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Sum m ary

In this thesis we study aspects of three branching diffusion models: a branching 
Brownian motion with an absorbing barrier; a typed branching Brownian motion, in 
which each particle has a ‘type’ that controls its spatial variance and breeding rate; 
and branching Brownian motion in a quadratic breeding potential. Within the context 
of these processes, we present results on a range of themes from the literature on 
branching diffusions. The major topics of interest are: links with differential equations, 
particularly travelling wave solutions; questions on exponential growth or eventual 
extinction in different regions of the domain of a process; and the rate of spatial spread 
of a process.

Additive martingales are fundamental to the study of branching diffusions, both for 
their convergence properties and their use in changes of measure, and consequently such 
martingales are used heavily throughout this thesis. Particularly important for us is 
the use of additive martingales in changes of measure known as spine constructions; in 
recent years this technique has been used to great effect in providing intuitive proofs of 
many important classical results, as well new ones, in the theory of branching processes.
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Chapter 1

Introduction

In this introductory chapter we discuss the themes in the branching-diffusion literature 
that are the focus of this thesis, and describe some of the most relevant work that has 
been done in these areas. Our intention here is to introduce some important concepts 
in the theory of branching processes, and also to provide motivation for the problems 
considered later on; the results that represent the original work of the thesis will be 
given chapter by chapter.

1.1 Branching Brownian m otion

We begin with a description of the simplest branching diffusion — branching Brownian 
motion (BBM) on M. It is a compound of three stochastic elements.

(i) The spatial motion. As the name suggests, during its lifetime each individual 
particle in the population diffuses as a Brownian motion on R, independently of 
all the other individuals.

(ii) The branching rate, (3 > 0. Each individual has a lifetime which is distributed 
exponentially with parameter (3. An individual’s lifetime is independent of its 
spatial motion and the lifetimes of the other particles.

(iii) The offspring distribution, {p*;}a;>o- When an individual dies, it is replaced (at the 
point where it died) by a random number of offspring. The number of offspring 
has distribution {pa;}a;>o> and we will write F(s) := J2kLoPssk f°r the generating 
function. Conditional on their birth place and birth time, the offspring evolve
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1.2 Branching diffusions and differential equations

independently of each other and repeat stochastically the behaviour of their par
ent.

There are many ways in which this basic model can be developed: the spatial 
motion can be an arbitrary (possibly inhomogeneous) diffusion; the branching rate can 
depend on the spatial motion; the offspring distribution can depend on the spatial 
motion; the domain can be a subset of R (or Rn for n > 2); or the particles can have 
a type, which can also evolve randomly and affect all three elements of the behaviour 
described above. In this thesis we will see examples of each of these modifications. 
For simplicity, however, beyond Chapter 1 we only consider dyadic branching, that is 
P2 =  1, F(s) = s2. Although this said, most of our results can be generalised to more 
complicated offspring distributions.

1.2 Branching diffusions and differential equations

The relationship between branching diffusion processes and non-linear differential equa
tions has been a subject of much research since the landmark 1976 paper of McK- 
ean [73]. The probabilistic study of differential equations is actually much older than 
this — for example, it has been known since Kakutani [55] that the solution to the 
Dirichlet problem on a smooth bounded domain D c R "

A v  =  0 in D, 

v = f  on dD,

can be expressed as
u(z) = Exf(Br).

Here B  is a Brownian motion started at the point x  £ D, and r  is the first exit time 
of the Brownian motion from D.

Using branching diffusions rather than a single-particle Brownian motion we will 
shortly generalise this type of representation to reaction-diffusion equations, but we 
first note another important piece of classical theory — the Feynman-Kac formula. 
This states that for bounded g(t,x ) £ C([0,oo) x M71) and f ( x )  £ C(M.n),

v(t, x) := Ex ^ f ( B t) exp ^ J  g ( t -  s , Bs) ds
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1.2 Branching diffusions and differential equations

is in C 1,2((0, oo) x R”) and satisfies

S=S +9,,in(0’oo)xiRn’ (u)
v(0, x) = f{x )  in Rn.

(The stipulation that g and /  be bounded is not the most general condition under 
which this result holds, and the formula also generalises to other diffusions.) Observe 
that if we set g =  0 then (1.1) reduces to the heat equation, and as a solution we have 
v(t,x) = Ex( f (B t)). A variety of other parabolic and elliptic differential equations have 
probabilistic representations for their solutions; Durrett [25] contains a good discussion 
of some of these.

In a similar spirit, McKean [73, 74] gave a representation for the solution of a non
linear reaction-diffusion equation in terms of an expectation with respect to a branching 
Brownian motion. For the branching Brownian motion of Section 1.1, let Nt be the set 
of particles alive at time t , and write X u(t) for the spatial position of particle u G Nt.

T heorem  1.2.1 (M cK ean rep resen ta tio n ). For f  : R —> [0,1], define

u(t,x) := E X(  n  /(*«(«))
u £ N t

where E x is the expectation with respect to P x, the law of the branching Brownian 
motion started from a single particle at x  G R. Then u G C'1,2(R+ x R) and satisfies

u(0,x) =  f(x) .

This result is actually implicit in the work of Skorohod [83], but is generally credited 
to McKean. If we set (3 = 0, i.e. we stop any breeding in the BBM, then the McKean 
representation collapses to the solution of the heat equation. Taking F(s) =  s2 makes
(1.2) the famous Fisher-Kolmogorov-Petrovski-Piscounov (FKPP) equation of popula
tion genetics. McKean used the representation of Theorem 1.2.1 to study particular 
solutions for the FKPP equation known as travelling waves. We will look at this in 
more detail in the following sections.

3



1.2 Branching diffusions and differential equations

1.2.1 K P P  equations and travelling  w aves

The Kolmogorov-Petrovski-Piscounov (FKPP) equation

(1.3)

for u G C'1'2(E+ x R) and F  G C(R+), has a long history of study involving both 
analytic and probabilistic methods. This equation arose in biological models for the 
spread of advantageous genes through a population (see Fisher [36]), and so it is not 
surprising that wave-like solutions to the equation are of fundamental importance. In 
their 1937 paper Kolmogorov, Petrovski, and Piscounov [63] gave the first important 
results in this direction, two of which we summarise below.

T heorem  1.2.2 (K olm ogorov, P etrovsk i, P iscounov 1937). (i) Suppose F  de
fined on [0,1] satisfies the conditions

F( 0) =  F (l)  =  0; 

F '(0) = a >  0;

F(u) > 0 , 0 < u < 1; 

F'(u) < a, 0 < u < 1.

Then solutions to the partial differential equation (1.3), with any initial condition sat
isfying 0 < u(0, x) < 1, remain bounded in [0,1] for all time: 0 < u(t ,x ) < 1 for all
t > 0.

(ii) As t —► oo, solutions to (1.3) with Heaviside initial conditions will propagate on 
R at a constant speed c and assume a limiting shape. By this we mean u(t, x-\-ct) —* v{x) 
as t —» oo, where v G C2(R) satisfies

with v(x) —> 0 as x  —* —oo and v(x) —> 1 as x  —> + 0 0 . This is known as the travelling 
wave solution of speed c, and we refer to (1.4) as the travelling-wave equation for the 
reaction-diffusion equation (1.3).

There is a vast literature on the analytic study of reaction-diffusion equations and 
wave-like solutions. Comprehensive summaries can be found in Britton [17] or Mur
ray [75].



1.2 Branching diffusions and differential equations

1.2.2 B ranching B row nian  m otion  and th e  F K P P  equation

The probabilistic interest in FKPP-type equations dates from McKean’s work [73, 74], 
which expressed for the first time the solution of an FKPP equation and the associated 
travelling-wave equation probabilistically. McKean showed that, for certain bounded 
initial conditions, solutions of FKPP equations can be expressed in terms of an expec
tation taken over all the particles in a branching Brownian motion (Theorem 1.2.1); 
and also that travelling wave solutions, when they exist, can be written as the Laplace 
transform of a martingale limit. Since McKean’s work there has been much proba
bilistic analysis of the FKPP and related equations, for example Bramson [15, 16], 
Uchiyama [84], Neveu [76], Freidlin [37], Chauvin and Rouault [20, 21], Harris [46], 
and Kyprianou [66] to name just a few.

The starting point for our work in Chapter 2 is the FKPP equation

du 1 d2u
m  = 2 d ^  + 0u{u~ 1)’ (1'5)

where (3 > 0 and u =  u(t,x)  G C 1,2(R+ x R). The term (3{u2 — u) belongs to the 
class of functions F  in equation (1.3) studied by Kolmogorov et al [63], and this 
particular reaction-diffusion equation has received much attention from both analysts 
and probabilists. We will now describe briefly some of the most important probabilistic 
work.

Travelling wave solutions of this equation have the form

u(t,x)  =  f ( x -  pt),

where /  G C2(R) and satisfies

\ f "  + p f ’ +  m f - 1) =  Oo nR,

/ ( -o o )  =  0, (1.6)

/(oo) =  1.

In this thesis we only consider monotone travelling waves, although non-monotonic 
travelling waves also exist and are of great interest to mathematical biologists — see 
Murray [75] or Britton [17] for example. It is very well known that monotonic solutions 
of the system (1.6) exist for all speeds p > y/2ft, and that these solutions are also 
unique up to translation. For —oo < p < y/2/3 there are no monotone travelling wave
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1.2 Branching diffusions and differential equations

solutions of speed p.
With the representation of Theorem 1.2.1 McKean was able to provide simplified 

proofs of the results of Kolmogorov et al. [63], and also extend some of them — in par
ticular McKean showed that so long as the initial conditions have a certain asymptotic, 
the solution will converge to the travelling wave.

The McKean representation has a particularly elegant form if we take the Heaviside 
initial condition u(0, x) =  l{x>o}, in which case

u(t,x) = E x (  l{x«(t)>o}) =  P x(Xu(t) > 0,Vu € Nt)
'  u£Nt '

= P°(X u(t) > Vti € Nt) = P°(Lt > - X) =  P°(Rt < x), (1.7)

where Lt := infuĜ t X u(t) and Rt := supueNt X u(t) are, respectively, the left- and right
most particles in the branching Brownian motion. The behaviour of the right-most 
particle plays a leading role in BBM studies of the FKPP equation — see Bramson [15], 
and Chauvin and Rouault [20, 21]. In particular we note that the spatial spread of 
BBM is asymptotically linear with speed y/2ft, by which we mean that

lim ^  =  y/20
t — ‘ OO t

almost surely. We also note that the speed of the right-most particle corresponds to 
the threshold speed for existence of travelling waves.

Associated with the BBM are the additive martingales

Zx(t) := e^ u (0 -( |A 2+/?)t5
u€Nt

which are defined for all A G K. These martingales are uniformly integrable if and only 
if |A| < \/2]5, in which case Z\(oc) > 0 almost surely; and if |A| > y/20 then Z\{oo) =  0 
with probability one (Neveu [76]). These martingales can be used to establish both 
existence and uniqueness for solutions of the system (1.6), and for p > y/Zfi the unique 
(up to translation) travelling wave is

f ( x )  = E x exp(—Za(oo)).

We also observe that, by symmetry, there exist monotone travelling waves of speeds 
p < —y/W  which decrease from 1 to 0. The case p = y/20 requires a more delicate

6



1.2 Branching diffusions and differential equations

analysis using the ‘derivative’ martingale

Z'x(t) := Zx(t) =  Y ,  ( * » «  -
u £ N t

full details of which can be found in Harris [46].
Thus far we have discussed the ‘classical’ travelling-wave problem, which has been 

studied since McKean’s initial paper [73]; there have been numerous extensions of the 
theory to related problems, one of which forms Chapter 2 of this thesis, but before 
moving on to this we highlight two recent studies of the FKPP equation (1.5) that are 
of particular relevance to Chapter 2. The first entirely probabilistic proofs of the results 
described in this section so far were given in Harris [46], the key innovation being a 
probabilistic derivation of a large-a; asymptotic for travelling waves (when they exist),
from which uniqueness modulo translation follows. Following this Kyprianou [66] gave
an alternative probabilistic analysis of the same problem using spine constructions, 
where the martingales Z \  and Z'x were used to change measure on the probability 
space of the BBM. Spine techniques are central to many of the proofs in this thesis, 
and a detailed introduction to these ideas is given in Section 1.3.

1.2.3 T he one-sided  F K P P  system

Since 1976 much effort has gone into the extension of McKean’s ideas to other partial 
and ordinary differential equations. We devote Chapter 2 to a probabilistic analysis 
of the modification of the system (1.6) given below, which we shall refer to as the 
one-sided FKPP system.

+ 1) =  0 on (0, oo),
/ ( 0+) = 0, (1.8)

/(oo) =  1.

Both p and j3 are strictly positive constants. If /  : (0, oo) —► M is a solution of the 
above system, then f ( x  + pt) solves the FKPP equation (1.5). We note, however, that 
f ( x  +  pt) is not a travelling wave in the sense of Theorem 1.2.2: it is not the limiting 
shape of any solutions of (1.5).

We study the existence and uniqueness for solutions to the system (1.8) by con
sidering a branching Brownian motion with absorption. This is a dyadic branching

7



1.2 Branching diffusions and differential equations

Brownian motion in which the spatial motion of the particles is a Brownian motion 
with drift — p < 0, the breeding rate is /? > 0, and particles are killed (removed from the 
process) on hitting the origin. Clearly there is a chance that this process can become 
extinct, and we will denote by £ the extinction time, so that {£ =  oo} is the event that 
the BBM survives forever. It is the study of the extinction probabilities P X(C < oo) 
that yields existence and uniqueness for (1.8); and we prove a large-x asymptotic for 
the one-sided travelling wave, when it exists, using martingales for a single-particle 
Brownian motion. We are also able to prove the following asymptotic result for the 
right-most particle in the killed BBM.

Lemma 1.2.3. Suppose p <  y /2 /3 . For all x  > 0 we have

lim ^  =  y / 2 -  p,
t - K X )  t

P x-almost everywhere on {£ — oo}.

This is telling us that, to order t, on {£ =  oo} the asymptotic speed of the right
most particle in the killed BBM is the same as it would be if we did not have the 
absorbing barrier at the origin.

With the asymptotic speed of the right-most particle in the killed BBM established, 
one naturally wonders if anything be said about the rate of growth in the numbers of 
particles travelling at slower speeds, or if we can find the rate of decay of the probability 
that the right-most particle travels at a faster speed. These questions motivate the work 
in Chapter 3, in which we consider particles with spatial positions above the spatial 
ray of gradient A > 0. For the ‘super-critical’ region 0 < A < y / 2 — p, we find the 
almost-sure asymptotic rate of exponential growth in the number of particles situated 
above the spatial ray of gradient A; and in the ‘sub-critical’ region A > — p we find
the asymptotic rate of decay of the probabilities P x(Rt > At + 0), where 0 > 0 is some 
constant. Our study of the probabilities P x(Rt > At-\- 6) draws on work of Chauvin 
and Rouault [20] for standard branching Brownian motion — their work is discussed 
in some detail in Section 1.3.2 below.

The work in Chapters 2 and 3 is joint with S. C. Harris and A. E. Kyprianou, and 
has appeared in Harris et al [45].

A brief note on the more general theory

This introductory section has barely scratched the surface of the vast body of work on 
the probabilistic analysis of ordinary and partial differential equations. Comprehensive

8



1.3 Introduction to the spine approach

surveys of the relationships between branching diffusions and differential equations 
can be found in, to cite just a few examples, Freidlin [37], Dynkin [28], and Ikeda et 
al. [50, 51, 52]. Another area of great importance in the probabilistic literature is the 
use of superprocesses in the analysis of differential equations. Similar issues, such as 
the representation of solutions probabilistically, arise there; but superprocesses are not 
the object of study of this thesis and so for an account of this subject we refer the 
reader to Dynkin [27, 29], Le Gall [69], Etheridge [33], and references therein.

1.3 Introduction to  the spine approach

During the last decade or so spine constructions have become an important tool in the 
study of branching processes — for Galton-Watson processes, branching random walks 
and superprocesses, as well as branching diffusions. In this section we will give a few 
examples of spine constructions, and describe some applications. We give particular 
attention to the results of Chauvin and Rouault [20], which motivated many of our 
results in Chapters 3 and 4 on BBM with absorption at the origin.

1.3.1 T he sp ine con stru ction  for th e  G alt on-W atson  process

A spine construction for a branching process is a change of measure that only alters the 
behaviour of the single original individual: all subtrees branching off from the ‘spine’ 
behave as they did under the original measure. This idea was first formalised in the 
context of branching Brownian motion by Chauvin and Rouault [20, 21].

Although a few earlier papers — and several later ones, e.g. Chauvin et al. [22], and 
Waymire and Williams [86, 87] — used size-biased tree constructions, the spine ideas 
were not fully exploited until the relatively recent series of papers Lyons et al. [72], 
Lyons [71], and Kurtz et al. [65]. These papers all considered discrete-time processes 
(Galton-Watson processes and the branching random walk), and as a first example of a 
spine construction we give the spine change of measure for a standard Galton-Watson 
process, taken from Lyons et al. [72].

We start with a single individual in generation 0. At each subsequent time-step 
every individual alive divides independently into a random number of offspring, X ,  with 
the number of offspring distributed according to P(X  =  k) =  pk, for k € {0 ,1 ,2 ,...} . 
We define m := E X  < oo, and denote the law of this process by G W .

Lyons et al. [72] defined a change of measure on the probability space of the Galton-

9



1.3 Introduction to the spine approach

Watson process via
dG W
dG W •Fn

= —  =: M r m n (1.9)

Here (Tn)n>o is the natural filtration. Under the measure G W , the initial particle 
gives birth to a random number of offspring according to the size-biased distribution 
X ,  where

P(X =  k) := pk — kpk/m

and k € {0 ,1 ,2 ,...} . One of these offspring is selected uniformly at random, and this 
chosen offspring repeats stochastically the behaviour of its parent; all other offspring 
behave as they did under the measure G W . Notice that P(Jf =  0) =  0, so the spine is 
immortal under the measure G W . Writing X n for the number of offspring the spine 
gives birth to in generation n  € {0 ,1 ,2 ,...} , this construction of the process under the 
law G W  can be easily understood with the aid of the graphical representation below.

X n - 3

G W G W

G W

G W G W

The line of descent marked with the dashed line produces offspring according to 
the size-biased distribution X .  This is the spine.

Lyons et al. [72] used this spine construction to give elegant and intuitive proofs 
of some classical results of Kesten and Stigum [60], Heathcote et al. [49], and Kesten

10



1.3 Introduction to the spine approach

et al. [59] for discrete-time branching processes. Another observation from their paper 
that is of relevance to our later work is the following. Let m  < 1, so that the process 
will GW-almost surely become extinct in finite time, and then for s e  Z + and A 6 T s 
we have

lim G W ( A\Zs+n > 0) =  GWU4). (1.10)
n —►oo

So we can think of G W  as the law of a sub-critical Galton-Watson process ‘condi
tioned to survive forever’. The interpretation of a spine construction as the limit 
obtained when conditioning on an event that has probability tending to zero appears 
in Chapters 3 and 4.

1.3.2 A  first sp ine con stru ction  for branching B row nian  m otion

Spine constructions for branching diffusions arise from changing measure with an addi
tive martingale. To give an example we consider changing measure with the martingale 
Z\,  which gives rise to a spine construction for branching Brownian motion. Using the 
notation from Section 1.2.2 we define the change of measure

d7r£ _  Zx(t)
dP* T t ' z x(oy

Here {!Ft)t>o is the natural filtration; by this we mean Tt is the cr-field that ‘encodes 
information up to time t \  Under the measure nx the BBM may be reconstructed in 
law as follows:

• starting from position x, the initial ancestor diffuses according to a Brownian 
motion with drift A;

• at rate 2/3 the particle undergoes fission producing two particles;

•  one of these particles is selected at random, each with probability one half;

•  this chosen particle repeats stochastically the behaviour of their parent;

• the other particle initiates from its birth position an independent copy of a stan
dard BBM with law P', and so on.

This is a special case the construction of Chauvin and Rouault [20], which allowed 
random numbers of offspring. If we allow random family sizes then the martingale Z \  
has a very slightly modified form, and under the new measure the offspring distribution

11



1.3 Introduction to the spine approach

for the spine is size-biased — as was the case with the Galton-Watson process. To 
properly justify the behaviour under the measure requires significantly more notation 
than we have developed so far, and a careful construction of several different filtrations 
on the probability space of the BBM; full details of this are given in Chapter 3.

We recall from Section 1.2.2 that, for any x  G R, under the measure P x the right
most particle in the BBM has the following asymptotic:

lim —  =  \/2/? P x-almost surely. (1.11)
t — K X j t

This can be proved using the Z \  martingales, or alternatively by using the relationship 
between the position of the right-most particle and the FKPP equation given at (1.7)
(see, for example, Chauvin and Rouault [20]). In order to describe the results of
Chauvin and Rouault [20] we require the counting function

Nt(a,b) := ^  l{xu(t)e(a,6)},
u£Nt

for a, 6 G [—oo,+oo]. Chauvin and Rouault proved the following result on the proba
bility of finding particles that have travelled at speeds greater than y/2fi: for A > y/2/$ 
and 0 e  R,

P x(Nt(Xt +  0, +oo) > 0) ~  CXExNt( \ t  +  0, +oo) > 0, (1.12)
t — »+oo

where C £ R is a constant that does not depend on x. Now

{Nt(Xt 0, +oo) > 0} =  {i?t > At  +  0},

and the McKean representation can be used to show that

u(t, x) := 1 — P x (Nt(At +  0, +oo) > 0)

is a solution of the FKPP equation (1.5) with initial condition u(0, x) := 1{X<0}. The 
Feynman-Kac formula allows us to express the right-hand side of (1.12) as a solution 
of the associated linear partial differential equation

~^t =  + w(t^x) € C'1’2(R+ x R),
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1.3 Introduction to the spine approach

so that (1.12) may also be viewed as a statement about certain solutions of non-linear 
partial differential equations being asymptotically equal to a constant multiple of a 
solution of an associated linear problem.

Since A > y/2/3 we know that

P x(Nt{Xt +  0, +oo) > 0 ) ------► 0,
t — t-OO

and so it is natural to consider whether or not a Yaglom-type result holds. Chauvin 
and Rouault [20] proved that there exists a probability distribution (Ib)i>o on N such 
that

lim P x (Nt(Xt +  0, +oo) =  i Nt(Xt +  0, +oo) > o) =  11*,
t—>oo \  )

and that this distribution has finite expectation 1/CA.
Finally, the spine construction appears as the limit of the law of the process con

ditioned on non-extinction above spatial rays of gradient A > that is for s > 0, 
and any A E F s,

lim P x (A \N t+s{X(t +  s),+oo) > o) =  7r£(A).
t —> oo \  I /

Compare this with (1.10): as we mentioned above, conditioning on a null event can 
often be interpreted using a spine change of measure. We shall return to this idea in 
Chapters 3 and 4.

Much of Chapter 3 is devoted to proving results for the branching Brownian motion 
with absorption that are analogous to the Chauvin and Rouault [20] results for standard 
BBM. Although some of the proofs for standard branching Brownian motion adapt 
easily to the killed process, significant refinements are necessary in places. In particular, 
Z \  is not a martingale for the killed branching Brownian motion, and so we introduce 
new families of additive martingales for this process. Naturally, the close connection 
to standard BBM means that we can (and do) make use of some existing techniques, 
but, nevertheless, adding killing at the origin yields some significant new problems.

The idea that a spine change of measure, suitably interpreted, can be seen as a 
conditioning of a branching process on a null event motivates the results in Chapter 4. 
We will see in Chapter 2 that the extinction time for the branching Brownian motion 
with absorption is almost-surely finite, that is P X(C < oo) =  1, if p > y/2(3', and in this 
case we say that the process is sub-critical. Noting that survival of the process until 
time t  is equivalent to the right-most particle, Rt, being strictly positive, one might
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1.3 Introduction to the spine approach

then ask what can be said about the conditioned law P x(A\Rs+t > 0) for A € Fs, as 
t —► oo. The first step in Chauvin and Rouault [20], and also in Chapter 3, is to prove 
the asymptotic for the probability P x(Rt > X t+ 6). Following this strategy, the main 
result in Chapter 4 is an asymptotic result for the survival probability P x(Rt > 0) 
in the case p > y/2^. Although this looks a very similar result to the asymptotic for 
P x(Rt > Xt+6), a significantly different approach is needed in the proof. Once we have 
this asymptotic result, the sub-critical process ‘conditioned to survive forever’ can be 
interpreted as a spine construction in which the spine behaves like a Bessel-3 process.

The work in Chapter 4 appears in Harris and Harris [44].

1.3.3 M ore ap p lication s o f  sp ines

Thus far we have discussed spines primarily in the context of null-conditioning for 
branching processes. However the appeal of the spine approach is due mainly to the 
way it has yielded intuitively simple, elegant proofs of both new and old results in the 
theory of branching processes. We now mention briefly some other applications of spine 
techniques that appear in this thesis.

Martingale convergence theorem s

The fundamental role of additive martingales in the theory of branching processes 
means that there is much interest in results on the convergence in £ p-spaces of these 
martingales, for p > 1. The Lyons et al. papers [65, 71, 72] used a dichotomy between 
the behaviour of the limit of the change-of-measure martingale under the original mea
sure as compared to the spine measure to give short proofs of results from Kesten and 
Stigum [60, 61], and of Biggins [5]. Kyprianou [66] used similar ideas in the context of 
branching Brownian motion to give new derivations of the Cl convergence properties 
of the Z \  martingales. Hardy and Harris [42] refined the method yet further to tackle 
C? convergence in the case p > 1.

These authors combine the aforementioned measure-theoretic dichotomy with an
other powerful spine technique — the decomposition of an additive martingale by tak
ing a suitable conditional expectation. Introduced in Lyons [71], this has the effect of 
reducing calculations involving all particles in a branching process to one-particle calcu
lations involving the spine only. Kyprianou and Rahimzadeh Sani [68], Kuhlbusch [64], 
Olofsson [77], Biggins and Kyprianou [11], and Athreya [3] provide further applications 
of related spine techniques.

14



1.3 Introduction to the spine approach

We use a modification of the approach of Hardy and Harris [42] in Chapter 4, when 
studying the convergence of additive martingales for the branching Brownian motion 
with absorption.

Path-wise large deviations

Hardy and Harris [43] used spine techniques to give a ‘conceptually simple’ proof of a 
large-deviations result of Lee [70]. Loosely speaking, this result gives the rate of decay 
(to exponential order) of the probability that a single particle in a branching Brownian 
motion follows a ‘deviant’ path — i.e. a generalisation to BBM of Schilder’s theorem 
for a single Brownian motion. The main innovation of Hardy and Harris was the use 
of a spine change of measure to prove a difficult lower bound for the probability that 
deviant paths are followed.

The generalised M any-to-One lemma

In the calculation of expectations involving sums over the particles in a branching 
diffusion, the use of ‘Many-to-One’ ideas is at least as old as Sawyer [81]. For branching 
Brownian motion the Many-to-One lemma states that, for measurable : M —► JR.,

Px ( ' £ g ( X u(t)))=el*r*{g(Yt)),
''utNt '

where Y  is a single Brownian motion under P. This is the formalisation of the intu
itive notion that expectations of sums over the branching particles are equal to the 
expectation for a single particle, scaled up by the expected population size.

A significant generalisation has been given recently in Hardy and Harris [41]. 
Hardy and Harris showed that we can actually allow /  to be a function of the paths 
{Fu(s)}o<s<t, rather than merely the time t position of the particles. Their result 
also holds for typed branching diffusions, general offspring distributions, and position- 
dependent breeding rates.

The Hardy and Harris proof of the general Many-to-One lemma relies on their 
improved formulation of the underlying tree-space for spine techniques. This has several 
advantages over the constructions of Lyons et al. [65, 71, 72] and Kyprianou [66]. We 
will look at the differences in Section 3.2, when we introduce the full notation for spines.
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1.4 Some other branching diffusion models

1.4 Som e other branching diffusion m odels

In this section we briefly mention some other directions in which the basic BBM model 
has been developed, and introduce the models that are studied in Chapters 5 and 6.

