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Abstract

A boundary integral equation based on a Morino approach is used to solve acoustic prob
lems in two and three dimensions. This is a linearized equation which is valid for both 
compressible and incompressible potential flow. It includes the wake effect which ap
pears in lifting bodies as an extra term in the integral formulation. The main concept of 
this work is the acoustic scattering in non-uniform potential flows. The approach used 
to simulate the unsteady character of the problem is to assume the velocity potential as 
the sum of a mean value and a small perturbation. Solving the integral equation once 
for the staedy (aerodynamic) part and once for the unsteady (acoustic) part, and combin
ing the resulting velocity potential and velocity in the Bernoulli equation, we can obtain 
the sound pressure. This procedure is actually a coupled aerodynamic/acoustic approach 
which has proven to be very promising and and reliable for dealing with sound scattering 
and radiation problems in non uniform flows.

The test cases are an aerofoil and a wing with and without high lift devices in both 
compressible and incompressible flow with a unit acoustic source nearby. The results 
show the acoustic pressure contours around the lifting body for three different Mach num
bers (low, medium and high) and for various frequencies. The aeroengine noise propa
gation problem is also investigated and a scarfing configuration is considered. A parallel 
implementation using the Message Passing Interface to speed-up the solution procedure 
allows us to apply the method to large scale problems and high frequencies.

The results showed that when placing the engines above the wing the shielding effect 
of the wing configuration is quite strong and noise reduces; Moreover, the flow has a 
noticable role as it streches the acoustic field towards its direction. The wake effect in 
both the two and three dimensional analysis showed a small effect on noise scattering at 
relatively high Mach numbers (M =  0.6).
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Nomenclature

A Amplitude coefficient
As*mn Mode coefficient
a Characteristic length
B Number of blades
Bm Amplitude coefficient
b Wing span
C Helmholtz equation coefficient
c p Pressure coefficient
c Local speed of sound
Co Speed of sound at reference conditions
e Thickness ratio of an elliptical section
f Frequency
G Green’s function
Go Steady Green’s function
G2D Two dimensional Green’s function
G z d Three dimensional Green’s function
H(s) Heaviside step function
u(m)* ith order Hankel function of mth kind
h(m)Ain Spherical Hankel function of the mth kind and nth order
i
Jm Bessel function of first kind of order m
j n Spherical Bessel function of the first kind, order n
k u/c, wave number
L Shape function
M Mach number
m Mode number
N Number of nodes
n Normal vector
n Harmonic number
Tlelems Number of elements of a square matrix, [A], in a linear system
Throws Number of rows of [A] allocated to each processor
P Acoustic pressure amplitude, p =  Pe~ltJji
Pn Legendre polynomial of order n
P Acoustic pressure from a rotor, number of processors used for parallelization



vii

v' Unsteady pressure
Q Acoustic source strength
R Distance
r Position on a duct radius
Tduct Duct radius
Trotor Rotor radius
s Surface
S(p) Speed-up of a parallel program
TP The elapsed time for the program with p processors
t Time, non-dimensional duct radius
u Velocity
u Unsteady velocity
u Velocity
V Steady velocity normal to the wake
VB Velocity of any point on the surface
v 'n Unsteady velocity normal to the wake
V1 Velocity on the upper point of the wake
v2 Velocity on the lower point of the wake
V Total velocity
v' Unsteady total velocity
V Steady total velocity
X x coordinate in the Cartesian system
X Position vector
y y coordinate in the Cartesian system

771 Bessel function of second kind of order m
Z z coordinate in the Cartesian system
a Angle of attack
(3 t/ 1 - M 2
r Two dimensional surface
r b Circulation around the body
7 Ratio of specific heats
iT E Vortex velocity at a trailing edge
8 Dirac delta function
e Surface displacement, error
V Nodal coordinate
r](p) Efficiency of a parallel program
e Time delay, R /c
\ Wavelength
a Nodal coordinate
p Density
E Non linear terms in the integral equation

M(x—xi)+S(7 P2
r Retarded time



viii

0 Total velocity potential
4>n Acoustic pressure phase
<f)w Velocity potential on the wake
</>' Unsteady velocity potential
(j) Steady velocity potential
Q Angular velocity
u  Radian frequency



Subscripts

com Computational
i Global element index
j  Local element index
max Maximum
n Radial mode number
n Normal
r Radial direction
t Rotor tip
thr Theoretical
TE Trailing edge
w Wake
x Axial direction
1 Source position
lx  Upper point of the wake surface on the x direction
1 y Upper point of the wake surface on the y direction
2D Two dimensional
2x Lower point of the wake surface on the x direction
2y Lower point of the wake surface on the y direction
3D  Three dimensional



Superscripts

duct Duct
inc Incident
rotor Rotor
set Scattered
T  Transpose
tot Total



Abbreviations

BIE Boundary Integral Equation
CHIEF Combined Helmholtz Integral Equation Formulation
FE Finite Element
FEM Finite Element Method
FD Finite Difference
GTS GNU Triangulated Surface library
HIE Helmholtz Integral Equation
ICAO International Civil Aviation Organization
MPI Message Passing Interface
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Chapter 1 

Introduction

The problem of noise control in aviation, which arose in the middle of the twentieth cen
tury with the beginning of the intense operation of jet airliners, is becoming more and 
more bothersome for the people who live close to airports. In recent years, the growing 
need for air transport has set new standards for noise control. On the one hand, passenger 
aeroplanes designed in the last few years are less noisy than those designed in the early 
stages of passenger aviation. On the other hand, because of the increasing use of aviation, 
environmental conditions near airports cannot be noticeably improved, and may even be
come worse in the next ten years, if considerable progress is not made in the development 
of technologies for aviation noise control. Because of the importance and the serious
ness of the situation, the problem of reducing the level of aviation noise is one of the 
main aviation-related environmental problems and is of primary concern to international 
environmental and aviation organisations.

Intense operation of jet airliners the past thirty years is giving rise to increasing com
munity concern. Because of the increase in the overall amount of aircraft operations, 
environmental conditions near airports are becoming more and more uncomfortable for 
residents. The British government has forecast [5] that aviation is likely to grow over 
the next thirty years at an average rate of 4.25% per year. These forecasts are based on 
the fact that the airport capacity will meet all demand. To meet the maximum demand 
for flights, additional airport capacity would be required which means that more runways 
and airports are due to be built. Aircraft landing and taking off are the leading sources 
of aviation noise. In particular, landing noise is increasing in importance and has become 
the dominant reason for complaints near airports. At the same time, the take off phase 
is equally annoying to the airport neighbours as high frequency operating conditions of 
engines during take off produce distracting noise levels. Aircraft noise has already the po
tential to affect the quality of life of at least half a million people in the UK [5], with 80% 
of these living close to major airports in the southeast of England. Table 1.1 shows the 
extent of noise pollution around the five major airports in the UK under the Department 
for Transport’s (DfT) growth forecasts.

Aircraft noise can affect concentration or sleep and can result in feelings of anger, 
frustration and irritation. People usually feel very annoyed when aircraft land or take off. 
Because the noise levels are quite high, they can interfere with everyday activities. People

1



CHAPTER 1. INTRODUCTION 2

Year 2000 2030
Heathrow 310 330
Manchester 40 80
Birmingham 30 180
Gatwick 8 30
Stansted 5 25

Table 1.1: Forecast noise exposure in thousands of people in the UK.

find it very irritating when they get distracted trying to do something that requires con
centration or even when they have a conversation which is disrupted due to aircraft noise. 
Incidents like these can lead to people feeling stressed and angry. The situation is worse 
when noise affects sleep patterns. Sleep disturbance problems are often reported when 
people complain that they wake up early in the morning or they have difficulty falling 
asleep. Aircraft noise is a primary concern of environmental and aviation organisations 
and ICAO (International Civil Aviation Organisation) sets tighter certification standards 
known as Chapters for noise emissions from civil aircraft [6]. The standards for com
munity noise are set depending on the maximum take off mass of an aeroplane and are 
specified for three fixed reference points near the runway. These points characterise the 
main stages of the flight: take off, climb and descent. In 2001, ICAO issued a new stan
dard for aircraft noise, which came into effect on January 1, 2006 and imposes stricter 
requirements on community noise. According to this standard, the noise levels from a 
new aeroplane must be 10 dB lower than previously allowable noise levels. In addition, 
the decrease in noise level at any two points of measurement should be no less than 2 dB. 
The ICAO resolution can be summarised in four elements: reduction of noise at source, 
land use planning and management around airports, operating procedure and operating 
restrictions.

Over the past thirty years improvements in aircraft technology have resulted in sub
stantial reductions in the noise of individual aircraft. Figure 1.1 illustrates aircraft noise 
levels over the past fifty years [7]. The first generation Boeing 707 created noise at take 
off similar to that of Concorde. An average reduction of 25 dBhas been achieved over 
the past thirty years. Engine noise during take off and landing gear noise during land
ing are the most important sources of aircraft noise. Figure 1.2 shows the noise sources 
on an aircraft during operation. To manage the situation, airports impose restrictions on 
noisier aircraft and additionally they control night noise by not allowing take off at spe
cific times during the night. Apart from the above operational procedures and limitations, 
much interest is shown in possible future aircraft configurations and airframe alterations. 
Engine noise is dominant during take off and is composed mainly of fan and jet noise. 
High frequency fan noise can be reduced by improving absorption inside the nacelle us
ing appropriate structural materials and a honeycomb type layer. Moreover, lengthening 
the inlet of the engine and making it slightly scarfed can achieve lower noise levels. Fig
ure 1.3 shows the scarfing configuration of an aeroengine.

Jet noise levels can be lowered by increasing the engine by-pass ratio and thus re-
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Figure 1.1: Noise levels at take off for commercial jets.
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Figure 1.2: Noise sources on an aircraft [1].
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Figure 1.3: Scarfed engine configuration.

ducing the jet velocity [8]. Additional noise is generated by extended landing gear, open 
cavities and wheel wells. Modem aircraft already cover their wheel wells while the gear 
is extended but further improvements should be made. The length of the main landing 
gear can be reduced by attaching it to the fuselage. Another source of noise is the take 
off and landing configuration of conventional aircraft. Minimising the number of high 
lift devices needed for the above two phases can result in noise reduction. The slots that 
appear at such a configuration produce noise and can be avoided if a different configu
ration is adopted where fewer gaps are present. A shielding effect can be achieved by 
placing the engines above the wing and further backwards. Such a configuration is shown 
on Figure 1.4.

OW<»»j£2&8r-

Figure 1.4: Future aircraft configuration [1].

A lot of research is carried out on aircraft noise source prediction and reduction. This 
research is mainly focused on modelling and design and on the development of efficient 
methods of noise prediction. A combination of different aircraft configurations and mod
ifications can lead to more environmentally friendly aircraft. This becomes essential if 
we think that aviation needs and aircraft operations are rising at a fast rate.
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1.1 Aircraft noise sources
It becomes clear from the above facts that restrictions and regulations for aviation noise 
control are becoming stricter and stricter. Therefore, the solution of the complex scien
tific and engineering problems related to the improvement of the acoustic characteristics 
of passenger aeroplanes is the major task of today’s aviation acoustics. This now has the 
potential to reshape design drivers for the next generation of aircraft. To this end the study 
of full body shielding and scattering effects induced by novel engine placement is a criti
cal issue. The sources of aircraft noise most responsible for community and ground crew 
effects are high-velocity jet exhausts, fans, internal turbomachinery, propellers, rotors, 
and, for supersonic aircraft, sonic booms. The sources most responsible for passenger 
or flight crew effects are turbulent boundary layers, propellers, helicopter gear boxes, jet 
exhausts, internal combustion engine exhausts and structure borne vibration from unbal
anced rotational forces. To effectively control noise, that is, to reduce those components 
that are most responsible for adverse human effects, it is necessary to thoroughly under
stand the physical characteristics of the sound and how each of those characteristics can 
affect human response.

It is worth referring to a few basic things for each of the above sources in order to 
obtain a general perception of how these contribute to noise generation. Therefore, the 
four dominant types of aircraft noise according to Hubbard [8] are: propeller and propfan 
noise, rotor noise, turbomachinery noise and jet noise.

Rotorcraft noise is generally characterised by loud, sharp, periodic sounds which are 
labelled impulsive noise. During a normal rotor-blade revolution in high-speed nonaxial 
flight, transonic flow on the rotor advancing blade can cause large drag, vibration and 
noise effects. The most important source of this type of noise is Blade-Vortex Interaction 
(BVI) noise which is produced when the blade cuts the vortex. To overcome these high- 
speed-flight limitations, new types of rotorcraft are being developed that have nearly the 
hovering efficiency of the helicopter. However, all the above difficulties have led to more 
practical solutions. In particular, the tips of most rotor blades are now thinned, tapered 
and swept. Thinning and tapering the tip of the rotor directly reduces thickness noise. 
Finally, sweeping the blade tip, as in wing sweep on supersonic aeroplanes, tends to 
lower the effective tip Mach number.

Jet noise is associated with the turbulence created by the jet mixing with the surround
ing air. Unless the properties of the unsteady flow are known, the details of the source 
field cannot be determined. However, we have to mention that several problems arise 
when trying to model jet noise. The basic reasons that make things harder and more com
plicated are supersonic, subsonic flow and turbulent phenomena which are developed in 
the jet. The structure of a turbulent jet is described by an initial mixing (laminar-turbulent) 
region which is followed by a fully developed turbulent region. Certainly, transition from 
laminar to turbulent flow is a strong source of noise in a mixing region. Jet noise as a study 
in aerodynamic noise had its foundations in the work of Lighthill [9] on sound generated 
aerodynamically. Lighthill’s theory of aerodynamic noise is based on the exact equations 
of fluid flow and we refer to it as Lighthill's acoustic analogy. Jet noise reduction can be 
achieved by shaping the nozzle exit with a relatively small loss in nozzle performance.
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This led to the corrugated nozzle. Although the noise reduction obtained with the cor
rugated nozzle may be considered modest, it is nevertheless accepted as the one major 
practical device that has reduced jet noise for minimum performance loss. Generally, 
several attempts have been made to reduce jet noise without paying the penalty of loss of 
nozzle efficiency. However, the main feature of all noise reduction schemes is shown to 
be large changes in the jet flow structure.

Turbomachinery noise is associated with civil aviation and includes fans, compres
sors and turbines The primary concern for turbomachinery noise is community exposure 
during take off and approach operations. The two operating points of interest for com
munity noise, approach and take off, correspond to subsonic and supersonic tip Mach 
numbers. More specifically, as acoustic modes are generated because of the blade motion 
they propagate upstream and downstream in the engine ducts, they interact with other 
modes which both reflect and scatter the acoustic energy. Duct radiation in the far-field 
is another process which is quite important as its analysis gives the far-field directivity 
patterns which are related to ground noise pollution.

For the fan of a turbofan engine, noise reduction can be achieved by designing fan duct 
acoustic treatment to absorb the noise produced by the source. It should be mentioned that 
the amount of noise suppression achieved with duct acoustic treatment is predominantly 
a function of the fan design characteristics. In particular, the fan tip speed and blade 
numbers have an influence on the achievable suppression. Thus, one can design the fan 
acoustically to give the maximum possible noise suppression.

