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Abstract

There are many air injection projects which are ongoing in various parts of the world, for 

both light and heavy oil recovery. Until recently, it was believed that the in-situ 

combustion ( ISC ) process was applicable only in heavy crude oil reservoirs, where the 

fuel for the process is generated by thermal cracking, and vis-breaking. However, in deep 

light crude oil reservoirs, air injection may be widely applicable if the process is auto­

ignition stable, given that the oil and reservoir rock are sufficiently reactive.

A series of tests was carried using a High Pressure ‘Combustion Tube’ apparatus, first to 

test and improve the controlability of the system, and secondly, to carry out detailed 

combustion tube experiments on a light crude oil at high pressure.

Nine runs were performed using Ekofisk light oil. Mud Industry (MI) Calcium Carbonate 

was used as reservoir core, instead of Ekofisk chalk. The operation conditions were at 

100 bar to 200 bar pressure, varying the air injection flux and oil saturation ranging from 

30 to 70%.

Following initial trials, a number of successful combustion tube experiments were 

achieved, i.e. combustion front propagation was sustained with significant oil recovery of 

40 to 95 % OOIP. Notably, steady combustion front temperatures were in the range 550- 

600 °C. The ISC process required high air injection flux, with the minimum being around 

21m3/m2hr. However, there were several occurrences of very high temperature (900°C) 

due, inpart, to accumulation of oxygen radicals in the oil ahead of the combustion front. 

The low temperature oxidation taking place in that region produced some severe 

alteration of the calcium carbonate matrix, causing dissolution of the matrix. This 

resulted in hollow cavities, of ‘Conche shell’- like appearance, with a calcined, hard 

exterior.

High Pressure In-Situ Combustion Tube Commissioning and Operation. iv
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NOMENCLATURE
Abbreviations:

Symbol Definition

AAV................................................................ Air actuated valve
AIP..................................................................  Air injection process
AOFMV..........................................................  Air operated flow meter valve
AOP................................................................. Air operated pump
API..................................................................  American Petroleum Institute
Ar.....................................................................  Air Requirement
ARC................................................................. Accelerated Rate Calorimetery
BV................................................................... Ball valve
CAR................................................................ Manual CPC
COFCAW.......................................................  Combustion of forward Combustion and

water flooding
COSH.............................................................  Combustion Override Split-Production

Horizontal well
CPC................................................................ Current to pneumatic converter
CPU................................................................ Central process unit
CT................................................................... Combustion Tube
DAQ................................................................ Data acquisition
DDP................................................................. Double displacement Process
DSC................................................................. Differential Scanning Calorimetry
EOR................................................................. Enhanced Oil Recovery
F ....................................................................... Filter
GC..................................................................  Gas Chromatograph
GSGI................................................................ Gravity stabilized gas injection
GUI.................................................................. Graphical user interface
HASD.............................................................. Heated Annulus Steam Drive
HCPV Hydrocarbon Pore Volume
HDC................................................................. Hydrocracking
HDM...............................................................  Hydrodemetahsation
HDS................................................................. Hydrodesulphurisation
HIHP................................................................ Horizontal Injector Horizontal Producer
HPS.................................................................. High pressure separator
HTO................................................................. High Temperature Oxidation
ID .....................................................................  Internal diameter
IOR.................................................................. Improved Oil Recovery
ISC................................................................... In-Situ Combustion
ISC..................................................................  In Situ Combustion
LD....................................................................  Level detector
LED.................................................................  Light emitting diode
LMF.................................................................  Mass flow meter
LPS.................................................................. Low pressure separator
LTO................................................................. Low Temperature Oxidation
MTO................................................................ Medium Temperature Oxidation
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OD..................................................................  Outside diameter
OOIP...............................................................  Original Oil In Place
OWIP..............................................................  Original Water In Place
PCGD.............................................................  Pressure Controlled Gravity Drainage
PD.................................................................... Pressure difference ( shell-tube pressure )
P G ....,.......... ..................................................  Pressure gauge
PID..................................................................  Proportional integral derivative control
PPRV.............................................................. Precise pressure reduction valve
PRVG.............................................................  Manual PPRV
PT.................................................................... Pressure transducer
SAGD.............................................................  Steam-Assisted Gravity Drainage
STARS...........................................................  Seam and Thermal Additive Reservoir

Simulator
SV..................................................................  Solenoid valve
TA..................................................................  Axial thermocouple
TC..................................................................  Thermocouple
TDA...............................................................  Thermogravemetric analysis
TGA................................................................. Themogravimeteric Analysis
THAI..............................................................  Toe-to Heel Air Injection
TL.................................................................... Line thermocouple
TW..................................................................  Wall thermocouple
Ua..................................................................... Air Flux
Ub..................................................................... Combustion Front Velocity
VAPEX...........................................................  V apor Extraction
VI..................................................................... Virtual instrument GUI
VI VP...............................................................  V ertical Injector V ertical Producer
WinProp.......................................................... Window fluid properties simulator
WTM..............................................................  Wet Test Meter

Greek Letter:
p Fluid Density Kg/m3
p Fluid Viscosity Pa-s
(1) Matrix Porosity Fraction
a Thermal Diffusivity -1m s

r f  C °  1 Fraction,CO + CO2

T Control time constant

Variable Subscripts:
F Field Scale
g Gas
i Reaction Regime

M Model Scale
m Reaction Order
n Reaction Order
0 Oil
w Water
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Variable Sym bol:

Variable Symbol Definition Dimensions

AFR Air to Fuel Ratio M3/m3
AOR Air To Oil Ratio M3/m3

Instantaneous
Uf Concentration of Fuel

CO Carbon Monoxide
C 02 Carbon Dioxide
D Distance m
E Activation Energy J/gmol
h Thickness m
H Heat of reaction Kcal/kg02

H/C Hydrogen to Carbon Ratio
of Fuel

k Absolute Permeability D
K Reaction Rate Constant f 1
Kh Horizontal Permeability D
Kv Vertical Permeability D
1 Length m

m
Molar Ratio f  C °  1 Fraction^CO + CC^;

P Pressure bar
Po2 Partial Pressure of Oxygen bar
R Universal Gas Constant J/K-gmole
R Universal gas constant
Sgi Initial Gas Saturation Fraction
Soi Initial Oil Saturation Fraction
S0r Residual Oil Saturation Fraction
Swi Initial Water Saturation Fraction
Swr Remaining Water FractionSaturation
T Absolute Temperature °C
t Time t

WAG Water Alternating Gas m/m3
WAR Water Air Ratio m/m3

X H/C Ratio
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Introduction

Petroleum plays a large role in providing the day-to-day energy needed to sustain 

economic development and quality of life. Its importance, as a major source of energy, is 

due to two main reasons ; Firstly, renewable resources, such as, solar and wind energy 

require further development to solve technical and practical problems before they can 

compete reasonably with oil. Secondly, nuclear energy needs further technical progress to 

overcome serious environmental and safety concerns. Therefore, oil and gas will remain 

by far, the main source of energy for the foreseeable future. The increase demand for oil 

and the decline in the discovery of new reserves has forced the petroleum industry to 

improve methods

In-Situ Combustion ( ISC ) is one of the Improved Oil Recovery ( IOR ) methods. ISC 

can be applied in many depleted reservoirs, or in viscous crude reservoirs. Recently, most 

of the pilot and or field projects utilize air as an injectant gas, instead of oxygen or 

enriched oxygen. Self, or induced ignition, can be used when air is injected , depending 

on several factors i.e. fluid properties, and reactivity at reservoir conditions (pressure and 

temperature). The factor that control and enhance oil recovery can be studied 

experimentally in the laboratory, or computationally, utilizing reservoir simulation.

The ISC process can achieve high performance in displacing light, medium and heavy 

crude oils. Air injection is a good candidate to improve oil recovery due to availability of 

the air. Depending on the crude oil and reservoir conditions, low, and high ( LTO, MTO, 

and HTO ) may be achieved. The main constituent of air, nitrogen, acts either to produce 

a miscible or immiscible gas displacement, depend on the operating reservoir pressure. 

Mostly, the immiscible displacement occurs, especially in depleted reservoirs.

Temperature increase due to oxidation generate heat, from combustion, reduce the crude 

oil viscosity, and even density, if any gas dissolved in the oil. Moreover, oil and water 

will evaporate, producing displacement gases. Water vapor acts as a steam drive ahead of

High Pressure In-Situ Combustion Tube Commissioning and Operation. 2
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the combustion front, assisting the sweep efficiency especially in thick oil layer. Also, 

the condensed steam, acts to produce a hot water flood ahead of the combustion front.

The produced gases from combustion i.e. about 15% CO2, will provide CO2 

displacement, mainly immiscible. This increased oil mobility is due to reduction of oil 

density and viscosity.

In the ISC process, many sub-processes occurs simulateously. ISC is therefore, a 

complex process, compared to other improved oil recovery (IOR) processes. There are no 

specific correlations, or formulas that can be used to predict oil recovery using the ISC 

process. There are several factors which influence the performance of the ISC process. 

One o f the difficulties, is that is impossible to predict the type and the order of chemical 

reaction that may occur. Any variation in conditions, or experimental design, or 

procedure, can give different results. Different methods of ISC reaction occurs in: high 

pressure combustion tube, Small Batch Reactor ( SBR ), Accelerating Rate Calorimeter 

( ARC ), thermogravimetric analysis (TGA) and Differential Scaning Calorimeter (DSC).

A high pressure combustion tube system was designed and built at the University of 

Bath, over 10 years ago. It was designed as a fully automated system. First 

commissioning runs were conducted by El Ayadi, 1993. However, the experiments were 

completely unsatisfactory, due to the low oxygen flux achieved. Moreover, the Macsym 

260 was unable to handle the multitasking operations, resulting in poor control process 

(Computer system). During the course of 1997, the combustion tube facility was re- 

commissioned by Young, 1997, and four in-situ combustion tests were completed. The 

commissioning work involved the development of control and data acquisition software 

using LABVIEW, specifically IscVIEW. This enabled the experiments to be run 

automatically under computer control. A number of combustion tube runs were 

completed, on West of Shetlands Clair oil (19.7°API), at pressures of 50-100 bar. The 

results indicated that very high oil displacement could be achieved in areas of the core 

that were swept by the combustion front, thus demonstrating the potential improvements 

in recovery which can be achieved using ISC.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 3
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Prior to the processed investigation, the high pressure combustion tube facility had been 

used for a number of research projects. For example, in 1998, tests were carried by 

Greaves et al, 2000 on West of Shetlands Clair Oil and also a Light Australian Oil, at 

pressures of between 70 bar and 100 bar. In the case of the Clair Oil, it was found that, 

combustion front temperatures of around 400 °C were typical, indicating HTO was 

occuring. Temperatures were much lower, however, in the case of the Light Australian 

Oil, with the combustion zone typically reaching 250 °C.

Further studies have been carried out by using the combustion tube for investigations i.e. 

El-Usta, 1998, who, examined the feasibility of air injection into deep light oil reservoirs. 

It was found that most of the light oils tested were sufficiently reactive to allow the Low 

Temperature Oxidation process to take place.

Before commencing any investigation, extensive recommissioning work was needed in 

order to achieve adequate controllability, and also to extend operation to 200 bar 

pressure.

It was decided to design a series of experiments to fulfill the following objectives:

• Successfully start up the combustion tube system.

• Carry out work to ensure full integrity of the system, i.e all components functioned 

properly.

• Identify the optimum method for controlling the shell/tube AP, particularly during 

transient pressurisation.

• Minimise the venting of gas from the system, particularly during the pressurisation 

stage to minimise operating costs and prolong experiment time.

•  Test the system backpressure control.

• Test the control of liquid level in the high and low pressure separators.

• Test the accuracy of the combustion tube thermocouples, axial, wall, line pressure.

•  Test temperature control for the ignitor and band heaters (BH).

•  Test overall multitasking computer control.

• Conduct actual runs using different crude oils.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 4
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The structure of the thesis is arranged by chapters : Chapter Two is literature review, 

Chapter Three, describes the equipment, commissioning tests, and experimental 

procedure, Chapter Four, presents experimental results, discussions and simulation part, 

Chapter Five, contains the conclusion and recommendation for the future work.

Objective of the Research :

The aim of the research was to investigate the in-situ combustion performance of a light 

crude oil at high pressure, simulating actual reservoir conditions, similar to the Ekofisk 

field. In addition, it was considered important that initial reservoir fluid state i.e. fluid 

saturation, was varied, as was the air injection flux. To gain further understanding of the 

process involved, numerical simulation studies of the experiments were undertaken using 

the STARS reservoir simulation.

© BA TH

High Pressure In-Situ Combustion Tube Commissioning and Operation. 5
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2.1: AIR INJECTION:

Gas injection into petroleum reservoirs is an established technique for maintaining the 

initial reservoir pressure. For economic reasons the source of suitable gas to inject is 

very important.

Hydrocarbon associated gas with produced oil is recycled into the reservoir for economic 

and safety reasons, especially, if the transportation cost is too great. Generally the gas 

injected into the reservoirs should not creat problems such as formation fracturing, 

cooling or freezing o f the wet gas in injection well.

The first application of air injection as a gas-drive dates back to 1911, near Merietta, 

Ohio. Air was compressed to 2.7 bar and injected into one well 4248 m3 /day, to drive oil 

to near-by surrounding wells, Uren, L.C. 1939.

Underground combustion was discovered accidentally, when air was injected and oil 

production increased due to heating in the reservoir. However, neither of the effect was 

attributed to a subsurface fire, Schumacher, 1980. In the Soviet Union in the late 1930’s, 

the first experiments on the in-situ combustion ( ISC ) was conducted. Mobil and Sinclair 

oil companies carried out tests in 1952. Mobil’s work concentrated on tar sands, while 

Sinclair targeted unrecoverable light oils left in the reservoir after a waterflood.

During the period 1950-1965, considerable laboratory work was performed, especially by 

Mobil and Gulf Oil Companies. In 1962, the first field test of simultaneous air/water 

injection was conducted in the Loco field of Southern Oklahoma. The process is known 

as a combination thermal drive (CTD). In 1967, Amoco, Exxon and Shell published 

papers on a modified process of in-situ combustion called “ Combination of Forward 

Combustion and Water Flood” (COFCAW). This was a major break through for ISC. 

During 1965-1975, mature projects experienced many operational difficulties and

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1
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problems. Since 1975, interest in in-situ combustion has been ebbing because of the 

previous problems associated with it (Farouq Ah., 1994), but there is now renewed 

interest in air injection for application in light, medium and heavy oil reservoirs.

So far, more than 160 in-situ combustion pilot tests of various types have reported Turta 

1994. There are now more than sixteen active commercial projects worldwide and wider 

acceptance of the process is anticipated, as previous problems are now understood and 

great gains have made in new proving technologies. Air injection now embraces all 

previous oxidation processed in an oil reservoir.

Over the years, Gulf Coast operators have injected flue gas, nitrogen, natural gas and 

carbon dioxide to improve recovery in light-oil salt dome reservoirs. Each of these gas 

injection is more expensive than air. This is because air is free, and available everywhere. 

Operators avoided air injection due to concerns associated with the presence of oxygen in 

the reservoir ( bacterial growth, emulsions) and in production equipment ( severe 

corrosion, risk of explosions).

The benefits of air injection in low-pressure oil reservoirs include: 1) additional oil 

recovery as a result of the Double Displacement Process, 2) repressurisation, and 3) 

repositioning the oil rim in close proximity to existing wells. Each of these benefits 

contributes to improved oil recovery.

Air injection can also improve gravity drainage, if the pressure is high enough. Carbon 

dioxide is released by combustion and is absorbed by the reservoir oil. The carbon 

dioxide swells the oils and lowers the oil’s viscosity, thereby improving the gravity 

drainage. The combustion process consumes almost no mobile oil. Laboratory and 

modeling results show that the process consumes only the immobile oil found (Gillham et 

al, 1997).

Air injection offers unique economic and technical opportunities for improved oil 

recovery in many candidate reservoirs. Concentrating on the economically-advantaged 

class of light oil reservoirs, potential process benefits include:

High Pressure In-Situ Combustion Tube Commissioning and Operation. 8
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1) Excellent displacement efficiency of gravity stabilition, i.e dipping reservoir,

2) Rapid reservoir pressurization,AMOCO Report, 1997

3) Flue gas stripping of the reservoir oil,

4) Oil swelling,

5) Injection gas substitution.

6) For air injection into high pressure, hot reservoirs additional benefits may accrue,

7) Spontaneous oil ignition and complete oxygen utilization,

8) operation above the critical point of water, with possible super-extraction benefits, 

and

9) Near-miscibility o f the generated flue gas and the oil.

Items 1-5 have received much attention in the technical literature, while 6-8 have been 

highlighted by Fassihi et al, 1994.

The Air-Oil Ratio (AOR) characterizing incremental oil production form air injection can 

vary typically in the range of 4000-9000 scf/bbl ( about 700 to 1600 vol/vol), Surguchev 

etal, 1999.

The objective of air injection in light-oil reservoirs is the complete consumption of the 

oxygen at reservoir temperatures. In high-temperature oxidation (HTO) or in-situ 

combustion with heavy oils, CO2 and H2O are produced. LTO of heavy oils generated 

hydrocarbons, such as aldehydes, ketones, carboxylic acids, alcohols, and 

hydroperoxides, as well as small amounts of CO2 and CO, Greaves et al, 1999.

2.2: In-Situ Combustion Process:

In-Situ Combustion, is a one of a number of thermal processes, including hot water drive 

and steam injection, Don et al, 1998. In the ISC process, thermal energy is generated in 

the reservoir by oxidation reaction, which may be initiated with either an electric heater 

or gas burner or may be spontaneous. Oxygen, as air or enriched air is compressed at the

High Pressure In-Situ Combustion Tube Commissioning and Operation. 9
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surface and continuously injected into the reservoir; either dry ( dry process ) or together 

with water (wet process). The heat generated in the reservoir, causes the lighter 

components of the oil to vaporise and move ahead. Depending on the combustion and 

maximum temperature attained, thermal cracking may occur, and vapor products from 

this reaction also move downstream. Through cracking of the oil part of the oil is 

deposited as a coke-like material on the reservoir rock, and this solid material serves as 

the fuel in the process. Thus, as oxygen injection is continued front slowly propagates 

through the reservoir. The process of in-situ combustion is illustrated in Figure 2.1.

© Injected Air and Water Zone(Bumed Out)
® Air and Vaporized Water Zone
<3> Burning Front and Combustion Zone (600° -  1200°F)
© Steam or Vaporizing Zone ( Approx. 400°F)

® Condensing or Hot Zone (50° -  200°F) 
® Oil Bank (Near Initial Temperature)
@ Cold Combustion Gases

Figure 2.1: Combustional Heavy Oil, In situ Combustion Process

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1 0



VN’]Vi.R*:?Y or

Omar H. El Ayadi Chapter 2

2.3: Limitations and Disadvantages of In-Situ Combustion :
A major problem with the in-situ combustion method is to control the movement of the 

combustion front. Depending on reservoir properties and fluid distributions, the 

combustion front may move in a non-uniform manner through the reservoir, with 

resulting poor volumetric sweep. Also, if proper conditions are not maintained at the 

combustion front, the combustion reaction can weaken and cease completely. The 

process effectiveness is lost if this occurs. Finally, because of the high temperature 

generated, significant equipment problems can occur at the wells. Pollutant emission 

control also can be of concern in some cases.

Other problem with the combustion process include formation plugging by swelling clays 

contacted by fresh, condensed water ahead of the combustion front, by over-burning of 

the reservoir as the injected air tends to move toward the top of the formation, and by 

preferential up-dip burning in the titled patterns of steeply dipping beds. Mechanical 

problems include severe corrosion in producing wells and the formation of oil-water 

emulsions, which may require extensive and expensive treating.

Once any well or reservoir exposed to in-situ combustion and failed, it will be difficult to 

predict future recovery, especially if the same process repeated, or to establish any further 

improving oil recovery method.

2.4: Classification of Air Injection processes:
Air Injection Processes ( ATP ) were classified by Turta et al, 1998, into four categories. 

The type of AIP used depends mainly on the reservoir temperature and pressure, and the 

oil and rock properties, Turta et al, 1998. The main basis of this classification is their 

spontaneous ignition potential and gas miscibility at reservoir conditions. Thus the 

following different categories of air injection process may apply:

High Pressure In-Situ Combustion Tube Commissioning and Operation. 11
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1. Immiscible air flooding ( IAF ) with intensive oxidation ( HTO )

2. Immiscible air flooding ( IA F ) without intensive oxidation ( LTO )

3. Miscible air flooding ( MAF ) with intensive oxidation ( HTO ), and High 

Pressure Air Injection process (HPIA)

4. Miscible air flooding ( MAF ) without intensive oxidation ( LTO ), and High 

Pressure Air Injection process (HPIA).

Hence, classic in-situ combustion is an immiscible air flooding process dominated by 

high temperature oxidation ( HTO ) and can be applied in light, medium and heavy oil 

reservoirs, when the reservoir and oil characteristics are beneficial. Failure to apply the 

process correctly in the past, i.e. in good candidate reservoirs, has been one of the biggest 

factors mitigating against success. The renewed interest now , is driven either because air 

is seen as a cheap, available source of gas or because of thermal and oil recovery 

efficiency.

2.5: In-Situ Combustion Principles:
In-situ combustion is a thermal recovery process, in which air, oxygen, or oxygen- 

enriched air is injected into the reservoir in order to bum part of the oil ( coke ) to 

improve the flow of the unbumed part. This coke is a product of chemical reactions 

between the injected oxygen. The chemical reactions are triggered by an ignition device, 

or spontaneous ignition ( some times called autoignition ) when the injected oxygen 

contacts the oil near the wellbore. This temperature heats the zone surrounding the well 

to a significantly high temperature, so that continuous air injection causes a high peak 

temperature wave, or combustion front to propagate through the reservoir. For heavy 

oils, and also some light oils, usually the temperature reached at the combustion front is 

much greater than the saturation temperature of water, in most cases between 400 to 

600°C Burger et al, 1985. Light oils can also operate effectively in low-temperature mode 

( 150 to 300 °C ), whereas heavy oils and bitumens operating in this temperature range 

are dominated by oxygen-addition reactions that immobilise the oil and must be avoided. 

Heavy oils and bitumens must react above 450 °C to achieve oil-mobilizing bond scission

High Pressure In-Situ Combustion Tube Commissioning and Operation. 12
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reactions. Under certain conditions, both oil types can operate under high-temperature 

(>700 °C) gas-phase combustion, Moore et al, 1998. However, these temperatures are too 

high to be applied safely in many reservoirs, especially carbonate which can decompose.

The combustion temperature depends on to oil type, density and the composition of oil, 

as well as the air injection rate. The heat generated in the combustion zone causes 

distillation and vaporization of the oil and water. The lighter fractions of the crude oil are 

transferred downstream and condense in the cooler zones, and may form an oil bank. The 

heavier fractions of the oil remain behind and are converted to a semi-solid residue or 

coke. The amount of solid residual on fuel depends on the cracking reactions, which is 

dependant on the combustion front temperature achieved.

2.6: Reaction Kinetics of In-Situ Combustion :
The kinetics of in-situ combustion are important because accurate kinetic models can aid 

in the prediction of oil recovery economics. The reaction kinetics are intimately coupled 

with fluid flow and heat transfer in the reservoir, and therefore make ISC a very complex 

process. Reaction kinetics data is also to understand ignition and combustion front 

propagation. Although extensive work has been carried out for this purpose, a complete 

understanding of the complex physical and chemical changes taking within the 

combustion zone is yet to be achieved.

Numerous physical transitions and chemical reactions occur in an in-situ combustion 

process. Modeling of such a complicated process requires not only a detailed description 

of the fluid flow characteristics but also insight into the physical and chemical reactions 

involved, using a reliable kinetics model capable of predicting the progress of these 

reactions within the process. One solution would seem to simply isolate each component 

and study its kinetics behavior under all conditions o f temperature, oxygen partial 

pressure, and time; however, this idealistic approach is not practical because of the 

complex chemical nature of crude oils and the multitude of components involved.
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Therefore, kinetic studies should be aimed at groups of reactions rather than individual

ones.

There are basically two approaches practiced to obtain kinetic models for use in-situ 

combustion reservoir simulation. They are: (1) evolved gas analysis (EVA), and (2) 

thermal analysis techniques such as thermogravimetric analysis and differential scanning 

calorimetry (DGC). Application o f kinetic equations derived by both approaches to ISC 

reaction modeling requires knowledge of activation energies and frequency factors used 

in Arrhenius equations, along with the effects of the specific surface are and composition 

of the rock matrix. Values of activation energies and frequency factors used are average 

values ( needed as input to reservoir simulation ) over the temperature range of a given 

reaction regime, and their accuracy is often low Vossoughi et al, 1992.

Figure 2.2 illustrates two main regions of crude oil oxidation. The low temperature 

oxidation ( LTO ) region applies up to 300°C for heavy crude oils, but may be much 

lower for light crude oils, less than 200°C, and a high temperature oxidation region 

(HTO), above 300-350°C (heavy oil). There is also a intermediate region, MTO or 

medium temperature oxidation. This is aligned with the produced gases from thermal 

cracking reactions. Moore et al, 1998 has stated that bond scission reaction (thermal 

cracking) can take place at 200-250°C for light crude oils.

High Pressure In-Situ Combustion Tube Comntissioning and Operation. 14
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Figure 2.2: LTO and HTO Regions

The combustion kinetics of Maya crude oil was investigated by Greaves etal, 1988. They 

stated that activation energies and reaction rate constants show that dry combustion is 

kinetically controlled, whereas the wet combustion process is oxygen diffusion limited. 

The effect of oxygen enrichment appears to be mainly through its effect on combustion 

peak temperature, leading to an increase in combustion front velocity.

A kinetic study of the combustion of Athabasca tar sand was made by Dubdub et al, 

1990. Their results indicated the occurrence of several consecutive reactions at different 

temperature. Both the extent of the LTO reactions and the rate parameters obtained for 

the high temperature combustion reaction are influenced by the oxygen partial pressure of 

the feed gas.

Soodhoo et al, 1988 studied the kinetics of non-catalytic thermal hydrocracking of 

Athabasca asphaltenes over the temperature range 350-425°C, in a batch autoclave 

reactor. The activation energy for asphaltene consumption are found to be 161 kJ mol'1.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 15
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In the second, more complex model, four pseudoproducts were used [ asphaltenes, 

maltenes ( oil + resin), coke and gas ]. The activation energies were found to be in the 

range 8-200 kJ mol-1. Asphaltene hydrocracking reactions were found to have first-order 

kinetics.

The oxidation reaction kinetics of bitumen from Athabasca Tars sands have been 

investigated by Philips et al, 1985. Ronther They observed in the first model, that the 

Athabasca bitumen is considered to be a single react and the oxidation reaction a single 

irreversible reaction. The activation energy for the overall reaction was found to be 80 

kJmol’1. This model is limited to calculating the overall conversion of oxygen. Because 

the fraction of oxygen reacting to form carbon monoxide and carbon dioxide increases 

with temperature, a more sophisticated model was proposed to take this into account. The 

second model assumes that the bitumen is a single reactant and that the oxidation of 

bitumen may be described by two simultaneous, parallel reactions, one producing 

oxygenated hydrocarbons and water, the other producing CO and CO2 . The activation 

energy for first reaction was found to be 67 kJmol-1, and for the second, 145kJ mol-1. 

This more sophisticated model explains the result that at higher temperatures more 

oxygen is consumed in the oxidation o f carbon, because this reaction has a higher 

activation energy than the reaction leading to the production of oxygenated hydrocarbons 

and water.

Kok et al, 1998 investigated the pyrolysis behaviour and kinetics of six crude oils by 

DSC and TGA/DTG. The crude oil pyrolysis indicated two main temperature ranges 

where loss of mass was observed. The first region, between 400 and 600°C, was 

visbreaking and thermal cracking. Arrhenius-type kinetics was used to determine the 

kinetic parameters. It was observed that as crude oils gets heavier ( °API decreases ) the 

activation energy of cracking reactions increases.

The effect of the oil composition, characterized on the basis of light hydrocarbon, resin 

and asphaltene contents, on the pyrolysis kinetics of the oil and combustion kinetics of
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the fuel, was studied by Ranjbar et al, 1991. The results show that the composition of oil

and also the heat transfer characteristics of the pyrolysis medium have a pronounced

influence on the fuel formation and composition.

Fassihi et al, 1984, analyzed crude oil oxygen reactions at different temperatures. The 

results in LTO region appear to occur between the gas and liquid phases. MTO fuel 

deposition reactions appear to be homogeneous. The latter were found to be the rate- 

determining step in clean sands. Natural cores from reservoirs were found to have 

different kinetic behavior to the clean sands for the following reasons : (1) metallic 

additives lower the activation energy o f the combustion reaction and hence shift the rate- 

determining step, and (2) clay and finer sands adsorb more fuel.

As reported by Greaves et al, the study of crude oil oxidation kinetics is important for 

following reasons:

□ To obtain modeling parameters such as Arrhenius activation energy, order of 

reaction and pre-exponential factor. Such values are needed for numerical 

modeling studies of reservoirs.

□ To identify the reaction regimes for a particular crude oil, i.e. LTO and HTO . 

LTO starts at the ‘ignition’ temperature of the oil and extends up to 300 to 350°C 

HTO approximately ( for combustion) follows LTO and can extend up to 400 to 

500°C for tight oils.

Tsuzuki, et al, 1999 studied the kinetic modeling of oil cracking by hydrothermal 

pyrolysis experiments using a Japanese oil. They found that the apparent activation 

energy for cracking of heavy saturates was 76 kcal/mol, which is close to a value 

published on hexadecane cracking under high pressure in anhydrous conditions. 

Application of the model to geological conditions shows that the cracking of heavy 

saturates occurs within a temperature range of 190 to 230°C, which is higher than that 

usually accepted in petroleum geochemistry.
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Coke is a solid material that deposits on the sand-grain surface area and is eventually 

burned as a fuel during an in-situ combustion process. Coke combustion is the main 

source of energy to sustain the combustion front. Vossoughi et al, 1989, state that the rate 

of coke combustion was proportional to the coke concentration yet to be burned, oxygen 

partial pressure, and sand-grain specific area.

Fassihi et al, 1984 studied continuous analysis of the produced gases from a small packed 

bed reactor, isothermally and with a linearly increasing temperature. They showed that 

the combustion of crude oil in porous media follows several consecutive reactions. They 

concluded that (1) at low temperatures, the crude oil undergoes oxidation reactions 

without generating carbon oxides. For some reactive oils, the heat released during this 

period may lead to spontaneous ignition. (2) as the temperature is increased, distillation, 

coupled with pyrolysis, produces little hydrogen gas and some light hydrocarbons in the 

gas phase. A part of these hydrocarbons are produced without being oxidized. However, 

oxygen reacts with the remainder of these hydrocarbons and, hence, MTO occurs. (3) at 

higher temperatures, this reaction is completed and a heterogeneous reaction begins. 

Here, the reactants are oxygen in the gas phase and a heavy residue of oil deposited on 

the solid matrix.
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Tedama, 1959 studied the reaction kinetics by DTA method (DTA). He reported two 

different combustion reactions, one at about 270 °C and one at 400 °C. Analysis of 

produced gases showed that oxygen was taken up near 270 °C. A small fraction of 

oxygen was consumed to form CO and CO2 , while, the majority of oxygen reacted with 

hydrogen to form water. At 400 °C, mainly CO2 and CO were formed, with little water 

and no hydrogen residue. He concluded that, during the first reaction, near 270 °C, 

mainly hydrogen is burned off, leaving a coke-like residue. This residue can only bum 

above 400 °C to produce CO2 and CO. He also reported that the atomic hydrogen/ carbon 

ratio of burned fuel decreased with temperature.

Weijdma, 1968, identified three successive stages in oxidation of oil, (1). At low 

temperature oxygen is taken up in the oil molecules, presumably without any particular 

degradation of these molecules, (2) at increased temperature oxidative cracking occurs 

accompanied by the production of CO2 and H2O, which leaves coke residue; (3) at still 

higher temperatures the coke, which consists of partially pure carbon, is burnt.

Bousaid and Ramey, 1968 have found that the oxidation rate of cmde oil in porous media 

depend on the carbon concentration, combustion temperature and oxygen partial pressure. 

The specific reaction rate constants related to combustion temperature by the Arrhenius 

equation. They also found that the activation energy decreased as a result of the addition 

of clay and it was not sensitive to the gravity o f the crude oil.

The combustion rate ( Rc ) of cmde oil in a porous medium was expressed by Wilson et 

al, 1963, Bousaid and Ramey, 1968, Burger and Sahuqet, 1972 and Fassihi et al, 1984 as 

follow s:

Rci = K iP^C ?

Where,

Cf = instantaneous concentration of fuel

K = reaction constant

P0 2  = Partial Pressure of oxygen
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m = reaction order with respect of oxygen 

n = reaction order with respect of fuel concentration 

i = reaction regime

The reaction rate is often assumed to be first order with respect to fuel for each reaction 

concentration, ( i.e. n=l ) Fassihi et al, 1990.

The reaction constant ( K ), is normally expressed as a function expressed as a function of 

temperature, T, by the Arrhenius equation :

At = Arrhenius constant 

E = activation Energy 

R = universal gas constant 

T = absolute temperature

It is believed that the reaction mechanism between fuel (coke) and oxygen is a 

heterogeneous flow reaction and the oxidant gas must pass through the burning zone to 

make the combustion front move. Within the burning zone, four known transport 

processes occur Fassihi etal, 1980:

• Oxygen diffuses from the bulk gas to the fuel interface.

•  Oxygen then adsorbs and reacts with fuel.

• Combustion products, CO2 , CO, and water.

• These products transfer into the bulk gas stream.

If any of these steps is inherently much slower than the remaining ones then it will be the 

rate determining step.

Where :
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Hughes et al, 1987 investigated the effect of oxygen partial pressure and sand surface 

area on the overall activation energy of the process as well as on the peak temperature. 

They found that an increase in oxygen partial pressure and specific surface area of the 

porous media caused decreases in both the activation energy and the peak temperature.

It is important to recognize that the hydrocarbon fuel is different for the three reactions. 

For the LTO it is the unreacted crude oil, for the MTO it is oxygenated oil and for the 

HTO it is the products of pyrolysis and oxidation, Shallcross et al, 1991.

2.7: Thermal Cracking Kinetics:

Behar et al, 1988 studied oil cracking kinetics in a closed reactor system, over a large 

range of heating times (few minutes to 1 month) and temperatures (335 to 540°C). Their 

results show th a t:

> Molecular hydrogen is presented in negligible amounts,

> The cracking of condensate fractions is reached at 450°C, and 3hr, while the

cracking of the C2-C5 compounds occurs at 500°C, and 9hr.

> As thermal cracking increases, asphaltenes disappear rapidly, followed by

saturates and unsaturates ( CM4). Consequently, the residual C14+ fraction is 

composed mainly of polyaromatic structures.
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2.8: Air Injection: LTO Technique:

A new air injection technique, low temperature oxidation (LTO) process, is described, 

improved oil recovery from deep, light oil reservoirs is achieved by removing the oxygen 

in the injected air by LTO reactions with the residual oil in the reservoir. For light oils, 

LTO does not significantly effect the volatility, the carbon number distribution or the 

viscosity Fassihi et al, 1985,and Meyers et al, 1986. Air injection LTO is therefore 

applicable to light recovery.

The zones that are created in the reservoir during LTO are illustrated in Figure 2.3. The 

oxygen in the injected air is depleted in the oxidation zone. This leaves nitrogen 

and carbon oxides which strips light components from the oil, eventually culminating in a 

nitrogen ‘flue gas’ front, ahead of which builds up associated water and oil banks.

Oxidation Zone
(LTO)2D*.

Depletion

Figure 2.3: Air Injection LTO process

In the oxidation zone, homogeneous LTO reactions take place, where oxygen first 

diffuses in to the hydrocarbon phase. The oxygen consumption rate is linear and therefore 

not affected by oxygen partial pressure, the rate determining step being the oxygenation 

reaction and not the mass transfer of oxygen into the oil.

The oxygen consumption rate in the oxidation zone is between 0.15 and 0.25 

g(02)/hr.kg(oil), or 27 to 40 O2 % HCPV injected consumed/day, Greaves,1997. 

Flowever this rate is very dependent on the reservoir temperature ( very little oxidation
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has been found to take place below- 80°C ). Sakthikumar et al, 1995, showed that the

oxygen is depleted to very low levels with certain oils. Interestingly, considerable

amounts of CO2 are produced ( when water is present), between 5 and 12%. This is most

probably due to de-carboxylation reactions Wichert et al, 1995, the carboxylic acids

having been produced by successive oxygenation reactions. This mechanism is further

confirmed by low levels of carbon monoxide produced. There is also a lag time between

initial oxygen consumption and initial CO2 production. This suggests the following

overall reaction for the air injection LTO technique :

Oxygenation decarboxylation
Oil + O- - ___________________ f 1 ^ COyf CO

z Hydrocarbon L

For both adiabatic and iso-thermal experiments at reservoir conditions no measurable 

heat release has been observed. Any temperature rise in the reservoir is veiy dependent 

on the air flux used. Below a reservoir specific “Critical Flux” the temperature rise will 

be very small ( see Figure 2.4), a reservoir temperature profile for a typical post-water 

flooded reservoir) but not insignificant. This is because of the very small amount of 

oxygen reacting with the large excess of hydrocarbon molecules and the large reservoir 

area ( volume ) over which these oxygen molecules react Greaves, 1997. Above a critical 

flux, however, the reaction will move along its particular exotherm, so that the 

temperature of the oxidation zone increases above that of the initial reservoir 

temperature. Depending on how the reservoir is operated, the critical flux may, or may 

not, be important.
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Figure 2.4: Air injection LTO, A reservoir temperature profile

The application of the LTO process should be considered where nitrogen or flue gas 

injection is appropriate, for example, Where gas is needed to pressurize the reservoir, or 

maintain its pressure during depletion. Additionally, it can be used for horizontal WAG 

( Water Alternative Gas ) or GSGI ( gravity Stabilized Gas Injection ) . The advantage 

over nitrogen or carbon dioxide injection is that the cost of compression is generally 

cheaper for air Fassihi and Gilham, 1993 since no separation costs are involved.

Low temperature oxidation reactions are exothermic reactions which take place between 

the gas and liquid phases at temperatures less than that required for complete combustion 

( < 300°C ). It is characterized by the absence, or low levels of carbon oxides in the 

effluent gas and yields water and oxygenated hydrocarbons such as carboxylic acids, 

aldehydes, ketones, alcohols and hydroperoxides.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 2 4



VN‘4 V l R 8 : ? l f  or

St RATH^ n r v i  i i  Q m a r H  E lA yad i Chapter 2

Many papers have been published about LTO reactions for heavy crude oils, Alexander et 

al, 1962 investigated the effect of LTO on fuel formation. They reported that if crude oil 

is subjected to prolonged LTO reactions, the fuel content is increased especially in light 

oil reservoirs. It appears that oxygen is partially consumed at the combustion front. As a 

consequence, oil ahead of the front is subjected to some LTO, particularly when the 

temperature exceeds ( 93-121°C). They concluded that LTO reactions have a pronounced 

effect on fuel deposition and composition. Pottman et al 1967 have demonstrated that if 

the crude oil is subjected to low temperature oxidation then fuel content is increased as 

much as 100 per cent over what it is if no LTO occurs. Also, they established that fuel 

content is a function of the reservoir rock and oil properties.

In a combustion tube study carried out by Dabbous and Fulton, 1974, reaction rates were 

measured for two types of crude 19 and 27.1 °API. Their results indicated a higher 

oxidation rate under similar reactions for the higher API gravity crude. Light crudes 

appear to be more susceptible to LTO.

The products of the LTO reactions is a “flue gas”, which displaces the oil . Preliminary 

results of LTO reaction kinetics and oil recovery have been obtained using four North 

Sea light oils by Greaves et al, 2000. They conclude for most of the oils, complete 

oxygen utilized was achieved over 10-20 days. This produced up to 9% CO2 and some 

CO ( around 1% ). Significant oil recovery varying between 74-71% was obtained under 

the low rate LTO conditions using both crushed reservoir core and sandpacks. They 

recommend that the air LTO process should be considered for application to all light oil 

reservoir possessing sufficiently high reactivity.

Measured reaction rates for a 19.9°API and a 27.1°API cmde indicated higher oxidation 

rates under similar reaction conditions for the higher API gravity cmde. Light cmde 

appear to be more susceptible to partial oxidation at low temperatures because of their 

relatively high hydrogen content as presented by Dabbous et al, 1974.
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Fassihi et al, 1990 reported that, LTO increased oil viscosity and density. The rate of

increase depend on an oil’s API gravity, origin, and composition. LTO is shown to

increase the asphaltene content o f the oxidation oils significantly. They observed that

physical and compositional property changes are consistent with the LTO mechanism

proposed in the literature and confirmed also by Verkoczy et a l :

Oil -> Resins ■> Asphaltenes / Coke.

The kinetic parameters determined (K,EA,Ko) by Ranjbar et al indicate that the reactivity 

of the oil towards oxygen increases almost linearly with the content of resin and wax in 

the oil at temperature, up to 450°C . Above 500°C, however, the fuel formed from oil is 

rich in asphaltenes is more reactive than that originating from samples rich in wax and 

resins.

2.9: In-Situ Combustion of Light Crude Oil:
In-situ combustion behavior in light oil reservoirs (i.e. API > 25°API ) is not as well 

documented as combustion of heavy oil and bitumens. The usual concerns expressed are 

that the light oil will be swept away by the gas flood to a residual level that is too low to 

sustain combustion, or that the process will be unable to deposit sufficient amounts of 

coke (i.e. fuel) to make the process self sustaining. Results by Tzanco et al, 1990 on her 

study showed that light Countess B oil did appear to be burning a coke-like fuel. Rather, 

it appears to be burning an oxidized asphaltene fraction. The low rate of coke deposition 

observed for this oil provides an important explanation of the difficulties reported in 

sustaining high temperature combustion in this light oil reservoir.

Abegbesan et al, 1983, studied the kinetic of LTO reactions of Athabasca bitumen. The 

studies were carried out in a temperature range of 60 to 149 °C at an oxygen partial 

pressure of 7.3 to 324 psi. The bitumen used was free of water and minerals.

They concluded that the overall rates of the oxygen consumption by LTO reactions are 

relatively small when compared with rates characteristic of high temperature oxidation.
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Also they found that total pressure had no influence on the LTO reactions and they 

depend on oxygen partial pressure.

Turta et al, 1998 defined the spontaneous ignition as when air is injected in oil reservoir, 

slow oxidation (LTO) reactions occurs at the reservoir temperature, and in some cases the 

heat given off can initiate the in-situ combustion process. In general, an ignition delay of 

10-20 days is seen in oil reservoirs whose reservoir temperatures are 50-60 °C. 

Spontaneous ignition can take place even at law reservoir temperature as 30°C, but can be 

as long as 100-150 days, and for light oil target it becomes impractical for various 

reasons, such as an increase in oil viscosity.

