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Summary

Differences in size between the sexes are ubiquitous throughout plant and animal taxa. 

These differences in size (termed sexual size dimorphism, SSD) are often the most 

conspicuous differences between males and females, and are associated with nearly all 

aspects of animals' life-history. In this thesis I had two main objectives. First, using 

phylogenetic comparative methods, field observations and laboratory experiments, I 

explored three key functional hypotheses of SSD (sexual selection, fecundity selection 

and differential niche-utilisation) using odonates, seabirds and bustards as model 

organisms. My results are most consistent with sexual selection promoting changes in 

males toward small or large size, depending on the intensity of sexual selection and on 

the form of male-male competition. My second objective was to investigate how SSD 

develops during larval development and emergence to maturity in odonates. Therefore I 

first tested the influence of food supplementation during larval stages on adult body 

sizes in American Rubyspots. Supplementary feeding, however, influenced neither the 

size nor the SSD of emerged adults. Finally, I explored the development of SSD from 

last larval stage into adulthood using seven species of Odonata. I show that SSD in some 

species is already evident from the larval stage; nevertheless, as a general rule, the 

direction of adult SSD is not predictable from the SSD of larvae.
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Chapter 1. Sexual size dimorphism in damselflies, dragonflies and birds: 

function and development

M. Alejandro Serrano-Meneses



1. INTRODUCTION

A common observation in many animal species is that males and females exhibit 

differences in their body sizes. Some of the sexual differences in size (sexual size 

dimorphism; SSD) are dramatic, for example male Northern Elephant Seals (Mirounga 

angustirostris) can be up to five times heavier than females (Andersson 1994), whereas 

Blanket Octopus (Tremoctopus violaceus) females can be up to 40,000 times heavier 

than males (Norman et al. 2002). This extraordinary variation in SSD has attracted the 

attention of biologists, and inspired several hypotheses to explain the variation in size 

across animal species ever since Darwin's (1871) seminal exposure of SSD (reviewed by 

Jehl & Murray 1986; Hedrick & Temeles 1989; Shine 1989; Andersson 1994; 

Blanckenhom 2005). To date, Darwin’s (1871) original ideas on the evolution of SSD 

form the foundation of modem research on SSD. Nevertheless, the explanatory power of 

these ideas in a particular species or across a range of organisms has remained 

controversial (Blanckenhom 2005).

Body size is usually correlated with a number of physiological, fitness traits and mating 

advantages (Fairbaim et al. 2005). Males and females are genetically nearly identical, 

yet, they sometimes exhibit extreme differences in size (see above). Therefore, since 

SSD affects and is affected by animal life-histories, behaviour, development and 

ecology, the understanding of the processes that cause SSD in animals provides a unique 

research opportunity to understand how evolution works (Fairbaim et al. 2005). That is, 

the study of SSD provides visible and testable evidence of the effect of natural and 

sexual selection and their capabilities to cause differentiation between the sexes, even 

under the influence of strong developmental constraints (reviewed by Blanckenhom 

2005; Fairbaim et al. 2005).

To date, few SSD studies cross the boundaries between the disciplines of evolutionary 

biology. For instance, researchers usually adopt a single perspective when investigating 

SSD (i.e. quantitative genetics, phylogenetic comparative methods or development). 

This is not ideal since our understanding of the processes that select for SSD is not
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enriched from cross-disciplinary feedback, resulting in fragments of knowledge that lack 

integration. Another limitation in the study of SSD is that empirical and theoretical 

research are usually carried out in isolation from each other (Blanckenhom 2005). 

Therefore, in this thesis, I adopt a multidisciplinary approach in my study of the 

processes that select for SSD and I combine comparative phylogenetic analyses with 

ecological and behavioural study of a single species in the field. This integrative 

approach provided me a better understanding of the evolution of SSD, and highlighted 

some of the problems that may blemish narrower approaches (see Discussion).

Why are there differences in size between the sexes? Three major groups of functional 

hypotheses were put forward to explain the selective processes separating the sizes of 

the sexes: sexual selection, differential niche-utilisation (or ecological division of 

resources), and fecundity selection (Darwin 1871; Andersson & Norberg 1981; Jehl & 

Murray 1986; Hedrick & Temeles 1989; Shine 1988, 1989; Andersson 1994; 

Blanckenhom 2005). Studies on SSD usually test these hypotheses in fully grown 

animals using the comparative and/or behavioural ecological approach (Cox et al. in 

prep.; Lindenfors et al. in prep.; Szekely et al. in prep.), whereas the development of 

body size (hence SSD) throughout the ontogeny of individuals is less commonly 

investigated (Badyaev 2002; John-Alder & Cox in prep.; Kalmbach & Benito in prep.).

The major objectives of my PhD were (i) to test functional hypotheses of SSD in 

Odonates (damselflies and dragonflies) and birds (seabirds and bustards), and (ii) to 

investigate the development of SSD from larvae to tenerals in Odonates. This somehow 

unusual combination of study organisms was a necessity driven by the less amenable 

nature of birds to functional and development tests of SSD than I initially envisaged.

On the one hand, to investigate the functional hypotheses of SSD I used phylogenetic 

comparative methods in both odonates and birds. In addition, I carried out fieldwork to 

investigate the advantages of male body size in a territorial tropical damselfly (American 

Rubyspot, Hetaerina americana) in behavioural observations. There are two 

justifications for using a combination of these approaches. Firstly, comparative studies
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often expand the horizon of single-species studies, especially if the trait in question is 

not readily amenable to experimental manipulation, such as SSD. Secondly, during the 

PhD I had a chance to develop skills in regards to both field ecology and phylogenetic 

comparative analyses. On the other hand, to investigate the development of SSD I 

carried out a food supplementation experiment in American Rubyspots to induce 

changes in their body size and SSD. Also, I reared seven species of odonates in 

laboratory in order to determine whether SSD arises during the development or at 

maturity.

Below, first I outline the theoretical background of SSD and then discuss why odonates, 

seabirds and bustards are suitable taxa for testing functional hypotheses of SSD. I then 

discuss the specific objectives and novel results of each chapter. Finally, I propose 

potential research avenues for future studies of SSD and sexual dimorphism.

2. BACKGROUND

‘ With insects o f all kinds the males are commonly smaller than the females; and this difference can often 

be detected even in the larval stage. So considerable is the difference between the male and female 

cocoons o f the silk-moth (Bombix mori), that in France they are separated by a particular weighing. ' 

Charles Darwin, 1871 (p 320)

2.1 Sexual size dimorphism

Darwin (1871) noted that the sexes usually differ in size in several animal species. He 

proposed that these differences were largely due to fecundity selection acting on female 

size, and sexual selection acting on male size. Therefore, under fecundity selection, 

females are expected to be the larger sex, whereas males will be larger than females if 

large size grants males with a mating advantage. These ideas are now supported by a 

number of studies (reviewed by Andersson 1994, Blanckenhom 2005, Fairbaim et al. in 

prep.). Nevertheless, fecundity selection and sexual selection are unlikely to be the only 

selective pressures shaping SSD across animal taxa. Thus, body size is likely to be 

influenced and/or constrained by natural selection (reviewed by Shine 1989), as it occurs
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with other morphological traits (e.g. Temeles et al. 2000). Note that both fecundity- and 

sexual selection are expected to promote increases in body sizes of females and males, 

respectively (Andersson 1994). Therefore, these selective pressures will tend to drive the 

sizes of the sexes away from their optimum (larger than the optimum size favoured by 

natural selection), sometimes compromising an individual’s survival (i.e. through the 

increased costs of supporting large size and foraging time). Usually, selection for 

increased body size will be opposed by viability selection (Blanckenhom 2000), which 

will determine optimal growth, age and size at maturity (Roff 1980, 1992; Steams & 

Koella 1986; Kozlowski 1992; Steams 1992). The interplay between different selective 

pressures acting on males and females will determine SSD within a species (Figure 1).

genetic
correlations

ForFor

FS VS VS

I constraintsconstrain!

females males

Body size

Figure 1: The differential equilibrium model of sexual size dimorphism (SSD). Body size 
distributions are shown for a population in which males are larger on average than females. 
Fecundity selection (FS) tends to select for increased body size in females, and sexual selection 
(SexS) for increased body size in males (but occasionally in the opposite direction). Viability 
selection (VS) select for smaller body size in both sexes. Foraging (For) specialization may 
select for divergent body sizes of males and females. Constraints and genetic correlations 
between the sexes are also shown that may limit the expression of SSD (after Blanckenhom 
2005)._________________________________________________________________

How do organisms achieve large size? There are two fundamental ways: (i) organisms 

may grow for longer periods, or (ii) they may grow faster (Blanckenhom 2000; Badyaev 

2002). In the first case, organisms may go through an extended pre-reproductive period 

in which mortality rates are high due to predation, parasitism or starvation. When
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animals grow faster to achieve large size, then mortality will be increased through the 

higher metabolic costs of being large, and exposure to predators due to the increased 

foraging activity necessary to achieve large size (Blanckenhom 2000). Therefore, there 

are trade-offs in the development of large size (Partridge & Fowler 1993; Arendt 1997; 

Blanckenhom 2000), since large size is also associated with an advantage in mating 

(Andersson 1994). Should organisms develop faster and breed at smaller sizes? Or 

should organisms grow for longer and achieve large size but compromise potential 

mating opportunities? These trade-offs and other environmental factors (such as 

temperature; Atkinson 1994) are likely to determine adult body size.

Is bigger body size always better than a small body size? Not necessarily. The selective 

advantage(s) of a given body size may depend on a number of factors. Table 1 lists a 

number of selective factors that likely to influence the degree and direction of SSD, 

through the advantage of a given body size (Andersson 1994). The factors listed in Table 

1, however, fall into a number of functional hypotheses of SSD. In the following 

sections I explain these hypotheses.

Table 1. Selective factors that may influence the sizes of sexes, and thus the direction and 
degree of sexual size dimorphism (from Andersson 1994).

Female advantages o f  large size: Higher fecundity; better parental care; male 
preferences for large females; dominance in contests over resources, or over 
males in role-reversed species.

Female advantages o f  small size: Earlier maturation, with shorter generation time 
and more rapid reproduction as conditions become favorable; more effective 
shunting of resources into offspring production 

Male advantages o f  large size: Dominance in contests over females or resources 
when strength is cmcial; better performance in endurance rivalry; female 
preferences for large males; higher success in sperm competition 

Male advantages o f  small size: Dominance in contests over resources when 
maneuverability rather than strength is crucial; earlier maturation, with more 
rapid reproduction and shorter generation time; higher success in scrambles; 
more surplus energy available in searching for mates; female preferences for 
small males

2.1.1 Sexual selection
Darwin (1871) proposed that certain individuals have reproductive advantages over 

other individuals of the same sex, thus, when the competition between individuals of the
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same sex is more intense than between the individuals of the other sex (usually the 

males), sexual selection will drive the size of the more competitive sex towards an 

advantageous optimum size (Szekely et al. 2000). There are, therefore, two ways in 

which sexual selection may influence SSD. First, the optimum size of the competing sex 

may depend on whether the competition occurs on the ground or in the air (Payne 1984; 

Jehl & Murray 1986; Figuerola 1999; Szekely et al. 2000; Szekely et al. in prep). 

Therefore, sexual selection is expected to favour large males relative to females (i.e. 

male-biased SSD) when sheer bulk increases the chances of winning, since the power of 

a blow increases with muscle size (Clutton-Brock & Harvey 1977). Sexual selection, 

however, will favour small male size relative to females (female-biased SSD), if agility 

and manouverability enhance the males1 success such as in aerial combats (Andersson & 

Norberg, 1981). Small male size may be reinforced by female preference for small, agile 

males (Gronstol 1996; Hakkarainen et al. 1996; Blomqvist et al. 1997; Figuerola 1999). 

This likely to occur in many shorebirds (Szekely et al. 2000, 2004) in which 

evolutionary increases in male agility are correlated with evolutionary changes toward 

female-biased SSD.

Second, sexual selection (via male-male competition) may favour large male body size 

in species in which males compete intensely over females (Clutton-Brock & Harvey 

1977; Mitani et al. 1996; Owens & Hartley 1998; Dunn et al. 2001; Lindenfors et al. 

2003; Lindenfors et al. in prep.; Szekely et al in prep.). Thus, large size is advantageous 

to males in species with polygynous mating systems (Clutton-Brock & Harvey 1977; 

Owens & Hartley 1998). This is likely to be the case if larger-than-average males are 

able to endure competition for longer than small males, and if they are preferred by 

females, for instance, because these males may offer better resources for the females. 

Large size also favours males to achieve forced copulations (reviewed by Andersson 

1994).

2.1.2 Fecundity selection

Darwin (1871) also suggested that large size may be favoured in females by increasing 

their fecundity, especially if body cavity limits the number of eggs a female can bear.
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Therefore, female fecundity is expected to favour female-biased SSD, which is 

commonly exhibited by many invertebrates, fishes and birds (Andersson 1994; 

Blanckenhom 2005). This likely to occur if large females achieve higher reproductive 

success through higher capacity for producing and laying eggs (Ridley & Thompson 

1979; Wiewandt 1982; Cordero-Rivera 1991; Honek 1993). Consistently with fecundity 

selection, studies of spiders, insects and ectothermic vertebrates (fish, frogs), 

demonstrated positive relationships between body size and fecundity (Andersson 1994; 

Head 1995; Preziosi et al. 1996; Prenter et al. 1999; Legaspi & Legaspi 2005).

Fecundity selection may also favour large females if they provide better parental care 

that enhances offspring survival (Wauters & Dhondt 1995; Ralls 1976).

2.1.3 Differential niche-utilisation
Selection may act on body sizes of males and females simultaneously to avoid 

competition with each other, or to enhance prey catching when resources are scarce 

(Selander 1966; Selander 1972; Shine 1989). Thus specialisation in the exploitation of 

resources is expected to lead to morphological divergence. For example, male and 

female Purple-throated Carib Hummingbirds (Eulampis jugularis) feed specifically from 

the flowers of Heliconia caribaea and H. bihai, respectively. This specialisation has lead 

to a morphological divergence in culmen size and shape between the sexes: each sex’s 

culmen is correlated to the length and curvature of the flowering plant from which they 

feed (Temeles et al. 2000). Therefore body size, in a similar fashion, was proposed to 

adapt to a differential resource utilisation between the sexes (Selander 1966; Shine 1989; 

Sandercock 2001), and enable the members of a dimorphic pair, for instance, to exploit a 

wider ecological niche than monomorphic pairs (Figuerola 1999).

This hypothesis, however, fails to predict the direction and degree of SSD: either males 

or females can be the larger sex (Szekely et al. 2000). In addition, it is not clear whether 

different resource use by males and females drove SSD, or SSD evolved for a different 

reason and as a consequence of different body sizes males and females are exploiting 

different resources.
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2.2 Rensch’s rule
‘ This rule, however, applies only to subspecies o f a species, to related species o f a genus, or to related 

genera o f a family. ’ Bernhard Rensch, 1959 (p 159)

Across species o f a particular taxon, males and females often show a puzzling 

relationship between SSD and body size: SSD increases with body size in species in 

which males are larger than females, and it decreases with body size in species in which 

females are larger than males (Rensch 1950; Fairbaim 1997; Figure 2).

CD
N
(/)
CD
03
E
o>o

log(female size)
Figure 2. Rensch’s rule. The solid line represents the isometric relationship between the size of 
males and females (size of males = size of females). The dotted line represents an allometric 
relationship in which female size varies more among species than male size, and therefore the 
regression slope (/?) is less than one. The dot-dashed line represents an allometric relationship in 
which male size varies more among species than female size and therefore j3 > 1. Deviations of 
these lines from the 1:1 line illustrate the degree of SSD. When /3 > 1 SSD declines as size 
increases for female-biased species, but increases with size for male-biased species, as predicted 
by Rensch’s rule. If jS < 1, the pattern of allometry is reversed, and is inconsistent with the 
Rensch’s rule (adapted from Fairbaim 1997).

This pattern is exhibited by a wide range o f animal taxa that includes mammals (Ford 

1994; Abouheif & Fairbaim 1997), birds (Payne 1984; Bjorklund 1990; W ebster 1992; 

Colwell 2000; Szekely et al. in prep.), reptiles (Abouheif & Fairbaim 1997) and insects 

(Sivinski & Dodson 1992; Colwell 2000). Not surprisingly, a number o f functional
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hypotheses have been proposed to explain Rensch’s rule for specific taxa (reviewed by 

Reiss 1986; Webster 1992), nevertheless, it is generally agreed that sexual selection 

acting on male size is likely to account for the observed allometric pattern (Abouheif & 

Fairbaim 1997). On the one hand, sexual selection likely to promote increases in male 

body size that will be followed by small increases in female size due to the genetic 

correlation between the sexes, explaining the increasing extent of SSD in large species. 

On the other hand, sexual selection, in a similar fashion, may favour small male size and 

hence the reduction of male size over time that is followed by decreases in female size. 

Therefore, male body size is assumed to change more rapidly than female size, for 

instance because female size may be under fecundity selection pressure (Abouheif & 

Fairbaim 1997).

This hypothesis has been tested recently in shorebirds (plovers, sandpipers and allies, 

Szekely et al. 2004) that show the full scope of Rensch’s rule. This comparative work 

showed that Rensch's rule emerged in shorebirds as a combined result of selections 

emerging from male-male competition and the agility of male displays. To date, Szekely 

et al. (2004) is the only comparative study that related the Rensch’s mle directly to the 

influences of sexual selection.

3. DISTRIBUTION OF SSD IN ODONATES, SEABIRDS AND BUSTARDS

I chose to work on odonates, seabirds and bustards because these groups fulfilled a 

number of criteria. First, testing functional hypotheses of SSD, requires groups that 

exhibit natural variation in both SSD and putative traits such as mating systems, male 

display agility and resource use. Information on body sizes, behaviour and ecology 

should be accessible in handbooks and other published sources for many species; indeed, 

this is the case for these three taxa. Second, a robust phylogenetic hypothesis should be 

available for many species. This is very important since phylogenetic comparative 

methods assume that the phylogenetic hypotheses are reliable. Third, both odonates and 

birds have determined growth: adults do not continue growing after they reach sexual
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maturity. This avoids the problem of age-dependent SSD (Monnet and Cherry 2002). 

Finally, the use of these groups allowed me to test the general applicability of the 

functional theories of SSD, and to use a multidisciplinary approach in order to 

understand SSD.

3.1 Damselflies and dragonflies
‘So again, male dragon-flies (Libellulidae) are sometimes sensibly larger, and never smaller, than the 

females... ' Charles Darwin, 1871 (p 321)

The order Odonata (damselflies and dragonflies) comprises approximately 6000 species 

of global distribution (Corbet 1999). Odonate species have a wide range of behaviour, 

habitats, morphology and mating tactics, that include territorial defence and scramble 

competition (reviewed by Corbet 1999; Fincke et al. 1997). Odonates exhibit both male- 

and female-biased SSDs (Kruskal-Wallis H = 48.939, p  = 0.0001; Figure 3): males are 

larger on average than females, for instance, in Calopterygidae (Wilcoxon one-sample 

test W = 648, p  = 0.0001), whereas females are larger in Coenagrionidae (W = 84, p  = 

0.034). Note that the latter fact appeared to avoid the attention of Charles Darwin - this 

is unusual, given Darwin's outstanding knowledge of natural history. A range of SSD 

may be observed within a single family (i.e. Gomphidae; W = 49,/? = 0.839).
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Figure 3. Sexual size dimorphism in Odonata families (median, upper and lower quartiles; open 
circles are extremes). SSD = /ogi0(male body length) — /ogio(female body length). The dotted 
line denotes monomorphism. The number of species is 7, 36, 1, 1, 25, 2, 4, 1, 13, 2, 35, 1, 1, 2, 
and 2 in each family, from left to right. See Chapter 5 for the dataset.

SSD has been studied only in few odonates. For instance, in a comparative study, Anholt 

et al. (1991) analysed the patterns o f mass gain in several odonate species. In that study, 

Anholt et al. (1991) showed that females were usually heavier than males across 

odonates; however, this difference was less evident and even the opposite in territorial 

species. It was then assumed that sexual selection, acting on male size, was driving the 

observed patterns o f SSD in territorial and non-territorial species (Anholt et al. 1991; 

reviewed by Andersson 1994). Nevertheless, the prediction that territorial odonates 

would generally exhibit male-biased SSD is not always met (reviewed by Fincke et al. 

1997). For example, whilst large male size is advantageous in some territorial species 

(i.e. Fincke 1984; Tsubaki & Ono 1987), small males are more successful in others (i.e. 

Convey 1989). Therefore the influence o f sexual selection on the SSD o f odonates has 

been debated and questioned (Fincke et al. 1997; Sokolovska et al. 2000; Thompson & 

Fincke 2002), so that currently there is no agreement as to what drives SSD in odonates 

(Fincke et al. 1997; Andersson 1994; Sokolovska et al. 2000).
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More recently, Johansson et al. (2005) investigated Rensch’s rule in Odonata using 

phylogenetic independent contrasts (Felsenstein 1985). Nevertheless, their study was 

limited to 21 species (15 anisopterans, 6 zygopterans) and they only carried out a limited 

test of functional hypotheses (see below).

3.2 Seabirds

Seabirds are a paraphyletic group of birds that make a living from marine environments 

(Schreiber & Burger 2002). Seabirds comprise approximately 190 globally distributed 

species (Monroe & Sibley 1993; Spheniscidae (Penguins), Phaethontidae (Tropicbirds), 

Pelecanidae (Pelicans), Sulidae (Gannets and Boobies), Phalacrocoracidae 

(Cormorants), Fregatidae (Frigatebirds), Diomedeidae (Albatrosses), Procellariidae 

(Petrels and Shearwaters), Hydrobatidae (Storm-Petrels) and Pelecanoididae (Diving- 

Petrels)). Seabirds show a wide range of foraging strategies, geographic distribution, 

social organization and SSD (see Chapter 6). Also, seabirds exhibit a range of male 

displays; from ground displays by Cormorants to the aerial acrobatic display of some 

Storm-Petrels (Marchant & Higgins 1990). Finally, it is possible to calculate the ocean 

primary productivity of the areas where these birds breed. This group is particularly 

interesting because all species are socially monogamous, both sexes invest heavily in 

parental care and the sexes are similar in external appearance (Fairbaim & Shine 1993).

A previous comparative study on the evolution of SSD in seabirds by Fairbaim & Shine 

(1993) found that seabirds exhibit Rensch’s rule, that the frequency distribution of SSD 

in seabirds is generally male-biased, and that larger species live in areas of higher sea 

productivity. Nevertheless, Fairbaim & Shine’s (1993) study had a number of limitations 

(see Chapter 6). For example, their study only included Southern Hemisphere species 

and the effect of sexual selection on SSD was not tested, presumably because the 

intensity of sexual selection was thought to be low, due to prevailing social monogamy 

in this group. We therefore tested how sexual selection may influence SSD of seabirds.
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3.3 Bustards

Bustards (Otididae) comprise 25 species of wide distribution in Europe, Africa, Eurasia 

and Australia (Johnsgard 1991). Bustards are an excellent group to investigate SSD 

because they exhibit a wide range of habitats, and a full range of SSD that includes both 

male- and female-biased SSD. For example, adult male Great Bustards {Otis tarda) can 

be up to three times as heavy as females, whereas male Lesser Floricans are smaller than 

females (Dale 1992). Bustards exhibit mating systems that range from social monogamy 

to lek breeding, and diverse courtship displays. For example, male Great Bustards show 

sophisticated ground-displays to females in which the males inflate the gular pouch, and 

ruffle their feathers (balloon display). As a result, a displaying male appears to be much 

bigger than a non-displaying one. In contrasts, male Bengal Floricans {Eupodotis 

bengalensis) spring up vertically with loud wing-flapping and reaches heights of up to 4 

metres (Johnsgard 1991). In addition to these diverse behaviours, the phylogenetic 

relationships of bustards are well understood (Pitra et al. 2002) making of this group a 

promising research avenue for testing ideas on the evolution of SSD.

4. TESTING FUNCTIONAL HYPOTHESES OF SSD

4.1 Sexual selection and male body size in American Ruby spot 

The American Rubyspot damselfly {Hetaerina americana) was the subject of studies on 

male wing pigmentation (Grether 1996a, 1996b, 1997; Grether & Grey 1996; Contreras- 

Garduno et al. 2006). Grether (i.e. 1996a, 1996b) for instance, focussed on the red spot 

the males exhibit at the base of each wing, and Grether provided evidence that these 

spots are sexually selected via male-male contests. Nevertheless, the costs and benefits 

of large size for males had not been directly investigated prior to my thesis {Chapter 2).

The American Rubyspot is a sexually dimorphic zygopteran that exhibits male-biased 

SSD. Males of this species, similarly to other territorial odonates (Corbet 1999), attempt 

to establish and defend territories along streams and rivers (Johnson 1963), and females 

are attracted to these areas for copulation or oviposition (Corbet 1999; Cordoba-Aguilar
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& Cordero Rivera 2005). Therefore, territory tenancy is expected to influence mating 

success in territorial odonates (Corbet 1999). Not all males are able to establish 

territories, and consequently, mating success is expected to differ between territorial and 

non-territorial males: territorial males usually more successful, in terms of mating 

success, than non-territorial males (i.e. Cordoba-Aguilar 1995; Grether 1996a; Plaistow 

& Siva-Jothy 1996; Cordoba-Aguilar & Cordero-Rivera 2005). Therefore, I investigated 

whether body size may relate to territoriality and mating success, and to other 

morphological characters such as wing pigmentation and energy reserves (Chapter 2).

First, I show that large males are better at holding territories (i.e. they are able to sustain 

longer fights and hold the territories for longer), and that they obtain more copulations 

than non-territorial males. Second, energy reserves and wing pigmentation (i.e. male 

sexual ornament) are positively correlated with male body size. Third, selection analyses 

of body size show disruptive selection, which suggests that both large and small males 

may be favoured in terms of mating success. Interestingly, similar to other studies (i.e. 

Burger & Schneider 2006) disruptive selection on male size is accompanied by 

assortative mating by size. Fourth, my study showed no relationship between female 

body size and fecundity, since large females did not carry more or larger eggs than small 
females.

These results support the hypothesis that large size is advantageous for males in a 

territorial damselfly species via male-male competition, and territory acquisition and/or 

maintenance. My results also suggest that small size may be advantageous to no­

territorial males since it probably improves their agility in courting (or subduing) 

females.

4.2 Comparative analyses o f SSD in Odonata: Rensch’s rule and sexual selection 

Using phylogenetic independent contrasts (Felsenstein 1985) I show that odonates 

exhibit Rensch’s rule, however, this relationship depends on the inclusion of both 

Anisoptera and Zygoptera in the analysis (Chapter 5). Once these groups were analysed 

separately, only Zygoptera showed an allometry consistent with Rensch’s rule.
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I also tested the influence of sexual selection (as estimated from territoriality, non­

territoriality and male agility) on SSD using generalised least squares (Pagel 1997, 1999; 

Garland & Ives 2000; Freckleton et al. 2002). I found that evolutionary increases in 

male-biased SSD correlated with evolutionary increases in territoriality in Zygoptera, 

but not in Anisoptera only. Male agility (as estimated by male wing asymmetry) was 

unrelated to SSD.

What may explain Rensch ’s rule in odonates? I tested whether sexual selection, using 

proxy variables of territoriality and male agility, correlate with the allometric 

relationship between the sizes of males and females. My results show that, although 

sexual selection in the form of territoriality and non-territoriality contributes to the 

observed pattern, it is not the sole selective pressure that influences the Rensch’s rule.

4.3 SSD in seabirds: sexual selection, fertility selection and differential niche- 

utilisation

In Chapter 6 I tested three functional hypotheses of SSD: sexual selection, fecundity 

selection and differential niche-utilisation. Despite most seabirds being socially 

monogamous, my results supported the sexual selection hypothesis, because 

evolutionary changes towards agile male displays were correlated with evolutionary 

increases in female-biased SSD. I found no support for the fecundity hypothesis, since 

clutch size was not associated with increases in female-biased SSD. Finally, contrary to 

Fairbaim & Shine’s (1993) study, my results do not support the differential niche- 

utilisation hypothesis, since larger dimorphisms did not occur in areas of low ocean 

productivity. The discrepancy between the conclusions of Fairbaim & Shine (1993) and 

my study may have two reasons. First, we argue that Fairbaim and Shine's own data do 

not support their conclusions. Second, differences in ocean productivity data may have 

lead to divergent conclusions. Fairbaim & Shine (1993) estimated the minimum levels 

of rates of primary productivity surrounding the breeding areas as the rate of carbon 

fixation (g m'2) from a global map with 4 possible levels of productivity. In contrast, I 

calculated ocean productivity from a map that estimated chlorophyll concentration
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(grams o f carbon m '2) from visible light reflectance. This map had approximately 450 

levels o f productivity (see Chapter 6).

I conclude that SSD in seabirds is most consistent with the sexual selection hypothesis. 

This study also highlights the need for sex specific data on feeding strategies and the 

influence o f within-pair SSD on breeding success.

4.4 SSD in bustards: sexual selection and male agility
Bustards exhibit an allometry consistent with Rensch’s rule (Chapter 7), and this 

relationship is one o f the strongest allometric relationships in any avian taxa. I also 

tested whether sexual competition and male display agility may correlate with SSD 

(Figure 4). Using a multiple regression model o f phylogenetically independent contrasts, 

I show that both mating system and male display agility are significant predictors of 

SSD when controlling for each other's influence.

</) 0.02 -

0 .0 0 -

O  0.02-

T"
0.50.0 0.1 0.3 0.4 0.0 0.4

Contrasts in mating competition Contrasts in male display

Figure 4. Phylogenetically independent contrasts in sexual size dimorphism (SSD) and (a) the 
intensity of mating competition (r = 0.453, F1>23 = 5.934, P = 0.023) and (b) male agility (r = 
0.409, Fii23 = 4.634, P = 0.042). Evolutionary increases in mating competition are correlated with 
evolutionary increases in male-biased SSD, whereas increases in male display agility are 
correlated with increasing female-biased SSD.__________________________________________

Unlike seabirds, which are socially monogamous, bustards exhibit Rensch's rule, 

whereas seabirds do not. I suggest that the different intensity o f  sexual competition
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between these two groups may explain why one group shows an allometric relationship, 

whereas the other does not.

