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Abstract

This thesis explores the chemistry of both ruthenium and rhodium N-heterocyclic 

carbene (NHC) complexes, most of which bear hydride ligands. The starting point 

for the project was the discovery that facile intramolecular C-H and C-C bond 

activation occurs in the complexes [Ru(H)2 (IMes)(PPh3 )2 (CO)] and 

[Ru(H)2 (IMes)2 (PPh3 )(CO)]. Efforts to understand the reaction mechanisms of these 

processes via attempted isolation of intermediate species, solvent effects and 

collaborative DFT calculations are described.

The photochemistry of a series of mono and bis alkyl-NHC dihydride ruthenium 

complexes [Ru(H)2(NHC)(PPh3)2(CO)] and [Ru(H)2(NHC)2(PPh3)(CO)] (NHC = 

IEt2 Me2 , I'Pr2 Me2 , ICy), has been investigated by a combination of steady state 

photolysis, time-resolved spectroscopy and in situ photolysis in the presence of 

/rarrahydrogen. The photochemistry is dominated by an isomerisation pathway and 

concurrent loss o f both H2  and PPh3 .

The related ruthenium hydride complexes, cis- and /nms-[RhH(NHC)(PPh3 )2 ], cis- 

and fra«s-[RhH(NHC)2 (PPh3 )], [RhH(NHC)3 ], and cis- and trans- 

[RhH(NHC)2 (CO)] (NHC = IEt2 Me2 , PPr2 Me2 , ICy, IMes) have been synthesised 

from [RhH(PPh3)4] and [RhH(PPh3 )3 (CO)]. C-H activation of the IMes ligand in 

c/s-[Rhl l(IMes)(PPh3)2 ] has been observed. In addition, the cationic complexes 

[Rh(NHC)3(CO)]+ and [Rh(NHC)4]+ (NHC = IEt2Me2, I'Pr2Me2, ICy) have been 

isolated along with the two dinuclear complexes, [(Rh(PPh3 )2 }2 (p-H)(ji-PPh2)] and 

[ {Rh(I'Pr2Me2 )2 (p-CO) {Rh(PPh3 )2 } ]. These complexes have been characterised 

using multinuclear NMR spectroscopy and X-ray crystallography.
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Chapter I Introduction

1. Introduction

The two emerging fields of bond activation chemistry and N-heterocyclic carbene 

(NHC) complexes have become intertwined in recent years with the publication of a 

significant number o f examples of NHC ligands undergoing intramolecular bond 

activation. This thesis investigates the examples of bond activation that have already 

been observed in the literature and within the Whittlesey group and discusses some 

examples of new activation reactions that have been observed. The synthesis of 

some novel rhodium NHC complexes is reported many of which have been 

characterised using X-ray diffraction. In addition, the thermal and photolytic 

chemistry of ruthenium NHC complexes has been investigated.

1.1. C-C and C-H bond activation

The large scale cleavage of C-C and C-H bonds is desirable for a number o f reasons 

but particularly for the more effective utilisation of hydrocarbons. For example, 

breaking a C-H bond in methane and then fimctionalising it to give methanol has 

been described as one of the “holy grails” of chemistry.1 To get two molecules of 

methanol from one molecule of ethane, however, would be even more desirable 

(scheme 1.1.).
CH4 ------------------------- ► CH3OH

c 2h6 ------------------------- ► 2 CH3OH

Scheme 1.1. Formation of methanol from methane and ethane.

At present, the petroleum industry cleaves large hydrocarbons by passing hydrogen 

over them at high temperature in the presence of a heterogeneous catalyst. These 

catalysts are not selective about which hydrocarbon bond they break so a diverse 

range of products is produced. Therefore, the potential use of transition metal 

chemistry to selectively and efficiently cleave C-H and C-C bonds is o f extreme 

importance.

3



Chapter 1 Introduction

Alkane coordination complexes (a possible precursor to bond activation reactions) 

are also believed to be intermediates in organometallic catalysed reactions such as a- 

bond metathesis2,3 or Zeigler-Natta catalysis.4,5

1.1.1. Binding o f alkanes to metal centres and their C-H activation

The binding of an alkane to a transition metal centre is not as facile as the binding of 

other substrates such as alkenes, carbon monoxide and dinitrogen, because an alkane 

does not possess 7r-electrons or electron lone pairs that can interact directly with the 

metal centre.6 However, work by Shilov and co-workers demonstrated that alkanes 

could be functionalised in the presence of platinum complexes and, although the 

mechanism of the reaction could not be established, the observation of H/D 

exchange in the alkane substrates suggested that oxidative addition o f the C-H bonds 

to the platinum centre occurred.7

1.1.1.1. Intermolecular alkane activation

The first definitive examples of intermolecular alkane activation, were provided
O Q

almost simultaneously by Graham and Bergman who demonstrated the activation 

o f a CH2  group in cyclohexane upon photolysis in the presence of [Ir(CO)2 (Cp*)] 

and [Ir(H)2 (PMe3 )(Cp*)] (1) (Cp* = T^-CsMes) respectively (scheme 1.2. shows the 

C-H activation of cyclohexane by 1). Bergman subsequently showed that when the 

reaction with 1 was carried out at low temperatures in liquid krypton or xenon, other 

alkane substrates could be activated and stabilised on the metal centre.10 He 

concluded that photolysis of 1 leads to loss o f H2 , leading to the coordinatively 

unsaturated 16-electron [Ir(PMe3 )(Cp*)] species. The alkane can then oxidatively 

add to the metal centre via a three-centred transition state (scheme 1.3.). Bergman 

has since gone on to carry out extensive investigative work into the mechanism of
Q 11 7 7alkane C-H bond activations on various transition metals. ’

4



Chapter 1 Introduction

hv
-Ho

Scheme 1.2. The first example of C-H activation of an alkane presented by
Bergman.

lrv-"iiH -H lr R
Mê P Mê PMe-,P Me3P >  

H

R -H  = C6H12, C3H6i Me4C, CH3(CH2)3CH3, CH3CN, THF, C6H6 

Scheme 1.3. Mechanism of intermolecular C-H activation at an lr(I) centre.

There are four possible transition bonding modes for an alkane to a metal centre 

(figure 1.1.). Studies carried out by Crabtree and co-workers on a series o f structures 

of C-H-M complexes has suggested that during intermolecular C-H activation, the 

C-H bond approaches the metal atom end-on (I). This results in a strong M-H 

interaction. The C-H bond then rotates, bringing the carbon atom close to the metal 

centre to form a three-centred transition state (II).2829 This transition state agrees 

well with that calculated by Koga et al. for the addition o f CH4 to [RhCl(PH3)3].30

Other calculations, however, suggest that alkanes can also bind to metal ions via
2  •  • • • r| -H2 coordination (III), although this does not necessarily lead to C-H

activation.31,32 Ball has suggested, using dynamic NMR experiments, that the p2-H2

mode of binding is a low-energy transition state between two rj2-CH structures.33

 M
h '

2

R ^ hvM
H  H H

2 n r ,  f t  T\ „ 2  TT / 1 1 1  \ _ 3tl'-C H (I) t]z-CH (II) r f-H 2 ( i n )  n - H 3 (IV)

Figure 1.1. Binding modes o f alkanes to transition metal centres.

Recently, in 2005, Ball reported the observation of the binding of pentane to a 

rhenium centre.34 By !H NMR spectroscopy it could be seen that the pentane binds

5



Chapter 1 Introduction

to the metal in three different modes, from carbons 1(5), 2(4) and 3 along the alkyl 

chain (figure 1.2.). These three structures are in a dynamic equilibrium with the CH2 

sites being slightly favoured over the CH3 (by 0.5 ± 0.08 kJ mol'1). At -100 °C the 

three isomers are interconverting on a timescale of about 1-10 s '1.

^ ^ ' P r  ^ ^ - ' P r  ^ ^ ' P r

H'B\ /7//c o  H^eV',,//C0 h ' ^ ' C O
CO q CO g  CO

V h vv h  ^  v//h
CH3 c h 3

H

Figure 1.2. Three binding modes of pentane to a Re centre.

1.1.1.2. Intramolecular alkane activation

Intramolecular C-H activation of ligands already attached to a transition metal centre 

is a far more commonly reported phenomenon compared to intermolecular 

activation. This is due to the C-H bond being more kinetically and 

thermodynamically predisposed to activation. However, many of the factors 

governing intramolecular C-H activation are poorly understood.35 For example, it is 

unclear why species such as [Re(PMe3)2 (Cp*)] and [Fe(PMe3)4] readily undergo 

intramolecular C-H activation with one of the phosphine ligands, whereas 

[Rh(PMe3)(Cp*)j and [Ir(PMe3)(Cp*)] do not.

van Koten and co-workers have undertaken investigations into the intramolecular 

C-H activation (or 0 r//*ometallation) of various phosphinoarene (PCP) pincer 

ligands (figure 1.3.) on late transition metals.3638 Because the place where the 

aromatic ring activates is very site specific this or/Zio-metallation reaction lends 

itself to the possible selective functionalisation of certain C-H bonds. Pincer ligands 

are particularly useful to study mechanistic aspects o f these reactions as they can 

stabilise reaction intermediates during a reaction, hence allowing further study to be 

undertaken. In addition, the pincer ligands can slow the rate o f the reaction, which 

can help provide a kinetic insight into the or/Zio-metallation process.

6



Chapter 1 Introduction

ER;

ER.
P, N

R = Me, Et, Ph 

Figure 1.3. A generic pincer ligand.

As early as 1968, Cope and Friedrich had proposed that ort/io-metallation may occur 

via a mechanism analogous to electrophilic aromatic substitutions.39 This proposal 

was augmented by van Koten who isolated a number o f intermediates on the 

reaction pathway for C-H bond activation of phosphine pincer ligands on platinum 

centres.37

The cleavage o f both intermolecular and intramolecular C-H bonds has been 

relatively successful with some of the examples from the literature discussed above. 

C-C bond activation, however, poses more o f a challenge. Insertion into a C-C bond 

is not a thermodynamically forbidden process, although there are few examples that 

do not involve utilising the relief o f ring strain or formation o f aromatic products as 

the driving force.

1.1.2. Barriers to C-C activation

C-C activation is particularly difficult on a thermodynamic level.40 An sp3 C-H bond 

will favourably break to form a M-H bond and a M-C bond. This is because the 

bond dissociation energy (BDE) of a single C-H bond) 391-428 kJ mol'1) is usually 

slightly less than that for a M-C bond (124-185 kJ m o l1) and M-H bond 

(approximately 247 kJ mol'1) combined. The tendency of a system to undergo C-H 

activation to give oxidative addition on to a metal centre is actually highly 

dependent on the M-C bond with metals further down the Periodic Table generally 

giving stronger M-C bonds and therefore being more favourable sites for C-H 

activation.41"43 C-C bonds are very strong (BDE = approximately 356 kJ mol"1) and

7
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therefore there is a large thermodynamic barrier going from C-C bonds to C-M-C 

bonds (scheme 1.4.).

391 kJmol'1 H
371-432 kJmol'1

/ C
C C ---------- -- M

\
356kJmol , t-i248-370 kJmol

Scheme 1.4. Approximate bond dissociation energies o f C-H, C-C, C-M-H and
C-M-C systems.

This thermodynamic barrier is augmented by various kinetic barriers. Compared to 

C-H bonds, C-C bonds are very directional in nature. The C-C bond is very 

symmetrical with the sigma orbitals from the carbon atoms pointing towards each 

other down the bond. This does not leave an incoming metal with much electron 

density available to interact with. By comparison, in a C-H bond, the spherical o 

orbital of the hydrogen gives a better target for interaction with a metal (figure 1.4.).

T ( ) (
Figure 1.4. Influence of orbital directionality on C-H (left) and C-C bond cleavage.

In addition, in the majority o f hydrocarbon systems, C-H bonds are statistically more 

abundant than C-C bonds, making the chances of them coming into contact with an 

incoming metal greater than that for a C-C bond. C-H bonds also shield the C-C 

bonds from attack by a metal.44

8
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The kinetic barriers for metal insertion into a C-H or C-C bond are independent of 

the metal. This suggests that the process of insertion is influenced solely by the 

differences in C-C and C-H bonds and not by the nature o f the metals.

One other major difficulty with metal insertion into C-C bonds is that the amount o f 

energy required to overcome the large activation barrier required for C-C bond 

cleavage often results in thermal decomposition of the metal complex.45

1.1.3. Routes to C-C activation

Scheme 1.5. shows how ring strain can be utilised to induce the activation of C-C

bonds.46-50 Strain relief in the product provides the driving force for the reaction. The 

HOMOs connecting the carbon atoms are bent outwards from the intemuclear axis. 

This makes them kinetically more accessible and more readily available for 

interaction with a metal (figure 1.5.).52

[{Pt(C2H4)}2(|i-CI)2] A
ci

Cl

\
Pt

/
pyridine

py
Cl

py
/

Cl

Scheme 1.5. Insertion of Pt(II) into C-C bonds o f cyclopropane.

Figure 1.5. The py orbital of the metal and the cyclopropane a  orbital interact to give 
a o bond and the metal dxv and cyclopropane a* orbitals form a n bond.

The formation of aromatic systems can also induce C-C bonds to break. Scheme 1.6. 

shows how a molybdenum complex rearranges with the breaking o f a Cp-Et bond to 

give an aromatic group once a vacant site has been generated on the metal.42 This is 

a thermodynamically driven process where energy is gained from the generation of 

aromatic functionalities. The rigidly coordinated cyclopentadiene moiety also forces

9
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the alkyl group towards the metal centre, making the reaction kinetically plausible. 

When there is a choice, the endo-alkyl group that lies closer to the metal centre is 

always favoured for transferral to the metal.

Et 1  b f4

tMoCtfPPhMed) T'BF4- - >  ^ -[M o C p (P P h M e2)] + TICI 

Scheme 1.6. Using aromatisation as the driving force to break a C-C bond.

1.1.3.1. C-C activation usinz vincer complexes

Pincer ligands, similar to the ones discussed in section 1.1.1.2., have been developed 

by Milstein to chelate to a metal centre thus bringing a specific C-C bond close to 

the metal and promoting its activation. In scheme 1.7., the rhodium metal inserts into 

the methyl C-H bond at room temperature. Heating at 90 °C converts this to the C-C 

activated product.52 This demonstrates the higher thermodynamic stability of the 

C-C activated complex compared to the C-H activated complex. The reaction is 

thermodynamically driven by the elimination o f methane. The authors postulate that 

the C-H reaction is reversible and would revert to the original product under an 

atmosphere of hydrogen.

Computational studies on the formation of PCP pincer rhodium species, suggest that 

C-H activation is always the kinetically favoured process although C-C activation is 

actually more stable.53 It is also suggested that the C-H activated complex can 

interconvert to the C-C activated complex via an intermediate agostic structure 

(scheme 1.8.). Further calculations suggest that the electronic requirements for C-C 

and C-H activation are essentially the same (with the key intermediates being 

14-electron species) whereas the steric requirements leading to activation differ 

significantly with chelation appearing to play an important role in C-C activation.54 

When the phosphinoarene ligands have only one phosphine arm to bind to the metal 

centre, C-H activation generally ensues whilst when the ligands are bidentate, the 

C-C activated product is more thermodynamically stable.

10
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H3Ck y — PPh2

-CH3 + [RhH(PPh3)4] 

H3C' n— PPh2

+H,
-3PPh3
-H2

PPh-

Rh— PPh-

PPh

Ĥ CV y— PPh2

-Rh—PPh, + CH4

I
H3C' n— PPh2

Scheme 1.7. Tethered rhodium inserting into a C-C bond.

C-H activated

CH3
pR2 /

Rh— Cl

C-C activated

Scheme 1.8. Formation of C-H and C-C activation complexes via agostic
intermediate.
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Since the first synthesis of the PCP pincer ligand and its use in a C-C activation

cleavage in metal pincer complexes whereas N-H bonds are activated

1.9.). Milstein postulates that the reason for this dramatic solvent effect is steric in 

nature. Acetonitrile is very coordinating and will bind strongly to a metal centre, 

producing a four coordinate intermediate prior to insertion into the less sterically 

demanding C-H bond. THF is only loosely bound to the complex, thus the active 

species in solution is likely to only be three coordinate and more accessible to the

reaction, Milstein and his group have created a whole family of similar ligands 

which also undergo C-C activation. These include PCN55 and PCO54 pincer ligands
c r  C*J

and C-O and C-F bonds have also been observed to undergo intramolecular

intermolecularly.58 Milstein has also demonstrated that solvents play a crucial part in 

determining whether the system favours C-H or C-C activation.54,59 For example, in 

a system utilising P*Bu2  ligands, he has found that if THF was used as the solvent it 

led to C-C activation whereas using acetonitrile resulted in C-H activation (scheme

C-C bond.

MeCN

•Rh— NCMeCH3 + [Rh(C8H14)2(soh/)n][BF4]

MeCNMeCN

v /r~PBu2
f \ A  » HP V  Rh^
\ = / / l  \lC M e  

^-pfBu2 
MeCN

Scheme 1.9. Solvent effect on bond activation in PCP system.
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Jones has done extensive investigative work on the cleavage of C-C bonds with 

transition metals.60-63 He utilises biphenyl ligands and, more recently, aromatic 

amines to participate in C-C activation. Initially he employed rhodium as the metal 

centre as this forms strong metal-aryl bonds. This was precoordinated with a 

substituted cyclopentadienyl ligand, which has been shown to direct the metal to the 

target C-C bond.64 Jones believes that this reaction proceeds via a C-H activated 

complex, followed by r|2 coordination, before the C-C bond is attacked (scheme

1.10.). This work has been extended to include palladium, platinum, cobalt and 

nickel complexes with chelating PP and PN ligands and aromatic nitriles.45,62’65'67

RhRh
PMe-

85 °C, 1 day 
C6D12

Rh
PMe-

85 °C
Rh-.. Rh

5 daysPMe,
Rh

Scheme 1.10. C-C activation of biphenyl in rhodium-Cp* complex.

1.2. N-heterocyclic carbene complexes

The use of N-heterocyclic carbenes (NHCs) in organometallic chemistry, 

particularly for applications in homogeneous catalysis, is a rapidly growing area of 

chemistry. The discovery that NHCs can be used in place of phosphine groups on 

metal centres, often to give much better catalysts, has prompted a flurry o f research
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into the area with the best, and most widely employed, examples being synthesised

Figure 1.6. An example of a generic NHC catalyst developed by Grubbs for alkene
metathesis.

This introduction covers the basic chemistry of NHCs and NHC-metal complexes 

and discusses the bond activation reactions that have been observed in them.

1.2.1. N-heterocvclic carbenes

Carbon generally forms compounds where all four of its valence electrons are 

utilised in bonding to other atoms. In carbenes, however, the carbon atom only forms 

two bonds thus leaving two spare electrons.

77Most carbenes have a bent geometry, with bond angles between 100 ° and 150 ° 

and in these bent molecules, the two non-bonding electrons can exist in two states, 

known as the triplet and singlet states. The triplet state consists of two unpaired 

electrons, one in the sp2 hybridised orbital and one in a p  orbital. These types of 

carbenes are generally short lived and difficult to isolate but are detectable as 

intermediates in reactions using electron spin resonance spectroscopy due to their 

unpaired electrons. When both electrons reside in a non bonding sp2 hybridised 

orbital this is known as a singlet state and it results in the presence of an empty p  

orbital (figure 1.7.).

by Grubbs for use in alkene metathesis (figure 1.6.)J68-71

PCy3
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H-?Q„
< P Q <^0

triplet carbene singlet carbene

Figure 1.7. The triplet and singlet states of carbenes.

All carbenes can exist in either a singlet or a triplet state but Bertrand notes that the 

singlet state is usually favoured over the triplet if there is a larger o - 7 i  separation.7j 

Hoffman made the assumption, from investigations into trimethylene (CH2CH2CH2), 

that a triplet ground state arises when the energy levels are separated by less than 1.5 

eV and that a singlet states arises when the energy levels are at least 2 eV apart.74 

The importance of the energy gap between the orbitals means that the substituents 

on the carbenic carbon largely determine the state o f the carbene. Carbenes found in 

the singlet state have electron rich substituents such as Cl, which place n lone pairs 

next to the carbenic carbon. These can interact with the empty p  orbital on the 

carbenic carbon atom, producing a lower energy orbital which the two electrons 

occupy. Singlet carbenes show both electrophilic and nucleophilic reactivity because 

they have both an empty p  orbital and a lone pair of electrons.

As early as 1962, Wanzlick realised that by tuning the vicinal groups on the carbene 

so that they provide 71-donor/a-acceptor character to fill the empty p  orbital on the 

carbene, the electrophilicity o f the singlet carbene would be reduced (figure 1.8.). 

This is because the lone pair on the carbene is stabilised and would reduce the 

reactivity o f the carbene therefore allowing it to be isolated.75,76

Figure 1.8. o-acceptors and 71-donors vicinal to the carbene-carbon atom stabilise
singlet carbenes.
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It was not until 1991, however, that Arduengo managed to isolate a stable singlet 

carbene with nitrogens in the vicinal position bearing adamantyl groups (figure
7 71.9.) . Arduengo attributes Wanzlick’s failure to isolate a stable singlet carbene as 

being due to the inconvenient physical properties of the carbene and possible 

problems with respect to the purity o f the starting material. 7 8

Figure 1.9. LAd, first isolated by Arduengo. It is remarkably stable and sealed under 
a few atmospheres o f CO, showed no decomposition for 7 years.

As predicted by Wanzlick, and demonstrated by Arduengo, the electron donating 

abilities of the vicinal substituents are highly important in stabilising carbenes. Most 

stable, isolable singlet carbenes have nitrogen donors next to the carbon to donate 

electron density into the empty n orbitals of the carbon. They also generally form 

part of a ring and this provides steric stabilisation for the carbene. These types of 

carbenes are known as N-heterocyclic carbenes (NHCs). Since Arduengo’s 

successful synthesis o f the adamantyl substituted NHC (IAd), many other members 

o f the family have been synthesised, including IMe7 9 , 1 'Pr2 Me2 80, IMesH2 8 1  and the 

bidentate NHC IMe(CH2 )2 IMe8 2  (figure 1.10.).

^  \HsC - N ^ N — c h 3 V n  m
• •  /  • •

IM e l'Pr2M e2

,C— N N . /  \
N ^N -C H s 

••
IM esH2 IM e(C H 2)2IM e

Figure 1.10. Series of other NHCs with different functional groups and chelating
structures.
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The stability of NHCs is greatly affected by the steric parameters o f the nitrogen 

substituents. Although IMe is a moderately stable oil at room temperature (it needs 

to be kept under an inert atmosphere), generally the larger the R groups, the more 

stable the carbene. 7 6  In addition, having substituents on the backbone stabilises the 

NHC. IMe4  (with methyl groups on the backbone) is a solid at room temperature and 

can be handled in air (although not for long periods of time).

Certain NHCs, especially those with saturated backbones, have a propensity to 

dimerise and this has been termed the Wanzlick equilibrium . 8 3  Herrmann attributes 

this phenomenon to the shrinking of the singlet-triplet gap when the backbone is 

saturated . 8 4  This arises from the loss of 7t-delocalisation, which adds inherent 

stabilisation to the free NHC. Recently, Alder et al. have carried out an extensive 

investigation into the kinetics and mechanism of the dimerisation o f 

diaminocarbenes, which are not part of a ring system . 8 5  They found that the filled sp2 

lone pair orbital of one carbene needs to approach the empty p  orbital o f another for 

dimerisation to proceed (figure 1.11.). However, the bigger the steric bulk o f the N- 

substituents, the more sterically hindered this transition state becomes, hence 

preventing dimerisation.

,••■111111

Figure 1.11. Transition state geometry for the dimerisation of singlet carbenes.

According to Herrmann, the electronic features of the NCN moiety in NHCs is also 

crucial to their stability . 8 4  He attributes this to two effects. Firstly, the difference in 

electronegativity of nitrogen and carbon accounts for an inductive effect that 

stabilises the pair of unshared electrons in the in-plane carbene orbital. In addition, 

the unoccupied p  orbital yields a rc-resonance interaction where the nitrogen atoms 

donate their lone pairs to the carbon.

17



Chapter 1 Introduction

1.2.2. A comparison of NHCs to phosphines

Phosphine ligands (PR3 ) are used to a large degree in organometallic catalysis. This 

is, in part, due to their relative inertness. Although some examples have been 

highlighted earlier in this chapter where phosphines have undergone ortho- 

metallation reactions, this is the exception rather than the rule. In general, 

phosphines act as spectator ligands, stabilising reaction intermediates. In addition, 

they are labile and can come off the metal centre under the right conditions, leaving 

a vacant 2 -electron site where substrates can bind and undergo transformations. 

Phosphines provide a rich range of chelate, pincer, tripod and other ligand 

architectures, which allow tuning and selection of various catalytic pathways.

NHCs are often described as phosphine mimics because they possess many of the 

same characteristics as phosphines . 7 6  In particular, the lone pair of electrons which 

can be donated to a metal. In addition, they are able to be functionalised8 6  and to be
0*7   q n QA

made chiral. They can also be water soluble, ' like phosphines and have 

immobilised derivatives, making purification easier. 9 1

However, there are important fundamental differences between NHCs and 

phosphines. NHCs have a two dimensional structure as opposed to the ball shape of 

phosphines and, when complexed to a metal, the M-C bonds are generally more o- 

donating in nature than the more 7t-accepting M-P bonds. Many NHC based catalysts 

(for example, those used for the Heck reaction) also exhibit longer life times in 

catalytic cycles than their phosphine analogues. This has been suggested to be 

because NHCs are retained on the metal centre better than phosphines. 9 2  NHC 

complexes also tend to be more air and moisture stable than the equivalent 

phosphine complexes. 9 3

As the substituents on NHC ligands are an extra bond away from the metal centre 

compared to phosphines, they provide an umbrella-like influence on the metal, 

shielding it with the substituents on the nitrogen (figure 1.12.). This allows
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coordinatively unsaturated metal centres to be stabilised and also helps small 

molecules to interact with the metal centre. However, this additional bond also 

enhances the susceptibility o f the substituents to activation. This phenomenon is 

discussed in more detail later.

Figure 1.12. The R group in a M-NHC complex is one more bond away than in a
M-PR3  complex.

Bidentate and tridentate NHC ligands are also known. However, as Crabtree points
0/ m

out, these do not have the same advantages in functionality as their phosphine 

equivalents because they often do not chelate and will instead bind to two separate 

metal centres or form other undesirable products. 9 4  Crabtree attributes this to 

tendency of NHCs to bind irreversibly to a metal centre. This means that the initial 

kinetic binding mode is unable to be corrected and thus is retained in the product. 

Phosphines, however, are more labile and will undergo reversible binding reactions 

until the thermodynamic, chelated, product is achieved.

Until recently there was no definitive way to compare the steric bulk of various 

NHC ligands as there is with Tolman’s cone angle calculations for phosphines. 9 5  

However, Nolan has now created the concept of percentage buried volume for 

NHCs. This system is particularly useful as it also allows NHCs to be compared to 

phosphine ligands. 9 6  The values have been calculated both experimentally and 

computationally. The theory takes into account the closest carbon substituent on the 

NHC (placed at 2  A in calculated structures) to the metal centre and calculates the 

volume of a sphere (at 3 A from the metal centre) that the ligand occupies (% V&m) 

(figure 1.13.). The values obtained for the % Vbut o f various ligands on 

[Cp*Ru(L)Cl] (L = PR3 , NHC) were plotted against experimentally determined bond 

dissociation energies (BDEs) and clearly show a linear relationship, suggesting that 

BDEs are essentially controlled by the steric requirements o f the ligands (figure 

1.14.).
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Figure 1.13. Sphere dimensions for steric parameter determination (%FBur) of NHC
ligands.

Ad
36

32

30

IPr28

26

ITol

22
10 18 206 8 12 14 16

Relative BDF (keal m ol 1

Figure 1.14. Relative bond disruption enthalpy (kcal/mol) vs steric parameter 
(%VBur) in the [Cp*Ru(L)Cl] system (slope: -1.01; R: 0.94). SIMes = IMesH2, SIPr

= IPrH2.
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The steric properties of NHCs are more influential on the ligand sphere than 

phosphines or the other common spectator ligands, cyclopentadienyls. This is due to 

their two dimensional structure. Phosphines and cyclopentadienyls are cone shaped 

so rotation about the M-L bond should not greatly affect either their steric or 

electronic properties. In monodentate NHC complexes, the NHC ligand will tend to
OZ"

rotate so that any steric clash with the other ligands is minimised.

Having substituents on the backbone of an NHC ligand such as methyl groups or 

chlorine should, intuitively, affect the reactivity. This has been shown to be the case 

by Magill and co-workers who determined computationally the relative basicities of 

a series of NHCs in aqueous solution . 9 7  I'Pr2 Me2  is more basic, and thus more 

nucleophilic, than the analogous NHC without the methyl groups on the backbone, 

I'Pr2  (pKa = 30.4 ± 0.3 for I 'P ^ N ^ , 28.2 ± 0.3 for I'P^). This implies that the methyl 

groups on the backbone increase the electron donating properties o f the NHC ligand.

There have been a few experimental and computational studies into the electronic 

properties of NHCs as ligands. These have used the IR shifts o f vco resonances to 

compare the influence o f N-alkyl and N-aryl groups and also to compare the effect 

o f changing the substituents on the imidazole backbone. In all o f these studies very 

little difference was found between the NHC ligands (in [Ni(L)(CO)3 ], L = IMes, 

vco = 2051, 1970 c m 1; L = IMesH2, vco = 2052, 1971 c m 1; L = ICy, vco = 2050, 

1965 c m 1 ) 9 8  themselves although they were found to be generally better donors than 

phosphines. 9 8 - 1 0 0  In contrast, the R group on phosphine ligands significantly changes 

the vco stretching frequency (in [Ni(L)(CO)3 ], L = PPI1 3 , Vco = 2069, 1990 cm-1; L = 

PCy3 , vco = 2056, 1973 cm'1)98. Crabtree rationalises this phenomenon because of 

the extra bonds between the donor atom in NHCs and the R group. This means that 

the donor atom essentially retains the same immediate environment. However, the 

better donor properties o f NHCs compared to phosphines have been shown by 

comparing vco shifts of analogous complexes both computationally and 

experimentally. For example, [Rh(Cl)(IMes)2 (CO)] has a vco stretching frequency 

of 1935 cm ' 1 whereas the band for [Rh(Cl)(P'Pr3 )2 (CO)] comes at 1943 cm- 1 . 1 0 1 , 1 0 2
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1.2.3. Metal complexes with NHCs

Although Lappert synthesised metal-NHC complexes in the late 1970s and early 

1980s these came from the cleavage of the electron-rich C-C bond in an 

enetetramine (the dimeric form o f the NHC, figure 1.15.) which were neither as
103 198versatile or as easy to complex with a metal as Arduengo’s free NHCs. 

Lappert’s work is still important, however, and his enetetramine method is still used

Many o f the metals of the Periodic Table have now been incorporated into stable 

metal-NHC complexes. NHCs have an amazing capacity to coordinate to metal

metal-carbon bond is often described as a strong a-bond and is usually about the 

length of a typical metal-hydrocarbon single bond (2 . 1  A). Compared to phosphines, 

NHCs have a considerably higher donor capacity to the metal centre, but their 71- 

acceptor capability is only relatively small, more comparable to nitriles and pyridine.

Although NHCs are generally touted as poor 7t-acceptors, Taube and Clarke noted in 

1975, a band at 348 nm in the UV visible spectrum of a ruthenium-NHC complex 

that suggested that metal-ligand charge transfer, or back-bonding was occurring 

(figure 1.16.).130 Since then, calculations have suggested the presence of back- 

bonding in late transition metal complexes. 1 3 1 " 1 3 4  Although these all suggested that 

o-bonding accounts for more than 70 % of the stabilising orbital energy, this does 

suggest that NHC back-bonding is not a negligible effect. Meyer and co-workers 

suggest that if 7i-back-bonding in metal-NHC complexes is significant, the length of 

the N-C bonds in the imidazole ring should increase when the NHC is bound to

occasionally today . 1 2 9  His work is discussed in more detail in chapter 3.
R R

R R

Figure 1.15. A generic enetetramine.

centres, whether they are electron rich transition metals (Pd°, Rh1), electron poor 

main group metal cations (Be2+) or high oxidation state metals (TiIV, ReV I 1 ) . 8 4  The
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l-JC
more electron-rich metal centres. They compared crystal structures o f bis IMes 

complexes of electron poor I+ that is incapable of back-bonding (N-C = 1.346 A), 
Ni(0), which is electron rich and easily back-bonds (N-C = 1.375 A) and Ag(I), 

which is somewhere in between (N-C = 1.358 A). This certainly seems to suggest 

that back-bonding does play some role in the structure of metal-NHC complexes.

CH-

Figure 1.16. A ruthenium xanthine complex synthesised by Taube.

