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PREFACE

This work is concerned with the field analysis of Microwave and Millimeter 

wave Circuits Components and Antennas where wide use is required of conducting 

plane sectors, cones and bidimensional wedges . A complete rigorous solution for 

the EM fields diffracted on these wedges is presented together with the simplified 

formulation of their main behaviour by the conductors, where singularities occur 

that are distribuited along the edges and localised on the tips .

There is a wide gap to cover between the more recent developments in Ap­

plied Mathematics on the solutions of Maxwell’s equations in coordinate system 

like the Ellipsoidal, Conical and Spherical ones, and the more recent algorithms 

developed by the Microwave Community to analyse and/or synthesize circuitry 

in Printed Conductor Tecnology . The connection point of these two disciplines 

is represented by the ’’elementary brick” in printed circuits, that is a finite plane 

conductor, often shaped as a wedge or double-wedge, where an incident EM wave 

diffracts in a predictable way by knowing the three-dimensional vector solutions 

of Maxwell’s equations for the ideal infinite sector or double- sector. In fact the 

two geometries fit each other by the tip, permitting, in particular, rigorous and 

easily formulated descriptions of the singularities along the conductor boundary, 

as required in circuit analysis.

Chapter 1 is dedicated to a unified formulation for the above geometries 

where we investigate the general physically meaningful solutions of the scalar 

wave Helmholtz equation, using Jacobian or Trigonometric forms according to



their usefulness at the various stages of the development .

In Chapter 2 physical boundary conditions are introduced such as those 

pertaining to the plane sector, double-sector and related geometries, recovering 

the complete spectra of eigenvalues and eigenfunctions that are straightforwardly 

related to the static E-field . From the latter, a ” singularity vector” is deduced 

which describes just the singular or the main behaviour of the dynamic E-field 

so as required in circuit analysis.

In Chapter 3 we solve the complete vector Maxwell’s equations for the EM 

fields diffracted by the same geometries where, among other things, Babinet’s 

principle and the Image principle are implied. A ” singularity vector ” for the 

H-field, with the features above indicated for the E-field, is then formulated.

In Chapter 4 we recover classical, but sometimes more accurate results 

for the cone and bi-dimensional wedges using a quite novel specialization of the 

theoretical apparatus developed for conical geometry to the case of a spherical co­

ordinate system . These wedges are met in the most widespread applications and 

their behaviour permits to point out differences between the scalar and vectorial 

nature respectively of the density of charge and of current on the tips.

In Chapter 5 the results obtained are applied in a new ” Generalized Trans­

verse Resonance Approach ” as an attem pt to quantify the reflection due to a 

corner in a waveguide taper and has resulted into a new analysis alghorithm for 

the design of an ” Optimum Smooth Taper ” in waveguide .

In Chapter 6 applications of the singularity vector on the plane of the con­

ductor, normal to it and on the conductor itself are indicated in the implemen­

tation of classical algorithms like the ” Transverse Resonance Approach ” , the 

” Matching Mode Method ” and the ” Moment Method ” respectively .
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O R IG IN A L A N D  NOVEL C O N T R IB U TIO N S

The eigenvalues relative to the problem of the plane sector are determined 

with higher accuracy with respect to previous works because of the novel analytic 

approach to the problem .

In particular the evaluations of the first eigenvalue, which establishes the 

Electro-Magnetic singularities at the tip, has been obtained with an accuracy of 

say 7 decimal figures .

The complete spectrum of diffracted modes for the problem of the double­

sector has been originally obtained with the accuracy used for the sector .

The complete spectra of diffracted modes for other five 3D-wedges conductor 

geometries of secondary applicativity in Microwave, have been recovered as sub- 

spectra of those relative to the sector and double-sector .

Original formulation of some ’’singularity vectors” for the Electro-Magnetic 

fields relative to the named 3D-wedges has permitted to express the singular 

behaviour of the fields in an easy-to-handle way for Microwave and Millimeter 

wave applications .

The theory of the 2D-wedge and Cone-wedge has been reduced to a partic­

ular case of that of the 3D-wedge permitting general conclusions and comparison 

for the Electric and Magnetic singularities relative to tips conductor of arbitrary 

cross section .



Original method of analysis for smooth taper in unilateral Fin-line has been 

ideated which has permitted evaluation of the complex distribuited impedance .

An original method of numerical synthesis has followed which also has per­

m itted the synthesis of an approximate novel analytic expression for the taper 

profile .

Indication of the way in which the singularity vectors enter the usual algo­

rithm s for the analysis of Passive Circuit Components for Microwave has been 

finally reported .



L ist of A bbrev ia tions

b.c. boundary conditions

c.s. coordinate system

EM Electro- Magnetic

i.e. id est, that is to say

e.g. that is to say

List of sym bols and  functions in o rd er of ap p aritio n  

( N .B .: a very few symbols are used 2 times with different meanings )

x , y , z right tern of rectangular coordinates for the rectangular c.s.

X , Y , Z right tern of rectangular coordinates for the main rectangular c.s.

r,0,(t> right tern of trigonometric coordinates for the spherical c.s.

r,e,4> right tern of trigonometric coordinates for the conical c.s.

r',Oy(j> right tern of trigonometric coordinates for the ellipsoidal c.s.

r,P, cl right tern of Jacobian coordinates for the conical c.s.

l , P , a right tern of Jacobian coordinates for the conical c.s.

sn, cn, dn Jacobian functions of complex variable

e semi angular aperture of the sector

k parameter of the conical and ellipsoidal c.s.



K complete elliptic integral of parameter fc

k’ related parameter of the conical and ellipsoidal c.s.

K' complete elliptic integral of parameter k'

I second parameter of the ellipsoidal c.s.

w{z) Lame’s function versus complex variable z

y(v) Lame’s function versus real variable v

useful real variables for Lame’s functions

A (a ),-(*>),*(« Lame’s functions versus the 3rd coord, of the conical c.s.

B(P),U (u),  T W ,e (0 ) Lame’s functions versus the 2nd coord, of the conical c.s.

C(r),£(r;u;),.R(r) Bessel’s functions versus the Is* coord, of the conical c.s.

i/, h order and degree of the Lame’s functions

li,h! useful variables function of v, h

V useful variables function of v, h or /i, h'

X{, At, Bi series expansion coeff. for periodic Lame’s functions

K wave number

U) angular frequency

f frequency

ALMo magnetic permeability of generic medium and of vacuo

6,C0,*r dielectric constant of generic medium, vacuo, relative

a angular aperture of the sector conductor

forms of the scalar Helmholtz potential

V scalar electric potential

V vector operator

E ,L ,N ,M forms of the vector electric field

H ,H n , Hm forms of the vector magnetic field

X



&E electric field singularity vector

Sex , SEy > SEZ scalar components of se

SH magnetic field singularity vector

SHx,SHy,SHz scalar components of sh

T EM degree of singularity or zero at the tip

Te electric degree of singularity or zero at the tip

Th magnetic degree of singularity or zero at the tip

ju spherical Bessel function of l 3t kind

spherical Bessel function of 2st kind

'"v Henkel function of 2st kind

V characteristic impedance of the medium

Ps surface density of charge

J vector density of current

T ,P ,S useful functions of $, of (f> and of 9, <f>

§9} ^Ofj 5 useful functions of r, 9, (f)

Sjt,S<pN, S^M useful functions of r, 0 , (j>

A , A i , A 2 useful functions of x, y, 2  or X, Y, Z

ne, fl(, vector electric and magnetic Hertzian potentials

/(*) correction function

*«,#* functional components of n e, lU

Xen J X/m functional components of

<^en j <^/m functional components of ^h.

U '„ ,U h„ series expansion coefficients for

iJP propagation constant along z

h/v7nn propagation constant along y

xi



Yij kernel of integral equation

Vijn series expansion coefficients for Y{j

Y . .=IJ block of the matrix impedance

(Xij )mn component of the matrix impedance

Q mn) Pmn series expansion coefficients for (Yi j)mn

<*1.2,3, Pi,2,3» 71,2,3 coefficients used in the recursive relations for QmmPmn

w(z) fin-line aperture

e(x) ,o(x) ,e1(x),e2(x) forms of mapping of x or X  into 0

F{z) useful functional for the mapping

fine lengths

T transition length

A , Ao wavelength in the guide and in the vacuo

Z , Z i fine impedances

V electric tension

p power

r reflection coefficient

£ scattering matrix

S a scattering matrix coefficients

£ impedance matrix

Zij impedance matrix coefficients

a , G A,Gv dyadic,vector and scalar Green’s functions

A vector potential

s , i i electric and magnetic trial fields

hn electric and magnetic modal fields

F m  Hn electric and magnetic waveguide modal fields
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Chapter 1 

SOLUTION OF THE 

SCALAR WAVE EQUATION

1.1 Introduction

From a general point of view, the diffraction by a conductor body, in particular 

with edges, can be completely quantified once the solution of the Maxwell’s wave 

equations satisfying the boundary conditions ( b.c. ) pertaining to the conductor 

itself axe known.

Actually, this problem can be solved in an analytical or quasi-analytical 

way only if there exists a geometry, that is to say a coordinate system ( c.s. ), 

where the solutions of the vectorial wave Maxwell’s equations are obtainable from 

those of the scalar wave Helmholtz’s equation and are expressible in separable 

form, allowing an easy implementation of the b.c. . In a more general sense, this 

problem could be solved in a complete numerical way in the space domain but the 

numerical algorithm involved requires in any case an approximate starting point
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in order to converge fast and accurately, especially in the presence of singularities. 

Often, in fact, just the formulation of the main characteristics of the unknown 

EM fields, as, for instance, its singularities distributed along the edges or on tips 

as well as the zero distributions on regular surfaces, will suffice to increase speed 

and accuracy of the solution .

In this context we place the ” coordinate matching procedure ” (see [1] ), 

according to which, locally fitting one or more equicoordinate surfaces of one of 

the 11 c.s. in which the scalar Helmholtz equation separates with just a part of 

the whole conducting structure, is sufficient to determine the main characteristics 

of the EM fields there .

When, in particular, these surfaces are plane degenerate ones, the solutions 

are among the easiest to be represented and to be computed in the given c.s. . 

Naturally, the considerable simplification involved is due to the Applied Math­

ematics work gone on mainly during these last 50 years, roughly speaking from 

Ince to Arscott ( see [1, 2, 3, 5, 6, 7]) and some important questions in this m atter 

are still waiting for an answer. Examples are the lack of a unique characteristic 

equation for Lame’s functions double-periodic with periods 4K xS K ' (i.e. 27rx47r) 

met in the study of the plane sector, or the computation of the more general 

ellipsoidal waves (see [2] ) .

Today’s reduced interest in functional analysis is perhaps due to the fact 

that finding an analytical solution to a differential equation is considered by 

many workers a waste of time . Numerical solutions, however, give no real idea 

of its properties and their relations with the physical reality. This is why we 

decided to develop a simple procedure, closely connected to the physical meaning 

of the solution, which allows to operate successive selections in the whole space

2



of solutions for the Maxwell’s equations in the given c.s. .

Once the final set of solutions for our problem has been singled out , there 

arises the problem of formulating it in such a way as to be put to use in further 

theoretical developments or to be physically interpreted or numerically computed, 

which purposes might require the use of different variable domains . In fact, we 

can state that the Jacobian form is by far the easier one to handle in the process of 

identification of the solution . On the other side, computation and application is 

far easier when the trigonometric form is used . Consequently, also remembering 

that various authors prefer to use just the first or second form according to 

whether their interests are purely theoretical or also applicative ( see [8, 9, 10] ), 

we make use of both forms according to the context .

Specifically, we will start with an overview on the equicoordinate surfaces 

for the spherical, conical and ellipsoidal c.s. with particular attention to the 

degenerate plane ones, among which axe those involved in our ” local fitting pro­

cedure ” . Also noted is the specialization of geometrical parameters, permitting 

to derive from the ellipsoidal c.s. the conical c.s. and from the latter the spherical 

c.s. [1]. The solutions in separable form of the scalar wave equation in conical 

c.s. axe then investigated, giving priority to those of the Lame’s differential equa­

tion in the complex plane . The Lame’s solutions of our interest are obtained 

by selecting firstly those physically acceptable, then satisfying the Hill’s group 

properties and finally satisfying the physical b.c. . Thanks to the fact that the 

latter fit degenerate equicoordinate surfaces, the solutions can only be periodic 

Lame’s functions, whose evaluation can be reduced to solving a system of two 

continued fractions, to any prescribed accuracy .

3



1.2 Characterization o f the coordinate system s

It is essential here to recall in brief the mathematical formulation of the three 

geometries involved in the work .

The transformation relations between the usual rectangular coordinates 

x ,y ,z ,  the spherical coordinates r ,0, the conical coordinates r,/? ,a  and the 

ellipsoidal coordinates 7 , /?, a  are explicitely reported for the Spherical, Conical 

and Ellipsoidal coordinate systems .

An analytic procedure is also pointed out which permits to consider the 

conical geometry as a generalization of the spherical one and the ellipsoidal one 

as a generalization of the conical one . On this degeneracy procedure is based 

the possibility of a unified theory for the solution of the scalar wave equation in 

the three geometries .

Particular emphasis is given to the equation of the degenerate plane surfaces, 

always lying on the three cartesian planes, because the physical b.c. of our interest 

always will pertain one or more of them .

4



1.2.1 Spherical coordinate system

For this classic geometry the transformation relations and intervals for the vari­

ables are simply expressible like ( see [11] pg. 24 ) :

x  =  rsinOcoscj) r € [0, oo)

y =  rsinOsin<f> 0 E [0, 7r]

z =  rcosO <j> 6 [0,27r)

The equation of the equicoordinate surfaces shown in Fig. 1.1 are : 

i) (? )2 +  ( r )2 +  (f  )2 =  1 : spheres of radius r

“ ) =  0 : cones with angular aperture 9

***) ^  — lint = ® planes forming an angle ^ with the a;—axis .

The degenerate surfaces in this geometry are shown in Figs. 1.2,3,4 and are :

i) on x  =  0 , the two half planes y < 0, y >  0

ii) on y =  0, the two half lines x = 0 : z > 0 , z < 0

iii) on z =  0, the plane z — 0 without the origin and the origin r = 0

1.2.2 Conical coordinate system

In this geometry we will make use of either the transformation relations in terms 

of the Jacobian variables r , ^ , a  or those in terms of the spherical ones r, 0, <j>. 

As announced in the introduction, the first formalism will result by far more 

useful in handling the theoretical procedure aiming to identify the properties of 

the solution we will look for . On the other hand, the trigonometric formalism 

will simplify the physical interpretation and handling of the solutions.

(1.1)

(1.2) 

(1.3)

5



The Jacobian form make use of the elliptic functions sn(t; k), cn(t; k), dn(t; k) 

where the complex variable t  can be either a  o t  (3 while k  £ [0,1] is the parameter.

On the complex plane these functions are double periodic respectively with 

periods AKxj2K', AKxjAK', 2KxjAKf ; K  =  K(k)  is known as the complete

elliptical integral of the first kind while K' — K'(k') is the same function of

k' =  y /l  — k2 as K  is of k ( see for instance [1] ) .

When k =  0, sn and cn degenerate into the common circular functions sin 

and cos while dn =  1 . On the other end when k =  1, sn becomes the tanh while 

cn and dn becomes -Xr .ttn n

Using these symbols the transformation relations may be written like :

x =  krsnasnj3 =  rcos(f>y/1 — (k'cosO)2 (1*4)

y =  jjprcnacnP — rsin<j>sin9 (1-5)

z — jprdnadnf} =  rcosOy/1 — (kcos<j>)2 (1-6)

As far the relations between Jacobian and Trigonometric variables, as well 

as of their intervals of existence, is concerned, it is :

r =  r r € [0, oo) (1.7)

/3 £ [K, K  +  2jK'] jj?cn(3 — sinO 0 £ [0, tt] (1.8)

a  £ [K , —3K ) cna =  sin<f> <j> £ [0, 2tt) (1.9)

For the given classic intervals for 0, <j), those for (3 and a  defined through­
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out the previous relations are not univocally determinable because of the named 

periodicity properties of the elliptic functions . The choice of the intervals for a  

and /? is made in such a way to let them concide at the extremity a  =  /? =  K  

but otherwise the first is always real and the second always complex . These 

properties will result of great importance in determining the double periodicity 

of the solutions in respect of these two variables .

The equations of the equicoordinate surfaces shown in Fig. 1.5 are :

i) ( f )2 +  ( r )2 +  ( r )2 =  1 : spheres of radius r

“ ) -  (tofe)2 “  ( jf e )2 =  0 : elliptic cones with angular aperture 6

***) — ( * ^ ) 2 — (dfe)2 =  ^ * elliptic half cones with angular apert. </)

Besides, the degenerate surfaces are now obtainable as :

i) on x  =  0 , the two half planes y < 0, y >  0

ii) on y =  0, the sectors delimited by the straight lines ( | ) 2 — (jp)2 — 0 

iii) on z  =  0, the plane z  =  0 without the origin and the origin r = 0

These are shown in Figs. 1.6,7,8 respectively together with the Jacobian and 

Trigonometric variable values to them associated . Of great importance for our 

work is the relation between the geometric parameters k , k ' and the semi-angular 

aperture e of the sector 0 = 0 in Fig. 1.7:

k =  sine k' =  cose k2 = 1 — k'2 6 [0, 1] (1-10)

Finally, we have to point out that the conical c.s. so characterized degener­

ates back into the spherical one previously considered when k —*■ 0, and naturally 

the same properties are verifiable for the degenerate surfaces .
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1.2.3 E llipsoidal coordinate system

For this geometry too we can formalize the transformation relations either in 

Jacobian 7 ,/?, a  or in some trigonometric r\0,<j> coordinates .

Nevertheless, to r ', 0, <f> we can no longer associate the familiar geometrical 

meanings because a new parameter I E [0, 00) is introduced which generalizes the 

equicoordinate surfaces in the way shown here after .

In any case the transformation relations are :

x =  k2lsnasn{3sn,y =  r'cos(j)yJ\ — (k'cosO)2 (1*H)

I kly =  (jk )2-pcriacn/3cn~f =  r'sincfrsinOd 1 — (—)2 (1-12)

z  =  j-jpdnadnj3dni = r'cosQyJ 1 — (kcos<j))2\J 1 — (-^J2 (1*13)

The relations between the two sets of three variables and relative intervals of 

definitions are chosen consistently with the previous ones, i.e. :

7 E [if +  jK ' , jK ')  klsn7 =  r ' r' E [/, 00) (1-14)

P E [if, i f  +  2j K f] jy c n f i  =  sinO 6 E [0, 7r] (1.15)

a  G [if, — 3if) cna = sin<j> <^e[0,27t) (1-16)

The equicoordinate surfaces equations can be now expressed together as :

(■ )2 -  ( y )2 -  (— - ) 2 =  1 (1.17)
klsnto klcnto Idnto

where tQ =  ao,Po, or 7o and then, respectively, the surfaces are ( see Fig. 1.9 ):

8



i) if to =  70 then 57170 is real, 07170, dn^o are imaginary : ellipsoids

ii) if to =  Po then s7i/?0, dnf30 are real,c72/?0 is imaginary: one sheet hyperb.

iii) if to =  ao then snao ,cnao ,dnao  are all real: hyperboloids .

On the three cartesian planes, (1.17) degenerates into the equation for the 

degenerate surfaces :

i) on x  =  0 , the two half planes y < 0, y >  0

ii) on y =  0, the two branches of hyperbola ( p )2 — (p j)2 =  1

iii) on z = 0, the ellipse of axes k 'l, / , (j )2 +  (^ f )2 =  1

These degenerate surfaces are drawn in Figs. 1.10,11,12 respectively to­

gether with both the Jacobian and Trigonometric associated variable values .

We will work in this geometry when dealing with conducting geometries like 

branch of hyperbolas or ellipses which will be a m atter for future developments 

but their inclusion permits to observe how a unified theory is still possible with 

the previous geometries . This c.s. degenerates in fact into the conical one ( see 

also [1] ) when / —* 0, transmitting the same properties to the degenerate surfaces 

and then to the solution of the scalar wave equation we will deal with .
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$ = const
Fig. 1.1 : spherical coordinate system

Fig. 1.5 : conical coordinate system

♦ = const

con si

Fig. 1.9 : ellipsoidal coordinate system



Fig. 1.2 : spherical degenerate surfaces on the plane x = 0

•0 =  0

.=. K:

0 =  K \

Fig. 1.3 : spherical degenerate surfaces on the plane y = 0

Fig. 1.4 : spherical degenerate surfaces on the plane z = 0



Fig. 1.6 : conical degenerate surfaces on the plane x= 0

0  = K+2iK’| |

Fig. 1.7 : conical degenerate surfaces on the plane y= 0

Fig. 1.8 : conical degenerate surfaces on the plane z= 0
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Fig. 1.10 : ellipsoidal degenerate surfaces on the plane x = 0

iTiTri1

Fig. 1. 11:  ellipsoidal degenerate surfaces on the plane y = 0

Fig. 1.12 : ellipsoidal degenerate surfaces on the plane z = 0
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1.3 Characterization o f the Solutions

The theory of ” the solution ” is developed in conical geometry as it permits an 

easy extension to the ellipsoidal c.s. and an easy particularization to the spherical 

c.s. . In this geometry, the three-dimensional EM fields solutions can be deduced 

from those of the scalar wave equation, which, in their turn, are separable along 

r as Bessel’s, and along a, /? as Lame’s differential equations (see [11, 12] ) . 

Hence, from now on we denote by F(r, /?, a) the solutions of the scalar Helmholtz 

equation.

The complete characterization of the Lame’s solutions is still in progress 

and they might present quite difficult forms to be classified and computed [7]. 

Nevertheless, a sequence of successive requirements to be satisfied by ” the so­

lution ” make it at least periodic along a , /3 and consequently well classifiable, 

representable and easily computable .

The path of progressive specialization in the space of the totality of solutions 

passes through the following steps :

i) the geometrical properties of the coordinate system

ii) the smoothness properties of the solutions

iii) the mathematical properties of the Helmholtz equation

iiii) the physical boundary conditions

At this stage, the Jacobian formalism is simpler to use, even though we 

report sometimes the trigonometric one because of its familiarity to the reader .
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1.3.1 T he geom etrical properties o f th e  

conical coordinate system

The choice of the intervals for the variables r, (3, a  made in 1.2.2 is such that they 

are as short as possible, compatibly with the necessity to associate to any point 

of the space at least one tern ro, flo, c*o .

Nevertheless, with that choice, the one-to-one correspondence fails some­

where and in particular on the sectors shown in Fig. 1.7 where two sets of three 

variables are associated to the same point .

It is obvious to ask ourself if this fact implies that F  assumes the same value 

on them and if this occurrence may be turned into a periodicity condition on F  

itself. In order to analytically demonstrate this possibility, we consider the sphere 

of radius r0 of Fig. 1.13 which intersects the degenerate sectors /? =  K , K  -\-j2K* 

( i.e. 0 =  0, 7r ) of Fig. 1.7 in the two arcs C+,C“ . On these two arcs, the values 

a, 2K  — a  ( i.e. 0 , ?r — <j>) give the same point.

Any other value f30 £ (K, K  +  jK ' )  ( i.e. 0O £  (0,^) ) gives a closed path 

surrounding C+ and a value (to £ (K + j K \  K  + j2 K ' )  ( i.e . $o £  ( |  ,*■) ) gives an 

analogous path surrounding C~ while a  varies over [.K , —3K),  i.e. <f> varies over 

[0, 2* ) .

On the contrary, for a fixed a 0 £ [K, —3K)  the point (r0, (3, a 0) moves 

following to an arc from a point on C+ to one on C~ while /? varies through its 

domain [K, K  +  j2K'] .

Summing up, a variation of a  in [K1 —3K )  brings the point (ro, /fa, a) back 

to its starting point ( for this we exclude a  =  —3K  in the interval ) while a 

variation of f3 in [ K ,K  +  j2K'] moves the point (ro, /?, «o) along an half circuit
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only .

Consequently, any physically meaningful solution F(r,/3,a)  must be peri­

odic in a  with period 4K or, equivalently, in <f> with period 2ir but not necessarily 

in P , i.e. :

F(r ,P ,a)  =  F ( r ,0 ,a  +  4ff) (1.18)

a=-K a=K

p=K+2jK'

Fig. 1.13 : sphere of radius r<> and degenerate arcs C C+
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1.3.2 T he sm oothness properties o f th e solutions

Similar arguments arise when we further require smoothness of any physically 

acceptable solution in conical c.s., i.e. it has to be continuous with continuous 

gradient in any homogeneous region .

Actually, new restrictions on F  arise from the imposition of smoothness 

on the singular arcs C+,C“ , at the singular origin point and on the sphere with 

infinite radius whenever no other physical b.c. are present .

Without loss of generality, we can limit attention to separable solutions of 

the general form :

F(r,p ,a)  =  C(r)B(/3)A(a) (1.19)

The smoothness condition in F  imposes some properties on the functions 

A yB , C  which we can summarize, refering again to Fig. 1.13 and [1], as :

i) on the upper half of a sphere we must have :

lim A(a) =  A ( K ), lim A(a) =  A(K)  i.e. :
or—►—3a  a —►—3a

either A(o;) is even about K and, B (K )  =  0 (1.20)

or A(a)  is odd about K and, B (K )  =  0 (1-21)

ii) on the bottom half of a sphere we must have :

! » » / ( “ ) =  ¥ ) >  l i m i ( a )  =  A(K)  i .e . :
cr—►—J A  Of—►—O A

either A(a) is even about K and, B ( K  +  j2K')  =  0 (1.22)

or A(q) is odd about K and, B ( K  +  j 2 K >) =  0 (1.23)
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iii) at the origin r =  0 must be :

MmC(r)B(p)A(a)  independent on a  and /? (1-24)
r —»0

iiii) at infinity r —► oo : 

lim C(r)B((3)A(a)  must satisfy radiation conditions such as Sommerfield’s
r —► oo

(1.25)

The dot ‘ indicates the first total derivative with respect to the argument .

1.3.3 T he m athem atical properties o f th e  

H elm holtz equation

In third instance ” the solution ” has to satisfy the scalar wave equation :

V 2F  +  k2F  =  0 (1.26)

which in conical c.s. separates into the following ordinary differential equations:

w(z)  — [a +  b(ksnz)2 +  q(ksnz)4]w(z) =  0 Lame’s equation (1*27)

“ 2 * n d
C(r)  H— C(r) +  ( « ---- r)^ (r) =  0 Bessel’s spherical equation (1.28)r r2

The solutions of Bessel’s equation are well known for a long time (see [7] ) 

and we remember here only the fact that one of its solutions of the 1st kind satisfies 

the smoothness in the origin since l imr^oC(r) =  0, while one of its solutions of 

the 3rd kind satisfies the radiation conditions since /imr«*0oC,(r') oc e 3*r .

Equation (1.27) is satisfied by both A(a),B(P)  on the two different but
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contiguous intervals a  6 [K, — 3K)  and /? £ [K, K  +  j 2 K f] .

In a complete general way it features the following properties :

i) it does not contain the term w(z)  and the coefficient of w is even so 

that there is one solution which is even and one which is odd with respect to any 

ordinary point zq [2], in particular the points zo =  m K , Zo =  K  +  jn K '  with m, n 

integers. Among them is the point Zq =  K  where the intervals for a  and (3 m eet.

ii) When z  equals a , (1.27) is a Hill type equation with even coefficients and 

period 2K ,  while when z  equals /?, it is a Hill type equation with even coefficients 

and period 2K'\ no singularities are present on or near the path in question . 

Thus the well known theory of Hill’s equation [2] is suitable for our purposes .

According to the latter theory, conditions like (1.20,21) are turned into the 

properties that A(a ) is either even or odd about a  =  0 , K  and 2K  is either a 

period or an anti-period, that is to say, it may only be one of 8 different forms .

Furthermore, for the property i), the condition (1.20) means B(/3) is even 

with respect to K , while (1.21) means B(j3) is odd with respect to K  .

Thus, incidentally, A(a)  and B(f3) are of the same parity with respect to 

z0 =  K  where, being zq a regular point, the Lame’s equation admits a unique 

even or odd solution .

Likewise, we can state the remarkable conclusion that the smoothness con­

dition on the upper half of a sphere implies A(a), B(/3) to be the same solution, 

i.e. :

F(r,/?,a) =  C(r)w((3)w(a) (1.29)

Similar arguments arise when we apply i) in (1.22,23) so that B(/3) is either 

even or odd about K  +  j2K* as well as about K .  Hill’s equation shows then that
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B(P)  must be periodic with j2 K '  either a period or an anti-period .

The 8 types of solutions so identified are the Lame’s polynomials and in 

Applied Mathematics they are often characterized by the combination of the 

three properties of (i) being odd or even in 2, (ii) having real period 2K  or 4K  

and (iii) having imaginary period j2K* or j4 K '  . They can be expressed in a 

truncated Fourier-Jacobi series ( see [6] ) whose computation is easier and more 

accurate than any other Lame’s solution .

Nevertheless, the solutions we are searching for cannot be among these 

because the physical b.c., that axe established by the conductor, will relax at 

least one of the set of hypotheses (1.20,23) .

However, the knowledge of the link and of the properties of the solutions 

along a  and /? will permit us to choice the position of the conductor, i.e. where 

smoothness is no longer required, in such a way to maintain the maximum sim­

plicity for the solutions .

This way, it will be possible to maintain uniqueness and double-periodicity 

of the solution for the plane sector along a  and (3 but with no longer fundamental 

periodicity along /? which is now of 8K \  whereas the second solution is completely 

aperiodic .

In the problem of the double-sector, both the two distinct solutions are 

involved but the first presents only real fundamental periodicity of 2K  or 4K  

along a  and the second only imaginary fundamental periodicity of 2K* or 4 K ' 

along /?.

These are the Transcendental Lame’s functions .

In both cases the Fourier-Jacobi series representations of the solution do not 

terminate in general but, in spite of that, their computation is quite practicable.
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1.3.4 T he physical boundary conditions

At last, the conditions still to be satisfied by ” the solution ” are those estab­

lished by the plane sector conductors fitting one or more degenerate surfaces 

a  =  —K , + K y P =  K, K  +  j2 K '  showed in Fig. 1.7 .

We will show later that they are belong the Sturm-Liouville class and pre­

cisely of just the forms :

w(zQ) =  0 w(zo) =  0 (1.30)

When it; is A then z0 =  dzK while when w is B  then zq =  K, K  +  j 2 K ' .

In order to reduce the number of different forms (1.30) for the b.c. we may 

change the variable ft into u along a real interval according to :

P e  [ K ,K  +  j2K'] P =  K + j K ’ - j u  « € [ - # ' ,  i n  (1.31)

This way, it will only prove necessary to consider the following three groups 

of b.c. in our applications :

« ; ( - # )  =  0, w(K) =  0 (1.32)

w(—K )  =  0, w(K)  =  0 or w(—K )  =  0, w(K)  =  0 (1.33)

w(—K ) =  0, w(K)  =  0 (1-34)

and the analogous with K ' in the place of K .

It is now obvious to ask ourself whether these conditions, as well as the 

previous ones, can be reduced to conditions of parity and periodicity for w(z)  .
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A rigorous demonstration based on the general properties of the Hill’s equa­

tion is given in Appendix A whose conclusions can be summarized as in the 

following .

The b.c. w(—K )  =  0,w (K )  =  0 im ply :

either w(z) even with period 4K  

or w(z)  odd with period 2K

The b.c. w (—K )  =  0,w (K )  =  0 im ply :

w(z) =  wi(z)  -f Wi{z) with period SK  

T he b.c. w(—K ) — 0 ,w(K)  =  0 im ply :

w(z) — w\(z) — W2(z) with period 8K  

T he b .c. w (—K ) =  0 ,w(K)  =  0 im ply :

either w(z)  even with period 2K  

or w(z)  odd with period 4K

This is a very remarkable result because in the following 

we will be allowed to translate straightforwardly the physical b.c. into the previous 

simple parity and periodicity conditions for ” the solution ” .

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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1.4 T he Solutions

Once the possible solutions have been identified as those with the properties just 

discussed, we have to express them in a form easy to compute and to handle 

theoretically .

Unfortunately, the up to date literature on this matter, see [1,5 , 6,19,10,9],  

makes use of the more disparate forms either because of different symbolism and 

conventions or because the characteristics of the solutions ( i.e. parity, peri­

odicity, finiteness or fast convergence series representation, etc ... ) are more 

understandable in one than in another form .
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1.4.1 T he analytic form s o f th e L am e’s equation

In the attempt to achieve goals like simplicity, rigour and accordance with the 

main literature, we shall present three main forms of the Lame’s equation . This 

way, we can start making the form (1.27) explicit as it will appear later in Jacobian 

form versus a  .

A +  [h — v(v  -f l)(fcsria)2]A =  0 a  € [if, — 3 if) (1-41)

whose trigonometric form ( see [5] ) and associated change of variable are given 

by :

[1 — (ksinp)2]E — k 2 sirupcospE +  [h — +  l)(fcdin^)3]E =  0 (1-42)

a  € [if, - 3 i f ) (p =  am(a) tp € [ f , — 3 f ) (1-43)

where am is the amplitude function (see also [1] ) whose property 

am(nK)  =  permits a straightforward translation of the periodicities in Ja­

cobian variables to those in trigonometric variables making use of the correspon­

dence i f  —►

As function of trigonometric variables in the conical c.s., (1.41) becomes :

[1 — (kcos<t>)2]^ +  k2sin</>cos(t)i +  [p2 +  +  l)(ksin<t>)2]$ =  0 (1-44)

sin<j> =  cna that is <)>=£— ip <j> £  [0,27r) (1*45)
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The Lame’s equation versus /? assumes the same form (1.41) :

B + [ h  — v(v  +  1 ){ksnPf]B  =  0 fi <E [K, K  +  j 2 K f] (1.46)

but since (3 belongs to a complex interval is preferable to turn it into a real 

variable according to :

U +  [h1 — v(v  +  l)(k'snu)2]U =  0 (1-47)

0  =  K  +  j K ’ - j u  u e [ K \ - K rl (1.48)

Thus, following previous lines, we recover the trigonometric form and related 

change of variable :

[1 — (fc'smi?)2]T — k^sinflcosfl'T +  [h* — v(v  +  l)(A/s*ntf)2]T =  0 (1.49) 

u e l K ’t - K l  t? =  am(u) [= ,_£ )  (1.50)

and using the trigonometric variables in the conical c.s. (1.46) becomes :

[1 — (h'cosO)2]0  +  knsinOcosQQ +  [—/z2 +  v(v  +  l)(fc'sin0)2]0  =  0 (1.51) 

sinO =  cnu that is 0 =   ̂— d that is sinO =  j-pcnfl 0 £ [0, 7t](1.52)

The symbols h,v  will be obtained as separation constants while h!, fi are related 

to them by the :

h’ =  - h  +  i/ ( i/ +  1) (1.53)

fi2 =  h — v(v +  l )k2 (1*54)
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1.4.2 T he analytical form of the solutions

The representation problem of the Lame’s solutions with given parity and peri­

odicity was successfully treated by Ince in 1940 [5, 6] .

His conclusion was that all the solutions we are interested in can be ex­

pressed as series whose coefficients are given by a three-terms recursive formulae.

Moreover when the series are not finite, their convergence can be greatly 

enhanced when trigonometric form is used and, especially as k2 —> 1 .

Precisely, if we indicate by Xi the i th coefficient of the Jacobi or Fourier 

series, we have, respectively :

lim =  k2 lim | - ^ - |  =  (^-r— f  < k2 e  (0,1) (1.55)
I-+OO X { - 1 *-*■ 00 X i - 1 K

The Fourier form presents two more advantages consisting in the orthogonal 

properties, of great utility in the applications, and in the easier computability of 

the circular functions in respect of the Jacobian ones ( see Appendix in [1] ) . In 

addition, during the study of the singularities we need only the first fundamental 

term of the series, which is easy to turn into Jacobian form, if necessary .

Furthermore, when an accurate complete solution is needed, we can express 

it straightforwardly in terms of the conical trigonometric coordinates 6 and <f> by 

simply shifting by  ̂ those relative to and <p as indicated in (1.44,51) .

T he continued fraction properties

The Fourier series representation, and then the function it represents, is uniquely 

identified by the succession of its coefficients {Xt} .

They obey a three-terms recursive formula associable to a continued fraction
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whose main properties we now recall ( see [7] pg.60 ) .

In the case of unilateral coefficients, that are those different from 0 only for 

i >  0, the recursivity relations can be expressed using the elements a,-, 6,, c, as :

6o*o "I" C\X\ — 0 t =  0 (1.56)

+  hiXi +  c;+iXi+i = 0  t >  1 (1*57)

whose associated iih approximants are :

* = - t  •  a - 58)
* bi+1 ~  u'+_2̂ 2'

The convergence of the continued fraction are characterized by the two 

solutions <i,<2 of the equation :

a +  bt +  ct2 =  0 (1.59)

where : a =  lim^oo a, b =  limt_f0o b{ c =  lim^oo c.

If |̂ i | <  |*21 to ensure convergence, it must be :

X-
bo =  qici lim ^  * =  t\ (1.60)

*-*•00 A , _ i

The first equation represents the vanishing conditions for the coefficients 

with negative index and the second their asymptotic behaviour; together they

ensure the uniqueness of the succession {X, } and then of the solution .

We will also meet more general solutions with bilateral coefficients in which 

to the first condition is substituted an asymptotic behaviour at —00 .
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1.4.3 T he analytical expression o f th e solutions

We can now proceed by writing down the Fourier forms of the 6 kinds of solution 

we need consider and which we can characterize by the combinations of the two 

properties (i) of being even or odd and (ii) having periods 7r,2x ,47r .

For simplicity, we indicate by y(v) the generic solution along (p or i? .

Moreover, for each kind there exists ( see [6] ) a numerable infinity of so­

lutions for each v-value and given k 2 . Hence each individual solution should be 

labeled like ( see [7, 6] ) :

»— .(») =  EZ(v, k2) h =  <(fc2) (1.61)

y M » )  =  EZ(v,  i 2) h =  (1.62)

where m is any integer, for example, with the meaning of :

pm =  number of zeros in v € [0,p7r) (1.63)

and px is the periodicity of the solution .

For each one of the 6 kinds of solutions we report in Appendix B the three- 

terms recursive formula and associated continued fraction where we always have: 

t12 =  (^^-)2 • Besides, we show in the same Appendix B the tail-to-head com­

putational implementation of the characteristic equation which permits to satisfy 

the conditions of convergence and uniqueness (1.60), so as to compute at once 

the eigenvalues i/(A:2), h ( k 2 )  and associated succession {X ,} .

28



1.4.4 T he degenerate cases k2 =  0, k2 =  1

There is still something important to say about the characteristic equations which 

can be seen as a transcendental equation in the unknowns v(k2), h(k2), and pre­

cisely how they degenerate into a simple algebraic equation when k2 reaches the 

limit values of its interval of definition.

Geometrically speaking, the conical c.s. degenerates into spherical c.s. and 

the Lame’s equations degenerate one into a harmonic equation and the other into 

a Legendre’s equation ( see [1] ) .

This way, relatively for example to the Lame’s equation along a  we get :

A  +  hA =  0 when k2 =  0 (1-64)

In this situation h becomes independent of v and the solution degenerates into a 

circular function as :

per 2K  or 7r even and odd : 

h =  (2m0)2, Ec™° =  cos(2m0)a

per 4K  or 2x even and odd : 

h =  (2mo +  l ) 2, i?2™0+1 =  cos(2mo -f l )a

per 8K  or Air even and odd : 

h =  (m0 +  i ) 2, E™° =  cos(m0 +  \ ) a

where mo =  0, 1, 2,...

