och(Ci+i)2

OCH(CH3):

Intermediate Species
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As described in 3.2.2, it would be expected that the activity of the complexes containing 

pyridine rings (LI, L4 and analogues) would be less than that of analogues containing 

ethylenediamine ligands (L2, L3 and analogues). Due to the extra electron density available 

for bonding to the copper from the delocalised 7r-system of the pyridine ring152'154, the 

copper(II) centre is likely to be less electropositive, and so catalytic activity decreases.

However, whilst the trimethylethylenediame based complexes are indeed the most 

active, the (dimethylaminoethyl)methylamino)ethanol copper(II) chloride complex 

(L2 /CUCI2) and its allylic derivative (L9 /CUCI2) are less active than the pyridine ring based 

complexes. The decrease in activity is much more significant for L2/CuCl2, where only 

51.1% GB is decomposed in 30 minutes, compared to 73.6% for L9/CuCl2. It is possible 

that hydrogen-bonding effects, as noted in the solid-state structure of L2/CuCl2, have an 

impact on the catalytic activity of this complex. The catalytic process may be inhibited 

because another molecule of L2/CuCl2 is hydrogen-bonded to the catalyst in solution. The 

hydrogen-bound molecules may remain in the vicinity of the metal ion, so inhibiting OH 

transfer to coordinated GB. No hydrogen-bonding occurs for the corresponding allyl 

derivative, and because the allylic group is fairly small, steric effects are minimal. As a 

result increased catalytic activity for L9/CuCl2 is observed, to levels similar to those found 

for the other copper(II) complexes tested.

Whilst there have been no specific measurements of the charge on the metal centres of 

the chelates, the 2,2’-dipyridylamine complexes (LI and L8) have 3 electron withdrawing 

nitrogen atoms in the ligand compared to the 2,2’-dipyridylmethane complexes (L4 and 

L ll) . Therefore, it might be expected that the copper centre would be more positively

112



charged in the former pair of complexes, and thus they should have greater activity, as 

observed experimentally.

3. The effect of the change of anion on copper(II) on the rate of hydrolysis follows the 

trend:

Cu(NC>3 )2  complexes > C11CI2 complexes

The differences in activity are very small. Increases in the amount of GB decomposed in 

30 minutes by the nitrate complexes, in comparison to the analogous chloride complexes, 

were of the order of 1% for L8 and L l l ,  4% for L9 and 6% for L10. These increases may 

possibly reflect differences in the aqueous stabilities of corresponding nitrate and chloride 

complexes.

4. The effect of the ligand substituent.

The effect of the addition of an alkenyl chain to the various metallated ligands gives 

conflicting results. Alkenylation of 2,2’-dipyridylamine and imidazole ligands reduces the 

activities of their copper(II) complexes, but increases the activity of copper(II) 2,2’- 

dipyridylmethane, N,N,N’-trimethylethylenediame and (dimethylaminoethyl)methylamino 

ethanol complexes. The effects of the alkenylated chain for analogues of LI are discussed 

in section 3.3.2, and the marked increase in activity of L9/CuCl2 over L2/CuCl2 is 

explained above.

The increase in activity from L4/CuCl2 to L ll/C uC l2 is not expected as 13C N.M.R data 

for the uncomplexed ligands indicate that addition of the alkenyl chain increases the 

electron density in the delocalised 7c-system, so reducing the positive charge on copper(II) 

in their complexes, and theoretically the catalytic activity. This was highlighted previously 

in Table 13.
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The results of these reactions indicate that the siloxane-linked copper(II) catalysts, 

containing the bidentate ligands LI to L4 and their analogues, should be very effective in 

decontaminating GB, provided they dissolve in water and that the support does not interfere 

with the formation of the catalytically active species. Experimentally MSL9 shows a 

similar ability to catalyse the hydrolysis of GB to that of its precursor, L9/CuCl2. After 30 

minutes L9/CuCl2 and MSL9/CuCl2 had decomposed 73.6% and 71.3% of the agent 

respectively. This confirmed that little activity, for the same copper(II) concentration in 

solution, is lost by binding the alkenylated ligand to a trisiloxane support.

The metallated polymer, PL1, also showed catalytic activity when added to an aqueous 

solution of GB. Whilst the polymer is insoluble, and so is not expected to be as active as 

the soluble complexes described above, 67.5% of the GB was decomposed in 2 hours.

The activity shown by the polymer in this study is promising, and increased loadings of 

ligand and metal centre should increase activity, as found in the studies using polystyrene 

copper(II) supported catalysts performed by Menger et al.20. The polystyrene/copper(II) 

systems have Xm = 2.7 minutes, but the equivalent of a 1:7.5 mole ratio of 

copper(II): simulant was used by Menger, which was three times the concentration of 

copper(II) used in our studies. However, there is a possibility that desorbed copper(II) (see 

equilibrium reaction below) could contribute to47, or be the main source of, the activity 

observed for all the polymer reactions, and this needs to be further investigated.

Polymer PolymerL(CuCI2)
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3.3.2 Reaction Kinetics Studies

The catalytic studies above identified complexes containing bidentate ligands as the best 

catalysts. Literature studies have shown that the longer the spacer chain between a solid 

polymer support and its active ligand/metal centres, then the more effective the catalyst is 

in hydrolysing agents and simulants20. Therefore, the ligands L9, L I5, L I6 and L I7 were 

attached to the model siloxane, MS2, in order to produce a set of model siloxanes (MSL8- 

11) with long spacer chains, whose activities could be assessed.

These model siloxanes were also found to be water soluble, and so they could not 

accurately reflect the behaviour of an insoluble polymer supported system. However, the 

relative activities of the systems were to be measured through a second phase of evaluation, 

involving reaction kinetics studies, so that the most active model system could be identified 

and used to determine the constitution of an effective polysiloxane supported catalyst 

system.

A mole ratio of GB to copper(II) complex of 1:17 was maintained in these experiments, 

in order to negate any reliance on the concentration of copper(II) catalyst in the rate of the 

hydrolysis reaction. The hydrolysis reactions were carried out at 20°C and pH 6.5, in a

0.2M solution of HEPES, acting as a buffer. A fluoride electrode, calibrated using standard 

solutions of sodium fluoride, was used to follow the reaction by measuring the 

concentration of F" produced on hydrolysis of GB. This method of following the reaction 

was dictated by the low molar mass of GB and the rate of reaction. It was evident that pH 

stat techniques would not give accurate results under these conditions. It can be seen from 

Figure 8 that the pH of the reaction solution in the catalytic activity studies showed wider 

variances than for all other reactions. The decomposition of GB was fastest in this reaction,
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and the titration techniques being used were struggling to maintain a constant pH, even in a 

ratio of 200:1, agent:complex.

However, attempts to carry out kinetic studies on the model siloxane compounds MSL8- 

11 had to be abandoned. After the addition of any of the siloxane-containing substrates to 

the reaction vessel, the fluoride electrode being used to collect data for the GB hydrolysis 

reaction began to give erroneous readings. Tests showed that the siloxane moiety interfered 

with the electrode, and so only data on copper(II) chloride complexes of ligands L9 and 

L I5-17 were collected. The results are shown graphically in figures 25 -38.

Previous studies on GB hydrolysis reactions have been described as being first order , 

and the observed rate coefficient for the base catalysed hydrolysis reaction, kobs, is:

kobs = k2 [OH][Mn+] + k hyd 

where [Mn+] = metal ion concentration, [OH ] = hydroxide ion concentration and khyd = 

spontaneous hydrolysis rate coefficient. Although not completely defined, the rate 

determining step is believed to involve the loss of F' from the reaction intermediate species 

(as seen in the reaction scheme on page 111 )42’58’60, xhe first-order rate constant for the 

decomposition of GB (kobS) can be calculated from the plot of ln([GB]t/[GB]0), where [GB]t 

is the concentration of GB at time t, and [GB]0 is the concentration of GB at the start of the 

reaction, versus time. The gradient of the line produced is the rate constant, kobs (gradient = 

-k). A half-life for the reaction can then be calculated where ty2 = \n2/k. The plots shown in 

figures 39 -4 2  confirm that under the conditions employed these reactions are indeed first 

order within experimental limits. The associated half-lives have been calculated as 

described and are listed in Table 15.
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Figure 25
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Figure 27
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Figure 26
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Figure 28
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Figure 29
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Figure 31
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Figure 32
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Figure 34
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Figure 33
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Figure 36
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Table 15: Summary of Pseudo First Order rate Kinetics Studies For Hydrolysis of GB 
by Copper(II) Chloride Complexes of L9, L15, L16 and L17

Copper(II) Complex Observed Rate Coefficient (kobs, s ') H alf Life (tj/2, seconds)

L9/CuC12 6.07 x 10'3 114

L9/CuC12 5.99 x 10"3 116

L9/CuC12 5.90 x 10'3 118

L9/CuC12 6.09 x 10'3 114

Average half life = 115.5 seconds + 2.2%

L15/CuC12 2.82 x 10'3 246

L15/CuC12 2.86 x 10‘3 242

L15/CuC12 2.75 x 10'3 252

Average half life = 246.67 seconds + 2.2%

L16/CuC12 6.92 x 10'3 100

L16/CuC12 7.10 x 10'3 98

L16/CuC12 6.65 x 10'3 104

Average half life = 100.67 seconds + 3.3%

L17/CuC12 5.33 x 10’3 130

L17/CuC12 4.94 x 10’3 140

L17/CuC12 5.63 x 10'3 123

Average half life = 131 seconds ± 6.9% |
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Figure 39
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As is apparent from the figures, good reproducibility was obtained between duplicated 

runs, with the exception o f the results for L17/CuCl2, which were somewhat variable. The 

four catalysts studied hydrolysed GB at a rate o f between 2.75x1 O'3 and 7.10xl0"3 s’1, where 

11/2 varied between 252 and 98 seconds. The CuCl2 derivative o f ligand L I6 is the most 

effective catalyst, followed by L9/ CuCb, L I7/ CuCb, and then L I5/ CuCb. This does not 

replicate the findings observed in the initial studies, however, some o f the conditions, such 

as pH control and concentration o f catalyst, are different. These results show the 

ethylenediamine series of copper(II) complexes to be the best catalysts for the hydrolysis of 

GB in these homogenous conditions. The activity o f the 2,2’-dipyridylamine copper(II) 

chloride derivate (L15/CuCl2) has fallen dramatically under the new conditions, whilst the 

other complexes appear to have retained their relative activities. Such a significant drop in 

activity of L15/CuCl2 was unexpected, but as the kinetic runs were completed at the end of 

the programme, and in another establishment (Porton Down), it was not possible to extend 

these studies. Table 16 shows that the activity o f the complexes tested compares well to the 

rates of reaction and half-life values for hydrolysis o f GB by other copper(II) catalysts63'64. 