Experimental studies have shown that for several metals, NHCs (with the exception 

o f the sterically demanding IAd) can replace phosphine ligands rapidly and without 

the need for the NHC to be present in excess to drive the equilibrium 

potential. 7 6 , 1 3 6 , 1 3 7  However, both Caddick1 3 8  and Baird1 3 9  have noted that phosphine 

is capable of replacing NHCs in certain systems. Baird has carried out equilibrium 

studies on the formation of [Co(Me)2 (IPr)(Cp)] from [Co(Me)2 (PPh3 )(Cp)]. After 

approximately four hours an equilibrium had been established, which was then 

analysed at a range of different temperatures (30, 35, 40, 45 and 50 °C) to obtain 

equilibrium constants. These show that enthalpically the displacement o f PPh3  by IPr 

is favourable and the exothermicity of this ligand exchange drives the reaction 

forward. However, in this particular system, the formation of the NHC substituted 

product is entropically unfavourable and counteracts the forward reaction. This 

negative entropy is most likely to arise as a result o f steric factors. 

[Co(Me)2 (IPr)(Cp)] is a relatively crowded molecule, causing a significant loss of 

internal motion compared to the starting materials, which would result in a large 

negative value for AS.

1.2.4. Catalytic reactions with NHC complexes

Having a vacant site on the metal is an essential requirement o f any homogeneous 

catalyst. This allows substrates to bind to the metal centre and interact
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intramolecularly with other ligands on the metal. Therefore, one or more of the 

ligands bound to the metal needs to be sufficiently labile to dissociate and allow 

coordination of substrate molecules.

The most common ligands found in homogeneous catalysis are phosphine groups. 

This is due to their lability but also the high selectivity that they add to a reaction. 

For example, the steric bulk of phosphine ligands means that, when attached to a 

metal catalyst, they will help it hydrogenate terminal alkenes much faster than 

internal ones. 1 4 0

As already mentioned, Grubbs has demonstrated that replacing a phosphine ligand 

with an NHC for alkene metathesis leads to higher selectivity and rates o f reaction. 

The many variations of Grubbs catalyst that have now been synthesised and utilised 

in catalytic cycles are discussed in detail in chapter 2. The replacement of phosphine 

ligands by NHCs on rhodium catalysts is thoroughly explored in chapter 3.

As well as metathesis reactions, NHC complexes have been found to be efficient in a 

variety o f cross-coupling reactions. Sonogoshira, 1 4 1 , 1 4 2  Kumada, 1 4 2 ,1 4 3  Buchwald- 

Hartwig144, Stille1 4 2 , 1 4 5 ,1 4 6  and Suzuki-Miyaura1 4 6 ' 1 4 9  reactions have all been shown 

to be promising using palladium NHC-based catalysts. There are also many 

examples of Heck7 6 , 1 5 0 - 1 5 5  reactions being successfully catalysed by Pd-NHC 

complexes. Nolan attributes the excellent ability of NHCs to act as supporting 

ligands to their thermal stability and their tuneable steric and electronic parameters 

that stabilise the Pd(0) species prior to oxidative addition o f the substrate . 1 4 2

All of these catalysts facilitate coupling reactions, forming a C-C bond between two 

different substrates. They are all currently receiving much attention and new 

complexes bearing NHCs are emerging all the time and being tested in catalytic 

reactions. The Heck reaction, one of the most widely used methods to prepare 

variously substituted alkenes, dienes and precursors to conjugated polymers, 

provides an example of how this type of chemistry is proceeding.
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1.2.4.1. Synthesis o f Heck catalysts

Some examples o f Heck-type reactions are shown in scheme 1.11. Computational 

studies on a chelating NHC-phosphine palladium complex [Pd(IH(CH2 )PH3 )] 

initially suggested that it would be efficient in the Heck reaction1 5 6  and Herrmann et 

al demonstrated this with the synthesis of a diiodo catalyst that was particularly 

stable and thus gave high catalyst turnover numbers. Cavell and co-workers have 

now synthesised and trialled a large number of palladium and nickel NHC 

complexes in the Heck reaction with great success. 1 5 7 ' 1 6 1 One of the best examples is 

shown in figure 1.17. and this catalyses the coupling of phenyl iodine and butyl 

acrylate, going to 90 % completion in 5 hours with a TON of 4,600 (0.02 mol %, 

120 °C, CD2 C12 ) . 1 6 2

R = H, CH3, C(0)CH3i OCH3i CHO| 
R’ = Ph j

R = H, CH3l C(0)CH3, OCH3

R = H, CH3, C(0)CH3> OCH3i CHO 
R' = Ph __________

[M] = B(OH)2, SnR3, MgX, ZnX, Si(OR)3 X = I, Br, Cl, 0 S 0 2CF3, N2+, C(0)CI 

Scheme 1.11. Various Heck coupling reactions.

m — L  J — n ,

(b f4)2

Figure 1.17. Structure of one o f Cavell's Heck reaction catalysts.
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1.2.4.2. Decomposition o f  Heck catalysts

Whilst investigating the Heck reaction with various Pd(NHC) catalysts, Cavell 

discovered that these types of complexes, particularly cationic ones, can undergo 

what are probably concerted reductive elimination reactions in solution at room 

temperature to yield the imidazolium salt and a M(0) species (scheme 1.12. ) . 1 5 7 ,1 6 3  

Cavell has shown that as the temperature of the reaction is increased, the rates of 

migratory insertion and (3-elimination, which lead to the Heck coupling product

become more competitive with the reductive elimination reaction 

complexes undergo similar reactions to the palladium analogues . 1 6 1

bf4

164 Nickel

CDCU
Pd + + COD

Scheme 1.12. The decomposition route o f a Pd-NHC complex.

Calculations have shown that this reductive elimination reaction is much more 

unfavourable, due to the high activation energy barrier, when the ligand used is a 

chelating NHC . 1 6 5  This appears to be because as the reductive elimination reaction 

proceeds, the bite angle between the other ligands opens up and therefore the angle 

between the carbene and the methyl group is forced to get smaller. This allows 

effective orbital overlap and hence rapid reaction. However, if a chelating ligand is 

present, either as the spectator ligand or one in which the NHC is a part of, this 

process will be impeded.

Similarly, when these types of complexes are reacted with CO, preliminary addition 

of CO to the metal centre is rapidly followed by reductive elimination to give both 

the imidazolium salt and an acylimidazolium salt along with a Pd(0) species. This 

observation probably accounts for the reason that, to date, there is only one reported 

successful use of a Pd(NHC) complex in the copolymerisation of CO and ethene . 1 1 4
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1.2.5. Oxidative addition of imidazolium salts to metal centres

Previous reports suggested that reactions carried out in imidazolium based ionic 

liquids led to formation of metal-NHC complexes via oxidative addition 

reactions. 1 6 6 - 1 6 8  This is essentially the reverse reaction to the reductive elimination 

discussed above and leads to the intermolecular breaking of a C-H or C-C bond.

Cavell and Yates used DFT calculations to study Pt(0) complexes, which are 

generally considered to be more favourable to oxidative addition than Pd(0) . 1 5 9  From 

the investigation they concluded that the oxidative addition of the C-C bond of an 

imidazolium salt to Pt(0) is exothermic (AH = -55.6 kJ mol'1), although the 

activation barrier is quite high (114.5 kJ m o l1). Experimental work proved that this 

reaction was feasible (scheme 1.13.) and this has wide reaching implications for the 

use of imidazolium salts as ionic liquids, which have been touted as environmentally 

friendly alternatives to current solvents. 1 5 9 , 1 6 9  If the solvent can interact with the 

catalyst that it is supposed to be solvating then the reaction will be rendered 

impossible. Recently, Nolan1 7 0  and Crabtree1 7 1 have both reported the oxidative 

addition of imidazolium salts to Pd(0) centres.

■N^pN—  + Pt(L)2 

R

/

/ X
R L

R = H, Me
l  = ph3

Scheme 1.13. Oxidative addition of imidazolium salt to Pd.

Although this oxidative addition process can be problematic when using 

imidazolium based ionic liquids as a solvent, it can prove usefiil for generating 

metal-NHC complexes in situ. NHCs are often difficult to handle in the laboratory as 

they are air and moisture sensitive. This means that large scale preparations of NHC 

catalysts are very difficult to achieve. Imidazolium salts are generally able to be 

stored under air at room temperature with no decomposition. Grubbs has been 

exploring ways to create a catalyst directly from a “protected” form of the free NHC,
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adding an alkoxide or trichloromethyl group to the carbene carbon which then 

eliminates alcohol or chloroform to leave the NHC free to coordinate to the metal 

centre1 7 2  and this method of synthesis has recently become more widespread . 9 4 , 1 7 1 , 1 7 3

1.2.6. Abnormal binding of NHCs

Crabtree and Clot have done a lot of investigative work, both synthetically and 

computationally into the abnormal binding of NHCs onto metal centres. Generally 

an NHC will bind to a metal via the C(2) position. However, Crabtree has found that 

in certain systems, particularly those with a lot of steric bulk, binding to the metal 

can occur at the C(5) position (figure 1.18.).174

I \
4 AII i - M L n I > -M L „
5̂ N 2̂ N

I \

C (2) position C(5) position

Figure 1.18. Normal and abnormal binding of NHC ligand to a metal centre.

The imidazolium ligands that Crabtree employed to achieve this abnormal binding 

have a pyridine moiety on one of the N-arms and an alkyl group ('Pr, "Bu, Me) on 

the other side. During reaction with [Ir(H)5 L2 ] (L = PPI13), two molecules of H2  were 

lost to give a bidentate complex, with a Ir-N bond to the pyridine moiety and the 

NHC group bound to the metal via abnormal C(5) binding (scheme 1.14.). Even

heating this complex at 100 °C for one hour did not cause the complex to revert to

the 2-isomer. When R = Me the abnormal structure was formed in a 55:45 ratio to 

the C(2) complex. When R = 'Pr, the C(5) structure is the only isomer formed. These 

structures have been identified both by X-ray crystallography and heteronuclear 

NMR studies. In particular, the quaternary carbene resonance is indicative with the 

C(5) resonance coming at higher field (typically 5 142.0) than the C(2) resonance ( 8  

169.9).175
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[lr(H)5L2]
— ►

BF,

lr—H-2 H2 y
R 4  c

H R = 'Pr or nBu, Me 
L = PPh3

Scheme 1.14. Abnormal binding in NHC complex.

Initial DFT calculations on the iridium cation predicted that this abnormal type of 

binding is, thermodynamically, highly unfavourable in comparison to C(2) bonding 

(C(5) 41.6 kJ m o l 1 higher in energy than C(2) ) . 1 7 6  However, further calculations that 

included the BF4 ' anion reduced the difference in energy between the two isomers to 

6 . 6  kJ m o l 1 (in favour of the C(2) isomer). In addition, they also suggested that the 

BF4' anion was hydrogen bonded to the C(2) C-H bond when the complex was in the 

abnormally bound arrangement. 1 7 5  From these observations, Crabtree went on to 

show that when the counterion was B r , C(2) binding of the NHC was favoured 

(91:9), whereas when SbF6  was used, C(5) was predominant (89:11) (for the 

complex where R = Me).

Further studies have also shown that the NHC does not need to be chelating to bind 

with C(5) geometry, if the C(2) position is blocked with a methyl group, although 

these complexes are much less stable than those with the pyridine ring . 1 0 0

Similar abnormal binding modes have also recently been observed by Meyer1 7 7  and 

Danopoulos. 1 7 8  Recently, Cavell has extended his investigations into oxidative 

addition o f imidazolium salts onto platinum centres (discussed in section 1.2.5.) and 

showed that, when the C(2) position is blocked by a methyl group, oxidative 

addition can occur at the C(5) position . 1 7 9  Interestingly, bis NHC complexes could 

be synthesised with one NHC C(2) bound and one C(5) bound in a one-pot reaction 

(scheme 1.15.).
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r \
I  Mes—N ^ . N —Mes

[Pt(nbe)3 ] + IMes   A ^tone ». H— Pt 1
55 °C, 50 min

\
nbe = norbomene ^ ^

Scheme 1.15. Bis NHC complex with one ligand abnormally bound.

Cavell believes that the IMes ligand coordinates first, giving [Pt(IMes)(nbe)2 ]. The 

tetramethyl imidazolium salt then undergoes oxidative addition to the metal centre at 

the C(5)-H position. When neither the C(4) or C(5) carbons have methyl groups on 

(and one o f the N-alkyl groups is an "Bu group), the product o f the reaction (in 

acetone at 55 °C for 50 min), is a mixture of a C(4) and C(5) bound NHC (in a ratio 

o f 1:1. 8  with the C(5) isomer predominating (figure 1.19.).

r \  r = \
Mes—N ^ ^ N —Mes Mes—Ns^/ N—Mes

H— Pt------Br H— Pt------ Br

A
\ / - ny N _

C (5) isom er C (4) isom er
1.8 1

Figure 1.19. C(4) and C(5) bound isomers of Cavell's bis NHC complex.

In the presence of alkene these complexes undergo reductive elimination to 

regenerate the imidazolium salt and bind two equivalents of alkene (scheme 1.16.). 

The reductive elimination of the normally bound NHC was not observed.

Mes-lT^N-Mes R—^
| ■■■■---------- ^  R' I R +

H— Pt------Br Acetone I  ^ .P t \  J T
R R’

R = COOMe, Ph| 
R' = COOMe, H

Scheme 1.16. Alkene binding to Pt centre after reductive elimination of abnormally
bound NHC.
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Nolan and Lebel have also found that, in the reaction of the N-mesityl imidazolium

salt with [Pd(OAc)3 ] in dioxane at 80 °C, a bis NHC complex is formed, with one

NHC ligand bound normally, at the C(2) position whilst another, trans to it,
1 80abnormally bound at the C(5) position. Surprisingly, when the base CS2 CO3 was 

added to the reaction, only the C(2) isomer of the bis NHC complex was formed. 

The C(5) isomer could not be converted directly to the C(2) isomer upon addition of 

base. The catalytic reactivities of the two isomers proved to be quite different with 

the abnormally bound isomer proving more efficient in the Heck reaction and the 

Suzuki-Miyaura reaction (coupling reactions used shown in scheme 1.17) than the 

normally bound one. This augments Cavell’s findings that the abnormally bound 

isomer is more labile that the normally bound one thus allowing formation of a 

vacant site to generate a catalytically active species.

H eck reaction

B(OH)2 +

Suzuki-M iyaura reaction

Scheme 1.17. The Heck and Suzuki-Miyaura couplings shown above were more 
efficient when the bis NHC catalyst used had one abnormally bound NHC.

1.2.7. C-H bond activation in metal-NHC complexes

As early as 1977, Lappert and co-workers had noted that NHCs can undergo 

intramolecular C-H activation reactions. 1 8 1 Reacting the enetetramines (shown in 

scheme 1.18.) with [RuCl2 (PPh3 )3 ] in xylene at 140 °C led to spontaneous activation 

of an ortho phenyl C-H bond o f the coordinated NHC ligand . 1 2 2  NMR spectroscopy 

clearly shows a large shift for the activated aryl proton from above 7 ppm to 

between 2 and 4 ppm. Lappert suggested that the mechanism involved an ionic 

species but also mooted the possibility of the involvement of a transient Ru(IV) 

species via oxidative addition o f the aryl H and subsequent elimination of H2  or HC1.
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However, Lappert notes that in ruthenium complexes, or/Zzo-metal lation tends to 

proceed via formation of five-membered ring systems as opposed to the four- 

membered ring systems seen with rhodium and iridium complexes, and therefore 

initial oxidative addition is probably not sterically viable.

R

Scheme 1.18. C-H activation observed by Lappert in synthesis of a Ru-NHC 
complex from an enetetramine.

Recently, the observation of C-H activation of NHCs on metal centres has become 

more frequent, partly of course due to the much more widespread use of these 

ligands but also because of a better understanding of the nature of NHCs as ligands. 

Activation is not necessarily a good thing as it can be a potential deactivation route 

for catalytically important species, but due to the reversible nature of some o f the 

bond activations, the NHC complexes can also be used as hydrogen stores, initially 

giving substrates H2  but then being able to accept it back at the end of a cycle.

Grubbs found that if the preparation of his second generation metathesis catalyst, 

[Ru(Cl)2 (IMesH2)(PCy3 )(=CHPh)] (2), was not carried out under rigorously dry 

conditions, the C-H bond on one o f the ortho methyl groups on a mesityl ring was 

activated leading to the product [Ru(Cl)(IMesH2)” (PCy3 )(CO)] (figure 1.20.).68

R R

RuCI2(PPh3)3
(Ph3P)2CIRu

PCy3

Figure 1.20. C-H activation in 2.
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Similar C-H bond activation processes have also been observed by Nolan.101 At 

room temperature in THF, the Rh(I) dimer, [{Rh(COE)}2(p-Cl)2 ] reacts with 4 

equivalents of IMes to give [RhHCl(IMes)(IMes)” ] (3) in high yield (figure 1.21.). 

3 is very reactive, rapidly forming the dihydride complex [Rh(H)2 Cl(IMes)2 ] upon 

addition of H2  at room temperature. Addition of CO to 3 affords [RhCl(IMes)2 (CO)] 

(scheme 1.19.).

Rh

(3)

Figure 1.21. C-H activation of IMes on a rhodium centre.

Cl/*
Rh-

THF, COTHF, H

Rh— H Rh

Scheme 1.19. Reversal o f ort/jo-metallation by addition o f H2  or CO.

More recently, Nolan has observed double C-H bond activation o f two I*Bu ligands 

on both rhodium and iridium, giving [MC1(I*Bu)” 2] (M = Rh (4) and M = Ir (5))
I 99 1 09__

(figure 1.22.). ■ This subsequently allowed stabilisation of 14-electron metal 

centres that are rarely seen. 4 is the major product when the reaction is carried out in 

benzene. However, when the solvent employed is hexane, the bis NHC product 

isolated only has one C-H activated ligand, [RhHCl^BuXl'Bu)” ] (6).
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H2C.,CH H2C CH2

Bu u Bu
1 ^ pi I

[ H M ]
N 4 N

h2c .

* ^ v Bu ,Me'''' V J V J ' /  J
Me Me Me Me \ , e  M/  M/  Me

(4) (5) (6)

Figure 1.22. Double and single C-H activation in Ir and Rh NHC complexes.

Following the reaction in benzene by NMR spectroscopy showed that 6 forms on the 

way to 4 with loss of H2  (scheme 1.20.). Although 6 only has one C-H activated 

NHC, a strong agostic interaction is present in the complex from one of the tert- 

butyl groups from the unmetallated NHC to the rhodium centre. This has been 

shown both by X-ray diffraction and NMR studies. By rH NMR spectroscopy it can 

be seen that the hydride ligand and the protons from the agostic /er/-butyl group are 

undergoing fluxional exchange in solution at room temperature.

Nolan attributes the influence o f solvent on product isolation to differing solubilities 

of the products and thus, by using pentane as the solvent, was able to isolate the I'Bu 

dimer, [{Rh(I<Bu)(COE)}2 (p-Cl)2 ] (7) which precipitated out o f the solution. Upon 

dissolution in benzene, 7 reacts with I'Bu to form 4. Isolated 7, in a benzene solution 

free from NHC, is stable.

In the case of the analogous iridium complex, the mono activated complex, 

[IrHCl(l'Bu)(l'Bu)” ], (8) (again with a strong agostic interaction to the unactivated 

I'Bu ligand) was isolated from benzene after stirring at room temperature for 20 h 

whereas the double activated product, 5, was isolated from the same solution when it 

was stirred for 5 days at room temperature. The X-ray structure of 5 is almost 

analogous to that of 4 but 5 has an additional agostic interaction from one of the 

unactivated 'Bu groups to the metal centre. However, there is no evidence from *H 

NMR spectroscopy for this agostic interaction being retained in solution. The mixed
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dimeric species that precedes the formation of the activated species could not be 

isolated or observed by *H NMR spectroscopy.

HRh(COE)}2(M-CI2)] '2 C 0 E »
f r. t.

+ 4.16 eq. I Bu

Bu

n
fBu x

Bu Bu

Rh RK
N.

\ —Nx
\ /

Bu
-2 COE

N ,, 4  N
| h2c s

Bu kJ Bu

(7)

Isolated from pentane 
(stirring for 1 h)

Me

(6)

V”
Isolated from hexane 

(stirring for 4 h)

Bu Bu

C . / V
•Rh-
/  \  N H2 C^CH2

Me '̂V „/\la Me Me Me
(4)

Isolated from  benzene  
(stirring for 4  h)

Scheme 1.20. Formation of double C-H activated rhodium complex via dimer and
mono activated complex.

Following the formation of both 4 and 5 by NMR spectroscopy gave some 

insight into the differing rates of reaction. In the reaction of [{M(COE)2 }(p-Cl)2 ] (M 

= Rh or Ir) with 2 equivalents of I'Bu, only unreacted starting material and 8 were 

observed for M = Ir. However, when M = Rh, the reaction was more rapid and gave 

a mixture of 7 ,6  and 4 as well as starting material.

Addition of AgPF6 to 4 and 5 in CH2 CI2  led to abstraction of the chloride ligand and 

formation of the 14-electron complexes [M(l'Bu)” 2 ][PF6 ] (M = Rh (9), M = Ir (10)) 

(figure 1.23.). Surprisingly, the iridium cation, 10, can also be obtained directly from 

the mono-activated complex, 8, suggesting that the initially formed cationic complex 

[Ir(l'Bu)(I*Bu)” ][PF6] must undergo a rapid second cyclometallation (within 2 

hours). Bergman has already noted that Ir(III)(Cp*) species such as 

[Ir(Me)(PMe3 )(Cp*)(CH2 Cl2 )][BArf] are more prone to undergo C-H activation 

processes than their neutral analogues like [Ir(Me)(PMe3 )(Cp*)(OTf) ] . 1 3 Addition of 

CO to 4, 5 ,9  and 10 leads to coordination o f CO to the metal centres (scheme 1.21.).
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c
Bu
I
N

Bu

-Rh-
N 4 \ N

h2c*  c h 2

MeTV . A ,Me Me Me

(9)

PFc
Bu

(10)

PF*

Figure 1.23. Cationic, 14-electron complexes with double C-H activation.

H2CvxCH2

M e""\ „ 4 \ * 0Me Me Me

(4): M  =  Rh
(5): M  =  Ir

CcHi6n 6

1atm CO c
BuI

N
CO Cl

BuI
N

—M-
N 4 \ NH2C* CH2

Me"' >  4  ''/
Me Me Me

Me""
Me Me Me

PF«

(9): M  =  Rh
(1 0 ):M  =  Ir

CH2CI2

1atm CO

Bu

c co
i >

Bu
CO

) M-
4 \  NH2 Cv/CH2 "

Me""V „ 4 \ . aMe Me Me

Scheme 1.21. Addition o f CO to C-H activation products.

PF«

Both the Jt-orbital of the NHC and the a-orbitals of the C-H bonds from the *Bu 

groups can donate electron density to alleviate the electron deficiency on the metal 

of complexes 9 and 10. By using computational methods, Nolan finds that the k- 

orbital o f the NHC is much preferred over the o C-H orbitals and this explains the 

absence of agostic interactions and the remarkable stability o f the complexes. This 

finding augments the growing weight o f evidence that NHC ligands are not the 

simple a-donating ligands that they were originally assumed to be. In addition to the
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back-bonding ability proposed by Meyer1 3 5  and discussed in section 1.2.3., Nolan 

has now shown that NHCs have the ability to donate electron density from their n- 

orbitals to the d  orbitals of electron-poor metal centres. Nolan suggests this finding 

may explain why NHC-stabilised catalytically active species, which are often highly 

unsaturated, are often much more stable than their phosphine analogues.

Danopoulos et a l have recently synthesised an N-pyridine NHC which, when 

reacted with [{Rh(COD)}2 (p.-Cl)2], initially forms a mono-NHC complex with a 

close interaction between the metal centre and one of the aryl protons and then, upon 

addition of NaBArF, gives a cationic C-H activated cationic species (scheme

1.22. ) . 1 8 4  When [{Ir(COD)}2 (p-Cl)2] was used as the starting material, the neutral

mono-NHC activated complex was formed (figure 1.24.).
,SiMe3

[(COD)RhCI]2
1 eq. NHC

-78 °C

NaBArF

L-L =COD

Ar = 2, 6 - 'PrzCeHz

Ar

Me3Si—^  \  
N = (

/ / - I ,

Ar

BArF

Scheme 1.22. C-H activated rhodium NHC complex.

N=<

4. -Ir

Figure 1.24. C-H activation of pyridal NHC on an iridium centre.

Herrmann has investigated the selective functionalisation of an iridium (III)-NHC 

complex, where the NHC employed is ICy . 1 8 5  When [Ir(CH3 )2 (Cp*)(ICy)] is treated 

with triflic acid, methane is eliminated to give the cationic species 

[Ir(CH3 )(ICy)(Cp*)][OTf]. In solution this undergoes further reaction via p- 

hydrogen elimination to give a l-(2-cyclhexenyl)-3-cyclohexylimidazol-2-ylidene 

ligand (scheme 1.23.).
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*CR
lr— CH-

-CH

Cp* -  r|-C5(CH3 ) 5 -CH.

*Cp ?P*

Scheme 1.23. C-H activation of a cyclohexyl moiety on an iridium centre.

This reaction results in the formation of a chiral centre at the iridium and at the a- 

C-H group of the cyclohexyl ligand. Thus, four isomers are theoretically possible, 

constituting two enantiomers. From Herrmann’s investigations on this particular 

complex it appears that only two isomers are formed: Ir.sC/? and Ir/Cs- This type of 

reaction could potentially be extremely useful in producing chiral metal complexes 

for catalysis.

1.2.8. Metal-hvdride NHC complexes and their bond activation reactions

Metal complexes bearing hydride ligands are well documented for their use in 

catalysis. 4 1 , 1 8 6 , 1 8 7  The hydride ligands not only stabilise complexes but are often 

involved in key insertion steps in catalytic cycles and much of the work in this thesis 

concentrates on metal-hydride species.

Hydrogenation catalysts are known to involve hydridic intermediates while 

[RuHC1(PR3 )2 (=C(X)C3 H6 )] (R = 'Pr, Cy; X = O, NH) and 

[RuHCl(PCy3 )(=C=CH2 )] are known to be active metathesis catalysts. 1 8 8 1 9 0
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However, few hydridometal complexes containing NHCs are known. Morris and co- 

workers reacted [RuHCl(PPh3 )3 ] (11) with three different NHCs, IMes, IMesH2  and 

I*Bu. 1 9 1  The two mesityl based ligands, when heated with the ruthenium precursor at 

6 6  °C, led to the C-H activated products [RuH(IMes)’ ’(P P h^] (12) and 

[RuH(IMesH2)’ ’(PPh3)2] (13) (figure 1.25.). Reaction o f 12 with CO at 20 °C leads 

to coordination o f CO to the vacant site tram to hydride to give 

[RuH(IMes) ’ ’ (PPh3 )2 (CO)].

CHrCH-

(12) (13)

Figure 1.25. structures o f two C-H activated Ru(NHC) complexes synthesised by
Morris.

Attempts to synthesise a bis NHC species were unsuccessful even when a solution of 

11 was refluxed with a 10-fold excess o f free NHC (IMes or IMesH2) for 7 days. 

Morris attributes this to the ruthenium centre being too sterically hindered to allow 

addition of another NHC ligand, although substitution of a phosphine for an NHC 

ligand would be expected under these conditions.

Reaction of 11 with I'Bu in THF did not lead to an activated complex but instead to 

a species that the authors assign as “Ru(I/Bu)(PPh3 )2” due its highly reactive nature. 

When H2  is added to this solution, two isomers of the complex [RuH2 (fBu)(PPh3 )2] 

are isolated in a ratio of 7:3, with the trans phosphine arrangement being favoured 

(figure 1.26.). The crystal structure showed the presence o f an agostic interaction 

between one of the methyl groups on the *Bu ligand and the ruthenium centre.
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Ph3P PPh3

Figure 1.26. Two isomers of 14, showing agostic interactions.

Recent work by Burling et a l has shown that a similar reaction occurs when ICy is 

reacted with 1 1  in CH2 CI2  giving [RuHCl(ICy)(PPh3 )2 ], with an agostic bond from 

the a-CFb o f the cyclohexyl group . 1 9 2  Again, both the cis and trans phosphine 

isomers are formed; in this case in a ratio o f 1:0.4, with the trans isomer again 

predominating.

The Whittlesey group has synthesised a number of ruthenium hydride complexes 

bearing a variety o f NHC ligands and have investigated them in catalytic 

reactions. 1 9 2 ' 1 9 9  Reaction o f IMes with [Ru(H)2 (PPh3 )3 (CO)] (15) at 80 °C leads to 

formation of the mono and bis NHC species [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) and 

[Ru(H)2 (IMes)2 (PPh3 )(CO)] (17).198 Addition of trimethylvinylsilane or other 

alkenes to 16 at room temperature leads to the C-H activated complex 

[RuH(IMes)” (PPh3 )2 (CO)] (18) (scheme 1.24.). Most surprisingly, however, heating 

15 and IMes at 110 °C leads to formation of a C-C activated product, 

[RuH(IMes)’(PPh3 )2 (CO)] (19) (figure 1.27.). This is unexpected as the system is 

not predisposed to C-C activation like the examples presented in section 1.1.3.
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15 + IMes Ru"
OC

PPh;
(16)

W
(17)

alkene

Ph3FV
Ru'Cl 

OC*' I H
PPh3

(18)

Scheme 1.24. Formation of mono, bis and C-H activated Ru-IMes complexes.

Ru;
oc PPh

H

Figure 1.27. Structure of 19.

Changing the precursor to [Ru(H)2 (AsPh3 )3 (CO)] (20) leads to an extremely reactive 

bis NHC complex upon heating with IMes, as reported by Jazzar, Chatwin et 
al. 1 9 3 .1 9 7 , 2 0 0  p^u^j-f^IMes^AsPl^XCO)] (21) is observed by NMR spectroscopy 

after heating 20 and IMes overnight at 70 °C. However, isolation o f 21 proved 

impossible due to the labile nature o f the arsine ligand. Attempts to precipitate the 

complex from ethanol and hexane led to the five coordinate, 16-electron complexes 

[RuH(IMes)2 (OEt)(CO)] (22) and [RuH(IMes)2 (OH)(CO)] (23) respectively. 

Initially, crystallography and NMR spectroscopy studies suggested that these 

complexes were the 18-electron trans dihydride solvent complexes,
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[Ru(H)2 (IMes)2 (S)(CO)] (S = EtOH, H2 O) . 1 9 7  However, further investigation by 

NMR spectroscopy revealed that the molecules were, in fact, unsaturated. 2 0 0 , 2 0 1  

Addition o f H2 S to 22 leads to the complex [RuH(IMes)2 (SH)(CO)] (24), which is

[Ru(IMes)2 (SH)2 (CO)] (25) formed. Both 24 and 25 react with CO giving 

[RuH(IMes)2 (SH)(CO)2 ] and [Ru(IMes)2 (SH)2 (CO)2] (26) respectively.

Remarkably, reactions of 22,24 and 26 can all be conducted in the solid state.

Replacing the two phosphine ligands on 16 with the chelating phosphines 

Ph2 PCH2 CH2 CH2 PPh2  (dppp) or Ph2 AsCH2 CH2 PPh2  (arphos) again lead to C-H 

activation of IMes upon treatment with CH2 =CHSiMe3 . However, much higher 

temperatures were needed to achieve this. [RuH(IMes)” (dppp)(CO)] (27) was 

formed by heating JRuH2 (IMes)(dppp)(CO)] with alkene at 100 °C, whilst three 

isomers o f [RuH(IMes)’ ’ (arphos)(CO)] (28) were formed by an analogous reaction 

at 75 °C (figure 1.28.). Both 27 and 28 can be returned to the non activated products 

upon heating at 80 °C with H2  although the reaction of 27 is very slow (12 hours). 

Surprisingly, 28 returns to only one isomer o f the unactivated complex.

completely air stable. 1 9 3  Upon addition of more H2 S, the bis-hydrosulphido complex,

(27)

(*) (b) (c)

three isom ers o f  28

Figure 1.28. Structures of 27 and 28.
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The reversibility of the C-H activation chemistry allows these complexes to be 

utilised in catalytic chemistry. Paine et al. have investigated using 

[Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) as a catalyst for an indirect Wittig reaction on 

alcohols. 1 9 5  The key to the catalytic cycle is being able to take hydrogen from the 

alcohol (reducing it to the aldehyde) and store it on the metal catalyst whilst the C-C 

bond formation (taking aldehyde to alkene) is performed by the Wittig reagent. The 

hydrogen can then be returned to the alkene substrate from the metal in the final step 

of the reaction, thus giving an alkane from an alcohol in a one pot reaction (scheme 

1.25.).
overall transformation

 X  --OH

[M]

[MHJ

Ph*P=
R

Scheme 1.25. The indirect Wittig reaction upon alcohols.