The odd solutions are obtainable from these by simply changing cos with

sin .
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In a similar way, the same Lame’s equation degenerates into a form of 

Legendre’ s equation ( see also [5] ) :

A  +  [h — 1/(1/ +  l)tanha]A  =  0 when k2 =  1 (1.68)

In this condition the simple algebraic relations between h and v  and relative 

Legendre’s functions are ( see also [5, 7] ) :

per 2K, AK or 7r, 2n even : 

h =  (Ami +  I)*7 — (2m i)2, E 2™1 =  Pjf~2mi (tanha)  (1.69)

per 2if, AK or x, 2n odd : 

h =  (Ami +  3)i/ — (2mi -f l ) 2, E 2™1+1 =  P ^ 2mi+1\ t a n h a )  (1.70)

per SK  or An even and odd : 

h =  (2mi +  1)^ — (mx)2) E ™1 =  P ”~mi (tanha) (1*71)

where mi — 0 ,1 ,2 ,... .

Moreover, in our applications Lame’s equations along a  and /? have to be 

valid simultaneously, the first with parameter k2 and the second with parameter 

k '2 . Hence, when the degeneracy k2 =  0, k '2 — 1 occurs, one lv a lu e  (1.65,66,67) 

has to coexist with one algebraic equation (1.69,70,71) written with h! in place 

of h .

By the system of these two equations we determine the indefinite numerable 

possible values of /imo.m^O), */mo>mi(0) .

Analogously, when the degeneracy k2 =  1, k '2 =  0 is considered, we deter-
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mine the values /imo,mi(l), •

The knowledge of these exact values are not just a scientific curiosity because 

they provide the im portant starting and ending points in the implementation of 

the algorithm determining */, h versus k2 .

In particular in our applications the i/(0)-values will always be integers 

while, correspondently, i/(l) =  i/(0) -f 1 or i/(l) =  1/(0) ±  \  .

Under the same conditions, h(0) will always be the square of an integer, 

while h(l)  will be integer or an odd half of an integer .
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Chapter 2 

THE E-FIELD 

SINGULARITY VECTOR

2.1 Introduction

This Chapter begins by dealing with the exact solutions of the scalar wave 

Helmholtz’s equation satisfying the b.c. pertaining to the sector and double 

sector perfect plane conductor.

The problem is a three dimensional scalar one which, in the more appro­

priate geometry of a conical c.s., is reduced, in fact, to finding the solutions of 

a Bessel’s equation and two Lame’s equations . As the first are well known, 

the problem is led again to determining for every sector aperture <r E [0,27r] or 

double-sector aperture a  E [0,7r] the eigenvalues spectrum {v, h] and eigenfunc­

tion spectrum {B({3),A(a)} for a two-dimensional Sturm-Liouville problem.

The theory just developed in Chapter 1 permits the determination of these 

spectra with an accuracy which has never been reached before for the plane sector

32



( see [10, 9,17,14] ) and, as far as we know, for the first time for the double-sector.

Furthermore, from these spectra are recovered those relative to other five 

novel derived wedges geometries by, say, simple identification of sub-spectra. This 

is possible because the conductor relative to these wedges fit, beside the sectors, 

some others degenerate surfaces, that are planes of symmetry, so as to realize 

those geometries that are met especially in boxed waveguide discontinuities or 

antennas .

In microwave (3 — 30 GHz)  and millimeter waves (30 — 300 GHz)  integrated 

circuits, only the tip wedges of these ideal structures are involved and only the 

knowledge of the main EM characteristics might suffice there when the frequencies 

are not too high and dimensions sufficiently small .

For this purpose, the Chapter will end by presenting the more accurate 

static E-field solutions subjected to successive approximations till a final E-field 

singularity vector is recovered that maintains just the correct satisfaction of the 

regular and singular b.c. .

The whole topic finds its location in the general context of diffraction by 

objects with edges, corners, tips etc... that has occupied the attention of several 

authors ( see [23, 13, 12] and literature quoted there ) since Sommerfeld solved 

the classic case of a half plane .

Analytically speaking, the plane sector and double-sector are ” double dis­

continuities ” , for the straight edges represent a discontinuity in the scattering 

surface since a normal cannot be defined univocally there . On the tip, however, 

also the tangent to the edge is undetermined .

Several authors like Kraus [21], Radlow [22], Jones [24] have made con­

jectures, centred particularly on the unicity of the singular solution, based on
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approximations and physical reasoning .

Moreover, if we consider the aims of this work, the present approach seems 

to be redundantly rigorous, but a few theoretical and applicative motivations 

indicate the contrary . For instance the Green’s function for the sector can be 

determined from the spectrum as indicated in [10] and it should be possible to 

identify a ” scattering coefficient ” for the tip using the procedure given in [23] .

Closer to our applications is the problem of representing an unknown 

diffracted field by means of an orthogonal, complete set of functions satisfying 

the b.c. . As a whole, these conditions cannot be satisfied by the EM field spec­

tra. Hence in common microwave and millimeter waves applications it would be 

helpful to be able to express the unknown field on a finite plane surface accord­

ing to a simple set of orthogonal and complete functions times a simple function 

satisfying exactly the b.c. pertaining to one or more wedges linked together .

Specifically to this b.c.-satisfying function, which we name singularity func­

tions, is entrusted the task of describing exactly the distribution of zeros and 

singularities over all the conductor surfaces, edges and vertices of the compo­

nents of the EM fields .

From this point of view, the work of this Chapter can be summarized as a 

procedure starting with the determination of the complete spectrum of solutions 

for the static E-field with the purpose of formulating the easiest possible E- 

field singularity vector still satisfying exactly the b.c. on the conductor and 

featuring its main behaviour on its vicinity . The singularity vector so defined is 

independent of frequency ( see [13] ), in accordance with a classic result which 

states that approaching a conducting surface by a quantity much smaller than 

the wavelength, the dynamic solution converges to the static one .
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2.2 Solution o f th e scalar H elm holtz’s equation

It has been proved ( see for instance [12] pp.1762 —1767 ) that in the geometry of 

a conical c.s. the solutions of the general vector wave equation for the EM fields, 

as well as those of the Laplace’s equation for the static E-field, axe obtainable by 

simply applying vector operators to the solutions of the scalar wave Helmholtz’s 

equation for a potential function :

V 2 cl’,w) 4- K2ty(r,/3,a-,uj) =  0 (2.1)

A sinusoidal excitation will be always considered so that the time depen­

dence is included in the wave number k = Uy/jH, where u  =  2 irf  is the angular 

frequency , /  is the frequency and, finally, fi and e are respectively the magnetic 

permeability and dielectric constants of the medium which, in first approxima­

tion, we regard as homogeneous.
A ^ AIn the conical c.s. described in 1.2.2 and shown in Fig. 1.5, r,/?, a

A A A
( or r , 0, <f>) constitute a proper set of three unit vectors and the metric coefficients 

( see also [11] pp. 1 — 3 ) are given by :

<7n  =  1 £22 =  (kr)2(sn2a — sn2(3) <733 =  (kr)2{sn2p — sn2a) (2.2)

9  ̂ = (911922933)^ = j{kr)2 (sn2a -  sn 2/3) (2.3)

Hence the scalar operator V 2 in (2-1) can be written explicitely as :

d (<72 dijA d ( g i  d ( g i  2 1 , .
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W ithout invalidating the generality of the solution, we can limit the atten­

tion to just the separable forms :

w) =  R(r\u)B(P)A(a) (2.5)

where the space and frequency dependence are separated by ; .

W ith this position, (2.1) separates into the three following ordinary differ­

ential equations :

R  4— R  +  [ft2 — +  l )- ^r L r£
B  -\-\h — v(v +  1 )(ksnf3) 

A  4- [/i — v(v +  1 )(ksna)

R  = 0 

B  = 0 

A = 0

(2 .6)

(2.7)

(2 .8)

where v and h are two generic separation constants .

The general solution of the spherical Bessel’s equation (2.6) is chosen for a 

reason which will appear in Chapter 3, in the form :

R(r]u)  = C $ \ n r )  +  D h^(K r)  =  C\ — Jv+i(Kr) +  D\ -*-Hv+i (nr) (2.9)
/cr 2

where the first solution is the spherical Bessel function of 1st kind, the second 

solution hj,2) is an Hankel function of 2nd kind while v is their oder and C, D  are 

the linear combination constants .

Incidentally, R is the only part of W that is dependent on u  through the 

factor «r, so that frequency, medium and radius act on it in the same way, that 

is, as a change of scale .

The differential equations (2.7,8), together with the b.c. along a,/? of the
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kinds considered in 1.3.4, constitute a two-dimensional Sturm-Liouville problem 

with general solution :

B(P) =  E£*(/?) +  FJ*{0) (2.10)

A(a) = G # ( a )  +  H J? (a )  (2.11)

where are the l*1 and 2n', solutions of 1“  kind of order v  and degree h of

the Lame’s equations, while E,F,G,H are the linear combination constants .

Some preliminary properties of these solutions can be obtained also consid­

ering the associated 2-dimensional Sturm-Liouville operator defined as in [10].

First of all, the b.c. require the solutions or their derivatives to vanish, but

not simultaneously, thus for the linear independence of £, T  the solutions B , A

are reduced to just £*br T ,  but not to any of their linear combinations .

The operator associable to the system (2.7,8) and specified in [10] is self- 

adjoint and positive definite and it can be easily proved looking at (2.6,7,8) that 

for any possible v >  — - there is one v <  — |  which gives the same solution . 

Furthermore no solution occurs in v € (0, —|] ,  for, without loss of generality, we 

can choose :

v > 0 (2.12)

and for every v there exist at most a finite number of h-values >  0 (see (1.4.4)) 

and hence of eigenfunctions .

As a whole, for any couple of b.c. along a  and ft and for any geometry, i.e. 

given &, a spectrum of eigenvalues {v,h}  and eigenfunctions {£?(/?),A(a)} are 

identified .

From another point of view, because of the usual properties of the spectrum
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of solutions of a differential equation, the individual equations and relative b.c. 

can be satisfied for each given v by a numerable infinity of h values and pair 

of relative eigenfunctions . The spectrum of solutions so obtained constitutes a 

complete orthogonal set in the intervals /? € [K, K  + j2K ']  or a  £ (—3K ,K ]  

respectively, which in particular, are arcs of circle on the plane y =  0 

( see Fig. 1.7 ) .

The spectrum of the whole system presents instead bi-orthogonal properties 

on the sphere with weight function (sn2a  — sn2/?), i.e. ( see [9] ) :

fK  rK +j 2K '  t t
/ _  L - r  A *l(a )B »l(P)A »l(a )B SAP)(sn a  ~  sn /3)dadfl = 0 (2.13)

• / Of — — 3 j \  v  p — A
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2.3 Static E-field spectrum  

for the sector and double-sector

In order to obtain maximum simplicity of the solutions in the sense specified in

1.3.3, the sector and double-sector are disposed in a conical c.s. as in Figs. 2.1,2. 

There we highlight the degenerate coordinate surfaces on the plane y =  0 and 

associated values of the variables a , p  and of the real variable u defined in (1.48).

For any given e, and hence k =  sine, we obtain the acute sector and double­

sector of angular aperture <r =  2e of Fig. 2.1a,b as well as the obtuse sector of 

angular aperture a  =  2(tt — c) of Fig. 2.1b .

The static E-field generated by a static charge induced on these conductors, 

can be derived from a potential V  :

V (r ,P ,a )  = lim ( r , /?,<*; u;) =  $ (r ,/? ,a ;0 )  =  R(r; 0)B(P)A(a) (2.14)
u>—*0

according to the gradient expression in conical c.s. :

R B A  P + ------. RP A---- --- $  + ------ , R^ A---- --- a
kry/sn2a  — sn2P kry /sn2P — sn2a

(2.15)E =  - \ j - V  =  -

The Bessel’s R solution degenerates now into the exponential one :

R(r) =  C rv +  (2.16)

The solutions for A  and B  instead can be recovered by applying the b.c. . 

These are relative to the sector surfaces P =  K ,K  + j2 K ' and a  =  —K , K  and 

can be obtained by means of physical considerations and using (2.14,15) .
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a) b)

Fig. 2.1: plane acute a) and obtuse b) sector

Fig. 2.2 : plane double sector
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This way, we note that the conductor is an equipotential surface where, 

without loss of generality, we may set V  = 0 . From (2.14) it follows that if the 

conductor lies on a surface a = K  or —K  then A(a) — 0 there and analogously 

for B (p ), when the conductor fits the sectors /? =  K  or K  +  J2A7 .

In second instance, since the static charge lies completely on the plane y — 0, 

the field component Ey must vanish on the portion of this plane that is adjacent 

to the conductor . Introducing this symmetry property in (2.15), we get the 

further conditions A  =  0 for a surface a  =  constant, whereas B  — 0 on a surface 

/? =  constant .

Consequently, considering U(u) in the place of B((3) ( see (1.47) ), the full 

conditions to be satisfied in the three situations of Figs. 2.1a-b,2 are :

acute sector

obtuse sector

double-sector <

U (K') =  U (-K ')  =  0 period *8K'

A (K )  =  A (—K ) = 0 —► period *2K  even,4K  odd

U (K ’) = U (-K ')  =  0 -♦ period *8K ’

A (K )  =  A (—K )  =  0 —► period 2K  odd, *±K even

U (K ’) =  U { -K ‘) = 0 -> period 2K ' odd, *4K ' even 

A (K )  =  j4(—K ) = 0 —> period *2K  even, AK  odd

(2.17)

(2.18)

(2.19)

In the above, the use of real variable u permits to recover the sole forms 

of b.c. studied in 1.3.4; also indicated there by a —* are their straightforward 

reductions to parity and periodicity conditions according to the discussion of 

1.3.4 .

It appears now evident that the choice of the position of the acute and 

obtuse sectors is such that A (a ) and B(/3) assume the same value at the meeting
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point z — K  of the intervals for the variables . Hence, they are effectively part of 

the same double-periodic solution whose imaginary period 8K ' is no longer the 

fundamental one, as announced in 1.3.3 .

Analogous properties cannot be obtained for the double-sector for which, 

however, the position of the conductor on the surfaces /3 =  K , K  +  j2 K ' ensure 

that both A(a) and B(/3) are periodic of fundamental period, one being the first 

and the other the second solution of the Lame’s equation, as anticipated in 1.3.3.

W ith these premises, the solution can be finally computed in Fourier series 

form in the manner discussed in 1.4.3 and indicated in Appendix B .

For example, relatively to the acute sector and because of the (2.17), 

(B.20,21) hold with the indicated change of sign; (B.28) holds with k and h 

changed into k ' and b! respectively according to (1.47,48) .

By implementing the two correspondent continued fractions (B.23,24,25) 

and (B.29,30,31,32,33) in the more stable tail-to-head sequence and simultane­

ously solving them, we compute the eigenvalues i/,h versus k2 € (0,1) with an 

accuracy that is only dependent on the maximum truncation index I and on the 

zero-finding procedure used.

For instance, in order to maintain an accuracy of, say, 6 decimal figures, I 

has to increase from a few tens when k2 —> 0 up to a few hundreds when A:2 —► 1 

according to (1.55), as the speed of convergence of the fraction slows down .

The i/, /i-values assumed in the limit situations k2 =  0,1 can instead be de­

termined analytically, as indicated in 1.4.4, thus providing, at the same time, the 

essential start and end points for determining the complete curves v(k2), h(k2), 

as just described .

Explicitly, for the same acute sector, when k2 =  0, k!2 =  1 , using the
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(1.65,66,71) it must be :

b! — (2mi +  1)*/ — raj h =  (2mo)2 or (2m0 +  l ) 2 (2.20)

that is to say :

i/(0) =  mi +  xZMO) =  n period SK ' (2.21)

h(0) =  (2m0)2 =  m period 2K  (2.22)

h(0) =  (2mo +  l ) 2 =  m period 4K  (2.23)

where mo, m \ =  0 ,1 ,2 ,..., and m, n are the two integer values of i/(0), /i(0) .

It can be easily proved that the same values hold for the obtuse sector but 

with the exclusion of mi =  0 .

For the double sector, we get instead in a similar way :

i/(0) =  2mi +  1 +  \A (0 ) =  n period 2K ' (2.24)

*/(0) =  2mi H- y fh (0) =  n period 4K f (2.25)

h(0) = (2m0)2 =  m period 2K  (2.26)

h(0) =  (2mo +  l )2 =  m period 4K  (2.27)

So that for the single couple of curves */(fc2), h(k2) we choose the 1/, ^-values 

corresponding to the given periodicities .
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On the other hand, when k2 =  1, kn =  0 we get for the sector :

„ 2/(1) =  2mi +  m0 +  l  =  n +  i  
periods 2 K ,4 K  (even) , 8K f  ̂ (2.28)

/i(l) =  4mi(mi +  m0 +  1) +  m0 -f \

, 2/(1) =  2mi +  m0 +  i  =  n +  !
periods 2AT,4A' (odd) , 8K ' { 2 2 (2.29)

h(l) = 4m1(m1 +  m0 +  2) +  3m0 +  |

And, finally, for the double-sector we obtain :

z/(l) =  2mi +  ^ ' ( 1 )  =  n period 2K  (2.30)

i/(l) =  2m\ +  1 +  ^ ' ( 1 )  =  n period 4i f  (2.31)

/^(l) =  (2mo)2 =  m  period 2K f (2.32)

/fc'( 1) =  (2m0 +  l ) 2 =  m  period 4K* (2.33)

These simple formulae can be interpreted by saying that for the acute sector 

the upvalues start from any integer n for the terminating wire (see also Fig.4-7), 

corresponding to k2 =  0, and increase monotonically up to n -f ^ fo r the half 

plane, corresponding to k2 =  1, continuing to increase for obtuse sectors up to 

n *f 1 fo r the plane conductor associated again with k2 =  0 (  see also Fig. 2.3 )  .

The h-curves follow similar rules starting from the square of any integer 

number and ending at the square o f the successive, however, in general, they no 

longer increase monotonically (  see also Fig. 2.3 )  .

The i/(k2), h(k2)-curves for the double-sector are easier, as i/ starts from any 

integer for the wire (k2 = 0) and increases monotonically up to the successive
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integer for the plane conductor (A;2 =  1), whereas the ^-curves start from any 

square of an integer for the indefinite wire (k2 =  0) and increase monotonically 

up to the integer recoverable from (2.32,33) for the plane conductor (k2 =  1) as 

also indicated in Fig. 2.4 .

These repetitive properties of the spectrum {v>h} permit to limit the a t­

tention, for instance, to just the first 15 of their numerable double infinity . As 

a way of example, relatively to the acute sector, we report in Appendix C the 

numerical evaluations of v(k2), h(k2) for steps of 0.02 of k2 and with an accuracy 

of 6 decimal figures .

More visually, the above reported properties of the curves v(k2)y h(k2) can 

be singled out from the plot in Fig. 2.3 for the sector and in Fig. 2.4 for the 

double sector .

When the zero-searching-procedure ends successfully, just by looking at the
•  •  •  •  •  X '  •  •  •ratio of the successive series expansion coefficients -^ tl in the continued fraction, 

we recover without any further operation the succession {A,} within an arbitrary 

multiplicative constant, and, then, the solution itself .

In Figs. 2.5-6 we draw the first 5 eigenfunctions normalized with respect 

to the maximum value relative to the particular 90°, 270° sectors corresponding 

to k2 =  \  . They show explicitly all the different variables previously introduced 

for various reasons in the symmetric intervals 0, (j> € [—27r, 27t], where all their 

periodicity and parity properties are identified . Similar graphs are reported in 

Fig. 2.7 for the right double-sector with k2 =  1 .

In order to make these eigenvalue and eigenfunctions spectra readable, we 

present now a enumeration that is slightly different from that presented in 1.4.3, 

but closer to those used in waveguide theory . In fact, we label the single eigen­
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value with two integer (t’1, 12) defined so that i/(0) =  *1 +  *2 while h(0) — i\. 

Relatively to the eigenfunctions instead, for the same reason of better readabil­

ity, we produce artificially a cusp in the point correspondent to the conductor 

simply by changing the sign of the functions after it . In these drawings i\ in­

dicates the number of zeros in 0 £ (0 ,7r) while *2 indicates the number of zeros 

in <f> € (0 ,7r), that is to say, the zeros other than those possibly present on the 

conductor along $ and halve of those along <j> . This permits to retrieve the 

waveguide convention ( see [25] ) where the single modes were labeled by (*1, 2*2) 

and the fundamental one by (0,0) .
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Fig. 2.3 : first 15 eigenvalues {v(k ,̂fr(k^} for the sector
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Fig. 2.4 : first 15 eigenvalues {v(k ,̂/7(k^} for the double sector
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Lame's functions A(a)

TTO

103

2K -K 0 K 2K
- n  -k /2  0  71/2 tc q>

3/27t 7i tc/2  0  - tc/2  <!>

Lame's functions B(p)

f j f /lo /

K+]3K’
-2K’

K+j2K'
-K’

K+jK'

0 K'
- k  - k /2  0  k / 2  k  d

3 /2tc k  k / 2  0  - tc /2  0

Fig. 2.5 : first 5 eigenvalues (B(P),A(a)} for the acute sector
49



Lame's functions A(a)

2K K 0 K 2K
- r e  - r e / 2  0  tc/ 2  tc cp

3 /2 tc 7c 71/2 0  - tc/2  $

Lame's functions B(P)

K+j2K'
-K’

K+jK'

0
K-jK' p 

2K’ uK'
- re  - tc /2  0  tc/2 k V
3 /2 jc re tc/2  0  - ji/2  0

Fig. 2.6 : first 5 eigenvalues {B(P),A(a)} for the obtuse sector
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Lame's functions A(a)

-2K -K 0 K 2K
- k - k /2 0 k / 2 K
3/2 tc K k /2 0 - k /2

Lame's functions B(p)

a
<P
9

P
u
0
0

Fig. 2.7 : first 5 eigenvalues {B(p),A(oc)} for the double sector
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2.3.1 S tatic E-field spectra for com posite sectors

There axe five more conductor wedges geometries that we can easily analyze 

making use of the results just obtained for the sector and double sector . These 

wedges are mostly enclosed in metallic waveguides, or antennas making use of 

the image principle in order to reduce the burden .

They can be named the half acute and obtuse sector, the half double-sector 

the sector on a plane and the half sector on a plane, and can be drawn respectively 

as in Figs. 2.8a-b,9,10,ll .

Geometrically speaking, they can be obtained by inserting some plane con­

ductors on the symmetry planes of the conductor for Figs. 2.8a-b and of the 

double-sector for Figs. 2.10,11,12 . These planes fit the other degenerate surfaces 

of the conical c.s., i.e. a  =  0 ,2K  and /? =  K  + j K \  that is u =  0 

(see Figs. 1.6,8).

Analytically speaking, all these new b.c. can be reduced to periodicity 

conditions ( see [7] p.64 ) with a procedure completely similar to that reported in

1.3.4. Incidentally, the latter indicate that the spectra for these new structures 

are a selection of the spectra relative to the fundamental sector and double- 

sector . To be precise, the condition V  =  0 on the inserted plane select among 

the conditions (2.17,18,19) the following ones :

half acute sector
U (K ') =  U (-K ')  =  0 -  p. *8K ', (0,1)

A (K ) = A(0) = A(2K ) =  0 - t p .  *4K(o.), (0,1)
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half obtuse sector

half double-sector <

sector on a plane <

half sector on a plane

U (K') =  U (-K ')  =  0 -4 p. *8K \  (0,1) 

A (K )  =  >1(0) =  A(2K ) =  0 -> p. *2K{o.), (0,1) 

U(K') =  t f ( - t f ')  =  0 -* p. *2ff,(o.),4lir/(e.), (0,1) 

A (K )  =  >1(0) =  A{2K) =  0 -> p. *4K (o .)y (0,1) 

U (K ’) = U(0) =  0 -> p. *2K ’(o.), (1,0)

A (K )  =  A ( - K )  =  0 -+ p. 2 K (e .)* 4 K (o .), (1,0)

U (K') =  If(0) =  0 -> p. *4K \e .) ,  (1,1)

A (K ) = >1(0) =  A(2K ) = 0 p. *4K(o.), (1,1)

(2.35)

(2.36)

(2.37)

(2.38)

Where ”p.” stands for "period”, (e.),(o.) stand for even, odd respectively 

and the two integers between ( ) are the labels characterizing the fundamental 

mode for these geometries. The periodicities related to them are those indicated 

with *, as recoverable by remembering the meaning of the two integers and looking 

at Figs. 2.5,6,7; from the latter, it also appears that v is always >  1 .

2.3.2 Com parison o f th e approaches and results

It is perhaps appropriate to spend a few words about the various approaches used 

and degrees of accuracy reached over the years in determining the spectrum of 

eigenvalues and, in particular, the fundamental one that is responsible for the 

main EM fields behaviour by the conductor .
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One of the most complete works was that already mentioned by Satterwhite 

[10], who used the present approach, but focused the attention on the quarter 

plane, for which he determined the first 192 eigenvalues and eigenfunctions so as 

to produce a very complete Green’s function for it . He reached an accuracy of 4 

decimals aided by a graphic method in order to identify the intersections in the 

locus of possible v and /i-values, for a given k2, with a view to determining the 

approximate starting solutions.

Our approach, instead, starts from the exact v, h limit values for k2 =  0,1 

and uses them as first approximations to the values relative to a small variation 

of k2. By successive steps, the whole curves u(k2) ,h (k 2) are recovered with an 

accuracy up to 6 decimals and more .

Authors like De Smedt [14] see the sector as a particular cone with arbitrary 

cross-section and solve numerically the eigenvalue problem by an application of 

the variational principle reaching, with some difficulty, the accuracy of 5 decimals.

One of the more recent works by Boersma [17] analyses the general problem 

of a cone with elliptic section whose b.c. provide a periodic and an aperiodic 

Lame’s function. No continued fraction exists for the aperiodic solution and 

consequently the accuracy of 5 decimals is reached somewhat laboriously .

Several other works have dealt with this problem, but the ones quoted are suf­

ficient to let us conclude that the present approach, even at the price of an higher 

theoretical effort, produces the most accurate results available today and indicates 

that the ultimate goal in this direction would possibly be a further simplification 

due to the property of double periodicity o f the solution .

In fact, we have to consider that this property simplifies considerably the 

problem when fundamental periodicity occurs, as in the Lame’s polynomials .
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acute a) and obtuse b) sector

Fig. 2.9 : half double sector ^

Fig. 2.10 : sector on a plane conductor Fig.'2.11: half sector on a plane conductor
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2.4 T he m ain behaviour and singularity vector  

o f th e E-field in trigonom etric variables

There is still a couple of physical conditions to be satisfied by (2.14,15), as stated 

in 1.3.2, and, precisely, that of smoothness at the origin and another condition 

at infinity .

Smoothness at the origin requires V^O,/?, a )  to be independent on (3 and a , 

but, as V  vanishes identically on the conductor, it must also vanish at the origin, 

that is to say :

R(r) = rv (2.39)

On the other side, a physical condition at infinity can be the finiteness of the 

energy (oc f  \E\2dv) stored in the space around the conductor, so that necessarily, 

lim ^oo E  =  0, which can be satisfied by an i?-solution of the form :

R(r) = r - (‘,+1) (2.40)

In practical applications, we are asked to analyze wedges making part of 

a printed circuit, so that whenever we are interested in the El-field behaviour 

in a limited region containing the tip, we use (2.39), while, if the region is the

indefinite space we use (2.40) and, finally, if the region is limited and does not

contain the tip, we can use the complete (2.16) .

Naturally, we limit our attention to the region around the tip, where, to­

gether with (2.39), we express A (a ),B (fl)  preferably in trigonometric variables 

like $(<^), 0(0) respectively .

56



For this purpose, the metric coefficients become :

, (k2sin2<l> + k'2sin20) 2(k2sin2</> + k'2sin2Q) , x
* ‘ =  1 g”  =  r  1 - J b W g  g33 =  r  i - * w *  (2-41)

Hence, the static E-field can be explicited as :

E  = -
_  A  I 1  —  k ' 2COS20  •  A  /  1  —  k 2c o s 2 <j> •  *

r  k 2s i n 24, +  k ‘2s i n 2$  + V  * 2 s « ' n 2 0  +  k ' 2s i n 2 6  *
r1'" 1

(2.42)

The above shows clearly the presence of the tip singularity whenever i/ <  1. 

This is matched to a — |  degree singularity of Ee, Ej, along the conductor edges, 

where two among the values 0 =  0, x  and <l> =  0 ,7r occur simultaneously in the

t e r m  y jk * s in 2<f>+k'*sin29 *

In conclusion, the E-field fundamental modes for the sector and double­

sector assume primary theoretical importance because their singularities on the 

tip represent there the main behaviour of any diffracted E-field while the dis­

tributed singularities along the edges, are common to all the modes .

Nevertheless, applicatively speaking, the rigorous expression of the funda­

mental mode in the form (2.42) is not particularly helpful, if we except the special 

case in which the E-field is conveniently expressible in terms of the spectrum itself.

More often, only its main behaviour is sufficient. Hence, we have to formu­

late it as a simple function which still satisfies exactly the b.c. inclusive of edge 

and vertex conditions .

Ideally, this could be used as a ” weight function ” for a complete and or­

thogonal set of functions used to represent the E-field on some convenient surfaces 

along the circuit and ensuring exact satisfaction of the b.c., locally pertaining to
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one of the 8 ideal structures in question .

The main behaviour is due to the fundamental mode, which is identifiable 

by means of its periodicity and parity as indicated by * in (2.17,18,19) for the 

fundamental sectors and by (2.34,35,36,37,38) for the composite wedges .

As a way of example, we determine explicitly the functions R(r), 0(0), 

for the particular, more useful situation, of k2 =  0.5 . The v-value and the series 

coefficients {A,} characterizing these functions are reported in Table 2.1 .

The coefficients show a clear dominance of the term with fundamental period 

so as to justify the pseudo-harmonic form of 0(0), 4>(<̂ ) shown in the Figs. 2.5-6- 

7. The number of oscillations and parity are of fact maintained for any k2 value, 

including the case k2 =  0, when only the first coefficient is present, and k2 — 1 

when the function degenerates into one of Legendre’s .

In view of simplifications, we can note that in proximity of a zero of 0 ,  $  

on a conductor surface, the terms of their series representations, for instance that 

in (B.2), go singularly to 0 because the conductor surface always fits some of the 

particular coordinate values 0 =  0, 7r or ^  =  0, 7r, 3^ .

W hat is more, the asymptotic behaviour of these terms on these zeros differ 

from each other by a multiplicative constant, so that the asymptotic behaviour 

of 0(0) and $ (} )  is correctly represented by the whole series as well as by its

fundamental term . The latter, depending on the parity and periodicity, can be

written as: t
1 period ir sin28

cosS period 2ir sinS  /  °dd (2.43)even

cos\ period Air s in |2 ^  2 

where 6 stands for 0 or ^ according to the context .
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Then, if we consider, for instance, the acute sector, a simplified trigonomet­

ric expression of the E-field (2.42) which still satisfies exactly the b.c. 

is :
0 a 1 I 1 — k'2cos2Q . 6 a

=  ^-vco s-  r +  \

This equation describes in quite an easy analytical way the map of singu­

larities and zeros on the conductor as a product o f the singularity on the tip, 

formulated by the term rv~x, with that along the edges, formulated by the term 

y /fc2sin2<f>+k,'̂ sin20 ’ an^ w z e r o s  071 ^ ie conductor surface, formulated by the 

eigenfunctions c o s |,s m | .

Remarkably, these simplified forms are valid for every sector or double-sector 

aperture only changing the j/-values . For this purpose, we collect in Table 2.2 the 

values of rc =  i/(<t) — 1, namely, the degree of electric singularity, for cr-steps of 5° 

or 10° accurate up to 7 decimal figures for all the 8 geometries; values relative to 

apertures not reported in the Table can be obtained by means of interpolation .

This is why we name the expression (2.44) E-field singularity vector in 

trigonometric form, which, together with its easier expression in rectangular co­

ordinates, constitutes one of the main goals of the work .

(2.44)
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2.4.1 T he m ain behaviour o f th e  density  o f charge

A dual way of implementing field analysis algorithms makes use of the density of 

charge on the conductor which presents the advantage of being a bi-dimensional 

function .

The surface density of charge is related to the diffracted fields as :

p ,  =  eE- n= ±eE„ (2.45)

where n is the outward pointing unit vector normal to the conducting surface, c 

is the dielectric constant of the media in contact with it, while the ±  signs refer 

to En going into or out of the conductor surface respectively . According to this 

definition, p9 assumes the forms :

\p.\ = f\E*\ = A in 0 =  0,jt (2.46)

\ p , \  = t\Ee\ =  in ^  =  0, jt (2.47)

The validity of the above equations could be queried at the two edges and 

at the tip, where the normal to the conductor can no longer be univocally defined 

and the expressions become singular . However, we can anticipate a result proved 

for the general dynamic situation which asserts that there can not exist an isolated 

charge on the conductor, that is to say, the density of charge changes continuously 

on it and assumes the limit value (2.46,47) when 0,<j> —* 0, x .
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CHARACTERISTIC COEFFICIENTS OF THE FUNCTIONS R(r),0(0),$(<()) 
Fundamental mode -  k2=o.s

Fig. 2.1a v = 0 .2 9 6 5 8 4 Fig. 2.8a v = 1 .1 3 1 2 4 8
i 0 - p e r  4-7T e v e n 0 - p e r  it e v e n 0 - p e r  4 tt e v e n 0 - p e r  277 e v e n
-5 0 .0 0 0 0 0 1 - 0 .0 0 0 0 0 3
-4 0 .0 0 0 0 0 9 - 0 .0 0 0 0 2 5
-3 0 .0 0 0 0 7 5 - 0 .0 0 0 2 2 9
-2 0 .0 0 0 7 5 2 - 0 .0 0 2 5 2 4
-1 0 .0 1 0 4 6 8 - 0 .0 4 6 6 8 4
0 1.000000 1.000000 1.000000 1.000000
1 - 0 .0 5 4 6 4 4 - 0 .0 3 3 0 8 4 - 0 .2 1 8 4 6 8 -0 .0 0 9 2 7 1
2 - 0 .0 0 2 6 3 2 - 0 .0 0 1 5 9 4 - 0 .0 0 4 1 4 3 -0 .0 0 0 6 4 6
3 - 0 .0 0 0 2 3 1 -0 .0 0 0 1 8 6 - 0 .0 0 0 3 1 5 -0 .0 0 0 0 6 4
4 -0 .0 0 0 0 2 5 -0 .0 0 0 0 2 1 - 0 .0 0 0 0 3 2 -0 .0 0 0 0 0 7
5 -0 .0 0 0 0 0 3 -0 .0 0 0 0 0 3 - 0 .0 0 0 0 0 3 -0 .0 0 0 0 0 1

Fig. 2.1b i/= 0 .8 1 4 6 5 5 Fig. 2.8b v = 1 .9 5 5 3 2 6
i 0 - p e r  47t e v e n 0 - p e r  27t o d d 0 - p e r  477 e v e n 0 - p e r  77 o d d
-5 -0 .0 0 0 0 0 2 - 0 .0 0 0 0 0 3
-4 - 0 .0 0 0 0 1 4 - 0 .0 0 0 0 2 5
-3 - 0 .0 0 0 1 2 2 - 0 .0 0 0 2 4 9
-2 - 0 .0 0 1 2 8 9 - 0 .0 0 3 2 6 4
-1 -0 .0 2 0 7 0 8 - 0 .1 3 1 9 1 90 1.000000 1.000000 1.000000
1 -0 .1 4 6 1 7 1 0 .0 1 0 8 3 5 - 0 .4 1 7 2 6 1 1.000000
2 -0 .0 0 4 7 3 3 0 .0 0 0 8 0 6 0 .0 1 1 5 4 7 0 .0 0 3 1 5 4
3 -0 .0 0 0 3 8 6 0 .0 0 0 0 8 2 0 .0 0 0 6 4 5 0 .0 0 0 2 4 0
4 - 0 .0 0 0 0 4 0 0 .0 0 0 0 1 0 0 .0 0 0 0 5 9 -0 .0 0 0 0 2 5
5 -0 .0 0 0 0 0 5 0 .0 0 0 0 0 1 0 .0 0 0 0 0 6 0 .0 0 0 0 0 3

Fig. 2.2 v = 0 .7 0 4 3 2 1 Fig. 2.9 v = 1 3 1 1 8 6 3
i 0 - p e r  2 v  o d d 0 - p e r  7r  e v e n 0 - p e r  27t  o d d 0 - p e r  277 e v e n
0 1.000000 1.000000 1.000000 1.0000001 0 .0 1 6 7 1 4 -0 .1 0 2 7 6 2 -0 .0 2 3 5 8 8 -0 .0 2 3 5 8 8
2 0 .0 0 1 2 7 9 -0 .0 0 5 2 8 4 - 0 .0 0 1 5 4 3 - 0 .0 0 1 5 4 3
3 0 .0 0 0 1 3 1 -0 .0 0 0 4 7 3 -0 .0 0 0 1 5 0 - 0 .0 0 0 1 5 0
4 0 .0 0 0 0 1 5 -0 .0 0 0 0 5 2 -0 .0 0 0 0 1 7 -0 .0 0 0 0 1 7
5 0 .0 0 0 0 0 2 -0 .0 0 0 0 0 6 -0 .0 0 0 0 0 2 - 0 .0 0 0 0 0 2

Fig. 2.10 v =  1 .9 1 8 0 2 3 Fig. 2.11 v =  2 .6 8 8 0 0 0
i 0 - p e r  it o d d 0 - p e r  7t e v e n 0 - p e r  77 o d d 0 - p e r  277 e v e n
0 1.000000 1.0000001 1.000000 - 0 .4 3 8 1 2 6 1.000000 -0 .2 0 0 6 6 0
2 0 .0 0 5 7 4 7 -0 .0 0 1 8 4 1 - 0 .0 5 3 4 9 2 -0 .0 0 3 3 5 0
3 0 .0 0 0 4 4 3 - 0 .0 0 0 1 2 5 -0 .0 0 2 9 1 2 -0 .0 0 0 2 4 8
4 0 .0 0 0 0 4 6 -0 .0 0 0 0 1 2 -0 .0 0 0 2 6 7 -0 .0 0 0 0 2 5
5 0 .0 0 0 0 0 5 -0 .0 0 0 0 0 1 - 0 .0 0 0 0 3 0 -0 .0 0 0 0 0 3

Table 2.1: characterization of the eigenfunctions i?(r), 0(0), $(<f>) for the acute 
sector, half acute sector, obtuse sector, half obtuse sector, double sector, half 
double sector, sector on a plane and half sector on a plane respectively indicated 
by their Fig. number .
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3D-WEDGES 

Degree of electric singularity Te

Fig.2.1a,b|Fig.2.8a,b| K -O ° 
2

Fig. 2.10 Fig. 2.11 Fig. 2.2 Fig. 2.9

0.00 0.0000000 1.0000000 0.00 0.0000000 1.0000000 -1.0000000 0.0000000
5.00 -0.0019269 0.9999945 2.50 0.2789616 1.0028342 -0.7719023 0.0009497

10.00 -0.0079077 0.9999121 5.00 03434077 1.0111690 -0.7278994 0.0037824
15.00 -0.0183830 0.9995488 7.50 0.3960998 1.0246795 -0.6931375 0.0084681
20.00 -0.0338525 0.9985454 10.00 0.4435835 1.0430298 -0.6624549 0.0149799
25.00 -0.0546955 0.9963541 12.50 0.4881265 1.0659169 -0.6340G66 0.0233004
30.00 -0.0809612 0.9921894 15.00 0330753^ 1.0930816 -0.6068899 0.0334242
35.00 -0.1121971 0.9849673 17.50 03719618 1.1243052 -0 3  805848 0.0453591
40.00 -0.1474300 0.9732592 20.00 0.6119693 1.1594002 -03547600 0.059126845.00 -0.1853447 0.9553263 22.50 0.6508186 1.1981970 -03291900 0.0747630
50.00 -0.2245699 0.9293612 25.00 0.6884303 1.2405277 -03037155 0.092317555.00 -0.2639208 0.8940430 27.50 0.7246354 1.2862073 -0.4782217 0.1118536
60.00 -0.3025154 0.8492627 30.00 0.7592010 13350107 -0.4526276 0.1334477
65.00 -0.3397789 0.7964791 32.50 0.7918567 13866444 -0.4268797 0.1571889
"0.00 -0.3753875 0.7382866 35.00 0.8223226 1.4407145 -0.4009492 0.1831778
75.00 -0.4092000 0.6775165 37.50 0.8503404 1.4966899 -0.3748310 0.2115239
80.00 -0.4411957 0.6165389 40.00 0.8757026 13538665 -0.3485447 0.2423432
85.00 -0.4714297 0.5570221 42.50 0.8982774 1.6113393 -0.3221360 0.275752790.00 -0.5000000 0.5000000 45.00 0.9180227 1.6680001 -0.2956786 0.311863195.00 -0.5270279 0.4460391 47.50 0.9349886 1.7225767 -0.2692759 0.3507670100.00 -0.5526446 0.3953982 50.00 0.9493082 1.7737333 -0.2430628 0.3925218105.00 -0.5769839 0.3481468 52.50 0.9611799 1.8202266 -0.2172050 0.4371258110.00 0.6001782 0.3042465 55.00 0.9708463 1.8610865 -0.1918973 0.4844843115.00 -0.6223566 0.2636024 57.50 0.9785726 1.8957597 -0.1673581 0.5343655120.00 -0.6436452 0.2260961 60.00 0.9846294 1.9241631 -0.1438215 0.5863474125.00 -0.6641679 0.1916060 62.50 0.9892784 1.9466328 -0.1215263 0.6397625130.00 -0.6840488 0.1600209 65.00 0.9927634 1.9638027 -0.1007028 0.6936545135.00 -0.7034156 0.1312484 67.50 0.9953053 1.9764651 -0.0815593 0.7467763140.00 -0.7224051 0.1052212 70.00 0.9970996 1.9854520 -0.0642704 0.7976561145.00 -0.7411714 0.0819025 72.50 0.9983159 1.9915554 -0.0489683 0.8447508150.00 -0.7598998 0.0612908 75.00 0.9990985 1.9954829 -0.0357391 0.8866607155.00 -0.7788320 0.0434251 77.50 0.9995683 1.9978387 -0.0246241 0.9223365160.00 -0.7983164 0.0283903 80.00 0.9998242 1.9991204 -0.0156253 0.9511953165.00 -0.8189236 0.0163220 82.50 0.9999446 1.9997231 -0.0087142 0.9731090170.00 -0.8417794 0.0074089 85.00 0.9999891 1.9999455 -0.0038427 0.9882884175.00 -0.8699635 0.0018859 87.50 0.9999993 1.9999966 -0.0009547 0.9971206180.00 -1.0000000 0.0000000 90.00 1.0000000 2.0000000 0.0000000 1.0000000

Table 2.2: degree of electric singularity or zero versus the angular aperture cr for 
the sector, half sector, sector on a plane, half sector on a plane, double sector and 
half double sector respectively indicated by their Fig. number .
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2.5 E-field singularity vectors for th e

m ain sectors relatively to  th e m ain axes

Commonly, in EM fields analysis one make use of the more usual rectangular 

space domain ( see Chapters 5,6 ) .