1.2 Present numerical approaches
The contribution of this thesis to noise source generation and control is focused on the 
development of a technique that predicts the noise field when sound sources are specified. 
The technique is valid for both external and internal problems and is based on Boundary 
Integral Methods. Acoustic scattering and radiation problems in the absence of flow have 
been studied in depth for many years. Boundary integral equation (BIE) methods based 
on the Helmholtz integral equation (HIE) method only require discretisation of the surface 
boundary which can reduce some aspects of the computational effort required to perform 
these calculations on problems of engineering scale, compared to finite difference (FD) 
or finite element (FE) methods.

Boundary integral methods based on the Helmholtz integral equation for the analysis 
of exterior acoustic radiation and scattering problems have been developed extensively 
over the past few decades.

The major drawback of most of the current existing computational methods is that 
they only apply to uniform mean flow of low Mach number and that even the analytical 
solutions become invalid at high Mach numbers where the flow is compressible. But the 
need to solve more difficult problems more efficiently led to other methods that couple 
aerodynamics and aeroacoustics. Gennaretti et al. [10] successfully introduced a unified 
boundary integral equation making it feasible to obtain the acoustic pressure using the 
same formulation for both steady and unsteady velocity potential. The important feature
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in their work is that they take into consideration the wake when examining lifting bodies. 
The integral equation is modified so as to include the wake contribution as an additional 
linear term. In the present thesis this approach is followed to predict the acoustic pressure 
field. Specifically, a scattering problem is presented in both compressible and incom
pressible potential flow. The test cases are an aerofoil and an aerofoil with flaps and slats 
in non-uniform flow with an acoustic source nearby. Considering the sound as a small 
perturbation, each flow property (velocity potential, velocity and pressure) is the sum of a 
fluctuation and a mean value. Therefore, the total velocity potential is assumed to be the 
sum of an unsteady part which results from the acoustic source and a steady part which 
comes from the potential flow. The two terms of the total velocity potential are obtained 
by applying the boundary element method to both steady and unsteady cases. Once the 
velocity potential is evaluated, Bernoulli’s theorem is used to derive the acoustic pressure.



Chapter 2 

Prediction of noise from aircraft

The role of the present work in the investigation of the aircraft noise problem is focused 
on the prediction of the acoustic pressure radiated around moving or stationary solid 
boundaries in non-uniform flow velocity. The acoustic source pressure is specified and the 
next step is to investigate the scattering behaviour of the sound when interacting with solid 
boundaries. The work includes the mathematical development and the computational 
implementation of an integral equation primarily used for aerodynamic purposes.

2.1 Aeroacoustics as unsteady aerodynamics
The main interest of the present work is focused on how sound is radiated in a fluid flow 
and how it is scattered when it interacts with solid boundaries. Moreover aerodynamics 
is closely related to aeroacoustics as from a computational point of view we could say 
that aerodynamics is the input of the aeroacoustics code [11] as it provides us with all 
the necessary flow information. Gennaretti, Luceri and Morino established a relationship 
between aeroacoustics and aerodynamics [12]. They introduced a unified approach which 
combines aerodynamic and aeroacoustic principles applying a Boundary Integral Equa
tion (BIE) for unsteady flow to evaluate the acoustic pressure. Maybe the most important 
feature of this formulation is the contribution of the wake which is considered in such 
a way that it actually changes or affects the velocity potential distribution on the lifting 
body as it is included in the BIE. It is actually an extension of Morino’s original work 
on Boundary Integral Methods [12] in aerodynamics for steady and unsteady flows. The 
integral formulation is valid in both the frequency and time domains. The wake geometry 
can have a prescribed shape or it can follow a free wake analysis according to which it 
takes its form as time elapses. Additionally compressibility effects are also included and 
the flexibility of including rotational or relative motion between parts of the investigated 
body is considered. A similar investigation on scattering from bodies moving in arbitrary 
motion comes from Farrasat and Myers [13] where the Kirchhoff [14] formulation is ap
plied to develop a BIE. Their work starts with the extension of Kirchhoff’s formula to 
moving surfaces and then the application of this theoretical study to aeroacoustics prob
lems [15]. They present the mathematical procedure for the application of Kirchoff’s

8
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formula to moving bodies and derive a useful expression for the velocity potential on the 
surface and in the field. Finite elements are used in conjunction with the Galerkin method 
in order to solve the integral equation when the observer is placed on the moving body 
surface as in Morino’s case. A very basic point that they are pointing out is that the inte
gral equation is valid only when Mn < < 1 ,  where Mn is the normal Mach number on the 
surface. Otherwise this formulation does not represent the physical problem of acoustic 
scattering from that body [15]. This has its origin in the non-linear aerodynamic effects 
that must be taken into account along with acoustic perturbations. This states that there is 
a limitation on the thickness ratio of the moving body in the sense that the more slender 
it becomes the more accurate the technique. A similar point was made by Morino [16] 
for the non-linear phenomena that occur in the transonic region and should be taken into 
account during the unsteady calculations.

An effective but computationally more expensive method for acoustic radiation in 
non-uniform flows is that of Zhang et al. [17]. It is a boundary element based method 
in which the integral equation is the same as Morino’s with the difference that it does 
not include the wake term. It is actually a coupled FEM/BEM valid for axisymmetric 
bodies. The uniform flow region is treated using BEM and the non-uniform with FEM. 
Because in scattering problems the domain is unbounded and also because we are mostly 
interested in the far field the FEM costs more computational time as the far field needs 
to be discretized in order to calculate the properties on even on point in the far field. 
The BEM is an extension of their previous work [18] for acoustic radiation in uniform 
subsonic flow.

There are analytical expressions for scattering problems in uniform flows for sample 
geometries. Taylor [19] first introduced a transformed differential equation for steady 
state acoustic propagation in uniform flow. The two conditions that he imposed were 
that there is no flow through the surface and that the flow tends to a uniform stream at 
infinity. The theoretical investigation was applied to the problem of acoustic generation by 
vibrating spheres. Analytical formulae for a juddering and a pulsating sphere in very low 
Mach number (M < 0.3) were given. The transformed wave equation was then converted 
to a boundary integral equation, the well known Helmholtz equation, used by Astley and 
Bain [20]. The problem was then reduced to an equivalent no-flow scattering problem 
with modified boundary conditions. The results of this boundary integral technique were 
checked against the theoretical expressions. Wu and Lee [18] went a step further and 
instead of solving the problem in a transformed domain i.e. Helmholtz equation, they 
directly derived the BIE which gives the velocity potential explicitly.

2.2 Potential aerodynamics
The calculation of potential flow around bodies and especially lifting bodies has been the 
subject of research since 1925. Later studies focused on conformal mapping [21], on the 
distribution of potential singularities such as vortices/sinks and doublets within the sur
face [22] and on thin aerofoil theory [23], all of them implemented using panel methods. 
A very constructive work on panel methods came from Hess and Smith [22] for bodies



CHAPTER 2. PREDICTION OF NOISE FROM AIRCRAFT 10

in arbitrary motion. Their method was a breakthrough as it guided many researchers in 
the later years. They presented a boundary integral representation of the potential field 
in terms of source a distribution over the surface. In this approach they assume that the 
velocity is the sum of a mean value and a perturbation and set Neumann boundary condi
tions, i.e. no penetration.

Hess [24] a few years later, reviewed the surface source distribution technique using 
higher order elements to achieve more accurate results. The important feature in this 
work is that the trailing edge configuration effect is examined and its mathematical na
ture is illustrated. Because the trailing edge is a point on a comer (one point has two 
normal vectors) it causes mathematical singularities which are hard to eliminate. It is 
also difficult to draw physical conclusions on what happens at the trailing edge and what 
conditions should be imposed in order to represent reality. The trailing edge condition 
that was applied in this work was that the values of the velocity at the control points (el
ement midpoints in that case) of the two elements adjacent to the trailing edge should be 
equal. Lifting bodies and especially aerofoils were the main interest of the investigation 
and so most studies focused on them. Additionally, the trailing edge condition was a 
controversial subject as the numerical implementation was causing many singularities.

A very fundamental method to study flow over aerofoils is the comfrontal transfor
mation [21] of a circle into an aerofoil. In this approach the flow around the aerofoil is 
transformed through a number of transformations into a flow around a circular cylinder 
for which the solution is known. The flow field is then obtained by transforming the 
properties found using the same transformation used before. Another technique to deal 
with aerofoils in uniform flow is thin aerofoil theory which is applicable to thin aerofoil 
sections [23]. For such a case, the aerofoil can be simulated by a vortex sheet placed 
along the camber line. The camber line is close to the chord line so the vortex sheet 
falls approximately on the chord line. The camber line is considered to be a streamline 
and consequently it contains the velocity flow information. This statement leads to the 
fundamental integral equation which gives the velocity on the boundary of an aerofoil.

A vortex distribution method was followed by Prandtl [23] for the calculation of the 
flow velocity over finite wings. Replacing the finite wing with a bound vortex and the 
sides of it with free trailing vortices, the superposition of a finite number of these vortices 
leads to vortex filaments chordwise of the wing and thus an integral equation for the total 
velocity. A different approach was introduced by Morino [25] who developed a Bound
ary Integral Equation (BIE) for three dimensional bodies with complex configuration in 
unsteady compressible potential flow in oscillating arbitrary motion. The method is based 
on Green’s theorem for the Laplace equation in potential flow assuming that the oscilla
tion of the body is relatively small in the air frame of reference. The integral equation is 
solved on the surface and leads to the velocity potential and consequently to the velocity 
not only on the surface of the body but also in the field. This last fact is of great impor
tance as it implies that the aerodynamic properties can be defined in the flow field which 
is very interesting from an aeroacoustics point of view. Maskew’s [26] approach is very 
similar to Morino’s. The difference is that he is using source and doublet strengths and 
the frame of reference is a fixed observer in the free space. This work was mostly based 
on Hess and Smith’s study [22]. Applying the Green’s function theorem and changing
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the boundary condition inside and outside the body surface allows the solution of more 
advanced problems such as surface displacements.

Apart from all the above computational techniques there are analytical expressions 
that give the velocity around two or three dimensional geometries. The velocity and the 
velocity potential for a sphere in uniform mean flow are known and the same applies to a 
circle under certain conditions [23]. The Janzen-Rayleigh series [27] gives the maximum 
velocity on a cylinder not only in incompressible but also in compressible flow. In an 
extended work Van Dyke [28] provides additional information for the velocity potential 
around a circle including compressibility effects. Moreover, Lighthill [29] has done a lot 
of theoretical investigation for flow past bodies where he gives the maximum velocity 
formula for elliptical sections. All the above analytical expressions that we described are 
of great interest because they can be used to validate computational results.

2.3 Trailing edge conditions
Steady state potential aerodynamics of lifting bodies is a field where there has been a lot of 
investigation. Unsteady phenomena are of more interest as they reflect realistic situations. 
Oscillatory motion of aerofoils or wings is a very important subject and requires more 
conditions to be satisfied. The flow is regarded as inviscid and in the region of the trailing 
edge remains sensible i.e. no infinities in either flow velocities or in the pressure should 
appear in the solution at the sharp trailing edge. In addition such phenomena at the trailing 
edge are not within the scope of this thesis. Having a brief look in the aerodynamics 
literature we can see the debate which is going on for the Kutta [30] condition and the 
various solutions that have been suggested during these years. The basic disagreements 
concern the mathematical representation of the Kutta condition and its implementation 
in numerical terms. There should not be a separation between the case of the steady 
and the unsteady type of flow. The ideal would be one set of boundary conditions that 
satisfies both cases and it is applicable in each case. There are many different approaches 
to expressing the trailing edge condition in the literature, all meaning the same thing, the 
well known Kutta condition [23]: ‘The flow leaves the sharp trailing edge of an airfoil 
smoothly and the velocity there is finite’.

A very interesting computational approach for the application of the Kutta condition 
was the additional element at the surface of the trailing edge [31]. Figure 2.1 shows the 
trailing edge (T) configuration and the wake element (IV).

In this numerical solution the actual trailing edge point is not a stagnation point. The 
velocity which is calculated at the midpoints of the side trailing edge elements has infinite 
value. Figure 2.2 shows the midpoints of the trailing edge elements. This technique 
actually meets the conditions that Maskell suggested which was that the flow must leave 
the trailing edge parallel to the upper or lower surface depending on the rotation direction 
of the vorticity. In summary the boundary conditions can be described in the following 
two sentences:

•  The total normal velocity at the exterior midpoint of the trailing edge element is 
zero;
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Figure 2.1: Trailing edge configuration.

Midpoints

Figure 2.2: Midpoints of the trailing edge side elements.

•  The pressures are equal at the midpoints of the side trailing edge elements.

Since the trailing edge angle is finite the normal component of the velocity from both 
sides of the aerofoil must vanish. Therefore, it is useful to assume that the pressure 
difference there is also zero:

ApTE =  0 . (2 .1)

If the circulation is modelled by a vortex distribution (7 ), then this can be expressed
as:

7 t e  =  0 ,  V i  =  V 2 . ( 2 .2 )

These are the total velocities on the upper and on the lower trailing edge point as shown 
in Figure 2.3.

Recalling Kelvin’s theorem [31] which states that the time rate of change of circu
lation around a closed curve consisting of the same fluid elements is zero, the above
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y,

Figure 2.3: Points on each side of the wake geometry

statement summaries the following expression:

0 , 

0 ,
-r*,
0 2 — 01,

A 0. (2.3)

Thus the circulation around the lifting body (r&) is equal and opposite to the circulation 
around the starting vortex (I\„). Morino and Kuo also investigated steady and unsteady 
potential aerodynamics. They introduced a boundary integral equation using the Green’s 
function method which is applicable to complex configurations [25]. The equation is 
valid for both steady and oscillatory motion if the appropriate Green’s function is used. It 
is implemented using panels and it was applied to two and three dimensional bodies. The 
value of A0 is continuous at the trailing edge and the vorticity is shed from the trailing 
edge and goes into the field. The A0 remains constant along the wake line and has the 
same value it had at the trailing edge. This means that the starting vortex which originates 
at the trailing edge does not grow in strength but rolls up allowing a steady circulation 
around the lifting body. Concluding, we could say that in potential inviscid irrotational 
flows there is vorticity generated at the trailing edge which is transported to the field by 
the wake but this vorticity remains constant.