Subsequently the same authors have replaced the IMes ligand of 16 with various 

alkyl NHCs to give [Ru(H)2 (IMe4 )(PPh3 )2 (CO)], [RuH2 (IEt2 Me2 )(PPh3 )2 (CO)] (29) 

and [Ru(H)2 (I'Pr2 Me2 )(PPh3 )2 (CO)] (30).199,202 As can be seen from figure 1.29., the 

major differences between these complexes and the IMes analogue, are the methyl 

groups on the backbones o f the NHCs and the position o f the NHC ligands around 

the metal, which lie trans to the hydride ligand as opposed to the phosphine (or, as 

drawn here, in the equatorial position rather than the axial). These new complexes 

show greatly improved catalytic behaviour in comparison to 16.
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PPh3 PPh3 PPh3

(29 ) (30)

Figure 1.29. Structures o f alkyl NHC complexes o f ruthenium.

Unusual reactions involving C-H bond activation have been observed in these alkyl 

NHC complexes. 1 9 9  29 undergoes C-H activation when subjected to CH2=CHSiMe3  

to give [RuH(IEt2Me2 )’ ’(PPh3 )2 (CO)] (31). When this complex is dissolved in 

ethanol, however, rapid precipitation of the trans dihydride complex (32) occurs. 32 

is unstable in solution, rapidly isomerising to give a mixture of 29 and the axial 

isomer, 33. After 40 minutes in solution, 29 was the only hydridic product 

observable by !H NMR spectroscopy (scheme 1.26.). The rate o f isomerisation was 

unaffected by the nature of the solvent (toluene or pyridine) or by adding excess 

PPh3 to the solution.

Scheme 1.26. Reactions of 29, including an unusual trans hydride product.

CH2=CHSiM&, CH3CH2SiMe3

/  Ru>. ----------------
s '  O C *  | H H2 or ROH, 50 °C 

PPh3
O C *  | H

PPha

(33) (32)
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The C-H activated complex of the I'Pr2 Me2  analogue [R uH ^'P^M ^)’ ’(PPhs^CCO)]

(34) is, surprisingly, easiest to synthesise by first obtaining the bis NHC complex 

[Ru(H)2 (I'Pr2 Me2 )2 (PPh3 )(CO)] in situ, removing the solution under vacuum and 

redissolving the residue in ethanol. H2  is released and 34 precipitates out of solution. 

This complex is primarily the isomer with the NHC trans to hydride but some with 

the NHC trans to phosphine is also observed (figure 1.30.). The C-H activated 

complexes are also observed upon heating a benzene solution of 

[Ru(H)2 (I'Pr2 Me2 )(PPh3 )2 (CO)] (30). No hydrogen acceptor sources need to be 

present to obtain 34.

, - L .  pph

Ru'
OC

^— N 

Ph3P//,,,

OC'

.»'N 
RuL 

<  l \

N

H
PPh3 PPh3

Figure 1.30. Two isomers o f 34.

The observation of these facile bond activation reactions provides the starting point 

for the work reported in this thesis.

1.3. Introduction to the structure of the thesis

The initial aim of the project described in this thesis was to investigate the 

mechanism of the C-C bond activation observed in the ruthenium IMes complex, 

[RhH(IMes)’(PPli3 )2 (CO)] (19), described on page 39. In the course of the work, the 

research was extended to investigate other possible activation reactions o f ruthenium 

and rhodium NHC hydride complexes. Chapter 2 provides an overview of attempts, 

both computationally and synthetically, to elucidate more about the C-C bond 

activation reaction to form 19. As well as the thermal chemistry of the ruthenium 

hydride complexes, their photolytic properties have also been investigated and some
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interesting isomerisation reactions observed. Using a variety of techniques, rate and 

mechanistic data has been obtained for these reactions.

Chapter 3 describes the synthesis of related rhodium NHC hydride complexes 

including mono, bis and tris NHC complexes. In addition, novel dimeric and 

cationic complexes are reported. All of these complexes have been characterised by 

*H and 3 1 P{1H} NMR spectroscopy and many have also been analysed by X-ray 

diffraction. NMR and IR studies have allowed determination o f the mechanisms of 

formation of these complexes.
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Chapter 2 Ruthenium NHC complexes

2. Ruthenium N-heterocyclic carbene complexes

2.1. Introduction

O f all the metals studied bearing NHCs, ruthenium has proved one of the most 

successful in catalytic reactions. 1 ,2  Because of this, it has played a pivotal role in the 

development of many other transition metal NHC complexes that can now be used 

in catalytic applications.

Apart from being successful catalytic systems, ruthenium NHC complexes have also 

been shown to undergo a variety of unusual bond activation reactions, as already 

discussed in chapter 1 .

This chapter gives a brief overview of the extensive ruthenium NHC chemistry that 

has been undertaken in recent years, focussing on structural rather than catalytic 

properties. The investigations carried out into the formation o f the C-C activated 

complex [RuH(IMes)’(PPh3 )2 (CO)] (19) are presented and compared to the results 

from DFT calculations carried out by the Macgregor group at Heriot Watt University 

in Edinburgh.

Examination of the photochemistry of new alkyl-NHC ruthenium complexes is 

presented and investigation into the rates and mechanisms of product formation is 

discussed. Much of this work was carried out in collaboration with Professor Simon 

Duckett at the University of York. Further rate data has been obtained from 

preliminary TRIR experiments at the University of Nottingham in collaboration with 

Professor Mike George. In addition the Macgregor group have again undertaken 

DFT calculations to add a further dimension to the results.
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2.2. Ruthenium NHC complexes

2.2.1. Structure and reactivity of Grubbs’ metathesis catalyst

Alkene metathesis provides a way of breaking and remaking C=C bonds and is used 

every day in the chemical and pharmaceutical industries. Depending on the 

conditions employed, metathesis reactions can lead to ring closing metathesis 

(RCM) or ring opening metathesis polymerisation (ROMP). The importance of this 

reaction has led to the recent award of the Nobel Prize for chemistry to three of the 

scientists who have developed it . 3 The general mechanism for the metathesis 

reaction was first proposed by Chauvin and it is now accepted that the reaction 

proceeds through a metallocyclobutane intermediate (scheme 2 . 1  . ) . 4 , 5

.CHR
/  \

LnM ^CHR1

CHR'

Scheme 2.1. Mechanism of metathesis reactions through a metallocyclobutane.

The bis phosphine catalyst [Ru(Cl)2 (PCy3 )2 (=CHPh)] (35) , 6 - 8  synthesised by Grubbs 

has been used extensively for metathesis reactions in organic and polymer chemistry 

as it is highly reactive to alkene moieties even in the presence of other common 

functional groups. 9  However, the lifetime of this catalyst was too short to give high 

product yields in some of the more difficult ring-closing reactions. Therefore, 

Grubbs substituted one of the phosphine ligands for an NHC group to give 

[Ru(Cl)2 (NHC)(PCy3 )(=CHPh)] (NHC = IMesH2  (2), IMes (36)) (figure 2.1.). This
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led to a dramatic increase in reactivity. 1 0 - 1 7  For example, the ring closing metathesis

o f the methyl malonate ester (scheme 2.2.) only goes to 82 % completion with 35, 

whereas with 2 100 % conversion is obtained. In addition, the more sterically bulky 

'Bu analogue that does not react at all in the presence of 35 also goes to 100 %

is far better than that of 35, showing no decomposition after 14 days of continuous 

heating at 60 °C . 1 5  35 shows decomposition after 1 hour at 60 °C.

The higher reactivities of 2 and 36 were initially attributed to the increased

Nolan showed that the bond dissociation energies of NHCs from ruthenium metal 

centres are generally higher than phosphines (table 2 .1. ) . 1 8  This stronger bonding 

should enhance the rate of phosphine dissociation as well as leading to more stable 

intermediates than those bearing simply a phosphine ligand during catalytic cycles. 

This should lead to higher activity in catalysis.

completion with 2 present. 1 0  In addition, Nolan found that the thermal stability of 36

(35) (2)

Figure 2.1. Structures of 35, 2 and 36.

(36)

Et02C C 02Et

R = Me, Bu

Scheme 2.2. RCM of malonate ester catalysed by 35 and 2.

labilisation of the phosphine group due to a large trans effect from the NHC ligands.
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L Relative BDE (kJ mol'1)
IMes 65.5
ICy 89.0
ITol 79.0
IPC1 78.1
IAd 28.6
IMesCl 50.8
IPr 46.6
PCy3 44.1
P'Pr3 39.5

Table 2.1. Relative BDE of various ligands from [RuCl(Cp*)L]

However, Grubbs found that phosphine dissociation in the IMesH2  bearing catalyst, 

2, was extremely slow relative to that in the bis phosphine complex, 35 . 1 9  This was 

an unexpected finding and so Grubbs carried out an in depth investigation, subtly 

changing the ligands on the ruthenium centre and investigating rates of phosphine 

exchange. This threw up some interesting results.

PCy3 and PCp3 (Cp = cyclopentyl) are believed to have very similar steric and 

electronic parameters but replacing PCy3  with PCp3  in 35 led to a four fold increase 

in the rate o f phosphine dissociation. Similarly, the rate of phosphine dissociation in 

36, which has an IMes ligand, is an order of magnitude slower than in 2, which has 

an IMesH2  ligand. Work by Nolan et al. has suggested that IMes and IMesH2  have 

very similar steric and electronic properties. 2 1  Substitution of the PCy3 ligand in 2 

for PPh3  leads to a 50 fold increase in rate o f phosphine dissociation. Nolan and 

Fogg have noted that changing the phosphine ligand from PCy3 to PPh3 in the 

similar complex, [RuHCl(IMes)(PR3 )(CO)] also greatly enhances the lability of the
99phosphine. Thus it appears that the rate of phosphine dissociation is extremely 

sensitive to the type o f phosphine and NHC on the complex and is more than a 

simple electronic effect. For all of the complexes examined, the rate of phosphine 

exchange was independent of phosphine concentration, implying that a dissociative 

mechanism is taking place.
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2.2.1.1. Phosphine dissociation from metathesis catalysts

From the calculations carried out on phosphine dissociation, Grubbs has proposed a 

general mechanism for ruthenium catalysed alkene metathesis reactions, which 

involves phosphine being lost in a dissociative fashion, before being replaced by the 

alkene substrate (scheme 2.3.). This mechanism has since been endorsed both 

experimentally and computationally. 2 3 - 2 5  The recoordination of phosphine competes 

with the alkene, making the catalyst relatively inefficient as it can only complete a 

few turnovers before phosphine rejoins, forming the original complex. When NHC 

complexes are used, although the initial loss of phosphine is slow, once it is off, the 

coordination of alkene into the vacant site is much more favoured than the rebinding 

o f phosphine. Thus, NHC complexes can complete many turnovers of the reaction 

before recoordinating with phosphine. In fact, Grubbs has shown that 

[Ru(Cl)2 (IMesH2 )(PCy3 )(=CHPh)j (2) selectively binds alkenes over free phosphine 

by over four orders o f magnitude, compared to [Ru(Cl)2 (PCy3 )2 (=CHPh)] (35), and 

attributes this to the higher o-donor properties of NHCs relative to alkyl phosphines.

-PR.\ \  f - '
Ru^='" _______

l \  +PR3
p r 3

[Ru]=-
+ alkene

[Ru]— '

- alkene

[Ru] = X2LRu ( L = PR3i NHC)

- alkene

R\

+ alkene

[Ru]— '

R'

Scheme 2.3. Alkene metathesis mechanism as proposed by Grubbs.

The observation that NHCs are excellent o-donors is supported by experimental 

work carried out by Cavell and co-workers, which suggest that in Pd(0)-alkene

complexes, those bearing NHC ligands as opposed to phosphine ligands, promote
26and stabilise metal-alkene backbonding (NHC in this instance = IMe,*). The two
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extremes of metal-alkene bonding can theoretically be represented as pure donor or

alkene to that bound to a Pd-NHC complex, shows a strong upfield shift when it is 

bound to the metal centre (JH NMR, free alkene HRC=CHR (R = COOH): 8 7.05, 

bound alkene HRC=CHR: 5 3.34; nC{'H} NMR, free alkene H R O C H R : 8 136.6; 

bound alkene HRC=CHR: 8 38.2). This implies that the alkene is well shielded by 

the rc-backbonding from the metal centre, which is made more electron rich by the 

presence of the NHC. This lessens the double bond character of the alkene and 

pushes the NMR shifts upfield.

Recently, Piers has synthesised a 14-electron NHC complex (37), which can 

immediately bind alkene in the catalytic cycle, without having to undergo phosphine 

loss first (figure 2.3.).27

Initially, it was hoped that this species would be even more catalytically active than 

[Ru(Cl)2 (IMesH2 )(PCy3 )(=CHPh)] (2) as the complex would not have to undergo

1 1 'Xpure acceptor (figure 2.2.). Comparison of the H and C NMR shifts of the free

V
LnM-* 1|

pure donor bonding pure acceptor bonding

Figure 2.2. Comparison of two bonding extremes of alkenes.

B(C6F5)4

(37)

Figure 2.3. 14-electron variation on Grubbs’ catalyst.

initial phosphine loss before binding alkene. In addition, there would be no free 

ligand in solution to compete with alkene binding. Indeed Piers found that in the
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RCM of diallyldiethylmallonate, 37 led to higher conversion (90 % in 4 hours) than 

2 (25 %) over the same amount of time.

More interestingly from a mechanistic point of view, however, Piers has used 37 to 

observe, for the first time, the predicted metallocyclobutane intermediate that 

Chauvin predicted was an integral part o f the mechanism of the metathesis reaction 

(page 57).28 Addition of 2 .2  equivalents of ethene to 37 at -50 °C led to quantitative 

generation o f the metallocyclobutane intermediate after 2 -3  hours (figure 2 .4 .)  along 

with the phosphonium salt [CH2 =CHPCy3 ][B(C6 F5)4]. Piers used ’H^H NMR 

correlations and selective decoupling experiments to show that the multiplets 

observed in the NMR spectrum at 8  6 .6  (H b)  and - 2 .6  ( H a)  (in a 4 :2  ratio) were 

coupled to each other. Using 13C labelled ethene led to further splitting of these 

resonances whilst the rest of the spectra remained unperturbed. The formation of the 

ruthenacyclobutane was demonstrated to be reversible by addition of an excess of 

13C labelled ethene to a previously unlabelled complex. Over time, the 

metallocyclobutane was converted to the labelled analogue.

CI2L— Ru

“ i iB

Figure 2.4. Metallocyclobutane intermediate showing protons observed by !H NMR
spectroscopy.

2.2.1.2. Solvent effects on second veneration metathesis catalysts

It has been noted that 36 and other Grubbs’ metathesis catalysts bearing N-aryl 

substituents on the NHCs are more active in toluene whereas those with N-alkyl 

substituents are more active in chlorinated solvents.29'31 From NMR studies, Furstner 

observed that in CD2 CI2  not only was rotation around the C-Ru bond in 36 restricted, 

which has already been reported,32 but that rotation of the mesityl substituents 

around the C-N bond was also hindered. This is shown by the presence of two lines 

for the mesityl protons in CD2 CI2 , which coalesce to just one when the complex is 

dissolved in C ^ ,  showing that the mesityl rings are moving around more rapidly.
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The authors suggest that this is due to 7t-3t stacking interactions between complex 

molecules, which have been seen in the crystal structures, between the benzylidene 

unit and the N-aryl substituents. Aromatic solvents could compete for interactions 

with the aryl substituents, reducing the stabilising effect o f the n-n stacking, and 

giving the NHC ligands more rotational freedom. This rotational freedom allows the 

NHCs to move more freely once phosphine has dissociated from the complex, thus 

allowing the unsaturated complex to be stabilised and hence more active than in 

non-aromatic solvents.

2.2.1.3. Decomposition o f  Grubbs’ catalysts

Dinger and Mol have noted degradation o f both first and second generation Grubbs’ 

metathesis catalysts with aliphatic alcohols and benzyl alcohol. Along with others,34* 

3 6  they found that when [Ru(Cl)2 (PCy3 )2 (=CHPh)] (35) was subjected to aliphatic 

primary alcohols, especially in the presence of additional base, [RuHCl(PCy3 )2 (CO)]

(38) was produced (figure 2.5 . ) . 3 7  If benzyl alcohol is used in place o f the aliphatic 

alcohol, [RuClPh(PCy3 )2 (CO)] (39) is formed. They determined that these reactions 

occurred via an alcohol dehydrogenation pathway, producing toluene and alkane as 

byproducts. Both these degradation complexes are active alkene isomerisation 

catalysts, external alkenes reorganising to the internal alkene with 95 % selectivity.

oc'oc’

(38) R=H (40) R=H
(39) R=Ph (41) R=Ph

Figure 2.5. Structures of decomposition products of Grubbs’ catalysts.

When [Ru(Cl)2 (IMesH2 )(PCy3 )(=CHPh)] (2) was reacted with methanol in the 

presence o f triethylamine, the analogous decomposition product to that seen with 35, 

[RuHCl(IMesH2 )(PCy3 )(CO)] (40) was formed as the major product. 3 8  This could 

not be isolated as it is extremely soluble in all common organic solvents and the
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authors postulate this may be because it is not a solid at room temperature. The 

complex could be precipitated from pentane at -78 °C but upon warming to room 

temperature gave only an oily residue that was highly air sensitive. 38, the 

degradation product from 35, was also observed, which is surprising as this would 

necessitate the exchange of IMesFb for PCy3 , which does not fit with the BDEs 

calculated by Nolan (page 59, L = IMes, BDE = 65.5 kJ mol'1; L = PCy3 , BDE = 

44.1 kcal mol" 1 on [RuCl(Cp*)(L) ] ) . 1 8  Two other unidentified products were also 

observed by and 31P NMR spectroscopy.

In contrast to the reaction of 35 with benzyl alcohol, which led cleanly to 39, 2 gave 

a number of products. Again, this seems attributable to the relative lability of the 

IMesH2  ligand under the conditions used (60 °C). Only 30 % of the desired 

phenylruthenium complex, [RuClPh(IMesH2 )(PCy3 )(CO)] (41) was formed and 38, 

39 and 40 were also observed (25 %, 5 % and 10 % respectively of the total by 31P 

NMR spectroscopy). The other products could not be identified. 41 was found to be 

far more active for alkene isomerisation than 38 or 39.

Grubbs has also shown that this carbonylation reaction also occurs with 

[Ru(Cl)2 (IMes)(PCy3 )(=CHPh)] (36).39 It was found that heating 35 and 2 in the 

presence of oxygen-containing substrates such as ethyl vinyl ether for prolonged 

periods of time also led to the carbonylation products.

More recently, Hong et al. have monitored the decomposition route of 

[Ru(Cl)2 (IMesH2 )(PCy3 )(=CH2 )], an intermediate in the metathesis reaction o f 2 . 4 0  

When this complex was heated in C6 D6  at 55 °C, the major decomposition product 

was found to be a dinuclear compound with a bridging carbide and an r | 6  bond 

between one of the ruthenium centres and one of the mesityl groups (figure 2 .6 .). 

[CH3 PCy3 ][Cl] is produced concurrently to the bis metal species and this leads the 

authors to conclude that decomposition occurs by the proposed mechanism shown in 

scheme 2.4. Initially, PCy3 dissociates and the resulting 14-electron metal fragment

(II) is attacked by the free phosphine on the methylidene group (III). H2 C=PCy3
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then dissociates, leaving a 12-electron fragment (IV) that then reacts with II to give 

a chloride bridged dimer (V). H2 C=PCy3 , that is free in solution, can abstract HC1 

from this complex and the terminal alkylidyne that is then formed on one of the 

ruthenium centres (VI) undergoes oxidative addition to the other metal centre with 

migration of the two chlorides to give the product (VII).

Mes
Ru C = R u ‘

Mes

Figure 2.6. Decomposition product from [Ru(Cl)2 (IMesH2 )(PCy3 )(=CH2 )].

2.2.1.4. Alkene isomerisation by [Ru(Cl)?(IMes)(PCvi)(=CHPh)l (36)

Bourgeois et al. found that using [Ru(Cl)2 (IMes)(PCy3 )(=CHPh)] (36) in the ring 

closing metathesis of various dienes that required elevated temperatures and 

extended reaction times led to formation of an isomerised product of the initial diene 

in 5-10 % yield as well as the expected metathesis product. 3 1 Alkene isomerisation 

has been observed before when decomposition of the ruthenium catalyst occurs, 4 1 ' 4 3  

however, in this case the authors believe that it is 36 itself that is catalysing the 

reaction. This phenomenon has also been observed by Fiirstner et al. who noted 

formation of a 2 0 -membered-macrolactone ring as well as the desired 2 1 -membered 

product in the RCM of the diene shown in scheme 2.5. This is attributed to an 

isomerisation of the double bond in the starting diene, followed by elimination of 

propene instead of ethene during ring closure.

36(1.2 mol %) 
toluene 
45 mins, 80 °C +

Scheme 2.4. Formation of two macrolactone rings from RCM of the diene, catalysed
by 36.
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CH

Mesi
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'—N H

Ru CH
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H2C=PCy3
rs*

( V Rû c i '
'—N H

r ~ \ n

Mes Y * p r  '
ru .N Ru-Cll'C'/'Ru-bHj'
[H3CPCy3][CI] (  'y" k ^ c i^  |

Cl
Mes Mes

VI

H C V tv
Mes - i ^  Y ^ C l M

,N. ^Ru— C=Ru’
I Cl Cl w

Mes
VII

Scheme 2.5. Proposed mechanism of degradation of 
[Ru(Cl)2 (IMesH2 )(PCy3 )(=CH2)].
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Bourgeois et a l have proposed a mechanism for this isomerisation (scheme 2.6.). 

Once 36 has coordinated to the less sterically crowded alkene moiety in the diene, 

the reaction can proceed along two routes. Firstly, the conventional metathesis 

reaction occurs, via a metallocyclobutane intermediate. However, along the second 

pathway, deprotonation at the allylic position leads to a 7t-allyl complex, responsible 

for the double bond migration. This complex is stabilised by the benzylidene carbon 

as the high oxidation state of the ruthenium will not favour the formation of a 

hydride complex. The IMes ligand, with its high a-donating ability, increases the 

basicity of the benzylidene and adds to this stabilising effect. There is also the 

potential for an agostic interaction to occur between the unsaturated metal centre and 

the allylic hydrogen.

+ 36

-PC y3

IMes RuCI2IMes

RCM  arene 
product

y

R =  P h, H

+ 36

reactions with 36.

The overall distribution between the metathesis product and the isomerisation 

product is highly dependent on the solvent used (scheme 2.7. and table 2.2.). The 

authors rationalise this in terms o f coordination ability. The more coordinating 

solvents will prevent the second double bond from coordinating to the metal centre, 

thus preventing the process of ring closing metathesis and favouring the route to 

isomerisation.

IMes

Scheme 2.6. Postulated mechanism o f isomerisation observed in
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0 oo
(A) (B) (C)

Scheme 2.7. Metathesis and isomerisation observed using 36.

Solvent Boiling point (° C) Metathesis product 
(B) (%)

Isomerisation product 
(C) (%)

Benzene 80 50-70 30-50
Toluene 110 20 80
DCE 83 90 10
DME 85 0 100

Table 2.2. Ratio of (B) to (C) in catalysis o f (A) by 36.

In systems where ring closing metathesis occurs rapidly, isomerisation o f the 

substrates is not observed as the coordination of the second double bond occurs 

before isomerisation has a chance to take place. Addition of additives, such as PCy3 , 

which goes on to form 0=PCy3, to the reaction mixture also inhibited isomerisation 

by binding to the metal centre strongly enough to prevent 7i-allyl or agostic bond 

formation but not so strongly as to prevent metallocyclobutane formation.

2.2.1.5. Bis NHC catalysts

Grubbs has gone on to synthesise bis NHC analogues o f his metathesis catalysts, 

[Ru(Cl)2(IMesH2)(IMes)(=CHPh)] (42) and [Ru(Cl)2(IMesH2)2(=CHPh)] (43) 

(figure 2.7.).39 The crystal structure of 42 has been obtained although it possesses 

significant disorder between the two NHC ligands. Both 42 and 43 are extremely 

stable products and the NHCs should be hard to dissociate from the complex, which 

according to the mechanistic model proposed by Grubbs, should hinder the catalytic 

cycle.12,19 At 80 °C, 43 shows activity in both RCM and ROMP reactions, 

suggesting that some initiation can occur. To test for this, 43 was heated in the 

presence o f excess PCy3 to trap out any of the 14-electron complex,

68



Chapter 2 Ruthenium NHC complexes

[Ru(Cl)2 (IMesH2 )(=CHPh)] as [Ru(Cl)2 (IMesH2 )(PCy3 )(=CHPh)] (2). After 16 

hours at 80 °C the ratio of 43 to 2 was 1:1.4. After 36 hours it was 1:6.3. This shows 

that the 14-electron, active complex is forming and that it is probably extremely 

active even in small quantities. It also demonstrates that under certain conditions 

phosphine can replace NHC, as discussed in section 1.2.3.

Ru'=>Ru'=>
PhPh

V J

(42) (43)

Figure 2.7. Structures of Grubbs bis NHC complexes.

Herrmann and co-workers had already noted the phenomenon of loss of NHC from 

bis NHC complexes a few years earlier in the two bis NHC complexes they 

synthesised, [Ru(Cl)2 (IPr)2 (=CHR)] and [Ru(Cl)2 (ICy)2 (=CHR)], which were both 

extremely active in ROMP and RCM reactions. 3 2  Herrmann has also carried out 

DFT calculations for the ligand dissociation energies for various model complexes 

of the formula [Ru(C1)2 (L,)(L2 )(=CH2 )(CH=CH)] (L1, L2  = PH3, PMe3, NHC ) . 2  

These are presented in table 2.3. and show that bis NHC species should undergo 

ligand dissociation less readily than bis phosphine or mixed phosphine/NHC 

complexes. Experimentally, it was found that adding a large excess o f PCy3  to a bis 

NHC complex (NHC = ICy, IPr) did not lead to any formation of the mixed 

complex.

Model compound AJE for PH 3 AE for PMe3 AE  for IH
l '  = l /  = p h 3 76.4(81.5)
L' = L2  = PMe3 113.4(108.4)
L 1 = L2  = IH 189.0(177.2)
l ‘ = p h 3 , l 2  = ih 78.5 (66.4) 197.0 (208.7)
L' = PMe3 ,L 2  = IH 109.2(104.6) 176.4(182.3)

Table 2.3. BDEs (in kJ mof ) for model complexes of the general formula 
[RuC12 (L 1)(L2 )(=CH2 )(CH=CH)], with (and without) ethene coordination.
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Fogg’s group have synthesised two bis IMes analogues o f Grubbs’ catalyst, 

[Ru(Cl)2 (IMes)2 (=CH2 =CMe2 )] (44) and [Ru(CI)2 (TMes)2 (=CHPh)] (4S).44 44 was 

not isolable due to its high solubility in all solvents but 45 precipitated as a 

crystalline air-stable solid that was good enough for X-ray diffraction studies. 

Fogg’s complexes have not been investigated in catalytic reactions.

2.2.1.6. Modifying the NHC on the second generation Grubbsy catalyst

Jafarpour1 8 ,4 5  Buchmeiser4 6  48, Dinger49, Furstner3 3  ,Herrmann32, Harrison50, Piers2 7  

and Grubbs himself8 , 1 3 , 3 6 , 3 9 , 4 3 ’5 1 , 5 2  have all undertaken modifications to the second 

generation Grubbs’ metathesis catalyst. Some of the complexes synthesised are 

shown in figure 2.8. No definitive trends have been found with these catalysts. 

Different metathesis reactions show different trends for the effectiveness of the 

catalysts and no one complex outperforms all the others in a majority o f reactions.

Figure 2.8. A series o f variations of the Grubbs’ second generation metathesis
catalyst.

W

F3C(F2C)5

R = (CH2)nCH=CH (n = 3,4 or 5) 
fBuMe2SiO(CH2)2 
F3C(F2C)5

R = Me, Cy
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2.2.2. New ruthenium NHC complexes

The success of Grubbs’ second generation catalyst led to similar substitutions being

Baratta56, Joo57, £etinkaya58, Crabtree5 9 , 6 0  and Danopoulos. 6 1  Some of these are 

shown in figure 2.9. They have been used to catalyse both the direct hydrogenation 

o f alkenes and cycloalkenes and the transfer hydrogenation o f aldehydes as well as 

the dimerisation of alkynes and the transformation o f alkenes to aldehydes. 

However, some Ru-NHC complexes have been found to be catalytically inactive.

Figure 2.9. A range of Ru-NHC complexes with applications in alkyne coupling (A, 
B), hydrogenation o f alkenes (C-F) and transfer of alkenes to aldehydes (G). H and 

I have no reported activity in catalytic reactions.

' I ' )  c o  c c
carried out on phosphine-bearing ruthenium catalysts, including by Nolan ’ ' ,

D E F

+
+

Rn =  1, X  =  I 
n =  2 , X  =  Cl

\

G H
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2.3. Aim of this work

The formation o f the C-C activated complex [Ru(H)(IMes)’(PPh3 )2 (CO)] (19) in a 

relative facile reaction from the heating of [Ru(H)2 (PPh3 )3 (CO)] (15) and 3 

equivalents of IMes at 100 °C for 21 days (section 1.2.8.) is intriguing because the 

system is not predisposed to undergo C-C activation, unlike the other complexes 

reported in the literature, which have been presented in section 1.1.3. The use of 

DFT calculations have been employed to try and gain an insight into the reasons that 

C-C bond activation is observed in this complex. These have been carried out by the 

Macgregor group at the University o f Heriot Watt in Edinburgh. Initial calculations 

involved simplifying the models drastically using PH3  ligands instead o f PPI1 3  and 

IH or IMe as the NHC. However, recently these models have been improved to 

include more steric bulk.

Experimental work in the laboratory has been carried out to try and directly prove 

the results obtained from the computational work. In addition, the effect o f solvent 

on the activation reaction has been investigated.

2.4. Preliminary computational studies on bond activations in 

Ru-NHC complexes

Computational studies on CO stretching frequencies of [Ru(L)(PH3 )2 (CO)] and 

[Ru(H)2 (L)(PH3 )2 (CO)] (L = PH3, IH, IMe) 6 2  suggest that replacing phosphine with 

an NHC ligand leads to a lowering of the vco stretching frequency by 30-50 cm ' 1 

(table 2.4.). This is consistent with the ruthenium centre becoming more electron 

rich when NHC ligands are present. These complexes were examined in a variety of 

intermolecular bond reactions.
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Metal species L vco (cm 1)
Ru(L)(PH3 )2 (CO) p h 3 1934.6

IH 1885.2
IMe 1903.5

Ru(H)2 (L)(PH3 )2 (CO) p h 3 1976.5
IH 1940.3
IMe 1944.3

Table 2.4. Calculated IR stretching frequencies for various ruthenium complexes.

Initial investigations by Diggle et al centred on the ability o f unsaturated ruthenium 

centres to promote intermolecular bond activations in the small molecules H2 , CH4  

and C2 H6 . Surprisingly, despite the increased electron rich nature of the NHC 

species, implied from the IR data, the difference in reactivity between 

[Ru(PH3 )3 (CO)], [Ru(IH)(PH3 )2 (CO)] and [Ru(IH)2 (PH3 )(CO)] was negligible. 

When the NHC ligand was replaced by IMe and the calculations repeated, the 

activation energies for all the reactions were increased, suggesting that the activation 

barrier arises from a predominately steric effect rather than an electronic one. 

Models show that the IMe ligand has to move from the staggered position that it 

occupies, to accommodate the incoming substrate, costing more energy. Presumably 

this effect can only get greater as the steric bulk of the ligands increases.

The similarity in reactivity of the PH3  and IH complexes can be rationalised if the 

models are broken down and consideration given to the orbitals around the metal. 

This shows that replacing a phosphine with an NHC does not lead to a significantly 

better Lewis base, although this does occur to some extent. However, the change in 

ligand does lead to a significant decrease in the Lewis acid properties of the 

fragment. These effects destabilise both orbitals leading to no change in the HOMO- 

LUMO gap overall (figure 2.10.).
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? h 3

IH

<5 S # * 6
IH

Figure 2.10. Computer generated difference in frontier orbitals between bis 
phosphine and bis NHC complexes of ruthenium.

The authors found that oxidative addition was a favourable process for H2 , both 

kinetically and thermodynamically. The latter effect was attributed to the formation 

of two strong Ru-H bonds in preference to the one or two relatively weak Ru-C 

bonds that would form from the oxidative addition of CH4  or C2 H6 . This trend has 

been noted previously by Martinho-Simoes and Beauchamp . 6 3  The favoured kinetics 

of the addition of H2  lie with the spherical nature of the hydrogen atom, which 

allows for the formation of an efficient Ru-H interaction . 6 4 , 6 5  The electrons from the 

metal can be stabilised in the a* orbital of the hydrogen atom whereas the sp3 orbital 

from the CH3 is less accessible and necessitates the CH4  to distort as it approaches 

the metal fragment. This effect is exacerbated for the C-C bond activation in C2 H6 .

