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Abstract
The transient receptor potential (TRP) superfamily is a large family of putative calcium 

entry channels. TRPC (where C is classical or canonical) is a subfamily of TRP and is 

made of seven members (TRPC 1-7) that can be divided into two functional groups; 

receptor-activated calcium channels and store-operated calcium channels, however these 

groupings are somewhat controversial. TRPC7 is the latest member of the TRPC 

subfamily and is known to be alternatively spliced in both mouse and human. However, 

in comparison to other members of the TRPC subfamily there is relatively little 

information on functional characteristics, tissue distribution and cellular localisation of 

TRPC7.

As a result of this study, an anti-hTRPC7 antibody was produced, it has been 

characterised by performing immunocytochemistry and Western blotting on an over

expression system of hTRPC7. The anti-hTRPC7 antibody was used to elucidate the sub- 

cellular localisation of over-expressed hTRPC7 and one of its splice variants, hTRPC7A, 

there appeared to be no difference in localisation however, experiments have revealed 

that there may be a functional difference between them. Using the anti-hTRPC7 antibody 

endogenous expression of the protein was detected in pancreatic and cardiac cells, where 

it was associated with focal adhesion proteins. Also using the anti-hTRPC7 antibody, 

endogenous expression was detected in 3T3-L1 adipocytes and pituitary cells where it 

was associated with the Golgi and expression increased during differentiation of 3T3-L1 

fibroblasts to 3T3-L1 adipocytes. Primary neurones were also tested for the expression of 

TRPC7 however, it was not detected in these cell types.
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Chapter 1 
Introduction



1.1 - Introduction

Transient receptor potential (TRP) channels have been studied since their original 

identification in Drosophila (Pak et al., 1970). Since the identification of the archetypal 

TRP an abundance of vertebrate TRP channels have been identified and categorised into 

many subfamilies (discussed in sections 1.3 and 1.4). One aspect of TRP channels has 

remained constant across all subfamilies of TRP; they are putative calcium ion (Ca2+) 

influx channels. Relatively recently the final member of the TRPC subfamily (where C is 

classical or canonical), TRPC7, had been identified in mouse (Okada et al., 1999) and 

later in human by our laboratory and another independent group (Murphy Unpublished 

Data; (Riccio et al., 2002a) Accession Numbers: AJ272034 and AC063980 respectively). 

Despite TRPC7 being a putative Ca2+ influx channel relatively little else is known about 

it, as with many other members o f the TRP superfamily the question of its functional 

mechanism of activation has yet to be answered. In this chapter I shall introduce Ca2+ as 

an important ion for cell and tissue systems and review the current literature implicating 

the TRP superfamily in Ca2+ signalling roles.

1.2 - Calcium Signalling

1.2.1 -  The Importance o f Calcium

Calcium (Ca2+) is an extremely important ion; it acts as an intracellular messenger 

relaying information within cells to regulate their activity. Ca2+ triggers life at 

fertilisation and Ca also controls the development, differentiation and proliferation of 

cells and is also involved in the pathways mediating cell death, apoptosis and necrosis 

(Berridge et al., 1998; Berridge et al., 2000). The normal resting level o f intracellular 

Ca2+ is approximately lOOnM and extracellular concentration of Ca2+ is 2mM (Bootman 

et al., 2001; Clapham, 1995). Ca must be maintained at low levels in cells as it can 

precipitate phosphate, very high levels of intracellular calcium can also lead to cell 

necrosis through the activity of Ca sensitive protein digesting enzymes, such as the 

protease calpain (Clapham, 1995). Many cellular proteins have been adapted to bind and
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buffer Ca2+ (Clapham, 1995). Calcium is a highly versatile intracellular signal, for 

example, where it takes hours to drive events such as gene transcription; it can take 

microseconds to trigger exocytosis (Berridge et al., 2000).

1.2.2 - Spatial Calcium Signalling

The action of Ca2+ is local, when activated, both Ca2+ entry and release channels 

introduce Ca2+ into the cytoplasm, however these channels have only brief opening times 

and introduce small plumes of Ca2+ around the mouth of the channel before diffusing into 

the cytoplasm (Berridge et al., 2000; Clapham, 1995). The rate of diffusion is slow and it 

is estimated that Ca2+ migrates no further that 0.1 -0.5pm in about 50ps before 

encountering a binding protein (Berridge et al., 2000; Clapham, 1995). These small 

plumes provides local and highly specific control of many physiological functions but are 

also used as the basic building blocks of complex global Ca2+ signals such as oscillations 

and waves (Berridge et al., 2000). Cells do not have a uniform Ca2+ concentration and 

cellular buffers and channels are non-uniformly distributed (Clapham, 1995). An 

important aspect of intracellular calcium signalling is ion channel clustering, for example 

it has been shown that channel and receptor proteins are often not uniformly distributed 

around the PM but instead are grouped together (Shuai and Jung, 2003; Damjanovich et 

al,1999). The theory is that an optimal clustered distribution of Ca2+ channels enhances 

the cells capability to create a large Ca response to a weak stimulation (Shuai and Jung,

2003).

1.2.3 -  Intracellular Calcium Stores

Calcium signalling makes use of the Ca2+ from the extracellular space and intracellular 

stores; primarily the endoplasmic reticulum (ER; or sarcoplacmic reticulum in muscle; 

SR) but also, to an extent, the mitochondria and Golgi apparatus also play a role in Ca 

signalling. Many processes regulate intracellular calcium concentration, these processes 

can be divided in to calcium ‘on’ and ‘o ff  mechanisms depending on whether they serve 

to increase or decrease cytosolic Ca2+ concentration. (Berridge et al., 2000; Bootman et 

al., 2001). Calcium ‘on’ mechanisms involves a diverse set o f channels located at the 

plasma membrane (PM); they regulate the influx of calcium from the extracellular space
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and channels on the ER/SR. Another diverse set of mechanisms are responsible for the 

‘o ff  mechanism, to remove intracellular calcium and sequester it in intracellular Ca2+ 

stores, these include Ca2+-adenosine triphosphatases (Ca2+ATPases) on the PM and 

ER/SR and ion exchangers, for example the Na+/Ca2+ exchanger (NCX). (Bootman et al., 

2001).

1.2,3.1 - Endoplasmic Reticulum

The ER is a multifunctional signalling organelle; one of its primary functions is as a 

source and store of Ca2+. The ER is a highly dynamic organelle, it undergoes constant 

fusion and budding as part of the complex trafficking events that occurs within cells, and 

so the stores of Ca2+ are not static entities, but are heterogeneous, widely distributed and 

constantly changing (Gill et al., 1996). The ER is divided in to rough ER, smooth ER and 

nuclear membrane. The rough ER is so named because it is associated with ribosomes, it 

is actively and primarily involved in protein synthesis however, it may also play a role in 

Ca2+ signalling. The smooth ER is mainly responsible for Ca2+ signalling, in muscle cells 

the SR is highly arranged to line up with the transverse tubules (t-tubules), invaginations 

of the PM and appear as striations, the highly regular organisation ensures that the SR can 

release Ca2+ synchronously in order to create the rapid global signals necessary to 

contract the large muscle cells (Berridge, 2002). The ER/SR is capable of both signal 

reception and signal transmission. Input signals include intracellular messengers such as 

inositol 1,4,5-trisphosphate (InsPj), sphingosine-1-phosphate (S-l-P) and Ca2+ itself, in 

response, the ER can generate a number of output signals including Ca2+ (Berridge, 

2002). The fact that Ca2+ can act as both an input and output signal highlights the role of 

the ER as an excitable system capable of spreading Ca2+ signals throughout the cell using 

a regenerative process of Ca2+-induced Ca2+ release (CICR), this process is o f high 

importance in Ca2+ signalling (Berridge, 2002).

The ER contains InsP3 Receptor (InsPsR) and Ryanodine Receptors (RyRs); they are 

responsible for releasing Ca2+ in response to the input signals (Figure 1). However, in 

addition to the receptors there is also a leak pathway in the ER. Both the regulated release
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and the leak o f Ca2+ are counteracted by the SR/ER Ca2+ ATPase (SERCA) pump that 

functions to maintain an internal store o f Ca2+ by pumping Ca2+ into the ER/SR 

(Berridge, 2002).

PM

Extracellular 
space

Cytosol

crSo*-Q

^ P IP 2  %plnsl'3 ^

°  cS§
r"' ^
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O Calcium DAG

Figure 1.1: A schematic diagram of the main Ca2+ channels in the ER and their association with membrane 

proteins. GPCR G-protein coupled receptor; InsP3 inositol 1,4,5-trisphosphate, PIP2 phosphatidylinositol 

4,5-bisphosphate, DAG diacyl glycerol L/T VOCC L/T type voltage operated calcium channel; PM plasma 

membrane; InsP3R InsP3 Receptor; RyR Ryanodine Receptor; ER endoplasmic reticulum; SERCA SR/ER 

Ca2+ ATPase.
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1.2.3.2 - Mitochondria

The mitochondria play an important role in regulating cytosolic Ca2+ levels. The function 

of the ER is intimately connected with the mitochondria. Mitochondria and the ER form a 

highly dynamic interconnected network where they cooperate to generate Ca signals, 

the mitochondria makes tight, synaptic like contacts with the ER. The mitochondria play 

an important role in shaping the calcium signal from the ER and they assist with recovery 

by rapidly sequestering Ca2+ before returning it to the ER (Berridge, 2002; Rutter and 

Rizzuto, 2000). Mitochondria can also reduce cytosolic calcium transients and diminish 

cellular responses by use of a high capacity rapid calcium uniporter (Bootman et al., 

2001; Montero et al., 2000; Rutter and Rizzuto, 2000).

1.2.3.3 - Golgi Apparatus

It is only recently that the Golgi apparatus has been accepted as a store for Ca2+, and 

because of its defined intracellular localisation it has been hypothesised to be involved in 

generating highly localised Ca2+ gradients (Rizzuto, 2001). Functional and biochemical 

data support the theory that the Golgi has a capacity in Ca2+ storage; for example direct 

measurement of Ca2+ fluxes with targeted aquorin and the localisation of the InsPaR and 

some calcium binding proteins (Lin et al., 1999; Pinton et al., 1998; Scherer et al., 1996).

1.2.4 -  Store Calcium Release

There are several types of messenger-activated channels that mediate the release of Ca 

from intracellular stores in to the cytoplasm. In non-excitable cells the initial signal for 

store release of Ca2+ is activated by the coupling of a ligand such as hormones, growth 

factors and neurotransmitters on to a G-protein coupled receptor or a tyrosine kinase 

linked receptor (RTK) on the PM (Figure 1.2; (Berridge, 1993; Putney, Jr. and Bird, 

1993a). In both cases the signal results in the generation of InsP3, the key activator of 

Ca2+ release (Figure 1.2; (Berridge, 1993; Putney, Jr. and Bird, 1993a). G-protein coupled 

receptors (GPCR) undergo conformational changes upon binding of the ligand, this
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activates, via the guanosine triphosphate (GTP) binding protein, phospholipase C-pl 

(PLC-pi). The activation of PLC-pi causes the hydrolysis of the lipid precursor, 

phosphatidylinositol 4,5-bisphosphate (PIP2) to produce InsP3 and diacylglycerol (DAG) 

(Berridge et al., 2000). The TK receptors undergo ligand-mediated dimerisation, allowing 

the kinase domains to phosphorylate each other on specific tyrosines. It is the 

phosphotyrosines that provide the docking site for PLC-yl; this is then translocated from 

the cytosol to the PM where it cleaves PIP2 to produce InsP3 and DAG (Berridge et al., 

2 0 0 0 ). InsP3 is a highly mobile but short-lived messenger that diffuses in to the interior of 

the cell where, on the ER/SR it encounters the tetrameric InsPsR. The binding of InsP3 to 

InsPsR leads to a conformational change of the receptor allowing the integral channel to 

be opened and the exit of Ca2+ into the cytosol from the ER/SR, the Ca2+ then goes on to 

be involved in specific cellular processes. The InsPsR require InsP3 to open, however 

Ca2+ regulates their activation at their cytosolic surface. For example, during modest 

increases of Ca2+, InsP3 opening is enhanced, however where there are high levels of Ca2+ 

their opening is inhibited (Putney, Jr. and Bird, 1993b; Venkatachalam et al., 2002). InsP3 

mediated signal pathways can increase cellular concentrations of Ca2+ from lOOnM to 

approximately lOOOnM, depending on cell type (Bootman et al., 2001; Clapham, 1995).

RyR are tetrameric proteins predominantly found on the ER/SR of excitable cells for 

example neurons and muscle cells. RyRs are gated by electromechanical coupling to the 

PM voltage operated Ca2+ channels (VOCC; for example the dihydropyridine receptor in 

skeletal muscle), cyclic adenosine diphosphate (cADP) ribose and Ca2+ itself. They are 

very similar to the InsPsR, structurally and functionally however, they have twice the 

conductance of InsPsR (Clapham, 1995).

Another Ca2+ release channel is sphingolipid Ca2+ release mediating protein of 

endoplasmic reticulum (SCaMPER), it is activated by sphingosylphosphorylcholine 

(SPC) and S-l-P and it is expressed in a number of different cell types. This is largely 

uncharacterised, and is much smaller and bears no resemblance to InsPsR and RyR 

(Bootman et al., 2001).
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1.2.5 -  Extracellular Calcium Entry

There are many different types of calcium entry channels on the PM, usually they are 

grouped together according to their mechanism of action, they are, voltage operated Ca 

channels (VOCC), receptor operated channels (ROC), store operated channels (SOC) and 

second messenger operated channels (SMOC).

1.2.5.1 - Voltage Operated Calcium Channels (VOCC)

VOCC also referred to as voltage gated Ca2+ channels (VGCC), they are found in 

excitable cells and generate the rapid Ca fluxes that control cellular processes such as 

muscle contraction or exocytosis at synaptic endings (Berridge et al., 2000). Most 

mammalian VOCCs are comprised of five protein subunits (a l, a2, p, y, 5), the a l  

subunit is the Ca2+ channel and the other subunits regulate channel gating (Catterall, 

2000). As with many Ca2+ release and entry channels multiple isoforms of the subunits 

have been found and different types of VOCCs are expressed in a tissue specific manner 

(Bootman et al., 2001). VOCCs are activated by depolarisation of the PM, the influx of 

Ca2+ ions following membrane depolarisation leads to the release of synaptic vesicles, 

this process occurs within microseconds (Berridge et al., 2000). Electrophysiological 

studies have revealed different Ca currents flow through these channels and as such 

these have been designated; L-, N-, P-, Q-, R- and T-type VOCCs (Catterall, 2000).

1.2.5.2 - Receptor Operated Channels

Also known as ligand-gated channels, a ROC opens in response to the binding of a ligand 

and allows the entry of extracellular ions. An example of a ROC is the V-Methyl-D- 

Aspartate Receptor (NMDAR); this opens in response to the binding of glutamate on the 

extracellular domain (Berridge et al., 2000). There is a wide variety of ROCs who are 

structurally and functionally diverse and they are activated by a wide range of agonists, 

for example adenosine triphosphate (ATP), Serotonin (5-HT), glutamate and 

acetylcholine (Bootman et al., 2001).
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1.2.5.3 - Store Operated Channels (SOC)

There is much controversy surrounding this mechanism of extracellular Ca2+ entry and in 

the past it has often been called many things; capacitative calcium entry (CCE) channels 

(Putney, Jr., 1986), store operated Ca2+ entry (SOCE) channel and the term associated 

with it, describing the current through the channel was calcium release activated current 

( / c r a c )  coined by Hoth and Penner (1992). A consensus appears to have been met and the 

Ca2+ entry channels in question are now commonly known as store operated channels 

(SOC). In 1981 Casteels and Droogmans demonstrated that in vascular smooth muscle 

cells the depletion of agonist sensitive intracellular Ca2+ stores increased the rate of Ca2+ 

uptake from outside of the cell (Casteels and Droogmans, 1981). From this initial 

observation a model was developed and Putney first introduced the idea of CCE in 1986.

The cytosolic Ca2+ signals generated involved two closely linked components; rapid, 

transient release of Ca2+ stored in the ER followed by a slowly developing entry of 

extracellular Ca2+ (Berridge et al., 1998; Clapham, 1995; Ma et al., 2001; Parekh and 

Penner, 1997; Putney, Jr. and Bird, 1993b; Putney, Jr. and McKay, 1999; Putney, Jr. and 

Ribeiro, 2000). The initial signal for store release o f Ca2+ is mediated by the action of 

InsP3 on the InsPsR and is described above in section 1.2.4. The resulting depletion of 

Ca2+ triggers the slow activation of the SOCs, this phase of the Ca2+ signal serves to 

mediate longer term cytosolic Ca2+ elevations and replenishes intracellular Ca2+ stores 

(Figure 1.2) (Parekh and Penner, 1997; Putney, Jr. and Bird, 1993b; Venkatachalam et 

al., 2 0 0 2 ).

1.2.5.3.1 - SOC Mechanism o f  Action

Likely hypotheses for mechanisms regulating entry o f Ca2+ after store depletion are the 

conformational coupling, exocytosis and the chemical coupling mechanisms (Clapham, 

1993; Gill et al., 1996; Irvine, 1990; Randriamampita and Tsien, 1993; Smani et al.,

2004). The original model for the mechanism of activation of SOCs was the 

conformational coupling of the InsP3 receptor on the ER membrane to the SOC on the 

PM (Gill et al., 1996; Irvine, 1990). The exocytosis model involves the fusion of vesicles 

containing SOCs linked with InsPsRs on the ER, with the PM (Fasolato et al., 1993). This
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mechanism is similar to the conformational coupling model and there has been 

considerable evidence to support the exocytosis model (Yao et al., 1999). The chemical 

coupling model involves the release of a diffusible SOC activating messenger called 

calcium influx factor (CIF) from the ER indicating to the SOC the depletion of Ca2+ 

stores (Clapham, 1993; Clapham and Neer, 1993; Randriamampita and Tsien, 1993; 

Smani et al., 2004). However, the mechanism for coupling ER Ca2+ store depletion with 

Ca2+ entry is a thus far unresolved question and despite the numerous hypotheses (Barritt, 

1998; Berven et al., 1994; Bird and Putney, Jr., 1993; Bode and Netter, 1996; Casteels 

and Droogmans, 1981; Putney, Jr., 1986; Putney, Jr., 1997; Somasundaram et al., 1995; 

Venkatachalam et al., 2002) not one has been shown conclusively to be the case.

1.2.5.3.2 - Are SOCs TRPs?

Many groups believe they have found SOCs in many different cell types; from smooth 

muscle cells (Albert and Large, 2003; Lin et al., 2004) to endothelial cells (Cioffi et al., 

2003; Norwood et al., 2000). It has widely been proposed that the molecular candidates 

for SOCs are a family of non-selective cation channels, transient receptor potential 

channels (TRPs), it was first proposed when a group lead by Schilling expressed 

Drosophila TRP and a similar protein, TRP-like (TRPL) in Sf9 insect cells, they found 

that the expression of TRP gave a depletion activated inward current of Ca2+ (Hu et al., 

1994; Putney, Jr. and McKay, 1999; Vaca et al., 1994). Since this discovery many of the 

mammalian TRPs have been proposed to be SOCs, however this, as well as the original 

TRP observation, remains controversial (Putney, Jr. and McKay, 1999). Bemd Nilius and 

others are more sceptical about SOCs and the role TRPs have to play, as there is no 

consensus in the field on what is required to define a SOC. Many believe that three 

criteria must be reached before a candidate protein can be recognised as a SOC; it must 

be activated by various forms of store depletion, there must be a close correlation 

between current activation/ deactivation and changes in the Ca2+ content of the store, and 

finally the phenomenon must disappear when the candidate protein or gene is eliminated 

in a transgenic model, a controlled antisense or by ribonucleic acid interference (RNAi). 

Importantly these criteria have not yet been met for any identified model (Nilius, 2004).
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1.2.5.4 - Second Messenger Operated Channels (SMOC)

SMOC are also known as receptor activated Ca2+ channels (RACC) and RACC is defined 

by Barritt (1999) as any PM Ca2+ channel, other than a VOCC, which is opened as a 

result of the binding of an agonist to its receptor, where the receptor protein is separate 

from the channel protein and for which the mechanism of channel opening does not 

involve depolarisation of the PM (Barritt, 1999). By this definition SOCs are a subgroup 

of RACC, however this section will concentrate on the other subgroup; SMOC. Second 

messenger-operated channels are triggered by the same initial signals that trigger SOCs, 

however instead of InsP3 leading to the SOC pathway, Ca2+ channels are activated by 

intracellular lipid messengers such as DAG (Figure 1.2) and polyunsaturated fatty acids 

(PUFAs) such as arachidonic, linoleic and linolenic acids (three essential fatty acids; 

EFA) (Ambudkar, 2004; Bootman et al., 2001; Chyb et al., 1999; Hofmann et al., 1999; 

Mignen and Shuttleworth, 2000). Each of the three EFAs has been shown to induce 

recovery of Ca2+ stores and re-entry of Ca2+ into cells for the cell growth cycle of 

quiescent cells (Gill et al., 1996). These unknown Ca2+ channels activate substantial Ca2+ 

influx in the absence of Ca2+ store release (Ambudkar, 2004; Bootman et al., 2001; Chyb 

et al., 1999; Hofmann et al., 1999; Mignen and Shuttleworth, 2000). The TRP family of 

non-selective cation channels has again been suggested as a molecular candidate for 

SMOC however, this has not yet been definitively proven (Hofmann et al., 1999; Minke 

and Cook, 2002; Montell, 2001).

Figure 1.2 (following page): Schematic diagrams two proposed mechanisms o f Ca2+ influx, a shows the 

proposed SOC Ca2+ signal cascade and b shows the proposed SMOC Ca2+ signalling cascade (Not to scale). 

PM Plasma membrane; GPCR G-protein coupled receptor; TK Tyrosine kinase; PLC Phospholipase C; 

SOC/TRP Store operated/ Transient receptor potential channel (see section 1.3.5.3.2), SMOC/TRP Second 

messenger operated/ Transient receptor potential channel; ER Endoplasmic reticulum; SERCA SR/ER Ca2+ 

ATPase; InsP3R InsP3 Receptor; ? Unknown mechanism of action. (Not to scale; (Berridge, 1993; Berridge 

et al., 2000; Putney, Jr. and Bird, 1993b).
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1.3 - Transient Receptor Potential (TRP) Protein

1.3.1 - TRP

The original TRP protein was first identified in Drosophila after a series of experiments 

identified a defective light response in the retina of the Drosophila (Cosens and Manning, 

1969). The mutant Drosophila used by Cosens and Manning was dubbed transient 

receptor potential or ‘trp’ (Pak et al., 1970) because the receptor potential declines to 

baseline during prolonged illumination (Hardie and Minke, 1993). The sensitivity of the 

response recovers after about one minute in the dark (Hardie and Minke, 1993). In 1989 

the trp gene was cloned (Montell and Rubin, 1989; Wong et al., 1989) and it was found 

that the trp mutant Drosophila was a ‘null’ mutant, as no gene product (protein) was 

produced (Hardie and Minke, 1993). A hypothesis was formulated proposing the trp gene 

to encode a channel that was part of a two channel system, the correlation between trp 

and the exhaustion of cellular Ca2+ provided the basis of a series of experiments that 

showed the trp gene product, TRP to be a Ca2+ influx channel (Hardie and Minke, 1993; 

Minke and Cook, 2002). It was found that upon application of La3+ (a known Ca2+ 

channel blocker), WT flies from several species mimicked the behaviour of the trp 

mutant and application of La3+ to the mutant had virtually no effect (Hardie and Minke, 

1992; Hochstrate, 1989; Suss-Toby et al., 1991). Therefore, under the assumption that 

Ca2+ is required for sustained excitation, it was suggested that a TRP mediated 

mechanism is responsible for replenishing cellular Ca2+ fast enough during strong 

illumination and therefore TRP is a Ca2+ channel or transporter (Hardie and Minke, 1993; 

Minke and Cook, 2002). Compelling evidence supported the hypothesis that TRP is a PM 

Ca2+ channel by reasoned argument drawing on evidence from structural analysis (the 

TRP structure appeared to be homologous to one subunit of a voltage gated channel) and 

functional data, much of it involving the Ca2+ channel blocker La3+ (Hardie and Minke,

1992).
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1.3,2 - Molecular Identification o f TRP

When the trp gene was cloned and sequenced it was found to encode a 1275 amino acid 

protein with multiple (most likely six; Figure 1.3) membrane spanning regions (Montell 

and Rubin, 1989; Wong et al., 1989). The predicted structure was highly reminiscent of 

the superfamily of voltage and second messenger gated ion channels (Jan and Jan, 1992; 

Phillips et al., 1992). However, the amino acid sequence suggested that, if  TRP is a 

channel, it is not voltage gated because the fourth putative transmembrane segment lacks 

the positively charged residues needed to form a voltage sensor in voltage gated ion 

channels (Stuhmer et al., 1989). Voltage gated channel subunits consist o f four 

homologous domains, each with six transmembrane helices (SI-6 ) however, the TRP 

sequence includes only one such domain, it therefore seems probable that like the voltage 

gated K+ channels, TRP proteins are subunits of a tetrameic structure (Hardie and Minke, 

1993). It does remain unclear whether the channels are assembled as homomers or are 

heteromeric assembling with other proteins (Hardie and Minke, 1993).

In the intracellular N-terminal region of the 1275 amino acid TRP protein there are four 

ankyrin repeats (Figure 1.3; (Phillips et al., 1992). Ankyrin repeats are 33 amino acid 

residue motifs that mediate specific protein-protein interactions with a diverse repertoire 

of macromolecular targets (Sedgwick and Smerdon, 1999). Ankyrin provides, among 

other things, a mechanism for linking membrane proteins to the cytoskeleton, and plays a 

role in subunit interactions of proteins with two or more subunits (Michaely and Bennett,

1993). If TRP is a subunit of a tetrameric channel the ankyrin repeat may play a role in 

the interactions of the subunits or localisation of the channel (Minke and Cook, 2002). 

Shortly before the membrane spanning region is a segment of hydrophobicity, this is 

called hydrophobic domain 1 or the coiled coil domain (Figure 1.3; (Minke and Cook,

2002). The coiled coil is a ubiquitous protein motif that is commonly used to control 

oligomerisation and may contribute to the homo- or heteromerisation of the protein 

(Vazquez et al., 2004).

Close to the membrane spanning region in the C-terminal region is an area termed the 

TRP box (Figure 1.3), this is a region of six amino acids (EWKFAR) that only increased
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in significance after the identification of other TRPs (Montell, 2001). The TRP box is a 

highly conserved region across species and TRP subfamilies (Montell, 2001). TRP also 

contains a putative Calmodulin (CaM) binding domain in the C-terminal region (residues 

628-977; Figure 1.3) (Phillips et al., 1992). Further reports have suggested that TRP 

binds to CaM in a Ca2+ dependent manner (Chevesich et al., 1997). The function of CaM 

in Drosophila phototransduction appears to be diverse but is not yet clear (Minke and 

Cook, 2002). Close to the putative CaM binding domain on the C-terminus there is a 

PEST sequence (Figure 1.3), this is a signal for protein degradation by the Ca2+ 

dependent protease calpain, this is a typical sequence for CaM binding proteins (Li and 

Montell, 2000; Minke and Cook, 2002). Due to this, it was expected that TRP would 

show a fast turnover rate, however research has revealed a relatively slow turn over rate 

of only 25% in eight days (Li and Montell, 2000; Minke and Cook, 2002).

There are other structural features of TRP (Figure 1.3); in the C-terminal region there is a 

proline rich sequence in which the dipeptide KP (Lys-Pro) is repeated 27 times (Minke 

and Cook, 2002). Near the end of the C-terminus a sequence of amino acids is repeated in 

tandem nine times; D K D K K P G/A D (Asp-Lys-Asp-Lys-Lys-Pro-Gly/Ala-Asp) this 

is known as the 8 x 9 region and may be important for protein-protein interactions 

(Minke and Cook, 2002). At the end of the C-terminal region there is a binding domain 

for the PDZ scaffold, the protein ‘inactivation no after-potential’ D (INAD) (Shieh and 

Zhu, 1996; Tsunoda et al., 1997; Xu et al., 1998). PDZ domains are common structures in 

a wide variety of proteins and are known to be involved in signal transduction pathways, 

the name PDZ is derived from the names of three proteins containing PDZ domains; 

PSD-95, the Drosophila disc-large tumour suppressor protein DlgA and the tight junction 

protein ZO-1 (Saras andHeldin, 1996).
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Figure 1.3: Schematic diagrams o f TRP; a shows location o f domains of putative motifs along the 1275 

amino acid (a.a) protein, b shows a schematic diagram o f the expected conformation TRP in a lipid bilayer 

membrane. S I-6 are the channel domain. (Diagrams not to scale). Adapted from Minke and Cook 2002.

1.3.3 - Discoveries o f TRPL and TRPy

After identification of TRP two other related Drosophila proteins were identified; TRP- 

like (TRPL) and TRP-gamma (TRPy) (Figure 1.4;(Phillips et al., 1992; Xu et al., 2000). 

TRPL and TRPy are 1124 and 1128 amino acids respectively and have 39% and 54% 

identities respectively to TRP, however they share the most identity in the putative 

transmembrane regions (Minke and Cook, 2002). TRPL and TRPy do not contain the 

PEST region, 8 x 9  region, KP repeat region or an INAD binding domain (Minke and 

Cook, 2002).
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Figure 1.4: Schematic diagrams of TRPL and TRPy. (Not to scale). Adapted from Minke and Cook 2002.

1.3.4 - TRP Mechanism o f Action

TRP is an ion channel with particular significance for Ca2+ entry and has been put 

forward as a candidate for SOC and SMOC (Hofmann et al., 1999; Hu et al., 1994; 

Minke and Cook, 2002; Montell, 2001; Putney, Jr. and McKay, 1999; Vaca et al., 1994). 

Conflicting reports have resulted from work carried out to determine whether TRPs are 

SOCs or SMOCs, several groups have come to the conclusion that TRP is a SOC (Hardie 

and Minke, 1993; Vaca et al., 1994) whereas another group found that the channel may in 

fact be a SMOC, regulated by DAG (Chyb et al., 1999).

Functional analysis o f TRPL and TRPy showed them to be channel proteins permeable to 

Ca2+ (Hu et al., 1994; Xu et al., 2000). Both TRPL and TRPy were shown to be 

constitutively active under basal conditions and it was shown that TRPL was unlikely to 

be a SOC as it was insensitive to release of Ca2+ from internal stores by thapsigargin 

(TG) and it has been suggested that TRPL is a SMOC regulated by PUFAs, DAG or PIP2 

(Chyb et al., 1999; Estacion et al., 2001; Vaca et al., 1994).

The jury may still be out as to whether TRP, TRPL and TRPy are SOCs or SMOCs 

however, the general view now seems to be that they are SMOCs possibly activated by 

DAG. The difficulty appears to be that, when expressed in vitro, they can behave as 

SOCs, but in vivo they behave as SMOCs (Hardie, 2003).
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1.3.5 -  Associated Proteins

There are some indications that proteins containing one or more PDZ domain may be 

required for proper compartmentalisation of ion channels, proteins with multiple PDZ 

domains may link multiple signalling proteins together in one complex (Chevesich et al., 

1997). PDZ motifs occur in a large variety of proteins and bind to diverse proteins, such 

as signalling, cell adhesion and cytoskeletal proteins (Li and Montell, 2000). Since the 

molecular identification of TRP and TRPL it has been found that the proteins function as 

part of a supramolecular signalling complex involved in Drosophila phototransduction, 

this signalling complex is now known as the signalplex (Montell, 1999). It appears that 

TRP and the protein INAD play a pivotal role in the signalplex (Li and Montell, 2000). 

INAD is made primarily of five 90 amino acid protein PDZ domains (Shieh and 

Niemeyer, 1995). It is known that TRP has an INAD binding motif on its C-terminal 

region however TRPL does not, TRPL was however found to co-immunoprecipitate with 

INAD through its heteromeric association with TRP (Xu et al., 1997; Xu et al., 1998). In 

a yeast two hybrid screen a FK-binding protein (FKBP) called FKBP59 was identified as 

an INAD binding partner in Drosophila and it was found to bind tightly to TRPL, altering 

channel regulation when heterologously expressed in Sf9 cells (Goel et al., 2001). FKBPs 

are immunophillins named for their ability to bind the immunosuppressant drug FK506, 

immunophillins are peptidyl-prolyl cis-trans isomerases that recognise specific XP 

dipeptides in their target proteins (Sinkins et al., 2004) for example FKBP 12 binds to a 

leucyl-prolyl (LP) dipeptide in the InsPaR or valyl-prolyl (VP) in the RyR (Gabuijakova 

et al., 2001; Marks, 1996).
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1.4 - The TRP Superfamily

With the discovery of TRP homologues in Calliphora and Loglio (squid) came the 

hypothesis that TRP homologues may be present in many species, even vertebrates 

(Huber et al., 1996; Minke and Cook, 2002; Monk et al., 1996). It was found that 

Calliphora and Loglio had a 77% and 46% sequence identity respectively with 

Drosophila TRP, the highest sequence similarities was through the membrane spanning 

regions, though they also both have CaM binding domains on the C-terminus and ankyrin 

repeats on the N-terminus however, Calliphora had a much shorter KP repeat region 

(Huber et al., 1996; Monk et al., 1996).

By performing genome database searches 13 members of a TRP ‘superfamily’ were 

identified in Caenorhabditis elegans and it was possible to subdivide these into three 

subfamilies, initially named short-, long- and osm-TRP (Harteneck et al., 2000). The 

short TRPs had the highest sequence identity to TRP and TRPL, the long TRPs, at that 

time less well characterised, had a higher identity to the short TRPs than to the osm 

TRPs, named after the founding member osm-9, which were the most well characterised 

group and are implicated in chemo-, mechano- and osmoregulation (Harteneck et al., 

2000). As the field developed, mammalian homologues of the TRP superfamily were 

found in human, rat, mouse and bovine tissue, and the subfamilies have since been 

renamed, in an effort to standardise and avoid confusion, the mammalian superfamily has 

also grown to include three more sub families. The short TRP subfamily became the 

TRPCs, where C is classical or canonical to reflect the high homology with the 

archetypal Drosophila TRP, there are seven members all identified between 1995 and 

1999 (Minke and Cook, 2002). The long TRP subfamily was renamed TRPM after the 

founding member, melastatin (mlsn) (Bimbaumer et al., 2003). The osmTRP subfamily 

have been renamed TRPV after the mammalian founding member, the vanilloid receptor 

(Bimbaumer et al., 2003). Four more novel and largely uncharacterised members of the 

TRP superfamily have been identified; Polycystic TRP (TRPP), Mucolipidin TRP 

(TRPML), ANKTM TRP (TRPA) and NompC TRP (TRPN). The relationship between 

the subfamilies is summarised in the phylogenetic tree below (Figure 1.5). The first

18



human TRP to be identified, TRPC1 was discovered by two separate groups (Wes et al., 

1995; Zhu et al., 1995), however the first detailed localisation study of a mammalian TRP 

was carried out in rat, the protein was called TRP-R (Funayama et al., 1996). They found 

the protein to have a 51.8% and 44% amino acid identity to TRP and TRPC1 

respectively, it was found to be present in the brain from prenatal stages (Funayama et al.,

1996) TRP-R has since been found to be a splice variant of TRPC4 (Garcia and Schilling,

1997). The TRPC subfamily will be discussed in greater detail in a later section.

Although much of the research carried out on the TRP superfamily has centred on the 

premise that they are Ca2+ entry channels it is also known that most also have significant 

non-selective permeability to K+ and Na+ (Beech et al., 2004; Sinkins et al., 1998). 

However, for the purposes of this work the permeability o f TRP channels for K+ and Na+ 

will not be discussed in detail.
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Figure 1.5: A phylogeny tree showing the relationships between all human TRPs except where the species 

is identified, the different colours represent the different subfamilies. 0.1 represents approximately 10% 

difference. (Moran et al 2004).
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1.4.1-Melastatin TRPs (TRPM)

The mammalian TRPM subfamily, was named after its founding member, the melastatin 

receptor; this subfamily has eight members, TRPM 1-8 has a variety o f functions and 

structural motifs but all have been implicated in Ca2+ permeability to varying degrees 

(Bimbaumer et al., 2003). However, TRPM 4 and 5 are selective for monovalent cations 

ie, Na+ (Hofmann et al., 1999). TRPMs range from 1104 to 2022 amino acids in length 

and are approximately 20% identical to Drosophila TRP (Figure 1.6; (Bimbaumer et al., 

2003; Montell, 2001). This subfamily shares a degree of homology in the C-teminus 

where the TRP box is present. There are some differences between the TRP box o f the 

TRPM subfamily and the archetypal TRP and TRPC subfamily; the TRPM consensus is 

[VIYFL]WK[FAY][QN]R (Bimbaumer et al, 2003; Montell, 2001). TRPM2 (Figure 

1.6) has a long C-terminus, which carries a Nudix domain and an atypical a-kinase 

domain (Bimbaumer et al., 2003; Clapham, 2003). Nudix domains are found in a diverse 

family of enzymes that catalyse the hydrolysis o f nucleoside diphosphate derivatives 

(Perraud et al., 2001). The TRPMs have been implicated in the signalling pathways that 

produce sweet, bitter and umami (amino acid) taste sensations and cold sensations 

(Clapham, 2003; McKemy et al., 2002; Zhang et al., 2003).
TRPM l
1533 a  a.

TRFM2 
1503 a a

TRPM 3
1707 a a

TRPM4 and 5
1214 and 1165 a a

TRPM 6 and 7
2022 and 1864 a  a

TRPM8_ 
1104 a a

Channel domain TRP Box Nudix domain PLIK domain

Figure 1.6: Schematic diagrams of the members o f the TRPM subfamily. (Not to scale). Adapted from 

Bimbaumer et al 2003.
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1.4.2 - Vanilloid TRPs (TRPV)

TRPVs are non-selective cation channels implicated in Ca2+ entry (Bimbaumer et al., 

2003; Caterina et al., 1997). TRPVs, o f which there are six members (TRPV 1-6), were 

named after their founding member, the vanilloid receptor. All have a C-terminal TRP 

box, which shares a varied homology to other TRP subfamilies, the consensus is 

[IL]W[KR][LA]Q[RWVI], the highest homology to other TRP subfamilies is in the 

membrane spanning regions (Figure 1.7; (Bimbaumer et al., 2003). The TRPV subfamily 

is more similar in length to the TRPC subfamily, marginally shorter than the TRPMs, 

ranging form 729 to 871 amino acids (Bimbaumer et al., 2003). TRPV 5 and 6  are Ca2+ 

selective over Na+ unlike much of the TRP superfamily, which are non-selective for 

cations (Hofmann et al., 1999). The TRPV subfamily has been implicated in nociception, 

heat sensation and osmo-regulation (Caterina et al., 1997; Chuang et al., 2001; Guler et 

al., 2002; Jordt and Julius, 2002; Montell, 2001; Peier et al., 2002; Smith et al., 2002; Xu 

et al., 2 0 0 2 ).

TRFV3 
791 a a

TRPV1’ 2h x h x >
4, 5 and 6
839.764, 
871,729 
and 725 a. a

O  Ankyrin repeat Channel domain Q TRP Box ( ^ )  PDZ domain

Figure 1.7: Schematic diagram of members of the TRPV subfamily. (Not to scale). Adapted from 

Bimbaumer et al 2003.

1.4.3 - Polycystic TRP (TRPP)

TRPP sub family is a relatively new member o f the TRP superfamily and is named after 

polycystic kidney diseases 1 and 2 (PKD 1 and 2), it was the sequence analysis o f PKD2 

that revealed it to be a distant relative of TRP channels (Bimbaumer et al., 2003). There 

are now five members o f the subfamily, (TRPP 1-5) and they range in size from 609 to 

4303 amino acids, they do not have ankyrin repeats on their N-termini or a TRP box on
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their C-termini. However they have a wide range of protein interaction motifs on their C- 

termini (Bimbaumer et al., 2003; Clapham, 2003).

1.4.4 -  Mucolipidin TRP (TRPML)

A small novel TRP subfamily, the TRPML are currently not well characterised. They 

were first identified in C. elegans (Hersh et al., 2002) and more recently found in humans 

(Bargal et al., 2000; Bassi et al., 2000; Sun et al., 2000). Currently there are three 

members of this family(TRPMLl-3) and they are short in length compared to the other 

TRP channels, from approximately 550 to 580 amino acids in length, they have the 

highest degree of identity with the other TRP subfamilies throughout the membrane 

spanning region (Clapham, 2003; Montell, 2001). It is hypothesised that TRPMLs are 

localised to intracellular vesicles, as mutations in TRPML 1 are associated with 

mucolipidosis type IV, a neurodegenerative lysosomal storage disorder (Sun et al., 2000).

1.4.5 -  ANKTM TRP (TRPA)

TRPA1 or ANKTM 1 is currently the only member of this subfamily, it is a Ca2+ 

permeable non-selective cation channel and is homologous to the gene painless in 

Drosophila, which is known to be required in nociception (Clapham, 2003; Tracey, Jr. et 

al., 2003). TRPA1 is distinguished by 14 ankyrin repeats on its N-terminus and is 

activated by cold temperatures of less than 15°C (Clapham, 2003). Recently TRPA1 has 

been linked to being a component of or being a mechanosensitive channels in vertebrate 

hair cells (Corey et al., 2004).

1.4.6- NompC TRP (TRPN)

This subfamily of TRP has not as yet been identified in vertebrates, it has been described 

in Drosophila mechanosensory organs and C. elegans mechanosensory neurons (Walker 

et al., 2000). Similar to TRP A, TRPN has 29 ankyrin repeats on the N-terminal region, 

this leads to an overall length of approximately 1600 amino acids (Littleton and
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Ganetzky, 2000; Walker et al., 2000). TRPN has an approximately 20% identity with 

TRP over the transmembrane domain (TMD) (Montell, 2001).
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1.5 - Classical/Canonical TRPs (TRPC)

This subfamily of TRP is named classical or canonical, as it appears to be highly 

analogous to the archetypal Drosophila TRP in terms of structure. There are seven 

members of the mammalian TRPC subfamily (TRPC 1-7). The TRPC sub family can be 

further divided into four groups based upon sequence homology and, to an extent, the 

currently known function of the proteins; TRPC1, TRPC2, TRPCs 3, 6  and 7 and TRPCs 

4 and 5. Often TRPC1 is placed in the group with TRPCs 4 and 5, however, due to the 

sheer volume of data on TRPC1 compared to TRPCs 4 and 5, it shall, for the time being, 

be in a separate group. TRPC2 will be discussed separately because of the interesting 

differences between it and the other members of the TRPC subfamily.

1.5.1 -  Structure o f TRPCs

All the TRPCs, with the exception of TRPC7, were identified in a relatively short space 

of time by database searches. TRPC1 was discovered in 1995 by two separate 

laboratories; both groups identified the first mammalian homologue to Drosophila family 

of TRPs through searching databases. Zhu et al used the Genbank human kidney 

complementary DNA (cDNA) library and cloned it from HEK293 cells (Zhu et al., 

1995). Wes et al used human genomic and foetal brain cDNA libraries (Wes et al., 1995). 

Results between the two groups were consistent and in addition Wes et al identified two 

other human TRPC proteins, designated hTRPCs 2 and 3 (Wes et al., 1995). It was 

thought that htrpc2 was a pseudogene due to the presence of a stop codon corresponding 

to amino acid residue 690 (Wes et al., 1995), however a full-length version of trpc2 was 

later discovered in mouse (Zhu et al., 1995). The murine sequences of the first three 

human trpcs were obtained alongside those of trpcs 5 and 6  (Zhu et al., 1995), trpc4 was 

identified previously (Petersen et al., 1995). trpc7 was identified in 1999 in mouse by 

Okada et al and more recently in human by Murphy et al and Riccio et al (Okada et al., 

1999; Riccio et al., 2002a) C Murphy Unpublished data). All TRPCs share similar 

homologies to Drosophila TRP (Table 1.1) and to each other.
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TRPC Species Number of  

Amino Acids

% Identity to TRP

TRPC1 Human 793 40%

M ouse 809 40%

TRPC2 M ouse 1172 25-30%

TRPC3 Human 848 34%

M ouse 836 34%

TRPC4 Human 977 41%

M ouse 974 41%

TRPC 5 Human 973 36%

M ouse 975 36%

TRPC6 Human 931 37%

M ouse 930 37%

TRPC7 Human 862 33%

M ouse 862 33%

Table 1.1: showing each of the TRPCs and their approximate identities to Drosophila TRP (Bimbaumer et 

al 2003; Minke and Cook 2002).

