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SUMMARY

This thesis investigates the simulation and relaying scheme requirements for three ended 

feeder protection using a combination of directional relays (DRs) and independent mode 

relays (IMRs). The IMR is triggered by a forward decision from its associated DR. Faults 

on particular Teed feeder configurations having a combination of short feedrounds be­

tween weak sources can cause incorrect operation of the directional scheme. The IMR 

is designed to operate for these cases.

The IMR algorithm derives and compares estimates of the fault-point voltage magni­

tude: one is constructed using pre-fault quantities; the other using superimposed quan­

tities. Signals are combined in a novel way to reduce encroachment by earth fault de­

tectors. The comparison algorithm is relatively insensitive to local source capacity and 

fault point on wave for solid faults, but there are limitations at high values of fault resis­

tance. The minimum operation time is 11 ms: reach stability is considered more important 

than operating speed for the cases where the DR detects an internal fault as external.

The IMR design features checks to prevent false tripping during abnormal operating 

conditions. These are simple to define and implement if superimposed components are 

available.

There are also significant problems in applying directional relays to Teed feeders due to 

the uneven distribution of fault current between the ends and uneven desensitisation of 

relays. A design of directional relay has been developed which uses one directional dis­

criminant and variable thresholds to ensure co-ordination of sensitivities at each of the 

ends. A new design of variable threshold algorithm was developed.

Work has also been done to make the power system simulation more accurate and effi­

cient in generating series of studies in which pre-fault conditions and fault point on wave 

are varied. Displaying relay results as surfaces plotted against these two variables seems 

the best way to present their characteristics.
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ABBREVIATIONS 

AVR Automatic voltage regulator

CT Current transformer

CVT Capacititor voltage transducer

DFT Discrete Fourier Transform

DR Directional relay

EHV Extra high voltage

EMTP Electromagnetic transient Program

FFT Fast Fourier Transform

IMR Independent mode relay

PLC Power line carrier

p.u. per unit

ROM Read only memory

UHV Ultra high voltage

VLTA Variable level threshold algorithm

UNITS

A Amperes

GVA Giga Volt Ampere

Hz Hertz

kHz kilo Hertz

MVA Mega Volt Ampere

V Volts

VAR Volt Ampere reactive

SYMBOLS

CONVENTION: Bold symbols refer to matrices; italic symbols to scalars or complex 

numbers. Suffices for bold and italic symbols are distinct.

* (Prime) indicates modified version of a variable or matrix, or transient

quantity i.e. X a\ Td’ according to context.
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” Indicates modified version of a primed variable or matrix, or sub-transi­

ent quantity i.e. Xd” , Td” according to context, 

a  Frequency shift constant (positive real number).

a(t), A((d) Time domain signal and spectrum 

(3 thickness

b(t), B(co) Time domain signal and spectrum

c(t) Time domain current

C Current discriminant

C, C Laplace or frequency domain current

8 skin depth

8(t) delta (impulse) function

D Group delay

Dt time sample duration

Dw half frequency sample interval

e, E, E  emf

e(t) Envelope function

<]> Angle

f frequency

f(t), F(<$) Time domain (input) signal and spectrum, or (time domain) impulse and 

frequency response 

F Fault point F

FT Feeder between fault and Tee point

g(t), G(co) Time domain signal and spectrum, or (time domain) impulse and fre­

quency response

h complex number causing 120° rotation in frequency domain

h(t) Unit step function.

I  Current

/  Unit matrix

j Complex number: j2 = -1
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k integer or reach setting constant according to context

K  Constant used in mutual inductance model

Ax, Ay, Ag Integrals giving time delay windowing functions

L Inductance

m Integer sometimes specifying a digital filter property.

n f l  Integers

P Busbar P

P Permittivity

PF, PT Feeder between busbar P and F, and between P and Tee point

PQ, PR Feedrounds between P and Q,R

Q Busbar Q

QT, QR Feeder between busbar Q and Tee point, feedround between Q and R

p(t) Critical phase angle, i.e. fault point on wave that would produce maxi­

mum filtered voltage at time t after the fault 

r Variable defining time within observation time window or root of cubic

equation according to context.

R Busbar R

RT Feeder between busbar R and Tee point

R, R  Resistance

a  conductivity

s Laplace domain independent variable.

S Constant used in mutual inductance model

I x ,  l y ,  I t  Sums of frequency spectrum points.

t Time: (independent variable).

T  Particular time: Upper bound of observation time window, time constant

or duration of one sample according to context.

Tir VLTA threshold: first suffix refer to voltage or current; second to forward

or reverse quantities. 

u Variable
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U(co) Spectrum of time domain signal u(t).

Vb Backward voltage travelling wave

Vf Forward voltage travelling wave

vm Voltage produced by superimposed current in a mimic inductance.

v(t) Time domain voltage

V, V  Laplace or frequency domain voltage

co Angular frequency (radians per second).

W Particular value of angular frequncy

Wo Angular frequency of power system

x Independent variable

xo,xi,X2 ,X3  Data points

X  Reactance (usually combined with suffix).

X(co) Spectrum of time domain signal x(t).

\j/ Angle

y  Dependent variable

yo>yi>y2,y3 Function values at data points 

Y(a) Spectrum of time domain signal y(t).

Y Admittance matrix

z Independent variable

Z Impedance matrix

SUBSCRIPTS

CONVENTION: The following subscripts apply except where variable and subscript 

have already been explicitly defined. Combinations of two or more subscripts, i.e. pq de­

notes value of section of line between those locations or combination of properties as ap­

propriate.

012 Sequence vector or matrix

0,1,2 Sequence components

abc Vector or matrix relating to phase quantities

a Armature resistance as in
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a,b j,k,l,m sets of rows and columns forming sub-matrices

a,b,c,d,e Components of y(t)

ae,be,ce Relating to (compensated) phase quanitities

bc,ac,ab Relating to line quantities

d,q direct and quadrature axis values (applied to reactances)

f Value at fault point or pertaining to fault.

1 leakage (applied to reactances)

p,q,r Value at busbars P, Q, R

s Value pertaining to source at that point

ss Pre-fault value

sup Superimposed component

t Value at Tee point
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CHAPTER 1

INTRODUCTION

1.1 AIMS

1.1.1 SCOPE

In any protection project, there are usually four main areas in which work is necessary:

1) Specification of system performance requirements and assessment of how 

well these are satisfied by the final design.

2) Specification of relaying principles and communication requirements.

3) Detailed design of relay.

4) Simulation of relay signals.

Seven objectives are outlined in the following subsections.

1.1.2 SYSTEM PERFORMANCE REQUIREMENTS

The main aim of this project is to provide better protection for single circuit Teed feeders 

on power systems. Specific objectives are:

1) To achieve single cycle fault clearance for severe faults.

2) To enable a greater variety of Tee configurations to be protected.

It is difficult sensibly to quantify the worst configuration which one should be able to pro­

tect. However, reasonable targets are those studied by Johns and Aggarwal [1] and here 

reproduced as Fig 1.1.

For comparison purposes, the easiest Teed feeder to protect has the following properties:

a) The line distance from the Tee point to each busbar is the same.

b) Each busbar has the same (high) source capacity.

c) Connections between busbars which do not pass via the Tee point ( fee- 

drounds) either do not exist or are very much longer than internal connections. For double 

circuit Teed feeders, an unfaulted parallel circuit produces a similar effect to a feedround 

having the same length as the internal path.
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1.1.3 RELAYING SCHEME CONSIDERATIONS

In unit protection schemes, the fault clearance time is heavily dependent on the communi­

cation channel speed (bandwidth). Microwave or fibre optic links have a very large band­

width, but the performance of cheaper more conventional communication channels such 

as power line carrier (PLC) may be unacceptably slow. However, if faults close to the bus­

bars (close up faults) are detected with separate high speed independent mode relays 

(IMR) which trip the local circuit breaker, then a PLC unit scheme would be significantly 

improved. High speed operation requires:

a) That only locally available measurands are used.

b) That the measuring algorithm be optimised for speed rather than accuracy. 

The protected zone would accordingly have to be smaller than in distance schemes, since 

transient over reach past a remote busbar must be avoided at all costs.

It is vital to clear close up faults quickly, since generally the nearer a fault is to a busbar, 

the greater the voltage depression and reduction in power which may be exported and 

hence the greater threat to system stability. It was for this reason that Chamia and Lieber- 

man [2] incorporated an independent mode feature in their directional relay (DR) design.

When Teed feeders are to be protected with a DR scheme, an IMR is required to ensure 

correct operation, rather than as a means of improving performance for close up faults. 

In some Tee configurations (with unequal arm lengths, short feed rounds and an adverse 

combination of busbar source capacities), it is possible for internal faults close to one bus­

bar to cause fault current to flow out of the Tee at another busbar. This ’feed round prob­

lem’ (mentioned by Johns and Aggarwal [1]) causes one of the DRs to detect the fault 

as ’reverse’ and issue a block signal preventing operation of the unit scheme. Additional 

communication channels (for intertrip signals) are necessary to overcome this problem. 

Objectives identified in this section are:

3) To test whether such circumstances can be rendered unimportant by the

intertrips issued by IMRs at each busbar.

4) To assess the improvement in directional relaying performance provided

11



by IMRs in plain feeder applications. Note that intertripping would not be necessary in 

such cases.

1.1.4 PROCESSING OF RELAY SIGNALS

The information available at a relaying location consists of the three phase voltages and 

the three line currents, all of which are distorted by transducer errors. From these signals 

it is required to deduce the direction of the disturbance and whether the fault is within the 

protected zone. The separation of these tasks allows each to be performed more efficient­

ly. In particular, determination of the direction of a disturbance allows the algorithm for 

(b) to incorporate the following features:

a) Pre-fault information may be discarded, since the earliest time of fault 

incidence is known from the operation of the DR.

b) A non-directional protection characteristic may be used, since fault direc­

tion is already known. This is a particular advantage as close up faults appear near the 

centre of the protection characteristic in the measured impedance plane rather than to­

wards the edge.

An objective identified in this subsection is:

5) To test algorithms incorporating these features.

The actual waveforms that are used to make an impedance measurement are not pure 

sinusoids. There is distortion and corruption of the following kinds:

a) For most faults the voltage transducer (CVT) will contribute a slowly de­

caying transient to the voltage signal.

b) For most faults there will be exponentially decaying components in the

power system current waveforms.

c) Travelling wave signals will also be present on both voltage and current 

signals, and have magnitudes which are not simply related to the (desired) power fre­

quency magnitudes.

d) Cables, shunt and series capacitive line compensation, and static VAR 

compensators tend to lower the frequency of power system resonances, making them less
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easily distinguishable from the power frequency components [3].

e) There are various sources of ’noise* caused by wideband processes which 

contribute to the relaying waveforms components which cannot be summarily neglected. 

The sources include switching transients and various non-linear consequences thereof, 

i.e. corona, transformer saturation and surge arrester activity. There is also ’noise’ pro­

duced by the relay, e.g. analogue to digital quantisation error.

f) There are longer term non-linearities, such as arc voltage, transformer and 

generator magnetising currents and transducer saturation, which may cause the measu- 

rands to be appreciably non-sinusoidal.

The objective identified in this subsection is:

6) To consider the above phenomena and include their effects in simulations

if likely to be significant.

1.1.5 SIMULATION

Simplifications are needed to make any modelling problem feasible, but the risk of omit­

ting some important phenomenon is always present Judgement is required to assess what 

level of accuracy and efficiency are appropriate at each stage of the project. In the early 

stages, a crude model may suffice to eliminate unpromising strategies, but more realism 

will be required at later stages. The four criteria are:

a) Costs of computer time and storage.

b) Actual simulation turn round time.

c) Simulation techniques available.

d) Accuracy required.

It will be shown that linear or linearised power system models allow useful work to be 

done on relay design, and hence frequency domain analysis may be applied to the network 

as a whole. However, improvements are possible in a number of areas:

a) Simulation of generator dynamics by a resistance in series with a reac­

tance is inadequate. The sub-transient time constant is of the order of 30 ms. which is 

short enough to affect some aspects of relay performance.
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b) The un-modified Inverse Fourier Transform technique can be made to

work with reasonable efficiency and offers the advantage that it is unnecessary to express 

circuit impedances as functions of complex frequency. This is discussed by Dommel [4]. 

Another advantage is that Lanczos’ sigma factor may not be required in order to filter 

Gibb’s oscillations [5a].

c) The output from a relay simulation study consists of data showing whether

a relay operated, and if so, how long it took. The input data is much more complicated, 

but still expressible numerically. The need to organise results into a form suitable for stor­

age in a database imposes a structure on the program and makes a series of runs in which 

one parameter is varied (to produce two dimensional graphs) the norm.

d) In a series of runs it is possible to make use of network linearity to generate

power system waveforms for any point on wave by linear combination of outputs at two 

different points on wave (e.g. 0° and 90°, but not 0° and 180°). This technique was men­

tioned by Dommel in his reply to discussion of a paper [4], When the fault type is such 

that the superimposed signals depend only on one phasor, i.e single phase to earth and 

phase faults, the combination of two post fault waveforms (e.g. at 0° and 90° POW) may 

also be used to efficiently generate waveforms in which the pre-fault loading is varied.

Objectives identified in this subsection are:

7) To attempt to produce an un-modified Fourier transform technique incor­

porating methods to efficiently produce sets of results.

1.2 BACKGROUND TO SYSTEM PERFORMANCE REQUIREMENTS

Improvements in protection design are needed to cope with the following changes in 

power system design:

1) Smaller urban power stations are being closed down in the UK, leaving

large centres of generation and load interconnected by long transmission lines. Abroad 

this circumstance is even more pronounced: some load and generation centres are separ­

ated by as much as 1500 km.

2) Modem large generators have lower p.u. inertia and higher p.u. transient

reactance than smaller machines [6].
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3) Extensions or reinforcements of the transmission grid requiring further

transmission lines or substations are resisted due to capital expense and environmental 

impact.

4) On long transmission lines abroad, it is becoming more common to attach 

distribution transformers (without EHV side circuit breakers) at intermediate locations 

[7].

5) Extensions to the existing grid by connecting new feeders directly to an

existing line, rather than building a substation at the junction or routing the new feeder 

back to an existing substation are being proposed and built. These Teed feeders are obvi­

ously much cheaper to build but have particular protection problems [8].

Each of the above changes makes it more likely that synchronisation between a generator 

and the rest of the grid could be lost in the event of a fault. Several ways of enhancing 

system stability exist:

1) Making the generator excitation system respond more quickly.

2) Reducing turbine power by means of fast valving.

3) Shunting affected generators with electrical braking resistors.

4) Using single pole reclosure schemes.

5) Reducing maximum fault clearance time (to one power cycle period) [9].

When a fault is on the system, each of the above options attempts either to reduce the 

mechanical power supplied to the generator or increase the electrical power which it can 

deliver to the system.

Option (1) has usually been pursued to the practical limit (static thyristor exciters) at cru­

cial power stations. Options (2) and (3) are expensive: requiring additional or uprated 

hardware. Single pole reclosure would improve stability for single phase to ground faults, 

but for very severe three phase faults there would be no improvement over conventional 

protection schemes.

The most attractive option is to reduce the fault clearance time, although there may be 

extra cost in replacing or up-rating the circuit breakers to meet the higher current break­

ing duty. However, this is usually preferable to utilising important transmission lines inef­
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ficiently (i.e. with transient stability considerations reducing maximum permissible 

power transfer to much less than the limits imposed by steady state stability requirements 

or resistive heating and thermal effects).

1.3 BACKGROUND TO RELAYING SCHEMES 

There are essentially two types of protection schemes:

1) Non-unit schemes, in which a determination of whether a fault is present 

in the protected zone is made using only measurands derived locally. A communication 

channel may also be present to accelerate tripping at the remote end.

a) Distance relaying uses voltage and current signals measured at a single re­

laying location to determine whether the impedance to a fault lies within the protection 

characteristic in the impedance plane. Various different zones may be defined for a single 

relay with tripping times for outer zones deliberately delayed or made dependent on sig­

nals received via the communication channel in order to maintain co-ordination with 

other relays [10].

b) Over current relaying also makes use of only local measurands to generate 

either zero or negative sequence current components. The scheme relies on a low value 

of local source impedance to give forward/reverse discrimination and protection zone 

definition. The latter is necessarily less precise than that given by a distance relay [11].

2) Unit schemes depend entirely on a data communication channel between 

relaying locations. Ultra high speed relaying schemes are usually of this sort. Two types 

of scheme have been described:

a) Differential relaying: in which the currents at each end of a plain feeder 

are measured and the coded value transmitted to a processor at one or both ends. The va­

lues are compared and if they differ sufficiently then a trip is initiated. Communications 

requirements may be reduced by combining the three line currents into one signal before 

coding, but this has the disadvantage that certain unusual types of fault cannot be detected 

[12].

b) Directional relaying: in which the direction of a disturbance from the re­
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laying location is ascertained using voltage and current signals. If the fault direction is 

’reverse’ then a block signal is issued [13].

The minimum relay operating times for faults initiated at various points on wave, and the 

effects of system noise on relays are discussed by Phadke [14]. Directional relays can be 

compared to over-reaching distance relays (in a blocking scheme), but their performance 

is superior due to the use of superimposed components.

The blocking scheme of communication used in directional relaying has the following 

advantages:

1) The relay nearer to the fault operates first, unlike the behaviour in permiss­

ive over-reach schemes where it is often the last to operate [14a].

2) There is no need to signal through a fault with power line earner communi­

cation equipment, since signalling is only required for external disturbances.

3) Minimal coding security is needed for a block signal ( compared to an in­

tertrip signal), and hence communication delay and bandwidth requirement are small.

4) Only one blocking frequency is needed for plain or Teed feeders.

5) Since decisions rather than data are being communicated, the bandwidth

and channel attenuation demands are much less onerous than for differential protection.

Communications requirements become a major consideration when directional relaying 

is applied to Teed feeders, as intertrip channels are required in addition to the blocking 

channel. Due to the higher security requirement for an intertrip channel and the need to 

signal through a fault (when using PLC), it is not desirable to have a common intertrip 

channel [15]] i.e. each transmitter communicating with both remote receivers on the same 

frequency. Hence, either:

1) Two complete sets of communication hardware must be fitted at each re­

laying location (to allow simultaneous transmission on different frequencies), or:

2) Two sets must be fitted at only one location and intertrip signals from the 

other ends received and retransmitted there.

The latter scheme is cheaper but would often result in a longer delay before all circuit 

breakers had operated. If intertrip signalling is dispensed with altogether, then the trip­
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ping of one circuit breaker might cause the other relays to trip (sequentially) when they 

detected that disturbance, but, this process would be slow and uncertain, since directional 

relays do not recover full sensitivity immediately after a fault.

Distance protection of Teed feeders is possible for a limited range of configurations, 

though restrictions on load flow are often required to prevent incorrect operation in pro­

tection zones 2 and 3. If this is not acceptable, then, short of reconfiguring the whole sys­

tem, it is possible to insert one set of CTs at the junction of the longest arm with the other 

arms and protect that arm using differential relaying [16].

True three ended differential schemes have been proposed, but they require the wide 

bandwidth of a fibre optic link [1] or a microwave link [17].

Protection of transmission lines which have transformers (without intervening circuit 

breakers) at intervals between the busbars also presents problems, in that it becomes diffi­

cult to distinguish between healthy and faulted network impedances. However the prob­

lems are not so acute as those of Teed feeders and conventional relaying together with 

operational restrictions may suffice [7].

1.4 BACKGROUND TO RELAY DESIGN 

Two techniques will be discussed in this section:

1) Impedance measurements as carried out in distance relaying.

2) Directional determination as used in ’travelling wave* or ’superimposed

component* relays.

1.4.1 IMPEDANCE MEASUREMENT

When a fault occurs it acts as a broad band source of electromagnetic energy, and in prin­

ciple, the line impedance could be measured at any frequency. In practice, the signals to 

be measured are assumed to be at power frequency. (The energy spectrum corresponding 

to the change in relaying signals due to the fault peaks around power frequency, so the 

choice is not unreasonable.)

At power frequency and assuming ideal transposition of the transmission line, there exist 

two different values of relay to fault impedance:
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1) Zero sequence component or earth mode.

2) Positive or negative sequence component: same value for each.

It is difficult to isolate positive or negative sequence voltage and current as the defining 

phase to sequence transformation relates phasors (or frequency domain objects) by com­

plex coefficients. The time domain implementation requires frequency invariant phase 

shifts over a wide frequency band (theoretically infinite).

Another difficulty is that it is impossible to generate measurands which exclude the ef­

fects of zero sequence line impedance for faults which involve earth. All that can be done 

is to compensate using an assumption as to the ratio of the zero to the positive sequence 

line impedance. Measurands which would seem to exclude zero sequence quantities, e.g. 

Clarke components of voltage and current, actually introduce an extra dependence on 

zero sequence source impedance.

Generally two techniques are advanced for extracting the desired (sinusoidal) power fre­

quency signals:

1) Time domain filtering or computer relaying, which includes least squares 

estimation [18], Kalman filters [19] and finite Fourier transform techniques [20]. These 

have the advantage of explicitly finding the real and imaginary parts of the impedance, 

allowing the protection characteristic to be a complicated shape e.g. a quadrilateral, in 

the complex impedance plane. However, all the techniques seem to be very sensitive to 

low frequency exponential decays.

2) Frequency domain filtering, which involves passing signals through a low 

pass or band pass filter such that higher frequency components are greatly attenuated. 

Considerable effort has gone into assessing what the filter cut off frequency should be, 

since the lower it is, the longer the filter group delay and relay operating time [21].

In conventional distance relaying, the protection characteristic is defined by phase or am­

plitude comparison of two signals: each being the sum of voltage derived from the system 

and the voltage across a mimic impedance. More elaborate impedance characteristics are 

possible with a larger number of signals, and improved performance for close up faults 

by the use of cross polarisation [22].
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Distance relaying techniques are now mature and well understood in terms of steady state 

performance, i.e. protection characteristics are defined as areas in the complex impe­

dance plane. When the effects of transients (other than at power frequency) become 

troublesome, extra filtering is used, but this increases the group delay and hence the oper­

ating time (even if greater rejection of only low frequency terms is required). Narrowing 

the relay response bandwidth also extends the duration in which the effects of pre-fault 

measurands are significant. The use of directional relays to ensure that measurement only 

uses post fault information promises a means of overcoming the consequent degradation 

in performance.

1.4.2 SUPERIMPOSED COMPONENTS

Directional relays use the superimposed current and voltage components at a relaying 

point to determine the direction of a disturbance from that point. Superimposed compo­

nents are obtained by subtracting the steady state quantities from the measured quantities. 

However, since there are always perturbations on a power system, there may be some 

argument as to the precise definition of the steady state quantities. In effect there are two 

definitions of superimposed components: the theoretical and the practical. In theory (and 

simulation) it is possible to specify and subtract the pre fault steady state components.

Practical implementations of superimposed component extraction do not attempt to use 

a precise definition of a steady state quantity but derive the superimposed component by 

passing the measured quantity through a filter which has a notch at the assumed frequency 

of the steady state component. The bandwidth of the notch determines the duration of the 

superimposed component for step changes in either power frequency amplitude and/or 

phase of the measured signal. (A step change in signal frequency or mismatch of the notch 

frequency would cause a continuous output.) It is possible to make the notch frequency 

track the measured frequency in digital implementations [23].

The physical interpretation of a superimposed quantity is relevant to its use. Fault inci­

dence on a network may be represented either as:

1) A change in circuit configuration at fault time, (which treatment is not
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amenable to linear analysis): Fig 1.2a, or,

2) The post fault circuit configuration existing for all time, together with

voltage sources in the fault path which make the fault current equal to zero before the 

fault: Fig 1.2b

Provided the network is linear, the latter treatment may be simplified by separating the 

voltage sources which exist on the network into two sets:

1) Those existing for all time: Fig 1.2c

2) Those which change at fault time: Fig 1.2d

The system response is equal to the sum of the responses to these separate excitations.

The response to the first set of excitations is simply the pre fault condition of the network, 

produced by assigning the pre-fault excitations to the generators. The values of the volt­

age sources at the fault point are found by solving the network assuming they are open 

circuit.

The second set of voltage sources consists of zero excitation to the generators (for all 

time) together with sources at the fault point which are zero before the fault and have a 

finite value at and after the fault time. This value is chosen to satisfy the post fault condi­

tions, i.e. to make the post fault sum of the fault path source voltages zero.

It can be seen that synthesizing the superimposed network quantities isolates the network 

response to the second set of sources, which has a number of advantages:

1) The only excitation is at the fault point

2) If the Thevenin equivalent reactance of the network at a relaying point is

generated (looking in either direction), then it will be found to be predominantly induc­

tive.

Superimposed quantities therefore represent the effect of sources at the fault point inject­

ing current into a network dominated by inductive reactance, and the direction of the fault 

can be deduced by comparing polarities of the voltage and the differential of the current. 

Strictly, the above explanation applies only to the theoretical definition of superimposed 

components.
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1.4.3 DIRECTIONAL RELAYING PRINCIPLES

Superimposed component relays were originally called travelling wave relays [2], and 

attempted to recreate and compare the forward and backward travelling waves Vf, Vb aris­

ing from a fault. Assuming that the transmission line is lossless and has frequency invari­

ant parameters, this may be done by forming the following quantities:

Where R is a surge resistance, and V and C are combinations of superimposed voltage and 

current.

For a short period after the fault (of the order of two wave transit times for the line), com­

paring these two quantities gives an unambiguous indication of fault direction. Vf should 

be zero and Vb finite for a forward fault, and vice versa for a reverse fault. Travelling wave 

reflections after this short period, which is inadequate to allow a definite decision in the 

presence of noise and transducer delays, may not satisfy the directional criterion. Low 

pass filtering was therefore added to remove some of the noise, and, perhaps unexpected­

ly, it worked well. The forward and backward waveforms now looked like power fre­

quency waveforms and a much longer discriminative time was available. Gradually it be­

came apparent that the value of the ’modal surge impedance * R was by no means critical, 

and it was renamed ’current mixing factor’ [24]. The travelling wave connection had dis­

appeared except in theoretical justification of the technique [13].

Engler et al. [25] have developed a different directional relaying principle. Two discri­

minant signals are formed from the superimposed voltage V and a voltage produced Vm 

by the superimposed current C in a mimic inductance L:

If L  is the inductance of the local source then Vm is either equal to, or equal and opposite 

to, Vy giving the magnitude criterion that Vf should be zero and Vb large for a forward 

fault and vice versa for a reverse fault. Even if the value of L  were not so happily chosen 

then the relative magnitudes of Vf ’ and V f  would still allow directional discrimination.

Vf = V - C R Vb = V + CR

V/ = V - V m v b' = v + v m
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Since the superimposed current starts from zero at the fault time, for most of the first 

quarter cycle of power frequency the filtered current and its differential, i.e. Vm in this 

principle and CR in Johns [13], have the same polarity and hence cause similar behaviour 

in the respective discriminants.

In theory Engler’s principle is better since the magnitude relation is maintained for all 

time (in the absence of current clipping). Practically there may be little difference, since 

a directional relay should operate within a quarter of a power cycle period. However, an 

additional check is needed in Johns’ formulation to prevent incorrect operation when the 

magnitude relation becomes invalid. Dommel and Michels [26] use a rather more compli­

cated set of discriminants to ensure that their magnitude criterion is maintained for all 

time. Using the rate of change of relaying voltage in a discriminant seems less satisfactory 

than using rate of change of current, since travelling waves are more pronounced on volt­

age signals.

Rajendra and McLaren’s travelling wave principle [27] does actually use travelling wave 

properties but requires voltage transducers having an extended high frequency response 

which increases scheme cost. The authors also draw attention to the difficulty of inter­

preting relaying signals that occur on Teed feeders (due to multiple reflections.)

1.5 BACKGROUND TO SYSTEM MODELLING

1.5.1 INTRODUCTION

The system may be considered to be composed of the following components:

1) Power transmission lines.

2) Transformers.

3) Generators.

4) The arc at the fault point.

5) Circuit breakers and switches.

6) Load.

7) VAR compensation or series compensation.

8) Reactors.
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Modelling will be restricted to components (1-4). Other components (7,8) are assumed 

not to exist on the protected network or not to operate or vary during the simulation time 

window (5,6). Such simplifications are necessary if simulation results are to be produced 

within an acceptable timescale and at acceptable cost. It is believed that the neglected 

phenomena do not critically affect relay performance.

1.5.2 TRANSMISSION LINE MODELLING

Most power transmission line modelling refers the work of Carson [28] who derived 

impedance formulae which take into account the finite conductivity of the earth, which 

causes the parameters to be frequency dependent. Wise [29] has shown that finite earth 

conductance also requires a correction to be applied to the admittance per unit length 

parameters of the idealised model. However this correction will be omitted as it is not 

significant below 10 kHz. and transducer frequency responses band limit the relaying sig­

nals much below that.

The effects of corona [30] which causes a non-linear variation of line capacitance with 

voltage will be neglected. Power transmission lines are designed so that corona does not 

occur at working voltages, but it may be present under faulted conditions due to over-vol­

tages on un-faulted conductors. Switching operations also cause over-voltages, but the 

response of the relaying scheme to such disturbances will not be studied.

There are two approaches to simulation of a system which includes transmission lines 

with frequency variant parameters:

1) Time domain simulation. Three techniques have been proposed:

a) Convolution models.

b) State variable (including recursive convolution) models.

c) z transform models.

2) Frequency domain simulation. Two techniques have been proposed:

a) Fourier Transform method.

b) Modified Fourier Transform method.
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1.5.2.1 CONVOLUTION MODELS

Much of the work in this area has been done to interface a line model with frequency vari­

ant parameters to the Bonneville Power Administration Electromagnetic Transients Pro­

gram (EMTP) [31], which uses state variables to defme the behaviour of lumped para­

meter components.

The first attempt was made by Budner [32] who found the modal admittances and transfer 

admittances of a multi-conductor line as a function of frequency and then derived 

weighting coefficients for a convolution model using the inverse Fourier Transform. A 

large number of coefficients have to be found as the impulse responses take many travel­

ling wave transit times to decay.

A major improvement was made by Snelson [33] who modelled a line terminated in fre­

quency invariant matching resistances rather than open circuited. The coefficients in the 

model now represent forward and backward voltage transfer ratios rather than admit­

tances, and far fewer are required since reflections from the ends of the line are much re­

duced.

This method was modified by Meyer and Dommel [4] to utilise the trapezoidal integra­

tion routine existing in the EMTP and hence allow larger time steps. Ametani [34] pro­

posed linearly interpolating between a subset of convolution coefficients as an alternative 

way of reducing the computational workload.

1.5.2.2 STATE VARIABLE MODELS

Semiyen and Dabuleanu [35] derive a formulation based on DuhameTs integral which 

they term recursive convolution. The voltage change at one end of the line (with a 

matched termination) is found as the convolution (with a set of coefficients) of the voltage 

changes at the other end. The coefficients are produced by modelling the line step re­

sponse as the sum of a number of exponential decays. To attempt to reproduce the low 

frequency characteristics of the line surge impedance, an exponential decay modelling 

the step response of the matching termination admittance is included.

25

/



The formulation is equivalent to finding the poles with the largest residues in the respect­

ive responses and associating state variables with them. Three exponentials were initially 

used to model the voltage step transfer admittance and one for the matching termination 

admittance, but subsequent experience [36] showed this gave unacceptable error at zero 

and power frequencies and the order of the fit had to be increased. Triezenberg [37] noted 

a similar problem in his much simpler attempt to model power transmission lines using 

state variables. Finding more poles more accurately or more efficiently has now emerged 

as the central issue in this field, as a number of papers testify [38,39].

1.5.2.3 z TRANSFORM MODELS

The z transform method of simulating electromagnetic transients [40] is a variation on 

the theme of the previous paragraph (1.5.2.2). The procedure is to fit rational functions 

of z to the step transfer and termination admittance functions of the line in the z domain 

using a least squares algorithm. The time domain transform of the rational function is then 

computed. The onder of the functions is quite low and the technique corresponds to fitting 

a few poles. Originally the bilinear transform was used but it was found unsatisfactory.

It is an advantage with this technique if the time step is an integral sub-multiple of the 

travelling wave transit time (as with Semiyen’s recursive convolution technique), but this 

limitation is overcome (in both cases) by using interpolation formulae. Most of the 

computational effort in both techniques is spent in fitting rational functions or finding 

poles; the actual simulation times are proportional to the number of time steps (rather than 

the number squared for conventional convolution).

1.5.2.4 FOURIER TRANSFORM METHOD

Provided that each circuit element is linear or may be represented by a linearised model, 

then their frequency responses may be combined to obtain transfer functions of the net­

work at any frequency. The spectra of the exciting functions (usually generator or fault 

point voltages) can often be simply calculated; hence the output spectra (voltages and 

currents at relaying locations) may be found, and, by application of the inverse Fourier 

Transform, the time domain signals. There are three difficulties though:
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1) Often the transfer function of the network is not a closed algebraic ex­

pression, and a numerical rather than an algebraic inverse Fourier Transform method 

needs to be used.

2) The usual idealised time domain exciting signals (steps or sinusoids in­

stantaneously applied) have frequency spectra which contain poles on the jco axis and

generalised functions (delta functions), which require algebraic treatment

3) The transfer function may have peaks at certain frequencies which require 

detailed numerical treatment which would be inappropriate for the whole spectrum. This 

conflicts with the requirement of the Fast Fourier Transform (FFT) [41] for uniformly 

spaced data points.

Lego and Sze [42] addressed some of these problems. As they show in the Appendix to 

their paper (and in Appendix 1), the spectrum of a unit step (in the time domain) consists 

of two components:

1) A delta function.

2) A pole at zero frequency.

Their method treats the delta function in a special way, but unnecessarily assumes that 

the network transfer function is of such a form that the pole will not cause numerical prob­

lems. Once this defect is remedied the method may be extended to instantaneously 

applied sinusoids as hinted by Lanczos [43].

1.5.2.5 MODIFIED FOURIER TRANSFORM METHOD

Despite the possibility of removing impulses and poles on the jco axis from a frequency 

spectrum, the difficulty of localised peaks (e.g. at travelling wave frequencies) remains, 

which require a small frequency sampling interval for the spectrum to be accurately 

represented. The problem is particularly acute in over voltage studies, where a very wide 

frequency bandwidth has to be considered. The modified Fourier Transform technique, 

described in a series of papers [5a-d], was developed to overcome this problem.

In essence, the technique involves a change of angular frequency variable from co to co- 

ja . Provided that the frequency response of the network can be obtained in terms of com­
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plex frequency, the excitation and output spectra can be found as functions of co-ja and 

the time domain signals evaluated. However for transmission lines with frequency vari­

ant parameters, the component of the line impedance due to the earth return path cannot 

be directly found in such a form. If this component is given by:

Z(ft)) = R((o) + j(oL(co)

Then strictly, curve fitting should be used to obtain:

Z(fi) - j a ) -  R(co - ja )  + (a + j(o)L{(o -  ja )

However, this is troublesome to do and the following approximation is usually made: 

Z(o) -  ja )  «  R(co) + (a + jo)L{o))

An attempt has been made [44a] to show that this is not an approximation, but despite 

early misgivings [44b], the approximation does not seem to cause unacceptable errors.

A point not emphasised in the literature is that there are two quite distinct methods of ob­

taining a time domain output using the modified Fourier Transform in an observation 

time window0 <t< T:

1) The integration method: in which the exciting signal x(t) is equal to a

physically realisable signal fit)  for all time:

Both the input and output spectra are continuous, and the output time domain signal 

should (in theory) represent the actual output signal for all time.

The input signal is not zero for t < 0 and it is not equal to f (  t) for t>T. The input and output 

spectra consist of a series of impulses at angular frequencies:

x(t) =/(r) t 0

2) The series method: in which the exciting signal x(t) is equal to f(t) only

during the observation time window:

x(r + mT) -f{ r )  exp(am7)

t = r + mT 0 £ r < T  m = . .. ,-2 ,-1 ,0 ,1 ,2 , .. .

n = .. . ,-  2, -1 ,0 ,1 ,2 ,.. .
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In Ametani’s developed modified formulation [45], the expression for the input signal 

is given by:

x{r + mT) -  (-1  )mflr) exp (amT)

And the spectrum lines occur at angular frequencies:

a + y / y - )  n = . . . ,-3 ,-1 ,1 ,3 ,. . .