Both the copper(II) complexes o f L9 and LI 6 are effective catalysts for the hydrolysis o f 

GB, as defined by Mackay and highlighted in the paper by Menger20.

Table 16: Com parison of the Activity of Some Copper(II) Com plexes With GB

Complexing Agent Molar Ratio 
CatalystrGB

Rate Coefficient 
(m in1)

tl/2
(minutes)

N,N,N ’ ,N ’ -tetramethylethylenediamine 5:1 1.4 0.5

Ethylenediamine 1:1.1 8.7 x 10'2 8.0

2,2’-Dipyridyl 2.5:1 2.3 x 10'1 3.0

N,N,N ’ -trimethyl-N’-tetradecylethylene diamine 132:1* 8.2 x 10'1 0.85

L16 17:1 4.1 x 10'1 1.7

L9 17:1 3.6 x 10'1 1.9

* Agent used was GD for this reaction
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4. CONCLUSIONS AND FUTURE WORK

As stated in the abstract, the overall aim of this project was “to prepare and 

characterise polysiloxane bearing transition metal species that may catalyse the 

decomposition of chemical warfare agents”.

We have accomplished the following specific targets in realising the overall aim of 

the project:

1. We have prepared and characterised eight alkenyl functionalised bi- and tri-dentate 

N-donor ligands in a form suitable for attachment to a linear siloxane framework.

2. We have prepared, analysed and characterised a series of fourteen copper(II) salts 

of these alkenyl functionalised bi- and tri-dentate N-donor ligands and two 

commercially available alkenylated monodentate ligands.

3. The crystal and molecular structures of five of these alkenylated/copper(II) 

complexes, and two non-alkenylated ligand/copper(II) complexes have been 

determined by single crystal X-ray crystallography, in order to reveal details about the 

primary coordination sphere around the metal centre.

4. A representative selection of alkenylated N-donor ligands have been attached to 

both short and long chain hydrosiloxanes, by means of Pt catalysed hydrosilylation 

reactions, to give a series of twelve organofunctional tri- and five poly-siloxanes, 

which have been spectroscopically characterised.

5. Tri- and poly-siloxanes containing N-donor functionalities have been metallated 

with copper(II) salts.

6. Increased hydrophilic character has been introduced into one siloxane polymer by 

incorporation of a short-chain polyether in addition to the ligating functional group.
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7. Catalytic hydrolysis studies on GB have been carried out, in conjunction with Dr N. 

Blacker, using a range of model and siloxane linked copper(II) species. First-order 

kinetic data have been obtained for four complexes.

In reaching these targets, a general and facile methodology for preparing 

metallated organofunctional siloxanes has been developed. As a result, a range of 

copper(II) systems, all of which so far tested have been observed to be active in the 

catalytic hydrolysis of the nerve agent GB, have been prepared. Copper(II) complexes 

of trimethylethylenediamine and its alkenylated analogues were identified as the most 

active catalytic systems for the hydrolytic decomposition of GB in aqueous solution, 

with ti/2  =1.7 minutes. This is well within the criteria set by Mackay, as described in 

the paper by Menger19, for an effective decontamination system.

Initial studies have also shown that a model trisiloxane attached to one of the 

copper(II)/ligand complexes is also effective in catalysing the decomposition of GB, 

with very little reduction in activity compared to the non-siloxane containing 

analogue. The water insoluble polymeric siloxane-supported complex was also active, 

decomposing 66% of GB in two hours, in experiments in which the agent was in a 20 

fold molar excess over the copper(II) content of the polymer.

Whilst the catalyst systems studied herein have been shown to be active against 

GB, further work is required to assess the activity of copper(II)/ligand polymer 

attached species. A range of polymer supported copper(II) complexes of the hexenyl 

trimethylethylenediamine alkenylated analogue (L I6 /CUCI2), where the loading of the 

ligand and concentration of copper(II) is varied, should be prepared using the methods 

outlined in these studies. Measurement of the kinetics of reaction, including half-life 

and confirmation of the order of reaction, can be completed using pH stat techniques 

where possible, as for the initial studies described in section 3.3.1. As the water
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insoluble polymer systems have been shown to be less active than their water soluble 

counterparts, this procedure could provide a simple assessment of activity, as has been 

shown previously . Should this method prove to be inappropriate, simulants such as 

PNPDPP may be used as an alternative to G-agents and due to the properties of their 

hydrolysis products, ultra-violet spectrometry is also be a useful technique for 

monitoring their reactions76. N.M.R spectroscopy162,163 may also be used to monitor 

the decomposition of G-agents. Other methods such as vapour desorption, gas 

chromatography and Fourier transform infrared spectroscopy techniques are also 

being developed164.

Experiments designed to assess and quantify any leaching of copper(II) species 

from the copper(II) loaded polymeric catalyst should be carried out, using atomic 

absorption techniques, for example. This will also allow an assessment of the 

recyclability of the supported catalysts, and if  leaching is significant then steps can be 

taken to reduce it, such as increasing the ligand:copper(II) ratio in the catalyst.

These studies have concentrated on the hydrolysis of a single G-agent, but the 

methodology is applicable to many other stoichiometric and catalytic reactions. The 

possibility of anchoring reactive organic decontaminants, such as modified o- 

iodosobenzoic acid68'70,74'76 or quaternary heterocylic aldehyde165 derivates, on 

siloxanes might be investigated. Both surface property modifiers and co-polymer 

formation could result in improved performances for active siloxane-based 

decontaminants, and in addition, the development of techniques for producing very 

thin coatings and cross-linked films of siloxane-containing reagents would extend 

their potential applications.

The development of new multifunctional siloxanes, to increase the activity of the 

catalyst, could be adapted to encompass oxidative decontamination routes. For
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example a modified version of the ligand, [CH3C(0 )CHC(0 )CH3]' (acac), to the 

polymer, followed by metallation to afford the catalyst V(0)(acac)2, which has been 

shown to catalyse the oxidation of HD by H2O2 15 is viable. If used in conjunction with 

a siloxane supported copper(II) catalyst the resulting material has the potential to both 

hydrolyse G-agents, and oxidise HD in the presence of an oxidant. An example of 

such a multifunctional catalyst is illustrated below. The polymer may be loaded with 

other combinations of metals for different applications.

Me. Me

Me. Me

.Cu

MeMe'

Me

Me Me Me

O— ) Si- to  Si- O Si-

Me Me Me Me

In conclusion this project has been very successful and production of siloxane 

supported copper(II) catalysts for the hydrolysis of GB has been achieved, and the 

products shown to be active in decontamination studies. The versatility of siloxane 

chemistry is such that the types of supported catalysts described above have great 

potential for the future.
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APPENDIX A

SUMMARY OF CRYSTALLOGRAPHIC DATA

1. The Structure of L2/CuCh Dimer

A crystal o f approximate dimensions 0.3 x 0.3 x 0.5 mm was used for data collection.

Crystal data: C7H18N2C12OCu, M = 280.71 monoclinic, a = 8.030(3), b = 39.480(8), c = 8.357(2) A, 

J3 = 118.82(3)°, U = 2321.3 A3, space group P2,/a, Z -  4, Dc = 1.60 g cm'3, p(Mo-Ka) = 23.2 cm'1, 

F(000) = 1160. Data were measured at room temperature on a CAD4 automatic four-circle 

diffractometer in the range 2<0<22°. 3150 reflections were collected of which 2117 were unique with 

I>2a(I). Data were corrected for Lorentz and polarization but not for absorption. The structure was 

solved by Patterson methods and refined using the SHELX90’91 suite of programs.

The asymmetric unit consists of 2 molecules that are involved in a single hydrogen bond via Cl(l) 

and 02. (C l(l)-0(2), 3.17 A) As a consequence of this solo hydrogen bond, the pair of molecules in the 

asymmetric unit are not altogether identical. Typically, the Cl(l)-Cu(l) bond length of 2.307(7) A is 

slightly longer than the other Cl-Cu bonds. (Cl(2)-Cu(l), 2.253(5); Cl(3)-Cu(2), 2.266(7); Cl(4)-Cu(2), 

2.260(5) A). In addition, the 0(2)-Cu(2) bond length of 2.474(10) A is longer than the comparative 

0(1)-Cu(l) length of 2.383(9) A.

In the final least squares cycles all atoms were allowed to vibrate anisotropically. Hydrogen atoms 

were included at calculated positions on the carbon atoms. Unfortunately, the hydroxyl protons could 

not be located satisfactorily.

Final residuals after 12 cycles of least squares were R = 0.0680, Rw = 0.0700, for a weighting 

scheme of w = 5.7279/[a2(F) + 0.000331 (F)2]. Max. final shift/esd was 0.005. The max. and min. 

residual densities were 0.43 and -0.26 e A'3 respectively.