The initial calculations performed on intermolecular activation of small molecules 

were extended to intramolecular activation of substituents on the NHCs 

themselves. 6 6  The models used were still significantly simplified with PH3 being 

used as the phosphine ligands. However, one of the H substituents on IH was 

replaced with a phenyl ring bearing H or Me at the or^o-position (figure 2.11.).

p h 3
p h 3

Figure 2.11. Molecule used in computer modelling approach to C-X bond
activation.
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The mechanism of C-H activation can lead to cis and trans products (where the 

Ru-H bond is cis or trans to the CO) (scheme 2.8.) and the viability of both 

pathways have been calculated.

Computing energy profiles for the cis and trans routes to C-H activation (numbers in 

scheme 2 .8 .) show that the flipping o f the phenyl ring that would need to occur to 

produce the trans isomer is extremely unfavourable. Calculations on the length of 

the ortho-C-H bond of the phenyl ring show that it is longer (1.25 A (trans), 1.24 A 
(cis)) than in the free NHC ligand ( 1 . 1  A). This suggests that an agostic interaction is 

occurring between the C-H bond and the ruthenium centre. This agostic interaction 

is lost during flipping o f the phenyl ring, as evidenced by the reduction in C-H bond 

length to 1 . 1 1  A. This suggests that in mono NHC activated complexes the activated 

phenyl ring would sit trans to the CO, with the Ru-H bond trans to a phosphine. 

This is the case in the IMes activated product, [Ru(H)(IMes)’ ’(PPh3 )2 (CO)] (18), 

seen by the Whittlesey group and discussed in chapter 1 (section I.2.8 . ) 6 8  but not in 

the activated alkyl NHC complexes [Ru(H)(IEt2 Me2 )’’(PPh3 )2 (CO)] (31) or 

[Ru(H)(I'Pr2 Me2 )” (PPh3 )2 (CO)] (34) seen by the same group . 6 9 , 7 0  However, the 

NHC is in a different geometry in the unactivated alkyl NHC complexes which 

probably leads to the different geometry o f the activated species. Also, the ethyl and 

isopropyl substituents probably have less of a barrier to rotation or ‘flipping’ 

compared to a phenyl ring.

Similar calculations for C-C activation, carried out with a methyl group at the ortho 

position on the phenyl ring, show that the reaction goes through one transition state 

where lengthening of the Ar-Me bond is noted (from 1.51 to 1.82 A) (scheme 2.9.). 

The phenyl ring and the imidazol ring become more planar to each other as the 

insertion of the metal centre into the Ar-Me bond takes place. Compared to the C-H 

activation described previously, the activation energy barrier for C-C activation is 

much larger (95.3 kJ m o l 1 compared to 0.55 and 0.59 kJ m o l 1 for cis and trans C-H 

activation). This highlights the steric effects of the methyl group, which inhibit the 

formation of an agostic complex and restrict the interaction of the ruthenium metal
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p(i)kc<1)

H(1) ■-o
C(2)

cis product

p(i)p(i> co>C(1)

,Ru
H(1) 0 (2)' H(1)

Ru...H(1) 1.80 0 = 3 2 .8 °  Ru-C(2) 1.87 Ru...H(1) 1.73 0 = 3 7 .8 °  Ru-C(2) 1.88 Ru-H(1) 1.63 0 = 8 5 .1 °  Ru-C(2) 1.89
Ru...C(1) 2 .28 4 = 9 .4 °  Ru-P(1) 2 .33  Ru...C(1) 2.21 4 = 5 .5 °  Ru-P(1) 2 .34 Ru-C(1) 2 .16 4= 1 .4 °  Ru-P(1) 2 .39
C(1)-H(1) 1.24 C(1)-H(1) 1.35 C(1)...H(1) 2 .59

C(1) P(1)

H(1)

C(2)

Ru...H(1) 2 .05  0= 1 3 .8 ° Ru-C(2) 1.85
Ru...C(1) 3 .00 4 —11.4° Ru-P(1) 2.31
C(1)-H(1) 1.11

trans product

P (i) .H(1) H(1)P(1)

£ ( 2),C(2)C(1)
C(1)

iH(1)
C(1)

P(1)

Ru...H(1) 1.81 0 = 3 4 .4 °  Ru-C(2) 1.88
Ru...C(1) 2 .22  4 =-7.7° Ru-P(1) 2 .33
C(1)-H(1) 1.25

Ru...H(1) 1.75 0 = 3 7 .2 °  Ru-C(2) 1.89
Ru...C(1) 2 .17  4 =-4.34° Ru-P(1) 2.38
C(1)-H(1) 1.37

Ru-H(1) 1.68 0 = 8 4 .8 °  Ru-C(2) 1.92
Ru-C(1) 2 .12  4 =-0.7° Ru-P(1) 2 .35
C(1).,.H(1) 2 .58

Scheme 2.8. C-H activation mechanism, from calculations, showing both cis and 
trans pathways for C-H activation, including intermediates, transition states and 

products. All bond lengths and distances are in Angstroms (A).
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centre with the Ar-Me bond. The trans influence of the CO has again affected the 

geometry, so that the CO lies trans to the phenyl group rather than the methyl 

ligand. The CO ligand does indeed lie trans to the phenyl group in 

[RuH(IMes)’(PPh3)2 (CO)] (19), although this is a stage further on from what has 

been calculated, after methane has been lost.

Scheme 2.9. C-C activation mechanism, from computational calculations, showing 
the cis pathway, including the intermediate, transition state and product. All bond 

lengths and distances are in Angstroms (A).

2.5. C h a ra c te r is a tio n  o f  ru th e n iu m  h y d rid e  com plexes by N M R  

sp ec tro sco p y

The hydride ligands on the activated complexes, [RuH(IMes)” (PPh3)2(CO)] (18) 

and [RuH(lMes)’(PPh3)2 (CO)] (19), and the starting materials, [Ru(H)2 (PPh3)3(CO)] 

(15) and [Ru(H)2 (IMes)(PPh3)2 (CO)] (16), make the reactions easy to follow by 'H 

NMR spectroscopy. In addition, the number and geometry o f the phosphine ligands 

give distinctive coupling patterns in the hydride resonances as well as defined 

resonances in the 3IP{1H) NMR spectra. The hydride resonances for 15, 16, 18 and 

19 are shown in figures 2.12. to 2.15. Both 15 and 16 exhibit two hydride resonances 

due to the two inequivalent hydrides on the ruthenium centre. Each hydride in 15 

couples to three phosphines, and to the other hydride. This gives two doublets of 

doublets o f triplets (5 -6.53 (27Hr = 15.3 Hz, = 30.5 Hz, 2J„h = 6.1 Hz), -8.29, 

( 2J h p  = 74.5 Hz, 2./„p = 28.1 Hz, 2./,,n = 6.1 Hz)). The 3iP{'H} NMR exhibits a

Ru...C(3) 3 .17  0 = 2 4 .7 °  Ru-C(2) 1.84
Ru...C(1) 3 .59  4 =-56.5° Ru-P(1) 2 .33
C(1)-C(3) 1.51

Ru...C(3) 2 .42 0= 4 6 .2 ° Ru-C(2) 1.89
Ru...C(1) 2 .19 <|>- 1 4 .0 °  Ru-P(1) 2.31
C(1)-C(3) 1.82

Ru-C(3) 2 .45 0 = 8 7 .8 °  Ru-C(2) 1.89
Ru-C(1) 2 .26 4>=-1.2° Ru-P(1) 2 .36
C(1)...C(3) 3 .10
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doublet and a triplet (8 58.2 (d); 46.1 (t), 2Jpp = 16.8 Hz). When one o f the 

phosphines is replaced by an IMes ligand in 16 there are still two phosphine 

environments but now only one phosphine ligand in each. This leads to a doublet of 

doublets of doublets for each hydride (8 -6.36 ( 2J h p  = 26.8, 2J h p  = 23.6, 2J h h  = 6.0 

Hz), -8.08 (2Jupt = 81.2, 2Jhpc = 33.6, 2Jhh = 6.0 Hz)). Again, there are two 

resonances in the phosphorus spectrum, this time both are doublets (8 59.0, 47.8, 

2J p p =  14.8 Hz).

The C-H and C-C activated complexes only have one hydride resonance and hence 

have simpler splitting patterns. The proton on 18 exhibits a broad doublet of 

doublets due to coupling to two different phosphine environments (8 -7.97 ( 2J h p  = 

102.4, 2J Hp = 30.8 Hz)). The 31P{*H} NMR spectrum again consists o f two doublets 

(8 53.7; 28.4, 2JPP = 18.1 Hz). The NMR spectra of 19 are simpler still as the 

phosphines on the metal centre are equivalent leading to one triplet in the hydride 

region (8 -6.99, 2J Hp = 28.4 Hz) and a singlet in the 3,P{'H} NMR spectrum (8 55.1).

- 6 . 2  - 6 . 4  - 6 . 6  - 6 . 8  - 7 . 0  - 7 . 2  - 7 . 4  - 7 . 6  - 7 . 8  - 8 . 0  - 8 . 2  - 8 . 4  - 8 . 6  p p m

Figure 2.12. Hydride region in 'H NMR spectrum of 15 (C6D6, 400 MHz, 25 °C).

T" T~
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xSX\\Ha

o o r  | ^ h b
PPh-,

\ J x*.

H H,
I ' I • 1 • 1 * I ' I '  1 ' I * T * I ’ f 1 I ' I ’ I

- 6 . 0  - 6 . 2  - 6 . 4  - 6 . 6  - 6 . 8  - 7 . 0  - 7 . 2  - 7 . 4  - 7 . 6  - 7 . 8  - 8 . 0  - 8 . 2  - 8 . 4  ppm

Figure 2.13. Hydride region in NMR spectrum o f 16 (C6D6, 400 MHz, 25 °C).

,-r r . . , r-r-r i  , .......................................j .

. 7  - 7 . 8  - 7 . 9  - 8 . 0  - 8 . 1  - 8 .

r ^ r \

O C ^  I H 
PPta

Figure 2.14. Hydride region in !H NMR spectrum o f 18 (C6D6, 400 MHz, 25 °C).

- 6 . 8 - 6 . 9  - 7 . 0 - 7 . 1

Figure 2.15. Hydride region in *H NMR spectrum o f 19 (C6D6, 400 MHz, 25 °C).
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2.6. C-C activation via a bis NHC species

From the geometry of 19 it is clear that the auxiliary ligands must be involved in 

formation of the complex. The hydride ligand is trans to the IMes ligand, whereas 

on 16 and 17 the hydrides are trans to a phosphine and the CO group. The hydride 

on the C-H activated complex, 18, is also trans to a phosphine. This suggests that 

once C-C activation of the mesityl ring has occurred, the subsequent loss o f methane 

from the reaction sphere is not straightforward.

2.6.1. Further computational studies using full ligand models

Work in the laboratory suggests that 19 forms via 17.68,71 Using simplistic models o f 

the complexes bearing IH and PH3  substituents, did not provide any insight into why 

17 may be more favourable to undergo C-C activation than 16, as the differences 

between energy profiles were negligible (activation barrier for C-C activation of

95.3 kJ mol' 1 for mono NHC and 91.9 kJ mol' 1 for bis NHC). When the model 

complexes were modified to include the steric bulk of the phenyl groups on the 

phosphine and the mesityl groups on the NHC, the differences in activation energies 

for C-C activation between the mono and bis systems was greater (118.8 kJ m o l1 for 

mono NHC and 8 8 . 8  kJ m ol1 for bis NHC ) . 7 2  This suggests that C-C bond activation 

is easier when the trans ligand is an NHC and the fact that this difference was only 

noted upon inclusion of steric bulk implies that the effect is steric rather than 

electronic. However, by increasing the complexity of the computational models so 

much, a large degree of accuracy is lost and so these figures cannot be taken as 

definitive evidence that the bis NHC species is more prone to C-C activation than 

the mono NHC species. In addition, if 19 forms from 17, IMes must be lost at some 

point and replaced by phosphine. Though this has been observed and discussed in 

chapter 1 (page 23) it is not energetically favourable.

There are three routes along which the C-C activation reaction could proceed from 

17 to give 19 in the observed geometry (scheme 2.10.). Pathways A and B both
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involve loss of PPh3 and formation of either a dihydrogen complex (A) or oxidative 

addition of H2 to give a seven coordinate Ru(IV) intermediate (B). CH4  is then lost 

via either a a-bond metathesis process (A) or reductive elimination (B). 

Alternatively, reaction may proceed via a 6 -coordinate Ru(IV) dihydride 

intermediate (C). These options were established using DFT calculations by the 

Macgregor group. To try and determine experimentally which pathway occurs, 

isolation of 17 was o f the utmost importance.

2.6.2. Attempted isolation o f rRuH?nMesT(PPh3)(CO)l (17)

The characteristic ‘H and ^P l'H }  NMR shifts allowed the formation of this 

complex to be easily monitored by NMR spectroscopy. The 'H NMR spectrum 

shows two doublets o f doublets in the hydride region. One is at 6  -5.89, which is 

attributed to the hydride cis to the PPh3 group due to its relatively small HP coupling 

constant (18.8 Hz). The other comes at 5 -7.39 and from the larger coupling 

constant (93.5 Hz) is clearly trans to the phosphine. The *Jhh value is 7.1 Hz which 

is consistent with cis hydride coupling (figure 2.16.). The 3 IP{1H) NMR spectrum 

shows just one peak. This is a singlet at 6  47.3.

 1----------   1---------- ----------- 1----------   1----------------   1-----  1----------   1-----------  1-----------  1----------   1---------- *—
- 5 . 8  - 6 . 0  - 6 . 2  - 6 . 4  - 6 . 6  - 6 . 8  - 7 . 0  - 7 . 2  - 7 . 4  - 7 . 6  ppm

Figure 2.16. Hydride region in 'H NMR spectrum of 17 (d^-THF, 400 MHz, 25 °C) 
with some unidentified side products.

Two main methods were employed to try and isolate this complex.
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Chapter 2 Ruthenium NHC complexes

2.6.2.1. Controlled reaction o f [RuH?(PPhCO) 1 (15) with IMes

This experiment had to be carefully planned due to the many unknown factors in the 

C-C activation reaction pathway. It was known that heating the reaction past 80 °C 

pushes the reaction to the C-C activated product and that free IMes has to be present 

in large excess to drive the reaction. It is not known whether this is due to 

decomposition processes that are ongoing or to promote phosphine exchange 

reactions. The type of solvent employed is also thought to have a significant bearing 

on whether C-C activation occurs and this is discussed in more detail in section

2.6.3.

Unfortunately it was found that even when 50 equivalents of IMes were used in THF 

at 80 °C an equilibrium was formed between [Ru(H)2 (PPh3 )3 (CO)] (15), 

[Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) and [RuH(IMes)’(PPh3 )2 (CO)] (19). The reaction 

was also attempted by starting from 16 and adding 20 equivalents o f IMes. This 

reaction proceeded until the ratio o f bis:mono NHC complex was approximately 5:1 

but then proceeded no further.

Attempts were made to separate the complexes from each other by columning the 

solution through silica using hexane/THF (1:1) in a glove box. Very little separation 

was observed, however, and free PPI13 was also not found to be removed using this 

method.

2.6.2.2. Reaction o f fRuH?(AsPhd?(CO)] (20) with IMes andPPh±.

Heating [Ru(H)2 (AsPh3 )3 (CO)] (20) (0.05 g) with three equivalents of IMes (0.05 g) 

in benzene (0.6 mL) at 80 °C leads to formation of the bis NHC arsine complex, 

[RuH2 (IMes)2 (AsPh3 )(CO)] (21) already discussed in section 1.2.8. (page 43). As 

noted previously isolation of this complex is not possible due to the highly reactive 

nature of the arsine ligand. Adding PPh3 (0.01 g) directly to a solution of 21 led to

83



Chapter 2 Ruthenium NHC complexes

complete conversion of 21 to [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17) by NMR 

spectroscopy.

However, there are still many difficulties with this chemistry. Firstly, the highly 

sensitive nature of both bis NHC species (17 and 21) means that all experimental 

conditions had to be kept exceptionally dry and air free to prevent formation of the 

hydroxy hydride complex, [RuH(IMes)2 (OH)(CO)] (23). All glassware was flame 

dried and solvents were condensed into the reaction under vacuum. The free 

phosphine, which is easily detectable by NMR, and the free arsine, which is not, 

both need to be removed. The easiest way to eliminate the free phosphine is to make 

sure that no excess is added to the reaction in the first place and hence remove the 

need to try and separate it out. Unfortunately, phosphine does appear to have to be 

present in a slight excess to lead to complete conversion of 21 to 17.

The removal of free phosphine and arsine proved extremely difficult. Columning the 

solution was unsuccessful, as detailed above. Adding CuCk, a technique used by 

Grubbs and co-workers, 7  effectively removed the PPh3 but the chloride ions also 

interacted with 17, leading to decomposition. The most effective method was to 

pump off the solvent, redissolve the residue in pentane (ca. 1.0 mL) and filter the 

solution at -78 °C by immersing the solution in dry ice/acetone. The free ligands are 

soluble in pentane whereas the product is not but multiple purifications are still 

necessary to completely separate them. Unfortunately, as the filtration has to be 

carried out using a filter cannula this leads to contamination with the hydroxy 

complex, 23, as the labile phosphine group reacts with even the smallest amount o f 

residual moisture in the cannula. After multiple purifications, the amount of 23 in 

solution becomes significant. Attempts were made to recrystallise the bis NHC 

complex, 17, directly from solution. However, this was unsuccessful, again due to 

the extremely reactive nature o f 17. Attempts to prepare analogues of 17 with the 

potentially less labile phosphine ligands PCy3 and PMe3 were unsuccessful and led 

to a mixture of products.

84



Chapter 2 Ruthenium NHC complexes

Conrad et al have also noted the difficulty in isolating bis IMes species although 

they attributed this to the high solubility of the complexes rather than problems with 

reactivity . 4 4  Work in the Whittlesey group has also found that the more NHCs there 

are round the metal, the harder they are to isolate due to their higher solubility in a 

large number of common solvents. 7 3  Although bis NHC complexes have been 

isolated, tris NHC complexes that have been observed by NMR are extremely 

soluble and were unable to be isolated. Grubbs has noted the difficulty in removing 

free phosphine during the synthesis of [Ru(Cl)2 (IMesH2 )(PCy3 )(=CHPh)] (2), which 

is also extremely sensitive to air and moisture. 11

Despite the failure to isolate clean [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17), there is 

evidence that it is on the pathway to the C-C activated species, 19. Heating a 

solution that primarily contained 17 overnight at 100 °C led to loss of 17 and 

formation of 19. However, in addition to the presence of the complex, IMes, PPI1 3  

and AsPh3  were present in solution so it is unclear whether these free ligands had a 

part to play.

An IR spectrum of 17 was run after a sample in THF had been placed into a solution 

cell whilst in the glove box. A spectrum run immediately upon removal from the 

glove box gave a strong vco peak at 1869 cm '1, along with a smaller vco peak at 

1888 cm'1. After leaving the sample on the bench for half an hour, the peak at 1869 

cm ' 1 had disappeared and the one at 1888 cm ' 1 was much stronger. A 'H NMR 

spectrum run on the sample showed very little 17 left in solution and the growth o f a 

singlet at -6.45 ppm. This implies that the 1869 cm" 1 peak is attributable to the vco 

stretching frequency of 17. The vco stretching frequency of 16, in THF, is 1940 

cm'1, 70 wavenumbers higher. The values calculated by the Macgregor group for IH 

complexes suggested that for each NHC added, vco decreases by 30-50 

wavenumbers. 6 2  The significant difference between the substituents on the nitrogen 

between IMes and IH may well explain why the gap is slightly bigger than predicted 

even though, as has already been discussed (section 1 .2 .2 ., page 2 2 ), the type of 

NHC ligand generally does not seem to have an effect on vco stretching frequencies.

85



Chapter 2 Ruthenium NHC complexes

2.6.3. Solvent effects on the formation of [RufHbflMesWPPh^KCOn (17) and 

rRumuiMesV(TPh,uccrn (m

As has already been discussed in sections 1.1.3.1., 1.2.7. and 2.2.1.2. the type of 

solvent that complexes are dissolved in can affect the type of bond activation they 

undergo and their catalytic reactivity. Investigation by NMR spectroscopy showed 

that when the formation of [Ru(H)2 (IMes)’(PPh3 )2 (CO)] (19) is carried out in 

H/D exchange into the phenyl rings o f the free triphenylphosphine and the hydride 

occurs. 6 8  The ortho positions of free PPI1 3  in solution also exhibit H/D exchange. No 

H/D exchange is observed upon heating [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) with IMes 

to form [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17). There is also no H/D exchange observed 

when THF is employed as the solvent in the formation of 19 at 110 °C. This implies 

that the solvent is intimately involved in the C-C activation step. For this reason the 

effect of four different solvents on the formation of 17 and 19 were compared.

Four samples of [Ru(H)2 (PPh3 )3 (CO)] (15) (0.50 g) and free IMes (0.50 g) were 

prepared and each was dissolved in a J. Young’s resealable NMR tube, in a different 

solvent: C6 D6 , <&-THF, dj2-cyclohexane and fluorobenzene (approximately 0.6 mL, 

with a C6 D6  capillary in the tube in the case of fluorobenzene for ease of study by 

NMR spectroscopy). The samples were heated at 80 °C for 154 hours and then at 

110 °C for 128 hours. They were monitored regularly by *H and 3 1 P{!H} NMR 

spectroscopy.

The reactions in C6 D6  and dg-THF progressed at different rates at 80 °C, forming 

ratios of [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) to [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17) to 

[RuH(IMes)’(PPh3 )2 (CO)] (19) of 5.9:1:0.8 and 1.6:1:0.4 respectively after 154 

hours at 80 °C (figure 2.17.). Upon increasing the temperature to 110 °C, the 

formation of 19 was greatly increased and after 21 hours at 110 °C the ratio o f 17 to 

19 was 0.3:1 in C6 D6  and 0.1:4 in J^-THF (figure 2.18.). A significant amount of 16 

was left in the reaction in C6 D6  (it is still just about the predominant product) 

whereas there was no 16 left in d^-THF. As already noted , 6 8  H/D exchange is
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observed by 31P{*H} NMR spectroscopy in the reaction in C6D6 but not the one in 

d8-THF.

- 5 . 5 - 6 . 0 - 6 . 5 - 7 . 0 - 7 . 5 8 . 0 ■8. 5  p p m

THF

--T--
- 6 . 5

— I—

- 7 . 0
— r —  

- 7 . 5
i r

- 6 . 0 8 . 0 8 . 5

Figure 2.17. Hydride region of 'H NMR spectrum showing ratio o f 16:17:19 formed 
from 15 and IMes in C6D6 (5.9:1:0.8) and cfc-THF (1.6:1:0.4) after 154 hours at 80 
°C (300 MHz, 25 °C).The value for 19 in 4rTH F is calculated from subtraction o f 

the 17 peak at 5 -6.1 from the combined resonance at 8 -7.5.
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Figure 2.18. Hydride region of *H NMR spectrum showing ratio of 16:17:19 formed 
from 15 and IMes in C6D6 (1:0.3:1) and <4-THF (0:1:4) after 154 hours at 80 °C plus 

21 hours at 110 °C (300 MHz, 25 °C).
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In fluorobenzene a spurious singlet peak at 8  -6.45 was the most prominent product, 

although this does not form until the sample was heated at 110 °C. This appears to 

be the same decomposition product formed when 17 was left exposed to the air 

(page 85) but the exact structure is unknown. After 154 hours at 80 °C very little 17 

and no 19 had formed although a significant amount o f 16 was present and there was 

also unreacted 15 left. Once the sample was heated to 110 °C, both 17 and 19 are 

seen (in approximately a 1 : 1  ratio to each other) along with a small amount of 16. 

However, the major complex in solution was still unreacted 15 (figure 2.20.).

Using d/2 -cyclohexane as the solvent both 16 and 17 were formed although not in 

particularly high yields (after 154 hours at 80 °C, 15:16:17:19 = 9:6:1:0). The 

unidentified singlet was again present in significant amounts. A small amount o f 19 

was observed when the sample was heated at 110 °C for 98 hours as was a large 

doublet at 8  -6.50. This implies that there is only one hydride and one phosphine 

ligand left on the metal centre suggesting that the solvent may have bound to the 

metal centre as well as either the IMes or phosphine ligand undergoing bond 

activation (figure 2.19.). What is extremely interesting in this reaction, however, was 

the formation, upon heating at 110 °C, of the C-H activated product, 18 (previously 

only seen upon addition of alkene to 1668) with the concurrent loss of 16 (figure 

2 .21 .).

Figure 2.19. Plausible structure of product belonging to doublet at 8  -6.50 in 
reaction of 15 and IMes in cyclohexane at 100 °C.

f = \
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80 °C

T         1------ ’------ *------ ’------ *------1------ *------ ’------ T------ *------ F------ ' ’ ' ’ I ’ * ’ * 1------ '------ *------ ’ f

- 6 . 5  - 7 . 0  - 7 . 5  - 8 . 0  - 8 . 5  p p m

Figure 2.20. Hydride region of ’H NMR spectrum showing reaction o f 15 and IMes 
in fluorobenzene at 80 °C for 154 hours and then a further 21 hours at 110 °C (C6D6,

300 MHz, 25 °C).

90



Chapter 2 Ruthenium NHC complexes

80 °C
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Figure 2.21. Hydride region o f  ‘H NMR spectrum showing reaction o f  15 and IMes 
in t/;2-cyclohexane at 80 °C for 154 hours and then a further 98 hours at 110 °C (d/2-

cyclohexane, 300 MHz, 25 °C).
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2.7. Formation of [RuH(IMes)’(PPh3)2(CO)] (19) from 

[RuHftMes)’ ’(PPh3)2(CO)] (18)

A plausible theory, suggested by the computational studies, proposed that C-H 

activation could be on the pathway to C-C activation . 7 4  This is because the energy of 

C-H activation for [Ru(IMes)(L)(PPh3 )] is much lower than the energy of C-C 

activation (L = PPh3 , C-H activation = 57.1 kJ mol"1, C-C activation = 118.8 kJ 

mol"1; L= IMes, C-H activation = 29.0 kJmol"1, C-C activation = 8 8 . 8  kJ mol"1). The 

observed formation of [RhH(IMes)” (PPh3 )2 (CO)] (18) in cyclohexane discussed 

above suggested that it may be possible that at high temperature in other solvents 18 

initially forms and then rapidly continues on to [RuH(IMes)’(PPh3 )2 (CO)] (19) 

(scheme 2 . 1 1 .).

/— \

Ph3N < CH:
O C ^  I H 

PPh3

(18)

O C PPh-

(19)

Scheme 2.11. Possible formation of 19 from heating 18.

To investigate whether 18 could lead on to 19 a clean sample of 18 was formed in a 

J. Young’s resealable NMR tube from [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) (0.02 g) and 

1 atmosphere of ethene in C6 D6  (0.6 mL). After 1 hour at room temperature 18 was 

the sole product and the solution was pumped to dryness to ensure complete removal 

of ethene and ethane. The residue was then redissolved in C6 D6  and the solution was 

heated at 100 °C for three hours. After this time a small amount o f 19 was seen by 

]H NMR spectroscopy, along with a lot of residual 18. However, there was also a 

significant amount of the tris phosphine starting material, [Ru(H)2 (PPh3 )3 (CO)] (15) 

(figure 2.22.). This shows that heating 18 at elevated temperatures leads to loss of 

the IMes ligand. Unfortunately this means that it is impossible to say whether 19 is 

forming directly from 18 or whether 19 is forming from the bis NHC species.
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Although [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17) cannot be distinguished in the hydride 

region, some of the decomposition product, [RuH(IMes)2 (OH)(CO)] (23), is present, 

suggesting that 17 may have formed but has reacted with residual moisture in 

solution. There is an unexplained doublet present at 5 -7.37 ( 2J h p  = 28.0 Hz). After 

48 hours at 100 °C, no 18 remains in the reaction mixture, 19 and 17 are both 

present but 15 is by far the major product. Free IMes is also visible by *H NMR 

spectroscopy. When this reaction is repeated with addition of free IMes to the 

solution of 18, the major product is 23, with a small amount o f 19 present and no 

evidence for 15. A summary o f the products formed upon heating of 18 is shown in 

scheme 2 . 1 2 .

These findings suggest that 19 does form by going through 17 and not through 18.

T T T T T
- 6 . 0  - 6 . 2  - 6 . 4  - 6 . 6  - 6 . 8  - 7 . 0  - 7 . 2  - 7 . 4  - 7 . 6  - 7 . 8  - 8 . 0  - 8 . 2  - 8 . 4

Figure 2.22. Hydride region of *H NMR after heating solution of 16 at 100°C 
overnight (C6 D6, 400 MHz, 25 °C).
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Scheme 2.12. Compounds formed from heating 18 at 100 °C.
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2.8. Photolysis of ruthenium NHC complexes

Failure to access [Ru(H)2 (IMes)2 (PPh3 )(CO)] (17) cleanly by simple substitution for 

studies o f C-C activation, led to a change in approach and the attempt to access 

possible C-H and/or C-C activation pathways photochemically.

Precedent in the literature suggested that exposing cis dihydride complexes to UV 

light should lead to loss o f H2 , 7 5 - 7 8  leaving a vacant site on the metal. Without the 

presence of free ligands in solution, it was hoped that on exposure to UV light, 

complexes such as [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) would undergo bond activation 

from the NHC ligands in a cleaner reaction than that which could be achieved in 

thermal reactions.

2.8.1. Reactions of rM(HF>(dmpeVl under photolysis

The reactions o f [Fe(H)2 (dmpe)2 ] (46) and [Ru(H)2 (dmpe)2 ] (47) (dmpe = 

Me2 PCH2 CH2 PMe2 ) in the presence of UV light have been extensively investigated
7 0  R7and are typical of many complexes that undergo H2  loss when irradiated. - Both 

complexes have been shown to be reactive to small molecules when irradiation is 

carried out in their presence. These reactions for 46 are summed up in scheme 2.13.
8 3 -8 6

The recombination of H2  to 46 is far slower than that to 47 and this means reactivity 

of hydrocarbons with 46 is a lot faster than with 47 . 8 0 , 8 7  As the back reaction is 

slower, it allows the reaction with other substrates to proceed more rapidly. This 

suggests that the two complexes exist in a different geometry. 47 is proposed to exist 

in a square planar geometry whereas 46 has a butterfly shape, allowing it to be
7 7  87weakly solvated and thus stabilised for back-side attack by substrates. ’
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Scheme 2.13. Reactions of 46, under UV in the presence o f various hydrocarbons
and CO.

2.8.2. Photolysis of rRu(H>7fNHC)v(TPhh)y(CCDl complexes (NHC = IEt?Me?. 

ItPr?Me?. ICv. IMes. x = 1. 2. v = 1. 2)

A sample of [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16) was dissolved in deuterated toluene in 

a J. Young’s resealable NMR tube (concentration = 0.02 mol d m ') and was 

subjected to UV light (Hg arc, X > 285 nm, 125 W) at room temperature. Even after 

13 hours under these conditions, no change to the complex was observed. Prolonged 

irradiation ( 1 0 0  hours) led to decomposition of 16 and concurrent formation o f a 

doublet in the hydride region (5 -6.54 (2Jhp = 26.5 Hz)), which has not been assigned 

but suggests loss of both one hydride and a phosphine ligand. No evidence for C-H 

or C-C activation was found.
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The new ruthenium alkyl-NHC complex, [Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29) (figure 

2.23.) has recently been synthesised in the Whittlesey group and has already been 

discussed in chapter 1, pages 43 and 44 . 71

O C
PPh3

(29)
Figure 2.23. Structure of the alkyl NHC complex 29.

When a sample of 29 was irradiated at room temperature in ^ - t o lu e n e  

(concentration = 0.02 mol dm'3), NMR spectroscopy showed that isomerisation of 

the complex occurred so that the NHC ligand moved from a position tram  to 

hydride to a position trans to phosphine (33), which is the same geometry as found 

in 16. The geometries of the complexes are readily assigned from the appearance of 

their hydride resonances in the ’H NMR spectra. The starting material, 29, exhibits a 

doublet of triplets for each hydride resonance (5 -5.96 (Vhp = 26.3 Hz, 2J h h  = 5.5 

Hz), -9.41 ( 2« /h p  = 24.7 Hz, 2J\m = 5.5 Hz)) from coupling to two equivalent 

phosphines and each other. Isomerisation to 33 leads to a change in the coupling 

pattern as the phosphines now become inequivalent ( 6  -5.62 (Vhp = 30.7 Hz, Vhp =

21.4 Hz, Vhh = 2.7 Hz), -7.60 (Vhp = 85.6 Hz, 2Jm  = 28.5 Hz, Vhh = 2.7 Hz)) 

(figure 2.24.).