Islam, 1989 reported that LTO may result from incomplete oxygen consumption in the 

combustion zone, or air channeling into down stream zones, or tilted combustion front 

surface.

Fassihi et al, 1990 also attributed LTO reactions to oxygen channeling which results from 

both reservoir heterogeneity and insufficient combustion rate. They reported that LTO 

tends to be more pronounced when oxygen is injected into reservoir.

Belgrave, 1990, has shown that LTO is an important fuel forming step in in-situ 

combustion, especially for heavy oil recovery.

Yannimaras et al, 1995 have tested the oxidation characteristics of North Sea Maureen oil 

with air in the presence of reservoir rock and brine by using an accelerating rate 

calorimeter (ARC).
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2.10: Procedure to Identify LTO Reaction Regime:
To distinguish between overlapping LTO and HTO, Al-Saffar et al, 2000 highlighted the 

following points:

a. In Isothermal runs using the same cores and crude oils, the onset of LTO reaction 

was identified. However, for the present non-isothermal experiments, while some 

show the occurrence of LTO reactions, in other experiments, LTO reactions 

appear to persist into HTO region so that LTO and HTO peaks merge into each 

other. It is belived that the characteristic of the consolidated core ( similar to the 

real reservoir element) such as thickness, surface area, permeability, have a major 

effect in determining the extent o f the LTO region.

b. The presence of LTO reaction regime will characteristically yield an apparent 

H/C ratio that is high.

COc. LTO will generally give a relatively high molar carbon ratio -------------, This
CO + COj

means low CO2 . Also, as the combustion regime changes from LTO to HTO, 

carbon dioxide becomes increasingly the dominant product of carbon oxidation.

d. During LTO reactions, some oxygen is consumed to produce carbon oxides, but 

the combined production of these gases is less than the oxygen consumption. The 

differences in oxygen consumption and carbon oxides production indicates that 

some oxygen is consumed on other reactions under LTO conditions. On the other 

hand, at high temperatures ( i.e. the HTO region ), nearly all of the oxygen is 

consumed to produce carbon oxides ( the combined production of carbon oxides 

should equal oxygen consumption if the fuel is composed of carbon only and this 

is completely combusted).

2.11: Medium Temperature Oxidation ( MTO/Fuel Deposition):
At temperatures above 300°C, the residual oil cracks into volatile fractions and a 

nonvolatile heavy residue consisting o f coke, which constitutes the primary fuel for 

combustion. Both cracking reactions produce hydrogen gas and some light hydrocarbons
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in the gas phase. In an oxygenated environment, a portion of these hydrocarbon is

oxidized; hence medium temperature oxidation occurs. It is assumed that the pyrolysis of

crude oils takes place by chain reactions Abu-Khamsin, 1988.

These reactions include the breaking of C-C bonds, H-C bonds, polymerization, 

condensation and alkylation. As a result, the reaction kinetics of this cracking can be 

extremely complex. Also, it is almost impossible to describe the mechanism precisely, 

even for a pure component because it not only produces solid like coke but also upgrades 

the remaining oil which affect the vaporization behaviour of crude oil Lin et al, 1984.

The reaction may be represented as :

Heavy Hydrocarbons  Light Hydrocarbons + Heavy Residue

There is an assumption that crude oil does not crack into coke and gas, but it goes 

through an intermediate step of visbreaking, then cracking into coke.

Crude Oil -  > VisbrokenOil + Gas

Visbroken Oil Heat > Coke + Gas

The amount o f fuel deposited, is very important factor in in-situ combustion project 

design because the maximum oil recovery is the difference between the initial oil-in- 

place and the amount of fuel deposited. A high fuel concentration will reduce the 

combustion front velocity and increase air requirements, a high increase the overall cost 

of the project. On the other hand, if the fuel concentration is too low, heat generated may 

be insufficient to propagate a self-sustaining combustion Mamora, 1994.

Wu and Fulton, 1971 identified that thermal cracking occurs in both the cracking zone 

and the evaporation zone, while coke is produced in the cracking zone. Therefore, the 

mechanism of fuel deposition is controlled by two important factors; the kinetics of the 

cracking reaction and the evaporation of crude oil components ( i.e. displacement
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processes ). These processes, determine the amount of fuel that will be deposited and how

much fuel will be consumed. The displacement processes are hot water drive, gas drive,

vaporization, miscible displacement, fluid and gravity drainage Fassihi et al, 1984.

Because of the light oils contain more volatile components and are vaporized to a large 

extent, vaporization and miscible gas displacement processes play a more important role 

in light oil reservoirs.

2.12 : High Temperature Oxidation ( HTO ) ( Fuel Combustion ):
Temperature oxidation reactions are the main source of heat for the in-situ combustion 

process. They are a heterogeneous reaction occurring between the oxygen in the gas 

phase and the coke at temperature above 343 °C. These reactions produce carbon 

monoxide, carbon dioxide and water.

To evaluate or study the performance of in-situ combustion laboratory or field test, the 

data typically available include :

(1) Gas injection and production rate and

(2) Gas analyses ( CO2, 0 2 , and C 02 ) .

Evaluating the performance of the combustion project in terms of the following 

parameters is desired.

1. Average gas analysis.

2. Apparent H/C ratio.

3. Oxygen utilization efficiency.

4. Total combustion rate, Mscf/D.

5. Total fuel burned, Ibm/D.

6. Heat generation rate, Btu/d.

7. The concepts of fuel available, air requirement, and heat of reaction can be 

applied to analyze the performance of in-situ combustion project.

The detailed equations used to calculated these parameters are showing in Appendix A.
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The effectiveness of HTO depends on the rate of heat generated by combustion and the 

efficiency of heat utilization, which depends on reservoir fluid distribution, and thermal 

properties of the reservoir rock and the adjacent formation.

One of the earlier studies to investigate the combustion reaction was done by Bousaid and 

Ramey, 1968. A total of 48 runs were made wherein a stationary thin layer of coke, 

unconsolidated sand was burned isothermal in a combustion cell. Individual runs were 

made at various temperature levels to permit determination of the effect of temperature 

upon the reaction. They concluded that the carbon burning rate of the crude oil in a 

porous medium was found to be dependent on carbon concentration, combustion 

temperature and oxygen partial pressure. They found that activation energy decreases 

significantly with the addition o f clay to their sand matrix and it appeared to be 

insensitive to the oils used. Their results showed first order reaction rates in both partial 

pressure and carbon concentration.

Dabbous and Fulton, 1974 observed that the combustion reaction is first-order with 

respect to oxygen partial pressure and second-order with respect to carbon concentration. 

Greaves et al, 1988, found that the combustion kinetics is dependent on fuel 

concentration, oxygen partial pressure and combustion peak temperature. The reaction 

rates for carbon concentration were found to be first order. For dry combustion, the 

oxygen partial pressure was found to have an approximate first reaction rate, while for 

wet combustion, the value was less than half, due to the limiting factor of oxygen 

diffusion.

As heating rate increased the reaction temperature increase. Also, as the °API gravity of 

crude oil decrease in high temperature oxidation, the activation energy value produced 

will be higher Kok and Keskin, 1999.
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The apparent activation energy of the high temperature oxidation reaction was observed 

by Hughes et al, 1987 decreases with increasing surface area of the substrate and was 

also affected by the partial pressure of oxygen over the range employed.

2.13: Effect of Matrix Surface Area and Clay :
Many oil reservoir formations are known to contain substantial amounts of fines ( size of 

the grain < 1/256 mm ) including considerable amounts of clay minerals. Because of the 

large surface area involved and the high reactivity of such surfaces, the response of the 

formations to various recovery processes may be dominated by reactions at the clay 

surface, Wilbur et al 1980.

For in-situ combustion process, the specific surface area of the porous media is one of the 

most important factors to achieve smoothly advanced combustion front. Many studies 

have been carried out on the effect of surface area and associated material on the ISC 

performance. The main conclusion is that surface area and fine solids materials may 

significantly influence combustion kinetics and fuel deposition.

Bousaid and Ramey, 1968 presented kinetic data from an isothermal combustion reactor 

in which a 13.9 °API crude oil was combusted at temperature ranging from 266 to 671 

°C. They observed a decrease in activation energy from 61,887 to about 148,394 

Joules/gram when the porous media containing 20% wt clay.

Hardy et al, 1972 have reported that combustion could not be sustained when clean sand 

was used instead of the actual reservoir rock. They attributed that to the lower fuel 

adsorption on the sand surface.

Fassihi et al, 1980 performed combustion tube tests on different crude oils in sandpacks 

containing clay. They reported that the average front temperature for the sandpack 

containing clay was about 510°C, whereas in the clay-free sandpack the average 

temperature was 343°C. They concluded that clay particles and fine sands enhance 

deposition of more fuel because of the adsorption characteristic on a high surface area.
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Vossoughi et al, 1982, investigated the effects of surface area on in-situ combustion 

using thermogravimetric analysis (TGA). The experiments were done in the absence of 

clay by using silica sand with variable specific area. They concluded that for low specific 

surface area experiments ( 1120 cm2/gram ), the oil content immediately ahead of the 

front reduced below its original level, while the opposite affect occurred for high specific 

surface area experiments ( 3330 cm2/gram ). Their results show a minimum specific 

surface area is required for any particular crude oil in order to establish a self-sustained 

combustion front in clean unconsolidated sandpacks.

In another study, Vossoughi et al, 1984 investigated the effect of clay on dry ISC process. 

Sand mixtures of varying clay content were saturated with crude oil and water.

They found that more fuel was deposited as the clay content of the mixture was 

increased, as a result the combustion peak temperature increased. They reported a 

significant reduction in the activation energy resulting from the addition of clay. This 

phenomenon may be attributed to the composition of the clay minerals mostly consisting 

of silica and alumina which is classified as solid acid catalysts. Their catalytic activities 

are related to their acid site density and strength. Activation energy decreases with an 

increase in the acidity.

Greaves et al, 1987 investigated ISC behaviour in dry and wet modes using different 

crude oils ( 36.6, 32.4, and 22.1 °API ). They found that with light crude oil, it was not 

possible to sustain a stable combustion front using a clean silica sand, without first 

incorporating a clay additive, or other combustion surface promoter. It has also been 

found that clay content in the range 5 to 10% wt did not significantly effect level of 

oxygen utilization.

Shallcross et al, 1991, performed experiments to study the effects of various additives on 

the oxidation kinetics of Californian and Venezuelan oils. They concluded that the 

presence of iron, tin, and aluminum enhanced fuel deposition for Huntington beach oil 

(density = 943 kg/m3). In contrast, the presence of copper, nickel, and cadmium had little
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or no effect. They found the presence of a ketal did not reduce the amount of fuel

deposited by Venezuelan oil ( density =996 kg/m3).

Mamora and Brigham, 1993 have reported results similar to that observed by Fassihi et 

al, 1980. They attributed higher combustion temperature associated with the use of clay 

or fine sands to the reduction in permeability, which increase residual oil saturation and 

hence fuel concentration resulting in higher combustion temperature.

The presence of clay enhanced the LTO reactions by shorten the oxidation time and 

increase the amount of deposits on the sand grains. This greatly increased the 

compressive strength, but at the expense of larger permeability losses. When interstitial 

water was present with clay, the permeability loss was increased further while the 

compressive strength was slightly reduced. Acid treatment had no effect on the residue on 

the sand grains.

Decreasing the crude oil/surface area ratio enhanced the low-temperature oxidation 

(LTO) peak. It also was noticed by Drici and Vossoughi, 1985 that additives with large 

specific surface are shifted a large portion of the exothermic heat from a higher to a lower 

temperature range , The fractional shift correlates with the crude oil/surface area ratio of 

the mixture. Activation energies calculated for the crude oil combustion of the samples 

with a low crude oil/surface area ratio were significantly lower than those of samples 

with a high value of crude oil/surface area ratio . The surface area of the additives seemed 

to affect the crude oil combustion regardless of the composition of the additives.

The thermo-oxidative and thermal cracking reactions of Athabasca bitumen were 

examined qualitatively and quantitatively by Yoshiki et or/,1985. They conclude that 

when sand was used as the support material there appeared to be a catalytic effect in both 

low temperature oxidation ( LTO ) and High temperature cracking ( HTC ) reactions.

The effect o f clay on crude oil combustion where reported by Vossoughi et al, 1981. 

They observed that the large surface area of clays was a major contributor to the fuel
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deposition process. Moreover, the activation energy reduced, caused by the addition of

kaolinite clay to the crude oil indicates both catalytic and surface area effects on

combustion / cracking reactions.

The use of different lithology ( sandstone and lime stone ) can give different combustion 

reaction results as presented by Bagci et al, 1987. They observed that considerable 

differences were obtained in atomic H/C, molar CO2/CO ratio and activation energy in 

HTO region.

Core mineralogy played an important role in the generation of CO2 , Belgrave et al, 1994 

and the amount of H2S produced was dependent on oil composition, mineralogy, and 

time, as stated by Belgrave et al, 1994.

Particle size effects were studied by Lukyaa et cr/,1994, They found that decreasing 

particle size of the sand increased the extent of LTO and thus favoured fuel lay down.

The role of clay in reservoirs and its possible influence on kinetics of crude oil burning is 

not entirely clear Rashidi and Bagci. However, it is known that

a. Clay fractions of the reservoir matrix possess the highest surface area per gram.

b. Clay fractions are the most chemically reactive of the inorganic consistent present 

in the reservoir and

c. Clay minerals generally possess catalytic properties toward various organic 

liquids.

Clay content of the matrix influenced the amount of the fuel deposited on the limestone. 

Increasingly more fuel was deposited as the clay content was increased. Addition of clay 

also increased the combustion peak temperature. Also, with addition of 10% of clay in 

the limestone tend to increase the average molar ratio from 3.71 to 5.97. He recommend 

to use natural core in studying in-situ combustion to represent the physical conditions and 

minerals in a sand pack are close to reservoir conditions as possible.
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2.14: Effect of Pressure :
Air injection can offer economic and technical opportunities for improved oil recovery in 

many candidate reservoirs. Air injection is an efficient oil recovery process since only a 

small amount of the in-place oil is consumed, while the rest is displaced, banked, and 

eventually produced. Light oils at high pressure offer many unique advantages for the air- 

injection process including

(1) Excellent displacement efficiency,

(2) Near-miscibility and associated enhanced hydrocarbon extraction capability of the 

flue g a s ,

(3) Spontaneous oil ignition with complete oxygen utilization, and

(4) Operation above the critical point of water with possible super-extraction benefits, 

Tiffin and Yannimaras, 1997.

Commercial application of ISC was mainly in heavy oil reservoirs, which were 

characterized by low initial pressure. The effect of pressure on the process performance 

has been studied by number of investigators. Wilson et al, 1963, conducted combustion 

tube tests to study the effect of pressure on forward and reverse combustion. They used 

five types of crude, test pressure ranging from 1 to 69 bar. In forward combustion, they 

found that increasing the pressure increases peak temperature, decreases combustion 

front velocities, but did not affect oil recovery. In reverse combustion, they found that 

increasing the pressure resulted in decreasing peak temperature, oil recovery and 

increasing the rate of advance.

Bae, 1977 observed that the effect of pressure is oil dependent, but in general, increase in 

pressure causes the low temperature heat generation to increase.

Prasad and Salter, 1986 conducted combustion tube runs at pressure up to 207 bar. They 

found some benefits not observed at low pressure. Immiscible displacement of oil by 

carbon dioxide was found to be an important mechanism for both dry and normal wet

High Pressure In-Situ Combustion Tube Commissioning and Operation. 36



Omar H. El Ayadi Chapter 2
combustion accompanied by an associated increase in oil production rate. This was

caused by gas at its high partial pressure, dissolving in oil, swelling it and also reducing

its viscosity.

Adegbesan et al, 1987 studied the effect of pressure LTO reaction kinetics. The pressure 

applied in the study ranged from 22 to 44 bar. They concluded that the total pressure had 

no influence on LTO reaction but the reaction rates were found to depend on oxygen 

partial pressure.

Moore et al, 1990 studied the effect of pressure on Athabasca oil cores in combustion 

tube runs by using enriched-air (95%02). They found that increasing the operating 

pressure caused a significant rise in the oxygen and fuel requirements. They observed that 

the pressure effect with air is not effect to the same extent as for oxygen.

Tiffin and Yannimaras, 1997 investigated the effect o f pressure on the combustion 

behavior o f two light crudes. Experiments were conducted at pressures ranging from 6.9 

to 37.2 Mpa using an automated high pressure combustion tube. They concluded that the 

air/fuel ratio was relatively constant with pressure, while fuel deposition and air 

requirements increased slightly with pressure. They also reported the need for a high 

injection rate to operate the runs under high pressure. In the field, this can be a very 

limiting factor for sustaining HTO, or a propagating combustion front pattern, if the 

oxygen flux declines in the reservoir ( limited air compression capacity ) the process will 

drop into LTO mode. However, a high temperature front ( <300°C) can still propagate.

Kisler and Shallcross, 1997 have studied the oxidation kinetics of a light Australian crude 

oil by using Evolved Gas Analysis technique (EGA). They reported that high pressures 

increased oxygen consumption throughout the oxidation and pyrolysis reactions.

Rashidi and Bagci presents results indicating that the oxygen consumed increases with 

increasing operating pressure. This means more fuel is burned by increasing the pressure; 

which is due to the effect of pressure on the volatility of the oil components. Because,
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increasing pressure will depress oil volatility and so the fuel availability would increase.

This also suggests that distillation might be the dominant mechanism for fuel deposition.

The main effect of pressure is that higher air injection rates are required to propagate a 

self-sustaining high temperature combustion front. However, air/fuel ratio was fairly 

constant with pressure, but air requirement varied with pressure, oil and sand. Stated by 

Tiffin and Yannimaras, 1995.

2.15: Effect of Air Flux:
The concept of minimum air flux is simply the minimum flow rate of air per unit cross- 

sectional area of the reaction zone which will maintain the combustion in the HTO mode. 

It relates mainly to the heat capacity of the formation ( sand and fluid), which has to be 

heated to the over 350°C temperature required for high-temperature oxidation of a typical 

Canadian heavy oil . The minimum air flux is higher for Canadian heavy oils than for 

many light oils, because of the higher temperature required to operate in the HTO mode.

By definition, flux is the air flow rate unit area . The air flux is related to the combustion 

zone velocity by the relation.

Where: Ub is the combustion front velocity, Ua is the flux and Ar is the air requirement.

Nelson and McNeil, 1961 suggest a minimum bum front velocity of 0.125 ft/day (0.038 

m/d) for successful operation of an in-situ combustion process.

Once the line drive has formed, the minimum required injection is given by the following 

equation. Prior to establishing the line drive, less air is required and air injectivity is 

low er.
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Air Injection = 2.5 Umj,,. a . h

Where : Umm is the minimum air flux, a is the distance between wells, and h is the 
reservoir thickness.

It should be emphasized that linear drive can be found in case of locating two wells 

parallel to two barriers i.e. two faults. However, the important feature to be considered 

when selecting air injection flux such as radial flow. The combustion front velocity will 

be much lower ahead of the injection area due to the expanding displacement.

2.16: Effect of Oxygen Enrichment:
A great deal o f attention has been directed for using oxygen enrichment since 1980 as 

many of its potential advantages have been recognized. For reservoir that require a large 

volume of high pressure gas, oxygen is cheaper than air simply based on compression 

costs. Addition process benefits with oxygen include as suggested by Shahani and 

Gunardson, 1994:

• Faster oil production

• Lower Injection Pressure

• Greater Well Spacing

• Increased Carbon Dioxide Partial Pressure, to decrease oil viscosity and density,

and recycle it into the same reservoir Hansel et al, 1984.

• Lower Gas-Oil Ratios

• Purer Production Gas

• Reduce Compression cost per unit injection oxygen.

• Ability to sustain combustion under reservoir conditions of low permeability, due

to a decrease volume of gas that needs to be injected to sustain combustion

White and Farfield, 1982.

These feature provide a compelling case for oxygen, once the safety Hvizdos et al, 1983 

and materials compatibility issue are properly addressed.
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The use of oxygen-enriched air at high pressure, results in increased low-temperature 

reactions between the oxygen and the oil, resulting in an increase fuel load and decreased 

bum stability Moore etal, 1990.

Shahani and Hansel, 1987 found that a high coke loading alone was not adequate to 

ensure satisfactory in-situ combustion. The relative reactivity of the coke with O2 also 

appeared to be critical. Nevertheless, some crude oil did not bum in air ; however the 

same flux of contained O2 , high levels of O2 enriched could sustain combustion.

By using three dimentional (3-D) scaled model. Garon et al, 1986 indicated that the 

sweep of fireflood was similar for both oxygen and air combustion; water results in a 

small decreases in the sweep of the fireflood; wet combustion required less oxygen or air 

and increased the oil recovery rate; fireflooding a medium-gravity crude oil reservoir 

results in a large sweep than a heavy oil reservoir; and higher injection rates improved the 

sweep efficiency.

Oxygen injection may substantially increase oil productivity so that projects may be 

completed more rapidly in productivity-limited reservoir. However, Oxygen/Oil ratio 

(OOR), or cost per barrel of produced oil, is also higher with oxygen injection. Wet 

combustion may reduce OOR, Especially for oxygen injection and high pressure 

reservoirs.

Lukyaa et al, 1994 found using an Differential Scanning Calorimeter ( DSC ), that with 

increase of oxygen concentration there was increased heat evolved up to 50% oxygen; 

further increases in oxygen had no effect

Moss and Cady, 1982 reported combustion tube results using oxygen concentration up to 

95%. They concluded that the peak temperature and oxygen utilization were found to be 

similar for both oxygen and air. The apparent fuel lay down was 20 to 10 % higher over 

air dry and wet combustion.
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Hansel et al, 1984, conducted combustion tube experiments by using oxygen enrichment

to evaluate the combustion characteristics of light oil. They used low initial oil saturation

under different percentage of oxygen enrichment ( 21 to 95% O2 ) at constant gas influx.

They concluded that combustion with 40% to 95% oxygen was vigorous, whereas

combustion with air and 30% oxygen was unsatisfactory. Also they reported that front

velocity increased and faster production was obtained with oxygen enrichment. The H/C

ratio, peak temperature, oxygen utilization and CO/CO2 ratio were found to be the same

under both oxygen enrichment and air.

Hughes et al, 1990 reported that an increase of partial pressure of oxygen give better use 

of the fuel laid down in the combustion process and related to the virtual completion of 

LTO reaction at 377°C with high concentration of oxygen ( 30-40 % ). They also added 

that increase oxygen concentration also produced a decrease in the activation energy for 

high temperature oxidation reaction.

Petit, 1997 studied the effect of total pressure, oxygen partial pressure and oxygen flux on 

the combustion kinetics of two crude oils having API gravity of 25.7 and 16°. He 

reported that at constant oxygen flux and increased oxygen partial pressure, there was a 

less than a proportional increase in combustion front velocity. At low pressure (1 0  bar ), 

he observed that fuel availability and the air requirement at the front are slightly affected 

by the oxygen partial pressure. For 16°API crude oil, he reported a slight increase in fuel 

availability and air requirements with oxygen enrichment. The opposite effect was 

observed for the lightest oil.

At high pressures ( 70-100 bar ), there was no effect on the combustion of the heaviest 

oil, but there was a reduction of approximately 40% in the oxygen requirement at front 

for the lightest oil.

2.17: Porosity Effect:
Iin-situ combustion does not appear feasible in extremely low porosity reservoirs. The 

porosity requirement is directly related to heat losses within the matrix, Turta and 

Singhal, 1998.
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CHAPTER THREE

EQUIPMENT, COMMISSIONING AND EXPERIMENTAL 
PROCEDURE
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The high-pressure combustion tube facility is shown in Figure 3.1. The system was 

originally constructed 12 years ago. There have a number of adaptations to the original 

system, especially concerning the control and monitoring systems. The most resent 

modification were not undertaken by T.Young, 1997. It is designed as a physical 

simulator of the in-situ combustion process, and is capable of operating up to 240 bar 

pressure.

The combustion tube system is housed in a self-contained safety containment area, which 

is located outside of the main chemical engineering laboratory. The combustion tube is 

contained inside a pressure shell, because it can support only a very low pressure (< 3 

bar).

3.1: Flow Sheet of Combustion Tube System:
Compressed air injected through the inlet system, which consists of two inlet lines, one 

contain high mass flow rate calibrated meter, and the other with low flux. Gas supplied to 

the combustion tube (air) and pressure shell (nitrogen), from high pressure cylinders. 

Produced fluids exit from the bottom of the combustion tube. Gas is separated from the 

oil and water in two stages, via a high pressure separator (HPS) and a low pressure 

separator (LPS), and at the simultaneously they are cooled down. The produced 

cumulative gas and any hydrocarbon gases are send to the vent extract system, after the 

volumetric flow was measured by a wet test meter (WTM). Oil and water samples are 

collected from the additional atmospheric separator (Figure 3.1).
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3.2: E q u ip m e n t:

3.2.1: C o m b u stio n  T u b e  :

A diagram of the combustion tube and surrounding pressure shell assembly can be seen 

in Figure 3.2. A photograph of the combustion tube can be seen in Figure 3.3. The 

combustion tube reactor is a cylindrical tube 0.1 m in diameter, 1.25 m long and 1.75 mm 

thick, constructed from Inconel 625. Inconel 625 was chosen due to its outstanding 

corrosion resistance, superior mechanical properties and lower thermal conductivity. The 

thin wall reduces axial heat conduction. The end flanges are sealed with high 

pressure/temperature gaskets, and secured into position with eight bolts.

O n *  Oil ♦ Wtfci

Caafcntica T«W
faKMttlttf

Piwur* SWA 
Cufc** M mnvu*" Steel

Figure 3.2 : Pressure shell and combustion tube assembly.

Figure 3 .3 : Photo of Combustion Tube.
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An electrical ignitor is located at the top of the tube to initiate combustion. It is fixed to 

the top flange by two Connax MK-250 glands. The ignitor is a tubular heater shaped into 

spiral rated at 500 W.

The combustion tube is surrounded by a stack of 32 circular band heaters (BH), to heat 

the tube, and reduce heat loss from the core. A near adiabatic condition present in a 

reservoir. Each BH is 3.9 mm wide, 2 mm thick and has a maximum power rating of 800 

W. Between the tube and the band heaters is a thin layer of ceramic paper which protects 

the band heaters from any large increases in temperature. However, one additional 

purpose of band heaters is that it provide some support to the tube from bursting pressure.

A thermocouple probe is mounted to monitor the sand pack temperature along the central 

axis of the tube. It contains 32 thermocouple ( K-type, mineral insulated, floating signal) 

equally spaced along its length. They are welded to insert clips and placed at equal 

distances from one another. The thermocouple assembly is contained inside a removable 

stainless steel tube, of diameter V* in. When the axial thermocouple probe is positioned 

correctly, the position of the thermocouples corresponds to 32 similar thermocouples 

located on the tube wall. The wall thermocouples measure the temperature of the band 

heaters. The wall thermocouples are held in place by heat conducting collars positioned 

beneath each BH.

At the base of the combustion tube a specially constructed filter support plate holds the 

limestone core in place. It has holes through its centre to allow the axial thermocouple to 

pass.PT2 and PG7 monitor the pressure at the top of the tube.

3.2.2: Gas Injection System :

As mentioned previously this system consists of Gas source (Figure 3.4) and gas input 

system Figure 3.5. The injection gases is provided from high pressure (~ 300 bar) 

horizontal lay, nitrogen cylinders and vertical lay, oxygen (~ 230 bar) cylinders and 

filtered via filters FI and F2. The gas is reduced via precise pressure reduction valves
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PPRV1 and PPRV2, down to 12 bar above the required reservoir pressure. LMF1 and 

LMF2 are precision mass flow meter controller, which control the flow rate of oxygen 

and nitrogen respectively. They are ratio controlled to maintain the required 

concentration and total flux of the injected gas. Air actuated valves AAV1 and AAV12 

are used to shut off the gas supply during shout down procedure. Pressure transducers 

PT1 and PT2 monitor the gas supply pressure. The oxygen injection temperature is 

monitored by TCI in case a reverse bum condition should occur. AAV15 has a normally 

open valve state. In an emergency, Therefore, it vents any injection gases, as the AAVs 

return to their normal states.

Figure 3.4: Gas Supply system.

V ent V ent

PC AAVl*

TCI

To The
CPC5

Com bustion Tube

- | Q h
AAV31
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Figure 3.5: Gas Injection System
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Manual control panel consists of pressures gauges of in-situ combustion tube In and Out, 

shell and gas injection. This set of gauges are main pressures around the combustion tube 

( up, down, surround the tube ) . In case of manual shut down or emergency shut down, 

this control panel will be the only monitor available to the system. A manual control of 

bleed tube and shell valves are also on the panel as illustrated in Figure 3.6.

I

Figure 3.6: Manual Control Panel

3.2.3: Pressure S h ell:

The pressure shell contains the combustion tube, providing small overpressure, compared 

to operating pressure for combustion tube. A photograph of the pressure shell is shown in 

Figure 3.7. The shell was designed for 330 bar at 100°C. It is constructed from carbon 

manganese steel in accordance with BS5500, 1988. The annulus between the combustion 

tube and the shell is filled with Vermiculite, a high efficiency insulation.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 4 8
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Figure 3.7: Pressure Shell

A “Sindanyo” insulating block is placed at the bottom of the shell to minimize heat 

transfer from the combustion tube to the shell. Thermocouple and band heater 

aonoe^tiofl^j^^.th^oufilbajierie^.QChi^b .^anax ?..elar\4s. >e t . o u t l e t

connections pass through a series of high pressure “ Conax” glands. The inlet and outlet 

line of the combustion tube are held in place with two sets of carbon reinforced PTFE 

Crane “Tetrvee” pneumatic compression rings (piston rings). These are contained in a 

stuffing box on each end flange of the pressure shell. The inlet line to the tube has an 

expansion band to allow for thermal expansion.

The pressure difference between the pressure shell and the combustion tube must be 

maintained below a maximum of about 2 bar, since the Inconel tube is 1.75 mm thick. 

Any overpressure of the combustion can cause it to collapse. Nitrogen gas is used to 

pressurize the shell and also prevent corrosion of the BHs. The shell is filled by operating 

PPRV3 and AAV22. Gas vented via PPRV6 and AAV4, as shown in Figure 3.8. If the 2 

bar safety limit is exceeded, AAV19 and AAV3 are opened to allow pressure 

equalization through the high pressure parts of the system.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 4 9
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Figure 3.8: Gas Injection for Pressure shell.

PT3 measures the shell pressure. F6 filters any insulating material from the vented gas. A 

bursting disk is fitted to the shell in case exceed 240 bar, maximum safe working 

pressure.

3.2.4: Separation System :

In the separation process, the produced fluids from the combustion tube are passed to the 

high pressure separator (HPS), where they are separated into liquid and gas (Figure 3.9). 

When the HPS is full, AAV6 is opened and the liquid flows via PRVG1 into the low 

pressure separator (LPS). PRVL1 reduces the pressure to 3.5 bar.
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Figure 3.9: Separation system.

PRVG1 reduces the gas pressure from the HPS to 3 bar, allowing liquid to flow from the 

HPS to LPS at a controlled rate when AAV6 is open. The pressure of LPS depend on two 

requirements. Firstly the importance of the mass balances. A lower the final separation 

pressure mean more complete separation of liquid from gas. Secondly, pressure is set too 

low, control become too difficult. 3.5 bar was found in practice to be satisfactory.

The argument for the use of one separation stage ( flashing instantly to 3.5 bar) fails on 

two counts. Firstly, accurate measurement of the tube exit pressure would have to be 

made on a multiphase line. Secondly, the composition of the products is not constant, 

leading to varying gas flow rates.

PT4 and PG9 measure the HPS pressure. TC5 monitors the HPS gas temperature in case 

of auto ignition. TC3measures the HPS liquid temperature. The temperature is controlled 

with cooling water via SV18 and a trace heating element with an independent controller. 

TC5 provides the same control measurement input for the LPS and LD2. PT5 measures 

the LPS inlet pressure and is used to set PRVL1. PT8 is used to set PRVG1 and PT10 is
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used to set PRVG2. PRVL1 and PRVL2 may need to be adjusted during an experiment,

as the composition of the produced liquid has a small effect on the pressure at which they

are set to deliver. This in turn can affect the rate of draining of the two separators.

Both separators are protected by pressure relief valves. AAV20 is used in an emergency 

to shut in the high pressure part of the system.

The air operated fine metering valve AOFMV is used to control the back pressure on the 

tube. This is a very critical control operation. Interestingly, it is positioned at the low 

pressure side of the system.

3.2.5: Gas Analysis:

The gas was analysed continuously for CO2, O2 , and CO using analyzers, it can detect 

full range of the products. This can be seen in Figure (3.11).

Photo 3.10 : C 02, 0 2, CO analysers
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The gases are first passed through the knock out vessel (KOV) where any condensable 

components are captured (Figure 3.11). The manual control valves ensure that the 

pressure to the analysers and the wet test meter (WTM) is kept below about 2 psig 

(Normally less than 1 psig for the WTM). A side stream is dried in a silica gel drier and 

passed via rotameters R l, R2, and R3 to oxygen, carbon dioxide and carbon monoxide 

analysers. The analysers exit stream is then mixed again with the main gas stream before 

entering the WTM, which measures the cumulative volumetric gas flow. The non-return 

valves prevent a reverse pressure gradient on the analysers.

c o ,

Cooling W ate r
V ent

WTM

G as From A ,  

Separation System
GC Sampling B ag

D ry e r

IQmck Connect
Vent

Figure 3.11 : Gas Analysis Unit

The produced gases can be also collected in a PTFE sample bags for off-line analysis, 

either gas chromatography (GC) or sample analysis tubes. The small amount of light 

hydrocarbon (C1-C4) can be measured.

3.2.6: Liquid Sampling :

The liquid from the LPS is passed through PRVL2 to reduce its pressure to a slightly 

above atmospheric. Liquid is then sampled via SV24. The rotating sampler is capable of 

accommodating 30 samples of 125 ml. During shut down the oil is drained via AAV5 to 

the oil drain as presented in Figure 3.12.
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Figure 3.12: Liquid sampling and Collections Unit

3.2.7: Instrument Air Supply:

This comprises a network of pneumatic ( 80 psi ) lines (1/4 in nylon ) servicing the 

AAVs. The air flow is directed via a combination of solenoid valves (SVs) and current to 

pneumatic converters (CPCs).

3.2.8: Power and Electronic System:

This works in two distinct ways. First by providing the power necessary to drive the SVs, 

CPCs, PTs, and LDs. Secondly, to convert signals from the PTs and the LDs to signals 

that can be inputted to the control computer. Whole wires, connection and the inter-face 

between the computer and the equaipment are shown in Figure 3.13.
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Figure 3.13: Electrical Connection and the Interfacing between the Combustion Equipment and Computer.

3.2.9: Computer:

The signals from the various transducers are monitored and recorded. Control signals are 

signals are sent out in response to these inputs for overall control of the system.

The combustion tube facility is housed in a concrete safety cell. This is constructed in 

two sections. The main process and pneumatics in one half ( the operations area ) and the 

electronic and computer functions in the other half ( the observation and control area).

3.2.10: Shut Down :

This is accomplished using AAV19 and AAV3 (Figure 3.1). When open (their normal 

positions) they allow pressure equalisation between the shell, and combustion tube and 

also to HPS. A controlled pressure let down under the control of the computer, takes 

place by opening AAV6 and AAV5. Note that the large volume of nitrogen in the shell
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flow through the combustion tube, and this acts to dilute oxygen in the system at any

point during shut down.

The system can also be shut-down manually (Figure 3.1), by opening AAV6  and AAV5, 

using BV4 and BV5, respectively. CAR4 is reduce the back up cylinder air pressure 

down to the normal pneumatic line pressure of 80 psi.

If a blockage occurs along the liquid line from the HPS, PPRV6  and AAV4 can be 

controlled via CAR2 and BV2. Here the path is via the shell vent line. If  a blockage 

occurs between the shell and the tube then PPRV5 and AAV2 

(via CAR1 and BV1) must be used in conjunction with PPRV6  and AAV4 to let down 

the pressure in the shell and the tube separately. This process is monitored using PG7, 

PG8  and PG9.

V M V £ R g :? Y  o r

1 1 1  BATH

High Pressure In-Situ Combustion Tube Commissioning and Operation. 56



Bffc uMviR»;rif or 
j¥ | D A T U
C S /  I v i  J k  A  A  A  / - \  r  Y  7”* f  i  7  •^ ------------ Omar H. El Ayadi Chapter 3

3.3: Preparation of Core Material for Combustion Tube:
The following amounts illustrate the volume and weight used in Run 2:

> Prepare 14.796 kg of Lime Stone (MI Calcium Carbonate) needed as rock sample 

unconsolidated or crushed core.

> Prepare 2.048 liter of water needed (50%) as initial or current water saturation.

> Prepare 2.048 liter (1.757 kg) of oil required (50%) as initial or current oil saturation. 

Due to gravity effect and deposition of heavy residue at the bottom of the drum. The 

drum should be rolled few times to be sure homogeneous mixture in the drum before 

collecting samples.

> Mix water, oil and lime-stone. Then pack it inside the combustion tube, which is 

placed inside the shell outside the bunker. Then place it in the right position inside the 

bunker and make the top and bottom connection of the tube and shell.

> Full-up the cylinders with the gases required for the test (nitrogen, oxygen and/or air).

> Before initialising conditions for an experiment, check the reservoir and drain-off any 

accumulation water inside the air compressor. Start the compressor and adjust the 

pressure to 80 psi. Switch-on all of the electrical supplies. Next, follow the prompts 

displayed on the computer.

3.4: Experimental Procedure:
Automatic control and operation of the combustion tube is achieved by computer. 

Lab VIEW, uses the computer language “G”. The data acquisition and control of the 

combustion tube is achieved using a special program called IscView. IscView Controls 

every aspects of an experiment, from start-up to shut down. Any manual changes that 

need to be made are prompted by the program. The original IscView program was 

developed by T. Young, 1997.

The computer program controls Four main tasks simultaneously:

1. Control of pressures.

2. Control of temperatures.
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3. Control of flow.

4. Control and detect of liquid level in the separators.

Each of these is a critical routine that the computer needs to control precisely . Failure in 

control, or inability to achieve the desired set point requirement will result in experiment 

being terminated.

3.5: Computer Program:
IscView program was written using Lab VIEW© (Appendix D) software graphical 

programming language. It performs unlimited multitasking control and monitoring 

programs. IscView controls the ISC equipment and also monitors, the collection o f data 

and as well as saving input/output data.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 58



2^  UMviM:rr o?
RATH
---------- — Omar H. El Ayadi Chapter 3

3.6: Commissioning:

Prior to commissioning, extensive checks were made to ensure that all equipment line 

connections, instrumentation and valves were correctly installed, and working. Two 

major task were implemented:

1. Commissioning the IscView control program.

2. Commissioning of equipment.

Before an actual run can be performed, the following should also be checked:

1. Test all axial and wall thermocouples in-situ, and be aware that the BHs will

oxidize if heated in air.

2. Replace faulty thermocouples.

3. Install the missing check valve in the oxygen line.

4. Replace the jackets on the separators.

5. Connect GC or GC sampling bag.

6 . Replace silica gel in water drier (prior to analyzer).

7. Calibrate mass flow meters.

8 . Wet test meters

9. Calibrate the CO2 , 0 2 , CO analysers.

10. Test the power supply needed to achieve adiabatic control in as fast as it can be.

11. Leaks

Note: Appendix B contain equipment component and check results of solenoidals 

valves. Appendix C presents the check results of pressure transducers.

3.6.1: Commissioning Performance:

Initially, tests were carried out at 20 bar (Test 1), 50 bar (Tests 2), 100 bar (Tests 3 and 

4). There was particular concern to see how the control of the shell-tube differential 

pressure varied during the experiment, with the most critical phase being the 

pressurisation.
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3.6.2: Pressure Control of Combustion Tube:

Test No. 1:

The results of this test were very poor as the differential pressure greatly exceeded the 2 

bar limit, and the control was inadequate as shown in Figure 3.16. It could have been due 

to the fact that the venting and filling duration (maximum 500 ms, minimum 250 ms) 

were too large, because dummy tube has a much lower volume. This was obvious by 

observation of the pressure gauges. In following tests the venting and filling times were 

reduced.
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Figure 3.16: Commissioning Test No.l at 20 bar Pressure.

Test No. 2:

The filling and vent times were reduced down to a maximum of 30 ms, and minimum of 

5 ms. There was a slight improvement on Test 1, but the differential pressure still far 

exceeded the 2 bar limit. The backpressure of the system was also changed, the tube 

responded well to this but the shell pressure response oscillated in order to match this 

change (Figure 3.17).
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Figure 3.17: Commissioning Test No. 2 at 50 bar Pressure.

Test No. 3:

The same procedure for this test at 100 bar, was used as reported by T. Young, 1997 and

S.El-Usta, 1998. Figure 3.18 shows a major improvement over test 2, but the results are 

still unsatisfactory.
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Figure 3.18: Commissioning Test No.3 at 100 bar Pressure.
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Test No. 4:

Using the same equipment arrangement as previously, the operation was modified as 

follows:

1. Communication between the shell and tube was achieved by closing SV25, with 

AAV19 open (normal position).

2. Since flow into the system is equalized from the tube and the shell, pressurization 

is very fast.

3. When the pressure of the system is achieved, the SV25 is opened, isolating the 

shell and tube.

However, once the shell and tube were isolated by opening SV 25 the same variations 

occurred and exceeded the differential pressure limit. Once this was noticed the test was 

cut short and the pressure decreased as shown in Figure (3.19).
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Figure 3.19: Commissioning Test No. 4 at 100 bar Pressure.

Test No. 5:

Referring now to Figure 3.20, some general conclusions can be drawn about the 

pressurisation of the system during flow operation stages. Firstly, it can be seen that PT3 

(shell pressure) behaves erratically during the pressurisation stage (this is the cause of the 

instability in the AP control, already discussed). Control of PT3 settles down at around 

2000s. This point denotes the time at which flow was achieved through the system. 

Initially, once the system had reached the desired operating pressure, there was no flow 

through the system. In order to detect when flow commenced, the gas outlet from the 

tube passed through a section of flexible hose (under actual experimental circumstances, 

this is routed to the gas analyser), into a beaker of water, such that bubbles would be 

formed when a flow of gas was present. After investigation, it was found that both 

PRVG2 and AAV21 were closed, shutting in the gas flow. Once these valves were 

opened (at 2000s), flow through the system was achieved.

PT2 (tube pressure), and PT4 (HPS pressure) increased steadily during the start up 

period, before leveling off, once the system had reached operating pressure. As expected, 

under flow conditions, PT4 recorded a slightly lower pressure than PT2, due to the 

pressure drop through the system. PT5 and PT9 remained at zero during the experiment,
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as these instruments are positioned upstream and downstream of the LPS, respectively. 