It can be seen from the expressions for the input waveform that there is likely to be a large 

step change in value at t=T, which, when the frequency spectrum is truncated, may cause 

Gibb’s oscillations in the time domain. These can be reduced by multiplying the truncated 

frequency by Lanczos’ sigma function, though this has the side effect of artificially re­

ducing the rate of rise of steep wave fronts. The integration method of finding the time 

domain output does not have this discontinuity (though there is still likely to be one at 

r=0) and the physically unrealisable low pass filtering implicit in the use of the sigma fac­

tor may be omitted.

Inclusion of transducer frequency responses in frequency domain simulations would im­

prove both accuracy and efficiency of the simulation for the following reasons:

1) The low pass nature of such responses would reduce frequency truncation

effects.

2) The two stage process of obtaining relaying signals described by Johns et

al. [46] requires that the upper half of the network frequency spectrum be zero so that an 

unaliassed signal can be presented to the transducer simulation. If the transducer response 

were included then this restriction would no longer apply.

When the modified Fourier Transform is used, almost invariably the problem is being 

formulated in terms of the series method, despite statements about numerical or trap­

ezoidal integration. If the integration method is actually used then the solution accuracy 

is likely to be lower within the observation time window, but it should converge to a 

steady state outside it (which the series method will not do). Another point not made in 

the literature is that the spectrum values for the exciting waveform need to be found in
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different ways. A discrete Fourier Transform over the time window 0 < t< T  should be 

used for the series method, but a continuous one over all time for the integration method.

1.5.3 TRANSFORMER MODELLING

The magnetising current of transformer cores has a non-sinusoidal component [47] due 

to the hysterisis and non-linearity of the magnetising characteristic. Under normal work­

ing conditions the transformer is designed to operate as a linear device, but when over­

voltages occur, the core may be driven into saturation causing a large increase in magne­

tising current. If the capacitance in parallel with the transformer is sufficiently large (due 

to cables and/or compensating capacitors) then it is also possible that ferroresonance 

could occur.

Much work has been done on time domain modelling of transformers [48,49,50,51] with 

over-voltage studies in view, but for fault studies, where the line voltage tends to fall, a 

simple linear (frequency domain) model consisting of a leakage reactance and perhaps 

the linearised magnetising reactance (if accuracy at zero frequency is required).

The power frequency harmonics in the magnetising current cannot be produced in a fre­

quency domain simulation. If it was desired to study their effects on a relay then the 

simplest way would probably be to include harmonic current sources at the busbars, (once 

the transformer working conditions had been found).

1.5.4 GENERATOR MODELLING

1.5.4.1 INTRODUCTION

In principle the whole of the electrical, excitation, mechanical and governing system of 

a generator is involved when electrical conditions at its terminals change. For relaying 

purposes many of these sub-systems are usually ignored as their time constants greatly 

exceed protection operating times (2 to 20 ms.). This simplification process must be un­

dertaken with care, since a relay must behave correctly not only for a short time after a 

fault, but also through the subsequent series of fault clearance circuit breaker operations. 

Inclusion of exciter, automatic voltage regulator (AVR) loop and possibly turbine tor­
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sional resonance models in the simulation might be required for this, but will not be at­

tempted here.

Even the more modest task of checking that the protection behaves correctly in the inter­

val between fault inception and the first circuit breaker operation (say 20 ms.) requires 

some modelling of the sub-transient decay of generator armature current and hence a 

more sophisticated generator model than a reactance and resistance in series (as is con­

ventional practice).

1.5.4.2 PAST WORK

There have been many attempts to model generators: one of the most useful was that of 

Park [52] who derived differential equations in a reference frame rotating with the gener­

ator rotor. This allowed the machine to be represented as sets of windings (with resis­

tances and leakage inductances) disposed about the direct axis (through the poles) and 

the quadrature axis (perpendicular to the poles for a 2 pole machine).

The evaluation of (actual or imputed) winding parameters has been controversial, the fol­

lowing techniques have been attempted:

1) To calculate leakage reactances from design data using formulae such as 

those proposed by Kilgore [53]. Though these simple formulae and parameter definitions 

suffice for switchgear specification, more complicated design data models [54,55] have 

been developed for stability studies.

2) To measure the transfer functions between a small sinusoidal signal in­

jected into the AVR and terminal voltages and currents while the machine is connected 

to or isolated from the grid [56]. This is the most satisfactory method, but due to the non- 

linearity of the generator, the frequency response is dependent on the magnitude of the 

disturbing signal. Fitting a model using lumped parameter circuits usually comprises two 

stages:

a) Finding a pole zero approximation to the desired response.

b) Assigning values to circuit elements. This is the more difficult stage as 

sophisticated techniques i.e. in non-linear optimisation, have to be used to get acceptable
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results.

The possibility of using experimental results directly has been demonstrated by Johns and 

El-Kateb [57], but the frequency domain formulation appears unpromising at first, since 

the assumption of generator linearity does not reflect the highly saturated operating 

conditions.

3) To obtain the standstill frequency response of the generator by using a

power amplifier to drive the windings directly [58,59]. Doubts have been expressed 

whether the frequency response obtained id representative of the machine under operat­

ing conditions.

4) To switch transmission lines connected to the generator in and out of the

network and record system waveforms, which are usually used to check model predic­

tions, as the transmission network characteristics are unlikely to be known precisely.

5) To apply a step change to the AVR voltage reference and record the result­

ing armature voltages and currents. This is often used to check model performance, since 

although the frequency response can be derived from the data, corruption by noise is 

much worse than in direct frequency response measurements (where the measurement 

bandwidth can be made to peak sharply about the chosen frequency). However, where 

on-line frequency response measurements are forbidden due to concern about torsional 

resonances, this method may have to be used.

6) To apply a short circuit to the machine terminals and record the armature

and field current waveforms [60]. The test only provides information on direct axis posi­

tive sequence parameters. The quadrature axis parameters are rather more difficult to 

find, and (where they exist) are generally assumed to equal those of the direct axis, except 

in the case of the synchronous reactance where small differences can cause large changes 

in predicted field current for normal (saturated) operating conditions.

Review has been made of the various ways of deriving generator parameters as some of 

the results will be used in a frequency domain model. The high frequency behaviour of 

solid iron (skin effect) is simple to model in the frequency domain, but requires a large 

number of state variables in the time domain. However, some major assumptions need
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to be made;

1) That only the generator mutual reactance saturates and that other reac­

tances are unaffected by operating conditions. This assumption is common in time do­

main formulations [61].

2) That the direct and quadrature axes have the same reactance and saturate

equally. (This also removes any dependence on rotor angle.) This assumption will pro­

duce errors in the post fault steady state conditions of the generator, but such errors would 

be small compared to the armature current immediately after the fault.

3) That the effective mutual reactance is linear and its value may be found

from the (saturated values before and after the fault.

4) That the generator speed is constant throughout the study. This assump­

tion is common to all frequency domain models.

5) That the field voltage applied to the generator is constant, (i.e. does not rise 

due to AVR action). The problem in making the simulation more realistic is that there are 

unavoidable non-linearities in the derivation of the terminal voltage feedback for the 

AVR and in the excitation system. The assumption of a constant field voltage is common 

in protection work.

1.5.5 ARC SIMULATION

An arc has a highly non-linear resistance and hence it cannot be modelled accurately in 

the frequency domain. Several equations describing arc behaviour exist, but modelling 

them in the time domain has proved to be computationally expensive.

For relaying purposes faults are assumed to conform to one of two archetypes:

1) Low resistance fault caused by flashover across an arcing horn on a trans­

mission tower or between phase conductors. The arc is relatively short and has a low volt­

age drop of approximately 5 kV [62], and can be modelled either as a short circuit or a 

low linear resistance (less than 2.5 Ohm).

2) High resistance fault: possibly caused by arcing to nearby vegetation. 

Very little data exists since such faults either evolve into something more serious or extin­

guish themselves. If the line protection does operate then there may be slight physical
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damage to determine where or whether a fault occurred. In the absence of data and for 

the sake of simplicity, the fault resistance will be modelled as linear.
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THE PRINCIPLE OF SUPERPOSITION APPLIED TO A FAULTED NETWORX
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THE PRINCIPLE OF SUPERPOSITION APPLIED TO A FAULTED NETWORK
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CHAPTER 2

SIMULATION

2.1 INTRODUCTION

This chapter covers the modelling of power system components and their incorporation 

into a frequency domain simulation program.

In order to obtain the current and voltage spectra at a relaying point, it is necessary to find 

the transfer response between the fault point (where the voltage spectrum is known), and 

the relaying point. At a particular frequency, each physical component may be repre­

sented by an admittance (or impedance) matrix, relating voltages and currents at its ter­

minals. These matrices are combined into the system matrix (by ensuring that KirchofFs 

laws are satisfied) and the transfer functions (at a particular frequency) may be found by 

solving the matrix.

2.1.1 CONSTRUCTION OF SYSTEM MATRIX

Nodal analysis will be used to solve the network at each frequency, since with an admit­

tance formulation, extra links between nodes may be added easily, making the program 

very flexible. This flexibility is needed, since for a single-circuit three ended system 

simulation, (if external faults and cases with one circuit breaker open are also to be con­

sidered), there are no fewer than 11 different faulted configurations. These are drawn in 

Figs 2.1 to 2.11. Note that this number neglects configurations which may be transformed 

into those drawn by permutation of busbar labels.

Faults occurring at the busbars or at the Tee point cannot be simulated by inputting a zero 

distance into a general simulation program: the special cases have to be dealt with indi­

vidually. A twelfth configuration (which models two sections of plain feeder joined to­

gether (Fig 2.12)) is also included. For any configuration, as many as 9 sets of relaying 

quantities may be obtained from each fault simulation, most of which will usually be of 

no interest. Care in program design will avoid having to sift routinely through a massive 

output file, for the sake of the few occasions when all the information is required.
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The problems of setting up the system matrix (to model a certain configuration) and spec­

ifying the output are linked, in that the sub-matrices used to construct the system matrix 

are also needed to derive line currents from the nodal (busbar) voltages. The efficient 

utilisation of these sub-matrices is one of the prime requirements in the program design. 

The organisation of input data and program function will be briefly discussed for one of 

the most useful configurations.

Configuration 1 is defined as a Teed feeder with a fault on PQ (Fig 2.1). The system matrix 

is set up with the fault position nodes occupying the first block of 3 rows (and columns), 

busbar P the next 3, busbar Q the next 3, busbar R the next 3, and the Tee point occupies 

the final 3. The total matrix size is (15*15), and all the above information is implied when 

configuration 1 is specified in the input data.

Seven lengths are input, which are interpreted for this configuration as PF, FT, QT, RT, 

PQ, QR, RP. The last three lengths refer to links external to the Tee, and if any of these 

is input as zero, then that link is deemed not to exist At a certain frequency each of these 

lengths will generate two (3*3) admittance matrices Yaa> Yab which relate the voltages 

and currents (inward flowing) at the ends of the link. (The derivation of these matrices 

is discussed in a later section.)

Each of the links is now coded as three numbers, indicating which blocks of nodes termin­

ate the link and where the matrices defining the link admittances are stored. The Yaa ma­

trices are stored sequentially in an array with dimension (3*3*7), and the Yab matrices 

similarly. Hence the link PF would be coded as (2,1,1), indicating that the second block 

of three nodes is to be connected to the first block of three nodes, and the relevant matrices 

are in the first position of each storage array. The code could equally well have been 

(1,2,1). The link RT would be coded as (4,5,4) or (5,4,4). These codes are assigned by 

the program in response to the choice of configuration; they are not fed in as data.
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The system matrix is set up by combining the admittance matrices of all the links, and 

has been partitioned into (3*3) matrices since this makes the working clearer. Starting 

from a system matrix in which all the elements are zero, the links PF andPQ will be added 

(as an example of the method):

rc r !
c P
c , =
Cr
c«.

pf Y*bpf 0 00
Yabpf Yaapf + Yaapq Yabpq 0 0

0 Yabpq Yaapq 00
0 0 0 00
0 0 0 00.

'Vf

v q
Vr
V tj

When the other links have been added, the source admittances are added along the diag­

onal matrices of the partitioned matrix, i.e. instead of Yaarf + Yaapq> there would be Yaapf

+ Yaapq + Ysp.

2.1.2 OUTPUT SPECIFICATION

Once the system matrix has been set up and solved at a certain frequency, the line currents 

can be found from the nodal voltages. The sets of relaying quantities to be output are 

coded in the same way as the links used in setting up the matrix. If, say, the voltage at 

busbar R were required with the current RT, (to simulate the inputs to a relay on RT at 

R), then the code (4,5) (for configuration 1) would be specified in the data. The order is 

now significant: if (5,4) were specified, the voltage at the Tee point and the current TR 

would be obtained.

Only two numbers need to be specified for each current, since the program compares the 

input code (and its transpose) with the links data. If a match is found, then the current will 

be calculated using the matrices indexed, if not, then a flag is set, causing the current out­

put to be zero

2.1.3 SOLUTION OF SYSTEM MATRIX

In the following method, it is essential that the faulted phases are at the very top of the 

system matrix. In general permutations of matrix rows and columns are necessary to 

achieve this. (Naturally the voltage and current vectors would be similarly permuted). 

Since the matrix may have to be constructed, permuted and solved for many hundred fre­
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quencies, it is very desirable that this process be made efficient A position in an array 

may be defined by assigning the index 1 to the top left hand element, 2 to the one below 

it, 16 to the first element in the second column (for a (15*15) matrix), etc. Similarly in­

dices may be assigned to the elements in the arrays holding the y*, f Ygj, and source admit­

tance matrices. For every frequency the mapping between these indices and the permuted 

system matrix indices will be the same. Therefore a list of index pairs may be constructed 

from:

1) The coding of the links implicit in the configuration choice.

2) The input data as to the existence of external links.

3) The permutation necessary to bring the faulted phases to the top of the ma­

trix.

Once this list has been assembled, the matrix may be constructed very rapidly. The faulted 

phases are brought to the top of the matrix since superimposed sources only exist at the 

fault point on the faulted phases and only at those nodes will current be injected. The ma­

trix equation may be partitioned:

Where Cj is a column vector of 1,2 or 3 elements, depending on fault type. This equation 

may be much simplified by expressing V* in terms of Vy

Vk = -  YjiYtjVj = Ykj'Vj

Hence,

Cj = (Yjj + XlkYkj')Vj = Yjj'Vj

For earth faults with zero fault resistance this solves the matrix, since the Vj are the known 

spectrum components of the applied source.

It is possible to avoid matrix inversion altogether by applying the above process one row 

at a time (starting with the bottom row). The matrix is partitioned such that the suffix i 

applies to the last row and column, and the suffix m applies to the rest of the matrix. The 

inverted matrix Ya~2 then is the reciprocal of a complex number and VJ becomes depend­
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ent on all voltages above it, i.e Vm:

V, = ( ^ - ) Y lmVm = Yim'Vm

Cm — (Y mm +  Y|mYml')Vm — Ymm'Ym

The procedure may now be repeated with Y ^  as the starting point, and continued until 

Yjj> is obtained, having reduced the matrix size by one node each time.

A necessary refinement to this is to exchange the /th row with the row in the range j+ 1,/, 

which has the largest element in its /th column, before eliminating it. This does not affect 

the right hand side of the equation, since both injected currents will be zero, but minimises 

the value of and therefore improves accuracy. Exchanging columns to the same end 

does however require a record to be made, since an inverse permutation eventually has 

to be performed to restore the original variable order. Though this involves extra work, 

the record may be used to permute the matrix before solution to reduce permutations re­

quired during solution. The routines are already needed to bring faulted phases to the top, 

and frequency domain analysis requires the repeated solution of similar matrices. A con­

venient point at which to record the permutations undergone in solution is after the super­

imposed power frequency quantities have been determined.

If the elements Ym  are substituted for Yim as each row is processed, then each element 

of Vk will be defined by:

Vk = Ykj'Vj + Ykk'Vk

Where Y& is a matrix which is zero on and above the leading diagonal. Further substitu­

tion will allow the expression of V* as a function of the Vj alone. This may seem more 

complicated than inverting a sub-matrix or even inverting the system matrix. However 

it is simpler and more accurate (due to fewer operations) than a general purpose inversion 

routine.
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2.1.4 FAULT RESISTANCE

When fault resistance exists, further steps are needed, since the voltage at the fault point 

differs from the applied source, due to the resistive voltage drop. If the source voltage Ej 

and the fault voltage Vj can be linked by an equation:

Yl = Ej -  RfCj 

Then Vj may be found by the following steps:

Cj = Vu'{Ej-R|Cj)

EJ = YjJ!(l + YJJ.R,)Cj 

V j = (i - r ^ i + yJ].r ,)-1)e j

The resistance matrix Rf may be constructed easily for faults which are in effect combina­

tions of single phase to earth faults. For more complicated situations, its derivation is 

rather less obvious, but it is shown in Appendix 2 that the equation linking Ej and Vj can 

always be constructed for faults involving earth.

2.1.5 PHASE TO PHASE FAULTS

For these faults, the treatment given in the previous section is not valid: sources need to 

be inserted between faulted phases rather than between the faulted phases and earth. The 

formulation is described in Appendix 3, together with extensions of this technique to in­

clude making and breaking series network connexions.

2.1.6 STORAGE CONSIDERATIONS

At each of many hundreds of frequencies, say 15 voltages and 9 currents are produced, 

which occupy a lot of memory when stored as double precision complex variables. Using 

large arrays to store data can cause a lot of swapping between main and virtual memory 

(page faults). This program uses arrays as temporary stores which are repeatedly written 

to direct access disc files and then refilled as more spectrum points are obtained. When 

all the frequencies have been run through, there will be say 24 direct access files, each 

containing the voltage or current spectrum of the 3 nodes at a point on the network.
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The output for a series of simulations in which only the fault point on wave is varied may 

be generated economically by forming the weighted sum of stored outputs from two 

simulations, in which fault point on wave incidence differed by ninety degrees. It is also 

desirable to generate the spectrum of the second point on wave simultaneously with the 

first one, since although the excitation is different, the matrix construction and solution 

steps are identical. This doubles the storage requirement, and strengthens the argument 

for using direct access files.

It is possible to save computer time in other ways when multiple runs require variation 

of fault type or resistance, by reducing the system matrix, such that all the rows are de­

pendent on the top 3 rows, i.e. the system matrix is reduced as if a three phase fault were 

to be simulated, and then storing Yjj>, Ykf matrices at each frequency. These may then be 

further reduced for other types of fault excitation, and/or fault resistance specifications.

Once a set of relaying quantities has been derived (and as many as are specified by the 

input data are possible), then the variables may be printed out or fed directly into a relay 

simulation. The outputs from the latter are collated in a comprehensive way as described 

in a later section.

2.2 FREQUENCY DOMAIN FORMULATION

2.2.1 INTRODUCTION

Past work using frequency domain power system simulation [1,23,46], has used the 

modified Fourier Transform as described by Day et al.[5]. Inclusion of transducer and 

more realistic generator models would require the following work:

1) Curve fitting to generate frequency responses as a function of a+jco rather 

than jco.

2) Assessment of simulation accuracy, which may be done in two ways:

a) By varying simulation parameters until extra computational effort pro­

duces little change in the answers obtained.

b) By comparing simulations with results of guaranteed accuracy.
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Although it is less work simply to vary simulation parameters, weaknesses due to the 

modified Transform technique itself would not be exposed: i.e.

1) The accuracy of the curve fitting process is not tested.

2) In the most efficient (i.e. Fast Fourier Transfomi) formulation of the tech­

nique, the simulation parameters are not independent: the observation time 7, truncation 

frequency W, frequency shift constant a and number of frequency (and time) domain 

samples N  are linked by the following approximate equations:

a) <xr= i

b) W = 2nN/T

c) Variation of the simulation parameters changes the physical situation mo­

delled rather than the accuracy with which a modelled situation is interpreted. The dis­

tinction is subtle, but means that it is more difficult to obtain repeatable results with differ­

ent simulation parameters for the series (compared to the integration) formulation.

Inclusion of a transducer model would probably make a power system simulation better 

behaved in that the added high frequency roll off would make the truncation frequency 

a less critical parameter (provided it exceeded the roll off frequency). The same cannot 

be said if the transducer model is excluded, since a transmission line has a large band­

width and altering the truncation frequency will affect the time domain simulation output.

Since many changes are going to be made, it is considered necessary to have an indepen­

dent reference by which results may be judged (as was done when the modified Fourier 

transform technique was developed). Therefore formulation and solution of a power sys­

tem model using the unmodified numerical Fourier transform is required, since the fre­

quency variance of the transmission line parameters forbids an algebraic formulation 

over the frequency range of interest

2.2.2 NUMERICAL INTEGRATION

Two precautions need to be observed when using numerical integration techniques:

1) That the integrand may be adequately represented by sampling.
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2) That the inevitable truncation of the integration range (for integrals with

infinite range) does not lead to unacceptable errors.

For an inverse Fourier transform, the integrand in question is the frequency spectrum of 

a disturbance multiplied by a phase shift exp(jctit) and integrated from negative to positive 

infinite frequency. Since only real time domain exciting signals and physically realisable 

networks will be used, the value of the spectrum at a negative frequency will be the com­

plex conjugate of that at the corresponding positive frequency. Taking twice the real part 

of the integral over the frequency range zero to infinity will therefore equal the integral 

over the full range but with the advantage that only the spectrum for positive frequencies 

need be considered.

The principle of superposition (which assumes network linearity) may be used to repre­

sent the disturbance as a change in amplitude of a voltage source at the fault location. In 

a previously undisturbed network, the source voltage changes from zero (pre-fault) to 

a power frequency sinusoid, and it is a spectrum similar to this which needs to be inte­

grated. Initially, however it is easier to consider the spectrum of a unit step rather than 

a sinusoid applied at zero time.

2.2.3 SPECTRUM OF A UNIT STEP 

A unit step in the time domain is defined as follows: 

x(t) = 0 -  oo < t £  0

jt(f) = 1 0 < t < »

It may be considered as the sum of two signals (assuming network linearity) both in the 

time and frequency domains:

x(t) = xa(t) + Xb(t) X(co) = Xa(co) + Xb(a))

The components are:

1) A constant (even) signal of amplitude 0.5.

xjtf) = 0.5 -  oo < t < oo Xa(aj) = 7td(o>)

2) An odd signal of amplitude 0.5:
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*i>W = -0 .5  -  co < j ^  0

Xb(t) = 0.5 0 < t < oo

This has a spectrum:

Xb( m ) =  —  
jm

Note that a delta function does not figure in the Laplace or modified Fourier Transforms 

of a time domain step. Obviously such a component needs special treatment when nu­

merical integration is to be attempted. Lego and Sze (41) separated the response to the 

first and second components and obtained the network step response:

Y{a>) = F(co)X(a>) = F (O 'jX jp )+ F(co)XiJp>)

2 J _» JcoJCO

Note that F(w) is the transfer function of the network studied, and there may be numerical 

problems at zero frequency if it contains a pole or even if it remains non zero. This limita­

tion may be overcome by grouping the terms as follows:

F(a»)-F(0)
G H  =

ja>

y{t) = F(0)x(f) + f G{<o) exp{ja>t)df
(1)

Note that:

lim G(a>) = -£-F(a>)
o>-*0 I CUD

This is not necessarily zero, but is certainly finite, and hence the integral may be found 

numerically. For the case where the transfer function contains a pole at the origin the ex­

pression (1) becomes:

y{t) = lim ikotF(o))) + f G[co) exp {jm)df
<U-*0 J -  oo
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Truncation of the integration range should equally affect the first term (since that contains 

high frequency components). If the spectrum is to be truncated at co = W, then the correct 

form of the first term may be derived as follows:

[63]). Separating a frequency spectrum into a part containing the poles (which is evalu­

ated algebraically) and a residual (which is evaluated numerically) was mentioned by 

Morched et al. [64].

2.2.4 SPECTRUM OF STEPPED SINUSOID

The spectrum of a time domain sinusoid may be found by applying Euler’s identities and 

the frequency shift theorem to the spectrum of a step x(t). A superimposed sinusoidal 

waveform at frequency Wo may be represented (without any loss of generality) by the 

time domain signal u(t):

Hence, expression (1) becomes

G(co) exp (j<ot)df

The function Si(u) is the Sine Integral and is a well known, easily calculated function

cos(Wot + <p) = cos(Wor) cos(0) -  sin(Wfy) sin(Wo/)

c o s ( M = eXP(/W°f)H2eXP(- ;W )

a(t) = x(t) exp(/WbO b(t)= x(t)exp(-jW 0t)

A((o) = — -1- - + 7td(co -  W0) B{<o) = ^—  ------ + Tt&ifo + Wo)
j(co + Wo)
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u ® - m  Co s ( ^ ^ ) = (a(O^ (O)cos(^ ) : ((a(f)' w ) s in (0 )
M

<z(f) exp(/0) + b(t) exp(-y0)

£/(<*,) -  ^(a>) exp(#) +£(a>) e x p (-# )  
2

jet) cos (0) -  Wo sin(0) 
-2 _2Wg-G;

+ f  (exp(#>5(a> -  Wb) + exp (-#>}(<» + Wo))

The spectrum Afw) is derived from first principles in Appendix 1. The output spectrum 

is defined by:

Yifo) = F((o)U(a))

The need to integrate the impulses and discontinuities in the spectrum Y(ca) may be re­

moved by splitting the time domain output y(t) into two parts:

y(t) = ya(t) + y M  Y(a>) = Ya(o) + Yb{m)

,.^F(a>)-F<Wo) , .^ F (o ) ) -F ( -W 0)Yb(co) = exp(/0) — ----— —  + exp(-y^) — ■■■
j((D -W q) j(a) + Wo)

As might be realised, ya(t) consists of an sinusoid similar to the exciting signal (though 

attenuated and phase shifted by the network transfer function). When the range of integra­

tion is not infinite, then a term corresponding to the integral over the omitted range needs 

to be subtracted from the time domain output; this term will be denoted yc(t), i.e. 

y(t) = ya(t)+ yb(t)+ yc(t)
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The value of the correction term is most easily found by considering the following quan­

tities:

These quantities are most easily found by dividing the integration range into a number 

of intervals, and integrating numerically using an interpolation polynomial to approxi­

mate the denominator of the integrand. The correction term is then found:

The correction delays and decreases the slope of ya(t) near r=0. As such, it becomes insig­

nificant as time increases and only a few values need to be computed, which are depend­

ent on the choice of W, Wo and 4>. However, if the correction coefficients have been com­

puted for two values of y  (differing by 90°), then the correction for any value of <(> is 

derivable as their weighted sum.

2.2.5 DIVISION OF SPECTRUM

Although the continuous spectrum Yb(w) exp(/'cor) does not contain any poles (on the jco

on the smoothness of the spectrum and the integration interval used. It would be ineffic­

ient to use the same length interval over the whole spectrum, since certain localised fea­

tures would require this length to be very small. These features arise in the following 

ways:

tance and resistance will give rise to a term kl(a+ jo ) in the output current spectrum, 

(corresponding to an exponential decay kexp(-ca) in the time domain). The constant a  

is quite small and results in a sharp peaking of the spectrum around zero frequency.

time constants are modelled then sharp peaks or troughs occur in the output spectra 

around power frequency.

Q) sin (cot) Wocosiwt)

yc{t) = —Rq[F(W0) exp (j<t>)yM + F (- W0) exp (-jfi)yM )  
at

axis) or impulses, the accuracy achieved in its numerical integration will be dependent

1) From spectrum features around zero frequency. The lumped line induc-

2) From features of the generator model. When transient and sub-transient
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3) Resonances or anti-resonances corresponding to travelling wave fre­

quencies on transmission lines.

The former two cases are more serious than the last, as the degree of peaking in the fre­

quency spectrum is dependent on the length of the associated time constant of the time 

domain component, which may run into seconds for the generator. However it is known 

precisely where those problems occur, i.e. around zero and power frequencies.

The travelling wave peaks are less shaip, but their centre frequencies are dependent on 

system configuration and may occur over a wide frequency range. Since they cannot sen­

sibly be specified in data, a four stage process is required to accurately integrate the high 

frequency spectrum:

1) A relatively coarse frequency scan is made (with a frequency interval 

which would be appropriate if there were no travelling waves; i.e. about the same as used 

in the Modified Fourier Transform method).

2) The travelling wave frequencies are located by finding the largest differ­

ences between adjacent spectrum samples.

3) Additional fine frequency scans are carried out within the intervals which 

have been identified.

4) As shown in the next section, when a spectrum is integrated with a coarse 

frequency interval, it is possible to consider the result as an accurate integration of a 

piecewise linear spectrum. Hence by integrating the coarse spectrum and adding to that 

the integral of the fine spectrum minus interpolated values from the coarse spectrum, 

greater accuracy may be achieved.

This process could also be used to treat the peaks around zero and power frequencies, but 

since their location is known, the simpler procedure of dividing the spectrum into seg­

ments, and finding the time domain contribution from each segment, will be used. The 

formulation of the integration routine allows this: the last spectrum point of the previous 

segment is the first in the present segment.
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2.2.6 INTEGRATION TECHNIQUE

Each segment of the spectrum (taken between angular frequencies Wj and W2) is divided 

into an integral number N  of intervals (of width 2Dw).

W2 -W i = 2NDw

Within each interval several treatments are possible:

1) To treat the spectrum as having a constant value within each interval (i.e. 

the mean of the interval endpoint values).

2) To treat the spectrum as varying linearly between endpoint values.

3) To interpolate between the endpoints using low order Lagrange interpola­

tion polynomials (generated with 3 or 4 data points).

4) To fit piecewise continuous polynomials (splines) over the whole seg­

ment. This will be much more accurate than the previous option since continuity of slope 

is guaranteed (for cubic or higher splines), but polynomial generation and implementa­

tion of the interpolation is much more time consuming.

It will be shown that the Fourier Transform of a segment of a spectrum for any of the first 

three approaches can be separated into two components:

1) Boundary terms due to the fact that the general representation of the spec­

trum within an interval cannot be used at the ends of the segment: i.e. information from 

outside the segment would be needed. Different expressions have to be used there, and 

cause additional terms (which increase in number and complexity with the interpolation 

polynomial degree).

2) The main term which is the product of:

a) The discrete inverse Fourier Transform of the equally spaced spectrum 

samples (multiplied by a frequency shift term if the initial frequency Wj does not equal 

zero).

b) An envelope factor which is a function of time, spectrum sampling inter­

val 2Dw and the complexity of interpolation formula used

This may be illustrated by developing the expressions for the time domain output when 

the spectrum is treated as constant and then as varying linearly within each interval.
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The inverse transform of a segment of the spectrum is:

- • J r -
«  yJw',

« W - - R e |  | G((o) exp(jwt)da) J

Where the integrand is:

, Y,lWi + 2nDw) + YtlW 1 + (2n + 2)Dw)
G(o» = ----------------------- ------------------------

Where n is the integral part of (oy-Wi )l(2Dw). The complex exponential may be separated 

into two factors:

exp(Jcot) = exp(j{a) -  (2n + \)Dw)i) exp(/(2n + 1 )Dwi)

Using this result, the time domain output may be expressed as the real part of the product 

of a continuous integral Ax(t)> a discrete sum and a base frequency term:

g(t) = exp(/Wif))
7t

' Dw

A,(r) = r  Z S p l d m  = A M  = Dw
J -Dw 2 t

i= N -\

’LAt) = £  O W i  + 2iDw) + ¥b(Wi + (2i + 2)Dw)) exp(/(2i + l)Dwr)
*=0

The sum may be separated as follows:

i=N- 1
2^(r) = exp(/Dwf) + 2/Dw) exp (/2/D wr)

i=0

i=N
+ exp(- yDwr) + 2/Dw) exp(/2/Dwr)

i=i

Using Euler’s identities and writing:

i=N
l z(t)  = + 2/Dw) exp(/2/Dwf)

i=0

They may be combined as follows:

2*0) = 2cos(Dwt)2t(f)
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-  Yb(W2) exp(j(W2 -W i+  Dw)t) -  Yb(Wx) exp(-jDwt)

This approximation is, of course, not ideal. A piecewise linear approximation would cer­

tainly be better, and may be obtained for little extra complexity. The division of the spec­

trum into intervals is retained, but equality with the actual spectrum is preserved at the 

interval endpoints, which are joined by linear segments. This is equivalent to adding the 

following integral to the previous result:

-M  f# !(()= - R e  I I Gx(co) txp(jct)t)dco J

Where the integrand is:

Gi(cu) = (YM2n + 2)Dw)- Yb(.2nDw))°>

As before, the contribution to the time domain may be separated into the real part of the 

product of an integral, a sum and a frequency term:

gi«) = -R e(A ,(02 ,«exp(/W i0)
7t

A/ 0 / ^ = i L o - ^ )  A,(0) = 0
J-Dw 2Dw j t \  Dwt J

i=N-l
2 y(t) = 2  (Yb(Wi + 2iDw) -  Yb(Wi + (2i + 2)Dw)) exp(/(2/ + 1 )Dwi)

i=0

The sum may be decomposed into a more familiar form as follows:

i=N
2 / 0  = exp(-jDwt) + 2iDw)exp(j2iDwt)

t=i

i=N-\
-e x p (jDwt) X  (Yb(Wi + 2iDw)exp(J2iDwt)

i=0

They may be combined as follows:

2 / 0  = -  2j sin(£>w02z(0

+ Yb(W2) exp (j(W2 - W x + Dw)t) -  Yb(W{) cxp(-jDwt)
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Combining the two sums and time domain windows gives:

g(t)+gi(t) = ^R e((A x(t)2 M  + A,(r)2,(f)) txpQW  it))

a , , v sin(2Dwr) _  ,
A M 2 M  = ------   2 r(t)

-  Yb(WX) A M  exp (-JDwt) -  Yb(W2)Ax(D txp(j(W 2 - W x + Dw)t)

a , , , , ,  sin(2Divf) 2 1  sin(Dwt) |  _
A ,(f)2,(f)-------- — '- X M + — I “ 7 ^ ^  J  2 ’(,)

-  Y tiW JA /t)  exp(-jDwt) -  Yb(Wz)Ay(t) exp(/(W2 - W x+ Dw)t) 

Summing these two expressions produces a great simplification:

A r ( 0 2 c ( 0  +  A , ( 0 2 , ( 0  =  - ^ ( A M ) 2̂ M

-  (a m + i y o j n m  tx p (- j d m )

-  (A M  -  A , ( I ) ) W  exp(/(fv2 - W x + Dw)t)

Though the terms look complicated, there is a high degree of commonality in them, which 

makes evaluation fairly easy. The complex exponentials may be generated recursively, 

and sine and cosine functions by taking real and imaginary parts thereof. The Fast Fourier 

Transform algorithm may be used to implement the discrete inverse Fourier Transform 

I?(t) provided the following conditions are met:

2jc
W2 -W i=  —

1) Dt

2) N+  l = 2 m

Where Dt is the output time step required (or an integral sub-multiple thereof) and m is 

a positive integer.

Further refinements to the integration procedure may be attempted, e.g. representing the 

spectrum by a quadratic polynomial over each interval, but the number of boundary terms 

and sums required increases, making the option unattractive.
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2.2.7 SEGMENTATION DETAILS

The zero frequency point is not found, since the line parameter evaluation routine would 

need a test and a special algorithm to find it. Instead a spectrum point A+jB is found at 

a low frequency WSt e.g. 0.001 rads/sec. The spectrum at zero frequency is assumed to 

consist of the real part A of the low frequency spectrum.

The first segment therefore consists of just two points and its contribution to the time do­

main output is:

This is twice the real part of the inverse transform of the positive frequency spectrum (i.e. 

assumes that the spectrum for negative is the complex conjugate of that for positive fre­

quencies).

The next segment consists of perhaps 6 rads/sec divided into an arbitrary number of inter­

vals. The Fast Fourier Transform (FFT) algorithm is not suited to inverting a narrow 

bandwidth spectrum to give time domain output at a high sampling rate, but the only alter­

native, the Discrete Fourier Transform (DFT), requires a lot of computer time for even 

a very modest number of points.