2.4 Numerical issues
In aeroacoustics there are some parameters that should be carefully checked before any 
calculation. Because of the nature of the problem (aeroengines), we are more interested 
in high frequencies (short wavelength) than in low ones. Considering the fact that we 
are investigating non-uniform flow we have to think of the characteristic length of the 
mean flow disturbance. Usually, this characteristic length is the geometrical length of the 
investigated body. Recalling the equation for the speed of sound we could write:

DT
~Dt

t w +  r& =  
r „  =
0 u> —
0 iu =

c =  /A, (2.4)
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where /  is the frequency and A is the wavelength. When referring to sound we have to 
define the frequency or the ka where k =  27r/A the wavenumber, and a the character
istic length of the body. So with this way one is able to understand the relation from a 
physical point of view between the two wavelengths (source generated wavelength and 
characteristic length) or even better to make the problem dimensionless. Moreover, an
other major problem that arises in aeroacoustics is that the discretisation of the boundary 
surface should be finer for higher frequencies. This is well explained by Morino and 
Piva [32] where they suggest that 6  to 8  nodes would be enough within a wavelength. 
Increasing the number of elements in a grid ensures more accurate results. We can see 
from equation 2.4 that the higher the frequency, the smaller the wavelength, that is the 
smaller the minimum distance between the nodes. This last statement reveals another 
problem in the present field. A finer grid requires more elements and consequently more 
memory and disk space. Additionally, sound pressure contains real and imaginary part 
which means that the size of the original problem is doubled. The promising thing with 
boundary element methods is though that there is no need for storage for the field oper
ations and values. As has already been mentioned the surrounding field does not need 
discretisation and values which need to be stored. Assuming that the number of nodes on 
the investigated body is n then the resulting (assembly) matrix for the velocity potential 
or pressure depending what BIE one uses, is size 2n x 2n. This matrix is a square matrix 
and belongs to the final linear system which needs to be solved in order to get the veloc
ity potential or the pressure distribution on the surface. It is quite obvious that for large 
geometries and at high frequencies the problem becomes even worse.

There have been developed many techniques to overcome this problem. A very effec
tive and relatively new technique is parallel programming. Up to some years ago we used 
to make use of only one processor to do all the calculations and so, we had to wait more. 
The idea of parallel programming is to use more than one processor at the same time each 
of which undertakes the same task. This, of course, is subject to the nature of the prob
lem and the flexibility of the computer program to be parallelised and the availability of 
computer resources. There are various studies for parallel processing BEM in literature 
that show how to parallelise a BEM code [33] and how efficient it becomes after paralleli- 
sation. Moreover, the linear system matrices are fully populated (dense) which make the 
solution procedure even more time expensive. A way to deal with this problem is to use 
iterative solvers which are less computationally expensive in terms of memory require
ments and relatively faster. Continuing on the same topic, fast multipole method [34,35] 
and its combination with other techniques [36] is very efficient in speeding up the work of 
iterative solvers as it converges with a satisfactory number of iterations. Von Estorff [37] 
in a very detailed review paper addresses computational acoustics problems and and lists 
a number of available methods other than BEM. He also points out some very useful 
tips for BEM to reduce computation time, such as the simplification of the body geom
etry. Structurally complicated parts of the geometry can be neglected if they are small 
compared to the wavelength.
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2.5 Duct acoustics
Duct acoustics is of special importance as aeroengine noise generation is one of the most 
popular subjects in aeroacoustics. An aeroengine can be modelled as a duct with a rotor 
inside. It is very important to examine how sound propagates in a duct and furthermore 
how and when it is radiated in the atmosphere. We will briefly present some basic theo
retical aspects of sound propagation in a circular duct. The rotor in a duct is considered a 
source of sound which, depending on the angular speed of the blades of the rotor, propa
gates or decays. We could describe sound pressure as a sequence of harmonics or spinning 
modes which fluctuate as a function of a distance from the rotor.

The pressure is associated with the rotor angular velocity Q =  2irf, where /  is the 
angular frequency. Since it is a periodic function, it can be written as Fourier series [38]:

oo

p(0,t) =  E An cos{nB{6 — fit) 4 - (f)n), (2.5)
71=0

where B is the number of blades, n the number of the harmonic, 0 the angle between 
the radius of a specific point on the blade and the origin line of the cylindrical system 
and An and (f)n are amplitude and phase variables respectively. In order for the sound 
to be radiated in the field, the acoustic pressure should be “strong” enough to propagate 
through a cylindrical duct and then be released in the atmosphere. The term “strong” 
enough means that the driving frequency of the current harmonic is above a critical value 
or the cut off frequency as it is called. In case it is, the sound wave will be transmitted 
through the duct. The cut off frequency is different for each harmonic as the wavelength 
is different. If the current harmonic frequency is less than the cut off frequency then the 
sound attenuates and does not radiate. So, it becomes apparent that there are harmonics 
that are of great interest as they generate a radiation field around the the duct.

Sound radiation from an unflanged cylindrical duct was calculated by the Wiener- 
Hopf technique some years ago by Levine and Schwinger [39]. They obtained an explicit 
solution for the sound radiation of an unflanged circular pipe assuming that only plane 
waves can propagate in the pipe. Because of the complexity of the Wiener-Hopf method, 
simpler approximate methods were found. Tyler and Sofrin [38] in their study of duct 
propagation and radiation, proposed a formula for calculation of the acoustic radiation 
field due to propagating modes from a semi-infinite flanged duct with no flow. They 
used the Kirchhoff approximation, in which an estimated acoustic source strength at the 
duct face is inserted in the radiation integral. This work still remains the classical and 
detailed work on compressor noise. Among the researchers who have studied ducted fan 
noise, are Dunn et al. [40—42]. They combined the linearised equations of acoustics and 
the Helmholtz integral equation, and developed computer codes for the prediction of the 
sound field around aeroengines. The method is valid for a wide range of inflow Mach 
numbers and for engines with liners fitted. The fan is modelled as a superposition of 
monopoles or dipoles placed at the corresponding blade locations.

Hamdi and Ville [43,44] introduced a new variational formulation by integral equa
tions in order to solve Helmholtz’s equation. The method was valid for finite length ducts



CHAPTER 2. PREDICTION OF NOISE FROM AIRCRAFT 16

with arbitrary shapes and was checked against experimental data. Hwang [45] introduced 
a rather different computational method for computing the Helmholtz integral equation 
for acoustic radiation and scattering problems. Unlike previous studies, this method al
lowed the surface integral to be integrated directly and globally. He noted that the accu
racy of the numerical integration was increased by using high-order Gaussian quadrature 
formula. To date, there are many studies of sound radiation from ducts, pipes or similar 
shape bodies but most of them do not include flow effects. To complete the overview 
on duct acoustics we should mention that there have been developed methods applicable 
to axisymmetric bodies [2,46-49] such as ducts that simplify the implementation of the 
integral formulation.

Apart from the BEM there are also analytical expressions for the prediction of sound. 
A related study in this field has been done by Chapman [50]. His paper determines the ray 
structure of a spinning acoustic mode propagating inside a semi-infinite circular cylindri
cal duct, and thereby determines the field radiated from the end of the duct. Hocter [51] 
continued Chapman’s work and presented three formulae for the calculation of the sound 
radiated from a cylindrical duct and compared the directivity patterns. In 1994, Peake [52] 
investigated the radiation properties of an asymmetric cylinder. The results of his analysis 
suggested that scarfing can be used to modify the radiation directivity. The noise levels 
below the horizontal had been reduced at the expense of increasing the noise above the 
horizontal.

In recent years Keith and Peake extended their work to high-wavenumber acoustic 
radiation from a thin-walled axisymmetric cylinder [53] and from a thin-walled scarfed 
cylinder [54]. Both studies are based on the Geometrical Theory of Diffraction and on 
uniform asymptotic. As far as scarfing is concerned, the first indications show that scarf
ing decreases the sound radiation directed above the asymmetry line and increases below. 
The scarfed cylinder has real application on aeroengines where the the intake is diverted 
a little upward to try to direct noise radiation away from the ground.

2.6 Scattering and radiation
Boundary element methods (BEM) have extensively been used over the past 50 years to 
solve acoustic scattering and radiation problems. The BEM is sometimes referred to as 
the boundary integral equation method. The classical Helmholtz [55] integral equation is 
given by:

C P =  [ g ^ - -  P ^ -d S ,  (2 .6 )
J s  On On

where C  is a coefficient which takes different values on and off the boundary, G is the 
Green’s function and P  is the pressure. The BEM solves the Helmholtz integral equation 
in either a bounded interior domain or in an unbounded exterior domain and can be used 
to evaluate pressure in the field. In exterior scattering problems the objective is to solve 
the Helmholtz equation in an unbounded fluid domain due to the acoustic radiation of 
a structure due to an incident sound wave which interacts with the structure. In such a 
case, the total radiated pressure would be the sum of the incident pressure generated by a



CHAPTER 2. PREDICTION OF NOISE FROM AIRCRAFT 17

sound source in the absence of the obstacle and the scattered pressure in the presence of 
the obstacle. For scattering problems the pressure or the velocity potential must satisfy 
the Sommerfeld radiation condition [56] at infinity:

where R  is the distance between the source and a field point and k the wavenumber. 
The radiation condition ensures that there are no additional contributions from a surface 
integral at infinity. The velocity potential should decrease with increasing R, a statement 
which is true for acoustic sources.

Helmholtz equation in solving radiation problems is usually associated with the non
uniqueness problem. This originates from the fact that if we apply the Helmholtz equation 
to an exterior and to an interior problem of the same body, then there should be a unique 
solution on the boundary. What happens though is that at some specific frequencies there 
is no unique solution. When the BEE is applied to exterior acoustics problems singulari
ties occur in the resulting algebraic equations at these characteristic frequencies. It should 
be pointed out that these characteristic frequencies have no physical meaning for the ex
terior boundary value problem under consideration, which has a unique solution for all 
frequencies. The non-uniqueness problem is a purely mathematical problem arising from 
the boundary integral formulation rather than from the nature of the physical problem. 
There have been done many investigations to overcome the non-uniqueness problem. By 
far, the combined Helmholtz integral equation formulation proposed by Schenk [57] in 
1968 and the composite Helmholtz integral equation presented by Burton and Miller [58] 
in 1971 are the most popular approaches. Schenk combined the surface Helmholtz in
tegral equation with the interior Helmholtz integral equation to form an overdetermined 
system of equations, which was then solved using the least squares procedure and could 
give a unique solution at all frequencies. However, the method fails if the interior points 
are located on a node of the interior domain. Schenk’s formulation was improved by Wu 
and Seybert [59]. In their paper an effective and simple BEM technique was presented 
which forces the constraint of each Combined Helmholtz Integral Equation Formulation 
(CHIEF) to be satisfied in a weighted residual sense over a small interior region. This im
proved formulation uses a CHIEF block which is simply a four-noded tetrahedron, rather 
than CHIEF points in the numerical implementation so that it can alleviate the nodal 
surface difficulty.

Burton and Miller’s approach consists of a linear combination of the Helmholtz inte
gral equation and its normal derivative. It has been proven that the linear combination of 
these two equations will yield a unique solution for all frequencies if the multiplicative 
constant of the normal derivative equation is appropriately chosen. However, the major 
difficulty in this formulation is that the normal derivative of the Helmholtz integral equa
tion involves a hypersingular integral. Burton and Miller used a double surface integral 
to regularise this strong singularity. Even if both the Helmholtz integral equation and 
its normal derivative suffer from the non-uniqueness problem, it has been proven that 
the combination of the two integral equations leads to a unique solution. Although this

(2.7)
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method appears to be robust for numerical implementation, it suffers from the main draw
back of hypersingular integrals and it is computationally expensive to evaluate a double 
surface integral.

Segalman and Lobitz [60] adopted the work of Burton and Miller, extending the 
CHIEF. Their approach is considered an extension to the CHIEF method in that higher 
derivatives in addition to the function itself, are constrained to be zero at selected points in 
the interior domain. In 1989 Martinez [61] addressed the practical limitations of bound
ary integral methods and applied a modal boundary integral technique especially tailored 
to thin geometries of revolution. The problems chosen for its demonstration are cases of 
acoustic diffraction by an open-ended cylindrical duct containing a sound source, where 
the scattering wall’s outer and inner surfaces are an infinitesimal distance apart, and are 
respectively rigid and either rigid or compliant.

It is essential to refer to the very modem techniques for solving the hypersingular BIE 
in three dimensional acoustics using a regularisation relationship which was introduced 
by Yan et al. [62]. In this technique the regularisation of the hypersingular integral in the 
CHIEF method is investigated through the double surface integral method. As is known, 
it is computationally expensive to evaluate a double surface integral. With this method 
though, the computational cost for calculating CHIEF is comparable to that of solving the 
conventional Helmholtz integral equation as the number of frequencies to be computed 
increases.

Acoustic wave scattering from axisymmetric bodies subject to a non-axisymmetric in
cident wave was presented by Kim et al. [63] by means of the Helmholtz integral equation 
method. By employing Fourier expansions of dependent variables in the circumferential 
angle, they obtained decoupled integral equations for each of the Fourier expansion terms. 
Therefore, they needed to discretise only the generator rather than the surface, which of
fered significant advantages in computational effort compared to the surface discretisation 
method. Although the number of Fourier expansion terms needed to achieve convergence 
increased as the frequency became higher, it was still smaller than or at least comparable 
to the number of nodal points along the generator, which indicated that their method was 
very efficient in the case of axisymmetric bodies. They noted that the present formulation 
could easily be extended to the radiation problem of axisymmetric bodies. Wu [64] dealt 
with acoustic radiation and scattering in a perfect waveguide. He applied a BEM where 
the Green’s function and its derivatives were interpolated by a set of shape functions. This 
interpolation technique was used to speed up the matrix formation procedure and resulted 
in two to three times less time in comparison with conventional BEM.

Wang et al. [65] developed a unique boundary integral method to analyse the exterior 
acoustic radiation problem of axisymmetric bodies with arbitrary boundary conditions. 
The new formulation derived from Burton and Miller’s method, used isoparametric ele
ments. More specifically, they demonstrated that the use of tangential operators regular
ising the hypersingular kernel in the normal gradient equation, contributed to compute all 
integrals in the equation without much extra effort compared with the surface Helmholtz 
integral equation, since the resulting equation had the same order of singularity as the 
surface Helmholtz integral equation. The velocity and pressure functions were then ex
pressed in Fourier series with respect to the angle of revolution, such that the surface in
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tegrals were reduced to line integrals along the generator of the body. Furthermore, they 
presented a new formula to precisely evaluate all the singular integrals of the Green’s 
function and its derivatives over the circumferential angle in terms of complete elliptic 
integrals.

This historical review on the sound scattering and radiation problems that was pre
sented in this chapter gives an overview of the state of the art in this particular field of 
aeroacoustics. The technical issues and the mathematical difficulties were addressed and 
potential solutions were briefly discussed. The literature survey was mostly foccussed on 
the boundary element techniques and and the achievements that have been obtained up 
to now. The need to solve aeroacoustics problems using coupling methods is increasing 
and more specifically when talking about scattering problems in non-uniform flows is out 
of great interest. Applications on lifting bodies were the wake occurs is a subject which 
needs further investigation in order to examine its effect on the sound propagation. The 
present work is going to present a boundary integral method for sound scattering applica
ble to non-uniform compressible and incompressible flows taking into consideration the 
wake effect.



Chapter 3 

Boundary integral method

A boundary integral formulation for dealing with noise scattering and radiation problems 
is presented in this chapter. The study does not involve any transonic speeds because at 
these Mach numbers a more advanced investigation is required and the problem is not 
a linear problem any more, due to the non-linear phenomena that occur. In this chapter 
an analysis for compressible and incompressible velocities in potential flow is presented. 
The wave equation with and without flow is solved and is transformed to the Helmholtz 
integral equation. Taking the Helmholtz equation as a reference point we present an 
integral formulation which includes more terms than the Helmholtz and can cover more 
advanced radiation problems with complex geometries. This equation is valid for lifting 
bodies considering the wake effect which in the present case is prescribed depending on 
the body geometry. It is applied to both two and three dimensional bodies.