©1 I
C3 I

CI2 /

CS
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Bond Lengths (A)

Cl(l)-Cu(l) 2.307 (7)

Cl(2)-Cu(l) 2.253 (5)

N (l)-C u(l) 2 .068 (9)

N(2)-Cu(l) 2 .1 0 8 (1 4 )

0(1)-Cu(l) 2.383 (9)

C(l)-NO) 1.539(19)

C (3)-N (l) 1.456(18)

C(6)-N(l) 1.460(15)

C(2)-N(2) 1.477(13)

C(4)-N(2) 1.459(19)

C(5)-N(2) 1.491 (15)

C (7 )-0 (l) 1.440(12)

C(2)-C(l) 1.455 (17)

C(7)-C(6) 1.529(19)

C(3)-Cu(2) 2.266 (7)

C(4)-Cu(2) 2.260 (5)

N(3)-Cu(2) 2.056 (9)

N(4)-Cu(2) 2.072 (14)

0(2)-Cu(2) 2.474 (10)

C(8)-N(3) 1.499(21)

C(10)-N(3) 1.475 (16)

Bond Angles (°)

C l(2)-C u(l)-C l(l) 93.5(2)

N(l)-Cu(l)-Cl(l) 91.4 (4)

N(l)-Cu(I)-Cl (2) 173.7(3)

N(2)-Cu(l)-Cl (1) 157.9(3)

N (2)-C u(l) -Cl(2) 91.3(3)

N (2)-C u(l)-N (l) 85.7 (5)

0(1)-Cu(l)-Cl(l) 96.1(4)

0(1)-C u(l)-C l(2) 98.5(3)

0(l)-Cu(l)-N(I) 77.0(4)

0(1)-C u(l)-N (2) 104.6(5)

C(l)-N(l)-Cu(l) 104.4 (7)

C (3)-N (l)-C u(l) 113.0(7)

C (3)-N (l)-C (l) 110.4(10)

C (6)-N (l) -Cu(l) 110.5(7)

C (6)-N (l)-C (l) 111.0(9)

C(6) -N(l) -C(3) 107.5(10)

C(2)-N(2)-Cu(l) 104.5(9)

C(4)-N(2)-Cu(l) 110.0(9)

C(4) -N(2)-C(2) 110.9(10)

C(5)-N(2)-Cu(l) 112.4(9)

C(5)-N(2)-C(2) 109.5(10)

C(5)-N(2)-C(4) 109.4(11)

C(7)-0(1)-Cu(l) 109.0(7)

C (2)-C (l)-N (l) 108.7(9)

C(l)-C(2)-N(2) 111.2(10)

C(13)-N(3) 1.472(16) H(62)-C(6) 0.960(21)

C(9)-N(4) 1.501 (18) H(71)-C(7) 0.960(19)

C (ll)-N (4 ) 1.443 (15) H(72)-C(7) 0.960 (22)

C(12)-N(4) 1.448(18) H(81)-C(8) 0.960(18)

C (14)-0(2) 1.415(14) H(82)-C(8) 0.960 (21)

C(9)-C(8) 1.480(18) H(91)-C(9) 0.960 (26)

C(14)-C(13} 1.519(21) H(92)-C(9) 0.960 (22)

H(1 l)-C(l) 0.960(17) H(101)-C(10) 0.960 (20)

H (12)-C(l) 0.960 (13) H(102)-C(10) 0.960 (25)

H(21)-C(2) 0.960(18) H(103)-C(10) 0.960 (16)

H(22)-C(2) 0.960 (21) H (111)-C(11) 0.960 (22)

H(31)-C(3) 0.960 (20) H (112)-C (ll) 0.960 (27)

H(32)-C(3) 0.960(15) H (113)-C (ll) 0.960 (21)

H(33)-C(3) 0.960 (24) H(121)-C(12) 0.960(18)

H(41)-C(4) 0.960(17) H(122)-C(12) 0 .960(21)

H(42)-C(4) 0.960 (24) H(123)-C(12) 0.960 (29)

H(43)-C(4) 0.960(15) H(131)-C(13) 0.960 (24)

H(51)-C(5) 0.960 (21) H(132)-C(13) 0.960 (16)

H(52)-C(5) 0.960(15) H(141)-C(14) 0.960 (25)

H(53)-C(5) 0.960 (23) H(142)-C(14) 0.960 (23)

H(61)-C(6) 0.960 (13)

C(7)-C(6) -N(l) 111.9(11) C(9)-C(8) -N(3) 108.4 (11)

C(6)-C(7)-0(l) 109.7(9) C(8) -C(9) -N(4) 110.3(13)

Cl(4)-Cu(2)-Cl (3) 91.6(2) C(14)-C(13) -N(3) 111.0(11)

N(3)-Cu(2)-Cl(3) 92.2 (4) C(13)-C(14)-0(2) 111.0(11)

N(3)-Cu(2) -Cl (4) 171.3(3) H (ll)-C (l)-N (l) 109.7(13)

N(4)-Cu(2)-Cl(3) 157.4 (3) H (12)-C (l)-N (l) 109.6(15)

N(4)-Cu(2)-Cl (4) 93.5(4) H (12)-C(l)-H (l 1) 109.5(14)

N(4)-Cu(2)-N(3) 85.9(5) C (2)-C (l)-H (ll) 109.7(14)

0(2)-Cu(2)-Cl(3) 101.5(4) C(2)-C(l)-H(12) 109.6(13)

0(2)-Cu(2)-Cl(4) 96.8(3) H(21)-C(2)-N(2) 109.1(12)

0(2)-Cu(2)-N(3) 74.8 (4) H(21)-C(2)-C(l) 109.1(15)

0(2)-Cu(2)-N(4) 99.7(4) H(22)-C(2)-N(2) 109.0(14)

C(8)-N(3)-Cu(2) 105.6(7) H(22)-C(2)-C(l) 109.0(12)

C(10)-N(3)-Cu(2) 113.2(7) H(22)-C(2)-H(21) 109.5(17)

C(10)-N(3) -C(8) 109.4 (12) H (31)-C(3)-N(l) 109.5(17)

C(13)-N(3)-Cu(2) 108.5(8) H (32)-C(3)-N(l) 109.4(15)

C(13)-N(3) -C(8) 113.4 (10) H(32)-C(3)-H(31) 109.5(17)

C(13)-N(3)-C(10) 106.9(10) H (33)-C(3)-N(l) 109.5(14)

C(9)-N(4)-Cu(2) 104.9(9) H(33)-C(3)-H(31) 109.5(18)

C(ll)-N (4)-C u(2) 112.7(11) H(33)-C(3)-H(32) 109.5(20)

C (ll)-N (4)-C (9) 110.5(11) H(41)-C(4)-N(2) 109.5(16)

C(12)-N(4)-Cu(2) 110.7(10) H(42) -C(4)-N(2) 109.5(14)

C(12)-N(4)-C(9) 109.0(12) H(42)-C(4)-H(41) 109.5(18)

C (12)-N (4)-C (ll) 109.0(10) H(43)-C(4)-N(2) 109.5(16)

C(14)-0(2)-Cu(2) 107.2 (8) H(43)-C(4)-H(41) 109.5(16)
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H(43)-C(4)-H(42) 109.5(19) H(82)-C(8)-H(81) 109.5(17) H(113)-C(11)-H(112) 109.5(19)

H(51)-C(5)-N(2) 109.5(14) C(9)-C(8) -H(81) 109.8(17) H(121)-C(12)-N(4) 109.5(16)

H(52)-C(5)-N(2) 109.4(14) C(9)-C(8)-H(82) 109.7(15) H( 122)-C( 12)-N(4) 109.5(18)

H(52)-C(5)-H(51) 109.5(18) H(91)-C(9)-N(4) 109.3(14) H( 122)-C( 12)-H( 121) 109.5(20)

H(53)-C(5)-N(2) 109.4(14) H(91)-C(9)-C(8) 109.3(14) H(123)-C(12)-N(4) 109.5(16)

H(53)-C(5)-H(51) 109.5(18) H(92)-C(9)-N(4) 109.2(14) H(123)-C(12)-H(121) 109.5(22)

H(53)-C(5)-H(52) 109.5(18) H(92)-C(9)-C(8) 109.2(15) H( 123)-C(12)-H( 122) 109.5(20)

H (61)-C(6)-N(l) 108.8(13) H(92)-C(9)-H(91) 109.5(22) H(131)-C(13)-N(3) 109.1(13)

H (62)-C(6)-N(l) 108.9(12) H(101)-C(10)-N(3) 109.5(15) H(132)-C(13)-N(3) 109.1(15)

H(62)-C(6)-H(61) 109.5(16) H(102)-C(10)-N(3) 109.5(15) H( 132)-C( 13)-H( 131) 109.5(17)

C(7)-C(6) -H (61) 108.9(13) H( 102)-C( 10)-H( 101) 109.5(18) C( 14)-C( 13)-H( 131) 109.1 (15)

C(7)-C(6)-H(62) 108.9(13) H( 103)-C( 10)-N(3) 109.5(14) C( 14)-C( 13 )-H( 132) 109.1(14)

H (71)-C(7)-0(l) 109.4(12) H( 103)-C( 10)-H( 101) 109.5(19) H(141)-C(14)-0(2) 109.1(16)

H(71)-C(7)-C(6) 109.4 (16) H( 103)-C( 10)-H( 102) 109.5(19) H( 141 )-C( 14)-C( 13) 109.1(17)

H (72)-C(7)-0(l) 109.4(15) H (lll) -C (ll) -N (4 )  109.5(14) H(142)-C(14)-0(2) 109.1(16)

H(72)-C(7)-C(6) 109.4(13) H (112)-C (ll)-N (4) 109.5(16) H(142)-C(14)-C(13) 109.1(17)

H(72)-C(7)-H(71) 109.5(16) H(112)-C(11)-H(111) 109.5(22) H( 142)-C( 14)-H(141) 109.5(18)

H(81)-C(8)-N(3) 109.8(16) H(113)-C(11)-N(4) 109.5(17)

H(82)-C(8)-N(3) 109.7(18) H( 113)-C( 11 )-H( 111) 109.5(22)

2. The Structure of L9/CuCl?

A crystal o f approximate dimensions 0.4 x 0.3 x 0.1 mm was carefully cut from a large block and 

used for data collection.

Crystal data: C io^l^O C ^C u, M = 320.7 orthorhombic, a = 8.284(1), b = 11.609(2), c = 15.042(1) 

A, U = 1446.6 A3, space group P2)2 12 1, Z = 4, Dc = 1.47 g cm'3, p(Mo-Ko) = 18.7 cm'1, F(000) = 668. 

