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SUMMARY

Fluid power systems are employed in many large-scale engineering applications. The 

analysis, synthesis, design and automatic monitoring of such, in general highly nonlinear 

hydraulic systems, is very difficult without high performance simulations.

The work in this thesis is aimed at developing a general parallel simulation methodology 

to facilitate the rapid and accurate dynamic analysis of large and complex hydraulic 

systems as well as establishing parallel simulations for condition monitoring purposes of 

these systems. It has been demonstrated that considerable improvements in simulation 

speed are possible using the parallel transmission line modelling method (TLM) method. 

Depending upon the numerical nature of the equivalent ordinary differential equation 

simulation, the speed increase achieved employing TLM could exceed more than two 

orders of magnitude. Because the TLM method is entirely general, the simulation and 

identification techniques proposed in this research should be readily extendible to 

accommodate a very wide range of complex engineering systems.

The concepts of processor load balancing and reduction of communication overheads are 

presented and evaluated for specific test-system simulations. Constraints imposed when 

configuring a parallel implementation of particular systems are addressed and solutions are 

evaluated. Genetic algorithms are investigated to solve the difficult process-processor 

mapping problem where computation and communication time needs to be accounted for. 

Additionally a new extrapolation-interpolation method is developed enabling the reduction 

of communication between processors.

Existing monitoring systems largely rely on range, or limit checking to initiate automatic 

corrections, or warnings. This may be appropriate for overall plant supervision, but 

incipient internal component faults often go undetected until breakdown occurs. This 

thesis investigates a different approach where neural networks are trained for the condition 

monitoring process. It is demonstrated that it is possible to train diagnostic networks with 

simulation data only enabling the identification of faults obtained from an experimental 

electrohydraulic servo system.
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1 Introduction

Fluid power systems are employed in many large-scale engineering applications, including 

marine and aircraft systems, automobile applications and steel making plant. In general, 

safety, integrity and efficient operation of these systems is of great importance. The 

analysis, synthesis and design of such, in general highly nonlinear hydraulic systems, is 

very difficult or impossible without high performance simulations.

The simulation of continuous systems began more than forty years ago using analogue 

computers. Such simulations were usually performed in the time domain and are restricted 

to solving sets of ordinary differential equations. The development of the digital computer 

soon caused a diminishment in the popularity of the analogue computer for simulation 

purposes. One reason for this is that analogue computers are unable to cope efficiently 

with multi-variable function generation, a simple procedure for a digital computer. Since 

the fifties the speed of digital computers has been improved by about six orders of 

magnitude.

Nevertheless, the computational demands of many complex scientific and engineering 

problems cannot be met by a single computer. Furthermore, sequential processing must 

reach its limit. The advances in microelectronics technology have made parallel computing 

possible offering the potential for solving very large problems that could not be solved a 

few years ago. However, in order to use parallel computers for a specific application, 

existing algorithms need to be restructured for the particular architecture and new 

algorithms developed. In fact, conventional algorithms need to be re-examined, since the 

best algorithm for a sequential computer may not be the best for a parallel computer 

[Ozgilner & Er^al, 1991].

Computer modelling of hydraulic systems is non-trivial and involves solving a system of 

differential equations incorporating significant non-linearities, including discontinuous 

operation (valve opening/closing), saturation (actuator end-stops) and hysteresis (stiction). 

Numerical techniques using a multi-step, multi-order integrator coupled with an 

appropriate re-start capability at discontinuity points, can improve simulation efficiency 

dramatically. However, the simulation of a complex system involving many components 

can still be time consuming even when using a high performance processor. Real-time 

performance cannot be achieved.
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Detailed and sophisticated simulations have many merits. They can reduce the number of 

costly prototype tests and they may be repeated to allow for sensitivity case studies or for 

extremes of operating conditions. Savings due to simulations often result in savings of 

overall project cost as a consequence of a simulation study at the design stage. Parallel 

processing enables the simulation of more complex models incorporating non-linear 

effects. For multi-variable plant optimisation where many (thousands) simulations of the 

same plant model have to be calculated parallel processing can efficiently lead to effective 

solutions. On the other hand, assuming sufficient speed-up of the simulation this can be 

used for on-line condition monitoring and/or model reference adaptive control. Critical 

operating conditions can then be detected and warnings or maintenance can be initiated. 

Reliance may also be placed on the use of on-condition maintenance, as opposed to fixed 

maintenance schedules. Condition monitoring is especially important in applications such 

as steel manufacture, where unexpected failures result in costly production losses and/or 

operation hazardous to personnel.

Existing monitoring systems largely rely on range, or limit checking to initiate automatic 

corrections, or warnings. This may be appropriate for overall plant supervision, but 

incipient internal component faults often go undetected until breakdown occurs. An 

increase in the number of sensors to measure directly plant parameters indicative of certain 

failure conditions does not necessarily improve plant reliability. Furthermore, many faults 

remain undetectable through the use of existing transducer technology.

It is possible to perform condition monitoring through a comparison of the measured 

performance with that predicted by a steady-state model. This may be very effective and 

generally does not require substantial processing power. However, many systems are self- 

compensating (for example pressure compensated pumps) and conventional steady-state 

limit checking techniques of plant states may not detect a developing fault early enough.

The use of a dynamic plant reference model allows the identification of parameters which 

cannot be determined through the use of simple steady-state models. Careful selection of 

the plant states to be monitored can allow a reduction in the number of sensors required to 

identify unknown system parameters. Furthermore, functionally related measurements 

may allow the verification of some sensor outputs.
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1.1 Background

1.1.1 Real-time parallel simulation using transmission line modelling (TLM)

Parallel simulation of systems offers the benefit of increased speed of execution, but 

requires the system model to be partitioned effectively to enable numerical tasks to be 

performed concurrently on individual processors. Hydraulic systems are characterised by a 

transport delay in the pipelines connecting physical components, which is due to the 

propagation of waves at the speed of sound through the fluid medium. The transmission 

delay allows component models to be decoupled, enabling a parallel solution; the inputs to 

each component model are delayed outputs from connected models. This transmission line 

modelling (TLM) approach has the potential of real-time simulation of large and complex 

hydraulic plant, which is currently possible only with limited linear system models. All 

important real plant dynamics including non-linearities can be modelled in a parallel 

processor scheme, resulting in significantly improved reference models.

The current availability of low cost hardware platforms and the recent development of 

software tools for parallel programming allows the transmission line modelling method 

(TLM) to be developed in a true multiprocessor environment. Technology is constantly 

improving in terms of ever-increasing processor speed and as such this research is 

concerned with real-time performance as well as relative performance improvements. The 

concepts of processor load balancing and reduction of communication overheads are 

presented and evaluated for specific test-system simulations. Constraints imposed when 

configuring a parallel implementation of particular systems are addressed and solutions are 

evaluated.

The research described in this thesis is a continuation of a previous project on parallel 

simulations of hydraulic systems using TLM [Burton, 1994]. Packages with automatic 

code generation facilities are intended to take computer programming and simulation 

coding out of the hands of the user. Such packages have been developed for particular 

industries but mainly use single processor computing. The work in this thesis is aimed at 

developing a general parallel simulation methodology to facilitate the rapid and accurate 

dynamic analysis of large and complex hydraulic systems as well as establishing parallel 

simulations for condition monitoring purposes of these systems.
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The performance of a specific computation on a multiprocessor is affected by the 

processor and communication architecture, the interconnection network topology, the I/O 

subsystems, and the parallel algorithm and communication protocols. Each of these 

aspects is a complex problem in itself and solutions require an understanding of the 

interactions among them. An important part of this research addresses the problem of 

automatic program generation for parallel computing platforms. This includes the 

investigation of genetic algorithms to solve the difficult process-processor mapping 

problem.

1.1.2 On-line condition monitoring

Man has always been interested in preventing catastrophes, being a consequence of their 

works or of natural causes. As technology advances, it seems that unfortunately, the risk of 

catastrophic events occurring, increases. The latter fact is the result of bigger and more 

complicated plants, which makes it impossible for human operators to manage or control 

them. Thus the need for automatic or operator-aiding fault monitoring systems [Pouliezos 

& Stavrakakis, 1994].

There has been substantial effort devoted in recent years to the development of system 

identification techniques for both linear and non-linear systems (Thau [1973], Chow & 

Willsky [1984], Sato et al. [1991], Zhou et al. [1991]). In most schemes, a model of the 

plant is employed together with a (limited) number of measured plant states in order to 

establish unknown parameters. A fault condition is indicated when an identified parameter 

is determined to be outside a recommended tolerance limit at a given operating condition. 

Little work appears to have been published on the use of real-time non-linear reference 

models for condition monitoring of fluid power systems. Whatever type of identification 

scheme is employed it is important to avoid over-complexity and consequently, full use 

should be made of a priori information.

Recently, neural networks (NNs) have been found to be very powerful in solving control 

problems. Many applications use the NNs to build non-linear process models. The 

difference between model and plant output is then employed to adjust controllers. This 

thesis investigates a different approach where neural networks are trained for the condition 

monitoring process. It is demonstrated that it is possible to train diagnostic networks with 

simulation data only enabling the identification of experimental faults.



Chapter 1 Introduction Page 5

1.2 Organisation of this thesis

Tables and figures are always shown at the end of each chapter. The reminder of this thesis 

is divided into a further eight chapters, structured in the following way:

Chapter 2: Some of the current literature in several fields of the transmission line 

modelling method (TLM) is reviewed in this chapter. The historic development of TLM is 

recalled and the basic equations are derived. The method is compared with other 

numerical techniques and its stability is investigated. Possible alternatives to the parallel, 

dynamic simulation of hydraulic systems are described in Burton [1994], hence they are 

omitted in this thesis. A simple example circuit is investigated using the basic equations in 

order to illustrate the TLM modelling of hydraulic systems. Some new component models 

are developed and details about these are given. Additionally modelling methods enabling 

simplified model development are investigated.

Chapter 3: This chapter recounts variable time step methods derived for the simulation of 

thermal diffusion problems. A similar approach is then taken for hydraulic circuit 

simulation in order to improve computing efficiency. Problems associated with variable 

time step simulation are investigated and the simulation results of a stiff example system 

are compared with fixed time step simulations.

Chapter 4: The TLM method is inherently parallel and has been developed for parallel 

platforms in order to speed up simulation. In this chapter the process of automatic system 

model generation is described for the case of multi-processor TLM simulations. 

Advantages of the new T9000-based platform over the previously employed T800-based 

system are shown. The TLM simulation process and the TLM numerical algorithm by 

which the TLM models are solved are described. Channels as a concept to communicate 

and synchronise between processors are introduced. The principal way of porting the 

software to other platforms is also described.

Chapter 5: Using the TLM method, decoupling system components is straightforward, 

but the partitioning of the tasks onto processors cannot be done easily. This so called 

assignment problem is known to be NP-complete, i.e. optimal partitioning strategies lead 

to very large computation times. In this chapter the process-processor mapping problem 

has been solved using an automatic method based on genetic algorithms. The aim of the
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partitioning scheme is to reduce the overall computation time of a simulation including 

both the computation and communication time.

Chapter 6: For parallel simulation the main aim of reduction of execution time can be 

achieved by even load balancing, by minimising CPU contention and by reduction of the 

communication between different processors [Sunter & Bakkers, 1994]. This chapter 

reports an investigation on the latter for simulations with fixed time step algorithms. A 

new extrapolation-interpolation method is developed enabling the reduction of 

communication between processors. This method also enables the use of more mainstream 

computers for efficient and large scale parallel TLM simulations.

Chapter 7: In this chapter it is shown how to optimise the parameters of a simulation in 

order to match simulated and measured values. A genetic algorithm (GA) is developed and 

employed enabling the identification and optimisation of several parameters 

simultaneously. This requires the non-linear TLM component models in order to simulate 

the highly non-linear hydraulic systems correctly. The identified parameters, describing 

physical properties of the system, may then be used for condition monitoring purposes.

Chapter 8: This chapter investigates the condition monitoring process of fluid power 

systems. Through the use of artificial neural networks (NNs) different faults can be 

identified correctly. An approach is developed that enables the detection of different levels 

of faults and system deterioration in real-time. A parallel implementation of the approach 

is also suggested. The purpose of this section is not to determine causes but rather to 

discuss techniques which identify the presence of failure characteristics and its source.

Chapter 9: Finally, conclusions are drawn from the various aspects of this research and 

some possible areas for future investigations are suggested.
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2 The transmission line modelling method

2.1 Introduction

This Chapter reviews some of the current literature in several fields of the transmission 

line modelling method (TLM). The historic development of TLM is recalled and the basic 

equations are derived. The method is compared with other numerical techniques and its 

stability is investigated. An example circuit is investigated in detail in order to illustrate 

the TLM modelling of hydraulic systems. In all but the simplest component models, the 

TLM approach can result in rather complex algebraic equations. Therefore the 

simplification of the modelling process of some component features is developed and 

some model details are outlined.

2.2 The historic development of the transmission line modelling method

TLM is characterised by its close relationship to the physical process being simulated. The 

general approach to the solution of engineering problems is to formulate continuous 

models which can then be solved by transformation to the discrete time-domain. TLM can 

also be used to derive discrete time-domain models directly from the physical systems 

[Hui & Christopoulos, 1991]. In other words, the modelling process conceptually 

resembles the actual propagation process. The basic calculations required are very simple, 

and may be implemented efficiently on a computer. Difficulties of implementing the 

technique are also independent of the model size. The model can be developed and tested 

on small problems, and scaled to accommodate larger problems without becoming 

unstable or invalid. Depending on the process being modelled, this can be in one, two or 

three dimensions.

Transmission line modelling (TLM) was developed in the early seventies as a time- 

domain, numerical technique for simulating electromagnetic wave propagation and later 

for other electronic and electrical problems. The first significant impetus to the 

development of TLM was a paper by Johns & Beurle [1971]. The space to be modelled is 

represented as a Cartesian mesh of electrical transmission lines. Each node in the mesh 

corresponds to a junction between a pair of transmission lines and this forms an 

impedance discontinuity in each line. The mesh is represented by lumped inductors and 

capacitors. If the inductance and capacitance, per unit length, Ax, for an individual line, are 

L and C, respectively, the junction between a pair of lines at a mesh node point can be
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represented by a basic elementary network. In Figure 2.1 such a network is given for one­

dimensional problems.

In two dimensions each node communicates with its neighbours through four ports. Figure

2.2 shows a section of a two-dimensional mesh, and illustrates the scattering and reflection 

process. One circle (shaded grey) is shown at different instances in time. At instance I an 

impulse is incident on the node, which scatters into four reflected impulses at instance n. 

These voltage pulses incident on ports 1 to 4 are scattered at each time step and the 

resulting reflected pulses are incident on the relevant ports of adjacent nodes (instance El) 

[Christopoulos, 1991]. Hence, the simulation process is discretised in time and space so 

that impulses reflected from a node in one iteration are incident on its neighbours in the 

next. An accurate numerical model for the propagation of voltage impulses can then be 

implemented in software. In electrical terms the parameters of the connecting transmission 

lines and their manner of connection are governed by Kirchoff s laws. This gives rise to a 

reflection coefficient of -1/2, resulting in a negative impulse of half the incident amplitude 

being reflected in the incident element. Positive impulses of the same amplitude are 

transmitted in the other three directions. Boundaries in the propagating medium are 

achieved by placing resistive loads at nodes [Pomeroy, 1991]. If impulses are injected at a 

number of adjacent nodes a wavefront can also be generated as shown in Figure 2.2.

The TLM models wave propagation and is ideally suited to simulating sound waves 

travelling through a medium. Hence, it has been applied to a wide variety of wave 

propagation problems in homogeneous and inhomogeneous media. Over the years, new 

versions of the TLM method have been developed in order to improve the modelling of 

arbitrary inhomogeneous media. These versions usually involved changes to the topology 

of the transmission lines used to approximate the physical problem. The TLM method was 

further developed to tackle problems other than electromagnetic, namely: circuit 

simulation (Johns & O'Brien, 1980], [Hui et al., 1993a,b]), thermal problems (Pulko & 

Newton [1991], Webb [1991], de Cogan & Enders [1991], Pulko & Olashore [1989], 

Pulko et al. [1990]), acoustic propagation problems (Saleh [1991], Zhang et al. [1991], 

Pomeroy et al. [1993]) and mechanical problems (Partridge et al. [1987], Krus et al. 

[1990], Krus [1995]).

There have been many applications of TLM in the area of heat and mass diffusion and 

related phenomena [Pulko & Newton, 1991]. These include modelling of the soaking of 

rice grains, modelling the behaviour of thin film fuses, predicting the temperature fields in
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glass mould tools, simulating thermal effects in power semiconductors and modelling the 

melting of ice. The recently acquired ability to represent equations involving cross 

derivatives enables the modelling of heat transfer in anisotropic materials [Pulko & 

Wilkinson, 1996]. Saleh [1991] describes the application of TLM in sonar and under water 

acoustics where compressional waves can be accounted for. The method may be used for 

the analysis of radiation patterns of transducer arrays, beam forming and ray tracing 

techniques. A free space boundary for the TLM modelling of acoustics is described by 

Pomeroy et al. [1993] and the TLM modelling of the behaviour of ultrasonic in air is 

investigated by Zhang et al. [ 1991 ].

One of the important features of the TLM method is that it determines the response to a 

delta-function impulse at the input. This means that one calculation contains all the 

necessary information about the frequency response for frequencies from zero to infinity 

[Johns & Beurle, 1971]. Not only is the impulse response of a structure obtained, yielding 

in turn its response to any excitation, but the characteristics of the dominant and higher 

order modes are also accessible in the frequency domain through a Fourier transform 

[Sadiku & Agba, 1990].

Currently, specialised hardware for the solution of TLM problems is also developed. An 

application specific processor for the solution of two-dimensional acoustics of 

electromagnetic TLM models has been investigated by Stothard & Pomeroy [1996]. By 

optimising the design to perform only the TLM algorithm, removing the need for 

instruction fetching and decoding, a very high throughput can be achieved using a 

simplified processing element. The system can be expanded if faster processing or greater 

storage capacity is required.

2.3 TLM modelling of fluid power and mechanical systems

A simple analogy exists between electrical systems and hydraulic systems, where voltage 

= pressure and current = flow(rate), i.e. methods developed for electrical problems can be 

transformed and used to solve hydraulic problems. A simple example is given in Figure

2.3 where a resistance, an inductance and a capacitance are connected in series. A large 

volume of oil can be described as a capacitance, for instance.

Transmission line modelling of fluid power systems is a relatively new concept. Boucher 

& Kitsios [1986] investigated fluid pipe network dynamics using TLM. Similar to acoustic 

waves, decoupled left- and right going waves carrying pressure and flow can be separated.
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Using a variant of these waves representing power, it can be shown that such decoupled 

waves permit fluid transmission lines to be modelled simply as pure time delays. It is also 

demonstrated that lumped inertance and capacitance may be modelled as transmission line 

stubs. Thus all dynamic elements in a fluid power circuit are represented as pure time 

delays and the only computation required relates to wave scattering junctions.

Different fluid friction models and approximations for the simulation of fluid pipe lines 

have been investigated by Krus & Palmberg [1987], Burton [1992] and Krus et al. [1994a] 

based on work from Viersma [1980] and D’Souza & Oldenburger [1964]. Recently the 

TLM method has been developed to simulate general fluid power components and 

hydraulic systems (Krus et al. [1990], Jansson et al. [1992], Burton [1992], Burton et al. 

[1993a,b], Burton [1994]).

A variable time step TLM was derived by Jansson et al. [1992]. The timestep is controlled 

by a Proportional plus Integral (PI) controller according to the pressure ‘error’ between 

two line ends. This is explained in detail in Chapter 3. The analysis of electro-hydraulic 

position control servo-systems using TLM is investigated in a paper by Burton et al. 

[1993a]. The method described enables TLM simulation of hydraulic circuits including 

systems with control elements. Component models have to be calculated in a certain order 

to ensure that electrical signals are propagated instantaneously between component 

models. The TLM method can also be extended to pipes with elastic walls. Krus et al. 

[1991a] describes the simulation of the human arterial tree, using transmission line 

elements with visco-elastic walls.

It appears to be profitable to use one type of model to study complete systems [Partridge et 

al., 1987] such as hydromechanical systems [Krus et al., 1990] and it is possible to use 

much larger time steps than with conventional simulation methods. An earlier paper from 

Partridge et al. [1987] investigates TLM modelling of shaft system dynamics. Non-linear 

elements are replaced by discrete models and an explicit procedure is used whereby torque 

and angular velocity at one time step are expressed in terms of values at previous time 

steps only. Another paper on the modelling of mechanical systems using rigid bodies and 

transmission line joints was presented by Krus [1995]. The general TLM model can be 

used to represent both lines in a hydraulic system and springs in mechanical systems. In 

order to simplify the modelling of rigid mechanical link systems the rigid joints can be 

replaced with joints with some flexibility. This will increase the number of degrees of 

freedom but the structure of the mathematical model becomes much simpler. Using this,
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the iso-flexible joints between any two rigid bodies are modelled as stiff springs with the

same stiffness in all directions (i.e. joints with isometric stiffness). The spring is then 

modelled as a transmission line element, introducing a time delay in the communication 

between the connected bodies.

In the original work on TLM in electromagnetics [Johns & Beurle, 1971] the properties 

being modelled were voltage and current. The equivalent qualities in fluid power 

simulations are flow and pressure. Force and either speed or displacement each 

translational or rotational are the respective quantities for simulations of mechanical 

systems. The availability of a TLM model for mechanical problems also makes a unified 

approach to the treatment of electromechanical systems possible.

2.3.1 Basic equations for transmission-line modelling of fluid power systems 

Real fluid power systems are characterised by a transport delay in the pipeline connecting 

components in the systems, due to the propagation of waves at the speed of sound through 

the fluid medium. This transmission delay is invaluable in decoupling component models 

forming part of a distributed or parallel numerical simulation.

Time-domain transmission-line equations may be derived from the continuity equation 

and the Navier-Stokes equations. One assumes laminar flow (Re < 2000) in a cylindrical 

pipe with non-elastic walls where the tangential flow is neglected. For the symmetrical 

hydraulic pipeline the four-pole equation can be derived (see Appendix A).

Flows into the line are defined as positive and the viscous friction factor, N(s), is defined 

as

(2.1)

(2.2)

The characteristic impedance is given by

Z = p c  = p c
7t • r2 A

(2.3)
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with the sound velocity

" J ?  <24»

For pipe or hose pipe elasticity can be accounted for by using an effective bulk modulus 

B -B e. Re-arranging equation (2.1) for a lossless transmission line, where N(s) in 

equation (2.2) is unity and transforming it into the time domain leads to

^ .W - Z ,a W  = P„(t-T) + ZcQh{ t -T )  = Cb( t—T) (2.5)

Pb( t ) - Z M t )  = Pa{t-T) + Z M t - T )  = Ca{t-T)  (2.6)

The right hand sides of equations (2.5) and (2.6) are referred to as characteristic pressures, 

C, representing delayed information from the opposite pipe end.

2.3.2 Modelling example

To illustrate the solution of the TLM wave equation in the time domain the simple circuit 

shown in Figure 2.4 is investigated (Pollmeier [1996a]). This system consists of a constant 

flow source connected to a fluid filled transmission line, which is also connected to a

pressure relief valve. The output of the valve is linked to a constant pressure reservoir. The

flow source and the inlet port of the pressure relief valve are connected by characteristic 

pressure waves, which propagate through the line at a finite speed. Hence there is a finite 

transmission delay that decouples both right and left travelling characteristic pressure 

waves.

The source flow, Qi, is defined as positive into the transmission line. The corresponding 

pressure at the source exit (transmission line end) is given by direct substitution of this 

flow into the transmission line end (equation 2.5) to obtain the following expression:

PI(t) = C2( t - T )  + ZcQ,(t) (2-7)

where C2 is the characteristic pressure wave propagated from the inlet port of the relief 

valve calculated at the previous time step. Using the flow Qi and the pressure Pj 

(determined from the transmission line end equation) the flow source characteristic 

pressure wave is calculated according to the following equation:

C M  = P,(t) + ZcQ,(‘) (2.8)

This characteristic pressure is received by the inlet of the relief valve at the next time step. 

The simplest model of a relief valve assumes that the valve dynamics are instantaneous.
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For this type of model the valve is uni-directional and no flow across the valve takes place 

until the differential pressure exceeds the cracking pressure, Pc. A linear flow-pressure 

characteristic of gradient K  is assumed once the valve has cracked open. Transmission line 

end equations at the valve inlet and outlet port are given in equations 2.9 and 2.10.

P2(t) = Cl( t - T ) - Z €Q(t) (2.9)

P3(t) = P} = const (2.10)

The equations relating valve flow to differential pressure are 

(Pi~P,)>Pc Q(t) = K{P2( t) -P 3- P c) (2.11)

{P2- P 2)<PC 2 (0  = 0 (2.12)

Flow is then determined explicitly by substitution of the pipe-end (characteristic pressure) 

equation into the valve equations, as follows:

(.P2-P ,)> P C Q(t) = K(Cl( t - T ) - Z cQ(t)-Pi - P c) (2.13)

2(0 = -&M = &(0 = (2.14)
I +  AZC

(p2- p , ) < p c 2(0 = <200 = <2,(0 =  0 (2.15)

These equations take into account that flow is defined positive into the line, or out of the 

component, i.e. in the opposite direction to the valve inlet port. The valve inlet port 

pressure and characteristic are then readily determined from the flows. If the applied 

pressure difference is larger than the cracking pressure this leads to:

P2(t) = C , ( t - T ) - Z c ^ C'{ t~PK~z (2-16)

Equations 2.14, 2.15 and 2.16 are explicit equations for the valve inlet/outlet flow and 

pressure. The characteristic pressure to be propagated back to the flow source must be 

computed as follows:

C2 = P2(t) + ZcQ2(t) (2.17)

This characteristic pressure is received by the outlet from the flow source at the next time 

step. Initial conditions for the characteristic pressure are set to the initial line pressure. 

Thus at simulation start time the characteristic pressures are the same at each end of the
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line. It is clear that the numerical calculations relating to both the flow source (equation 

2.7) and the relief valve (equations 2.14 to 2.16) can be computed simultaneously.

2.3.3 Compressible line

For many industrial hydraulic applications, compressibility effects dominate the dynamic 

behaviour of the pipelines and fluid volumes (Tomlinson [1987], Ellman et al. [1993]). 

The modelling errors introduced by such lumped parameter compressible fluid volume 

approximations are usually small when compared with the magnitude of errors arising 

from simplifications made in the modelling of other component models used in the 

simulation. For example relief valve models as used in the modelling example often 

employ a simplified linearised flow-pressure characteristic (Palmberg [1991], Ellman et al. 

[1993]).

In the simulation of a system containing several pipe lines of different length all of the 

delays in the TLM must be equal to achieve synchronisation. Hence an approximation to a 

compressible pipeline is obtained by setting the transmission delay, T, to be equal to the 

integration time-step, At. This implies the line length calculated by

AtL = —  (2.18)
c

and consequently the pipe diameter must be adjusted to yield the desired volume V, 

thereby ensuring correct modelling of compressibility effects, such that the capacitive term 

C remains constant.

V
C = —  (2.19)

Where Be is the effective bulk modulus. If T  is changed to match the required time-step, 

the line impedance, Z, must also be adjusted to maintain the same line capacitance, given
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This line model introduces a distortion of the fluid inertance I  (equation 2.22), due to the 

adjustment of the pipeline transmission delay, T.

From the latter equation, the parasitic inertia term is proportional to the square of the time 

step, At. Re-writing the transmission line equations using lumped parameters results in:

If the line element is modelled as lossless (R=0) then the line inductance, /, is the only 

source of pressure change between the line ends. This pressure change is the product of the 

inertia term and the total rate of change of flow into the line. Hence, rapid flow transients, 

coupled with high fluid inertance, results in a correspondingly large and distorted pressure 

change. This pressure difference can be treated as a parasitic pressure error, which 

indicates how much the line behaviour has diverged from that of an ideal compressible 

volume. For easy recall this pressure will be called Ppar, i.e. parasitic pressure. These 

pressure values can be used as a measure of the simulation accuracy as well as for the 

control of the time step in a variable time step scheme as described in Chapter 3.

A completely loss-less capacitive transmission-line (equations 2.5 and 2.6) may introduce 

unrealistic high frequency resonances into the system model, consistent with the 

undamped propagation of plane waves [Krus et al., 1990]. Laminar and turbulent friction 

can be incorporated into a friction factor, which reduces the characteristic pressures 

accordingly. This approach gives correct steady state losses, but ignores frequency- 

dependent friction. Low-pass filtering of the characteristic pressures approximates the 

effect of frequency-dependent damping evident in real oil-filled pipelines. The unrealistic 

resonances can be suppressed by the same low-pass filter. Krus et al. [1990] proposed a 

filter which is given by the following equations.

_  pL _ pL2 _  p(cAr)2 _ At2
A V V

(2.22)

Ph~Pa + I ^  + Rq = ^ (2.23)

(2.24)

Pa,b( t ) - Z 'Q a,b(t) = C'bJ t - T ) (2.25)

C'bJ t  - T )  = ( \ - a ) C hJ t - T )  + a  • C'hJ t  -  IT) (2.26)
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I f  = ——— (2.27)
1 - a

The filter coefficient, a, is taken to be 0.2 from numerical experiments. The use of this 

recursive algorithm means that the line impedance, Z, must be corrected to achieve the 

same capacitance of the line without filtering.

2.3.4 Stability of TLM simulation

TLM is a simple, explicit and unconditionally stable method for the modelling of wave 

propagation through a medium [Pomeroy, 1991], [Boucher & Kitsios, 1986] as well as for 

the modelling of passive RLC lumped networks [Johns & Butler, 1983], [Christopoulos, 

1995]. In practice, the TLM network itself has a filtering effect [Johns & Beurle, 1971]. 

Errors in heatflow/diffusion TLM modelling are dissipative rather than cumulative, hence 

the TLM technique is stable [de Cogan & Enders, 1991]. The same has been found for 

TLM modelling of fluid power lines. As an example the circuit in Figure 2.5 has been 

investigated. 15 lines of one metre length are connected to a pump (constant flow source) 

and a laminar orifice. A pressure error inserted at any node in the system will propagate 

through the circuit until its effects are smeared out over the entire system.

Well known implicit methods can be realised as transmission line models but the 

important new feature of the TLM method is that it can result in procedures which are 

explicit. This means that values at one timestep can be expressed in terms of values at 

previous steps only, thus avoiding the need to solve simultaneous equations at each 

iteration. Explicit TLM models do not in general correspond to known explicit routines. 

The good stability properties of the method are extremely useful in the solution of stiff 

networks where instability in explicit methods always causes problems. Transmission line 

modelling also provides considerable knowledge about the errors introduced by the 

discretisation process. This means that the step size necessary for a certain accuracy of 

representation of the circuit can be assessed before calculation [Johns & O’Brien, 1980].

There is another advantage to the TLM method which again arises from its simple 

properties. When a lumped network is solved in the time domain using any numerical 

method there is an error in the result due to the process of discretisation. This error can be 

seen immediately when forming the transmission line model. Since subsequent solution of 

the TLM model is exact, the errors lie in forming the model not in solving it. However, 

when dealing with lumped networks it may be more useful to describe the modelling error 

in terms of parasitic lumped components rather than the exact error description given by
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the transmission line. The parasitic pressure error is caused by adjusting the line 

length/diameter according to the used time step. These adjustments distort the system, but 

every integration will do so and with the TLM method it is clear in what way the system is 

distorted [Krus et al., 1990].

The example in section 2.3.2 makes it clear that in TLM modelling, errors are due to the 

modelling process only and not due to the approximate solution of an approximate 

calculus model. This can also be seen when looking at the block diagram representation of 

the example circuit in Figure 2.6. The flow Q2 and the pressure P2 in equations (2.14) and 

(2.16), respectively, are calculated exactly according to the model equations. Only 

numerical rounding errors may occur. Figure 2.6 also indicates the modularity of the TLM 

approach. All simulation blocks associated with the pump and the valve, respectively, can 

be combined as shown in Figure 2.7. Each combined function simultaneously calculates 

the characteristic pressure, C, for one time step and then the functions exchange this 

values. Then the next time step is calculated, etc. For completeness Figure 2.8 depicts the 

low-pass characteristic filter according to equation 2.26.

In Hui et al. [1993a,b] it is shown that the numerical solution is still stable even when a 

time step three times greater than the smallest time constant of the system is used. TLM 

simulations of fluid power systems have similar properties. Figures 2.9 and 2.11 (detailed 

in Figures 2.10 and 2.12, respectively) show some simulation results of the modelling 

example from section 2.3.2 (Figure 2.4) using the filter described in equations (2.25) to 

(2.27). The cracking pressure Pc of the instantaneously opening relief valve is set to 120 

bar and the flow-pressure characteristic gradient K  is assumed to be 600 1/min/bar. All 

simulation parameters are given in Table 2.1. The pump (constant flow source model) 

supplies the system with a constant flow of 101/min. The pressure relief valve opens when 

the pressure difference becomes larger than the cracking pressure. This happens after 

about 0.1 s simulation time.

Flow into the transmission line is defined as positive, thus the figures show negative 

flows. As expected, the simulation with the smallest time step (At=10jis) leads to the 

highest accuracy. An increase in the time step leads to an increased overshoot and 

decaying oscillations, but the simulation never becomes unstable. Here the TLM 

simulation can cope with severe nonlinearities without stability problems.
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2.3.5 TLM compared to other numerical techniques

The transmission line matrix method can be considered as a discrete form of Huygen’s 

principle [Tan & Fusco, 1993] which is a localised recursive definition of electromagnetic 

wave propagation in the time domain [So et al., 1995]. TLM can also be seen as a physical 

model of mathematical finite differencing [Vetri & Simons, 1993]. In the latter paper the 

authors also derive a class of TLM-type algorithms directly from Maxwell’s equations.

A paper from Johns & O’Brien [1980] describes a new way of viewing the numerical 

solution of lumped electrical networks. In the special case of the RC networks associated 

with the diffusion equation it has been possible to give the transmission-line model 

corresponding to the state equations integrated by the explicit forward Euler method. In 

this application it appears that the TLM algorithm is a general one which includes the 

forward Euler method as a particular case. Furthermore the solution of an RC network by 

the TLM method is the same as solving by the trapezoidal algorithm.

Krus et al. [1990] interpret the TLM method as a general method for integration. They also 

found the TLM corresponds to the trapezoidal rule of integration, but with double the time 

step. Details on the TLM method as a method of integration are explained more fully in 

Chapter 6 and Appendix B. Partridge et al. [1987] investigate TLM modelling of shaft 

systems dynamics. Again solutions turn out to be equivalent to forming the state equation 

for the lumped model and integrating by the trapezoidal rule.

2.4 Component modelling

In general a component model is implemented by solving simultaneously the component 

equations (system equations) and the transmission line end equations (equations 2.5 and

2.6) at each component port. Mathematically this is represented by the following 

equations:

Q = / ( P) (2.28)

P(f) -  ZQ(t) = C(t -  At) (2.29)

Where Q and P are vectors with all the flows and pressures in all the nodes connected to 

the component. Z is a diagonal matrix with the characteristic impedances in the diagonal 

and C is a vector containing the characteristics. With the approach taken here each 

transmission line end is incorporated into a separate component model, i.e. there are no 

separate line models as in lumped parameter simulations. Each component model is 

decoupled in time and is thus numerically isolated from its connecting component models
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by the finite delay introduced by the transmission lines. For components that involve 

differential equations, suitable time-difference forms can be obtained by numerical 

integration; in effect this transforms the ODE into an algebraic equation, which is then 

solved simultaneously with the transmission line ends. A Bi-linear transformation, 

equivalent to trapezoidal integration can be used to solve equations of motion for the 

mechanical parts of models. This is adequate for most simulations, because when 

compared with the fluid transients the dynamic motion of, for example, actuators is often 

considerable slower (Burton [1994]).

It is possible to construct a pseudo-dynamic model, by incorporating a typical first/second 

order response into the instantaneous dynamic model [Viersma, 1980]. Values for time 

constants to approximate the dynamics may then be estimated. In this research, 

instantaneous and pseudo-dynamic models are used when possible in order to simplify the 

system simulations undertaken. This does not exclude the future use of other, more 

detailed, component model types. The main exceptions are linear and rotary hydraulic 

actuators (these include motors), where movement is modelled by numerical integration of 

the equations of motion within the component models.

It is not the intention to present details of all the new models developed by the author. A 

comprehensive description of some models developed previously is given in Burton et al. 

[1992], [1993a,b], Burton [1994]. Several of these models were corrected and improved 

but due to space limitations the details cannot be presented for all of these models. The 

following sections illustrate some aspects of the approach to modelling particular 

hydraulic components and features. These are models and modelling techniques not 

described previously. A directional control valve model is described to illustrate 

superposition of flows using standard orifice equations. Furthermore, it indicates how the 

spool movement can be modelled with a pseudo-dynamic model for a second order 

response. A more exact model of the spool dynamics is used with the investigated pressure 

relief valve model. It becomes impossible to derive explicit algebraic equations when 

spool valve dynamics and square-law orifice equations are to be solved simultaneously. 