1.4.1 T yp ed  branching diffusions

A multi-type branching process is a process in which particles can be of different types, 
and the type of the particle affects its offspring distribution and (in spatial processes) its 
spatial movement. The multi-type Galton-Watson process and multi-type branching 
random walk are well-studied random processes — in addition to their theoretical 
importance, multi-type models in biological applications can capture variation within 
a population.

In contrast there has been comparatively little work done on typed branching diffu
sions, perhaps because even the simplest multi-type behaviour can add significantly to 
the difficulty of the analysis. Asmussen and Hering [2] studied branching diffusions on 
bounded domains with a general set of types, but in this thesis we will concentrate on 
a particular family of typed branching diffusions for which the space and type motions 
are both diffusions on R.

To give an example of a multi-type branching diffusion we will describe the model 
of Champneys et al. [18]. Let a \,a 2 , r \ , r 2 ,q\,q2 be fixed positive constants. Let 6 be 
a positive parameter, which we can think of as the ‘temperature’ of the system, and 
define the matrices

A : = ( ai °V R : = h  °V
*2)  v °  rv

Retaining the notation of Section 1.2.2 let Nt be the set of particles alive at time at 
time t, and let X u(t) denote the spatial position at time t of particle u E Nt. In 
addition each particle alive at time t now has a type Yu(t) E I  := {1,2}, which evolves 
as autonomous Markov chain on I  with Q-matrix 6Q. Whilst a particle is of type 
y E I, its spatial position moves as a driftless Brownian motion on R with constant 
variance coefficient ay, and it undergoes dyadic branching at rate ry. When a new 
particle is born, it inherits its parent’s spatial position and type. Once born, particles 
are immortal and behave independently of one another.

Using this process Champneys et al. undertook a probabilistic analysis of travelling

qi y2
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1.4 Some other branching diffusion models

wave solutions for the coupled system of FKPP equations

§?= \Aw + Ru{u ~x)+eQu’ (L13)
where u : [0, oo) x R —> R2 so that, for example,

du\(t, x) 1 d2ui(t, x) . . . . . . _ . . . .
 dt =  2a i— d x 2------h r iu i( t ,x )(u i( t ,x )  -  1) -  6qiui{t,x) +  0qiu2(t,x).

Many of the results for the classical FKPP equation have analogues here: for example, 
solutions of (1.13) that are bounded in [0,1] can be shown to have a McKean repre
sentation, and there exists a threshold speed for the existence of monotone travelling 
waves connecting 0 to 1. A travelling wave (of speed c) here is a solution of the form 
u(t, x) = w(x — ct), where w : R —► R2 is monotone increasing and satisfies

+  cw' +  Rw(w — 1) +  OQw - 0 (1*14)

with w{—oo) =  (0,0) and w(oo) =  (1,1). Champneys et al. [18] showed that such 
solutions exist for all sufficiently large speeds. As was the case for standard BBM, the 
probabilistic interpretation of the critical speed for existence of travelling waves is that 
it corresponds to the almost-sure asymptotic speed of the right-most particle in the 
branching diffusion.

Hardy [40] extended the methods of Champneys et al. [18] to study a coupled 
system of N  reaction-diffusion equations, and then the particles in the related branching 
diffusion have a type that evolves as a Markov chain on the enlarged (but still finite) 
state space /  =  { 1 ,2 , . . . ,AT}.

In Chapter 5 we study a typed branching diffusion for which the type-space I  is 
now R, and the type evolves as an ergodic Ornstein-Uhlenbeck process rather than 
a Markov chain. The branching mechanism is also modified from the typed models 
described above: we still have dyadic branching, but this branching now occurs at rate 
that is a quadratic function of the particle’s type position y e  R. In the main results of 
Chapter 5 we find the almost-sure asymptotic ‘shape’ (in R2) of this branching diffusion, 
and also the almost-sure exponential growth rate of the number of particles at a given 
space-type location within this region. Additive martingales and spine constructions 
are at the heart of this chapter, and, in a manner related to the techniques of Hardy and 
Harris [43], we use a spine change of measure to find a lower bound for the probability 
that a single particle in the branching diffusion follows a ‘difficult’ path.
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1.4 Some other branching diffusion models

The work in Chapter 5 appears in Git et al. [39].

1.4.2 B B M  w ith  quadratic breeding rate

In Chapter 6 we study BBM with a quadratic breeding potential, i.e. the instanta
neous rate of dyadic fission of a particle u G Nt is (3Yu{t)2, where (3 >  0 and Yu(t) 
is the particle’s spatial position. BBM with this quadratic breeding rate exhibits the 
interesting feature (noted in Ito and McKean [53, pp 200-211]) that the expected total 
number of particles blows up in finite time, but the total number of particles remains 
finite almost surely for all time. This behaviour makes it a difficult model to study.

The main result of Chapter 6 is a lower bound on the asymptotic position of the 
right-most particle. In contrast to the linear spatial spread of standard BBM, with 
quadratic breeding the right-most particle has a displacement from the origin that 
grows (at least) exponentially in t. We currently do not have an upper bound on the 
position of the right-most particle, but we conclude this thesis with a conjecture and 
some ideas for the further study of this process.
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Chapter 2

The one-sided FK PP equation

In this chapter, a study of branching Brownian motion with absorption allows us to 
prove existence and uniqueness for solutions of the one-sided FKPP equation, and to 
represent these solutions as extinction probabilities for the killed BBM. In the spirit of 
the probabilistic studies of the classical travelling wave problem for the standard FKPP 
equation, we shall see that the behaviour of the right-most particle in the killed BBM is 
central to the argument. Our analysis includes an application of a spine decomposition 
which yields, as a by-product of the KPP study, the asymptotic speed of the right-most 
particle in the killed BBM (on the event that the process survives for all time).

The work in this chapter, joint with S. C. Harris and A. E. Kyprianou, has appeared
in Harris et al. [45].

2.1 Introduction  and sum m ary o f results

In this chapter we restrict our attention to the particular FKPP-type equation

du 1 d2u n, o \ / n .v
m  = 2 d ^  + 0{u ~ u)' (2'J)

where u £ C'1,2(M+ x M) and we have some given initial condition u(0,x) := f(x ) .  
As we mentioned before, the nonlinear term u2 leads to study of BBM with dyadic 
branching, but the probabilistic analysis extends readily to the more general equations 
considered in, for example, Chauvin and Rouault [20].

Searching for travelling wave solutions of speed p, i.e. FKPP solutions of the form
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u(t,x)  =  / ( x  +  pt), for /  G C2(IR), leads to the FKPP travelling-wave equation

It is well known that monotone travelling waves exist and are unique (up to translation) 
for all speeds p > y/2f3. For — oo < p < y/2j$, there exist no monotone travelling wave 
solutions of speed p.

links with branching Brownian motion. We consider a BBM with drift —p, where p e l ,  
and dyadic branching rate /?; that is to say a branching process where particles diffuse 
according to a Brownian motion with drift —p, and after an exponentially distributed 
(rate (3, independent of the spatial motion) length of time divide in two. From their 
birth positions these particles repeat stochastically the behaviour of their parents. All 
particles are independent of each other. We shall refer to this process as a (—p,/?;M)- 
BBM, with probabilities {Px : x  G M} where P x is the law of the process initiated from 
a single particle positioned at x. The configuration of space at time t is then given 
by the point process X^ p, with points {y u (t) : u G A/rt_p}, where M ^ p is the set of 
individuals alive at time t.

Associated with the (—p,/?;R)-BBM are the positive martingales

which are defined for each A g I .  It is well known that such martingales are uniformly 
integrable with strictly positive limit precisely when |A +  p\ < otherwise they
have an almost-sure zero limit. These martingales can be used to establish both the 
existence and uniqueness of the travelling wave solutions to the system (2.2) where, 
in particular, f ( x )  =  E x exp (—Z\(oo)) gives a representation for the travelling wave 
of speed p when A satisfies ^(A +  p)2 — p(A +  p) +  /3 =  0. See McKean [73, 74] and 
Neveu [76]; and we remind the reader that Kyprianou [66] and Harris [46] give complete 
probabilistic expositions that are particularly relevant for the techniques used in this 
chapter. These latter references also include derivations of the asymptotic behaviour 
of the travelling wave solution. We note that the martingale results for a constant drift 
of p G R follow trivially from the p = 0 case found in these, and subsequent, references.

\ f "  -  p f  + P U 2 -  f )  =  O o n R 

/ ( - 0°) =  1 , 

/(oo) =  0.

(2 .2)

One of the probabilistic methods for studying equations (2.1) and (2.2) is via their

Zx (t):= e{X+p)yu{t)' {^ x2- p2)+(3)t (2.3)
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The system that is the object of study in this chapter is the FKPP travelling wave 
equation on a modified domain: we shall consider solutions to the FKPP travelling 
wave equation defined on R + that satisfy /  : R + —> [0,1], /  G C2(0, oo) and

^ / "  ~ p f '  + W 2 -  / )  =  0 on (0, oo),

/(0 + ) =  1, (2.4)

/(oo) =  0.

We refer to this as the one-sided FKPP equation, but remind ourselves that solutions 
to this system are not travelling waves in the sense of being the ‘limiting shape’ of 
solutions of (2.1).

Note that without the boundary conditions we always have that the constant func
tions 0 and 1 are solutions to (2.4). Interestingly, solutions to the one-sided FKPP
equation occur precisely at wave speeds for which there are no (monotone) solutions
to the FKPP travelling wave equation on R.

Theorem 2.1.1. The system (2.4) has a unique solution if and only i f —oo < p < yflfd, 
in which case

lim e~(f,- ' / p2+2V xf ( x )  = k
i |o o

for some constant k E (0,oo). Further, if p >  y/2j3, there is no solution to (2.4).

Existence, uniqueness, and a weaker asymptotic result were established analytically 
in Pinsky [78], who himself cites Aronson and Weinberger [1]. The stronger asymptotic 
result given here can be extracted from Kametaka [57], who also uses analytic methods 
— namely classical phase-plane techniques (as described in Coddington and Levinson 
[23]). Some care is required, though, as Kametaka’s paper is predominantly concerned 
with the case p > y/2@.

In the spirit of Harris [46] and Kyprianou [66], we shall provide a new proof of 
Theorem 2.1.1 using probabilistic means alone which, for the most part, means that 
we appeal either to martingale arguments, spine decompositions, or fundamental prop
erties of both branching and single-particle Brownian motion.

In contrast to the probabilistic study of travelling waves on R, our analysis involves 
a branching Brownian motion with drift — p where particles are killed at the origin. 
For the purpose of the forthcoming analysis, we will construct this killed BBM, X ~ p, 
from the part of the BBM X ~ p that survives killing at the origin. Considering X ~ p as 
a subprocess of X ~p, we shall again work with the probabilities {Px : x  > 0}. We shall
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denote the configuration of particles alive at time t by {Yu (t) : u G N ^ p}, where N(~p 
is the set of surviving particles. In keeping with previous notation, we shall refer to 
this killed BBM process as a (—p,/?;M+)-BBM. We define £ := inf{i > 0 : N(~p =  0 } 
to be the extinction time of the (—p,/?;R+)-BBM, and then {£ =  oo} is the event the 
process survives forever.

In Section 2.2, we shall briefly discuss the details of a spine construction for the 
(—p,/?;R)-BBM. In particular, if we change the measure of a (—p,/3;R)-BBM using 
the Z \ additive martingale, the process under the new measure can be constructed by 
first laying down the motion of a single particle, the spine, as a Brownian motion with 
modified drift A, which gives birth at an accelerated rate 2(3 to independent (—p,/?;M)- 
BBMs. These changes of measure and their associated spine constructions prove a key 
tool in our later analysis.

In Section 2.3 we look at some important properties of the drifting branching Brow
nian motion with killing at the origin. In particular, we look at the behaviour of the 
right-most particle, Rt, the relationship with the survival set, and survival probabilities.

In Sections 2.4-2.6, we prove Theorem 2.1.1 via a sequence of smaller results. These 
are: non-existence of solutions to the system (2 .2 ) for p > y/2(5, as a consequence of 
P X(C < oo) =  1 in the (—p,/?;R+)-BBM; existence of a solution for —oo < p < y/2(3 in 
the form of the (non-trivial) extinction probability P X(C < oo); uniqueness of travelling 
waves for —oo < p < y/W', and finally the asymptotic result.

In Section 2.7, we show how our intuitive spine approach to killed BBM in Sec
tion 2.3 also allows us to deduce the following asymptotic result for the right-most 
particle in the (—p,/3;R+)-BBM.

Lemma 2.1.2. For all x  > 0 we have

Jjm ~r  =  y / ty  ~  Pt |o o  T

on {C — oo}, Px-almost surely.

We note that Sevast'yanov [82] and Watanabe [85] have used extinction probabilities 
for BBM with absorption on bounded domains to study diffusion-type equations on 
those domains.
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2.2 Spine constructions for B B M

In this section, we briefly recall a change of measure and its associated spine construc
tion. This will be a key tool in our proofs in Section 2.3.

When |A + p| < one can define an equivalent change of measure on the prob
ability space of the (—p,/3;R)-BBM as

dPx
= Y %  = e - (X+")xZx (t)

Ft

Under 7t£ the tree of the (—p,/3;R)-BBM can be reconstructed in law in the following 
way:

• starting from position x, the initial ancestor diffuses according to a Brownian 
motion with drift A;

•  at rate 2 /? the particle undergoes fission producing two particles;

• one of these particles is selected at random with probability one half;

•  this chosen particle repeats stochastically the behaviour of their parent;

•  the other particle initiates from its birth position an independent copy of a 
(—p,/3;R)-BBM with law P', and so on.

The selected line of descent is referred to as the spine. The spine moves as a 
Brownian motion with drift A, giving birth at an accelerated rate 2/3 along its path 
to independent (—p,/3;R)-BBMs. This change of measure has been used before by 
Kyprianou [6 6 ], and also by Chauvin and Rouault [20]. We give the detailed set-up 
and notation for such changes of measure in Chapter 3, when it becomes necessary 
to introduce new families of martingales for the (—p,/3;R+)-BBM and describe their 
associated spine constructions.

2.3 K illed branching Brownian m otion

It will turn out that the existence and uniqueness result in Theorem 2.1.1 can be proved 
probabilistically by analysing the (—p,/3; R+)-BBM, and in particular the behaviour of 
the position of its right-most particle, defined by

Rt = sup {Yu (t) :u  E Nt~p}
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on {C > t}, and zero otherwise.

T heorem  2.3.1. We have for all x > 0 and p G M,

lim sup Rt =  oo
ifoo

on =  oo}, P x-almost surely.

Proof. Let Y  =  {Y(t) : t > 0} be a Brownian motion with drift — p and probabilities 
{Px p and let tq =  inf{f > 0 : Y (t ) =  0}. Note that

P x( ( <oo \Pt) >  IJ  < e*) = [ J
u £ N ~ p u e N ~ p

where ep is an exponential variable (independent of Y )  with rate (3. The above inequal
ity holds on account of the fact that extinction would occur if each of the individuals 
alive at time t hit the origin before splitting. Setting a = p — y/p2 + 2(3 <  0, standard 
expressions for the one-sided exit problem for Brownian motion — see, for example, 
Borodin and Salminen [14] — imply that for all x  > 0

Px( ( <oo \Pt) >  I ]  e“v“W = ex p (a  £  r„(t)Y
u£ N ^ p u € N ~ p

Now 1{£<oo} is a Poo-measurable random variable, and so P X(C < oo\Pt) is a uniformly 
integrable martingale with limit 1{^<00}. Thus, P x-almost everywhere on {£ =  oo}, it 
is clear that P X(C < oo|Tf) converges to zero, and hence for all x  > 0

lim Yu(t) = oo on {£ =  oo}, P x-a.s.
u £ N ^ p

Now let Fz be the event that the (—p,/?;M+)-BBM is contained entirely in the strip 
(0 , z). For the process Y  define the stopping time rz =  inf{£ > 0 : Y  (t) =  z }. We have, 
for 0  < x < z,

P x(Tz \T t)<  f t  ^ f \ r 0 < r z) (2.5)
u £ N r P

on Yu (t) G (0,z), for u G N ^ p. This inequality follows from the fact that Tz implies 
that the spatial path of each of the lines of descent emanating from the configuration 
at time t must hit the origin before hitting 2 . First consider the case that — 0 0  < p < 0.
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In this case we can write from (2.5) that, on the event that Yu (t ) G (0, z) for each 
U e  JVf

P * ( r , |* ) <  n  sinh ^ W) < exp (  -  | , |  £  y„(t) ) 0

u £ N ~ p u£ N ^ p

on the event {£ =  00} as t tends to infinity. Now consider the case that p > 0. It 
follows, again by using classical results for the two-sided exit problem, that on the 
event that Yu (t ) G (0, z) for each u G N ffp

P * (r ,|* )<  n
«€jvr'

êxp(-£^ p E y"w)’ (2-6)
U £ N ~ P

where we have used the inequalities e~x sinh x  < x  and 1 — x  < e~x. The exponential 
at (2.6) tends to zero on the event {£ =  00} as t —> 00. Finally, for the case that p =  0, 
on Yu (£) G (0, z) for u G N ^ p

p x ( T z \ F t ) <  n (i_^ ) sexp(-; e  «̂w)-*o
u £ N ~ p u£ N ~ p

on the event {£ =  00} as t —> 00. In conclusion, for any z > 0,

P x ^Rt > z infinitely often £ =  0 0  ̂ =  1

and the statement of the theorem holds. □

Theorem 2.3.2. I f  p >  y /2 j3  then P x (£ < 00) =  1 for all x  >  0.

Proof. Suppose that Tlt is the position of the right most particle in a (—p,/?;R)-BBM, 
and consider the ‘critical’ martingale Z ^ 2p_p(t). We have

Z^2p_p(t) >  e \ ff i(Kt - (VW-p) t ) > 0, 
and it is well known (see Neveu [76], Harris [46], or Kyprianou [6 6 ]) that Z^/zp-pit) —> 0
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2.3 Killed branching Brownian motion

almost surely, from which we may deduce that

limoo ( ji t  -  (y /2 0 - p ) t j — —OO a.s.

Prom our construction of the (—p, (3; R+)-BBM, extinction of this process is guaranteed 
when the right most particle in the (—p, (3; M)-BBM drifts to —oo. Thus, when p > y/2/3,

T heorem  2.3.3. I f — oo < p < y/2(3, then for each x  > 0 and A € (0, y/2j3 — p)

(i) E X(Z\{oo); liminftToo Rt/ t  > X) = 7rf (liminftToo Rt/ t  > A) > 1 -  e~2Xx;

(ii) P X(C < oo) € (0 , 1 );

(Hi) limxjo-Px(C < °°) =  1 / ond

(iv) limxToo P X(C =  oo) =  limxTooP x(liminftTooi? t/t >  A;C =  oo) =  1 .

Proof, (i) Recall that when |A +  p\ < y/2(3, and in particular when A G (0, y/2(3 — p), 
under the measure 7t£ (defined in Section 2.2) the (—p,/?;R)-BBM has one line of 
descent, the spine, which has an exceptional drift A. The probability that this spine 
never meets the origin is the probability that a Brownian motion started from x  > 0  

and with drift A has an all time infimum that is strictly positive — this is well known
to be 1 — exp(—2Ax). If we write £ = {& : t > 0} for the spatial path of any surviving
line of descent in X ~ p, then we have established that

Ex ( Z \(oo); £ =  oo and in X ~ p such that lim — =  A J > 1 — e~2Xx.
\  tf<» t )

Now note that

and the statement of part (i) follows.
(ii) To prove that P X(C < oo) > 0, note that there is a strictly positive probability

resulting in extinction. To prove that P X(C < oo) < 1 , or equivalently that P X(C =  
oo) > 0, recall from part (i) that under 7 the probability that the (A-drifting) spine

this happens with probability one. □

- oo and 3£ in X  p such that lim — =  A
oo t

C {lim inf R t/ t  > A},

that the initial ancestor in the process X  p hits the origin before reproducing, thus

in the branching Brownian motion does not meet the origin is strictly positive. This
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2.4 Non-existence for p > y/2fi

implies that E x(Z\(oo)'X  =  oo) > 0 ; and since P x(Z\(oo) >  0 ) =  1 , it follows that 
P X{C = oo) > 0 .

(iii) Since extinction in a finite time is guaranteed if the original ancestor is killed 
before reproducing,

P X(C < oo) >  < e/3) =  e-<vV+20-P)* |  1

as x  —* 0. Recall that To =  inf{t >  0 : Y (t)  =  0 }, and also that ep is exponentially 
distributed with parameter (3 and independent of the Brownian motion (y,P* ).

(iv) Note that P x(lim in f t^  R t/t  > A;£ =  oo) is an increasing function of x  and 
therefore has a limit. Suppose this limit is not equal to one. Then since it was shown 
in part (i) of the proof that

lim E x ( Za(oo); lim inf Rt/ t  >  A J — 1,
x |o o  y  tfo o  J

there is a contradiction, since for all x > 0

P x(Z\(oo) > 0) =  1 and E x(Zx(oo)) = 1.

Finally, noting that P X(C — oo) > P x(lim inf^oc Rt/ t  > A;C =  oo), the proof is 
complete. □

2.4 N on-existence for p

T heorem  2.4.1. No travelling wave solutions to (2.4) exist for p >

Proof. Suppose that /  is a solution to (2.4). It follows that, for all x > 0,

n /(y«w)
u € N t~p

is a martingale which converges almost surely and in C1 (Px). We have seen in Theo
rem 2.3.2 that if p > y/2fi, then P x (£ < oo) = 1 for all x > 0 and hence

II /(y«W) = 1t|oo -*•x 
u € N - p

almost surely, implying that /  =  1 ; that is to say there is no non-trivial solution. □
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2.5 Existence and uniqueness for —oo < p <  \/2]3

2.5 E xistence and uniqueness for —oo <  p  <  y/2 /3

T heorem  2.5.1. Solutions of the system (2.4) exist and are unique for —oo < p < 
y/2p. Further, the unique solution can be represented by the extinction probability for 
the (—p,(3;M.+)-BBM, that is

f(x )  = P x(c < oo). (2.7)

Remark 2.5.2. The representation (2.7) trivially shows that the unique solution to (2.4) 
is strictly monotone decreasing, although this wasn’t an initial restriction. Indeed, one 
could assume monotonicity instead of /(oo) =  0  and again reach the same conclusions. 
Also note that one might naively try to extended this solution to produce a travelling 
wave of speed p < y/2]3 on the whole of R, but such a solution would clearly fail to 
satisfy equation (2 .2 ) at a single point (due to a discontinuity in the first derivative at 
the origin).

Proof. For x  >  0  define p(x) := P X(C < oo). From Theorem 2.3.3 we have p(x) € (0 , 1 ) 
for each x  > 0 , limx|oop(a;) =  0 , lim^oP^c) =  1 ? and, in addition, p(0 ) =  1 because of 
instantaneous killing.

An application of the branching Markov property (cf. Chauvin [19]) together with 
the tower property of conditional expectation gives

p(x) =  E z (p*(C < oo|^e)) =  E* (  n  P(Yu(t))) . (2.8)
ueNt~p

As this equality holds for all x, t > 0, one can see that Y[u£n ~p p(Yu ( 0 ) ls a martingale 
which converges almost surely and in L l {Px). Note that on {£ < oo} it is clear that 
the martingale limit is equal to 1 — the empty product. Note however that this 
martingale cannot be identically equal to 1 because its mean, p(x), is strictly less than 
1. An application of Kolmogorov’s backwards equations (cf. Champneys et al. [18] or 
Dynkin [27, Theorem II.3.1]) yields that p belongs to C 2(0, oo) and is a solution to the 
ODE in (2.4).

To show uniqueness, suppose that /  is a solution to (2.4) when —oo < p < 
y/2fi. Again we can construct a positive martingale Mt := ELgat- ' 0 E(^u (t )) which 
is bounded, and hence uniformly integrable. Clearly M 00 =  1 on {£ < oo}. Theo-
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2.6 Asymptotic when — oo <  p <

rem 2.3.1 gives limsup^oo =  oo on {( =  0 0 } almost surely, and moreover 

Moo =  lim TT f(Y u (t)) = lim inf TT f(Y u (t ))
tfoo  1 A tfoo  -L -L

u£N^p u£N~p

< lim inf f{ R t)
tfoo

< /(lim  sup Rt).
tfoo

Since / ( + 0 0 ) =  0, we can identify the limit as =  1{£<00} almost surely. Finally,

/  (x)  =  E X(M0) = E X(M00) = P X(C< 0 0 ) =  p ( x )  

and uniqueness follows. □

2.6 A sym ptotic  w hen —00 < p  <  y/2j3

In this section we determine the asymptotic for the solution to the one-sided FKPP 
system (2.4). As a first step, the following lemma shows that the unique solution decays 
exponentially for sufficiently large y.

L em m a 2 .6 .1 . Let f  be the unique solution of the system (2.4) when —0 0  < p < \/2/?. 
Let xo > 0 and define p y/p2 +  2/?(l — f ( x 0 )) — p > 0. Then

f ( y ) < ( f ( x  o)e»x°)e-™

f o r  all  y  >  x q .

Proof. Recall that Y  is a Brownian motion with drift —p starting from x > 0 under 
WLp, and that for any z > 0 , rz := in f{ t: Yt =  z}. Ito’s formula implies that

/  ftATO \
Mt := f(Y tAT0) exp f (3 jj' ( f (Ys) -  1) d s j  (2.9)

is a P^^-local martingale, and, since 0  < /  < 1 , it is actually a bounded martingale. 
Suppose that y  >  x 0 . Since t xq <  00  almost surely under P^.^, the optional stopping 
theorem and the monotonicity of /  (see remark after Theorem 2.5.1) yield

f(y) =  (/(zo)exp ( 0  -  l)d s^  < f (xo)E"p .
(2 .1 0 )
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2.6 Asymptotic when — oo < p <  y/2]3

It can be shown that (see, for example, Borodin and Salminen [14])

^(/O*o)-iK0J _  C-My-*o)?

where p y /  p2 + 2/5(1 — / ( x q ) )  — p > 0. Inequality (2.10) then becomes

f { v )  < } ( x

as required. □

As a corollary, we gain a new and straightforward probabilistic proof of the weaker 
asymptotic result found in Pinsky [78] that first motivated this work.

C orollary  2 .6 .2 . When it exists, the solution to the system (2.4) satisfies

lim —In f  (x) = p — y/p2 + 2(3 <  0.
X —KX> X

Proof. For any fixed xq > 0 and y > x o, taking logarithms in Lemma 2.6.1 yields

In f ( y )  x 0 In f ( x 0)
---------< p  1-------- -—- -  p

y  y  y

and hence
1 nf{y)  

lim sup  1 < —p.
y — K X> y

As this is true for arbitrary x q  > 0, and f ( x q )  —> 0 as x q  —* oo, we find that

In f (y)lim su p    < p — y/p2 +  2(3.
y—yoo y

To prove the lower bound, recall that Mt defined at (2.9) is a uniformly integrable 
martingale and hence for y  >  0, remembering that f ( x )  G [0,1] with /(0 ) =  1, we have

f ( y )  = WLp ("exp ( p £ ° ( f ( Y s ) -  l ) d A )  (2.11)

> Ey p(e~PT°) =  e ~ ^ p2+2(3~p)y.

Hence
In f ( y ) > p  -  y/p2 + 2/3, 

y
and taking a lim infy completes the proof. □
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2.6 Asymptotic when — oo < p <  y/2j3

As another corollary to Lemma 2.6.1, we can find an exponentially decaying bound 
for /  valid on the whole of (0,oo). This is of importance in the proof of the strong 
asymptotic of Theorem 2.1.1.

C orollary  2.6.3. Let f  be the unique solution of the system (2.4) when —oo < p < 
\/2/L Given any K  > 1, there exists a k > 0 such that

f (y)  < Ke-*y

for all y > 0 .

Proof. For K  > 1, choose xq > 0 such that K  = e^x°. Note that f ( x o) E (0,1) and 
then set k = y / p 2 +  2(3(1 — f ( x o ))  — p  > 0. Lemma 2.6.1 says that f (y)  < K e~Ky for
all y > x o. Also, since 0 < /  < 1 and for y < x o we have K e~Ky > 1, we trivially have
f (y)  < K e~Ky for all y < x q . □

We now extend the analysis to prove the stronger asymptotic of Theorem 2.1.1. 
Crucial to this argument is the following proposition, which we shall prove at the end 
of this section.