Data were measured at room temperature on a CAD4 automatic four-circle diffractometer in the range 

2<0<24°.1837 reflections were collected o f which 1257 were unique with I>2o(I). Data were corrected 

for Lorentz and polarization effects but not for absorption. The structure was solved by Direct methods 

and refined using the SHELX90’ 91 suite o f programs. In the final least squares cycles all atoms were 

allowed to vibrate anisotropically. Hydrogen atoms were included at calculated positions in all cases 

except for the allylic protons (H9, H101, H I02), which were located in the penultimate Difference 

Fourier and refined at a fixed distance o f 1.07 A from the parent atoms (C9, CIO). Also, the chiral 

integrity o f the molecule as presented is considerably greater than 99% based on the Hamilton 

significance test. Final residuals after 8 cycles o f least squares were R = 0.0386, Rw = 0.0365, for a 

weighting scheme of w = 1.3262/[a2(F) + 0.000698 (F)2]. Max. final shift/esd was 0.009. The max. and 

min. residual densities were 0.21 and -0.44 e A'3 respectively.
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Bond Lengths (A)

Cl(l)-Cu(l) 2.254(4) C (8)-0(l) 1.455(9) C(6)-N(2) 1.488(10)

CI(2)-Cu(l) 2.264(4) C(l)-N(l) 1.487(10) C(4)-C(3) 1.508(12)

0(1)-C u(l) 2 .3 93(7) C(2)-N(l) 1.481(10) C(7)-C(6) 1.507(12)

N (l)-C u(l) 2. 079(8) C(3)-N(l) 1.481(10) C(9)-C(8) 1.479(13)

N(2)-Cu(l) 2.088(7) C(4)-N(2) 1.488(10) C(10)-C(9) 1.291(13)

C (7)-0(l) 1.413(9) C(5)-N(2) 1.500(11)

Bond Angles (°)

Cl(2)-Cu(I)-Cl(l) 94.2(2) C(8)-0(1)-Cu(l) 124.6(6) C(6)-N(2)-Cu(l) 108.6(5)

0(1)-Cu(l)-Cl(l) 96.7(2) C (8)-0(l)-C (7) 113.6(7) C(6)-N(2) -C(4) 111.6(7)

0(l)-C u(l)-C I(2) 93.9(2) C(l)-N(l)-Cu(l) 110.6(6) C(6)-N(2)-C(5) 108.0(7)

N(l)-Cu(l)-Cl(l) 155.2(2) C(2)-N(l)-Cu(l) 112.8(6) C(4)-C(3)-N(l) 109.3(7)

N(l)-Cu(l)-CI(2) 92.3 (3) C (2)-N (l)-C (l) 108.5(8) C(3)-C(4)-N(2) 108.2(7)

N (l)-C u(l)-0(1) 106.8(3) C(3)-N(l)-Cu(l) 106.2(5) C(7)-C(6)-N(2) 112.6(7)

N(2)-Cu(l)-CI(l) 93.1(3) C (3)-N (l)-C (l) 109.6(7) C(6)-C(7)-0(l) 108.2(7)

N(2)-Cu(l)-CI(2) 169.0(2) C(3)-N(l)-C(2) 109.0(7) C(9)-C(8)-0(l) 113.4(8)

N (2)-Cu(l)-0(1) 77.0(3) C(4)-N(2)-Cu(l) 106.7(5) C( 10)-C(9)-C(8) 124.1(11)

N(2)-Cu(l)-N(l) 84.5(3) C(5)-N(2)-Cu(l) 113.0(5)

C(7)-0(1)-Cu(l) 109.3(5) C(5)-N(2) -C(4) 109.0(7)

3. The Structure of L4/CuCh Dimer

A crystal of approximate dimensions 0.2 x 0.2 x 0.15 mm was used for data collection.

Crystal data: C11H 1oC12N2Cu.,/2CH3OH, M = 320.67, Triclinic, a = 8.3490(10), b = 10.005(2), c = 

15.425(3) A, a = 99.35(2), (3 = 89.95(2), y = 99.59(2)°, U = 1253.1(4) A3, space group P-l (No.2), Z 

=4, D0 = 1.700 g cm'3, p(Mo-Ka) = 2.149 mm'1, F(000) = 648. Crystallographic measurements were 

made at 170(2)°K on a CAD4 automatic four-circle diffractometer in the range 2.09<0<23.93°. Data 

(4238 reflections) were corrected for Lorentz and polarization but not for absorption.
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The asymmetric unit consists of 2 separate halves of dimer molecules, both straddling nearby 

inversion centres, and one molecule of methanol. The dimer containing Cul is completed from the 

symmetry transformation -x, -y, - z, while the Cu2 containing dimer is generated via the operator 1-x, - 

y, 1-z. In addition, the oxygen atom in the solvent molecule is disordered between sites O lA  and 0 1 B 

in the ratio 1:1.

In the final least squares cycles all atoms were allowed to vibrate anisotropically. Hydrogen atoms 

were included at calculated positions where relevant except on the solvent molecule.

The solution of the structure (SHELX86)91 and refinement (SHELX93)92 converged to a 

conventional [i.e. based on 2875 with Fo>40(Fo)] R1 = 0.0418 and wR2 = 0.0970. Goodness of fit = 

0.958. The max. and min. residual densities were 0.847 and -0.645 e A 3 respectively.

2

Bond Lengths (A)

C u(l)-N (l) 2.027(5) N(2)-C(7) 1.366(7) C(8)-C(9) 1.382(9)

Cu(l)-N(2) 2.029(5) N(3)-C(12) 1.332(7) C(9)-C(10) 1.385(8)

Cu(l)-Cl(2) 2.259(2) N(3)-C(16) 1.355(7) C (10)-C (ll) 1.379(8)

C u(l)-C l(l) 2.311(2) N(4)-C(22) 1.343(7) C(12)-C(13) 1.381(9)

C u(l)-C l(l)#l 2.630(2) N(4)-C(18) 1.361(7) C(13)-C(14) 1.397(9)

Cu(2)-N(3) 2.024(5) 0 (  1 A )-0( 1B) 1.31(2) C(14)-C(15) 1.373(9)

Cu(2)-N(4) 2.028(5) 0(1A)-C(23) 1.373(11) C(15)-C(16) 1.386(8)

Cu(2)-Cl(3) 2.273(2) 0(1B)-C(23) 1.335(13) C(16)-C(17) 1.495(8)

Cu(2)-Cl(4) 2.303(2) C( 1 )-C(2) 1.387(9) C( 17)-C( 18) 1.502(8)

Cu(2)-Cl(4)#2 2.627(2) C(2)-C(3) 1.401 (9) C(18)-C(19) 1.380(8)

C l(l)-C u(l)#l 2.630(2) C(3)-C(4) 1.362(9) C(19)-C(20) 1.386(9)

Cl(4)-Cu(2)#2 2.627(2) C(4)-C(5) 1.383(8) C(20)-C(21) 1.389(8)

N (l)-C (l) 1.331(8) C(5)-C(6) 1.501(8) C(21 )-C(22) 1.370(8)

N(l)-C(5) 

N(2)-C(l 1)

1.365(7)

1.343(8)

C(6)-C(7)

C(7)-C(8)

1.495(8)

1.379(8)
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Bond Angles (°)

N (l)-C u(l)-N (2) 86.0(2) C (l)-N (l)-C u(l) 122.4(4) C(8)-C(7)-C(6) 123.6(5)

N (l)-C u(l)-C l(2) 89.1(2) C (5)-N (l)-C u(l) 118.3(4) C(7)-C(8)-C(9) 119.8(5)

N (2)-Cu(l)-Cl(2) 153.02(14) C (ll)-N (2)-C (7) 118.7(5) C(10)-C(9)-C(8) 118.9(6)

N (l)-C u (l)-C l(l) 176.1(2) C(11)-N(2)-Cu(l) 122.6(4) C(11)-C(10)-C(9) 119.1(6)

N (2)-C u(l)-C l(l) 90.93(14) C(7)-N(2)-Cu(l) 118.6(4) N (2)-C (ll)-C (10) 122.3(5)

C l(2)-C u(l)-C l(l) 94.72(6) C(12)-N(3)-C(16) 118.9(5) N(3)-C(12)-C(13) 123.4(6)

N (l)-C u (l)-C l(l)# l 92.81(14) C(12)-N(3)-Cu(2) 121.6(4) C(12)-C(13)-C(14) 117.6(6)

N (2)-Cu(l )-Cl(l )# 1 96.93(14) C(16)-N(3)-Cu(2) 119.5(4) C(15)-C(14)-C(13) 119.4(6)

Cl(2)-Cu( 1 )-Cl( 1 )# 1 109.81(6) C(22)-N(4 )-C(18) 118.2(5) C(14)-C(15)-C(16) 119.7(5)

C l(l)-C u (l)-C l(l)# l 85.25(6) C(22)-N( 4 )-Cu(2) 122.8(4) N(3)-C( 16)-C(15) 121.0(5)

N(3)-Cu(2)-N(4) 87.0(2) C(18)-N( 4 )-Cu(2) 119.0(4) N(3)-C(16)-C(17) 115.4(5)

N(3)-Cu(2)-Cl(3) 89.82(14) 0 (  1 B )-0 ( 1 A)-C(23) 59.7(7) C(15)-C(16)-C(17) 123.6(5)

N(4)-Cu(2)-Cl(3) 150.36(14) 0 (  1 A )-0 ( 1 B)-C(23) 62.6(7) C(16)-C(17)-C(18) 110.7(5)

N(3)-Cu(2)-Cl(4) 176.29(14) N (l)-C (l)-C (2) 123.3(6) N(4)-C(18)-C(19) 121.6(5)

N(4)-Cu(2)-Cl(4) 90.78(14) C(l)-C(2)-C(3) 116.7(6) N(4)-C(18)-C(17) 115.5(5)

Cl(3)-Cu(2)-Cl(4) 93.60(6) C(4)-C(3)-C(2) 120.4(6) C(19)-C(18)-C(17) 122.8(5)

N(3)-Cu(2)-Cl(4)#2 92.84(14) C(3)-C(4)-C(5) 119.9(6) C(18)-C(l 9)-C(20) 119.6(5)

N(4)-Cu(2)-Cl(4)#2 105.63(14) N(l)-C(5)-C(4) 120.4(5) C(19)-C(20)-C(21) 118.4(5)

Cl(3)-Cu(2)-Cl(4)#2 103.95(6) N(l)-C(5)-C(6) 115.6(5) C(22)-C(21 )-C(20) 119.3(5)

Cl(4)-Cu(2)-Cl(4)#2 84.94(6) C(4)-C(5)-C(6) 124.0(5) N(4)-C(22)-C(21) 122.9(5)

C u (l)-C l(l)-C u(l)# l 94.75(6) C(7)-C(6)-C(5) 111.1(5) 0 (  1 B )-C (23)-0( 1 A) 57.7(7)

Cu(2)-Cl(4)-Cu(2)#2 95.06(6) N(2)-C(7)-C(8) 121.1(5)

C (l)-N (l)-C (5) 119.2(5) N(2)-C(7)-C(6) 115.2(5)

4. The Structure of L17/CuCh Dimer

A crystal o f approximate dimensions 0.2 x 0.2 x 0.4 mm was used for data collection.

