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Summary

This thesis investigates the advantages to be gained from the application of large prime 
variant techniques to the index calculus method for computation of discrete logarithms 
modulo a prime p. Such techniques have been applied with great success to the in
dex calculus method as applied to the integer factorisation problem, but are rarely 
mentioned for the analogous discrete logarithm application.
The thesis follows various implementations through from parameter choice to final 
discrete logarithm computation. We firstly show how one may make small but practical 
savings in the linear algebra step of the index calculus method by suitable choice of 
the generator of the nonzero elements of the finite field under consideration. We then 
move on to examine the practicalities of applying large prime variant techniques at 
each stage of the method.
The main focus of the work is to highlight the differences between the well documented 
application of large prime variant techniques in factoring, compared with their use in the 
discrete logarithm case. We demonstrate how the standard graph theoretic methods 
of Lenstra and Manasse [75] may be adapted to the discrete logarithm situation by 
considering the nature of cycles, and show how one may resolve such cycles without 
the need to solve a linear system, as has been the case in the few implementations 
discussed in the literature. We also illustrate certain situations that can occur which 
do not allow us to achieve the same yield as in factoring applications. We then consider 
the impact of using more than two large primes, and show how the factoring methods 
of Leyland et al. [81] adapt to the discrete logarithm case, such that we can resolve all 
but a fraction of cycles found.
We subsequently discuss how the divergence of the index calculus method for factor
ing and for discrete logarithm computation requires us to consider more than simply 
minimising solution time in the linear algebra step -  we must also try to maximise 
the number of values we can recover in our solution vector. We show how large prime 
variants provide both benefits and drawbacks in this context, and demonstrate how 
their use can speed up final discrete logarithm computation quite considerably.
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Chapter 1

Introduction

This thesis is concerned with techniques for the computation of discrete logarithms 
modulo a prime. While this topic is of mathematical and computational interest, m 
its own right, a large amount of research on this topic over the last 25 years or so has 
been motivated by its practical application in modern cryptography. In this chapter, 
in order to get an idea of the scope of the subject, we first give a brief overview of 
cryptography, before moving on to discuss the structure of the thesis.

1.1 Cryptographic background

1.1.1 A  b r ie f h istory

One can argue that there has been a need for secret communication ever since mankind 
learned to communicate. W ith the arrival of the written word, this need led to the 
development of formal methods for the disguising of the meaning of messages and com
munications. Both influential individuals and governments found the need to protect 
their own sensitive information. Techniques varied from actually disguising the fact 
tha t any information was present via steganography -  using invisible ink. or hiding a 
message such as in the famous ‘microdot’, for example -  to formal methods for obscur
ing the meaning of the message. This latter means of secrecy gave rise to the study of 
cryptography and the development of codes and ciphers. A code may substitute words 
or symbols for words and phrases in the original message or plaintext. A cipher acts on 
the characters contained in the message, using mathematical techniques (generally in
volving some combination of permutation and substitution) to create ciphertext, which 
one hopes will ensure secrecy of the underlying plaintext. The first formal cryptographic 
systems were mainly nomenclators, which were lists incorporating both codewords and 
cipher alphabets, usually for direct substitution.
As encryption techniques became more formalised, so did the need to develop techniques 
to reveal the original communication. Cryptanalysis is the term given to attacks on

2
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cryptographic procedures in an attem pt to recover the original message. The first 
major breakthrough in cryptanalysis was the development of frequency analysis by 
the Arabs around the end of the 12th century [64, chapter 2]. This may be used to 
exploit the natural redundancies of language to break the simple substitution ciphers 
of the day. Western cryptographers responded with the use of polyalphabetic ciphers 
in the early 15th century and the use of keys [64, chapter 3] to further strengthen 
the security of their communication, leading to the design of cryptographic procedures 
whose security depended solely on the key, rather than knowledge of the procedure 
itself (see Kerckhoffs [65]). The arrival of radio communication and the need for secrecy 
driven by world war prompted an unprecedented flurry of cryptographic activity in the 
late 19th and early 20th century. Cryptography was formalised and put into a more 
rigorous mathematical framework. The role of cryptography in many events having a 
huge impact on the history of mankind can be found in Kahn [64] and. more recent  ly. 
Levy [79]. Details of both encryption and attacks using classical ciphers can be found 
in, for example, Fouche Gaines [42].

1.1.2 T he im p act o f th e  com puter

The arrival of well structured polyalphabetic cryptosystems such as that of Vignore (see. 
for example, G arrett [43]) during the 14th century arguably gave the cryptographer the 
upper hand for many years, although such ciphers were by no means invulnerable to 
experts employed in governmental ‘black chambers’. The development and formali
sation of mathematical methods gave hope to the cryptanalysts, but it was not until 
the development of machines such as Babbage’s precursor to the computer in the 19th 
century that they managed to draw level once more. The concept of a brute force 
attack, hitherto unfeasible, was now made possible -  a machine could check all possible 
decryptions, or certainly a large amount of them, in a m atter of hours. Bletchley’s a t
tack on the famous Enigma machine during the Second World War provided an ample 
demonstration of the potential of machine-assisted cryptanalysis. As machines became 
more sophisticated, the time required to reveal messages grew shorter and shorter. On 
a modern computer, a simple polyalphabetic cryptosystem can be broken in a m atter 
of microseconds. At the same time, a modern computer allows a cryptographer to 
perform a (hopefully) bewildering sequence of substitutions and permutations (such as 
tha t used by the Data Encryption Standard or DES [93] introduced in the late 1970‘s 
and only recently supplanted by the Advanced Encryption Standard or A E S  [96] in 

2000), to the extent tha t we trust a machine to safely transfer our credit card num
bers across the world with a high degree of security. One can in this respect say that 
cryptography plays a crucial role in the success of global e-commerce and is of vital 
relevance in the internet age. Indeed, as noted by Diffie [36], the development of the 
internet has had a similar impact on the development of cryptography as did the devel
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opment of radio some 100 years previously. The arrival of public key cryptography and 
procedures such as the RSA algorithm in the 1970s [37, 110] had enormous ramifica
tions for cryptography, and opened up a wide variety of new possibilities for application 
of cryptographic techniques, allowing protocols enforcing not only confidentiality, but 
also message integrity, authenticity and non-repudiation.
There are a huge number of books available on modern cryptographic methods: see, 
for example, G arrett [43], Menezes et al. [87], Smart [123].

1.1.3 A ttacks

The tactics of the cryptanalyst have obviously adapted to keep up with the develop
ments in cryptography. One could perhaps say that the cryptologist currently has the 
upper hand, but this is not necessarily the case. Whilst algorithms may guarantee a 
certain level of security, or demonstrate the computational unfeasibility of an attack, 
it is another m atter to make practical, secure protocols using these methods -  see, 
for example, Anderson [6], Pfleeger [102], The ‘one time pad’ method of encryption -  
combining the message with a random keystring having the same number of characters, 
which is then discarded and never re-used -  is provably secure; but practical difficulties 
(such as generating and indeed protecting such keystrings) make it cumbersome and 
unwieldy for use in many situations.
We briefly consider here some common situations which can lead to attacks on crypto
graphic protocols and procedures. These may challenge either the mathematics behind 
the encryption process, the protocol, the implementation, or indeed any weak link in 
the entire chain. Of course, any cryptosystem is, in theory, susceptible to a brute force 
attack -  one can try  every possible key until the correct one is found. However, simply 
trying every key does not fully describe the amount of work needed to decrypt a given 
message, since one must also be able to actually detect a ‘correct.’ decryption. This 
may not be easy if the original data had for example undergone some kind of com
pression prior to encryption. A good cryptosystem will make such a brute force search 
computationally unfeasible, even if one could harness the power of a huge number of 
computers -  whether those of a single organisation, or via the internet in some open 
(or nefarious) collaboration.
We now consider various options which may be available to a potential attacker. An 
attacker may of course be active rather than simply a passive observer -  in addition to 
trying to read messages, the attacker may try to delete, modify or replay messages in 
some communication protocol in order to meet his or her ends.

C iphertext only

The bare minimum; also known as a passive attack. The attacker has merely a copy of 
the encrypted message. However, substitution ciphers and even polyalphabetic ciphers



C h a p t e r  1. I n t r o d u c t io n 5

may be broken with only this information, indicating their inherent weakness. 

Plaintext—ciphertext pairs

Often called a lunchtime attack. The attacker now has access to the associated plaintext 
of a given ciphertext, and can attem pt to establish links between the two. He may 
then make assumptions about the algorithm and attem pt to derive the key. More 
sophisticated techniques such as differential and linear cryptanalysis use probabilistic 
methods to attem pt to identify parts of the key of a symmetric cipher this will 
hopefully reduce the search space for a brute force attack to determine the full key.

Chosen plaintext

The attacker may now obtain the ciphertext of any given message of his choosing. 
Public key cryptosystems, described in the next section, provide this information to 
an attacker by their nature. The attacker may now compare messages of a particular 
structure or make changes and view the effect on the ciphertext.

Man in the middle

The attacker here challenges the protocol rather then the encryption algorithm directly. 
One may attem pt to take a copy of each message in a key exchange procedure, or one 
may substitute or modify the messages to change the outcome, or perhaps obtain the 
key or the contents of subsequent transmissions. For an example of this kind of attack, 
see Crouch and Davenport [32]. We note that an attack may simply reveal the contents 
of a single encrypted message, and not necessarily break the cryptosystem by finding 
the secret key. If, however, one can identify particular messages of high importance, 
this distinction may be moot.

Other

In certain situations, simply observing the amount of encrypted information being 
transm itted may provide useful information, even if it cannot be decrypted. This is 
known as traffic analysis, and was used successfully by the Allies in the first. World 
War to indicate the commencement of some major enemy activity.
One can also attack hardware. One such method is differential power analysis, where 
one may attem pt to identify power surges corresponding to the phases of an imple
mented algorithm, with a view to gleaning information about the message or key. For 
an example of such an attack, see Schindler et al. [111]. If the cryptographic hardware 
is not tamper-resistant in some way, one could modify the components to ‘leak’ infor
mation, or reverse engineer the equipment in order to gain further knowledge of the 
cryptographic procedure being used.
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We may finally note that, in time-honoured fashion, a judiciously applied bribe or well- 

executed burglary may achieve the same effect as any of the above techniques; generally 
with considerably less effort than is required to challenge a w e l l - i m p l e m e n t e d  m o d e r n  

cryptosystem. Fortunately -  perhaps -  this is outside the scope of t h i s  thes is .

1.1 .4  P u b lic  keys

Cryptography has come a long way in the past 25 years. Up until this time, ciphers 
had always relied upon some shared secret -  a key -  for their security. All ciphers were 
thus in some sense symmetric -  what was done to encrypt was reversed to decrypt. 
In 1976, however, the idea of public key cryptography was first raised by Diffie and 
Heilman [37]1. The basic idea of public key cryptography is that the decryption key is 
not the same as the key used to encrypt the original plaintext. This immediately goes 
some way towards resolving key distribution problems, but the ideas behind public key 
cryptography have been applied to many more applications than simply that of secrecy, 
as we now discuss.

Encryption

Public key cryptography allows a step away from the dependence on s h a r e d  s e c r e t s  or  

keys for secure communication. Separate keys are used for encryption and decryption, 
which are of course linked, but in such a manner that it is very difficult to derive the one 
from the other. This has triggered the search for so-called trapdoor one-way functions 
a function which is extremely difficult to reverse without some special secret knowledge. 
One may argue tha t this still involves secret information; however the crucial point is 
tha t this secret information or trapdoor does not have to be disclosed to anyone. As 
the saying2 goes, ‘three people can keep a secret -  if two of them are dead’: not having 
to disclose the secret key essentially minimises the number of people one is required 
to trust. One member of the key pair may then be disclosed, in the hope tha t the 
amount of computation needed to derive the other makes such an effort unfeasible. 
Anyone may then use this ‘public key’ to send encrypted messages, but only the person 
holding the corresponding ‘private key’ will have the ability to decrypt them. Although 
significantly slower than symmetric key cryptographic algorithms such as the DES, the 
convenience of public key protocols has seen them become widely implemented for key 
exchange prior to further communication under a symmetric algorithm.
In the next chapter we shall take a closer look at the details of some public key protocols 
which depend for their security on the difficulty of computing logarithms over finite 
fields or other structures. Other procedures, such as the well known RSA algorithm 
of Rivest et al. [110], rely on the difficulty of factoring large numbers. In practice,

1This idea had been found by the British some 6 years previously, but the work remained classified.
2 Attributed to Benjamin Franklin 1706-1790.
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various protocols exist to register public keys and create so-called public key infrastruc
tures (PKIs) to bind a user to a particular public key, leading towards the concept of 
electronic identity. Further modifications to protocols are required to deal with situa
tions such as compromise of a private key, and indeed the creation and management 
of adequate keys requires a great deal of care -  see the U. S. Government guidelines 
in [97]. The ideas can be taken still further, such that a participant’s public key may 
be taken to be some function of their identity -  for example, their email address or 
social security number (see, for example, Cocks [24]) -  so that the need for public key 
directories no longer exists (although some other trusted service may still need to be 
employed). Since public key cryptography was first proposed in 1976. it has become a 
huge industry, particularly in the light of telecommunications advances and the growth 
of the internet with associated e-commerce.

Digital signatures

W hen one signs a paper document, or receives a signed document -  for honest purposes 
-  one makes certain assumptions. One would expect that the signature is ‘bound’ to the 
document in question in some way. Thus the document could not have been modified 
after it was signed. One would hope that one’s signature could not be ‘detached’ in 
some way and used to fraudulently sign another document, and indeed that the signer 
of a document could not deny their signature at a later date. Such properties are 
achievable for digital signatures by making use of cryptographic protocols. The DSA 
or Digital Signature Algorithm  as used in the Digital Signature Standard [94] attem pts to 
satisfy the above requirements (basing its security on the discrete logarithm problem), 
as do various other protocols. Some make use of time stamps and message digests to 
reinforce the above criteria. As noted by Anderson and Needham [7], however, a certain 
amount of care is needed if one wishes to both sign and encrypt a message -  signing 
after encryption may allow certain attacks to be made which allow the signature to be 
modified, replaced or even duplicated and applied to a completely different message. 
Digital signatures are of course very much linked to the concept of electronic identity, 
and thus one may make further use of public key cryptography in authentication pro
tocols -  at the most basic level, a host may store public keys and ask a user to encrypt 
a piece of information with their private key as a rudimentary password protocol.

Other

Many more esoteric protocols are made possible using cryptography; particularly public 
key cryptography. A public key algorithm can be made into a ‘one-way’ hash function 
by discarding the private key. Protocols exist for playing long-distance poker or flipping 
a coin over the internet. Proposals have been made for remote voting at elections.
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for digitally certifying receipt of emails, and even for secure digital money. For a 
comprehensive description of a range of cryptographic protocols, see Schneier [114].

1.1 .5  T h e s ta te  o f  th e  art

The rapid development of information technology and communication has driven equally 
rapid development in cryptographic techniques and, of course, associated attacks. In 
1981 the American National Standards Institute (ANSI) approved the Data Encryption 
Standard or DES [93]; a cryptographic algorithm to be used as an industry standard. 
The DES remained the standard until 1998, but, with today’s technology, has become 
vulnerable to a brute force search of its keyspace, either by dedicated hardware or by 
internet based parallel processing. In 2000 it was replaced by the new Advanced En
cryption Standard (AES), a Dutch designed cipher called Rijndael [96], Both the DES 
and AES are symmetric block ciphers -  they work on blocks of plaintext rather than 
taking a character-by-character approach (known as a stream cipher). The security of 
the Advanced Encryption Standard can be increased by simply increasing key length. 
At the time of writing, the AES algorithm can use a key length of 128, 192 or 256 bits. 
Although the RSA algorithm has now been around for over 20 years it is still, with 
Diffie-Hellman, the primary public key algorithm. At the time of writing, an RSA 
key length of 512 bits is considered vulnerable, and a 1024 bit key or greater is the 
norm. These definitions depend on various factors. We may use asymmetric computing 
power, for example -  we may encrypt using a smart card with limited processing power 
and decrypt on a large central processor. We may use one level of encryption for 
certain critical data, and trust a weaker level of encryption to secure less important 
information. One could argue that short-term data need not require as strong a key, in 
tha t an adversary has less time to mount an attack. This may be dangerous, however, 
in tha t short term  ‘secrets’ may well have a disproportionately high value. A variety 
of designs for purpose built ‘cracking machines’ have been proposed -  some plausible, 
others as yet theoretical -  to the extent that a machine capable of breaking 1024 bit 
RSA is considered possible -  assuming one has some serious money to spend (see Shamir 
and Tromer [117]). It may be noted that the level of paranoia and the suspicions of 
the user also play a heavy part in the choice of algorithm and key length.
Attacks on public key algorithms have led to the development of various techniques 
to calculate discrete logarithms (to challenge Diffie-Hellman and similar schemes) and 
to factorise large integers (to challenge RSA-type protocols). At present, the fastest 
known factoring algorithm is the Number Field Sieve, which has been used to factorise 
‘general’ integers -  those having no special structure -  of over 512 bits. Using variants 
of this technique it is also possible to calculate discrete logarithms modulo a prime of 
over 400 bits. Factoring is, at this time, rather more advanced than discrete logarithm 
calculation (discrete logarithms of over 400 bits (120 digits) were first computed in 2001,



C h a p t e r  1. I n t r o d u c t io n 9

whereas the 129 digit number RSA-129 was factored in 1994), but, as the techniques 
used are very similar, it is possible that this discrepancy will narrow over the next few 
years. We will discuss the development of these and other methods in the following 
chapter.

The future...?

As noted by Ferguson and Schneier [41], the role of cryptographic protocols is to min
imise both the number of people who need to trust one another, and the amount of 
trust they are required to have. At present, an enormous variety of cryptographic pro
cedures axe commercially available, of which a small number are generally accepted as 
providing adequate security; given that they are correctly implemented and use suit
able parameters. It remains tha t the only provably secure system is the impractical 
one time pad. However, for key exchange purposes, a new method is in development 
which will apparently guarantee security. Quantum cryptography, as the name sug
gests, uses quantum mechanics and the properties of photons to transm it a key which 
would go some way to avoiding active attacks, due to Heisenberg’s ‘uncertainty princi
ple’ -  any attem pt to observe a quantum state inevitably alters it, so one cannot hope 
to eavesdrop on a communication without this intrusion being detected. Rumour has 
it tha t this has been successfully demonstrated across fibre optic cables over a distance 
of around one hundred miles, although adapting such a technique to transm it through 
a medium such as the atmosphere is another matter, due to the potential interference 
this will have on the transmission. It is as yet unclear whether such a key exchange 
mechanism will ever be a practical reality. To go still further into the realms of sci
ence fiction, the development of a practical quantum computer would potentially signal 
the end of most current cryptographic principles. Current opinion, however, seems to 
indicate tha t one should not lose sleep over the possibility.

1.2 Structure of the thesis

This thesis is concerned with computing discrete logarithms over finite fields using 
large prime variations of the well known index calculus method. As a result, the thesis 
is structured such that the main body of the work follows the order of the steps of 
the index calculus method itself. While this gives a logical direction to the sequence 
of chapters, it does however mean that a certain amount of forward and backward 
referencing is required. This is unavoidable, since choices that are made at different 
points in the procedure often do not yield benefits until further downstream. The thesis 
then divides, broadly speaking, into four parts.
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1.2.1 P art I

Following this brief introduction to cryptography, in chapter 2 we review techniques 
and situations in cryptography which influenced the development of index calculus 
methods. We consider their application to the discrete logarithm problem (with an 
occasional glance at their application to factoring) and give an idea of the current 
‘state of the a r t’ at time of writing. We introduce the basic ideas of the index calculus 
method and discuss various extensions and improvements to the procedure.

1.2 .2  P art II

In chapter 3 we consider parameter choices for the index calculus method, and see how 
we can gain small but practical savings in both time and storage, for very little effort, 
by a judicious choice for the generator of the finite field under consideration. Although 
this is based on a very simple observation, such a technique has not been seen in the 
existing literature. We return to this technique in chapters 6 and 7 in order to view its 
overall effectiveness.
In chapters 4 and 5 we consider so-called ‘large prime variants’ of index calculus tech
niques, as applied to computation of discrete logarithms. In chapter 4 we describe an 
implementation of the index calculus method, examining the impact of the use of the 
single large prime and double large prime variants of this technique. We highlight the 
differences one needs to be aware of when applying the two large prime variation to 
discrete logarithm computation (as opposed to its application in factoring), and show 
how we can try to maximise the effectiveness of this technique in the discrete logarithm 
case. Our method of resolving such relations appears to be slightly simpler than those 
described in the few implementations of such techniques in the open literature. Again 
we must keep in mind later stages of the method, and we discuss how these techniques 
have a bearing on the work of chapters 6 and 7.
In chapter 5 we examine the use of the double large prime variation in conjunction 
with the ‘Waterloo variant’ of the index calculus technique, allowing us to use up to 
four large primes. We examine the effect of this technique, and investigate how the 
techniques of the previous chapter scale to resolve relations involving larger numbers 
of large primes.

1.2.3 P art III

Chapter 6 follows on from the methods in chapters 4 and 5 with an examination of the 
linear algebra step required by index calculus techniques both for factoring and discrete 
logarithm calculation. We examine the technique of structured Gaussian elimination 
and investigate the effects of using ‘large prime’ data on this method. We also return 
briefly to parameters used in the original relation generation procedure and see the
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advantage we can gain from suitable generator choice as described in chapter 3. We 
then consider numerical methods, namely the Lanczos algorithm as applied over a 
finite field, and discuss the effectiveness of this technique when used in conjunction 
with structured Gaussian elimination for various inputs; notably those arising from the 
use of large prime techniques.
In chapter 7 we complete our computations by examining the final step of the index 
calculus procedure; tha t of actual evaluation of the logarithm of a given field element. 
We consider the impact of ‘incomplete’ data collection in phase 1 of the index calculus 
method, and subsequently examine how one may apply large prime variant techniques 
to substantially speed up this final part of the procedure.

1.2 .4  P art IV

Finally, we summarise the results obtained in the thesis and discuss potential further 
work. We outline the main unresolved topics and make suggestions as to how these may 
be tackled in future. We subsequently give a brief history of the development of large 
prime variant techniques in appendix A, with a view to providing a comprehensive list 
of references for the interested reader.
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1.3 Implementations

All procedures described in chapters 3 to 7 have been implemented in the C + +  pro
gramming language, using version 5.0c of Victor Shoup’s NTL number theory library 
[121] linked to version 3.1.1 of the GMP multiple-precision package, coupled with the 
GNU ‘g + + ’ compiler. Certain implementation techniques have also been taken from 
Loudon [84], Cormen et al. [29] and Jenkins [60]. These implementations were used to 
compute discrete logarithms of between 20 and 40 digits. For reference, we provide a 
‘map’ of the major programs implemented in this study (along with the chapters where 
they are described) which can be referred back to if needed. The meaning of the labels 
will become apparent following the background given in the next chapter.

Phase 0 Chapter 3

Chapter 4,5

Phase

Phase 2 Chapter 6,7

Phase 3 Chapter 7

SGE

Lanczos

Single/double/more 
large prime resolve

Back substitution

Combine relations

Compute discrete logarithm

Parameter choice

Relation generation

Figure 1-1: Overview of index calculus implementation

All code was run on a 1.8GHz Pentium IV machine, and all timings given are in 
hundredths of a second. While we have endeavoured to make code reasonably efficient, 
it has not been explicitly optimised by hand, and could probably be improved without 
too much effort. Further information concerning the datasets used in this thesis is 
given in appendix B.



Chapter 2

Research Background

In this chapter we introduce the discrete logarithm problem, and demonstrate how it 
may be used as the basis for key exchange and public key encryption. We then describe 
various methods for computation of discrete logarithms, with a final discussion of the 
ideas behind the index calculus method.

2.1 N ew  directions

Let G be a group, and suppose g G G generates1 some subgroup Cg of G. We define 
the discrete logarithm of x  € Cg to be some value y such tha t

gy = x

The discrete logarithm problem for G is then as follows: given g G G and x € Cg, as 
defined above, compute y. The problem can be made still harder if one is simply given 
x  G G rather than x  6 Cg, since then we must firstly determine if a corresponding y even 
exists. O ther versions of the problem exist where one has some further information, 
such as the Hamming weight of the discrete logarithm, or perhaps the knowledge that 
the discrete logarithm lies within a certain interval (see, for example, Teske [126]).
In this thesis, we take G = (Z/pZ)* for p prime. Thus G is cyclic and has order p — 1, 
g is now a primitive root of p, and every x  G G has a corresponding discrete logarithm, 
taken to be the least non-negative integer y such that

gy =  x  mod p

The discrete logarithm problem has been a focus for public2 cryptographic research

1Recall that g is a generator of a cyclic group G if g =  e but, for all n dividing |G|, 7̂  e
(where e is the group identity).

2‘Public’ in the sense that the British government [46] and possibly others were aware of such 
methods several years earlier.

13
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since 1976, when Diffie and Heilman first proposed the idea of public key cryptogra
phy [37]. Since this first key exchange protocol, a variety of methods for asymmetric 
encryption have been put forward. As noted in the previous chapter, the essence of 
public key cryptography is that the encryption key is not the same as the decryption 
key, and such a concept has many applications in addition to the original one (that 
of devising methods for secure communication). We note that the discrete logarithm 
problem appears in various other areas of computer science, and has uses other than 
the properties -  namely its difficulty in many settings -  exploited for cryptographic 
purposes. See Clark and Weng [23] for an example.
The first widely adopted public key cryptosystem was Rivest, Shamir and Adleman’s 
‘RSA’ [110] which was published in 1978, followed by a method of Rabin (see, for 
example, Smart [123]) a year later. The RSA algorithm draws its security from the 
supposed difficulty of factoring large numbers, whilst that of Rabin relies on the diffi
culty of computing square roots modulo some composite N  of unknown factorisation. 
ElGamal [39] then introduced a public key cryptosystem based on the difficulty of the 
discrete logarithm problem in 1985. Further algorithms for encryption, digital signa
tures and authentication also rely on this supposed intractable problem. To see how 
discrete logarithms may be used for security protocols, we first consider the original 
key exchange procedure defined by Diffie and Heilman.
Suppose Alice3 wishes to communicate with Bob under some symmetric encryption 
scheme. How do they exchange a key? Traditionally this was the realm of the trusted 
courier with a locked briefcase handcuffed to his arm; but Diffie and Heilman proposed 
the following protocol.
Suppose g is a generator of the group G =  (Z/pZ)* for some large prime p. The operator 
of the scheme used by Alice and Bob makes the values g and p  public. Alice chooses 
some number a € G and computes ga mod p. Bob picks some number b G G and 
computes gb mod p. They now exchange these values and Alice computes (gb)a mod p. 
Likewise Bob computes {ga)b mod p. Since

(9“)» = (slr  = s“‘ modp

they now share a value which they may use as a symmetric key. The security of this 
method depends upon the Diffie-Hellman problem.

D efin itio n  2.1.1 (T h e  D iffie-H ellm an  P ro b le m ). Given a generator g, and given
ga and gb, compute gab.

An eavesdropping (but otherwise passive) attacker can discover the values ga and gb, 
and can obtain the public parameters g and p. If one could compute discrete logarithms

3In cryptographic literature, the two communicating parties axe generally referred to as Alice and 
Bob. An attacker is usually referred to as Eve. There may of course be any number of users and 
attackers.
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efficiently, one could compute either a or 6 and use this value to compute gab. The 
Diffie-Hellman problem is then at most as hard as discrete logarithm computation. It 
is currently an open problem as to whether the two problems are equivalent. A method 
for solving the Diffie-Hellman problem efficiently is not currently known, and for some 
particular groups it has been shown that the Diffie-Hellman problem reduces to the 
discrete logarithm problem (Maurer and Wolf [85]). In certain groups, it may in fact 
be difficult to compute any information about gab from ga and gb. This is the Decision 
Diffie-Hellman problem.

D efin itio n  2.1.2 (T h e  D ecision  D iffie-H ellm an  P ro b le m ). Given the triples
(ga,gb,gab) and {ga,gb,gc) where the elements are in random order and c is some 
random group element, decide with probability greater than 1 / 2  which one is the correct 
triple, i.e. which is the triple (ga,gb,gab)'

As noted by Joux and Nguyen [63] and by Maurer and Wolf [85], the ‘decision’ problem 
is generally easier than the Diffie-Hellman problem proper. We note tha t the basic 
Diffie-Hellman key exchange protocol described above is vulnerable to a ‘man in the 
middle’ attack -  in order to prevent an attacker modifying messages one needs to add 
some kind of authentication, such that Alice is assured tha t she is indeed communicating 
with Bob, and vice versa.
In addition to key exchange, one can define a simple discrete logarithm-based public 
key encryption scheme as follows. Suppose Alice wants to send a message M to Bob 
(securely) without sharing a symmetric encryption/decryption key. Alice thinks of a 
number a relatively prime to p — 1. Bob thinks of a number b relatively prime to 
p  — 1. Alice now computes M a m odp and sends the result to Bob. Bob raises this 
message to the power b and sends the result, i.e. M ab, back to Alice. Meanwhile, 
Alice computes a' such tha t aa' =  1 m odp  — 1. She now sends Bob the result of the 
calculation (M ab)a>; i.e. M b. In order to read the message, Bob now computes b' such 
tha t bb1 =  1 mod p  — 1. Then

(M b)b> = M bb> =  M

and Alice has communicated with Bob without sharing a key. Of course, if one could 
compute discrete logarithms, one could find a and b directly.
Here we are of course considering discrete logarithms modulo a prime p. The discrete 
logarithm problem is not restricted to consideration over (Z/pZ)*, however; it can be 
generalised to other finite groups G. One may consider the above situation over, for 
example, the points of an elliptic or hyperelliptic curve over a finite field. Indeed, elliptic 
curves are attractive to the developers of discrete logarithm-based cryptosystems as one 
can get equivalent security to computation over (Z/pZ)*, yet using a shorter key length 
(due to the fact tha t the fastest algorithms for computing discrete logarithms over
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(Z/pZ)* do not generally apply to elliptic curve groups). This is im portant, as public 
key schemes are much slower than modern symmetric encryption algorithms. This is 
due mainly to the need for carrying out arithmetic operations on large numbers, rather 
than the bitwise substitutions and permutations employed in symmetric cryptosystems 
such as the AES. One generally uses a public key scheme for key exchange, before 
continuing communication under some symmetric encryption. Since AES keys are of 
128, 192 or 256 bits, whereas at time of writing, public key algorithms such as RSA 
recommend the use of 1024 bit keys (or greater), this also keeps bandwidth down during 
communication. Certain cryptographic schemes make use of the discrete logarithm 
problem modulo some composite number JV, such that the scheme is secure even if 
either factoring or discrete logarithm computation (but not both) ceases to become a 
computationally hard problem -  see Girault [47].
Attacking the example of Diffie-Hellman encryption outlined above via calculation of 
discrete logarithms is illustrated as follows. Suppose that the malicious Eve wants to 
listen in on Alice’s communication with Bob. If Eve intercepts a copy of the message at 
each stage in the protocol, and assumes that the original message M  can be expressed 
as gn m odp  for some generator g E (Z/pZ)*, then on taking logarithms she has

log (M a) =  log((pn)°) =  na

log (M ab) = log ((gn)ab) = nab 

log (M b) = log ((gn)b) = nb

Using the fact that
nanb

she can calculate gn m odp =  M  and the cryptosystem is broken. This attack, how
ever, depends of course upon whether or not Eve can calculate the discrete logarithms 
required4. Again, the simplistic encryption scheme above is susceptible to ‘man in the 
middle’ attacks -  the scheme of ElGamal [39] gets around this problem by use of an 
additional random session key which is never re-used.
In the ElGamal scheme, Alice’s public key is (p, p, ga), for p a prime and g a generator of 
g E (Z/pZ)*, and her private key is the random integer a. A message M  is represented 
as a nonzero element in the field GF(p). To communicate with Alice, Bob generates a 
random session key k  and sends Alice the pair (gk,gakM ). The ElGamal scheme thus 
suffers somewhat from message expansion. Alice then computes (gk)a and uses this to 
retrieve M .  Again, this basic description is modified in practice -  see, for example,

4As a slight aside, it has been shown by Shor [119] that there exist polynomial time Las Vegas 
algorithms for both discrete logarithm computation and factoring for a quantum computer, should one 
ever be built. However, with current technology, both these problems remain intractable for suitably 
chosen parameters.
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Smart [123]. The American ‘Digital Signature Algorithm’ (DSA) uses a variant of 
ElGamal’s public key encryption algorithm [94], and discrete logarithms are used as the 
basis of security for various other cryptographic schemes. For a comprehensive survey 
of discrete logarithm-based cryptographic techniques, see McCurley [86], Odlyzko [98]. 
The discrete logarithm problem is, then, fundamental to the security of many modern 
cryptographic algorithms. Whilst discrete exponentiation is reasonably straightfor
ward, reversing this operation has proved extremely difficult. Indeed, exponentiation 
modulo a large prime appears to be a true one way function -  not simply a so-called 
trapdoor one way function as is the RSA function (the ‘trapdoor’ being knowledge 
of the prime factorisation of the modulus N).  The importance of identifying algo
rithms and procedures for computing discrete logarithms is thus of great importance. 
A real-world example of an attack on discrete logarithm-based security is described by 
LaMacchia and Odlyzko [69]. Here, the Sun NFS5 cryptosystem uses a modification of 
the Diffie-Hellman key exchange protocol as part of its authentication procedure. Each 
user and machine has a secret key m, and gm mod p is made public. A user passes the 
authentication test if he or she can prove knowledge of the secret key m. However, in 
the Sun system, the prime p  and the generator g are (or rather, were) the same for 
every implementation of this software (p was in fact a 192 bit prime). Thus if one can 
calculate discrete logarithms, even if this takes a fairly long time (e.g. several months), 
then the security of the Sun system can be broken. It is even possible, as noted by 
Anderson and Needham [7], to make use of discrete logarithm computation to attack 
other protocols (the particular example being an attack on a message which has been 
encrypted and then signed using RSA).
At the time of writing, the recommended key size to secure data for the immediate 
future is 1024 bits (i.e. the recommended size for either an RSA modulus, or a prime 
p  to be used in Diffie-Hellman or ElGamal-type schemes). The US KEA key exchange 
algorithm [95], which uses a Diffie-Hellman type protocol, recommends a key length of 
1024 bits. Discrete logarithms have been computed over GF(2607) by Thome [127] in 
2002, and over G F (p) for p  a prime of some 400 bits by Joux and Lercier [61] in 2001. 
This apparent discrepancy is due to the existence of asymptotically faster algorithms, 
notably tha t of Coppersmith [26], for GF(2n). On the side of factoring, a 512 bit RSA 
modulus was factored in 1999 by Cavallar et al. [22], giving proof to the opinion put 
forward several years previously tha t such keys could no longer be classed as secure 
for anything other than short term data. Van Oorschot [128] suggests that for security 
equivalent to factoring integers of 512 bits, we need a similar sized p i.e. 512 bits in 
length -  if using discrete logarithm based schemes over GF(p), but require 2n to have 
some 700 bits if working over GF(2n). In contrast, for elliptic curve cryptosystems 
(ECC), recommended key size is only 160 bits [97, page 85] -  for an overview of ECC,

5Here ‘NFS’ refers to the Network File System.
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see Koblitz [67], Miller [89], or Smart [123].
Attention has also turned to purpose designed ‘cracking’ hardware -  see, for example, 
Lenstra and Shamir [76], Shamir and Tromer [117] -  leading to the conjecture that 
a 1024 bit RSA modulus could be factored in less than a year by a machine costing 
some 10 million dollars. It is reasonable, given the similarity between the best known 
methods used for factoring and for discrete logarithm computation, to assume similar 
key sizes being required for discrete logarithm based schemes (such as Diffie-Hellman 
and ElGamal) as are recommended for RSA; although using elliptic curve based schemes 
would allow for smaller key sizes to be used for the same estimated levels of security. 
Of course, when selecting a key one must bear in mind several points: the required 
duration of secrecy for the information, the perm itted bandwidth for communication, 
the inherent value of the information itself, etc. The user of a cryptographic scheme 
basically wishes to make the effort required to attack a given communication greater 
than warranted by the value of the information itself. Choices for key sizes and sug
gested guidelines are discussed at length by Lenstra and Verheul [77] -  since a variety 
of parameters affect the choice of key size, here the authors allow a user to estimate 
key sizes based on the user’s opinion of the security of the DES algorithm. A different 
approach is taken by Silverman [122], where key sizes axe analysed according to the 
value of the encrypted data and the cost of breaking a given key.