P ro p o sitio n  2.6.4. With p  := y / p 2 +  2(3, x  > 0 , and f ( x)  the unique travelling wave 
at speed — oo < p < y/2 ($,

Jfirr^E^exp J  f(Y s) ds^ < +oo. (2 .1 2 )

Proof of Theorem 2 .1 .1  (asymptotics). Working with the change of measure

dFiA- p

dPx^
_  \ ( Y t + p t - x ) -  l \ 2t- e

Tt

for A G R and x  >  0, we have from the martingale at (2.9) that

e~Xxf (x)  =  Ex_p ( e - XŶ o f ( Y tATO)e^ oATo f ^ ds ex^ o - x) - ^ tA^  #

Now choose A =  a  := p — y/p 2 + 20 < 0, so that j3 +  p \  =  ^A2. Defining v(x) := 
e~axf ( x ) and p := y/p2 +  2(3 > 0  yields

v(x) = W_p ^(ItATttJexp ( f i  J  / ( F s ) d s ^  ,
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2.6 Asymptotic when — oo < p <  y/2fi

whence
/  f t A T Q  \

v(YtAn) e x p b l  / ( y s)d SJ  (2.13)

is a P_p-martingale which is positive and therefore converges almost surely. As to <  oo 
P-p-almost surely, we also have v(YtAT0) 1 almost surely under P;!^; but v is not 
(yet) known to be a bounded function so we cannot immediately conclude that this 
martingale is uniformly integrable. However, using the change of measure

dP*~
dP*p

— J y / p 2+ 2f3- p ) x - P T 0

To

(which is possible because exp(a(YiAT0 — x) — /3(t Aro)) is a uniformly integrable mar
tingale) we may transform (2 .1 1 ) to

v(x) = W , [  exp ( 0  f(Y ,)d e  , (2.14)

and hence the P* - martingale in (2.13) is uniformly integrable. Note that from (2.14) 
it is clear that v is monotone increasing in x, and hence its limit exists as x  —► oo.

All that remains is to prove that v converges to a finite limit as x  tends to infinity, 
which is precisely Proposition 2.6.4. Thus

v(x) := f (x)e~ax ^ k e  (0 ,oo) as x —> oo.

Hence f ( x)  asymptotically looks like the decaying solution of

\ f " - p f - P f  =  0.

which is the linearisation of equation (2 .2 ) about the origin. □

Proof of Proposition 2.6.4• Recall that p = y/p2 +  2/3, and for y > 0

Ey - (e7T°) =  e(p-y/p2~2i)y-p

provided that 2 7  < p2 (for later use we observe that, in particular, this holds for all 

7 < P)-
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2.6 Asymptotic when — oo < p <  y/2fi

Note that for any y > 0, since /  G [0,1] we have

E ^ e x p  ( p f ( Y 3)ds^j < Ey_-p(epT0) = eWp2~^~p)y < oo, (2.15) 

and, for any yo > yi > 0, the strong Markov property gives

E ^ - ( J J ?  m )d s ^ j  =  E yo_ ^ / o T#1 / ( r . ) d ^  E yi_ ^ f 0T° / ( Ys ) ds ' j  (2 .16)

Fix any K  > 1 , and recall from Corollary 2.6.3 that there then exists y  > 0 such 
that

f ( x )  < Ke~^x Vx > 0.

Now fix any d > 0. Choose a fixed M  G N. sufficiently large such that < 1 where
2/1 := Md. Then, for any N  G N and y0 := (M+JV)d, and with S* := r^M+i_ ^ d-T^M+i d̂ 
so that the Si are independent and identically distributed like the first hitting time of 
0 by a Brownian motion started at d , we have (defining T(M+N)d := 0)

E^-exp ( p £ V1 f (Ys )ds^  < E ^ e x p  (&K  £ V' ds^j

( P \  f T ( M + N - r t ) d  ,  \

P K ^ 2  I  e - ^ d s j
n = l  ( M + N — n + i ) d  '

< E»exp  ( p K  e ~ ^ M+N~n d̂S p i -n + i \
^  n = l  '

=  E ^ e x p  [0 K e -™  £  )
'  k=0 '

N - 1
< E» n  exp^e-^Si+O

k=0
N - 1

J] E“- exp(0e~l*kd Sk+i)
k=0

/  ^ - 1    \
exp f d (p — y/p2 — 2{3e pkd) j . (2.17)

'  fe=o '
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2.7 Right-most particle asymptotic — oo < p <  \/2~j3

Since

p -  y/p2 -  2 (3e~pkd =  y/p2 + 2(3 ̂ 1  -  ^ j l -  ^

the ratio test reveals the sum appearing in (2.17) is convergent when N  —> oo. Using 
this fact together with monotone convergence and equations (2.15) and (2.16) now gives 
the required result. □

2.7 R ight-m ost particle asym ptotic — oo < p  <  y/2/3

The intention of Theorem 2.3.3 was to establish properties of the probability of extinc
tion in order to justify it as a solution to the travelling-wave equation. However, in 
light of parts (i) and (iii) of this same theorem there is reason to believe that, like the 
(—p,/?;M)-BBM, the (—p,/?;R+)-BBM has a right-most particle with asymptotic drift 
y/2(3 — p (but now it is necessary to specify that this happens on the survival set). This 
is indeed the case. After considerable extra work Lemma 2.1.2 will actually follow from 
the stronger result given in Theorem 3.1.3, but we can already give a direct alternative 
proof which we include for now for interest.

Proof of Lemma 2 .1 .2 . We shall prove this result by establishing separately that

D ___ r >
lim inf —  > y/2(3 — p and lim sup —  < y /2 fi — p on {£ =  oo} P x-8l.s.

t'l'oo t tfoo ^

Theorem 2.3.1 shows that for each x > 0, on {£ =  oo}, lim sup^^ R t =  +oo P x- 
almost surely, and hence ay := inf{£ > 0 : X ~ p(y, oo) > 0} is P z-almost surely finite 
for each y > 0 on {£ =  oo}. This implies that for any A > 0,

P x (  lim inf R t/t  > X;C = oo ) =  P x (  lim inf R t/t > X;ay < oo;£ =  oo J.
\  tT<» J  \  tfo o  /
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2.7 Right-most particle asymptotic — oo < p <  y/2j3

uy <  oo

Thus for any y > x

P x ^lim inf Rt/ t  > A; (  — oo

=  P x (<jy < oo) P x ( lim inf R t/ t  >  A; £ =  oo
V *T°o

> P x (cry < oo) P y ( lim inf Rt/ t  > A; C — oo j » (2.18)
\  ttoo /

where the inequality follows from the fact that at time ay there is one particle positioned 
at y which, given Pay, gives rise to an branching tree independent of other particles alive 
at time <ry and further whose right-most particle is bounded above by the right-most 
particle of X ~ p. Recalling Theorem 2.3.1, now note that as y —► oo,

P x (cry < oo) |  P x (  lim sup R t =  oo ) =  P x (£ =  oo).
\  tfoo )

With the help of Theorem 2.3.3(iv), it follows from (2.18) that, when we further 
insist that A e  (0, y/2~j$ — p),

PX(C = oo) > P x ( lim Rt/t  > A; C = oo^\ tf°o J

> lim P x{cry < oo)P V ( lim inf R t/t  > A; C =  oo )
y loo  \  tfoo  J

= P X(C = oo).

We thus deduce that for any e > 0, P x-almost everywhere on the event {£ =  oo}, we 
have

lim inf Rt/ t  > y /2^  — p — s.
tfoo

Additionally note that on {£ =  oo}, R t is P^-almost surely stochastically bounded 
above by the right-most particle 7Zt of the unkilled (—/?,/?; IR)-BBM and recall, for 
example, Z \(t) > exp ((A +  p)lZt — ^ ( ^ 2 — P2)t — fit), yielding

lim supR t/t < \p lfi — p
tfoo

P x-almost everywhere on the event {£ =  oo}. □
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Chapter 3

Further analysis of the BBM  
with absorption

In this Chapter we extend our analysis of the (—p,/3; R +)-BBM. We know from Chap
ter 2  that, on non-extinction, the right-most particle travels asymptotically at speed 
y/2fi — p > 0. This divides the upper half-plane into two regions: the ‘sub-critical’ 
region above the spatial ray of gradient y/2/3 — p; and the ‘super-critical’ region below.

We introduce an additive martingale, W \, for the killed BBM. A comparison with 
Z \  allows us to determine the convergence properties of W \, and then martingale 
methods enable us to find the almost-sure exponential growth rate of the number of 
particles near spatial rays of gradient A G (0, ■\fr2[3 — p) in the super-critical region. 
Turning our attention to the sub-critical region, we find an asymptotic expression for 
the probability that there is a particle in the BBM near the spatial ray with gradient 
A > y/2j3 — p. Combining this with the arguments (for standard BBM) of Chauvin and 
Rouault [20], we prove a Yaglom-type conditional limit theorem for killed BBM. We also 
show that the martingale W \ appears as the limiting Radon-Nikodym derivative when 
conditioning a particle in the killed BBM to travel at asymptotic speed A > y/2]3 — p.

Much of the work in this chapter has appeared in Harris et al. [45].

3.1 W \  and statem ent o f results

The central role of the Z \  additive martingales in the study of branching Brownian 
motion is long established and, as already seen in Chapter 2, we can also exploit them
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3.1 W \ and statement of results

in studying killed BBM. However, Z \  is not a martingale for killed branching Brownian 
motion, and so we define a family of (positive) additive martingales W \.

Lem m a 3.1.1. For each A > 0, the process

Wx(t) := E d -
u £ N ~ p

defines a martingale for the (—p, j3]1Sl+)-BBM.

Proof. Let Y (t ) be a Brownian motion started at x  > 0 with drift A under the measure 
P;£. Defining To := inf{£ > 0 :Y( t )  = 0}, it follows from the Many-to-One lemma and 
a single-particle change of measure that

E x(Wx(t)) = e - ^ A2 - ^ E L p((l -  e - 2Ayi)e(A+̂ )yt;ro > t)

= P J ((1 -  e~2XYt); to > t)e^x+^ x 
=  (1 _ C- 2A*)C(A+p)X'

Note the last equality is a consequence of the useful fact that P^(ro =  oo) =  1 — e_2Ax 
is a scale function for Y  killed at the origin under P^.

We now apply the branching property to see that

E*(Wk(t + s)\Tt) =  J2
u £ N ~ p

where given T t , each of the terms W ^ (s )  are independent copies of W \(s) under 
pV„(t) conciusion Gf the previous paragraph now completes the proof. □

These martingales not only prove to be a useful tool in our later analysis, they 
appear fundamental to the study of the killed BBM. In Section 3.3, we discuss their 
convergence properties and show how they can be used to deduce growth rates of 
particles moving at speeds A < y/2~j$ — p.

Like Z \ , the martingale W \ can be used to change measure to yield a spine decom
position. We define a measure Q \ by

dP 3 Tt WX( 0) (1-C-2A*)

and it can be shown (see Section 3.2) that, under Q f, the branching Brownian motion
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3.1 W \ and statement of results

can be constructed path-wise as under 7r^, except that the spine now moves like a 
Brownian motion with drift A that is additionally conditioned to avoid the origin. The 
next result gives the range of A values for which W \ is uniformly integrable.

T heorem  3.1.2. W \ is a uniformly integrable martingale if  both p < >/2(d and A € 
(0, \ / 2 — p), otherwise W \ has a P x-almost-sure zero limit.

Whenever W \ is uniformly integrable, {IT\(oo) > 0} and {C — °°} agree up to a 
P x-null set.

To state our result for the exponential growth rates of particles in the super-critical 
region we define the counting function

Nt p{a,b):= (3.3)
u € N ~ p

for the number of particles found in the interval (a, 6 ) at time t.

T heorem  3.1.3. For x  > 0, under each P x law, the limit

G(A) := lim f - 1  In N f'p( \t , oo)
t —► oo

exists almost surely and is given by

_  ( A(A) if 0 < A < y/2/3 -  p and {£ = oo},

I —oo otherwise,

where A(A) := [3 — ^(A +  p)2.

Remark 3.1.4. Note that we gain the right-most particle speed of Lemma 2.1.2 as a 
corollary to Theorem 3.1.3. It is immediate from Theorem 3.1.3 that

lim inf —  > \/2f3 — p
t — HX> t

P x-almost everywhere on {£ =  oo}; and that

lim sup —  < y/2/3 — p
t - MX) t

P x-almost everywhere on {£ =  oo} follows from Theorem 3.1.3 and the fact that 
N ^ p(Xt, oo) is integer valued.
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3.1 W \ and statement of results

Remark 3.1.5. The almost-sure growth rate above is the same as the growth rate ‘in 
expectation’, by which we mean that for 0 < A < y/2]5 — p,

liin i _ 1  InEx( N f p( \ t , oo)) = A(A). (3.4)

To see this, let Y(t)  be a Brownian motion started at x > 0 with drift — p under the 
measure and define tq := inf{f > 0 :Y( t )  = 0}. The Many-to-One lemma states 
that, for measurable / ,

E* (  £  S{Yu(t))\ =  e^E  l„ ( M y ,T 0 > t ). (3.5)

The expected growth rate (3.4) is now an easy consequence of (3.5) and the one- 
particle calculation

elled at faster speeds than usual.

T heorem  3.1.6. For A > y/2/3 — p and all x  > 0 , 6  > 0, there exists a constant C > 0

Considering particles with spatial position Yn(t) At ■(■ 0, for A > y/ 2 0  -  p, a
Yaglom-type result also holds.

T heorem  3.1.7. For A > y/2fl — p there is a probability distribution (rh)j>i defined 
on N such that

In Section 3.4, we investigate the probability that the right-most particle has trav-

such that

lim Px(Rt > At +  ff)„  =  C, (3.6)
t—>oo (1  — e

or equivalently,

P x(Rt >Xt  + 0) ~ ( \  + p ) C x E x(Nrp(\ t  + e,oo)).
t —> oo

(3.7)

Um Px + o o )  = i\Nt- p(Xt,+oo) > o) = II,,

and this distribution has (finite) expectation equal to 1/(A +  p)C.
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3.1 W \ and statement of results

Finally, we can see the fundamental nature of the W \ martingale that we introduced 
into the killed BBM story: it appears as the Radon-Nikodym derivative linking P x with 
the limit-law of the conditioned process.

T heorem  3.1.8. For A > y/2fi — p, s G (0, oo) fixed, and A G J-a,

P - ( x |  W ( .  +  t ) ,oo) >  o)

Chauvin and Rouault [20] proved analogous results to Theorems 3.1.6-3.1.8 in the 
context of standard branching Brownian motion. Although guided by their approach 
when we prove Theorem 3.1.6, there are a number of significant complications and 
novelties caused by the killing at the origin. However, once these additional difficulties 
are overcome and we have proven Theorem 3.1.6, the proofs of Chauvin and Rouault [20] 
adapt almost unchanged for Theorems 3.1.7 and 3.1.8.

Branching processes with absorbing barriers have been seen before. Kesten [58] 
considers some related questions on survival probabilities, P x(Rt > 0 ), and population 
growth-rates in fixed subsets of R for a similar branching Brownian motion with an 
absorbing barrier. This work is discussed in much greater detail in Chapter 4. Biggins 
et al. [12], and Biggins and Kyprianou [11] considered a branching random walk with 
a barrier.

Remark 3.1.9. Recall that, when it exists, the two-sided travelling wave solution of the 
system (1.6) can be expressed as f ( x ) =  E xe~z ^ ° ° \  where A satisfies ^(A +  p) 2 — p(A + 
p) +  (3 =  0. Given the importance of W \ in the analysis of the (—p,/?;M+)-BBM, it is 
natural to ask whether f \ ( x )  := E xe~Wx(°°') is the one-sided solution of the system (2.4) 
(for a suitable choice of A). The boundary condition / a (0+) =  1 is satisfied, but f \  is 
not the one-sided solution. We can see this by writing

f\(x) = Ex(e-Ŵ - X  = oo) + Ex(e~w^ ; (  < oo),

and then for any A G (0, y/2]3 — p),

E x(e- w^ ; C  < oo) = E x( 1 ;£ < oo) =  P X(C < oo).

It follows from Theorem 3.1.2 that

=  0 0 ) 6 (0 ,!) ,
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3.2 The Hardy and Harris spine construction

whence f \ ( x )  ^  P X(C <  oo). If, on the other hand, A > y/20 — p, then f\{x )  = 1 .

3.2 T he H ardy and Harris spine construction

In this thesis we construct our spines using the approach detailed in Hardy and Har
ris [41]. This is a much more natural construction than that seen for Galton-Watson 
processes in the earlier work of Lyons [71], Lyons et ai [72], and for branching diffu
sions in Chauvin and Rouault [20], and Kyprianou [6 6 ]. These approaches all involved 
certain measures that did not have finite mass, and so could not be normalised to 
probability measures. In the Hardy and Harris approach, we add extra structure to 
the probability space of the BBM in the form of a ‘finer’ filtration of the space. We 
then define a single-particle martingale with respect to this largest filtration; and we 
recover an additive martingale for the whole branching particle process when we look at 
the conditional expectation, with respect to a different filtration, of the single-particle 
martingale.

3.2.1 Sp in e n o ta tio n

In this section we give the background results and notation required for the spine 
set-up. We give the most general presentation here, but remark that certain minor 
modifications are required in later chapters — for instance when we consider typed 
branching diffusions. Note in particular that the notation in this section is generalised 
to allow each particle u to give birth to \-\-Au offspring, where each Au is an independent 
copy of a random variable taking values in {0 , 1 ,2 ,. ..} . The spine techniques developed 
in this thesis could readily be applied to such models.

All probability measures are to be defined on the space T  of marked Galton- Watson 
trees with spines', before defining this space precisely we need to set up some other 
notation. We recall the set of Ulam-Harris labels, f2, defined by

f i :=  {0 } u U ( N ) " ,
n£N

where N := {1 ,2 ,3 ,...} . For two words u,v  € Q, uv denotes the concatenated word, 
where we take u0  =  0 u — u. So, for example, contains elements such as 0412, 
which represents ‘the individual being the second child of the first child of the fourth 
child of the initial ancestor 0 . For two labels u, v G the notation v < u means that 
v is an ancestor of u, and |u| denotes the length of u.
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3.2 The Hardy and Harris spine construction

We define a Galton- Watson tree to be a set r  C such that:

(i) 0  £ r: there is the unique initial ancestor;

(ii) if u, v £ f2, then vu £ r  =>• v € r: this means that t  contains all of its ancestors 
of its nodes;

(iii) for all u £ r ,  there exists Au € {0 ,1 ,2 ,...}  such that for j  £ N, u j € r  if and 
only if 1 < j  < 1 +  j4u.

The set of all such trees is T, and we will use the symbol r  for a particular tree. 
As our work concerns branching diffusions, we shall often refer to the labels of r  as 
particles. Note that for the binary branching mechanisms considered in this thesis we 
have P(AU =  1) =  1, and so there is exactly one r  £ T — the binary tree.

A Galton-Watson tree by itself only records the family structure of the individuals, 
so to each individual u £ r  we give a mark (Yu, <ru) which contains the following 
information: au £ [0 , oo) is the lifetime of particle u, which also determines the fission 
or death time of the particle as Su := Yhv<u anc  ̂the function Yu(t) : [Su — au, Su) —> 
M describes the particle’s spatial motion in M. during its lifetime. For clarity we must 
decide whether or not a particle is in existence at its death time; our convention will be 
that a particle dies ‘infinitesimally before’ its death time — this is why Yu is defined on 
[Su — au,S u) and not — cru, 5U] — so that at time Su the particle u has disappeared 
and has been replaced by its two children.

We denote a particular marked tree by (r, Y, a), or the abbreviation (r, M ), and 
the set of all marked Galton-Watson trees by T . For each (r ,Y ,a ) £ T , the set of 
particles alive at time t is defined as Nt := {u  £ r  : Su — ou < t < Su}] note, however, 
that for the R)-BBM and (—p, /3;R+)-BBM we use the symbols Aft~p and N ^ p
respectively. For any given marked tree (r, M)  £ T  we can distinguish individual lines 
of descent from the initial ancestor: 0 , u\, U2 , U3 , . . .  £ r  where U{ is a child of 1 for 
all i £ {2,3 ,...}  and u\ is a child of the initial individual 0 . We call such a line of 
descent a spine and denote it by £. In a slight abuse of notation we refer to as the 
unique node in £ that is alive at time t , and also for the position of the particle that 
makes up the spine at time £; that is & := Yu(t), where « £ (n jV f .  However, although 
the interpretation of & should always be clear from the context, we introduce the 
following notation for use where some ambiguity may still arise: nodet((r, M,£)) := u 
if u £ £ is the node in the spine alive at time t. It is natural to think of the spine as a 
single diffusing particle
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3.2 The Hardy and Harris spine construction

We define nt to be a counting function that tells us which generation of the spine 
is currently alive, or equivalently the number of fission times there have been on the 
spine: nt := |nodet(£)|. The collection of all marked trees with a distinguished spine 
is the space T  on which our probability measures will eventually be defined, but first 
we define four filtrations on this space, each containing different levels of information 
about the branching diffusion.

Filtration ( F t )t>o

We define a filtration of T  made up of the <r-algebras

F t  •— & &u)  • ^  t , (w, . S €  t]) • t  5

which means that Ft is generated by the information concerning all particles that have 
lived and died before time t, and also those that are still alive at time t. This is what is 
usually referred to in the literature as the ‘natural filtration’. Each of these cr-algebras 
is a subset of the limit

Foo : = * [  I J F t ) .: = „ ( U
x i > 0

Filtration { F t ) t>o

We define the filtration {Ft)t>o by augmenting the filtration Ft with the knowledge of 
which node is the spine at time t :

(Ft)t>o := <r{Ft, nodet(0 ), Foo '= <* ( ( J  F ^ ,

so that this filtration knows everything about the branching diffusion and everything 
about the spine. It is the filtration that contains the most information.

Filtration (Q t ) t> o

{Gt)t>o is a filtration of T  defined by

Gt := : 0  < s < t ) ,  := a f  | J  Qt\
o '
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3.2 The Hardy and Harris spine construction

These cr-algebras are generated only by the spine’s motion and so do not contain the 
information about which nodes of the tree r  make up the spine.

F iltra tio n  (Gt)t>o

As we did in going from Ft to f t  we create (Gt)t>o from (Gt)t>o by including knowledge 
of which nodes make up the spine:

(Gt)t>o := °{Gt, nodet(£)), Goo := o f  ( J  Gt
o

This means that Gt also knows when the fission times on the spine occurred, whereas 
Gt does not.

The relationships between the filtrations of T  may be summarised thus:

G t C G t C  f t  

Ft e f t

Importantly, we have Gt £  Ft, since Ft does not know which line of descent makes up 
the spine and so it cannot know the spine’s motion.

Now that we have defined the underlying space and the filtrations of it that we 
require, we can define the probability measures for branching diffusions. Recalling the 
notation from Chapter 2, we have the measures {P x : x  G R} on ( T , F 0o) for the law 
of the {—p, /?;R)-BBM; and we now extend the measure P  to a measure P  on {T ,foo), 
which is the joint law of the (—p, j3\ R)-BBM with a spine. To achieve this we use the 
following result of Lyons [71].

T heorem  3.2.1. I f f  is an ft-measurable function then we can write

f  = ^  ful{£t=u}, (3.8)
ueNt

where f u is ft-measurable.

Now we extend P x,y to a measure P x,y on (T, foo)  by choosing the particle that 
makes up the spine uniformly at each fission time on the spine; more precisely, for any
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3.2 The Hardy and Harris spine construction

/  G mTt  with a representation like (3.8), we have

f  fdP*(r ,M, i )  ■= f E II
T  U£ N t . v <u

Remark 3.2.2. Empty products are taken as equal to 1. Note that P  =  P ly^ .

In calculations we think of the spine as the ‘backbone’ of the BBM. This idea is 
made precise by the following decomposition of the measure P , which was first seen in 
Chauvin and Rouault [20]. We state the decomposition here in the form it appeared 
in Kyprianou [6 6 ].

T heorem  3.2.3. The measure P  on J~t can be decomposed as:

dP(r, M,() = dP_„te)dlA nf) n  l dP« T’ M)V)' (3-9)
v<£t

where & is a Brownian motion with drift —p under P_/9, and is the law of a Poisson 
process with rate (3.

This result means that the BBM may be constructed path-wise under P  by:

•  the spine’s spatial motion is determined by the single-particle measure ^ - p\

•  the fission times on the spine occur as a Poisson process of rate (3 that is inde
pendent of the spine’s motion;

• at each fission time on the spine two particles are produced;

• one of these is chosen uniformly at random to be the spine and it repeats stochas
tically the behaviour of its parent;

•  the other particle initiates, from its birth position, an independent (—/o, /?; IR.)- 
BBM with law P ‘, giving rise to the subtree (r , M ) v, which is not part of the 
spine.

3 .2 .2  N ew  m easures for B B M

Now that we have set up the notation for the spine approach and defined the space 
(T ,P t ,P ), we can give the changes of measure that we use to alter the behaviour of 
the spine. We first give details of some well-known martingales for one-dimensional
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3.2 The Hardy and Harris spine construction

diffusions, which we shall eventually combine to produce new additive martingales to 
change measure on the probability space of the BBM.

P ropo sitio n  3.2.4 (C hange of m easure for Poisson processes). Let g(t) : R+ —> 
R+ be a non-negative, bounded, continuous function and suppose that the Poisson pro
cess (n, L5) has instantaneous rate g(t), where n  =  {{5* : i =  l , . . . ,n t}  : t  >  0 }. 
Further, assume that n is adapted to {Qt)t>o- Then under the change of measure

dL2ff
dl>

=  2 nt exp ^ ^  g(s) d s ^ ,

the process (n, L2flr) is a Poisson process with rate 2g(t) (See Jacod and Shiryaev [54, 
Chapter 3], and Englander and Kyprianou [32]).

P roposition  3.2.5 (C onditioning  a  drifting  B row nian  m otion  to  stay  posi
tive) .
Let x  > 0 and X t be a Brownian motion (started at the point x ) with drift A > 0 under 
PA that is adapted to some filtration ('Ht)t>o- Then 1 — e~2XXt is a¥\-martingale and 
so we can define a measure P*B via the Radon-Nikodym derivative

HP1(B,A)
dPA

^  g—2AXtArg
I _  g—2Ax » where T° := inf{* > 0  : =  0 },

Hi

and, under P(b ,a)> X  is a Bessel-3 process with drift A.

Remark 3.2.6. Proposition 3.2.5 can also be viewed as a Doob /i-transform, since

P£(r0 =  oo) = 1 -  e -2A*.

We build a single-particle martingale on (T,Foo,(Ft)t>o,Px) from the results in 
Propositions 3.2.4 and 3.2.5, and the usual exponential martingale for changing the 
drift of a Brownian motion:

Wx(t) := 2nte - ^ ( l  -  e - 2Â )e (A+̂ t_^(A2^ 2)fl {T0 >t},

where to := inf{£ > 0 : £* =  0}. Using this we can define a new measure for A > 0, 
on Ft via

: = »  (3.10)
dP* Wx(0 )
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3.2 The Hardy and Harris spine construction

Recalling the decomposition (3.9) of P, we can see the effect of changing measure 
with Wt , and can find a similar decomposition for Q:

dQ* = £ ^ - d  P x
Wx( 0)

(A+p)x

= rT73JS(1 -  )(1 {r„>(} X 2n te ~ l3t

x d P - ^ d lA n ,)  n  U p ((T,M)v)
V < £ t

=  dP(B,A)(6)<lL2' V )  I ]  M ) v). (3.11)
v<£t

As was the case with P, the decomposition (3.11) tells us how to construct the BBM 
in law under Qa:

•  th e  sp in e’s  sp atia l m otion  is d eterm in ed  by th e  sin g le-p artic le  m easure IP(b ,a)5

• the fission times on the spine occur as a Poisson process of rate 2(3 that is inde
pendent of the spine’s motion;

• at each fission time on the spine two particles are produced;

•  one of these is chosen uniformly at random to be the spine and it repeats stochas
tically the behaviour of its parent;

• the other particle initiates, from its birth position, an independent (—p,/?;M)- 
BBM with law P \  giving rise to the subtree (r , M ) v, which is not part of the 
spine.