The LPS was isolated during the course of this experiment. However, it can be seen that, 

at 3200s, the reading given by PT5 suddenly increased. This occurred because AAV6 and 

PRVL1, connecting the HPS to the LPS were opened as part of the system shut-down 

logic. Finally it is worth noting that all of the pressure transmitters, apart from PT9, were 

showing zero errors. This should be taken into account when considering the pressures 

recorded during the experiments.
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Figure 3.20: Commissioning Test No. 5 at 20 bar Pressure.

Test No. 6:

This was very similar to Test 5. However, more changes were made in the back pressure, 

and different venting and filling times were used in order to find an optimal setting. This 

showed that, despite the changes in shell venting and filling times, the response of the 

shell pressure to pressure changes was still extremely poor.

The conclusion was that significant disturbances in the pressure (resulting from using a 

small dummy shell), were leading to large calculated values for fill/vent times. This was 

caused the shell pressure to significantly overshoot/undershoot the desired value. 

Furthermore, the nature of the control algorithm means that if a calculated vent/fill time
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is too high, the resulting sharp increase, or decrease, in shell pressure will result in

another large value for the vent/fill time; thus the system becomes unstable.

Given the problems with the AP control, it was apparent that there was something wrong 

with the algorithm used to calculate the fill/vent times. However, there was concern , also 

about altering the algorithm itself, for fear of making changes that might have found hard 

to remove at a later date. In general, it was decided not save any changes to the computer 

control system.

Bleed off pressure

Experiment

Upper and lower limits exist for the shell fill/vent time.lt was therefore decided to repeat 

the test, using smaller values for the maximum and minimum fill/vent times (20ms and 

lms respectively). This would act to restrict the venting and filling times, with the 

intention that this would result in more stable control. The pressure test was repeated at 

20 bar, to allow a valid comparison with other tests.
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Figure 3.21: Commissioning Test No. 6 at 20 bar Pressure, some Disturbance Caused by Changing Control
Parameters.

The results for this test are given in Figure 3.21. It can be seen that changing the limits 

for the fill/vent times resulted in no noticeable improvement in control, with the ‘spikes’ 

in the AP being of similar size in both cases.
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Test No. 7:

It was clear from the results of the first tests, that there was a need for additional pressure 

tests to determine the best way of pressurising the system up. However, in addition to 

this, there was also a need to examine the back pressure control under normal steady flow 

conditions. Given that there was a possibility that new valve-trims might be required to 

achieve good back pressure control, it was decided to carry out two tests to determine the 

effectiveness of the back pressure control. The AP control during pressurisation was a 

secondary concern during these tests.

Two tests were carried out, one at 50 bar ( test 7 ), and one at 90 bar ( test 8  ), to 

determine the effectiveness of the back pressure control under different conditions.

The working o f the back pressure control system can be described as follow:

•  PRVG1 and PRVG2 are forward pressure regulators, i.e. they control the pressure on

their downstream side by varying the amount of gas let through. In effect, they

provide most of the pressure drop between the HPS and the AOFMV

• The Air Operated Fine Metering Valve (AOFMV) is designed to operate over a 

smaller range o f pressures, and works as a back pressure regulator, adjusting the 

amount of gas leaving the system. In effect, this ‘fine-tunes’ the back pressure.

•  If there were no adjustable PRVG’s in the system, it would be necessary for the

AOFMV to operate at a range of different pressures, and gas fluxes. This would

require several different sizes of valve stem.

In this test, having pressurised the system, it was decided to examine whether the 

AOFMV could effectively maintain the system back pressure, whilst the PRVG’s were 

adjusted to deliver differing pressures to the AOFMV. The control system for the 

AOFMV is a standard PID controller operating in a feedback mode. The pressure is 

measured at the tube, and the signal is sent to the PID controller, which determines the 

action to take. The controller produces an output signal, which is sent to the Current to
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Pneumatic Controller (CPC) which acts on the AOFMV. This was an effective way to 

introducing disturbances into the system, to examine whether the PID control parameters 

and the valve trim size would give good back pressure control with varying pressures on 

the inlet to the AOFMV. In addition, it was possible to test whether PRVG1 and PRVG2 

were operating correctly, e.g. to see whether they were blocked

The test was carried out at 50 bar. The back pressure slowly reduced during the course of 

the experiment, from around 55 bar to 50 bar. However, since this decrease was relatively 

steady over the course of the experiment, it does not appear that changing the settings of 

either PRVG1 or PRVG2 was the cause of this decrease. Rather, it would appear that 

during the pressurisation stage, the system pressurises up to around 5 bar more than the 

set point back pressure (i.e. the system pressure rose to 55 bar initially, compared with a 

set point of 50 bar). During the course of the experiment, the control system slowly 

reduces the pressure back down to the set point.

The pressure downstream of PRVG1 (but upstream of PRVG2) is measured by PT8 . The 

pressure downstream of PRVG2 is measured by PT10.

Test 7 showed a much better pressurization result than before, with fewer and smaller 

pressure ‘spikes’ in the shell. The pressure control of the LPS and the gas sampling 

system were also checked and showed that the back pressure of the separators can easily 

be controlled. Clear in Figure 3.22 that there are two sets of ( PT8  ) pressure. This is 

caused by varying PRVG1 setting from fully open to half open. However, the pressure 

bleed-off time can be also controlled, as shown in the same figure.
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Figure 3.22: Commissioning Test No. 7 at 50 bar Pressure, Change Control Setting Between HPS & LPS
(Gas Line).

Test No. 8:

Referring to Figure 3.23, which shows the results for Test 8 (90 bar), it can be seen that 

the setting on PRVG1 was reduced in stages during the course of the experiment. Since 

PRVG2 was positioned in between PRVG1 and the AOFMV, PRVG2 should have acted 

to maintain the pressure on its downstream side to its set value. This should have meant 

that the pressure at the inlet to the AOFMV would have remained constant. However, in 

order to maintain the downstream pressure constant, the flow of gas through PRVG1 and 

PRVG2 would have had to have changed, thus introducing a disturbance to the AOFMV 

and the back pressure control system.
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Figure 3.23: Commissioning Test No. 8 at 90 bar Pressure.

From the pattern of the results, the following conclusions can be drawn:

• Broadly speaking, comparing trends for PT10 and PT8, it can be seen that as the 

PRVG1 setting was varied, PRVG2 was nevertheless able to maintain a (relatively) 

steady pressure on the downstream side, i.e. at the inlet to the AOFMV. This provides 

evidence that both PRVG1 and PRVG2 remain in good condition.

• The setting of PRVG1 was varied in steps, from 30 bar to 20 bar, then to 10 bar and 

finally 5 bar. In order to maintain the set pressure on the downstream side of PRVG2, 

the flow through the system would have changed to compensate. This would have 

introduced a disturbance to the AOFMV. Furthermore, since it can be seen that the 

pressure downstream of PRVG2 varied slightly as a result of changing the PRVG1 

setting, a disturbance was introduced to the AOFMV inlet pressure.

• Despite these changes, the system back pressure, as measured by PT2, remained 

relatively steady during the course of the experiment, dropping by only 5 bar during 

the period when PRVG1 was being adjusted.

• In addition to varying PRVG1 setting, PRVG2 was also changed, in one step, from 27 

psi to 20 psi. Once again, this had no noticeable effect on the back pressure control.
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A similar result as test 7 was obtained, where the set point back pressure was 90 bar. In

this case, the pressure initially rose to 95 bar, but then reduced during the course of the

experiment back down to 90 bar.

Originally, it was thought that in order to achieve good back pressure control, it would be 

necessary to tune the control parameters (proportional, integral, and derivative times) for 

the PID algorithm. However, given the results of these (and previous) tests, it was 

decided that the back pressure control was working perfectly well, and there was no need 

to change the controller settings.

In both tests, during the pressurisation stage, the shell-tube AP was very unsteady, with 

peaks of around 12 bar AP. The problem with this aspect of the control is addressed in the 

following experiments.

Test No. 9:

Following Tests 1-5, it was felt that the gas supply line pressure to the shell was too high, 

given the fact that a small-volume ‘dummy’ shell was used. Because the supply pressure 

was high, and the volume of space to be filled relatively small, the shell was pressuring 

up far too quickly, and the control system was unable to deal with the rapid increase in 

pressure. Of course, a rapid increase in pressure would lead to the control system calling 

for a large vent time, in order to reduce the pressur, thus leading to instability.

In this test, it was decided to decrease the supply shell gas pressure during the 

pressurisation stage. This can be accomplished in two ways:

•  Reduce the pressure setting on the cylinder forward pressure regulators, thus reducing 

the nitrogen supply pressure.

•  Reduce the ‘Injection Pressure Margin’. This figure is the margin by which PPRV3 

(shell nitrogen injection forward pressure regulator) is set to exceed the required
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operating pressure. This is normally set at 20 bar, so if for example an operating 

pressure of 50 bar is required, PPRV3 is set to deliver 70 bar.

•  Adjust the CPC ratio, i.e. the ratio of the controller output to the controller input, or 

adjust the time delay between the control determining the output, and the valve 

responding.

A further problem with the current control set-up, is that during pressurisation, PPRV3 is 

set to deliver a fixed pressure, determined by the required operating pressure, and the 

pressure margin. This means that the full supply pressure is available at all times during 

the pressurisation, even at the beginning of the experiment, when the system is at a low 

pressure. This results is a large pressure differential between the gas supply and the shell; 

this in turn results in extremely rapid filling of the shell, initiating the instability seen in 

the early stages of Tests 1-5.

It was therefore decided that, in addition to reducing the injection pressure margin, we 

would manually regulate the supply pressure by adjusting the pressure regulator on the 

supply cylinders themselves. It was decided to start off with the cylinders delivering only 

2 0  bar pressure, and as the experiment progressed and the shell pressured up, the pressure 

delivered by the cylinders would be further increased. The idea was that this would allow 

PPRV3 to operate around the middle of its range, allowing for good control. Furthermore, 

the result of this would be that the shell pressured up more slowly, leaving more time for 

the control system to respond to changes.

Referring to the difference between the shell and tube pressure AP presented in Figure 

3.24 and 3.25, it can be seen that during the first period of the pressurisation, until around 

2000s had elapsed, the AP control was very good (successfully maintained within around 

±lbar). Unfortunately, it was not possible to plot superimpose the variation in gas supply 

pressure with time, due to the fact that PT7 (on the shell nitrogen supply line), was absent
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from the system. By maintaining the supply pressure at just 20 bar initially, the shell

pressured up more slowly, allowing for better control.

Test to try and improve the pressure up and pressure down of the system. The test begins 

well but there are still large pressure variations on the shell side of the equipment. The 

pressures of the low-pressure separator and gas sampling system are also varied again. 

There were also problems, with the pressure in the gas cylinders, hence the low-pressure 

spike at around 3000 s elapsed where this was switched to a different cylinder.
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Figure 3 .24: Commissioning Test No. 9 at 145 bar Pressure, Pressure Up and Down.
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Figure 3.25: Commissioning Test No. 9 at 145 bar Pressure, Control Back Pressure by Varying PRVG1 &
PRVG2.

However it can be seen that, towards the end of the pressurization stage, there are 

‘spikes’ in the AP, reading up to 50bar, which is clearly an unacceptable performance. It 

is clear from Figure ( 5. 11- A and B) that the cause of these spikes were due to 

substantial decreases in the shell pressure. It seems likely that this resulted from the 

cylinder supply pressure (which was being manually adjusted at the cylinder pressure 

regulator) becoming too low in comparison with the pressure in the shell as we reached 

the end of the pressurisation. The effect would be that when the shell required filling, the 

supply pressure was only slightly higher than the required operating pressure. Since it 

was known that there were leaks within the system (which would have caused pressure 

reductions, necessitating opening the filling line to the shell), it seems likely that the low 

supply pressure meant that the shell was not ‘topped up’ quickly enough to avoid the 

reduction in pressure.

During the shut-down period, in order to speed up the depressurisation, a ball valve was 

opened on the line which would normally pass to the rotating sampler. This is the reason 

for the very rapid depressurisation of the equipment.
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Test No. 10:

The default control mechanism for the pressurizing during start-up is as follows:

• The tube pressure, as measured by PT2, is increased via the Oxygen/Nitrogen 

injection lines.

• The shell and tube are isolated from one another. During the start up, the shell 

pressure is controlled so as to maintain the shell/tube AP at a maximum of 2 bar.

Although, superficially, it would seem to be logical for the shell and tube to be in 

communication during pressurisation, allowing equalisation of the pressures during the 

transient pressurisation stage (when the AP is most difficult to control). Once the system 

has pressurised, the shell must be isolated from the tube. Previous researcher T.Young, 

1997 has discussed this issue, and suggested that the self-tuning nature of the control 

system leads to problems when initiating the shell/tube AP control. It was therefore 

decided to conduct an experiment to investigate this further. The back pressure chosen 

was 60 bar. Vent and fill limits were set at a maximum of 20ms, and a minimum of 1ms, 

as before.

The control logic was altered such that AAV19 would remain open (communication 

between shell and tube) during the pressurisation stage, and would close once the system 

was up to operating pressure (isolating the shell and tube). In addition, it was decided to 

fill both the shell and the tube via the tube supply line, in order to enable the shell and 

tube to be pressurised together. Therefore SV27 was closed during the pressure-up 

(preventing filling via the nitrogen supply line). Once the tube had pressured up, SV27 

was opened back up allowing flow via PPRV3 to the shell, i.e. the system was returned to 

its normal operating state. These changes illustrated precisely in description o f computer 

programs in the previous chapter.
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The results for this test are given in Figure 3.26. It can be seen that the AP control was 

excellent throughout the test. The greatest AP recorded was -2.5bar. This is slightly more 

than the target of ±2 bar, however in practice, the extra strength imparted to the 

combustion tube by the matrix of sand and oil means that a tube failure would be 

unlikely.
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Figure 3.26: Commissioning Test No. 10 at 60 bar Pressure, Smooth Pressure-Up Control.

The largest change in AP in Figures 3.26 occurred at the same time as the pressurisation 

sequence was completed. The AP reduced from +1.5 bar to -2.5 bar. It is likely that the 

problem here was one of initialisation, as described by a previous researcher . It is 

possible that because the control system logic isolates the shell from the tube (i.e. opens 

SV25) before PPRV3 is initialised to allow pressure control of the shell (i.e. SV27 is 

opened), there is a small time delay during which the shell is isolated from the tube, and 

it is not possible to fill the tube with gas. Under these circumstances, if any venting were 

to take place, or if there were any leaks on the shell side, the shell would lose pressure, 

and there would be no means of re-pressuring it (until PPRV3 was initialised). This
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would cause the shell pressure to fall, accounting for die falling AP observed during this

experiment.

Test No. 11:

Following the successful test of the control system in Test 10, it was decided that Test 11 

would consist of a further pressure test, to examine the effectiveness of the AP control at 

much higher pressures. 208 bar was chosen as the maximum pressure that ISC 

experiments might conceivably operate at.

The results are given in Figure 3.27. The pattern observed was similar to Test 10. AP 

control was excellent until the point (at about 4000s), when operating pressure was 

reached. At this point, a sharp drop in AP was recorded, down to -5  bar. This coincided 

with the initialisation of PPRV3 and the isolation of the shell from the tube. The 

explanation for this is exactly the same as for experiment 1 0 , namely that the time delay 

between the shell and tube being isolated, and PPRV3 being initialised, allowed the 

pressure in the shell to fall. The effect is more pronounced than in Test 9, due to the 

higher pressure used in this test (which would have resulted in more rapid 

venting/leaking of air from the shell during the time delay period). It can be seen that 

once it was noticed that the pressure in the shell was falling rapidly, the supply pressure 

was step-increased to speed the recovery of the shell pressure. However, given that there 

was a significant time delay, of almost an hour, between the AP falling, and the AP 

recovering.

This problem would be less apparent if the actual shell were used; given that the volume 

is so large, venting of small amounts of gas would result in much less of a change in the 

shell pressure. In addition, the system would be less sensitive to venting and filling times.
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Figure 3.27: Commissioning Test No. 11 at 208 bar Pressure.

It is also worth pointing out that the time delay that occurs during the change over of the 

control at the end of the pressurisation stage, may well result from inadequate computer 

control power. Furthermore, switching from pressurisation to stable operation, several 

other tasks switched on simultaneously i.e. ignitor and B.H. control .. etc. However, the 

multitasking program will shares the process control time. If further processors were 

added to the system, it would be possible to enhance the multitasking of the different 

control loops.

The main problem, therefore with tests at very high pressure, is the response time 

required to reach an acceptable AP, following a disturbance. It is appropriate to compare 

the results of Tests 10 and 11 (which both experienced a disturbance caused by the 

isolation of the shell from the tube upon reaching operating pressure), on the basis of a 

response time.
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Test No. 12:

The purpose of this test was to install an alternative AOFMV for regulating the system 

back pressure, under flow conditions, to determine whether the valve was operating 

correctly. In addition, this test gave us a further opportunity to look at the control of the 

AP, using a different pressure to those used so far (110 bar in this case).

Referring to Figure 3.28, it can be seen that a spike occurred in the AP at the point where 

the system isolated the shell from the tube (i.e. when the pressure had been achieved). 

This is a similar pattern to that observed during tests 10 and 11.

This pattern fits in with previous observations that the higher the system pressure, the 

greater the response time (due to the longer time taken for the pressure to recover in the 

shell).

Finally, after the system had pressured up, it was possible to check the spare back 

pressure AOFMV. Unfortunately it was found that the valve stem was jammed (the stem 

was stuck to the valve seat), and so we were initially unable to obtain flow through the 

system. Finally, the manually operated bypass around the AOFMV was opened, in order 

to allow flow to start. The AOFMV was taken out of service following this experiment, 

and replaced with the original valve.
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Figure 3.28: Commissioning Test No. 12 at 110 bar Pressure.

Test No. 13:

This test was in preparation for the level control tests that follow. Since it was necessary 

to connect together the shell and the tube in preparation for the level tests, it was thought 

necessary to ensure the pressure control worked correctly in this situation, before level 

tests were carried out. The results are shown in Figure 3.29. It can be seen that the AP 

control was excellent (no more than ±0.5 bar), as would be expected when operating with 

the shell and tube connected up (so that they pressure up together). Once the operating 

pressure had been reached, flow commenced, and the back pressure control successfully 

held the pressure at the set point of around 60 bar. No problems were experienced during 

this test, and so it was decide to proceed with the level control tests as planned.
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Figure 3.29: Commissioning Test No. 13 at 60 bar Pressure.

3.6.3: Level Control Tests :

Test No. 14:

Both the HPS and LPS separators use the same method for controlling the liquid level. A 

float device, which moves up and down with the liquid level, activates one of 8 switches 

placed at different vertical positions within the separator as programmed from total of 12. 

The level is thus indicated by a number between 1 and 8, with 1 being the lowest level 

setting, and 8 being the highest level setting. The signal from the level detector is sent to 

the computer software; the sub-vi ‘Separator Control’ opens a valve on the liquid outlet 

line, in order to drain the vessel, when the level reaches an operator-determined ‘High 

Level’, (HPH for the high pressure separator, LPH for the low pressure separator). The 

High Level is normally set to switch 8 on the level detector. When the level falls to reach 

the ‘Low Level’, (HPL for the high pressure separator, LPL for the low pressure 

separator), the valve on the liquid outlet line is closed, allowing the level to build up in 

the separator. The low level is normally set to switch 1.
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The level control described above applies to both the HPS and LPS. The LPS is fed by

liquid from the high pressure separator, and therefore the level control of the LPS is

dependent upon the HPS level control working correctly.

Initially, it was discovered that the forward pressure regulator, PRVL1 was missing from 

the system. Under these circumstances, it would not have been safe to operate the HPS to 

LPS liquid line, since this pressure reduction valve was responsible for maintaining the 

pressure drop between the high and low pressure separators. The first task was therefore 

to locate and re-install the valve.

Once this had been done, the shell and tube were connected, and the system water 

reservoir was filled as illustrated in Figure 3.30.
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Figure 3 .30: Line Connections for Testing of Separators.

The results of Test 14, are given in Figure 3.31. This first experiment was not a success. 

Initially, it was found that PRVL1 was plugged, since there did not seem to be any liquid 

passing from the HPS to the LPS. Secondly, we were unable to obtain any gas flow 

through the system, and this problem was traced to PRVG2, which was also plugged.
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Figure 3.31: Commissioning Test No. 14 at 65 bar Pressure, Test HPS and LPS Level Detector.

The next step was to clear the blockages from PRVL1 and PRVG2. This was done by 

disconnecting the equipment, and blowing instrument air backwards through the valves. 

Once the blockages had been cleared, the valves were re-installed. It should be noted that 

due to the absence of the correct liquid pressure regulator (PRVL1), it was necessary to 

operate by using a gas pressure regulator for the purposes of these tests. This would not 

provide adequate control for liquid oil, as the regulator would foul up very quickly.

The results Figure 3.31 show that the level controller on the LPS successfully controlled

the level between the Low and High level switches (switch 1 and 8 respectively). This 

indicates that the level control on the LPS is working correctly.

Test No. 15:

A  second test was carried out, which was similar to the first. The results for Test 15 are 

given in Figure 3.32. Initially, it was noticed that the HPS level reading was stuck at the 

lowest position, i.e. switch 1. This presented a problem, as it meant that the control 

system would keep AAV6 (the HPS liquid valve) shut. This would have meant that no
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liquid would be passed to the LPS, which in turn would have made it impossible to test 

the level control on the LPS. To overcome this problem, the ‘Separator Level Control, vi’ 

sub program was altered to set the High level on the HPS to switch 1, i.e. the lowest level 

position. This caused the control system to keep AAV6 open, (since the valve opens to 

drain the vessel when the high level switch is reached). This allowed water to pass 

between the HPS and the LPS. By adjusting PRVL1, it was possible to obtain a 

reasonably steady flow of water through the system to the LPS.
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Figure 3.32: Commissioning Test No. 15 at 210 bar Pressure.

After the experiment, the HPS was opened in order to examine the problem with the level 

detector. When the level detector was removed, it was found that a section of the float 

was missing. It was therefore necessary to construct a new float, to allow the level tests to 

be completed. Unfortunately, the new float was not available in time to carry out any 

further tests.

However, given the successful recommissioning of LPS level control system, it was 

confidently anticipated that the HPS system would work equally well. The control of the 

system back pressure Figure 3.31 was excellent during these tests, which is encouraging, 

given that the disturbances in the level control will effect the volume of the vapour spaces 

in the separators, thus effecting the pressure control.
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In addition to carrying out checks on the level control system, it was decided to calibrate 

the level detector position with the length of the level detector stem, for different 

positions. The tests were repeated three times in order to allow cross checking of results. 

The pattern in the results is clear, that is to say level detector reading increases with stem 

position, as one would expect. By carrying out a trend analysis on the data, it has been 

possible to calculate the equation of the straight line which best describes the data. This is 

as follows:

Computer reading = 1.7587x  length o f needle -13.071

In addition, it was possible to calculate the volume of the separator, by weighing before 

and after draining of water. The results were as follows:

Weight o f Empty flask = 58.2 grams

Weight of flask + water drained from HPS = 323.8 grams

Weight o f water drained from separator = 323.8-58.2 = 265.5 grams

Approximate volume of the separator = 265.5 cm3 (since 1 gram = 1 cm3)

The total volume of water drained off between the level detector positions 1 and 12 was 

only 50 cm3. This represents around 19% of the total volume.

The results for the High Pressure separator followed a similar pattern, with calibration as 

follows:

Computer reading -  4.094 x  length o f needle - 1.1865 

The volume o f the separator was found to be 289 cm3, using the same method as before.

The total volume of water drained off between the level detector positions 1 and 12 was 

only 49 cm3. This represents around 17% of the total volume.
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5.5: Thermocouple Tests:

Test No. 16:

Results for the thermocouple tests are given in Table (5.1). It was found that 

thermocouples Numbers 1, 3, 5, 15, 20, 23, 26, 30, 31, 32 were missing. These were 

replaced with new thermocouples and tested along with the other thermocouples. In 

addition, thermocouples Numbers 6 ,10  and 28 were found to be broken.

Table (3.2) : Calibration test of In-Situ Combustion Tube Wall Thermocouples Test

Thermocable
No. Length, mm

Room or Test 
Temperature, 

°C

Resistivity 
Tests, Rs,

n
Note |

1 480 . 7.6 M (New)
2 510 23 11.7
3 560 - 8.8 M (New)
4 590 23.2 13.5
5 640 _ 10.1 M (New)
6 650 23.1 replaced
7 690 23.2 16.3
8 750 23.2 11.2
9 770 23.2 17.8
10 810 23.2 18.9 Replaced
11 840 23.3 18.9
12 890 23.4 20.0
13 930 23.0 21.3
14 1030 23.0 15.3
15 1020 23.0 14.9 M (New)
16 1040 23.0 23.0
17 1080 23.0 24.7
18 1120 23.0 25.3
19 1160 23.0 26.9
20 1240 23.0 17.5 M (New)
21 1460 23.0 20.5
22 1450 23.0 20.4
23 1320 23.0 19.6 M (New)
24 1120 23.0 17.0
25 1610 23.0 22.4
26 1440 23.0 21.1 M(New)
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27 1570 23.0 22.4
28 1507 23.0 Replaced
29 1537 23.0 35.5
30 1600 23.0 23.5 M (New)
31 1620 23.0 24.0 M (New)
32 1650 23.0 38.7 M (New)

Note:
• M  ( New) : It mean the thermocouple was missing and it replaced with new ONE.
• The thermocouple No. 6, 10, and 28 replaced.
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Combustion Tube Experiment Commissioning

Commissioning Tests:

Extensive revamping of the combustion tube facility was carried out to replace defective 

parts of the system and to include a number of important modifications, mainly 

concerned with process control and the production system.

Upon completion of the revamp, a series of commissioning tests as made to test the 

operabily o f the system. The operating conditions are reported in Table 4.1.

Table 4.1 : Combustion Tube Commissioning Tests.

Experiment ConditionVRun Number Run 1 Run 2 Run 3

Back Pressure (bar) 90 -100 200 200

Reservoir Bed Temperature (°C) 60 60 60

Ignitor Temperature ( °C) 350 400 350

Air Injection Concentration (%) 100

Produced Gas Flux (m3/m*hr std) 27.1 62.3

Cylinder Supply Pressure Max.(bar) 230

SOi (%) 70 50 30

Swi (%) 30 50 70

Band Heater Operation Yes

Dry Sand Pack No

Reservoir Core Material (Crushed) MI Lime Stone

Clay content (%) 0

Porosity (%) 42.8
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Run O ne:

Run 1 was made to test the modified computer program (Appendix E) and to test all of 

the equipment and instrumentation.

Figure 3.33 illustrates the pressure control achieved when the combustion tube was 

pressurised up to 90 bar. Apart from the slight overshot, the pressure control is 

maintained with the desired limit. Important, the difference between the shell and tube 

pressure is excellent. The Figure illustrate only two stages. The first is pressure build up 

and the second is experiment combustion and displacement stage. The third stage is 

missing from the chart because it was not able to continue the experiment due to 

electrical failure.

There are three parts to the pressurisation profile. During the first 36 minutes, increasing 

of PPRV1 and PPRV2 by 0.01 mA, causing a high differential pressure between the tube 

and shell. There was a short period between the first stage and the second part when no 

N2 gas was injected to the shell (also the tube). The small pressure increase was due to a 

compression caused by temperature effect. During the second part of pressurisation, the 

increment to PPRV1 and PPRV2 was decreased to 0.0025 mA. Excellent differential 

pressure control was achieved. It was not necessary to bleed-off any nitrogen from the 

shell to control the differential pressure.

During the second stage of pressurisation, approximate 36 min. Injection of nitrogen was 

continued in order to cool down the reservoir to a lower temperature. After 46 min., air 

injection was started and simultaneously nitrogen injection was stopped; auto-ignite was 

achieved at time 74 min.

Pressurisation of the tube was originally set at 100 bar, as a precaution against possible 

gas bypassing via the thermocouple probe. The control pressure reduced to 90 bar due to 

a change in injected N2 gas rate.
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Prior to combustion commencing, the pressurisation profile is different to that when 

shutting-down the equipment, i.e. reducing pressurisation. There are two resistances 

affecting the pressurisation, the porous media and also the screen located at the bottom of 

the tube. A differential pressure of about 6 bar is required to achieve flow through the 

tube. This depend on the porous media, it’s porosity, permeability, method of packing 

and screen mesh size.

Fluctuations of 8 to 10 bar occurred during the combustion period. This required the shell 

to be continuously bled off and repressurized, requiring a large amount of nitrogen. 

Typically, 6 to 15 cylinders to complete an experiment, depending on Injection rate and 

pressure.

120

1 100c
80

IITJiSn
60

I-
i30
1
sc

0 20 40 60 100 12080

— X— Tube Inlet (PT2)  1 Shell (PT3) — • — Tube Outlet (PT4)

Figure 3.33 Run 1 : Inlet and Outlet Combustion Tube Pressures and Shell Pressure versus
Experimental Time.

The back pressure on the liquid and gas moves from the separator were logged as a 

function of time, as shown in Figure 3.34. PT5 measures the pressure of the liquid 

passing from the High Pressure Separator (HPS) to Low Pressure Separator (LPS), as 

well as the outlet pressure and the adjusted pressure of PRVL1. At about 25 min., 

there was a decrease of pressure from 27 to 18 bar. This was due to the discharge of 

liquid from the HPS before it had reach the desired operating pressure. At about 95 

min., the PT5 began increase. Although an attempt was made to lower the LPS 

pressure, it’s increased to 90 bar. This indicated that first, AAV20 was not working 

properly ( normally closed, but actually stayed open ). Secondly, PRVL1 regulator 

failed to control properly. After testing by the supplier (Fluid Control Limited), the
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problem was found to be a faulting stem seat and the spring. The gas line pressure 

(PT8) between the HPS and LPS, worked perfectly [permits gas flow to analysers and 

Wet Test Meter (WTM)].

PT9 shows the compressed air supply pressure to operate the pressure regulators, 

maintaining a set value of 6 bar. Indicating that the new compressor works perfect 

(50 litre and 150 psi delivery pressure).

120

Experimental Time, min

LTS|PTt|

Figure 3.34 Run 1 : Combustion Tube Pressurization.

Figure 3.35 shows the pulsed frequency (PF) of band heaters (BH ) sequence, controlling 

power. The maximum pulse frequency is 30 times in one minute, 1 sec “ON” and 1 sec 

“OFF”. The number of pulses is very important for control of the following operations:

1. Establishing the initial reservoir core/tube temperature

2. Temperature lead of BH, 1 to 4, needed to support ignition.

3. Adiabatically temperature control of the combustion tube to minimize heat 
losses to the surrounding shell.

It is clear in Figure 3.34 that the BH “switched on” to heat up the tube to the desired 

reservoir temperature before injecting air. The BH “switched o ff’ after about 17 min. 

when the reservoir temperature reached 60 °C. At 42 min, the BH “switched on” again to 

raise the temperatures in part of the core which were below 60 °C.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 9 0
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— • —  Pf2 X  PfIO — X— PT18 — A—  Pf26 — I— Pf30 —  PT32

Figure 3.35 Run 1: Band Heaters Pulse Frequency .

Axial tube temperature at different BH location (number) is shown from Figs. 3.36 to 

3.39. It shows that the ignition occurred at BH10 and BH11 ( interpolation ). BH’s 

10, 11, 17, and 25 were inactive during the test, due to electrical connection faults. 

The gaps in the Figure are due to misreading, or faulty axial thermocouples.
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Figure 3.36 : Run 1 Combustion Tube Axial Temperature prior to ignition.
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Figure 3.37 : Run 1 Combustion Tube Axial Temperature.
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Figure 3.38 : Run 1 Combustion Tube Axial Temperature.
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Figure 3.39 : Run 1 Combustion Tube Axial Temperature.

Figure 3.40 shows the percentage of produced gas time history. Gas production 

started 49 minutes after air injection. Oxygen that was shown (14.5%) for up to 40 

minutes, was originally available inside the analyser before the test started and during 

pressurisation of the combustion tube. It drop to zero representing only nitrogen start 

produced. Initially, only about 0.7% of oxygen was produced, which increased slowly 

to about 1.1% after 32 min. Oxygen then increased dramatically to about 8.7% 

indicating channelling or bypassing around the axial thermocouples probe or along 

the tube. Autoignite occurs after 65 minutes because the increasing levels of CO2 and 

CO at 74 min. Although CO2 reaches more than 10% and CO to about 6.5%, the 

amounts fluctuated, indication unstable combustion.
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Figure 3.40 Run 1 : Produced Gas Composition.
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Figure 3.41 shows the HPS and LPS level readings. A reading of 12 indicates that the 

HPS is full. Thus, there was flow the HPS to PRVL1. It was subsequents found that 

PRVL1 had become plugged due to a very viscous emulsion.

120
PRVL1 Plugged

100

£s w
a.in

£ 6 0
£

4 0

20

1200 20 4 0 60 8 0 100
E x p e r im e n ta l  T im e, m in

S h e ll (P T 3 ) T u b e  O u t le t  ( P T 4 )

Figure 3.41 Run 1 : High and Low Pressure Separator Operation.

The only volume was recorded for liquid produced, because of a communication fault 

between the Wet Test Meter (WTM) and the computer. There was also an incorrect 

zero reading on the WTM. Moreover, the mass flow rate could be not achieved 

exactly due to the unsteady state flow regime.

As shown in Figure 3.42, combustion of 25.0 % of the combustion tube length 

realised a recovery of 31.5 % clear oil, 49 % of emulsion equivalent to 40.25 % of 

original liquid in place. Less than 1 % was clear water.

Experimental Time, min

-Tube Inlet (PT2) 

LPS

Shell (PT3)

- Cum. Oil Produced, %

Tube Outlet (PT4)

-Cum . Emulsion Prod., %

Figure 3.42 Run 1 : Cumulative Oil and Water Production.
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R un  2 :

Run 2 was conducted at higher pressure ( 200 bar ), but with the same oil and water 

saturation as Run 1. Many problems were experienced during pressure up of the system. 

First the computer sent an incorrect signal to the solenoiding valve, which opens the inlet 

gas pressure regulator. This resulted in the program switching-off and starting again. 

However, the signal to increment the opening of PPRV1 was very high, causing a sudden 

increase in the tube and shell pressures to about 50 bar, This inlet gas regulator (PPRV1) 

became stuck again. The start up sequence was restarted, but with a low incremental 

opening of the inlet gas pressure regulator, causing a delay of about 20 minutes before the 

full supply pressure was achieved. A smooth build up of pressure occurred, eventually 

reaching 209 bar. It is not possible to increase pressure more than this because of the 

pressure of the nitrogen source gas. Incrementation of the signal to the PPRV1 was 

stopped at the 206 bar, although it was originally set at 215 bar. The process then had to 

wait while the booster pump replenished the nitrogen supply cylinder (see Figure 3.43). 

The main injection pressure regulator (PT1) was set at 235 bar, limited by the optimum 

operating pressure of the air actuated valve (AAV). It is very important to have at least 

30 bar above the required tube pressure, to effectively control the AP between the tube 

and shell. The set pressure of 215 bar was reduced to 200 bar after 125 minutes to allow 

air to displace the nitrogen used for pressurization. Simultaneously, air and ignitor 

switched on as it illustrated later.
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Figure 3.43 Run 2 : Inlet and Outlet Combustion Tube Pressures and Shell Pressure versus Experimental
Time.
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The back pressure was reduced to about 190 bar to allow increased flow through the 

combustion tube. At 222 min the experiment was terminated. It required about 100 

minutes to reduce the pressure on the combustion down to atmosphere.

The problems incurred during this run was mainly the result of a partial fail of the back 

pressure controller liquid side only. Liquid discharges from the HPS to LPS via 

connecting line became completely blocked, and when the bypass valve was opened to 

discharge the high pressure separator, a leak secured.

When the back pressure readings PT4 became much less than the injection pressure PT2, 

the experiment was terminated. This differential pressure, caused by plugging across the 

screen at 200 minutes, as shown in Figure 3.44.

It is considered that the emulsion formed inside the chalk core, so that there was no fluid 

flowing through the screen. The high viscosity of the emulsion cause the pressure 

regulator to plug as well. Although the emulsion is easily broken outside of the 

combustion tube, it is much more difficult to do this inside the tube.

250

0 50 100 150 200 250 q h £ 0 350

Experim ental Time, min

| — -  Tube Inlet (PT2) •  Shell (PT3) Tube Outlet (P T » )--------   LPS OH (PT5) — A—  LPS (PT8)~]

Figure 3 .44 Run 2 : Combustion Tube Pressures.

The initial reservoir bed temperature was established at 60 °C, as shown in Figure 3.45, 

for about 125 minutes before ignition. All of the BH’s were controlling except BH7 and 

BH27. There were switched off before the experiment, because of a fault. A manual 

switch was incorporated to control vent such problem with the control relays.
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The ignitor was switched on when the first BH was set to reach 400 °C, However, due to 

delay in the BH respond, the temperature actually increased to about 590 °C. Between 

145 and 150 minutes, the ignition occurred, causing the temperature at TC2 to increase to 

540 °C (Figure 3.46). At 169 minutes, there is a rapid rise in temperature (BH5), reaching 

826 °C. The temperature reduced down to 538 °C at 170 minures (Figure 3.47). The 

combustion front reversed so that burning took place in the unbumed zone, shown in 

Figure 3.47.

The oil auto-ignited ahead of the main combustion front, as showing in Figure 3.48. At 

200 minutes, second front started at BH12, and then advanced to BH15 only, taken 4 

minutes. Another, separate small peak, as second and combustion front can be seen, a 

minute after the previous front occurred at BH15 (Figure 3.49).

The temperature of the main combustion front decreases from 600 °C as shown in Figure 

3.50, but secondary front temperature begain to increase. Figures 3.50 to 3.52 show that 

the main combustion front becomes stalled at BH5. Downstream of this to temperature 

began to fall continuously after experiment is terminated, aud pressure is reduced.
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Figure 3.45 Run 2: In-Situ Combustion Tube Axial Temperature, During Pressurisation and prior Ignitor
Switched ON.
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Figure 3.46 Run 2: In-Situ Combustion Tube Axial Temperature.
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Figure 3.47 Run 2: In-Situ Combustion Tube Axial Temperature.
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Figure 3.48 Run 2: In-Situ Combustion Tube Axial Temperature.
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Figure 3.49 Run 2: In-Situ Combustion Tube Axial Temperature.
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Figure 3.50 Run 2: In-Situ Combustion Tube Axial Temperature.
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Figure 3.51 Run 2: In-Situ Combustion Tube Axial Temperature, Temperature Reduction in Both Peaks.
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Figure 3.52 Run 2: In-Situ Combustion Tube Axial Temperature.

Produced Gas :

The produced oxygen is shown Figure 3.53. During start-up, the oxygen level reduced to 

12% due to restarting of the computer control program. At 125 minutes, the produced 

oxygen fall to zero. The percentage of oxygen did not remained at zero but it increased 

with the other values of CO and CO2 . This may indicate that the oxygen did not 

consumed 100% but about 50% consumed. Between time of 201 and 205 the percentage 

of oxygen drop from 11% to 4.4% . However, this due to the auto ignition, which utilizes 

more of the oxygen, remained not consumed by the first peak generated by the artificial 

ignitor. At time of 222 the experiment terminated and the percentage of CO2 decreased 

and Oxygen increased.
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Figure 3.53 Run 2 : Produced Gas Combustion.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1 0 0



( W  V N J V M » ;7 Y  O F

BATH Qmar f j  e i  Ay adi Chapter 3

The cumulative volumetric flow rate of produced gas is given in Figure 3.54. The total 

amount of gas attributed to the effect of the main combustion front is 0.151 m3. The 

increase up to 0.296 m3 is due to LTO downstream.
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Figure 3.54 Run 2: Combustion Gases Produced Measurement

Although the design flux for this run was set as 70 m3/m2hr, because the process 

essentially is unsteady state, it is not possible to fully realize this flux value, except at the 

end of the test where mainly gas flow through the combustion tube.

The recovery of oil and water was approximately 17% and 8%, respectively (Figure

3.55).
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Figure 3.55 Run 2: Oil and Water Recovery.
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Run 3 :

Run 3 was conducted at 200 bar, with 30% oil saturation and 70% water saturation. In 

this experiment, a valve was added ahead of the liquid pressure regulator (PRVL1), 

placed between the HPS and LPS. This was due to improved control of the process. 

Moreover, the liquid line between the two separators was wrapped with heating tape, 

controlled at about 60°C. Several tests where made initially to ensure that there was no 

affect on the AAV20, which is positioned in the middle of the connecting HPS and LPS 

line.

A modification was made to one task “ Ignitor Control, vi” as the control program. Instead 

of starting off when the CO2 level reached 5%, switched off the ignitor when the CO2 

level was 1 % , at the same time start increasing the flux to the required value.

The BH27 found to be switched-on permanently, using the new manual switch board 

shown in Figure 3.56. It is very important to ensure that there are no overheating during 

pressure up period.

Pressurisation of the tube and shell required three attempts due to a problem reading the 

shell pressure (PT3), as shown in Figure 3.57. The problem was caused by insufficient 

time for the booster pump to pressurize the horizontal supply cylinders with nitrogen. The 

desired set pressure 217 bar was achieved after 148 minutes. The nitrogen flow was 

switched to air after isolating communication between the tube and shell. Simultaneously, 

the ignitor switched on. The back pressure reduced gradually to allow gas to flow through 

the tube porous media and the resident nitrogen. This displacement took place from 148 

to 234 minutes.
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New BH Switches

Old ” “ New

Figure 3.56 Run 3: New 32 Band Heater Switch Board.
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Figure 3.57 Run 3 : Inlet and Outlet Combustion Tube Pressures and Shell Pressure versus Experimental
Time.

It was realized during the run as shown in Figure 3.58 that the HPS was plugged at the 

bottom. With this type of problem, there are only two options. The first was to switch off 

the system and shut-down the experiment. Alternatively it was possible to collect the oil 

produced after the HPS becomes full. However, this is not satisfactory, because any 

liquid passing through the gas line will cause plugging and also problems with the 

analysers.
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Figure 3.58 Run 3: Combustion Tube Pressurisation.
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Axial Temperature Profile:
As shown in Figure 3.59, the temperature was initially about 60°C during pressure-up

bottom of the tube to maintain pressure. This explains why the temperature is lower in the 

first part of the tube.

The ignitor was switched on at 148 min, and then switched off at 158 minutes, after the 

ignitor had reached 350°C . However, ignition failed to occurr before 158 minutes, and 

then was no response at TA2 (Figure 3.60).

Rapid ignition occurred between times 162 and 164 minutes, as shown in Figure 3.61, 

reading more than 500 °C. Between 164 and 166 minutes, indicating that the combustion 

front moved from BH1 to BH2. The combustion front temperature then decreased to 

around 350°C, with the combustion front advancing to BH3. Two secondary LTO 

reaction zones occur at 176 minutes, the first peak between BH9 and BH12, and the 

second peak at BH24 (Figure 3.62).