5. THE DEVELOPMENT OF SSD

5.1 Larval diet and the development o f SSD in American Rubyspots

Adult body size is usually determined by genetic, environmental and/or maternal factors 

(Blanckenhom 2000, Badyaev 2002). In an experimental study I investigated the effect 

of larval diet on the development of SSD in both larvae and adult American Rubyspots 

{Chapter 3). I collected larvae from their natural environments in Morelos, Mexico, and 

subjected them to three different diets: poor, intermediate and rich. The treatment, 

however, did not influence adult body size and hence SSD. There may be four reasons 

for this. First, food alone may not be the determinant of adult body size, but instead, the 

result of a more complex interplay between genetic and other environmental variables. 

Second, the effect of diet regimes may be more evident in developmental time, rather 

than body size alone. This is possible since odonates do not have a fixed number of 

instars and they are likely to change with changing environmental variables. Third, it is 

possible that our larvae samples included individuals that had undergone most of their 

growth and as a consequence were not affected by the treatments. Finally, mortality was 

high which reduced sample size making it less likely to find statistical difference, even if 

this exists (Type II error).

5.2 The development o f sexual differences in body size in Odonata

Adult SSD may simply be a consequence of size dimorphism already existing during 

early development. Alternatively, dimorphism in adults may develop when the teneral 

develops from sexually monomorphic larvae. I tested these alternatives in Chapter 4 

using seven species of Odonata (Anax imperator, Cercion lindeni, Cordulegaster 

boltonii, Ischnura graellsii, Onychogomphus uncatus, Oxygastra curtisii and 

Platycnemis acutipennis). Body sizes of larvae were measured at the last larval stage in 

order to estimate the degree and direction of SSD. Then the larvae were reared in the
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laboratory, and the emerging adults were also measured. The results show that SSD 

consistent with adult SSD was already exhibited in the larval stage in Anax imperator, 

Cercion lindeni, Cordulegaster boltonii and Platycnemis acutipennis, whereas in 

Onychogomphus uncatus adult dimorphism emerged from monomorphic larvae. These 

results suggest that developmental pathways may be different between closely related 

odonates that influence growth and metamorphosis, and ultimately, adult sizes.

6. CONCLUSIONS

I have shown that sexual selection, via mating competition and/or male display agility 

correlates with SSD in damselflies, seabirds and bustards. This result is somehow 

surprising, since some of these groups, notably seabirds, were thought to be subject to 

weak (or no) sexual selection. These processes, however, are presumed to act only on 

males. This assumption, however, may not be fully correct, because females may also 

compete over mates (Slagsvold & Lifjeld 1994; Liker & Szekely 1997). This implies 

that the same processes proposed to influence male size can in principle influence 

female body size. Nevertheless, no selection for female body size in the context of 

sexual selection has been demonstrated (Blanckenhom 2005).

I have shown that sexual selection is generally a good predictor of the direction and 

degree of SSD in these taxonomic groups. For instance, my results in seabird and 

bustard SSD do not only show that sexual selection has the potential to promote changes 

towards male-biased SSD, but they also show that male-male competition (perhaps 

reinforced by female choice) can also favour small male size. These results are novel 

and fall in an open area in the research of SSD, since there are already many studies 

supporting the advantages of large male size, whereas few studies have ever 

demonstrated the disadvantages of large male body size (reviewed by Blanckenhom 

2005). This is also the case in SSD of odonates (Chapter 5); nevertheless, this study 

(Chapter 5) has other important implications. For instance, this is the first study, to my 

knowledge, to use phylogenetic comparative methods to test a functional hypothesis of
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SSD (sexual selection) in odonates. Also, the results that I obtained point out why 

previous researchers on odonate SSD did not achieve an agreement on the effect of 

sexual selection on SSD. Whilst some researchers proposed that large male size was 

advantageous for males of odonate territorial species (i.e. Anholt et al. 1991; Sokolovska 

et al. 2000), others found no relationship between territoriality and SSD (i.e. Fincke et 

al. 1997). My results thus suggest that the expected relationship between territoriality 

and SSD (increasing male-biased SSD with increasing territoriality) is only exhibited by 

damselflies (Zygoptera), but not by dragonflies (Anisoptera). This is noteworthy, since it 

suggests marked differences in the effects of sexual selection on the morphology and 

behaviour between these sub-orders.

The effect of sexual selection on SSD is such, that it is capable of leading to 

macroecological trends in body size between the sexes (see below). An allometric 

relationship consistent with Rensch’s rule is exhibited by damselflies and bustards, it is 

marginally not significant in seabirds and it is not exhibited by dragonflies. Interestingly, 

in the taxonomic groups that exhibit this allometric trend, sexual selection correlates 

with SSD (see also Szekely et al. 2004). Although seabird SSD is correlated with sexual 

selection, the effect is weaker than it is in bustards and damselflies, which provides a 

possible explanation to the marginally non-significant allometric trend in seabirds. My 

results suggest that, contrary to what occurs in shorebirds (Szekely et al. 2004), in 

Odonata sexual selection is unlikely to be the only explanation of Rensch’s rule.

A limitation of these comparative studies, however, is that one can only use those data 

that were collected across a broad range of species and this restricts detailed analyses of 

behaviour and ecology. Therefore, I designed an empirical study dedicated to evaluate 

the processes behind SSD in a single species study. My behavioural approach on the 

study of SSD in the American Rubyspot produced results that are consistent with the 

idea that male-biased SSD is maintained (or even promoted) by sexual selection in this 

species. In this study I also quantified the selection acting on male size. Measuring 

selection is useful since it generates data that can later be used for meta-analyses and 

other systematic comparative studies. Nevertheless, researches of SSD rarely calculate
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selection differentials (reviewed by Blanckenhom 2005). Therefore, by measuring the 

selection acting on male body size I established that disruptive selection acts on body 

sizes of male American Rubyspots. Note that this was accompanied by assortative 

mating by size, since large males mated with large females and small males mated with 

small females. To my knowledge, this is the first study to document assortative mating 

by size accompanied by disruptive selection acting on body size in odonates. This 

suggests that although large male size confers ‘instantaneous’ mating advantages to 

territorial males, small males overcome the disadvantages of small size and achieve a 

number of copulations.

Alternative male mating strategies are commonly found in territorial odonates (Corbet 

1999); however, only few species show marked morphological differences between the 

territorial and the alternative mating strategies. In such cases, the morphological 

differences are so conspicuous that they are denominated morphs (Corbet 1999). For 

example, territorial ‘fighter’ males of the Japanese Damselfly (Mnais pruinosa) are 

orange-winged and significantly larger than the clear-winged, small, non-territorial 

‘sneak’ males (Tsubaki et al. 1997). Orange-winged males establish and defend 

territories, achieving a greater number of copulations than the clear-winged males and in 

a short time span (Tsubaki et al. 1997). Interestingly, in a few populations the orange­

winged males are absent, and clear-winged males exhibit a range of mating strategies 

that includes territorial, non-territorial and opportunistic males (Siva-Jothy & Tsubaki 

1989a, 1989b).

Why are there different mating strategies and male morphs? The male dimorphism 

observed in the Japanese damselfly is thought to be genetically determined (Tsubaki et 

al. 1997) and driven by a trade-off between reproductive advantages and longevity, 

underpinned by differences in energy expenditure between the morphs (Plaistow & 

Tsubaki 2000). This is because territoriality in damselflies is usually determined by the 

amount of body fat reserves, which are the main source of energy during territorial 

contests (i.e. Marden & Waage 1990; Plaistow & Siva-Jothy 1996) and they are limited 

by body size (i.e. Anholt et al. 1991). Therefore, since not all males attain large size and
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high energy reserves, alternative mating strategies are adopted by those males bearing 

the disadvantage of small size and low energy reserves. I have shown this is the case in 

the male-monomorphic American Rubyspot. Therefore, I suggest that the observed male 

dimorphism in the Japanese damselfly and other species, such as Paraphlebia quinta 

(Gonzalez-Soriano & Cordoba-Aguilar 2003), may be the result of disruptive selection 

acting on the traits that confer a mating advantage. Regretfully, no study has measured 

the selection acting on male size in such species, but it is known that large size is 

associated with mating success in orange-winged males and that it confers no mating 

advantages to clear winged males (Plaistow & Tsubaki 2000). Therefore, selection on 

body size is inferred to differ between morphs (Plaistow & Tsubaki 2000). Note that 

these species are polygamous (Corbet 1999), which provides opportunities for speciation 

and the diversification of traits in the face of high levels of sexual selection (i.e. Amqvist 

et al. 2000).

Why do not all animals achieve large size? Large size is not achieved without costs 

(Blanckenhom 2000; Badyaev 2002). In insects, large body size is usually associated 

with long developmental time (Roff 1992), therefore, marked mating seasons may 

impose pressure on males to emerge early in the season. If males delay development for 

too long, they may pay significantly fitness costs (Rowe et al. 1994; Johansson & Rowe 

1999; Plaistow & Siva-Jothy 1999). This will impose trade-offs between developmental 

time and body size and selection will be favouring the body size that maximises fitness 

(Plaistow & Siva-Jothy 1999). This will depend on the influence that body size has on 

mating success, as well as the time and resources available for development (Johansson 

& Rowe 1999; Plaistow & Siva-Jothy 1999). In odonate species with marked 

seasonality, for instance, the direction of adult SSD can sometimes be defined during the 

larval stage (Chapter 4), suggesting the presence of pressure to meet the emergence 

deadline set by seasonality. Nevertheless, in species with no marked seasonality, this 

pressure should be more relaxed, allowing individuals to remain as a larvae for longer in 

order to accumulate the resources necessary to achieve large size. Although I did not 

find evidence for the effect of larval diet on the development of adult body size in the 

American Rubyspot (Chapter 3), my results show that this species exhibits a non­
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significant trend which suggests that individuals may respond to high resource 

availability by developing for longer. Taken together, my results on the development of 

SSD support the findings of my comparative work on odonate SSD (Chapter 5): large 

male size is more likely to develop in territorial than in non-territorial damselfly species. 

Large size is also less likely to develop in territorial odonates.

In conclusion, my interdisciplinary and taxon-diverse approach on the study of SSD 

revealed patterns of SSD and macroecological trends that are likely to be caused by 

variation in the selective pressures acting on adults and on the development of males and 

females.

7. FUTURE DIRECTIONS

Taken together, the research presented herein provided new insights into the role of 

sexual selection as a general evolutionary mechanism, and expected to advance our 

understanding of the diversity of SSD in seabirds, bustards and odonates. Nevertheless, 

there are a number of issues future works should address.

First, it is not clear whether male-male competition, female choice or both have an 

influence on SSD. Whereas the amount of evidence showing the advantages of large 

male size is outstanding (Blanckenhom 2005), only a few studies have shown that 

sexual selection can favour large female size (i.e. Erlandsson & Johannesson 1994; 

Emlen & Wrege 2004), and no study to date has shown sexual selection favouring small 

female size (reviewed by Blanckenhom 2005). This, I believe constitutes one of the 

limitations of the study of SSD.

Second, phylogenetic comparative methods are useful, but limited tools of research. 

Comparative methods such as independent contrasts (Felsenstein 1985) and generalised 

least squares (Pagel 1997, 1999; Garland & Ives 2000; Freckleton et al. 2002) are 

excellent tools for revealing macro evolutionary patterns; nevertheless, these methods

27



are correlational. Therefore, these methods do not separate cause from effect, making it 

difficult to draw any conclusions on the origin of the diversity of SSD exhibited by a 

given taxa. One other method, Discrete (Pagel 1994) has been designed to detect 

correlated evolution and the order of evolution between pairs of traits. Nevertheless such 

method is still correlational, since it asks whether the data and phylogeny fit one model 

of evolution better than another, which lends support to the most likely order trait 

evolution (Thomas, G. H. pers. comm.). Furthermore, the trends revealed by 

phylogenetic comparative methods should be, when possible, assessed empirically in 

order to broaden our understanding of the processes behind the patterns of SSD.

Third, there is a lack of studies investigating the possible causes of Rensch’s rule. Whilst 

several hypotheses have been proposed to explain this macroecological allometric 

pattern (Fairbaim 1997), such hypotheses have rarely been tested (but see Szekely et al. 

2004; Chapter 5).

Finally, there is a prevalent, simplistic view that large size is always better (Thompson 
& Fincke 2002). Thompson & Fincke (2002) criticise this view by arguing that if large 

size provided fitness benefits to all taxa, animal lineages would show the tendency to 

increase in size over time. Several studies have now demonstrated that large size has 

reproductive advantages in certain taxa (Endler 1986; Andersson 1994; Blanckenhom 

2000; Kingsolver et al. 2001; Serrano-Meneses et al. in press), but also, it has been 

shown that small male size can also be favoured by sexual selection (see Blanckenhom

2005). The development of large size and adult size itself is expected to be penalised or 

regulated by natural selection (Blanckenhom 2000); however, selection for large body 

size predominates in nature (Kingsolver & Pfenning 2004), leading to phyletic size 

increase over time (Cope’s mle; Cope 1896; Kingsolver & Pfenning 2004) even when 

this increase in size accelerates the rates of extinction (Martin 1984; LaBarbera 1986; 

Arnold et al. 1995). There are of course, exceptions to this mle (Kingsolver & Pfenning 

2004); in such taxa, selection for decreased developmental time may halt the selection 

for increased size, whereas in taxa that exhibit Cope’s mle, selection for increased size 

may predominate over selection for decreased developmental time (Kingsolver &
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Pfenning 2004). More research is needed to determine whether overall selection on large 

size versus selection on developmental time is variable across taxa and whether this 

variation is likely to influence Cope’s rule (Kingsolver & Pfenning 2004).
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Abstract

Sexual differences in body size are widespread amongst animals, and various 

explanations for the evolution and maintenance of sexual size dimorphism (SSD) have 

been proposed. Here we investigate the effects of sexual selection and fecundity 

selection on the sizes of males and females, respectively, in American Rubyspots 

(Hetaerina americana). This damselfly is sexually dimorphic; males are larger than 

females, and the males sport large red spots at the base of each wing that are sexually 

selected via male-male contests. Males defend territories along streams and rivers, and 

mating success is determined by the ownership of a territory. Firstly, we show that large 

males hold territories for longer and sustain longer territorial fights than small males. 

Territorial males obtain more copulations than non-territorial ones. Large males also 

exhibit higher proportions of wing pigmentation, and they mate with large females. 

Secondly, large territorial males have high energy reserves, whereas non-territorial 

males appear to have depleted reserves. Thirdly, selection analyses of body size show 

disruptive selection acting on male body size, suggesting that both small and large males 

may be favoured in terms of mating success. We also test whether fecundity selection is 

acting on female size. However, female body size was unrelated to the number of eggs 

the female carried. Taken together, our results suggest that in this territorial damselfly 

species male-biased size dimorphism is driven by large male size in male-male 

competition being selectively advantageous in territory acquisition and/or maintenance. 

We also suggest that small size is advantageous in no-territorial males to improve their 

agility in courting (or subduing) females.
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1. INTRODUCTION

Differences in body size between males and females are widespread in the animal 

kingdom. The degree and direction of body size difference, termed sexual size 

dimorphism (SSD), varies across different animal taxa (Andersson 1994; Teder & 

Tammaru 2005). Several hypotheses have been advanced to explain the interspecific 

variation in SSD (reviewed by Shine 1989; Andersson 1994; Blanckenhom 2005). First, 

increased female body size relative to male size (female-biased SSD) may be the result 

of selection for fecundity (Andersson 1994). This is likely to happen, if large females 

have higher reproductive success due to their higher capacity for producing eggs (Ridley 

& Thompson 1979; Wiewandt 1982; Honek 1993), and/or if large females are preferred 

by males (Sandercock 1998, 2001). For instance, a positive relationship between female 

size and fecundity has been found in frogs, spiders and insects (Shine 1979; Head 1995; 

Prenter et al. 1999; Legaspi & Legaspi 2005).

Second, differential exploitation of resources may reduce the competition between the 

sexes, and drive their sizes to different optima (differential niche-utilisation, Selander 

1966; Hedrick & Temeles 1989; Shine 1989; Thom et al. 2004). If resources are scarce 

and a differential exploitation between the sexes arises, then changes in morphology and 

body size may follow (Shine 1989; Sandercock 2001; Temeles & Kress 2003).

Third, sexual selection acting on either sex may select for SSD (Raihani et al. 2006). For 

instance, male-male competition may favour large body size in those species in which 

males compete intensely for females (Mitani et al. 1996; Dunn et al. 2001; Lindenfors et 

al. 2003; Raihani et al. 2006). Thus, large size may be advantageous for males in 

polygynous species (Clutton-Brock & Harvey 1977; Owens & Hartley 1998).

Finally, the selective advantage of body size may depend on whether the competition 

occurs on the ground or in the air (Payne 1984; Jehl & Murray 1986). If males compete 

or display in the air then small male size may be advantageous (Andersson & Norberg 

1981; Blomqvist et al. 1997; Szekely et al. 2000, 2004; Serrano-Meneses & Szekely
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2006), whereas large size may be beneficial in those species where males display or 

compete on the ground (Clutton-Brock et al. 1982; Anderson & Fedak 1985; Lindenfors 

& Tullberg 1998). These selective processes may be reinforced via female choice 

(reviewed by Thornhill & Alcock 1983; Choe & Crespi 1997).

The effect of sexual selection on SSD may vary across insect taxa. It is possible that 

different mating strategies (i.e., territoriality, non-territoriality) promote changes in the 

degree and direction of SSD (Andersson 1994). For example, small size is often 

advantageous to non-territorial individuals in situations where agility is important 

(Fincke 1988; Neems et al. 1990), whereas large size is often linked to territorial 

advantages (Alcock 1979; Fincke 1984; Tsubaki & Ono 1987; Crespi 1988; Villalobos 

& Shelly 1991; Polak 1993), presumably due to the fat-storing ability of large males to 

fuel aerial fights (Marden & Waage 1990; Plaistow & Siva-Jothy 1996; Plaistow & 

Tsubaki 2000; Contreras-Garduno et al. 2006).

Odonates (dragonflies and damselflies) are an ideal group for investigating the selective 

and physiological processes underlying SSD. They exhibit a variety of mating tactics, 

strategies and habitats (i.e. Forsyth & Montgomerie 1987; Plaistow & Tsubaki 2000), 

causing different selective pressures on body sizes of males and females (Conrad & 

Pritchard 1992; Thompson & Fincke 2002); their SSD ranges from female-biased to 

male-biased SSD (Anholt et al. 1991). Females are usually the larger sex in adult 

odonates (Anholt et al. 1991), but this difference can be less evident, or even the 

opposite, in territorial species (Anholt et al. 1991; Fincke et al. 1997). What selective 

processes influence male- or female-biased SSD? On the one hand, it is possible that 

male body size is under selection toward large size in species with territorial mating 

systems (Anholt et al. 1991) since male-male competition is known to select for large 

male body size (relative to female size, Blanckenhom 2005). However, the relative 

strength of different selective processes may be difficult to detect. For example, 

stabilising selection may also act on body size across odonates (reviewed by Thompson 

& Fincke 2002). When stabilising selection acts, fitness is not a linear function of size. 

For instance, males of intermediate size of the non-territorial damselfly Enallagma
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hageni exhibit higher lifetime reproductive success than large males (Fincke 1982). 

Furthermore, disruptive selection may also occur if, for example, both large and small 

males are favoured. The conditions of this selection are variable although it often 

accompanies assortative mating (e. g. Jones et al. 2003). On the other hand, selection for 

increased female fecundity may result in selection for increased female body size 

relative to male body size, if fecundity increases with body size. Nevertheless, the 

relationship between female fecundity and body size is poorly understood in odonates 

(Cobet 1999).

In territorial odonates males fight for the acquisition of a territory (Corbet 1999). Having 

a territory is often a pre-requisite for males to obtain copulations, because females are 

attracted to these areas for copulation and/or oviposition (Corbet 1999; Cordoba-Aguilar 

& Cordero-Rivera 2005). Fights over a territory may be short (i.e. 3 - 5  sec), or long 

(from 20 minutes to over 2 hours), however, territory acquisition is usually determined 

by prolonged encounters (reviewed by Cordoba-Aguilar & Cordero-Rivera 2005). 

Particularly, in Calopterygidae the acquisition of a territory is usually determined by the 

outcome of aerial encounters between territory holders and intruders (Cordoba-Aguilar 

& Cordero-Rivera 2005). In these prolonged encounters, males with higher energy 

reserves in the thoracic muscles (metabolic fat) have an advantage over males with low 

fat reserves (Marden & Waage 1990; Plaistow & Siva-Jothy 1996; Koskimaki et al. 

2004; Contreras-Garduno et al. 2006).

Here we investigate a damselfly, the American Rubyspot Hetaerina americana, to reveal 

whether male-biased SSD is driven by sexual selection operating on male body size. 

First, we predict that large body size is advantageous for males. The American Rubyspot 

exhibits a resource-defence polygyny so that males compete intensely over the 

possession of a territory (Grether 1996a, b). Soon after emergence, males develop a 

large red-pigmented spot at the base of each wing. Grether (1996a, b) provided 

experimental evidence showing that the red pigmentation is involved in male-male 

interactions, since males with larger wing spots held territories for a greater proportion 

of their reproductive lifespan and, therefore, mated at higher rates. Grether (1996b) also
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found that body size was positively selected, but only in non-territorial males, possibly 

because they were able to subdue females in the pre-copulatory stage. Nevertheless, the 

relationships between body size, wing pigmentation and male mating success have not 

been investigated. In this study we explore the interactions of these variables and the 

role of fat reserves and muscle mass in the context of the advantage of large body size in 

territoriality. We also use selection analyses to quantify the direction and mode of 

selection acting on male body size in relation to their mating patterns. Second, fecundity 

selection has not been investigated in American Rubyspots, thus we also investigate 

whether the number and size of the eggs relate to female size. These relationships may 

be linear suggesting directional selection for increased female body size. Alternatively, 

females of intermediate body sizes may more fecund than large or small females. The 

latter scenario would be consistent with stabilising selection.

2. MATERIALS AND METHODS

(a) Study site

Fieldwork was carried out in Tehuixtla, Morelos, Mexico (18° 32’ 56” N, 99° 16’ 23” 

W, elevation 840 m) between 17 December 2003 and 27 February 2004, and between 12 

November and 15 December, 2004. We worked along the shore of the Amacuzac River 

in a section approximately 300 m long. Since American Rubyspots avoid areas with 

shade or cover (M. A. S.-M. personal, observation), we divided our study site to three 

areas that were not shaded by trees and held the largest concentrations of individuals.

(b) Marking, morphometries and body size

On each day unmarked animals were caught and marked with an indelible marker on the 

right anterior wing using a unique combination of three digits. These numbers were 

easily readable through binoculars from a few metres, and allowed us to identify 

individuals during behavioural observations and daily surveys. First, for each captured 

male we measured their body length (from head to the tip of abdomen), head width, 

wing length (right anterior wing) using a digital caliper (to the nearest 0.01 mm).
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Second, the wings of 211 randomly chosen marked males were photographed at constant 

distance using a digital camera (Olympus 765UZ). Third, males were categorised as 

either territorial or non-territorial. In our study site territorial males defended an area 

against conspecifics and remained faithful to their area after an aggressive dispute, 

whereas non-territorial males did not establish an area, wandered along several sections 

of the river and were chased off by territory owners (for a review on the territorial 

behaviour see Corbet 1999). Finally, male age was assigned to three age classes: (i) 

juvenile mature, (ii) mature and (iii) old (see Cordoba-Aguilar, 1994 for a detailed 

description of this procedure). These age classes were estimated from morphological 

cues (Cordoba-Aguilar 1994): (i) juvenile matures exhibit bright intense colours and 

their wings are highly transparent; (ii) mature individuals show less brightness and 

intensity in body colour, their wings are less transparent than that of the juvenile mature 

individuals; (iii) old individuals usually show dark body colouration and their wings 

tend to be broken at the tips.

We use body length as a proxy for body size for two reasons. First, wing length and head 

width are highly correlated with body length (see Results). Second, we argue that 

measuring SSD from differences in wing length may not be appropriate, since it leads to 

the false conclusion that females are larger that males in this species (see Results).

In this work we assume that body size is fixed after adult emergence, although one may 

argue that male body length may change so that it reflects feeding condition. To test this 

assumption we captured 44 adult males in our study site on 27th of May 2006, measured 

their total body length, and allocated them alive into individual plastic tubes. The tubes 

were transported to a laboratory at UNAM inside a plastic cooler to keep males alive but 

inactive. In the laboratory we choose 22 individuals randomly, and fed these males 

whereas the remaining 22 males were starved. Males in the fed group were manually fed 

using frutiflies Drosophila melanogaster until they ate no more flies (usually, they took 

6-11 flies before saturation). Males were fed once a day for 2 days. After 48 hours of 

capture their body length was re-measured.
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(c) Male behaviour, territorial tenure and survival
Male behaviour was recorded daily between 10:00 and 15:00 hours (Central Standard 

Time) when American Rubyspots are most active (M.A. S.-M. pers. obs.). Each male 

was observed for 15 minutes by scan sampling. Behavioural units were recorded every 

10 second using a digital timer. We then estimated the proportion of time the males 

spent fighting. Prior to analyses, these proportions were logw transformed, and we refer 

to these data as ‘fighting rate’.

During behavioural observations and daily surveys we also recorded copulations, and 

noted whether the observed male was territorial or not. We use the number of 

copulations as an indicator of male mating success.

To estimate male territory tenure (the number of days a male held a territory), and 

survival (the number of days a male was seen alive) we searched for marked animals 

from 12:00 to 14:00 hrs. Both territorial tenure and survival were logw transformed. 

Survival analyses only included those males that were marked during the first 15 days of 

the first field season (December 2003 -  February 2004), to exclude those individuals 

whose lifetime was not fully covered by the study time span.

(d) Wing pigmentation

Pigmented patches and total wing areas were measured on digital photographs of 211 

males using ImageJ 1.34s (National Institutes of Health, http://rsb.info.nih.gov/ij/). We 

measured the total area (in pixels) of the four wings and the area of their respective 

pigmented patches. Since we were interested in the relationship between wing 

pigmentation and at a given body size, we controlled in two ways for the allometric 

relationship that large wings bear large pigmented patches. First, we estimated the 

average proportion of wing pigmentation for four wings (see similar approach by 

Cordoba-Aguilar et al. 2003). Second, we calculated the logw (mean areas of the 

pigmented patches) and the logw (mean wing areas), and used these log-transformed 

values in the analyses (see below).
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(e) Fat extractions and flight muscle mass

Weights of metabolic fat and flight muscle were measured for 22 territorial and 22 non­

territorial males that were captured in the field. We used the thorax of males to measure 

both metabolic fat and flight muscle since they are mostly found in this cavity (Plaistow 

& Siva-Jothy 1996; Corbet 1999). Fat extractions were based on the method described 

by Marden (1989), where available fat is measured as the difference between thorax dry 

weight and thorax weight after fat extraction by petroleum ether (see Marden 1989 for 

full details); therefore, fat load refers to fat weight in grams. The dry, fatless thorax was 

later immersed in 0.2 M potassium hydroxide for 24 hours (Plaistow & Siva-Jothy 

1996). After this treatment, flight muscle was digested and the remaining cuticle was 

washed in distilled water, dried and re-weighed. The difference between the weight of 

thorax cuticle with muscle and the dry muscle-less cuticle was used to estimate muscle 

mass in grams.

(f) Fecundity

45 females were captured in the field, and stored in 70% ethanol until dissected in the 

laboratory. We also measured their head width, body length and wing length to the 

nearest 0.01 mm. We only captured those females that attempted oviposition following 

copulation. These females have presumably matured a batch of eggs that were ready to 

be laid. In the laboratory, each female was placed in a Petri dish filled with water for two 

hours and dissected under a stereo-microscope by removing the abdominal stemites and 

gut. Since clutch size is often traded off against egg size (Roff 2002), we also measured 

the length and width of 10 eggs per female using a lOx measuring eyepiece, and used the 

average size of these eggs in the analyses. Egg size was estimated by calculating an egg- 

index based on egg-length x width2.

(g) Statistical analyses

We compared the body size of males and females using independent samples /-tests. To 

test whether body length changes with feeding regime and thus with body condition, we 

used paired-samples /-test to compare the body length between prior and after treatment 

in both fed and starved groups. We investigated the relationships between male size (ie
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body length or wing length) and fighting rate, territory tenure or survival using 

Pearson’s correlations. We constructed two General Linear Models (GLMs) that initially 

included either body length or wing length as dependent variable, and male fighting rate, 

territory tenure, survival as explanatory variables, and then removed the non-significant 

variable(s) using backward elimination. All first-order interactions were tested in the 

initial models, but none was significant {p »  0.3), thus statistical interactions were not 

considered further.

To test the relationship between wing pigmentation and body size, we first investigated 

whether the proportion of wing pigmentation was related to body length in a Pearson’s 

correlation. Second, we fitted a major axis regression (MA; model II regression, Sokal & 

Rohlf 1981) between logio area of pigmented patches (dependent variable) and logw 

areas of wing, We used major axis regression instead of least squares regression since 

the latter does not take into account that both X and Y are estimated with error, and the 

magnitude of errors were likely different between X and Y variables (Sokal & Rohlf 

1981). A MA slope significantly greater than one would suggest that large males have a 

higher proportion of wing pigmentation. The MA slope and its 99% confidence intervals 

(lower Cl -  upper Cl) are provided. The confidence intervals of the slope were 

calculated by bootstrapping the logw transformed data using R (R Development Core 

Team, http://www.R-project.org).

We investigated the relationships between either fat load or muscle mass (as dependent 

variable), and body length (independent variable) by considering the possession of a 

territory (ie male status) using two GLMs. In Model 1 fat load was the dependent 

variable, body length was a covariate, and male status was a factor. We found a 

significant interaction between male status and body length (p = 0.001). Thus, we 

investigated further the association between fat load and body length separately for 

territorial and non-territorial males using bivariate least squares regressions. In Model 2 

muscle mass was the dependent variable, body length was a covariate and male status 

was a factor. Male status * body length was not significant (p = 0.488), therefore this 

interaction was not included in Model 2.
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Assortative mating in regard to body size was tested by fitting a MA using the body 

lengths of 54 males and females found in copula. We use MA for two reasons. First, 

body size is usually estimated with error so that least squares regressions may not be 

appropriate. Second, least squares regression often underestimates the slope and the 

confidence intervals when both variables are measured with error (Fairbaim 1997). The 

slope of MA regression and its 99% confidence intervals (lower Cl -  upper Cl) are 

provided. Confidence intervals were calculated by bootstrapping the body length data 

using R (R Development Core Team, http://www.R-project.org).

We tested the relationship between female body length and egg number using Pearson’s 

correlation. Unexpectedly, egg size was not normally distributed (skewed toward left, 

Kolmogorov-Smimov Z = 2.26, n = 45, p  = 0.001), thus we used Spearman’s rank 

correlation for the relationship between female body length and egg size. Data are 

shown as mean ± STD and the analyses were carried out using SPSS Ver. 12 with the 

exception of preceding statements.