The number of points required to be calculated using the DFT be significantly reduced 

by noticing that, for a narrow bandwidth spectrum about a low centre frequency, the angu­

lar change (for any frequency component) between time domain points is low, allowing 

the possibility of interpolation between points in the time domain, as is discussed in the 

next section.

The spectrum between about 2 Hz. and say 100 Hz. may be divided into as many segments 

as seen fit (with the width of the segment and interval within the segment decreasing as 

power frequency is approached). Between 100 Hz. and the truncation frequency, a final 

segment is added, which is integrated using the FFT.

The first frequency sample in the FFT is treated as if it occurred at zero frequency, and 

the FFT complex time domain output is frequency shifted (by multiplying with a complex

sin (Wst)
Asin(W,0 +l?| cos(WjZ)
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exponential). The FFT imposes constraints between the time domain sampling rate Dt 

and the integration interval in the frequency domain 2Dw, which inevitably means that 

the truncation frequency does not match the time domain sampling frequency. This is of 

little importance provided circuit elements have been included to attenuate high fre­

quency components in the output spectra.

It is possible to vary the parameters for this segment, but usually only by a factor which 

is a power of two. (e.g. The integration interval may be halved by doubling the number 

of points N+1, (which also doubles the observation time, but keeps the maximum fre­

quency W almost the same). Alternatively truncation effects may be investigated by 

doubling N+1, but keeping the same integration interval, and only using every second 

time domain point.)

Finer adjustment of the integration parameters in segments integrated using the DFT is 

possible. There is one precaution though: the frequency samples should be arranged to 

straddle power frequency (preferably symmetrically). Apart from this the spectrum may 

be divided into an arbitrary number of DFT segments with an arbitrary number of points. 

It will also be necessary to specify the DFT time domain sampling rate, as this is not con­

strained when interpolation between time domain points is used.

2.2.8 INTERPOLATION

The accuracy of interpolation depends on the algorithm used (i.e. how many data points 

are used to generate an interpolated point) and on the nature of the function to be interpo­

lated. When the inverse transform of a frequency spectrum is to be interpolated, the 

greatest distortion will be suffered by the highest frequency component in the spectrum. 

The distortion may be assessed by interpolating a sinusoid with various angular spacings 

between data points. Interpolation rules using two, three and four points will be con­

sidered with a spacing of 18 degrees between data points. The formulae are:

Two point (linear) interpolation:

C x - x i ) y i - ( x - x 2)y2
(x2 - x i )

57



Three point interpolation:

. _ ( x - x i ) ( x - x 2)yo | ( x - x 0) (x-X 2)yi | ( x - x Q)(x-x i )y 2

(Xq -Xi)(X0 - x 2) (Xi-jc0)Cti - x 2) (x2 - x 0)(x2 -Xi)

Four point interpolation:

( x - x i ) ( x - x 2)(x-X 3)yo t ( x -x p ) ( x -x 2) ( x - x 3 )yi
(Xo -Xi)(XO-X2)(X(J -X 3) (Xl -Xq)(X 1 - X 2)(X1 -X 3)

t (x -x o )(x -x i)(x -x 3)y2 t (* -so)(s-x i)(s-*2)y3
(*2-*o)(*2-*l)(*2 - ^ 3) (X3 -*o)(*3 ~*l)(*3- ^ 2)

Where (tyjoJ, (xj,yj), (x2y 2), (X3 ,y3 ) are the co-ordinates of four data points.

In each case interpolation will only be carried out for xj <x<x2 and the maximum error 

will occur at the mid-point of this range (x = (xj + x2  j/2). The formulae for the mid-point 

simplify to:

2 point: y = (yi + y fit l

3 point: y = (-yo + 6y; + 3>^)/8

4 point: y = (-yo + 9y; + 9)2 -y ? )/16

Error estimates may be obtained by evaluating (cos(x)), where (x) equals zero or ninety 

degrees, and the error will be expressed as a percentage of unity.

Data points: -27, -9 ,9 ,2 7  degrees used to interpolate value of cosine at 0 degrees.

Rule Value Error (%)

2 point 0.9877 1.23

3 point 0.9998 0.023

4 point 0.9998 0.023

Data points: 63, 81,99,117 degrees used to interpolate value of cosine at 90 degrees.

Rule Value Error (%)

2 point 0 0

3 point 0.00191 0.019

4 point 0 0

The four point rule is chosen since it seems a good compromise between complexity and 

accuracy. If the 0.023% distortion is permissible then the time domain sampling rate for 

the DFT must be at least 20 times the highest frequency in the spectrum segment.
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2.2.9 OPTIMISATION

The saving from using interpolation is approximately the ratio of the final time domain 

sampling rate to the DFT sampling rate. This saving will be maximised if a frequency 

shift is applied to the whole segment to bring its centre frequency to zero. A DFT is per­

formed on this shifted spectrum and intermediate points generated by interpolation. The 

whole time domain output may then be frequency shifted to cancel the original frequency 

shift

The maximum frequency in the shifted spectrum is only half its bandwidth, and a DFT 

may be performed as easily on a spectrum centred at zero frequency as on one centred 

at any other frequency. The extra work in shifting the time domain output is one complex 

multiplication per point, but this allows the DFT time domain sampling rate to be re­

duced. Four complex multiplications and additions are required to produce each interpo­

lated point as against N+1 for each DFT point. Hence there is a clear saving for segments 

containing more than 5 points. The interpolation distortion may be reduced by increasing 

the ratio of DFT sampling rate to maximum frequency in segment:

Ratio Error (%)

20 2.3 x 10“2

40 1.42 x 10-3

50 5.84 x 1(H

80 8.91 x 10"5

2.2.10 EXTENDED OBSERVATION TIMES

Since the formulation imposes no rigid time window on the validity of the output (merely 

the accuracy with which it is integrated), output may be produced for times greater than 

the observation time T  of the FFT. Segments integrated using the FFT will have the largest 

integration interval in the frequency domain and hence will be the most critical constitu­

ent of the time domain output. The unwindowed FFT output is periodic:

f l f  + n T )= M  n = 0 ,1 ,2,3 .....

The output of the integration routine is not, however, due to the time domain windowing
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factor, which has different values and slopes at t= 0 and t=nT. Error is still present: as may 

be seen from the time domain output always being zero at t=nT, irrespective of the spec­

trum. However, providing the integration interval has been well chosen, (7 is large 

enough), the true output should have decayed significantly and the error relative to the 

maximum output should be small.

The important point is that output may be generated for t> T , since there are no discon­

tinuities in the output from the FFT segment to obscure the longer term effects from seg­

ments integrated over smaller frequency intervals.

2.3 APPLICATION TO POWER SYSTEM

2.3.1 DERIVATION OF LINE PARAMETERS

Transmission lines are characterised by distributed parameters, which cause the voltages 

and currents on the line to be related by partial differential equations. The coefficients 

of these equations will not be constants, since the resistive terms increase with frequency 

due to the skin effect. The coefficients will also depend on the current distribution be­

tween conductors. Distributions using earth as a path for current return will have very dif­

ferent parameters from distributions in which current only flows in conductors.

At a single frequency, the partial differential equations in time and distance may be re­

duced to differential equations with constant coefficients in distance only. These coeffi­

cients are the series impedance per unit length Z matrix and the shunt admittance per unit 

length Y matrix. For a single circuit line with one earth wire, the matrix dimension is 

(4*4), but since it is known that, for all faults, the voltage of the earth wire will remain 

very close to zero, and that the current in the earth return path need not be found, the ma­

trix dimension may be reduced to (3*3).

The line parameters are derived using the formulae given by Shorrocks and Wedepohl 

[65], but the reduction process mentioned, i.e. inverting the (4*4) matrix, discarding the 

last row and column and then inverting again, is inefficient and inaccurate, since the sym­

metry of the matrix is destroyed by numerical errors, greatly reducing the accuracy with 

which the eigenvalues and eigenvectors can be found at a later stage.
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A far better procedure is to reduce the size of the matrix one row at a time (as was done 

to solve the system matrix in a previous section), since this retains the symmetry of the 

matrix and is also very much quicker. The reduced impedance per unit length and admit­

tance per unit length matrices are used to find the admittance matrices of any length of 

line, as described in the next section.

2.3.2 ADMITTANCE FORMULATION

At a certain frequency, the matrix equations describing voltage and current distributions 

as a function of line length x  are: 

dVCc)
. = -  ZC(x) 

dx (2)

dCW = -YV(x)
dx

The above equations may be combined to give:

= ZYV(x) = S-’GSVCt)

Where S  is the eigenvector matrix, and G is the associated diagonal eigenvalue matrix: 

both are complex. If Q is the diagonal matrix of the complex square roots of the eigenva­

lues, (either sign of square root may be taken):

G = Q 2

Then the differential equation has the solution:

\{x)  = S_1(cosh(Qx)SA + sinh(Q;c)SB)

Where A, B are vectors to be determined by the end conditions. The hyperbolic sine or 

cosine of a diagonal matrix is the diagonal matrix of the hyperbolic sines or cosines of 

the diagonal elements. Writing:

Y0 = Z-'S ' 1 

Rearranging equation (2) gives:

C(x) = Z - > ®  = YoQ(sinh(Qjc)SA + cosh(Qx)SB)
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It is required to derive matrices which express the currents C„, Cj, flowing into the ends 

of the line in terms of the voltages Va, V* at the ends of the line :

c ,
Cb

Y „  Yab 
Yb.  Y .,w

Vectors A, B  will be eliminated by imposing boundary conditions, which for a line of 

length / are:

x = 0 : Va = V(0); Ca = C(0)

x = / :  Vb = V(/); Cb = -  C(l)

The negative sign in the second current boundary condition is due to the current conven­

tion adopted: currents flowing inwards at the ends of the line. Using the following ab­

breviations:

P = S '1cosh(Q/)S U = S' 1 sinh(Q/)S T = YoQS 

The boundary conditions are imposed:

f  - ™  U y - y J [  a  ]
I t (UA + PB )J I Yba Ybbl l  PA + UBJ

These equations may be rewritten:

M
r  Yia + YabP Y,bU + t" ] [ " a 1
I Yb. + Y b b P -T U  Y b b - T P j l  b J

Since vectors A, B  are arbitrary, there are four conditions to be met:

Ybb = TU-1P Y,b = - T U ~1 Yaa = Ybb Y,b = Yb,

Hence, only two matrices Y ^ ,  are required:

Ym = YqQ coth(Q/)S Yjh = -  YoQcosech(Q/)S

Note that these values do not change if Q is replaced by -Q.

The Yo* S  matrices and the diagonal elements of matrix Q represent the total output from 

the evaluation and eigenvector decomposition of the line parameters at a particular ffe-
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quency. The YMy Yaj> matrices are easily calculated from this data, which could either be 

stored as a data set (together with data at the other spectrum sampling frequencies needed 

for a simulation), or calculated each time the program was run and stored for use in subse­

quent parameter iterations.

2.3.3 EIGENVECTOR DECOMPOSITION OF A MATRIX

For a single circuit line, the complex matrix ZY has dimension (3*3) and it would be poss­

ible to find the eigenvalues by solving algebraically the (cubic) characteristic equation. 

However the method would not be applicable to double circuit lines, since sixth order 

polynomials cannot be solved algebraically. The method used instead is to construct a 

(6*6) real matrix A from four (3*3) real matrices. If the real and imaginary parts of the 

ZY matrix are found as real (3*3) matrices U, Qy then:

This matrix has all the eigenvalues of the original complex matrix and in addition their 

complex conjugates. The matrix is first converted into a Hessenberg form (i.e. zero below 

the first sub-diagonal) and then the eigenvalues are found. The eigenvalues which equal 

those of the complex matrix may be selected since it is known that the latter have positive 

imaginary parts. This may be demonstrated for an uncoupled system where R> L, C are 

diagonal, and each element is positive:

The result follows, since ZY  is identical with its eigenvalue matrix.

Once the eigenvalues have been obtained, the eigenvectors may be calculated by solving 

the complex equation:

Z = R + jw h Y = jwC ZY = -cu2LC+;cuRC

B = ZY [B -  V]E = 0

&21 &22 “  V &23 £2 =  0
.  ^ 3 1  & 3 2  & 3 3 - V  i A J  L Q .

'b \ \ - v  b n  b\z l r eii  m ' 
bi\ b n  — v £>23 £2 = 0
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Since only the ratio of eigenvector components is important, components may be arbi­

trarily assigned as unity. (This will almost always be valid). Let e; be so assigned. The 

matrix equation can now be rewritten:

Hence allowing 32, ej to be found by inverting the matrix on the left hand side.

Despite its simplicity, this is a very inaccurate technique. With double precision complex 

arithmetic, and the reduction of the Z matrix from (4*4) to (3*3) accomplished by matrix 

inversion, the error in reconstructing the ZY  matrix from its eigenvalues and eigenvectors 

is of the order of one part in 108. With the Z matrix reduced by row by row elimination 

and the eigenvectors found by the following technique, the error drops to the order of one 

part in 1013.

The disadvantage with the previous technique is that only two rows of the matrix arc used 

to evaluate the eigenvector ratio. The application of row by row elimination uses all of 

the matrix. The element with the largest modulus is permuted into the bottom right hand 

comer. is then expressed as a function of ej, €2 , allowing a (2*2) matrix operating on 

ei, €2 , to equate to zero. Let this matrix be A

The process may be repeated for 62 unless both an  and 022  are zero, in which case ej is 

zero, and £2 niay be set to unity. Normally ej may be set to unity and es, e3  calculated by 

back substitution. The eigenvectors for the three eigenvalues constitute the columns of 

the S ~ 2 matrix mentioned in 2.3.2.

2.4 SOURCE SIMULATION

2.4.1 INTRODUCTION

There exists a wide variety of source conditions which may be produced by equipment 

connected to a busbar. The most obvious is a generator and associated transformer.



Usually the magnetising reactance of the transformer is neglected, allowing the positive 

(and negative) sequence leakage reactances to be lumped in with those of the generator. 

The star-delta transformer connexion forbids the flow of zero sequence current in a gen­

erator, and therefore the zero sequence source impedance will depend solely on the trans­

former and its earthing arrangements.

The ratio of zero to positive sequence source impedance will be quite different from the 

previous case if there is no local generation, or if there is an open circuited transformer. 

Similar comments apply to the ratio of reactance to resistance (X/R), for positive and zero 

sequence currents. A sufficient number of source configurations need to be available to 

cope with these unusual cases.

2.4.2 GENERATOR SIMULATION

The power frequency armature current amplitude c(t) resulting from a short circuit test 

is assumed to obey the following equation, in which e is the open circuit voltage:

/ \ * c(t) = —  + e
Xd

Xd is the synchronous reactance and determines the final short circuit current. This para­

meter is well understood, as it may be related to the physical reluctance of the generator 

flux circuit under open (or short) circuit conditions. It is responsible for only a small pro­

portion of the total fault current.

Xd’ is the transient reactance which represents the effect of the field winding on armature 

currents, and Td* is the transient time constant associated with the reactance.

Xd” is the sub-transient time constant, which is the least understood but most used para­

meter in protection work. Fortunately it is largely composed of the armature leakage reac­

tance X/, which is well understood, e.g. X/=. 155 p.u., Xd’ *=.186 p.u. for High Mamham 

No 1., which is a 222 MVA machine.

In the conventional model (Fig 2.13), the difference is assumed to be supplied by the leak­

age reactance of one or possibly more damper windings which mimic the effects of eddy 

currents in the solid rotor. Associated with each leakage reactance is a damper resistance,
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which is basically adjusted until a reasonable match between the sub-transient time con­

stant Td” in the model and reality is achieved.

The negative sequence parameters are much simpler to deal with, since the generator 

looks to them like a simple reactance with a value approximately equal to the sub-transi­

ent reactance. There will be no zero sequence components reaching the generator, due 

to the star-delta transformer connexion.

2.4.3 SIMPLE GENERATOR MODEL

For most protection work, it would be desirable to avoid the complexity of a full model. 

The first and simplest option is to simulate the generator as the series combination of the 

armature resistance, a resistance associated with losses in the rotor, and the sub-transient 

reactance (for both positive and negative sequence armature components). This produces 

a constant amplitude alternating component of fault current which is approximately valid 

only immediately after the fault. Neither the sub-transient nor transient decays are mo­

delled, and since the losses in the rotor are frequency dependent, it is unlikely that a fre­

quency independent resistance will adequately model this effect.

Such a model may be useful in the early stages of relay testing, but it is inappropriate for 

the application studies of anything except relays which are insensitive to source para­

meters and operate very quickly

2.4.4 AN EMPIRICAL MODEL

The theoretical short circuit transient behaviour of a generator can be empirically mo­

delled once the similarity between it and the behaviour of a notch filter is appreciated.

In Appendix 4, it is shown that a change in the amplitude of a signal at notch frequency 

(applied to a notch filter) will give an output which looks like an exponentially decaying 

component at notch frequency. (The decay time constant is dependent on the bandwidth 

of the notch). Hence, using the principle of superposition, the required behaviour could 

be constructed by combining two notch filters and three reactances as drawn in Fig 2.14a, 

or one notch filter and two reactances if the transient decay is neglected (Fig 2.14b).
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The above discussion has merely been concerned with single phase power frequency 

components: the situation is slightly more complicated when differences between posi­

tive and negative sequence quantities also need to be modelled. Essentially the notch 

filter response must be modified such that there is only one complex pole, occurring at 

Wo for positive sequence components. A corresponding branch for negative sequence 

components (with a only one pole at -Wo must also be provided. It can be checked that 

the frequency response of this combination for negative frequencies (or values of the La­

place variable s is the complex conjugate of that for positive frequencies. This is a necess­

ary condition for the model to be realisable physically.

In Appendix 5, it is shown that positive sequence quantities are dependent on cd-Wo, and 

negative sequence quantities are dependent on co+Wo, or in terms of the Laplace variable 

s-jWo; and s+jWo respectively.

The model is drawn in Fig 2.15. The real constant a  will determine the bandwidth of the 

notch and hence the associated time constant This model can be implemented using the 

Laplace Transform method and separating the output transform into a series of partial 

fractions. The output would accurately reflect the behaviour of the curve which was fitted 

to the three phase short circuit current, but without shedding any light on the mechanisms 

producing the effects.

It is rather more difficult to set up a physically representative generator model, but the 

effort is worthwhile in that not only the effects but the mechanisms by which the effects 

are produced are modelled, resulting in greater understanding and confidence.

2.4.5 FULL MODEL

Conventional models of generators have tended to use the d,q description of parameters, 

which enables rotor saliency and different saturation in the direct and quadrature axes to 

be modelled. However, these features are not of principal importance for relaying simula­

tions, for which a simpler frequency domain model is more appropriate. Many of the fea­

tures of a frequency domain model (in which rotor quantities are referred to the stator) 

may be carried over from a direct axis model in a d,q generator representation (Fig 2.13):

67



1)

2)

3)

Stator components: armature resistance R& and leakage reactance Xi. 

Field winding components: resistance R/d and leakage reactance X/d. 

Mutual inductance between rotor and stator. This gives rise to the syn­

chronous reactance Xd.

4)

5)

Notional damper windings to model eddy currents in rotor body.

Actual damper windings. (These are rare on large generators) Note that

all these components are frequency invariant, though in a time domain formulation they 

may be functions of time (if saturation is modelled).

A frequency domain model for a 2 pole generator rotating at Wo rads/sec is drawn in Fig 

2.16. All the inductances and resistances are frequency independent but positive and 

negative sequence quantities experience different impedances due to the rotation of the 

rotor. The apparent frequency on the rotor Wa of a stator frequency co is q>-Wq for positive 

sequence currents, and co-Wo for negative sequence currents, (as shown in Appendix 5). 

The transformation ratio for per unit quantities between the stator and rotor is 1:1 for cur­

rent, and co: WA for voltage and frequency, which result in ratios of 1:1 for inductances in 

the rotor and co: Wa for resistances.

Despite the complexity of the full model, the treatment of eddy current effects by one or 

possibly two lumped parameter circuits is an unsatisfactory makeshift imposed by the 

constraints of time domain modelling. Frequency domain modelling easily caters for fre­

quency variant components, which simplify and improve the high frequency accuracy of 

the model.

2.4.6 MUTUAL INDUCTANCE MODELLING

Hammond [66] has described how the skin effect introduces frequency dependence into 

the effective permeance m of an iron core. Neglecting saturation and hysterisis (for the 

moment), he arrives at the formula:

Where P is an absolute permeability; p is a thickness (of iron); 5 is the skin depth at fre-

tanh((l +j)z)
*  (i
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quency co; a  is the conductivity of iron. The real and imaginary parts of the complex per­

meability may be separated:

1 1 1
fi A(z) + jB(z)

4/x P /cosh(2z)-cos(2z)\ t. N n f. 4 / , P 
Mz) = — I I lim A(z) = P lim A{z) = —

z \ s i nh(2z) + sm(2z) / z-*o *-*«> z

x P ( cosh(2z)-cos(2z) \  . P
B(z) = — 1 - v  — r —■— I lim B(z) -► oo l i m f i ( z ) = -

z \ sinh(2z) -  sm(2z) / *-*o *-*» ^

These parts may be modelled as a mutual reactance jcoAfz) in parallel with a loss resis­

tance coB(z). An allowance may be made for hysterisis by reducing the loss resistance, 

(which increases the loss angle). This model assumes that the effective length of the flux 

path is independent of frequency, and requires modification when a generator rotor is to 

be modelled.

At very low frequencies the flux essentially travels across the diameter of the rotor, at 

slightly higher frequencies it is forced towards the circumference, and at high frequencies 

it has to negotiate the profile produced by the rotor teeth. (In the last regime most of the 

flux is likely to cross the slots and contribute to a leakage rather than the mutual induc­

tance.) The model may be reduced to three parameters:

1) The synchronous reactance Xj,

2) A comer frequency AT..

3) A phase shift factor 5, which multiplies the parallel resistance B(z).

The values of these parameters are most conveniently found by comparison with pub­

lished results. The paper by Sharma et al. [55] provides useful data. Fig 2.17 uses data 

taken from Fig 4.3 of that paper corresponding to the experimentally measured d-axis 

armature-field mutual inductance at open-circuit rated voltage. (Note that the caption 

has been transposed with that of the previous diagram in the paper.) Since correspondence
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at zero apparent frequency is desirable, the synchronous reactance X4  is chosen to be 

0.9p.u. The solid curves on Fig 2.17a,b represent the transfer function of the model for 

parameter choices (5 = 0.5; K  = 1.96,2.56,3.24), and those on Fig 2.17c,d represent the 

transfer function for parameter choices (K = 2.56; S = 0.4,0.5,0.6). As can be seen, the 

fit is quite good for (K = 2.56; S = 0.5) and these parameters will be used in the model.

2.4.7 SATURATION

There is a need to model saturation effects, since the behaviour of a generator to small 

changes in armature (or field) current, under normal (saturated) working conditions, can 

be very different to that for large changes. Assumptions made are:

1) Field excitation is constant

2) Voltages, voltage depressions and currents are all positive sequence,

power frequency components which are measured once transient effects have subsided.

3) Faults remain on the system until steady conditions exist.

4) Saliency effects will be neglected.

5) The synchronous reactance Xd is assumed to be a function of the modulus 

of the difference between the field current Cf and armature current Ca phasors.

6) The terminal voltage V is assumed to obey the following phasor equation:

V = jX jC f-  {Ra +j(Xd + X,))ca

Using these assumptions, (and the open circuit voltage against field current characteristic 

curve), it is possible to iterate on to nominal working points for both pre- and post- fault 

conditions. These ’steady state’ conditions determine the apparent synchronous reac­

tance seen by the fault: If the machine remains saturated after the fault, then the synchron­

ous reactance will appear low; if large fault currents have caused a large terminal voltage 

depression, then the synchronous reactance will be larger, possibly approaching that used 

to set up the pre-fault conditions.

2.4.8 STEADY STATE CALCULATION

As described earlier, the system matrix is constructed to a certain pattern for each con­

figuration, with the fault point nodes at the top. For the steady state calculation, this ar­
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rangement is not suitable since the excitation is applied at the busbars and not at the fault 

point. However, the same routines (with different parameters) may be used to permute 

the busbar nodes to the top of the matrix.

It is possible to simulate rotating loads (e.g. induction machines) connected to the busbars 

by considering them as unexcited synchronous machines (with different parameters). Re­

mote sources of generation (not modelled explicitly elsewhere in the program) may also 

be included at a busbar by lumping the admittance of the combination of the remote gen­

erators and tie lines together, and adding it to the local source admittance.

If there is no local or remote generation feeding into a busbar, then the voltages (and load 

angles) there cannot be arbitrarily assigned: i.e. the busbar nodes must be considered as 

unenergised and are not permuted to the top of the system matrix.

Once the energised nodes have been brought to the top, the technique of row by row elim­

ination (described earlier), is applied to express the voltages at the unenergised nodes as 

functions of the excitation at the energised nodes. It is required to set the positive se­

quence component at each energised busbar to a certain level, and to simulate power flow 

by specifying the power angle between busbars.

The total busbar voltage (including negative and zero sequence components produced by 

positive sequence currents in the feeders) is unknown. Each generator may be considered 

as a pure positive sequence voltage source behind a reactance, but the alternative repre­

sentation as an unknown positive sequence current source in parallel with a reactance is 

more suitable for nodal analysis. The injected current then appears directly on the left 

hand side of the matrix equation, and the associated reactances are included in the system 

admittance matrix, (as they are in the transient calculation). The matrix equation describ­

ing the phase quantities (with the energised busbar nodes permuted to the top left hand 

comer of the matrix) is:

Where V*, Cb are busbar phase quantities and Vx are the uninvolved or unenergised
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nodes. The injected current vector /* (dimension 3n) should consist of n positive sequence 

sets. A square matrix P  (with the same dimension as the admittance matrix) is constructed 

on the following pattern. (The case for a (6*6) matrix is shown.):

P =

r i  o
h2  o 
h 0 
0 1 
0 H2 
0 h

1
h
h2

0
0
0

0
0
0
1
h
h2

1 O’ 
1 0 
1 0 
0 1 
0 1 
0 1

Q = p -1= i p t * 
3

Hence the sequence voltages [Vj, V*, V#] and currents [Cj, C2, Cq\ are related to the previ­

ously obtained phase quantities as follows:

rEii r c i i
e 2 = PE C = Q C2
Eg. c a

Hence the sequence source currents and voltages obey the following equation:

"CM’ *Ebl"
0 Exi
0

= QYP Eb2
0 Ej2
0 Ebo

. 0 . Exo.

Writing,

A = QYP = AJJ AJk 
Afcj Akk

The procedures used to reduce the matrix dimension may be applied again giving the 

equations:

C M = Ajj'Ebi
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After which the phase voltages may be recovered by pre-multiplying with matrix P.

Once the system voltages have been found, the magnitude of the fault point voltage (for 

single phase or phase to phase faults) is stored and the whole set of voltages is rotated to 

achieve the correct fault point on wave.

Assuming that the busbar voltages comprise positive sequence sets slightly eases compu­

tation, but causes the pre- and post-fault calculations to use different system models. Im­

position of a set of busbar voltages implies that the negative and zero sequence reactances 

of the generator/transformer combinations are zero before the fault. (Zero and negative 

sequence currents exist in an unfaulted network since the transmission line conductors 

cannot be transposed).

2.4.9 CALCULATION OF SYNCHRONOUS INDUCTANCE

The calculation in the previous section gives the positive sequence components of arma­

ture current and terminal voltage. A positive sequence excitation phasor for to a particular 

busbar Cj which is an element of the vector Cm may be iteratively derived from these for 

the local source (modelled as Fig 2.18) at each busbar. If remote sources are modelled, 

then these are assumed not to contribute any pre-fault current, (except when the local 

source is absent). Post-fault conditions require several steps:

1) The system matrix is set up (with excitation supplied at energised busbars)

and the fault represented as follows:

a) If the fault resistance between a phase and earth is zero, then the now and 

column representing that phase at the fault point are simply removed.

b) For a zero resistance phase to phase fault, the two rows affected are re­

placed by a row which is their sum. The affected columns are similarly treated.

c) Non-zero fault resistances may be readily incorporated into a nodal sys-



tern matrix.

2) The system matrix is then reduced to give relations between busbar volt­

ages and currents.

3) The matrix equation relating the positive sequence components of busbar 

voltage Ebi and current Cbi is obtained by pre- and post-multiplying with the P  and Q 

matrices described in the previous section. For each source the phasors £*, and Q, are se­

lected

4) Remote sources are modelled more simply than a local busbar source. The 

steady state model used is simply a positive sequence voltage source J5*r, (for which the 

magnitude and phase are known from the pre-fault calculation), in series with an as­

signed reactance. This reactance is combined with the tie line reactance to derive an ad­

mittance phasor Yrb linking remote source cunent Cr with busbar voltage Eb and remote 

source excitation:

Cr — Yrb{Erb ~~ Eb)

Hence, at a particular busbar (tied to m remote sources) the current contributions from 

each Cr may be summed to give the total remote positive sequence source current Ct:

r=m r=m I r=m \
c , = 2  Cr = ̂ Y rtE rb -X  £  Yrb ]Eb = B - Y ,

r=l r=l \  r=l /

5) The vector Ct is formed from the elements Ct at each busbar, and similarly

for vectors B and Yt. The current supplied by the local sources at the busbars with be de­

fined as C/:

Cj = Cb -  Ct = (Ajj' + Yt)Eb -  B

Writing,

Zt = [AJJ' + Y ,r1

The voltage across the mutual inductance for the local sources Vm is now formed:

Vm = Eb + X,C, = ZjB + (Zt + Xj)Cj

6) The voltage across the mutual reactance of the generator model (Fig 2.18)
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is given by:

Vm = (Cm + CDXd

Where Xjisa. function of the current Cm-Ci assumed earlier. Hence a solution for X j may 

be obtained iteratively from the two equations defining Vm.

7) The magnitudes of the current Cm-Ci obtained for the pre- and post-fault

conditions define the operating points on the assumed operating characteristic. Hence, 

the ratio of change of open circuit voltage to change in current magnitude between these 

points gives a value of inductance which should be used in the transient calculation. See 

Fig 2.19.

This procedure has not been implemented, since doing a series of runs in which different 

values of synchronous inductance are used would probably cover the same ground.

2.4.10 POWER FLOW

When it is required to obtain a series of runs varying power flow and/or busbar voltages, 

then computer time can be saved by noting that these affect only the phase and magnitude 

of the single superimposed source at the fault point (for single phase to earth or phase to 

phase faults). Hence if two simulations with fault points on wave differing by 90 degrees 

are available, then the post-fault response to any phase and magnitude variations to the 

pre-fault voltage may be generated by forming weighted sums of the reference simula­

tions. The pre-fault calculation must be repeated in full for each different pre-fault condi­

tion, since it is used to derive the phase shift and amplitude of the fault point voltage for 

the post-fault calculation.

The technique only applies to components which are dependent on a single source applied 

at the fault point, and cannot be legitimately applied to double phase to earth or three 

phase faults, as their post-fault spectra depends on two or more sinusoids, (which will 

be affected by different amplitude and phase factors for a change in busbar voltage or pre­

fault power flow).
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2.5 TRANSDUCER AND RELAY INTERFACE SIMULATION

For analogue filters such as a second order Butterworth, the frequency response G(w) ex­

ists as a known function:

W2
G(0)) = y  -7 -  w 5*

Wl + J2jcoWn -(o

Where Wn is the cutoff angular frequency The response may therefore be easily calcu­

lated and combined with the spectra of the power system waveforms at frequencies deter­

mined by the simulation. The frequency response for various cut-off frequencies is 

shown in Fig 2.20.

The transfer function of the CVT is not so easily expressed as an explicit function of fre­

quency, (without the recourse of curve fitting). However, given data points, (which are 

sufficiently closely spaced), cubic spline interpolation (using NAG routines E01B AF and 

E02BBF) may be used to derive the response at any frequency. A typical CVT frequency 

response has been published by Stalewski [67], and a comparison of actual and model 

time domain responses by Hughes [68]. The gain and phase of the model used in the simu­

lation are shown in Fig 2.21.

The current transformer is not usually simulated, since its high frequency response is 

level beyond the cut off frequency of the pre-filters used in relays. Its low frequency re­

sponse however, shows a zero at zero frequency, and it is advantageous to include this 

to reduce the current output spectrum peak occurring there.

A simple model is:

jmT
G(co) =

(1 +ja)T)

Where T  is a time constant which ranges between 60 ms. and Is. for linear CTs, but may 

be much longer if ungapped or anti-remanence CTs are used [69]. If a transactor is used 

as a CT burden, then its time constant is much shorter than this and the CT time constant 

may be neglected. The frequency responses of CT burdens with various X/R ratios, but 

the impedance normalised to 1 Ohm at power frequency are shown in Fig 2.22.
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In the frequency domain program the transducers may be simulated by multiplying the 

output spectrum by their frequency responses. Saturation of CTs may be approximately 

simulated by operations on the time domain signals which include the transducer filter­

ing. Usually the relay pre-filtering (which reduces aliassing in the analogue to digital 

conversion process) would be lumped in with the transducer frequency response. When 

current clipping occurs, this treatment is not stricdy correct, but for the relatively high 

filter cut-off frequencies which will be used, the error should not be significant.
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POWER SYSTEM CONFIGURATIONS ( 1 - 6 )

F i g  2 . 1 F i g  2 . 2

F i g  2 . 3 F i g  2 . 4

Fig 2.5 Fig 2.6
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POWER SYSTEM CONFIGURATIONS (7 - 12)

n
F i g  2 . 7

F i g  2 . 9

Fig 2.11

F i g  2 . 8

F i g  2 . 1 0

[ XJ V
1 P FI

*
0 F2 1

Fig 2.12
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EMPIRICAL GENERATOR MODELS
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EMPIRICAL SEQUENCE MODELS
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FREQUENCY DOMAIN MODEL
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Fig 2.16b NEGATIVE SEQUENCE MODEL
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STEADY STATE MODELS
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SATURATION MODEL
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CHAPTER 3

DESIGN PROCESS

3.1 DISCUSSION

While it is desirable to include every possible phenomenon in simulations which are to 

test a final relay design, at earlier stages in the design process, a simpler system model 

may be used to advantage:

1) The initial design process inevitably involves much trial and error, in

which trends rather than precise numbers are sought. It is often useful to simplify the sig­

nals which are presented to the relay, in order to gain an understanding of how it responds 

to the different components in isolation. Though different signal components may inter­

act to degrade relay performance, it is usually fairly safe to assume that a design which 

doesn’t work with simplified signals will not work in reality.

2) Simple programs require less computer time and memory and may be run 

on-line rather than as batch jobs. Hence the simulation turn-round time can be very fast 

and allow more ’design cycles* to be completed.

3) The effect on the impedance estimate of certain phenomena, such as cur­

rent in-feed into fault resistance from the remote end of a feeder, or the lack of transposi­

tion between feeder conductors are not usually compensated for in relay algorithms.

It is anticipated that the algorithms used will not allow much freedom in specifying pro­

tection characteristic shape. Hence simulation of the phenomena mentioned in (3) may 

be postponed till a later design stage, as they are likely to reduce the application range 

rather than constrain design changes in the impedance estimating algorithm. The effects 

which cause problems in a relay design may be divided into three groups:

1) High frequency corruption; which is due to travelling waves and is maxi­

mum for voltage maximum faults.

2) Low frequency corruption, which is caused by CVT and CT transients for 

faults not occurring at a voltage maximum.

3) Fault resistance, which can cause the impedance presented to the relay to

90



differ greatly from the value were it not present. In an impedance measuring relay, the 

shape of the protection characteristic in the complex impedance plane may sometimes 

be designed to allow for this. Initially, however, the performance of each algorithm with­

out protection characteristic modification will be studied, since even if such modification 

is possible, then there is often an operating time penalty and/or an increase in relay com­

plexity.

The most obvious simplification is to omit the high frequency effects, which allows the 

use of lumped parameters for the transmission line, (which is assumed to be ideally trans­

posed). It was decided to model a single end fed plain feeder despite the obvious limita­

tions due to its simplicity. The fault distance, type and (linear) resistance may all be va­

ried, and also the X/R and Zo/Zi ratios of the source, which is represented as a reactance 

and resistance in series. (The formulation for the empirical source model (Fig 2.14) was 

also included.)