The formation of 33 is seen within minutes. After five hours, the ratio of 29:33 was 

approximately 1:1.8. After this time the complexes begin to degrade upon further 

exposure to UV light, evidenced by the appearance of free PPh3  in the 3 1 P{1H} NMR 

spectrum.
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F ig u r e  2 .2 4 . Hydride region of !H NMR spectrum of photolysis of 2 9  to give 33 at 
25 °C for 5 hours (^ to lu en e , 400 MHz, 25 °C).

When photolysis of 2 9  was performed at low temperature (< -50 °C) and placed 

directly into the NMR spectrometer probe at -50 °C, the presence of a second 

isomerisation product with cis phosphines as well as cis hydrides (48) was observed 

(scheme 2.14.). Again, this appears after a matter of minutes and becomes more 

predominate with further irradiation. Decomposition begins to occur after it is 

exposed to more than five hours of UV light. 48 displays a second order resonance 

due to the AA’XX’ (A=A’ = 'H, X = X’ = 31P) spin system in the complex. 

Therefore, although there is only one chemical shift for the hydride ligands, they do 

actually couple to each other, as well as the phosphorus ligands, giving a second 

order doublet (figure 2.25.).
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Scheme 2.14. Isomerisation of 29 to 33 and 48 under UV light.
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Figure 2 .25 .1I I NMR hydride shifts o f 29,33 and 48 after 2.5 hours of photolysis at 
-50 °C with one of the resonances for 33 and that for 48 enlarged for clarity (dg-

THF, 400 MHz, -50 °C).

Removal of the solvent after 5 hours of photolysis gave a sticky, brown solid 

containing a mixture of 29 and 33. This was used to record an IR spectrum which 

displayed vco resonances for 29 and 33 at 1913 cm ' 1 and 1877 cm ' 1 respectively. It 

is somewhat difficult to explain this dramatic shift in frequency o f the carbonyl 

bands as in both cases CO is trans to hydride and only the relative orientation o f the 

two phosphine ligands changes. However, as discussed in section 2.8.2.5., this is a 

consistent observation.
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The isomerisation reaction readily reverses at room temperature (when the reaction 

has been taken to a ratio o f 3:1 29:33, the complete reformation of 29 from 33 in 

solution occurs over 12 hours with the sample being kept in the dark).

The Eyring plot for the reisomerisation of 33 to 29 was created by monitoring the 

reaction at a series of temperatures from 10 °C to 60 °C by NMR spectroscopy 

(figure 2.26.). This generates values for AH# of 90.25 (± 50.85) kJ mol'1 and AS# of - 

33.62 (± 184.84) JK 'm ol'1. The large error on the value o f AS# occurs because it is 

calculated by extrapolation to infinite temperature. Lente et al. have recently 

published a new way of calculating AS#, by rearranging the linear equation and 

basing AS# on the slope rather than the intercept.88 When this new calculation is used 

the value for AS# is -29.50(± 65.57) kJ m o l1. AH# is recalculated as 90.25 (± 19.97) 

JK 'm ol'1 although obviously, by the same logic, this value is unreliable as it is 

calculated by extrapolation to infinite temperature. These values suggest an 

intramolecular reaction. Intramolecular ligand exchange has been demonstrated to 

occur in the tris phosphine complex, [Ru(H)2(PPh3)3(CO)] (15)89 and the authors
QObelieve that the exchange occurs via a trigonal twist mechanism.

-12

-13

-14

-15
i-

c

-16

-17

-18

-19
0.003 0.0031 0.0032 0.0033 0.0034 0.0035

in-fl*-1)

Figure 2.26. Eyring plot for the reisomerisation of 33 to 29.
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The isomerisation reaction was an unexpected result and suggested that photolysis of 

the alkyl-NHC complexes led to a much more complicated reaction than H2  loss or 

that two or more pathways were involved. Investigation into what the mechanism of 

isomerisation may involve was carried out at the University of York in collaboration 

with the Duckett group where there is the facility to follow reactions by NMR 

spectroscopy in situ through the use o f a HeCd laser (A. = 325 nm) piped into the 

probe o f a 400 MHz NMR spectrometer.

The reaction was carried out at -50 °C to maximise the chance of observing 

intermediate species. What emerged from these experiments was that the 

isomerisation reaction occurs extremely rapidly, with a substantial amount of 

product (in a 1:1 ratio of 33 to 48) observed after only 30 seconds of photolysis 

(figure 2.28.(a)). Photolysis o f 29 in ^-toluene at -50 °C did lead to formation of 

some C-H activated product [Ru(H)(IEt2 Me2 ), ,(PPh3 )2 (CO)] (31) after two minutes 

of irradiation. This is assigned from the single hydride resonance in the !H NMR 

spectrum (8 -7.00) that couples to two inequivalent phosphorus signals at 56.9 (Vhp 

= 1 0 2 . 0  Hz, VpP = 18 Hz) and 36.6 ( V h p  = 28.0 Hz, 2 J PP = 18 Hz). The size of these 

couplings suggests that the complex has the structure shown in figure 2.27., with the 

activated NHC ligand trans to phosphine, and not the geometry obtained in the 

thermal reaction of 29 with CH2 =CHSiMe3 where the NHC lies trans to a hydride 

ligand and the two phosphine ligands are equivalent (shown in scheme 1.25, page 

44) . 6 9 , 7 0  31 is stable indefinitely at room temperature but upon addition of hydrogen 

to the solution at room temperature, reverts to 33 and then on to 29 overnight.

Experiments at York showed that after 240 seconds of irradiation, conversion of 29 

to a mixture of ax-(IEt2 Me2 )-[Ru(H)2 (IEt2 Me2 )(PPh3)2 (CO)] (33),

.RuC
OC^ j ^ H  

PPh 3

Figure 2.27. Structure o f 31 obtained from the photolysis of 29.
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[RuH(IEt2 Me2 )” (PPh3 )2 (CO)] (31) and ds-H-cw-PPh3-

[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (48) from 29 was almost 20 % (figure 2.28.(b)) and 

after an hour in the NMR spectrometer in York, the reaction had gone to completion 

(figure 2.28.(c)). The higher conversion obtained compared to that seen in the set-up 

at Bath is probably due to the much more intense and rigorous photolysis conditions 

focussed on the sample in the spectrometer in York. The solutions used in York are 

also less concentrated (0.004 mol dm'3). From observations o f reactions in Bath it 

does appear that the concentration of the solution has some effect on rate of 

isomerisation. However, no quantitative results have been obtained to substantiate 

this.

Figure 2.29. shows how the ratio of products, 33, 48 and 31 to 29 changes over time 

under photolysis. Over time, the ratio of 48 lessens in comparison to the other two 

products, suggesting that it is not particularly stable.

2.8.2.1. Using parahvdro2 en in photolysis

Parahydrogen is a relatively new technique that has been effectively utilised in 

monitoring the loss of H2  from cis dihydride complexes, particularly by Duckett and 

Bargon. 9 1 -9 2

Hydrogen, like any diatomic molecule which is magnetically active, exists in 

different, isomeric spin states. These are the aP-pa, antisymmetric spin state, known 

as the para-isomer and the three symmetric, degenerate spin states, aa, pp and 

ap+pa, known as the ortho-isomers. These spin configurations have different 

energies and therefore are temperature dependent. Lower temperatures favour p-H2  

so that at -273 °C, H2  is 100 % p-H2. At -196 °C (the temperature of liquid nitrogen), 

the ratio is closer to 1:1 (51.86 % p-H2) and at room temperature o-H2  is favoured 

(74.87 %).

102



Chapter 2 Ruthenium NHC complexes
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Figure 2.28. Hydride region of 1H{3 1 P} NMR recorded following in situ photolysis 
of ̂ - IE t 2 Me2 -[Rh(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29) in ^ t o l u e n e  at -50 °C for (a) 30 

seconds, (b) 240 seconds and (c) 58 minutes (cfe-toluene, 400 MHz, -50 °C).
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Figure 2.29. Graph of rate of product formation from 29 when irradiated with UV light at -50 °C in ^-toluene (concentration 0.004 
mol dm'3). % complex based on integral of hydride resonances to the aromatic region.
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Interconversion between the ortho and para spin states is symmetry forbidden. 

However, addition of a paramagnetic catalyst readily circumvents this selection rule, 

allowing /?-H2  to be synthesised in a laboratory. Upon removal of the catalyst even 

warming the sample does not lead to rapid reconversion of the sample to primarily

0 “H2.

O'!
2.8.2.1.1. Use ofparahydrogen in NMR experiments

In an AX system populated by atmospheric hydrogen, the four energy levels, aa, ap, 

pa and pp are almost equally populated. This means than when placed into a 

magnetic field, four transitions are possible giving rise to two doublets in a NMR 

spectrum. When p-H 2  is present in the molecule only ap and pa are populated 

(figure 2.30.). Four transitions are still possible but the doublets in this instance are 

antiphase. In addition, because o f the vast population differences, signals are 

enhanced by a few orders of magnitude compared with a standard NMR spectrum.

(a)

(kx

(b)

r*P

12 3 4

Figure 2.30. Energy level diagram for an AX system and the corresponding NMR 
patterns, (a) Boltzmann distribution, (b) p-H2  derived distribution.
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Because the addition of p-H2  to a metal centre corresponds to the synthesis of an 

extreme spin state, release o f the enhanced hydride ligands from the metal will result 

in them reverting to 0 -H2  and thus, depending on the rate o f exchange between the 

hydride ligands and hydrogen in solution, the p-H2  enhancement will eventually be 

lost.

Ptfrahydrogen itself is NMR inactive as it has a nuclear spin of 0. This is a useful 

phenomenon as free p-H2  does not contaminate NMR spectra. In addition, the 

growth of the 0 -H2  peak can be directly compared to the rate of H2  exchange, as p- 

H2  converts to 0 -H2  when it leaves the metal centre.

Duckett has investigated the photolysis of a series of ruthenium dihydride complexes 

in the presence of parahydrogen . 7 6 , 9 3 ' 9 8  P^rahydrogen is useful in studies such as 

these as, by NMR spectroscopy, it can show whether and at what rate hydrogen 

comes on and off the metal centre. Its ability to enhance NMR signals is also 

extremely useful as it can highlight transient intermediates that may not be present in 

high enough concentration to observe using conventional NMR experiments. For 

example, in the case of [Ru(H)2 (PMe3 )2 (CO)2 ], which exists in solution as the cis-, 

trans-, cis- isomer {etc), the ccc-isomer is only detectable upon p-H 2  labelling.

2 .8 .2 . 1 .2 . Usingp-Yh in the photolysis of [Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29)

When the reaction described on pages 101 and 102 was repeated (0.004 mol dm'3, 

ds-toluene, HeCd, 325 nm, 0.038 W, -50 °C) in the presence o f 3 atm of p-H2 , 

immediate enhancement into 29, 33 and 48 was observed (figure 2.31.). This shows 

that, under UV light, H2  is indeed coming on and off all of the complexes. The 

resonances for 29 showed only a slight enhancement, as there was still a substantial 

amount of unenhanced product in solution. The out of phase signals from 29 were 

lost after about 30 seconds but were retained in 48 for closer to 90 seconds and in 33 

for 210 seconds. The ratio of the /?-H2  enhanced hydride signals for 33 to 29 in this 

NMR spectrum proved to be 7.1:1." This ratio should match the selectivity of H2
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addition to the 16-electron intermediate generated by H2 loss from 29 if it is assumed 

that these species are formed with an equal retention o f the p -H2 derived spin state.

129
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Figure 2.31. Hydride region o f  'H NMR spectrum showing photolysis o f  29 w ithp -  
H2 at -50 °C after 30 seconds (^-toluene, 400 MHz, -50 °C).

Addition o f p -H2 to an initial solution o f 29 and subsequent photolysis at -50 °C 

completely halted formation o f the C-H activated complex 3 1 . However, after 

approximately 2 minutes o f  irradiation, two broad lumps appeared in the jH NMR 

spectrum (8 -5 .42  and 8 -4 .92), which are assigned to an q2-H2 complex (figure 

2.32.). The signals began to coalesce upon warming from -70 °C to -50 °C and 

rapidly disappeared when taken to -40 °C. Ti measurements were performed and 

gave values o f approximately 15 ms and 22 ms. T 1 is the measurement o f spin-lattice 

relaxation time or the time the excess energy o f  the nuclei takes to equilibrate with 

the surroundings.100 The measurement o f Ti for q2-H2 ligands assumes that the 

relaxation o f the resonances from the coordinated protons is solely due to dipole- 

dipole interactions with other coordinated hydride ligands. The short H-H separation 

o f q2-H2 ligands will lead to distinctively short Ti relaxation times.101 The Ti 

measurements for this system are o f  a similar magnitude to those o f other Ru 

dihydrogen complexes such as [Ru(H2)(CNH)(dppe)][OTf]2  (13.6 ms at 27 °C on a 

300 MHz spectrometer, 5.9 ms at -50 °C on a 200 MHz spectrometer) and 

[Ru(H2)(CN)(dppe)2][OTf| (12.4 ms at -33 °C on a 300 MHz spectrometer).102
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Figure 2.32. Hydride region o f 1H {31P} NMR showing formation of probable 
dihydrogen species (highlighted) after 120 seconds o f photolysis in J^-toluene at -50

°C (Jr toluene, 400 MHz, -50 °C).

When the photolysis of 29 was carried out in the presence of PPh3 (15 equivalents) 

or H2 (1 atm), formation of the rf-H 2 species is suppressed, therefore suggesting that 

it is [Ru(H)2(r|2-H2)(IEt2 Me2 )(PPh3XCO)] (49), in which the Ru(H)2/r|2-H2 ligands 

exchange on the NMR timescale. Interestingly, observation of 49 corresponds to the 

point where the p-H2 enhancement in the hydride resonances of 33 is no longer 

visible. This suggests that rapid exchange of the r|2-H2 ligand with free H2 leads to 

the destruction of the para spin state which is necessary to see the out o f phase 

effect.

Giunta et al. have prepared examples of NHC complexes bearing a dihydrogen 

ligand, [Ru(H)2(r|2-H2)2 (IMes)(PCy3)] and [Ru(H)2(Ti2-H2)2(IMes)2].'03104 These 

complexes are active in the intermolecular activation of C-H bonds in aromatic 

substrates at room temperature. This same reactivity is not seen in the bis phosphine 

analogue [Ru(H)2(r|2-H2)2 (PCy3)2 ], showing that the presence o f an NHC ligand 

makes a substantial difference to reactivity in these types o f complexes. Heinekey 

and co-workers have also reported a dihydrogen NHC complex using a chelating
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NHC ligand on an iridium centre, [Ir0i2-H2)(Cp*)][X]2 (X = PF6, Cl).105 The T, 

value for this complex is 37 ms at -33 °C on a 750 MHz spectrometer.

Although / 7-H2  experiments showed that 29 is losing H2 , isomerisation could still 

result from loss o f a two-electron donor ligand (PPh3, CO, IEt2 Me2 ). Competing 

phosphine and hydrogen loss pathways upon photolysis have been observed in 

[Ru(H)2(PMe3)4 ]106107 and [OsH,(PMe2Ph)3] ,108

Addition of excess phosphine or pyridine to the starting solution of 29 (0.004 mol 

dm'3) was found to slow the rate of isomerisation, as did changing the solvent from 

Js-toluene to d^-THF. This suggests a pathway involving loss of a two electron 

donor from the metal centre. Addition of hydrogen sped up the rate o f reaction. A 

graph showing the rates of formation of 33 under various reaction conditions is 

shown in figure 2.33.

Photolysis of 29 in ^ to lu e n e  in the presence of an 8.6 fold excess o f pyridine and 

no H2 led to the immediate formation of a new species, which displayed doublet of

doublet hydride resonances at 8  -3.30 (2J Hh = -9.0 Hz, Vhp= 31.5 Hz) and 8  -14.20
2 2( Jhh = -9.0 Hz, Jhp = 21.0 Hz), identifying it as a mono-phosphine containing 

complex (figure 2.34.). This is probably the pyridine coordinated complex 

[Ru(H)2 (IEt2 Me2 )(PPh3 )(C5 H5N)(CO)] (50) and is comparable to

[Ru(H)2 (CO)(dppe)(CsH5N)] which has hydride signals at 8 -3.27 (Vhp = 26 Hz) 

and 8  -14.17 ( 2 J h p  = 27 Hz).96 Both formation of 33 and 48 were significantly 

reduced in the presence of pyridine. This suggests that 29 undergoes 

photochemically induced phosphine dissociation as the dominant reaction pathway 

and leads to 50 via trapping of the same 16-electron intermediate that leads to 33. 

When the reaction o f 29 and pyridine is carried out in the presence of p-H2 , the 

formation of 49 is quenched and enhancement of all the hydride containing species 

in solution lasts for many minutes.
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Figure 2.33. Formation of 33 under various reaction conditions when irradiated with UV light at -50 °C (concentration 0.004 mol
dm'3). % complex based on integral of hydride resonances to the aromatic region.
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Figure 234. Hydride region of !H NMR spectrum showing formation of 
[Ru(H)2 (IEt2 Me2 )(PPh3 )(C5 H5 N)(CO)] (50) upon photolysis o f 29 with pyridine in 

ds-toluene at -50 °C (cfo-toluene, 400 MHz, -50 °C).

Addition of free IEt2 Me2  to 29 and subsequent photolysis at -50 °C led to formation 

of [Ru(H)2 (IEt2 Me2 )2 (PPh3 )(CO)] (51), which exhibits two doublets of doublets in 

the hydride region o f the proton spectrum ( 8  -5.51 ( 2 J Hh  = 4.8 Hz, Vhp = 39.7 Hz), 

-8.91 ( 2 J h h  = 4.8 Hz, 2 J h p  = 26.8 Hz)). The 2 J h p  values show that the phosphine is 

cis to both of the hydrides, showing that the two NHC ligands are cis to each other, 

as found in the thermal isomer. 1 0 9  Addition of IMes to the reaction led to the mixed 

NHC complex [Ru(H)2 (IEt2 Me2 )(IMes)(PPh3 )(CO)] but this could not be isolated.

The reactions discussed above are summarised in the reaction scheme in scheme 

2.15.
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Scheme 2.15. Reactions of 29 upon photolysis.
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2.8.2.2. TRJR studies on fRu(HhaEhMe?)(PPh,)7(CO)l (29)

The extensive steady state photochemistry displayed by 29 prompted a preliminary 

investigation of the time-resolved reactivity of 29 on a microsecond timescale by 

time resolved infrared (TRIR) spectroscopy in collaboration with Professor Mike 

George at the University of Nottingham. The presence of the CO groups on 29 and 

the intermediates formed when it is irradiated allows TRJR spectroscopy to be 

employed as CO ligands have distinctive vCo stretching frequencies that are highly 

dependant on the ancillary ligands at the metal centre as well as the oxidation state 

of the metal complex. TRIR spectroscopy measures changes in intensity of the vco 

bands. The starting material exhibits a negative peak or “bleach”, as it is photolysed 

away, whereas any new intermediates will display positive absorption peaks.

The TRIR spectrum recorded 16 ps after flash photolysis (355 nm, power = 5 mJ per 

pulse) of a sample of 29 in C6 D6  (0.013 mol dm'3) is shown in figure 2.35. and 

shows loss of 29 and formation o f five new carbonyl absorption bands. Two main 

bands were observed at 1911 cm ' 1 and 1856 cm ' 1 with weaker features at 1955 c m 1, 

1878 cm ' 1 and 1820 cm'1. The spectrum was recorded in a point by point fashion 

with 2 cm ' 1 separations between 2004 cm ' 1 and 1778 cm ' 1 and the solution was 

drawn through the IR cell after every shot, ensuring it was fresh each time. The 

TRIR spectrum measured at 150 ps (figure 2.35.) after the laser flash shows that the 

bands at 1955 cm ' 1 and 1878 cm ' 1 arise from longer lived photoproducts in the 

reaction compared to those at 1911 cm ' 1 and 1856 cm'1.
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Figure 2.35. TRIR spectra recorded 16 ps and 150 ps after flash of irradiation of 29 
in C6D6 under Ar (1.3 x 10"2 mol dm"3, 355 nm, 5 mJ/pulse).
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The bleach of the CO band for the parent complex 29 under an atmosphere of argon 

is extremely wide and was visible in the TRIR measurements from 1928 to 1862 

cm '1. This added an element of difficulty in fitting the data as the presence of the 

bleach overlapped with some of the photoproduct peaks. The bleach for 29 is 

presented in figure 2.36. From this it can be seen that the loss of 29 under UV is 

extremely rapid (> 1 x 10'6 s) but that it slowly reforms over approximately 1 ms. 

However, it should be noted that the roll off o f the IR detector occurs in this time 

frame making a linear fit on this data impossible. Upon replacement of argon by 1 

atm of H2 , the extent o f the parent bleach is reduced but the rate o f the parent 

reforming is unaffected (kobS = 5.2 x 104 s '1).

_ c
<
< 1

0.002 n 

0 .0 0 0 - 

- 0 .002 -  

-0.004- 

-0.006- 

-0.008- 

-0 .0 1 0 - 

- 0 .012 -  

-0.014- 

-0.016- 

-0.018

H2
Ar

Figure 2.36.

The kinetic behaviour of the transient species formed at 1856 cm '1 is shown in figure 

2.37. Under 1 atm of Ar, this species displays a first order decay over approximately 

200 ps (kobs = 1.5 x 104 s '1). Intriguingly, under 1 atm of H2, the transient becomes 

longer lived, decaying again with first order kinetics over approximately 800 ps 

(kobs = 2.6 x 103 s '1).

 1 » 1------ >------ 1------   1------ ■------ 1----------   1---•
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Time (s)

TRIR spectrum measured at 1922 cm '1 under (a) 1 atm Ar and (b) 1 
atm H2.
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Figure 2.37. TRIR spectrum measured at 1856 cm '1 under (a) 1 atm Ar and (b) 1 atm

H2.

In contrast, monitoring the decay o f the transient at 1911 cm '1 shows kinetic 

behaviour that is essentially the same in the presence of Ar or H2 (kobS (Ar) = 1.4 x 

104 s '1, kobs (H2) = 1.9 x 104 s '1) (figure 2.38.). Given that H2 affects the transient at 

1956 cm '1 but not that at 1911 c m 1, it can be concluded that the two transient 

species are not the same.

Time resolved traces showing the kinetic behaviour of the weaker transient signals at 

1820 cm '1, 1878 cm '1 and 1955 cm '1 are shown in figures 2.39. to 2.41. Little can be 

said about the species at 1820 cm '1 without further experiments due to the fast nature 

of the signal decay. The transient signals at 1878 cm '1 and 1955 cm '1 are not formed 

within the rise time of the instrument but grow in over approximately 100 ps in the 

presence of Ar (kobs (1878 cm '1) = 3.0 x 104 s '1, kobs (1955 cm '1) = 3.7 x 104 s '1). 

These similar kobS values imply that both bands arise from the same species. The 

similar rates o f decay also suggest that the vco peaks arise from the same species 

(although as these occur over the time associated with detector roll off, further 

experiments with other detectors that function over longer lifetimes are required to 

establish accurate kinetic data). However, H2 appears to have an affect on the band
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at 1878 cm '1 but not the one at 1955 cm '1, which somewhat contradicts the 

supposition that they belong to the same photoproduct. Further experiments are 

clearly necessary.

1 0 -
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Figure 2.38. TRIR spectrum measured at 1911 cm 1 under 1 atm Ar and 1 atm H2.
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Figure 2.39. TRIR spectrum measured at 1820 cm under 1
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Figure 2.40. TRIR spectrum measured at 1878 cm'1 under (a) 1 atm Ar and (b)
atm H2 .

CA-O
<

Ar0.006 -1

0.004-

0 .0 0 0 -

- 0 . 002 -

-0.004-
T T T T T T

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time (s)

Figure 2.41. TRIR spectrum measured at 1955 cm'1 under 1 atm Ar and 1 atm H2 .

118



Chapter 2 Ruthenium NHC complexes

A summary of what was observed by TRIR is presented is scheme 2.16. and 

discussed below.
Transient A

/  M PPh3

I > H

1856 cm

Transient C

1878 cm '1, 1952 cm '1

Transient B  

1911 cm '1

Scheme 2.16. Summary of the transients observed by TRIR spectroscopy.

Photolysis of 29 in C6 D6  under Ar affords two new CO bands 16 ps after the flash at 

1911 cm ' 1 and 1856 cm'1. These must arise from two different species as the effect 

of replacing Ar for H2  is not the same on the kinetics of each absorption.

Transient B is attributed to the phosphine loss species [Ru(H)2 (IEt2 Me2 )(PPh3 XCO)] 

as its kinetics are unaffected by being under an atmosphere o f H2  and the position of 

the band, at 1911 cm'1, is consistent with a coordinatively unsaturated Ru(II) 

species. Adding excess PPh3  to the solution and establishing how the rate of decay 

of transient B changes would provide further evidence for whether or not this 

species is indeed the PPI1 3  loss product.

The value of kobs for decay of B (1.4 x IO4 s’1) is somewhat smaller than the values 

of kobs for formation o f C (3.0 x 104  s' 1 and 3.7 xlO4  s'1) suggesting that B may not 

be a precursor for C.

The nature of transient A remains to be established. The low carbonyl stretching 

frequency (1856 cm'1) suggests a Ru(0) species, such as the H2  loss photoproduct, 

[Ru(IEt2 Me2 )(PPh3 )2 (CO)]. Comparison to the TRIR spectroscopy studies carried 

out by George and Perutz on [Ru(H)2 (PPh3 )3 (CO)] (15)110,111 shows a vco band at 

1845 cm'1. This decayed with first order kinetics (kobs = 3 x 103  s '1) under an argon
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atmosphere. The rate of of kobs increases linearly addition of H 2 . This species is 

assigned unequivocally as [Rh(PPh3 )3 (CO)] on the basis of its vco band1 1 2 ,1 1 3  and its 

kinetics with H2 . However, transient A decays more slowly in the presence o f H2  

suggesting it is not a simply H2  loss species and that H2  actually aids in the 

stabilisation of the intermediate. Therefore, A could be the dihydrogen complex 

|Ku0 i2 -H2 )(ffit2 Me2 )(PPh3 )2 (CO)].

The same studies by TRIR carried out by Perutz and co-workers on the photolysis of 

(15) show a similar reaction profile to that seen in the TRIR o f 29 (figure 

2.42.).110,111 Two longer lived vco bands were observed at 1843 and 1974 cm'1. 

These are not dissimilar to the peaks at 1952 cm ' 1 and 1878 cm ' 1 observed during the 

photolysis of 29 and assigned to transient C. Perutz assigns the bands obtained from 

photolysis of 15 to a long-lived dinuclear species. It is therefore likely that a similar 

species is being formed during photolysis of 29. However, more detailed kinetic 

studies need to be carried out before it is clear what it is forming from.

1

p 'o J u r t  foimaliiin

0

1

2

2CCO 1950 1GOD 1850 1300
v . '- /n  -1

Figure 2.42. TRIR plot o f 15 recorded 1 ps after laser flash photolysis (k = 355 nm) 
in CgDg. The negative peak is due to loss of 15, the positive peaks are due to

photoproducts.
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DFT calculations on a simplified model of 15, [Ru(H)2 (PH3 )3 (CO)], by Moreno and

addition, it appears that the lengthening of the Ru-H distance and the shortening of 

the H-H bond are taking place almost simultaneously. The authors conclude that the 

mechanism of H2  loss is almost purely dissociative and arises due to a decrease in 

electron density on the metal centre when the molecule is moved to an excited state 

upon irradiation. Initially, the loss of electron density is mostly distributed amongst 

the donor ligands on the metal while the Ru-H bonds remain unchanged. This 

phenomenon induces weakening of the metal-hydride bonds and favours formation 

of H2 . The influence of a more donating NHC on this type of system remains to be 

elucidated.

2.8.2.3. Preliminary calculations on isomerisation o f fRu(Hl(IEt?Me?)(PPh?)?(CO)J

(291

Preliminary calculations have been carried out by Richard Diggle and Steven 

Donald of the University of Heriot Watt into the energetics of hydrogen addition to 

the four-coordinate species [Ru(IEt2 Me2 )(PPh3 )2 (CO) ] . 1 1 5  Using the simplified 

ligands IH and PH 3 in place o f IEt2 Me2  and PPI1 3 , to ease modelling and therefore to 

investigate the complexes from a purely electronic stand point, it was found that the 

four ligands can form two arrangements around the metal centre (figure 2.43.). 

When the two phosphine ligands are trans to each other (A), the ligands adopt a 

virtually square planar arrangement whereas when IH is in the axial position (B), the 

species exists in a butterfly conformation. B is thermodynamically more stable than 

A by 9.6 kJ mol'1.

Figure 2.43. Two arrangements of ligands on four-coordinate hydrogen-loss species.

co-workers, suggest that H2  elimination could occur as rapidly as 37 fs . 1 0 6 ’ 1 1 4  In

IH

A B
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Addition of H2  to A can lead directly back to the analogue of eq-iJEX^AQi)- 

[Ru(H>2 (IEt2 Me2 )(PPh3 )2 (CO)] (29) and is energetically downhill by 13.8 kJ m o l1. 

The formation o f this isomer comes from bending of the IH-Ru-C bond (scheme 

2.17.). Bending of P-Ru-P bonds (scheme 2.18.) leads to an isomer, which is the 

analogue of ax-(EEt2 Me2 )-[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (33). Computationally, it 

was found that it is easiest to bend a P-Ru-P bond in these systems, than an IH-Ru-P 

bond with the hardest being an IH-Ru-IH bond. The isomer analogous to 

cw-H-cw-PPh3 -[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (48) is computed to be 8.9 kJ mol" 1 

more stable than the trans phosphine analogue o f 29. The axial IH isomer (analogue 

of 33) is 16.5 kJ mol" 1 more stable than the trans phosphine. This suggests that 33 

and 48 are thermodynamically more stable than 29, explaining why they form when 

H2  is removed from 29 under UV. The instability of 48 above -50 °C and the 

reisomerisation of 33 back to 29 at room temperature must be due to kinetic factors 

and may not involve H2  loss.

(
„— ph3 _  p h 3  ph3

^  . °NL U-*"
H l ^ l  HI | H l^  | H

ph 3 p h 3 ph 3

A

Scheme 2.17. Addition of H2  to four coordinate species to form an analogue of 29.

^ i v c o  H3p\  H H3\  / h Hs\  i v
Ru" ----------- ► u ,_ R u ...."ICO --------- -— ► u l_ R u  •■"'iiCO -  Ru*

H , ^  | H”7 Hl /  \  OC< | H
V ^ P H 3 H3P H3P PIH3

A

Scheme 2.18. Addition o f H2  to four coordinate species to form an analogue of 33.

2.8.2.4. Other mono Ru(NHC) complexes under photolysis

A sample of the analogous alkyl NHC complex, e^-(ICy)-[Ru(H)2 (ICy)(PPh3 )2 (CO)] 

(52) (0.02 mol dm "3 ) , 1 1 6  undergoes a similar isomerisation upon irradiation with UV 

light (Hg arc, X > 285 nm, 125 W), isomerising from the equatorial (5 -6.43 (Vhp = 

26.3 Hz, Vhh = 4.4 Hz), -9.97 (VHP = 25.8 Hz, Vhh = 4.4 Hz)) isomer to ax-(ICy)-
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[Ru(H)2 (ICy)(PPh3 )2 (CO)] (53) ( 8  - 5 . 5 8  (2JU? = 3 5 . 9  Hz, 2JUp = 1 9 . 8  Hz), - 8 . 1 4  ( 2 J h p  

=  8 4 . 5  Hz, 2 J h p  =  3 1 . 3  Hz)), with evidence for the cis phosphine isomer (54) as well 

( 8  - 7 . 8 7  ( V h p  =  5 4 . 9  Hz)) (figure 2 . 4 4 ) .

f i -  N PPh3

\ A , .  I
J RU' ^

OCT I H 
PPh3

(52)

53

I

oc
PPhCO

52
(54) (53)

53 

1  1

- 6 . 0 - 6 . 5 - 7 . 0 - 7 . 5 - 8 . 0 - 8 . 5
 ̂ I 
- 9 . 0 - 9 . 5

Figure 2.44. NMR hydride shifts of 52, 53 and 54 after 2 . 5  hours of photolysis at
- 5 0  °C (4rTHF, 4 0 0  MHz, - 5 0  °C).

p pm

After five hours, the ratio of 52:53 was approximately 1 : 3 .  This suggests that the 

isomerisation of 52 to 53 is occurring faster than in the ethyl analogue 

[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] which only went to a ratio of 1 : 1 8  in the same time 

(page 1 0 2 ) .  However, quantitative data has not been obtained to back this up.