3.1 Helmholtz equation for quiescent fluid
In the absence of uniform flow and dissipation, the compression of fluid elements takes 
place adiabatically. The acoustic amplitude is small relative to the undisturbed mean 
pressure, and a first approximation to the wave equation governing propagation may be 
derived by linearising the equations of motion. This approximation tends to be better at 
lower frequencies because viscous dissipation and heat transfer by thermal conduction are 
weaker when the acoustic wavelengths (which increase with the decreasing frequency) are 
longer. From a mathematical and a physical point of view, sound is a wave that propagates 
through a fluid. Therefore, we should expect that in order to get an actual perception 
of how the sound is radiated from a body, we have to use the three dimensional wave 
equation.

Consider a body B of boundary surface S in an infinite acoustic medium B' of mean 
density po and speed of sound c. The body B  can be either a vibrating structure (in 
a radiation problem) or a passive obstacle (in a scattering problem). Now consider the 
sound radiated into the unbounded stationary fluid from a time-harmonic volume source 
<?(xi, t) =  <^(xi,a;) exp(—iut) of radian frequency w. Applying the linearised continuity

20
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B'

Figure 3.1: Body in an infinite acoustic medium.

equation [6 6 ]:

— ̂  +  divv =  q, (3.1)
Po at

where p is the density of the medium and v the acoustic particle velocity. Assuming small 
amplitude waves in a stationary ideal fluid with no body forces, the Bernoulli’s equation

P =  Pa%  (3.2)

where p is the acoustic pressure. For arbitrary and small adiabatic changes p is related to 
p with the following equation [6 6 ]:

p = ~ %  (3-3)

where c is the speed of sound. Substituting v  =  V</> and equations 3.2 and 3.3 in equa
tion 3.1 we end up with the following expression:

G t - v2) * = - ?- (3-4)

The velocity potential of the unsteady motion is governed by equation 3.4 and evidently 
oscillates at the same frequency as the source. The substitution 0(xi, t) =  0(xi, w)e-Iwt 
transforms equation (3.4) into the inhomogeneous Helmholtz equation:

V 2(f) +  k2(j) =  q, (3.5)

where <f> is the velocity potential and k =  u /c  is the acoustic wave number. This equation 
must be satisfied in the acoustic domain B'. The sound pressure can be evaluated by, 
p =  —ipoufj). The case of a unit point source q(xtu) =  S(x — x x) where S denotes the 
Dirac delta function, defines the frequency domain Green’s function which satisfies:

V 2G +  /s2G =  S ( x - x 1). (3.6)

The above equation can be solved by the method of Fourier transforms but this analysis 
is outside the scope of the present study. After applying the Fourier transform [6 6 ] we
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obtain the Green’s function in the frequency domain:

„ ifc |x -x i|
G(xu k) =  - —  r. (3.7)

47T|x — Xi|

Including the exponential time factor, equation 3.7 represents a continuous wave prop
agating radially outward at speed c from a source at x i. The amplitude decreases with 
distance |x — xi |. In the corresponding time domain situation, the formulation would be:

(3,8)

The right-hand side of the equation represents an impulsive point source that vanishes, 
except at £ =  r. After the Fourier transform we get:

G t W  —T) =  ^ ~ ; - | x ~  * ll/c ) . (3.9)
47T|X — Xi|

Using the direct formulation via Green’s second identity, equation 3.5 is reformulated 
into a boundary integral equation defined on the boundary surface S  as follows:

c(x̂ =/s(GS -S )ds’ (3-io)
where G is the ffee-space Green’s function due to a time-harmonic point source at x i 
and x  is a point which is located on the surface. C(xi) is a coefficient that depends on 
the location of xi. Equation 3.10 is the Helmholtz integral equation [14]. The explicit 
expression for the ffee-space Green’s function is equation 3.7 written in the following 
form:

p ikR

G = 4 (3-U)  
where R =  |x—xi |. The leading coefficient C(xi) in equation 3.10 can take the following 
values:

1 xi in B’
C(xi) =  < 1 — Js dGo/dndS xi on S

0 x x in B

where Go is the Green’s function at k =  0. To solve the Helmholtz integral equation we
have to say a few words on each term of this equation. So, the Green’s function gradient
normal to the surface is:

O .H )on R on
For scattering problems, the velocity potential (f> is decomposed into two parts:

</> =  (3.13)

where </>mc is the incident field, (j)sct is the scattered and 0 the total. The incident field is 
specified assuming an acoustic source somewhere in the field. When point x  is located
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on the surface S then we talk about surface velocity potential and according to equation 
3.1 the Helmholtz integral equation takes the form of equation 3.10.

So the surface potential is obtained if we solve equation 3.10 for 0(xi). Knowing the 
surface pressure, and having as input the the incident field on the surface we are led to the 
calculation of the scattered field.

To calculate the scattered field, equation 3.10 must be solved subject to the appropriate 
boundary condition and can then be used to calculate the radiated field. The boundary 
condition for a rigid surface is that the surface normal velocity be zero or in terms of the 
incident and the scattered fields (f)inc and (f)sct,

ddinc dd>sct
on an

The incident field generated by a point source has the form:
p \kR

47tR

3.2 Boundary integral method for unsteady flow
As we have already mentioned Boundary Integral Methods (BIM) for aerodynamics have 
been studied for many years. The novelty takes place when BIM are used for aeroacoustic 
purposes where a combination of acoustics and aerodynamics is needed. To define the 
problem, we can say that we are trying to find the sound in a moving medium where 
the flow is non-uniform. Starting from the velocity potential we are able to estimate 
the total acoustic pressure. To do so, we need to make clear all the assumptions and 
the considerations we have made. We decompose the velocity potential into two parts. 
One part is the steady part and the other is the unsteady. The unsteady part denotes 
the acoustic perturbation which we assume small and not strong enough to affect the 
steady one. Consequently, in all the mathematical operations we neglect the second order 
terms claiming that they are small compared to the first order ones. Linking all the above 
and adding some facts about the wake configuration, we explain that we solve a linear 
problem. In a complete analysis there should occur two non-linearities. In the present 
work we do not deal with them. In the case of a free-wake analysis the wake geometry 
depends on the solution procedure, while using a prescribed wake as in the present case 
the non-linearities disappear as the wake geometry is predefined.

Let us extend now the study of section 3.1 to the case where non-uniform flow is 
included. Before displaying the mathematical procedure related to the present problem, 
it would be wise to refer to the assumptions that have been made which are displayed and 
explained at the beginning of this chapter.

Shifting to the aeroacoustic problem now we can write the corresponding differential 
equation for the same problem but with an acoustic source q(x, t) =  q(-xi,uj)e~lu}t of 
radian frequency u;, in the field in the frequency domain [17]:

V 2</> +  k2<j> -  2 ifc M ^  -  M 2f ^  =  (5(x -  Xl). (3.16)
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Figure 3.2: Body in mean flow with an acoustic source nearby.

Let the undisturbed mean flow be specified by a velocity potential 0(x), with mean 
velocity u in the x direction. Consider an irrotational sound disturbance </>'(x, t), and set:

0(x, t) =  <?(x) +  0'(x, t). (3.17)

Both terms of the equation are treated the same way and the only difference is that the 
second contains the unsteady exponential term exp(—iut). The total velocity can be 
expressed in terms of the velocity potential as:

v(x, t) =  V0(x, t). (3.18)

So the velocity is similarly the sum of a steady and an unsteady part as follows:

v (x ,* ) = v (x )  +  v'(x,*). (3.19)

To make things clearer let us start from the aerodynamic analysis of the problem. 
According to Morino [16] the differential equation in the time domain that gives the 
velocity potential for a body in potential compressible flow is:

v2̂ S = s’ (3-2o)
where £  is the term that represents the non-linear terms that occur in the transonic region. 
Assuming the problem is linear:

9 1 d26
=  (3-21)

Converting differential equation 3.16 to an integral equation, Morino introduced a 
formulation for both compressible and incompressible potential flows. Additionally, the
formulation is valid for bodies which produce lift and have wake following the trailing
edge as shown in Figure 3.3.

The boundary integral formulation is given by [10]:
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Figure 3.3: Wing and wake geometry in mean flow.

where
A  O  -j

—  =  —  - - u . n . i i V  (3.23)on on &
where [...]* denotes evaluation at time r  = t — 9, and 9 is the time for the sound to travel 
from the source to the observer when x  is a point in the field while 0(x , t) is the value 
of the velocity potential at that point. A </> is the wake strength and it will be discussed in 
detail in section 3.4. The above equation is the full boundary integral equation in potential 
compressible flow for lifting bodies. It contains information that is important at higher 
Mach numbers and cannot be neglected as in the incompressible case. In the present case 
this equation becomes simpler as the second integral term can be eliminated because the 
velocity of the body is constant and does not involve any relative motion with respect to 
the free motion of the body. The reduced equation takes the form:

x\ f  \0<t>„ ±0G „d<t> ( 09 0 u . n \ l 6> f  \ . ,dG '
^  t] =  Ldh - * - a & + G d i { d & +  v ) . d r  - d IV

(3.24)

In order to work out the total velocity potential we need to use the integral equation 
for both the steady part and the unsteady. When the observer is located on the boundary 
T, then the above integral equation can be used to evaluate the velocity potential, 0 on T.

The Green’s function G represents the potential field associated with a uniformly 
moving acoustic source. In compressible potential flow in the positive x direction the 
Green’s function is [67]:

eika
G3D = - -  - s  (3.25)

where

S = y / ( x -  z i )2 +  (32 [(y -  yi)2 +  (z -  z ^ 2], (3.26)
(3 = V l  -  M 2,

M(x -  xi) +  S  
^2 ’a =
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is the Mach number of the flow. For the steady aerodynamic problem the Green’s function 
is given by setting the wave number in equation 3.25 to zero:

G-  =  - i h -  (3-27)

Once 0 is obtained, the same equation is used to get the velocity potential, 0(x, t) 
anywhere in the field in terms of the values of 0  and d(f)/dn on the surface of the body 
and A0 on the wake. Once 0 is known on the surface, the velocity and pressure can be 
calculated anywhere in the field. Similarly, the velocity is obtained using equation 3.18:

«->-/r[!™-*T + TOS(I + ’f) +

We now continue with the simpler case of incompressible flow for which the boundary 
integral equation [16] is:

^ = i ® G- 4 3 dr- l A4 ? dr-
As we can observe some terms are eliminated from the corresponding equation for com
pressible flow. This is explained if we note that in compressible flow we have density 
variations which lead to the occurance of the Prandtl-Glauert factor (3 =  y/1 — M 2. In 
incompressible flow i.e. at low Mach number we can approximate M 2 =  0, so (3 =  1. 
Following these approximations, the Green’s function for the incompressible case is [16]:

pi kR
G3D =  - - (3.29)

where R =  y/(x — Xi)2 +  (y -  yi)2 +  (z -  zi)2.
For the steady part, the Green’s function is given by:

G 3D =  ■ (3-30)47tR

As far as the wake term is concerned, a more extended analysis is required to obtain 
the wake strength, A 0. The wake is an aerodynamic phenomenon which occurs in the 
case of lifting bodies in flow. It is a zero thickness vortex layer where a discontinuity in 
the velocity potential 0 , and consequently in the tangential velocity component, appears. 
The question that arises at this point is the value of the velocity potential at the trailing 
edge. From a physical point of view, the velocity potential cannot change its magnitude 
abruptly: there should be a smooth transfer from the trailing edge to the wake. The 
answer to this question is given by the Kutta condition which eventually leads to the wake 
strength. In one of the following sections we present an extended analysis of the wake
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boundary conditions where we give the velocity potential jump across the trailing edge, 
which is then transferred to the wake. The wake is assumed to spring from the trailing 
edge and its surface coincides with that swept by the trailing edge during its motion [6 8 ]. 
We could say that the wake is springing from the trailing edge and is extending to infinity.

We first apply the integral equation for the steady aerodynamic part where we set 
the appropriate boundary conditions. The boundary, T, of the body is assumed to be 
impermeable. If v# is the velocity of any point on T, then (v — v B).n =  0. Hence, the 
boundary condition on T is:

dd
JT =  u.n, (3.31)an

where u  is the velocity of the point on the surface of the body. The boundary condition at 
infinity is:

0 =  0. (3.32)

In the case of the unsteady part, the same integral equation is used and exactly the 
same procedure is followed. The only difference is that the wake strength is given by 
a different expression. To complete the integral formulation for the acoustic section we 
have to set the boundary conditions, d(f>'/dn. We consider Neumann boundary conditions, 
so:

T s r =  °- (3-33)an
Once the velocity is known, there is only one step before we reach the final unknown 

which is pressure. Bernoulli’s equation is the desired equation which combines all the 
previous information about velocity potential and velocity and leads to pressure. As we
mentioned in the beginning of this work, we examine both of the above flow cases. The
pressure at infinity is constant but in our assumptions is taken as zero. For potential 
compressible flows, Bernoulli’s equation has the form:

73T +  +  ~ ~ T c2 ~ ------at 2 7  — 1 7
+  77v H rC2 =  ~Cq, (3.34)

where 7  denotes the ratio of specific heats and c =  c(x, t) is the speed of sound evaluated 
using the local values of pressure and density. Assuming that the pressure at infinity is 
zero, equation 3.34 is reduced to the material derivative which measures the rate of change 
following the motion of a fluid particle:

P' W  , -  X7JJ f'l w =  — + v . V 0 .  (3.35)
p ot

3.3 Boundary integral method for two dimensional 
problems

Integrating the Green’s function over the z axis in three dimensions results in the cor
responding formulation for the two dimensions one. Similarly to the three dimensional 
analysis, let us start with the case without flow. Consider a two dimensional body in the
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Figure 3.4: Aerofoil and wake geometry in mean flow.

acoustic medium where the mean flow velocity is zero as shown in Figure 3.4. In order 
to solve the scattering problem under these conditions we need the appropriate Green’s 
function as the formulation remains the same as in the three dimensional analysis. In the 
time domain the two dimensional Green’s function is given by [6 6 ]:

^  v _  H(f — r  — |x —xi| /c)
2D( ’ } arvfa-Tj’ - fx -x O V c 2’

where H(a:) is the Heaviside unit function defined by H(x) =  0 for x <  0, H(:r) =  1 for 
x >  0. In the frequency domain the technique that we follow to find this is to integrate the 
three dimensional Green’s function with respect to the z direction. So the two dimensional 
Green’s function is [55]:

G 2D =  -iH<2)(A;fl),
R =  |x — xi|, (3.37)

where is the zero order Hankel function of the second kind. Since the normal deriva
tive of the Green’s function will be used in the integral equation, the explicit expression
for the normal derivative is given here:

<3-38>

where Hj is the Hankel function of the second kind of order one [69]

Hq1* (x) =  J 0(x) +  iYo(x),
H<2)(i) =  J 0( z ) - i Y 0 (x), (3.39)

where Jo and Y0 are Bessel functions of the first and second kinds, respectively, of order 
zero. The procedure continues with case of compressible flow. Integrating equation 3.25 
with respect to z from —oo to oo we find:
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If we set A: =  0 then we shift to the steady aerodynamic case where for two-dimensional 
bodies the Green’s function is given by:

.  J a w  «

Finally for the incompressible flow problem the Green’s function for the unsteady case 
is:

G2D =  - i ei,:M(l- Il)H^)(fciJ). (3.42)

For the the steady aerodynamic case:

G2D =  (3.43)
27T

3.4 Wake boundary conditions
The wake is the region of flow left behind the trailing edge during the aerofoil motion. Its 
geometry can be approximated with a straight line which has zero thickness and extends 
to infinity. In the wake region the flow properties cannot be specified applying the princi
ples of unsteady potential flow as in the rest of the fluid. This is the reason a more detailed 
analysis needs to be done in order to investigate this region. In order to thoroughly inves
tigate the wake boundary conditions, we have to take into account the reflection and the 
refraction phenomena. Let us consider the shear layer of Figure 3.5.

u

transmitted

reflectedripple incident

Figure 3.5: Sound reflection and transmission by a moving medium.