The sequences of the TRPCs are largely similar to Drosophila TRP (Figures 1.5 and 1.6); 

three or four ankyrin repeats at the N-terminus and a hydrophobic coiled coil domain 

shortly before the channel region (Figures 1.8 and 1.9; (Bimbaumer et al., 2003). TRPC2 

has a putative CaM-binding domain on the N-terminus before the ankyrin repeats 

(Bimbaumer et al., 2003). The channel region is highly homologous among all the TRP 

superfamily and consists of six membrane spanning domains (S I-6) and a putative pore 

region between S5 and S6 (Minke and Cook, 2002). After the TMD there is the TRP box 

followed by a proline rich region (not as extensive as the TRP proline rich region of 27 

repeats of KP described in section 1.3.2; (Bimbaumer et al., 2003). There is also an 

InsP3R binding site and a CaM binding site (two in TRPCs 4 and 5) on the C-terminal tail 

(Bimbaumer et al., 2003). Here the similarity with TRP ends; the TRPCs are generally 

shorter proteins and therefore do not carry the other motifs associated with TRP, however 

there is a putative PDZ binding domain on the C-terminus of TRPCs 4 and 5 (Clapham,

2003).
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Figure 1.8: Schematic diagrams (not to scale) of all members o f the TRPC subfamily in their individual 

subgroups. (* = some of the TRPC1 splice variants have 3 ankyrin repeats) (Bimbaumer et al 2003)

Cytosol

Q  Ankyrin repeat jj C-terminal hydrophobic domain 1 Channel do main

y  TRP Box | | CaM binding domain InsP3 binding site ( j j j )  PDZ domain

Figure 1.9: A schematic diagram (not to scale) of the expected conformation of a TRPC in the lipid bi layer 

membrane. (CaM binding domain, ankyrin repeat and PDZ domain without black outline are unique to 

specific TRPCs, see Figure 1.8 above).
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Many of the TRPCs have a number of different isoforms as a result of alternative splicing 

summarised in Table 1.2 below:

TRPC Num ber o f Isoforms Amino Acid Lengths References

TRPC1 4 (Mouse: FL (a), /?, y, 

5)

TRPC1q!= 793, TRPCljS 

= 759

(Zhu et al., 1995)

(Sakura and Ashcroft, 1997)

TRPC2 4 (Mouse: FL (A), B, a , 

f t  sm)

TRPC2A = 1172, 

T R PC 2B =  1072 

TRPC2c*=866 

TRPC2/5 = 890

(W es et al., 1995) 

(Yildirim et al., 2003) 

(Hofmann et al., 2000) 

(Vannier et al., 1999) 

(Chu et al., 2005)

TRPC3 2 (Human: FL, 3a) hTRPC3 = 848 

hTRPC3a =921

(Wes et al., 1995) 

(Yildirim  et al., 2005)

TRPC4 2 (Human: FL, f t TRPC4 = 977, 

TRPC4/3 = 894

(Zhu et al., 1996) 

(M ery et al., 2001)

TRPC5 1 (Human: FL only) TRPC5 = 973 (Zhu et al., 1996)

TRPC6 3 (rat: FL (A) B, C) rTRPC6A = 930 

rTRPC6B = 876 

rTRPC6C = 808

(Zhang and Saffen, 2001)

TRPC7 5 (Human: FL, A, B, C,

7)

TRPC7 = 862 

TRPC7A = 802 

TRPC7B = 808 

TRPC7C = 260 

T R PC 7y=  748

(Okada et al., 1999) 

Adrian W olstenholme 

Unpublished data 

Xu and Beech GenBank

Table 1.2: splice forms for all of the TRPC subfamily, TRPC2* =/3 hypothesised to be a third splice form.

1.5.2 - The Functional Mechanisms o f  Action o f  the TRPCs

Since D ro so p h ila  TRP is now generally thought o f as being receptor activated, possibly 

by DAG (Hardie, 2003), and the TRPCs are the most closely related to the archetypal 

TRP in the whole superfamily, the hypothesis is that the TRPC subfamily would have the 

same activation mechanism, however despite the majority of publications involving the 

TRP superfamily and more specifically TRPCs involving the functional nature of the
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proteins, this is a highly controversial area of study. The general view of the functional 

activation is summarised in Table 1.3:

T R P C SO C  o r  SM O C ?

TRPC1 SOC

TRPC2 SOC/SM OC

TRPC3 SMOC

TRPC4 SOC

TRPC5 SOC

TRPC6 SMOC

TRPC7 SMOC

Table 1.3: A generalised view of functional activation of the TRPCs. Adapted from Zitt et al 2002.

However, this general view is over simplified, the sheer number o f functional studies 

carried out on all of the TRPCs highlights how complex this subject area has become 

(Zitt et al., 2002).

Most functional experiments carried out on TRPCs have utilised calcium imaging with 

Fura 2-acetomethyl ester (Fura-2AM) or electrophysiological recording (patch clamp) 

techniques and a common experimental problem appears to be the failure to fully account 

for the sometimes relatively high constitutive activity of the channels. This problem can 

be amplified under conditions in which intracellular Ca2+ buffering is reduced, for 

example during the use of intracellular Ca2+ pump inhibitors (Putney, Jr., 2004). There 

are other short comings of previous functional experiments, so an ideal way of examining 

any of the TRPCs would be to look at the endogenous form of the protein and performing 

functional experiments involving blocking of the channel. An example of this were 

experiments carried out by Xu and Beech on TRPC1 in rabbit arteriolar cells using an 

inhibitory antibody, the result of this study was that TRPC 1 was store-operated (Xu and 

Beech, 2001). Other studies have used an over-expression system to express the TRPC; 

this in itself is not ideal as the cell type used may not naturally express the protein and 

may express it in a way that would not reflect the function of the endogenous protein.

29



Also, those experiments that use the TRPC from a species that is different to the cell type 

it is being over-expressed in may also not reflect the function of the endogenous protein, 

for example Okada et al expressed murine TRPC7 in a HEK293 (human) cell line.

1.5.2.1 - TRPC1

The apparent store-operated activation of TRPC 1 has been observed in cell lines and cell 

types endogenously expressing TRPC1, namely salivary gland and platelets (Liu et al., 

2000; Rosado et al., 2002; Zhu et al., 1996). TRPC1 (as well as TRPC4 and 5) may be 

associated with lipid raft microdomains or a signalplex similar to that seen with 

Drosophila TRP, TRPC1 has been detected in lipid raft domains and TRPC1 SOC signals 

are inhibited upon cholesterol depletion of lipid rafts in submandibular gland cells 

(Lockwich et al., 2000). When co-expressed, TRPC1 co-immunoprecipitated with IN AD 

(Goel et al., 2002). It is also known that TRPC1 has activity inhibited by Ca2+, this may 

be due to the action of CaM (Beech et al., 2003). Stimulation of TRPC 1 by the second 

messenger DAG, independently of store release of Ca2+ has been detected in the absence 

of extracellular Ca2+ but not in its presence (Delmas et al., 2002; Lintschinger et al.,

2000). Much of the research involving TRPC1 has concluded that it is a SOC, however it 

has been difficult to obtain reliable results, possibly due to a large fraction of over 

expressed TRPC1 in cell lines localising to intracellular membrane compartments and not 

the PM (Beech et al., 2003; Brereton et al., 2001; Hofmann et al., 2002). It is possible 

that in order to form a functional channel TRPC1 may require other TRPC subunits or 

other proteins (Beech et al., 2003). Recent research involving electrophysiological 

recordings, membrane fractionation and Western blotting has identified TRPC1 as a 

component of a mechanosensitive cation channel (Maroto et al., 2005). They also found 

that by transfecting trpcl into the Chinese Hamster Ovary K1 (CHO-K1) cell line 

significantly increased the mechanosensitive cation channel expression (Maroto et al., 

2005).
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1.5.2.2 - TRPCs 4 and 5

The TRPC subgroup that contains TRPCs 4 and 5 is currently thought to form SOCs. 

When the bovine forms of the channels were originally identified they were named CCE1 

and CCE2 (Philipp et al., 1998). The majority of studies on TRPC4 have shown the 

channel to be a SOC; TRPC4 knockout mice, while showing no outwardly obvious 

abnormalities, display changes in endothelium mediated signalling and SOC activity is 

absent from the aortic endothelium (Freichel et al., 2001). Also, lung vascular endothelial 

cells from TRPC4 knockout mice had a decreased Ca2+ response to agonists (Tiruppathi 

et al., 2002). Expression of antisense TRPC4 in adrenal cells reduces store dependent 

currents (Philipp et al., 2000). However, Wu et al have found no evidence for SOC 

activity of TRPC4 and believe it to be receptor activated (Wu et al., 2002). TRPC5, 

originally thought to be a SOC (Philipp et al., 1998), appears to be controversial in its 

mechanism of activation. Much of the research carried out on mTRPC5 (97% identical to 

hTRPC5) seems to suggest that the channel is receptor activated (Okada et al., 1998; 

Schaefer et al., 2000). However, a recent study has found that DAG has no effect on 

hTRPC5, indeed hTRPC5 appears to be a Ca2+ dependent SOCs with Ca2+ release 

helping activation of the channels (Zeng et al., 2004). TRPCs 4 and 5 are expressed in 

many brain regions and it has been found that TRPC4 may have a critical role to play in 

the Ca2+ influx that controls GABA release from intemeuronal dendrites on to thalamic 

relay cells (Munsch et al., 2003).

1 .5 .23 - TRPCs 3, 6 and 7

The subgroup containing TRPC3, 6  and 7 is largely thought of as being activated by a 

second messenger, DAG, and although most of the published work on this subgroup has 

focused on their Ca2+ permeability it is known that TRPC3, 6  and 7 have a relatively low 

selectivity for Ca2+ over Na+ (Hofmann et al., 1999; Okada et al., 1999). This section will 

concentrate on the current understanding of TRPC3 and 6 , TRPC7 will be discussed 

further in section 1.6 . TRPCs 3 6  and 7 have varying levels of constitutive activity and 

this may be due to possible glycosylation at various sites on the N-terminal region; 

TRPC3 is predicted to be monoglycosylated in the first extracellular loop and has high
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constitutive activity; TRPC6  is dually glycosylated at the first and second extracellular 

loops and is tightly regulated; however, TRPC7 has considerable basal activity despite a 

predicted glycosylation site at the first and second extracellular loops (Okada et al., 1999; 

Vazquez et al., 2004). Hofmann et al used Chinese hamster ovary cells to over-express 

TRPCs 3 and 6  and by patch clamp techniques they determined that both channels were 

second messenger activated by DAG (Hofmann et al., 1999). For TRPC6  there seems to 

be little evidence to support activation by store depletion and all studies carried out on 

TRPC6  have shown it to be a SMOC. An initial experiment, designed to identify SOCs, 

was carried out on TRPC6  transfected HEK293 cells and found that there was no 

response to the depletion of stores by TRPC6  (Boulay et al., 1997). Since then, in 

platelets and human T-cells, TRPC6  has been shown to form at least part of a channel 

activated by DAG (Gamberucci et al., 2002; Hassock et al., 2002). TRPC6  has also been 

shown to be regulated by muscarinic ACh receptors involving DAG (Zhang and Saffen,

2001) and TRPC6  has been implicated as being a component of the ai-adrenoceptor- 

activated Ca2+ permeable cation channels in vascular smooth muscle, where it is activated 

by second messengers, independent of store depletion (Inoue et al., 2001). TRPC3 is a 

different matter; much work has been carried out on this protein and the general 

consensus in most review publications is that it is a receptor activated channel, however a 

review by Zitt et al showed a comparison of all functional studies on the channel to the 

date of the publication (numbering almost 2 0 ) have shown a fairly even split of individual 

groups showing the activation either being by the receptor via a second messenger or by 

store depletion (Zitt et al., 2002). For example; patch clamp experiments showed the 

channel to be activated by DAG (Hofmann et al., 1999) and TRPC3 stably expressed in 

HEK293 cells are receptor activated via PLC (Trebak et al., 2002). In 2004 a group 

identified TRPC3 in chicken muscle and osteoblasts as being a component of the SOC 

entry pathway in response to vitamin D3 (Santillan et al., 2004). Also a recent report 

suggests that TRPC3 is modulated by protein kinase G (PKG) and is store operated, they 

also hypothesise a role for PKG in the modulation o f TRPCs 6  and 7 (Kwan et al., 2004).

A current theory that allows for the observed and reported differences in regulation of the 

TRPC channels is that at lower levels of expression TRPCs combine with a limited
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number of other cellular proteins and possibly other channel subunits to form SOCs and 

the statistical likelihood of forming a complete, correctly formed channel might decrease 

if the concentrations are increased (Putney, Jr., 2004). In other words, the ‘correct’ 

conformation of a TRPC is as a heteromer and in this conformation it is a SOC, the 

incorrect conformation of a TRPC is a homomer and in this conformation it is a SMOC 

(Putney, Jr., 2004). This theory has come about due to work carried out by Vasquez et al; 

they showed that an increased level of TRPC3 leads to a mode of channel regulation not 

seen at lower levels of expression, i.e. low levels of expression (stable transfection) the 

channel is a SOC and high levels of transfection (transient transfection) the channel is a 

RAC (Vazquez et al., 2003). This current hypothesis has also been applied to TRPC7 

(Lievremont et al., 2004), this is discussed further in section 1.6.5, and recent work on 

TRPC5 has suggested that the activation mechanism could vary due to levels of 

expression (Zeng et al., 2004).

It is clear from the work carried out to assess the functional nature of TRPC channels that 

there is still a great deal of ambiguity surrounding what regulates them and perhaps the 

use of over expression systems (either stable or transient transfections) are inadequate for 

the assessment of regulation of these channels. The absence of specific and potent 

channel blockers for TRPCs only leaves ribonucleic acid interference (RNAi) studies or 

gene knockout studies in mice.

1.5.3 -  Tissue Expression and Cellular Localisation o f the TRPCs

Several groups have carried out analysis of mRNA expression of the TRPCs in different 

tissues by reverse transcriptase polymerase chain reaction (RT-PCR) and overall the data 

obtained corresponds with each other. Data compiled by Riccio et al (2002) appears to be 

the most thorough and comprehensive study of tissue distribution of the human TRPCs 

(except hTRPC2) to date. By performing RT-PCRs on various brain regions they found 

that all of the hTRPCs are expressed at relatively low levels in many brain regions 

however, hTRPC5 appears to be the only one expressed at moderate levels in almost all 

of the regions tested (Riccio et al., 2002b). Pituitary was also analysed and it was found
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that hTRPCl, 3 and 7 are highly expressed whereas hTRPC4, 5 and 6 have relatively low 

levels of expression (Riccio et al., 2002b). The cerebellum displayed high levels of 

expression of hTRPCl and 5 but low levels of hTRPC3, 4, 6 and 7 (Riccio et al., 2002b). 

The spinal cord was found to have low levels o f expression of all hTRPCs (Riccio et al., 

2002b). Other tissues were also analysed; lung, pancreas, kidney and adipose displayed 

low level expression of all hTRPCs with the exception of hTRPC6, which was highly 

expressed in lung and moderately expressed in pancreas (Riccio et al., 2002b). However, 

recent Northern blot data has indicated that hTRPC7 is also highly expressed in the 

pancreas (P Chen Unpublished data). The heart was also investigated and was found to 

have a moderate expression level of hTRPCl but low expression levels of all the other 

hTRPCs (Riccio et al., 2002b). RT-PCRs were also carried out on several cell lines 

including COS7 and HEK293, COS7 cells displayed high expression of hTRPCl and 7, 

low expression of hTRPC4 and 6 and no expression of hTRPC3 and 5 (Riccio et al., 

2002b). HEK293 cells gave high expression of hTRPC3, 5 and 6, low expression of 

hTRPCl and 4 and no expression of hTRPC7 (Riccio et al., 2002b). There are some 

discrepancies between the mRNA expression of some TRPCs in different species, for 

example mTRPC7 is expressed more in the peripheral tissues and less in the CNS, 

(Okada et al., 1999) as discussed further, below in section 1.6.3.

There has been relatively little identification of the specific cellular localisation pattern of 

the TRPCs; TRPC1 has been shown by immunocytochemistry to localise to the PM of 

the chicken cell line DT40 (Mori et al., 2002) and by electron microscopy to the spine 

membrane, peri-synaptic region and post synaptic membrane of rat cerebellar Purkinje 

neurons, furthermore TRPC1 was shown to co-localise with the metabotrophic glutamate 

receptor 1 (mGluRl) in these cells (Kim et al., 2003). Over-expression of hTRPCs 3 and 

4 in HEK293 cells showed both to localise at or near the PM with hTRPC4 showing 

considerable staining of the Golgi apparatus, there was also significant co-localisation of 

both TRPC 3 and 4 with /3-integrin, a focal adhesion protein (McKay et al., 2000). Finally 

TRPC5 has been localised in rat hippocampal neurons, it has a punctate appearance along 

the hippocampal neuronal processes that resemble cytoplasmic transport packets and also 

localises to neuronal growth cones (Greka et al., 2003).
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1.5.4 - TRPC Channel Subunit Associations

Most of the studies on the possible heteromerisation of TRPCs have used co- 

immunoprecipitation, immunocytochemistry and fluorescence resonance energy transfer 

(FRET) methods, and have shown that TRPC1 localises to intracellular membrane 

compartments when over expressed in HEK293 cells, whereas TRPCs 3, 4, 5 and 6 all 

give PM staining. However, when TRPC 1 is co-expressed with TRPC4 the localisation of 

TRPC 1 changes to PM, but this is not the case when TRPC 1 is co-expressed with TRPC3 

or 6 (Hofmann et al., 2002). Also, a TRPC6 mutant that does not go to the PM gave PM 

staining when it was co-expressed with TRPC3 or WT TRPC6, but this was not the case 

with co-expression with TRPCs 4 and 5 (Hofmann et al., 2002). FRET analysis of TRPCs 

indicated direct protein-protein interaction within the TRPC subgroups and with the same 

TRPC type showing that the proteins do form heteromers and homomers, summarised in 

Table 1.4:

TRPC Association w ith ... No Association w ith ...

TRPC1 TRPC4 and 5 TRPC3, 6 and 7

TRPC3 TRPC6 and 7 TRPC 1, 4 and 5

TRPC4 TRPC1 and 5 TRPC3, 6, and 7

TRPC5 T R PC 1and 4 TRPC3, 6 and 7

TRPC6 TRPC3 and 7 TRPC1, 4 and 5

TRPC7 TRPC3 and 6 TRPC 1 ,4  and 5

Table 1.4: Heteromeric associations between the TRPCs. Compiled using data from Hofmann et al 2002.

Goel et al has also carried out co-expression immunoprecipitation experiments in Sf9 

cells and has shown their results to agree with those of Hofmann et al, they also looked at 

endogenous expression of the TRPCs in rat cortex and cerebellum and again the results 

agreed with Hofmann et al, however they did state that TRPC7 was difficult to detect in 

cortex (Goel et al., 2002). They also suggest that TRPCs 1, 4 and 5 interact with INAD 

like PDZ containing proteins whereas TRPCs 3, 6 and 7 do not (Goel et al., 2002). 

However immunoprecipitation experiments do not allow for any other protein that may 

form a link between two TRPCs, and recent research has shown that combining three
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different subunits; TRPCs 1, 4 or 5 and 3 or 6, led to the co-assembly of DAG sensitive 

and insensitive channels (Strubing et al., 2003). They showed that the presence of TRPC 1 

and TRPC4 or 5 is necessary for the association with TRPC3 or 6 and there is as yet an 

unidentified fourth subunit to complete the tetramer (Strubing et al., 2003). These mixed 

subunits are either present in undetectable levels or not present in the adult brain but may 

occur in embryonic brain and may reflect a degree of developmental regulation (Strubing 

et al., 2003).

The apparent interactions between TRPCs 1, 4 and 5 and TRPCs 3, 6 and 7 appear to be 

the accepted TRPC interactions however, recent research by Liu et al (2005) has 

identified an interaction between TRPC1 and TRPC3. This group showed by 

immunoprecipitation and yeast-2 hybrid screens, cells that endogenously express TRPCs 

1, 3 and 4 displayed an interaction between TRPC1 and TRPC3 but not TRPC4 and they 

demonstrated that this interaction was via the N-terminal regions of the proteins (Liu et al

2005).

1,5.5 -  Other Associated Proteins

All of the TRPCs have CaM and InsPaR binding domains on their C-terminal region 

(Figures 1.10 and 1.12). TRPC4 has two CaM binding domains on its C-terminal region, 

and it is known that its first CaM binding domain and an InsPaR binding domain overlap, 

this is known as the CaM InsPaR binding domain (CIRB domain), and is conserved in all 

TRPCs (Tang et al., 2001). From their studies, Tang et al found that InsPaR interacts with 

TRPC3 and that CaM and InsPaR compete for binding of the TRPCs (Tang et al., 2001). 

CaM has varying affinities to the TRPCs depending on which TRP it is binding, it also 

inhibits the binding of InsPaR however the extent at which it does so varies from TRPC 

to TRPC; CaM is more easily displaced from TRPCs 3, 6 and 7 than TRPCs 1, 4 and 5, 

this suggests that TRPCs 3, 6 and 7 may be more sensitive to activation by InsPaR (Tang 

et al., 2001). CaM appears to act as a negative control for conformational coupling 

involving InsPaR; this may be a primary mechanism for gating SOCs (Tang et al., 2001).
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INAD is an associative PDZ protein for Drosophila TRP (see Section 1.3.5 of this 

chapter), using database searches an attempt has been made to find a mammalian 

homologue and in 1997 human INAD-like (hINADL) was identified and cloned (Philipp 

and Flockerzi, 1997), however it is currently not known to associate with any of the 

TRPCs.

Members of the TRPC subfamily have a conserved proline rich domain on their C- 

termini, this domain is very similar to the binding domain of an adaptor protein family 

called Homer (Yuan et al, 2003). Homer family proteins bind to proline rich sequences in 

RyRs and InsPsRs and crosslinks into macromolecular complexes that display enhanced 

signalling properties (Yuan et al, 2003). Yuan et al (2003) demonstrated that Homer 

facilitated an interaction between TRPC1 and the InsPaR by crosslinking the two 

proteins.

Immunophillins have recently been found to interact with TRPCs; it is already known 

that they interact with Drosophila INAD and TRPL (see Section 1.3.5), and the putative 

binding domain in TRPL is found in TRPCs. The first LP dipeptide is conserved between 

TRPCs 1, 3, 4, 5, 6 and 7, however a second LP found in TRPL is changed to an IP in 

TRPCs 1, 4 and 5 and to a VP in TRPCs 3, 6 and 7 (Sinkins et al., 2004). A study was 

designed to find whether mammalian homologues of FKBP; FKBP12 and FKBP52 

interacted with TRPCs. FKBP 12 and FKBP52 were cloned from HEK293 cells and co

expressed with each of the TRPCs in Sf9 cells, it was found that FKBP 12 interacts with 

TRPCs 3, 6 and 7 and FKBP52 interacts with TRPCs 1, 4 and 5 (Sinkins et al., 2004). 

Furthermore, the immunosupressant drug FK506 could displace the immunophillins from 

the TRPC and FK506 inhibited the receptor-mediated activation of TRPC6 channels 

stably expressed in HEK293 cells (Sinkins et al., 2004).

A mammalian PDZ protein, Na+/H+ exchanger regulatory factor (NHERF) is thought to 

interact with TRPCs 4 and 5 in a similar way to the interactions of INAD and TRP (Tang 

et al., 2001). NHERF has two PDZ domains and TRPC4 and 5 activation and/or PM
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localisation may require the assembly with NHERF, InsPaR and other regulatory and 

scaffold proteins (Mery et al., 2002; Tang et al., 2001).

A novel TRPC associating protein has recently been identified by Sutton et al. Enkurin 

was identified in mouse sperm and was shown to bind CaM in a Ca dependent manner. 

It was also shown to bind TRPCs 1, 2 and 5, following the identifcation of TRPCs 1, 3 

and 5 in sperm (Sutton et al., 2004) and TRPC2 in a previous study (Jungnickel et al.,

2001), discussed further in section 1.5.6. Immuno-localisation demonstrated that TRPCs 

1, 2 and 5 were found in the anterior region of the mouse sperm and it is thought that 

these three proteins account for the Ca2+ influx when stimulated by the egg glycoprotein 

ZP3 (Sutton et al., 2004). TRPC3 was identified in the posterior region (flagellum) of 

sperm and it is hypothesised that it may have a role in the flagellar motility of sperm 

(Sutton et al., 2004). Enkurin was also identified in anterior and posterior regions of 

sperm, however the results of a binding assay carried out in yeast showed enkurin to bind 

TRPCs 1, 2 and 5 but not TRPC3 (no other TRPCs were tested). Enkurin was also 

identified at high levels in the vomeronasal organ (VNO), at lower levels in ovary, heart, 

lung and brain and not detected in several cell lines; HEK293; HD57 and COS (Sutton et 

al., 2004).

1.5.6- TR PC2-A  Pseudogene in Humans

TRPC2 was first identified alongside TRPCs 1 and 3 in 1995, however; it was thought 

that the human form was a pseudogene due to the presence of a stop codon halfway along 

its open reading frame (Wes et al., 1995). mtrpc2 was cloned and sequenced in 1996 and 

was found not to have the stop codon that htrpc2 had, it was also shown to have 93 base 

pairs (bp) encoding 31 amino acids that the human form does not have (Zhu et al., 1996). 

The bovine form of trpc2 was studied and like mtrpc2 is not a pseudogene, it is 96% 

identical to mtrpc2 and 82% identical to htrpc2\ btrpc2 also has the same 93bp insertion 

as mtrpc2 (Wissenbach et al., 1998). From Northern blot data there was a suggestion that 

trpc2 has splice variants (Wissenbach et al., 1998), this was later confirmed in mouse 

(see Table 2). The structure of TRPC2 (see Figures 1.10 and 1.11) has been shown to
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follow the same general structure as all the TRPCs however, unusually (with the 

exception of TRPC4) TRPC2 has two CaM binding domains, moreover one of them is on 

the N-terminal region, N-terminal of the three ankyrin repeats, all other TRPCs have 

CaM binding domains on the C-terminal region (Yildirim et al., 2003).

Bovine TRPC2 was present in testis, spermatocytes, liver and spleen, and expression in 

the testis was specific to some seminiferous tubules (Wissenbach et al., 1998). In rat 

TRPC2 was localised to the VNO; the VNO is adjacent to the ventral septum and is 

thought to play a key role in the detection of pheromones (Liman et al., 1999). In 

research leading on from these observations TRPC2 has been implicated in male-male 

aggression and sex discrimination in mice. Sensory activation of the VNO requires 

TRPC2, mice deficient in TRPC2 fail to display male-male aggression and they initiate 

sexual and courtship behaviours toward both male and female mice (Stowers et al.,

2002). TRPC2 has also been implicated in sperm-egg interactions during fertilisation 

(Jungnickel et al., 2001).

Functional analysis of TRPC2 was carried out by transiently over expressing the protein 

in COS-M6 cells. It was found that TRPC2 enhanced Ca2+ entry by a receptor 

independent store depletion induced pathway, it was concluded from this that the channel 

is a SOC (Vannier et al., 1999). However, further work by Lucas et al has shown that 

TRPC2 may be receptor activated, regulated by DAG. A DAG activated channel in the 

VNO neuronal dendrites (activated upon stimulation by pheromones) is defective in 

TRPC2 knock out mice, indicating that TRPC2 may form the principal subunits of a 

DAG gated channel (Lucas et al., 2003).

1.6 - TRPC7

1.6.1 -  Identification ofTRPC7

TRPC7 was first identified by Okada et al in 1999 in mice, the human form was later 

identified (in 2002) by Riccio et al and to date those two studies remain the main sources 

of information on TRPC7 (Okada et al., 1999; Riccio et al., 2002a). Our laboratory also
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isolated hTRPC7 from human brain mRNA (Accession number: AJ272034). Mouse 

TRPC7 (mTRPC7) was cloned from brain cDNA and was found to bear the most 

similarity to TRPCs 3 and 6  because of this TRPC7 now shares the same subgroup as 

TRPCs 3 and 6  (see Table 1.5).

TRP % Identity 

to TRPC7

% Similarity  

to TRPC7

m TRPCl 34 56

mTRPC3 81 89

mTRPC4 40 60

mTRPC5 40 60

mTRPC6 75 84

dTRP 32 53

dTRPL 33 53

TRP VI 13 34

Table 1.5: The percentage of identity and similarity with other TRPs. (Data Okada et al 1999)

The protein was found to have 862 amino acid residues and TRPC7 shares many of the 

characteristic features of the TRP superfamily (see Figures 1.10 and 1.11); it has eight 

hydrophobic regions making up the hydrophobic domain 1 or coiled coil region on the N- 

terminus, six transmembrane segments and the pore region between S5 and S6  that 

collectively make up the channel domain and both N and C termini are cytoplasmic 

(Okada et al., 1999). hTRPC7 was identified by performing homology searching against 

the GenBank sequence database using the hTRPC3 protein sequence (Riccio et al., 

2002a). The group found an unfinished sequence (AC008661) that had sequence 

homology to both hTRPC3 and mTRPC7, although the initiation sequence from this was 

missing a newer sequence had been deposited (AC063980) and the identification of an 

additional exon at the 5’ end was made, it was found that the initiation codon, ATG, was 

split between exons 1 and 2. hTRPC7 has an open reading frame of 2589 base pairs 

encoding protein sequence of 862 amino acids, the same as the mTRPC7. The protein 

was predicted to have a molecular mass of 99.6kD (Riccio et al., 2002a). hTRPC7 is 98%
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identical to mTRPC7 (Riccio et al., 2002a). There is a discrepancy in the deposited amino 

acid sequences; the sequence deposited from our laboratory (AJ272034) was identical to 

the deposited sequence by Riccio et al (AC063980) except in their sequence there was an 

amino acid change of leucine to proline, respectively, at position 111 (LI IIP), this was 

shown by Riccio et al that this was not a cloning derived artefact and by Lievremont et al 

that this has no significant functional significance (Lievremont et al., 2004; Riccio et al., 

2 0 0 2 a).

1.6 .2- TRPC7 Splice Variants

In addition to the full length sequence of mTRPC7 three alternatively spliced forms were 

also identified; p7/3, has deletions in nucleotides encoding amino acid sequence 322-376, 

p77/Xall at 261-376 and p75 has a 382 base pair deletion which leads to a frame shift 

that changes residue 322 from phenylalanine to a glutamate and thus terminates 

translation of the protein at that point (Okada et al., 1999). Riccio et al have mentioned 

no splice variants in their publication however there are currently five splice variants 

published on EMBL/GenBank/DDBJ databases, three, named hTRPC7 A, B and C and 

accession numbers are; AJ549088, AJ549089 and AJ549090 respectively deposited by 

Dr A. Wolstenholme. They appear to be the same as the mTRPC7 variants. Two have 

been deposited by Xu and Beech and are named hTRPC7 /3 and y, hTRPC7/3 appears to 

be the same as hTRPC7B however hTRPC7y appears to be a combination of hTRPC7A 

and B (Table 1.6 and Figure 1.10).

hTRPC7 Variant Nucleotide Deletion Am ino Acid Deletion Predicted M W  (kD)

hTRPC7A 781-963 261-321 92.4

hTRPC7B 964-1128 322-376 93.4

hTRPC7C 781-1345 261-488 29.9

hTRPC77 781-1128 261-376 86.3

Table 1.6: Splice variants of hTRPC7.
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Like the corresponding mTRPC7 variant, p75, the deletion in hTRPC7C causes a stop 

codon in the nucleotide sequence leading to a change from glycine to glutamate and 

preventing the protein sequence from being translated past amino acid 260.

hTRPC7A 
802 a.a

hTRPCTB q  q  q  
808 a.a 1 - ................................

hTRPC7y 
748 a.a

hTRPC7C ^  
260 a.a

O Ankyrm repeat jj C-terminal hydrophobic domain 1 | ^ | j ^  

y  TRP Box Q  CaM binding domain InsP3 binding site

Channel domain 

Deleted region

Figure 1.10: Schematic diagrams (not to scale) of all four known hTRPC7 splice variants.
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1.6.3 - Tissue distribution of TRPC7

Okada et al used Northern blot analysis (Figure 1.11) to determine the tissue distribution 

o f mTRPC7 RNA, they found that mTRPC7 was most abundant in the heart, lung and 

eye and also present in lower levels in the brain, spleen and testis.

Figure 1.11: Full-length TRPC7 Northern blot carried out on mouse tissue (Okada et al 1999).

In order to find the specific brain regions and cell types therein expressing the lower 

levels of mTRPC7 in comparison to the periphery, Okada et al carried out in situ 

hybridisation, using complementary RNA (cRNA) probes specific to mTRPC7. In 8 - 

week-old mouse brain, they found cerebellar purkinje cells to be the most prominent site 

of expression; intense mTRPC7 signals were also detected in the mitral layer of olfactory 

bulb and hippocampal neurons. Signals were also found, more diffusely in regions 

including the cerebellar nuclei, pons and cerebral cortex (Okada et al., 1999).

The tissue distribution data of mTRPC7 from Okada et al is in direct contrast to the tissue 

distribution o f hTRPC7 found by Riccio et al (Figure 1.12), they carried out TaqMan real 

time RT-PCR to determine hTRPC7 mRNA distribution. They found hTRPC7 widely 

expressed in the CNS, with highest expression in this area to be in the nucleus accumbens 

and lower levels in the putamen, striatum, hypothalamus, caudate nucleus, locus 

coeruleus and medulla oblongata. Peripheral tissues showed a high level of expression in
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the kidney with lower levels of expression in the intestine, prostate and cartilage. Highest 

over all expression was in the pituitary gland (Riccio et al., 2002a).
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0.75

.1 °-5

0.25

TRPC7

c o  0* ** n is I II) ®  M
3  *  C

O )  IC _

Figure 1.12: RT-PCR results of full-length TRPC7 mRNA from human tissue (Riccio et al 2002).

Riccio et al also tested a number of cell lines by RT PCR for the presence of hTRPC7, 

both found the presence of hTRPC7 in COS7 cells and the absence in HEK293 cells 

(Figure 1.13) (Riccio et al., 2002a).

TRPC7

Figure 1.13: RT-PCR results of full-length hTRPC7 mRNA from various cell lines (Riccio et al 2002).
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A recent Northern blot of human tissue (Figure 1.14) has shown the endogenous 

expression of hTRPC7 to be very high in the pancreas, skeletal muscle, thymus, brain, 

spleen and kidney and with much lower levels o f expression in the placenta, heart, liver 

and lung (P Chen, Unpublished Data).

skeletal muscle, kidney, pancreas, spleen and thymus (Chen, Unpublished Data).

The information shown by the Northern blot gives no indication of which, if any, o f the 

splice variants, may be present.

1.6.4 - Expression o f  TRPC7

HEK293 cells make an excellent expression system for the over expression of hTRPC7, 

due to the fact there is no endogenous protein present. Riccio et al cloned hTRPC7 into a 

pFLAG vector. For the purpose of immuno-localising the over expressed protein, they 

FLAG tagged the N-terminus of the protein in order to be able to visualise the protein and 

stably expressed the protein in HEK293 (Riccio et al., 2002a). They found that hTRPC7 

was localised to the PM and sub-PM, furthermore only in cells that had been 

permeablised was there staining, consistent with the N-terminus of hTRPC7 being 

intracellular (Riccio et al., 2002a).

Three groups thus far have looked into the endogenous expression o f hTRPC7 along-side 

other members of the TRPC subfamily, their findings will be discussed in more depth in 

Chapter 5.

6 kb

4 kb I I
Figure 1.16: Northern blot carried out on human tissue shows htrpc7 to be highly expressed in the brain,
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1,6.5 -  Functional Characterisation ofTRPC7

As with many of the TRP superfamily the functional data produced thus far is 

controversial. Okada et al and Riccio et al have produced conflicting evidence on the 

functional mechanism of TRPC7. Okada et al concluded that mTRPC7 is a receptor- 

activated channel independent of store depletion of calcium (Okada et al., 1999), 

whereas, Riccio et al found that hTRPC7 is activated through a receptor independent 

store depletion pathway (Riccio et al., 2002a).

Okada et al cloned the full-length mTRPC7 and all splice variants separately in to pCI- 

neo vectors for the purpose o f carrying out functional experiments on the proteins over 

expressed in HEK293 cells. Having transiently transfected mtrpc? into HEK293 cells, 

they found that mTRPC7 is still activated by ATP after treatment by TG and that 

mTRPC7 is activated by ATP at one order of magnitude lower concentration than TRPC3 

and TRPC5. They suggest that this evidence points toward an enhancement of calcium 

influx activity of mTRPC7 via receptor stimulation occuring independently o f the 

depletion of calcium stores (Okada et al., 1999). They also showed that DAG derivatives 

1 -oleoyl-2-acetyl-s?2-glycerol (OAG) and 1,2-dioctanoyl-sH-glycerol (DOG) induce the 

cation influx activity of mTRPC7 (Okada et al., 1999). This has previously been seen in 

TRPC3 and 6 (Hofmann et al., 1999) and suggests that DAG maybe the activator of these 

channels, generated by stimulation of GPCRs (Hofmann et al., 1999; Okada et al., 1999). 

They also showed that intracellular Ca2+ plays a role in the activation of mTRPC7 by 

stimulation of the ATP receptors (Okada et al., 1999), as previously shown for TRPC5 

(Okada et al., 1998). Their results suggest an involvement of the Ca2+-CaM pathway; 

there is suppression of Ca2+ influx through mTRPC7 by the action of the Ca2+-CaM 

antagonist W-13 (Okada et al., 1999).

Riccio et al generated an hTRPC7 expressing HEK293 stable cell line to investigate the 

functional role of hTRPC7. It was found that hTRPC7-expressing cells displayed 

significantly increased TG stimulated Ca2+ influx in the absence of Ca2+ compared with 

control cells, the effect was also abolished upon transfection with antisense hTRPC7 

(Riccio et al., 2002a). They concluded that their data suggested that, following emptying
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of intracellular Ca2+ stores, hTRPC7 is activated in a store depletion dependent manner 

and therefore hTRPC7 is a SOC (Riccio et al., 2002a). But unlike Okada et al there is no 

report of any constitutive activity (activity in the absence of apparent stimulation). They 

suggested that the differences between the mouse and human forms of TRPC7 could be 

explained by amino acid differences located in the C-terminal region of the proteins 

(Riccio et al., 2002a). It is suggested that these differences could affect the interaction of 

the channels with components of signal tranduction machinery, such as CaM, NHERF 

and InsPaRs (Boulay et al., 1999; Kiselyov et al., 1998; Riccio et al., 2002a; Tang et al., 

2001).

A recent paper by Lievremont et al (2004) attempted to reconcile the functional 

differences seen by Okada et al and Riccio et al. It was noted that although essentially the 

same sequences were used in both studies, Riccio et al used the sequence where Leucine 

111 had been replaced by a Proline (leucine 111 is conserved in all of the TRPCs). In 

addition Riccio et al had used stably transfected HEK293 cells whereas Okada et al had 

used transiently transfected HEK293 cells. In order to investigate the discrepancies 

between the two studies, Lievremont et al stably and transiently expressed both types of 

TRPC7 in HEK293 cells. They used Ba2+ instead of Ca2+ to avoid complications of 

buffering Ca2+ and experiments were performed in the presence of Gd3+, which 

completely blocks store depletion induced Ba2+ entry in wt-HEK293 cells but does not 

block any other known Ca2+ channel, including TRPC7 (Trebak et al., 2003). Therefore, 

the presence of Gd3+ ensured that the entry of cations occurring in TRPCs 3, 6 or 7 

transfected HEK293 cells upon store depletion could be attributed only to the expression 

of those channels and not to endogenous receptor regulated or store operated Ba2+ entry 

(Lievremont et al., 2004). Their results showed that stable expression of hTRPC7 with 

the LI IIP point mutation gave a TG induced Ba2+ entry insensitive to 10/iM Gd3+ 

showing that L111P-TRPC7 forms channels that are activated by store depletion when 

stably expressed in HEK293, confirming the data shown by Riccio et al (Lievremont et 

al., 2004). They went on to show no difference between TRPC7 and LI 11P-TRPC7, both 

appeared to be store operated when stably expressed (Lievremont et al., 2004). 

Transiently transfected HEK293 cells with TRPC7 or LI 11P-TRPC7 showed that neither
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TRPC7 nor L111P-TRPC7 exhibited TG activated Ba2+ entry in the presence of Gd3+, 

and further experimentation using OAG showed that HEK293 cells transiently 

transfected with TRPC7 or LI 11P-TRPC7 are activated by DAG indicating the channels 

are receptor operated (Lievremont et al., 2004).

The conclusion to be drawn from this is that the function of TRPC7, be it mouse or 

human, appears to depend upon expression levels, for TRPC7, the higher expression 

levels of the transient transfection reveal the channel to be operated independently of 

stores and the lower expression levels shown by stably expressed cells shows the 

channels activation to be store dependent. This phenomenon has been observed before in 

the TRPC subfamily where Vazquez et al demonstrated that when expressed in avian B 

cell line DT40 TRPC3 could be store operated if expressed in low levels and receptor 

operated if expressed in high levels (Vazquez et al., 2003).
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1.7 - Aims
• As relatively little is known about hTRPC7 and its splice variants, the main aim 

of this project has been to produce an antibody to hTRPC7 and using this, 

characterise the expression and localisation of TRPC7 and the splice variants in 

an over-expression system (using the vectors out lined in the appendix, sections 

A l.l and A1.2).

• There are still many conflicting reports o f how the TRPCs are activated, therefore, 

using the over-expression system of TRPC7,1 aimed to investigate the functional 

properties of hTRPC7 and the splice variant hTRPC7A.

• Most of the other TRPCs have been localised to various tissues, for example 

TRPC5 has been localised to the growth cone o f hippocampal neurons (Greka et 

al., 2003). This localisation has lead to identification of function in many cases, 

therefore a further aim of this project was to identify and localise the endogenous 

form of the protein in various tissue types by use of the antibody specific to 

TRPC7, using the localisation possible functions of the channel and a role for 

Ca2+ signalling may be implicated.
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Chapter 2 
Materials and Methods



2.1 - List of Suppliers

N am e o f Supplier A ddress A bbreviation

AbCam Cambridge, UK ABC

Amersham Biosciences Buckinghamshire, UK AB

American Type Culture Collection Manassas, VA, USA ATCC

ATTO Corporation Tokyo, Japan ATTO

BD Bioscience San Diego, CA, USA BD

BDH/Merk Leicester, UK BDHM

Beckman Buckinghamshire, UK BK

BioGenesis Poole, UK BG

BioRad Laboratories Inc. Hercules, CA, UK BR

Boehringer Mannheim Gmbh Mannheim, Germany BM

Calbiochem Nottingham, UK CB

Chemicon International Temecula, CA, USA Cl

Clontech Palo Alto, CA, USA CT

European Collection of Cell Cultures Salisbury, UK ECACC

Fisher Scientific Loughborough, UK FS

Gibco BRL Paisley, UK GBRL

GRI Braintree, UK GRI

Harlan Sera-Labs Loughborough, UK HSL

Heraeus Instruments Hertfordshire, UK HI

Hettich Zentrifugen Tuttlingen, Germany HZ

ICN Biomedicals Ohio, USA ICN

Invitrogen Life Technologies Paisley, UK ILT

J. M. Loveridge pic Southampton, UK JML

Millipore Corporation Bedford, MA, USA MLP

Molecular Probes Leiden, The Netherlands MP

New England Biolabs Hertfordshire, UK NEB

Pall Corporation Pensacola, FL, USA PC

Perkin Elmer Cambridgeshire, UK PE

Pierce Biotechnologies Inc. Rockford, IL, USA PB

Promega Madison, WI, USA P

Roche Lewes, UK R

Sigma Poole, UK S
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Upstate Biotechnologies Charlottesville, VA, USA UB

Vector Laboratories Burlingame, CA, USA VL

Warner Instrumentation Corporation Hamden, CT, USA WIC

Zeiss Hertfordshire, UK Z

All suppliers will be referenced by abbreviation.
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2.2 - Materials

All solutions made up in MilliQ grade H2O unless otherwise stated.