Crystal data: C17H20N2C12Cu, M = 386.8 monoclinic, a = 9.753(2), b = 12.414(2), c -  14.520(2) A,

J3 = 97.79(2)°, U = 1741.8 A3, space group P2,/n, Z = 4, Dc = 1.47 g cm'3, p(Mo-Ka) = 15.6 cm'1, F(000) 

= 796. Data were measured at room temperature on a CAD4 automatic four-circle diffractometer in the 

range 2<0<24°. 3062 reflections were collected o f which 2035 were unique with I>2a(I). Data were 

corrected for Lorentz and polarization but not for absorption. The structure was solved by Direct 

methods and refined using the SHELX90’91 suite o f programs. In the final least 3quares cycles all atoms 

were allowed to vibrate anisotropically. Hydrogen atoms were included at calculated positions in all 

cases except for C l5, C l6 and C l7. The difference electron density map exhibited some smudging in 

the Cl 6/C 17 region. This was largely due to disorder in the positions o f these 2 atoms with Cl 6a and 

Cl7a in the ratio 62:38.

The molecule as presented forms one half o f a dimer. The remaining portion o f the dimer, as 

illustrated in the ORTEP plot, is generated by inversion through the origin. Final residuals after 10 

cycles of least squares were R = 0.0322, Rw = 0.0348, for a weighting scheme o f w = 1.634 l/[a2(F) + 

0.000698(F)2]. Max. final shift/esd was 0.025. The max. and min. residual densities were 0.19 and - 

0.15 e A"3 respectively.
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Bond Lengths (A)

Cl(l)-Cu(l) 2.264(3) C(9)-C(8) 1.373(7) H(31)-C(3)

Cl(2)-Cu(l) 2.284(3) C(10)-C(9) 1.370(7) H(41)-C(4)

N (l)-C u(l) 2.016(5) C(11)-C(10) 1.376(7) H(61)-C(6)

N(2)-Cu(l) 2.048(5) C(13)-C(12) 1.523(8) H(81)-C(8)

C(l)-N(l) 1.339(6) C(14)-C(13) 1.546(10) H(91)-C(9)

C(5)-N(l) 1.337(5) C( 15)-C( 14) 1.407(10) H(10)-C(10)

C(7)-N(2) 1.349(5) C(16a)-C(15) 1.687(37) H(11 )-C( 11)

C(11)-N(2) 1.337(6) C(16)-C(15) 1.651(27) H( 121 )-C( 12)

C(2)-C(l) 1.367(7) C(17a)-C(16a) 1.254 (64) H(122)-C(12)

C(3)-C(2) 1.377(7) C(16)-C(16a) 0.931(24) H(131)-C(13)

C(4)-C(3) 1 .386(7) C(17)-C(16a) 0.914(29) H( 132)-C( 13)

C(5)-C(4) 1.401(6) C(16)-C(17a) 0.752(16) H( 141 )-C(14)

C(6)-C(5) 1.507(7) C(17)-C(17a) 0.925(37) H(142)-C(14)

C(7)-C(6) 1.514(7) C(17)-C(16) 1.199(59)

C(12)-C(6) 1.534(7) H(1 l)-C(l) 0.960

C(8)-C(7) 1.385(6) H(21)-C(2) 0.960

Bond Angles (°)

Cl(2)-Cu(l)-Cl(l) 92.9 C (5)-N(l)-Cu(l) 121.6(3) C(4)-C(3)-C(2)

N(l)-Cu(l)-Cl(l) 89.3(2) C(5)-N(l)-C(l) 119.3(4) C(5)-C(4)-C(3)

N(l)-Cu(l)-Cl(2) 175.9(1) C(7)-N(2)-Cu(l) 120.5(3) C(4)-C(5)-N(l)

N(2)-Cu(l)-Cl(l) 155.3(1) C(11)-N(2)-Cu(l) 120.7(4) C(6)-C(5)-N(l)

N(2)-Cu(l)-Cl(2) 92.3(2) C (ll)-N (2)-C (7) 118.7 (4) C(6)-C(5)-C(4)

N (2)-C u(l)-N (l) 87.1(2) C (2)-C (l)-N (l) 122.7(5) C(7)-C(6)-C(5)

C(l)-N(l)-Cu(l) 119.1(4) C(3)-C(2)-C(l) 119.2(5) C(12)-C(6)-C(5)

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

118.7(5) 

119.2(5) 

120.9(4) 

118.0(4) 

121.1 (4) 

111.0(4) 

112.7(4)
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C(12)-C(6)-C(7) 111.3(4) C(17)-C(17a)-C(16) 90.7(67) C(9)-C(8)-H(81) 120.2(4)

C(6)-C(7)-N(2) 117.8(4) C(16a)-C(16)-C(15) 75.9(33) H (9.1 )-C(9)-C(8) 120.6(4)

C(8) -C(7)-N(2) 121.1(4) C(17a)-C(16)-C(15) 168.7(48) C(10)-C(9)-H(91) 120.6(4)

C(8)-C(7)-C(6) 121.1 (4) C(17a)-C(16)-C(16a) 95.7(68) H(10)-C(10)-C(9) 120.3(4)

C(9)-C(8)-C(7) 119.7 (5) C(17)-C(16)-C(15) 123.6(42) C (ll)-C (10)-H (10) 120.3(4)

C(10)-C(9)-C(8) 118.8(5) C( 17)-C( 16)-C( 16a) 48.9(29) H (ll)-C (ll)-N (2 ) 118.9(3)

C (ll)-C (10)-C (9) 119.5(5) C(17)-C(16)-C(17a) 50.5(46) H(11)-C(11)-C(10) 118.9(4)

C (10)-C (ll)-N (2) 122.2(5) C(17a)-C(l 7)-C(16a) 86.0(52) H(121)-C(12)-C(6) 108.4(3)

C(13)-C(12)-C(6) 113.8(4) C( 16)-C( 17)-C( 16a) 50.1(28) H( 122)-C( 12)-C(6) 108.4(3)

C(14)-C(13)-C(12) 112.9(6) C(16)-C(17)-C(17a) 38.9(24) H(122)-C(12)-H(121) 109.5

C(15)-C(14)-C(13) 115.8(7) H(11)-C(1)-N(1) 118.6(3) C( 13)-C( 12)-H( 121) 108.4(3)

C(16a)-C(15)-C(14) 100.7(13) C (2 )-C (l)-H (ll) 118.6(4) C( 13)-C( 12)-H( 122) 108.4(3)

C(16)-C(15)-C(14) 121.7(11) H(21)-C(2)-C(l) 120.4(4) H(131)-C(13)-C(12) 108.6(3)

C(16)-C(15)-C(16a) 32.4(8) C(3)-C(2)-H(21) 120.4(3) H(132)-C(13)-C(12) 108.6(3)

C(17a)-C(16a)-C(15) 108.0(38) H(31)-C(3)-C(2) 120.7(3) H( 132)-C( 13)-H( 131) 109.5

C(16)-C(16a)-C(15) 71.7(34) C(4)-C(3)-H(31) 120.7(3) C( 14)-C( 13)-H( 131) 108.6(4)

C( 16)-C( 16a)-C(l 7a) 36.7(28) H(41)-C(4) -C(3) 120.4 (3) C( 14)-C( 13)-H( 132) 108.6(5)

C(17)-C(16a)-C(15) 150.0(50) C(5)-C(4)-H(41) 120.4 (3) H( 141 )-C( 14)-C( 13) 107.9(4)

C(17)-C(16a)-C(17a) 47.4(30) H(61)-C(6)-C(5) 106.8(3) H( 142)-C( 14)-C( 13) 107.9(4)

C( 17)-C( 16a)-C( 16) 81.0(51) C(7)-C(6)-H(61) 108.3(3) H( 142)-C( 14)-H( 141) 109.5

C(16)-C(17a)-C(16a) 47.6(42) C(12)-C(6)-H(61) 106.5(3) C(15)-C(14)-H(141) 107.9(6)

C(17)-C(17a)-C(16a) 46.7(31) H(81)-C(8)-C(7) 120.2(3) C( 15)-C( 14)-H( 142) 107.9(5)

5. The Structure of L12/CuCh

A crystal o f approximate dimensions 0.3 x 0.3 x 0.5 mm was used for data collection.

Crystal data: C15H17N3Cl2 Cu, M = 373.8 monoclinic, a = 9.031(1), b = 13.518(2), c = 13.891(1) A, g 

= 109.307(9)°, U = 1650.3 A3, space group P2,/n, Z = 4, Dc = 1.50 g cm*3, p(Mo-Ka) = 16.5 cm*1, 

F(000) = 764. Data were measured at room temperature on a CAD4 automatic four-circle 

diffractometer in the range 2<0<24°. 2894 reflections were collected o f which 2023 were unique with 

I>2g(I). Data were corrected for Lorentz and polarization but not for absorption. The structure was 

solved by Patterson methods and refined using the SHELX90, 91 suite o f programs. In the final least 

squares cycles all atoms were allowed to vibrate anisotropically. Hydrogen atoms were included at 

calculated positions except in the instance o f the H I41, H I51 and H I52 (attached to olefinic carbons 

C14 and CI5). These protons were located in an advanced Difference Fourier and refined at a distance 

of 0.96 A from the relevant parent atoms.