[Ru(H)2 (I/Pr2 Me2 )(PPh3 )2 (CO)] (30) ( 8  - 5 . 8 7  ( 2 J h p  = 2 4 . 8  Hz, 2 J r h  = 4 . 8  Hz), - 9 . 9 8  

( 2 J h p  =  2 3 . 3  Hz, 2 J h h  =  4 . 8  Hz)) also isomerises ( 8  - 5 . 4 8  ( V h p  =  3 9 . 6  Hz, 2J h p  =  2 0 . 2  

Hz, 2 J h h  =  3 . 6  Hz), 8  - 7 . 7 0  ( V h p  =  8 8 . 0  Hz, 2 J h p  = 3 2 . 4  Hz, V h h  = 3 . 6  Hz)) but then 

rapidly forms the axial C-H activated isomer (34), which is again a different 

geometry to that observed upon heating o f 30 (page 4 7 )  ( 8  - 7 . 7 3  ( 2 J p p  =  1 0 6 . 0  Hz, 

Jhp = 3 0 . 0  Hz)), which is the predominate product (figure 2 . 4 5 ) .

123



Chapter 2 Ruthenium NHC complexes

OC
PPh3

W V Wf

' 1 ■ 
- 9 . 0- 5 . 5 - 6 . 0 - 6 . 5 - 7 . 0 - 7 . 5

I ■“ 
- 8 . 0 - 8 . 5 - 9 . 5 ppm

Figure 2.45. Hydride region of *H NMR showing isomerisation of 30 followed by 
C-H activation to give 34 after 3 hours under photolysis at room temperature in C6 D6

(C6 D6, 400 MHz, 25 °C).

2.8.2.5. Photolysis o f fRu(H) ,(NHC) ,(PPhd(CO) 1

A similar isomerisation is observed upon irradiation of the bis ICy complex, 

e^,ax-(ICy)2 -[Ru(H)2 (ICy)2 (PPh3 )(CO)] (55) . 1 1 6  Upon irradiation (0.02 mol dm ' 3  in 

dg toluene) with UV light (Hg arc, X > 285 nm, 125 W, 25 °C), the hydride region of 

the ’H NMR showed loss o f the doublets of doublets arising from 55 ( 8  -5.39 ( 2 J h p  =  

40.1 Hz, Vhh = 4.4 Hz), -9.10 (Vhp = 30.2, 2Jhh = 4.4 Hz)) and appearance of two 

new doublets at 8  -5.00 ( V h p  = 37.9 Hz) and -7.48 ( 2 J h p  = 99.3 Hz) (figure 2.46.). 

This new product is attributed to the isomerisation product in which the two NHC 

ligands are trans to each other ax,ax-(ICy)2 -[Ru(H)2 (ICy)2 (PPh3 )(CO)] (56) (scheme 

2.19.). The hydride coupling in 56 is too small to detect. After 14 hours irradiation at 

room temperature the ratio of 56:55 is about 0.8:1 but product is seen immediately 

upon isomerisation. After 4 days o f photolysis at room temperature, 56 is by far the 

predominant product (56:55 9:1) but some decomposition is observed by the
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production o f free phosphine and some new, although weak, unidentifiable peaks in 

the hydride region of the ‘H NMR spectrum. Intriguingly, in contrast to the mono 

NHC species, the thermal reisomerisation of 56 to reform 55 requires heating at 60 

°C for 8 hours to return the sample to solely 55.

! T
- 5 . 0 - 5 . 5 - 6 . 0 - 6 . 5 - 7 . 0 - 7 . 5 - 8 . 0 - 8 . 5 p p m

Figure 2.46. Hydride region o f 'H  NMR spectrum showing isomerisation of 
e<7 ,ax-(ICy)2-[Ru(H)2(ICy)2(PPh3)(CO)] (55) to ax,ax-(ICy)2- 

[Ru(H)2(ICy)2(PPh3)(CO)] (56) after 14 hours photolysis at room temperature in
C6D6 (400 MHz, 25 °C).

7 = \

UV, r. t.
;r u ;

oc
>50 °CPPh

(55)

r = \

OC

\= /

(56)

Scheme 2.19. Isomerisation of 55 to 56 under UV light.
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The Eyring plot for the reisomerisation o f 56 to 55, run over a range o f temperatures 

from 65 °C to 120 °C, gave values for AH* o f 116.16 (± 16.56) kJ m of' and AS* o f 

14.16 (± 45.80) JK 'm o f1 (figure 2.47.). Recalculation using Lente’s method88 

(described on page 100) gave extremely similar values and margins o f error for both 

AH# and AS#. Although the values for AH# and AS# are slightly higher than those for 

the reisomerisation o f 33 to 29, within experimental error they are the same, 

suggesting that the mechanism o f isomerisation is similar in both bis and mono NHC 

complexes. The analogous bis NHC complex [Ru(H)2(IMe4 )2(PPh3)(CO)] has been 

irradiated and found to undergo the same isomerisation from a cis arrangement of 

NHC ligands (5 -5.58 (2J Hp = 35.6 Hz, 2J Hh  = 2.8 Hz), -8.71 ( 2J h p  = 14.8 Hz, 2J H h  =  

2.8 Hz)) to a trans one (6 -5.31 (2JHp = 35.2 Hz), 8 -7.12 (2JHp = 104.0 Hz)). The bis 

IEt2Me2 complex, 51, and the mixed IEt2 Me2/IMes complex, synthesised by addition 

o f the free NHC ligands to 29 followed by irradiation (page 111) also begin to 

isomerise to a trans arrangement of NHCs once they have formed as the original cis 

complex.

-10

-11

-12

-13

-14

-15

-16

-17 -----
0.0025 0.00255 0.0026 0.00265 0.0027 0 00275 0.0028 0.00285 0.0029 0 00295

1/T(K')

Figure 2.47. Eyring plot for the reisomerisation of 56 to 55.
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The IR spectrum of 56 shows a much lower frequency vco band (1864 cm'1) 

compared to that for 55 (1889 cm'1). Again, this must be due to the cis arrangement 

of the ligands around the CO rather than what is trans to it as this is a hydride in 

both cases.

The photolysis of 55 (0.004 mol dm'3) was also measured using the in situ laser 

system at the University o f York (HeCd, 325 nm, 0.038 W). In this, more controlled 

system, the isomerisation of 55 was shown to be extremely rapid, going to 50 % 

within 15 minutes and to completion within an hour. When 3 atm o f p-Wi was added 

to a sample of 55 and irradiated at -50 °C, immediate enhancement was observed 

into the hydride signals o f both the starting material and product (figure 2.48.). After 

two minutes all enhancement had been lost and this coincides with formation o f a 

broad resonance at 5 -5.54, which is probably an q2 -H2  complex, similar to that 

observed in photolysis o f eg-IEt2 Me2 -[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29). This 

species is apparent at -50 °C and -40 °C but is lost upon cooling to -70 °C or 

warming to above -40 °C. Warming the sample from -70 °C to -50 °C led to 

reappearance of the peak but cooling it down from higher than -40 °C did not. 

Photolysing the same sample again at -50 °C led to reformation o f the broad signal.

pp m

- 7 . 2 PPm,

"T
p p m

r -1"
- 5 . 0

■■ I 
- 5 . 5

I
- 6 . 0

"■ I "■ 
- 6 . 5

I r 
- 7 . 0

 ̂ I ■" 
- 7 . 5

T  ̂ I ■" 
- 9 . 08 . 0 8 . 5

Figure 2.48. Hydride region of ^ { ^ P }  NMR spectrum following 30 seconds of 
photolysis of 55 with p-H 2  at -50 °C (^ to luene , 400 MHz, -50 °C).
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During the in situ photolysis of 55 at -50 °C, two other unidentified products were 

observed after approximately 2 minutes (figure 2.49.). One resonates as a singlet in 

the hydride region of the JH NMR (with 31P coupling) at 8  -3.65 and has no 

phosphorus present. This is likely to be a solvent complex, such as 

[Ru(H)2 (ICy)2 (toluene)(CO)]. There is also a doublet present in the hydride region 

( 8  -6.87 (Vhp = 142.0 Hz)) and this correlates to a singlet in the 3 1 P{!H} NMR 

spectrum at 8  25.0. The fact that these peaks belong together was established using a 

1H-3 1 P{1H} HMQC experiment. This suggests the loss of one of the NHC ligands or 

the CO to give a complex such as [Ru(H)2 (ICy)(PPh3 )(toluene)(CO)] or 

[Ru(H)2 (ICy)2 (PPh3 )(toluene)].

■ ■ ■ ■ ■—> i ■ ■ ■ ■ i ■ 1 ■ ' i 1 ' ■ ■ i ■ * ■ ■ i ■ ■ ■ 1 i 1 1 ■ ' i 1 ■ * ■ i ■ ■ r
- 3 . 5  - 4 . 0  - 4 . 5  - 5 . 0  - 5 . 5  - 6 . 0  - 6 . 5  - 7 . 0  - 7 . 5  - 8 . 0  - 8 . 5  p pm

Figure 2.49. Hydride region of !H{3 1 P} NMR after 8  minutes of in situ photolysis o f 
55 at the University of York. Run without phosphine coupling for clarity (cjfo-toluene,

400 MHz, -50 °C).

As for 29, photolysis of 55 in the presence of pyridine slowed isomerisation to 53 

and led to formation of two new resonances in the hydride region ( 8  -2.25, -14.41, 

2 «7 h h  = 3.7 Hz). This is assigned to the complex [Ru(H)2 (ICy)2 (CsH5N)(CO)]. The 

experiments carried out with p-H2  and pyridine on the isomerisation reaction of 

^,ax-(ICy)2 -[Ru(H)2 (ICy)2 (PPh3 )(CO)] (55) to ox,ox-(ICy)2-

[Ru(H)2 (ICy)2 (PPh3 )(CO)] (56) suggest that H2  loss and phosphine loss are 

occurring under photolysis. This is similar to what has been observed for the mono- 

NHC complex ^ -IE t2Me2 -[Ru(H)2 (IEt2Me2 )(PPh3)2 (CO)] (29). The bis NHC 

complex, 55, also appears to lose CO or NHC due to the formation o f complexes 

that contain hydrides but no phosphines.
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Preliminary calculations on simplified analogues of these bis NHC complexes (using 

IH for ICy and PH3 for PPh3) put the trans NHC complex (analogue of 56) as 14.4 

kJ mol" 1 more stable than the cis NHC complex (analogue of 55).

2.9. Conclusions

Although evidence points towards the formation of the C-C activated complex, 

[RuH(IMes)’(PPh3 )2 (CO)] (19) from the bis IMes species, 

[Ru(H)2 (IMes)2 (PPh3 )(CO)] (17), the lack of success in isolating 17 has hindered 

mechanistic studies on this reaction. Theoretical studies suggest that C-H activation 

o f IMes may be on the pathway to C-C activation. However, this has not been 

established experimentally and in fact seems unlikely.

The solvent employed appears to have an important bearing on whether the mono 

IMes species, [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16), goes on to C-C or C-H activate. The 

reactions in THF and benzene both lead to formation of a substantial amount of 19 

but the reaction in THF was faster and cleaner, leading to predominantly 19 after 21 

hours at 110 °C. After the same amount of time in benzene, the predominant product 

was still 16. It is likely that some stabilisation of an intermediate complex in the 

mechanism of formation of 19 is necessary and the better coordinating properties of 

THF compared to benzene help to do this. It has been shown that C6 D6  undergoes 

H/D exchange with the hydride and phosphine ligands on 17 and 19 in solution 

which is further evidence for intimate involvement o f solvent. Benzene may need to 

undergo activation before it can stabilise an intermediate whereas THF does not. 

This would explain why 19 forms faster in THF as there is one less process to 

undergo during the reaction.

In fluorobenzene, formation of 16,17 and 19 is much slower than in benzene, which 

supports the theory that coordinating solvents are necessary for progression of the 

reaction. THF is a more coordinating solvent than benzene, which in turn is more 

coordinating than fluorobenzene. 1 1 7
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The most surprising reaction, however, comes when using cyclohexane as the 

solvent. This leads to formation of some of the C-H activated complex, 

[RuH(IMes)” (PPh3 )2 (CO)] (18), albeit in small yields. Previously, this complex has 

only been observed upon addition of alkene to 16. The presence of a doublet in the 

hydride region o f the *11 NMR spectrum suggests possible formation of a solvated 

complex due to loss o f a phosphine ligand. If this is so and the complex could be 

isolated, this may well provide an insight into the mechanism of both the C-H and C- 

C activation of the IMes ligand.

Irradiation of the mono IMes complex, 16, with UV light led to formation of an 

unidentified product after prolonged exposure. In contrast, photolysing dihydride 

alkyl NHC ruthenium complexes has led to observation of some highly unusual 

chemistry. Both mono and bis alkyl-NHC complexes underwent isomerisation when 

photolysed with NHCs trans to hydride moving to a position trans to PPh3 or NHC. 

The complexes have been shown to undergo both hydrogen and phosphine loss and, 

in collaboration with the Universities of York and Nottingham, the reaction has been 

studied on a microsecond to second timescale (scheme 2.20.). Photolysis of the 

mono IEt2 Me2  complex, e#-(IEt2 Me2 )-[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29), in the 

absence of hydrogen does eventually lead to a C-H activation product, 

[RuH(IEt2 Me2 )” (PPh3 )2 (CO)] (31), which is stable at room temperature. The 

I'Pr2 Me2  analogue of this complex, e^-(fPr2 Me2 )-[Ru(H)2 (I'Pr2 Me2 )(PPh3 )2 (CO)]

(30) undergoes activation much more rapidly and the activated complex, 

[RuH(I'Pr2 Me2 )” (PPh3 )2 (CO)] (34), is the major product after 2 hours o f photolysis. 

Addition of various substrates has led to further understanding of the mechanism of 

these reactions although there is a substantial amount of scope for further 

investigations.

The bis NHC complex, e<7 ,ax-(ICy)2 -[Ru(H)2 (ICy)2 (PPh3 )(CO)] (55), also isomerises 

and as well as losing phosphine and H2  appears to lose either CO or ICy in a minor 

pathway. A full investigation of what is occurring to the bis NHC complexes under 

UV light, both on the NMR and TRIR timescales, still needs to be carried out.
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Scheme 2.20. Overview of isomerisation reaction o f 29.

The thermal reisomerisation of both the mono and bis NHC complexes is potentially 

even more interesting than the initial isomerisation under UV light. UV light 

stimulates H2 and PPh3 loss from the complexes to induce isomerisation of the NHC 

ligand from trans to the hydride to trans to the phosphine or the NHC. Loss of H2 

and PPh3 from the complexes does not occur upon heating and so the fact that the 

NHCs return from trans to phosphine or NHC to trans to hydride at elevated 

temperature but without the presence o f UV light implies that the reisomerisation is 

not necessarily occurring via a route involving H2 or PPh3 loss. The value of AS (- 

29.50 (± 64.57) JK 'm o f1) obtained from the Eyring plot of the thermal back 

reaction of the mono IEt2Me2 complex suggests that the process is intramolecular 

and reported studies on the tris phosphine complex, [Ru(H)2(PPh3)3(CO)] (15), 

suggest that this could occur via a trigonal twist mechanism.
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Chapter 3 Rhodium NHC complexes

3. Rhodium N-heterocyclic carbene complexes

3.1. Introduction

Rhodium phosphine complexes have played a pivotal role in the development of 

organometallic catalysis, 1 with Wilkinson’s catalyst, [RhCl(PPh3 )4 ], being one of the 

best known and widely employed examples. Despite the extensive use of complexes 

such as Wilkinson’s complex in catalysis, only a limited number of rhodium-NHC 

analogues have been synthesised, and investigated in catalysis. This chapter begins 

with a review of the chemistry and mechanisms of some of the more popular 

phosphine based rhodium catalysts as well as the structures of the NHC analogues 

that have been synthesised.

The synthesis o f a host of new Rh(I) complexes bearing one, two, three and four 

NHC ligands is presented. These structures have been characterised using 

multinuclear NMR spectroscopy, IR spectroscopy, elemental analysis and X-ray 

diffraction. As discussed in section 1.2.7., Nolan and Danopoulos have showed that 

NHC ligands on rhodium centres can undergo C-H bond activation and it was hoped 

that bond activation of NHCs at rhodium centres could be established to compare 

with those already found at ruthenium centres and presented in chapter 2. While no 

activations of alkyl substituted NHCs have been observed, an example of 

spontaneous C-H bond activation with an IMes ligand at room temperature has been 

observed and is reported here.
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3.2. Rhodium complexes in catalysis

3.2.1. Wilkinson’s catalyst

Wilkinson’s catalyst2  [RhCl(PPh3)3] (57) is the best known o f the catalytically active 

Rh(I) complexes and is widely used for alkene hydrogenation (turnover rates of

During alkene hydrogenation, 57 first forms a dihydride species which then binds to 

alkene in what is the rate determining step. This alkene dihydride complex 

undergoes a migratory insertion prior to elimination of alkane in the final reductive 

elimination step. This regenerates the active catalytic species to reinitiate the cycle 

(scheme 3.1.).

typically 0.05-0.25 s' 1 ) 3  as well as hydrosilylation4  and hydroboration. 5

PPha PPh3

Cl Rh PPh3
-PPh3

+PPh3
Cl Rh

PPh3

(58)

PPh3

PPh3
Ph3P/„„, | ^ C H 2CH2R

PPh3

PPh3

PPh3
| > CH2CH2R

PPh3 PPh3

Scheme 3.1. Mechanism o f alkene hydrogenation by 57.
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The mechanism of hydrogen association to the rhodium centre has received much 

study. Wilkinson proposed in his initial publication that the addition of H2  occurred 

after loss of one o f the phosphine ligands. 2  Subsequent work by Meakin et al.6 and 

Halpem et al? suggests that this bisphosphine species [RhCl(PPh3 )2 ] (58) has only a 

transient existence in solution.

Tolman and Halpem both independently came to the conclusion that 58 exists in a 

dimeric form [{Rh(PPh3 )2 }2 (M.-Cl)2] in solution, where the two Cl" ligands bridge 

the rhodium centres (scheme 3.1. ) . 6 , 8  The equilibrium lies far to the right, so that the 

dimeric species is the principle dissociation product in solution. From Halpem’s 

work, however, it appears that when H2  is present, the reaction of 58 with H2  to give 

[Rh(H)2 Cl(PPli3 )2 ] is sufficiently fast to inhibit formation of the dimer, meaning that 

it does not interfere significantly with the overall reaction o f [RhCl(PPh3 )2 ] with H2 . 

After carrying out thorough investigations into the rate of hydrogen addition to 58 

(both as a three coordinate species and as a dimer) and to 57, Halpem concluded that 

Wilkinson was correct in his original assumption that the monomeric 58 is highly 

reactive and thus likely to be extremely important in 57-catalysed hydrogenation and 

related reactions. 9 , 1 0

Brown et a l used dynamic NMR experiments to study intra- and intermolecular 

PPh3 exchange in 57 and its hydrogen addition product [Rh(H)2 Cl(PPh3 )3 ] (H 2 )-57 . 3  

This showed that phosphine loss from 57 was as quick as H 2  loss. In addition, they 

postulated, from computer modelling and NMR studies, that the loss of phosphine 

from (H2)-57 could result in a complex with a cis arrangement o f phosphine ligands 

(scheme 3.2.). Phosphine loss can occur from trans to the hydride (I or II) or from 

trans to another phosphine (II or III). These five-coordinate intermediates can all 

interconvert with each other and with IV and V. Although the relative energies of 

these isomers is unknown, the P'P^ analogue, which has been observed, has the 

same structure as I. Brown showed, using dynamic NMR experiments, that both Pa 

and Pb were exchanging with free phosphine in solution and that it was occurring 

within the timescale of turnover rates in catalytic hydrogenation.
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PaPh3

Pl^Pb///. I
Rh'L 

C l ^  I ^ H  
PaPh3

H - RA c PPh3 
I PPh3

PPh-

Rh ClIII

PPh-PPh-

IV PPh,

Cl— Rh:
A\PPh3

PPfb
Ph3P— Rh

a\H
H

H Cl

Scheme 3.2. The possible geometries o f the five-coordinate phosphine loss complex.

Molecular modelling of alkene-bound intermediates, by the same authors, 3 suggests 

that a structure bearing /rdm-phosphine ligands would be impossibly strained due to 

van der Waals forces between the coordinated alkene and one of the phosphine 

ligands (figure 3.1.). The previous observation that cw-phosphine intermediates are 

formed upon phosphine loss from (H 2 )-5 7 , adds further credibility to the theory that 

a cw-phosphine species plays an important role in the mechanism of alkene 

hydrogenation by 57.

PPha
Cl/,/,

Y PPh,

PPh3 
Cl///,, ,,i\\\PPt*3

Y ~
Rh-;

Figure 3.1. The two isomers of alkene bound intermediates, bearing trans and cis 
arrangements of phosphine ligands, in alkene hydrogenation by 57.
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More recently, the use of parahydrogen has allowed new intermediates in the 

hydrogenation reactions catalysed by 57 to be observed due to the enhancement of 

proton signals in NMR spectra. 1 1 ' 1 4  When alkene was added to the reaction, an 

alkene bound product was observed that contained cis phosphines. This suggests, 

like Brown postulated, that a cw-phosphine intermediate is important in alkene 

hydrogenation and that its lifetime is so short (as evidenced by the inability to 

observe it using conventional NMR methods) that it must be a very reactive 

intermediate in the reaction.

In addition, parahydrogen studies found evidence that dimeric species are important 

in the reactions, as suggested by Halpem and Tolman, and that the presence of free 

phosphine inhibits their formation, thus enhancing the catalytic ability o f 57.

3.2.2. Catalysis using fRhHfPPInUCOn

[RhH(PPh3 )2 (CO)] (59) is an active hydrogenation and hydroformylation 

catalyst. 1 5 1 6  The hydroformylation reaction adds CO and H2  across a double bond 

(which is normally in the terminal position) . 1 7  Addition o f H 2  and CO can proceed 

through either Markovnikov or anti-Markovnikov addition. Markovnikov addition 

leads to an internal aldehyde and these products are less desirable. Therefore anti- 

Markovnikov addition is preferred, giving linear aldehydes (scheme 3.3.).
H

H R h (P P h 3 )2 (C O )

t
r c h = c h 2

R C H C H  2 R h (P P h 3)2 (C O ) 

H

R C H C H  2C
/

H O
linear ^-product

RC H C H  2—H 
I

R h (P P h 3 )2 (C O )

-  R C H C H 2- H  
I

»A>
internal /-product

Scheme 3.3. Formation of n and i isomers o f aldehydes in the hydroformylation
reaction.
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The proposed mechanism consists of migratory insertion o f the CO to the metal 

alkyl group which has already been formed from migratory insertion of the alkene 

into the Rh-H bond (scheme 3.4 . ) . 1 6

H

I
PhgP— Rh— PPh3 

CO (56)
RCH2CH2CHO

H H
Hv  | ^ C C H 2CH2R

Ph3P*" | /7//PPh3
CO

Ph3 P \
/ Rh\

OC PPh3

O
II
-CCH2CH2R

CO
lCO

Ph3P Rh<
| ""'PPha 
CH2CH2R

iPPh,
OC— Rl<

PPh,
CO

OC.
:RhC

PPh,

H

Ph,P— Rh CO

CO

R

kCO
-R h ',

PPh,
CO

.CO

RH2CH2C PPh3

^ -------------PPh,

Scheme 3.4. Mechanism o f hydroformylation, catalysed by 59.

Large excesses of phosphine (usually greater than 0.3 M) need to be added to the 

reaction mixture if a high selectivity for the linear isomer is desired. This is because, 

under the added CO pressure, 59 is in equilibrium with di- and tri-carbonyl species 

which are less selective for the linear isomer (scheme 3.5 . ) . 1 8  Pruett and Smith found 

that the pressures of CO and H2  also greatly affected the selectivity of 59 . 1 9  They
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found that lowering the pressure of a 1 : 1  ratio CO ith atmosphere led to a much 

higher ratio of linear product («) to branched (/). For example, in the 

hydroformylation of methyl methacrylate (CH2 C(CH3 )COOCH3 ), a pressure o f 170 

atm led to an n:i ratio of 0.3:1 whilst a pressure of 7.5-14.5 atm gave a 24:1 ratio (5

mol % catalyst, 100-110 °C).
PPh3 PPh3

HRh(CO)3(PPh3) HRh(CO)2(PPh3)2 HRh(CO)(PPh3)3
CO CO

Scheme 3.5. Equilibrium of 59 with PPh3 and CO.

Pruett and Smith found that changing the phosphine group had pronounced effects 

on the reaction. By varying the electronegativity and bulkiness of the ligand, the 

percentage of n aldehyde produced was significantly altered (table 3.1.). If the PPI13 

ligand on 59 is changed for an alkyl phosphine, less /7 -aldehyde is produced. This is 

attributed to those phosphines with more back-bonding capability being able to 

prevent a large charge build up on the rhodium centre and hence reducing the 

likelihood of the catalyst reacting with CO. Those catalysts bearing bulkier PR3 

groups are also more likely to lose phosphine and react with CO thus leading to less

linear product.

Nature of R  in PR3 Tem perature (°C) Reaction time (min) % n octanol
/7-Butyl 90 225 71
Phenyl 90 35 82
77-Butoxy 1 1 0 60 81
Phenoxy 90 50 8 6

o-Methy 1 phenoxy 90 52 78
0,0-Dimethylphenoxy 90 80 47
o-Phenylphenoxy 90 95 52
//-Phenylphenoxy 90 70 85
p-Chlorophenoxy 90 55 93
p-Methoxyphenoxy 90 270 83
5 % Rh/C~ (10 g), 112 g  octene, 200 mL toluene, 0.05 mol PR3, 5-7 atm o f 1:1 CO:H2

Table 3.1. Effect of changing PR3 group on hydroformylation reaction.

Abatjoglou et a l have studied the degradation pathways of phosphine in rhodium 

catalysed hydroformylation and hydrogenation reactions. 2 1  During propene 

hydroformylation catalysed by 59, triphenylphosphine is slowly converted to
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propyldiphenylphosphine. The rate of this conversion is decreased when additional 

PPI13 is added to the reaction, implying that coordinatively unsaturated complexes 

are required for the propyldiphenylphosphine to form. The mechanism proposed is 

shown in scheme 3.6. It involves a carbon-phosphorus bond of one o f the 

coordinated PPI13 groups oxidatively adding to a coordinatively unsaturated 

rhodium(I) complex (I) to form a rhodium(III) intermediate (II). When higher 

concentrations o f propene are present, formation o f a propene insertion product is 

favoured (III) and reductive elimination o f the C3H7 ligand and the PPh2  ligand from 

the rhodium leads to formation of propyldiphenylphosphine (TV)* Lower 

concentrations o f propene lead to formation of phosphido-bridged rhodium 

complexes. The formation of propyldiphenylphosphine reduces the selectivity o f the 

catalyst but the dimeric species slow the activity. For example, the hydrogenation of 

propene (and the formation of propyldiphenylphosphine) diminishes after 3-4 hours 

reaction time. This is accompanied by a change in colour o f the catalyst from yellow 

to dark brown.

(IV)
Scheme 3.6. Mechanism of PPI13 activation in the hydroformylation reaction.

I_n— RhH

PPh3

(yellow solutior 
(I)

Ph
Ph

U  Rh H (VI)

H

U  Rh H
Phosphido bridged  
rhodium com plex(es) 
(dark solution)

(V)

Ph
(HI)

Ph
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3.3. Swapping PR3 for NHC

3.3.1. Synthesis o f rhodium NHC complexes from enetetramines

Lappert had synthesised a significant number of Rh-NHC complexes from

Enetetramines, which are dimers of NHCs, can be synthesised by distillation of a

Lappert utilised the electron rich alkene bond in these species to encourage 

coordination to a number of transition metal centres in high yield. The rhodium 

complexes synthesised were prepared from one of three starting materials, trans- 

[RhCl(PPh3 )2 (CO)], [{Rh(COD)}(p-Cl) ] 2  and [RhCl(PPh3)3] (57). Reaction with an 

enetetramine resulted in PPh3 displacement or (p-Cl) 2  bridge splitting. Lappert has 

synthesised at least 45 rhodium mono NHC complexes. Many of these, including 

[RhCl(IPh)(PPh3)2] (60) are direct analogues o f Wilkinson’s catalyst and were 

prepared by heating 57 and enetetramine for 1 hour at 140 °C in xylene. The two 

PPh3 groups in 60 are trans to each other as are the phosphines in all the other 

[RhCl(NHC)(PPh3 )2 ] complexes that Lappert has synthesised. This can be seen from 

the appearance o f a single doublet in the 3 1 P{ 1H} NMR spectra (typically, 8  110-120

• 97 9Renetetramine starting materials before free NHCs became readily available.

1,2-bis(dialkylamino)-ethane with AT^V-dimethylformamide dimethyl acetal2 9  or 

CH(OEt) 3 3 0  or by thermolysis of 1,3-diarylimidazolium trichloride3 1  (scheme 3.7.).

(JPRh = 156 Hz)).

+ 2 CH(OMe)2NMe2

R RI I

NRH

+ 2 Me2NH 
+ 4 MeOH

R = Me, Et, Bu CH2Ph

R R

Ar Ar Ar

Ar= Ph

Ar Ar Ar

Scheme 3.7. Synthesis of enetetramines.
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3.3.1.1. [RhCl(NHC)(PPh3 )2 ] complexes in catalysis

Lappert and Maskell studied two NHC analogues of 57, [RhCl(lMe)(PPh3 )2 ] (61) 

and [RhCl(ICH2 Ph)(PPh3 )2 ] (62), as catalysts for the hydrosilylation of ketones and 

alkynes . 3 2  They found that after 4 hours at 100 °C, 61 converted 98 % o f 

acetophenone to the silyl ether using triethylsilane, whilst 62 only went to 23 % in 

the same time at 120 °C. The bis NHC species [RhCl(IMe)2 (CO)] gave no 

conversion at all. Interestingly, the hydrosilylation o f butan-2-one, again using 

triethylsilane and catalysed by 61, worked significantly better in CH2 CI2  than in 

toluene (50 % conversion at 40 °C cf. 18 % at 100 °C).

In the hydrosilylation of PhC^CH with triethylsilane, three products are possible, as 

shown in scheme 3.8. 61 gave a 99 % conversion to silylated products over one hour 

at 100 °C. This consisted of 74 % trans-isomer, 4 % c/5 -isomer and 22 % a-product. 

In contrast, 57 gives 77 % trans-product and 23 % cis product.

[Rh]
P h C = C H  + Et3SiH ------------------► P hC H = C H S iE t3 + Ph(SiEt3) C = C H 2

cis and trans isomers a-adduct

Scheme 3.8. Products of hydrosilylation of phenylacetylene by Et3 Si.

Cetinkaya et al. have prepared analogues of Lappert’s complexes, again using 

enetetramines, this time bearing 2-methoxyethyl substituents on the N groups o f the 

NHC (scheme 3.9.). [RhCl(ICH2 CH2 0 Me)(PPh3 )2 ] (63) has a trans phosphine 

arrangement as evidenced by the 3 1 P{1H} NMR spectrum ( 8  30.8 (JpRh = 158 Hz)) 

and was found to be an active cyclopropanation catalyst (69 % {cis.trans = 25:75)) 

in converting styrene with functional diazomethane derivatives of the general 

formula, N2 CHC0 2 Me to the cyclic product (80 °C, 4 hours) (scheme 3.10.). The 

authors moot the possibility that the CH2 CH2 0 Me arms on the NHC may act as 

hemilabile ligands once PPI13 has been lost from the rhodium complex. However, 

they could not find any evidence for this during a study o f the mechanism.
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MeO.
PPhaC

[RhCI(PPh3)4] (57)
ICH2CH2OMe2

Cl— Rh-
110 °C, toluene I M

PPh3 <
MeO

(63)

Scheme 3.9. Synthesis o f 63 by £etinkaya et al.

C 02Me

63
HCPh=CH2 + NzCHCOzMe -------------- ► / ----- 1

4  h , 80  °C  pK

Scheme 3.10. Cyclopropanation of styrene and N 2 CHC0 2 Me by 63.

3.3.2. Structure and activity of rRhCKIMesXPPfrt)?! (64)

Recently, Crudden’s group have synthesised [RhCl(IMes)(PPh3)2] (64), another 

analogue of Wilkinson’s catalyst, by addition of free IMes to 57 in toluene at room 

temperature. 1 7  Unlike Lappert’s complexes and 63, the two PPI13 ligands are cis to 

each other, presumably due to the larger steric bulk of IMes.

Investigation by Nolan3 4  suggested that the /raws-influence o f IMes in 64 is similar 

to that of PPh3 in 57. This is shown by the very small difference in Rh-Cl and Rh-P 

bond lengths between 64 and 57 (64: Rh-Cl = 2.3941(4) A, Rh-P (cis to NHC) = 

2.2158(4) A, Rh-P (trans to NHC) = 2.3053(4) A; 57: Rh-Cl = 2.376(4) A, Rh-P (cis 

to Cl) = 2.332(4), 2.334(3) A, Rh-P (trans to Cl) = 2.214(4) A)35 and from the very 

similar coupling constants in the 3 1 P{,H} NMR spectrum (64: 2./PP = 39 Hz; 57: 2Jrp 

= 38 Hz). This in contrast to the findings o f Lappert when comparing complexes of 

the type [RhCl(L)(PPh3 )(CO)] (L = PPh3 or NHC) where the NHC ligands led to 

lowering of the 3 1 P-103Rh coupling constant, which is indicative o f a higher trans 

influence ligand. 2 6  [RhCl(PPh3 )2 (CO)] (trans PPI1 3 groups) has a coupling constant 

of 129 Hz compared to [RhCl(IPh)(PPh3 )(CO)] (trans PPh3  and NHC) with a 

coupling constant of 117 Hz.
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Nolan also discovered that the thermal stability o f 64 was greater than that o f 57. 