2.2.1 - General Buffers

Buffer C om ponents pH

Borax lOOmM Sodium tetraborate (Na2 B4 0 7) 8.3

TBE 0.89M Tris (hydroxymethyl) methylamine (Tris) -Hydrochloride (HC1) 

0.89M Boric acid (H 3 BO 3 )

20mM Diaminoethane-tetra-acetic acid disodium salt (EDTA)

8 . 0

PBS 137mM Sodium chloride (NaCl)

2.7mM Potassium chloride (KC1)

lOmM Disodium hydrogen orthophosphate (Na2 HP0 4)

2mM Potassium dihydrogen orthophosphate (KH2 P04)

7.4

2.2.2 - Bacterial Culture Medium and Antibiotics

C ulture M edium / A ntibiotics/ 

B acterial Strains

C om ponents Supplier

Luria Bertani (LB) Medium 25g LB, powdered in 1L 

Sterilised by autoclaving

S

LB Medium containing 20mM 25g LB, powdered in 1L + 20mM MgS04 S

Magnesium sulphate (MgS04) Sterilised by autoclaving

LB Agar 25g LB, powdered with 15g BactoAgar in 

1L

Sterilised by autoclaving

S/ BD

Kanamycin 50mg/ml stock in sterile H20 , stored at 

-20°C

S

Ampicillin 50mg/ml stock in sterile H20 , stored at 

-20°C

S

TFB1 30mM Potassium acetate (CH3 COOK) S

lOmM Calcium chloride (CaCl2) S

50mM Manganese chloride (MnCl2) S

1 OOmM Rubidium chloride (RbCl) s
15% (v/v) Glycerol FS

pH 5.8 with 1M Acetic acid FS
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Filter sterilised with 0.2 pm syringe filter MLP

TFB2 1 OmM 3-[N-morpholino]propanesulphonic 

acid (MOPS)

S

75mM CaCl2 S

lOmMRbCl S

15% (v/v) Glycerol FS

pH 6.5 with 1M potassium hydroxide S

(KOH)

Filter sterilised with 0.2/mi syringe filter MLP

2.2.3 -  Bacterial Strains and Plasmids

Strain/

Plasm id

G enotype Supplier

E. coli XL-1 

Blue

SupEAA hsdR 17 recA 1 endA 1 gyrA46 thi relAl lac F* [proAB+ 

la c f lacZ A A/15 Tno (tef)]

NEB

pIRES2-EGFP CMV, Kanr, 5.3 kb CT

pFLAG-

CMV-2

CMV, Ampr,4.7kb S

2.2.4 - DNA Preparation Reagents

The GenElute™ MiniPrep kit purchased from Sigma was used for the preparation of 

DNA.

2.2.5  -  Electrophoresis Reagents

R eagent Com ponents Supplier

Electrophoresis grade agarose 0.8-1.5% (w/v) in TBE buffer ILT

Ethidium bromide (EtBr) 1 Omg/ml Aqueous stock solution S

6 X loading buffer 12ml H20

25ml Glycerol FS

10ml 5OmM EDTA pH 8.0 S

50mg Bromophenol blue S

50mg Xylene cyanol S
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lkb DNA ladder Stored at -20°C P

Submerged horizontal gel tank Sub-Cell BR

2.2.6 - Cell Line Culture Reagents

Cell Type Cell

Supplier

Culture M edium  C om ponents Supplier

Human embryonic ECACC Dulbecco’s modified eagles medium S

kidney 293 (HEK293) 85120602 (DMEM) supplemented with:

10% (v/v) Foetal bovine serum (FBS) S

1% (v/v) 200mM Glutamine (Gin) s
1% (v/v) Penicillin/streptomycin (P/S) s

COS7 ECACC DMEM (S) supplemented with: s
87021302 10% (v/v) FBS s

1% (v/v) 200mM Gin s
1% (v/v) P/S s

Pane-1 ECACC DMEM supplemented with: s
87092802 20% (v/v) FBS s

1% (v/v) 200mM Gin s
1% (v/v) P/S s

Capan-1 ATCC DMEM supplemented with: s
HTB-79 20% (v/v) FBS s

1% (v/v) 200mM Gin s
1 % (v/v) P/S s

GH4C1 ATCC DMEM supplemented with: s
CCL-82.2 10% (v/v) FBS s

1% (v/v) 200mM Gin s
3T3-L1 ATCC DMEM supplemented with: s

CL-173 10% (v/v) Newborn calf serum (NCS) GBRL

1% (v/v) 200mM Gin S

1 % (v/v) P/S S

For differentiation;

DMEM supplemented with: S

10% (v/v) Myoclone FBS GBRL

1% (v/v) P/S S

1% (v/v) 200mM Gin S
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0.2pM Dexamethasone

0.5mM Isobutylmethylxanthine (IBMX)

0.2pM Insulin.

S

S

S

P3X63Ag8.653 ECACC Maintenance medium;

85011420 RPMI 1640 supplemented with: S

10% (v/v) Hybridoma fetal calf serum S

1% (v/v) 200mM Gin S

1% (v/v) Tylosin S

1% (v/v) OPI media supplement S

8 -Aza guanine. S

Cloning medium:

As maintenance medium, supplemented

with:

1% (v/v) Hybridoma cloning factor FS

(HCF)

Hypoxanthine aminopterin thymidine S

(HAT)

Hypoxanthine thymidine (HT) S

O ther Cell C ulture R eagents Com position Supplier

Freezing medium 50% (v/v) FBS 

30% (v/v) DMEM

20% (v/v) Dimethyl sulphoxide (DMSO) cell 

culture grade

S

Trypsin EDTA IX bottle, stored at -20°C s
PBS Sterilised by autoclave 

Stored at 4°C

LipofectAMINE™2000 Stored at 4°C ILT

Serum and antibiotic free 

medium

DMEM supplemented with: 

1% (v/v) 200mM Gin

S

Antibiotic free medium DMEM supplemented with: 

10% (v/v) FBS 

1% (v/v) 200mM Gin

S
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2.2.7 - Primary Cell Culture Reagents

Tissue M am m al 

o f  O rigin

Culture M edium  C om ponents O ther M aterials

Adult Pancreas Human,

adult

female
----- -----

Embryonic

Pancreas

Mouse, 

(MF1 

albino) 

male and 

female

Basal medium Eagle (BME) (S) 

with:

Earle’s medium (S)

10% (v/v) FCS (S)

IX Gin (ILT)

50/ig/ml Gentamycin sulphate

(S)

BME with Hanks’s salts (S) 

2% (v/v) 3-

Aminopropyltriethoxysilane 

(APTS) in acetone (S) 

50j*g/ml Bovine fibronectin 

in sterile H2 O (ILT)

Embryonic

Cardiomyocytes

Rat,

(Sprague- 

Dawley) 

male and 

female

Maintained in DMEM (S) 

supplemented with: 1 0 % (v/v) 

FBS (S)

1% (v/v) 200mM Gin (S)

1% (v/v) P/S (S)

1M Glucose (S)

1 mg/ml DNAse 1 in PBS 

with 1 mM MgCl2 and 2mM 

CaCl2 (S)

10X Trypsin (S)

1 /ig/ml Laminin (S) in 

borax buffer

Embryonic 

Spinal Cord

Rat,

(Sprague- 

Dawley) 

male and 

female

Maintained in;

Neurobasal™ Medium (GBRL) 

supplemented with:

2% (v/v) B27 (S)

1% (v/v) 200mM Gin (S)

1% (v/v) P/S (S)

1M Glucose (S)

1 mg/ml DNAse 1 in PBS 

with ImM MgCl2 and 2mM 

CaCl2 (S)

10X Trypsin (S)

FBS (S)

5^g/ml Poly-L-lysine (PLL) 

(S) in borax buffer

Embryonic

Cortex

Rat,

Sprague- 

Dawley 

male and 

female

Maintained in;

Neurobasal™ Medium (GBRL) 

supplemented with:

2% (v/v) B27 (S)

1% (v/v) 200mM Gin (S)

1% (v/v) P/S (S)

1 M Glucose (S),

1 mg/ml DNAse 1 in PBS 

with 1 mM MgCl2 and 2mM 

CaCl2 (S)

10X Trypsin (S)

FBS (S)

5/xg/ml PLL (S) in borax 

buffer.
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2.2.8 - Reagents fo r  the Isolation o f  Cardiomyocytes

Solution C om position Supplier

Cardiomyocytes Krebs-Ringers 6 mM KC1 S

HEPES buffer (cKRH buffer) ImM Na2 HP04  

1.4mM MgS04  

128mM NaCl 

lOmM HEPES 

pH 7.4

Buffer A cKRH buffer supplemented with: 

5.5mM Glucose 

2mM Ultrapure pyruvic acid 

2mM Inosine

S

Buffer B Buffer A supplemented with:

0.7% (w/v) Bovine serum albumin (BSA)

Fraction V

1.1 mg/ml collagenase (Worthington)

BM

2.65 mg/ml Hyaluronidase Type 1-S S

15mM 2,3-Butanedione monoxime (BDM) S

Buffer C Buffer A supplemented with:

0.2 mg/ml DNAse 1 BM

15mM BDM S

2 0 0 /xM CaCl2 S

2% (w/v) BSA Fraction V BM

Buffer D Buffer A supplemented with:

ImM CaCl2 S

2% (w/v) BSA Fraction V BM

Buffer E Buffer A supplemented with:

ImM CaCl2 S

0.5% (w/v) Fatty acid free BSA (FAF-BSA) 

Fraction V

BM

Heparin Solution Heparin grade 1A isolated from porcine 

intestinal mucosa, reconstituted in 0.9% (w/v) 

NaCl (2000 Units/ml)

S

Filter sterilised with 0.2/rni syringe filter 

Aliquots were stored at 4°C

MLP

Pentobarbitone sodium b.p. 60mg/ml JML
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2.2.9 - Antibodies

2.2.9.1  -  Peptide Conjugation Reagents

R eagent C om position Supplier

Peptide 7(K) M/rKNLNKDHLRVNKGKDI-

COOH

Dr G. Bloomberg, 

University of Bristol.

Keyhole Limpet 

Haemocyanin (KLH)

ICN

Glutaraldehyde Grade I, 25% (v/v) S

Glycine ethyl ester (GEE) 1M GEE S

0 . 1 M sodium hydrogen 

carbonate (NaHC03)

pH 8.3 S

0.9% (w/v) NaCl S

2.2.9.2 - Monoclonal Antibody Production Reagents

R eagent C om ponents Supplier

Male Balb/C mice

Alum adjuvant S

Polyethylene glycol 4000 (PEG 4000) 80% (w/v) PEG 4000 in PBS BDHM

2.2.9.3 - Polyclonal Antibody Production Reagents

R eagent C om ponents Supplier

New Zealand white rabbits Barrier reared HSL

Freunds complete adjuvant (FCA) HSL

Freunds incomplete adjuvant (FIA) HSL

2.2.9.4 - Antibody Purification Reagents

R eagent/B uffer C om ponents Supplier

Cyanogen bromide (CNBr) Activated Sepharose 

4B

S

HC1 ImM HC1 

pH 2-3

S

Coupling buffer 0.1M NaHC03 

0.5M NaCl

S
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pH 8.3

Tris-HCl 0.1M Tris-HCl pH 8 S

Sodium acetate (CH3COONa) 0.1M CH3COONa pH 4 

0.5M NaCl

S

High salt wash 0.1M Tris-HCl pH 8  

0.5M NaCl

S

Storage buffer 2 0 mM Na2 HP04  

0.5M NaCl 

0.01% Sodium azide 

(NaN3)

S

BSA 5 mg/ml S

Wash Solution 2 0 mM Na2 HP04 S

Elution Solution 50mM Glycine HC1 

pH 2.3

S

Neutralisation Solution lMTris, 

pH 10.8

S

Polyethylene glycol 20000 (PEG 20000) PEG 20000 BDHM

2.2.9.5 - General Antibodies

A ntibody A nim al raised in Supplier

Anti-a-Manosidase II Mouse

(monoclonal)

Dr B. Reaves, 

University of 

Bath

Anti-p-Tubulin Mouse

(monoclonal)

S

Anti-focal adhesion kinase (FAK) Mouse

(monoclonal)

BD

Anti-FLAG M2 Mouse

(monoclonal)

S

Anti-G29 (trans Golgi network [TGN] Marker) Rabbit Dr B. Reaves, 

University of 

Bath

Anti-glial fibrillary acidic protein (GFAP) Mouse

(monoclonal)

Cl

Anti-green fluorescent protein (GFP) Rabbit (serum) MP
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Anti-glucose transporter 4 (GLUT4) Mouse

(monoclonal)

BG

Anti-human transient receptor potential canonical 7 

(hTRPC7)

Rabbit HSL

Anti-microtubule associated protein (MAP2 a & b) Mouse

(monoclonal)

Cl

Anti-Myc Mouse

(monoclonal)

S

Anti-P58 Golgi marker Mouse

(monoclonal)

ABC

Anti-Paxillin Mouse

(monoclonal)

UB

Anti-trans Golgi network 38 (TGN38) Mouse

(monoclonal)

Dr B. Reaves, 

University of 

Bath

Rhodamine-Phalloidin NA MP

Anti-mouse IgG fluorescein linked whole antibody Sheep AB

Anti-mouse IgG Texas Red™ linked whole antibody Sheep AB

Anti-rabbit IgG fluorescein linked whole antibody Donkey AB

AlexaFluor 568 anti-mouse IgG (H and L) Goat MP

AlexaFluor 488 anti-rabbit IgG (H and L) Goat MP

AlexaFluor 546 anti-rabbit IgG (H and L) Goat MP

Anti-rabbit IgG horseradish peroxidase linked whole 

antibody

Donkey AB

2.2.10 - Enzyme Linked Immunoassay (ELISA) Reagents

R eagent/B uffer Com ponents Supplier

Coating Buffer 15mM Sodium carbonate 

(Na2C 03),

35mM NaHC03 

50mg NaN3 

pH 9.6

S

PBS Tween (PBST) PBS

0.1% (v/v) Tween-20

S
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Blocking Buffer 

(PBSTM)

PBS Tween

5% (w/v) Marvel (dried non-fat 

milk)

S

Sainsburys

Tetramethyl benzidene 

(TMB)

lOmg/ml in DMSO S

CH3COONa / Citrate 1M CH3COONa S

(C6 H5Na3 0 7) Buffer 0.02M C6 H5Na3 0 7 

pH 6.0

Hydrogen peroxide 

(H2 0 2)

30% (v/v) S

Substrate Stock 1M CH3COONa / C6 H5Na3 0 7 

buffer

pH 6.0 diluted to 1:20

S

Substrate Working 49.5ml of substrate stock S

0.5ml stock TMB S

lOpl H2 0 2 S

2M Sulphuric acid 

(H2 S04)

S

2,2.11 - Immunocytochemistry Reagents

R eagent C om ponents Supplier

Paraformaldehyde

(PFA)

2% or 4% (w/v) PFA in PBS S

Methanol Stored at -20°C FS

MEMFA 10% (v/v) Formalin 

0.1M MOPS pH 7.4 

2mM Ethylene glycol-bis (2- 

aminoethylether)-N, N, N’, N’ tetra 

acetic acid (EGTA)

ImM MgS04

S

Triton X-100 0.01% (v/v) Triton X-100 in PBS S

Permeablisation

buffer

0.1% (w/v) Saponin 

3% (v/v) FBS 

1% (w/v) BSA

S
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In PBS

Block buffer 10% (v/v) FBS in PBS S

Mowiol mounting 0.2M Tris-HCl pH 8.5 S

media 50% (w/v) Glycerol FS

20% (w/v) Mowiol 4-88 

50% (v/v) ddH20

CB

Vector Shield Mounting media VL

Confocal

Microscope

Zeiss Axiovert LSM510 Z

2.2.12 -  Cell Harvesting Reagents

R eagent C om ponents Supplier

(4-bromo) Phenylmethyl sulphonylfluoride 
(PMSF)

0.1M PMSF in isopropanol S/ FS

EDTA 0.1MEDTA S

Mini complete EDTA free, protease inhibitor 

tablets

1 tablet in 1 0 ml R

Protease inhibitor cocktail for lysis 20ml PBS pH 7.4 S

20pl 0.1MPMSF FS

200pl 0.1MEDTA S

2 Mini complete EDTA free 

Stored at -20°C

R

2.2.13 -  Protein Quantitation Reagents

R eagent C om ponents Supplier

BSA 2mg/ml in PBS PB

Coomassie® Plus Reagent PB
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2.2.14 - SDS-PAGE Reagents

R eagent C om ponent Supplier

30% Acrylamide mix 30% (w/v) Acrylamide, 0.8% (v/v) bis 

acrylamide

S

4X Tris-HCl 1.5M Tris-HCl, pH 8 . 8 S

4X Tris-HCl 0.5M Tris-HCl, pH 6 . 8 s
Sodium dodecyl sulphate 10% (w/v) SDS s
(SDS)

Ammonium persulphate (APS) 10% (w/v) APS s
N, N, N, N’- Tetramethyl s
ethylenediamine (TEMED)

2X SDS loading buffer 0.125M Tris-HCl s
4% (w/v) SDS s
20% (v/v) Glycerol FS

0.2M Dithiothreitol (DTT) S

0.02% (w/v) Bromophenol blue S

Precision Protein Standard Molecular weight marker BR

IX Running Buffer pH 8.3 0.025M Tris S

0.192M Glycine FS

0.1% (w/v) SDS S

Vertical Gel tank Mini Atto ATTO

Coomassie Blue solution 50% (v/v) Methanol FS

0.05% (w/v) Coomassie Brilliant Blue R S

10% (v/v) Acetic acid (CH3 COOH)

The Coomassie Brilliant Blue R was dissolved 

in methanol before adding acetic acid and 

water.

FS

Destaining solution 5% (v/v) Methanol FS

7% (v/v) CH3COOH FS
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2.2.15 - Western Blotting and Immunoprobing Reagents

R eagent C om ponents Supplier

BioTrace®NT protein transfer 

nitrocellulose membrane

PC

Extra Thick Filter paper BR

Transfer buffer 25mM Tris, S

192mM Glycine S

20% (v/v) Methanol 

pH 8.3

FS

Western Blotter Mini Trans-Blot Cell BR

Ponceau S Stock solution:

1% (w/v) Ponceau S S

5% (v/v) CH3 COOH FS

Rabbit IgG Vectastain ABC kit Biotinylated anti-rabbit IgG,

Avidin DH reagent (reagent A) 

Biotinylated horseradish peroxidase H 

reagent (reagent B)

VL

Mouse IgG Vectastain ABC kit Biotinylated anti-mouse IgG 

A reagent 

B reagent

VL

Peroxidase substrate DAB kit Made according to manufacturers 

instructions

VL
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2.2.16 - Immunoprecipitation Reagents

R eagent Com ponents Supplier

2X RIPA Buffer lOOmM Tris,

300mM NaCl

2% (w/v) IGEPAL CA-630 

1% (w/v) Deoxycholic acid (DOC) 

0.2% (v/v) SDS 

pH 7.4 

Stored at 4°C

S

Sepharose 4B-Protein G 

Beads

Stored in PBS containing 0.01% (w/v) NaN3, at 

4°C

S

Sepharose 4B-Protein A 

Beads

Stored in PBS containing 0.01% (w/v) NaN3, at 

4°C

s

2.2.17 - Functional Reagents

R eagent D etails Supplier

Fura 2-AM Stock solution: 3mM in DMSO containing: 

20% (w/v) Pluronic acid 

Stored at -20°C in the dark

S

Cyclopiazonic acid 

(CPA)

1 OOmM CPA stock in DMSO 

Stored at -20°C

Used, diluted to 10/iM in 2mM Ca2+ PSS or OmM 

Ca2+ PSS

S

1 -oleoy 1-2 -acetyl-sn- 

glycerol (OAG)

1 OOmM OAG stock in DMSO 

Stored at -20°C

Used, diluted to 100/xM in 2mM Ca2+ physiological 

saline solution (PSS) or OmM Ca2+ PSS

S

2mM Ca2+ PSS 140mM NaCl 

5mM KC1 

ImM MgCl2 

2mM CaCl2 

lOmM Glucose 

15mM HEPES

S

OmM Ca2+ PSS 140mM NaCl S
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5mM KC1 

ImM MgCl2 

lOmM Glucose 

15mM HEPES 

lOOpM EGTA

In-line heater WIC

Heated chamber WIC

Concord Microscope Zeiss Axiovert epiflourescence microscope Z

Merlin A live cell imaging and real time recording computer 

program

PE
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2.3 - Methods

2.3.1 - DNA Methods

2.3.1.1 - Preparation o f  Competent Cells

Using materials from sections 2.2.2 and 2.2.3, a single colony o f E. coli XL-1 Blue 

cells from an LB agar plate was inoculated into 2.5ml o f LB medium and incubated 

overnight at 37°C at 250rpm in a shaking incubator. The entire overnight culture was 

used to inoculate 250ml o f LB medium containing 20mM MgSCV The cells were 

grown in a 1L flask for approximately 5-6 hours, until the optical density at 600nm 

(OD600) reached 0.4-0.6. The cells were centrifuged in a Mikro 22R (HZ) bench top 

fixed angle rotor at 4500 x g (gravitational force), (6050rpm) for 5 minutes at 4°C, the 

supernatant was removed and the cells were gently resuspended in 0.4 volumes (of the 

original culture volume) o f ice cold TFB1. From this point onwards, the cells were 

kept on ice and all pipettes, tubes and flasks were chilled before use. The resuspended 

cells were incubated on ice for 5 minutes. The cells were then centrifuged at 4500 x g 

for 5 minutes at 4°C. The supernatant was removed and the cells were gently 

resuspended in 1/25 o f the original culture volume o f ice cold TFB2. The cells were 

then incubated on ice for 15-60 minutes before they were divided into 200/d aliquots, 

frozen in a dry ice/ isopropanol bath and stored at -80°C.

2.3.1.2 - Transformation

Using materials from sections 2.2.2 and 2.2.3, competent E. coli XL-1 Blue cells were 

defrosted on ice for 5 minutes, then divided into 100pi aliquots in cold micro

centrifuge tubes. 500 -  lOOOng of plasmid DNA was added to an aliquot and mixed 

gently by flicking the tubes. The cells were incubated on ice for 5 minutes. To allow 

the plasmid to enter the bacteria, the samples were heat shocked at 42°C for 45 - 60 

seconds and were replaced back on ice for 5 minutes. 400pi of warmed LB medium 

(37°C) was added to each tube, these were then incubated at 37°C for approximately 

one hour in a shaking incubator at 250rpm. LB Agar plates were prepared previously 

with the appropriate antibiotic, ampicillin or kanamycin, diluted to 50pg/ml. 

Transformed cells were plated onto warmed LB agar with a sterile plastic spreader, 

two plates were used per sample, one for an 80% of transformed cells and the other
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for 20% o f the transformed cells. Each plate was inverted and incubated over night at 

37°C. A single discrete colony was then picked from each plate and used to inoculate 

5ml LB medium containing the appropriate antibiotic for the plasmid. These were 

then incubated overnight at 37°C in the shaking incubator. The growth from this was 

used in preparation o f frozen stocks and plasmid purification preparations.

2.3.1.3 - Preparing Frozen Stocks

500pl o f an overnight culture was removed and mixed it thoroughly with 500pl 

glycerol in a cryovial and stored at -80°C.

2.3.1.4 - Preparation o f  cDNA

DNA was prepared for transfection by the use o f the GenElute™ MiniPrep kit (see 

Section 2.2.4), using all solutions and reagents provided in the kit and with no 

changes to the protocol.

2.3.1.5 - Analysis o f  cDNA

The purity o f the DNA was determined by spectrophotometric analysis o f the DNA 

by determining the absorbance ratio o f A260 and A280, a ratio reading o f between 1.8 

and 2.0 was taken to indicate acceptable purity.

DNA concentrations were calculated using the following equation:

Dilution factor x 50 x Absorbance26o = pg/ml DNA

2.3.1.6 - Agarose Gel Electrophoresis

Using materials from section 2.2.5, agarose gels were made by dissolving 0.8 -  1.5% 

(w/v) agarose in 100ml TBE (see Section 2.2.1) buffer by heating in a microwave. 

The agarose was cooled and EtBr was added to a final concentration o f 7/xg/ml and 

swirled to mix. The gel solution was poured in to the pre-assembled gel tank, comb 

inserted and the gel was allowed to set. The tank was flooded with TBE buffer, 

samples and a lkb DNA ladder was mixed with 6X gel loading buffer and 10/d of 

each sample was loaded in to the wells. The DNA was separated at 100V and then 

visualised by ultra violet (UV) light.
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2.3.2  -  Cell Culture

2.3.2.1 - Cell Passaging

All cultured cell types were passaged by the same method and all reagents used (see 

Section 2.2.6) were pre-warmed to 37°C. Culture medium was aspirated off and 3ml 

of sterile PBS (see Section 2.2.1) was added to the flask to wash, this was then 

aspirated off and 1ml o f trypsin-EDTA was added to remove the cells from the flask, 

this was incubated at room temperature for 1 minute. 9ml of fresh medium was then 

added to the flask and the cells were gently resuspended by pipette action. The cells 

were split by removing 0.5-2ml of resuspended cells to 9.5ml o f fresh medium in a 

75cm2 flask. The cells were split when they reached 80% confluency. For the 3T3-L1 

fibroblasts, medium was replaced every 2 days and cells were split every 7-10 days at 

approximately 90% confluency. Cells were viable for differentiation up to passage 

number seven. All cultured cells were incubated at 37°C and in an atmosphere o f 5% 

(v/v) carbon dioxide (CO2), except the 3T3-L1 fibroblasts, they were incubated at 

37°C and in an atmosphere o f 10% (v/v) CO2.

2.3.2.2 - 3T3-L1 Fibroblast Differentiation

Fibroblasts were grown to confluency after revival from liquid nitrogen stores (see 

Section 2.3.2.4), after 1-2 passages cells were ready for differentiation into 

adipocytes. Fibroblasts were dissociated from the culture flask as previously 

described for passaging and seeded in fresh medium at a density of approximately 

50000 cells per 35mm dish containing a coverslip and approximately 70000 cells per 

90mm dish. After 10 days the cells were confluent and medium was replaced with 

medium for differentiation (see Section 2.2.6): this was day 0. After two days the cells 

had begun to differentiate and the medium was replaced with differentiation medium 

without dexamethasone or IBMX for a further two days. Following this, the medium 

was changed for normal culture medium every two days until day thirteen.

2.3.2.3 - Cell Storage

All cells were washed and detached as previously described (section 2.3.2.1), they 

were then each resuspended in 1 0ml o f medium, transferred to a 15ml centrifuge tube 

and spun in a bench top Mikro 22R (HZ) centrifuge using a fixed angle rotor at 270 x 

g, (1500rpm) for 5 minutes at room temperature. The supernatant was then aspirated
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off and the cell pellet was resuspended in 1ml freezing medium. This suspension was 

then transferred to cryovials and kept in liquid nitrogen vapour for 24 hours before 

transferring to liquid nitrogen for long term storage.

2.3.2.4 - Cell Revival

All cells were revived by removing the cryovial from the liquid nitrogen store and 

rapidly defrosting by placing in a 37°C waterbath. The cells were then transferred by 

pipette to a 90mm diameter dish containing the appropriate medium (see Section 

2.2.6), they were then incubated for 24 hours at 37°C in an atmosphere containing 5 

or 10% (v/v) CO2. Medium was then aspirated off, replaced with fresh medium and 

incubated at 37°C in an atmosphere containing 5 or 10% (v/v) CO2 until the cells 

needed passaging.

2.3.2.5 - HEK293 and COS7 Transfection

Using materials from section 2.2.6, HEK293 and COS7 cells were resuspended in 

antibiotic free medium and seeded at approximately 50% confluency on to a 22 x 

2 2 mm coverslip in a 35mm culture dish and incubated at 37°C, 5% (v/v) CO2 over 

night, so that the following day the cells were approximately 60-70% confluent. For 

each 35mm culture dish, 4pg o f DNA was added to 250pl o f serum and antibiotic free 

medium in a sterile tube, and in a second sterile tube lOpl o f LipofectAMINE™2000 

was added to 250pi of serum and antibiotic free medium, both tubes were mixed 

gently and incubated for 5 minutes at room temperature. The two tubes were then 

gently mixed together and incubated for a further 2 0  minutes at room temperature. 

The mixture was then added drop wise to the 35mm culture dish containing the cells 

and 2 ml serum and antibiotic free medium, this was then rocked gently to ensure even 

distribution and incubated at 37°C, 5% (v/v) CO2 for approximately 5 hours. The 

transfection medium was removed from the cells and replaced with normal medium. 

Cells were incubated for 24-48 hours at 37°C, 5% (v/v) CO2. For larger scale 

transfection, the volumes involved were scaled up accordingly.
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2.3.3 - Primary Cell Culture

2.3.3.1 - Primary Human Pancreas Cell Culture

Primary human pancreatic cells were supplied by Dr David Tosh, University o f Bath.

2.3.3.2 - Embryonic Mouse Pancreatic Tissue Culture

This method was carried out using materials from section 2.2.7. Prior to the culture o f 

the pancreatic tissue glass coverslips were prepared as follows. 2 2  x 2 2 mm glass 

coverslips were immersed in 2% (v/v) APTS in acetone overnight. The coverslips 

were then rinsed in IX acetone, twice in sterile water, air dried and then baked for at 

least 3 hours at 180°C. The coverslips were then placed in a 35mm culture dish and a 

drop o f bovine fibronectin (50/jg/ml) was applied to the centre, to promote attachment 

of the pancreatic tissue, and allowed to dry in a flow hood for several hours.

Mouse embryos were generated by timed matings and the day o f the formation o f the 

vaginal plug was taken as day 0.5. At day 11.5 the pregnant mice were killed by 

cervical dislocation and the uterus was removed to ice cold PBS. The deciduas were 

removed and the embryos were transferred to ice-cold BME medium with Hank’s 

salts and, with the aid o f a microscope, the gut was dissected out. The dorsal 

pancreatic bud was removed from the posterior end o f the stomach using fine forceps 

and a tungsten needle.

After the pancreatic tissue was isolated, a cloning ring was placed over the fibronectin 

coated area on the coverslip and supplemented BME medium was added to the inside 

o f the cloning ring and around the culture dish up to a volume of 2.5ml. The 

pancreatic tissue was then dropped into the centre o f the cloning ring. To ensure the 

attachment and spread o f the tissue, the tungsten needle was used to turn the pancreas 

so the cut surface lay downwards. The cultures were then grown at 37°C, 5% (v/v) 

CO2 for 7 days, until use (Percival and Slack, 1999).

2.3.3.3 - Embryonic Rat Spinal Cord Culture

This method was carried out using materials from section 2.2.7. Prior to seeding of 

cells, all coverslips and plates were coated with PLL (5/xg/ml) for 24 hours at 37°C, 

5% (v/v) CO2 and then washed with PBS.
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At approximately 15 days into gestation the pregnant rat was killed by cervical 

dislocation and up to 15 rat embryos were removed and placed in room temperature 

PBS. Using a microscope to observe the foetus, the head was removed. The foetus 

was placed on its belly and using hooked tweezers, the skin was removed down the 

whole length of the back. The spinal cord was removed from the rest o f the foetus; 

this procedure was carried out as quickly as possible in order to keep the cells viable. 

The intact spinal cord was placed in 3ml o f sterile filtered PBS with 50mM glucose. 

Nine foetal spinal cords removed in this way gave approximately 3-5 million cells per 

ml, enough material for 48 coverslips and six 90mm dishes. The spinal cords were cut 

into small fragments using butterfly scissors and using a Pasteur pipette the fragments 

were placed in a 15ml tube containing 150pl DNAse 1 and then mixed gently. 

Following this 10X trypsin was added to a final concentration o f 0.5X (v/v), mixed 

gently and the tube was placed in a 37°C water bath for 20 minutes, mixing gently 

after 10 minutes. A small amount o f supplemented Neurobasal™ Medium was added 

to the spinal cords to inactivate the trypsin. The spinal cords were mixed gently and 

spun for 5 minutes at room temperature in a Mikro R22 (HZ) bench top centrifuge 

with a fixed angle rotor at 270 x g, (1500rpm). The supernatant was removed and the 

pellet was resuspended in 3ml medium and gently triturated to break up the 

fragments. The cell suspension was diluted 1:50 in supplemented Neurobasal™ 

Medium and mixed gently and approximately 0.5ml was added to each coverslip 

(approximately 50000 cells/cm2 per coverslip). The cells were incubated at 37°C, 5% 

(v/v) CO2 for 2 hours before flooding the well with 2ml supplemented Neurobasal™ 

Medium. Plates were seeded at higher density o f approximately 4 million cells per 

plate. After approximately 5 hours all medium containing FBS was removed and cells 

were cultured in the FBS free Neurobasal™ Medium at 37°C, 5% (v/v) CO2 for a total 

o f three weeks. (Adapted from (Digby et al., 1985).

2.33 ,4  - Embryonic Rat Cortical Culture

This method was carried out using materials from section 2.2.7. Prior to seeding of 

cells, all coverslips and plates were coated with PLL (5/ig/ml) for 24 hours at 37°C, 

5% (v/v) CO2 and washed with PBS.
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At approximately 18.5 days into gestation the pregnant rat was killed by cervical 

dislocation and up to 15 rat embryos were removed and placed in room temperature 

PBS. Using a microscope to observe the foetus the head was removed. The skin 

covering the brain was removed and the brain was removed, the cortices were 

dissected out and meninges removed; this procedure was carried out as quickly as 

possible in order to keep the cells viable. The intact cortices were placed in 3ml of 

sterile filtered PBS with 50mM glucose. Nine pairs o f foetal cortices were removed; 

this gave approximately 10 million cells per ml, enough material for 48 coverslips and 

six 90mm dishes.

At this point the cortices were treated and cultured exactly the same way as the 

embryonic rat spinal cord (section 2.3.3.3). (Adapted from (Digby et al., 1985).

2.3.3.5 - Embryonic Rat Cardiomyocyte Culture

This method was carried out using materials from section 2.2.7. Prior to seeding of 

cells, all coverslips and plates were coated with laminin (1/ig/ml) for 24 hours at 

37°C, 5% (v/v) CO2 and washed with PBS.

At approximately 18.5 days into gestation the pregnant rat was killed by cervical 

dislocation and up to 15 rat embryos were removed and placed in PBS. Using the 

microscope to observe the foetus, the head was removed the foetus was placed on its 

back and using hooked tweezers, the skin was removed down the whole length o f the 

thorax. The heart was then removed and placed in 3ml o f sterile filtered PBS with 

5OmM glucose. This procedure was carried out as quickly as possible in order to keep 

the cells viable. Nine foetal hearts were removed; this gave approximately 3-5 million 

cells per ml, enough material for 48 coverslips and six 90mm dishes. The ventricles 

were dissected from the rest o f the heart and cut into small fragments. Using a Pasteur 

pipette the fragments were placed in a 15ml tube containing 150pl DNAse 1 and then 

mixed gently. Following this 10X trypsin was added to a final concentration o f 0.5X 

(v/v) and mixed gently. The tube was placed in a 37°C water bath for 20 minutes with 

gentle mixing after 10 minutes. The trypsin was inactivated by the addition o f DMEM 

supplemented with 10% (v/v) FBS, 1% (v/v) 200mM Gin and 1% (v/v) P/S. The cell 

suspension was then mixed gently and spun at room temperature for 5 minutes using a 

bench top Mikro 22R (HZ) centrifuge with a fixed angle rotor at 270 x g, (1500rpm).
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The supernatant was removed and the pellet was resuspended in 3ml medium and 

gently triturated to break up the fragments. The cell suspension was diluted 1:50, 

mixed gently and approximately 0.5ml was added to each coverslip (50000 cells/cm 

per coverslip). The cells were incubated at 37°C, 5% (v/v) CO2 for 2 hours before 

flooding the well with 2ml medium. Plates were seeded at higher density of  

approximately 4 million cells per plate. Cells were cultured for one week at 37°C, 5% 

(v/v) CO2. (Adapted from (Digby et al., 1985).

2 .33 .6  - Isolation o f  Adult Rat Cardiomyocytes

Using materials from section 2.2.8, adult male Wistar rats (260-280 g) were 

anaesthetised with 350 pi Pentobarbitone Sodium b.p. (60mg/ml) before 

administration o f 500 units of heparin solution via the tail vein. After 5 minutes the 

neck was dislocated and the heart rapidly removed into semi-frozen Buffer A (0-4°C). 

The heart was immediately mounted on to a catheter via the aorta and perfused with 

Buffer A, at 37°C, for 5 minutes to remove blood and metabolites from the coronary 

vessels and atrial and ventricular chambers. The perfusion was then switched to 

Buffer B equilibrated with oxygen and was re-circulated by means o f a peristaltic 

pump.

After approximately 30 minutes 100 pM CaCh was added to the re-circulating buffer. 

The CaCb concentration was raised to 200 pM after a further 2-3 minutes. The heart 

was perfused for approximately 40 minutes prior to its’ removal from the catheter. 

The heart tissue was dissociated in a buffer containing 10 ml Buffer B and 10 ml 

Buffer C prewarmed to 37°C and under an oxygen atmosphere. The calcium 

concentration was increased in 200 pM steps until the final concentration was 800 

pM.

The digested suspension was filtered through a 250 pm2 nylon gauze (Lockertex,) and 

the cardiomyocytes were allowed to settle for 3-4 minutes to form a loose pellet. The 

supernatant was removed and the cells resuspended in 30 ml Buffer D. The cells were 

allowed to settle again for 3-4 minutes at room temperature and the supernatant was 

removed. The pellet was resuspended in 25 ml Buffer E and the cell suspension was 

incubated for 20 minutes at 37°C under an oxygen atmosphere to allow the cells to
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recover from the isolation procedure. Viability was assessed by counting the number 

of rod-shaped (viable) versus round-shaped (dead) cells under the light microscope 

(Fischer et al., 1991).

2.3.4 -  Antibody Production

2.3.4.1 - Antigen Preparation

The peptide termed 7(K) was identical to the final 16 amino acids o f the C-terminus 

of the hTRPC7 protein (sequence: M/rKNLNKDHLRVNKGKDI-COOtf) and 

synthesised by Dr G. Bloomberg, University o f Bristol. The peptide was coupled to 

the carrier protein KLH via the lysine residues.

Using reagents from section 2.2.9.1, the KLH and 7(K) were dissolved in 0.1M 

NaHCC>3 pH 8.3 to a final concentration o f 2 mg/ml o f KLH and 7(K). Fresh 

glutaraldehyde was added to the solution at a final concentration o f 0.05% (v/v). The 

sample was mixed by rotation in a glass tube overnight at room temperature. 0 .1  

volumes o f 1M GEE, pH 8.0 was added and mixed for 30 minutes at room 

temperature. The KLH/7(K) conjugate was dialysed into 0.9% (w/v) NaCl, overnight 

at 4°C. The dialysed sample was adjusted to lmg o f KLH and 7(K) /ml.

2.3.4.2 - Monoclonal Antibody Production

Using reagents from section 2.2.9.2, two male Balb/C mice (7J and 7K) were 

immunised with the KLH/7K conjugate adjusted to 200pg/ml with PBS and mixed 

with an Alum adjuvant at a ratio of 1:1 (v/v). The mice were given one initial 

immunisation and 4 boosts at one week intervals. ELISAs were carried out on serum 

samples to analyse how well the mice had responded (section 2.3.6.3).

The P3X63Ag8.653 hybridoma cell line (see Section 2.2.6) used in the production o f  

monoclonal antibodies, were grown in maintenance media containing 8 -Aza, the 8 - 

Aza was omitted 2 weeks before use with B cells.

One to three days before fusion o f the P3X63Ag8.653 hybridoma cell line with the B 

cells from the spleens o f the immunised mice, a macrophage feeder layer was
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prepared. This was carried out by harvesting macrophages from the abdominal 

cavities o f five non-immunised male Balb/C mice into PBS and irradiating with 7 -rays 

from a cobalt source to prevent the macrophages from dividing. Macrophages were 

then plated out in 5 x 96 well plates in maintenance medium.

The final boost was given to the mice 3-5 days prior to the fusion and on the day of 

fusion the mice were bled in order to collect as much serum as possible, then as 

quickly as possible the spleen was removed from the mouse. The spleen was washed 

out with 10ml PBS and as many of the cells as possible were removed from it using a 

needle. Cells were transferred to a 50ml tube and 20 million log phase P3X63Ag8.653 

hybridoma cells were added. The mixture was then spun down at 200 x g, (1300rpm) 

for 15 minutes at room temperature in a bench top Mikro 22R (HZ) with a fixed angle 

rotor. The supernatant was discarded and 1ml of warm PEG4000/PBS was added drop 

wise over 1 minute with constant agitation. A further 1ml o f PBS was added in the 

same fashion and then the volume was then increased to 20ml with PBS. This was 

again spun down, the supernatant was discarded and the pellet was resuspended in 

20ml o f cloning medium (see Section 2.2.6). Cells were dispensed into two 25cm2 

flasks and incubated overnight at 37°C, 5% (v/v) CO2. The cells were then pooled, 

spun at 200 x g for 5 minutes at room temperature and resuspended in 50ml cloning 

medium with HAT supplement, (see Section 2.2.6; this selects for hybridoma cells 

fused with B cells from the spleen o f the mouse by using aminopterin to block De 

Novo nucleic acid synthesis, forcing the cells to utilise the Salvage pathway, which 

requires hypoxanthine and thymidine). This medium was dispensed over the five 

macrophage-conditioned plates, lOOpl per well and incubated at 37°C 5% (v/v) CO2 

for 5 days. Every 3 days the medium was replaced with fresh cloning medium 

supplemented with HAT. When colonies began to appear, the supernatant from each 

colony was removed and screened by ELISA (see Section 2.3.5.3), the cells were 

transferred to a 24 well plate with fresh cloning media and replacing HAT with HT 

(see Section 2.2.6) to continue growing. From then on the plates were fed every 3 

days with cloning media supplemented with HT.

The criterion for the identification o f a positive antibody producing colony was that it 

has at least 50% of the activity o f the serum taken at the time o f fusion. Positive

76



colonies were cloned by diluting them to one cell per 200pl per well o f a 96 well 

plate. The cloned plate was fed and screened for further positive colonies in the same 

manner as before.

2.3.4.3 - Polyclonal Antibody Production

The KLH/7(K) conjugate was sent to Harlan Sera-Labs for the production o f hTRPC7 

antibodies in barrier reared, New Zealand white rabbits. Four 1 mg/ml frozen aliquots 

were sent, the samples were then processed according to their protocols. Briefly, 

samples were diluted to 200pg/ml in PBS and then mixed 1:1 with adjuvant before 

injection (see Section 2.2.9.3). The following table describes the protocol:

Day Procedure

0 Pre bleed 5ml + immunization KLH/7(K) + 

FCA 1ml

14 Boost 1- KLH/7(K) + FIA 1ml

28 Boost 2- KLH/7(K) + FIA 1ml

35 Test bleed 1

42 Boost 3- KLH/7(K) + FIA 1ml

49 Test bleed 2

56 Boost 4- KLH/7(K) + FIA 1ml

63 Test bleed 3

70 Boost 5- KLH/7(K) + FIA 1ml

77 Terminal bleed

Serum was prepared, frozen and sent the day after the test bleeds.

2.3.5 - Antibody Purification

2.3.5.1 - Column Preparation

Using reagents from section 2.2.9.4, the column for the purification o f antibodies was 

made using CNBr-activated Sepharose 4B. To make a 5ml column, 1.5g o f CNBr- 

activated Sepharose 4B was added to 100ml ImM HC1, pH 2-3. This was washed on a 

sintered glass filter for 15 minutes with several aliquots o f 1 mM HC1, (this was done
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in order to remove the additives and preserve the active groups). The Sepharose was 

then washed with several aliquots of ddH2 0  and then washed with the coupling 

buffer, pH 8.3. Peptide 7(K) was dissolved in 5ml o f the coupling buffer to a 

concentration of 2mg/ml. The washed gel was then added to the peptide solution and 

mixed via rotation overnight at 4°C. Following this the Sepharose was washed with 5 

gel volumes of coupling buffer (to wash away excess peptide) and then washed in 

0.1M Tris-HCl, pH 8 and left to stand for 2 hours at room temperature in 0.1 M Tris- 

HCl, to block any remaining active sites. The Sepharose-peptide conjugate was 

transferred to a 1ml column and was washed with three alternating cycles o f 0.1 M 

CHsCOONa pH 4 with 0.5M NaCl and the high salt wash pH 8 , using at least 5 gel 

volumes of each. The column was stored at 4°C in 20mM Na2HPC>4 with 0.5M NaCl 

and 0 .0 1 % (w/v) NaN3.

23,5 ,2  - Antibody Purification

Prior to purification of the antibody, the column was attached via capillary tubing to a 

pump and spectrophotometer (set to measure at 280nm with an output to a trace 

recorder). The trace recorder was then calibrated using 5mg/ml BSA. The whole 

procedure was carried out at 4°C, using reagents from section 2.2.9.4. The column 

was pre-washed with 20mM Na2HPC>4 to establish a stable 280nm baseline. 