The main combustion front is stailed 14 minutes and the temperature increased slightly 

from 340 to 370°C (Figure 3.63). The secondary two self ignition (LTO reaction zone) 

peaks increases in temperature to 125°C. At 196 minutes, the main combustion front 

temperature was increased from about 370 to 415°C.

At time 206 minutes, the combustion front start advances to BH4, with the temperature 

reaching to 420 °C. The two LTO zone down stream are stationary, but shown an 

increase in temperature to 160°C (Figure 3.64).

The combustion front then advances to BH5 at 218 minutes. The secondary LTO now 

appear to be start at 214 minutes as shown in Figure 3.65.

The combustion front moves advances to BH7 (232 minutes). The first LTO reaction 

zone begin it’s increased temperature compared with any temperature ahead of it, when 

the temperature reaches to about 250°C, thus exhibiting combustion front property. The

period. During the pressure-up period, cold nitrogen gas was injected at the top and at the
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second LTO zone peak moves ahead to the end of the tube (Figure 3.66), reaching a 

maximum temperature of 190°C. The experiment was terminated after 234 minutes due 

to safety reasons ( BH32 reached 110°C ). The maximum temperature of the main 

combustion front was 540°C.

Figure 3.67 shows the temperature variation along the core during pressure reduction 

(Bleed-off) the tube. It took more than 2 hours for the main combustion front to be 

extinguished.
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Figure 3.59 Run 3: In-Situ Combustion Tube Axial Temperature, During Pressurisation and Prior to the
Ignitor being “Switched-on”.
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Figure 3.60 Run 3: In-Situ Combustion Tube Axial Temperature, after Ignitor “Switched-on”.
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Figure 3.61 Run 3: In-Situ Combustion Tube Axial Temperature.

"S*
15 20

Band H eater Number

25 OHE

-172 -174 178 180 -182

Figure 3.62 Run 3 : In-Situ Combustion Tube Axial Temperature.
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Figure 3.63 Run 3: In-Situ Combustion Tube Axial Temperature.
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Figure 3.64 Run 3: In-Situ Combustion Tube Axial Temperature.
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Figure 3.65 Run 3: In-Situ Combustion Tube Axial Temperature.

a
%

16 20 

Band H eater Number

— • — 216 X 218 •  220 — I— 222 »  224 ■  226 — A — 228 K  230 232 — •  234

Figure 3.66 Run 3: In-Situ Combustion Tube Axial Temperature.
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Figure 3.67 Run 3: In-Situ Combustion Tube Axial Temperature.

Produced Gas:

The produced gas analysis is given in Figure 3.68. At 164 minutes, the injected air flux 

increased to the set value, and the oxygen produced began to increase-up to 8%, and 

maintain this level for over 40 minutes. The produced CO2 remains At quit low values for 

most of the test (172-212 minutes), but then increases to around 10%. However, this 

increases caused when the LTO reactions occurs and causing oxygen to fall down to 

about zero. CO produced show only average of (1.8 to 2 %) all the way to 212 minutes. 

The value increase to 3.6% at the 221 minutes, then reduced gradually to about 2.3% at 

the end of the experiment.
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Figure 3 .68 Run 3: Produced Gas Composition.
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Figure 3.69 shows the Wet Test Meter ( WTM ) readings. The total volume of gas 

produced was about 700 litres. That there are three different rates. The rate during the 

first period was 12.7 litre/min, and the second 2.5 liter/min, and the third 14.2 liter/min. 

The overall average volumetric flow rate for the test, was 8.23 litre/min, which is 

equivalent to average flux of 62.3 m3/m2hr.
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Figure 3 .69 Run 3: Gas Wet Test Meter Measurement.
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Post-Mortem Photographs of Burned Core from Combustion Tube:

The complex effects resulting from the burned cores from Run 1, 2, and 3 are treated 
individually, run by run.

Run 1:
The top layer of MI limestone was loose, and easily fell off of the tube when the top 

flange was disconnected as shown in Figure 3.70. The thickness of this sand went to 

about 4.5 cm ( All Band Heater No. 1 ). The soft sand colour look like oxidised sand and 

no oil or fuel or coke withon the sand. At distance of 4.5 cm a small black coke can be 

seen in the centre of the core (Figure 3.71).

The post-mortem sequence in Figure 3.71 to 3.75 reveals the change which occurs in the 

shape of the residual carbon layer Originally accumulated in the central zone of the core. 

Figure 3.71 pressents the basics of the tube flange and it’s contents with a post mortem 

photo taken at 5 cm from the tube top. Point (A) present little coke deposited, point (B) 

shows not complete combustion occurrence, point (C) illustrate burnt media, and point 

(D) with high amount of fuel deposited. Figure 3.72 illustrate different shape of coke. 

The combustion went in a circular form, where the highest combustion occurred and 

shows a Polynomial (egg) shape of coke. The inner side of the tube shows burned porous 

with moderate fuel remained compared with the whole cross section. The joint of two 

Band Heaters halfs located exactly in the outer side of the combustion tube, where there 

are less/no heating.

The shape of the coke enlarged in size with the same thickness as seen in Figure 3.73. 

Highest combustion occur at distance 7 cm. Some point shows high percentage of fuel 

left after combustion. This fuel may be deposited after the combustion generated. The 

shape of the coke layer enlarged more to the tube sides. Moreover the coke stick into the 

tube inner wall where it is presumed less heat generated in the same cross section.
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The In situ combustion tube cross section at a distance of 8  cm shown in Figure 3.74. It is 

very obvious in this photo that the inner combustion portion enlarged more than in Figure 

3.74. Some point shows that the coke layer reached and stick into the wall. It is believed 

that the reason was due to less heat generated around the tube [ where the wall 

thermocouples placed ] compared to [ Below middle half of Band Heaters ] .

Coke shape changed in the cross section at distance 11 cm as shown Figure 3.75. A 

vertical layer of combustion performed along the tube. High percentage of fuel and some 

coke presented as a thick layer, surrounded by two straight lines of coke.

The inner combustion thickness is small in Figure 3.76 [distance 13 cm] compared with 

Figure 3.75, where high fuel and moderate coke were available. Figure 3.77, taken at 18 

cm distance. It shows two communicated burned portions.

Figure 3.78 presents a cross section taken at 20 cm distance of combustion tube. No 

deposition occurred beside the inner wall of the tube and in the centre where the axial 

thermocouples pipe located. The shape of the combustion portion is closed to square.

Combustion layer appeared clear at distance of 26 cm as shown in Figure 3.79. However, 

no more fully combustion media appeared at this distance. The distribution of coke was 

completely uniform in the cross section. This coke went all the way to about 30 cm. 

Then, some coke was found stuck on the wall [ Half Bow of Band Heater ] at about 33 

cm as shown in Figure 3.80.

The unbumed soft calcium carbonate media found from 33 cm to the end of the 

combustion tube as shown in Figure 3.81.

Soft and/or crushed calcium carbonate retrieved from the combustion is shown in Figure 

3.82. It is very obvious that there are sequence in colour. The carbonate get darker with 

distance, this mean the percentage of fuel and coke increase with distance away from the 

inlet air injection portion even if the combustion performance is not in consistency.
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Figure 3.72 Run 1 :Combustion Tube at 6 cm. Figure 3.73 Run 1 :Combustion Tube at 7 cm.

Figure 3.74 Run 1 :Combustion Tube at 8 cm. Figure 3.75 Run 1 :Combustion Tube at 11 cm.

Figure 3.70 Run 1 :Ignitor Figure 3.71 :Top of Combustion Tube, 5 cm into core.
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Figure 3.76 Run 1 :Combustion Tube at 13 cm. Figure 3.77 Run 1 :Combustion Tube at 18 cm.

a

k .  •  u
Figure 3.78 Run 1 :Combustion Tube at 20 cm. Figure 3.79 Run 1 :Combustion Tube at 26 cm.

Figure 3 .80 Run 1 :Solid Coke at 26 cm. Figure 3 .81 Run 1 :Bottom of the Combustion Tube.

2*CR1
Bottom Figure 3.82 Run 1: Core samples shows extent of carbon deposition. Top
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Post-Mortem Photographs of MI Limestone from Combustion 
Tube ( Run Two):

The first photo taken for the second run and from the combustion tube media is shown in 

Figure 3.83. Soft sand came out of the tube when the ignitor released. The depth of the 

soft and loss sand ranged to about 6  cm as shown in Figure 3.83. The soft sand removed, 

and the shape and the colour of the media at 6  cm exactly is shown in Figure 3.84. Some 

coke left behind more in the middle more than the tube. Zones burned show white colour 

than unbumed. Figure 3.85 which represent the tube cross-section at distance of 7 cm. 

Overall clearance o f complete combustion occurred in this section. None considerable 

coke where left. The most clearance of sand indicated complete burnt zone. This 

clearance did not found ahead or behind this cross section.

At distance of 9 cm long of the tube cross-section as presented by Figure 3.86. Very loose 

sand fall down in the middle, making a bigger hole than the original axial thermocouple 

V” hole. Some coke can be seen inside the tube and closed to the wall. Figure 3.87 

represent the shape of the very soft sand enlargement at 10 cm. Most of the fuel and the 

coke burned in some locations. Thin area shown, very thin film of coke unbumed 

partially across the tube, this may be due to the availability of high amount of fuel, 

caused by packing. However, during the packing, the oil moves up to the top of the 

packed sand due to compression. The combustion occurs in the middle more than in the 

edges of the cross-section at 12 cm long of the tube as shown in Figure 3.88.Dark rings of 

cokes presented in Figure 3.89, taken at 15 cm long of the tube. The highest bunt zone 

can be seen radially. High amount of coke deposited beside the inner side of the tube 

wall. Figure 3.90 show small consolidated coke placed in the middle with a hole in the 

middle (Axial thermocouple pipe place). The shape of the coke is shown in Figure 3.91 

which is located at 21 cm distance. At 22 cm the burnt portion appear in Figure 3.92, with 

unbumt zone obvious as half circuit. Figure 3.93 at 25 cm show the two separate major 

sections. Thick solid Coke start appearing at distance of 30 cm as shown in Figure 3.94. 

Figure 3.95 show the cracked coke at distance of 36 cm. The piece of coke retrieved is 

shown in Figure 3.96. This coke piece elongated to 40 cm as shown in Figure 3.97. 

Figure 3.98 taken at 50 cm, show a radial combustion occurred, surrounded by coke.
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Figure 3 .87 Run 2:Combustion Tube at 10 cm.

Figure 3.89 Run 2:Combustion Tube at 15 cm.

Figure 3.83 Run 2:Combustion Tube at 0-6 cm.

Figure 3.90 Run 2:Combustion Tube at 21 cm.

Figure 3.86 Run 2:Combustion Tube at 9 cm

Figure 3.84 Run 2:Combustion Tube at 6 cm.rigure

Figure 3.88 Run 2:Combustion Tube at 12 cm.
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Figure 3.92 Run 2:Combustion Tube at 22 cm.

Figure 3.93 Run 2:Combustion Tube at 25 cm. Figure 3.94 Run 2:Combustion Tube at 30 cm

Figure 3.95 Run 2:Combustion Tube at 36 cm.

Figure 3 .97 Run 2:Combustion Tube at 40 cm. Figure 3.98 Run 2:Combustion Tube at 50 cm.
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Post-Mortem Photographs of MI Limestone from Combustion 
Tube (Run Three):

To analyse the photos taken from the combustion tube run, it should be emphasized that 

these photos represent the last minute of the shut down and after cooling and the tube and 

it is contents. As it was realized that once the run terminated or completed, there will be 

no more movement of the combustion fronts. But, temperature reduced to the room 

condition. All the crude burned and form loose sand from the ignitor to about 11 cm. No 

any dark colour appeared, it mean no even a small coke left behind the combustion front. 

Figure 3.99 represent the tube cross section at 12.5 long of the tube. No coke left behind 

the combustion front and all the formation burned completely even closed to the tube 

wall. Figure 3.100 represent cross section taken at 14.5 cm, it show dark color of 

formation comes from little amount of fuel left behind not burned. Overall others are 

whites colour.

Some points went darker than before as shown in Figure 3.101 taken at 17 cm. The 

darkness appears to have round or circular form. Another inner circle appear inside the 

old big fuel deposited circle as seen in Figure 3.102, taken at 21 cm. As what it can be 

seen that the inner pipe has no effect into the size and the shape of the fuel remaining. 

Tangent of the inner circle reach to the axial thermocouples pipe hole with no change in 

the circle. Also it clear that the inner and the outer circle of the fuel deposited have or 

sharing same tangent at some points. This cross section taken at 23 cm (Figure 3.103). 

Very clear burned zone still can be seen after 25 cm as shown in Figure 3.104. The shape 

of the remained fuel enlarges uniformly. The inner tangent of the circle takes place in the 

middle of the TA pipe hole. Another third circle start appear inside the first two as shown 

in Figure 3.105, taken at 29 cm.

The outer formation burned completely.Another radial fuel deposited on the top of the 

old one is shown in Figure 3.106, taken at 31 cm. Only one circle remained at 32 cm as 

shown in Figure 3.107. Little ( about 20% ) of the cross section taken at 34 cm was
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burned as shown in Figure 3.108. At 36 cm [see Figure 3.109], a thick coke layer

appeared and small hole can be seen beside the wall surrounded with very solid coke. It is

believed that this hole induced by reaction fluids and the media. Specially when CO2 and

water react and form carbonic acid, which will be easily to react with carbonate sand,

creating induced or secondary porosity. Figure 3.110 presents high percentage of coke

closed to the tube wall at 40.5 cm. At 45.5 cm as shown in Figure 3.111 the hole and

coke start disappear. At 50 cm [see Figure 3.112] the cross section continue to show a

very small differences between light and little dark area. Figure 3.113, still show a fuel

deposited, the other cross section taken at 56 still show wavy colour dark to light. At very

deep of the tube and at 97 cm a small dark area appeared as shown in Figure 3.114.

Ill BATH
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Figure 3.99 Run 3:Combustion Tube at 12.5 cm Figure 3.100 Run 3:Combustion Tube at 14.5 cm

Figure 3.101 Run 3:Combustion Tube at 17 cm. Figure 3.102 Run 3:Combustion Tube at 21 cm.

Figure 3.103 Run 3:Combustion Tube at 23 cm. Figure 3.104 Run 3:Combustion Tube at 25 cm

Figure 3.106 Run 3:Combustion Tube at 31 cm.
L #  4

Figure 3.105 Run 3 .Combustion Tube at 29 cm.
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Figure 3.107 Run 3:Combustion Tube at 32 cm.

Chapter

3.108:Combustion Tube at 34 cm.

3

Figure 3.109 Run 3 Combustion Tube at 36 cm. Figure 3.110 Run 3:Combustion Tube at 40.5

Figure 3.111 Run 3:Combustion Tube at 45.5 Figure 3.112 Run 3:Combustion Tube at 50 cm.

Figure 3 .113 Run 3 .Combustion Tube at 56 cm. Figure 3.114 Run 3: Combustion Tube at 97 cm.
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Oil and W ater Production:

Late producing stage Early producing stage

The oil produced from Run 1 appear to be less viscous than that produced from Run 2. 

Figure 3.115 present generally good separation between oil and water phases i.e. the 

emulsions were nor a problem.

Figure 3.115: Oil and water produced from Run 1.

The oil and water produced from Run 2 is shown in Figure 3.116. Large amount of 

emulsion were produced. Oxidised oil also appears to be produced, because Channelling 

of oxygen and cooling of steam inside the oil. The milky, oil in water emulsion is formed 

during the ends stage of the experiment, whereas a ‘chocolate’ make in oil emulsion 

formed during the rest of the run.

Oxidized oil

Water in Oil Emulsion
Early producing stage

Tap water

Oil in Water Emulsion
Figure 3.116: Oil and water produced from Run 2
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Figure 3.117 and 3.118, illustrate the degree to which emulsion and oxidized oil are 

formed. In Figure 3.117, the surface of the oxidised oil seems to be smooth, and 

shining in appearance, the emulsified oil is more ‘hetrerogeneous’, or much less 

smooth. Figure 3.118 presents the difference in thickness between the emulsified and 

oxidised oil, the emulsified oil with thicker particle.

Emulsified
^ o \ \

Oxidised
Oil

Figure 3.117: Oxidised and Emulsified Oil (Top View )

Oxidised
Oil

__Emulsified
Oil

Figure 3.118: Oxidised and Emulsified Oil ( Side V iew)

The same particle of emulsified oil was placed on a stainless steel screen (24 

mesh),the oil failed to pass through, evidencing a very tight emulsion (Figure 3.119). 

This kind of emulsion could easily have pluged the liquid pressure regulator (PRVL1), 

between HPS and LPS.

24 mesh 
number 
screen

Emulsified 
Oil

Figure 3.119: Emulsified Oil on 24 mesh Number screen.
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3.7: In-Situ Combustion Tube System M odifications:

The second run performed with more accuracy and control. A new Thermocouple axial 

probe built and tested, providing a better measurement response. The 32 thermocouples 

were inserted inside a % inch tube, then was clamped with bolt ferrules at the end of the 

tube. Figure 3.120 shows the old axial thermocouples, where expoxyed into place at the 

bottom of the tube connector, which did not allow any damaged ones to be repaired.

Figure 3.121 and 3.122 shows the new set of axial thermocouples and the way how it is 

installed. As mentioned before, any damaged thermocouple can be replace.

Figure 3.120: Old Axial thermocouple pipe and connection.

Figure 3.121: The new axial thermocouple robe.

Figure 3.122: Axial thermocouple connections
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Band Heaters:

The new band heater indicator box is shown in Figure 3.123, it consists of 32 lamps to 

indicates the activation of the 32 band heaters. The benefits of this arrangement are:

1. Indication that all band heaters are properly connected.

2. Indicate the active state of each band heater.

3. Test the ability to pulsing frequency and multitasking operation of each BH.

4. Test the operation of the ignitor connections.

Figure 3.123: New Band Heater Indicators 

During run No. 1, it was concluded that there the band heaters arrangement affected the 

combustion process. The old sequence of BHs as performed and used in run No. 1, is 

shown in Figure 3.124. It was found that more heat was generated in the middle of the 

half of band heater than at the join of two halves, where the wall thermocouples was 

inserted.

Figure 3.124: Old Sequence of Band Heaters

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1 2 5
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The modification is shown in Figure 3.125. Moreover, this is to insure and guaranty 

better distribution of temperature and heat all around the combustion tube. The odd 

numbers joints from 1 to 31 placed horizontally, and the even numbers from 2 to 32 

placed vertically on them.

Figure 3.125: New sequence of Band Heaters

Gas Knock-Out Device:
A gas knock out was added to the system in run 3. Another temporary line was added as 

well to replace the liquid exit line, as shown by the arrangement in Figure 3.126 

disengage from the oil via LPS. Elimination or minimization of liquid carried over was 

achieved.

Gas out from HPS
Gas out to LPS

Oil Accumulator

Figure 3.126 : Gas Knock-out.
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In Run No. 3, no major modification was made to the system, except adding a valve 

ahead of liquid pressure regulator (PRVL1), placed between HPS and LPS, to insure 

control the process during the run. Moreover, the liquid line between the separators 

wrapped with heating tape, controlled at about 60°C. Several tests where conducted to 

estimate the voltage required to heat up the tape to desired set temperature (see Table 

3.4). However, this test was made to ensure that there are no damage to the Air Actuated 

Valve (AAV20), placed in the middle of the line, due to its limited operating conditions 

from -23 to 65°C. Type of potential voltage used is blue colour (ZENITH) type V-3H M, 

output, 270V.

Table 3.4 : Tape temperature maintained at different variant supply power.

Temperature, °C Varian reading, % Varian output, Volt
70 40 108.8
60 35 96.9

Computer Program:
Only the “ Ignitor Control.vi” was modified. Originally, it was programmed to switch-off 

the ignitor when the CO2 % level reach 5%. Run No. 3, conducted the produced CO2 was 

allowed reach each to 1 %, before switch-off the ignitor, and increasing the air flux to the 

required value.

Additional Separator:
A third stage separator was added to the system in run No. 4. This was added to control 

separation of gas from the produced oil (Figure 3.127).This unit was operated at 

atmospheric pressure and room temperature.
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Gas Vent Valve

Liquid Drain 
Valve

Oil and Water 
Receiver

Gas Control Valve 
to Analysers and 

WTM

Atmospheric
Pressure
Separator

Figure 3 .127: Atmospheric Pressure Separator (Third Stage).

Crude oil passes from the LPS to the atmospheric pressure separator (APS), and 

separtated gases are sent to the analysers (CO, CO2, and O2), and finally to the WTM.

F lan g e  Bolt:

A particular difficulty in achieving pressurization to 217 bar in Run No. 4, was due to 

failure of one the pressure shell top flange bolts. As shown in Figure 3.128, one of the 

bolts had developed a severe stress crack, and had to be replaced with new bolt with the 

following specifications:

o M45 x250 8.8 Bolt S/COL ( High Tensile B olt)

o M 45 GR.8 Nut S/COL

o M 45 W asher-S/COL

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1 2 8
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Crack

Figure 3.128: 70 mm High Tensile Shell Flange Bolt, Showing Stress Cracking
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CHAPTER FOUR

RESULTS AND DISCUSIONS

Chapter 4
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Results and Discussions

The results of five combustion tube runs are presented in detail. The main conditions for 

these experiments are given in Table 4.1. Run 4 and 5 were operated without band heater 

control. Run 6 , 8 , and 9 were oprated with full BH control, but for certain periods, the 

BH’s were not fully active, because of multitasking limitation ( see Axial-Wall 

Temperature Difference.

Table 4.1 : Combustion Tube Experiments:

Experiment ConditionVRun Number Run 4 Run 5 Run 6 Run 8 Run 9

Back Pressure (bar) 200 200 200 200 100

Reservoir Bed Temperature (°C) 30-40 18-22 19-25 17-29.5 19-25.6

Ignitor Temperature ( °C) 250

Air Injection Concentration (%) 100

Produced Gas Flux (m3/m2hr std) 83.9

30.8

93.8 

36.4

21.0

104.0
42.0 62.65

Cylinder Supply Pressure Max.(bar) 230

Sot (%) 30 27.6 30 70 30

Swi (%) 70 64.4 70 30 70

Band Heater Operation No+ Yes++ Yes

Dry Sand Pack No Yes+++ No

Reservoir Core Material (Crushed)* Ml Lime Stone

Clay content (%) 0

Porosity (%) 42.5

Permeability of MI Lime Stone 600 md (estimated )

Run 7 was excluded, due to communication between tube and shelT

Band heaters 20-32 operational when set pressure attained, prior to ignition, to equalize tube temperature. 
On when the combustion front did not propagate properly.

Dry sand at the bottom of the tube (10 cm ).
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4.1: Run 4: 

General Observations:

Run 4 is an example of combustion tube operation without band heater control. 

Normally, a tolerance of 20 °C ( below the sand pack axial temperature ) was employed 

to ensure a near adiabatic control condition, as in Run 1, 2, and 3. This because it was 

suspected that the BH’s could be artificially energized, due to specious currents, or 

earthing connections.

It was noted in the preliminary experiments ( Rims 1,2 and 3 ) that there was a particular 

shape of the coke layer that remained after the combustion front advanced ahead, 

circular, rounded or oval. There are three main factors that can affect the shape of the 

coke zone:

1. Heat distribution around the band heater from each half-section.

2. The combustion tube

3. The axial thermocouple probe.

Others factor that could contribute to the coke effect indirectly, are:

1. Porous media geometry

2. Flow regime.

3. Fuel distribution

4. Fingering through the porous media

5. Channeling around the porous media and beside the tube wall.

6 . Channeling around the internal axial thermocouple pipe.

7. Presence of multi media inside the porous voidages Liquid ( Oil, Water and acid ) 

and gases ( LTO, and HTO products )

The main factor determining coke laydown, i.e. LTO and thermal cracking.

u.vjviRsiTr or
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Startup/ Pressurisation:

The pressure was incremented at a continuous rate, ( 0.0025 m A ) opening with PPRV2, 

until the pressure reach to 169 bar after 59 minutes. Farther pressurization was then 

halted. This allowed process equallisation between the tube and shell, as well as enabling 

the high pressure gas supply cylinder to be repressurised to 234 bar. The pressure held 

constant for the next 47 minutes, giving time to the horizontal cylinders to pressurize 

from 200 bar to 234 bar. It is necessary to maintain at lest 30 bar higher pressure than the 

tube operating pressure of 200 bar. Pressure up continued at 107 minutes at same 

incremented rate. When the tube and shell pressure reached 204 bar, there was a problem 

in the pressure. It was decided to reduce the back pressure from 217 bar to 200 bar, to 

allow liquid displacement in the tube. Nitrogen flow to the sand pack was switched-off 

and air was switched-on at 134 minutes, off at time of 134 minutes. There was no flow 

until ball valve (BV6 ) opened at time 142 minutes, causing the pressure to drop to 194 

bar, equalizing PT2 and PT4, as shown in Figure 4.1. At 167 minutes the combustion 

tube pressure reached 200 bar, but then reduced to 192 bar. The pressure disturbance is 

an indication that combustion had commenced.

The pressure during the experiment averaged 198 bar. At time of 247 minutes, the air 

supply started decreasing gradually until the end of the experiment, down only to 205 bar. 

The experiment terminated at 285 minutes, and shut-down commenced.

At 147 minutes, the gas exit line was closed using a needle valve placed after PT4 . This 

was to ensure that no bypass of leaking occurred through the main control gas exit valve. 

The latter closes only gradually and take a short time to close completely (PT8  in Figure 

4.1). The surge in Pressure ( PT8  at 230 minutes ) is because of the slow pressure 

regulator action ( PRVL1) caused by slightly viscous oil production.

Note that PT5 reading the liquid exit line pressure, was not working during the run. It has 

since been replaced with high accuracy pressure gauge.
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Figure 4.1 Run 4 : Combustion Tube Pressurization.

The tube was pressurized only from the top. This is important, because more difficulties 

are experienced in temperature interpretation if the tube is pressurized simultaneously 

from the top and bottom. Pressurising from the top compresses the fluid that is expanded 

by heat the core to its initial reservoir bed temperature. The best procedure to establish 

communication between top and bottom of tube is to pressurize from both ends, 

particularly if the crude oil used has a high density and viscosity.

The effect of pressurizing the combustion tube on the reservoir bed temperature can be 

seen in Figure 4.3. The average temperature when nitrogen injection started was 18.22 

°C. After 60 minutes, the temperature at axial thermocouple number one reached 30 °C. 

The effect is due to a combination of higher external gas temperature and compression 

heat.

There is progression cooling along the tube due to heat ‘drain-off by the end flange, and 

to some extent also because the shell is pressurized by nitrogen flow from the bottom 

end.

The malfunction of axial thermocouple No. 10 is due to a computer connection problem.

The set pressure was achieved at 133 minutes, and the electrical ignitor switched-on. The 

lower part of the core was also heated-up using BH 19 to 32. The temperature rise in the 

core is shown in Figure 4.4. The maximum axial thermocouple reached was about 42 °C 

then lowered to about 34 °C at time 176 minutes. The ignitor heating rate lowered less
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than what used in the previous tests as it can be seen in Figure 4.4. With this low heating 

rate criteria, good and farther heat distribution can be gained as it can been in the figure, 

it reach band heater number two.

After 178 minutes ( Figure 4.5 ), BH 1 reached 215 °C. At this time, nitrogen flow was 

stopped and air injection started. Immediate ignition occurred, causing the temperature to 

rise to 614 °C with in 2 minutes. There is a very rapid increase to 765 °C at 182 minutes. 

Since igniton took place at 215°C , low temperature oxidation probably occurred first, 

before achieving high temperature oxidation 614°C. It is always recommended that the 

ignitor temperature is raised to the desired temperature ( > 215°C ) before air injected. 

Otherwise, there is the possibility of detonation, an explosion, if peroxides are formed 

first from LTO.

A further observation from Figure 4.5, is that the combustion front moved to BH 2 at 

time 184 minutes. At time 185 minutes, the combustion front temperature reduces and it 

advances to BH 2. A cooling effect occured at BH 1 causes the combustion front to move 

ahead.

In Figure 4.6, the combustion front has reached BH 3 after 191 minutes, but the 

maximum peak temperature is reduced to 400 °C. Then, the peak temperate then 

increases to 428°C at 197 minutes reaching BH 4. At 197 minutes, the temperature ahead 

of the combustion front has increased to 74°C, (BH 16) due to temperature of heat from 

upstream. It should be noted that the band heaters were switched-off at 52 minutes, so 

there was no possibilities of forcing the process.

At 198 minutes, ( BH 21), the temperature increases veiy rapidly, from 28.7 to 152.4 °C 

due to LTO. The LTO zone advances at an average temperature between 200 to 220 °C, 

as shown in Figure 4.7.

Auto-ignition occur between BH’s 9 and 11. There is gradual increase in temperature 

from 6 8  to 184 °C. At time 207 min., the combustion front reaches BH 5. Although, the
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ignitor switched-on accidentally for about 5 minutes, it no longer had any effect on the 

combustion ignition on BH 1.

The combustion front stalled at BH 5,( Figure 4.8 and 4.9). Since the maximum peak 

combustion temperature remain constant at 465°C, because the oxygen consumed even in 

other places in the combustion tube.

The average maximum temperature of the second LTO zone, was about 250°C at BH 25. 

Two small peaks were first initiated, at BH 20, (213 minutes), and then at BH 23, (215 

minutes), Figure 4.8. The temperature increased from 30 to 40 °C, during the next 5 

minutes. The second LTO zone increased in temperature to 280°C, just after BH 26, but 

the first LTO ( zone ) only increased to 260 - 275°C, between BH’s 9 and 11. The 

combustion front then moved forward to BH number 6  at 219 minutes. A new cycle of 

LTO started between BH 20 and 21, causing the temperature to increase from 144 to 

250°C, as shown in Figure 4.9.

The second LTO front continues moving to the bottom of the tube. At 229 minutes, the 

combustion front has moved to BH 7, the peak combustion temperature remaining at 

about 460°C. Ahead of the combustion front, the average temperature has increased along 

the tube to 250 °C ( Figure 4.10).

The combustion front becomes more active when it reaches BH 8 , and the zone of 

combustion becomes wider, reaching to BH 12 in the next 5 minutes. The increase in 

temperature ahead of the combustion (380 to 465 °C) could be due to increased fuel 

availability, caused by the formation of LTO products ( see Figure 4.11 ).

The burned zone extends from BH 6  to BH 16, a distance of 0.4 m. At 241 minutes, a 

new LTO zone initiated at BH 21, and another LTO peak also occurs at BH 25, at 243 

minutes, as shown in Figure 4.12.

Those two LTO zone initiate a very large temperature rise, the first zone increases to 

approximately 900 °C at BH 21, and the second zone went up to 700°C at BH 26. The
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reason for this very rapid rise in temperature, is possibly the accumulation of oxygen 

radicals in the oil, which causes an explosive, or rapid oxidation.

High Tem perature Zone:

The two high temperature zone in Figure 4.13, reaching 900°C and 700°C. Figure 4.2 

(Photo) shows the effect of the very high temperatures on the 316 stainless steel axial 

thermocouple probe. They show typical tempering colours for this temperature range.

Figure 4 .2 : Photograph of tempering on Axial Thermocouple Probe.

The burnt region of the core continuously cooled by the injection of cold air ( Figure 4.13 

and 4.14), down to 50 °C, up to BH 4.

The combusted zone front comprises two separate entities, one extending to BH 24, and 

another downstream of this. At 261 minutes, the two combustion region join together, 

with temperature of 450 °C.

316 Stainless 
Steel Exposed to 

900 °C

316 Stainless 
Steel Exposed to 

780 °C
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Another high temperature front startes near the bottom of the combustion tube (BH 32), 

but the main combustion front is still moving towards it ( Figure 4.15). The combustion 

front continues moving down until it merges with the very high temperature (807°C) 

region at BH 32. The experiment was terminated at time 285 minutes ( Figure 4.16). Only 

in this test, the combustion front allowed to continue to the bottom of the tube.

The combustion tube system was depressurized over a period of 50 minutes, down to 

atmosphere. When the pressure reaches zero, the computer program terminates the 

executing of all tasks, including data saved to disk. Figure 4.17 show the decline in 

temperature when air injection is stopped, and the system pressure is reduced.
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Figure 4.3 Run 4: In Situ Combustion Tube Axial Temperature,
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Figure 4.5 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.6 Run 4: In Situ Combustion Tube Axial Temperature
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Figure 4.8 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.9 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.11 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.12 Run 4: In Situ Combustion Tube Axial Temperature.

mperature
zone

0 5 10 15 20 25 OHE 30 35

Band H eater Num ber 

243 ---------- 245 ♦  247 ♦  249 ■  251 — * —  253 ♦  256

Figure 4.13 Run 4: In Situ Combustion Tube Axial Temperature
900 ---------

|  860 
15 800 
«  750 ----------I 700-----
£ 6 6 0  
5  600 
5  550
<  500

<i 460 ----------
400 ----------

8  350 ----------
S  300 
|  250 -

200 
160 1000

1U>c
0 5 10 15 20 25 35

Band H eater Num ber

•  265 — I-----257 — — 269 — ♦ — 261

Figure 4.14 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.15 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.16 Run 4: In Situ Combustion Tube Axial Temperature.
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Figure 4.17 Run 4: In Situ Combustion Tube Axial Temperature.
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Combustion Front Movement:

The movement or advance of the combustion front is well demonstrated in Figure 4.18. 

However, as shown by Figure 4.19, this combustion front moves more slowly as it 

advances downstream.

This trend is summarised in Figures 4.20 and 4.21. The period of steady combustion front 

propagation exists over the period 190 to 240 minutes, with an increase rate period at the 

end due to LTO induced effect.

Steady combustion front of 0.3 to 0.5 cm/min are very high compared with much lower 

value for heavy oil ( typically less than 0.1 m/hr).

500

400

Experim ental time, mln

Figure 4.18 Run 4: In-Situ Combustion Tube Axial Temperature, Band Heaters 5 to 8.

60 100 160 200 250 300 ° HE 360 400
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Figure 4.19 Run 4: In-Situ Combustion Tube Axial Temperature, Band Heaters 25 to 28.
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Figure 4.21 Run 4: Combustion Front Velocity.
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Produced Gas Composition:

Figure 4.22 shows the variation in the gas composition during Run 4. Gas production 

commences at 177 minutes, exactly when the oxygen reads zero. CO2 is produced 

gradually 183 minutes, reaching to 14.2 % at 195 minutes, and then from 198 minutes 

reduces to 10 %, at 214 minutes. The level of CO2 remains constant at 12 % from 216 to 

233 minutes, but increases to 15.1 % at 254 minutes. CO initially increases rapidly to a 

very high value of 21.7% at 189 minutes, but decreases quickly to 7.2% at 192 minutes. 

For most of the rest of the experiment, CO average around 2%. The very high CO level is 

due to LTO ( 215°C) and this occurred before any HTO. This effect not observed in any 

of the three previous experiments, because ignition was started above 350 °C. The 

general trends of CO and CO2 in the produced gas are similar to those simulated by 

STARS. There is an inverse relation between CO and CO2, in particular, when no oxygen 

is produced (241 minutes to the end of the experiment).

The first occurrence of oxygen occurs at 195 minutes, and then continues to increase to 

over 5%, eventually decreased to zero at 241 minutes. Oxygen channeling ahead of the 

combustion front is responsible for the auto-ignition and development of the LTO zone 

ahead of the combustion front reached at BH 21. Part of this oxygen is consumed in the 

LTO zone and the remain produced, with a value of about 5%. The combustion front was 

stalled at BH 5 during this period.
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Figure 4.22 Run 4 : Produced Gas Combustion.
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Figure 4.23 shows the cumulative amount of gas produced, the initial rate is higher at 

approximately 5 litre/min, but continue at a lower rate for to the end of the test 

(~31itre/min).
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Figure 4.23 Run 4: Gas Wet Test Meter Measurements.

O il and W ater Production:

The ultimate oil recovery was 42.7 % of OOIP. The incremental oil rate after 219 

minutes caused possibly by the effect LTO induced. The large amount of water produced, 

84% of OWIP, is no doubt due to supplementation for water formed from the combustion 

and LTO reactions. The total amount of liquid recovered reached to 71.65 % from the 

original liquid in place as plotted in Figure 4.24.
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Figure 4.24 Run 4: Liquid Recovery From Pores Media.

In Figure 4.25, at time 219 minutes, colour of the water changed from clear to yellow. 

Therefore, the yellow coloured water produced had been affected by the combustion 

proven, and also, possibly, any LTO reaction occur downstream. The oil produced at this 

time appears to be oxidized oil, since it was very viscous.
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Figure 4.25 Run 4: Water Oil Ratio (Run Four).

The clear (Original) water displaced from the core achieved a water cut of 89%. The 

water cut reach to value 89%, a value considered to be quite high for primary recovery. 

This could have important implication for the process.
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The pH of the water produced is shown in Figure 4.26. The colour of the produced water 

appears to be related to the water acidity. The clear produced water has a pH of between 

7 and 8, which is normal. After 219 minutes, when the water changed to a yellow colour, 

the pH value reduced gradually to 4.2, steadying, but then reducing farther to 3.
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Figure 4.26 Run 4: Water pH.
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4.2: Run F ive:

Run 5 was conducted under the similar conditions to Run 4 but a lower flux, oil 

saturation 27.6% and water saturation 64.4%. However, it is very valuable to know the 

limitation of lower gas injection rate that can be used in laboratory and field scale, to 

perform good in-situ combustion process.

Generally, the air injection rate will contribute directly, to perform ignition and 

combustion. If the air injectivity is low then the process will not proceed. If the air 

injectivity is higher than the optimum, then the process becomes not economical and 

oxidized oil may be able to influence the recovery efficiency.

It should be emphasized that run 5 is the only run which conducted with 10 cm of dry 

sand ( W-50 ) located in the bottom of the tube. This was used to protect the bottom 

sealing and gasket from high heat as it has been seen in Run 4. Pressurisation of the tube 

took 97 minutes, experiment terminated at 356 minutes.

The Ignitor switched on 97 to 130 minutes. The iqnition and combustion gained as shown 

in Figure 4.27. The rate of heat generation at this flux was not sufficient to maintain tube 

temperature and front stalled after ignition and died when fuel was exhausted (204 

minutes). Combustion was reiqnited by switching on all BH for 15 minutes. The whole 

tube heated to between 100 and 150°C before an ignition was observed at BH5. The 

combustion then moved back towards the top of the tube and peak temperature of about 

550°C was observed at BH3. A secondary LTO region of elevated temperature also 

developed between BH12 and BH16 with a maximum temperature of 300°C at BH12 

(Figure 4.28).

When falling temperature and rising oxygen indicated that this combustion was also 

dying, the flux was increased to get production changed from 30.8 m3/m2hr to 93.8 

m3/m2hr, similar level to that used in the previous run. Simultaneously, the combustion 

moved downstream in both LTO and HTO peaks (364 min.). After the flux was returned

High Pressure In-Situ Combustion Tube Commissioning and Operation. 150



Bp* v .m v i m : ? y or

HbAt h
^ ------------Omar H. El Ayadi Chapter 4

to its original setting, temperatures again declined, oxygen breakthrough increased and 

the run was terminated.

Some propagation of these temperature features was observed during the high flux 

period, but the peak temperatures remained below 400°C and did not achieve the levels 

recorded at the same flux in Run 4. When the flux was returned to its original value, the 

tube cooled and the combustion died.
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Figure 4.27 Run 5 : Axial Temperature Profile, Post-Ignition.

Band H eater Num ber

Figure 4.28 Run 5 : Axial Temperature Profile, Post-Ignition.
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Produced Gases:

Oxygen breakthrough occurred throughout the run. Following ignition, the oxygen 

concentration in the produced gases dropped to 2% and then increased to 21% as the tube 

cooled. CO2 production peaked at 7% and CO at 1.5% in this period (Figure 4.29). After 

the reignition by the band heaters, oxygen production dropped to 4%, CO2 increased to 

11% and CO increased to 2%. The period of increased flux resulted in decreased oxygen 

and increase CO2 production. However, it did not effect CO which continued to decline 

and was about 1% when oxygen breakthrough was at its minimum.
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[ - ■ -  0 2  ♦  CQ2 - ■  CO

Figure 4.29 Run 5 : Produced Gas Combustion.

Figure 4.30 presents the volume of gas produced during the experiment. It show clearly 

the effect of changing production rate with the injection. It shows also all the operation 

and the changes made on the band heater.

Oil and W ater Production:

Oil recovery was 9% of the original oil in place. The majority of this oil was produced 

during the period when the entire tube warmed by the band heaters. Water recovery was 

40% of original water in place. Water production was also significantly increased during 

the period when the entire tube had been warned. The ultimate liquid recovered from the 

test did not exceed 31.3% as shown in Figure 4.31.
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Figure 4.30 Run 5: Gas Wet Test Meter Measurement.
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Figure 4.31 Run 5 : Liquid Recovery From Pores Media.

There where no major changes between the water produced in pH as it can be seen from 

Figure 4.32.
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Figure 4.32 Run 5 : Water pH.
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4.3: Run 6:

Run 6 was a repeat of run 5 but with band heater used for adiabatic control, oil saturation 

30% and water saturation 70%. Following the pressurisation which took 89 minutes, the 

ignitor switched on for 27 minutes from the beginning of the run. The ignitor switched 

off when BH1 reaches 250°C.

Following ignition, the peak temperature recorded between 400 and 450°C. The 

temperature profile is shown in Figure 4.33. The peak temperature normally remained 

steady but showed sensitive to flux specially when a high flux was used for half an hour 

at the end of the run. LTO region occur just ahead of HTO peak between BH6 and BH12, 

where the temperature fixed at 255°C. Other LTO reaction occurred at BH22, enlarged 

with time to the bottom of the tube.

Following the increase in flux at 340 minutes, temperatures down stream of the front rose 

rapidly and multiple peaks developed. At the conclusion of the run there were peaks at 

BH15, 18, and 24 with temperatures of 560, 630 and 320oC respectively as can be seen 

in Figure 4.33.
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Figure 4.33 Run 6 : Axial Temperature Profile, Post-Ignition.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 1 5 5



BATH
--------------- 0/w ar / / .  £7 Ayadi Chapter 4

Figure 4.34 is one of the most important figure used to calculate the velocity of 

combustion front and also to estimate maximum peak temperature. The figure Shows 

stable movement and steady progression of the combustion front between BH5 to BH8 at 

about 10 cm/hours.
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Figure 4.34 Run 6: In Situ Combustion Tube Axial Temperature, Band Heater 5 to 8.

The estimated maximum peak temperatures obtained were plotted as shown in Figure 

4.35. Utilizing the low air injection flow rate at early period of production gives 

maximum peak temperature of 457.7 °C. Due to increase air injection rate at the late 

period, and after 352 minutes, the average maximum peak temperature estimated was

573 °C.
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Figure 4.35 Run 6 : Combustion Front Temperature.
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The calculated combustion front velocity was plotted as shown in Figure 4.36. At the 

early period the combustion front speed range from 0.1 to 0.35 cm/min. At the late period 

the speed went up to 1 cm/min.
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i C om bustion Front S peed , cm/min.