A complete formulation for the change of variables is given in Appendix 

D together with the analogous formulation in respect of a main rectangular c.s. 

X,Y,Z. This is obtained rotating clockwise by 7r — e the axes x  — z  so as to fit 

the positive semi z-axes with a conductor edge; x  will fit the other edge in the 

particular cases of 90°, 270° sector and 90° double sector, which, for this reason, 

we indicate as main sectors .

Any E-field component along the main axes can be obtained from (D.7,8,9) 

using the unit vector relations recoverable from (D. 16,17,18) and the functions 

P, T, So, S<j> defined in the same Appendix D .

E x  =  v(kPcos0 +  k,Tcos<f>)rv~1Q<& +  T  \ k zcos0cos<j> — kT P \ $ 0 0 $  +

P [k3cos0cos(l> -  k'PT] 5 * 0 $  (2.48)

E y  =  vsin6sin<t>Q$ +  T 2cos0S<(>Q$  +  P 2cos<t>S$®$ (2.49)

E z  = viJc'PcosO — kTcos<f)rv~l ®$ — T  \kk'2cos0cos<(> — kT P \ 5 ^ 0 $  +

P  [k2k'cos0cos<j> -  kPT] S+Q& (2.50)

As far the esplicit formulation of the singularity vector is concerned, we 

limit the attention instead to the main sectors both because of their applicative 

importance and their simpler analytic formulation, proposing a generalization in 

the next section .
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T he quarter plane

Starting with the quarter plane of Fig. 2.12 and the half quarter plane, from 

(2.17-34) and Table 2.1 we recover respectively the approximate eigenfunctions :

0  ~  cos\ $  ~  1 (2.51)

0  ~  cos| 4> ~  cos<f> (2.52)

By substituting these into (2.48,49,50) and simplifying so as to maintain

unaltered the distribution of zeros and singularities all over the conductor surface 

and boundary, we obtain the singularity vector in rectangular components :

sex =  r |/-1cos | -f (1 — cos9cos<f>)sin^Sg (2.53)

sey =  sm f $(<£),S  ̂ (2.54)

sez =  r l/~1cos| +  (1 4- cos9cos</>)sin^Sg (2.55)

These forms in the system r, 0, <j> are transformed in that X , K, Z  by using 

(D.21,22) but, in view of application requirements, we will explicit them only on 

the three m ain cartesian planes . On these planes, the following simple relations 

between 9, <j> occur :

X  = 0^<t> = 7c±9  (2.56)

Y  = Q—><f> = 0 ,7r;0 =  O, 7r (2.57)

Z  = 0 ->4> =  9 (2.58)

After inserting the latter into (2.53,54,55), we obtain a first substantial
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simplification that also deals with the indeterminate forms ® in the space r, 0, <j>.

Leaving aside in the formulae so reduced multiplicative constants and/or 

additive functions vanishing on the conductor to higher degrees, we can isolate 

the simpler functions which still exactly satisfy the b.c, on the conductor.

Expressing the latter by means of the variables X, Y, Z  we recover just the 

six simple expressions reported in Table 2.3 :

0 r*-1 J \X Z \r u~2 —r —  -C-2- (2.59)
v ^J\xz\ v W \

In Table 2.3 th e ; stands for intersection while in the last section are reported 

between brackets the forms on the plane Z  =  0 whenever they are distinct from 

the correspondent ones on the plane X  =  0 .

Incidentally, the forms relative to the half quarter sector are exactly those 

in Table 2.3 and for the sole half space x < 0 or x >  0 and with the 

v =  1.131248 >  1 reported in Table 2.1 which indicates the presence of a zero 

rather than a singularity on the tip .

In particular, by consulting this Table we recover all the classic results 

regarding the half plane, i.e. the presence of a zero of degree |  for the tangential 

components and a singularity of the same degree for the normal components .

On the conducting surfaces only the normal components is different from 0 

and proportional to the density of charge according to what said in 2.4.1 .

On the tip, instead, all the components behave like ~̂ x z  ̂ or simply like 

r*'-1 , which denotes an asymptotic behaviour dependent on the direction but 

whose limit value on the tip is always a singularity or a zero of degree never 

greater than v — 1 .
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These behaviours can be easily recognized as the traces on the cartesian 

planes of the three-dimensional matching between the cylindrical and polar sin­

gularities that appear exactly like those noted in Se, S+ while studying (D.23,24).

In order to show the physical continuity of the field of different nature and 

degree of singularity along the conducting boundary we draw in Fig. 2.15 the 

magnitude of E t in the plane of the conductor . Moreover, the En component is 

the continuation of this function on the sector where it is also proportional to the 

density of charge .

For the same purpose in Fig. 2.14 is drawn the magnitude of E on the plane 

Z  =  0, which again shows the continuous passage between a singularity of degree 

—|  along the edge to one of degree i / - l  ^  —0.703116 on the tip .

The three-quarter plane

Following the same lines, the three-quarter plane drawn in Fig. 2.15 and the 

half-three-quarter plane are characterized by, respectively, the eigenfunctions and 

singularity functions :

0(0) ~  s«n | $(<t>) — sin<j> (2.60)

0(0) ~  s m | $ (^ ) ~  sin2(j> (2.61)

sex =  (1 — cosdcos<f>)sin̂ S<j> (2.62)

se y =  cos|$(<^)5^ +  sin^cos(j>SB (2.63)

se z =  (1 +  cosQcosfysin^Sij, (2.64)
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Using the formalism and reasons argued for the quarter plane, the projec­

tions of these forms on the main planes are those collected in Table 2.4 .

The ones corresponding to Figs. 2.13,14 are now drawn in Figs. 2.16,17 

which clearly show a singularity of degree v — 1 a  —0.185345 on the tip that is 

weaker than that of degree —|  along the two edges .

T he double quarter plane

The discussion relative to the double-quarter plane drawn in Fig. 2.18 is sub­

stantially similar . Hence, we may start collecting, in the order, its simplified 

eigenfunctions, those of its half, of a quarter plane on a plane and of a half- 

quarter plane on a plane.

0(0) ~  sinO — 1 (2.65)

0(0) ~  sinO — sin<j> (2.66)

0(0) ~  s tn f  $(<£) ~  1 (2.67)

0(0) ~  s m | $(<!>) — c°s<l> (2.68)

In spite of 4 distinct geometries the singularity vectors can be brought back

to just the forms :

sex =  (1 — cosQcos<j>)Se (2.69)

sey — cos6^{<j>)S^ (2.70)

sez =  (1 +  cos0cos<!>)Se (2-71)
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The projections of these formulae relatively to the double-quarter plane 

on the main planes are collected in Table 2.5, while the graphic evidence of 

the distributed singularities are shown in Figs. 2.19,20 . In this case also, the 

singularity on the tip of degree v — 1 ~  —0.295679 is weaker than —1, which 

corresponds instead to an angular aperture of ~  26°, as can be deduced from 

Appendix C .

The forms relative to the other three wedges are those reported in 

Table 2.5, relative to just the parts of the three main planes belonging to the 

wedges themselves as illustrated in Figs. 2.9,10,11 . Obviously, also according to 

the v-values reported in Table 2.1 a zero is always present on the tip .

68



E-field singularity vector components for a quarter plane
sex sEy(and p, ) 3EZ Sector

on the plane Y  =  0
r"

J \ X Z
0 \J \X Z \rv~2 2: < 0; <t> =  0

r»-i 0 r" -1 ^ > 0; <f> = 0 ,7r, 6 = 0
y / \ x z y ~ 2 0 r"

J \X Z \
z < 0; <f> =  t

0 ... r^~
V f x z J 0 z < 0; 0 =  7r

on the plane X  =  0 (or Z  =  0)

T F i  ( ' ^ • O
rv~h

v l F f r - * Z > 0 ( or X  > 0 )

r""1 r - 1 r ^ 1 Z < 0 ( or X  <  0)

Table 2.3: E-field singularity vector projections on the main planes relative to 
the conductor and geometry indicated in Fig. 2.12; v ~  0.296884 for the quarter 
plane and v ~  1.131248 for the half-quarter plane .

0 = 0

Fig. 2.12 : quarter plane
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E-field singularity vector components for a three-quarter plane
sEx S£y(and p t ) sez Sector

on the plane Y  =  0
0 r

^ x z
0 z < 0; <f> = 0

0 r »-1 0 z >  0; <f> =  O,7r,0 =  0
0

s / \ X Z \
0 z < 0; <f> =  x

rv 0 V IA -Z Ir-2 x >  0; 0 =  7T

y /\X Z \r“~1 0
7 \ x z \

x  < 0; 0 =  7r

on the plane X  =  0 (or Z  = 0)
rv~5

vW "-* ( 5 f t ) Z > 0 ( o r J ^ > 0 )

\Y \ru~2 rv~l | y | r - 2 Z < 0 ( or X  < 0)

Table 2.4: E-field singularity vector projection on the main planes relative to the 
conductor and geometry indicated in Fig. 2.15; v ~  0.814655 for the three-quarter 
plane and v ~  1.955326 for the half three-quarter plane .

Fig. 2.15 : three-quarter plane
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E-field singularity vector components for a double-quarter plane
s Ex SEy(and pB) SEZ Sector

on the olane Y  =  0
r 1'

J\xz 0 y /\X Z \rv~2 z  < 0; <f> =  0

y /IX Z Ir1'- 2 0 r l>
J \  x

z >  0; <l> =  0

0 rv
7 \ x T \

0 0 =  0

r"
7 \ x z j

0 y j \ x z \ r ^ z  >  0;<f> =  tt

y / \ X Z y - 2 0 rv
v m

z  < 0; <!> = 7r

0 rv 0 0 =  7T

on the plane X  =  0 (or Z  = 0)

7 M  ( ^ - * ) 7  W
any Z  ( or X  )

Table 2.5: E-field singularity vector projections on the main planes relative to 
the conductor and geometry indicated in Fig. 2.18; v ~  0.704321 for the double- 
quarter plane, v ~  1.311863 for the half double-quarter plane, u ~  1.918027 for 
the quarter plane on a plane and u ~  2.68800 for the half quarter plane on a 
plane .

Fig. 2.18: double-quarter plane
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Magnitude of the e l e c t r i c  f i e l d  on the p l a n e s  
Y = 0 I Z = 0

mm.

Fig. 2 .2 0Fig. 2 . 19

72



2.6 E-field singularity vectors  

for sectors o f any angular aperture

Although the singularity function forms reported in the Tables 2.3,4,5 would be 

those of most common application, it is also true that because of the evolution 

of fabrication techniques for planar circuits it becomes increasingly im portant to 

avail the analogous forms for sectors of arbitrary aperture a  ( see the taper in 

Chapter 5 ) .

Fortunately, from an inspection of the general formulas (2.48,49,50) and of 

the singularity vectors components for the special cases of k2 =  0.5, we deduce 

the singularity vectors for a sector of any aperture, i.e. k2 €  (0,1) .

In fact, just by using the (D.12,13) for S$, S $ and using the terms between 

[ ] of (2.48,50) for (1 ±.cos9cos(j>) in the expressions relative to the quarter, three- 

quarter and double-quarter sectors, we obtain the singularity functions relative 

to arbitrary acute, obtuse and double-sectors respectively .

Also, their projection on the main axes can be extended directly considering 

that while the first edge still fits the Z  axis, the other edge is no longer coincident 

with the X  axis ( see also Figs. D .la ,lb ,2 ) but rather with the line k 'x  -f kz  =  0, 

i.e. (k2 -  k'2)X  -I- 2kk!Z  =  0 .

A simple inspection of the zeros and singularities in Tables 2.3,4,5 permits 

then to generalize those forms simply by operating the following substitutions:

Z  -► (k2 -  k ^ X  +  2kk'Z  (2.72)

Some care has to be taken when dealing with composite sectors and in the
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limit cases k2 =  0,1 because some new zeros are introduced which do not appear 

in the Tables . For example, in the case of the 90° sector, the median plane 

conductor imposes E x  +  E z  =  E t  =  0 on its surface even though E x , E z  do not 

vanish there, as shown in Table 2.3, except in the limit cases .

For this reason, we postpone the treatm ent of composit sectors to Chapter 

4 when dealing with wedges in spherical c.s. .
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Chapter 3 

THE H-FIELD 

SINGULARITY VECTOR

3.1 T he dynam ic E-field

Following the introductory notes and in the context of the results presented in 

Chapter 2, we are now aware of all the physical, theoretical, computational and 

graphical means necessary to approach the general dynamic problem of diffraction 

by a sector or double-sector with the main purpose of determining the singularity 

vector for the H-field .

We may start by recalling that in the linear, isotropic and homogeneous 

medium surrounding the conductor, the diffracted E-field is a solution of the 

Helmholtz wave equation :

V  x v  x F  -  k2E  =  0 (3.1)
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which satisfies the b.c. on the conductor :

n x E  =  0 (3.2)

As already observed for the static case, the normal n to the conductor is 

not uniquely defined along the edges and on the tip, even though uniqueness of 

the singular solution will be proved without adding further conditions to (3.2) . 

The already stated conditions at the origin and at infinity will be easily satisfied 

simply by choosing particular forms of the solutions so determined.

It is likely to be found ( see [12] ) that the general solution of (3.1) in the 

geometry of a conical c.s. can be derived simply by applying vector operators on 

a scalar potential satisfying again the scalar wave equation (2.1) . This allows 

us the use of all the results obtained in Chapter 1-2 about its solutions .

Actually, three different families of E-field solutions are possible; in terms 

of vector operators and in explicit Jacobian form they look like :

L  =  V *o =  a- t  r + ?  ( j f y  fi « )  (3.3)

M  =  V  x =  - j G  ( j ^ L  p  a )  (3.4)

AT =  I  v  x V  x V =  P + £  [ j f0 (% £ * )  P + £  ( * T )  S] (3.5)

where we use the function and relations obtained from (2.5,6,7,8) :
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3.1.1 Solutions o f th e  scalar wave equation for ^ro?^ri ?^ r2

We can immediately see that the source of the diffracted field is virtually localized 

on the conductor . Thus, in the space around it, it must be V  E  =  V * V^o =  0, 

that is to say =  0 .

Thus, limiting the attention to the vectors M , iV, we can proceed by trans­

lating the vectorial b.c. (3.2) into simple scalar conditions on ^ 1, ^ 2? or better 

on their individual factors A(a),B({3) .

In order to do this, we can note that whenever the conductor fits a surface 

ft =  constant or a  =  constant, (3.2) imposes there the conditions 

M p( r , /?, a ) =  iV/j(r,/?, a) =  0 or Ma(r,/?,d:) =  iVa(r,/?, a) =  0 respectively. In 

accordance to (3.4,5) and (2.5), these conditions become on A(ct),B(f3) respec­

tively :

=  R {r)B {p)A (a)  =  0 /? =  /?,V r,a B(fl) =  0 (3.8)

e_ ( a g d )  =  * k W l B {p )A(a) = o /j  =  /5jVr, a  =* £ (£ )  =  0 (3.9)

or

=  i?(r)^(y0)y4(a) =  0 a  =  a,V r,/? => i4(a) =  0 (3.10)

&  W )  =  =  0 a  =  a,V r,/? =» A(a) =  0 (3.11)

Further im portant conditions on A(a),B(/3) can be identified by considering 

symmetry conditions pertaining to the ” adjacent sectors ” in respect to the 

conducting ones above ( see Fig. 1.7 ) . In fact, because of the coplanarity of 

the latter with the source, that is to say the charge on the conductor, the normal
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normal component of the E-field must vanish there . Using again (3.4,5), these 

conditions pertaining to ” adjacent sectors ” =  constant or a  =  constant

can be explicited respectively as :

^  =  R(r)B(0)A(a) P = P,Vr,a  => B(p)  = 0 (3.12)

^  = W l B ( p ) A ( a )  P = P,Vr,a => B(p) = 0 (3.13)

or

^  = R(r)B(j3)A(a) = 0 a  =  a,V r,/? => A(a) = 0 (3.14)

£  P § ^ )  =  ^ B ( / ) ) A ( a )  =  0 a = a , Vr, ft =» A (a)  =  0 (3.15)

Summing up we can write :

on the sector conductor on the sector adjacent to the conductor 

for M  : A  and/or B  — 0 Neumann b.c. A  and/or B  = 0 (3.16)

for N  : A  and/or B  = 0 Dirichlet b.c. A  and/or B  — 0 (3-17)

The latter are sufficient, according to the modalities exposed in 1.3.4, to sin­

gle out periodicity and parity of the solution from which the spectra of eigenvalues 

{i/j h] and eigenfunctions { v 4 (o ) ,  are recovered .

For this purpose, it is important to note that Dirichlet b.c. are the same 

as in electrostatics, so that ^2 and its relative spectra are identical to and its 

spectra respectively as determined in Chapter 2 .

Equally important is the fact that Neumann b.c. are the same as in the 

static case but with a conductor complementary to the given one . This is ex­

pressed analytically by saying that the -spectra relative to an acute sector are
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those in electrostatics for the complementary obtuse sector and vice-versa .

This simple and remarkable result permits to obtain all the M  and N  solu­

tions with no further computational effort nor further consideration about spectral 

properties with respect to the static .

The same property naturally occurs for the double-sector in the sense that 

^2 is the static determined in Chapter 2 while \Pi is determined like but 

relatively to the complementary double-sector so that it is recoverable from VÊ 

itself by operating the substitutions :

k - + k ',  h{k2) -* h '( lfc'2), v(k2) -* v{k'2) (3.18)

Taking into account these last relations, in fact, also the plots of the first 15 

eigenvalues {v(k2), h(k2)} and first 5 eigenfunctions {B (P ),A (a )}  relative to the 

Neumann problem are directly recoverable from Figs. 2.4,7 respectively, relative 

to the static or ^2 •

For what concerns composite wedges, instead, the ^ -sp e c tra  are selected 

from those relative to the sector or double-sector of origin exactly as indicated in 

the static case .

The -spectra are selected instead in the complementary sector or double- 

sector spectra with the criterion that A (a), B((3) also present vanishing derivative 

( see (3.16) ) in correspondence of the plane conductors .
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Finally, we ought to state that for all the wedges considered the T?-solution 

is given by (2.9), where the explicit expression of the spherical Bessel function of 

the \ at kind is :

As v >  0 ( see (2.12) ), this is the only solution which satisfies the cpnditions 

of smoothness at the origin (1.24) as it vanishes there: the limit value v =  0 will 

be considered in Chapter 4 .

On the other hand, the Hankel function is the linear combination of the \ st 

and 2nd kind of spherical Bessel functions so defined :

W  =  ju +  j K  (3.20)

Its behaviour at infinity is of the type :

p —JKT

lim hW(Kr) =  / /+1)------  (3.21)

That is to say, the fields TV, M  present an out-going wave nature satisfying 

the Sommerfeld radiation conditions ( see also [13] ) .

This said, we limit our attention to the solution (3.19) valid on the tip and 

its neighbourhood .
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3.1.2 Physical considerations on N  and M

The above observations on the ^ -sp ec tra  permit now to draw some important 

physical considerations about the fields M , N  related to them trough (3.4,5) .

Firstly, we note that the ” tie-up” between the above spectra finds its more 

rigourous justification in the classic Babinet’s principle ( see also [13, 23] ) which 

allows replacement of the acute sector problem with the equivalent complemen­

tary obtuse sector problem .

Nevertheless, only very recently it has been explicitely formulated for the 

plane sector and its complementary ( [18] ) in term of fields iV, M  and related 

magnetic field Hn , H m  we define in the next section .

No analogous explicit formulation is available as yet for the double sector 

even though an extension of the previous ones would be quite staightforward .

Secondly, we ought to express analytically the fact N  is the dynamic gen­

eralization of the static E-field . This can be proved by noting that as r  —> 0, we 

have :

^  =  (* +  1 ) U kt) -  ~  („ +  l)(« r)*- (3.22)
ar nr

so that the expression for N  by the tip can be approximated as :

N  ~  (u +  1) uA B  r -\— . A^  H— ; ^ B a
k y s n 2a —sn?l3 k y /» n 2 (3—sn?a

(3.23)

which, apart from the multiplicative factor (i/ +  l ) k' i/ *1, is the static form (2.15).

Furthermore, the dependence of N  only on the product nr yields the min­

imum distance from the tip where the dynamic and static solutions are pro­

portional to each other and where the singular behaviour of the static case ap-
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proaches, in fact, the true field. Quantitatively speaking, we can say that for any 

media and frequency, i.e. k =  there exists a maximum radius rmax defined 

by :

2jt 1
Krmax =  —  rmox =  — <  1 with N  6 [10 -*■ 100] (3.24)

so that for any r  <  rmax the Bessel function in (3.22) approaches a linear be- 

haviour in «r, and the JV-field becomes proportional to the static field according 

to (3.23) .

We can also state again the fact that, physically speaking, N  is originated 

by the distribution of charge on the conductor, whilst the appearance of M  is 

necessarily related to the dynamic effect of moving charges, that is the current, 

on the conductor .
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3.2 The H-field and J-density o f current

From the characterization of the E-field spectra just completed we can deduce 

the spectra relative to the H-field simply remembering Maxwell’s equation which 

link them in the free space surrounding the conductor, i.e :

H  =  — r—  v  x £  (3.25)
JUft

Using (3.4,5) for the E-field, we obtain for H :

S m  =  i  r  + £  [ ,•£  ( * £ i )  % + fa ( s j u i )  a ] } (3.26)

^  =  (3-27)

where 77 =  y / j  is the impedance of the medium .
  ^
The above show immediately that the //m* spectrum is that of M  and con- 

sequently of \Pi, while the Hjq-spectra is that of N  and of ^2 •

Naturally the ^-solutions so identified satisfy the b.c. for the magnetic 

field, which are explicitly :

n - S  = 0 i.e. Hn = 0 (3.28)

where n is the usual normal unit vector to the conducting surface . The tangential 

component instead generates on the conductor the density of current :

J =n xH  i.e. |J |  =  \H,\ (3.29)
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Because of the (3.28-29) we will speak indifferently of density of current or mag­

netic field on the conductor surface .

Finally, looking at (3.4,5,26,27) we point out that the fields N ,H n  con­

stitute an E-mode while M, H\f constitute an H-mode in respect to the radial 

direction .

All these properties allow us to complete the similitude between propagation 

around a sector and in a closed waveguide introduced in 2.3 .

We can also attem pt to draw an equivalent rectangular waveguide in the 

space r, /?, a  or more suitably in the space r, 0, <f> as shown in Fig. 3.1 where 

some walls are effective conductors while others may be thought of as electric or 

magnetic walls, in accordance to which components of E  or H  vanish there .

The so called E and H modes are completely similar to the TM{Xii2 and 

TE{lti2 respectively in any transverse section where they present i*i, i2 zeros apart 

from those possibly present on the conductors along the two dimensions 0, </> .

The situation differs in the longitudinal direction and by the termination 

r =  0 of the guide where the r-dependence is that of j„ or . The usual pure 

propagation term, however, is recovered far away from the origin .

2 k -

K-

Fig. 3.1 : equivalent rectangular guide in the r,e,<|> domain
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3.3 T he H-field fundam ental m ode

and its m ain behaviour by th e tip

A simple inspection of (3.26,27), taking also in account (3.22), indicates that 

by the tip H m  goes like (/cr)1'-1 whilst H s  goes like (kr)17, thus the singular 

behaviour is due to just H m  generated by the satisfying Neumann b.c. with 

minimum v G [0,1] .

The eigenfunctions /?(/?), A(a), ( or 0(0), 4>(^)), pertaining to the funda­

mental mode are then characterized by the followings parities and periodicities:

acute sector <

obtuse sector <

double-sector <

P period 8K \  0 period 4ir (odd) 

a  period 4K  (even) , </> period 2w (odd)

P period 8K \  0 period 4tt (even) 

a  period 2K  (even) , <j> period 7r (even)

P period 2K ' (even), 0 period rr (even) 

a  period 4K  (even) , <j> period 2tt (odd)

(3.30)

(3.31)

(3.32)

The function R(r) is characterized instead by the curve i/(<t) or better by 

the degree of magnetic singularity r/^cr) =  i/(a) — 1 .

Because of the discussed ’tie-up’ between the spectra relative to the Dirichlet 

and Neumann problems, that is to say as a consequence of the Babinet’s principle 

[18], we can state the simple and very remarkable relation between the electric 

and magnetic degrees of singularity for plane sectors and double-sectors :
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Th(<r) =  Te(2ir — a) for the sector (3.33)

Th(a) =  re(7r — (7) for the double-sector (3.34)

For its practical importance we draw the curves relative to the sector in 

Fig. 3.2 and we report an approximate expression around the particular points 

<7 =  0 ,7r, 2tt respectively associated with the semi-indefinite wire, the half-plane 

and the plane conductor . Only at these points, in fact, v can be computed in an 

exact way as 0,^,1 respectively, whereas techniques are available which permit 

the determination of approximate analytical expression around these points .

We have :

=  - i ^ ) 2 +  + 1 ) (2 ^ )4 +

^ [(^ T 2")6 around a =  2ir (3.35)

-  $cos( l ) +  £ c o s2( f ) -  (4r +  -h) cos3( f ) -f 

O (cos4( |) )  around <r =  n (3.36)

t c (<7) =  - 1  +  —̂ 3-̂  around =  0 (3.37)

(3.35) had been first determined using perturbation techniques but, in the 

attem pt to extend indefinitely the number of terms in the series, Brown

( see [20] ) expressed v and h asymptotically about k =  1 that is a  =  2x; the first 

four terms axe just those reported and analogous relation were recovered for h .

(3.36) had been approached instead firstly by Legendre who gives three
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terms . Brown succesfully extended to 4 in the above work [20], also providing 

analogous expression for h .

The accuracy of these two espressions versus the angular distance from the 

points <r =  7r,27r respectively is indicated in [20] .

Relation (3.37) has been, among the others Authors, deduced by De Smedt 

[16] as the limit case of a sharp corner of arbitrary section . He implemented a 

static analysis in spherical c.s. turning the problem of applying the b.c. into one 

of solving integrals of some normal derivatives of the potential along an arbitrary 

irregular boundary . (3.37) results the particular case of a sector in the more 

general formula describing the degree of electric singularity for a solid conducting 

tip .

The complementarity of behaviour for the electric and magnetic singularities 

can be graphically explained if we think in terms of E-field lines on the plane 

facing the conductor and, for what said in 3.2, of the density of current lines on 

the conductor itself as shown in Fig. 3.3 . Precisely, the more reentrant is the 

sector, the more the E-field lines thicken on the tip while the current bends before 

it . Conversely, the more protruding is the sector, the more the lines of current 

thicken on the very tip while the E-field lines rarefy there .

The situation is different for all the other five composite wedges because the 

above defined fundamental H \f-n lode does not belong to the excitable spectrum.

This can be proved in an alternative, more physical way by requiring that 

the EM fields around the conducting sectors and the charge and currents on 

them must satisfy the image principle with respect to the conductor plane(s) of 

symmetry .

For this purpose, Fig. 3.4a shows the typical behaviour of an H-mode

87



0

-0.185343

-0.5

-0.703416

1
0 90 180 270 360

Fig. 3.2 : EM fields degrees of singularity for the plane sector

a) b)

Fig. 3.3 : lines of E andTfor an acute a) and obtuse b) sector
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current while Fig. 3.4b shows the typical behaviour of an E-mode current. 

Only the latter would satisfy the image principle with respect to the median 

plane, like for the structure in Fig. 2.8, and presents necessarily a zero on the 

tip.

Similar arguments are valid for all the other four composite wedges .

Thus, for all them, the fundamental H-mode is just the Hn  associated to 

the fundamental N-field so that the minimum degree of magnetic zeros in the 

origin is related to the degree of electric singularity re by means of :

Th(<r) =  t c{(j ) +  1

We can summarize all these considerations simply by saying that: 

fo r  the sector and double-sector the main H  and E  behaviours are those of the 

fundamental H-mode and E-mode respectively, while fo r  any other case, the main 

behaviour is that o f the fundamental E-mode .

a) b)

Fig. 3.4 : J-current lines relative to a) an H-mode and b) an E-mode
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3.4 T he EM  fields in trigonom etric coordinates

At this stage, all the general properties of the solutions have been pointed out so 

that we are better placed to give them the familiar aspect of trigonometric forms, 

expliciting also the W components R, 0 ,  $  :

H-mode <

E-mode <

m  = f (*,e,*,) e -f (Jiidi*,) $
Hm  =  r  6 + f  2]

N  =  +  l)i2202$2 r + |(ri?2)02$2 0 + ^ (r-^2)02$2
a  a  (3.40)

8 N =  *[§ (i?202*2) 9 - f ( JR2©2^2)

where T,P,S axe the functionals defined in (D.1,2,3) .

Following the lines of Chapter 2, we give a complete characterization just 

for the fundamental H-mode relative to the main sectors, i.e. k2 =  |  , reporting in 

Table 3.1 the v-values and the most significant series coefficients for the functions 

0(0) and Sty) .

In particular, those relative to the composite structure are the same as 

reported in Table 2.1 .

Observations about the dominance of the term with fundamental period 

in the series, which is also the only one to be used in the analysis of the main 

behaviour by the conductor, are completely similar to those argued in 2.4 because 

of the stated relations between the static W and the actual or ^  •

Finally, we collect in Table 3.2 the numerical values of for the eight con­

figurations versus the sector angular aperture . The accuracy of the evaluations 

is at best of 7 decimal figures obtainable without further computation from the 

data in Table 2.2 simply by applying (3.33,34,38) .
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CHARACTERISTIC COEFFICIENTS OF THE FUNCTIONS R(r),e(0),<D(0)

Fundamental m ode - k2 = 0.5

Fig. 2.1a v=0.814655 Fig. 2.8a v =1.131248
i 0-per 4tc odd 0-per 2k  odd 0-per 47c even 0-per 2k  even
-5 -0.000002 -0.000003
-4 -0.000014 -0.000025
-3 -0.000122 -0.000229
-2 -0.001289 -0.002524
- 1 -0.020708 -0.046684

0 1.000000 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 1.000000
1 -0.146171 0.010835 -0.218468 -0.009271
2 -0.004733 0.000806 -0.004143 -0.000646
3 -0.000386 0.000082 -0.000315 -0.0C0064
4 -0.000040 0.000010 -0.000032 -0.000007
5 -0.000005 0.000001 -0.000003 -0.000001

Fig. 2.1b v=0.296584 Fig. 2.8b v=1.955326
i 0-per 7i even 0-per 4k  even 0-per 7c odd 0-per 4k  odd
-5 0.000001 -0.000003
-4 0.000009 -0.000025
-3 0.000075 -0.000249
-2 0.000752 -0.003264
- 1 0.010468 -0.131919
0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0
1 -0.033084 -0.054644 1.000000 -0.417261
2 -0.001994 -0.002632 0.003154 0.011547
3 -0.000186 -0.000231 0.000240 0.000645
4 -0.000021 -0.000025 -0.000025 0.000059
5 -0.000003 -0.000003 0.000003 0.000006

Fig. 2.2 v =0.704321 Fig. 2.9 v =1311863
i 0-per 7C even 0-per 2tc odd 0-per 2tc odd 0-per 2k  even
0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0
1 -0.102762 0.016714 -0.023588 -0.023588
2 -0.005284 0.001279 -0.001543 -0.001543
3 -0.000473 0.000131 -0.000150 -0.000150
4 -0.000052 0.000015 -0.000017 -0.000017
5 -0.000006 0.000002 -0.000002 -0.000002

Fig. 2.10 v = 1.918023 Fig. 2.11 v = 2.688000
i 0-per 71 odd 0-per 7t even 0-per K odd 0-per 271 even
0 1 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0
1 1 . 0 0 0 0 0 0 -0.438126 1.000000 -0.200660
2 0.005747 -0.001841 -0.053492 -0.003350
3 0.000443 -0.000125 -0.002912 -0.000248
4 0.000046 -0.000012 -0.000267 -0.000025
5 0.000005 -0.000001 ________ -0-000030 - - - - - - - - - - - - -O .O Q C O O j

Table 3.1: characterization of the eigenfunctions R(r),  0(0), $(</>) for the acute 
sector, half acute sector, obtuse sector, half obtuse sector, double sector, half 
double sector, sector on a plane and half sector on a plane respectively indicated 
by their Fig. number .
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3D-V

Degree of mag

VEDGES

netic singularity Th
c°
2 fig .2 .ia ,b Fig.2.8a,b| C °

2 Fig. 2.2 Fig. 2.9 1Fig. 2.10 | Fig. 2.11
0.00 0.0000000 1.0000000 0.00 0.0000000 1.0000000 1.0000000 2.0000000
5.00 -0.0019269 1.1665873 230 -0.0009547 1.0009497 13789616 2.0028342

10.00 -0.0079077 13118317 5.00 -0.0038427 1.0037824 13434077 2.0111690
15.00 -0.0183830. 13499530 730 -0.0087142 1.0084681 13960998 2.0246795
20.00 -0.0338525 13847419 10.00 -0.0156253 1.0149799 1.4435835 2.0430298
25.00 -0.0546955 13173220 1230 -0.0246241 1.0233004 1.4881265 2.0659169
30.00 -0.0809612 13479878 15.00 -0.0357391 1.0334242 13307534 2.0930816
35.00 -0.1121971 13766409 1730 -0.0489683 1.0453591 13719618 2.1243052
40.00 -0.1474300 1.4029603 20.00 -0.0642704 1.0591268 1.6119693 2.1594002
45.00 -0.1853447 1.4265126 2230 -0.0815593 1.0747630 1.6508186 2.1981970
50.00 •0.2245699 1.4468623 25.00 -0.1007028 1.0923175 1.6884303 2.2405277
55.00 •0.2639208 1.4636870 2730 -0.1215263 1.1118536 1.7246354 2.2862073
60.00 -03025154 1.4768731 30.00 -0.1438215 1.1334477 1.7592010 23350107
65.00 -03397789 1.4865615 3230 -0.1673581 1.1571889 1.7918567 23866444
70.00 -03753875 1.4931272 35.00 -0.1918973 1.1831778 13223226 2.4407145
75.00 -0.4092000 1.4971126 37.50 -0.2172050 13115239 13503404 2.4966899
80.00 -0.4411957 1.4991488 40.00 -0.2430628 13423432 1.8757026 23538665
85.00 -0.4714297 1.4998941 4230 -0.2692759 13757527 1.8982774 2.6113393
90.00 •03000000 13000000 45.00 -0.2956786 13118631 1.9180227 2.6680001
95.00 -03270279 13001060 4730 -03221360 13507670 1.9349886 2.7225767

100.00 -03526446 13008538 50.00 -03485447 13925218 13493082 2.7737333
105.00 -03769839 13022990 5230 -03748310 1.4371258 1.9611799 23202266
110.00 -0.6001782 13070497 55.00 •0.4009492 1.4844843 1.9708463 23610865
115.00 -0.6223566 13141281 5730 -0.4268797 13343655 1.9785726 23957597
120.00 -0.6436452 13252239 60.00 -0.4526276 13863474 1.9846294 2.9241631
125.00 -0.6641679 13416577 6230 -0.4782217 1.6397625 1.9892784 2.9466328
130.00 •0.6840488 13650273 65.00 -0.5037155 1.6936545 1.9927634 2.9638027
135.00 -0.7034156 13971311 6730 -03291900 1.7467763 1.9953053 2.9764651
140.00 -0.7224051 1.6396502 70.00 -03547600 1.7976561 1.9970996 2.9854520
145.00 -0.7411714 1.6933803 7230 -0.5805848 13447508 1.9983159 2.9915554
150.00 -0.7598998 1.7568773 75.00 -0.6068899 13866607 1.9990985 2.9954829
155.00 -0.7788320 13249698 7730 -0.6340066 1.9223365 1.9995683 2.9978387
160.00 -0.7983164 13889505 80.00 •0.6624549 1.9511953 1.9998242 2.9991204
165.00 -03189236 1.9402857 8230 -0.6931375 13731090 1.9999446 2.9997231
170.00 -0.8417794 1.9750598 85.00 -0.7278994 1.9882884 1.9999891 2.9999455
175.00 -03699635 1.9941148 8730 -0.7719023 1.9971206 1.9999993 2.9999966
180.00 •1.0000000 2.0000000 90.00 •1.0000000 2.0000000 2.0000000 3.0000000

Table 3.2: degree of magnetic singularity or zero versus the angular aperture a 
for the sector, half sector, double sector, half double sector, sector on a plane and 
half sector on a plane respectively indicated by their Fig. number .
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3.5 The H-field singularity vector  

for the m ain sectors

Considering the main behaviour by the tip of the wedge proper to the fundamental 

H-mode, we achieve a first general simplification for R if we note that by the tip, 

i.e. «r —► 0, ( see also (3.22) and E.6 ) we have :

lim R U r) =  U rY  lira ff(«r) =  (v +  l)(Kr)(‘/- 1> (3.41)
« r—*• 0 « r—► 0

consequently, the S functions defined in Appendix D,E become related to 

each other as :

S*s =  (v  +  1 ) ^ -  =  (* +  (3.42)/cr

So* =  (y +  l ) ^ 1 =  {y +  (3.43)
KT

so that their explicit forms in x , y , z  and X ,Y ,Z  can be obtained directly from 

the (D.23,24) respectively .