This can be overcome by linearisation of the square-law equation around the operating 

point. A way of simplifying the modelling of internal leakage is shown for a differential 

area actuator. This leads to a good approximation of the system behaviour and makes the 

coding easier. Furthermore, it leads to faster models. A new filter model is also derived 

and finally the simplified modelling of external leakage in pumps and motors is described.
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2.4.1 Directional control valves

This section describes a general purpose model of a four port, three position closed centre 

electrically-modulated directional control valve, i.e. servo or proportional valve. The 

model includes valve dynamics and takes into account underlap as well as internal 

leakage. Leakage is assumed to vary linearly with pressure differential. Figure 2.13 depicts 

a schematic of such a valve, where the underlap, w, is assumed to be symmetrical, i.e. in 

centre position u is assumed to be the same for all four circled edges. The characteristics of 

a particular valve are defined using both steady state and frequency response performance 

data. Compressibility flow loss effects are not included.

The valve has two gain regions; a central null region where the effective flow gain is 

modified to account for valve underlap. Proportional control of the valve is incorporated 

by assuming a linear variation in orifice coefficient, equivalent to a linear change in 

annular flow area across the valve spool. With the notation in Figure 2.13 and using 

superposition (see Appendix D l) the flows can be derived for spool displacements smaller

than the underlap:

Q s  — ~ { f csa 4 p F P U "I" K b  J P F K  ~~ Qlstleak ) (2.30)
Q r = k a r - \ j P a ~  P r + K r  V ~  Qlstleak (2-31)
Qa = K j ^ P ' - K r J P ^ P ,  (2-32)

a  = (2.33)

where ley describes the flow coefficient from port i to j. These coefficients are proportional 

to the spool displacement and they also take underlap into account. In order to generalise 

the equations some of the coefficients are set to zero when the spool displacement 

becomes larger than the underlap. The sum of all four flows equals zero according to the 

flow balance. First stage leakage is calculated with the user supplied leakage flow 

coefficient &/.

Q,„„a t= k ,{P ,-P ^ )  (2-34)

Valve spool position is assumed to respond as a critically damped second-order system 

driven by the valve drive signal I.

x = ( o l( I - x )~  2coni  (2.35)
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where x  is the spool fractional displacement and I  is calculated by the following equation 

valve current
/  = — — -----------------------------------------------   (2.36)

rated current

The natural frequency, con, is set by the user. Spool motion is assumed to be unaffected by 

flow, pressure or stiction forces. Fluid compressibility and temperature changes are not 

modelled. All features of the valve are assumed time invariant. The model may be used as 

a conventional 3 way, 4 port electrically operated modulating servo or proportional valve. 

It is intended for use with manufacturer’s data. The user specifies the characteristics of a 

particular servo valve with steady state flow rate/pressure drop information, null region 

details and transient performance (frequency response). The valve null region modelling is 

very simple, hence, it is unlikely to be suitable for simulations where the null region 

characteristics are crucially important. With the trapezoidal rule of integration for the 

spool velocity and displacement the algebraic system equations can be derived as shown in 

Appendix Dl.

2.4.2 Pressure relief valve model

This section describes the model of a pressure relief valve. The most significant 

dimensional parameters are assumed to be available. These are spool diameter, spring 

stiffness and the spool stroke. If the inlet pressure exceeds the set cracking pressure, flow 

is let through to the outlet port. Fluid compressibility effects are not accounted for. The 

spool dynamics are described by Newton’s second law. With the notation in Figure 2.14 

this leads to

M x  = PxAj -  P2Ax -  PCAX -  Cvx -  Ksx  (2.37)

where Cv describes the velocity proportional friction, M  is the spool mass and Ks is the 

spring stiffness. The flow rate to the outlet port is assumed to follow the square-law orifice 

model, i.e.

Q = k jF \^ P i (2.38)

where k  is linearly dependent on the spool position. In order to achieve a set of solvable 

equations the square-law equation needs to be linearised around the operating point n. This 

leads to equation 2.39 where the flow is only linearly dependent on values at time n+1.
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Q n+1 Q n ^2,« " C*n+1 ) "*”
(2.39)

Explicit equations for displacement, flows and pressures can be derived from equations 

2.37, 2.39 and the transmission line end equations as detailed in Appendix D2. The

spool dynamics are of importance.

2.4.3 Differential area actuator model

Burton [1994] derived a dynamic model of an unequal area linear hydraulic actuator. 

External load forces are supplied to the actuator model from a separate load model. 

Friction forces are represented as constant stiction, Coulomb and a velocity proportional 

term, no provision is made for position or time dependency of any of these terms. Fluid 

compressibility is modelled in each chamber by application of the TLM line equations. 

Seal wear and temperature effects are not taken into account. The model has been 

improved by modelling leakage across the piston which is assumed to be laminar and is 

represented by a constant pressure/flow gradient. Figure 2.15 shows the simplified 

actuator indicating the cross-port leakage flow. Including this leakage when solving the 

transmission-line, flow and relevant equation of motion leads to very complicated 

formulas. Hence, a different approach has been developed where the system behaviour is 

approximated with simpler equations. The actuator displacement, velocity and flows are 

calculated as described by Burton [1994]. Before the pressures are calculated the leakage 

flow is derived and added/subtracted to/from the respective flows. Assuming normal 

extension of the actuator, i.e. Px > P2, the new pressures are calculated with the corrected 

flows using the following equations.

In these equations i and j  are chosen according to the respective connected port. The 

leakage flow changes direction for P2 > Px. This simplified approach not only makes it 

easier to derive the model equations it also leads to faster component models.

The modified actuator model covers a wide range of practical linear actuator applications. 

Stiction, Coulomb friction, leakage terms and piston rod diameter may all be set to zero if

derived model is suitable for general use as pressure reducing or relief valves where the

i? = Q - z i ( a - e u )
^2 = Cj — z 2 (Q2 + Qleak )

(2.40)

(2.41)
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desired resulting in the simplest of actuator models. Nonzero values represent a more 

realistic linear actuator, assuming of course that suitable values are chosen. Note that if all 

the friction terms (velocity dependent term as well) are s;et to zero the model will have 

zero damping and resonate continuously, i.e. there should always be some friction.

2.4.4 Filter model

This section describes a hydraulic filter pressure loss model. The pressure loss over the 

filter element is assumed to vary linearly with flow rate and viscosity according to user 

defined data. The pressure/flow rate characteristic is bas;ed on experimental data [Pall, 

1985]. Variations in local viscosity with local operating pressure are modelled, in fact this 

is taken as the only influence on changes in local viscosity. The effects of density 

variations, fluid compressibility and filter ageing are not modelled. No bypass valve is 

modelled. With the notation in Figure 2.16 and assuming flow from port one to two, the 

viscosity at mean system pressure is calculated using pressure values from previous time 

steps, i.e.

= V o lO ^ - ^ 2 (2.42)

and the outlet flow is determined as

Q = -Q i =Q2 =(Pi -  V'"' P‘" '-  (2.43)
spec ^ a c tu a l fa c tu a l

[Richards, 1993]. The parameter f v is the viscosity pressure dependent factor and Qspec and 

Pspec are the specified flow rate and corresponding pressure drop across the filter element, 

respectively. Test values for the fluid viscosity and density are also supplied by the user. In 

equation 2.43 the factors behind the pressure difference can be combined to one constant,

i.e.

Q = -Q i= Q 2 ={Pi-P2)kf  (2.44)

This is an equation equivalent to the one used for a laminar orifice. The TLM equations 

can then be derived as shown in Appendix D1 for the directional control valve (equation 

D13). The model provides a typical filter flow rate/pressure relationship. It may be used 

wherever it is not necessary to accurately model rapid pressure transients. A filter housing 

pressure drop, that is assumed to behave as a fixed hydraulic orifice, can be implemented 

if better accuracy is required.
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2.4.5 Positive displacement pumps and motors

A similar approach, like the one taken with the linear actuator model in section 2.4.3 can 

also be applied to the modelling of external leakage in positive displacement machines. 

The TLM models for these components have been derived in Burton [1994] where 

linearised loss coefficients according to McCandish & Dorey [1983] were considered. 

Figure 2.17 shows the schematics of a variable displacement pump and a variable 

displacement motor including inertial load. These models have been extended by the 

modelling of external leakage flow which is assumed to be laminar and proportional to the 

constant pressure/flow gradient Csd, i.e. the leakage terms are calculated by

Instead of re-deriving the formulas for the flows Qi and Q2, the previously derived 

equations are calculated. The leakage flow is then superimposed, i.e. the new flows are 

calculated with

All line pressures are then calculated using the superimposed flow. Again, this approach 

leads to simpler equations and faster component models.

2.5 Closure

In this Chapter the development of the transmission line modelling method is reviewed. 

The basic equations are derived and the approach is compared with other numerical 

techniques. TLM is a very powerful approach for domain decomposition and hence 

parallel operation, as all models are self-contained and are inherently decoupled by a 

transmission delay. Both the computation of component models and the integration 

process may therefore be fully distributed. The method is simple, explicit and 

unconditionally stable. Furthermore, it generally enables larger time steps which lead to 

fast simulations. The wider range of applications was indicated, i.e. many of the methods 

and features developed in this thesis may be transferred to other fields. Some models are 

described in detail using superposition and pseudo-dynamic models to approximate real 

system behaviour. Using linearisation the modelling process was simplified and faster 

models enabling leakage modelling were developed. The widely-spread time constants in

(2.45)

(2.46)

Q\,2 ~ Ql,2 Qleak (2.47)
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hydraulic systems led to the development of variable time step simulations. This approach 

and the problems associated with it are investigated in the following chapter.

TABLES FOR CHAPTER 2

Param eter Value
line length 3 m
line diameter 0.025 m
fluid density 890 kg/m2
kin. viscosity 60*10-6 m2/s
print interval 0.01 s
tank pressure 0 bar
cracking pressure 120 bar
Q-P gradient 600 l/min/bar
source flow 10 l/min
bulk modulus 8900 bar

Table 2.1 Simulation parameters

FIGURES FOR CHAPTER 2
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Figure 2.1 Equivalent network of a one-dimensional transmission-line junction
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Figure 2.2 A section of a two-dimensional TLM mesh demonstrating various aspects

of the modelling process
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Figure 2.3 Analogy between electrical and hydraulic systems (example)

Figure 2.4 Simple hydraulic circuit for the modelling example
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Figure 2.5 Circuit with several connected lines
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Figure 2.6 Block diagram for the simulation of the circuit in Figure 2.4
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Figure 2.7 Modular block diagram of Figure 2.6
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Figure 2.10 Simulation results: relief valve inlet flow (detail)
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Figure 2.11 Simulation results: relief valve inlet pressure
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Figure 2.13 Schematic of directional control valve
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Figure 2.15 Simplified TLM schematic of differential area actuator
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Figure 2.17 TLM schematic of positive displacement pump and motor (including load)
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3 Simulation with variable time steps

3.1 Introduction

One problem encountered in modelling some circuits is their widely-spread time 

constants. Normally, the size of the time step is restricted by the smallest time constant of 

the system. If a system has widely-spread time constants (i.e. numerically stiff hydraulic 

systems), constant time step operation of the numerical method can become inefficient. 

Therefore variable time step TLM simulations have been derived to increase the 

computing speed even further. This chapter recounts variable time step methods derived 

for the simulation of thermal diffusion problems. A similar approach is then taken for 

hydraulic circuit simulation in order to improve computing efficiency. Problems 

associated with variable time step simulation are investigated and the simulation results of 

a stiff example system are compared with fixed time step simulations.

3.2 Variable time step TLM

Throughout the course of most fluid power system modelling situations, as the rate of flow 

change alters, the time step required for a pre-set overall accuracy will vary. It is, therefore, 

desirable to be able to alter the iteration timestep during modelling, so that the accuracy 

requirements of the problem may be met with the minimum of computing resource.

Webb [1991] deals with variable time step TLM modelling of thermal diffusion problems 

and includes a facility to make the mesh coarser at less interesting points of the structure. 

Hence, the time step was allowed to increase there and shorter time steps are only used in 

layers where the temperature gradients in time and space are greatest. A similar approach 

can be adapted for hydraulic systems where long lines need to be simulated with high 

accuracy. The long lines can be split into several shorter lines leading to the method of 

characteristics (MOC). This enables a more detailed simulation of the particular line 

dynamics. Webb [1991] also found that the maximum timestep that could be used at the 

start of a typical transient was of the same order as that permitted by the stability 

requirement for an explicit finite difference approach. In Hui et al. [1993a] the variable 

time step method is extended to TLM short circuited and open circuited stubs. A unified 

approach for general stubs has been developed by Hui et al. [1993b].
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Fundamental to any automatic time-stepping procedure is a rapidly implemented method 

of some kind of error estimation. Two approaches have been suggested by Pulko et al. 

[1990] being termed the difference method and the potential drop method. In their paper a 

two-dimensional thermal diffusion problem described by equation 3.1 is studied.

d2T  32r  Sp dT
dx2 dy2 K  dt

This was simulated by using the telegrapher’s equation which, in two dimensions, is given 

in equation (3.2), i.e. the diffusion problem is solved using electrical circuit equivalents.

32<D 32<I> 30 320
r  + — T  = 4 R C ? -  + 2LC-—J- (3.2)

3jt 3y 31 31

The difference method ensures that the ratio of the error term (final term in equation (3.2)) 

is kept to a small fraction of the wanted term, i.e.

320
2 L C ^ T

m =  5 o " « 1 (3-3)
4 R C ^ -  

31

This formula can be extended to an explicit form [Pulko et al., 1990]. In the potential drop 

method the voltage across the transmission lines is calculated and kept below a certain 

value. This potential drop method has been adopted and successfully applied to hydraulic 

systems by Jansson et al. [1992] and Burton [1994] as described in the following section.

3.2.1 How to control the variable time step

In order to incorporate automatic timestepping into a TLM model, bounds have to be 

placed on the values that an error parameter may take. This can be done by performing 

complete ‘dummy runs’ with arbitrarily short timesteps and monitoring the values of error 

parameters. The acceptable values determined in this way may then be used in simulations 

where externally applied transients and material or system properties are known. However, 

for problems which are to be modelled over a relatively long period, it is probably 

preferable to model for a certain simulation time using a very short timestep and to use the 

corresponding maximum error parameter value as a limit for the remainder of the 

modelling period. These methods were described by Pulko et al. [1990] and for the latter, 

the timestep was changed ±10  per cent for any departure of the error parameter from this 

‘set-point’ by ±10 per cent. If rapidly changing dynamics are encountered these
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approaches will lead to problems when simulating hydraulic systems due to the lack of 

restart capabilities.

Jansson et al. [1992] describe a more sophisticated step size controller for hydraulic 

system simulations. Here the parasitic pressure difference Ppar described in section 2.3.3 is 

used to control the step size. At first sight it would seem that an estimate of pressure error 

at each iteration can be calculated quite simply by subtracting Pa(t) from Ph(t) . Jansson et

al. [1993] compares estimated errors and actual errors for a loss-less pipeline with blocked 

outlet. For this case the estimated error turns out to be slightly larger that the exact one. In 

practice it is advantageous to use the average pressure difference from two time steps since 

this will reduce the influence from the high frequency oscillations of the pressure in 

neighbouring nodes in a volume. This method was suggested by Pulko et al. [1990]. The 

estimated difference Ppar is thus calculated as

This pressure difference is then used for the step size controller. In diffusion or electrical 

wave phenomena simulation the mesh of nodes is formed regularly and only one node has 

to be monitored. Whereas in hydraulic systems the maximum difference can only be

time step in the simulations. A good value will depend on the step size controller used. 

Jansson et al. [1992] used a step size controller which is split into two separate parts. 

Equation (3.5) is used if Ppar is reasonably small.

(  p  'Iref
[Pparit) J ^  Pparif) j

where Ppar(t) is the parasitic difference in the current time step and Pref is the maximum

allowed pressure difference (reference pressure error). A large error is handled by rejecting 

the result at the current time step and selecting a much reduced step size according to

p ^ (t) = Pk(t)-P A t) + P „ ( t-T ) -P A t-T ) (3.4)

obtained by looking at the pressure errors for all used models or lines. The problem is to 

choose the maximum allowable pressure difference which is to be used for adjusting the

(3.6)
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The constants for both control laws are Kp = 0.001, Kr = 0.004 and K  = 1.5 [Jansson et 

al., 1992]. In section 3.3.1 a simulation example is presented to investigate different 

allowable pressure errors with the step size controller described above.

3.2.2 Modifications necessary for variable timestep TLM

The basic modification that must be made to the integration to allow a varying timestep is 

to compensate the characteristic for varying Zc values (equation 2.3) that will be the result 

of varying time steps. Since timestep changes are implemented as the pressure waves 

propagate along the transmission-line, these characteristic pressures must be adjusted to 

maintain “total pressure” and “total flow” in the line [Pulko et al., 1990], [Jansson et al., 

1992]. The total pressure is constant if the sum of the characteristic pressures at each line 

end is the same both before and after the change in line impedance Z and Z ' . For total 

pressure:

Total flow through the line is conserved if the difference in characteristic pressures divided 

by line impedance remain unchanged. For total flow:

To meet both constraints the “compensated” characteristic pressures become [Burton, 

1994]:

3.2.3 Variable line volume and bulk modulus

Many hydraulic components (e.g. actuators and accumulators) will change the working 

volume of fluid in a transmission-line. In addition, variations in effective bulk modulus 

with pressure, for example, will have an effect on system performance. Using TLM the

Ca + Cb = C'a + C'b (3.7)

Cg+Cb _ C'a +C'h 
Z Z '

(3.8)

(3.9)

(3.10)

with

(3.11)
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basic approach to account for changes in volume or bulk modulus is to modify the line 

characteristic impedance, Z, according to equation (2.20). Hence the same modifications 

applied for the variable time step TLM (section 3.2.2) may be used for simulations with 

variable line volumes and changing bulk modulus.

3.3 Comparison between fixed and variable time step simulations

3.3.1 Simulation Example: Two-actuator Circuit

The two-actuator circuit, shown in Figure 3.1, is used as an example with which to 

demonstrate the application of the variable time step TLM algorithm. Briefly, the purpose 

of this hydraulic system is to use the coupled motors to divide the flow equally between 

each of the two actuators, both during extension and retraction. The two pumps initially 

operate together, supplying maximum flow to the actuators simultaneously. However, 

once a pre-defined pressure is reached the large capacity pump is unloaded, via the pilot 

operated relief valve. The smaller pump continues to supply flow independently at the 

higher pressure until either the directional control valve position is altered, or the high 

pressure relief is activated. This arrangement is intended to limit the maximum power 

required from the prime mover. A potential drawback of this circuit design is the inability 

of the flow-divider to supply precisely equal flows. Different leakages in the separate gear 

motors, which constitute the flow-divider, result in different supplied flows. It is the 

function of the relief valves connected to the actuator piston ends to facilitate re­

synchronisation of position, should one actuator stop before the other [Burton, 1994].

Figures 3.2 to 3.4 show a selection of computed results obtained from the transmission- 

line simulations of the two-actuator circuit. The maximum allowed pressure differences 

( Pref) of 0.05 bar and 0.1 bar and a 1 jlls minimum timestep were used.

Figure 3.2 shows the variation in the simulated actuator displacement with time, for both 

pressure differences considered. There is a change in velocity gradient (after about 1.45 

seconds) as a result of the flow redirected to the reservoir from the primary pump, when 

the pilot operated relief (unloading) valve is opened. The other change in gradient occurs 

when the actuator reaches the spring after about 0.75 seconds (1.7 m displacement). Only 

at this point do the different reference pressures lead to very small differences in the 

simulation results.
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Figure 3.3 illustrates the corresponding velocity transients of actuator 1. After initial start­

up transients the actuator reaches the steady state velocity of about 0.138 m/s. As the 

actuator contacts the spring (after 0.75 seconds) a large discontinuity is visible. The 

simulation results computed with the larger reference pressure (0.1 bar) show an 

undershoot to the next steady state velocity. Here the deviation in pressure difference leads 

to large differences in simulation results, but the steady state value is always reached.

Between 1.3 and 1.4 seconds the velocity computed with Pref =0.05bar shows some

transients, which are probably caused by the time step controller. This will be described 

later.

Figure 3.4 shows the flow-divider shaft speed plotted against time. The same is shown on 

a larger scale in Figure 3.5. Differences between both simulations ( Pref = 0.05bar,

Pref = O.lbar) are again visible in the time interval 0.75 to 1.0 seconds.

Figures 3.6 and 3.7 reproduces the magnitude of the time step and the corresponding 

maximum parasitic pressure difference, respectively, plotted against time. The pressure 

differences are calculated for all lines according to equation 3.4 and then the largest values 

at every time step are shown. Figure 3.8 again shows the time step plotted on a larger 

scale. The time step of the simulation computed with Pref = 0.05bar is generally smaller

than the respective values of the simulation with Pref = O.lbar. Several times between 1.35

and 1.65 seconds the time step controller causes the computation to use the minimum time 

step which was set to 1 |is for both calculations (see Figure 3.8).

If the error controller requires a time step less than the minimum allowable of 1 p,s then 

this will cause spikes in the maximum parasitic pressure difference transient. This explains 

the parasitic pressure spikes above O.lbar and 0.5bar between 1.3 and 1.7 seconds (Figure

3.7). An unexplained situation caused by the time step controller is found in the time 

period between 2.2 and 2.4 seconds (Figure 3.7). The smaller time step used by the 

simulation with Pref = 0.05bar results in larger pressure differences.

The largest differences in simulation of the velocity of actuator 1 (see also Figure 3.3) are 

detected between 0.75 and 0.9 seconds. At the beginning of this time period the simulation 

with Pref = 0.05bar uses a much smaller time step. This time step also changes to a

smaller value much more quickly when the discontinuity (described previously) occurs. In
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this case the time step for the simulation with Pref = O.lbar should decrease much faster in

order to obtain better results; i.e. the time step controller does not decrease the time step 

fast enough for the simulation with Pref = O.lbar.

The same system was simulated using the fixed time step approach. In Figure 3.9 the 

maximum parasitic pressure differences are shown for time steps of 100 (is and 10 |is, 

respectively. These parasitic pressures are smaller then the one obtained when using the 

variable time step approach (Figure 3.7), i.e. the changing time step leads to higher 

pressure errors and lower simulation accuracy.

3.3.2 Further problems associated with variable time step TLM

Due to the variable time step controller, unrealistic oscillations can appear in the 

simulation results. Inconsistently, larger parasitic pressure spikes can occur with smaller 

maximum allowed pressure difference. Furthermore the switch between the two different 

controllers represents a discontinuity and this may present problems. High pressure error 

spikes corresponding to low simulation accuracy will also occur if the time step controller 

requires a time step smaller than the minimum possible time step. This is only expected at 

a few points in the simulation but some measure is needed to detect this case. Here the 

pressure error in itself can be used, with a flag indicating that a very small time step is 

required.

Implementing the variable time step scheme on to a parallel platform leads to another 

problem. Changing the step length in one subsystem disturbs the simulation of other 

subsystems, as described in Jansson et al. [1992]. The synchronisation of the variable time 

steps on a parallel computer leads to an extra communication overhead. In addition to the 

characteristic pressures and either the pressure or the flow values, the pressure errors also 

have to be exchanged. On one of the processors (called master processor) the new time 

step can then be calculated, but this information has to be propagated to all processors 

once again increasing the communication between processors. Furthermore, for every 

system the allowable pressure differences have to be chosen and different systems may 

require different pressure differences in order to achieve the same accuracy.

Most real-time simulations consist of lumped-parameter systems described by ordinary 

differential equations. They may either be interfaced with actual physical systems 

(hardware-in-the-loop) or with human operators (man-in-the-loop). Common to both
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applications is the need for the computer system to process the information within certain 

time limits. The overall speed of the system must be high enough to meet the real-time 

bandwidth requirements of the problem. Besides the problems found by using variable 

time steps there are other reasons to simulate with fixed time steps. If real-time simulation 

has to be achieved then the minimum time step cannot be smaller than a certain limit. 

Even if the worst case occurs, i.e. simulation with the smallest time step at all times, the 

computation has to be fast enough to give results in real time. Hence, the mathematical 

step size must not become smaller than the computer execution time for the calculations.

Another reason for using a fixed time step in real-time simulation is the compatibility with 

fixed sample rates when dealing with real-time inputs and outputs, e.g. if the simulation is 

used for on-line condition monitoring. In other words, if a dense output is required, 

variable time step simulation can be inefficient. Howe [1993], [1994a,b] and Deiss et al. 

[1994] describe some methods to synchronise asynchronous multi-processor simulations 

by using interpolation. These methods enable synchronisation of integrations with 

different variable-time steps on different processors. They depend on the integrators used 

and cannot easily be used with the TLM. The TLM trapezoidal-rule-like integrator uses 

previous values which are filtered and these filters are difficult to include in the method 

described by Howe and Deiss. Furthermore, only small changes in the time step can be 

accounted for.

Hence, in this thesis, where the main concern is condition monitoring, from now on only 

fixed time step simulations will be examined in detail. Independent of the duty cycle this 

always leads to the same runtime. By using the fixed time step TLM algorithm the step 

size has to be chosen carefully. It must be small enough in order to obtain sufficiently 

accurate results, but a very small time step could lead to unacceptably long computer 

execution times. If the time step is restricted to a minimum value then the parasitic 

pressure can be used as a measure of the simulation accuracy. A new method enabling 

different time steps for different parts of the circuit will be described in Chapter 6.

3.4 Closure

In this chapter the variable time step TLM simulation of fluid power systems was 

investigated. Similar to the potential drop method developed for thermal difference 

problems a parasitic pressure difference can be used to adjust the step size. The approach 

seems to be suitable for numerically stiff hydraulic circuit simulations but it leads to
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several problems. Unrealistic oscillations and parasitic pressure differences can appear in 

simulation results as shown with a numerically stiff example circuit. Implementing the 

scheme on to a parallel platform can lead to synchronisation problems and it also increases 

the communication overhead.

Concentrating on real-time performance from now on only fixed time step simulations will 

be investigated. In order to speed up these simulations parallel processing can be used. 

This is investigated in the following chapters. First, the process of automatic circuit model 

generation using modular components is explained in Chapter 4.

FIGURES FOR CHAPTER 3
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Figure 3.1 Two-actuator circuit
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Figure 3.2 Actuator 1 displacement transients
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Figure 3.5 Flow-divider shaft speed transients (detail)
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4 Simulations with fixed time steps on parallel platforms

4.1 Introduction

In this chapter the hardware used in this research is described. The process of automated 

program (software) generation using pre-compiled component models to represent the 

separate circuit elements is explained for the development of multi-processor TLM 

simulations. Therefore the TLM simulation process and the TLM numerical algorithm by 

which the TLM models are solved are described. Channels are used as a concept to 

communicate and synchronise between processors. Using the message passing interface 

library the portability of the program generator concept is also investigated.

4.2 Parallel simulations using TLM

Parallel simulation of systems offers the benefit of increased speed and execution, but 

requires the system model to be partitioned to enable numerical tasks to be performed 

concurrently. The TLM method is inherently suitable for implementation in parallel 

architectures [Pulko & Olashore, 1989] where the transmission delay allows component 

models to be decoupled for the current time step. A large circuit can be decoupled into 

sub-circuits which can then be simulated concurrently.

Parallel simulation of a simple hydromechanical system was first described by Kras et al. 

[1990] using two Apple Macintosh II micro computers in parallel. For a particular circuit, 

they achieved a reduction in simulation time of about 40 per cent, enabling real time 

simulations to be undertaken with a time step of 0.015 seconds. For this simulation on two 

processors, the time taken for communication between the processors must be smaller than 

the time for the calculation of one simulation time step in order to improve computational 

performance.

TLM modelling of electromagnetic structures and fields has also been implemented on 

parallel platforms. The highly localised nature of the TLM algorithm (any change in the 

state of a TLM node affects only its immediate neighbours at the next time step) is 

perfectly suited for parallel processing [Dubard et al., 1991]. Parallel TLM of electrical 

problems has been implemented on massively parallel computers (DECmpp 12000 [So et 

al., 1995] and Connection Machine [Dubard et al., 1991]), on a transputer mother board 

with five T805 transputer modules [Fung et al., 1993] and on an SIMD computer (AMT
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DAP 510) [Tan & Fusco, 1993]. In the latter paper the authors show that the computation 

time is reduced considerably for large mesh sizes and particularly if the mesh size is an 

integer multiple of the basic processing element array size. In parallel hydraulic system 

simulations this cannot be achieved because the different models at the nodes require 

different times for calculation. Such systems cannot be represented by a regular mesh of 

nodes. For the simulation of electrical fields on massively parallel computers it is most 

advantageous to use a processing system whose multiprocessor interconnection is 

geometrically equivalent to the TLM node interconnection [Tan & Fusco, 1993].

Another TLM parallel simulation method for the simulation of fluid power systems has 

been proposed by Jansson et al. [1992] where different time steps are used in two different 

subsystems. Both subsystems are connected by a volume in the middle that performs 

calculations using the smaller of the timesteps of the two subsystems. The subsystem that 

has the larger timestep is replaced by a constant flow when the subsystem with the shorter 

timestep is calculating the intermediate points. On a single processor this method can 

reduce computational cost when one part of a system requires a smaller timestep than 

other parts of the system. On the other hand this approach is dependent on the partitioning 

of the system and on the work-cycle that the system is performing. It also only works for 

dynamically independent systems and systems separated by large volumes. Furthermore, 

oscillations can occur due to the synchronisation of the two subsystems.

The partitioning problem of a particular hydraulic circuit was also investigated by Burton 

et al. [1993] and Burton [1994b]. A study was undertaken to assess the most appropriate 

number of processors and the best circuit partitioning strategy for a particular system. 

Various arbitrarily partitioned topologies on two to seven processors were investigated and 

the efficiency of each distributed simulation was compared. Some simplified partitioning 

guidelines were also given.

The load balancing problem of another circuit has been studied by Burton et al. [1993c]. 

Computational load balancing is a very important factor when partitioning TLM based 

simulations, because of the nature of the simulation technique. TLM computations require 

all component models in the simulation to be executed before progressing to the next time 

step, thus no single partition may be more than one time step ahead of any other partition. 

Consequently, all partitions in the distributed simulation are ‘locked-linked’, that is the 

computational speed is dependent upon the slowest partition [Burton et al. 1993c]
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4.3 Hardware description

The parallel computing surface used for this research was selected after an extensive 

survey of available systems in 1994 [Pollmeier, 1996b, pp. 4-15]. After benchmarking of 

the different processors and considering the system requirements a T9000-based system 

was purchased.

4.3.1 Description of the new T9000-based system

Figure 4.1 shows the architecture of the T9000-based SN 9400 system. All SN 9400 SP 

systems require a host computer which provides a development environment for the user. 

The host also has to provide an interface to the system, through which the code may be 

loaded into the T9000 network and the results (or debug information) may be collected 

and displayed or stored.

A Pentium® (486 PC compatible) running Windows 3.11 with a large hard disk, 32 

Mbytes of RAM and an Inmos B108 motherboard (host card) was chosen as the 

development platform. The transputer host card has to provide one or two transputer links 

to the outside world for connection to the SN 9400 equipment, in addition to a subsystem 

reset port. The B108 has two C101 chips (parallel DS^Link adapter), each interfaces 

between the PC bus and a DS Link. The C101 provides an inter-networking solution for 

mixed processor systems and it converts between the serial DS-Link format and external 

systems such as busses, peripheral devices or microprocessors. One C 101 is for the control 

links and the other is for data links.

4.3.2 Memory arrangement

In general there are three possible memory arrangements for a parallel computer as shown 

in Figure 4.2 When developing specialised parallel software applications the particular 

memory arrangement needs to be considered. With the shared memory arrangement the 

processors are connected to the memory via a bus or multistage network. Contention of the 

bus limits the scalability of this system but the processors share equal access to the 

memory. In the distributed memory case each processor is attached to local memory. The 

processors are connected with switches or routers which enable “point to point” links.

1 DS - Data and Strobe signal wires are used to make up the link



Chapter 4: Simulation with fixed time steps on parallel platforms Page 44

Virtual shared memory brings together the two benefits but the time of memory access is 

not uniform. The T9000-based platform purchased uses the distributed memory 

arrangement as described in more detail in the following section. With this the scalability 

is superior. The total memory available is much greater than using shared memory, 

particularly when it is necessary to add more processors in order to upgrade the system.

The SN 9400 has 8 Size 2 HTRAMs1 in sites 0-3 and 8-11, i.e. the system is extendible to 

up to 12 HTRAMs. Here each HTRAM consists of a T9000 transputer (20 MHz CPU) 

with 8 Mbytes of memory. Links 1 and 3 of each T9000 are connected to the C l04 

Asynchronous Packet Switch, and links 0 and 2 connect the HTRAMs in a pipeline. The 

C l04 allows communication between devices, such as microprocessors, that are not 

directly connected. A single C l04 can be used to connect up to 32 microprocessors. It can 

also be connected to other C104s to make larger and more complex switching networks, 

linking any number of processors, link adapters, and any other devices that use the link 

protocol.

Burton [1994] employed a variable time-step TLM method on a T800-based system which 

leads to a requirement for the placement of components onto processors: only one 

processor can be allowed to determine the time-step. Consequently the simulation must be 

partitioned such that one subsystem exchanges information with all others. This leads to 

the restriction of master-slave topologies (Figure 4.3). The master process governs the 

operation of the slaves, by defining the simulation time-step used in the computation.

Figure 4.4 shows a comparison between the T800-based system (System T8) used by 

Burton [1994] and the new T9000-based system (System T9). Both systems contain 8 

processors, here numbered from PI to P8. Communication between e.g. processor PI and 

P3 on System T8 has to be established via processor P2 and P4. This leads to unacceptable 

latencies and communication delays. Hence in Burton [1994] only nearest neighbour 

communication between processors was permitted. System T9 can communicate from any 

processor to every other processor with small latencies via the C l04 switch, i.e. it is more 

flexible with much faster communication between all processors. All four links of each 

processor can be used concurrently and the C l04 switch enables any four pairs of 

processors to communicate at the same time. This leads to many more possible process-

1 HTRAM - High performance TRAnsputer Module
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processor mappings including arbitrary master-slave configurations. But this also makes 

automatic mapping (described in chapter 5) more difficult.

Additional to the flexibility and communication improvements, the new T9-based 

platform fulfils the following system requirements:

• Double precision is implemented in hardware. Tests indicated that double precision is 

necessary to achieve acceptably accurate results.

• The system is well designed for fine grained problems. Granularity is explained in 

more detail in section 4.3.4.

• Greater processing power and communication bandwidth then the existing T8-based 

platform.

• The system is flexible and can be upgraded from 8 processors to more and faster 

processors at a later stage if necessary.

• The system supports the programming language ‘C’ enabling the reuse of parts of 

previously developed code.

• 8 megabytes of memory per processor are available.

• A good system support is available in the UK

• Many different topologies are possible due to the C l04 switch which can be changed

during runtime.

• Furthermore, the system can easily be connected to a data acquisition system as

described in the following section.

4.3.3 The implemented data acquisition system

Two OS1 Links from the SN 9400 are interfaced via a 44-way compact D-type connector 

to the special system containing an ecm_7720 TRAM mother board and an adtl08C A-to- 

D converter TRAM (Figure 4.1). The adtl08 series is a multiple input, 12 bit, 100 kHz 

sampling Analogue to Digital converter module built to the Inmos TRAM format (based 

on a T425). Its signal part comprises an input multiplexer, instrumentation amplifier with 

software programmable gain per channel, sample and hold amplifier and Analogue to 

Digital converter. The TRAM is configured with 16 differential inputs and the input

1 OS - Over-Sampling technique used to extract the data from the link
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voltage ranges are selectable from one of +/-5V, +/-10V, 0 to 5V, 0 to 10V and are 

overvoltage protected. Input signals are taken through a 50-way IDC connector.

4.3.4 Granularity

TLM simulations of hydraulic systems lead to fine grained problems, i.e. simulations 

v/here a relatively long time is spent for communication between processors. In general, 

the transfer of delayed characteristic pressures between decoupled component models 

either takes place locally on the same processor via ‘on-chip’ memory, or for parallel 

simulations with connected processors via serial data links or shared memory. With this 

approach pressure and flow have to be exchanged every time-step, hence the simulation is 

a fine-grained computation. In fine-grained parallelism, what is normally thought of as a 

single, indivisible calculation is partitioned among processors. This commonly requires 

relatively frequent communication between programs running on different CPUs (e.g. 

different iterations of a subdivided loop are executed by different processors). In coarse­

grained problems, each calculation is conceptually nearly independent of the others and 

normally involves relatively infrequent communication among the individual calculations 

(e.g. database management).

4.4 Parallel implementation of TLM on T9000-based platform

4.4.1 Program generator

In this section, the process of automated program generation using pre-compiled 

component models, is described for the development of multi-processor TLM simulation. 

The pre-compiled component models represent the separate circuit elements and the 

source code is generated for the T9000-based platform described in section 4.3. 

Automated generation of the simulation program enables the system modeller to develop 

large and complex circuit configurations from much simpler modular elements.

In general, the use of automatic program generation leads to improvements in:

Efficiency: It takes less time to build and modify simulation programs.

Reliability: New component models may be tested in isolation for correct operation. Large 

circuits can then be developed with increased confidence.

Simplicity: The analyst is separated from the task of creating models and writing source 

code directly using a 4th generation language such as C. Even the
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implementation of the simulation in parallel is achieved automatically. This 

task is normally very complicated, time consuming and prone to errors.

Notwithstanding the potential benefits indicated, the development of a program generator 

is a detailed and complex task. The program generator described here and all TLM 

component models have been written in the C programming language using the Borland 

C++ compiler and the INMOS T9000 ANSI C tools, respectively.

For the TLM code generator, the models used in the simulation and how they are 

connected together are defined by the user in an ASCII text file, subsequently named the 

link file. Details on the program generator and how to create a link file from a hydraulic 

circuit drawing are given in [Pollmeier, 1996c].