Figure 4.36 Run 6 : Combustion Front Velocity.

Produced Gases:

Oxygen production was initially low, increased to about 6% after 90 minutes of air 

injection and then fell for the remainder of the run, reaching 2% after 150 minutes and 

1% after 240 minutes. At this time the flux was increased and oxygen production quickly 

fell to 0%. Carbon dioxide production was observed earlier than oxygen, and increased 

towards 11% during the low flux period. During the final high flux period CO2 levels 

reaches 13%. Carbon monoxide levels were steady at about 0.8% prior to the oxygen 

peak, then followed a similar pattern to CO2, reaching 1.6% during the low flux period 

and 2.3% in the high flux period. The measured gas concentrations are shown in Figure 

4.37.
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Figure 4.37 Run 6 : Produced Gas Combustion.

The average gas produced rate was estimated and plotted in Figure 4.38. During the 

period from 104 to 340 minutes, the gas was produced with average flux of 21 m3/m2hr. 

Due to increase in the air injection rate the produced gas during the period from 340 

minutes to 373 minutes was 104 m3/m2hr.
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Figure 4.38 Run 6 . Gas Wet Test Meter Measurement.

O il a n d  W a te r  P ro d u c tio n :

It was decided to increase the air injection rate during the experiment, because only 5% 

of OOIP was recovered during the whole first period (350 minutes). The total oil 

recovery was 64% of the original oil in place. Most of this was produced during the final 

high flux period. Water was produced throughout the run with 63% of the original water

High Pressure In-Situ Combustion Tube Commissioning and Operation. 158



B f t T H  Omar H. El Ayadi Chapter 4

in place being produced by the end of the run. The production history are shown in 

Figure 4.39.
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Figure 4.39 Run 6 : Liquid Recovery From Pores Media.

Oil bank was formed ahead of the combustion front due to occurrence of LTO and 

experiment low air flux. While the air injectivity increased, the oil displaced down 

stream.

The Water pH did not show major changes during combustion and displacement. The 

value remains between 6.5 to 7, to the end of the experiment (Figure 4.40).
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Figure 4.40 Run 6 : Water pH.
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4.4: Run 8:

Run 8 was conducted at high oil saturation (70%), and low water saturation (30%). This 

run conducted to get better understanding on whether advanced LTO occurred, and 

converting the unconsolidated media to solid rock at low water saturation.

The ignitor was switched on at 114 min., with ignition occuring at 220°C after a further 

25 minutes. This was followed by an initial, very rapid combustion front propagation, 

reaching a temperature of 840°C (146 min.), but then falling to 520°C at 180 min. Heat 

transported ahead of the combustion front can also been seen in Figure 4.41. More wider 

and enlarge in the combustion front zone continues , with LTO reaction occurred ahead 

of the combustion front peak, then HTO peak (820°C) induced downstream as shown in 

Figure 4.42.
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Figure 4.41 Run 8 : Axial Temperature Profile Post-Ignition.

Figure 4.43 shows the changes occurred in location of BH 13,14, 15 and 16. It also show 

the constant differences between them, which mean stable combustion front movement.
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Figure 4.42 Run 8 : Axial Temperature Profile Post-Ignition.
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Figure 4.43 Run 8 : Axial Temperature Profile From Band Heater 13 to 16.

The optimum peak temperatures recorded in run 8 are between 500 and 600°C as stated 

in Figure 4.44. Very high temperatures recorded at the beginning and at the end of the 

test. The estimated combustion front speed are about 0.5 cm/min mostly in the early stage 

of the experiment, but higher at the late stage, it reaches 4 cm/min. (Figure 4.45).
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Figure 4.44 Run 4: Axial Temperature Profile, Maximum Peak Temperature.
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Figure 4.45 Run 8 : Combustion Front Speed.

Produced Gases:

C 02 concentration build-up gradually in the produced gas as shown in Figure 4.46, 

eventually it reaches 13-14%. CO reaches a maximum of 2% and then declines during the 

latter part of the experiment. It is interesting to note that the period during which oxygen 

is produced is from 214 -  244 minutes. The first observable occurrence of the LTO peak 

was at 206 minutes at BH20, about 8 minutes before oxygen is first detected in the 

produced gas.
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Figure 4.46 Run 8 : Produced Gas Combustion.

Figure 4.47 presents that the gas start produced at time 134 minutes to the end of the test 

at 279 minutes with continuous and steady produced rate. The total volume of gas
*5 0

produced was 796 liters. However, this will give rate of 5.5 liter/min (42 m /m h r ).
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Figure 4.47 Run 8 :Gas Produced Volume
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Oil and Water Production:

Oil recovery was 86.7% of the oil originally in place. Most of this was produced during 

the early period. Water produced throughout the run with 50.5% of original water in 

place. The production histories are shown in Figure 4.48. In this test oil was leading the 

water. Correspondingly, It is anticipate that water production will lead, if the initial oil 

saturation is low.
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Figure 4.48 Run 8 : Liquid Recovery From Pores Media.
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4.5: Run 9:

Run 9 was run at lower pressure of 100 bar, with oil saturation (30%) and water 

saturation (70%) similar to Run 4 and 6. Faster time of pressuie-up the tube (42 minutes) 

to reach the desired pressure, 100 bar. The iqnitor left on from 43 to 62 minutes, and 

when the temperature reached 265°C. However, the iqnition then occurred within 2 

minutes, causing jump to 430°C. High increase in temperature (800°C) at BH2 and at 68 

minutes as shown in Figure 4.49. A second LTO peak begins to form at BH22 at time 95 

min. A separate LTO reaction occur between BH20 and BH30, with a peak temp of 

180°C. Thereafter, the LTO and HTO peaks were joined together. Hence the combustion 

zone enlarged, and high temperature observed at BH32, which is eliminate the 

experiment to continue.
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Figure 4.49 Run 9 : Axial Temperature Profile, Post-Ignition.

The movement of the combustion front was steady, but more faster as shown in Figure 
4.50.

The maximum peak temperature estimated is show in Figure 4.51. Start from 800°C and 

then averaged between 500 to 600°C.
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Figure 4.50 Run 9 : Axial Temperature Profile from Band Heaters 17 to 20.
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Figure 4.51 Run 9 : Combustion Front Temperature.

The combustion front velocities were faster compared with any previous run, because of 

lower pressure, and faster control process. Mostly, the combustion front velocity mainly 

in the range 0.5 -1 cm/min. little higher at the began and late of the experiment (Figure 

4.52).
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Figure 4.52 Run 9 : Combustion Front Velocity.

Produced Gases:

The value of CO gas was most of the test about 2%. But C02 reaches values between 10 

and 16%. Less than 2%, the oxygen value was also observed as seen in Figure 4.53.
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Figure 4.53 Run 9 : Produced Gas Combustion.

Figure 4.54 shows the total volume of gas produced was 653.7 liter with net production 

time of 80 minutes. The overall producing rate becomes 8.2 liter/min ( 62.65 m3/m2 h r ).
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Figure 4.54 Run 9 : Gas Wet Test Meter Measurements (Run Nine).

O il an d  W a te r  P ro d u c tio n :

Oil production was delayed considerably due to the early production of water, which 

starts from the beginning of the test (Figure 4.55). Almost all of the oil was recovered 

(98%). However, since the samples were contaminated with unseparated emulsion, the 

actual oil recovery may be nearer 80-90%. The water recovery was 74% of water 

originally in place.
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Figure 4.55 Run 9 : Liquid Recovery From Pores Media.
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4.6: Post-mortem Photographs of Burned Core from Combustion Tube: 
Run Four:

This run achieved full, propagating combustion, averaging a combustion front 

temperature of (400°C). Except for some residual fuel/coke deposited around the tube 

wall, the core was completely clean, as evidented by it’s white colour. A series of 

photographs was taken at different positions along the combustion tube, in order to 

examine the state o f the MI limestone core, at the end of the experiment. The important 

features to be noted are: 

o Loose, or soft sand.

o White and/or brown and/or black and or light greenish colour, 

o The position of burned and unbumed media core, 

o Rock samples that are consolidated after combustion and oil displacement, 

o Position of coke deposits.

The MI Limestone along the tube had a whitish colour, indicating complete combustion 

had occurred, especially in the middle part.

The loose MI Limestone shown in Figure 4.56, just after to ignition, was present along 

the tube, up to 19 cm from the inlet.

Some hard pieces of material ( agglomerates ) ( Figure 4.58 ) where found in the tube 

after 19 cm. There where mainly near to the tube wall ( Figure 4.57 ), and can be seen 

more clearly in Figure 4.58. This hard material contained holes, which were connected 

and interconnected. At the edges of the material, there were some areas having greenish 

colour, which may indicate reaction of acid with calcium carbonate.

If the MI Limestone becoming white in colour, indicating good or complete combustion 

had occurred ( Figure 4.59 ). A small amount of gas may have occurred close to the wall 

as shown at point A.

There was a little variance in to colours of the MI Limestone as shown in Figure 4.60 to 

4.62, correspond to distances 35, 51, and 60 cm respectively. This changing, on wavy
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colour variation is due to combustion. A more whitish colour is interpreted as more

complete combustion occurring. Areas exhibiting a dark colour, indicates the presence of

coke, but only small residual amounts. This could be, because the fuel concentration was

not uniform or oxygen flow was not well distributed.

At distance of 70 cm, small area of greenish colour appeared at point A in Figure 4.63.

This colour effect continued to 76 cm.

A large area of dark colour ( black ) began to appear, as shown in Figure 4.64 and at 

point A. This green colour appeared as a coating on a large piece of agglomerated 

material, which was extended up to 80 cm as shown in Figure 4.65. The cross section of 

the agglomerated had a whitish colour, meaning that the calcium carbonate had reacted 

with acid, forming a large hole inside it.

After extraction of the large piece of agglomerate ( Figure 4.66 ), a small amount of coke 

was seen at 80 cm at point A.

At depth of 82 cm, agglomerated Limestone was found in the middle of the matrix,

alongside the axial thermocouple position, as shown in Figure 4.67.

At depth of 95.5 cm ( Figure 4.68 ) some small, slotted holes start appeared almost like a 

vug. However, There were no green colourations, or agglomerated material, in the 

remaining section of the MI Limestone, up to 100 cm ( Figure 4.69 ).

The size and shape of the crescent remained similar all the way until the end of the tube, 

as shown in Figure 4.70.

Figure 4.71 was taken at the screen located at the bottom of the insitu combustion tube. 

Less than half of the screen contain unbumed coke, the rest was burned. The unbumed 

section was due to the effect of cooling, because of the cooler gas entering the shell from 

the bottom on the same side as the coke deposit. The presence of coke also signifies that 

the combustion reached the bottom of the tube.

Some o f the sealant use on the bottom flange had also managed to seep on to the screen 

(Figure 4.71).
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Figure 4.57 Run 4:Combustion Tube at 19 cmFigure 4.56 Run 4:Combustion Tube at ignitor.

Figure 4.59 Run 4:Combustion Tube at 26 cm.

Figure 4.61 Run 4:Combustion Tube at 51 cm.Figure 4.60 Run 4:Combustion Tube at 35 cm.

Figure 4.62 Run 4:Combustion Tube at 60 cm. Figure 4.63 Run 4:Combustion Tube at 70 cm.
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Figure 4.64 Run 4:Combustion Tube at 76 cm.

Figure 4.66 Run 4:Combustion Tube at 80 cm

f*

Figure 4.65 Run 4:Solid Core at 76-80 cm.

Chapter 4

Figure 4.67 Run 4:Solid Core at 82 ^

Figure 4.71 Run 4:Combustion Tube Bottom Screen.

Figure 4.68 Run 4:Coke Solid Coke at 95.5 cm.

Figure 4.70 Run 4:Combustion Tube at 121.5cm
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Run Five:

Chapter 4

Figure 4.72 Shows the condition of the burned calcium carbonate at the ignitor. It shows 

the presence of linseed oil left behind that was not burnt. It was originally placed beside 

the ignitor. The clear of MI calcium carbonate indicats 100% combustion.

More than 90 % of the combustion tube cross section shown in Figure 4.73, taken at 8  

cm, as burned, and some coke deposited. Some coke as left behind at 12 cm at (Figure 

4.74). The coke was located beside the inner tube wall. More burn can be seen at 15 cm 

as shown in Figure 4.75. The middle hole is for the axial thermocouples prop. Even at 20 

cm full combustion occurred as presented in Figure 4.76. Some coke start appears at 24 

cm as presented in Figure 4.77.

At 29 cm, as illustrated in Figure 4.73, high percentage of fuel lay down and coke. Small 

round circle appeared at the middle around the hole of the axial thermocouple probe. At 

32 cm, the bumet zone becomes portioned into two, the first one located in the middle as 

shown in Figure 4.74. The second portion was located beside the combustion tube wall.

The middle bumet media was disappeared at 36 cm as shown in Figure 4.75. More than 

90% was unbumed. At 42 cm. small circular combusioned zone was appeared as shown 

in Figure 4.76. The bumet media was stuck to the wall. Figure 4.77 presents a coke 

deposited at 45 cm.

After 52.5 cm clear white MI calcium carbonate was appeared as shown in Figure 4.78. 

The round coke still appeared even after 57 cm as it can be seen in Figure 4.79.

At 72 cm from the top of the combustion top, a round circular coke still appeared as 

shown in Figure 4.80.The circular coke at 72 cm, found latter as a stone as presented in 

Figure 4.81. This stone consolidated during in-situ combustion process.
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Figure 4.76 Run 5:Combustion Tube at 20 cm.
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4.74 Run 5: Combustion Tube at 12 cm.

• 1

.75 Run 5:Combustion Tube at 15 cm.

• 1

Figure 4.73 Run ^Combustion Tube at 29 cm, Figure 4 79 Run 5 Cnmhustinn Tuhe at .12.cm____
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77 Run 5:Combustion Tube at 24 cm.
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Figure 4.80 Run 5:Combustion Tube at 36 cm. Figure 4.81 Run 5: Combustion Tube at 42 cm

Figure 4.83 Run 5: Combustion Tube at 52.5 cm.Figure 4.82 Run 5:Combustion Tube at 45 cm

Figure 4.84 Run 5: Combustion Tube at 57 cm. Figure 4.85 Run 5: Combustion Tube at 72 cm

BATHOmar H. El Ayadi Chapter 4

______________________________ Figure 4 ,86 Run 5 Solid Core a1.72 cm_______________________________
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Run Six:

The Post mortem photograph of the burned core in the ignitor zone is shown in Figure 

4.87. Some coke deposited at the edges closed to the tube wall. Based on the colour of the 

coke, it seams to be coke created from linseed oil.

More clear burnt media shown at 6.5 cm, as presented in Figure 4.8 8 .Some coke 

deposited beside the combustion tube inner wall. More clear with veiy small amount of 

coke left behind the combustion at distance 17 cm, as shown in Figure 4.89. The soft 

sand still located at the middle.

The little darkness still appears even at 36 cm as shown in Figure 4.90. Semi circular dark 

colour still appearing after 46 cm as shown in Figure 4.91. The amount of coke left 

becomes more than in the previous. Figure 4.92 shows a stone started at 48 cm. The rest 

of the photo show the media at 51.5 cm. The MI calcium carbonate stone is shown in 

Figure 4.93. The stone extended from 48 to 53.5 cm. Semi Round shape of coke appeared 

at 61 cm as shown in Figure 4.94.

A stone was recovered from 61 to 69 cm as shown in Figure 4.95. Square shape of coke 

and fuel lay down at 69 cm is shown in Figure 4.96. It is also show the interface layer of 

coke between the fuel lay down and the complete burnt portion.

Figure 4.97 show a big layer of coke located at the middle after 71 cm, with a small area 

of highly bumet media. After 79 cm, there was no clear bumet media but only coke and 

fuel as shown in Figure 4.98.

Black round shape of solid cake still observed and extended to 90 cm as shown in Figure 

4.99. The solid stone was recovered at 94 cm as shown in Figure 4.100. The total length 

of the stone was about 11 cm, started from 83 to 94. At the end of the stone ( at 94 cm ) a 

square shape of soft coke formed as shown in Figure 4.101. The coke still extended even 

after 106 cm as shown in Figure 4.102.
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4.92 Run 6:Combustion Tube at 51

Figure 4.88 Run 6:Combustion Tube at 6.5 cm.

Figure 4.89 Run 6:Combustion Tube at 17 cm.

Figure 4.91 Run 6.Combustion Tube at 46 cm
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Figure 4.99 Run 6: Combustion Tube at 90 cm.
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Figure 4.1Q1 Run 6. Combustion Tube,.at 94 cm______ Figura_4.lfl2.Run 6; Combustion Tube .at  100 cm__
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Run Eight:

Figure 4.103 shows the top part of the core close to the ignitor. The complete burned core 

extends to 12 cm as shown in Figure 4.104. The centre core represent the position of the 

axial thermocouples probe, but now filled with soft calcium carbonate particles. Hard 

consolidated MI calcium carbonate stone was formed 13 cm from the top. It was 5 cm 

long, with a hole in the middle, as shown in Figure 4.105. Soft white MI calcium 

carbonate found again at 22 cm, as shown in Figure 4.106. The same clear appearance 

found again at 32 cm as presented in Figure 4.107.

Soft MI calcium carbonate appears at the middle of the core, as shown in Figure 4.108, at 

distance of 40 cm. Soft MI calcium carbonate was found up to 53 cm, as illustrated in 

Figure 4.109. The brightness and clear white coloures an indication of excellent 

combustion because there was no coke or fuel left behind. Up to a distance of 63 cm, all 

the fuel and coke in tube had been burned. At 63 cm some dark brown colour starts to 

appear as shown in Figure 4.110. Round cycle of coke start appears after 72 cm as shown 

by Figure 4.111. Another observation was saw, where stone just start appearing beside 

the inner side of the tube wall. The MI calcium carbonate stone discovered can be seen in 

Figure 4.112. It consists of non uniform shape, with more than 10 cm long. Dark brown 

colour (fuel)start appear in one edge of the combustion tube circle, as shown in Figure 

4.113 and at distance of 82 cm.

The same shape was seen in the previous tests. It is believe that it occur due to high heat 

loss in that comer cause by cooling effect of shell gas injected from the bottom and it 

influence the part beside the shell inlet gas portion.The coke and/or the fuel left behind 

enlarge more at distance 92 cm as shown Figure 4.114. The fuel volume becomes more 

bigger, more than 50% of cross section area with dark brown colour as it can be seen in 

Figure 4.115. Small piece of stone recovered at 98 cm.High percentage of fuel lied down 

at 103 cm as illustrated in Figure 4.116.The presence solid black colour (COKE) which 

indicate high temperature oxidation and combustion occurred beside the combustion tube 

wall. The solid coke (MI calcium carbonate) where started at 100.5 cm. The MI calcium
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carbonate recovered from 100.5 cm to 114 cm is shown at Figure 4.117, it shows good

combustion occurred in the media, which indicate more reactive crude available at 114

cm. It shows location of stone at depth of 100.5 cm, it looks black and solid, with a hole

in the middle.

The presence of coke is an indication of less vigorous combustion not fully burnt media. 

The other end of the stone at 114 cm, is clear white, which means that half the stone was 

exposed to high temperature, burning all of the fuel. This also can give good knowledge 

about the oxygen breaking though and availability of fuel and more reactive crude. It was 

appeared at 114 cm that the combustion front moved forward in non uniform 

displacement and reactivity. It appear that the pocket of burnt zone can be found farther if 

the oxygen breaking through and found more reactive oil. At distance 121 cm, the burned 

area shrinks, becoming smaller, as shown in Figure 4.118.
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Figure 4.103 Run 8:Combustion Tube at Ignitor

w  j m  m
Figure 4.107 Run 8:Combustion Tube at 32 cm.

Figure 4.109 Run 8:Solid Core at 53 cm.

Chapter

T

Figure 4.110 Run 8: Combustion Tube at 63 cm.

Figure 4.104 Run 8: Combustion Tube at 12 cm.

Figure 4.106 Run 8.Combustion Tube at 22 cm.

Figure 4.108 Run 8:Combustion Tube at 40 cm.

4
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Figure 4.111 Run 8:Combustion Tube at 72 cm.

Figure 4.117R8: Combustion Tube at 100.5-114

Figure 4.r 113 Run 8: Combustion Tube

Figure 4.115 Run 8: Solid Core at 98 cm.

A
at 82 c

Chapter 4

Figure 4.112 Run 8: Solid Core at 72-82 cm.

A
Figure 4.114 Run 8: Combustion Tube at 92 cm.

Figure 4.116 Run 8:Solid Core at 103 cm.

w  •  ^
Figure 4.118 Run 8: Combustion Tube at 121 cm.
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Run Nine:

The following post mortem photos will show the position and the condition of the core 

after being exposed to the combustion heat process. Figure 4.119 show the MI calcium 

carbonate beside the ignitor position. It looks as a loose particle and complete white 

which indicate whole fuel and coke were burnt completely. All the way from the top of 

the combustion tube to 15 cm, Figure 4.120 show that the media of MI calcium carbonate 

bumet completely, presented as loose and completely dry particle. The thermocouple 

probe located in the middle cross section of the combustion tube can be seen Figure 4.121 

after 25 cm with a slightly bigger hole due to presence of loose particle at the middle. At 

distance 30 cm, 5 cm long stone was discovered as shown in Figure 4.122, it shows clear 

media with no coke or fuel left behind the combustion front.

Continuation of clean media MI calcium carbonate even at 46 cm as presented in Figure

4.123. A big unsymmetrical stone was discovered at 47 cm. The stone shown in Figure

4.124, extended to 58 cm. The stone exposed to combustion as indicated by the white 

colour. Some small coke deposited on the top of the stone can be seen as well. Figure 

4.125 taken at 72 cm presents a clear fully brunet media, with little small deposition of 

coke left behind.

Figure 4.126, present the same shape as it has been seen in the previous tests. A portion 

of fuel lied down at 87 cm. The coke always found and present as an interface between 

the fuel lay down mainly in light brown colour, and the fully burnt media ( MI calcium 

carbonate ). The coke always form in black colour. During extraction of the media to 

make photo, it can be very easy to distinguish between the coke and the fuel lay down by 

the hardness. The coke, some times thin but always harder than any other in media.

Figure 4.127 present a thick layer of coke just between the unbumet zone and burned 

zone. This clearance of interface was taken at 97 cm. Half of the cross section area was 

bumet. The reason of this partitions is due to high heat losses and cooling effect caused 

by injecting shell gas ( nitrogen ) from the bottom, closed to the portion where the 

unbumed fuel presents.
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Figure 4.128 was taken at 105 cm, it show high fuel lay down or deposited. Stone of MI 

calcium carbonate was observed, but it start at about 100 cm. Difficulties where observed 

to extract that piece from the combustion tube. Figure 4.129 and 4.130 where taken for 

the consolidated stone extracted from the post mortem combustion tube. Figure 4.129 

presents the side (A) where the stone and the coke/fuel deposited. Figure 4.130 shows the 

other side (Side B) of the consolidated stone. It very clear that (side B) shows the burnet 

side of the stone. This side sticked to the wall of the combustion tube.

Figure 4.119 Run 9:Combustion Tube at Ignitor Figure 4.120 Run 9:Combustion Tube at 15 cm.

Figure 4.121 Run 9:Combustion Tube at 25 cm Figure 4.122 Run 9:Combustion Tube at 30 cm.

Figure 4.123 Run 9:Combustion Tube at 46 cm. Figure 4.124 Run 9:Solid Core at 46-58 cm.
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Figure 4.127 Run 9:Combustion Tube at 97 cm.

Figure 4.125 Run 9:Solid Core at 72 cm. Figure 4.126 Run 9: Combustion Tube at 87 cm.

I

Figure 4.128 Run 9: Combustion Tube at 105 cm.

Figure 4.129 Run 9: Solid Core at 100-125 cm (Side A).

Figure 4.130 Run 9: Solid Core at 100-125 cm (Side B).
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Oil and W ater Production:
RUN 4:

Samples of the produced liquids taken during Run 4 are shown in Figure 4.131. Figure

4.132 shows the produced liquid which was up to 219 minutes. Prior to this, the produced 

water was clear. However, there was a small amount of the oil produced close to 219 

minutes, with some viscous emulsion adhering to the wall of the glass receiver. The water 

produced after 219 minutes had a yellowish colour, since it had been affected by the high 

temperature the combustion front, and resulting oxidation and acid products (Figures

4.133 and 4.134).

Late stage of Recovery Early stage of Recovery

Figure 4.131 : Fluid samples recovered from Run 4.

Later stage of recovery Early stage of recovery
(before 219 minutes)(before 219 minutes)

Figure 4.132 : Produced Oil and Water from Run 4,before 219 minutes 
(Water not Affected by Heat W ave)

Later stage of recovery Early stage of Recovery
(after 219 minutes) (after 219 minutes)

Low pH Water

Figure 4.133 : Produced Oil and Water from Run 4, after 219 minutes 
(Water Affected by Heat W ave)
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Later stage of recovery 
(after 219 minutes)

Early stage of recovery 
(before 219 minutes)

Yellowish Water Emulsion Clear Water

Figure 4.134 : Produced Oil and Water from Run 4.

RUN 5:

The sequence of liquid produced during Run 5 is shown in Figure 4.135. There is a high 

water content throughout, but more oil is produced during later stages.

(Late Stage Production) (Early Stage Production)

Figure 4.135: Total Liquid Recovered from Run 5.
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RUN 6 :

Figure 4.136 shows the production sequence for Run 6. Early on, with high water cut, 

tending to diminish later in the experiment. The oil was produced during the test was 

severely emulsified above the thirds as shown in in Figure 4.137.

(Late Stage Production) (Early Stage Production)

Figure 4.136: Liquid Recovery from Run 6.

Water In 
Oil 

Emulsion

Water

Figure 4.137: Emulsified Oil ( Water in Oil Emulsion ) in Run 6.
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RUN 8:

Chapter 4

In Run 8 (Figure 4.138), most of the oil was recovered. The water in the first half of the 

run is formed emulsion during the middle stage (Figure 4.139). Better separation between 

water and oil appeared at late stage.

(Late production stage) (Early production stage)

Figure 4.138: Liquid recovery from Run 8.

(Water in Oil Emulsion

Figure 4.139: Water in Oil Emulsion from Run 8.

Same as what discovered before, Two different water colour recovered. One whitish clear 

and the other is yellowish. The change of the colours to yellowish is due to heat effect as 

shown in Figure 4.140.

Clear WaterYellowisnWater

Figure 4.140: Produced Water Affected by Heat in Run 8.
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RUN 9:

The sequence of liquid production during Run 9 is shown in Figure 4.141. The water cut 

initially is very high (Figure 4.142). Followed by production emulsified oil (Figure 

4.143). During the transition from mainly water to mainly oil, some deposited material 

can be seen on the bottom of the sample (Figure 4.144). The change in colour of the 

water produced also recognized in this test as it can be seen in Figure 4.144.

(Deposition of fine powder)
(Late production stage) (Early production stage)

(Yellowish Water) (White Clear Water)

Figure 4.141: Liquid Recovered during Run 9.

Figure 4.142: Clear Water Produced during Early Stages of Run 9.
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(Water in Oil Emulsion)

Figure 4.143: Water in oil emulsion (Run 9).

Figure 4.144: Fine Powder Deposit (Run 9).
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4.8: Com parison of Some Main Experim ental Features 

4.8.1: Carbon Oxides:

The amount of CO2 produced during an experiment changes with time. Since the 

combustion front only propagate a fraction of the total distance along the combustion 

tube, it is not possible to know precisely what the instantaneous CO2 concentration is, 

unless in-situ samples are obtained.

During the experiments, some CO2 produced dissolved in crude oil. Hence, CO2 

dissolved in the oil exits with the produced oil, and water. This effect increases with 

pressure. Figure 4.145 shows the percentage of CO2 produced versus the volume of 

produced gas. It is very clear from this plot that, at high air injection rate, the amount of 

CO2 produced appears at early stage of the experiment (Run 4). Then is correspondingly, 

a much more of CO2 level at lower air injection rates, Run 6, for example. The very 

important common value of CO2 produced at the end of the experiment, however, the 

CO2 level converges to between 14 and 16 %. A further point to be noted is that the C 02 

measurement at the exit is a ‘dry gas’ basis. In-situ, the gas is ‘wet’ i.e. the true 

instantaneous value, in the combustion tube process atmosphere, is likely to be much 

lower than 15%, because of the gases, such as steam and a light hydrocarbons.

*  13

0 100 200 300 700 800 900 1000 1100 1200400 500 600

Volume of G as Produced , litre

Figure 4.145 : Produced C 02.
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4.8.2: Carbon Monoxide:

The variation of produced CO versus the volume of gas produced is shown in Figure 

4.146. The average CO level ranges between 1 to 3%, with average value of about 2%. 

Runs 6, 8, and 9 show similar trends, starting from zero and then gradually increasing to 

about 2%. In Run 4, the initial very high value ( up to 22% ) gradually decrease to 

amount 2-3%, as the other experiments. The very high values initially are due to high air 

injection rate used. The effect is indicative of an LTO state. Generally, increasing in CO2 

tends to correspond with reducing values of CO. Since, Run 4 was conducted without 

band heater control (non-adiabatic), and concequently, it was difficult to establish 

combustion.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Volume of G as Produced , litre

[>■■* ■ Run 4 - • ■ - 'R u n  6 •  Run 8 " ■ ^ ■ ■ R u n  9~]

Figure 4.146 : Produced CO.

4.8.3: Oxygen:

From a safety viewpoint, and also economic standpoint, it is not desirable to have 

channelling of oxygen through the reservoir because:

1. Formation of oxidized oil ahead of combustion front may cause increased fuel 

laydown and temperatures and subsequently pressure also increased.

2. Increase viscosity of the oxidised oil ahead of the combustion front will reduces 

oil mobility.

3. Formation of emulsions and tar-like materials plugging of the formation and 

restrict the fluid flow in the porous media.
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One possible benefit of LTO occurrence is that that it improve the reservoir permeability 

in carbonate media, due the formation of carboxylic acid, downstream of the combustion 

front.

Figure 4.147 shows the percentage of oxygen produced and not consumed during Runs 4, 

6, 8 and 9. It shows that oxygen channelling was recurring, breaking through at an early 

stage of the experiments. At the same time, CO production is high. The level of gas 

channelling in Run 6 is particularly severe, resulting in very early breakthrough of 

oxygen at over 6%. This value then decreases slowly, due to initiation of new separate 

oxidation zone ahead of the main combustion front. Two periods of minor gas 

channelling occurred in Run 9, but the produced oxygen level of 3.5% was within 

tolerable safety limits. Oxygen channelling occurred in practically all of the experiments 

to high or low degree. This may have been due, in part cooling on one side of the 

combustion tube caused, by to flow of cold nitrogen in to the shell, inorder to maintain 

the shell pressures. This effect would lead to quenches combustion reaction near the wall 

of the combustion tube. Further discussion of this part is given with post mortem 

analysis.

10

9

8

7

g  6  

8  5S 5
2  4
O 3
s 3 

2

1

0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Volume of G as Produced, litre

| —s fr - -  Run 4 Run 6 ■ •  Run 8 ► Run 9 !

Figure 4.147 : Produced Oxygen.

4.8.4: Gas Molar Ratio:

Gas molar ratio is not considered to be a good indication of combustion performance. 

Nevertheless, the trends in Figure 4.148 show that the ratio, (CO/(CO+C02)) is less than
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0.2 for most of the experimental period, indicating good combustion. Therefore, with the

exception of Run 4, Run 6, 8, and 9 exhibit vigorous combustion.

Average Combustion Front 
Velocity, cm/min

Run 4 = 1.26 
Run 6 = 0.45 

Run 8 = 0.874 
Run 9 = 1.27

200 300 400 500 600 700 800 900 1000 1100 1200

Volum e of G as Produced , litre

■Run 4 ■Run 6 ■Run 8

Figure 4.148: Gas Molar Ratio.

4.8.5: Oil Recovery:

Figure 4.149 shows the oil recovery as a function of time. Runs 4, 6, and 8 where 

conducted at 200 bar, whereas, Run 9 was operated at 100 bar. The initial saturation for 

all runs 30% oil and 70% water, except Run 8, which was 70% oil and 30% water. Run 9, 

achieved the highest oil recovery, mainly due to stable combustion front propagation, 

high combustion front velocity (1.27 cm/min). Another factor enhancing the oil recovery 

value high is the emulsions inside the core.

Run 4 can be compared with Run 6, because the only varying parameter was air injection 

flux. Although less oil was recovered in Run 4, the production rate is much faster. This 

because of the very high air injection rate (-100 m3/m2 hr), which creates high 

combustion front temperature that burning more fuel. Run 6 was conducted at lower rate 

(-21 m /m hr). This affected the oil displacement, cause oil to bank-up just ahead of the 

combustion front. The control system also worked more effectively, due to less 

disturbance of pressure. The value of oil recovery is higher, because less fuel is burned.
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Run 8 produced a large amount of emulsified oil and water. Three different types of oil 

were produced. The first oil recovered was virgin oil, i.e. unchanged in composition or 

density. The second type of oil was emulsified. The third was affected by heat ahead of 

the combustion front.

100

o

o a t
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Experim ental tim e, min

| ■ Run4 ♦  -Run6 A Run8 —X— Run9 j

Figure 4.149: Oil Recovery.

4.8.6: Combustion Front Temperature:

The average optimum combustion front temperature for each experiment, started at high 

temperature, then dropped down to 500 to 600°C. This effect is shown in Figure 4.150. A 

few lower temperatures, 250 to 300°C, evidencing LTO, are also appeared.
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Figure 4.150 : Combustion Front Temperature.

4.8.7: A tom ic  H y d ro g en  to  C a rb o n  R a tio :

All of the combustion experiments shows similar H/C trends, starting at very high values, 

then decreasing rapidly with time, as the volume of gas injected increased (Figure 4.151). 

In all the cases, the H/C stabilises at value of around 2, indicating that vigorous, high 

temperature combustion was achieved.

45o
3  40

35

2 20

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Volume o f G a s  P roduced , litre 

‘Run 4  ® Run 6 “ “♦ " “ Run 8 •  Run 9

Figure 4.151 : Atomic Hydrogen to Carbon Ratio.
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4.8.8: Am ount of Fuel Consumed:

Figure 4.152 show that, the rate at which fuel is consumed (per volume of gas produced) 

is constant at around 0.1 gm/litre.

120

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Volume o f G as Produced, litre

*  Run 4 *  Run 6 •  Run 8 •  " Run 9

Figure 4.152: Weight of Fuel Consumed.

4.8.9: Fuel Availability:

The fuel availability or amount of fuel deposited are essentially constant for all the 

experiment, as shown in Figure 4.153. There is some or very little difference due to LTO.

100 200 300 400 500 600 700

Volume of G as  Produced , litre

800 900 1200

’Run 9Run 4 •Run 6 ’Run

Figure 4.153 : Fuel Availability.
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4.8.10: Air Requirement Using Combustion Stoichiometry:

The calculated, air requirement, based on the produced gas composition is shown in 

Figure 4.154. The graph shows that all rims with same value, as would be expected for 

the same crude oil.

150
140

« 13°g . 120 
^  13 110 
™ |  100 
^  90
E £  80
w. I  70 
! !  60 

2 I 50 I s  *0
S. " 30

< 20 
10
0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Volume of G as P roduced, litre

j *  Run 4 —^ ^ - R u n  6 ^ ♦ “ Run 8 ” •  " R u n  9 j

Figure 4.154 : Air Requirement Using Combustion Stoichiometry.

4.8.11: Minimum Air Flux Using Combustion Stoichiometry:

The minimum air flux required to sustain a propagates combustion front is shown in 

Figure 4.155. The lower value correspond to Run 6, which has the lower combustion 

front velocity.

120 ------
1 1 6 -------
1 1 0 ------
1 0 6 -------■ 100---

_  9 5 --------- Average C om bustion  Front Velocity

Run 4  = 1.26 cm  /min 
Run 6 = 0.45 cm  /min 

Run 8 = 0.874 cm  /min 
Run 9 a  1.27 cm /m in

30

OHE
100 200 300 400 500 600 700

Volume of G as P roduced, litre

800 900 1000 1100 1200

>Run 4 'Run 6 •Run 8 'Run

Figure 4.155: Minimum Air Flux from Produced Gas Composition.
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Axial and W all Temperature Difference

Run 4 ( Non adiabatic BH control):

As it is shown in Figure 4.156 to 4.160 . The difference between axial temperature and 

the wall temperature are can be seen clearly. No band heater control or adiabatic control. 

It even better to test laboratory with out using the band heater if it is possible, to be sure 

that it will work in field scale. It is also, and some times it is called worst case that may 

be occur in the field or actual scale. When the band heater where not used, it mean that 

there are heat losses to the surrounded. Bearing in mind that there are insulate eliminate 

or minimise the heat losses surround the combustion tube.

700

35Ii*-

600

660

500

I•0
g  400 

i>i S50 

300s3
i7
1I01 I

200
150

0 50 100 160 200 250 300 350 400

Experimental Time, min.

[— ■ — TM 'J TW4

Figure 4.156 Run 4 : Axial and Wall Temperature Difference for TA4 & BH4.

700 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
— 6 9 0 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
|  600

C 0 2  ou t a t  182 min.
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Experim ental Time, min.
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Figure 4.157 Run 4 : Axial and Wall Temperature Difference for TA8 & BH8.
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Figure 4.158 Run 4 : Axial and Wall Temperature Difference for TA8 & BH8.
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Figure 4.159 Run 4 : Axial and Wall Temperature Difference for TA25 & BH25.
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Figure 4.160 Run 4 : Axial and Wall Temperature Difference for TA30 & BH30.
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Run 6  ( adiabatic BH control):

Figures 4.161 to 4.165 Shown the axial and wall temperature at different locations at BH 

4, 8, 14, 25 and 30. Closed to the ignitor, there will be artificial ignition and combustion 

affected by the ignitor. The figures shows that there are considerable different between 

the wall and axial temperature, this was due to band heater control problem. The band 

heater operations can not achieve good control due to computer speed. Most of the time, 

the system control pressure because it was programmed that the first priority to the 

pressure and then temperature. There was a lot of disturbance in pressure during the run. 

However, at location of BH14, as shown in Figure 4.163 better control was achieved.
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Figure 4.161 Run 6 : Axial and Wall Temperature Difference for TA4 & BH4.
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Figure 4.162 Run 6 : Axial and Wall Temperature Difference for TA8 & BH8
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Figure 4.163 Run 6 : Axial and Wall Temperature Difference for TAM & BH14.

700
660
600
550

t°o  4-50 
| §  400 

H 2
|  S. 300 
U  250

i  20°
0  150

1 100

C 0 2  Out a t 136 min.360

350oU
mmmmxzwMmmtmcmmmmmmtwmm

50 100 150 250 300 400 450 500200
Experim ental Time, min.

— ■ —  TA25 — <3—  TW25

Figure 4.164 Run 6 : Axial and Wall Temperature Difference for TA25 & BH25.
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Figure 4.165 Run 6 : Axial and Wall Temperature Difference for TA30 & BH30.
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Run 8  and 9 conducted utilizing adiabatic BH’s control. Due to the reasons stated 

previously, the control system was unable to achieve adiabatic control. Generally, the 

axial temperature always higher than the wall temperature. Then the opposite occur after 

the combustion moves ahead in the centre more than beside the wall. Run 9 shows that 

wall temperature was higher than axial temperature at the began of the experiment. Then 

after, similar trend as run 8  achieved. Better control achieved later at the end of the 

experiment (see Appendix F). Note that for Run 8 , first appearance of CO2 with the 

produced gas was at 147 minutes, but in Run 9 was 60 minutes.
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SIM ULATION OF EXPERIM ENTS

Introduction :

A preliminary series of numerical simulations was conducted using the STARS reservoir 

simulator. The purpose was to understand further the operation of the in-situ combustion 

process, and also aid in the design of the air injection experiments. The STARS reservoir 

simulator (Computer Modelling Group, Calgary) can solve steam injection and in-situ 

combustion problems in three dimensions.

Combustion Tube Model:

The modelled combustion tube which was used in the simulation is shown in Figure 

4.166 . It is one dimension, vertical, downwards displacement.
i= l

i  k=128

"•V

Figure 4.166 : Combustion Tube Simulation Grid.
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Input Simulation Features:

The overall features of the simulation can be listed as shown in Table 4.2 (Appendix E). 

The entire data in the whole runs are same, the only change that made in every simulation 

runs are that necessary to be matched with the experimental data .

Table 4.2 : Physical Properties and Reactions for Simulation Model Base.

Parameter Discription
PCI : C l -  C5

Ekofisk Crude Oil: Pseudo-Component PC2 : C6  -  CIO 
PC3 : C11+

Reactions:
1. Heavy Oil Cracking c il+ —» C6 - C 10 + Coke
2. Heavy Oil Cracking Cu+ —̂ Cj -C 5 + Coke
3. Heavy Oil Burning Cu+ + 0 2 -» H 20  + C 0 /C 0 2 + energy
4. Light Oil Burning C 6 -C 10 + 0 2 -> H 20  +CO + energy
5. Hydrocarbon gas Burning Cj - C 5 + 0 2 -»  H 20  + CO + energy
6 . Coke Burning Coke + 0 2 - * H 20  + C 0 2 + energy
7. Carbon Monoxide Burning CO +0.5O 2 - » C 0 2 + energy

Operation Conditions:
- Pressure, bar 1 0 0 - 2 0 0

- Temperature, °C 38
Ignitor Band Heater 1 -  4 ( 250°C)
Core MI Limestone 

Porosity, 42.8% 
Permeability 616-1600 md

Fluid Saturation:
Water saturation,% 30 - 80%
Oil Saturation,% 20 -70
Gas saturation,% 7

Sensitivity Runs:

Several simulation runs were conducted on run 4 result, to understand how the simulation 

results could be affected by varying certain input parameters. The attempting which were 

carried out are stated in Table 2 and as follow:

High Pressure In-Situ Combustion Tube Commissioning and Operation. 206



V N JV iR * :? r  o ?

it RATHp u r \ i  i * 0 m a r H  m A y a d i Chapter 4

Table 2 : Simulation Tests ( Reaction Parameter and Permeability).