2.2 Com puting discrete logarithms

The multiplicative group of of the finite field Z /pZ  is cyclic when p is prime, and is 
thus generated by a single element g. The order of the group is p -  1, which, generally, 
is of course not prime. Any nonzero value x  modulo p has a corresponding discrete 
logarithm y to the base g. Obviously, if x  is the identity, or a small power of g, it is 
simple to find the corresponding logarithm, but in general, for large primes p. this is 
much more difficult. One could of course find such a y simply by computing

g,g2 ,g3 . . . g p- l = l

stopping when one finds a y such that gy = x  m odp. This would take O(p) attempts, 
and quickly becomes infeasible as p gets larger. Alternatively, storing all values and 
using some kind of hashed lookup would take O(p) space.
In this section we take a look at some of the methods proposed for discrete logarithm 
calculation, following for the most part G arrett [43], Menezes et al. [87] and Smart [123]. 
After taking a brief look at the ‘baby-step, giant-step’ method of Shanks, Pollard’s 
‘p’ method, and the Pohlig-Hellman method, we consider the more specialised ‘index 
calculus’ ideas which ultimately created the Number Field Sieve (NFS), at time of 
writing the method of choice for factoring integers and computing discrete logarithms
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at the limit of current expertise.

2 .2 .1  Shanks’ b ab y-step , g ian t-step

The baby-step, giant-step method of Shanks [118] is a deterministic method which 
applies to any finite cyclic group. Here we give a brief description of the idea as
applied to the discrete logarithm problem modulo a prime p.
Given a group G of order n — p — 1, generated by g, we can let m  =  \y /n \  and then 
for some x  £ G we can say tha t x  = gl+i m for some 0 < i , j  < m  — 1. We can thus 
compute two lists: firstly the ‘baby steps’

which we store in a table such that we can easily look up a given value. We then 
compute the ‘giant steps’

x , x g - m,x g - 2m, . . . , x g - l m- V m 

and look for equality in the two lists, such that

g{ =  x g ~ j m

Then
x  =  gx+j m mod p

and thus y =  i +  j m  is the discrete logarithm of x.
Runtime for this method is 0(y/p), but it also requires O (y/p) storage. We do not
actually need to know n, the order of the group, since we simply need m  > y/n. If we 
choose some m  and the algorithm fails, we can simply retry with a larger value for m. 
Modifications to this method are described by Buchmann et al. [18], where changes are 
proposed which lead to fewer ‘baby steps’ when log5 x  is small compared to the group 
order p — 1.

2 .2 .2  P o lla rd ’s p m eth od

The ideas behind Pollard’s p algorithm [104] can be applied to both factorisation and 
discrete logarithm computation. It is similar to the ‘baby-step, giant-step’ method de
scribed previously, in tha t it also has expected runtime of 0 { y / p ) \  but has the advantage 
of requiring negligible storage. Now, however, we do need to know n, the order of the 
group. The p method is a probabilistic algorithm, and is currently the best known al
gorithm for computing discrete logarithms over the group of points of an elliptic curve 
(except for certain types of curve where the problem may be reduced to computing
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logarithms in a finite field -  see Menezes et al. [88]) or any other abstract structure. 
It is an example of a so-called ‘Monte Carlo’ algorithm -  a randomised method which 
may produce an incorrect result, but for which the probability of this happening is 
bounded.
The original method partitions the group G of order n into three sets, denoted by S\. 
5*2 and S3. These subsets need a certain degree of care in their definition in that they 
should be of roughly equal size. In order to compute log^ x  we create a sequence of 
elements yi, where yo = 1 and

xyi i f Vi e Si

Vi i f Vi e s2
9Vi i f Vi e S 3

We note a further criteria on the choice of the partition of G -  we do not allow 1 to 
be in set S2. We then use this sequence of y* to define two further sequences di and 6j, 
with ao =  bo =  0 and

ai i f Vi € Si
Uj+l — < 2di mod n i f yi e S 2

k di +  1 mod n i f Vi e S3

' fy + 1 mod n i f Vi € Si
bi+i = < 2bi mod n i f Vi e S 2

bi i f Vi € S3

This defines a pseudorandom walk in the group. Notice tha t yi =  gaix bi for i > 0. We 
now make use of Floyd’s cycle finding method -  given (y*, y2i), we compute {yi+i, 3/21+2) 
-  in order to  look for two elements such that y* = y2i. Using the fact that yz — gaix b’ 
and taking logarithms we get

(b{ -  &2i) logff x  = (a,2i -  cti) mod n

and, unless bi =  &2 i ,  and assuming we can compute (b{ — &2i ) - 1  mod n, we can thus 
determine y  =  log^rc. If gcd(&z — n) 7̂  1 we repeat the procedure with a different 
value yo-
It is possible to parallelise this method, at the expense of requiring a certain amount of 
central storage; see, for example, Smart [123] for details. Further improvements include 
a possible speedup of around 20%, brought about by using a different sequence ŷ , as 
shown by Teske [125].
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2 .2 .3  P oh lig -H ellm an

As described by Pohlig and Heilman [103], in order to be effective, this algorithm6 
requires tha t the group order n  =  p  — 1 has only small prime factors. The key result 
is tha t the discrete logarithm problem for some group G (generated by g, as before) is 
a t most as difficult as the discrete logarithm problem for the largest subgroup of prime 
order in G. The Pohlig-Hellman method, then, reduces the runtime of the previous two 
methods to 0(y/qi) where qi is the largest prime factor of n, the order of the group. 
This provides a strong argument for choosing p for cryptographic purposes such that 
p — 1 has few small prime factors, in order tha t discrete logarithm computation must 
be carried out in at least one subgroup of order q where q is a large prime.
The Pohlig-Hellman algorithm proceeds as follows. Let p be an arbitrary prime where

P -  1 =<fi<ff-<lekk

is the prime factorisation of p — 1 and qi < qi+i- Given y, g and p, we are to find 
x  such that x  = gy m odp. The algorithm determines y  modulo q^\ and results are 
then combined via the Chinese Remainder Theorem (see, for example, Bach and Shallit 
[10]).
We decompose the problem of computing one discrete logarithm modulo p to tha t of 
computing e{ discrete logarithms modulo qi, for each qi where q f '  divides n =  p — 1. 
The way we determine y mod q±' is to expand thus

C i  —  1

y mod q\{ =  bjqj 
j =o

for 0 < bj < q{ — 1. We can then compute from the least significant coefficient ‘upwards'. 
Suppose we are concerned with finding yi mod qie'. Following Menezes et, al. [87], we 
let qi — q and e* =  e to simplify notation. Set 7 = 1  and b_i = 0 ,  and let g = gn/q. 
We now compute the coefficients bj, 0 < j  < e — 1. To compute bj, first compute

y  =  y a bj~iqj 1 x  = ( x y - 1) ^ 1

and then compute
bj = log^ x

using, for example, the method of Shanks or Pollard’s p method. Once we are in 
possession of all the bj, we hold the value yi = y mod qiei. When we have solved for 
y  modulo all values q f '  we can use the Chinese Remainder Theorem to combine the 
relations y = yi mod qf* and thus find y  mod p. Shoup [120] has shown that for an

6Sometimes referred to as the Silver-Pohlig-Hellman method.
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arbitrary group G of order n, a runtime of 0(^/5?), where p  is the largest prime dividing 
n, is the best tha t can be hoped for from any algorithm which does not make use of 
special group properties. As noted by Peralta [101], as a result of the Pohlig-Hellman 
method, some low order bits of a discrete logarithm are easier to compute than higher 
order bits (giving rise to possibly ‘indiscreet’ logarithms).

2 .2 .4  O thers

A variety of methods in addition to those noted above have been suggested for com
putation of discrete logarithms. These include others by Pollard such as his ‘A’ or 
‘kangaroo’ method [104], which requires tha t the logarithm lies within some known 
interval w. The method then has expected runtime of O(iu^), and has been shown 
by van Oorschot and Wiener [129] to be practical when used in conjunction with a 
Pohlig-Hellman decomposition to compute discrete logarithms which are known to be 
‘small’. For a comprehensive review of these methods and how they apply to various 
incarnations of the discrete logarithm problem, see Teske [126].
Many discrete logarithm techniques mirror techniques used successfully in factoring 
algorithms. At the time of writing, discrete logarithm calculation can be thought 
of as shadowing integer factorisation -  however, many of the major breakthroughs in 
discrete logarithm calculation and in factoring have arisen from use of a method initially 
developed for the other application, suitably adapted in some way. Rather surprisingly, 
there exists a simple -  but computationally useless -  polynomial representation for 
discrete logarithms over finite fields by Wells, Jr. [135].

2.3 The index calculus m ethod

The index calculus method has its roots in factoring, and the basic ideas of this method 
go back to ideas of Kraitchik [68, chapter 6] in the early 1920s. The method as applied 
to discrete logarithm computation first appeared in the work of Western and Miller 
[136], and was ‘revived’ by the renewed interest in factoring and discrete logarithm 
computation brought on by the advent of public key cryptography in the late 1970s 
and early 1980s (Adleman [1]). It can now take various forms; all however using the 
same basic ideas.
Heilman and Reyneri [53] note that if the discrete logarithm problem is easy for some 
non-negligible fraction of group elements, then it should not be much harder for others. 
If we wish to compute the discrete logarithm of some element x  to the base g , we 
can multiply x  by gTi for random values ri until we reach a value where the discrete 
logarithm problem becomes ‘easy’. The index calculus method looks to firstly build 
this set of ‘easy’ discrete logarithms, and subsequently uses them to compute arbitrary 
logarithms. The method is nondeterministic, and can be broken down into three phases.
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These subprocesses within the index calculus technique have spawned further research 
into algebraic number theory and linear algebra.
Here we consider the basic index calculus method, as described by Adleman [1], and 
subsequently discuss various modifications which have been proposed both for factoring 
and for discrete logarithm computation.

2.3 .1  S m ooth  num bers

Many algorithms, in particular those which have been proposed both for the computa
tion of discrete logarithms over finite fields and for factoring integers, use the concept 
of smooth numbers7, defined as follows.

D efin itio n  2.3.1. We define a number M  to be B -sm o o th  if  all its prime factors are 
less than or equal to B, i.e.

M = n  p?,  v i < B

One sometimes sees a number referred to as B-rough if it does not satisfy the above 
criterion. Estimates for the distribution of such numbers were developed well before 
the use of index calculus algorithms became common. These asymptotic estimates 
make use of the Dickman p function and the Prime Number Theorem as discussed by 
de Bruijn [34] and Hildebrand and Tenenbaum [56]. From Crandall and Pomerance 
[31, page 45], the probability that a number x < y is B-smooth is approximately

u (-1+ o (1 ) ) k

as u —> oo, where
log y

u = -------
log B

Extensions to estimates for the distribution of smooth numbers can be found in Bach 
and Peralta [9] and Lambert [71], which discuss the distribution of so-called semi
smooth. numbers having all but one or two prime factors less than some smoothness 
bound B \,  with the others themselves less than some other bound i?2- These results 
are further generalised by Cavallar [21]. A discussion of smooth numbers from a cryp
tographic point of view can be found in Wagstaff, Jr. [130, section 4.4].

2.3 .2  B asic  in d ex  calcu lus

The index calculus method, as mentioned, consists broadly speaking of three distinct 
phases -  two of these comprise a precomputation step which is carried out once (and is 
the more time consuming), and subsequently a postcomputation phase allows a given 
discrete logarithm to be evaluated using information gathered in precomputation.

rHardy and Wright [52] denote smooth numbers as ‘round’ numbers.
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We wish to compute the discrete logarithm of some element y £ (Z/pZ)* for p prime. 
Our first task is to select a subset of elements of G known as the factor base. At the 
most basic level, one takes the factor base P  to be the k  prime numbers up to a certain 
bound B.  Thus

P  = {2 ,3 ,5 ,....,% }

The overall goal of the algorithm is to compute the discrete logarithms of these factor 
base elements (phases 1 and 2) and then to make use of these values in order to compute 
the discrete logarithm of any given group element (phase 3)8. In phase 1 of the method, 
then, we build a set of linear relations among the discrete logarithms of the factor base 
elements. There are several methods for accomplishing this: here again we consider 
the simplest method, as defined by algorithm 1.

Algorithm  1 Index calculus - phase 1
Input: Prime p , generator g of (Z/pZ)*, factor base P  of k primes qi less than some 

bound B  < p
Output: Linear equations for discrete logarithms of (most) factor base elements

repeat
Compute ga m odp  for random a £ (Z/pZ)* 
if  9a = U.Qi^ Q i € p  th e n  

Store a, ej 
else 

Reject a 
end if

until ^relations =  k  + e for some e

We compute ga mod p and check for smoothness. If this value is B-smooth, i.e. if

ga = II qi * mod qi e P

then
a =  CiDL(qi) mod p — 1

where the DL(qi) are the (as yet unknown) discrete logarithms of the prime factors ql . 
Once we have enough of these expressions -  some number greater than the number of 
factor base elements -  we can solve them modulo p — 1 (or rather modulo the prime 
factors ofp  — 1) to obtain values for the discrete logarithms of the elements of our factor 
base P. This linear algebra step comprises phase 2 of the method. We thus build a 
database of discrete logarithms of the factor base elements9.

8We note that in many discussions of this method, one finds references to two phases rather than 
three; the step of solving the linear system is then the final part of phase 1, with computation now 
being phase 2. Here, however, we will always use a three stage model: relation generation in phase 1, 
linear algebra in phase 2 and subsequent computation of an arbitrary logarithm in phase 3.

9We shall sometimes refer to the process of relation generation as ‘sieving’, since most methods 
utilise some kind of sieve technique rather than the simple ‘trial and error’ method outlined here. It
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In phase 3, in order to compute the discrete logarithm of an arbitrary x , and, assuming 
x  is neither the identity, a small power of p, or itself B-smooth, we now pick a random 
a and compute xga. If this number is B-smooth, then

xga mod p  =  q mod p, qi € P

and so
DL(x) + a = ^  eiDL(qi)  mod p — 1 

We can now use our values for DL(qi)  to compute DL(x),  as noted in algorithm 2. 

Algorithm  2 Index calculus - phase 3
Input: Prime p, generator g of (Z/pZ)*, factor base P  of k primes qi up to some bound

B  < p, vector of discrete logarithms of factor base elements qi, integer x  G (Z/pZ)* 
Output: Discrete logarithm of x  mod p

repeat
Compute xga m odp for random a G (Z/pZ)* 

until xga =  J7 qV m°d  Qi £ P  
Compute y =  eiDL(qi)) — a mod p — 1 
R eturn y  =  DL(x)

2 .3 .3  M odifications

We now discuss the effectiveness of the index calculus method and note various mod
ifications to improve its effectiveness. Some of these points will be expanded on in 
subsequent chapters of this thesis.

Relation generation

In addition to param eter choice, one can use a variety of methods to try to improve 
both the speed and the yield of the relation generation step. Many improved versions 
of the index calculus method try to reduce the size of the element tha t we test for 
smoothness; since a smaller number will generally be a product of a smaller number 
of smaller factors. This can be achieved in a number of ways -  the simplest is to 
append the value —1 to the factor base. We can then subtract p from our value 
ga mod p, and then effectively obtain two values to test for smoothness for a single 
exponentiation modulo p. We can opt to test both of these values or simply take the 
smallest in absolute magnitude. Taking this kind of idea further, one can introduce an 
intermediary level to the smoothness testing -  one first expresses ga mod p as a product 
of ‘medium sized’ numbers, and subsequently tests these values for smoothness. This

was pointed out to us by a referee that this ‘trial and error’ method of generating relations is often 
denoted by ‘Hafner-McCurley’ variant index calculus, following the description of a similar procedure 
by Hafner and McCurley [51].
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idea initially appears as part of the so-called ‘Waterloo variant’ of Blake et al. [13] (as 
described in a later chapter), and is taken further by the method of Coppersmith [26] for 
GF(2n). Subsequent developments include the Gaussian Integer method (Coppersmith 
et al. [28]) which leads by way of the Cubic Integer method of Pollard [105] to the 
Number Field Sieve (Lenstra and Lenstra, Jr. (eds.) [73]) as used by Cavallar et al. 
[22], Schirokauer et al. [113], Weber [132]. Here, the chances of finding a smooth element 
are increased by testing two (smaller) elements over two factor bases, one algebraic and 
one rational10.
Smoothness testing itself can be made more efficient in several ways. One can re
lax smoothness bounds by using so-called large prime variants of the index calculus 
method (Cavallar [21], Lenstra and Manasse [75], Leyland et al. [81], Odlyzko [98]), 
as investigated in later chapters of this thesis. One can use some kind of ‘early abort’ 
strategy if it seems unlikely that a given number will be smooth after having tested 
some proportion of the factor base elements, as outlined by Seysen [116], which can 
give a practical speedup of some 30% or more (Odlyzko [98]). Use of a sieve rather 
than simple trial and error effectively allows several values to be tested at once -  see 
Coppersmith et al. [28], Pollard [106]. Further, rather than simply using trial division, 
as described above, the task of checking for smoothness itself can be improved in a 
variety of ways, as noted by Bernstein [12].
We note finally tha t relation generation is trivially parallelisable -  we may simply test 
a different range of a values on as many different machines as we have available, as 
demonstrated by Lenstra and Manasse [74]. These may then be returned to a central 
repository for the linear algebra step. It is interesting to note the links between factoring 
and discrete logarithm computation, which can be seen in the development of the index 
calculus family of algorithms -  the focus of the method switches from factoring to 
discrete logarithm computation and back again, as improvements are adapted from one 
setting to the other. Some of the above methods are restricted to particular settings, e.g. 
GF(2n); however, Adleman and DeMarrais [2] present a version of the index calculus 
method for computing discrete logarithms in any finite field.

The linear algebra step

Index calculus methods call for the solution of a system of linear equations over a finite 
field. For factoring purposes, relation generation takes a fairly similar approach, but we 
then look for dependencies modulo 2 among relation exponents, with a view to finding 
an equation of the form

y2 =  x 2 mod N

10Both factor bases may in fact be algebraic.
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with x  ^  ±y.  We then hope to find a non trivial factorisation of our composite N  
by computing gcd(rr — y ,N ) .  When computing discrete logarithms modulo a prime p, 
however, we must solve the linear system modulo p — 1. In practice this often means 
solving modulo the prime factors o fp —1 and subsequently using Hensel’s lemma (if p — 1 
has repeated prime factors) and the Chinese Remainder Theorem (see, for example, 
Bach and Shallit [10]) to obtain a solution modulo p — 1.
As mentioned previously, for cryptographic purposes p  is often chosen such that 
is also prime, so tha t we are forced to solve modulo some large q\p — 1. This has 
ramifications on memory requirements, and prohibits certain techniques which one 
may use modulo 2, such as storing 32 or 64 bitwise vectors in a machine word and 
processing all of these simultaneously. The structure of the matrix, however, remains 
much the same. Due to the nature of relation generation, most nonzero coefficients 
occur in the left hand columns, corresponding to the smaller primes in the factor base, 
since there is a ^  chance that factor base element ^  divides a given value. Further, the 
m atrix is extremely sparse, and most nonzero coefficients are ±1 (with the exception 
of those corresponding to the smaller factor base elements, where coefficients may be 
10 or more).
The linear algebra step turns out in practice to be a serious bottleneck, as it is consid
erably more difficult to parallelise than is the relation generation procedure. Methods 
such as tha t of Coppersmith [26] for GF(2n) are asymptotically faster than the basic 
methods for GF(q), but for the precomputation phase this speedup occurs in relation 
generation -  which is trivially parallelisable for all index calculus methods. It remains 
the case tha t a similar linear system must be solved. The only real advantage of the 
asymptotically faster methods such as NFS on the linear algebra step is tha t their 
increased speed in relation generation permits the use of a smaller factor base, lead
ing to a smaller linear system. Nevertheless, the factorisation of the 512 bit number 
RSA-155 in 1999 by Cavallar et al. [22] required the solution of a linear system of some 
6.7 x 106 rows and columns. The need to improve this step has influenced development 
and implementation of such techniques as structured Gaussian elimination, and the 
Conjugate Gradient, Wiedemann and Lanczos algorithms as applied to a finite field 
situation -  see Cavallar [20], Coppersmith [27], LaMacchia and Odlyzko [70], Lambert 
[71], Lanczos [72], Montgomery [90], Pomerance and Smith [109], Wiedemann [137].

Com putation

An im portant advantage of the index calculus method is tha t one only needs to run 
phases 1 and 2 once for a given finite field. This is a particular advantage if one 
considers for example a signature scheme with fixed parameters g and p -  one can 
generate a database of small discrete logarithms, and subsequently run phase 3 (which 
is comparatively fast) to compute any discrete logarithm one chooses. If the parameters
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are fixed indefinitely, one has the time to build such a database and attack signatures 
for the duration of the scheme. We note that techniques to speed up relation generation 
generally carry over immediately to phase 3, and also that we have in some sense a 
trade off concerning our factor base size -  a larger factor base will decrease the runtime 
of phase 3 at the expense of solving a larger linear system, and thus increasing runtime 
and storage for phases 1 and 2. This has no analogy in factoring, where the only task 
after the linear algebra step consists of taking square roots of the values x 2 and y2 and 
(hopefully) factoring N .

Runtim e

It can readily be observed that precomputation will take considerably more time than 
postcomputation. The exact runtime of the procedure depends in a large part upon the 
choice of smoothness bound B.  If we choose too large a J3, our ‘smoothness te st’ -  such 
as trial division with the factor base elements -  will become prohibitively slow. Con
versely, too small a B  will simply reduce our chances of ever actually finding sufficient 
a values such tha t ga mod p is B-smooth. Optimal choices for B  are effectively best 
determined by a certain amount of trial and error coupled with implementation expe
rience, but initial estimates can be given using smooth number probability estimates, 
which advocate taking

B  = exp(c\/logp log logp)

for some constant c (McCurley [86]). Since the yield of basic relation generation is 
linear in the number of attem pts made, it is simple to conduct short experiments using 
different smoothness bounds. This is also fairly straightforward for more complex 
methods of relation generation, although this may mean experimenting on subsections 
of some sieve interval.
Runtime for the index calculus method involves the function

Lp[v,6] = exp((£ +  o(l)) (logp)*'(log logp)1-")

If v =  1, then the function L  is exponential in logp, while if v  =  0 then L  is poly
nomial in logp. For other values of v,  we are somewhere in between, and hence the 
runtime of the index calculus method is said to be subexponential. For variants of the 
Number Field Sieve, expected running time is Lp[^,8] with 6 = ( ly )5 for the method 
as described by Schirokauer [112]. For the method in its most basic form as described 
previously, if we take c =  runtime for precomputation is of order L[\,  2] as p —> oc. 
Phase 3, on the other hand, has an expected runtime of L[^, |]  (McCurley [86]). It is 
im portant to note that some of the strategies described earlier, such as early abort on 
smoothness testing, and the use of large prime variants, may not improve asymptotic 
runtime (but could give im portant practical speedup) -  see Pomerance [107] for details.
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Modifications such as the linear sieve can be shown to run in time Lp[^, 1]. Phase 3 
for these methods has runtime of order L[J, (see Odlyzko [98]).

2.4 Summary

In this chapter we have introduced the discrete logarithm problem, and given an 
overview of cryptographic techniques which use the supposed intractability of the dis
crete logarithm problem as a basis for their security.
We have given an overview of several well known methods for computing discrete loga
rithms modulo a prime p, and introduced the ideas behind the index calculus method. 
This method has evolved in different ways for different purposes. For discrete loga
rithm  computation in GF(2n), the best method known at the time of writing is that of 
Coppersmith [26]. For the more general case of computation in G F (pn) for p a small 
prime, a newer development known as the Function Field Sieve (FFS) has been shown 
to be effective, with a complexity equal to that of the Number Field Sieve (see Joux 
and Lercier [62]). A further variation of Coppersmith’s method for this situation is 
given by Semaev [115], The method of ElGamal [40] can be applied to fields of the 
form GF(pm) for fixed m  > 1 and p  —» oo. For the case GF(p) for p prime, the fastest 
available method is the Number Field Sieve for discrete logarithms (see, for example, 
Gordon [48], Joux and Lercier [61], Weber [131, 132]).
Recent ‘records’ include computations in GF(2607) using a version of Coppersmith’s 
method (Thome [127]), in GF(2521) using FFS (Joux and Lercier [62]), and in GF(p) 
for p  a prime of 400 bits using an NFS approach (Joux and Lercier [61]). Some imple
mentations from this thesis are currently being used to compute discrete logarithms in 
fields of characteristic 3 via FFS (Granger et al. [50]). We note tha t such discrete loga
rithm  computations take a serious amount of computing power -  in the example given 
by Thome [127], sieving took around a year on some 100 separate machines (mainly 
desktop PCs). The linear algebra step took around a month on a cluster of six 4-CPU 
machines. We cannot hope to match such computations, but can investigate compu
tation techniques for smaller modulus sizes and attem pt to estimate the benefits they 
may bring at ‘cutting edge’ sizes.
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Chapter 3

Choice of Generator

Before our examination of large prime variant techniques, we firstly consider the ad
vantage to be gained by making a particular choice of generator when using the basic 
index calculus method. We examine how one may make such a choice, and illustrate 
the benefits which may be obtained.

3.1 Changing bases

In the classical Diffie-Hellman key exchange protocol, g and n  (where n  is usually a 
prime p) are public. For ElGamal encryption [39], these and another parameter form 
the public key. Generally, for cryptographic purposes, one chooses a prime modulus p 
such tha t p  — 1 has at least one large prime factor q, and indeed one often chooses p 
such tha t is prime. In such a situation, p is known as a safe prime, and q = 2^- 
as a Sophie Germain prime1. Lim and Lee [83] advocate taking p such that is 
also prime, or tha t each prime factor of p — 1 is larger than q. They dub such a p 
a secure prime, since certain discrete logarithm based protocols can leak bits of the 
secret key in some situations, and such a choice for p helps to minimise this loss. If, on 
the other hand, one chooses p such that p — 1 has many small prime factors, we allow 
the possibility of an attacker using the Pohlig-Hellman algorithm as described in the 
previous chapter. Since p — 1 is usually composite, we can compute discrete logarithms 
modulo each prime factor of p — 1 separately, and subsequently combine these values 
using Hensel’s lemma and the Chinese Remainder Theorem (see, for example, Bach 
and Shallit [10]).
For security, it is then desirable for p — 1 to have at least one large prime factor q, so 
tha t a t least one subgroup has large order and we can thus force the attacker to take 
on what we hope to be a difficult computation. If this is not the case, we may allow the

1It is conjectured that there are an infinite number of such primes. Indeed, interest in this topic 
has recently resurfaced in connection with the new AKS deterministic polynomial time primality test 
of Agrawal et al. [4].
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attacker to compute several discrete logarithms to smaller moduli, where more efficient 
methods may be applicable.
As an ‘attacker’ we do not have control over the choice of g made by the participants 
in a protocol, but we can be assumed to know what this chosen value is -  it is, after 
all, a public parameter. Concerning this choice, we are told by Schneier [114] that 
there is no reason not to choose g to be as small a value as possible, such as 2. Indeed, 
van Oorschot and Wiener [129] note that choosing g =  2, coupled with a prime p for 
which is also prime, allows some computational savings during exponentiation when 
using Diffie-Hellman key exchange, or indeed most discrete logarithm based protocols. 
Further, Boneh and Venkatesan [17] recommend choosing g = 2 for a modified Diffie- 
Hellman scheme, leading to greater bit security in the ensuing shared key value.
We may note, however, that for the purposes of computing discrete logarithms over 
a finite field (for example, in an attack on the protocol), one may to a certain extent, 
ignore the value of g used in the protocol. We may choose our own generator, g' say, 
and compute the discrete logarithm of a given x  to the base g' . We may then use a 
simple change of bases to compute the discrete logarithm of x  to the base g as

log0 x =
_  logg' x 

logg/ g
The complexity of the discrete logarithm problem is independent of the generator used 
-  any algorithm used to compute discrete logarithms to the base g can also be used to 
compute to the base g'. Since to change bases in this way we need to compute log5/ g, 
this does of course require the computation of two logarithms rather than simply one; 
but we may argue tha t the second phase of the index calculus method is of a sufficiently 
low comparative complexity tha t this increase in effort will hopefully be offset by any 
savings we could perhaps make in earlier phases of the procedure by using a generator 
of our own choosing. Further, in many situations, a public key pair (g ,p ) will be fixed 
(in, for example, a signature scheme), and thus we need only compute logp/ g once.

3.2 Reducing matrix density

So why might we want to use a different generator, and what should this choice for g' 
be? We note that, when computing discrete logarithms modulo a prime, we are always 
in possession of one discrete logarithm: that of the generator itself, since trivially

log g g =  1

Consider using the index calculus method as described in the previous chapter. If the 
given generator happens to be one of our factor base elements -  and if, for example, 
g =  2 or g =  3, as is often the case, it will be -  then we do not need to solve for the
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discrete logarithm of this element in our linear algebra step. Rather, we can remove 
this element from any relation it occurs in as we build the matrix (taking care to 
adjust the ‘right hand side’ of the linear system), and thus remove an entire column - 
and hopefully a reasonable amount of the nonzero values -  from the system prior to 
solving. It is simple to see that, in general, the column corresponding to the factor base 
element 2 will contain the most nonzeros -  a given number ga mod p has a 50% chance 
of being even and thus containing 2 as a factor. In fact, we should have a greater than 
50% chance of an entry in this column for a given row, since we know that the values 
ga mod p  which lead to rows in the matrix are all B-smooth and are thus composed of 
small prime factors only. As a result, it is rather more likely tha t a row will contain a 
nonzero in the column corresponding to 2 than it would be for purely random values 
of ga mod p.
This ‘2-column’ will also generally contain the largest absolute values, since there is 
obviously more chance tha t some number ga m odp  will contain a factor such as 2 
repeated 10 or 12 times than it would a factor such as 101, for example, repeated by 
the same amount. Further, if we use large prime variants of the index calculus method, 
we must combine relations in order to eliminate the larger primes (as described in the 
next chapter), and this has a good chance of further increasing the absolute size of the 
m atrix coefficients. As noted in Gordon and McCurley [49], and in chapter 6 of this 
thesis, whilst most values in the matrix are ±1, the presence of these larger values can 
cause numerical blowup in the linear solve step, so any reduction in the amount of such 
values would also be beneficial from a practical point of view.
It is in our interests as an attacker, therefore, to have g = 2. From Crandall and 
Pomerance [31, section 2.5], it is conjectured that 2 is in fact a primitive root for 
infinitely many primes p. If 2 is the published generator, we need take no further 
action other than to remove the column corresponding to 2 in a preprocessing step 
prior to the linear solve procedure, or indeed on the fly during relation generation. We 
do not have to change bases in computation, and may proceed as normal. If 2 is not 
the published generator, we have a choice to make. If 2 is a generator of (Z/pZ)* (but 
not, for some reason, the published generator) then we may use gl =  2, and proceed 
as before, but making a change of base in the final discrete logarithm computation. 
Should 2 not generate (Z/pZ)*, we would ideally like to choose a g' which will still 
allow us to remove the 2-column from the matrix prior to solving.
We also note tha t if we use the special value -1 in the factor base, we also hold the 
discrete logarithm for this value, since

i°gs ( - i )  =  ^

We can thus also remove the column corresponding to the factor base element -1 prior 
to the linear algebra step, as noted by Crandall and Pomerance [31]. We can expect a
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nonzero entry to occur in this column in every other row.
In the next section, we assume tha t we are using the basic index calculus method 
outlined in the previous chapter. Thus we make use of some generator value in the 
relation generation step, and we consider how one could go about choosing a suitable 
value. In certain other methods, such as that of Coppersmith et al. [28], relation 
generation is in some sense ‘generator independent’. We actually specify a base for the 
logarithms in phase three. For such methods, we could make the decision to compute 
to the base 2 in advance, and thus make savings in the m atrix step. Again, we may 
subsequently have to compute one additional logarithm (log^/ g) in order to change 
base.

3.3 ‘U seful’ generators

The choices we could make for our generator g' may now be considered. We are looking 
to transform a relation such as

gio. _  2e2 x 363 x 565 x . . .  mod p

to a relation of the form
g i a .  =  3 e 3 x  565 x  m 0 ( j  p

Suppose tha t we choose a generator g' for which we know the value k such that

g'k = 2 mod p 

Then, for the previous example, we would have

2fi2 =  (g'kY 2 mod p 

and so we would be able to remove the element 2e2 by computing

a - ( k e 2) =  3 e 3 x  g e s  x  m 0 ( j  ^

Is it always possible to find a k to enable us to remove the 2-column in this way? We 
assume tha t we have access to the prime factorisation of p — 1 -  this is not an unreason
able assumption, since the users of the protocol will probably make such information 
public to demonstrate the security of the system. We can thus quickly check if a can
didate g' is indeed a generator (see Menezes et al. [87, section 4.6]). We wish now to 
show th a t one can always take either 2 or some root of 2 as the generator for (Z/pZ)*.
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Following G arrett [43, chapter 13] and Li and Pomerance [82], we have

T h e o re m  3.3.1 (E u le r’s c r ite r io n ) . Let p be a prime and let k\ p -  1 (so p =
1 mod k). Let g be relatively prime to p. Then g is a k th power residue modulo p if 
and only if

p — i
g k = 1  mod p

Proof. If g is a k th power then there exists some h such tha t hk = g mod p. Then

=  Hp~l = 1 mod p

by Ferm at’s Little Theorem. Conversely, if g ^ ~  = 1 m odp  then, letting g' be a 
generator of (Z/pZ)*, we have that g = g'1 for some I and so

Eni , iUEh I , ,g  k =  (g  ) k =  1 mod p

Since the order of g' is <̂>(p) =  p —1 by assumption, we thus have that (p — 1)| l ( p - \ ) / k .  
Then k  must divide /, so I = km  say for some m. Thus

il t k m  , /m\jfc ,9 = 9 = 9  = [9 ) m odp

and g is a k th power modulo p. □

For 2 to be a generator of (Z/pZ)*, it follows tha t 2 is not a k th power modulo p for any 
k  dividing p — 1. Conversely, if 2 is not a generator of (Z/pZ)*, and instead has order 
m  where m| p — 1, then it is some k th power of a field element, where k = (p — l) /m .  
This in tu rn  will either be a generator or a power residue, and we can repeat the 
procedure (which will eventually term inate since we have a finite number of elements 
and <f>{p— 1) >  0 are generators). If 2 is not itself a generator, therefore, some root of 2 
modulo p is. We now consider how we can find such a root -  simplicity of computation 
depends very much on the group structure of (Z/pZ)*, as this determines the value 
k. For background and further information on the rest of this section, see G arrett 
[43], Gauss [45], and especially Bach and Shallit [10, chapter 7].