(h) Selection analyses
In selection analyses we use two measures of body size: body length and wing length. 

Prior to the selection analyses we performed a principal component analysis (PCA) to 

reduce the number of variables. Nevertheless, the eigenvectors of both body length and 

wing length were high (0.707, 0.707; respectively) suggesting that body length and wing 

length were similarly represented in the PCA. Wing pigmentation was not included in 

the selection analysis due to low sample size (data were available only for 16 mated 

males).

We estimated the direction and mode of selection acting on body length, wing length 

and male age using a multiple regression analysis (Lande & Arnold 1983). To estimate 

directional (ft coefficients) selection and curvilinear (stabilizing/disruptive and 

correlational: Ty coefficients) selection, we used partial linear regression and quadratic 

multivariate regression respectively, of relative fitness against standardised body length, 

wing length and age (mean = 0, S2 = 1) as independent variables. Relative fitness (wj) of
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a given male was estimated as w\ = WJW, where W\ is the number of matings obtained 

by a male i throughout the whole season and W is the mean number of matings of all 

males in the population.

(i) Ethical note
All animals were treated as humanely as possible and released immediately after 

marking and measuring. The total handling time of every individual was usually less 

than three minutes. Marking was apparently not harmful since shortly after release most 

territorial males returned to their territory, whereas non-territorial males and females 

returned to perching sites near the river. No permission was required by SEMARNAT 

(Mexico) to carry out this work.
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3. RESULTS

(a) Sexual size dimorphism
Males were significantly larger than females as measured by body length (r844 = 35.04, p  

= 0.001), head width (/844 = 9.65, p  = 0.001) and body mass (/23  = 2.15, p  =  0.042). 

Females, however, had longer wings than males (f844 = 4.58, p  = 0.001, Figure 1). Wing 

length and head width are highly correlated with body length (wing length: males, r738= 

0.76, p  = 0.001; females, rm  = 0.71, p = 0.001; head width: males, r738 = 0.84, p  = 

0.001; females, r\o4 = 0.78, p  = 0.001).
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Figure 1. Body sizes of male and female American Rubyspots using different morphological 
characters (mean ± STD). N refers to the number of males or females.
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Male body length did not change in either feeding regime; male length was not different 

before and after treatment either in the fed group (/21 = 0.48, p  =  0.634) or in the starved 

group (/21 = 1.04,/? = 0.309).

(b) Territoriality and survival
Although territorial males were not significantly larger than non-territorial males (^384 =  

1.33,/? = 0.183), both territory tenure and male fighting rate increased with body length 

0*83 = 0.34, p  = 0.002, Figure 2a; r54 = 0.44, p  = 0.001, Figure 2b). These relationships 

were weaker with wing length (territory tenure: 7*33 = 0.15,/? = 0.175; fighting rate: 7*54 = 

0.26, p  = 0.056). Territory tenure was unrelated to the age o f  males (age estimated at 

capture, one-way ANOVA: F 2,84 = 2.46, p  = 0.092), and it was invariable across areas 

within the study site (7*2,84= 0.39, p  = 0.678).

1.0 -
^  -1.0 -

£  -1 5 -

I
4.504.10 4.40 3.80 4.604.20 4.40

M ale body length (cm ) M ale body length (cm )

Figure 2. Body length of territorial males in relation to (a) territory tenure, and (b) fighting rate.

Body size was unrelated to survival (body length and survival: r2\ \ = 0.07,/? = 0.316; 

wing length and survival: 7*211 = 0.07,/? = 0.281). These results were consistent with the 

GLM o f body length, since survival was not retained in the final model, whereas both 

territory tenure and male fighting rate were correlated with male body length (F 133 = 

4.64, p  = 0.039; F\&  = 11.33,/? = 0.002, respectively). None o f  the explanatory 

variables were significantly related to wing length (/?> 0.155 in all cases).
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(c) Male wing pigmentation and body size
The proportion o f wing pigmentation was 0.130 ± 0.021 (« = 211 males). Large males 

had a higher proportion o f wing pigmentation than small males as measured by body 

length (r209 = 0.29,/? = 0.001; Figure 3) or wing length (r209 = 0.25, p = 0.008).
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£  0 .16- 
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£  0 .14-

Q .  0 .1 2 -

0.08-

0 .06-

3.80 4.00 4.20 4.40 4.603.60

Male body leng th  (cm )

Figure 3. Wing pigmentation increases with male size (r209 = 0.29, p = 0.001). Note that wing 
pigmentation is expressed as proportion, i.e. pigment area * wing area1._____________________

The logw (area o f pigmented patches) and log 10 (area o f wings) are highly correlated (b 

= 1.31, n = 211). The slope o f major axis regression is significantly greater than one 

(lower 99% Cl -  upper 99% Cl: 1.25 -  1.37).

(d) Fat load and flight muscle mass in relation to body size
Fat load related differently to body length in territorial and non-territorial males (Model 

1, male status * body lengthp = 0.001; Figure 4a): fat load increased with body length in 

territorial males (r20 = 0.69,/? = 0.001), whereas it was unrelated to body length in non­

territorial males (r20 = 0.27,/? = 0.215).
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Flight muscle mass increased with body length (Model 2: F\^\ = 59.89, p  = 0.001), and 

it was not different between territorial and non-territorial males (F i)4i = 0.50, p  = 0.484, 

Figure 4b).
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Figure 4. Body length in relation to (a) fat load (g x 10'3), and (b) muscle mass (g x 10'3) in 
territorial and non-territorial males.___________________________________________________

(e) Mating rate, selection analysis and assortative mating
Males mated 0.014 ± 0.006 times per day. The maximum number o f  observed 

copulations for a single male was 3. Out o f 206 territorial males, 49 were seen in copula,
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whereas only 13 out of 180 non-territorial males were seen copulating. Thus territorial 

males obtained more copulations than non-territorial males (x2 = 19.55,/? = 0.001).

We found directional selection on male body length, but not on wing length or age 

(Table la). The positive and significant gradient of selection on male body length (/Si) 

suggests that larger males have higher mating success. The gradients of non-linear 

selection (7 ,1) were not significant except for male body length (Table la). This gradient 

of selection was positive indicating that disruptive selection is acting on male body 

length. Thus, both large and small body size are being selected for. No correlational 

selection was significant.

Table 1. (a) Directional (ft), quadratic (7 O and correlational (7 j) selection gradients for body 
size and age on mating success in territorial and non-territorial males, (b) ANOVA for the 
models. Standard errors are indicated in parentheses. * p  = 0.006; ** p  = 0.028; ns, not 
significant.

a. Character ft Yn %
Body length 0.519(0.189)* 0.393(0.178)**
Wing length 0.132(0.189) ns 0.016(0.153) ns
Age
Body length x Wing length 
Body length x Age 
Wing length x Age

-0.007(0.125) ns -0.080(0.104) ns
-0.123(0.272) ns 
0.182(0.207) ns 
0.019(0.197) ns

b. ANOVA for the linear model

Source df SS F  p Adj. R2

Model
Error

3 290.250 8.437 0.001 
737 8451.875

0.029

ANOVA for the quadratic model

Source df SS F  p Adj. R2

Model
Error

9 486.403 4.785 0.001 
731 8255.721

0.044
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The body lengths o f males and females found in copula were highly correlated (Figure 

5; b = 0.77, n -  54 pairs). The slope o f major axis regression was not different from one 

(lower 99% Cl -  upper 99% Cl: 0.47 -  1.19).
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Figure 5. The relationship between male body size and female body size found in copula. The 
continuous line represents the fitted relationship using major axis regression (b = 0.77, n = 54 
pairs).____________________________________________________________________________

(f) Female fecundity
Females had 676.94 ± 1 1 8  eggs (« = 45 females), and their egg size was 0.048 ± 0.001 

mm3 (n = 45 females). Female body length was not related either to the number (r43 =

0.04,p  = 0.774), or the size o f her eggs (Spearman’s rank correlation rs = -  0.04, n = 45, 

p  = 0.752).

4. DISCUSSION

Our study suggests that body size does not reflect feeding condition in adult male 

American Rubyspots. We also found that large body size is selectively advantageous in 

this territorial damselfly. In the American Rubyspot males are larger than females; this, 

however, depends on the trait we measure. For instance, females have longer wings than
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males but this should not be interpreted as females are overall larger than males, since 

all other measures produced the opposite direction of SSD. Thus ecological processes 

appear to influence differently wing length from other parts of the body. For instance, 

Taylor & Merriam (1995) found that long-winged males and females Calopteryx 

maculata were more likely to occur in open habitats, such as grasslands, than in forests. 

Taylor & Merriam (1995) argued that large wings would reduce manoeuvrability in 

dense habitats such as forests. Another reason for the wing morphological difference 

may be the type of flights performed by males and females. For instance, it is suggested 

that females perform more prolonged flights whereas males perform forward flights. 

This is because long (and wider) wings seem to be used for prolonged flights (Marden 

1987) rather than for forward flight (Wootton 1992).

The body lengths of territorial and non-territorial males were not different; nevertheless, 

larger males have a greater proportion of fat reserves and flight muscle than smaller 

males. The latter result may be expected in territorial odonates. Males start building up 

fat reserves soon after emergence, and these reserves are burnt during sexual activities 

and territorial disputes (Plaistow & Siva-Jothy 1996). Perhaps large male size at 

emergence provides the opportunity to produce large muscular mass and store more fat 

in the days following eclosion (Plaistow & Siva-Jothy 1999). Once a male has lost his 

territory, there is a large decrease in fat storage (Marden & Waage 1990; Plaistow & 

Siva-Jothy 1996). Low fat reserves (although not as low as in the evicted territorial 

males) are seen in non-territorial males that have never defended a territory (Contreras- 

Garduno et al. 2006). This pattern has been shown in other Calopteryx species (Marden 

& Waage 1990; Plaistow & Siva-Jothy 1996) as well as in Hetaerina americana 

(Contreras-Garduno et al. 2006). The decrease after energy-demanding contests, despite 

large male size, is therefore inevitable. Thus after territory eviction large size is no 

longer an indicator of fat reserve storage although it was previously. Note that in 

American Rubyspots non-territoriality includes both males that were once territorial and 

males that tried to obtain a territory but failed to do so. Current work is looking at 

whether these two types of non-territorial animals differ in size.
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Large body size is advantageous for male rubyspots since it enhances territory tenure, 

fighting rate, wing pigmentation and mating. Large males held territories for longer 

possibly due to higher fighting potential ability (i.e. large males had higher fighting 

rates, perhaps as result of having large fat stores in their flight muscle). Note that 

territory tenure was unrelated to the age of males, suggesting that the ability of males to 

remain territorial did not depend on age. Interestingly, Grether (1996 b) found that males 

with large wing pigmentation held territories for a higher proportion of their 

reproductive life in both an observational and an experimental study in which the wing 

spot of a number of males was artificially enlarged. However, and unlike our results, 

Grether (1996 b) reported that body size was unrelated to territory tenure. We argue that 

these discrepancies arise from (i) the differences in estimating body size between 

Grether (1996 b) and our study, and (ii) from ignoring the relationship between wing 

pigmentation and body size. Whilst Grether (1996 b) estimated body size from wing 

length, wing width and thorax width, we used body length. Perhaps large size allows 

larger muscle mass and more fat (Plaistow & Siva-Jothy 1999) that may be honestly 

signalled to other rivals by using wing pigmentation during territorial contests (since 

large males are more ornamented). Grether (1996 a, b) argued that wing pigmentation 

has evolved via male-male interactions, as it is displayed by males during agonistic 

encounters. In territorial males fat reserves are positively correlated with wing 

pigmentation, whereas the same is not true for non-territorial males (Contreras et al. 

2006). The fact that fat reserves are related to wing pigmentation in territorial males 

strengthens the idea that wing pigmentation is an honest signal of body condition only in 

territorial males. However, to assess the relative significances of these processes one 

needs to carefully evaluate the costs and benefits of pigmentation in both female-choice 

and male-male competition.

Male survival was unrelated to body size. We suggest three explanations for this. One 

explanation is that more ornamented individuals (i.e. with large wing spots) may be 

spotted sooner by their preys, so that they face reduced food intake and thus survival 

(Grether & Grey 1996): in an experiment females that were marked with red spots in the 

wings (like those of males), Grether & Grey (1996) found that experimental females
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captured less prey compared to control females, thereby gaining less weight. Thus, 

according to Grether & Grey (1996) wing pigmentation enhances the prey’s ability to 

detect and escape from the approaching damselfly. This may apply particularly to large 

damselfly males in which strong selection may operate against large spots. A second 

explanation is that large territorial males may fight until exhaustion and be more likely 

to die than a small animal, which makes survival estimates difficult to be correlated with 

size. Our study supports this notion since large males spent more time on fighting. 

Finally, our results may also be due to the way we estimated survival so that some males 

may be missed due to dispersal and not mortality. Ideally, survival should be estimated 

from mark-recapture data, taking into account differences in resighting rates (reviewed 

by Lebreton et al. 1992). In American Rubyspots, however, survival is difficult to 

measure accurately given their strong flying capacity.

Territoriality was related to mating success since territorial males obtained more 

copulations than non-territorial males. One may argue, however, that we underestimated 

mating success, particularly of non-territorial males by failing to observe copulations. 
However, in our study both territorial and non-territorial males were highly visible 

suggesting that our estimates of copulation rates are not biased (both can be seen 

crossing the river, looking for oviposition sites as females do not lay eggs in the male’s 

defended space; M. A. S.-M. unpub. data). Furthermore, non-territorial males obtained 

few copulations in other studies too in Hetaerina species (e. g. Cordoba-Aguilar 1995; 

Grether 1996 a). Females visit the territories once they are ready to mate, and although 

precopulatory events have not been described in detail in this species (but see Johnson 

1963), it seems that matings are more likely to occur with territorial males as occurs in 

other calopterygids (Plaistow & Siva-Jothy 1996; Cordoba-Aguilar & Cordero-Rivera 

2005). One explanation for the differential mating success of territorial versus non­

territorial males is that only a territorial male may grant good oviposition sites to 

females (Alcock 1987; Waage 1987; Meek & Herman 1990), and provide protection 

from other males’ interference (Siva-Jothy 1999). In Hetaerina, unlike Calopteryx, the 

couple goes to a place distinct to that defended by the mating male to lay eggs (Cordoba- 

Aguilar & Cordero-Rivera 2005). In fact, female visitation rate is not affected by
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oviposition sites (Alcock 1987). In this situation, the couple faces aggressive attacks by 

other males when crossing over those animals’ territories (M. A. S-M unpub. data). 

Possibly during these instances, a territorial male may firmly hold the female and prove 

his flying ability to provide the oviposition resource (Cordoba-Aguilar & Cordero- 

Rivera 2005). This holding capacity may not be provided by a non-territorial male.

Our selection analysis corroborated our previous findings that large size is selectively 

advantageous in males. However, it also detected disruptive selection (both extremes of 

male body length are selected in mating success) that is unusual in odonates. Among 

odonates directional selection on body size is expected in resource defense polygamist 

species such as H. americana (Fincke et al. 1997), although the males only defend a 

place but once the couple is formed, they look for an oviposition site. Although 

stabilising selection has been found in non-territorial species (i.e. Fincke 1988), it is also 

in these species where selection for small males has been found (i.e. Banks & Thompson 

1985; Anholt 1991) presumably because of advantages via better flight manoeuvrability 

(Fincke et al. 1999). This can be the case of H. americana in which this can be 

advantageous during territorial fighting and chasing or while evading other males when 

the animal is in tandem and looking for a place for the female to lay eggs. Theoretical 

studies suggested that disruptive selection is expected to be accompanied with 

assortative mating (i.e. Burger & Schneider 2006), and this prediction is consistent with 

our results. There may be two explanations for this pattern. First, large and successful 

males may prefer to mate with large females, perhaps because these are more fecund. 

Note, however, that our results do not support the relationship between female body size 

and fecundity. It is therefore not possible to draw any conclusions on whether linear or 

stabilising selection act on female body size. Perhaps a better estimate of female 

fecundity would be lifetime female fecundity. Studies of lifetime female fecundity (see 

Corbet 1999) reported associations between female body size and lifetime fecundity in 

Ischnura graellsii (Cordero 1991) and Coenagrion puella (Banks & Thompson 1987). 

However, contrary to the hypothesis that female fecundity increases with body size, the 

optimum female size for lifetime egg production revealed that females of intermediate 

size produced the most eggs (Banks & Thompson 1987). Although more studies are
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needed using lifetime female fecundity, assessing these are challenging given that many 

calopterygids do not survive in the laboratory. Second, assortative mating may emerge 

from a simple mechanical rule, for instance, if only males and females of similar sizes 

can copulate (mechanical barrier, Amqvist et al. 1996). An effective fit of the structures 

involved in tandem connection (male abdominal appendages and female mesostigmal 

plates) would be advantageous again during those flights that the couple takes to reach 

an oviposition place. A third explanation would be related to the reduced energetic 

advantage and better manoeuvrability that a small male can carry when flying in couple 

with a small female than with a large female. Reasons one and three however would not 

explain why small males should pair with large females and large males with small 

females respectively. The second possibility, tandem fitting, is currently under 

investigation.

In conclusion, sexual selection is likely to select for large size in male-male competition 

in American Rubyspots, since large males hold territories for longer than small males 

and can store more fat. The fighting ability is likely to be signalled by the wing spot. 

However, when it comes to mating success, disruptive selection on male body size was 

documented although the reasons for this remain to be clarified. The advantage of large 

size is less apparent in females, since we found no relationship between female size and 

fecundity. Further research should estimate fecundity from the number of eggs deposited 

in all oviposition events. To quantify lifetime selection on male and female body size, 

future studies should use quantitative genetic protocols using selection differentials 

(Preziosi & Fairbaim 2000; Blanckenhom 2005).

Odonates exhibit an excellent range of mating strategies and ecological traits (Corbet 

1999). Thus future works should test functional hypotheses of SSD (i.e. fecundity 

selection, niche-division, and sexual selection) using phylogenetic comparative methods. 

Recent advances in phylogenetic methods now allow to test whether evolutionary 

changes towards territorial mating systems are related to changes towards male-biased 

SSD. Furthermore, it can be tested whether male body size has changed around female 

body size as to produce the observed patterns of SSD or vice-versa.
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Abstract

Sexual size dimorphism (SSD), a difference in size between males and females, is a 

prevalent morphological trait exhibited by many animal species. Adult body size is 

usually affected by a number of environmental factors (such as available feeding 

resources) during development. Therefore it is likely that the early stages of 

development are a critical period for animals to attain resources that will influence their 

reproductive success. Here we investigate how food resources during the larval stage of 

the territorial American Rubyspot damselfly (Hetaerina americana) may influence adult 

body size and fat reserves. Larvae were collected from their natural environments and 

reared in one of three diet regimes: (i) rich, (ii) intermediate and (iii) poor. Food 

regimes, however, did not influence adult body size or fat reserves of either males or 

females. We discuss four potential explanations for these results. First, food alone may 

not be the sole determinant of adult body size, but the interplay between genetic and 

other environmental variables. Second, the effect of diet regimes may be more evident in 

developmental time, rather than body size alone. Third, it is possible that our larvae 

samples included individuals that had undergone most of their growth and as a 

consequence were not affected by our treatments. Finally, fat reserves may be unrelated 

to the diet regimes since it is likely that they are depleted during metamorphosis. Taken 

together our results suggest that the development of SSD in this species may be the 

outcome of more than one environmental variable and to some extent, although not 

measured by us, genetic determinants.
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1. INTRODUCTION

During development, males and females are generally similar in size (i.e. vertebrates; 

Badyaev 2002); yet adult males and females are rarely the same size (Andersson 1994; 

Blanckenhom 2005). This difference in body size is termed sexual size dimorphism 

(SSD).

In animals, adult body size is usually achieved via (i) long growth periods (Roff 1980; 

Steams 1992) or (ii) fast growth rates (Badyaev 2002). If differences in these growth 

patterns arise between the sexes, then differences in adult body size between the sexes 

may follow (Badyaev 2002). For example, in species where males are larger than 

females, males may attain large size by growing faster or by growing for longer than 

females (i.e. Leigh 1992). How do sex-specific growth patterns arise? Although males 

and females share the same gene pool, which constrains the evolution of differential 

growth patterns in the sexes to some extent (see Badyaev 2002), sex-specific growth 

patterns are likely to be influenced by a number of mechanisms, such as sensitivity to 

condition during growth (Potti 1999), maternal effects (Ricklefs & Peters 1981; Kojola 

1993; Cordero et al. 2001), environmental factors (Larsson & Forslund 1991; Sedinger 

& Flint 1991; Rhymer 1992; Saether & Heim 1993; but see Roff 1997) and time 

constraints imposed by seasonality (Roff 1980; Rowe & Ludwig 1991). These sex- 

specific differences in growth patterns are likely to evolve between populations and 

closely related species, resulting in the observed patterns of adult SSD (Badyaev et al. 

2001; Badyaev 2002).

In insects, for example, body size at maturity will depend, to some extent, on the amount 

of available food during development (Blanckenhom 1988; Emlen & Nijhout 2001) and 

the time constraint imposed by winter diapause (Roff 1980, 1983; Taylor 1980). 

Therefore, in order to achieve large body size, the development of these animals requires 

acceleration, in order to meet the time constraint (Blanckenhom 1998). Achieving large 

size is important for both males and females since it is often linked to reproductive 

success at maturity (Shine 1988; Andersson 1994). Therefore, in such species, attaining

74



food resources during the early stages of development (i.e. the larval stage in insects) is 

critical (Blanckenhom 1998).

Odonates (damselflies and dragonflies) for instance, should maximise food intake during 

the larval stage in order to maximise adult fitness, since growth is restricted to the larval 

stage (Corbet 1999). If maximising food intake during the larval stage results in large 

adult body size and overall good body condition (i.e. large fat reserves), males of 

territorial species may benefit from rich diets (i.e. Plaistow & Siva-Jothy 1999). This is 

because large body size is particularly advantageous for males of many territorial 

damselfly species (Fincke 1984; Tsubaki and Ono 1987; Serrano-Meneses et al. in press) 

because it often results in better territorial defense and higher mating success (compared 

to smaller or non-territorial males; Waage 1987; Grether 1996; Plaistow & Siva-Jothy 

1999; Plaistow & Tsubaki 2000; Cordoba-Aguilar 2002; Serrano-Meneses et al. in 

press). The advantages of female large size, however, may be in terms of enhanced 

survival (Braune & Rolff 2001) or higher fecundity (Honek 1993; Nylin & Gotthard

1998). In dragonflies, although there is ample evidence for the male benefits, the 

fecundity benefit for females has rarely been documented (i.e. Cordero-Rivera 1991).

As occurs with many taxa (i.e. Garel et al. 2006), research on the effect of food on larval 

development in odonates has been carried out in species with marked sexual seasonality. 

This seasonality can take up to three or four months of reproductive activity (Corbet

1999). In this situation, there is conflicting selection to attain a larger body size over a 

short period, which maximises development rate. This is important, since any delay will 

have strong effects on losing reproductive opportunities (Johansson et al. 2001; for other 

species of temperate invertebrates see Atkinson 1994). Animals are therefore expected 

to use environmental cues such as photoperiod and temperature to synchronize 

emergence time with the largest possible size (i.e. Frisch & Santer 2004). Indeed, with 

shorter periods to complete development, animals emerge with reduced size (Plaistow & 

Siva-Jothy 1999), which can have detrimental effects on fecundity (Johansson & Rowe 

1999). Alternatively, animals may accelerate development in order to maximise body 

size at emergence (Strobbe & Stoks 2004). Smaller individuals are indeed observed as
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the season progresses (Corbet 1999; for an exception see Rantala et al. 2001). This 

situation, however, has no parallel in tropical environments, since animals in these 

environments are usually less restricted by seasonality (Corbet 1999). This allows more 

relaxed pressures to exist at the time of emergence (Corbet 1999). Although animals 

should also compete for food, the pressure to finish larval development is less strong.

We have investigated the effect of food on the larval development of a territorial, 

tropical damselfly, Hetaerina americana. Similar to other territorial damselflies, males 

are larger than females in this species (Serrano-Meneses et al. in press). This species is 

not constrained by winter diapause, since both males and females can be found 

throughout the year (Peralta-Vazquez unpublished results). Animals go through a larval 

stage of up to several months (Corbet 1999) and a few days as tenerals, which is when 

they build up the necessary muscle mass and energetic reserves for territory competition. 

Large male body size is positively selected during territorial competition (Serrano- 

Meneses et al. in press) possibly because they have more fat reserves (Contreras- 

Garduno et al. 2006). Larger males also bear larger wing pigmented areas which are also 

favoured via male-male competition (Grether 1996; Serrano-Meneses et al. in press). 

Females visit the places males defend and soon after a female is grabbed by a male, the 

couple flies to other riverine places to mate and oviposit (Cordoba-Aguilar & Cordero- 

Rivera 2005). It is not known whether large females have an advantage for which the 

most obvious would be fecundity (i.e. Cordero-Rivera 1991). Paradoxically, the size of a 

female in this species does not correlate with the number of eggs she carries in the 

abdomen (Serrano-Meneses et al. in press).

Here we address two questions: (i) does diet during the larval stage have an effect on the 

adult size and fat reserves in both sexes? (ii) does diet regime influence larval 

development time as occurs in temperate dragonfly species? We have used H. 

americana larvae to answer these questions in a site where tropical conditions are 
prevalent.
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2. MATERIALS AND METHODS

(a) Capture o f larvae
242 larvae were collected at three locations (A, B, C) of the Amacuzac River in 

Tehuixtla, Morelos, Mexico (18° 32’ 56” N, 99° 16’ 23” W) between February the 9th to 

the 11th, 2004. Since the age of the larvae is difficult to determine in the field, we only 

collected larvae from intermediate to large size (from approximately 0.5 cm to 1 cm). 

All larvae were stored in one container with water and vegetation from the river (the 

vegetation was used by the larvae as substrate). After collection, the larvae were 

transported to the laboratory where the experiments took place. The travelling time was 

approximately 1 hour. In the laboratory and prior to assigning the larvae to a diet regime, 

the body length of every larva was measured from the tip of the head to the end of the 

abdomen (excluding the gills) using a digital calliper (LCD electronic digital Vernier 

calliper). Measurements were made to the nearest 0.001 mm.

(b) Diet regimes and change in body size
Following collection, all larvae were placed in individually labelled plastic containers 

with a level of water of approximately 2 cm and they were provided with a wooden stick 

to allow perching. To prevent emerging individuals from escaping, every container was 

covered with a plastic net. Water from every container was replaced with clean water 

every other day.

We randomly assigned each larva to one of three diet regimes. In every feeding regime 

the larvae were provided with three chironimid larvae at different time intervals: i) rich: 

fed every other day, ii) intermediate: fed every fourth day, and iii) poor: fed every sixth 

day. Group (i) was fed for 22±8 days; group (ii) was fed for 17±4 days and group (iii) 

was fed for 17±4 days. These treatments ended when the last individual in a given 

treatment died.

Since larval stages were unknown at the start of experiment, body size was logio 

transformed and thus change in size from one larval stage to another was calculated as
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/ogio(size after moulting) -  /ogio(size before moulting). 95 individuals went through a 

single moult, whereas only two larvae moulted twice. The latter individuals were 

excluded from statistical analyses. Dead larvae were preserved individually in plastic 

tubes containing 70% ethanol.

Sexes were unknown at collection; however, post-mortem sexing was possible by noting 

the presence of the ovipositor in female larvae in the last stages of development. 

Therefore we were able to determine the sex of 102 larvae. These sexed individuals were 

considered in the analyses of treatments on body length, since we were interested in the 

effect of the diet regimes on both sexes. Sexing of emerged individuals was possible 

since tenerals of American Rubyspots are sexually dimorphic.

(c) Emerging individuals

After emerging, we allowed the exoskeleton of individuals to harden for approximately 

2 hours. It was not possible for us to determine the exact time of emergence when 

individuals emerged at night; therefore we measured them approximately at 8 am 

(Central Standard Time) the following day. Note that this species is not active during the 

night (Corbet 1999; Switzer & Grether 2000); therefore it is unlikely that amount of 

energy reserves was substantially affected in the animals that emerged during the night. 

Once the individuals’ exoskeletons had hardened we measured their body length using a 

digital calliper (to the nearest 0.01 mm). We use body length as a proxy for body size 

because other measures such as wing length and head width are highly correlated with 

body length (Serrano-Meneses et al. in press). These individuals were killed by twisting 

their heads. The fresh dead bodies were stored in silica gel to minimise humidity intake. 

This allowed us to accurately estimate the fat load of every individual (see below).

Fat load was measured separately for abdomen and thorax as the difference between the 

trait’s dry weight and the weight of the trait after being treated with petroleum ether (see 

similar approach by Marden 1989; Serrano-Meneses et al. in press). The fat load of the 

abdomen plus the fat load of the thorax is referred as total fat load. This procedure was 

performed separately for each individual. Fat load is expressed in grams.
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(d) Statistical analyses
Larvae body length between different parts of the study site was analysed using one-way 

ANOVA using study site as a 3-level factor. Body length during the days when larvae 

were collected was analysed using one-way ANOVA using date of collection as a 3- 

levels factor. Tukey test was used as a post-hoc test in both ANOVA’s. We then tested 

for differences in body length between diet regimes and sex using two-way ANOVA. 

Body length was the dependent variable and diet regime and sex were factors. The 

interaction term diet regime * sex was not significant (p = 0.380), therefore it was 

eliminated from the model.

We tested the effect of diet regime on change in body length using two-way ANOVA 

with both diet regime and sex as factors. The interaction term diet regime * sex was not 

significant (p = 0.348), thus it was eliminated from the model. The time that the larvae 

spent in a given diet regime (days) was logio transformed prior to analyses since it was 

not normally distributed (Kolmogorov-Smimov test, p  = 0.018). The time variation was 

then analysed using two-way ANOVA. The /ogio(days) data was the dependent variable 

and diet regimes and sex were factors. The interaction term diet regime * sex was 

removed from the model since it was not significant (p = 0.867). The number of males 

and females that died or emerged during the experiment was compared using chi- 

squared test.

The change in size between the last larval stage and the teneral stage per sex was 

analysed using repeated-measures ANOVA. In this analysis body size was the 

dependent variable, stage (larva, teneral) was the within-subject factor and sex was the 

between-subject factor. Since the interaction term stage * sex was significant (see 

Results) we tested the differences between male and female body size at both the last 

larval stage and the teneral stage using independent samples /-tests.