4.4.2 Simulation process

Figure 4.5 shows schematically the complete simulation process. Firstly, the user-supplied 

link file (extension .Ink) is interpreted by the link file generator. This module then writes a 

new link file for each processor. The user-defined link file contains the following five 

sections:

1. System parametric data. This section contains data on the fluid properties, simulation 

start and end times, results print interval, time step and the number of processors used 

with this simulation.

2. Transmission line data. Here the program reads in the individual link numbers and the 

link type (fluid or signal link). For hydraulic transmission line links, the pipe diameter, 

length, effective bulk modulus and initial pressure are also specified.

3. Component model data. Here the following information is detailed for every 

component model used in the circuit: model name, links to transmission lines followed 

by a list of component parametric data. The latter data have to be entered into the link 

file in a specific sequence corresponding to the parameter argument list for the model.

4. System partitioning data. This section contains information about the mapping of the 

simulation on several processors. Each model is assigned to one of the transputers 

used.

5. Inter-processor communication data. In this final section the expected order in which 

the processors finish their computational load is included.



Chapter 4: Simulation with fixed time steps on parallel platforms Page 48

The method used to get the information for the latter two sections is described in Chapter 

5. When interpreting the link file the program makes a number of checks to ensure that a 

valid circuit model can be created. Therefore the data in the model attribute file 

(containing e.g. the number of ports and parameters of each available model) are read and 

compared with the component model data (section 3). In addition, links between models 

are checked to ensure that they are defined only once and connected correctly. The link 

file generator cannot validate the hydraulic functionality of a circuit description, it can 

only check whether a certain arrangement is physically possible (e.g. hydraulic lines 

cannot be connected to signal lines). The loaded link file data is then used to write a new 

link file for each processor. From the sections described above the first three are just 

copied (without the comments) to the new link files. The latter two sections are used to 

calculate the order and the direction of communication between the connected partitions. 

This information is then also written to the new link files which all have to contain the 

same parametric data from section 1 [for details see Pollmeier, 1996c].

For numerical simulations many of the source files written by the program generator have 

similar structure and many common functions. It is for this reason that template files are 

read by the code generator line-by-line and used to construct the simulation program 

source, header and make files, by inserting relevant code excerpts into the file templates. 

The use of template files as a means of simplifying the code generation process is not 

uncommon, and has been adopted in the BATHfp package and a previously-developed 

single processor TLM program generator [Burton, 1994].

In all source programs the appropriate model call argument list must be written for every 

occurrence of a component, corresponding to each model entry in the link files. Moreover, 

simulation data associated with each component model must be stored by the control 

program during execution to ensure data integrity. This is necessary, as there may be 

multiple occurrences of the same model using the same component model code, but 

having different data.

The automatically-generated header files contain the particular variable declarations, 

required by the particular source code files. Finally, the system make file (called makefile) 

contains all of the arguments necessary to build an executable file from all of the 

constituent elements. The files additionally required by the make command are explained 

in section 4.4.3. These files are the files not written by the main code generator. The make 

command can be automatically invoked upon the successful generation of the system
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model source and header files by the program generator. A single executable file with the 

extension .btl is produced which can be executed on the command line within a DOS- 

window on the PC host computer. Furthermore make generates the network initialisation 

file (.nif).

A hosted T9000 network is initialised by sending control commands to the transputer and 

router connected to the control network. The code is then loaded using the data network. 

The data used to generate the control network commands is held in the network 

initialisation file. This contains all the information needed to initialise a system through 

the control links prior to loading the application code. It can be automatically generated by 

the initialisation file generator tool (inif tool in the toolset), from the network description 

and memory configurations. To initialise the network, the network initialisation file is 

used by the initialisation software to generate the correct sequence of commands to send to 

the control link network. In a hosted system, the initialisation software runs on the host 

and sends the initialisation commands to the control network, as given by the initialisation 

file. The simulation is then started calling the executable file with the network 

initialisation file as its argument.

Following completion of the simulation, binary and/or text (ASCII) results files are written 

containing simulation data saved by the separate component models during the simulation. 

Each model also writes an entry into an ASCII reference file (extension .ref) during the 

initialisation phase of the simulation. It details every component model used in the circuit, 

the parameters saved by each model for user output and a unique integer number 

corresponding to the parameter position in the results files. A description of the model the 

parameter came from and the model “instance” number is also included. This unique 

integer number corresponds to the model position (from first to last) in the respective link 

file. The use of a graphical post-processing utility in conjunction with the reference files 

enables the system modeller to inspect the simulation results of each partition.

4.4.3 Other files required by the make file 

Pre-compiled model object files (.TCO)

The source code for the component models is divided into two parts for each model. An 

initialisation function is used to pre-set certain variables and to write the aforementioned 

entry into the reference file. The second part (the main function) contains the component 

equations, i.e. it is used to calculate pressure, flow, speed, displacement, etc. for the next
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time step. Both functions are written in the C programming language. All model object 

files are then included in the make file instructions using a library indirect file. This is a 

text file containing a list of all compiled models.

Global header file (TGLOBAL.H)

The global header file contains only very specific variable declarations, accessible by all 

sub-programs in the source code. These are maximum array sizes, transmission line 

structures and data structures used for the inter-processor communication. In addition, 

some software-specific header files are included.

Multiplexer (KMUX.C)

This file is an additional source code file and its function is to enable all processors to 

communicate with the host processor. With this, results from each processor can be 

displayed on the screen during the parallel simulation. Furthermore, at the end of the 

simulation each partition can write its own results files to the hard disk of the host 

processor.

Hardware network description file (.NDL)

The hardware is described using the Network Description Language (NDL), which uses 

simple textual descriptions of device attributes. The NDL supports the setting up of 

attributes to configure the subsystems of the IMS T9000 to the user’s requirements. These 

include the memory interface, cache and links. This description is used for two purposes: 

for the software configuration (allocating code and data to processors, and channels to 

links) and for the hardware initialisation. The use of NDL means that there is a single 

system description for use by all the development tools.

The hardware description includes a definition of all the nodes in the network. A node in a 

T9000-series network is a device or part of a device which is initialised by means of a 

control link or a ROM. The T9000 transputers, asynchronous packet switches (C l04) and 

system protocol converters (C100), for example, are all nodes.

Each node has attributes. Attributes are of one of the following two types:

• A value attribute has a numerical value which can be set. The value gives information 

about the node, such as the amount of memory present. Most attributes represent a 

value which will be written to a configuration register during initialisation.



Chapter 4: Simulation with fixed time steps on parallel platforms Page 51

• An edge attribute is a communications port of the node. Edge attributes do not have 

values, but they specify whether an edge is connected.

Connections to nodes and to devices external to the network are referred to as edges. An 

edge for an external device is also known as a network edge or external edge. The 

complete network description also has to define the connections (or arcs) between nodes 

and to the outside world. Arcs always connect edges. Arcs between nodes need not be 

named.

These concepts are illustrated in Figure 4.6

It is important to note that the configuration tools allow a complete separation of the 

hardware description and the mapping of software onto that hardware. The network 

description exports the names of the nodes, arcs and routes, making the objects available 

to software configuration descriptions. These are then used when mapping a particular 

piece of software onto the hardware [INMOS, 1994a,b],

Software network description file (.CFS)

The software network is described in the configuration description file (.CFS). A 

configuration description states how code is to be run on a network of transputers. It 

contains a definition of the software network and a mapping description defining how the 

software processes are to be placed on the transputer network. The software and mapping 

descriptions are written in the INMOS configuration language.

When preparing an application for a network, each software process is constructed as 

though it were a separate program. All the source files for it are compiled, the object 

modules are then linked to form a file known as a linked object file. The linked object file 

embodies the program in a way that can be used as a process in a network.

The software network is composed of nodes of the predefined type process connected by 

input and output channels. The software description consists of a series of process 

declarations that define the network’s interface with the outside world, and the 

connections between them. A separate statement is used to assign linked object files to the 

software processes.

The description of the hardware network is contained in a separate file, the network 

description file, as explained above. This file is referenced by the configuration 

description. The separation of hardware and software descriptions facilitates their
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independence and extends their functionality. By modifying the mapping descriptions a 

variety of software configurations can reuse the same hardware network description and a 

software description can be mapped onto different hardware networks. In addition to 

describing the configuration, the description references the linked object files which form 

the application [INMOS, 1994a,b]. The object files are the compiled multiplexer source 

code, the compiled source code files of each partition and the pre-compiled model object 

files.

4.4.4 TLM numerical algorithm

A key part of the TLM simulation is the algorithm by which the TLM models are solved. 

The parallel algorithm developed and used here is illustrated by the flow-chart of Figure 

4.7. Here only two processors/processes are shown but the chart can easily be extended to 

more processors. The TLM algorithm is based on two basic sets of equations - those 

which define the propagation of information between component models (equations 2.5 

and 2.6 for a loss-less line with equations 2.25 to 2.27 for the approximated friction), and 

those which form the component models (e.g. equation 2.14 and 2.16 for the relief valve 

in the modelling example, section 2 .2 .2 )

The first stage of a simulation is to set various global parameters and initial values for the 

main simulation and for each model used. A simulation loop is then entered until the 

simulation is completed. In the first part of the simulation loop each model calculates 

pressures and flows at each end of each line from the known characteristic pressures 

(determined at the previous time-step). From these pressure and flow values the new 

characteristic pressures are calculated which are then exchanged between all connected 

processors. At the same time the new pressure values are also propagated. The 

communication between processors is designed to be dead-lock free and as efficient as 

possible. Details on the inter-processor communication are given in section 4.4.5.

After the communication between the processors, the pressure difference across each line 

is calculated and filtered according to equation (3.4) These values are then used to 

determine the maximum parasitic pressure difference. At this point low-pass filtering of 

the characteristic pressures using equation (2.26) is applied. The filtering algorithm 

introduces a modification to the line impedance (as do changing volumes e.g. in an 

actuator). Hence, the characteristic pressures must be compensated to allow for the change 

in impedance, using equations (3.9) to (3.11). The procedure above must allow for the
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total volume of fluid associated with each line, and this may include fluid contained within 

the components. However, as this volume is subject to change it is important that the total 

line volume is updated at the start of each loop, and that at the end of each loop the line 

volumes are reset to the pipe volumes only.

The final part of the loop is to transfer the newly-calculated characteristic pressures 

between connected components on the same processor. If the time has advanced beyond 

the last storage time by the user-defined print interval results may be stored to memory. 

The simulation time is then incremented by the time-step and, if the end-time has not been 

reached, the loop starts again. Finally, the simulation results of each partition are copied 

from local memory to files on the host processor hard disk.

The package has been tested against experimental data and against a standard package 

which employs an equivalent system of ordinary differential equations (Bathfp) and hence 

provides a suitable “control”.

4.4.5 Communication and synchronisation between processors

Parallel processing is widely accepted as an important way of improving software 

performance on any given processor architecture. The transputer supports parallel 

processing directly by incorporating into its design a process scheduler which is 

responsible for scheduling parallel tasks, and by providing the means for connecting 

processors (transputer links) to create a multi-processor network.

Parallel programming is supported in the INMOS C toolset by extra library functions. 

These functions allow processes to be defined and created, to communicate with one 

another via channels and to synchronise using semaphores. Parallel processing in 

transputer based systems is based on the idea of Communicating Sequential Processes 

(CSP) developed by Hoare [1985]. CSP is an abstract generalised model of concurrency 

based on the idea of independently executing processes exchanging data by synchronised 

communications. The model can be used to describe software applications in an intuitive 

way reflecting the parallelism of the real world [INMOS, 1994a,b].

Concurrent C processes are independent, they can be nested within each other, and they 

are linked together by channels. Any C function can be defined as a concurrent process 

using a special set of functions provided in the runtime library. Processes can
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communicate either unidirectionally (one process passing data to another) or bi- 

directionally (two processes exchanging data and working in a co-operative manner)

Three new data types are introduced for the concurrency support. Data structures are used 

to hold information about processes and semaphores, and a pointer type is used to 

implement channels.

• Process: A structure type to hold information about a declared process.

• Channel: A data type used to implement channels.

• Semaphore: A structure type that holds information about a semaphore.

Processes which exchange messages and data with each other must do so via a pair of 

channels. Channels have two functions. They provide the communication path between 

independently executing processes, and serve to synchronise the communication between 

the two processes. Processes which send data cannot do so until the receiving process is 

ready. Neither process can continue until the communication is completed. In this way 

synchronisation between the two processes is assured: no data is passed until both partners 

in the operation are ready.

Semaphores are the traditional way of co-ordinating activity in shared memory 

environments. They are also implemented within the toolset using channel functions, and 

are therefore subject to a slightly greater overhead than if the intrinsic synchronising ability 

of channels were used directly. Hence, channels are used for communication and 

synchronisation between different processors.

4.5 Portability of the program generator concept to other platforms

The program generator was developed for TLM simulations on specialised hardware using 

a particular development tool (INMOS C toolset). In general using specialised libraries 

one cannot put the code on any other machine. Nevertheless, the program generator has 

been designed in such a way that it can easily be adapted to any parallel platform 

supporting the message passing interface library (MPI). MPI is described in the following 

section. The general concept used for the program generation does not need to be changed.

4.5.1 Message passing interface (MPI)

During 1993, a broadly based group of parallel computer vendors, software writers, and 

application scientists collaborated on the development of a standard portable message-
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passing library definition called MPI. MPI is a specification for a library of routines to be 

called from C and FORTRAN programs. The programs that the user writes in FORTRAN 

77 and C are compiled with ordinary compilers and linked with the MPI library [Gropp et 

al., 1994]. In the same reference it is also predicted/assumed that the majority of 

programmers of parallel computers will, in the long run, access parallelism through 

libraries. Indeed, enabling the construction of robust libraries is one of the primary motives 

behind the MPI effort, and perhaps its single most distinguishing feature when compared 

with other parallel programming environments. Major goals of MPI are portability across 

different machines and architecture, efficiency and reliability of code and language 

independency.

It is a sign of the maturity of parallel computing that there already exist many explicitly 

parallel application programs written for the message passing model. Old programs 

needing to be ported to new hardware and software platforms used to be called “dusty 

decks”. Now they are more respectfully called “legacy applications”. In general, porting 

them to MPI will be straightforward, because MPI is for the most part a functional 

superset of existing message-passing libraries. Therefore the changes to existing programs 

will be largely syntactical changes and, in some cases, can be done automatically [Gropp 

et al., 1994].

The six fundamental functions of MPI are given in Table 4.1. One can write complete 

message passing programs with just these six functions. The remaining MPI functions 

(about 120) ‘just’ add flexibility, robustness, efficiency, modularity or simply 

convenience.

4.5.2 Porting to MPI

The parallel TLM simulation contains a set of processes that have only local memory but 

are able to communicate with other processes by sending and receiving messages. In the 

INMOS C toolset this point-to-point communication is realised with channels (compare 

section 4.4.5). Only two processes are involved, one process sends and the other receives. 

The basic channel input and output commands are Chanln and ChanOut, respectively, and 

they are called the following format:

Chanln (Channel *c, void *cp, int count);
With the arguments:
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Channel *c A pointer to the input channel.

void *cp A pointer to the array where the data will be stored.

int count The number of bytes of data.
ChanOut (Channel *c, void *cp# int count);

With the arguments:

Channel *c A pointer to the output channel.

void *cp A pointer to an array containing the output data.

int count The number of bytes of data.

These channel communications can be rewritten in the equivalent basic (blocking) MPI 

send and receive operation.

MPI_Recv(buf, count, datatype, source, tag, comm, 
status, ierror)

With the arguments:

buf Starting address of buffer to receive.

count Number of elements to receive.

datatype Datatype of each element.

source Process to receive from.

tag Message tag.

comm Communicator.

status Status object.

ierror Error handler.
MPI_Send(buf, count, datatype, dest 
ierror)

With the arguments:

buf Starting address of data to send.

count Number of elements to send.

datatype Datatype of each element.

source Process to send to.

tag Message tag.

comm Communicator.

ierror Error handler.

With the functions in Table 4.1 for initialisation, termination, etc. the TLM simulation can 

be completely ported to MPI format. In general the computation remains a collection of
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processes communicating with messages. Using MPI the previously necessary network 

description files (.NDL/.CFS) and the network initialisation file (.NIF) become 

superfluous. Their task is automatically performed by the particular MPI implementation.

The program generator was generally designed for homogenous systems only, whereas 

MPI can also deal with heterogeneous systems, i.e. systems with different processors. For 

these systems only the automatic partitioning described in chapter 5 needs to be updated so 

that it can take different processors into account. The program generator can still be used 

with the same inputs, i.e. the mapping of processes to processors. But using MPI the 

program generator will then only create source code that defines the different processes 

and communication between them. The processes will automatically be assigned to 

processors by the MPI implementation. This should lead to good parallel efficiencies and 

speedups because the program generator will only create source code for as many 

processes as there are processors available. MPI does not need to find the best process 

processor mapping, that is done before the program generator starts, i.e. the described 

approach can increase the efficiency of MPI.

MPI does not include I/O functions, i.e. the multiplexer needs to be rewritten so that it 

allows the different processes to write to the screen or to the host processors hard disk 

without using channel communication functions.

4.6 Closure

In this chapter the process of automatic system model generation has been described for 

the case of multi-processor TLM simulations. Advantages of the new T9000-based 

platform over the T800-based system were shown. The TLM simulation process and the 

TLM numerical algorithm by which the TLM models are solved were described. Channels 

as a concept to communicate and synchronise between processors were introduced. The 

principal way of porting the software to other platforms was described using the message 

passing interface library.

An automatic process-processor mapping method is developed in the following chapter. 

This method leads to the information required by the program generator.
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TABLES FOR CHAPTER 4

MPI comm and Description of the comm and
MPIJnit Initialise MPI
MPI_Comm_size Find out how many processes there are
MPI_Comm_rank Find out which process 1 am
MPI Send Send a message
MPLRecv Receive a message
MPLFinalize Terminate MPI

Table 4.1 The six basic functions of MPI
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5 Process-processor mapping

5.1 Introduction

In this chapter the development of effective techniques for the distribution of the processes 

of parallel TLM programs onto multiple processors is investigated. Parts of the shown 

results have been presented previously [Pollmeier et al., 1995]. The problem is how to 

distribute (or schedule) the processes among processing elements to achieve some 

performance goal(s), such as minimising execution time, maximising resource utilisation 

and/or achieving real time simulations.

The highest level of decomposition that can be applied to a circuit is to place each 

component onto its own processor. However, this is generally undesirable due to the 

communication overheads that may be imposed. It is preferable to group components 

together on a processor; each group of components representing a subsystem of the circuit.

Local scheduling performed by the operating system of a processor consists of the 

assignment of processes to the time-slices of the processor. Global scheduling, on the 

other hand, is the process of deciding where to execute a process in a multiprocessor 

system. This chapter will address (global) static scheduling, i.e. information regarding task 

execution times and processing resources are assumed to be known in advance.

5.2 Partitioning and scheduling (process-processor mapping) in general

There are three fundamental problems to be solved in the execution of a parallel program 

on a multiprocessor: identifying the parallelism in the program, partitioning the program 

into tasks and scheduling/assigning the tasks on to processors. Whereas the problem of 

identifying parallelism is a programming language issue, the partitioning and scheduling 

problems are intimately related to parameters of the target multiprocessor, such as the 

number of processors and the synchronisation and communication overhead [Sarkar, 

1989]. It is desirable for the partitioning and scheduling to be performed automatically in 

order to achieve optimal or near-optimal parallel performance.

There are three possibilities for automatic partitioning and scheduling:

1. Partitioning and scheduling both at run-time

2. Compile-time partitioning and run-time scheduling
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3. Partitioning and scheduling both at compile-time

In the first approach, both the partitioning and the scheduling decisions are postponed until 

run-time. The major disadvantage in doing everything at run-time is the extra overhead 

incurred during program execution. The advantage is the availability of run-time 

information which may lead to a better partition and schedule. Sarkar [1989] investigates 

the second approach with a so-called macro-dataflow model. The task partition is 

restricted so that the inter-task dependencies are acyclic. With this restriction, the model of 

compile-time partitioning and run-time scheduling is like the dataflow model at the 

granularity of tasks, rather than machine instructions. However, the large overhead of run­

time analysis necessitates very simple partitioning and/or scheduling algorithms. This 

research study did not pursue the run-time partitioning and scheduling approaches because 

of the problems with excessive run-time overhead, and the corresponding limitations on 

the partitioning and scheduling algorithms. Furthermore, for real-time simulations the time 

for the simulation must be predictable at compile-time.

In the third approach, both partitioning and scheduling are performed automatically at 

compile time. Compile-time scheduling is attractive because it eliminates the scheduling 

overhead entirely at run-time. The disadvantage is that the compile-time estimates of 

execution time and overheads may be inaccurate for some program inputs, leading to 

inefficient schedules. Considering real-time simulations in this thesis only the latter 

approach is investigated.

Partitioning is necessary to ensure that the granularity of the parallel program is coarse 

enough for the target multiprocessor, without losing too much parallelism. Scheduling is 

necessary to achieve a good processor utilisation and to optimise inter-processor 

communication in the target multiprocessor.

5.2.1 Partitioning

There are two ways of partitioning on parallel computers, partitioning data or partitioning 

the program. The former is easier to do and it is used for the simulation of the same system 

with for example different input data. It has been used amongst other things for the 

optimisation of hydraulic systems, where the same system is simulated with different 

parameters in order to find the best parameter set for a desired system performance 

[Donne, 1993]. Unfortunately this cannot be used for real time simulations of a particular 

simulation of a single hydraulic system.
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In the second approach the partitioning of a parallel program specifies the sequential units 

of computation in the program. For convenience, we call such a sequential unit of 

computation a ‘task’, though it does not necessarily have the characteristics of an 

operating system task. According to Sarkar [1989] the properties of a task which are of 

interest are:

1. The task’s sequential execution time (also called the task’s size).

2. The task’s total overhead, which includes scheduling overhead and communication 

overhead for the task’s inputs and outputs.

3. The task’s precedence constraints, which specify the parallelism in the partitioned 

program.

As mentioned earlier the TLM method is inherently parallel. The transmission delay 

allows component models to be decoupled for the current time step, enabling parallel 

calculation of all model functions. A large circuit may be partitioned into sub-circuits 

which can then be simulated concurrently, i.e. appropriate grouping of components will 

solve the partitioning problem of parallel TLM simulations. TLM computation requires all 

component models in the simulation to be executed before progressing to the next time 

step; thus the task’s precedence constraints are easily described. All models simply have to 

be calculated before the exchange of characteristics between them can happen.

For the scheduling or assignment method to be described later the communication 

overhead (point 2 above) will be considered independently of any single tasks. It will be 

calculated as the total time needed for communication by a sub-circuit which is due to be 

placed on one processor. Hence, for the TLM simulation each model (component) 

function is considered as one task. The sequential execution time of each model function 

can be measured on the particular hardware leading to good run-time estimations. The 

extra time for the calculation of parasitic pressure differences, line impedances, 

characteristic compensation, etc. (as described in section 4.4.4) can be included depending 

on the number of ports for each model.

The time needed for the propagation of a certain amount of data between processors can 

also be measured. With this information, the time needed for the exchange of 

characteristics between sub-systems on different processors can be estimated. 

Furthermore, the time for the data exchange between models on the same processor can 

also be measured.
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Assuming these times to be constant for all possible assignments, the total calculation time 

for a particular assignment can be estimated. This is explained in more detail in sections

5.3.1 and 5.3.2. The calculated execution time is then dependent on the particular partition 

and schedule of the assignment. It should be mentioned that the presence of the overhead 

in a multiprocessor can make it impossible to achieve ideal speed-up, i.e. doubling the 

number of processors does not simply double the calculation speed. Furthermore, it may 

not be possible to partition a real parallel program into tasks of equal size. Different 

models have varying complexity and hence different execution times.

5.2.2 Scheduling or assignment of tasks to processors

The scheduling problem (also called the assignment problem) is a fundamental aspect of 

distributed computing. It arises whenever the procedures or modules of a program are 

distributed over several interconnected computers so that program activity moves among 

processors as execution proceeds. The program may be serial on each processor (only one 

module active on each processor at a time) or parallel (several modules concurrently active 

on each processor). Here only the former approach is considered, the latter can be of use 

when a parallel system is shared by more than one user. In general, the assignment 

problem deals with the question of assigning modules to processors so as to minimise the 

cost of running a program. The cost may be time, money or some other measure of 

resource usage [Bokhari, 1987].

For the real-time TLM simulation the scheduling problem is to assign tasks to processors, 

so as to minimise the parallel execution time. The parallel execution time depends on 

processor utilisation and on the overhead of inter-processor communication. Minimising 

the execution time can be done by maximising and balancing the utilisation of resources 

while minimising the communication between processors [Efe, 1982].

Unfortunately, the scheduling problem becomes more difficult when considering 

communication overhead with arbitrary data sizes. While minimising inter-processor 

communication tends to assign all tasks to a single processor, load balancing tries to 

distribute the program modules (tasks) evenly among the processors. Therefore, there 

exists conflict between these two criteria and a compromise must be made to obtain an 

optimal policy for task assignment [Shen & Tsai, 1985]. Furthermore the scheduling 

problem with communication overhead is NP-complete in the strong sense, even if there is 

an infinite number of processors available [Sarkar, 1989]. NP-completeness means that a
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problem is “inherently intractable” [Garey & Johnson, 1979]. For example consider an 

extensive search problem with n states that requires 2n calculations of a particular object 

function. Furthermore assume that the calculation of each object function requires 1ms 

CPU-time. A system with n = 20 states requires 1049 seconds CPU-time to be calculated 

whereas a system with n -  40 states would take about 35 years. Even with a considerable 

increase of processing speed the problem cannot be solved in reasonable time and it gets 

worse for systems with more states.

Timesharing on a single processor has been eminently successful but the scheduling 

problem becomes more difficult on multiple processors due to frequent context 

switching1, necessary for synchronisation and communication. If context switches occur 

too frequently (e.g. using dynamic partitioning/scheduling), the overhead incurred in task 

scheduling may well undo the potential speed-up obtained by multiprocessing. The task 

scheduling problem is different for parallel processing. For tasks within the same parallel 

program this must address the new problems of task synchronisation and communication, 

while ignoring some classical considerations from scheduling for timesharing on single 

processors, like fairness and response time.

Several approaches to task assignment in distributed computing systems (process- 

processor mapping) have been suggested. They are based on: mathematical programming, 

graph theory, queuing theory and heuristics. Figure 5.1 shows the taxonomy of static 

allocation methods. The first three approaches give optimal solutions but are very time 

consuming, given that the problem is NP-complete.

The automatic placement of processes on processors of a distributed memory parallel 

machine is a combinatorial optimisation problem which can be reduced to the graph 

partitioning problem. Again, this problem was shown to be NP-complete [Garey & 

Johnson, 1979]. Graph theory is a branch of mathematics that has found numerous 

applications in many different fields. It deals with entities (‘nodes’), connections between 

entities (‘edges’) and the consequences of these connections. Graph theoretic techniques 

have been successful in modelling many problems of assignment and partitioning in 

distributed systems. This is not surprising, since the notions of ‘node’ and ‘edge’ from 

graph theory are very similar to the concepts of ‘module’ (‘task’) and ‘communication’ in

1 Context switch is a general term covering the situation in which a process initiates a new type of activity.
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distributed programs. The idea of partitioning a program is analogous to the concept of 

partitioning a graph and so on.

There is usually a very clear relationship between a problem and its graph theoretic model. 

This gives insight into the structures and properties of the problem. This is in contrast to 

other mathematical modelling techniques where the model is essentially a set of equations 

of abstract algebraic structures which require deep understanding of mathematics to 

appreciate [Bokhari, 1987].

5.2.3 Graph theoretic model of the mapping problem

A parallel program is represented by a weighted undirected graph Gp = (Vp, Ep} , where

Vp = (v,, v2, ... vN ) is a set of N  nodes and Ep c  V x V is a set of edges. The nodes of the 

program graph represent sequential program modules (processes) and the edges represent 

a fixed communication pattern between processes. Node weights a (a:V  —>Z+) 

characterise computation costs of the processes and edge weights b ( b : E —>Z+) 

characterise communication cost between given pairs of processes located in neighbouring 

system nodes. For example, a graph with 20 nodes developed from the particular hydraulic 

circuit in Figure 5.2 is shown in Figure 5.3 (the circuit is described in more detail in 

section 5.5.2). It is assumed that the weights of the program graph represent worst case 

properties of the processes, i.e. the time it takes to calculate one timestep with the most 

complicated equations used in the particular model. The time is given by the number of 

required clock cycles needed to do the calculation of one time step. Edge weights of the 

program graph are given by the number of characteristics to be propagated between 

different models, i.e. the number of transmission lines connecting two models. The models 

connected by signal lines indicated by ‘s’ (nodes 1 & 2 and 19 & 20) can be combined to 

form single modules (i.e. they are to be placed on the same processor). For example this 

leads to the same edge weights for all remaining edges.

A graph is called ‘connected’ if a path exists between every pair of its nodes. A graph that 

is not connected (a disconnected graph) has two or more components which are simply 

smaller constituent graphs that are connected [Bokhari, 1987]. The graph in Figure 5.3 is 

connected. Disconnected graphs can be used to describe the concurrent simulation of more 

than one hydraulic circuit. One parallel processing platform may be used to simulate 

several hydraulic systems in real-time for condition monitoring purposes.
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The parallel processing system (Figure 4.1) is represented by a second undirected graph 

Gx = (V̂ , Es) called a system graph, where Vs represents the nodes of the system and Es 

represents the interconnection pattern (a set of edges) of the system (Figure 5.4).

Various assumptions made about the distributed computing system considered here are 

first described in the following:

1. The processors in the system are homogeneous. That is, a single program module, if 

executed on different processors, will require the same amount of running time.

2. Identical communication links are used by the processors for message transmission. 

Direct links between processors are slightly faster than links via the C l04 

asynchronous packet switch.

3. The link between any two processors is symmetric, i.e. the time to transmit a certain 

length of message from one processor to another is identical to that to transmit the 

same message in the reverse direction.

The interconnection pattern of the system graph describes the time it takes to propagate the 

characteristics of n transmission lines between models via the particular connection. These 

times are dependent on the hardware and measurements with example simulations show 

they can be expressed by three different times. Communication on the same processor 

leads to the fastest propagation, tx-n. For the inter-processor communication the time 

consists of an initialisation time (to establish the communication link) and the actual time 

for the data transfer. The initialisation time is assumed to be independent of the amount of 

data transferred. Communication via the C l04 switch leads to only slightly longer times 

(compare section 5.3.2). The times are split into two parts, one from a processor to the 

C l04 and another from this switch to the next processor.

Let 0 be a mapping function from the vertex set of the program graph to the vertex set of 

the system graph and 0  the set of all mapping functions, i.e. 0  = {0: Vp —> V,}. The

problem of static mapping can then be formulated as the problem of seeking a mapping 

function 0 e 0  that minimises the total computation time. Each graph match then 

corresponds to a specific task assignment. The above described graph theoretic model 

illustrates the mapping problem in a very clear form. If will be useful for the understanding 

of the fitness function described later.
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5.2.4 Heuristic and approximate static allocation methods

All optimal allocation methods are very time consuming, hence, in order to speed up the 

search, approximate algorithms have been used. Approximate solutions to the problem can 

be obtained by using heuristics. They may be divided in two classes: greedy and iterative. 

The greedy algorithms are initialised by a partial solution and search to extend this 

solution until a complete mapping is achieved. At each step, one process assignment is 

done and it is not possible to change this decision in the remaining steps. Iterative 

algorithms are initialised by a complete mapping and search to improve it by moving a 

process to another processor or by exchanging the mapping of two or more processes. 

Iterative heuristics may be divided in two main classes. On one hand, general purpose 

optimisation algorithms independent of the given application and, on the other hand, 

heuristic approaches especially designed for the mapping problem.

Two widely-used optimisation techniques are the hill-climbing algorithm and simulated 

annealing. Hill-climbing is sure to find the global minimum only in convex spaces. 

Otherwise, most often it is a local instead of a global minimum which is found. Simulated 

annealing offers a way to overcome this major drawback of hill-climbing but the price to 

pay is a huge computation time. Worst, as the simulated annealing algorithm is of a 

sequential nature, its parallelisation is quite a difficult task [Muntean & Talbi, 1991].

More inherently parallel distributed optimisation techniques may also be considered. Some 

of them are closely related to neural network algorithms [Ackley, 1987]. The training of a 

neural network (NN) with many different partitions of parallel hydraulic TLM simulations 

appears as an intractable complex task. For the NN training data each circuit needs to be 

simulated and timed several times in order to establish optimal or sub-optimal partitions. It 

seems to be impossible to train a NN with this (few) known good partitions for the many 

different hydraulic systems likely to be simulated. Genetic algorithms (GA) are 

investigated here because they offer the advantage of finding a good solution for any 

circuit and they can be enhanced using heuristics (specific knowledge about hydraulic 

systems) as described later. The most remarkable feature of the genetic approach is its 

generality as a highly powerful and flexible tool.

5.3 Genetic algorithm solutions to the mapping problem

Genetic algorithms (GAs) are motivated by the theory of evolution and date back to the 

early work of Rechenberg [1973] and Holland [1975]. Recently, GAs have been
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successfully applied to various optimisation problems. Several approaches for solving 

partitioning problems using GAs are considered by Jones & Beltramo [1991]. Curatelli 

[1995] investigates GAs for graph partitioning where nodes are separated into two groups 

with a minimum number of edges connecting nodes between different groups and with 

roughly the same number of elements for each group. Graph theoretical problems have 

also been tackled using GAs (Pirkul & Rolland [1994], Von Laszewski & Muhlenbein 

[1990]).

The scheduling problem has also been solved with GAs. Benten & Sait [1994] found GAs 

to be very effective in determining the minimal time of completion compared to optimal 

schedules. However when Glass et al. [1994] compared simulated annealing (SA) and 

taboo search with GAs, the GA on its own led to poor results. But the incorporation of 

neighbourhood search into the GA improves its performance substantially. This indicates 

that sometimes the GA needs to be improved using other methods or heuristics. Hou et al. 

[1994] also investigate GAs for the scheduling problem based on a deterministic model,

i.e. execution time and relationship between tasks is known.

Recently, some papers have dealt with the process-processor mapping problem. Muntean 

& Talbi [1991] use a simplified cost function and they only look at cases where the 

communication cost between processes is relatively small compared with the computation 

cost. This is not the case for hydraulic TLM simulations. Hurley [1993], on the other hand, 

investigates different cost functions where parallelism in communication is ignored. 

Neuhaus [1990] investigates the mapping of asynchronous processes to an arbitrary 

parallel architecture but fails to give any practical results or example solutions. In a 

relatively early paper by Muhlenbein et al. [1987] the assignment of processes to 

processors is reduced to the graph partitioning problem and solved by an evolution method 

derived from biology. In their paper only systems where all processes have the same size 

are considered.

Genetic algorithms differ from traditional optimisation methods in the following ways 

[Goldberg, 1989]: GAs use a coding of the parameter set rather than the parameters 

themselves. Unlike local search methods such as simulated annealing and taboo search 

which manipulate a single feasible solution, genetic algorithms consider a population of 

feasible solutions, known as chromosomes. Furthermore GAs use probabilistic transition 

rules, i.e. new solutions are calculated from parts of previous solutions using different 

probabilities based on random numbers.
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After an initial population of solutions has been constructed at random (or by using 

problem specific information), the fitness of each chromosome in the population is 

calculated (a high fitness would indicate a better solution than a low fitness value). The 

fitness is evaluated as the reciprocal of the cost function. Cost functions (also called object 

functions) are to be minimised. The fitter chromosomes are then selected to undergo 

transformation to produce offspring for the next generation, which inherit the best 

characteristics of both parents. After a user-defined number of generations, the result is 

normally a population that is substantially fitter than the original. The main transformation 

operators used in GAs are crossover and mutation.

In general a genetic algorithm contains the following steps:

1. Initialisation: generation of a population of random individuals

2. Evaluation: calculate the fitness of each individual of the whole population

3. Selection: select the fittest individuals

4. Replacement: form a new population by replacing worst individuals by best ones

5. Reproduction: apply genetic operators to selected pairs

Steps 2 to 5 are repeated until the maximum number of generations is reached or until the 

algorithm converges. The construction of a genetic algorithm for any problem can be 

separated into four distinct and yet related tasks [Hou et al., 1994].

1. the choice of the representation of the strings,

2 . the design of the genetic operators,

3. the determination of the fitness/cost function, and

4. the determination of the probabilities controlling the genetic operators

Some of the characteristics of the GA developed for the example systems documented in 

this thesis are briefly described in the following sections. The fitness function is explained 

in more detail in sections 5.3.1 and 5.3.2.

String representation:

In this work the partitioning onto four and eight processors is considered. Hence, for each 

component/model the processor number it is assigned to can be represented by binary 

strings of two and three bits length, respectively. For the example system with 18 

components this binary string can be combined to form chromosomes of 36 and 54 bits
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length, respectively. If one likes to partition a system onto a different number of processors 

that cannot be expressed by a power of 2 then the GA needs to be altered. Using e.g. 3 bits 

and restricting the processor numbers from 1 to 5,6 or 7 would lead to different 

probabilities for some of the processors. Without these restrictions the GA needs to reject 

values larger than the number of available processors. This also requires some 

recalculations which can lead to longer run times. Another option is to use string 

representations not based on binary strings. These options are not further investigated in 

this thesis.