Furthermore, for what will follow, we may neglect the multiplicative depen­

dence on v and /c, possibly reintroducing it at right time .

We can now apply again the simplifying procedure presented in Chapter 2

so as to recover the singularity functions for the H-field in a complete three- 

dimensional trigonometric space and its projections on the main rectangular 

planes .
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The quarter plane

Starting then with the quarter plane in the geometry indicated in Fig. 3.5 and 

the derived structures of the half quarter plane, from (3.30) and (2.43) we can 

use the approximate eigenfunctions :

0 2(0) stnf ^2{4) — sin<j> (3-44)

0i(0 ) ~  cos| ^i(^) — cos<f> (3.45)

Consequently, the H-field singularity vector components can be written as :

sjjx — (1 “  cos0cos<t>)S<f>Nsin^ (3.46)

shy =  sin^SgN +  cos|S ^ . (3*47)

shz — (1 4- cosOcos(f))S<t>NsinTi (3.48)

These assume forms helplessly complicated if rectangular coordinates are 

explicited, however, following the motivations given for the E-field, we will report 

explicitly in Table 3.3 only their projections on the main planes .

The resulting forms are obviously just of the six kinds (2.59) already met 

for se , even though differently distributed in space .

In order to give more physical interpretation to the contents of the Table, we 

draw in Fig. 3.6 the magnitude \H\ on the conductor, where it is also proportional 

to | J |, according to (3.28,29), while Fig. 3.7 shows \H\ on the plane normal to 

the conductor and tangential to its edge .

The eminent features of this behaviour is the transition between the singu­

larity of degree —  along the edges to that of degree —0.186345 on the tip . Very
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remarkably, we note another advantage of the original choice of orientation for 

the acute and obtuse sectors of Fig. 2.1 . It consists in the fact that 

Table 3.3 results identical to Table 2.4, relative to the E-field singularity vector 

for the three-quarter plane .

Some care has to be taken while dealing with sjj for the sector cut by 

its median plane as its eigenfunctions are relative to the Dirichlet b.c. so that 

(3.46,47,48) have to be corrected according to the substitutions:

Se„ -> S6u, I / - 1 - H /  (3.49)

Nevertheless, the projection of the singularity functions on the main planes 

assumes the same forms as in Table 3.3 with just v — 1 replaced by v .

T he three-quarter plane

When we deal instead with the three-quarter plane of Fig. 3.8 and the half three- 

quarter plane we can approximate the eigenfunctions and the components of s j j  

in trigonometric form respectively as :

0 2(0) ^  cos| — cos2<j> (3.50)

01 (0) ~  s m | $ i(0 )  — sin2(j) (3.51)

sh x =  r I/_1cos| -f (1 — cos9cos<f>)SeNsin% (3.52)

shy =  <SW5zn§ (3.53)

shz =  r l,_1cos | +  (1 +  cosOcos<j>)SeNsin^  (3.54)
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Their explicit forms on the main planes are those reported in Table 3.4 

whilst the magnitude \H\, \J\ on the conductor plane and the \H\ on the plane 

orthogonal to it by its edge are shown in Figs. 3.9,10 respectively , The latter 

highlight the sharper singularity of degree ~  —0.703416 on the tip as compared 

to that of degree — -  along the confluent edges . Obviously, as observed for the 

quarter plane, Table 3.4 is identical to Table 2.3 relative to the E-field singularity 

vector for the quarter plane .

The formulae relative to the half-three-quarter plane can be recovered from 

(3.52,53,54) by operating the substitutions :

SeN -*SoM, S+s -*S+ U9 rv~l —* S^M (3.55)

hence, their projection on the main planes are still those reported in Table 3.4 

with just v  — 1 replaced by v ~  1.955326, that is a very strong zero on the tip .

The double-quarter plane

Even simpler are the forms relative to the double-quarter plane and derived ge­

ometries of Figs. 2.9,10,11 for which the approximate eigenfunctions are, in the 

order, recovered from Table 2.2 as :

e 2(0) * i M<t>)
Oi(0) cz sinO ^ i(^ )

0 i(0 ) ~  sin20 ^ i(^ )

0 i(0 ) ~  sin20 ^ i(^ )

~  sin<j> (3.56)

~  cos<f> (3.57)

~  1 (3.58)

~  cos<j> (3.59)
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which using (E.3) provide the sjj components for the double-quarter plane:

sjjx =  (1 — cosOcos(j>)S^N (3.60)

shy =  Sbn (3.61)

shz =  (1 +  cosOcosfySfa (3.62)

In particular the 2nd equation reveals the physical meaning of Sg ( or ) as 

being the shy singularity vector component for the double-sector with conductor 

on $ =  0 ,7T ( or <l> =  0, ir ) .

By projecting these formulas on the main planes, we get in explicit rectan­

gular coordinates the forms of which in Table 3.5 and their interpretation is shown 

graphically in Figs. 3.12,13, representing respectively the plane of the conductor 

and the plane orthogonal to the conductor passing through its edge. The order of 

the Sectors in the Table has been changed in such a way as to put in evidence the 

fact that Table 3.5 is identical to Table 2.5 relative to the Complementary double 

sector once x, 0 are interchanged with z, <j> respectively .

Analogously to the previous cases, the singular vector components for the 

derived wedges are obtainable from (3.60,61,62) by operating the substitutions:

S<t,N —► 5 ^ 0 6 ,  Sbn —► 5 ^ 0 $ ,  v — 1 —► v (3.63)

where 0 , $  are as in (3.57,58,59) . The forms on the main planes are again those 

reported in Table 3.5 with just v — 1 replaced into v whose value, case for case, 

is recoverable from Table 3.2 .
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H-field singularity vector components fo r  a quarter plane
sh x ( and J z  ) sh y sh z ( and — Jx  ) Sector

on the plane Y  = 0
0 r“

y /\X Z \
0 z  < 0; <f> =  0

0 r—1 0 z > 0; 4> =  o, 7r,0 = o
0

y /\X Z \
0 z  < 0; <f> =  7r

J \ X Z
0 VI x z y - 2 x > 0; 0 =  7r

v/l x z y 0 rv
T J x z J

x < 0; 9 =  7r

on the pi ane X  = 0 (or Z  = 0)

f a  ( V I F k - l )
V i n

Z > 0 ( o r X > 0 )

l » " ' r*7-1 -* 1 <o Z  < 0 ( or X  < 0)

Table 3.3: H-field singularity vector projections on the main planes relative to 
the conductor and geometry indicated in Fig. 3.5; v ~  0.814655 for the quarter 
plane and u ~  1.131248 for the half quarter plane .

0 =  0

10 = id

Fig. 3.5 : quarter plane
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H-field singularity vector components for a three-quarter plane
sHx ( and Jz  ) SHy 8fjz ( and —J x )  | Sector

on the plane Y  =  0
rv

V\xz\ 0 yj\xzy~2 z <  0; <t> =  0

I-1'*1 0 r"-1 z >  0; (f> =  0, X, 0 = 0
0 rv z <  0; <f> =  7r

0 r r v H

d\xz\ 0 2 < 0; 0 =  7T

on the pi ane X  = 0 (or Z  = 0)

5 f t  t v H T r - t )
rv~h
7 \ y \

( - *  ) Z > 0 ( or X  > 0 )

r""1 r*-t rv~l Z  <  0 ( or X  < 0)

Table 3.4: H-field singularity vector projections on the main planes relative to the 
conductor and geometry indicated in Fig. 3.8; v ~  0.296584 for the three-quarter 
plane and v ~  1.955326 for the half three-quarter plane .

Fig. 3.8 : three-quarter plane
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H-field singularity vector components for a double-quarter plane
sHx ( and Jz  ) SHy SHZ( and — Sector

on the plane Y  = 0
r

7ixz\ 0 ^ x z y - ' 1 x < 0; 0 =  0

0
7 \ x T \

x > 0; 0 =  7r

0
V \ x z \

0

oII

V \X Z \
0 v /IX Z I r -2 a: >  0; 0 =  7r

yJ\XZI r - 3 0 rv
s / \ m

x < 0; 9 =  7r

0 r"
J \X Z \

0 <f> =  T

o\i the plane X  = 0 (or Z = 0)

f a  ( V U V - I )
rv~h
7 m

y iF K - S  ( - , any Z ( or X  )

Table 3.5: H-field singularity vector projections on the main planes relative to 
the conductor and geometry indicated in Fig. 3.11; u ~  0.704321 for the double- 
quarter plane, v ~  1.311863 for the half double-quarter plane, v ~  1.918023 for 
the quarter plane on a plane and v ~  2.68800 for its half .

Fig. 3.11: double quarter plane
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Magnitude of the ma gn et i c  f i e l d  on the p l an es

F1q. 3.9
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3.6 EM  singularity vectors for arbitrary w edges

From equations (3.39,40) it follows a similitude between the espressions of N  and
^ ^

Hm  ( or M  and Hn  ) •

This similitude becomes a true identity, apart for the multiplicative factor 

if we consider the W-spectrum associated to an acute sector ( Fig. 2.1 ) and 

the H -spectrum associated to its complementar obtuse sector ( Fig. 2.1b ) .

In fact the functions f?i,0i,4>j of the first geometry and f?2,02>$2 of the 

second geometry are identical because they satisfy Dirichlet and Neumann b.c. 

pertaining to complementar sectors, that is to say exactly the same b.c. . The 

same properties are demonstrable in a similar way for M  and H n  and can be 

extended to the case of the double sector .

In particular, the fundamental 7V-mode of an acute sector and the funda­

mental HM~mode of its complementary are proportional so tha t the associated 

singularity vectors are identical as observed, in particular, by comparing 

Tables 2.3,4,5 with Tables 3.3,4,5 .

Also remembering that the E-fiels singularity vector can be recovered from 

a simple static analysis we can summarize by postulating that :

In a full dynamical analysis, the EM-field spectra pertaining to any plane 

sector are recoverable from those pertaining to the sole acute sectors .

Likewise, the EM-Jields spectra pertaining to any plane sector are recoverable 

from those o f the sole E-field spectra or H-field spectra pertaining to any plane 

sector .

In particular, the H-field singularity vectors pertaining to any sector are
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recoverable from the E-field singularity vectors pertaining to the complementary 

sector and then from the static analysis only .

The first postulate is a consequence of the Babinet’s principle while the 

second is a consequence of the first and of the fact the static and dynamical 

E-fields present the same main behaviour by the conductor .

The two postulates are important also for their possible extension to arbi­

trarily shaped complementary plane conductors such as, for instance, the degen­

erate surfaces of the ellipsoidal c.s. for which a static analysis is already available 

in separable form while the dynamical one is not .

The limit cases Jb2 =  0 ,l  are again postponed to Chapter 4 .

W hat instead now matters more to us is to attem pt the determination of 

■ s j f o r  a plane conductor with arbitrary boundary C whose tangent varies 

continuously everywhere except at a cusp-point 0  .

Fixing in 0  the origin of a conical c.s. with the plane conductor lying on 

the plane Y  =  0, we can depict the situation as in Fig. 3.14 .

In this situation, the right and left branches of C with respect to 0  can be 

expressed by the continuous functions with continuous derivatives z  =  f i (x ) ,  

z  =  f 2(x) . The right and left tangents to C at O are related to the angular 

coefficients of the curves there as tg(T\ =  /i(0 ), tgcr2 =  f 2(0) .

The values <7i, cr2 permit the unique orientation of the main system X , Y, Z  

making the Z -axis fit the right tangent of C in 0  .

Naturally, is always possible to single out a small neighbourhood of the tip 

where the wedge is well enough approximated by the sector of angular aperture
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a = tt — (<7i +  02) and for which se  and sjj are computed as seen previously .

Obviously, we cannot extend these singularity vectors to the whole of the 

conductor but the generalization used to pass from the main sectors to arbitrary 

sectors on the main planes, suggests possible forms, at least, on particular sur­

faces. For instance, the formulae collected in Tables 3.3,4,5 of Chapter 2,3 on the 

plane Y  =  0 can be generalized by substituting :

X  -  M X ,  Z)  Z -  f 22(X,  Z)  (3.64)

where f n  and f 22 are the implicit forms of the right and left branches of C, in 

similitude to the implicit straight line equations (2.72) of the sector edge .

The forms relative to the plane X  =  0, Z  =  0 instead now hold respectively 

on the planes :

f n ( X , Z ) = 0  f 22( X , Z ) =  0 (3.65)

whose traces on the plane Y  =  0 are exactly the right and left branches of C . 

The u-value used in each case is that relative to a sector of angular aperture a  .

The complete three-dimensional singularity vectors can be eventually fully 

determined for just the special cases in which they fit one or more degenerate

surfaces of the more general Ellipsoidal c.s. reported in Figs. 1.3,4 .

The investigation of these geometries constitutes one of the main future 

aims of the work, also motivated by future applications to microwave techniques.
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Az

z = f2(x) 
f22(X,Z) = 0

Fig. 3.14 : sector of generic boundary shape C but with a cusp in O
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3.7 U niqueness o f th e fundam ental solution

We observed while imposing the b.c. (3.2,28) that, because of the non uniqueness 

of the definition of the normal n to the conductor on the edges and on the tip, 

the fundamental solution might not be unique .

This problem was posed first by Rayleigh at the beginning of the century 

and approached by several authors in different ways . Their conclusions have been 

satisfactorily summarized by Jones ( see [24] and bibliography quoted there ) . 

Of all this analytical effort, we will only report the outstanding physical results .

If we suppose to illuminate with an incident field Eo, Ho a wedge conductor 

of arbitrary shape as that of Fig. 3.14, a current J ,  a surface charge ps and, 

possibly, a line of charge pi on C are induced, which generate the diffracted fields 

E \,H \ . Finiteness and continuity of J  and pa might only fail on C while those 

of pi only at 0  .

Nevertheless, J ,p s and pi must always be integrable on the conductor sur­

face S and on C respectively because the complete charge and current on the 

conductor must remain finite . Under these hypotheses, the application of the 

regular b.c. on S implies pi =  0 , i.e. neither a line of charge is present on C 

nor an isolated charge is present at 0  . Consequently, the EM fields components 

tangential to C vanish there .

Under these conditions, it is possible to satisfy the physical principle that 

no energy is radiated by the edge, from which the uniqueness of the solution is 

derived.

A consequence of this result is that there is one only solution, for which 

J  and pa are singular at C with degree >  —1 and the same happens of the
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perpendicular components of E i and H i to C but external to the conductor .

Similar observations apply to the neighborhood of 0  where the components 

Ei and Hi radial to 0  are singular of degree >  —1, but become finite on the 

conductor and on the two straight lines tangent to C at O and arbitrarily close 

to it .

From the Tables 3,4,5 of Chapters 2,3 it appears immediately how the den- 

sity of current J  and charge pt as well as the EM fields relative to the fundamental 

mode satisfy all these properties .

We can thus conclude by saying that : 

just the sole regular b.c. (3.2,28) pertaining to the conductor surface S  are suffi­

cient to ensure uniqueness o f the fundamental solution . In spite o f a singularity 

of J , pa, E i, Hi along C this ensure Jiniteness o f charge and current on the con­

ductor and o f the diffracted EM  energy .

The latter singular b.c. will be denoted as ” singular edge and vertex con­

ditions on C  ” as complementary to the ” regular boundary conditions on S  ”.
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3.8 General remarks

Before closing this Chapter we would like to make some other applicative and 

general remarks :

i) From the point of view of the applications, it is im portant to establish 

how large is the region around the tip where the effect of the spherical singularity 

may be considered dominant with respect to that along the edges . Analytically 

speaking, the effect of the tip singularity is originated by and can be con­

sidered terminated where the Bessel function j v assumes the first maximum ; 

dependently on i/, this is located where k t  ~  1 ( see [11] pg 187 ) .

Physically speaking, and in order to determine a distance independent of 

the sector aperture, i.e. of i/, we consider the effect limited to «r <C 1, likewise 

quantified as in 3.24 .

In the spherical region centered at 0  and within the above radius, we assume 

the tip singularity as significant .

ii) The singularity vectors forms reported in Tables 3,4,5 of the last two 

Chapters can be further simplified .

For instance, when dealing with shx for the quarter sector we may consider 

the single form :

This no longer represents the actual way in which zeros and singularities 

along the edges match those on the tip, as obtainable from the exact solution,
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but still shows the right degrees of zeros and singularities along the conductor 

contour.

This might suffice in an application where a single form for the whole surface 

of integration is of help .

While this simplification is obviously applicable to all the other components 

and for all the other wedge geometries on the plane Y  =  0, other forms better 

suited to the particular problem in question may also be produced .

iii) As a third point, we note the possibility that in particular and quite 

unusual situations of excitation, the above fundamental modes might not be 

excited, thus leaving the main behaviour on the tip to be described by a higher 

mode .

It could be shown in a way similar to that used by Satterwhite [10], that 

the fundamental mode is not excited when an elementary dipole source of current 

is placed and oriented respectively as ( see also Figs. 3.5,8,11 ) :

r

on the median plane z =  0, orthogonally to it

< on the sector plane y — 0 out of the conductor, orthogonally to it 

on the sector conductor, in radial direction
r

on the median plane z — 0, parallel to it

on the sector plane y  =  0 out of the conductor, orthogonally to it
<

on the sector conductor, for every direction 

everywhere for a radial direction

It is also possible to show that the next mode to be excited is of the Dirichlet

for E-field

for H-field



type for both the EM fields .

iv) The more rigorous analyst can also observe that the scalar wave equation 

admits for v — h =  0 the separate solutions :

R  — cq 4* — B  =  do *1" di/3 A. — co -4* eio: (3.67)
r

However, the corresponding fields are the trivial null solution .

v) Last, we would like to note that the structure of Fig. 2.11 can be virtually 

substituted by the double-sector but with asymmetric excitation as it has satisfied 

the image principle in respect to the plane conductor itself . As observed, this 

excitation that may be met in applications never produces a singularity at the 

tip .
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Chapter 4 

WEDGES 

IN SPHERICAL GEOMETRY

4.1 Introduction

This Chapter shows how classical results dealing with the bidimensional and cone- 

wedges are analyzable in the framework of a unified theory of the plane sectors 

and draws some general conclusions about the EM fields singularities on perfectly 

conducting wedges .

The Chapter can therefore be missed by those who are strictly interested in 

Microwave applications which are instead presented in the next Chapters .

Proceeding in accordance with the "coordinate matching procedure” pre­

sented in Chapter 1, we now analyse those perfectly conducting geometries which 

are fitting one or more equi-coordinate surfaces of the spherical c.s. .

Studies relative to bidimensional and conical wedges can by now be con­

sidered classic ones even though some do resort to approximate or numerical
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algorithms ( see [25] p. 18,[14, 17] ) .

Other composite geometries originated by the similitude with the composite 

plane wedges studied in the Chapters 2,3 are now introduced for the first time 

with the main purpose to help us state general properties of the singularity of 

charge and current at tips of arbitrary shape .

Finally, some limit geometries directly obtained by the degeneracy 

k  =  sine —► 0 of the planar sectors are analytically better characterized in spher­

ical coordinates as already observed in the Chapters 2,3 .

Actually, there is much more to be obtained from an appropriate use of

the named degeneracy process, as not only the spherical geometry, but also the 

differential equations, the general properties of the solutions and the solutions 

themselves can be obtained in this way from those pertaining to the conical 

geometry .

This permits a rigorous, simple and unified analysis of all the above men­

tioned wedges as well as of those considered in conical geometry and even more.

At this stage, the most important difference is constituted by the degener­

ation of the two Lame’s equations along a  and /? into Harmonic and Legendre 

equations respectively . Consequently a ”tie up” between the solutions along 0 

and (f> is no longer possible .

Nevertheless, these solutions can be obtained from those formulated in 

Chapter 1 by submitting them to a degeneracy procedure, even though some 

of them may behave badly by ” blowing up” at 0 =  0 ,7r where the Legendre’s

equation presents its two singular points .

In this context, the most important example is represented by the two
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Lame’s solutions, odd and even, of period 4ir along 0 relative to the acute sector. 

When k2 —► 0 the series solutions for both cases lose convergence so that the odd 

one, which in 0 =  0, it is 0, now assumes the finite values ±1 pertaining to the 

Legendre associated functions P ^ (± l) ,  while the even one, which in 0 =  0, tt is 

finite, now diverges to the 2 kind of Legendre associated functions Q” (±1) .

It is just this ”bad degeneracy” which prevents satisfaction of the physical 

b.c. for the EM fields associated with limit structures like the semi-infinite wire 

fitting the degenerate surface 0 =  0 for which a proper degenerate eigenfunction 

is Pq =  1 . This problem leads us to make a distinction between this ”physically 

unrealizable wire” and the wire with finite cross section usually met in appli­

cations and for which a possible eigenfunction may be s m |,  presenting a 0 on 

the conductor . This, incidentally, is just the main term in the original Lame’s 

solution already used for acute sectors of any aperture .

This example, and a few others, justify the study of all the named wedges 

according to a rigorous and unified dynamic theory so as to single out explicitly 

or implicitly the whole spectrum of solutions from which we separate, as required, 

the fundamental mode or a simplified singularity vector .

The procedure aiming to the progressive characterization of the solution 

will follow the lines of the case of conical geometry, while the static analysis will 

be left for the sake of brevity .

Finally, from an application point of view, we can remember that the clas­

sical bidimensional and conical wedges are more usually met in boxed waveguide 

and antennas respectively, but, they also occur in the more widespread applica­

tions of low frequency and high power engineering .
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4.2 Characterization o f th e solutions

We follow the path of progressive specialization of ” the solution ” already taken 

for the conical c.s. . The analytical formulation for this geometry is illustrated 

in 1.2.1, where the sole trigonometric formalism is used which, since a long time, 

has been recognized to be by far the most useful one in stating theoretical, com­

putational and applicative results .

Thus, we retrace, one by one, the steps of 1.3 .

The geom etrical properties o f th e  spherical coordinate system

We can make again reference to Fig. 1.13 but the two arcs C+,C” on the sphere 

of radius ro now degenerate into the two points V +, V~  of intersection of this 

sphere with the positive and negative z semi-axes, namely the degenerate cones 

0 =  0, w respectively ( see Fig. 1.3 ) .

Any regular cone 0 = 0 intersects the sphere on a circle surrounding V + if 

0 < % or V~  if 0 > \  while <t> varies from 0 to 27T .

Conversely, the half planes <j> = ^  intersect the sphere on a half circle joining 

V + with V ~, while 0 varies from 0 to tt .

Consequently, any physically meaningful solution F  in this geometry has to 

be 2x-periodic in </>, i.e. :

F(r,0,<j>) = F(r,0,<!>-f 2 x )  (4.1)
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The sm oothness properties o f th e  solution

Further conditions must be verified on the singular points 'P+,'P~, at the origin 

and on the sphere of infinite radius whenever they are part of the homogeneous 

space .

Precisely, in order to ensure smoothness in the way indicated in 1.3.2, at 

V + and V~  we must have :

lim i?(r)0(0)$(<^) independent on </> (4.2)
8—+  0,7T

while in r  =  0, oo the same conditions (1.24,25) have to be satisfied .

The m athem atical properties o f th e H elm holtz equation

In third instance, the solution must also satisfy the scalar wave equation (1.26) 

for the scalar potential which, in spherical c.s., separates into the ordinary 

differential equations directly obtainable from (2.6,1.51,1.44) by setting k2 = 0, 

i.e. :

R + 1 R + ( , < ? - 4 $ £ ) r  = 0 (4.3)

© +  ^ 0 + ( ^  +  1) - ^ ) 0  =  O (4-4)

$  -f fi2$  =  0 (4.5)

(4.3) is the Bessel’s equation analysed in conical c.s., (4.5) is the common Har­

monic equation while (4.6) is the Legendre’s equation, more commonly known,
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as a function of the variable t =  cosO :

(1 -  t2)0  -  2*0 +  ^ 1/(1/ -f 1) -  0  =  0 (4.6)

where the derivatives are now with respect to cosO .

In summary, the general solutions along the three dimensions can be written

as :

R(nr) = Cjl^(Kr) +  V h ^ \n r )  (4.7)

0(0) =  SP?(cosO) +  FQ^cosO) (4.8)

$(4)  =  Qcos(fi(j>) +  'Hsin{y.<j>) (4.9)

where P* and are the Legendre functions of 1** and 2nd kind whose gen­

eral properties are by now well known and to be found for instance in [11, 7];

Ci /DyS,^F,Q,'H  are the linear combination constants .

The smoothness conditions at r  =  0,oo are satisfied by (4.7) as already

shown in 3.1.1 while those at 0 =  0, tt can be satisfied if 

0 (± 1 ) =  EP»{±  1) +  T Q l(±  1) =  0 there.

Actually, at these points Pjf, Q% present, in general, a singularity so that the

previous equation is written using their asymptotic expression there, as available 

for instance in [7] .
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This way, the conditions can be reduced to the simpler relations :

S  =  — f Z c t g ( n x )  in 0  =  0 (4-10)

S  =  — T \d g [ y ,K) in 0 =  tt (4.11)

In the more important situation where /i =  0 ,1 ,2 ,..., in order to ensure 

finiteness of 0 ,  from (4.10) follows T  =  0 and from (4.8) follows 0(0) =  P™(cos0)

which, in particular, for m =  0 assumes the finite value 1 at 0 = 0 but, then, it

is also $(<!>) =  1 so to satisfy in any case the condition (4.2) .

It is interesting to note that just applying the periodicity condition (4.1) 

the general solution 4.9 implies :

H =  m  = 0 ,1 ,2 ,... (4-12)
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4.3 T he physical boundary conditions and the  

spectra o f eigenvalues and eigenfunctions

In the present geometry the EM fields can be derived from two potential functions 

\Pi, ^2 satisfying the scalar wave equation, according to the same formulation as 

for the conical case ( see [12] ) .

Furthemore, since we are going to analyse conductor geometries only fitting 

one or more equi-coordinate surfaces 9 — const, ^  =  const, the b.c. they establish 

on the EM fields can be straightforwardly reduced to either the Dirichlet or the 

Neumann type on the eigenfunctions 0(0), $(<£) in which Wi, ^2 are separated .

Omitting the explicit treatment of the static case, we identify from now on 

by the suffixes D,N the two kinds of b.c. respectively .

Moreover, we group the b.c. in two main categories : those pertaining to 

one or more half planes <f> =  <f> and those pertaining to one or more cones 0 = 6 .

We start with the bidimensional wedges ( 2D-wedges ) delimited by planes 

^  =  const .

In particular, we will study the half plane and the plane by considering 

them as limit cases of the acute and obtuse sector respectively .

This is why these two geometries represent the main meeting point between 

2D and 3D-wedge analysis .
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4.3.1 2D -w edges

These wedges are the easiest to be analysed because the spectrum of eigenvalues 

i/y fi is determinable in a complete analytical way and the 0-eigenfunctions are 

the same for the Dirichlet and Neumann problems .

The half plane

If we consider the half plane conductor fitting, without loss of generality, the 

surface ^ =  0, the spectrum of eigenvalues established there by the Dirichlet 

$(0) =  0 b.c. can be obtained, apart from an unessential rotation of axes, from 

the limit cases k2 —► 1 of the acute sector . In this way, from the same Fig. 2.3 

we can recover the eigenvalues spectrum like :

/i =  m  — I  with m — 1 , 2 , 3...

v — fi,fi +  1,/z +  2,... =  ^ with n =  1,2,3... (4.13)

For this special case, the Neumann b.c. establish in fact exactly the same 

spectrum since the complementary conductor is the half plane itself . Conse­

quently, for both situations on the conductor wedges 0 =  0 ,7r (4.10,11) imply

5 =  0, i.e. :

®zvv(0) =  Q f{cos9) (4.14)

It is perhaps appropriate to note how the above are the only Legendre 

functions of 2nd kind to be everywhere finite .

The eigenfunctions along <j> satisfying the two kinds of b.c. are instead
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respectively :

$z?(<£) =  sin(^<j>) $ n (<I>) = cos(^(j> )  (4.15)

The plane

The situation of a complete plane conductor, without loss of generality fitting 

the surfaces <j> =  0, tt, can be seen as the limit case k2 —► 0 of the double sector . 

From the same Fig. 2.4 the eigenvalue spectrum can be recovered as :

fi = m  with m  =  1 ,2 ,3 ,...

v =  +  1,/* +  2,... =  n with m =  1 ,2 ,3 ,... (4.16)

Consequently, with the same considerations as for the half plane, the eigen­

functions spectrum is given by :

0 d ,jv(0 )  =  P™(cosQ) (4.17)

$ d (<I>) =  sin(m<f>) =  cos(m</>) (4.18)

We remark that this is the only case where the Legendre functions of 1st 

kind are polynomials finite everywhere .
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T he 2D -sector ( Fig. 4.1 )

The generalization of the two previous cases is represented by a conductor delim­

ited by an arbitrary plane <f> =  <f> =6 (0, 2t t ) and, without loss of generality <f> =  0 

( see Fig. 4.1 ) . Satisfaction there of the Newmann and Dirichlet b.c. imply 

from (4.9,10,11) :

u =  —-— with m = 1,2,3... 
r  2 x -< £
V = fi.fi + 1,/x -I- 2,... (4.19)

For these eigenvalues, the eigenfunction spectrum (4.8,9) reduces to :

0£>,at(0) = P?(cos0) -  ltg(fiTr)QZ(cos0) (4.20)

$ d {<I>) — sin(n(2ir — <l>)) $ n (<I>) = cos(fi( 2k — <j>)) (4-21)

where the values of the constants £, T  in (4.20) are such that (4.10,11) are satified 

keeping ®d,n (9) everywhere finite .
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T he 2D -sector on a  plane conductor ( Fig. 4.2 )

This is a useful conductor configuration, especially in its particular cases of infinite 

and semiinfinite plane conductors as met in boxed waveguides .

The cutting plane is likely to fit just the equi-coordinate 6 =  f , where

P u iQ i and their first derivatives assume an easy expression ( see [7] p. 145 ) so

that the new conditions 0 (^ )  =  O or 0 ( f )  =  0 mean respectively :

£  = ((i/ +  p +  l ) f )  (4-22)

£  =  - T \ c t g  ((i/ +  /*)!) (4.23)

Naturally, the /i-spectrum is given by (4.19) itself, since no further b.c. are 

introduced on ^-surfaces while the i/-spectrum is a selection of (4.19) so as to 

satisfy also (4.10), i.e. :

vd — P +  2n +  1 (4.24)

= /*  +  2n with n  =  0 ,1 ,2 ,... (4.25)

As a consequence, the eigenfunctions 0 , $  are selections of (4.20,21) accord­

ing to the i/-values (4.24,25) .
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Fig. 4.1 : bidimensional sector

Fig. 4.2 : half bidimensional sector



4.3.2 Cone w edges

When no conductor is present on a plane <j) =  the periodic condition (4.1) 

implies the fi and ^-spectra to be given respectively by :

[i =  m  =  0 ,1 ,2 ,... 4>(<̂ ) =  Qcos(rri(j>) +  ?{sin(m<j>) (4.26)

The spectra for v and 0  are now completely independent of the latter and, 

case for case, can be determined as follows .
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T he cone ( Fig. 4.3 )

The cone 9 = 9  divides the whole space into region 1 containing the positive semi­

axis ( that is the degenerate cone 9 = 0 ) and region 2 containing the negative 

semi-axis ( that is the degenerate cone 9 = w ) as indicated in Fig. 4.3 .

Thus, if the free space is region 1 , taking into account ( 4 .1 0 )  and the / i - values 

( 4 .2 6 ) ,  the Dirichlet b.c. 0(0) =  0  implies that the v-spectrum is represented by 

the zeros of just the 1** kind of the Legendre’s functions . We express this by 

writing :

vjy : P^(cos0) = 0 for m =  0 , 1 , 2,... (4-27)

so that the related eigenfunctions are :

®{0) = P?D(cos0) (4.28)

Instead, in region 2 from (4.11) and the fi-values (4.26), the same Dirichlet 

b.c. are satisfied when ( see (14) p. 144 [7] ) :

0 (0) =  PZ(cosB) -  hg(vx)Q Z(cos§) =  =  0 (4.29)
7r cos[u +  m)ir

So that, as physically obvious, in region 2 the u and 0-spectra , within a 

multiplicative constant are, given by :

vd ■ P£,(.cos(ir - 0 ) )  = 0

0(*) =  j » H t - « ) )

for m = 0,1,2,... (4.30)

(4.31)
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For what concerns the Neumann problem in the two regions, the eigenfunc­

tions 0  assumes the same form since the conditions (4.10,11) are still valid while 

the i/-spectra are now generated by :

in region 1 i/jy : P ^(cos0)  =  0 for m  =  0,1,2... (4.32)

in region 2 vn ' ~~ &)) =  0 f°r m =  0,1,2... (4.33)

If a plane conductor is placed at 0 =  0, x ( see Fig. 4.4 ) the equations for 

the v  and 0-spectra remain valid, but the value fi =  0 must be excluded, obtainig 

finally the spectra :

/i =  m  =  1 ,2 ,3 ,... (4*34)

$£>(</>) =  sin(m<j>) — cos(m<j>) (4.35)

Analogous considerations can be done for the double cone and related ge­

ometries as reported in Appendix F .
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Fig. 4.3 : cone
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Fig. 4.4 : half cone
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4.4 EM  fields in spherical coordinate system

Moving along the lines of the procedure presented for the conical geometry, the 

complete modal spectra for the EM fields relative to a given conductor can be now 

derived from the spectra of the two scalar potentials \Pi, \p2 obtainable from the 

eigenvalues z/,/z and eigenfunctions 0 £ ,$ £  just presented in the previous section.

The explicit EM field expressions can be obtained directly from (3.39,40) 

passing to the limit k2 —► 0 in the functions P,T,S :

E-mode <
N  = dj; I/(v +  1 )RD®D$Dr +  (rjf?jr>)0£)$£)$ +  -^ { r R D ^ D ^ D ^ ]

^ R d Q d $ d Q — R d & d $ d $ \Hn  = l
V

H-mode <

(4.36)

M  =  - ^ R n ^ n ^ n O — R n ®n $ n 4>

H m  =  ^  \ y ( v  +  l ) R N & N $ N r  +  (rf?7v)0^^N^ +  ^ ? ( r^iv)0fv^iv^]
(4.37)

These forms present naturally the same behaviour for r  —► 0,00 and the 

same distinction in E and H-modes with respect to the radial direction as in the 

conical geometry ( see 3.4 ) .

We now have at hand all the formulation necessary to identify the fun­

damental mode as well as the main and the, sometimes, singular behaviour of 

the EM fields by the tip . Its simplified expression, e.g. a singularity vector 

representation, will be expressed in the more convenient rectangular coordinates 

according to the application of the conductor geometry .
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4.4.1 Fundam ental m ode and singularity vectors for 

2D -w edges

Considering firstly 2D-wedges as shown in Fig. 4.1 the minimum eigenvalues are:

" = " = 2 ^  (438) 

which are <  1 only for ^ € [0,7r] . The correspondent 0-eigenfunction can be 

written, using the 3.4(17),3.6.1(15) in [7], as :

2 2 - * T ( 2 i/  -4-11!
®d,n (0) = PZ(cos0) tg{v*)Q vv(cosO) =  - — ■-  (sinO y  (4.39)

7T i  yU -f- 1)

so that, leaving aside an unessential multiplicative constant, the fundamental 

eigenfunctions satisfying Neumann and Dirichlet b.c. are respectively :

® d ,n ( 0 )  =  (sin0)v (4.40)

$£,(<£) =  5in( i/(2x — <f>)) $ n (<I>) =  cos(i/(2x — </>)) (4-41)

The main behaviour by the conductor tip can then be recovered by passing

to the limit /cr —* 0 and simplifying in consequence the 72-function, as done in

(3.22) .
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The simplified expression for the fields is then :

N  oc (nrsinOy 1

• [i/sin$sin(v(2ft — <f>))r +  cosQsin(v(2k — <j>))0 +  i/ cos(v(2tt — <j>))<£] (4.42)

H m  o c  ( k rsin9)v 1

• [i/szn0cos(i/(27r — <j>))r +  cos0cos(v(2n — <j>))0 — vsin(v(2n — <f>))4>] (4.43)

These expressions can be considered, as the singularity vectors s~e , sh  for 2D- 

wedges .

Remarkably, the possible singularity is controlled by just the term  :

which expresses the fact that :

the cylindrical singularity, i f  u — 1 < 0, or zero, i f  u — 1 >  0, is uniformly

We note now that, conversely to what happens for 3D-wedges and for the great 

part of wedges, r  is the same for both the E and H fields .

The complete expression of (4.42,43) in rectangular coordinates is simply 

obtained by using the inversion formulae :

(rsin0)v 1 =  (x 2 +  y2) ^ (4.44)

distribuited along the conducting edge which fits the z axis .

The degree of singularity is nowaday generally indicated by :

(4.45)
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sin9 = — sin<t> =  j i n |  =  —7=\l1 — -r- (4.46)
r r  A 2 v/2V A
r  a; <b 1 I x

cos9 =  — cos<f> =  — cos—=  ± —=4/1  +  — (4*47)
A A 2 V2Y A

where we use the signs ±  according to y <  0 respectively while A =  \y jx2 -{■ y2\ .

For their applicative importance, we limit the attention to the half plane 

(y =  /i =  1) and the plane (i/ =  /* =  1) conductor, whose minimum eigenfunctions 

are respectively given by :

®d,n (0) =  VsinO $ d (<I>) =  s in (^ )  =  cos(^) (4.48)

©d,jv(^) =  sinO $ d (<I>) = sin{<j>) =  cos(<j>) (4.49)

The plane conductor introduces the well known zero of degree 1 in the 

tangential E-field and in the normal H-field . The half plane instead introduce a 

singularity of degree — |  in the E and H components normal to the edge and a 

zero of the same degree on those tangential to it, as known since Sommerfeld’s 

studies .

Quite interesting is also the 2D-wedge cut by the plane conductor 

0 =  ^ of Fig. 4.2 because of its occurence in boxed resonators, short circuits 

or discontinuities in waveguides . Nevertheless, the literature does not treat this 

case probably because the fields are never singular on the tip .

If, in fact, we look at the (4.24,25), we see that in the origin the fields
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present a zero of degree :

T = 2 ^  = , / " 1 = / ‘ (4'50) 

so that the minimum eigenfunction is ( see 3.4(17) in [7] ) :

O b W  =  K  '(cosB) -  ^ tg{{v -  l)x)Q " '(cos6) =  2c o s { ( l - v ) x ) P" ^ cos^

(4.51)

while those along $  remain of the forms (4.41) .

Surprisingly, (4.43) already satisfies the b.c. H$(%) =  0, so this is also a 

solution for the actual geometry .

This shows that :

the degree o f singularity for H  remains as in (j^.^5), that is negative for <j> E [0, tt], 

the only difference being a physical one and consisting in the flow o f current from  

the top half wedge to the plane conductor instead of the lower half one .

W ith a view to application, we give an explicit formulation of the main 

E-field only for the half plane cut by a plane conductor, for which the minimum 

eigenvalues are p =  vq — 1 =  \  while the associated eigenfunctions and field 

expressions are :

=  cosOy/ sinO (4.52)

N  oc (^jp)* 3sin0cos0sin(^<f>)r -f (1 — 3sin20)sin(^<f>)0 +  3cos0co,s(|<^)^j (4.53)

This last singularity vector, together with (4.43) relative to the H-field, can
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be explicited, using the (D.16,17,18) for k2 =  0, in terms of the main rectangular 

coordinates X , Y, Z  oriented as in Fig. 4.5 . The projections on the three main 

planes assume the simpler forms reported in Table 4.1 and they are proportional 

to the charge and current on the conductor according to the conventions used in 

2.4.1,3.2 respectively .