If we define a measure Qa on (*^t}t>o) as the restriction of Qa, that is

J~ 30 ’

we have that that, under Qa, the BBM has the same path-wise construction as under
Qa- We now check that this is consistent with equation (3.2), by showing that W \ is
in fact obtained from W \ by taking a suitable conditional expectation.

P roposition  3.2.7. The measure Q \ satisfies

d o s  =  m  ( 3 12)dp* Tt w x(o y  >

47



3.2 The Hardy and Harris spine construction

Proof. We first make the more general observation (see Williams [8 8 ]) that if p i and p 2 

are two measures defined on a measure space (Q, S) with Radon-Nikodym derivative

&P2
~T~~ =  9i d/xi

and if S  is a sutxr-algebra of <S, then the measures fii := p i\s  and p 2 \s on (f2,«S) 
satisfy

w r h W S ) -

Applying this to the measures P  and Qa, the change of measure (3.10) projects on 
to the sub-algebra Tt as a conditional expectation:

dQ;
dP3

Now we can write 2n< =  rL <ft 2 and then if we use the representation (3.8) we get

p x  (V v . - ' 3 , (1  -  e - 2A{‘)e<A+'’K‘_ 5(A2“ ^ )1l {l0>1} | .F t )

=  P x (e~m J 2  0  -  x 1{t„>(} x  2 x l fc= „) F i)
V o  V < U  ^

=  e~Pt e ~ 2XYu (t) ) e (A+^)Tu (t) -  \  (A2p2 )t x i {Tu>t}  x ] ] 2 x P x ( £t  = u\Ft ),
v<u

where ru := inf{t > 0 : y u(t) =  0}. But since we are considering binary splitting only, 

P x (Zt =  u \ T t ) =  fL c w  \  and hence

p x  ^ 2 nte ~ ^ ( \ -  c- 2*&)e(A+rt6-5(A2V )ti { T > t } \ r t )

= e- f t  ^ 2  (1  -  e~2Xyu^)e^x+p ŷu^ ~ ^ x2~p2^ l ^ T >ty 

= ( l - e - 2XYu(t))e ^ +p)Yu{t)- (^ x2- p2)+p)t
u£N~p

=  Wx(t),

as required. □

Remark 3.2.8. Proposition 3.2.7 on its own implies that Wx is a martingale, although
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3.3 Proofs of the martingale results

we already knew this from Lemma 3.1.1.

Remark 3.2.9. Events containing information about the spine are neither P- nor Qa- 
measurable. However, for any A £ we have (by definition) P(A)  =  P{A)  and 
Qx(A)  =  Qx(A).

3.3 P roofs o f the m artingale results

Before proving the main results for W \ described earlier, we first prove a result which 
identifies the speed of the particles that contribute to the limit of W \.

P ro p o sitio n  3.3.1. For any e > 0 we have, P x-almost surely,

W*(oo) = Bm £  (1  -

Proof. Define E \ — E (A) ^(A2 — p2) + (3, let e > 0, and set p := A — e. Our method
of proof is to show that particles at order t (or greater) displacements from the spatial 
ray of gradient A make no contribution to the martingale limit.

U £ N ~ P

u £ N t~ p

< e- y 2t e ^ +^ y^ ~ Ept = e - ^ Z ^ t ) ,
u £ M t~P

where Z ^ t )  is the martingale given in equation (2.3), which is positive and hence 
almost surely convergent. Hence, P x-almost surely,

limsup ( 1 - e ~ 2X Y u ( t ) ) e i X + p ) Y u { t ) ~ E x t l { o < Y u ( t ) < ( ^ ) t } = 0 '
t —* o o

u £ N ~ p

Similarly, on setting p := A +  e, we obtain

(1 -  c - 2An'<t))e(A+'’)r«'‘) - ^ ‘l {y„(t)>(x+e)t} <  e - i* 2tZ„(t)
u £ N ~ p

and the result follows. □
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Remark 3.3.2. It is implicit in the proof of Proposition 3.3.1 that we also have another 
representation for VF\(oo):

WA(oo) =  Um (3.13)
u £ N ~ p

The limit of Wx is equal to that part of the limit of Zx contributed by particles that 
avoided the origin.

Recall that P X(C =  oo) > 0 if and only if p < \/2/?, and note that if this condition 
does not hold there can be no values of A for which Wx is uniformly integrable. The 
critical A value of y/2~{3 — p in Theorem 3.1.2 corresponds to the right-most particle 
asymptotic of Lemma 2.1.2, tallying with the intuitive notion that the Wx martingale 
limit counts particles travelling at speed A.

We will now prove Theorem 3.1.2 on the convergence properties of Wx. The part 
of Theorem 3.1.2 concerning uniform integrablity will follow from the stronger result 
given in the next lemma.

Lem m a 3.3.3. For \ , x  > 0 and for any p € (1,2];

(i) the martingale Wx is Cp{Px)-convergent i f  \p { \  +  p)2 < ;

(ii) almost surely under P x , VF\(oo) =  0 when ^(A +  p) 2 >/?.

Proof, (i) Using Doob’s £p-inequality we need only show that Wx is bounded in CP(PX) 
when ^p(A+p)2 < /?; this follows immediately from the inequality W \  < Z \  and known 
results for £p(P x)-boundedness of Z\.

(ii) We have 0 < W\(t) < Z\(t)  for all t > 0, and it is well known that Z\(t)  —> 0 
almost surely when ^(A +  p) 2 > (3. □

We now prove Theorem 3.1.2.

Proof of Theorem 3.1.2. It follows from Lemma 3.3.3 that if + p) 2 < (3 there exists 
a p > 1 such that W \  converges in £P(PX), whence W \  is uniformly integrable.

It remains to check that process survival is equivalent to a strictly positive limit 
for W\. From the definition for W\, it is clear that {£ < oo} C (W\(oo) =  0}, so that 
P X(W \(oo) = 0;£ < oo) =  P X(C < oo). We can also write P X(W \(oo) =  0) as

P X(WX(oo) =  0) =  P X(WX(oo) =  0; C < oo) +  P X(WX(oo) =  0; C =  oo),
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3.3 Proofs of the martingale results

and the result follows if we can show that P x(W\(oo) =  0) =  P X(C < oo). Define 
g(x) := P x(W\(oo) =  0), and then, by a similar argument to that used in the proof of 
Theorem 2.5.1

3(x) =  B i ( p i (1̂ x(oo) =  0 |^ ) )  =  -Ei (  I I  s (y« W )). (3-14)
^ u £ N ~ p '

and hence g(x) satisfies both the ODE in the system (2.4) and the boundary condition

lim g(x) =  1.
i|0

With the representation of equation (3.13) in mind, considering the (—p,/?;]R)-BBM 
path-wise we see that g(x) is monotone decreasing in x , and so g(x) j  g(oo) as x  —* oo. 
Now for any fixed time t > 0, we have N f p |  M f p as x  —> oo, and, looking at the process 
path-wise again, we also have Yu(t) |  oo as x  —► oo, for all u G N f p. Thus we may take 
limits on both sides of (3.14) to obtain g{oo) =  E° ^(°°)) ’ whence g{oo) =  0
or 1. Since W \  is uniformly integrable for the values of A under consideration we must 
have g{oo) = 0. Hence g(x) satisfies the ODE and boundary conditions in (2.4), and 
uniqueness of the one-sided travelling wave completes the argument. □

We conclude this section by proving our result for exponential growth of particles 
in the super-critical region.

Proof of Theorem 3.1.3. The key idea in the proof is to overestimate the indicator func
tions in (3.3) by exponentials and then re-arrange the expression to obtain martingale 
terms.

Bounding N f p{\t, oo) above, we have

iV (A t,o o )=  J 2  l {y„(t)-A«>0} < E  =  eA« % ( t ) .
u£N^p u£jsffp

Now if A > y/2j3 — p then Z \  has an almost-sure zero limit and A (A) < 0, whence, 
noting that N^Tp(\t ,  oo) is integer valued,

H  1{lr«(0>A«} =  0
u£N~p

eventually, with probability one. On the other hand if 0 < A < y/2(3—p, then Z \(oo) > 0
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alm ost surely, and A (A) >  0, so

lim supt-1 \ n N f p(\t ,  oo) < A(A), a.s.
t—too

For the reverse inequality, let e > 0 be small and 0 < A < y/20 — p. Then 

Y  (1 - e - 2Ay"<(>)e<A+'’>y“<‘>-E*tl {(A-£)e<y„W<(A+E)t}
U £ N ~ P

< e((\+r)x-Bx)tes(\+P)t l ((x_e)(<K(i)).

u e N f p

Noting that (A +  p)A — E \  =  —A(A), we obtain

r ' l n  Y  (1 - e“2Ay“(‘))«(A+',)V“(‘)_Ei‘1{(A-£)«n(()<(A+5)0
ueATt-p

< -A(A) +  e(A + p) +  t~ l In E
u £ N ~ p

(3.15)

Now as t —» oo, it follows from the crucial facts that Wa(oo) > 0 (from Theorem 3.1.2), 
and that the limit only ‘sees’ particles of speed A (from Proposition 3.3.1) that, on 
{£ =  oo}, the left-hand side of (3.15) tends to zero. Since e > 0 is arbitrary, we find 
that

liminf t~ l In E  l{yu(t)>Aq > A(A), a.s.
u £ N ~ p

which completes the proof. □

3.4 P roof o f Theorem  3.1.6

The proof of Theorem 3.1.6 rests on the close links between branching diffusions and 
partial differential equations; essentially, the assertion of Theorem 3.1.6 is that as 
t —*■ oo the solution of the non-linear equation

du 1 d2u du . .
9t = 2 d J - p t e +l3u{1- u)' (3' 16)
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3.4 Proof of Theorem 3.1.6

with u G C 1,2(R + x M+ ) and an indicator function initial condition, is asymptotically 
equal to the solution of the linearised equation

dw 1 d2w dw
m = 2 ^ - p t e + Pw' (3'17)

for w G C 1,2(M+ x  R + ) and w ith  th e  sam e in itia l con d ition .

Considering y > 0 fixed and x , t  > 0, the link with PDEs can be seen from the 
observation that v(t, x) := P x(Rt < y) has the representation

v(t,x) =  E x (  v ( t - a , i^ ( s ) ) Y  sG [0,t],

from which it follows that n u(cjv_p ~~ s^ u ( s)) 1S a product martingale on [0,t] 
and so, as before, standard arguments using Kolmogorov’s equations show that v G 

C 1,2(R+ x R +) and solves

dv 1 d2v dv .
T t  = 2 d ^ - pT x + 0 v ( v - l ) ' 

with v(0,ar) =  l{x<y}* Defining

u{t,x,y)  := P x(Rt > y),

so u =  1 — v, we see that u satisfies the non-linear partial differential equation (3.16) 
for (t , x , y ) G (0,oo) x (0, oo) x (0,oo), with initial condition w(0,x,y) — l { x>yy  See 
Ikeda et al. [50, 51, 52] for extensive discussion of probabilistic solutions of ordinary and 
partial differential equations in a very general setting. Before proving Theorem 3.1.6 
we shall establish some useful inequalities.

P ro p o sitio n  3.4.1. Let w(t,x ,y) be the solution of the linearised equation (3.17) with 
the same initial condition, that is w(0,x,y)  =  l{x>y}. Then u ( t ,x ,y ) <  w{t,x,y) for 
all t , x , y  > 0.

Proof. Ito’s formula implies that, for Yt a Brownian motion with drift —p under 1P*̂  
and ro := inf{£ > 0 : Yt =  0},

/  rsAro \
Mt(s) := u{t -  (s A r 0), YsAT0 ,y) exp M lJ  (1 -  u(t -  <f>, Y{<j> A t 0 ) ,  y)) d<j)\ 

is a local martingale on [0, t], and in fact Mt is a uniformly integrable martingale
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3.4 Proof of Theorem 3.1.6

on [0,t]. In particular

M(t,x ,y) =  E%  > ()  . (3 .I8 )

The Feynman-Kac formula gives

w(t,x ,y)  =  e^tW_p{l^yt>yy,TQ > t), (3.19)

and it is clear that u(t, x, y) < w(t, x, y) for all £, x, y > 0. □

Remark 3.4.2. The probabilistic interpretation of Proposition 3.4.1 is that, for all t , x  > 
0,

P x(Rt > \ t  + 9) < E x(N ^ p(Xt +  9, oo)).

Proof of Theorem 3.1.6. Let yX2 {<f>) ’■ s € [0,t]} be the Brownian bridge that travels 
from point x\ to x2 over time period [0, £], and let Tq to be the first hitting of the origin 
by the bridge; then we may re-write (3.18) as

u(t, x, y) = e ^  Fx_p(Yt - y e  dz)E ( e ~ 0 &  d*. T* > ^  .

Hence

u(t,x, Xt +  9) = e P)t.e^+P)(x- d) j ™  e-(*+P> exp

x E (e“^ o « (t-*.Bi,*+W*)A*+*)d0.Tt > ^  cb,

and then, by dominated convergence, to complete the proof of (3.6) it suffices to show 
that there exists some function g : (0,0 0 ) —► (0,1] such that

E (e 'P t i  <t~<l>K,z+xt+e(<l>)M+e)d4,.Tt > ^  _  c-2Axj?

since this would ensure that

x E ( e~p ti  nit-tK.z+xt+eW’M +VW ^t > t ) d z  ► C( 1 -  e~2Xx).
V /  t — > oo

Although we are essentially following the strategy of Chauvin and Rouault [20] here, 
extra effort is required to deal with the complications arising from the introduction of
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the absorbing barrier. In particular, Lemma 3.4.3 below uses a similar argument to 
show that a certain expectation converges, but additional work is needed to identify the 
limit; after this, the remaining difficulties arising from the introduction of the barrier 
are overcome using a carefully chosen construction of the family of Brownian bridges 
from two independent Brownian motions.

Letting B  := {B (s) : s > 0} be a standard Brownian motion started at the origin, 
we recall that a Brownian bridge {B£1>a.2(<£) : (j> € [0 ,t]} from positions x\  to X2 can be 
constructed by taking

~ ^ B ( t)  + xi  +  ^ ( x 2 - x i )  0< 4>< t.  (3.20)

This representation turns out to be exceptionally useful in the sequel. We now complete 
the proof of Theorem 3.1.6 in a series of lemmas.

Lem m a 3.4.3. Fix x, z, and 0. As t —> oo,

E uO-0.®i)2+At+<>(0)>At+0)_> E ? (3.21)

where
u ( t ,x ,y ) := P x{Kt > V), (3.22)

and is the right-most particle in the unkilled (—p, /3;M)-BBM. Note that the limit is 
independent of 0  andx.

Proof of Lemma 3.4-3. Since the left-hand side of (3.21) is bounded in [0,1] it is suffi
cient to prove almost-sure convergence of u(t — z+xt+d((f>), At +  6 ) d</>, which is
equal in law to f* u(0,B‘ +xt+0tX{<f>), At +  6 ) d<f>.

Consider <f> > 0 fixed and construct the Brownian bridges ®z+At+0, x (({>), parame- 
terised by t, using (3.20). Then as B (t) / t  —> 0 almost surely, for any e > 0 there exists 
some t' > 0 such that

|®z+At+0,i(^) — + z + 6  + \ ( t  — (f)))\ < e

for all t > t'. Define h{t,<j>) := B{(f>) +  2  +  6  +  A(t — 0), and then since u(<f>,x,y) is 
monotone increasing in x

u((f>,h(t,<t>) - s , X t  + 0) < u{(j>,Mtz+xt+d'X((f>),\t + 0) < u(<f>,h(t,<f>) + e , \ t  + 0),
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for all t > t'. Recalling that u(t,x ,y)  := P x(lZt > y ), for fixed 0 we have 

lim u{<f>, h(t, 0) — At + 0) =  u{4>, B((f>) +  z — A0 — £, 0)
t-t-oo

almost surely, since the effect of killing at the origin vanishes as the particle’s start 
position goes to infinity. Similarly

lim «(0, h(t, 4>) +  £, At + 0) =  u(4>, B{4>) +  z — A0 +  £, 0)
t —* oo

almost surely. Thus, since u(<j>,x,y) is continuous in x  and £ can be arbitrarily small, 
we have shown that

l[o,t] (0)w(0> ®z+\t+e,x (0), At +  0) ——> u(cf>, B{(f>) + z — A0,0)

almost surely for fixed 0.
So to prove almost-sure convergence of u(0,®*+At+0 x(4>), At +  0)d0 it is enough

to prove almost sure domination by an integrable random variable. We now recall
Chernov’s inequality.

L em m a 3.4.4 (C hernov’s inequality). Let X  be a (discrete or continuous) random 
variable and a > 0. Then P(X > a) < min£>o e~atK(et x ).

Applying this to the function w from Proposition 3.4.1 we see that, for 0 € [0, t] 
any B e l ,

w(4 >, B, \ t  +  8) =  e,i<,EB))(l(y1>A(+S);To > t)
<  eP*r%(Yj > At  +  8 - B  +  p4>)

< exp ( f i t  -  <At +  <>~ f  +  ^ )2) . (3-23)

and combining this with Proposition 3.4.1 gives

1 ( x \  ( x  lot i x \  w  , m  ^  r x \  ( o x  ^  ^ +Afc+0,x(0) +  W*)2 ^< l [0,t]Wexp 1/90------------------- ^ -------------- J.

Next, using the representation of the Brownian bridge (3.20), we have

At +  p(}> +  0 — B*+At+0)X(4>) =  (A +  p)<f> +  0  — ^1 + 2  — y(a; +  0),
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3.4 Proof of Theorem 3.1.6

and by the law of large numbers there exists, for any e > 0 , a to > 0  such that for any 
t > <f>> to

B(t) B(4>) ^
t (j)

almost surely Hence, almost surely for any t > <f> > to,

»(*>B'+At+MM , At + ° ) ^  (3.24)

where S := (2z+ 9+ x).  Thus u(<f>, decays exponentially in <f> for all
t >  <f>> to, provided e is taken sufficiently small that |(A  + p — e)2 — (3 > 0. Trivially, 
u((f>, ® ^ + A t+ 0  x{4>), At +  6 ) < 1 for (f> < to and so we have almost-sure domination by an 
integrable function, as required. □

Construction of the bridges

We make the following simultaneous construction of all the Brownian bridges B ^ O  
with parameters t > 0, x, z > 0 using two independent Brownian motions started at 
the origin, W = (W (s) : s > 0} and X  = {^ (s) : s > 0}:

B L W :=  + * + * ( * - * )  for 6 [0, rj)
for

where
ro = To(x , z ) — i n f |^ >  0 : ~ W (t) - \-x  + j ( z  -  x) =  o j,

and for any s > 0

l o ( u ) : = X ( u ) -----X(s) +  2: ------2: for u E [0, si. (3.26)
s s

N o te  th a t Tq is d eterm in ed  en tire ly  from  th e  p a th  o f  W, and, a lm ost su re ly  as t —>• 0 0 , 
w e have

7 q ( x ,  2: +  Xt +  6) — > r o  :=  in f { < /> :  W{4>) +  \(f> +  x  =  0}. (3.27)

Further,

B U w W - ^ W  +  ^  +  i  (3.28)

alm ost surely, and th is  convergence is uniform  for (f) E [0, s], w here s <  t q .
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Lemma 3.4.5. On the event {ro <  oo},

f To
/ u(t-<f>,Mx z+xt+e((t>),\t +  0 )d<£-> 0  

Jo

almost surely as t —> oo.

Proof of Lemma 3.4-5. Let .s <  tq < oo and then, since Tq —> tq almost surely, there 
exists some to such that s < Tq for all t> to .  Using Proposition 3.4.1 and the inequality 
at (3.23), we have, for any B  € M,

u(t -  <j>, B, Xt +  6 ) < e^ ~ ^ x+p)2)t x e - P < t > + \ ( x + p ) 2 < t > + ( B - e ) ( \ + p ) ^

Then, combining these facts with (3.28), we see that

e(|(A+rt2-«« f Su{t _  At +  9)d4>
Jo

<  f  e~l3<l>+h^x+^ 2<l>+̂ x ,z + \t+ e ^ ~ d^ ^ +^
Jo

 > f  g — /3 < t > + ^ ( \ + p ) 2 <t>+(W((f>)-\-X(p-\-x—d ) ( X + p )  < ✓  q o

Jo

as £ —> oo. Since A > \/2/^ — P and the above holds for all s < tq < oo, the lemma 
follows. □

Define
POO

I(z)  := /  u(<f>, X(<f>) + z-\<j>, 0 ) &<f> (3.29)
Jo

and note that this definition is independent of W  (hence also of each Tq and ro ). 

Lem m a 3.4.6. On the event {ro < oo},

f  u ( i-^ ,B *  +At+*(^), A t+ 0)d<£-> /(* ), (3.30)
Jo

almost surely as t —> oo. In particular, I(z)  € (0,oo) and is independent of 9 and x.

Proof. From Lemma 3.4.5, we note that it is sufficient to prove the integral from tq to
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t  converges to I(z). Using the construction at (3.25), we see that

( 4 > ) , \ t  +  Q) d ( f > = f  +
J t 0

= [  +<?,()(<£)>Xt + e) d<£Jo

~ t  — TlWe now note that, because of our construction of Bz+^t+0o at (3.26), we may almost 
exactly mirror the proof of Lemma 3.4.3 (noting, however, that we do not need to use 
any distributional equivalence) to give the required convergence result. □

Immediately from Lemma 3.4.6, we see that

E L -P Sl  «(<-«»£,,+*+.«.-«+«> **. T< <  A  -----. E (e _/” w ; r0 <  oo)

To complete the proof of (3.6), we note that I ( z ) and ro are independent by construc
tion, Px(ro < oo) =  e_2Al, and the right-hand side of equation (3.21) is the same as 
E(e- ^(*)), hence

E > t j    ► (1  -  e_2Al)E ( e ^ 1^  ,

as required.
Finally, the equivalent statement of equation (3.7) can be deduced from equa

tion (3.6), the Many-to-One lemma (3.5), and the one-particle calculation

P _fl(F (t) > X t  +  0; TO >  t) ~  ------- -—- = = .( \  -  e-2Axx (A+p)(x-0)-I(A+^)2̂
t-»00 ( X  p ) y /2 'n t

This completes the proof of Theorem 3.1.6. □

3.5 A  Y aglom -type lim it theorem

This proof is just the adaptation to our situation of the Chauvin and Rouault [20] proof 
for standard branching Brownian motion.

/ u(t <̂ ,®X)Z+a t+e
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3.5 A Yaglom-type limit theorem

Proof of Theorem 3.1.7. Let x , y , i  > 0, t G [0,oo) and define

u.

For 7  fixed,

u ^ t . x . y )  := P x(Nt p(y, oo) > 0).

v(t,x ,y)  := 1 — «7 (i,:r,y) =  E x ^ e ' 7 l ty'u(t)>i/}^ (3.31)
u £ N t

is the McKean representation for the solution of

dv 1 d2v dv
at = 2 d ^ - pTx + Pv {v - 1)

(3.32)

for (t , x ) € M+ x M with initial condition v(0 ,x ,y )  =  e 7 l {*>y} 5 so u~(t,x ,y ) solves

c^v 1 du~ ^
- £  = 2 i d - pi £ +l3^ - ^ ’ (3.33)

with initial condition u7 (0 ,x ,y) =  (1  — e 7 )l^a;>y}. The representation at (3.31) is 
justified for the (—p,/?; M+)-BBM because for s e  [0,£] we have

v(t,x ,y) =

= b - ( b - (  n  exp ( “ '/ e  ' w w ) ^ )
u £ N f p v £ N ^ p ,u<v

=  E * (  n  S * ( « p ( - 7  E  W » y > ) ^ ) )
u £ N s p v £ N t p ,u<v

= E*( n  " ( f - ^ . W - r i ) .
' u£N:

whence M*(s) := n UGArs_pi;^  — s>Yu{s),y) is a product martingale on [0,t]. Therefore 
v(t, x, y) solves the partial differential equation (3.32) and

v(t,x ,y) = E xMt(0) = E xM t(t) = E x (  J ]  e- 7l{ ^ » v > Y
u€JVt“P '
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Define for A >  y/2]3 — p

F M  := lim £ * N r p(At,oo) >  o').
t —>00 \  /

We prove that F  is the Laplace transform of some distribution on N; this means we 
must show that the limit as t  —> 0 0  above is well defined, and that

lim F(7 ) =  1 and lim F(7 ) =  0.
7 ->0 7 —>oo

Noting that

E x f  N ~ P ( \ t  oo) > 0) = 1 -

this is equivalent to showing

lim lim ui ^ i x l X̂ 1  = q, (3 .3 4 )
7 —*01—k» 11,00(1, X, Xt)

Û y(t, X,Xt)  
lim lim —— 7- ---------—  =  1.

7 —>0 0 1—>oo Uoo(t, X, Xt)
(3.35)

We can express «7(t,x,?/) as

uy(t,x ,y )  =  (1 -e -T JE * , > t )  , (3.36)

and by comparison with (3.19) we see that 0 < w7(f,a:,y) < (1 — e~1 ) w ( t , x , y ) .  Prom 
Theorem 3.1.6 we know that Uoo{t ,x,Xt )  ~  (A + p ) C w ( t , x , X t )  as t  —> oo, so

lim  lim “ »(«•*■■»> <  |im ( l - O  lim =  lim
7—►()t—>00 Uoo(t, X, Xt) 7—>0 t->oo Uoo(t,X, Xt)  7 -^0 ( A - f p ) C

and (3.34) is verified.
Now let #(u) := /?w(l — u)  and define v7 := Wqq — u7. Then v1 ( t , x , y )  solves

d v 1 1 d 2v1 d v 1 R(uoo) — # (w 7)

2 & r2 ^ d x  ^  Uoo — w7 7

with initial condition ^ (O ,x ,y ) =  e-7 l{x>y}. Equation (3.35) then becomes

lim lim ”*(«■*■*> =  0
7—*oo1—>00 Uoo(t, X, Xt)
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3.5 A Yaglom-type limit theorem

and, since
R(uoo) -  «(% ) < = ^

U<X>

the Feynman-Kac formula yields the upper bound v7 (f, x, Xt) < e_7 iu(t,:r, At). Hence

U m  U m  v x ( t , x , X t )  ^  e _ ,  U m  =  U m  =  Q

7 —>oot—kx> Woo^t, X, At)  7->oo t-voo Uoo^tiX, Xt) j->-oo (A  +  p )G

To prove that the limit law has expectation equal to 1/(A +  p)C we must show that

.. .. u~,(t,x,Xt) 1
lim lim —  rJ—- =  7---------— .
7—*o1—>00 /yu0 0 [t, x, Xt) (A +  p)G

In light of (3.33) and (3.36) it follows from Theorem 3.1.6 that

u7 (t, x, Xt) ~  (A 4 - p)C7(l — e~'y)w(t,x,Xt),

where
/•O O

C7  =  y  e-(A+',)2E (e " ^ o 00^ ^ BW+2" w ) d ^ d z ) (3.37)

and u7 (t,x,?/) := 1 — E x{e~ ^ t  p(v̂ <x>))) but this time the expectation is with respect 
to the law of the unkilled (—p,/3;R)-BBM. Replacing u with u7  and setting $ — 0 does 
not significantly affect the proof of Theorem 3.1.6:

• the inequality 0 < u7 (t, x, y) < (1  — e- 7 )w(t, x , y) ensures that Lemma 3.4.5 holds 
for w7;

•  Uy(t,x, y ) is continuous and monotone increasing in x, so in Lemma 3.4.3 we have

1[0>t](^)«7W.®*+At,*W»A0 u7 (<£,£(<£) + z -  X<t>, 0);

• the inequality 0  < u7 (t, x,y)  < (1  — e~7)w(t,x,y) means that the domination 
part of the argument in proving Lemma 3.4.3 remains unchanged;

•  with Lemmas 3.4.3 and 3.4.5 established for u7  the proof of Lemma 3.4.6 remains 
unchanged.

So
Uy(t,x,Xt) _  1 —e 7  C7 

t->oo 7 ^ 0 0  (t, x, Xt) 7  C ’
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and hence to complete the proof it is sufficient to show that

Gt  * T~~— •7 7^0 A + p

Noting again that u^(t,x ,y)  < (1 -e~-r)el3tV*_l>(Yt > y),  we have, for <p,z> 0 fixed 

lim w7(^, + z — A4>, 0) =  0 a.s.
7—>o

and then using dominated convergence at (3.37) gives the result. □

3.6 A n alternative interpretation of

This proof is virtually unchanged from the Chauvin and Rouault [20] proof for standard 
branching Brownian motion.