Concentration on low and power frequency terms may seem unrealistic in a relay which 

is supposed to react very quickly, but getting acceptable behaviour for these terms in iso­

lation gives a good indication of overall viability. Note that since travelling waves are not 

simply related to a power frequency impedance, most relaying algorithms try to greatly 

attenuate them. The frequency responses of such filters naturally affect low frequency 

behaviour and are to be included in the model. It is more difficult to adequately filter low 

frequency terms (without unacceptably long group delays), hence the initial emphasis in 

this area.

The alternative to this approach is to build up a library of typical and worst case signals 

(containing all signal components), which may be used to test the relay algorithm. This 

has been done successfully in the past, but requires a large amount of disc storage for the 

waveform library.

3.2 POWER SYSTEM SIMULATION

The post-fault waveforms may be found by solving the network formed when either the 

sequence or modal (also called Clarke) component networks are interconnected.
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For the source conditions used, i.e. equal positive and negative sequence sub-transient 

reactances, the latter choice would have the advantage of using real rather than complex 

arithmetic, but the network interconnections seem rather artificial e.g. for an a-e fault, 

one third of the mode 1 network is connected in series with half the mode 2 network and 

one sixth of the mode 3 network. Voltage sources also need to be inserted in each of the 

mode 2 and mode 3 networks, whereas the sequence network formulation requires only 

one (positive sequence) source.

Four sequence network interconnections are required to simulate all important types of 

fault, since (assuming ideal transposition), transposition of phases may be used to derive 

the three single phase to earth faults from an a-earth faulted network model, (Fig 3.1). 

Phase to phase fault simulations may similarly be derived from a b-c faulted network 

model, (Fig 3.2), and double phase to earth fault simulations from a b-c-e faulted net­

work model, (Fig 3.3). A fourth interconnection is required for the balanced three phase 

fault, (Fig 3.4). It is possible to use the empirical source model: Fig 3.5 shows the changes 

needed for an a-e faulted network.

Since the networks are linear and complex arithmetic has to be used, there is great advan­

tage in exciting the network by a complex exponential rather than a real signal. The re­

sponse to a cosinusoidal (sinusoidal) excitation is then available as the real (imaginary) 

part of the complex time domain output.

The output to other point on wave excitations may then be found by forming a weighted 

sum of these outputs. This principle of deriving the output for any point on wave from 

two outputs in which that angle differs by 90 degrees, may be extended to the case where 

the output has been modified by a linear transducer model. Since such outputs are usually 

produced by time domain convolution of an input signal and an impulse response, the 

computational savings may be considerable.

The networks are solved using the Laplace Transform technique, with the following rela­

tions assumed (due mainly to ideal transposition):

Ri =R2,Ro = 3Rj, Rsj = RS2, U  - L i , l o  = 3Lj, Lsi -  U&

Four classes of solution may be defined: depending on the number of current loops and
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complexity of source model:

1) A single current loop and a simple source model, i.e. a-e, b-c and three 

phase faults. The currents and voltages in the Laplace domain may be determined by in­

spection.

2) Two current loops and a simple source model, i.e. double phase to earth 

faults. The roots of a complex quadratic equation must be found to solve the network.

3) A single current loop with empirical source model requires solution of a 

complex cubic equation.

4) Two current loops with empirical source model requires solution of a com­

plex quartic equation.

Network solution is described more fully in Appendix 6.

3.3 TRANSDUCER AND ANALOGUE FILTERING SIMULATION

In the next section, the combined transducer and relay pre-filtering frequency (or im­

pulse) response will be referred to as that of the transducer (for brevity). The technique 

to be described was originated by Barker [23], but since has been slightly refined. It gen­

erates superimposed components by subtracting a continuation of the pre-fault wave­

form from the input. One part of the output is formed by applying the power frequency 

gain and phase shift of the transducer to the continued pre-fault waveform, (which is a 

power frequency sinusoid). The other part of the output is zero until the fault time, after 

which, it is the convolution of the superimposed input signal and the impulse response 

of the transducer.

This has two main advantages compared with the process of convolving the input directly 

with the impulse response:

1) The transient arising from the sudden application of the steady state (i.e.

pre-fault waveform) is eliminated.

2) The number of samples in the waveform which need to be convolved is

reduced by the number of pre-fault samples.

The theoretical justification of the technique relies on the superimposed component prior 

to the disturbance being zero and hence contributing nothing to the pre-fault output. The
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steady state component (which has an impulse spectrum) may therefore be multiplied by 

a power frequency gain in either the frequency or time domains, to give the required out­

put In the time domain the phase shift is produced by a delay.

The impulse (time domain) responses of the transducers g(k) decay smoothly and hence 

the output signals may be approximated by discrete convolution: 

i=k

y(k) = 2  g(i -  k)x(k)
1=0

The sampling frequency of the discrete signals should be high relative to those features 

of their spectra for which accuracy is required.

The primary sampling rate is chosen to be 8 kHz., and the output rate is divided down to 

4 kHz. or 2 kHz., whichever is required to test the relay simulations. No frequency band 

limiting is applied to the simulation signals before they are convolved, hence aliassing 

inevitably exists, but since it is only associated with the sharp waveform at fault inci­

dence, the error is likely to be of the same form as the transducer impulse response and 

small in magnitude.

The phase shift may be applied to the input steady state waveform by taking a weighted 

average of the two samples which straddle the equivalent delay, i.e. 360 degrees phase 

shift at 50 Hz. corresponds to 20 ms., which corresponds to 160 samples at 8 kHz. sampl­

ing rate. It is important to take this much care over applying the exact amount of phase 

shift, rather than approximating the delay by an integer number of samples, since for 

many faults, the steady state and superimposed components will be of approximately the 

same magnitude but of opposite sign. A small phase shift enror in the former will therefore 

give a much larger phase shift error in the sum.

The impulse response of a filter function may be found as the inverse Fourier Transform 

of its frequency response using the methods of Chapter 2. The impulse response is treated 

as a continuous function which is sampled to give a discrete time series. Discrete convol­

ution is an approximation to convolving continuous functions (using the convolution 

integral) and then sampling the continuous output function.
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The frequency response of a filter must be truncated at half the sampling frequency at 

which the signals are to be convolved, i.e. for 8 kHz. sampling, only the zero to 4 kHz. 

response must be included. The response at higher frequencies must be set to zero, since 

such frequencies cannot be correctly represented in the sampled waveform. Ringing of 

the time domain impulse response should not be a problem, since the low pass nature of 

the transducer frequency response (i.e. cut off frequency is less than 2 kHz.) should domi­

nate high frequency behaviour, and make imposition of a frequency response windowing 

function unnecessary.

3.4 ANALOGUE INTERFACE

This consists of a second order Butterworth filter with its cut off frequency set (initially) 

at half the relay sampling frequency, to reduce aliassing produced when frequencies 

higher than this are sampled. Its frequency response is combined with that of the trans­

ducer to produce an impulse response so that only one convolution need be done for each 

signal.

The analogue voltage is scaled so that twice peak volts correspond to 9 volts secondary, 

and hard clipping is applied at a level of 10V. The phase current is scaled according to 

the application, e.g. for a 100 km. line with a 1200:1 current transformer, a gain of 0.589 

V/A is used. Clipping is applied at 10 volts (positive or negative), corresponding to a 

maximum current of about 20 kA, or a fully offset waveform from a three phase fault at 

about 110 km. (with zero local source impedance). (The existence of clipping may be de­

tected using analogue electronics). Separate current scaling is available for the direc­

tional and independent mode currents, since the criteria are different:

1) For the directional relay it is desirable that clipping does not occur for any 

reverse fault, since its occurrence extends the interval before measurement can recom­

mence.

2) For the independent mode, the current must not clip for forward faults 

which are outside the protected zone.
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Though the worse case results of imposing these criteria may coincide for a plain feeder, 

this may not be so in three ended applications: the directional relays will have to be set 

to have the same maximum sensitivity, but the lengths protected by the independent mode 

will depend on the distance to the Tee point. A 12 bit analogue to digital converter (11 

bits plus sign, giving a range of-2047 to +2047 levels) is used to digitise the measurands.

Test parameters which may be specified are:

1) The amount of random noise added at various stages through the scaling 

and conversion process, (this has been set to zero in all the work in this thesis).

2) The gains of the current interfaces to the separate relays.

3) Whether filtering and/or transducer responses are to be included. (This is 

used mainly for program fault finding purposes).

4) Whether output is required at 2 kHz. or 4 kHz. relay sampling frequencies. 

(The appropriate analogue cut off frequency is automatically chosen, if applicable).

3.5 RELAY SIMULATIONS

The output from the analogue interface is used by both the directional and independent 

mode simulations. Each of these also require a set of parameters (algorithm type, time 

constants, gains and thresholds), which cannot sensibly be implemented as a series of 

nested loops, since two gains may need to be changed simultaneously, or the same input 

may mean different things in different algorithms.

Each different relay simulation therefore requires a complete set of relay parameters, 

though adjustment of the time constant parameters and thresholds (by a factor of 2) to 

cope with the two different relay sampling rates may be incorporated into the program. 

The output must show exactly what conditions prevailed for each test and how each part 

in the scheme behaved. The output possibilities for each part are given below:

1) Directional relay: For each of the 6 elements: (a-e), (b-e), (c-e), (b-c),

(c-a), (a-b)

a) A flag indicating a forward or reverse decision or no operation.

b) The operating time (when applicable).
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2) Long term clipping detector

a) A flag indicating operation or not.

b) The operation time (when applicable).

3) Independent mode: For each of the 6 elements: (a-e),(b-e),(c-e),(b-

c),(c-a),(a-b); there are four classes of output:

a) No operation of any element

b) Minimum trip time of a specific element at a fixed reach setting.

c) Minimum setting for operation of a specific element (and trip time).

d) Minimum setting for operation of any element (and trip time).

The fourth class is a summary of the relay performance and useful for checking whether 

an encroachment has occurred, i.e. that an element has operated with a lower setting than 

the target element. The first directional element to operate is taken to decide the direction 

of the disturbance. If there is no operation or a reverse indication then neither of the other 

parts of the scheme will be triggered and hence their parameters are irrelevant They are 

therefore set to zero in the printout.

The program is arranged to produce output in a format suitable for processing by the pro­

gram described in Chapter 6. Whenever a set of results from the directional, extended 

clipping detector, or independent mode relays is available, it is output to a file (together 

with any test parameters which have changed since the previous output). If the program 

is run interactively, then the output is also directed to the terminal, but in an expanded 

form compared to that stored in the file, i.e. including words explaining what the numbers 

mean. A program was also written to read through the output file and expand it to the ter­

minal, enabling the benefits of a reduced storage requirement and easy intelligibility to 

be combined.

3.6 DISCUSSION OF PROGRAM STRUCTURE

For any design of relay, it is necessary to investigate the performance for a range of fault 

types, distances and resistances, together with various source capacities and other para­

meters. This can be done most conveniently by arranging for the program to step through
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the combinations of parameters and produce many sets of results for one program run. 

There are two ways of organising this:

1) By specifying the complete set of parameters required for each combina­

tion.

2) By specifying only the initial value, final value and step value of each

parameter.

The latter choice has the advantage that large quantities of results, perhaps containing un­

foreseen details, may be easily generated. The former choice has the advantage that sev­

eral unrelated onerous relaying conditions may be investigated, without having to step 

through all the permutations of the parameters, most of which will not present relaying 

difficulties. The advantages of both alternatives may be combined if supplementary com­

plete sets of initial, final and step values for the parameters, may be used after the permu­

tations of the first set have been exhausted. The first choice is equivalent to this, but with 

the restriction that for each parameter the initial and final values are equal.

To achieve this flexibility, the simulation program has to be structured so that the actual 

waveform generating code is surrounded by nested parameter varying loops. The order 

of these loops is not particularly critical, only affecting the order in which the power sys­

tem parameters are permuted, but the innermost loop must implement fault point on wave 

variation since it operates on the time domain waveforms.

The program section which reads in the data will obviously appear before the parameter 

loops, and the program will branch back to this section after the outermost loop has been 

completed. Another set of parameters is then read in, waveforms generated and the pro­

cess repeated, until the end of data is detected, and the program stops. The data reading 

section is coded such that, for the second and subsequent data sets, only changes from 

the preceding parameter specifications need be input.
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The program structure may be outlined in pseudo-code as follows:

BEGIN DATA INPUT LOOP

READ IN DATA UNTIL FLAG 

IF END OF DATA THEN STOP

BEGIN POWER SYSTEM PARAMETER VARYING LOOPS

GENERATE POWER SYSTEM WAVEFORMS FOR 2 POINTS ON WAVE 

CONVOLVE WITH TRANSDUCER IMPULSE RESPONSES 

BEGIN POINT ON WAVE LOOP

FORM WEIGHTED SUM OF OUTPUTS 

REMAINDER OF ANALOGUE INTERFACE PROCESSING 

BEGIN RELAY PARAMETER VARYING LOOPS 

RELAY SIMULATION 

OUTPUT FORMATTING 

END RELAY LOOPS 

END POINT ON WAVE LOOP 

END POWER SYSTEM PARAMETER LOOPS 

END DATA INPUT LOOP
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CHAPTER 4

TEED FEEDER PROTECTION SCHEME DESIGN

4.1 SCHEME DESIGN

The relaying scheme which will be used is now fairly common in the literature [2,13]. 

It consists of a directional relay (DR) blocking scheme with the addition of an indepen­

dent mode relay (IMR) at each end. The IMR is designed to detect faults close to each 

relaying location without utilising information from other ends, hence it has a distance 

relay characteristic and inevitably makes use of the power system impedance between 

itself and the fault.

In a plain feeder application, the IMR is present solely to increase speed of operation for 

close-up faults, (and may be omitted if desired). In Teed feeder applications, its main pur­

pose is to ensure that all the circuit breakers are tripped for an internal fault close to any 

of the busbars. In adverse circumstances such faults may cause fault current to flow out 

of the Tee preventing operation of the DR scheme.

The communication requirements are much greater for a Teed feeder application since 

intertrip channels must be provided to ensure that an IMR operation at one end causes 

trips at the other ends. Power line carrier communication (PLC) channels are adequate 

for the scheme, since decisions rather than relaying measurand data are to be exchanged. 

The communication channel delay is composed of two parts:

1) The actual time it takes for a signal to travel from the transmitter to the

receiver. (For PLC, fibre optic link or microwave channels, this is small since the signals 

travel at or approaching the speed of light).

2) The duration of the message which is required for unambiguous interpre­

tation of its meaning. This is a function of the channel bandwidth and the noise or interfer­

ence which is present.

Wide bandwidth channels attain their greater speed by permitting shorter duration mess­

ages and could be used to implement the proposed scheme, but the benefit would prob­

ably be insufficient to justify the extra cost. Indeed, if a wide bandwidth channel were
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present then current differential schemes (which would utilise it more efficiently) would 

probably be preferred.

The requirement for intertrip channels in a Teed feeder application does make the scheme 

less attractive commercially, since each extra PLC channel adds considerably to the 

scheme cost. However, the overall economics may still be favourable once the alterna­

tives, i.e. extra capital expenditure on substations or transmission lines or a differential 

scheme using a wide bandwidth communication link, are considered.

In addition to the communication channels, several other scheme components are 

needed, which are usually considered as part of the relays:

1) Current clipping detector, (which is part of the analogue relay interface).

2) Frequency track unit, (which is necessary to ensure maximum relay sensi­

tivity when the power system is not operating at nominal frequency).

3) Switch onto fault unit, (which detects whether a fault is present on the net­

work when it is energised by closing a circuit breaker).

Designs for the last two units will not be developed in this thesis.

4.2 SCHEME PERFORMANCE

The logic needed to implement a relaying scheme can become quite complicated when 

several types of relay are used (Fig 4.1). Since the time between fault incidence and direc­

tional determination is variable, an allowance for this (and channel delay) has to be in­

cluded. The various possible scheme operations and timing diagrams for a Teed feeder 

application are:

1) Remote external fault: Fig 4.2; In this case only the relay nearest to the 

fault comes to a directional decision, which since it is reverse does not cause a trip.

2) External fault: Fig 4.3; In this case the remote relays come to decisions that

a forward fault exists, and would enable their associated IMRs to detect whether it was 

within their reach. They should not come to such a conclusion and tripping by the DRs 

should be prevented by the relay nearest to the fault detecting it as reverse.

3) External fault: Fig 4.4; This is much the same as the previous case except
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the fault is seen as reverse by two DRs.

4) Internal fault: Fig 4.5; In this case fault current flows into the Tee at each 

end; each DR detects it as forward and hence after a co-ordination time trips its local cir­

cuit breaker. An IMR may also produce a trip signal if the fault is close enough to a busbar.

5) Internal fault: Fig 4.6; In this case the fault current flowing into one of the 

Teed feeders is insufficient to allow the relay measuring it to reach a directional decision. 

Though the DRs at the other locations will cause local trips, the circuit breaker at the low 

current location would have to be intertripped, unless sequential tripping (in response the 

DR responding to the signals produced by the other circuit breakers opening) was desired, 

(which is unlikely). A similar situation would exist if one of the circuit breakers was open 

before the fault, (except that there would then be no need to trip it).

6) Internal fault: Fig 4.7; In this case fault current flows out of the Tee at one 

busbar, hence the DRs are prevented from causing trips but the DR nearest the fault will 

have detected the fault as forward and have enabled the associated IMR. The fault will 

only be cleared if it is within the reach of the IMR.

The return of the scheme to ’normal* measurement is not shown but will be discussed in 

later sections.

4.3 RELAYING REQUIREMENTS

The scheme requirements may be loosely specified:

1) To enable faults to be cleared within one power frequency cycle over as

much of the protected network as possible. This requires that the relay operating time be 

less than about 7ms [14].

2) To be able to protect as many Teed feeder configurations as possible. The

application limits are ultimately determined by relay sensitivity. Superimposed compo­

nent extraction allows a relay to have a much higher theoretical sensitivity than would 

otherwise be possible. However, immediately previous disturbances reduce a relay’s 

ability to detect faults, i.e. the usable sensitivity.

3) To maximise fault resistance coverage.

4) To ensure that false trips do not occur.
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a) Incorrect operation of the directional scheme may occur if an external 

fault is seen as forward by a remote relay, but the nearest relay does not reach a (reverse) 

directional decision. To prevent this happening the forward sensitivity of a relay is delib­

erately made less than its reverse sensitivity, but problems arise when the different usable 

sensitivities exist at the relaying locations. A solution can be obtained in plain feeder 

applications since the superimposed current should be the same at both ends for external 

faults. In Teed feeder applications this is not the case, and the implications are investi­

gated in the next sections.

b) Incorrect interpretation of the relaying measurands causing a false IMR 

trip can arise in the following ways:

i) The power frequency components of the relaying measurands resulting

from an external fault may correspond to an impedance which lies inside the protection 

area defined in the complex impedance plane. Solutions are to reduce the area or change 

the shape of the protection characteristic, but have the disadvantage of reducing the reach 

or fault resistance coverage of the IMR.

ii) The transient corruptions of the power frequency waveforms may cause

errors in the impedance estimate. The solution is to increase the effectiveness of the relay 

filtering, but this is in conflict with requirements (1) and (2).

4.4 SEQUENTIAL DISTURBANCES

Although disturbances in rapid succession are not going to be studied, it is important to 

decide how the scheme would react to them. There are three areas of concern:

1) Effects due to scheme logic. If an external fault occurs immediately after

an internal fault, then it is theoretically possible (assuming that the DRs have zero dead 

time following a directional decision) for the block resulting from the second disturbance 

to inhibit tripping.

2) Effects on the IMR.

3) Effects on the DR.

The last two topics are discussed in the following sections.
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4.4.1 EFFECTS ON SCHEME LOGIC

Conventional distance relays either measure continuously or in a series of contiguous 

measurement periods. Under these circumstances, inclusion of the fault incidence transi­

ent (and some pre-fault information) is unavoidable and the design should accommodate 

this. However, when the time of fault is known, it is possible to exclude these undesirable 

parts of the waveform from the measurement algorithm, and obtain improved perform­

ance (under normal conditions), but a susceptibility to error when sequential disturbances 

occur.

In general an IMR algorithm using superimposed components could be greatly affected 

by a previous disturbance in either direction, whereas the effects on an total quantity algo­

rithm would be less pronounced (due to the shorter impulse response of its filtering). Sev­

eral courses of action are available depending on the magnitude and direction of the sec­

ond disturbance:

1) If the second disturbance is not laige enough to cause a second directional

decision then no action can be taken. The algorithm must be designed to behave correctly 

for both forward and reverse faults occurring after measurement has commenced. This 

may imply a measure of directionality in the protection characteristic.

2) If the second disturbance is large enough to cause a second directional

decision, then the first measurement must be terminated and a new one started (if the sec­

ond disturbance was detected as forward).

4.4.2 EFFECTS ON THE DR

The principle of directional relaying (as discussed in the next Chapter) is comparison of 

superimposed component levels with thresholds. Even if the change in power system 

conditions produced by a fault could be represented by a step change in a power frequency 

sinusoid, the filters used to derive the superimposed components have non-negligible 

impulse response duration and, following a disturbance, the signals would be above the 

normal thresholds for at least that duration.
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In practice, the situation is more complicated, with transient and sub-transient decays, 

power swings and excitation system transients existing in the post-fault waveforms. In 

addition, a fault on a power system is usually followed by other disturbances, i.e. circuit 

breaker trips and re-closures, which would extend the period before normal conditions 

are restored. Two design approaches arc possible:

1) To adjust the thresholds according to background or past levels of super­

imposed components.

2) To use fixed thresholds, but disable operation for a certain time after a di­

rectional decision has been reached.

Fixed thresholds are simpler to implement, (though the choice of values may require data 

from field monitoring of actual transmission line waveforms), but suffer from the disad­

vantage that it is difficult to predict when the output from the relay superimposed extrac­

tion filter would have decayed to normal levels following a disturbance.

If fixed thresholds were used and the relay permitted to commence measurement while 

the signals were above the threshold levels, then there would be a risk of multiple deci­

sions from the same disturbance. Therefore, after a disturbance, measurement must be 

suspended either:

1) For a fixed time, (which is problematic to specify), or

2) Until the signals have fallen below the threshold levels, which requires 

as much processing to implement as a variable threshold algorithm), and introduces the 

problem of how to ensure that all the relays begin measuring simultaneously (since differ­

ent superimposed component levels will exist at each relaying location).

4.5 RELAY DIRECTIONAL SENSITIVITY RATIOS

As mentioned in the section on relaying requirements, the forward sensitivity of a DR will 

need to be made less than the reverse sensitivity, and since forward sensitivity ultimately 

limits the variety of configurations which may be protected, it is important that the con­

straints requiring relative sensitivities be examined.
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For simplicity it may be assumed that the magnitudes of the superimposed voltages and 

currents at a relaying location will determine whether the DR reaches a directional deci­

sion. However, the superimposed extraction filter will produce an output for phase, fre­

quency or amplitude modulations of the relaying signals. Some of these will actually be 

due to faults, but others may be the result of system switching operations or load fluctu­

ations.

It will further be assumed that the relay thresholds will be automatically raised above the 

background superimposed component levels to allow detection of faults whenever poss­

ible. The superimposed voltage and current magnitudes at different relaying locations 

naturally do not bear the same ratio, and hence they should be assigned different forward/ 

reverse sensitivity ratios, according to the application.

The most onerous cases are when disturbances occur in rapid succession, i.e. separated 

by less than the duration of the superimposed extraction filterimpulse response. Such cir­

cumstances are not unlikely when system switching operations are considered, and it is 

essential that the scheme does not trip when presented with such a series of external dis­

turbances. The following sections show the extreme values of sensitivity ratio which may 

have to be imposed to prevent this happening.

4.5.1 RATIOS NEEDED FOR PLAIN FEEDER APPLICATION

In this application, the superimposed current measured at each relay location should be 

the same for an external fault, and any forward/reverse current sensitivity less than unity 

should suffice. The superimposed voltage seen by the relay closest to the external fault 

will be greater than that at the other relaying location, and therefore there is no need to 

impose a sensitivity ratio. If sequential disturbances occur, then both relays will be de­

sensitised, but it is no more likely that the forward looking relay detect the fault and the 

reverse relay not.

4.5.2 RATIOS NEEDED FOR TEED FEEDER APPLICATION

When feedround paths are absent, although equality of superimposed current at each re­

laying location cannot be guaranteed for an external disturbance, the largest supermi­
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posed current will be experienced by the (only) DR for which the disturbance is in the 

reverse direction. However, situations may be postulated where this favourable circum­

stance is overwhelmed by the effects of a previous disturbance, e.g. Fig 4.8.

The first disturbance behind busbar P produces superimposed relay currents in the ratios 

(P:Q:R): (-3.5:1:2.5). A second disturbance behind busbar R would produce superim­

posed currents in the ratio: (1:2:-3), requiring a forward to reverse sensitivity ratio of less 

than (2.5/3) to ensure that the second disturbance was identified as external by the scheme 

logic.

When feedrounds are present, far more extreme superimposed current distributions are 

possible. For faults on an external feedround, (e.g. Fig 4.9), fault current is fed out of the 

Tee through two busbars, giving superimposed current ratios at the relaying locations: 

(P:Q:R): (—1:—1:2). However, the effects of previous disturbances may compound the 

problem, e.g. a disturbance at busbar P produces superimposed relaying currents in the 

approximate ratio: (-11:9:2). Correct scheme logic operation therefore requires a for­

ward to reverse sensitivity ratio of less than (1/9), which much reduces the ability of the 

DRs to detect internal faults.

The situation becomes much worse as the dissimilarity in the busbar source capacities 

and in the lengths of the feeders comprising the Tee is increased. Partial compensation 

for this can be obtained by making the forward current sensitivity a function of past values 

of superimposed voltage (in addition to past values of superimposed current) rather than 

a straight fraction of the reverse current sensitivity. In this way, DRs associated with low 

capacity local sources would suffer greater desensitisation while the effects of previous 

disturbances were present. This idea will be developed in the next Chapter.

4.6 FORWARD FAULT DETECTION REQUIREMENTS

4.6.1 PLAIN FEEDER APPLICATIONS

In these applications the following factors ease the implementation of a combined DR/ 

IMR scheme:

1) The IMR function is non-critical, serving only to enhance performance.
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2) The forward to reverse sensitivity ratio required is not extreme.

3) Identical relay setting may be used at each end. The reach setting of the 

IMR will obviously be as lai^e as possible while ensuring that no trips can occur for faults 

past the remote busbar, (which will mainly be determined the the relay design).

4.6.2 TEED FEEDER APPLICATIONS

When feedrounds are present, none of the beneficial factors listed in the previous section 

apply. In particular, although the DR sensitivity at each end must be nominally equal, the 

reach of each IMR may only approach a fraction of the length of the feeder it protects. 

(Any attempt to set the reach past the Tee point could result in large reach errors due to 

current infeed into fault resistance.) However, the presence of intertrip channels will 

allow the (plain feeder) requirement that each DR detect an internal fault to be relaxed, 

(with the penalty of delayed tripping at the end(s) which didn't detect the internal fault).

The purpose of the IMR is to ensure that trips occur for configurations such as Fig 4.7, 

in which a sufficiendy large fault current flows out of the Tee to cause the DR at R to reach 

a reverse directional decision. For the IMR at P to trip the circuit breakers, the following 

sequence must occur:

1) The DR at P must reach a forward directional decision (and enable its asso­

ciated IMR). This is less likely if a low forward to reverse sensitivity ratio has had to be 

used.

2) The relaying measurands must correspond to an impedance within the

IMR protected zone.

3) The IMR at P must be sensitive enough to interpret the measurands cor­

rectly. This task is made more difficult when the source capacity at Q is high and those 

at P,R are low.

The worst case occurs when the source capacities at P,R are zero: the DRs at those loca­

tions therefore see the same fault current, the magnitude of which decreases as the fault 

approaches the Tee point. Hence there is likely to be a range of fault positions for which
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reverse directional decisions are produced by the DR at R, but no (forward) decision is 

reached by the DR at P (due to imposed sensitivity ratio).

If desired, the IMR could be enabled under such circumstances by making each DR pro­

duce two outputs for forward disturbances:

1) A decision using reduced forward sensitivity (for use in the directional 

part of the scheme).

2) A decision using maximum permissible (i.e. equal to reverse) sensitivity

to enable the IMR.

In addition to the extra complexity, it is unlikely that a complete solution would be ob­

tained due to the IMR almost certainly having a lower sensitivity than the DR, and the 

difficulty of protecting the region around the Tee point.

It must therefore be conceded that maloperations may occur under extreme operational 

conditions on some configurations and studies are needed to identify whether these con­

stitute an unacceptable risk.
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PROBLEMATIC TEED FEEDER CONFIGURATIONS
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CHAPTER 5

RELAY DESIGN

5.1 DESIGN AIMS

The main aim of this project is to design an independent mode relay (IMR) to work in 

conjunction with a directional relay (DR).

An IMR, by definition, uses only measurands available at one relaying location and the 

design principle inevitably utilises the power frequency impedance between the relay lo­

cation and fault point. Impedance measuring techniques have been exhaustively explored 

in connexion with distance relay design, and it may seem unlikely that anything new can 

be added. However, several features of a joint DR and IMR scheme may be exploited:

1) The IMR protection characteristic (described by an area in the complex 

impedance plane) need not discriminate between forward and reverse faults, since the 

relay will be enabled only for forward faults.

2) The start of measurement of an IMR can be triggered by the DR and the 

exclusion of pre-fault information guaranteed.

3) Some of the signals used in the DR and IMR may be identical or share a 

large part of their processing, allowing economies to be made in the processor workload.

4) An IMR (with different settings) could perhaps be used as a switch onto 

fault detector, which is an essential part of a relaying scheme. There would be an obvious 

saving in hardware.

5) Algorithms using superimposed components only would be immune from

false trips caused by power swings and could, if desired, operate with the steady state load 

plus line impedance overlapping the protection characteristic in the complex impedance 

plane.

There is also work which needs to be done on DR design, in particular:

1) The co-ordination between relay sensitivities in the presence of power

system disturbances needs to be considered. There are several aspects to this:

a) The filtering used to reject high and low frequency corruptions has an ef-
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feet on the duration of superimposed components from previous disturbances, 

b) The usable sensitivity must be identified as a function of the past and pres­

ent superimposed components in the relay. It may then be possible to estimate the mini­

mum usable sensitivity of other relays in the scheme and prevent false trips due to the 

effects of unequal fault current distribution between the relay locations.

2) The choice of relaying signals and the filtering used in DRs in the literature 

do not explicitly emphasise the importance of the frequencies close to power frequency. 

It is probable that variations in relay performance due to fault point on wave or type could 

be reduced once this is done.

3) Source dynamics need to be included in simulations to allow the behav­

iour of directional relays after (external) faults to be investigated.

5.2 SIGNAL CORRUPTIONS

Signal processing may be used to attenuate unwanted components in the measurands, 

which may be categorized as:

1) High frequency transients: travelling waves on the voltage and also on the

current waveforms, (particularly if a mimic impedance has been used in the CT second­

ary). These have to be attenuated by low pass filtering, which generates exponentially 

decaying transients on the output for changes in input signal conditions.

2) Low frequency transients.

a) The CVT transient is proportional to the amplitude of the superimposed 

voltage and greatest for voltage minimum faults [68], when it may form the largest part 

of the voltage signal, and require an extra stage of filtering (with a zero at zero frequency).

b) Power system transients: A voltage transient is unlikely since high voltage 

power systems are usually homogeneous (i.e. the physical components have similar X/R 

ratios). However, even where this is not the case (e.g. when resistive grounding of trans­

formers is used), the remedies necessary to cope with the CVT transient problems should 

deal with the similar effects.

3) CT saturation: This is a non-linearity which can seriously degrade relay

performance, and its effects cannot be removed by linear signal processing. Special pre­
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cautions have therefore to be taken:

a) Usually the CT ratios and dimensions will be such that saturation after a 

forward directional decision implies a fault within the protected zone. Limiting will be 

applied first in the analogue stages of the relay, hence an analogue saturation detector may 

be included in the scheme.

b) To attempt to make the relays operate before saturation occurs: It should 

certainly be possible for the local DR to reach a forward directional decision within the 

available time, but it may be more difficult for the IMR to reach a trip decision.

c) To ensure that IMRs operate correctly (or under-reach) when presented 

with clipped current signals.

d) To ensure that maloperation of the scheme does not occur when the 

relay(s) are recovering from the effects of clipped current signals.

The current transient and CT transient are serious problems and must be attenuated by 

high pass filtering or the use of a CT burden which mimics the X/R ratio of the local 

source. Mis-matches between these ratios and that of the transmission line are inevitable: 

the effects of the resulting transients will be investigated in the simulations.

5.3 COMPARISON OF ANALOGUE AND DIGITAL IMPLEMENTATIONS

The relays will be implemented using digitised signals and digital signal processing for 

the following reasons:

1) A large dynamic range is required to perform amplitude or magnitude 

comparisons between power system signals, and this is difficult to achieve using ana­

logue electronics (due to noise and distortion).

2) Analogue noise pick-up should only occur before the analogue to digital 

converter stage. Once the signals have been digitised, algorithm behaviour may be accu­

rately simulated using the same precision arithmetic as the target microprocessor.

3) The signal processing and filtering may be specified in software, which

guarantees that the parameters will remain stable and reduces the amount of setting up 

needed on the actual hardware.

4) Some of the filter functions required do not have acceptable analogue
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equivalents, e.g. delays are difficult to achieve.

5) Greater flexibility is possible in decision process and logic design.

On a 16 bit processor, if an attempt is made to generate integers outside the range -33768 

to 33767, then an arithmetic overflow will occur causing the wrong answer to be pro­

duced. The problem usually occurs in the intermediate stages of a filter and the error may 

be disguised by subsequent stages. Computer simulations may not indicate when this has 

happened, and the subsequent behaviour of the mainframe computer may be different to 

that of a hardware implementation.

The signal scaling should allow as much of the integer range of the processor as possible 

to be used to reduce the significance of offsets introduced by the filtering. The use of 

higher precision (32 bit) arithmetic should be avoided if possible as it is significantly 

slower.

5.4 SAMPLING RATE

The rate at which each analogue variable is sampled, digitised and processed is one of 

the most critical parameters in a digital relay design. If it is too low, then the process delay, 

i.e. the period between samples, may become a significant proportion of the desired oper­

ating time and force undesirable compromises in algorithm design. For this reason, the 

minimum sampling rate is probably 1 kHz. giving a process delay of 1 ms. The maximum 

sampling rate is determined by:

1) The bandwidth of the digital filters in the algorithm.

2) The accuracy with which the sampled output is required to represent the 

continuous input.

3) The amount of time needed by the microprocessor to execute the relay al­

gorithm. As the sampling rate is increased, the time available for this task decreases, re­

sulting in either:

a) The need to increase processing power, i.e. more or faster micropro­

cessors, which is expensive.

b) Pressure to simplify the algorithm (which must eventually be resisted).
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The filter bandwidth is unlikely to be greater than 300 Hz., (which corresponds to the 

dominant travelling wave frequency on a 250 km. transmission line), hence a frequency 

much above ten times this value would seem excessive.

The sampling frequency is therefore chosen to be 2 kHz. Once this rate is specified, the 

anti-aliassing analogue pre-filter can be designed. The cut-off frequency can be chosen 

anywhere between say 300Hz. and half the sampling rate. Though the choice is unlikely 

to be critical, certain guide-lines may be suggested:

1) If only superimposed components are to be extracted from the signal, then 

the frequency should be as low as possible and replace part of the low pass filtering which 

would otherwise have to be implemented digitally. This course will also reduce digitisa­

tion noise.

2) If total quantities are to be derived, then a low cut off frequency may cause 

pre-fault information to persist longer in the post fault signals (due to the longer duration 

of the filter impulse response). Hence starting to measure (and filter digitally) only once 

the fault has been detected gives better results if the maximum permissible pre-filter cut 

off frequency is used.