3.3 .1  C h oosing  g' w hen  p — 1 =  2q

We first consider the simplest (and probably the most common) case, where p -  1 = 2q 
and q is a prime. We have that (Z/pZ)* has order p -  1. We wish to find an element, g'. 
such tha t g,p~l =  1 mod p and g,Ê ~ ^  1 mod p Vr| p — 1. If we can take g' = 2 then 
we need take no further action. If not, then suppose the order of 2 is m < p — 1. By 
Lagrange’s theorem we know that the order of a group element must divide the group 
order; tha t is, m\ p — 1. Since m ^  1 and m  ^  2 (we ignore the case p =  3, since it is of
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no cryptographic interest), we have that m  = q. Thus 2 is a kth power residue, where

m  q

Since p =  3 mod 4, we can find one square root of 2 by computing

a =  2̂ p+1^ 4 mod p

and the other by evaluating b = —a mod p. The first of these, however, is the principal 
square root. This is itself a square; and is thus not a generator of (Z/pZ)*, so we take 
g' = b w ith order p  — 1.

E x am p le

For a computation of discrete logarithms modulo a 40 digit prime p = 1040 +  17407, 
the smallest generator of (Z/pZ)* is 5. Here p =  3 mod 4 and p — 1 =  2q for q prime, 
so we can take g' = y/2 mod p, which yields the two roots

a =  6971841133177927536427151032011471104081

and
b = 3028158866822072463572848967988528913326

We note tha t b = —a mod p. Here a is the principal root and is itself a square. As a 
result, it cannot be a generator for (Z/pZ)*, and indeed a has order q = We can. 
however, take g' = b, which has order p — 1 as required.

3 .3 .2  C h o o s in g  g' w h e n  p — 1 =  q r *

The more general case is slightly more complicated. Suppose

n

p  ~ 1 = q IT r i  Q > r i > - - ' > r n
i= 1

with the r* not necessarily distinct. Again, since 2 6 (Z/pZ)*, we know tha t the group 
element 2 will have order dividing p — 1. Since, by assumption, q rj, there is a good 
possibility tha t 2 G C9, the cyclic subgroup of order q, or some higher order subgroup 
such as Criq. We can in any case determine the order of 2 by computing 2q, 2n<7, 2r'2q 
and so on, as we know the prime factorisation of p — 1. If, for example, 2ri q = 1 mod p 
then we have tha t 2 G Crjq. As before, if 2 has order p — 1 then we can take 2 as a 
generator. Otherwise, the order of 2 is some product m of elements of { g ,r i , . . .  , r n}, 
and 2 is a k th power residue, where k =
We are thus required to compute a k th root of 2 modulo p. Since k\ p — 1 and is
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probably not prime, this is not so straightforward as in the previous case. If k = 2, 
and p =  3 mod 4 we can proceed as above. If k =  2 and p = 5 mod 8, similar results 
hold. Otherwise, still with k = 2, we can try, for example, the probabilistic method 
of Tonelli (see Bach and Shallit [10]) which has expected runtime 0((logp)4). This 
method succeeds with probability Often, however, we will have k > 2. In this 
situation, we can employ the ‘AMM’ algorithm of Adleman, Manders and Miller [3]. 
Again we assume2 we know the prime factorisation of p — 1.

A lg o rith m  3 AMM algorithm for d?h roots modulo p (p, d prime)
In p u t:  Prime p, integers a and d (a is a <&h power in (Z/pZ)*)
O u tp u t:  (Ph root of a modulo p

Choose a random h G (Z/pZ)* 
if  =  1 m odp  th e n

Choose a different h 
en d  if
Let p  — 1 =  dst where d \ t 
(ad, at) (a^a*3)
9 h* 
e 4— 0
fo r i =  0 to s — 1 do

Select e{, 0 < ei < d, such that (ge+eid,t ad)ds 1 =  1
e 4— e +  €{(P 

e n d  for 
d! 4— d~l mod t
(bdM) «- (g~e/d,a td')
Choose a, fi such tha t a t  +  /3ds =  1
b <- bdab f
Return b

This randomised algorithm (a generalisation of Tonelli’s square root algorithm) accepts 
a prime divisor d of p — 1 and an integer a and returns the dth root of a modulo p. It 
does however fail with probability and has runtime 0(d(logp)4). Bach and Shallit 
[10] recommend using this algorithm only for small values of d, namely values such that

logd =  0 ( \/ lo g p lo g  logp)

As discussed earlier, for cryptographic purposes it is unlikely tha t p would be chosen 
such th a t p  — 1 has many prime factors. As noted by Pomerance and Shparlinski [108], 
for almost all primes p, the multiplicative order of 2 modulo p is not smooth. As we 
assume q^>  we assume that there is a good chance tha t the order of 2 is at least 
q, and thus k will be very small compared to p; so in general we would expect to be 
within this bound.

2If for some reason the full factorisation of p — 1 is not available, all may not be lost -  we can
compute a gcd-free basis if we know a partial factorisation: again, see Bach and Shallit [10].
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Another problem is tha t we want a k th root, where k is probably composite. In order 
to get around this, we proceed as follows. Suppose the prime factorisation of d is

d = d i^1 . . .  d / j

Let xo =  2. Then we successively solve

Xld^  
x 2d^ 2

X j d^ j  =  X j - 1

using AMM, to finally obtain g' =  Xj, such tha t g'd =  2 as required.

E x am p le

Suppose p  =  lO100 +  226617. Now p = 1 mod 4 and p  — 1 =  23 x 3 x q for a 99 digit 
prime factor q. The order of 2 modulo p  is 2 x q, and so 2 is thus a k th power modulo 
p, where

P — 1k = - ----- =  2 x 2 x 3  =  12
2 x q

We may then use AMM to compute a 12th root of 2 modulo p. It turns out that, for 
this example, if one computes all twelve such roots3, eight of these are generators for 
(Z/pZ)*. The other four 12th roots are themselves cubes, and so are not generators. 
Taking g' to be one of these eight generators, then, we can remove the column corre
sponding to factor base element 2 from our matrix. Computing such a root takes very 
little time -  for this example, to compute a single \2 th root took 1 hundredth of a sec
ond; whilst computing all 12 roots (and checking if they were or were not generators) 
took 7 hundredths of a second.

3 .3 .3  C o m p u ta t io n s  in  G F (2 n)

Before looking at the practical impact of these ideas, we briefly consider the index 
calculus method as applied to GF(2n). From Menezes et al. [87], GF(2n) is represented 
as a ring of polynomials over GF(2) modulo some irreducible polynomial f ( x )  of degree 
n. The basic index calculus method proceeds much as before, but now our factor base 
consists of the set of irreducible polynomials of degree < m  where m  < n. Here m  is 
the equivalent of our smoothness bound B.  Our factor base is thus

P  = {x, x  +  1, x 2 +  x  -1-1,... }

3We can accomplish this by computing a primitive 12^ root of unity modulo p -  see Bach and 
Shallit [10, chapter 7].

= xo
=  X \
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We compute logarithms to the base g(x), where g(x) is a primitive element of GF(2n). 
Zierler [138] shows how one can change from one representation of GF(2n) to another 
in at most n  steps, which suggests that we can again use a different representation to 
tha t published, if it is to our advantage to do so.
We have a slightly different weight distribution in the relations matrix than we had for 
computations modulo a prime. Now, x  is the first element in our factor base, followed 
by x  +  1. There is a 1 in 2 chance that either of these will divide a given polynomial 
over GF(2) (again, since we are considering ‘smooth’ rather than random candidates, 
this is probably rather more likely than this). The matrix columns corresponding to 
these two factor base elements will be the heaviest in the system. It is to our advantage, 
then to take g{x) =  x  or g(x) = x  +  1, in a similar manner to our wishing to take g — 2 
previously.
Again, from Menezes et al. [87, page 163], we can compute a representation for GF(2n) 
by generating a monic irreducible polynomial f ( x )  of degree n over GF(2). Then 
GF(2n) can be represented as (Z/2Z)[rr]/ / ( # ) ,  and we can take g(x) — x  as a generator. 
As we needed the factorisation of p — 1 in the previous examples, so now we require 
the prime factorisation of 2n — 1 here, but again we argue tha t such information should 
be available for cryptographic examples. We can thus choose a g(x) such that we can 
remove one of the heaviest columns in the matrix; however, it does not seem that we can 
remove both these heavy columns. As a result, any savings will not be as pronounced 
as when working modulo p.

3.4 Theoretical savings

We briefly consider the theoretical savings we may expect to make by removing the 
2-column (and the -1-column). Estimating the density of a row in the matrix for the 
basic index calculus method modulo p is related to estimating oj(n), the number of 
distinct prime factors of a positive number n. From Hardy and Wright [52, theorem 
430], we have

u(n) — x  log log x + B \x  -|- o(x)
n<x

^  Q(n) = x  log log x + B 2X +  o(x)
n<x

where Cl(n) is the number of prime factors of n  including multiplicity,
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and 7 is Euler’s constant

7 =  lim (1  +  ^ 4 -------1- -  -  log n  J
n-Kx> \  2 n J

However, a key point is tha t such estimates generally concern random numbers less than 
some bound. Here we have the added criterion that the numbers under consideration 
are smooth, and are products of small primes only. Fortunately, Alladi [5] provides 
similar approximations for smooth numbers. Let S (x ,y )  = {n < x  : p\n => p < y}. 
Then Q(n) is approximated4 by

7j(x, y) = log log y +  li(aQ

where a  =  logrr/logp and £ is the unique positive solution of — 1 =  a£.
We can thus argue heuristically that, for average n < x,

u(n)  =  log log a: +  B\  4- o(l)

H(n) =  log log a; +  B 2 +  o(l) 

and so, for p-smooth numbers,

We can use this approximation to estimate the number of nonzeros in the average row 
of our m atrix5. This gives the values in table 3.1, where B  is the smoothness bound 
used.

Size o f p B N onzeros p e r  row  
(e s tim a te d )

N o n zero s  p e r  row  
(a c tu a l)

K P 60,000 7.81 7.74
10‘25 100,000 9.18 8.93
1030 300,000 10.02 9.82

Table 3.1: Average nonzeros per row for various p

For a 30 digit p, with smoothness bound H, we computed logarithms to the base 5. 

To accomplish this we solved a linear system of m =  36,500 equations in n = 25,998

4This approximation holds for logy > (loglogx)^5/,3 +̂e, although it can be extended to other ranges 
(see Hildebrand [55]).

5In chapter 5 of this thesis, we make use of a modified version of relation generation, where we test 
two values a and b (both 0(y/p) )  for smoothness, with the final relation coming from the computation 
of ab~l . However, these two values are not  independent -  they axe coprime. As a result, the above 
approximation gives an overestimate of the number of nonzeros in the average row.
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unknowns. Using the approximation above, we expect some er «  10 nonzeros per row, 
giving e =  m er = 365,000 nonzeros in the full system. We can assume that the element 
-1 is represented in every other row, and that the element g = 5 is represented in m / g  

rows. In fact, it is likely that it will occur in more rows than this, since the numbers 
concerned are smooth rather than random. Using this assumption, however, we can 
approximate the number of nonzeros in the system after we have removed the columns 
corresponding to -1 and g as

. m  m
e ~  mer — —--------2 g

For the dataset under consideration, this corresponds to e' = 339,450. We can thus 
expect to reduce the weight of the matrix by some 7% by removing the column corre
sponding to -1 and that corresponding to g =  5. Had g been equal to 2, this would rise 
to 10%. As noted, this is probably an underestimate, due to the fact that the numbers 
under consideration are smooth.

3.5 P ractica l savings

We now look at some practical examples of the kind of savings we can make by choosing 
the generator such that we can remove the 2-column. We look firstly at the structure 
of the kind of linear systems produced by the index calculus method. In chapter 6 
we shall examine the effect of reducing matrix weight when using various methods of 
solution.
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Figure 3-1: Distribution of nonzeros -  30b

Figure 3-1 refers to the first 50 columns of the 36,500 x 25,998 matrix mentioned above. 
The graph shows the percentage of the total amount of nonzeros which occur in each 
of the first 50 columns. In this example, the first column (index 0) corresponds to the 
value -1, which is often added to the factor base to speed up relation generation. A 
nonzero occurs in the -1 column for roughly half the relations, as one would expect. 
This column then contains 5.1% of the total nonzeros in the system. The second column
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corresponds to the factor base element 2, and is clearly the column containing the most 
nonzero entries (around 5.9% of the total). In the fifth column (corresponding to factor 
base element 11), only some 1.5% of the total nonzeros occur. The 50th column contains 
some 0.16%. Of course, as we progress across the columns, many columns representing 
the larger factor base elements contain no nonzero values at all. By removing both the 
-1 and 5-columns for this dataset, we can remove 8% of the nonzeros from the system 
prior to solving. Had the generator been 2, this would have risen to 11%. Thus the 
model outlined above does indeed tend to underestimate the savings one can make. 
This particular dataset was used to investigate the use of ‘large prime’ relations in 
discrete logarithm computation, as investigated in subsequent chapters of this thesis. 
Due to the fact that, by using this technique, we are combining several relations, the 
result is that the relations that we resolve are generally more dense. Consequently, 
we may expect the removal of the generator column to be less effective in reducing 
the overall density of the matrix. Considering figure 3-2 we see that this is indeed 
the case. Where previously 5.9% of the nonzeros in the matrix were in the 2-column.

5

ii
* 3

36

1

20
nurrbar rurtm

Figure 3-2: Distribution of nonzeros via large prime variant relations 30b

when using relations derived using the ‘single large prime’ variant (left hand figure) 
this drops to 4.8%. When using relations derived using the ‘double large prime’ variant 
(right hand figure) this drops further to around 3.3%. On removing the -1-colunm and 
the 5-column now, we would save only 6.2% and 5%, rather than the 8% saved when 
using full relations only.
In general, if one were using these variants to build relations, one would still have a 
reasonable proportion -  probably some 30-40% -  of relations found directly, where the 
distribution of nonzeros would be similar to that in figure 3-1. The drop in effectiveness 
in removing the 2-column (from 5.9% down to 3.3% when using double large prime 
relations) would thus be diluted somewhat and not so pronounced in practice. On the 
other hand, linear algebra techniques for sparse linear systems are designed to avoid 
processing denser relations, so these relations derived from ‘partials’ may in fact be set 
aside before the costliest part of a linear solve method. We also note that the absolute 
size of coefficients in the linear system are generally larger when using relations derived
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via large prime variants (see table 3.2 for coefficients in this 30 digit p dataset), so 
removing a certain amount of these would be beneficial to reduce or delay the effects of 
any coefficient blowup in pivoting. Indeed, it may increase the range for which 32-bit 
values may be used to represent data values without numerical breakdown occurring.

R e la tio n
ty p e

M ax  in 
2 -co lum n

M ax  in 
3 -co lum n

M ax  in  
5 -co lum n

M ax  in 
7 -co lum n

Full relations 19 14 7 6
Via 1-partials 18 12 8 7
Via 2-partials 27 18 10 8

Table 3.2: Maximum nonzero values in first matrix columns -  30 digit p

This example is obviously rather small. As we scale up to larger datasets, we may 
expect tha t again the effectiveness of this column removal will be reduced, since again 
there will in general be more factors in a given relation. Indeed, for a 20 digit p dataset 
with g = 2, we were able to remove nearly 9% of the nonzeros occuring in the 2-column 
alone. Further, larger implementations may be expected to use more complex methods 
of relation generation than the simple ‘trial and error’ method described above.
The dataset in figure 3-3 was derived from an implementation of the Number Field 
Sieve (NFS) by Damian Weber [134] to compute discrete logarithms modulo a 90 digit 
prime p. Here

p = 12044 -  13 p - l  = 2 * q

and q is prime. The m atrix has 201,148 rows and 201,111 columns. The NFS, for 
the purposes of this discussion, uses two separate factor bases. For this particular 
implementation, one consists of rational primes as above. The other consists of prime 
ideals, and we look for relations involving both rational and algebraic numbers. One 
may thus argue tha t the effectiveness of removing the column corresponding to the 
rational prime 2 will immediately be halved, but in fact it is not necessarily that bad. 
One often chooses skewed parameters, such that the algebraic factor base contains fewer 
elements than the rational factor base (or vice versa). In this example, there were 7000 
algebraic factor base elements and 15,000 rational elements.
Figure 3-3 shows the proportion of nonzeros occurring in the first 50 matrix columns 
corresponding to the rational factor base elements. On the left, they are shown pro
portionate to the total number of nonzeros in the whole system, and on the right they 
are shown proportionate to the total number of nonzeros which occur in the columns 
corresponding to the rational factor base elements only. In the left hand figure, we 
see the last few ‘algebraic’ columns contain a negligible (although actually nonzero) 
percentage of the total nonzero entries. The first rational factor base element here is 
2, and corresponds to column index 7001. Subsequently column index 7002 represents
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Figure 3-3: Distribution of nonzeros in NFS rational factor base

prime 3, and so on. We see that the 2 column contains some 2.4% of the total nonzeros 
in the system. This corresponds to 71,908 of the 2,966,157 total nonzero values, which 
we could remove from the system had we chosen our generator in a suitable manner 
(as it happens, g was actually equal to 2  for this example).
The right hand figure allows us to examine the importance of the 2 column as a pro
portion of the nonzeros occurring in the rational columns only. It actually accounts for 
some 5.4% of these values. This is obviously less than the 7% we had before, as our 
relations are going to have more nonzero values (relations in this dataset contain on 
average 15 nonzeros, compared to some 9.7 for the 30 digit example), although these 
nonzeros are going to be spread across both factor bases. All the same, by removing this 
column we can save some 800KB memory in storing this system of equations (assuming 
two long data types and one pointer per nonzero). Unlike the techniques described in 
Cavallar [20] and Huizing [59], where one is allowed to remove the k heaviest columns 
of the matrix prior to solving (further solutions are subsequently recovered), wo do not 
have to build this column back in at a later stage of the solving procedure.

3.6 Summary

We have shown that it is possible to choose the generator used in the index calculus 
method such that one can subsequently remove a certain proportion of nonzero values 
from the ensuing matrix and hopefully speed up the linear algebra step of the method. 
This latter point will be investigated in a later chapter. Removal of the column corre
sponding to factor base element 2  is most beneficial, as a result of both the number of 
nonzeros contained in this column, and their absolute size. We have shown that we can 
always choose a generator which will allow us to remove this column, and, in general, 
we should be able to compute this value with little effort for the kind of primes p  used 
in cryptographic schemes.
The effectiveness of this trick is diluted when using NFS-type approaches or large 
prime variant modifications to the basic method, and, of course, if we have changed t.he
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published generator we will require a second discrete logarithm computation in order 
to change bases. We would hope that savings in the linear algebra step outweigh the 
effort of this second computation -  again, this will be investigated in a later chapter.



Chapter 4

Large Prime Variants

In this chapter we examine the effectiveness of so-called large prime variants of the 
index calculus method as applied to discrete logarithm computation modulo a prime 
p. We first briefly consider the single large prime variant, followed by the double large 
prime variant as was applied to factoring by Lenstra and Manasse [75]. Although it is a 
natural step to take, there is very little discussion of the double large prime technique 
for discrete logarithm computation in the literature -  in contrast, the technique is 
described in many papers concerning integer factorisation. However, Thome [127] and 
Weber [132] show tha t others had also considered and implemented variations of this 
technique; although few details are given. The following work was carried out entirely 
independently of the results contained in these references.

4.1 Large primes in relation generation

In this section we discuss the single and double large prime variant, focusing on the 
differences between their application in factoring and discrete logarithm applications. 
Our intention is to examine how the double large prime method in particular differs 
when applied to discrete logarithm calculation, and how best to circumvent any practi
cal complications which may arise. An overview of the history of these techniques and 
further references -  mainly from a factoring point of view -  can be found in appendix A.

4 .1 .1  O ne large prim e

As described by Lenstra and Manasse [75]1, a simple modification to the basic index 
calculus method can be made. Although the authors apply this modification to fac
torisation problems, it is equally applicable to the discrete logarithm problem. In an 
attem pt to speed up the relation generation phase of the index calculus method, we 
effectively relax our chosen smoothness bound B  as follows. Instead of restricting our

1This reference is not the first implementation of this technique -  see appendix A.

46
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selves to gathering relations only when ga mod p is smooth, we now retain relations 
involving one prime larger than our first smoothness bound B \  (but below some second 
bound B 2). We shall refer to such relations as ‘partial’ relations. It makes sense to 
choose B 2 < B \ 2, since then, after division by factor base elements, if the remainder is 
less than B 2 then it must be prime.
If we discover two partial relations having the same large prime, we can eliminate 
the large prime and recover a full2 relation. For factoring applications this can be 
accomplished by a simple multiplication of the two relations, and the large primes then 
disappear modulo 2. For discrete logarithm computation modulo p we are working 
modulo p  — 1, but it is equally simple to divide one relation by the other to eliminate 
the large primes. As we were generating (but rejecting) these partial relations anyway 
during the course of the standard method, we reduce the number of ‘test values’ needed 
to produce the necessary number of relations. A degree of complexity is of course added 
by the need to eliminate the large primes; but in practice this should be offset by the 
reduced time needed to gather full relations. Solving the linear system is then carried 
out as for the basic method.

4 .1 .2  T w o large prim es

It is not difficult to envisage going a step further and developing a ‘two large prime’ 
variation. Using two large primes is, however, not as straightforward as allowing one 
large prime only. Details of how this was first carried out (as applied to factoring) can 
be found in Lenstra and Manasse [75]. We first define a third smoothness bound S 3. 
We then modify the basic index calculus algorithm, defined previously, thus3:

•  If ga m odp  factors completely using only elements from the factor base (i.e. it is 
Si-sm ooth), store as a full relation.

• If ga m odp  factorises but for one larger prime factor Q with B\ < Q < B 2 (i.e. 
it is ‘semi-smooth’), store as a 1-partial relation.

• If ga mod p factorises but for two larger prime factors Q\ and Q2 with S 2 < 
Q 1Q2 < S 3 and B \ < Q\ < Q2 < S 2 (i.e. it is ‘doubly semi-smooth’), store as a 
2-partial relation.

Again, a judicious choice of bound will help us here. Taking S 3 < S 3 guarantees that 
a composite remainder R  < S 3 will have exactly two large prime factors Q\ and Q2 

where

B 1 < Q 1 < Q 2<1 S 2
2Following Lenstra and Manasse [75] we will refer to a relation involving purely factor base elements 

as a ‘full’ relation. From now on, we will distinguish partial relations by referring to them as ‘1-partials’ 
for those having a single large prime, ‘2-partials’ for those having two large primes, and so on.

3A brief word on notation -  here we use g, to represent factor base elements and Qi  to represent 
large primes above our smoothness bound.
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In practice, one generally takes a substantially lower bound than this in order to reduce 
the amount of data generated. Typical values for B3 are between 10Z?2 ajl^ 100£?■_>. as 
noted by Boender [15]. However, we still have the added criterion that we must firstly 
check tha t the remainder is both below B$ and is composite (the latter can be checked 
using the Miller-Rabin probabilistic primality test4), and subsequently we must factor 
this remainder in order to determine the exact value of these large primes. For the 
purposes of this implementation we chose to follow Lenstra and Manasse [75], and used
Pollard’s p method. For factoring, the rho method proceeds as detailed in algorithm
4. Here we show the basic algorithm; it can be made more efficient, as described by 
K nuth [66].

A lgorithm  4 Pollard p for factoring 
Input: Composite integer N
Output: 7i, a non-trivial factor of N

X 4— 5, y 4— 2, k 4— 1, I 4— 1, 71 4— N , C 4— 1 
loop

Compute g =  gcd(:r — y, n) 
if  g = 1 then  

Advance: 
k 4— k — 1 
if k = 0  then  

y 4—  x, I 4—  21, k ^—  I 
end if
x  <r- {x2 +  c) mod n 

else if  ̂=  7i then
Failure. Restart with c =  c +  1 

else
Divide out gcd:
71 4— J ,  x  <— x  mod 71, y 4- y  mod n  

end if
If 71 is prime, return 71, ^  

end loop

In the case of failure, the algorithm would return the initial number as a factor of 
itself. This trivial result necessitates restarting the algorithm with a different value of 
c in the initialisation. In practice, for our implementations, on the few occasions that,  

this situation arose, a correct factor was always obtained at the second attem pt. We 
note tha t the p method is not necessarily the best option for factoring the remainder 
-  it obviously depends on how large this remainder is. As datasets get larger, it would 
probably be more effective to use another method, such as Lenstra’s elliptic curve 
factoring method (see, for example, Cavallar [21], Stephens [124]).

4On occasion, this test can flag a composite number as prime (see Davenport [33]) -  for our purposes, 
this means we will reject a relation which would actually be correct. This failing will however have no 
bearing on the subsequent correctness of the algorithm.
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The use of large prime relations does not change the asymptotic complexity of the 
index calculus method -  it only changes the o(l) value, as shown by Pomerance [107]; 
bu t does give useful speedup in practice. However, in addition to the increased load 
on the relation generation algorithm entailed by this factorisation, we also need a more 
sophisticated method in order to resolve further full relations from the collection of 
2-partials this will create, as we now investigate.

4 .1 .3  R eso lv in g  partial relations

To resolve partial relations we must eliminate the large primes in order to ensure that 
all relations consist only of elements from the factor base. As we have noted, for single 
large prime relations, or ‘1-partials’, we can do this simply by identifying two relations 
involving the same large prime Q, and then dividing the one by the other. In practice, of 
course, one does not strictly divide the two relations; we simply subtract the exponents 
in the factorisation of one from those of the other. If we find k 1-partials with the same 
large prime, we can resolve k — 1 full relations from these. Resolving 1-partials, then, 
is simply a m atter of storing them in some ordered way, such as by use of a hash table, 
storing the relations according to the hash of their large prime.
Resolving 2-partial relations is rather more complex. Lenstra and Manasse [75] apply 
the two large prime method to integer factorisation with a quoted speed-up factor of 
2-2.5. Relations involving two large primes are resolved by use of a graph algorithm. 
The large primes are represented as the vertices of a graph, and a relation involving 
two large primes is considered as an edge in this graph5. For the purposes of factoring 
some integer N , we are looking for relations of the form x 2 = y2 mod TV, and so a cycle 
in the aforementioned graph is sufficient to ‘eliminate’ the large primes from a relation, 
since each large prime will appear an even number of times in a cycle. Resulting 
‘full’ relations may then be solved modulo 2 (and as the large primes occur an even 
number of times, they vanish), and then gcd(rr — p, N)  is a non-trivial factor of N. 
Again, the situation is slightly different for discrete logarithm calculation modulo p, 
since we are not working modulo 2 -  it is not sufficient tha t large primes occur an even 
number of times, since we must eliminate large primes modulo p — 1. Weber [132] [134] 
accomplishes this by firstly constructing cycles in the graph, and subsequently building 
and solving a small linear system to eliminate the large primes. He reports that in 
some cases this procedure failed to resolve up to 2.8% of the cycles found. We now 
look at the nature of the cycles in the graph, in order to see if we can avoid this latter 
step.
Consider figure 4-1, which shows an even and an odd cycle. The Qi correspond to large

5To clarify our terminology in comparison with that found in standard texts, our graph is allowed 
to have loops, but in this chapter we assume that there are no multiple edges - these are removed and 
processed separately in the same manner as single large prime relations.
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Figure 4-1: Using graph cycles to eliminate large primes

primes and the Ei correspond to relations such that, for example, E\ represents the 
relation

g ai =  Q \ Q 2 , f \

where f \  is the factorisation using elements from the factor base only. For the even 
cycle on the left, evaluating (E\  x E-z)f{E2 x E 4) leads to a relation of the form

0 1 - 0 2 + 0 3 — a 4 _  Q 1 Q 2 Q 3 Q 4  / l / 3  _  / 1 / 3

9 Q 2 Q 3Q aQ i h h  ~  h h

thus eliminating the large primes Q{. We can then avoid the need to solve a linear 
system, and can instead eliminate large primes as the cycles are built. A certain 
amount of care is of course needed in processing cycles, so that we ensure all large 
primes cancel. Such an operation cannot be carried out on the odd-length cycle on the 
right without one of the large primes remaining -  for example, computing (E\ x E ^ ) /E 2 

leads to a relation of the form

0 1 — 0 2 + 0 3  _  Q 1 Q 2 Q 3 Q 1  h h  _ Q  2 / 1 / 3

Q 2 Q 3  / 2  1 / 2

We cannot eliminate all the large primes in the cycle. This implies that we must look 
for even cycles in our graph, since on first sight we cannot eliminate the large primes 
in an odd cycle. The way around this problem is to make use of an additional ‘special 
vertex’ 1. If this special vertex appears in an odd cycle, we see that we may effectively 
remove all the ‘large primes’ if we could order the edges such that our Q]  in the example 
above was actually the vertex 1. Adding 1 to the graph is accomplished by treating the 
1-partial relations as pseudo 2-partial relations (having 1 as their second ‘large prime’). 
We may then hope to make use of a certain proportion of the odd cycles in the graph 
and improve our overall yield. As it happens, adding 1 to the graph is standard practice 
(see, for example, Atkins et al. [8]), as it allows us to process both 1 and 2-partials 
together in the graph. As we shall see, this leads to a variety of benefits, including 
higher yield and shorter cycles. We now discuss how to build and resolve these cycles, 
following for the most part Lenstra and Manasse [75].
A set of fundamental cycles forms a basis for the set of all cycles in the graph. From

E2

Q 3

E

E 2

3
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elementary graph theory, we have that

^fundam ental cycles = e + c — v

where e, c and v are the number of edges, components and vertices in the graph, 
respectively. There will generally be many different possible sets of fundamental cycles. 
If we were restricting ourselves to looking for even cycles only, some sets may be more 
useful than others. Consider, for example, figure 4-2. This simple graph has 5 edges, 
4 vertices and 1 component, and thus 2 fundamental cycles. It can clearly be seen 
tha t the graph contains three cycles -  two odd and one even -  but any one can be 
constructed from the other two. Our set of fundamental cycles may be made up of one 
odd and one even cycle, or possibly two odd cycles; in which case further processing 
would be required to recover the even cycle.

Figure 4-2: Simple graph with 2 fundamental cycles

Various algorithms exist for determining a set of fundamental cycles of a graph. In our 
implementation we again followed the approach of Lenstra and Manasse [75], which 
essentially breaks into two phases. The first phase is used to determine the structure 
of the graph. The second phase then builds a set of fundamental cycles. Given a set 
R  of 2-partial relations, we assume that we know e, the number of relations in the set, 
and we assume further tha t the set contains no duplicates or incorrect relations which 
may arise due to corrupted data (if using distributed sieving, for example). In order 
to determine the number of fundamental cycles in the graph we must thus determine 
c and v. We can do this via algorithm 5. This uses a hash table T  large enough to 
accommodate all large primes in R. Each entry in the hash table stores a value di and 
an ancestor value a*.
The values of e, c and v can then be used to compute the number of cycles in the 
graph, and so evaluate the progress of the relation generation step of the index calculus 
procedure. W ith regards factoring, as mentioned, any cycle will yield a full relation. 
Were we looking for even cycles only, we could make a naive estimate given that roughly 
half the fundamental cycles will be even in length (although as we will show, we can in 
fact do considerably better than this in practice). Once we have determined the number 
of fundamental cycles in the graph, and that no more partial relations are required, 
we must go ahead and build a set of fundamental cycles. We do this by means of a 
breadth-first search of the graph as described in algorithm 6. Once again we make use
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Algorithm  5 Determine number of fundamental cycles of a graph 
c 4— 0, v —̂ 0, d{ 4— —1 Vi 
Insert vertices Q i and Q2 into the graph:
Compute index j  = h{Q\) for some hash function h 
Lookup in hash table: 
if dj = — 1  then  

We have a new prime in the graph 
dj —̂ Qii o>j —̂ <7,i7 =  u -l“ l , c ==c + l  

else if dj — Q\ then
Vertex has already been processed. Ignore 

end if
Repeat for Q2
Find the roots r* of the components to which Q 1 and Q2 belong 
To find the root for vertex Q\ (where dj = Q 1): 
r 4- j
Recursively set r 4— ar as long as ar ^  r
W hen ar = r  track back to a,j setting a* =  r (speeds up subsequent processing) 
Repeat for Q2 
Add the edge 
if  ri 7  ̂7*2 then

c 4— c — 1 (two components are now joined) 
else if dri < dr2 then  

a>r2 =  r \  
else if  dT2 < dri then  

O-r 1 =  T2 

else if  dri = dT2 then
Q 1 and Q2 are in the same component. A cycle has thus been found 

end if
#cycles =  e' +  c — v after e' relations have been processed

of a hash table T. However, this time we include a field to indicate the depth of each 
vertex. We use the roots of the components found by algorithm 5, which by default 
are chosen to be the smallest of the large primes in each component.
It is simple to identify odd and even cycles when using algorithm 6 -  when we come 
across an edge whose vertices are both already stored in the graph, we consider the 
depth at which they are found. If they are at the same depth, then the cycle is odd. 
If they axe at different depths, then the cycle is even. Note tha t depths will only ever 
differ by 1, since we are using a breadth-first traversal of the graph.
As shown in figure 4-3, assuming the bold edge is the last edge determining a cycle, 
we can compute the product of the edges marked a and divide by the product of the 
edges marked b to eliminate all large primes (assuming, of course, that the root vertex 
for the odd cycle is 1). Using such a procedure avoids the need to solve a (small) linear 
system to eliminate the large primes, and is thus rather more efficient. As we select the 
root of each component to be the smallest of the large primes acting as vertices in our
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A lg o rith m  6 Build set of fundamental cycles of a graph
Hash component roots and add to the hash table at depth D — 0 
WHILE unprocessed relations exist 
D <r-D + 1
LOOP through unprocessed relations 
Get primes q\ and <72 for this relation 
Hash to obtain indices i and j  
Lookup
if  Neither prime found in hash table th e n  

Defer
else if  One prime {q\ say) is found at index i th e n  

Add the other prime at index j : 
dj <— <72
CLj 4— i
depth j  4— current depth D  
Flag relation as processed 

else if  Both primes are found th e n
Follow a,i pointers from both primes until they coincide 
Write edges in cycle to file 
Flag relation as processed 

en d  if

Depth

0

2

3

Figure 4-3: Ordering of edges for even and odd cycles

graph, we find that if there is any kind of ‘choice’ in the building of cycles (consider, for 
example, figure 4-4 where 6 cycles are possible but a fundamental set will only contain 3 
cycles), the algorithm will generally build cycles passing through the root vertex. Thus 
were we to choose a different criterion to determine the root vertex, we would probably 
get a different breakdown in the number of odd and even cycles found (although the 
total would remain constant). If we add the special vertex 1 to the graph, this will 
always be the root vertex of at least one component, and the component containing 
the vertex 1 is usually the component containing all cycles in the graph. Note also 
that there is no guarantee tha t we shall get the shortest possible cycles in our result 
set -  although this would be an advantage, as it would reduce the density of the full 
relations we may obtain from them. Strategies have been developed to try to reduce
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Figure 4-4: Simple graph with 3 fundamental cycles 

cycle length from this procedure -  see Denny and Muller [35] and Cavallar [20].