Proof of Theorem 3.1.8. For A > y/2j3 — p, s € (0,oo) fixed, and A e  P3, we have

,  I „ \ F - ( u ^ ( j V r / s(A(t +  s) , o o ) > 0 k ) )
f  u k r t  W * + »). 0 0 ) > 0 ) =  — a— --------------------------- j — u - .  (3 .3 8 )

V 1 ’  P x (^V(+s(A(t +  s ) ,0 0 ) >  Oj

Now set

Y  := P1 (jV(-/s(A(t +  s), 0 0 ) > o|.F,)
= 1- J] ( l - P y*W(3»€JVt-', :y„(t)> + (3.39)

U£Ns

Since for all x > 0, P x e  Nt p : Yu(t) > A(s +  —► 0 as t —► 0 0 , we have

Y  tZ x  5Z  P Yu{s)( 3 u e N t- p :Yu(t)>  A(s +  t) ) .  (3.40)
u£N^p

Theorem 3.1.6 and (3.40) imply that 

C
t

u£NrP

and combining this with the asymptotic for P x ^Nf+s(\( t+ s) ,  0 0 ) > 0^ we have, almost
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3.6 An alternative interpretation of Qa

surely,

P x (Nt~+s{x (t + s),°°) >o |.Fs)  i^a(s)

lA P ’ ( N Z W  + ’).<*>)>o) lA W I ® '

Then to take the limit inside the expectation in (3.38) we find an integrable random 
variable (independent of t) that dominates the left-hand side of (3.41) and use domi
nated convergence.

Prom (3.39) it follows that

Y <  £  Pl;‘W(3«€JVr', :V„(t)>A(s + t)),
u£NrP

and then from Theorem 3.1.6 we have that, for some constant A > 0,

y  < A Y '  e(A+ ^ ^ (s)e- ( i(A+^2- ^ - A2a- A/°s
“  v ®  ^  0u£Nrp

M  ^  D 
u £ N r P

e-(K A+p)2-/3)(t+«)^A(s) (3.42)
y/2 nt

To bound the denominator of the left-hand side of (3.41) below we have from 
Theorem 3.1.6 that there exists some constant B  > 0 such that for all t, s > 0

_  - 2 \ x \  J \ + p ) x - ( U \ + p ) 2 - (3 ) ( s + t )P x ( N t Z m  +  *),oo) > 0)) > B  (1 -  e -2Al)e

and together with (3.42) this means that there exists a to > 0 and a constant B ' > 0 
such that for t  > to

^ I (iVr/s((A(t +  s ) ,o o ) > 0 ) k )
1a  --------------------------------M - < B ’Zxis ) 6  C ' ( P Z),

P*{N t-+ps(( \( t  + s),oo) > 0))

which provides the required domination. □
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Chapter 4

Survival probabilities for 
sub-critical BBM with absorption

In this chapter we extend some of the ideas of Chapter 3 and study survival probabilities 
for the (—p,/?;R+)-BBM in the case p > yflfi — recall from Chapter 3 that the 
extinction time, £, for the process is almost surely finite in this parameter range. 
The main result is a sharp ^-asymptotic for P x(Rt > 0), the probability that the 
process survives until time t. We also define another new additive martingale, V, for 
the (-p,/3;M+)-BBM. We use V  in a spine change of measure, and show that under 
the changed measure the spine diffuses as a Bessel-3 process. Finally, we interpret 
the spine change of measure (with V) in terms of ‘conditioning the BBM to survive 
forever’ when p > y/2~j3, in the sense that it is the t-limit of the conditional probabilities 
P x(A\Rt+s > 0), for A e  Fs.

The work in this chapter appears in Harris and Harris [44].

4.1 Introduction and sum m ary of results

We saw in Chapter 2 that, if p > y/2j3, the {—p,(3]R +)-BBM is sub-critical, and £ < oo 
almost surely. There are several examples in the branching-process literature of spine 
constructions being interpreted as null conditionings of a process — one conditions on 
an event that has probability zero in the limit as t —> oo, and then in the limit as 
t —► oo the law of the conditioned process can be shown to be related to the original 
law via a Radon-Nikodym derivative, in a spine change of measure that causes the 
spine to perform the conditioning event with probability one. As well as Chauvin and
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4.1 Introduction and summary of results

Rouault’s results ([20], [21]) for branching Brownian motion, Evans [35], for example, 
gives ‘immortal particle’ constructions for conditioned superprocesses. In light of The
orem 3.1.8, then, it is entirely natural to ask what can be said about the limit as t  —> oo 
of the conditional probabilities P x(A\Rs+t > 0), for A  € J-s.

Inspection of the proof of Theorem 3.1.8 reveals that there is nothing special about 
the conditioning event { N f p(Xt T 8 , oo) > 0}, and it could be replaced with the event 
{ N ^ P(Q, oo) > 0} =  {Rt > 0}. Provided that P x(Rt > 0) —* 0 as t —> oo, the 
argument that worked to prove Theorem 3.1.8 should also work for the conditioned law 
P x(-\Rs+t > 0). However, in order to use this argument as we did in Chapter 3, we 
will need a sharp t-asymptotic for the survival probability P x(Rt > 0).

Survival probabilities for branching Brownian motion with an absorbing barrier at 
zero were studied in Kesten [58], and the behaviour of the process when p > y/2j3 is very 
different to that when p =  y/2]3 (look ahead to Theorems 4.1.2 and 4.1.3). Kesten [58] 
primarily studied the critical case p =  here, in contrast, we study the survival
probability in the case p >  y/2/3 — note the strict inequality here.

The major result of this chapter is an asymptotic result for the large-£ behaviour of 
the probability P x(Rt > 0) when p > y/20. Clearly P x(Rt > 0) < E xNt~p(0, oo), and 
Kesten [58] gave the the following result for this expectation.

Theorem 4.1.1 (K esten [58, Theorem 1.1]). There exist constants 0 < C = 
C (x , p) < oo such that for x  > 0 and t —* oo

This result is a consequence of the Many-to-One lemma and standard estimates for 
Brownian motion. The case of interest to us, p > y/2(3, is detailed below.

where If is a Brownian motion with drift — p under and for tq := inf{t > 0 : Yt — 0}

c t - U - W - w
E xNt ^(0, oo) ~  < C t ^ e ^

Cel31

if  p > 0, 

if  P = 0, 

if  p < 0.
V

£ * i V (  0,oo) =

as t  —* oo,
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4.1 Introduction and summary of results

we have

P% (r0 € ds) = -t^==  exp 
V27T S'5

As was the case in Theorem 3.1.6, E XN1TP(0, oo) decays exponentially in t, and so 
we might expect that P x(Rt > 0) is asymptotically equal to a constant multiple of 
E xN ^ p(0,oo). The next result, which we will prove in Section 4.2, shows that this is 
indeed the case.

T heorem  4.1.2. For p > y/2(3 and x  > 0,

is significantly different to that seen so far in Chapters 3 and 4. The probabilities 
P x(Rt > \t-\- 6 ) and P x(Rt > 0) both decay in t like the related expected numbers of 
particles; this is not true when p = One of the main results of Kesten [58] gives
bounds for P x(Rt > 0) in the critical case.

T heorem  4.1.3 (K esten  [58, T heorem  1.3]). Let p =  y/2j3. Then there exist 
constants C \,C 2 ,C$ 6 (0,oo), depending only on (3, such that for x > 0

Even though this result does not give an exact asymptotic for P x(Rt > 0), it is still 
difficult to prove. Note that it follows from the Many-to-One lemma that E xN f p{ 0, oo)

asymptotic for P x(Rt > 0) is known in this case, and it is also an open question what

for some constant K  > 0 that is independent of x. This is equivalent to

P x(Rt > 0) ~  \ p l K  x E x ( N f p(0 ,oo)).
t —>oo Z

We remark in passing the behaviour of the process in the ‘critical case’ of p — y/2j3

t s < (1 +  x)exp(px — Ci (log t)2)a: exp (px — Ci(logf)2) < P x(Rt > 0)exp

Moreover, as t oo,

P x (N t- ‘,(C2t i ( lo g t) i ,o o ) >  0 N f ( 0,oo) > o) 0 (4.1)

and
P x ^Nt ^(0 , 0 0 ) > exp(C3 t» (log t) 3 ) Nt p(0, oo) > 0^ —> 0. (4.2)

3___________________
is of order t~ 2 when p =  y/2j3, which is a slower decay in t than P x(Rt > 0 ). No precise
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4.1 Introduction and summary of results

the analogue of Yaglom’s theorem should be. Equations (4.1) and (4.2) give only a 
partial answer.

If we condition the sub-critical process (with p > y/2j3) to survive up to time 
£ +  s, and then take the limit as t  —̂ oo, our intuition tells us to expect the conditioned 
process to do the minimum possible to satisfy the conditioning event — that is to make 
a single particle avoid the origin forever. Recalling that a Brownian motion conditioned 
to avoid the origin is a Bessel-3 process, we now make an additive martingale that can 
be used to change measure to cause the spine to diffuse as a Bessel-3 process; this is 
constructed from single-particle changes of measure in the same way as W\.

Lemma 4.1.4. For all (3,p> 0 the process

V(t) :=
u£N^p

defines an additive martingale for the (—p,(3\M.+)-BBM.

Proof. Let Y (t ) be a Brownian motion started at x  > 0 with drift — p under the measure 
Pf. . By the Many-to-One lemma (equation (3.5)) and a Girsanov change of measure 
it follows that

E x(V(t)) = E ^ ( y ie'>y‘+^ t ;ro > t)

=  P5(y,;r0 > t ) c ^  = xe'».

Applying the branching Markov property we see that

E x(V{t + s)\Ft) =  J 2  E x( V ^ ( s ) \ ^ t) e ^ p2- 0)t
u£N~p

where, conditional on Pi, the F ^ ( s )  are independent copies of V'(s) under The
result now follows from the previous calculation □

We can now use the asymptotic expression for P x(Rt > 0) from Theorem 4.1.2 
to show that changing measure with V  does indeed correspond to conditioning the 
sub-critical process to survive forever — the result below will be proved in Section 4.4.

Theorem 4.1.5. Let p > For s > 0 fixed and A G T s,

P x(A\Rs+t > 0)  -----> Q*(A), (4.3)t—>00
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4.1 Introduction and summary of results

where the measure Q is defined by

=  - e ~ P*  y  Y u ( s ) e p Y u i s )+ ^ p2- ^ s  =  V ^
nr ■ ^d P x x  •*—' ^(0)

u £ N 7 p

As was the case for changing measure with W\, this can be interpreted by means 
of a spine construction. Under Qx, the (—p, /?;M+)-BBM can be reconstructed in law 
as:

• starting from position x,  the initial ancestor diffuses as a Bessel-3 process;

• at rate 2/3 the initial ancestor undergoes fission producing two particles;

• one of these particles is selected at random with probability one half;

• this chosen particle (the spine) repeats stochastically the behaviour of their par
ent;

•  the other particle initiates from its birth position an independent copy of a 
(—p, /?;R+)-BBM with law P'\ we denote by (r, M )u the subtree resulting from 
the fission of u € which is not part of the spine.

This description of the Q-law of the (—p,(3\ R)-BBM facilitates the following result 
on uniform integrability for V.

T heorem  4.1.6. I f  0 < p < y/2/3, then V is uniformly integrable and the events 
{V(oo) > 0} and {£ =  oo} agree up to a P x-null set. I f  p > \f2(3 then, P x-almost 
surely, V(oo) =  0.

Remark 4.1.7 (Relationship between W \ and V). Consider conditioning a standard 
Brownian motion, Yt, started at x  > 0 to avoid the origin ‘forever’. This can be done 
in two ways: either condition Y  to hit some fixed M  > x  before hitting 0, and then 
let M  —> oo; or alternatively condition Y  to avoid the origin up to time t, and then let 
t —> oo. The limiting process, a 3-dimensional Bessel, is the same in both cases.

There is a similar relationship between the two ways in which we have conditioned 
the (—p,(3\ R+)-BBM on a null event. Recall from Chapter 3 that, for A > 0,

Wx^  (1 -  e-KYu(t)}e(\+p)Yu(t)-(±(\*-p2)+f3)t̂

ueN~p
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4.2 Survival probabilities

and changing measure with W \ made the spine diffuse as a Brownian motion with drift 
A, conditioned to avoid the origin. We find that, for any s > 0,

w a w  =  m
a " o W a (0) V'(O)’

and the construction of the (—p, /?;R+)-BBM under Qx matches the construction under 
(see Section 3.2 in the previous chapter) if we set A =  0. Loosely speaking, then, 

V  is in some sense the ‘A =  0’ case for W\.

In Section 4.2 below we prove the asymptotic result for the survival probability 
(Theorem 4.1.2), although a lot of the detail is left until Section 4.3. The remaining 
proofs follow in Section 4.4.

4.2 Survival probabilities

As the result is similar in appearance to Theorem 3.1.6, it is not surprising that the 
proof uses some of the same ideas. The Feynman-Kac representation and the Brow
nian bridge are again fundamental to the method, but this time we have to look at 
a Brownian bridge that is conditioned to avoid the origin. The significant differences 
between this proof and the proof of Theorem 3.1.6 are contained in Proposition 4.2.1 
and Lemma 4.3.2.

Proof of Theorem 4-1-2- Define u(t,x) := P x(Rt > 0). Using a product martingale it 
can be shown that u(t, x) satisfies

du 1 d2u du
a t =  ~  + ~  u)'

with initial condition w(0,x) =  l{x>o}? whence for Y  a Brownian motion (started at x) 
with drift — p under WLp and to := inf{s > 0 : Ys =  0},

/  / 'S A t0 \

Mt(s) := u(t -  (s A to ) ,Y (s  A r0)) exp ( (3 J  (1 -  u(t -  <j>,Y(<f>)) d<j>\

is a uniformly integrable IP^-martingale on [0,t]. As a consequence of the optional 
stopping theorem, we can write

u( t , x )  = E%(l{yt>0
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4.2 Survival probabilities

For later use, we note that applying Chernov’s inequality here gives an upper bound 
on u:

u ( t , x ) < e P tE % (l{y1>0}) < for all t , x  > 0. (4.4)

Still following the idea of the proof of Theorem 3.1.6, we re-write our expression for u 
in terms of the Brownian bridge

u(t,x)  =  ¥i_p(Yt e  d s )E ^ e -^ °  u(t-^*.*(*>>dV o  >

where { ® : (f> €. [0, t]} is the Brownian bridge from x  to z and Tg =  Tq(x , z) := 
inf{0 > 0 : DB* z(<f>) =  0}. Hence

. . V 2 nt3 ( i  .2  t _ oz (  (x — z)2\  , A rX

u^ 'x)^ ^ e 2 =  I  x e exp ( -----2— )  (4'5)

x > t \  d z.

Using the distributional equivalence

[ ‘ u(t -  d* =  I “ (*> K , M )  <¥,
70 ./O

obtained by a time reversal, and the explicit form for the probability that the Brownian 
bridge avoids the origin,

P (rj > t) = 1 -  exp ^ ,

we can re-write the right-hand side of (4.5) as

- e - ^ J e - ^ e x p  W e - * 3 Jo' ■*(«,.W)W T* > A  dz. (4.6)

Now as t —► oo,
0 < —(1 — e t~) |  2 z , 

x
and so it is sufficient (by dominated convergence) to show that for some function 
g : [0, oo) (0,1],

E (  e ~ P  fo d«£ r o > 4  -----> a(z ),t —> oo
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4.3 Proof of Proposition 4.2.1

since then by dominated convergence the expression at (4.6) tends to J0°° 2;ze pzg(z) dz 
as t —> oo. This follows from the following proposition.

P ro p o sitio n  4.2.1. For each z > 0,

/

E ^

where {X{4>) '■ <f> > 0} a Bessel-3 process under

□
The intuition behind Proposition 4.2.1 becomes clear when we consider how the 

Brownian bridge behaves for large t. We can represent the Brownian bridge (<?!>) as

= Y(4>) -  \ Y ( t ) + t (x - z) + z ,

where Y  is a standard Brownian motion started at the origin. Since Yt/t —* 0 almost 
surely as t —> oo, for 0 < 0 <C t the bridge is approximately ~  z +  Y(<f>),
that is the conditioning event {Y(t)  G da;} does not significantly affect the Brownian 
motion for small <f>. When we additionally condition the bridge to avoid the origin, 
we might expect that B* x{<j>) ~  X(cf>) for <£ <C t, where X  is a Bessel process started 
at 2  (in fact, we will see later that a Brownian bridge conditioned to avoid the origin 
is equal in law to a Bessel-3 bridge with the same start and end points). To make 
this idea watertight we will show that {B  ̂x{4>)\tq > t}^>o converges in distribution to 
{JC(0)}^,>o as t —> oo. For all t > 0 we define B* x(0) =  x  for <f> > t to ensure that the 
conditioned processes have paths in D[0,oo)[0>00) — the set of cadlag paths in [0, oo).

The exponential decay of u{t,x) with respect to t — recall equation (4.4) — allows 
us to essentially neglect the contribution from the tail of the integral to the conditional 
expectation in Proposition 4.2.1. This is vitally important, as it means that the limit 
as t  —> oo in the conditional expectation is independent of a;. In the next section we 
turn this intuitive explanation into a rigorous proof.

4.3 P roof o f P roposition  4.2.1

To simplify notation, we will use the family of measures indexed by t , P^,a:, with asso
ciated expectation E^’x, for the laws of the Brownian bridges of length t conditioned 
to avoid the origin (but recall that we have extended the bridge definitions to include

T n > t
t —>oo

EB
d^j e  (0,1],
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4.3 Proof of Proposition 4.2.1

times 4> > t). For the remainder of this section we will just use the notation {X}^>o 
for a process with paths in D[0)OO)[0,oo), and remember that under P^’x, X  is the 
conditioned Brownian bridge, while under P^, X  is a Bessel-3 process.

We now give a useful characterisation of weak convergence. The main reference for 
the theory on weak convergence in this section is Ethier and Kurtz [34].

Theorem 4.3.1 (Ethier and Kurtz [34, Theorem 3.1]). Let (S ,d ) be a separable 
metric space and let V(S) be the set of Borel measures on S, with {Pra} C V(S) and 
P € V{S). Then the following are equivalent.

(i) P„ => P.

(ii) lim ^oo f  f  dPn =  f  f  dP for all uniformly continuous bounded f  : S  —> R.

(in) lim sup^oo Pn(F) < P (F) for all closed sets F  C  S.

(iv) liminfn_>00Pn(G?) > P(G) for all open sets G C S.

(v) lim ^o o P n U ) =  P(-4) for all P -continuity sets A — these are sets A such that 
P(&4) =  0.

Denote by Ds[0, oo) the set of cad lag paths in S. The Skorohod metric (see Ethier 
and Kurtz [34, Chapter 3] for the definition) can be defined on Ds[0, oo), and this space 
is complete and separable with respect to the Skorohod metric.

Lemma 4.3.2. As t —► oo, P ’̂x =>■ ¥ ZB.

Proving that a sequence of processes (or, equivalently, the laws of those processes) 
converges in distribution generally involves showing first that the finite dimensional 
distributions converge, and then proving a tightness condition. In proving tightness it 
matters that the measures P^’x are not indexed by a discrete parameter, but we use a 
result from Ethier and Kurtz [34] to deal with this. The proof of Lemma 4.3.2 is given 
at the end of this section.

Proof of Proposition 4-2.1. Fix T  > 0 and let t  > T. For notational convenience we 
define, for a,b > 0 and X  a process with cadlag paths in D[0)OO)[0, oo),

X(<f>))d(f),
■b
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4.3 Proof of Proposition 4.2.1

Now let £ >  0 and define

so that E^’x(e =  A(t) +  B(t). Now by Lemma 4.3.2 and Theorem 4.3.1,

A(t) < P j,x (  sup —> P ZB (  sup as t —> oo.
\T<<t> <P )  \  T  <4> <t> )

Since X(4>)/<f> —> 0 P^-almost surely as t —> oo, the final probability in the line above 
can be made arbitrarily small (for any e > 0) by letting T  —► oo.

To deal with the term B(t), we bound it above and below with expressions that 
are equal (in the limit) to the required expectation as we first let £ —> oo, and then let 
T —► oo. For the upper bound we have

B{t) < Ezt 'x ( e - f31{0'T^  -> EzB ( e - f3I(°'T^

as t —* oo. This follows from Lemma 4.3.2 because e_/0 ô jg a continuous
bounded function of the sample paths. Letting T —> oo, and using bounded conver
gence, we obtain

limsup£(£) < EzB (e -W '°°A. (4.7)
t —>oo '  '

For the lower bound, recall that p > y/2fi, and so we can take £ > 0 sufficiently 
small that S := — p£ +  (^p2 — (3) > 0. Then if X(<f>) < £<f>, using the upper bound for 
u(t,x)  at equation (4.4) we have u((f>,X((f))) < e~5(i> and hence



4.3 Proof of Proposition 4.2.1

as t —► oo. Note that, although

{supT<0 ^p-<e}

is not continuous as a function of v(-) G D[o)00)[0, oo), the set of discontinuities,

jv (-) G J9[0)OO)[0,oo) : sup =  e | ,

has P^-measure zero, and so the expectation does converge (see Billingsley [13, Theo
rem 5.1]). On letting T —» oo, using bounded convergence we have

lim inf Bit) >E% (e - ^ 0’00) ) , (4.8)t—► oo V J

and it follows from (4.7) and (4.8) that lim^oo £ (t)  =  E j^ e - ^ 0,00)). Recalling that 
A(t) —*■ 0 as t —> oo, we have shown that

E zt 'x u (&>x ( 4 > ) ) ^ e . - P f o ° u { < f > , X { < p ) )  ^

as required.
It remains to show that the limit in the line above is strictly positive. Since the 

limit is bounded in [0,1], it is sufficient to prove a P |  -almost sure domination of 
/ 0°° u(<f>,X((f>))d(f> by some finite quantity. By the Law of Large Numbers, there exists 
a random To < oo such that P^-almost surely, for all <£ > To, X(4>)/<f> < e. Then 
P^-almost surely

u((f>,X(<f>)) < e~6,̂  for all <j> >  To,

and as u(<f>,X(<j>)) < 1 for 0 < 4> < To we have an almost sure domination. □

The remainder of this section is devoted to the proof of Lemma 4.3.2. We will first 
give a criterion for tightness of the measures P^’x.

We state the condition for tightness of measures on Ds[0,oo) in terms of the fol
lowing modulus of continuity. For v(s) G T>5[0,oo), 6  > 0, and T > 0, define

wf(v, 6 , T) := inf max sup d(v(r),v(s)), 
p i)  * r ,se[ti-i,ti)

where {U} ranges over all partitions of the form 0 =  to < t\ < . . .  < tm =  T  with 
m  > 1 and mini<j<m(£i -  U-i) > S.
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4.3 Proof of Proposition 4.2.1

For a compact set K  C S, we denote by K £ the e-expansion of K,  that is the set 
{x e  S  : infv£k  d(x,y) < e}.

T heorem  4.3.3 (E th ie r and  K u rtz  [34, T heorem  7.2]). Let (S , d) be complete and 
separable, and let {Pa } be a family of laws of processes with sample paths in Ds[ 0,oo). 
Then {Pa } is relatively compact if and only if the following two conditions hold.

(i) For every e > 0 and rational T  >0, there exists a compact set T£7t  C S  such that

inf Pa (X(T) € T) > 1 — e.
a  ’

(ii) For every e >  0 and T  > 0, there exists a 5 > 0 such that

supFa(w'(X,6 ,T)  >  e) < e.
a

(Recall that tightness and relative compactness are equivalent in complete separable 
spaces.)

Observe that both the conditions in Theorem 4.3.3 involve only the paths of the 
processes on fixed intervals [0,T]. Our strategy for proving tightness of the conditioned 
Brownian bridges rests on the fact that the conditions of Theorem 4.3.3 are satisfied 
by the Bessel process, and that for large enough t, the process X  under the law P^’1 is 
sufficiently ‘close1 in law to the Bessel process on [0, T] for the conditions to hold for it 
also.

There two steps to the proof of Lemma 4.3.2: direct calculation with the transition 
densities shows that convergence holds in the sense of finite dimensional distributions, 
and then tightness of the measures implies full convergence in distribution. We give 
the two sections of this proof separately.

Proof of Lemma 4-3.2: convergence of finite dimensional distributions. For y\, p2 € R 
and s > 0 introduce the notation

f  ̂ 1 (  ( y i - V 2 )2\
p ’ ( y u v 2 )  : = ^ e x p ( — — ) ’

for the standard Brownian transition density (with respect to Lebesgue measure), and

qs ( y i , V 2 )  : =  Ps ( y i y V2 )  - p s ( 2 / 1 , - 2 / 2 ) ,
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4.3 Proof of Proposition 4.2.1

the transition density for Brownian motion killed at the origin. With this notation, 
the transition density for a Bessel-3 process is ^<73(2/1 , 2/2 )- Now for any finite set of 
times 0  < t\ < t 2 < ■ •.<  tk < t, we can re-write the P ^-law  of (X (fi) ,. . .  ,X ( tk )) in 
terms of a standard Brownian motion Y  (started at z) under the law Pg, conditioned 
on its position at time t — we remark that rigorous justification for this slight abuse 
of notation can be found in Revuz and Yor [79, Chapter XI] or Bramson [16]. See also 
Borodin and Salminen [14, IV.20-IV.26] for some very similar calculations.

Fzt ’x (X ( t 1) e d y 1; . . . ; X ( t k) e d y k)

_  Pp (Y(tj)  e  d2/ i ; . . . ;  Y j tk) € dyk; r 0 > t \Y(t) e  dx)
Pg(r0 > t\Y(t) e  d r)

_  Pq(Y(*i) e  dy i; . . .  ;Y ( tk) e  dyk',Y(t) e d x ; r Q > t)
Pg(Y(£) e  dx;r 0 > t )

_  Pg(Y(ti) € dyi;rp > ti) . . .P %k( Y ( t - t k) € d x ;r0 > t - t k)
^o(^W  G d ^ ;ro > t)

where the final equality follows from the Markov property, and this probability density 
is equal to

^< itAz,y i)-‘ - ^ q t k- tk-Ayk-\,yk)-^;qt-tk{yk,x) 
f Qt{z,x)

Prom this we conclude that the finite dimensional distributions of the Brownian bridge 
conditioned to avoid the origin are the finite dimensional distributions of the Bessel-3 
bridge, and hence these two bridges are equal in law. This means that we can use 
P j’x for the law of a Bessel-3 bridge from z to x  over the time interval [0, t\, with the 
extension X(<f) = x  for (f>> t. Further, a calculation with the explicit expressions for 
the transition densities shows that

z qt-th(Vk,x) = I t  exp ( ~  2(t—tfe)) (1 ~  e *~tfc ) x 
2tk Qt(z,x) y k \ t - t k e x p ( -  i£^ ) ( l  - e ^ r 2)

as t —> 0 0 , and so

^ ( X i h )  e d y i ; . . . - x ( t k) e d y fc) P K x ( t j )  e d»i ; . . . - ,x ( tk) e  dy t).

Hence the Bessel bridge from 2  to x  on time interval [0, t] converges in the sense of 
finite dimensional distributions to a Bessel process started at 2  as t —► 0 0 . □
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4.3 Proof of Proposition 4.2.1

Proof of Lemma 4-3.2: tightness. We break this proof down into a series of lemmas. 
The first lemma expresses formally the the intuitive notion that, for 0 < T  <C t, the 
Bessel bridge behaves almost like a Bessel process on [0,T].

L em m a 4.3.4 (R evuz an d  Yor [79, C h ap te r X I, Exercise(3.10)]). F ix T  > 0, 
let t  > T, and define the a-algebra F t  ^{Xs : 0 <  s < T). has a density 

(t ) on Ft  with respect to PB, given by

dn*
dPf*

_ — x \Ft )
u  n m ) = x )

As t  —> oo, M^T\ t )  —> 1 point-wise and in ^ (P ^ ) .