A technique which offers many of the advantages of sampling at 4 kHz., i.e. simpler anti­

aliassing filter design and better rejection of travelling wave frequencies close to 4 kHz, 

is to digitise analogue signals at a 4 kHz rate, then average consecutive samples and per­

form the rest of the processing at a sampling frequency of 2 kHz.

5.5 FREQUENCY TRACKING

The performance of the frequency tracking unit will determine, to some extent, the 

amount of superimposed component extraction filtering that is necessary in a DR. Certain 

difficulties are likely to present themselves in connexion with this device:

1) The choice of measurands (from which the frequency is to be determined) 

is difficult in three phase systems.

2) The step change in phase angle of the measurands which may accompany 

fault incidence may cause the algorithm to produce an erroneous pulse in the measured

127



frequency signal.

3) Long time constants are necessary to produce low steady state frequency

errors, but they also give large transient errors when the frequency is changing quickly, 

e.g. in power swings.

It is most important than the rate of change of measured frequency output from the unit 

is kept low and does not initiate directional decisions. Hence a relatively large transient 

frequency error is possible and the filtering and the decision process in the relay should 

be designed to cope with i t

5.6 FILTERING

5.6.1 GROUP DELAY

The group delay T  is a measure of the delay introduced by a filter. It is defined by analogy 

with a unity gain constant delay stage, which has the following transfer function G(to) 

and phase function @(co):

dQico)
G(fo) = exp(- jcoT) 0 (o )  = -  o)T T = -----

dco

The phase and delay functions are more complicated functions of angular frequency in 

actual filters, and it is only correct to define a group delay at a certain frequency if the 

transfer function is constant around that frequency. This condition is met for low pass 

filters below their cut-off frequency.

5.6.2 SUPERIMPOSED EXTRACTION FILTERS

Digital superimposed component extraction filters achieve a sharp notch in the frequency 

response by adding or subtracting delayed versions of the input signal. If k is the current 

sample, x(k), y{it) are the input and output, and n is the number of samples per millisecond, 

i.e. n = 2 for 2 kHz sampling, n =4 for 4 kHz sampling, then the simplest filter implemen­

tations are:

1) Half cycle extraction.

y(k) = x(k) + x(k -  lO/i)

If a power frequency sinusoid (Fig 5.1a) is suddenly applied to such an extraction filter,
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then the output produced is drawn in Fig 5. lb. The output is equal to the theoretical super­

imposed component for 10 ms., after which it is zero. This should be long enough for a 

DR to operate, but might restrict IMR performance towards the reach boundary. How­

ever, the major disadvantage of the filter is that the frequency response peaks at zero fre­

quency and even power frequency harmonics, which prevents its use unless it is cascaded 

having a filter having zeros at these locations.

2) Full cycle extraction.

This has an ideal frequency response with zeros at zero frequency, power frequency and 

all harmonics. The response to an applied power frequency sinusoid lasts for 20 ms. and 

is drawn in Fig 5. lc.

It has been assumed that the sampling frequency is an integer multiple of power fre­

quency, making the notch of the extraction filter coincide exactly with the steady state 

pre-fault frequency, but this may not be achieved during power swings (for reasons dis­

cussed in Section 5.5). It is therefore desirable that the filter output is minimised for small 

deviations of system frequency. This may be achieved by cascading stages of superim­

posed component extraction filtering as described by Barker [23].

The output resulting from a discrepancy between the notch angular frequency Wo+A and 

power frequency Wo is easily found for the full cycle extraction filter with a power fre­

quency cosinusoidal input:

This is too large to ignore. However, two stages of extraction can be cascaded to reduce 

the steady state error. The combination of half and full cycle extraction filters gives: 

y(k) = x(k) + x(k -  lO/i) -  x(k -  20n) -  x(k -  30n)

y(k) = x(k) + x(k -  20 n)

(  kW0 \
y i o o o *  J(  kWp \

^ 1000/1J

2 yW 0 + A /  yiOOOn)
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This has the disadvantage that the response to an applied power frequency sinusoid (Fig 

5.2b) is more complicated than that of a single stage filter and makes the post-fault asses­

sment of the usable sensitivity more difficult. A different compromise cascades two 

stages of full cycle extraction:

The response to the application of a power frequency sinusoid is drawn in Fig 5.2c, and 

shows that although the response has a longer duration, it is better behaved than in the 

previous example. On the other hand, the output for a steady state frequency deviation 

is twice the previous value.

It is possible to slightly stagger the notches of the cascaded filters to broaden the notch, 

but this cannot give acceptable performance for really severe steady state frequency devi­

ations. The expedient of further increasing the number of stages of superimposed extrac­

tion will reduce the steady state output, but at the price of a long duration badly behaved 

impulse response.

5.6.3 LOW PASS FILTERING

There are two main types of low pass filter which may be implemented on a micropro­

cessor:

1) Running average (finite impulse response).

2) Recursive (infinite impulse response).

The power frequency parameters and (z domain) frequency response formulae are given 

in Appendix 7. The choice between them depends partly on the suitability of the fre­

quency (and impulse) response and partly on the efficiency of the filter algorithm, since 

the available time window (and hence number of microprocessor operations) will inevita­

bly be limited.

y(k) = x(k) -  2x(k -  20 n) + x(k -  40n)

\W o  + A J  \ \ 0 0 0 n j
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/,x 1 V*1 /, n „  n  . x (k )-x (k -m )y(k) = —  2 ^ x { k - i )  =y(Jc- l )+--------------------

5.6.3.1 RUNNING AVERAGE FILTER

A running average filter requires m memory locations containing the present sample and 

m-1 past samples. The output is the sum of these, usually scaled by a factor 1/m. Division 

and multiplication in microprocessors is very time consuming, unless m is chosen to 

equal an integer power of 2, when scaling may be accomplished by merely shifting the 

binary number a number of places to the right in the accumulator, Other choices for m 

usually mean that the stage gain cannot be made unity and require the signal to be attenu­

ated before processing, (which is undesirable).

m-l

m S  m

The filter frequency response for m=8 at 2 kHz sampling rate is drawn in Fig 5.3. This 

filter has no precise analogy in analogue electronics, but its its properties are essentially 

characterised by the zeros in the numerator of the transfer function expression, i.e. for 2 

kHz sampling there are zeros at 2000/m Hz and its harmonics.

5.6.3.2 RECURSIVE FILTER

The recursive filter is an analogy of a single pole analogue filter, and may be implemented 

using the following algorithm:

y ( k ) = y ( k - 1) + **>- # - U
m

The constant m is usually chosen to equal an integer power of 2 (for efficient micropro­

cessor implementation), though this does restrict the values of comer frequency which 

may be used. The filter frequency response for m -4  at 2 kHz sampling rate is drawn in 

Fig 5.4.

5.6.3.3 COMPARISON OF FILTER IMPLEMENTATIONS

The frequency responses of a running average filter m=8 and a recursive filter m=4 show 

a very similar frequency response, but the former has a higher power frequency gain and 

greater high frequency attenuation. On the other hand it is more laborious to implement 

and has a higher group delay. If two running average filters are to be cascaded then it is
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desirable to make their zeros interleave rather than coincide, i.e. a cascaded filter in which 

m takes values 7,9 will in general perform better than one in which m takes values 8,8. 

The reduction in usable dynamic range is negligible in this case.

In a microprocessor implementation, the requirement for storing m-1 previous samples 

may be satisfied by allocating 256 memory locations and addressing them by the 8 lower 

bits of a 16 bit binary number. In this way the memory address is incremented for each 

new sample, but returns to the first location for the 257th, 5 13th, etc. allowing the filter 

algorithm to run continuously. Despite the elegance of this technique, these manipula­

tions are often awkward to implement on conventional microprocessors, e.g. 68000. The 

filter does have the advantage of a finite impulse response: there being no contribution 

from events not represented in the m memory locations.

If a recursive filter is used immediately after the waveforms have been digitised, then it 

is quite possible for the output to be near the positive limit and the input to suddenly 

switch to the negative limit (e.g. due to travelling waves). The difference would then ex­

ceed the allowable range even though the difference divided by m did not The solution 

is obviously to rewrite the equation:

y (k )= y (k -1) + ------------------
m m

This is more laborious to implement, but allows the signal levels to be doubled safely. 

This filter has the disadvantage that a positive or negative output offset of up to m-1 digi­

tisation levels may exist due to the division operation. If the input is known to be of only 

one polarity (i.e. positive) then the filter may be biassed to remove the offset. The modi­

fied algorithm is:

x ( k ) - y ( k - l ) - ( m - l )
y (* )= y (* - l)  +

5.6.4 HIGH PASS FILTERING

m

The critical parameters of the filters described are the power frequency gain (and phase) 

and the maximum gain (which will occur at a higher frequency). If the ratio between these 

gains is too large then step changes in the input will produce large transients (relative to
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steady state power frequency output), which are undesirable. The filter constants have 

been chosen to avoid this. The power frequency parameters and z domain frequency re­

sponse formulae are given in Appendix 7.

5.6.4.1 DIFFERENCING OVER AN INTERVAL

The filtering considered will be of a very simple kind: essentially forming the difference 

of the input over a number of samples (m), which tends to reduce low frequency compo­

nents more than those at higher frequencies. 

y(k) = x(k) -  x(k -  m)

This process differs from analogue differentiation in that:

1) There is an interval (of m samples) during which a change at the input is 

passed straight to the output.

2) The frequency response of the two techniques is different.

Analogue differentiation: G(z) = constant * log(z)

Finite differencing: G(z) = 1 -  (l/z)m

The filter frequency response for m=7 at 2 kHz sampling rate is drawn in Fig 5.5.

5.6.4.2 DIFFERENCING USING A RECURSIVE FILTER

Another way of high pass filtering is to subtract a low pass filtered version of the signal 

from the signal itself. At certain frequencies low pass filtering introduces a phase shift 

without significantly reducing the magnitude. The main advantages of differencing with 

a filtered instead of a delayed version of a signal are that:

1) The maximum gain is reduced from 2 to about unity.

2) Only one previous value of a variable needs to be retained.

The algorithm uses an internal variable a(k)y which is initially set to zero. The following 

equations are evaluated once per sample in the order given:

y{k) = x(k) -  a(k - 1) a(k) = a(k - 1) +
m

From the z transform it can be seen that the gain is equivalent to differencing over an inter­

val of one sample i.e. the numerator, together with recursive low pass filtering and a gain
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of 2m-2, (the denominator). The filter frequency response for m=4 at 2 kHz sampling rate 

is drawn in Fig 5.6.

5.6.4.3 DIFFERENCING USING TWO RECURSIVE FILTERS

Yet another way of obtaining a differenced output is to subtract a version of the input fil­

tered by one value of m from a version filtered with a different value of m. The advantage 

is a reduction in high frequency gain compared to the previous technique, and less offset 

error than the cascading of simpler filters. The filter frequency response for m-2,m=8  

at 2 kHz sampling rate is drawn in Fig 5.7.

5.6.4.4 TRANSVERSAL FILTER

A general finite impulse response filter may be designed by forming the sum of the pres­

ent and past samples of the input signal multiplied by weighting coefficients, b(i):

m
y{k) =

i=0

The coefficients generally all have the same sign in low pass filters, but for high pass 

filters (with a zero at zero frequency), the sum of the coefficients must be zero:

f > ( 0 = o
i=0

For efficient implementation on a microprocessor, the filter algorithm should have the 

following properties:

1) The coefficients should be integers or fractions which allow the multipli­

cations (or divisions) to be effected easily, i.e. ideally they should have values which 

equal integer powers of 2 (or their reciprocals).

2) The algorithm should be recursive, i.e. the output for the next sample may

be efficiently generated using the last value of the output.

In the simplest form of high pass response, all the weighting coefficients have the same 

modulus, but half of them are positive and half are negative, (this response may be gener­

ated by cascading a delay differencing stage and a running average low pass filter stage. 

A better response is obtained if the coefficients obey the following linear relationship:
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L/  ̂ m - 2i
6(0 = -------------m

The coefficients take convenient values if m equals an integer power of 2. The algorithm 

may be implemented recursively if the output from a running average filter u(k) is avail­

able:

i  m-1
u(k) = — Y  x{k -  0  y(k+  1) = y(k) +x(k+  1) + x (k -m )~  2u(k)

The frequency response for m -8  at 2 kHz sampling is plotted in Fig 5.8. The zeros occur 

at approximately 319.2 Hz, 548.8 Hz and 774.9 Hz. Note that the phase difference be­

tween the outputs u(k) andy(fc) is 90°.

5.7 POINT ON WAVE EFFECTS

5.7.1 ANALOGUE FILTERS

Consider a power frequency sinusoid x(t,§) suddenly applied to a single pole analogue 

filter, (time constant: T):

x(t,$) = sin(Wbr + ̂ )

Y(s,<t>) = G(sms.<p) = T ^ r1+5/

Hence,

y(‘,<p) = ■) ■ I sm(Wof+1p ) - expj—Hsin(VO I
Ji+w%r2\  \TJ }/

xp = <p- arctan(Wor)

At an instant f, the phase angle <|> which produces the maximum modulus of the output 

can be found by solving the equation:

^  = cos( Wty+ ip) -  expl —-11 cos(V0 = 0
dtp

j  cos(V0 = 0  0 £  0  < Jt

The value of <J> satisfying this equation is obviously a function of the measuring time /, 

and will be termed the critical phase angle p(t). Substituting this value into the expression
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for the output, the maximum instantaneous value or envelope e(t) of the output may be

found.

The graphs of normalised envelope and critical phase angles against time are drawn for 

filter time constants of 1.73ms. and 3.4ms. in Fig 5.9. Several conclusions may be drawn 

from these graphs:

1) The critical phase angle is approximately a linear function of time, but the

slope decreases as the filter time constant increases, i.e. the measurement time to cover 

a certain angular range is increased.

2) The envelope is approximately constant after a time equal to the filter time 

constant has elapsed.

3) If a constant, rather than time varying envelope were used as a comparison 

threshold, then the ’reach* of an IMR or DR would be very dependent on fault point on 

wave, particularly if the measurement time did not allow the critical phase angle to pass 

through a range of 180°.

4) Attempting to reduce the measurement time by doubling the number of 

comparators would require that filters with markedly different characteristics, i.e. a high 

or band pass function, be used, so that the critical phase angle would vary over a different 

range.

5.7.2 CASCADED FILTERS

In actual practice, several stages of digital and analogue filtering are likely to be used, 

and a closed form expression of the output quickly becomes unwieldy. The envelope may 

be calculated from the time domain outputs for the zero and ninety degree fault points 

on wave as shown in the previous section. The critical phase angle is given by:



Graphs showing the characteristics of arunning average filterm=S cascaded with a recur­

sive low pass filter m -4  for a 2 kHz. sampling rate are drawn in Fig 5.10.

5.7.3 HIGH PASS FILTERS

The transient response of filters having a zero at zero frequency is critical. An initial 

assessment main be made by comparing the power frequency gain with the maximum 

excursion in the time domain step response. If the latter is much larger, e.g. when the dif­

ference is taken over a small number of samples, then that filter design will be unsuitable.

The smoothness of the step response is also important, since abrupt transitions may cause 

similar effects in the critical phase angle characteristic, making it more difficult to treat 

each fault point on wave equally. These considerations narrow the choice to:

1) A filter which takes the difference of the input signal and a version of itself

delayed by a number of samples. The behaviour of this filter with m=7 and followed by 

a recursive filter m~4 at 2kHz sampling is shown in Fig 5.11.

2) A filter which forms the difference of the input signal and a low pass fil­

tered version of itself. The behaviour of this filter using a recursive low pass filter m=4 

followed by a recursive filtering stage m=4 at 2kHz sampling rate is shown in Fig 5.12.

3) A filter which forms the difference of two recursive low pass filtered sig­

nals, e.g. the behaviour of a filter with m,4m=2,8 and 2 kHz. sampling rate is shown in 

Fig 5.13.

4) A transversal filter. To make a fair comparison, this must be cascaded with

a stage of recursive lag filtering. The filter behaviour with m=8 for the transversal stage, 

and m=4 for the second stage is shown in Fig 5.14.

The filters have remarkably similar responses; but there are differences in high frequency 

response and impulse response duration which favour the transversal filter, which will 

henceforth be used whenever band pass or high pass functions are required. The output 

waveforms from a high pass filter (scaled by a factor 0.5) cascaded with a low pass filter 

when unit amplitude sinusoids and cosinusoids are applied are shown in Fig 5.15. The 

filter constants are those used in Figs 5.10 and 5.14 respectively.
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5.8 DIRECTIONAL RELAY DESIGN

5.8.1 INTRODUCTION

The changes in currents and voltages which occur when a power system is faulted can 

be represented (assuming linearity) as the response of the un-eneigised post-fault net­

work to the application of a voltage generator in the fault path (Fig 1.2). Since most of 

the energy of the superimposed generator is concentrated about power frequency, (and 

the relay filtering will attempt to reject high and low frequency transients), the power sys­

tem components may for our purposes be represented by their lumped parameters (evalu­

ated at power frequency).

The voltages and currents may be found by constructing sequence component networks 

for each fault type (e.g. Figs 3.1 to 3.4). However, since superimposed conditions are 

being considered, the voltage generators exist at the fault point rather than the source lo­

cations: the cases for each of the principal fault types are drawn in Figs 5.16,5.17,5.18,

Given a suitable choice of relaying measurands, (which is discussed in Section 5.6), the 

three phase fault networks may be reduced to an equivalent single phase network as 

drawn in Fig 5.20a. Two relays protecting feeders connected to the same busbar would 

see the same superimposed voltage (V) but approximately anti-phase superimposed cur­

rents, assuming that the fault was in a forward direction from one relay and in the reverse 

direction from the other. (Note the phase relation only applies to power frequency compo­

nents). Referring to Fig 5.20a:

5.19.

E = (sLx + Rx)If  + V
(1)

V = (sLg + Rg)(If+ Ir) (2)

V = -(sL r + Rr)Ir (3)

Hence:
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If one of the following conditions is met:

k
Rr

L2g + R \< l? r+ R }

The following approximation may be made: 

V -  K(sLg +Rg)If (4)

Where K  is a real constant.

If the current I  is passed through a mimic impedance to form a mimic voltage Vm:

Directional determination may be obtained by comparing the polarities of V, Vm in the 

time domain:

(5), then an external fault exists.

It is necessary to make several determinations over a small time period to outweigh erron­

eous decisions produced by noise or phase shift imbalances. Barker [23] used a counter, 

which was incremented for a forward determination and decremented for a reverse de­

termination. A directional decision was output when a count threshold was crossed.

The minimum counting time must be greater than the maximum period for which phase 

shift may cause the discriminant signals to violate the directional criterion. For a power 

system, the ratio of inductive reactance to resistance X/R may vary between values of ap­

proximately 5 to greater than 30. However, the phase shift error caused by assuming a 

wrong value is not large, i.e. arctan(5) = 78.7°, arctan(30) = 88.1°, and 10° at power fre­

quency corresponds to about 0.56 ms. Minimum counting times of greater than twice this 

figure still allow fast directional determination.

Vm = (sLm+Rm)I (5)

Then assuming:

k .
Rr

1) If the relaying current I  can be identified with the current If in equation

(4), then a forward fault exists.

2) If the relaying current I  can be identified with the current Ir in equation
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5.8.2 BASIC DESIGN CONSIDERATIONS

DRs have used magnitude comparisons between signals formed according to the rule: 

v/= V - ld  vt, = V + kI

This is equivalent to the comparison of the polarities of V, kl. A comparison of the magni­

tudes of V, kl against thresholds also needs to be made to guarantee that they are large 

enough to make any polarity conclusion meaningful. If it is, then a counter will be either 

incremented (for a forward determination) or decremented (for a reverse determination), 

until a certain positive or negative count is reached, which is taken as a decision that the 

fault is forward or reverse. Further counting which would cause the count to exceed these 

levels is inhibited.

Comparing (filtered) signal levels with thresholds inevitably leads to a dependence of 

operation time and/or sensitivity with fault point on wave, as discussed in 5.7.

In previous work [23], in order to determine whether the comparison was significant, the 

instantaneous amplitudes of Vf, v*, were compared against a single threshold (derived from 

past values of the larger of V, kl. In this design, V, k l will be compared against separate 

thresholds, since it is unnecessarily pessimistic to assume that the background levels for 

these two signals are the same. If V, is derived from the line voltage and kl from the cur­

rent, then the ratio of background noise on the signals (excluding that arising in the relay) 

is likely to reflect the relative magnitudes of the p.u. current mimic and source impe­

dances. The latter may vary over wide limits depending on the system and how many gen­

erators are in service.

Once a disturbance is over, the directional determination counter will need to be reset to 

prevent any influence on subsequent decisions. However, it is not easy to define when 

this occurs. Barker [23] chose to reset the counter if the count had not changed during a 

certain time interval. To assess the relative merits of this and alternative strategies, it is 

desirable to clarify the function of the decision process, particularly when sequential 

faults occur. As the signals exceed the decision process thresholds, it is likely that there
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will be a burst of directional determinations. The time at which this occurs will be depend­

ent on the fault point on wave and filter characteristics.

5.8.3 PHASE SENSITIVE RECTIFICATION

Conventional full wave rectification inverts negative half cycles of the input: i.e. the out­

put is equal to the input multiplied by the sign of the input. Phase sensitive rectification 

is here defined as multiplying one signal by the sign of the second. If the magnitude of 

the second signal is zero, then the output is also zero. In the case of two sinusoids having 

the same frequency (©) but different phase angles, this would have the effect of producing 

a constant level equal to the magnitude of the first signal multiplied by the cosine of the 

phase shift between them, together with an alternating signal containing frequencies 2© 

and higher harmonics. It is the constant level which is of interest

5.8.4 CHOICE OF DISCRIMINANTS

One of the most fundamental design considerations for a DR is the number of directional 

detectors. Two were used by Barker[23] (corresponding to transmission line aerial 

modes), but cases can be devised where directional decisions would disagree. An obvious 

solution to this problem is to have only one detector. This may be designed using the fact 

that the superimposed current outflow along the sound phase(s) will always be less than 

the current inflow on the faulted phase(s). A suitable discriminant is therefore the sum 

of three sign adjusted superimposed current signals.

Zero sequence compensated phase currents were used initially. The sign of each term is 

adjusted by multiplying by the sign of the associated phase voltage and an extra negative 

sign is included to make the discriminant C positive for forward disturbances: 

c  = -  (CaeSgn(Vae) + C^sgn(V^) + Ccesgn(Vce))

The magnitude of this discriminant can readily be compared with a threshold to deter­

mine its significance.

A problem with using zero sequence compensated phase currents to construct the direc­

tional discriminant becomes apparent for earth faults close to the busbar. If current clip­

ping occurred, each sound phase would contribute a reverse polarity current to the discri­
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minant, and their sum could outweigh the faulted phase contribution. For faults very close 

to a busbar, the counter might not reach the forward decision threshold before reverse 

counting leading to a reverse directional decision began. In view of this effect, delta cur­

rent and voltage quantities are considered more suitable candidates, and the discriminant 

C is constructed as follows:

C = - (CbcSgn(Vbc) + Cca sgn(Vcfl) + C^sgnCV^))

The discriminant may therefore be defined as the negated sum of the three delta currents 

each phase sensitively rectified (c.f. 5.8.3) with respect to its corresponding delta voltage. 

Summing three quantities (which are limitted to the same range of values) implies an in­

crease in the range of the sum. This may be allowed, which would require 32 bit arithme­

tic, or prevented, by reducing the range of the inputs, i.e. by pre-dividing by 4. The latter 

option will be used as the ultimate sensitivity of the relay is not reduced, since the range 

of the output is still greater than that of the analogue to digital converter. A block diagram 

of this process is shown in Fig 5.21, with the processing for voltage signal significance 

described in 5.8.8.

5.8.5 VARIABLE LEVEL THRESHOLD

This facility is required to maximise relay sensitivity during periods when the superim­

posed components are above the levels that would be expected under normal operating 

conditions. The requirements are:

1) The algorithm should mediate a smooth sensitivity decrease during and 

a smooth increase after a disturbance.

2) A threshold should be the product of the magnitude of the (delayed) super­

imposed component and a safety factor.

3) The rise in thresholds should not occur until the relay has had time to reach 

a directional decision. After that time the thresholds should rise and prevent further 

counting (in the absence of a subsequent more powerful disturbance).

It is desirable that maximum sensitivity be restored as quickly as possible after a disturb­

ance, but the performance will largely depend on the choice of superimposed extraction
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filtering: if one full cycle stage is used then full sensitivity will be restored more quickly, 

but sensitivity during prolonged power swings would be lower than that available if two 

full cycle stages had been used. The latter consideration is judged more important and 

two full cycle stages are used in the design.

The are two alternative ways of deriving a threshold signal Tv for the current discriminant 

C :

1) To use delayed values of C .

2) To use combinations of superimposed delta currents:

7V = *( ICfcd + ICJ + IC Î )

The latter option is clearly preferable as C is zero when the voltage signals are not signifi­

cant.

5.8.6 DISCUSSION ON THRESHOLDS

It may readily be appreciated that discriminants need to be compared against thresholds 

to determine whether a decision may safely be taken. In a directional protection scheme, 

the threshold should reflect not only whether a discriminant is significant (i.e. above 

background noise) at the local end, but whether the local discriminant is significant given 

the conditions at the other end(s). Unfortunately, in the case of Teed feeders, conditions 

at the other ends are not known and have to be inferred using assumptions as to source 

capacities.

If the current discriminant C were to indicate a fault in the reverse direction, then there 

would be no need to consider the conditions at the other ends, hence C may initially be 

compared with the lowest threshold compatible with local conditions. If this results in a 

reverse decision then a block signal will be issued. If the current discriminant C were to 

indicate a fault in the forward direction, then, assuming the fault external to the Tee, a 

forward decision may only be allowed to be reached if a relay at one of the other ends 

be capable of detecting it as reverse. Hence C needs to be tested against another threshold 

(termed the forward current threshold) which represents the worst case condition at the 

other ends. There are three alternative ways of generating this:
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1) To use a simple multiple of local current. This is the simplest option, but

insensitive to fault direction and local source capacity.

2) To use the sum of the scaled modulus of local superimposed voltage and

current. This introduces a local source capacity dependency, but requires a more complex 

algorithm.

3) To use the modulus of the scaled sum of local superimposed voltage and

current. This requires the most complex algorithm, since the three phases of the assumed 

current at a remote end have to be generated from local voltage and current signals. How­

ever, there is great benefit in having the forward threshold dependent on the direction of 

the previous disturbance.

In the event none of these alternatives can cope with the wide range of conditions which 

are m et A new forward current discriminant Cf needs to be defined which will be com­

pared against the forward current threshold. (This will only occur if the current discrimin­

ant C indicates a fault in the forward direction). The forward current threshold may then
t

be generated from the constituents of Cf in the same way that Tv was generated from the 

constituents of C, but with a larger (usually much larger) numerical scaling factor.

5.8.7 DERIVATION OF FORWARD CURRENT DISCRIMINANT

If there is a fault external to a Teed feeder for which the line lengths and source capacities 

are known, then, given the superimposed voltage and current at one end, the superim­

posed currents at each of the other ends may be estimated. All of the superimposed cur­

rents are proportional to the superimposed voltage at the Tee point, and this is the best 

quantity from which to construct the forward current discriminant. The delta Tee point 

voltages may be constructed by summing the local superimposed voltage and (negated) 

superimposed current scaled by the line impedance to the Tee point (referred to relay 

units). Directional information is lost in forming this discriminant, so taking the modulus 

of the signals is most appropriate:

Cf = (\V tbc\ + \Vtca\ + \Vtab\)
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A block diagram of this process is shown in Fig 5.21. Omission of a term when the corre­

sponding relaying point superimposed voltage is non-significant is also shown.

One of the advantages of using this discriminant is that no assumption is necessary about 

the local source capacity, however, in order to set the ratio by which the forward threshold 

exceeds the discriminant, assumptions about the source capacities at the other ends are 

necessary as shown in section 5.8.10.

5.8.8 VOLTAGE DISCRIMINANT

A single threshold for the voltage signals may be derived from the superimposed delta 

voltages:

t w =  iVfci + iVej + iv y

Signal delay and perhaps scaling would also be included. There are three ways which the 

information on the significance of the voltage signals may be used:

1) By comparing the magnitude of each superimposed delta voltage with this

threshold: if the threshold is not exceeded, then the associated phase rectified current term 

would be omitted from the current discriminant sum C.

2) By comparing a voltage discriminant (constructed in the same way as the

threshold but with the delay omitted) with the threshold could be used to enable (or dis­

able) comparison of the current discriminant with its threshold.

3) To omit assessement of voltage significance altogether. This would place

a much heavier responsibility on the reverse current threshold algorithm preventing in­

correct decisions being made. However, an incorrect reverse decision is unlikely to be 

disasterous, whereas an incorrect forward decision certainly would be. It will have been 

noted that the forward current discriminant and threshold are formed using superimposed 

voltage and therefore apply a check similar to that desired (for forward directional deci­

sions).

If considerations of random errors in voltage and current signals are excluded, then the 

last option is satisfactory. However, greater security will be achieved if voltage signifi­

cance is monitored, and in particular, if only correlated current and voltage disturbances
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(on a phase or delta quantity basis) are used in a discriminant. Hence the first option will 

be employed. There is a slight difficulty in that like is not being compared with like, i.e. 

a magnitude is being compared with the sum of three magnitudes, but scaling of 1/4 for 

the sum and 1/2 for the delta quantity will give satisfactory results. The threshold will be 

derived in the same way as the current and forward current thresholds, and the signifi­

cance processing for the voltage signals is shown in Fig 5.21. The comparator outputs a 

’high* when the threshold magnitude is greater than the magnitude of the other input and 

the gate outputs zero when it receives this signal; otherwise its output equals its input.

5.8.9 IMPLEMENTATION OF VARIABLE LEVEL THRESHOLD ALGORITHM

The ideal shape for the variable level threshold algorithm (VLTA) output would be a steep 

rising edge followed by a flat top and then a reducing level which always exceeded the 

associated discriminant amplitude. The steep initial slope is particularly important: the 

situation where the discriminant and threshold levels cross several times makes it diffi­

cult to distinguish between single and multiple disturbances. The flat top is important for 

much the same reason: once the threshold has exceeded the discriminant, it should stay 

there until the superimposed signals produced by the disturbance have disappeared. At­

tempting to make the peaks in the threshold level occur at the same time as the peaks in 

the discriminant is an alternative, but riskier option.

It has been found necessary to use 32 bit arithmetic in the production of a threshold signal 

to avoid rounding error. Five stages in the production of a threshold:

1) A signal (which may range over the whole 16 bit integer range) is rectified

and added to the two other (similarly treated) phase signals. The summed signal is then 

added to a similarly treated phase shifted signal sum. There are two possible ways of gen­

erating sets of signals phase shifted by 0° and 90°:

a) By using different filtering i.e. low pass and band pass filtering. This im­

plementation (Fig 5.22) involves a large processor workload since transversal filters are 

required to generate the 90° phase shifted signals.

b) By using a quarter power frequency cycle delay to generate the 90° phase

shifted signals. As can be seen in the block diagram (Fig 5.23), there is a consequent sav­
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ing in complexity and processor workload. An alternative way of generating the desired 

threshold is shown in Fig 5.24: the digital nature of the signals is exploited by selecting 

the maximum of the present value or the value delayed by 3.5,8.5 or 13.5 ms. This tends 

to make the threshold stay high for an excessively long duration when signals which have 

been processed through two stages of superimposed component extraction filtering are 

used. A way of reducing this time is to similarly process a set of signals which have only 

undergone one stage of superimposed component extraction filtering (denoted by the 

prime), and select the lower of the thresholds produced. Both thresholds are valid, but the 

single stage threshold would be higher under normal conditions c.f. 5.6.2.

2) Scaling (multiplication by an integer and fractional scaling factor) is de­

scribed in 5.9.10.

3) A stage of low pass recursive filtering is then used to smooth the output

Initially a recursive filter was used, but a running average filter (m=8) was substituted, 

to avoid the exponentially decaying tail the former produces.

4) Introduction of a delay, so there is sufficient time for a direction decision 

to be made before the thresholds rise (preventing further directional determinations for 

the original disturbance).

5) Division of signal by an integer power of 2 to remove factors accumulated 

in processing and reduce output within range of a 16 bit integer.

The outputs from the first two implementations to voltage minimum and maximum single 

phase to earth faults are shown in Fig 5.25 and Fig 5.26. It can be seen that the first imple­

mentation gives a far steeper initial rise in threshold level, and the threshold also returns 

to quiescent level more quickly. The former is preferable despite considerable extra com­

plexity. The combination of one full and one half cycle superimposed component extrac­

tion stages produces an unsatisfactory threshold waveform as can be seen in Fig 5.27. The 

implementation shown in Fig 5.24, will actually be used as it has better behaviour than 

either of the other implementations. Typical waveforms will be shown in chapter 6.
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5.8.10 CALCULATION OF FORWARD CURRENT THRESHOLD

Assuming an external forward fault, the superimposed voltage at the Tee point can be 

found from the local superimposed current and voltage. Then assuming a realistic source 

capacity on the shorter of the remote arms, an upper bound to the larger of the remote fault 

currents can be found. The forward current threshold is set to mimic this bound as a func­

tion of the local superimposed voltages and currents.

For the configuration of Fig 4.9, the superimposed current amplitudes for a disturbance 

behind that busbar may be expressed in terms of the superimposed Tee point voltage Vt, 

(assuming the source capacities shown):

YL  /  = 4 .5 —
73 q 73 73

A disturbance at the mid-point of the feed round would cause superimposed current am­

plitudes related by the following equation:

Up = 2Iq = l r = YL

Hence for the same conditions at relay R, a range of currents of 11:1 is possible at relay 

R To prevent maloperation if the two disturbances were to occur in close succession, the 

forward decision current discriminant Cf and threshold Tjf at relay R should obey the 

following formulae:

c - Y l  t . - 11 V 'f  73 if 73

The ’greater than’ condition arises from the presence of a safety factor between the (re­

verse) current discriminant and threshold at a remote relay. The conditions for relays P 

and Q for these conditions are not nearly so stringent:

Cf — 4.5 Tif >
7 73 v 73

However, the ratio between the threshold and discriminant would normally have a mini­

mum value of two to allow for changes in system topology (i.e. feed round connections).
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5.8.11 CURRENT CLIPPING

If an external fault causes current clipping to occur at a directional relay in a Teed feeder 

application, then the following problems arise:

1) Ensuring that there are not erroneous directional determinations at the

relay where clipping occurred.

2) Ensuring correct operation at the other relays requires that their forward

current thresholds be raised until the sensitivity is less than the reverse sensitivity of the 

affected relay.

Clipping depends on total current and may persist for several power frequency cycles, 

whereas the superimposed signals which are used to construct discriminants and thresh­

olds are only valid for 20 ms. Even if a threshold algorithm were devised which could 

ensure correct operation for local current clipping, co-ordination of sensitivities would 

require the estimation of total current conditions and modelling of the threshold behav­

iour by relays at remote ends for periods of say 60 ms. Given the high factor which is 

necessary between the forward discriminant and threshold for linear conditions in some 

Teed feeder conditions, the improvement in scheme performance gained by attempting 

to measure when the effects of clipping arc present is likely to be small.

In order to disable the DR scheme while the effects of clipping are present, the following 

functions need to be present:

1) A means of detecting whether the current input signals are clipped. This

may be done in the analogue stages by comparing the signals with levels.

2) A method of determining when the effects of clipping have disappeared.

Since the relay filtering has a finite impulse response duration, this time may be assigned 

using a delayed version of the ’clipping present on input’ signal.

3) A means of communicating that local current clipping has been detected.

This may effectively be done by transmitting a block signal until the effects of clipping 

have disappeared.

4) A method of reducing relay sensitivity. Initially this was done by raising

thresholds to maximum, but a better way is simply to inhibit counting (and reset counters
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to zero). The thresholds then have locally determined values at the resumption of 

measurement.

If possible, the relay current gain should be set to avoid current clipping for external 

faults. For forward faults causing clipping, a block signal would not be transmitted lo­

cally, but if the fault were external then another (more affected) relay in the scheme would 

do so. Tripping would be expected to occur for internal faults (whether clipping occurred 

or not), making co-ordination of post-disturbance sensitivities unnecessary in such 

cases.