Parameter Changes (from -  to)
Effect(T emperature 

Distribution)

1. Reaction parameters:

A. Activation Energy, kJ/gm m 

1\ Cu+ -»  C 6 - C10 + Coke 27-127 Minor

2\ CH+ —̂ Cj -C 5 + Coke 25-125 Minor

3\C n+ + 0 2 -> H 20  + C 0 /C 0 2 + energy 16.5-116.5 Moderate

4\C 6 -C 10 + 0 2 -> H 20  + C O + energy 17.5-117.5 Minor

5\ Cj - C 5 + 0 2 -> H 20  + CO + energy 17-117 Minor

6 \ Coke + 0 2 -> H 20  + C 0 2 + energy 6.5-106.5 Major

7\ CO + 0.5O2 -> C 0 2 + energy 7.5-107.5 Major

B. Reaction Enthalpy, kJ/gm m 

1\ Cu+ -> C 6 -C 10 +Coke 0-5000 Minor

2\ Cj1+ —y Cj - C 5 + Coke 0-5000 Minor

3\C n+ + 0 2 - ^ H 20  + C 0 /C 0 2 + energy 8-108 Minor

4\C 6 -C 10 + 0 2 ^ H 20  +CO + energy 3.6-103.6 Minor

5\ Cj -C 5 + 0 2 -> H 20  + CO + energy 0.185-100.185 Minor

6 \ Coke + 0 2 -> H 20  + C 0 2 + energy 0.437-100.437 Major

7\ CO +0.5O 2 -> C 0 2 + energy 283.8-383.8 Minor

CO +0.5O 2 -> C 0 2 + energy 283.8-28.38 Major

2. Permeability,md 616-6000 No effect

3. Air Injection Rate :

The air injection rates obtained from STARS required after many trials to obtain a 

suitable value.The average value of produced gas was essential same as measured values,
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4. Liquid Recovery:

Study of recovery mechanisms through changing or relative permeability curves. It was 

found that STARS simulator programmed into the bases of forming liquid bank ( oil or 

water) just ahead of the combustion front. Also no change in original or initial water or 

oil saturation farther ahead of the combustion front. It assumes the piston displacement 

mechanism occur ahead and farther down the combustion tube.

The final predicted relative permeabilities curves used for the simulation are shown in 

Figure 4.167.
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Figure 4.167 : Relative Permeability curves Utilized in STARS.

Produced Gases (CO and C 02):

The produced CO and C 02 was adjusted to fit a reaction enthalpy. It was found: 

a- The exact and closed values of CO and C 02 produced can be obtained but the 

temperature distribution profile cannot be mentained, because of the low temperature 

predicted, also delay liquid recovery.

b- reasonable values were selected to maintain all CO and C 02, temperature distribution 

profile and liquid recovery taken in consideration the challenging of oxygen during 

through the combustion tube during the experiments.
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The other unknown quantity was the volume of nitrogen used to pressurize the oil and 

water inside the combustion tube, after many trials, a value of 7% was obtained.

A complete simulation runs involved pressurisation, ignition (first 20 minutes) followed 

by air injection. The initial reservoir temperature was set at 38°C. Finally, the last 

selected run gained on Run 4 was used as a common on all other runs ( 6 , 8  and 9 ), with 

changing the variable parameters. The complete STARS input file can be seen in 

Appendix ( E ).
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RUN 4 SIMULATION:

History Match ( Production Gas Flow Rate):

As it mentioned previously, many simulation trials were performed in order to obtain a 

match between the experimental results and the STARS simulation prediction. No 

separate/multipeaks, difficulties of programming channelling, or fingering of fluid. The 

STARS simulator, basically simulates the displacement ahead of the combustion front as 

piston like displacement. Nevertheless, driving the liquid ( oil + water ) farther ahead of 

the combustion front as a piston displacement with liquid ( oil or water ) bank 

accumulated just ahead of the combustion front.

Since the in-situ combustion tube process is not steady ( pump with constant air injection 

rate and pressure ), but with more or less constant pressure; the average injection rate 

estimated by STARS.

The simulated air injection rate was changed many times in order to obtain match with 

the experimental value. For a produced gas rate of 83.9 m3/m2hr, 99.2 m3/m2hr of air 

injection was required.

Axial Temperature Distribution:

Delay of about 29 minutes was detected moreover that the general ignition heating time 

( 20 minutes ). The 29 minutes estimated from matching the first time CO2 and CO 

produced in the experiment.

Figure 4.168 present the temperature profile along the combustion tube at different time. 

It is clear from the figure that the combustion zone enlarged and becomes wider with 

experiment time. The shape of the temperature profile shows that the combustion front 

temperature is much lower than the maximum gained behind the combustion front due to 

high fuel (coke) available and deposited behind. This coke is responsible for getting 

higher temperature as stated before from energy generated due to burning coke.
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Figure 4.168 : Predicted Temperature Distribution Using STARS (Run 4).

Comparison between experimental results with the simulated, show closed temperature 

profile between time 28.8 to 48 minutes as shown in Figure 4.169. The late experiment 

temperature can not be simulated; it was caused due to oxygen breakthrough.
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Figure 4.169 : Experimental and Predicted Axial Temperature profile in Limestone Core. Time base-line 

adjusted by -29 min. at Time 28.8, 36 and 48 minutes.

Figure 4.170 presents that the combustion front moved down faster than the predicted by 

STARS simulator between time 60 to 90 minutes.
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Figure 4.170: Predicted Temperature Distribution Using STARS (Run 4).

Time base-line adjusted by -29 min. at Time 60 and 90 minutes.

The combustion front reach to the end in the experiment and the simulator as shown in 

Figure 4.171 in time between 120 to 150 minutes. The temperature at BH1 was higher in 

the experiment than the predicted by the simulator. The simulator predict also high 

amount of coke deposited at BH10.
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Figure 4.171 : Experimental and Predicted Axial Temperature profile in Limestone Core. Time base-line 
adjusted by -29 min. at Time 120 and 150 minutes.

The combustion front temperature and the maximum temperature logged can be seen in 

Figure 4.172, shows a 100°C difference between experiment and predicted. The highest 

temperature during the simulation, is not necessarily to combustion front temperature but 

it is function of fuel ( coke )availability , reactivity of fuel and air ( oxygen ) availability. 

Normally, The highest fuel concentration is found ahead of the combustion front, while

High Pressure In-Situ Combustion Tube Commissioning and Operation. 212



V M V l* S :?Y  0 :

RATH
------------ Omar H. El Ayadi Chapter 4

the highest oxygen concentration is located behind the combustion front. The measured

and predicted temperatures do not coincide especially at the beginning and toward the

end of the experiment.
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Figure 4.172 : Combustion Front and Maximum Temperature Utilizing STARS Simulator (Run 4).

Combustion front velocity varies between 0.5 to 1.45 cm/min. It reach 0.7 cm/min. after 

38 minutes, and 1.45 cm/min. at time 120 minutes finally reduced to about 0.5 

cm/min.(Figure 4.173)
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Figure 4.173 : Combustion Front Velocity Utilizing STARS Simulator.

The CO predicted by STARS in Run 4, start at a value (12%), reduces down to 3.5%, as 

shown in Figure 4.174. The value of CO2 predicted equal to the produced from the 

experiment ( about 14 %).
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Figure 4.174 : C 0 2 and CO Recovered Utilizing STARS Simulator and Experiment (Run 4). Time base­

line adjusted by -29 min.

Figure 4.175 shows that there are very closed recovery of oil and water at the end of the 

experiments when compared with STARS. It is very clear that the oil recovery went 

gradually to the end of the experiment. But the predicted by the STARS shows that there 

where an oil bank ahead of the combustion front started to come out after 90 minutes.
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Figure 4.175: Oil and Water Recovery Utilizing STARS and Experiment (Run 4). Time base-line adjusted

by -29 min.

RUN 6  SIMULATION :

Run 6 was conducted at low air injection rate. To estimate the average air injection rate 

used experimentally, STARS used to predict it by adjusting the exact gas produced rate to 

gain 21 m3/m2hr it required 26.3 m3/m2hr.

Figure 4.176 shows the temperature distribution profile of run 6 along the combustion 

tube. The shape of the curves seam to be symmetrical, and maximum peak temperatures 

just in the middle of the curve.
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Figure 4.176: Temperature Distribution Utilizing STARS Simulator (Run 6).
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From time 28.8 to 48 minutes, the combustion front temperature seam to have the exact 

start between the experiment and the predicted as shown in Figure 4.177. The simulation 

maximum peak temperature are much higher than the measured experimentally.
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Figure 4.177: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 28.8, 36
and 48 minutes.

Figures 4.178, 4.179 and 4.176 shows the same phenomena. The start of temperature 

rising are just about the same between the experimental and STARS temperature profile 

from time 60 to 180 minutes.
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Figure 4.178 : Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 60,90
and 120 minutes.
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Figure 4.179: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 120,150
and 180 minutes.

At time 210 minutes, the start up rising due to combustion front seam to be closed, but 

fare way at 240 minutes, (Figure 4.180). Generally, if the combustion occur in the edges 

and not in the middle of the combustion tube where axial thermocouples located; falls 

prediction can be caused easily.
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Figure 4.180 : Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 180, 210
and 240 minutes.

The combustion front temperature are much closed to maximum peak temperature due to 

low air injection rate as illustrated in Figure 4.181. The estimated Combustion front 

temperature of the actual test and the simulator shows matching each others. The average 

temperature located between 450 and 500°C.
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Figure 4.181: Combustion Front and Maximum Temperature Utilizing STARS Simulator and Experiment
(Run 6).

Figure 4.182 shows more steady of combustion front velocity ( 0.38 cm/min.) all the way 

to time of 200 minutes, then gradual increase to 0,85 cm/min. at the end of the 

experiment. The estimated velocity of the combustion front seem to be closed to the 

measured from the test.
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Figure 4.182: Combustion Front Velocity Utilizing STARS Simulator and Experiment (Run 6).

Figure 4.183 shows the value of CO2 produced similar to the predicted, but different in 

trend in CO. STARS produce 6.8% while the experiment 2%. As it mentioned previously 

this values are apart from each others due to adjusting other parameters.
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Figure 4.183: C 0 2 and CO Recovered Utilizing STARS Simulator and Experiment (Run 6).

The oil recovery in run 6 seems to be exactly as predicted by STARS. Figure 4.184 

presents both STARS and experiment oil and water recovery. The predicted water 

recovery higher than the produced experimentally.
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Figure 4.184 : Oil and Water Recovery Utilizing STARS Simulator and Experiment (Run 6).
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RUN 8  SIMULATION :

To maintain average gas production rate of 42 m /m hr, it require 52.3 m /m hr air 

injection rate.

The predicted temperature profile of run 8 conducted by STARS can be shown in Figure 

4.185. The general shape of the curves similar to run 4.
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Figure 4.185 : Temperature Distribution Utilizing STARS Simulator (Run 8).

At time 28.8 minutes the combustion front began between BH7 and BH8 for both 

experiment and STARS, but at 36 minutes the experiment combustion front moved faster 

than STARS as shown in Figure 4.186.
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Figure 4.186 : Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 28.8 and
36 minutes.
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Similar peak temperatures were gained between 48 to 60 minutes as shown in Figure 

4.187, but the combustion front in the experiment moved more faster than the simulator.
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Figure 4.187: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 48 and 60
minutes.

Same things occurred between 90 and 120 minutes, but the shape of the curves are more 

or less similar as presented in Figure 4.188.
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Figure 4.188: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 90 and
120 minutes.

Figure 4.189 shows that most of the tube still under high temperature due to combustion 

enlarging (wide).
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Figure 4.189: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 150 and
180 minutes.

The combustion front and the maximum peak temperature utilizing STARS are shown in 

Figure 4.190, it is clear that there are considerable difference specially when the ignition 

start and the combustion start moving down the tube. The optimum experiment 

temperature shows very closed agreement with the maximum temperature estimated from 

STARS.
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Figure 4.190: Combustion Front and Maximum Temperature Utilizing STARS Simulator (Run 8).

The average combustion front velocity is 0.75 cm/min. as show in Figure 4.191. The 

estimated combustion front speed are identical with the measured from the experiment.
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Figure 4.191: Combustion Front Velocity Utilizing STARS Simulator (Run 8).

The CO2 produced in the experiment seem to breakthrough the combustion tube before 

what predicted by STARS, as shown in Figure 4.192. The late value of C 0 2 produced 

reach to about 15% in the experiment by the simulator shows only about 12%.

There is about 4 to 5 % difference between the estimated and measured value of CO, 

also, difference in entire general trend.
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Figure 4.192: CO2 and CO Recovered Utilizing STARS Simulator and Experiment (Run 8).

The oil recovery experimentally is just about same as predicted by STARS. As it was 

mentioned before that there was some water in oil emulsion that make the value little 

higher, see Figure 4.193.
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The value of water produced is less than the predicted; it may be due to the end effect of

the wetting phase (water). Also the percentage of water used was low, the percentage of

error can becomes high in big combustion system.
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Figure 4.193: Oil and Water Recovery Utilizing STARS Simulator and Experiment (Run 8).
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RUN 9 SIMULATION :

Run 9 was conducted at lower pressure of 100 bar. The predicted air injection flow rate 

as obtained by STARS is 67.8 m3/m2hr, which gives 62.65 m3/m2hr as average gas mass 

flow rate similar to experiment. The temperature distributions profile of STARS is shown 

in Figure 4.194. The maximum peak temperature where delayed at the very rear of the 

curves. However, it is believed due to the presence of coke left behind and high speed of 

moving the combustion front.
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Figure 4.194 : Temperature Distribution Utilizing STARS Simulator (Run 9).

Similar peaks temperatures were predicted during time from 28.8 to 36 as shown in 

Figure 4.195.
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Figure 4.195: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 28.8 and
36 minutes.
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Figures 4.196 and 4.197 presents the temperature profile from time 48 to 120 minutes. It 

is very clear that the experiment temperature profile moved faster compared to the 

predicted by STARS. This may be caused by channelling of oxygen causing an extension 

of fire farther ahead.
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Figure 4.196: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 48 and 60
minutes.
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Figure 4.197: Experimental and Predicted Axial Temperature profile in Limestone Core, at Time 90 and
120 minutes.

The difference between the combustion front temperature and maximum peak 

temperature seem to be high at the beginning of the test and late at the end as shown in
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Figure 4.198. The overall trend of the optimum peak temperatre seem to be similar to the 

estimated by stars. The experimental measurement shows about 50 °C higher than the 

estimated by STARS.
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Figure 4.198: Combustion Front and Maximum Temperature Utilizing STARS Simulator (Run 9).

The combustion front velocity was increased rabidly from 0.5 cm/min. to about 1.2 

cm/min. at the end of the experiment as shown in Figure 4.199. Experiment combustion 

front speed shows more fluctuation than the estimated by STARS. However, it should be 

emphasize that at low pressure, the speed of the combustion move some times faster 

depend of the permeability and solidification of coke just ahead of front.
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Figure 4.199 : Combustion Front Velocity Utilizing STARS Simulator (Run 9).
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Considerable increase in CO2 produced during experiment then decreased to about 10% 

which mach the value predicted by STARS, then increase again to about 16%. No 

similarity in the trends of CO. The last value predicted was about 9% but the produced 

about 2% as shown in Figure 4.200.
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Figure 4.200: C 0 2 and CO Recovered Utilizing STARS Simulator and Experiment (Run 9).

The water produced utilizing STARS appear to have the same trend as the produced 

during the experiment as shown in Figure 4.201. Similar and parallel trend, in the oil 

recovery between the predicted and the actual recovered experimentally. Here again, the 

delay of oil recovery by STARS due to the assumption of forming oil bank just ahead of 

the combustion front and at the end of the displacement ( piston displacement).
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Figure 4.201: Oil and Water Recovered Utilizing STARS Simulator and Experiment (Run 9).
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

Chapter 5

High Pressure In-Situ Combustion Tube Commissioning and Operation. 229



Omar Hussein E l Ayadi Chapter 5

Conclusions:

The main conclusions arising from the research are:

1. Light Ekofisk crude oil (42°API), contained in a matrix of crushed MI limestone,

at high pressure ( 2 0 0  bar) can sustain high temperature, propagating in situ

combustion. The combustion tube tests were conducted at relatively high air

injection rates, equivalent to range of injection flux of 20 -  100 m3/hr m2. The

combustion front temperature varied from 550 -  600°C, as the air injection rate

increased. However, none of the combustion tube tests operated adiabatically,

because of poor band heater control. The minimum air flux required to sustain

combustion front propagation, without band heater compensation, was 2 1  m3/hr 
2m .

2. If the air injection flux is too high, then significant channeling of oxygen can 

occur ahead of the combustion front, giving rise to LTO effects. This was 

manifested in the formation of viscous, or emulsified oil, very high temperature 

zones ahead of the combustion front up to 850°C (due to oxygen 

radicals accumulating in the oil). Low temperature oxidation o f the oil 

produced strong acids, causing dissolution of the MI limestone. The high 

temperatures produced, calcite agglomerations, which had a very high void 

porosity. At low air injection fluxes, less than 21 m /hr m , oil banking 

occurred. This primarily acts to delay the start of oil production.

3. Oil recovery depends greatly on the initial oil saturation. At a water flooded oil 

residual of 30%, the oil recovery was 64%. At Soi = 70%, the oil recovery was 

86.7%.

flfB A T H
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Recommendations:
1. Satisfactory adiabatic control of the combustion tube was not achieved for most of 

the experiments. This was due to the inability of the present computer to cope 

with the multitasking requirements of data acquisition, especially the high tasking 

priority set on pressure control of the shell and combustion tube. Thus band 

heaters control was assigned a lower priority. Therefore, a more powerful 

computer is required, with at least 2.5 Mb, or greater. It may be advisable to have 

a dual processor machine.

2. The LAB View software should be updated to the latest edition. Also, all o f the 

signal input card should be checked, and any faulty cards replaced.

3. Although the band heater power supply was thoroughly checked for the present 

experiment and certain improvement made, i.e. on-off status for each band heater, 

further detailed testing required to ensure completely satisfactory operation.

4. The axial thermocouples probe needs to be refurbished to replace the two inactive 

thermocouples.

5. Further tests, under adiabatic control should be controlled to see what the effect of 

adiabatic versus non-adiabatic states.

6 . The band heater control is influenced by the injection of cold nitrogen needed to 

replace the bleed-off as a result of heating-up during an experiment. One solution 

could be replaces the ‘on-off solenoid bleed valve on the shell with a continues 

automatic valve, which should reduce the amount of nitrogen from the shell.

l i t  BATH
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a p p e n d ix  - A 

HTO Equations

HTO reactions can be represents by the following equation : Burger et al 1985

CH„ + (l - r/2 + x/4 ) 0 2 -)■ ( 1 - r ) C 0 2 + r  CO + x/2 H j O ............(2.1)

W here:

x = Atomic hydrogen/carbon ratio of the fuel 

T = Molar Ratio C0 /(C0 +C0 2 )

The determination of fuel availability from the analysis of combustion-tube data begins 

with an analysis o f the stoichiometry of the combustion reaction. The composition of the 

fuel is not known but is assumed to be represented as a hypothetical hydrocarbon with the 

chemical formula CH fhc . Where FH C is the ratio of hydrogen to carbon in the fuel. The 

high-temperature combustion of CHFhc when the combustion products are water, carbon 

dioxide, and carbon monoxide is represented by

Where:

n 0z = mole of oxygen reacting, n cc>2 = moles of CO2 in the combustion gases, n co =

mole of CO in the combustion gases, and FHc = atomic ratio of hydrogen to carbon in the

fuel.

moles CO, produced n co, 379xnco Vco
m =-------------—---------- =  -  = ------------- -  = — - .............(2.3)

moles CO produced n co 379xnco Vco

Equation (2.2) can be simplified by substituting m as follow.

H 20 (2 .2)

High Pressure In-Situ Combustion Tube Commissioning and Operation. 243



BATH
Omar H. E lA yadi Appendices

2m +1 Fhc > - - f -  o 2 -> H 20 (2.4)

When the oxygen is not totally consumed, an oxygen utilization efficiency can introduced 

to measure the extent of combustion.

The injected gas is usually air in some cases may be enriched with oxygen. The oxygen 

utilization efficiency is determined from the analysis of produced gases. From Equation

W here:
y,o2 = average mole fraction of oxygen in the injected gas,

y ^  -  average mole fraction of oxygen in the produced gas,

n, = moles of gas injected during a specified time interval,
n p = moles of produced gas during a specified time interval. When the injected gas

y w = mole fraction nitrogen in the injected gas and

y pNj = mole fraction nitrogen in the produced gas.

If air is the injected gas,

Naji and Poettman, 1991 show that the oxygen use is given by Equation (2.7) when the 

injected gas is 1 0 0 % oxygen.

The hydrogen/Carbon (H/C) ratio is determined from a material balance on the hydrogen 

and the carbon oxides which are produced by high temperature oxidation. All hydrogen 

in the fuel reacts with oxygen to produce water, which is not completely recovered or 

measured. Thus hydrogen consumption is determined by the material balances on

(2.5),

moles of oxyen injected
moles of oxyen consumed (Yio2ni -ypo7nP ) f  ym2 ) f  Ypo^

(2 .6)
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oxygen. The oxygen that is consumed appears as CO2 , CO, and water. Hydrogen

consumption is overestimated by this balance because some of the oxygen is consumed in

low-temperature reactions where oxygen combines with hydrogen to produce oxygenated

compounds. For this reason, hydrogen is referred to as apparent hydrogen consumption.

Writing a balance based on the stoichiometry of the compounds, the H/C ratio is given by

Naji and Poettman, 1991.

^HC —
UiN,

y ^ +1 ( i - y PN!)+ 2 ypco

y  pco
y pco .(2.8)

For the case where the injected gas is pure oxygen, Equation (2.8) becomes Naji and 
Poettman, 1991.

4 i - y p o ,  -Q -S y ,co-ypco ,)

y pco2 +ypco
When air is injected , ( y io =0.21 and y iN =0.79) the apparent H/C ratio can be

F =HC .(2.9)

computed directly from combustion gas analysis with Dew and Metin, 1965.

„ 106.3+ 2CO-5.06(CO2 +C O + 0 2)
HC ~ c o 2+ c o

.(2.10)

Where:
CO2 = mole % CO2 in produced g a s ,
CO = mole % CO in produced gas, and
O2 = mole % O2 in produced gas.

2 .12 .1: Fuel Availability:

Fuel availability can be computed from the analysis of combustion-tube data over a 

specified period of time. The fuel availability from the combustion-tube experiment is 

defined by

» r . = 7  ............. (2 .H )

W here:
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w f = mass of carbon and hydrogen consumed when Vb ( in cubic feet) of reservoir

was y PCoburned- Ih a combustion-tube run, nP moles of gas with an average

composition of y PCo2> ypco > and yP02 ^  produced during a time interval, At, when

the combustion front is a propagated through Vb. It is assumed that the combustion

tube is operating under steady state conditions so that the velocity of the combustion 

front is constant. Under these conditions,

V b = ( x 2 - x i ) A =  M V t J A  ................... ( 2 .1 2 )

Where:

Xj and x 2 = locations of the combustion front at times t, and t2, 

respectively; A = cross-sectional area of the tube , and v f = average velocity of 

the combustion front. v f may be determined by plotting the location of the peak 

temperature in the combustion tube vs. time. The slope of this graph is the 

velocity of the combustion front.

2.12.2 : Fuel Consumed:

The fuel consumed is the sum of the mass of carbon and hydrogen consumed. Appling a 

material balance to the produced gases, the mass of carbon and hydrogen consumed is 

given by

w f = (12 + Fhc ) ( y pCOj +ypco ) n p = (12+ F hc ) ( m + 1 ) y pCOn p  (2.13)

2.12.3: Air Requirement:

The combustion front can advance only by consuming fu e l. Thus, the air required will be 

directly proportional to the fuel availability. Oxygen ( pure or in a mixture o f air ) is 

required to burn fuel, because air is the common source of oxygen. The air required for
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dry forward combustion is defined as the standard volume o f air required to bum a unit

volume of reservoir. In common oilfield units, the air requirement is defined as

aR 5------------ — ...................... ............ (2.14)
ft reservoir volume burned

2.12.3.A - Combustion Stoichiometry.
The air requirement is calculated from combustion stoichiometry from the apparent H/C 

ratio of the fuel. From Equation,

mR = Ibm fuel / ft3 reservoir volume burned

The fuel availability determined from combustion-tube runs, m E, must be adjusted to 

reservoir conditions when the porosity of the porous material in the combustion tube is 

not equal to the porosity of the reservoir rock. [Nelson and Me Neil, 1961]89 introduce 

the correction factor given by Equation 2.15 to account for differences the reservoir 

porosity, <j>R , and that of the combustion-tube experiment, (f>E .

Therefore,

m D =

m,

l-<
J

m,

m,

 (2.15)

lb fuel
1 - 1 - $ E ft sand grain

The fuel has an apparent molecular formula CHFgc . And the apparent molecular weight

of the fuel is ( 1 2  + FHc ). Thus, the moles of fuel burned when 1 ft3 of reservoir rock is 

burned is given by

moles fuel mD
ft' 12 + F,

.(2.16)
HC

The air requirement as scfrft3 of reservoir volume burned is given by

379 
y.o, e

 (  2 m +  X ^  Fhc'l
o, Um + 2 4 J 12 + F,

.(2.17)
h c  y
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Where E 0i = combustion efficiency of oxygen, fraction, and is mole fraction 

oxygen in the injected gas .

Some of the injected air is stored in the burned volume and does not contribute to the 

combustion efficiency. This is not a factor when the pressure is low. However, at high 

pressures, the stored air should be considered. If the burned volume is assumed to be at 

the injection pressure /?, , then the air requirement at p is approximated by Naji and 

Poettman, 1991 .

Oa 2 d .(2.18)

Where:

a*R = air requirement at p t , scfrft3 rock; E 0j = Oxygen consumption efficiency, =

Gas Formation Volume Factor (FVF) for air at injection pressure and temperature of the 

region behind the combustion front, ft3/scf, and p  = BHP of the air in the injection well,

psi. At high pressures, the air requirement is increased considerably by storage in the 

burned zone.

2.12.3.B - Material Balance:

The air requirement can be determined experimentally during steady-state combustion by 

measuring the injected air rate and the combustion front velocity. The air requirement is 

given by

 (2 . i 9)
v,

W here:

ua = injected air flux, scf/tf-hr = Gi/A.

Note that the air requirement determined from the measured gas injection rate includes 

storage in the burned zone. The air requirement computed from stoichiometry should be
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in reasonable agreement with that determined from combustion stoichiometry when 

storage in the burned zone is accounted for.

2.12.4 : Displacement From Burned Zone :

Combustion stoichiometry for HTO may also be used to estimate the volume of oil 

displaced by the moving combustion front, the volume of water displaced and produced 

by the combustion gases produced. However, the rates of fluid production cannot be 

predicted from stoichiometry.

A combustion front displaces all oil and water that is not consumed by the combustion 

process. Thus, a material balance can calculate oil displacement from the burned region. 

The material balance requires that the oil displaced equal the oil initially present minus 

oil burned.

^ = ^ V Rb(S„1 -S oF) .............(2 .2 0 )

W here:
K , = Oil displaced from the burned volume, ft3;
VRb = Bulk volume burned, ft3;
SoF = Oil saturation equivalent to fuel consumed, and 
Soi = Initial oil saturation.

The equivalent oil saturation is given by

SoF «  (2.21)
4P r

W here:
The equivalent oil saturation requires an estimate of the density o f the fuel. As discussed 

earlier, the fuel has a composition that is quite different from the original crude oil. 

Consequently, the density of the fuel is not known accurately. Nelson and McNeil, 1961 

suggest using a specific gravity of 1.0 ( p F =62.4 Ibm/ft3) for the fuel to recognize the 

change in the crude oil as a result o f coking and cracking that occurs during the fuel 

deposition process. Parts 1 assumes that the density o f the fuel is equal to that of the oil.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 249



3*%. o?

BATH
Omar H. ElAyadi Appendices

Water displaced by the is-situ combustion process comes from the initial water saturation 

and the water produced by the combustion reaction. The volume of water displaced from 

the burned volume is given by

v wb =*V El(Stw-S wF) ...........2.22

W here:
SwF = Water saturation equivalent to water produced by the combustion reaction, and 
Vwb = Water (liquid equivalent) displaced from the burned volume plus water produced 
in the reaction, ft3.

The water produced by the combustion reaction is derived from the stoichiometry. There 

is Fhc/2 mol water produced per mole of fuel (C H Fhc ) burned. The volume of water

produced per cubic foot of reservoir volume burned is given by

Thus,

f t3 H 20
Pw (12 + Fhc) f t  reservoir burned

.(2.23)

SWF “
9.0 m rFhc

.(2.24)
Pw$ (12 + Fhc )

The economics of in-situ combustion is controlled by the cost of air combustion. The 

air/oil ratio is a measure of the effectiveness of the combustion process and can be 

computed from combustion stoichiometry. Considering only the burned zone, the ratio of 

the air injected to oil displaced ( AOR )is given by

FAOb =5.615 a R ^ s c f >

j W S r t - s oF)_ I b b l J
.(2.25)

are

ine volume oi comDustion gases is a usetui parameter in tne evaluation oi me operai 

of a combustion project. Expressions for estimating the volume of combustion gases 

derived from the combustion stoichiometry, assuming that the project is operating in the 

HTO regime.

n p C O , + I 1 p C O  + n p H ! 0
1 + £hc 

2
moles

mole fuel consumed
.(2.26)
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npo, = ( l - E o , ^
moles

mole fuel consumed

and “ pNj ~ 1’ y “  1
r \
f n ° , r moles N 2 ^

v y «)2 j E 0V °i J vmoIe fuel consumed y

.(2.27) 

 (2.28)

Thus, the total amount of combustion gases per mole fuel consumed is given by

moles N ,
n pf =

F1  + _HC n,
y «)2 e Gj

The combustion gas volume in SCF/ft3 Reservoir burned:

W to ,  E 0j

mole fuel consumed
(2.29)

G pf ~
f  379m R 

+ Ehc j
1 + f k

 ̂ yio, E 0l >
not

r 2m + 1 | Fhc \  
^2 m + 2  4 J

.(2.30)

Equation (2.30) may be used to estimate the bumed-zone volume from the produced gas 

analysis, assuming that all combustion gases are produced. Equation 8.269 must be 

modified to account for an increase in gas saturation in the unbumed region of the 

reservoir.

2.12.5 : Heat Release by In-Situ Combustion:

In-situ combustion releases considerable quantities of heat to the reservoir and 

surrounding formations. The amount of energy released can be estimated from heat of 

combustion data. Dew and Mertin, 1965, and Burger and Sahuquent, 1973.Equation 

(2.31) gives the heat of reaction, Prats, 1982 and Burger and Sahuquent, 1973 assuming 

water produced by the combustion reaction condenses :

94.0-67.9 m’ + 31.2 Fhc . . . . . .
Ah = ---------------------------- 2^ Btu/scf a i r ..............(2.31)

1 -  8.5 m ' + 0.25 Fhc

Where :
COm ’ = ----------------in the influent gas.co+co,2

Equation (2.31) does not account for the oxygen utilization efficiency because E 0j = 1.0
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a p p e n d ix  - B 

Equipment Components

Item Description Specifications Manufacturer/Supplier

AAV1-AAV6 
AAV11 -  AAV12 
AAV16 -  AAV18 
AAV20 -  AAV23

HB Series Air Operated, Packless 
Bellows valve. Normally Closed. 
Actuation pressure 75-110 psi, 
Operating pressure 3500 psi 
Operating temperature 40-65°C

Nupro Corp./ Swagelok Co. 
Bristol Valve & Fitting Co. Ltd. 
Fourth Way 
Avonmouth 
Bristol BS11 8DG

AAV15 -  AAV19 
AAV1-AAV6 

AAV11-AAV12 
AAV16-AAV18 
AAV20 -  AAV23

HB Series Air Operated, Packless 
Bellows valve. Normally Open. 
Actuation pressure 75-110 psi, 
Operating pressure 3500 psi 
Operating temperature 40-65°C

Nupro Corp./ Swagelok Co. 
Bristol Valve & Fitting Co. Ltd. 
Fourth Way 
Avonmouth 
Bristol BSll 8DG

AC

Air Compressor Hunter Air 50 
Flow -  12 cfin 
Capacity -  50 litre 
Pressure - 150 psi

Clarke International 
Lower Clapton Road London 
E5 0RN

AOFMV
Air Operated Fine Metering 
Valve
Actuated Pressure 60-100 psi

High Pressure Equipment Co.

0 2 Analyser
Servomex 570 A 
0-100%

Servomex (UK) Ltd. 
Crowborough 
Sussex, TN6 3 DU

C 02 Analyser
Servomex 1400 series 
0-100 %

Servomex (UK) Ltd. 
Crowborough 
Sussex, TN6 3 DU

CO Analyser
Servomex 1400 series 
0-25 %

Servomex (UK) Ltd. 
Crowborough 
Sussex, TN6 3 DU

CAR Manual Operated, see CPC Watson Smith Ltd.

CPC 1 -C P C  10
Current to Penumatic Converter 
Input Signal 4-20 mA 
Output ( pressure) 0-150 psi

Watson Smith Ltd. 
Cross Chancellor St. 
LEEDS LS6 2 RT

CVs Check Valves 
Rated to 3000 psi

Nupro Corp./Swagelok Co.

DPT

Differential Pressure Transducer 
Model 11510 
Output 4-20 mA

Rosemount Ltd.
Heat Place
Bognot Regis
West Sussex P022 9 SH

F1-F8 “TF” Series in-line filters Nupro Corp./Swegelok Co.

LMF1
Brooks 5850TR 
Mass Flow Controller 
0-1000 ml/min

Flotech Ltd.
Horsfield Way, Bredbury 
Stockport SK6 2SR

P G 1 -P G 14 High Pressure Gauge 
Rated to 3700 psi

Budenberg Gauge Co Ltd.

PPRV1 -  PPRV4, PPRV10
54-2300 series Air Activated 
Precision Pressure Regulator 
(Normal Closed)

Tescom Corporation Pressure 
Control Division
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Range 20-10,000 psi

PPRV5, PPRV6, and PPRV8
54-2300 series Air Activated 
Precision Pressure Regulator 
(Normal Closed)

Tescom Corporation Pressure 
Control Division

PRVG1

44-220 series 
Spring loaded
Pressure Reducing Regulator 
Max op Press. 3000 psi

Tescom Corporation Pressure 
Control Division

PRVG2

44-220 series 
Spring loaded
Pressure Reducing Regulator 
Max op Press. 400 psi

Tescom Corporation Pressure 
Control Division

PRVL1

44-220 series 
Spring loaded
Pressure Reducing Regulator 
Max op Press. 4000 psi

Tescom Corporation Pressure 
Control Division

PRVL2

44-220 series 
Spring loaded
Pressure Reducing Regulator 
Max op Press. 125 psi

Tescom Corporation Pressure 
Control Division

PT 1-PT 4

Super THE Ultra Precision 
Absolute Pressure Transducer 
Range 10 -  3000 psi

RDP Electrics Ltd.
Grove Street 
Heat Town
Wolvehampton WV10 OPY

PT5

PDCR 900 series 
Pressure Transducer 
Rang 0-60 bar

Druck Ltd. 
Fur Tree Lane 
Groby 
Leicester

PT6
PDCR 900 series 
Pressure Transducer 
Rang 0-350 bar

Druck Ltd. 
Fur Tree Lane 
Groby 
Leicester

PT7, PT8
PI 000 series pressure transducer 
Range 0 -  250 psi

Lucas Schaevitz Ltd. 
543 Ipswitch Road 
Slough SL1 4 EG

PT9
PI 000 series pressure transducer 
Range 0 -2 5  psi

Lucas Schaevitz Ltd. 
543 Ipswitch Road 
Slough SL1 4 EG

PT10, PT11
PI 000 series pressure transducer 
Range 0 -7 5  psi

Lucas Schaevitz Ltd. 
543 Ipswitch Road 
Slough SL1 4 EG

SV

3 Way Direct acting Solenoid 
Valves
240V AC actuation

ASCOUk
Coppas Controls Ltd. 
Aldermoor 
Wey Industrial Estate 
Longwell Green 
Bristol BS15 7DA

TC

K-Type minerally insulation, 
thermocouple

TCLtd.
PO 130
Cowley Mill Trading Estate 
Uxbridge UB8 2 YS

WTM

DM3D Wet Tests Meter 
600 dm3/hr
Max Op. Press. 100 mbar

Alexandra Wright Co 
Unit 1-3
Kimpton Link Business Centre 
Sutton SM3 90P
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Check Results of Solenoid Valves

SV No.
Terminal 
W ire No. Port Line

Relay
Board
W iring

Status Comment

SVO
SV1 36 3 6 6  Red O.K.
SV2 15 2 0 3 Blue O.K.
SV3 46 3 1 5 Orange O.K.
SV4 13 2 1 3 Purple O.K.
SV5 40 3 4 5 Blue O.K.
SV6 38 3 5 5 Purple O.K.
SV7 17 1 7 3 Green O.K.
SV8 29 1 1 2 Blue O.K.
SV9 Not available

SV10 34 3 7 6  Orange O.K.
SV11 1 2 7 4 Purple O.K.
SV12 25 1 3 2 Purple Not used
SV13 31 1 0 2 Yellow OK.
SV14 43 0 2 1 Yellow O.K.
SV15 23 1 4 3 Red Not used
SV16 9 2 3 4 Orange
SV17 1 1 2 2 4 Red Not used
SV18 7 2 4 4 Yellow O.K.
SV19 28 4 2 6  Blue O.K.
SV20 42 3 3 5 Green OK. Ball Valve 3

SV21 26 4 3 6  Purple Not used
SV22 5 2 5 4 Green O.K.
SV23 48 3 0 5 Red O.K.
SV24 44 3 2 5 Yellow Not used
SV25 3 2 6 4 Blue O.K.
SV26 2 1 1 5 3 Orange O.K.
SV27 35 0 6 2 Red O.K.
SV28 33 0 7 2 Orange Not used
SV29 19 1 6 3 Yellow O.K.
SV30 27 1 2 2 Blue O.K.
SV31 30 4 1 6  Green O.K. Ball Valve 4
SV32 47 0 0 1 Red Not used
SV33 32 4 0 6  Yellow O.K.
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SV34 39 0 4 1 Blue
Not usedSV35 16 5 0 7 Red

SV36 37 0 5 1 Purple
SV37 14 5 1 7 Orange
SV38 1
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APPENDIX - c 
Check Status of Pressure Transducers

PT
Number

Status Comment, 
Scale Reading

Specifications Manufacturer/
Supplier

RDP Electronics Ltd 
Grove Street 
Heat Twon 

Wolvehampton 
WV10 OPY

PT1 O.K. Bar Super the Ultra Precision 
Absolute Pressure 

Transducer
Range 10-3000 psi

(211 bar)

PT2 O.K. Bar
PT3 O.K. Bar
PT4 O.K. Bar

PT5 O.K.

Bar

PDCR 900 series 
Pressure transducer
Range 0-60 bar

Druck Ltd 
Fur Tree Lane 

Groby 
Leicester

PT6 O.K.
PDCR 900 series 

Pressure transducer
Range 0-350 bar

Druck Ltd

PT7 O.K. PI000 series pressure 
transducer 

Range 0-250 bar

Lucas Schaevitz Ltd 
543 Ipswitch Road 
Slough SL1 4EGPT8 O.K. Bar

PT9 O.K.
Bar 

( Not available in 
flow diagram )

PI000 series pressure 
transducer

Range 0-25 psi
(1.8 bar )

Lucas Schaevitz Ltd

PT10 O.K. Psi PI 000 series pressure 
transducer

Range 0-75 psi 
(53 b a r )

Lucas Schaevitz Ltd

PT11 O.K. Psi
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APPENDIX - D 

Lab VIEW Computer Tasks

LabVIEWO:
Within Lab VIEW © any program or subroutine is made up of two parts : a front panel 

and a program diagram. The front panel contains the control (inputs) and the indicators 

(output). Using these, a virtual instrument (VI) is built as the graphical user interface 

(HUI). The program diagram links the inputs and outputs using a graphical language 

(“G”) which is icon based and objected. These icons have input and output terminals 

which are linked together with data lines or “wires”. These wires have different colours 

to represent the type of data being carried e.g. an array of double precision numbers, a 

string, a Boolean etc.

Once a program has been written an icon may be designed for it. A pattern of terminals 

can then be designed with which to write its control and indicators. This program or VI 

may then be used as a subroutine, or sub-VI, in a larger program.

“G” allow one to escape from the line by line sequential execution order of conventional 

programming language in a unique style of multitasking; Where a wire branches so too 

does the program’s operation, each branch sharing the computer’s CPU time. Importantly 

this sharing can be weighted toward certain tasks. It is therefore a perfect medium for the 

process control, where numerous tasks must be carried out simultaneously.

In-Situ Combustion Tube Experiment Program Description:
IscView implements the following series of tasks:

1. The user enters the conditions for the experiment. The position and state of all 

valves is initiated.

2. The front panel for the experiment is called and the Data acquisition (DAQ) and 

safety monitoring are started.

High Pressure In-Situ Combustion Tube Commissbning and Operation. 257



Omar H. E lAyadi Appendices
3. The combustion tube is then slowly brought up to operating pressure (1 bar at a 

time).

4. Data logging is commenced. This continues throughout the experiment, all 

important data being saved to disk.

5. Nitrogen injection is commenced, first to flux-out oxygen from the system. The 

nitrogen flow rate is increased slowly to the required value.

6 . The BHs are activated to heat the limestone up to its reservoir temperature. There 

is now flow through the tube, at this stage HPS, LPS, control of the Back 

Pressure, Injection Pressure and Tube and Shell differential pressure is initiated.

7. The ignition of the tube takes place : BH operation is switched to control 

adiabatically. Power to the ignitor is increased to achieve the required iqnition 

temperature. Air injection is started to commence iqnition.

8 . Once ignition has taken place, the combustion front is allowed to propagate down 

the tube. Sampling of produced liquid is done whenever liquid produced.

9. Shut down, and finally cooling. The experiment is terminate before the 

combustion front reach the end of the tube, when T/C 30 reach 280°C.

Computer Tasks Modification:
iscfi
TUIC j
twill . “JSC Tube Experiment, vi'In-Situ Combustion Tube Experiment Test set-up :

Table D -l show a front panel and Figure D -l show a program diagram of “ISC Tube 

Experiment, vi” . All important check messages and valves setting changing of the whole 

experiment run showed in the table. Message (1) and (2) remind the operator to make 

pre-experiment check and confirm it each and every time to the computer. There are four 

sets in the program as shown precisely in Table D-l . Set (1) perform the set-up valve 

position during initial pressurization until the desired set pressure reached. Then, set (2) 

will commenced to heat-up the reservoir (bed) to initiate reservoir temperature, 

simultaneously ignitor start. Set (3) and (4) programmed to control the injection gas 

system, where O2 and N2 mass flow meter initiated to increase and control flux to the 

required fluxes.
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wmm M i
V a lve T y p e N u m b e r S ta t e D e sc rip t i on

SV

SV

25

5

o p e n

o p e n

S e p a r a t e  Sh el l  & T u b e  

c l o s e  main v e n tS 8 ' - - ! ^ C o m p r e s s e d  air on  8 0 p s l

JM a n u a l  C on tr ol  S ta t io n  Air su p p ly  on
SV 6 o p e n o p e n  Injection line

j i f tu rn o n  t r a c e  h e a t in g SV 3 o p e n o p e n  N 2 s upp ly line

iff urn on  C PC , PT p o w e r  supp ly SV 4 o p e n al low P P R V 2  co n t ro l

IJTurn o n  E x te r n a l  Fan SV 27 o p e n allow P P R  V 3 c o n t ro l

i lT u rn  o n  co ol in g w a t e r  s up pl y for  g a s  k n o c k  o u t SV 30 o p e n allow P P R  V6 co n t ro l

t o  p e n  V a lve a t  B a s e  of  T u b e SV 13 o p e n o p e n  high to low p r e s s u r e  s i d e s

SV 1 o p e n o p e n  0 2  su pp ly  line

mmm SV 19 o p e n by p a s s  LMF1

3 °  1 Jt  urn o n  SV pow e r  v la t h e  w a t e  h d o g  c ontrol ler
SV 11 o p e n by p a s s  LM F2

-

J T u r n  o n  SCX I p o w e r mm

m

V alv e T y p e N u m b e r S t a t e D e scr ip t i on

(Turn BH t ra n s f o rm e rs SV 31 o p e n o p e n  tu b e  to p  to bot tom

ytTurn on  Igni tor p o w e r SV 4 c l o s e c l o s e  P P R V  2

(plug in R o ta t in g  S a m p l e r C PC 7 10 .0 0 allow g a s  v e n t i n g  via AAV21

I S e t  m a s s  flow m e t e r s  to r  run a n d  remot e

Jm a k e  S u re  S ig n s  ar e  p o s t  1 Are you  re a d y  to be gi n t he  j V alv e T y p e N u m b e r S ta t e De sc rip t i on

SV 19 c lo s e p u t  LM F1 o n  line

SV 11 c lo s e p u t  LM F2 o n  line

w m V a lve T y p e N u m b e r S ta t e De scr ip t i on

SV 2 o p e n o p e n  P P R  V 1

SV 4 o p e n o p e n  P P R  V2

Table D-l : IscView Initialisation (T.Yang, 1997) ( Front Panel).