We can see a moving sound ripple with velocity U in the horizontal direction. Assume 
now an incident acoustic wave hitting the wake line. The result will be a reflected wave 
and a transmitted wave on the opposite side of the wake. The boundary conditions on the 
wake according to [70] are:

• the acoustic pressure must be continuous across the shear layer: Ap' =  0 ,

•  the streamline slopes must be equal on both sides,
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7 T  =  T T ' <-3M )U l x  u 2x

where U\y and U2y are the total velocities normal to the wake on each side, U\x and U2x 
are the total velocities parallel to the wake and U2y is the sum of the velocities reflected 
and the incident waves while Uiy is the velocity of the transmitted wave. But the second 
boundary condition can be reduced to:

U\y =  U2y, (3.45)

which states that the component of the resulting velocity (flow plus acoustic) locally nor
mal to the rippling interface is the same on both sides. The transformation from equation 
3.44 to equation 3.45 is done assuming U\y and U2y very small. This is a reasonable 
assumption when considering a plane interface as in our case and consequently, we can 
ignore a component of the stream velocity that comes in due to sinusoidal surface incli
nation. This conclusion agrees with the form of boundary conditions given by Nark et 
al. [71] who show that the boundary conditions on the shear layer are:

•  trailing edge acoustic pressure must be continuous across the shear layer: Ap' =  0 ;

•  trailing edge acoustic particle displacement must be continuous across the shear
layer: Ay =  0;

The first boundary condition was also used by Morino [12] when describing the boundary 
conditions on the wake. The second boundary condition is equivalent to equation 3.44. 
If we expand this boundary condition we end up with the same equation that Ribner [70] 
uses to describe the second boundary condition. The acoustic displacement [72] is defined 
as:

yi =  2/2 ,
dyi dy2
dt dt ’
Uiy =  U2y. (3.46)

which is equation 3.45 and proves the equality of these two different expressions.
From the first boundary condition we deal with the acoustic pressure which is given

p' = ̂  = f +u-̂ ' (3-47)
where, u  is the mean flow velocity. The pressure following the linearised formulation
mles comes from the unsteady small perturbation theory. Figure 3.6 shows the wake
geometry and two points very close to the wake. Examining the pressure at each point 
and applying the first boundary condition we get:

*  =  i s r  =  i j r + “ ‘-v *  (3-48)

p, =  M  =  M + U 2 .v f 2  (349)
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y,

Figure 3.6: Points on each side of the wake geometry.

Then Ap' =  p[ — p'2 =  0 gives [12]:

M  +  u, y * - M _ u  , v ^  =  o,

^  + u w .(y<f[ - v & )  =  o,
dA4>' ( d t i  9 #  d<&\ _  .

+  U W- I t;--------o h t;------------ t;—  I — U,dt \d x i  dx2 dyi dy2
(3.50)

where
_ _ (ui.V^i - u 2.V$>) /<5C1N

UlV =  V #  -  V ^2 ■ ( U
Recalling the second boundary condition which simply states that y\ =  y2 we can rewrite 
the above equation as follows:

+  =  0. (3.52)
o f  d y  J

Moreover, knowing that the unsteady velocity, vx =  0(f)'fdx, we can write:

dA 6’
- Q j -  +  uw . (vix -  v2x) =  0 ,

u„,.VA<A' +  ^  =  0 ,
at

DAS'
" d T  =  °- (3-53)

Integrating the above equation we conclude:

A(f)'(x, t) =  A(j}'(xTE, t - r ) .  (3.54)

where, xte is the trailing edge position. The above equation states that the wake strength 
remains constant following a wake point x w travelling on the wake. Where, r  =  (xw — 
xTE)/n w is the time for a wake point to travel from the trailing edge to a position on the
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wake line at time t. To make things clearer, A 0  is the initial value of the wake strength 
which comes from the Kutta condition and in the steady state case remains constant.

Applying the boundary integral equation at each point we derive a formulation valid 
on the wake. The boundary integral equation is given by equation 3.24. Removing the 
last (wake) term of this equation we can prove why it exists there.

To validate our implementation of the boundary conditions on the wake we check our 
calculations against the boundary conditions suggested by [71]. The proposed analytical 
expression for the acoustic displacement across the wake is:

(3.55)
r - v '  i r - V  in
.itj  +  (n .(n .V v)). l Aij +  (n .(n .V v)).

where is the unsteady velocity normal to the wake surface. The check to be done is 
to secure the equality of displacement across the wake, and consequently to satisfy the 
analytical formula proposed by the above reference. This analytical formula is a func
tion of steady and unsteady velocities which are calculated with numerical methods, a 
fact which makes the approach to the wake more difficult. In order to achieve better ap
proach to the wake surface, we used Richardson’s extrapolation method [73]. Figure 3.7 
shows the difference between the upper and lower displacement across the wake for ap
proximately three chords length. Starting from a distance of 10-3 m from the wake and 
applying the extrapolation method, we achieve very good agreement between the two 
sides of the wake. From Figure 3.7 it can be seen that the boundary conditions on the

I
cI
f
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Figure 3.7: Difference in acoustic displacement across the wake, ka = 1.6.

wake are satisfied with good accuracy.

3 .5  D u c t  s o u n d  p r o p a g a t i o n  t h e o r y

Apart from the lifting bodies (wing,aerofoil) test cases we applied the boundary integral 
method to a duct. In this section we briefly present the theoretical background of the
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sound scattered by a duct with a spinning rotor inside. The sound field radiated from a 
duct inlet can be decomposed into a set of acoustic modes. Each of these modes has a 
specific directivity pattern which varies with frequency. The investigation of the important 
modes which eventually propagate and radiate in the field is out of great interest and study 
for noise generation mechanisms. The pressure fluctuation in terms of position and time 
is represented by [38J:

OO

p ( 8 ,  t )  =  ^ 2  V n {8 )  c o s [ n u t  + 0„(0)]. (3.56)
71=1

This equation states that the pressure fluctuation at any position 0, is a sum of harmonics. 
Expanding the cosine term:

OO OO

p ( 0 , t )  =  cos<̂ >n(0)] cos n u t  — J^ [p n(0) sin </>n(0)] sin n u t .  (3.57)
71=1 71=1

Since the quantities in brackets are functions of position only, they may be expanded in 
Fourier series of the form:

OO

£ ( > *  m cos m6 +  Bm sin md). (3.58)
771=0

Substituting equation 3.58 in equation 3.57 we obtain the total pressure in terms of modes:

OO OO 

p ( 0 , t )  =  £  £  P/71715 (3.59)
71=1 T7l= — OO

where p mn is:
Pmn  — -A-mn COs(jTl0 TlLjt -|- (3.60)

Equation 3.59 can be written as a sinusoidal azimuthal variation and a Bessel function 
radial variation. Thus, the total pressure is made up of modes of the form:

P m n i r , 6 )  =  ^ 2 ^ 2  A m n J m ( k mnr ) e im6, (3.61)
m n

where m is the circumferential mode and Amn is the amplitude or the mode coefficient 
and can be found by applying the Hankel Transform [74]. The mathematical expression 
of the series is:

OO

£  A-uiji Jm (.kmnr), (3.62)
71=1

where k m i r ,  k m2r ,  k m3r , . . .  are the positive zeros of:

(3.63)
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where j'm is the first derivative of the Bessel function of order m  and r is a position on the 
duct radius. Equation 3.62 is called a Dini series of Bessel functions and the coefficients 
Amn are given by the formula:

A —
2 k m n  f o  t f ( t ) J m ( k m n t ) d t

(k ln -m ^ )J U k mn) '
(3.64)

In our case the function f(t)  is the total acoustic pressure and t is the non-dimensional 
radius of the duct. Therefore, equation (3.64) is modified to:

A —+ *‘msn. —
2 ^mn/o rLrt (^mnT)^ rduct

(k^n ~ m2)J i(kmn)
(3.65)

where rduct is the duct radius. The integral in the above equation is calculated using the 
trapezoidal rule. Inside the duct, the eigenvalues kmn vary and modes can be cut-off 
(decay exponentially).

Now consider the cylindrical duct shown in Figure 3.8. The tip Mach number of the 
spinning rotor inside the duct, is Mt =  ka/m. Consider an acoustic mode denoted by

Figure 3.8: Geometry of a cylindrical duct.

Amn of the form:
p =  p0ei(--^+mS+k̂ J m{krr). (3.66)

A system of cylindrical coordinates (r, 6, x) is shown in Figure 3.8 to describe the 
mode. In equation 3.66 p represents the pressure, t the time and the modal parameters 
are u  the frequency, m the azimuthal order, kx the axial wavenumber and kr the ra
dial wavenumber. The duct wall is assumed to be hard so from the boundary condition 
dp/dx =  0 we get J'(krrdUct) =  0. The axial wavenumber is given by:

k2x =  k2 -  k2, (3.67)

where k — uj/ c is the free space wavenumber. This equation is very important as it 
determines which modes propagate and which modes attenuate for a given frequency. 
When k < kr, kx is imaginary and the frequency that this corresponds to, is called ‘cut 
off’. On an opposite case it is called ‘cut on’. These ‘cut on’ and ‘cut off’ frequencies 
are better explained when expressed in dimensionless velocity. Assume the noise source 
in the duct is a rotor of radius rrotar which is spinning with angular velocity VL and the
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tip Mach number is, Mt — HrTOtor/c. The Mach number that the azimuthally varying 
pressure can propagate inside the duct is, M  =  cor duct/c. Bearing in mind that, u =  mQ, 
we can easily understand that for a specific mode of order m  to propagate (i.e to be ‘cut 
on’), the condition Mt > M  needs to be satisfied.

3.6 Integral representation of the incident field
To calculate the radiated field from a spinning rotor in a duct we simulate the noise pres
sure from the rotating rotor with a disk source and follow the Boundary Integral formula
tion presented in Section 3.1. The incident field assuming a disk source, is given by:

f 2* e'(kR +  mO)
0 = io d*’ (3'68)

and the gradient is:

d4> f 2n el{kR +  mO) (ikR — 1 ) dR
=  /Jo

d0, (3.69)
dn Jo 4ttR R dn

where m  is the azimuthal order, 6 is the angle on the disk source and R is given by:

R =  IT rotor +  rl -  2rVotorn COS 9 +  (zrotar ~ Z i f \1/2, (3.70)

where rrotor is the rotor radius, while subscript 1 denotes the source position.



Chapter 4 

Numerical implementation

In this chapter we present the numerical procedure that was followed in order to imple
ment the BIE on the two and three dimensional example geometries. Several numerical 
difficulties arose due to some special geometrical characteristics and due to mathematical 
weaknesses of the method. To overcome these problems we applied some techniques that 
allowed us to avoid more complicated and time expensive solutions.

To numerically solve the problem, the geometry is sub-divided into a series of smaller 
regions in which the integral equation is solved. Each region is referred to as an element 
and the process of subdividing a domain into a finite number of elements is referred to as 
discretisation. Elements are connected at specific points, called nodes, and the solution 
must be continuous along common boundaries of adjacent elements. In general, three 
dimensional geometries are more difficult to handle because of the bigger number of ele
ments and the more complicated discretisation. A very well structured way to manipulate 
such problems is to use the GTS library [75] which is an open source free software and 
stands for the GNU Triangulated Surface library. This is a library which provides a set 
of useful functions to deal with three dimensional surfaces meshed with triangles. It is 
written in the C programming language with an object-oriented approach which is well 
structured, improves the performance, and is user friendly. The main features include the 
capacity to extract information about the topological properties of elements and a wide 
variety of available operations to handle the surface. A list of options concerning grid 
refinement, complicated surface operations (union, intersection), metrics and graphs are 
also available.

Once the elements have been defined, we have to determine how the variation of the 
field variable across the element is to be approximated or represented. In most cases a 
polynomial interpolation function is used. The number of nodes assigned to an element 
dictates the order of the interpolation function which can be used. Interpolation functions 
are also referred to as shape functions or approximating functions.

The collocation method allows us to calculate the unknown boundary data. An ap
proach is to establish a system of equations with as many unknowns as equations. The 
principle of collocation is to locate the control point sequentially at all nodes of the dis
cretisation. Because linear and higher order polynomial shape functions lead to nodes 
which belong to more than one element, it is essential to introduce a global node num

36
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bering system which does not depend on the element. The collocation procedure leads 
to a linear system of equations. This part of the solution is time consuming and can be 
accelerated by parallel programming methods (Chapter 5).

In order to apply the boundary element method, the boundary is discretized into smaller 
regions called elements and the solution is determined in terms of discrete values of some 
primary boundary variables at the nodes. In the present case these elements are trian
gles and consequently consist of three nodes. Figure 4.1 presents a three dimensional 
discretisation of a wing and a closer view of it.

At the element level, the solution to the governing equation is replaced by a contin
uous function approximating the distribution of a property, / ,  over the element domain 
expressed in terms of the unknown nodal values / i ,  / 2, fa of the solution /  as shown in 
Figure 4.2. A system of equations in terms of f u f 2 and / 3 can then be formulated for the 
element. Using isoparametric elements as in this case, the local (nodal) coordinates are 
expressed as (£, r), 1 — £ — rj).

Figure 4.2: A triangular element and the corresponding isoparametric element.

A mapping function x  =  p(£, rj) is used to relate global and local coordinates. This 
function is called shape function and has different value for each node. Thus the coordi

4 .1  S u r f a c e  d i s c r e t i s a t i o n  i n  t h r e e  d i m e n s i o n s

Figure 4.1: Three dimensional discretisation of a wing.

fo
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nates of the global points are expressed in:

3

x (£, V) =  X I
i= l

where £*(£, rj) is the shape function. For each element the shape functions are:

Li =  f, L2 =  r), L3 =  1 -  £ -  77. (4.2)

The acoustic variable is calculated at the nodal points and so on each element it is approx
imated by a linear function.