5.8.12 DECISION PROCESS

It is important that a fault in one direction closely following one in the opposite direction 

should be quickly detected, as the IMR algorithm may be non-directional. The behaviour 

of a simple counter scheme is less than ideal in this respect as the time to detect the second 

fault is at least twice the minimum operating time, since the count has to change from one 

limit to the other. This limitation may be overcome by using two counters, each having 

the same inputs, but one counting positively for forward fault determinations: (the count 

would be constrained to lie between zero and the decision level N). The reverse decision 

counter count would be constrained to lie between zero and -N  and counting would be 

in the negative direction (for a reverse fault determination). In each counter, a directional 

determination opposite to the desired direction would cause counting in the opposite di­

rection.

There are also advantages in reducing the count (modulus) when a non-significant direc­

tional determination occurs:

1) The counter will be reset automatically.

2) The decision criterion is well matched to the form the determinations

would be expected to take following a single disturbance, i.e. a continuous burst.

The decrement for a non-significant determination should be less than the increment for 

a significant one. If a minimum decision time of 3 samples is chosen, then N  could be 

chosen as 12, with an increment of plus or minus 4 for significant determinations, and
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a decrement of 1 otherwise. A further refinement is to ’hold* any directional decision until 

its counter has decremented to zero. This would avoid temporary decrementation and 

then incrementation back to the decision level being treated as a separate disturbance.

5.8.13 DESIGN SUMMARY

The design may be conveniently divided into two parts:

1) Analogue signal processing. A block diagram is shown in Fig 5.28. The 

impose limits blocks prevent signals exceeding the input range of the analogue to digital 

converters. As mentioned in 5.4, sampling and digitisation of waveforms occurs at 4 kHz, 

but the rest of the processing is carried out at 2 kHz. This is achieved by averaging the 

values of two 4 kHz samples.

2) Digital signal processing. This may be divided into four categories:

a) Digital filtering. The digital filtering required for the b-c detector is 

shown in Fig 5.29. The filtering used consists of two stages of running average filters 

(m=2,m=4) for current signals, and (m=4,m=4) for voltage signals. An initial gain of 8 

multiplies the output from the analog to digital converter (-2047 to +2047 levels) for the 

voltage signal, but a gain of 7 was the maximum that could be used before arithmetic 

overflow occurred with severely clipped current signals. The difference in filtering pro­

duces about a ten degree phase shift, almost eliminating the phase offset between current 

and voltage signals. Two stages of full cycle superimposed component extraction filter­

ing as discussed in 5.8.5 are used, though the output after one stage is made available for 

the VLTA algorithm as discussed in 5.8.9.

b) Generation of forward and reverse fault determinations. The block dia­

gram of this process is shown in Fig 5.30. The construction of discriminants and thresh­

olds was discussed in Sections 5.8.4,5.8.5 and 5.8.7, though the use of single stage super­

imposed component extraction filtered signals as additional inputs to the VLTA has not 

been drawn in Fig 5.30. The VLTA was discussed in 5.8.9, and the implementation shown 

in Fig 5.24. The action of the reverse current comparator is to output a NON SIG(R) indi­

cation if the upper input magnitude is less than the lower and the inputs have the same 

polarity. If the inputs have opposite polarity then a NON SIG(R) indication will be output
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if the upper input magnitude is less than twice the lower. Otherwise the reverse current 

comparator will produce a REV or a FWD indication for same and opposite polarity in­

puts respectively. The forward current comparator produces a FWD indication only if its 

upper input is more positive than its lower and the reverse current comparator has indi­

cated a forward disturbance. Otherwise a NON SIG indication is output.

c) Processing when clipping is detected The block diagram of this is shown 

in Fig 5.31, and was discussed in 5.8.11. The implementation compares the analogue va­

lues of phase currents with positive and negative limits (MAX and -MAX). If one or more 

of these comparisons is true, i.e. the current magnitude exceeds the limit, then a counter 

is set to have the value NMAX. In the absence of further clipping indications, the count 

is decremented each sampling interval until it reaches zero, (further decrementation is 

prevented). This condition is detected by the digital comparator and its output then goes 

to zero. Hence the output of the digital comparator will be ’high’ from the start of clipping 

until a period (determined by NMAX) has elapsed since the last clipping indication. A 

delay is introduced to allow time for a directional decision to be reached

d) Decision process. The block diagram of this is shown in Fig 5.32 and was 

discussed in 5.8.12. If the CLIPPING EFFECTS PRESENT input is ’high* then the for­

ward counter is reset to zero. The comparators produce a ’high’ output if the signal at the 

upper input is greater than that at the lower. The timers inhibit counting for a period of 

12.5 ms. once a directional decision has been reached. This was found to be the shortest 

time after which it could be guaranteed that the threshold level would exceed the discri­

minant level.

5.9 INDEPENDENT MODE ALGORITHM

5.9.1 PRINCIPLES

The EMR is to have distance protection characteristics: only operating for faults within 

a certain reach, which implies impedance measurement. The conventional formulation 

relates the relay voltage and current (in Fig 5.20b) by an equation such as:

V - Z I -  (sLx + RX)I
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The voltage calculated using the above equation (and values of Z*, Rx corresponding to 

the reach point) can be compared with the measured quantity to determine whether a fault 

exists in the protected zone. Since the superimposed and pre-fault components of the 

measurands can be derived, the determination may use alternative pairs of quantities. 

Many principles are possible, but consideration of the following three outline the essen­

tial features:

Total quantities: V = = Zf = Z(/w + Isup) (?)

Construction of fault point voltage: ^ ss ~ ̂ ss + ̂ sup (8)

Construction of relaying point voltage: + ̂ sup + (9)

Initially, the magnitudes of the two sides of the equation will be compared: with a trip 

deemed necessary if the right hand side exceeds the left hand side. If the phase of the 

discriminants is also considered, then a circular ’mho* protection characteristic is ob­

tained, but fault resistance coverage would be increased by not doing so.

The construction of the fault point voltage magnitudes at various points on the trans­

mission line for a faulted (single phase) circuit when pre-fault power flow is present is 

shown in Fig 5.33 (not to scale). It is assumed that the vectors represent power frequency 

sinusoids and the (zero resistance fault is at the reach point). The complex value of Z is 

determined by the reach setting and the transactor phase shift. (Additional phase shifts 

may be introduced by filtering or using delayed signals, but these are refinements.) The 

relaying location voltage corresponds to point P, and the fault point to point F. The post­

fault estimate of the voltage OB is constructed from the superimposed voltage at the relay 

(OD) plus the superimposed current scaled by the reach setting.

5.9.2 PRE-FAULT CURRENT

Taking a term from one side of the equation to the other can have a marked affect on be­

haviour of any algorithm. The most difficult term to deal with is that due to the pre-fault 

current, since this determines the assumed pre-fault fault point voltage according to the 

following equation:
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IV„-27„I = J \V J 2 + IZ/„I2 -  2IVj, 1 Z/„l cos(0) , 0 = a r g f y J i j

In particular, for typical choices of 0, the magnitude of fault point voltage may exhibit 

quadratic behaviour with respect to fault distance, i.e. initially decreasing as the magni­

tude of 71 & increases from zero, reaching a minimum, and then increasing. For weak 

sources, the rate of increase in fault point voltage with fault distance may exceed that of 

71 sup. For algorithm (8), this means that assuming a fault distance larger than the actual 

one may not give a clearer and quicker trip decision (as would be hoped), but in some 

cases, a failure to trip. This behaviour will not happen if magnitudes are compared using 

either of the other two principles.

The behaviour of algorithm (8) may be illustrated with reference to Fig 5.34. The fault 

is again at F, but the relay is set for approximately twice the fault distance. Hence the point 

B corresponds to the left hand side of equation (8) and point E corresponds to the right 

hand side. It can be seen that point B lies outside the circle defined by radius OE, and 

hence the magnitude criterion is not satisfied, and a trip would not be issued. This behav­

iour will only occur at weak sources where the superimposed voltage magnitude is almost 

as large as the pre-fault voltage magnitude.

Assuming initially that the relay has three earth fault and three phase fault elements, the 

prevention of encroachment between elements is a major consideration. In this respect, 

principles in which Vss and 7ISS appear on the same side of the equation have a definite 

advantage where large pre-fault power flows are present. Consider a case Fig 5.35 where 

the fault point voltage is rotated 60° relative to the steady state relaying voltage vector 

Vss and an a-e earth fault occurs. The vector OG represents ZISS, which will be the same 

for all earth fault detectors, (as will be discussed in 5.9.3), and the vector FG represents 

Vsup for the a-phase. (Vsup for the sound phases are shown as zero in the diagram; using 

actual values would exacerbate the case demonstrated).

If reach point voltage estimates are constructed, then the right hand sides of the equation 

for the three fault detectors correspond to Ha, Hb, He, and the left to Pa, Pb, Pc (the busbar
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voltages for the a, b and c phases). In one of the sound phase elements, (the b-e element 

for an a-e fault) the ZISS term has the same magnitude as Vs3 and approximately the same 

direction as ZIsup and -Vsup. This element is therefore likely to trip at a lower reach setting 

than the a-e fault detector since the ratio of magnitudes of Hb:Pb is greater than that of 

Ha:Pa. In either the total quantities or construction of relaying point voltage principles, 

this would be sufficient to cause overreaching, but such behaviour is absent when algo­

rithm (8) is used.

However, the pre-fault current will cause problems for all principles in the following in­

stances:

1) When the magnitude of the superimposed voltage increases with fault dis­

tance from relaying point (even over a small part of the line), there is the possibility of 

the relay over-reaching: e.g. if the fault was actually at F in Fig 5.36, a setting of 0 km 

would probably be sufficient for tripping to occur, i.e. IOPI = IODI. In fact underreaching 

is likely for faults more distant than point B, (BE is parallel to FD and OE perpendicular 

to PD).

2) When the magnitude of the line voltage is zero at some point within the 

protection zone (due to large power swings).

If either of these circumstances is detected then tripping needs to be restrained.

The algorithm which constructs two estimates of the fault point voltage seems to be the 

most attractive option as it is least likely to suffer from encroachments. Non-operation 

when the reach setting greatly exceeds the actual fault distance will need to be investi­

gated since many Teed feeder IMR applications feature low capacity sources (which ex­

acerbate the problem).

5.9.3 PROCESSING OF EARTH FAULT MEASURANDS

In conventional distance relaying, three sets of earth fault measurands each comprise a 

phase voltage and a zero sequence compensated phase current. The compensated current 

e.g. for an a-e fault, la\  is formed such that (assuming ideal transposition):

155



3
Ia+lb+Ic

The ratio of zero sequence to positive sequence impedance Zo/Zi relates solely to the line: 

it is known to be a complex number, but may be approximated (at power frequency) by 

a real constant (equal to 3). It is not possible to specify this ratio with great precision, since 

it will vary with soil resistivity which itself depends on the amount of moisture present.

The zero sequence compensation uniquely provides both the pre-fault current I„ and the 

superimposed zero sequence current 5Io if the faulted phase corresponds to the fault el­

ement, or a superimposed zero sequence current 2Io if it does not. However, the formula 

also produces a non-zero superimposed current when phase to phase faults occur, which 

can lead to problems of encroachment by earth fault detectors. The ability to separate the 

pre-fault and superimposed components and process them differently allows other com­

pensation regimes to be employed. One which is particularly attractive is to make the 

superimposed current component 5Io for all earth fault elements. This should prevent 

earth fault detector encroachment for phase to phase faults, but at the cost of making en­

croachment by say the b-e detector for an a-e fault more likely. However, the latter prob­

lem is more amenable to solution.

5.9.4 VALIDITY CHECKS

If the following condition is satisfied, then the superimposed voltage does not increase 

with fault distance:

Although it is assumed that the IMR will be triggered only for forward faults, the follow­

ing condition (which essentially checks that the superimposed voltage and current are 

consistent with a forward fault) is useful to prevent encroachments:

(10)

(11)
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The requirement that the line voltage magnitude does not go through zero within the pro­

tected zone is equivalent to the following condition:

This condition will have the side effect of preventing tripping when the difference be­

tween the phase angles of the pre-fault voltage at the relaying and fault points exceeds 

90°. However, this is unlikely to be a severe practical restriction.

5.9.5 FILTERING

The implementation of the relay algorithm and validity checks require comparison of 

magnitudes of signals which have been described in terms of power frequency phasors 

rather than time domain signals. It is important to distinguish between the cases for which 

this is valid, i.e. where the signals actually are pure sinusoids, and those for which the 

signals contain power system and filtering transients. The pre-fault components of volt­

age and current comprise the first case, provided that the filter input is not gated, i.e. con­

strained to be zero until a triggering signal is received (either from the DR or from within 

the IMR). Substantial transients will be present on superimposed signals (c.f. Section 

5.7), whether filter input signals are gated or not. Similarly gating of pre-fault signal 

filtering will introduce transients dependent on the phase angle of the input sinusoid at 

the triggering instant.

5.9.6 MAGNITUDE COMPARISON

A simple realisation of a magnitude comparator consists of an instantaneous amplitude 

comparator followed by a counter, which would be incremented if the rectified signal 

applied to one input were greater than that applied to the second and decremented other­

wise, (but prevented from having a negative count). A trip signal would be issued if a 

count threshold were exceeded.

The operation of such a scheme is shown in Fig 5.37, where the comparator inputs (before 

rectification) were equal amplitude sinusoids with a phase difference of 45° (not the 

worse case). Tripping should not occur in this case, requiring a high count threshold to

(12)
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prevent false trips on counter excursions, which would slow relay operation when trip­

ping were desired.

A possible improvement is to use additional delayed versions of the time domain signals 

to make comparison of time domain signals less dependent on the relative phase angle 

of the signals. Consider two time domain signals:

x  (t) = cos(Wot) y(t) = cos(Wot + <j>)

And their delayed versions:

cos(Wty)

sin(Wty + <p)

Applying u(t), v(t), where:

u(t) = \x(t)\ + lx'(r)l v(t) = ly(r)l + ly'(r)l

to the inputs of an instantaneous comparator gives much less oscillatory counter behav­

iour than applying lx(t)l, fy(t)f, as Fig 5.38 shows. Hence the counter threshold may be 

set lower and faster operation obtained. The process is akin to multi-phase rectification; 

the ’ripple frequency’ of the rectified signal increases as the number of components used 

to form the comparator signals. The higher this frequency, the easier it is to remove and 

the shorter the time necessary to estimate the signal magnitude.

Pairs of signals in which the power frequency component is phase shifted by different 

amounts may be generated by passing each signal through a filter with a different fre­

quency responses rather than by delaying one of them. However, it is difficult to achieve 

sufficient phase shift between the signals with this method.

Better smoothing of rectified signals may be achieved by adding a delayed version of the 

rectified signal to itself before amplitude comparison were undertaken. Unfortunately 

this actually introduces additional fault point on wave dependence into the results, since 

the same transient is present in both signals.
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5.9.7 CONSTRUCTION OF SIGNAL PAIRS

Point on wave dependence may be overcome by ensuring that in the ’delayed* signal not 

only is the power frequency component delayed by 5ms, but the transient corresponds 

to application of the signal at that delayed time. A block diagram of an implementation 

for superimposed signals is shown in Fig 5.39. It can be seen that two sets of filters are 

needed, with associated gating and delay functions. No output would be available until 

5 ms. after the IMR has been triggered, which may seem too large a price to pay. However 

valid pre-fault signals are available for times prior to IMR triggering time, and the imple­

mentation shown in Fig 5.40 can be used.

The technique of generating signal pairs can be used to reduce the ripple on phase sensi­

tively rectified signals. When the phase difference between the two input sinusoids ap­

proaches 90°, the constant component of the output is zero, and the alternating component 

will have the same amplitude as the input Low pass filtering will have some effect in re­

ducing the alternating component, but a more effective technique (for pre-fault signals) 

is to generate a second set of signals for both inputs and phase sensitively rectify them. 

Adding the outputs will result in a large reduction in output ripple.

5.9.8 IMPLEMENTATION OF REACH ALGORITHM

Gating is required for all signals to ensure that transients introduced by relay filtering 

originate at the same time. The following options are available for treating equation (8):

1) Simple rectification of left and right hand sides. This would have the ad­

vantage that the transient present in each comparator signal would be identical if the esti­

mates of fault point voltage were in phase, but that performance would be similar to that 

shown in Fig 5.37 if they weren’t.

2) Rectification of signal pairs constructed as in 5.9.7 for the left hand side

(pre-fault quantities) and simple rectification of right hand side. This option will give 

a less accurate comparison than the previous one when the estimates of fault point voltage 

are in phase, but the reduction in ripple in one of the comparator inputs should allow a
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lower count threshold.

3) Construction and rectification of signal pairs for both sides.

All these alternatives were tried but the latter was easily the best. Though counting cannot 

start until 5 ms after a DR forward signal is received, a lower count threshold is possible 

and the discriminants show much less fault point on wave dependency.

5.9.9 IMPLEMENTATION OF CHECKS

In terms of time domain signals, the checks require that the constant component of phase 

rectified output of the numerator with respect to the denominator be greater than zero. 

Since measurement cannot start until 5 ms. after a DR forward decision has been re­

ceived, it is advantageous to use signal pairs (cf 5.9.7), particularly for the check de­

scribed by equation (10), as the phase difference between the pre-fault current and the 

superimposed fault point voltage estimate is likely to be close to 90°.

The phase rectified outputs of superimposed current, pre-fault voltage and pre-fault cur­

rent are all generated with respect to the superimposed fault point voltage estimate. Equa­

tion (10) may be implemented by utilising the output available from the implementation 

of equation (11).

5.9.10 SIGNAL SCALING

The processing stage at which signals are combined and scaled affects the following:

1) The amount of processing which has to be done.

2) The behaviour of the relay when current clipping occurs.

The voltage signals for both the DR and IMR are easily dealt with. Since over-voltages 

on the power system are high frequency phenomena, the maximum voltage which may 

be expected after passing through the VT and anti-aliassing filter stages is likely to be 

little greater than 1 p.u. Hence the three phase voltages may be scaled, digitised and fil­

tered before the relaying quantities are formed.

There are advantages in applying current scaling in the analogue stages of an IMR, since 

digital scaling involves multiplication which consumes processor time and may reduce 

the dynamic range. However, digital scaling will be included and modelled since setting
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the reach in software is a distinct advantage. There are two stages in the implementation:

a) The required digital current gain is resolved into an integer power of 2 

times a (proper) fractional part.

b) The voltage signal is then divided by the integer part of the gain, and the

current signal multiplied (as a series of additions, subtractions and divisions by 2) by the 

fractional part of the gain. Clearly there is little point in having full 16 bit accuracy in the 

fractional gain; the number of bits used may be specified in the data. (Generally 5 bits 

are used, giving approximately 3% error. This procedure is also used in the DR to scale 

the thresholds and form the forward current signals.)

5.9.11 ZERO SEQUENCE COMPENSATION

A zero sequence current could be formed in the analogue stages and then digitised, but 

summation of digitised signals will be modelled, even though this involves a digital 

multiplication. The following sequence of digital operations approximates that process 

fairly accurately, while preventing arithmetic overflow:

* I<2 ? b  r T I f/ * = — + — + — /  = /  + — + —
4 4 4 4 16

For conventional compensation: limit lex to the range -16384 < lex < 16384

/  = — + /  lae 2  a

For compensation as used in this design: limit lex to the range -6553 < lex < 6553 and then 

multiply by 5. The overall factor multiplying the zero sequence current is then 1.641 com­

pared to the desired value 1.667.

The effective digital multiplication may be combined with the range setting multiplica­

tion detailed in the next section if le is derived before the latter is applied. Different ratios 

of the superimposed components of the zero sequence and phase current may be used as 

described in 5.9.3.
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5.9.12 DESIGN SUMMARY

A block diagram of the analogue stage of the IMR for a-phase quantities is shown in Fig 

5.41. Processing for the other phase quantities is identical to that shown for the a-phase.

A block diagram of the derivation of superimposed and pre-fault components of voltage 

is shown in Fig 5.42. Scaling for the voltage signals would consist of binary shifting, i.e. 

division by 2 or 4 if necessary, but usually not even that. Only a single stage of running 

average filtering is used as band pass filtering is applied to the signals at a later stage. A 

block diagram of the derivation of superimposed and pre-fault components of current is 

shown in Fig 5.43. The single sample delay introduced into the signal path of the steady 

state currents is to correct the phase angle. The processing is similar to that used for the 

voltage signals except that scaling involves digital multiplication as discussed in 5.9.10, 

and the processing for the superimposed earth fault detector signals is as discussed in

5.9.3 and 5.9.11.

A block diagram of the processing of the superimposed and pre-fault components of volt­

age and current for one fault detector element is shown in Fig 5.44. The transversal filters 

have filter constant m -16  and pre-divide their input signals by 64 to prevent overflow 

and numerical rounding errors in filter calculations. The quantities required to evaluate 

the validity checks (discussed in 5.9.4 and 5.9.9) are produced at outputs A, B, C and the 

quantities for the reach point algorithm (discussed in 5.9.1) at outputs D, E. The phase 

sensitive rectification stages (discussed in 5.8.3) have two inputs: the input without the 

arrow is rectified with respect to the input with the arrow. All phase sensitive rectification 

is done with respect to the pre-fault voltage at the fault point.

Different processing for superimposed and pre-fault quantities is used (as discussed in 

5.9.9). The gate functions ensure that the input to the transversal filters is zero until 5 ms 

after a DR forward decision is received at which time the gate is opened. (The gate would 

close 20 ms after this and the rest of the relay would be reset, since both sets of superim­

posed and pre-fault signals would no longer be (theoretically) valid.) The LP FILTER 

elements are running filters with m=8.
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A block diagram of the evaluation of the checks and reach point algorithm determination 

is shown in Fig 5.45. The comparators produce a ’high’ output when the value at the upper 

input is laiger than that at the lower. Checks (10,11) in 5.9.4 may be combined by compar­

ing the phase rectified output of ZIsup with respect to Vsup -  ZIsup with the maximum 

of either zero (check (11)) or the negative of the phase rectified output of ZIss with respect 

to Vsup -ZIsup (check (10)). If any of the checks produce a ’high’ output then counting 

is inhibited. The counter will increment if its other input is ’high’ and decrement if it is 

not, but decrementation below a count of zero is prevented.

5.10 COMMONALITY BETWEEN IMR AND DR DESIGNS

If digital scaling of current signals in the IMR is adopted, the analogue stages of both re­

lays can be made identical. Much of the digital filtering (before combination of signals 

into delta and earth fault quantities) is the same, with the exception of the initial digital 

gain. Since the difference is due to the presence of transversal filters, commonality would 

be improved if the gain factor (7/8) were added immediately before them rather than at 

the first digital stage.
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Fig 5.5 DIFFERENCING (OVER 7 SAMPLES) FREQUENCY RESPONSE
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COMPARISON OP LOW AND (SCALED) HIGH PASS FILTER OUTPUTS
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VLTA IMPLEMENTATIONS
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VLTA IMPLEMENTATIONS (continued)
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PRE-FAULT CURRENT FLOW CONSIDERATIONS FOR RELAY ALGORITHMS
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CONSTRUCTION OF SIGNAL PAIRS
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CHAPTER 6

6.1 PROGRAM VALIDATION

6.1.1 METHOD

The program formulation finds the time domain equivalent of a spectrum by integrating 

the product of the spectrum and a complex exponential. The accuracy of the results may 

be judged by repeating the calculation with a refined integration interval. There are sev­

eral stages at which this process is necessary:

1) Primary power system waveforms. The current waveform (ideally unfil­

tered, but in practice with some low pass filtering) is required when current clipping by 

the CT occurs.

2) Waveforms produced by including linear transducer model frequency re­

sponse in simulation program:

a) Using simple (sub-transient reactance) generator model.

b) Using more complete generator model (featuring transient and synchron­

ous reactances.

c) Using frequency variant generator model.

3) Comparing output of primary current waveform convolved with CT im­

pulse response and that produced by above single step method.

6.1.2 WAVEFORM CONSTITUENTS

The total output waveform is the sum of several constituents:

1) The steady state pre-fault waveform.

2) The steady state quantities resulting from the superimposed sources 

applied at the fault point.

3) The transient quantities resulting from the subtraction of item (2) from the 

spectrum generated by the fault excitation and network and transducer frequency re­

sponses.

It has been found possible to eliminate the correction term made necessary by the trun­

cation of the frequency spectrum of item(2) by treating the latter as a sinusoid passed
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through 2 single pole filters, for which the spectrum rolls off much more quickly. Addi­

tional exponential decay terms in the time domain are required to match the change in 

the spectrum. These can be calculated by finding the inverse Laplace Transform of the 

filtered spectrum. A low pass filter comer frequency of 100 Hz is used.

The spectrum of item (3) is divided into segments covering a defined frequency range 

with equally spaced sampling points. The end point frequency of one segment is the start 

point frequency of the next segment, but the number of points an frequency interval be­

tween points will differ in adjoining segments. Evaluation of time domain contribution 

from a segment depends on the frequency range covered and two approaches are needed.

6.1.2.1 EVALUATION OF NARROW FREQUENCY BAND SEGMENTS

In narrow frequency band segments, it is worthwhile to shift the spectrum so that it is 

centred about zero frequency and use the DFT to evaluate the time domain contribution. 

Interpolation between DFT output data points can then be done before the frequency shift 

is restored, reducing the number of DFT calculations required. The factor by which the 

number of DFT points is less than the number of FFT points (for the high frequency seg- 

ment(s)) will be termed the interpolation factor.

6.1.2.2 EVALUATION OF WIDE FREQUENCY BAND SEGMENTS

In wide frequency band segments, the time domain contribution is evaluated using the 

FFT, and the number of integration points is constrained to be an integer power of 2. For 

validation purposes, the simple expedient of redoubling the number of integration points 

until repeatability is achieved is acceptable, but the frequency interval required near spec­

trum peaks makes the use of the FFT alone hopelessly inefficient.

6.1.2.3 LOCAL ERROR REDUCTION

A way of reducing error in localised regions is to perform additional integrations, using 

smaller integration sub-intervals. Each interval which requires refinement would have 

a number of extra points equally spaced between its two existing (end) points. The differ­

ence between the new data points and the spectrum assumed in the coarse integration (i.e. 

a linear interpolation between end point values), would then be evaluated using the DFT.
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This an efficient way of increasing integration accuracy in localised regions, but requires 

information on error magnitude distribution. A measure of error magnitude in an interval 

may be derived by finding the difference between an estimate of the spectrum formed 

using linear interpolation and one formed using a higher order interpolation rule.

If four data points are (xo.,xi,X2,X3)t then the difference between the two estimates of the 

value at (xi + X2)/2 is proportional to (y 1 + y2 -  y3 -  yo)* If this error is squared and added 

to the error generated in a similar way for the other two phases, then a list of error magni­

tudes for each interval for a particular output (e.g. voltage at busbar P) may be generated. 

An ordered list of the intervals in which the n largest errors occur is then found using a 

binary sorting algorithm. The lists of all desired outputs are then combined by taking an 

entry from each list in turn and discarding all duplicate references to intervals. There is 

quite a high degree of commonality in the lists, except in the case of 3 phase faults.

The number of extra points in these additional overlaid segments, and the number of seg­

ments can be specified such that say the 10 intervals with the highest error have a certain 

sub-interval, the next 10 a larger sub-interval and so on, such that unnecessary refine­

ment does not occur in every selected interval.

6.1.3 APPLICATION STUDY

The best way to show how the various parameters are set is by an example. On a 125km 

plain feeder (Fig 2.12), a voltage maximum a-e fault, 32km from P, with source capacities 

of 6 GVA at P and 0.6 GVA at Q, will show many features. Initially the sources will be 

modelled as subtransient reactances with X/R = 30 and Xo/Xi = 1.

6.1.3.1 SPECTRUM SEGMENTATION

The spectrum in the frequency range .001-100 Hz is divided into a number of narrow 

band segments as detailed below:

1) Low frequency point: 0.001 Hz. No interpolation needed.

2) First segment: .001 Hz to 49.001 Hz. 98 spectrum points used. Interpola­

tion ratio specified at 16 for 8 kHz sampling, i.e. at 2 kHz sampling only one quarter of 

the time domain points would be found using the DFT; the others would be derived by
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interpolation.

3) Second segment: 49.001 Hz to 49.961 Hz. 48 spectrum points used. Inter­

polation ratio: 64.

4) Third segment: 49.961 Hz. to 50.04 Hz. 79 spectrum points used. Interpo­

lation ratio: 64.

5) Fourth segment: 50.04 Hz. to 51 Hz. 48 spectrum points used. Interpola­

tion ratio: 64.

6) Fifth segment: 51 Hz. to 100 Hz. 98 spectrum points used. Interpolation 

ratio: 16.

7) Sixth segment: 100 Hz to 8.1 kHz. 8192 spectrum points found. FFT algo­

rithm used generates time domain output at 8 kHz rate. Every fourth sample is therefore 

used to give 2 kHz. output. It would be more efficient to split this range into 4 segments 

and generate output directly at 2 kHz using the FFT algorithm.

6.1.3.2 UNFILTERED WAVEFORMS

The primary system a-phase voltage spectrum amplitude and phase are shown in Figs

6.1 and 6.2 and the time domain waveforms in Fig 6.3. The current waveform is scaled 

by a resistive load corresponding to the positive sequence impedance of the line between 

the relaying location and the fault The simulation is repeated but with 1024 points in the 

sixth segment in Fig 6.4, and again with 1024 points in the sixth segment, but with 40 

extra segments each containing 7 points. The few extra points result in considerable con­

vergence towards the 8192 point results. A measure of the small residual difference is 

shown in Fig 6.5.

6.1.3.3 WAVEFORMS SUITABLE FOR TIME DOMAIN CONVOLUTION

If the simulation output is to be processed through a time domain simulation of a trans­

ducer, then the frequency spectrum of both the primary system signals and that used to 

generate the impulse response of the transducer must both be truncated at the Nyquist fre­

quency. Both integrations suffer serious error due to truncation and require that the sampl­

ing frequency be doubled.
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The transducer simulation consists of the CT model followed by a 1 kHz 2 stage Butter- 

worth relay input filter. The impulse response is shown in Fig 6.6, and was generated at 

a sampling rate of 16 kHz using 8192 FFT points. The error may be assessed by convolv­

ing a sinusoid with the impulse response and comparing the result with a sinusoid modi­

fied by the steady state gain and phase of the filtering. The amplitude error is approxi­

mately +.2%, and the phase error is -1 degree, (at 8 kHz sampling the errors are +.87% 

and -2  degrees respectively).

6.1.4 TEED FEEDER CONFIGURATIONS USED

A feeder configuration in which an internal fault can produce a reverse DR directional 

decision is shown in Fig 6.7. Fig 6.8 is used in calculated of the analogue current gain. 

All the sources have a Zq/Zi ratio of 1. and an X/R ratio of 30, unless otherwise specified.

6.1.4.1 WAVEFORMS PROCESSED THROUGH TRANSDUCERS

When convolution is used to process power system signals, comparability with results 

generated directly from a frequency domain simulation (in which the transducer response 

was included) may be achieved by sampling at double the rate, i.e. 16 kHz instead of 8 

kHz and using twice the number of points, of which approximately half are set to zero. 

A solid a-e fault 50 km from P using the configuration of Fig 6.7 is simulated using these 

parameters. The primary system current waveform at P (scaled by a resistance correspon­

ding to 50 km line impedance) is shown in Fig 6.9 together with the voltage waveform 

with the CVT frequency response included.

6.1.4.2 COMPARISON OF CURRENT WAVEFORMS

When current clipping occurs, it is not valid to model the clipping occurring solely after 

the CT, particularly as the inductive burden causes the phase of the output signal to differ 

from the primary current. Fig 6.10 shows the result of convolving the primary output cur­

rent (Fig 6.9) with the CT impulse response (Fig 6.6) (dotted line) compared with the out­

put when the CT frequency response is included in the frequency domain simulation. The 

output is compared after digitisation in the DR. Fig 6.11 (which is an enlargement of Fig
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6.19) shows that there are differences between the two current waveforms, which become 

apparent when the superimposed components are extracted.

6.1.5 FAULT POINT ON WAVE AND POWER FLOW CHARACTERISTICS

It is useful to display results as both these parameters are varied, since there can be con­

siderable interdependence of the characteristics. Although a different steady state sol­

ution is required for each power flow case, for variations in point on wave and pre-fault 

power flow, for single phase to earth or pure phase faults, only two transient solutions (at 

different fault points on wave) are required to generate all cases.

The variation in the magnitude of the pre-fault voltage at the fault point on the a-phase 

as the power angle between busbars P and Q is varied is shown in Fig 6.12. (Busbar R 

has the same angle as busbar P and the positive sequence voltage at each busbar is 1. p.u. 

As mentioned in Chapter 2, the pre-fault voltages may also contain zero and negative se­

quence components).

6.2 DIRECTIONAL RELAY

6.2.1 INTRODUCTION

The complete testing of a DR design would include the following topics:

1) Definition of internal fault region(s) for which the scheme transmits a 

blocking signal.

2) Evaluation of forward directional decision time, in order to determine

when the associated IMR would be triggered, or to determine the time for a DR scheme 

trip.

3) Assessment of relay sensitivity for all types of fault and various values of 

fault resistance at various fault points on wave.

4) Confirmation that the relay sensitivities at the Teed feeder ends remain 

co-ordinated.

5) Confirmation that the scheme behaves acceptably in the presence of cur­

rent clipping due to an external fault

205



Results will not be presented for topics (4) and (5), though consideration has been given 

to them in the relay design.

6.2.2 RELAY SETTING DETAILS

The DRs at each end of the Teed feeder need to have the following settings:

1) Ratio of (reverse) current threshold to discriminant

2) Safety factor multiplying voltage threshold.

3) Analogue current gain.

4) Voltage and current ratios used to construct Tee point voltage signal.

5) Ratio of forward current threshold to discriminant

All these except the last two are the same for each relay.

The value of (1) that is needed has been found by experiment to be 2.25. This may seem 

high, but it is necessary to ensure that the threshold traverses the discriminant level then 

stays above it (particularly in the period just after the threshold starts to rise). The safety 

factor multiplying the voltage threshold has been set to 1. A higher value would be used 

in practice, (and would mask problems with the current thresholds). The analogue current 

gain is set to 0.428 Volts per Amp, which corresponds to current clipping just starting for 

a three phase solid fault at P (with an infinite busbar at Q) in Fig 6.8.

Using the analogue current gain, the ratios of current to voltage needed to construct an 

analogue of the Tee point superimposed voltage can be found: the equivalent impedance 

of 1 km of feeder is 0.01245 voltage levels /  current levels. The forward current ratio re­

quired may be worked out for a relay at endP using the method of 5.8.10, (assuming faults 

at Q and R). The value (which is the same for relay R) is 3.55 must then be multiplied 

by the reverse current threshold ratio. The results are summarised in the following table:

COMBINATION RATIOS C /.C

DR LOCATION V : I (exact) V : I (integer) RATIO

P 1:0.996 1 :1 8

Q 1:0.062 15:1 9/4

R 1:0.996 1 :1 8
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6.2.3 DEFINITION OF REGIONS WHERE DR SCHEME FAILS

The behaviour of the DRs when a fault occurs at various distances from the busbar P is 

summarised in the following table:

FAULT DISTANCE FROM P (km)

DR LOCATION 0 to 51 51 to 55 >55

P FWD FWD FWD

Q FWD FWD FWD

R REV NO-OP FWD

SCHEME FAIL INTERTRIP TRIP

The precise fault distance at which the transition in behaviour for the DR at R occurs does 

vary slightly (±2 km) with fault conditions. It is assumed that the IMR is present but does 

not operate. For faults in the range 51 to 55 km from P, the DRs at P and Q produce local 

trip signals which are propagated by the intertrip channel. If intertripping were not pro­

vided then sequential tripping i.e. relay R detecting the opening of circuit breakers at P 

or Q would have to suffice.

The relay behaviour at R is characterised by a superimposed current null for a range of 

fault positions, but the superimposed voltage is always significant. The application limits 

determined by superimposed voltage, e.g. when long lines and high source capacities are 

present, will not be investigated.