Genetic operators crossover and mutation:

Crossover between parent binary strings occurs with a probability Pc (typically between 

0.6 and 0.8). If crossover is to take place, the actual position is randomly chosen. If for 

example, crossover is to occur after the seventh bit:

Parent A 1100101101 Child A 1100101111
T T

Parent B 1010110111 Child B 1010110101
T T

This scheme was extended to multi-point crossovers as described in Donne et al. [1995]. 

The GA mutates one bit of the binary string (its value is changed from 1 to 0 or vice versa) 

with probability Pm (typically between 0.001 and 0.01).

Subpopulations and migration:

To reduce the chance of convergence to a local minimum, each generation is divided into 

several smaller independent subpopulations. In a process called migration, poorly 

performing individuals in a subpopulation are periodically replaced by fit individuals from 

another. The use of different subpopulations leads to an inherently parallel GA, even 

though so far this has been implemented as a serial GA only. In the GA used to calculate 

the partition for the example circuits, 12 subpopulations were used and 4 individuals were 

migrated every third generation.

5.3.1 The fitness/cost function

Most assignment methods (not only GAs) adopt some type of cost function to evaluate the 

effectiveness of task assignment algorithms. The most commonly used cost function is 

defined as the sum of the inter-processor communication cost and the processing cost. The 

cost function used is described in the following section.
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After a particular simulation code is partitioned into suitable modules, let r‘(0) denote the 

total time spent for execution of all models, and ^ ( 0 ) be the total time for inter-processor

communication, both in some processor (partition) p  according to a certain task 

assignment 0 . Let

*,(8 )=< ;(e)+«;(e) (5.i)

which is the total time spent in processor p  for task assignment 0 . We call tp(Q) the

processor turnaround time of p. This turnaround time is in general different for each 

distinct processor. Let

t(Q) = max t (0) (5.2)
p

which can be called the task turnaround time of 0. Sometimes this is also called the 

parallel run time. It is easy to see that t (0) is the total time required to complete all tasks 

according to assignment 0 under the assumption of negligible processor idleness. 

Therefore, t (0) is, from the point of reducing total processing time, used as a cost

measure for the effectiveness of task assignment 0. The smaller t (0) is, the better 0 is. An 

optimal task assignment thus may be defined as the one 0 O which minimises the task 

turnaround time t (0 ), i.e.,

t (0O) = f(0) = rninmaxt (0 ) (5.3)
© © p p

where 0  is the set of all possible assignments. This means that we want to minimise the 

maximum processor turnaround time, resulting in the so-called minimax criterion, t (0 O) 

is called the minimum task turnaround time [Shen & Tsai, 1985].

5.3.2 How to calculate the fitness function

The task turnaround time for task assignment 0 in equation (5.2) can be calculated using 

the vectors and matrices defined by the following:

Assignment vector A:

A  = A(m) (5.4)

where m equals the number of component models (number of nodes in the undirected 

graph). A describes the particular task assignment 0 and it can contain values between 1
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and the number of processors used for a particular simulation, e.g. A(l) = 2 , A(2) = 5 

means the models encountered firstly and secondly in the system link file (see Pollmeier 

[1996c]) are placed on processor 2 and 5, respectively.

Connection matrix B :

B = B(m, m) (5.5)

(with m as described above) is a symmetric matrix and specifies the number of 

connections (transmission lines) between components, i.e. B(4,1) = 5(1,4) = 1 indicates 

one connection between model 1 and 4. There can be more than one line between 

components, for example if a flow divider is connected to a proportional valve. Figure 5.5 

shows the connection matrix derived from the example graph in Figure 5.3. Here nodes 1 

& 2 and nodes 19 & 20 are compound as described earlier and all nodes are renumbered 

from 1 to 18.

Communication time matrix C:

Q,2 =  Q,2 (nc>nc) (5 -6)

where nc is the number of processors. These matrices are shown in Figure 5.6. They give 

the times for communication between processors obtained by experiments with the 

particular T9000-based parallel platform, i.e. nc = 8 . The notation is chosen according to

the system graph in Figure 5.4. C2 describes the initialisation time and Ci represents the 

time needed for the data transfer of one transmission line. All times are given in the 

number of clock cycles required.

Calculation times vector D :

D = D(m) (5.7)

Again m represents the number of nodes in the undirected graph. D  contains the number of 

clock cycles needed to calculate one timestep of a model (or group of models). The 

numbers correspond to the node weights in the particular circuit graph. Figure 5.7 shows 

D for the example graph in Figure 5.3.

Finally, the task turnaround time for a particular assignment can be calculated. Figure 5.8 

shows part of the FORTRAN 77 code used to calculate the fitness function. The 

turnaround time is returned as the variable called obtotal.
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5.3.3 Software support

A program called ‘12ga’ (link file to GA) has been developed that creates the above­

described matrices B and D automatically. Using the user-defined system link file (as 

described in section 4.4.2 and in Pollmeier [1996c]) the necessary information is 

automatically extracted. Furthermore, heuristics can be accommodated by specifying 

certain models that must be placed on the same processor. For example, the components 

connected by signal links as seen in Figure 5.3 have to be placed on the same processor. 

The program automatically combines these models and it also calculates the new node 

weights for the combined groups of models.

5.4 Deadlock-free communication scheme

Deadlock will arise when members of a group of processors which hold resources are 

blocked indefinitely from access to resources held by other processes within the group 

[Hwang & Briggs, 1987]. According to Welch & Peel [1994] there are three possible ways 

of reaching deadlock:

Primitive deadlock:

This happens when a process executes the stop and refuses any further communication 

with its environment.

Structured deadlock:

This is the more common design fault. Assuming a sub-system of two processes called PI 

and P2, if process PI commits to its output at the same time as process p2, this sub-system 

refuses any further communication with its environment. In other words, if both processes 

have to communicate with each other and both try to send data first this will lead to a 

deadlock. (See section 4.4.5 for details about the features of the channel connection used 

for communication and synchronisation between processors.)

Primitive livelock:

This happens when a process commits itself to an infinite loop, hence, it refuses any 

further communication with its environment. Livelock is a less common design fault, and 

is usually caused by mis-programmed loops that fail to terminate.

To their environment, deadlocked and livelocked systems seem the same in that they do 

not respond. To the processor, a deadlocked system imposes zero load whereas a 

livelocked system imposes continuous demands [Welch & Peel, 1994]. Exhaustive testing
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to prevent deadlock is usually impossible. The verification would involve exhaustive 

“case-by-case” check through all “categories” of state. Furthermore, the choice of 

“categories” for the above reasoning requires some knowledge. For well-engineered 

designs the above choices should be “obvious”.

Many researchers have investigated the detection and avoidance of deadlock situations, 

e.g. Spirakis [1986], Beauquier et al. [1991] and Zhong & Lo [1992]. For the parallel 

TLM simulation deadlock-free simulations can be guaranteed if communication always 

follows a certain pattern. A deadlock-free method has been designed particularly for the 

TLM simulation and is described in the following section.

With the information stored in the D  vector (described in section 5.3.2) the estimated total 

time spent for execution of all models can be calculated for every processor/partition. This 

relies on reasonably accurate estimates. The partitions can then be named in an increasing 

order, i.e. the partition expected to finish calculation first may be called partition 1 and the 

one expected to finish second may be called partition 2 , etc. up to partition 8 with the 

highest computational load:

partition 1 lowest computational load
partition 2 second lowest computational load

partition 8 highest computational load

If some of the partitions have equal execution times the order of these partitions is 

arbitrary. Partition 1 is the first to finish with its calculations for the current time step and 

thus it can initialise communication first. This partition should then first communicate 

with partition 2, then it should communicate with partition 3, etc. (if there is any data 

exchange between the respective two partitions).

After partition 2 finishes its communication with partition 1 it should immediately 

communicate with partition 3 and afterwards with partition 4, etc. The data exchange 

between two independent pairs of partitions/processors (e.g. partitions 1 & 4 and 2 & 3) 

can be done concurrently, hence up to four processor pairs can communicate 

independently at the same time. This is an important feature of the T9000-based platform 

where the C l04 asynchronous packet switch enables concurrent operation.

Tests show that initialising the communication from the less-loaded partition leads to the 

most time efficient implementation. The data exchange between two partitions is always 

in both directions (bi-directional) using two consecutive channel communications as
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described in section 4.4.5. The scheme described here is guaranteed to be deadlock-free 

and it is automatically implemented by the program generator described in section 4.4.1.

5.5 Partitioning examples

5.5.1 Performance measures of parallel systems

In this section, some metrics commonly used to measure the performance of parallel 

systems are introduced. The execution time of a parallel computer depends not only on 

input size but also on the architecture of the parallel computer and the number of 

processors. Hence, a parallel algorithm cannot be evaluated in isolation from a parallel 

architecture [Kumar et al. 1994].

Run time

The serial run time ‘7V of a program is the time elapsed between the beginning and the 

end of its execution on a sequential computer using the fastest known sequential 

algorithm. The parallel run time ‘7V is the time that elapses from the moment that a 

parallel computation starts to the moment that the last processor finishes execution.

Speedup

One is often interested in knowing how much performance gain is achieved by 

parallelising a given application over a sequential implementation. Speedup ‘S’ describes 

the relative benefit of solving a problem in parallel and it is defined by

S = %- (5.8)

This definition assumes p identical processors for the parallel implementation. The 

maximum speedup (also called linear speedup) is given by the number of processors. 

However, in practice the speedup achieved is often less than this due to for example 

communication overheads.

Efficiency

Efficiency is a measure of the fraction of time for which a processor is usefully employed, 

as it is defined as the ratio of speedup to the number of processors ‘p’ [Kumar et al. 1994]

£  = -  (5.9)
P
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Cost

The cost of solving a problem on a parallel system is the product of parallel runtime and 

the number of processors used. A parallel system is cost-optimal if the cost of solving a 

problem on a parallel computer is proportional to the execution time of the fastest known 

sequential algorithm on a single processor.

Scalability

The scalability of a parallel system is a measure of its capacity to increase speedup in 

proportion to the number of processors. It reflects a parallel system’s ability to utilise 

increasing processing resources effectively. For a given problem instance, the speedup 

does not increase linearly as the number of processors increase. The speedup tends to 

become saturated and the speedup curve flattens. A larger instance of the same problem 

yields higher speedup and efficiency for the same number of processors, although speedup 

and efficiency continue to drop with increasing number of processors. Given that 

increasing the number of processors reduces efficiency and that increasing the size of the 

computation increases efficiency, it should be possible to keep the efficiency fixed by 

increasing both the size of the problem and the number of processors simultaneously. The 

size of a problem can be expressed in terms of the total number of basic operations (basic 

computation steps) required to solve the specific problem.

A scaleable parallel system is one in which the efficiency can be kept fixed as the number 

of processors is increased, provided that the problem size is also increased. For different 

parallel systems, the problem size must increase at different rates in order to maintain a 

fixed efficiency as the number of processors is increased. This rate determines the degree 

of scalability of the parallel system [Kumar et al. 1994]. A parallel system is highly 

scaleable if small increments in the problem size are sufficient for the efficient utilisation 

of an increasing number of processors.

5.5.2 Small-scale partitioning example

The hydrostatic transmission in Figure 5.2 was chosen as a small-scale example system. A 

variable displacement pump drives a motor on which a predefined changing load acts. The 

boost pump supplies the circuit with oil from the reservoir.

Some simulation results are given in Figure 5.9. The main pump displacement is linearly 

increased from 0 to 100 cm in the first 0.6 seconds of the simulation. After 0.15 seconds
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the motor load torque is also increased. The load duty cycle is given in Figure 5.9. 

Furthermore, the corresponding motor torque, motor shaft speed and the mechanical 

efficiency of the motor are given. Due to stiction effects, the motor only starts moving 

after about 0.1 seconds. Once the motor reaches its desired speed of about 1000 rpm this 

speed only drops slightly when the load torque increases.

The hydraulic circuit in Figure 5.2 was partitioned using the above-described GA with the 

probabilities shown in Table 5.1 [Donne, 1993]. For this study, the number of individuals 

in each subpopulation was set to 60.

Figures 5.10 and 5.11 show the cost function (parallel run time in CPU clock cycles per 

time step) over the number of populations for the partitioning onto 4 and 8 processors, 

respectively. On the left hand sides the average of 10 runs are shown for some different 

crossovers. For the partitioning onto 4 processors the chromosome (string) length is 36 

bits; 1 crossover led to the best results. After about 75 to 100 generations further 

generations improve the task turnaround time only marginally. On the other hand, for the 

partitioning onto 8 processors (54 bits string length) 2 crossovers led to the best results. 

Here good results are obtained after about 150 to 200 generations. Hence, doubling the 

number of processors requires twice as many generation evaluations although the string 

length is only increased by 50 percent. Arriving at a general guideline for the optimum 

number of crossovers proved difficult but one crossover point every 20 to 30 bits was 

found to work well.

On the right hand sides of Figures 5.10 and 5.11 the minimum, maximum and average 

cost function of 10 GA runs are shown for 1 and 2 crossovers, respectively. It can be seen 

that the difference between minimum and maximum cost function is slightly larger for the 

8 processor partition. This might depend on the different string lengths and the relatively 

small model calculation times. The latter are in the same order of magnitude as the 

communication times required for inter-processor communication. Furthermore, as one 

would expect, the 8 processor partition leads to smaller task turnaround times. 

Additionally, the cost function starts at a smaller value, i.e. a random distribution of the 

components onto 8 processors leads to better mappings than placing the same components 

randomly onto 4 processors.

In this research a near optimum solution is sought which does not need to be the absolute 

minimum, as long as real time performance is achieved. Because the run-times of the
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different models are measured for the worst case, optimal parallel performance would 

depend on system inputs and is not achievable in the general case.

Three good partitions onto both 4 and 8 processors are shown in Figures 5.12 and 5.13, 

respectively. The eight processors are named from PI to P8 . An experienced user or 

system designer might be able to find similar solutions for the 4 processor partition but an 

increasing number of components and processors would make the search very tedious and 

time consuming, i.e. it would require several test runs of the parallel simulations. In Figure

5.12 mapping A and mapping B show exactly the same partitions which are only placed 

on different processors. An extensive search of all possible partitions was carried out and 

both mappings were found to be optimal. Further tests showed that the best GA results 

were always optimal for the partitioning of small systems onto up to 4 processors where an 

extensive search was possible. This assumes the calculation of a sufficient number of 

generations. The GA needed less than 5 minutes for the calculation of 200 generations on 

a SUN 20.

5.5.3 Small-scale example: Simulation performance

The system simulation was implemented on the T9000-based transputer platform using the 

above-described deadlock-free scheme. In order to measure the speedup the simulation 

was run on a single processor and then with the partitions given in Figure 5.12 and Figure

5.13 on 4 and 8 processors, respectively. A speed-up of 2.6 was achieved with the 4 

processor simulation and this was improved to a speed up of 3.6 for the implementation on 

8 processors. This corresponds to efficiencies of 0.65 and 0.45, respectively, i.e. the 

simulation on 4 processors leads to a better efficiency. Real-time performance was 

possible on a single processor with a time step of 1.1 ms but for accurate simulation the 

system dynamics require smaller time steps. Time steps of 41 jus and 30 ps are possible for 

real-time simulations of the 4 and 8 processor simulation, respectively. These time steps 

are sufficiently small for accurate simulations and they lead to results as described above 

and presented in Figure 5.9.

5.5.4 Medium-scale partitioning example

Here two of the hydraulic transmissions described in section 5.5.2 (Figure 5.2) were 

simulated concurrently. This could be used for the simultaneous simulation of two 

independent systems. Using the same circuit makes it possible to compare mappings of
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this larger system with the optimal solution obtained from the partitioning of the small- 

scale system. The combination of the two circuits leads to 40 component models. Models 

connected by signal lines were again pre-grouped together and placed onto the same 

processor. All settings of the genetic partitioning scheme were left as described earlier, i.e. 

12 subpopulations with 60 individuals were used. Results are given in Figure 5.14 where 

the cost function is shown over the number of populations for the partitioning onto 4 and 8 

processors, respectively. The maximum, average and minimum of 10 runs is given for 

both mappings. Three crossovers were used for the mapping onto 4 processors where 36 

components (40 minus 4 pre-grouped components) lead to a string length of 72 bits. After 

about 150 to 200 generations the cost function decreases only marginally by further 

generations. Hence, compared with the partitioning of the small-scale example (Figure 

5.10) about twice as many generations needed to be calculated. The 8-processor mapping 

was calculated with 4 crossovers and the respective string length was 108 bits. Again the 

number of generations had to be doubled in order to achieve good results.

For the combined circuits the component run times were also measured and they turned 

out to be slightly larger then the respective values for the single hydrostatic transmission. 

Hence, the absolute value of the cost function cannot be compared directly. Figure 5.15 

shows a near-optimal mapping onto four processors (PI to P4) where both hydraulic 

transmissions are partitioned onto a separate set of processors. Furthermore, both circuits 

are partitioned identically. The solution in Figure 5.15 is only 2 percent slower than the 

optimum mapping found by calculating all possible mappings.

This ideal process-processor mapping is given in Figure 5.16. Increasing the number of 

generations to 300 the GA also found this optimum. The mapping onto 8 processors leads 

to results slightly inferior to the mapping of one circuit onto 4 processors as described in 

the previous section. Nevertheless, the GA automatically places both circuits onto 

different sets of processors. For the partitioning of a real system containing two similar 

circuits the group of processors would be restricted for each of the circuits. For example, 

the top circuit would be placed onto processors PI to P4 whereas the bottom circuit would 

be placed onto the remaining processors.

5.5.5 Medium-scale example: Simulation performance

Parallel simulations of different partitions were again implemented on the T9000-based 

transputer platform. For reference, the simulation was again run on a single processor.
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Using the mappings onto 4 processors shown in Figures 5.15 and 5.16 a speedup of up to 

4.25 was achieved (corresponding to an efficiency larger than 1.0). This speedup is larger 

than the linear speedup which is given by the number of processors. In this example a 

phenomenon known as superlinear speedup is observed. This is due to hardware 

characteristics that put the sequential algorithm at a disadvantage. The data for the 

problem are too large to fit into the main memory (cache) of a single processor, thereby 

degrading its performance due to the use of secondary storage. On the transputer platform 

each of the processors contains 16 Kbytes of cache which is the maximum amount of data 

that can be accessed very swiftly. When partitioned among several processors, the 

individual data-partitions are small enough to fit into their respective processors’ main 

memories. The performance gained due to the extra memory is large enough to 

compensate for the additional communication overhead. A speedup of up to 5.9 was 

achieved for the partitioning onto 8 processors. In this case the additional communication 

overhead leads to an efficiency smaller than one (0.74).

5.5.6 Large-scale partitioning example

A complex hydraulic system is detailed schematically in Figure 5.17. This circuit layout is 

typical of a dual-channel safety system, but is used here principally to test the performance 

of the partitioning scheme on large systems. The hydraulic circuit features two boosted, 

closed-loop hydrostatic transmissions which are mechanically cross-linked, and also have 

cross-linking pressure relief valves. Duplication of some of the main components in this 

circuit leads to a certain amount of fault tolerance due to redundancy in the system. The 

complete circuit contains 70 components connected by 80 transmission lines. Components 

encircled by dotted lines are connected by signal lines and they are pre-grouped in order to 

be placed onto the same processor. This reduces the number of tasks to be partitioned to 

64. The above-described GA is again used to partition the system onto 4 and 8 processors 

using 5 and 7 crossovers, respectively. Figure 5.18 shows the maximum, average and 

minimum of the cost function again using 10 runs against the number of generations. The 

calculation of about 300 generations are required for the mapping onto 4 processors. This 

increases to about 500 for the mapping onto 8 processors. Two partitions onto 4 

processors with similar cost function values (16739 and 16686) are given in Figure 5.19. 

These mappings and several similar mappings were found in different runs of the GA. 

This shows the repeatability of the mapping algorithm, i.e. GAs differently initialised by 

random partitions evolve similar efficient mappings.
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5.5.7 Large-scale example: Simulation performance

Both mappings shown in Figure 5.19 were implemented as parallel simulations on 4 

processors using arbitrary duty cycles. Again a superlinear speedup of 4.24 is observed for 

both systems. Running the system on 8 processors with mappings obtained from the same 

GA leads to a speedup of up to 7.8. This almost linear speedup is equivalent to an 

efficiency of 0.98.

5.5.8 Cost and scalability

The achieved runtimes, speedups and efficiencies of the three example systems are 

summarised in Table 5.2. Additionally, the cost (defined in section 5.5.1) has also been 

calculated and displayed. The size of the medium-scale example is twice the size of the 

small-scale example. An efficiency of 0.65 was obtained for the simulation of the small- 

scale system on 4 processors. On the other hand the respective simulation of the medium- 

scale system on 8 processors leads to an efficiency of 0.74. This means doubling the 

problem size and doubling the number of processors leads to a better efficiency, i.e. the 

parallel TLM system is highly scaleable on the T9000-based platform. This indicates the 

suitability of the hardware for the particular fine grained TLM simulations. Comparing the 

large-scale example with the smaller examples also leads to good scalability.

A cost-optimal parallel system has an efficiency of 0(1), i.e. the parallel TLM simulation 

is cost-optimal for the partitioning onto 4 processors. The efficiency of the 8 processor 

simulation is increasing with problem size, i.e. in this case the system is also very cost- 

effective.

5.6 Simple heuristics to improve GA performance

In order to get reasonably good mappings the GA needs to run for a certain number of 

generations. In general it is found that the number of generations needs to be increased 

about linearly with the number of components and also with the number of processors. 

This can lead to long calculation times of the GA for large mapping problems. For 

example the calculation of 400 generations for the partitioning of the large scale system 

onto 4 processors takes about 69 minutes on a SUN20. With increasing problem size the 

difference between minimum and maximum of the cost function also increases. Hence in 

order to achieve sufficiently good mappings for time critical applications the GA needs to
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be run several times. The following section introduces some simple heuristics that can 

reduce the GA runtimes considerably.

5.6.1 Pre-grouping of components

All partitions shown so far indicate that the GA mapping scheme tries to map connected 

components together onto the same processor in order to reduce inter-processor 

communication. This can be used as a heuristic in order to speed up the GA. For example 

in Figure 5.19 the tank model and its connected component are always grouped and then 

placed onto the same processor. In general one can place any component that is only 

connected to one other component Onto the same processor. The so received group of 

components can again be pre-grouped if it is connected to one other component only. 

Furthermore, groups of components that are likely to be assigned to the same processor 

can be pre-grouped as well. Figure 5.20 illustrates this concepts for two different pre­

groupings where groups of components are identified by a shaded box.

On the left hand side all tank models are pre-grouped with their adjacent components. 

Additionally, components 12 & 13 are combined with component 11 and components 25 

& 26 are grouped in the same way with component 24. On the right hand side the pre- 

grouping is extended to the filter components with their adjacent node and relief valve 

models. Using this grouping reduces the number of tasks to be partitioned to 58 and 46, 

respectively. Here it is assumed that components linked by signal lines are also grouped 

together. The number of tasks can be reduced even further by grouping some of the 

transmission components numbered 27 to 39 and similarly 42 to 54. On the other hand, 

this might reduce the quality of achievable mappings, i.e. the pre-grouped system cannot 

be partitioned as efficiently as the system without pre-grouping. In general it is found that 

the larger the problem size the more pre-groupings that can be assigned without reducing 

the final mapping quality. This is partly because the run times for the different models are 

the same order of magnitude. If at a later stage one develops very sophisticated models of 

certain components then these should not be grouped together with any other components.

5.6.2 Simulation results

The GA partitioning algorithm was applied to both pre-grouped systems using 5 and 4 

crossovers for mapping onto 4 processors. 7 and 6 crossovers were used for the mapping 

onto 8 processors. The larger number of crossovers was used each time for the mapping of 

pre-grouping 1. Figure 5.21 shows the average cost function (average of 10 runs) over the
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number of generations. For comparison the previously-obtained results are also shown 

where only components linked by signal lines are grouped together. This case is described 

in section 5.5.6 and here it is called ‘grouping O’. For pre-grouping 1 the GA finds good 

mappings with fewer generations than fof the standard case. The number of generations 

required is even smaller for pre-grouping 2. Additionally, the pre-groupings reduce the 

number of tasks and hence the chromosome string length used by the GA. This leads to a 

considerable reduction in calculation time. For pre-grouping 2 the calculation time is 

reduced to less than 60 percent of the time it takes to calculate the standard case. 

Furthermore, the quality of the mappings is sometimes even improved for the pre-grouped 

case. One mapping result onto 8 processors is shown in Figure 5.22. This partitioning 

arrangement leads to a speedup of 7.8 and shows some interesting features. The mapping 

would not have been possible if certain components of the closed loop transmissions had 

been grouped together, e.g. components 27 to 29 and 34 to 36. There are more groups of 

components than there are processors. Hence, sometimes it can be advantageous to put 

disconnected groups of components onto the same processor in order to improve the 

balance between processors. This is because the communication overhead is accounted for 

when load balancing the parallel simulation. Figure 5.23 clarifies this aspect. For two 

similar good mappings the estimated computation and communication times are given for 

each of the 8 processors (PI to P8). Mapping B corresponds to the mapping shown in 

Figure 5.22. It can clearly be seen that only balancing the computational load would not 

lead to an efficient simulation. Although the size of the structure used to propagate 

information between processors is optimised according to the amount of data to be 

exchanged, the communication time can still be a considerable part of the load on several 

processors. In Chapter 6 this problem is solved. Figure 5.23 also indicates that different 

mappings can lead to similar useful results. Mapping A and mapping B lead to about the 

same speedup.

One could think of another way of improving the GA performance by increasing the 

number of individuals in each generation. This was investigated and even with 100 

individuals in each of the 12 subpopulations this did not lead to any better results.

5.6.3 Runtime validation

The estimated and measured model calculation times are compared in Figure 5.24 in order 

to validate the runtime estimations. Therefore the time it takes to calculate one time step of 

all models placed onto one processor is estimated. This time is then expressed in
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percentage of the time it takes to calculate one time step of all models together. The same 

times are measured when running the simulation using Mapping B (Figure 5.22). For the 

estimation a simplified model of the parallel platform is used, i.e. changes in computation 

speed due to available cache are not accounted for. Furthermore the runtimes are estimated 

for the worst case and in a real simulation some of the models might be calculated faster 

than this. Nevertheless, a very good agreement between estimation and measurement has 

been found.

5.7 Differences to the TLM implementation in HOPSAN

The simulation package HOPSAN developed at Linkoping University (Sweden) is also 

based on the TLM method and so-called Q-type and C-type components are used. In the 

Q-type, flows are calculated and the characteristics are adjusted to become the effort 

variables and in the C-type, characteristics which have the same dimension as the effort 

variables are calculated. Effort variables include pressure, force and electrical potential. 

The flow variables on the other hand include such variables as flow, speed and electric 

current. In order to achieve numerical stability all the Q-type components for a simulation 

have to be executed before the C-type components (or vice versa) [Krus et al., 1990]. With 

this arrangement there have to be two data transfers per calculated time step. Firstly all 

characteristics in the fluid transmission lines are calculated and propagated (C-type). After 

that components such as pumps and valves are evaluated (Q-type) and the respective 

pressures and flows are propagated. E.g. for the modelling example in Chapter 3.2.2 

equations (3.8) and (3.17) would be calculated by the C-type components and equations 

(3.14) and (3.16) by the Q-type components. Implementing this scheme onto a parallel 

processing platform would lead to a higher communication overhead than the method 

developed in this thesis. Here data is only exchanged once per calculated time step.

Another difference is the programming language. HOPSAN models and simulations are 

written in FORTRAN whereas the above-described systems is based on the INMOS ANSI 

C toolset. Furthermore an automatic program generator for a parallel platform was 

developed here which is not available with HOPSAN.

On the other hand there are several similarities between both implementations, e.g. both 

packages use double precision and they are based on the same physical equations.
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5.8 Closure

In this chapter the process-processor mapping problem has been solved using an automatic 

method based on genetic algorithms. The GA fulfilled the expectation in general as it 

computed good solutions to the sample problems. To compensate the influence of 

probabilistics the algorithm often has to be run more than once (in some cases an 

additional run brought a much better mapping). This can lead to long runtimes and some 

heuristics were developed that overcame this problem. The quality of the achieved 

mappings was very good and led to ideal or near ideal speedups and efficiencies. 

Communication was found to be a considerable part of the load on the processors. In the 

next chapter a method is developed which reduces this communication overhead.

TABLES FOR CHAPTER 5

Subpopulation 1 2 3 4 5 6
Pc 0.6 0.5 0.7 0.8 0.6 0.7
Pm 0.05 0.005 0.02 0.001 0.05 0.01

Subpopulation 7 8 9 10 11 12
Pc 0.9 0.8 0.5 0.6 0.7 0.8
Pm 0.005 0.008 0.05 0.02 0.008 0.01

Table 5.1 Crossover and mutation probabilities

Problem size small medium large
Runtime on single processor [s] 4.36 10.31 22.89

Partitioning
onto

4
processors

Runtime fsl 1.68 2.43 5.40
Speedup H 2.60 4.24 4.24
Efficiency H 0.65 1.06 1.06

Cost [s] 6.72 9.72 21.60
Partitioning

onto
8

processors

Runtime [s] 1.20 1.75 2.92
Speedup 1-1 3.60 5.90 7.80
Efficiency H 0.45 0.74 0.98

Cost [s] 9.60 14.00 23.36

Table 5.2 Performance measures
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FIGURES FOR CHAPTER 5

Static Allocation

Optimal

Mathematical Graph Queuing
Programming Theory Theory

Sub-optimal

Branch Dynamic Weak Min-cut
and Bound Programming Homomorphism partitioning Iterative Greedy

Heuristics Approximate

Genetic Neural Simulated Process Routing
Algorithms Networks Annealing Clustering Limitation

Figure 5.1 A taxonomy of static allocation

[Muntean & Talbi, 1991]
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Figure 5.2 Hydraulic circuit for graph partitioning example
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Figure 5.3 A graph with 20 nodes according to the hydraulic circuit in Figure 5.2
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Figure 5.4 System graph of the T9000-based parallel processing platform

(The parameters are defined in Figure 5.6 and in the text)
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0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0"
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0,

Figure 5.5 Connection matrix B for the example graph in Figure 5.3

h  h h h h h h '

12 tx t2 h h h 3 h

C
OII

h 12 *1 h h 3 h h t2 =  277

h h  h 'l h h 3 h t3 =  287

h h  h h h 2 3 3

h h  h h h *1 t2 h

oII

h h  h h h 2 h 12 c 2 ' h  ~  ho ~  432

h  h h t3 *3 2 h ) h  =  ho ~  532

Figure 5.6 Communication time matrices for the system graph in Figure 5.4
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Figure 5.7 Calculation time vector D for the system in Figure 5.3

obtotal=0.0
do 100 i=l, NoT

t(i) = 0
do 110 j=l, NoC

if (A (j) .eq. i) then
t (i) = t (i) + D(j)
do 120 k=l, NoC

if (B(j, k) .ne. 0) then
ah = A (k)
t (i) = t (i) + Bi[j,k)*C1(i,ah) + C2(i,ah)

endif
120 continue

endif
110 continue 

if (obtotal .It.
obtotal = t(i) 

endif
t (i)) then

100 continue
NoT - number of transputers (processors)
NoC - number of components (models/nodes)

Figure 5.8 FORTRAN 77 code used to calculate fitness functions
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Figure 5.10 GA results for partitioning onto 4 processors (PI to P4)
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Figure 5.11 GA results for partitioning onto 8 processors (PI to P8)
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Mapping A

Mapping B

Mapping C

Figure 5.12 Partitioning onto 4 processors (PI to P4)
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Mapping A
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Mapping C

Figure 5.13 Partitioning onto 8 processors (PI to P8)
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Figure 5.14 GA results for partitioning of two identical systems
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Figure 5.15 Partitioning of two systems onto 4 processors (PI to P4)

Figure 5.16 Ideal partitioning of two systems onto 4 processors (PI to P4)
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Figure 5.17 A complex hydrostatic transmission circuit



Chapter 5: Process-processor mapping Page 100

Mapping onto 4 processors
36000 
34000 

c 32000
.2 _  30000 
O  «> 28000
3  O 26000
Z o 24000 
o 1—1 22000 
O  20000

18000 
16000

0 100 200 300 400

Number of generations

Mapping onto 8 processors
30000 
28000 

c  26000
.2 _  24000 
O  w  22000 
3 o 20000
Z o  18000
O  “  16000 
O  14000

12000 
10000

0 100 200 300 400 500 600

Number of generations

average
maximum maximum

Figure 5.18 GA results for partitioning of large-scale systems
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Figure 5.19 Partitioning of large-scale system onto 4 processors (PI to P4)
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Figure 5.22 Partitioning of large-scale system onto 8 processors (PI to P8)



Chapter 5: Process-processor mapping Page 103

</>a>o>.u
0)
E

13000
12000 --
11000 --
10000 --

9000 - -
8000 - -
7000 - -
6000 - ■
5000 - -
4000 - ■
3000 - -
2000 - -
1000 -■

P3

Mapping A

So

P4 P5 

Processor
P6 P7

o>
s

□  communication
□  computation

P8

co0)o>»o
CD

E

13000 
12000 
11000 
10000 

9000 
8000 
7000 
6000 
5000 
4000 
3000 
2000 - - 
1000 -■ 

0

Mapping B

c£_

P1 P3 P4 P5 

Processor

P6 P7

□  communication
□  computation

P8

Figure 5.23 Communication and computation times

Estim ated

Measured

Figure 5.24 Runtime validation



Chapter 6: Reduction of inter-processor communication Page 104

6 Reduction of inter-processor communication

6.1 Introduction

For parallel simulation the main aim of reduction of execution time can be achieved by 

even load balancing, by minimising CPU contention and by reduction of the 

communication between different processors [Sunter & Bakkers, 1994]. This chapter 

reports an investigation on the latter for simulations with fixed time step algorithms. Most 

parallel computer hardware is generally designed for medium or coarse grained problems 

[Burton, 1994]. Parallel TLM simulations on such machines will lead to large 

communication overheads and real time performance can only be achieved for very simple 

systems. A new extrapolation-interpolation method is developed here enabling the 

reduction of communication between processors. This method also enables the use of 

more mainstream computers for efficient and large scale parallel TLM simulations.

6.2 New extrapolation-interpolation method

For the numerical scheme described in the following sections it has been found necessary 

to derive a new filter for the approximation of frequency-dependent friction. This new 

filter is described in the following section.

6.2.1 New filter for approximation of friction

In section 2.2.3 (equations 2.25 to 2.27) low-pass filtering of the characteristic pressure is 

used to approximate friction and to suppress unrealistic resonances. A different low-pass 

filter is suggested here where only the pressure is filtered which is more consistent with 

the physical behaviour. This approach is given by the following equations.

Pab(t) -  Z'Qab(t) = C'„ (t -  T) (6.1)

C‘bJ t - T )  = P ' J t  - T )  + Z'Q„Jt  -  T) (6.2)

P Z J t - T )  = ( \ - a ) - P . i ( t - T ) + a - P ; j t - 2 T )  (6.3)

QbJ t - T )  = QaJ>( t - T )  (6.4)

Z ' = ——- (6.5)
1- a

The line impedance, Z, must be corrected by the same factor used with the standard filter 

(see equation 2.27) and a  is again set to 0.2. This correction factor is derived in detail in
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Appendix B. Appendix B also examines the TLM method as a general method for 

integration through comparison with the trapezoidal rule. The numerical behaviour of the 

new filter is closer to the trapezoidal rule of integration then the standard filter. This 

probably leads to better numerical properties of the simulations.

The pressure and flow propagation from one model to another is illustrated graphically in 

Figure 6.1. Pb(t) is the pressure used by model B for the calculation for the next time step. 

It is calculated from the pressure at A and the filtered pressure at B both from the previous 

step. Qb(t) is the corresponding flow and is equal to the flow at the previous time step at A. 

The simultaneous propagation of pressure and flow from model B to model A happens in 

a similar manner.

Simulations performed on a variety of sample circuits showed that the new pressure filter 

suppresses resonances more effectively than the standard characteristic filter and it 

describes the frequency dependent friction equally well. As an example the two-actuator 

circuit previously described in section 3.3.1 (see Figure 3.1) was simulated with both 

filters. Figure 6.2 shows the velocity of one of the actuators against time in comparison for 

both filters. The results were calculated with a fixed time step of 0.1 ms. The new filter 

leads to smaller oscillations between 1.3 and 1.7 seconds. In this period the global time 

step needs to be smaller for both filters in order to obtain accurate results. Nevertheless, 

the new filter leads to better results. For the same system Figure 6.3 shows the parasitic 

pressure difference against time using time steps of 1 ms, 0.1 ms and 10 |is. Results 

obtained with the new filter and the standard filter are given on the left and right side, 

respectively.

In general the new filter leads to smaller parasitic pressure differences, i.e. it leads to better 

simulation results. This improvement is independent of the chosen time step. Hence, the 

new filter enables the use of larger time steps for the same simulation accuracy. 

Furthermore the new filter does not introduce unrealistic numerical effects. As expected 

the parasitic pressure difference is smaller for simulations with smaller time steps.

6.2.2 Extrapolation

In order to simulate hydraulic circuits on different processors they can be split into two or 

more subsystems as described in Chapter 5. Normally the pressure and flow has to be 

passed between the different subsystems once every time step. With the method developed
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here this can be reduced, i.e. the time step for the communication between the systems can 

be increased. This is done by increasing the characteristic impedance

in order to extrapolate pressure and flow values n time steps in advance. This corresponds

1996d). The extrapolated values are then propagated to the other end of the line. Hence, 

pressure and flow values are only exchanged every «-th time step.