4.2 Boundary discretisation in two dimensions
In two dimensions, the discretisation process requires the division of the boundary into a 
finite number of isoparametric elements as shown in Figure 4.3. These elements consist

Q uadratic

Figure 4.3: Boundary discretisation.

of three nodes (quadratic elements). The geometry of each element can be represented by 
interpolation between the nodal points. Thus the coordinates of the points are expressed 
in terms of nodal coordinates and the associated shape functions as follows:

n

x(£) =  £ > £ < ( « ) ,  (4.3)
2 = 1

where x* is the position of nodal points, L^(£) are the shape functions with a local coor
dinate —1 < £ <  1 and n is the number of nodes on the element. The shape functions for 
the quadratic elements which were used in the present work are:

=  §€(€ - 1 ) ,  I* =  ( i - 0 (1  +  0 .  i s  =  ^ ( €  +  i). (4.4)

Figure 4.4 shows a quadratic element and the nodal coordinates on it.
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e = - i  e = o $ = i *

1

Figure 4.4: Quadratic element.

4.3 Integration
The integration of the terms in the boundary integral equation can be easily carried out if 
we relate the global coordinate system to the nodal (local) coordinate system. The nodal 
system is based on the three-noded linear surface element whose local components are £ 
and rj. The global Cartesian coordinates, x, are related to the nodal global coordinates, 
Xi, using equation 4.1 in three dimensions and equation 4.3 in two dimensions.

At first we interpolate the global coordinates, using equation 4.1 and then we use the 
same set of shape functions to interpolate the surface variables 0 and d<j)/dn. Therefore 
on each element, Sj ,  as shown in Figure 4.5 we have:

d(f)
dn

(4.5)

(4.6)

Figure 4.5: An element of the body grid.

where {</>} and {|^} contain the nodal values of <f> and respectively. The superscript 
T  denotes transpose, the symbol { •} denotes vector and the symbol [ • ] denotes matrix. 
To complete the integration procedure we have to interpolate and integrate the Green’s 
function. Thus, we have:

[M]= I  £ {L}Td's ’ [N]= I  G^ Tds’ <4-7)

where [M\  and [N]  are two square global matrices and so according to the previous de
velopment, the Helmholtz integral equation is written as:

(4.8)
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For a boundary value problem, there is only one unknown (</>) at each node of S. 
Rearranging equation 4.8 yields:

[A}{<t>} =  {6}, (4.9)

where [A] is a square matrix and b is the right-hand side vector.

4.4 Singularities
As previously mentioned the evaluation of the velocity potential on the surface is taking 
place on the nodes. This causes some numerical problems: when the collocation point 
is placed at a node the singularities occur. These singularities are logarithmic due to the 
Green’s function formula in the steady state. More specifically, in the two dimensional 
case the Green’s function is a Hankel function, for which we need the first derivative in 
order to find the velocity potential. This means that we automatically move to higher or
der singularities which are more difficult to deal with. The differentiation of the Green’s 
function gives a logarithmic function which needs to be treated by using the appropriate 
quadrature. In three dimensions the Green’s function has the form of 1 / R  and the first 
derivative the form of 1 / R 2 which in the integral equation are both improper integrals. 
We do the integration numerically over the surface and therefore the way to overcome all 
these problems is to use a generalised Gaussian quadrature [76] which integrates exactly 
the logarithmic singularities on any of the nodes of the elements using a single formula. 
More specifically, all the integral equations of the boundary element method are evalu
ated using one of two methods: either regular Gaussian quadrature or a combination of 
regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used 
to evaluate most of the integrals along the boundary, and the combined scheme is em
ployed for integrals that are singular. All the integrals containing non-singular functions 
are evaluated using a regular form of Gaussian quadrature. The advantage of this scheme 
is that the same set of quadrature points can be used for constant, linear or higher order 
elements. This is very convenient from a computational point of view as there is no need 
for selection when it comes to different types of singularities.

4.5 Sharp edges
Another important issue that arises in scattering bodies is when these bodies contain sharp 
edges. At a comer the normal derivative of the Helmholtz integral equation cannot be 
defined, since the normal vector itself is discontinuous at a such point. There are various 
ways to face this problem; one can duplicate the comer node with a small gap between 
two nodes or place the collocation points not on the node but in the middle of the current 
element. In the present case the trailing edge of the aerofoil is a sharp edge where the 
surface normal changes direction as shown in Figure 4.6.

The approach used to overcome this problem is to consider that at the sharp edge there 
exist two points each of which has its own normal vector [65]. Figure 4.7 presents the
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V

Figure 4.6: The normal vectors at the trailing edge .

Figure 4.7: Double normal vectors at a sharp edge [2].

normals on a comer. With this technique we take into account both of the two different 
directions and introduce a smooth solution, avoiding the inaccuracy and unreliability of 
other techniques where we need to find the optimal gap between the two points or modify 
the mesh in order to move the collocation point away from the comer.

4.6 Validation examples
To demonstrate the accuracy and the efficiency of the boundary element method described 
above, selected cases of acoustic radiation and aerodynamic flow fields have been com
puted. The test cases include geometries for which there are analytical or numerical solu
tions to compare with. The first check for both three and two dimensional problems was 
to place an acoustic source inside the body and calculate the radiated field. This should 
be the same as the one computed using the integral method. The incident field which 
is simply the sound field generated by the source in the space is always known for the 
standard source types (monopoles, multipoles). The unknown scattered field satisfies the 
Helmholtz equation. In order to find the total pressure we have to add the incident and the
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scattered field. Both the incident and the total field satisfy the same wave equation [14] 
for a given frequency. For three dimensional problems there are theoretical expressions 
for scattering around a sphere [56] and a pulsating sphere in uniform flow at low Mach 
number [19]. The aerodynamic part of the boundary integral method was checked against 
experimental results for a rectangular wing of aerofoil section NACA 0012 [3]. For the 
two dimensional calculations we compared aerodynamic part with analytical formulae for 
elliptical sections [29].

Three dimensional validation problems

Let us start the validation procedure with a sphere in uniform flow and an acoustic source 
inside the body of the sphere. In the case of the sphere, a point source is placed inside 
the surface. According to the theory [77], the radiated pressure that is calculated by 
our method must be identical to the sound radiated directly from the source. We place 
a source inside the closed surface and calculate the sound it generates on the surface. 
Using the sound field on the surface, we can calculate the radiated sound. This should 
be identical to the sound radiated directly from the source. Figure 4.8 shows the velocity 
potential field for a sphere with an acoustic source in potential flow. The comparison 
between the computed values and the values given directly from the source show very 
good agreement. In the following figures a is the characteristic length which for a wing 
and an aerofoil is the chord, for a sphere the radius and for a duct the internal radius.

8

3

2

1
0
1
2

-3

-4

-5

b

Figure 4.8: Velocity potential around a sphere in flow with M  = 0.1, a: ka =  1; b: 
ka =  10. Solid line indicates analytical solution and dashed line indicates computed 
solution.

Looking at Figure 4.9 we can see how the agreement between theoretical (<?W) and 
computational ((f>com) values improves as the number of nodes (TV) on the sphere surface 
increases. Another way to validate our code is to calculate the scattered pressure of a 
plane wave. Figure 4.10 shows a sphere and an oncoming plane wave.

The analytical solution for the scattered pressure of a plane acoustic wave from a 
sphere of radius a at a distance R  from the centre of the sphere and at an angle 6 from the
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Figure 4.9: Error vs ka for N  =  1080, N  =  2520 and A' =  4560 for 0.6.

Aeikx

Figure 4.10: Plane wave on a sphere.

direction of the incoming wave is given by [56]:

P(R,8) = y V 2 n  +  l)i"P„(cos (4.10)
n = 0

where j n is the spherical Bessel function of the first kind and hn is the spherical Hankel 
function of the second kind. Pn denotes the Legendre polynomial of order n. The fol
lowing figures confirm of the accuracy of the method and show the scattered pressure in 
the case of a plane wave for both analytical and computational methods. Moreover they 
show how accuracy improves as the number of nodes (N ) increases.

More specifically, a very satisfactory agreement of the two solutions is clearly illus
trated in Figure 4.11 where a reasonable wave number (ka =  10) is considered. A larger 
disagreement between the two solutions appears when we move to the far field, R /a  = 8 . 
Figure 4.12 which presents the error behaviour of pressure estimated according to the 
analytical formula of equation 4.10, for different wavenumbers and number of nodes, and 
shows that with a finer discretisation, the accuracy of the results improves.

To obtain a more realistic idea of how efficient the technique can be, it was checked 
against an analytical solution for a pulsating sphere in low Mach number flow. This ana
lytical solution takes into consideration effects of non-uniform flow at low Mach number. 
A pulsating sphere is shown in Figure 4.13. The surface displacement corresponding to
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0

Figure 4.11: Scattered pressure field (real part), ka = 10, a\ R /a  = 2; b: R /a = 8 . Solid 
line indicates analytical solution and dot line indicates computed solution.

0 .0 7 -

0 .0 6 -

0 .0 5 -

5  0 .0 4 -

0 .0 3 -

|| 0.02 -

increasing N0 .0 1 -

0 10 20 30
ka

Figure 4.12: Error in scattered pressure from a plane wave on a sphere for N  = 1080, 
N  = 2520 and N  = 4560.

the pulsating sphere is given by:

7?(x, t) =  aee~lut. (4.11)

Considering the displacement, the boundary condition on the surface is [20]:

^  =  ecCika +  3M cos 6)e~lut, (4.12)
or

where 9 is the spherical polar angle as indicated in Figure 4.13. The resulting solution for 
the velocity potential of a pulsating sphere is [20]:

A _  £ _ e ~ifcM (r+a3/2 r2) cos0
k

1iq2^(At) 3M  2 2 h? \k r )
+ — (2 ~ k a

i u>t

(4.13)
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Figure 4.13: Pulsating sphere.

where him) is the spherical Hankel function of the mth kind and nth order. Applying the 
boundary conditions given by equation 4.12 we solve the problem of a pulsating sphere. 
Figure 4.14 shows the error in acoustic velocity potential based on the analytical and the 
computational methods for two different Mach numbers. Observing the results we can see 
that we obtain a very good agreement between the two solutions. This is a very promising 
and positive result as it certifies that the method is working for the prediction of sound in 
non-uniform flows at low Mach numbers. The Mach numbers were chosen carefully as 
the analytical formula is valid for low speed flow and breaks down after a certain point.
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Figure 4.14: Velocity potential error (e) vs ka for a pulsating sphere for N  = 1080, 
N  =  2520 and N  = 4560. a: M  = 0.1; b: M = 0.3.
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4 .7  A e r o d y n a m i c  v a l i d a t i o n

In order to assess the accuracy of the steady aerodynamic part of our calculations, it was 
checked against experimental results [3] for an unswept wing in uniform flow at high 
Reynolds number (4.5 x 106). The cross section of the wing is a NACA 0012 and the 
geometry is shown in Figure 4.15. The measurements were performed at M  = 0.3 and at

16j01n - . «

-#15
.716

601

A l l

.112

Figure 4.15: Plan view of semispan wing indicating pressure tap stations in inches [3].

certain range of angles of attack. Figures 4.20 -  4.18 show the pressure coefficient (Cp) 
versus the dimensionless chord length (77). The solid line indicates the computed pressure 
coefficient and the star symbols the corresponding experimental. To cover a wide range 
of cases we selected three positions (root, middle and tip) along the span of the wing for 
three different angles of attack. Moreover, we chose most of the comparisons to be made 
when the high lift devices are extended to thoroughly examine the validity of our results 
in more demanding conditions.

The results show a good and quite satisfactory agreement with the corresponding ex
perimental data. Though, we have to keep in mind that it is not always feasible to simulate 
the exact flow conditions during the experimental procedure and consider all the factors 
that may affect it. Furthermore, our analysis simulates potential conditions and the exper
iments took place at high Reynolds number.

Two dimensional validation

In order to validate our method for the two dimensional calculations we did the ordinary 
check where an acoustic source is placed inside the boundary so as to obtain the surface 
pressure and the sound radiated from the surface should be identical to the sound radiated 
directly from the source. Figure 4.22 shows the computed and the analytical unsteady
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Figure 4.16: Pressure coefficient at M  = 0.3 and a  =  0°. Solid line indicates computed
and star symbols experimental results respectively.
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Figure 4.17: Pressure coefficient at M  = 0.3 and a = 6°. Solid line indicates computed
and star symbols experimental results respectively.
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Figure 4.18: Pressure coefficient at M  =  0.3 and a =  10°. Solid line indicates computed
and star symbols experimental results respectively.
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Figure 4.19: Pressure coefficient at M  =  0.3 and a =  16°. Solid line indicates computed
and star symbols experimental results respectively.
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Figure 4.20: Pressure coefficient at M  =  0.3 and a  =  0° with flap extended. Solid line
indicates computed and star symbols experimental results respectively.
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Figure 4.21: Pressure coefficient at M  =  0.3 and a  =  8° with flap extended. Solid line
indicates computed and star symbols experimental results respectively.
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pressure field for two Mach numbers. It is clear that there is very good agreement between
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Figure 4.22: Unsteady pressure around a circle with a unit acoustic source; computed 
values shown solid, analytical values dashed.

computed and theoretical results. Figure 4.23 shows the error of the unsteady pressure 
for M = 0.3 for different numbers of nodes on the circle.
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Figure 4.23: Error in unsteady pressure around a circle for N  = 200, N  = 300 and 
N  = 400.

As a check for the range of Mach numbers for which the method is valid, another 
comparison was made using an analytical formula that describes potential flow around 
bodies. The Janzen-Rayleigh equation [29] gives the maximum velocity over elliptical 
sections in compressible flows:

e  e2M 2( — 3 ,
* W - 1 + j '3 ^ 2  + --- 2 (1  -  /I2) 4-----  ( J

where e is the thickness ratio. Figure 4.24 shows the geometry of an elliptical section. 
Figure 4.25 shows the error, e = (Vmax — Vcom)/Vmax, versus Mach number for 6 different
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Figure 4.24: Geometrical characteristics of an elliptical section.

thickness ratios, where error is defined as the relative difference between the theoretical 
maximum (Vmax) and the computed maximum ( V ^ )  velocities. It can be seen from Fig
ure 4.25 that the error increases with Mach number and with thickness ratio. Figure 4.26
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Figure 4.25: Error behaviour with Mach number for the maximum velocity over an ellip
tical section.

presents the range of Mach numbers and the corresponding thickness for a given error. As 
we observe, the higher the demands for a small error, the less the combinations between 
Mach numbers and thicknesses. This also implies that the method is more suitable and 
more efficient for slender bodies such as aerofoils.

To find out if the accuracy of the method improves as the number of nodes (N ) in
creases, we checked the error according to the analytical expression, for different numbers 
of elements. Figure 4.27 shows the error computed with the Janzen-Rayleigh formula ver
sus the Mach number for four different numbers of elements. It is clearly illustrated that 
increasing the number of elements the accuracy increases as the error takes smaller values 
for higher N.
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Figure 4.26: Thickness vs Mach number for a given error in the maximum velocity over 
an elliptical section; dashed line indicates error 0.01; dotted line, 0.1 and solid line, 0.05.
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Figure 4.27: Error behaviour with Mach number for N  =  100, N  =  200, N  =  300 and 
N  = 400.