Approximately 6 ml of serum per 1ml o f column volume was added to the column and 

cycled overnight at approximately 4ml/minute. The post column serum was collected 

and retained for ELISA and the column washed with 20mM Na2HP0 4  until the trace 

recorder had returned to baseline levels. The column was washed further with 20mM 

Na2HPC>4 and when a stable baseline was reached the antibody was then eluted by 

applying 5OmM glycine HC1 pH 2.3 and the monitored protein peaks were collected 

in 1ml aliquots. Each aliquot was neutralised with 20pl 1M Tris pH 10.8. Collection 

ceased when the peak had dropped back down to baseline levels.

A small amount of each aliquot o f the eluted antibody was dotted onto BioTrace®NT 

protein transfer nitrocellulose membrane (see Section 2.2.15) and stained with diluted 

Ponceau S (see Section 2.2.15; 9 parts ddH2 0  to 5 parts Ponceau S stock solution), 

washed in ddH2 0  and dried, to determine which aliquots contained the most protein. 

Aliquots containing the most protein were pooled, and placed in dialysis tubing and
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dialysed against 5L PBS overnight at 4°C. The dialysed antibody was then 

concentrated in PEG20000 to a final volume o f approximately 500pl. An aliquot was 

retained for ELISA and the antibody was stored at -20°C.

The column was then regenerated by washing with 20mM Na2HPC>4 for at least 1 

hour, then three alternating cycles o f 0.1 M CPLCOONa pH 4 with 0.5M NaCl and the 

high salt wash, pH 8 , using at least 5 gel volumes o f each. The column was then 

stored at 4°C in 20mM Na2HP0 4  with 0.5M NaCl and 0.01% (w/v) NaN3 until further 

use.

The amount o f antibody present was determined by carrying out a protein assay using 

dilutions o f 500pg anti rabbit IgG for the standard curve (see Section 2.2.9.5). 10|d of 

each standard and affinity purified antibody samples were pipetted into the 

appropriate wells o f a microwell plate, 10pl o f the diluent, 20mM Na2HP0 4  was used 

as a blank, (each standard and sample was done in triplicate). 300pl o f the 

Coomassie® Plus Reagent was added to each well and the plate was placed on a 

shaker for 30 seconds, the absorbance was then measured at 595nm. The values were 

blank corrected and a standard curve was plotted o f absorbance against protein 

concentration. The unknowns were read off from the standard curve.

23.5 .3  - Enzyme Linked Immunosorbent Assay (ELISA)

Using reagents from section 2.2.10, 100/d o f lOmg/ml solution of peptide or the 

conjugate KLH (diluted in coating buffer) were placed in wells of a 96 well plate and 

incubated overnight at 4°C. The plates were washed 3 times with PBST then blocked 

with 300pi per well o f PBSTM, this was incubated at room temperature for 1 hour. 

The plates were washed twice with PBST then 100/d o f a 1:100 dilution o f the serum 

or purified antibody in PBST was added to the wells, 1:100 serial dilutions o f the 

serum or purified antibody were then performed and plates incubated with antibody at 

room temperature for 2 hours. The plates were then washed 3 times in PBST and 

100/d o f the secondary antibody, anti-Rabbit IgG horseradish peroxidase diluted 

1:1000 in PBST, was applied to each well and incubated at room temperature for 2 

hours. The plates were then washed 3 times in PBST and twice in PBS. The substrate 

was then added at lOOjd per well for 5 to 15 minutes at room temperature. The
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reaction was stopped with 50pl of 2M H2SO4 and the plates were read at an optical 

density o f 450nm (values were calculated by subtracting background readings of 

700nm).

2.3.6 -  Protein Methods

2.3.6.1 - Cell Culture fo r  Immunofluorescent Staining

All cells used for immunofluorescent staining, with the exception o f adult 

cardiomyocytes, were cultured on sterile 22 x 22mm coverslips in 35mm diameter 

cell culture dishes.

2.3.6.2 - Fixation and Immunofluorescent Staining

Using reagents from section 2.2.11, the coverslips containing; HEK293, COS7, Pane- 

1, Capan-1, human primary pancreas, 3T3-L1, embryonic cortical and spinal cord 

cultures cells were washed 3 times with PBS and fixed with 2% (w/v) PFA in PBS, 

2ml per coverslip, incubated at room temperature for 20 minutes. The coverslips were 

then washed 3 times with PBS and permeablised with 0.1% (v/v) Triton-X 100 at 

room temperature for 5 minutes. Coverslips containing GH4C1 cells were fixed and 

permeablised in methanol for 5 minutes at -20°C. Coverslips containing cultured 

embryonic mouse pancreatic tissue were fixed in MEMFA at room temperature for 40 

minutes, then washed in PBS for 30 minutes, before permeablisation in 5% (v/v) 

Triton-X 100 for 10 to 15 minutes at room temperature.

From this point all cell types were treated in the same way and all stages were carried 

out at room temperature. Coverslips were again washed 3 times in PBS before 

blocking with blocking buffer for 20 minutes. The primary antibody was prepared at 

an appropriate dilution in blocking buffer and 70pl was applied as a drop to Parafilm, 

the coverslips were then inverted on to the primary antibody and incubated at room 

temperature for at least 1 hour. The coverslips were then floated off the Parafilm with 

PBS and replaced back in the plates and washed twice in blocking buffer and twice in 

PBS for 5 minutes each. The following steps were carried out in the dark; the 

appropriate secondary antibodies were then prepared, diluted 1 :1 0 0  or 1 :2 0 0  in 

blocking buffer, the coverslips were inverted onto 70pl o f secondary antibody 

solution and incubated at room temperature for 20 minutes. Unless otherwise stated 

the secondary antibody used with anti-hTRPC7, the pre-immune serum or peptide
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control solution was anti-rabbit IgG conjugated to Alexa Fluor 488. The coverslips 

were removed to their dish as described and washed twice in blocking buffer and 

twice in PBS for 5 minutes each. The coverslips were then dipped in water and 

mounted onto a glass slide with 30pl o f Mowiol mounting medium and left to dry 

overnight at room temperature and stored at 4°C until observed by confocal 

microscopy.

23.6 .3  - Immunofluorescence Staining o f  Adult Rat Cardiomyocytes 

Cells treated with insulin were washed once in 15ml PBS containing the same amount 

o f insulin used to stimulate the cells, cells not stimulated with insulin were washed 

once in 15 ml PBS alone. Cells were left to stand for 1 minute until the cells settled, 

and the supernatant was removed. Using materials from section 2.2.11, cells were 

fixed in 7.5ml 4%  (w/v) PFA for 20 minutes on a rocker at room temperature, cells 

were again left to stand for 1 minute and the supernatant removed. Cells were then 

washed three times in PBS allowing the cells to settle between washes for 1 minute. 

Cells were blocked and permeablised in 7.5ml o f permeablisation buffer at room 

temperature for 45 minutes on a rocker. Cells were allowed to settle for 1 minute and 

the supernatant was removed leaving approximately 250pl o f buffer with the cells, 

they were then transferred to microfuge tubes. A 1:50 dilution o f primary antibodies 

was made in the permeablisation buffer, 250pl was added to the cells to make a final 

dilution o f 1:100. This was incubated for 1 hour 30 minutes at room temperature on 

the rocker. The cells were left to settle for 1 minute and the supernatant was removed, 

they were then washed three times in permeablisation buffer allowing cells to settle 

between washes. From this point on samples were kept in the dark. A 1:50 dilution of 

secondary antibodies was made up in permeablisation buffer 250pl was added to the 

cells already in 250pl buffer, to make a 1:100 dilution o f secondary antibodies. This 

was incubated for 1 hour at room temperature, in the dark on the rocker. Keeping 

them in the dark, the cells left to settle and the supernatant was removed, cells were 

then washed six times in permeablisation buffer allowing the cells to settle between 

each wash. The supernatant was removed and the cells were resuspended in 150pl of 

permeablisation buffer. A drop o f Vector Shield mounting medium was applied to a 

glass coverslip, to this 1 0 pl of cells were added, a glass coverslip was lowered over
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the top which was held in place by the application o f clear nail varnish around the 

sides. The cells were then stored at 4°C until analysis by confocal microscopy.

2.3.6.4 - Preparation o f  Cell Lysates

Cultured cells, approximately 80-90% confluent, were harvested by washing 3 times 

in PBS and scraping the cells using a cell scraper in to 1ml o f ice-cold protease 

inhibitor cocktail (see Section 2.2.12). The collected cells were then sonicated on ice 

with 3 x 1 5  second bursts o f 15-18kHz. Adult rat cardiomyocytes were prepared by 

re-suspending the freshly isolated cells in 1ml o f the ice-cold protease inhibitor 

cocktail and quickly frozen in liquid nitrogen. The protein concentration was 

measured using the Coomassie® plus Protein Assay Reagent. Samples were prepared 

for SDS-PAGE by adding 2X loading buffer and denatured by incubation in a boiling 

water bath for 5 minutes and spun in a Biofuge 13 (HI) bench top centrifuge at 

13000rpm for 3 minutes at room temperature.

2.3.6.5 - Membrane Preparation

Sonicated cell lysates were transferred to 10ml ultracentrifuge tubes and centrifuged 

in a floor standing Beckman ultra centrifuge using a 70.iTi rotor at 54000 x g, 

(28000rpm) for 30 minutes at 4°C. The resulting pellet was resuspended in 1ml ice 

cold protease inhibitor cocktail. The protein concentration was measured using the 

Coomassie® plus Protein Assay Reagent (see Section 2.3.6 .6 ). Samples were 

prepared for SDS-PAGE as described (see Section 2.3.6.7).

2.3.6.6 - Protein Concentration Measurements

Coomassie® Plus Protein Assay Reagent (see Section 2.2.13) was used to determine 

the total protein obtained from all cell lysate preparations. A standard curve was made 

by serial dilutions o f 2mg/ml BSA (see Section 2.2.13) in protease inhibitor cocktail. 

lOpl o f each standard and cell lysate samples were applied to the appropriate wells of 

a microwell plate, lOpl of the diluent was used as a blank, (each standard and sample 

was done in triplicate). 300pi o f the Coomassie® Plus Reagent was added to each well 

and the plate was placed on a shaker for 30 seconds, the absorbance was then 

measured at 595nm. The values were blank corrected and a standard curve was 

plotted o f absorbance against protein concentration. The unknowns were read off 

from the standard curve.

82



2.3.6.7 - SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was carried out using materials from section 2.2.14. For the preparation 

o f two 1 0 % separating gels the following was mixed together:

V o lu m e R ea g en t

1 0 ml Acrylamide mix

7.5ml 1.5M Tris-HCl pH 8 . 8

300pl 10% (w/v) SDS

1 2 . 1 ml ddH20

150pl 10% (w/v) APS

lOpl TEMED

The gel mix was transferred by pipette to two pre-assembled Atto™ mini-gel rigs, 

over laid with isopropanol and left for approximately one hour to polymerise. The 

isopropanol was then removed and the top o f the gel washed with water. A 4% 

stacking gel was then prepared by mixing the following:

V o lu m e R e a g e n t

1.33ml Acrylamide mix

2.5ml 0.5M Tris-HCl pH 6 . 8

lOOpl 10% (w/v) SDS

6 ml ddH20

50pl 10% (w/v) APS

5nl TEMED

The gel mix was poured on to the separating gel, the combs were inserted and the gels 

were left for 1 hour to polymerise.

The gels were placed in the vertical gel tank and running buffer was added. The 

combs were removed and the wells were washed out with running buffer. Samples o f 

a known amount o f protein and Precision protein marker were loaded into the wells; 

the gels were run at a constant voltage o f 200V until the dye front just ran off the 

bottom o f the gel.
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The gels were either stained with Coomassie Blue solution for 30 minutes to 1 hour 

and destained with destaining solution until the background stain was removed, or the 

gels were soaked in transfer buffer ready for Western blotting, described below in 

section 2.3.6.8.

2.3.6.8 - Western Blot

Western blotting was carried out using materials from section 2.2.15. For each gel one 

piece o f nitrocellulose membrane and two sheets o f extra thick filter paper were cut to 

the same size as the gel. The nitrocellulose was wetted in water for 2 minutes the 

water was poured off and transfer buffer was added. The gel, filter paper and support 

pads were also placed in transfer buffer and were gently agitated on a rocker for 15 

minutes. One of the support pads was placed on the open cassette, on top of which 

was placed one sheet o f filter paper, the gel, the nitrocellulose membrane, the 

remaining sheet o f filter paper and finally the support pad. Air bubbles were removed 

between layers by rolling a pipette on top o f the sandwich. The cassette was then 

closed and placed in the blotting chamber in the correct orientation (gel on cathode 

side and nitrocellulose membrane on anode side) and enough transfer buffer was then 

added to submerge the sandwich. The blotter was then connected to the power supply 

and the transfer was run at a constant current o f 200mA for 2 hours.

2.3.6.9 - Immunoprobing and Detection

After Western blotting the nitrocellulose membrane was stained with diluted Ponceau 

S (for dilution see Section 2.3.5.2) for approximately 1 minute and destained in 

ddKkO to visualise the protein, after this the Ponceau was totally removed by washing 

in PBST. Unbound sites were blocked with PBST (see Section 2.2.10) containing 5% 

(w/v) BSA overnight at 4°C. For all the following stages the blot was incubated at 

room temperature, on a rocker with constant agitation. The membranes were then 

washed 3 times with PBST for 10 minutes each wash. The primary antibody, diluted 

to the appropriate concentration in PBST was added to the membrane and incubated 

for 2 hours. The membrane was then washed 3 times in PBST, 10 minutes each wash. 

The secondary antibody from the Vectastain kit (see Section 2.2.15) diluted to 1:1000 

in PBST was then added to the membrane and incubated for 1 hour. The ABC reagent 

was also made at this time and incubated, in a 50ml tube on the belly dancer for 1
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hour. The membrane was then washed with PBST 3 times, 10 minutes each wash and 

the blot was then incubated in the ABC reagent for 1 hour. The membrane was then 

washed twice with PBST and twice with PBS for 5 minutes each. The substrate DAB 

(see Section 2.2.15), was then applied according to the manufacturers instructions; 

this was incubated for up to 15 minutes. The reaction was stopped with copious 

amounts o f ddF^O. Membranes were dried and stored in the dark at room 

temperature.

2.3.6.10 - Immunoprecipitation

Cells were cultured in 90mm cell culture dishes and transfected, if  required as 

previously described (Section 2.3.2.5). Cells were then washed, harvested and lysed in 

600pl ice cold protease inhibitor cocktail as previously described (in Section 2.3.6.4). 

lOOpl o f the sonicate was mixed with 2X SDS-PAGE loading buffer, boiled for 5 

minutes and stored at -20°C. To the remaining sonicate, 500pl 2X RIPA buffer (see 

Section 2.2.16) was added, this was mixed for three to four hours at 4°C to solubilise 

membrane proteins. 50pl o f Protein G beads (see Section 2.2.16) were washed twice 

with cold PBS by spinning in a Mikro 22R (HZ) bench top centrifuge with a fixed 

angle rotor at 490 x g, (2000rpm) for 5 minutes each at 4°C. To the beads 50pl of  

antibody was added and mixed for 3 hours at 4°C. The beads were spun again and 

supernatant removed, the beads were then washed three times in cold, IX RIPA 

buffer by spinning to remove unbound protein. The solubilised sonicate was then 

added to the beads and mixed overnight at 4°C. The beads were pelleted as described 

above and the supernatant removed which was then mixed with 2X SDS-PAGE 

loading buffer, boiled for 5 minutes and stored at -20°C. The beads were then washed 

three times in cold IX RIPA buffer by spinning, 2X SDS-PAGE loading buffer was 

added to the beads, which were then boiled for 5 minutes and stored at -20°C. 

Samples were separated by SDS-PAGE and protein detected by Western blot and 

immunodetection, as described (in Sections 2.3.6.7,2.3.6.8 and 2.3.6.9).

2.3.7 -  Functional Methods

2.3.7.1 - Cell Culture fo r  Functional Methods

25mm diameter coverslips sterilised by washing in 100% ethanol and then autoclaved. 

The sterile coverslips were placed in 35 mm culture dishes and HEK293 cells were
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seeded on the coverslips, grown overnight and subsequently transfected, as described 

(Section 2.3.2.5).

2.3.7.2 - Calcium Re-addition Protocol: Experimental Set Up 

Using reagents from section 2.2.17, the experimental solutions were placed in the 

solution reservoirs (Figure 2.1) and allowed to feed down the capillary tubing by 

gravity and all air bubbles were removed. Cultured HEK293 cells were washed three 

times in 2mM Ca2+ PSS and incubated for 30 minutes in 3pM Fura 2-AM, then 

washed for 10 minutes in 2mM Ca2+ PSS. Excess cells were carefiilly removed from 

the edges o f the coverslip and by the use o f vacuum grease the coverslip was then 

loaded on to the heated chamber (heated to 37°C) (Figure 2.1). The capillary tubing 

from the manifold was attached to the in line heater to heat the solutions to 37°C, this 

was then attached to the chamber at the solution inflow end and capillary tubing 

leading to a vacuum pump was attached at the solution out flow end to remove the out 

flow liquid (Figure 2.1).

Solution Reservoirs

Manifold
Waste

Manifold Control

In-flow

OutflowIn-line HeaterTemperature Control

Heated Chamber

 ► Indicates direction of flow
Temperature control wires

------------  Manifold control wires
  Capillary Tubing

Figure 2.1: A schematic diagram o f  the equipment set up for the Calcium Re-addition Protocol.
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Once a flow of 2mM Ca2+ PSS through the chamber was established and air bubbles 

removed, the chamber was then clamped in place on the microscope and using the 

x40 oil immersion objective the cells were visualised.

2.3.7.3 - Calcium Re-addition Protocol

If  cells were transfected using pIRES2-EGFP, pIRES2-EGFP-htrpc7 or pIRES2- 

EGFP-htrpc7A, the EGFP positive cells were visualised using the GFP filter. A short 

recording was taken with the Spectramaster laser set to illuminate at 488nm, 

(emission at 535nm) to establish where the EGFP positive cells were. The filter was 

then switched to the Fura 2 filter and laser settings were changed to illuminate at a 

ratio o f 340nm and 380nm at a ratio o f 1:3 (and to measure emission at 510nm). The 

calcium re-addition protocol was followed; either CPA or OAG was used in a single 

calcium re-addition experiment.

Calcium re-addition protocol:

Treatment Time

PSS + calcium 2  min

PSS no calcium 5 min

PSS no calcium + lOpM CPA or lOOpM OAG 5 min

PSS + calcium + lOpM CPA or lOOpM OAG 15 min

A background recording was taken at the end o f each experiment by moving to 

another part o f the coverslip with no cells present.

Fluorescent Ca indicators are molecules whose optical properties change when they 

bind Ca , and they can be classed as single or dual wavelength indicators. Fura 2-AM
a  i

is an example o f a dual wavelength or ratiometric indicator. When Ca binds to Fura 

2-AM the emission spectrum changes, the Ca2+ free molecule emits optimally at 

380nm whereas the Ca2+ bound molecule has a peak emission at 340nm. By 

calculating the ratio o f emission at the two wavelengths a measure o f Ca2+ can be 

made that is independent o f indicator concentration. It is due to this ratioing that it is 

not as important to carry out calibration with these types o f indicators as it is with 

single wavelength indicators (Tepikin, 2000). Fura 2-AM is a common choice o f
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indicator and, using this dye, 50 -  90% of it can be sequestered in intracellular 

organelles. Once the indicator is in the cytoplasm o f the cell, the ester groups are 

cleaved by endogenous esterases and a Ca2+ sensitive form o f the dye is released, 

slowing leakage from the cells (Tepikin, 2000).

Experiments are usually carried out using specific inhibitors to the sarco-endoplasmic 

reticulum Ca2+ ATPase (SERCA) pump such as thapsigargin (TG) or cyclopiazonic 

acid (CPA; Figure 2.2), or agonists such as l-oleoyl-2-acetyl-sw-glycerol (OAG;
^  I

Figure 2.3), an analogue o f diacyl glycerol (DAG), in the presence or absence o f Ca 

(where Ca2+ is chelated by EGTA) (Putney, Jr. and McKay, 1999). TG and CPA 

activate calcium entry by depleting intracellular stores o f Ca through inhibition of 

the ER Ca2+ re-uptake pump, SERCA (Putney, Jr. and McKay, 1999).

Figure 2.2: Structure of cyclopiazonic acid. 

O

H2C -0  0 ^ ^
11

h c - o ^ x h 3

h 2 c - o h

Figure 2.3: Structure of 1 -oleoyl-2-acetyl-s«-glycerol



Chapter 3 
Production and Characterisation of 

Anti-hTRPC7 Antibodies



3.1 - Introduction

3.1.1 -  Antibodies

Antibodies are useful tools to study proteins, and can be used to detect specific proteins 

using a number of methods, including immunocytochemistry or Western blotting. 

Antibodies are produced by B lymphocytes, each one of which expresses a surface 

receptor specific for a particular antigen (Roitt et al., 1998).

Polyclonal antibodies (usually isolated from the serum) are a mixed group of antibodies 

that identify different sites on the same antigen. Because there is an increased chance that 

they may recognise different antigens polyclonal antibodies can give a lot of non-specific 

cross reactivity. However, purification using the peptide the antibody was raised to will 

usually to reduce much of the non-specificity. Monoclonal antibody production generates 

an immortal clone of cells that manufacture a single antibody of defined specificity and 

affinity (Roitt et al, 1998).

3.1.2 -  Antibodies to TRPC7

It can be difficult to produce specific antibodies against hTRPC7 due to the high level of 

homology with the other hTRPCs, specifically hTRPCs 3 and 6. There are several 

published reports of the use of an anti-TRPC7 antibody: first a group, lead by William 

Schilling, raised antibodies to all o f the TRPCs with varying levels of success. They used 

the antibodies to look into associations of the TRPC proteins with other TRPCs and PDZ 

proteins (Goel et al., 2002). Using the same TRPC7 antibody a second study was carried 

out to determine, by immunocytochemistry, the endogenous localisation of all the TRPC 

proteins in the rat carotid chemosensory pathway (Buniel et al., 2003). Another group 

have carried out siRNA studies of TRPC7 and other TRPCs using Western blotting 

techniques with an anti-TRPC7 (purchased from AbCam, later withdrawn, discussed later 

in Chapter 5 Section 5.3) to identify the presence or absence of TRPC7 in HI9-7 

hippocampal neurons (Wu et al., 2004). Goel et al and Bunniel et al raised their own
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antibody to TRPC7. As there was no available commercial antibody to hTRPC7 it was 

decided to raise an antibody specific to hTRPC7 for this current study. The results in this 

chapter will demonstrate the production of this antibody and its full characterisation in an 

over expression system.

3.1.3 - Protein Expression

The HEK293 cell line is often used as an expression system for a variety of proteins. 

HEK293 cells are originally an epithelial cell line derived from human embryonic 

kidney, which were transformed with sheared human adenovirus 5 (Ad5) DNA 

(ECACC). HEK293 cells are especially of interest as a system for over expression of 

htrpc7 because it was found, by RT-PCR that there is no endogenous hTRPC7 mRNA in 

HEK293 cells (Riccio et al., 2002).
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3.2 - Results

3.2.1 -  Amino Acid Sequence Alignment

There are several different ways in which to raise an antibody. The whole of the protein 

of interest may be used, either by immunising an animal with the entire protein (for 

example, by creating a fusion protein), alternatively a smaller region of the protein may 

be used in immunising the animals to obtain an antibody, either by using a fusion protein 

of part of the sequence or a synthetic peptide. Immunisation with large segments of the 

protein as a fusion or whole proteins can present problems with specificity of the 

resulting antibody. For example, if the entire hTRPC7 protein was used to raise an 

antibody the cross reactivity between the other hTRPCs would be high due to the high 

level of sequence similarity throughout the group. In addition, there can be significant 

technical problems associated with the production and purification o f sufficient quantities 

of the antigen. For these reasons a peptide corresponding to a small region of hTRPC7, 

that was not homologous with other hTRPCs, was used to raise an antibody to hTRPC7. 

In order to determine the optimum peptide for use, an alignment of the amino acid 

sequences of the mammalian TRPC polypeptides was examined (Dr A. Wolstenholme, 

personal communication). This revealed that the extreme C-terminus was poorly 

conserved between the TRPC sub-family and so this sequence was chosen (Figure 3.1). 

Highlighted in bold is the sequence the hTRPC7 antibody was raised to, the sequence is 

conserved between mice and humans with mTRPC7 showing only one amino acid 

difference for hTRPC7.

hTRPC7 942q q l s e k f g k n LNKDHLRVNK GKDI...............!
mTRPC7 QQLSEKFGKN LNKDHLRVNQ G K DI...............
hTRPC3 HKLSEKLNPS M____ LRCE*
hTRPC6 RELGEKLSME PNQEETNR ,
hTRPC5 PRSFSTSSTE LSQRDDNNDG SGGARAKSKS
hTRPC4 SANASKESSN SADSDEKSDS EGNSKDKKKN
hTR PC l PR N *...............

Figure 3.1: A comparative amino acid sequence alignment of hTRPC7, mTRPC7 and all other hTRPCs, 

highlighted in bold is the 16 amino acids at the very C-terminus of hTRPC7 indicating where the hTRPC7 

antibody from this study was raised to (Dr A. Wolstenholme, personal communication).
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3.2.2 - Polyclonal Antibody Production in Mice

The peptide was named 7(K), it was conjugated to the carrier protein KLH (see Chapter 

2, Section 2.3.4.1) and was first injected into mice 7J and 7K. By immunising with the 

7(K) peptide conjugated to KLH a good titre o f  antibodies against the peptide was 

obtained in both mice, measured by ELISA (Figure 3.2; see Chapter 2, Section 2.3.5.3). 

After the fifth boost the titre o f  antibody to the 7(K) peptide had increased in both mice, 

this shows an increased affinity o f  the antibody to antigen at lower dilutions. Mouse 7J 

appeared to have a higher titre o f  antibodies in its serum after 5 boosts.

Figure 3.2: The responses of mice 7J and 7K to the 7(K) peptide after 4 boosts and after 5 boosts in 

comparison to a non-immune, normal mouse serum. ‘Dilution 1/n’ indicates the ratio of dilution of sample 

to dilutent where n is the amount in parts o f dilutent.

A second ELISA (Figure 3.3) was carried out to analyse the level o f immunity to the 

carrier protein, KLH. KLH appears to be more immunogenic than 7(K) as the results 

showed a stronger immune response in all cases in comparison to the 7(K) ELISA, this is 

usual when KLH has been used as the carrier protein. This result indicated that the 

apparent response by the mice to the 7(K) peptide was ‘real’ as the mice responded to the 

carrier protein.

Normal Mouse Serum

7J After 4 Boosts 

7K After 4 Boosts 

7J After 5 Boosts 

7K After 5 Boosts

V  tP V  fP
D ilu tion  1/n
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♦ Narmal IVbuse Serum 

■ 7J After 4 Boosts 

7K After 4 Boosts 

■ * — 7J After 5 Boosts 

X 7K After 5 Boosts

< 9

□lution 1/n

Figure 3.3: The responses of mice 7J and 7K to the carrier protein, KLH, after 4 boosts and after 5 boosts, 

at the time of fusion. In comparison to a non-immune, normal mouse serum. ‘Dilution l/n ’ indicates the 

ratio of dilution o f sample to dilutent where n is the amount in parts of dilutent.
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3.2.3 - Immunocytochemistry Using 7J and 7K Serum on HEK293 Cells 

Over Expressing hTRPC7

The sera from both mice was tested on pIRES2-EGFP-/tfr/?c7 transfected HEK293 cells.

EGFP hTRPC7

Mouse 7J

Mouse 7K

EGFP NMS

Figure 3.4: Serum test of 7J and 7K. Images a to e show HEK293 cells transfected with pIRES2-EGFP- 

htrpc7, the EGFP fluorescence (a, c and e) is confirmation of a positive transfection, b shows 

immunofluorescent staining of the same cells as a by serum from mouse 7J (1:100). d shows the same cells 

as c immunofluorescently stained with serum from mouse 7K (1 :100). f  shows the same cells as e, stained 

with a non-immune mouse serum (NMS) (1:100). All secondary antibodies used were anti-mouse Texas 

Red (1:100) and all size bars are 10pm.

The serum from both mice recognises the pIRES-EGFP-/z/rpc7 transfected HEK cells 

(Figure 3.4). The EGFP localises to the nucleus and is used as an indicator o f  positive 

transfection, it is not tagged to hTRPC7 (See Appendix Section A l). The positively
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transfected cells show staining by the sera from mice 7J and 7K, located in the plasma 

membrane (PM) region, and with some intracellular staining adjacent to the nucleus.

3.2.4 - Monoclonal Antibody Production

After the final bleed of the mice, the B cells from the spleens of the immunised mice 

were fused to the P3X63Ag8.653 hybridoma cell line to begin the process of monoclonal 

antibody production.
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Figure 3.5: The results from the monoclonal antibody production of anti-hTRPC7 from mice 7J and 7K, 

the positive controls are 7J and 7K Serum and the colonies tested number 1-18 and 1-13 for 7J and 7K 

respectively.
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To produce monoclonal antibodies, the media from colonies were required have at least 

50% of the level of antibodies of the fusion serum, and if this was the case the cells 

would then be propagated to produce a clonal population producing antibodies. However, 

after four months none of the colonies produced the required 50% activity and therefore, 

no monoclonal antibodies were produced (Figure 3.5). This was probably due to a low 

fusion efficiency, it would be useful to attempt to make anti-hTRPC7 monoclonal 

antibodies again, however, due to time constraints, this was not possible.

3.2.5 -  Polyclonal Antibody Production in Rabbits

The ELISA and immunocytochemistry results were encouraging, showing a good 

polyclonal antibody had been produced; therefore polyclonal antibodies were then 

produced on a larger scale. The 7(K) peptide conjugated to KLH was sent to Harlan Sera- 

Labs for immunisation in rabbits, they returned the all test bleed sera and the final bleed 

sera of the two immunised rabbits for testing by ELISA (described in Chapter 2 Section 

2.3.5.3).

The ELISA carried out against peptide 7(K) (Figure 3.6) show high titres of antibodies 

produced by rabbit 89 to the 7(K) peptide. The antibody binding affinity to the antigen 

did not decrease until approximately a 1:12800 dilution in rabbit 89.
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Pre Immune Serum 

First Test Bleed 

Second Test Bleed 

Third Test Bleed 

Final Bleed
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Figure 3.6: The immune response of rabbit 89 to the 7(K) peptide, before the initial immunisation and after 

the subsequent boosts. ‘Dilution 1/n’ indicates the ratio of dilution of sample to dilutent where n is the 

amount in parts of dilutent.

An ELISA was carried out to analyse the level o f immunity to the carrier protein, KLH 

(Figure 3.7). These results showed a similar immune response in all cases in comparison 

to the 7(K) ELISA.
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Figure 3.7: The immune response of rabbit 89 to the carrier protein KLH, before the initial immunisation 

and after the subsequent boosts. ‘Dilution 1/n’ indicates the ratio of dilution of sample to dilutent where n is 

the amount in parts of dilutent.
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The ELISA carried out against peptide 7(K) (Figure 3.8) show high titres of antibodies 

produced by rabbit 90 to the 7(K) peptide. The amount antibody did not decrease until 

approximately a 1: 25600 dilution in rabbit 89.
Pre Immune Serum
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Second Test Bleed 

Third Test Bleed
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Figure 3.8: The immune response o f rabbit 90 to the 7(K) peptide, before the initial immunisation and after the 

subsequent boosts. ‘Dilution 1/n’ indicates the ratio o f  dilution o f sample to dilutent where n is the amount in parts o f  

dilutent.

An ELISA was carried out to analyse the reactivity to KLH (Figure 3.9). These results 

showed a similar immune response in all cases in comparison to the 7(K) ELISA.
Pre Immune Serum 

First Test Bleed 
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Figure 3.9: The immune response o f rabbit 90 to the carrier protein, KLH, before the initial immunisation and after the 

subsequent boosts. ‘Dilution 1/n’ indicates the ratio o f dilution o f sample to dilutent where n is the amount in parts of 

dilutent.
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3.2.6 - Antibody Purification

Purification of serum from rabbit 90 was carried out on an affinity column coupled to the 

7(K) peptide to isolate the antibodies to hTRPC7. The serum from rabbit 90 was used in 

the purification process because o f the increased titre as a result of the final boost (Figure 

3.8).
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Figure 3.10: The results o f an ELISA carried out on samples taken at various stages of affinity purification 

of rabbit 90 serum. ‘Dilution 1/n’ indicates the ratio of dilution of sample to dilutent where n is the amount 

in parts of dilutent.

An ELISA was performed on a plate coated with peptide 7(K) to assay the affinity- 

purified serum (Figure 3.10). This showed that showed the antibody levels in the final 

bleed serum were at approximately the same as the concentrated eluate. The post column 

serum shows a reduction in the antibody levels, but these levels were not down to pre- 

immune serum levels, suggesting there were some hTRPC7 antibodies remaining in the 

serum. From this result it showed that the column may have been overloaded with serum 

and for future purifications the serum could be diluted with PBS and less applied to the 

column.
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3,2.7- Over Expression o f  pIRES-EGFP-htrpc7 in HEK293

Immunocytochemistry studies were carried out on transiently transfected HEK293 cells, 

in order to characterise the purified hTRPC7 antibody.

Immunofluorescent staining of HEK293 cells transfected with pIRES2-EGFP-/zfr7?c7 

(Figure 3.11) reveals staining pattern similar to that of the mouse serum. Positively 

transfected cells showed localisation of the protein in the PM region with a small amount 

of staining localised to intracellular organelles, possibly the Golgi apparatus (Figure 

3.11). The differential interference contrast (DIC) images (Figure 3.11 j, k and 1) show 

that not every cell is transfected and the antibody only stains the cells transfected with 

pIRES2-EGFP-/zfrpc7. The level of transfection also appeared to be important, as lower 

levels of EGFP appeared to have lower levels of hTRPC7.
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EGFP hTRPC7

EGFP hTRPC7 Merge

EGFP DIC hTRPC7 DIC DIC

Figure 3.11: HEK293 cells transfected with pIRES2-EGFP-/i/r/?c7, images a, d and g shows positive 

transfections, images b, e and h shows the same group o f cells as a, d and g respectively, stained with the 

affinity purified hTRPC7 antibody from rabbit 90 (anti-hTRPC7), c, f  and i are the merged images o f a and 

b; d and e and g and h respectively. Images j, k and I are the DIC images of g, h and i respectively. Anti- 

hTRPC7 was used at a dilution of 1:100. All size bars 10pm.
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Control immunocytochemistry was carried out using HEK293 cells transiently 

transfected with pIRES-EGFP-/2/rpc7 stained with the pre-immune serum from rabbit 90 

(Figure 3.12). The staining pattern as observed in Figure 3.11 did not occur and only low- 

level background staining was apparent (Figure 3.12 a, b and c). Also, similarly 

transfected cells were stained with anti-hTRPC7 (1:100) which had previously been pre

incubated with the peptide 7(K) for 3 hours at room temperature. Again, only background 

staining was observed (Figure 3.12 d, e and f).

EGFP Peptide control Merge

Figure 3.12: control images of two groups o f HEK293 cells transfected with pIRES2-EGFP-/rfr/?c7, a and 

d shows positively transfected cells, b shows the same group o f cells as a stained with pre-immune serum 

(1:100) from rabbit 90 and e shows the same cells as d stained using anti-hTRPC7 pre-incubated with the 

7(K) peptide (peptide control solution), c and f  are the merged images of a and b and d and e respectively.. 

All size bars 10pm.

As a further control HEK293 cells were transiently transfected with the pIRES-EGFP 

vector only. Though the same nuclear localisation for EGFP was seen, there was no 

staining with the anti-hTRPC7 antibody (Figure 3.13a to f). Those cells that were treated 

with the pre-immune serum or peptide control solution did not show the same staining 

pattern as those transfected with htrpc7 and stained with anti-hTRPC7 (Figure 3.13e to 1).
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EGFP hTRPC7 Merge

H
EGFP DIC hTRPC7 DIC DIC

Mi
EGFP Pre-immune serum Merge

EGFP Peptide control Merge

Figure 3.13: HEK293 cells that have been positively transfected with pIRES2-EGFP (vector only), image 

a shows a group of positively transfected cells, b shows the same group of cells immunofluorescently 

stained with anti-hTRPC7 (1:100), c shows the merged image of a and b. Images d, e and f  show the DIC 

images o f a, b and c respectively. Images g and j show the positive transfections, h shows the same group 

of cells as g stained with the pre-immune serum (1:100) from rabbit 90 and k shows the peptide control 

staining o f cells in image j. i and 1 are the merged images o f  g and h and j and k respectively. All size bars 

10pm.
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In the control staining o f non-transfected HEK293 cells, there was no indication of  

hTRPC7 expression (Figure 3.14a to d), confirming that HEK293 cells do not express 

hTRPC7 (Riccio et al, 2002).

EGFP hTRPC7 Merge DIC■
Figure 3.14: Non-transfected HEK293 cells, image a shows no presence of EGFP confirming no 

transfection has taken place, b shows immunofluorescent staining by anti-hTRPC7 (1:100), c shows the 

merged image of a and b. d shows a DIC image confirming the presence of cells. All size bars 10pm.
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3.2.8  -  Over Expression o f FLAG-tagged htrpc7 in HEK293

A FL AG-tagged htrpc7 construct (See Appendix Section A l) was used as a further 

control in addition to pIRES2-EGFP-/z/rpc7 transfections to see if the same pattern of 

staining could be observed.

FLAG hTRPC7 Merge

FLAG Pre-immune serum Merge

FLAG Peptide control Merge

Figure 3.15: HEK293 cells transfected with pFLAG-htrpc7, images a, d and g show immunostaining by 

anti-FLAG (1:500) giving an indication o f a positive transfection, b shows the same cell as a 

immunostained by anti-hTRPC7 (1:100), e shows the same cells as d stained with the pre-immune serum 

(1:100) from rabbit 90 and h shows the peptide control staining, c, f  and h are the merged images o f a and 

b, d and e and g and h respectively. Secondary antibody for anti-FLAG was anti-mouse FITC. All size bars 

10pm.

HEK293 transfected with a FLAG tagged htrpc7 showed almost complete co-localisation 

between the FLAG antibody and anti-hTRPC7 and a similar PM region pattern of
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staining to the pIRES2-EGFP-/zfry>c7 transfected HEK293 cells (Figure 3.15 a, b and c). 

Control staining of the HEK293 cells transiently transfected with pFLAG-htrpc7 showed 

the localisation of hTRPC7 was still evident through the anti-FLAG staining and the pre- 

immune serum from rabbit 90 gave no staining. Also, similarly transfected cells that were 

treated with the peptide control solution did not display any staining (Figure 3.15d to i).

3.2.9 -  Western Blots o f  Over-Expressed hTRPC7 in HEK293

Western blots of lysed HEK293 cells that had been transiently transfected with pIRES- 

EGFP-htrpc7 showed the presence of a band at approximately lOOkD when the blot was 

probed with anti-hTRPC7 (Figure 3.16a); faint background bands at approximately 60kD 

and 25kD were also observed. This lOOkD band was not present in the lanes containing 

non-transfected HEK293 lysate or vector only transfected HEK293 lysate. The blots 

probed with pre-immune serum and peptide control solution (prepared in the same way as 

the peptide control solution for immunocytochemistry) showed no lOOkD band in the 

lanes containing pIRES-EGFP-/tf/7?c7 transfected HEK293 lysate (Figure 3.16 c and d) 

and only faint background bands. The presence o f 25kD bands of lanes 2 and 3 of the 

Western blot probed with anti-GFP confirms the transfection was successful (Figure 

3.16b). This 25kD band was much less intense in the lane with vector only transfected 

HEK293 cell lysate despite that all the lanes were loaded with equal amounts of protein.
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1 2 3 1 2 3

lOOkD

25kD

1 2 3 1 2 3

lOOkD
lOOkD

Figure 3.16: Western blots showing; lane 1 non-transfected HEK293 lysate; lane 2 vector only transfected 

HEK293 lysate; lane 3 pIRES-EGFP-Zrtrpc 7 transfected HEK293 lysate. 5pg of protein was loaded into 

each lane. Blot a shows the Western blot immunoprobed with anti-hTRPC7 (1:1000), b shows the Western 

blot immunoprobed with anti-GFP (1:1000) to indicate positive transfection, c and d are control Western 

blots, c shows the Western blot immunoprobed with pre immune serum from rabbit 90 (1:1000) and d 

shows a peptide control Western blot.

107



3.2.10 - Testing Cross-Reactivity o f the Anti-hTRPC7 Antibody with Other 

Members o f the hTRPC Subfamily

Transfecting HEK293 cells with htrpcl, 3 or 6 cDNAs and staining with the anti- 

hTRPC7 antibody (Figures 3.17, 3.18 and 3.19 respectively) would reveal any cross

reaction between hTRPC7 and the other TRPCs, though the portion o f hTRPC7 used to 

design the peptide is divergent in other TRPCs, so no cross reaction should occur.

FLAG hTRPC 7 Merge

FLAG DIC hTRPC 7 DIC DIC

Figure 3.17: HEK293 cells transfected with pFLAG-htrpc 1, a shows immunostaining by anti-FLAG 

(1:500) with anti mouse FITC secondary antibody (1:100), b shows the same group of cells immunostained 

with anti-hTRPC7 (1:100), c shows the merged image of a and b. d, e and f  are the DIC images o f a, b and 

c respectively. All size bars 10pm.
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Myc hTRPC7 Merge

Myc DIC hTRPC 7 DIC DIC

Figure 3.18: HEK293 cells transfected with Myc tagged htrpc3, a shows immunostaining by anti-myc 

(1:100) with anti mouse FITC secondary antibody (1:100), on a group of cells, b shows the same group of 

cells immunostained with anti-hTRPC7 (1:100), c shows the merged image of a and b. d, e and f  are the 

corresponding DIC images. All size bars 10pm.

Myc  hTRPC 7 Merge

Myc DIC hTRPC7 DIC DIC

Figure 3.19: HEK293 cells transfected with Myc tagged htrpc6, a shows immunostaining by anti-Myc 

(1:100) with anti mouse FITC secondary antibody (1:100), on a group of cells, b shows the same group of 

cells immunostained with anti-hTRPC7 (1:100), c shows the merged image o f a and b. d, e and f  are the 

corresponding DIC images. All size bars 10pm.
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Immunofluorescent staining by anti-hTRPC7 on cells transiently transfected with either 

htrpcl, 3 or 6 cDNAs showed no specific staining by anti-hTRPC7 indicating that anti- 

hTRPC7 did not cross react with other members o f the TRPC subfamily. The images 

taken using the laser set to scan Alexa Fluor 488, were deliberately overexposed in order 

to confirm that there was no cross reaction between the TRPC sub-type and anti-hTRPC7 

antibody.
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3.3 - Discussion

A polyclonal antibody was raised in mice that displayed good specificity for the peptide 

antigen when tested by ELISA and immunocytochemistry (Figures 3.2, 3.3 and 3.4). 

Unfortunately monoclonal antibody production was unsuccessful (Figure 3.5). However, 

a rabbit polyclonal anti-hTRPC7 antibody was produced, purified and characterised in an 

over-expression system. It was shown to be specific for hTRPC7 and did not cross react 

with TRPCs 1, 3 and 6 (Figures 3.6 to 3.19).

The ELISAs carried out on peptide 7(K) coated 96 well plates showed high levels of 

hTRPC7 antibodies were produced by the two rabbits, 89 and 90 (Figures 3.6 and 3.8), 

this high titre continued in each test bleed sent and so rabbit 90 anti-hTRPC7 serum 

antibodies were purified. Purification was carried out using an affinity column coupled to 

peptide 7(K), there was no apparent loss of antibody specificity through this process, 

there was actually a gain in antibody specificity (Figure 3.10). However, not all the 

antibodies may have been retrieved from the serum. It is most likely that the column may 

have been over loaded and in future purifications could be performed with less serum 

diluted in PBS.