4.2 M axim ising yield

We have shown tha t for discrete logarithm computation, since we need to divide out 
large primes, we have a slightly more complicated situation than occurs when the same 
method is applied to factoring. We now discuss how we can go about maximising the 
amount of full relations we can obtain from a given set of 1 and 2-part,ial relations.

4.2 .1  E ven  m ore evens

Given a set of fundamental cycles for a graph, one would generally expect around half 
of these to have an even number of edges and around half to have an o d d  n u m b e r  

of edges. As we can only benefit from using even length cycles in discrete logarithm 
com putation -  ignoring, for the moment, using the special vertex 1 -  it would appear 
tha t the double large prime variant will not be as advantageous as it was found to be 
when applied to factoring. It is quite straightforward in principle, however, to obtain 
further useful cycles, even without adding the special vertex 1. Consider, for example, 
figure 4-4.
The cycle-finding procedures as described in algorithms 5 and 6 produce a set of fun
dam ental cycles as desired. The majority of these cycles include the component root 
as one of their vertices. This happens to be the smallest of the large primes appearing 
as a vertex in tha t component. The graph in figure 4-4 will produce a different set of 
fundamental cycles depending on which vertex we specify as the root. If we assume 
vertex Q i is the root of this graph, algorithms 5 and 6 will produce cycles

• E l  -y E l  E6

• E l  -> E2 -y E3  -> EA -y Eb  -* EG

•  E l  —y E2 —̂ ES  —y E5 —y EQ
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On the other hand, if we take vertex Qq to be the root, we find cycles

• E6  —̂ E l  —y E l

•  E l  -y E2  -> ES  -» Eh

• E l  -4 E2  -* E3 -y  E4 -y E5

In each case we have indeed found 3 fundamental cycles (as we would expect, since we
have 1 component, 6 vertices and 8 edges). In each case we have 1 even cycle and 2 
odd cycles. However, looking at the graph as a whole, we see that there are in fact 2 
possible even cycles (of length 4 and 6) and 4 possible odd cycles. We can recover both 
of these even cycles */ we can find two odd cycles having an edge, or even a vertex, in 
common. If we ‘join’ these two cycles together at their common edge or vertex, we can 
treat the composite shape as a new even cycle.
Consider the following situation. We have recovered a set of 2k fundamental cycles, and 
we assume for the sake of argument that we have k even length cycles and k odd length 
cycles in this set. We may keep the k even cycles and resolve as indicated above. We 
now represent the odd cycles as follows. Let each cycle correspond to a row in a matrix. 
The columns of the m atrix map to the edges of the graph (or rather this component of 
the graph if it has multiple components). We enter a ‘I ’ in each column corresponding 
to an edge in a given cycle. We may thus treat each row of the matrix as a bitstring. If 
we compare any two rows with a bitwise AND operation, a non-null result string will 
indicate that the two cycles have at least one edge in common. We may now combine 
these two cycle with a bitwise exclusive OR operation to remove these common edges 
and create a new even cycle. From our k odd cycles we can thus create further even 
cycles. Care is of course needed in order to avoid linear dependencies among these new 
cycles. At best we would be able to create up to k — 1 independent even cycles, and 
process as for the k even cycles found directly. In such a situation -  however unlikely 
it may seem -  we would be only one cycle short of the number of practical cycles used 
in equivalent factoring methods where even and odd length cycles are equally useful. 
These ‘derived’ even cycles have an obvious disadvantage in that they will generally 
be larger than the ‘direct’ even cycles which we built using algorithm 6. This has the 
knock-on effect of making the resulting full relations contain more coefficients, which 
in tu rn  increases the density of the matrix we wish to solve. Furthermore, the relative 
size of the coefficients in these fulls is larger than those derived by other methods. 
We may thus suffer from coefficient blowup in some linear algebra routine that much 
sooner. It may be possible to follow the techniques of Denny and Muller [35], and try 
to reduce the length of the cycles that we have found. This technique uses similar ideas 
to those we have used to join cycles -  once a set of cycles is found, we may look for 
those having a large number of edges in common and then ‘subtract’ one cycle from
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another to form a new shorter cycle (although in a discrete logarithm setting, this may 
reintroduce the problem of unresolvable odd cycles). On the other hand, this increased 
density, if we could use it ‘intelligently’ in some way, should lead to more factor base 
elements being represented in at least one relation, and so may allow us to reduce the 
number of unknowns remaining after solution of the linear system. This would in turn 
speed up the final step of actual discrete logarithm computation -  we shall discuss this 
m atter further in later chapters.

4 .2 .2  1 as a ‘large p rim e’

The implementation of Thome [127] does not appear to distinguish between odd and 
even cycles, since partial relations are added to the graph and thus the vertex 1 is 
included as a ‘large prime’. This reduces the need for even cycles as any cycle including 
1 as a vertex may be resolved, be it of even or odd length. However, we may argue tha t 
the above method for building further even cycles from odd cycles is still valid for those 
cycles found which do not include 1 as a vertex. Again, due to the fact that many of 
the fundamental cycles built using algorithm 6 pass through the component root (taken 
to be the smallest vertex), we may expect that most of the cycles will indeed include 
1 as a vertex (although some of these will be very long). The likelihood of finding odd 
cycles which possess an edge in common yet do not include 1 as a vertex -  i.e. those 
we may join to form further even cycles -  will thus be reduced, but we may still use 
the above procedure to gain additional full relations from our set of 2-partials. We also 
note th a t again we need to track the order of edges in a cycle, such that when dividing 
out the large primes, we are left with 1 on either the numerator or the denominator, 
and not one of the large primes Q{.

4 .2 .3  C ycle  p o ssib ilit ies

We can now examine the possible scenarios we may come across in practice, by con
sidering figure 4-5. Recall tha t an edge Q 1Q2 in the graph corresponds to a 2-partial 
relation of the form

Q1Q2IT?
where Q\ and Q2 axe large primes and the q\ are elements of our pre-defined factor base. 
Resolving a number of such relations into a full relation means producing a relation

I I t f

composed purely of factor base elements. We note that the following possibilities may 
occur:

• Although rather uncommon, we can find relations where Q\ = Q2 . Our ‘cycle’
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Figure 4-5: Graph illustrating possible cycles

is then of length 1, and is actually a loop in the graph such as £ 5. Loops are 
simple to resolve for factoring, since the repeated large prime forms a square. For 
discrete logarithm computation, a loop may be resolved if we can find either two 
or more such loops (a still less likely occurrence), or alternatively if we can find 
one or more 1-partial relations, having large prime Q\. We note that a loop at 
vertex 1 would correspond to a full relation. This latter situation will not occur.

• Rather more likely is that we have two or more relations involving the same two 
large primes, for example E\s -  £ 1 9  (corresponding to two matching 1 -partials), 
or I?i5 -  E \j.  We then have cycles of length 2. These may be resolved by simply 
dividing the one relation by the other, and k matching relations would yield k: -  1 
independent full relations.

•  We may find an odd cycle such as Eq —»• £ 7  —>■ E \o, where one of the vert ices is 
equal to 1. In this case, we may resolve the cycle by computing (E io * E-t)/E§. 
Again, note tha t we must be careful with the order in which we take the edges, 
since computing (£io * E q)/E j  fails to eliminate Q4.

• We may find an even cycle such as Eq —> E\  —► E 2 —i► E \\.  We can then resolve 
the cycle directly, irrespective of whether or not one of the vertices is 1 , by 
computing, for example, (E\\ * E \ ) / ( E q * E 2)

•  We may find two odd cycles (such as Eg —> E u  —» £13 and E 13 —> Eg —» £ 3) 
having an edge (as in this case) or simply a vertex in common. If they cannot be 
resolved in the above manner, we may resolve them by joining them together to
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eliminate the common edge, and so form a new even cycle (Es -* £9 —> E% —> E\\ 
for this example), which may be resolved as normal.

We now examine how different combinations of 1-partials and 2-partials affect the 
overall yield of the data from the index calculus procedure. To this end we will look 
briefly at 1-partials and 2-partials processed separately, and then examine the effect of 
combining all partial relations i.e. following the standard approach of treating 1 as a 
‘large prime’.

4.3 Results

D ata was generated by using the basic index calculus method as described in the 
previous chapter6. Such data can be generated via any of the commonly used relation 
generation methods, from the basic ‘trial and error’ method used here to the highly 
sophisticated discrete logarithm Number Field Sieve. In a later chapter, we investigate; 
a slightly different method of relation generation, which allows use of up to four large 
primes. Use of the basic method coupled with limited computing power, however, 
restricts us to looking at rather small examples. Discrete logarithms were computed 
modulo primes of up to 30 digits7. In each case, p  was chosen such that (p -  l) /2  is also 
prime. The generator g was not always chosen to be 2, nor necessarily a root of 2 such 
that we can remove the 2-column -  g was simply taken to be the smallest generator. 
To give an idea of the relative yield of the basic index calculus method, consider figure 
4-6. As one would expect, the number of relations grows linearly with the number 
of attem pts made by the program. It is clear that the storage required to process 
partial relations is considerably more than that required if using full relations only. We 
can reduce the amount of partial relation data that we need to process by following 
Leyland et al. [81] and ‘pruning’ the datasets by recursively removing any relation 
which contains a large prime not occurring in any other relation (such relations an' 
referred to as ‘singletons’). All relations remaining after this pruning then fo rm par i  

of a cycle. Due to the amount of data we have to process, it may be best to break this 
into several processes having progressively better collision resolution, as described by 
Dodson and Lenstra [38].

4.3.1 R eso lv in g  1-partials

As described previously, we resolve 1-partial relations via a hash table. A collision 
indicates two relations having the same large prime, and these can be divided to produce 
a full relation. As shown in table 4.1, we can obtain a considerable amount of full

6More sophisticated relation generation techniques were not employed, as the focus of the investi
gation was on the practicalities of resolving large prime variant data.

7See appendix B for parameters used.
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Fulla. 1 a n d  2 -p a r tia ls  found  p e r  a t te m p t • 2 5 c  ----------

2 -p a r tia ls

J  5 0 0 0 0 0

| j  4 0 0 0 0 0

0

Figure 4-6: Distribution of relations -  25c

D a ta se t Fulls (d irec t) 1-p a rtia ls Fulls resolved
20d 10,000 197,742 8,952
25c 12,000 383,844 13,765
30b 36,500 768,435 49,174

Table 4.1: Fulls resolved from 1-partials

relations from the 1-partials. Here we took B 2 = B \2 (slightly less than B\ 2 for dataset 
30b), thus maximising the amount of relations obtained. Yield obviously increases at a 
greater rate as one takes more relations -  see figure 4-7 for the amount of full relations 
we can obtain from a progressively larger amount of partial relations for dataset 30b. 
As shown by the log fit on the right, yield is roughly quadratic in the number of 1-partial 
relations processed.

10

I ,I

'•»--
50000

0

Figure 4-7: Number of fulls resolved per partial relation 30b

An important point to note when using full relations derived from partial relations is 
that they are more dense -  more factor base elements will generally be represented (in a 
full relation derived from partials) than would occur in a particular full relation obtained
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‘directly’ in the relation generation process. When dividing one partial relation by 
another, some of the factors will coincide. In this case, the density of the subsequent 
full relation will either remain the same or be reduced, depending on the value of the 
exponents. The remaining factors will add to the density of the resolved full relation. 
We note the increases in density for the three datasets in table 4.2. It can be seen that 
the density of fulls derived from 1-partial relations is roughly 1.5 times the density of 
fulls obtained directly; as a certain proportion of the elements are common to both 
relations. A result from Knuth [66, section 4.5.2] states that for two integers chosen at 
random, the probability that they are relatively prime is There is obviously a (^)2 
chance that two relations both contain the factor 2, a ( | ) 2 chance that they share the 
factor 3, and so on. In fact, if we compute

5 = I K 1- i )
p< B  y

for the values of B  used here, we find that S  matches ^  to 5 decimal places, so it is 
likely tha t two 1-partial relations will share factors with probability 1 — ^  «  0.39. The 
additional criterion tha t all but one of the prime factors of our two numbers are below 
some bound B , and tha t the other factor is always shared (the common large prime 
Q), does not appear to affect this estimate in practice. It is reasonable then to assume 
tha t we will often have a certain amount of overlap.

D a ta s e t N o n zero s  p e r  
full (d irec t)

M ax
value

N o n zero s  p e r  
full v ia  1-p a r tia ls

M ax
value

20d 7.7 24 10.9 18
25c 8.9 17 13.3 21
30b 9.7 17 14.9 23

Table 4.2: Density of fulls resolved from 1-partials

We also see that, in addition to the average density of the full relations increasing by 
some 50%, the maximum coefficient value may also increase somewhat. It turns out 
that, in each of the above cases, this maximum value corresponds to the exponent 
for factor base element 2. One would of course expect 2, as the smallest element in 
the factor base (ignoring the possible inclusion of -1, whose exponent value is always 
either 0 or 1), to have the largest exponent, on average, in a given full relation. This 
underlines the advantage of having either 2, or some root of 2, generate the finite field 
(Z/pZ)*, so we may ignore these values in practice.
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E s tim a tin g  y ie ld

One can deduce the number of full relations tha t can be obtained from a set of 1-part.ials 
if one knows the number of unique large primes and the number of relations R  in the 
dataset. In general, the first part of this information will not be readily accessible, so 
it would be useful to be able to compute some estimation of yield based on R  and the 
large prime bounds used. An approximation for this is given by Morain [91], but here 
we again follow Lenstra and Manasse [75], who propose using the formula

f l - f Q + E a - p , ) "
geQ

where Q is the set of primes q with B\ < q < B 2 and Pq is the probability that a large 
prime q occurs in a particular relation. This last is approximated by

pq *< j-a/ Y , p - a
p£Q

Here, a < 1 is some positive constant to be determined by experiment. Us i n g  111 is 

approximation, we obtain the estimates in table 4.3.

D a ta s e t 1-p a r tia ls a Fulls reso lved  
(e s tim a te d )

Fulls  reso lved  
(a c tu a l)

20d 50,000 0.76 676 698
20d 100,000 0.76 2,508 2,523
20d 150,000 0.76 5,254 5,346
25c 100,000 0.74 1,047 1,048
25c 200,000 0.74 3,908 4,077
25c 300,000 0.74 8,233 8,766
30b 250,000 0.71 6,132 6,002
30b 500,000 0.71 22,421 22,466
30b 750,000 0.71 46,205 47,077

Table 4.3: Estimated and actual yield of 1-partials

Lenstra and Manasse note that, for their implementation, taking a  E [§, f] gave a 
reasonable estimate. Denny (according to Boender and te Riele [16]) takes a  =  0.775, 
suggesting tha t such a value is implementation-dependent. Following [16], we computed
a  for our implementation by using Maple to estimate yield for a  — 0.70,0.71.........0.80
after gathering a certain number of 1-partials for each dataset. Taking the value' g i v i n g  

the best fit gave the values of a  noted in table 4.3. Carrying out such an analysis is quite 
straightforward, and gives a useful indication of the progress of relation generation.
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4.3 .2  R eso lv in g  2-partia ls

To resolve 2-partial relations, we use graph-theoretic techniques to build cycles among 
the 2-partial relations, and thus eliminate the large primes to produce further full 
relations. In this section we consider only ‘pure’ 2-partials -  we do not allow 1 as a 
large prime. We are thus restricted to looking for cycles of even length, or possibly 
joining odd cycles with a common edge or vertex, as mentioned previously. We will 
refer to this latter case as a ‘derived’ even cycle. Table 4.4 shows the number of cycles 
found for the three datasets. We first filtered out any ‘duplicate’ 2-partial relations 
(those having the same large primes Qi and Q2) and resolved them as we did the 
1-partials above. Thus all cycles in table 4.4 have > 3 edges.

D a ta se t 2-p a r tia ls F u n d a m e n ta l
cycles

E ven
cycles

O dd
cycles

D eriv ed  
ev en  cycles

20d 238,018 241 112 119 118
25c 788,237 7,009 3,480 3,529 3,524
30b 1,494,109 57,946 28,775 29,171 29,168

Table 4.4: Fulls resolved from 2-partials

In addition to these cycles, we can add the full relations gathered via 1-partials (which 
axe, of course, cycles of length 2). We have not included loops in table 4.4 there wen' 
none for dataset 20d, 3 for dataset 25c and 2 for dataset 30b. A loop is a relation of 
the form

p ^ U pV

We can eliminate the large primes in such a relation by either finding a second loop 
and dividing the two relations, or by finding a partial relation

n̂«?
and dividing the ‘loop’ relation by the square of this partial relation. Processing the 
above loops in this manner, we -  unsurprisingly -  found no duplicate loops, but did 
manage to resolve 4 full relations for dataset 25c, and 2 further fulls for dataset 30b -  
so while it is true tha t one can make use of these relations, yield is of course negligible. 
The number of fulls we can resolve for the 30 digit dataset by using 1 and 2-partial 
relations is in fact greater than the total number of fulls we obtained directly. The 
restriction of needing even cycles is offset by the amount of even cycles we can derive 
by joining odd cycles -  it seems surprising that one can find so many odd cycles with a 
common edge. However, this is a by-product of the manner in which we have built a set 
of fundamental cycles. We find that in each of the examples above, all cycles a p p e a r  

in the same component, and most of them pass through the component root: thus
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increasing the chance of finding a common edge. We note that one could in fact join 
cycles having simply a vertex in common. Given the success of joining cycles having 
an edge in common, this was not attempted except to resolve loops. In these examples, 
there were no cycles of length 2 (i.e. duplicates) among the ‘pure’ 2-partials. We can see 
how yield increases (as we take more 2-partials in our graph) in figure 4-8 which refers 
to dataset 30b. Yield is roughly quartic in the number of 2-partial relations processed.

I
f ,
t!ff 9

Figure 4-8: Number of fulls resolved per 2-partial relation without 1 as a vertex 30b

It is interesting to note the distribution and average length of these cycles, as it obvi
ously has a bearing on the density of the full relations which we can resolve from them. 
There are 1,494,109 2 -partial relations in the graph for dataset 30b. Our depth-first, 
search tells us that these are split across 171,478 components. However, due to the 
method of connecting components during this cycle counting procedure (algorithm 5), 
we find that one component is considerably larger than all the others. This component 
is the one with the smallest root, which for the 30 digit dataset happens to be 300,007 
(the smoothness bound for this particular dataset was 300,000). This component con
tains 1,162,291 relations -  the next largest component contains only 6 8 . As one may 
expect, given this distribution of relations, all 57,946 cycles found in this graph occur 
in this large component (all other components are trees); and in fact 43.569 of these 
cycles include the prime 300,007 as a vertex. As it happens, the prime 300,007 actually 
occurs in 25 of the 1,494,109 2-partial relations in this dataset. It is reasonable, then, 
to expect that the cycles will generally have a length > 5 (odds) and > 6  (evens), and 
this is indeed the case. The average even cycle has some 26 edges, while the average 
odd cycle also has around 26 edges. Joining odds together to form further even cycles 
results in cycles having an average of 35 edges.
As before, we can examine the density of these full relations. Consider table 4.5.
We see that full relations obtained via 2 -partials are far more dense than the fulls we 
obtained directly, and also considerably more dense than the fulls we have obtained via 
1-partial relations. Further, the maximum coefficient found in the sets of full relations 
found from the 2-partial relations is also quite a lot larger. As noted, there are two 
points to raise concerning the question of density. On the one hand, the more dense
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D a ta se t N onzeros p e r  full 
v ia  even

M ax
value

N onzeros p e r  full 
v ia  d eriv ed  even

M ax
value

20d 122.8 34 152.7 35
25c 99.98 43 125.06 53
30b 107.5 41 139.5 41

Table 4.5: Density of fulls resolved from 2-partials

the matrix, the harder it will be to solve, as our only real advantage was its sparse 
structure. On the other hand, one could argue that we will represent more elements of 
the factor base if we use these denser relations, thus helping us when we later come to 
discrete logarithm computation. These points will be investigated in chapters 6 and 7.

4.3 .3  R eso lv in g  1 and 2-partials togeth er

We can, of course, remove the restriction of requiring even cycles by adding the vertex 
1 to the graph. We may then resolve odd cycles into full relations if they include 
this special vertex. Since most cycles built by the method of Lenstra and Manasse 
[75] pass through the root vertex, we may hope that the majority of the odd cycles 
we find will indeed include 1 as a vertex and as a result may be resolved directly: 
with only a few odd cycles not including 1 as a vertex being candidates for tlu' cycle 
joining procedure carried out as before. In the tables that follow, we have filtered out 
any duplicate relations i.e. those having the same two large primes. These are then 
resolved separately as in the previous section.

D a ta s e t 2-p a r tia ls F u n d a m e n ta l
cycles

E ven
cycles

O dd
cycles

D eriv ed  
even  cycles

20d 426,808 12,778 4,102 8,676 0
25c 1,158,316 39,658 15,232 24,426 0
30b 2,213,370 185,151 73,502 111,649 0

Table 4.6: Fulls resolved from 2-partials and 1-partials combined

We see firstly tha t we have increased our yield considerably. The 1-partials may still 
be resolved amongst themselves, so we need only compare results in tables 4.4 and 4.6. 
Again we have not included loops; which occur in the same amounts as before (since 
adding 1-partials to the graph will not create any more or less of these).
All odd cycles (with the exception of these loops) included 1 as a vertex and thus could 
be resolved directly. There was no need to join odd cycles to form further even cycles, 
apart from the loops, where yield has of course remained the same. Yield for the 20 
digit dataset has thus increased from 240 fulls from 2-partial relations alone to 12,778 
fulls if we combine them with the 1-partials.
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We can compare the yield we get when adding 1 to the graph to that which we obtained 
when processing 2-partials alone -  see figure 4-9. Yield when processing with 1 is rather 
less than cubic for this example, but we obtain cycles with far fewer relations thanks 
to the frequently occurring vertex 1 .

It
5

I

Pwcartae*(H 'Malians «<i t  p*** ••nncw*

Figure 4-9: Cycles found with and without 1 as a vertex 30b

As before, all cycles found for dataset 30b occurred in the largest component, which 
has root 1. However, whereas before the root vertex of this component occurred in only 
25 relations, we now have that the root vertex occurs in 719,261 relations -  it occurs in 
every 1-partial relation (here we ignore duplicates). As a result, we get shorter cycles 
-  for dataset 30b the average even cycle had 4.5 edges and the average odd cycle had 
3.9 edges. This clearly reflects in the relative densities of the full relations these cycles 
yield: see table 4.7. Had we been required to join odd cycles, as we were previously, 
a derived even cycle would contain a + b — 2 n edges if the two odd cycles had a and 
b edges respectively and had n  edges in common, which will lead to denser relations 
than those found by using odd cycles with 1 as a vertex since a, 6  > 3 for all cycles 
considered here.

D a ta se t N onzeros p e r  full 
v ia even

M ax
value

N onzeros p e r full 
via odd

M ax
value

2 0 d 17.25 19 15.08 2 1

25c 23.07 25 20.5 29
30b 26.79 24 23.92 34

Table 4.7: Density of fulls resolved from 2-partials and 1 -partials combined

As the smallest even cycle we find (ignoring pairs, or cycles of length 2 ) is of length 4, 
while the smallest odd cycle (ignoring loops) is of length 3, we find that the full relations 
resolved from odd cycles are slightly less dense, on average. Maximum coefficient size 
is slightly larger for the fulls resolved from odd cycles. Going back to figure 4-5. 
we resolved an odd cycle including 1 as a vertex by computing ( E io * E ^ / E % .  This 
‘imbalance’ of having one more edge in the numerator than the denominator may result,
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in our slightly larger maximum exponent.

D ensity  and  coverage

The only advantage of increased density is that we can represent (or ‘cover') more 
factor base elements in a given set of full relations, and hopefully solve for a larger 
proportion of the factor base. This will increase the efficiency of the final step of the 
index calculus method, that of actually computing discrete logarithms.

30G 00
C o v e r a g e  o f fac to r  b a s e  ■ ■

T o ta l fac to r b a s e  e le m e n ts

2 5 0 0 0
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Figure 4-10: Number of factor base elements represented by full relations - 30b

Figure 4-10 shows 4 different plots for dataset 30b. The constant line is the number of 
elements in our original factor base. The curves represent the number of these elements 
represented by full relations, full relations resolved from 1 -partial relations, and fulls 
resolved from 2-partials. We see that we may take slightly fewer fulls resolved from 
partials -  in particular those resolved from 2 -partials -  yet maintain the same number 
of unknowns represented by these relations. This may allow us to take fewer excess 
rows in our linear algebra routine, which we do both to maximise the number of factor 
base elements represented in our matrix, and to try to ensure that we obtain a solution 
-  however, the increased density of the matrix may slow processing down to an extent 
that outweighs any subsequent benefits.

4 .3 .4  O v e ra ll s p e e d u p

We now look at the effect of using partial relations on the time we spend building 
relations. If we firstly ignore the effort needed to process partial relations which is. of 
course, not insignificant -  we may try to estimate the point at which we may terminate 
relation generation.
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Effect on re la tio n  g en era tio n  tim e

It would be useful to try to estimate the point at which our relation generation code 
would have produced enough full relations (either directly or via the use of part.ials) 
to build a matrix with a given number of rows. We can try to put a value to this by 
working backwards and comparing the yield if we were only to process some percentage 
of the 1-partials and 2-partials found overall. In this way we can build up a picture 
of the ‘true’ yield of the procedure, showing how many fulls we can expect to resolve 
in total at a given stage in the procedure. We may then see how the quoted speed up 
factor of 2-2.5 from factoring given by Lenstra and Manasse [75] compares to the same 
procedure as applied to discrete logarithm computation.

O v era ll y ie ld  3 0b

F ulls p lu s  fulls v ia  1 a n d  2 -p a r tia ls=  1 5 0 0 0 0

2  100000
F u lls  p lu s  fulls via 1 -p artia ls

F u lls  fo und  d irec tly

0 20 4 0

P e r c e n ta g e  of re la tio n  g e n e r a t io n  tim e

6 0 8 0 100

Figure 4-11: Overall yield 30b

Figure 4-11 shows the amount of fulls we obtain directly for the 30 digit dataset com
pared firstly to the amount of fulls we get when we include the fulls we can resolve 
using 1 -partials, and then to the amount we can obtain when also including those we 
get from resolving 2 -partials (taking the maximum yield, i.e. including 1 in the graph 
as discussed previously). If we look at the point at which, by resolving 1 and 2-partial 
relations, we get as many fulls in total as we can get directly, we can see that the 
speedup factor is indeed around 2-2.5 times for discrete logarithm computation using 
1-partials and 2-partials; in that we may achieve our final total of 36,500 fulls in less 
than 50% of the time taken to build a similar number of full relations. In fact,, the 
speedup factor gets greater as we go from the small, 20 digit dataset to the larger 30 
digit dataset, as one can note by considering figure 4-12. Note that the term ‘speedup’ 
here is a little deceptive -  we are considering purely the time spent in relation genera
tion, and disregarding the amount of effort we need to expend, and indeed the amount 
of storage we need, in order to actually build and resolve the 1 -partials and 2 -partials. 
This effort is not inconsiderable, particularly in terms of storage. Lenstra and Manasse



C h a p t e r  4 . L a r g e  P r im e  V a r ia n t s

14

Figure 4-12: Overall yield 20d and 25c

[75] reduce the large prime bounds somewhat in an effort, to reduce the artmiini "I 
data to process (particularly the number of 2-partials). In this study wo have sot 
our 2 -partial bound £ 3  to be £ i3, that is the cube of the original factor base bound 
(actually, slightly smaller for dataset 30b). While it was our intention, in setting those 
bounds, to obtain larger dataset sizes, one of course cannot compare directly between 
datasets for computation of 30 digit discrete logarithms and ‘cutting edge' datasets 
gathered in computing discrete logarithms of over 100 digits. Were one to use similar 
bounds to ours at this level, there would be a vast amount of data to process, and 
we would have to look at parallelising or otherwise improving the performance of the 
resolution of these relations.

R educing  d a ta se t sizes

The benefits we can obtain by using partial relations will certainly become hampered 
by the amount of such relations which we can reasonably expect to store and process. 
This is particularly relevant to the 2-partial relations. Choosing the smoothness bound 
£ 3  to be rather less than £ i 3 should not  in fact have a commensurate effect on the yield 
we can expect from the graph processing; in that it is unlikely that a given number 
our remainder after smoothness testing -  is a product of 2  primes both close to our 
large prime limit £ 2 . As a result, by lowering the bound £ 3 , we lose only those relations 
which were unlikely to contribute to cycles in a significant manner.
Consider figure 4-13. This shows the total number of cycles we can find, had the 
smoothness bound £ 3  for dataset 30b been a lower percentage of its actual value. If 
we reduce £ 3  by 50%, the number of cycles we can resolve into further full relations 
drops by only around 3.5%. Cutting £ 3  by 95%, our yield drops from some 180,000 
cycles to around 140,000 cycles; a drop of only some 23%. Had our bound been 0.5% 
of its actual value, we would still have found 73,767 full relations via 2-partials; which 
is actually twice what we obtained direct from the relation generation phase of the 
index calculus method. Further, in this case we would reduce the number of 2-partial 
relations in our dataset (before pruning) from 1,494,019 to 165,876 -  a reduction of
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Figure 4-13: Effect of reducing 2-prime smoothness bound -  30b

89%. Since each relation consists of 2 large primes, one 30 digit value and roughly 
6  further values (the other factors of ga mod p), this represents a considerable saving 
in space and in processing time for resolving 2-partials; and more importantly would 
have increased the speed of original relation generation duo to a reduced number of 
primality tests and Pollard p computations.

C ost o f reso lv ing  p a rtia ls

We now consider the effort required to process partial relations. Firstly, of course, 
there is an additional load placed on whatever relation generation method we are 
using. When storing 1-partials only, this is merely a check to see if the remainder is 
less than our large prime bound i?2 - When using 2-partials, however, we add the cost 
of a primality test and an application of Pollard p (or some other factoring method) 
in order to identify the large primes. As shown in table 4.8, this has quite a serious 
effect on performance. Here we show the time taken to store 500 full relations, and 
subsequently the number of 1-partials and 2-partials we can obtain alongside these 500 
fulls, with the time taken to detect and store these partial relations. Notice that the 
time increase to generate 2 -partials is actually getting less pronounced as we go to 
larger dataset sizes.

D a ta se t Fulls T im e -f 1-p a rtia ls T im e +  2- p a rtia ls T im e
2 0 d 500 5,211 9,767 5,224 11,611 45,983 1

25c 500 76,262 16,211 76.361 31,891 247.766
30b 500 903,893 10,719 907,665 51,465 1.511.876

Table 4.8: Timings for generation of 500 fulls with and without storing of partials
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We subsequently have to resolve these partial relations. Firstly, it makes sense to strip 
any useless relations from the datasets. These ‘singletons’ contain primes which do not 
occur in any other relation. Following Dodson and Lenstra [38] we stored the hash of 
the large primes without collision resolution, and discarded any which only occurred 
once. This procedure was repeated until the datasets were reduced to a sufficient level 
to repeat this procedure with collision resolution. Timings are detailed in table 4.9 -  
here ‘passes’ refers to the number of pruning passes through the datasets.

D a ta s e t 1-j-2-partials 
in

1-f 2 -p a rtia ls  
o u t

T im e  to  
p ru n e

P asses
ta k e n

20d 435,760 47,425 1,967 8
25c 1,172,083 123,006 6,240 9
30b 2,262,544 510,097 19,512 9

Table 4.9: Timings for pruning of datasets

To resolve the 1-partials, we simply need to match up large primes. Timings -  operating 
on ‘pruned’ data -  are shown in table 4.10. Resolving 1-partials actually takes very 
little effort even if the datasets have not been pruned. Pruning 1-partials alone for 
dataset 30b took 3,022 hundredths of a second, and it then took 343 hundredths of 
a second to resolve the remaining relations into fulls. For comparison, if we had not 
pruned this dataset, it would have taken us 1,861 hundredths of a second to resolve the 
49,174 full relations.

D a ta se t 1-p a r tia ls P ru n e d Fulls T im e  to  reso lve
20d 197,742 16,105 8,952 48
25c 383,844 24,925 13,765 86
30b 768,435 87,821 49,174 343

Table 4.10: Timings for resolving 1-partials

When resolving 2-partials (here we consider maximising yield, i.e. adding 1 to the graph 
and processing 1 and 2-partials together), we have a rather more involved procedure. 
Determining the graph structure (algorithm 5) takes a number of operations slightly 
more than linear in e, the number of edges in the graph (Lenstra and Manasse [75]). 
Building cycles via algorithm 6 depends on how many passes through our set of e 
relations we make -  in the worst case, we would scan the dataset e times, but in 
practice we only require k < e passes, where for our implementations8 k was at most 8. 
In practice, then, runtime is 0 (e 1+er). We also have the additional task of multiplying 
out the relations to eliminate the large primes. Timings are shown in table 4.11.

®Here k did increase slightly (from 6 for dataset 20d to 8 for dataset 30b) as larger datasets were 
considered.
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D a ta s e t (P ru n e d )
1 +  2 -p a rtia ls

Fulls T im e to  
coun t

T im e  to  
b u ild

T im e  to  
reso lve

T o ta l

20d 47,425 12,778 57 90 71 218
25c 123,006 39,658 170 326 250 746
30b 510,097 185,151 768 1,496 1,287 3,551

Table 4.11: Timings for resolving 1 and 2-partials via graph approach

Going back to table 4.8, we note tha t generating 12,778 fulls for dataset 20d would 
take 133,172 hundredths of a second. Resolving this many relations from partials took 
just over 2000 hundredths of a second, including time taken to prune the datasets. 
Obviously, this isn’t the whole story, as the time taken to generate the partial data 
particularly the 2-partials -  means tha t a better evaluation of the effectiveness of using 
1 and 2-partials comes from timing at the point in figures 4-12 and 4-11 where we 
could have terminated relation generation. For dataset 20d, for example, we generated 
10,000 full relations. Had we stopped after obtaining 5,000 -  i.e. after 50% of the time 
we spent -  we could have recovered almost 5,000 further fulls from the 1 and 2-partials. 
For dataset 25c this point came after around 40% of the time actually spent, and for 
dataset 30b it came after some 35%. Considering timings at these points, we obtain 
table 4.12.