Proof. Let A G F t -

r - ( A )  = n ( A \ x ( t) = x } =

and then
=  Pg(^(*) =  x \Ft ) =  z qt-T(X(T),x )

U  P*B(X(t) = x) X (T )  qt ( z ,x ) '

Another calculation with the transition densities shows that this converges to 1 point- 
wise as t —► oo. Since PB(M^T\ t ) )  =  1 for all t > T, M^T\ t )  —► 1 in Cl (PB) also. □

Lem m a 4.3.5. Retaining the notation of the previous result, let A G Ft - A s t —> oo,
r t 'x( A ) ^ p * B(A).

Proof. Note first that, by Lemma 4.3.4, —> 1  a almost surely with respect
to WB as t —► oo. Also < M^T\ t ) ,  and we now bound M^T\ t )  uniformly in
X{T).  Noting that 1 — e~x < x, we have

m

X{T) qt(z,x)
2 , . - 2 X ( T ) x  s



4.4 Martingale results and spine decompositions

This deterministic bound is continuous on the interval [T +  £,oo), for any e > 0, and 
so there exists a constant 0 < C (x , z) < oo such that M^T\ t )  < C{x , z) on [T +  e, oo). 
Bounded convergence now finishes the argument.

Alternatively, since 1  AM^T\ t )  < M^T\ t )  and ¥ B(M^T\ t ) )  = 1 for all t > T, 
dominated convergence (as stated in Kallenberg [56, Theorem 1.21]) gives

lim =  lim P | ( l a M ^ U ) )  = P„M ).t—> oo t—>oo

□
Since the Bessel-3 process has continuous paths, it can be easily checked that the 

conditions of Theorem 4.3.3 hold for the single law FB] another way to see this is that 
by Ethier and Kurtz [34, Lemma 2.1] a single measure on a complete separable space 
is tight, and so ¥ZB satisfies the conditions of Theorem 4.3.3. Hence

(i) for every e > 0 and rational T  > 0, we can choose a compact set C [0, oo) 
such that

r B(X(T) €  n ,r )  >  1 -  § ; and (4.9)

(ii) for every s > 0 and T  > 0, we can choose a 6  > 0 such that

P % ( w \ X ,S , T ) > e ) < £~. (4.10)

The events (A (T) G r |  T} and {w'(X, 8 , T) > e} are both T t - measurable, and it follows 
from Lemma 4.3.5, and equations (4.9) and (4.10), that there exists a £o(z) < such 
that, for all t > to(z),

Wzt ’x(X(T) e  r j i r ) > 1 -  e and FJ-x(w'(X, 8 , T) > e) < e.

Here r | )T and 8  are those chosen at, respectively, (4.9) and (4.10). Theorem 4.3.3 now 
gives us that the family of laws {¥ i’x}t>to^  is tight, and this is sufficient to complete 
the proof of Lemma 4.3.2. □

4.4 M artingale results and spine decom positions

Introduced in Lyons [71], and also seen in, for example, Kyprianou [6 6 ], a very useful 
method for analysing additive martingales such as Z \  and V  is to use a spine decom
position — this involves taking a Q-conditional expectation with respect to Qoo (the
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4.4 Martingale results and spine decompositions

cr-algebra generated by the spine’s spatial path and fission times), which reduces the 
analysis of the martingale to one-particle calculations on the spine. We use this to 
prove Theorem 4.1.6, but, as was the case in Chapter 3, we must first justify the spine 
construction rigorously by defining a measure on the largest filtration P*. We retain the 
notation of Section 3.2, and remind the reader in particular that P x is the law of the 
(— wi t h a distinguished spine; that is the spine, which is a Brownian 
motion with drift — p under P x\ and that nt is the number of births on the spine.

The process
V(t )  := 2nte~^t x e '* 4 * '*  x & l{„ >t},

where tq := i n f > 0  : & =  0 }, defines a P x-martingale that is adapted to {Pt}t>o- 
Note that this is the product of single-particle Radon-Nikodym derivatives that will — 
reading from left to right — increase the branching rate on the spine to 2(3, remove the 
drift from the spine, and condition the spine to avoid to origin. We use this to define 
a new measure Qx

dQa
d P x

V(t) 
t ,  V-(O)’

for x  > 0. Using this change of measure with the decomposition of P x at equation (3.9) 
we see that Q can be decomposed as

dQ = dPB(6)dL2(J(nt) [ ]  U P({r ,Mf) ,
v<&

where & is a Bessel-3 process under P#. This means that, under Q, the (—p,(3]M.+ )- 
BBM may be re-constructed in law in the manner described in Section 4.1. We now 
let Q be the restriction Q l^ , , and it can be shown that Q satisfies

m  
*  n o rdP x

This follows from a calculation very similar to the proof of Proposition 3.2.7, and it 
justifies the construction of the process under Q given earlier. As noted in Remark 3.2.8, 
this is also another way of showing that V  is a martingale.

To prove Theorem 4.1.6, we adapt some of the spine techniques of Hardy and 
Harris [42]. This involves full use of the different filtrations introduced in Section 3.2, 
beginning with the spine decomposition for additive martingales. We give the spine 
decomposition for V  below, with a full proof because it is an important idea. We note,
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4.4 Martingale results and spine decompositions

however, that a similar calculation appears in Kyprianou [6 6 ], and a much more general 
formulation of the spine decomposition is given in Hardy and Harris [41].

P roposition  4.4.1 (Spine decom position of V(t)).

Q(F(*)|Soo) =  Y  i{Su)ep̂ Su)+^ p2~ ^  + ^ tH ^p2- l3)t

Proof. This decomposition follows from the fact that V  can be split into a contribution 
from the particle that is the spine at time t, plus the contribution from each of the nt 
sub-trees that have branched from the spine by time t. These sub-trees that branch 
off the spine behave as if under the original measure P, and so have constant Q- 
expectation, because V  is a P-martingale. More formally, under Q we can write

V(t) = Y  Yu(t)epYu{t)+̂ p2~p)t +
uG N^p

= S  p2~P)Su (  ^ 2
u<& V v£NtPC\(T,M)u

(4.11)

Here we have just decomposed V(t) into the contribution from the spine, plus the sum 
of the contributions from the sub-trees which branched off from the spine before time 
t. We have

q (  ] T  e ^ p2~ ^ Su f  Y  Goo)
u < &  v £ N ~ p C \ { t , M ) u

= Y ,  Y  Yv{t)epŶ +^ p2- W - s^  Goo)
u <&  '  v e N ^ pn (r ,M )u

= ] T  x i ( S u) e ^ s‘ \
u<&

since the sub-trees branching off from the spine behave like the process under the 
measure P. In view of this, taking the Q-conditional expectation of (4.11) completes 
the proof. □

Remark 4.4.2. The spine decomposition can be used with any branching-particle mar
tingale once a spine structure has been added to the probability space in which one is 
working.
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4.4 Martingale results and spine decompositions

We now give the measure-theoretic dichotomy, mentioned in Chapter 1, that has 
been seen to be so useful in proving convergence results for additive martingales. We 
then use it to prove Theorem 4.1.6 by adapting the method of Hardy and Harris [42].

T heorem  4.4.3. Let (VI, Too, (Tt)t>o) be a filtered space. Suppose that P  and Q are 
two probability measures thereon, which are related by the Radon-Nikodym derivative

dQ 
d P

= Zt ,
Tt

for some strictly-positive martingale Z t . Defining Zoo := lim s u p ^ ^  Zt, for any A G 
Too we have

Q (A )=  f ZoodP + Q (An{Zoo  = oc}), (4.12)
JA

and hence:

(i) Q is absolutely continuous with respect to P  if and only if  Zoo dP  = 1 if  and 
only ifQ(Zoo =  oo) =  0 ;

(ii) Q is singular with respect to P  if  and only if P(Zoo =  0) =  1 «/ and only if 
Q(Zoo =  oo) =  1.

A proof of (4.12) can be found in Athreya [3], See also Durrett [26, Exercise 3.6]. 
In a similar manner to our result on the convergence properties of W \  (Theorem 3.1.2), 
we actually prove a stronger result for V  than the C1 (P x)-convergence stated in The
orem 4.1.6.

Proposition 4.4.4. For x  > 0 and any p G (1 ,2],

(i) the martingale V  is CP(PX)-convergent if pp2 /2  < (3;

(ii) almost surely under P x, V(oo) =  0 when p > y/2j3.

Proof, (i) For p G (1,2] we have

P x (  =  px /  v (t )P— y (0  ^ — 1— Qx(V(t)q)\v(o)pJ V̂ (o)p_1̂ (o)y vxo)ffv K K ) h
where q := p— 1 . That V(t)q is a Q-submartingale follows from the fact that, by Jensen’s 
inequality, V(t) l+q is a P-submartingale. We prove that Qx(V(t)q) is bounded for all 
t  > 0, since then V(t) is bounded in CP(PX) and hence converges in CP(PX) by Doob’s 
Cp inequality (see Rogers and Williams [80, Theorem II.70.2]).
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4.4 Martingale results and spine decompositions

The conditional form of Jensen’s inequality gives

Q ( ^ ) 9 |aoc)<Q (F(i)|goc)g, (4.13)

and we have the following inequality for sums, used in Neveu [76].

P ropo sitio n  4.4.5. I f  q G (0,1] and x ,y  > 0, then (x  +  y)q < xq + yq.

Using this, with equation (4.13) and the spine decomposition for V  (recall Propo
sition 4.4.1), we have

Qx(V(t)q) = Q ^ Q ^ V ^ I& o ) )  < Q*(Q*(VXt)|(7oo)9)

< Q X(  ^  £(Suy eqp£(su)+q(%p2-P)Su \  _|_ QX | £qeqpt.t+q{\p2-P)t\

We will refer to the two expectations on the line above as, respectively, Qx(sum(t)) 
and Qx(spine(£)), and we now find upper bounds for these two expressions.

The transition density of the Bessel-3 process is

2 \  /  - „,\2 '

and so

u  ̂ i  y(  ( (x~y) \  ( (x + y) \ \
PB(t;* ’y ) : = v m * l exp{ — 2t ~ J - expI — 2t ))•

roo

QI(«?e, '*) =  /  y ^ P B ^ x . y ) d y

s  7 K  i *  " * ■ " 1 d' ’

e p q x + \ p 2q2t

< ------------- ( P ^ t  e  [0,1]) + E ^ ( Y t2)),

where Y  is a Brownian motion with drift pq > 0  under ¥ pq. Noting that Epq(Yt2) — 
t +  (x +  pqt) 2 =: k(t), we have

pqx
Qx(spine(l)) < 2— (l +  jfc(t))e«<5<?+1>^-'J)t,

,pqx  

X

which decays as t —► oo if and only if \p(?  < (3.
To complete the proof of (i) we must show that QI (sum (t)) is also bounded for all
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4.4 Martingale results and spine decompositions

t > 0. The fission-times on the spine occur as a Poisson process of rate 2(3, and standard

if p > \flf3. Applying Theorem 4.4.3 gives P I (limsupfc_ >00 V(t) =  0) =  1 and completes 
the proof. Alternatively one could note that {£ < oo} C  (V^oo) =  0}, and since

We now prove Theorem 4.1.6.

Proof of Theorem 4 -1 -6 . If p > y/2/3 then, as we have just seen in Proposition 4.4.4, 
V (oo) =  0  almost surely.

If p < y/2]3 then it follows from Proposition 4.4.4 that there exists a p > 1 such 
that V  converges in CP(PX), and so V  is uniformly integrable. It remains to show that 
V(oo) > 0  almost surely.

To prove that P X(V(oo) =  0;£ =  oo) =  0 when p < yf2f3, we note that

theory for Poisson processes — see Kallenberg [56] — lets us re-write Qx(sum (t)) as 
an integral:

Q*(sum(0) = Q1 ]T
U<£t ))

Applying Fubini’s Theorem with our upper bound for Qx(spine(t)) gives

This is bounded for all t > 0  if \pp 2 < (3.
(ii) Observe that

since one of the particles alive at time t is the spine. Then as is a Q^-Bessel-S process, 
and so is transient, we have

QI (limsup1F(t) — -foo) =  1

P X(C < oo) =  1 when p > yj2f3 the result follows. □

P x(V(oo) =  0) =  P X(V(oo) =  0;< =  oo) +  P X(V(oo) =  0;C < oo) 

=  P X(V(oo) =  0 ;C =  oo) +  P X(C < oo)
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4.4 Martingale results and spine decompositions

and hence it suffices to show that P X(V(oo) =  0) =  P x(( < oo). As in the proof of 
Theorem 3.1.2, we use uniqueness of the one-sided travelling wave in the case p < y/2j3 
to prove this. Define p(x) := P X(V(oo) =  0), and then

p(x) =  BI ( p ;t(F(oo) =  0 |^ ) )  =  £:i r  J ]  H K W )) ,  (4.14)
'  ue N ~ p J

whence p(x) satisfies the travelling-wave ODE. Since extinction in a finite time guaran
tees that U(oo) =  0, we also have limxjop(^) =  1. We do not have a representation for 
V(oo) like the one we gave for W^(oo) in Remark 3.3.2, but, considering the process 
path-wise, we see that increasing x  increases the value of V  under the law P x. Recall 
here that p > 0, so x e is increasing in x. Hence p(x) is monotone decreasing in x  and 
p(x) |  p(oo) as x  —* oo.

Now consider taking any fixed infinite BBM tree started at x. For any fixed time 
t > 0 , we have N f p { A/̂ -p as x  —► oo. Looking at the process path-wise again, for all 
u G N ^ p we have Yu(t) |  oo as x  —> oo. Taking the limit x —> oo in (4.14) we then have 
p(oo) =  E 0^ whence p{oo) G {0,1} and now uniform integrability of
V  forces p(oo) =  0. Uniqueness of the one-sided travelling wave (Theorem 2.1.1) now 
finishes the argument. □

Remark 4.4.6. As we did at Remark 3.1.9 for W \ , we can see that f ( x )  := E x(e~v °̂°̂ ) 
is not the one-sided travelling wave solution (when it exists) for the system (2.4), since

E x(e~v ^ )  = E x{e-v{oo^X  < oo) +  E x(e-v{oo);C =  oo)

=  P X(C < oo) +  E x(e~v (°°)'X =  oo).

V  is uniformly integrable if p < y/2 ~j3, and so E x(e~v(°°); ^ =  oo) > 0 for this parameter 
range.

Proof of Theorem 4-1-5- This is the same method as the proof of Theorem 3.1.8 — we 
only have to check the details.

Let p > y / 2 s  G (0, oo) fixed, and A G P3. Then

p*m\n P* (U P x(Rt+. > 0 \ J :.)) / , , c\P  (A\R t+ 3  >  0) = ------------------ — -------- . (4.15)
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Setting off along the same path we took in the proof of Theorem 3.1.8, we have

Y,(t) := P X(R,+S > 0|.F,) =  1 -  ( l - P y“« ( f i t > 0 ) ) ,
u£Nrp

and, using the asymptotic (Theorem 4.1.2) for the (decaying) probability P x(Rt > 0 ),

)-(hp2~l3)tY,(t) ~  - 2 =  V
uzNrp

Combining this with the asymptotic for P x(Rt+ 3 > 0 ) we have, almost surely,

P*(Rt+. > PIP.) ____ V t f
A Px{Rt+s > o) <-+«= Av(oy  ^

It remains to dominate the left-hand side of (4.16) by a random variable that is 
independent of t. Using the inequality (4.4) gives

Px(Rt+. > 0|PS) <
u£Nrp

and, in light of Theorem 4.1.2, there exists a constant A(x) > 0 such that

Px{Rt+s > 0) > A{x)e-{y 2~l3){t+3)

for t > 0. Putting these last two inequalities together we find that

1a^ t £ ^  ^ x)_1 E  ^ y»W+(V-«* < A{x)-lZo(e) e
u£Nrp

and then dominated convergence gives

P*(Rt+. > 0 |P„)^ p x f  1a^ M \  =P x ( M R  -  p x fP  (A\Rt+s >  0) -  P \ 1 A p i{R t+ s> 0) )  ^  P  ^ V(0) )

as required. □
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Chapter 5

Exponential growth rates for a 
typed branching diffusion

In this chapter we study the typed branching diffusion introduced by Harris and 
Williams [48], and studied further in Git and Harris [47]. Particles in this process 
diffuse spatially as driftless Brownian motions on M, and they also have a type, which 
takes values in M and evolves as an ergodic Ornstein-Uhlenbeck process. A particle’s 
type determines both its breeding rate and the infinitesimal variance of the Brownian 
motion driving its spatial movement. The main result of this chapter gives the almost- 
sure rate of exponential growth of the number of particles at particular space-type 
positions

The work in this chapter is developed from the preprint by Git and S. C. Harris [47]. 
The main result of this chapter — Theorem 5.1.1 — appeared in the preprint [47] as 
a conjecture, and in this thesis we give the first rigorous proof of this result. Our new 
proof relies on martingale arguments and spine techniques, rather than classical large- 
deviations methods in the style of the original preprint [47] and Git [38]. However the 
heuristics presented in Git and Harris [47] are vital in building intuition for our proofs, 
and so we include a review of these in Section 5.2. Sections 5.4-5.6 contain the original 
work of this chapter — the proof of the lower bound of Theorem 5.1.1.

This work has appeared in Git et al. [39], which in addition contains full details of 
the original results of Git and Harris [47] that are used without proof in the sequel.
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5.1 Introduction

We define Nt to be the set of particles alive at time t > 0. For a particle u £ Nt, 
X u(t) € R is the spatial position of u , and Yu(t) e R is the type of u. The configuration 
of the branching diffusion at time t is given by the point process X* := {(Jfu(t), Yu(t)) : 
u e  Nt}. The type moves on the real line as an Ornstein-Uhlenbeck process with 
a (standard normal) invariant density 4>(y) := (27t)-1/2 exp (—y2 /2) and associated 
differential operator (generator)

where 9 is a positive real parameter considered as the temperature of the system. The

Each offspring inherits its parent’s current type and spatial position, and then moves 
off independently of all others. We use P x,y and E x,y, where x,t/ G R, to represent 
probability and expectation when the Markov process starts with a single particle at 
position (x , y ).

The quadratic breeding rate is a critical rate in terms of explosions in the population 
of particles. In a branching Brownian motion on R with binary splitting occurring at 
rate xp at position x , the population will almost surely explode in a finite time if p > 2 ; 
whereas for p =  2  the expected number of particles blows up in a finite time, but 
there almost surely remains a finite population at all times (see ltd and McKean [53, 
pp 200-211]). In Chapter 6  we study the spread of BBM with a quadratic breeding 
potential.

The Ornstein-Uhlenbeck process has exactly the right drift to help counteract the 
quadratic breeding rates: for large enough temperature values 9 > 8 r , there is a suf
ficiently strong mean-reversion to keep the particles well behaved but, for low tem
peratures, the large breeding rate outweighs the pull back toward the origin and the 
particles behave very differently. In fact for 9 < 8 r  the expected number of particles

spatial motion of a particle of type y is a driftless Brownian motion with variance

A(y) := ay2, where a > 0.

A particle of type y undergoes dyadic branching at rate

R(y) := ry2 +  p, where r, p > 0.



5.1 Introduction

blows up in finite time, but the total number of particles alive remains almost surely 
finite for all time — see Harris and Williams [48]. These properties the ‘low tempera
ture’ typed branching diffusion shares with the quadratic-breeding BBM, which is the 
object of study in Chapter 6 , and in future work we hope to be able to extend some

low temperature case. Throughout this chapter we consider only values of 0 above the 
critical temperature, that is 0  > 8 r.

Note that if the spatial motion is ignored, we have a binary branching Ornstein- 
Uhlenbeck process in a quadratic breeding potential. Enderle and Hering [30] consid
ered a branching Ornstein-Uhlenbeck with constant branching rate but random off
spring distribution. In contrast to our exponential growth results, Enderle and Hering 
studied the convergence properties as t  —> oo of the proportion of the total population 
in an arbitrary Borel set.

The main result of this chapter is the almost-sure asymptotic rate of exponential 
growth in the number of particles with given space and type position. For 7  > 0 and

An outline for this calculation was given in Git and Harris [47]. This motivates the 
following almost-sure result.

T heorem  5.1.1. Let 7 , k > 0 with A(7 ,k) /  0. Under each P x,y law, the limit

of the methods developed in Chapter 6  to enable a study of this typed process in the

C e l ,  define
(5.1)

u£N t

For 7 , k > 0, it can be shown that the limit

exists and takes the value

A ( 7 , k )  : =  p  +
(0 -  k 2) 1

-r^-y/9(9 -  8r)(4a07 2 +  a2{0 +  k2)2). (5.2)
4 40a

D{7 ,«) := lim t 1 In JVt (7 ; [«;>/£, 0 0 ))
t—► 00

exists almost surely and is given by

A (7 , k) if A (7 , k) > 0 ,

—0 0  if A (7 , k) < 0 .
(5.3)
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To prove the upper bound on the growth rate, we will use a result from Git and 
Harris [47] on the exact rate of convergence of some additive martingales. To prove 
the trickier lower bound, we will exhibit an explicit mechanism whereby the branching 
diffusion can build up at least the required exponential number of particles near to 
—7 t in space and Ky/t in type position by large times t. This mechanism involves 
particles spending almost all of their time building up in large numbers at a certain 
proportion of the required spatial position, and then a small proportion of this group 
of particles succeeding in making a very rapid ascent out to the required final position. 
Finding a lower bound for the probability that a single particle makes this rapid ascent 
is an application of spine change-of-measure techniques, and represents the bulk of the 
original work of this chapter. The following two corollaries are immediate consequences 
of Theorem 5.1.1.

C orollary  5.1.2. For any F  C  R2, define

/ / B c R 2 is any open set and C c R 2 is any closed set, then almost surely under any 
px,y

lim inf j  log A/'t (H) > sup D{7 ,  k ) ,  

t->°° 1 M e n

lim sup -  log A/t(C) < sup D(7 , Ac),
t~>°° t  (7,k)GC

with the growth rate given by D(7 , k) as defined above.

C orollary  5.1.3. Let B  C R 2 be any open set. Almost surely under each P x,y law,

fo  if S f ) B  = 0  
Aft (B) -  {

|^+oo if S  n  B  7  ̂ 0 ,

where S  C R 2 is the set given by S  := {(7 , k) G R2 |A(7 , k) > 0}.

5.2 R eview  o f previous work on th is m odel

In this section we review some of the results of Harris and Williams [48], and Git 
and Harris [47]. These results will be needed as intermediate steps in the proof of
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Theorem 5.1.1. As well as this, we will give brief details of some heuristic arguments 
that Git and Harris gave to gain an intuition for the dominant behaviour of particles 
that are found at space-type position (—7 t,Ky/t) at time t. Although not strictly 
essential for our later arguments, these heuristics are useful motivation for our new 
spine approach to Theorem 5.1.1; and they go some way toward justifying our later 
parameter choices.

First, we give some key definitions. Let

lO - S r
Arain'-  V ^ - ’

and then let A < 0 be a parameter such that

Also, define

px := O ( 0 - 8 r - 4 a X 2) ^  := ^  ±  E± := p + 0if>± c± := - E % /A.

Note that A m j n  is the point beyond which p \  is no longer a real number.

M artingales

The main tools in our analysis of this typed branching diffusion, and indeed also in 
Git and Harris’s proofs of their results that we quote in this section, are two families 
of additive martingales. These are defined as

Z i V )  ■= E  A e(A min,0), (5.4)
u £ N t

where v^(y) := exp ('tp^y2) are strictly-positive eigenfunctions of the self-adjoint oper
ator

Â *A + R+Q e,

with corresponding eigenvalues E ^  < E ^  (note that £ L 2 {<f>) so is not normalisable).

91



5.2 Review of previous work on this model

The spatial growth rate

A vital intermediate step in our proof of the lower bound of Theorem 5.1.1 is to find 
the asymptotic growth-rate of particles in the spatial dimension only. For 7  > 0, the 
limit giving the expected rate of growth,

l i m t - 1 log£(Wt(7 ;R)),c—> OO

can be shown to exist and its value can be calculated to be

A(7 ) := p+  ^  -  8 r) (1 +  472 /(0a)).

An outline for this calculation was given in Git and Harris [47]. It is now tempting to 
guess that the asymptotic speed of the spatially left-most particle, c( 6 ), is given by

c{6 ) := sup{ 7  : A (7 ) > 0}

- \ j 2 a { T + p + 2 ( ' t - £ ) )• (5-5)

In this particular situation, this guess that ‘expectation’ and ‘particle’ wave-speeds 
agree was proved using a change-of-measure technique in Harris and Williams [48]. In 
this thesis, we extend this connection and prove that the ‘expected’ and ‘almost sure’ 
rates of growth of particles (in both space and type dimensions) actually agree.

The following almost-sure result is proved in Git et al. [39].

T heorem  5.2.1. Let 7  > 0 and yo < Z/i- Under each P x,y law, the limit

D(7 ) := lim f-1 log Nt(r, [2/0 , S/i])

exists almost surely and is given by

C ( 7 ) = , A M  if 0  < 7  <  c(6 ),
— 0 0  if 7  > c(0 ).

Note that symmetry in the process means that there is a corresponding result for 
particles with spatial velocities greater than + 7 . We may occasionally make use of 
spatial symmetries without further comment.
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Heuristics for the lower bound of Theorem 5.1.1

Following Git and Harris [47], we now try to present an intuitive picture that explains 
why the almost-sure asymptotic exponential growth of iVf(7 , [Ky/t, oo)) is at least of 
size A(7 ,k), whenever A(7 , «) > 0. We emphasise that this is not meant to be precise: 
it is solely to provide valuable intuition and motivation for our rigorous approach later 
on.

Our interest is in the number of particles, Nt{7 ,k), that have space-type positions 
near to ( 7 t,Ky/t) at a large time t. In the case k /  0, we require particles at a 
large distance from the type origin. However, when 6  > 8 r, the attraction to the 
type origin is much stronger than the quadratic growth rate, and it is very unlikely 
that any individual particle u satisfies Yu(t) > ey/t for a prolonged period of time. The 
majority of particles that contribute to Nt(7 , [Ky/t, 0 0 )) at some large time to will fail to 
contribute to Nt(7 , °°)) at times soon after; particles come and go very quickly
from the wave front near ( 7 t,Ky/t). There will be many possible trajectories these 
particles have travelled along to get to a position ( 7 t, Ky/t) by large time t, but our 
proof of the lower bound in Theorem 5.1.1 relies on finding the form of a trajectory that 
a dominant number of particles will follow. It turns out that such dominant particles 
will, with a high probability, have had a history made up of two distinct phases.

(i) The long tread, taking up almost all of the available time, in which the particles 
drift spatially with speed 7 0 / ( 0  +  k2).

(ii) The short climb, when, over a fixed time [t,t +  r], some particles make a rapid 
ascent to type position Ky/t whilst additionally gaining { j k 2 /  (9 K2)}t in spatial
positioning. These particles will then stay near (■yt, Ky/t) for only a short period 
of time before their type decays back to 0 again. Note that if k =  0, then only 
the first phase is applicable.

For the following heuristics, we can think of r  t as large and fixed (although in our 
rigorous approach we will subsequently choose r  as a particular function growing with 
In t).

Git and Harris gave a heuristic calculation to find the probability that a single 
particle, starting near to the origin (0 , 0 ), has at least one descendent in the vicinity of 
(—fit, Ky/t) during a small interval of time just before time r .  This probability turns
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5.2 Review of previous work on this model

out to be roughly exp(—©(/?, «)f) as t gets very large, where

K2 y / 9(e -  8 r ) ( a 2K4 +  4 a 6(32)

0(A  K) = T  + --------------4aB---------------'

This will be formulated precisely as a large-deviation lower bound in Section 5.4, but 
we will now give very brief details of the Git and Harris heuristic calculation, because 
the optimal paths that arise for the long tread and short climb will be the ones that 
we later use in our spine arguments. For the full details of this heuristic argument, we 
refer the reader to Git et al. [39],

Suppose we start the branching diffusion with a single particle at (0,0), and let t 
be arbitrarily large. We wish to know the probability that there is at least one particle 
at time r  that has a spatial position near —/ft, having followed close to the path x(s) 
for 0  < s < r ,  and a type position near Ky/t, having closely followed the path y(s) for 
0 < s < T.