Characterisation of the antibodies took place using HEK293 cells transfected with the 

mammalian expression vectors pIRES-EGFP-/i/^pc7 and pFLAG-htrpc7. Control 

transfections were carried out using an empty pIRES-EGFP vector, no vector or with 

expression of other TRPC proteins. Staining by the hTRPC7 antibody on pIRES-EGFP- 

htrpc7 (Figure 3.11) and pFLAG-htrpc7 (Figure 3.15) showed the hTRPC7 to be present 

on the PM region and possibly in the Golgi apparatus. Riccio et al (2002) have previously 

FLAG tagged the N-terminus of the hTRPC7 in order to visualise the protein by use of 

anti-FLAG antibody and stably expressed the protein in HEK293. They found that 

hTRPC7 was localised to the PM region (Riccio et al., 2002), which corresponds well 

with the results in the current study. Western blots carried out on the HEK293 cells over 

expressing pIRES-EGFP-htrpc7 detected a band of approximately lOOkD (Figure 3.16), 

which is close to the predicted molecular weight for hTRPC7 (99.6kD). The band
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described was the most prominent on the blot and appeared first during development, 

other background bands developed later. This band was not present in any of the control 

lanes (non-transfected and vector only), probed with anti-hTRPC7 and was also not 

present on any of the control probed blots (pre-immune serum or the peptide control 

solution). A loading control (such as /3-tubulin) was not used and may be advantageous 

here to demonstrate equal loading. Vector only transfection of the same amount of DNA 

as pIRES-EGFP-/*fr7?c7 was often less efficient, this was observed in 

immunocytochemistry experiments also. However this does not alter the conclusion that, 

the lOOkD band seen in these experiments represented the over-expressed hTRPC7 and in 

conclusion the antibody is suitable for detecting hTRPC7 by Western blotting. 

Immunoprecipitation experiments have been carried out using the anti-hTRPC7 antibody; 

under the conditions used this was unsuccessful, and therefore the antibody may not 

suitable for immunoprecipitation experiments.

All immunocytochemistry of control transfections (Figures 3.12 to 3.14 and 3.17 to 3.19) 

were negative indicating that anti-hTRPC7 does not cross react with other TRPC proteins 

or other endogenous proteins in the HEK293 cell.

An antibody dilution of 1:100 was used for the immunocytochemistry despite the ELIS As 

displaying a high titre of antibody as the ELISA only showed the affinity of the antibody 

for the peptide it was raised against therefore it did not give any indication of affinity or 

avidity for the protein expressed in cells. Affinity is the measure of strength of the 

binding of an epitope to an antibody (Harlow and Lane; 1999). Avidity is the measure of 

overall stability of the complex between antibodies and antigens and is governed by three 

factors: affinity o f an antibody for the epitope, valency of the antibody and antigen and 

geometric arrangement of interacting components (Harlow and Lane; 1999). Varying 

dilutions of antibody were tested by immunocytochemistry (results not shown) and 1:100 

was found to give the best signal, this dilution was used for all subsequent 

immunocytochemistry with the anti-hTRPC7 antibody. For Western blotting it is 

common that a lower dilution of antibody is used to detect the protein of interest, this is 

because the protein is denatured and epitope exposed, therefore the affinity and avidity of
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the antibody for the antigen is higher and less antibody is required (Harlow and Lane; 

1999). It is for this reason that a 1:1000 dilution of the anti-hTRPC7 antibody was used 

on Western blots. However, background bands were apparent on the Western blots 

probed with the anti-hTRPC7 antibody, although cross-reactions by the secondary 

antibody can occur, giving background bands, it is common to have other bands present 

as well as the band of interest when using a polyclonal antibody. Polyclonal antibodies 

are a mixed population of antibodies raised to many different sites on the epitope (in this 

case the peptide) this mixed population of antibodies may recognise other antigens in the 

sample (to varying affinity and avidity) giving other bands of different molecular weights 

(Harlow and Lane; 1999). However, because the molecular weight of the protein of 

interest is known and interactions of the antibody with the protein of interest usually has 

the highest affinity and avidity, it is fair to conclude that the anti-hTRPC7 antibody is 

specific for hTRPC7 as shown by immunocytochemistry and reflected in the results from 

Western blotting.

The results presented in this chapter show that a specific antibody to hTRPC7 has been 

raised and characterised, in an over-expression system. The anti-hTRPC7 antibody was 

then used study the over-expression of the splice variant hTRPC7A (see Chapter 4) and 

the expression of endogenous TRPC7 (see Chapters 5, 6 and 7).
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Chapter 4
Localisation and Functional 

Characterisation of hTRPC7 and Splice 
Variants in an Over Expression System



4.1 - Introduction

4.1.1 - Splice Variants ofhTRPC7

hTRPC7 has four splice variants, in addition to the full-length version, termed hTRPC7A, 

hTRPC7B, hTRPC7Yand hTRPC7C. All are described in Section 1.6.2 of Chapter 1. The 

anti-hTRPC7 antibody produced and characterised in Chapter 3 was raised to the very C- 

terminus of full-length hTRPC7 and, based on sequence analysis, it should also recognise 

three of the four splice variants; hTRPC7A, hTRPC7B and hTRPC7Y. However, it was 

not expected to recognise hTRPC7C, as this protein is a highly truncated version of the 

protein that consists of the N-terminus only. Previously this type of protein has been 

shown to disrupt or suppress the expression of the full size form of the protein, for 

example co-expression of the archetypal TRP with an N-terminal fragment of itself led to 

suppression of protein function (Xu et al., 1997b). None of the hTRPC7 splice variants 

have been investigated for their expression, localisation or functional roles.

The COS7 cell line is a kidney fibroblast cell line from the African Green Monkey; the 

original cells were derived from CV-1 simian cells transformed by an origin-defective 

mutant of SV40 (ECACC). It has been found by RT-PCR that trpc7 mRNA is 

endogenously expressed in COS7 cells (Riccio et al., 2002f) and further to this it has 

been found that the splice variant trpc7C mRNA is also expressed in COS7 cells along 

side the full-length trpc7 (A. Wolstenholme, Unpublished data).

4.1.2 -  Investigating Function

Many groups studying the functional roles of TRPC channels utilise HEK293 cells as 

they serve as an excellent heterologous expression system in which to study functional 

properties of recombinant TRP channels, due to the low endogenous activity of store 

operated CCE channels (Okada et al., 1998; Okada et al., 1999d). To investigate the 

hypothesis that TRPC proteins form putative Ca2+ entry channels, Ca2+ influx is usually 

measured using fluorescent Ca indicators or by electrophysiological measurements of
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transmembrane ion fluxes (Parekh and Penner, 1997; Putney, Jr., 2004; Zacharias et al., 

2000).

4.1.3 -  Functional Roles o f  hTRPC7

Using TG and OAG, it was concluded that mTRPC7 was a receptor-activated channel 

activated by OAG independently of the depletion of stores (Okada et al., 1999c). 

However, in contrast, using TG, Riccio et al deduced that hTRPC7 was a store-operated 

channel (Riccio et al., 2002e). Lievremont et al (2004) studied these conflicting reports in 

detail recently and they concluded that the reason for such a stark difference between the 

two previous studies was the expression levels of the protein (Lievremont et al., 2004c). 

By further experimentation they showed that transient transfections typically giving high 

expression levels of the protein and lead to the formation of a receptor activated channel, 

whereas a stable transfection with a lower expression level led to a store-operated 

channel (Lievremont et al., 2004b). A discussion of these studies is given in Section 1.6.5 

of Chapter 1.

The experiments described in this chapter will involve a comparison of the localisation 

and function of over-expressed splice variant hTRPC7A compared to that of hTRPC7 in 

HEK293 cells. Also the localisation of endogenous hTRPC7 is probed in COS7 cells 

using the anti-hTRPC7 antibody and the identification of any changes in localisation 

when hTRPC7 and hTRPC7A are over expressed also using the anti-hTRPC7 antibody.
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4.2 - Results

4.2.1 - Localisation o f h TRPC 7A

In order to compare the localisation and expression of hTRPC7 (previously shown in 

Chapter 3) and hTRPC7A in an over-expression system, p\RES-EG¥P-htrpc7A (see 

Appendix section A l) was transiently transfected into HEK293 cells and 

immunocytochemical studies using the anti-hTRPC7 antibody, characterised in Chapter 

3, were carried out. HEK293 cells positively transfected with pIRES-EGFP-/tfr/?c7T, 

reacted to the anti-hTRPC7 antibody (Figure 4.1). Non-transfected cells in the culture did 

not display staining by the antibody and only a very low-level background fluorescence 

was observed. The hTRPC7A in positively transfected cells appeared to be at the PM 

region with a small amount of perinuclear staining. The over expression o f hTRPC7A in 

HEK293 cells was similar to that o f hTRPC7 in HEK293 cells (see Chapter 3). These 

images confirmed that anti-hTRPC7 did recognise hTRPC7A.

hTRPC7A

Figure 4.1: HEK293 cells expressing pIRES-EGFP-/i/A7?c7^, image a and d show positive transfections, 

images b and e show the same cells as a and d respectively and show staining by anti-hTRPC7 (1 :100), c 

and f  are the merged images of a and b; d and e; respectively. All size bars 10pm.
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Control staining was carried out on pIRES-EGFP-/rtr/?c74 transfected HEK293 cells, by 

using pre-immune serum and peptide control solution (see Chapter 3, Section 3.2.7 for 

preparation).

HEK293 cells transiently transfected with pIRES-EGFP-/tf?7 ?c 7/4 were stained with the 

pre-immune serum (Figure 4.2a to c). The results showed that the staining pattern as 

those stained with the anti-hTRPC7 antibody did not occur, only low level background 

staining was apparent. Also, similarly transfected cells were incubated with the peptide 

control solution (Figure 4.2d to f): the results showed no specific staining confirming that 

the antibody to hTRPC7 is specific for the splice variant hTRPC7A as well as full-length 

hTRPC7.

_______ hA-rh y_______■
Figure 4.2: HEK293 cells expressing pIRES-EGFP-Ztfr/pcZ/l, images a and c show positive transfection, 

images b and d shows the same cells as a and d respectively, b is stained with pre-immune serum (1:100) 

and d is stained with peptide control solution. All size bars 10pm.
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4.2.2 - Endogenous and Over-Expression o f h TRPC7 in COS7 Cells

COS7 cells are known to endogenously express both hTRPC7 and hTRPC7C (A. 

Wolstenholme Unpublished data). Immunocytochemistry experiments were carried out to 

identify the localisation o f  endogenous hTRPC7 and to observe the effects o f  over

expressing hTRPC7 and hTRPC7A.

4.2.2.1 - Endogenous Expression o f  hTRPC7

Non-transfected COS7 cells were stained for hTRPC7 using the anti-hTRPC7 antibody to 

localise endogenous expression o f  hTRPC7.

Results showed a low-level o f  background stain (Figure 4.3a), this was not apparent in 

non-transfected cells stained with pre-immune serum (Figure 4.3b). These results suggest 

that the anti-hTRPC7 antibody could not detect the endogenous TRPC7 expressed by 

COS7 cells.

 T R P C 7

Figure 4.3: Non-transfected COS7 cells, image a shows immunofluorescent staining by anti-TRPC7 

(1:100), b shows immunofluorescent staining by pre-immune serum (1:100). All size bars 10|im.
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4.2.2.2 - Over-Expression o f h TRPC 7 in COS 7 Cells

COS7 cells were then transiently transfected with pIRES-EGFP-/z/r/?c7 to observe the 

localisation o f  over-expressed hTRPC7.

COS7 cells transiently transfected with pIRES-EGFP-/z/r/?c7 and stained with anti- 

hTRPC7 shows bright, mainly intracellular staining with very little PM staining (Figure 

4.4a to f). This was different to the localisation o f over-expressed hTRPC7 in HEK293 

cells where the staining was largely PM and only a small amount o f intracellular 

localisation. When the control staining (pre-immune serum and peptide control solution) 

was carried out on the transfected COS7 cells there was no evidence o f specific staining 

however, there was background staining in both cases (Figure 4.4g and h).

EG FP TRPC7 M erge

Pre im m une serum Peptide control

Figure 4.4: Immunofluorescent staining in COS7 cells transfected with pIRES2-EGFP-/rfrpc7. Images a and d shows 

positive transfections, images b and e are the same cells as a and d respectively and show staining by anti-hTRPC7 

(1:100). Images c and f  are the merged images o f  a and b; c and d respectively. Images g and h show merged images o f 

positively transfected COS7 cells stained with pre-immune serum (1:100) and peptide control solution respectively. 

Size bars 10pm.
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4.2.2.3 - Over-Expression o f hTRPC7A in COS7 Cells

The over-expression o f  hTRPC7A in COS7 cells was carried out to observe differences 

in localisation o f  hTRPC7A compared to over-expressed hTRPC7 in COS7 cells. COS7 

cells transiently transfected with pIRES-EGFP-/tfr/?c7/l (Figure 4.5a to f) showed a 

predominantly intracellular localisation o f hTRPC7A with very little PM expression this 

staining was absent when cells were treated with pre-immune serum or peptide control 

solution, both controls gave a high level o f background staining (Figure 4.5g and h). The 

pattern o f  staining was not dissimilar to that o f  hTRPC7 over-expressed in COS7 cells 

(Figure 4.4) however, it was different from the pattern o f  staining o f  hTRPC7A over

expressed in HEK293 cells, where there is very little intracellular staining and mainly PM 

region localisation o f  hTRPC7A (Figure 4.1).

EGFP TRPC7 M erge
a

%  *

N

Pre-im m une serum Peptide control

Figure 4.5: Immunofluorescent staining in COS7 cells transfected with pIRES2-EGFP-/i/r/>c74. Images a and d shows 

positive transfections, images b and e are the same cells as a and d respectively and show staining by anti-hTRPC7 

(1:100). Images c and f  are the merged images o f a and b; c and d respectively. Images g and h show merged images o f  

positively transfected COS7 cells stained with pre-immune serum (1:100) and peptide control solution respectively. 

Size bars 10pm.
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4.2.3 -  Functional Characterisation ofhTRPC7 and hTRPC7A

Having found no apparent difference between the intracellular localisation of over- 

expressed hTRPC7 and hTRPC7A, it was important to find if  there was any functional 

difference between the two proteins. Therefore, functional experiments were carried out 

to assess any differences between full-length hTRPC7 and hTRPC7A. These were carried 

out by a Ca2+ re-addition protocol involving either CPA (SERCA pump inhibitor (Goeger 

et al., 1988) or OAG (analogue of DAG).

4.2.3.1 - SOC Activity ofhTRPC7 and hTRPC7A

Previous experiments have indicated that mTRPC7 may be a receptor-activated channel 

(Okada et al., 1999b) and that hTRPC7 may be a store-operated channel (Riccio et al., 

2002d), or both depending on the level of expression (Lievremont et al., 2004a). Previous 

data from our laboratory has not agreed with the findings o f Riccio et al but suggested 

that hTRPC7 may be a receptor-activated like its mouse homologue (H. Aptel 

Unpublished Data). It was found that when a Ca2+ re-addition protocol was carried out in 

the presence of 10/xM CPA there was no increase in size of releasable stores in cells that 

over-expressed hTRPC7 in comparison to a vector only control, indeed there was a 

reduction in the size of releasable stores (H. Aptel Unpublished Data).

a I #
The current study involved the same experimental protocol o f Ca re-addition in the 

presence of 10^M CPA, the responses of cells with hTRPC7A over-expression will be 

compared to cells over-expressing hTRPC7 and a vector only control. Previously, higher 

concentrations of CPA (50/xM and 100/xM) have been tested in a Ca2+ re-addition 

protocol carried out on hTRPC7 over-expressing HEK293 cells, however no difference 

was observed between the three concentrations of CPA (results not shown). It was 

therefore decided to use 10/xM CPA.

The graph in Figure 4.9 represents the mean results from Ca2+ re-addition experiments on 

HEK293 cells over-expressing hTRPC7 (6 experiments; approximately 42 transfected 

cells), hTRPC7A (5 experiments; approximately 51 transfected cells) or the vector alone 

(4 experiments; approximately 20 transfected cells). Comparing all experiments shows
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that the size o f  the store release peak (first peak) in each experiment was larger or the 

approximately the same size as that o f the Ca2+ influx peak (second peak) o f  the same 

experiment. Also the store release peak in the vector alone trace was larger than the 

equivalent peaks in both hTRPC7 and hTRPC7A traces, this indicated that the Ca2+ store 

was larger in the vector only control. The trace generated by the vector only transfected
i

experiments showed a slightly larger peak o f  Ca influx in comparison to hTRPC7 and 

hTRPC7A, and in addition hTRPC7 and hTRPC7A appeared to have a slower rate o f 

Ca2+ influx than the vector only control. The opposite would be expected if hTRPC7 and 

hTRPC7A were SOCs.
Vector
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Figure 4.9: Ca2+ re-addition protocol using lOpM CPA carried out on HEK293 cells over-expressing 

hTRPC7 (n=6 experiments, approximately 42 cells) and hTRPC7A (n=5 experiments, approximately 51 

cells) with a vector only transfected control (n=4 experiments, approximately 20 cells). Error bars are SEM 

of each experiment. Some of these data were generated with the kind help of Dr A Rogers.

4.2.3.2 -  Statistical Analysis

In order to get an accurate comparison o f the function o f vector only control, hTRPC7 

and hTRPC7A when over-expressed and the Ca2+ re-addition protocol applied in the 

presence o f  1 OpM CPA, statistical analysis was carried out comparing the amount o f  Ca2+ 

influx after addition o f CPA in the presence o f  Ca2+. The amount o f  Ca2+ influx (ratio
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values) after addition o f CPA was found by calculating the area under each peak after 

time point 800 seconds (addition o f CPA) until the end of the experiment, data 

summarised in Table 4.1 and Figure 4.10.

Am ount o f Ca2+ Influx 

(340/380nm ); p

Standard  

Deviation (s)

Number o f  

Experim ents (n)

Vector (V) 41.55 0.11 4

hTRPC7 (7) 36.83 0.12 6

hTRPC7A 

(7 A)

38.01 0.13 5

Table 4.1: Summary of the amount ofC a2+ influx after addition of 10pM CPA of HEK293 cells transfected 

with vector only, pIRES-EGFP-/j/rpc7 or pIRES-EGFP-/z/r/?c7/t
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■  h7RFC7A

Figure 4.10: Bar graph summarising the data in table 4.1; showing the average amount o f Ca2+ influx 

(Ratio values) gained from stimulation by lOpM CPA. Error bars are standard deviation o f  each 

experiment.

Calculations for the t-test were carried out for pv = ft7, ftv = P7A and p7 = p7A however, 

there was no significant difference of the amount o f Ca2+ influx as a result o f 1 OpM CPA 

stimulation between hTRPC7 and hTRPC7A expressing cells however there was 

significantly more influx in the vector only controls.
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t-test for /-I7 = fa a-

1. Over all estimate of variance (s ):

s2 = [(nr l) * S72 + (n7A-l) * S7A2] / (n7 + n7A -  2 ) 

s2 = [(6-1) * 0.013 + (5-1) * 0.018] / (6  + 5 - 2 )  

s2 = 0.015

2. Standard error (SE) of the difference between the sample means:

SE(/x7 -  /*7a) = \£ 2 * (l/n7 + l/n7A)

SEO17- M?a) = >0.015 * (1/6+ 1/5)

SE(/x7 -M7a) = 0.045

3. Test statistic (ts):

ts = (m? - /x7a) / SE(/i7 -  /x7A) 

ts = (0.54 - 1.10)/0.51

ts = -26.26 

M7 =  /^7A

ts = -26.26 Comparing this value with critical values o f ‘t* (ta) for 9 degrees of freedom (3 

+ 2 -  2) at P = 0.05, ts < ta. Therefore the average amount o f Ca2+ influx induced by 

10/iM CPA between 821.7 and 890.5 seconds of experimental recording is not 

significantly different between htrpc7 and htrpc7A expressing cells.

4.2,3.3 - RACC Activity o f  hTRPC7 and HTRPC7A

Okada et al (1999) have shown that mTRPC7 is activated by DAG analogues OAG and 

DOG, concluding that mTRPC7 may be a receptor-activated channel. DAG is thought to 

directly activate the TRPC channel following stimulation of a receptor (Okada et al., 

1999e) or regulate activation of the channel via activation of PKC (Spassova et al., 2004). 

However, Riccio et al did not perform experiments on hTRPC7 with OAG, they 

concluded that, following experiments with the SERCA pump inhibitor, TG, that 

hTRPC7 is a store-operated channel (Riccio et al., 2002c). However, as previously
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discussed, Lievremont et al (2004) confirmed the findings from both groups citing 

protein expression levels as the explanation for the discrepancy.

The current study involved, for consistency sake, the Ca2+ re-addition protocol in the 

presence of 100/zM OAG however there was not expected to be a Ca2+ release peak as 

OAG was supposed to act directly upon the Ca2+ influx channel. This was applied to 

HEK293 cells expressing the vector only, hTRPC7 and hTRPC7A.

The graph in Figure 4.11 represents the mean results from Ca2+ re-addition experiments 

on HEK293 cells over-expressing hTRPC7 (3 experiments; approximately 25 transfected 

cells), hTRPC7A (3 experiments; approximately 30 transfected cells) or the vector alone 

(2 experiments; approximately 20 transfected cells). The peaks observed from all traces 

indicated activation of channels by OAG to different extents, channels in the vector only 

control are activated and allow the influx of more Ca2+ than the HEK293 cells expressing 

hTRPC7 (shown by the height of the peak), whereas cells expressing hTRPC7A are 

activated and allow more Ca2+ entry than vector and hTRPC7 transfected HEK293 cells. 

This indicated that OAG may not have activated hTRPC7 but did activate hTRPC7A, but 

statistical analysis was required to assess this observation (see Section 4.2.3.4 below). In 

addition a decrease in activity was noted in cells over-expressing hTRPC7 and hTRPC7A 

when the cells were placed in Ca free medium after the baseline recording, this 

indicated that they have constitutive activity, as previously reported in cells over

expressing mTRPC7 and hTRPC7 (Okada et al., 1999a; Riccio et al., 2002b).
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Figure 4.11: Ca2+ re-addition protocol using lOOpM OAG carried out on HEK293 cells over-expressing 

hTRPC7 (n=3 experiments) and hTRPC7A (n=2 experiment) with a vector only transfected control (n=2 

experiments). Error bars are SEM.

4.2.3.4 - Analysis

In order to compare of the function of vector only control, hTRPC7 and hTRPC7A when
2 “f  •over-expressed and the Ca re-addition protocol applied in the presence of 100pM OAG,

• •  •  • o  i

statistical analysis was carried out comparing the amount of Ca influx after addition of
 ̂I

OAG. The amount of Ca influx (ratio values) after addition of OAG in the presence of
2+

Ca was found by calculating the area under each peak after time point 700 seconds 

(addition of CPA) until the end of the experiment, data summarised in Table 4.2 and 

Figure 4.12.
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Amount o f Ca2+ Influx 

(340/380nm )

Standard

Deviation

Number o f  

Experiments

Vector (V) 86.02 0.09 2

hTR PC 7 (7) 81.61 0.08 3

hTR PC 7A

(7A)

97.58 0.2 3

Table 4.2: Summary of average Ca2+ influx values gained from the stimulation by lOOpM OAG of 

HEK293 cells transfected with vector only, pIRES-EGFP-/?/rpc7 or pIRES-EGFP-/i/r/?c74.

■  Vector 

□  hTRPC7

■  hTRPC7A

Figure 4.12: Bar graph showing the amount of Ca2+ influx (Ratio values of Ca2+ influx) between time 

points 764.1 and 861.4 seconds after stimulation by lOOpM OAG. Error bars are SEM.

Unfortunately due to limited resources it was not possible to increase the number of 

experiments for this section, therefore, because o f the small data set in each experiment it 

was not possible to carry out any statistical analysis for these experiments.
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4.3 - Discussion

4.3.1 - Localisation o f Over-Expressed hTRPC7 and hTRPC7A in 

HEK293 Cells

The splice form of hTRPC7, hTRPC7A has a small deletion of nucleotides that leads to a 

small deletion of amino acids in the N-terminal region, there is no frame-shift of 

nucleotides and the rest of the sequence remains homologous to the full-length version 

(Murphy, Unpublished data). Therefore, as the anti-hTRPC7 antibody was raised to the 

very C-terminus of hTRPC7 it was expected to detect hTRPC7A. Over-expression of 

hTRPC7A in HEK293 cells has shown very similar staining to full-length hTRPC7 when 

detected with the anti-hTRPC7 antibody (Figure 4.1). The pattern of staining was 

predominantly PM with a small area of perinuclear staining; again this may indicate 

Golgi localisation of hTRPC7A when over-expressed. Control staining by pre-immune 

serum and peptide control solution gave no specific staining pattern, only low-level 

background staining was observed (Figure 4.1). These results indicate that the anti- 

hTRPC7 antibody recognised over-expressed hTRPC7A and over-expressed hTRPC7A 

has an apparently identical subcellular localisation pattern to full-length hTRPC7 when 

over-expressed in HEK293 cells.

4.3.2 - Localisation o f Over-Expressed hTRPC7 and hTRPC7A in COS7 

Cells

COS7 cells express endogenous trpc7 and trpc7C, however when non-transfected COS7 

cells were stained using the hTRPC7 antibody (Figure 4.3) an intracellular pattern of 

mitochondrial-like staining is observed. It may be that there was no protein for the 

antibody to identify and as such targets the mitochondria (this as well as nuclear or 

nucleolar staining can be a common phenomenon where antibodies cannot find their 

specific targets). Immunofluorescent staining carried out on COS7 cells over expressing 

pIRES-EGFP-/tf?7?c7 with the antibody to hTRPC7 (Figure 4.4) showed a large amount 

of intracellular staining with relatively little PM staining in comparison to the HEK293
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cells (Chapter 3). C0S7 cells transfected with pIR E S-E G F P -A 7A (Figure 4.5) showed 

the localisation of hTRPC7A to be predominantly intracellular with very little PM region 

staining, again this is very similar to the full-length hTRPC7 expressed in COS7 cells 

(Figure 4.4), and also in contrast to HEK293 cells over-expression hTRPC7A (Chapter 

3). It is well known that COS7 cells are not efficient at processing and inserting 

membrane proteins and in this case may not be an adequate over-expression system. 

Western blots carried out on COS7 cells showed many contaminating, background bands 

especially one at lOOkD in all samples run, including non-transfected and vector only 

transfected controls (results not shown). These results indicate that the antibody was not 

able to detect endogenous TRPC7 in COS7 cells, suggesting that the protein is expressed 

at very low levels if at all despite the high level of trpcl mRNA detected by RT-PCR 

(Riccio et al., 2002a); A. Wolstenholme Unpublished data).

An explanation for the apparent lack of endogenous staining in COS7 cells and the 

apparently suppressed expression of hTRPC7 and hTRPC7A when co-transfected into 

HEK293 cells may be that the htrpc7C splice variant is an N-terminal dominant negative 

protein, and thus prevents the expression of the full length TRPC7. Dominant negative N- 

terminal fragments are a common phenomenon and has previously been observed in other 

TRP proteins. For example, it was first observed in the archetypal TRP and TRPL 

originally used as a tool to study N-terminal interactions when Xu et al co-expressed full 

length TRP or TRPL with N terminal fragments of TRP or TRPL, it was found that the 

interaction of the N-terminal fragments with the full length versions dominantly 

suppressed the function of TRP. However at the time localisation experiments were not 

carried out so it is unknown whether this interaction prohibited channel formation and 

membrane insertion (Xu et al., 1997a). It is possible that a similar disruption happens in 

COS7 cells with TRPC7 and TRPC7C and, although over expression of the full length 

hTRPC7 is not greatly affected by endogenous TRPC7C, the localisation may have been 

changed.
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4.3.3 -  Function o f  Over-Expressed hTRPC7 and hTRPC7A in HEK293 

Cells

HEK293 cells transfected with the htrpc7, htrpc7A and the vector only were subjected to 

the Ca re-addition protocol with 10/iM CPA. The data generated (Figure 4.6) indicated 

that, when stimulated with lOpM CPA in the absence of Ca2+, the stores of Ca2+ were 

released. The sizes o f these first peaks gave an indication of the sizes of the Ca2+ stores 

and demonstrated that the vector only transfected HEK293 cells have larger intracellular 

stores than hTRPC7 and hTRPC7A over-expressing cells, this has been seen previously 

in a comparison of htrpc7 and vector only transfected cells (H. Aptel Unpublished Data). 

Statistical analysis o f the Ca influx peaks have shown no significant difference between 

the cells over-expressing hTRPC7 and hTRPC7A groups, however cells expressing the 

vector alone had a significantly more Ca2+ influx. This indicated that hTRPC7 and 

hTRPC7A did not function as store-operated channels under these conditions.

The Ca re-addition protocol was also applied to HEK293 cells over-expressing 

hTRPC7 or hTRPC7A using 100/xM OAG to stimulate the influx of Ca2+. The data 

obtained (Figure 4.11) showed no Ca2+ release peak, as OAG does not stimulate the 

release of Ca2+ from the stores, instead it directly stimulates the ion channel to allow the 

influx of Ca2+. This is demonstrated by the large peaks seen when 100/iM OAG is added 

in the presence of Ca2+. Due to the small number of experiments for this test it was not 

possible to carry out statistical analysis. However, the preliminary data (Figures 4.11 and 

4.12) suggests that cells over-expressing hTRPC7A may allow more entry of Ca2+ than 

cells over-expressing hTRPC7, this may indicate that hTRPC7A at least may be a 

receptor-activated channel. However, the trace obtained from the vector only transfected 

cells appears to be anomalous as it does not mirror those given by hTRPC7 and 

hTRPC7A, the trace appears to spike very quickly when cells were administered with 

OAG in the presence o f Ca , it is therefore difficult to give an accurate interpretation of  

these results in the absence of an adequate control. The experiments could be repeated 

again as readings may be found to be significantly different between vector only and 

hTRPC7 and hTRPC7A. However, further controls need to be carried out in order to fully 

assess and back up the preliminary results presented here. Are the same amounts of
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hTRPC7 and hTRPC7A expressed? Immunocytochemistry carried out on HEK293 under 

the same conditions suggested that similar amounts of the two proteins are expressed 

however, Western blotting should be carried out to confirm this.

There were some draw backs to the system used to generate these results, Fura 2-AM, the 

Ca2+ indicator dye and EGFP, the marker for positive transfection have a very similar 

emission frequency (Figure 4.13 and 4.14) and may have led to a distortion o f results by 

EGFP interfering with the signal generated by Fura 2-AM. Due to the limitations of the
^  i

system used it was not possible to use a different Ca indicator dye or a different marker 

for positive transfection.

Excitation Emission

550 575 600

W avelength  (nm) W avelength  (nm)

Figure 4.13: Excitation and emission frequencies of GFP (Molecular Probes).
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Figure 4.14: Excitation and emission frequencies of Fura 2-AM, A refers to free Fura 2-AM, B refers to 

bound Fura 2-AM (Calbiochem).
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Another limitation may be that Ca2+ rather than Ba2+ was used to assess channel 

activation. The use of Ca2+ can lead to the wrong conclusion that a channel is store- 

operated because the cell may lack the ability of the ER to buffer Ca entering through 

the channels, due to irreversible block of SERCA produced by TG (Trebak et al., 2002a; 

Trebak et al., 2003a). This can exaggerate constitutive calcium entry occurring through 

ion channels expressed in living cells (Trebak et al., 2002b; Trebak et al., 2003b). The 

variable nature of the HEK293 cells, made obtaining reliable functional and calibration 

results difficult, therefore calibration of the functional experiments was not carried out. 

The choice of indicator dye used, Fura 2-AM meant it was not necessary to calibrate as 

the measured Ca was independent of dye concentrations, as discussed in the 

introduction to this chapter (Tepikin, 2000). However, for future experiments it may be 

beneficial to calibrate the data in order to assess how much Ca2+ is being allowed in by 

the channels.

In conclusion, it has been demonstrated that the anti-hTRPC7 antibody, characterised in 

Chapter 3 recognised both hTRPC7 and hTRPC7A. Localisation studies have shown that 

both hTRPC7 and hTRPC7A have a similar pattern of localisation when over-expressed 

in HEK293 cells; predominantly PM with a small region of peri-nuclear localisation. 

However, endogenous expression of hTRPC7 in COS7 cells was not detected using the 

anti-hTRPC7 antibody and when over-expressed, hTRPC7 had a different localisation in 

COS7 cells compared to over-expression of the protein in HEK293 cells. This poses the 

question; does hTRPC7C have a role in hTRPC7 localisation? Functional experiments 

carried out on hTRPC7 and hTRPC7A over-expressing HEK293 cells has shown that 

hTRPC7 and hTRPC7A are probably not store-operated channels.
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Chapter 5
Endogenous Expression o f TRPC7 

the Exocrine Pancreas



5.1 - Introduction

The pancreas is made up of two types of tissue, exocrine and endocrine. The endocrine 

portion of the pancreas is known as the Islets of Langerhans and makes up 2% of the total 

pancreatic mass (Berne and Levy, 1998a). The cells of the Islets of Langerhans secrete 

the hormones insulin, glucagon, somatostatin and pancreatic polypeptide (Berne and 

Levy, 1998b). Insulin and glucagon are the major hormones; insulin is secreted by the (3 

cells, which comprise 60 to 70% of the Islets, glucagon is secreted by the a  cells, which 

comprise 20 to 25% of the Islets (Berne and Levy, 1998b). Together they co-ordinate the 

flow and metabolic fate of endogenous glucose, free fatty acids, amino acids and other 

substrates to ensure the energy needs are met in the basal state and during exercise (Berne 

and Levy, 1998b). The main function of the exocrine pancreas is to produce the 

pancreatic juices that enter the digestive system at the duodenum and aid digestion 

(Beme and Levy, 1998a). Each part of the pancreas (exocrine and endocrine) is supplied 

by separate capillary networks (Beme and Levy, 1998a). The exocrine pancreas contains 

many blind-ended tubules that are surrounded by polygonal acinar cells, they are 

organised into lobules (acini) and the primary function of the acini is to secrete the 

enzyme component of the pancreatic juice (Beme and Levy, 1998a).

There are immortalised cell lines available to study the function of pancreatic cells, two 

of which were used in the present study, namely Panc-1 and Capan-1. These cell lines are 

both human pancreatic cell lines in origin and they are both adherent and epithelial in 

morphology. The Panc-1 cell line originates from a ductal carcinoma of the pancreas and 

the Capan-1 cell line is from a metastatic site of liver adenocarcinoma in the pancreas 

(ATCC, EC ACC).

Previously in our laboratory studies of human tissue probed by Northern blotting showed 

relatively high levels of hTRPC7 mRNA in the pancreas (Chen, Unpublished Data; see 

Chapter 1, Figure 1.16). In this chapter the hTRPC7 antibody (characterised in Chapter 3) 

was used to identify the expression and localisation of hTRPC7 in the two pancreatic cell
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lines described above and primary human pancreatic tissue. Further to this, the presence 

of TRPC7 in mouse pancreatic tissue was identified by use of the antibody.
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5.2 - Results

5.2.1 - HTRPC7 Expression in Panc-1 Cells

Immuno-localisation o f hTRPC7 in Panc-1 cells displayed a specific punctiform pattern 

of staining (Figure 5.1), which appeared to be localised to the periphery of the cells and 

on the protrusions extended by the cells, but with no apparent staining o f any intracellular 

organelles. No specific staining pattern was observed when using the pre-immune serum 

or peptide control solution (Figure 5.1) indicating that anti-hTRPC7 was specific for 

endogenous hTRPC7 expressed by the Panc-1 cells.

Figure 5.1: Image a shows a group of Panc-1 cells immunostained with the anti-hTRPC7 antibody (1:100), 

b shows Panc-1 cells immunostained using the pre-immune serum (1:100), and c shows a group of Panc-1 

cells stained by the peptide control solution, anti-rabbit FITC (1:100) was used as the secondaryantibody in 

all cases. All size bars are 10pm.
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Panc-1 cells were immuno-stained using the anti-hTRPC7 antibody and anti-P-tubulin 

antibodies. The anti-(3-tubulin was used as a general cell marker, it localises to the 

cytoskeletal protein tubulin, which is expressed in many cell types. In Panc-1 cells 

tubulin appears as fine intracellular filaments, some of which appear to lead to the 

cellular protrusions expressing hTRPC7 (Figure 5.2).

p-Tubulin hTRPC7 Merge

P-Tubulin____________hTRPC7__________ Merge

P-Tubulin DIC hTRPC7 DIC DIC

Figure 5.2: Image a and e show immunostaining by p-Tubulin (1:200) with anti-mouse FITC (1:100) 

secondary, b and f  show staining by anti-hTRPC7 (1:100). c and g are the merged imaged of a and b; e and 

f  respectively, d is the magnified image of the boxed area in c. h, i and j are corresponding DIC images of 

e, f  and g. All size bars 10pm.
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Panc-1 cells stained with anti-hTRPC7 were z-sectioned at 0.63 fim intervals using the 

confocal microscope, from the base of the cells to the top of the cells (Figure 5.3). The 

sections show that hTRPC7 expression is mainly restricted to the basal membrane of the 

Panc-1 cell, where the cell adheres to the extracellular matrix, in this case the glass 

coverslip.

Figure 5.3 (opposite): z-sections of Panc-1, the sections run from the basal membrane (a) to the apical 

membrane (t) the cells were stained with anti-hTRPC7 (1:100).
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Panc-1 cells were also immuno-stained for hTRPC7 and F-actin. Phalloidin, here 

conjugated to rhodamine, was used as a general marker for the cytoskeletal protein F- 

actin. Some F-actin was observed at the periphery o f the cell where it appeared to co- 

localise with hTRPC7, indicated by the arrows (Figure 5.4).

Phalloidin hTRPC7 Merge

Figure 5.4: Image a Panc-1 immunostained with Rhodamine conjugated Phalloidin (1:500), image b is the 

same cell as a stained with anti-hTRPC7 (1:100), c is the merged image o f a and b. All size bars are 10pm.
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5.2.2 - hTRPC7 Co-localises with Focal Adhesion Kinase (FAK)

The staining pattern o f hTRPC7 in Panc-1 cells (Figure 5.1, 5.3 and 5.4) was highly 

reminiscent o f staining by focal adhesion markers in other cell types. Therefore Panc-1 

cells were stained for both hTRPC7 and FAK (Figure 5.5). FAK is a focal adhesion 

molecule, involved in the formation o f focal adhesion complexes in many cell types. The 

images show complete co-localisation o f hTRPC7 and FAK.

hTRPC7

Figure 5.5: Images a and e stained with anti-focal adhesion kinase (FAK; 1:50) with anti-mouse IgG 

conjugated Alexa Fluor 568 secondary. Images b and f  stained with anti-hTRPC7 (1:100) with anti-rabbit 

IgG conjugated Alexa Fluor 546 secondary, c and g are merged images of a and b; e and f  respectively, d is 

a magnified image of the boxed area in image c. All size bars are 10pm.
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5.2.3 - hTRPC7 Expression in Capan-1 Cells

The second pancreatic cell line used in this study was Capan-1. The staining pattern 

given by anti-hTRPC7 in Capan-1 cells (Figure 5.6) was similar to that seen in Panc-1 

cells where hTRPC7 localised predominantly to protrusions on the basal PM. However, 

Capan-1 cells grow in clusters and not every cell in the cluster appeared to express 

hTRPC7. Mainly it was the cells at the periphery o f  the clusters that expressed hTRPC7 

and in these cells the protein was more prominent on the protrusions produced by the 

cells. Neither the pre-immune serum nor peptide control solution gave the specific 

staining pattern seen by the hTRPC7 antibody (Figure 5.6). This indicated that anti- 

hTRPC7 may be specific for endogenous hTRPC7 expressed by the Capan-1 cells.

hTRPC7 Pre immune serum Peptide control

Figure 5.6: Image a shows staining by the anti-hTRPC7 antibody (1:100), b, pre-immune serum (1:100) 

and c shows staining by the peptide control solution with anti-rabbit FITC (1:100) secondary antibody in all 

cases. All size bars lOpm.

The anti-p-tubulin antibody was again used as a general cell marker, and in Capan-1 cells 

tubulin appears as fine intracellular filaments, which appear to lead to the cellular 

protrusions expressing hTRPC7 (Figure 5.7).
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hTRPC7 P-Tubulin Merge
PV MM

Figure 5.7: Image a shows cells stained with anti-hTRPC7 (1:100), image b is stained with anti-P-Tubulin 

(1:200) with anti-mouse FITC (1:100) secondary. Image c is the merged image of a and b. d, e and f  are 

magnified images of the corresponding boxed areas in a, b and c. Size bars 10pm.

5.2.4 - Capan-1 Co-localisation Studies

It was not possible to carry out co-localisation studies on Capan-1 cells with anti-FAK as 

problems were encountered while culturing this cell type, in particular a high 

susceptibility to infection. However, anti-paxillin was used, paxillin is a focal adhesion 

molecule that is involved in the structure o f the multi-molecular focal adhesion 

complexes in some cell types (discussed further in Section 5.3). Staining with anti- 

Paxillin and anti-hTRPC7 in Capan-1 cells (Figure 5.8) showed that the two proteins did 

not co-localise. Paxillin was present in the cells at a different focal plane to hTRPC7, it 

appeared to be more intracellular than the apparently basal membrane localised hTRPC7.
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Figure 5.8: Image a shows a group of cells stained with anti-paxillin (1:100) with anti-mouse FITC (1:100) 

secondary, b shows the same group of cells stained with anti-hTRPC7 (1:100) and c shows the merged 

image of a and b. d, e and f  shows the same group o f cells as a, b and c, however the image was taken in a 

different focal plane, on the basal membrane of the group of cells. All size bars 10pm.
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5.2.5 - Expression o f HTRPC7 in Primary Human Pancreatic Cells

The opportunity arose to use the hTRPC7 antibody on primary human adult pancreatic 

cells that had been dissociated from the tissue and subsequently cultured. Primary human 

pancreatic cells in culture for one day (Figure 5.9) were stained for hTRPC7. 

Approximately 5% o f the mixed population of cells were stained and the staining pattern 

appeared to be predominantly o f the PM region, particularly on the feathery protrusions 

produced by the cell. The staining pattern was unlike that o f hTRPC7 in Panc-1 (Figure 

5.1) and Capan-1 cells (Figure 5.6) where the cell lines displayed bright, punctate 

staining for hTRPC7 on the basal PM, the staining o f these cell types was more 

generalised over the entire cell. The extremely bright areas o f staining were 

autofluorescing debris that, as seen by the microscope appeared yellow, however the scan 

gave them a false green colour.

Figure 5.9: Images, a, b, c and d show primary human pancreatic cells in culture for 1 day stained with 

anti-hTRPC7 (1:100) with anti-rabbit FITC (1:100) secondary, d is a magnified image of the boxed area in 

image c. All size bars 10pm.

Primary human pancreatic cells were cultured for a further seven days and showed 

similar results to the 1 day culture (Figure 5.9). The culture displayed staining for 

hTRPC7 over approximately 5% o f the population of cells, the staining pattern appeared 

to be predominantly PM region and on the protrusions extended by the cells (Figure 

5.10).
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Figure 5.10: Images a, b and c are primary human pancreatic cells in culture for 7 days stained with anti- 

hTRPC7 (1:100) with anti-rabbit FITC (1:100) secondary. All size bars 10pm.

A pre-immune serum control stain was carried out on cells in culture for seven days, no 

specific staining was observed however; the autofluorescing bodies were still present 

(Figure 5.11).

Pre immune serum

Figure 5.11: Primary human pancreatic cells in culture for 7 days, immunostained with pre-immune serum 

(1:100) with anti-rabbit FITC (1:100) secondary. Size bar 10pm.
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5.2.6 -  Western Blots

Western blotting was carried out in order to determine if the lOOkD, hTRPC7 band could 

be observed from Panc-1, Capan-1 and primary human pancreatic cell lysates to back up 

the hTRPC7 expression detected by immunofluorescence.

Western blots probed with anti-hTRPC7 (Figure 5.12a) showed an approximately lOOkD 

band present in Panc-1 membrane, Capan-1 lysate and primary human pancreas lysate. 

The bands are strong in both Panc-1 and primary human pancreas (Figure 5.12a, d and g) 

however the hTRPC7 band given by Capan-1 lysate was much fainter by comparison 

(Figure 5.12a). The lOOkD band was not present in lane 1 of the blot in figure 5.12g as 

HEK293 cells do not natively express hTRPC7, there was also no lOOkD band present 

with any of the blots probed with the pre-immune serum (Figure 5.12b, e and h) or 

peptide solution controls (Figure 5.12c, f, i).
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Figure 5.12: Western blots a, b and c lane 1 Panc-1 membrane; lane 2 Capan-1 lysate; lane 3 primary 

human pancreas lysate (lOpg o f protein was loaded in each lane). Western blots d, e and f  lane 1 primary 

human pancreas lysate; lane 2 Panc-1 membrane (10pg o f protein was loaded in each lane). Western blots 

g, h and i, lane 1 non-transfected HEK293 cells; lane 2 primary human pancreas lysate; lane 3 Panc-1 

membrane (20pg of protein was laded in each lane). Blots a, d and g have been immuno-probed with anti- 

hTRPC7 (1:1000), blots b, e and h have been immuno-probed with pre-immune serum (1:1000), blots c, f  

and i have been immuno-probed with the peptide control solution.
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5.2.7  -  Immunoprecipitation

Due to the apparent co-localisation of hTRPC7 and FAK in Panc-1 cells, an 

immunoprecipitation using the FAK antibody was carried out on Pane-1 lysates.