BH J  » 
u»tr«k

Y  V a lv i
O.K s ta te s

Control

Figure D-l : IscView Initialisation Graphics (T.Yang, 1997).

The program flow chart Figure D-l has been upgraded to fulfil the commissioning 

requirement. The modified flow chart is shown in Figure D-2. The modification is made
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to the initial reservoir temperature initiation. Heating-up of the limestone core during 

pressurization o f the system, occurs for two reasons . First, mimic the exact operation in 

practice. Second, to distribute the tasks that will help control during displacement and 

combustion process.

Second modification was to pressurise the tube and shell simultaneously for the following 

reasons:

1 . to prevent venting during pressurization of the shell, and reducing the amount of 

gas needed.

2. Avoid over-pressuring the combustion tube.

3. Nitrogen is used to pressurise the tube and pressure shell.

4. Perform controllable pressurization time.

5. Prolong the life of valves used for venting and pressurizing, i.e. AAV22 and

Table D-2 present the modification made on previous sets shown in Table D -l. These 

modifications allow the system to pressurize without venting.

AAV4.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 260



VMVtts:?v or

BATH
Omar H. ElAyadi

5 0 C o m p r e s s e d  air o n  8 0 p s i

I a n u a l  C on tr ol  S ta t io n  Air su pp ly  on

ru r n  o n  t r a c e  h e a t in g

i jTurn o n  C P C ,  PT p o w e r  supply

urn o n  E x te r n a l  Fan

u m  o n  co o l in g  w a t e r s u p p l y f o r g a s  k n o c k  o u t

p e n  V a lv e  a t  B a s e  of  T u b e

rur n o n  SV p o w e r  via  t h e  w a t c h d o g  co n tro l l er

r u m  o n  SC X I p o w e r

fur n BH t r a n s f o rm e rs

r urn o n  Igni tor  p o w e r

3lug In R o ta t in g  S a m p l e r

S et  m a s s  flow m e t e r s  for run a n d  remote

[ M a ke  S u re  S ig n s  a r e  p o s t  I Are you  r e a d y  to b e g in  the

Appendices
V a lve T y p e N u m b e r S ta t e D e scr ip t i on

SV 25 c lo se Com nunicate Shell &Tube
SV 6 o p e n c l o s e  main v e n t

SV 6 o p e n o p e n  Inject ion line

SV 3 c lo s e • • o p e n  N2 s up pl y line

SV 2 o p e n al low P P R V 1 co n t ro l

SV 27 close No PPRV3 control
SV 30 o p e n al low P P R V 6  c o n t ro l

SV 13 o p e n o p e n  high to low p r e s s u r e  s i d e s

SV 1 o p e n o p e n  0 2  s up pl y line

SV 19 o p e n by p a s s  LM FI

SV 1 1 o p e n by p a s s  LM F2

S e t  2 V a lv e  T ype N u m b e r S t a t e D e scr ipt i on

SV 25 open Separate Tube & Shell
SV 27 open Allow PPRV3 control
SV 31 o p e n C lose T u b e  T o p  to bot tom

SV 4 c l o s e Close P P R V 2

C PC 7 10 .0 0 Allow g a s  v e n t in g  via AAV21

V a lv e  T ype N u m b e r S ta t e D e s c  rlptlon

SV 19 c l o s e p u t  LM F1 o n  line

SV 11 c lo s e p u t  LM F2 o n  line

mm V a lv e  T y p e N u m b e r S t a t e D e scr ip t i on

SV 2 o p e n o p e n  P P R V  1

SV 4 o p e n o p e n  P P R V 2

Table D-2 : Modified IscView program Front Panel).

IS hell in P lace ?|

in : ■

Ir:

D.HU.

TrueTrue W T ru e

O.K
rn

l i i F
P rm u rt
Control

Buli

shut
down

Figure D-2 : Modified main test set-up ( Diagram ).
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APPENDIX - E 

STARS Input Data File

*  * *               .   

** ID Combustion TUBE TEST No.RUN-4 EKOFISK light oil.
* *  ■ ■ ■ , .   -  —

* *             _    _____

** Special Features :
** 1) ID Vertical Combustion Tube
**2) Four Hydrocarbon Components: three liquid C l l+,C6-10,Cl-5 and one solid. 
** Stocktank stabilized oil is used and CH4 composition is negligible.
**3) Two non-condensible gases: Oxygen & CO gases.
** 4 ) pour chemical reactions:
** (a) Cracking of Heavy Oil to Light Oil and Coke,
** (b) C l 1+ Heavy Oil burning,
* * (c) C6 - 10 light oil burning,
** (d) Coke burning.
**5) High initial pressure ( 200 bar, 20000 Kpa, 2900 psia) and 23oF ( 73.4 °F) 
Temperature.
** 6 ) Injection end is heated externally, ignition temperature 350oC (662oF).
**7) Porosity: 42.8 % Permeability : 1600 md
* * 8 ) Water saturation: 70% Oil Saturation : 25 % and
** 5% gas saturation assumed nitrogen the initial conditions.
**9) Simulation stop when producing ends after 12 hours or 
** when the combustion front reaches the end of the combustion Tube.

**

** INPUT/OUTPUT CONTROL 
* *

filename output index-out main-results-out **Use defaults names

♦title 1 TD Light Oil Combustion Tube Test Run No. 4'
*title2 'EKOFISK Oil PVT Characterization’

♦inunit field except 1 1 ** hrs instead of days 
except 11 1 ♦♦ ft3 instead of bbl 

♦OUTUNIT LAB 
♦♦CHECKONLY
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*outpm *grid pres sw so sg temp y x solconc obhloss viso 
*outpm ♦well *all
*wrst 300 *wpm *grid 300 *wpm *iter 300

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
Krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

outsrf well component 5 7 8

outsrf special blkvar temp 0 1 ** T history, block 1

blkvar temp 0 4 
blkvar temp 0  8  

blkvar temp 0  1 2  

blkvar temp 0  2 0  

blkvar temp 0 24 
blkvar temp 0  28 
blkvar temp 0 32 
blkvar temp 0 36 
blkvar temp 0 40 
blkvar temp 0 44 
blkvar temp 0 48 
blkvar temp 0 52 
blkvar temp 0 56 
blkvar temp 0  60 
blkvar temp 0 64 
blkvar temp 0  6 8  

blkvar temp 0 72 
blkvar temp 0 76 
blkvar temp 0  80 
blkvar temp 0 84 
blkvar temp 0  8 8  

blkvar temp 0 92 
blkvar temp 0 96 
blkvar temp 0  1 0 0  

blkvar temp 0  1 0 2  

blkvar temp 0 104 
blkvar temp 0  106 
blkvar temp 0  108 
blkvar temp 0  1 1 0  

blkvar temp 0  1 1 2  

blkvar temp 0 114 
blkvar temp 0  116 
blkvar tempo 118

**
* *

*

*
*

*
*

*
*
*

*
*

*

*

* *

**
* *

* *

**
* *

♦ *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

** " block 4 
** " block 8  

block 1 2  

block 2 0  

block 24 
block 28 
block 32 
block 36 
block 40 
block 44 
block 48 
block 52 
block 56 
block 60 
block 64 
block 6 8  

block 72 
block 76 
block 80 
block 84 
block 8 8  

block 92 
block 96 
block 1 0 0  

block 1 0 2  

block 104 
block 106 
block 108 
block 1 1 0  

block 1 1 2  

block 114 
block 116 
block 118

Appendices
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blkvar temp 0  1 2 0 ** » block 1 2 0

blkvar temp 0  1 2 1 ** ft block 1 2 1

blkvar temp 0  1 2 2 ** » block 1 2 2

blkvar temp 0 123 ** i* block 123
blkvar temp 0 124 ** » block 124
blkvar temp 0 125 ** « block 125
blkvar temp 0  126 ** » block 126
blkvar temp 0 127 ** » block 127
blkvar temp 0  128 ** « block 128
avgvar temp 0 ** Average T in tube
blkvar sw 0  1 ** Sw history, block 1
blkvar sw 0 4 ** Sw history, block 4
blkvar sw 0  8 ** Sw history, block 8

blkvar sw 0  16 ** Sw history, block 16
blkvar sw 0 24 ** Sw history, block 24
blkvar sw 0 32 ** Sw history, block 32
blkvar sw 0 40 ** Sw history, block 40
blkvar sw 0 48 ** Sw history, block 48
blkvar sw 0 56 ** Sw history, block 56
blkvar sw 0 64 *♦ Sw history, block 64
blkvar sw 0 72 ** Sw history, block 72
blkvar sw 0  80 ** Sw history, block 80
blkvar sw 0  8 8 ** Sw history, block 8 8

blkvar sw 0 96 ** Sw history, block 96
blkvar sw 0 104 ** Sw history, block 104
blkvar sw 0  1 1 2 * * Sw history, block 112
blkvar sw 0  1 2 0 ** Sw history, block 120
blkvar sw 0  128 * * Sw history, block 128
blkvar so 0  1 ** So history, block 1
blkvar so 0 4 ** So history, block 4
blkvar so 0  8 ♦♦ So history, block 8

blkvar so 0  16 ** So history, block 16
blkvar so 0 24 *♦ So history, block 24
blkvar so 0 32 ** So history, block 32
blkvar so 0 40 ♦* So history, block 40
blkvar so 0 48 ** So history, block 48
blkvar so 0 56 ** So history, block 56
blkvar so 0 64 ** So history, block 64
blkvar so 0 72 ** So history, block 72
blkvar so 0  80 ** So history, block 80
blkvar so 0  8 8 ** So history, block 8 8

blkvar so 0 96 ** So history, block 96
blkvar so 0 104 ** So history, block 104
blkvar so 0  1 1 2 * * So history, block 112
blkvar so 0  1 2 0 ** So history, block 120
blkvar so 0  128 * * So history, block 128
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blkvar sg 0  1 ** Sg history, block 1
blkvar sg 0 4 ** Sg history, block 4
blkvar sg 0  8 ♦♦ Sg history, block 8

blkvar sg 0  16 ** Sg history, block 16
blkvar sg 0 24 Sg history, block 24
blkvar sg 0 32 ** Sg history, block 32
blkvar sg 0 40 ** Sg history, block 40
blkvar sg 0 48 ** Sg history, block 48
blkvar sg 0 56 ** Sg history, block 56
blkvar sg 0 64 ** Sg history, block 64
blkvar sg 0 72 ** Sg history, block 72
blkvar sg 0  80 ** Sg history, block 80
blkvar sg 0  8 8 ** Sg history, block 8 8

blkvar sg 0 96 ** Sg history, block 96
blkvar sg 0 104 * * Sg history, block 104
blkvar sg 0  1 1 2 * * Sg history, block 112
blkvar sg 0  1 2 0 * * Sg history, block 120
blkvar sg 0  128 ** Sg history, block 128
blkvar pres 0  128 ** Block Pressure, 128
blkvar pres 0 90 ♦ ♦ Block Pressure, 90
blkvar pres 0  60 ** Block Pressure, 60
blkvar pres 0 30 ** Block Pressure, 30
blkvar pres 0 4 ** Block Pressure, 4
blkvar pres 0  1 ** Block Pressure, 1
blkvar solconc 9 16 ** Coke Cone,"
blkvar x 1 1 ** y(Water), 1 ”
blkvar x 2  1 ** y(C ll+), 1 "
blkvar x 3 1 ** y(C6-C10), 1”
blkvar x 4 1 ** y(Cl-C5), 1"
blkvar y 5 1 ** y(C02), 1"
blkvar y 5 32 ♦ * y(C02), 32"
blkvar y 5 64 ** y(C02), 64"
blkvar y 5 96 ** y(C02), 96"
blkvar y 5 128 ** y(C02), 128"
blkvar y 7 1 ** y(0 2 ), 1 "
blkvar y 7 32 *♦ y(02), 32"
blkvar y 7 64 ** y(02), 64"
blkvar y 7 96 ** y(02),96"
blkvar y 7 128 ** y(0 2 ), 128"
blkvar y 8  1 ** y(CO), l"
blkvar y 8  32 ** y(CO), 32"
blkvar y 8  64 ** y(CO), 64"
blkvar y 8  96 ** y(CO), 96"
blkvar y 8  128 ** y(CO), 128"
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**    m  .-g r id  AND RESERVOIR DEFINITION

*GRID *CART 1 1 128 ** Blocks in K direction ( Normal Vertical)
** Tube I.D. = 10 cm. Cross-section area is pi*(d/2)**2 
** = 78.54 cm2 = L*L. So equivalent block side is 
** L= 8.86227 cm ( 0.28708 ft ).
** Total Tube Length is 125 cm;
** block size = 125/128 = (0.976563*0.032808=0.032039 ft)
*DI *CON 28708E-05 
*DJ*CON 0.28708 
*DK *CON 0.032039

*POR*CON 0.428 
*permi *con 616 
*permj *equalsi 
*permK *equalsi

♦END-GRID

*ROCKCP 35.02 *THCONR 1 *THCONW 0.36 *THCONO 0.077 *THCONG 0.0833 
** *cpc 4.06

FLUID DEFINITIONS   -

Number of noncondensible gases is numy-numx = 2 
Number of solid components is ncomp-numy = 1 
N2 & C02 soluble in the liquid petroleum phase 
02  & CO only the gas phase insoluble in the liquid

*compname’WATER' 'C ll+"C 6-10” Cl-5' 'C02' N 2’ ’0 2 ’ ’CO’ 'COKE'

*cmm 18 329.36 115.98 72.15 44.01 28.01 32 28.01 13
♦pcrit 3155 196.90 363.09 488.1 1071.0 500 730 507.5
*tcrit 705.7 1478.9 548.2 385.47 87.56-232.84-181.72-220.78

*avg 0 3.926e-6 3.926e-6 2.166e-6 2.1267e-4 2.1960e-4 2.1960e-4 2.1960e-4 
*bvg 0 1.102 1.102 0.943 0.721 0.721 0.702 0.702
*avisc 0 4.02e-4 4.02e-04 4.02e-4 4.02e-4 4.02e-4
♦bvisc 0  6121.6 6121.6 6121.6 6121.6 6121.6

*molden 0 0.2024 0.1309 0.0481 0.6623 0.6944 ** LBMOLE/FT3 
*cp 0 4e-6 4.5e-6 5e-6 7e-6 7.5e-6
*ctl 0 1.496e-4 2.839e-4 2.839e-4 2.839e-4 2.839e-4

** 55.191 44.189 39.368 LB/FT3

*model9 8  6  **
* *

* *

* *

petroleum phase
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** 11.6 39.1 44.8 API

** *SOLIDCP ’COKE' 16.9984 0 
** *SOLID_DEN 'COKE' 916.256 0 0

*SOLED_CP ’COKE’ 4.06 0 
*SOLID_DEN 'COKE' 4.4 0 0

**
** CHEMICAL REACTION 1 - Cracking : C ll+ ~ >  C6-C10+ Coke 
*compname’WATER’ 'C11+' ’C6-10’ 'Cl-5' 'C02' N2' ’02 ' 'CO' 'COKE'
**
** *storeac 0  1 0 0 0 0 0 0 0

** *stoprod 0 0 2.80 0 0 0 0 0 13
** *freqfac 4.167E5 *eact 62802 *renth 93040

** *storeac 0  1 0  0 0 0 0  0 0

** *stoprod 0 0 3.88 0 0 0 0 0 60.92
** *fireqfac 4.167E5 *eact 27000 *renth 40000

♦storeac 0  1 0 0 0 0 0 0 0

♦stoprod 0 0 0.30735 0 0 0 0 0 21.93749
*freqfac 2.0e05 *eact 27000 *renth 0

**CHEMICAL REACTION 2 - Cracking : C l l+~>  C1-C5 + Coke
♦compname'WATER' 'C ll+ ” C6-10"Cl-5' 'C02' N2' '02 ' 'CO' 'COKE' 
**
*storeac 0  1 0 0 0 0 0  0  0

*stoprod 0 0 0 0.3356 0 0 0 0 23.0613
*freqfac 2.1e05 *eact 125000 *renth0

*♦
♦‘ CHEMICAL REACTION 3 - Heavy Oil Burning: C l 1+ + 0 2 ->  
H2CH-CO/COi-energy
♦compname'WATER' 'C11+' 'C6-10' ’C l-5’ 'C02’ rNT2' ’0 2 ’ 'CO' 'COKE'

♦storeac 0 1 0 0 0 0 20.94472 0 0
♦stoprod 18.93632 0 0 0 0 0 0 22.95311 0
♦freqfac 3.020el0 ‘ eact 16500 ‘ 1 6 1 1 0 1 8 7 7 4 . 0 6
**

**
“ CHEMICAL REACTION 4 - Light Oil Burning: C6-C10 + 0 2  ~>H 20 + CO + energy 
‘ compname’WATER' 'C11+' 'C6-10' 'Cl-5' 'C02' 742' '02 ' 'CO' 'COKE'
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♦ ♦
♦storeac 0 0 1 0 0 0 8.970302 0 0
*stoprod 10.35473 0 0 0 0 0 0 7.585879 0
♦freqfac 3.020el0 ♦eact17500 ♦renth 3685.33 
**

® B A T H

**CHEMICAL REACTION 5 - Hydrocarbon Gas Burning: C1-C5 + 0 2 —> 
H20+C0+energy
♦compname’WATER’ 'C11+' 'C6-10' 'Cl-5' 'C02' N2' ’02 ' 'CO' 'COKE' 
* *

♦storeac 0 0 0 1 0 0 5.792082 0 0
♦stoprod 6.685998 0 0 0 0 0 0 4.898167 0
♦freqfac 3.020el0 ♦eact 17000 ♦renth 185.3466 
**

**
♦♦CHEMICAL REACTION 6  - Coke Burning : Coke + 0 2 —> H20+C02 +energy 
♦compname'WATER' 'C11+''C6-10''C l-5' 'C02' N2' ’0 2 ’ ’CO' ’COKE’

♦storeac 0  0  0 0  0 0 1 .4 0  1

♦stoprod 0 . 8  0 0 0 1 0 0  0  0

♦freqfac 3.0e5 ♦eact 150000 ♦renth 100437.19 
* *

**
♦♦CHEMICAL REACTION 7 - Hydrocarbon Gas Burning: CH4 + 2 0 2 ->  
2H20+C02+energy
♦* ■‘’compname WATER' 'C7+' 'C2-C6' 'CH4' ’C 02’ '02 ' 'COKE'
* *

♦♦ ♦storeac 0  0  0  1 0  2  0

♦♦ ♦stoprod 2  0  0  0  1 0  0

♦♦ ♦freqfac 3.020el0 
♦♦ ♦eact59450
♦♦ ♦renth 502.533 ♦♦ Recation Enthalpy BTU/Ibmole
* *

♦♦CHEMICAL REACTION 8  - Carbon Dioxide Burning: CO + 0.502—> C02+energy 
♦compname 'WATER' 'Cl 1+’ 'C6-10' 'C l-5' 'C02' N2' '02 ' 'CO' 'Coke'

♦storeac 0 0 0 0 0 0  0.5 1 0
♦stoprod 0 0 0 0 1 0  0  0  0

♦freqfac 1.5e5 
♦♦ ♦freqfac 8.064E8 
♦eact 7550
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♦renth 1.8E5
** *solden4.4 
**
* *

** Pseudocomponent K value tables for pressures 500 psi & 6500 psi lOOoF to 1300oF
be deg intervals
♦kvtablim 500 3250 100 1300

♦kvtable 2 ** K value table for C l 1+
1.320E-07 8.800E-08 6.600E-08 5.280E-08 4.400E-08 3.772E-08 3.300E-08 2.933E-08 
2.640E-08 2.400E-08 2.200E-08 2.031E-08
5.453E-06 3.635E-06 2.727E-06 2.181E-06 1.818E-06 1.558E-06 1.363E-06 1.212E-06 
1.091E-06 9.915E-07 9.088E-07 8.389E-07
8.461E-05 5.641E-05 4.230E-05 3.384E-05 2.820E-05 2.417E-05 2.115E-05 1.880E-05 
1.692E-05 1.538E-05 1.410E-05 1.302E-05
6.938E-04 4.626E-04 3.469E-04 2.775E-04 2.313E-04 1.982E-04 1.735E-04 1.542E-04 
1.388E-04 1.262E-04 1.156E-04 1.067E-04
3.671E-03 2.447E-03 1.835E-03 1.468E-03 1.224E-03 1.049E-03 9.176E-04 8.157E-04 
7.341E-04 6.674E-04 6.118E-04 5.647E-04
1.418E-02 9.454E-03 7.090E-03 5.672E-03 4.727E-03 4.052E-03 3.545E-03 3.151E-03 
2.836E-03 2.578E-03 2.363E-03 2.182E-03
4.340E-02 2.893E-02 2.170E-02 1.736E-02 1.447E-02 1.240E-02 1.085E-02 9.644E-03 
8.679E-03 7.890E-03 7.233E-03 6.676E-03
1.112E-01 7.413E-02 5.560E-02 4.448E-02 3.707E-02 3.177E-02 2.780E-02 2.471E-02 
2.224E-02 2.022E-02 1.853E-02 1.711E-02
2.481E-01 1.654E-01 1.241E-01 9.925E-02 8.271E-02 7.089E-02 6.203E-02 5.514E-02 
4.962E-02 4.511E-02 4.135E-02 3.817E-02
4.960E-01 3.307E-01 2.480E-01 1.984E-01 1.653E-01 1.417E-01 1.240E-01 1.102E-01 
9.920E-02 9.018E-02 8.267E-02 7.631E-02
9.073E-01 6.048E-01 4.536E-01 3.629E-01 3.024E-01 2.592E-01 2.268E-01 2.016E-01 
1.815E-01 1.650E-01 1.512E-01 1.396E-01
1.543044 1.029E+00 7.715E-01 6.172E-01 5.143E-01 4.409E-01 3.858E-01 3.429E-01 
3.086E-01 2.806E-01 2.572E-01 2.374E-01
2.470692 1.647E+00 1.235E+00 9.883E-01 8.236E-01 7.059E-01 6.177E-01 5.490E-01
4.941E-01 4.492E-01 4.118E-01 3.801E-01
♦KVTABLE 3 ** K VALUE TABLE FOR C6-C10
0.0019 0.0013 0.0010 0.0008 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003 
0.0147 0.0098 0.0073 0.0059 0.0049 0.0042 0.0037 0.0033 0.0029 0.0027 0.0024 0.0023 
0.0655 0.0437 0.0328 0.0262 0.0218 0.0187 0.0164 0.0146 0.0131 0.0119 0.0109 0.0101 
0.2068 0.1378 0.1034 0.0827 0.0689 0.0591 0.0517 0.0459 0.0414 0.0376 0.0345 0.0318 
0.5135 0.3424 0.2568 0.2054 0.1712 0.1467 0.1284 0.1141 0.1027 0.0934 0.0856 0.0790 
1.0743 0.7162 0.5372 0.4297 0.3581 0.3070 0.2686 0.2387 0.2149 0.1953 0.1791 0.1653 
1.9790 1.3193 0.9895 0.7916 0.6597 0.5654 0.4947 0.4398 0.3958 0.3598 0.3298 0.3045 
3.3085 2.2057 1.6542 1.3234 1.1028 0.9453 0.8271 0.7352 0.6617 0.6015 0.5514 0.5090 
5.1286 3.4190 2.5643 2.0514 1.7095 1.4653 1.2821 1.1397 1.0257 0.9325 0.8548 0.7890 
7.4866 4.9911 3.7433 2.9946 2.4955 2.1390 1.8716 1.6637 1.4973 1.3612 1.2478 1.1518
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10.4114 6.9410 5.2057 4.1646 3.4705 2.9747 2.6029 2.3137 2.0823 1.8930 1.7352 
1.6018
13.9149 9.2766 6.9575 5.5660 4.6383 3.9757 3.4787 3.0922 2.7830 2.5300 2.3192 
2.1408
17.9943 11.9962 8.9972 7.1977 5.9981 5.1412 4.4986 3.9987 3.5989 3.2717 2.9991 
2.7684
*kvtable 4 ** K VALUE TABLE FOR Cl-C5
0.0318 0.0212 0.0159 0.0127 0.0106 0.0091 0.0079 0.0071 0.0064 0.0058 0.0053 0.0049 
0.1479 0.0986 0.0739 0.0591 0.0493 0.0422 0.0370 0.0329 0.0296 0.0269 0.0246 0.0227 
0.4590 0.3060 0.2295 0.1836 0.1530 0.1311 0.1147 0.1020 0.0918 0.0834 0.0765 0.0706 
1.0947 0.7298 0.5473 0.4379 0.3649 0.3128 0.2737 0.2433 0.2189 0.1990 0.1824 0.1684 
2.1785 1.4523 1.0893 0.8714 0.7262 0.6224 0.5446 0.4841 0.4357 0.3961 0.3631 0.3352 
3.8075 2.5383 1.9038 1.5230 1.2692 1.0879 0.9519 0.8461 0.7615 0.6923 0.6346 0.5858 
6.0438 4.0292 3.0219 2.4175 2.0146 1.7268 1.5110 1.3431 1.2088 1.0989 1.0073 0.9298 
8.9153 5.9435 4.4576 3.5661 2.9718 2.5472 2.2288 1.9812 1.7831 1.6210 1.4859 1.3716 
12.4202 8.2801 6.2101 4.9681 4.1401 3.5486 3.1050 2.7600 2.4840 2.2582 2.0700
1.1908
16.5347 11.0231 8.2674 6.6139 5.5116 4.7242 4.1337 3.6744 3.3069 3.0063 2.7558 
2.5438
21.2194 14.1463 10.6097 8.4878 7.0731 6.0627 5.3049 4.7154 4.2439 3.8581 3.5366 
3.2645
26.4251 17.6168 13.2126 10.5701 8.8084 7.5500 6.6063 5.8723 5.2850 4.8046 4.4042 
4.0654
32.0977 21.3985 16.0488 12.8391 10.6992 9.1708 8.0244 7.1328 6.4195 5.8359 5.3496 
4.9381
*kvtable 5 ** K VALUE TABLE FOR C02
2.4914 1.6609 1.2457 0.9966 0.8305 0.7118 0.6229 0.5536 0.4983 0.4530 0.4152 0.3833 
6.8249 4.5500 3.4125 2.7300 2.2750 1.9500 1.7062 1.5167 1.3650 1.2409 1.1375 1.0500 
14.3411 9.5607 7.1705 5.7364 4.7804 4.0975 3.5853 3.1869 2.8682 2.6075 2.3902 
2.2063
25.3553 16.9035 12.6776 10.1421 8.4518 7.2444 6.3388 5.6345 5.0711 4.6101 4.2259 
3.9008
39.8103 26.5402 19.9052 15.9241 13.2701 11.3744 9.9526 8.8467 7.9621 7.2382 6.6351 
6.1247
57.4057 38.2705 28.7029 22.9623 19.1352 16.4016 14.3514 12.7568 11.4811 10.4374 
9.5676 8.8317
77.7156 51.8104 38.8578 31.0862 25.9052 22.2045 19.4289 17.2701 15.5431 14.1301 
12.9526 11.9562
100.2720 66.8480 50.1360 40.1088 33.4240 28.6491 25.0680 22.2827 20.0544 18.2313 
16.7120 15.4265
124.6166 83.0777 62.3083 49.8466 41.5389 35.6047 31.1541 27.6926 24.9233 22.6576 
20.7694 19.1718
150.3284 100.2189 75.1642 60.1314 50.1095 42.9510 37.5821 33.4063 30.0657 27.3324 
25.0547 23.1274
177.0362 118.0241 88.5181 70.8145 59.0121 50.5818 44.2590 39.3414 35.4072 32.1884 
29.5060 27.2363
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204.4214 136.2809 102.2107 81.7685 68.1405 58.4061 51.1053 45.4270 40.8843 
37.1675 34.0702 31.4494
232.2161 154.8107 116.1080 92.8864 77.4054 66.3475 58.0540 51.6036 46.4432 
42.2211 38.7027 35.7256
*kvtable 6  ** K VALUE TABLE FOR N2
27.0188 18.0125 13.5094 10.8075 9.0063 7.7197 6.7547 6.0042 5.4038 4.9125 4.5031 
4.1567
38.0483 25.3655 19.0241 15.2193 12.6828 10.8709 9.5121 8.4552 7.6097 6.9179 6.3414 
5.8536
48.9645 32.6430 24.4822 19.5858 16.3215 13.9898 12.2411 10.8810 9.7929 8.9026 
8.1607 7.5330
59.4225 39.6150 29.7113 23.7690 19.8075 16.9779 14.8556 13.2050 11.8845 10.8041 
9.9038 9.1419
69.2638 46.1759 34.6319 27.7055 23.0879 19.7897 17.3160 15.3920 13.8528 12.5934
11.5440 10.6560
78.4340 52.2893 39.2170 31.3736 26.1447 22.4097 19.6085 17.4298 15.6868 14.2607 
13.0723 12.0668
86.9345 57.9563 43.4672 34.7738 28.9782 24.8384 21.7336 19.3188 17.3869 15.8063 
14.4891 13.3745
94.7952 63.1968 47.3976 37.9181 31.5984 27.0843 23.6988 21.0656 18.9590 17.2355 
15.7992 14.5839
102.0592 68.0395 51.0296 40.8237 34.0197 29.1598 25.5148 22.6798 20.4118 18.5562 
17.0099 15.7014
108.7741 72.5161 54.3871 43.5097 36.2580 31.0783 27.1935 24.1720 21.7548 19.7771 
18.1290 16.7345
114.9876 76.6584 57.4938 45.9951 38.3292 32.8536 28.7469 25.5528 22.9975 20.9068 
19.1646 17.6904
120.7452 80.4968 60.3726 48.2981 40.2484 34.4986 30.1863 26.8323 24.1490 21.9537 
20.1242 18.5762
126.0891 84.0594 63.0445 50.4356 42.0297 36.0254 31.5223 28.0198 25.2178 22.9253 
21.0148 19.3983

** Reference Conditions
*prsr 14.7 *temr 77 *psurf 14.65 *tsurf 62

** ROCK-FLUID PROPERTIES
*rockfluid

*swt **Water-Oil Relative Permeabilities

** Sw Krw Kro 
* *

0.31 0 1.0
0.3323 0.0037 0.9963 
0.3547 0.0104 0.9896
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0.3769 0.0191 0.9809 
0.3992 0.0294 0.9706 
0.4215 0.041 0.959 
0.4439 0.0539 0.9461 
0.4662 0.068 0.932 
0.5108 0.0991 0.9009 
0.5331 0.116 0.884 
0.5554 0.1339 0.8661 
0.5777 0.1525 0.8475
0 . 6 8 0.2479 0.7521
0.76 0.3325 0.6675
0.84 0.425 0.575
0.92 0.5247 0.4753
1 0.6313 0.0

** 0.31 0.0 1.0
** 0.3323 0.0037 0.8869
** 0.3547 0.0104 0.7784
*♦ 0.3769 0.0191 0.6747
** 0.3992 0.0294 0.576
** 0.4215 0.041 0.4828
*♦ 0.4439 0.0539 0.3951
** 0.4662 0.068 0.3136
♦♦ 0.5108 0.0991 0.1707
** 0.5331 0.116 0.1109
*♦ 0.5554 0.1339 0.0603
** 0.5777 0.1525 0.0213
** 0.6800 0.2479 0.00
** 0.7600 0.3325 0.00
♦* 0.8400 0.425 0.00
** 0.9200 0.5247 0.00
*# 1.0000 0.6313 0.00

** 0.752 0.256 0.0

*slt ** Liquid-gas relative permeabilities

** SI Krg Krog

0.31 0.49 0.00
0.43 0.3344 0.00
0.5909 0.1722 0.0008 
0.7139 0.0844 0.0481 
0.8364 0.0276 0.2577 
0.9591 0.0017 0.7513
1.000 0.000 1.000
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♦♦ *swr0.25 *sorw0.25 *sgr0.12 *sorg0.2
♦♦ =IIN ITIA L CONDITIONS = — = =  =
♦initial
♦pres ♦con 2900 ♦♦ High initial pressure 70 bar ( 7000 kPa or 1015.266 psi)
*sw *con 0.70 ♦♦ Initial water saturation is 0.70
♦so ♦con 0.23 ♦♦ initial gas saturation is 0.05

♦temp ♦con 100 ♦♦ Reservoir Bed Temperature 23 oC ( 73.4oF)
Minimum 100

♦♦ Gas in tube at the initial conditions is N2 with small concentration of C1-C5 
♦♦at equilibrium with the liquid petroleum phase (99.7% N2 & 0.3% C1-C5).

♦MFRAC_GAS TS12' ♦CON 0.997 
♦MFRACGAS 'Cl-5' ♦CON 0.003

♦♦ ♦♦ 'WATER' 'C ll+"C 6-10"C l-5 ' 'C02' TS12' '02 '
’CO' 'COKE'
♦♦ ♦molefrac +gas ♦con 3^0.0 0.003 0.0
0.997 0.0 0.0

♦♦ ♦♦ ♦molefrac &gas ♦con 5^0.0
0.79 0.21 0.0
♦♦ ♦♦ Initial petroleum phase fraction are : Cl 1+ = 0.419300 C6-C10 = 0.276600
Cl-c5= 0.304100
♦ ♦ ♦ ♦ After equilibization with the N2 gas phase the Nitrogen fraction in
the oil phase is 0.04 and
♦♦ ♦♦the hydrocarbon frcaction are : C l 1+=0.402528 C6-C10 =0.265536
Cl-C5= 0.291936

♦♦ This is the new run for Ekofisk oil, X-31 
♦MFRAC OIL 'C11+' ♦CON 0.6139565 
♦MFRAC OIL 'C6-10' ♦CON 0.292828 
♦MFRAC_OIL 'Cl-5' ♦CON 0.0432535 
♦MFRAC OIL *N2' ♦CON 0.05
♦♦ ♦♦ 'WATER' 'C11+' 'C6-10' 'Cl-5' 'C02'
^ 2 ’ '02 ' 'CO' 'COKE'
♦♦ ♦molefrac ♦oil ♦con 0.0 0.385756 0.254472
0.279772 0.0 0.08
♦♦ ♦♦ ♦MOLEFRAC ♦OIL *CON 0.0 0.419300
0.276600 0.304100 0.0 0.0

♦♦ =— ^ ---- ■■■ ■■ ■ ■ ■ =  NUMERICAL CONTROL = ....... ...........

♦numerical ♦♦All these can be defaulted. The definitions
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♦♦ here match the previous data.

♦maxsteps 1800 * north 1 0  *newtoncyc 2 0  ♦itermax 15

♦norm press 15 satur .1 temp 40 y .1 x .1 
♦converge press .15 satur .002 temp .5 y .002 x .002 
**ncuts 30 
♦run

♦ * -------- ------ — „ . T = =  RECURRENT DATA

time 0 dtwell .005

well 1 'INJECTOR' injector 1 
♦incomp gas 5^0.0 0.79 0.21 0.0

♦TINJW 100 ♦♦the recomended is 70 oF but the k
value start at 100 oF
operate gas 27.50954 ♦♦23.27176M2.983/10.983 ♦♦ Injection Rate 23.27176
ft3/hr (83.9 m3/m2hr)
♦♦100 cm3/min ♦♦ Injection Rate 2.219 ft3/hr (8m3/m2hr)
perf 1 ♦♦ i j  k wi(gas)

1 1 128 5.54 
♦♦incomp gas 5^0.0 0,79 0.21 0.0 
♦♦incomp water 1 . 0  0 . 0  0 . 0  0 . 0  

♦♦tinjov73.4 
♦♦tinjw70

well 2 'PRODUCER' producer 2 
operate bhp 2900 
monitor temp 1800 stop
geometry k 1 1 1 0 ♦♦ Linear pressure drop at tube end
♦PERF ♦Tube-END 2 ♦♦ i j k 

1 1 1 1 . 0

♦♦perf geo 2  ♦♦ i j  k 
♦♦ 1 1 1  

♦shutin 1

heatr ijk 1 1 122:128 350 ♦♦ Use external heaters to raise the temperature
♦♦heatr ijk 1 1 63 550 ♦♦ USe external heaters to raise the temperature
♦♦heatr ijk 1 1 126 550 ♦♦ Use external heaters to raise the temperature
time 0.083
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outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 0.15
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg
time 0.25
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg
time 0.30

open 1

time .3333

heatr con 0 ** Shut off external heters

time 0.35

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 0.4
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg
time 0.45
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg
time 0.48
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg
time 0.53
outsrf grid pres sw so sg temp y x w solconc obhloss

masdenw masdeno masdeng pcow pcog visw viso visg

time 0.55 
outsrf grid none 
time 0 . 6

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 0.7 
outsrf grid none 
time 0 . 8

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 1 . 0

vkjvuk:* or
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outsrf grid none 
time 1 . 2

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 1.4 
outsrf grid none 
time 1.5

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 1 . 6  

outsrf grid none 
time 1 . 8

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 2 . 0  

outsrf grid none 
time 2 . 2  

outsrf grid none 
time 2.4

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 2.5
outsrf grid none 

time 2 . 6  

outsrf grid none 
time 2 . 8

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 3.0 
outsrf grid none 
time 3.3

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 3.5 
outsrf grid none 
time 3.75
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outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 4.0 
outsrf grid none 
time 4.25

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 4.5 
outsrf grid none 
time 4.75

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg 
krw kro krg kvalyw kvalyx cmpdenw cmpdeno cmpvisw 
cmpviso cmpvisg cchloss

time 5.0 
outsrf grid none 
time 5.25

outsrf grid pres sw so sg temp y x w solconc obhloss
masdenw masdeno masdeng pcow pcog visw viso visg

time 6 . 0  

stop

iTMViR»:rir or
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a p p e n d i x  - F

Axial and W all Tem perature Differences

Run 8:

350

Experim ental Time, mln.

TA4 — TW4

Figure F-l Run 8 : Axial and Wall Temperature, TA4 and BH4.

_  700

350

E xperim ental Time, min.

TA8 — *3—  TW8

Figure F-2 Run 8 : Axial and Wall Temperature, TA8 and BH8.
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O  6 0 0  0

1 6 0  2 0 0  

E x p e r im e n ta l  T im e, m in.

Figure F-3 Run 8 : Axial and Wall Temperature, TAM and BH14.
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Figure F-4 Run 8 : Axial and Wall Temperature, TA25 and BH25.
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Figure F-5 Run 8 : Axial and Wall Temperature, TA30 and BH30.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 279



irs~ jviM :?Y O F

i?BATH- -----------  Omar H. ElAyadi Appendices

Run 9:
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Figure F-6 Run 8 : Axial and Wall Temperature, TA4 and BH4.
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Figure F-7 Run 9 : Axial and Wall Temperature, TAM and BH14.
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Figure F-8 Run 9 : Axial and Wall Temperature, TA19 and BH19.
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Figure F-9 Run 9 : Axial and Wall Temperature, TA25 and BH25.
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Figure F-10 Run 9 : Axial and Wall Temperature, TA30 and BH30.

High Pressure In-Situ Combustion Tube Commissioning and Operation. 281



V M V £ R g :? Y  0 ?

BATH
Omar H. E lA yadi

Published Papers

Appendices

High Pressure In-Situ Combustion Tube Commissioning and Operation. 282



1

IOR- 
B023

AUTHOR(S)
M. GREAVES,R.R. RATHBONE.O. EL AYADI AND M.EL ABIDI

Address
Improved Oil Recovery Group, Department of Chemical Engineeering, University of Bath, Bath BA2 7AY, England

Abstract

Water flooding can leave more than 30% residual oil, with some areas of the reservoir containing much 
higher Sor’s in tighter zones,or trapped beneath shale lenses. How to access this oil residual? Air 
injection may be a good candidate and could be operated either in a low temperature oxidation (LTO) 
mode, at the reservoir temperature,or in a high temperature oxidation mode (HTO),i.e. in-situ combustion. 
Or even a combination of the two. Does it matter which? Only if the oxygen in the injected air is not 
consumed ,before reaching the production well,or if undesirable oxygenated products are formed.

Two high pressure combustion tube tests (200 bar) were performed on a North Sea light crude oil,using 
MIL (mud industry limestone) to represent the chalk matrix. The residual oil saturation was Sor = 30 
%,with Swr = 70 %. With such a large amount of water present in the reservoir,an economic recovery 
process must be capable of mobilizing the residual oil at a high enough rate, without excessive,or 
prolonged,water production. The air injection flux is a critical parameter,both technically and 
economically.

In one of the tests, sustained propagation of the combustion front was achieved,traversing the full length 
of the 1.2 m combustion tube. However,the second test, which used a lower air injection flux,did not 
sustain combustion front propagation. Generally,combustion temperatures were around 450 °C,but some 
‘high peaks’ were observed for short periods. Cumulatives oil recoveries varied from 10 % to 70 
%,depending on the air flux. Post mortem inspection of the combusted matrix showed that it was largely 
clean,with no residual oil or coke. Some solid inclusions were also found.

Introduction

Maturing oil provinces in the North Sea,USA and other areas of the world face dimishing propects,unless 
new techniques are developed in time. In tight,very low permeability reservoirs,gas injection may be the 
only answer. Where to get sufficient gas to inject? In Western Europe and North America,market forces 
usually dictate that the hydrocarbon gases are sold. Carbon dioxide is only available from natural sources 
in a few areas and may frequently require pipelining. The same can be said of flue gas, which will usually 
require collection.. Most IOR (Improved Oil Recovery) methods require the ‘Injection of an ‘Expensive 
Fluid’ and the options available for a suitable process in the field tend to reduce sharply. One gas which 
is cheap,available in large quantities,everywhere,is air. Fassihi et al. (Ref. 1) estimated the economics for 
small gas injection projects to be approximately S2-4 capital and S3-5 operating expense per barrel of 
incremental oil produced.