D a ta s e t Fulls T im e Fulls v ia  
1+ 2 -p a r tia ls

T im e T o ta l
tim e

20d 5,000 459,830 4,435 796 460,626
20d 9,435 98,331 • • 98,331
25c 4,800 2,378,553 5,232 2,079 2,380,632
25c 10,032 1,530,120 • • 1,530,120
30b 12,775 38,628,431 16,713 4,658 38,633,089
30b 29,488 53,307,993 • • 53,307,993

Table 4.12: Timings for direct fulls compared to using 1 and 2-partials

Here, the second line for each dataset shows the time taken to build a certain amount 
of full relations directly -  i.e. not storing any partial relations. The top line shows the 
time it would have taken to obtain this many relations, had we stored and resolved 1 
and 2-partial relations. We see that, for dataset 20d, the additional effort required to 
store 2-partial relations far outweighs their usefulness. For dataset 25c, it is still better 
to simply use full relations directly. For dataset 30b, however, we now save time by 
term inating relation generation, and relying on our partial relations to make up the 
shortfall; suggesting that the double large prime variant does indeed give a practical 
speedup for larger modulus sizes. For this particular example, we do not have the 2-2.5 
times speedup quoted by Lenstra and Manasse [75] -  we can obtain this in terms of
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yield, as shown by figures 4-12 and 4-11, but not in terms of time. However, the fact 
that we have shown that we can resolve all but a fraction of relations which would also 
be useful for factoring suggests that we will obtain this speedup for larger dataset, sizes.

D a ta s e t Fulls T im e Fulls v ia  
1-p a r tia ls

T im e T o ta l
t im e

20d 6,000 62,688 3,452 366 63,054
20d 9,452 98,508 • • 98,508
25c 6,000 916,332 5,291 783 917,115
25c 11,291 1,722,148 • • 1,722,148
30b 18,250 33,129,772 13,712 1,471 33,131,243
30b 31,962 57,780,456 • • 57,780,456

Table 4.13: Timings for direct fulls compared to using 1-partials

Carrying out similar timings for using 1-partials only, we obtain table 4.13. Due to the 
negligible extra work needed to obtain 1-partials during the relation generation step, it 
is always worth using the single large prime variant. The crossover point to going from 
one large prime to two for factoring is generally accepted to be for numbers of around 
70 digits Lenstra and Manasse [75]. For smaller numbers, the two large prime variant 
is less effective. These other results use more efficient methods of relation generation 
than we have used here; but we have seen a similar effect at smaller scales, in that 
for our implementation, we find that the basic index calculus method using two la rge  

primes does give practical speedup (compared to using at most one large prime) for 
computation of discrete logarithms modulo a prime of 30 or more digits.

4.4 Summary

In this chapter we have investigated the practical differences between the application of 
large prime variants (with up to two large primes) to discrete logarithm computation, 
compared to their well-documented application in factoring.
The key difference between the use of these techniques for factoring and for discrete 
logarithm computation is the lack of restriction on the type of cycle found when using a 
graph theoretic approach to resolving 2-partials for factoring. For the discrete logarithm 
case we are working in a large finite ring rather than modulo 2, and so must divide 
out the large primes. We have demonstrated how this can be done as cycles are built, 
by a careful consideration of the nature of the cycles and the ordering of their edges. 
This allows us to avoid more complex methods of eliminating the large primes, such 
as solving a linear system. Adding the special vertex 1 to the graph allows us to 
process 1 and 2-partials together. This then allows greater yield and shorter cycles 
leading to sparser full relations, as in factoring. For discrete logarithms, however, it
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has the additional im portant benefit of allowing us to resolve odd cycles so long as 
they include this special vertex. By considering all possible cycles in the graph, one 
can try  to maximise the yield from a given dataset. We have shown that it is possible 
in some cases to join odd cycles together to form further even cycles, and to combine 
loops with 1-partials. The effectiveness of these last techniques is however very small 
when compared to the improvements obtained by simply adding 1 to the graph, and 
the density of the relations we obtain may be against their use in the traditional linear 
algebra step; but they are nonetheless valid and may be of use in some way during a 
back-substitution phase. Weber [132] reports that, in certain cases, some 2.8% of cycles 
found in an implementation for discrete logarithm computation could not be resolved. 
Our experiments are much smaller, but using the above techniques allowed us to recover 
a full relation for all but e cycles in the graph. The few exceptions consisted of one 
or two isolated loops which could not be matched to a 1-partial, and in fact e was 
generally zero.
Use of partial relations brings many practical considerations. Datasets can become 
huge, and simply storing and processing this data can become awkward, although 
various pruning strategies can be invoked to ease this load. The price of the success of 
processing 1-partials and 2-partials together is the increased processing and memory 
requirements of the graph algorithm, not to mention the increased effort to generate 
such data in the first place. However, we have shown that it is actually possible to 
resolve partial relations for discrete logarithm computation such that yield is within 
some e of tha t which we would obtain if solving modulo 2 in a factoring application. 
Our experiments suggest that the quoted speedup of 2-2.5 obtained in factoring will 
carry across directly to discrete logarithm computation.



Chapter 5

Towards n Large Primes

In this chapter we build on the work of the previous chapter by examining the impact 
of using partial relations with more than two large primes. In order to generate such 
data, we make use of the so-called Waterloo variant of the index calculus method. This 
allows us to use a ‘double double’ large prime variant, and we subsequently investigate 
the practicalities of resolving n-partials for discrete logarithm computation.

5.1 M ore large primes

Given the performance improvements to relation generation brought about by use of 
the single and double large prime variants of the index calculus method, it is natural 
to consider going further and using three or more large primes. Indeed, for factoring 
purposes this has been attempted, with promising results -  Leyland et al. [81] use up 
to three large primes per relation in a Quadratic Sieve implementation, while Cavallar 
[21] uses up to three large primes per smoothness test in a Number Field Sieve im
plementation. One difficulty now, however, is in bounding the large primes one can 
obtain -  it is straightforward to define another bound B 4 as the fourth power of our 
factor base bound B \ . We may then trial divide using our factor base, and check if our 
remainder is less than this new bound B± (but greater than B 3). The problem is that 
now we do not have so simple a situation as in the double large prime case. Then, we 
could say with certainty that a composite remainder was the product of exactly two 
large primes, both greater than B\  but less than B 2 . Stepping up to 3 large primes, 
we lose a certain amount of this control, since we know that we will have either two or 
three factors in our remainder, but we cannot bound these factors as closely as before. 
Allowing three large primes, we cannot tell whether a composite remainder is indeed 
the product of three large primes, or the product of two large primes where one of these 
is larger than bound £?2. If we solely concern ourselves with relations producing large 
primes within our bounds B \  and B 2 , then we will potentially obtain a large number of 
useless relations where one large prime is greater than B 2 . Since actually obtaining this

74



C h a p t e r  5 . T o w a r d s  n L a r g e  P r i m e s 75

large prime factorisation involves one application of Pollard p (in the ‘false report’ case) 
or two applications (three large prime case), it would seem that these extra relations 
would be too costly to bother with. However, results of [81] indicate that, whilst there 
is indeed added complexity in both obtaining these three large prime relations and in 
resolving them into useful full relations, it is in fact worth the effort and may lead to 
an im portant improvement in algorithm performance when factoring larger numbers. 
Dodson and Lenstra [38] describe an implementation of the number field sieve using 
four large primes. This is a rather different approach to that used by Ley land et al. 
[81], since the four large primes of [38] consist of two lots of two large primes. This is 
done by applying the double large prime variant to each of the NFS factor bases hot h 
the algebraic factor base and the rational factor base. This leads to two sets of large 
primes (or rather large prime ideals), which generally cannot be resolved against each 
other1; so this can be thought of as a ‘double double large prime’ variant rather than a 
‘four large prime’ variant in the same vein as the three large prime technique described 
above. A similar approach was taken by Weber [132] to compute discrete logarithms, 
although few details axe given concerning the resolution of partial relations.
We now consider how the techniques of the previous chapter scale to the use of more 
large primes by examining a similar ‘double double large prime’ technique; again con
centrating on how we can actually resolve the partial relations we obtain, and on 
identifying how such methods differ from the factoring application. However, here we 
generate data such that we have a single set of large primes, in an attem pt to examine 
how the techniques of Leyland et al. [81] adapt to the discrete logarithm situation.

5.2 The W aterloo variant

A simple improvement to the basic index calculus method is offered by the so-called 
‘Waterloo variant’ of the index calculus method, outlined by Blake et al. [13, 14] and 
Coppersmith [26]. This is another method aimed at improving the efficiency of the 
relation generation step. The original paper describes the method as applied to com
putations over GF(2n), but it is equally applicable over GF(p).

5.2.1 O verview

Rather than testing some value A  = ga mod p  for smoothness, as we did in the basic 
method, we now use the extended Euclidean algorithm (algorithm 7), to find values 
wi, ii2 and ii3 such that

113 = ui A  + U2P

1When using an NFS-type approach with two factor bases allowing one large prime on each side, 
we note that the graph of 2-partial relations is then bipartite. Thus every cycle is even, and so the 
techniques of the previous chapter should allow all cycles to be resolved directly.



C h a p t e r  5 . T o w a r d s  n  L a r g e  P r im e s 7b

where both u\ and u3 are smooth. Then computing

A  = ga = U3U1—1 mod p

leads to a full relation. The description in algorithm 7 comes from Knuth [66]. Note 
that u\a  +  u2b =  u3 throughout the algorithm.

A lg o rith m  7 Extended Euclidean algorithm 
In p u t:  Integers (a, b)
O u tp u t:  (u\,U2 ,us) such that u\a + u2b = u3 = gcd(a, 6)

Initialise:
(u i ,u 2 ,u 3) «- (1, 0, u)
(ui,V2,w3) <- (0 ,1 ,v)
Process:
w hile  U3 ^  0 do

q = [u3/ v 3\
( t i , t2 , t 3) «- {ui,U2 ,u 3) -  q(vi ,u 2,u3)
(u i,u 2,u 3) <- (u i,u2,v3)
( v i ,  W2, v 3 ) « -  ( t l , t 2 , * 3 )  

en d  w hile

Of course, on termination of the extended Euclidean algorithm on input A  and p, u3 

will be 1 since p  is prime; however, the absolute sizes of both u 3 and u\ are smallest 
when u\ «  p , and at this point we exit extended Euclid. The idea is tha t if u\ and 
113 are both 0 (y/p) then there is a better chance that they are both smooth than there 
is simply of A  =  ga mod p  being smooth. Previously, we noted that the chance of a 
number < p  being B-smooth was approximated by the value u~u as u —> 00, where

logp
u = -------

log I?

If we instead consider the chance of finding two smooth numbers, both O (y/p), we have 
a probability of (u ~u)2 where now

log Vp
U =   -----

log B

which thus gives us a probability of approximately (1u)~u This does not change the 
asymptotic performance of the algorithm, but does improve the o(l) value in the com
plexity estimate, giving practical savings. Again we can use partial relations, this time 
arising from two separate factorisations -  that of u\ and u3. The downside of this 
approach is tha t we now require two smoothness tests and two applications of Pollard 
p (or whatever method we are using to factorise the remainder). Thome [127] used a 
variation of this technique to compute discrete logarithms modulo 2607. He allowed at 
most two large primes in a full relation -  either both from u 3 or one from both u\ and
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u 3.

Use of the Waterloo variant means that we must ‘merge' the two smooth values n3 and 
(the inverse of) u \  to obtain a full relation. However, we note that these values do nut 
contain any shared factors.

L em m a 5.2.1. On input (a, p) for  prime p, the extended Euclidean algorithm computes 

values (d i,X { ,y i) such that di = ax{ + pyi and ged[xi ,d i)  = 1.

Proof. Clearly gcd(a,p) =  1 since p  is prime. We also have that ged{xl , y l ) =  1 by 
induction on i. Suppose now that gcd(rr?,d,;) ±  1, so there is some value zt > 1 which 
divides both X{ and p*. Then Z{ must also divide p y l: and, since p is prime, zL must 
divide yi. However, this means that Z{ is a common factor of both Xi and yj, and 
contradicts the fact that gcd(x i ,y i)  = 1. We conclude that ged{xi,d i) =  1. □

We do not then have overlapping factors reducing the density of the ensuing full rela
tions (as we did when merging two 1-partial relations, for example). As a result, the 
number of nonzeros in a full relation is simply u ( u i )  + u ( u 3) where u (u j)  is the number 
of distinct prime factors of U{. We give an illustration of the Waterloo procedure in 
figure 5-1, which shows the number of 'full’ relations obtained with each iteration of 
Extended Euclid (averaged over the number of attempts needed to generate 500 full 
relations for a 40 digit p). Here, for illustration purposes, we have started to test v.\

500

?

0 so 7060

Figure 5-1: Smoothness testing in Extended Euclid -  40d

and u 3 for smoothness when u\  is less than Cyjp, where for this example C  =  1 0 1 5  and 
y/p =  1020. In the left hand figure, we show the total number of relations (fulls and 
1 -  4-partials) found for successive iterations of extended Euclid. We see that this is 
at a maximum after some 30 iterations -  and this is in fact the point at which u\ is 
approximately yfp. In the right hand figure, we see the reason for this higher yield it 
is at this point that we find both u\  and u 3 are most likely to be smooth.

5 .2 .2  Y ie ld  o f  W a te r lo o  v a r ia n t  in d e x  c a lc u lu s

The purpose of the Waterloo variant is to improve the chances of finding smuot li values 
leading to ‘full’ relations. We would thus expect to take fewer attempts overall to find
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a particular number of full relations than we would by using the basic procedure. 
Consequently, we would also expect to find fewer partial relations involving 1 or 2 large 
primes than we did previously, due to testing fewer values. To give a brief illustration 
of this, table 5.1 shows the yield of the Waterloo variant (WV) procedure compared 
to the basic index calculus (IC) method, when using identical parameters to generate 
relations modulo a 40 digit prime. The time taken to generate the data will be discussed 
later in this chapter. Again, details concerning parameters used in the generation of 
the datasets used in this chapter are given in appendix B.

M e th o d A tte m p ts Fulls 1-p a r tia ls 2-p a r tia ls 3 -p a rtia ls 4 -p a rtia ls
IC 2.5 x 106 13 819 3,247 - -

WV 2.5 x 106 424 90,772 526,408 500,191 127,639

Table 5.1: Basic index calculus v Waterloo variant -  40 digit p

It is clear tha t the Waterloo variant is extremely beneficial in practice compared to 
the basic method. Relations generated via the Waterloo method had, in general, one 
more factor than their counterparts generated by the basic method (the same goes for 
respective 1 and 2-partial relations).
In this chapter we will examine how use of the Waterloo variant technique affects our 
use of large prime relations.

5.3 Using large primes

Using the Waterloo variant coupled with the methods of the previous chapter, we can 
use up to four large primes in the relations we generate (two in both u\ and u3). An 
advantage of using two lots of two large primes with the Waterloo approach, rather 
than than using more than three large primes in the standard manner (as per Leyland 
et al. [81]), is that the large primes are constrained -  using two sets of two large primes 
allows us to force all these values to be within certain bounds, which should cut down 
on the list of false reports. However, using more large primes, no matter how the 
relations are obtained, obviously calls for more processing in order to resolve useful 
relations from them, as we now discuss.

5.3.1 W aterloo  w ith  1-partials

Using large primes in the Waterloo variant procedure means that we must now consider 
the exponent of the large primes, since considering 1-partials we may obtain relations 
of the form

9a = Qi n  &  mod P
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9a = ^  n  &  m° d p

As one would expect, there is a 50% chance of getting either type. We may resolve 
these much as before -  the only change concerns the exponent of the large prime in 
each of the relations being considered, since this governs whether or not, one should 
multiply or divide in order to eliminate the large prime.

5 .3 .2  W aterloo  w ith  2-partials

Resolving 2-partials from the basic relation generation method came down to the fact 
that odd cycles required one of the vertices to be the special vertex 1 in order to 
eliminate all large primes, while even cycles could be resolved without this additional 
criterion. Care is needed in order to process cycle edges in the correct order such that 
all the large primes cancel.
Examining 2-partial relations obtained via the Waterloo variant procedure, we find 
that we may now have relations of the form

ga =  Q iQ 2 mod P

= IK mod p 
9“=̂ rue‘m°dp 

m° d p

Obviously, the first two types are equivalent to all intents and purposes, as are the 
second two types; so effectively we have two different kinds of relation to consider. 
However, combinations of the two types do affect the outcome of the graph resolve 
procedure described earlier. Where before we were looking for even cycles, and could 
only resolve odds if one of their vertices was equal to 1, we must now take account 
of ‘matching exponents’ -  basically, whether we have an even or odd number of the 
second type of relation. If we have an even number of these, then we have the same 
outcome as before -  an even cycle can be resolved directly; an odd cycle requires 1 as 
a vertex. If on the other hand we have an odd number of the second type of relation, 
the situation is reversed, as shown in figure 5-2.
Consider firstly the two odd cycles on the left. The first is the same as that encountered 
in the previous chapter -  all primes have exponent 1. In order to resolve this, we found 
that we needed one of the large primes Qi to be the special vertex 1. Use of the 
Waterloo variant, however, allows cycles such as the second of these two odd cycles. 
Here we have a ‘mismatch’ in the exponents -  edge E2  now links to l / Q ' i -  No 
m atter how we invert any of the edges in this cycles, we will always have a mismatch
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Q2
1/Q2

1/Q2 / Q2

E2 - >  E4

Figure 5-2: Effect of exponents (left) and reducing cycles (right)

like this. Now, however, we no longer need the special vertex 1 to be present. We can 
simply compute

E 1E 2

E$

to eliminate all the large primes. We are effectively reducing a cycle to the situation 
we had previously, as shown in the right hand side of figure 5-2. We may multiply two 
relations together to eliminate one of the large primes, which in effect creates a new 
edge E 5, where E$ = E 1E 2 , such that E 5 is of the form

E 5 = Q 1Q3 J J  q? mod p

This then reduces the number of edges in the cycle by 1, removes the exponent mis
match, and allows us to resolve a full relation as we did previously i.e. an even cycle 
can be resolved directly whereas an odd cycle requires 1 as a vertex.
One must thus keep a still closer eye on the exact nature of cycles, and only a strict 
adherence to a particular edge order will allow a cycle to be resolved into a full relation. 
As it happens, in all datasets used in this study, some 10% of the 2-partial relations 
were of the form Q 1Q2> while around 90% were of the form ^  -  it is more likely that we 
will have u\ and U3 both being 1-partials than it is that, for example, u\ is smooth and 
U3 is a 2-partial. This does not dramatically change the cycle counting and building 
procedures described in the previous chapter -  it is only in resolving these cycles that 
additional care is needed. In practice, when one considers adding an edge (i.e. relation) 
to the graph, one should invert2 the new edge if necessary such that the exponents of 
the vertices (i.e. the large primes) are the same. When an edge is found to have both 
vertices already in the graph, we will have a cycle which can be resolved as before if 
and only if the exponents of these vertices match. If, however, one of the vertices has a 
different exponent while the other matches, we must multiply the two relations where 
these large primes with differing exponents occur.

2By ‘invert’ we simply mean to change the sign of all exponents in the relation -  since w e hold  all 
these values this is not a problem.
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5.3 .3  W aterloo  w ith  3, 4, and m ore-partials

We have the following possibilities when considering 3-partial relations obtained via 
the Waterloo variant procedure, both occurring with equal probability

9° =  75-7 5 :1 1  mod PQ2Q3

Since by inverting one of these we find the other, we may consider these to be the same. 
4-partial relations only arrive in the form

a _  Q 1 Q 2  T-T et .

Q 3 Q 4

Processing 3 and 4-partial relations would obviously require extensions to the graph 
algorithms. As before, we can trim  our datasets by recursively removing any relation 
(be it 1, 2, 3 or 4-partial) which contains a large prime which does not occur in any 
other relation. The effect of this pruning on a 40 digit dataset is illustrated by table 
5.2.

D a ta s e t 40E 1 -p a rtia ls 2 -p a rtia ls 3 -p a rtia ls 4 -p a r tia ls
All data 58,962 799,818 3,508,419 5,144,673
Pruned 20,172 110,091 263,721 277,302

Table 5.2: Pruning partial relations -  40 digit p

The amount of data needing to be fed into our extended graph algorithms is now very 
much reduced, and we have the advantage of knowing that all ‘edges’ in our graph 
(or, rather, our hypergraph) do indeed form part of a cycle (or, rather, ‘hypercycle ) of 
some kind.

B asic n -p a r tia l  reso lve

Visualising exactly what these cycles look like and how to resolve them is rather more 
awkward than it was when we processed 1 and 2-partials alone. To illustrate the 
situation we now face, and the kind of approach we could take, consider figure 5-3. 
Here we process a 3-partial relation (or indeed, a relation with n  large primes) with the 
1 and 2-partial relations already processed. To guard against building cycles which are 
linearly dependent on those we have already built when resolving the 1 and 2-partials, 
we remove the last edge from each cycle found and output a tree of 1 and 2-partial 
relations. We assume tha t the root of this tree is the vertex 1.
We now process 3-partial relations one at a time. We do not at present add them to
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2 —partial tree

E l E2

Q1 Q2

E5E3 E4

Q5Q3 Q 4

E8
E 6 E7

07
Q6

Figure 5-3: Resolving 3-partials -  basic case

the graph, we simply try to find a relation having all as three primes in the 2-partial 
tree. In figure 5-3, we have found that the 3-partial E% has all three vertices in the tree. 
We may now track back to the root from each vertex. In each of these ‘trails’, all large 
primes will appear an even number of times, with the exception of the root vertex; but 
as this is 1 it is not important. For the example given, then, we may compute

EqE\ E$ E 2
tl = - y ^  t2 = V T -  *3 =  7T

Note that we have taken account of the exponents of the vertices of Eg. Then computing 
E s * t \  *£2 *£3 gives (ignoring the factor base elements and noting only the large primes 
in the relations)

Q5Q7  + Q e Q z Q i l  # Q 4 Q 1  + Q 2 I  _  ,

Q& Q3Q1  Q 7 Q 4 Q 1 I  Q 5 Q 2

We then obtain a relation involving only factor base elements. This basic resolving 
procedure easily extends to 4-partials and indeed n-partial relations. Further, we can 
improve on it slightly in certain situations -  notice in the example above that trails t\ 
and £2 meet at vertex Q We may then term inate the two trails if  the exponent of Q\ 
as it first appears in trail £1 is different to tha t of Q\ as it first appears in trail £2. This 
would reduce the length of the two trails (assuming the intersection is at a vertex other 
than the root vertex), and would thus lead to a lower density in the final full relation. 
The above illustration does not give us a simple way of processing more than one 3 
or 4-partial at a time. The need to divide out the large primes makes the use of n 
large prime variants more complex for discrete logarithm computation than it is when 
applied to factoring methods, where we simply look for all primes occurring an even 
number of times. Extending the algorithms of the previous chapter is difficult, since
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if processing 3-partials and actually adding them to the hypergraph, we can have the 
situation where we find all three vertices, but do not in fact have a complete hypercycle. 
Further, it is easy to find examples of hypercycles which cannot be resolved -  consider 
figure 5-4. Here we have a 3-partial with repeated large prime Q i, together with a

Q i « C  ^ -------------» Q 2

Figure 5-4: Simple yet unresolvable hypercycle

2-partial (we ignore exponents). The two relations form a simple hypercycle, yet we 
cannot eliminate all large primes -  for factoring or for discrete log -  since Q\ occurs 
an odd number of times (assuming that these are ‘genuine’ partial relations and that 
the vertex 1 is not present).

General n-partial resolve

We now discuss how may go about resolving relations involving more than two large 
primes. It would be nice to recover the situation of being able to assume that we 
have found a hypercycle if  we have found all vertices of a relation under consideration 
already present in the graph (or hypergraph). We can do this to a certain extent by 
relying rather more on our dataset pruning. If this is done correctly, we know that, all 
remaining relations form part of some hypercycle. We can then build our hypergraph 
as we built the graph before; with the only real change being that we must process 
n  vertices for a given n-partial. If we find all n vertices are already stored in the 
hypergraph, then we could store this relation in a ‘proto-cycle’ file. Once we have 
processed all relations, we may then turn our attention to these proto-cycles, tracking 
through the original (pruned) dataset, and building hypercycles as we match vortices. 
This strategy works up to a point -  one can isolate a subset of relations which together 
form a hypercycle. However, it is difficult to efficiently track through the hypergraph 
due to the ‘branching’ introduced by using relations having more than two large primes. 
Where previously the method for building cycles used the concept of depth in the graph, 
and cycles were found by tracking back to the root, we may now be forced to track 
‘down’ the hypergraph as well as ‘upwards’ towards the smallest vertex. We are also 
hampered by the need to ‘divide ou t’ our large primes, which again is not such a 
problem for factoring variations of this technique.
The trick of ordering edges in the cycle no longer applies, and again it is not necessarily 
true that we can obtain the same yield as in an analogue factoring application. Consider 
the three relations



C h a p t e r  5 . T o w a r d s  n  L a r g e  P r im e s 84

{ e u e 2 , e 3} =

where the qj are factor base elements as before. Here, all large primes occur twice 
(except for ‘large prime’ 1), and thus together they form a hypercycle, as shown in 
figure 5-5. This hypercycle differs from the other example in that we can resolve it by

Q2Q2l
E3E l E2

Q3 Q3Qi Q1

Figure 5-5: Simple hypercycle which can be resolved for factoring

dividing the 3-partial by the product of the 1-partial and the 2-partial. This, however, 
assumes tha t all exponents are 1. For Waterloo-derived data, either one or two of Q\. 
Q21 Q3 will have exponent -1. If we consider the possibilities for the expgnents of the 
primes, we find that, even had we built it, we only have a 50% chance of resolving this 
hypercycle. We are no longer rescued by the presence of 1. For factoring purposes, 
however, solving modulo 2 would always allow us to resolve such a hypercycle5.
A further annoyance is tha t it is no longer so simple to count the number of hypercycles 
in the hypergraph. Leyland [80], working with up to three large primes per relation, 
proposes generalising the basic formula for fundamental cycles which is used by Lenstra 
and Manasse [75]. Rather than using the formula

#cycles = E  + C — V

for E  edges, C  components and V  vertices, he considers both edges and ‘arcs’; where 
an arc is defined as a link between any two vertices. Thus a 2-partial relation can be 
thought of as a single edge, and a single arc. A 3-partial, however, is still a single edge 
but creates 3 arcs in the hypergraph. Going further, a fc-partial will create - -fc2~1- arcs. 
The basic formula can then be thought of as

#hypercycles = A + C — V - 2 E

for a hypergraph of 3-partials. As noted by Leyland, however, such a generalisation 
does not hold, and can only give an approximation. By adding the vertex 1 to some 
relations, we create loops in the hypergraph which are not hypercycles, yet get counted 
as such. If we do not count those arcs which are in fact loops, we can get, a negative

3This example is actually one noted by Leyland [801 33 a hypercycle of a kind not picked up by his 
cycle resolving algorithm. As it turns out, it is also a good example to highlight the difficulties of the 
discrete logarithm three large prime technique as opposed to its application in factoring.
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hypercycle count. If we do not add 1 to relations having fewer than n  large primes, 
we lose uniformity in the hypergraph. Although counting the cycles has no particular 
bearing on actually resolving partial relations into useful full relations, it does make it 
more difficult to estimate yield when considering when the relation generation stage is 
complete.
A rather simpler method of resolving partials is that offered by Dodson and Lenstra [38]. 
As it turns out, this is essentially the same method as that used by Weber [131. 134] 
and by Leyland et al. [80, 81], as we now discuss. The method attem pts to reduce 
n-partial relations into (n — Impartial relations by means of 1-partials. As a result, 
all cycles and hypercycles obtained include at least one 1-partial. The cycle-finding 
methods of Lenstra and Manasse [75], which we used to build cycles among 1 and 2- 
partials, created cycles which -  generally -  all involved the special vertex 1, so in fact 
all cycles resolved here also included at least one 1-partial relation (unless 2-partials 
were processed alone, which lead to denser full relations anyway). The method relies 
in part on the dataset being pruned. This gives us the set of all relations occurring 
in cycles. It also allows us to determine the number of vertices V  and edges E  in the 
graph (or rather hypergraph), from which we can estimate the number of ‘hypercycles’ 
present by computing E  — V, on the assumption that ‘pruned’ edges form a single 
component.
Having pruned the dataset, one considers the remaining 1-partials. They are firstly 
resolved among themselves, and then all unique large primes amongst this set of rela
tions are removed from the 2-partials, 3-partials and 4-partials. Remaining relations 
are then resorted into 1, 2, 3 and 4-partials (or, rather, into either l-part.ials or 'more 
than 1’-partials), and the process is repeated until no further relations are either re
solved or reduced. Any remaining relations -  hopefully few in number -  may then be 
resolved by some kind of graph resolve as before. Weber uses this strategy on 3 and
4-partials, and subsequently uses the standard graph resolve on the ensuing set of 1 and 
2-partials. Leyland et al. use a similar method to build chains of relations, which can 
subsequently be multiplied up to eliminate the large primes (modulo 2). However, for 
discrete logarithm purposes, it is not so straightforward to eliminate the large primes 
in such a chain. We note, though, tha t hypercycles such as those in figures 5-4 and 5-5 
would not be built by such a procedure. The first example does not contain a 1-partial, 
and in order to build the second example, we need another 1-partial with large prime 

Qz or Q4.
The key point when using 1-partials to reduce higher-order partial relations is that we 
always find an even number of edges incident at any vertex in the hypercycle, with the 
exception of the special vertex 1. Thus, for factoring purposes one can eliminate the 
large primes modulo 2 simply by multiplying all edges in the hypercycle. We can link 
back to our earlier simple illustration of resolving 3-partials one by one by considering
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the hypercycles found by such a procedure as trees, as shown in figure 5-6. It can now 
be seen tha t we can divide out all large primes in the hypercycle as we did before, by 
following ‘branches’ back to the special vertex 1.

^Q 1

■#Q4

Figure 5-6: Hypercycle as a ‘tree’

The actual hypercycle is shown on the left. W hat is built by recursively removing 1- 
partials is the ‘tree’ on the right. Now every vertex (except maybe the vertex 1) occurs 
in an even number of edges, and tracking round the tree one can eliminate all the large 
primes. Again, we must take account of the order in which we process the edges -  if 
we do not maintain the order of edges as built, we are in danger of hitting a problem 
at a vertex such as Qs in the example, in tha t we may have a choice of direction to 
take. If we follow the order in which the hypercycle was built, we will always take a 
‘depth first’ route through the tree and end up at a 1-partial.
Since this method of building hypercycles means that the vertex 1 is always present at 
the end of every branch, we do not have the unresolvable cases of odd cycles without the 
vertex 1 (including loops) which we had previously. We can thus resolve all hypercycles 
that are actually built by this technique, both for factoring and for discrete logarithm 
computation. We did find that, as noted by Dodson and Lenstra [38], after the build 
procedure, occasionally one is left with a small subset of partials (having more than 
one large prime) which together form a cycle. In practice, for our implementations, 
these remaining relations were always 2-partials. Some of these were loops, which could 
not be resolved (since no 1-partials match the repeated prime, and unsurprisingly we 
did not find two loops at the same prime). The others were pairs of 2-partials, having 
the same primes Q i and Q2 . As these are even cycles, these could be resolved. Any 
odd cycles among the remaining edges would probably cause problems, since 1 is not 
present in the graph component under consideration. If relations remain, then, after 
recursively removing 1-partials, we may not quite reach the same yield as in factoring. 
Another point to note about figure 5-6 is that, in the case of processing 1 and 2-partials 
only, the methods of Dodson and Lenstra [38] and Leyland et al. [81] will often create 
slightly longer cycles than the method of Lenstra and Manasse [75] -  the repeated path 
from Qz to the special vertex 1 is unnecessary, as we could have stopped at vertex Qz
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where the paths join. We sometimes have the extreme case where we actually resolve a 
loop using two duplicate trails, as shown in figure 5-7. Again, the hypercycle is shown 
on the left, with what we can actually build on the right. Note that for factoring, again, 
loops are trivially resolvable.

Figure 5-7: Resolving loop via duplicate paths

For higher order partial relations, we do need to follow paths all the way to vertex 1 
in order to guarantee removal of all large primes. This suggests that, if using 1 and 
2-partials only, the method of Lenstra and Manasse [75] may be preferable. The length 
of cycles can be reduced further by a strategy such as that described by Denny and 
Muller [35], or via the linear algebra techniques of Cavallar [20].

M aintaining edge order

In order to build a set of hypercycles, we followed the method of Leyland et al. [81]. To 
briefly summarise the implementation, one separates partials into 1-partials and 1 > 1 
partials, as mentioned. After resolving the 1-partials, one removes the set of unique 
large primes they contain from the ‘> l ’-partials, adding the relevant 1-partial to a list, 
or ‘chain’ associated with each relation. The process is then repeated until no further 
changes are made. As 1-partials are resolved, both the relations themselves and their 
chains are output as hypercycles. To facilitate processing, Leyland [80] uses two hash 
tables for this procedure -  one contains lists of primes keyed by relation number, and 
the other lists relations in which each large prime occurs, keyed by the hash of this 
large prime.
For factoring purposes, one can simply multiply all relations in each hypercycle to 
eliminate the large primes modulo 2. In order to divide out large primes for discrete 
logarithm purposes, we used the following procedure. We firstly store the first relation 
in the hypercycle chain as a pseudo-full relation -  this will initially have between one 
and four large primes, which we wish to eliminate. We make use of a hash table to 
store relations keyed by each large prime they contain. For each large prime in the 
chain, therefore, we have a list of relations in which it occurs. Since each relation in 
the chain can only be used once, we flag a relation inactive once it has been processed. 
We then eliminate the primes in our pseudo-full relation one by one by looking up an 
active relation involving this prime and dividing or multiplying accordingly.
The key part of this procedure turns out to be in the choice of relation with which to
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eliminate a particular prime. We look up the relation list for this prime, but will often 
have some sort of choice to make. We must take care to choose the first active relation 
which immediately followed the last relation processed in the chain. In this way, we 
follow the ordering with which the chain was built, and will then always end up at a
1-partial.
Of course, eliminating a large prime will often add to the number o f  large p r i m e s  in 

our pseudo-full relation. We must keep a certain order to these large primes - if we 
are resolving prime Q i from the pseudo-full which at this point has primes Q \Q 2Qi, 
using a relation having large primes Q 1Q4Q5 , then in order to take a depth first, route 
through the hypercycle, it is convenient to store the primes in the revised pseudo-full 
as Q4Q5Q2Q3. In this way, we keep track of any forks in the path and maintain a strict 
ordering of edges.

Q6 Q7

Q i
Q 5(

Q4Q i

Q 2

Q3

Figure 5-8: Hypercycle involving 1, 2, 3 and 4-partials

To illustrate the importance of maintaining edge order, consider figure 5-8 which shows 
a typical hypercycle involving a 4-partial, a 3-partial, two 2-partials and five 1-partials. 
The vertex 1 is repeated in order to clarify the diagram, and to emphasise its special 
character as a ‘universal destination’. Notice that vertex Q 1 occurs twice. At some 
point we will consider prime Q 1, and look to eliminate it. We have a choice -  do we use 
one of the two 1-partials, or do we use the 2-partial Q7Q 1? Assume we have eliminated 
all primes but Q\ and Q7. If we use the 2-partial to eliminate Q 1, then we cannot use 
it again at a later point. There is subsequently no relation involving prime Q7 when we 
come to try  to resolve it -  it will be stored twice in the pseudo-full relation. It may well 
be the case tha t it is stored as Q j Q j 1, i.e. we could actually cancel it; but the point is 
that the procedure outlined above will fail to resolve the cycle. It is again important, 
then, to follow the order of edges carefully -  by doing this we can always resolve the 
cycles that are built.
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5.4 R esu lts

In this section we detail implementation results using the Waterloo variants coupled 
with the use of up to four large primes. Processing for 1 and 2-partials, as discussed, 
is much the same as it was previously and results are noted rather briefly, before we 
examine the impact of using 3 and 4-partials.