EM fields singularity vectors for a half plane cut by a plane
SEx SHX 8Ey shy SEZ SHZ Sector

on the plane Y  — 0

0 x y / m
r 2

X
W \

0 0 1
v W l

oII

V\z\ 0 0 1
7121

A
7 ! z \

0 <f> =  7T

on the plane X  =  0
+ Z 0 0 i

7 ?
0 1

v7
II

on the plane Z  — 0
X y /\Y \

r2
X

W \
i

W \
A

7 ^ w \ -e- II to
N

Table 4.1: EM fields singularity vectors projections on the main planes for the 
conductor and geometry of Fig. 4.5 .

z = X

Fig. 4.5 : half plane on a plane conductor
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4.4.2 Fundam ental m ode and singularity vectors for 

Cone-w edges

From the point of view of determining the spectra of eigenvalues and eigenfunc­

tions, Cone-wedges are located between 2D and 3D-wedges . In fact, while for the 

former the eigenvalues are determined analytically and for the latter both numer­

ically, for the Cone-wedge, // is already determined analytically but v d ,n  has to 

be computed as one of the zeros or zero derivatives of the Legendre’s functions.

The accuracy with which the spectrum can be determined is then controlled 

by the accuracy of this zero-finding procedure so that, from the experience in 

using conical c.s., we use Hypergeometric series espressions for Q£, P£

( see [7] p. 144) :

Q*(cos0) =  [ t g ( ( v  +  h ) \ ) T £ ( c o s 20 )  —  c t g ( ( v  +  / » ) § ) 2 co30U‘;(cos20)]

P?(cos0) =  V “(6) [T»(cos*0) -  2cos0Ui(cos‘20)] (4.54)

where while :

r « ^ ) . 2 = S g E ^ ,  2 = p s S t e p  ,,.55)

are related to the hypergeometric function F and expressible in power series of 

cos20 ( see [7] p. 144 ) whose coefficients obey a two-terms recursive relation . 

The dependence on cos20 ensures rapid convergence which is of vital importance 

when we require high accuracy in the evaluation of the i/-value for a given fi .
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By the way of example, when we require an accuracy of, say, 7 decimal figures, 

the maximum index of the series goes from a few tens when 0 ~  ^  to almost one 

thousand when 0 ~  0, t  ,

Among other things, the literature reports various approximate analytical 

expressions for the zeros of our interest around the integer values of i/,/x since 

then the series degenerates into terminating polynomials . This permits the use 

of perturbative techniques for determining approximate series expansions .

Instead, if we look for an easy-to-apply expression for the Legendre func­

tions, we need the Fourier representation :

oo
Ptt — 0,(0; I/, n)sin((y  +  // +  2i -f 1)0) (4.56)

»=o
oo

Qv = i; y '  0,(0; I/, n)cos((v +  /z +  2i +  1)0) (4.57)
»=o

where :

r \ t i a \ 2  / o  • +  +  ^  +  SA KQ\

°' {0' = ^ (  ) “ r(7+ |j------ Sm I);  (4-58)

The latter also produces a two-terms recursive relation for the coefficients in the 

series .

The last remark deals with the determination of a simple function which 

represents just the correct b.c. on the conductor, so as required in a singularity 

vector for the fields .

This time, things go differently than for the 2D case where the Legendre
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functions involved degenerated advantageously into powers of Trigonometric func­

tions, and than for the 3D case where all the terms of the Fourier series for the 

Lame’ periodic functions present the same behaviour on the conductor, so that 

the first term  is representative of the whole function there . Now, the zeros of 

P, Q and of their derivatives occur for arbitrary values of 0 so that, in general, 

just the term  of fundamental period does not represent correctly the zero on the 

conductor . For the sake of simplicity, we leave indicated the exact eigenfunction 

0(0) leaving to the user interested in a simplified expression of the EM field the 

choice of its most appropriate approximations in the specific context .

Thus, let us discuss the main EM field behaviour for Cone-wedges .

T h e  cone ( F ig . 4.3 )

Thanks to (4.29), only the space region 1 in Fig. 4.3 need to be considered . 

From (4.26,29) it follows that the fundamental eigenvalue and eigenfunction for 

the Dirichlet problem are respectively :

/x =  0 vd(P) ' PvD{cosd) =  0 for 6 E [0, x] (4.59)

Qd =  PVD (cos0) =  1 (4.60)

In fact, from the properties of Pv follows that vd is its smallest zero and 

the one which tends to 0 as 0 —> x, that is the case of the half wire, which tends 

to 1 as 0 —► that is the case of the plane, and which goes to oo as 0 —> 0, that 

is the space filled by a conductor .

The numerical values of re accurate up to 7 decimal figures versus 0 in steps
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of 5°, are collected in Table 4.2 .

A useful asymptotic formula is available around the limit 6 —► 7r, =  0

which, if 0 is expressed in radiants, yields ( see [16] ) :

re ~  ■ ■ 2 ■■ — 1 around 6 = 7: (4.61)

This formula can be interestingly compared with (3.37), relative to the 

sector wedge approaching the same wire .

Moreover, the analogous quantities for the Neumann problem are 

( see 3.8(19) in [7] ) :

fi = l  vN(0) : PlN{cos0) =  (4.62)

=  -^q[cos6PIn {cos6) +  vN(yN +  lJstnfflJP^cosfl)] =  0 for 0 E [0,7r] (4.63) 

®n(B) = PlN{cos0) =  cos(j> (4.64)

W ithout loss of generality and for simplicity, from now on we consider the ori­

entation of the axes such that the ^-eigenfunction with p = m  = 1 ( see (4.9) ) 

equals sin<j> for the Dirichlet and cos<j> for the Neumann case . The vn in question 

is the smallest positive zero of P j and precisely the one which approaches unity 

as 0 —► 7r, that is the case of the semi-indefinite wire, to decrease down to ~  0.85 

when 0 ~  130°, which again approaches unity as 0 —► that is, the case of 

the plane conductor, and which diverges as 0 —*• 0, that is the space filled by a 

conductor .

The evident loss of monotony of the curve v n {6) can be physically so ex-
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complete oscillation along any circumference of revolution on the cone surface, 

that is to say the current flows down from one half cone surface, converging on 

the acute tip, where it becomes singular, returning on the opposite half surface 

of the cone ( see also Fig. 4.14 ) . Nevertheless, when the cone degenerates into a 

wire, the infinitely thin conductor does not permit fluxes in opposite directions at 

the same points . On the other hand, for the plane conductor there is no longer 

a tip for the current to converge into, corresponding again to unit value of the 

vj>j-curve .

The explicit accurate computation of this behaviour is left as further work . 

However, it has been determined in [14,17] by mens of a different, more numerical 

oriented approach .

Finally, the main behaviour of the EM fields by the cone tip can be approx­

imated as :

N  oc (Kr)VD 1[i/DPVD(cos9)r +  PiD(cos^W] (4.65)

Hm  ̂(kt)"*-1 [vnPIn (cos$)cos(j)r +  PlN(cos0)cos(f)0 — P*N(cosO)sin<j><j>] (4.66)
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T h e  h a lf  cone ( F ig. 4.4 )

By the arguments relative to the previous case and using the spectra determined 

in the previous paragraph, it is possible to state that the fundamental eigenvalues 

and eigenfunctions for the Dirichlet and Neumann problem are now :

fi = 1 i/£>(0) : PlD(cos$) =  0 for 9 G [0,?r] (4*67)

®d (0) = PlD(cos0) ^ d (4>) =  sin(f> (4.68)

ft = 1 vn (0) : PlN(cosO) = 0  for 9 £ [0, w] (4.69)

Q n ( 0 )  =  PlN(cosO) $ n (4>) =  cos<f> (4.70)

so that the main behaviour of the fields by the tip is :

N  oc (Kr)VD 1 VDPlD(cos9)sin<j>r 4- PlD(cosO)sin<j>Q\ +  - ^ P l D{cosO)cos(j>̂>j (4.71) 

H m  oc ^(«r)*'*_1 VNPlN{cosO)cos(j>r +  PlN{cos0)cos<j>0 — PlN(cos9)sin<j><ĵ  (4.72)

Since rc >  0 ( see Table 4.2 ), the E-field is never singular, while r* is exactly 

that of the cone because the current distribution on the cone surface is unaltered, 

the only difference being a back-flux on the plane conductor on the location of 

the missing half cone surface .

The electric singularity relative to the double cone and related geometries 

are treated in Appendix F and the values obtained axe collected in Table 4.2 .

In the same Appendix we outline the procedure to identify the magnetic 

singularity . As a whole, these result are summarized in [43] .
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CONE-WEDGES 

Degree of electric singularity Te

0! Fig. 4.3 Fig. 4.4 0 ‘ Fig. F.3 Fig. F.4 Fig. F.1 Fig. F.2

40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00 

100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160.00
165.00
170.00
175.00
180.00

1.9322760
1.5478992
1.2400370
0.9878077
0.7772883
0.5988374
0.4455662
0.3124203
0.1956063
0.0922201
0.0000000
0.0828438

-0.1577473
-0.2258785
-0.2881988
-0.3455104
-0.3984907
-0.4477207
-0.4937070
-0.5369014
-0.5777187
-0.6165558
-0.6538161
-0.6899452
-0.7254978
-0.7612835
-0.7987796
-0.8418562
- 1.0000000

4.0120050 
3.4053292 
2.9207043 
23248790  
2.1956912 
1.9178032 
1.6802657 
1.4750556 
1.2961622 
1.1389971 
1.0000000 
0.8763697 
0.7658762 
0.6667270 
03774703  
0.4969239 
0.4241233 
03582830  
0.2987687 
0.2450771 
0.1968230 
0.1537332 
0.1156457 
0.0825 161 
0.0544315 
0.0316313 
0.0145328 
0.0037440 
0.0000000

0.00
2 3 0
5.00
7 3 0

10.00
1230
15.00 
1730
20.00 
2230
25.00 
2730
30.00 
3230
35.00 
37 3 0
40.00 
42 3 0
45.00 
4730
50.00 
5 2 3 0
55.00 
5 7 3 0
60.00 
6230
65.00 
6 7 3 0
70.00

0.0000000
03435246
0.4444840
03340253
0.6206242
0.7075521
0.7966360
03891581
0.9861767
1.0886723
1.1976296
13140930
1.4392119
13742858
1.7208126
13805464
2.0555687
2.2483804
2.4620226
2.7002385
2.9676964
3.2702992
3.6156277
4.0135879
4.4773804
5.0249993
5.6816305
6.4836476
7.4856050

1.0000000 
1.0056380 
1.0220296 
1.0482850 
1.0836456 
1.1275821 
1.1797961 
1.2401994 
13088946  
13861618  
1.4724542 
13684030  
1.6748298 
1.7927696 
1.9235041 
2.0686081 
2.2300135 
2.4100946 
2.6117846 
2.8387344 
3.0955318 
33880097  
3.7236879 
4.1124176 
43673511  
5.1064393 
5.7548288 
63488576  
73430475

-1.0000000
-0.2781341
-0.2378589
-0.2071357
-0.1810110
-0.1576552
-0.1361582
-0.1159804
-0.0967612
-0.0782365
-0.0601974
-0.0424675
-0.0248880
-0.0073078
0.0104240
0.0284664
0.0469934
0.0662042
0.0863348
0.1076761
0.1305997
0.1555999
0.1833649
0.2149097
0.2518492
0.2970661
0.3568468
0.4537021

0.0000000
03035213
03136593
03294822
03499078
03738756
0.6004249
0.6287209
0.6580578
0.6878540
0.7176482
0.7470943
0.7759557
0.8040662
0.8314683
0.8581004
03840839
0.9095631
0.9347276
0.9598112
0.9850952
1.0109200
1.0377074
1.0659992
1.0965250
1.1303263
1.1690026
1.2152717
1.2745362

Table 4.2: degree of electric singularity versus the angular aperture 6 for the cone, 
half cone, double cone, half double cone, cone on a plane conductor and half cone 
on a plane conductor respectively indicated by their Fig. number .
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4.4.3 T he term inating wire

and th e wire crossing a plane conductor

In microwave techniques one occasionally meets a  conductor represented by a 

segment of wire, sometimes crossing a plane conductor, used as reflecting ( fence 

guide ) or radiating ( wire antenna ) element ( see Fig. 4.6 ) .

One may suppose that the analysis of the main behaviour of the EM fields 

diffracted by these geometries may possibly be approached by studing the limit 

case of a cone with 0 —► 0, for the region by the tip of the wire, and of a cone 

with 0 —► 0 on the plane conductor 0 = ^ .

It is straighforward to show, however, that we cannot accept the solution 

relative to these two limit cases because it physically represents absence of wire 

conductor. In fact the limit Dirichlet solution are respectively :

©£>(0) = Pq(cqs0) = I 0d(0) = Pi(cos0) = cos0 (4-73)

which satisfy the b.c. pertaining to the free space and the plane conductor 

0 =  j  respectively .

Thus, for a ” physical wire conductor ” that is a wire conductor with non­

vanishing cross section of radius negligible with respect to the wavelength, we 

have to determine an approximate solution, for instance, by extracting the limit 

k2 —► 0 of the singularity vector relative to the acute sector and sector on a plane 

conductor respectively . This way, we establish the eigenvalues, eigenfunctions 

and singularity vectors :
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i) for the terminating wire ( Fig. 4.7 ) :

i ' d  —  0  / i D  =  0  0 d ( 0 )  =  c o s f  =  1

uN =  1 /iAT =  1 0n(0) =  ^d(^) =  co5<̂

N  oc (*r) x[cos\r — \sin \B )

H m  oc (/cr)°[sm|co5<^r -f ^ cos|cos< ^  —

ii) for the wire crossing a plane conductor ( Fig. 4.8 ) :

ud — 0 \iD — 1 0d(0) =  cos(20) * D(<f>) =

i/jv =  0 hn =  0 0^v(^) =  cos(20) =  cos<̂
—4 A A

JV oc (/er)o[6tn204tn^r —  co

H m  oc(icr)°[cos2 Ocos<j>r — 2

Fig. 4.6 : segm ent of wire crossing a plane conductor
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(4.77)

(4.78)

(4.79)

(4.80)
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The presence of a variation along (f> ensure H+ /  0 and is necessary in order 

to allow the flow of longitudinal current along the wire .

Furthemore, for all those applications in which just an easy formulation in 

rectangular coordinate is sufficient, we report in Table 4.3 the projections of the 

(4.76,77,80,81) on the main planes .

EM fields singularity vectors for the terminated wire
sEx S H X s e y s h y &Ez S H Z

W i - » v / i  +  f W 1 - * V 1 +  F T \ / 1 +  T v A - f

EM fields singularity vectors for the wire crossing a plane conductor
z y /x 2 +  y2 z y /x 2 - F  y2 y j x 2 + y2 z
r r r..._ ...... r ____ r __ r

Table 4.3: EM field singularity vectors for the conductors and geometry shown 
in Figs. 4.7,8 .

0 7C
T

I
Fig. 4.7 : terminating wire Fig. 4.8: wire crossing a plane conductor



4.5 General features o f th e

charge and current singularities

Having developed the mathematical aspect of the EM singularities involved in 

the 2D,3D and Cone-wedges, we are now in a position to draw some physical 

conclusions about the singularities of charge and current with the main aim to 

find out some features suitable for generalization to any wedge geometry .

The electric singularity is easier to treat than the magnetic one essentially 

thanks to the fact it is physically originated by the scalar static distribution of 

charge on the tip .

To state this, we can compare re for the six Cones and 3D-wedges drawn in 

Fig. 4.9 . We note a monotonic behaviour everywhere, starting from the same 

point when the conical and plane sector degenerate into the same conductor and 

departing from each other as the solid angle of the cone increases given the same 

angular aperture as the sector, i.e. 0 =  a .

Moreover, any cone with elliptic section but with maximum aperture angle 

0m = $ = a  presents a re-curve located between the two above, named as stated 

for instance in [14, 17] .

This feature, also approximative^ formulated by De Smedt in [16], let us 

postulate that:

every wedge with conducting surface always contained between an inscribing 

3D-wedge and a circumscribing Cone-wedge, but otherwise arbitrarily irregular, 

presents a value o f re between those relative to the latter two ideal limit structures.
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------------Cone-wedges of angular aperture 0
------------ 3D-wedges of angular aperture a

Fig. 4 .9  : d eg ree  of electric singularity relative to the conductor  
g eo m etr ies  individuated by the Fig . num ber indicated
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The situation is quite different for the magnetic singularity because it is 

physically originated by the density of current which, being a vector, is dependent 

not only on the conducting solid angle, but also on its shape as potential path 

for the current flux .

In this contex, in Figs. 4.10,11,12,14,15 are drawn the main lines of current 

associated to the fundamental H-mode and El-mode diffracted by the 2D, 3D and 

Cone-wedges considered . Also indicated is the analytical formulation of the main 

terms using the radial distance r  from the tip, the 2?r-periodic Lame’s functions 

C and trigonometric functions $  .

Comparison of the H-singularities for 2D and 3D-wedges is illuminating in 

showing the importance of the path . For a 2D-wedge the singularity of the 

current is always located along the straight wedge and its order increases with 

decreasing conductor angles . The charge behaves exactly in the same way and 

the minimum degree of singularity is — ̂  for both .

For a 3D-wedge the singular current bends around the tip along smaller and 

smaller circles as the conductor angle increases, reaching the absolute minimum 

of degree —1 . This is a complementary behaviour with respect to that of the 

charge.

For a Cone-wedge, as the path of the current is completely three-dimensional, 

it is allowed to flow around and on the tip, so that the minimum degree of sin­

gularity is just ~  —0.15 .

In this situation, it appears difficult to gauge the degree of magnetic singu­

larity for more irregular structures, conversely to the electrical case .

If, in fact, we look at the results for the elliptic cone treated in the above 

mentioned works [14, 17], we note the existence of two magnetic singularities .
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If we look at the cone along the minor axis of its elliptic section, i.e. at 

its flatter surface, we see the current related to the first singularity flowing down 

onto the tip to return on the opposite half-cone surface .

In a similar way, the current related to the second singularity flows onto the 

tip from the half-cone surface one sees looking at the cone along the major axis 

of its elliptic section, i.e. at its rounder surface .

As intuitive, the named works show that the 2nd singularity is dominant on 

the first one, the two being identical only for the circular cone .

On the other hand, when the minor axis of the elliptic section vanishes, 

i.e. 3D-wedges occur, the first singularity vanishes because the flux of current 

to it related presents opposit signs at the same point of the conductor .The 2nd 

singularity becomes instead that of the 3D-wedge studied in Chapter 3 .

Another important fact to note is that th for the generic elliptic cone is 

no longer monotonic with the maximum angular aperture of the conductor, even 

though the deeper degree of singularity is always comprised between those relative 

to the Cone-wedge and 3D-wedge with the same maximum angular aperture 

( see [14] ) .

In this context, in similitude to what said for the electric singularity, we 

postulate that :

every wedge with conducting surface always contained between an inscribing 3D- 

wedge and a circumscribing Cone-wedge, but otherwise arbitrarily irregular, presents 

a value of Th between those relative to the limit ideal structures . However, no 

monotonicity holds in general with respect to the maximum angular aperture of 

the solid angle o f the conductor and other weaker singularities may appears as 

the irregularity o f the conductor shape increases .
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CURRENT LINES BEHAVIOR ON THE WEDGES

H-modes E-modes

2D-WEDGES

Fig. 4 .10 : like (r s in e )v*1 Fig. 4.11 : like rv(sin 0) v-1

3D-WEDGES

Fig. 4 .12 : like rv-1L(<J>) Fig. 4 .13 : like rv L(<J>)

CONE-WEDGES

\i = 0

Fig. 4 .14 : like rv_1 <l>(<|)) Fig. 4 .15 : like rv <!>(<!>)
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Chapter 5

TAPERS ANALYSIS 

AND SYNTHESIS 

OF AN OPTIMUM  

SMOOTH PROFILE

5.1 Introduction

To the complete mathematical characterization of wedge singularities we have 

to add a circuital one . In other words, workers in microwave and millimetric 

integrated circuits ( MIC ) need to know how much the presence of a 3D-wedge 

influences the parameters characterizing the circuit of which the wedge is part .

Unfortunately, from this point of view, is not possible to characterize in 

absolute the wedge behaviour because its effects are strongly dependent on the 

geometry of the Printed Conductor in its vicinity and from the EM phenomenon
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in consideration .

This means that application for application, component for component, 

the same 3D-wedge produces effects that are qualitatively and quantitatively 

different.

Printed Conductors involved in planar circuits are often shaped as polygo- 

nals, that are a chain of straight edges forming 3D-wedges of arbitrary aperture.

Producing sectors of more arbitrary shape as, for instance, curves of 2nd 

degree, increases degrees of freedom thus allowing satisfaction of further specifi­

cations .

For example, the optimization of the shape of the transition between fin-line 

and rectangular waveguide has been the object of many studies as we are going 

to discuss .

In all these situations, it is still possible to apply the singularity vectors 

forms at least on the plane of the conductor or on the surface normal to it 

as specified in 3.6 . For a conductor shaped as of segment of hyperbola or 

parabola, singularity vector forms valid all over space could be determined by 

solving Laplace’s equation in Ellipsoidal or Paraboloidal c.s. ( see [1] ) .

Moreover, we note that the knowledge of the singularities permits to eval­

uate the risks of electric breakdowns .

This Chapter starts by remarking that the ” elementary brick ” of a pas­

sive microwave integrated circuits is a thin conductor printed or imbedded in a 

dielectric support . Hence, it is important to be able to tell whether the latter 

influences the singularities or not .
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Then, we will proceed to analyse extensively a specific application of wedges 

with arbitrary aperture, like those used in the transition between fin-line and 

waveguide . We will make an attem pt to evaluate the reflection produced by 

sharp corners and, consequently, suggest a new algorithm to determine the 

” optimum smooth profile ” with respect to the reflection coefficient itself .

The process of optimization of a smooth profile gone on during these last 

40 years ( see [26, 39, 38, 36, 35] and many others ) will be reconsidered pointing 

out the role of the distribuited singularities . This will permit us to make another 

step in this direction by ascertaining that the best smooth profile is a product 

between an exponential and a cosinusoidal function .
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5.2 The coexistence of

m etallic and dielectric wedges

To the hypothesis already formulated in Chapters 2,3 about the independence 

of the solution of frequency near the conductor, its convergence to that relative 

to a wedge by the tip and its satisfaction of the edge and vertex conditions, we 

have to add a new one about the influence of the dielectric usually supporting 

the printed conductor ( see Fig. 5.1 ) .

Moreover, dielectric wedges may well exist on their own .

The m atter has been treated by De Smedt in [15] and others quoted there. 

The b.c. involved are now more general than the simple Dirichlet or Neumann 

ones and the determination of the degree of singularity is obtained numerically, 

so that simple analytic singularity vector forms axe not available .

For what concerns our purposes, we have already noted that the normal E 

and tangential H-components of the singular mode diffracted by the plane con­

ductor vanish, for symmetry, on the portion of plane adjacent and complementary 

to the conductor itself, that is, the interface air-dielectric in Fig. 5.1,2 . 

Moreover the b.c. pertaining to this interface axe :

t< > E n a ir  ^ d E n<i i eU c tr ic  ^ t a i r  ^ t d i e l e c t r i c

but these are automatically satisfied by the fields of the fundamental mode 

diffracted by the printed conductor because all their components involved in (5.1) 

vanish .
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In other words, the singularity vectors remain unaltered in presence of the 

supporting dielectric .

From the classic point of view of waveguide discontinuities [28], we can say 

that the geometry of the substrate does not destroy the radial symmetry of the 

metallization, at least at the air-dielectric interface, so that the radially-directed 

E an H-modes fitting the conductor can be determined in each medium as if all 

the space were plenty of it .

The situation is different for the 2D-wedge ( see [15] ) because the air- 

dielectric interface is equiplanar to one conductor surface but not to the other, 

so that the above symmetry is destroyed and v decreases with consequent higher 

singularity at the edge .

In some circumstances, the dielectric is cut at the edge of the conductor, so 

that the two types of edges coexist .

In other cases, the dielectric is cut to a shape of its own, as for the quarter 

wavelength transformer reported in [31] p.283 .

All these situations have been analysed sufficiently in [15] which reports at 

least an approximate value of v .
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a/2

w/2

-(h+s)

printed
circuit

dielectric box conductor

Fig. 5.1 : unilateral fin-line cross section

dielectric

Fig. 5.2 : longitudinal linear taper

LC 0

Fig. 5.3 : schematic nonuniform equivalent line
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5.3 Non-uniform  unilateral fin-line

Given recent improvements in the manufacturing of planar circuits, it would 

be possible, in principle, to increase design freedom by making use of printed 

conductors with gradually changing profiles, instead of the abrupt ones that we 

will consider in Chapter 6 .

For instance, the step impedance in unilateral fin-line shown in Fig. 6.1 

could be replaced by a taper of moderate physical length with minimum reflection 

over a broad band .

Several authors have been working at this problem for the last 40 years, 

looking for a compromise between specifications and optimum synthesis .

To this effort, we now contribute the exact knowledge of the distributed 

singularity, which permits us to formulate a new algorithm of analysis with the 

double purpose of quantifying diffraction by a sharp corner while helping towards 

a novel synthesis approach .

For this purpose, we start by demonstrating the method for the linear taper 

profile drawn in Fig. 5.2, that acts as an impedance transformer between two 

uniform lines of different impedances .

The discontinuity diffracts propagating modes from a uniform section to a 

non-uniform section, were higher order modes must be excited in order to satisfy 

the nonuniform b.c., and in particular those at the tips A and B .

Apart from several approximate methods of analysis which involve 

( see [31] ), in fact, optimization by empirical means, up to date, two main 

complete methods of analysis have been developed .

The first one is the ” Equivalent Line Approach”, which associates an equiv­
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alent line to each guide mode appreciably involved in the phenomenon ( see [35]), 

so that at least a few lines and their mutual couplings need to be involved .

Alternatively, complete multi-mode models require the generation of the 

complete modal spectrum and the determinations of the coupling between at 

least the first few modes, which is increasingly difficult as frequency increases . 

In fact, only the fundamental has been employed in [36] .

These works let us realize that the main analytic difficulty is due to the 

coupling between several lines or modes along the taper where, singularly, they 

do not satisfy the b.c. .

In the attem pt to avoid this difficulty, we present a ” Transverse Resonance 

Diffraction Method ” for non-uniform lines, able to generates modes coincident 

with those of the uniform guide in regions 1 and 2 of Fig. 5.2 ( see also [33] ), 

varying continuously along the non-uniform section in such a way as to satisfy 

exactly the b.c. the printed conductor actually imposes there .

This way, all the equivalent line modes will be decoupled and, in particular, 

the progressive and regressive waves of the same mode also result decoupled. An 

incident mode non propagating in the following uniform section vanishes along 

the taper, i.e. its energy remains stored along the taper and/or is reflected back.

The only approximation consists in the fact that Maxwell’s equations are 

not exactly satisfied far from the boundaries . The accuracy, however, improves 

as the taper length increases, that is to say, when the impedance profile of the 

line we associate to each mode does not change too fast per wavelength along z.

Nevertheless, this is exactly the validity hypothesis for the application of 

the line theory we are going to use and the optimum taper length will be shown 

to be at least so that the approximation is not restrictive .
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5.4 T heoretical developm ent

The analysis developed in order to identify the modes just defined has been 

thought of as a generalization of the "Transverse Resonance Diffraction Method”, 

applied since 1986 ( see [33] ) to the unilateral fin-line with the purpose of deter­

mining its complete modal spectrum .

For this reason and that of brevity, we will use the terminology of [33], with 

the motivations reported there and in the literature quoted there, while pointing 

out the main steps involved in the generalization .

We start analysing any distinct z — z — const section . There we can 

note that the field can be described completely as a superposition of the LSE

and LSM-to-i modes which can be derived from two ^/-directed Hertzian vector

potentials as follows :

e  = —jujfi'Vxiih + k2 n e + vv • n c (5-2)
H  =  «2fl^ -1- VV • Uh +  ;u;eV xne (5-3)

Diffraction on the printed conductor is responsible for coupling between 

LSE and LSM modes, even though the dominant are LSE and become pure when 

the fin width reduces to zero .

In the three homogeneous regions of the guide these potentials satisfy the 

usual scalar wave equation (2.1), but, in order to satisfy the non uniform b.c. 

along the taper, a more general z-dependence has to be assumed, i.e. :
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n e ,fc (z ,S f ,z )  =  'St 'h( x ,y , z ) f ( z )e  ^ z)zy (5.4)

In order for (5.4) to satisfy the wave equation, the correction function /  can 

be shown to satisfy the ordinary differential equation :

/  “  2 /(72  +  7 ) -  f [ l z +  272 -  (7 +  7)2 +  72] =  0 (5.5)

under the only hypotesis of negligible derivatives of with respect to z.

In order to ensure decoupling between different modes and between pro­

gressive and regressive waves of the same mode it can be shown that (5.5) must 

be supplied with the b.c. :

=  0 on the uniform section (5.6)
dz

The analogous regressive wave quantities are recoverable from (5.4,5) by 

replacing 7 by —7 .

In order to satisfy the b.c. on the metallic walls x  =  we can further 

decompose as :

<Se( z ,3/;z) = ^ 2  Ue,(z )xen{y\z)<j>en(x) (5.7)
n—2,4,...

^ k { x ,y ,* )=  Y 2  u h»(z )xh»(y<z )<l>h»{x ) (5-8)
n = 0,2,...

with :
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/ / \ /2  . / TITT
<f>en \X )  =  \ I  - s m (  X) 71 = 2 ,4,...

V a a
4hn(x) =

1
7* n = 0

\ f i coa(rirx) "  =  2 ,4 ,...

(5.9)

where the wavenumber in the x direction is related to that 7 along z, to fcmn 

along y and to the wavenumber in the medium k according to the relation :

7 7  7T

T i W +  **(») =  ( - 7  )* +  * L (» ,» )  (s-io)a

where m is the index of the mode along z  .

(5.10) shows the dependence of kmn on z  which, together with the z- 

dependence of the coefficients U in (5.7,8), constitutes the dependence on 

z . In other words, the accuracy of the (5.5) increases, in particular, as 

decreases . Naturally, this happens as the profile changes more gradually .

Finally, the b.c. on the surfaces y = const are systematically introduced 

in the spectral domain so it remains to impose the b.c. pertaining to the fins 

directly on the fields, whose explicit espressions can be recovered from (5.2,3,4) 

as :

&  =  [ ( S  "  4 + +  w )  * ~  +  *]

r, r( W h  , . „ \  . , (  . ( .  a * .  d v k \  .1
H  =  [ \ d i d - y  +  ) X + { K * h +  ^ - ) y ~  [ 3UJe^  ~  I ' t ' - d i )  Z\

(5.12)
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where :

7 .//(* ) =  ^  [7 ( z ) z  -  ln( f ( z ) ) ]  (5.13)

& „(* ) =  P{z) -  (5.14)z

In particular, leaving aside the common terms \f\e~ ^ ê z, the fields on the 

plane of the fins y =  0 can be synthetically written as :

E x ( x , b , z )  =  ^ 2  E * n ( * ) < l > h n ( x ) >  H x ( x , 0 , z )  =  ^ 2  # T n  ( * ) & » ( * )  ( 5 *1 5 )
n=0,2,... n=2,4...

E z(x,Q,z) =  ^ 2  Ezn{z)(j>en{x), Hz( x ,0 , z ) =  ^ 2  HZn(x)<f>hn(x) (5.16)
n=2,4,... n=2,4...

There are linked by some integral relations expressible in terms of the 

Green’s admittances on the right and left side of the fins as in [33] . The kernels 

of these integral equations are expressible in useful series form which, however, 

are all properly convergent after appropriate integration by parts . Differently 

to what happens in a uniform section, both Ex and Ez present a singularity of 

degree — ̂  along the taper which becomes deeper in the corner A and weaker in 

B .

Consequently, the derivatives of the E-field components are no longer inte- 

grable and the only remaining possibility is the use of integrals of the H-field . 

Then, if we leave aside the z  dependence, we can write for instance :
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Y u (x ,x ')  Y g (x ,x ') E?(x ')

( i ) 2 r  r '  H?(x")dx"dx' _ Y2i (x , x ') Y g (x ,x ') E?(x ')
(5.17)

where R indicates that the equation is valid in the right sheet of the surface y =  0. 

The b.c. imposed by the fins can be thought as those of continuity of the H-field 

on the air-dielectric interface since no current flows there .

Writing the analogous of (5.17) on the left of the fins and substracting term 

by term  we can eliminate H :

Yn (x ,x ')  Y i 2(x , x ') Ex(x')

Y2i (x , x ') Y22(x , x ') Ez(x')
=  0 r a  a  ̂

x  e  t _ 2 ’ 2 (5.18)

This formula holds all over the guide width a as E Xi E z vanish on the fins . 

Explicitly, the convergent series kernels are :

Fu (x ,x ') =  Y
n=0,2,..

y12(x ,x ')=  Y  y n J ’S x ) ^ { x ')
n=0,2,..

y 21(x , x’) =  Y
n = 2,4,..

* » (* ,* ')  =  Y

(5.19)

(5.20)

(5.21)

(5.22)
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where :

S'n„(z) =
2fti„(z) n =  0 

^  n = 2,4, ...

<KSX) = "

y’u S z ) = '
0 n =  0

" = 2 ,4 ,

^ (fx )  n = 0 

&„(x) n = 2,4, ...
(5.23)

and t/iin,y i2„» J/22„ are those defined in [42, 33] where the z  dependence is 

due to the propagation constants and to the strip width w(z) .

In order to solve the integral equation (5.18), we have to reduce it to a 

matrix equation for a discrete and sufficiently large number of z- values along 

the taper length . In first instance, and by the way of example, thanks to the 

fact that Ex,E y =  0 on the fins and the integrands are always even for symmetry 

with respect to x, we can reduce the 1'* integral equation to :

n  r-** .
/  ... =  I ... =  2 I \Yn(x ,x ')E x(x') +  Yi2(x ,x ')E z(x')]dx' =  0 (5.24)

J-% J - ^ l  J0

In second instance, we operate an useful change of variable which avoids 

explicit integration of the singularities and permits to complete the discretization 

of the integral :

.

/■? . dx' f i  . dx'I {Yu ( x , X'(e l ))}Ex ( x ' ( e l ) ) — d91 +  J [Y21( x , x \ e 2)) ] E ,( x '(6 2) ) — dB2 =  0

(5.25)
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where the functions $i( s ') ,02(x') have to be chosen in such a way that 

compensate exactly the singularities present in EX1 Ez respectively so that the 

functions :

d r '  « _
Sx(0t) = Et (x'(6i))w = Y ,  (5-26)

1 m=0,2,...

d r '  *
Sz(02) =  E z{x '{02))—  = V  Zm<pm(02) (5.27)

d02 m=lX..

are everywhere finite functions in 0i ,#2 € [0,^] while x' € [y,0] . For this

purpose, are expressed in terms of complete and orthogonal functions ipm with

coefficients X m, Zm . A suitable set of functions for this purpose is as follows :

V t ( * ) =  \  77 °  0€[O,7t] (5.28)
^ cos(m0) m =  1, 2 , . . .

This is a complete set in the space of the even functions in respect of 0 = 0, and 

then can represent Sx(0\),Sz{02) because they can always be extended even in 

respect of this point .

Furthemore £x is also even while £z is also odd with respect to 0 =  |  so 

that only the terms with m  even represent completely £x and those with m  odd 

represent completely £x .

These two sub-sets are also orthogonal in 0 E [0, ~] because the product of 

any two of them is even in respect of 0 = ir and |  allowing us to write:
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r< t 'm(0 )vW )d0  =  2 r  <p*m(0)<pl(0)d6 =  Smn (5.29)
Jo Jo

where m, n are both even or odd . In conclusion, a set of functions orthonormal

over the half aperture is given by :

1
y/2 ir m  — 0 

^ cos(mO) m = 1, 2,
(5.30)

Following the same argument, the two sets of functions <j>en(x), <j>hn{x) are 

expressible on the aperture as :

(f>en(X) ~  Ylm=l,3t...Qmn,pm{^2) 

^hn{x ) =  $Zm=o,2,...
n =  0 ,2,4, ... (5.31)

The iterative procedure by which the matrix Q and P  are determined for any 

z section is vital in reducing computing time and will be presented in Appendix 

G .

Integral equation (5.18) now can be reduced to the matrix equation :

Z n (z) Z 12(z) K ( z )

m
=  0 (5.32)
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where :

( F l l ) m i  — X3n=o,2,... VllnQinPmn 

( ^ 2 l ) m t  =  S n = 2 ,4 t... ? LQ i n ^ m n

(^12)mi =  En=0,2,... V l i n Q i n Q m n  

(^22)mi =  Y ln = 2,4,... ^ f ~ Q i n Q m n

In particular, E z being odd implies E ^  =  Zq =  0 .

The condition for non-trivial solutions of the system (5.32) is expressible

as :

def[7 (f, w(z)), geometric parameters, EM parameters] =  0 (5.35)

As a way of example, we analyse the following fin-line geometry :

geometric par.: I =  11.43mm, h =  11.186mm, s =  0.254mm, a =  10.16mm 

EM parameters : fio =  47T • 10“7^p , Co — 8.854 • 10-12^  , er =  2.20 

u> : 2ir f  at the central X band f =  10GHz .

For any 2, u> the roots of (5.35) identify the propagation constants 7m(2,o>) 

and the EM fields in the same section . The working frequency is such that only 

the fundamental mode is in propagation for every possible fin aperture w .

The determination of the whole curve 7 (2,0;) in the frequency band and of 

the complete mode spectra is left to further applications .

m =  0 ,2 ,..., i =  1,3 ,... (5.33)

m =  l ,3 , . . . , i  =  1 ,3,... (5.34)
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5.4.1 T he m ap x — 0

The mapping of the variable x into 0, with a view to translate our analysis to a 

orthonormed space of functions finite everywhere, has been devised by Schwinger 

[28] for the study of irises in waveguides .

We will now deal with an extension to singularities of arbitrary degree .

At the intersection of a line z = z with the edge conductor we fix the origin for 

a new c.s. X , Y , Z  as indicated in Fig. 5.1, i.e. related to the waveguide ones 

according to :

X  =  ^  — x Y  = y Z  = z - z  (5.36)

The particular situation is shown in Fig. 5.4, where the variable 0 is also 

indicated . The required map can be taken in the general form :

02 =  F (z )X  (5.37)

Since the electric field is transformed by this map like :

d6 dO 1 / F(z)
w h e re :  d x  =  - d i  =  2 ] j ^ n ^  (5 -38)

(5.38) must be chosen in such a way that ^  satisfies the right edges condi­

tions at x  =  0 =  0 which, for any z , can be determined from those obtained
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in Chapter 2 .

Precisely, relatively to Ex and around A, for z  =  0+ , we can write :

0ex — z ^ A ^ V X cgsct i.e. Fex =  z 2̂va ^cosa  (5.39)

where a  is the angular aperture and v& — 1 is the electric singularity pertaining to 

the wedge in A . W ith this choice, (5.38) shows exactly the degree of singularity 

—|  along the edge X  =  0 and of degree va — 1 on the tip, where also z —> 0 . 

The factor cosa takes into account also the limit cases a  =  .

Ez shows exactly the same singularities with the sole exeption of the above 

limit cases which can be accounted simply by changing cosa with sincr, i.e. :

0 E X =  z ^ A~ ^ V X s in a  i.e. Fez = z^2va~^ sincr (5.40)

If we indicate with T the taper length ( see Fig. 5.2 ) the expressions around B 

are the same but with the substitutions va —+ vb , z —> z — T  .

In order to be useful in determining some recursive relations shown in Ap­

pendix G, the previous mapping has to be put in the following form :

dsin40 -f bsin20 = F(z)cos(—x) -f c (5-41)
a

where 5, c, d are constants to be determined so as to satisfy the following mapping 

conditions :
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i) when 6 =  0, we must have x =  y , i.e.

(5.42)

(5.43)

iii) in the open interval 6 6 (0, the curve 0(X)  must be monotonic in 

order to ensure a one-to-one correspondence between 0 and x  values .

0 <  b < *Fmins i n > ( ^ )  (5.44)
4  a

where Fmin is the absolute minimum that F  assumes in the 2-interval under 

consideration ( see Fig. 5.5 ) .