The effect of fault resistance on DR application limits is of interest for the cases where 

internal faults cause reverse decisions at relay R. Assuming an IMR reach setting of 80 

km, the most optimistic estimate for IMR fault resistance coverage would be 80x0.29 or 

23 Ohms, and the DR at R is likely to produce a reverse decision for fault resistances 

above that value. For faults less than 51 km from P, up to four regimes may be defined 

as the fault resistance is increased.

FAULT RESISTANCE R (Ohms)

DR LOCATION 0 £ R < x x £ R < y y £ R £ z R > z

P FWD FWD FWD NO-OP

Q FWD FWD NO-OP NO-OP
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FAULT RESISTANCE R (Ohms)

R REV REV NO-OP NO-OP

IMR ATP TRIP NO-OP NO-OP NO-OP

SCHEME INTERTRIP FAIL INTERTRIP FAIL

The values x, y, z will vary with fault position, and the regime y < R ^ z  may not be present 

if high forward current threshold to discriminant ratios are used at the relay at P. It is also 

possible that the relay at Q could produce a forward decision for fault distance (<51 km) 

and resistance combinations where the relay at P does not operate.

6.2.4 TYPICAL WAVEFORMS AT R

6.2.4.1 EARTH FAULT

The waveforms for the relay at R for a solid voltage maximum a-e fault 50 km from P 

in the configuration of Fig 6.7 are shown in the following sections. Internal waveforms 

for the voltage and forward current VLTAs at the selection of minimum level stage show 

the delta quantities and the level formed by the algorithm. The delta quantities have been 

processed through two stages of superimposed component extraction filtering in all cases 

and divided by a factor of 4 for the currents and 2 for the voltages.

The delta quantities and level generated using two stage filtered signals for voltage are 

shown in Fig 6.13. The trace of the threshold has had the delay stage which occurs at the 

VLTA output incorporated (for easier comparison). It can be seen that the current signals 

are both very distorted and close to the minimum threshold level, but the voltage signals 

are much cleaner and larger, as would be anticipated from the discussion in the previous 

section.

The fall in threshold level occurs approximately 20 ms after the fall in signal magnitude, 

which is undesirable as the scheme would be unnecessarily desensitised for that period 

The current discriminant and level generated using single stage filtered signals are shown 

in Fig 6.14. The fall in threshold level now matches the fall in signal magnitude fairly 

closely. The misalignment between the peaks of the threshold and signals is corrected 

when the threshold is filtered. Fig 6.15 shows the threshold at the output of the voltage
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VLTA and the delta voltages, which exceed the threshold for several short discrete 

periods after the threshold has risen.

The delta quantities and intermediate threshold level generated using two stage filtered 

signals for (reverse) current are shown in Fig 6.16. Fig 6.17 shows the intermediate 

threshold level generated using single stage filtered signals together with the delta current 

signals combined to form a discriminant but assuming that the voltage signals are always 

significant. Fig 6.18 shows the forward current signals at the same stage as the current 

signals in Fig 6.17.

The benefits of monitoring voltage significance for current and forward current signals 

can be seen in Fig 6.19 and Fig 6.20, which show the threshold, the discriminant con­

structed assuming voltage signals are always significant, and the discriminant con­

structed using the voltage significance information shown in Fig 6.15. The latter con­

struction is zero outside those short periods when a delta voltage rises above the voltage 

threshold, and even in those cases its value is less than that of the other construction. The 

sign of the current discriminant shows that the fault is in the reverse direction, (the for­

ward current discriminant does not contain any directional information). Note that in 

some cases the discriminant assuming the voltages are always significant is less than 

when their significance is considered.

The current thresholds at the VLTA output are obviously smoother and higher than at the 

intermediate stage, and in the case shown, the associated discriminant does not re-cross 

the threshold once they have crossed, even when the voltage significance is not con­

sidered. The behaviour of the decision counters is shown in Fig 6.21: the forward decision 

counter remains at zero throughout, but the reverse one reaches its decision threshold in 

3 ms. from the time of fault incidence. The count is held for 12.5 ms and then decrementa­

tion is allowed to start (the discriminant will definitely be less than the threshold after that 

time.

Fig 6.22 shows the current discriminant and threshold for a similar fault occurring at a 

voltage minimum. The decision counter reaches a reverse decision in 4.5 ms.
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6.2A.2 THREE PHASE FAULT

A solid three phase fault at 55 km from P was simulated for the configuration of Fig 6.7, 

for points on wave of 0° and 90° relative to the a-phase voltage. A section of the pre-fault 

and post-fault simulated a phase power system voltage (but including CVT frequency 

response) is shown for the relay at R in Fig 6.23. The phase current (scaled by a resistance 

corresponding to 55 km of transmission line impedance) is shown on the same graph but 

is hardly visible.

Fig 6.24 shows the current threshold and the discriminant (two traces depending whether 

voltage significance was considered). Comparison with the a-e fault previously con­

sidered shows the threshold does not settle to its quiescent level as quickly after the fault. 

This is due to the travelling wave distortion apparent in Fig 6.23, which also causes the 

DR to reach a reverse decision, when the sign of the discriminant indicates that over a 

longer time span the fault would be considered to be in the forward direction. The counter 

behaviour is shown in Fig 6.25.

For a fault at 90° point on wave (where the travelling wave components are smaller), the 

relay does reach a forward directional decision as shown in Figs 6.26, 6.27 and 6.28.

6.2.5 FAULT POINT ON WAVE AND POWER FLOW CHARACTERISTICS

A surface plot of the DR operating time of the relay at P for a solid a-e fault 50 km from 

P is shown in Fig 6.29. The operating time varies from 2 ms. to 5.5 ms, with maximum 

operating typical operating time of 4 ms. occurring at 160° point on wave. The relay al­

ways detects the fault as forward, even at extreme power angles when the magnitude of 

the pre-fault fault point voltage is much reduced (c.f. Fig 6.12).

The situation for the DR at R, as shown in Fig 6.30, is not so clear cut: reverse operation 

does not occur at extreme power angles, and the maximum operating time is increased 

to 8.5 ms. The typical reverse decision time is 3.5 ms. rising to 7 ms. at 160° point on 

wave.
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The characteristic when the fault resistance is increased to 5Q is shown in Fig 6.31. There 

is a marginal increase in operating time in a few cases and no operation occurs in a few 

more, but overall there is very little change from the previous figure.

6.3 INDEPENDENT MODE RELAY

6.3.1 INTRODUCTION

The complete testing of an IMR design would address the following topics:

1) Checking that over-reach past remote busbars, perhaps caused by en­

croachment between detectors, does not occur for practical reach settings.

2) Evaluation of operating time for practical settings.

3) Determination of fault resistance coverage.

4) Checking that maloperation will not occur if the IMR is triggered while

atypical system conditions prevail, i.e. during power swings.

5) Checking that tripping still occurs for close up faults where the current sig­

nal is very much distorted by clipping.

The Teed feeder configuration shown in Fig 6.7 will be used for the studies in this section, 

as it presents particular problems for the IMR as well as the DR. One of the second order 

effects of feed-rounds in Teed feeders is that the effective value of source impedance can 

depend on fault position, since the ratio of superimposed current in the feed round to 

superimposed relaying current is fault position dependent. The effective source capacity 

(at P) for a fault at the Tee point can therefore be half that for a local close up fault

6.3.2 TYPICAL WAVEFORMS

6.3.2.1 A-E ELEMENT

A solid a-e fault 50 km from P on the configuration shown in Fig 6.7 will be studied, and 

the waveforms presented are those for the IMR relay at P, since this needs to operate for 

the scheme to trip when the DR at R detects this fault as external. Reach settings of 50 

km are used and the time the DR at P takes to detect the fault as forward is 2 ms. for a 

voltage maximum fault and 2.5 ms for a voltage minimum fault.
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Fig 6.32 shows the superimposed and pre-fault signals as occurring on the right hand 

edge of Fig 5.43 for a voltage maximum fault, and Fig 6.33 shows the same quantities 

for a voltage minimum fault. The pre-fault power flow was zero and hence the steady- 

state current/js in the first 20 ms after the fault consists only of line charging current The 

slow decay of the CVT transient can be seen in the voltage minimum fault Vsup trace (Fig 

6.33). The fault occurs at zero time: the waveforms are delayed by the several stages of 

filtering and the delay deliberately introduced.

The results of combining but not filtering quantities are shown for voltage maximum and 

voltage minimum faults in Figs 6.34, 6.35. The approximate equality of the quantities 

which will form the reach discriminants, i.e. -  ZISS and 7 1 ^  -  can be seen for 

times in the range 5 to 20 ms after the fault, but there is an offset in the case of the voltage 

minimum fault, which requires the signals to be bandpass filtered as shown in Fig 5.44.

Since there is zero pre-fault power flow, both the pre-fault voltage Vss and superimposed 

current ZIsup are in phase with the constructed superimposed reach point voltage ZIsup 

-  Vsup» and phase sensitive rectification approximates simple rectification. The wave­

forms of the check quantities (before low pass filtering) for voltage maximum and voltage 

minimum faults are shown in Figs 6.36,6.37. All the signals are zero until 5 ms after the 

associated DR issues a forward decision, and the pre-fault current signal is also zero dur­

ing the measuring period. The pre-fault voltage and superimposed current waveforms 

correspond to simple rectification of the corresponding traces in Figs 6.34, 6.35, plus 

addition of the rectified signal delayed by 5 ms (as shown in the block diagram Fig 5.44). 

Both traces are clearly positive for all of the measuring period.

The waveforms for the reach discriminant before low pass filtering are shown for voltage 

maximum and minimum fault cases in Figs 6.38 and 6.39. It can be seen that the relation­

ship between the two discriminants is maintained for the whole of the measuring time, 

i.e. 20 ms. after triggering and that the absolute peak value attained by one waveform in 

Fig 6.38 very nearly equals its equivalent in Fig 6.39. These figures do not include the 

versions of the signals delayed by 5ms, when these are added the results are shown in Figs
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6.40, 6.41. The addition makes the discriminants (even before low pass filtering) more 

nearly monotonic.

The low pass filtered check waveforms for the two fault points on wave are shown in Figs 

6.42 and 6.43. The steady state current waveform is shown after the stage (in Fig 5.45) 

where a minimum value of zero is imposed. Both the checks are satisfied: i.e. the phase 

rectified pre-fault voltage is greater than zero and the phase rectified superimposed cur­

rent is greater than the pre-fault current check signal, hence counting is not inhibited.

The low pass filtered reach point discriminant waveforms are shown in Figs 6.44,6.45. 

In both cases, the pre-fault constructed fault point voltage always exceeds the superim­

posed quantity estimate and counting does not occur. This is acceptable behaviour since 

the relay would obviously operate at a slightly higher setting, as only the discriminant 

containing the superimposed current would be larger. The minimum setting required for 

tripping is 59 km for both voltage minimum and maximum faults with a counter threshold 

of 6.

6.3.2.2 B-E ELEMENT

The fault details used are the same as in the previous section, but only waveforms for a 

voltage maximum a-e fault are shown. The unfiltered check signals for the b-e element 

are shown in Fig 6.46. The effect of phase rectifying the pre-fault b-e voltage with re­

spect to the constructed superimposed b-e fault point voltage is to produce a steady nega­

tive level (corresponding to the 120° phase difference) plus an oscillating component. 

The latter would have been much larger if a second signal (delayed by 5 ms.) had not been 

added. The superimposed current trace is identical to the corresponding trace for the a-e 

element (Fig 6.36). The filtered check waveforms in Fig 6.47 show that the pre-fault volt­

age check is negative for all of the measurement period and counting would be inhibited.

The reach point discriminants before low pass filtering are shown in Fig 6.48, and after 

filtering in Fig 6.49. They clearly show that no counting would take place (even if it were 

not inhibited by the checks). This would not have been so if the discriminants had con­

sisted of rectified quantities without the addition of delayed versions.
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6.3.23 A -B  ELEMENT

The a-b element check waveforms before filtering for the fault used in the previous sec­

tion are shown in Fig 6.50 and the a-b reach discriminants in Fig 6.51. The corresponding 

filtered waveforms are shown in Figs 6.52,6.53. The phase difference between the pre- 

fault a-b voltage and the constructed superimposed a-b fault point voltage is only 30°, 

so the pre-fault voltage check does not prevent counting, but, as in the case of the b-e 

element, the reach discriminants do not indicate that counting should occur. If a higher 

reach setting were used, counting and attainment of the trip threshold would be more like­

ly in the a-e element, as required.

6.3.2.4 A-E ELEMENT WITH PRE-FAULT POWER FLOW

Waveforms will be shown for a voltage maximum a-e fault Fault and configuration de­

tails are identical to those of 6.3.2.1, but the pre-fault angle of the voltages at busbar Q 

leads those at busbars P,R by 60°, causing large pre-fault currents to flow. The effect of 

the fault is apparently to change the a phase current magnitude very little, as shown in 

Fig 6.54. However, the signals inside the relay are very different as the relaying and fault 

point voltages are no longer the same.

Fig 6.55 shows the pre-fault and superimposed quantities for the a-e element for a setting 

of 50 km. As would be hoped, the pre-fault and superimposed quantity constructions of 

fault point voltage are similar to each other for a large portion of the measuring period.

The waveforms of the checks before filtering are shown in Fig 6.56. The superimposed 

current trace is the same shape as the zero pre-fault power case, though the magnitude 

is reduced (due to the reduced superimposed voltage at the fault point). The phase angle 

between the pre-fault relaying voltage and the superimposed fault point voltage causes 

the pre-fault voltage check to be less positive than in Fig 6.36. In Fig 6.57 the unfiltered 

reach discriminants which show greater discrepancy than in the zero pre-fault power 

case. The filtered check and discriminant waveforms are shown in Figs 6.58,6.59. The 

pre-fault voltage check is positive for the whole measurement period, as is the superim­

posed current trace, but the latter is exceeded by the pre-fault current trace for the initial
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3 ms. during which time counting would be prevented. The filtered reach discriminants 

are unfortunately most nearly equal during this period, and greater under-reaching oc­

curs: the minimum setting for operation is 65 km.

6.3.2.5 PRE-FAULT POWER FLOW FOR 80 KM SETTING

Fig 6.60 shows the reach point discriminants for the a-e element for the fault described 

in the previous sub-section, but with a reach setting of 80 km. The superimposed reach 

discriminant is larger than the pre-fault one, but a phase shift now exists between them 

which makes comparison more difficult. Fig 6.61 shows the filtered check waveforms, 

which is very similar to Fig 6.58, except that both current waveforms are larger. Fig 6.62 

shows the filtered reach point discriminants and Fig 6.63 shows the resulting counter be­

haviour.

The discrepancy between the results in cases where only the pre-fault power flow differs 

is due to magnitude and phase error in the value of Z, by which the current is multiplied. 

This topic is discussed at length in section 6.3.5, as it has been found that a common value 

of Z cannot be used for all relay elements.

6.3.2.6 FAULT RESISTANCE CHARACTERISTIC

The case considered is a 50 km 5£2 resistance a-e fault with zero pre-fault power flow. 

Unfiltered constructions of fault point voltage using pre-fault and superimposed compo­

nent quantities are shown for voltage maximum and voltage minimum fault point on 

wave angles in Figs 6.64,6.65. The result of producing signal pairs from each discrimin­

ant, filtering, rectifying and adding them is shown for the two cases in Figs 6.66, 6.67. 

The result of low pass filtering the previous signals can be seen in Figs 6.68,6.69.

The superimposed component discriminants are markedly different for the two cases and 

this may be related to the presence on a slowly decaying offset in the case of the voltage 

minimum fault, which reduces the likelihood of tripping. The minimum relay settings to 

trip for this fault are 62 km and 73 km. The presence of the offset would make tripping 

more likely if a measurement time greater than 20 ms. had been used, as can be seen in 

Fig 6.67.
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The situation becomes even more extreme as the fault resistance is increased: Fig 6.70 

shows the pre-fault and superimposed quantities for the a-e fault detector element with 

a setting of 80 km. The fault simulated is a 20 km 20 Q a-e voltage minimum fault with 

zero pre-fault power flow. The superimposed fault point voltage estimate has a very defi­

nite offset. At first sight this is strange, since the CT and transactor should remove any 

offset from the current signal, and an increase in fault resistance would make any offset 

decay more quickly. However, the offset in Fig 6.70 arises from the rate of decay of the 

current and hence increases with fault resistance.

The band pass filtering used in forming the discriminants is ineffective in removing the 

offset as may be seen in Fig 6.71, and an additional stage of transversal filtering (with 

m -8) was introduced with results as may be seen in Fig 6.72. The effect on the filtered 

discriminants is shown in Fig 6.73 (original filtering) and Fig 6.74 (extra filtering): the 

extra filtering makes the performance worse not better.

An unexpected feature of relay behaviour is that fault resistance coverage is better when 

a large pre-fault current exists. This may be illustrated for the previous fault, but with a 

power angle of 80° between the pre-fault voltages at busbar Q and those at P and R. Fig 

6.75 shows the pre-fault and superimposed quantities and Fig 6.76 shows the discrimin­

ants. It can be seen that the superimposed voltage estimate peaks before the pre-fault esti­

mate, which makes tripping more likely, and in Fig 6.75 the offset on the superimposed 

fault point voltage estimate adds to rather that diminishes the first peak. Comparison of 

the filtered discriminants (Fig 6.77) shows that tripping will occur 11 ms after the fault 

for this relay setting (80 km). The minimum setting for operation is 45 km, which is much 

less than the theoretical value of 72 km for a circular impedance characteristic centred 

at complex zero. However, the minimum reach setting for operation exceeds 20 km under 

all fault point on wave and pre-fault power flow conditions.

The behaviour may be attributed to the decay of the current transient: when there is no 

pre-fault power flow it causes a component in the filtered current which diminishes the 

first peak of the superimposed voltage estimate, but for large pre-fault power flows (both 

leading and lagging) it increases it. The effect occurs at all fault points on wave.
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6.3.3 FAULT POINT ON WAVE AND POWER FLOW CHARACTERISTICS

Fig 6.78 shows the minimum reach setting required to trip a solid a-e fault 50 km from 

P. The regions where the relay does not operate occur when either the setting required is 

greater than 80 km, or the checks prevent tripping within 20 ms. It can be seen that no 

over-reach occurs, with the smallest trip setting being 51 km. The increase in setting re­

quired with increasing power angle will be discussed in 6.3.5.

The operating time of the IMR at P for a setting of 80 km and the same fault is shown in 

Fig 6.79. The view shown here is from a different viewpoint to show limits of operation 

at positive power angles. There is a central plateau in which the operating time is 11 ms, 

but this rises to a maximum (21 ms.) as the power angle increases or decreases from zero 

and the fault type approaches voltage minimum.

Fig 6.80 shows the minimum reach for operation when the fault resistance is increased 

to 50. The main effects are an increase in the reach setting required to trip and a reduction 

in range of power angle for which the minimum trip setting is less than 80 km. These ef­

fects are distinct for negative power angles at the edge of the operation characteristic. The 

presence of fault resistance does not cause encroachment or overreach in this case.

Fig 6.81 shows the operating time for a relay setting of 80 km for the above fault The 

minimum operating time has increased to 12 ms. and the plateau in the middle has shrunk.

The minimum reach setting for operation for a 20 km fault with 20G fault resistance is 

shown in Figs 6.82 and 6.83. Two views are used as the extent of the region where oper­

ation does not occur for a setting of 80 km or less is difficult to represent otherwise. The 

operation time for a setting of 80 km is shown in Fig 6.84.

6.3.4 EFFECT OF SOURCE PARAMETERS

The effect of varying source capacity, Zq/Z i and X/R ratios for the source at P for a 50 

km solid a-e fault will be described in this sub-section. Fig 6.85 shows the minimum 

reach for operation characteristic when the Zq/Z i ratio is increased to 3 (from 1). (The 

source capacity and X/R values remain at the previous values of 2 GVA and 30.) Compar­

ing this figure with Fig 6.78, shows an overall reduction in reach setting required to trip
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for the 50 km fault and 2 km over-reach for a few cases around 50° point on wave and 

-120° power angle. Operation also occurs at higher positive power angles than in the case 

Zo/Zi=l.

Fig 6.86 shows the operation time for a relay setting of 80 km. The effect of the increase 

in DR operating time around 160° point on wave may be seen, as well as the conditions 

for which tripping occurs relatively quickly i.e. in 11 ms. The effect of increasing Z(/Zi 

at this source capacity is to greatly increase the fault loop impedance and change the pro­

portions of the superimposed fault point voltage estimate due to voltage and current 

When Zo'Zi = 1, the proportions are approximately equal, but the voltage contribution 

predominates when Zo/Zi = 3, and reach errors become more likely (as the reach setting 

will depend on the difference between two large quantities). This case will be discussed 

further in 6.3.5.

Studies were also done with a very large source capacity (35 GVA) at P to check the be­

haviour of the relay when the superimposed voltage is very small. The ratios of Zq/Zj and 

X/R were 3 and 30. Fig 6.87 shows the minimum reach for operation and Fig 6.88 shows 

the operation time for a reach setting of 80 km. The operating time characteristics for the 

three cases, i.e 2 GVA source capacity; Fig 6.79: Z<yZi=l,Fig 6.86: Zq/Zi =3, and 35 GVA 

source capacity Fig 6.88 are reasonably similar, but the high source capacity case shows 

the largest area of minimum operation time (11 or 11.5 ms). The corresponding minimum 

reach setting for operation show the same trends, with IMR operations occurring for 

slightly more high positive power angle cases (and slightly fewer high negative angle 

cases) with a 35 GVA source than for the corresponding 2 GVA source case.

In the 35 GVA source study there are a very few cases of encroachment by the c-e element 

which operates more quickly than the a-e element at the minimum setting for operation, 

e.g in 12 ms compared to 14 ms for a setting of 65 km at 100° point on wave and 80° power 

angle. This is a consequence of the high ratio of the superimposed current to voltage 

which effectively makes the superimposed voltage estimate for each earth fault element 

the same. The checks would not prevent counting for any earth fault element since they 

use this voltage estimate as a phase reference. As discussed in 6.3.5, the magnitude of
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pre-fault fault point voltage may not be identical for each of the three phases and the el­

ement for which it is least may produce the trip signal rather than the desired element. 

However, although this is not the desired behaviour, it is not catastrophic either, since po­

tential over-reach will be limited to the percentage difference between pre-fault phase 

voltages.

Studies were also done with the ratio of source reactance to resistance (X/R) changed 

from 30 to 10 for the two previous source capacities and ratios of Zo/Zi, but there was 

very little change in the results. The the relay operated for slightly more cases at high posi­

tive power angles, but slightly fewer cases at high negative power angles when X/R = 30.

6.3.5 EFFECT OF UNTRANSPOSED POWER LINE CONDUCTORS

In the relay design it has been assumed that the line impedance between the relay and the 

fault was approximately 0.29 Q/km at a phase angle of approximately 80°. What was not 

realised was the serious effects that actual deviations from this value can have in compari­

son of constructed pre-fault and superimposed voltages. Using the configuration in Fig 

6.7 (with for each source), the impedance of 50 km of line was measured by di­

viding the difference of the relay point and fault point pre-fault voltage by the pre-fault 

current at R This is done for each of the phases and also for the three delta quantities.

In the relay design (Fig 5.44), phase current (without zero sequence compensation) is 

used to calculate the pre-fault fault point voltage estimate. This is incorrect, since zero 

sequence currents do exist even before the fault, and should be properly treated, i.e. by 

using the conventional compensation formula. The phase calculation is repeated using 

zero sequence compensated phase current to quantify that source of error.

PHASE SEQUENCE

a b c 0 1 2

VOLTAGE AT P(kV) 306.7 334.2 342.6 18.6 326.6 26.2

VOLTAGE AT F(kV) 237.0 260.0 257.7 6.4 251.5 8.8

CURRENT PF(kA) 16.1 16.5 16.3 0.2 16.3 0.3
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IZIQ 0 ° t z ia 0 ° i z i a 0 0

a 15.23 78.09 b 13.64 90.38 c 14.31 91.36

a-e 15.35 76.56 b-e 13.83 91.57 c-e 13.93 91.64

b-c 13.9 91.67 c-a 15.72 85.60 a-b 13.51 82.13

Comparison of the phase calculation using compensated quantities (second row of data) 

with the first row of data shows only a slight change: this is to be expected as the ratio 

of the zero sequence to positive sequence component of pre-fault current at P is only .014. 

However, a wide spread of both magnitude and phase exists, and it is the phase variation 

which causes most error (principally in the pre-fault fault point voltage estimate). When 

large pre-fault currents are flowing, Vss and -ZISS usually are approximately 90° out of 

phase, and their sum is very sensitive to phase error in Z. Magnitude error in the value 

of Z will tend to alter the phase of the pre-fault reach point discriminant, but a phase error 

in Zlss will cause a significant change in the magnitude of V„ -  ZISS. The superimposed 

quantity discriminant is much less affected since -Vsup and ZJsup are almost in phase for 

a fault at the reach point.

If phase error in the current scaling factor Z produces an over-estimate of pre-fault fault 

point voltage for positive power angles, then an under-estimate would be produced for 

negative power angles. A trend of this form is clearly visible in the results presented for 

a-e faults, but the difference between Figs 6.78 and 6.85 shows that pre-fault consider­

ations cannot totally account for the effects observed.

Signals may be relatively easily phase shifted by delaying them by an integer number of 

samples, and in the case of the pre-fault current, valid information is available from the 

time before the relay is triggered by the DR. At a 2 kHz sampling rate, increments of 9° 

are available and may be assigned to the elements as follows:

a-e b-e c-e b-c c-a a-b

samples delay 2 0 0 0 1 1

These delays may be implemented by changing the 1 sample delay added to the pre-fault
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currents (at the right hand side of Fig 5.43) to the above delay appropriate to the element 

The results presented for the a-e fault have included this correction: the remaining trend 

corresponds to an error magnitude < 9°, which cannot be removed by a simple delay. Cor­

rections have not been applied to superimposed current, though it would have been con­

sistent to do so.

If the same magnitude of Z is used for all superimposed and pre-fault currents then certain 

elements are likely to over-reach and others to under-reach. Since the current quantities 

are already digitally scaled, (but only in the relatively coarse steps provided by the digital 

current scaling technique (5.9.10)), a relatively small design change would be required 

to scale them individually to compensate for lack of transposition. This is most likely to 

be necessary when the superimposed voltage is small, i.e. for the important cases of relays 

close to large capacity sources. However, this design change has not be implemented.

The nature of the source in the simulation will also have an effect on the apparent impe­

dance of a section of line, since the proportions of sequence components in the pre-fault 

current and voltage would be affected. This would particularly affect the earth fault de­

tectors since zero sequence compensation is not exact.

6.3.6 RESULTS FOR DIFFERENT FAULT TYPES

The practical effects of these changes may be judged by the results for solid faults of other 

types at 50 km from P. Fig 6.89 shows the minimum reach for operation and Fig 6.90 

shows the operating time for an 80 km relay setting for a b-e solid fault with 2 GVA source 

capacity at P. The view is from a different direction to that used for the a-e fault, and the 

trend of minimum reach to trip against power angle is opposite to that for the a-e fault, 

indicating that the phase enror is of opposite sign.

The equivalent results for a b-c fault are shown in Figs 6.91,6.92

6.4 IMR BEHAVIOUR WHEN CLIPPING OCCURS

The configuration used in the simulation is that of Fig 6.7, but with a source capacity at 

P of 35 GVA and a 3 phase solid fault 1 km from P with zero pre-fault power flow. The 

fault point on wave is 30° with respect to the a phase voltage minimum. The a-b primary
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voltage (including CVT frequency response) and current (scaled by a resistance of 

0.29D) is shown in Fig 6.93. The result of clipping in the CT model and relay produce 

considerable distortion of the current waveform as shown in Fig 6.94.

6.4.1 DR WAVEFORMS

The waveforms of the reverse current discriminant (generated with and without voltage 

significance information) are shown in Fig 6.95. Despite the distortion, the directional 

information is valid and indicates a forward disturbance. The corresponding waveforms 

of the forward current discriminant are shown in Fig 6.96 and a forward decision is issued 

in 1.5 or 2 ms for all fault points on wave.

6.4.2 IMR WAVEFORMS

The pre-fault and superimposed components for the a-b fault detector with a reach set­

ting of 80 km are shown in Fig 6.97. The superimposed fault point estimate exceeds the 

pre-fault estimate for all the measuring time as shown in Figs 6.98 and 6.99, and the relay 

trips in the minimum operating time for all points on wave. Any of the phase elements 

would have shown a similar picture, and some of the earth fault elements may also operate 

since the sum of three clipped currents does not always equal zero. The minimum reach 

for the phase elements to operate is 3 or 6 km (depending on point on wave). (The granu­

larity of the increment is due to the coarseness of the digital reach multiplication).

6.5 NEW SOURCE MODEL

6.5.1 INTRODUCTION

In order to compare the results from the new source model with those from the old, the 

first parameter which needs to be set is the source capacity. However, if the source capac­

ity in the new model is set so that the total voltages and currents look similar to those for 

the simple model, then the superimposed voltage at the new model is much higher and 

the superimposed current much lower than previously (implying that the source capacity 

is too low). If the source capacity is raised, then it is possible to get approximate compar­

ability of either the superimposed voltage or current, but the total quantities waveforms
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are then very different. In the cases shown, it is attempted to equate the superimposed 

relay current.

6.5.2 PARAMETERS

The modelling of the generator mutual inductance is described in Chapter 2 (2.4.6) with 

the parameters (K = 2.56, S = 0.5). A field winding with (reactance Xfd and series resis­

tance Rfd) is modelled in parallel with the mutual inductance, and leakage reactance and 

transformer reactance are lumped together as Xi which is in series with the armature re­

sistance Ra. The zero sequence impedance is modelled as a reactance (which includes 

transformer reactance) Xo in series with a resistance Ro. The p.u. values of these para­

meters are tabulated below.

Ra Xi Xd Rfd x fd Ro Xo
.00365 .34 .9 .0824 .321 .011 .34

Zero and positive sequence quantities will be referred to the same base of 0.55 GVA.

6.5.3 WAVEFORMS

Fault details are the same as described in 6.3.2.1, i.e. an a-e fault 50 km from P. The a 

phase digitised voltages at P for the new and simple source models are shown in Fig 6.100 

and the currents in Fig 6.101. The obvious points to note arc the presence of travelling 

wave signals and decay of signal magnitude on both the current and voltage signals in 

the new source model. Both post-fault current and voltage signals arc larger than for the 

simple model, which would normally imply a larger source capacity.

The superimposed delta voltages and threshold in the DR arc also greater in the new 

model as shown in Fig 6.102. The current discriminant and threshold are shown in Fig 

6.103 and the forward current discriminant in Fig 6.104. The very close similarity in the 

two models between the delta currents when the phase currents differ, reflects the differ­

ing proportions and phases of positive, negative and zero sequence components in the
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two models* outputs. As would be expected, both the voltage and current thresholds take 

longer to decay back to quiescent level with the new model.

The pre-fault and superimposed quantities for the a-e element in the IMR with a reach 

setting of 50 km are shown in Fig 6.105 and the check and discriminant quantities in Fig 

6.106. Although the superimposed quantities differ significantly from those produced 

using the simple model c.f. Figs 6.32,6.34, the discriminants are much more nearly equal 

as can be seen in Fig 6.107 and after low pass filtering in Fig 6.108. This should improve 

reach accuracy.
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Fig 6,88 IMR AT P; Zn/Zi=3; 35 OVA

B ABOVE 
21.00 

20.00
19.00 -
18.00 -
17.00 -
16.00 -
15.00 -
14.00 -
13.00 -
12.00 -  

BELOW

22.00 
~  22.00 
~  21.00 
~  20.00
-  19.00
- 18.00

17.00
16.00
15.00
14.00
13.00
12.00

POWER ANGLE
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CHAPTER 7

CONCLUSIONS

7.1 SIMULATION

7.1.1 FREQUENCY DOMAIN METHOD

The method of deriving and evaluating a frequency spectrum using the Fourier Transform 

rather than the modified Fourier Transform has proved reliable and accurate. It is less effi­

cient though for the following reasons:

1) More frequency points need to be found: particularly in regions of the 

spectrum where the value changes rapidly.

2) The Discrete Fourier Transform rather than the Fast Fourier Transform is 

used to evaluate parts of the spectrum.

However, there are advantages in the use of the the technique:

1) Errors in integration can be quantified (and are used to add further spec­

trum points in regions of greatest error).

2) The time domain output does not diverge towards the end of the time win­

dow.

The inclusion of transducer models in the primary simulation was a success for the CT, 

but there were initially problems with the CVT. The CT model was a pole-zero model 

and therefore physically realistic, whereas the CVT model was taken from published data 

(and the frequency response extrapolated where the data was lacking). However, interpo­

lation in the frequency domain using cubic splines produced output waveforms in the 

time domain which did not contain any obvious defects.

Comparison of the waveform produced by convolving the power system waveform with 

the CT model impulse response showed good agreement with the waveform produced 

when the CT frequency response was included in the system frequency response. It was 

not found necessary to introduce convergence factors to achieve this result.The compari­

son was not done for the CVT as there was no reason why the CVT frequency response
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should not always be included in the system frequency response. (The non-linearities in 

the power system to relay voltage transfer function are not modelled).

7.1.2 SIMULATION FEATURES

Several features were introduced to make the simulation more efficient:

1) To generate transient outputs corresponding to the initial fault point on 

wave and one 90° in advance. From these waveforms, the output for any point on wave 

can be constructed by scaling and addition (provided the system is linear up to that point). 

If the pair of waveforms are stored, then the simulation can be repeated for any point on 

wave with only the steady state calculation needing to be done again, which was very use­

ful when relay designs/parameters were being adjusted.

2) For single phase to earth or pure phase faults, the transient output only de­

pends on one voltage, and the stored waveforms for one initial power flow condition can 

be combined to produce the output of any other. The steady state solutions will be differ­

ent in each case, but the work in generating them is small in comparison. This feature was 

used extensively.

3) When power system signals are being generated with the object of con­

volving them with a transducer impulse response, the upper half of the spectrum must 

obviously be zero or artificial aliassing will occur. Time will be saved if the matrix is not 

solved at these frequencies.

4) The solution of the steady state matrix with the assumption that positive 

sequence sets of currents are injected at the sources rather than positive sequence sets of 

voltages imposed on the busbars is a necessary improvement. The results for some of the 

relays tested, i.e. the superimposed component designs, would not have shown to the true 

extent the problems that lack of transposition produces.

5) The classification of the power system configuration and output options 

allowed partial automation of results processing, with laige files being searched for par­

ticular combinations of parameters and graph plots of the cases found being produced 

automatically.

6) The algorithm for searching for the minimum reach for operation was
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found very useful in identifying relay problems, as was information on which element 

tripped first, as a means of detecting encroachments.

7.1.3 SOURCE SIMULATION

A model of a generator and transformer which was developed was shown to give sub- 

transient current decay and to produce waveforms in the DR and IMR which were diffrer- 

ent to those produced by a simple source model. It is believed that the results more accu­

rately represent the physical system and the models should be considered for use in other 

simulation studies.

7.2 DIRECTIONAL RELAY

7.2.1 INNOVATIONS

There are three major innovations in this design:

1) The use of one directional detector rather than two or three.

2) The design of the adaptive threshold algorithm produces an output which

is close to ideal.

3) The construction of forward current discriminant and threshold which

mimic the voltage at the Tee point, simplifies setting of relay sensitivities so that if an 

external fault can cause a relay to reach a forward directional decision then another relay 

should always have reached a reverse decision.

7.2.2 INTRODUCTION

This section covers the adaptation of an existing DR design [23] for use in a Teed feeder 

scheme. The principal difficulty is to maintain the sensitivity of each relay in correct rela­

tion to that of the other relays. The requirement may be summarised that a DR may only 

be allowed to reach a decision indicating a disturbance in a forward direction if, assuming 

the disturbance were external, one of the other relays could reach a reverse decision. For 

a plain feeder, a fairly good estimate can be made of conditions at the other end from local 

quantities. For a Teed feeder, in addition, the estimate requires knowledge of system con­

figuration, source capacities and location of any previous disturbance.