AIR INJECTION INTO DEEP LIGHT OIL 
RESERVOIRS: COMBUSTION TUBE STUDIES

" " TC '
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Air injection into light reservoirs can be either a secondary or tertiary recovery process. Light oil 
reservoirs are usually deep enough and therefore at sufficiently high temperature for spontaneous ignition 
of the oil to occur. This is because the reactivity of the oil increases rapidly with temperature. 
Yannimaras et al. (Ref. 2) employed accelerating rate calorimetry to determine the exothermicity 
characteristics of different oils. This provides a type of fingerprint identity for each oil,indicating whether 
the oil is sufficiently reactive in the LTO region (reservoir temperature up to 250 °C) to autoignite,and 
whether also,there will be a smooth transition to the in situ combustion (ISC) region,and HTO of the oil. 
For a light oil,LTO can be sufficient (Ref.3,4) to create a safe process,i.e. remove all of the oxygen in the 
injected air by reaction with the oil. As the oxidation zone (LTO) or combustion zone (HTO) moves 
through the reservoir,stripped HC gases,steam and flue gas (mainly C02 and N2) displace the 
oil,consuming about 5% to 8% of the oil as fuel. Combustion tube studies are used to determine how 
much air is required and also whether a self-sustaining,combustion front can be propagated through the 
reservoir core (Refs 5,6,7). Although combustion tube experiments mimic the sub-processes,i.e. 
formation of a steam bank,condensed water and oil bank,and show that only about one-third of the core 
needs to be swept inorder to recover most of the oil,because they are 1-D and the moving front is 
artificially stabilized,they cannot provide any useful information on sweep efficiency and scale-up. This 
requires 3-D experiments (Ref.8). Combustion tube data is also useful for validating reaction kinetic 
models that need to be incorporated into numerical simulators.

Experimental

The arrangement of the combustion tube facility is shown in Fig. 1. The combustion tube is 1.2 m long 
and 0.1m in diameter. It is surrounded by 32 band heaters. Temperature is measured by an axial probe 
with a thermocouple at each band heater position. The band heaters may be controlled individually to 
maintain adiabatic conditions. The combustion tube assembly is contained within a pressure shell to allow 
operation to 240 bar pressure. The produced fluids are separated and gas flowrate and CO, CO2, O2 

composition is monitored.

The matrix material used in the runs reported here was MI limestone which was chosen to simulate the 
chalk matrix in the Ekofisk field and provide sufficient injectivity to operate the combustion tube. The 
matrix material was premixed with oil and water before packing into the combustion tube. Experimental 
conditions for both runs are given in Table 1. Both tests were operated without bandheater control,so 
causing significant heat loss.

Run 4 -  High Air Flux

This test was run without bandheater (BH) control,i.e non-adiabatically,and therefore respresents a 
pessimistic case compared to the reservoir. Following nitrogen injection and preheating of the inlet 
section of the core,immediate ignition was achieved at 215 °C (178 minutes) when air injection started. 
The core temperature increased rapidly to 614 °C (180 minutes) and the combustion front then 
propagated outwards from the inlet face to reach BH2 location at 184 minutes. The combustion front 
temperature then steadied at around 450 °C,as shown in Fig. 2. Heating of downstream sections of the 
core occurred due to fluid transport and LTO. This created two secondary fronts at BH20 (213 minutes) 
and BH 23 (215 minutes),with temperatures between 260 -  280 °C. During this time the main combustion 
front became stalled at BH5 for 17 minutes,remaining at 465 °C. A new secondary front started at BH 20 
at (225 minutes). The main combustion front reactivated with a temperature o f450 - 500°C and advanced 
to the middle of the tube,as shown in Fig. 3. Although the secondary fronts were still propagating up to 
this point,the more dramatic effect subsequently,was the sudden appearance of the two very high 
temperature peaks. For a light oil, such high temperatures (700 -  900 °C) were not anticipated. This high 
temperature effect was also confirmed by the bluish temper colour of the stainless steel axial 
thermocouple probe when it was inspected after the test. The leading edge of the combustion front 
continued to propagate to the end of the tube at a temperature of 807 °C ,when combustion was 
terminated (285 minutes).
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For most of Run 4,the air injection rate was maintained at 10.81 litres/min (82.59 m3/h m2),but the rate 
was reduced to 5.2 litres/min towards the end of the run (272 -  284 minutes). The composition of the 
produced gas is shown in Fig. 4. The high carbon monoxide concentration,initially,is due to LTO,but it 
falls rapidly as the combustion front becomes more stabilized. The carbon dioxide concentration remains 
at a high level,around 12 %,or more,throughout the run. When the combustion front stalled for a short 
period during the early part of the test,the oxygen was not totally consumed,and significant amounts of 
were produced. Oxygenated oil,containing free-radicals may have concentrated in the oil in the 
downstream sections of in the core,causing the high combustion temperatures (see previous section). In 
the field there would be sufficient residence time for the oxidation reactions to go to completion,so long 
as the reservoir temperature is high enough (> 90 °C).

Fig. 5 shows the variation of the combustion front velocity during the test. Before the occurrence of the 
secondary front(s),the velocity is in the range 0.3 -  0.5 cm/min (0.18 -  0.3 m/h). This is to be expected 
with such high air injection rates in the combustion tube. However,if the injection rate is scaled to 
reservoir condition,wherein the actual rock permeability is only few mD,compared to ID (approximately) 
for the crushed MI limestone,it will be reduced by a large factor. Similarly,the combustion front velocity 
in a homogeneous reservoir will be of the order of fraction of a m/day,because the air injection flux will 
be of the order of lm3/h m2,or less.

Run 5 -  Low Air Flux
The objective of this test was to see if combustion could be sustained with a lower air injection flux 
compared to over 80 m3/h m2 in Run 4. In the later period of the test,the air flux was increased to 93.8 
m3/h m2,but this lasted for only about 10 per cent of the total period of air injection. As can be seen in 
Fig. 6, oxygen breakthough occurs at the production end of the combustion tube soon after ignition,at 119 
minutes. However,combustion is not fully established and there is a rapid deterioration in performance 
leading to severe oxygen breakthrough. The situation was only recovered somewhat by heating the tube 
to 150 °C. This is entirely artificial,since the reservoir should operate close to adiabatic. Although much 
improved carbon dioxide levels are achieved,oscillating about the 10 % level,a self-sustained combustion 
front was never achieved and the produced oxygen levels remained high.

The conclusion to be gained from the two tests combustion tests,is that,inorder to propagate a stable 
combustion front with this light oil,the air injection rate needs to be above a certain minimum value. This 
figure appears to be correspond to a minimum air injection flux of approximately 40 m3/h m2. Because s 
the combustion front velocity was quite high in Run 4,the heat losses in the combustion front region were 
not sufficient to reduce the reaction intensity significantly. If  full-adiabatic control had been employed to 
minimize heat losses (mimicking the reservoir) the minimum air injection flux required would,actually,be 
significantly lower than 40 m3/h m2.

Oil and Water Production Rates
The final oil recovery from Run 4 was 40 % OOIP,compared to only 9 % OOEP for Run 5. Although Run 
5 was far from ideal,it underlines the important effect of air injection rate on the oil recovery. In Fig. 7, 
it is also apparent that,in Run 4,a large amount of water wasw produced along with the oil. This is to be 
expected,since the initial amount of water in the core was high at 70 %. The produced water-cut averaged 
just over 70 % before the oil was contacted by the combustion front (218 minutes),but then decreased 
down to about 43 %  for the remainder of the test. It is important to remember that a 1-D combustion 
tube resultt cannot provide any reliable indication as to what the true oil recovery will be in the reservoir. 
This is because the combustion front is artificially stabilised -  the tube was mounted vertically,and air i
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was injected at the top. The combustion tube results (adiabatic preferably) may,however,be used to 
validate a suitable oil oxidation kinetics model,which can then be employed in a reservoir simulator.

Post mortem on Burned Core

After each test,the combustion tube and its contents were allowed to cool down to room temperature. The 
combustion tube was then placed in a horizontal position and the top flange plate was removed. A post 
mortem inspection of the burned MIL matrix was performed by carefully removing small quantities each 
time. In Run 4,virtually all of the MI limestone core had been swept by the combustion front. 
Consequently,the burned matrix was essentially clean,having a whitish appearance and loose structure. 
However,there were also some inclusions found at different distances along the tube. Pieces of hard 
material,or agglomerates few centimeters in size,were discovered 0.2 m along the MIL core,near to the 
wall. They contained interconnecting holes and some areas of the surface had a greenish 
colour,suggesting that the MIL may have been attacked by acidic, Approximately three-quarters distance 
along the tube (0.75 m),an unusual piece of material was found (Fig. 8). It was similar in appearance to a 
Conche shell,some 4 cms long. The outer shell was probably calcined material (calcite),due to the high 
combustion temperatures during that period (>800 °C). Another possible explanation for the 
disappearance o f the interior is dissolution of the carbonate matrix by organic acids formed during LTO 
of the oil when the main combustion front became stalled.

In Run5,the MIL was mainly of whitish appearance for about one-third of the core,reflecting that it had 
been contacted by the combustion front. However,from the early stages of air injection the matrix shows 
unbumt areas near the wall. The dark,unbumt,or partially combusted areas increase across the core 
until,at 0.36 m from the top,it extends to approximately 80 %. There was also coke deposited at 0.42 m 
distance. At 0.72 m ,a hardened,shell-like agglomerate was discovered. It was surrounded by coke and 
the interior may have been dissolved by organic acid,as in Run 4.

Concluding Remarks

1. Comparing the combustion performance of Run 4 (high flux) against Run 5 (low flux) indicates 
that for the light crude oil,there is a minimum air injection rate needed to sustain propagation of a 
stable combustion front. This corresponded to an air injection flux of about 40 Sm3/h m2,when 
no band heater compensation was applied (non-adiabatic operation).

2. Stable in situ combustion was achieved at combustion temperatures of 450 °C. There were also 
short periods of very high combustion temperatures (>800 °),because more fuel was produced 
(locally) in downstream sections of the core. This was caused by LTO of the oil, arising from 
temporary stalling of the main combustion front.

3. The appearance of the burned MIL matrix from Run 4 (high flux) was white in colour with no 
residue or coke. Therefore,virtually all of the core had been contacted by the combustion front. 
A hard,calcited shell-like agglomerate was discovered at a distance of 0.75 m from the top of the 
core. The interior of the agglomerate was dissolved away,possibly due to the formation of 
organic acids (LTO condition) and also because of carbonate decomposition at the high 
combustion temperatures (HTO condition).

4. Oil recovery was strongly affected by the air injection rate,varing from 40% OOIP at high flux in 
Run 4 to only 9 % OOIP at low flux in Run 5.
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Figure 1 Combustion Tube Schematic Figure 2 Temperatures near the top of the
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Figure 8 Post-mortem of Run 4

Condition/Experiment Run 4 Run 5

Pressure, bar 200 200
Initial Temperature, °C 18-28 18-22

Initial Oil Sat., % 30 27.6
Initial Water Sat., % 70 64.4
Initial Gas Sat., % - 8.0

Gas rate,m3/m2hr 83.9
30.8
93.8 
36.4

Table 1 Experimental Conditions
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Abstract
Water flooding can leave more than 30% residual oil, 
with some areas of the reservoir containing much higher 
Sqt’s in tighter zones, or trapped beneath shale lenses. 
How to access this oil residual? Air injection may be a 
good candidate and could be operated either in a low 
temperature oxidation (LTO) mode, at the reservoir 
temperature, or in a high temperature oxidation mode 
(HTO), i.e. in-situ combustion. Two high pressure 
combustion tube tests (200 bar) were performed on a 
North Sea light cmde oil, using MIL (mud industry 
limestone) to represent the chalk matrix. The residual 
oil saturation was SOT = 30 %, with Sw = 70 %. With 
such a large amount of water present in the reservoir, an 
economic recovery process must be capable of 
mobilizing the residual oil at a high enough rate, without 
excessive, or prolonged, water production. The air 
injection flux is a critical parameter, both technically and 
economically. In one of the tests, sustained propagation 
of the combustion front was achieved, traversing the full 
length of the 1.2 m combustion tube. However, the 
second test, which used a lower air injection flux, did not 
sustain combustion front propagation. Generally, 
combustion temperatures were around 450 °C, but some 
‘high peaks’ were observed for short periods.
Cumulative oil recoveries varied from 10 % to 70 %, 
depending on the air flux. Post mortem inspection of the 
combusted matrix showed that it was largely clean, with 
no residual oil or coke. Some solid inclusions were also 
found.

One of the most important advances affecting in-situ 
heavy oil recovery is the advent of horizontal well 
technology. The integration of reservoir processes and 
horizontal wells has led to the development of ‘short- 
distance oil displacement processes’. In effect this 
creates a short-path for oil displacement, since mobilised 
heavy oil or bitumen ‘drains’ directly into the horizontal 
producer well. The distance between he ‘active’ front 
and the horizontal well is only a few metres, compared

with 100’s of metres for conventional displacement. A 
shortened pathway, compared to conventional 
displacement processes, and creates significant 
operational advantages. Heavy oil and bitumens present 
special difficulties compared to conventional light oil. 
Principally, this is due to the very high, in-situ oil 
viscosities, which can vary from a few thousand to 
millions of mPas. Unless the oil can be mobilised 
sufficiently, by substantially reducing its in-situ 
viscosity, the oil recovery efficiency will be seriously 
eroded. Since heavy oil and bitumens usually contain 
more than 50% heavy residue, a successful process 
needs to recover a significant portion of this, preferably 
with some degree of in-situ upgrading. A new process 
called THAI -  ‘Toe-to-Heel Air Injection’ [1] is a more 
advanced variant of conventional in-situ combustion 
(ISC), but it operates as a short-distance displacement 
process. Since THAI operates at HTO mode, prompting 
thermal cracking of heavy residual oil, it can achieve 
significant in-situ upgrading, which also maximizes oil 
recovery. The THAI process is now the subject of a 
pilot development at Christina Lake, Canada (2005). 
Other ‘short-distance oil displacement’ processes have 
also been proposed, including TTHW and TTHS -  
respectively, ‘Toe-to-Heel Waterflood’ and ‘Toe-to-Heel 
Steamflood’ [2]. Turta et al. [3] provides an overview of 
‘short-distance displacement processes, classifying them 
into (i) those with the displacement front quasi-parallel 
to the horizontal producer and (ii) those with the 
displacement front quasi-perpendicular to the horizontal 
producer. This paper will focus on THAI, in which the 
displacement is quasi-perpendicular to the horizontal 
producer.

AIR INJECTION FOR LIGHT OIL 
RESERVOIRS

Introduction
Maturing oil provinces in the North Sea, USA and other 
areas of the world face diminishing prospects, unless
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new techniques are developed in time. In tight, very low 
permeability reservoirs, gas injection may be the only 
answer. Where to get sufficient gas to inject? In 
Western Europe and North America, market forces 
usually dictate that the hydrocarbon gases are sold. 
Carbon dioxide is only available from natural sources in 
a few areas and may frequently require pipelining. The 
same can be said of flue gas, which will usually require 
collection. Most IOR (Improved Oil Recovery) methods 
require the Injection of an Expensive Fluid’ and the 
options available for a suitable process in the field tend 
to reduce sharply. One gas which is cheap, available in 
large quantities, everywhere, is air. Fassihi et al. [4] 
estimated the economics for small gas injection projects 
to be approximately $2-4 capital and $3-5 operating 
expense per barrel of incremental oil produced.

Air injection into light oil reservoirs can be either a 
secondary or tertiary recovery process. Light oil 
reservoirs are usually deep enough and therefore at 
sufficiently high temperature for spontaneous ignition of 
the oil to occur. This is because the reactivity of the oil 
increases rapidly with temperature. Yannimaras et al. [5] 
employed accelerating rate calorimeter to determine the 
exothermicity characteristics of different oils. This 
provides a type of fingerprint identity for each oil, 
indicating whether the oil is sufficiently reactive in the 
LTO region (reservoir temperature up to 250 °C) to 
autoignite, and whether also, there will be a smooth 
transition to the in-situ combustion (ISC) region, i.e. 
HTO of the oil. For a light oil, LTO can be sufficient[6, 
73 to create a safe process, i.e. remove all of the oxygen 
in the injected air by reaction with the oil. As the 
oxidation zone (LTO) or combustion zone (HTO) moves 
through the reservoir, stripped HC gases, steam and flue 
gas (mainly C02 and N2) displace the oil, consuming 
about 5% to 8% of the oil as fuel. Combustion tube 
studies are used to determine how much air is required 
and also whether a self-sustaining, combustion front can 
be propagated through the reservoir core [8'10]. Although 
combustion tube experiments mimic the sub-processes,
i.e. formation of a steam bank, condensed water and oil 
bank, and show that only about one-third of the core 
needs to be swept in order to recover most of the oil. 
Because they are 1-D and the moving front is artificially 
stabilized, they cannot provide any useful information on 
sweep efficiency and scale-up. This requires 3-D 
experiments [11]. Combustion tube data is also useful for 
validating reaction kinetic models that need to be 
incorporated into numerical simulators.

Experimental
The arrangement of the combustion tube facility is 
shown in Fig. 1. The combustion tube is 1.2 m long and
0.1m in diameter. It is surrounded by 32 band heaters. 
Temperature is measured by an axial probe with a 
thermocouple at each band heater position. The band 
heaters may be controlled individually to maintain 
adiabatic conditions. The combustion tube assembly is 
contained within a pressure shell to allow operation to 
240 bar pressure. The produced fluids are separated and 
gas flowrate and CO, C02, 0 2 composition is monitored.

The matrix material used in the runs reported here was 
MI limestone which was chosen to simulate the chalk 
matrix in the Ekofisk field and provide sufficient 
injectivity to operate the combustion tube. The matrix 
material was premixed with oil and water before packing 
into the combustion tube. Experimental conditions for 
both runs are given in Table 1. Both tests were operated 
without bandheater control, so causing significant heat 
loss.

Run 4 -  High Air Flux
This test was run without bandheater (BH) control, i.e 
non-adiabatically, and therefore represents a pessimistic 
case compared to the reservoir. Following nitrogen 
injection and preheating of the inlet section of the core, 
immediate ignition was achieved at 215 °C (178 
minutes) when air injection started. The core 
temperature increased rapidly to 614 °C (180 minutes) 
and the combustion front then propagated outwards from 
the inlet face to reach BH2 location at 184 minutes. The 
combustion front temperature then steadied at around 
450 °C, as shown in Fig. 2. Heating of downstream 
sections of the core occurred due to fluid transport and 
LTO. This created two secondary fronts at BH20 (213 
minutes) and BH 23 (215 minutes), with temperatures 
between 260 -280°C. During this time the main 
combustion front became stalled at BH5 for 17 minutes, 
remaining at 465°C. A new secondary front started at 
BH20 at 225 minutes. The main combustion front 
reactivated with a temperature of 450 - 500°C and 
advanced to the middle of the tube, as shown in Fig. 3. 
Although the secondary fronts were still propagating up 
to this point, the more dramatic effect subsequently, was 
the sudden appearance of the two very high temperature 
peaks. For a light oil, such high temperatures (700 - 
900°C) were not anticipated. This high temperature 
effect was also confirmed by the bluish temper colour of 
the stainless steel axial thermocouple probe when it was 
inspected after the test. The leading edge of the
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combustion front continued to propagate to the end of 
the tube at a temperature of 807 °C, when combustion 
was terminated (285 minutes).
For most of Run 4, the air injection rate was maintained 
at 10.81 litres/min (82.59 m3/m2h), but the rate was 
reduced to 5.2 litres/min towards the end of the run (272 
-  284 minutes). The composition of the produced gas is 
shown in Fig. 4. The high carbon monoxide 
concentration, initially, is due to LTO, but it falls rapidly 
as the combustion front becomes more stabilized. The 
carbon dioxide concentration remains at a high level, 
around 12 %, or more, throughout the run. When the 
combustion front stalled for a short period during the 
early part of the test, the oxygen was not totally 
consumed, and significant amounts of oxygen were 
produced. Oxygenated oil, containing free-radicals may 
have concentrated in the oil in the downstream sections 
of in the core, causing the high combustion 
temperatures (see previous section). In the field there 
would be sufficient residence time for the oxidation 
reactions to go to completion, so long as the reservoir 
temperature is high enough (> 90 °C).

Fig. 5 shows the variation of the combustion front 
velocity during the test. Before the occurrence of the 
secondary front(s), the velocity is in the range 0.3 -  0.5 
cm/min (0.18 -  0.3 m/h). This is to be expected with 
such high air injection rates in the combustion tube. 
However, if the injection rate is scaled to reservoir 
condition, wherein the actual rock permeability is only 
few mD, compared to ID (approximately) for the 
crushed MI limestone, it will be reduced by a large 
factor. Similarly, the combustion front velocity in a 
homogeneous reservoir will be of the order of fraction of 
a m/day, because the air injection flux will be of the 
order of 1 m3/m2h, or less.

Run 5 -  Low Air Flux
The objective of this test was to see if combustion could 
be sustained with a lower air injection flux compared to 
over 80 m3/m2h in Run 4. In the later period of the test, 
the air flux was increased to 93.8 m3/m2h, but this lasted 
for only about 10 per cent of the total period of air 
injection. As can be seen in Fig. 6, oxygen 
breakthrough occurs at the production end of the 
combustion tube soon after ignition, at 119 minutes. 
However, combustion is not fully established and there 
is a rapid deterioration in performance leading to severe 
oxygen breakthrough. The situation was only recovered 
somewhat by heating the tube to 150 °C. This is entirely 
artificial, since the reservoir should operate close to

adiabatic. Although much improved carbon dioxide 
levels are achieved, oscillating about the 10 % level, a 
self-sustained combustion front was never achieved and 
the produced oxygen levels remained high.

The conclusion to be gained from the two tests 
combustion tests, is that, in order to propagate a stable 
combustion front with this light oil, the air injection rate 
needs to be above a certain minimum value. This figure 
appears to be correspond to a minimum air injection flux 
of approximately 40 m3/m2h. Because the combustion 
front velocity was quite high in Run 4, the heat losses in 
the combustion front region were not sufficient to reduce 
the reaction intensity significantly. If full-adiabatic 
control had been employed to minimize heat losses 
(mimicking the reservoir) the minimum air injection flux 
required would, actually, be significantly lower than 40 
m3/m2h.

Oil and Water Production Rates 
The final oil recovery from Run 4 was 40 % OOIP, 
compared to only 9 % OOIP for Run 5. Although Run 5 
was far from ideal, it underlines the important effect of 
air injection rate on the oil recovery. In Fig. 7, it is also 
apparent that, in Run 4, a large amount of water was 
produced along with the oil. This is to be expected, 
since the initial amount of water in the core was high at 
70 %. The produced water-cut averaged just over 70 % 
before the oil was contacted by the combustion front 
(218 minutes), but then decreased down to about 43 % 
for the remainder of the test. It is important to remember 
that a 1-D combustion tube result cannot provide any 
reliable indication as to what the true oil recovery will be 
in the reservoir. This is because the combustion front is 
artificially stabilized -  the tube was mounted vertically, 
and air was injected at the top. The combustion tube 
results (adiabatic preferably) may, however, be used to 
validate a suitable oil oxidation kinetics model, which 
can then be employed in a reservoir simulator.

Post mortem on Burned Core
After each test, the combustion tube and its contents 
were allowed to cool down to room temperature. The 
combustion tube was then placed in a horizontal position 
and the top flange plate was removed. A post mortem 
inspection of the burned MIL matrix was performed by 
carefully removing small quantities each time. In Run 4, 
virtually the entire MIL core had been swept by the 
combustion front. Consequently, the burned matrix was 
essentially clean, having a whitish appearance and loose 
structure. However, there were also some inclusions
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found at different distances along the tube. Pieces of 
hard material, or agglomerate, a few centimeters in size, 
were discovered 0.2 m along the MIL core, near to the 
wall. They contained interconnecting holes and some 
areas of the surface had a greenish colour, suggesting 
that the MEL may have been attacked by acidic. 
Approximately three-quarters distance along the tube 
(0.75 m), an unusual piece of material was found (Fig. 
8). It was similar in appearance to a Conche shell, some 
4 cm long. The outer shell was probably calcined 
material (calcite), due to the high combustion 
temperatures during that period (>800 °C). Another 
possible explanation for the disappearance of the interior is 
dissolution of the carbonate matrix by organic acids formed 
during LTO of the oil when the main combustion front 
became stalled.

In Run 5, the MIL was mainly of whitish appearance for 
about one-third of the core, reflecting that it had been 
contacted by the combustion front. However, from the 
early stages of air injection the matrix shows unbumed 
areas near the wall. The dark, unbumed, or partially 
combusted areas increase across the core until, at 0.36 m 
from the top, it extends to approximately 80 %. There 
was also coke deposited at 0.42 m distance. At 0.72 m, a 
hardened, shell-like agglomerate was discovered. It was 
surrounded by coke and the interior may have been 
dissolved by organic acid, as in Run 4.

HEAVY OIL RECOVERY AND UPGRADING 
USING THAI

Introduction
In-situ combustion (ISC) was conceived out of high 
theoretical promise, and because the process generated 
its own energy via reactions between the oil and injected 
oxygen (compressed air), the reaction heat, at high 
temperature, would efficiently mobilise the heavy oil. 
The theoretical aspects are well-discussed in Burger’s et 
al. book [12]. The original ISC concept was developed 
over 50 years ago. The idea was to start a combustion 
front in the reservoir, either spontaneously, or by using 
some form of downhole burner, electrical device, or 
chemical oxidant, and then to propagate the front from 
one well to another. The well configuration used was 
VTVP (vertical injector-vertical producer), before the 
advent of horizontal well technology. In principle, the 
ISC process operates by burning a small fraction of the 
oil, around 10 wt% typically, and producing the rest. It 
should, conceptually, be applicable for oils having an in- 
situ viscosity greater than about 100 mPas, but extending

all the way up to heavy oil and tar sands bitumens - if 
adequate gas communication can be established. By 
virtue of the high temperature cracking, or bond scission 
reactions, substantial upgrading of the oil should also 
occur. As shown in Fig. 9, mobilised oil and gases 
ahead of the combustion front necessarily have to flow 
through the cold oil region downstream, in order to reach 
the production well. This gives rise to many operational 
difficulties, which have plagued conventional ISC heavy 
oil operations. Despite more than 130 field operations 
worldwide, during the 1960’s and earlyl980’s, 
conventional ISC failed to gain general acceptance due 
to many apparent failures. In some cases, this was often 
due to poor choice of reservoir, but one of the main 
reasons was poor control of the process. These 
experiences are extensively documented in the NIPER 
Conference volume[13].

The operational reality in the field is shown 
schematically in Fig. 9. The most significant operational 
problems affecting recovery from heavy oil reservoirs, 
using conventional well patterns, are the following:

(1) gravity segregation, i.e. gas overriding, due to 
the difference between the oil and gas 
densities

(2) gas channelling, due to unfavourable reservoir 
heterogeneity

(3) unfavourable mobility ratio
(4) tendency to slip into LTO (low temperature 

oxidation) mode

Reservoir engineers also tended to view results obtained 
from 1-D combustion tube tests perhaps too 
optimistically. Infact, logic dictates that this type of test 
is far from reality, because it is idealised by the 
constrained flow path and forced stability. Which of the 
above problems is the most serious? It depends on the 
particular reservoir, but in practice they are all serious. 
Severe gas overriding, unless controlled (how?), will 
rapidly lead to gas breakthrough at the production wells, 
and may also cause bum-out of the well, or even an 
explosion. The ISC process suffers from severe adverse 
mobility ratio, typically of the order of 100’s or 
10,000’s, depending on the oil viscosity. So, large 
frontal instabilities will lead to gas channelling, 
becoming more severe if the reservoir heterogeneity is 
unfavourable, especially towards the top of the oil layer. 
There is a universal consensus now, that ISC must be 
operated in a vigorous HTO mode. This means that the 
temperature of the combustion front should be above 
about 450 °C. Moore et al. [14*16] has commented
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extensively on this critical aspect of the process. 
Inability to ensure that there is sufficient oxygen flux 
reaching the combustion front guarantees that the 
process will lock into an LTO mode from which it is 
very difficult, or impossible, to recover. One of the 
main reasons why conventional ISC fails to sustain 
vigorous HTO is that the process needs to maintain gas 
communication over the full-extent of the reservoir, 
because it is long-distance displacement. Inevitably, 
therefore, exposure to the full geologjcal-effect of the 
reservoir creates complexity, but this is not peculiar to 
ISC. Any process that operates as long-distance 
displacement, and that includes virtually all normal 
conventional oil recovery processes, will suffer, because 
it is at the mercy of the reservoir geology. For example, 
banking of fluids in the cold regions ahead of the 
combustion front, or emulsion blocking, spells disaster 
for ISC, because it reduces the gas injectivity. 
Inevitably, this leads to the process becoming locked in a 
downward spiral from which it may be impossible to 
recover. Thus, there are too many inherent problems 
with conventional ISC, as applied to heavy oil 
reservoirs, to warrant much serious interest -  except for 
the ‘ideal reservoir’!

A new ISC process is therefore required, which avoids 
all of the above major operational difficulties and is also 
stable and robust. A new heavy oil recovery process 
will also be required to extend the horizon beyond that 
reached by SAGD (Steam Assisted Gravity Drainage) 
and VAPEX (Vapour Extraction).

THAI -  ‘Toe -to-Heel Air Injection’
Short-distance Displacement
The application of horizontal well technology, as far as 
ISC was concerned, some 15 years ago, appeared to be a 
‘wild chance’. At the time, the technology was 
beginning to demonstrate a measure of (claimed) 
success for thermal heavy oil operations, but more 
especially, it was more about the future potential of 
SAGD. It was very uncertain, therefore, whether the 
application of horizontal wells for ISC could have any 
possible benefits. Even more critical, whether a ‘new 
process’ could possibly work at all.

The essence of short-distance oil displacement processes 
is depicted in Fig. 10. Unlike conventional oil 
processes, which use a standard well pattern (usually 
with vertical wells), the pathway for oil displacement in 
short-distance oil displacement processes (SAGD, 
VAPEX, THAI) is quite different. The mobilized fluids

do not have to displace through the cold (high viscosity) 
oil region, as it would in the conventional ISC process 
(long-distance displacement), but instead, it takes the 
shortest pathway to the horizontal producer in the lower 
part of the oil layer.

Early Research and Process Stability 
Research on an integrated ISC-Horizontal Wells process 
was first initiated by the Improved Oil Recovery Group 
at Bath University in 1988-89. ISC experiments were 
conducted in a low pressure, rectangular combustion 
cell, measuring 0.4m x 0.4m x 0.1m (later experiments 
used a 0.6 m long cell). A 3-D geometry was chosen in 
order to capture the essential flow behaviour around the 
horizontal producer well, which was located in the 
bottom of the oil layer. The initial experiments [17,18] 
were very successful, insofar as the combustion front 
could be propagated along the length of the combustion 
cell, achieving very respectable oil recoveries of around 
50-60 % OOIP. In the succeeding years, more than fifty 
3-D combustion cell experiments were performed, using 
a variety of heavy oils, including Athabasca Tar Sands 
bitumen, and also medium heavy oil. All of these 
experiments were successful. Specifically, there was 
never any occurrence of oxygen breakthrough at the 
production well, broadly confirming that the process was 
stable.

During the early research phases, much emphasis was 
placed on the role of the cold oil layer, existing ahead of 
the combustion front. In Fig. 11, it is quite clear from 
the areal temperature profiles in the sandpack, that the 
temperature some distance ahead of the combustion front 
is much lower than in the upstream regions. That this 
can occur, even after 6 hours of operation, is quite 
remarkable. The explanation is basically that the oil 
region downstream of the combustion zone is relatively 
immobile, and does not readily drain into the HP. 
Because the oil viscosity in this colder region is very 
high, it prevents any gas communicating/displacing 
through it. This is exactly the opposite of what happens 
in the old conventional ISC process. Of course, the cold 
oil also serves to provide a seal around part of the 
perforated HW. However, this is not a convincing 
argument for complete stability of the process.

It was quite evident that the air injection rate, or flux, 
was a critical factor influencing the stability of the 
process, as it is in conventional ISC. Stability of the ISC 
process is defined as the ability to propagate a high 
temperature combustion front in a steady, stable manner,
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so that most, or all of the oxygen in the injected air is 
consumed in the process. The ISC process is self- 
sustaining, so long as the supply of compressed air is not 
interrupted. If the process is maintained in a HTO mode 
(> 450 °C), then the heavy residue left behind from the 
distillation process, is thermally cracked, and a coke-like 
material is deposited onto the surface of the reservoir 
sand. This coke is the fuel which sustains the process.

Another feature present in the vertical plane temperature 
profiles in Fig. 11 is a condition called ‘Controlled Gas 
Override’. It is evident that the shape of the temperature 
profile in the vicinity of the combustion front (~500 °C) 
is more or less constant. The front is more advanced in 
the top part of the sandpack, but it does not accelerate 
ahead and create uncontrolled gas overriding. This is an 
important stabilising feature for the new ‘Air Injection- 
Horizontal Wells’ process. It is clear that, in addition to 
any gravity stabilising effect, there must also be a forced 
flow into the HW, to counter the gas buoyancy.

One aspect of the process which remained of continuing 
concern to the reservoir engineering community was - 
‘How was it possible that oxygen (injected air) did not 
bypass directly into the toe of the horizontal producer, 
and breakthrough at the production well?’ This was 
especially intriguing, because the toe of the HW is offset 
slightly (about 0.05 m) from the line of the vertical 
injector. Infact, in the earliest experiments, the VI was 
placed in the middle of the oil layer and still the oxygen 
did not breakthrough! Hence, although all of the 
experimental evidence indicated that the new ISC- 
Horizontal Wells process was stable, the precise 
mechanism governing the overall stability was not well 
understood. New experimental evidence for the 
stabilizing mechanism was discovered recently [18], and 
will be discussed later.

THAI Process
THAI is an integrated reservoir-horizontal wells process, 
which uses air injection to propagate a combustion front 
from the toe-position of the horizontal producer to the 
heel of the production well. Fig 12 is a schematic 
representation of the salient features of the process. Air 
is injected in the top part of the reservoir, either in direct 
line drive (VIHP), denoting a single vertical injector and 
a single horizontal producer, or staggered line drive 
(2VIHP), wherein two vertical injectors are placed at an 
offset position with respect to the HP, in the top comers 
of the section. The HP is placed low in the oil layer, so 
that the toe is offset from the line of the vertical injector.

In the experimental combustion cell this was 0.05 m, but 
it may scale to about 10 to 15 m in an actual reservoir. 
The combustion front is shown tilted, i.e. quasi-vertical, 
although, as mentioned previously, the experiments 
actually show it to be a composite profile, so that it is 
more advanced in the top part of the oil layer. There is a 
temperature gradient across the oil layer, so that the 
temperature of the combustion front nearer to the HP is 
100-150 °C lower that it is at the top. Ahead of the 
combustion front is the coke zone, where the heaviest 
residue fractions undergo thermal cracking. This 
extends through to the MOZ (mobile oil zone). The 
width of the MOZ extends possible as far as the draining 
interface, defining the boundary between the upstream 
MOZ and the downstream ‘cold’, immobile oil region. 
The detailed dynamics of the MOZ are very complex 
and not well understood. However, it is a very important 
part of the process. Firstly, it is where the precursor 
processes to coke formation occur and secondly, and 
most importantly, it is the region which determines oil 
productivity. If there is a cold, immobile oil region 
(Cold Heavy Oil), as the experimental temperature 
profiles suggest (Fig. 11), then ahead of the combustion 
front there is only a finite zone from which oil can be 
produced. This is the MOZ, or the open ‘active’ section 
of the HP. This open-section of the HP is approximately 
20 to 30% of the total well length. Therefore, if THAI is 
to achieve the same, or higher, well productivities, 
compared say to SAGD, the flow of mobilized oil 
though the MOZ into the open-section of the HP must be 
high. This is possible, depending on the pressure draw­
down in the well, but also because of the high 
temperature in this zone. At around 500 °C, the oil 
viscosity will be very low, and lower still because the oil 
draining into it has been thermally cracked to a lighter
oil. Typically, the oil recovery in the 3-D THAI 
experiments is about 80 % OOIP, and may as high as 
85 % OOIP. This is principally due to the very efficient 
thermal sweep of the hot gases ahead of the combustion 
front, approaching nearly 100% of the sandpack.

Stability of THAI
During startup, it is very important that high temperature 
ignition is achieved, at least 500 °C (Fig. 13). This is 
necessary to ensure that during the startup period, the 
oxygen utilization is high and combustion also takes 
place at high temperatures, in the top part of the oil 
layer. While the combustion zone is growing in size and 
expanding downwards, high combustion temperatures 
(450 -  600 °C) ensure that the rate of oxidation is rapid 
and the injected oxygen is completely consumed.
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Therefore, during this period, hot combustion gases flow 
directly into the toe of the HP, but the gas contains 
virtually no oxygen. Hence, bypassing of oxygen 
directly into the toe of the HP does not occur. After the 
combustion front has propagated beyond the toe- 
position, it becomes ‘anchored’ onto the HP. The 
stability of the THAI process then depends on two key 
factors: (1) a high temperature burning zone, which is 
more advanced in the top part of the oil layer, exhibiting 
controlled (stable) gas override behaviour, and (2) 
deposition of coke, or heavy residue, inside the HP. The 
coke which is deposited inside the HP acts as a gas seal.

It is postulated that the heavy residue, or coke, prevents 
air (oxygen) channelling from behind the combustion 
front, through to the toe of the HP. A test (Run 2002-03) 
was stopped half-way, and after allowing the sandpack 
to cool down, the HP was removed and cut-open, as 
shown in Fig, 14. The photograph shows that there is a 
very substantial coke deposit about 3.5 cm long formed 
inside the HP. The deposit is formed ahead of the 
combustion front, at a temperature of400 - 450°C, which 
is sufficient to form coke. Coke formation in the HP is a 
dynamic process, continuously forming ahead of the 
front and then being burned-off behind as the 
combustion front approaches nearer to the HP. The 
process continues right up the production end of the HP, 
but precautions may have been taken in the field before 
this situation is reached. The process of coke deposition 
in the HP has also been predicted using the STARS 
reservoir simulator (Computer Modelling Group)[19].

In-Situ Upgrading
THAI achieves very high oil recoveries, greater than 80 
% OOIP (primary or secondary), and also very 
significant in-situ upgrading. This is due to extensive 
thermal cracking of the large heavy oil molecules as the 
oil contacts the hot reservoir matrix in the coke and 
MOZ. The cracking surface is provided by the reservoir 
clays, such as kaolinite and illite. The trend shown in 
Fig. 15 is typical for a heavy crude oil (Wolf Lake) 
having an API gravity of 10.5 [20]. The upgrading effect 
seen at the start of the test is an artefact of the startup- 
ignition procedure, but as the combustion front begins to 
propagate outwards, away from the ignition zone, the 
API gravity falls slightly due to dilution with original 
crude oil. This effect depends on the offset of the toe of 
the HW, and the full-effect of the THAI process does not 
occur until the combustion front becomes ‘anchored’ 
onto the HP. Thereafter, the trend of downhole 
upgrading (thermal) is on a continuously upwards trend.

The average upgrading achieved is about 6-7 API points, 
reaching a maximum API gravity of nearly 18 °API. 
There is not much difference between dry and wet 
combustion, except towards the end of the experiment. 
The region of higher upgrading corresponds to the 
period of water injection, and may have benefited from 
production of hydrogen via the water-gas shift reaction. 
It is postulated that part of the upgrading is due to 
transfer of hydrogen from larger molecules having side 
branches, creating an upgraded oil which is rich in 
saturates [20]. The viscosity of the upgraded oil is in the 
region of 50 mPas, but as low as 10-20 mPas. Further 
downhole upgrading can be achieved if a catalyst is 
used. This modification of the THAI process is called 
CAPRI. In CAPRI, a standard refinery catalyst is 
gravel-packed around the HP, forming what is in effect a 
‘radial inflow reactor’. The reservoir provides the 
reactor ‘for free’.

CONCLUDING REMARKS
Air Injection into Light Oil Reservoirs
1. Comparing the combustion performance of Run 4 

(high flux) against Run 5 (low flux) indicates that 
for the light crude oil, there is a minimum air 
injection rate needed to sustain propagation of a 
stable combustion front. This corresponded to an air 
injection flux of about 40 Sm3/m2h, when no band 
heater compensation was applied (non-adiabatic 
operation).

2. Stable in situ combustion was achieved at 
combustion temperatures of450 °C. There were also 
short periods of very high combustion temperatures 
(>800 °), because more fuel was produced (locally) 
in downstream sections of the core. This was caused 
by LTO of the oil, arising from temporary stalling of 
the main combustion front.

3. The appearance of the burned MIL matrix from Run 
4 (high flux) was white in colour with no residue or 
coke. Therefore, virtually allof the core had been 
contacted by the combustion front. A hard, calcited 
shell-like agglomerate was discovered at a distance 
of 0.75 m from the top of the core. The interior of 
the agglomerate was dissolved away, possibly due to 
the formation of organic acids (LTO condition) and 
also because of carbonate decomposition at the high 
combustion temperatures (HTO condition).

4. Oil recovery was strongly affected by the air 
injection rate, varing from 40% OOIP at high flux in 
Run 4 to only 9 % OOIP at low flux in Run 5.
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Heavy Oil Recovery and Upgrading using THAI
1. Short-distance oil displacement processes provide a 

pathway for success for heavy oil recovery, as 
exemplified by the success of SAGD. The THAI 
process provides an additional route to higher 
recovery and also substantial in-situ upgrading for 
heavy oil and bitumens.

2. THAI is a stable and robust in-situ combustion 
process, as defined by the absence of oxygen 
breakthrough at the production well and no tendency 
for severe gas overriding.

3. During startup of THAI, the maintenance of an 
expanding, high temperature combustion zone and 
the existence of a ‘controlled gas override’ condition 
ensure overall stability and combustion gases flow 
directly into the toe of the horizontal producer.

4. Coke is deposited inside the HP when the 
temperature near the producer reaches 400- 450 °C, 
sufficient to thermally crack heavy residue which 
has drained through. The coke provides a gas seal, 
so that injected air cannot bypass into the toe. The 
formation of coke inside the HP is a dynamic 
process, occurring ahead of the combustion front and 
then being bum-off behind it.

5. THAI uniquely achieves substantial in situ 
upgrading of heavy oil and bitumen via thermal 
cracking and possible molecular transfer of 
hydrogen to produce an upgraded oil rich in 
saturates.
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Figure 14. 3-D THAI E xperim ent: P ost-m o rtem  P ictu res  o f  C oke  
D ep o sitio n  in th e H orizontal P rod u cer  (Run 2002-03, W olf Lake 
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