The effect of diet regime on total fat load was analysed using Generalised Linear Model 

(GLM) with fat load as the dependent variable, diet regime and sex as factors and body 

length as a covariate. Interaction terms were not significant (p > 0.342 in all cases) so
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they were removed from the analysis. To test whether males and females allocated fat 

differently (more fat to the abdomen or more fat to the thorax) we calculated the 

proportion of fat that each individual allocated to the abdomen and thorax (based on 

total fat load). The differential allocation per sex was analysed with paired samples t- 

tests.

The data analysed were normally distributed (Kolmogorov-Smimov test,/? > 0.189 in all 

cases) except where stated. Analyses were made using SPSS version 14.

3. RESULTS

(a) Body length at capture

Larvae body size varied across the areas where individuals were collected (one-way 

ANOVA: 7*2,239 = 9.02, p  = 0.001; individuals collected in area A were larger than 

individuals collected in area B, Tukey test = 0.001). There was also variation in the size 

of the larvae during the different days of collection (one-way ANOVA: 7*2,239 = 18.662,/? 

= 0.001; all groups different, Tukey test < 0.003 in all cases). Nevertheless, the size of 

102 sexed larvae was not different between subsequent treatments {F2,n = 0.483, p  =

0.618) and sex (T^g = 0.341,/? = 0.561).

(b) Changes in body size and diet regimes

Body size change was not influenced by diet regime (F2ju = 2.366, p  = 0.111) and was

not different between the sexes (T7̂  = 0.013, p  = 0.910). The number of days that the

emerged individuals spent in a given diet regime was not different between males and

females (F\tn  = 0.153, p  = 0.698). Furthermore, although there is a trend that suggests

that individuals in richer diets remained for longer in the diet regime, it is not

statistically significant (7*2,37 = 2.730,/? = 0.078; Figure 1).
%
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Figure 1. Time the individuals remained in each diet regime. Bars represent means ± STD. 
Figure is for illustrative purposes._____________________________________________________

There was no difference in the number o f  males and females that died during the 

experiment (x2 =  0.143,/? = 0.705, n = 66). Also, the ratio o f emerged males and females 

was not different (x2 = 0.111, p = 0.739, n = 36).

Because o f the significant interaction term, body size changes differently between the 

sexes from the larval to the teneral stage (stage: F \^  = 10971.808,/? = 0.001; sex: F \ ,34 

= 22.126,/? = 0.001; interaction: p  = 0.001; Figure 2).

(c) Fat load
Diet regimes did not influence fat load {F2 ,31 = 3.070, p = 0.061). This trend was not 

different between sexes (F 131 = 0.025,/? = 0.875; Figure 3). Males allocated more fat to 

the abdominal cavity than to the thorax (/i8 = 2.956,/? = 0.008). Females show a similar 

trend to males although it was not statistically significant (t\e = 1.769,/? = 0.096).
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Figure 2. Size of the individuals measured as both larvae and as tenerals. Bars represent means 
± STD. Males and females do not differ in size at the last larval stage (r34 = 0.994, p  = 0.327), 
but they have different sizes at the teneral stage (f34 = 7.707, p < 0.001) as measured 
approximately 2 hours after emergence.
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Figure 3. Allocation of body fat in emerging males and females. Units are proportions. Bars 
represent means ± STD.
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4. DISCUSSION

Variation in the reproductive success of male (Fincke 1982; Banks & Thompson 1985; 

Koenig & Albano 1987; McVey 1988; Moore 1989; Cordoba-Aguilar 2002; Serrano- 

Meneses et al. in press) and female odonates (Banks & Thompson 1987) has been 

documented; nevertheless, these studies have been limited to sexually mature 

individuals. Little is known about the survival of individuals from emergence to sexual 

maturity and whether it is correlated to condition at emergence (Corbet 1999). In one 

experiment, Anholt (1991) manipulated both the density of individuals and food 

availability in an experimental population of larvae of the non-territorial damselfly 

Enallagma boreale. Note that at sexual maturity, females are considerably heavier than 

males (Anholt 1991), similar to most non-territorial damselflies (Anholt et al. 1991). By 

inducing competition between the larvae over scarce resources, Anholt (1991) obtained 

small body size in the emerging individuals, whereas body size was generally larger in 

those individuals emerging from treatments with low densities and high resources. Large 

body size was related to increased survival from emergence to sexual maturity in both 

males and females during years of favourable environmental conditions (see Anholt 

1991). Large body size at sexual maturity, on the one hand, was generally 

disadvantageous for males. Males of intermediate and small size, therefore, were 

observed to obtain most copulations. This has also been observed in males of the closely 

related, non-territorial Enallagma hageni (Fincke 1988). On the other hand, large female 

size was not associated with higher reproductive success (Anholt 1991): female body 

size was found to be under stabilising selection.

The American Rubyspot exhibits male-biased SSD at sexual maturity (Serrano-Meneses 

et al. in press). Large male size has been shown to be advantageous for males because it 

is related to territorial defence and mating success (Serrano-Meneses et al. in press). 

However, to our knowledge, nothing is known about the advantages of a given female 

body size. As a general rule, male size should be advantageous for males of territorial 

species in damselflies (Anholt et al. 1991; Serrano-Meneses et al. unpublished results). 

In this work we asked whether, similar to other odonates (Fincke 1988; Anholt 1991;
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Plaistow & Siva-Jothy 1999), larval diet was likely to influence the developmental onset 

of adult body size and hence SSD. Our treatments did not influence size change in either 

larval stadia or emerged individuals. This result is not the product of differences in the 

initial body size across the treatments, since at the beginning of the experiments body 

size was distributed similarly across treatments. This result, therefore, may have three 

possible explanations. First, it is possible that food availability alone does not influence 

body size in this species. Instead, the determination of adult body size may be the 

outcome of interplay between genetic and other environmental variables (see Badyaev 

2002), such as temperature or larval competition over resources (Anholt 1991; Corbet 

1999). Second, the effect of larval nutrition may be more pronounced on developmental 

time (Corbet 1999). This could be the case in species in which tropical conditions are 

prevalent throughout the year, such as our study site. Note that this species is not 

affected by winter diapause and that sexually mature individuals can be found 

throughout the year. Therefore an effect of larval nutrition on developmental time can be 

expected since favouring environmental conditions are prevalent in these areas, causing 

the individuals to experience less pressure to emerge before the end of the reproductive 

season (Blanckenhom 1998; Crowley & Johansson 2002). Without high pressure to 

emerge early, larvae could undergo long developmental times and feed for longer in 

order to achieve large size (i.e. Crowley & Johansson 2002). This is possible since most 

odonates do not have a fixed number of stadia (Corbet 1999). On the one hand, larvae 

tend to undergo more stadia when favouring conditions (such as high food availability) 

are present (Corbet 1999). On the other hand, larvae may emerge earlier when 

conditions are not favourable (Corbet 1999), even if large body size at emergence will 

not be achieved. This was not supported by our data; however, this could be caused by 

the low sample sizes that resulted from high mortality rates across the diet regimes. 

Finally, since we could not determine the larval stage of individuals, it is possible that 

our sample consisted mainly of larvae that were already at an advanced stage of 

development (near emergence). Therefore the body length criteria (see Materials and 

Methods) we used when selecting larvae may have been too large and as a consequence 

had already undergone most growth.
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Our results on body fat allocation suggest that fat load in the emerged individuals was 

not influenced by a particular diet regime. This may suggest that body fat is unrelated to 

diet regime. However, it is also possible that the accumulation of fat reserves prior to 

emergence is depleted during metamorphosis (Corbet 1999). In this scenario, the 

emerged tenerals would have to feed for a number of days in order to accumulate fat 

resources that will later be used during territorial contests (i.e. Anholt 1991). Indeed 

recently emerged individuals have been shown to double in mass after a foraging period 

of one to three weeks (Anholt et al. 1991), suggesting that it is during the teneral, pre- 

reproductive period that animals accumulate the fat reserves that will later be used 

during territorial defence by males and destined for egg production by females (Corbet 

1999; Plaistow & Tsubaki 2000). We suggest that this scenario is likely to occur in 

American Rubyspots, providing an explanation for the lack of a relationship between 

larval diet regimes and teneral fat content.

Finally, larvae did not exhibit SSD whereas adult males were significantly larger than 

females. We explored the pattern of size change (from larval to teneral size) between the 

sexes. Our results show that SSD arises only after metamorphosis. The absence of SSD 

during development had not been documented previously in this species, whereas the 

extent and direction of adult SSD is consistent with field observations in this species 

(Serrano-Meneses et al. in press) and with the prediction of the direction of SSD in 

territorial damselflies (Serrano-Meneses et al. unpublished results). Why is there a lack 

of SSD in larvae? One explanation is that males gain survival benefits from being size- 

monomorphic, since male-biased SSD during the larval stage is associated high 

mortality rates that result from high foraging effort (Stoks & Johansson 2000). Therefore 

it is possible that males are prevented from being large during the larval stage because of 

its mortality costs. Large male size, therefore, may only be advantageous for adults, 

since it is associated to mating success (i.e. Moore 1990; Serrano-Meneses et al. in 

press).
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Abstract
Adult body size is the result of important environmental, maternal and/or genetic effects 

acting on animals during development. Here we investigated how sexual size 

dimorphism (SSD) develops in seven species of Odonata: Anax imperator, 

Cordulegaster boltonii, Onychogomphus uncatus, Oxygastra curtisii (Anisoptera), and 

Cercion lindeni, Ischnura graellsii and Platycnemis acutipennis (Zygoptera). We 

measured SSD both in the last larval and adult stage in the same individuals, which were 

reared in laboratory conditions. Our aims was to see whether SSD in adults was already 

present and in the same direction in the larval stage and if it correlated with mating 

system (e.g. males of territorial species being larger than females; with no clear pattern 

for nonterritorial species). We found that although larval differences in size may be 

present, these are not necessarily shown in the adult stage (they may change, disappear 

or even get reversed). Also, mating system was not related to patterns of adult SSD. 

Differences in SSD in larvae may be caused by differential use of resources via niche 

differentiation. We highlight the fact that fecundity selection that selects for large 

females may be acting behind the observed patterns in SSD in adults.
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1. INTRODUCTION

Differences in body size between males and females are common in many adult animals 

(Andersson 1994). For instance, in many invertebrate species, sexually mature females 

are several times larger than males (female-biased SSD), whereas in most mammals and 

birds, males are the larger sex (male-biased SSD; Abouheif & Fairbaim 1997; 

Blanckenhom 2005; Szekely et al. in press). The degree and direction of SSD in a given 

species or taxa are usually explained by i) fecundity selection acting on female body size 

that usually produces female-biased SSD through increasing fecundity with female size 

(Honek 1993; Head 1995; Prenter et al. 1999), ii) differential niche utilisation between 

males and females reducing the competition for resources between the sexes and 

promoting morphological divergence (Selander 1966; Shine 1989; Thom et al. 2004), 

and iii) sexual selection favouring male-biased SSD in species in which males compete 

over females on the ground (Anderson & Fedak 1985; Lindenfors & Tullberg 1998; 

Serrano-Meneses & Szekely 2006), or female-biased SSD in species in which males 

compete in the air (Andersson & Norberg 1981; Raihani et al. 2006; Serrano-Meneses & 

Szekely 2006).

Studies often approach SSD from a functional perspective to investigate the ecological 

and/or behavioural causes and consequences of SSD in adults (see Blanckenhom 2005). 

However, the observed patterns of SSD in the adult stage are the result of important 

differences in physiology, behaviour, and ecological niches between the sexes during 

growth and development (Le Gaillard et al. 2006). These differential factors may 

produce divergent selective pressures on the ontogeny of males and females (i.e. 

developmental time, size at hatching or growth rate) leading to SSD in adults (Badyaev, 

2002). Thus, adult body size may be genetically fixed (i.e. queen size in the ant 

Leptothorax rugatulus; Ruppell et al., 2001), or influenced by environmental factors, 

such as the amount of available food during the early stages of development (i.e. male 

body size in the homed beetle Onthophagus taurus\ Emlen & Nijhout 2001). Note, that 

although the long-term evolution of SSD is to an extent constrained by genetic factors
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(Reeve & Fairbaim 1996), ecological or behavioural pressures can drive the evolution of 

SSD even in presence of strong genetic correlation between the sexes (Badyaev 2002).

The order Odonata is an example of taxa with marked differences in SSD. Several 

species have been intensively studied in terms of sexual behaviour and, broadly 

speaking, two mating systems have been clearly outlined: territorial and nonterritorial 

species (Corbet 1999). In the former, males usually gather at aquatic sites defending a 

place against male conspecifics, where females arrive to mate and lay eggs (i.e. Waage 

1973). In the latter, males do not defend territories but look for females in a scramble 

competition manner (i.e. Fincke 1985). These two mating system types should be 

correlated with different ranges of SSD (for a study suggestive of this claim see 

Johansson et al. 2005): in territorial species, males should be the larger sex, while in 

nonterritorial species, this prediction would not hold as fecundity selection pressure may 

have as a consequence similar sizes and/or female biased SSD. How these differences 

develop in the ontogeny, nevertheless and to our knowledge, have been scarcely studied 

(i.e. Mikolajewski et al. 2005).

Adult body size usually develops in one of two ways: organisms may grow at a faster 

rate, or gradually over a longer period (Blanckenhom 2005). Therefore, differences in 

adult body size between the sexes are likely to arise if the sexes differ in developmental 

time and/or growth rate. In many insects, such as odonates, these ontogenic factors are 

not entirely determined genetically, but they are likely to fluctuate with changes in 

environmental conditions such as temperature, time in the reproductive season and 

available food (Corbet 1999). Food, in particular, is a limiting resource to accrue 

maximum fitness benefits in both sexes. On the one hand and for example, in territorial 

dragonflies males whose larval development has been provided with rich diets gain a 

large size, more muscle mass and fat reserves at emergence (Plaistow & Siva-Jothy

1999). These traits are related to male-male competition for mating territories since large 

individuals with large fat reserves are more successful during aggressive territorial 

contests (Marden & Waage 1990; Plaistow & Tsubaki 2000; Serrano-Meneses et al. in 

press). Since territorial males often gain more matings than non-territorial individuals
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(i.e. Waage 1973; Cordoba-Aguilar 2000; Grether 1996), the former obtain higher 

paternity benefits compared to the latter. Females, on the other hand, gain fitness 

benefits via an enhanced survival at emergence (Braune & Rolff 2001) and expected 

higher fecundity via a large size (Cordero-Rivera 1991).

Here we investigate the development of SSD in five territorial and two non-territorial 

odonate species (Anisoptera and Zygoptera). We have looked at both the last larval and 

the adult stage measured in the same individual and reared in the laboratory. On the one 

hand, we investigated whether SSD in adults is correlated with SSD of last larval stage 

prior to adult emergence. For instance, if in species with male-biased adult SSD, male 

larvae may be already larger than the female larvae. On the other hand, we expect that 

this dimorphism will be related to the mating system: in territorial animals, males should 

exhibit larger size than females while this pattern should not hold necessarily for 

nonterritorial species. Finally, we investigated whether patterns of SSD in the larval 

stage predict future patterns in the adult stage to see whether a trend is held during 

ontogeny.

2. MATERIALS AND METHODS

(a) Larvae

The larvae of seven species (Anisoptera: Anax imperator, Cordulegaster boltonii, 

Onychogomphus uncatus, Oxygastra curtisii; Zygoptera: Cercion lindeni, Ischnura 

graellsii, Platycnemis acutipennis) were collected in 4 sites in the province of 

Pontevedra, North-West Spain (see Table 1 for mating systems, dates and collection 

sites). We chose these species since their biology is well known (Corbet 1999), and they 

are commonly found throughout North-West Spain. Since we were interested in the 

extent and direction of SSD at the last larval stage (F0 henceforward) and at adulthood, 

we only collected those larvae that were presumed to be near emergence. At collection, 

the sex of the larvae was noted using the presence or absence of the ovipositor. All 

larvae collected in a given day were stored in one container with water and vegetation
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from the river (the vegetation was used by the larvae as substrate). The larvae were 

determined in the field using the taxonomic key of Gerken & Sternberg (1999). The 

larvae were then transported to the laboratory at University of Vigo within one hour of 

collection where the rearing of the larvae took place. Before assigning the larvae to 

individual rearing containers, we measured the body length of every larva (from the tip 

of the head to the end of the abdomen, excluding the gills in the case of zygopterans) 

using a digital calliper (LCD electronic digital Vernier calliper; measurements made to 

the nearest 0.001 mm). Larvae in F0 stadium were identified from the advanced 

development of the wing sheaths and eye index (Corbet 1999), whereas larvae in other 

stadia were returned to their natural habitat (see Table 1).

Table 1. Locations and dates of collection. Mating system denotes territorial (T) or non- 
territorial (NT) species. Initial n is the number o f larvae collected for a given species (the 
number of emerged adults differs to these due to mortality). Rearing duration refers to a period 
in days which covers the day when the larvae were captures until the tenerals emerged.

Anisoptera
Species Mating

system
Site Coordinate Date of 

collection
Rearing 
duration 
in days

Initial
n

Anax imperator T Marcosende 42° 4 ’ 4” N, 12-May-06 48 30 S
8° 40’ 4” W 3 0 $

Cordulegaster T Covelo 42° 23’ 10” N, 29-Apr-06 50 30 c?
boltonii 8° 31’ 20” W 3 0 $
Onychogomphus T Covelo 42° 23’ 10” N, 29-Apr-06 18 30 S
uncatus 8° 31’ 20” W 3 0 $
Oxygastra curtisii T Covelo 42° 23’ 10” N, 29-Apr-06 31 30 S

8° 31’ 20” W 3 0 $
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Table 1 continued.

Zygoptera

Species Mating
system

Site Coordinate Date of 
collection

Rearing 
duration 
in days

Initial
n

Cercion lindeni T Marcosende 42° 4’ 4” N, 12-May-06 18 20 S
8° 40’ 4” W 20 $

Ischnura graellsii NT Lourizan 42° 25’ 24” N, 25-May-06 50 35 S
8° 40’ 40 “ W 35 $

Platycnemis NT Tenorio 42° 28’ 50" N, 05-Nov-05 67 20 S
acutipennis 8° 37‘ 40" W 20 $

Following measurements all larvae were placed in individually labelled plastic 

containers with a wooden stick to allow perching, and appropriate water volume that 

filled approximately 2.5-3.5 cm of container for zygopterans and anisopterans, 

respectively. Each container was then covered with a plastic net to prevent emerging 

individuals from flying. Water was replaced by fresh water every day. Zygopterans were 

fed daily with 1 worm (either Tubifex tubifex or Lumbriculus variegatus), while 

anisopterans were fed with 2 worms (Van Gossum et al. 2003). The diet for each species 

and sex was such that no individual was fed on a single species of worm: zygopterans 
were fed every day with a different worm and anisopterans were fed daily with one 

worm of each species.

Emerging tenerals were placed in individual insectaries of approximately 60 cm x 50 cm 

x 50 cm. Inside each insectary eight wooden sticks were provided as perching substrate, 

and a water container covered with a plastic net was provided to maintain humidity. The 

natural photoperiod in the appropriate season was maintained (approximately 12 hours) 

by illuminating the insectary with a commercially available light bulb. We allowed each 

individual approximately 24 hours in an insectary until his/her exoskeleton was fully 

hardened, and then measured their body length using a digital calliper. After this, we 

either released the adults in the location of capture, or those species that emerged during 

winter (P. acutipennis) and were not likely to survive in nature were stored in absolute 

ethanol.
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(b) Statistical analyses
We only included those individuals in the analyses that survived until emergence. We 

used mixed-model ANOVA in which body size was the dependent variable, 

developmental stage (FO, adult) was the within-subject factor and sex (male, female) 

was the within-subject factor. We also included the interaction term stage * sex in the 

models.

To compare the changes in SSD in the two stages and between sub-orders, first we 

calculated SSD for larvae (SSDfo) and adults (SSDadUit) separately as Logio (male size) -  

Log jo (female size) (Smith 1999), and then calculated SSDdeita = SSDaduit — SSDpo. 

Thus a positive SSDdeita indicates shift toward male-biased SSD, whereas a negative 

SSDdeita indicates shift toward female-biased SSD.

Statistical analyses were carried out using SPSS Ver. 14. Results are provided as mean ± 

STD.

3. RESULTS

(a) Anisoptera

In three out of the four territorial species SSD was statistically significant during FO, 

whereas in one species SSD developed at the adult stage (Table 2; Figure la). Two out 

of four species exhibited female-biased SSD at FO (A. imperator, C. boltonii,) whereas 

O. curtisii was monomorphic. SSD only appeared in the adult stage in O. uncatus, in 

which females were larger than males. A statistically significant interaction between 

stage and sex indicated that the magnitude of SSD changed from FO to adults in C. 

boltonii and O. uncatus (Tables 2 & 3).

(b) Zygoptera

In the territorial species C. lindeni adult male-biased SSD was apparent in the larval 

stage. In the other two non-territorial species adult SSD was monomorphic in the adult
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stage, whereas in the larval stage one showed female-biased SSD (P. acutipennis) and I. 
graellsii exhibited no SSD in either adult and FO stages (Table 2; Figure lb). A 

statistically significant interaction between stage and sex indicated that the magnitude of 

SSD changed from FO to adults in C. lindeni and P. acutipennis (Tables 2 & 3).

Table 2. Mixed model ANOVAs of body length (response variable) in relation to stage (within- 
subjects factor; FO, adult) and sex (between-subjects factor; male, female). A different model 
was built for each species.

Anisoptera

Species Error Stage Sex Stage * sex

d.f. F P F P F P

Anax imperator 17 872.893 0.001 19.509 0.001 4.103 0.059

Cordulegaster boltonii 18 13745.35 0.001 557.615 0.001 435.321 0.001

Onychogomphus uncatus 18 5758.845 0.001 8.054 0.011 26.123 0.001

Oxygastra curtisii 19 4029.65 0.001 0.203 0.657 0.056 0.816

Zygoptera

Species Error Stage Sex Stage * sex

d.f. F P F P F P

Cercion lindeni 22 7215.418 0.001 10.381 0.004 5.657 0.026

Ischnura graellsii 24 1418.217 0.001 0.066 0.799 1.340 0.259

Platycnemis acutipennis 22 9357.662 0.001 0.012 0.913 12.529 0.002
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Table 3. SSD in odonate larvae (FO stage) and adults. > and < indicate statistically significant differences in size between the sexes, 
whereas = indicates non-significant difference. In brackets we provide SSDdeita (see Methods). A positive SSDdeita indicates shift toward 
male-biased SSD, whereas a negative SSDdeita indicates shift toward female-biased SSD. T and NT indicate whether the species is 
territorial or nonterritorial respectively.

SSD in adults

Males > Females Males = Females Males < Females

Males > Females Cercion lindeni (-0.001) (T)
o
PEh
G

Q
Males = Females Ischnura graellsii (0.046) (NT) 

Oxygastra curtisii (0.006) (T)
Onychogomphus uncatus (-0.036) (T)

GO
CO Males < Females Platycnemis acutipennis (-0.056) (NT) Cordulegaster boltonii (-0.056) (T) 

Anax imperator (0.046) (T)
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(b)

P = 0.003 P = 0.001

FO Adults

P= 0.001 P= 0.001 P = 0.388 I----- 1 P= 0.001 I 1 P = 0.297 P = 0.916

Anax imperator

P =  0.028 P= 0.002

Cercion lindeni
FO A dults

M

1&

SO

3.0

FO Adults

Cordulegaster boltonii

P =  0.388 P= 0.580
I----------1 I----------1

Ischnura graellsii

to

4.0

FO Adutts

Onychogomphus uncatus

P= 0.014 P= 0.079

3j0

Z5

1.5

1.0

FO Adutts

Females
I  Males

Adults

Oxygastra curtisii

Sex 
] Females 
I  Males

2.5

i*
FO Adults

Platycnemis acutipennis

Figure 1. Body length of FO larvae and adults in (a) Anisoptera and (b) Zygoptera (means ± STD), p indicates the probability value of 
independent /-tests.
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4. DISCUSSION

We observed SSD in most species examined. In three cases, the dimorphism shown by 

adults was already present in the larval stage, in two cases both larvae and adults did not 

differ with two cases in which the pattern observed in the larval stage changed when 

adults. With this, it is difficult to advance the idea that the size differences observed in 

the adult stage are similar to prior stages. This is corroborated by the lack of clear 

predictable SSD patterns in the larval that can be translated to the adult stages.

We predicted that in territorial species, there should be a biased SSD with strong sexual 

selection acting on males as body size is favoured via male-male competition. In this 

type of competition, elements such as muscle mass and fat reserves are positively 

selected (i.e. Marden & Waage 1990; Plaistow & Siva-Jothy 1999; Plaistow & Tsubaki

2000) and the larger the animal, the greater these elements (Serrano-Meneses et al. in 

press). On the other hand, in the absence of male-male competition mediated by physical 

encounters, fecundity selection may act extensively resulting in no SSD at all or female- 

biased SSD. Except for one species (C. lindeni), in all territorial species examined in this 

paper, we did not find that males were larger than females in the adult stage. In fact, in 

three anisopterans, females were larger than males at this stage. In two of these species, 

this difference was in fact already present in the larval stage. Several explanations may 

be brought about. The first is that despite being territorial, males are not larger possibly 

for reasons related to the factors that females face that may compensate differences in 

SSD. One factor may be fecundity selection on which females would tend to become 

larger. This may be a strong force in those species in which females are larger and even 

in the only territorial species which did not show SSD (O. curtisii). The difference in 

size may be already present in the larval stage although some other explanations may be 

put forward too. One explanation is that there are ecological differences between the 

sexes prior to emergence. To date we know of no evidence that can suggest differences 

of habitat use between the sexes but partially this is because there are no published 

accounts or research related to this. It may be a promising avenue of research. Although 

some form of territoriality which includes aggressive behaviour, has been shown in the

103



larval stage of several odonates (i.e. Rowe 2004). Whether this behaviour is sex-specific 

has not been documented.

On the other hand, in the two non-territorial species, there were no differences in SSD at 

the adult stage and one showed female biased SSD in the larval stage (P. acutipennis). 

Again, it may be that fecundity selection may be behind this absence of SSD although it 

is interesting that females are larger in the larval stage. It may simply be that females 

have already developed larger as emergence is soon to occur although, but it cannot be 

that natural selection is operating in the larval stage differentially. Recent evidence in 

Ischnura elegans, for example, indicated that males developed faster and, consequently, 

smaller than females presumably due to selection that scramble competition may 

produce (Abbot & Svensson 2005; for a similar result also see Mikolajewski et al. 

2005). This means that males are under strong selection to emerge to look for females. 

Although this mechanistic explanation may as well apply to territorial species, the fact is 

that indeed the sexes may show differences in the larval stage which may explain our 

results. Another recent set of results using nine libelullids that included territorial and 

nonterritorial species, did not show sexual differences in egg size (Schenk & Sondgerath 

2005). This suggests that the presumable SSD in Odonata does not start in the egg stage 

but takes place during larval development. Mikolajewski et al (2005) for example 

documented that Coenagrion puella males showed greater activity than females in the 

larval stage (for an example of no differences in activity between the sexes see Stoks 

1999). In this non-territorial species and in the same study, females were larger and had 

more mass than males at emergence. This pattern of sexual differences is similar to what 

we have shown in P. acutipennis which is also non-territorial:
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Abstract

Odonata (damselflies and dragonflies) exhibit a range of sexual size dimorphism (SSD) 

that includes both male-biased (males > females) and female-biased SSD (males < 

females). Here we use phylogenetic comparative analyses to investigate the influences 

of sexual selection on SSD. Firstly, we show that odonates exhibit a relationship 

between body size and SSD that is consistent with Rensch’s rule. Interestingly however, 

when Anisoptera and Zygoptera are analysed separately, only Zygoptera exhibit 

Rensch’s rule whereas the sizes of males and females are scaled isometrically in 

Anisoptera. Secondly, we test the influence of territoriality and agility on SSD using 

generalised least squares and show that male-biased SSD increases with territoriality in 

Zygoptera, but not in Anisoptera. A measure of wing shape thought to be correlated with 

male agility is not related to SSD. Taken together, our results suggest that sexual 

selection has to some extent shaped the evolution of SSD in Odonata, however, other 

evolutionary processes such as ecological and/or environmental influences cannot be 

excluded.
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1. INTRODUCTION

Sexual size dimorphism (SSD), a difference in body size between males and females, is 

a prevailing characteristic of many animals (Andersson 1994). SSD can vary both in 

direction and degree. For example, in some mammals and birds, the male can be up to 

five times larger than the female, whereas in some fish, spiders and marine invertebrates, 

females can be hundreds of times larger than the males (Blanckenhom 2005) or, in some 

extreme cases, even tenths of thousands heavier (Norman et al. 2002).

Three major selective processes may explain such differences in size. First, SSD may 

arise if one sex competes more intensely over mates than the other (Webster 1992; 

Owens & Hartley 1998). However, the direction of SSD usually depends on whether the 

most competitive sex (usually the males) displays or competes on the ground, or in the 

air (Payne 1984; Jehl & Murray 1986; Figuerola 1999; Szekely et al. 2004). On the one 

hand, sexual selection usually favours large male size relative to female size, via male- 

male competition or female choice, when males compete or display on the ground 

(Anderson & Fedak 1985; Lindenfors & Tullberg 1998; Szekely et al. 2000; Lindenfors 

et al. 2002). On the other hand, small male size is favoured when males compete or 

display in the air (Andersson & Norberg 1981; Hakkarainen et al. 1996; Blomqvist et al. 

1997; Szekely et al. 2000; Raihani et al. 2006; Serrano-Meneses & Szekely 2006), when 

small male size enhances male agility. Thus, selection for small, agile males is expected 

to produce female-biased SSD.

Second, SSD may be shaped by ecological processes. For example, if resources are 

scarce, the sexes may adapt to the exploitation of different resources in order to reduce 

or avoid competition (Selander 1966; Shine 1989; Thom et al. 2004). This differential 

exploitation of resources, in the long term, is expected to drive further morphological 

differentiation between the sexes. Alternatively, in areas of low productivity, sexual 

selection for increased body size may be constrained due to low availability of resources 

(Blomqvist et al. 1997; Colwell 2000). Note, however, that under these circumstances,
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the direction of SSD is not predictable so that either males or females can be the larger 

sex.

Third, fecundity selection for large female size may account for female-biased SSD 

(Andersson 1994). This is likely to be the case if female fecundity (i.e. clutch size, egg 

size, egg production, offspring quality) increases with her body size (Darwin 1871; 

Wootton 1979; Shine 1988; Honek 1993; Preziosi et al. 1996), and if fecundity selection 

on female body size is stronger than sexual selection acting on male size (i.e. spiders; 

Head 1995; Prenter et al. 1999).