Upon heating, 57 loses a phosphine ligand to give 58 in its dimeric form. 64, on the 

other hand, shows no decomposition or formation of the corresponding 

[{Rh(IMes)(PPh3 )}2 (p-Cl)2 ] dimer after heating at 65 °C for 24 hours.

3.3.2.1. Use o f [RhCl(IMes)(PPh?)?7 (64) in catalytic reactions

Nolan’s group investigated the activity of 64 in alkene hydroboration and aldehyde 

methylenation3 4  and found little difference between the activity o f 57 and 64 in 

either reaction. As a catalyst in hydroformylation reactions, 64 was found to be 

extremely selective, giving between 94 and 98 % branched product over linear on a 

variety of alkenes. 1 7  However, the turnover rate was extremely slow, giving only 

approximately 7 turnovers/hour (1 mol % 64, 34 atm o f H2  and 34 atm CO at 60 °C 

for 2 0 - 2 2  h).

Further investigation by Crudden and co-workers into the mechanism of catalysis by 

64 and an analogue bearing P(p-tolyl) 3  groups, led to some surprising results. The 

unusual cis orientation of the phosphine ligands should enhance catalytic activity. 

This is because the assumed strong o-donating abilities of the IMes ligand should 

facilitate the dissociation of the phosphine trans to it. However, dissociation of the 

trans phosphine in 64 is at least ten times slower than in 57. At room temperature no 

exchange between bound phosphine on 64 and free phosphine was observed (57 

exchanges at a rate of 0.3 s' 1 at 25 °C) 3  but 64 began to show slow exchange above 

50 °C. Exchange was only observed into the trans phosphine with the one in the cis 

position being firmly bound.

In the P(p-tolyl) 3  analogue of 64, exchange was found to occur at 0.91 s 1 at 60 °C 

when 5 equivalents o f free phosphine were added. When the amount of free 

phosphine was increased to 50 equivalents the rate of exchange did not change 

significantly. This implies a dissociative mechanism for the exchange. This slow 

dissociation has been attributed to the poor performance of 64 in catalysis in
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comparison to 57. The hydrogenation of isosaffole (scheme 3.11.) proceeded at only 

two turnovers per hour when employing 64, whilst with 57 the turnover rate was 40 

h 1.

Scheme 3.11. Hydrogenation of isosafrole.

The slowing of phosphine dissociation on substitution of a phosphine ligand for an 

NHC ligand has also been observed by Grubbs for his alkene metathesis catalysts (as 

discussed in section 2.2.1.1. ) . 3 7 , 3 8  As has been well documented, the second 

generation Grubbs’ alkene metathesis catalysts are extremely effective compared to 

their phosphine analogues unlike 64 in comparison to 57.

By passing CO across 64, Crudden also synthesised [RhCl(IMes)(PPh3 XCO)] (65).17 

This is also a very selective hydroformylation catalyst, producing primarily 

branched products, but it has half the activity o f 64. However, in this instance, free 

PPh3  can be added into the reaction, which increases the catalytic activity to 

approximately twice that of [RhCl(PPh3 )2 (CO)] (59) by converting the active species 

back to 64.

Crudden’s group have also recently reported the synthesis of a series o f analogues o f 

64, bearing a variety of phosphine ligands (figure 3.2 . ) . 3 9  These are all effective 

alkene hydrogenation catalysts and it was also found that upon addition o f CuCl, the 

rate o f reaction was enhanced by two orders of magnitude (table 3.2.). This is due to 

CuCl being a phosphine sponge4 0  and illustrates how important the loss o f phosphine 

is in the catalytic effectiveness of these type of complexes.
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PR3— Rh Cl

R =

PPh3,
P(p-MeC6H4)3l
P(p-MeOC6H4)3l
P(p-FC6H4)3,
P(2-furyl)3,
P(OPh3)3

PR,

Figure 3.2. Series of Rh-IMes complexes synthesised by Crudden et al.

CH,
[Rh]

CH,

Phosphine TOF (h'1) with and without CuCl
None CuCl

PPh3 24 331
P(p-MeOC6 H4 ) 3 5 417
P(p-FC6 H4 ) 3 43 161
P(2-furyl) 3 9 24
P(OPh3) 0.25 0.4
57 297 243

0.75 % cat, 0. 1 M  substrate, 100 psi H2, 60 °C, THF, 15 minutes, 1 eq. o f CuCl.

Table 3.2. A comparison of the alkene hydrogenation abilities of various Rh(IMes)
catalysts to 57.

The solvent employed to undertake these catalytic reactions was found to affect the 

rate of activity, with toluene significantly less effective than THF (table 3.3.). 

Although the authors give no explanation for this, presumably it could be postulated 

that the THF solvates and stabilises a phosphine loss complex more easily than 

toluene.

Phosphine
TOF (h '1)

In THF In to uene
None CuCl None CuCl

PPh3 24 331 3.5 188
P(p-MeOC6 H4 ) 3 5 417 2.3 190
P(p-FC6 H4 ) 3 43 161 24 123
0.75 % cat, 0.1 M  substrate, 7atm Hi, 60 °C, 15 minutes (THF), 30 minutes (toluene), 1 eq. o f CuCl.

Table 3.3. Comparison of TOFs for various Rh-IMes complexes in THF and
toluene.
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3.3.3. Decomposition o f rhodium-NHC complexes

33.3.1. Decomposition o f FRhCl(lMes) (PPh ?) ? / (64) in dichloroethane

Whilst the Crudden group were investigating the catalytic potential of 64 they 

discovered that dissolving it in dichloroethane and heating it to 60 °C led to the 

formation of 57 in addition to a dimeric NHC species with an ethyl bridge formed by 

interaction with the solvent (scheme 3.12.). This decomposition pathway could well 

account for why Lebel and co-workers found that 64 was active for the 

methenylation o f aldehydes in THF but not in CD2 CI2 . 3 4  However, it should be noted 

that although Lebel found that 57 retained activity for methylenation of 6-(tert- 

butyldimethylsilyloxy)-l-pentenal in CD2 CI2 , it was inactive in dichloroethane. 4 1  

This suggests that solvent may play a larger part in these catalytic reactions than 

simply leading to decomposition of the complex. The carbonylated complex 65 did 

not show the same decomposition in dichloroethane as 64.

60 °C
57

\ = J

Scheme 3.12. Decomposition of 64 in dichloroethane.

3.3.3.2. Decomposition o f other rhodium-NHC complexes

Datt et al. investigated the catalytic ability o f [Rh(NHC)(acac)(CO)] (NHC = IPr, 

IMes) for the hydroformylation reaction o f hex-l-ene . 4 2  In the absence of additional 

free ligands such as PPI13 and P(0 -2 ,4 -/Bu2 -Ph) 3  no catalytic activity was observed. 

When auxiliary ligands were added, hydroformylation activity was comparable to 

[Rh(acac)(CO)2 ] with the same added ligand. Thus it appears that no additional 

benefit is derived from having NHC in the catalyst precursor. This is due to 

decomposition of the NHC complexes under the hydroformylation conditions that
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3.3.3. Decomposition of rhodium-NHC complexes

3.3.3.1. Decomposition o f fRhCl(IMes)(PPhdjl C64) *n dichloroethane

Whilst the Crudden group were investigating the catalytic potential of 64 they 

discovered that dissolving it in dichloroethane and heating it to 60 °C led to the 

formation of 57 in addition to a dimeric NHC species with an ethyl bridge formed by 

interaction with the solvent (scheme 3.12.). This decomposition pathway could well 

account for why Lebel and co-workers found that 64 was active for the 

methenylation o f aldehydes in THF but not in CD2 CI2 . 3 4  However, it should be noted 

that although Lebel found that 57 retained activity for methylenation of 6-(tert- 

butyldimethylsilyloxy)-l-pentenal in CD2 CI2 , it was inactive in dichloroethane. 4 1  

This suggests that solvent may play a larger part in these catalytic reactions than 

simply leading to decomposition of the complex. The carbonylated complex 65 did 

not show the same decomposition in dichloroethane as 64.

60 °C
57

\==I

Scheme 3.12. Decomposition o f 64 in dichloroethane.

3.3.3.2. Decomposition o f  other rhodium-NHC complexes

Datt et al. investigated the catalytic ability of [Rh(NHC)(acac)(CO)] (NHC = IPr, 

IMes) for the hydroformylation reaction o f hex-l-ene . 4 2  In the absence of additional 

free ligands such as PPI13 and P(0 -2 ,4 -*Bu2 -Ph) 3  no catalytic activity was observed. 

When auxiliary ligands were added, hydroformylation activity was comparable to 

[Rh(acac)(CO)2 ] with the same added ligand. Thus it appears that no additional 

benefit is derived from having NHC in the catalyst precursor. This is due to 

decomposition o f the NHC complexes under the hydroformylation conditions that
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were employed (85 °C and 60 bar 1:1 tbiCO). Reaction o f [Rh(IMes)(acac)(CO)] 

with an excess o f phosphine results in the formation of [Rh(IMes)(acac)(PR3 )], as 

seen by 3 1 P{1H} NMR. Upon lowering the pressure to 20 bar, and with addition of 

PPh3, the formation o f [RhH(PPh3 )2 (CO)2 ] was observed by phosphorus NMR.

3.3.4. Oxidative addition o f Mel to a rhodium-NHC complex

Martin et al have investigated the oxidative addition o f Mel to [RhI(IMe)2 (CO)]

(6 6 ) and [RhI(IMes)2 (CO)] (67) and compared the reaction to that using phosphine 

analogues. 4 3  Mel undergoes oxidative addition to 6 6  but the reaction is slow and 

reversible. The product then undergoes a migratory insertion step to yield an acetyl 

complex. The product was tentatively assigned as [Rhl2 (IMe)2 (COCH3 )], with both 

the iodine and NHC ligands adopting mutually trans geometries. However, the 

authors postulate that the complex could also exist as an iodide bridged dimer. 67 

showed no reaction with Mel even when dissolved in neat Mel.

When Mel is reacted with analogous complexes bearing alkyl phosphines rather than 

NHCs, the reaction stops once the Mel has added across the metal, without forming 

the acetyl complex. In addition, the rate o f reaction for these complexes is much 

faster (ca. 3.5 times when PR3  = PEt3) suggesting that the nucleophilicity o f the Rh 

centre towards Mel in 6 6  is less than its phosphine counterpart. This is an 

unexpected result and one that Martin et al. explain as being due to sterics. 

However, although they comment that the vacant sites at the rhodium centre are 

blocked by the substituents from the NHCs, which lie above and below the rhodium 

coordination plane, this supposition is based upon crystallography data, which does 

not necessarily lead to correct interpretation o f how the complexes behave in 

solution.

Using Nolan’s concept of buried volume (chapter 1, section 1.2.2.), PH3  has a % Vbw 

of 17 and PCy3  o f 26 on Ni(CO)x(L) (x = 2 or 3, L = NHC or PR3). The value for 

PEt3  would probably lie within this range. The % FBur value for IMes is 26. There is
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no value for IMe but ICy is 2 3 Thus, using Nolan’s calculations, the sterics of the

NHCs do not seem to be enough to cause such a discrepancy in the rates of oxidative 

addition.

Crabtree also notes that the planar geometry of NHCs compared to the cone shaped 

phosphine ligands means that whenever possible NHCs will rotate around the M-C 

bond, presenting its slim axis to the bulky plane of the complex, thus minimising 

steric interference from the NHC . 4 5

3.3.5. Rhodium complexes bearing chelating NHC ligands

Peris, Crabtree and others have synthesised rhodium(III) NHC complexes where the 

NHC ligands consist of two imidazole moieties linked by various organic groups. 

The two carbenic carbons can both join to the metal, forming bidentate groups as in 

figure 3.3 . 4 6  The chelating bonding mode has been demonstrated by NMR 

spectroscopy and X-ray crystallography. The high trans effect of the NHC is shown 

from the crystal structure of [Rhl2 (I'Pr(CH2 )I,Pr)(OAc)] (6 8 ) where the Rh-OAc 

bonds are longer (2.166(6), 2.181(6) A) than in the parent carboxylate complexes, 

[Rh(OAc)2 (L) ] 2  (L = Py, CO, PF3, P(OPh)3, PPh3) (2.01-2.06 A). Bidentate ligands 

should provide more stable catalysts as they are less likely to degrade4 7  and Peris 

and Crabtree showed that 6 8  catalyses the hydrogenation o f ketones and imines via 

hydrogen transfer with 'PrOH/KOH at 82 °C.
R/

Figure 3 3 . Chelating NHC ligand.

Peris and Crabtree have investigated the effect that changing the length of the linker, 

(CH2)„, between the imidazole rings has on complex formation and found that by

X  =  CH2 o ro -C 6H4 

R =  "Bu, *Pr
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using longer linkers (where n = 3 or 4), Rh(I) chelating NHC complexes are 

produced . 4 5  If n = 1 or 2, Rh(III) complexes such as those described above are 

formed or binuclear Rh(I) species where the bis-NHC now bridges the two rhodium 

centres (scheme 3.13.). All these complexes are extremely stable, the Rh(I) cations 

particularly so when the counterion is changed from the initial C f group to [PF6 ]\

fBu

c -RhCI(cod)

Bu

(i) Ag20 , CH2CI2i R.T., 90 mins

(ii) [{Rh(cod)}(n-CI)2], CH2CI; 
reflux, 90 mins

Bu

(0.

c > ■RhCI(cod)

Bu

-Bu

-O' —

(0 .

U

Rh;

Bu

Scheme 3.13. Formation of Rh(I) products using bis NHCs.

Burling et al. found that in the reaction of [{Rh(COD)}2 (p-OEt)2 ] with the bidentate 

imidazolium salt [IMe(CH2 )IMe][X] 2  (X = BPI1 4 , PF6 ), keeping the reaction 

rigorously halide free, led to formation of a mononuclear rhodium complex with a 

chelating NHC as opposed to a binuclear complex with a bridging ligand . 4 8  The 

reasons for this are unclear. Using this method they synthesised 

[Rh(IMe(CH2 )IMe)(COD)][PF6 ], which was then reacted with CO to give 

[Rh(IMe(CH2 )IMe)(CO)2 ][PF6 ]. This has been found to effectively catalyse the 

cyclisation of 4-pentyn-l-amine to 2-methyl-1-pyrroline (scheme 3.14.), giving an 

85 % conversion in 16 hours at 60 °C at a catalyst loading of 1.5 mol %. This is
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significantly faster than the analogous complex bearing an N-donating chelating 

ligand (figure 3.4. ) . 4 9

NH,
-C = C -H  IRhJ h3c^ V

Scheme 3.14. Cyclisation of 4-pentyn-l-amine to 2-methyl-1-pyrroline.

CH,  /

n
Rh

< x

V

CO

CO

c h 3

85 % conversion  

Turn over rate =  10 h

PFe

,CO

Rh'

CO

4 9  % conversion

PFc

-l Turn over rate =  2 h"

Figure 3.4. Comparison of chelating NHC and N-donor ligand in cyclisation of 4- 
pentyn-1-amine to 2-methyl-1-pyrroline in ^ T H F  at 60 °C with 1.5 % catalyst

loading.

Similar complexes have also been synthesised by Baker et al. with bulkier chelating 

NHC ligands (figure 3.5 . ) . 5 0  These have not been trialled in catalytic reactions but 

have been shown to be sensitive to electrochemical reactions, with 

[Rh(NHC)(COD)][PF6 ] going from Rh(I) to Rh(II) in cyclovoltammetry studies.

PF.

Rh'

CO
Rh'

CO

PF,

Figure 3.5. Chelating NHC rhodium complexes synthesised by Baker et al.
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3.3.6. Use of rhodium-NHC complexes as radiopharmaceuticals

Youngs’ group have investigated the use of rhodium NHC complexes as 

radiopharmaceuticals.51 105Rh is an extremely useful tool in cancer therapy because 

it emits beta particles that are suitable for radiation therapy as well as a gamma 

particle that can be used for imaging. The i\n of 105Rh is 36.4 hours, which is ideal 

as it has sufficient time to kill tumour cells but does not remain radioactive in the 

body for long periods. It is feasible that NHCs could be synthesised bearing 

targeting substituents such as peptides, allowing them to interact with the body and 

deliver 105Rh to specific areas.

105Rh is only available from [RhCl3*xH20], thus it is important to synthesise 

potential complexes from this starting material well within the 36.4 hour half life. 

Youngs reports two approaches to achieve this: synthesising NHC complexes 

directly from the [RhCl3*xH20] starting material and converting [RhCl3#xH20] to a 

different rhodium precursor before reaction with NHCs. The latter method, although 

successful in synthesising Rh(NHC) complexes, is impractical as the synthesis is 

undertaken in acetonitrile, which is toxic and therefore not suitable for medicinal 

use. It also involves several synthetic steps, which is undesirable when working with 

radioactive starting materials.

Wanniarachchi et al. have reported the synthesis of Rh(NHC) complexes via 

transmetallation from silver NHC complexes (scheme 3.15.)52 and Youngs used this 

approach to synthesise rhodium NHC complexes from [RhCl3*xH20 ] (scheme 

3.16.). This led to the synthesis of two extremely stable rhodium complexes each 

bearing two bidentate NHCs in few enough steps to preserve the 105Rh. The 

synthesis is carried out in DMSO, which has been approved for use in humans, 

although synthesis in water would be ideal.
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Scheme 3.15. Synthesis of [Rh(NHC)(COD)][BF4 ] via transmetallation from Ag.

3.3.7. Rhodium-NHC complexes bearing hydride ligands

Nolan has prepared two Rh(NHC) complexes bearing a hydride ligand. Both arise 

from C-H activation of the NHC and have already been discussed in detail in chapter 

1 (section 1.2.7.). These are the only two reported rhodium hydride complexes 

bearing NHC ligands and they have not been investigated in any catalytic cycles.
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O' L>N - \  / r - \
HH R
2 r

R = Me, nBu

2.5 Ag20

H?0
Ag Ag

sJ Lv
V ' Nv ^ y >  

x = r, pf6-

2X

1. RhCI3.3H20  
H20

2. DMSO 
100 °C, 1 h

o  oN— <> Cl — N

Cl

Rh

W i . W R

Scheme 3.16. Synthesis of Rh(NHC) complexes from [RhC^FbO] using
transmetallation

3.4. Aim of this work

The aim of this project was to synthesise new hydride-bearing rhodium NHC 

complexes, to investigate their structural characteristics and to look at their potential 

to undergo bond activation so allowing direct comparison to the ruthenium systems 

discussed in chapter 2. The addition of free NHC to two rhodium precursors led to 

an enormous array of Rh(NHC) products being formed simultaneously. These 

ranged from monomeric, hydride bearing species, to dimeric and cationic 

complexes. For any one reaction of rhodium precursor and ligand, a large and varied 

number of complexes were produced in tandem. The reactions are summarised in 

schemes 3.17. and 3.18.
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Scheme 3.17. Formation of a variety of Rh-NHC complexes from 69.
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3.5. Synthesis of new rhodium complexes

Addition of excess free NHC to the rhodium complexes [RhH(PPh3 )4 ] (69) and 

[RhH(PPh3 )3 (CO)] (70) led to formation of cis- and /ram,-[RhH(NHC)(PPh3 )2 ], cis- 

and /ra«s-[RhH(NHC)2 (PPh3 )] and cis- and /ram-[RhH(NHC)2 (CO)]. These 

products were characterised by multinuclear NMR and IR spectroscopy and, in cases 

where they could be isolated, X-ray diffraction and elemental analysis. In addition, 

two dimeric species and a significant number o f cationic species have been isolated 

from the reaction mixtures and fully characterised.

3.5.1. Reactivity of rRhHfPPhVUI with alkvl N-heterocvclic carbenes

When excess (2-6 equivalents) o f the N-alkyl substituted NHCs IEt2 Me2 ,1 'P ^M ^ or 

ICy were added to [RhH(PPh3 )4 ] (69) in THF or benzene, reaction proceeded rapidly 

at room temperature to give a mixture of mono- and bis-NHC complexes with both 

cis and trans orientations (scheme 3.19.). The four complexes, cis- and 

/7ww-[RhH(NHC)(PPh3)2] (NHC = IEt2Me2 (71), rPr2Me2  (72), ICy (73)) and cis- 

and /ra«5-[RhH(NHC)2(PPh3)] (NHC = IEt2Me2 (74), I'P^Nh^ (75), ICy (76)) were 

all identified by lH and 31P{!H} NMR spectroscopy.

V f  RW
R—N ^ N - R  R—N ^ N —R

H Rh PPh3 Ph3P Rh------PPh3PPh-3 I 3 3 .  3

I *\\pph3 r. t. pph  H
H— R h ^  ^  3

PPh; 
PPh, V f RW  V f

2-6 eq R—N N—R r —  n  n—R _ R—N. ,N —R
RT L* TR -  Et, Pr, Cy ph p------- Rh-------/  j ph p----- Rh_

= I I I
H R -  - AR -N  N—R

Scheme 3.19. Reaction of 69 with free NHC.
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By monitoring the reaction by and 31P{1H} NMR spectroscopy it can be seen that 

all the complexes are formed immediately with the mono NHC species 

predominating. However, over a longer period at room temperature, the bis NHC 

products increased, with the eventual ratio of all four products dependant on the 

nature and number of equivalents of NHC employed. For example, reaction between 

69 and four equivalents of IiPr2Me2  gave a 1:4.9:1.4:1.2 ratio of 

cis-72:trans-72:cis-75:trans-75 after 48 hours at room temperature, whilst, in the 

same time, reaction of 69 with four equivalents of ICy gave trans-73:cis-76:trans-76 

in a ratio of 1:2.9:33.8 with no evidence for cis-73. This is only seen as a product 

when less than 2 equivalents o f ICy are used. Although cis-73 can been seen by !H 

NMR spectroscopy forming early on in the reaction of 69 and excess ICy, it quickly 

reacts with more free NHC to give cis and trans-76.

Assignment o f the products and their relative stereochemistries was readily achieved 

by and 31P{TH} NMR spectroscopy. The hydride signals were particularly 

characteristic of the number and orientation of the phosphine ligands due to the
1 31H- P coupling constants. For example cis- and trans-72 (figure 3.6.) have hydride 

resonances at 5 -6.10 and 8 -10.13 ppm respectively. The former is a doublet of 

doublets of doublets, with coupling to a trans phosphine ligand (Vhp = 111.9 Hz), a 

cis phosphine group (VHp = 24.7 Hz) and to the rhodium centre (JnRh = 30.2 Hz). 

The latter appears as a doublet o f triplets, with coupling to the rhodium centre (JnRh 

= 10.4 Hz) and coupling to two equivalent phosphine groups (Vhp = 25.4 Hz). 

Similarly, cis- and trans-75 give two doublets of doublets at -9.54 and -5.34 

respectively, both have coupling to rhodium (JnRh = 15.4 Hz and 34.6 Hz) and one 

triphenylphosphine ligand ( J h p  = 32.2 and 121.0 Hz). The difference in the values of 

the coupling constants arises from the nature of the ligand trans to the hydride.
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-5 .4  -5 .6  -5 .8

trans-15
- 6.0  - 6.2 

cis-12
ppm -9 .4  -9 .6

cis-15
-9 .8 - 10.0  - 10.2 
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Figure 3.6. Hydride region o f *H NMR for cis- and trans-12 and cis- and trans-15 in

C6D6 (400 MHz, 25 °C).

The splittings on the 31P{1H} resonances are also affected by the ligands trans to 

them. In the reaction of 69 with I'Pr2Me2 , for example, five 31P resonances are 

observed: 5 41.6 (dd, = 138.9 Hz, VPP = 23.0 Hz), 49.7 (dd, J PRh = 148.5 Hz, 

VPP = 23.0 Hz) (cis-12), 42.7 (d, JPRh = 176.4 Hz) (trans-12), 37.9 (d, J PRh =138.1) 

(cis-15) and 52.1 (d, J PRh = 161.1 Hz) (trans-15). The much larger coupling constant 

between rhodium and phosphine when the complex changes from a fra/w-P-Rh-P to 

a trans-P-Rh-NRC arrangement has been noted previously by Lappert.26 Lappert’s 

observations about the cis influence of the NHC ligand may explain the increase in 

VpRh on the /ratt.v-H-Rh-P bond when going from cis-12 (with one c/s-NHC) to 

trans-15 (with two cw-NHCs). 2D HMQC experiments on mixtures of these 

solutions clearly showed the four separate hydride and phosphorus resonances and 

how they correlate (figure 3.7.).
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Figure 3.7. HMQC of (ram-72 and cis- and Irons-75 (rfj-THF, 162
MHz for 31P, 25 °C).

Crystals of trans-11 were grown from a concentrated ethanol solution at -5 °C and 

analysed by X-ray diffraction. The subsequent structure (figure 3.8.) revealed that 

the complex in the solid state has a highly distorted square planar geometry with 

P-Rh-P and NHC-Rh-P angles of 160.39(3) ° and 99.804(13) ° respectively (table 

3.4.). This is significantly different to [RhH(PPh3 )3 ] (77), which has a distorted 

geometry and lies somewhere between square planar and tetrahedral (P(l)-Rh-P(2) = 

151.7(2) P(l)-Rh-P(2) = 104.0(2) °, P(2)-Rh-P(3) = 102.4(2) °).53 Presumably the

more 3D nature o f the phosphine groups adds a significant amount of steric 

hindrance to the complex, pushing it away from a square planar geometry. All four 

substituents around the rhodium centre in 72 are in the same plane with the two 

phosphorus atoms bent towards the hydride ligand. The imidazole ring of the NHC 

is planar and almost perpendicular to the central plane (approximately 83.7 ° out of
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o
the plane). This phenomenon has been noted before and is common amongst d 

square-planar metal-NHC complexes.45,54

P(1)

,Rh(1) N(1

P(1)
N(1)

Figure 3.8. Molecular structure o f 72 determined by X-ray crystallography.

Bond lengths (A)
Rh(l)-C(l) 2.068(2) R h(l)-P (l)’ 2.2368(4)
Rh(l)-P(l) 2.2368(4)

Bond angles (°)
P( 1 )-Rh( 1 )-P( 1)’ 160.39(3) C( 1 )-Rh( 1 )-P( 1)’ 99.804(13)
C(l)-R h(l)-P(l) 99.804(13)

Table 3.4. Selected bond lengths and angles for 72.

As would be expected, the Rh-C bond in 72 is much shorter (2.068(2) A) compared 

to the PPh3 group trans to the hydride in 77 (2.316(6) A) but the two trans 

phosphines in 72 have only slightly shorter Rh-P bonds in comparison to 77 (72: 

2.2368(4) A, 77: 2.274(6), 2.262(5) in 77).
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When a significant excess of IEt2 Me2  and ICy (more than 6 equivalents) are added to 

[RhH(PPhs)4 ] (69) it is possible to push the reaction through to form complexes of 

the general formula [RhH(NHC)3 ] (NHC = IEt2 Me2  (78), ICy (79)). Both complexes 

exhibited a simple doublet in the hydride region of the *H NMR spectrum (78: 8 

-7.35 (d, JnRh = 22.0 Hz), 79: 8 -8 .1 2  (d, JnRh = 21.4 Hz)) and two doublet 

resonances at low field in the 31C{1H} NMR spectrum, attributable to the two 

different carbenic carbon environments (78: 8 205.2 (d, JcRh = 58 Hz) 202.0 (d, JcRh 

= 40 Hz), 79: 8 205.2 (d, J C R h = 47.0 Hz), 200.8 (d, J CR h = 46.0 Hz)). Unfortunately 

these complexes proved to be extremely soluble and could not be isolated.

NMR data for all o f the alkyl NHC complexes synthesised from 69 are summarised 

in table 3.5.. From this it can be seen that, although all the shifts and coupling 

constants are very similar for each type of complex, there are trends within the data. 

In those complexes where a phosphine ligand lies trans to the hydride, namely in 

cw-[RhH(NHC)(PPh3)2 ] and /7wis-[RhH(NHC)2(PPh3)], the signal for the hydride 

ligand in the ]H NMR spectrum comes at a higher field than when the ligand trans to 

the hydride is an NHC. For example, in 71 the cis isomer (with PPh3 trans to H) has 

a hydride resonance at 8 -5.70 compared to the trans isomer (with NHC trans to H) 

at 8 -9.59. It is also clear that resonances for the hydride ligand on complexes 

bearing I*Pr2 Me2  ligands are at higher field than those with ICy and IEt2 Me2  ligands, 

which come at similar shifts to each other (although ICy complexes are generally 

slightly higher). This trend is not repeated in the 31P{]H} or 13C{!H} NMR spectra 

with analogous complexes showing similar shifts.
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Complex aH NMR for hydride 3lP{1H} NMR for PPh3 groups UC{‘H} NMR for carbenic 
carbon

5 JttRh J hP trans */HP cis 8 */pRh V PP 8 JcRh 2Ac?

cis-11 -5.70 24.7 113.0 25.2 49.2 (t to C) 
41.4 (t to P)

148.1
136.5

24.5
24.5

n/o

cis-12 -6.10 30.2 111.9 24.7 49.7 (/ to C) 
41.6 (t to P)

148.5
139.0

23.0
23.0

n/o

cis-13 -5.88 30.2 112.0 25.2 49.2 {t to C) 
42.6 (t to P)

148.1
142.9

24.5
24.5 n/o

trans-ll -9.59 11.0 n/a 23.6 45.4 170.0 n/a n/o
trans-12 -10.13 10.5 n/a 25.5 42.7 176.2 n/a 198.6 47.5 10.5
trans-13 -9.49 11.0 n/a 24.7 44.1 175.1 n/a 199.8 46.9 11.0

cis-14 -8.82 15.9 n/a 29 A 38.5 135.2 n/a 197.2
185.3

57.0
42.2

13.8
15.6

cis-15 -9.54 15.3 n/a 32.2 37.9 138.1 n/a n/o
cis-16 -9.05 15.4 n/a 32.4 38.8 136.6 n/a n/o
trans-14 -4.67 35.1 121.3 n/a 54.7 159.7 n/a 199.9 46.0 10.1
trans-15 -5.43 34.6 121.0 n/a 52.1 161.1 n/a 200.5 45.3 11.0
trans-16 -4.99 34.6 122.4 n/a 53.3 160.9 n/a 199.3 44.7 11.0

78 -7.35 22.0 n/a n/a n/a n/a n/a 205.2
202.0

58.0
40.0

n/a
n/a

79 -8.12 21.4 n/a n/a n/a n/a n/a 205.2
200.8

47.0
46.0

n/a
n/a

Table 3.5. Selected NMR data for complexes of the general brmula [RhH(NHC)x(PPh3)y] (x = 1,2 or 3, y = 1 or 2, NHC = Et2Me2,
I'Pr2 Me2 , ICy) recorded in cfe-THF (n/a = not applicable, n/o = not obtainable due to low intensity of signal. *H NMR recorded at 400

MHz, 31P{!H} NMR at 121 MHz and 13C{*H} NMR at 100 MHz).
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31 103 •The trends in coupling constants are also interesting to note. The P- Rh coupling 

constants are strongly influenced by the ligands trans to them. By far the biggest 

values (in excess of 170 Hz) come when the phosphine is trans to another PPI1 3  

group and cis to an NHC and a hydride, as in trans-11, 72 and 73. Those trans to 

hydride and cis to two NHCs, such as trans-14, 75 and 76, are the next largest 

(approximately 160 Hz) and those trans to NHC (cis-14, 75 and 76) are the smallest 

at about 136 Hz. The two phosphine resonances in cis-11, 72 and 73, however, do 

not fit in with this trend, and despite one being trans to NHC and one trans to 

hydride they have almost the same values at around 150 Hz. This shows that the cis 

ligands on the complexes must also have a significant effect on the J  values.

3.5.2. Reactivity of TRhHfPPfhVl with IMes

The reaction of 69 with IMes at room temperature took far longer than with the alkyl 

NHCs. Although product was seen instantly at room temperature, the reaction took 

almost three weeks to go to completion. At 50 °C this rate was greatly enhanced and, 

by NMR, all the starting material had disappeared after 16 hours to afford a single 

hydride-containing product. This had appeared as an unusual peak, consisting o f a 

doublet of doublets with broad lumps on the outer edges (figure 3.9.). When the 

sample was cooled to -30 °C, the signal separated out into a simple doublet of 

doublet of doublets (5 -6.98, 2Jmtrans= 109.2 Hz, 2J\wCis= 33.2 Hz, «/hrii = 22.8 Hz)), 

analogous to those seen for cis-11, cis-12 and cis-13 (figure 3.10.). This suggested 

the complex was c/5 -[RhH(IMes)(PPh3 )2] (80).
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-6 . 4 -6 . 6 •6 .6 •7 . 0 •7 . 2 •7 . 4 •7 . 6 -7 . 8 •0 . 0 ppm

Figure 3.9. Hydride resonance of 80 (400 MHz, 25 °C) in J^-THF.