5 .4 .1  R e so lv in g  1 -p a r tia ls  re v is i te d

As noted, resolving 1-partial relations is not essentially any different to that described 
previously for the basic index calculus method. Yield for dataset 40d is shown in figure
5-9. As before, we see that the number of full relations resolved grows with the square

fIi«
c

5

500

0

Figure 5-9: Yield of 1-partial relations -  40d

of the number of 1-partial relations processed. Resolved relations had on average some 
20 nonzero elements, with a maximum coefficient size of 23, compared to direct fulls 
having 13 nonzeros on average. This is in keeping with previous results, since 1-partial 
relations themselves had, on average, 11 nonzero factor base elements (plus, of course, 
one larger prime).

E s tim a tin g  yield

In the previous chapter, we used the estimate of Lenstra and Manasse [75] to predict 
yield for a given number of 1-partial relations. It is interesting to note that this estimate, 
for the examples considered here, does not give the same results when considering 
different methods of relation generation. In table 5.3 we show the number of fulls we 
could obtain from a particular number of 1-partial relations, when generating datasets 
using either the basic index calculus method (ICS) or the Waterloo variant (WV). 
Identical parameters were used in each case.
Yield when processing relations obtained via the Waterloo variant is greater than that 
obtained via the basic method. This is due to the nature of the Waterloo procedure. 
The single large prime in each 1-partial comes from a smoothness test carried out on



C h a p t e r  5. T o w a r d s  n  L a r g e  P r im e s 90

D atase t 1 -partia ls
processed

Fulls resolved 
(ICS d a ta )

Fulls resolved : 
(W V  d a ta )

2 0 d 15,000 6 8 291
2 0 d 30,000 260 1,103
2 0 d 45,000 572 3.311
25c 30,000 94 384
25c 60,000 387 1,502
25c 90,000 865 3,234
30b 1 0 0 , 0 0 0 1 , 0 1 1 2,265
30b 2 0 0 , 0 0 0 3,908 8,345
30b 300,000 8,511 17,783

Table 5.3: Yield of 1-partials -  basic index calculus versus Waterloo variant

a number of size 0 (y /p )  rather than on a number of size O(p), as was the case in the 
previous chapter. Since the number that we are testing is much smaller, it is more 
likely to have smaller factors. This may well create a larger number of smaller large 
primes (and associated grammatical chaos). Figure 5-10 plots the relative sizes of the 
large primes in the first 1,000 1-partials found by each technique. While the difference 
is not hugely pronounced, it can be seen that for the Waterloo data on the right there 
is rather greater clustering at the lower end of the large prime range. This encourages 
further matches, and we obtain more full relations.

1
I
S

• ***** •%* • 
\ ’ • ;  • • ^  •..* *

Figure 5-10: Distribution of large prime values -  20d

Going back to estimating yield, the probability that a particular large prime q occurs 
in a given 1 -partial is assumed to be

Pn <cai  £

Lenstra and Manasse [75] originally took a  =  1, but found that the resulting estimates 
were consistently too high. The reason for introducing a  is to take account of tin' 
fact that we are using smooth numbers. Our candidate numbers turned out to be
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smooth but for this large prime factor q. Since smaller numbers are more likely to be 
smooth, this may make the appearance of larger large primes more likely, and so a  is 
used to take account of this possible bias. In chapter 4 we found a  =  0.76 to give a 
good prediction of yield for dataset 20d. Now, however, by using the Waterloo variant, 
we may reduce the effect of this bias by increasing the occurrence of smaller primes. 
This should lead to larger values of a  being required to give good estimation of yield. 
Computing these new values, we obtain table 5.4.

D a ta se t 1 -partia ls a Fulls resolved 
(es tim a ted )

Fulls resolved 
(ac tua l)

2 0 d 15,000 0.91 290 291
2 0 d 30,000 0.91 1,084 1,103
2 0 d 45,000 0.91 2,281 2.354
25c 30,000 0.87 424 384
25c 60,000 0.87 1,593 1,502
25c 90,000 0.87 3,378 3,234
30b 1 0 0 , 0 0 0 0.82 2,357 2,265
30b 2 0 0 , 0 0 0 0.82 8,723 8,345
30b 300,000 0.82 18,224 17,783

Table 5.4: Estimated and actual yield of 1-partials via Waterloo

We see that we do indeed need to take a larger value for a  when using the Waterloo 
variant. We also see that the value for a  is falling as we take large values of p -  it may 
well be that for larger dataset sizes we get back to a  6 [§, |]  as observed by Lenstra 
and Manasse [75]. This would require further testing.

5 .4 .2  R e so lv in g  2 -p a r t ia ls  r e v is i te d

The main practical difficulty in resolving 2-partials is in tracking through the graph 
whilst maintaining a strict ordering on the edges of a cycle other than this, processing 
is much the same as it was previously. Yield -  roughly cubic -  is detailed in figure 5-11.

i

o

Figure 5-11: Yield of 2-partial relations 40d
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In the left-hand plot, the dotted line indicates how many cycles had an 'odd parity' and 
were reduced via edge multiplication to a cycle with exactly one less edge. This reduced 
cycle could then be resolved as normal. As before, the downside of using partials is an 
increase in density -  the average resolved relation has some 29 nonzero entries, while 
the average 2-partial had around 9 (plus two large primes).

5 .4 .3  R e so lv in g  3 a n d  4 -p a r t ia ls

We now consider the effect of 3 and 4-partials. We suffer slightly in that we are only 
able to investigate small examples if we use the basic index calculus method for the 
examples here, we are computing modulo a 40 digit prime. This means that we need to 
take quite a small smoothness bound in order to actually see much benefit from using 
the 3 and 4-partials -  consider figure 5-12. Here B\ % 1.4 x 106, and wo take B> ~ B \

200000

i
3
o

Figure 5-12: Yield of 1 -  4-partial relations -  40d

and B$ = B \.  Using the Waterloo variant means we are testing values of around 20 
digits for smoothness, and as £3 «  1018 here, we find that every value tested is ‘at 
least’ a 2-partial (i.e. if not it is either a 1-partial or a full). Thus we recover a lot of 
partial relations, but do not see that much benefit from combining the 3 and 4-partials. 
Taking a smaller smoothness bound B\ % 6 x 104, however, gives a very different picture 
(figure 5-13). The left hand graphic shows the overall yield of the partial relations 
notice now that the yield from the 3 and 4-partials dwarfs that from the 1 and 2- 
partials. On the right, we take a closer look at the y-axis, and see an explosive growth 
in yield similar to that described by Dodson and Lenstra [38].
In figure 5-14 we look at the progress of cycle finding. For both of these log plots, we see 
essentially four phases. The first is an initial stage of quadratic growth, representing 
yield of the 1-partials, with little contribution from higher order partials. Yield then 
becomes cubic as the 2-partials begin to take effect -  again, higher order partials do 
not contribute much to the total yield in this second phase. We then see the effects 
of the explosion -  for 1,2 and 3-partials for this dataset, yield is growing as x 8 for x
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Figure 5-13: Yield of 1 - 4-partial relations 40E
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Figure 5-14: Yield of 1,2 and 3-partials (left) and 1,2,3 and 4-partials (right) 40E

partial relations, while for 1,2,3 and 4-partials it is more like x 17. Finally, the explosion 
tails off and yield is roughly quartic for the final part of each plot.
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Figure 5-15: Length of hypercycles (left) and time taken to resolve (right) -  40E

As in [38], we also see that the ‘explosion’ is accompanied by a severe increase in 
the average ‘length’ of hypercycles. Figure 5-15 shows (left) the average length of 
hypercycles found, using the same dataset as in figure 5-13. This increase in hypercycle 
length in turn causes the actual time taken to build and resolve these cycles to increase 
(right). However, if we continue adding to the hypergraph, the average length of 
hypercycles reduces quite quickly. Time taken to resolve these hypercycles then also
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drops, before the sheer number of cycles causes it to rise once more. The resulting full 
relations have considerably fewer entries, as noted by figures 5-16 and 5-17.

Weight of fulls via 1.2.3 and 4-partials soon after explosion 40E

Figure 5-16: Density of fulls found immediately after explosion -  40E

In figure 5-16, we see that the increase in cycle length around the point of explosion 
is reflected in the density of full relations resolved. Had we continued building cycles, 
however, we would find that the average density of the ensuing fulls drops as more 
cycles axe found, as shown in figure 5-17. Here we show the number of nonzeros per

ii
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Figure 5-17: Density of fulls resolved from hypercycles 40E

relation for full relations resolved from 1, 2 and 3-part.ials (left) and 1. 2. 3 and I- 
partials (right). Thus, had we processed 50% of the 1, 2, 3 and 4-part,ial relations for 
this dataset, the 3000 or so resulting fulls would have had an average of some 2600 
nonzeros. Had we processed 60%, this average would have dropped to around 1000 
nonzeros, while processing all relations would have lead to fulls with an average of 
around 400 nonzeros per row. Processing 1, 2 and 3-partials only, we see a similar 
effect, although the ‘explosion’ comes with slightly more relations than before. It 
therefore pays to go beyond the ‘big bang’ (the point at which yield rapidly increases) 
in resolving partial relations with more than two large primes, as the resulting full 
relations are considerably less dense and consequently take less time to resolve4.

4Compared with other full relations, of course, these axe still far more dense -  for this dataset,
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5 .4 .4  C ost o f  resolv in g n-partials

As in the previous chapter, we must consider the effort required to process partial 
relations, starting with relation generation and the additional costs of storing partial 
relations, and subsequently the time taken to resolve these into further fulls.

D a ta  g e n e ra tio n

The cost of using partials is now slightly different -  we can obtain all 1-partials and a 
certain amount of 2-partials (referred to in table 5.5 as ‘(1,1)’-partials) very cheaply, 
by checking for 1-partials in each of the two smoothness tests. Timings for generation 
of such data is given in table 5.5. In order to again highlight the practical speedup of 
the Waterloo variant, we include the time taken to generate identical datasets to those 
used in the previous chapter (timings for the generation of which were detailed in table 
4.8). For these datasets, we see a 12-fold speedup when generating fulls for dataset 
20d, a 23-fold speedup for dataset 25c, and a 44-fold speedup for dataset 30b. Again 
we see the cheapness of collecting 1-partials, and now we also obtain a certain amount, 
of our 2-partials cheaply, as (1,1)-partials.

D a ta s e t Fulls T im e +  1 -p a rtia ls 4- ( l , l ) - p a r t i a l s T im e
20d 500 409 2,588 3,456 417
25c 500 3,235 4,903 11,002 3,259
30b 500 20,328 4,231 8,843 21,063
35A 500 531,518 16,956 139,229 534,284
40d 500 1,146,133 10,552 54,973 1,150,413

Table 5.5: Timings for generation of 500 fulls with and without storing of 1-partials on 
each smoothness test

The other 2-partials introduce the cost of a single primality test and Pollard p com
putation on one of the smoothness tests, as do the 3-partials. Finally, 4-partials are 
the most costly due to the need for two primality tests and Pollard p computations. 
Timings axe shown in table 5.6, following on from table 5.5. Here, the 2-partial column 
shows the total number of 2-partial relations -  both the (1,1) and the ‘true’ 2-partials. 
As before, we see the cost associated with identifying and storing true 2-partials. 
Before resolving these relations, we again prune the datasets to speed subsequent pro
cessing. Pruning took the same approach as before -  several passes without collision 
resolution, followed by a final processing with collision resolution. Timings -  processing
1,2,3 and 4-partials together -  are shown in table 5.7. Since pruning is proportional

the average full has some 15 nonzero entries, fulls via 1-partials have around 24, and fulls via 1 and 
2-partials (cycles of length 3 or more) have around 45, compared with 160 and 405 nonzeros for fulls 
via 1, 2 and 3-partials and 1, 2, 3 and 4-partials respectively.
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D ataset + 2-partials +  3-partials +4-partials Time
20d 3,638 28 0 492
25c 11,489 1,754 76 8,081
30b 11,066 5,204 661 73.666
35A 164,532 281,855 133,626 2,040,296
40d 59,879 55,655 13,814 3,779,748

Table 5.6: Timings for generation of 500 fulls with and without storing of 2-partials on 
each smoothness test

to the number of relations processed and the number of large primes they contain, it 
obviously takes more time as we move on to 3 and 4-partial relations.

Dataset n-partials n-partials Time to Passes
in out prune taken

35A 6,755,792 2,150,738 101,690 9
40d 34,434,127 967,174 243,091 14
40E 9,511,872 671,286 88,610 15

Table 5.7: Timings for pruning of n-partial datasets

Here we show two separate 40 digit datasets, having slightly different initial parameters. 
Each have g = y/2 m odp, since 2 is not a generator for (Z/pZ)* in this example, but 
p —1 =  2q for q prime. Dataset 40d has a very large smoothness bound -  1.4 x 106 agai n 
with a view to generating a large linear system. However, this consequently generates a 
huge amount of partial relations. Dataset 40E has the much smaller smoothness bound 
60,000.

1 and 2-partials

Resolving 1-partials is exactly as it was previously, but for completeness we show 
timings for the datasets under consideration in table 5.8. Again, we see that for very

Dataset 1-partials Pruned Fulls P Tim e to resolve
35A 166,925 18,507 10,604 21.06 87
40d 2,562,564 142,574 77,713 20.20 695
40E 58,962 1608 832 23.60 9

Table 5.8: Timings for resolving 1-partials

little effort we can gain a substantial number of full relations. For comparison of the 
density of the resulting full relations, we note that fulls found directly had on average 
13.29 nonzero entries for dataset 35A, 12.69 for dataset 40d and 14.41 for dataset 40E.
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Concerning 2-partials, we now have two different ways of resolving -  the graph approach 
of Lenstra and Manasse [75] or the ‘reduction’ approach of Leyland et al. [81] and 
Dodson and Lenstra [38]. Timings for both techniques are shown in table 5.9. We no 
longer distinguish between the types of relation input to the procedure, since all 1 and 
2-partials are processed together.

D a ta s e t R e la tio n s
(p ru n e d )

Fulls p v ia  
L e n s tra

T im e  v ia  
L e n s tra

p v ia  
L ey land

T im e  v ia  
L ey land

35A 203,621 100,514 34.86 2,089 35.79 2,915
40d 479,050 201,992 27.84 3,942 27.95 4,070
40E 12,096 3,742 40.47 116 40.79 133

Table 5.9: Timings for resolving 1 and 2-partials

It is interesting to note that, for our implementations at least, the method of Lenstra 
and Manasse [75] was rather faster than the method of Leyland et al. [81]. However, as 
these are two different programs, much of this could be simply due to implementational 
inefficiencies in the latter case. As mentioned, the ‘reduction’ approach does give 
slightly longer cycles than the graph-theoretic method, although in practice we found 
this difference to be very small -  in the above example for dataset 40E, cycles built by 
the former method contained an average of 4.25 edges -  resulting in 40.79 nonzeros per 
full -  while those built via the latter approach had 4.18, resulting in 40.47 nonzeros 
per full relation.

3 and 4-partials

We now use the methods described in this chapter to resolve 1,2 and 3-partials together, 
as shown in table 5.10, and subsequently 1,2,3 and 4-partials together as shown in table 
5.11. Times refer to the time to both build and resolve hypercycles. In general, some 
70% of the time taken to build the hypercycles was spent in setting up hash tables to 
index relations by the primes they contain, and vice versa.

D a ta se t R e la tio n s
(p ru n e d )

Fulls P T im e  to  
reso lve

35A 1,131,825 570,731 63.19 32,426
40d 858,718 311,182 38.05 11,702
40E 149,174 38,067 160.47 5,841

Table 5.10: Timings for resolving 1,2 and 3-partials

W hen taking into account the time required to prune the datasets, we see that process
ing 3-partials takes considerably more effort than does processing 1 and 2-partials only. 
We are now rather more hampered by the small dataset sizes we are considering here
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-  the vast amount of data collected makes it rather harder to see exactly how practical 
the technique is. It is a similar story when processing the 4-partials.

D a ta se t R ela tions
(p ru n ed )

Fulls P T im e to  
resolve

35A 2,150,738 1,146,379 82.21 88,786
40d 967,174 337,721 41.80 14,227
40E 671,288 202,273 405.86 103,297

Table 5.11: Timings for resolving 1,2,3 and 4-partials

We note that in almost all our experiments, we obtained exactly k fulls from k hypercy
cles, where k = E  — V  and E  and V  correspond to the number of relations and distinct 
large primes in the hypergraph respectively. The only exceptions to this were firstly 
when processing a very small proportion -  some 5% or so -  of the partial relations, and 
secondly, as before, in the case of isolated loops.

O verall speed u p

We have seen that one can obtain a large amount of full relations via the use of 3 and 4- 
partials. It is not yet clear, however, whether the time taken to store and process these 
partials allows an overall saving in processing time. We now consider this question. As 
before, we try to estimate the timings we can save by gathering and resolving partials. 
compared to the time to generate full relations directly. Here we consider dataset 40E. 
but in order to give a more realistic example, we cut the double large prime bound from 
B \  to 100.02 =  lOOBi2 to create dataset 40Es. B\ here remained at 60,000. Looking 
at the yield of the various partial relations gives us figure 5-18.

I
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Figure 5-18: Yield of 1 -  4-partial relations 40Es

We see firstly that, as in the last chapter, cutting the large prime bound does not result 
in a commensurate decrease in yield (compare with figure 5-13). We now look at the
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points at which we could have terminated relation generation, were we using partials. 
Using 1,2,3 and 4-partials, we see tha t we could have stopped relation generation after 
some 60% of the total time we actually spent. We would then have a total of 8,537 
fulls in 6,058 unknowns.

S to p
p o in t

Fulls
(d ire c t)

Fulls 
(v ia  p a r tia ls )

T im e to  
g e n e ra te

T im e  to  
reso lve

A ve. p for 
8 ,537 fulls

60% 864 7,673 10,505,436 20,388 757.0
70% 1,008 20,488 12,256,343 20,737 172.9
100% 1,441 80,220 17,521,220 32,045 54.0

• 8,537 • 101,313,103 • 14.4

Table 5.12: Savings using 1,2,3 and 4-partials - 40Es

Table 5.12 shows the time taken to build and resolve full relations, using 1.2.3 and 
4-partials. From figure 5-18 it would appear that term inating relation generation after 
around 60% of the total time we actually took would have been more efficient. The 
timings back this up; but we also show the advantage of continuing relation generation 
rather further. The advantage this gives is an order of magnitude drop in the density 
of the average full relation. Even allowing for this extra processing, we see that we are 
still well within the time it would have taken to generate the equivalent number of full 
relations directly.

S to p
p o in t

Fulls
(d ire c t)

Fulls 
(v ia  p a r tia ls )

T im e  to  
g e n e ra te

T im e  to  
reso lve

A ve. p for 
7,222  fulls

75% 1,080 6,142 12,902,190 3,417 139.8
80% 1,152 8,780 13,762,336 4,131 133.7
100% 1,441 23,292 17,214,866 6,650 110.9

• 7,222 • 85,707,301 • 14.4

Table 5.13: Savings using 1,2 and 3-partials - 40Es

Looking at only the 3-partials in figure 5-18, we find tha t the point at which we obtain 
a sufficient number of relations occurs after some 75% of the time taken. As shown by 
table 5.13, again it is in our interests to go rather further than this point in order to 
produce a lighter set of full relations (although here the difference is not so pronounced). 
By not allowing more than one application of Pollard p (and associated primality test) 
per attem pt, we also take slightly less time in relation generation.
Simply using 1 and 2-partials for this dataset would not have given us enough fulls in 
the time we took to generate these relations, so the use of 3 or 4 large primes does 
give a practical speedup in this case. We emphasise, however, tha t we are using a 
slow method of relation generation -  for a faster method using sieves, early abort and 
other strategies, it is unlikely that we would benefit from using two or more large
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primes at the kind of scales under consideration here. The implementation of Cavallar 
[21] compares a ‘3+ 2’ and a ‘2+2’ large prime NFS implementation to factor miniOns 
of 179 digits, and concludes that no advantage was to be gained by using more large 
primes, but for the fact tha t a rather smaller factor base could have been used. Leyland 
et al. [81], on the other hand, estimates a speedup by a factor of 1.7 when using the 
Multiple Polynomial Quadratic Sieve with three large primes, compared to using the 
same method with two large primes to factor a number of 129 digits.

5.5 Summary

In this chapter we have investigated how the techniques of Dodson and Lenstra [38] 
and Leyland et al. [81] for resolving 3-partials for factoring purposes carry across to the 
discrete logarithm case. We generated such data by means of the Waterloo variant of 
the basic index calculus method. This forces us to take account of exponents of large 
primes, and we showed how the techniques of the previous chapter to resolve 1 and 
2-partial relations can be simply adapted to deal with this situation.
We illustrated the potential difficulties of resolving relations involving more than two 
large primes, and have shown how, in general, one can resolve all hypercycles built, 
such tha t the yield is again all but e of that in factoring applications. The exceptions 
are again isolated odd cycles, which are usually some kind of loop. The downside of this 
technique is tha t it can create slightly longer cycles, leading to more nonzero elements 
in the ensuing fulls; so if one is using a maximum of two large primes per relation, it 
may be advisable to use the graph theoretic method of Lenstra and Manasse [75], or 
else some strategy to minimise the weight of resulting fulls, such as that of Cavallar 
[20]. We found empirically tha t the approximation E  — V  actually gave us the exact 
number of cycles resolved by the procedure of [81] so long as we processed a reasonable 
amount of the partial relations; and this seems a good practical indicator of potential 
yield during relation generation.
We found experimentally tha t the yield of 1-partials grew quadratically with the num
ber of relations processed, while the number of fulls obtained from processing 1 and
2-partials grew with the cube of the number of partials processed. Processing higher 
order partials resulted in explosive increases in yield in a similar manner to that of the 
factoring method described in Dodson and Lenstra [38]. Practical speedup is not easy 
to judge for the small examples presented here, but it is reasonable to assume that for 
discrete logarithm computation modulo a k-bit prime, the technique will be as effective 
as it is when applied to factoring a fc-bit number.



Part III

Linear Algebra and Computation
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Chapter 6

Linear Algebra

In this chapter we consider the final stage of precomputation for the index calculus 
method, and look at methods for solving systems of linear equations over a finite 
field. We discuss the effect of using a preconditioning method -  structured Gaussian 
elimination -  coupled with the iterative Lanczos algorithm, and examine how these 
methods are affected by the techniques of the previous chapters.

6.1 Solving linear system s

Index calculus methods, both for discrete logarithm computation and for factoring, 
require us to solve a large system of linear equations

A x — b

where A  is an m  x n  matrix, 6 is a known m-vector and x  is an unknown n-vector 
of the discrete logarithms of our factor base elements. By ‘large’ here we are talking 
of up to 106 or more equations in some 106 unknowns. For factoring purposes, we 
are solving a homogeneous system modulo 2, while for discrete logarithm computation 
modulo a prime p  we look to recover a full solution vector modulo the prime factors of 
p — 1; although in practice we may not recover a solution value for every unknown in 
the system. Since these systems are to be solved over a finite field, a certain amount 
of complexity is added to standard algorithms, and some are even rendered useless. 
Conversely, the systems under consideration do have a certain structure that we may use 
to our advantage. Several studies involving use of index calculus-type methods discuss 
the linear algebra step, as it is very much a practical bottleneck in the procedure due 
to the difficulty of parallelising available techniques. LaMacchia and Odlyzko [70] and 
Pomerance and Smith [109] identify several effective techniques for the solution of sparse 
linear systems modulo a prime. These include iterative schemes such as the Lanczos, 
Conjugate Gradient and Wiedemann algorithms, with or without a preprocessing step

102
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involving some kind of Gaussian elimination. LaMacchia and Odlvzko [701 advocate 
the use of modified or structured Gaussian elimination (SGE) followed by use of the 
Lanczos or Conjugate Gradient algorithm. Preconditioning strategies for the linear 
algebra step (from a factoring viewpoint) are extended and improved by Cavallar [20].

6 .1 .1  W h a t  is th e  m a tr ix ?

In order to make the linear algebra step more efficient, we try to take advantage of the 
structure of the system. We can note certain properties about the system.
Firstly, and most importantly, it is extremely sparse. As an example, for one of our 
datasets of some 25,000 unknowns, the average row contains around 9 nonzero ele
ments. Even with around 105 unknowns, there are generally no more than 50 nonzero 
coefficients in each row of the matrix [70]. We can thus save on memory by using a 
sparse encoding.
Secondly, although random numbers were used during the generation of the rows of 
the matrix, the resulting system itself has a certain amount of structure the matrix 
is considerably more dense toward the left hand side. i.e. more nonzero .coefficients 
exist for the smaller factors in our factor base1, as noted in chapter 3. Nonzero values 
corresponding to the larger primes are generally ±1. In all datasets studied as part of 
this investigation, over 60% of the nonzero values in the matrix occur in the first 5% 
of the columns. This causes immediate heavy fill if ‘traditional’ Gaussian elimination 
is used, and any benefits of the sparse structure are quickly lost.
Finally, the system is usually underdetermined. We generally require more rows than 
columns in our matrix in order to maximise the number of unknowns for which we can 
recover a solution (due to the random nature of relation generation). For the smaller 
systems discussed in this chapter, in general some 5-6% of the primes in our factor 
base do not occur in any relation. Taking more rows will usually help reduce this loss, 
but will of course increase the size of the system. Conversely, since not all factor base 
elements will be represented, we can generally get away with generating slightly fewer 
relations -  Lenstra and Manasse [74] note that, for a factor base of n elements, we 
generally need only generate some 0.99n relations.
Most discussions concerning discrete logarithm computation in the literature end after 
the linear algebra step -  actual computation is rarely discussed. However, this last 
point is very important. For factoring purposes, we take excess rows purely to guar
antee several linear dependencies, since finding only one may simply return the trivial 
factorisation. We wish, though, to minimise both the size and density of the matrix to 
speed processing. The index calculus method for discrete logarithms and its analogue

*If using a ‘multiple factor base’ approach such as NFS or FFS, of course, such a structure would 
arise for each factor base. It is straightforward however to permute columns by weight to restore ,i 
simple structure.
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for factoring now diverge, however. While it remains the case that we wish to minimise 
the time taken to solve the linear system, for the discrete log case we also want to 
solve for as many of the factor base elements as possible, to maximise the size of our 
database of known values. In general, not all factor base elements are represented in 
the matrix. Using a certain amount of denser relations will allow us to increase this 
coverage of values, but will generally compromise solution time.
Even when taking many more rows than we have factor base elements, the system will 
generally remain underdetermined. As shown by figure 6-1. plotting tin' p e r c e n ta g e  

of unknowns which remain unresolved after solving against the amount of excess  rows 

contained in the system (expressed as a percentage of the number of columns in the 
system), we see that even taking an excess of 50% does not allow us to compute all th e  

unknowns in the system. Some 2% remain.

i

»«

Area of m atrix (left to  right)

0  30% excess ■ 20% excess □  10% excess 0  0% excess

Figure 6-1: Unknowns outstanding (left) and their distribution - 20d

This difficulty in obtaining a full solution vector has important consequences when 
using these results in the final stage of the index calculus procedure, and we wish to 
minimise this loss if possible. We note, as illustrated by the right hand figure, that 
the majority of these outstanding values are found toward the right hand side of the 
matrix -  the sparse area of the system, corresponding to the larger primes in our factor 
base, which occur in few, if any, relations.

6 .1 .2  G a u s s ia n  e l im in a tio n

Traditional Gaussian elimination is often the first port of call for anyone wishing to 
resolve a system of linear equations. The algorithm in its most basic form is fairly simple 
to implement, and is most commonly used to achieve so-called LU decomposition. For 
our purposes, however, we do not need to go quite so far -  we could simply put the 
system Ax  =  b into upper triangular form, and then use back substitution to recover 
the unknown values. We can accomplish this by means of elementary row operations: 
we may swap rows, multiply rows by some constant, and add or subtract rows.
The fundamental problem with standard Gaussian elimination, particularly for the
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large systems we are considering, is the potential level of fill. Subtracting one row from 
another will create new nonzero entries in the matrix, and an initially sparse matrix may 
quickly become very dense as the elementary row operations of Gaussian elimination 
are computed. This obviously inhibits the practical performance of the algorithm both 
in terms of time taken for subsequent operations and of course in the amount of space 
needed to store the matrix. Since to eliminate the first column takes n (n —1) operations, 
the complexity of Gaussian elimination is 0 (n 3). However, by taking account of the 
structure of the system, in practice, an index calculus-type system can be solved in 
time 0 (n 2+e), as noted by Odlyzko [99].

6 .1 .3  S t r u c tu r e d  G a u s s ia n  e l im in a tio n

A number of people have proposed intelligent or structured Gaussian elimination (SGE) 
(see Bender and Canfield [11], LaMacchia and Odlyzko [70], Pomerance and Smith 
[109]) to try to take advantage of the sparsity and structure of the system. The idea is 
to output a smaller system to solve with another method possibly standard Gaussian 
elimination -  and then we can use back substitution to recover the other values.

LIGHT

Sub-matrix

Deactivated rows

Deleted rows

Figure 6-2: Aims of structured Gaussian elimination

The algorithm has no exact definition, but basically involves the same elementary 
row operations used in traditional Gaussian elimination. One tries to apply these 
operations in a manner that will minimise fill. The routine outputs two smaller systems 
of equations as shown in figure 6-2. We input an m  x n matrix. We then carry out 
elementary row and column operations to permute the matrix such that the top k + 6 

rows contain nonzero values in only the first k columns. These rows then form a 
(k + 5) x k  submatrix. The subsequent I ‘deactivated’ rows up to row n + f have 
been removed from the system during processing, and can be ordered such that tin* 
span of columns for which rows contain a nonzero value increases by precisely 1 as one 
considers successive rows. Finally, any further rows are discarded (or can be retained 
for further back substitution if necessary).
The smaller submatrix may be solved by another method -  in our case the Lanczos 
algorithm -  and then the rows marked ‘deactivated’ may be solved by back substitution
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using these results. Note that this diagram is not to scale -  our input matrix is very 
much more biased toward the left hand side, and in reality we can expect our submatrix 
to be around 5% of the size of the original matrix, or indeed even smaller.
The following version2 of the SGE algorithm is based on that described by Bender and 
Canfield [11] -  itself following Pomerance and Smith [109] -  with the addition of step 
lc  to remove excess rows. Bender and Canfield describe the method as applied to data 
over GF(2) arising from factorisation calculations.
The algorithm splits the matrix into active and deactivated regions and uses the concept 
of heavy and light columns and rows, where ‘heavy’ indicates a large number of nonzero 
entries in the given column or row. Similarly we define the weight of a row or column 
to be the number of nonzeros it contains. For the purposes of the SGE algorithm 
(algorithm 8), we consider the weight of a column or row as the number of nonzero 
values it contains in the active part of the matrix only.

Algorithm  8 Structured Gaussian elimination 
Input: m x n  matrix, m  vector
Output: k +  S x k submatrix, I rows for back substitution

Step 0 -  Declare fraction of columns to be ‘inactive’
Step 1 -  Initial clean up: 
repeat

la  Discard columns of weight 0
lb  Store columns of weight 1 and their corresponding rows 
lc  Delete an excess row 

until all columns have weight 1 
Step 2 -  Deactivation: 
repeat

2a If a row has weight 1, eliminate it and store this row and the column intersecting 
it
2b Deactivate a column and repeat step 2a 

until all columns are deactivated or eliminated

The first step (here referred to as step 0) assigns an initial partition to the matrix, and 
we look to preserve sparsity in the ‘active’ region over the course of the two subsequent 
phases of the algorithm. It should be noted tha t this partition of columns is not 
fixed for the duration of the algorithm; rather, it will generally shift to the right as the 
algorithm progresses. Note further tha t the only step which will cause any fill is step 2a, 
the Gaussian elimination step, and that this fill is restricted to the ‘deactivated’ area of 
the matrix. Steps la  and lb  are iterated before step lc is invoked, and we subsequently 
iterate steps la  and lb  again. We maintain a certain excess 5 in the submatrix, again 
to guard against any linear dependencies which may be present. We may subsequently 
solve the submatrix consisting of the deactivated columns and rebuild the solutions of

2Note that various versions of the algorithm are possible. Once actions which minimise the amount 
of fill in the matrix axe identified, the order of their application may vary.
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the full m atrix by means of the rows eliminated in steps lb  and 2a. The number of 
columns initially declared ‘inactive’ thus goes some way toward defining the size of the 
output submatrix.

6 .1 .4  L anczos a lgorith m

Once the system has been processed with SGE, we need to solve the resulting small sys
tem. The Lanczos algorithm [72] for solving systems of linear equations first, appeared 
in 1952, and is particularly useful for solving sparse systems. It was not originally 
intended to be used over finite fields, but it has been successfully adapted to deal with 
the additional complications these situations present. Here we use the algorithm as a 
‘black box’ to solve the system output from SGE, but for completeness we give a brief 
description. The following is from LaMacchia and Odlyzko [70]3.
The Lanczos algorithm attem pts to provide a vector a: as a solution to the system 
A x  = w  where A  is a symmetric n x n  matrix and w is a known column vector of 
dimension n. An initial problem, then, is that in general we will have m  x n matrix B  
(m > n ). In order to get round the requirement for a symmetric input matrix, let D 
be an m  x m  diagonal matrix with elements chosen at random from (Z/pZ)*. Then let

A  =  B t D 2B

and
w = B t D 2u

To solve the system A x  = w the Lanczos algorithm proceeds as shown in algorithm 9. 
This recursive procedure continues until for some j  < n  the algorithm finds a Wj for 
which (W j,A w j) =  0; i.e. Wj is conjugate to itself. If w3 ^  0 then the algorithm has 
failed. However, if Wj =  0 then

j - 1 
x  = y ^ y blwl 

1=0

is a solution to A x  = w , where
_ (Wj,w)

{Wi,Vi+1)

It may be the case, depending on our method of relation generation, that we wish to
solve a homogeneous system A x  = 0. In this case, we can compute w — A.r  for some
random vector r, and solve the system A.x 1 = w. We can then compute x  =  x' — r to
recover the desired solution to A.x  =  0.