A wide range of animal taxa including birds (Colwell 2000; Raihani et al. 2006; 

Serrano-Meneses & Szekely 2006), lizards (Cullum 1998), turtles, primates and water 

striders (Abouheif & Fairbaim 1997; Fairbaim 1997), exhibit an allometric relationship 

between body size and SSD that is known as Rensch’s rule (Rensch 1950; Abouheif & 

Fairbaim 1997; Fairbaim 1997). In these taxa, consistently with the notion of Bernhard 

Rensch (1950), SSD increases with body size in species in which males are larger than 

females, whereas SSD decreases with body size in species in which the females are the 

larger sex. There are several potential explanations for Rensch’s mle (Fairbaim 1997). 

However, the only explanation that is currently supported by the data is sexual selection: 

using comparative analyses Szekely et al. (2004) showed that Rensch’s mle in 

shorebirds is driven by different aspects of sexual selection: the intensity of male-male 

competition, the agility of male displays and the statistical interaction between male- 

male competition and display agility.

Odonata (dragonflies Anisoptera, and damselflies Zygoptera) is an excellent group for 

testing functional hypotheses of SSD. This insect order exhibits both male-biased SSD 

(i.e. Orthemis ferruginea, Hetaerina americana; pers. obvs.) and female-biased SSD 

(i.e. Dromogomphus spinosus, Enallagma antennatum; pers. obvs.), sometimes, within a 

single genus (i.e. Libellula croceipennis and Libellula herculea; pers. obvs.). What may 

be the functional explanation for such diversity in SSD? In a comparative study, Anholt 

et al. (1991) showed that females are heavier than males in most non-territorial
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odonates; nevertheless the difference in body mass between the sexes is less apparent or 

even the opposite in territorial odonates. However, Anholt et al. (1991) did not control 

for the phylogenetic non-independence of species (Harvey & Pagel 1991), thus their 

results may be biased at best, or false at worst.

Odonates (Anisoptera and Zygoptera) are excellent organisms to test functional 

explanations of SSD. First, they exhibit a range of SSD that spans from female-biased 

dimorphism to male biased dimorphism (Anholt et al. 1991; Andersson 1994). Second, 

their mating systems are highly variable between and within species (Corbet 1999): 

some species have territorial males that patrol and defend sites where the females 

oviposit, whereas others exhibit scramble male-male competition. Third, sexes are 

straightforward to identify (Corbet 1999), whereas in many beetles, butterflies and 

moths genitalia inspection is necessary to distinguish males from females. Fourth, the 

adults attain their full size at emergence and they don't grow afterwards (Anholt et al. 

1991; Fincke et al. 1997; Serrano-Meneses et al. in press), so that measurements at 

emergence describe adequately the size of adult males and females. Finally, 

phylogenetic relationships between genera and family are reasonably understood (i.e. 

Misof et al. 2001; Carle & Kjer 2002; Rehn 2003; Dumont et al. 2005), although the 

current phylogenetic hypotheses, as for many organisms, may need to be revised in the 

light of new molecular and morphological data.

Johansson et al. (2005) recently investigated SSD and sex ratios in Odonata. Using 

exuviae hind tibia length, Johansson et al. (2005) showed that Odonata follows Rensch’s 

rule. This study, however, has not tested a functional explanation of SSD and was 

limited to 21 species (15 Anisopterans, 6 Zygopterans)

We have four major objectives in this study. Firstly, to establish the distribution of SSD 

in adult Odonates using 133 species (63 anisopterans and 70 zygopterans). Secondly, to 

test functional explanations of SSD using a recent phylogenetic comparative method, 

generalised least squares. Specifically, we investigate whether territoriality and male 

agility predict SSD. Thirdly, we test whether Odonates exhibit allometry consistent with
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Rensch's rule. Finally, we test two candidate explanations of allometric relationship in 

body size: territoriality and male agility. Taken together, these analyses are the most 

comprehensive tests of SSD in odonates to date.

2. MATERIALS AND METHODS

(a) Data and SSD

We collected data on body and wing length of males and females from the Odonata 

collection of the Natural History Museum, London (United Kingdom), from natural 

populations in Spain, Mexico and Finland and from published sources (see Appendix 1). 

Data on territoriality were compiled from published sources (see Appendix): non­

territorial species were scored zero, and territorial species (i.e. resource or site defence) 

were scored one. We also photographed the extended wings of one male for each species 

at the Natural History Museum using a digital camera (Canon 20D with a 60mm Macro 

lens) from a constant distance (0.5 m). We set the following criteria to include a species 

in our dataset: (i) data on body length body length should be available for at least three 

individuals for both sexes, and (ii) phylogenetic hypothesis was available.

We use body length as a proxy for body size for two reasons. Firstly, body length and 

wing length are highly correlated both in males (r = 0.913, P -  0.0001, n = 133 species) 

and females (r = 0.928, P = 0.0001, n — 133 species). Secondly, body length is 

invariable with age whereas body mass may vary with age and condition of individuals 

(Anholt et al. 1991; Grabow & Riippell).

Male and female body size were log\o transformed prior to analyses, and SSD was 

calculated as logjo (male body size, in cm) -  logio (female body size, in cm). In an 

overview of SSD indices, Smith (1999) concluded that this measure is one of only two 

preferred indices of SSD, since log differences tend to be symmetric around zero, and 

less likely to violate the assumptions of parametric tests.
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(b) Male agility

Data on male agility were not available for vast majority of species, so we decided to use 

a proxy measure based upon wing shape. Wing shape often reflects adaptation to life 

style. For instance, migratory birds have pointier and more convex wingtips than non- 

migratory birds (Lockwood et al. 1998).

We estimated male agility from wing area asymmetry: slower but more manoeuvrable 

species have low proximal wing areas relative to distal areas, while faster and less 

manoeuvrable species have high proximal wing areas (Grabow & Riippell 1995; 

Wakeling 1997). On the digital photographs we measured the distance in pixels from the 

distal tip of the wing to the insertion to the thorax, and we divided the wing into two 

areas (proximal and distal) using the midpoint of wing length. Using ImageJ 1.34s 

(National Institutes of Health, http://rsb.info.nih.gov/ij/) we measured the total area in 

pixels of the wing, as well as the area in both proximal (P) and distal (D) parts of the 

wing. We then estimated the proportion of the wing area in the proximal side of the wing 

as P /  (P + D). This process was repeated for each wing, and the mean of four Ps were 

calculated for each male. Note that small proportions (< 0.5) reflect low proximal areas 

and therefore more manoeuvrability, whereas high proportions denote larger proximal 
wing area and thus adaptation for fast flight.

(c) Phylogeny

We use a composite phylogeny of 16 families and 133 species (Figure 1), since no single 

comprehensive phylogenetic hypothesis is yet available that would include most (or all) 

species. Our phylogeny was built using the morphology-based phylogram of the high- 

level relationships of Odonata (Rehn 2003, Figure 6) as augmented by recent molecular 

phylogenies of families and genus. Thus Aeshnidae, Chlorogomphidae, 

Cordulegastridae, Corduliidae, Gomphidae and Petaluridae were taken from Misof et al. 

(2001), and Libellulidae from Carle and Kjer (2002). Calopterygidae, Chlorocyphidae, 

Euphaeidae, Hetaerinidae, Megapodagrionidae and Platycnemididae were taken from 

Dumont et al. (2005); Enallagma (Coenagrionidae) was taken from Brown et al. (2000) 

and Ischnura (Coenagrionidae) was taken from Chippindale et al. (1999). Lestidae
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{Lestes disjunctus and Lestes viridis), Pseudostigmatidae (Megaloprepus caerulatus and 

Pseudostigma aberrans) and Argia (Coenagrionidae, Argia plana and Argia sedula) 

were augumented to the phylogeny according the position of the corresponding family 

or genus in the phylogram of Rehn (2003).

(d) Phylogenetic analyses

For testing the Rensch's rule, we used the phylogenetic independent contrasts method of 

Felsenstein (1985) as implemented by CAIC (Purvis & Rambaut 1995) to control for the 

phylogenetic non-independence of species (Harvey & Pagel 1991). An assumption of 

contrast method is that the standardized contrasts should be independent from their 

estimated nodal values (Felsenstein 1985): our data were consistent with this 

assumption. Since branch lengths were not known for many taxa due to the composite 

nature of our phylogeny, we set branch length to unity.

We tested Rensch’s rule separately for Odonata, Anisoptera and Zygoptera by fitting 

major axis regressions (MA, model II regression, Sokal & Rohlf 1981) between male 

(dependent variable) and female body size (independent variable) using either species- 

level data or phylogenetic independent contrasts (MA was forced through zero when 

using phylogenetic independent contrasts; Harvey and Pagel 1991; Garland et al. 1992). 

We use the slope of MA, since body size is usually estimated with error and other 

methods, such as ordinary least-squares regression assume that the measurements of 

independent axis are taken without an error (Sokal & Rohlf 1981). We provide the 

slopes of these regressions and their 95% confidence intervals (lower Cl -  upper Cl). 

Slopes and confidence intervals of major axis regressions were calculated by 

bootstrapping the contrasts using R (R Development Core Team, http://www.R- 

project.org).

To test the effect of sexual selection (territoriality, male agility) on SSD we use 

generalised least squares (GLS; Pagel 1997, 1999; Garland & Ives 2000; Freckleton et 

al. 2002). GLS is a phylogenetic comparative method that incorporates the phylogenetic 

autocorrelation of the data in the structure of errors (variance-covariance matrix, Martins
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& Hansen 1997; Freckleton et al. 2002). The structure of variance-covariance matrix 

was determined from the composite phylogeny of Odonata (Figure 1). GLS was used to 

test the maximum likelihood of the evolutionary regression coefficient between two 

traits (Pagel 1997, 1999). In order to improve the fit of our data to the model, we 

estimated the maximum likelihood value of the weighting parameter X (see Freckleton et 

al. 2002), and used this Xto correct for phylogenetic effect in linear models (Pagel 1997, 

1999).

Prior to analyses, we removed those taxa from the phylogeny for which no information 

was available on territoriality (25 species; see Appendix). We then investigated the 

relationship between SSD (dependent variable) and sexual selection (Territoriality, 

Agility; independent variables) in three separate GLS model each for Odonata, 

Anisoptera and Zygoptera. We included territoriality x agility interaction in the initial 

GLS models; however, this interaction was only significant in Odonata (see Results), so 

that non-significant interaction terms were eliminated from GLS models of both 

Anisoptera and Zygoptera (Table 1).

Finally, we tested whether the allometric relationship between body size and SSD may 

be explained by territoriality, male agility or their interaction using GLS models (see 

rationale in Szekely et al. 2004). Since Anisoptera did not exhibit this relationship (see 

Results), this group was not included in these analyses. In these models SSD was the 

dependent variable, territoriality, male agility and male size were the independent 

variables.

Statistical analyses were carried out in R (R Development Core Team, http://www.R- 

project.org). GLS calculations were carried out in R (R Development Core Team, 

http://www.R-project.org) using codes written by Robert P. Freckleton.
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Phenes raptor 
Caliaeschna microstigma 
Boyeria irene 
Brachyton pratense 
Rhionaeschna californica 
Aeshna grandis 
Anax imperator 
Anadaeschna isosceles

i Anotogaster sieboldii
' Cordulegaster boltonii

Chlorogorrphus brunneus 
Oxygastra curtisii 
Sornatochlora metal lica 
Macronia splendens

1 Macronia amphigena
Peritherris tenera 
CeUtherris eponina 
Sympetrum vulgatum 
Sympetrum illotum  
Sympetrum corrupturn 
Erytherris simplidcollis 
Pachydiplax longipennis 
Tramea lacerata 
Tramea onusta 
Crocothenis erythraea 
Orthetrum cancel latum 
Ortherris ferruginea 
Ladona depressa 
Ladona fulva 
Ladona ju lia  
Ladona exusta 
Ladona deplanata 
Libellula quadrimaculata 
Libellula serrifasdata 
Libellula foliata 
Libellula saturata 
Libellula croceipennis 
Libellula herculea 
Libellula composita 
Libellula nodistica 
Libellula pulchella 
Libellula forensis 
Libellula luctuosa 
Libellula flavida 
Libellula comanche 
Libellula cyanea 
Libellula incesta 
Libellula vibrans 
Libellula auripennis 
Libellula needharri 
Phyllogomphoides albrighti 
Lindeni a tetrephylla 
Styfogomphus albistylus 
Hagenius brevi stylus 
Onychogomphus uncatus 
Ophiogomphus severus 
Onychogomphus fordpatus 
Gomphus graslini 
Stylurus arm  icol a 
Dromogomphus spinosus 
Gomphus exilis 
Gomphus externus 
Arigomphus cornutus

Figure la . Composite phylogeny of Anisoptera using Rehn’s (2003) phylogram and other 
molecular phylogenies for families and genus (see Methods).
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Euphaea irrpar 
Chlorocypha curta 
Hetaerina americana 
Hetaerina titia 
Phaon iridipennis 
Iridictyon myersi 
Vestal is amoena 
Vestal is lugens 
Vestalis gracilis 
Vestalis smaragdina 
Caliphaea confusa 
Sapho ciliata 
Sapho gloriosa 
Sapho bicolor 
Umma saphirina 
Urrrna I ongistigma 
Echo modesta 
Mnais pruinosa 
Archineura hetaerinoides 
Matrona basilar is 
Matrona nigripectus 
Archineura incarnata 
Atrocalopteryx atrata 
Neurobasis chinensis 
Matronoides cyaneipennis 
Calopteryx amata 
Calopteryx aequabilis 
Calopteryx maculata 
Calopteryx Cornelia 
Calopteryx virgo 
Calopteryx japonica 
Calopteryx splendens 
Calopteryx haemorrhoi dal i s 
Calopteryx syriaca 
Calopteryx xanthostoma 
Calopteryx exul 
Calopteryx intermedia persica 
Calopteryx orientalis 
Philogenia cassandra 
Lestes disjunctus 
Lestes viridis 
Argia plana 
Argia sedula 
Pseudostigma aberrans 
Megaloprepus caerulatus 
Ischnura cervula 
Ischnura erratica 
Ischnura perparva 
Ischnura vertical is 
Ischnura demorsa 
Ischnura posita 
Ischnura denticollis 
Ischnura ramburii 
CoeUcda loogali 
Platycnenis pennipes 
Enallagma exsulans 
Enallagma antennatum  
Enallagma divagans 
Enallagma civile 
Enallagma aspersum  
Enallagma doubledayi 
Enallagma gerrinatum  
Enallagma carunculatum  
Enallagma praetvarum 
Enallagma boreale 
Enallagma clausum  
Enallagma cyathigerum  
Enallagma hageni 
Enallagma ebrium  
Telebasis salva

Figure lb . Composite phylogeny of Zygoptera using Rehn’s (2003) phylogram and other 
molecular phylogenies for families and genus (see Methods).
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3. RESULTS

(a) Distribution of SSD
Odonates exhibit both male-biased and female-biased SSDs, although male-biased SSD 

is predominant (Wilcoxon one-sample test, W =  3984.5, p  = 0.0014). In Anisoptera the 

median SSD is not different from 0 (W = 1159, p = 0.303, Figure 2), whereas most 

Zygoptera have male-biased SSD and their median is significantly larger than zero (W = 

1808,/? = 0.001, Figure 2).
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Figure 2. Distribution of sexual size dimorphism (SSD) in Anisoptera and Zygoptera. Positive 
SSD denote species in which males are larger than females, whereas negative SSD denote 
species in which females are the larger sex. The dotted lines represent monomorphism.

(b) Sexual selection
To test whether territoriality or male agility predicts SSSD, we built a series o f GLS 

models (see Methods). First, in Odonata, there was a significant interaction between 

territoriality x agility (p = 0.0013; Model 1, Table 1; see Figure 3). Inspection o f this 

interaction revealed that agile territorial species show a non-significant trend toward

A nisoptera

Zygoptera

a
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Sexual size dimorphism

120



male-biased SSD (r = -0.134, F\j 5 = 2.145,/? = 0.147) whereas in non-territorial species 

agility is unrelated to SSD (r = 0.042, = 0.354,/? = 0.556).

SSD in Anisoptera was not related either to territoriality or agility (p = 0.697; Model 2, 

Table 1), whereas territoriality was a strong predictor of SSD in Zygoptera (p = 0.0011; 

Model 3, Table 1). These results suggest that, overall, territoriality was a better predictor 

of SSD than male agility.

Table 1. Associations between SSD (dependent variable, /og(male size) - /<?g(female size)) and 
proxy measures of sexual selection (territoriality, male agility) using Generalised Least Squares. 
X is the maximum likelihood estimate of the weighting parameter (see Freckleton et al. 2002).

Odonata
Model 1 Regression coefficient ± SE t P

Territoriality 0.145 ±0.040 3.625 0.0004
Agility 0.108 ±0.127 0.848 0.3981
Territoriality * Agility -0.279 ± 0.084 -3.284 0.0013

Anisoptera
Model 2 Regression coefficient ± SE t P

Territoriality -0.007 ± 0.009 -0.813 0.4199
Agility -0.018 ±0.201 -0.089 0.9290

Zygoptera
Model 3 Regression coefficient ± SE t P

Territoriality 0.049 ±0.012 3.936 0.0002
Agility -0.076 ±0.156 -0.486 0.6287

Notes: The interaction between territoriality and agility is not significant in Anisoptera (p = 
0.735) and Zygoptera (P = 0.394), therefore they were not included in the models.
Model 1: X= 0.931. ?  = 0.132, F ltlQ5 = 5.296,/? = 0.0019 
Model 2: X= 0.768. ?  = 0.014, F ltS2 = 0.362,/? = 0.6974 
Model 3: X= 0.999. ?  = 0.233, F1>52 = 7.773,/? = 0.0011
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Figure 3. Sexual size dimorphism (SSD) in Odonata in relation to male agility in territorial (full 
dots) and non-territorial (open dots) species (see Results for explanation).____________________

(c) Rensch’s rule
Odonates exhibits Rensch’s rule at species-level, since the MA slope (/3 = 1.056, n = 133 

species) is greater than one (lower 95% Cl -  upper 95% Cl: 1.020 -  1.094, n = 133 

species). In Anisoptera the sexes are scaled isometrically (/3 = 0.963, 0.912 -  1.016, n = 

63 species), whereas Zygoptera exhibit a strong allometric relationship that is consistent 

with the Rensch's rule (/? = 1.115, 1.068 -  1.165).

These results are consistent using phylogenetic independent contrasts, since the slope o f 

the relationship between the contrasts in male and female body size in Odonata is greater 

than one (/? = 1.627, 1.094 -  1.254, n = 127 contrasts; Figure 4a). The sizes o f males and 

females are not different from isometry in Anisoptera ((3= 1.118, 0.974 -  1.223, n = 60 

contrasts; Figure 4b), whereas Zygoptera exhibits Rensch’s rule (/? = 1.192, 1.116 -  

1.319, n = 66 contrasts; Figure 4c).
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Figure 4. Phylogenetic independent contrasts of /ogyo(female size) (independent variable) and 
/ogy0(male size) (dependent variable) in (a) Odonata, (b) Anisoptera and (c) Zygoptera. 
Continuous lines indicate the isometric relationship, and dotted lines represent the fitted 
relationship using major axis regression through zero.____________________________________
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(d) Rensch’s rule and sexual selection
In Odonata, both Territoriality and Agility, and their interaction contribute significantly 

to the allometric relationship between the sexes (Model 4, Table 2). Note however, that 

male size remains highly significant in all models (Models 1-5, Table 2) suggesting that 

the allometric relationship remains significant.

Table 2. Associations between SSD in Odonata (dependent variable), sexual selection 
(territoriality, agility) and male size using Generalised Least Squares (see Methods for the logic 
of model selection). X is the maximum likelihood estimate of weighting parameter.

Odonata
Model Regression coefficient ± SE t P
Model 1

Male size 0.086 ± 0.023 3.618 0.0004
Model 2

Territoriality 0.013 ±0.007 1.759 0.0813
Male size 0.083 ± 0.023 3.530 0.0006

Model 3
Agility -0.209 ±0.108 -1.925 0.0568
Male size 0.097 ± 0.024 4.058 0.0001

Model 4
Territoriality 0.014 ±0.007 1.969 0.0515
Agility -0.225 ±0.106 -2.117 0.0366
Male size 0.094 ± 0.023 4.020 0.0001

Model 5 (4,104)
Territoriality 0.130 ±0.037 3.475 0.0007
Agility -0.021 ±0.120 -0.175 0.8609
Territoriality * Agility -0.250 ± 0.079 -3.137 0.0022
Male size 0.088 ± 0.022 3.904 0.0001

Model 1: X= 0.931. ?  = 0.109, F 1>107 = 13.096,/? = 0.0004 
Model 2: \ =  0.916. r2 = 0.136, F 2>io6 = 8.315,/? = 0.0004 
Model 3: \ =  0.913. ?  = 0.141, F2fl06 = 8.673,/? = 0.0003 
Model 4: X= 0.891. ?  = 0.174, F 3>io5 = 7.348,/? = 0.0001 
Model 5: X= 0.889. ?  = 0.247, F 4,io4 = 8.454,/? = 0.0001
Note that comparing Akaike information content of these models would not be appropriate given 
missing datapoints.___________________________________________________________________

In Zygoptera, territoriality but not agility (Models 2 & 3, Table 3) correlates with SSD. 

This is confirmed by a multivariate model that includes both variables (Model 4, Table 

3). Male size, however, remains correlated with SSD in all models (Table 3).
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These results suggest that sexual selection (as represented by territoriality and male 

agility) contribute to Rensch’s rule, although it does not fully account for the allometric 

relationship either in Odonata or Zygoptera.

Table 3. Associations between SSD in Zygoptera (dependent variable), sexual selection 
(territoriality, agility) and male size using Generalised Least Squares (see Table 2 for 
explanations).

Zygoptera
Model Regression coefficient ± SE t P
Model 1

Male size 0.128 ±0.031 4.133 0.0001
Model 2

Territoriality 0.042 ±0.011 3.777 0.0004
Male size 0.111 ±0.028 3.970 0.0002

Model 3
Agility -0.170 ±0.156 -1.089 0.2809
Male size 0.135 ±0.031 4.275 0.0001

Model 4
Territoriality 0.042 ±0.011 3.858 0.0003
Agility -0.190 ±0.138 -1.371 0.1763
Male size 0.118 ±0.028 4.195 0.0001

Model 5 (4,104)
Territoriality -0.046 ±0.134 -0.345 0.7308
Agility -0.399 ± 0.342 -1.166 0.2491
Territoriality * Agility 0.249 ± 0.372 0.667 0.5073
Male size 0.117 ±0.028 4.115 0.0001

Model 1: X = 0.999. ?  = 0.247, Fh53 = 17.083,/? = 0.0001 
Model 2: X = 0.999. ?  = 0.411, F2’52 = 17.856,/? = 0.0001 
Model 3: X= 0.999. ?  = 0.264, F2>52 = 9.166,/? = 0.0003 
Model 4: X= 0.999. ?  = 0.433,F3t51 = 12.737,/? = 0.0001 
Model 5: X= 0.998. ?  = 0.438, F4)50 = 9.584,/? = 0.0001

4. DISCUSSION

Odonates exhibit both male- and female-biased SSD, although males are generally larger 

than females across species. Similarly, males are usually larger than females across 

species in Zygoptera, whereas the sexes are not significantly different in size across 

species in Anisoptera.
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What drives the observed patterns of SSD in Odonata? We investigated whether sexual 

selection, in the form of territoriality and male agility, was likely to drive these patterns 

in Odonata, Anisoptera and Zygoptera. We found that, from these estimates of sexual 

selection, only territoriality seems to influence SSD in Zygoptera since evolutionary 

increases in territoriality are correlated with evolutionary increases in male-biased SSD 

in this sub-order. SSD in both Odonata and Anisoptera, however, is unrelated to sexual 

selection. This suggests that large male body size is selectively advantageous in 

territorial species of Zygoptera but that it is not generally advantageous in Odonata. 

These results contradict the conventional prediction that male-biased SSD should be 

favoured in odonate species that exhibit territoriality (Anholt et al. 1991; also see Fincke 

et al. 1997). For example, Anholt et al. (1991) suggested that, at species level, larger- 

than-average male body size is advantageous for male-male competition in Odonata 

(Anholt et al. 1991; Andersson 1994). Indeed large male body size is advantageous in 

territorial species since larger males are more likely to hold or defend a territory of better 

quality and for longer periods (Fincke 1984; Tsubaki & Ono 1987; Serrano-Meneses et 

al. in press). This usually results in higher mating success for those males that defend a 

territory in comparison to those males that do not (Serrano-Meneses et al. in press). One 

possible explanation is that, during territorial contests males with high energy reserves 

(body fat) have an advantage over males with low reserves (Marden & Waage 1990; 

Plaistow & Siva-Jothy 1996; Koskimaki et al. 2004; Contreras-Garduno et al. 2006; 

Serrano-Meneses et al. in press) because large body size allows a greater proportion of 

reserves to be stored in the thoracic muscles (Serrano-Meneses et al. in press). Larger 

body size may benefit territorial males since they need to endure long territorial contests 

against conspecifics (Cordoba-Aguilar & Cordero-Rivera 2005). Thus, this may explain 

why male-biased SSD prevails in Zygoptera.

In Anisoptera however, the relationship between male-biased SSD and territoriality is 

not evident (Fincke et al. 1997). For example, satellite males of the territorial dragonfly 

Libellula quadrimaculata are generally larger than the small, active, and more successful 

(in terms of mating success) territorial males (Convey 1989; Andersson 1994). Other 

species, such as Plathemis lydia (Koening & Albano 1987) and Sympetrum
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rubicundulum (Van Buskirk 1987) exhibit female-biased SSD even when males 

establish and defend territories. Although our results do not support this, it is possible 

that in Anisoptera, large male size becomes a disadvantage if males, rather than 

defending territories from perch sites, mostly patrol and compete for territories or 

females from the air. In this case, a small, more manoeuvrable size may be more 

beneficial to males, resulting in monomorphism or even female-biased SSD. The same 

principle should apply to males of non-territorial species, since they search actively for 

females (Corbet 1999). Nevertheless, male body size cannot evolve to be too small 

(relative to female size), due to energetic constraints imposed by territorial defense.

Odonata exhibit Rensch’s rule both at species level and after controlling for the 

phylogenetic non-independence of species. This relationship, however, results from 

analysing both Anisoptera and Zygoptera together. Once these two groups are separated, 

the sizes of the sexes in Anisoptera show a scaling pattern that is not consistent with 

Rensch’s rule. Zygoptera, interestingly, exhibits the full scope of Rensch’s rule: the 

extent of SSD increases with body size in species in which the males is the larger sex is 

much, whereas it decreases with body size in species where females are larger than 

males (Abouheif & Fairbaim 1997; Fairbaim 1997). Although the proposed explanations 

for Rensch’s rule have been numerous (i.e. genetic correlation between the sexes, energy 

optimisation, differential niche-utilisation; Fairbaim 1997), only sexual selection has 

been shown to drive the observed pattern (i.e. shorebirds; Szekely et al. 2004). We 

investigated whether sexual selection drives Rensch’s rule in Odonata and Zygoptera, 

and found that sexual selection undoubtedly influences the allometric relationship 

between the sexes. However, our results indicate that sexual selection is not the only 

explanation for Rensch’s mle. Therefore other ecological variables (i.e. differential 

resource-utilisation, difference in habitats between the sexes and fertility selection acting 

on females) may contribute to the observed allometric pattern.

Or study can be complemented in various ways. First, more detailed descriptions of 

odonate mating systems are needed to gain a better understanding of intrasexual 

competition. Second, there may exist other morphological variables that are better
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estimates of male agility, however, this would require data on body mass (Grabow & 

Rtippell 1995; Wakeling 1997), which is extremely difficult to obtain for odonates. 

Third, the incorporation of other ecological variables, such as habitat type and diet 

would broaden our understanding of the difference in body size between the sexes. This 

would however require the description of these variables, which are difficult to find in 

the literature. Finally, female fecundity should also be incorporated, since female size 

may be under the influence of fecundity selection, and thus may contribute to the 

patterns of SSD.

In conclusion, our study reveals that sexual selection drives male-biased SSD in 

Zygoptera, however, this relationship is not ubiquitous in Odonata and Anisoptera and 

future studies should aim to achieve a better understanding of other evolutionary 

processes that may influence SSD in Odonata.
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APPENDIX

Data used in the study and sources. Male and female body size is the mean body length 

of at least 3 individuals per sex. T, territorial; NT, non-territorial. Agility is the 

proportion of the proximal area of the wing; low proportions denote more agility 

whereas high proportions denote wings for faster flight. (1) Azpilicueta-Amorin, M. 

unpubl.; (2) Brooks & Lewington 2004; (3) Corbet 1999; (4) Cordero 1988; (5) 

Cordoba-Aguilar 2002; (6) Cordoba-Aguilar, A. pers. obs.; (7) D’Aguilar & 

Dommanget 1998; (8) Dunkle 1989; (9) Dunkle 2000; (10) Fincke 1987; (11) Fincke, O. 

M. pers. comm.; (12) Gonzalez-Soriano, E. pers. collection; (13) Gonzalez-Soriano, E. 

pers. comm.; (14) Hamalainen & Pinratana 1999; (15) Johansson et al. 2005; (16) 

Kumar & Prasad 1977; (17) Logan 1967; (18) Manolis 2003; (19) McVey 1988; (20) 

Natural History Museum, London, Odonata collection; (21) Novelo-Gutierrez, R. pers. 

comm.; (22) Ocharan 1987; (23) Orr 2003; (24) Serrano-Meneses et al. in press; (25) 

Silsby & Parr 2001; (26) Siva-Jothy et al. 1998; (27) Sokolovska et al. 2000; (28) 

Tsubaki et al. 1997; (29) Tynkkynen, K. pers. comm.; (30) Walker 1958; (31) Watanabe 

et al. 1998.