Chapter 5 

Parallelisation

Traditionally, programs have been written for serial computers which means that one in
struction is executed at a time using one processor. There are several classes of problems 
that require a lot of calculations. These problems can be categorised as simulation and 
modelling problems and problems dependent on computation or manipulation of large 
amounts of data. A strategy for performing large, complex tasks faster and more effi
ciently led to the idea of parallelism. A large task can either be performed serially, one 
step following another, or can be decomposed into smaller tasks to be performed simul
taneously, i.e., in parallel. Parallelism is performed by breaking up the task into smaller 
tasks assigning the smaller tasks to multiple workers to work on simultaneously and fi
nally coordinating the workers. More specifically this is implemented by decomposing 
the algorithm or data into parts, distributing the parts as tasks which are worked on by 
multiple processors simultaneously and coordinating work and communications of those 
processors.

There are different ways of implementing parallelism based on shared or distributed 
memory type. Figures 5.1 and 5.2 show the configuration of each type.

network

MEM CPU

MEM CPU

CPU MEM

CPU MEM

Figure 5.1: Distributed memory model.

The distributed memory system was adopted in the present work using a standard 
portable message-passing library definition called Message Passing Interface [4] (MPI). 
There are many advantages and disadvantages of using MPI. With MPI multiple pro
cessors operate independently but each has its own private memory and data are shared

56
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Figure 5.2: Shared memory model.

across a communications network using message passing, while at the same time a syn
chronisation option among the processors is available. Each processor can rapidly access 
its own memory without interference and without overhead. Consequently, increasing 
the number of processors, the size of memory increases proportionally. Programs using 
MPI run on any platform which has an MPI implementation without any need to modify 
the codes. The programs are independent of machine architecture and type of network 
employed to transfer data from one processor to another. Finally, many scientific libraries 
such as PETSc [78] and ScaLAPACK [79] employ MPI for message-passing communi
cation supporting the easy computational implementation of this tool. This does not mean 
that there are no drawbacks in using MPI. The programmer is responsible for many of the 
details associated with data communication between processors and therefore is prone to 
errors. It may be difficult to map existing data structures, based on global memory, to this 
memory constitution. The shared memory model system is called OpenMP and is shown 
in Figure 5.2. It describes a computer architecture where all processors have direct access 
to common physical memory. In a programming sense, it describes a model where paral
lel tasks all have the same “picture” of memory and can directly address and access the 
same logical memory locations regardless of where the physical memory actually exists. 
We will not expand on this type because it is beyond the scope of this work.

In acoustics problems the assembly procedure results in a matrix which is usually 
large as it contains information for both the real and the imaginary part of the left hand 
side of the boundary integral equation. This applies in particular in three dimensional ap
plications where the number of elements used is high. This results in a large system with 
a square matrix which is time consuming to solve because of the size. The solution pro
cedure was implemented using an iterative solver where a matrix multiplication is needed 
for every iteration to reach the solution. With an iterative solver matrix multiplication op
erations take place until the solution converges. The assembled matrix is split into parts
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so each of the processors reads a part and does the corresponding multiplication. Eventu
ally, after all the communication actions, one processor gathers the information from the 
others and carries out the rest of the work to achieve the solution.

5 .1  P e r f o r m a n c e  a n a l y s i s

In parallel programming there are various criteria to measure the performance of the par
allel program. The communication operations among the processors usually cost quite a 
lot of time depending on the type of the operation and the nature of the problem. This im
plies that there is the possibility that a parallel program can be less efficient than a serial 
program. Moreover, most of the time there are many different MPI commands that can 
lead to the same result. It is up to the programmer’s ability to choose the least expensive 
memory and time wise. There are many factors that we have to take into account before 
we assess a parallel program’s efficiency. Figure 5.3 shows what actually happens during 
the execution of a parallel program. As we can see there is a part of the serial program 
that cannot be parallelised and is executed by every processor in the parallel version.

Sermi

PftM 
proce&& 1

process 2

preen* 3

preen* 4

Figure 5.3: Balancing and overhead in a parallel program [4].

During parallel execution there are various phenomena that occur and affect the over
all efficiency. Looking at the figure we can see the load imbalance and the communication 
overhead. Parallel tasks typically need to exchange data. There are several ways this can 
be accomplished, such as through a network, however the actual event of data exchange 
is commonly referred to as communication regardless of the method employed. So, we 
can see that the data transfer over the network is time consuming, and this is an additional 
an overhead. Load balancing refers to the practice of distributing work among tasks so 
that all processors are kept busy all of the time. Load balancing is important to parallel 
programs for performance reasons. For example, if all tasks are subject to a barrier syn
chronisation point, the slowest task will determine the overall performance. To check the 
performance of a parallelisation we need an index to compare computation times. The 
following index is often used:

S(p ) = p-, (5.1)
1P

canno t be pa raJ W ised

can be pa ra lle lised
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where Tp is the elapsed time for the program to execute with p processors. Note that in 
the above formula the elapsed time is not the elapsed time of the parallel program run 
on one processor. Even executed with one process, parallel programs have an overhead 
for initialising the environment, such as calculating the range for loop variables. In the 
ideal case, S(p) =  p, but because the parallelised program has communication overhead 
and part of the program is not parallelised the speed-up is usually less than p. Another 
factor that should be taken into account is the specification of the hardware. For instance, 
consider two machines that have the same CPU but the network speed of one has half the 
speed. In such a case, the speed-up ratio also varies, even if you run the same serial and 
parallel programs. An additional way to measure the parallel performance is efficiency 
which is given by:

■nip) =  — • (5 .2)
P

Efficiency is actually a stricter criterion to check the parallel performance. There is an 
economic analogy, it is the speed-up over the number of processors. It is measuring the 
percentage of the beneficial work done by taking into account the the resources used or 
even better the processors used. The efficiency reveals the actual work produced in a 
more general way to evaluate the parallel performance.

5.2 Parallel calculations
The parallel implementation was applied to the resulting matrix system of the 3-D code 
for an aeroplane wing. The number of nodes on the surface of the wing is n, so the final 
matrix after the assemble procedure will be of size 2 n x 2 n.

The linear system to be solved is of form Ax =  b where A is the square matrix, x 
the unknown vector and b the known vector. The matrix A is split into a number of parts 
depending on the number of the processors. More specifically, if the number of elements 
of matrix A is neiems and the number of processors used is p then each processor allocates 
memory for a matrix of size nrows x neiems where nrows is the number of rows selected. 
Furthermore, each processor allocates memory for vector b in order to be able to do the 
multiplication between its part of A and 6. There is a synchronisation command which 
stops the next task starting before all the processors have done the multiplication. Then 
each processor sends the part of b to the others and from that point a single processor takes 
over the rest of the work to be done. The parallel code was developed in the University 
of Bath and it is in a extended to include a wide range of iterative methods.

We run the parallel code for a scattering problem for three different geometries on an 
IBM Linux cluster [80]. Figures 5.4, 5.5 and 5.6 show the speed up and efficiency for a 
duct, a wing and a sphere respectively. The first comment we could make observing the 
figures is that the smallest in size problem shows a rapid and satisfactory speed-up but its 
efficiency drops very quickly and to very low values. Larger problems seem to behave 
better as they show a steadier speed-up which keeps the efficiency at higher levels. A 
very good explanation for this behaviour would be that in problems with smaller size the 
parallel run time becomes much smaller compared to the overall time. Especially when
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Figure 5.4: Performance graphs for a sphere with an acoustic source of: M  = 0.1, ka =  1, 
N  = 4560: a: speed up; b: efficiency.
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Figure 5.5: Performance graphs for a duct with an acoustic source of ka = 1, N  = 8200 
nearby, a: speed up; b: efficiency.
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Figure 5.6: Performance graphs for a wing with an acoustic source of M  = 0.1, ka = 1, 
N  = 11016 nearby, a: speed up; b: efficiency.
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many processors are used to solve a small system the communication overhead is getting 
bigger and comparable to the run time. Furthermore, it looks as if the performance for 
bigger problems remains at higher numbers before it drops, compared to smaller problems 
where it falls even lower. In general looking at the performance figures we see the typical 
and usual features of such kind of plots. The speed-up graph rises up to a certain number 
of processors and then it breaks down. These characteristics are easily explained if we 
think that a certain percentage of the code is parallelised and the communication overhead 
and the load imbalance cannot be avoided. In spite of the fact that we tried to eliminate 
the load imbalance as much as we could using an even distribution of the data among 
the processors, the communication delays and technical difficulties will always limit the 
performance.



Chapter 6 

Results

In this chapter we present the results from the application of the numerical method devel
oped in the previous chapters. The results include two and three dimensional problems 
of an aerofoil and a wing respectively. Moreover, we examine the case of a wing with 
high lift devices in flow and at incidence. The results are contour plots of the sound field. 
A large number of figures are displayed in the Appendix presenting the sound pressure 
around a wing and an aerofoil for different flow Mach numbers and angles of attack. Here 
are shown some representative pictures that summarise the basic features that appear in 
the acoustic radiation. Apart from the lifting body scattering results we present some 
sound pressure directivities for a scarfed and a non scarfed duct without mean flow. We 
show the acoustic pressure for a duct with a fan, where the fan is simulated with a series 
of sources in a ring shape.

6 .1  S o u n d  f i e l d  a r o u n d  a  d u c t

Figure 6 .1 shows the coordinate system that is used, centered on the centre of the duct. 
The ring is located in the middle of the duct horizontal axis. The ring source has radius

Scarfing
angle

DiskDuct

Figure 6.1: Duct and scarfed duct geometry.
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a =  0.5m, while the inner duct radius r =  0.7m. The duct generator is an ellipse with 
horizontal dimension of 4a as shown in Figure 6.2.

y A

z

Figure 6.2: Elliptical section of the duct generator.

Figure 6.3 illustrates the pressure contour plots around the duct for three different 
scarfing angles. Having a look at the figure we can see how the sound is scattered from 
inside the duct to the field and notice the difference between scarfed and unscarfed ducts. 
As we can observe the radiation symmetry is destroyed when a scarfing configuration is 
considered and at the same time the pressure magnitude changes depending on the angle.

The sound pressure directivities that are presented in the following figures are plotted 
according to the coordinate system shown in Figure 6.1. The azimuthal order m =  6  and 
the scarfing angle is indicated in Figure 6.1 with the dashed line. Three tip Mach numbers 
were chosen, 0.9, 0.95 and 1.1, and three scarfing angles 7t / 9 , 7t/ 1 2  and 7r/18. The 
resulting acoustic directivities are shown in Figures 6.4—6 .6 . In each case, the magnitude 
of the radiated pressure is plotted against 0 at fixed R. In each polar plot, the red line 
is for R — 64, while the blue line is for R =  8 . The pressures have been scaled on 
their maximum value at each value of R  and the maximum value of the pressure is shown 
with the corresponding colour. We move the disk source towards one end of the duct to 
calculate the sound pressure field when the fan is close to the inlet of the engine. The 
noise directivity figures are all drawn under these geometrical conditions.

Figure 6.4 shows the directivities of the noise for Mt =  0.95 for the three different 
scarfing angles. In this case, one radial mode (modes were explained in section 3.5) is cut 
on and the second one is just cut off. It can be seen from Figure 6.4a that there is some 
radiation (R =  8 ) with a strong lobe at the intake and a weaker lobe at the exhaust. This 
happens because the mode propagates (cut on), so it reaches the exhaust and radiates. 
The intake lobe is strongest because the ring is located at the inlet. In Figure 6.46 with 
a scarfing angle of 7r/18, there seems to be a single strong lobe with scaled value almost 
three times greater than that of the case of the unscarfed duct. As we can see here, the 
whole image has completely changed in both the near field and the far field. The scarfing 
angle has forced the lobe to move in only one direction. The pressure is three times 
greater and the lobe looks to be wider. In Figures 6.4c and 6Ad the scarfing angles are 
7t/ 1 2  and 7r/ 9  respectively. As we can observe, as the scarfing angle becomes larger, the 
radiation field becomes wider, while the acoustic pressure finds more ways to exhaust.
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Figure 6.3: Color contour pressure plots around the duct, a: scarfing angle =  0 ; b: 
scarfing angle =  7r/18 ; c: scarfing angle =  tt/12 ; d: scarfing angle =  7r/6.

In Figure 6.5 where the Mach number is 1.1, two modes are propagating in the duct. 
It can be seen from Figure 6.5 that in the case of a simple duct the pressure field remains 
symmetric and the acoustic pressure forms a strong lobe because the modes are well cut 
on. In the far field (R = 64) we have an identical image of the acoustic pressure, as the 
only thing that changes is the magnitude of the pressure, which is small compared to the 
near field radiation. Furthermore, it is important to note that scarfing, in this case, is not 
very effective. Figure 6.5 demonstrates that scarfing ‘scatters’ the pressure field around 
the duct in different directions and creates a non-uniform image.

Finally, in Figure 6.6  we focus our attention on the effect of scarfing below the hori
zontal. The Mach number is 0.9 and one mode is just cut on. As one mode propagates, 
we have exactly the same features appear as in Figure 6.5. Taking a careful look at these 
figures we can observe that unlike in Figure 6.5 where two modes propagate, in Figure 
6.6  the scarfing does not cause a non-uniform field. The reason for this behaviour is that 
there are no other modes to propagate so as to interact with each other.

In Figures 6.4 and 6.6  we can see that for higher Mach numbers the acoustic pressure 
is much larger compared to that of smaller Mach numbers. This happens because the
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modes that are to propagate depend on the azimuthal order m, which is associated with 
the number of blades, and the duct radius. An interesting point comparing Figure 6.5d 
with Figure 6 .6 d, is that for well propagating modes, scarfing is more effective as the 
scarfing angle gets larger. When increasing the scarfing angle, there seems to be formed 
a wider but weaker single lobe in comparison with the lobes at smaller scarfing angles. 
Finally, a scarfing angle of 7r/18 to tt/12 causes an unusual radiated field where there is 
just one dominant lobe which is formed below the horizontal (Figure 6.4).

To conclude, it is worth drawing some basic ideas and observations on the effect of 
scarfing. Considering a duct, the radiated pressure is intensified below the horizontal, 
but at the same time it is strongly attenuated above the horizontal. As can be seen, we 
have chosen three very crucial Mach numbers for the fan tip velocity. Two of them are 
below supersonic and the other is above. All of them are feasible and exist when a fan 
operates. Looking carefully at the figures we can see that as the Mach number increases 
the acoustic pressure is larger. We can observe in the figures that in an unscarfed duct the 
acoustic pressure is getting larger and larger as the Mach number increases. On the other 
hand, the effect of scarfing does not reduce the acoustic pressure levels but it effectively 
change its direction. Scarfing breaks the symmetry of the sound radiation and can be 
effective when certain modes propagate. We have to point out that the last statement is 
of great importance if we think that in realistic conditions and especially during take-off, 
the fan blades speed reach supersonic speed.