W ith these coefficients, we can make the map explicit in the form :

7T
cos—x =  a\ +  ct2cos20 +  c*3cos40 (5.45)

a

where a\  — cti +  as =  1 and, moreover, we have :

- r5 Fmin,S i  0 . pi Fmin^Si , .
“ 1 =  1 —[3 + —  J y  oc2 = - S i  « 3 =  [ - - - p ] y  (5.46)

where Si = sin2( ^ )  .

Remarkably, are the same for Ex and E x ( see Fig. 5.6 ), so that the 

form (5.45) also presents the advantage of defining a single map :

c =  i r [2sm 2(-j—) -  1] 
4a

ii) when 0 =  y, we must have X  =  0, i.e. :

d =  2i W ( ^ )  -  b 
4 a
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0i(aO =  02(x) =  0(x) (5.47)

It is interesting to note as in A is (2i/a — 1) <  0 while in B is (2i/b  — 1) >  0,

so that F(z)  diverges in A and vanishes in B as shown in Fig. 5.5 . For what

concerns the zone of influence of the 3D-wedges, in accordance to what said for 

(3.24), we can consider it to extend to a distance from the tips of the order of :

rmar € [0.5 -5- 5]mm when /  =  10G H z  (5.48)

Consequently, the whole taper can be divided into 3 intervals where different 

mapping of the forms (5.45) are used . The F  profile for the three intervals are 

indicated in Fig. 5.6: by A, FminA can be given the F  value at z — rmax while in 

the interval around B, is chosen as the value at a point arbitrarily near to

z = T  and in the intermediate intervals Fmin is chosen \ F  .

This results in the behaviour of shown in Fig. 5.6 where, in particular, 

the value ^ far from the tips ensures az =  0 so that there (5.45) reduces to a two 

term  relation as for the classic Schwinger map along the uniform sections .

Because of the necessity to decompose <j>en(x) also, we need the following 

form of the map :

s in —x = PicosO +  facosSO +  facosbO (5.49)
a

where /?i,/?2»/?3 are constants determined in such a way that the curves 0(x) 

(5.45,49) are as similar as possible . This goal is achieved, for instance, by making 

the two curves to coincide at the end points 0 = | , 0, ( i.e. x  =  0, j  ) a t a point
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0i =  0(x\) very close to the conductor wedge 0 =  0, so as to assume the same 

derivatives there, and at an intermediate point 02 — 0 {x2) such as to minimize 

the mean distance between the two curves at all other points .

From the explicit relations (5.45,49), it is possible to recover the physical 

meaning of the map by drawing a typical ^  behaviour in the three regions as 

shown in Fig. 5.7 .

One could observe that analogous maps would be required at the tips on 

the uniform section of the fin-line, however, it will be shown that the value of the 

propagation constant 7 (z) closer point to the tip, as computed by the previous 

map, is quantitatively very close to that obtainable in the uniform section by 

using the Schwinger map .

In fact, the analytical effort of generating a new map is avoided simply by 

connecting the curve 7 (z) in the oblique side and in the uniform section .
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5.5 C om putational and theoretical results

For a better physical undestanding, the whole procedure starting with the de­

termination of the propagation constant (3(z) and ending with the determination 

of the reflection coefficient at the input of the line, can be usefully divided into 

three well defined steps :

5.5.1 T he determ ination  o f (3(z) and fields 

for th e fundam ental m ode

The first program is centered on the implementation of the m atrix equation (5.32) 

and related characteristic equation (5.35) . In order to put in evidence the effect of 

the 3D-wedges on the curve /?(z), the dimensions of m atrix (5.32) were increased 

up to 20x20 . We have noted that in X-band the propagation constant is in 

the range j3 £ [100 — 200] rad/m  and the right singularities at the tips have an 

influence on the (3-value within 1% if compared with the case of — |  singularity .

Nevertheless, their inclusion is essential for obtaining a monotonic (3{z), 

according to the monotonicity of the conductor profile . Also, it ensures continuity 

of the derivative of (3 so as required for any physically meaningful quantity . The 

latter are essential conditions in order to evaluate correctly f3{z) and j3(z) at the 

tips, whose importance is shown in the next paragraph .

It has also been noted a small difference between the values of f3(z) on 

the uniform side and those at a point just beyond the tip A . This requires 

interpolating the curve (3{z) between a point on the uniform side of A and enough 

distant from it to be considered to be beyond the 3D-wedge effect, and the above 

point beyond A so as to also satisfy continuity of the first and second derivatives.
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The length of the uniform line segment still influenced by the 3D-wedges at 

A and B, may be taken as r m ax  evaluated in (5.48), so that the electrical length 

of the taper may be assumed as L ~  T  +  2rmax as indicated in Fig. 5.2 .

The evaluation of the set of transverse modal amplitudes EXn(z), E Zn(z) in 

(5.15,16) is more critical because, increasing the matrix dimension in (5.32), their 

values decrease so rapidly that error propagation creeps in . In order to keep the 

error moderate, two alternative driving equations, expressing the b.c. on the fins 

in alternative ways, have been substituted in the system ( see (5.51,52) below ). 

This is why, the optimum matrix size n goes from 8 for very narrow aperture w 

down to just 1 when w —► a, that is when only EXq is different from 0 . In any 

case, E Zn is about 2 orders of magnitude smaller than EXn . This confirms for the 

nonuniform section the same property observed for the uniform ones : LSE and 

LSM modes are weakly coupled .

5.5.2 T he determ ination  o f th e correction function

The second program deals with the solution of the ordinary complex second order 

differential equation (5.5) subject to the b.c. (5.6) .

An exact solution obviously does not exist, but an expansion of f ( z )  by 

means of a series of Chebyschev polynomials Tn seems quite suitable because 

both its real and imaginary parts have resulted almost linear, i.e. T\ dominant.

The critical point is now constituted by the correct reproduction of the first 

derivative and, even more, of the second derivative of /3(z) at the two tips where 

they take on their absolute maxima . As a consequence both 7e/ /  and /?e/ /  in

(5.11,12) present a step particularly evident in correspondence of the acute tip A 

( see Fig. 5.8 ) . However, no cusps are present there . Furthemore, because of
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the real part of / ,  7C/ /  presents a real part which is almost an order of magnitude 

smaller than its imaginary part, as shown in the same Fig. 5.8 .

5.5.3 T he solution  o f th e equivalent transm ission  line

To a third program is entrusted the determination of the characteristic 

impedance Z(z)  with consequent translation of the problem into non-uniform line 

theory. A common definition for the fin-line impedance is :

Z(*) = V'(z) (5.50)

where V is the voltage difference between the fins expressed within a multiplicative 

constant as, either :

v (z ) = f  Ex(x,0,z)dx = -^=EX0(z) + w J ^  J3 E*«(z )— n ^
V a V a „ "  n2 n=2,4,..

or Ex(x ,0 ,z)dx  = y/aEX0(z)

ww( z )
2a

20 '  (5.51) 

(5.52)

Hence, we obtain one of the driving equations mentioned above as :

s in(n%—)
SnEXn =  0 with : £ „ = (

n=0,2,... U 2 a

tv—a „   r»—r~ n =  U
V “ (5.53)

w \ h  n =  2 ,4 ,...

the other being the analogous one for Ez .

The arbitrary multiplicative constant may be fixed in such a way that 

EXo =  1 or V  = 1 so as to simplify (5.50) .

The average power flowing across an arbitrary guide cross-section S is :
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P*u = \ j  j { E xH'y -  EyHt)dxdy  (5.54)

where * indicates the complex conjugate . This expression can also be reduced to 

simple summations since the fields components are expressible in easily integrable 

Circular and Hyperbolic functions along x  and y respectively ( see (5.7,8,9),[42]).

According to these definitions, for the transition from a very narrow fin-line 

with w ~  0.08a, Z  ~  50H to a rectangular waveguide with w — a, Z  ~  450fl, we 

have obtained the Z  profile given in Fig. 5.9 .

It shows an almost linear behaviour for the real part of Z  except near the 

tips and an imaginary part about one order of magnitude lower than the real one. 

The imaginary part is positive by the acute tip and negative by the obtuse one, so 

that there always exists an intermediate point where the taper mode impedance 

is almost real: it is used sometimes to introduce matching elements .

To this profile of impedance we can associate the non-uniform line shown 

earlier in Fig. 5.3 . In accordance with lines convention, we introduce the coor­

dinate I  with origin on the load corresponding to the 2nd uniform fin-line.

The reflection coefficient T relative to an incident wave proceeding from 

section 1 satisfies along the line the well known Riccati’s equation :

f  +  27r  +  i ( i - r ’) M  = o (5.55)

with the only b.c. T(0) =  0 pertaining to a matched termination .

The problem has been solved numerically according to the procedure in­

dicated in [37] that expresses all the functions involved in Chebyschev series so 

as to reduce all integrations to finite sums . The difficulty is presented by the
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interpolation of Z(£) or rather of -| =  because of the large values of the

derivatives of both the imaginary and real parts near the tips ( see Fig. 5.9 ) .

|T| is reported in Fig. 5.9 where the usual oscillating behaviour with in­

creasing maxima is recovered . The novelty is represented by the fact the minima 

are no longer 0 due to the presence of the imaginary part of Z.

In order to obtain the taper length that realizes the minimum input reflec­

tion coefficient, we compute the scattering parameter S n  =  T for discrete values 

of the physical length T  of the taper as reported in Fig. 5.10 .

In accordance to previous works ( see [31] for an overview ), the length 

which realises minimum reflection is T  ~  18mm, that is ~  0.57Aq ~  ^ . In fact, 

the wavelength in guide A is not too different from that in vacuo Ao, which at 

the midband frequency considered is 30mm . The successive minima in the curve 

of [31] are located at about multiples of half a wavelength due to the analytical 

properties of the Riccati’s equation itself and to the given impedance profile, as 

rigourously shown in [26] .

For comparison, analogous curves are obtained for a smaller impedance step 

of ratio 3:1 . Here we pass from a fin-line width w ~  0.16a with Z  ~  100ft to 

w — 0.66a, Z  ~  300ft . The situation is reported in Fig. 5.11, that shows how the 

first minimum of reflection is below 0.1 as generally required in applications . By 

comparison, a similar attenuation in the previous case of ratio 9:1 is reached at 

the second or third minimum, that is to say, with a taper length at least double.

Finally we observe that the two Fig. 5.10,11 are not reliable for very short 

tapers . Roughly speaking, they are those with aperture at A <j  < 100°

( see Fig. 5.2 ) but, as said before, these values are enough removed from the 

first minimum which is the shortest length of practical interest .
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5.6 Experim ental results

Differences among authors arise not only about the best analysis technique but 

also about measurement techniques .

Generically speaking, there are two main ways to proceed .

i) The measurement equipment is calibrated in the medium of the device 

and then the standards ( open, short, offset, match ) have to be constructed, and 

which task presents difficulties when, as in our case, dealing with non standard 

transmission m ed ia .

ii) The measurement equipment is calibrated in the standard X-band rect­

angular waveguide and the transition to the fin-line medium is characterized in 

such a way as to perform de-embedding calculations .

Because of the less than perfect fin-line structure that can be manufactured 

in our laboratory, we follow the 2nd way and carry out the measurement with the 

help of a HP8510 Network Analyser .

Recently, this m atter has been treated in [41], where it is suggested to 

characterize the device under test by making use of two sets of back-to-back 

transitions separated by different, known, electrical lengths .

The printed conductor involved in the measurements in question is drawn 

in Fig. 5.12 where the two identical back-to-back transitions between narrow 

fin-line and rectangular waveguide are separated by a uniform line of length I  .

The ” serrated choke ” configuration shown in Fig. 5.12 realizes a virtual 

open circuit exactly at the plane where the box-wall is located : this avoids losses 

due to a parasitic TEM-mode propagating between the printed conductor and 

the casing itself because of the imperfect contact .
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The analysis of the double transition may be made easier by making use 

of their transmission matrices and, the transitions being identical, the scattering 

m atrix of the transition itself can be uniquely de-embedded by two measurements 

of the global S-matrix with different line lengths .

The dimensions of the two circuits and relative measurements of 5 n , Si2 for 

the complete circuit are reported in the Fig. 5.13,14 .

The two line lengths have been chosen so that the lines resonate at a fre­

quency enough removed from 10GHz so as not to affect appreciately the global 

S-matrix parameters there .

To be precise, the electrical line lengths are about A at the resonant fre­

quency for S n  and their difference is about ^ at the frequency of 10GHz of our 

interest . This ( see [41] ) permits to minimize errors due to inaccurate electrical 

length datas, since in the formulae we need just their difference expressible in 

terms of the resonant frequencies .

If, in fact, we were considering the line length to be equal to £, we would 

be wrong both because of measurement errors and because the uniform line is 

effectively shorter than the uniform segment due to 3D-wedge effects around the 

tips A, as observed in 5.5 .

The S n  values of the global S-matrix at 10GHz are then all we need in 

order to completely recover S n  =  T of the transition .

This procedure has been repeated for the three different taper lengths 

T =  16 mm, 18 mm, 21 mm so as to characterize well enough the more interesting 

region around the first minimum . The values obtained, indicated in Fig. 5.10 

with an asterix, are in good agreement with the theoretical data .
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Fig. 5.12: printed conductor for a linear transition between fin-line and rectangular waveguide
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Fig. 5.13: printed conductor dimensions t  -  25 mm, T -  21
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Fig. 5.14 : printed conductor dimensions t  *  32 rrwi, T =• 21 mm
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5.7 Physical considerations and

optim ization o f a sm ooth  profile

The analysis just concluded permits to look back at the effort gone on during these 

last 40 years on the synthesis of the n optimum smooth profile ” giving a further 

physical explanation of the reflection in terms of concentrated and d istributed 

singularities .

This will allow us to devise new means in order to improve performance, 

i.e. decresing |S n | over a wider band and with a shorter taper length, that is to 

say, to approach the ” optimum taper ” .

It is noted that several workers in the field prefer to use shapes with abrupt 

steps, for instance the quarter wavelength taper, where the reduction of |5 l l |  in 

the broadband is obtained by introducing matching elements whose position and 

shape are determined in a quasi-empirical way .

In this work, we only consider a continuous changing profile on the basis of 

the results obtained from the analysis of the linear taper .

Commenting firstly on Fig. 5.8, we note a faster propagation of the taper 

mode with respect to the fundamental fin-line mode since /?e/ /  >  /? . This implies 

a slight decrease of the physical length T necessary to obtain a given electric 

length indicated by f$ejj{x)dx  in Fig. 5.10,11 .

More significant is the presence of a real part of 7c/ / ,  representing the 

reactive attenuation associated to the higher order modes excited and decaying 

in any section of the non uniform guide so as required for the EM fields in order 

to satisfy the b.c. there . This effect is responsible for the imaginary part of 

the equivalent impedance shown in Fig. 5.9 : it shows a dominant capacitive
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behaviour at the acute tip and around it and an inductive behaviour at the 

obtuse tip and around i t . From the point of view of the fields, and, in particular, 

of their distributed singularities, this can be understood noting that there is an 

increment of charge density in A and of current density in B, as stated in Chapters 

2,3 .

Commenting instead Fig. 5.10, we may argue that the steepness of the 

curve of |S n | around the first minimum indicates that reflection changes fast 

with frequency, so that the linear taper is only suitable for a narrow band .

Using this information in the context of the general problem of optimization 

of the profile, we consider two main ways to improve taper performance .

5.7.1 C om pensation  o f th e reactance o f th e  two tips

A first attem pt to estimate the reflection due to the tips consists in imposing a 

vanishing derivative in the algorithm interpolating the curve Z(z)  at the tips . 

This yelds the 2nd curves in Fig. 5.10,11, showing appreciably lower minima of 

l^n  | and of taper length than the accurate values .

All profiles without cusps in A and B present vanishing derivatives of the 

curve Z(z)  there but the exact |5 ii| for the whole taper is dependent on the 

specific shape of the conductor replacing the tips . For this reason, we do not 

synthesize any particular conductor profile and we assume that a quantitative 

approximation of the reflection due to the 3D-wedges A and B is given by the 

difference between the two minima in Fig. 5.10,11 .

A first practical form of compensation consists in inserting an inductive 

step in correspondence of the acute corner and a capacitive one at the obtuse 

one . Unfortunately, their forms and positions have to be optimized empirically

183



because of the just observed problem of quantifying and localizing the reflection 

due to the tips .

To this method is perhaps preferable just to cut the sharp edges off by 

replacing each of them with two corners of angular aperture closer to 180°, which, 

as seen in Chapters 2,3, present the same electric and magnetic singularities and 

intrinsic self-compensating properties .

5.7.2 D esign o f m ore general taper profiles

Perhaps the more serious limitation to compensation techniques is due to band­

width . For this reason Klopfestein in [39] presented an extension of the theory 

by Collin [27] dealing with optimum cascaded step transformers . He noted that, 

by allowing the number of sections to increase indefinitely for a fixed over-all 

length, Collin’s result can be extended to the case of a continuous transmission 

line taper, possibly maintaining small abrupt steps at each end .

This way, the Dolph-Chebyschev profile, with possibly a small impedance 

step at the ends, produces the minimum reflection coefficient magnitude in the 

pass band for a specific length of the taper, and likewise, for a given maximum 

reflection in the pass band, it has minimum length .

The small impedance steps at the ends consist of small steps in the con­

ductor profile, each containing a pair of corners of about 90° and 270°, so that 

the two complementary effects are localised in a small region producing in fact 

self-compensation .

Unfortunately, when we actually synthesize these steps, performance decays 

because higher order mode are excited there which do not allow realization of a 

pure real impedance step .
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In order to avoid this problem, Hecken [38] suggested to substitute the two 

small steps by two small arcs of exponential lines . This change produces a small 

but definite increase in the taper length for a given bandwidth and does not 

completely solve the problem of synthesis .

For all these reasons, in more recent years, workers directed their efforts 

towards the analysis and synthesis of continuously changing profiles like the ex­

ponential, cosine square, circular and others . Renouncing to the optimum per­

formance stated by Klopfestein, they find, more or less empirically, that the best 

profile is the one that follows a law similar to that of the impedance ( see [31] 

p. 279 ) .

The exponential line presents the best performance ( see [31] p. 274 ) even 

though it is somewhat reduced by too abrupt an end at the final section, so that 

other devices such as quarter wave transformer using notches or protusions in 

the dielectric need to be employed ( see [31] pp. 283 ) . Other solutions are 

the double exponential and the double circular taper where two arcs of the same 

curve but with opposite concavities are connected in order to avoid altogether a 

discontinuity of the tangent of the curve .

In this search for the best profile, our analysis aims to give analytic justifi­

cation of the profiles above discussed suggesting, at the same time, an additional 

shape .
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5.8 A new approach to  synthesis

Recent developments in CAD programmes allow us the freedom to design any 

required profile given either analytically or by interpolation between points of a 

given set .

From the foregoing analysis, we may argue that the profile with minimum 

reflection is the one with the smoothest /  and the smoothest and minima real 

part of 7c//  and imaginary part of Z  .

Similarly to what happens along uniform sections, i.e. where 7 is constant, 

this condition can be expressed by saying that 7e/ /  ought to assume a constant 

complex value :

C = a + jb  (5.56)

Unfortunately, this is too strong a requirement because under the hypothesis 

of validity of (5.5) and because of the (5.5) itself, (5.56) can be shown to imply 

7 =  C, which is against the hypothesis of nonuniform line .

For the same reasons, but under weaker conditions, we may require in (5.13):

ln( f (z )) = J  = C (5-57)

On the other hand, (5.5) can be reduced to a non-linear differential equation 

in just ^ as :

+  (J )2 “  2( j ) ( 7* +  7 ) -  [7* +  27 +  7j -  (7 * +  7 )j] =  0 (5-58)
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which, using (5.57), can be turned into a 2nd degree ordinary differential equation 

in 7 and relative b.c. :

7 +  (7 z f  +  27(72 + C z - 1 )  + 27C =  C 2 (5.59)

7 =  7! when z < 0 7 =  72 when z > T  (5.60)

An approximate numerical solution to this problem is always possible and 

it provides a function of z with parameters T,C :

l  = l{z ' ,T ,C )  (5.61)

Nevertheless, the dispersion characteristics :

7 =  j[w( z)\ (5.62)

can be found independently from (5.35), so that from the system (5.61,62) we 

can synthesize, at least numerically, the profile :

w(z] T, C) (5.63)

The length T and the constant C are determined so as to satisfy the given 

attenuation requirement in the band with minimum T .

Remarkably, the family of curves (5.63) is determinable without using Ric- 

cati’s equation, having been deduced from just the waveguide properties .

An approximate analytical form of (5.63) is possible in the reasonable hy­

pothesis, already observed for the linear profile, that the imaginary part of /
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presents a behaviour almost equal to that of the conductor profile .

In fact, in this hypothesis, noting that the solution of (5.57) is of the form :

/  cxe°‘ ' (5.64)

we set :

w(z') = T>eaz'cos(bz') + or (T eaz>sin{bz') +  (5.65)

where z  =  z +  z0 and £, T ,  Q, zo> a, b are constant design parameters .

The length T is chosen in such a way that the curve has vanishing derivative 

at A and B so that no cusps are present in the taper .

The points of vanishing derivative are found to be :

z  =  ^arctg(^)  (5.66)

Thus they are a numerable infinity because of the indetermination of mr of 

the axctg .

At these extremants, the 2nd derivative of w (z )  is shown to be given by :

— (a2 +  b2)cos(bz) (5.67)

and we may limit attention to the pair contained in each period of the cos function, 

since at the smaller point of the two the concavity is positive whereas at the other 

is negative, so as required when we pass from an aperture W\ to one W2 > W\ .

For instance, if we indicate by zQ the smallest negative solution of (5.66), 

the two solutions in question are given by :
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/ X / X * c l ^ 7r  ^ _ _ v
*0 =  -arctg(—), z1 =  -a rc tg ( - )  +  -  (5.68)

Hence the length T is given by :

T  = z '1 - z 0'  = t  (5.69)
0

This shows that the constants T  and b are in fact unique .

The constants X>, S  are determined by forcing the curve to fit the points 

w(z — zo) =  w(O) =  wi and w(T)  =  w2 that is to say :

„  ^  1 v =  W l - £  (5_7Q)

W\ e^7r(X — e**) 2eazocos(bzo')

Hence, just the two parameters T  and a remain available for optimization 

in respect to reflection and bandwidth .

Relaxing the condition (5.69), b also remains free, but then at least at one 

end there is a cusp with all that is implied by diffraction produced there .

In conclusion, we have derived a novel conductor profile for a ” quasi op­

timum smooth taper ” introducing the shape (5.65), that is to say the product 

of an exponential times a cosinusoidal function which has never been considered 

in previous works, restricted to the simpler double-exponential or double-circular 

profiles . This includes the properties of the exponential taper by the tip A and 

those of the circular one by B while avoiding the presence of cusps along all its 

length .

The m atter has been discussed in [45] . The rigorous implementation of the 

system (5.61,62) to synthesize pointwise the profile (5.63) is left for further work.
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5.9 Conclusions

In this Chapter, we found that the dielectric support of the planar circuit does 

not influence the singularity vectors .

The exact fitting of the boundary conditions pertaining to non uniform lines 

has perm itted a novel general modal analysis .

We have analysed theoretically and experimentally a linear taper in fin-line 

and found that the 3D-wedge influences only within 1% the value of (3 but much 

more those of /? and .

Furthermore, the classical problem of the synthesis of the ” optimum smooth 

profile ” has been reconsidered in the light of a novel algorithm and a new smooth 

profile of higher degree has been suggested .
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Chapter 6 

APPLICATION TO THE 

ANALYSIS OF PLANAR  

CIRCUIT COMPONENTS

6.1 Introduction

This Chapter shows how the EM fields singularity vectors enters the algorithms 

more usually implemented in the analysis of Microwave Integrated Circuits (MIC).

Algorithms like the ” Mode Matching Technique ” and the ” Moment 

Method ” require an unknown "trial field" at particular surfaces like that normal 

to the printed conductor or that of the conductor itself.

Until now the "trial field” has been formulated by series of simple func­

tions which, however, suffer from convergence problems when they are asked to 

represent the singularities at tips or wedges . However, the exact formulation of 

the latter given in Chapters 2,3, now allow us to know "a priori” the singular
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behaviour of the unknown field .

Consequently, we suggest a more physical way to formulate ” trial fields”
^ ^ » * # / • •

S  and 7i , e.g. by multiplying dyadically ( i.e. vector component times vector

component ) the se,s*h singularity vectors pertaining to the printed conductor

times the E , H  fields pertaining to the structure without it .

E  and H  are often determinable rigorously and easily because they satisfy 

the b.c. pertaining to an easy geometry of the EM environment ( see loaded 

rectangular waveguide, etc ... ) while s*c,Sh confer to the resulting £, 7i also 

exact satisfaction of the b.c. on the printed conductor, thus providing a ”trial 

field” as similar as possible to the true unknown one .

Specifically, following the general purposes of Chapter 5, we consider the use 

of the above formulated "trial field” in the analysis of some fundamental planar 

circuit configurations . We will start by considering an abrupt step in strip-line 

or fin-line by means of the ” Variational Approach ” , and proceed to study a 

situation where more than two 90°, 270° sectors are involved . This requires the 

introduction of the concept of global singularity function in a case of application 

of ” Transverse Resonance Approach ” . The Chapter ends with some remarks 

on the problem of a rectangular patch antenna where the ” Moment Method ” is 

involved .

Particularly important are the main 90°, 270° sectors and their singularity 

vector projections on the main planes, including the conductor itself where the 

nonvanishing fields components become proportionals to the density of charge 

and current as announced in Chapters 2,3 .
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Fig. 6 .3  : equivalent network model
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6.2 A pplication o f the quarter and three-quarter  

plane singularity vectors 

on the plane normal to  the conductor

Currently used Microwave Integrated Circuit configurations, such as strip-line 

and fin-line, make use of abrupt discontinuities as schematically shown in 

Fig. 6.1,2 where a 90°-wedge A and a 270°-wedge B are linked together .

Several passive circuit components such as stepped impedance transformers, 

filters, mixers, patch antennas etc ..., are manufactured by connections of these 

two elementary wedges in the form of cascaded transmission lines .

Development and manufacturing costs of these circuit components could 

be greately reduced if simple and accurate equivalent circuits or network were 

available for them, as shown for instance in Fig. 6.3 .

Analysis methods such as the simple quasi-static CAD techniques are lim­

ited in validity as frequency increases . On the other hand, the numerical effi­

ciency of rigorous, more expensive analyses approaches such as the ” Variational 

Method ” ( see [32, 33] ) may be enhanced by knowing ”a priori” the E-field 

behaviour around the conductor wedges and, in particular, that of its singularity 

d istributed  along the contour .

From a physical point of view, we can think in terms of incident fields 

constituted by ”a” propagating modes in region 1 to the left of the discontinuous 

cross section S and ”6” propagating modes in region 2 to its right . These modes 

diffract at the discontinuity exciting higher order modes in such a way to satisfy 

the b.c., in particular, producing on the tips A and B the EM fields singularities
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discussed in Chapter 2,3 .

The discontinuity can be represented with the equivalent network model of 

Fig. 6.3 characterized by its equivalent scattering m atrix S .

If we use for the inner product the formalism :

< E , H > =  J j  E x H z d S  (6.1)

the scattering matrix elements Sik can be computed as in [32] .

Rik =  — —  (6.2)c  u i 1) v . ^  c  i r l i )  v 7

< E , g , E >

< £, H$l) >< >

where G  is a dyadic Green operator for scattering depending exclusively on the 

complete spectrum in the regions 1 and 2, Hi, Hk are the magnetic fields associ­

ated to the ith, kth mode in either regions 1 or 2 and E is the unknown electric 

field at the cross-section S .

Rik is then related to the scattering matrix elements simply by :

Rik =  <
-g—x-  i < a 

i > a

where : Sik — <

(6.3)

A previously used expression for the unknown E is given by

E = ^  cntn(x ’ V) (6*4)
n

where en is the electric field of the nth mode in one of the two uniform sections
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or in a virtual uniform section with strip or fin conductor width intermediate 

between those in the regions 1 and 2 .

In any case, modes of the input and output guides present a singularity of 

degree —|  or of a finite value in A and B respectively so that, at least theoretically, 

we need an infinity of them in order to realize the correct degrees of singularity 

at the tips .

Thanks to the fact that (6.4) enters the scattering m atrix only under the 

integral sign, in practice, only a few cn coefficients need to be computed when 

using variational techniques ( see [32] ) .

However, the knowledge of the singularity vector se permits now to express 

the field on S in a different way, namely :

oo
S  =  (sfsxx  +  s °y y )  • ^  CnEn(x , y) (6.5)

n = l

where the E n are the modes of just the slab-loaded waveguide, easier computable 

than en as they do not include the printed conductor . is the global singularity 

vector on the cross-section S, that can be obtained from those relative to the single 

wedges A and B by a matching procedure .

We can identify essentially 3 ways of matching the singularity forms relative 

to the 4 tips involved :

i) the forms relative to A and B determined in Chapter 2 are valid around 

the tips up to an arbitrary abscissa |  as reported in Fig. 6.4,5 and Tables 6.1,2 

for the strip-line and fin-line respectively .
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ii) W ith somewhat better physical motivation, the forms in Tables 6.1,2 axe 

valid up to a distance rmax from the tips, dependent on the minimum A involved, 

as indicated in the general remarks of Chapter 3 . The same forms are then set 

to a convenient constant value on the remainig part of the surface S .

iii) The two forms are matched along the locus where they assume the same 

values which, however, is determinable only numerically .

Thus, the global s f  is everywhere continuous only in the case (iii) while for 

the other two it is piecewise continuous, the only discontinuity being present in 

the matching line x  =  |  .

In specific applications, for instance like in the integration (6.2), we choose 

between the above matching procedures the one that produces an overall 

which contributes to the value of the integral almost exclusively because of its 

behaviour by the conductor and, in particular, that of its singularities .

Thus, in particular, if the position of the matching section x =  |  or the 

value of the discontinuity that s® presents there in cases (i) and (ii) is important, 

we must use the more expensive matching procedure (iii) .

Coming back to (6.5), we note that it satisfies exactly all the regular and sin­

gular b.c. on the cross section S . Further developments will be directed towards 

exploring how well s'f only represents the E-field in S .

A practical difficulty consists now in the integration of forms like :

a,- = <  s f , Hi > =  /  Js (s°H iy -  s °H ix)dS  (6.6)
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In the case of the 90°-tip, in particular, each integrand shows a singularity 

of degree :

-  0.703416 -  0.5 =  -1.203416 < - 1  (6.7)

that is the sum of the electric and magnetic singularities associated to s °  and 

H  respectively . Nevertheless, the difference of the two integrands is indeed 

integrable as can be shown by remembering that a; assumes the physical meaning 

of excitation coefficient for the modal field component H{ by the source 5-field 

on S ( see also [47] ) .

Once the integrability is so ensured, it remains to solve the problem of 

expressing s j ,H i  in the more appropriate c.s. by the tips in order to investigate 

the possibility of an analytical solution .
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Electric singularity vectors 
on the plane of an abrupt step in strip-line

&ex range
\ y V T ‘ r ? - ‘ 0 < x <  |

\ Z W a ~1 r r -  < X < -  2 — 2\f\if\

v W f rB ± < T < -  2 — 2vVl
B rsB -  < X < -  2 — 2

Table 6.1: Referred to the abrupt strip-line of Fig. 6.4 

W ith :

vA =  0.296884, i>b =  0.814655, r\ 4  =  y/{x -  f  )2 +  y2, rB = y j(x  -  f  )2 +  y2

Fig. 6 .4  : geom etry  of th e abrupt s te p  in strip-line
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Electric singularity vectors 
on the plane of an abrupt step in fin-line

*ex ■% range
r r * 0 < x <  f

v W 1 i < * < i7 m
> / w r %

z r i
! < * < fV\y

\ y V T ‘ t' b f  < * < f

Table 6.2: Referred to the abrupt fin-line of Fig. 6.5

With :

vA =0.296884, vB =0.814655, rA =  yj(x  -  )2 +  y2, =  F + F

Z

Fig. 6 .5  : geom etry  of the abrupt s te p  in fin-line
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6.3 A pplication o f the quarter and three-quarter  

plane singularity vectors 

on the plane o f the conductor

Moving along the outline of the previous paragraph, we can now consider a situa­

tion where the matching surface for the modes incident from the uniform regions 

is located on the plane of the printed conductor itself .

In order to fix the ideas, we make reference to an inductive notch in bi­

lateral fin-line which cross and longitudinal sections are drawn in Fig. 6.6,7 . 

Nevertheless, the following can be easily extended to arbitrary conductor shapes 

as indicated in [34] .

The fin-line is short-circuited at given distances l \ , £2 away from the abrupt 

discontinuities so as to realise a resonator of length £ .

Looking transversally, the EM fields can be thought as the superposition of 

the usual TE and TM modes in a loaded rectangular waveguide of inner dimen­

sions £ x a , i.e. satisfying the regular b.c. pertaining to the box conductor and 

the two air-dielectric interfaces .

We suppose that the dominat modes only are propagating along y, or better 

resonating, but when the printed conductor is introduced transversally to the 

propagating direction, they diffract on it exciting higher order modes so as to 

satisfy the new b.c. and, in particular, the singular ones at the 90°, 270° tips like 

A and B respectively .

Circuitally speaking, the discontinuity can be characterized by a two ports 

of impedance matrix Z_ closed on two short-circuited lines with the known char-
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acteristic impedance of the two uniform fin-lines to the left and to the right of 

the discontinuity as depicted in Fig. 6.8 .

For a given resonant frequency u>r and positioning the short-circuits at the 

distances away from the discontinuity, the resonance condition of the equiv­

alent network is expressible as :

(Z\\ -f Z \)(Z n  +  Z2) — Z \2 =  0 (6-8)

where, from line theory, it is simply :

Zi =  j Z oitg(f3i£i) for i =  1,2 (6.9)

and pi is the modal propagation constant .

The condition for nontrivial solutions for (6.8) can be expressed as :

/(W r,/l,/2 ) =  0 (6.10)

The latter permits to determine by means of three successive experiments three 

pairs of lengths ^1,^2 which substituted in (6.8,9), yield the three independent 

parameters ^11,^12,^22 •

Condition (6.8) is obtained from the application of the b.c. pertaining to 

the conductor, which in [34] have been chosen of the forms :

€tl =  £h = £ t0 =  Y ,  V'S' n ‘> =  n ‘* =  H ‘o =  S  (6-11)
i k
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on the aperture surface So'. €t0i 1>7 are the tangential components of the electric 

field on the interface air-dielectric, on its right and on its left respectively and 

analogously for 7t , while e and h are defined in the following .

This approach makes use of classical stepped waveguide modes e,-, h* or­

thogonal over So . Their expressions are not easy to handle even for relatively 

simple geometries of So .

Furthemore, the vectors e,-, hk so determined do not satisfy the 3D-wedges 

singularities on tips like A and B . Consequently, we need to consider quite a few

coefficients Vi, Ik in (6.11) and in the non trivial solution (6.10) . Modal couplings

are expressed as integrals of the type :

[  Etjm ■ &idS [  Htjm-h kdS  (6.12)
JSo JSo

where E tjm, Ht]m are the components tangential at So of the modal fields of 

the rectangular waveguide £xa .

In this context, we suggest instead to express the b.c. equivalent to (6.11) 

in the form :

£tt =  £h =  +  * ? ," )  • Y h  Vik^
i,k

uni =  nn2 =  K o = • Y  (6-13)
i,k

where Etik, Hnik are the tangential electric and normal magnetic components of 

the waveguide modes respectively .

The first advantage of (6.13) consists in the fact that we can avoid the
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determination of the espressions for e,-, hk whereas the waveguide modes are easier 

to handle .

The singularity vector components for the whole conductor are obtainable 

from the matching procedure indicated in the previous paragraph and the forms 

for just s® are reported piecewise in Fig. 6.9 for the chain of 90°,270°

corners ( see also [48] ) .

Because of the exact satisfaction of the regular and singular b.c. by these 

functions, further work will aim to exploit the possibility that they alone, possibly 

multiplied by the fundamental waveguide mode when the aperture is large in 

respect to the wavelength, need to be considered so as to reduce the non trivial 

condition (6.10) to finding the roots of just a single equation .

A practical difficulty, also in this case, will be caused by the integration 

of the forms (6.12) and further effort will be directed in obtaining maximum 

analyticity of the solution .
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x

Fig. 6.9 : singularity vectors components on the plane of the conductor

The three expressions indicated in each sector of Fig. 6.9 represent the 

values of , s ẑ, s® respectively and the symbols used there stand for :

rex =  i/e(90°) -  1 =  -0.703416 =  t Hb

reB = i/e(270°) — 1 =-0.185343 =  t Ha

XA = X - \  A A = ĴlXB = X - f
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6.4 A pplication o f the

current and charge singularity vectors

A typical antenna problem requires the radiation pattern due to diffraction of a 

printed conductor which, also depending on the required polarization of the EM 

fields, may assume the shape of a rectangular patch or of an arbitrary polygonal.

A standard analysis method determines the fields from a scalar V  and a 

vectorial A  potentials which, in their turn, are expressible in terms of integrals of 

the corresponding Green’s functions G, weighted by the unknown distributions 

of surface density of electric charge and current ( see for instance [40] ) as :

A(r)  =  f  G A ( r / r ) - J s ( r ) d S '  (6.14)
Js0

V(r)  =  f  G v ( r / r ) p s { r ) d S ' (6.15)
J Sq

These integrals are currently solved by applying the Moments Method .

This effects a subdivision of the conductor surface So according to a grate, often

rectangular, each cell of which is identified by the vector r .

The unknown current J s ( r )  and charge ps ( r )  pertaining to each cell are 

represented by a set of simple and everywhere continuous functions which satisfy 

some consistency conditions on the boundaries of contiguous cells .

Even though the number of representing functions is of fact reducible to 

1 or 2 for cells belonging to regular conductor areas, things go differently for 

those belonging to the edges and tips since the singularities there cause serious 

problems of convergence .
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The situation is remedied by decreasing the step size of the cells in proximity 

of the singular points . We suggest instead to change the representing functions 

or better to weight them with the projections of the singularity vectors on the 

conductor where they become proportional to the charge and current as indicated 

in 2.4.1 and 3.2 respectively .

In particular, the forms pertaining to the fundamental sectors can be recov­

ered directly from Tables 2.3,4,5 and 3.3,4,5 for the charge and current respec­

tively .

No problem of matching between singularity functions of contiguous wedges 

rise for the rectangular patch antenna, since the wedges are all of 90° aperture . 

Moreover, generalization to any angular aperture follows the lines of 2.6 and 3.6.

This way, the step size of the singular cells can again be equal to that of 

the regular cells, but the problem of convergence is turned into the integration of 

(6.14,15) where it appears a multiplicative weight function for Js  and ps which 

is a known, singular but integrable function .
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6.5 Conclusions

In this Chapter we have made some comments about the application to three 

commonly used algorithms in the analysis of planar circuits, of the exact knowl­

edge of the EM fields singularities distributed along the edges or concentrated on 

the tip of the Printed Conductor .

Actually, a preliminary operation of matching of the singularity vectors rela­

tive to contiguous wedges is necessary in order to determine the global singularity 

vector for the whole Printed Conductor .

A global singularity function pertaining to the whole Printed Conductor 

permits the choice of a different and more physical formulation of the ” trial field” 

on the aperture or "trial current and charge” on the conductor .

In this approach, the problem of the determination of the coefficients of a 

series representation, as for instance when using variational techniques, and of 

their convergence in correspondence of the tips is turned into the integration of 

the integrable singularity functions times a function finite everywhere .

Further work will be directed towards an analytic solution of this problem .
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SUM M ARY

The results obtained in this work are of utility in the analysis of circuitry 

involving Printed Conductors .

Conceptually speaking, we have ideally devided the EM environment of the 

circuit into the supporting structure and the Printed Conductor .

The EM fields pertaining to the supporting structure are completely and 

rigorously determinable by classic methods, like those of the Hertzian potentials, 

for instance .