Species Male size 

in cm

Aeshna grandis 7.039

Anaciaeschna isosceles 6.417

Anax imperator 6.927

Anotogaster sieboldii 8.976

Archineura incamata 8.013

Archineura hetaerinoides 7.556

Argia plana 3.420

Argia sedula 3.320

Arigomphus comutus 4.845

Atrocalopteryx atrata 6.294

Boyeria irene 6.309

Brachyton pratense 5.470

Female M ating Agility References 

size in cm system

6.857 T 0.53 15, 20

6.745 T 0.53 2, 20

7.194 T 0.55 1,4

9.596 T 0.55 20, 28

7.617 T 0.49 3,20

7.964 0.48 20

3.510 NT 0.36 3,20

3.120 T 0.36 3,20

4.757 0.52 20

5.985 T 0.40 3,20

6.153 NT 0.50 22

5.520 T 0.50 2, 22
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Caliaeschna microstigma 6.298 6.714 0.52 20

Caliphaea confusa 4.462 4.228 0.36 20

Calopteryx aequabilis 5.092 4.677 T 0.43 18, 20

Calopteryx amata 5.537 5.238 T 0.42 3,20

Calopteryx comelia 7.135 6.968 T 0.45 3,20

Calopteryx exul 5.184 4.983 T 0.46 7,20

Calopteryx haemorrhoidalis 4.980 4.717 T 0.42 5, 20

Calopteryx intermedia persica 4.659 4.544 0.41 20

Calopteryx japonica 5.749 5.710 T 0.43 20,31

Calopteryx maculata 5.204 4.766 T 0.40 20, 27

Calopteryx orientalis 4.599 4.548 0.41 20

Calopteryx splendens 4.557 4.339 T 0.41 20, 29

Calopteryx syriaca 5.049 4.898 0.40 20

Calopteryx virgo 4.679 4.431 T 0.42 20,29

Calopteryx xanthostoma 4.640 4.527 T 0.40 6, 20

Celithemis eponina 3.838 3.627 NT 0.54 3,20

Chlorocypha curta 3.034 2.627 T 0.35 3,20

Chlorogomphus brunneus 8.150 7.805 0.55 20

Coeliccia loogali 4.913 4.823 0.33 20

Cordulegaster boltonii 6.855 7.785 T 0.54 3,22

Crocothemis erythraea 3.898 3.536 T 0.54 1,2

Dromogomphus spinosus 5.732 6.183 NT 0.53 20, 30

Echo modesta 5.682 5.323 T 0.42 3,20

Enallagma antennatum 2.721 3.132 NT 0.34 20, 30

Enallagma aspersum 2.808 3.148 NT 0.37 20, 30

Enallagma boreale 3.100 3.265 NT 0.38 20,27

Enallagma carunculatum 3.229 3.244 NT 0.37 18,20

Enallagma civile 3.210 3.065 T 0.37 3,12

Enallagma clausum 3.198 3.295 NT 0.37 18,20

Enallagma cyathigerum 3.035 3.075 NT 0.37 12,18

Enallagma divagans 2.890 3.174 0.37 20

Enallagma doubledayi 2.916 3.281 0.37 20

Enallagma ebrium 3.001 2.914 NT 0.38 20, 27

Enallagma exsulans 3.245 3.400 NT 0.34 12, 30



Enallagma geminatum 2.540 2.570 0.38 20

Enallagma hageni 2.807 2.902 NT 0.38 20, 27

Enallagma praevarum 3.075 3.050 NT 0.37 18, 20

Erythemis simplicicollis 4.350 4.410 T 0.54 12, 19

Euphaea impar 5.323 4.707 0.40 20

Gomphus exilis 4.142 4.008 NT 0.52 20, 30

Gomphus extemus 5.236 5.334 NT 0.52 18, 20

Gomphus graslini 4.662 4.805 NT 0.53 18, 20

Hagenius brevistylus 8.116 8.210 0.55 20

Hetaerina americana 4.113 3.470 T 0.47 24

Hetaerina titia 4.801 3.935 T 0.46 6, 20

Iridictyon myersi 6.578 5.871 T 0.43 20, 25

Ischnura cervula 2.651 2.915 NT 0.34 18, 20

Ischnura demorsa 2.545 2.505 0.35 12

Ischnura denticollis 2.745 2.590 NT 0.30 12, 18

Ischnura erratica 3.372 3.382 NT 0.36 18, 20

Ischnura perparva 2.646 2.652 NT 0.35 18, 20

Ischnura posita 2.400 2.310 NT 0.35 6,12

Ischnura ramburii 2.805 3.330 NT 0.36 8, 12

Ischnura verticalis 2.677 2.902 NT 0.34 10, 20

Ladona deplanata 3.290 3.209 T 0.55 9, 20

Ladona depressa 4.589 4.479 T 0.55 3,20

Ladona exusta 3.355 3.379 T 0.55 8, 20

Ladona fulva 4.320 4.029 T 0.54 2, 20

Ladona julia 4.004 3.927 T 0.53 18, 20

Lestes disjunctus 3.563 3.873 NT 0.36 20, 27

Lestes viridis 4.484 4.127 T 0.37 1,4

Libellula auripennis 5.210 5.001 0.54 20

Libellula comanche 4.907 4.946 T 0.54 12, 18, 20

Libellula composita 4.410 4.032 T 0.52 18, 20

Libellula croceipennis 5.490 4.880 T 0.55 12, 18

Libellula cyanea 4.300 4.161 T 0.53 9,20

Libellula flavida 4.478 4.663 T 0.53 9, 20

Libellula foliata 4.566 4.576 T 0.56 13,20



Libellula forensis 4.648 4.224 T 0.56 12, 18

Libellula herculea 5.110 5.470 T 0.53 12, 13

Libellula incesta 5.088 5.027 T 0.53 9, 20

Libellula luctuosa 4.555 4.690 T 0.57 12, 27

Libellula needhami 5.394 5.333 T 0.53 9, 12, 20

Libellula nodistica 4.740 4.560 T 0.53 12, 17

Libellula pulchella 5.061 4.970 T 0.53 18, 20

Libellula quadrimaculata 4.207 4.275 T 0.55 1,15

Libellula saturata 5.480 5.170 T 0.56 12, 13

Libellula semifasciata 4.305 4.230 0.54 20

Libellula vibrans 5.692 5.838 0.56 20

Lindenia tetraphylla 7.000 6.400 T 0.53 3,22

Macromia amphigena 7.300 7.185 T 0.56 3,20

Macromia splendens 6.498 6.869 T 0.53 1

Matrona basilaris 6.620 6.580 T 0.42 20, 26

Matrona nigripectus 6.394 6.265 T 0.40 14, 20

Matronoides cyaneipennis 6.424 5.910 0.45 20

Megaloprepus caerulatus 12.000 9.850 T 0.35 3, 11,20

Mnais pruinosa 5.651 5.008 T 0.41 3,20

Neurobasis chinensis 5.700 5.668 T 0.44 16, 20

Onychogomphus forcipatus 5.052 4.482 NT 0.53 22

Onychogomphus uncatus 5.187 4.931 T 0.53 15, 22

Ophiogomphus severus 4.844 4.762 T 0.55 9, 20

Orthemis ferruginea 5.060 4.665 T 0.57 12, 18

Orthetrum cancellatum 4.693 4.629 T 0.55 1,15

Oxygastra curtisii 4.257 4.485 T 0.55 1,2

Pachydiplax longipennis 3.953 3.512 T 0.55 18, 20

Perithemis tenera 2.270 2.380 T 0.51 12,18

Phaon iridipennis 6.861 6.415 T 0.43 3,20

Phenes raptor 8.536 8.109 0.55 20

Philogenia cassandra 4.741 4.744 0.34 20

Phyllogomphoides albrighti 6.205 6.157 T 0.54 9, 20

Platycnemis pennipes 3.766 3.574 NT 0.35 2, 20

Pseudostigma aberrans 13.900 11.350 NT 0.35 11,20,21



Rhionaeschna califomica 5.564 5.110 T 0.55 12, 18

Sapho bicolor 6.059 5.638 T 0.41 20, 25

Sapho ciliata 6.025 5.642 T 0.44 20, 25

Sapho gloriosa 6.941 6.578 T 0.44 20, 25

Somatochlora metallica 4.974 5.250 NT 0.54 2, 20

Stylogomphus albistylus 3.681 3.918 0.52 20

Stylurus amnicola 4.780 4.947 NT 0.51 9, 20

Sympetrum corruption 4.007 4.137 T 0.57 9, 20

Sympetrum illotum 3.59 3.687 T 0.56 18, 20

Sympetrum vulgatum 3.371 3.249 T 0.54 2 ,3 ,2 2 , 15

Telebasis salva 2.513 2.547 NT 0.35 18, 20

Tramea lacerata 4.903 4.912 NT 0.58 12, 18

Tramea onusta 4.347 4.564 T 0.58 9, 20

Umma longistigma 5.666 5.127 T 0.43 20, 25

Umma saphirina 5.329 5.182 T 0.43 20, 25

Vestalis amoena 5.616 4.865 T 0.42 20, 23

Vestalis gracilis 6.249 6.062 0.41 20

Vestalis lugens 5.155 4.988 0.40 20

Vestalis smaragdina 5.300 5.203 0.39 20
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Sexual size dimorphism in seabirds: sexual selection, fecundity 
selection and differential niche-utilisation

Martln-Alejandro Serrano-Meneses and Tanias Szekely

Serrano-Meneses, M. A. and Szekely, T. 2006. Sexual size dimorphism in seabirds: 
sexual selection, fecundity selection and differential niche-utilisation. -  Oikos 113: 
385-394.

Seabirds exhibit a range o f sexual size dimorphism (SSD) that includes both male- 
biased (males >  females) and female-biased SSD (males < females). Here we use 
phylogenetic comparative methods to test the selective processes that may influence 
their SSD. Using phylogenetically independent contrasts we show that the sizes of 
males and females are scaled isometrically in seabirds. We also test three functional 
hypotheses of SSD: sexual selection, fecundity selection and differential niche- 
utilisation. First, we found support for the sexual selection hypothesis, even though 
seabirds are socially monogamous and, as a consequence one might expect sexual 
selection to be weak. We show that SSD is correlated with an aspect of sexual selection, 
the agility of male displays, since in species that exhibit aerial displays the males are 
smaller (relative to the female) than in species in which the males display on the ground. 
Second, our results are not consistent with the fecundity selection hypothesis, since 
contrary to the predicted trend, female seabirds lay larger eggs in male-biased species 
than in female-biased ones. Finally, our results are not consistent with a previous study 
of the differential niche-utilisation hypothesis, since we found no relationship between 
SSD and ocean primary productivity in the breeding areas. Taken together, we suggest 
that seabird SSD is most consistent with the sexual selection hypothesis via the agility 
of male displays. Nevertheless, further data and tests are required to establish whether 
different resource utilisation by males and females may also select for SSD.

M. A. Serrano-Meneses and T. Szekely, Dept o f Biology and Biochemistry, Univ. o f  Bath, 
UK, BA2 7A Y  (bspmasm@bath.acuk).

A difference in body size between males and females, 
sexual size dimorphism (SSD), is a prevailing character­
istic in a wide range of animal taxa (Andersson 1994, 
Fairbaim 1997, Blanckenhorn 2000). Three major pro­
cesses have been proposed that produce and maintain 
SSD (reviewed by Jehl and Murray 1986, Hedrick and 
Temeles 1989, Andersson 1994). First, Darwin (1871) 
noted that if sexual selection is more intense in one sex 
than in the other (either via male-male competition or 
female choice) then SSD is likely to emerge (Payne 1984, 
Webster 1992, Owens and Hartley 1998). The direction 
of sexual selection on body size, however, may depend on 
whether the competition occurs on the ground or in the

air (Payne 1984, Jehl and Murray 1986, Figuerola 1999, 
Szekely et al. 2004). For instance, sexual selection is 
expected to favour small body size in males that exhibit 
aerial displays (Andersson and Norberg 1981, Hakkar- 
ainen et al. 1996, Blomqvist et al. 1997, Szekely et al. 
2000), whereas if males display or Fight on the ground, 
then large size is often advantageous (Clutton-Brock 
et al. 1982, Anderson and Fedak 1985, Lindenfors and 
Tullberg 1998, Szekely et al. 2000, Lindenfors et al. 
2002).

Second, fecundity selection for large size has been 
proposed to explain female-biased SSD in many inverte­
brates, fish and birds (Andersson 1994). The optimal
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body size may differ between the sexes if large females 
have higher reproductive success due to their higher 
capacity for laying eggs (Ridley and Thompson 1979, 
Wiewandt 1982, HonSk 1993), or if males prefer large 
females to small ones (Sandercock 1998, 2001). Con­
sistently, studies of spiders, insects and ectotherm 
vertebrates, such as fishes and frogs, have demonstrated 
positive relationships between female body size and 
fecundity (Shine 1979, Head 1995, Prenter et al. 1999).

Third, males and females may have different body 
sizes to avoid resource-competition, or enhance feeding 
efficiency (differential niche-utilisation, Selander 1966, 
Shine 1989, Thom et al. 2004). Since body size or 
morphology is often evolved to adapt to different niches 
(Shine 1989, Sandercock 2001), sexually dimorphic pairs 
can exploit a wider range of resources than mono- 
morphic ones (Figuerola 1999).

A puzzling allometric relationship exists between body 
size and sexual size dimorphism in many animals: in taxa 
with male-biased dimorphism SSD increases with body 
size, whereas the extent of female-biased SSD decreases 
with body size (Rensch’s rule, Abouheif and Fairbaim 
1997, Fairbaim 1997). Several hypotheses have been 
suggested to explain Rensch’s rule, and a recent com­
parative study showed that the Rensch’s rule was most 
consistent with selection pressures emerging from two 
aspects o f sexual selection: intensity of male-male 
competition and agility of male displays (Szekely et al. 
2004).

Seabirds (bird taxa living in and making their living 
from marine environments; 193 species, Monroe and 
Sibley 1993, Diomedeinae, Fregatidae, Hydrobatinae, 
Pelecaninae, Phaethontidae, Phalacrocoracidae, Procel- 
lariinae, Spheniscidae and Sulidae, excluding the super­
families Ardeoidea, Ciconiodea, Phoenicopteroidea, 
Scopoidea, Threskiomithoidea the family Anhingidae 
and the sub-family Balaenicipitinae) are excellent organ­
isms to investigate functional hypotheses of SSD, since 
they exhibit both male-biased and female-biased di­
morphisms. A previous study found that seabirds in 
more productive areas exhibited male-biased SSD (Fair­
baim and Shine 1993), and showed that seabirds 
exhibited SSD consistent with Rensch’s rule. Fairbaim 
and Shine (1993) however, only used Southern Hemi­
sphere species, and investigated the putative explanatory 
variables mostly in isolation from each other. Further­
more, Fairbaim and Shine (1993) did not investigate the 
influence o f sexual selection on SSD, since all seabirds 
are socially monogamous. Nevertheless, sexual selection 
may still influence SSD in monogamous species via 
selecting for agility (and thus small size) in males (Jehl 
and Murray 1986, Figuerola 1999, Szekely et al. 2000).

Here we first test whether seabirds exhibit Rensch’s 
rule using species from both Northern and Southern 
Hemispheres. Second, we test three functional hypoth­
eses of SSD: (i) if sexual selection influences SSD, we
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expected to find a relationship between agility of male 
displays and SSD: male-biased SSD should occur with 
non-agile displays, (ii) If fecundity selection influences 
female size, then both egg size and clutch size should 
increase with the size o f female relative to male, (iii) If 
differential niche-utilisation o f resources influences SSD, 
following Fairbaim and Shine (1993) we predict that 
differences between female and male size should be more 
pronounced in those species that breed in areas of low 
ocean primary productivity, because the male and the 
female of a breeding pair should specialise in exploiting 
different resources to avoid food competition. Conver­
sely, those species that have highly productive feeding 
areas around their breeding site should be mono- 
morphic.

Methods 

Data

We collected data on body mass, clutch size and egg size, 
and descriptions of male display behaviour from pub­
lished sources (handbooks and reference books; Appen­
dix 1). We used those seabird taxa for which body mass 
data were available. We also recorded the geographic 
location of the breeding site where the morphometric 
measures were taken to derive the ocean primary 
productivity. Male displays were scored blindly to the 
identity o f species by three observers using the descrip­
tions of male displays as follows: (1) ground display; (2) 
both ground and aerial displays: males displayed from 
nests or territories but also engaged in aerial activities 
such as the stealing o f nest material from other nests; (3) 
aerial display: males displayed acrobatically or non- 
acrobatically in the air (see similar approach by Figuer­
ola 1999 and Szekely et al. 2000; Appendix 1). The 
correlations between the scores of three observers 
were high (all Spearman’s rank correlation coefficients 
rs >0.883, p =  0.001, n =  71).

Ocean productivity was derived from a composite map 
of September 1998 -  August 1999 (SEAWIFS: estimated 
primary productivity map, http://marine.rutgers.edu/ 
opp/swf/Production/results/all2_swf.html). Ocean pri­
mary productivity was estimated from visible light 
reflectance using the consensus algorithm for chloro­
phyll concentration (Behrenfeld and Falkowski 1997). 
We calibrated this map such that the value o f each pixel 
(every pixel measures approximately 18 km per side, i.e. 
324 km2) corresponded to the chlorophyll concentration 
(grams o f carbon m -2 ) by plotting the palette order of 
pixels in the colour-scale o f the map against chlorophyll 
concentration to obtain the relationship OP =0.5556/ 
palette order. This was applied as an image calculation 
using the image software Idrisi 3.32 (Clark Labs: http:// 
www.clarklabs.org). At each breeding location, ocean 
productivity was measured in 16 surrounding pixels
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(within an estimated area of 5184 km2). For those breed­
ing locations where information was not available (i.e. 
Antarctica), we estimated the OP at the closest breeding 
location. The average ocean production of 16 pixels was 
used in the analyses, with a minimum value of produc­
tivity of 56 and a maximum of 450 g of carbon m-2.

Phylogeny

We used a composite phylogeny of seabirds (5 families, 4 
sub-families, 73 species; Fig. 1) by augmenting the

DNA-DNA hybridisation phylogeny of Sibley and 
Ahlquist (1990; Fig. 366-368) with recent molecular 
phylogenies. Where possible, we included changes in the 
existing phylogeny if supported by new molecular 
evidence. Thus, Diomedeinae, Procellariinae, Hydroba- 
tinae and Spheniscidae were taken from Nunn and 
Stanley (1998), Fregatidae was taken from Kennedy 
and Spencer (2004), Pelecaninae was taken from Sibley 
and Ahlquist (1990; Fig. 367), Sulidae was taken from 
Friesen and Amderson (1997) and Phalacrocoracidae was 
taken from on Kennedy et al. (2000). To see whether our 
results were sensitive to the phylogenetic hypothesis, we

Fig. 1. Composite seabird 
phylogeny composed of Sibley and 
Ahlquist’s (1990) UPGMA tree 
with molecular phylogenies of 
individual seabird families.

OIKOS 113:3 (2006)

Phaethon rubricauda 
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Morns bassanus 
Papasula abbotti 
Sula nebouxii 
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Sula sula
Phalacrocorax carbo 
Phalacrocorax capillatus 
Phalacrocorax capensis 
Phalacrocorax suldrostns 
Phalacrocorax varius 
Phalacrocorax punctatus 
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Diomedea immutabilis 
Diomedea nigripes 
Diomedea irrorata 
Macronectes giganteus 
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Fulmarus glacialis 
Fulmams glacialoides 
Daption capense 
Thalassoica antarctica 
Pagodroma nivea 
Pachyptila desolata 
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Procellaria aequinoctialis 
Procellaria parkinsoni 
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Bulweria bulwerii 
Calonectris diomedea 
Puffinus bulleri 
Puffinus pacificus 
Pterodroma brevirostris 
Pterodroma macroptera 
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Pterodroma inexpeclata 
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Pelagodroma manna 
Garrodia nereis 
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Oceanites oceanicus 
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reanalysed our data using Kennedy and Page (2002) 
seabird supertree. Since Kennedy and Page (2002) do not 
include Pterodroma brevirostris in their supertree, this 
species was not included in our re-analyses.

Phylogenetic analyses with Kennedy and Page (2002) 
were largely consistent with our main results; here we 
only provide those that are qualitatively different.

Phylogenetic analyses

We used the phylogenetic independent contrasts method 
of Felsenstein (1985) as implemented by CAIC (Purvis 
and Rambaut 1995) to control for phylogenetic non­
independence of species (Harvey and Pagel 1991). An 
assumption of Felsenstein’s method (1985) is that the 
standardized contrasts should be independent from their 
estimated nodal values: the distributions of our data 
were consistent with this assumption. All branch lengths 
were set to equal values.

We tested Rensch’s rule by fitting a major axis 
regression (model II regression, Sokal and Rohlf 1981) 
through the origin using phylogenetic independent con­
trasts (Harvey and Pagel 1991, Garland et al. 1992). We 
provide the slopes of these regressions and their 95% 
confidence intervals (lower Cl -  upper Cl). Slopes and 
confidence intervals of major axis regressions were 
calculated by bootstrapping the contrasts using R (R 
Development Core Team, http://www.R-project.org).

Data were logio transformed prior to the analyses, 
except display scores. SSD was calculated as contrasts in 
logio (male body mass) -  contrasts in log10 (female body 
mass). Log transformed data are commonly used to 
calculate SSD. The difference between male and female 
size expressed as a logarithm is more accurate than ratios 
because ratios have undesired statistical properties 
(Smith 1999). Egg size (in mm3) was estimated by 
calculating the egg-index (egg-length x breadth2).

We tested functional hypotheses of SSD by investigat­
ing the relationship between SSD (dependent variable) 
and explanatory variables (display behaviour, clutch size 
and egg size, and ocean productivity) in bivariate and 
multivariate least squares regressions. These regressions 
were forced through the origin (Harvey and Pagel 1991), 
and when appropriate, we provide partial correlation 
coefficients. We also tested whether absolute SSD was 
related to ocean productivity since the differential niche- 
utilisation hypothesis does not make a priori assumption 
on the direction of SSD. Therefore, we performed a 
bivariate regression using the absolute values of con­
trasts in SSD (dependent variable) and contrasts in 
ocean productivity (independent variable). We con­
structed a multivariate model that initially included all 
four hypothesised explanatory variables (display beha­
viour, clutch size, egg size, ocean productivity), and then 
used backward elimination to remove non-significant
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variable(s). Then the influences of all pairwise statistical 
interactions of the initial model were tested on SSD, 
however, only the effect of clutch size x egg size was 
marginally significant (p = 0.068). Since clutch size and 
egg size had similar effects on SSD in regards to sign and 
magnitude, this interaction was not considered further.

Statistical calculations were carried out using SPSS 
(Ver. 11) and Minitab (release 12).

Results

Distribution of S SD  among seabird families

Seabirds exhibit both male- and female-biased SSDs, 
and the median SSD is significantly different among 
families (Fig. 2, Kruskal-Wallis H =46.482, df = 8, 
p = 0.0001). Males are larger than females in Diomedei- 
nae (Wilcoxon one-sample tests, W =66, p =0.004, 
n = 11), Phalacrocoracidae (W=91, p = 0.002, n = 13), 
Procellariinae (W =233, p = 0.001, n =22), Pelecaninae 
(W = 10, p =0.1, n =4) and Spheniscidae (W=13, 
p = 0.178, n = 5) although the trend in the latter two 
groups is not supported statistically. Also, there is a 
strong, but statistically non-significant female-biased 
SSD in Sulidae (W =2, p =0.052, n =7), Fregatidae 
(W =0, p = 0.1, n = 4), and Hydrobatinae (W =0, 
p =0.059, n =6). SSD in Phaethontidae (W =0, p = 1, 
n = 1) is not different from unity.

Rensch’s rule

At species level, seabirds exhibit the Rensch’s rule since 
the slope of major axis regression (b = 1.037, n=73 
species) is greater than one (lower 95% Cl -  upper 95% 
Cl: 1.015-1.060, n = 73 species). However, the results of
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Seabird families and sub-families

Fig. 2. Sexual size dimorphism in body mass of seabird families 
and sub-families (median, lower and upper quartiles; whiskers 
are extremes). N denotes the number of species in each family 
(or sub-family), and the dotted line represents monomorphism.
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major axis regression using phylogenetically independent 
contrasts is not consistent with the species-level result, 
since the confidence intervals include the isometric 
relationship (b = 1.044, 0.929-1.067, n = 72 contrasts; 
Fig. 3). The latter result remains consistent when one 
outlier data point was excluded from the analysis (data 
point ‘A’ in Fig. 3, b = 1.054, 0.999-1.088, n=71 
contrasts). The data point was excluded under the 
rationale that one single outlier may bias the results. 
However, using the alternative supertree of Kennedy and 
Page (2002), we found weak support for Rensch’s rule 
(b = 1.056, 1.010-1.079, n = 68 contrasts).

Sexual selection, fecundity selection and differential 
niche-utilisation

Evolutionary increases in male display agility correlated 
with evolutionary changes toward female-biased SSD 
(r = —0.233, p =0.050, n = 70 contrasts, Fig. 4). Since 
display contrasts were highly variable around zero, we 
repeated the latter analysis by excluding them from the 
bivariate regression (see similar approach by Owens and 
Hartley 1998). The relationship between SSD and 
display remained significant ( r = —0.325, p =0.030, 
n =44 contrasts). Furthermore, by excluding an outlier 
(data point ‘B’ in Fig. 4) the relationship became 
stronger (r = —0.338, p =0.025, n = 43)

Both measures of fecundity were related to SSD 
(r2 =0.129, p =0.011, n=66 contrasts; clutch size, 
partial r =0.253, p = 0.035; egg size, partial r =0.306, 
p =0.010). Thus, evolutionary increases toward large 
males relative to females were associated with increases 
in both clutch size and egg size. Note that these 
relationships are the opposite of the predicted ones:
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Fig. 3. The relationship between independent contrasts of 
log10(male body mass) and logi0(female body mass). The 
continuous line indicates the isometric relationship, and the 
dotted line represents the fitted relationship using major axis 
regression through zero (b =  1.044, n =72 contrasts).
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Fig. 4. Phylogenetically independent contrasts in sexual size 
dimorphism (SSD) and male display agility (r =  —0.233, 
p =0.050, n = 7 0  contrasts). Regression was forced through 
the origin.

since increases in clutch and egg size were expected to 
increase with large female size relative to males.

Ocean productivity was not related to SSD, since there 
was no relationship between SSD and the ocean 
productivity around the breeding areas (r =0.0001, 
p =0.903, n = 72 contrasts). Similarly, when we tested 
for the relationship between absolute values of SSD and 
ocean productivity (r = 0.004, p =0.975, n=72), no 
relationship was found.

These results are consistent with the full multivariate 
model, since ocean productivity was not retained in the 
final model, whereas egg size remained correlated with 
SSD, and clutch size and display behaviour were 
marginally significant (Table 1). Note, that the direction 
of relationships between SSD, clutch size and egg size 
remained inconsistent with the fecundity hypothesis.

Discussion

Our study provided four major results. First, at species 
level, seabirds appear to follow Rensch’s rule, however, 
this relationship no longer holds when we use the 
phylogenetically independent contrasts using composite 
phylogeny. Note, however, that once an outlier value was 
excluded from the analyses, the results were near to 
significance. Also, when we use Kennedy and Page 
(2002) seabird supertree we find weak support for 
Rensch’s rule. Thus, seabirds, unlike shorebirds, hum­
mingbirds and bustards (Colwell 2000, Raihani et al. 
2006), Rensch’s rule does only exist as a trend but we 
conclude that it is not statistically significant. In shore­
birds, Szekely et al. (2004) proposed that the intensity of 
sexual selection and the agility of male displays influ­
enced the evolution (or maintenance) of Rensch’s rule. 
Their findings are consistent with our work, since
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Table 1. Final multivariate model using phylogenetic independent contrasts. The dependent variable is contrasts in logi0(male body 
mass) -  contrasts in log|0(female body mass) (r2 =0.170, n =69 contrasts).

Independent variables Slope±SE Partial correlation coefficient p

Clutch size 0.09718±0.050 0.235 0.054
Egg size 0.05200+0.020 0.300 0.013
Display behaviour -0.01541 ±0.009 -0 .2 1 4  0.080

seabirds are socially monogamous whereas shorebirds 
also exhibit social polygamy; therefore sexual selection in 
seabirds appears to be less intense than in shorebirds. 
Note that various other hypotheses outlined by Fair- 
bairn (1997) remained untested by both Szekely et al. 
(2004) and us.

Second, male agility correlated with SSD. Thus sexual 
selection, in the form of male display behaviour, appears 
to influence SSD in seabirds. In this work we use a 
paraphyletic group (seabirds), so one potential criticism 
is that the inclusion or exclusion of related taxa might 
change our results. However, we believe that this is 
unlikely because we do not use ancestral states to 
perform directional analyses as we are interested in the 
phylogenetic independence of the taxa. Males tend to be 
larger, relative to females in those species where males 
display on the ground, whereas selection appears to 
favour small male size in those species that exhibit aerial 
display. The effect of male display behaviour was 
moderate, although we should bear in mind that agility, 
as represented by the scores, was a crude variable. 
Nevertheless, strong ecological constraints (viability 
selection, Blanckenhorn 2000) and low levels of mating 
competition (all seabirds are socially monogamous) may 
restrain the sexes to similar sizes. Note, that correlational 
methods, such as phylogenetic independent contrasts, 
cannot separate cause and effect. Further comparative 
works using directional phylogenetic methods are thus 
needed (Pagel 1994).

Third, both clutch size and egg size correlate with 
SSD, however, these relationships are not consistent with 
the fecundity selection hypothesis. It is not obvious why 
SSD increases with egg size and clutch-size. One 
potential explanation is that males of all seabirds 
contribute to incubation and brood-rearing, so that 
increasing male size allows efficient incubation. On the 
other hand, it is possible that strong genetic correlation 
between male and female size may also have an indirect 
effect on egg and clutch size.

Fourth, unlike Fairbaim and Shine’s (1993) study, 
ocean productivity was unrelated to SSD. The lack of 
relationship between their results and ours may be due to 
differences in ocean productivity data: Fairbairn and 
Shine estimated minimum levels for rates of primary 
production of the surrounding ocean in the breeding 
areas (rate of carbon fixation in g m-2, to the nearest 50 
g) using a global map with four possible levels of 
productivity (Lofgren 1984). In our study we calculated
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ocean productivity from a map that estimated chlor­
ophyll concentration (grams of carbon m-2) from 
visible light reflectance (SEAWIFS: Estimated Primary 
Productivity map, http://marine.rutgers.edu/opp/swf/ 
Production/results/all2_swf.html) and with approxi­
mately 450 levels of productivity. On the one hand, 
using Fairbairn and Shine’s species only, the correlation 
between our data on SSD and theirs is highly significant 
(mean SSD value from their populations, r = —0.925, 
p =0.001, n=37); this strengthens the view that the 
two SSD datasets are comparable. On the other 
hand, Fairbaim and Shine’s ocean productivity data 
were not correlated with our data on ocean productivity 
( r = —0.214, p =0.217, n = 35). Taken together, we 
conclude that the main difference between the results 
of Fairbairn and Shine and ours is due to the differences 
in ocean productivity data.