6.2.3 Interpolation

Taken together with the previous propagated values, the actual pressure and flow values 

are then formed by interpolation. In Figure 6.4 the pressure and flow propagation between 

two subsystems is illustrated. Every «-th time step the shaded circle values are propagated. 

The linear interpolation between these values (white circle values) is then performed on 

the other processor. For example after the propagation from subsystem A to B the 

following interpolations are computed on the processor where subsystem B is running.

(6 .6)

to

(6.7)

to the use of a larger time step for the trapezoidal rule of integration (see Pollmeier et al.

(6 .8)

Qa( t - T )  = Q J t - m T )  + {QJt + ( n - m ) T ) - Q J t - m T ) y —
n

(6.9)

The pressure is then filtered with

P H t - T )  = ( \ - a y P a( t - T )  + a - P ; ( t - T ) (6 .10)

and the flow used at B for the next calculation equals the interpolated flow

Q l( t~ T )  = Q J t - T ) (6 .11)

This leads to the new characteristic pressure

C*b(t - T )  = p;(t  - T )  + Z*Q*(t -  T) (6.12)

hence the TLM equation
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P:(t)-Z*Ql(t)  = C [ ( t - T )  (6.13)

can be applied. Similar equations can be derived for the pressure and flow propagation 

from subsystem B to A by changing the subscript ‘a’ to ‘b’ and vice versa.

6.2.4 Adjustments of the characteristic impedance

The characteristic impedance of the line connecting the subsystems is set to

Z* = n Z '  (6.14)

when the extrapolated values are calculated, i.e. this is applied only every «-th time step. In 

between the characteristic impedance needs to be adjusted to

Z* = Z ' - ------  (6.15)
5n — 4 m + 4

where n and m are chosen according to the notation in Figure 6.4. Equation 6.15 is derived 

in Appendix C. This approach leads to the recalculation of the characteristic impedance at 

every time step, i.e. it is an expensive method. Numerical experiments show that a 

different adjustment with fewer computations can be used. Simply by using equation 6.14 

at every time step the simulation leads to similar good results. Using this approach the 

characteristic impedance needs to be calculated only once. Physically this means the line 

length is increased by the factor n but information is exchanged as if it was an unchanged 

line length. All the models and lines in the subsystems are calculated as usual with 

equations (6.1) to (6.5). Pollmeier et al. [1996d] gives an analytical comparison between 

this new method (equations 6.8 to 6.14) and the standard method (equations 6.1 to 6.5) for 

the case of a simple hydraulic circuit. It indicates that the systems should be partitioned at 

large volumes or long lines. Some simulation results for much more complex and realistic 

circuits are given in the following sections.

6.3 Simulation results and performance improvements

6.3.1 Two-actuator circuit

The two-actuator circuit, described in section 3.3.1, is shown again in Figure 6.5 

partitioned into two sub-circuits. It is used as the first example with which to demonstrate 

the application of the new TLM algorithm. This circuit was selected because previous 

simulation studies had revealed it to possess high numerical stiffness which could lead to
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very long simulation times even when using high performance numerical integration 

algorithms. The general system purpose and performance is described in section 3.3.1.

The circuit was split into two parts namely the computationally demanding actuator 

dynamics and the rest of the system. Figure 6.5 also gives the line dimensions. In Figures 

6.6  and 6.7 some simulation results are shown. In the top of the figures the solid lines 

depict the reference results achieved by using a fixed time step of 10 |is for both the 

communication and the global calculation of the subsystems. These results match, very 

closely, those obtained from a lumped parameter simulation. Figure 6.6 shows the torque 

transients of the flow divider in detail and Figure 6.7 shows the corresponding results of 

the flow going into one of the actuators. The flow values are negative due to the sign 

convention (flow into a line is defined as positive). Increasing the communication time 

step to 1 ms, hence exchanging pressure and flow only every 100-th time step leads to very 

close matching results (dashed line). For comparison the same system was simulated with 

a global time step of 1 ms (dotted line). The difference between the reference case and the 

two other cases is also given in both figures for clarification. It can easily be seen that a 

global time step of 1 ms produces misleading results. The start-up transients are over or 

under estimated and other unrealistic transients are introduced. In order to simulate the 

dynamics in the subsystems it is necessary to use a small time step but the new method 

enables the use of larger time steps for the inter-processor communication.

The measured runtimes of the two-actuator example simulations are given in Table 6.1. 

On a single processor it takes 727 seconds to simulate the system for a certain time using a 

time step of 10 |xs. The implementation of the same system onto two processors leads to a 

reduction in runtime to 511 seconds. This is equivalent to a speedup of 1.4. Using the new 

scheme and reducing the communication to every 10th time step only, i.e. increasing the 

communication time step to 0.1 ms, leads to an increase in runtime. When reducing the 

communication to every 100th time step the mntime is marginally reduced but it is still 

longer than the parallel implementation without using the new scheme. On the T9000- 

based platform the extra calculations (equations 6.8 and 6.9) lead to slower parallel 

simulations. This means that the communication overhead is smaller than the time it takes 

to interpolate the pressure and flow values. This is valid when using five or more 

transmission lines to partition the system. The two-actuator circuit was chosen to 

demonstrate the accuracy of the new scheme and it does not improve the speed- 

performance on the T9000-based platform. The method was developed for coarse grained
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computers with faster processors and/or slower communication between the processors. 

Therefore in the next section the implementation of a complex circuit on a workstation is 

described.

6.3.2 Complex hydrostatic transmission circuit

The complex hydrostatic transmission circuit in Figure 5.17 (described in section 5.5.6) is 

used as an example with which to demonstrate the application of the new scheme on a 

SUN20. Therefore the circuit was partitioned symmetrically, i.e. the four transmission 

lines between the component pairs 60/70, 69/67, 57/68 and 62/63 were used to split the 

circuit into two halves (compare Figure 5.17). Using multiple threads and shared memory 

the new scheme was implemented under the UNIX operating system, i.e. the pressure and 

flow exchange between processors was realised via shared variables. Table 6.2 gives the 

measured runtimes of the circuit simulation. On a single processor it takes 613 seconds to 

simulate the system for a certain time using a time step of 10 ps. The implementation of 

the same system onto two processors leads to a reduction in runtime to 503 seconds. This 

is equivalent to a speedup of only 1.2. Reducing the communication to every 10th time 

step only, i.e. increasing the communication time step to 0.1 ms, leads to a considerable 

decrease in runtime. The measured runtime of 324 s corresponds to the very high speedup 

of 1.9. For this application the time needed to calculate the interpolations is much smaller 

then the time it would take to communicate the pressure and flow values every time step. 

Assuming an ideally balanced simulation, the time associated with the communication 

between processors can be calculated by subtracting halve the runtime on a single 

processor from the parallel runtime, i.e. 5035-613/2 5 = 196.5s. This divided by 10 

(exchange every 10th time step only) and added to half the single processor runtime leads 

to 613/2 s-f-196.5/10 s = 326.15s. The measured runtime of 324 seconds is very close to 

the theoretical value. All results clearly show the possible improvements using the new 

scheme on platforms with faster processors and slower communication times. For 

comparison the same circuit simulation was also implemented on the T9000-based 

platform. The measured runtimes are given in Table 6.3. On a single processor the runtime 

of 2501 s is about 5 times longer than on the SUN20. Implementing the simulation onto 

two processors reduces the runtime to 1356 s, i.e. a speedup of 1.8 can be achieved, but 

the runtime is still longer than on a single processor on the UNIX-based system. 

Implementing the new scheme on to the T9000-based platform improves the performance 

only marginally. Using four transmission lines for the partitioning of the circuit (compared
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to five with the two-actuator circuit) leads to slightly faster simulations. For the T9000- 

based platform up to four transmission lines can be used to split a circuit into sub-systems 

enabling faster simulations with the new scheme. On faster processors with slow 

communication this can be increased to several tens or even hundreds. When using 

networked computers, e.g. when using several processors connected by the internet the 

time used for the calculation of the interpolation is negligible compared to the 

communication time.

6.4 How to choose the communication time step

The maximum time step for the inter-processor communication is restricted by the 

simulation accuracy. As a measure of the simulation quality the parasitic pressure 

difference can be used (compare section 2.3.3). Figure 6.8 depicts the parasitic pressure 

difference against time for the two-actuator circuit using global time steps of 100|is and 

10|is, respectively. On the left side the maximum parasitic pressure difference from both 

sub-circuits is shown. For easy recall it is referred to as ‘internal error’, i.e. the maximum 

pressure difference inside the partitions. On the right side the respective values are given 

for the five separated lines only. This pressure differences are referred to as ‘split error’, 

i.e. the maximum pressure difference between the partitions. Exchanging information 

between the partitions every 10th time step leads to maximum split errors that are smaller 

than the maximum internal errors. This is the case for the investigated global time steps of 

IOOjis and 10(is. The parasitic pressures are again smaller with smaller global time steps. 

A reduction of communication to every 100th time step (using a global time step of 10|is) 

leads to larger split errors. The peaks of these errors are still of the same order of 

magnitude as the peaks of the internal errors. Further reduction of the communication 

leads to relatively large split errors. Particularly the starting transients lead to large errors. 

Using this information the time step for the communication between partitions of the 

particular circuit should be restricted to 1ms, i.e. exchange every 100th time step. A 

different circuit can lead to slightly different maximum time steps. More importantly, the 

error comparison also indicates whether the selected lines are suitable for partitioning. If 

very high dynamics have to be simulated and propagated along a certain line it cannot be 

used for partitioning. The above described method will indicate this with larger split 

errors. For this purpose the pressure differences can be calculated and displayed for each 

line independently. It should be mentioned that less frequent communication does
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influence the internal errors only marginally. For example, the maximum internal error 

was the same for the simulations with data exchange every 100th and 500th time step.

When simulating a system containing partitions with different dynamics the reduced 

communication approach can also be used to simulate the sub-circuits with different time 

steps. For example, with the two-actuator circuit the actuators can be simulated using a 

time step of 10|xs and the rest of the system can be simulated using lOOjis. If the actuator 

partition exchanges data every 10th time step then the remaining partition needs to 

exchange data every time step. This method can also be implemented on a single 

processor in order to speed up the simulation, i.e. only the demanding parts of the system 

are simulated with a small time step.

6.5 Estimated improvements

The above described method is particularly useful if the simulation time required for the 

calculation of the largest task is in the same order of the respective time needed for the 

communication between the tasks. Estimated gains in simulation performance are 

considerable. If one considers a coarse grained parallel computer with the following 

features

• latency for communication between the processors of about 0.09 ms

• bi-directional communication bandwidth of 100 Mbits/sec = 12.5 Mbytes/sec

it takes about 0.1 ms to exchange a message of the size 125 bytes.

Consider now a system with message sizes of 125 bytes (typical for this numerical 

scheme), the global time step is chosen to be 0.2 ms and the simulation of one time step on 

one processor takes 0.2 ms. In this case real time performance can just be achieved. 

Applying the standard method the simulation would take the same time on two processors. 

The calculation time of 0.2/2 ms = 0.1 ms plus the communication time of 0.1 ms leads to 

0.2 ms total time, assuming perfect balancing of the system onto two processors. The time 

to calculate the interpolation given in equations 6.8 & 6.9 is considered to be negligible. 

Using the new method with exchange every 100-th time step enables the calculation of 

100 time steps in 10.1 ms, hence 0.101 ms on average for each time step. This is a 

considerable increase in computation speed.

Implementing the simulation on more than two processors would make the improvement 

even greater. The new method also enables the use of smaller time steps for real time
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simulations because the communication overhead associated with the latency is largely 

reduced. Simulations with very small messages to be exchanged can also be computed 

more effectively.

6.6 Other methods to increase computation efficiency and speed up simulation

Jin & Vahldieck [1992] describe a frequency-domain TLM (FDTLM) that combines the 

flexibility of the conventional TLM method with the computational efficiency of 

frequency-domain methods. The theoretically infinite frequency range before Fourier 

transformation leads to the processing of much more information than needed if only a 

certain frequency range is of interest. Errors due to the transformation from the time- 

domain into the frequency-domain can be avoided with the new concept. The basis for the 

new technique is the excitation with an impulse train of sinusoidally modulated 

magnitude. Using appropriate excitation the same network can still be used in the time- 

domain as well as in the frequency-domain. FDTLM cannot easily be adapted to hydraulic 

system simulations because system inputs are defined by the particular application. It 

might be possible to implement it for the frequency analysis of special systems.

Christopoulos et al. [1991] describe a TLM method that permits more efficient modelling 

of non-uniformities and fine features. The “graded mesh” is the approach used to deal with 

non-uniformities and irregular shapes, whilst the “multi-grid” technique is designed to 

deal with problems where fine spatial resolution is required only in certain areas. For the 

latter the spatial resolution within a region is increased by dividing the space length Al 

typically by a factor of two. Both approaches still lead to constant time step algorithms. 

For hydraulic systems long lines can be split into several lines transforming the TLM 

method into the method of characteristics (MOC) leading to another distributed 

simulation.

The considerable computer time and memory required to model realistic electromagnetic 

structures with time and space discrete methods, such as TLM, call for measures to reduce 

the computation count to an acceptable level [Dubard et al., 1991]. Their paper describes 

an enhancement of the TLM method through signal processing. The Prony-Pisarenko 

signal processing method is used to extract characteristic parameters from a TLM response 

which can be much quicker than if the Fourier transform is used. This method may be 

combined with parallel processing to accelerate TLM simulation even further.
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A recent paper by So et al. [1995] describes the combination of TLM analysis with 

Prony’s method as well as with autoregressive moving average (ARMA) digital signal 

processing for electromagnetic field modelling. By combining these advanced 

computation techniques, typical electromagnetic field modelling of microwave structures 

can be accelerated by some orders of magnitude. The number of computation time steps 

needed to obtain steady-state frequency domain results is reduced considerably.

The latter two methods described in this section cannot easily be applied to the TLM 

simulation of hydraulic systems but they might be of use for simulations where more than 

one domain is considered. For example the simulation of electro-hydraulical or 

hydromechanical systems.

6.7 Closure

In this chapter an extrapolation-interpolation method for the reduction of communication 

between processors has been derived. By adjusting the line impedance it is possible to use 

a larger time step for the communication between processors than the global time step. 

This approach requires a new filter for the approximation of friction. A measure to 

estimate the maximum communication time step has been proposed. Simulation results of 

realistic example circuits show good accuracy when exchanging data only every 100th 

time step. The new scheme leads to valuable reductions in run time on medium and coarse 

grained computers without compromising accuracy. It can also be used to simulate 

different partitions with different time steps, according to the required accuracy and 

dynamics of the subcircuits. Furthermore, the extrapolation-interpolation method improves 

the portability, i.e. the parallel TLM simulation can efficiently be implemented on a wider 

range of parallel computers. The above-described TLM implementations still require the 

system analyst to specify all simulation parameters. In the next chapter an approach based 

on genetic algorithms is investigated that enables automatic selection of appropriate 

parameters.

TABLES FOR CHAPTER 6

Runtimes in seconds (global time step = 1e-5 s)
Number of 

T9000 
processors

exchange 
every 

time step

exchange 
every 10th 
time step

exchange 
every 100th 
time step

1 727 - -

2 511 520 512

Table 6.1 Two-actuator circuit runtime in seconds on T9000-based platform
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Runtimes in s i(global time step = 1e-5 s)
Number of exchange exchange

T9000 every every 10th
processors time step time step

1 613 -
2 503 324

Table 6.2 Complex circuit runtime in seconds on SUN20

Runtimes in seconds (global time step = 1e-5 s)
Number of 

T9000 
processors

exchange 
every 

time step

exchange 
every 10th 
time step

exchange 
every 100th 

time step
1 2501 - -
2 1356 1315 1311

Table 6.3 Complex circuit runtime in seconds on T9000-based platform
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7 Non-linear system identification using genetic algorithms

7.1 Introduction

In this chapter it is shown how to optimise the parameters of a simulation in order to 

match simulated and measured values. In the literature there are only very few authors 

tackling this problem. Very often appropriate parameter values are only found after a long 

period of trial and error. A genetic algorithm (GA) is developed and employed enabling 

the identification and optimisation of several parameters simultaneously. A close 

agreement between simulation and measurement can be achieved. This requires non-linear 

component models in order to simulate the highly non-linear hydraulic systems correctly. 

The identified parameters, describing physical properties of the system, may then be used 

for condition monitoring purposes.

7.2 System identification

The construction of a model for system identification involves three basic actions. These 

are recording of system data, selection of suitable models and determining the best model 

[Ljung, 1987]. In this chapter it is assumed that the input-output data can be recorded 

during a specifically designed identification experiment, where one can determine which 

signals to measure and when to measure them. Hence, the input signals are chosen so that 

the data become sufficiently informative. Before addressing the model selection process 

the two different types of system identification, namely methods with parametric and non- 

parametric models, are described. Non-parametric system identification routines return 

transfer functions which are not described by an equation, i.e. they do not (explicitly) 

employ a finite-dimensional parameter vector. Most widely used is the Fourier analysis 

which returns complex frequency domain transfer functions indicating the significance of 

certain frequencies for example in a noise signal. In practical applications where data is 

recorded from a test rig, noise and disturbance signals are inevitably recorded at the same 

time. These noise signals cover a wide frequency range with random gain and phase lag 

values. This leads to considerably changing values from one frequency step to the next 

one. A Bode plot is commonly used to visualise the obtained frequency domain gain and 

phase lag.

On the other hand the result of parametric system identification is a time domain equation 

(transfer function) for the system output. A generalised model structure for linear time- 

invariant systems is given in the following equation [Ljung, 1987]:
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(71>

where y(t), u{t) and e(t) are the time domain output, input and noise signals, respectively. T 

is the sample interval and the factor accounts for the delay of dynamics from u to y. The 

polynomials A to F  contain the following parameters:

A(q) = 1 + a{q ' l+• • •+angq~na (7.2)

B(q) = \ + biq- '+ -+bnbq-nb (7.3)

C(q)=l  + clq-l+—+cnq~nc (7.4)

D(q)= \ + dxq~'+~-+andq~nd (7.5)

F(q) = 1 + f xq~x +• • • ' (7.6)

na to rif are the number of parameters in the respective polynomials and the shift operator 

q n specifies values n sample times, T, earlier as for example in the following equation:

q-*y(t) = y ( t - 2 T )  (7.7)

Equation 7.1 describes a general family of model structures and it may give rise to 32 

different model sets, depending on which of the five polynomials A to F  are used. Several 

of these model sets are described in the literature, for example see Ljung [1987]. The 

factor ‘ T in the polynomials B and C are left out if the polynomials F  and D are also used. 

System identification is the determination of all parameters in order to achieve the best 

possible fit between measured and predicted values. However, the most important task is 

the selection of the model structure and the degree of the polynomials. It is here that a 

priori knowledge and engineering intuition may be of help in finding the right model, but 

one normally has to test different orders and/or delays to get the best results. The best 

model structure is a trade-off between flexibility and parsimony.

• Flexibility: Employing model structures that offer good capabilities of describing 

different possible systems. Flexibility can be obtained either by using many parameters 

or by placing them in “strategic positions44.

• Parsimony: Not to use unnecessarily many parameters: to be “parsimonious44 with the 

model parametrization [Ljung 1987].
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Having arrived at a particular model it then remains to test whether this model is good 

enough, i.e. deciding whether the model is valid for its designed purpose. The linear model 

sets in equation 7.1 do not refer to the physical background and are often employed as so 

called black box models.

7.2.1 Non-linear system identification

Most identification techniques to date are restricted to linear models. Non-linear systems 

are often assumed to be linearizable in some manner. The linearized model is then used to 

analyse the behaviour of the non-linear system. For example a general state space system 

is given in equation 7.8:

X = F(X, U) (7.8)

where X is an ^-dimensional state vector and U is a p-dimensional input vector. The 

behaviour of this system near the operating point Bo can be described by a Taylor row 

expansion with truncation after the first term:

. = dF(XU)
a x

x + a f (x , u)
au

u (7.9)

with x = X - X 0, u = U - U 0 and at the operating point B0: X = X0, U = U0. The

Jacobian matrices
aF(X,U)

a x and
3F(X,U)

au can be seen as constant coefficient
Bo

matrices A and B, i.e. the system can be approximated as a linear state space system:

x = A x + B u  (7.10)

The problem with this simplification is that it is only valid for small perturbations in a 

small region around the operating point. Hence it is desirable to have a more general 

model that is still simple and can be computed in reasonable time.

A more advanced method of linearisation is the bilinearisation approach. A bilinear model 

can also be obtained by Taylor row expansion. In contrast to the normal linearisation the 

mixed term of elements of the second order will be considered as well (Naujoks & 

Wurmthaler, [1988]):

i  d F(X, U)
a x

X +
3 F(X, U)

Bo
au

u ] f d2 F(X,U)
t f  a x a u

X ' U: (7.11)
Bo
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02 £f)
The matrix ——^ —- contains constant coefficients that will be designated Ni, hence 

o X o U  _

the bilinear system can be written as:

p

x = A -x  + B -u  + ^ N ,. (7.12)
i=l

With the additional bilinear term on the right hand side the system model is more accurate 

but it is still valid only in the region around the operating point. Another method to 

improve model accuracy is to develop local linear or bilinear models for the system at 

various points in the space of states and inputs (or around different equilibrium points). 

Then these local models are pieced together into a compatible global non-linear model. 

This can improve the model accuracy but in general, non-linear processes can only be 

adequately characterised by a non-linear model [Billings, 1980].

In Thomson et al. [1996] a N ARM AX1 polynomial model representation was investigated. 

This model is similar to equation 7.1 setting the order of the polynomials D and F to zero 

(ARMAX2 model) and extending it by non-linear terms. The NARMAX model has the 

desirable property of being linear in its parameters and has the following general form:

y(0 = f ( y ( t  - 1 ny), u{t - 1  )• • • w(f -  nu), e{t -1)- • -e{t -  ne)) + e(t) (7.13)

where y(t) denotes the output, u(t) denotes the input and e(t) represents system noise; ny, nu 

and ne are the maximum lags in the output, input and noise, respectively. The noise e(t) is 

assumed to be a white sequence. /(.) is expanded as a polynomial which produces a non­

linear difference equation model. The model components are linear and non-linear 

polynomial functions of the input, output and iteratively computed residuals. These 

models, different to hierarchical models, offer simpler structure-identification algorithms 

and easier incorporation of a priori knowledge into the model [Thomson et al. 1996]. In 

their paper the adding of second-degree and cubic non-linear terms improved modelling 

performance of a heat exchanger significantly.

Another attempt of non-linear identification is based on Volterra series. The relation 

between the response, y(t), of the model and its input, x(t), can be expressed as the pth- 

order Volterra series

1 NARMAX = Nonlinear AutoRegressive Moving Average model with exogenous inputs
2 ARMAX = AutoRegressive Moving Average model with exogenous inputs'
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[*(')] (7.14)
n=0

in which

(7.15)

and

#„[*(*)] = A (7.16)

For causal systems the Volterra kernel, hn, is zero if any of its arguments is negative; that 

is,

The identification problem thus is to determine the Volterra kernels, hn, in equation 7.14 

so that the mean-square modelling error between model and measurement is a minimum. 

This turns out to be a complicated task and the calculation of the multidimensional 

convolution integrals in equation 7.16 is quite time consuming. Furthermore the Volterra 

series approach does not give insights about physical parameters of the system. Other non­

linear identification methods, partly also based on functional expansions, are reviewed in 

Mehra [1979], Billings [1980, 1985] and Natke et al. [1988]. Recently fuzzy relations 

have also been developed to model non-linear dynamic systems since they are universal 

approximators and can perform non-linear mappings [Branco & Dente, 1993].

7.2.2 Identification of fluid power systems

Fluid power systems which often contain non-linear memory elements such as hysteresis 

or backlash are excluded from the description of equation 7.14. The Volterra series cannot 

represent systems in this class, since the characteristic subharmonics associated with 

double-valued nonlinearities are not generated by the Volterra expansion [Billings, 1980, 

1985]. In polynomial model representations such as in equation 7.1 the identified 

parameters do not give insights about the physical parameters of the system and hence, 

these approaches are not considered in this research.

Boes [1992] describes a valve controlled actuator circuit by a 4th order ODE in state space 

form. The model parameters are identified analytically with a recursive method, i.e. using 

past values. A disadvantage with the described method is the necessary linearisation which 

is again only valid for a small working range of the system. Conrad et al. [1993]

>‘” Tn) = 0 for any Tf < 0 ,  i = 1,2, •••,/! (7.17)
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investigate the experimental identification of flow and torque losses for hydraulic motors. 

Based on the measurement of differential pressure, rotational speed, effective flow and 

effective torque the parameters for models of gerotor type motors are estimated. Using the 

least-square approximation technique two non-linear models for flow- and torque-loss, 

respectively, are derived. The method requires the collection of data over a large range of 

operating conditions and the final model is only valid for a particular motor. Furthermore, 

the model coefficients are not physically meaningful. Hence, the optimised model can be 

used to simulate a particular component behaviour but it cannot directly identify faults or 

deterioration of the system.

Some authors have used models based on physical parameters, i.e. models derived from 

first principles for the identification task. Schothorst et al. [1995] present a nonlinear 

dynamic model of a servo-valve, which is based on theoretical model relations. The model 

parameters are estimated from experimental data which are obtained using sinusoidal 

inputs. For the investigated system a linear model could be fitted on the measured closed 

loop response. This approach cannot be used for general (non-linear) fluid power systems. 

In del Re & Keusch [1989] the determination of a model of a hydrostatic drive was 

investigated using only easily obtainable measurement data. The main idea was to divide 

the system in small blocks, whose external quantities were measurable, and to try to tune 

the most simple model. Again the model was linearised. Lin & Kortiim [1992] proposed a 

non-linear identification algorithm which was successfully applied to a vehicle suspension 

system subject to random excitation. This algorithm was adapted to a hydraulic actuator 

system [Pollmeier et al. 1996]. The method is based on the minimisation of quadratic costs 

functions which are composed from the time-domain measurements and are constructed 

directly from the differential equation dynamics. The complete structure, that means all 

relevant physical equations which describe the system behaviour have to be known a 

priori. Estimations of the parameters can then be obtained directly from the derived 

formula without any iteration. The method leads to fast identification results but the 

formula needs to be rederived for different system topologies. Furthermore the approach 

does not work as well with real noisy data.

A more general approach is developed here where the idea is to make use of the set of 

component models derived previously (see Chapter 2). For the simulation of hydraulic 

systems using the pre-developed component models several parameters have to be 

specified. Some of these can be measured or taken from catalogues (for example physical 

dimensions) but others are difficult to obtain and need to be identified. For example,
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leakage coefficients, friction factors and in particular a bulk modulus are difficult to 

determine correctly. The increased speed of the simulation using TLM modelling enables 

the use of genetic algorithms (GAs) for the system identification problem, i.e. many more 

dynamic simulations of the complete system can be achieved in reasonable time. GAs are 

not problem specific and particularly suited to optimising multi-parameter problems. In the 

following sections GAs combined with a direct search method are investigated to solve the 

identification problem. First the use of GAs for general system identification and 

optimisation is reviewed.

7.2.3 System identification and optimisation using genetic algorithms

Genetic algorithms are used in many fields for the identification of parameters and also for 

the optimisation of control systems. Krishnakumar & Goldberg [1992] investigate GAs as 

a technique for solving aerospace-related control system optimisation problems. 

Starkweather et al. [1990] use distributed GAs for optimisation problems. They found that 

distributed GAs, i.e. using several subpopulations as described in section 5.3, can 

outperform a serial GA using the same number of total recombinations and the same total 

population size. In Kristinsson & Dumont [1992] it is shown how GAs can be applied to 

system identification of both continuous and discrete time systems. They can be applied to 

directly identify physical parameters but the GA is only looking for a good solution not 

necessarily the best. GAs have also been developed for the estimation of kinetic and non­

linear parameters in Yao & Sethares [1994]. The latter paper also investigates the 

application of neural networks for the identification problem. This approach will be 

investigated in detail in Chapter 8 .

7.3 Genetic algorithms for the identification of fluid power systems

In Sepehri et al. [1994] the compliance in heavy-duty hydraulically-actuated manipulators 

is identified using genetic algorithms. A constant compliance is assumed and the values 

that lead to the best fit between simulation and measurement are considered to be correct. 

This cannot be a realistic system description because the compliance must change during 

extraction of the respective actuators due to the change in oil volume on either side of the 

actuator.

Donne et al. [1994, 1995] investigate methods to automate the parameter definition stage 

of the design process. The methods are applied to the design of fluid power systems, 

which primarily involve the sizing of components and the setting of controller gains. It
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appears that the investigated parallel genetic algorithm is the most effective optimisation 

algorithm available. Testing with GAs showed that they are excellent at locating the region 

of a minimum, but not so effective at finding its exact location. The speed and accuracy of 

the GA can be improved by carrying out several direct searches once the final generation 

has been completed. A particular GA has already been described in section 5.3. This GA 

was extended by applying a version of the Hooke Jeeves method in order to fine tune the 

best GA solutions. This simple direct search method is employed as described in Donne 

[1993]. The method is described in the following section for completeness.

7.3.1 Hooke Jeeves search

Hooke & Jeeves [1961] describe.direct search methods that enable the location of optima 

where gradient techniques are unsuitable, i.e. the method does not require the calculation 

of derivatives. Starting with an initial parameter set X„ each parameter in the set is 

individually varied by a certain amount (according to the step size) and the effect on the 

objective function of this variation is monitored. In this application the objective function 

is the same as the cost function which is to be minimised by the GA. If a parameter 

variation improves the objective function value, the particular parameter is immediately 

set to that value. Once all the parameters have been varied, the objective function of the 

new parameter set X„ is compared with the value due to X,. If there is no improvement, the 

size of the step is reduced. If there is an improvement, a pattern move is made according to 

the following equation:

X , = X , + f c ( X . - X , )  (7.18)

The reasoning behind the pattern move is that, if X, and X„ lie on a slope and X„ lies 

below X„ which it must do if it has a lower objective function value, moving from X, 

through X n will lead to an even better parameter set, Xp. The pattern move amplifies the 

change between X, and X„. If the objective function value of Xp or its value after all its 

parameter values have been varied is not an improvement on that due to X„, the parameter 

values are reset to X„. This process is continued until the step sizes for each parameter 

drop below preset values. At this point, the current parameter set is considered to be 

optimal. An initial and minimum step size can be specified for each parameter. This 

allows the different order of the parameters to be taken into account. The standard 

algorithm was improved by specifying upper and lower bounds for each parameter. If a 

parameter value exceeds the bounds it is set to that boundary value.
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There are several constants in the Hooke Jeeves algorithm that effect its performance, 

these are the initial parameter step size, the pattern move factor k (equation 7.18), the step 

reduction factor and the step size at which the program is terminated. The most important 

of the four factors is the initial step size. It is vital that this value is large enough to ensure 

that a substantial portion of the search space is covered by the initial steps. This will 

enable the algorithm to rapidly locate parameter sets with low objective function values, 

even if they differ significantly from the initial parameter set. Best results were achieved 

by setting the initial step value to approximately 20  percent of the difference between the 

upper and lower boundary values of the parameters [Donne, 1993]. This setting was used 

for the case where the Hooke Jeeves search is applied on its own. In this chapter the best 

parameter sets obtained from each sub-population of the GA are used as starting points for 

the direct search. In this case the initial step size was set to 64 times the minimum step 

size. If a stage of the Hooke Jeeves search fails to locate an improved point, the step sizes 

are reduced by a factor of four. Due to the proximity of the starting points to good minima, 

only a few Hooke Jeeves search steps are necessary in order to improve the GA solution 

considerably. The combination of GA and Hooke Jeeves search also increases the chances 

of locating the global minimum.

7.3.2 Experimental hydraulic actuator system

Figure 7.1 shows the schematic of the test rig used to demonstrate the GA-based approach 

of parameter identification. A trolley-mounted mass of 46 Kg is moved by a 0.1 m stroke 

actuator controlled by an electrically-operated servo valve. The trolley position is 

measured with a displacement transducer and its signal is used for a positional control 

loop. Leakage between the annulus and piston sides of the actuator can be introduced by 

opening bleed valve 1. A second, passive actuator is employed to apply a load to the 

trolley. The dynamic friction characteristics of the load can be modified by adjusting bleed 

valve 2 which connects the two sides of the load actuator. Several sensors on the rig 

enable the measurement of the servo valve current, i, the differential pressure between the 

piston and annulus sides of the drive actuator, Ap, and the trolley position, x. The system 

pressure was measured with a pressure gauge next to the servo valve and the oil 

temperature was measured at the ring main system supplying this test rig with constant 

pressure. Dynamic data was recorded using the data acquisition system described in 

section 4.3 and alternatively with a PC-based system.
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7.3.3 Simulation model of the hydraulic actuator system

A schematic of the model used to simulate the hydraulic actuator system is shown in 

Figure 7.2. In contrast to the real system the load actuator is not simulated. The externally 

applied load is accounted for by a velocity dependent friction term in the actuator model. 

Furthermore the same model includes a leakage term to simulate leakage flow between the 

annulus and piston sides. This enables the simulation of a worn out or broken seal where 

the flow is from high to low pressure side of the actuator. External leakage is not 

considered in this investigation. Details about the actuator and servo valve models are 

given in section 2.4. Flow into the system is supplied by a constant flow source and the 

pressure relief valve is used to adjust the system pressure. The settings of the control loop 

are the same as used during the measurement at the test rig, i.e. the feedback and controller 

gain K1 and K2 are set to 100 [V/m] and 0.5 [A/V], respectively.

7.3.4 Investigation of different cost functions

It is essential that the objective or cost function of a system accurately reflects the design 

requirement. Because the GA is concerned with function minimisation, the objective 

function value must reduce as the system performance approaches the required 

performance. If an objective is not achieved, the function value must be proportional to the 

degree of failure. A good performance of the GA relies on having a well defined objective 

function. Here the aim is to minimise the difference between measured and simulated 

system behaviour. In particular the differences in actuator displacement and the differences 

in differential pressure Ap are of interest. The objective function describing the average 

absolute difference between measured and simulated displacement (x tm and jc/) is 

calculated according to the following equation

obfnx = ~ X k m -  x:v| (7.19)

Where n specifies the number of data samples. A similar equation can be derived for the 

differential pressure:
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With the measured and simulated differential pressures Ap"1 and Ap*, respectively. The

RMS1 error was not used in equations 7.19 and 7.20 because this would give peaks and 

overshoots, for example after step changes, too much influence on the optimisation. It is 

more important to simulate the general trend correctly than to estimate the amplitude of 

individual pressure peaks exactly. In this investigation a time step of 0.4 ms was used for 

all simulations. This time step was chosen in order to enable real time simulation of the 

whole circuit on one T9000 processor. The actual time interval between samples in 

equations 7.19 and 7.20 of 2.5 ms was determined by the sample rate of 400 Hz used for 

the measurement. Simulated values between two time steps were linearly interpolated if 

necessary. About 1720 samples were used for the calculation of the obfn-values. Figure

7.3 shows the first four seconds of the demand duty cycle used to excite the system 

sufficiently. In order to reduce the influence of start up transients it starts with a zero 

demand. Zero displacement is defined when the actuator is in its middle position. 

Furthermore the demand signal contains steady state periods to check the simulation 

quality for this case as well. With this demand used as system input several simulation 

parameters were optimised with the cost function in equation 7.19. The different 

parameters optimised will be described in section 7.4.1. Figure 7.4 shows the comparison 

between measurement and optimised simulation of the displacement and the pressure 

difference, respectively. The agreement between measured and simulated values is very 

good for the displacement but not for the pressure difference. In this case the difference in 

displacement is not a good measure for the general simulation performance. The 

displacement is dependent on the pressure differences in an integral manner. A set of 

simulation parameters can be found that enables the correct simulation of the displacement 

with larger pressure differences. In Figure 7.5 the same results are given for the simulation 

parameters optimised with the cost function in equation 7.20. Here a very good agreement 

between simulation and measurement was achieved for both compared signals. A correct 

pressure difference automatically leads to matching displacement values. This means only 

certain signals are useful for the evaluation of an objective function. In general one can say 

that values representing higher derivatives are best to use. For example, if the velocity or 

even the acceleration signal is available it should be used for measures that describe the 

system performance. Unfortunately these signals are often not available.

1 RMS-error = Root Mean Square-error
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Another option is the use of multi-objective optimisation. With the particular example 

circuit the differences in displacement and differential pressure can be optimised 

simultaneously. The proposed cost function is given with

obf n5x+P = 5 • obfax + °bJnp = 5• “ X K ” “ xi \ “  Apf| (7-21)n i=1 n i=l

This means the GA tries to minimise the weighted sum of both averaged differences. The 

weighting factor is included because the different units and quantities need to be 

accounted for. Initial tests indicated that the optimised cost function values for equation 

7.19 are about 5 times smaller than the respective values obtained using equation 7.20. 

The GA optimisation was again applied, this time using equation 7.21 as cost function. 

Figure 7.6 gives the respective results. Similar to Figure 7.5 a very good agreement for 

both quantities was achieved, indeed the optimised parameters turn out to have very 

similar values. Changes of less than 6 percent are obtained for the important simulation 

parameters. The disadvantage with equation 7.21 is that it takes longer to be calculated; 

hence from now on only equation 7.20 is used as objective function.

7.4 Parameter identification

This section investigates the different parameters that need to be identified in order to 

achieve good simulation accuracy. Details on the applied GA settings are given and 

different fault levels are identified.

7.4.1 Choice of parameters to be identified

Using the above described GA with the Hooke Jeeves search several different sets of up to 

eleven parameters were optimised. In Table 7.1 the results of 6 different optimisations, 

called opt. 1 to opt. 6 , are given. Each row in the table gives the identified values of the 

following parameters:

• Qsa, Qbr, Qsb and Qar describe the pressure-flow characteristics of the different ports of 

the servo valve. The subscripts indicate the ports using the notation in Figure 2.13. 