From the point of view of the analysis, the Printed Conductor introduces, 

instead, new and somewhere singular vector boundary conditions for the fields in 

the existing environment .

The first three Chapters have dealt with the reduction of the named bound­

ary conditions pertaining to sectors or double-sectors into singularity vectors of 

easy analytical form, by studying the solutions of the scalar and vector wave 

equations in the geometry of a conical coordinate system .

Several analytical simplifications due to the separability of the above equa­

tions in the conical geometry and to the special coordinate surfaces the boundary 

conditions pertain to, has permitted to single out very accurately the complete 

modal spectra of the wedges .

In particular we formulate exactly the singularity of the fundamental wedge 

mode distributed  along the edge and concentrated at the tip conductor .

The singularity vector we require is just its simplified form .
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As a confirmation of the Babinet’s Principle we have found, by an indipen- 

dent approach, that the EM-fields spectra pertaining to any plane sector are re­

coverable from those of just the E-field spectrum or H-field spectrum pertaining 

to any plane sector .

As a consequence of this, the H-field singularity vector pertaining to any 

sector is equal to the E-field singularity vector pertaining to the complementary 

sector, which in turn is just that of the static analysis .

Similar properties are established for the double sector .

The investigation of the EM singularities has been extended in Chapter 4 

to 2D and Cone-wedges .

Even though these are analyzable in a spherical coordinate system, a uni­

fication of the theory of Chapters 1 to 4 has been possible, which also suggests 

some general conclusions about the charge and current singularities at the tips of 

a conductor of arbitrary shape .

A clear relation of inverse proportionality between degree of electric singu­

larity and the maximum angle of aperture of the tip has appeared that affords 

insight into more irregular tip geometries .

Conversely, the vector density of current is related to the shape of the 

conductor at the tip rather than to the maximum angular aperture . As a conse­

quence, more than one singularity may occur and a monotonic relation between 

degree of current singularity and maximum angle of aperture of the conductor is, 

in general, no longer possible .
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Chapter 5 has dealt with the classic problem of tapers .

A more general method of analysis has been suggested by the exact knowl­

edge of the distribuited singularities along the conductor edge and has perm itted 

an estimation of the reflection due to the sharp corners .

A new ” optimum” smooth taper profile has been suggested .

Finally, in Chapter 6 we have indicated how to match the singularity vectors 

pertaining to individual wedges to each other so as to determine a singularity 

vector for the whole Printed Conductor .

Their introduction in three typical algorithms for circuit component analysis 

is suggested .
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Appendix A 

Boundary conditions and 

periodicity conditions

In 1.3.4 we are asked to investigate the possibility that the boundary conditions 

(1.32,33,34) for the Lame’s equation (1.27) are reducible to parity and periodicity 

conditions for the solution w(z)  . For this purpose, we need to recall the following 

properties of Hill’s equation relatively to an odd and an even solution with respect 

to the origin :

i) w\ (z) is even , W2 (z) is odd (A .l)

it) u>i(0) = 1̂ 2(0 ) = 1, thi(O) = w2(0) = 0 (A.2)

in)  w i ( z  ±  2 K )  =  w i ( 2 K ) w i ( z )  ±  w i ( 2 K ) w 2 ( z )  (A.3 )

iv) w2(z ±  2K)  =  w 2 ( 2 K ) w i ( z ) ±  w2(2K)w2 (z) ( A . 4 )

v) wi(z)w2(z) — w2(z)wi(z) = 1 (A.5)

vi ) 1̂ 1(27^) =w2 (2K)  (A.6)
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and analogous relations are valid changing 2K  with ± m 2 K ,  m  integer.

For reasons of syntheticity, through the demonstrations we will use the 

symbolism :

: (), , . . .  which stands for from ( ) and, ,and .. . it  follows th a t” 

and which means that: ” from ( ) and , , and . . .  it is =  to ”

The general solution and derivative of (1.27) are expressed as :

w(z)  =  awi(z)  +  bw2(z) (A.7)

w(z) = aibi(z) -f bw2(z) (A.8)

where a,b are two constants to be determined together with the periodicity prop­

erties from the b.c. as in what follows .

T h e  b .c . w(—K )  =  0, w(K)  =  0

Under this condition the properties of w can be recovered considering that :

: (A.7) written in z = 0 —> tu(0) =  aitfi(O) +  &u>2(0) : («) a =  u>(0)

: (A 8) written in z = 0 —* u>(0) =  au>i(0) 4- 61̂ 2(0) : (**) 6 =  ii;(0)

which together with (A.7) imply :

w(z)  =  u;(0)iyi(2r) +  w($)w2(z) (A.9)
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but (A.9) can be reduced to :

in z  =  K  w(K)  =  u;(O)i0i(liQ +  iy(0)u>2(if) 0

in z = —K  w(—K )  = w(0)wi(—K)  +  w(0 )w2(—K)  

=  iu(0)u;i(iiQ — w ( 0 ) w 2 ( K )  0

i.e. either u;(0)u;i(liQ =  w(0 )w2(K)

or w(0)wi(K)  =  — w(Q)w2(K)

This system admits 4 solutions :

u;(0) =  0, u>(0) =  0 : (A.9) w(z) = 0

u>(0) =  0 ,W2(K)  =  0 : (A.9) w(z) = w(0 )w2( z ) ,w2(K)  = 0 (A.10)

ioi(0) = 0,ti;(0) = 0 : (A.9) w(z) = w(0 )wi (z ) ,w2(K)  = 0 (A.11)

W\(K)  =  ^^w2{K)  =  0 : (^) with z  =  K  is impossible

Nevertheless only (A.10,11) are consistent and express the fact that the 

solution can be only pure even or pure odd . Let us see if periodicity also occurs:

: (m ), z = K  w\(K)  = w ^ K ^ K )  -  w ^ K ^ K )  : (A.10) Wl(2K)  =  1

: {iv),z  =  K  w2(K) = w2(2K)w1(K) -  w2(2K)w2 (K)  : (A.  10) w2 (2K)  =  0

which together with :

: (v),2 =  2K  w\(2K)w2(2K) — W2(2 K)tbi(2 K)  — 1

imply : w2(2K)  =  1 : (iv) 1̂ 2(2 ±  2K )  =  —w2(z)
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so that : w2(z) and hence w(z)  is odd with period 2K 

analogously :

: (m ),2  =  K  W\(K)  =  wi(2K)wi(K)  — tbi(2K)w2(K)  : [A. 11) w\(2K)  =  0 

: (iv), z =  K  w2(K) = w2(2K)w1(K) -  w2(2K)w2(K)  : ( A l l )  w2(2 K )  =  - 1

which together with :

: ( y ) , z  =  2 if u;i(2^ ) 162(2/^) — w2{2 K)w\ (2K)  =  1 

imply : 1̂ 1(2/^) =  — 1 : ( i t ; )  W \ ( z  ±  2K)  =  — u > i ( z )

hence : 1̂ 1(2:) has anti-period 2K  

so that w in question is even and periodic with period 4K  .

Summing up, the initial b.c. are translated into :

either w(z)  even with period 4K  (A.12)

or w(z)  odd with period 2K  (A. 13)

T h e  b .c. w(—K )  =  0, w(K)  =  0 o r w(—K )  =  0, w( K)  =  0

An analogous but more tedious proof can be developed for the above b.c. which

yields the periodicity condition :

w(z)  has period 8 K  (A. 14)

However, this time w is neither even nor odd but a linear combination of w\ 

and w2 . From the complete proof it is possible to show that the b.c. can only
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determine the ratio :

=  wA2K)  
w( 0) v '

Furthermore, it will be proved that between the even W\ and odd w2 solutions 

there exists the relation w2(z) — 2K),  which derived and written at z  =  0

yields ii>2(0) =  wi(2K)  == 1 .

This way, tu(0) =  iu(0) =  1 and the general form (A.9) becomes simply :

w(z) — wi(z)  +  w2(z) (A.15)

The b.c. w(—K )  = w(K)  = 0 give obviously origin to the specular solution 

w8(z) =  w(—z) i.e. :

wa(z) =  ttfi(z) — w2(z) (A.16)

Finally we can show using the properties of wi  and w2 that w(z)  and wa(z) 

are odd or even with respect to the points where the b.c. they satisfy vanish or 

have vanishing derivative respectively .

T h e  b .c . w(—K )  = 0, w(K)  = 0

These b.c. can be proved to yield a condition of fundamental periodicity in a way 

similar to that of the first case, in fact they imply :

either w(z)  even with period 2K  (A. 17)

or w(z)  odd with period 4K  (A. 18)
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Appendix B 

Fourier series espression 

of the solution

In this Appendix we explicitly collect the three-term recursive formulae and asso­

ciated continued fractions relative to the coefficients of the Fourier series represen­

tation of the 6 periodic Lame’s functions presented in 1.4.3 . Precisely, we report 

the more useful characteristic equation obtained from the continued fraction by 

making explicit the variable :

rj =  2h — u(u + 1 )k2 (B.l)

Also explicitly indicated are the forms that are more suitable for the nu­

merical implementation of the characteristic equation itself . For the 6 cases in 

question the solutions can be written in the order as follows .

218



Even solution w ith  period  ir ( i.e. 2 K  or 2K f )

The Fourier series form for this solution is :

oo
3 t »  =  £> 2 ,« « > (2 n 0  (B.2)

»=0

The recursivity of the coefficients can be shown to be expressible as ( see [6] ) :

i(z/ -  l ) ( u  +  2)k2A 2 +  t̂ A q =  0 i = 0 (B.3)

i(z/ — 3) (u  +  4)fc2j44 +  [tj — 4(2 — k2)]A2 +  +  l)&2i40 =  0 i = 1 (B.4)

i ( i /  -  2i -  l )(v  +  2i +  2 )k2A 2i+2 +  [n ~  4z2(2 -  k2)\A2i+

v +  2i — l)(i/ — 2i +  2)^2i42»_2 =  0 i >  2 (B.5)
z

The latter generate a continued fraction ( see, for instance, [7] ) which we 

report, for reason of space, writing the successive fractions on the same line :

( „ * - ! )„ ( „  + 2 )£  ( ^  _  9)(„ _  2)(„ +  4 ) £  ( * * - 2 5 ) ( . / - 4 ) ( v +  6 )&  
* 2  — k2 — 2  _ 2 - t * - £  _ 2 - k 2 - %

(B.6)

This espression can also be seen as a transcendental function in i/, h with 

parameter k2 and can be usefully implemented using the following espressions :

A2I+2 ^  / l - f c ' \ 2  
A2I —  V k ) / >  1 (B.7)

_  - ± ( v + 2 i - l ) ( v - 2 i + 2 ) k 2 2 <  i <  I (B.8)
»7-4*2(2-jk2)+i(i/-2i-l)(i/+2*+2)*:2^ t 2 .

A2 _  -i/(i/+1)&2 
Aq ^_4(2_fc2)+ I ( J/_ 3)(|/+4)A2 d l

II• N (B.9)

oII (B.10)
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The first and last equations correspond to the (1.60) ; in particular the truncation 

maximum index I  depends on the accuracy required for the solution {X,} and 

decreases with increasing rate of convergence, i.e. with k2, for :

Odd solution w ith period tt ( i.e . 2K  or 2K ' )

The Fourier series form for this solution is :

*=i
O )  =  £  B 2isin{2iv) (B.12)

The recursivity relations axe now :

(rj — 8 +  4fc2)#2 +  \ ( y  — 3)(^ +  4)fc2i?4 =  0 i =  0 (B.13) 

i ( i /  — 2 i)(v + 2 i +  l )k 2B 2i +  [ij — (2t +  2)2(2 — k2 )]B2i+2+ 

i ( i /  -  2i -  3)(i/ + 2i + 4)k2B 2i+i = 0 i > 1 (B.14)

which generates the characteristic equation :

o _  1,2 n  9 — 1-2___ a
L K 16 -  36

and which is computationally implemented as :

~  ~ ( * ^ ) 2 /  >  1 (B.16)

=  ------------- -frfc-MH.+M+l)*8  1 <  i <  /  (B.17)
B *' ^_(2t+2)2(2-A:2)+|(i/-2t-3)(j/+2i+4)ifc2-B|j± i — V 1

>? =  4 (2 - fc 2) - i ( i / - 3 ) ( i /  +  4)Jfe2| j  i =  0 (B.18)
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Even solution w ith  period  2k ( i.e. 4K  or 4K*  )

In this case the Fourier series form is :

E l : » ( v )  =  Y  M m cos(2 i + 1)„ (B.19)
i= 0

The three-term recursivity relations among the coefficients are :

— 3)(u +  3 )Jc2A 3 +  [v ~  (2 — k2) +W \v (y  +  \ ) k 2]A\ =  0 ? =  0 (B.20)

^(z/ — 2i — 2)(i/ +  2i +  3)k2A2i+3 +  [tf ~~ (2z +  1)2(2 — k2)]A2i+i +

\{ v  -  2 i +  1 )(i/ +  2i)k2A 2i- i  = 0  i >  1 (B.21)

which generates the characteristic equation :

(B.22)

and which is computationally implemented as :

g m  ~  _ ( ! £ ) *  / »  1 (B.23)

A 2j+i _  _________ -^(t/-2t+l)(i/+2t)fc2______

i, = ( 2 - k i ) - M \ v { v  + l )k2 - \ { v - 2 ) ( u  + Z)k2%- t =  0 (B.25)

 _________ - T(i—2i+i)(i/+2.)t______  1 <  i <  /  (B.24)
M i - 1  ,_(2i+i)2(2_t2)+l(v_2,_2)(i/+2i+3)tJ:I2i±i —

2 v ' A/ ,v 2' /V ' / >li

Odd solution w ith period 2 k  ( i.e . 4K  or 4K' )

The Fourier series form for this solution is :

< m+1 («) =  Y  B v + iM *  + 1)® (B.26)
t ' = l
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The relation are completely analogous to those of the even case but with an 

opposition of the signs indicated with in the (B.20,22,25) .

E ven  so lu tio n  w ith  p e rio d  47r ( i.e. 8K  o r 8K* )

The Fourier series form for this solution is :

EZ(v) -  £  A<cos(2i + 5)” (B-27)
x= —0 0

Now the series is bilateral so that a unique relation expresses the three-term 

recursivity where the index i assumes all the positive and negative integers :

i ( 2 v +  4i +  3)(2v — 4i — l)k 2Ai+i +  [4rj -  (4* -  1)2(2 -  k2)\Ai +

i ( 2 i /+  4i — 3)(2i/— 4 i-f  5)A;2i4i-i =  0 — 0 0  <  i < 0 0  (B.28)
Li

Consequently, in general, we can write a continued fraction for i departing from 

+ 0 0  and another for i departing from — 0 0  to be made consistent at a common 

finite i value .

No useful form for the characteristic equation does exist if we except the 

case in which u =  is any odd integer, when it becomes an algebraic equation 

of degree v +  |  .

In our applications this will not happen so we report only the relations used 

in the computational implementation :

~  - ( ! = £ ?  h  >  1 (B.29)

T p - = ---------------------------------------------  ! < < < / ,  (B.30)
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( ^ ) + =  consistency condition (B.31)

* L -  =  ---------------j(2,+4.'+3)(2,/-4.-l)*»----------- 0 > 1 > I 2 (B.32)
Ai+i 4»j-(4t-l)2(2-A:2)+|(2t/+4t-3)(2i/-4i+5)Jk2-J= i — V J

d M l ~  _(1= f y  h  «  _1 (B.33)

The consistency condition equates the value (^£)+ obtained when i =  1 in 

(B.30) with ( ^ ) ~  obtained when i =  0 in (B.32) .

The l 5t equation (1.60) is now substituted by the asymptotic behaviour at 

—oo as reported in (B.33) .

Odd solution w ith period 47r ( i.e. 8K  or 8K1 )

Finally the Fourier form for this solution is :

£ . »  =  E  Bicos(2i -  ^  (B-34)
t=—oo

It is immediate to prove that a 7r shift introduced in the even solution (B.27) 

provides an odd form of this kind, in fact :

OO -  OO 1

EZ (V +  7r) =  X I A iCOS(2i +  2 ^ V +  *) =  C°5( \ )  X ] AiC0S(2i +  2 ^  +
t = —oo i = —oo

OO J  OO J

s i n ( E  Aisin(2 i +  - ) v  =  Aisin(2i +  - ) v  (B.35)
2

i = —oo

Furthermore, the above is still solution of Lame’s equation because it presents 

periodic coefficients with period 7r, s o  that we can use in (B.34) the same coeffi­

cients {A,} used for the even solution (B.27) .
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Appendix C 

Evaluation of the eigenvalues

In this Appendix we report as a way of example the numerical evaluation of the 

first 15 components of the {1/, h} spectrum of eigenvalues relative to the acute 

sector .

The individual eigenvalues are identified by the mode label defined in 2.3 .

We compute values with fc2-steps of 0.02 for a total of 50 evaluations in the 

complete interval k2 € [0,1], inclusive of the limit values k2 =  0,1 where v and h 

are determinable analytically as indicated in 2.3 .

The accuracy is up to 6 decimal places and the evaluations relative to k2 not 

present in the Table may be recovered by interpolation; in this case, the accuracy 

increases where the higher order derivatives decrease .
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ACUTE SECTOR 
Eigenvalue h

* z (0 ,0 ) (0 ,1 ) (0 ,2 ) (0 ,3 ) (0 ,4 )

0 .0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0
0 .0 2 0 .0 0 1 7 1 1 0 .0 2 6 2 4 8 0 .0 7 1 7 1 1 0 .1 3 7 1 3 4 0 .2 2 1 3 1 7
0 .0 4 0 .0 0 3 8 7 8 0 .0 5 4 3 4 6 0 .1 4 6 4 0 5 0 .2 7 6 3 5 2 0 .4 3 9 3 7 5
0 .0 6 0 .0 0 6 3 1 4 0 .0 8 3 4 8 7 0 .2 2 2 2 1 3 0 .4 1 4 1 4 5 0 .6 4 8 4 8 2
0 .0 8 0 .0 0 8 9 6 8 0 .1 1 3 4 2 5 0 .2 9 8 4 6 8 0 .5 4 9 1 3 8 0 .8 4 6 6 1 9
0 .1 0 0 .0 1 1 8 1 4 0 .1 4 4 0 2 0 0 .3 7 4 7 4 5 0 .6 8 0 4 7 4 1 .0 3 2 9 3 8
0 .1 2 0 .0 1 4 8 3 7 0 .1 7 5 1 7 7 0 .4 5 0 7 2 7 0 .8 0 7 5 7 9 1 .2 0 7 3 0 6
0 .1 4 0 .0 1 8 0 2 6 0 .2 0 6 8 2 5 0 .5 2 6 1 5 8 0 .9 3 0 0 7 5 1 .3 7 0 0 7 2
0 .1 6 0 .0 2 1 3 7 6 0 .2 3 8 9 0 5 0 .6 0 0 8 2 3 1 .0 4 7 7 3 7 1 .5 2 1 8 9 1
0 .1 8 0 .0 2 4 8 8 1 0 .2 7 1 3 6 8 0 .6 7 4 5 3 9 1 .1 6 0 4 6 5 1 .6 6 3 5 9 2
0 .2 0 0 .0 2 8 5 4 1 0 .3 0 4 1 7 0 0 .7 4 7 1 4 4 1 .2 6 8 2 6 0 1 .7 9 6 0 8 3
0 .2 2 0 .0 3 2 3 5 3 0 .3 3 7 2 7 2 0 .8 1 8 5 0 3 1 .3 7 1 2 0 4 1 .9 2 0 2 7 1
0 .2 4 0 .0 3 6 3 1 7 0 .3 7 0 6 3 5 0 .8 8 8 4 9 8 1 .4 6 9 4 4 3 2 .0 3 7 0 2 9
0 .2 6 0 .0 4 0 4 3 4 0 .4 0 4 2 2 6 0 .9 5 7 0 2 9 1 .5 6 3 1 6 6 2 .1 4 7 1 6 1
0 .2 8 0 .0 4 4 7 0 4 0 .4 3 8 0 0 9 1 .0 2 4 0 1 6 1 .6 5 2 5 9 4 2 .2 5 1 3 9 7
0 .3 0 0 .0 4 9 1 3 1 0 .4 7 1 9 5 2 1 .0 8 9 3 9 3 1 .7 3 7 9 6 8 2 .3 5 0 3 8 6
0 .3 2 0 .0 5 3 7 1 5 0 .5 0 6 0 2 3 1 .1 5 3 1 1 2 1 .8 1 9 5 3 6 2 .4 4 4 7 0 1
0 .3 4 0 .0 5 8 4 6 1 0 .5 4 0 1 8 9 1 .2 1 5 1 3 6 1 .8 9 7 5 5 0 2 .5 3 4 8 4 4
0 .3 6 0 .0 6 3 3 7 2 0 .5 7 4 4 1 8 1 .2 7 5 4 4 7 1 .9 7 2 2 5 5 2 .6 2 1 2 5 5
0 .3 8 0 .0 6 8 4 5 2 0 .6 0 8 6 7 8 1 .3 3 4 0 3 4 2 .0 4 3 8 8 9 2 .7 0 4 3 1 4
0 .4 0 0 .0 7 3 7 0 7 0 .6 4 2 9 3 8 1 .3 9 0 9 0 2 2 .1 1 2 6 7 7 2 .7 8 4 3 5 5
0 .4 2 0 .0 7 9 1 4 2 0 .6 7 7 1 6 4 1 .4 4 6 0 6 2 2 .1 7 8 8 3 1 2 .8 6 1 6 6 6
0 .4 4 0 .0 8 4 7 6 2 0 .7 1 1 3 2 4 1 .4 9 9 5 3 7 2 .2 4 2 5 5 2 2 .9 3 6 5 0 0
0 .4 6 0 .0 9 0 5 7 7 0 .7 4 5 3 8 5 1 .5 5 1 3 5 6 2 .3 0 4 0 2 2 3 .0 0 9 0 7 9
0 .4 8 0 .0 9 6 5 9 2 0 .7 7 9 3 1 5 1 .6 0 1 5 5 5 2 .3 6 3 4 1 3 3 .0 7 9 5 9 3
0 .5 0 0 .1 0 2 8 1 7 0 .8 1 3 0 7 8 1 .6 5 0 1 7 5 2 .4 2 0 8 8 0 3 .1 4 8 2 1 5
0 .5 2 0 .1 0 9 2 6 3 0 .8 4 6 6 4 2 1 .6 9 7 2 6 2 2 .4 7 6 5 6 9 3 .2 1 5 0 9 1
0 .5 4 0 .1 1 5 9 3 9 0 .8 7 9 9 7 3 1 .7 4 2 8 6 5 2 .5 3 0 6 1 0 3 .2 8 0 3 5 4
0 .5 6 0 .1 2 2 8 5 9 0 .9 1 3 0 3 7 1 .7 8 7 0 3 4 2 .5 8 3 1 2 4 3 .3 4 4 1 2 0
0 .5 8 0 .1 3 0 0 3 7 0 .9 4 5 7 9 9 1 .8 2 9 8 2 4 2 .6 3 4 2 2 0 3 .4 0 6 4 9 3
0 .6 0 0 .1 3 7 4 8 7 0 .9 7 8 2 2 4 1 .8 7 1 2 8 8 2 .6 8 3 9 9 9 3 .4 6 7 5 6 4
0 .6 2 0 .1 4 5 2 2 9 1 .0 1 0 2 7 9 1 .9 1 1 4 8 1 2 .7 3 2 5 5 2 3 .5 2 7 4 1 6
0 .6 4 0 .1 5 3 2 8 2 1 .0 4 1 9 2 8 1 .9 5 0 4 5 8 2 .7 7 9 9 6 3 3 .5 8 6 1 2 2
0 .6 6 0 .1 6 1 6 6 9 1 .0 7 3 1 3 8 1 .9 8 8 2 7 1 2 .8 2 6 3 0 7 3 .6 4 3 7 4 9
0 .6 8 0 .1 7 0 4 1 8 1 .1 0 3 8 7 3 2 .0 2 4 9 7 6 2 .8 7 1 6 5 4 3 .7 0 0 3 5 6
0 .7 0 0 .H 9 5 6 0 1 .1 3 4 1 0 0 2 .0 6 0 6 2 4 2 .9 1 6 0 6 8 3 .7 5 5 9 9 8

; 0 .7 2 0 .1 8 9 1 3 1 1 .1 6 3 7 8 4 2 .0 9 5 2 6 6 2 .9 5 9 6 0 6 3 .8 1 0 7 2 2
0 .7 4 0 .1 9 9 1 7 4 1 .1 9 2 8 9 1 2 .1 2 8 9 5 2 3 .0 0 2 3 2 0 3 .8 6 4 5 7 4
0 .7 6 0 .2 0 9 7 4 1 1 .2 2 1 3 8 7 2 .1 6 1 7 3 1 3 .0 4 4 2 6 0 3 .9 1 7 5 9 5
0 .7 8 0 .2 2 0 8 9 5 1 .2 4 9 2 3 7 2 .1 9 3 6 4 9 3 .0 8 5 4 7 0 3 .9 6 9 8 2 1
0 .8 0 0 .2 3 2 7 1 3 1 .2 7 6 4 0 6 2 .2 2 4 7 5 2 3 .1 2 5 9 8 9 4 .0 2 1 2 8 7
0 .8 2 0 .2 4 5 2 9 2 1 .3 0 2 8 5 8 2 .2 5 5 0 8 4 3 .1 6 5 8 5 5 4 .0 7 2 0 2 3
0 .8 4 0 .2 5 8 7 5 8 1 .3 2 8 5 5 7 2 .2 8 4 6 8 6 3 .2 0 5 1 0 2 4 .1 2 2 0 6 0
0 .8 6 0 .2 7 3 2 7 5 1 .3 5 3 4 6 3 2 .3 1 3 6 0 0 3 .2 4 3 7 6 0 4 .1 7 1 4 2 3
0 .8 8 0 .2 8 9 0 7 2 1 .3 7 7 5 3 1 2 .3 4 1 8 6 6 3 .2 8 1 8 5 9 4 .2 2 0 1 3 7
0 .9 0 0 .3 0 6 4 7 3 1 .4 0 0 7 1 4 2 .3 6 9 5 2 3 3 .3 1 9 4 2 3 4 .2 6 8 2 2 6
0 .9 2 0 .3 2 5 9 7 9 1 .4 2 2 9 5 2 2 .3 9 6 6 0 8 3 .3 5 6 4 7 8 4 .3 1 5 7 1 2
0 .9 4 0 .3 4 8 4 2 9 1 .4 4 4 1 7 0 2 .4 2 3 1 5 9 3 .3 9 3 0 4 4 4 .3 6 2 6 1 3
0 .9 6 0 .3 7 5 4 5 7 1 .4 6 4 2 6 0 2 .4 4 9 2 1 5 3 .4 2 9 1 4 2 4 .4 0 8 9 5 0
0 .9 8 0 .4 1 1 2 7 2 1 .4 8 3 0 4 1 2 .4 7 4 8 1 3 3 .4 6 4 7 8 8 4 .4 5 4 7 4 0
1 .0 0 0 .5 0 0 0 0 0 1 .5 0 0 0 0 0 2 -5 0 0 0 0 0 3 .5 0 0 0 0 0 4 .5 0 0 0 0 0
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ACUTE SECTOR 
Eigenvalue h

k 2 (1 ,0 ) (1 ,1 ) (1 ,2 ) ( 1 ,3 ) (2 ,0 )

0 .0 0 1 .0 0 0 0 0 0 1 .0 0 0 0 0 0 1 .0 0 0 0 0 0 1 .0 0 0 0 0 0 4 .0 0 0 0 0 0
0 .0 2 1 .0 2 0 2 2 3 1 .0 8 1 0 7 2 1 .1 7 2 6 7 6 1 .2 9 5 0 3 0 4 .0 2 0 3 0 5
0 .0 4 1 .0 4 0 8 8 6 1 .1 6 4 1 6 9 1 3 5 0 0 7 3 1 3 9 8 1 6 8 4 .0 4 1 2 4 0
0 .0 6 1 .0 6 1 9 9 1 1 .2 4 9 1 7 8 1 3 3 1 5 9 5 1 .9 0 7 6 2 7 4 .0 6 2 8 3 8
0 .0 8 1 .0 8 3 5 3 8 1 .3 3 6 0 3 0 1 .7 1 6 8 4 2 2 .2 2 2 1 7 1 4 .0 8 5 1 3 1

; o . i o 1 .1 0 5 5 3 2 1 .4 2 4 6 7 4 1 .9 0 5 4 9 5 2 3 4 0 7 7 3 4 .1 0 8 1 5 6
0 .1 2 1 .1 2 7 9 8 1 1 .5 1 5 0 7 5 2 .0 9 7 2 8 1 2 .8 6 2 5 0 0 4 .1 3 1 9 5 1
0 .1 4 1 .1 5 0 8 9 1 1 .6 0 7 2 0 3 2 .2 9 1 9 5 0 3 .1 8 6 4 5 8 4 .1 5 6 5 5 6

; 0 .1 6 1 .1 7 4 2 7 1 1 .7 0 1 0 3 6 2 .4 8 9 2 6 2 3 3 1 1 7 6 1 4 .1 8 2 0 1 3
; 0 .1 8 1 .1 9 8 1 3 0 1 .7 9 6 5 5 7 2 .6 8 8 9 8 3 3 .8 3 7 5 2 0 4 .2 0 8 3 6 8
; 0 .2 0 1 .2 2 2 4 8 1 1 .8 9 3 7 5 1 2 .8 9 0 8 7 7 4 .1 6 2 8 3 4 4 .2 3 5 6 6 8

0 .2 2 1 .2 4 7 3 3 5 1 .9 9 2 6 0 7 3 .0 9 4 6 9 9 4 .4 8 6 7 8 7 4 .2 6 3 9 6 4
0 .2 4 1 .2 7 2 7 0 6 2 .0 9 3 1 1 3 3 .3 0 0 1 9 6 4 .8 0 8 4 5 8 4 .2 9 3 3 1 1
0 .2 6 1 .2 9 8 6 0 8 2 .1 9 5 2 5 9 3 3 0 7 1 0 2 5 .1 2 6 9 2 8 4 .3 2 3 7 6 4

i 0 .2 8 1 .3 2 5 0 5 7 2 .2 9 9 0 3 6 3 .7 1 5 1 3 5 5 .4 4 1 2 9 4 4 .3 5 5 3 8 6
0 .3 0 1 .3 5 2 0 7 0 2 .4 0 4 4 3 5 3 .9 2 3 9 9 7 5 .7 5 0 6 8 7 4 .3 8 8 2 4 0
0 .3 2 1 .3 7 9 6 6 6 2 .5 1 1 4 4 5 4 .1 3 3 3 7 3 6 .0 5 4 2 9 3 4 .4 2 2 3 9 4
0 .3 4 1 .4 0 7 8 6 5 2 .6 2 0 0 5 4 4 .3 4 2 9 2 9 6 .3 5 1 3 7 4 4 .4 5 7 9 2 2
0 .3 6 1 .4 3 6 6 9 0 2 .7 3 0 2 4 9 4 3 5 2 3 1 2 6 .6 4 1 2 8 5 4 .4 9 4 9 0 2

; 0 .3 8 1 .4 6 6 1 6 4 2 .8 4 2 0 1 3 4 .7 6 1 1 5 3 6 .9 2 3 4 9 0 4 3 3 3 4 1 6
! 0 .4 0 1 .4 9 6 3 1 3 2 .9 5 5 3 2 7 4 .9 6 9 0 6 8 7 .1 9 7 5 7 7 4 3  7 3 5 5 3

0 .4 2 1 .5 2 7 1 6 5 3 .0 7 0 1 6 8 5 .1 7 5 6 6 0 7 .4 6 3 2 6 0 4 .6 1 5 4 0 7
0 .4 4 1 .5 5 8 7 5 2 3 .1 8 6 5 0 7 5 .3 8 0 5 2 6 7 .7 2 0 3 8 3 4 .6 5 9 0 7 9
0 .4 6 1 .5 9 1 1 0 7 3 .3 0 4 3 1 2 5 3 8 3 2 5 6 7 .9 6 8 9 0 9 4 .7 0 4 6 7 8

! 0 .4 8 1 .6 2 4 2 6 7 3 .4 2 3 5 4 3 5 .7 8 3 4 4 5 8 .2 0 8 9 1 5 4 .7 5 2 3 2 1
0 .5 0 1 .6 5 8 2 7 3 3 .5 4 4 1 5 0 5 .9 8 0 6 9 5 8 .4 4 0 5 7 1 4 .8 0 2 1 3 4
0 .5 2 1 .6 9 3 1 7 0 3 .6 6 6 0 7 9 6 .1 7 4 6 2 5 8 .6 6 4 1 3 0 4 .8 5 4 2 5 2
0 .5 4 1 .7 2 9 0 0 6 3 .7 8 9 2 6 1 6 .3 6 4 8 7 8 8 .8 7 9 9 0 5 4 .9 0 8 8 2 4
0 .5 6 1 .7 6 5 8 3 8 3 .9 1 3 6 1 8 6 3 5 1 1 2 4 9 .0 8 8 2 5 4 4 .9 6 6 0 0 9
0 .5 8 1 .8 0 3 7 2 5 4 .0 3 9 0 5 7 6 .7 3 3 0 7 4 9 .2 8 9 5 6 5 5 .0 2 5 9 8 5
0 .6 0 1 .8 4 2 7 3 7 4 .1 6 5 4 7 0 6 .9 1 0 4 7 7 9 .4 8 4 2 4 4 5 .0 8 8 9 4 3
0 .6 2 1 .8 8 2 9 5 1 4 .2 9 2 7 3 2 7 .0 8 3 1 3 1 9 .6 7 2 6 9 9 5 .1 5 5 0 9 7
0 .6 4 1 .9 2 4 4 5 4 4 .4 2 0 6 9 7 7 .2 5 0 8 8 3 9 .8 5 5 3 3 6 5 .2 2 4 6 8 5
0 .6 6 1 .9 6 7 3 4 6 4 .5 4 9 2 0 0 7 .4 1 3 6 3 0 1 0 .0 3 2 5 4 9 5 .2 9 7 9 7 1
0 .6 8 2 .0 1 1 7 4 0 4 .6 7 8 0 4 8 7 3 7 1 3 1 9 1 0 .2 0 4 7 1 7 5 .3 7 5 2 5 6
0 .7 0 2 .0 5 7 7 6 9 4 .8 0 7 0 2 4 7 .7 2 3 9 4 5 1 0 .3 7 2 1 9 7 5 .4 5 6 8 8 0
0 .7 2 2 .1 0 5 5 8 6 4 .9 3 5 8 8 1 7 .8 7 1 5 4 8 1 0 3 3 5 3 2 9 5 .5 4 3 2 3 6
0 .7 4 2 .1 5 5 3 7 3 5 .0 6 4 3 4 3 8 .0 1 4 2 0 8 1 0 .6 9 4 4 2 6 5 .6 3 4 7 7 9
0 .7 6 2 .2 0 7 3 4 7 5 .1 9 2 0 9 7 8 .1 5 2 0 3 9 1 0 .8 4 9 7 8 0 5 .7 3 2 0 4 7
0 .7 8 2 .2 6 1 7 6 9 5 .3 1 8 7 9 9 8 .2 8 5 1 8 9 1 1 .0 0 1 6 6 1 5 .8 3 5 6 8 2
0 .8 0 2 .3 1 8 9 6 1 5 .4 4 4 0 6 8 8 .4 1 3 8 2 9 1 1 .1 5 0 3 1 5 5 .9 4 6 4 6 7
0 .8 2 2 .3 7 9 3 2 6 5 .5 6 7 4 8 6 8 3 3 8 1 5 0 1 1 .2 9 5 9 6 8 6 .0 6 5 3 7 2
0 .8 4 2 .4 4 3 3 8 3 5 .6 8 8 5 9 8 8 .6 5 8 3 5 9 1 1 .4 3 8 8 2 7 6 .1 9 3 6 3 0
0 .8 6 2 .5 1 1 8 1 2 5 .8 0 6 9 1 1 8 .7 7 4 6 7 6 1 1 3 7 9 0 7 8 6 .3 3 2 8 5 8
0 .8 8 2 .5 8 5 5 4 6 5 .9 2 1 8 9 2 8 .8 8 7 3 2 9 1 1 .7 1 6 8 8 9 6 .4 8 5 2 5 1
0 .9 0 2 .6 6 5 9 2 3 6 .0 3 2 9 6 0 8 .9 9 6 5 5 4 1 1 .8 5 2 4 1 3 6 .6 5 3 9 3 6
0 .9 2 2 .7 5 4 9 8 4 6 .1 3 9 4 7 6 9 .1 0 2 5 9 1 1 1 .9 8 5 7 8 6 6 .8 4 3 6 6 1
0 .9 4 2 .8 5 6 1 4 8 6 .2 4 0 7 0 7 9 .2 0 5 6 8 7 1 2 .1 1 7 1 3 0 7 .0 6 2 3 3 1
0 .9 6 2 .9 7 6 0 4 0 6 .3 3 5 7 4 6 9 .3 0 6 0 9 8 1 2 .2 4 6 5 5 4 7 .3 2 5 1 8 5
0 .9 8 3 .1 3 1 6 5 7 6 .4 2 3 2 6 5 9 .4 0 4 0 9 6 1 2 .3 7 4 1 5 1 7 .6 7 1 0 5 9
1 .0 0 3 .5 0 0 0 0 0 6 .5 0 0 0 0 0 9 3 0 0 0 0 0 1 2 3 0 0 0 0 0 8 3 0 0 0 0 0
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ACUTE SECTOR 
Eigenvalue v

k 2 (2 ,1 ) (2 ,2 ) (3 ,0 ) (3 ,1 ) (4 ,0 )

0 .0 0 3 .0 0 0 0 0 0 4 .0 0 0 0 0 0 3 .0 0 0 0 0 0 4 .0 0 0 0 0 0 4 .0 0 0 0 0 0
0 .0 2 3 .0 0 0 1 9 1 4 .0 0 0 5 7 2 3 .0 0 0 0 0 0 4 .0 0 0 0 0 2 4 .0 0 0 0 0 0
0 .0 4 3 .0 0 0 7 7 8 4 .0 0 2 3 1 9 3 .0 0 0 0 0 2 4 .0 0 0 0 1 4 4 .0 0 0 0 0 0
0 .0 6 3 .0 0 1 7 8 0 4 .0 0 5 2 6 6 3 .0 0 0 0 0 7 4 .0 0 0 0 4 9 4 .0 0 0 0 0 0
0 .0 8 3 .0 0 3 2 1 4 4 .0 0 9 4 2 0 3 .0 0 0 0 1 7 4 .0 0 0 1 1 9 4 .0 0 0 0 0 0
0 .1 0 3 .0 0 5 0 9 6 4 .0 1 4 7 6 9 3 .0 0 0 0 3 4 4 .0 0 0 2 3 9 4 .0 0 0 0 0 1
0 .1 2 3 .0 0 7 4 3 9 4 .0 2 1 2 8 4 3 .0 0 0 0 6 1 4 .0 0 0 4 2 6 4 .0 0 0 0 0 2
0 .1 4 3 .0 1 0 2 5 6 4 .0 2 8 9 2 4 3 .0 0 0 1 0 0 4 .0 0 0 6 9 7 4 .0 0 0 0 0 4
0 .1 6 3 .0 1 3 5 5 7 4 .0 3 7 6 3 4 3 .0 0 0 1 5 5 4 .0 0 1 0 7 4 4 .0 0 0 0 0 8
0 .1 8 3 .0 1 7 3 5 1 4 .0 4 7 3 5 5 3 .0 0 0 2 2 8 4 .0 0 1 5 7 7 4 .0 0 0 0 1 3
0 .2 0 3 .0 2 1 6 4 5 4 .0 5 8 0 1 9 3 .0 0 0 3 2 3 4 .0 0 2 2 3 1 4 .0 0 0 0 2 1
0 .2 2 3 .0 2 6 4 4 5 4 .0 6 9 5 5 5 3 .0 0 0 4 4 5 4 .0 0 3 0 6 3 4 .0 0 0 0 3 2
0 .2 4 3 .0 3 1 7 5 3 4 .0 8 1 8 9 1 3 .0 0 0 5 9 9 4 .0 0 4 1 0 2 4 .0 0 0 0 4 8
0 .2 6 3 .0 3 7 5 7 2 4 .0 9 4 9 5 4 3 .0 0 0 7 9 0 4 .0 0 5 3 7 8 4 .0 0 0 0 6 9
0 .2 8 3 .0 4 3 9 0 3 4 .1 0 8 6 7 2 3 .0 0 1 0 2 3 4 .0 0 6 9 2 6 4 .0 0 0 0 9 8
0 .3 0 3 .0 5 0 7 4 4 4 .1 2 2 9 7 7 3 .0 0 1 3 0 5 4 .0 0 8 7 8 2 4 .0 0 0 1 3 6
0 .3 2 3 .0 5 8 0 9 5 4 .1 3 7 8 0 1 3 .0 0 1 6 4 4 4 .0 1 0 9 8 5 4 .0 0 0 1 8 5
0 .3 4 3 .0 6 5 9 5 1 4 .1 5 3 0 7 8 3 .0 0 2 0 4 9 4 .0 1 3 5 7 5 4 .0 0 0 2 4 9
0 .3 6 3 .0 7 4 3 0 9 4 .1 6 8 7 4 6 3 .0 0 2 5 2 9 4 .0 1 6 5 9 6 4 .0 0 0 3 3 0
0 .3 8 3 .0 8 3 1 6 4 4 .1 8 4 7 4 2 3 .0 0 3 0 9 3 4 .0 2 0 0 9 3 4 .0 0 0 4 3 3
0 .4 0 3 .0 9 2 5 1 1 4 .2 0 1 0 0 7 3 .0 0 3 7 5 6 4 .0 2 4 1 1 5 4 .0 0 0 5 6 2