However, we argue that Fairbairn and Shine’s own 
results do not support the differential niche-utilisation 
hypothesis. First, Fairbaim and Shine (1993) show that 
males tend to be larger than females in seabird popula­
tions (i) that have large average body mass and (ii) that 
breed in areas of high ocean productivity. This relation­
ship, however, is the opposite of what may be predicted 
by the differential niche-utilisation hypothesis: more 
dimorphic taxa should be found in areas of low ocean 
productivity, whilst more monomorphic taxa should 
inhabit areas of high ocean productivity. Second, Fair­
bairn and Shine (1993) demonstrate that body size, SSD 
and Carbon fixation are tightly correlated and using 
multivariate analyses to separate highly correlated linear 
variables may not be relevant due to colinearity.

We conclude that sexual selection influences SSD in 
seabirds, although this influence appears to be weaker 
than that in several avian taxa such as shorebirds, 
bustards and North American blackbirds. Our results, 
however, do not support the fecundity selection and the 
differential niche-utilisation hypotheses. Further re­
search should tease apart the correlates of male-male 
competition and female choice, use directional methods 
to separate cause and effect and provide better data for 
testing the differential niche-utilisation, for instance, by 
using direct estimates on the availability of prey species 
around feeding areas throughout the year and informa­
tion on sex specific feeding strategies.
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Appendix 1. Data used in the analyses and data sources. GR, ground display; GA, ground and aerial display; MA, 
mainly aerial display. Ocean primary productivity values. References: (1) Awkerman 2004 pers. comm., (2) Causey 
2002, (3) Cramp and Simmons 1977, (4) Cushman-Murphy and Pennoyer 1952, (5) Diamond and Schreiber 2002, (6) 
Dunning 1983, (7) Evans and Knopf 1993, (8) Fleet 1974, (9) Gauger-Metz and Schreiber 2002, (10) Gould et al. 
1974, (11) Harris 1970, (12) Hatch and Nettleship 1998, (13) del Hoyo et al. 1992, (14) Huntington et al. 1996, (15) 
Imber 1976, (16) Jeremy and Weseloh 1999, (17) Johnsgard 1993, (18) Jouventin et al. 1999, (19) Jouventin and Bried 
2001, (20) Marchant and Higgins 1990, (21) Megyesi and O’Daniel 1997, (22) Metz and Schreiber 2002, (23) Monroe 
and Sibley 1993, (24) Nelson 1978, (25) Nelson 2002, (26) Norman and Brown 1987, (27) Provincial Museum of 
Alberta, Blue-footed booby, http://www.pma.edmonton.ab.ca/vexhibit/ eggs/vexeggs/wrldeggs/bfboob.htm (28) Rand 
1960, (29) Rutgers, The State Univ. of New Jersey Inst, of Marine and Coastal Sciences, http://marine.rutgers.edu/ 
opp, (30) Schreiber et al. 1996, (31) Schreiber and Burger 2002, (32) Serventy et al. 1971, (33) Simons 1985, (34) 
Simons and Hodges 1998, (35) Tickell 2000, (36) Urban et al. 1986, (37) Whittow 1993a, (38) Whittow 1993b, (39) 
Whittow 1997, (40) Williams 1995.

Species Male 
mass in g

Female 
mass in g

Clutch
size

Egg size index 
(length in mm x 
breadth in mm)

Display
type

Ocean 
productivity 
(g C m -2 )

References

Aptenodytes patagonicus 16000.0 14300.0 1.00 104.10x73.90 GR 152 13, 20, 23, 29, 31, 40
Bulweria bulwerii 107.1 99.9 1.00 41.21 x 30.31 GR 180 13, 20, 21, 23, 29, 31
Calonectris diomedea 955.6 817.3 1.00 69.00 x 45.00 GR 180 3, 13, 23, 29, 31
Daption capense 442.0 407.0 1.00 61.20x42.60 GA 094 13, 20, 23, 29
Diomedea amsterdamensis 6970.0 6120.0 1.00 121.00 x 76.00 GR 141 13, 23, 29, 31, 35
Diomedea bulleri 3120.0 2780.0 1.00 102.16x66.34 GR 178 13, 20, 23, 29, 31, 32, 35
Diomedea cauta 4350.0 3700.0 1.00 105.00x67.00 GR 152 13, 20, 23, 29, 31, 35
Diomedea chrysosloma 3900.0 3870.0 1.00 106.00x68.00 GA 094 13, 20, 23, 29, 31, 35
Diomedea epomophora 8840.0 7560.0 1.00 126.50 x78.50 GA 128 13, 20, 23, 29, 31, 32, 35
Diomedea exulans 9110.0 7270.0 1.00 133.40 x81.00 GA 243 13, 18, 20, 23, 29, 31, 32, 35
Diomedea immutabilis 3310.0 2990.0 1.00 107.60 x 68.60 GR 134 13, 23, 29, 35, 38
Diomedea irrorala 3750.0 3040.0 1.00 105.76x69.06 GR 369 1,6, 13, 23, 29,31
Diomedea melanophris 3710.0 3170.0 1.00 104.00 x 66.00 GA 094 13, 20, 23, 29, 31
Diomedea nigripes 3400.0 2990.0 1.00 108.00x70.00 GR 134 13, 20, 23, 29, 37
Eudyptes chrysocome 2500.0 2440.0 2.00 70.50x53.70 GR 128 13, 20, 23, 29, 40
Eudyptes chrysolophus 4760.0 5210.0 2.00 70.60 x 49.10 GR 082 13, 20, 23, 29, 40
Fregata andrewsi 1400.0 1550.0 1.00 GA 143 13, 20, 23, 29, 31
Fregata ariel 754.0 858.0 1.00 64.00 x 44.00 GA 093 6, 13, 20, 23, 29, 31
Fregata magnificens 1281.0 1667.0 1.00 68.00x47.00 GA 323 5, 6, 13, 23, 29, 31
Fregata minor 1239.0 1630.0 1.00 67.00 x 47.40 GA 376 9, 13, 20, 22, 23, 29, 31
Fregetta grallaria 47.0 52.0 1.00 36.30x26.40 GA 317 13, 20, 23, 29, 31
Fregetta tropica 51.7 54.2 1.00 37.00x27.00 GA 106 13, 20, 23, 29
Fulmarus glacialis 884.0 706.0 1.00 74.00x51.00 GR 450 3, 6, 12, 13, 23, 29
Fulmarus glacialoides 845.0 745.0 1.00 75.00 x 50.00 GR 056 13, 20, 23, 29, 31
Garrodia nereis 34.0 34.0 1.00 31.20 x23.20 GR 302 13, 20, 23, 29, 31
Macronectes giganteus 5140.0 4220.0 1.00 104.90x65.70 GA 077 6, 13, 20, 23, 29
Macronecles halli 4902.0 3724.0 1.00 104.30 x 65.40 GA 152 13, 20, 23, 29, 31, 36
Oceanites oceanicus 33.6 36.2 1.00 34.90 x 24.50 MA 094 13, 20, 23, 29, 31
Oceanodroma leucorhoa 45.3 45.4 1.00 33.00x24.00 GA 266 13, 14, 20, 23, 29, 31
Pachyptila desolata 160.0 153.0 1.00 47.10x34.60 GR 094 13, 20, 23, 29
Pachyptila turtur 141.4 136.8 1.00 45.10x32.60 GR 178 13, 20, 23, 29
Pagodroma nivea 341.0 293.0 1.00 59.00x42.00 GA 094 13, 19, 20, 23, 29, 31
Pelagodroma marina 40.2 41.4 1.00 35.90 x26.00 MA 411 3, 13, 23, 29
Pelecanoides urinatrix 110.3 101.0 1.00 40.20x31.60 GA 268 13, 20, 22, 23, 26, 29, 31
Pelecanus erylhrorhynchos 6920.0 4970.0 2.00 87.10 x57.10 GA 382 7, 13, 17, 23, 29, 31
Pelecanus occidentalis 3290.0 2824.0 2.60 73.00x45.40 GR 413 13, 17, 23, 29
Pelecanus onocrotalus 11450.0 7590.0 2.00 94.00 x 59.00 GR 145 3, 13, 17, 23, 29, 31
Pelecanus rufescens 5970.0 4920.0 1.99 82.10 x54.60 GR 450 13, 17, 23, 29, 31, 36
Phaethon rubricauda 218.7 220.2 1.00 67.30x48.10 GA 108 8, 10, 13, 20, 23, 29
Phalacrocorax auritus 2453.0 2056.0 4.00 61.22 x38.58 GA 448 13, 16, 17, 23, 29, 31
Phalacrocorax capensis 
Phalacrocorax capillatus

1171.0
3171.4

1142.0
2525.0

2.40
3.00

55.00x35.00 GR 450
405

13, 17, 23, 28, 29, 31 
13, 17, 23, 29

Phalacrocorax carbo 2400.0 2000.0 4.10 63.00 x 40.00 GR 243 13, 20, 23, 29, 31
Phalacrocorax chalconotus 2717.0 1813.6 2.50 66.00x42.00 GR 249 13, 20, 23, 29
Phalacrocorax magellanicus 1553.0 1417.0 3.00 62.00x38.00 GR 450 13, 17, 23, 29, 31
Phalacrocorax melanoleucos 800.0 700.0 4.00 47.00 x 32.00 GR 243 13, 20, 23, 29
Phalacrocorax pelagicus 2034.0 1702.0 3.00 58.00 x37.30 GR 382 13, 17, 23, 29, 31
Phalacrocorax punctatus 1210.0 1160.0 2.70 59.40 x 36.80 GR 411 13, 20, 23, 29, 31
Phalacrocorax purpurascens 3320.0 2700.0 2.74 64.00x40.00 GR 077 13, 20, 29
Phalacrocorax sulcirostris 1100.0 900.0 5.00 47.00 x33.00 GR 243 13, 17, 20, 23, 29, 31
Phalacrocorax urile 2428.1 1874.4 3.08 61.40x37.40 GR 382 2, 13, 17, 23, 29, 31
Phalacrocorax varius 1800.0 1400.0 3.32 59.00 x38.00 GR 428 13, 17, 20, 23, 29
Phoebelria fusca 2800.0 2700.0 1.00 103.10x65.10 GA 152 13, 20, 23, 29, 31
Procellaria aequinoctialis 1390.0 1280.0 1.00 82.90 x53.70 GA 094 13, 20, 23, 29
Procellaria parkinsoni 
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723.0 682.0 1.00 69.30x50.50 GR 360 13, 20, 23, 29, 31
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Appendix 1 (continued)

Species Male Female Clutch Egg size index Display Ocean References
mass in g mass in g size (length in mm x type productivity

breadthin mm) (g C m )

Procellaria westlandica 1232.5 1176.0 1.00 81.10 x 55.60 GR 450 13, 20, 23, 29
Pterodroma brevirostris 246.0 230.3 1.00 57.40 x 44.90 243 13, 20, 23, 29
Pterodroma inexpectata 302.0 335.1 1.00 60.53 x 43.90 MA 253 13, 20, 23, 29, 31
Pterodroma macroptera 668.0 667.0 1.00 67.50 x 48.30 MA 057 4, 6, 13, 15, 20, 23, 29, 31
Pterodroma nigripennis 169.6 165.9 1.00 51.00 x 37.00 MA 302 13, 20, 23, 29
Pterodroma phaeopygia 430.0 429.0 1.00 65.00 x 45.00 GA 376 11, 13, 23, 29, 31, 33, 34
Puffinus bulleri 345.0 306.5 1.00 65.44 x 42.96 GR 411 13, 20, 23, 29, 31
Puffinus pacijicus 457.0 474.6 1.00 61.40 x41.10 GR 317 13, 20, 23, 29, 31, 39
Pygoscelis antarctica 4435.0 3876.0 2.00 67.20 x52.00 GR 396 13, 20, 23, 29, 40
Pygoscelis papua 5860.0 5070.0 2.00 68.10 x57.70 GR 094 13, 20, 23, 29, 31
Papasula abbotti 1472.6 1491.5 1.00 82.00 x 53.00 GR 094 13, 20, 23, 29, 31
Morus bassanus 2932.0 3067.0 1.00 79.00 x 50.00 GA 450 13, 23, 24, 25, 29, 31
Moras capensis 2665.0 2608.0 1.00 76.13 x 48.22 GR 450 13, 20, 23, 24, 29, 31, 36
Sula dactylatra 2000.0 2533.3 2.00 66.30 x 46.50 GA 210 13, 20, 23, 29, 31
Sula leucogaster 1188.6 1343.6 2.00 61.00 x 40.00 GA 248 13, 20, 23, 29, 31
Sula nebouxii 1283.0 1801.0 2.00 57.00 x 41.00 MA 376 6, 13, 23, 24, 27, 29, 31
Sula sula 928.0 1068.0 1.00 60.80 x41.00 GA 245 13, 20, 23, 29, 30, 31
Thalassoica antarctica 663.0 627.0 1.00 70.00 x 48.80 GA 056 6, 13, 20, 23, 29, 36
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on sexual size dimorphism in bustards (Otididae)
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Bustards vary considerably in sexual size dimorphism (SSD), ranging from reversed-dimorphic species (i.e. 
male < female) through monomorphic species to species in which an adult male can be three times heavier 
than an adult female. We used this unusual interspecific variation to test functional hypotheses of SSD using 
phylogenetic comparative methods. We found a strong allometric relation between SSD and body size that 
is consistent with Rensch's rule. We then tested whether the intensity of mating competition and the agility 
of male displays relate to SSD. First, the intensity of mating competition hypothesis predicts that males 
should be larger than females in species in which the males compete intensely for mates. As predicted, evo­
lutionary changes towards more polygynous mating systems in bustards were associated with relatively 
larger males. Second, our results are also consistent with the aerial agility hypothesis, since in agile bustards 
the males tend to be smaller than females, whereas in nonagile bustards the males are usually larger. We also 
found that these two types of sexual selection have independent and statistically significant influences on 
SSD. We conclude that SSD in bustards is most consistent with sexual selection, and is influenced by both 
the intensity of sexual selection and the agility of male displays. Other hypotheses, however, such as fertility 
selection acting on females and differential use of niches by males and females remain untested.

© 2006 The Association for the Study o f  Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Sexual size dimorphism (SSD) is one of the most conspic­
uous differences between the sexes. Several functional 
hypotheses have been proposed to explain SSD (reviewed 
in Hedrick & Temeles 1989; Shine 1989; Andersson 1994). 
First, directional selection may act on males (or on 
females). Sexual selection via male-male competition or 
female choice favours large male size in several birds and 
mammals (Webster 1992; Mitani et al. 1996; Dunn et al. 
2001; McElligott et al. 2001; Lindenfors et al. 2003). 
Thus, an increase in body size may be particularly advan­
tageous to males in polygynous species (Clutton-Brock &

Correspondence: G. Railiani, Department o f Psychology, Claverton 
Down, University o f Bath, Bath BA2 7AY, U.K. (email: g.raihani® 
bath.ac.uk). C. Pitra is at the Department of Evolutionary Genetics, In­
stitute for Zoo Biology and Wildlife Research, Alfred-Kowalke-Strasse 
17, D-10315 Berlin, Germany. P. Goriup is at Fieldfare International 
Ecological Development pic, 36 Kingfisher Court, Hambridge Road, 
Newbury RG14 SSI, U.K.

Harvey 1977; Owens St Hartley 1998), in which the inten­
sity of sexual selection is greater because of increased com­
petition between males over females.

Second, the direction of sexual selection on body size 
may also depend on whether the contest takes place on 
the ground or in the air (Payne 1984; Jehl & Murray 1986; 
Figuerola 1999). For example, small and agile males may 
have an advantage in contests that take place in the air 
(Andersson & Norberg 1981), and females also prefer small 
acrobatic males to large (or less acrobatic) males in raptors 
and shorebirds (Gronstol 1996; Hakkarainen et al. 1996; 
Blomqvist et al. 1997; Figuerola 1999).

Third, disruptive selection may influence the body sizes 
of males and females towards different evolutionary 
optima. For instance, if males and females compete for 
resources, then each sex may benefit from avoiding 
extensive overlap with the other (‘different niche utiliza­
tion', Selander 1966; Shine 1989; Thom et al. 2004). How­
ever, it is difficult to distinguish whether differential niche

833
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utilization is a cause or a consequence of SSD. Thus, the 
exploitation of different resources may help maintain 
SSD, although it is unlikely to be the driving force behind 
it (Thom et al. 2004). Recent comparative studies have 
adopted a broad approach by investigating the influences 
of both sexual selection and ecological processes on SSD 
(Figuerola 1999; Szekely et al. 2000; Perez-Baiberfa et al. 
2002).

Many animal taxa show an allometric relation between 
body size and the extent of SSD across species (Rensch 
1960). This relation, termed 'Rensch's rule' (Abouheif & 
Fairbaim 1997; Fairbaim 1997), states that among closely 
related taxa SSD increases with body size in those species 
in which the male is larger than the female, whereas SSD de­
creases with size in species in which the female is the larger 
sex. A recent genetic simulation model suggests that SSD 
may change rapidly in response to divergent selection pres­
sures without significant long-term change in the genetic 
correlation between the sexes (Reeve & Fairbaim 2001).

Bustards (Otididae) are an excellent group with which 
to investigate SSD (Dale 1992), since they have one of the 
largest size dimorphisms in any avian taxa. In addition, 
they include species that have male-biased (e.g. great bus­
tard, Otis tarda) and female-biased (e.g. lesser florican, 
Sypheotides indiais) dimorphism. Their mating behaviour 
ranges from socially monogamous to lek breeding. In 
the lek-breeding great bustard large males gain about 
30% in body mass at the onset of the mating season, 
which suggests that large body mass enhances mating suc­
cess (Carranza & Hidalgo-Trucios 1993), although it may 
also allow males to store reserves for the period of inten­
sive displays. Male bustards also show an unusual range 
of display behaviour from spectacular ground displays by 
great bustards to highly acrobatic displays by red-crested 
bustards, Lophotis mficrista. Finally, a recent molecular 
phylogeny provides a phylogenetic framework for com­
parative analyses (Pitra et al. 2002). Phylogenetic compar­
ative methods are often used to test functional hypotheses 
of SSD (Owens St Hartley 1998; Szekely et al. 2000; Dunn 
et al. 2001). These methods are useful for comparing traits 
across species or taxa within a statistical framework that 
controls for the effects of common ancestry.

We had two objectives in this study: first, to test 
whether SSD relates to body size in bustards as expected 
from Rensch's rule and second, to test two mutually 
nonexclusive functional hypotheses of SSD. The intensity 
of mating competition hypothesis predicts that males 
should be larger than females in species in which males 
compete intensely for mates, whereas the display agility 
hypothesis predicts that males should be relatively smaller 
than females in species with aerial displays compared with 
species with nonagile male displays, since reduced body 
size is assumed to enhance agility.

METHODS

Data and Phylogeny

We compiled data on body size, mating behaviour 
and male agility from primary research publications,

handbooks and unpublished information (Appendix 1). 
Social mating system, a proxy for the intensity of mating 
competition, was scored as monogamy, territorial polyg­
yny and lek polygyny. We assumed that mating competi­
tion increases from monogamy (score 1) to  lek polygyny 
(score 3, see similar scoring by Szekely et al. 2000; Dunn 
et al. 2001). Three species showed both territorial polyg­
yny and lekking, so were scored 2.5 (Appendix 1). Our 
scores were highly correlated with an independent scoring 
of mating system (Dale 1992; rs =  0.901, N =  17 species, 
P < 0.0001). Male agility was scored between 1 Cow) and 
5 (high, Appendix 1). This scoring of male agility is consis­
tent with the approach of Figuerola (1999) and Szekely 
et al. (2000). The score of 1.5 was given when it was uncer­
tain whether male display was 1 or 2 (Appendix 1). The 
distinctions between scores 1, 1.5 and 2 are ambiguous, 
so we took the advice of an anonymous referee and com­
bined these scores in the analyses. Note that using the 
original scores (Appendix 1) does not change our major 
conclusions.

Initially, we attempted to collect data on body mass of 
bustards as a further proxy for body size. Mass data, 
however, are subject to daily and seasonal fluctuations 
(Carranza & Hidalgo-Trucios 1993; Witter & Cuthill 1993). 
In addition, sex-specific mass data were available for only 
a few species. We therefore omitted body mass from the 
analysis.

The bustard phylogeny was provided by a recent mo­
lecular study (Pitra et al. 2002) that used sequences from 
the mitochondrial cytochrome b gene, the noncoding mi­
tochondrial control region II and an intron-exon crossing 
fragment of the nuclear chromo-helicase-DNA binding 
gene. We augmented this phylogeny with two species 
(Karoo bustard, Eupodotis vigorsii, and the little brown bus­
tard, Eupodotis humilis). The phylogenetic position of the 
latter two species was provisionally allocated as sister 
taxa to Riippell's bustard, Eupodotis rueppellii, because 
both the Karoo bustard and the little brown bustard 
were formerly placed in a separate genus (Heterotetrax) to­
gether with Riippell's bustard (Snow 1978).

Phylogenetic Comparative Analyses

We used the phylogenetic independent contrasts 
method of Felsenstein (1985) as implemented by CAIC 
(Purvis & Rambaut 1995) to control for phylogenetic non- 
independence of species. Wing length (mm) was log trans­
formed prior to the analyses. An assumption of 
Felsenstein's method is that standardized contrasts should 
be independent from their estimated nodal values. We 
verified this assumption by plotting standardized con­
trasts against the estimated nodal values for our variables: 
none of these correlations were statistically significant.

We tested the allometric relation between male and 
female body size by fitting major axis regressions (Sokal & 
Rohlf 1981) using either the species data or the phyloge­
netic independent contrasts (Garland et aL 1992). Re­
nsch's rule predicts that the slope of male:female size 
should be significantly larger than 1. The major axis re­
gression of phylogenetic independent contrasts was forced
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through the origin (Harvey & Pagel 1991). We provide the 
slope of major axis regressions (b) and the 99% confidence 
intervals (lower Cl-upper Cl) that were calculated by boot­
strapping the contrasts.

We calculated SSD as contrasts in log (male wing) -  con­
trasts in log (female wing). It is customary to use log- 
transformed data for calculating SSD since the differences 
between males and females expressed as logarithms pro­
vide more accurate estimates of SSD than ratios do. Log 
transformation of sizes also makes the more reasonable as­
sumption that different lineages are equally likely to make 
the same proportional change in size (Purvis & Rambaut 
1995). Least-squares regressions of contrasts were forced 
through the origin, because the model predicts the mean 
value of independent contrasts to be zero (Harvey & Pagel 
1991). We investigated the relations between SSD (depen­
dent variable), the intensity of mating competition and 
male agility (independent variables) in bivariate and multi­
variate least-squares regressions. Evolutionary changes in 
agility and the intensity of mating competition were not 
related (Pearson correlation: r24 = 0.136, P = 0.516). We 
also tested the interaction term between the intensity of 
sexual selection and male agility (with SSD as the depen­
dent variable). This interaction was not significant 
(N = 24 contrasts, P = 0.484), so we excluded the interac­
tion term from the final multivariate regression model. In 
the multivariate model we provide the partial correlation 
coefficient rp, the significance of rp and effect sizes (partial 
r|2). We used SPSS version 11.00 (SPSS Inc., Chicago, 1L, 
U.S.A.) for statistical calculations, except that bootstrap­
ping of confidence intervals for major axis regression was 
carried out in R (lhaka & Gentleman 1996).

RESULTS

Rensch's Rule

Our results are consistent with Rensch's rule since male- 
biased SSD was greater in large bustards than in small 
ones, and the 99% confidence intervals did not include 1 
(Fig. la). These results remained statistically significant 
when we used phylogenetically independent contrasts 
(Fig. lb).

Intensity of M ating Com petition  
and Male Agility

Evolutionary changes in SSD were positively correlated 
with changes in the intensity of mating competition 
(Fig. 2a). Since the contrasts were highly variable around 
zero, we repeated the analysis by excluding zero contrasts 
(see a similar approach by Owens & Hartley 1998). Never­
theless, the relation remained significant (r= 0.645, 
Fi,9 = 6.395, P= 0.032).

Evolutionary changes towards agile displays were also 
correlated with changes towards smaller males relative to 
females (Fig. 2b). The strength of the relation remained af­
ter we excluded zero contrasts, although it was not statis­
tically significant (r = -0.424, FU i = 2.413, P= 0.149).
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Figure 1. Rensch's rule in bustards. The continuous line indicates the 
isometric relation and the dotted line represents the fitted relation 
between male size and female size by major axis regression for (a) 
species (6 = 1 .311 , 99% confidence intervals 1.204-1.430, N  = 25 
species) and (b) phylogenetic contrasts (b = 1.542, 99% confidence 
intervals 1.218-1.846, N = 2 4 contrasts).

In the multivariate model (j2 = 0.431, F2 ,22 = 8.342, 
P— 0.002), both the intensity of mating competition 
and male agility were associated with SSD. Evolutionary 
changes towards larger males relative to females were asso­
ciated with both intensified mating competition 
(rp = 0.563, F, ,2 2  = 10.197, P = 0.004) and reduced agility 
of male displays (rp = -0.533, f i ^ 2  = 8.749, P = 0.007). 
Effect sizes of mating competition and display behaviour 
were partial t)2 = 0.317 and 0.285, respectively.

DISCUSSION

Our study confirms Rensch's rule in bustards (Payne 
1984), and adds to a growing number of taxa in which 
the rule has been shown, including mites, lizards,
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Figure 2. Phylogenetically independent contrasts in sexual size 
dimorphism (SSD) and (a) the intensity of mating competition (r =  
0.453, f 1>23 =  5.934, P =  0.023) and (b) male agility (r =  -0 .409 , 
6 .2 3  =  4.634, P =  0.042). Regressions wereforced through theorigin.

hummingbirds and shorebirds (Abouheif & Fairbaim 
1997; Cullum 1998; Colwell 2000; Szekely et al. 2004). 
Szekely et al. (2004) have shown that the rule is driven 
by the interaction between mating competition and 
male display behaviour in shorebirds. In bustards, how­
ever, this interaction was not significant (P = 0.484). We 
suggest that the latter result may be caused by the small 
number of bustard species in the analysis, which limits 
the statistical power of models. Note, however, that the 
predictive power of multivariate models was comparable 
between bustards (i2 = 0.431) and shorebirds (r2 = 0.476- 
0.454, Szekely et al. 2004).

The relation between mating competition and SSD is 
consistent with the hypothesis that sexual selection is 
responsible for the large body size in males of polygy­
nous species. This relation has been reported in New 
World blackbirds (Icteridae), shorebirds (Charadrii) and 
a wide range of other avian taxa (Webster 1992; Szekely 
et al. 2000; Dunn et al. 2001). Thus, male-male compe­
tition and female choice may lead to an evolutionary in­
crease in overall body size. Fertility selection is unlikely 
to explain SSD given that most bustard species lay only 
small clutches of one or two eggs (Collar 1996).

Our results are also consistent with the aerial agility 
hypothesis. The influence of agility was comparable to that 
of mating competition, as indicated by the partial effect 
sizes. Sexual selection will favour small males in those 
species that display aerially (Andersson & Norberg 1981; 
Jehl & Murray 1986). This relation has also been reported 
in nonpolyandrous shorebirds with reversed SSD, showing 
a significant reduction in male body size from species with 
less acrobatic to those with more acrobatic displays (Fig­
uerola 1999; Szekely etal. 2000). Evidence that females pre­
fer small males also exists for moorhens, Gallinula 
cliloropiis, and fruit flies, Drosophila subobscura (Petrie 
1983; Steele & Partridge 1988).

Future work may expand our study by investigating 
other morphological traits that relate to body size, for 
instance body mass and tarsus length. In addition, body 
size appears to vary between bustard populations, thus 
comparing populations may be a fruitful approach. Work 
is also needed to quantify the ecology, mating behaviours 
and display behaviours of bustards, most species of which 
are threatened.

Various selection pressures may act on body sizes of 
females and males. For instance, in most bustards the 
incubation of eggs and rearing of young are left entirely to 
the female (Collar 1996). This may select for smaller body 
size in females, since they would be better covered by veg­
etation during incubation and less conspicuous to preda­
tors. Large size, however, may allow the sexes to 
accumulate fat and buffer them against fluctuations in 
food resources. Thus, if one sex forages in a more variable 
environment than the other, the sexes may have different 
optimal body sizes.

The colours and pattern of plumage may amplify display 
behaviour, and thus play an important part in the evolution 
of SSD. Display behaviour appears to correlate with male 
coloration in bustards, since species with aerial displays 
have more melanin in their plumage (Dale 2006). The latter 
result is consistent with the findings of Bokony et al. (2003), 
who showed that more melanistic shorebirds have more 
agile displays. Thus, a further implication of aerial displays 
in males is that their plumage is more conspicuous against 
the light background of the sky.

In conclusion, our study shows that SSD in bustards is 
consistent with Rensch's rule. Our results also support the 
sexual selection hypothesis that directional selection may 
either increase or decrease body size of males, depending 
on the particular mating strategy and display type.
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Table Al. Data sources

Species
Male wing 

(mm)
Female wing 

(mm) Mating system Display type Source

Afrotis afra 281.0(47) 270.0 (23) PG 4 4
Afrotis afraoides 285.6(18) 274.5 (1 3) PG 5 1
Ardeoiis Grabs 604.0 (7) 496.7 (6) PG 2 1
Ardeotis australis 569.0 (6) 474.0 (12) PG 2 3
Ardeotis kori 758.0 (36) 616.0 (46) PG 2 5
Ardeotis nigriceps 661.2(12) 539.5 (11) PG 2 1
Chlamydotis undulata 399.2 (25) 359.2 (26) PG 3 1
Eupodotis caerulescens 333.5 (8) 330.8 (4) MG 1 1
Eupodotis humilis 252.6(10) 245.1 (8) MG 1 1
Eupodotis rueppellii 329.0(18) 313.0 (13) MG 1 4
Eupodotis senegaiensis 276.1 (14) 268.5 (4) MG 1 1
Eupodotis vigorsii 337.4 (5) 312.3 (7) MG 1 1
Houbaropsis bengalensis 333.0(15) 343.4 (14) PG 4 1
Lissotis hartlaubii 337.8(10) 310.8 (6) PG/LEK 1 1
Lissotis melanogaster 345.5 (26) 319.3 (23) PG/LEK 4 1
Lophotis gindiana 262.8(18) 250.1 (12) PG 5 1
Lophotis ruficrista 263.9(12) 254.5 (11) PG 5 1
Lophotis savilei 243.0 (9) 240.8 (4) PG 5 1
Neotis denhami 558.0(11) 459.0 (7) PG/LEK 2 5
Neotis heuglinii 495.0 (3) 423.0 (4) PG 1.5 2
Neotis ludwigii 536.0 (6) 452.0 (5) PG 1 4
Neotis nuba 463.5 (2) 395.0 (4) PG 1.5 4
Otis tarda 600.1 (12) 464.8 (10) LEK 2 1
Sypheotides indicus 187.8(12) 231.7(11) PG 5 1
Tetrax tetrax 252.0 (29) 249.0 (15) PG 4 2

The numbers of individuals (males and females) measured for each species are given in parentheses. Mean wing lengths were calculated from 
the unpublished measurements of P. Goriup and P. Osborne, where indicated. Social mating system and display behaviour were scored by 
P. G. from unpublished notes and observations. Mating system was scored as monogamy (MG), territorial polygyny (PG) and lek polygyny 
(LEK). Display type was scored as (1) ground display with vocalization only and/or erect neck display; (2) ground display; males inflate their 
oesophagus and reveal the underparts of the plumage; (3) ground display with running and occasional leaps in the air; (4) aerial nonacrobatic 
display of high flying; (5) aerial acrobatic rocket display (johnsgard 1991). Note that display scores 1,1.5 and 2 were combined in statistical 
analyses (see Methods). Source: (1) P. D. Goriup & P. E. Osborne (data compilers); (2) johnsgard 1991; (3) Marchant & Higgins 1993; (4) 
Urban et al. 1986; (5) Percy FitzPatrick Institute of African Ornithology: http://web.uct.ac.za/depts/fitzpatrick/docs/fam31.html.