We recall from the large-deviation theory of Freidlin and Wentzell (see Dembo 
and Zeitouni [24, Chapter 5], for example) that the probability that a single particle 
manages to follow closely both the type path y(s) and the spatial path x(s) for 0  < s < r  
is roughly given by

exp (■“ h £ (Hs)+?y(s))2ds - 1 [  3 S ds)’
when x(0) =  0,x (r) =  —/ft, y(0) =  0,y(r) = ny/t, and t is very large. This probability 
will typically be very small; but, if such paths are followed by particles in the branching 
diffusion, we have to also take account of the large breeding rates that are found far 
from the type origin.

Git and Harris used heuristic arguments involving a birth-death process to show 
that the probability that a single particle in the branching diffusion manages to make 
the difficult rapid ascent along path (x ,y ), to finish near (7 t,Ky/t) at time r ,  may be 
roughly estimated by

exp I —inf sup J (x ,y ,w ) ), (5.6)
\  x , y  t u G [ 0 , r ]  /

where

J ( x , V, w )  := Jo ( T ( » W  +  \ v ( s ) ) 2 +  -  r y « 2 -  p )  d . .
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5.2 Review of previous work on this model

Git and Harris showed that, in fact,

inf sup J(x ,y ,w )  =  inf J(x ,y ,  r),
x'y iu€[0 ,t] x'y

where the intuition for this comes from noticing that the paths (x , y) are ‘steep’, and 
so the point on the paths that is the most difficult for a particle to reach is the point 
right at the very end, i.e. at time r.

We now outline a calculation to find infyy J (x ,y ,r ) .  It is straightforward to opti
mise over the choice of function x  given y, finding that x(s) oc ay(s)2, and hence

x(s) =  Aa / y(u)2 du,
Jo

where A is the constant of proportionality and must satisfy

A = — = ^ L _  
a fo v(*)2 d s ’

yielding

2 Jo oy(s)2 2a /0T j/(s)2ds 

This is to be anticipated since, when following the path y in type space, the spatial 
position of the particle is a Brownian motion with total variance at time r  given by 
a /q y(s ) 2 ds, and so the probability that a particle following the path y in type space 
will also be found near to — fit in space at time r  is roughly

(  - 0 2 t 2 \
expU / 0Ty(s)2<V'

The optimisation problem for y is then

' f  {  f 0 ( h  ( * «  +  1 V{S)) 2 +  2 a f f y t ) 2 d s  ~  r y ( $ f )  dS}

=  inf sup j j f  ^ (v W  +  ^W ) ~ ry(s ) 2 -  ^ a \ 2y(s)2̂ J ds -

> sup inf |  j f  +  “  r 2 / ( s ) 2 ”  \ aX2y(8)*} ds -  ’

where the equality above follows on maximising the quadratic in A. Some Euler-

95



5.2 Review of previous work on this model

Lagrange optimisation now gives the optimal path as

yx(s) = (0 < s < r), (5.7)
sinh fj,\T

where
J 6 ( 0 - 8 r - 4 a \ 2)

W =  j  ’

and then

SAPi?f { /  { ^ e i y ^  +  ^y ^ )  -  r y (s)2 -  \ aX2y(s )2 )̂ ds + xPt}

= sup |A /ft +  n2t Q  + ( ^  coth Mar j  | .

The optimal choice A (which depends on r  as well as the model parameters) then 
satisfies

—/ft 2 /coth/xAr^ V c o t h ^ r  r \ = r ,
V 2 /xt 2 sinh /u t r /  J Qa \  V 2Ma 2sinh2/u^r/

and one can now check that the supremum and infimum could have been freely inter
changed, maintaining equality in the previous expression. The optimal spatial path is 
then

(s) := A a f  yx(u)2du = - / f t 8?11̂ ^ * 8— (5.8) Jo  sinh 2f i x r  -  2 f i x r
and defining x  : = x x ,y  '•= yx , we have

inf J{x ,y ,r )  =  J  {x ,y ,r)  
x>y

=  t sup | k 2 Q  +  ^  coth f iXT ^  -  A/? J  -  pr

=  * ( f  ( l  +  29 C° th M*T)  “  “  pT’

An important note on the optim al paths

As r —> oo, we have

sup | k 2 Q  + ^ c o t h / X A -  A/?j t sup {kVa “  W}  = ~
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where the optimising parameters of the supremums also converge with

A -  x =  “Va w f f / P  =  *(0 ^  )*“)• (5-9)
Then letting

f 2 ,4. ft2 \ / 0{Q ~  8 r ) (a 2« 4 +  4aOfl2) .e(/J>K) : = s u p { K2^ - A / 3 }  =  -  +  ^ --------^ ^  (5.10)
4 4a0

and writing x x \  and y := y\, we note that for all e, S > 0  there exist f , p  > 0  such 
that for all t > 0  and r  > f

exp ( -  inf J(x, y, r )  ) > exp ( - J(x, y, r))
\  x,y J

=  exp ^ - t  ( k 2 ^  c o th /^ r j  -  X ^ j  +  pr j

> exp ( - t  (©(/?, k) +  e ) ) .

Further (when k > 0), for all s € [r — p, r],

y(s) > (k -  x{s) < -{(3  -  6 )t.

In particular, the paths stay close to the required positions for some fixed length of 
time, with corresponding probability that is at least as large as required.

We now combine this estimate for the probability that a single particle has a de- 
scendent that performs the short climb with the spatial growth rate of Theorem 5.2.1. 
We recall from Theorem 5.2.1 that, for large times t , there will be approximately 
exp(A(c*)t) particles near —at  in space. The number of particles that are near (—at, 0) 
at time large time t , which then proceed to have at least one descendant alive near 
position (—(a +  (3)t,Ky/t) during the small time interval [t +  r  — p , t  +  t], will be 
approximately Poisson with mean

exp ((A (a) -  ©(/?, « ) ) t) .

By the Strong Law of Large Numbers, the actual number found will remain sufficiently 
close to this large mean with a very high probability, so we will eventually keep finding 
large enough numbers of particles close to the required positions.
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Optimising over a  +  (3 =  7 , with a,(3>  0 , some simple calculus reveals that with

we have A(a) — ©(/?,«) < A (a) — ©(/?, k) =  A(7 , «).
To summarise, we have that the number of particles found in the vicinity of (7 £, Ky/t) 

is at least roughly of order exp(A(7 , k) t ) for all sufficiently large times t. This suggests 
a lower bound on the exponential growth rate of A(7 , «), in agreement with the growth 
rate of expected number of particles.

5.3 P roof o f Theorem  5.1.1: upper bound

In the interest of completeness we give the proof of the upper bound of Theorem 5.1.1 
from Git and Harris [47].

Proof of Theorem 5.1.1: the upper bound. Simply observe that for A €  (Amin , 0 ) ,

a  =  7  9 /(0 + k2), (3 = 7«2/(0 +  k2)

Nt{r, [Ky/t, oo)) -  ^ 2
u£N t

>4>t(Yu(t)2 - K 2t ) + \ ( X u(t)+~,t)

u £ N t

u £N t

< e- x(ci ~ cx ^ Z ^ ( t)  +A7-«2V'a (5.11)

where E ^  =  — Ac^.
It can be shown that

a (7. <0 = inf {£A + At -  } ,
V'̂ inin>U)

where the infimum is attained at

In a separate result, Git and Harris showed that

lim sup t 1 log (t ) < A(c^ — cx ) (5 .1 2 )
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5.4 Proof of Theorem 5.1.1: lower bound

almost surely for all A £ (Amjn , 0 ) ,  and hence in cases where A (7 , k) < 0, we can use 
the minimising value for A, equation (5.12), and the fact that Nt(7 ; [ny/t, 0 0 )) is integer 
valued to deduce that Nt(j; [fty/t, 0 0 )) =  0  eventually, almost surely. Hence

lim supt- 1  In ^ ( 7 ; [ny/t, 0 0 )) — — 0 0
£—► 00

almost surely if A(7 ,k) < 0.
Otherwise we have A(7 , k) > 0, which in fact guarantees that 7  £ (0, c(6 )] and 

hence A(7 , «) £ [A(0),O). Then since

lim supf- 1  In A^(7 ; [ny/t, 0 0 ))
t — KX>

< lim sup£_ 1  In (t)J +  (E ^  +  A7  — k2^ )

we can again make use of equation (5.12) and the minimising A value, A(7 ,/c), to get 
the bound

lim sup £_ 1  In Nt(7 ; [ny/t, 0 0 )) < A(7 , k) almost surely,
t—* 00

as desired. □

5.4 P roof o f Theorem  5.1.1: lower bound

In this section we will state a precise short climb probability result and show how to 
combine it with almost-sure spatial (only) growth rates to prove the lower bound of 
the growth rate in Theorem 5.1.1. This will make rigorous the two-phase mechanism 
described in Section 5.2.

The first phase requires knowledge of the almost-sure rates of growth of particles 
in the spatial dimension only, which is provided by Theorem 5.2.1. The second phase 
requires a lower bound for the probability that a single particle makes a rapid ascent 
in both the type and space dimensions over the time interval [0,r]. This is the lower 
bound found in the heuristics of Section 5.2, but we require some further notation 
before the precise result can be stated. Note that, throughout this section, we will only 
be interested in the optimal parameter value A =  A as introduced in Section 5.2.
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5.4 Proof of Theorem 5.1.1: lower bound

We wish to fix the relationship between sufficiently large t  and r  as

and so define r  =  r(t) by

m  1 ln i2^ / 9) for > 6, 1r(t)  := { (5.13)
0  otherwise.

Recall the optimal paths ( x , y )  over s  E [0,r], where

y{s) = Ky/ i $ ^ - t 
sinh /z^r

S(.) =  aA f  y ( w f  d® =  - f i t  (5.14)
w  Jo V sinh 2 /z^t — 2 /z^r v '

with fixed end points y{r) =  and x ( r )  = — fit.
For large times t and S,£ > 0, let

Aet 'S(u) := < sup \Yu(s) — y(s)\ < ey/t; sup |Xu(s) -  x(s)| < S t \ .  (5.15)
I se[0,r(t)] sG[0,r(t)] J

We will use the notation
Ae/ : =  |J  A‘t 's(u) (5.16)

u<ENtW

for the event that there exists a particle in the branching diffusion that makes the 
short climb. Finally, recalling ©(/?, k) given at (5.10), we can now state the short climb 
theorem.

T heorem  5.4.1. Fix any y\ > yo > 0, x  E IR, and let £q > 0. Then for any £ , 8  > 0, 
there exists T  > 0 such that for all y E [yo,yi],

f 1 In P * ’V{A$’S) >  ~ ( 6 { J 3 ,k ) +  e 0)

for all t  > T.

We will prove Theorem 5.4.1 using a spine change of measure. This requires us 
to introduce the notation for the spine set-up in detail before proceeding, so this and 
further technical issues are postponed to Sections 5.5 and 5.6.
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Remark 5.4.2. We note that Theorem 5.4.1 is actually a stronger result than needed to 
prove Theorem 5.1.1 because we identify the specific paths followed by particles that 
are near position (fit,Ky/i) at time t-\- r , rather than just considering the particle’s 
positions close to time t  +  r .

In combining the two phases, we will have a huge number of independent trials each 
with a small probability of success, intuitively giving rise to a Poisson approximation 
for a large number of successful particles. In fact, in our proof of the lower bound of 
Theorem 5.1.1 below, we will actually use the following result about the behaviour of 
sequences of sums of independent Bernouilli random variables.

L em m a 5.4.3. For each n, define the random variable Bn := YlU£Fn -̂En(u) where 
the events {En(u) : u G Fn} are independent. Let pn(u) := P(En(u)) and Sn := 
YlueFnPn(u) and suppose that, for some v G (1/2,1),

S  ( s  )2i/-i < 00* (5*17)
n<=N  ̂ n >

Then almost surely the sequence of (possibly dependent) random variables {B\, £?2 >. . .  } 
has |Bn — (Ŝ l > (Sn)l/ for only finitely many n.

In particular, for any e > 0, there exists some (random) N  G N such that, with 
probability one,

> 1 — £ for all n  > N. (5.18)

Proof. For v G (1/2,1), Chebychev’s inequality yields

to/|P Cl ( q  \ v \  ^  ^ u £ F n P n ( u )(^ ~  P n {u ) )  1
P(JSn - S n| > ( S n) ) < ----------- ^ --------------   ( S ^ T ’

and hence the Borel-Cantelli lemmas, combined with hypothesis (5.17), imply that

|B n -  Sn| > (Sn)v'

for only finitely many n, almost surely. Equation (5.18) now follows on division by Sn, 
and noticing the assumption (5.17) implies that lim ^oo Sn =  0 0 . □

Proof of Theorem 5.1.1: lower bound. Define / - 1(t) := t — r(t), and note that both 
f ( t ) / t  —> 1 and f ~ l (t)/t  —> 1 as t —> 0 0 . Also, for n  G N and p > 0, define Tn := 
(n +  \)p. We want to estimate the number of particles that are near the large space- 
type position (—(a  +  (3)Tn, Ky/Tff) during time interval [Tn_i,T n]. For this, we will
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5.4 Proof of Theorem 5.1.1: lower bound

consider particles that travel with a velocity —a  over time period [0,/ _1 (Tn)] before 
commencing their rapid ascent of (relatively short) duration r{Tn) to be in final position 
at time Tn. Then

inf Na((a  + 0 - 6 ) T n;[{K-6)y/Tn, oo))
s G [ T „ _ i , T „ ]  \  /

_  ^ 7 ?  { ris6[Trl_1>rn] —(a +P—S)Tn ;Yu(s)>  (k —8)VTn } }

*  £  V ' » > o }  (5-19)

where

F% :=  { u  €  N , - HTn) : X u( f ~ l (Tn)) < - a T n,Yu( f ~ \ T n)) € [»0 ,»i]} 

and, for u € Fg,

(u ) :=  1 { n se[Tn_ liTn]{ x v( s ) - X v ( f -HTn) )<- ( / 3-S)Tn;Yv(S)>(K-S )y/ T ^ } } '
v£Nx„

v> u

] V g N  where

We will now show that the sum at (5.19) grows as fast as anticipated:

L em m a 5.4.4. For any £ > 0, we may choose p > 0 such that there exists a random

f - ln £  1 { n Z-'(u)>0} Z  A(«) -  ©(/J,«) -  £ 
n ueF“ 1 }

for all n >  N  with probability one.

Proof. We will be able to apply Lemma 5.4.3 given sufficient information about the 
growth of \F£\ and decay of the probabilities

:= P ( N ^ ( u )  > 0\T f - i (r n))>

where u e  F£ C N f- i(Tny
It follows easily from Theorem 5.2.1, the fact that f ~ l (Tn)/Tn —► 1, and the conti

nuity of A (a) that

for all sufficiently large n.
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The definition of N n K(u) and spatial translation invariance implies that, for each 
u € , the rapid ascent probability pn,K(u) depends only on the initial type position
Y u i f - ' iT J ) .

For S,p > 0, define

:= f |  -  X“(°) < - ( 0  -  S)p> y“(s) ^
s G [ r ( t ) — / / , r ( t ) ]

and
B t* :=  | J  Bf^(u). (5.20)

Recalling the comments on the optimal paths given in Section 5.2, there exist e',6 ' > 0 
and we may choose p > 0  sufficiently small, such that

> po,K.(/-‘(r„))(/4^ ' ) = . pn(u)

for all u e  F£ whenever n  is sufficiently large. Together with Theorem 5.4.1 and since 
y « (/- 1(Tn)) € [yo»yi] f°r u € this reveals

lnp£’*(u) lnpn(u) ^  ^  ^  e
—  >  — > - e ( A « } -  j

for all for u G F “ and all sufficiently large n, almost surely. Then we may combine the 
observations above to obtain

Tu ueF«

Taking this last line together the assertion of Lemma 5.4.3 at equation (5.18) gives the 
result. □

It is now straightforward to combine Lemma 5.4.4 with the inequality at (5.19) to
see that, given s, 8  > 0, there exists p > 0 and a random time T  such that

t -1ln Nt ^(a +  (3 — 8 )t; [(k — S)Vt, oo) j  > A (a) — &((3, k) — e

for all t > T, almost surely. Since e and 6  can be taken arbitrarily small, using the
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optimal a  and [3 found in Section 5.2, we find

lim inf In iVt (7 ; [ny/t, 0 0 )) > A(7 , k) almost surely,
t—*00

as required. □

5.5 T he spine construction

In this section we recall the notation for the Hardy and Harris technique method of 
constructing spines. Much of this notation is identical to that used in Chapters 3 and 4, 
but for the reader’s convenience we re-state some of the most important definitions. 
There are some very minor alterations to the notation of those earlier chapters, arising 
from the introduction of the types.

All probability measures are (again) to be defined on the space T  of marked Galton- 
Watson trees with spines. For a Galton-Watson tree, r ,  to each individual u  £  t  we 
give a mark (X u,Yu,a u) which contains the following information:

• ou € [0 , 0 0 ) is the lifetime of particle u , which also determines the fission time of 
the particle as Su := Ylv<u av  We may a ŝo refer to the Su as death times;

•  the function X u(t) : [Su — cru,S u) —► R describes the particle’s spatial motion in 
R during its lifetime;

•  the function Yu(t) : [Su — ou, Su) —► R describes the evolution of the particle’s 
type in R during its lifetime.

We denote a particular marked tree by (r, X, Y, <r), or the abbreviation (r, M), and 
the set of all marked Galton-Watson trees by T. For each (r, X , Y, a) £ T ,  the set of 
particles alive at time t is defined as N t := { u  £ r  : Su — au < t < Su}. The collection 
of all marked trees with a distinguished spine is the space T  on which our probability 
measures will eventually be defined.

The set of particles making up the spine is denoted £, and we think of the spine as 
a single diffusing particle £t , or, strictly speaking, the pair {fit, r)t), where r)t is the type 
of the spine at time t. In our model rjt is an Ornstein-Uhlenbeck process.

We define four filtrations on this space that contain different levels of information 
about the branching diffusion.

• Filtration (J-t)t>o- The natural cr-field.
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• Filtration {J-t)t>o- We define the filtration {J~t)t>o by augmenting the filtration 
T t  with the knowledge of which node is the spine at time t:

o •= , node*(£)), Too '■= <* (  ( J  ,
m> o '

so that this filtration knows everything about the branching diffusion and every
thing about the spine.

•  Filtration (Gt)t>o* (Gt)t>o is a filtration of T  defined by

Gt :=  : 0 <  s < t ) ,  G o o : = v ( \ j G t
o

These cr-algebras are generated only by the spine’s motion and so do not contain 
the information about which nodes of the tree r  make up the spine.

• Filtration (Gt)t>o- As we did in going from Tt  to T t we create (Gt)t>o from (Gt)t>o 
by including knowledge of which nodes make up the spine:

(Gt)t>o := <?(Gt, no de t (O) ,  Goo ’=  (  ( J  Gt
^t> o

This means that Qt also knows when the fission time on the spine occurred, 
whereas Qt does not.

Now that we have defined the underlying space and the filtrations of it that we require, 
we define the probability measures on that space that give us the typed branching 
diffusion. The measures {P x>y : x, y 6  IR} on (T, Too) are the law of the typed branching 
diffusion described in Section 5.1, and the ideas of Lyons [71] allow us to extend the 
measure P x>y to a measure that also keeps track of the spine.

We recall that, if /  is an jFr rneasurable function then we can write

/ = E / « 1 k.=«}> <5-21)
u£Nt

where f u is y^-measurable. Now we extend P x,y to a measure P x,y on (T ,T oo )  by 
choosing the spine uniformly each time there is a birth on the spine; more precisely,
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for any /  G m Tt with representation like (5.21), we have:

T  u£N t v<u

The measure P  can be decomposed as

dP(r,M,<£) =  d P ^ d P ^ M d L ^ K )  I I  5 x dP((T,M )v),
v<&

where P, p(0,f) and h R^  are, respectively, the laws of the spine’s spatial position &, 
type position rfo, and the Poisson process nt of births on the spine.

We construct the ^-m easurable martingale £(£) as

l( t)  := v+(%)e/o‘(K('>')+3A2'4(’i*))d»-EAt X 2nte~ J iR(ri‘>d’ X exi,- i x‘ A,ri' ,da (5.22)

Observe that this is a product of single-particle martingales, the first of which is a 
change of measure for the spine’s type process. These martingales can also be thought 
of as /i-transforms.

P ro p o sitio n  5.5.1 (H arris  an d  W illiam s [48]). The process

v+(rk)efo(RM + ix2A^'>)d‘- Et t 

is a P-martingale that will change the drift direction of rjt. More precisely, we have

^   ̂  ̂ y + ^ e f o ^ M + ^ A i n s ^ d s - E + t ^

dPj ’2(0,1)

/q r\
where, under P) , ijt moves o n l  as an OU-process with generator

6 d 2 _ d_

2  d y 2 V d y '

and we will refer to this as an OU(9,6) process.

The effect of the other changes of measure that make up ((t)  is to increase the 
breeding rate of the spine by a factor of two, and add a spatial drift to the spine. Using
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th e  m artingale £(£) we may define a measure Q^’y on (T ,.F 0o) by

S'*
d P x>y =  77777 =  (5.23)

Ft C(0) «x(v)
If we now factor in the Radon-Nikodym derivatives from the martingale £(£) we will 
obtain decomposition for Q \. On Tt we have:

dQx = t( t )d P

= dPAKJcIP^-^^^dL^^nt) n | x d P ( ( r , M D ,
V < £ t

and in view of this the branching diffusion may be constructed under Q^’y as:

• starting from spatial position x  and type y the spine (£t , rjt ) diffuses spatially as a 
Brownian motion with infinitesimal variance A(rjt ) and infinitesimal drift \A(r)t);

• the type of the spine, rft, begins at y and moves in type space as an outward- 
drifting Ornstein-Uhlenbeck process with generator

0 d 2 d
o's_22 d y 2 d y

(notice that rjt has a drift driving it away from the origin in type space);

• the spine branches at rate 2R(rjt), producing 2 particles;

• one of these particles is selected uniformly at random;

• the chosen offspring (the spine) repeats stochastically the behaviour of its parent;

•  the other offspring particle initiates a P  ’ -BBM from its birth position and type.

For future reference we emphasise that under Q^,y the spine has a spatial drift and 
a transient Ornstein-Uhlenbeck type process, as a consequence of which we will later 
see that the spine has a high probability of making the short climb. This is vital in the 
proof of Theorem 5.4.1.

Theorem  5.5.2. I f we define Q^,y := Q^,y|.Foo> then Q^’y is a measure on Poo that 
satisfies

dQ i v = z f t t )
Ft Z+(0)d p*.y : Z+(t). 
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Moreover under Q^’y, the path-wise construction of the branching diffusion is the same 
as under Q a.

Proof. By definition of conditional expectation, the change of measure (5.23) projects 
onto the sub-algebra Ft as a conditional expectation:

d Q j,z.y

d P x>y
e~Xx

Ft vx (y)

To evaluate this conditional expectation we use the representation (5.21) and the fact 
that 2nt =  n w<Cl 2, and we obtain

P t 'y ( v + ( Vt) T ‘ex(l I j
= p I 'y (  E  x J] 2 x l({>=tl) Ji)

'  u £ N t v< u  '

=  v\ ( Yu(t))2 ntexx^ t)~Et t x n  2 x P x'y{Zt = u\Ft)
u £ N t v<u

= E  (y«W)2n‘e ^ t’>-Ei t x n  2 X n  \
n. r~ \T.u£Nt v<u v<u

E  «A (y«W)2n,eAX“<‘>-£i‘t =  Z f( t) .
u£Nt

□

Although the path-wise construction of the branching diffusion is the same under 
Q a and Q a> only the measure Q a ‘knows’ about the spine. It is clear, however, that we 
have Q \(A) =  Q a(A ) for any A e P oo-

Under the measure Qa only the behaviour of the spine is altered, and combining 
this observation with conditioning on the spine’s path and fission-times gives us a spine 
decomposition for Z£(t):

Qa(Za+« I M  = E  v i(v s a) e ^ - Ei s» +  (5.24)
u<£t

Throughout the rest of this chapter we will refer to the two pieces of this decomposition 
as the ‘sum term ’ and the ‘spine term’. This decomposition is derived in a very similar 
manner to the decomposition of the martingale V  in Proposition 4.4.1.
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5.6 Proof of Theorem 5.4.1: the short climb probability

5.6 P ro o f o f Theorem  5.4.1: the short climb probability

With the spine foundations firmly established in Section 5.5, we may proceed with the 
proof of the short climb probability lower bound from Theorem 5.4.1.

First, recall definitions (5.15) and (5.16), where A£t ,S is the event that there exists a 
particle that makes the short climb along optimal path (x, y), and A£t’6(£,) is the event 
that the spine makes the short climb. Note that e controls the proximity to x  and 8  

the proximity to y. Importantly, we will only be interested in taking A =  A throughout 
this section, although we will usually just write A for notational simplicity. Also recall 
throughout that t  and r  are related through (6 / 2 /ix) exp(2 p,\r) — n2t.

Proof of Theorem 5.4-1■ The key step in the proof of this is the following use of the 
spine change of measure: for any function g : R+ —> R + we have

P x'v(,4f,<s) =  Qxx-y (  =  O f ' (  1a‘ ‘ )  >  Ox,y( i lL l®
X \ Z i ( r ) )  \ Z i ( r ) )  ~  U a+W

'  A (T) -se[o,-7-] /

> ^ ( t) -1^ ^ ’5^ ); sup Z £ ( s ) < g ( T ) \  (5.25)
\  s £ [0 ,t ] /

Essentially we just have to make the ‘correct’ choice for both A and g in expres
sion (5.25), although there will still remain a number of technicalities to resolve.

The first idea is to ensure the (originally rare) event A£t 'S actually occurs under the 
new measure Q^,y by making the spine follow close to the required path (x, y); this is 
achieved by choosing the optimal value A for A and choosing r  to be on the natural time 
scale it would would take the spine to reach position ny/t. In particular, this choice 
will mean that in the first line of the above set of inequalities there is no significant 
loss of mass when replacing the event A £t ,6 with A^,<5(£). Next, we wish to choose the 
smallest possible g that will still leave some positive probability on the last line of the 
above argument. So we need to identify the rate of growth of the martingale Z f  under 
Q^’y, and this will essentially be governed by the contribution from the spine itself.

With this is mind, and recalling the various properties of the optimal paths and 
parameters from Section 5.2, for £o > 0 we define

* 0(t) := exp + ^  + £- f )  ( 2 ^ ) ^  -
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5.6 Proof of Theorem 5.4.1: the short climb probability

and recall from (5.13) that the scaling between t and t  is fixed throughout, where 
K2t = {0/2/^)e2/x*r for large t, hence t +  r  ~  t. Note that since we are only considering 
the optimal value A =  A, we have

+sS {ide2nT={K=e(/J,K)-
Then from (5.25) we have

P*«(A \’S) > ( V « ) ;  sup Z+(s) < Sso( r ) ) . (5.26)
\  s£  [0,r] /

Our strategy for the rest of this proof is to show that the Q^,y-probability in (5.26) is 
at least some e' > 0 for all sufficiently large t, uniformly for y G [yo,yi], so that the 
decay rate part of (5.26) matches the desired rate in the statement of the theorem.