! 0 .4 2 3 .1 0 2 3 4 4 4 .2 1 7 4 7 9 3 .0 0 4 5 2 9 4 .0 2 8 7 0 8 4 .0 0 0 7 2 2
! 0 .4 4 3 .1 1 2 6 5 6 4 .2 3 4 0 9 8 3 .0 0 5 4 2 8 4 .0 3 3 9 2 4 4 .0 0 0 9 2 2

0 .4 6 3 .1 2 3 4 4 1 4 .2 5 0 8 0 2 3 .0 0 6 4 7 0 4 .0 3 9 8 1 2 4 .0 0 1 1 6 9
I 0 .4 8 3 .1 3 4 6 9 2 4 .2 6 7 5 2 7 3 .0 0 7 6 7 4 4 .0 4 6 4 2 3 4 .0 0 1 4 7 3

0 .5 0 3 .1 4 6 4 0 3 4 .2 8 4 2 0 5 3 .0 0 9 0 6 2 4 .0 5 3 8 0 6 4 .0 0 1 8 4 6
0 .5 2 3 .1 5 8 5 6 5 4 .3 0 0 7 6 7 3 .0 1 0 6 6 0 4 .0 6 2 0 0 9 4 .0 0 2 3 0 1
0 .5 4 3 .1 7 1 1 7 3 4 .3 1 7 1 3 7 3 .0 1 2 4 9 4 4 .0 7 1 0 7 9 4 .0 0 2 8 5 6
0 .5 6 3 .1 8 4 2 1 6 4 .3 3 3 2 3 7 3 .0 1 4 5 9 7 4 .0 8 1 0 5 9 4 .0 0 3 5 3 2
0 .5 8 3 .1 9 7 6 8 8 4 .3 4 8 9 8 5 3 .0 1 7 0 0 5 4 .0 9 1 9 9 1 4 .0 0 4 3 5 4

; 0 .6 0 3 .2 1 1 5 7 8 4 .3 6 4 2 9 4 3 .0 1 9 7 5 9 4 .1 0 3 9 1 2 4 .0 0 5 3 5 0
0 .6 2 3 .2 2 5 8 7 6 4 .3 7 9 0 7 7 3 .0 2 2 9 0 7 4 .1 1 6 8 5 6 4 .0 0 6 5 5 9
0 .6 4 3 .2 4 0 5 6 8 4 .3 9 3 2 4 5 3 .0 2 6 5 0 2 4 .1 3 0 8 5 1 4 .0 0 8 0 2 4
0 .6 6 3 .2 5 5 6 3 9 4 .4 0 6 7 1 1 3 .0 3 0 6 0 7 4 .1 4 5 9 2 2 4 .0 0 9 7 9 9
0 .6 8 3 .2 7 1 0 6 8 4 .4 1 9 3 9 0 3 .0 3 5 2 9 3 4 .1 6 2 0 8 9 4 .0 1 1 9 5 2
0 .7 0 3 .2 8 6 8 3 3 4 .4 3 1 2 0 9 3 .0 4 0 6 4 4 4 .1 7 9 3 6 5 4 .0 1 4 5 6 4
0 .7 2 3 .3 0 2 9 0 3 4 .4 4 2 1 0 4 3 .0 4 6 7 5 6 4 .1 9 7 7 5 7 4 .0 1 7 7 3 7
0 .7 4 3 .3 1 9 2 3 8 4 .4 5 2 0 2 2 3 .0 5 3 7 4 1 4 .2 1 7 2 6 2 4 .0 2 1 5 9 7
0 .7 6 3 .3 3 5 7 9 0 4 .4 6 0 9 3 2 3 .0 6 1 7 3 5 4 .2 3 7 8 6 8 4 .0 2 6 3 0 2
0 .7 8 3 .3 5 2 4 9 5 4 .4 6 8 8 1 8 3 .0 7 0 8 9 6 4 .2 5 9 5 4 6 4 .0 3 2 0 5 1
0 .8 0 3 .3 6 9 2 7 2 4 .4 7 5 6 8 3 3 .0 8 1 4 1 6 4 .2 8 2 2 4 6 4 .0 3 9 0 9 6
0 .8 2 3 .3 8 6 0 2 2 4 .4 8 1 5 5 0 3 .0 9 3 5 3 1 4 .3 0 5 8 8 4 4 .0 4 7 7 6 0
0 .8 4 3 .4 0 2 6 1 6 4 .4 8 6 4 5 8 3 .1 0 7 5 3 9 4 .3 3 0 3 3 5 4 .0 5 8 4 6 0
0 .8 6 3 .4 1 8 8 9 6 4 .4 9 0 4 6 3 3 .1 2 3 8 1 9 4 .3 5 5 4 0 5 4 .0 7 1 7 4 9
0 .8 8 3 .4 3 4 6 6 7 4 .4 9 3 6 3 2 3 .1 4 2 8 8 4 4 .3 8 0 8 1 1 4 .0 8 8 3 6 8
0 .9 0 3 .4 4 9 6 9 2 4 .4 9 6 0 4 3 3 .1 6 5 4 4 9 4 .4 0 6 1 3 8 4 .1 0 9 3 5 0
0 .9 2 3 .4 6 3 6 8 3 4 .4 9 7 7 8 3 3 .1 9 2 5 9 0 4 .4 3 0 7 9 7 4 .1 3 6 2 2 0
0 .9 4 3 .4 7 6 2 9 2 4 .4 9 8 9 4 4 3 .2 2 6 0 8 0 4 .4 5 3 9 7 2 4 .1 7 1 4 1 8
0 .9 6 3 .4 8 7 0 8 6 4 .4 9 9 6 2 6 3 .2 6 9 3 2 2 4 .4 7 4 5 4 6 4 .2 1 9 4 8 0
0 .9 8 3 .4 9 5 4 5 3 4 .4 9 9 9 3 5 3 .3 3 0 9 6 6 4 .4 9 0 9 4 5 4 .2 9 1 6 1 6
1 .0 0 3 .5 0 0 0 0 0 4 .5 0 0 0 0 0 3 .5 0 0 0 0 0 4 .5 0 0 0 0 0 4 .5 0 0 0 0 0

229



ACUTE SECTOR 
Eigenvalue h

k 2 (2 ,1 ) (2 ,2 ) (3 ,0 ) (3 ,1 ) (4 ,0 )

0.00 4 .0 0 0 0 0 0 4 .0 0 0 0 0 0 9 .0 0 0 0 0 0 9 .0 0 0 0 0 0 1 6 .0 0 0 0 0 0
0.02 4 .0 8 1 5 2 8 4 .1 6 4 3 5 8 9 .0 3 0 1 9 1 9 .1 1 0 8 0 6 1 6 .0 4 0 2 3 6
0 .0 4 4 .1 6 6 2 2 8 4 .3 3 7 7 8 6 9 .0 6 0 7 7 7 9 .2 2 3 3 0 0 1 6 .0 8 0 9 5 3
0 .0 6 4 .2 5 4 2 7 2 4 .5 2 0 7 7 1 9 .0 9 1 7 8 2 9 .3 3 7 6 0 6 1 6 .1 2 2 1 6 7
0 .0 8 4 .3 4 5 8 3 7 4 .7 1 3 7 2 9 9 .1 2 3 2 2 9 9 .4 5 3 8 6 4 1 6 .1 6 3 8 9 4
0.10 4 .4 4 1 0 9 9 4 .9 1 6 9 9 6 9 .1 5 5 1 4 6 9 .5 7 2 2 2 7 1 6 .2 0 6 1 5 3
0.12 4 .5 4 0 2 3 2 5 .1 3 0 8 1 5 9 .1 8 7 5 6 1 9 .6 9 2 8 6 5 1 6 .2 4 8 9 6 5
0 .1 4 4 .6 4 3 4 1 0 5 .3 5 5 3 3 5 9 .2 2 0 5 0 6 9 .8 1 5 9 6 7 1 6 .2 9 2 3 4 9
0 .1 6 4 .7 5 0 8 0 1 5 .5 9 0 6 0 9 9 .2 5 4 0 1 7 9 .9 4 1 7 4 0 1 6 .3 3 6 3 2 9
0 .1 8 4 .8 6 2 5 6 8 5 .8 3 6 6 0 2 9 .2 8 8 1 3 2 1 0 .0 7 0 4 1 6 1 6 .3 8 0 9 3 2
0.20 4 .9 7 8 8 7 0 6 .0 9 3 1 9 7 9 .3 2 2 8 9 3 1 0 .2 0 2 2 4 8 1 6 .4 2 6 1 8 5
0.22 5 .0 9 9 8 5 6 6 .3 6 0 2 1 0 9 .3 5 8 3 4 7 1 0 .3 3 7 5 1 4 1 6 .4 7 2 1 1 9
0 .2 4 5 .2 2 5 6 6 8 6 .6 3 7 3 9 4 9 .3 9 4 5 4 5 1 0 .4 7 6 5 2 2 1 6 .5 1 8 7 6 9
0 .2 6 5 .3 5 6 4 3 9 6 .9 2 4 4 5 7 9 .4 3 1 5 4 5 1 0 .6 1 9 6 0 6 1 6 .5 6 6 1 7 2
0 .2 8 5 .4 9 2 2 9 3 7 .2 2 1 0 6 2 9 .4 6 9 4 0 8 1 0 .7 6 7 1 3 1 1 6 .6 1 4 3 7 1
0 .3 0 5 .6 3 3 3 4 4 7 .5 2 6 8 4 3 9 .5 0 8 2 0 3 1 0 .9 1 9 4 9 6 1 6 .6 6 3 4 1 3
0 .3 2 5 .7 7 9 6 9 7 7 .8 4 1 4 0 3 9 .5 4 8 0 0 9 1 1 .0 7 7 1 3 0 1 6 .7 1 3 3 5 0
0 .3 4 5 .9 3 1 4 4 8 8 .1 6 4 3 1 7 9 .5 8 8 9 1 0 1 1 .2 4 0 4 9 7 1 6 .7 6 4 2 4 3
0 .3 6 6 .0 8 8 6 8 5 8 .4 9 5 1 3 6 9 .6 3 1 0 0 1 1 1 .4 1 0 0 9 4 1 6 .8 1 6 1 5 8
0 .3 8 6 .2 5 1 4 8 7 8 .8 3 3 3 8 0 9 .6 7 4 3 8 8 1 1 .5 8 6 4 5 1 1 6 .8 6 9 1 7 2
0 .4 0 6 .4 1 9 9 2 5 9 .1 7 8 5 3 6 9 .7 1 9 1 8 9 1 1 .7 7 0 1 2 9 1 6 .9 2 3 3 7 0
0 .4 2 6 .5 9 4 0 6 6 9 .5 3 0 0 5 1 9 .7 6 5 5 3 5 1 1 .9 6 1 7 1 7 1 6 .9 7 8 8 5 1
0 .4 4 6 .7 7 3 9 6 6 9 .8 8 7 3 2 7 9 .8 1 3 5 7 4 1 2 .1 6 1 8 3 1 1 7 .0 3 5 7 2 9
0 .4 6 6 .9 5 9 6 7 9 1 0 .2 4 9 7 1 0 9 .8 6 3 4 7 2 1 2 .3 7 1 1 0 7 1 7 .0 9 4 1 3 3
0 .4 8 7 .1 5 1 2 5 0 1 0 .6 1 6 4 8 5 9 .9 1 5 4 1 3 1 2 .5 9 0 1 9 9 1 7 .1 5 4 2 1 2
0 .5 0 7 .3 4 8 7 2 1 1 0 .9 8 6 8 6 4 9 .9 6 9 6 0 6 1 2 .8 1 9 7 6 7 1 7 .2 1 6 1 4 2
0 .5 2 7 .5 5 2 1 2 5 1 1 .3 5 9 9 7 7 1 0 .0 2 6 2 8 7 1 3 .0 6 0 4 7 8 1 7 .2 8 0 1 2 4
0 .5 4 7 .7 6 1 4 8 8 1 1 .7 3 4 8 7 1 1 0 .0 8 5 7 2 2 1 3 .3 1 2 9 9 4 1 7 .3 4 6 3 9 4
0 .5 6 7 .9 7 6 8 2 8 1 2 .1 1 0 4 9 9 1 0 .1 4 8 2 0 9 1 3 .5 7 7 9 6 4 1 7 .4 1 5 2 3 2
0 .5 8 8 .1 9 8 1 4 8 1 2 .4 8 5 7 2 6 1 0 .2 1 4 0 9 1 1 3 .8 5 6 0 2 0 1 7 .4 8 6 9 6 3
0 .6 0 8 .4 2 5 4 4 1 1 2 .8 5 9 3 3 1 1 0 .2 8 3 7 5 4 1 4 .1 4 7 7 6 9 1 7 .5 6 1 9 7 8
0 .6 2 8 .6 5 8 6 7 4 1 3 .2 3 0 0 2 0 1 0 .3 5 7 6 3 8 1 4 .4 5 3 7 8 6 1 7 .6 4 0 7 3 7
0 .6 4 8 .8 9 7 7 9 4 1 3 .5 9 6 4 4 7 1 0 .4 3 6 2 4 6 1 4 .7 7 4 6 0 7 1 7 .7 2 3 7 9 5
0.66 9 .1 4 2 7 0 9 1 3 .9 5 7 2 4 4 1 0 .5 2 0 1 5 5 1 5 .1 1 0 7 2 2 1 7 .8 1 1 8 1 7
0.68 9 .3 9 3 2 8 6 1 4 .3 1 1 0 5 3 1 0 .6 1 0 0 2 7 1 5 .4 6 2 5 6 7 1 7 .9 0 5 6 0 6
0 .7 0 9 .6 4 9 3 3 3 1 4 .6 5 6 5 7 7 1 0 .7 0 6 6 2 4 1 5 .8 3 0 5 1 3 1 8 .0 0 6 1 4 2
0 .7 2 9 .9 1 0 5 8 4 1 4 .9 9 2 6 1 9 1 0 .8 1 0 8 3 2 1 6 .2 1 4 8 4 7 1 8 .1 1 4 6 1 9
0 .7 4 1 0 .1 7 6 6 7 8 1 5 .3 1 8 1 3 5 1 0 .9 2 3 6 8 2 1 6 .6 1 5 7 4 7 1 8 .2 3 2 5 1 1
0 .7 6 1 0 .4 4 7 1 3 0 1 5 .6 3 2 2 7 0 1 1 .0 4 6 3 8 7 1 7 .0 3 3 2 4 8 1 8 .3 6 1 6 3 8
0 .7 8 1 0 .7 2 1 3 0 6 1 5 .9 3 4 3 8 8 1 1 .1 8 0 3 8 3 1 7 .4 6 7 1 7 7 1 8 .5 0 4 2 7 3
0 .8 0 1 0 .9 9 8 3 7 6 1 6 .2 2 4 0 9 4 1 1 .3 2 7 3 9 3 1 7 .9 1 7 0 7 4 1 8 .6 6 3 2 7 5
0 .8 2 1 1 .2 7 7 2 7 7 1 6 .5 0 1 2 3 3 1 1 .4 8 9 5 1 6 1 8 .3 8 2 0 6 2 1 8 .8 4 2 2 6 9
0 .8 4 1 1 .5 5 6 6 5 8 1 6 .7 6 5 8 8 1 1 1 .6 6 9 3 6 3 1 8 .8 6 0 6 6 5 1 9 .0 4 5 9 1 6
0.86 1 1 .8 3 4 8 3 0 1 7 .0 1 8 3 2 6 1 1 .8 7 0 2 7 0 1 9 .3 5 0 5 5 4 1 9 .2 8 0 2 9 1
0.88 1 2 .1 0 9 7 0 9 1 7 .2 5 9 0 3 6 1 2 .0 9 6 6 5 1 1 9 .8 4 8 1 9 0 1 9 .5 5 3 5 0 4
0 .9 0 1 2 .3 7 8 7 6 9 1 7 .4 8 8 6 3 8 1 2 .3 5 4 6 3 8 2 0 .3 4 8 3 6 9 1 9 .8 7 6 7 3 7
0 .9 2 1 2 .6 3 8 9 8 5 1 7 .7 0 7 8 7 9 1 2 .6 5 3 3 2 6 2 0 .8 4 3 6 7 0 2 0 .2 6 6 2 4 8
0 .9 4 1 2 .8 8 6 7 6 7 1 7 .9 1 7 6 1 6 1 3 .0 0 7 5 5 2 2 1 .3 2 3 8 4 4 2 0 .7 4 7 7 6 7
0 .9 6 1 3 .1 1 7 7 6 9 1 8 .1 1 8 8 0 1 1 3 .4 4 5 4 4 1 2 1 .7 7 5 1 2 4 2 1 .3 6 8 4 2 9
0 .9 8 1 3 .3 2 6 2 0 9 1 8 .3 1 2 4 9 8 1 4 .0 3 7 6 8 1 2 2 .1 7 8 7 9 2 2 2 .2 4 3 0 8 3
1.00 1 3 .5 0 0 0 0 0 1 8 .5 0 0 0 0 0 1 5 .5 0 0 0 0 0 2 2 .5 0 0 0 0 0 2 4 .5 0 0 0 0 0
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Appendix D 

The E-field expressed in a 

rectangular coordinate system

In 2.5 we are asked to express the E-field in rectangular coordinates for

ease of application .

In this Appendix we effect this change of variables and also define a main 

c.s. which permits easier formulation of the singularity vector .

A first step toward the ”rectangularization” of forms like (2.42) implies 

tedious geometrical transformations that we simplify by making use of the ab­

breviations :

T(0; P )  =  VI -  k '^co sH  P )  = V l  -  P o o s '14, (D .l)

5(0, (/>; P )  = ^ P s i n 2<t> +  k^sirP O  (D.2)

St(r, 0 , P )  =  5*(r, 0, P )  =  (D.3)

The rectangular E  components can be recovered by decomposing the unit vectors
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r, 0, <l> along £, J/, z according to their direction cosines as ( see also [12] pg 25 )

r =  Tcos(/> x +sin$sin<f> V +Pcos0 z (D»4)

$= j;[k'2sinOcosOcos(j> x +Tcos0sin<f> y —PTsinO z] (D.5)

(j>= j;[—PTsin<l> x +Psin0cos<j> y —k2cos0sin(j)cos(j> z\ (D.6)

and then from (2.42) we get :

Ex = -T[vcos<t>rv- l m  +  k'2cos0co8<t>SBQ $ -  P 2^ 0 6 ]  (D.7)

E y =  — [i/sin0sin<j>r,/~1O $  -f T 2cosOS<i>®$ +  P 2cos(j>So®$\ (D.8)

Eg =  — P[vcos0r,/~ 1 — T 2S$Q$ +  k 2cos0cos<f>S<f>Q$] (D.9)

where (D.1,2,3) can be expressed in rectangular coordinates by making use of the 

useful transformation formulae :

■ w + » . + *- (D..0)

from which the expression for sin 0 , cos0 , sin</>, cos<j> can be straightforwardly ob­

tained by adopting the following signs for the square root :

> 0 for y > 0

sin<j> any value 6 [—1, +1] for y =  0 cos<j> gets the sign of x

< 0 for y < 0

sin0 >  0 cos0 gets the sign of z (D .ll)
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In this way, 5#, 5^ becomes :

S e(x ,y ,z ; k 2) = - ^ ^ 1 + ^  with the sign of sin 6  (D.12)

S+(x, y, z; k2) =  with the siSn of sin<t> (D-13)

The new symbols a ^ a^ , A 2 stand for :

ag(x, y, 2; A;2) =  [(k'x — kz)(k 'x  +  kz) +  (A;'2 — A;2)y2] =  — *ty(x, y, 2; A;2) (D.14)

A 2 =  [(k'x — k z ) 2 +  y2][(k*x +  kz ) 2 +  y2] >  0 (D.15)

the latter present the property to vanish on the two degenerate lines k'x  =  ±A:z 

where the sector edges lie . For this reason, it would be very advantageous to 

rotate the axes x, z  of 7r — e clockwise so that the positive z-axis always fits a 

conductor edge as shown in Fig. D.la-b,2 . Obviously, the other edge also fits 

the positive x axis in the special but important case of sector apertures 

cr =  90°, 270° . For this reason, we name by main sector and main rectangular 

c.s. the conductor with k2 = 0.5 and the c.s. X, Y, Z  fitting exactly its edges . 

The direct and reverse relations between x ,y ,z  and X, Y, Z  can be expressed

as :

X  — —(k'x  +  kz) x = - k 'X  + k Z  (D.16)

Y =  y y =  Y (D.17)

Z  = kx — k'z z = - ( k X  + kfZ)  (D.18)
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In the main system a # ,^ ,  A 2 become simply :

a* =  p 2 -  k'2) (X 2 +  Y 2) +  2kk'XZ]  =  - a e (D.19)

A2 =  {[(k2 -  k '2)X  +  2k k 'Z }2 +  Y 2}[X 2 +  y 2] (D.20)

But their simplest form is obtained when the main sectors are considered, 

i.e. k2 =  k ' 2 =  0.5 :

a4 — X Z  =  —ae (D.21)

A2 =  (X Z ) 2 +  (Y r ) 2 (D.22)

which substituted in (D.10) not only provides the easiest expressions for 

r 2 ,s in 20 ,s in 2<f> but also sets in evidence an important interpretation of :

Y 7  r v-i
S0 = J l  > -  - - .  = = T Y  (D.23)

W W ( x z y  + (Kr)2| IyJ(XZf  +  (y r )> |i

I  Y Z  r v ~ x
S+ = , / l  +  — , . = r  (D.24)

V W( X Z V + (*>)2I W ( X Z f  + (Kr)2|i

The functions Sq, 5^ are continuous everywhere except on the two axes 

X  and Z  along which they present a cylindrical singularity like {Y 2 +  Z2) and 

(X2 +  F 2) respectively that matches the spherical singularities r"-1 on the tip .

The terms under the main root represent just the zeros of S$ in 6  =  0 ,7r 

and of Stf, in <j> =  0 ,7r .

The physical importance of these functions consists in the fact that the 

matching of the zeros and of the singularities they describe are those of some 

E-field components, as we prove in 2.5 .
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Fig. D.1 : main rectangular system for acute a) and obtuse b) sector

Fig. D.2 : main rectangular system  for double sector
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Appendix E 

The EM fields 

in rectangular coordinates

In this Appendix, following the lines of Appendix D, we express the dynamic EM
^ ^ ^ ^ _

fields Hm , M , Hjv, N  in rectangular coordinates x , y, z or in those X , Y t Z  of the

main rectangular c.s. defined by means of the (D.16,17,18) .

To start with, it is well to have a look at the (3.39,40) and note that if we

indicate by R, 0 ,$ ,  without distinction, the components of ^ 1,^2 we can write

the formal identifications :

Hu  =  (E .l)

Hn  =  - M  (E.2)

So that, leaving the distinction to emerge at the due time, we can limit our
• • ^ #  ̂ A ^ A

attention to the expressions for N  and M  . Their forms in terms of z  can be
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obtained from (3.39,40) using the (D.4,5,6) :

N  =  T  

+

+  P

R
v(y  +  1 )cos(f>— 0 $  +  k'2cos0cos<f>S$N®<S> — P 2S<j>NQ$  

Kr
R

v(v  +  1 )sin0sin<l>— 0 $  +  T 2c o s 0 S ^ 0 $  +  P 2cos<j>S$NQ$  
Kr

R
v(i/ +  1 )cos0— 0 $  — T 2S$n ®$ +  k2 cos0cos<f>S<j>NQ& 

k t (E.3)

where, using the functions S  in (D.2), is :

(E.4) 

(E.5) 

(E.6)

while :

S 6N(Kr,0,(t>) =  ^ r e i K r )  

S*s(Kr,0,<l>) =  ^ g ( r e r )

g(Kr) == \ / nr dr kt “(**")

M  =  P  [ifc'2co s0 co ^ & M0 i  +  r 2S #M0 $ ]  £

+  P T  fco«0S^M0<& — 0$1 y

-  T  [p 2Ss„ 0 $  +  t f c o s e c o s tS ^ e * ]  z  (E.7)

237



where :

(E.8)

S * J * r ,« , t )  =  & X ( * r )  (E.9)

A further decomposition along the main axes X, Y, Z  can be recovered using 

the (D.16,17,18) so as to obtain straightforwardly N y  =  N y,M y  =  M y and, 

respectively :

N x  =  —v(y  +  1) [k'Tcos(j> +  kPcosO] — 0 $  +  T  Jfc.PT — fc3co.s0cos< ĵ SgNQ$  

+  P  [k'PT -  k3cosOcos<f>] S+Ne&  (E.10)

N z  =  v{y +  1) [kTcos<l> — k'Pcos$] — 0 $
KT

+  [PT + kk'cos$cos(j>] k'TSt,NQ $ -  k P S ^ Q Q i  (E .ll)

M x  =  P  kT P  -  k'3cos0 cos<t>} SjM0 $  -  T  [k'TP -  k3cos6 cos<£\ S*M03(E.12) 

M z  =  [PT + k k 'c o s e c o s ^ lk 'P S ^ e i  + k T S ^ Q ^  (E.13)
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Appendix F 

The double cone wedge and 

related geometries

F .l  Introduction

In this Appendix we deal with the determination of the complete spectra of 

eigenvalues, eigenfunctions and associated fields pertaining to the double cone of 

Fig. F .l, the half double cone of Fig. F.2, the cone on a plane of Fig. F.3 and 

the half cone on a plane of Fig. F.4 .

The main behaviour of the fields by the tip is also formulated and, in par­

ticular, the electric degree of singularity or of zero is computed with an accuracy 

of 7 decimal figures while that of the magnetic field is estimated .
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F.2 T he spectra o f the double cone structures

If we consider the region between the surfaces 0 =  0, tt — 0 in Fig. F .l, satisfaction 

of the Dirichlet b.c. imply ( see (4.8) ) :

SP?(cos0) +  FQT(cos0) =  0 (F .l)

£P?(cos(w -  0)) +  FQ?(cos(ir -  0)) =  0 (F.2)

which, for the properties (14,15) p.144 of [7], ensure non trivial solutions for £  

and T  if and only if :

£  =  -T ^ c tg { (y  +  m )^ ) (F.3)

Thus the v and 0-spectra are respectively given by :

ud • P£>(cos0) -  %tg((vD +  m)Z)Q™D(cos0) =  0 for m =  0 ,1 ,2 ,... (F.4) 

&d (0) = P™(cos0) -  ltg ((v D +  m )f  )Q™ (cos0) (F.5)

Furthermore, because of the same relations in [7], (F .l,2) also hold for the 

derivatives of P™,Q™ . Consequently, the v and 0-spectra pertaining to the 

Neumann b.c. are given respectively by :

vn  : P™(cos0) -  h g ( (v N +  m )f )Q™ (cos0) =  0 for m  =  0 ,1, 2,... (F.6)
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Qn(0) =  P™(cos9) -  |< ff((i/jv +  m)l)Q™N{cos6 ) (F.7)

On this structure we can imagine three different cuts effected by plane 

conductors fitting the cartesian planes similar to those analysed for the 3D double 

sector in Chapters 2 .

They can still be analysed in an easy way because the associate spectra can 

be determined, in the order, as :

i) The half-double cone ( see Fig. F.2 )

Simple physical considerations about this geometry let us realize that the 

i/, 0-spectra are those in (F.4,5,6,7) whilst the /i, 4>-ones are selections from (4.26) 

according to the (4.34,35) ( i.e. excluding the value m  =  0 ) .

ii) The cone on a plane conductor ( Fig. F.3 )

The relations between the constants introduced by the plane conductor 

0 =  ^ are as in (4.22,23) hence, for the Dirichlet and Neumann cases we have :

VD • P?D{cos9) -  §<j((vD +  m +  1)§)Q™D(cos§) =  0 for ro =  0 ,1 ,... (F.8) 

& d ( 0 )  = P?D(cos0) -  ltg {(vD +  m  +  l ) f ) < 3 "  {cos9) (F.9)

VN ■ P?h (cos9) -  ^tg((vN + m)l)Q™N(cosO) =  0 for m =  0 ,1 ,... (F.10)

&N(0) =  P™(cos9) -  H g((vN +  m)z)Q™N(cosO) ( F . l l )

while the / i ,  $  spectra are the general ones (4.26) .

iii) The half-cone on a plane conductor ( Fig. F.4 )

The new b.c. pertaining the plane ^ =  0 ,7r in respect to the previous case 

leave (F.8,9,10,11) unaltered, whereas the / / ,$  spectra are those in (4.34,35).
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r

Fig. F.1 : double cone Fig. F.2 : half double cone

Fig. F.3 : cone on a plane conductor Fig. F.4 : half cone on a plane conductor
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F.3 The m ain field behaviour 

for double cone structures

The physical considerations about the current flux made for the cone in 4.4.2 still 

hold for the present geometry permitting a straightforward indentification of the 

fundamental modes .

Starting with the double cone, the fundamental quantities for the Dirichlet 

problem are :

fi = 0 vD(0) : P„D{cosO) -  ltg{vD^)QuD{cos9) =  0 for 0 € [0, f] (F.12)

©£>(0) =  PVD(cosO) -  %tg(i/D%)QVD(cos9) =  0 $ d (4>) =  1 (F.13)

In this case too, the determination of the electric degree of singularity does 

not present difficulty since re grows monotonically from — 1 as 0  =  0, that is the 

case of the wire, to 0 when 0 ~  33° up to oo as 0 =  ^ which is the space filled by 

a conductor . Its values are reported in Table 4.2 with the usual accuracy .

For what concerns instead the Neumann problem, the main quantities are :

fi =  1 uN(0) : P}N(cos0) -  %tg(vNz)Q lN(cos0) =  0 for 0 € [0, f ] (F.14)

Qn (9) =  PlN(cos0) -  %tg(vN%)QlN(cos0) =  0 =  cos<t> (F *!5)

The 7Vcurve is again nonmonotonic and its evaluation is left to further 

developments; for our purposes, we restrict attention to the limit solution for
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0 —> 0, that is the case of the wire, that can be obtained as a limit case of the 

double sector :

1/ =  1 // =  1 0jv(0) =  ^ n ( 4>) =  cos(/> (F.16)

In any case, the main behaviour of the fields is of the type :

N  oc (Acr)t/r,-1[i/£)0£)(cos^)r +  0£>(cos0)0] (F.17)

H m  ° c  i(K r)UN~1[i'NON(cos0)co8<f>r +  Q n ( c o s 0 ) c o s <1>0 —  0 N(cos0)sin<j>4>\ (F.18)

G eom etries related to  the double-cone

For these three last geometries, the value /i =  0 is excluded for the Neumann 

problem so that the main H-field behaviour is as for the original double-cone .

Instead, for what concerns the main eigenvalues, eigenfunctions and 

E-field behaviour related to the Dirichlet problem we can write in the order : 

i) for the half double cone ( Fig. F.2 ) :

li =  l  vD(B) ■ PlD(cosd) -  l tg (vDi ) Q lD(cos6) =  0 for 0 € [0, f ] (F.19) 

&d {6) =  PlD{cos0) -  ^tg(vD\ )Q lD{coa9) $d(<£) =  sin<j> (F.20) 

N  oc («r)1/I?“1[i/£)0£)(cos^)sm<^r +  QD(cos0)sin<j>0 +  Qd (cos0)cos</>4>] (F.21)
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ii) for the cone on a plane conductor ( Fig. F.3 ) :

H  =  0 v D ( 0 )  :  P VD( c o s O )  -  % t g ( ( v D  +  l ) f ) Q Vd ( c o s 0 )  =  0 for B  G  [0, f ]  (F.22)

®d(0) =  P vd ( c o s B) -  l t g { { v D  +  1)§ ) Q v d ( c o s Q)  =  0 $d{4) =  1 (F.23)

N  oc («r)*/iJ”1[0 £)(co5^)f +  0£>(co.s0)0] (F.24)

iii) for the half cone on a plane ( Fig. F.2 ) :

fi = 1 vD{0) : PVD(cos0) — %tg{vD%)QvD(cosO) =  0 for 0 £ [0,f] (F.25)

©£>(#) =  PVD{cos0) -  ^tg(vD ^)Q VD(cos9) =  0 (F.26)

JV oc (Kr)l'D~1[QE>(cos0)sin<j>r +  O£>(cos0)sin<j>0 +  Qd (cos9)cos</>}\ (F.27)

The values of rc for these last three geometries are collected together with 

those relative to the others Cone-wedges in Table 4.2 versus 0 at 2.5° intervals .
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Appendix G

Changing sets of basis functions

G .l R ecursivity relation for th e coefficients P m n

In 5.4 we axe asked to determine the coefficients Pmn relative to the mapping 

between the sets of functions <f>hn, <pm ’•

71 =  0 ,2 ,... <t>hnix) =  ^>2 Pmn<Pm(0) ™ =  0 ,2 ,... (G.l)

according to the map 0(x) in the form (5.45) .

For this purpose we can start decomposing the generic term of the first base 

malting use of the Chebyschev polinomials of the 1st kind :

4 n
TtTT 7T *2/ ^

cos(— x) =  Tn(cos— ) =  Tn(a\ +  a 2cos20 +  a3cosi0) =  Pmncos(m0)
m =0,2,..

n =  0, 2, ... (G.2)

Since n is even and the (5.45) contains only even multiple of 0 up to 4, m  can be

246



only even with a maximum An .

Furthemore the recursive relation for the Chebyschev polynomials :

__ * 7T X v _ / 7T X  ̂ __ > 7T «T v _  > X  v  ̂~ A v
Tn(cos— ) =  2cos(— )Tn-i(cos— ) — Tn_2(cos— ) (G.3)

a a a a

yields analogous properties for the expansion coefficients pmn .

In fact substituting the last equation into the previous we obtain :

4 n
T ,  PmnCOs(m0) =
m=0

4(n—1) 4(n—2)
=  2[«i +  a 2cos20 +  a ĉosAO] pmn-\cos(mQ) — pmn_2cos(m0) (G.4)

m=0 m —0

and taking in account the following properties of the cos function :

cos(—i0) =  cos(i0 ) cos(i0)cos(j0) =  \\cos(i -f j)0  +  cos(i — j ) 0 ] (G.5)

we can establish a recursivity relation among the coefficients :

P m n  =  & lP m n—1 "I" ̂ 2Pm+4n—1 ' \ m& zPm +2n—1 ~\~&4Pm—2n—1 “I" ̂ 5 P m —4n—1 "I" &6Pmn—2 (G.6) 

where:

r

2a i +  a 3 m =  2
S2 =  «3 Vm £3 =  a 2 Vm (G.7) 

2ai m ^  2
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0 m +  0 0 m =  0,2

64 =  < 2a 2 m =  2 <£5 — i 2 a 3 m  =  4 S6 =  - 1  Vm (G.8)

a 2 m  > 4k a3 m  >  6

with the initial values :

Poo = 1 P01 = otx P21 =  «2 P 4 i = <*3 (G.9)

2  m . n  =  0&n 2 n
Pmn — \ l  r \l Pmn where I Gn, Om — <

1 m ,n  f  0

If w g  further take into account the orthonormalization constants in the two 

sets of functions <j>hn ( x ) , ( p m ( 9 )  we obtain the coefficients :

(G.10)

We need just to consider even n  and m  values of this matrix so that the 

resulting matrix is always triangular and with a number of non vanishing terms 

larger than in the uniform sections, especially around the tips where also ctz ^  0.

The rapidity of convergence to 0 with m of the single column (n =  c o n s t )  

depends on w  and increases els w  —► a  .

m nG.2 R ecursivity relation for the coefficients Q

Together with the previous transformation, we have to consider the following one:

n  = 0 ,2 ,... <t>en{x) = YsQmn<Pm(0) T U =  1,3,... (G .ll)
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Along the previous lines we can make use of the 2nd kind of Chebyschev 

polynomials and their properties so as to write :

4(n—1)TITT 7T 7T . 7
72 =  0 ,2 ,... sin(— x) =  sin(—x)Un-\(cos—x) =  V ' qmncos(m0) (G.12)

a  a  a  m =0,2,..

Since the recursivity relation for U is identical to that for T, the qmn presents 

exactly the same recursivity relation (G.3), however since T\(x) =  x and 

Ui(x) =  2x the initial values are :

Poo =  1 Poi =  2c*i P21 =  2a2 P41 =  2a3 (G.13)

Because of the (5.49), the (G .ll) may be written for m odd as :

„ _ 4n+l. 727T
sm-

a\— X  =  2 ^  Q m n C0S( m 0)  =
m=l,3,..

4(n-l)
=  [PiCosQ +  focosSQ +  /?3co,s50] ^  <7mn_i cos (7720) (G.14)

m=0,2,..

which, for the same (G.5), leads to the relations valid for n =  1, 2,... :

Qln = (2<Z0n-l +  q2n - l) ^ -  +  (<?2n-l +  <?4n-l)^ +  (?4n-l +  <76n-l)^ m =  1

C?3n =  (<?2n-l +  <Z4n-l)^ +  (2<?0n-l +  ? 6 n - l)^  +  (<?2n-l +  <?8n-l)^ 771 =  3

Q5n =  (?4n-l +  <Z6n-l)^~ +  (<?2n-l +  <?8n-l)^ +  (2#0n-l +  #10n-l)^  772 =  5

Q m n  — (<7m—In—1 +  Qm+ln-l)^  +  (<7m-3n-l +  9 m + 3 n -l)^ *
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where /?i,/?2,/?3 are coefficients computed as indicated in 5.4.1 .

Finally, taking in account the orthonormalization constants we obtain

On /2x
Qmn =  \ h - \  — Qmn where: 6n,6m =  <

2 m ,n =  0 

1 m ,n ^  0
(G.16)

At last, we need to map the function :

7r(—)a; =  71 cosO +  ^oosZO +  ^cos^O 
a

(G.17)

where the constants 71, 72,73 can be obtained directly for comparison of (5.49) 

with (G.17), that is to say, they assume the same expressions for /?i,/?2,/?3 re­

spectively but with the substitutions :

s in - X t  -» - X i  s i n - X 2 -> - X 2 s i n - X 3 -» - X 3 (G.18)
a a a a a a

Hence, in order to obtain the expansion coefficients of the function

we set :

<3l0 =  —7=7l QsO =  “ 7=72 Q50 =  “ 7=73
y /C L  y / d  y / a

(G.19)

In conclusion, apart from the first row, the U_ matrix presents the same 

triangular properties as P_.
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