1 2 3 4 5 6 7

1 nfivn ——1 v O lL L /

IP = Anti-FAK

WB =  Anti-hTRPC7

b
1 2 3 4 5 6 7

125kD^—

IP = Anti-FAK mm
WB = Anti-FAK

—

Figure 5.13: Western blots o f an IP carried out on Panc-1 cells with anti-FAK. Lane 1 Panc-1 lysate; lane 2 

Panc-1 supernatant after IP with anti-FAK; lane 3 Panc-1 supernatant after negative control IP; lane 4 

Panc-1 IP with anti-FAK; lane 5 Panc-1 membrane; lane 6 molecular weight ladder; lane 7 negative control 

IP. Blot a has been probed with anti-hTRPC7 (1 :1000), blot b has been probed with anti-FAK (1:1000). (IP 

= Immunoprecipitation, WB = Western blot).

Western blots o f the IP, carried out with anti-FAK, and probed with anti-hTRPC7 

showed a lOOkD band in lane 1 (Panc-1 lysate) but no lOOkD band was observed in the 

lane containing the anti-FAK immunoprecipitate (Figure 5.13a). Probing the Western blot 

with anti-FAK showed a 125kD (FAK) band in lanes 1 and 4, however there was no band
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in lane 5 which contained Panc-1 membrane. Figure 13a and b lane 4 shows strong bands 

at lower molecular weights, these are the IgG heavy and light chains and are commonly 

observed in immunoprecipitations.

5.2.8 - Expression o f  TRPC7 in M ouse Pancreatic Tissue

There is no published data on the expression o f TRPC7 in mouse pancreatic tissue 

however, the opportunity arose to use the antibody on primary cultured embryonic mouse 

pancreatic tissue.

Preliminary results from the staining of cultured embryonic mouse primary pancreatic 

tissue (Figure 5.14) clearly showed ductal-like structures (arrows) in the tissue expressing 

TRPC7, image 5.14a shows the structure in transverse section and images 5.14b and c 

show the structures in longitudinal section. There was also no apparent staining of  

structures resembling the Islets o f Langerhans however, due to restricted amounts of 

tissue it was not possible to carry out pre-immune serum control staining or co

localisation with other proteins known to be expressed in the embryonic mouse pancreas 

such as insulin and glucagon.

Figure 5.14: Images a, b and c show mouse pancreatic tissue, cultured for 7 days stained with anti-TRPC7 

(1:100) with anti-rabbit FITC (1:100) secondary. All size bars 10pm.
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5.3 - Discussion

The current study has shown that Panc-1 and Capan-1 cell lines endogenously express 

hTRPC7 protein (Figures 5.1, 5.6 and 5.9), and that this is detected by the anti-hTRPC7 

antibody. This confirmed that the antibody could recognise not only the over-expressed 

protein but also the endogenous protein.

Three groups thus far have looked into the expression of TRPC7 by primary cells. In 

separate studies, groups lead by Diana Kunze and William Schilling carried out 

expression and localisation studies of all seven TRPC proteins using antibodies that had 

been raised to each member of the TRPC subfamily (Buniel et al., 2003; Goel et al.,

2002). Schilling’s group used the antibodies to look into associations of the TRPC 

proteins with other TRPCs and PDZ proteins. Their TRPC7 antibody was raised to an 

amino acid peptide human sequence corresponding to 843 to 857 amino acids; this part of 

the human sequence does not differ from that o f the mouse (Goel et al., 2002). They used 

over expression of TRPC7 in the insect cell line, Sf9, and endogenous expression in rat 

brain preparations to characterise their TRPC7 antibody (Goel et al., 2002). Upon 

characterisation of this antibody by Western blot only, they state that the antibody 

recognised TRPC7 by the production of a band at the correct predicted molecular mass 

and did not recognise other endogenous proteins in the Sf9 (Goel et al., 2002). Further to 

this, it did not recognise any of the other TRPC proteins over expressed in the Sf9 cells 

and from endogenous expression in rat brain preparations (Goel et al., 2002). However, 

the marked absence of control experiments in this study leave the results open to some 

debate.

In an immuno-localisation study of TRPC proteins in the rat carotid sensory pathway 

using the same antibodies as the previous study, it was found that TRPC7 was not 

expressed in any of the sensory fibres but was expressed in the petrosal neurons 

throughout the ganglia as well as ‘supportive satellite’ cells (Buniel et al., 2003). 

However, there was no co-localisation with any other TRPCs (Buniel et al., 2003). The 

staining of the cells by their TRPC7 antibody in the figures shown appears to be a low

150



level staining of all cell types under investigation, which may possibly mean there is a 

lack of specificity of the antibody. This is further confirmed by the presence of nuclear 

staining of the satellite cells, which is indicative of non-specific staining. The marked 

absence of any control experiments or other supportive data, such as Western blot or RT- 

PCR, to confirm the presence or absence of TRPC7 in these cell types also leaves these 

results open to some debate. It is possible that the antibody may be adequate for the 

detection of TRPC7 by Western blot of cells over expressing TRPC7 however on the 

evidence shown, this antibody may not have been ideal for immunocytochemistry 

studies.

A third group have carried out small interfering RNA (siRNA) studies of TRPC7 and 

other TRPCs using Western blotting techniques to identify the presence or absence of the 

protein (Wu et al., 2004). The study was largely of a functional nature as an assessment 

of SOC in HI9-7 hippocampal neurons, however the use o f a TRPC7 antibody on 

Western blots showed the presence of a TRPC7 band in those cells that had not 

undergone siRNA and no band in cells that had (Wu et al., 2004). The TRPC7 antibody 

was reportedly purchased from AbCam raised in goat (ab2658) this however, was 

removed from sale in August 2003 after it was found that the antibody was unfit for use 

due to poor characterisation results (AbCam, personal communication) specifically, it 

was withdrawn due to a very low titre by ELISA and high concentrations of the antibody 

needed on Western blots (AbCam, personal communication). Despite this the results of 

the study did appear to be valid as there was supportive data from RT-PCR, unfortunately 

there was no immunocytochemistry data to show the localisation of the protein on this 

cell type, it may be that the antibody was not suitable for immunocytochemistry.

The pattern of staining given by my anti-hTRPC7 antibody (produced in this study) in 

Panc-1 cells was bright and specific in a punctiform pattern mainly localised to the edges 

of the cells (Figure 5.1). Control staining with the pre-immune serum and peptide control 

solution, in the Panc-1 cells showed no evidence of any staining other than a low-level 

background (Figure 5.2). The staining pattern by anti-hTRPC7 was shown by z- 

sectioning to be mainly restricted to the basal membrane of the cell where the cell
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interfaced with the glass coverslip it was attached to (Figure 5.3). It was also evident that 

there was not any other intracellular structure that appeared to be labelled by anti- 

hTRPC7, this was in contrast to the staining pattern of over-expressed hTRPC7 (Chapters 

3 and 4) where hTRPC7 appeared to be localised to the Golgi as well as the PM. Where 

Panc-1 cells were stained with both anti-hTRPC7 and anti-/3-tubulin (Figure 5.1) the 

fibrillary structure of the cytoskeletal protein tubulin was evident and, while it did not co- 

localise with hTRPC7, it appeared that the tubulin fibres led to some of the punctate 

hTRPC7, particularly where the cell has extended protrusions. These cells are quite 

dynamic (like many epithelial adherent cell lines) and move across the extracellular 

matrix by PM protrusions. These protrusions have staining for hTRPC7 at their very tips. 

The staining of Panc-1 cells for hTRPC7 and F-actin (Figure 5.4) showed some co

localisation at the periphery of the cell. This may indicate that actin filaments (which are 

involved in cell shape and membrane protrusions; (Wozniak et al., 2004) may be 

involved with hTRPC7 at the protrusions of the cells. The pattern of staining by anti- 

hTRPC7 in Panc-1 cells is highly reminiscent of staining for focal adhesion proteins in 

other cell types. Therefore, dual staining with anti-hTRPC7 and anti-FAK was carried out 

which, revealed complete co-localisation of these two proteins (Figure 5.5). 

Immunoprecipitation experiments were carried out to determine whether or not the two 

proteins were physically linked. The resulting Western blots (Figure 5.12) indicated that 

this was not so with the conditions used as no detectable hTRPC7 was recovered from the 

IP of Panc-1 lysates. Interestingly, the Western blot probed with anti-FAK (Figure 5.12b) 

revealed the 125kD FAK band in Panc-1 lysate (and recovered in the IP) but not in Panc- 

1 membrane preparation. This indicates that FAK is not a membrane protein, as hTRPC7 

clearly seems to be, but is instead recruited to focal adhesion complexes formed at the 

PM and sub-PM (Wozniak et al., 2004), this process may involve hTRPC7 or the Ca2+ 

that goes through hTRPC7.

Capan-1 cells also express endogenous hTRPC7, as demonstrated by immuno-staining 

with the anti-hTRPC7 antibody. These cells exhibited a similar localisation of hTRPC7 to 

the Panc-1 cells, displaying a punctiform staining pattern localised to the PM with no 

evidence of hTRPC7 expression in any intracellular structures (Figure 5.6). However,
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only a small fraction of cells in culture actually appeared to be expressing the protein. 

Capan-1 cells grow in clusters of approximately 20 or more cells, and the hTRPC7 

appears to be largely at the periphery of these cell clusters, with no apparent expression 

of hTRPC7 in cells at the centre of the clusters. It was also evident that the level of 

expression of hTRPC7 in Capan-1 cells was lower than in Panc-1 cells, possibly because 

fewer cells express the protein. The same lOOkD band was identified on Western blot of 

Capan-1 cell lysates. However, despite equal protein loading the hTRPC7 band was much 

less intense in the Capan-1 lane (Figure 5.12a). Control experiments with pre-immune 

serum and peptide control solution, as with the Panc-1 cells, did not show the specific 

staining seen with anti-hTRPC7 and only a low-level background stain was apparent 

(Figure 5.7). It was not possible to use the FAK antibody to co-localise hTRPC7 and 

FAK in Capan-1 cells due to problems with the Capan-1 culture (described in section

5.2.4). However, an antibody to paxillin (a scaffolding protein involved in the formation 

of focal adhesion complexes) was used in a co-localisation study with anti-hTRPC7 on 

Capan-1 cells. The staining pattern of hTRPC7 and paxillin did not co-localise, there was 

very little evidence of paxillin in Capan-1 cells and where it was evident it appeared to be 

intracellular unlike the PM localisation of hTRPC7 (Figure 5.8). The same experiment 

was carried out in Panc-1 cells however there was no evidence of paxillin expression in 

Panc-1 cells (results not shown). As described below in more detail paxillin is recruited 

to focal adhesion complexes as a scaffold molecule, however it is not always a 

component of every focal adhesion complex whereas FAK is a very important general 

molecule of focal adhesions (Wozniak et al., 2004). It may be that paxillin is not a 

component of the focal adhesion complexes in Panc-1 and Capan-1 cells that hTRPC7 

appears to be associated with.

Evidence gathered in the current study indicates that hTRPC7 may be involved in focal 

adhesion complexes of some cell types. Focal adhesions are diverse and include 

scaffolding molecules, GTPases and enzymes such as kinases, phosphatases and lipases 

(Wozniak et al., 2004). Different types o f focal adhesions are defined by their subcellular 

localisation, size and composition and they can be split into four different structures; 

focal complexes, focal adhesions, fibrillar adhesions and 3-dimensional matrix adhesions
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(Wozniak et al., 2004). Focal complexes are small and situated at the periphery of 

spreading or migrating cells and are regulated by the small GTPases, Rac and Cdc42 

(Nobes and Hall, 1995). Focal adhesions are situated on the periphery and central areas of 

cells and are regulated by the activity of Rho, a GTP binding protein; focal adhesions are 

also associated with ends of stress fibres in cells cultured on 2D rigid surfaces 

(Chrzanowska-Wodnicka and Burridge, 1996; Hotchin and Hall, 1995; Ridley and Hall, 

1992). It is not clear what distinguishes focal complexes from focal adhesions however, 

the localisation results presented in this chapter appear to indicate that hTRPC7 is 

associated with focal adhesions.

Cell migration is essential for normal embryonic development, wound healing, tumour 

invasion, metastatis and the inflammatory response(Wozniak et al., 2004). Adhesive 

contacts are highly dynamic structures that undergo regulated assembly at the cell front, 

disassembly at the cell rear and translocation in both stationary and migratory cells 

(Huttenlocher et al., 1995; Katz et al., 2000; Lauffenburger and Horwitz, 1996; Smilenov 

et al., 1999; Zamir et al., 1999). Focal adhesions are clusters of integrin (a family of 

heterodimeric cell surface receptors), a compex of tyrosine kinases, phosphatases and 

scaffold or adaptor proteins (talin, a-actinin, filamin and paxillin) that links the extra 

cellular matrix (ECM) to the actin cytoskeleton (Schoenwaelder and Burridge, 1999; 

Wozniak et al., 2004). Assembly of focal adhesions occurs as the cell migrates; the 

leading edge membrane protrusion is stabilised by small adhesive foci that initially 

contain paxillin then a-actinin (Edlund et al., 2001; Laukaitis et al., 2001), the foci grow 

into focal complexes abundant in tyrosine phosphorylation and contain integrin, talin, 

paxillin, vinculin and FAK (Laukaitis et al., 2001; Zaidel-Bar et al., 2003). Zyxin and 

tensin are subsequently recruited to stabilise the protrusion and the complexes remodel 

into focal adhesion (Zaidel-Bar et al., 2003). It is believed that this is all regulated by 

small GTPases, initially by Rac and later by Rho for maturation of the focal adhesions 

(Ballestrem et al., 2001; Kiosses et al., 2001; Rottner et al., 1999). The scaffold proteins 

function as signalling scaffolds for other components of focal adhesions, they complex in 

a manner that brings together all kinases and substrates to elicit changes in cell 

morphology and behaviour (Wozniak et al., 2004). Cells are able to continuously remodel
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focal complexes into focal adhesions and vice versa to migrate. Src and FAK are 

important regulators in focal adhesion turnover, it is known that Src generally causes a 

reduction in focal adhesions and decreased cell adhesion, this suggests that tyrosine 

phosphorylation of focal components by Src causes focal adhesion turnover (Wozniak et 

al, 2004).

Ca dependent calpain appears to have a role in the regulation of focal adhesions/ 

complexes; specifically, calpain is involved in the disassembly of focal adhesion 

complexes. Calpain is a protease whose substrates include integrin, FAK, ezrin and talin. 

It has been shown that calpain inhibitors reduce cell migration rates and cell detachment 

rates during migration (Huttenlocher et a l, 1998). Furthermore, calpain cleavage of FAK 

is enhanced by Src (Carragher et al, 2003). Calpain inhibition stabilises peripheral 

adhesive complexes that contain vinculin and integrin (Huttenlocher et a l, 1998; Palecek 

et a l, 1998). Disruption of other proteins (FAK and Src) also promote formation of 

strong focal adhesions at the cell periphery (Ilic et a l, 1995; Klinghoffer et a l, 1999; 

Sieg et a l, 1999). Calpain, FAK and Src may be acting by related mechanisms to regulate 

cell migration (Bhatt et a l, 2002). It is possible that hTRPC7 may be involved in the 

disassembly of focal adhesion complexes as a means of providing Ca2+ for the Ca2+- 

dependent calpain regulated disassembly of focal adhesions.

There is very little known about the role of ion channels in the control of focal adhesions, 

or indeed the control of ion channels by focal adhesions. It is known that phosphorylation 

can alter Ca2+ channel gating properties (voltage sensitivity and Ca2+ sensitivity) and can 

therefore control the electrophysiological properties of a cell, there is recent evidence to 

suggest that ion channels are regulated by tyrosine phosphorylation, just as many of the 

focal adhesion components are (Davis et al, 2001). Tyrosine phosphorylation is a key 

signalling event occurring at focal adhesions, regulating the activation of additional 

kinases and phosphatases. FAK and Src are tyrosine kinases that bind to different 

partners to regulate focal adhesion dynamics and cell behaviour (Wozniak et a l, 2004). 

Src activation is implicated in many processes: receptor phosphotyrosine kinases, GPCRs 

and integrins and may indicate a key point of many signal transduction pathways (Davis

155



et al., 2002). Src kinase has, in a recent study, been implicated in the regulation of 

another TRPC, TRPC3. HEK293 cells stably expressing TRPC3 are usually activated by 

DAG however, when Src kinase is pharmacologically inhibited or expressed in a 

dominant negative form, TRPC3 is not activated by DAG (Vazquez et al., 2004).

Integrins may play a role in directing the localisation of ion channels for example; in 

neuroblastoma cells neurite outgrowth is initiated by hyperpolarisation subsequent to /SI 

integrin dependent adhesion on ECM (Arcangeli et al., 1993). There is also evidence that 

integrins play a functional role in ion channel regulation for example; integrin-dependent 

adhesion initiates Ca2+ influx in smooth muscle (Chan et al., 2001) and epithelial cells 

(Sjaastad et al., 1996). There have been very few studies that define the interactions 

between a focal adhesion and an ion channel, however a few studies have implicated 

SOC or non-selective cation channels to be regulated by integrins. A possible SOC in 

human umbilical vein endothelium has been implicated in adhesion dependent 

intracellular Ca2+ increases (Schwartz, 1993; Schwartz and Denninghoff, 1994) and SOC 

have been reported to be activated by focal adhesion glycoproteins of platelet PM 

(Fujimoto et al., 1991). It is possible that hTRPC7 may be a component of these 

channels, especially as it is expressed in platelets (C. Murphy, Unpublished Data).

The opportunity arose to test the hTRPC7 antibody on primary human pancreatic cells 

isolated post-mortem and cultured for up to seven days, material, which because of its 

origin was in very limited supply. The culture was a mixed population of largely exocrine 

cell types and a small proportion of endocrine cells. Staining by anti-hTRPC7 showed 

approximately 5% of the mixed population of cell types to be expressing hTRPC7. The 

staining appeared to be of PM localisation in these cells, at both day one and at day seven 

of culture (Figures 5.9 and 5.10). The pattern was unlike that seen in Panc-1 and Capan-1 

cells, in that it was not punctiform but more uniform. Control staining by pre-immune 

serum gave low level staining of all cell types in the culture (Figure 5.11). The 

morphology of these pancreatic cells would have changed a great deal in vitro compared 

to in vivo after having been dissociated from its structure and being cultured on glass 

coverslips. Therefore the staining pattern of hTRPC7 seen may not reflect the true
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expression pattern of the protein in vivo. Western blots of this tissue showed a prominent 

lOOkD band, comparable to that from the Panc-1 membrane, which was not present when 

the blots were probed with pre-immune serum or the peptide control solution (Figure 

5.12). There were no other bands present on the blots probed with anti-hTRPC7 that 

would have indicated the presence of the hTRPC7 splice variants in Panc-1, Capan-1 and 

primary human pancreas. From the limited information gained from these results it is 

impossible to say what pancreatic cell type hTRPC7 appears to be present in.

Evidence gathered so far leads to the hypothesis that hTRPC7 may be expressed in the 

exocrine portion of the pancreas, in a specific and as yet unidentified sub-set of ductal 

cells. This is due, in part, to the expression and localisation evidence shown by the human 

ductal pancreatic carcinoma cell line, Panc-1 and primary human pancreatic cells, which 

are a mixed population of largely exocrine cells from the human pancreas. To further 

confirm the expression of hTRPC7 in these cell types RNAi experiments could be carried 

out. Evidence from co-localisation studies with FAK in Panc-1 cells suggests that 

hTRPC7 may be involved in some way with focal adhesion proteins. However, the focal 

adhesion-like staining of hTRPC7 seen in Panc-1 and Capan-1 cell lines was not 

observed in the primary human pancreatic cells. Therefore, it is not possible to say that 

hTRPC7 is associated with focal adhesions in human pancreatic tissue, further 

immunocytochemistry or immunohistochemistry on the human pancreas involving co- 

staining with anti-FAK (or other focal adhesion markers) and anti-hTRPC7 should be 

carried out. The current evidence may suggest that hTRPC7 is associated with focal 

adhesions in carcinoma tissue. To find whether or not hTRPC7 plays a role in the 

regulation of focal adhesions (or vice versa) a number of experiments could be 

undertaken. Cells could be low-level transfected with EGFP tagged htrpc7, a chemotactic 

stimulus placed in the culture and time-lapse confocal microscopy carried out to observe 

cell movement and any changes in expression of hTRPC7. The ECM in the cell culture 

could be changed and immunocytochemistry carried out to observe any changes in the 

localisation of hTRPC7. RNAi could also be carried out and using the experiments 

outlined above, this could be used to observe whether the adhesion properties of the cell 

changes.
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The hTRPC7 antibody was also used on embryonic mouse pancreatic tissue (Figure

5.14). Although the antibody has been raised against the human epitope, there is only one 

amino acid difference between that and the corresponding epitope in the published 

murine sequence of TRPC7 (See Chapter 3 Figure 3.1) and therefore the antibody was 

expected to cross react with mTRPC7. Where the hTRPC7 antibody has been applied to 

non-human tissue it is called anti-TRPC7. The staining pattern of anti-TRPC7 on 

embryonic murine tissue revealed ductal like structures in the embryonic tissue (Figure

5.14), and there was no apparent staining of discrete cells within Islets of Langerhans. It 

has previously been reported that two splice forms of mTRPC4 and mTRPM2 have been 

cloned from a mouse insulinoma cDNA library (Qian et al., 2002). They have also 

identified mTRPC4 in endocrine cells and brain however, the expected currents 

(previously seen in /3-cells) could not be reproduced in stably transfected cells and they 

deduce from this that to form a functional channel mTRPC4 was probably a heteromer 

with another as yet unknown protein (Qian et al., 2002). There is no report of the 

identification of other members of the TRP superfamily in this study, however they 

believe that mTRPC4 and mTRPM2 may provide a pathway for Ca2+ in /3-cells and may 

be targets for manipulating /3-cell function (Qian et al., 2002). The current study focuses 

on the expression of hTRPC7 and mTRPC7 in the exocrine pancreas and it is yet to be 

ascertained whether or not the protein is expressed in the endocrine portion of the 

pancreas, as other TRPs appear to be. Future work could involve the use of pancreatic 

endocrine cell lines and primary tissue to identify the possible expression and localisation 

of hTRPC7 and mTRPC7 in the endocrine pancreas. The very preliminary data obtained 

from mouse pancreas may suggest that the hTRPC7 antibody does cross react with mouse 

TRPC7 due the anti-TRPC7 staining of mouse pancreatic tissue displayed a distinctly 

ductal-like structure. There is a high degree of dissimilarity between the tissue 

distributions of hTRPC7 and mTRPC7 however, there is a lack of data on the presence or 

absence of mTRPC7 in mouse pancreas. Future work could involve ascertaining the 

presence or absence of TRPC7 and any splice variants in the mouse pancreas. It is 

possible that TRPC7 may have an important and common role to play in the pancreas that 

is conserved across species.
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It is currently impossible to say what specific pancreatic cell type TRPC7 is expressed in 

and what function it has however, these results have demonstrated that the antibody to 

TRPC7 recognises the endogenous protein in human pancreas and results also suggests 

that it recognises TRPC7 in mouse pancreas. Furthermore, results suggest that hTRPC7 

may be involved in focal adhesion complexes, this may be important for the functional 

role o f hTRPC7 in the pancreas.
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Chapter 6
TRPC7 in Ventricular Cardiomyocytes 

and 3T3-L1 Adipocytes



6.1 - Introduction

6.1.1 - Cardiomyocytes

The heart is composed of cells that contract in a co-ordinated fashion: these cells are 

cardiomyocytes. Cardiomyocytes comprise approximately 80% of cardiac mass, however 

they represent only 20% of cardiac cells. Other cell types include; fibroblasts, neurons 

and endothelial cells (Jacobson and Piper, 1986). Cardiomyocytes have a particular 

significance in Ca2+ signalling since it is the generation of regular pulses of Ca2+ that 

drives each heart beat (Bers, 2002). Cardiomyocytes are insulin sensitive and have an 

abundance of the insulin receptor on their membranes. Insulin stimulation increases entry 

of glucose into the cell, but may also be involved in mitogenesis and regulation of 

enzymatic pathways, and it is thought to be cardioprotective (Nystrom and Quon, 1999). 

Glucose and lactate metabolism produces up to 30% of myocardial ATP (Abel, 2004; 

Hiraoka, 2003). Glucose is transported into the cell by a group of facilitative glucose 

transporters known as the Glucose Transporters (GLUTs) and the most abundant GLUT 

in cardiomyocytes is GLUT4 (Abel, 2004). When stimulated by insulin GLUT4 

translocates from the intracellular tubo-vesicular network to the PM to allow the entry of 

glucose (Abel, 2004). Besides glucose entry, insulin has recently been found to have 

another action on the cardiac membrane, activating a non-selective cation current in 

guinea pig ventricular myocytes (Zhang and Hancox, 2003). Zhang and Hancox also 

found that this channel was directly activated by OAG, a non-hydrolysable form of DAG, 

and it was suggested that this was a TRP like channel (Zhang and Hancox, 2003). It is 

known that, in humans, TRPCs 1, 4 and 6 are expressed in the heart to varying degrees 

and hTRPC7 appears not to be expressed (Riccio et al., 2002b); Chen Unpublished data). 

However, in mice TRPC7 is abundantly expressed in the heart (Okada et al., 1999), and it 

seemed likely that it would also be expressed in the rat heart.

6.1.2 - Adipose Tissue

Adipose tissue is the fat storage tissue and is also insulin sensitive, using GLUT4 to 

facilitate the uptake of glucose for storage as fatty acids (Watson et al., 2004). Insulin
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also blocks mobilisation and oxidation of the fatty acids (Berne and Levy, 1998). There is 

very little understood about Ca2+ signalling in adipocytes, and most research on Ca2+ 

signalling in this tissue has centred on the action of insulin and the secretion of leptin 

(Cammisotto and Bukowiecki, 2004). Leptin acts on the hypothalamus causing decreased 

food intake and increased energy expenditure and is part of a feedback loop regulating 

body fat stores (Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al., 1995). 

Ca2+ does not affect leptin synthesis or exocytosis directly, but excess Ca2+ disrupts leptin 

secretion by interfering with metabolic events that are independent of glucose uptake 

(Cammisotto and Bukowiecki, 2004). The mouse fibroblastic cell line 3T3-L1 is 

commonly used in research into adipose tissue as it has the ability to, when stimulated by 

the glucocorticoid dexamethosone, insulin and IBMX (see Chapter 2 Section 2.3.3.2), 

differentiate into adipocytes. hTRPC7 was not reported to be present in human 

adipocytes (Riccio et al., 2002a) and there are not any data concerning the expression of 

mTRPC7 in adipocytes.

The anti-hTRPC7 antibody, produced and characterised in Chapter 3, was predicted to 

cross-react with mTRPC7 due to the high sequence homology of the portion o f amino 

acid sequence the antibody was raised to (Chapter 3 Figure 3.1). Also, previous staining 

using this antibody on mouse pancreatic tissue (Chapter 5 Figure 5.14) further indicated 

that the antibody was useful for both human and mouse tissue. In the current study insulin 

sensitive tissues, namely mouse 3T3-L1 cell line and rat embryonic and adult 

cardiomyocytes, were utilised to study the expression and localisation of TRPC7.
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6.2 - Results

6.2.1 -  TRPC7 in Embryonic Cardiomyocytes

Embryonic rat cardiomyocytes were cultured for one week and immuno-stained with the 

anti-TRPC7 antibody. These cells exhibited staining for TRPC7 (Figure 6.1), which 

appeared to localise to what may be the t-tubules on embryonic cardiomyocytes (Figure 

6.1a and b, arrows). Other cell types present in the culture appeared to be predominantly 

fibroblasts (Figure 6.1c) and showed generally high-level of background fluorescence 

and nucleolar staining. There were also many cells in the culture that had similar 

morphology to the cell in Figure 6.Id, these cells had many projections, a ‘spotty* pattern 

of staining and they also had nucleolar staining. Cultured cardiomyocytes can take on 

three general morphologies; the rod shape of healthy cardiomyocytes, the rounded shape 

of ischaemic cardiomyocytes (ischaemia can lead to cell death) and the de-differentiated 

cardiomyocyte that form many pseudopodia (Thum and Borlak, 2000). De-differentiation 

is a common occurrence in cultures of cardiomyocytes and is thought to be irreversible 

(Thum and Borlak, 2000). It is possible from the morphology of the cell observed in 

Figure 6.Id that this cell may be de-differentiating cardiomyocytes.
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Figure 6.1: Images a to d show a mixed population of cell types from the same culture of embryonic rat 

cardiomyocytes that have been cultured for one week, stained using anti-TRPC7 (1:100). All size bars 

10pm.

The glucose transporter GLUT4 was used as a general cardiomyocyte marker as it is 

present in embryonic and adult cardiomyocytes although embryonic cardiomyocytes are 

not responsive to the actions o f insulin. Cells were co-stained with anti-TRPC7 and anti- 

GLUT4 in order to more readily identify cardiomyocytes and to ascertain that it was just 

the cardiomyocytes in culture that had the specific staining. Embryonic cardiomyocytes 

in culture for three days (Figure 6.2) showed similar staining to that observed in the 

embryonic cardiomyocytes in culture for one week (Figure 6.1). The t-tubule like pattern 

of TRPC7 did not co-localise with GLUT4, which showed a predominantly peri-nuclear 

localisation with a small amount of PM staining (Figure 6.2a to c). Control staining by 

pre-immune serum gave only low-level background fluorescence with no specificity on 

cultured embryonic cardiomyocytes (Figure 6.2d to f).

163



Pre-immune serum______ GLUT4___________ Merge

Figure 6.2: Embryonic cardiomyocytes cultured for three days. Image a shows a single embryonic 

cardiomyocyte stained using anti-TRPC7 (1:100). b shows the same cells as a, stained using anti-GLUT4 

(1:200) with anti-mouse F1TC secondary (1:100). c is the merged image of a and b. Image d was stained 

using pre-immune serum (1:100). e has been stained using anti-GLUT4 (1:200) with anti-mouse FITC 

secondary (1:100). Image f  is the merged image of d and e. All size bars 10pm.
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6.2.2 - TRPC7 in Adult Ventricular Cardiomyocytes
After having identified TRPC7 in a primary culture of embryonic rat cardiomyocytes 

adult rat cardiomyocytes were also investigated for the expression of TRPC7. 

Cardiomyocytes were immunofluorescently stained immediately after isolation and not 

cultured in order to obtain a more true representation of TRPC7 localisation in vivo. 

GLUT4 was once again used as a cellular marker. Freshly isolated adult rat 

cardiomyocytes showed strong staining for TRPC7 with very little background 

fluorescence apparent (Figure 6.3). The staining pattern appeared to be of PM region, 

most likely localised to the t-tubules. GLUT4 showed a degree of co-localisation with 

TRPC7; in the non-insulin stimulated states such as this, GLUT4 usually localises around 

the nucleus of the cell and has little PM localisation (Abel, 2004). Control staining of the 

adult cardiomyocyte by the pre-immune serum gave no specific staining and a low-level 

of background fluorescence (Figure 6.3e).

165



GLUT4 TRPC7

Pre-immune serum

e

Figure 6.3: Image a shows staining by anti-GLUT4 (1 :200) with anti-mouse conjugated Alexa Fluor 568 

(1:300) secondary, b shows staining by anti-TRPC7 (1:100) with anti-rabbit conjugated Alexa Fluor 546 

(1:300) secondary, c is the merged image of a and b. Image d shows a magnified view of the boxed area of 

image c. Image e shows cardiomyocytes stained using pre-immune serum (1:100). All size bars 10pm.

Adult rat cardiomyocytes stained with the anti-TRPC7 antibody were z-sectioned at 

1.0pm intervals using the confocal microscope, these cells were not attached to a 

coverslip and therefore the z-section was taken in longitudinal sections from one side o f 

the cell to the other. Sectioning indicated that the staining o f TRPC7 was PM region, 

most likely in the t-tubules, there was not any intracellular localisation o f TRPC7 (Figure

6.4).

Figure 6.4 (Opposite): Z-sections o f an adult cardiomyocyte, stained using anti-TRPC7 (1:100). All size 

bars 10pm.
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6.2.3 - TRPC7 in Insulin Stimulated Adult Cardiomyocytes

Heart cells are responsive to stimulation by insulin, and as previously discussed GLUT4 

translocates to the PM upon stimulation by insulin and facilitates entry of glucose. Adult 

rat cardiomyocytes were stimulated using two concentrations o f insulin to observe any 

differences in localisation o f TRPC7 in these conditions compared to the basal conditions 

(Figures 6.3 and 6.4) and to possibly infer a function for TRPC7 in the heart. The insulin 

stimulation o f adult cardiomyocytes (Figure 6.5) did not appear to change the localisation 

o f TRPC7 at either concentration of insulin. The localisation was still restricted to PM/ t- 

tubular regions. Both concentrations however, did change the localisation o f GLUT4; 

from peri-nuclear to PM localisation, this change in localisation o f GLUT4 indicated that 

the cells were appropriately stimulated by insulin. Stimulation by insulin led to a greater 

co-localisation o f the two proteins than in the non-insulin stimulated state.

Figure 6.5: The top row of images show a cardiomyocytes that have been stimulated with 30nM insulin 

and the bottom row of images show cardiomyocytes that have been stimulated with 60nM insulin. Images a 

and e stained using anti-GLUT4 (1:200) with anti-mouse conjugated Alexa Fluor 568 (1:300) secondary. 

Images b and f  stained using anti-TRPC7 (1:100) with anti-rabbit conjugated Alexa Fluor 546 (1:300) 

secondary. Images c and g are the merged images of a and b and e and f  respectively. Images d and h are 

magnified views o f the boxed areas in images c and g. All size bars 10pm.

GLUT4 TRPC7
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6.2.4 - TRPC7 Co-localisation Studies

Non-stimulated adult rat cardiomyocytes were stained for both TRPC7 and F-actin using 

the anti-TRPC7 antibody and rhodamine conjugated Phalloidin. This was carried out to 

observe if there was any co-localisation between the two, inferring a link between TRPC7 

and the actin cytoskeleton. The staining o f non-insulin stimulated adult cardiomyocytes 

for TRPC7 and F-actin, gave no co-localisation of the two structures, F-actin showed 

localisation to intracellular regions and TRPC7 again displayed PM/ t-tubule region 

staining (Figure 6.6).

Phalloidin_______________TRPC7_________________ Mergem%jjl
Figure 6.6: Image a shows cardiomyocytes stained for F-actin, using Rhodamine conjugated Phalloidin 

(1:500). Image b shows the same cell as a, stained using anti-TRPC7 (1:100) with anti-rabbit FITC (1:100) 

secondary antibody, c is the merged images of a and b. All size bars lOfim.

TRPC7 appeared to be expressed on t-tubules; focal adhesion complexes are also known 

to be present in the t-tubular structure o f cardiomyocytes, acting as part o f a scaffold for 

this structure (with membrane associated proteins and basal lamina proteins) which is 

usually under constant stresses from excitation-contraction coupling (Brette and Orchard,

2003). The component o f focal adhesions, FAK, has been shown previously to co- 

localise with hTRPC7 in the human pancreatic cell line, Panc-1 (Chapter 5 Figure 5.5). 

Adult rat cardiomyocytes were therefore stained for TRPC7 and FAK. The staining of 

non-stimulated adult cardiomyocytes for TRPC7 and FAK (Figure 6.7) showed total co

localisation o f the two proteins. Co-localisation between TRPC7 and FAK has been 

observed previously in Panc-1 cells (see Chapter 5, Section 5.2.2), but due to limitations 

on resources it was not possible to carry out an immunoprecipitation experiment on 

cardiomyocytes for these two proteins.
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Figure 6.7: Images a and e show cardiomyocytes stained using anti-FAK (1:50) with anti-mouse 

conjugated Alexa Fluor 568 (1:300) secondary antibody. Images b and f  are the same cardiomyocytes as a 

and e respectively and are stained using anti-TRPC7 (1:100) with anti-rabbit conjugated Alexa Fluor 546 

(1:300) secondary antibody, c and g are the merged images of; a and b; e and f; respectively. Image d is a 

magnified view of image c. All size bars 10pm.
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6.2.5 -  Western Blotting

Western blots of adult and embryonic rat cardiomyocyte lysates were carried out, using 

Panc-1 cell membranes as a positive control. Western blotting was carried out in order to 

determine if  the lOOkD TRPC7 band could be observed in adult and embryonic 

cardiomyocyte lysates as this would reinforce the hTRPC7 expression detected by 

immunofluorescence.

Western blotting of adult and embryonic rat cardiomyocyte lysates using Panc-1 

membrane as a positive control (Figure 6.8) showed that, when probed with anti-TRPC7 

a similar band of approximately lOOkD as produced by Panc-1 was present in the adult 

and embryonic cardiomyocytes. This band was not present when blots were probed with 

the pre-immune serum or peptide control solution.
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Figure 6.8: Western blot of a adult cardiomyocytes in lane 1, cultured embryonic cardiomyocytes in lane 2 

and Panc-1 membrane in lane 3 (1 Op.g of protein was loaded into each lane). Blots b, c and d show cultured 

embryonic cardiomyocytes in lane 1 and adult cardiomyocytes in lane 2 (lOpg of protein was loaded into 

each lane). Blots a and b were probed with anti-TRPC7 (1:1000), blot c with pre-immune serum (1:1000) 

and blot d with the peptide control solution.
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6,2.6 - TRPC7 in 3T3-L1 Adipocytes

3T3-L1 cells are a mouse fibroblastic cell line that is often used as a model for 

differentiation, as they can be stimulated to differentiate into 3T3-L1 adipocytes. Having 

observed a difference in expression levels of TRPC7 from the non-insulin responsive 

embryonic cardiomyocytes (low expression) to insulin sensitive adult cardiomyocytes 

(high expression) and a difference in localisation of TRPC7 in what were thought to be 

de-differentiating embryonic rat cardiomyocytes, 3T3-L1 cells were studied for the 

expression and localisation of TRPC7 at specific time points before, during and after 

differentiation. GLUT4 has been used in this case as a general cell marker, but not as a 

marker for differentiation.

Staining for TRPC7 in 3T3-L1 fibroblasts differentiating into adipocytes (Figure 6.9) 

showed the development of TRPC7 reactivity as the differentiation process occurs. At 

day 0 there was no indication of TRPC7 expression, however as the cells differentiated 

into adipocytes they began to express TRPC7. By day 12 of differentiation the 3T3-L1 

cells were fully differentiated and staining for TRPC7 showed an intracellular, possibly 

Golgi apparatus localisation of the protein. GLUT4 expression also increased with 

differentiation into adipocytes, however the protein did not co-localise with TRPC7 and 

was diffusely localised throughout intracellular regions. In all cells observed, staining by 

the anti-TRPC7 antibody appeared to give quite a high level of background fluorescence.
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Figure 6.9: 3T3-L1 fibroblast differentiation in to adipocytes. The top row o f images show 3T3-L1 fibroblasts at day 0 

o f the differentiation process. The second row o f  images shows 3T3-LI cells at day 5 in the differentiation process and 

the third row o f images shows 3T3-L1 cells at day 8 in the differentiation process and the fourth and fifth rows o f  

images show 3T3-L1 cells at the final day o f differentiation. Images a, d, g and j show staining by anti-TRPC7 (1:100). 

Images b, e, h and k show the same groups o f cells stained using anti-GLUT4 (1:200) with anti-mouse FITC (1:100) 

secondary antibody. Images c, f, i and I are merged images of; a and b; d and e; g and h, j and k respectively. Image m 

is a magnified view o f  the boxed area in image j. All size bars 10pm.
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No specific staining was observed when using pre-immune serum at each time point of 

the differentiation process, only a low-level background fluorescence (Figure 6.10a to 1). 

There was also no specific staining given by the peptide control solution on fully 

differentiated 3T3-L1 cells (Figure 6.10m to o).
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Figure 6.10: The top row o f images show 3T3-L1 fibroblasts at day 0 o f the differentiation process. The second row 

o f  images shows 3T3-L1 cells at day 5 in the differentiation process, the third row o f images shows 3T3-L1 cells at day 

8 in the differentiation process and the fourth and fifth rows o f images show 3T3-L1 cells at the final day o f the 

differentiation process. Images a, d, g and j show staining by pre-immune serum (1:100). Image m shows staining by 

the peptide control solution. Images b, e, h, k and n show the same group o f cells stained using anti-GLUT4 ( 1:200) 

with anti-mouse FITC (1:100) secondary antibody. Images c, f, i, 1 and o are the merged images of; a and b; d and e; g 

and h; j and k; and m and n respectively. All size bars 10pm.
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6.2.7 - Co-localisation o f TRPC7 with a Golgi Apparatus Protein

Due to the results shown in Figure 6.9 showing an intracellular localisation of TRPC7, 

co-localisation studies with anti-TRPC7 and a Golgi apparatus marker, anti-58K 

antibodies, were carried out on undifferentiated and differentiated 3T3-L1 cells. Staining 

for TRPC7 and the Golgi apparatus (by 58K Golgi marker) o f fully differentiated 3T3-L1 

adipocytes (Figure 6.11) showed complete co-localisation between TRPC7 and the Golgi 

apparatus.

58K TRPC7 Merge

Day 0

Day 12

Day 12

Figure 6.11: The top row o f images show 3T3-L1 fibroblasts at day 0 o f the differentiation process. The second and 

third rows o f images shows 3T3-L1 adipocytes on the final day o f  differentiation. Images a, d and g show staining by 

anti-58K (1:50), a Golgi marker, with anti-mouse conjugated Alexa Fluor 568 (1:300) secondary antibody. Images b, e 

and h show the same group o f cells to a, d and g respectively and are stained using anti-TRPC7 (1:100) with anti-rabbit 

conjugated Alexa Fluor 546 (1:300) secondary antibody. Images c, f  and i are merged images of; a and b; d and e; and 

g and h respectively. All size bars 10pm.
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6.2.8- Western Blotting

Western blots were carried out on 3T3-L1 cell lysates prepared at the various time points 

of the differentiation process. Panc-1 cell membranes were used as a positive control. 

Western blotting of 3T3-L1 cells at the different stages of differentiation (Figure 6.12) 

showed an increased expression of an approximately lOOkD TRPC7 band from day five 

to the end of differentiation, comparable to that given by Panc-1 membrane, when probed 

with anti-TRPC7 antibody (Figure 6.12a, d and e). However, the TRPC7 band obtained 

from the 3T3-L1 lysate appeared to have a slower migration in comparison to the Panc-1 

membrane. Controls blots probed with pre-immune serum and peptide control solution 

showed no presence of the band (Figure 6.12b and c). All blots showed the presence of 

many background bands, this is reflected in the immunocytochemistry (Figure 6.9) those 

bands heavier than TRPC7 in the differentiating 3T3-L1 cells also appear to increase in 

expression as the differentiation time course continues.
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Figure 6.12: Western blots, a, b, c and d show; 3T3-L1 lysates at time points of differentiation; in lane 1, 
day 0; lane 2, day 5; lane 3, day 8; lane 4, day 12; lane 5, day 12; lane 6, Panc-1 membrane. Blot e shows 
3T3-L1 lysates at time points of differentiation in lane 1 day 0; lane 2 day 5; lane 3 day 8; lane 4 day 12; 
lane 5 Panc-1 membrane. Blots a, d and e were probed with anti-TRPC7 (1:1000). Blot b was probed with 

pre-immune serum (1:1000) and blot c was probed with the peptide control solution. In all cases lOpg of 

protein was loaded into each lane. The lOOkD band thought to represent TRPC7 is indicated with an arrow.
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6.3 - Discussion

The results in this chapter show that embryonic and adult rat cardiomyocytes express 

endogenous TRPC7 that can be detected by the anti-TRPC7 antibody. Embryonic 

cardiomyocytes cultured for up to one week showed staining for TRPC7 on a small 

percentage of two cell types within the culture. One cell type appeared to be a typical rod 

shaped structure characteristic of the ventricular myocyte; these cells accounted for less 

than 5% of the culture and usually occurred in small clusters of cells. TRPC7 expression 

in these cells appeared to be striated in a transverse manner across the cell (Figures 6.1a, 

b, 6.2a to f). There did not seem to be any co-localisation between TRPC7 and the 

glucose transporter protein, GLUT4 (Figure 6.2) however, GLUT4 is not highly 

expressed in embryonic cardiomyocytes, instead the levels increase post-natally (Abel, 

2004). Control experiments using the pre-immune serum did not give any specific 

staining and appeared to be a low-level background stain (Figure 6.2g to i). Other cell 

types in the culture, the majority of which were probably fibroblasts, showed a low-level 

background stain; also the nucleoli were often stained in these cell types (Figure 6.1c). 