The lattice was also seen to contain some residual solvent straddling the centre o f symmetry at 

0,0.5,0.5. Unfortunately, due to disorder, this fragment did not approximate to anything recognisable, 

and the best results were obtained by 'mopping-up' this electron density as partial isotropic carbon 

atoms. (Cl1, C2' with occupancies 0.48 and, 0.31 respectively)

Final residuals after 12 cycles o f least squares were R = 0.0343, Rw = 0.0369, for a weighting 

scheme o f w = 2.3376/[a2(F) + 0.000550(F)2]. Max. final shift/esd was 0.000. The max. and min. 

residual densities were 0.28 and -0.13 eA*3 respectively.
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Bond Lengths (A)

C l(l)-C u(l) 2.270(3) C(4)-C(3) 1.392(8) H(41)-C(4)

Cl(2)-Cu(l) 2.467(3) C(5)-C(4) 1.381 (6) H(61)-C(6)

N(l)-Cu(I) 2.004(5) C(6)-C(5) 1.498 (6) H(62)-C(6)

N(2)-Cu(l) 2.084(5) C(8)-C(7) 1.505(7) H(71)-C(7)

N(3)-Cu(l) 2.003(5) C(9)-C(8) 1.378(6) H(72)-C(7)

C(5)-Cu(l) 2.832(7) C(10)-C(9) 1.374(7) H(91)-C(9)

C(8)-Cu(l) 2.835(7) C(11)-C(10) 1.388(7) H( 101 )-C( 10)

C(l)-N(l) 1.341 (6) C(12)-C(l 1) 1.385(6) H(111)-C(11)

C(5)-N(l) 1.350(6) C(14)-C(13) 1.502(7) H(121)-C(12)

C(6) -N(2) 1.497 (5) C(15)-C(14) 1.303(7) H(131)-C(13)

C(7)-N(2) 1.480(6) C(2')-C(l') 0.891 H(132)-C(13)

C(13)-N(2) 1.498(5) C(l' )-C(l'a) 1.326 H( 141 )-C( 14)

C(8)-N(3) 1.346(5) C(2')-C(2'a) 1.452 H( 152)-C( 15)

C(12)-N(3) 1.336(5) H(1 l)-C (l) 0.960 H( 151 )-C( 15)

C(2) -C(l) 1.376(6) H(21)-C(2) 0.960

C(3)-C(2) 1.364 (8) H(31)-C(3) 0.960

Bond Angles t°)

Cl(2)-Cu(l)-Cl(l) 109.7 C(5)-Cu(l)-N(2) 57.5(2) C(7)-N(2)-C(6)

N(l)-Cu(l)-Cl(l) 96.7(2) C(5)-Cu(l)-N(3) 138.2(1) C(13)-N(2)-Cu(l)

N(l)-Cu(l)-CI(2) 92.0(2) C(8)-Cu(l)-Cl(l) 121.3(2) C(13)-N(2)-C(6)

N(2)-Cu(l)-Cl(l) 145.7(1) C(8)-Cu(l)-Cl(2) 91.3(2) C(13)-N(2)-C(7)

N(2)-Cu(l) -Cl (2) 104.6(2) C(8)-Cu( 1 )-N( 1) 138.0(1) C(8) -N(3) -Cu(l)

N(2) -Cu(l)-N(l) 81.2 (2) C(8)-Cu(l)-N(2) 57.6(2) C(12) -N(3) -Cu(l)

N(3)-Cu(l) -Cl (1) 97.2 (2) C(8)-Cu( 1 )-N(3) 25.6(1) C(12)-N(3)-C(8)

N(3) -Cu(I) -Cl (2) 91.8(2) C(8) -Cu(l) -C(5) 112.5 (2) C(2)-C(l) -N(l)

N(3)-Cu(l)-N(l) 163.3(1) C(l) -N(l) -Cu(l) 127.1 (4) C(3)-C(2)-C(l)

N(3)-Cu(l)-N(2) 82.1(2) C(5)-N(l)-Cu(l) 113.8(3) C(4)-C(3)-C(2)

C(5)-Cu(l)-Cl(l) 121.9(2) C(5)-N(l)-C(l) 118.7(4) C(5)-C(4)-C(3)

C(5)-Cu(l)-Cl(2) 88.4(2) C(6)-N(2)-Cu(l) 104.6(3) N(l)-C(5)-Cu(l)

C(5)-Cu(l)-N(l) 25.9(1) C(7)-N(2)-Cu(l) 106.2(3) C(4)-C(5)-Cu(l)

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960

0.960(2)

0.960(2)

0.960(2)

113.5(4) 

112.4(3) 

108.9(4)

111.1 (4)

114.3 (3)

126.2 (3)

119.4 (4) 

122.6(5) 

118.8(5) 

119.5(5) 

118.9(5)

40.4 (2) 

160.9(3)
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C(4) -C (5)-N (l) 121.3(5) H(11)-C(1)-N(1) 118.7(3) H(91)-C(9)-C(8) 120.1(3)

C(6)-C(5)-Cu(l) 75.6(3) C (2)-C (l)-H (ll) 118.7(4) C(10)-C(9)-H(91) 120.1 (3)

C(6)-C(5)-N(l) 115.9(4) H(21)-C(2)-C(l) 120.6(4) H(101)-C(10) -C(9) 120.6(3)

C(6)-C(5)-C(4) 122.8 (5) C(3)-C(2)-H(21) 120.6(3) C (ll)-C (10)-H (101) 120.6(3)

C(5)-C(6)-N(2) 110.0(4) H(31)-C(3)-C(2) 120.3(3) H( 111 )-C( 11 )-C( 10) 120.6(3)

C(8)-C(7) -N(2) 110.9(4) C(4)-C(3)-H(31) 120.3(4) C(12)-C(l 1)-H(111) 120.6(3)

N(3) -C(8) -Cu(l) 40.1 (2) H(41)-C(4)-C(3) 120.6(4) H(121)-C(12)-N(3) 119.1(3)

C(7)-C(8)-Cu(l) 76.1 (3) C(5)-C(4)-H(41) 120.5(4) H( 121 )-C( 12)-C( 11) 119.1 (3)

C(7)-C(8)-N(3) 116.2(4) H(61)-C(6)-N(2) 109.3(3) H(131)-C(13)-N(2) 108.4 (3)

C(9)-C(8)-Cu(l) 161.3(3) H(61)-C(6)-C(5) 109.3(3) H( 132)-C( 13)-N(2) 108.4(3)

C(9)-C(8)-N(3) 121.3(5) H(62)-C(6)-N(2) 109.3(3) H( 132)-C( 13)-H( 131) 109.5

C(9)-C(8)-C(7) 122.5(4) H(62)-C(6)-C(5) 109.3(3) C(14)-C(13)-H(131) 108.4 (3)

C(10)-C(9)-C(8) 119.8(5) H(62)-C(6)-H(61) 109.5 C(14)-C(13) -H(132) 108.4 (3)

C (ll)-C (10)-C (9) 118.8(5) H (71 )-C(7)-N(2) 109.1 (3) H(141)-C(14)-C(13) 115.2(26)

C (12)-C (ll)-C (10) 118.9(5) H(72)-C(7)-N(2) 109.1(3) C(15)-C(14)-H(141) 121.6(26)

C (ll)-C (12)-N (3) 121.8(5) H(72)-C(7)-H(71) 109.5 H( 152)-C( 15)-C( 14) 121.3(25)

C(14)-C(13)-N(2) 113.7(4) C(8)-C(7)-H(71) 109.1(3) H(151)-C(15)-C(14) 122.4(26)

C(15)-C(14)-C(13) 123.0(5) C(8)-C(7)-H(72) 109.1(3) H( 151 )-C( 15)-H( 152) 115.8(36)

6. The Structure of LlO/CuCh Dimer

A crystal o f approximate dimensions 0.3 x 0.3 x 0.07 mm was used for data collection.

Crystal data: C8Hi8N2Cl2 Cu, M = 276.7 monoclinic, a = 8.546(1), b = 11.992(2), c = 12.542(2) A, |3 

= 101.61(1)°, U = 1259.1 A3, space group P2!/n, Z = 4, Dc = 1.46 g cm'3, j^Mo-K^) = 21.3 cm'1, F(000) 

= 572. Data were measured at room temperature on a CAD4 automatic four-circle diffractometer in the 

range 2<0<23°. 1988 reflections were collected o f which 1143 were unique with I>2a(I). Data were 

corrected for Lorentz and polarization but not for absorption. The structure was solved by Patterson 

methods and refined using the SHELX90’91 suite o f programs. In the final least squares cycles all atoms 

were allowed to vibrate anisotropically. Hydrogen atoms were located in an advanced Difference 

Fourier map and refined at a fixed distance (0.98 A) from the relevant parent atoms. Final residuals 

after 8 cycles o f least squares were R = 0.0388, Rw = 0.0381, for a weighting scheme o f w = 

1.7671/[o2(F) + 0.001126(F)2]. Max. final shift/esd was 0.000. The max. and min. residual densities 

were 0.24 and -0.19 e A'3 respectively.
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Bond Lengths (A)

C l(l)-C u(l) 2.303(4) C(4)-C(3) 1.490(11) H(41)-C(4) 0.981(20)

Cl(2)-Cu(l) 2.260(4) C(7)-C(6) 1.467(11) H(42)-C(4) 0.976(20)

N(l)-Cu(I) 2.098(7) C(8)-C(7) 1.313(13) H(S1)-C(5) 0.987(20)

N(2)-Cu(l) 2.050(7) H(1 l)-C (l) 0.979(20) H(52)-C(5) 0.984(15)

C(3)-Cu(I) 2.818(9) H(12)-C(l) 0.971 (20) H(53)-C(5) 0.925(72)

C(4)-N(l) 1.499(9) H(13)-C(l) 0.970(20) H(61)-C(6) 0.982(20)