These characteristics are calculated by kt = Qj-yj~Pi where P, is the respective pressure 

difference. P, was set to 1 bar for all four ports, i.e. the characteristics could be 

described by the four flows only with kt = Q j4 b a r  .

• The servo valve spool underlap is specified as a percentage of its spool stroke, i.e. the 

spool displacement leading to the maximum flow through the valve. A symmetrical
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underlap was assumed, i.e. in its middle position the lap between the respective edges is 

identical.

• First stage leakage of the servo valve, Qieak, was also included in the valve model as 

described in section 2.4.1. The leakage flow per bar pressure difference is accounted for 

by this parameter.

•  Fres_ represents the total resistive force acting against the movement of actuator and 

load.

•  FstiCt is the respective stiction force preventing the initial movement of the load.

• The velocity dependent friction (also called viscous load) acting on the load and the 

actuator is described by the parameter ‘vis. load’.

• Leakage from piston to annulus side of the actuators and vice versa is included by a 

parameter called ‘cross leak’. Again the leakage is specified in flow per pressure 

difference.

•  Be is the effective bulk modulus, here given in the unit bar.

All other parameters are assumed to be known. These are mainly dimensions of 

component parts and the oil properties like density (864 kg/m3) and kinematic viscosity 

(46e-6 m2/s). In Table 7.1 the crossed boxes indicate values that are not optimised, i.e. 

they are not modelled and set to zero. The last column gives the achieved objective 

function value, called obfn, in bar. This value represents the average of the difference 

between measured and predicted differential pressure calculated according to equation

7.20. Using the optimised parameter values from opt. 1 to opt. 6 six system simulations 

were performed. In Figures 7.7 to 7.12 the simulated and measured pressure differences 

are displayed against time for these cases. Again the demand duty cycle from Figure 7.3 

was applied. All simulations lead to a very close agreement between simulated and 

measured actuator displacement, hence these results are not displayed.

Initially, in the first optimisation attempt (opt. 1), the pressure-flow characteristics of the 

servo valve were assumed to be the same for all four ports. Leakage was not accounted for 

and a zero lap valve was assumed. There is already a good agreement achieved between 

prediction and measurement in parts of the investigated time interval (Figure 7.7). 

Unfortunately not the complete duty cycle can be simulated correctly. These results can be 

improved by accounting for first stage leakage and underlap of the servo valve (opt. 2 , 

Figure 7.8). The reduced objective function value indicates a small improvement of the
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simulation accuracy. A slightly better objective function can be achieved by accounting for 

cross port leakage of the actuator (opt. 3, Figure 7.9). The improvement gained is 

relatively small, i.e. it was concluded that some details of the circuit were not modelled 

correctly. Here the servo valve was most likely to work differently to the predicted 

behaviour. Next the pressure-flow characteristics of the servo valve were assumed to be 

different for the edges connected to supply and return (opt. 4, Figure 7.10). In this case the 

optimisation leads to different values for the two pairs of pressure-flow characteristics. 

Even though no leakage and underlap was accounted for the simulation accuracy was 

improved. Mainly in the interval between 2.4 and 2.6 seconds the difference between 

simulation and measurement is unsatisfactory. Including the leakage terms and valve 

underlap can improve the simulation quality in this time interval (opt. 5, Figure 7.11). An 

even better system model can be obtained by optimising four different pressure-flow 

characteristics for the four edges of the servo valve (opt. 6 , Figure 7.12). For completeness 

the simulated and measured valve current of this optimisation is given in Figure 7.13. 

Again a very good agreement between measurement and prediction was achieved. The 

valve current saturates at 250 mA, hence this signal does not contain sufficient 

information to be used for the calculation of an objective function.

If not all factors are used for the optimisation (for example leakage terms are not included) 

the other parameters are adjusted in order to achieve the best possible results. This can 

lead to a null resistive force (opt. 1, 3, 4 & 5 in Table 7.1). In a real system there must be 

some resistive force present, i.e. this force is negligible or the system description is 

inaccurate. Assuming the latter, an experienced simulation designer knows that some 

important features of the system are missing in the simulation model. Thus one should 

include more details into the models until all parameter values get reasonable values. This 

indicates how detailed the models of the different components need to be in order to 

achieve the required simulation accuracy. It also indicates whether certain model 

simplifications are permissible. For example it might be sufficient to approximate some 

components by linearised models as described in section 7.2.1. Some detailed knowledge 

about the system (a priori information) can be useful for the optimisation process. For 

example the actuator moving the load is more than 10 years old and probably significantly 

worn, hence leakage had to be included in its model. Furthermore there could be some air 

in the actuator leading to the identification of relatively low values for the effective bulk 

modulus.
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7.4.2 Details on the GA used for the parameter identification

Similar to the GA described in Chapter 5 twelve subpopulations were used and the same 

probabilities for crossover and mutation were applied (see Table 5.1). Further details are 

given in Table 7.2 for the different optimisations. Each parameter was represented by a 

string of 6 bits. The different number of parameters leads to different length binary strings 

for each chromosome. Normally a GA working with longer chromosomes needs to 

calculate more generations before the obfn-values converge. This cannot be seen in Figure 

7.14 where the optimisation progress of the six different GA runs is displayed over the 

number of generations. For opt. 6 the increased number of parameters leads to faster 

improvements of the optimisation. An additional improvement of the obfn-value after the 

40 th generation can clearly be seen. Figure 7.15 gives the best obfn-value for each of the 

12 subpopulations. The random starting values lead to very different best values after the 

first generation. When the GA finishes (here the GA is stopped after 40 generations) the 

Hooke Jeeves search is employed and details of the achieved results are given in Figure 

7.16. This additional Hooke Jeeves search at the end of the GA can improve the results 

considerably. One can also see that it is useful to apply the direct search to all 12 

subpopulations as the best result obtained by the GA is not necessarily closest to the best 

achievable result. Here the obfn-value of subpopulation 12 which is only the third best 

obtained from the GA leads to the overall best result.

For all investigated identifications the number of generations and the number of 

individuals in each subpopulations was set to 40 and 30, respectively. These settings lead 

to runtimes of 592 to 1154 minutes on a Sun 20 workstation applying the combined GA- 

Hooke Jeeves search. The complete TLM simulation of the circuit (required once per 

calculation of the objective function) takes about 2 seconds on a Sun 20. This is about 100 

times faster than a standard lumped parameter simulation of the same circuit. The many 

oscillations and rapid changes slow down these traditional simulations (due to the small 

time step required for the simulation of rapid transients) but they do not influence the run­

time of the fixed time step TLM simulation. Considering the total optimisation runtime 

one can see that only the large speed up enables the calculation of sufficiently many 

simulations in reasonable time.

Although the parameters are optimised automatically with the described GA approach 

some expert knowledge is required in order to achieve good and reliable results with this 

method. Firstly, one has to decide whether the simulation accuracy is good enough, i.e.
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which average pressure difference (obfn-value) is acceptable. A visual comparison

be similar, i.e. the obfn-value on its own is not the only reliable performance measure. 

Secondly, one has to specify upper and lower values for each of the parameters. If these

coding where the bits are used to represent the mantissa and the exponent of a floating 

point number. Particularly for the latter approach it is necessary to check whether 

identified parameters are of reasonable size.

In Table 7.3 the upper («,) and lower (/,•) limits used for all investigated parameters are 

given. The resolution of each parameter can be calculated using these limits and the 

number of bits, b, employed to represent each parameter:

Table 7.3 also gives these values. If the required resolution is known in advance, the 

following equation can be used to provide an estimate of the appropriate binary string 

length:

It is highly unlikely that the value of b will be an integer, as it must be, so it is rounded up 

or down and either the resolution or the boundary values of the parameters are adjusted 

using equation 7.22. Here the same number of bits b -  6 is used for all parameters. Due to 

the small parameter intervals obtained by initial tests this leads to sufficiently small 

resolutions.

7.4.3 Importance of individual parameters for the optimisation

The problem of specifying a sufficient resolution for each parameter can be solved by 

looking at the sensitivity of a simulation to changes in its parameters. This has been 

investigated for the sixth optimisation (opt. 6). Table 7.4 gives the change in obfn-value 

for changes in the parameters. During the tests all parameters were set to their optimised 

values except one which was changed by ±10 and ±20 percent. The new objective function 

value is compared to the original one of 2.987 bar. Changing the pressure-flow 

coefficients of the spool valve leads to large changes in obfn-value, i.e. these factors are

between simulation and measurement is unavoidable if the ‘shape’ of the signal needs to

values are not known very large intervals may need to be set for an initial GA run. The 

intervals can then be reduced for a second run. Another option is to use floating point

(7.22)

(7.23)
k>8io ^
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very important for a correct simulation. The same is valid for the viscous load factor. 

These values should be optimised with a high resolution. For the system investigated the 

simulation is not as sensitive to changes in cross port leakage and bulk modulus. These 

parameters can be optimised with a smaller binary string length. The least-important 

parameters are the underlap and first stage leakage of the valve as well as the resistive and 

stiction forces. An even smaller resolution might be sufficient for these parameters. In 

general parameters which lead to a large change in obfn-value should be represented by 

more bits than parameters which do not lead to any considerable changes. This should 

enable a better (faster) and more efficient optimisation process. Another approach to speed 

up the optimisation is to use less samples for the calculation of the obfn-value in equation

7.20. This might lead to worse optimisation results; it is not further investigated in this 

thesis.

7.4.4 Confidence measures and quality of the simulation

In the above-described method fixed time step simulations are applied. Thus one needs a 

measure indicating whether differences between simulation and measurement are caused 

by an insufficiently small time step. For this the parasitic pressure difference Ppar 

described in section 3.2.1 can be used. Figure 7.17 shows the measured and simulated 

pressure difference simultaneously with the respective parasitic pressure difference for opt. 

6 . High values of Ppar indicate low simulation accuracy or an insufficiently small time 

step. Immediately after rapid changes in pressure level Ppar increases, i.e. the transients are 

simulated with a relatively low accuracy. This accuracy can still be sufficient but this is 

dependent on the objective of the simulation. In the time interval between 1.8 and 1.9 

seconds there is an offset between measurement and simulation. Because Ppar is small in 

this time interval the simulation time step cannot be the reason for this deviation. It also 

indicates that some parts of the system are still not modelled correctly.

Once all simulation parameters are identified the performance can also be tested with a 

different demand duty cycle. In Figure 7.18 the results are given for a more rapidly 

changing random input signal (using the parameters from opt. 6). Again a very good 

agreement between simulation and measurement is achieved. In general a different system 

input should always be used to check the simulation performance. One should consider 

that different duty cycles lead to different objective function values. Hence, the quality of 

different optimisations described by the obfn-values can only be compared for the same 

duty cycle.
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7.4.5 Fault level identification using GAs

In this section three different faults in the hydraulic actuator circuit are investigated. It was 

decided to focus on the identification of faults that are common in practice and that can be 

introduced into the rig without causing damage. Different levels of the following faults 

were introduced into the test rig (Figure 7.1):

1. decreased supply pressure (by setting the relief valve pressure)

2 . increased actuator cross leakage (by incrementally opening bleed valve 1)

3. increased load dynamic friction (by incrementally closing bleed valve 2)

All the signals described in section 7.3.2 were measured when running the rig with four 

different levels of each fault. The levels of the faults were then identified by changing only 

one parameter of the optimised system (opt. 6). For the supply pressure fault a minimum 

obfn-value was obtained by incrementally reducing the pressure in different simulations 

(steps of 0.5 bar were used). The value of the pressure used to calculate the minimum was 

considered to be the correct value for the particular fault level. In a similar manner the 

cross leakage level was identified by changing the leakage coefficient of the actuator 

model and the viscous load factor was changed for the dynamic friction fault.

In Figure 7.19 the simulated and measured pressure differences are shown over time for 

four different system pressure faults. Normal operation of the system is assumed to be at a 

pressure of 100 bar. The different pressure fault levels 1 to 4 investigated are set to 80, 60, 

40 and 20 bar, respectively. Using the above described approach the pressures are 

identified to be 80.0, 58.5, 41.0 and 17.0 bar, respectively. The large difference between 

the lowest identified and measured fault is partly due to the low accuracy of the system 

pressure gauge. For fault level 1 the agreement between simulated and measured pressure 

difference is even better than for the fault free case. The respective obfn-value of 2.63 bar 

is smaller than the value calculated for opt. 6 (2.987 bar). Table 7.5 gives the values of all 

identified parameters and the respective obfn-values. Reducing the pressure to 60 bar 

(fault level 2) still leads to very good agreement between simulation and measurement 

although the obfn-value increases. With increasing level of fault the differences between 

prediction and measurement become larger (Figure 7.19), i.e. the obfn-values increase. 

This indicates that some of the simulation parameters assumed to be constant need to be 

modelled dependent on the system pressure. The simulation can only approximate the 

system behaviour accurately for a limited range of pressures. This implies that the 

parameters cannot be optimised for the complete operating range of the system. As a test
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all eleven simulation parameters (compare Table 7.1) have been identified using the GA 

described in section 7.3 with the data obtained by setting the pressure to 80 bar (fault level 

1). The identified parameter values are slightly different to the values obtained by the fault 

free case, but a very small obfn-value of 2.11 bar was achieved. This also indicates the 

pressure dependency of the parameters.

For the faults in supply pressure the actual fault levels can be measured whereas the 

leakage and friction faults cannot be measured directly. The leakage fault is introduced 

into the rig by opening bleed valve 1 in increments of 1/12-th of a turn (compare Figure 

7.1). This leads to a flow across the lines and not across the actuator as it is modelled in 

the simulation. Due to the difference between the rig and the model, larger errors are 

expected for the identified leakage fault level. In Figure 7.20 the simulated and measured 

pressure differences are shown over time for four different leakage faults. Although the 

system was not modelled like the real model the ‘shape’ of the pressure difference signal 

is simulated most accurately. The approximated leakage seems to describe the changes in 

pressure difference correctly. All identified parameters and the respective obfn-values are 

again given in Table 7.5. Measurements with an artificially deteriorated actuator where for 

example the sealing is damaged, might lead to an even better agreement. Another option is 

to simulate the external flow path through the bleed valve but this would not represent a 

real faulty system.

The third investigated fault is the friction fault which is introduced into the rig as a change 

in viscous load due to an increased restriction in bleed valve 2 (Figure 7.1). Again 

increments of 1/ 12 -th of a turn are used where the load increases when the valve is closed. 

For fault levels 1 and 2 the agreement is very good whereas larger errors lead to worse 

results. This can be seen in the obfn-value as well as in Figure 7.21 where a comparison 

between simulation and measurement is given. Again an increasing fault level leads to an 

increase of the obfn-value. Thus in general the simulation accuracy deteriorates with 

increasing fault magnitudes.

7.4.6 Condition monitoring using GAs

There is no clear cut between system identification and condition monitoring. The 

identification of system parameters can be used for condition monitoring purposes, for 

example an identified leakage coefficient that is increasing can indicate the deterioration 

of a sealing. A big advantage of the GA is that several parameters can be identified 

simultaneously. Thus it should be possible to identify several simultaneous faults, i.e. the
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deterioration of several parts and components of the system. This requires sophisticated 

simulation models for all important components. The approach might be suitable for the 

monitoring of gradually changing properties such as leakage and friction. If a system is 

available say once a day for a few minutes a special duty cycle could be run. The obtained 

data can then be used during the day to identify appropriate parameters. Due to the long 

runtimes of several hours this approach cannot be used for real time applications.

7.5 Closure

In this chapter a GA-based parameter identification method is developed and applied to an 

example fluid power system. The performance of the GA is improved by a Hooke Jeeves 

direct search method. Different cost functions were investigated and it was found that 

signals representing higher derivatives like velocity and differential pressures are useful 

for the design of these objective functions. Several parameters could be identified 

simultaneously leading to a very good agreement between simulation and measurement. 

The optimisation approach investigated here uses pre-developed non-linear component 

models to identify its parameters. This leads to a very flexible method, i.e. for different 

systems the parameter optimisation can easily be adapted. Furthermore the method 

automatically indicates whether certain parameters are relevant and whether the 

component models contain sufficient detail. Different fault levels could be identified 

successfully. The method also enables the identification of friction and leakage 

coefficients which cannot be measured directly. This may then be used for the condition 

monitoring of fluid power systems. Due to the long run time of the optimisation process 

there is no real-time capability of this method. Therefore in the next chapter an approach 

based on artificial neural networks will be investigated enabling real time condition 

monitoring. The fault levels identified in this chapter will support the neural network 

training.
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TABLES FOR CHAPTER 7

\
Q s-a Q b-r Q s -b Q a-r underlap Q leak F res. F stict. vis. load cross leak Be obfn
[l/min] [l/min] [l/min] [l/min] [percent] [I/m in/bar] [N] [N] [N/m/s] [l/min/bar] [bar] [bar]

opt.1 3.540 3.540 3.540 3.540 0.0 561.9 5428.6 ' x ' 15238 4.812
opt.2 3.413 3.413 3.413 3.413 0.571 0.143 42.9 600.0 5262.9 8000 4.785
opt.3 3.603 3.603 3.603 3.603 " > < 0.0 507.4 5880.0 0.004 16000 4.648
opt.4 3.921 3.286 3.921 3.286 3 > < ^ 0.0 600.0 5491.4 13714 4.255
opt.5 4.452 3.486 4.452 3.486 0.568 0.144 0.0 521.1 6714.3 0.027 8127 3.672
opt.6 4.107 2.787 3.570 3.717 0.915 0.548 50.9 335.0 7428.6 0.02617 8000 2.987

Table 7.1 Optimisation results

Number of 
parameters

No. of bits per 
parameter

Total No. 
of bits

Number of 
generations

No. of indiv. per 
subpopulation

opt. 1 5 6 30 40 30
opt. 2 7 6 42 40 30
opt. 3 6 6 36 40 30
opt. 4 6 6 36 40 30
opt. 5 9 6 54 40 30
opt. 6 11 6 66 40 30

Table 7.2 Details on the GA settings

lower
value

upper
value

resolution 
using 6 bits

unit of 
parameter

Q s-a 1.0 5.0 6.35E-02 [l/min]
Q b-r 1.0 5.0 6.35E-02 [l/min]
Qs-b 1.0 5.0 6.35E-02 [l/min]
Q a-r 1.0 5.0 6.35E-02 [l/min]
underlap 0.0 3.0 4.76E-02 [percent]
Q leak 0.0 3.0 4.76E-02 [l/min/bar]
F resist. 0.0 300.0 4.76E+00 [N]
F stict. 300.0 600.0 4.76E+00 [N]
vise, load 3000.0 12000.0 1.43E+02 [N/m/s]
cross leak 0.0 0.08 1.27E-03 [l/min/bar]
Be 6000.0 16000.0 1.59E+02 [bar]

Table 7.3 Resolutions and upper & lower parameter values
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(-) 20% obfn
[bar]

change
[%]

3.2857 4.48 49.98
2.2298 4.58 53.33
2.8558 4.11 37.59
2.9734 4.00 33.91
0.7322 3.13 4.78
0.4385 3.08 3.11
40.724 3.09 3.44

268 3.08 3.11
5942.88 4.48 49.98
0.02093 3.17 6.12

6400 3.05 2.11

reference values
obfn = 2.987 bar
Q s-a 4.1071
Qb-r 2.7873
Qs-b 3.5697
Q a-r 3.7167
% underlap 0.9152
Q leak 0.5481
F resist. 50.905
F stict. 335
vise, load 7428.6
cross leak 0.02617
Be 8000

(-)10% obfn
[bar]

change 
[%] '

3.6964 3.56 19.18
2.5086 3.49 16.84
3.2127 3.29 10.14
3.3450 3.29 10.14
0.8237 3.01 0.77
0.4933 2.99 0.10

45.8145 3.03 1.44
301.5 3.02 1.10

6685.74 3.45 15.50
0.02355 3.05 2.11

7200 2.99 0.10

reference values
obfn = 2.987 bar
Q s-a 4.1071
Qb-r 2.7873
Q s-b 3.5697
Q a-r 3.7167
% underlap 0.91524
Q leak 0.5481
F resist. 50.905
F stict. 335
vise, load 7428.6
cross leak 0.02617
Be 8000

(+)20% obfn
[bar]

change 
[%] '

4.9285 4.10 37.26
3.3448 4.04 35.25
4.2836 3.37 12.82
4.4600 3.89 30.23
1.0983 3.00 0.43
0.6577 3.03 1.44
61.086 3.03 1.44

402 3.02 1.10
8914.32 4.16 39.27
0.03140 3.17 6.12

9600 3.18 6.46

(+)10% obfn
[bar]

change
[%]

4.5178 3.47 16.17
3.0660 3.42 14.49
3.9267 3.14 5.12
4.0884 3.31 10.81
1.0068 3.00 0.43
0.6029 3.02 1.10

55.9955 3.03 1.44
368.5 3.02 1.10

8171.46 3.40 13.82
0.02878 3.09 3.44

8800 3.09 3.44

Table 7.4 Sensitivity of simulation to changes in parameters

Supply pressure faults Actuator cross leakage faults Viscous load/friction faults

Fault
level

measured identified obfn measured identified obfn measured identified obfn
[bar] [bar] [bar] [turns] [l/min/bar] [bar] [turns] [N/m/s] [bar]

1 80 80.0 2.63 1/12 0.0306 3.12 2/3 12160 3.60
2 60 58.5 4.21 1/6 0.0520 3.47 1/2 16730 3.70
3 40 41.0 4.37 1/4 0.0660 5.05 5/12 22320 5.09
4 20 17.0 4.80 1/3 0.0902 5.84 1/3 27760 7.24

Table 7.5 Fault level identification
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FIGURES FOR CHAPTER 7
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Figure 7.1 Schematic of the experimental actuator test rig
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Figure 7.2 Schematic of simulation model
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Figure 7.7 Optimisation results (opt. 1)
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Figure 7.9 Optimisation results (opt. 3)
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8 Condition monitoring of fluid power systems using neural networks

8.1 Introduction

Malfunctions of hydraulic components increase the operating costs of any fluid power 

system. Furthermore the consequences of a gross accident can be very serious for system 

operators and the environment. A complete failure of equipment is usually relatively easy 

to detect, but when failure has occurred, considerable damage may have taken place. 

Therefore, it is desirable to have a monitoring system enabling the identification of small 

deteriorations in order to predict incipient faults which might otherwise lead to a complete 

break down or other catastrophic events.

This chapter investigates the condition monitoring process of fluid power systems. 

Employing artificial neural networks different faults can be identified correctly. An 

approach will be developed that enables the detection of different levels of faults and 

deterioration in real-time. The purpose of this section is not to determine causes but rather 

to discuss techniques which identify the presence of failure characteristics and its source. 

First a review of condition monitoring techniques is given and then theoretical and 

practical applications of neural networks are investigated.

8.2 Fault monitoring techniques

Generally, faults can occur in sensors, actuators, controller hardware or software, the 

process itself and to structures (pipes, beams etc.). In this thesis only the component fault 

detection is investigated, i.e. instrument faults and other faults are not considered. The 

terms fault and failure are used interchangeably, but a subtle difference does exist. Faults 

occur when the components in question operate incorrectly in a permanent or intermittent 

manner whereas failure denotes a complete operational breakdown. Related to this 

terminology is the notion of fault tolerance which describes the ability of a system to 

maintain tolerable performance during the occurrence of malfunctions.

In general, fault monitoring systems should perform the following tasks:

• fault detection indicating when the failure happened

• fault isolation which leads to a list of possible faults

• fault identification which indicates the cause and severity of a particular fault
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Based on the results of the fault detection and diagnostic procedure, actions have to be 

released. For example an automatic protection system may be initiated, or maintenance or 

repair steps may be started [Isermann & Freymuth, 1993]. Another option is the 

reconfiguration or restructuring of appropriate control laws, to effect tolerable operation of 

the system if possible. The performance of the above described monitoring tasks, should 

also meet the following requirements:

• Low false-alarm and low missed-alarm rate, i.e. high rate of correct detections.

• The delay time between a fault occurrence and a fault detection should be small, i.e. 

the system needs to satisfy real-time requirements.

• Early detection of developing deterioration and warning off incipient faults. The earlier 

an impending fault is detected the longer one has to plan maintenance.

• A high accuracy of the estimated fault parameters is desired, i.e. the ability to correctly 

distinguish (isolate) faults, to characterise the size and time of occurrence of faults.

• The employed method must be insensitive to model inaccuracies (if a mathematical 

model is used). It should also be able to work with noisy data and unknown 

disturbances.

Incorporating a fault monitoring system into an industrial process results in improved 

reliability, maintainability and survivability. Reliability deals with the ability to complete a 

task satisfactorily and within the period of time over which that ability is retained. 

Maintainability concerns the need for repair and the ease with which repairs can be done 

and survivability relates to the likelihood of conducting an operation safely whether or not 

the task is completed. The following sections give an overview of some fault monitoring 

techniques.

8.2.1 Limit checking

In this research a fault is to be understood as nonpermitted deviations of characteristic 

properties of a fluid power circuit. If these deviations influence the measurable variables 

of the system, they may be detected by an appropriate signal evaluation. The 

corresponding fault detection consists of checking the measurable variables with regard to 

a certain tolerance of the normal values.

Often the plant measurements are compared to preset limits and exceeding a limit 

indicates a fault situation. In many systems, there are two levels of limits: the first level
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serves for prewaming only, while the second level triggers emergency action [Pouliezos & 

Stavrakakis, 1994]. The above described (classical) way of limit value checking may be 

appropriate for the overall supervision of a complete system. However, developing 

internal (component) faults are only detected at a rather late stage and the available 

information does not allow an in-depth fault diagnosis. Since a single component fault 

may cause many plant variables to exceed their limits, fault isolation is very difficult. 

While very simple, this approach has another serious drawback. Since the plant variables 

may vary widely due to variations in its duty cycles and inputs, the test thresholds have to 

be set quite conservatively.

If the supervision is going to be improved and automated, a first step consists of adding 

more sensors. It is usually desirable to add such sensors which directly indicate faults. 

Because the number of sensors, transmitters and cables increases, the cost goes up and the 

overall reliability is not necessarily improved. Furthermore many faults cannot be detected 

directly by available sensor technology [Pouliezos & Stavrakakis, 1994].

8.2.2 Statistical methods

In order to improve operational safety of a system preventive maintenance can be applied. 

Based on the statistical life expectancy of individual components, all parts which are likely 

to fail in the near future are replaced. The expected component life time will be much 

smaller than the actual time that several of the components could work safely. This means 

the method (which needs to apply conservative life time thresholds in order to achieve 

high safety standards) leads to the replacement of many fault-free components, i.e. the 

approach is quite costly.

Other statistical methods are based on the measurement of system states. Under fault 

conditions, the movement of the system states are usually complex such that statistical 

distinctions are sufficient to detect the variation from normal behaviour. A set of several 

successive measurements called a window, is collected. In real-time applications the 

window must be sliding. On this window, statistical properties of the measured signals are 

studied. For example let y(k) be a white noise sequence with variance a 2 and let y(k) be 

the observations sequence such that:

y(k) = \L(k) + y(k)  (8.1)

with the known mean |x(k). Any kind of fault occurrence makes the residual
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Y (k) = y(k)-\L(k)  (8.2)

depart from its zero mean (variance a 2). Further details about statistical methods can be 

found in Pouliezos & Stavrakakis [1994].

8.2.3 Condition monitoring based on vibration measurement

The operating condition of a machine can be monitored by analysing the generated 

vibration and/or noise. These vibrations and noise are produced by mechanical forces and 

can be used to reveal faults in the mechanism itself or some changes in the vibration path. 

The fault revealed may be an actual malfunction of a change in an operating parameter of 

the machine. In the latter case, the operating condition may be changed by a control 

system, but if a fault is detected, the machine needs to be scheduled for maintenance. 

Changes in the vibratory path may signal the need for the repair or replacement of 

structural elements.

The traditional vibration analysis methods are essentially energy methods and therefore 

only detect faults that generate significant amounts of changes in energy. When vibration 

is measured from a transducer mounted on the casing of a machine, what is actually 

measured is the original force signal from the source of the signal, modified by the 

characteristics of the transmission path from the source to the measurement point. 

Expressed in terms of frequency this modification is a multiplication by the mobility of 

the transmission path. This means the transducer should be mounted as close as possible to 

the particular component that is to be monitored. A developing fault will show up as a 

change in vibration and noise. If the system is linear, a relative change in the vibration at 

the source will give the same relative change in the vibration at the measuring point. 

Hence it is the relative change which is important and this is mainly used for fault 

identification. Different faults will manifest themselves at different frequencies in the 

vibration spectrum. A Fourier transform can be applied to identify the respective 

frequencies. The obtained frequency domain information can then be related to periodic 

events in the system, for example events related to shaft speeds. A disadvantage of the 

vibration and noise measurement methods is that in order to achieve a performance data 

base one needs to measure the system at many different working points. These 

measurements include faulty and fault-free cases at for example different system 

pressures, shaft speeds, temperatures etc. The change in the vibration or noise spectrum 

needs to be recorded for all these system states and then particular changes may be 

associated with certain faults.
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8.2.4 Expert systems

An expert system, in its most basic sense, is no more than a tool to organise and codify for 

the computer the experience and thought processes of a human with expertise concerning 

the operation of a technological process or an industrial plant. The process of building an 

expert system consists of two main activities which usually overlap: acquiring the 

knowledge and implementing the system. The acquisition activity involves the collection 

of knowledge about facts and reasoning strategies from the domain experts. Most of the 

past applications involving diagnosis have been implemented as rule-based systems. That 

is, they use simple production rules to provide a mapping between the possible causes and 

inputs of a system and the possible faults [Pouliezos & Stavrakakis, 1994].

Rule-based systems may be very successful in finding faults when applied to systems from 

which extensive operational experience has been learnt and stored in a (large) data base. 

However, due to the nature of their knowledge representation (in terms of empirical 

symptom-failure associations), the rule-based approaches to diagnosis are usually 

restricted to familiar systems. The structural properties of the physical system under 

consideration are only implicit and, hence, they do not support the development of a 

diagnostic system based on fundamental theoretical principles. For many actual physical 

systems, a large amount of theoretical design knowledge is usually available and may be 

very useful for diagnosis. Unfortunately, rule-based systems fail to provide a foundation 

for using such knowledge without experiencing particular faults or foreseeing potential 

failures in the physical systems to be diagnosed [Shen & Leitch, 1992]. Despite the 

usefulness of some expert systems their efficiency may be further limited by the following 

factors [Rodriguez et al. 1996]:

• It is difficult to provide the correct diagnosis with insufficient or noisy input 

information.

• The formulation and maintenance of production rules is quite difficult. Eliciting rules 

from experts is far from being trivial. Moreover, expert systems tend to be rigid in the 

sense that adaptability of a working system to new functionalities of the elements 

modelled is very costly. In most practical cases the system has to be rebuilt.

• The effort, in terms of manpower and time, required to design and develop an expert 

system may be considerable.
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• Finally, the need to exhaustively search for all the possible fault hypotheses 

considerably slows down the global functioning of such systems. The fact that the 

chain of rules to be fired cannot be predicted in advance makes it difficult to foresee 

the response time and practically excludes a parallel implementation.

8.2.5 Fault tree analysis

Fault tree analysis has been widely used for assessing the safety and reliability of 

engineering systems. An established design is considered and the failure of each 

component assumed. The interactions of these faults are then analysed. This approach may 

simplify the failure analysis of complex systems and is considered particularly useful as a 

supplementary analysis to a failure mode and effects analysis. Fault tree diagrams may also 

be very useful in the training of operating personnel [Collacott, 1977]. Despite its 

advantages the method also has some drawbacks. There are no positive mechanisms for 

identifying the important system failure modes to study or the potential component faults 

within the system, and so the analysis tends to rely heavily on the expertise and experience 

of the team involved. Consequently, although attempts have been made to formalise the 

procedure, the technique remains a fundamentally subjective analysis method [Hogan et 

al., 1993].

8.2.6 Model based diagnostics

This approach is based on models, unlike expert systems and fault trees which are rule- 

based diagnostic systems. To determine why a physical system has not worked correctly 

compared with its designed behaviour it is useful to know how it was supposed to work in 

the first place. It is this simple observation that underlies the considerable interest in the 

development of model based diagnostic systems (MBD) [Shen & Leitch, 1992].

Model-based diagnostics consists of two stages: residual generation and decision making 

based on these residuals. In the first stage, outputs and inputs of the system are processed 

by an appropriate algorithm to generate residual signals which are nominally near zero and 

which deviate from zero in characteristic ways when particular faults occur. In the second 

(decision making) stage, the residuals are examined for the likelihood of faults. A decision 

process may be based on a simple threshold test, on the instantaneous values of moving 

averages of the residuals, or it may consist of methods of statistical decision theory, such 

as sequential probability testing or likelihood ratio testing. One residual is sufficient to 

detect the occurrence of a fault and a set of residuals is required for fault isolation. To
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achieve on-line fault diagnosis in the presence of transient behaviour, the system dynamics 

have to be considered. [Benkhedda & Patton, 1996].

A fundamental issue in the generation of residuals is their robustness (insensitivity) 

relative to unavoidable modelling errors. Various techniques have been proposed to make 

the failure detection process more robust. Design methods are proposed with the goal of 

making the detection filter very much more sensitive to one fault than others. These 

methods have been shown to be specific cases of the unknown input observer approach. In 

this approach noise, disturbances, parameter uncertainties and unmodelled dynamics are 

modelled as ‘fault events’ of the system, along with the fault events arising from actual 

system failures. An observer is then designed to be sensitive to a fault event of interest, 

while insensitive to as many other real and pseudo-fault events as possible. In general, 

observers are dynamic systems that are aimed at reconstructing the state of a state-space 

model on the basis of the measured inputs and outputs. The state estimation error is then 

used as the residual for the detection of the faults.

To avoid complexity in system modelling qualitative reasoning techniques can be 

employed to describe the system model [Shen & Leitch, 1992]. The physical nature of the 

investigated signals is, in general, the same for quantitative or qualitative modelling but its 

description differs severely. In quantitative models the signals are described by time 

functions which can assume any real value, In qualitative modelling, the value of a single 

signal or several signals in combination are described by attributes or symptoms, each of 

which refers to a set of signal values. In diagnosis, an alarm message is a typical 

qualitative description of a measurement value. The alarm is alerted if the signal exceeds a 

given bound. Hence, it is only known whether the signal is below or above the prescribed 

bound. Qualitative models are, in general, relational. Since the system input is known 

merely qualitatively, the system output cannot be determined unambiguously. As 

qualitative values can only be combined via qualitative algebra, qualitative models also 

yield solutions that the system under consideration cannot perform [Lunze, 1992].

8.2.7 Parameter estimation methods

Fault detection via parameter estimation relies on the principle that possible faults in the 

monitored process can be associated with specific parameters and states of a mathematical 

model of a process given in general by an input-output relation. Therefore it is necessary to 

have an accurate theoretical dynamic model of the process in order to apply parameter 

estimation methods. The problem of parameter estimation has already been described in
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detail in Chapter 7. With the described GA-based method multiple fault detection is 

possible, since the procedure is estimating several values simultaneously. Further details 

and examples of fault diagnosis with parameter estimation can be found in Isermann & 

Freyermuth [1991a,b] and Isermann [1993].

8.3 Condition monitoring of fluid power systems

All of the above described fault monitoring techniques can also be applied to fluid power 

systems. Sato et al. [1990] developed a non-linear observer as part of a control scheme for 

an hydraulic servo-motor, based on the work of Thau [1973]. This could be readily 

adopted for condition monitoring purposes, although the system studied by Sato is fairly 

simple. A fault detection method based on the generation of robust residuals for a bilinear 

system with unknown inputs was proposed by Yu et al. [1994], The method was applied to 

a simple hydraulic system and simulation results are given. These show that the 

monitoring performance can be improved compared to linear approaches. Yongxiang & 

Zhangwei [1995] investigate a knowledge-based diagnostic model of an electrohydraulic 

servo-system. Utilising the hierarchical classification principle the approach leads to 

efficient condition discrimination and diagnosis.

Two extensive overviews of condition monitoring techniques applicable to fluid power 

systems are given in Hunt [1986] and Watton [1992]. There are many different parameters 

that can be monitored in fluid power systems and based on these parameters some 

monitoring techniques are described in the following sections.

8.3.1 Vibration and noise

The intensity of structure borne noise is about three orders of magnitude higher than the 

intensity of air bome noise. Hence, the measurement of vibration is more often used for 

monitoring purposes. By measuring the structure acceleration high frequency contents can 

be measured very precisely. Several attempts have been made to use vibration analysis to 

monitor pumps and motors. In Langen [1981] vane pumps have been investigated. In this 

case frequencies up to 50 kHz were examined and the overall vibration level was recorded. 

Although pressure pulses were also recorded it was the external accelerometer response 

which appeared to rise with a vane fracture and later when the control ring developed a 

small crack. This work was extended to gear pumps by Backe & Langen [1983a,b] where 

cavitation could be detected in a frequency range of 20 to 30 kHz.
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8.3.2 Temperature

Basically the idea of the thermodynamic technique is to measure the temperature rise of 

the working fluid as it passes through a pump or component. Certain rises in temperature 

are normal due to pressure changes but, if a change in flow characteristic occurs, the rise 

or drop will be modified. In pumps this method can be used to measure their efficiencies. 

The measurement of temperatures is seen as an effective means of monitoring the 

condition of a pump but care would be needed in environments with varying atmospheric 

temperature. The absolute temperature of the oil can also influence the actual temperature 

rise [Hunt, 1986].