Conditioning on the spine’s path and birth times, Goo, and then making use of some 
standard properties of conditional expectation we have

»l*(Ae/ ( 0 ;  sup Z + (s )< flE0(r))
s € [0 ,t ] /

(V (£); su p  2 + ( s )  <  Se„ ( t )  f t * , ) )
V « € [0 ,t]  J J

SUP ^ a ( s ) < 9 s o ( T ) S o o j ) .
. s€[0,i

since Aet '6(£) is (^-measurable. We next observe that, conditional on Goo, we can write 
Z f( t )  as

Z }{t) = e ~ ^ t y2+Xx>> (  e - Et s- Z ^ \ t  -  Su) +  f { t ) \ , (5.27)
'  U<(t '

where the Z are independent copies of Z£  started from a single particle at (£su, f?su); 
and f ( t )  is the contribution to Z ^(t)  from the spine, which, conditional on Goo, is a 
known function of t. Now if we could show, for 0 < £o < £o,

sup f( s )  < and sup (z+ (s) -  f ( s ) )  <
s€[0,r] ^ sG[0,r] '  / Z

where f ( t ) := e ~ ^ t y2+Xx̂ f(t), we would have supsG[0,r] Z \ (s) ^  9 e0(r )- Hence, defin-
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5.6 Proof of Theorem 5.4.1: the short climb probability

ing Z ^(s) Z£(s) — /(s ) , we have

^ P j ^ A  ( s ) ^  9 so( t ) Goo

,\ ^  9ip{r), 9 e 0 ( r )> Qxx’y ( y ( sup f{s)  < sup 2 +(s) < g
se[0,r] se[0,r]

Qa ( 1^ « ) 1{5UPa6(0ir|/(s)<?ig'^ M V( SUP 4 +W < ^ # f f o o ) )2 J \s€[0,t] ^ / /

G,

Goo

since, conditional on Goo, the supremum of /  on [0 , r] is known.
H 
' A

r>A Tir] i t i r v n o  1 o v r v o o t  o f  I r v n  r v f  oo/^V » r v f

We see from (5.27) that, conditional on Goo, Z t{ t)  is a submartingale. This is
because the Q^,y-conditional expectation of each of the in the sum

e - ( V - + y 2+ A * )  e -Ei SuZ {̂ \ t  -  Su) 
u<it

(5.28)

is constant, so the expectation of the sum cannot decrease, and in fact this expectation 
increases every time there is a birth on the spine. Then by Doob’s submartingale 
inequality we have

9-ro(T)

s € [0 ,t ]
&o M - Q a sup

9€Q{t )
s G[0,t ]

> 1 -

9so(t )
^ Q r ( 4 +w |e<x,).

We must note here that the expectation on the above line is not a priori finite. However, 
the expectation of each term in the sum (5.28) is bounded by sups £ [0 Tj f(s ) , which we 
have control over via an indicator function and so we do not have to worry about this 
expectation blowing up.

So we need to show that for all sufficiently large r  and all y & [yo,yi],

c,y(  1 
k I V

since then we also have

> £'-

Q xy ( ^ t 6 (^y, sup Z + ( s ) < 0 eo(r)N) > e'
\  «€[0,r] /

as required. This will follow by combining both parts of the following result.
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5.6 Proof of Theorem 5.4.1: the short climb probability

Lem m a 5.6.1. Fix yi > yo > 0 and £o > so > 0.
(i) For all sufficiently small £,5 > 0, there exists some s' > 0 and T  > 0 such that 

for all y E  [yo, yi] and all t  > T,

Qxxv(V « ) ;  sup /(.) < > e'.
V sGfO.rl * JsG[0,r]

(U) As T —► OO,

2 « ( A-l , \| \     i t  \ ^ 0

uniformly over y E  [yo,yi\-

Then we have shown that, for any £o > 0? 2/i > yo > 0, and sufficiently small 
£ , 6  > 0, there exists a T  > 0 such that, for all y E  [yo,yi] and all t > T,

t - 1 In P ^ ( A f ) > - ( 9 ( 0 ,  K) + e0).

Finally, we observe that the probability P x'y(JPt ) is trivially monotone increasing 
in both £ and £, and so it follows that if the result is true for all sufficiently small £ 
and 6 , it is in fact true for all £ , 6  > 0. This completes the proof of Theorem 5.4.1. □

Proof of Lemma 5.6.1(i). We will prove Lemma 5.6.l(i) in a sequence of other lemmas, 
using a convenient coupling for the spine’s type process.

First recall that, under Q^’y, rjs solves the SDE

drj3 =  V $dB s +  n\rjs ds,

where Bs is a Q^-Brownian motion. Noting that d(e~fJ,XSr)s) =  e~fJ,XSy/0dB3, we can 
construct e~^xSr]s as a time-change of a Brownian motion with

rjs -  m

where B  is also a Q^’y-Brownian motion started at the origin.
In this way, for y E  [yo,yi] we will construct processes rjy under P from Brownian
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5.6 Proof of Theorem 5.4.1: the short climb probability

motions B y started at y y j2 \ i \ jB  where, for s G [0, oo),

rrw  =

To construct all type processes r)y under the same measure P, we first construct the 
process B yo as an independent Brownian motion started at yo Secondly, we
construct the process B yi by running an independent Brownian motion started at 
yi y / 2 until it first hits the path of B yo, at which point we couple the two processes 
together. Next, for any other y € (yo, y\), we run an independent Brownian motion B y 
until it first meets with either the process B yo below or B yi above, at which point we 
couple it to the process it first hits.

Finally, we construct all the corresponding spatial processes £y under P from a 
single Brownian motion W  by defining

£y(s) =  lF ^ a  J  r)y(w)2 du>  ̂ +  Xa J  rf(w )2 dw, (5.29)

where W  is started at x  and is independent of the B y processes. Constructed in this 
way, for each y G [yo, y\\, the P-law of (£y,r)y) is the same as the Q^’y-law of (£,77). 

Fixing y, G (0,1) and K  > max{yi, 1}, we define the events and stopping times

Ay

T0 := inf{f : B yo(t) = 0}, TK := in f{ t: B yi(t) -  K }  

A£>k := A f  n  A f  n  {To > 1} n  {TK > 1}.

Then clearly P(Ae:>j^) > 0, and, on the event A£tK, the coupling gives

0 < rjyo(s)  <  Tjy(s) <  r)y i (s)  < K \  — eMAS,
V 2/xa

for all s > 0 and y G [2/0 ? 2/i] - Note that our construction also ensures that if event 
A £q D A l l occurs then so must A £ for any y G [yo,yi]j hence A £ 3  A e,k -

Lem m a 5.6.2. Let £ > 0. On the event A £ k ,  there exists a deterministic time sq =
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5.6 Proof of Theorem 5.4.1: the short climb probability

so(e) > 0  such that for all r  > s q ,

sup \r)y(s) -  £(s)| < eVt,
s £ [ 0 , t ]

for all y G [yo ,y i]-

Proof. Set si =  — ̂ 7 7  In y, and then, on the event A£)k , for all r  > s >  si we have

r)y(s) -
2/^a

e
2k V 2ijl\

for all y G [yo, yi]- Writing

y(s) =
6 1 _  c~2

< e
2/^a y 2/xa

we see that there exists S2 =  8 2 (e) > 0  such that, for r  >  s > S2 ,

y(s)~ 1 e
2/^a

9 oV\3
2 « y 2 /̂ a

Taking 8 3 (e) =  max{si, S2 (e)} now yields

k y(s) -  y(s)| < ~ y  2 ^ e/i>s -

for all t  > s > S 3  and all y G \yo, y\}.
Now consider s G [0, S 3 ] .  On A£>k  we have

(5.30)

|r/y(s) -  y(s)| < y  2 ^ eMAS3(! +  K ),

and hence for some 8 4 ( e )  > 0 we have |»7y(s) — y(s)| < ey/t for all r  > S 4 ,  all s G [0, S 3 ] ,  

and all y G [ y o , y i ] • Taking so(e) =  max{s3 , S4 } yields the result. □

L em m a 5.6.3. Let S > 0. Then for all sufficiently small e, there exists a deterministic
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5.6 Proof of Theorem 5.4.1: the short climb probability

r 0 =  To(e,S) > 0 such that, on A£jk , we have

sup I  rjy{w)2dw — I  y{w)2 dw 
s € [ 0 , t]  I JO Jo

for all t > tq and all y G [yo>2/i]-

< St (5.31)

Proof. Given any S > 0, we first fix an e > 0  sufficiently small such that £(2 + ^ ) 2^- <  f ; 
this yields a corresponding S3 =  S3 (£), which is chosen as at equation (5.30). Given 
this S 3 ,  we find t\ =  > 0 such that, for all r  > n ,

(.K 2 +  1) [  -JJ-e2̂ wdw < u- t .  
Jo

33 q

2/^a ~~ '  4'

We now set To =  to(£,£) =  max{s3 ,ri} . With this choice of e and To, we proceed to 
show that the inequality (5.31) is satisfied. Note that to is deterministic and indepen
dent of y.

From equation (5.30) we see that, on A£)k  and for s > S 3 ,

J  r)y(w)2dw >  J  rfy{w)2dw-\- J  (y(w) —

f 3 f Ss f s  pft
> I y(w)2 dw — I y(w)2 dw — 2 /    e2tlxW dw

Jo Jo J s 3
f S f 33 ft K t  f 3 S

> I y(w)2 dw — I - — e2̂ xw dw — (2e)-— > I y{w)2 dw — —t
Jo Jo 2Ma 2Ma J  0 2

for all t  > to and all y G [yo ,Vi ] -  Similarly

J  rjy(w)2dw <  J  r}y(w)2dw-{- J  ^y(w) H— n - e ^ w I dw 
2^a

< J o y(w)2dw + C (
2

2/^a~ )
2

< [  y(w)2 dw +  K 2 f  e2̂ xW dw  +  £^2 +  —Y
Jo Jo  2Ma V

< I y(w)2 dw +  ^-t

J  2//a

f  y{wf
Jo
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for all r  > ro and all y £ [yo>2/i]- Finally, for s £ [0, S3 ], on A£>k  we have

I C s  f s  I f s  f 3I r}y(w)2 dw — I y(w)2 dw < / 7jy(w)2 dw +  I y(w)2 dw 
I Jo Jo I Vo Jo

<
r s  3

( ^ 2 +  1)
J O 2/^a

du> < St

for all r  > r 0 and all y £ [yo, 2/i]* □

L em m a 5.6.4. Let S > 0. Then for all sufficiently small £ > 0, there exists F-almost 
everywhere on A £>k  c l  random time S q  =  S q ( 8 , £ )  < 0 0  such that

sup
s E[0,t ]

(,y(s) — Xa (  rf{w )2dw 
Jo

< St,

for all y £ [ 2 / 0 , 2 / 1  ] and all r  >  S q .

Proof. Given S > 0, choose any S', S" > 0 such that S'(\j3/X\ +  8") < 5. Recalling the 
construction of at (5.29), we see from standard properties of Brownian motion that 
there almost surely exists some S\ =  Si(S') < 0 0  such that

sup |W(s)| < S', for all t>  S\.
s€[0,t]

Then
sup

s£  [0,t ]

W^aJ r)y(w)2dw^ < 8 '^a  J  7/y(u;)2 dw;^ (5.32)

for all r  such that a f j  rjy(w)2dw > Si, and by the coupling construction, on A£,k  
this is true for all y £ [yoiVi] if a rjyo(w)2dw > Si. Then there exists (P-almost 
everywhere on A£jk )  a random time S2 = S 2 (S') <  0 0 , which depends on B yo and Si, 
such that a f j  r/y(w)2dw > S 1 for all y £ [yo,yi\ when r  > S2 .

Now by Lemma 5.6.3, given 8" and a sufficiently small e, there exists a deterministic 
To =  tq{£,8") > 0  such that, on A£>k ,

a J  rjy(w)2d w < a  J  y(s)2 ds +  S"t = ^ + 5 " ) t (5.33)

for all t > tq and all y £ [yo, yi]. Combining the inequalities at (5.32) and (5.33), we
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now  see th a t, for r  >  S q =  S q( £ , 8 ' , 8 ")  =  m a x {S 2 ,To},

sup £ y ( s )  —  \ a  f  rjy ( w ) 2 d w =  sup W l a f  r7y (w )2 dttM <  5 t
sG [0,r] Jo sG [0,r] \ Jo J

for all y G [ y o ,y i ] -  □

On combining Lemmas 5.6.3 and 5.6.4 and recalling the definition of optimal path 
x  at (5.14), we obtain the following result.

L em m a 5.6.5. Let 6 > 0. Then for all sufficiently small e > 0, there exists ^-almost 
everywhere on A£>k  a random time So =  So(8, z) < oo such that

sup \Zy(s) -  x(s)\ < 6t,
s£[0,t]

for all y G [yo,yi], and all t  > S q .

We may now draw everything together to finish the proof of Lemma 5.6.1 (i). First 
we observe that since A < 0, on event A l’S(£),

sup y2+Ax) exp ('4’x ris +  ~ s)
s£[0,t]

< y2+Ax) exp (k +  e)2t +  A(—(3 — 8)t) , 

and so, given io, we can choose first S and then e sufficiently small so that

A f ( t )  C (  sup f(s )  <
v s€ [0 ,r ]  "  J

and, from Lemmas 5.6.2 and 5.6.5, there exists a random time T  = T(8,e) <  oo such 
that on A£jk  we have

sup |r/y(s) — y(s)| < ey/t and sup |£y(s) — x(s)| <  8t
s € [0 ,r ]  «G[0 ,t ]

for all r  > f  and all y G [y0 , yi\. That is, A£tKn { f  < r} C  A£t ’6(£y) for each y G [yo, J/ i] ,

with the slight abuse of notation that

^ ,<5(£y) = (  SUP \rjy{ s ) -y ( s ) \  <£y/i) sup \£y(s) -  x(s)\ < 6t
I  sG [0 ,r(t)]  s € [0 ,t (£)]
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Note also that W(A£tK) > £r for some e' > 0.
Combining the above, for any y € [yo, yi] we have

(£); sup  /(») <
s€[0,r]

9e0{r)
=  q ; ,v( ^ « ) ) = p (4 ,' « w))

>  W >( A £ , k ’, T  < t )  —> F(A£jk )

as t —> oo, as required.

Proof of Lemma 5.6.1(H). Consider the expectation of the ‘sum term’. We have

□

= e -(< ! '2+Xl) Q jq  Y . S„) Q
«<Cr

=  e- « y + * * )  Y  e - E»5“0 j '1'( z i ,‘)( t -  S0)|goo)

< y2+Ax)nr max 7?(5u)2+a^(5u)-e+ su . u < ^  J

< nT sup f(s ).
s G [ 0 , t ]

Hence

S ’y 9e0 ( r )
— Qx’y( i+ ( r )  £oo); sup f ( s ) <
T )  V y «G [0,t]

0eO(r )

< QA,y( " T ^ T r ;  sup /(» ) <  ^ 4 ^ -
\  fl'eoi'7 /  s€[0 ,r] 2

(5.34)

and we can now calculate Q^,y(nT) =  Q^’y(Q^’y(nT|<?oo)), where Qoo the <r-algebra 
generated by the path of the spine (not including the birth times). Conditional on 
Goo, n T is a Poisson random variable with mean given by JQr 2(rr)1 +  p) ds, and using 
Fubini’s theorem we have

2(rr% + p) ds f  2rQ*'y(%2
J O

{is) ds +  2pr

e
= —  1 7)— •“ y Ma \2/^a

r  9 =  — k, t +
MA

rOr
l^\r fJ'X

+  2 p r

2y2n2r 
0 t + o(r).
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So the Q^’y-expectation of n T only grows linearly in t. Then since sq — sq > 0, the 
expression at (5.34) tends to 0 as t —► oo. Moreover, the expectation at (5.34) is 
bounded by the Q^,yi-expectation, and hence the convergence is uniform over y € 
[yo,yi], as claimed. □

Remark 5.6.6. It is slightly surprising to see that we did not need to include the event 
Aps(£) in either the statement or the proof of Lemma 5.6.1 (ii). although Q^’y has been 
constructed precisely to make A t,6(£) a likely event.
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Chapter 6

BBM  in a quadratic breeding 
potential

6.1 Introduction

In this chapter we consider a branching Brownian motion with a quadratic breeding 
rate. Each particle diffuses as a driftless Brownian motion and splits into two particles 
at rate f3y2, where j3 > 0 and y G R is the particle’s spatial position. The set of particles 
alive at time t is iVt, and then, for each u € Nt, Yu(t) is the spatial position of particle 
u at time t. In the sequel we refer to this process as a (/?y2;R)-BBM, with probabilities
{P * : x  G R}, where P x is the law of the process started from a single particle at 
the point x  € R. This process is defined on the space T  of marked Galton-Watson 
trees with spines introduced in Chapter 3, and we retain the notation from Section 3.2 
for the filtrations of this space. We also remind the reader that the measure P x on 
(T,^oo, (Pt)t>o) is the law of the (fly2;R)-BBM with a distinguished spine.

We noted in Chapter 5 that quadratic breeding is a critical rate for population 
explosions. If the breeding rate were instead /3yp for p > 2, the population would 
almost surely explode in a finite time. However, for the (/fy2;R)-BBM the expected 
number of particles blows up in a finite time, but the total number of particles alive 
remains finite almost surely, for all time — see ltd and McKean [53, pp 200-211]. The 
fact that expectations for this process are not well behaved adds to the difficulty of its 
study. Additive martingales and the spine technology are still available to us, however, 
and with these methods we are able to begin an analysis of the (/3t/2;R)-BBM.

In this chapter we are interested in the spatial spread of the (/ft/2;R)-BBM. To this
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6.2 Additive martingales for the (/?y2; R)-BBM

end we define some families of additive martingales, and then study their convergence 
properties to prove the following theorem.

T heorem  6.1.1. Defining Rt := supueNt Yu(t) to be the right-most particle,

lim inf > y/20t—KX> t

P x-almost surely for the (fiy2;M)-BBM.

This result shows that the right-most particle in the (/?y2;R)-BBM has spatial 
displacement that is, asymptotically, at least of exponential order; contrast this with 
the linear spread of standard BBM. Although we do not prove an upper bound for the 
displacement of the right-most particle, we do conjecture that in fact lim^oo exists 
almost surely and equals y/2fi. Some heuristics to support this are given in Section 6.4.

The growth of spatial branching processes is an important question, both for the
oretical purposes and applications. For examples of some biological applications we 
refer the reader to Biggins [8], and Kimmel and Axelrod [62]. The spatial spread of the 
branching random walk is studied in the work of Biggins [4, 6, 7, 9, 10]; and related 
results for branching diffusions and superdiffusions can be found in Bramson [15, 16], 
Englander [31], and Kyprianou [67].

6.2 A dditive m artingales for th e (/ |̂/2;R )-BBM

Let A G i  and suppose Y  is an Ornstein-Uhlenbeck process with parameter A, that is 
the solution of

dYt = dB t - \ Y t dt,

under the measure P(a)- Here B  is a P(x)“Brownian motion. We recall from Borodin 
and Salminen [14, Appendix 1] that 1P(A) is absolutely continuous with respect to the 
Wiener measure IP1 and

(A)
dPx ex p ( - ^ K'2 - x2> +  T - l i I Y? ds) -Qt

We can use this to build an additive martingale for the (/?y2;R)-BBM. We define a 
measure Qa, for A > 0, on the filtered probability space (T ,F 0o, {Ft)t>o) via

dO? =  M x(t),
dP *  f t
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6.2 Additive martingales for the (f3y2; K)-BBM

where
M \{t) := e~P fo ts dsQnt x  exp Q ^ 2  _  x 2) _  to _  ^2 ds^

Noting that this is the product of two martingale terms, which make the spine diffuse 
as a transient Ornstein-Uhlenbeck process and increase its breeding rate by a factor of 
two, we can re-construct the process in law under as below:

• the spine’s spatial motion is determined by the single-particle measure 1P(_a)> so 
that

d £t = d Bt +  A £t d t, 

where B  is a Q a-Brownian motion;

•  the fission times on the spine occur as a Poisson process of instantaneous rate 
2(3£t, which is independent of the spine’s motion;

• at each fission time on the spine two particles are produced;

• one of these is chosen uniformly at random to be the spine, and it repeats stochas
tically the behaviour of its parent;

• the other particle initiates, from its birth position, an independent (/?y2;R)-BBM 
with law P '.

We now define a (P , (^i)f>o)-martingale by

Mx{ t ) - P x{Mx{t)\Pt). (6.1)

This follows on noticing that

P x(Mx(t)) = P x(M\(t)) =  P x{ P x(Mx(t) |^ t) )  =  P x(Mx(t)) =  1,

so that M \(t) € C1(PX) and has constant expectation for all t  > 0. The fact that the 
expected number of particles blows up in finite time does not prevent us from defining 
(P, (P i)t>o)-martingales for the process.

Using the representation at (3.8), it can be shown that

Ma(0 =  J 2  exp
u £ N t '

+  I  Yu( s f d X
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6.2 Additive martingales for the (/?y2;R)-BBM

(See the proof of Theorem 5.5.2 for a very similar calculation.) Additionally, it follows 
from the definition (6.1) that

dQ l
d P x =  (6 .2)

Tt

where Qa =  QaI-Foo (see also the comments at the beginning of the proof of Proposi
tion 3.2.7). Since it is also true that P x = P x\jr00't ^  follows that the construction of 
the {(3y2\R)-BBM in QA-law is the same as that given above for Qa. We now find the 
values of the parameter A for which M \ is uniformly integrable.

T heo rem  6.2.1. Let x  G M.

(i) I f Q < \ <  y/2/3, M \ is uniformly integrable and M\(oo) > 0 almost surely.

(ii) I f  A > y/2p then P x(M\(oo) =  0) =  1.

Our method of proof does not readily extend to the case A =  y/%/3, and so we do 
not treat this case here because it is not needed to prove Theorem 6.1.1.

Proof, (i) To prove this result, we extend the £  ̂ convergence method of Kyprianou [66]. 
The first step is to decompose the martingale M \ by conditioning on the spine’s path, 
{&}t>o> and fission times, {5U : u 6 £}. By conditioning on (see the calculation of 
Proposition 4.4.1) we have

Q a ( m a(0I<Ax>) =  e x p  “  * 2 ) ~  ~  ( y  +  JQ £  ds)
u < €  t

+ exp -  *2) -  |  -  (:L  +  /?) {? d ,

and we refer to the two pieces of this decomposition as sum (i) and spine(t). We wish 
to show that the conditional expectation above is Q^-almost surely bounded as t —> oo. 

Under we have (from Borodin and Salminen [14, p. 136]) the construction

(6-3)
where B  is a Q^-Brownian motion started at x. For notational convenience we define

1 -  e~2Xt -  ~ (  1
rt := -—^ ----- and B  := B [ - f-

2A V 2A
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6.2 Additive martingales for the (/3y2;M)-BBM

Now for any £ > 0, there exists almost surely some random time Te < 0 0  such that

\B - B ( T t) \< £ ,

for all t > T E; and then for t  > Te we can overestimate sp ine (t) by

spine(t) < exp Q ( |£ |  +  e)2e2Xt -  e2Xs(\B\ -  e)2ds^j.

We are only concerned with finding a decaying upper bound for the spine term, so the 
expressions that matter in the exponential above are

j( |S | + e) V "  -  ( y  + /?) ^ ( |B | -  *)2e“  = ( i  -  £ )  1 ^ 1 +  C« 2A' ’

where C  € M is a (possibly negative) constant that depends on A, (3, and B .  Since

4 2A

and e can be chosen arbitrarily small, there exists a constant C' > 0 and T  < 0 0  such 
that for all t  > T

spine(t) < exp(-C 'e2A*)

almost surely.
The births on the spine are a Poisson process with instantaneous rate 2/3£2, and 

so the number of births on the spine by time t is a Poisson random variable with 
expectation 2(3 J g ^ d s .  By the Strong Law of Large Numbers, this is almost surely 
0 ( e 2Xt), and so

lim supQx{Mx(t)\Qoo) < + 0 0 , (6.4)
t—> 00

Q^-almost surely.
Using Fatou’s lemma with (6.4) we have

QA(lim inf Mx(t) |<L>) < liminfQ^(M A(t)|^oo)
t—► 00 t—>00

< limsupQ^(MA(t)|^oo) < + 0 0 ,
t—► 00
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6.2 Additive martingales for the {fiy2; M)-BBM

QJ-almost surely, which implies that

liminf M \{t) < + 0 0  Q^-a.s.
t —>oo

Furthermore, liminf^oo M \(t) is Poo-measurable, and so

liminf M \(t) < + 0 0  Q^-a.s. (6.5)t—>00

In light of (6.2), 1/M \(t) is a positive Qx-martingale, which converges almost surely, 
whence M \(t) converges Q^-almost surely. Combining this observation with (6.5) we 
have

lim M \(t) =  lim infM \(t)  <  + 0 0
t—>oo t —> 00

Qa-almost surely. Applying Theorem 4.4.3 now shows that M \ is a uniformly integrable 
martingale if 0 < A < y/*Zj3, so that P x(M\(oo)) =  1.

It remains to show that P x(M\(oo) =  0) =  0. We define p(x) := P x(M\(oo) =  0), 
but we will now show that this probability is independent of x .  To see this, apply the 
branching Markov property to obtain, for t > 0,

V(x)  =  E * ( p * ( M x ( o o )  =  0|^t)) =  E * (  J] P ( K ( t ) )
uENt

w h en ce Mt := OueArt P(^u(0) a Pr°d u c t  m artingale and sin ce 0 < M (t) < 1 for all 

t > 0, Mt is u niform ly in tegrab le and converges in £ 1(P I ). It follow s th a t p  G (72(M) 
and satisfies

ip" -1- p x 2(p2 -  p )  =  0. (6.6)

In addition we note that, by symmetry, p ( x )  = p ( —x )  for all x  G K; and, since 0 < 
p ( x )  < 1, we have f l x 2( p 2 — p )  < 0 and so p " ( x )  > 0 on I .  We claim that these 
conditions on p  force p  = 0 or 1.

The symmetry of p  about the line x  =  0 implies that p'(0) =  0; and further, since 
p " ( x )  > 0 on 1  we must have that p ' ( x )  > 0 on (0,0 0 ), whence p  is increasing on 
[0,0 0 ). Combining this observation with the fact that p  < 1 means that limx_,c»p(^) 
exists, and so limx^oop^a:) =  0. Noting that p'  is non-decreasing on M, it must be the 
case that p' = 0 on [0,0 0 ). Symmetry of p now ensures that p must be constant on 
M, and the only two constant solutions of the ordinary differential equation (6.6) are 0 
and 1. Since M \ is uniformly integrable when A G (0, \/2/?), we must have p ( x )  = 0, as 
required.
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6.3 A lower bound for the right-most particle

(ii) Since one of the particles alive at time t is the spine, we have that 

M \(t) > exp -  x 2) -  y  -  ^ y  +  p j  j f  g  d s j

=  exp ^A ^  d£s -  ^  ^  ^  d s ^ . (6.7)

The equality above follows from Ito’s formula, specifically

d (£ ) =  2&d«, +  d*, 

and so ^

t i - t 0 =  2 /  £.d&  + t.
J o

Under Q^, we can write
d£a =  d £ s +  A£s ds, 

where 5  is Q^-Brownian motion, and so (6.7) is equal to

Now, Q^-almost surely as t —> oo,

f  ds =  0 (e2Xt) and f  £s dBs =  o(e2Xt),
Jo Jo

and consequently Q ^ lim su p ^ ,^  M \(t) = +oo) =  1 if A > y/2]3. This also holds
Q^-almost surely, and another application of Theorem 4.4.3 yields the result. □

6.3 A  lower bound for the right-m ost particle

We can now prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let 0 < A < y/2/3 and define

A \  {3u : lim inf £_1 In |TU(£)| =  A}.
t—>oo

Then A \  € Too and Q \(A \)  =  Q x(A\) =  U because under Qa the spine is a transient 
Ornstein-Uhlenbeck process — recall the representation (6.3). For A € (0, y/2/3), M \
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is uniformly integrable by Theorem 6.2.1 and hence P (M \(oo)) =  1. By definition we 
have

P(1axMx(oo)) = Qx(Ax) = 1,

and because both P(M \(oo) > 0) = 1 and P(M \(oo)) = 1, it follows that P (A \)  =  1. 
Since this holds for any A G (0, and the spatial spread of the BBM is symmetric 
about the origin, we have that

lim inf —
t — ►OO t

P-almost surely. □

6.4 T he asym ptotic exponential speed  o f th e  right-m ost 
particle

In future work we hope to strengthen Theorem 6.1.1, and we conjecture that

lim ^t—>00 t

P-almost surely. Our intuition as to why we believe this to be the case arises from 
the consideration of other families of additive martingales for the (/%2;1R)-BBM. Using 
the Girsanov theorem, one can define an additive martingale, Zg(t) say, that gives the 
spine a general drift g(s), for some g : R + —» M, under the changed measure Q. In 
fact for the special case g(s) =  eAs, where A > 0, we obtain another family of additive 
martingales parameterised by A, and it can be shown that these martingales have the 
same properties as M \ in both the cases A G (0, y/2(3>) and A > y/20. These martingales 
thus offer an alternative route to the proof of Theorem 6.1.1. We can give a heuristic 
justification that, if the right-most particle satisfies

]im sup ! i M > v ^
t —>00 t

almost surely, then certain (positive) additive martingales fail to converge, which is a 
contradiction. However making this into a rigorous proof will require certain subtleties 
to be resolved.
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