C(5)-N(l) 1.479(10) H(21)-C(2) 0.976(20) H(62)-C(6) 0.986(20)

C(6)-N(l) 1.493(10) H(22)-C(2) 0.970(20) H(71)-C(7) 0.981(20)

C(l)-N(2) 1.475(10) H(23)-C(2) 0.978(20) H(81)-C(8) 0.973(20)

C(2)-N(2) 1.497(10) H(31)-C(3) 0.983(20) H(82)-C(8) 0.982(20)

C(3)-N(2) 1.487 (9) 

Bond Angles

Cl (2) -Cu(l) -Cl (1) 93.7(2)

H(32)-C(3) 

C(l)-N(2) -Cu(l)

0.975(20)

113.6(5) H(13)-C(l)-H(l 1) 120.6(61)

N(.l)-Cu(l) -Cl (1) 91.0(2) C(2)-N(2)-Cu(l) 112.4 (5) H(13)-C(l)-H(12) 91.3(57)

N (l)-Cu(l)-Cl(2) 150.3(2) C(2)-N(2)-C(l) 107.8(7) H(21)-C(2)-N(2) 105.4(45)

N (2)-Cu(l)-Cl(l) 174.0(2) C(3)-N(2)-Cu(l) 104.5(5) H(22)-C(2)-N(2) 108.2(44)

N(2) -Cu(l) -Cl (2) 91.7(3) C(3)-N(2)-C(l) 110.0 (7) H(22)-C(2)-H(21) 102.3(57)

N(2) -Cu(l) -N(l) 85.4 (3) C(3)-N(2)-C(2) 108.5(6) H(23)-C(2)-N(2) 105.8(42)

C(3)-Cu(l)-Cl(l) 144.1 (2) N(2)-C(3)-Cu(l) 44.8(2) H(23)-C(2)-H(21) 112.5(62)

C(3)-Cu(l)-Cl(2) 122.2(3) C(4)-C(3)-Cu(l) 77.6(4) H(23)-C(2)-H(22) 121.6(62)

C(3)-Cu(l)-N(l) 57.3(3) C(4)-C(3)-N(2) 109.1(6) H(31)-C(3)-Cu(l) 148.5(38)

C(3)-Cu(l)-N(2) 30.7(2) C(3)-C(4)-N(l) 109.5(7) H(31)-C(3) -N(2) 104.5(39)

C(4)-N(l)-Cu(l) 105.8(5) C(7)-C(6)-N(l) 113.8(6) H(3.1)-C(3)-C(4) 115.4 (41)

C(5)-N(l)-Cu(l) 111.3(5) C(8)-C(7)-C(6) 123.3(9) H(32)-C(3)-Cu(l) 90.1 (41)

C(5)-N(l)-C(4) 109.1(6) H(11)-C(1)-N(2) 105.0(43) H(32)-C(3)-N(2) 107.7(42)

C(6)-N(l)-Cu(l) 111.5(5) H(12)-C(l)-N(2) 111.3(44) H(32) -C{3)-C(4) 109.7(43)

C(6)-N(l)-C(4) 111.1 (6) H(12)-C(l)-H(l 1) 118.2 (61) H(32)-C(3)-H(31) 110.0(57)

C(6)-N(l)-C(5) 108.1 (6) H(13)-C(l)-N(2) 110.2(42) H (41 )-C(4)-N( 1) 108.9(44)



H{41-)-C(4)-C(3) 109.9(45) H(53)-C(5)-H(51) 108.1(59) H(71)-C(7)-C(8) 115.2(44)

H(~2)-C(4)-N(l) 110.2(43) H(53)-C(5)-H(52) 106.2(60) H(81)-C(8)-C(7) 114.5(48)

H(42)-C(4)-C(3) 112.5(43) H(61)-C(6)-N(l) 105.3(42) H(82)-C(8)-C(7) 116.6(42)

H(42)-C(4)-H(41) 105.7(61) H(61)-C(6) -C(7) 115.8(41) H(82)-C(8)-H(81) 122.9(63)

H(51)-C(5)-N(l) 107.0(41) H(62)-C(6)-N(l) 102.4 (42) H(13)-H(12)-C(l) 44.3(29)

H(52)-C(5)-N(l) 109.4 (40) 1 H(62)-C(6)-C(7) 118.6(42) H(12)-H(13)-C(l) 44.4(29)

H(52)-C(5)-H(51) 114.7(60) H(62)-C(6)-H(61) 98.8 (54)

H(53)-C(5)-N(l) 111.6(48) H(71)-C(7)-C(6) 121.4 (44)

7. The Structure of L10/Cu(NCh)?

A crystal o f approximate dimensions 0.2 x 0.2 x 0.7 mm was used for data collection.

Crystal data: C8H18N40 6CU, M -  329.8 monoclinic, a = 8.594(2), b -  13.675(3), c = 12.510(3) A, g 

= 105.92(9)°, U = 1413.8 A3, space group P2,/n, Z = 4, Dc = 1.55 g cm’3, p(Mo-Ka) = 15.7 cm'1, F(000) 

= 684. Data were measured at room temperature on a CAD4 automatic four-circle diffractometer in the 

range 2<0<24°. 2490 reflections were collected of which 1762 were unique with l>2a(I). Data were 

corrected for Lorentz and polarization but not for absorption. The structure was solved by Patterson 

methods and refined using the SHELX90’91 suite of programs. In the final least squares cycles all atoms 

were allowed to vibrate anisotropically. Hydrogen atoms were included at calculated positions except 

in the instance of the H51, H61 and H62 (attached to C5 and C6 respectively). These protons were 

located in an advanced Difference Fourier and refined at a distance of 0.96 A from the relevant parent 

atoms.

Final residuals after 10 cycles of least squares were R = 0.0357, Rw = 0.0388, for a weighting 

scheme of w = 2.5522/[a2(F) + 0.000893(F)2]. Max. final shift/esd was 0.000. The max. and min. 

residual densities were 0 .31 and -0.21 e A‘3 respectively.



Bond Lengths (A)

0(1)-Cu(l) 2.011(5) C(3) -N(l) 1.479(6) H(32)-C(3) 0.960

0(3)-C u(l) 2.441(5) C (4)-N (l) 1.510(7) H(33)-C(3) 0.960

0 (4 ) -Cu(l) 2.022(5) C (2)-N (2) 1.491 (7) H(41)-C(4) 0.960

0 (6 ) -Cu(l) 2.402 (4) C(7)-N(2) 1.478(6) H(42)-C(4) 0.960

N(l)-Cu(l) 2.025(5) C(8) -N(2) 1.496(6) H(51)-C(5) 0.960(2)

N(2) -Cu(l) 1.991 (5) C(2)-C(l) 1.424(8) H(61)-C(6) 0.960 (2)

N (4 )-0 (l) 1.287(5) C(5) -C(4) 1.474 (8) H(62)-C(6) 0.960(2)

N (4)-0(2) 1.227 (5) C(6)-C(5) 1.301 (8) H(71)-C(7) 0.960

N (4)-0(3) 1.233(5) H(1 l)-C (l) 0.960 H(72)-C(7) 0.960

N(3) -0 (4) 1.299(5) H(12)-C(l) 0.960 H(73)-C(7) 0.960

N (3)-0(5) 1.209(5) H(21)-C(2) 0.960 H(81)-C(8) 0.960

N(3) -0 (6) 1.240 (5) H(22)-C(2) 0.960 H(82)-C(8) 0.960

C(l) -NO) 1.505(7) H(31)-C(3) 0.960 H(83)-C(8) 0.960

Bond Angles (°)

0 (3 ) -Cu(l) -0 (1 ) 56.8 (2) C(7) -N(2)-C(2) 107.6(5) H(33)-C(3)-N(l) 109.5(3)

0 (4 ) -Cu(l) -0 (1 ) 88.2 (2) C(8)-N(2) -Cu(l) 112.8(3) H(33)-C(3)-H(31) 109.5

0 (4 ) -Cu(l) -0 (3) 90.2 (2) C(8) -N(2)-C(2) 114.4 (5) H(33)-C(3) -H(32) 109.5

0 (6 ) -Cu(l) -0 (1 ) 87.3 (2) C(8)-N(2) -C(7) 109.2(4) H(41)-C(4) -N(l) 108.3(3)

0 (6 )-C u (l)-0 (3 ) 133.7(1) 0(5)-N (3)-0(4) 119.6(4) H(42)-C(4)-N(l) 108.3(3)

0(6 )-C u (l)-0 (4 ) 57.5(2) 0 (6 )  -N (3)-0(4) 116.1 (4) H(42)-C(4)-H(41) 109.5

N(l)-Cu(l) -0 (1 ) 95.4 (2) 0 (6 )  -N (3)-0(5) 124.3(4) C(5)-C(4)-H(41) 108.3(3)

N(l) -Cu(l) -0 (3 ) 104.5(2) 0 (2 )-N (4 )-0 (l) 119.2(4) C(5)-C(4)-H(42) 108.3(3)

N(l)-Cu (l)-0 (4 ) 164 .4 ( 1) 0 (3 )-N (4 )-0 (l) 117.3(4) H(51)-C(5)-C(4) 113.1(36)

N (l)-C u (l)-0 (6 ) 107 . 4 ( 2 ) 0(3)-N (4)-0(2) 123.5(4) C(6)-C(5)-H(51) 123.2(36)

N(2) -Cu(l) -0 (1 ) 161.0(1) C(2) -C(l)-N (l) 112.2 (5) H(61)-C(6)-C(5) 136.1(32)

N(2) -Cu(l) -0 (3) 104.2 (2) C(l)-C(2) -N(2) 111.3(5) H(62)-C(6)-C(5) 114.7(32)

N (2)-C u(l)-0(4) 92.8(2) C(5)-C(4)-N(l) 114.3(4) H(62)-C(6)-H(61) 108.1 (44)

N (2)-C u(l)-0(6) 109.2(2) C(6)-C(5)-C(4) 123.6(6) H(71)-C(7) -N(2) 109.5(4)