6.2 Radiation field around a wing
In the following pages are displayed a number of three dimensional results. We plot the 
real part of the acoustic pressure around a NACA 2412 wing and a wing with high lift 
devices extended. This wing is a spanwise extension of 4 chords length of an aerofoil 
geometry provided by Trinity College Dublin as part of the European project ROSAS. 
A unit acoustic source is placed above the wing and it is indicated with a black circle in 
the pressure plots. We examine the field spanwise plotting the field on the x-y  plane at 
different z locations. Figure 6.7 shows the axis system and the planes. We chose low, mid 
and high Mach numbers and moderate and high frequencies to cover take off and cruise 
conditions. The source was placed at a specific point because there was interest in the 
role of flow in acoustic radiation and its shielding effect when the engine is located above 
the wing. This particular area of investigation arises from the ROSAS project. Figure 6 .8  

presents an overall image of the sound radiation around the three dimensional body. We 
can see the sound waves and their direction propagating from the source. The x-z, z -y  
and x-y  planes show the sound pressure in front of, above and underneath the wing with 
high lift devices. The same features are shown in Figure 6.9 for a simple wing. Observing 
the contours we can see the less uniform field due to the presence of the flaps and slats. 
The upper (y =  0.5m) and the lower (y =  —0.5m) planes of the wing show that the 
field above the wing is much stronger compared to that underneath. This is because the 
source is located above the wing. Another interesting feature rises looking at the front 
plane y -z  results where we can see the symmetrical radiation (even though the plot is not
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Figure 6.4: Ducted fan noise directivities, Mt = 0.95, a: scarfing angle =  0 ; b: scarfing 
angle =  7r/18 ; c: scarfing angle =  7r/1 2  ; d : scarfing angle =  7r / 9 .

Blue line indicates R =  8 and red line indicates R =  64.
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Figure 6.5: Ducted fan noise directivities, Mt = 1.1, a: scarfing angle =  0 ; b: scarfing 
angle =  7r/18 ; c: scarfing angle =  tt/12  ; d : scarfing angle =  7t / 9 .

Blue line indicates R =  8 and red line indicates R =  64.
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Figure 6.6: Ducted fan noise directivities, Mt = 0.9, a: scarfing angle =  0 ; b: scarfing 
angle =  7r/18 ; c: scarfing angle =  7r/12 ; d: scarfing angle =  ir/9.

Upper plot indicates R =  8 and lower plot indicates R  =  64.
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symmetric) on both sides of the wing as the source is in the middle of the wing.
Observing figures A.4, A.7 and A. 10 for low Mach numbers (M =  0.1) we can see 

that the sound around the wing is stronger above the wing and and at the same side of 
the source and less intense underneath. This is easily explained as the wing body acts 
as a protective layer that prevents the sound from travelling further down. Still though 
we can see sound pressure underneath the wing which is mostly due to the incident field. 
Having a look at figures A.3, A.6 and A.9 for mid Mach numbers (M =  0.3) we see 
no great surprise on the sound radiation pattern. It follows the same pattern as at low 
Mach number but especially at higher frequencies we can notice a slight effect of flow 
“stretching” the field in the streamwise direction. Moving to the high Mach numbers we 
can observe some very interesting results as there is a strong impact of the flow velocity 
on the sound waves.

The field takes a bizzare form where the acoustic pressure is very strong at the front of 
the wing. This phenomenon is called Doppler shifting and means that the sound radiated 
in the forward direction ahead of the source is amplified by the motion whereas the sound 
propagating at the rear is attenuated. This involves a streamwise directional change of 
the wavelength, where the new wavelength is multiplied by a factor. The Doppler shift
ing is more noticeable at higher Mach numbers and this is because its strength depends 
on the Mach number. Furthermore looking spanwise we can see that the field is much 
stronger in the middle of the wing (z/b =  0.5) compared to the tip (z/b — 0.1). This 
is easily explained if we think that source is located in the middle of the wing. Another 
characteristic that should be noted is the wake effect. It seems that for low Mach numbers 
the wake does not play a very important role in the sound radiation. When the Mach 
number increases, the picture at the area near the trailing edge changes, taking a radiation 
pattern that distracts the uniform and homogenous existing one for a lower Mach number. 
Commenting on the plots with an angle of attack we can say that there is a diversion of 
the sound field in the direction of the angle of attack. There is a rotation that follows the 
rotation of the wing.

Looking at figures A.5, A.6 and A.7, when the high lift devices are extended, we 
notice a few more features that occur because of the flaps and slats. The pressure field 
shows a less uniformly distributed image especially at higher frequencies compared to the 
corresponding one with the wing. This is due to the fact that this case contains sharp edges 
and slots. The high lift devices contain comers which cause the sound waves to change 
their direction and follow alternative routes. Moreover the gaps between the flap and the 
slat with the wing body allow sound to get through and strengthen the field underneath 
the wing. That is the reason why we can notice a stronger radiation field underneath the 
wing compared to the one without the high lift devices. An additional point that should be 
mentioned is that the high lift devices change the direction of noise distribution and this 
explains why the pressure field is rotated when the wing is at a certain incidence. Another 
feature that is dominant when the high lift devices are extended is the wake behaviour. 
As we have already mentioned, the wake is treated as a line extending from the trailing 
edge to approximately three chord lengths downstream. Because the flap is at an angle of 
attack this makes the role of the wake more noticeable in the radiation field.
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Figure 6.7: The wing and the positions of the result planes.

6 .3  R a d i a t i o n  f i e l d  a r o u n d  a n  a e r o f o i l

The following figures show the noise field for a point source radiating into a mean flow 
in the presence of an aerofoil and an aerofoil with high-lift devices fitted. The geometry 
of the aerofoil with the high lift devices was provided by Trinity College Dublin as part 
of the European project ROSAS and it is shown in Figure 6.10.

The characteristic length a is the aerofoil chord and in this case, a =  0.4m. From 
Figure 6.11 we can observe the shielding effect of flow on the sound radiation especially 
at higher Mach numbers. We can also see the effect of flow which stretches the radiation 
field in its direction and shows how important flow can be. In compressible flow the effect 
is much more obvious as the Prandtl-Glauert factor (3 = (1  — M 2 ) 1/ 2 which is involved 
in the pressure expression, decreases with Mach number. This results in a change of the 
streamwise component of the wave number and causes the sound field to be stronger for 
an observer standing in the front of the aerofoil than for another standing at the rear. The 
figures show that the high lift devices act like a protective layer where sound waves are 
reflected and change direction. Another important feature that becomes apparent is the 
trailing edge scattering effect which becomes more important if we think the trailing edge 
of the studied aerofoil is a sharp wedge. A sharp edge is a scatterer itself and influences 
the radiation field at the rear of the aerofoil.

Furthermore we can easily notice scattering behaviour of the sharp edge as well as 
the resulting pressure when two sharp edges are involved. This last fact applies to the 
aerofoil with high lift devices where the flap and the aerofoil end in a comer. Checking 
the results for higher Mach numbers and with high lift devices extended, it becomes 
clear that the wake has an impact on the sound scattering, as it seems that the latter is 
not uniformly distributed across the wake. The discontinuity of pressure as well as the
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Figure 6.8: Total acoustic pressure (real part) around a wing with high lift devices and a
unit acoustic source; contour levels ± 1 0 -1 , ± 10-2 , ± 10 -3 ; positive values shown solid,
negative values dashed.
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Figure 6.9: Total acoustic pressure (real part) around a NACA2412 and a unit acous
tic source; contour levels ± 10-1 , ± 10 -2 , ± 10 -3 ; positive values shown solid, negative 
values dashed.
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Figure 6.10: Aerofoil geometry with the high lift devices extended.

unsettled radiation pattern at the back of the trailing edge are two of the characteristics 
of how the wake influences the noise field. This happens especially in the case where the 
high lift devices are fitted and the wake strength increases due to the incidence of the flap.

In general, we could say that the wake effect increases with Mach number and it seems 
to have a noticeable effect on the scattered acoustic pressure. Observing figures for high 
frequencies, we can form an idea of what is happening at very high frequencies and at 
mid angles of attack. The effect of the flow is dominating and the incidence causes a pro
portional re-direction of the radiated field. Even though the wake strength is quite large, 
the wake does not seem to have much impact on the radiated sound field. Figure 6.11 is a 
very representative figure of what happens at high frequencies and mid angles of attack. 
The field appears to be separated into two domains with a difference between the wave
lengths. The flow Mach number wipes the acoustics waves and moves them towards its 
direction so, eventually, they counteract with each other.

Note on discontinuities

The discontinuity, (for example see Fig 6.11), which appears as a vertical and horizontal 
line through the origin, does not represent any physical phenomenon. Instead, it is an 
effect caused by the post processing software (Matlab) when the point (0,0) is included 
in the calculations. The problem can be alleviated by increasing the resolution of the 
mesh where the properties are calculated.
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M  =  0.1, a  =  10°

M =  0.3
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Figure 6.11: Total acoustic pressure (real part) around the aerofoil with high lift devices
and a unit acoustic source; contour levels ± 10-1 , ±10~2, ± 10-3 ; positive values shown
solid, negative values dashed.
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Chapter 7 

Conclusions

Aeroacoustics is a growing area and has received significant emphasis due to advances 
in air, ground and space transport. More specifically, it has become increasingly impor
tant to address all the noise issues that are associated with aspects of civil and military 
aircraft and high speed train aeroacoustics, and the impact of acoustics on structures. 
The increased use of fluid machines and engines has led to an increasing level of noise 
generation, and hence to an increasing interest in this area of research. Noise gener
ated by aeronautic systems or their components, sonic-boom created by high-speed flight, 
blade-vortex interaction (helicopters), turbulence-related noise in inlet flows (fans, com
pressors), noise from turbulent wakes and shear flows, noise from internal combustion 
engines are some of the most important areas to be investigated. All these phenomena are 
part of the aeroacoustics subject which is developing more and more to reduce commu
nity and cabin noise from subsonic aircraft and to minimize the noise impact of advances 
in transportation.

It has become increasingly important to address all of the above noise issues and new 
research needs to be conducted and effectively applied, in order to meet higher levels of 
noise certification and to make our world more environmentally healthy.

A lot of scientific research has been done in the area of aeroacoustics which includes 
both experimental and computational approaches. Our contribution to this wide field is 
restricted to the sound radiation from moving sources in non-uniform compressible and 
incompressible flow. We have investigated the unsteady phenomena that appear during 
the noise propagation especially from lifting bodies. We followed a particular BIEM 
already established and primarily used for aerodynamic purposes [12] and recently used 
for aeroacoustics of rotors [10]. The idea is to solve a noise scattering problem in non- 
uniform flows with an integrated aerodynamic/aeroacoustic approach. The basic concept 
is to calculate the aerodynamic and the aeroacoustic velocity potential and then apply 
the Bernoulli’s equation in potential flow. This is a coupled approach which provides 
the convenience of calculating separately the aerodynamic and the acoustic field and then 
combining them.

The problems we dealt with were scattering around wings and aerofoils. Placing 
the acoustic source above the lifting body and for different frequencies and flow Mach 
numbers we monitor the acoustic field pattern. The Doppler shifting dominates and is
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quite noticable because of the flow. It becomes much more apparent at higher Mach 
number where the Doppler factor is amplified. A very interesting feature is the sheilding 
effect of both the flow and the lifting surface. The flow plays a stretching role which 
pushes the acoustic waves backwards following the mean flow direction. At the same time 
the protective character of the wing is very clear when compared to the upper and lower 
areas of the lifting body. In three dimensions this feature is more noticable than in two 
dimensions. Observing both the two and three dimensional sound pressure distributions 
it seems that the wake does not have a strong effect on the sound scattering.

A future plan would be to apply the method to large scale geometries (aeroplane) 
which it would handle relatively easyly as the parallelization would speed up such a big 
problem. Uniform and non-uniform flow in a duct is another expansion of the method 
that has great potential to be completed. Moreover, duct acoustic treatment (liners) is also 
a very interesting application that could be implemented in the future. Expansion of the 
method to viscous flows to simulate the aerodynamic field is an idea that needs further 
development in the near future.

Concluding, we believe that we have added a very small stone to the pyramid of 
knowledge and that this will become the initiative or the starting point for another re
searcher to expand and to improve the current work in the future.
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Appendix A 

Appendix

A.l Three dimensional results for wings
Here are displayed the three dimensional results for a NACA2412 and supercritical sec
tion wing with and without high lift devices. The figures show the acoustic pressure 
contours around the lifting body for three different Mach numbers (low, medium and 
high) and for various frequencies. Also, the angle of attack effect is examined and the 
high lift devices are added. The contour levels are, ±10-1, ±10-2, ±10-3.
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z /b  =  0.1

z/b

M -  0.3

0.25

Figure A .l : Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.3,0.6; ka =  65; z /b  =  0.1,0.25,0.5.
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Figure A.2: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.6; ka =  30,65; z /b  =  0.1,0.25,0.5;
a = 10°.
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Figure A.3: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.3; ka =  30,65; z /b  =  0.1,0.25,0.5;
a  =  10°.
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z /b  =  0.1
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ka=30 ka-65

Figure A.4: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.1; ka =  30,65; z /b  — 0.1,0.25,0.5;
a  =  10°.
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z/b = 0.5

Figure A.5: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.6; ka =  30,65; z /b  =  0.1,0.25,0.5.
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z/b

ka=30 ka-65

Figure A.6: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.3; ka =  30,65; z /b  =  0.1,0.25,0.5.
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Figure A.7: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.1; ka =  30,65; z /b  =  0.1,0.25,0.5.
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Figure A.8: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.6; ka =  30,65; z /b  =  0.1,0.25,0.5;
a  =  10°.
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z/b = 0.5

ka=30 ka-65

Figure A.9: Total acoustic pressure (real part) around a NACA 2412 wing; positive values
shown solid, negative values dashed. M  =  0.3; ka = 30,65; z/b  =  0.1,0.25,0.5;
a  =  10°.
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Figure A. 10: Total acoustic pressure (real part) around a NACA 2412 wing; positive
values shown solid, negative values dashed. M  =  0.1; ka =  30,65; z /b  =  0.1,0.25,0.5;
a  =  10°.
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A.2 Two dimensional results
Here are displayed the two dimensional results for a NACA2412 and supercritical type 
aerofoil with and without high lift devices. The figures show the acoustic pressure con
tours around the lifting body for three different Mach numbers (low, medium and high) 
and for various frequencies. Also, the angle of attack effect is examined and the high lift 
devices are added. The contour levels are, ±10-1, ±10-2, ±10-3.
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Figure A. 11: Total acoustic pressure (real part) around the aerofoil; positive values shown
solid, negative values dashed. M  =  0.1,0.3,0.6; ka =  1.6,3.2.
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Figure A. 12: Total acoustic pressure (real part) around the aerofoil with high lift devices;
positive values shown solid, negative values dashed. M  =  0.1,0.3,0.6; ka =  1.6,3.2.
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Figure A. 13: Total acoustic pressure (real part) around the aerofoil with high lift devices;
positive values shown solid, negative values dashed. M  =  0.1,0.3,0.6; ka =  60,72.
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Figure A. 14: Total acoustic pressure (real part) around the aerofoil with high lift devices;
positive values shown solid, negative values dashed. M  =  0.1,0.3,0.6; ka =  60,72;
a  =  10°.
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