270



7.2.3 DESIGN DETAILS

1) A sampling frequency of 2 kHz rather than 4 kHz was used, as 2 kHz gives 

a sufficient number of samples in the desired trip time. A problem was encountered due 

to travelling waves at a frequency close to 2 kHz being aliassed, which required the power 

system waveforms to be sampled at 4 kHz, the average of two consecutive samples 

formed, and the relay fed with that data at a rate of 2 kHz. In effect, the extra stage is acting 

as a 2 kHz digital notch filter.

2) The current signal is the output of the transactor attached to the CT. No

integrating stage is used. The filtering for the current channel is different to that for the 

voltage to improve the phase match between the signals.

3) Two stages of full cycle superimposed filtering are used as this gives a

better shape to the variable threshold than cascaded full and half cycle stages.

4) A single discriminant comprising the sum of the line currents multiplied 

by the sign of the respective line voltage was chosen to avoid having to co-ordinate the 

sensitivities of two detectors at each relay.

5) The single current discriminant is compared against a threshold to deter­

mine the direction of a disturbance. If this indicates a significant forward disturbance then 

another check is made by comparing the (separate) forward current discriminant against 

its threshold. Only if the latter condition is met is the ’forward’ counter incremented.

6) The forward discriminant and threshold are composed of superimposed 

voltage and current in proportions to mimic the voltage at the Tee point. The scaling factor 

between them reflects the worst case distribution of currents between relays.

7) The current threshold is made to vary according to past values of superim­

posed current, in order to exclude effects from past disturbances. A new digital algorithm 

has been developed which enables a faster return of threshold level to normal measure­

ment levels (if appropriate), while not reducing the maximum sensitivity attainable.

8) Separate forward and reverse decision counters are used to allow faster

tripping, but suspension of counting for 12.5 ms after a directional decision is needed to 

prevent the decision process reaching multiple decisions for a single disturbance.
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9) Current clipping in Teed feeders is even more troublesome than in plain

feeders for DR schemes. The approach adopted is to detect when it occurs at a relay and 

allow 4 ms. for a directional decision to be reached. If the decision is forward then no ac­

tion needs to be taken, if reverse, then a reverse signal is broadcast over the communica­

tion channel until 50 ms. after clipping was last detected. The local decision counters are 

reset and local counting is also suspended for this period. This may seem excessive, but 

the co-ordination of relay sensitivities cannot be achieved when clipping is present at any 

relay.

7.2.4 PERFORMANCE

Studies to determine the application limits of the DR design are applicable only to the 

particular Teed feeder configuration studied since the threshold composition and magni­

tude (which regulate sensitivity) are set using configuration data. In all the studies the in­

itial voltage, current and forward current thresholds were at their minimum permitted le­

vels.

In its final form the DR has a minimum decision time of 2 ms. and a maximum of about 

8 ms. The operating time is dependent on fault point on wave and the magnitude of the 

signals.

In the Tee configuration studied, the main aim was to define the regions for which one 

relay would detect an internal fault as external. With equal source capacities of 2 GVA 

at P and R in Fig 1.1b, this region is from the busbar at P to approximately 51 km from 

P on feeder PT (and similarly on RT). This figure varies by approximately 2 km with fault 

type and point on wave and always exceeds 40 km even with 50 Ohms fault resistance.

Operation times when the fault on PT is detected as ’forward* by all relays are relatively 

fast due to a side effect of the composition of the forward current discriminant and thresh­

old. Although the reverse cunent discriminant may be near a null, the forward current 

discriminant comfortably exceeds its threshold due to the contribution from superim­

posed voltage.
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7.2.5 APPLICATION TO PREDOMINANTLY CAPACITIVE NETWORKS

Application of the relay design to circuits involving cables and capacitors is likely to 

prove problematic. In a predominantly capacitative network, a directional criterion 

which used the relative signs of the superimposed voltage and rate of change of current 

would give the opposite fault direction to that desired once initial transients had died 

down. However, once initial transients had died down, the threshold might have exceeded 

the discriminant and such behaviour would be irrelevant The initial transient would give 

the correct directional information, but compared to a directional discriminative process 

which used superimposed voltage and current, the time during which correct directional 

information could be derived would be shorter. However for that short initial period the 

current signal would be changing rapidly, and the rate of change of current would be a 

more effective discriminant to use.

Problems occur when the directional discriminants do not give the correct directional 

decision for all time. (They result from the different forward and reverse sensitivities de­

liberately introduced into the relay, and require additional checks on signal validity as 

discussed by Barker [23]). Such problems would be worse if the design in this thesis were 

used in a predominantly capacitive network application, by the same token as they are 

eliminated for this design in a predominantly inductive network.

7.3 INDEPENDENT MODE RELAY

7.3.1 INTRODUCTION

The IMR described was developed to overcome limitations in DR schemes. From studies 

done, the main requirements are:

1) No over-reach.

2) Good performance when local source capacity is low.

3) Good fault resistance coverage.

These requirements should be maintained over the whole range of normal operating 

conditions, and also under power swing conditions, since although the relay would only
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make an impedance measurement when the associated DR reach a forward directional 

decision, it is not inconceivable that such should occur during a power swing.

It will have been noted that issuing of a trip signal in time to allow one cycle fault clear­

ance has not been specified. Although this would obviously be desirable, the author was 

unable to combine this criterion with the requirements mentioned. Indeed the minimum 

operating time of the final design is 11 ms comprising 2 ms for the DR operating time, 

5 ms delay before counting is permitted and 3 ms counting time. It is certainly possible 

to achieve reliable relay operation in less than this time using other techniques, which 

may be more appropriate when operation close to a known high source capacity is antici­

pated.

The main design problem with any superimposed component impedance measuring tech­

nique is pre-fault current which partially determines the voltage(s) at the fault point. This 

may be illustrated by consideration of a relaying technique which was rejected.

7.3.2 SUPERIMPOSED THRESHOLD TECHNIQUE

It has been found by experiment, that the envelope c.f. 5.7.2 of a relaying waveform 

which includes a band pass filter (i.e. a transversal filter with m= 16) triggered at a certain 

time, is predominantly determined by the filter characteristics and that time. Hence the 

maximum value that the filtered output of a unit amplitude waveform applied to the relay 

can take at any time after triggering may be calculated in advance and stored in ROM. 

During operation of the relay, the instantaneous value of a filtered quantity could be com­

pared with the value stored in ROM for the time after triggering: if it were greater then 

a counter could be incremented leading to a possible trip decision.

If the filtered quantity were the fault point voltage, constructed using superimposed re­

laying voltage and phase shifted superimposed relaying current scaled by a reach factor, 

then such a scheme would offer potentially very fast tripping, though the operation time 

would be very dependent on fault point on wave, as discussed in 5.7.1. However, several 

problems are apparent:

1) A separate threshold would be needed for each fault detector (i.e. a-e, b-e,
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c-e, b-c, c-a, a-b) due to the lack of transposition between transmission line conductors.

2) Adjustment of the threshold to take account of the pre-fault voltage at the 

fault point would inevitably involve either digital multiplication or a very large number 

of look-up tables in ROM.

3) For a given fault, operation of the relay is only likely at the time when the 

filtered quantity is maximum. This is a less desirable comparison regime, than one in 

which one of two quantities is larger than the other for all of the measuring time if a trip 

is to be issued. The latter would be much less sensitive to noise and signal distortion.

The penalty of ignoring variation of fault point voltage magnitude with pre-fault current 

and choosing a threshold of say 1.2 p.u. is barely acceptable when high local source ca­

pacity is present, and unacceptable (i.e. gross under-^each) when the local source capac­

ity is low.

In view of the implementation problems of the above technique, comparison of the esti­

mate of the value of the fault point voltage constructed using superimposed quantities and 

that constructed using pre-fault quantities was used as described in the next sub-section.

7.3.3 COMPARISON OF PRE-FAULT AND SUPERIMPOSED QUANTITIES

7.3.3.1 INNOVATIONS

The major innovation is the use of superimposed components, which in turn allows com­

parison of estimates of fault point voltage and also the different treatment of superim­

posed current from pre-fault current for earth fault detectors. The reach algorithm is also 

a new design. It is very stable but slow.

7.3.3.2 INTRODUCTION

The ability to derive superimposed components allows estimates to be formed of the fault 

point voltage in two ways: using only pre-fault and only superimposed quantities. The 

relative magnitude of these estimates is used to determine whether a trip counter is to be 

incremented.

A number of comparison algorithms were investigated and several problems and require­

ments were identified:
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1) Discriminant quantities need to be band pass filtered to reduce the effect 

of exponential decay in current but also in voltage signals (due to CVT transient).

2) Encroachment between fault detectors was a major problem, particularly 

for earth fault detectors when phase to phase faults occur in conjunction with laige pre- 

fault power flow.

3) Fault resistance coverage needs to be as large as possible since the DR will 

operate (detecting an internal fault as external) for large fault resistances. An initial step 

in this direction is to compare magnitudes of fault point voltage estimates.

7.3.3.3 CHECKS ON SIGNAL VALIDITY

Checks are needed for a number of reasons, some of which are fundamental to distance 

relaying, and some of which are necessary due to this particular relay implementation:

1) Pre-fault current causes a voltage distribution along the length of a trans­

mission line which can result in the superimposed voltage produced by a fault at one posi­

tion being larger than that produced by a fault at a closer position. This can lead to over­

reaching of the relay. The condition is detected by effectively determining whether the 

sum of the pre-fault and superimposed currents (scaled and phase shifted) when added 

to the superimposed fault point voltage increases or decreases the latters magnitude.

2) An obvious requirement is to detect when the voltage magnitude on a line 

goes through a null due to current flow, since, if the relay reach setting includes the null 

then tripping would occur. This is fairly easily accomplished by comparing the phase of 

the superimposed fault point voltage with that of the pre-fault relaying voltage. (In the 

absence of fault resistance, the phase of the superimposed fault point voltage estimate is 

reasonably independent of relay setting).

3) The third check is to compare the signs of the superimposed fault point 

voltage estimate and the (phase shifted) current: if they are in phase then the fault is prob­

ably forward, if not, then it is reverse. This is to guard against sequential disturbances.
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7.3.3.4 FORMATION OF EARTH FAULT QUANTITIES

One of the main benefits of using superimposed quantities is the ability to prevent earth 

fault detectors from operating when phase to phase faults occur, by using only zero se­

quence current in the superimposed fault point voltage estimate. The penalty is a greater 

tendency for encroachment between earth fault elements, but this does not cause over­

reach when it occurs. Encroachment by phase fault detectors for earth faults is not a prob­

lem.

7.3.3.5 CORRECTION OF CURRENT PHASE

The effect of untransposition of the line conductors has a large effect on the performance 

of the relay algorithm, when large pre-fault currents are flowing. This may be effectively 

corrected by delaying the pre-fault current signals for the fault detector elements by 

differing numbers of samples, e.g. the a-e element requires a delay of 2 samples, but the 

b-c element requires no delay. The earth fault detector pre-fault currents need to be zero 

sequence compensated using the conventional formula.

7.3.3.6 REACH DISCRIMINANT ALGORITHM

In order to reduce point on wave effects, the algorithm combines two versions (90° out 

of phase) of each of the pre-fault and superimposed fault point voltage estimates. This 

has proved to have excellent performance in terms of reach stability, and freedom from 

encroachment caused by phase difference between input signals, but the minimum oper­

ating time is 11 ms. which is too long for one cycle clearance of faults. However, in Teed 

feeder applications, reliability of tripping and good performance for resistive faults are 

higher priorities than speed.

1 3 3 .1  EFFECTS OF SOURCE PARAMETERS

Variation of source capacity seems to have small effect on relay performance. At low 

source capacity, variation of source Z q/ Z i  does affect relay behaviour, but causes only 

a slight over-reach. Variation of source X/R (identically for positive and zero sequence 

capacities) over the range 10 to 30 has a negligible effect
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The correspondence between the pre-fault and superimposed fault point estimates for 

earth faults at the reach point setting is improved when the new source model is used in 

simulations.

7.3.3.8 FAULT RESISTANCE PERFORMANCE

Performance for fault resistances of 5 0  and below is acceptable. For resistances of 200 

and above, the decay of the current offset (for faults other than at voltage maximum) adds 

an error term which can reduce or increase the likelihood of tripping. With low pre-fault 

currents, the effect is to cause under-reach, but for high pre-fault currents, the relay will 

trip for less than the theoretical reach setting (assuming a circular trip zone in the impe­

dance plane centred on zero). Actual over-reach may also be possible during power 

swings though this did not occur in the results presented.

Since the fault resistance coverage of the IMR design does not equal that of the DR, the 

addition of IMRs will still leave high fault resistance conditions in which the DR scheme 

will detect an internal fault as external, but these cases are less common and serious than 

the ones which would be prevented.
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CHAPTER 8 

FURTHER WORK

8.1 SIMULATION

8.1.1 POWER ANGLE

One of the most used techniques in this work is the generation of a solution for arbitrary 

fault point on wave and pre-fault busbar conditions from two stored transient solutions 

for different points on wave. At present this has only been done for single phase to earth 

faults or phase to phase faults (which only depend on one voltage at the fault point). This 

technique could easily be extended to double phase to earth and three phase faults, and 

would require four and six stored transient solutions respectively.

If it were intended to describe a relay characteristic as a surface with fault point on wave 

and pre-fault power angle as co-ordinates then the computational savings of using such 

a technique would be considerable.

8.1.2 GENERATOR MODEL

The generator model developed in this work incorporates several important realistic fea­

tures, e.g. sub-transient decay of current. This model could easily be used in frequency 

domain simulation programs using the modified Fourier Transform.

8.2 DIRECTIONAL RELAY

8.2.1 DOUBLE CIRCUIT APPLICATION

The use of a single directional detector rather than three (using phase quantities) or two 

(using modal quantities) is a great improvement in the concept of directional relaying. 

The application of this design to double circuit applications should be fairly straightfor­

ward and offer the advantage of unambiguous fault direction determination for all types 

of fault, including inter-circuit faults.

8.2.2 USE OF DIFFERENT CURRENT SIGNAL IN DISCRIMINANT

The construction of a single current discriminant using integrated current signals as in 

[23] would offer better performance where feeders involving cables were present
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8.2.3 CO-ORDINATION STUDIES

Further work is also needed to validate the co-ordination of relay sensitivities when se­

quential faults are present. This would require the use of the more sophisticated source 

models described in this work.

8.3 INDEPENDENT MODE RELAY

8.3.1 PROCESSING OF CURRENT SIGNALS

The results for this relay design have shown how critical it is to produce an accurate esti­

mate of the fault point voltage using pre-fault quantities, and this in turn depends on 

phase shifting the pre-fault current waveform by an angle which depends on the fault de­

tector element Since the currents are sampled at 4 kHz, phase shift increments of 4.5° 

would be possible if correction for line untransposition were introduced immediately 

after digitisation, rather than at a later stage when the effective sampling rate is 2 kHz.

8.3.2 RESISTIVE FAULT COVERAGE

The shape of the protection characteristic of the relay design (excluding the effect of the 

checks) is theoretically a circle in the impedance plane centred at complex zero. Different 

combinations of pre-fault voltage quantities and superimposed quantities might be used 

as in conventional distance relay theory to increase the fault resistance coverage and give 

a protection characteristic which more closely approached that of a reactance relay.

However the main area of concern is the effect of the fast decay of the current offset for 

resistive faults which occur at points on wave other than voltage maximum. This effect 

causes under-reach and has the potential to cause over-reach when large pre-fault cur­

rents are flowing. It is difficult to see how this could be overcome using a signal magni­

tude comparison algorithm.

8.3.3 SUPERIMPOSED THRESHOLD RELAY

The superimposed threshold relay concept (c.f. 7.3.2) might now be considered practi­

cable, since the speed and capability of digital hardware is increasing all the time.
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APPENDIX 1

SPECTRUM OF A SWITCHED EXPONENTIAL

This derivation is taken from reference [70].

The function G(&,T) may be defined as follows:

G(a>,T) = I fit)e\p(-jo)t)d t
J - T

Hence the Fourier Transform of function fit)  may be defined:

F((o) = lim G(o), T) 
r —»

However, this process gives a meaningless answer for some signals, e.g.:

The difficulty may be resolved by redefining co as the limit of complex frequency GH-ja, 

as a  (which is a small positive real number) tends to zero:

(o = lim (a>+ja)
a-*0

Where CD approaches Wo, a double limit exists and special care needs to be taken. Writing: 

u = Wq-O)

For the above choice of fit):

0 f < 0

fit) = exp(/Wof) t £  0

F(o) = lim
a -*o

Writing:
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For any strictly positive a , it is found that:

J  R(at u) du = Jt

As a  is made smaller, the graph of R(a,u) becomes more and more peaked about the point 

m=0, but since the area under the graph is constant:

lim R(a , u) = 7td(u) 
a - * Q

The complete spectrum of a complex exponential applied at f=0 therefore consists of two 

parts:

1) A broad band spectrum:

1
j(a )-W 0)

2) An impulse spectrum:

7td(co -  WQ)

From this result the spectra for real sinusoidal signals can be derived.

APPENDIX 2

FAULT RESISTANCE

For complicated fault resistance situations, e.g. an a-b-earth fault with an inter-phase 

resistance Rob and phase to earth resistances Ra>Rb> die derivation of an equation linking 

the emf of the superimposed generators with the fault point voltage is not obvious. The 

first step is to note that the fault point voltage observes the following equation:

Ef = MVf-RfCf

M =
Rab

Rab~Ra Rq 
Rb R ab-R b * ' [ • * ]

However, to prevent network current flowing in the fault paths (e.g. Rab) before the fault 

time, the emf of the sources in the fault path have to be increased to E f such that they,
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rather than the network, supply that current Setting the network current to be zero gives: 

Ef' = MEf

Vr = M_1(MEr-  R(Cf) = Ef -  M-1RjCf = E ,-R f'C, Rf' = M_1Rr

The previous paragraph assumes that the matrix M is not singular, but this may not always 

be true (physically this means that it is not possible for voltage sources in the fault path 

to supply the pre-fault fault path current), e.g if/?& is an open circuit in the previous case. 

The remedy is to add a current source in place of R&: the first element of the modified 

source vector Ef” is a voltage, but the second is a current:

The transforming matrix is now not singular and the desired form of the equation linking 

V/ and E/ can be obtained, with the coefficients of Rf defined above.

APPENDIX 3

PHASE TO PHASE FAULT FORMULATION 

A3.1 DERIVATION

For this type of fault there are two faulted phases but only one fault path and current. The 

source needed in the fault path to prevent pre-fault current flowing is equal to the pre- 

fault line voltage between those phases. Given the (2*2) admittance equation at the fault 

point:

Ef" = M'Ef Vf = M'_1Ef-R(Cf

-Ra] Tl Ra 1
[  - 1  1 J  [ l  R .+ R *}
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Using conditions and definitions:

Ca + Cb = 0 Vf=Va- V b C f= C« ^  V, = Va + Vb

[ c l ]  ■  2 M [  » ' ]  ■  [ f c  S ] M [ i ? ]

This may be rewritten as:

Where,

Hence,

y t _ Yaa + Ybb — Yba~Yab v  t _  Yaa ~  Ybb Yob ~  Yba 
aa ~  Z * a b -----------------------Z

v t Yaa~"Ybb-~Yba + Yab t Yaa + Ybb + Yab+Yba
Iba  -----------   Ybb ~ ------------:-----------4 4

C f=  {Yaa* + Y ^  + Yba"W f= Y j ' V f

If there is no fault resistance then this completes the formulation, since V}-is the spectrum 

component of the source voltage applied at fault time and Va, Vb may be recovered by 

transforming [Vf, Vs] with the matrix M. When fault resistance is present, E f rather than 

Vf is the known quantity, but the two are related by the following equation:

EfVf -
1 +R/Y,aa
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A balanced double phase to earth fault will be modelled if the condition that the sum of 

the phase currents equal zero is omitted.

A3.2 EXTENSION TO PRINCIPLE

The transformation of the fault point admittance matrix by the connection matrix M  has 

been used to model shunt connections established at fault time. A similar procedure could 

be used to model the connection of a phase conductor between two points on a network, 

e.g. reclosure of a single phase.

The principle of inserting voltage sources to make a connection between two nodes and 

current sources to effect a disconnection was discussed by Johns and Aggarwal [71], but 

an impedance rather than an admittance system matrix formulation was used.

APPENDIX 4

NOTCH FILTER ANALYSIS

A biquadratic filter function (which approximates a Twin Tee analogue filter) has the fol­

lowing transfer function in the Laplace domain:

+  (S+jWo)(s-jWo) W2 _ i ~2
i 2 + 2as  + W\ (s + (a+jWo))(s + (a-jWo)) n 0

Wn
lim G(s) = —T lim G(s) = 1

rVn  j-*oo

If a  is small, i.e. the notch is sharp, then the low frequency gain should also approximate 

unity.

Applying a sinusoidal wave form b(t) at r=0 to this filter gives the output waveform c(t):

s cos (0) -  Wq sin (0)
b(t) = cos(Wot + </>) t>  0 B(s) =

^  scos(<p)-W0sin(4>)
C(s) = G(s)B(s)   r — ------T7a—

sL + 2as  + Wi

^ + w §
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Hence,

c(t) = exp(-ao|cos(^)^cos(W or)-*^-sin(W br)| -sin(^)sin(W (/) 

= exp(- a r )^ l  + 20 ̂  ^  j  c o s ( ^ + V)

tantyO
cos(*) ( S m W + W^o)

Hence for small a , the output is very similar to the theoretical output b(t).

A notch filter similar to this was used by Chamia and Liebemann [2] in their relay design. 

It can be seen that although there is a zero in the transfer function at power frequency, 

which rejects the pre-fault steady state component, most of the energy in the output signal 

is still concentrated about power frequency.

A similar derivation could be carried out in the frequency domain using the results in Ap­

pendix 1. The pre-fault spectrum impulses at oy=Wo and -Wo are removed by the zeros 

in G((n). The continuous part of the spectrum of B((0 ) modified by the notch filter fre­

quency response therefore determines the output, and the shape of the notch around 

power frequency can be seen to be very significant.

The differences between the Laplace and frequency domain representations of a time do­

main signal are due to the Laplace variable s having a small negative real part, which al­

lows the conceptual difficulties of the frequency domain approach to be avoided. The re­

striction that the time domain signal must be zero for /<0 means that the pre-fault 

conditions cannot be included in the formulation. However, the system response to stimu­

li after that time can be found using either technique, though the Laplace Transform 

method is more familiar and easier to use for algebraically defined frequency responses.

The difference between the theoretical and practical definitions of superimposed compo­

nents can be seen in the difference between the spectra B(as) and C((0): the theoretical 

definition includes impulses in the superimposed component spectrum; the practical one
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does not, but the part of the continuous spectrum removed by the filtering has the form 

of the function R(a,u) defined in Appendix 1. For small t it is not surprising that the two 

signals should approximately cancel.

APPENDIX 5

SEQUENCE AND MODAL COMPONENTS

Sequence or modal components rather than phase components are often used when un­

balanced currents and voltages (usually caused by unbalanced impedances) exist in three 

phase networks, as they make understanding and solution of the problem easier.

Sequence components use the fact that in the frequency domain an arbitrary voltage or 

current distribution between the phases of a three phase system may be resolved into three 

orthogonal sets of complex phasors:

1) The zero sequence set (with suffix 0).

2) The positive sequence set (with suffix 1).

3) The negative sequence set (with suffix 2).

Each set is dependent on one complex quantity.

The sequence components of e.g. the phase voltages may be found by transforming the 

spectra of the phase quantities:

The orthogonal transformation matrix Af and its inverse are frequency independent. If the 

phase voltages and currents are related by an impedance matrix, then the sequence quan­

tities are similarly related:

Since the same transformation matrix is used to transform currents as voltages, the se­

quence impedance matrix is defined:

Mr'Vabciu)Voi2(<»)

Voi2(w) = Zoi2(0>)Coi2(<tf)

Cabc(Q)) = MC0i2(oO Zqi2(co) = M"1Zflic(o>)M
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The use of sequence quantities to define generator parameters is related to the physical 

interpretation that positive and negative currents of angular frequency (D have in a gener­

ator: the former produce a magnetic field which rotates in the same direction as the rotor, 

the latter rotates in the opposite direction. Hence the impedance presented to positive and 

negative sequence currents is very different, as shown in the respective synchronous and 

transient inductances. The zero sequence parameters are usually ignored as there is al­

ways a delta-star transformer which prevents zero sequence transmission line fault cur­

rents reaching the generator.

If the generator rotor is rotating at an angular velocity Wo, then the apparent frequency 

of a positive sequence set of currents will be co-Wfo, and that of a negative sequence set 

-co-Wo or co+Wo.

The selection of transformations for power systems problems is discussed in [72].

APPENDIX 6

SEQUENCE NETWORK CONNECTIONS

A6.1 NETWORK CONNECTION FOR AN EARTH FAULT

To satisfy the conditions for an a-e fault that the b and c phase fault currents are zero:

Ci, = Cq + hC\ + /j2C2 = 0 Cc = Co + h2Cx + hC'i — 0 Co = C\ = C2

The sequence networks must be connected in series at the fault point, as shown in Fig 3.1. 

The following equations define the exciting signal and network impedance:

«(<) = exp̂ Woi) E(s) l—
S - J W  0

Z { s )  = 2 R S I  +  5 R I  +  R f +  R S O  + i(2LSl + 5L1+ L S 0 )  = R x  +  s L ,

Hence the transform of the cunent is:

C W - 5 & - _______ 5------------------ ± - + _ 2 _
Z(s) (s - jW 0)(Rx + sLJ s-JW o Rx + sLx

Where,



A = lim (C(s)(s-jWo)) B  = lim (C(s)(Rx + sLx))
s-*jw0

At this stage the sequence currents should be transformed into phase currents, and the in­

verse Laplace transform applied to the phase currents. Hie a phase current will have the 

form:

ca(r) = 1
Rx +jWof*

exp(/W )

The Laplace Transform of the voltage drop across the positive sequence source impe­

dance is:

R Sl+ sLSl 
(s - jW 0)(Rx + sLx)

1 / L S lR x-R S lI*  RSI + jW qLSI \
" R jc + jW ^ y  L ^ s - jW q) + Rx + sLx )

VSl = E(s) -ZSlC (s) = E(s) -  V(s) VS2 = -ZS2C{s) = -Z S \C (s)

The voltage drop V50 in the zero sequence source impedance ZSO may be similarly found 

and hence the busbar sequence voltages and phase voltages.

A6.2 NETWORK CONNECTION FOR A PHASE TO PHASE FAULT

For a b-c fault the a-phase fault current is zero and the sum of the b and c phase fault 

currents is zero:

Ca = Co + Cj + C2 = 0 Cb + Cc — 2Cq — C \— C2 — 0

Co = 0 Cj + C2 = 0

These conditions require that the positive and negative sequence networks be connected 

in parallel as shown in Fig 3.2. The network impedance is defined:

Z(s) = 2RSl + 2Rl+ Rf+ 2s(LSl + Ll) = Rx + sLx

This has the same form as that for the a-e fault and a similar solution process may be used. 

A6.3 NETWORK CONNECTION FOR A DOUBLE PHASE TO PHASE FAULT
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For a double phase to earth (b-c-e) fault, the only constraint is that the a phase fault cur­

rent is zero:

Ca = Co + Ci + C2 — 0

This requires that the sequence networks be connected in parallel, as shown in Fig 3.3. 

If fault resistance is present then there is a choice of using a pi or star fault resistance net­

work. The star connection is used since it makes solution easier and transformations exist 

between pi and star networks.

If a network consists of three branches in parallel, with branch impedances Zo, Z j,Z 2 , and 

a source E in branch 1, then the branch currents may be defined:

^  -EZ2 ^  E(Zq + Z2) ^  -E Z q
Co = —- —  Cl  ------- -------  C2 = —- —

Zx Zx z x

Zx = Z0Z1 + Z0Z2 + Z1Z2

Each of the branch impedances consists of an inductive and a resistive term, and Zx there­

fore represents a quadratic in s. Solving this quadratic will give two roots p,q and if the 

roots are distinct, each of the sequence currents may be expressed:

A B D 
C(s) = ------ + ------- +

s - p  s - q  s -JW q

The coefficients AJB£) may be assigned with the help of the cover up rule , and corre­

spond to a complex time domain output of:

c(t) = A expipt) + B exp(qt) + D txpfjWat)

A6.4 NETWORK CONNECTION FOR A THREE PHASE FAULT

For an unbalanced fault, the network could be the same as for the b -c-e fault but with 

an extra fault resistance across the positive sequence network at the fault point. In view 

of the infrequent occurrence of these faults on the power system, it was not considered 

worthwhile to construct and solve this network. (The three decay constants are the roots 

of a complex cubic polynomial.)
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Accidental energisation of the system with earthing clamps in place is a more common 

occurrence, and may be modelled as a balanced fault, for which the network connexion 

consists of a single loop (Fig 3.4) of impedance Z(s):

Z(s) = R l + /?/+ s(LSl + LI) =Rx + sLx

Thus it may be solved in the same manner as an a-e fault.

A6.5 EMPIRICAL SOURCE MODEL FORMULATION

The sequence network connections using the simplified source model (Fig 2.14) for an 

a-e fault are drawn in Fig 3.5. The Laplace Transform of the impedance Z(s) is:

Z(s) = 5.A1 + 2Ra + RSO + /?/+ s(5LSl +L1 +LS0)

i L " ( s + a+ JW ° i s + a - jW o \  _ P<& h _ Ld" ~ L‘
\ s  + b+jW 0 s + b -jW o  J  Q(s) L J  - U

Where P(s) is a complex cubic polynomial in s , Q(s) is a complex quadratic).

Hence the current C(s) in the network is:

EQ(s) A B D FC(s) — ——— — — =  h h ■ + ......
(s -  jW q)P(s) s - p  s - q  s - r  s - jW q

Where p,q,r are the complex roots of P(s), which may be found algebraically [73]. The 

values of the coefficients AJ2J)JF may be found using the cover rule. Hence the Laplace 

phase currents may be obtained by transforming the sequence currents (which are equal). 

The impedance of the positive sequence source ZS1 may be expressed:

ZSl = — — —  
s + b -jW o

Where R(s) is a complex quadratic in s. The zero sequence component of voltage at the 

relaying point may be decomposed into the same partial fractions as C(s), but the other 

sequence voltages require an extra faction (having the same denominator as that of ZS1) 

From these, the Laplace domain phase voltages (as in A3.1) and then the time domain 

phase voltages may then be obtained.

291



The procedure for a pure phase to phase fault and the balanced three phase fault are simi­

lar since only one current loop exists. For a double phase to earth fault, the separation of 

the expressions for current and voltage in the Laplace domain into partial factors requires 

the solution of a complex quartic polynomial (Zx using the notation of A6.3). Quartic 

polynomials may be solved algebraically [73], but the formulae are rather complicated. 

Each current and voltage in the time domain has four delaying components and one 

steady state sinusoidal component

APPENDIX 7

FILTER POWER FREQUENCY PARAMETERS 

A7.1 DEFINITIONS

In the following formulae, the value of the sampling interval T  appears frequently. It takes 

the value 0.5 ms for a sampling rate and 0.25 ms for a 4 kHz sampling rate. The variable 

z is related to the angular frequency by the following equation: 

z = txp(ja)T)

It takes the value unity at zero frequency and -1 at Nyquist frequency.

A7.2 RUNNING AVERAGE FILTER

The frequency response G(z) may be found as follows:

G W = - I  -  I T 7 T G ( 1 ) = 1m t=0 \  /

G ( - 1) = 0, m = 2 ,4 ,6 .....  G (- l)  = — , m =  1 ,3 ,5 ,7 ,...
m

The filter bandwidth can be calculated from the z transform expression using the formula: 

1 -z-™
1 - z -l = cosQmT) = ReCz-'71)

The following equation is solved for co:

2 cos(mcoT) -  cos(coT) - 1 = 0

292



The running average filter bandwidths (for 2 kHz sampling rate) are tabulated below,

(those for 4 kHz sampling rate are double):

m wT bw(Hz)

2 2.4189 770

4 1.3430 427

8 0.7222 230

16 0.3762 120
32 0.1920 61

The gain at power frequency can also be found from the z transform expression. The re­

sults are normalised (divided by m) and tabulate below for different sampling rates:

2kHz 4kHz

m gain phase gain phase
2 0.9970 -4.5° 0.9991 -2.25°

4 0.9847 -13.5° 0.9961 -6.75°

8 0.9366 -31.5° 0.9838 -15.75°
16 0.7577 -67.5° 0.9357 -33.75°
32 0.2341 -139.5° 0.7570 -69.75°

The group delay D, (where applicable) is simply: 

D = 0 .5 (m -1)7*

A7.2 RECURSIVE LOW PASS FILTER 

The frequency response may be found as follows:

z
G(z) = G( 1) = 1 G ( - 1) =

1
1-m  + mz 2m - l

The recursive low pass filter bandwidth can be calculated from the z transform expression 

using the formula:

m —
771-1

= /2

Hence,

cos (coT) = Refz-1) = 1 -  *—\ / / m l  m  —2m(m -1 )

293



The bandwidths (for 2 kHz sampling rate) are tabulated below, (those for 4 kHz sampling

rate are double):

m cos(coT) coT bw(Hz)

2 .75 0.7227 230

4 .9583 0.2897 92

8 .9911 0.1337 43

16 .9979 0.06456 21
32 .9995 0.03175 10

The low pass recursive filter gain at power frequency can also be found from the z trans­

form expression. The results arc tabulated below for different sampling rates:

2kHz 4kHz

m gain phase gain phase

2 0.976 -8.78° 0.994 -4.47°
4 0.879 -24.4° 0.965 -13.1°
8 0.648 -45.2° 0.862 -28.3°

16 0.380 -63.2° 0.635 -48.4°

32 0.198 -74.1° 0.375 -65.8°

The group delay Df (where applicable) may be found from the formula:

P  T { m - 1)(1 -m  + mcos(ctfT))
1 + 2m(m - 1)(1 -  cos(mT))

m 2kHz 4kHz

2 0.46 ms 0.24 ms

4 1.10 ms 0.69 ms

8 ♦ 1.28 ms
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A7.3 DIFFERENCING OVER A DELAY

The power frequency gain and phase are tabulated below:

2kHz 4kHz

m gain phase gain phase

1 0.1569 85.5° 0.0961 87.75°

2 0.3129 81° 0.1569 85.5°

3 0.4669 76.5° 0.2351 83.25°

4 0.6180 72° 0.3129

O00

5 0.7654 67.5° 0.3902 78.75°

6 0.9080 63° 0.4669 76.5°

7 1.0450 58.5° 0.5429 74.25°

8 1.1756 54° 0.6180 72°

A7.4 DIFFERENCING USING A LOW PASS FILTER 

The z transform of the gain is:

( m - l X l - r 1)

The differencer (using a low pass filter) power frequency and phase are tabulated below:

2kHz 4kHz

m gain phase gain phase

2 0.153 76.7° 0.078 83.3°

4 0.414 61.1° 0.227 74.4°

8 0.712 40.3° 0.474 59.5°

16 0.895 22.3° 0.748 39.4°

32 0.965 11.4° 0.913 22.0°

A7.5 DIFFERENCING USING 2 LOW PASS FILTERS

The filter constants used are (m,4m). The z transform of the gain is:

1 1
m - ( m -  l)z-1 4m -  (4m -  l)z-1
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___________ 3m (l-z~1)_________
(m -  (m -  l ) r 1X4m -  (4m - 1)*-1)

The power frequency gain and phase are tabulated below:

2kHz 4kHz

m gain phase gain phase

2 0.596 31.5° 0.404 55°

4 0.629 - 2.2° 0.578 26.3°

A7.6 TRANSVERSAL FILTER

The frequency response may be found as follows:

G(z) =
/=o  / ? z ( l  - Z - 1 J

The power frequency gain and phase are tabulated below:

2kHz 4kHz

m gain phase gain phase
4 0.7744 72° 0.5077 78.75°

8 2.2438 546 1.1380 72.05°

16 6.6770 18° 3.8310 45°
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