The second cell type that displayed expression of TRPC7 were cells that had many 

‘spiky’ membrane protrusions, these cells had punctate staining for TRPC7 on the cell 

body and all the protrusions were also stained; in addition these cells gave nucleolar 

staining (Figure 6.Id). These cell types may have possibly been de-differentiating 

cardiomyocytes, a process which begins with the loss of the typical rod shape 

morphology, changes in the cytoskeleton such as changes in expression of myosin 

subtypes leads to the formation of pseudopodial extensions (Thum and Borlak, 2000). 

Healthy, well cultured cardiomyocytes should not contract however, de-differentiating 

cardiomyocytes display a change in electrical conductivity and a significant increase of 

beats per minute (Thum and Borlak, 2000). It is known that embryonic ventricular 

cardiomyocytes as well as adult atrial cardiomyocytes lack the sophisticated t-tubular 

system that is characterised by the transverse striations across the cells (Brette and 

Orchard, 2003). This may explain why the embryonic cardiomyocyte culture had very 

few cells that displayed the specific pattern of apparently t-tubular staining using the anti- 

TRPC7 antibody.

180



Adult rat ventricular myocytes, fixed and stained shortly after isolation, also displayed 

strong staining for TRPC7 (Figure 6.3a to d), and the expression was confirmed to be in 

the PM region by z-sectioning the cells (Figure 6.4). The pattern of staining was similar 

to that of some of the embryonic cardiomyocytes, TRPC7 was in a pattern of transverse 

striations across the cell membrane and appeared to be localised to the t-tubules. Control 

staining by the pre-immune serum did not give any staining specificity, only a low-level 

background stain was apparent (Figure 6.3e).

Atrial and ventricular cells have differing morphologies. Ventricular cells have a t-tubular 

system that is well established and highly important for function but atrial cells have a 

sparse t-tubular system (Brette and Orchard, 2003). T-tubules are invaginations of the 

surface membrane (sarcolemma) of the cardiomyocyte, as the name suggests they occur 

in a transverse nature over the sarcolemma however, they also have a longitudinal 

element (Brette and Orchard, 2003). T-tubules develop after birth; there is very little 

evidence of ventricular t-tubule development in neonatal hearts (Brette and Orchard, 

2003). The t-tubule system maintains a remarkable degree of structure considering the 

forces exerted on it during the contraction cycle, this is largely due to a number of 

‘scaffold’ proteins of focal adhesion molecules, membrane associated proteins and basal 

lamina proteins (Kostin et al., 1998). Previous results from studies in the pancreas in the 

current investigation (Chapter 5) hTRPC7, has already been shown to be closely localised 

to focal adhesions. The localisation to the t-tubules of TRPC7 in rat ventricular myocytes 

may also reflect an association with focal adhesions.

Western blots carried out on adult and embryonic rat cardiomyocyte lysates (Figure 6.8) 

both yielded a band of lOOkD comparable to that o f Panc-1 membrane when probed with 

anti-TRPC7, confirming the presence of TRPC7. The band was not present when blots 

were probed with pre-immune serum or peptide control solution. It is clear from the 

results gained in this study that the full-length version of TRPC7 is expressed, because of 

the lOOkD band obtained from the Western and also from this it indicated that there may 

not be any expression of the splice variants TRPC7A or B.
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Co-staining the adult rat ventricular myocytes for TRPC7 and GLUT4 in a non-insulin 

stimulated state showed little co-localisation of the two proteins (Figure 6.3). GLUT4 

was concentrated in a peri-nuclear region of the cells with very little at the periphery of 

the cell (Figure 6.3a to d). Stimulation of the cells with insulin at two different 

concentrations caused the translocation of more GLUT4 to the PM, as expected (Figure 

6.5). There was very little difference in the localisation of GLUT4 when stimulated with 

the more physiological level of insulin (30nM) or the higher concentration (60nM). As 

previously discussed, the TRPs have been implicated in non-selective cation currents in 

guinea pig ventricular myocytes, activated in response to insulin (Zhang and Hancox, 

2003). From these results it is not possible to offer any correlation between the channels 

in guinea pig ventricular myocytes and the localisation of TRPC7 in rat ventricular 

myocytes. Further functional studies are needed (either by patch-clamp or fluorescent 

indicator dyes) to confirm that in the rat cardiomyocytes a non-selective cation current is 

generated by insulin stimulation. To further assess the role o f TRPC7 in such currents, 

specific, as yet unknown channel blockers would be required or RNAi carried out on 

TRPC7 in cardiomyocytes however they have been shown to be a difficult cell type to 

transfect into. Transfections into cardiomyocytes have been successfully carried out with 

use of the Lenti virus, however the longer the incubation with the virus for transfection 

the more the insulin receptors on the cell decrease in their responsiveness to insulin 

(Blesch, 2004).

As a control, co-staining for TRPC7 and F-actin was carried out on the adult rat 

cardiomyocytes; F-actin is a cytoskeletal protein and results from this study show it was 

localised intracellularly and did not show any co-localisation with TRPC7 (Figure 6.6). 

Co-staining for TRPC7 and FAK revealed total co-localisation between the two proteins 

on the PM (Figure 6.7). Co-localisation of TRPC7 and FAK has been observed 

previously in Panc-1 cells (See Chapter 5 Section 5.2.2), but the immunoprecipitation 

result gained from Panc-1 cells (see Chapter 5, section 5.2.7) did not show any physical 

link between FAK and TRPC7 and therefore, a similar result might be expected in this 

case. Co-localisation of TRPC7 and FAK in ventricular myocytes lends weight to the
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hypothesis that TRPC7 is expressed in the t-tubules of cardiomyocytes. T-tubules are 

highly structured invaginations of the surface membrane of cardiomyocytes, and they are 

known to be supported by a scaffold of focal adhesion molecules, membrane associated 

proteins and basal lamina proteins (Brette and Orchard, 2003; Kostin et al., 1998). The 

structure and function of focal adhesions is described fully in Section 5.3 of Chapter 5. 

Cardiomyocytes have focal adhesions not only at their distal ends for cell-cell adhesion 

but they also form cytoskeletal-sarcolemmal attachments in register with the t-tubules, 

known as costameres, that help to support the t-tubules (Sharp et al., 1997). A study of 3 

to 4 day old rat pup cultured cardiomyocytes revealed staining by anti-jSi-integrin and 

anti-vinculin (Sharp et al., 1997) to be very similar to the staining gained in this study 

using anti-TRPC7 and anti-FAK. Results in the current study suggest that TRPC7 may be 

involved in some way with the focal adhesion proteins associated with the t-tubular 

structure of cardiomyocytes. Associations of Ca2+ channels and focal adhesions have 

been discussed in Chapter 5, however at this point it is unclear whether the role of 

TRPC7 is the same in human pancreas and rat heart. It is possible that TRPC7 in the rat 

heart may regulate the disassembly of focal adhesions via activation of Ca2+-dependent 

calpain as it is known that calpain inhibition stabilises focal adhesion complexes that 

contain vinculin and integrin, two proteins which are integral components o f the focal 

adhesion complex in cardiomyocytes (Huttenlocher et al., 1998; Palecek et al., 1998; 

Sharp et al., 1997). Alternatively, as previously suggested, the focal adhesions may 

regulate the localisation and activation of Ca channels, for example, TRPC7 (Davis et 

al, 2001).

The TRPCs have often been implicated in signalling pathways that involve InsP3, 

however the role of InsP3 and InsPsRs in cardiomyocytes is controversial and not fully 

understood. It is known that both atrial and ventricular myocytes express type II InsPsRs 

and high concentrations of InsP3 can cause Ca2+ release (Bers, 2002) and the InsPsRs co- 

localise with junctional RyRs (Lipp et a l, 2000). The Ca2+ signalling pathway involving 

InsP3 in cardiomyocytes is the same as described in Chapter 1 Section 1.2.4 and many 

hormones activate it (eg adrenaline/ noradrenaline) (Bers, 2002). Many believe that InsP3 

has little, if any role in cardiac excitation-contraction coupling, but may be involved in
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other discrete spatial and functional roles such as transcription regulation pathways (Bers,

2002). However, evidence from Mackenzie et al and Lipp et al suggests that InsP3 may 

play a modulatory role in cardiac excitation-contraction coupling, the close proximity of 

RyRs and InsPsRs it is thought that the activation of InsPaR and subsequent release of 

Ca2+ activates RyRs and enhances excitation-contraction coupling (Lipp et al., 2000; 

Mackenzie et al., 2002). TRPC7 may have some role to play in this enhancement of 

excitation-contraction coupling either in a capacity as a SOC to replenish SR levels of 

Ca2+ or as a RACC to further increase levels of Ca2+ for excitation-contraction coupling.

To further confirm the expression of TRPC7 in cardiomyocytes RNAi experiments could 

be carried out and to find whether or not TRPC7 plays a role in the regulation of focal 

adhesions (or vice versa) in cardiomyocytes RNAi of the various focal adhesion proteins 

could be carried out to observe possible changes in localisation or expression of TRPC7. 

However, primary rat cardiomyocytes are difficult cells to transfect into and in the 

absence of a specific channel blocker for TRPC7 it may be difficult to assess the role the 

channel has to play.

In the 3T3-L1 cells TRPC7 was not present in the undifferentiated form of the cell 

however upon differentiation into adipocytes TRPC7 staining is observed from 

approximately day five onwards, increasing in amount until all cells are fully 

differentiated, although there did appear to be a high-level of background fluorescence in 

these cells (Figure 6.9). The specific staining was unlike any previously seen in this 

study, there was not any PM staining and TRPC7 appeared to be totally intracellular 

mainly localised to the Golgi apparatus (Figure 6.11). There was low-level background 

fluorescence observed after treatment by either the pre-immune serum or peptide control 

solution showing that the TRPC7 antibody was responsible for the staining pattern 

observed (Figure 6.10). Western blotting results confirm the immuno-staining results 

with the presence of an approximately lOOkD band on Western blots probed with the 

TRPC7 antibody (Figure 6.12). 10fig o f protein was loaded in each lane and there was an 

apparent increase in intensity of the TRPC7 band with the increasing differentiation and 

the TRPC7 band was not present when blots were probed with pre-immune serum or
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peptide control solution. A number of background bands were also observed and are 

reflected in the high level of background fluorescence in the immunofluorescent staining. 

The TRPC7 bands in 3T3-L1 lysates migrated more slowly than that of the positive 

control, Panc-1 membrane, this band has been calculated to be approximately 109kD. 

There are a number of reasons why TRPC7 in this cell type may be heavier; some form 

of post-translational modification, for example, phosphorylation or glycosylation of the 

protein or binding of an unknown protein. There are known binding sites for CaM on 

TRPC proteins and it has been predicted that the 17kD CaM binds tightly to native 

TRPC1 causing a slight band shift in comparison to over expressed TRPC1 (Beech et al., 

2003). With the current evidence CaM may not be the reason behind the band shift 

because of the differences in the observed molecular weight.

Ca signalling in adipocytes has been studied with a view to determine the signalling 

events associated with stimulation by insulin to allow the uptake of glucose and secretion 

of leptin. This Ca2+ signalling is mainly carried out through VOCCs (Cammisotto and 

Bukowiecki, 2004) and is described in Chapter 1 Section 1.2.5.1. However, there appears 

to be very little else known about other signalling roles of Ca2+ and expression of Ca2+ 

channels in adipocytes. The Golgi localisation of TRPC7 in differentiated 3T3-L1 

adipocytes could facilitate the entry of Ca2+ into or out of the Golgi depending on its 

orientation in the Golgi membrane, as the Golgi is a known store of Ca2+. This may be 

linked with a regulatory role associated with the Ca2+ signaling involved in insulin 

stimulation, glucose uptake and leptin secretion. To test this RNAi could be carried out 

on TRPC7 in differentiated 3T3-L1 adipocytes and functional experiments carried out to 

analyse the Ca2+ levels in response to insulin stimulation, compared to wild type 3T3-L1 

adipocytes. It would also be of use to study the expression of TRPC7 in primary 

adipocytes as a comparison to the 3T3-L1 adipocytes, this may indicate whether TRPC7 

has a role to play in differentiation or is an integral part of adipocytes.

Evidence gathered in this current study suggests that the anti-TRPC7 antibody cross- 

reacts with endogenous TRPC7 in mouse and rat, and that endogenous TRPC7 may be 

expressed in two important insulin sensitive tissues, the heart and adipose tissue o f the rat
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and mouse respectively. Recent research goes towards backing up the TRPC7 t-tubule 

localisation, cellular sub-fractionation experiments involving differential centrifugation 

and subsequent Western blot analysis showed almost all TRPC7 to be in the same 

fraction that displaying Ca2+-ATPase activity and contains the majority of myofilaments, 

TRPC7 probably remained tightly associated with myofilaments and the SR probably in 

the dyadic structure (S Lawrence Unpublished data). TRPC7 appeared not to be in the 

PM fraction indicated by the marker protein Na+/K+ ATPase (S Lawrence Unpublished 

data). TRPC7 also appeared not to be present in fractions containing intracellular 

components such as endosomes (S Lawrence, Unpublished data). However, from these 

preliminary results gathered it is unclear what role TRPC7 plays in the rat cardiomyocyte. 

From co-localisation experiments in the current study TRPC7 and FAK have been shown 

to co-localise, a similar observation has been made in the human pancreatic cell line, 

Panc-1 (Chapter 5). From the results gathered from Panc-1 cells it was not possible to be 

certain of an involvement for TRPC7 in focal adhesion complexes and the same is true 

for cardiomyocytes. TRPC7 may have a similar role to play in cardiomyocytes as 

hTRPC7 in Panc-1 cells, or it may fulfil a different function. TRPC7 is also 

endogenously expressed by 3T3-L1 adipocytes and the localisation in 3T3-L1 cells 

appeared to be predominantly Golgi, this was only apparent after beginning 

differentiation from fibroblasts into adipocytes. These preliminary results indicate that 

trpc? is up-regulated during differentiation however further analysis is required to 

establish what role TRPC7 has in this cell type. The current study has utilised rat and 

mouse tissues to observe expression of TRPC7, and although in human heart and adipose 

tissues hTRPC7 is thought not to be endogenously expressed to the extent that mTRPC7 

is in the equivalent rodent tissues it would be interesting to carry out localisation studies 

of hTRPC7 in human heart and adipose to compare with the mouse and rat data.
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Chapter 7
TRPC7 Expression in the Pituitary 
Gland and Central Nervous System



7.1 - Introduction

7.1.1 -  Pituitary Gland

The pituitary gland is situated below, and attached to, the base of the brain and is gently 

held in a cradle of bone at the base of the skull (Bear et al., 1996a; Berne and Levy, 

1998). The pituitary has two lobes; posterior and anterior, both of which are controlled by 

the hypothalamus (Bear et al., 1996a; Beme and Levy, 1998). The posterior pituitary is 

controlled by the magnocellular neurosecretory neurons from the hypothalamus, which 

release neurotransmitters (NT) directly into the capillaries in the posterior pituitary 

(Beme and Levy, 1998). These transmitters, oxytocin and vasopressin, act like hormones 

and as such are termed neurohormones (Bear et al., 1996a; Beme and Levy, 1998). 

Oxytocin is released during the final stages of childbirth and also stimulates the ejection 

of milk from the mammary glands; vasopressin (also called anti-diuretic hormone) 

regulates blood volume and salt concentration (Bear et al., 1996a; Beme and Levy, 

1998). The anterior pituitary is an actual endocrine gland; it synthesises and secretes a 

wide array of hormones that regulates hormone secretions from other endocrine glands in 

the body (Bear et al., 1996a; Beme and Levy, 1998). Anterior pituitary hormones act on 

the gonads, thyroid, adrenal glands and mammary glands (Bear et al., 1996a; Beme and 

Levy, 1998). The hypothalamus regulates the anterior pituitary by secreting 

hypophysiotropic hormones, which can inhibit or trigger the release of pituitary 

hormones (Beme and Levy, 1998). Due to its links to the brain and its endocrine function 

the pituitary is often termed ‘neuroendocrine’ (Bear et al., 1996a; Beme and Levy, 1998). 

There are cell lines available to study the pituitary; the GH4C1 cell line is an anterior 

pituitary tumour cell line from the rat. It is adherent, its morphology is epithelial and it 

secretes prolactin (PRL) and growth hormone (GH) (somatotrophin) (ECACC).

The role of Ca2+ has been researched in many different pituitary cell types and it is 

largely VOCCs that have been characterised, however SOC may also be implicated in 

sustained Ca2+influx in some types of pituitary cells (Ashworth and Hinkle, 1996; Bear et 

al., 1996b; Carew and Mason, 1995).
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7.1,2- Central Nervous System

The cerebral cortex is divided into three types; hippocampus, olfactory cortex and 

neocortex (Bear et al., 1996b). The neocortex is only found in mammals and is the upper 

most layer of the cerebral cortex, it is this that is referred to when the term ‘cortex’ is 

used (Bear et al., 1996b). The cortex is primarily comprised of neurons and glia. The 

spinal cord is an area of the CNS that relays information from the peripheral and visceral 

nervous system to the brain; it is comprised of primarily neurons and glia. Ca signalling 

in the CNS is well documented (Bear et al., 1996b). The release of NTs is mediated by 

Ca2+, it is triggered by an action potential that depolarises the membrane and causes the 

VOCCs to open allowing a large, rapid influx of Ca2+ (Bear et al., 1996b). The elevation 

in internal Ca2+ causes NTs to be released from synaptic vesicles by exocytosis (Bear et 

al., 1996b). At the post synaptic membrane of a dendrite or other cell there are many 

neurotransmitter receptors (NTR), these NTRs can be divided into two subgroups; 

transmitter gated ion channels and GPCRs (Bear et al., 1996b). Transmitter gated ion 

channels such as acetylcholine receptor (AChR) and glutamate gated ion channels are 

relatively non-selective ion channels with five membrane spanning, pore forming 

subunits that open due to a conformational change elicited by a NT (Bear et al., 1996b). 

Depending on whether their effect is inhibitory (y-aminobutyric acid; GABA) or 

excitatory (glutamate), these channels can cause membrane de- or hyper-polarisation. 

GPCRs have a longer lasting and more diverse repertoire of post synaptic actions, the NT 

binds to a GPCR on the post synaptic membrane and initiates the cascade o f Ca2+ 

signalling events described in Section 1.2.4 of Chapter 1. When the Ca2+ is released from 

internal stores it goes on to mediate several cellular processes (Bear et al., 1996b).

Tissue distribution studies o f hTRPC7 in the pituitary and CNS have shown the mRNA to 

be present in relatively high amounts in the pituitary and in lower amounts in the CNS 

(Riccio et al., 2002a); Chen Unpublished data). However, mTRPC7 expression is very 

low in the mouse CNS and there is no data on the presence of mTRPC7 in the pituitary 

(Okada et al., 1999). However, htrpc7 was first isolated and cloned from human brain 

cDNA (A.Wolstenholme Unpublished Data) and our laboratory has expertise in neuronal 

cultures of embryonic rat brain. Two areas, cortex and spinal cord, were investigated. The
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studies described in this chapter are aimed to examine the expression and localisation of 

TRPC7 in the rat pituitary and the cultured neurons and glia of the cortex and spinal cord

of embryonic rats.
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7.2 - Results

7.2.1 - Endogenous Expression ofTRPC7

To identify any expression o f TRPC7 in the rat GH4C1 cell lines, immunocytochemistry 

was carried out. The immuno-localisation o f TRPC7 in GH1C4 rat pituitary cells showed 

a defined intracellular localisation of a defined structure adjacent to the nuclei o f the 

GH4C1 cells (Figure 7.1a to d). This staining was not apparent when the cells were 

treated with the pre-immune serum (Figure 7.1e), however there was a high level o f  

background staining.

TRPC7

TRPC7 DIC TRPC7 DIC

Pre immune serum

Figure 7.1: Images a and b are GHIC4 cells stained using anti-TRPC7 (1:100) with anti-rabbit FITC 

(1:100) secondary. Image c is the DIC image of b and d shows the merged image of b and c. Control 

staining o f GH1C4 cells. Image e shows staining of pre-immune serum (1:100) with anti-rabbit FITC 

(1:100). All size bars 10pm.
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7.2.2 - TRPC7 is Present in the Golgi Apparatus in GH4C1 Cells

The intracellular localisation of TRPC7 was similar to a Golgi apparatus pattern of 

staining therefore, co-localisation studies were carried out using markers for the trans- 

and cw-Golgi networks.

TRPC7 TGN Merge

Figure 7.2: Image a GH4C1 cells stained with anti-TRPC7 (1:100) with anti-rabbit FITC (1:100); andanti- 

TGN38 (1:200) staining of image b, the same cells as a, with anti-mouse Texas Red (1:100) secondary. 

Image c is the merged image of a and b. Size bars 10pm.

TRPC7 aM anll Merge

Figure 7.3: Image a GH4C1 cells stained with anti-TRPC7 (1:100) with anti-rabbit FITC (1:100); and anti- 

a-Mannosidase II (neat supernatant) staining of image b, the same cells as a, with anti-mouse Texas Red 

(1:100) secondary. Image c is the merged image o f a and b. Size bars 10pm.

Co-localisation studies with the cis- and trans-Golgi markers anti-a-Mannosidase II 

(aManll, Figure 7.3) and anti-TGN38 (Figure 7.2) respectively, revealed semi co

localisation of TRPC7 and the TGN marker (Figure 7.2). It appeared as though TRPC7 

and TGN38 were interlocked but not on the same part o f the structure. However, there 

was almost complete co-localisation of TRPC7 and the cis-Golgi marker (Figure 7.3).
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7.2.3 - Western Blots

Western blots were carried out to visualise the endogenous expression o f TRPC7 in 

GH4C1 cells as a lOOkD band. An equal protein load of Panc-1 membrane was run along 

side as an endogenous positive control.

a b c
1 2  1 2  1 2

lOOkDlOOkDlOOkD

d
1 2

Figure 7.4: Western blot of GH4C1 lysate. Lane 1 Panc-1 membrane; lane 2 GH4C1 lysate, a, b and c 

have lOpg protein loaded, d has 20pg protein loaded. Blots a and d (d is slightly over developed) have 

been probed with anti-TRPC7 (1:1000), blot b has been probed with pre-immune serum and blot c has been 

probed with peptide control solution. Arrows indicate bands of approximately 108kD (upper) and 93kD 

(lower) for lane 2 of blots a and d.
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Western blots o f GH4C1 lysate, probed with anti-hTRPC7 (Figure 7.4) showed a band of 

approximately lOOkD, however in comparison to the band given by Panc-1 membrane 

(lane 1), it appeared that TRPC7 in GH4C1 has a slightly higher molecular weight, of 

approximately 108kD. A few other bands developed on the blot and were thought to be 

back ground bands however, the band indicated by the second (lower) arrow is 

approximately 93kD and may indicate the presence of splice variants hTRPC7A or B, or 

both (the same band in Figure 7.4a is a double band). The control blots did not show the 

presence of a band at lOOkD when probed with pre-immune serum or peptide control 

solution. There were a number of background bands produced by the GH4C1 cell lysate, 

this was more obvious in the blot that was over developed (Figure 7.4d), some of these 

background bands were present on the control blots, probed with the pre-immune serum 

and the peptide control solution (Figure 7.4b and c). The immunocytochemistry carried 

out also indicated the presence of high-level background staining by the anti-hTRPC7 

antibody and the pre-immune serum (Figure 7.1).
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7.2.4 - TRPC7 in Embryonic Rat Spinal Cord Cultures

Embryonic rat spinal cords were cultured for up to two weeks and investigated for their 

expression of TRPC7.

TRPC7 GFAP Merge

Week 1
■ s

TRPC7 MAP2

Week 2

Week 1

Week 2

Figure 7.5: Embryonic rat spinal cord cultures, in culture for 1 or 2 weeks. Images a and d show staining by anti- 

TRPC7 (1:100). Images b and e are the same cells as a and d respectively and show staining by anti-GFAP (1:100) 

anti-mouse FITC secondary, c and f  show the merged images as a and b; and d and e respectively. Images g and j 

show staining by anti-TRPC7 (1:100). Images h and k are the same cells as g and j respectively and show staining by 

anti-MAP2 (1:100) anti-mouse FITC secondary, i and I show the merged images as g and h; and j and k respectively. 

All Size bars 10pm.
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The staining o f cultured rat embryonic spinal cord for TRPC7 (Figure 7.5) did not show 

any presence o f the protein at week one but by week two there was a small amount of  

staining in glial cells (shown by the glial marker anti-GFAP). However, the low-level 

staining was also present in the neurons (indicated by neuronal microtubule marker anti- 

MAP2). The staining pattern did not appear to be specific and may reflect a high level o f  

background staining.

Control staining o f spinal cord by pre-immune serum (Figure 7.6) showed a low-level 

background fluorescence with no apparent specific pattern, similar to that observed in 

Figure 7.5.

Figure 7.6: Control staining of embryonic rat spinal cord by pre-immune serum (1:100) anti-rabbit FITC 

secondary (1:100). Size bar 10pm.
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7.2.5 - TRPC7 in Embryonic Rat Cortex

Embryonic rat cortices were cultured for up to two weeks and investigated for their 

expression o f TRPC7.

TRPC7 DIC GFAP DIC TRPC7 GFAP Merge

TRPC7 MAP2 Merge
(i

Figure 7.7: Embryonic rat cortical cultures, in culture for 1 week. Image a shows staining by anti-TRPC7 

(1:100). Image b is the same cell as a and shows staining by anti-GFAP (1:100) anti-mouse FITC 

secondary, c show the merged image of a and b. Image d is stained using anti-TRPC7 (1:100) and anti- 

MAP2 (1:100) with anti-mouse FITC (1:100). All Size bars 10pm.

Embryonic rat cortical cultures showed very little staining for TRPC7 (Figure 7.7), 

though low-level background fluorescence was observed on neuronal and glial cells.

Control staining of the cortical culture was carried out using pre-immune serum and a 

similar low-level background to that seen in Figure 7.7 was obtained using pre-immune 

serum (Figure 7.8).
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Pre immune GFAP 
Merge

Figure 7.8: Embryonic rat cortical 1 week old culture with staining by pre-immune serum (1:100) Alexa 

Fluor 488 (1:300) secondary and anti-GFAP (1:100) anti-mouse FITC secondary. All Size bars 10pm.

7.2.6 -  Western Blotting

Western blots were carried out to confirm the results o f the immunocytochemistry, 

positive controls used for the Western blotting of spinal cord and cortical lysates were 

GH4C1 cells and Panc-1 membranes.

a b
1 2 3 4 5 6

100kD. lOOkD

Figure 7.9: Lane 1 GH1C4 lysate; lane 2 week 1 cultured cortex; lane 3 week 2 cultured cortex; lane 4 

week 1 cultured spinal cord; lane 5 week 2 cultured spinal cord; lane 6 Panc-1 membrane. Blot a was 

probed with anti-TRPC7 (1:1000) and blot b was probed with pre-immune serum (1:1000).

Both GH4C1 lysate and Panc-1 membranes revealed the lOOkD TRPC7 band when 

probed with anti-TRPC7 (Figure 7.9). However, in contrast the spinal cord and cortical
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culture lysates showed no TRPC7 band when probed with anti-TRPC7 or the pre-immune 

serum.
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7.3 - Discussion

The results in the present study show that the rat pituitary cell line, GH4C1 expresses 

TRPC7 and this appeared to be localised to the Golgi apparatus. The czs-Golgi network 

marker co-localised well with TRPC7 (Figure 7.3), whereas the trans-Golgi network 

marker showed an adjacent, interlocking pattern with TRPC7 (Figure 7.2). The Golgi 

apparatus pattern of staining for TRPC7 has also been observed in differentiated 3T3-L1 

adipocytes (see Chapter 6). Control experiments using pre-immune serum (Figure 7.1e) 

did not show this staining pattern suggesting that the antibody is detecting TRPC7 in the 

GH4C1 cells. Western blotting of GH4C1 lysate (Figure 7.4) confirmed the presence of 

TRPC7 giving an approximately lOOkD band. However, when compared to the band 

from Panc-1 membranes, the GH4C1 TRPC7 band ran at a slightly higher molecular 

weight, which may indicate some form of additional post translational modification, for 

example, differences in glycosylation between the Golgi and the PM, or binding of an 

unknown protein. This shift has also been observed with the Western blot of 

differentiated 3T3-L1 adipocytes (see Chapter 6). There are known binding sites for CaM 

on TRPC proteins and it has been predicted that the 17kD CaM binds tightly to native 

TRPC1 causing a slight band shift in comparison to over expressed TRPC1 (Beech et al.,

2003). It may be that the band shift of TRPC7 observed in the current study reflects 

binding by CaM, though the band seen on the Western blot was calculated to be 108kD, 

indicating a band shift of 8kD so this is currently inconclusive. However, to produce 

these results a standard SDS-PAGE gel and molecular weight markers that covered a 

broad range (Precision Protein Standard, BioRad) were used. If more accurate markers 

could be used, a more accurate molecular weight of TRPC7 in GH4C1 cells could be 

calculated. The difference between the bands of GH4C1 lysate and Panc-1 membrane 

may be due to cellular localisation. The western blots appear to be inconclusive for the 

presence of TRPC7 splice variants A, B or y  as there were many spurious ‘background’ 

bands produced, this may be due to anti-hTRPC7 or the secondary antibody used. Two of 

the most prominent bands were calculated to have molecular weights of approximately 

93kD and 78kD, it is unlikely that the 78kD band is a TRPC7 splice variant however, it is 

possible that the 93kD band may reflect the presence of TRPC7A or B (predicted
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molecular weights of 92.4 and 93.4 respectively). Control Western blotting (Figure 7.4) 

did not give a TRPC7 band when probed with pre-immune serum or the peptide control 

solution. The Western blots all showed a high level of background bands (Figure 7.4), 

this is reflected in the immunocytochemistry shown in Figure 7.1 where, as well as the 

Golgi localisation there is some background intracellular fluorescence apparent. The 

Golgi localisation of TRPC7 in GH4C1 (the Golgi is a known store of Ca2+) could 

facilitate the entry of Ca2+ into or out of the Golgi depending on its orientation in the 

Golgi membrane.

In the anterior pituitary gland ATP plays an important role in Ca2+ signalling (Koshimizu 

et al., 2000). Adenosine receptors (P2yRs) and receptor channels (P2xRs) are expressed 

on anterior pituitary cells and ATP is the agonist for all P2yRs and P2xRs (Koshimizu et 

al., 2000). The biological actions of ATP are terminated by ectonucleotidases which 

degrade extracellular ATP to adenosine, thereby activating G-protein coupled adenosine 

receptors (Koshimizu et al., 2000). Additionally, GH4C1 cells possess two populations of 

VOCCs, one is preferentially modulated by dihydropyridine Ca2+ channel modulators 

(Matteson and Armstrong, 1986).

Previously, functional experiments have been carried out on pituitary cells. One study 

used lactotrophs (adenohypophysical cells that synthesise and secrete PRL), freshly 

isolated from lactating female rats in order to identify the thyrotropin releasing hormone 

(TRH)-sensitive Ca2+ entry pathway (Carew and Mason, 1995). TRH causes an increase 

in intracellular Ca2+ from the release of Ca2+ via intracellular stores and the entry of 

extracellular Ca2+ (Carew and Mason, 1995). The study produced evidence that the influx 

of Ca in these cells was via a SOC (Carew and Mason, 1995) however, no molecular 

identification of the channel has been made. From the results shown here it is possible 

that TRPC7 or other members of the TRPC subfamily could contribute to this channel. 

Future studies could test this hypothesis, for example; RNAi could be carried out on 

pituitary cells and the calcium re-addition protocol with the use of TG or CPA (detailed 

in Chapter 2, Section 2.3.7), carried out on them, alongside the WT cells, to determine if 

there is any difference in the SOC response.
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Another study involved GH4C1 cells incubated in Ca2+ free medium for several days, 

which led to the production of PRL being reduced dramatically. Subsequent re-addition 

of Ca2+ caused a large increase in the rate of PRL synthesis (Matteson and Armstrong, 

1986). Although in the current study a PRL secreting cell line was used, future work 

could involve isolation of primary cells from the rat pituitary and identification of TRPC7 

and other TRPCs through immunocytochemistry and Western blotting, furthermore 

RNAi could be applied to assess whether TRPC7 contributes to the production of PRL or 

other Ca signalling pathways.

Tissue distribution of human TRPC mRNAs in the CNS and pituitary has shown TRPCs 

1, 3 and 7 to be very highly expressed in the pituitary gland; hTRPCl, 3 and 5 also had 

high expression in the cerebellum (detailed in Chapter 1 section 1.5.3; Riccio et al 2002 

Mol Brain Res). All other brain regions and spinal cord showed relatively low expression 

of all the TRPCs, in particular TRPCs 6 and 4 showed very low expression in the 

pituitary, all brain regions and spinal cord (detailed in Chapter 1 section 1.5.3; (Riccio et 

al., 2002b). In a more specific study involving single cell RT-PCR, Sergeeva et al found 

all seven TRPCs mRNAs in the rat dorsal raphe and ventral tegmental area neurons and 

TRPCs 1, 4, 5, 6 and 7 in the neurons of the tuberomamillary nucleus (Sergeeva et al., 

2003). Expression of TRPC7 mRNA in the human CNS is relatively low in comparison 

to other TRPCs (Riccio et al., 2002b); Chen Unpublished data).

Immunocytochemical studies of cultured embryonic rat spinal cord and cortex by anti- 

TRPC7 (Figures 7.5 and 7.7) showed only faint background staining over neurons and 

glia in the culture, which appeared to be enhanced after two weeks in the spinal cord 

culture. The Western blots from spinal cord and cortical cultures (Figure 7.9) did not give 

a lOOkD TRPC7 band as observed in Panc-1 membrane or GH4C1 lysate, when probed 

with the TRPC7 antibody. From these results TRPC7 is probably not present, or it is 

present in very low levels, in the neurons and glia of the cortex and spinal cord. These 

results appear to echo the Northern blot data obtained from mouse, showing relatively 

small expression levels of TRPC7 in mouse brain (Okada et al., 1999). An investigation
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into the expression and selective association of TRPC proteins appears to show (by 

Western blot) the presence of TRPC7 in adult rat synaptosome preparation from the 

cerebellum (Goel et al., 2002). Future studies could investigate TRPC7 expression in the 

culture of embryonic rat cerebellum and immunolocalisation experiments to directly 

compare adult and embryonic rat cerebellum, if TRPC7 is present, it may not develop 

until neonatal or adult stages o f life.

Other TRPCs have been functionally implicated in various signalling systems of the 

CNS. Although TRPC7 may not be highly expressed in the CNS, TRPC5 may be 

important; TRPC5 has been specifically implicated in the regulation of hippocampal 

neurite length and growth cone morphology in rat neurons, dominant negative TRPC5 

expression allowed significantly longer neurites and filopodia to form (Greka et al., 

2003). TRPC4 is thought to contribute to the control of GABA release from the dendrites 

of thalamic intemeurones (Munsch et al., 2003). TRPC1 is expressed in peri-synaptic 

regions of cerebellar parallel fibre-Purkinje cell synapse and is physically linked to and is 

activated by the metabotrophic glutamate receptor 1 (mGluRl) (Kim et al., 2003). 

However, TRPC7 expression has been investigated in the peripheral nervous system as 

has that of many of the other TRPCs. The investigation carried out by Buniel et al was an 

immunolocaliation study of the rat carotid chemosensory pathway. The authors have 

interpreted the diffuse, faint staining over all cell types in the study by their TRPC7 

antibody (discussed in Chapter 5) as showing TRPC7 to be present in the neurones of the 

ganglia (Buniel et al., 2003). As there are no supportive results it is not easy to say 

whether the faint staining seen was that of TRPC7 or background. Other TRP subfamilies 

have been implicated in the peripheral nervous system, TRPMs have been identified as 

components of cold and taste sensation pathways (Hofmann et al., 2003; McKemy et al., 

2002; Perez et al., 2003) and TRPVs are involved in heat, pain and osmotic sensation 

(Benham et al., 2002; Caterina et al., 2000; Gunthorpe et al., 2002).

Experiments in this current study have been carried out on a rat pituitary cell line, cortex 

and spinal cord. It has previously been shown from Northern blot and RT-PCR data that 

there is a high level of expression of TRPC7 in the human pituitary gland but there was
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no data concerning expression in the mouse or rat pituitary gland (Riccio et al., 2002a); 

Chen Unpublished data). In the absence o f human pituitary cells for this study the rat cell 

line GH4C1 was used and found to have a Golgi localisation of TRPC7. TRPC7 in 

cultures of embryonic rat cortex and spinal cord was not identified, however, it is known 

to be present is very small amount in these areas of the mouse brain (Okada et al., 1999). 

Future work could involve the investigation of the localisation of TRPC7 in human brain 

structures, particularly the pituitary in view of the extremely high expression levels, it 

would be interesting to see if the protein has the same sub-cellular localisation in the 

human pituitary gland as rat.
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Chapter 8 
Discussion



8.1 - Localisation and Functional Characterisation of Over

expressed hTRPC7 and hTRPC7A

Localisation and functional studies have been carried out on over-expressed hTRPC7 and 

one of its splice variants, hTRPC7A, in HEK293 cells in order to elucidate any 

differences between the two. hTRPC7A displayed a very similar PM and perinuclear 

(possibly Golgi) localisation as hTRPC7, which may reflect a similar function between 

the two proteins when over-expressed. Results from functional studies have indicated that 

neither of the two proteins appeared to have store-operated channel activities, in direct 

contrast to results from Riccio et al who found hTRPC7 to be a store-operated Ca2+ 

channel (Riccio et al., 2002). However, further results cannot confirm whether hTRPC7 

and hTRPC7A have receptor activated Ca2+ channel activity when transiently over

expressed. Some questions need to be addressed in the light of these results: since 

hTRPC7 and hTRPC7A have a similar localisation pattern when over-expressed, if  co

expressed would they interact or co-localise with each other? Would the presence of 

hTRPC7A in an hTRPC7-hTRPC7A heteromer have an effect on the level of activation 

in comparison to a homomer o f hTRPC7 or hTRPC7A? In vivo, are the two proteins 

expressed in the same tissues, and if so do they co-localise? Does the function of the 

proteins vary according to the tissue and species expressing them?

8.2 - Localisation of Endogenous hTRPC7 in COS7 Cells and 

the Implications of hTRPC7C

Results from immunostaining of COS7 cells by the anti-hTRPC7 antibody showed no 

evidence of endogenous expression of hTRPC7 despite the RT-PCR suggesting otherwise 

(Wolstenholme Unpublished data) and may indicate that hTRPC7C (also expressed in 

COS7 cells) is a dominant negative N-terminal fragment in this cell type. Another 

explanation for the apparent lack of expression of hTRPC7 at the COS7 PM comes from 

a recent publication by Lussier et al (2005), it has implicated MxA as a potential 

regulator of the TRPCs (Lussier et al., 2005b). MxA is a member of the dynamin family 

of GTPases, and is known to have a role in protection of cells against viral infections, it
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was shown to have an interaction with the second ankyrin repeat of TRPC6, this 

interaction enhanced the activity of TRPC6 (Lussier et al., 2005a). The authors suggest 

that MxA has a role in trafficking of TRPC6 and other TRPCs (Lussier et al., 2005c), this 

may have an implications for hTRPC7C. The highly truncated hTRPC7C has all three 

ankyrin repeats as the full length hTRPC7 does however, it is possible that when co

expressed, hTRPC7C interferes with the binding of MxA to the full-length hTRPC7 by 

competing for the binding sites. This may in turn have implications for the trafficking of 

hTRPC7 to the PM and, as observed in COS7 cells hTRPC7 may not be expressed at the 

PM. However, future work should to be carried out to confirm these findings; for 

example RNAi targeted to hTRPC7C in COS7 cells may lead to an increase in hTRPC7 

expression, this may be difficult to do as hTRPC7C is a small fragment.

8.3 - TRPC7 may be Associated with Focal Adhesions in the 

Pancreas and Cardiomyocytes

The basal PM localisation pattern of endogenous hTRPC7 in Panc-1 and Capan-1 cells 

was highly reminiscent of focal adhesions and co-staining for hTRPC7 and FAK in Panc- 

1 cells revealed total co-localisation. TRPC7 also co-localised with FAK in rat 

ventricular cardiomyocytes. Focal adhesions are known to be present at t-tubules of 

cardiomyocytes as they help provide a support for the structure (Brette and Orchard, 

2003). These results indicated a possible association between TRPC7 and focal adhesion 

complexes. There are several hypotheses for the co-localisation of TRPC7 with FAK 

observed in Panc-1 cells and rat cardiomyocytes. Very little is known about associations
• 9 4 .

between focal adhesions and Ca signalling, from the limited information available (see 

Chapter 5 Section 5.3), it is my hypothesis that hTRPC7 may be involved in the 

disassembly of focal adhesions by Ca2+-dependent calpain as a means of providing Ca2+. 

Calpain is a protease whose substrates include the focal adhesion molecules integrin, 

FAK, ezrin and talin and it appears to have a role in the disassembly of focal adhesions/ 

complexes (Huttenlocher et al., 1998). I have devised three hypotheses pertaining to the 

functional association of TRPC7 with focal adhesions. Hypothesis one (Figure 8.1) is that 

stimulation of integrins at the cell surface may lead to activation of G-proteins by the

205



small GTPases in focal adhesion complexes may initiate the activation of PLC to cleave 

PIP2 into InsP3 and DAG, this would then lead to the influx of Ca2+ by two possible 

pathways. DAG may then directly activate TRPC7 to allow the influx of Ca2+ in a store- 

independent manner, this Ca2+ influx would lead to the activation of calpain and the
9+disassembly of focal adhesions. Alternatively, InsP3 may lead to release of Ca stores, 

through activation of the InsPsR on the ER; Ca2+ from the stores would activate calpain 

for the disassembly of focal adhesions. The depletion of Ca2+ in the ER would lead to a 

signal being produced, activating TRPC7 allowing the influx of Ca to replenish the 

stores. In figure 8.1 the molecule Src is present, this is because Src is a ubiquitously 

expressed tyrosine kinase that may also be implicated as calpain cleavage of FAK is 

enhanced by Src (Carragher et al., 2003). It is also known that Src generally causes a 

reduction in focal adhesions and decreased cell adhesion and it has been suggested that 

tyrosine phosphorylation of focal components by Src causes focal adhesion turnover 

(Wozniak et al., 2004). Furthermore, Src kinase has, in a recent study, been implicated in 

the regulation of stably expressed TRPC3 in HEK293 cells. TRPC3 is the closest relative 

of TRPC7 and has been found to be a RACC activated by DAG however, when Src 

kinase is pharmacologically inhibited or expressed in a dominant negative form, TRPC3 

is not activated by DAG in these cell types (Vazquez et al., 2004a).
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Figure 8.1 : Hypothesis one, a schematic diagram of how TRPC7 may be involved in the disassembly of 

focal adhesions in human Panc-1 cells and rat ventricular myocytes.

Hypothesis two (Figure 8.2) illustrates how direct activation o f PLC by the tyrosine 

kinase, Src, could regulate the channel using the same store depletion dependent or 

independent pathways as described in hypothesis one.
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Figure 8.2: Hypothesis two, a schematic diagram of how TRPC7 may be involved in the disassembly of 

focal adhesions in human Panc-1 cells and rat ventricular myocytes.
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Hypothesis three (Figure 8.3) illustrates that Src may in some way directly activate 

TRPC7 allowing the influx o f  Ca2+ for use by calpain to disassemble focal adhesions.

ECM

Stimulus

Integrin

FAK
PM

GTPas e
Src

GTPas Cytosol

Disassembly Focal adhesion 
i ^ complex

Actin

InsP3 ^  DAG

Figure 8.3: Hypothesis three, a schematic diagram of how TRPC7 may be involved in the disassembly of 

focal adhesions in human Panc-1 cells and rat ventricular myocytes.