N (2)-C u(l)-N (l) 88.7(2) H(11 )-C( 1) -N (l) 108.8 (3) H(72)-C(7)-N(2) 109.5(3)

N (4)-0(1)-C u(l) 102.3(3) H(12) -C (l)-N (l) 108.8(3) H(72)-C(7)-H(71) 109.5

N(4) -0 (3 ) -Cu(l) 83.5(3) H (12)-C(l) -H(l 1) 109.5 H(73)-C(7)-N(2) 109.5(3)

N(3) -0 (4 ) -Cu(l) 101.2(3) C (2)-C (l)-H (ll) 108.8 (5) H(73)-C(7)-H(71) 109.5

N (3)-0(6)-C u(l) 85.0(3) C(2)-C(l)-H(12) 108.8(4) H(73)-C(7)-H(72) 109.5

C(l)-N(l)-Cu(l) 103.7(4) H(21)-C(2)-N(2) 109.0(4) H(81)-C(8)-N(2) 109.5(3)

C(3)-N (l)-C u(l) 113.1 (3) H(21)-C(2)-C(l) 109.0(5) H(82)-C(8)-N(2) 109.5(3)

C(3) -N(l) -C(l) 111.5(4) H(22)-C(2)-N(2) 109.0(3) H(82)-C(8)-H(81) 109.5

C(4) -N(l)-Cu{l) 111.1 (3) H(22) -C(2) -C(l) 109.0(4) H(83)-C(8)-N(2) 109.5(3)

C(4) -N(l) -C(l) 106.5(4) H(22)-C(2)-H(21) 109.5 H(83)-C(8)-H(81) 109.5

C (4)-N (l) -C(3) 110.5(4) H(31)-C(3)-N(l) 109.5(3) H(83)-C(8)-H(82) 109.5

C(2)-N(2)-Cu(l) 104.0 (3) H(32)-C(3)-N(l) 109.5(3)

C(7)-N(2)-Cu(l) 108.5(4) H(32)-C(3)-H(31) 109.5
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APPENDIX B

1. Determination of the Composition o f PL2

• The overall formula o f CPI was determined to be:

Me3Si(OSiMe2)i72(OSiMe(H))6.70SiMe3 

Therefore, from the excess o f alkenylated ligand (L15) added, a maximum o f 6.7 

moles o f L15 can add to the polymer during the reaction. After the addition of L15 

the composition o f PL2 will be o f the idealised form below:

Me3Si(OSiMe2)i72(OSiMe(H))6.7-z(OSiMe(L15+H))zOSiMe3

• Microanalysis o f PL2, after purification to remove any excess alkenylated 

substrate (L I5) and catalyst residue, gave the following C, H, N composition:

% C = 36.8, %H = 8.15, %N =1.83 

Using the idealised structure o f PL2 above, the amount o f ligand attached to the 

polymer (Z) was varied, and the theoretical amount o f C, H and N calculated. The 

theoretical amount o f nitrogen is calculated using the formula below, and the best 

theoretical matches to the experimental result above are listed in Table 17 below.

% N = ((14.0067 x 3) x Z) / (Mw PL2 calculated for the amount o f substitution, Z)

Table 17: Theoretical Best-Fit C, H, N Analysis for PL2

z Mass of N in 
Polymer

Mw %N % C %H

6.2 260.5 14524 1.79 37.2 8.16
6.3 264.7 14544 1.82 37.3 8.16
6.4 268.9 14563 1.85 37.3 8.16

• The attached NMR (NMR 1) shows no evidence o f alkenylated substrate. All 

signals for L15 and CPI protons are highlighted and labelled as per the diagram 

below.
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Me

Si Me

Me

• The number of protons that each signal represents can be calculated using the 

method below.

Peak 1 - Number of Protons = 8  x Z 

Peak 2 - Number of Protons = 2 x Z 

Peak 3 - Number of Protons = 8  x Z

Peak 4 - Number of Protons = (2 x Z) + (3 x (6.7 - Z)) + (3 x Z) + ( 6  x 172) + (2 x 9),

where (2 x Z) is the number of j protons, (3 x (6.7 - Z)) is the number of -OSiMe(H)-

protons, (3 x Z) is the number of -OSiMe(L15+H)- protons, ( 6  x 172) is the number 

of -OSiMe2- protons, and ( 2  x 9) the number of-SiM e3 terminating group protons.

• The ratios of protons within each signal can be assessed using the integrals on 

NMR 1. The ratios are:

5.35 (Peak 1): 1.00 (Peak 2): 4.34 (Peak 3): 89.9 (Peak 4)

Peak 3 and Peak 1 both have 8  x Z protons assigned to them, however the ratio is 

seen to be 5.35:4.34. This is due to Peak 1, which has an unquantifiable number of 

protons in it from CHCI3 (peak at 7.27 ppm).
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Using the theoretical best-fits from the C, H, N microanalysis, formulas and 

integral ratios above, a best fit can be identified and thus the composition of PL2. 

Table 18 highlights the theoretical number o f protons for each peak.

Table 18: Theoretical Number of Protons for Amount of Substitution, Z, for 
Peaks 1-4

z Theoretical Number of Protons for Amount of Substitution, Z
Peak 1 Peak 2 Peak 3 Peak 4

6.2 49.6 12.4 49.6 1063.9
6.3 50.4 12.6 50.4 1063.8
6.4 52 13 52 1063.6

These theoretical values are compared to the actual values given in NMR 1 in 

Table 19, with the exception o f Peak 1 for the reason identified above.

Table 19: Comparison of Theoretical and Actual Proton Ratios for PL2

7 Ratio Peak 2 : Peak 4 Ratio Peak 3 : Peak 4
L i Theoretical Actual Theoretical Actual

6.2 1 : 85.80 1 : 89.92 1 : 21.45 1 : 20.72
6.3 1 : 84.43 1 : 89.92 1 : 21.11 1 : 20.72
6.4 1 : 81.82 1 : 89.92 1 : 20.45 1 : 20.72

• Given the information contained in the tables above, a polymer with 6.3 of the 6.7 

reactive Si-H sites (94%) substituted by LI5 is the best fit from both the 

microanalysis and NMR data collected.

This goodness o f fit is exemplified by all the other polymers prepared in this study, 

and another example, PL6, is summarised below using the same method as outlined 

above. For polymers PL5 and PL8 the same basic method is used, however there is 

no nitrogen within the ligand on which to base the initial estimate o f substitution. In 

these cases the NMR data are used to make this initial estimate, and then the 

theoretical microanalysis results for C and H, for the best-fit NMR results, are
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compared to the actual data obtained in order to obtain the composition o f the end 

product.

2. Determination of the Composition of PL6

• The average composition o f C PI was determined to be:

Me3Si(OSiMe2)27.5(OSiMe(H))3.50SiMe3 

Due to the amount o f L15 added to the reaction mixture, a maximum of 2 moles of 

L15 can add to the polymer during the reaction. The excess o f L18 should ensure all 

remaining Si-H sites (1.5 per mol o f polymer) are capped by L18. The composition of 

PL6 will be of the idealised form below: 

Me3Si(OSiMe2)27.5(OSiMe(H))3.5-m-n(OSiMe(L15+H))m(OSiMe(L18-H))nOSiMe3

• Microanalysis o f PL6, after purification to remove any excess ligand and catalyst 

residue, gave the following C, H, N composition:

% C = 41.0, %H = 3.1, %N = 8.16 

The theoretical amount o f nitrogen is calculated using the formula below, and the 

best theoretical matches to the experimental result above are listed in Table 20 below. 

% N = ((14.0067 x 3) x m) / (Mw PL6 calculated for the amount o f substitution, Z)

Table 20: Theoretical Best-Fit C, H, N Analysis for PL6

m n Mass of N in 
Polymer

Mw %N %C %H

2 1 84.0 2713 3.10 36.5 8.69

• NMR 2 shows no evidence o f alkenylated substrate. All peaks for L I5, L18 and 

C PI protons are highlighted and labelled as per the diagram below.
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(k. 15H)

• The number of protons that each peak represents can be calculated using the 

method below.

Peak 1 - Number of Protons = 8 x m

Peak 2 - Number of Protons = (2 x m) + (15 x n) + (1 x (3.5 - m - n))

Peak 3 - Number of Protons =

(10 x m) + (3 x (3.5 - m - n)) + (3 x m) + (3 x n) + (6 x 27.5) + (2 x 9), 

where (10 x m) is the number of f, g, h, i, and j protons, (3 x (3.5 - m - n)) is the 

number of -OSiMe(H)- protons, (3 x m) is the number of -OSiMe(L15+H)- protons, 

(3 x n) is the number of -OSiMe(L18-H)- protons, (6 x 27.5) is the number of 

-OSiMe2 - protons, and (2 x 9) the number of -SiM e3 terminating group protons.

• The ratios of protons within each peak can be assessed using the integrals on 

NMR 2. The ratios are:

1.00 (Peak 1): 1.16 (Peak 2): 11.38 (Peak 3)

Using the theoretical best-fit from the C, H, N microanalysis, formulas and 

integral ratios above, a best fit can be identified and thus the composition of PL6 

defined. Table 21 highlights the theoretical number of protons for each peak.
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Table 21: Theoretical Proton Ratios for PL6

M n Theoretical Number of Protons for Amount of Substitution, m and n
Peak 1 Peak 2 Peak 3

2 1 16 19 204.5

These theoretical values are compared to the actual values given in NMR 2 in Table

22 .

Table 22: Comparison of Theoretical and Actual Proton Ratios for PL6

m n Ratio Peak 1 : Peak 2 Ratio Peak 1 : Peak 3 Ratio Peak 2 : Peak 3 J
Theory Actual Theory Actual Theory Actual

2 1 1 : 1.16 1 : 1.22 1 : 11.38 1 : 12.8 1 : 9.81 1 : 10.5

• Minor changes in m and n cause the proton ratios to move radically. A polymer 

with 3 o f the 3.5 reactive Si-H sites (86%) substituted by L15 (2 sites, 57%) and L18 

(1 site, 29%) is the best fit from both the microanalysis and NMR data collected.
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Figure 43: NMR 1
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Figure 44: NMR 2
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