8.3.3 Pressure

Pressures can conveniently be monitored by pressure transducers. A fault in the system 

can then by identified by the loss of pressure indicating for example a fracture in the 

pipework. This is not primarily used as a monitor of specific components but rather of the 

complete system. There are several users of such monitoring systems [O+P, 1978]. 

Pressure pulsations when considered as fluid bome noise can be analysed similar to the 

vibration measurements. Furthermore, a pressure drop across a filter indicates the 

condition of the filter element. By looking at this pressure drop over time it can also 

indicate the increase in particles in the fluid.

8.3.4 Flow and leakage

The measurement of leakage flow is an effective method of monitoring fluid power 

components such as pumps and motors. Similar to pressure transducers flow meters can 

also be used to monitor complete systems. A disadvantage of flow rate measurements is 

that rapid changes cannot be readily measured. Hence, these measurements are mainly 

used to monitor normally steady or slowly changing flow rates. By measuring the change 

in oil level in the main supply system tank one can also identify increasing external 

leakage of the system as mentioned in O+P [1978].

8.3.5 Contamination and fluid condition

The contamination of fluids is a major cause of failure in hydraulic systems. Monitoring 

the number of particles in the oil can indicate when the filter needs to be changed. This can 

reduce the wear of parts and prevent or postpone the occurrence of faults. For the actual 

condition monitoring task the particles can also be analysed in detail. This might indicate 

whether the particles are externally added or whether they are from specific components of
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the system. Even when using this detailed information the problem of identifying faulty 

components remains very difficult. Physical and chemical changes in the fluid are also 

important as these might lead to corrosion of surfaces or swelling of seals. Changes might 

be detected for example in water content, viscosity and loss of additives. Until recently the 

monitoring of such properties was restricted to off-line monitoring. O+P [1995] describe a 

system developed for the automatic monitoring of the above described fluid properties. 

This enables on-line fluid monitoring supported by software which automatically adjusts 

the required measurement intervals.

8.3.6 Power consumption and efficiency measurements

The measurement of power consumption is very much dependent on the work duty cycle. 

Hence this method is only feasible where work cycles are know or where the cycles are 

similar over the period of monitoring. The same problems apply to the measurement of the 

efficiency of a system or component which, in addition is complicated and can be costly

8.3.7 Other

Depending on the actual application monitoring of the function of a system itself can be 

used for the monitoring process. The state of hydraulic components can be concluded by 

investigating for example torque, actuator displacement or velocity measurements.

8.4 Artificial neural networks for condition monitoring

As the name suggests an artificial neural network (NN) is inspired from the intelligence 

processing that occurs in biological systems. It is the properties of the brain, such as 

sensing, recognition, weighting of simultaneous inputs, learning, abstraction and 

generalisation, which NNs attempt to mimic. These properties are attractive to apply in 

many engineering and scientific areas. [Liu et al. 1992]. Furthermore, NNs are noise 

tolerant and enable efficient parallel distributed processing.

Recently, NNs have been found to be very powerful in solving control problems of 

industrial systems. Many control applications make use of a process model abstracting the 

relationships between inputs and outputs. By using NNs as non-linear (black-box) models 

it is not necessary to have explicit knowledge about this relationship and a very good 

representation of processes can be derived. Burton et al. [1991] examined the possibility of 

using a NN in a simple hydraulic control application. The ability of the system to deal 

with pattern reproduction, non-linearities and drift was demonstrated. NN-based adaptive
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controllers of fluid power drives were investigated by Liu et al. [1992]. Other applications 

of NN-based control strategies can be found in Govind & Ramamoorthy [1992] and Goh 

& Noakes [1993]. Aldrich & von Deventer [1993] used NNs to form an internal 

representation of the relationship between the distributions of the measurement residuals 

and the residuals of the process constraints. The major advantage of using NNs instead of 

conventional statistical methods, is that NNs can also be used to detect systematic errors in 

process systems subject to non-linear process constraints.

The literature gives several more examples where processes are modelled and identified by 

NNs (Tan et al. [1995], Delgado et al. [1995]). Pollard et al. [1992] demonstrated that 

improvements in NN identification are possible by building upon established identification 

techniques. The behaviour of fluid power components was simulated using feedforward 

NNs by Xue & Watton [1995].

In Dransfield & Stecki [1991] the monitoring of hydraulic systems are seen as another 

useful application of NNs. So far, mainly simulation studies are published on fluid power 

applications. A monitor for a simulated hydraulic rotary drive system is investigated in 

Daley & Wang [1993] where the NN is again used to model the system behaviour. The 

difference between simulated and predicted performance is then investigated in order to 

identity faults. Two previous values of shaft speed and pressure difference were used as 

inputs to the net. Ramden et al. [1995a] and Ramden [1995] investigated a hydraulically 

operated gear box control system. Different types of, and combinations of, directional 

control valve faults were considered. Usually, the net did not detect all faulty conditions 

completely, but at least one fault was detected. In this case pressures and piston velocities 

were used as monitoring parameters. Esser [1992] used the amplitudes of several 

harmonics of the measured vibration signal for the diagnosis of hydraulic pumps. This 

means the relevant information about the system and faults is reduced to fewer values 

enabling a faster network training with smaller networks. The extra time required to 

calculate the spectrum will slow down this approach considerably.

The classification of individual measurement patterns is, in general, a very straightforward 

fault diagnosis method. In Sorsa & Koivo [1993] a heat exchanger continuously stirred 

tank reactor system is studied. For the diagnosis, 14 signals are measured and 10 fault 

situations are investigated. It was found that multilayer feedforward networks can very 

reliably classify the training patterns and the performance with the test data is usually 

satisfactory.
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8.5 Description of the neural networks used for condition monitoring

Several specific neural network models have been developed. For this research only 

feedforward networks (multilayer perceptrons) are investigated. These networks can 

approximate any continuous function (linear or non-linear) to arbitrary accuracy given 

sufficient hidden neurons [Masters, 1993]. This class of networks has also been used as 

the basis for the majority of practical applications of neural networks to date [Bishop, 

1994].

8.5.1 The main units of feedforward neural networks

A feedforward network consists of units and directed, weighted links (connections) 

between them. In analogy to activation passing in biological neurons, each unit receives a 

net input that is computed from the weighted outputs of prior units with connections 

leading to this unit. Figure 8 .1 shows such a network. Depending on their function in the 

net, one can distinguish three types of units. The units whose activations are the problem 

input for the net are called input units; the units whose output represent the output of the 

net output units. The remaining units are called hidden units, because they are not visible 

from the outside [SNNS, 1995]. Here only nets with one set of hidden units (one hidden 

layer) are considered. The net in Figure 8.1 contains n input, m hidden and c output units. 

These units are often called neurons in analogy to biological neurons. In short the network 

topology will be described by an «:m:c-network.

In Figure 8.2 details on a single unit are given. These kind of units are used in the hidden 

and output layers only, i.e. the inputs x are propagated directly to the hidden units. The 

output of the hidden and output units, z and y, respectively, are given by the following 

equations.

where Wab is the weight from input a to unit b, xo and zo are bias parameters which are set 

to one and g( ) is a non-linear activation function. Most networks of practical interest

(8.5)

(  ■»

(8.6)
\J=° J

make use of sigmoidal (meaning S-shaped) activation functions. A common choice is the 

logistic sigmoid given by equation 8.7 and plotted in Figure 8.3.
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(8.7)

With sigmoidal hidden units, the universal approximation properties of the network hold 

even if the output units have linear activation functions [Bishop, 1994]. For the applied 

networks sigmoidal units were used for both, hidden and output units.

8.5.2 Network training and validation

A neural network is (usually) trained either supervised or unsupervised. The most 

common is supervised training. One collects many samples to serve as exemplars. Each 

sample (also referred to as patterns) in this training set completely specifies all inputs, as 

well as the outputs that are desired when those inputs are presented. Then the patterns are 

presented to the network one at a time. For each sample, the outputs obtained by the 

network are compared with the outputs one likes to obtain. After the entire set of training 

samples has been processed, the weights that connect the neurons in the network are 

updated. One pass through the training samples, along with an updating of the network’s 

weights, is called an epoch. In unsupervised as in supervised training, one uses a collection 

of sample inputs. But the network is not provided with outputs for those samples. One 

assumes that each input arises from one of several classes, and the network’s output is an 

identification of the class to which its input belongs. The process of training the network 

consists of letting it discover salient features of the training set, and using these features to 

group the inputs into classes that the network finds distinct [Masters, 1993]. Unsupervised 

training will not be investigated in this thesis as it is generally not as useful for the fault 

monitoring process.

The error function describing the quality of a set of weights is given by the sum-of-squares 

error. Each input vector

from the data set has a corresponding target vector tq. The error for output k when the 

network is presented with pattern q is given by

where y* and w are the predicted network output and the weights, respectively. The total 

error for the whole pattern set can then be defined as the squares of the individual errors

x (8 .8)

(8.9)
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summed over all c output units and over all d patterns. This leads to the following mean 

square error (MSE):

NN functions depend non-linearly on their weights and so the minimisation of the

It generally requires the use of iterative non-linear optimisation algorithms [Bishop, 1994]. 

The training algorithms used to find values for the weights were standard backpropagation 

and backpropagation with momentum term. A description of these algorithms can be 

found in Rummelhart & McClelland [1986] and SNNS [1995] describes the particular 

implementation. All neural network results shown in this thesis were obtained using the 

SNNS simulator1 [SNNS, 1995].

The quality of a trained network needs to be evaluated before it is applied. This process is 

called validation. Therefore a second set of data samples is used in order to check that the 

training process did not overfit the training data. In general, the expected error on the 

validation set exceeds slightly that on the training set. If the difference is large, one must 

suspect that either the two sets are not representative of the same population, or the model 

has been overfitted. It is important that the validation set is not used as part of the training 

procedure.

8.5.3 Determination of network topology

In Figure 8.4 a schematic plot of the test error with respect to the training and validation 

set as a function of the number of hidden units in a neural network is given. In most 

applications, the goal of network training is to find a network mapping function which 

makes the best possible predictions for new data. This corresponds to the network having 

the minimum test error, given by m = mm in Figure 8.4. A detailed description of the

determination of the best network topology is given in [Bishop, 1994].

This leads to an analogy with polynomial curve fitting or parametric system identification 

where the stage of model selection is equivalent to finding the number of hidden units for

(8.10)

corresponding error function is substantially more difficult than in the case of polynomials.

1 The SNNS simulator (Stuttgart Neural Network Simulator) was obtained via anonymous ftp from the host 
ftp.informatik.uni-stuttgart.de (129.69.211.2), subdirectory: /pub/SNNS

ftp://ftp.informatik.uni-stuttgart.de
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the net. The stage of parameter estimation can be compared to the computation of the 

network weights.

8.5.4 Data processing

Feedforward networks with logistic activation functions (as described in section 8.5.1) are

use of measured data is the common linear mapping where the extremes of the variables 

are scaled in the range from 0.1 to 0.9. An observed value V is scaled to a presentable 

value A  with the following formula:

where Amin=0.l, A^ = 0 .9  and Vmn and Vmax are the variable’s minimum and maximum 

values, respectively. By inverting equation 8.11 a respective formula can be derived for 

unsealing the network output. There is another reason for scaling the network training 

data: In a typical application very different physical quantities may be used as inputs which

no information is lost.

If a net is designed with n inputs, m hidden and c output neurons (compare Figure 8.1), 

there will be («+c)-m weights. The only way to prevent the network from learning unique 

characteristics of the training set, to the detriment of learning universal characteristics, is

As a rule of thumb, double the number of weights in the network is the minimum number 

of training samples required [Masters, 1993].

Higher derivatives were important for the identification process, therefore these are also 

likely to be useful for condition monitoring purposes. As mentioned earlier these signals 

are not always available in real applications. Hence, several previous time steps are used 

as additional inputs to the nets. These will enable the network to infer derivatives, if

theoretically limited to an output range of 0 to 1. The scaling method applied to enable the

(8.11)

with

r =
max

max (8.12)

could differ by several orders of magnitude. For example a load might be of the order 105 

(N) whereas a displacement might be only of the order 10'2 (m). This causes difficulties in 

network training, since the optimal values for the weights would need to span a similar 

range, i.e. order 107. The scaling of data represents an invertible transformation in which

to flood it with so many examples that it cannot possibly learn all of their idiosyncrasies.

necessary.
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8.6 Simulation study using reference model

An extensive simulation study was undertaken based on the hydraulic actuator circuit 

described in section 7.3.3 (Figure 7.2). Normally, model based diagnostic systems are slow 

due to the time-consuming calculation of sophisticated models. Furthermore, residuals 

need to be calculated and only then the process of decision making can be applied. This 

problem can be overcome by a combination of NNs and the transmission line modelling 

method which enables the calculation of real-time reference models. Instead of using the 

calculated residuals for network inputs a different approach is suggested. By supplying the 

net with data from the faulty system as well as the fault free system, the net can 

automatically calculate residuals if necessary. This might be particularly useful for the 

example system. If there occurs an error in the system the control loop automatically tries 

to adjust for it, i.e. faults in the system may not always be detected in signals from the 

plant output data itself.

In order to decide what faults to investigate detailed studies about faults of particular 

components may be performed. These are already available for many systems, for example 

Heinonen et al. [1995] investigated the behaviour of electro-hydraulic servo valves under 

different kinds of malfunctions. In this section five different faulty cases of the actuator 

system (Figure 7.2) have been investigated. These are the following:

• Fault 1: increased leakage across the actuator

• Fault 2: a change in load, i.e. a force applied externally on the actuator/mass

• Fault 3: a change in the mass moved by the actuator

• Fault 4: a drop in system supply pressure

• Fault 5: an increase in friction between the mass and the ground

All faults were simulated for four different fault levels. By accounting for the fault-free 

case this leads to a 5-class classification problem. The parameter values for the five levels 

are given in Table 8.1 where level 1 represents the fault-free case.

8.6.1 Training and validation data

In order to obtain useful training and validation data the hydraulic system must be excited 

with a sufficiently rich input signal. It is also important to obtain data from the whole

operating range. The demand duty cycle used as input signal is the same as already

described in Chapter 7 (Figure 7.3). In this simulation study, both the training and the
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validation data were obtained using this duty cycle. The complete system was simulated 

with the above described fault levels and the following signals were recorded:

• the demanded actuator displacement (u)

• the valve driving current (/)

• the pressure difference between the lines connecting the actuator and the servo-valve

w

• the achieved actuator displacement (jc)

The simulation time step was 0.4 ms (enabling real-time performance) and the sample 

time of the recorded data was arbitrarily chosen to T  = 0.01 s. Some tests and visual 

inspection of the data suggested that this sample rate and data from five consecutive 

samples would contain sufficient information for each pattern. To produce a training data 

set for each fault level, 380 training patterns were obtained. This leads to a complete set of 

1900 training vectors, i.e. five times 380. For the validation sets, a gradual change and a 

step change in the respective parameters were simulated. Because the system was 

simulated for the same time interval, this also gives 380 patterns for each validation data 

set. Figure 8.5 shows a schematic of the training process. The training input vector is given 

by

X = U (8.13)

where yf, u and yr are the faulty plant output, the demand duty cycle and the estimated 

(reference) fault-free plant output, respectively, as given in equations 8.14.

Estimated values are indicated by a hat above the variable. For simplicity, the same 

number of samples was used from all signals, i.e. nu = np =nx =ni = 4 . The order of the

different variables is not important and was chosen arbitrarily. Once a network is trained 

the same variables are used for the actual identification process as shown schematically in 

Figure 8 .6 . Linear scaling of the input data was employed as described in section 8.5.4 

using the limits in Table 8.2.
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8.6.2 Single fault networks

As an initial simplification, five separate networks were trained, one for each investigated 

fault case. The identical topology of the networks used can be described by a 35:15:1- 

network. This means 35 input units, 15 hidden units and 1 output unit were used. The 

number of input units was derived from the number of samples taken from each network 

input variable whereas the number of output units depends on the representation of the 

desired output of the net. Using one output per fault level, indicating only the occurrence 

of a certain fault level, would not enable the identification of intermediate levels. Hence, 

only one output was chosen to represent the different fault levels. Several tests indicated 

that nets with 15 hidden units led to satisfactory performances. The standard 

backpropagation learning function was applied with the gradient descent parameter 

Tj = 0.2. After 50,000 epochs MSE errors between 0.0005 and 0.0091 were achieved for 

the different networks. This led to runtimes of about 13 hours on a SUN 20 workstation. 

Details about the final training errors can be found in Table 8.3.

Unsealed results of the five trained networks queried with the training data are given in 

Figure 8.7. To improve clarity, these and the following graphs do not show every 

consecutive neural network output, but no other signal processing is used. Furthermore, if 

a network output is shown in physical units then the results are unsealed, i.e. the linear 

scaling process (equation 8.11) is reversed in order to achieve meaningful outputs.

It can be seen that the different nets can classify the data correctly. The prediction quality 

of the net trained on the fault in mass is not as good as the others. For this initial trials no 

tests were applied to check whether the system was sufficiently excited. Hence, the chosen
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input duty cycle might not provide sufficient excitation of the system, i.e. making it 

difficult to identify the correct mass. Restricting the training patterns such that actuator 

acceleration is above a certain limit only can improve the situation.

Four of the nets were trained on fixed output levels, i.e. the network ‘only’ has to identify 

five different fault levels. In another test, the network which was trained on a fault in 

system supply pressure was treated differently. For that, th6 pressure in the supply line was 

also recorded (psys) in order to be used as the desired network output. Here, the net was 

successfully trained to predict the actual system pressure. This approach actually led to the 

smallest final MSE error. It appeared to be easier to train the network on the supply 

pressure than on the actual relief valve setting used to obtain the respective pressures.

In order to evaluate the performance of the network at intermediate levels two validation 

cases were investigated. Figure 8.8 shows the results for all five networks. Table 8.3 also 

gives the MSE error for these validation cases. These errors are partly smaller than the 

training errors indicating a very good generalisation of the trained nets. For validation the 

networks were queried with data they had not seen before, i.e. using different fault levels. 

All networks can identify a step change immediately and the agreement for the gradual 

change in parameter is also excellent. Even individual peaks in the supply pressure were 

estimated correctly. The net trained on a fault in mass also led to good results, indicating 

that final training errors of about MSE = 0.01 are sufficiently small, i.e. lead to reasonable 

network performances. This might enable much shorter training times if the training 

process is stopped as soon as the MSE error value becomes smaller than this threshold.

8.6.3 Neural networks to identify several faults

To reliably diagnose single faults using individual networks for each fault in a multiple 

fault environment, it is necessary to train networks using data for all the faults. This has 

been investigated for faults in leakage and load. It is still assumed that only one fault can 

occur at a time. By simply adding the two training data sets described above a training set 

of 3800 patterns was obtained. The two validation cases were added similarly leading to 

760 patterns, equivalent to 15.2 seconds in real time. In this case 25 hidden neurons were 

found to be sufficient, i.e. a 35:25:2-network was used. The two outputs independently 

indicate fault levels in leakage and load, respectively. It took 36 hours to calculate 50,000 

epochs leading to final MSE errors of 0.0044 and 0.0048 for the training and validation 

data, respectively. Figure 8.9 shows the network output queried with training data. Again, 

the different faults and fault levels can be identified. The same was found for the
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validation cases as given in Figure 8.10 where gradual changes as well as step changes 

were predicted correctly. This shows that NNs can be trained to be sensitive to more than 

one fault.

Unfortunately, there are some major drawbacks of this approach. In order to train the net 

for all possible faults a larger number of training patterns is needed. Furthermore, more 

hidden neurons are required to enable the classification task. This leads to much longer 

training times (here 36 h compared to 13 h). Alternatively, assuming the same time spend 

for training, the accuracy is much lower for nets trained on several faults. These 

disadvantages become even worse with an increasing number of faults to be monitored. A 

method to overcome these problems is the following modular approach.

8.6.4 Modular neural network approach

Da & Lin [1995] train two NNs, one for failure location and another for identifying when 

it happened and how serious the failure is. Here a slightly different approach is proposed. 

As already described in section 8.6.2 one network can be trained for each fault. Querying 

all networks with the input training data for every fault case leads to the outputs given in 

Figures 8.11 to 8.15. The results are shown in scaled form, i.e. all values are between 0 

and 1. It was thought that statistical methods could be used in order to identify whether a 

fault in the particular parameter has occurred. Scattered data could be rejected as ‘no fault’ 

or as ‘find fault in different parameter’. Unfortunately, this cannot be done because several 

faults appear as different faults when presented to nets trained on these different faults. For 

example in Figure 8.14 (the net trained on the fault in supply pressure) the load training 

data (second from the top) suggests an increasing pressure although the pressure was 

constant for the fault in load. Statistical methods may pick up this signal as a fault in 

pressure.

The new approach suggested here is to use the outputs of all networks as input to another 

(filtering) network which then identifies the correct fault. This method is schematically 

shown in Figure 8.16. A 25:10:5-network was trained to perform this filtering task. 25 

inputs were obtained by using 5 consecutive outputs of the individual (first stage) 

networks. The training and validation data sets were constructed from 100 samples at each 

fault and fault level leading to 2480 patterns. After 10,000 epochs (taking 105 minutes on 

a SUN 20) final MSE errors of 0.009 and 0.06 were obtained for the training and 

validation cases, respectively. Figure 8.17 gives the 5 network outputs when queried with 

the validation data set. After every 496 patterns a different fault is introduced, starting with
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a fault in leakage (pattern number 1 to 496). Again 5 fault levels are used beginning with 

the fault free case for the first 100 patterns. The largest faults are only represented by 96 

patterns. Due to the use of 5 consecutive samples the last 4 patterns are not complete. 

During a fault only one of the five outputs should show a higher value for this particular 

fault. None of the outputs should give unusual values if the system is working normally 

(fault-free). The obtained validation outputs are already quite meaningful but statistical 

methods may be used to improve these results. As an example a simple arbitrarily chosen 

criteria was applied in order to classify the five different fault levels. First, the average of 5 

consecutive outputs was calculated (called ya) from the scaled outputs as returned from the 

net. Then the following limits are applied:

0.1 if  0.0<ya <0.2
0.3 if  0.2 < ya <0.4
0.5 i f  0.4 < ya < 0.6
0.7 if  0.6 < ya < 0.8

0.9 else

The employment of this simple criteria led to the results given in Figure 8.18. Here the 

predictions match the desired fault level quite well although the actual fault level is 

normally underestimated. The reason for this can be found in the network training data. 

Out of the 2480 training patterns only about 100 represent each fault level, i.e. there are 

more examples for fault-free cases. The learning algorithm will expend considerable effort 

reducing the error for these fault-free cases, while neglecting to fine tune the different fault 

level predictions. The only way to overcome this problem it to change the NN error 

function calculation, i.e. errors at fault levels need to be given a (higher) weighting factor. 

This could not be investigated in this research but considerable improvements are 

anticipated.

The described modular approach is much more flexible than using one large network for 

all faults. If a new fault needs to be included in the monitoring process only two (simple) 

neural networks need to be trained. One is the network sensitive to the new fault and the 

second is the filtering network. It is expected that more faults (and therefore additional 

networks) lead to additional information for the filtering network, making it easier to be 

trained. Another advantage of the modular approach is that it is faster to train several small 

networks than to train one very large network to the same degree of accuracy.
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8.7 Monitoring of experimental systems using reference models

An important goal of this section is to demonstrate the feasibility of using NNs to diagnose 

faults in experimental data. The study was again undertaken based on the hydraulic 

actuator circuit shown in Figure 7.1. Some changes were made compared to the simulation 

approaches presented in the previous sections.

8.7.1 Training and validation data

Although Master [1993] gave the rule of thumb for neural network data with “If in doubt, 

throw it in.”, redundant information makes it more difficult to adjust the weights correctly. 

In the actuator system, the valve current, i, is proportional to the difference between 

actuator displacement and its demand, x-u. By supplying the net with all three signals 

some redundant information is supplied, hence from now on only the current, i, and the 

displacement, x, are used. The pressure difference across the actuator, p, is still included as 

before.

Figure 8.19 shows the two demand duty cycles used for this investigation. The problem of 

insufficient excitation has been avoided by driving the system with a persistently exciting 

position demand signal. A series of random step inputs with a maximum magnitude of 50 

mm was chosen. The signal switching time of 40 ms was determined on the basis that the 

system should not reach steady state. Visual inspection of the experimental data showed 

features of interest up to frequencies of around 50 Hz. To give adequate resolution of the 

signals, a sampling rate of 400 Hz was chosen. Here only faulty cases which could be 

introduced into the rig without causing damage were investigated. These are the three 

faults already described in section 7.4.5, i.e. changes in friction, leakage and pressure. The 

parameter identification results obtained in the same section also become very useful for 

the network training process. These enable the expression of the different friction and 

leakage fault levels by actual values.

Another difference to the simulation study is the sample time and the number of values 

used. Both, simulated and measured data were taken (linearly interpolated if necessaiy) at 

time intervals of T  = 0.005 s but 10 consecutive samples were used. A schematic of the 

training process is shown in Figure 8.20 and a complete training vector is given by



Chapter 8: Condition monitoring of fluid power systems using neural networks Page 175

where yf and yr are again the faulty plant output and the reference (fault-free) plant output, 

respectively, as given in equations 8.14 (np =nx = n{ =9) .  These settings mean that each

pattern still contains information about a period of 50 ms. Training and validation data sets 

were obtained by taking 700 patterns for each of the fault levels given in Table 8.4. This 

leads to 3500 patterns which were also linearly scaled with the limits already given in 

Table 8.2. Duty cycle 1 (Figure 8.19) was used as input when recording the training data 

set and duty cycle 2 was used for the respective validation data. The simulated reference 

data were calculated for the fault-free cases only. A second set of validation data was 

obtained by manually changing the respective components during the measurements. 

Friction and leakage faults were inserted by an approximate step change via opening the 

bleed valves (compare Figure 7.1). A more gradual change of the pressure was introduced 

via the supply relief valve.

8.7.2 Single fault networks

Three separate 60:20:1-networks were trained to monitor the different faults. Once again 

one output was used to represent the different fault levels and 20  hidden neurons were 

found to work well. The learning function ‘backpropagation with momentum term’ 

[SNNS, 1995] was applied (step width of the gradient descent: 77 = 0.8, momentum term: 

fi = 0.2). To reach the MSE errors given in Table 8.5 took 1000 epochs and between 66 

and 84 minutes on a SUN 20. Using real measured data and the different learning function 

enable a faster training process although the net used contained more than twice as many 

weights (1220 compared to 540). The trained nets were first evaluated with the validation 

patterns obtained by using a different duty cycle but containing faults at the same fault 

levels. Figure 8.21 gives the outputs of the three trained nets. All faults are classified 

correctly, although the predicted faults particularly for the leakage faults are slightly 

scattered. It seems to be more difficult to extract the leakage coefficient from the supplied 

data. One explanation for this can be found by looking at Figures 7.19 to 7.21 where the 

pressure differences are given for the different faults and fault levels. The pressure 

amplitude and shape is very similar for the leakage fault (Figure 7.20). Furthermore the 

differences between (reference) simulation and measurements at all fault levels are also 

relatively small. This indicates that there is insufficient information in the training data.

A second evaluation of the trained nets is given in Figure 8.22 where the manually 

introduced faults are investigated. All three faults can clearly be identified from the 

measured data. Note that during the insertion of the faults the network is still able to give
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sensible outputs. The fault transients are on a larger time scale than the data window of 

50 ms used to make the diagnosis. However, for the fault in pressure, the additional 

(unlearned) dynamics, due to the change in pressure when the error was introduced, may 

contribute to the slightly scattered predictions. The leakage fault prediction was expected 

to lead to worse results, nevertheless, the step change was still clearly identified. It may be 

noticed that the friction fault output shows a curious behaviour after about 2.4 seconds. 

The manually introduced fault was leading to a friction outside the range the net was 

trained for. Due to the scaling process the values cannot exceed the limit of 30844 N/m/s. 

It remains to be investigated whether faults larger than the maximum value trained for, 

always lead to predicted values close to the same side of the scaled interval.

8.7.3 Single fault networks using residuals

An approach based on residuals is presented here which is similar to model based 

diagnostic decision making. Data from the faulty plant and additionally, these signals 

subtracted form the reference output are supplied to the net as shown in Figure 8.23. A 

complete training vector is then given by

X = (8.17)

where yf and y«j are the faulty plant output and the residuals, respectively, as given further 

down in equations 8.18 (np = nx = nf = 9).

The reference plant output may be the measured fault-free plant if the working duty cycle 

is known in advance. In general this is not the case, hence, the simulated reference model 

is used. By building residuals it was anticipated to achieve more distinct signals for each 

faulty case. Furthermore, for the fault-free case the network was supplied with the 

difference between simulation and measurement. These may enable the neural network to 

account for modelling inaccuracies, i.e. filtering out differences between simulation and 

measurements.
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A disadvantage of residuals is that they are normally more sensitive to noise, whereas this 

might not be so important with this approach because the reference signal is noise free. 

There is no loss of information due to the subtraction of the two signals because the faulty 

signal is also supplied. All residuals were linearly scaled with the limits in Table 8 .6 . 

Training and validation pattern files were obtain with the same settings given in the 

previous section. The calculation of 1000 epochs took between 66 and 71 minutes (SUN 

20) and led to the final MSE errors given in Table 8.7. Again separate 60:20:1-networks 

were trained for each fault using the same learning function as before.

Figures 8.24 and 8.25 give the respective evaluation results. All faults are again classified 

correctly. The step changes in friction and leakage are predicted more clearly whereas the 

fault in pressure somehow led to worse results. It is not clear why this is the case. 

Furthermore, it is not conclusive whether the residuals improve the network performances. 

Both approaches might lead to more distinctive results when the nets are trained for more 

epochs, but this was not investigated. The calculation of residuals leads to a computational 

overhead which can be avoided by using the approach described in section 8.7.2.

8.7.4 Interpreting weights

The question of which signals in the training sets are used by the networks may be 

answered by looking at the weights obtained by the training process. Small weights may 

indicate the unimportance of a certain input. In general, weights near zero do not 

necessarily mean that the input is unimportant. Several small weights for that input, each 

leading to a different hidden neuron, can add up to a significant effect. Also, a small 

weight may mean that the input affects a hidden neuron only slightly. But that hidden
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neuron may be connected to an output with a large weight, causing the input to have a 

significant effect on the output [Masters, 1993]. In spite of these concerns the weights are 

relatively easy to interpret in the networks investigated here.

A way of clearly visualising weights (neuron connection strengths) is the so-called Hinton 

diagram. Hinton diagrams are named after the neural network pioneer Geoffrey Hinton, 

who first popularised this method of displaying weights. There are several variations, but 

they all have in common the attribute that individual squares are used to represent weights. 

The intensity of colour of each square is proportional to the strength of the connection 

weight. Here a bright red is used for large negative values and a bright green is used for 

positive values. Intermediate numbers have a lighter colour and the value zero is 

represented by white. For a better orientation the numbers of the units are printed around 

the display. In this numbering the units under the diagram represent source units, while 

numbers to the right represent target units. Two pairs of source and target units are present 

in the investigated networks using one hidden layer. These are input & hidden layers as 

well as hidden & output layers. The units are numbered consecutively from input to 

output, i.e. in the 60:20:1 networks 81 units can be found and the hidden units are 

numbered from 61 to 80.

Figure 8.26 gives the Hinton diagram for the network using the fault-free simulation as 

reference input. It presents the weights from the net trained to identify friction faults. 

Reference data is supplied to the net at inputs 1 to 30 whereas the measured data (faulty 

plant) is supplied at inputs 31 to 60. The weights for the measured data are clearly stronger 

than the weights for the reference data. This indicates the lower importance of the 

reference data for this particular classification task. For comparison, the respective 

diagram is given for the network using the residual data as reference input (Figure 8.27). 

The strength of the weights are more evenly distributed. This indicates that the net can 

make more use of the residuals than the plain reference data. Hence, in this case training 

the net for more epochs might lead to improved prediction performances. A similar weight 

distribution was obtained for the networks trained on faults in leakage and pressure.

The network trained with fault-free simulation data led to reasonable performance. Due to 

the low strength of weights in this case the training without any reference data is also 

investigated in the following sections.
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8 .8  Monitoring of experimental systems without reference model

By omission of the reference model fewer network inputs are used. Assuming the same 

number of hidden neurons this reduces the number of weights to be evaluated during the 

training process. This in turn is leading to a faster training process and additionally, the 

trained network is faster when performing the actual monitoring process. Again the same 

levels of friction, leakage and pressure faults were investigated. Figure 8.28 shows a 

schematic of the training process. The network input vector is given by

X = yf (8.19)

where yp the data from the faulty plant is given in equation 8.18 (np =nx = n. =9) .  Faulty

plant data can either be measured or simulated. Both approaches will be investigated in the 

following sections. Input data sets were again obtained by taking 700 patterns for each of 

the fault levels. All 3500 patterns were then linearly scaled as described above. Duty 

cycles 1 and 2 (Figure 8.19) were used as inputs when recording data for training and 

validation, respectively. The second set of validation data obtained by manually 

introducing faults was also available.

8.8.1 Single fault networks trained with measured data

Again three 30:15:1-networks were trained (for 1000 epochs) to monitor the respective 

faults. This took only about 26 minutes (on a SUN 20) leading to the final MSE errors 

given in Table 8.8 . Training a neural network with measured data and also querying it 

with measured data was assumed to be straightforward. Figure 8.29 shows the trained nets 

enquired with the first validation data set. All fault levels are predicted correctly and in 

particular the quality of the predicted leakage fault has improved. A second evaluation of 

the trained systems is given in Figure 8.30 where the manually introduced faults are 

investigated. Here the results look very promising and only very little scattering of the 

predicted fault levels can be seen. The network performance is much better although it did 

not make use of any reference model.

8.8.2 Single fault networks trained with simulated data

For practical applications, it can be expected that measurements for the normal operation 

of a plant are available. These data can be used to optimise the fault-free model of the 

plant as described in Chapter 7. However, measurements on a faulty system are usually 

hard to obtain, particularly for faults that make it dangerous to operate the plant. Hence, 

the main goal of this section is to demonstrate the feasibility of using NNs trained on
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simulation data to diagnose faults in experimental data. Again three 30:15:1-networks 

were trained for 1000 epochs. Table 8.9 gives the final MSE errors. The final errors for the 

nets trained on experimental data are larger than those of the nets trained on simulation 

data. These higher errors in the experimental data are to be expected due to the presence of 

additional noise and unmodelled higher dynamics. The trained nets were first queried with 

the (simulated) validation sets and Figure 8.31 gives the respective results. A very good 

agreement between actual fault level and prediction was obtained. Faults in friction are 

identified correctly and the pressure faults in particular are predicted very closely. Figure 

8.32 shows results of the second evaluation where the network is validated on measured 

data. The manually introduced faults are clearly identified and even the fault levels are the 

same as in Figure 8.30 (identified using the network trained on measured data). It is 

notable that the validation data was obtained using a different duty cycle input for training 

and validation. This clearly demonstrates the feasibility of networks trained on simulated 

data to diagnose faults in experimental data.

In the latter evaluation case the predicted leakage fault sometimes gives curious outputs 

(Figure 8.32). These might be caused by an actual friction level that is higher than the 

maximum level the net has been trained for. The network trained with measured data did 

not lead to such behaviour. Probably the lack of simulation accuracy caused these outputs. 

Another explanation could be that the simulation data did not contain any noise. 

Artificially superimposing some noise to the simulated training data might improve the 

network performance.

8.8.3 Modular neural network approach

The modular neural network approach described in section 8.6.4 will be adapted to 

systems where only simulated training data is available. In Figure 8.33 a schematic of the 

altered approach is given where yf contains data from a simulated faulty plant as given in 

equation 8.18. Again the outputs of all networks can be used as inputs to a filtering 

network. A 30:15:3-network was trained for this purpose. 10 consecutive outputs of the 

first stage networks lead to 30 input units. This time only three outputs are required to 

indicate faults in friction, leakage and pressure and 15 hidden units were found sufficient. 

The training and validation data sets were constructed from 350 samples at each fault. 

Overall 5250 patterns formed a complete data set. Different duty cycles (Figure 8.19) were 

used to obtain the training and validation data. After 1000 epochs (taking 42 minutes on a 

SUN 20) final MSE errors of 0.00455 and 0.00852 were obtained for the training and
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validation cases, respectively. Figure 8.34 gives the three network outputs when queried 

with the validation data set. The correct levels for faults in friction and pressure are 

predicted. Intermediate faults in leakage appear as slightly scattered predictions whereas 

the large fault level is also identified correctly. In real systems faults in leakage may 

develop slowly, for example due to a deteriorating seal. The application of statistics can 

then help to identify all levels correctly. Even without statistics the large faults will be 

predicted and recognised immediately. This can be seen in Figure 8.35 where the 

manually introduced faults are predicted correctly. The filtering network enables the 

recognition of all three faults in experimental data.

8.9 Improvements of the neural network approach and real-time performance

In general, it helps the network to learn if the contributions of the variables are as additive 

as possible. Multiplicative relationships can be changed to additive by taking the 

logarithmic values of the respective entities. For example, the leakage across the actuator 

is inversely proportional to the pressure difference. For this case the logarithmic values 

may increase the prediction accuracy and/or speed up the training process considerably. 

Furthermore fewer hidden neurons can then be used, leading to an even faster training 

process. In the example circuit, the friction force is proportional to the actuator velocity. It 

might be advantageous to supply the network with additional velocity data if available. 

Another option is to calculate the velocity from measured displacement data.