Further experimentation is required to ascertain whether TRPC7 is associated with or 

regulated by focal adhesion complexes or a specific protein o f  focal adhesions in Panc-1 

cells and rat ventricular myocytes. Northern blotting or RT-PCR experiments could be 

carried out first to confirm the presence o f  TRPC7 in these cell types and then RNAi 

could be employed in these cell types to knockdown the expression o f  TRPC7 to observe 

any alterations in cell behaviour and focal adhesion localisation. RNAi may prove 

difficult to do in the rat cardiomyocytes without the use o f viral transfection however, a 

transgenic TRPC7 knockout rat could be made and phenotypic effects could be observed 

at the global and cellular levels.

O Calcium ^ P I P 2  \
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Another question associated with this could be asked, could other TRPCs be involved in 

focal adhesions in other cell types? As previously discussed, TRPC3 in an over

expression system appears to be regulated by Src, an important component of focal 

adhesions (Vazquez et al., 2004b).

Recent research has identified TRPC1 and TRPA1 to be components of 

mechanosensitive and stretch activated channels in several different vertebrate cell types 

(Corey et al., 2004; Maroto et al., 2005). Mechanosensitive and stretch activated channels 

are involved in cellular functions, such as detection of sound by the ear, regulation of cell 

volume and cell locomotion (Barritt and Rychkov, 2005). Theories discussed here may 

put hTRPC7 forward as a candidate to join these TRPs identified as mechanosensitive 

and stretch activated channel and may indicate a possible involvement in cellular 

locomotion. The evidence presented by the previous studies relies upon functional 

analysis but no localisation has been carried out to analyse whether the expression pattern 

co-localises with known stretch activated channels or associated proteins. However, 

functional analysis would need to be carried out on TRPC7 in Panc-1 and 

cardiomyocytes to strengthen the localisation evidence for this theory. As mentioned 

previously, it is difficult to carry out functional experiments on the endogenous TRPC7 

however, in addition to further experiments already outlined the cells could undergo 

osmotic shock treatment to assess any changes in localisation of the protein and Ca2+ 

influx.

8.4 - TRPC7 may be Involved in the Release of Zymogen 

Granules in Pancreatic Cells

The pancreas is made up o f endocrine islet cells that produce insulin, glugagon, 

somatostatin and pancreatic polypeptide; and the exocrine cells that secrete the digestive 

pancreatic juice into the digestive system (Berne and Levy, 1998). The pancreatic juice is 

made up of aqueous and enzymic components; the aqueous component is secreted by 

columnar epithelia that line the pancreatic ducts and is made up of Na+ and K+ ions that 

are isotonic to plasma and high levels of bicarbonate and chloride (Berne and Levy,

210



1998). Acinar cells secrete the enzyme component the polygonal, polarised acinar cells 

are organised into lobules around the tubules that feed the pancreatic ducts and the 

enzymes they secrete are important for the digestion of all major foodstuffs (Beme and 

Levy, 1998). The proteases (secreted in an inactive, zymogen, form) are trypsinogen, 

chymotrypsinogen and pro-carboxypeptidase (Beme and Levy, 1998). Enteropeptidase in 

the duodenum activates trypsinogen to trypsin, which in turn activates chymotrypsinogen, 

and pro-carboxypeptidase to chymotrypsin and carboxypeptidase respectively (Beme and 

Levy, 1998). Starch molecules are cleaved to oligosaccharides by a-amylase also secreted 

by the acinar cells, lipases (triacylglycerol hydrolase, cholesterol ester hydrolase and 

phospholipase A2) digest lipids, ribonucleases and deoxyribonucleases are also secreted 

(Beme and Levy, 1998). All enzymes are stored in the zymogen granules in the apical 

region of the cell before release (Beme and Levy, 1998).

Zymogen granules are released from the cells in response to a stimulus such as hormones 

or neurotransmitters, this stimulus activates the Ca2+ signalling pathway that leads to the 

release of zymogen granules. Stimulation by an extracellular agonist such as ACh, leads 

to a rise in apical Ca2+ by release of Ca2+ from the InsP3 sensitive apical stores by the 

pathway described in Chapter 1 Section 1.2.4 (Figure 8.4) (Kasai et al., 1993; Thom et 

al., 1993). These stores become depleted of Ca2+ after stimulation (Sasaki et al., 1996) 

and must be refilled somehow. It is known that in these cells SOCE occurs predominantly 

at the basal membrane (Toescu and Petersen, 1995) and by performing patch clamp 

experiments on pancreatic acinar cells Mogami et al found that by depleting the Ca 

stores in the apical region with thapsigargin, induced focal Ca entry through the basal 

membrane. They hypothesised that an operational tunnel from the basal membrane to the 

apical stores provided a route for the Ca2+ that entered via the SOC (Figure 8.4) (Mogami 

et al., 1997).
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Figure 8.4: A schematic diagram of Ca2+ signalling in a pancreatic acinar cell (Not to scale). (Adapted 

from Mogami et al 1997).

Endogenous hTRPC7 expressed by Panc-1 and Capan-1 gave a punctiform staining 

pattern and was localised to the basal membrane. An alternative hypothesis to explain the 

pattern of staining on Panc-1 cells I observed is that hTRPC7 could be the focal Ca2+ 

entry channels described by Mogami et al in these cell types and that they refill the 

Ca2+stores ready for the next stimulation for the release of zymogen granules. However, 

it is currently unknown whether hTRPC7 is a SOC or a RACC. In order to test this RNAi 

could be carried out prior to functional experimentation. Also as no candidate protein was 

put forward or identified by Mogami et al, it would therefore be difficult to carry out co

localisation experiments.
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8.5 - TRPC7 may be Involved in Excitation-Contraction 

Coupling in the Heart

Cardiac excitation-contraction coupling is a process that leads to a heart beat. Ca2+ 

signalling is very important in this process (Bers, 2002a). Ca2+ signalling in ventricular 

myocytes is the combination of Ca2+ influx via PM channels and release from the SR at 

the t-tubules via RyRs to raise the intracellular concentration of Ca2+ (Bers, 2002b). The 

role of InsP3 and InsPaRs in cardiomyocytes are not fully understood. InsPaRs co-localise 

with junctional RyRs (Lipp et al., 2000b) and evidence from Mackenzie et al and Lipp et 

al suggests that InsPa may play a modulatory role in cardiac excitation-contraction 

coupling. Because of the close proximity of RyRs and InsPaRs it is thought that the 

activation of InsPaR and subsequent release of Ca2+ activates RyRs and enhances 

excitation-contraction coupling (Lipp et al., 2000a; Mackenzie et al., 2002). The anti- 

hTRPC7 antibody was used on insulin sensitive tissue, cardiomyocytes, from rat. There is 

very little expression of hTRPC7 in human heart, however mouse heart does express high 

amounts of TRPC7 mRNA (Okada et al., 1999). In treating embryonic rat cardiomyocyte 

cultures with the anti-hTRPC7 antibody a possibly t-tubular localisation of TRPC7 was 

observed. Adult rat primary ventricular cardiomyocytes were also treated with the anti- 

TRPC7 antibody and they were found to have an entirely t-tubular localisation of TRPC7. 

Due to its localisation, TRPC7 may have some role to play in this enhancement of 

excitation-contraction coupling either as a SOC to replenish SR levels of Ca2+ or as a 

RACC to further increase levels of Ca2+ for excitation-contraction coupling. However, it 

is not yet known whether endogenous TRPC7 in the rat heart is a SOC or a RACC. RNAi 

of TRPC7 and subsequent functional studies to ascertain what type of Ca2+ entry channel 

it is in these cell types could be carried out.

8.6 - Golgi Apparatus Localisation of TRPC7

Two different cell types demonstrated the expression of TRPC7 in the Golgi apparatus; 

the mouse cell line 3T3-L1 showed Golgi localisation of TRPC7 during and after 

differentiation from fibroblasts to adipocytes and the rat cell line GH4C1 displayed Golgi 

localisation of TRPC7. An interesting aspect of this observation was that when Western
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blotting was carried out on these cell types the resulting TRPC7 bands from both cell 

types were slightly higher than that given by Panc-1 membranes. Calculations revealed 

an approximately eight or nine kD difference between the Golgi localised TRPC7 and the 

PM localised TRPC7. This difference may be due to an additional tightly bound protein 

(unlikely to be CaM as discussed in Chapters 6 and 7) or post-translational modification. 

It must be ascertained whether or not TRPC7 in the Golgi of these cells is associated with 

another protein and if TRPC7 is functional. It may be that in these cells TRPC7 is bound 

to another protein or has been modified in someway that renders it non-functional and 

unable to be transported to the PM. However, the Golgi apparatus has been implicated in 

Ca2+ signalling and has been assessed for its capacity to be an intracellular store of Ca2+, 

and because of its defined intracellular localisation it has been hypothesised to be 

involved in generating highly localised Ca2+ gradients (Rizzuto, 2001). If TRPC7 is a 

functional channel in the Golgi apparatus of these cells it is possible that it is orientated 

so that the N- and C-termini are at the cytoplasmic side, this would mean that TRPC7 

may channel Ca2+ out of the Golgi to be involved in various cellular processes. RNAi 

could be carried out to observe any functional changes associated with the knock down of 

TRPC7 in these cell types.

8.7 - Endogenous TRPC7

Endogenous localisation of TRPC7 in the cell types studied can be divided into two 

groups; those with PM localisation and those with Golgi apparatus localisation. From the 

results gathered in the current study it appears that the differences in localisation of 

TRPC7 between diverse cell and species types may reflect a differences in its function. 

Further work is needed to resolve these possibilities.
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Appendix



A 1 - Over-Expression of hTRPC7

Over-expression o f proteins is frequently used to analyse their expression, localisation 

and function. This is usually carried out by use o f  an expression vector that will drive the 

expression o f  a given protein when introduced into a cell system. Members o f our 

laboratory have made constructs containing full-length htrpc7and htrpc7A.

A 1.1 - pIRES-EGFP-Zffr/JC7/7̂ 4

pIRES2-EGFP (Clontech) has been used to make a construct o f  full-length htrpc7 and 

htrpc7A (Figure A 1).

GCTAGCGCTAC CG G ACTCAGATCTCGAGCTCAAG CTTCGAATTCTG CAGTCGACG GTACC G CG G G CC CG G G ATC C ES

Figure A 1: Map and multiple cloning site (MCS) of the expression vector pIRES2-EGFP (Clontech).

pIRES2-EGFP contains the internal ribosome entry site (IRES; 1, 2) o f the 

encephalomyocarditis virus (ECMV) between the multiple cloning site (MCS) and the 

enhanced green fluorescent protein (EGFP) coding region. This permits both the gene o f 

interest (cloned into the MCS) and the EGFP gene to be translated from a single 

bicistronic mRNA (Clontech). htrpc7 was cloned into pIRES-EGFP between Xhol and 

BamHl in the sense direction (Franklin Unpublished Data). htrpc7A was also cloned into

HSVTK 
poly A

611 621

Sac I 
£ch36 I

Acc I A a y j l B l  f is p t2 D l
Sac II Xma I 

Sma I
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pIRES-EGFP between Xhol and BamHl in the sense direction (Chen Unpublished 

Data).
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A 1.2 - pFLAG-htrpc 7

Full-length htrpc7 has also been cloned into a pFLAG-CMV expression vector (Sigma; 

Figure A 1.2); it is cloned between Hindlll and Kpnl and is tagged with the FLAG 

sequence at the N-terminus o f  htrpc7. However, there are some PCR induced errors that 

were incorporated during amplification; G423A, T 1058A and C2094T. The only error 

that causes an amino acid change is T 1058A, it leads to the translation o f  a glutamine 

instead o f  a leucine at amino acid 417 on the N-terminal region (Franklin Unpublished 

Data).

pFLAO-CMV2 ( 4 . 7  kb)

FLAG Peptide Si

M o t A » 0 — Tyr -  Ly% —A«fi - A

B W ] MC AAA «AC «AT «AC <MC CTT «QA iC C  f lM ljU T

I BarrH I I

i k
— | 3?'

t o  I a u R I  O t l  B H 13 EcoftV  K p n l Mi*™ J Lfcfad * + i + + i \ i
TCA TC* CIA BAT C T i MA T fit  4TA C3CA <|TC tA C  TttT A*A M A  7CC C M  STT 

4 * 1  JMK TAT c n  MAC I  AT ABC CAT W  C M  c m  AJU I  C l OCT M B  «KC GAt k  c m  c m  n r  e r a  cta  c m  e r a  t t c  b a a  c b c  c m  c a c  t o

t
H ru  111 • fo r p flA G C M V l th e  M etpreprotrypsm a x tr ^ ,  sequence  p r e c e d e s  the  FLAG coding setjuence.

Figure A 1.2: Map and MCS of the expression vector pFLAG (Sigma).

The following pages show alignments o f the peptide sequences o f  all o f  the TRPCs and 
the DNA sequence o f  hTRPC7, for this, highlighted in red is the deleted sequence o f 
hTRPC7A, in blue is hTRPC7B and from the red to the end o f  the green highlighted area 
is the deleted part o f  hTRPC7C.
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SWMEMLIISW 
TWEWMILPW 
TIVEWMILPW 
ERIDYLLILW
601
QIISEGLYAI 
QIISEGLYAI 
QIISEGLYAI 
QIISEGLYAI 
TLIAEALFAI 
T LVAEALFAI 
TLVAEGLFAF

SIAVKFLAVF 
SIAVKFLAVF 
T IA IK C L W L  
TMAVKFLVAL 
HWWKLLTCM 
HWAVKMVTCF 
PTCKKIMTVL

VLGMIWSECK
VLGMIWSECK
VLGMMWSECK
VIGMIWAECK
VLGFIWGEIK
VLGFIWGEIK
IIGMIWSDIK

S4
A W L S F S R IA
A W L S F S R IA
A W L S F S R IA
A W L S F S R IA
SN ILSSLRLI
AN IFSSLRLI
ANVLSYLRLF

GVSIGLPFLA 
GVSIGLPFLA 
WALGLPFLA 
AVAIGLPFLA 
TIGFLFPMLS 
IIGLLFPVFS 
TVGIFWPVLS

EIWEEGPREY
EIWEEGPREY
ELWLEGPREY
EIWTQGPKEY
EMWDGGFTEY
QMWDGGLQDY
RLWYEGLEDF

YILPANESFG
YILPANESFG
YILPANESFG
YILPANESFG
SLFTANSHLG
SLFTANSHLG
FMYTTSSILG

IAYWIAPCSK
IAYWIAPCSK
IGYWIAPCSR
LIYWFAPCSK
IAYLISPRSN
VCYLIAPKSP
LCYLIAPKSQ

VLHLWNLLDF
VLHLWNLLDF
ILQLWNVLDF
LFELWNMLDF
IHDWWNLMDF
IHDWWNLMDF
LEESRNQLSF

PLQISLGRTV
PLQISLGRTV
PLQISLGRTV
PLQISLGRTV
PLQISLGRML
PLQISLGRML
PLQISMGQML

LGRTLRSPFM
LGQTLRSPFM
LGKILRSPFM
MGKIMRGPFM
LGLFIKKPFI
LGLFIRKPFI
FGRIIHTPFM

S3
GMLSIFVASF
GMLSIFVASF
GMLSIFIAAF
GMLAIFPASF
AMNSLYLATI
VMNSLYLATI
VMNSLYLATF

KFVAHAVSFT
KFVAHAVSFT
KFVAHAASFI
KFVAHAASFT
KFICHTASYL
KFICHTASYL
KFIIHGASYF

TARFMAFLKA
TARFMAFLKA
TARFLAFLQA
IARFMAFWHA
SLKIVAYVKY
SLKIVAFVKY
A L K W A H N K F

S5
KDIFKFMVIF IMVFVAFMIG 
KDIFKFMVIF IMVFVAFMIG 
KDIFKFMVLF IMVFFAFMIG 
KDIFKFMVIF IMVFVAFMIG 
LDILKFLFIY CLVLLAFANG 
LDILKFLFIY CLVLLAFANG 
QDFGKFLGMF LLVLFSFTIG

S I  50
IFLGLLW NA SDRFEGVKTL PNETFTDYPK QIFRVKTTQ 
IFLGLLW NA SDRFEGVKTL PNETFTDYPK QIFRVKTTQ 
IFLGLLVFNA SDRFEGITTL PNITVTDYPK QIFRVKTTQ 
IFLGLLVMNA ADRFEGTKLL PNETSTDNAK QLFRMKTSC
TFLFMLLL. A SQHIVRTD........................................... LHVQGPP
TFLFLLLL. A SQHIDRSD........................................... LNRQGPP
TFLLLLNL. Y SLVYNEDK........................................... KNTMGPA

60
TEAQLYVDQH VQDDTLHNVS LPPEVAYFTY ARDKWWPSD 
SEAQLYVDQY VQDVTLHNVS LPPEVAYFTY ARDKWWPSD 
TKAQQYVDSY VQESDLSEVT LPPEIQYFTY ARDKWLPSD 
SKAQSIIDAN DTLKDLTKVT LGDNVKYYNL ARIKWDPSD
NGSR........................................................................... PREEWEMWH
SALN........................................................................... PRESWDMWH
HDFA........................................................................... DRKDWDAFH

70
MFNLYSYYRG...........................................AKYNP AFTTVEESF
MFNLYSYYRG.......................................... AKYNP AFTTVEESF
M FIL Y SY Y L G ...........................................AKVNA AFTTVEESF
M FN LY SY Y IG ...........................................AKQNE AFTTVEESF
LNQLYFYYET RAIDEPNNCK GIRCEKQ. NN AFSTLFETL 
LNQLYFYYEE . . . TKGLTCK GIRCEKQ.NN AFSTLFETL 
LTQL..YDKG YTSKEQKDCV GIFCEQQSND TFHSFIGTC

701 PORE
htrp7
mtrp7
htrp3
htrp6
htrp5
htrp4
htrpl

TLFWSIFGLS 
TLFWSIFGLS 
TLFWSIFGLS 
TLFWAIFGLS 
SLFWSVFGL. 
SLFWSIFGL. 
ALFWYIFSLA

E V I S W .  .LK 
E V I S W .  .LK 
E V T S W . .LK 
EV K SW . . IN 
. LNLYVTNVK 
. INLYVTNVK 
HVAIFVTRFS

YDHKFIENIG
YDHKFIENIG
YDHKFIENIG
YNHKFIENIG
ARHEFTEFVG
AQHEFTEFVG
YGEELQSFVG

YVLYGVYNVT 
YVLYGVYNVT 
YVLYGIYNVT 
YVLYGVYNVT 
ATMFGT YNVI 
ATMFGT YNVI 
AVIVGTYNW

S6
MVWLLNMLI
MVWLLNMLI
MVWLLNMLI
MVIVLLNMLI
SLWLLNMLI
SLWLLNMLI
W IVLTKLLV

AMINNSYQEI
AMINNSYQEI
AMINSSYQEI
AMINSSFQEI
AMMNNSYQLI
AMMNNSYQLI
AMLHKSFQLI

EEDADVEWKF
EEDADVEWKF
EDDSDVEWKF
EDDADVEWKF
ADHADIEWKF
ADHADIEWKF
ANHEDKEWKF

ARAKLWLSYF
ARAKLWLSYF
ARSKLWLSYF
ARAKLWFSYF
ARTKLWMSYF
ARTKLWMSYF
ARAKLWLSYF

DEGRTLPAPF
DEGRTLPAPF
DDGKTLPPPF
EEGRTLPVPF
DEGGTLPPPF
EEGGTLPTPF
DDKCTLPPPF

80
NLVPSPKSF
NLVPSPKSF
SLVPSPKSF
NLVPSPKSL
N IIP S P K S F
NVIPSPKSL
N IIP S P K T I



htrp7
mtrp7
htrp3
htrp6
htrp5
htrp4
htrpl

htrp7
mtrp7
htrp3
htrp6
htrp5
htrp4
htrpl

htrp7
mtrp7
htrp3
htrp6
htrp5
htrp4
htrpl

htrp7
mtrp7
htrp3
htrp6
htrp5
htrp4
htrpl

801 90
YLIMRIKMCL IKLCKSKAKS CENDLEMGML NSKFKKTRY............................................................Q AGMRNSENLT ANNTLSKPTR YQKIMKRLIK RYVLKA.QV
YLIMRIKMCL IELCQSKAKR CENDLEMGML NSKFRKTRY............................................................Q AGMRNSENLT ANSTFSKPTR YQKIMKRLIK RYVLKA.QV
Y F IM R I  VNFPKCRRRR LQKDIEMGMG NSKSRLNLFT  Q SNSRVFESHS FNSILNQPTR YQQIMKRLIK RYVLKA.QV
YLLLKLKKWI SELFQGHKKG FQEDAEMNKI NEEKKLGILG SHEDLSKLSL DKKQVGHNKQ PSIRSSEDFH LNSFNNPPRQ YQKIMKRLIK RYVLQA.QI
YLGNWFNNTF CPKRDPDGRR RRRNLR.......................................................................................................................SFTER NADSLIQNQH YQEVIRNLVK RYVAAMIRN
YLIKWIWTHL CKKK. . .MRR K PESFG...................................................................................................................... TIGRR AADNLRRHHQ YQEVMRNLVK RYVAAMIRD
YMISSLSKWI CSHTSKGKVK RQNSLK EW RNLKQKRDEN YQKVMCCLVH RYLTSMRQK

901
RENDEVNEGE LKEIKQDISS LRYELLEEKS QATGELADLI QQLSEKFGKN 
RENDEVNEGE LKEIKQDISS LRYELLEEKS QATGELADLI QQLSEKFGKN 
KENDEVNEGE LKEIKQDISS LRYELLEDKS QATEELAILI HKLSEKLNPS 
KESDEVNEGE LKEIKQDISS LRYELLEEKS QNTEDLAELI RELGEKLSME 
KTHEGLTEEN FKELKQDISS FRYEVLDLL. . G N R K . . . . H  PRSFSTSSTE 
KTEEGLTEEN FKELKQDISS FRFEVLGLL. . RGSKLSTIQ SANASKESSN 
QSTDQATVEN LNELRQDLSK FRNEIRDLLG FRTSKYAMFY PRN *..............

1001

100
LNKDHLRVNK G KDI........................................................................................................
LNKDHLRVNQ GKDI........................................................................................................
M LRCE* ...................................................................................................................
PNQEETNR............................................................................................................................
LSQRDDNNDG SGGARAKSKS V S . F N L G . . C  KKKTCHGPPL IRTMPRSSG 
SADSDEKSDS EGNSKDKKKN FSLFDLTTLI HPRSAAIASE RHNISNGSA

110

QGKSKAESSS KRSFMGPSLK KLGLLFSKFN GHMSEPSSEP MYTISDGIVQ QHCMWQDIRY SQMEKGKAEA CSQSEINLSE VELGEVQGAA QSSECPLAC 
WQEPPREKQ RKVNFVTDIK NFGLFHRRSK QNAAEQNANQ IFSVSEEVAR QQAAGPLERN IQ L E . SRGLA . . . SRGDLSI  PGLSEQCVLV DHRERNTD.

1101 1161

SSLHCASSIC SSNSKLLDSS EDV..............................FETWGEA CDLLMHKWGD GQEEQVTTRL *
LGLQVGKRVC PFKSEKVWE DTVPIIPKEK HAKEEDSSID YDLNLPD. TV THEDYVTTRL *



TRPC7 n u c l e o t i d e  a l ig n m e n t  
Nam e: A J 4 2 1 7 8 3  Human (GSK) Nam e: A J 2 7 2 0 3 4  Human ( b a t h )  Nam e: A F 1 3 9 9 2 3  M ouse

7V T / 0 1  O  O  O

1 50
A J 4 z l / o J
7\ T O  H  o  n  O  AAuZ /^U J4
A F 1 3 9 9 2 3 CCGCCTCGGC CACCCATGGG GAGCCAGATC CCGGAGACTC CGTTCAGGATTCGGGTCATC TAGAGGAGGG ACAAGCCTGC GTATTCTACT CTCGATGTTG

1 0 1 1 5 0
A J 4 2 1 7 8 3 AGGAACAGCA CCTTCAAAAA CATGCAGCGC CGGCACACAA CGCTGAGGGAGAAGGGCCGT CGCCAGGCCA TCCGGGGTCC CGCCTACATG TTCAACGAGA
A J 2 7 2 0 3 4 AGGAACAGCA CCTTCAAAAA CATGCAGCGC CGGCACACAA CGCTGAGGGAGAAGGGCCGT CGCCAGGCCA TCCGGGGTCC CGCCTACATG TTCAACGAGA
A F 1 3 9 9 2 3 GGGAGCAACA CCTTCAAAAA CATGCAGCGC CGGCACACCA CCT TGAGGGAGAAGGGGCGC CGCCAGGCCA TCCGGGGTCC TGCCTACATG TTCAACGAGA

2 0 1 2 5 0
A J 4 2 1 7 8 3 AGGGCACCAG TCTGACGCCC GAGGAGGAGC GCTTCCTGGA CTCGGCCGAGTATGGCAACA TCCCGGTGGT CCGGAAAATG CTGGAGGAGT CCAAGACCCT
A J 2 7 2 0 3 4 AGGGCACCAG TCTGACGCCC GAGGAGGAGC GCTTCCTGGA CTCGGCTGAGTATGGCAACA TCCCGGTGGT CCGGAAAATG CTGGAGGAGT CCAAGACCCT
A F 1 3 9 9 2 3 AGGGCACGAG CCTGACCCCT GAGGAGGAGC GCTTCCTGGA CTCGGCTGAGTATGGCAACA TACCAGTGGT CAGAAAAATG CTGGAGGAAT CCAAGACCCT

3 0 1 3 5 0
A J 4 2 1 7 8 3 TAACTTCAAC TGTGTGGACT ACATGGGGCA GAACGCTCTG CAGCTGGCTGTGGGCAACGA GCACCTAGAG GTCACGGAGC TGCTGCTGAA GAAGGAGAAC
A J 2 7 2 0 3 4 TAACTTCAAC TGTGTGGACT ACATGGGGCA GAACGCTCTG CAGCTGGCCGTGGGCAACGA GCACCTAGAG GTCACGGAGC TGCTGCTGAA GAAGGAGAAC
A F 1 3 9 9 2 3 CAATTTCAAC TGCGTGGACT ACATGGGGCA GAACGCGCTG CAGCTGGCCGTGGGCAACGA GCACTTGGAG GTCACTGAAC TGTTGCTGAA GAAAGAGAAC

4 0 1 4 5 0
A J 4 2 1 7 8 3 CTGGCACGGG TGGGGGACGC GCTGCCGCTG GCCATCAGCA AGGGCTAT GT GCGCATCGT G GAGGCCATCC TCAACCACCC GGCCTTCGCG CAGGGCCAGC
A J 2 7 2 0 3 4 CTGGCACGGG TGGGGGACGC GCTGCTGCTG GCCATCAGCA AGGGC TAT GT GCGCATCGT G GAGGCCATCC TCAACCACCC GGCCTTCGCG CAGGGCCAGC
A F 1 3 9 9 2 3 TTGGCGCGGG TGGGCGACGC GCTGCTGCTG GCCATCAGCA AGGGCTATGTGCGCATTGTG GAGGCCATCC TCAGCCATCC GGCCTTCGCG CAGGGCCAGC

5 0 1 5 5 0
A J 4 2 1 7 8 3 GCCTGACGCT CAGCCCGCTG GAACAGGAGC TGCGCGACGA CGACTTCTATGCCTACGACG AGGACGGCAC GCGCTTCTCC CACGACATCA CGCCCATCAT
A J 2 7 2 0 3 4 GCCTGACGCT CAGCCCGCTG GAACAGGAGC TGCGCGACGA CGACTTCTATGCCTACGACG AGGACGGCAC GCGCTTCTCC CACGACATCA CGCCCATCAT
A F 1 3 9 9 2 3 GCCTGACGCT CAGCCCGCTG GAGCAGGAGC TGCGGGATGA TGACTTCTATGCCTACGACG AGGATGGCAC GCGCTTCTCC CACGACATCA CACCCATCAT

6 0 1 6 5 0
A J 4 2 1 7 8 3 CCTGGCGGCG CACTGCCAGG AGTATGAGAT CGTGCACATC CTGCTGCTCAAGGGCGCCCG CATCGAGCGG CCCCACGACT ACTTCTGCAA GTGTAATGAG
A J 2 7 2 0 3 4 CCTGGCGGCG CACTGCCAGG AGTATGAGAT CGTGCACATC CTGCTGCTCAAGGGCGCCCG CATCGAGCGG CCCCACGACT ACTTCTGCAA GTGCAATGAG
A F 1 3 9 9 2 3 CCTGGCGGCC CACTGCCAGG AGTATGAGAT TGTGCATATC TTGCTGCTCAAGGGTGCGCG CATTGAGCGG CCCCATGACT ACTTCTGCAA GTGCAATGAG

7 0 1 7 5 0
A J 4 2 1 7 8 3 TGCACCGAGA AACAGCGGAA AGACTCCTTC AGCCACTCGC GCTCGCGCATGAACGCCTAC AAAGGGCTGG CGAGTGCTGC CTACTTGTCC CTGTCCAGCG
A J 2 7 2 0 3 4 TGCACCGAGA AACAGCGGAA AGACTCCTTC AGCCACTCGC GCTCGCGCATGAACGCCTAC AAAGGACTGG CGAGTGCTGC CTACTTGTCC CTGTCCAGCG
A F 1 3 9 9 2 3 TGCACGGAGA AGCAGCGCAA GGACTCCTTC AGTCACTCGC GCTCCCGGATGAATGCCTAC AAAGGACTGG CCAGTGCCGC CTACCTGTCC CTATCCAGTG

8 0 1 8 5 0
A J 4 2 1 7 8 3 AAGACCCTGT CCTCACCGCC CTGGAGCTCA GCAACGAGTT AGC CAGAC TAGC CAACATT G AGACTGAATT TAAGAACGAT TACAGGAAGT TATCTATGCA
A J 2 7 2 0 3 4 AAGACCCTGT CCTCACCGCC CTGGAGCTCA GCAACGAGTT AGC CAGAC TAGC CAACATT G AGACTGAATT TAAGAACGAT TACAGGAAGT TATCTATGCA
A F 1 3 9 9 2 3 AAGACCCTGT CCTCACTGCG CTGGAGCTAA GCAACGAGTT AGCCCGACTGGCCAACATTG AGACTGAATT TAAGAATGAT TACAGGAAGT TATCTATGCA



A J 4 2 1 7 8 3
9 0 1
ATGCAAAGAT TTTGTAGTGG GCGTGCTGGA CCTGTGCCGA

9 5 0
GACACAGAAGAGGTGGAAGC AATTTTAAAC GGTGATGTGA ACTTCCAAGT CTGGTCCGAC

A J 2 7 2 0 3 4 ATGCAAGGAT TTTGTAGTGG GCGTGCTGGA CCTGTGCCGA GAC ACAGAAGAGGT GGAAGC AATTTTAAAC GGTGATGTGA ACTTCCAAGT CTGGTCCGAC
A F 1 3 9 9 2 3 A T  GCAAGGAT TTTGTGGTGG GCGTGCTGGA CCTGTGCCGA GACACAGAAGAGGTGGAAGC AATTTTAAAT GGCGATGTGA ACTTGCAAGT CTGGTCCGAC

A J 4 2 1 7 8 3
1 0 0 1
CACCACCGTC CAAGTCTGAG CCGGATCAAA CTCGCCATTA

1 0 5 0
AGTATGAAGTCAAGAAGTTC GTTGCTCATC CTAACTGTCA GCAGCAATT G CTTACCATGT

A J 2 7 2 0 3 4 CACCACCGTC CAAGTCTGAG CCGGATCAAA CTCGCCATTA AATATGAAGTCAAGAAGTTC GTTGCTCATC CTAACTGTCA GCAGCAATTG CTTACCATGT
A F 1 3 9 9 2 3 CACCACCGTC CAAGTCTGAG CCGAATCAAA CTCGCCATTA AGTACGAAGTCAAGAAGTTC GTTGCTCACC CTAACTGTCA GCAGCAATT G CTTACCATGT

A J 4 2 1 7 8 3
1 1 0 1
GGTATGAAAA TCTCTCAGGC TTACGTCAAC AGTCTATCGC

1 1 5 0
TGTGAAATTCCTGGCTGTCT TTGGAGTCTC CATAGGCCTC CCTTTTCTCG CCATAGCCTA

A J 2 7 2 0 3 4 GGTATGAAAA TCTCTCAGGC TTACGTCAAC AGTCTATCGC TGTGAAATTCCTGGCTGTCT TTGGAGTCTC CATAGGCCTC CCTTTTCTCG CCATAGCCTA
A F 1 3 9 9 2 3 GGTATGAAAA TCTCTCAGGC TTACGGCAAC AGTCTATCGC TGTGAAATTCCTGGCTGTCT TTGGAGTCTC CATAGGCCTC CCTTTTCTCG CCATAGCCTA

A J 4 2 1 7 8 3
1 2 0 1
TTGGATTGCT CCGTGCAGCA AGC TAGGAC G AACCCTGAGG

1 2 5 0
AGCCCTTTCATGAAGTTTGT AGCTCATGCA GTTTCTTTTA CAATCTTCTT GGGAT TATTA

A J 2 7 2 0 3 4 TTGGATTGCT CCGTGCAGCA AGCTAGGACG AACCCTGAGG AGCCCTTTCATGAAGTTTGT AGCTCATGCA GTTTCTTTTA CAATCTTCTT GGGATTATTA
A F 1 3 9 9 2 3 TTGGATTGCT CCGTGCAGCA AGC TAGGAC A AACCCTGAGG AGCCCTTTCATGAAGTTTGT GGCCCATGCA GTGTCTTTTA CCATCTTCTT GGGACTGCTA

A J 4 2 1 7 8 3
1 3 0 1
GTTGTGAATG CATCTGACCG ATTTGAAGGT GTTAAAACCC

1 3 5 0
TGCCAAACGAAACCTTCACA GACTACCCAA AACAAATCTT CAGAGTGAAA ACCACACAGT

A J 2 7 2 0 3 4 GTTGTGAATG CATCTGACCG ATTTGAAGGT GTTAAAACCC TGCCAAACGAftACCTTCACA GACTACCCAA AACAAATCTT CAGAGTGAAA ACCACACAGT
A F 1 3 9 9 2 3 GTTGTGAACG CCTCCGACCG GTTTGAGGGC GTTAAGACTC TGCCCAATGAGACCTTCACA GACTACCCCA AACAGATCTT CAGAGTGAAA ACCACACAGT

A J 4 2 1 7 8 3
1 4 0 1
TCTCCTGGAC AGAAATGCTC ATTATGAAGT GGGTCTTAGG

1 4 5 0
AATGATCTGGTCCGAATGCA AGGAAATCTG GGAGGAGGGG CCACGGGAGT ACGTGCTGCA

A J 2 7 2 0 3 4 TCTCCTGGAC AGAAATGCTC ATTATGAAGT GGGTCTTAGG AATGATTTGGTCCGAATGCA AGGAAATCTG GGAGGAGGGG CCACGGGAGT ACGTGCTGCA
A F 1 3 9 9 2 3 TCTCCTGGAC GGAGATGCTC ATCATGAAGT GGGTCTTAGG AATGATCTGGTCCGAATGCA AGGAGATCTG GGAGGAGGGG CCGCGGGAGT ACGTGCTACA

A J 4 2 1 7 8 3
1 5 0 1
CTTGTGGAAC CTGCTAGATT TCGGGATGCT GTCCATCTTC

1 5 5 0
GTGGCCTCCT TCACAGCACG CTTCATGGCC TTCCTGAAGG CCACGGAGGC ACAGCTGTAC

A J 2 7 2 0 3 4 CTTGTGGAAC CTGCTAGATT TCGGGATGCT GTCCATCTTC GTGGCCTCCTTCACAGCACG CTTCATGGCC TTCCTGAAGG CCACGGAGGC ACAGCTGTAC
A F 1 3 9 9 2 3 CTTGTGGAAC CTTCTGGATT TTGGCATGCT GTCCATCTTC GTGGCCTCCTTCACTGCGAG GTTCATGGCT TTCCTCAAGG CCAGCGAGGC CCAGCTGTAC

A J 4 2 1 7 8 3
1 6 0 1
GTGGACCAGC ACGTGCAGGA CGACACGCTG CACAATGTCT

1 6 5 0
CGCTTCCGCCGGAAGTAGCA TACTTCACCT ACGCCAGGGA CAAGTGGTGG CCTTCAGACC

A J 2 7 2 0 3 4 GTGGACCAGC ACGTGCAGGA CGACACGCTG CACAATGTCT CGCTTCCGCCGGAAGTGGCA TACTTCACCT ACGCCAGGGA CAAGTGGTGG CCTTCAGACC
A F 1 3 9 9 2 3 GTGGACCAGT ACGTGCAGGA TGTAACGCTG CACAACGTCT CACTTCCACCGGAAGTGGCC TACTTCACCT ACGCCAGGGA TAAGTGGTGG CCTTCAGACC

A J 4 2 1 7 8 3
1 7 0 1
CTCAGATCAT ATCGGAAGGG CTCTACGCGA TAGCCGTCGT

1 7 5 0
GCTGAGCTTCTCTCGCATTG CATACATTCT GCCAGCCAAC GAGAGTTTTG GGCCCCTGCA

A J 2 7 2 0 3 4 CTCAGATCAT ATCGGAAGGG CTCTACGCGA TAGCCGTCGT GCTGAGCTTCTCTCGCATTG CATACATTCT GCCAGCCAAC GAGAGTTTTG GGCCCCTGCA
A F 1 3 9 9 2 3 CCCAGATCAT CTCGGAAGGG CTGTACGCCA TTGCGGTTGT CCTCAGCTTCTCCCGGATCG CCTACATCCT GCCAGCCAAT GAGAGCTTCG GACCTTTGCA



A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

A J 4 2 1 7 8 3
A J 2 7 2 0 3 4
A F 1 3 9 9 2 3

AJ421783 
A J 2 7 2 0 3 4  
A F 1 3 9 9 2 3

1 8 0 1
GATCTCGCTA GGGAGAACTG 
GATCTCGCTA GGGAGAACTG 
GATCTCCCTG GGAAGAACTG

1 9 0 1
TACTACCGAG GTGCCAAATA 
TACTACCGAG GTGCCAAATA 
TACTACCGAG GTGCAAAGTA

2001
TGGTGCTGAA ATACGACCAC 
TGGTGCTGAA ATACGACCAC 
TGGTGCTGAA ATACGACCAC

2101
AGCCATGATA AACAACTCCT 
AGCCATGATA AACAACTCCT 
AGCCATGATC AACAACTCCT

2201
AGAACTCTAC CTGCTCCTTT 
AGAACTCTAC CTGCTCCTTT 
AGAACTCTCC CTGCTCCCTT

2 3 0 1
AGGCCAAAAG CTGTGAAAAT 
AGGCCAAAAG CTGTGAAAAT 
AGGCCAAACG CTGTGAAAAC

2 4 0 1
AGCAAATAAC ACTTTGAGCA 
AGCAAATAAC ACTTTGAGCA 
AGCCAATAGC ACCTTCAGCA

2 5 0 1
GAAGTCAATG AAGGCGAGCT 
GAAGTCAATG AAGGCGAGCT 
GAAGTCAATG AAGGTGAACT

2 6 0 1
ACCTGATTCA ACAACTCAGC 
ACCTGATTCA ACAACTCAGC 
ACCTGATTCA GCAGCTCAGC

TGAAAGATAT CTTCAAGTTC 
TGAAAGATAT CTTCAAGTTC 
TGAAAGACAT CTTCAAGTTC

CAACCCAGCG TTTACAACGG 
CAACCCAGCG TTTACAACGG 
CAACCCAGCG TTTACCACAG

AAATTCATCG AGAACATTGG 
AAATTCATCG AGAACATTGG 
AAGTTCATCG AGAATATTGG

ATCAGGAAAT TGAGGAGGAT 
ATCAGGAAAT TGAGGAGGAT 
ATCAGGAAAT CGAGGAAGAC

TAATCTAGTG CCAAGTCCTA 
TAATCTAGTG CCAAGTCCTA 
TAACCTGGTG CCGAGCCCTA

GACCTTGAAA TGGGCATGCT 
GACCTTGAAA TGGGCATGCT 
GACCTGGAAA TGGGCATGCT

AGCCCACCAG ATACCAGAAA 
AGCCCACCAG ATACCAGAAA 
AGCCCACCAG ATACCAGAAG

GAAGGAAATC AAGCAAGATA 
GAAGGAAATC AAGCAAGATA 
CAAGGAGATC AAACAAGACA

GAGAAGTTTG GAAAGAACTT 
GAGAAGTTTG GAAAGAACTT 
GAGAAGTTTG GGAAGAATCT

1 8 5 0
ATGGTCATTTTCATCATGGT
ATGGTCATTTTCATCATGGT
ATGGTCATTTTTATCATGGT

1 9 5 0
TTGAAGAAAGTTTTAAAACT
TTGAAGAAAGTTTTAAAACT
TTGAAGAAAGCTTTAAAACC

2 0 5 0
CTACGTTCTCTACGGCGTTT
CTACGTTCTCTACGGCGTTT
CTACGTGCTGTATGGGGTTT

2 1 5 0
GCAGATGTGGAATGGAAGTT 
GCAGAT GT GGAAT GGAAGT T 
GCGGACGTGGAGTGGAAATT

2 2 5 0
AATCATTTTATTATCTCATA 
AATCAT TT TAT TATCTCATA 
AATCCTTTTATTATCTCATA

2 3 5 0
GAATTCCAAATTCAAGAAGA
GAATTCCAAATTCAAGAAGA
GAACTCCAAGTTCAGGAAGA

2 4 5 0
ATCATGAAACGGCTCATAAA
ATCATGAAACGGCTCATAAA
ATCATGAAGCGGCTCATAAA

2 5 5 0
TCTCCAGCCTGCGCTATGAG
TCTCCAGCCTGCGCTATGAG
TCTCAAGCCTTCGCTATGAG

2 6 5 0
AAACAAAGACCACCTGAGGG
AAACAAAGACCACCTGAGGG
GAACAAAGACCACCTGCGGG

ATTTGTGGCC TTCATGATTG 
ATTTGTGGCC TTCATGATTG 
ATTTGTGGCC TTTATGATCG

TTGTTTTGGT CCATATTCGG 
TTGTTTTGGT CCATATTCGG 
TTGTTTTGGT CCATATTTGG

ATAACGTCAC CATGGTGGTA 
ATAACGTCAC CATGGTGGTA 
ATAATGTCAC CATGGTGGTT

CGCCCGAGCA AAACTCTGGC 
CGCCCGAGCA AAACTCTGGC 
TGCTCGAGCG AAGCTCTGGC

ATGAGAATCA AGATGTGCCT 
ATGAGAATCA AGATGTGCCT 
ATGAGAATCA AGATGTGCCT

CTCGCTACCA GGCTGGCATG 
CTCGCTACCA GGCTGGCATG 
CTCGCTACCA GGCTGGCATG

AAGATACGTC CTGAAAGCCC 
AAGATACGTC CTGAAAGCCC 
GAGATACGTG CTGAAGGCCC

CTTCTTGAGG AAAAATCTCA 
CTTCTTGAGG AAAAATCTCA 
CTCCTGGAGG AGAAGTCTCA

TGAACAAGGG CAAAGACATT 
TGAACAAGGG CAAAGACATT 
TGAACCAGGG CAAGGACATT

GGATGTTCAA CCTGTACTCT 
GGATGTTCAA CCTGTACTCT 
GAATGTTCAA CCTGTACTCC

CTTATCTGAA GTAATCTCAG 
CTTATCTGAA GTAATCTCAG 
c t t g t c t g a g  GTCATCTCGG

GTGTTGCTCA ACATGCTAAT 
GTGTTGCTCA ACATGCTAAT 
GTACTACTCA ACATGCTGAT

TGTCTTACTT TGATGAAGGA 
TGTCTTACTT TGATGAAGGA 
TTTCTTACTT TGATGAAGGA

CATAAAACTC TGCAAATCTA 
CATAAAACTC TGCAAATCTA 
CATAGAGCTC TGCCAATCTA

AGGAATTCTG AAAATCTGAC 
AGGAATTCTG AAAATCTGAC 
AGGAATTCTG AAAACCTGAC

AGGTGGACAG AGAAAATGAC 
AGGTGGACAG AGAAAATGAC 
AGGTGGACAG AGAGAACGAT

AGCTACAGGT GAGCTGGCAG 
AGCTACTGGT GAGCTGGCAG 
GGCTACAGGA GAGCTGGCAG

TAG
TAG
TAG