3LaMacchia and Odlyzko [70] apply the Conjugate Gradient algorithm to solve the linear system  
modulo 2, whilst the Lanczos algorithm is used to solve the system mod (p — l ) /2  (the Lanczos 
algorithm, when applied modulo 2, will terminate with a self-conjugate vector 50% of the time on 
average and is thus not practical). The conjugate gradient algorithm was not implemented as part of 
this study.
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A lg o rith m  9 Lanczos algorithm
Input: n  x n  matrix A, n  vector w
Output: n  element solution vector x

Initialise:
wo =  w 
v \  =  A w q  

Wi  = -

*<• =  £ $
x  =  boWo
Process: 
for i > 1 do

Vi+ 1 =  Awi

1 + 1  t + 1  (vJi,V i+ 1 ) * (lO i-V .V i) 1 1

if  (Wj , Awj ) =  0 then  
if Wj = 0 then  

return a: 
else 

Failure 
end if 

else
b  (WUW)

1 {W i,V i+ 1)
X =  X +  fejWj

end if  
end for

When applied to a finite field, the Lanczos algorithm has none of the rounding errors 
tha t would potentially cause instabilities. We do though have the problem that, in 
a finite field, one can find a vector which is self-conjugate but is itself nonzero. In 
practice, however, no execution of our implementation failed for this reason.
Again we may look at the structure of the matrix in order to increase efficiency of the 
implementation. The algorithm calls for the computation of several inner products. 
We have the advantage that it is not actually necessary to compute and store the 
(dense) matrix A -  we can compute for example Awi as B T(D2(Bwi)). Furthermore, 
we know tha t the majority of the nonzero values in the matrix are small; often ±1. 
However, taking advantage of the sparse nature of the matrix by storing it in some 
kind of compressed format as in the structured Gaussian elimination routine does lead 
to increased overhead in accessing memory when computing inner products and matrix 
multiplications. The runtime of the Lanczos algorithm can be shown to depend on 
ne (see LaMacchia and Odlyzko [70]), where n is the number of columns in the input 
matrix and e is the number of nonzero entries in this matrix.
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6.1 .5  O thers

The Lanczos algorithm is one example of a Krylov-subspace method. O ther such meth
ods exist, such as the Conjugate Gradient (Hestenes and Stiefel [54]) and Wiedemann 
(Wiedemann [137]) algorithms. These methods may of course be applied directly to 
the full system without preprocessing via SGE. For an in-depth discussion of these 
techniques, see Lambert [71]. Various methods for parallelising these methods have 

been proposed. Montgomery [90] shows how, when solving modulo 2, one can process 
N  vectors simultaneously, where N  is the computer word size. Contini [25] sketches 
a master-slave model for the Lanczos algorithm, where each slave holds some subset 
of the rows of the matrix. The Wiedemann algorithm has been block parallelised by 
Coppersmith [27]. At present, it seems that block Lanczos and block Wiedemann are 
the method of choice for solving large linear systems originating from index calculus 
based methods; usually with a preprocessing step of SGE to reduce the size of the 
system whilst maintaining, as well as possible, some degree of sparsity.

6.2 Experim ental results

Both a structured Gaussian elimination routine and the Lanczos algorithm were im
plemented as part of this study. Our intention was to investigate the impact of both 
generator choice and the use of ‘large prime’ derived relations on the linear algebra 
step, but also to discuss the workings of the SGE procedure in a little more depth, in 
the hope of clarifying the procedure for others wishing to implement the technique.

6.2.1 SG E

The execution of the SGE procedure is best illustrated diagrammatically as below. 
Here we are solving modulo q = (p — l)/2 .

SGE phase 1

Figure 6-3 illustrates the application of phase 1, the ‘initial clean up’, to a 4801 x 4801 
m atrix resulting from 20 digit discrete logarithm calculation. The y-axis plots the value 
of ne where n is the number of columns in the submatrix output by SGE (an estimate 
of complexity for the Lanczos algorithm to solve this submatrix system), and e is the 
number of nonzero entries in this submatrix.
There is an immediate fall in complexity ne as the operations of steps la  and lb  
eliminate many columns thanks to the initial deactivation. Complexity then decreases 
smoothly to the end of the first phase. It is worth noting that it can be useful to keep 
the rows we ‘remove’ in step lc in a file -  we may find that they allow us to recover 
more unknowns in the back substitution phase of the full solution process. If we take a
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Figure 6-3: SGE Phase 1 (0% excess) 20d

larger number of excess rows, we create more work for the first phase of the algorithm, 
due to having more rows to remove. However, this can actually give us a smaller system 
to work with going into phase 2.

SG E phase  2

Carrying out a similar examination of the second phase of the algorithm, we obtain 
figure 6-4.

00 10 20 3 0 6 0 70 8 04 0 50

Ite ra tio n s  of p h a s e  2

Figure 6-4: SGE Phase 2 (0% excess) -  20d

With the operations of step 2a we begin to see the effects of fill which causes the 
complexity to rise in spite of the reduction of the absolute size of the submatrix. There 
comes a point, however, when a certain number of columns have been deactivated or 
eliminated, at which the system collapses -  the ‘created catastrophe’ of Pomerance and
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Smith [109] -  and the algorithm terminates. What motivates this collapse? Figure 6-5 
plots the number of rows eliminated by successive applications of stop 2 a for the f irst 

dataset.
It can be seen in figure 6-5 that we have a near linear increase followed by a dramatic 
removal of all remaining columns without further application of stop 2b. Wo have been 
deactivating columns based on their weight, so at this point we are well into t h e  s p a r s e  

side of the matrix. In the datasets tested, over 70% of the nonzero entries occurred in 
the first 10% of the columns. There comes a point when elimination of a single row and 
column allows removal of all others due to their sparsity. For the dataset illustrated in 
figure 6-5, collapse occurs when some 80% of the columns in the matrix have been either 
eliminated, deactivated or removed as zero columns. When one considers the 20 digit 
dataset having 20% excess rows, one finds that collapse occurs when 90% of columns 
have been removed in one of these ways. Comparing the collapse point across datasets 
we see that it occurs with fewer iterations of step 2a when we have a greater excess of 
rows to columns - we have shifted more work onto the first phase of the algorithm.

1 4 0 0
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8 0 0

6 0 0

4 0 0

200

0
0  1 0  2 0  3 0  4 0  6 0  6 0  7 0  8 0

I te ra tio n s  of s te p  2 a

Figure 6-5: SGE Phase 2 collapse (0% excess) -  20d

6 .2 .2  O b se rv a tio n s

We now make several observations concerning the operation of the SGE procedure. 
Ideally we would like to give estimates for optimal parameters with which to run the 
SGE procedure, however, as noted by LaMacchia and Odlyzko [70]. this varies from 
one dataset to another. We can however note any trends which it would be useful to 
be aware of when using this method.
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Blowup

It was observed that a ‘blowup’ of coefficients could occur during step 2a (the elimina
tion step), causing overflow errors when C + +  ‘long’ data  types were used for nonzero 
m atrix entries. This is also noted by Gordon and McCurley [49]. Although most 
nonzero entries in the matrix are ±1, one can have other values. Indeed, it is not 
uncommon amongst the columns representing lower factors to find exponents as large 
as 10 or 12. Using large prime variant techniques can cause even larger values to ap
pear. W hen applying step 2a, these large values can propagate and, in addition to 
encountering the effects of fill, we also get much larger coefficients.
It is desirable, for both memory and time reasons, to use ‘long’ data  types (at most) for 
the nonzero m atrix values, but if the initial parameters are not chosen with a degree of 
care, this blowup effect can cause coefficients to overflow a long data type and multiple 
precision data types become necessary, severely reducing performance. For the same 
reasons, we do not wish to use multiple precision values for the matrix exponents and 
reduce modulo <7, instead of using C + +  long data types and using ‘fraction-free’ row 
elimination. Values in the matrix can be negative, particularly if one is considering 
data from the Waterloo variant index calculus technique. Reducing these modulo q 
immediately introduces (for the datasets we are considering) 20 or 30 digit numbers 
into the m atrix and performance is immediately and drastically reduced.
The smaller the initial deactivation, the more work the algorithm is forced to undertake 
in both phase 1 and phase 2. As a result of this, step 2a is applied to the extent that 
the nonzero values can overflow their data type maximum value. This could potentially 
be alleviated by maintaining a larger excess in the submatrix -  which will reduce the 
work done by phase 2 -  and then removing the heaviest rows (once the SGE algorithm 
has terminated) in order to bring the excess down to a more reasonable amount.

Choice of rows/colum ns

A second point for consideration is the question of which columns we should flag as 
‘deactivated’, both in step 0 and in step 2b. The simplest method -  as implemented 
here -  is to choose the row/column with the highest weight. Other options are of 
course possible -  if we deactivate a column which occurs in a row of weight 2, then 
by deactivating this column we can obtain a row with a single nonzero entry in the 
light columns, and immediately eliminate it from the system4, as noted by Cavallar 
[20], Pomerance and Smith [109], A similar idea can be applied when considering the 
removal of excess rows. We found it best to remove excess rows one by one rather than 
‘en masse’ as is suggested by LaMacchia and Odlyzko [70], since otherwise we may

4For the dataset sizes examined here, we found that the increased book keeping needed to track 
this information negated any benefits it brought about.
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effectively create a new excess due to having removed a number of unknowns from the 
system.

Excess rows

In addition to the number of excess rows we input to the procedure, it is also important 
to consider a certain excess as output from the SGE algorithm. If we simply remove all 
excess rows in step lc we risk passing an under-determined submatrix to Lanczos and 
failing to find a full solution vector. The results of our tests indicate that an excess 
of up to 12% may be necessary, although in general a 5% excess sufficed to get a full 
result set from Lanczos. Of course, an incomplete result set from Lanczos can, in the 
worst case, cause all results obtained via back substitution to be incorrect.

M issing values

It was noticed tha t back substitution over the rows deactivated in steps lb  and 2a 
sometimes failed to resolve all outstanding unknowns -  certain values, which were 
found if one applied Lanczos directly to the full system, could not be resolved when 
using the SGE—̂ Lanczos—>back substitution approach. In an attem pt to remedy this, 
both rows deleted in step lc and ‘ancestor rows’ from step 2a were also retained and 
additional back substitution over these rows yielded further values. However, it often 
remained the case that certain values could not be resolved. This comes from deleting 
the ‘wrong’ row in some sense over the course of the SGE algorithm. We may well have 
the situation where two particular rows are the only rows which can be used to resolve 
a certain number of variables. If we ‘split them up’ and both rows do not go to the 
Lanczos algorithm via the output submatrix, we may find tha t we cannot resolve two 
of these unknowns. Back substitution, which relies on the fact that we have a single 
unknown outstanding in each successive row, then also fails. Phase 3 depends upon 
our building a database of known values -  any reduction in the number of these values 
will have a detrimental effect on discrete logarithm computation.

Optimal stop point

The overall goal of the SGE—»Lanczos—>-back substitution model is to bring the matrix 
size down to a more manageable level, whilst attem pting to preserve the sparse struc
ture as much as we can. It is natural then to enquire when we should stop the SGE 
procedure. It is interesting to observe Lanczos complexity plotted against the number 
of columns deactivated in the initial ‘partitioning’ of the matrix, which is the major 
factor governing the size of the submatrix on termination of the SGE algorithm. We see 
in figure 6-6 tha t for certain datasets it is not in fact optimal to reduce the submatrix 
as much as possible, and, as noted by LaMacchia and Odlyzko [70], adding more rows
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to the system may in fact allow faster overall solution time. The rather abrupt breakoff 
of these graphs is due to the effects of coefficient blowup mentioned earlier.

Intel d» activation initial daacMvaton

Figure 6-6: SGE initial deactivation v Lanczos time (10% and 20% excess) -  25c

This dataset comes from computation of discrete logarithms modulo a 25 digit prime, 
with 10% (left) and then 20% more rows than columns. It is clear that there comes 
a point when the increasing density of the submatrix begins to offset any further ad
vantage gained from reducing its absolute size. Of course, the time taken by the SGE 
routine increases depending on both the input size of the matrix and the desired output 
size of the submatrix. We can thus save a certain amount of time by terminating the 
SGE algorithm prior to maximum reduction. Further, the effect of coefficient blowup’ 
is reduced by earlier termination, thus keeping the absolute size of the matrix coeffi
cients smaller.
Results indicate that a smaller absolute size of submatrix could be achieved through 
a smaller initial deactivation if blowup could be avoided. However, such a submatrix 
would be extremely dense (as much as 97% or more in our tests), which is undesirable. 
Regarding optimal initial deactivation, Pomerance and Smith [109] deactivate some 
5% of the columns to form the initial partition of the matrix. In our implementation, 
we found that deactivating nearer 20% gave a minimum solution time for a square 
matrix, but this fell as one took more excess rows -  optimal solution time came when 
deactivating around 10% of the columns of matrices having 30% or more excess rows.

6 .2 .3  O v e ra ll sav in g s

We now turn our attention to the overall savings one can achieve with these meth
ods. We compare the solution of a given system obtained via the Lanczos algorithm 
with equivalent results obtained via a structured Gaussian elimination/Lanczos/back 
substitution combination. Timings for the back substitution step are very small in 
comparison and so are omitted from table 6.1.
The interesting point to note is that, perhaps contrary to intuition, a larger system 
may actually be solved in less time if it has a sufficient amount of excess rows. This
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S G E  in p ( % ) T im e L anczos in p ( % ) T im e T o ta l
•

22,710 x 22,710
•

0.04
•

7,060
22,710 x 22,710 

4,187 x 3,987
0.04
0.84

3,555,873
258,066

3,555,873
265,126

•
28,535 x 23,377

•
0.04

•
7,998

28,535 x 23,377 
3,138 x 2,988

0.04
1.06

4,558,603
125,531

4,558,603
133,529

•
34,290 x 24,489

•
0.04

•
9,680

34,290 x 24,489 
2,607 x 2,482

0.04
1.17

5,489,076
76,588

5,489,076
86,268

Table 6.1: Time taken to solve linear systems -  30b

rather curious result is also noted by LaMacchia and Odlyzko [70]. In this case, we 
see tha t timings are still going down when we take 40% more rows than columns. The 
results of [70] suggest that this continues with larger datasets. In our tests, we saw 
a similar situation for the 25 digit data (where taking some 20% excess rows gave a 
minimum solution time), but not for the 20 digit data (here, a larger system simply 
took longer to solve).
Even with 25,000 unknowns there are still in general less than 10 nonzeros in the average 
row. The larger matrix is ‘more sparse’ than those we have considered for the 20 and 
25 digit datasets if one represents sparsity as a percentage, and it would appear that 
the SGE algorithm can take a greater advantage of this when given a certain number 
of excess rows. If this pattern continues one could take a considerable number of excess 
rows for very large datasets, so long as the time required to generate these relations 
is offset by gains in time for the linear solve step. This excess gives a greater choice 
as to optimal rows to delete, but, of course, too great an excess could also offset this 
benefit by requiring more time to locate and manipulate the data within the SGE and 
Lanczos algorithms. As a final point, it is worth noting again that the savings here 
were obtained even with rudimentary implementations -  they could without a doubt 
be made more efficient.

6 .2 .4  G enerator choice rev isited

We now consider the effect that the reduction in weight brought about by choosing 
our generator may have on our method of solving the linear system. As described in 
chapter 3, we attem pt to choose our generator such that we may remove the column 
corresponding to factor base element 2 prior to the linear algebra step, with a view to 
cutting down on both storage and processing time5.

5Certain factoring papers (notably that of Huizing [59]) advocate removing the k heaviest columns 
in the matrix prior to solution with a Block Lanczos approach. A full result set is subsequently 
reconstructed at a later point. Whilst this will obviously lighten the matrix still further, we can argue 
that removing the generator column does not require us to reconstruct the result for this factor base 
element, and thus would still be beneficial.
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Generator choice and Lanczos

We first consider the slightly simpler case of the effect of generator choice on the Lanczos 
algorithm. As noted in chapter 3, for our 30 digit dataset, the columns corresponding 
to factor base elements -1 and 5 (which was the value of generator used for this dataset) 
account for some 8% of the total nonzeros in the system. Table 6.2 shows the time taken 
by the Lanczos algorithm to solve 3 systems -  one square, one having 20% excess rows 
and one having 40% excess rows, both with and without the columns corresponding to 
factor base elements -1 and 5.

M atrix Time to solve with  
—1 and g columns

Time to solve w ithout 
— 1 and g columns

Saving (%)

22,710 x 22,710 3,555,873 3,362,390 5.44
28,535 x 23,777 4,558,603 4,318,898 6.01
34,290 x 24,489 5,489,076 5,198,347 5.30

Table 6.2: Time taken via Lanczos w ith/w ithout g column -  30b

Runtime for the Lanczos algorithm is proportional to ne, where n  is the number of 
columns in the input matrix and e is the number of nonzero entries in the matrix. By 
removing these two columns, we only decrease n  by 2; but reduce e by nearly 8%. This 
reduction in the number of nonzeros in the system is not quite reflected in the reduced 
time taken to solve the system via Lanczos for this example; however, non-optimal code 
(and possibly operating system overheads) may account for this discrepancy. For some 
smaller datasets, we did obtain savings in keeping with theoretical speedup (as much as 
14% for a 6000 x 5000 system modulo a 20 digit prime). We also save a certain amount 
of space by removing this column, although this is rather small. For the first example 
above, we can remove 17,708 nonzeros. Assuming twelve bytes per nonzero (four for 
the position, four for the value, and four for a pointer), removing the generator column 
allows us to save some 200Kb of memory, which would be doubled if, as is often the 
case, the m atrix is (rather wastefully) also held in core memory in its transposed form. 
Recall from chapter 3 tha t computing a root of 2 to use as a generator took very little 
time (less than 10 hundredths of a second for each example tried), and so the savings 
in linear algebra can outweigh the initial effort quite considerably.

Generator choice and SGE

Using the SGE—>Lanczos model, we would hope to obtain similar gains. An added 
advantage -  although of course one need not actually make use of it -  is that removing 
the column corresponding to factor base element 2 will remove some of the largest 
coefficients in absolute value. This should postpone the effects of coefficient blowup 
and may allow us to run the SGE procedure for longer.
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M a tr ix T im e  to  solve w ith  
—1 a n d  g co lum ns

T im e  to  solve w ith o u t 
—1 a n d  g co lum ns

Saving  (%)

22,710 x 22,710 265,126 255,390 3.67
28,535 x 23,777 133,529 127,978 4.16
34,290 x 24,489 86,268 82,992 3.80

Table 6.3: Time taken via SGE—̂ Lanczos w ith/w ithout g column -  30b

Table 6.3 shows timings for the 30 digit dataset, again having 0, 20% and finally 40% 
excess rows, as before. We see immediately that the effectiveness of removing the 
generator column is not so pronounced as when solving directly via Lanczos; although 
we are still saving time overall. The reason for this is that the savings are only really 
being applied to the small submatrix output from SGE. In the SGE routine itself, heavy 
columns were deactivated anyway. Since we then process a smaller (and rather denser) 
matrix with Lanczos, a lower proportion of the nonzeros are represented in the -1 and 
g columns than was originally the case. For the first system in table 6.3, we find that 
some 3.66% of the total weight of the submatrix occurs in the -1 and g columns, as 
opposed to around 8% in the original system. Savings will thus be reduced.
We found that we could reduce the matrix slightly further prior to numerical breakdown 
if the generator column was removed. However, this extra reduction was only a m atter 
of one or two rows/columns smaller. As an example, we could reduce an input matrix 
of dimension 28,535 x 23,777 to a 1,112 x 1,078 matrix if we removed the generator 
column, but the best we could do if retaining the generator column was an output 
m atrix of 1,115 x 1,081. Further, as mentioned, there is no benefit in going to these 
extremes. The solution time for this system with an output matrix of 3,138 x 2,988 
was 1,280 seconds, while for the smallest possible output matrix, the solution time 
was 5,058 seconds -  maximum reduction in SGE does not generally lead to an optimal 
solution time.

6.2 .5  Effect o f  p artia l relations

We want to solve for as many of the factor base elements as possible, to maximise 
the size of our database of known values. Using a certain amount of denser relations 
will allow us to increase this coverage of values. We can then recover more values and 
improve the performance of the second phase of the method; but this compromises the 
efficiency of methods for solving sparse linear systems, as shown in table 6.4.
Here we used the SGE-*Lanczos—>back substitution method to solve a system of full 
relations (modulo a 40 digit p ) in 17,985 unknowns, where the 10% excess rows were 
either further fulls, or else fulls derived from 1, 2, 3 or 4-partials. This increases the 
number of values in our solution vector, but takes its toll on the time taken to resolve



C h a p t e r  6 . L i n e a r  A l g e b r a 118

17,985 fulls + C overage Loss N onzeros T im e  to  solve
1,798 fulls 17,066 5.11% 270,996 330,908
1,798 via IP 17,194 4.40% 286,389 384,922
1,798 via 2P 17,282 3.91% 305,490 442,635
1,798 via 3P 17,435 3.06% 335,388 488,242
1,798 via 4P 17,737 1.38% 450,496 502,723

Table 6.4: Increased factor base coverage using fulls via partials -  40F

the system -  we had hoped that the SGE routine would reject the small number of 
dense rows without taking too much more time, but that the increased coverage would 
allow us to recover more values. This, however, was not the case. We are better off 
concentrating on mahing the matrix as sparse as possible, as in factoring, and increasing 
coverage in a secondary step prior to computation, as discussed in the next chapter.

6.3 Summary

In this chapter we have described an implementation of structured Gaussian elimination 
primarily based on that described by Bender and Canfield [11]. We have shown that 
it is possible to reduce the size of a system by as much as 95% or more, and that 
equivalently high (as much as 98%) reductions in Lanczos complexity are possible. 
Overall times for solution of the system using a combination of SGE, Lanczos and back 
substitution can be completed in less than 5% of the time taken to solve the system 
using Lanczos alone. This code is currently being used as part of a Function Field 
Sieve implementation for fields of characteristic 3 (Granger et al. [50]).
We have endeavoured to clarify the operation of this procedure from an implementation 
point of view -  one of the aims of this study was to provide documentation to be of 
assistance to those intending to carry out their own implementation. The idea of 
taking more rows in order to speed up the algorithm is mentioned by LaMacchia and 
Odlyzko [70] and is confirmed by the results of our implementation. It remains the 
case, however, tha t structured Gaussian elimination involves a certain amount of ‘trial 
and error’. Results suggest that it is preferable to term inate the SGE algorithm prior 
to maximum reduction in order to reduce the workload for a secondary algorithm such 
as Lanczos, but the exact proportions vary. The generation of such datasets is of course 
rather time consuming, but papers such as [70] describing implementations of SGE on 
datasets of up to 105 or more unknowns show tha t the SGE algorithm can be used 
to reduce systems by an order of magnitude or more in a relatively short timescale; 
drastically speeding up the overall solution procedure.
We have shown tha t choosing the generator of (Z/pZ)* such that it is a small factor 
base element can give noticeable savings in the linear algebra step, but that these
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gains are not so pronounced when using the SGE-»Lanczos model, compared to using 
Lanczos directly. Of course, we also need to change bases before we can say if time is 
saved overall. We also noted that even adding a small number of relations derived from 
large prime variant techniques has an immediate negative effect on the time taken to 
solve the linear system, emphasising the importance of techniques to reduce the weight 
of such relations: it is better to maintain sparseness than to try to represent as many 
factor base elements as possible.



Chapter 7

Discrete Logarithm Computation

Here we examine the impact of large prime variants on the final step of the index 
calculus method: actual computation of discrete logarithms. We look at the effect of 
reusing data  from our large prime variant relations in order to speed up this final part 
of the computation procedure.

7.1 Overview

We first recall the details of phase three of the index calculus method, and note certain 
suggested improvements to the basic method which have been proposed. We subse
quently discuss how we may increase the number of values for which we know the 
discrete logarithm, by reusing our sets of partial relations.

7.1.1 F inal step s

Final discrete logarithm computation follows the same basic method as relation gen
eration. Recall that to compute the discrete logarithm of r ,  we pick a random a and 
compute xga. If this number is H-smooth, then

xga mod p = q?, G P

and so
D L (x ) +  a = eiDL(qi)

and we can use our values for DL(qi) to compute y = D L (x ) mod p.
As before, more sophisticated methods exist, for example those described by Copper
smith et al. [28], Here a similar strategy to tha t of the Waterloo variant is used. We 
first represent xga mod p a s  a product of medium sized primes, and subsequently use 
sieving techniques to compute the discrete logarithms of the medium sized primes using 
the discrete logarithms of the factor base elements.

120
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7 .1 .2  E x te n d in g  th e  fa c to r  b a se

Obviously, if we have not solved for some proportion of the factor base elements q, 
we will have more difficulty finding a value a for which both xga mod p is smooth and. 
for which we hold the discrete logarithms of all the factor base elements used in the 
factorisation of this number. As we noted in the previous chapter, in general we will 
not solve for all values in the factor base. We may find that some elements were not 
actually represented in any relation; or we may ‘lose’ some values during the linear 
solve itself, for one reason or another.
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Figure 7-1: Average attempts needed to compute a given discrete logarithm

It would be of benefit to try to maximise the amount of ‘factor base discrete loga
rithms’ in order to reduce the number of attempts we need to compute a given discrete 
logarithm. The number of attempts we need in order to find a suitable a value and 
thus compute a discrete logarithm is illustrated in figure 7-1. Here we show the average 
number of attempts (per logarithm) it took to compute the discrete logarithms of 50 
values chosen uniformly in (Z/pZ)*. The x axis represents the percentage of factor base 
elements for which we hold the discrete logarithm -  100% on the left, down to 50% on 
the right. As one would imagine, when we are missing half the factor base values, we 
take considerably more attempts to find a value a such that ga mod p factorises using 
only these remaining elements. The number of attempts grows in a rather stepped 
manner -  this reflects when we have ‘got lucky’ in some way and happened upon a 
suitable value quickly. Notice, however, that a sudden increase in the number of at
tempts needed occurs sooner for the 25 digit dataset than for the 20 digit dataset, and 
similarly for the 30 digit dataset compared to the 25 digit dataset. Our smoothness 
bound B  grows considerably slower than our modulus p across these datasets, and so 
the effect of missing values is felt that much sooner as p increases.
If we assume that we have done the best we can in our linear solve step, is there any

E ffect o f m is s in g  v a lu e s
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way to add to our database of known values? One simple extension could have been 
added to the relation building phase. Suppose we find a value a such that ga mod p is 
actually prime. We could store this a value as a ‘direct’ discrete logarithm, and add the 
prime value to our factor base. Our factor base would then increase dynamically as we 
build relations. In practice, however, this method is of no value. Unless one imposes a 
restriction on the size of this remainder, one is forced to carry out a primality tost ea.oh 
time we choose a new a value. The increased load on the relation generation phase is 
unacceptable. On the other hand, if one imposes a maximum bound for such ‘direct’ 
discrete logarithms, the chances of actually happening on a prime value are negligible 
-  for a 100 digit prime, if we set our bound at 1010 we would have a chance of some 1 
in 1090 of hitting a prime within our range.
Another way in which we can try  to maximise our number of known values can be used 
in final discrete logarithm computation itself. As we try to find a suitable number a 
such tha t xga mod p  is smooth, we can examine attem pts where this is not the case. 
If we would have had a smooth value but for the fact that we do not hold the discrete 
logarithm for one of the prime factors, we can use this relation to compute the discrete 
logarithm of this element using the known values in our possession. In this way we can 
hopefully add to our database. It is unlikely that we would want to take the time to 
compute all missing values in the solution vector directly.

7.2 Using partial relations

We now investigate how we can use partial relations to improve phase three of the index 
calculus algorithm, firstly using our 1-partial relations, and subsequently considering 
the use of 2, 3 and 4-partials.

7.2.1 R esu lts  using  1-partials

We may add to our ‘known’ factor base values in a quite straightforward manner using 
our partial relations1. Once we have resolved our linear system and obtained the 
discrete logarithm of as many of our factor base elements as possible, we can try to 
extend our solution of known values by using the set of 1-partial relations. To do this 
we simply back substitute over the 1-partials to obtain the discrete logarithm of each 
large prime. We may then add the large prime to our factor base, and its discrete 
logarithm to our solution vector. In this way we should gain many more values and 
effectively make use of the ‘single large prime’ variant in the final stage of the index 
calculus method.
We can predict the number of extra values obtainable from such a technique via a

1Thom6 [127] mentions the possibility of using 1-partials for such a tactic, but again this work was 
carried out independently. The idea is also briefly mentioned by Weber [133].
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simple adaption of the estimate from Lenstra and Manasse [75] for the amount of fulls 
we can get from a set of 1-partials, which we now recall from the chapter 4.

Lemma 7.2.1 (Lenstra and Manasse [75], from lem m a 3.1). Let R  be a set of
partial relations and let Q =  q : q prime, B \ < q <  i?2- Assume that for each u G R  we 
have probability

Pq = 9~a/J2q~a
q£Q

that q = q(u) for some q € Q. Then the number of matches amongst the large prime 
relations -  i.e. the number of full relations we can obtain - is equal to

# R - # Q + Y , ( l - P q ) * R
qeQ

Using this result we can thus deduce the number of ‘large prime discrete logarithms' 
which we can obtain from R.

Corollary 7.2.1 (Yield of 1-partial back substitution). The number of large 
prime values for which we can obtain the discrete logarithm, given a set R  of 1-partial 
relations and the discrete logarithms of all factor base elements, is

# Q  -  £ ( i  -  Pq) * R
qeQ

Proof. If one considers the set of 1-partials as a graph by adding the vertex 1 as 
discussed in chapter 4, we have

#  fulls =  +  # C  -  (# Y  +  1) =  -  # Y

where C  is the set of components in the graph, and V  is the set of unique large primes 
in the dataset. Since # C  = 1, if we hold all factor base element discrete logarithms 
then we can obtain ff-V large prime discrete logarithms, where

# V  =  # Q -  -  p i ) * R
qeQ

□
As before, we can approximate Pq «  q~a/  YLp^QP~a using a binomial expansion as 
shown by Boender and te Riele [16], and use the same value for a  as we used to predict 
yield of resolving 1-partials in chapter 4. In what follows, we assume that we have 
solved for all factor base values in the linear algebra step.
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Y ield o f back su b s titu tio n  over 1 -partia ls

Table 7.1 shows both the estimated and actual number of further values we can find 
by back substituting over 1-partial relations for our three datasets. Here TIT signifies 
‘factor base’, and ‘extra values’ indicates the additional values now known thanks to 
the 1-partials.

D a ta se t FB
elem ents

N u m b er of 
1 -partia ls

E s tim a te d  
e x tra  values

A ctua l 
e x tra  values

20d 6,058 197,742 189,219 188,790
25c 9,593 383,844 371,085 370,079
30b 25,998 768,435 720,253 719,261

Table 7.1: Extending factor base by back substitution over 1-partials

As before, we can examine how this affects our discrete logarithm computation. Figure 
7-2 shows the number of attempts needed to compute the same 50 discrete logarithms 
as before. We see that the average number of attempts per logarithm has dropped to 
around a quarter of the number taken using the original factor base. Much as before, 
of course, we still suffer if values are missing, since we cannot recover so many large 
prime’ discrete logarithms.
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Figure 7-2: Average attempts needed to compute a given discrete logarithm using 
extended factor base -  30b

We note that we could also use large prime relations to complete values. When we 
have back substituted over 1-partials, we can possibly find further factor base values 
by back substituting over ‘pruned’ 1-partials (i.e. the set of 1-partials where the large 
primes occur more than once).
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Tim e savings

The downside of extending the factor base is tha t the time taken for each attem pt goes 
up. Here we are simply trial dividing with each element of our extended factor base. 
We can of course easily remedy this by re-using the ‘large prime variant’ technique we 
used in original relation generation. We would then proceed as follows: wo first trial 
divide by all elements of the original factor base. We then consider the remainder. If 
it is less than the largest prime in our extended factor base (for which we hold the 
discrete logarithm) we can look up this value with, for example, a binary search, or 
via some kind of hash table lookup. In this manner, we will of course miss out on any 
values where the remainder consists of the product of more than one large prime value. 
However, it should turn  out that the increased speed we gain by avoiding excessive 
trial division will more than compensate for this increase in the number of attem pts 
we need to take. We will, in the very worst case, take the same number of attem pts 
tha t we took in trial division using the original factor base only, and may expect that 
this ‘early abort’ strategy will significantly reduce the time of each attem pt.

D ataset Factor base A ttem pts Tim e per Time
elem ents per DL attem pt per DL

20d 6,058 342 0.0481 16.48
20d 194,848 72 1.7978 129.44
25c 9,593 1,874 0.0808 151.48
25c 379,672 535 4.6761 2,504.24
30b 25,998 7,816 0.2274 1,777.55
30b 745,259 1,448 9.8288 14,235.05

Table 7.2: Average time per attem pt via trial division with 1-partial extended factor 
base

Tables 7.2 and 7.3 show timings and the average number of attem pts needed to compute 
a discrete logarithm for each dataset, firstly using trial division, and then using the 
large prime variant approach. As before, this is the average over 50 computations.

D ataset Factor base A ttem pts Tim e per Time
elem ents per DL attem pt per DL

20d 6,058 342 0.0481 16.48
20d 194,848 96 0.0445 4.30
25c 9,593 1,874 0.0808 151.48
25c 379,672 625 0.0758 47.44
30b 25,998 7,816 0.2274 1,777.55
30b 745,259 2,744 0.2179 598.07

Table 7.3: Average time per attem pt via large prime variant with 1-partial extended 
factor base
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Looking at results in both tables 7.2 and 7.3 we see that we do indeed take rather 
more attem pts when using the large prime variant approach over a full trial division 
approach with our extended factor base of known values -  for example, for dataset 30b 
we take 2,578 attem pts using the large prime variant rather than only 1,448 when using 
trial division. However, the actual time taken is considerably less per attempt; with 
the overall effect being a net speedup. In fact, using the large prime variant allows 
com putation of discrete logarithms in around 30% of the time it takes when using the 
original factor base only; and around 3% of the time it takes if extending the factor 
base but simply using trial division.

7.2 .2  R esu lts  using  2-partials

Why stop there? We could, with a little more effort, carry out a similar operation 
using our 2-partial relations and extend the factor base further. This is of course not 
quite so trivial -  one needs to track the values already found via a hash table, and 
potentially loop through the dataset a number of times in order to solve for as many 
values as possible.

Yield of back substitution over 2-partials

The number of extra values we can get by back substituting over both 1 and 2-part,ia] 
relations is shown in table 7.4. Unsurprisingly, we are able to further extend our

D ataset FB
elem ents

Number of 
1-partials

Num ber of 
2-partials

Extended FB  
elem ents

20d 6,058 197,742 238,018 334,910
25c 9,593 383,844 788,239 885,875
30b 25,998 768,435 1,494,109 1,855,503

Table 7.4: Extending factor base by back substitution over 1 and 2-partials

database of known discrete logarithms quite considerably. Again, although we can 
reduce the number of attem pts needed to find a suitable a value by using trial division 
(as shown in figure 7-3) the actual time needed to make each attem pt negates this 
advantage as the factor base gets larger, as we now show.

Tim e savings

We again have the option of trial division or using the large prime variant as above. 
We also have, of course, the option of using the double large prime variant in the 
computation step. This, as when applied in the relation generation phase, requires 
an application of a factoring algorithm such as Pollard p when the remainder is both
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Figure 7-3: Average attempts needed to compute a given discrete logarithm using 
doubly extended factor base -  30b

composite and less than the square of the largest factor base element for which we hold 
the discrete logarithm. Results are shown in tables 7.5, 7.6 and 7.7.