As already mentioned, the robustness of neural networks can sometimes be increased by 

supplementing the training set with noisy samples. A similar effect might be achieved by 

training the nets for fewer epochs. This will lead to a slightly scattered output when 

evaluated but this scattering may also be able to represent noise. Assuming the modular 

approach then noisy outputs can be dealt with by the filtering network. Furthermore, 

statistical methods may be applied to conclude the correct results.

A modular NN approach to fault diagnosis was described in Rodriguez et al. [1996] where 

it was found that one large network was impractical to monitor huge electrical grids. In 

order to increase scalability and dynamic adaptability smaller sub-systems of the grid were 

monitored separately. This approach might be useful for veiy large fluid power systems 

where different sub-systems can be monitored by the above described modular approach.

The modular approach can be further improved by using optimised networks for each 

fault. Different faults are dependent on different variables, hence, it might be useful to
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determine the most appropriate parameters for the network inputs as well as the most 

appropriate network topologies. For the example circuit a smaller demand amplitude 

might lead to better results due to the current signal which then will not be saturated for 

such long periods. Furthermore, the first stage networks may all be trained to the same 

MSE errors. It is anticipated that this would improve the overall performance of the 

filtering network.

Once a network is trained the obtained weights can be used to calculate predictions from 

any inputs. The employed neural network tool [SNNS, 1995] contains a function that 

automatically compiles an executable C source code from a trained network. For the 

modular approach all nets can be turned into separate programs. These can then be run in 

parallel on different processors. Figure 8.36 gives the complete monitoring setup in 

schematical form. This enables simultaneous monitoring of friction, leakage and pressure. 

5 processors are needed, one for each neural net and one for the data acquisition task. 

Although this has not been implemented, real-time performance can be achieved. Initial 

tests indicate that all sub-systems can be run in real-time. The final monitoring results can 

then be printed to the screen in numerical or graphical form.

8.10 Closure

In this chapter condition monitoring of fluid power systems has been investigated. Several 

monitoring techniques were reviewed and neural networks were examined in detail. An 

extensive simulation study was performed indicating the feasibility of neural networks for 

the monitoring process. Two sets of data were supplied to the network input. These are 

data from simulations of the faulty and the fault-free plant, respectively. The latter input 

was used as a reference input. Due to the increased speed of the TLM simulation method 

real-time reference models were enabled. A very good agreement between predicted and 

actual fault levels was achieved. Different faults were identified by different networks, all 

using the same topology. It was also shown that neural networks can be trained to be 

sensitive to more than one fault. Networks for the identification of several faults need to be 

larger and require more training patterns. This leads to much longer training times. 

Additionally, this approach leads to problems with scaleability, i.e. it cannot easily be 

adapted to several faults. Therefore a modular approach was developed. Several networks 

were trained to identify individual faults. The parallel outputs of these nets were then used 

as inputs to another network. This additional network was able to filter out the correct 

faults as well as the actual fault levels.
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The simulation study was adapted in order to work with experimental data obtained form a 

hydraulic actuator system. A considerable speed-up of the training process could be 

achieved by using fewer parameters as network inputs. Different reference models were 

investigated and small performance improvements could be achieved by using residuals as 

network inputs. By interpreting the strengths of the weights it was found that the network 

could perform the fault classification task without a reference model. That is fewer 

weights have to be evaluated leading to an even faster training process. Additionally, the 

trained network is faster when performing the actual monitoring task. Individual networks 

were trained with measured data only and a very good fault prediction was achieved. 

Manually introduced step changes could clearly be identified. Finally, diagnostic networks 

were trained with simulation data but queried with experimental data. Whilst the 

predictions showed increased scatter, the network was clearly able to successfully 

diagnose the faults in the experimental data. Again, separate networks were trained for 

each fault alone allowing quick and accurate training. However, these nets do not give 

meaningful outputs when queried with data from faults other than the fault for which they 

were specifically trained. Therefore, the modular approach was also adapted to networks 

trained using simulated data only. The filtering network was again able to detect the 

correct faults and fault levels in the experimental data.

In general, the network training showed similar trends for simulation and experimental 

data, but the same number of training epochs led to higher final errors in the experimental 

data. This is due to the unavoidable noise in the measured data. Some possible 

improvements to the neural network approach have been proposed and the parallel 

implementation of it have also been outlined. Although the networks have not been 

optimised real-time capability is anticipated.
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TABLES FOR CHAPTER 8

Fault
parameter

Fault 
level 1

Fault 
level 2

Fault 
level 3

Fault 
level 4

Fault 
level 5

parameter
unit

Leakaae 0.0 0.1 0.2 0.3 0.4 L/min/bar
Load 0 500 1000 1500 2000 N
Mass 50 100 150 200 250 kq
Pressure 100 80 60 40 20 bar
Friction 1000 8000 15000 22000 29000 N/m/s

Table 8.1 Parameter fault levels

Parameter
Minimum

value
Maximum

value Units
Demand: u -50 50 mm
Current: i -250 250 mA
Pressure: p -40 100 bar
Displacement: x -50 50 mm

Table 8.2 Scaling limits

Network 
trained on 

fault in

MSE
training

data

MSE 
validation 

data 1

MSE 
validation 

data 2
Leakaae 0.001693 0.001337 0.002184
Load 0.001246 0.001376 0.001115
Mass 0.009069 0.008272 0.007102
Pressure 0.000495 0.000412 0.001011
Friction 0.002898 0.002763 0.003004

35:15:1-networks trained for 50,000 epochs 
Table 8.3 Training and validation MSE errors

Faulty
parameter

Fault 
level 1

Fault 
level 2

Fault 
level 3

Fault 
level 4

Fault 
level 5 Unit

Leakaae 0.0262 0.0306 0.0520 0.0660 0.0902 L/min/bar
Pressure 100 80 60 40 20 bar
Friction 7428.6 12160 16730 22320 27760 N/m/s

Table 8.4 Parameter fault levels (identified in section 7.4.5

Network 
trained on 

fault in

MSE
training

data

MSE
validation

data
Friction 0.00195 0.00597
Leakage 0.00350 0.01490
Pressure 0.00200 0.00560

60:20:1-networks trained for 1000 epochs; simulation as reference input 
Table 8.5 Training and validation MSE errors
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Parameter
Minimum

value
Maximum

value Units
Current: i -250 250 mA
Pressure: d -30 75 bar
Displacement: x -25 25 mm

Table 8.6 Scaling limits for residuals

Network 
trained on 

fault in

MSE
training

data

MSE
validation

data
Friction 0.00162 0.00574
Leakaae 0.00335 0.02210
Pressure 0.00185 0.00469

60:20:1-networks trained for 1000 epochs; residuals as reference input 
Table 8.7 Training and validation MSE errors

Network MSE MSE
trained on training validation

measured data data data
Friction 0.00287 0.00390
Leakaae 0.00515 0.00777
Pressure 0.00211 0.00211

35:15:1-networks trained for 1000 epochs on measured data 
Table 8.8 Training and validation MSE errors

Network MSE MSE
trained on training validation

simulated data data data
Friction 0.00190 0.00280
Leakaae 0.00450 0.00640
Pressure 0.00064 0.00083

35:15:1-networks trained for 1000 epochs on simulation data 
Table 8.9 Training and validation MSE errors
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FIGURES FOR CHAPTER 8

Xi

yi

yc

input
units

hidden
units

output
units

Figure 8.1 A multilayer perceptron neural network having one hidden layer

Figure 8.2 Units (neurons) of neural networks

Logistic sigmoid activation function

05

-10 ■8 ■6 •4 ■2 0 2 4 6 8 10

Input: a

Figure 8.3 Activation function
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Figure 8.4 Schematic plot of the residual errors
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fault level
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Figure 8.5 Schematic of network training process using reference model

identified 
fault level

fault-free plant 
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Figure 8.6 Schematic of monitoring process using reference model
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Figure 8.9 Classification results for two network outputs
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Figure 8.10 Validation results for two network outputs
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Figure 8.11 Network trained to identify leakage fault
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Figure 8.12 Network trained to identify load fault
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Figure 8.13 Network trained to identify mass fault
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Figure 8.14 Network trained to identify pressure fault
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Figure 8.15 Network trained to identify friction fault
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Figure 8.16 Schematic of modular neural network approach
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Figure 8.17 Five fault classification outputs from filtering network (1)
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Figure 8.20 Schematic of network training process using reference model
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Figure 8.21 Neural network results using reference model
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Figure 8.24 Neural network results using residuals as reference
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Figure 8.25 Neural network validation results using residuals as reference
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Figure 8.29 Neural network results (trained with measured data)
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Figure 8.30 Neural network validation results (trained with measured data)
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Figure 8.31 Neural network results (trained with simulation data)
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Figure 8.32 Neural network validation results (trained with simulation data)
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30000

'u p  25000 - ■ 

20000  - -z
*^15000 -■ 
o■g 10000 -■ 
i t  5000 -■ 

0 ■ -

O utput 2: Friction

i& a m m tie

O predicted friction 
 fault level

1750 3500

Pattern num ber [-]

5250

0.1 j -
0.09 - ■
0.08 - -
0.07 • -
0.06 - -
0.05 - ■

& 0.04 - - O)
(0 0.03 
n 0.02 ::

.n
c
E

a> 0.01 + 
0

I I I I
O utput 1: Leakage

O predicted leakage 
 fault level

1750 3500
Pattern num ber [-]

5250

120

80 --

60 --

40 --

O utput 3: Pressure

O predicted pressure 
 fault level

1750 3500

Pattern num ber [-]

5250

30:15:3-network, trained for 1000 epochs, queried with validation data
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Figure 8.35 Three fault classification outputs from filtering network (2)
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9 Conclusions and further work

9.1 Conclusions

This thesis demonstrates the application of distributed-parameter transmission-line 

modelling (TLM) techniques to complex hydraulic systems simulation. Very significant 

improvements in execution time are achieved compared to conventional-lumped parameter 

modelling. For stiff numerical computations more than 100 times faster simulations are 

achieved. The TLM method was found to be a simple, explicit and unconditionally stable 

method for the modelling of wave propagation problems. If was found that one can 

interpret TLM as a general method of integration. This approach is used in a wide range of 

applications, i.e. many of the methods and features developed in this thesis may be 

transferred to other fields.

The widely-spread time constants in hydraulic systems has led to the development of a 

variable time step algorithm in order to speed up simulations. This approach was recounted 

and investigated in chapter 3. Variable-time step TLM seems to be suitable for numerically 

stiff hydraulic circuit simulations but it also leads to several problems. Unrealistic 

oscillations and parasitic pressure differences can appear in the simulation results as shown 

with a numerically stiff example circuit. For further investigations this approach is not 

recommended. Besides the problems found in the use of variable time steps, it is necessary 

to use fixed time steps for real-time simulations. There the mathematical step size must not 

become smaller than the computer execution time for the calculation. For fixed time step 

TLM, the step size has to be chosen carefully. Several results in this work show that the 

parasitic pressure difference can be used to estimate simulation accuracy, indicating 

whether the time step is sufficiently small.

The TLM method is inherently parallel and was developed for parallel platforms in order to 

speed up simulations. An automatic code generator for multi-processor simulations is 

developed in Chapter 4 using pre-compiled component models. Automated generation of 

the simulation program enables the system modeller to develop large and complex circuit 

configurations from much simpler module elements. Even the implementation of the 

simulation in parallel is achieved automatically. This task is normally very complicated, 

time consuming and prone to errors. A large fluid power circuit can be decoupled into sub- 

circuits which can then be simulated concurrently. Decoupling system components is 

straight-forward, but the apparently simple task of process-processor mapping is actually 

rather complicated. The aim of a partitioning scheme is to reduce the overall computation
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time of a simulation, including both the computation and communication time. An 

automatic mapping method based on genetic algorithms was developed in Chapter 5. 

Results show that the method computes optimal or near optimal solutions to the sample 

problems. When several processors communicate, deadlock can occur, i.e. two processors 

refuse any further communication with each other. A scheme was developed that 

guarantees deadlock-free inter-processor communication. This scheme is already 

implemented in the automatic program generator using the output from the GA.

In general the GA fulfilled the expectation as it achieved mappings leading to good speed 

ups and efficiencies. To compensate for the influence of probabilistics the algorithm often 

has to be ran more than once. This can lead to long runtimes and some simple heuristics 

are developed that reduce the large runtimes. Several results demonstrate that even with 

good mappings communication is still a considerable part of the load on the processors.

In order to reduce this communication overhead a new TLM interpolation-extrapolation 

method with less inter-processor communication was developed in Chapter 6. This 

approach requires a newly developed filter for the approximation of frequency dependent 

friction. Simulation results of realistic example circuits show good accuracy when 

exchanging data only every 100th time step. The new scheme leads to valuable reductions 

in mn time on medium and coarse grained computers without compromising accuracy. It 

can also be used to simulate different partitions with different time steps, according to the 

required accuracy and dynamics of the subcircuits. Analytical analysis indicates that the 

system should be partitioned at long lines in order to maximise simulation accuracy.

This thesis also demonstrates the application of GA-based techniques to the parameter 

identification problem of complex hydraulic systems simulation. In chapter 7 such a 

method was developed and the performance of the GA was improved by an additional 

Hooke Jeeves direct search. It was found that signals representing higher derivatives like 

velocity and differential pressures are most useful for the design of objective functions. As 

the results in chapter 7 illustrate, several parameters can be identified simultaneously 

leading to a excellent agreement between simulation and measurement. Due to the use of 

pre-developed TLM component models the proposed approach leads to a very flexible 

method, i.e. for different systems the parameter optimisation can easily be adapted. If was 

found that the method automatically indicates whether certain parameters are relevant and 

whether the component models contain sufficient detail. Furthermore, different fault levels 

could be identified successfully, although the simulation accuracy deteriorates with
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increasing fault magnitude. This may have some general implications on the use of 

simulations when predicting system behaviour. Precise estimations can only be made for a 

limited operating range of the plant. This is due to the approximations used during the 

component modelling process. An important point to emerge from this is that by 

optimising the parameters for a ‘medium’ operating point the useful range can be 

maximised. The identified fault levels may then be used for the condition monitoring of 

fluid power systems. Due to the long run time of the optimisation process (several hours 

for a small example circuit) there is no real-time capability of this method.

In Chapter 8 the feasibility of neural networks for the real-time monitoring process is 

shown. Due to the increased speed of the TLM simulation method real-time reference 

models are enabled. Hence, data from the faulty and the fault-free plant, respectively, can 

be used as network inputs. In an extensive simulation study a very good agreement 

between predicted and actual fault levels was achieved when training one network for each 

fault. The results in chapter 8 also indicate that neural networks can be trained to be 

sensitive to more than one fault. But these networks need to be larger and require more 

training patterns leading to much longer training times. Additionally, this approach cannot 

easily be scaled up to several faults. Therefore a modular approach was developed. The 

output of several networks, trained to identify individual faults, were used as inputs to 

smother network. As the results show this additional network was able to successfully filter 

out the correct faults as well as the actual fault levels.

A considerable speed-up of the training process could be achieved by using simulated 

reference data of the fault-free plant and experimental data of the faulty plant as network 

inputs. It was found that redundant information slows down the network training and fewer 

parameters were sufficient as network inputs. By interpreting the strengths of the weights it 

was concluded that the network could also perform the fault classification task without a 

reference model. This was shown when individual networks were trained with measured 

data only and a very good fault prediction was achieved. Diagnostic networks were also 

trained with simulation data only but queried with experimental data. Whilst the 

predictions showed increased scatter, the network was clearly able to successfully diagnose 

the faults in the experimental data. The accuracy of the simulation was only sufficient due 

to the GA-based identification process where the fault free simulation was optimised to 

match measured data. Separate networks can be trained for each fault allowing quick and 

accurate training. It was found that these nets do not give meaningful outputs when queried 

with data from faults other than the fault for which they were specifically trained.
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Statistical methods to identify the correct faults were dismissed due to the misleading 

output patterns. In chapter 8 it is shown that the modular approach also works with 

networks trained using simulated data only. A filtering network was again able to detect the 

correct faults and fault levels in the experimental data. Another advantage of the modular 

approach is its flexibility. If a new fault needs to be included in the monitoring process only 

two small networks need to be trained (one for the particular fault and a filtering network). 

This is found to be much faster than training one very large network. The modular 

approach also enables parallel processing of each network and the data acquisition task. 

Hence, a parallel implementation of the schemes was also outlined where the different 

parts (data acquisition, fault identification networks, filter networks, output of results) are 

placed in a pipeline distribution. This means every sample step data is passed from one part 

to the next leading to a new output indicating the condition of the plant. Although the 

networks were not optimised real-time capability is anticipated.

9.2 Recommendations for further work

Throughout the progress of this research a number of areas for further investigation and 

development were found. In the short-term this could include an increase in the diversity of 

component models (although new models are mainly developed as the need arises). For 

this research project the transputer was the only affordable parallel device on the market 

offering a high communication bandwidth. Current technological developments may lead 

to alternatives that may be more disposed to efficient operation, given the often fine­

grained nature of TLM simulations. A standard portable message-passing library definition 

like MPI may then be used to implement the TLM method onto the new platform.

Presently, the creation of TLM simulation code is based on a manually written link file. 

This can be a time consuming task and it is prone to errors. Ideally, a graphical interface 

would automatically carry out the linking procedure and additionally provide for a 

parameter input. This then enables changes of circuits as well as parameters in a more 

convenient way.

As the results in this thesis show, the GA-based partitioning scheme requires a significant 

amount of time to produce good results. Although it is thought that the continuous 

improvement in computer hardware will play the largest part in reducing run times, it 

would be beneficial to further investigate heuristics enabling faster and/or better mappings. 

For very large hydraulic circuits the inherently parallel GA might be partitioned onto 

several processors..
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Parallelising of the GA-based identification method can also reduce calculation time or, 

assuming the same runtime, can increase parameter accuracy. If this does not lead to good 

results in reasonable time other newly developed optimisation techniques may be 

investigated (for example tabu search). The identification process requires some 

representative plant data measurements. These are dependent on the particular duty cycle 

and the actual time interval considered. Further research is required to optimise these 

entities, i.e. leading to the specification of inputs that enable the measurement for all plant 

states in the shortest possible time. For some systems the frequency transform of the 

measured signal may be useful for the identification process in order to increase the 

achieved accuracy.

The work in this thesis also indicates that the approach of training NNs for the monitoring 

process of fluid power systems is viable. If this investigation is to be continued, it is 

considered that research into several areas would be worthwhile. For individual faults it 

will be useful to know how many transducers are necessary and where they should be 

placed in order to obtain sufficient information for the fault classification task. The 

importance of signals required by the training process may be investigated by looking at the 

strength of the weights obtained. Each network identifying individual faults can then be 

optimised in terms of the number of inputs as well as the number of hidden units. 

Logarithmic scaling may be investigated for the classification case when the fault is 

dependent on the input signal in a multiplicative manner. These optimisations can lead to 

much faster training and faster application of the trained networks if required for on-line 

condition monitoring.

The issue of system excitation is crucial to successful fault diagnosis of dynamic systems. 

For weakly excited systems, diagnosis is still possible, but the problem is numerically ill- 

conditioned and will lead to unacceptably long network training times. Therefore, it may be 

useful to investigate the minimum excitation requirements. Furthermore, the filtering 

network may be enabled to indicate insufficient excitation by an output stating ‘no 

identification possible’. Statistical methods may be investigated for this task and also to 

clarify the filtering network output. So far only simple feed forward networks were 

investigated. Different networks like recurrent or radial basis function networks may lead 

to superior performance.
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Appendix A The basic equations for TLM modelling of fluid power 

systems

For the analysis of the dynamic behaviour of hydraulic pipelines having distributed 

parameters the basic equations are derived, based upon the following assumptions:

• laminar flow (Re < 2000)

• cylindrical pipe with non-elastic walls

• the temperature is supposed to be constant, hence the fluid viscosity is considered to 
be constant

• differences of pressure and density in radial direction are neglected

• radial fluid speed v is also neglected

It is convenient to use cylindrical coordinates where the x-axis is identified with the centre 

line of the pipe, r is the coordinate in radial direction and t denotes time as shown in

Figure A1 and Figure A2.

Summarising the assumptions, we have the following variables

P(x, r, t) = P(x, t) 
p{x,r,t) = p(x,t)
Q(x,r,t) = Q(x,t) 

v(x, r,t) = 0

The flow is calculated by using the mean value of the axial speed u in a pipe with the 

radius R and cross-section A:

A1 Continuity

With the notation in Figure A1 the conservation of mass leads to the following equation

o o
(A2)

(A3)

eliminating products of small quantities and dividing by dx
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From the definition of the bulk modulus

apB = - V
dV

(A5)

the equation of state can be derived [Hugh, 1995]

3p _  dP

this leads to

dQ Q d P  A dP
dx B d x  B d t

with the following assumption [D’Souza & Oldenburger, 1964]

^ a p  AdPQ —~ «  A —  
dx dt

this leads to

A 9 P + a e = 0
B dt dx

(A6)

(A7)

(A8)

(A9)

Although, cylindrical pipes with non-elastic walls were assumed for pipe of hose pipe 

elasticity can be accounted for by using an effective bulk modulus.

A2 Momentum

Owing to the conservation of momentum of the mass inside the control volume of Figure 

A2 we find the equation of motion in x-direction:

m dQ
A dt

Inrdrdx dQ _
-------------------= 2nrdr

A dt
P - P+^f-dx  

dx

(A10)

(  dx \+ 2nrdxt-2n(r+dr)\ 'Z+— d r d x  (Al l )  
V or J

eliminating products of small quantities and dividing by dx leads to

p dQ _  dP x dr 
A dt dx r dr

(A12)

with the following assumption [Viersma, 1980]
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dQ = dQ f dQ dQ 
dt dt dx dt

and Newton’s viscosity law [Backe, 1988]

A dr

this leads to

p d Q = dP f p dQ f p d2Q 
A dt dx Ar dr A2 dr2

(A13)

(A 14)

(A15)

For the case where p is assumed to be zero (ignoring frictional effects), the equation 

reduces to the basic water-hammer equation

p dQ | dP = Q 
A dt dx

Laplace transforming the friction-less equations A9 and A16 leads to 

B dx

(A16)

2L q { x , s ) + M ± A  = 0
A  dx

(A17) 

(A 18)

Equation A15 which includes friction can also be Laplace transformed [Viersma, 1980] to

(A 19)
A dx

where N (s ) , the viscous friction factor, is defined as

Jr
N(S) = - £

i— '
j j - r

V V

(A20)

with J; the Bessel function of the order i = 0 and i = 2 , respectively. Differentiating 

equations A17 and A19 partially w.r.t. x and rearranging

dP(x,s) _  B d2Q(x,s)
dx As dx1

(A21)
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dQ{x,s) _  1 A d2P(x,s)
dx N(s) ps dx

(A22)

Substituting these results into equations A17 and A19

- p ( x , s ) - — d ^ , J ) = 0  (A23)
B ps dx

= 0 (A24)
A As dx

Introducing the characteristic impedance Zc and the sound velocity a

(A25)

a = J f  (A26)

reduces the number of relevant system parameters from three (B, A, p) to two (Zc, a) and 

equations A23 and A24 can be rewritten to

P ( x , s ) - - ^ — ^ - y P ^X’s) = 0
aZc N(s) Zcs dx

(A27)

Q(x, s)N(s) -  aZ‘ 9 =  0 (A28)

rearranging leads to

d 2P ( x s ) _ s l p (x s )N (s) = o  (A29)
dx a

q (x , s) N ( s) = 0  (A30)
dx a

A3 Solving the differential equations

Replacing N(s) by N  to aid clarity, the solution of this second order differential equations 

is given by

"Vn - —Jn
Q(x, 5) = Cxe a + C2e a (A31)

EL̂Tn
P(x, 5 ) = C3e u + C4e a (A32)
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Differentiating equations A31 and A32 w.r.t. x

dO s r— s i— --JH
ox a a

dp s r— -J*  s --J"^  = ± j N . C 3e a - ~ J N - C 4e a 
ox a a

substituting these into equations A17 and A19

—  P(x,s) + - JN ■ C,e • - - JR  ■ Cte~ « ' =  0 
B a a

ps \ s 1 _ —Vn s i -  - —Sn

~AQ(X,S)+1 7 n  , e “ ~ a W  *e “

rearranging leads to

-V* a A
C,= C2 e “ — i = —P(x,s)

2 J n  b v '
- - P S

C3 = CA-e ‘ N- 4 N ^ Q ( x , s )  
A

- - J n

with equations A25 and A26 this leads to

- - J n 1
c , = C2 e a  ~-=P(x,s)

z cJ n  y '

C3 = CA e “ - Z cjNQ(x,s)
- - J n

substituting these into equations A31 and A32 and rearranging

Q  = <2 + ZrjN
1 ^Jn 
—e a
2

CA = (p + Zcj N Q ) \ e “'m

(A33)

(A34)

(A3 5) 

(A3 6)

(A37) 

(A3 8)

(A39)

(A40)

(A41)

(A42)

substituting equation A41 in A31 and the boundary conditions on the left side of the pipe 

in Figure A3 (P  = Pa and Q = Qa at x = 0)
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C,= Q a-  ! p
z „4n  "

(A43)

C2 = Qa +
1

substituting equation A42 in A32 with the same boundary conditions 

C, = ( P . - Z ej N Q . ) ±

/.C 4 = ( p„ + ZcVw& U

Flow and pressure can then be calculated as

Q(x, s) = Qa~ z „Jn P“
1

• — e a +  

2 Q a  + —K = p a
Zrj N  ‘

1 - - j n  
—e a
2

(A44)

(A45)

(A46)

(A47)

P(x,s) = (Pa~ Z c j N Q a ) ± e ‘ +(Pa + Z c-JNQ„ ) • L ' « (A48)

Using the boundary conditions on the right hand side of the pipe in Figure A3 ( P = Pb and 

Q = - Q b at x = L , i.e. flow into the line is defined as positive) and the wave propagation 

time along the line T

T = — 
a

leads to

-a =

(A49)

a- z c4 n  a

^  i r
- e ,T'm + Q a  +

\
- J — p  
z ^ 4 n  •

-jrVw
2

P„ = (Pa- Z cj N Q a) \ e ' T̂  +(Pa + Zc^NQlty \ e - ^

(A50)

(A51)

This can be rearranged to produce the ‘four-terminal network equation’ otherwise known 

as the four-pole equation:

M 2 '

n  ,

cos
sinh{sT

z c4 n

- Z c4 n  sinh(sTjN) COS h{sT4N)

h(sT-fN) (Qa
y p . j

(A52)
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For the loss-less line (N  = 1) taking equation A51 divided by (—Zc) and subtracted from 

and added to equation A50 leads to

Pb- Z cQk ={Pa + ZcQa) e !T (A53)

Pa - Z c&  = {Pb + Z cQb) e - ’T (A54)

transforming these equations into the time domain becomes 

P„(t)-ZcQb(t) = P A t - T )  + ZcQa( t - T )  (A55)

PAQ-Z'Q.(t )  = P > ( t - T ) + Z & ( t - T )  (A56)

Hence, pressure and flow on one end of the line are equal to the respective values on the 

other end one time step earlier.

For more complex friction models the transformation into the time domain cannot easily 

be done. Some approximations of the Bessel functions needed in equation A20 are derived 

by Viersma [1980] which enable the transformation into the time domain.
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P

P

Q  +  ̂ - d x  
d x

d p  , 
p + — • dx

d x

_  d P J 
P +  dx

d x

Figure A1 Control volume concerning the conservation of mass

, d i  
I  +  —  d r  

d r

r r r
i

T

dr---------- Q

x m
// / / / / / / / / / z

dx
' / / / /

P + ~ d x
d x

Figure A2 Control volume concerning the conservation of momentum

-►

x=0 x=L

Figure A3 Pipe line with boundary conditions



Appendix B The TLM method as a general method for integration Page 230

Appendix B The TLM method as a general method for integration

Krus et al. [1990] compared the TLM method using characteristic pressure filtering with the 

trapezoidal rule o f integration. Examining the integration of pressure in a closed volume the 

transfer function corresponding to integration can be derived as

CP esT +e~sT
(B1)*~'in

where T is the time step and the hydraulic capacitance C = V/Be . The Laplace transform of 

the trapezoidal rule for integration

y ( t + T ) = y ( t ) + ^ [ y ( t ) + y ( t + T ) ]  (B2)

leads to the transfer function

y  T esT + \ 
y ~  2 esT- \

This corresponds to equation (Bl)  with half the time step. Introducing the low pass filter

Xj(t) = a  •xi(t — T) + (1 - a )-x0i( t - T )  (B4)

and its transfer function

Gf (s) = —  -  - ^  (B5)
xn, 1 -  a  • e

(where x0/ is the unfiltered value) leads to the following transfer functions for integration:

I TLM with filtering of the characteristic pressure according to Krus et al. [1990], hence 

filtering of pressure and flow

1 + G2f (s)-e-2sT ^
G, (s) = k ,T  (B6)

' ' 1 -  G f (s) -e

II TLM with filtering of the pressure only

1 + e ~ l s T

Gn(s) = kuT  L p  —  (B7)
" \ - G f ( s ) e
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where ki and ku are obtained using the Final Value Theorem, thus 

lim

kin = ^ r ^  - = — ( B8)
llm rl - «

s ^ 0 SG'" (S)

in order to achieve correct steady state values. Using the filters with a  = 0.2 the transfer 

functions in Figure B1 are obtained where the time step was arbitrarily chosen for T = 1. 

Filtering o f the characteristic pressure suppresses the resonance and antiresonance peaks 

whereas filtering of the pressure suppresses the resonance peak only. The phase characteristic 

is also closer to that obtained from the trapezoidal rule.

1.00E +03

1 .00E +02 - ■

T3 1.00E+01 ■ '

1.00E-01 -■

1 00E -02  - ■ Glr

1 00E -03
0.10 1.000.01

Frequency [Hz]

100 T  
80 - -  
60

Glrd)
V)m
£ -20 

-40 
-60 
-80 

-100

0

1.000.100.01

Frequency [Hz]

Figure B1 Bode diagram of integration using different filters compared with 

trapezoidal rule of integration ( a  = 0.2, T = 1)



Appendix C Adjustment of the characteristic impedance Page 232

Appendix C Adjustment of the characteristic impedance

In Appendix B the correction factor for the standard TLM scheme is calculated by 

comparing transfer functions. The same method can be applied to derive the respective

frequent pressure and flow propagation can be expressed as filters. For the propagation of 

pressure from subsystems A to B this leads to the following equations:

Equation Cl describes the interpolation step. Pp and Pn indicate the previous and the 

current exchanged pressures, respectively. With equation C2 the pressure is filtered, i.e. it 

is calculated from the previously exchanged (and filtered) pressure Pp and the unfiltered 

pressure Pao propagated from subsystem A at time (t-mT). In equation C3 pressure Pp is 

expressed as a time delayed pressure. Combining equations Cl to C3 leads to the 

following pressure filter Gp:

The equivalent equations for the flow propagation (without the low-pass filter) are given 

in equations C5 to Cl.

factor for the extrapolation-interpolation method. Using the notation in Figure 6.4 the less

P{t) = Pp + {P n -P p) ~x ' n
(Cl)

^ = ( 1 - 0 0 ^ 0 + 0 ^  

Pp = P ( t - m T )  = P{t)e~smr

(C2)

(C3)

m ,  i  \

q  . . P i t ) .  n a ) (C4)

(C5)

Q„ — Qao (C6)

Qp = Q(t -  mT) = Q(t)e~smT (Cl)

Combining these equations leads to the respective flow filter G q  in equation C8.
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m

Ge = —  = — 7— ------  (C8 )
Qao , J r n■-A.0 1 +  I - - 1 U -

Using the transfer function corresponding to the TLM integration from Appendix B

CPm l + e-2’T

a. »-«'
G J s )  = ^ -  = T-— SF (C9)

(compare equation B 1) the new transfer function can be derived to 

l + G„(s)-e-2sT
GmU) = kmT • f /  _2,T (CIO)

1 — Cjp( sj-e

where km can again be obtained using the Final Value Theorem, thus 

lim

i _  s 0 _________   \_____£____  r r m
lim ~ l - o t 5 n - 4 m  + 4

„ sG,„(s) 
s —> 0

in order to achieve correct steady state values. For the case m = n = 1, i.e. exchange of 

data every time step, the factor km equals k\ and kn from Appendix B.
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Appendix D Component modelling 

D1 Directional control valves

In general, the (spool) velocity and displacement can be integrated by the trapezoidal rule 

of integration.

At,. .  .. \ . At.. At..
*„+i = y ( * „  +*„«)+*„ = y - V i  + Y X*+x» (D1)

X
At / .  . x  At . At .

n+1 = t ( * «  +  xn«)+ x „ = T ^ I  + ^ r xn +*„ (D2)2

2 f A/ . ] 2 r . .
xn+\ ~ Y X” = Af 3*"+l ~ X" < X" ( )

Valve spool position is assumed to respond as a critically damped second-order system 

driven by the valve drive signal /, i.e. a pseudo-dynamic model is used to approximate the 

spool dynamics.

xn = 0)2(/-J c„ )-2 t0 i„  (D4)

= ® 2( / - * „ +,) - 2 ® i„ +1 (D5)

Where CD is the user supplied natural frequency. The velocity in equation D2 can be 

substituted by equation Dl:

At ( A t .. A t .. . \  At .
*" +1 =  T I T ^ '  + Y x " + x " J + Y x " + x "

Combining equations D4 to D6 and rearranging leads to 

*«+i = Y r { ( 0 2(2I - x n- x M ) - 2 w x ntlJ - ‘̂ - ( O i n+ A tx n+ x n (D7)

Substituting the velocity in equation D7 from equation D3 and rearranging leads to the 

displacement of the spool at time n+l depending on values at time n only.
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In order to account for saturation the valve drive signal and the spool displacement are 

restricted by the following values:

i f  7+1 -  +1  ~ > 7+1 =  +1  i f  X n+1 ^  +1  *„+l =  +1

The velocity of the spool can then be calculated using equation D3, i.e.

2
xn+l = 7 7  (D1°)At

This velocity needs to be calculated and saved for the next time step (see equation D8). 

Adding/subtracting the underlap from the spool displacement enables the calculation of 

the annular flow area for the respective ports. The flow between each port is then 

simulated as a square-law orifice model by superposition of the different flows. For 

example, the supply flow rate (equation 2.30) is composed from three flows. These are the 

flow from supply to port a, the flow from supply to port b and the first stage leakage flow. 

The latter flow is calculated using the laminar orifice model equation. With the notation in 

Figure D1 this can be derived using the transmission line equations (see equations 2.5 and 

2.6)

Px = C2 — ZXQ
(Dl l )

p2 = q + z 2q

and the laminar pressure flow relationship 

Q = k(P , -P2) (D12)

this leads to equation D13 enabling the calculation of flow from previous values only. 

k(C2- C )
Q = - Q , = Q , = — V  (D13)

1 + i(Z ,+ Z 2)

In this case the indices 1 and 2 represent the supply and return port, respectively. The other 

two flows in equation 2.30 are calculated using the TLM orifice equation. Again with the 

notation in Figure D1 this can be derived to the following equation (Burton [1994]).

Q = - Q  = a  = + Z 2) + 1 ^ 4(Z, + z 2)2 + 4*2(c2 - C . )  (D14)

This equation is applied twice, i.e. with the indices 1 and 2 representing supply s and port 

a as well as supply s and port b , respectively. After all the flows have been calculated and
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added according to equations 2.30 to 2.33 the respective port pressures are calculated from 

the following equation:

Pi = C j -  ZCQ  (D15)

where i and j  are chosen accordingly.

D2 Pressure relief valve model

In order to clarify the derivation of the following equations again the notation in Figure 

2.14 is used. Equation 2.37 in the main text describes the spool dynamics according to 

Newton’s second low. The trapezoidal rule of integration for displacement and velocity of 

the spool are the same as already given in equations D1 and D2, respectively. Substituting 

the acceleration in equation D1 by the one derived from equation 2.37 and rearranging 

leads to

T - f c  + z *)-&+,A - * , ( y  *. +*„)}
‘'n+l

1+—2 M \  2

The latter equation can then be combined with equations 2.39, D1 and the transmission 

line end equations in order to derive an explicit formula for the spool displacement 

(equation D17). This can then be used to calculate the flow (equation D18) leading to the 

velocity and acceleration, equations D19 and D20, respectively.

H, + H n (H3 + H2(H9 -  Hn Hu -  K,Ht ))

1 + HuH2Hl2kvH5

q  + H-j ■ (C2 — C|) — H6 • H5 (1)18)
B̂+l y ¥

8

A H3 + H2{H9-{Z ,  +Z2)Q„+lAl - K , H i }

^10

■̂n+i = *n+1 = — C, — (Zj + Z2) • Qn+l — Pc)A, — Cvxn+l — Ksxn+l |  (D20)

with the following constants
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Hj = V P „ - P 2.1 H6 = k , y  H , = ^  tf„ = l + tf7(Z1 + Z2)

/ / ,  =(C2- C ,- P cU  tf10 = 1 + — f  Cv -  K,  — )  H u = - ^ ~
9 v 2 1 c) ' 10 2A/V 2 )  11 2fl,0

g.» = (Z' +/ ' )A‘ Hl3 = H7 (Ci - C l) - H 6 H5
8

During the simulation the spool displacement is restricted to a maximum, i.e. the spool 

stroke. The flow across the valve, the spool displacement, velocity and acceleration are set 

to zero as long as the pressure difference between input and output port is smaller than the 

cracking pressure.

z, .Q.
Q (

P.

Figure D1 TLM schematic of orifice model