158

http://web.uct.ac.za/depts/fitzpatrick/docs/fam31.html


Appendix. Sexual selection as the possible underlying force in 

Calopterygid wing pigmentation: comparative evidence with Hetaerina and 

Calopteryx genera

M. Alejandro Serrano-Meneses, Gerardo Sanchez-Rojas and Alejandro 

Cordoba-Aguilar

Odonatologica in press

Details and extent of the contributions by authors

M. A. Serrano-Meneses: quantification of wing pigmentation, manuscript writing 

(50%)

G. Sanchez-Rojas: statistical analyses (20%)

A. Cordoba-Aguilar: supervision of the study, insect collection, suggestions to improve 

the manuscript (30%)

159



Abstract

One of the most striking and conspicuous traits in some species of odonates is wing 

pigmentation. In the Calopterygidae, males bear species-specific wing pigmentation 

patterns. Recent evidence in different genera has suggested that sexual selection is the 

underlying hypothesis for this trait. However there are other alternative hypotheses for 

conspicuous traits which actually apply to wing pigmentation patterns. In this paper, we 

have advanced and tested two predictions to see whether the sexual selection hypothesis 

stands. We first compared the coefficients of variation of pigmentation against that of a 

selected set of other animals’ traits that are maintained by natural and sexual selection. 

By using two species of Hetaerina (H. americana and H. vulnerata) and three of 

Calopteryx (C. aequabilis, C. haemorrhoidalis, C. xanthostoma) the aim was to see 

whether pigmentation variation is different from other traits particularly those 

maintained by sexual selection. The second prediction is that pigmentation should not 

differ in species whose populations are in sympatry (compared to allopatry) if sexual 

selection is driving pigmentation evolution (compared, for example, to an ecological 

character displacement hypothesis in which pigmentation between species should 

differ). For this, we compared the pigmentation of sympatric and allopatric populations 

of two species of Hetaerina, H. americana and H. vulnerata. For the first prediction the 

coefficient of variation of pigmentation did not differ from that of sexually selected traits 

in other animals, but was different from that of naturally selected traits. Also, the 

pigmentation of the two species in sympatry was not significantly different from each 

other which was also the case for allopatric populations. These results are in agreement 

with the sexual selection hypothesis as the mechanism of maintenance for pigmentation 

in these animals. Some other alternative hypotheses for the evolution of pigmentation 

(differences in habitat use in both sexes, warning to predators by males and ecological 

character displacement) are discussed in the light of these results.
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1. INTRODUCTION

Darwin (1871) put forward the theory of sexual selection to explain the differences in 

morphology, physiology and behaviour between the sexes. These differences are 

frequently observed as traits that only males bear and whose expression is exaggerated. 

According to sexual selection theory, two processes have propelled the evolution of 

male exaggerated traits: males will compete with each other to have sexual access to 

females while females will choose among males to fertilise their eggs. More recently, 

however, sexual conflict - the differences between the sexes in reproductive interests - 

has been also proposed as another driving process in sexual selection (reviewed by 

Chapman et al. 2003).

Although sexual selection is the most powerful explanation for the evolution of 

exaggerated traits, some alternative hypotheses have also been advanced. One 

alternative is that both sexes differ in habitat use (the different habitat use hypothesis) 

which may have produced particular adaptations to certain environments (Andersson 

1994). This may be the case, for example, if both sexes differ in the places where they 

forage and have evolved different traits to cope with distinct needs. A second 

explanation suggests that males may communicate to their predators that they are 

difficult targets via conspicuous traits that predators are able to recognise (the predator 

warning hypothesis; Baker & Parker 1979). A third hypothesis indicates that 

conspicuous traits (i.e. colour) may act as badges aimed to communicate social status to 

conspecifics (the social badge hypothesis; Andersson 1994). These badges would 

prevent unnecessary, potentially costly escalated contests for the access to resources that 

are not related to sexual reproduction directly or to females (reviewed by Andersson 

1994). The last hypothesis, originally laid out by Brown & Wilson (1956), is that 

exaggerated traits are species-specific traits evolved to distinguish members of other 

species to prevent interspecific matings (the ecological character displacement 

hypothesis) in zones of distribution overlapping of two or more species.
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Sexual selection has been studied in great detail in Odonata, particularly the 

Calopterygidae (reviewed by Cordoba-Aguilar & Cordero-Rivera 2005). Males of most 

species in this family develop specific wing pigmentation patterns soon after emergence 

(Silsby 2000). These patterns differ from one species to another (for example, a red 

basal colouration in the genus Hetaerina and metallic black in the genus Calopteryx) and 

are extravagant in the sense that they make males appear conspicuous. Once wing 

pigmentation has been developed, males start looking for places (= territories) to defend 

where females arrive at for copulation and oviposition (Corbet 1999). It is while staying 

at territories when wing pigmentation is apparently shown to conspecifics: to males 

during the flying contests for the acquisition or defence of a territory (suggested by 

Koskimaki et al. 2004; Riippell et al. 2005; Contreras-Garduno et al. 2006), and to 

females during the pre-copulatory flying courtship (which is the case of Calopteryx 

only; reviewed by Cordoba-Aguilar & Cordero-Rivera 2005).

Several sources of evidence in the genera Calopteryx (i.e. Siva-Jothy 1999, 2000; 

Cordoba-Aguilar 2002; Cordoba-Aguilar et al. 2003; Rantala et al. 2000; Rolff & Siva- 

Jothy 2004; Svensson et al. 2004), Hetaerina (Grether 1996a, b; Contreras-Garduno et 

al. 2006) and Mnais (Plaistow & Tsubaki 2000; Tsubaki & Hooper 2004) strongly 

suggest that male wing pigmentation is sexually selected. Pigmentation has been 

associated with male-male competition for several reasons, the most important being 

that high pigmented males are usually the ones that defend a territory (i.e. Grether 

1996a, b; Siva-Jothy, 2000; Cordoba-Aguilar 2002) and they do it for longer periods (i.e. 

Grether 1996a, b; Cordoba-Aguilar 2002) compared to less pigmented males. The 

underlying reason for this is that high pigmented males usually have more muscular 

thoracic fat (Contreras-Garduno et al. 2006) and fewer intestinal parasites (Siva-Jothy 

2000; Cordoba-Aguilar 2002). A number of studies have shown that both variables are 

important in territorial competition. In terms of fat reserves, they provide the necessary 

energetic input during territorial aerial contests (Marden & Waage 1990; Plaistow & 

Siva-Jothy 1996); in the case of parasites, they have a negative impact on fitness by 

affecting the elaboration of fat reserves, therefore reducing male longevity (Siva-Jothy 

& Plaistow 1999). Male pigmentation has been also associated with female choice in
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different Calopteryx species where females mate with males that have more 

pigmentation (Siva-Jothy 2000; Cordoba-Aguilar 2002). Highly pigmented males 

actually end up having a higher lifetime mating success compared to less pigmented 

males (Cordoba-Aguilar 2002).

Despite the above sexual selection evidence for the evolution of wing pigmentation in 

calopterygids, a potential drawback is that other alternative hypotheses can also explain 

the same phenomenon. For the case of the habitat difference use hypothesis, it is 

reasonable to accept that adult females and males differ in habitat use. Females, for 

example, perch on trees or forage away from the water while males stay near the water 

mainly to defend or try to obtain a territory (Corbet 1999). Feeding, for example, can be 

done in distinct places according to these differences. The predator warning hypothesis 

may also apply given that males exhibit themselves during territory defence and also 

because the territories are usually open spaces where active predators, such as birds, can 

enter (e.g. Krebs & Avery 1984). The social badge hypothesis may apply only if males 

establish complex social groups whose members respect owners of territories (Trivers 

1985). This seems difficult to operate in calopterygids as territory ownership follows 

desperado rules: non-territorial males get an extremely small number of copulations so 

that males will fight until exhaustion if territories are not vacant (Plaistrow & Siva-Jothy 

1996). Under this system, only those males that have more fat reserves, which are 

correlated with and, possibly, communicated via pigmentation (Contreras-Garduno et al. 

2006), are the ones that will defend a territory (Marden & Waage 1990; Plaistow & 

Siva-Jothy, 1996). On the other hand, the last hypothesis -  ecological character 

displacement - may also apply to explain the evolution of wing pigmentation, as 

interspecific matings and hybrids of different calopterygid species have been observed in 

nature (Dumont et al. 1987; Lindeboom 1993).

In this paper we examine the potential for the sexual selection hypothesis to explain the 

evolution of pigmentation in the light of two predictions. The first prediction is related to 

the expected phenotypic variation for sexually selected traits. According to sexual 

selection theory and although the underlying reason for this is unclear, traits that have
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evolved via this pressure should exhibit considerably large variation in expression 

(Andersson 1994). This prediction assumes that the production of pigmentation is costly 

so that the different habitat use and the ecological character displacement hypotheses are 

discarded. However this is not the case for the predator warning hypothesis as only 

males in good condition would be able to afford the production of costly traits to 

communicate their predators about their ability to escape (following the handicap 

principle; Zahavi & Zahavi 1997). The second prediction is related to the expected 

pattern of pigmentation differences in allopatric versus sympatric populations. 

According to the ecological character displacement hypothesis, one would expect that 

populations (= pigmentation) of different species should be more different when in 

sympatry as the risk of interspecific mating is higher in these places compared to 

allopatry (see an example in Waage 1975, 1979). This difference, however, should not 

be the case if sexual selection is operating as males and females are able to recognise 

non-cospecifics.

We have tested these two predictions using members of two of the best studied genera in 

calopterygids, Hetaerina and Calopteryx. To test the first prediction, we have used the 

coefficient of variation in pigmentation (CV) expression in two species of Hetaerina and 

three species of Calopteryx, and compared it to that of traits from which there is 

available information as for whether they are evolutionarily shaped by sexual or natural 

selection in other taxa. This comparison allows seeing the boundaries (either in the 

natural or sexual selection “zone”) in which the CV of pigmentation lies. As for the 

second prediction, we have used data of H  americana and H. vulnerata populations 

which have varying degrees of sympatry and allopatry in the central regions of Mexico. 

We compared how much different pigmentation is in sympatry and allopatry. Most 

Hetaerina species are convenient for this comparison as males show strikingly similar 

wing basal pigmentation patterns.
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2. MATERIALS AND METHODS

(a) Pigmentation measurements and phenotypic expression patterns 

The following species and locations were used: C. aequabilis from Canada in 1999 (N = 

18), C. haemorrhoidalis from Spain in 1998 (N = 135), C. xanthostoma from Spain in 

1998 (N = 28), H. americana from Mexico in 2000 (N = 30) and H. vulnerata from 

Mexico in 2000 (N = 24). The following conditions had to be met for the collection: 1) 

animals had to be sexually mature so that pigmentation was already fully developed, and 

2) males had to come from the same population, preferentially being collected on the 

same day to avoid morphological variation caused by seasonal differences (Corbet 

1999). After capture animals were stored in 70 % ethanol. Each individual was then 

placed on a petri dish containing water for two hours for tissue rehydration. Water was 

removed by placing every individual on a dry cloth at room temperature. Wings were cut 

off from their insertion to the thorax, fixed on plastic acetates and secured with 

transparent tape. Drawings of both total wing and pigmented areas were produced for 

every individual by using a stereo microscope equipped with a drawing tube {Zeiss 
microscope, model Stemi SV 6). Drawings were made manually at a constant distance on 

waxed paper. The waxed condition reduces variation in weight due to humidity. Cutting 

outs of the pigmented and non-pigmented areas were done and weighed using an 

electronic analytical balance (iOHAUS, model CT200; precision ± 0.001 g). These data 

were later used to estimate the pigmentation percentage for every individual. A similar 

method for measuring pigmentation has been used in previous studies and has produced 

reliable results (see Cordoba-Aguilar 2002). Of course, this methodology only uses size 

of pigmentation but other aspects such as intensity are omitted. However, given that size 

has been already correlated to sexual selection (i.e. Siva-Jothy 2000) and for intensity 

we have no information, this approach is still valid.

We obtained the CV for pigmentation areas. CV allows comparing data as it is expressed 

as a percentage (the lower the value of CV, the less variation is exhibited in the data; Zar 

1999). We compared the CV of pigmentation with that of traits that have evolved by 

sexual and natural selection from other taxa gathered from different literature sources
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(see Appendix 1 and Appendix 2 for a full list of these taxa and the traits used 

respectively). We first checked for the distribution shape of the CVs of naturally 

selected traits which did not depart from normality (Kolmogorov-Smirnov test, p  = 

0.58). Using the mean and standard deviation of these traits (fi = 4.51, a = 1.87), we then 

transformed the CV of pigmentation and that of the other traits that have evolved by 

sexual selection of other taxa, to a standard normal distribution (Zar 1999). With this 

calculation we obtained Z scores (or units of standard deviations) for the pigmentation 

CV, which allowed us to test whether these transformed values, including those of other 

sexually selected traits in other taxa (Figure la), were likely to be found under the 

normal curve of naturally selected traits (Figure la). This was done by checking the 

critical values of the proportion of the normal curve distribution in statistical tables (Zar 

1999), which allowed us to obtain the proportion of the normal curve that lies beyond a 

given Z score. For example, if the p-value of a Z score of pigmentation equals or 

approaches zero, it means that the Z score lies outside the normal curve exhibiting a 

variation similar to that of sexually selected traits.
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Figure la . Distribution of traits under natural and sexual selection in non-odonate species (see 
Appendix 1 and 2 respectively). The normal curve represents the distribution of the CVs of 
naturally selected traits and zero denotes the mean. Numbers are standard deviations. Note that 
up to 98% of the values of the CVs of traits under natural selection are included within ± 3 
standard deviations. Due to higher variation, most of the traits under sexual selection (inverted 
triangles) fall outside the normal distribution curve and more than 3 standard deviations away 
from the mean (except for the extreme value noted by an asterisk).__________________________
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(b) Pigmentation variation in allopatric and sympatric populations
The following specimens were collected in 2000 in Mexico: H. americana (N = 20) 

from Jiutepec, Morelos (allopatric population), H. vulnerata (N = 20) from Xalapa, 

Veracruz (allopatric population), H. americana (N = 20) and H. vulnerata (N = 20) from 

Jiutepec, Morelos (sympatric population). The collecting conditions were similar as 

indicated before. Pigmentation measurement, given that males o f  different species share 

similar patterns (a red basal spot on the basis o f each wing), was measured as the 

longitudinal length o f the spot (from the wing basis to the tip). The mean pigmentation 

sizes o f  allopatric and sympatric populations were tested using t-tests.

Data are provided as means ± STD unless stated otherwise.

3. RESULTS

(a) Phenotypic expression o f pigmentation
The CVs o f pigmentation (C. aequabilis =  13.02%, C. haemorrhoidalis = 14.89%, C. 

xanthostoma = 19.70%, H. americana = 14.44%, H. vulnerata = 13.06%) fell outside the 

curve o f traits shaped by natural selection (Figure lb) which is similar to what occurs to 

sexually selected traits in other taxa (compare Figure la  and lb).

V V

T T r
■1

T T
2-3 ■2 0 1 3

Figure lb. Normal distribution curve of the CVs of traits under the influence of natural 
selection. Zero denotes the mean and numbers are standard deviations. Inverted triangles 
represent the Z scores of the CVs of pigmentation. Note that 2 symbols overlap at approximately 
4.5 standard deviations.
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This exclusion was statistically significant in all species (Table 1).

Table 1. Coefficients of variation of wing pigmentation, Z scores and the proportion of the area 
that lies beyond these scores. P values reflect how likely it is that the the expression of 
pigmentation values fell outside the distribution of natural selection characters.

Species CVs of WP Z Score P
Calopteryx aequabilis 13.02 4.53 p = 0.000
Calopteryx haemorrhoidalis 14.89 5.53 p = 0.000
Calopteryx xanthostoma 19.70 8.09 p = 0.000
Hetaerina americana 14.44 5.29 p = 0.000
Hetaerina vulnerata 13.06 4.55 p = 0.000

(b) Pigmentation in allopatric and sympatric populations
There were no significant differences between the lengths of the pigmented patches in 

allopatric (^8 = -1.58,/? = 0.120) or sympatric populations fos = 0.95,/? = 0.350).

4. DISCUSSION

Our results indicate that in a selected subset of species of Calopteryx and Hetaerina, as 

representatives of Calopterygidae, evidence supports a sexual selection explanation for 

the maintenance of wing pigmentation, a common trait shared by most members of this 

family. Members of these two genera have been traditionally used for testing sexual 

selection assumptions and actually it is mainly from Calopteryx where evidence for this 

theory is stronger (reviewed in Cordoba-Aguilar & Cordero-Rivera 2005). In Calopteryx 

and Hetaerina, variation in the phenotypic expression of pigmentation was more similar 

to that of traits that have been shaped by sexual selection than for natural selection in 

other taxa. The list of traits we used came from very different animals. Given this and 

the large sample of species used, is unlikely that our results can be due to chance. On the 

other hand, we also tested whether pigmentation was more different in sympatric
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populations than in allopatric populations assuming that in the former, pigmentation 

should differ if an ecological character displacement process was selecting for more 

different pigmentation patterns. Contrary to this, we found that pigmentation size in two 

Hetaerina species did not differ between sympatric and allopatric populations. This 

clearly means that if ecological character displacement is operating, the selected trait 

that males and/or females will recognise is not pigmentation.

For the first prediction, the different habitat use hypothesis is unlikely to explain our 

results mainly because pigmentation is a trait that is costly to produce and there would 

be no point in evolving a character that, over time will become costly. The other reason 

is that although indeed mature males and females occupy different places, teneral and 

fully mature non-territorial males may actually forage also away from territories 

(Kirkton & Schultz 2001) where females probably are. The predator warning hypothesis 

may apply as long as pigmentation has evolved to become an honest character that not 

all individuals are able to produce so that the information provided to predators is a 

guarantee that the animal is indeed able to escape if chased. The likely predators that 

may apply to this extension are birds and other insects as they are actively looking for 

prey when foraging (reviewed by Corbet 1999). Given that pigmentation correlates with 

fat reserves (so that males with more pigmentation can devote more energy to fight; 

Contreras-Garduno et al. 2006), it is possible that more highly pigmented males can be 

better at evading a predator. No studies have been done in this respect. This hypothesis, 

however, assumes that predators forage only where males are present. Although there is 

evidence that some bird species specialize in eating odonates (i.e. Kennedy 1950; Bagg 

1958), to our knowledege nobody has documented a male bias in dragonfly predation 

with these predators.

The results of our second prediction are incompatible with the ecological character 

displacement hypothesis. Other studies in H. americana have suggested that males use 

pigmentation expression when fighting for territories. These studies have found that 

males with more pigmentation are more likely to win figths (Koskimaki et al. 2004; 

Contreras-Garduno et al. 2006). This possibly means that contestants recognise each
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other’s fighting potential based on the size of the pigmented patches. On the other hand 

and contrary to this recognition idea, recent work in C. virgo and C. splendens has 

shown that, when in sympatry, the former species can be more aggressive towards the 

latter displacing it (Tynkkynen et al. 2004). Aggression is more directed against C. 

splendens males with larger wing pigmentation spots as the they look more similar to C. 

virgo pigmentation patterns. A similar lack of recognition of heterospecifics has been 

detected in C. maculata and C. aequabilis damselflies (Waage 1975, 1979): female 

pigmentation was different in sympatric places compared to allopatric places. 

Paradoxically, it is females and not males who have evolved different pigmentation 

patterns to avoid interspecific matings so males would discriminate among homo- and 

heterospecific female. Interestingly and not in support of the lack of recognition 

possibility, evidence in C. xanthostoma males suggests that they are able to recognize 

female mates from non mates (Hooper 1995). Including some other odonates in general, 

it is not clear whether and to what extent, males can recognize homo- and 

heterospecifics as it seems that not all species have this ability even in species of the 

same genus (reviewed by Corbet 1999). Given the potential costs of unnecessary fights 

by males and matings by females, this field deserves further research. What it seems a 

reasonable hypothesis for the origin of pigmentation with respect to the ecological 

character displacement hypothesis, is that pigmentation, given its production costs, arose 

via sexual selection and possibly is now being shaped by other evolutionary forces such 

as the interspecific male-male aggression observed in Calopteryx (Tynkkynen et al. 

2004, 2005).

Finally our pigmentation measurements have been based on size only. However, given 

the fact that odonates can see ultraviolet patterns (Corbet 1999), the potential exists for 

using this means for communication. The potential role for this deserves further 

investigation.
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APPENDIX I

Coefficients of variation of naturally selected traits, Z scores and the proportion of the 

normal curve that lies beyond a given Z score. Sources: (1) Amqvist 1992; (2) Badyaev 

& Hill 2000; (3) Badyaev & Martin 2000; (4) Badyaev et al. 2000; (5) Cohn 1990; (6) 

Fairbaim & Preziosi 1996; (7) Forslund 2000; (8) Loftus-Hills & Littlejohn 1992; (9) 

Pryke et al. 2001.

Taxonomic group Trait CV (%) Z score P Source
Aquarius remigis 

(Heteroptera, Gerridae) Total length 4.21 -0.16 0.436 6
Aquarius remigis 

(Heteroptera, Gerridae) Prefemoral width 4.81 0.16 0.436 6
Aquarius remigis 

(Heteroptera, Gerridae)
Mesofemoral
width 4.64 0.06 0.476 6

Carpodacus mexicanus 

(Aves, Fringillidae) Culmen length 5.42 0.48 0.315 3
Carpodacus mexicanus 

(Aves, Fringillidae) Wing length 2.25 -1.21 0.115 3
Carpodacus mexicanus 

(Aves, Fringillidae) Body mass 7.09 1.37 0.085 3
Carpodacus mexicanus 

(Aves, Fringillidae) Culmen length 3.52 -0.53 0.298 2
Carpodacus mexicanus 

(Aves, Fringillidae) Wing length 2.46 -1.09 0.137 2
Carpodacus mexicanus 

(Aves, Fringillidae) Tarsus length 3.15 -0.73 0.232 2
Carpodacus mexicanus 

(Aves, Fringillidae) Body mass 6.45 1.03 0.151 2
Carpodacus mexicanus 

(Aves, Fringillidae) Culmen length 4.02 -0.26 0.397 4
Carpodacus mexicanus

(Aves, Fringillidae) Wing length 2.44 -1.11 0.133 4
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Carpodacus mexicanus 

(Aves, Fringillidae) Tarsus length 3.50 -0.54 0.294

Carpodacus mexicanus 

(Aves, Fringillidae) Body mass 5.89 0.73 0.232 4

Euplectes ardens 

(Aves, Ploceidae) Collar area 8.35 2.04 0.020 9

Euplectes ardens 

(Aves, Ploceidae) Culmen length 2.66 -0.99 0.161 9

Euplectes ardens 

(Aves, Ploceidae) Tarsus length 1.31 -1.71 0.043 9

Euplectes ardens 

(Aves, Ploceidae) Wing length 1.63 -1.54 0.061 9

Euplectes ardens 

(Aves, Ploceidae) Body mass 5.36 0.45 0.326 9

Forficula auricularia 

(Dermaptera, Forficulidae) Elytra width 5.87 0.72 0.235 7

Forficula auricularia 

(Dermaptera, Forficulidae) Elytra length 8.73 2.25 0.012 7

Forficula auricularia 

(Dermaptera, Forficulidae) Pronotum width 7.17 1.41 0.079 7

Gastrophryne olivacea 

(Anura, Microhylidae) Body length 7.14 1.39 0.082 8

Gastroprhyne olivacea 

(Anura, Microhylidae) Body length 5.41 0.48 0.315 8

Gerris odontogaster 

(Heteroptera, Gerridae)

Length of middle 

legs 2.95 -0.84 0.200 1

Gerris odontogaster 

(Heteroptera, Gerridae)

Length of middle 

legs 3.37 -0.61 0.270 1

Gerris odontogaster 

(Heteroptera, Gerridae)

Length of middle 

legs 3.56 -0.51 0.305 1

Gerris odontogaster 

(Heteroptera, Gerridae)

Length of anterior 

femur 3.22 -0.69 0.245 1
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Gerris odontogaster Length of anterior

(Heteroptera, Gerridae) femur 3.27 -0.67 0.251 1

Gerris odontogaster 

(Heteroptera, Gerridae)

Length of anterior 

femur 4.37 -0.08 0.468 1

Gerris odontogaster 

(Heteroptera, Gerridae) Elytra width 4.04 -0.26 0.397 1

Gerris odontogaster 

(Heteroptera, Gerridae) Elytra width 3.06 -0.78 0.217 1

Gerris odontogaster 

(Heteroptera, Gerridae) Elytra width 3.03 -0.79 0.214 1

Nephila clavipes 

(Aranae, Araneidae) Palp length 5.33 0.43 0.333 5

Nephila clavipes 

(Aranae, Araneidae) Conductor length 4.91 0.21 0.416 5

Nephila clavipes 

(Aranae, Araneidae) Conductor length 4.90 0.20 0.420 5

Nephila clavipes 

(Aranae, Araneidae) Conductor width 7.71 1.70 0.044 5
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APPENDIX II

Coefficients of variation (CV) of sexually selected traits, Z scores and the proportion of 

the normal curve of naturally selected traits that lies beyond a given Z score. Sources: 

(1) Badyaev & Young 2004; (2) Fairbaim & Preziosi 1996; (3) Forslund 2000; (4) 

Klappert & Reinhold 2003; (5) Lupoid et al. 2004; (6) Markow et al. 1996; (7) Moller & 

Petrie 2002; (8) Pryke et al. 2001; (9) Regosin & Pruett-Jones 2001; (10) Reid et al. 

2005; (11) Warner & Schultz 1992.

Taxonomic group Trait CV (%) Z score P Source

Aquarius remigis 

(Heteroptera, Gerridae) Wing shape 74.34 37.24 0.000 2

Carduelis flammea 

(Aves, Fringillidae)

Visible area of 

ornamentation 36.60 17.11 0.000 1

Carduelis flammea 

(Aves, Fringillidae) Hue (ornamentation) 16.30 6.28 0.000 1

Carpodacus mexicanus 

(Aves, Fringillidae)

Visible area of 

ornamentation 29.00 13.06 0.000 1

Carpodacus mexicanus 

(Aves, Fringillidae) Hue (ornamentation) 18.90 7.67 0.000 1

Chorthippus biguttulus 

(Orthoptera, Acrididae)

Attractiveness of two- 

leg males 44.33 21.23 0.000 4

Chorthippus biguttulus 

(Orthoptera, Acrididae)

Loudness of two-leg 

males 26.94 11.96 0.000 4

Chorthippus biguttulus 

(Orthoptera, Acrididae)

Pause/syllable ratio of 

two-leg males 19.23 7.85 0.000 4

Drosophila pseudoobscura 

(Diptera, Drosophilidae)

Bristle number of 

mating males 15.74 5.98 0.000 6

Drosophila pseudoobscura 

(Diptera, Drosophilidae)

Upper sex comb of 

mating males 23.67 10.21 0.000 6

Drosophila pseudoobscura Lower sex comb of

(Diptera, Drosophilidae) mating males 53.67 26.21 0.000 6
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Drosophila simulans Bristle number of

(Diptera, Drosophilidae) mating males 15.92 6.08 0.000 6

Drosophila simulans 

(Diptera, Drosophilidae)

Sex comb number of 

mating males 9.75 2.79 0.002 6

Euplectes ardens 

(Aves, Ploceidae) Tail length 16.85 6.58 0.000 8

Forficula auricularia 

(Dermaptera, Forficulidae) Forceps length 19.92 8.21 0.000 3

Forficula auricularia 

(Dermaptera, Forficulidae) Abdomen length 16.54 6.41 0.000 3

Forficula auricularia 

(Dermaptera, Forficulidae) Body mass 26.20 11.57 0.000 3

Melospiza melodia 

(Aves, Emberizidae) Song repertoire size 22.60 9.64 0.000 10

Nyctalus noctula 

(Chiroptera, Vespertilionidae) Penis length 11.50 3.72 0.000 5

Passer domesticus 

(Aves, Passeridae)

Visible area of 

ornamentation 26.60 11.78 0.000 1

Passer domesticus 

(Aves, Passeridae) Hue (ornamentation) 13.80 4.95 0.000 1

Pavo cristatus 

(Aves, Phasianidae) Train length 23.90 10.34 0.000 7

Pavo cristatus 

(Aves, Phasianidae) No. of ocelli 84.00 42.39 0.000 7

Pavo cristatus 

(Aves, Phasianidae) Diameter of ocelli 27.50 12.26 0.000 7

Thalassoma bifasciatum 

(Perciformes, Labridae) Black + white area 26.55 11.75 0.000 11

Thalassoma bifasciatum 

(Perciformes, Labridae) White area 32.87 15.12 0.000 11

Thalassoma bifasciatum

(Perciformes, Labridae) Tail length 23.33 10.03 0.000 11
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Tyrannus forficatus

(Aves, Tyrannidae) Tail length (male) 13.60 4.84 0.000 9
Tyrannus forficatus

(Aves, Tyrannidae) Tail length (female) 14.00 5.06 0.000 9
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