D a ta se t F acto r base A tte m p ts T im e p e r T im e
elem ents p e r DL a tte m p t p e r DL

20d 6,058 342 0.0481 16.48
20d 334,910 36 2.9390 107.86
25c 9,593 1,874 0.0808 151.48
25c 885,875 133 10.4400 1390.40
30b 25,998 7,816 0.2274 1,777.55
30b 1,855,503 348 24.2549 8450.89

Table 7.5: Average time per attem pt via trial division with 1 and 2-partial extended 
factor base

As mentioned, we see in table 7.5 that using trial division across this further extended 
factor base results in a dramatically increased time taken for each smoothness test. As 
we would expect, we take fewer attempts when we have a larger factor base but the 
time taken for each attem pt becomes so large that any benefit in getting these extra 
values becomes obsolete.
In tables 7.6 and 7.7 we can compare the use of the single and double large prime 
variants on this further extended factor base. In table 7.6 we use the single large prime 
method on a factor base that has been extended by back substitution over both 1 and 
2-partial relations. As before, we find that although with this method we take more 
attempts than by full trial division, the actual time for a given attem pt is very much 
reduced, to the extent that we take less time per attem pt than we did when using the 
large prime variant in the previous section. However, as shown in table 7.7. when using
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D a ta s e t F a c to r  base A tte m p ts T im e  p e r T im e
e lem en ts p e r  DL a t te m p t p e r  D L

20d 6,058 342 0.0481 16.48
20d 334,910 63 0.0439 2.80
25c 9,593 1,874 0.0808 151.48
25c 885,875 366 0.0747 27.36
30b 25,998 7,816 0.2274 1,777.55
30b 1,855,503 1,391 0.2200 306.18

Table 7.6: Average time per attem pt via large prime variant with 1 and 2-partial 
extended factor base

the double large prime variation we do not get a further speedup. In fact, the time 
taken increases considerably2. The number of attem pts we take has actually dropped 
compared to the number we took when using the large prime variant; but the extra load 
on processing -  a primality test, a factorisation with Pollard p plus a second lookup in 
the list of known values -  means net performance is reduced.

D a ta s e t F a c to r  base A tte m p ts T im e  p e r T im e
e lem en ts p e r  D L a t te m p t p e r  D L

20d 6,058 342 0.0481 16.48
20d 334,910 44 5.0291 221.38
25c 9,593 1,874 0.0808 151.48
25c 885,875 146 8.9609 1,312.05
30b 25,998 7,816 0.2274 1,777.55
30b 1,855,503 406 1.2756 432.67

Table 7.7: Average time per attem pt via double large prime variant with 1 and 2-partial 
extended factor base

It is best, then, to feed as many relations into back substitution as one can back 
substitution is cheap, and a larger database of known discrete logarithms will always 
reduce the number of attem pts one needs to take before one finds a smooth value when 
trying to compute an arbitrary discrete logarithm. This includes back substituting over 
the 1 and 2-partial relations to get discrete logarithms corresponding to as many large 
primes as possible. Further, it is of great benefit to re-use the ‘large prime variant’ 
strategy when actually carrying out the smoothness testing. For the dataset sizes we 
have considered here, it would not appear worthwhile to go further and use the double 
large prime variant in the final computation phase of the index calculus method, but 
for larger dataset sizes we would expect that the fewer attem pts required by allowing 
two large primes would make such an approach more competitive.

2The 30 digit dataset does not follow the pattern set by the 20 and 25 digit datasets -  this is due 
to it having a large prime bound which is less than the square of the original smoothness bound
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7 .2 .3  U sin g  3 and 4-partia ls

When using a Waterloo-type approach, or indeed using higher order partial relations 
in general, one can of course try to recover still more values from these relations. Table 
7.8 shows the number of values we can recover via back substitution over the 1 and 
2-partials from the datasets used in chapter 5.

D ataset FB
elem ents

Num ber of 
1-partials

Num ber of 
2-partials

Extended FB  
elem ents

35A 4,024 166,925 1,564,183 910,069
40E 6,058 58,962 799,818 206,053
40Es 6,058 15,997 71,543 53,526

Table 7.8: Extending factor base by back substitution over Waterloo 1 and 2-partials

Going further, we can subsequently process the 3 and 4-partial relations. Table 7.8 
shows the additional values we can gain. Totals are cumulative, that is to say. the 
column ‘extended FB elements’ refers to the total number of values for which we know 
the discrete logarithm up to this point. For dataset 40E, memory restrictions prevented 
us from processing all 3 and 4-partials. In table 7.9, the asterisks refer to the fact that 
the results obtained came from processing 106 3-partials and 106 4-partials. Dataset 
40Es used smaller large prime bounds, and hence gives perhaps a better indication 
of practical yield. It is im portant to note that again we must take account of the 
exponents of the large primes if using Waterloo-derived data.

D ataset Num ber of 
3-partials

Extended FB  
elem ents

Num ber of 
4-partials

Extended FB  
elem ents

35A 3,166,576 2,679,166 1,858,108 3,670,968
40E 3,508,419* 254,782 5,144,673* 272,552
40Es 147,603 134,488 142,551 212,485

Table 7.9: Extending factor base by back substitution over Waterloo 1,2,3 and 4-partials

Obviously, the more values we know, the faster our computation. We briefly note the 
effects of this further back substitution in table 7.10. Here we show the average time 
taken to compute a discrete logarithm for a 35 digit dataset. Based on our experiences 
above, we use the single large prime variant with table lookup against the values found 
by back substitution over the 1-partials (IP), 1 and 2-partials (1+2P), etc. For these 
larger datasets, we modified the computation routine such that it too takes a Waterloo 
approach on the value xga mod p  -  the basic method becomes unfeasible for these sizes. 
We see again the power of extending the factor base of known values. We can bring 
the number of attem pts needed to find a smooth value down to less than 0.5% of the 
number required using the basic factor base only. Since the time per attem pt remains
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Input Factor base 
elem ents

A ttem pts 
per DL

Time per 
attem pt

Time 
per DL

Original FB 4,204 50,085 0.0656 3,284.59
FB +  IP 160,525 1,794 0.0663 118.92
FB +  1,2P 910,069 643 0.0666 42.84
FB +  1,2,3P 2,679,166 291 0.0667 19.44
FB +  1,2,3,4P 3,670,968 222 0.0665 14.80

Table 7.10: Average time per attem pt via Waterloo large prime variant with 1. 2. 3 
and 4-partial extended factor base -  35A

more or less constant, we get an equivalent reduction in the time taken to compute a 
particular logarithm.
W hen considering datasets 40E and 40Es, we found that the double large prime variant 
gave improved performance over the single large prime variant -  a speedup of between 
22% and 65% for the examples here -  when applied to dataset 40Es, but not when 
applied to dataset 40E. This is of course due to the smaller large prime bounds used in 
dataset 40Es, which restrict the number of primality tests and applications of Pollard p , 
and increase the chances of our holding the respective ‘large prime discrete logarithms’ 
in our extended factor base. This again underlines the advantages of using a smaller 
double large prime bound than simply B \ .

7.3 Cost of extending the factor base

We do, of course, also need to take account of the amount of work needed to actually 
compute these extra values for our factor base. Table 7.11 shows the time taken to 
back substitute over the original factor base (starting with back substitution over the 
original factor base using the solution vector from the Lanczos algorithm), followed by 
subsequent time taken to back substitute over the 1 and 2-partial relations for each 
dataset. From table 6.1, the fastest time taken to solve the 30 digit dataset using SGE 
and Lanczos was some 86,000 hundredths of a second.

D ataset FB backsub 
tim e

1-partial 
backsub tim e

2-partial 
backsub tim e

Total
tim e

20d 14 326 758 1,098
25c 29 731 2,433 3,193
30b 126 1,669 4,184 5,979

Table 7.11: Timings for back substitution over 1 and 2-partials

Back substitution over the unknown factor base values is very small in comparison. 
Back substituting over the 1-partial relations takes rather longer, due mainly to the
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need to process more data. The time taken to process the 2-partial relations is again 
rather more pronounced, since we must pass through the dataset a number of times 
in order to maximise the yield. It is interesting to note that, in general, some 75% or 
more of the values obtained via 2-partials were found after the first pass through the 
dataset. This single pass took between 34% and 56% of the total time required to find 
all possible values (which required 9 passes through the set of 2-partials for the 30 digit 
dataset), as shown in table 7.12. It may then be beneficial to simply take a single pass 
through the data.

D a ta s e t T o ta l D Ls v ia  
2 -p a rtia ls

P asses  /  
T im e

D Ls fo u n d  in  
single pass

T im e % D Ls fo u n d  /  
% tim e  ta k e n

20d 140,062 7 /  758.0 111,222 259 79 /  34
25c 506,203 8 /  2,433 373,068 989 74 /  41
30b 1,110,244 9 /  4,184 865,513 2,337 78 /  56

Table 7.12: Values found in single pass through partial data

Back substituting over the 3 and 4-partials is again more costly, as shown in tables 7.13 
and 7.14. Since our Waterloo data comes from different datasets, we show the time 
for back substitution over factor base elements and 1 and 2-partials for these datasets, 
for comparison purposes. As before, we see a pronounced increase in going from back 
substitution over 1-partials only to back substituting over 2-partials, due to the need 
for repeated passes through the datasets.

D a ta se t F B  b acksub  
tim e

1 -p a rtia l 
b ack su b  tim e

2 -p a rtia l 
b ack su b  tim e

T o ta l
tim e

35A 344 517 10,667 11,528
40E 1,643 214 9,009 10,866
40Es 1,882 58 577 2,517

Table 7.13: Timings for back substitution over Waterloo 1 and 2-partials

As a benchmark, the fastest times (in hundredths of a second, as usual) taken to solve 
each dataset via SGE and Lanczos was 20,295 for dataset 35A, 497,042 for dataset 
40E and 530,835 for dataset 40Es -  due the smaller large prime bound used, dataset 
40Es has slightly longer cycles among the partial relations and as a result has a denser 
m atrix than dataset 40E. In table 7.14, the final total column indicates total time for 
all back substitution.
Here, datasets 40E and 40Es differ only in the fact that dataset 40Es has a smaller 
double large prime bound than dataset 40E (it is lOOBi2 rather than B f). This, 
as mentioned, brings the amount of data down quite considerably, and consequently 
speeds up the back substitution process. However, the number of large prime discrete
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D a ta s e t 3 -p a rtia l 
back su b  tim e

4-p a r t ia l  
b ack su b  tim e

T o ta l
tim e

35A 21,496 9,360 42,384
40E 8,624 9,542 29,032
40Es 1,478 1,001 4,996

Table 7.14: Timings for back substitution over Waterloo 3 and 4-partials 

logarithms which we can obtain does not diminish commensurately. Again, we find

In p u t P asses V alues T im e
m ad e fo u n d ta k e n

1-partials 1 156,321 517
1-partials 1 156,321 517
2-partials 9 749,544 10,667
2-partials 1 531,133 2,900
3-partials 8 1,769,097 21,496
3-partials 1 1,293,761 7,490
4-partials 7 991,802 9,360
4-partials 1 901,777 5,622

Table 7.15: Values found in single pass through Waterloo partial data 35A

that taking a single pass through the datasets gives us a large proportion of the total 
available values, but takes considerably less time -  details for the 35 digit dataset are 
given in table 7.15. We found tha t the amount of time needed to find all possible 
values was not compensated by the associated speedup in computation -  for the 35 
digit dataset, for example, we saved a total of 25,511 hundredths of a second by taking 
a single back substitution pass across all partials. If using the single large prime variant 
on a factor base extended by 1,2,3 and 4-partials, we then take 493 hundredths of a 
second per logarithm, rather than 370 had we recovered all possible values in the back 
substitution step. We would thus need to compute 207 logarithms before the extra effort 
would become worthwhile. Overall, then, it is probably not worth taking the time to 
extract all possible information from the partial data  unless one has to compute many 
logarithms.

C o st o f choosing  g e n e ra to r

We finally return to the idea of choosing the generator of the finite field under con
sideration. This allowed us to make certain savings in the linear algebra step of the 
index calculus method, but does require that we compute two discrete logarithms in 
order to change base. For the datasets under consideration here, dataset 40Es was 
generated using -\/2n iodp  as a primitive root. Computation of this root using the



C h a p t e r  7 . C o m p u t a t io n 133

methods described in chapter 3 took 1 hundredth of a second. Dropping the 2-column 
in the linear algebra step saved us 24,156 hundredths of a second if using Lanczos only, 
but only 3,993 if using the SGE—>Lanczos approach. Maximising the size of our factor 
base via back substitution over partials allowed us to compute a single logarithm in 
4,291 hundredths of a second. Thus, for this example, choosing a new generator would 
only have been beneficial if solving directly via Lanczos or a similar iterative scheme 
without (or, perhaps, with less) preprocessing. Of course, if the published generator 
was itself 2, as may often be the case, we do not incur any costs from computing a 
new generator or changing bases in final computation, and can simply take advantage 
of the savings in time and space in the linear algebra step with no subsequent penalty.

7.4 Summary

In this section we illustrated the impact of an incomplete solution vector on phase three 
of the index calculus method. It was noted that, as datasets get larger, missing values 
have an immediate detrimental effect on performance.
We subsequently used 1-partial relations to extend the solution vector of known values 
by simple back substitution. This allowed us to use around one third as many attem pts 
to compute a given discrete logarithm as it had taken us using the original solution 
vector. This underlines the advantage of using 1-partial relations for discrete logarithm 
computation -  in addition to providing us with many full relations for little additional 
effort, they allow us to gain further useful values to add to our discrete logarithm 
database. This secondary advantage has no analogy in factoring. Testing for smooth
ness of course then becomes considerably slower if using full trial division, but using 
the large prime variant as in the relation generation step speeds this up considerably. 
We investigated going a step further with this technique by additional back substitution 
over the 2, 3 and 4-partial relations. This is rather more involved than it was for the 
1-partial relations due to the need for multiple passes through the data to recover 
more values. We found that, since most values are found after a single pass, it was 
better to term inate the back substitution procedure rather than trying to recover all 
possible values. For larger datasets, however, back substitution will be much cheaper 
in comparison to discrete logarithm computation, so it is likely tha t here one should 
extract the maximum number of values from the partial data. It may be possible to 
improve the efficiency of this step by reusing the graph structure determined when 
resolving the partial relations after the relation generation step.
The cost of back substitution is small compared to the time needed to solve the linear 
system at the end of the precomputation phase. For our tests, we found that it was 
fastest to use the single large prime variant in computation, coupled with a hash table 
lookup to recover the value of the large prime. As datasets get larger, the double large
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prime variant would probably outperform this. Alternatively, Weber [134] suggests 
using the lattice sieve of Pollard [104], using the known large prime values as the 
‘special q \
Finally, we showed tha t there can be an advantage to be gained by choosing a different 
generator for use with the index calculus method. However, this benefit is firstly small, 
and secondly only seems to outweigh other costs when used with direct application of 
an iterative scheme in the linear algebra step. On the other hand, it is not difficult to 
implement, and should probably be used if a scheme such as the Lanczos (or popular 
block Wiedemann) algorithm is used with limited preprocessing.



Part IV  

Conclusions
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Chapter 8

Conclusions and Further Work

8.1 Summary and results

We now recap on the contents of this thesis and review the results and conclusions 
obtained, on a chapter-by-chapter basis.

8.1 .1  P art I 

Chapter 1

In chapter 1 we gave a brief overview of cryptography as a subject, since it is in pub
lic key cryptographic applications tha t one finds the principal motivation for discrete 
logarithm computation. We discussed both symmetric and asymmetric schemes, and 
attem pted to give an idea of the current state of the art. We subsequently gave a 
breakdown of the thesis layout.

Chapter 2

Chapter 2 provided a background to subsequent chapters concerning discrete logarithm 
computation. After defining the discrete logarithm problem and identifying its rele
vance to public key cryptography, we proceeded to examine several methods which have 
been proposed for discrete logarithm computation. The last of these, the index calculus 
method, was discussed in more detail and various possible improvements which have 
been proposed over the years were reviewed.

8 .1 .2  P art II 

Chapter 3

Following an overview of the ideas behind the index calculus method, we considered 
the gains which can be made by choosing a different generator g' to that given as part 
of a public key. The complexity of the discrete logarithm problem is independent of
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the generator of the finite field, so we can choose this generator to be as small a prime 
as possible. We have shown that, due to the elementary fact that log, # = 1. we can 
remove a certain amount of nonzero values from the ensuing matrix. The exact savings 
one can make can be as much as 7% of the total weight of the matrix, although this 
amount does decrease as both larger systems and more complex relation generation 
procedures axe considered.
In order to maximise savings, we can take the generator g' to be either 2 or some k th 
root of 2 modulo p. Such a value always exists, and, with the assumption that we know 
the prime factorisation of the group order p — 1, such a value should be computable 
w ithout a great deal of effort. Such a change does however then require computation of 
two discrete logarithms in order to change bases back to the original base g. In practice 
we found that, for the examples under consideration, the benefits in the linear algebra 
step could outweigh these extra costs if applying the Lanczos algorithm directly, but 
not if using preprocessing with structured Gaussian elimination. However, as datasets 
get larger, so will the submatrix output from SGE, and thus savings will hopefully 
outweigh the cost of changing bases.
The ideas and results of this chapter appear to be completely new, although the idea 
is of course a simple enough observation. Such a technique does not have a parallel in 
the application of the index calculus method to factoring problems.

Chapter 4

In this section we looked at speeding up the relation generation phase of the index 
calculus method for discrete logarithm computation by using large prime variants as 
applied to factoring by Lenstra and Manasse [75]. As noted, whilst this work was 
carried out independently, results of Thome [127] and Weber [131] show that this idea 
had already been shown to be of benefit in discrete logarithm computation. However, 
details of the methods used are not discussed in any depth, and our hope in this work 
was to clarify the available techniques from a discrete logarithm viewpoint.
We highlighted the fact tha t the key difference between the use of these techniques for 
factoring and for discrete logarithm computation is the potential restrictions on the 
type of cycle found when using a graph theoretic approach in the latter cast' at the 
most basic level, we need to look for even cycles.
We have shown that, in practice, the two large prime variant for discrete logarithm 
computation is within e of being as effective as when applied to factoring. Loss is due to 
the need for either even cycles, or odd cycles including the special vertex 1. Hence, t he 
addition of 1 to the graph is of greater importance for discrete logarithm computation 
than it is for factoring. However, we showed that, once all possible outcomes are 
identified, one may try to maximise the yield from a given dataset. We may join odd 
cycles together to form further even cycles, and can combine loops with 1-partials to
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create further fulls.
We showed how one can easily identify even or odd cycles and order edges such that 
the large primes may be eliminated as the cycles are constructed. This is more efficient 
than building cycles and subsequently solving a linear system to eliminate the primes 
in each cycle, but without further information on how this technique was carried out we 
cannot say exactly. The only discussion of using two large primes for discrete logarithm 
computation tha t we could find in the open literature (Weber [131]) reports losses of 
some 2-3% in the number of cycles which can actually be resolved. For our tests, we 
found we could resolve almost all cycles found. The exceptions consisted of the few 
isolated loops which could not be matched to a 1-partial.
Processing both 1-partial and 2-partial relations together (i.e. adding the vertex 1 to the 
graph), in addition to allowing us to resolve most odd cycles, also gives both a drastic 
improvement on yield compared to processing each set separately, and a sparser set 
of full relations after processing, due to shorter cycle lengths. We may then either 
term inate sieving tha t much sooner if one had an indication of potential yield from a 
given set of partial relations, or else build a large number of excess relations which we 
may then use in a back substitution step in an effort to recover the discrete logarithms 
of a greater number of factor base elements.
The price of the success of processing 1-partials and 2-partials together is the increased 
memory requirement and processing time used by the graph algorithms. However, 
we have also illustrated the effect of reducing the bound used for the 2 large prime 
relations -  one can reduce this quite considerably before seeing a proportionate drop 
in the number of full relations one can still resolve.

C h a p te r  5

In chapter 5 we built on the ideas of chapter 4 and investigated the effect of using large 
prime variants with the ‘Waterloo variant’ of the index calculus procedure. This allows 
use of up to four large primes for a rational factor base. The key difference between this 
work and the use of ‘2 +  2’ large primes by Dodson and Lenstra [38] for factoring and 
Weber [131] for discrete logarithm is that here all large primes are processed together. 
In this sense the work is more closely related to that of Leyland et al. [81], where three 
large primes are used.
We first showed how use of the Waterloo variant affects the methods of chapter 4. We 
showed tha t a similar yield from partial relations is possible, but tha t resolving cycles 
is slightly more complex due to the differing exponents of the large primes in relations 
generated by the Waterloo variant. We must be rather more careful with the order 
in which we process edges in a cycle, in order to correctly eliminate all large primes. 
Again, such problems do not occur in factoring applications, since there we simply need 
each vertex to occur an even number of times.
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We subsequently moved on to consider 3 and 4-partial relations. We initially showed 
how one can determine full relations in a relatively straightforward manner if a (hy
per) cycle contains at most one 3 or 4-partial, using the assumption that the vertex 1 
is the root vertex of the major graph component. Going further with this means of 
resolving cycles, we discussed how the method of Leyland et al. [81] -  essentially the 
same as tha t of Dodson and Lenstra [38] -  could be adapted for the discrete logarithm 
case, such tha t all hypercycles built by the procedure could be resolved for the dis
crete logarithm case. It remains the case that certain situations (notably loops), while 
being straightforward to resolve for factoring purposes, cannot be resolved for the dis
crete logarithm case. While these techniques will be successful for n-partial relations, 
however, they will create rather longer cycles than certain other methods.

8 .1 .3  P art III  

Chapter 6

In this chapter we took a closer look at the linear algebra step of the index calculus 
method. We described an implementation of structured Gaussian elimination (SGE), 
and highlighted various practical difficulties which may arise. We then described the 
results of our implementation in conjunction with the Lanczos algorithm, and obtained 
results similar to those described by LaMacchia and Odlyzko [70]. As in [70], we found 
tha t using excess rows can speed up the overall solution time. The code implemented 
during this study is currently being used in an attem pt to compute discrete logarithms 
of some 350 bits via the function field sieve in a finite field of characteristic 3 (Granger 
et al. [50]). In initial testing, a system of 105 equations in 105 unknowns could be 
solved in under 5 hours.
We then observed the practical effect of removing the generator column as described 
in chapter 3. This resulted in time savings both when applying the Lanczos algorithm 
alone or coupled with SGE preprocessing, although time savings were not so pronounced 
in this latter case. We had hoped that removal of the generator column would also have 
the added benefit of delaying the effect of coefficient blowup in the structured Gaussian 
elimination routine such that we could output a smaller matrix, but, while this was 
the case, the effect was negligible and also occurred well after the optimal stop point 
for SGE for each dataset tested.
Finally, we noted the key issue of factor base coverage in the linear algebra step. This 
has no analogy in factoring, and suggests that, while we wish to make the linear algebra 
step as efficient as possible, we also want to maximise the number of solution values 
we can obtain. This issue does not appear to have been considered previously in the 
open literature. To this end, taking excess rows is again of benefit, such that further 
factor base values are represented in the matrix. However, we found that even a small 
amount of dense relations -  those coming from resolving n-partials -  had an immediate
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detrimental effect on performance. As in factoring, then, it is best to concentrate on 

making the linear solve as efficient as possible by keeping weight to a minimum, and 
look at coverage in a secondary step.

Chapter 7

In this chapter we highlighted the effect of an incomplete solution vector on discrete 

logarithm computation. In general, we do not represent all factor base elements in the 
matrix, and so hamper our attem pts to find a smooth value for which we know all 

factor base discrete logarithms in our our final computation step.
To remedy this, we made use of our partial relations in a back substitution step. This 
allowed us to greatly extend our database of known values, and led to considerable 
speedups in computation. Again, this has no analogy in the factoring application of 
large prime variant techniques. Using the single large prime variant in computation, 
with a table lookup on the large prime value, was found to outperform the double 
large prime variant for the datasets tested, although we would expect this to change 
for larger datasets.
We finally investigated further back substitution over all n-partials. This is not so 

straightforward as for 1-partials only, due to the need for repeated passes through 
large datasets. For the sizes considered here, we would recommend taking only a  s ing le  

pass through the datasets, which for our implementations managed to recover  so m e  

75% of the total values which we could hope to obtain, whilst taking, in general, less 
than the half the time. Using these methods, we found that our choice of generator 
could indeed lead to overall savings in time, but only when using an iterative s c h e m e  

directly. However, if a change of bases were not necessary, then taking advantage of 
g =  2, if possible, will always lead to savings in the linear algebra step.

8 .1 .4  C onclusions

This thesis has tried to give an in-depth examination of the use of large prime variants 
for discrete logarithm computation modulo a prime p. Index calculus-type methods 
have been applied to both factoring and discrete logarithm computation with great 
success; however, it is often found that analogous applications are rather more complex 
in the latter case. We have demonstrated that the use of large prime variant techniques 
also follows this pattern. That said, we have shown that, in practice, such techniques 
can be brought to bear with (almost) an equal degree of success to that of their factoring 
cousins, such tha t in practice they can be applied to computation modulo a k -bit prime 
with the same effectiveness as in factoring a A:-bit number. Indeed, large prime variant 
techniques can even be thought to be more effective in the discrete logarithm case, 
thanks to their potential application in the final phase of the method. The linear algebra 
step of the index calculus method is traditionally a more serious practical bottleneck for
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discrete logarithm computation than it is for similar factoring methods. However, by 
considering the initial parameters for the method, and by reusing large prime variant 
data  in final computation, we have shown tha t linear algebra can nonetheless redeem 
itself a t other points in discrete logarithm computation.

8.2 Further work

The discrete logarithm problem has now been a topic for cryptography related research 
for some 30 years. In that time, some huge advances have been made, but many 
questions also remain unresolved. As noted by Odlyzko [100], for example, in the last 
25 years, no substantial progress has been made for a general cyclic group with no 
structure. In this final section, we note some possible suggestions for future work, 
mainly pertaining to the results of this thesis.
The use of two or more large prime variants for factoring has led to impressive practical 
speedup. The fact that these gains also apply to the discrete logarithm case was 
dem onstrated by Thome and Weber, and has been underlined by the work of this 
thesis. It remains the case, however, that the examples given in this thesis are rather 
small -  it would be useful to verify the practicalities of these techniques for larger 
datasets, although our results indicate that it is safe to assume tha t results in factoring 
implementations will carry across directly to the discrete logarithm case. A recent paper 
by Gaudry [44] gives an index calculus-type method for computing discrete logarithms 
on hyperelliptic curves. It would be interesting to investigate whether or not large 
prime variant techniques would adapt to this new situation.
We have shown how we can resolve relations in n  large primes, so long as we have 
some set of relations involving a single large prime to give us a ‘toehold’. It seems 
unlikely that a means of generating data involving many more than 3 large primes 
directly (i.e. per smoothness test) would be practical, but this may not be the rase. 
Alternatively, one could go further with the 2 x 2  large prime approach used here to 
generate n-partials with n > 4, in a similar manner to the work of Cavallar [21]. At 
present, it is not easy to estimate the yield, given a set of n-partials with n > 1, without 
determining, for example, the structure of the hypergraph they would create. If using 
many processors in different locations, this would mean examining all relations found 
after a given amount of time at some central location -  it would be much simpler to 
be able to give an estimate for yield based solely on the number of partial relations 
found and the smoothness bounds used. Extensions to the 1-partial estimate formula 
of Lenstra and Manasse [75] would be of practical benefit in order to simplify relation 
generation time estimates.
The question of density is very im portant for practical efficiency in the linear algebra 
step. It could be interesting to adapt the techniques of Denny and Muller [35] to the
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hypercycle building method of Dodson and Lenst.ra [38] and Leyland et. al. [81] with a 
view to reducing the length of cycles prior to resolving. To a large extent this is exact ly 
the aim of Cavallar [20], although as this is directed towards factoring, the important, 
(discrete logarithm) issue of coverage in the solution vector is not considered.
In the computation step, we have only examined the most basic techniques. Extending 
the factor base should give useful speedup to other methods of computation, such as 
tha t of Coppersmith et al. [28]. Other techniques such as lattice sieving while making 
use of the known large prime discrete logarithms should give improved performance. 
Further investigation would be required to verify this. Again, approximations of the 
number of unique large primes in some given number of n-partial relations would be 
useful to get an idea of the yield of back substitution. It was straightforward to adapt 
the method of Lenstra and Manasse [75] in the 1-partial case, but for n-partials with 
n > 1 we have a slightly different situation, in that ‘singletons’ can now also be of use 
-  we essentially need to estimate the number of vertices in the component containing 
the special vertex 1; which will generally be the largest connected component of the 
(hyper)graph. It may be that the theory of random graphs could be used to provide 
such an estimate, with a certain bias given to the often-occurring vertex 1. Again, this 
requires further investigation.



A ppendix A

History of Large Prime Variant 
Index Calculus

This section gives a brief summary of the history of using large primes with the index 
calculus method both for factoring and for discrete logarithm computation, with a view 
to providing a comprehensive list of references for those interested in such techniques.

A .l  Single large prime

The large prime variant appears to go back at least as far as the development of the 
Continued Fraction factoring method of Morrison and Brillhart [92], and is analysed 
from a factoring viewpoint by Pomerance [107]. It is described, as applied to discrete 
logarithm computation, in Odlyzko’s survey paper [98] of 1984, and is used in most, 
implementations described in papers from this point onward, both for factoring and 
discrete logarithm computation. See Boender [15] for a discussion of the technique, and 
its yield as applied to the Multiple Polynomial Quadratic Sieve for factoring. Estimates 
for the number of 1-partials one may expect to find for a particular set of bounds are 
given by Bach and Peralta [9], while estimates of yield from these 1-partials can be 
found in Lenstra and Manasse [75] and Morain [91].

A .2 Two large primes

We must now differentiate slightly: two large primes have been used in essentially 
two different ways. The classic paper in the field is tha t of Lenstra and Manasse [75] 
which applies to factoring and was originally presented at EuroCrypt in 1990; although 
apparently the notion of using two large primes goes back to ideas of Montgomery and 
Silverman in the mid 1980s1. The method described by [75] uses two large primes with

1 According to a brief discussion on sc i.c r y p t .
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a single factor base -  this approach was also used by Atkins et al. [8] to break the 
original RSA challenge message.
The possibilities when allowing at most two large primes then increase when one con
siders the ‘Waterloo variant’ approach of Blake et al. [13], which, for the purposes of 
this discussion, leads to checking two values for smoothness. In a similar manner, de
velopments such as tha t of the Number Field Sieve (see Lenstra and Lenstra, Jr. (eds.)
[73]), starting around 1988, permit the use of two factor bases, which again may be 
thought of as checking two values for smoothness. In these cases, for a maximum of 
two large primes per relation, we can either use the single large prime variant in the 
factorisation of two values, or apply the ‘classic’ two large prime variant to one value 
only.
Obviously, for both of these cases we have relations involving two large primes, but 
they differ both in the generation and resolution of partial relations. For the first case
[75], we introduce additional work in relation generation due to the need to factor a 
composite value in order to identify our two large primes. However, when trying to 
eliminate the large primes, one may process all these relations together, since there 
is a single set of large primes which occur in all relations. For the second case, the 
situation differs in that we remove the need for an expensive ‘splitting out,’ of the 
large primes; but we have added complications in resolving the partial relations, as 
noted by [73]. This is due to the fact that we cannot in general match a large prime 
occurring when factorising over one factor base with the same value should it occur 
when factorising over the second factor base. If using a graph-theoretic approach to 
resolve these relations, the graph of 2-partial relations is then bipartite. We note that 
this complication does not occur when using the Waterloo variant with a single factor 
base. A ‘hybrid’ approach is, of course, possible -  Thome [127] allows a maximum of 
two large primes per relations, but allows these to come from either ‘(1 x 2)’ or ‘(2 x 1)' 
approaches, depending on the result of the first smoothness test. For an experimental 
investigation of the technique, see Boender and te Riele [16] (again a factoring paper). 
Semi-smoothness estimates are extended to the case of two large primes by Lambert

[71].

A .3 Using n large primes

Use of more large primes essentially follows the same pattern -  an n-large prime variant 
can be thought of as an (x x ?/)-variant where n = x x y .  Here x  is actually the number 
of values being tested for smoothness; and so is actually better represented as x \  
where x \  is the number of factor bases being employed, and X2 denotes the number of 
smoothness tests being carried out per factor base. x \  will generally be one or two; X2 

will usually be one, but may be two (as is the case if using a ‘Waterloo variant’). The
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value y is the number of large primes we allow in each smoothness test. This definition 
is slightly restrictive in that one does not have to use the same number of large primes 
for each smoothness test -  we give the above definitions simply to illustrate different 
situations.
A three large prime version of GNFS was implemented by Buchmann et al. [19]. Effec
tively a ‘(1 x 1) +  (1 x 2)’ variant, this allowed one large prime on the rational factor 
base and two on the algebraic factor base. A very different ‘(1 x 3)1 approach was given 
by Leyland et al. [81] in 2002, where one allows three large primes in a single smooth
ness test using MPQS. A similar investigation using NFS is given by Cavallar [21], who 
also generalises semi-smoothness probability estimates to allow n  large primes. This 
implementation allows three large primes on one factor base and two on the other; and 
so in our terminology can be considered a five large prime variant. This essentially 
extends the results of Dodson and Lenstra [38], who implemented a 2 x 2 approach 
as applied to NFS, and showed unpredictable yet explosive growth in the yield of the 
technique. Further demonstration of the power of using more large primes was given 
by Cowie et al. [30] in factoring RSA-130. The technique was subsequently adapted 
for discrete logarithm computation by Weber [131] using an NFS approach, although 
few details concerning the resolution of partial relations are given.



A ppendix B

Dataset Details

Here we give a brief description of the main datasets used throughout this thesis. These 
were used to compute discrete logarithms modulo primes of between 20 and 40 digits. 
Using the basic method we computed discrete logarithms modulo primes of 20, 25 and 
30 digits, using parameters as shown in table B .l. Datasets are tagged with a number 
corresponding to the digits in the prime modulus -  thus, for example, ‘dataset 30b’ 
refers to a dataset used to compute logarithms modulo a prime of 30 digits. Each prime 
p was chosen such tha t p — 1 =  2q for prime q. In general, we maximised the large 
prime bounds, but for dataset 30b the large prime bound was chosen such that large 
prime values would fit in a C + +  ‘long’ datatype. Generators are simply the smallest 
prime to generate (Z/pZ)*.

D a ta s e t P g F B  e lem en ts b 2 b 3
20d 1020 +  763 2 60,000 6,058 B '{ B?
25c 1025 +  1879 23 100,000 9,593 B ‘{ B?
30b 10so +  1783 5 300,000 25,998 2 n B\ * B 'i
35A 103U +  3043 2 40,000 4,024 B 't B?
40d 1040 +  17407 y/ 2  mod p 1.4 x 106 107,127 B? B?
40E 1040 +  17407 y/ 2  mod p 60,000 6,058 B? B?
40Es 1040 +  17407 V2 mod p 60,000 6,058 B? 100S2
40F 1040 +  17407 y/ 2  mod p 200,000 17,985 B \

Table B .l: Parameters used in generation of data

Using the Waterloo variant index calculus method we computed discrete logarithms 
modulo primes of 20, 25 and 30 digits using the same parameters as above, and subse
quently computed modulo primes of 35 and 40 digits. For datasets 40E and 40Es we 
used the ideas of chapter 3 to choose a root of 2 modulo p as a generator for (Z/pZ)*. 
Dataset 40Es differs from dataset 40E only in that it uses a smaller ‘double large prime’ 
bound in order to restrict the amount of data collected.
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