-6 . 4 6 . 5 -6 . 6 ■7 . 2 -7 . 3•6 . 7 6 . 8 6 . 9 -7 . 0 ■7 . 1

Figure 3.10. Hydride resonance of 80 (400 MHz, -30 °C) in d^-THF.

The 31P{1H} NMR spectrum of 80 is also convoluted at room temperature (figure 

3.13.). It consists of two broad doublet of doublets centred at 8 39.5 (J?nh = 171.0 

Hz, 2JPP = 57.0 Hz) and 8 36.7 (JPRh = 146.0 Hz, 2./PP = 57.0 Hz) which, from a 

P{ H}- H NMR correlation, couple to the hydride resonance. These phosphorus 

resonances sharpen at -30 °C.

The X-ray crystal structure of 80 is shown in figure 3.11. with selected bond lengths 

and angles in table 3.6. As would be expected the Rh-C bond length (2.024(2) A) is 

marginally longer than that found in cw-[RhCl(IMes)(PPh3 )2 ] (64) (2.0527(14) A)34
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due to the stronger trans influence o f  the hydride compared to the chloride. As in 

trans-12  the five central atoms are all in the same plane, with the two ligands cis  to 

the hydride bending towards it, away from the bulkier phosphine group (C (l)-R h(l)- 

P(2) = 155.43(8) A). Like in trans-12 , the imidazole ring o f  the NHC is close to 

perpendicular to the central plane, although 80 is slightly more distorted than 72 

(approximately 75.7 ° out o f the central plane). This is probably due to the steric 

bulk o f  this particular complex.

M2)
N(1)

Rh(1)

P(1)
P<2)

Figure 3.11. Molecular structure o f 80 determined by X-ray crystallography.

Bond lengths (A)
Rh( 1 )-C( 1) 2.024(3) Rh(l)-P(2) 2.2527(8)
Rh(l)-P(l) 2.2894(8)

Bond angles (°)
C(l)-Rh(l)-P(2) 155.43(8) P(2)-Rh(l)-P(l) 99.38(3)
C (l)-R h(l)-P (l) 105.14(8)

Table 3.6. Selected bond engths and angles for 80.
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A crystalline sample of 80, isolated and dissolved in THF, appeared to slowly lose 

phosphine and form another hydride containing complex, with a ’H NMR signal 

centred at 5 -22.54. This resonance was a doublet of doublets, suggesting that it was 

coupling to only one phosphorus ligand, as well as the rhodium centre (Vhp = 28.0 

Hz, J HRh = 20.0 Hz). This could be a THF substitution product 

[RhH(IMes)(PPh3 )(THF)] (81). Upon heating at 50 °C the ratio o f 81 relative to 80 

increases. This suggests that 80 undergoes loss of a PPI1 3  ligand due to the steric 

crowding around the rhodium centre. Without excess free phosphine present to 

rejoin the molecule, the solvent THF can replace a PPI1 3  ligand giving the solvato 

complex. The THF molecule must lie trans to the hydride, therefore pushing it 

upfield (figure 3.12.). EXSY experiments, carried out to see whether 80 and 81 are 

in equilibrium with each other, were inconclusive. 81 exhibits a doublet by 3 1 P{1H} 

NMR spectroscopy at 5 42.0 ( /̂pRh = 116.0 Hz). The facile loss o f a PPI1 3  ligand 

from the coordination sphere of 80 may explain the broadness of its hydride 

resonance.

THF— Rh H

PPh3

Figure 3.12. Proposed structure for 81.

Upon the addition of IMes to a solution of 69, a second, minor product is formed 

along with 80, and can be seen by 3 1 P{1H} NMR spectroscopy.. This consists of two 

doublet o f doublets, which are sharp at room temperature ( 8  44.9, JpRh = 155.0 Hz, 

2JPP = 60.2 Hz; 36.0, Jpr*, = 142.1 Hz, 2JPP = 60.2 Hz), and are not part of a hydride 

containing species (figure 3.13.).
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Figure 3.13. 31P{‘H} NMR of 80 and 82 at 25 °C (top) and -30 °C (bottom) (ds-
THF, 400 MHz).

This second product has been identified as the C-H activated product (82), arising 

from ortho CH3 cleavage (scheme 3.20.). When 1 atm o f ethene is added to a THF 

solution o f 80 and heated at 50 °C for two hours, 80 is fully converted to 82. 

Addition o f an atmosphere o f H 2  to 82 at room temperature overnight reconverts the 

sample primarily back to 80. However, some 82 remains, even under an H2  

atmosphere. Heating o f 80 at 50 °C under an inert atmosphere also leads to 

formation o f more 82, although this is much slower than when a hydrogen acceptor 

source is present.
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PPh3 PPh3

(80) (82)

Scheme 3.20. Formation of 82 from 80.

82 has been characterised using both ID and 2D NMR experiments. From 3 1 P{1H}- 

]H HMQC, the sharp peaks in the phosphorus spectrum couple to two separate 

methylene protons ( 8  2.54 and 1.33). These are attributed to the two diastereotopic 

protons on the activated arm (A and B). These should both be doublets of doublets 

of doublets of doublets although the signals are broad due to the coupling constants 

being very similar in size. HMQC experiments reveal that the methylene

carbon appears at 8  26.2 in the 1 3 C{1H} NMR spectrum as a doublet of doublet of 

doublets (JcRh = 58.2 Hz, 2Jcptrans = 18.8 Hz, 2Jc?ds = 11.0 Hz) (figure 3.14.).

[RhHCl(IMes)” (IMes)] (3), synthesised by Nolan and already discussed within 

section 1.2.7., only exhibits one proton resonance for the RI1-CH2  group ( 8  2.41) and 

this does not show any coupling to rhodium. The reasons for this are unclear.

3.5.3. Thermolysis reactions of rRhH(PPhVWl (691

3.5.3.1. Formation o f F{Rh(PPhi)ih(u-PPh?)(u-H) 1 (83)

When 69 is heated at 70 °C for 4 days, the starting material dimerises to give a 

binuclear rhodium complex in which each Rh centre has two terminal PPI1 3  groups 

and are bridged by PPh2  and a hydride ligand (83) (figure 3.15.). This compound 

was first noted when trying to react 69 with IMesH2 . The higher activation energy
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4 5 . 0 -

26 .0 -

26 .5 -

27 .0 -

2 * . 0  -

2.* 2 . 7  2 . 6  2 . 5  2 . 4  2.7 2 . 2  2 . 1  2.0 1 . 9  l . S  1 . 7  1 . 6  1 . 5  1 . 4  1 . 3

Figure 3.14. ^ C ^ H J-’H HMQC of 82 showing activated CH2  resonance. (cfe-THF,
100 MHz for 13C, 25 °C).

that is obviously needed for coordination o f this particular NHC ligand necessitated 

the sample being heated at higher temperatures, which led to observation of 83. At 

no point was any reaction between IMesH2  and 69 or 83 detected.55 83 displays one 

complex multiplet in the hydride region o f the NMR spectrum (figure 3.16.). The 

extensive splitting of this signal arises from coupling to both rhodium nuclei and the 

terminal phosphine as well as the bridging phosphide, giving a doublet of triplet of 

triplet of triplets. The splitting of this peak is actually much simpler than this 

because Jmh and Jupds are quite similar in size.
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Ph3PB H PBPh3\  /  \  /
/ RV / Rh\

Ph3P /  Pcx  PAPh3
Ph Ph 

Figure 3.15. Structure of 83.

Figure 3.16. Bridging hydride resonance of 83 (400 MHz, 25 °C) in </$-THF.

The 31P{1H} NMR spectrum for 83 consists of two complex multiplets at 8 41.9 and 

31.4 and a strongly downfield shifted triplet of triplets for the bridging phosphido 

ligand (8 174.1, Vpr*, = 136.5 Hz, 2J pcpb= 221.0 Hz, Vpcpa = 15.5 Hz,). This very low 

field resonance is consistent with there being a strong Rh-Rh interaction in the
f /:  c n

complex, ’ as reported by Arif et al. for the similar structure 

[{Rh(1Bu2 PH)(CO)}2(n-HXn-,Bu2P)]58 and Meek et al. for [{(PEt^RhHp- 

PPh2)2{Rh(COD)}]. Garrou has shown that a Pd complex with a bridging 

phosphide, and no Pd-Pd bond has a bridging PPh2  shift at -127 ppm, whilst a 

similar complex with a Pd-Pd bond has a shift at 204 ppm.56

The 31P{iH} NMR of 83 was simulated using g-NMR.60 This gave an incredibly 

close match and allowed the shifts for the terminal 31P peaks trans to hydride and 

those trans to PPI1 2  to be assigned as well as elucidating the coupling constants for 

all of the interactions. Figure 3.17. shows the 31P{1H} NMR experimentally 

determined spectrum alongside that simulated by g-NMR.
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170 ppm173 176 174 172

3242 40 38 36 34

Figure 3.17. Experimental (top) and simulated (bottom) 31P{1H} NMR spectra {d$-
THF, 162 MHz, 25 °C) for 83.

The structure of 83, including the presence of a Rh-Rh bond was determined 

unequivocally by X-ray crystallography, as shown in figure 3.18. The Rh-Rh 

distance is slightly longer than that reported by Arif et a l for the p-P/Bu2 complex 

(2.9226(2) cf. 2.906(2) A) but still well within the upper limit for a Rh-Rh bond (3.2 

A).61 The complex is also slightly asymmetrical, with the two Rh-P bonds from the 

bridging phosphido moiety being unequal in length (2.2378(5) and 2.2488(5) A). All 

four terminal Rh-P bonds are also of different lengths (2.3266(5), 2.2599(5), 

2.3320(5) and 2.2454(5) A). The dimer is slightly asymmetrical in terms of angles. 

The bridging phosphide is placed almost centrally along the Rh-Rh bond 

(P( 1 )-Rh( 1 )-Rh(2) = 49.515(13) A, P(l)-Rh(2)-Rh(l) = 49.188(13) A) but the 

geometries of the terminal phosphines around each rhodium are noticeably different 

(P(3)-Rh(l)-P(2) = 98.619(19) A, P(5)-Rh(2)-P(4) = 102.269(18) A). Selected bond 

lengths and angles for 83 are shown in table 3.7.
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Figure 3.18. Molecular structure of 83 determined by X-ray crystallography.

Bond lengths (A)
Rh(l)-Rh(2) 2.9226(2) Rh(l)-P(3) 2.2599(5)
Rh(l)-P(l) 2.2378(5) Rh(2)-P(4) 2.3320(5)
Rh(2)-P( 1) 2.2488(5) Rh(2)-P(5) 2.2454(5)
Rh(l)-P(2) 2.3266(5)

Bond angles (°)
Rh(l)-P(l)-Rh(2) 81.297(16) P(l)-Rh(2)-Rh(l) 49.188(13)
P(l)-Rh(l)-P(2) 148.80(2) P(3)-Rh(l)-P(2) 98.619(19)
P(l)-Rh(l)-P(3) 101.097(19) P(5)-Rh(2)-P(l) 99.809(18)
P(l)-Rh(2)-P(4) 150.255(19) P(5)-Rh(2)-P(4) 102.269(18)
P(l)-Rh(l)-Rh(2) 49.515(13) P(5)-Rh(2)-Rh( 1) 147.224(14)

Table 3.7. Selected bond lengths and angles for 83.

The two rhodium atoms, the bridging phosphide and the bridging hydride all lie in 

one plane with the terminal phosphines protruding out. The two phosphines cis to 

the hydride (P(2) and P(4)) come out from the plane in opposing directions as do 

P(3) and P(5), which are cis to the bridging phosphide. This is presumably solely a 

steric effect.
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The growth of a peak at 7.10 ppm in the !H NMR spectrum during the formation of

83 suggests that benzene is being eliminated from the reaction. This could occur 

after intramolecular oxidative addition of one of the P-C bonds to the rhodium 

centre, leading to a fragment such as “(PPh3 )2Rhn+(PPh2 )”, which can then react with 

69 (still present in solution) and lose phosphine leading to the formation of the 

observed dimeric species 83 (scheme 3.21.).

PPh3

Scheme 3.21. Proposed mechanism of formation of 83 from 69.

3.53.2. Formation o f IRh(PPhi) YPPhi)?7

Circumstantial evidence that C-H activation of PPI1 3  in 69 occurs comes from 

heating a solution of 69 at lower temperature (50 °C). This leads to C-H activation 

from a phenyl group on one of the phosphine ligands (figure 3.19.). This complex 

has been observed previously by Keim as a product when heating [RhMe(PPh3 )3 ].62 

Heating a solution containing solely 69 at 50 °C for 16 hours leads to this same 

product, which is clearly shown by 31P{1H} NMR, comprising of three phosphine

resonances, all doublets of doublets of doublets (8 43.1 (2JPPcis -  28.3 Hz, 2Jpptrans = 

311.6 Hz, JpRh = 179.0 Hz), 37.9 (2JPPcis = 28.3 Hz, 2JPPcis = 33.5 Hz, JPPh = 122.2 

Hz), -56.4 (2 JPPc* = 33.5 Hz, 2JPPtrans 311.6 Hz, J PRh = 119.8 Hz). The highfield 

resonance at -56.4 is indicative of an or/Zzo-metallated phosphine.

H

k..Rh— PPh3
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Figure 3.19. C-H activated phosphine.

3.5.4. Reactivity of fRhHfPPh^WCOfl with N-heterocvclic carbenes

While reaction of 69 with NHCs afforded products in which at least some o f the 

initial phosphine ligands were retained, [RhH(PPh3 )3 (CO)] (70) reacted with 

I'Pr2 Me2 , ICy and IMes rapidly at room temperature to give the four coordinate bis 

NHC species [RhH(NHC)2(CO)] (NHC = fPr2Me2  (84), ICy (85), IMes (86)).

With IMes and ICy only the trans- arrangement of NHC ligands was observed but 

I'Pr2 Me2  showed formation of cis- and trans-84 in a 1:8 ratio by *H NMR 

spectroscopy. The presence of the cis isomer cannot be a steric effect. Using the 

concept o f buried volume, introduced in section 1.2.2., it can be seen that I'Pr2 Me2  is 

much bulkier than ICy.63 Calculations carried out on nickel centres have determined 

that complexes with ICy ligands have an extremely small % Vsm (23, close to the 

analogous PPh3  complexes) in comparison to complexes containing I'Bu ligands 

(37). I*Bu can be assumed to be comparable in size to I'Pr2 Me2  despite I*Bu having 

an additional methyl group on the arm as rP r2Me2  has methyl groups on the 

backbone, which would add to its bulk.

This suggests that the observation of a cis arrangement of NHCs on 84 must be due 

to electronic effects. As discussed in chapter 1 (page 21) Magill et al. have shown 

that the presence o f methyl groups on the backbone o f I'Pr2Me2  makes it more 

basic, and thus more nucleophilic, than the analogous NHC without the methyl 

groups on the backbone.64 This implies that the methyl groups on the backbone 

increase the electron donating properties of the NHC ligand. This means that an 

I'Pr2 Me2  ligand may well be more stable trans to a hydride ligand than ICy or IMes. 

Therefore, although 85 and 86 may well form both isomers, the high trans effect of
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the hydride ligand means the cw-arrangement is far less stable and immediately 

rearranges to give the trans-product. Having the CO ligand, which is a good 7 1 -  

acceptor trans to the hydride, which is a good o-donor, also stabilises the complexes.

Herrmann has noted the formation of both cis- and /ram-isomers of 

[RhCl(IMe)2 (CO)]65 although they were prepared from different routes and the 

reaction of [{Rh(CO)}2(p-Cl)2] and IMe had to be kinetically controlled to obtain 

the cis-isomer.

The lack of phosphine ligands on these complexes led to less complicated hydride 

resonances in the ]H NMR spectra. All appeared as simple doublet resonances (cis- 

84: 8 -6.44 (yHRh = 19.2 Hz), trans-84: 8 -4.84 ( J ^  = 25.8 Hz), 85:8 -4.55 (JwRh = 

25.8 Hz,), 86: 8 -4.71 ( J H Rh = 26.3 Hz). The ^C ^H } NMR spectra of 85 and 86 both 

showed single low field doublets for the carbene resonance at 8 197.7 (JcRh = 44.1 

Hz) and 192.5 (JcRh = 46.0 Hz) respectively confirming that the carbenes are trans to 

each other. A strong vCo IR absorption band was also recorded for each complex 

(85: 1919 cm'1, 86: 1914 cm'1). The analogous complex, /ram-[RhCl(lMe)2(CO)] 

has an IR band at 1924 c m 1.65 The CO stretching frequencies in NHC-transition 

metal complexes have been the subject of much investigation both experimentally 

and theoretically in an effort to determine the relative o-donating properties of 

different NHCs.26’44’66’67 N-aryl carbenes would be expected to be more electron 

donating than N-alkyl carbenes, hence weakening the C =0 bond and causing the 

absorption to shift to lower frequency. However, despite the potential differences in 

the donating abilities of N-alkyl and N-aryl NHCs, very little difference is observed 

in vco- This trend is also reflected with 85 and 86 where the two absorptions are 

very similar and is also illustrated in the two iodo complexes, [RhI(NHC)2 (CO)] 

(NHC = IMe (66), IMes (67)), discussed earlier where 67, bearing two IMes ligands 

has a vco absorption at 1937 cm'1 and the analogous complex, 66, with two IMe 

ligands has a vco absorption at 1943 cm'1.43 This phenomenon has also been 

discussed on page 21.
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The crystal structure o f 8 6  (figure 3.20.) reveals, like trans- [RhH(I'Pr2 Me2)(PPh3)2] 

(72), a distorted square planar geometry, although to a much lesser degree, with a 

C(2)-Rh-C(23) bond angle o f 172.91(7) °. All four substituents around the rhodium 

centre again lie in the same plane with the distortion in the C(2)-Rh-C(23) plane 

coming from the NHC ligands bending slightly away from the CO group. Neither of 

the two imidazole rings lies exactly perpendicular to the plane (62.507 ° and 70.341 

° out o f plane). The Rh-carbene bond lengths (2.0165(16), 2.0191(17) A) are shorter 

than in the similar complex /ra«^-[RhCl(lMe)2(CO ) ] . 65  Significant bond lengths and 

angles are presented in table 3.8.

Figure 3.20. Molecular structure o f 8 6  determined by X-ray crystallography.

Bond lengths (A)
Rh(l)-C(l) 1.843(2) Rh(l)-C(23) 2.0165(16)
Rh(l)-C(2) 2.0191(17) 0(I)-C(1) 1.144(3)

Bond angles (°)
C(23)-Rh(l)-C(2) 172.91(7) C(l)-Rh(l)-C(2) 92.41(8)
C(l)-Rh(l)-C(23) 94.61(8)

Table 3.8. Selected bond engths and angles for 8 6 .
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3.5.4.1. Formation o f fU P P h ,hR M (u-C O ),{R h(tP r,M e(87)

As has already been discussed on page 180, when I'Pr2 Me2  is reacted with 70, both 

cis- and trans-84 form. This is likely to be due to the higher electron donating ability 

o f the I'Pr2 Me2  stabilising the cis orientation of NHCs. By 31P{1H} NMR 

spectroscopy, it was apparent that there was a third, stable complex forming. This 

consisted of a lone doublet of doublets at 8 37.6 (JpRh = 236.5 Hz, 2J PRh = 7.7 Hz) 

(figure 3.21.) and has been confirmed as arising from the unsymmetrical carbonyl 

bridged dimer [{(PPh^RhKp-COM RhffP^M esM ] (87).

Rh -Rh'

3 6 .8 3 6 .2 3 6 .0 3 7 .8 3 7 . 6 3 7 .4 3 7 .2 3 7 .0

Figure 3.21.31P{'H} NMR spectrum of 87 in cfe-THF (162 MHz, 25 °C).

The structure of this product has been established unambiguously by X-ray 

crystallographic studies (figure 3.22.), which show a distorted square planar Rh bis 

NHC fragment (C(6)-Rh(2)-C(2) = 94.87(12) °) connected to a distorted tetrahedral 

Rh(PPh3 ) 2  unit (P(l)-Rh(l)-P(2) = 122.91(3) °) via two bridging CO ligands and a 

Rh-Rh bond (table 3.9.). This is significantly different from the analogous complex 

bearing four terminal phosphine groups, synthesised by Singh et al., where the 

P(l)-Rh(l)-P(2) angle is 103 °.68
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Figure 3.22. Molecular structure o f 87 determined by X-ray crystallography.

Bond lengths (A)
Rh(l)-Rh(2) 2.6939(3) Rh(2)-C( 1) 2.005(3)
R h(l)-C (l) 1.995(3) Rh(2)-C(2) 2.073(2)
Rh( 1 )-P( 1) 2.3019(6)

Bond angles (°)
C(l)-Rh(l)-Rh(2) 47.82(8) C(2)’-Rh(2)-C(2) 94.87(12)
C(l)-Rh(2)-Rh(l) 132.57(6) C(l)-Rh(2)-C(l)’ 95.03(16)
C(2)-Rh(2)-Rh(l) 118.543(16) C (l)-R h(l)-P (l)’ 109.60(3)
C(2)’-Rh(2)-Rh(l) 132.57(6) C (l)-R h(l)-P(l) 107.83(3)
P(l)-Rh(l)-Rh(2) 47.52(8) P (l)’-Rh(l)-P(l) 122.91(3)
C (l)’-Rh(l)-C(l) 95.64(16) 0(1)-C (l)-R h(l) 125.7(3)
C(l)-Rh(2)-C(2)’ 168.07(7) 0(1)-C(l)-Rh(2) 149.6(3)
C(l)-Rh(2)-C(2) 86.29(9)

Table 3.9. Selected bond lengths and angles for 87.

The rhodium atoms and bridging CO ligands lie in the same plane, with the NHCs 

lying slightly o ff and the phosphine groups protruding a significant amount as can be
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seen in figure 3.23. The CO groups are angled towards the PPh3 ligands although 

one is significantly more acute than the other (0(1)-C (l)-R h(l) = 125.7(3) 

0(1)-C(l)-Rh(2) = 149.6(3) A). [((PCy3)2 Rh)(p-CO)2 (Rh(PCy)3(CO))] (8 8 ),

synthesised by Freeman and Young , 6 9  also has the central atoms in the same plane 

and in addition the terminal phosphorus and carbon atoms are also in that central 

plane. The larger steric bulk o f PPh3 in 87 obviously pushes the terminal phosphorus 

atoms well out o f the plane whilst the carbons from the smaller NHC ligands are 

only slightly removed.

Rh{2)0 (2 )

Rh{1) 0 (2 )

P(1)

Figure 3.23. Central fragment of X-ray crystallographic structure o f 87.

The Rh-Rh bond distance (2.6939(3) A) in 87 is comparable to other, similar, 

complexes in the literature. 6 8 ' 70 The bridging carbonyls are almost equidistant from 

each rhodium (1.995(3) and 2.005(3) A) in contrast to the structure o f 8 8  where they 

are closer to Rh(2) (bearing two PCy3 ligands) by 0.117 and 0.171 A. Albright and 

co-workers have attributed this type of asymmetry to electronic differences between 

the two rhodium atoms. 71 That this distortion does not exist in 87 may be evidence 

for the similar electronic properties o f phosphines and NHCs in the complex. When
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all four terminal ligands are PPI13 the CO groups are centred exactly between the two 

rhodium atoms (Rh(l/2)-C(l) = 2.051 (6) A, Rh(l/2)-C(2) = 1.956(7) A).68

The IR spectrum of 87 shows a single vco stretching frequency at 1708 cm . In 

contrast, 88 exhibits two bands, at 1773 and 1728 cm as does 

[{(PPh3)2 (CO)Rh}(p-CO)2 {Rh(PPh3 )(CO)2 }] (1799 and 1774 cm'1).72 The presence 

of terminal CO groups as well as the poorer o-donating PR3 ligands on these latter 

two complexes contribute to their higher frequencies relative to 87.

3.5.4.2. Evidence for dimeric species hearins ICv NHCs

Upon addition of only one equivalent of ICy to 70, a doublet o f doublets can be seen 

by 3iP{‘H} NMR (8 38.5, J PRh = 231.6 Hz, 2J PRh = 8.1 Hz) analogous to that 

observed for 87 and thus attributable to [{(PPh3)2 Rh}(|j.-CO)2 {Rh(ICy)2 }]. In
11 i

addition there are two further doublets present in the P{ H} NMR spectrum, both 

appearing at 5 35.9 with slightly different rhodium-phosphine coupling constants 

(JpRh = 181.4 and 199.3 Hz). These are most likely due to the cis and trarts isomers 

o f [{(ICy)(PPh3)Rh}2(*i-CO)2].

When a THF solution of [RhH(PPh3 )3 (CO)] (70) and 4 equivalents of ICy was 

agitated for a few minutes at room temperature then pumped to dryness and a nujol 

mull IR run of some of the residue, a vco band at 1666 cm'1 was noted, suggesting a 

complex with bridging carbonyls was present. Redissolving the rest o f the residue in 

fife-THF showed that there were no product phosphorus peaks by 31P{1H} NMR. This 

suggests that, by adding more equivalents o f ICy, the dimeric species formed is 

[{Rh(ICy)2}2(p-CO)2].

The rapid formation o f dimeric species from hydride containing species can be seen 

visually from the significant amount of hydrogen gas given off upon initial addition 

o f solvent to samples of 70 and free NHC.
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3.5.5. Formation of rRhHMHCWCCnf

When THF or benzene solutions of the reaction mixtures o f 70 and free NHC were 

left to stand at room temperature for more than a day, cationic, monomeric, tris NHC 

carbonyl complexes, [Rh(NHC)3(CO)]+ (NHC = I'Pr2Me2 (89) and ICy (90)) 

precipitated out of solution as crystalline solids. These complexes were isolated in 

better yields (approximately 30 %) from layering reaction solutions with hexane or 

pentane.

The crystals were regularly good enough to analyse using X-ray diffraction. 

However, the associated anions were generally unidentifiable by X-ray diffraction or 

NMR spectroscopy. Those anions that were identified were surprising as they were 

fragments of ligands from those present in the initial solution. An example of this is 

[Rh(I'Pr2Me2)3(C0)][(PMe2)3(0)4)H], (91) which was identified by X-ray studies. 

As the starting phosphines have phenyl groups, the appearance of an anion with a 

phosphorus centre bearing methyl groups was inexplicable.

It was found that by dissolving the cationic product isolated from the original 

solution in CH2C12 (0.6 mL) and stirring in a saturated aqueous solution o f KPF6 

(0.02 g in 1.0 mL), the anions were universally substituted to yield the [PF6]" salts.

Crystal structures have been obtained for both 89 and 90. These are shown in figures 

3.24 and 3.25 respectively. Both are pseudo-square planar in geometry (bond lengths 

and angles are presented in tables 3.10 and 3.11). The Rh-carbene bond lengths for 

the NHC ligands trans to the CO group are longer than those trans to NHC due to 

the high trans influence of CO (2.1490(13) A cf. 2.0775(13) A and 2.0738(14) A for 

89). The chelating NHC, 4 coordinate Rh(I) cations, 

[Rh(I/Bu(CH2)nf Bu)(COD)][PF6] (n = 2, 3) synthesised by Peris et al. and discussed 

in section 3.3.5., have slightly shorter Rh-carbene bond lengths (n = 2: Rh-C = 

2.034(4), 2.048(4) A, n = 3: Rh-C = 2.038(3), 2.029(3) A). This is probably due to 

the small trans effect of the COD ligand compared to NHC and CO.
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Figure 3.24. Molecular structure of 89 determined by X-ray crystallography.

Bond lengths (A)
R h(l)-C (l) 1.8367(15) Rh(l)-C(2) 2.0738(14)
Rh(l)-C(24) 2.1490(13) 0 (  1 )-C( 1) 1.1415(19)
Rh(l)-C(13) 2.0775(13)

Bond angles (°)
C(13)-Rh(l)-C(24) 177.56(5) C(l)-Rh(l)-C(24) 90.23(6)
C(l)-Rh(l)-C(2) 176.38(6) C(13)-Rh(l)-C(2) 90.01(5)
C(24)-Rh( 1)-C(2) 91.90(5) C(l)-Rh(l)-C(13) 87.95(6)

Tab le 3.10. Selected bond lengths and angles for 89.
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Figure 3.25. Molecular structure of 90 determined by X-ray crystallography.

Bond lengths (A)
R h(l)-C (l) 1.8322(15) Rh(l)-C(2) 2.0638(11)
Rh(l)-C(32) 2.1321(12) 0(1)-C(1) 1.143(2)
Rh(l)-C(17) 2.0642(11)

Bond angles (°)
C(l)-Rh(l)-C(2) 177.86(7) C(17)-Rh(l)-C(2) 90.93(5)
C(17)-Rh(l)-C(32) 177.39(5) C(l)-Rh(l)-C(32) 89.05(6)
C(32)-Rh(l)-C(2) 91.60(5) C(l)-Rh(l)-C(17) 88.44(6)

Tab e 3.11. Selected bone lengths and angles for 90.

The Rh-CO distances (1.8367(15) A (89) and 1.8322(15) A (90)) are comparable to 

those in [Rh(PPh3)3(CO)][BF4] (92)(1.865(4) A), synthesised by Hope’s group upon 

addition of HBF4 *Et2 0  to a saturated solution o f 70 (figure 3.26.).73 92 has a 

significantly distorted square planar geometry (P(l)-Rh(l)-P(2) = 171.39°) (table

3.12.) presumably due to the much bulkier PPh3 ligands. In addition, the two trans 

PPh3 ligands are not equidistant from the rhodium centre (2.3280(10), 2.3799(9) A) 
as observed for the NHC ligands in 89 (2.0775(13), 2.0738(14) A) and 90 

(2.0642(11), 2.0638(11) A).
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PPh3 BF,

Ph3P Rh CO

PPh3

Figure 3.26. Structure of 92, synthesised by Hope et al.

Bond lengths (A)
Rh(l)-C(l) 1.865(4) Rh(l)-P(3) 2.3968(9)
Rh(l)-P(l) 2.3280(10) C(l)-0(1) 1.135(5)
Rh(l)-P(2) 2.3799(9)

Bond angles (°)
C(l)-Rh(l)-P(l) 86.91(12) C(l)-Rh(l)-P(3) 175.86(12)
C(l)-Rh(l)-P(2) 84.96(12) P(l)-Rh(l)-P(3) 95.90(3)
P(l)-Rh(l)-P(2) 171.39(3) P(2)-Rh(l)-P(3) 92.37(3)

Table 3.12. Selected bond lengths and angles for 92.

The three imidazole rings of the NHC ligands in 89 are all twisted out of the central 

plane. The imidazole ring of the NHC ligand trans to the CO group lies at a 52.887 ° 

angle out of the plane with the other two imidazole rings o f the NHC ligands trans to 

each other, lying at 67.042 ° and 63.597 ° out of the plane. In 90 the imidazole ring 

of the NHC ligand trans to the CO lies at 52.297 ° out of the plane and the two 

imidazole rings of the trans NHC ligands lie at the same angle (64.046 °). The slight 

difference in the geometries of the ligands around the rhodium centre in 89 and 90 

may simply arise from packing differences of the anion and cation in the crystal 

lattice.

The bond lengths o f 91 (the complex analogous to 89 but with a different 

counterion) are very close to 89, but the angles are significantly different (table

3.13.). This implies that changing the anion makes a difference to the shape of the 

cation.

190



Chapter 3 Rhodium NHC complexes

Bond lengths (A)
Rh( 1 )-C( 1) 1.833(2) Rh(l)-C(2) 2.0762(18)
Rh(l)-C(24) 2.1362(19) 0(1)-C(1) 1.147(3)
Rh(l)-C(13) 2.0770(18)

Bond angles (°)
C(l)-Rh(l)-C(2) 178.14(9) C(24)-Rh(l)-C(2) 90.39(7)
C(13)-Rh(l)-C(24) 175.89(7) C(l)-Rh(l)-C(13) 88.58(8)
C(13)-Rh( 1)-C(2) 92.67(7) C(l)-Rh(l)-C(24) 88.44(8)

Tab e 3.13. Selected bond lengths and angles for 91.

In the process o f growing crystals of [Rh(ICy)3(CO)] (90) the formation o f clear 

crystals were observed as well as the yellow ones o f 90. From X-ray diffraction 

analysis these were identified as ICyHPF6  (93), a species with a hydrogen bond 

between a PF6  anion and the imidazolium proton o f an imidazolium salt. 93 was also 

formed when a CH2 CI2 solution o f free ICy was stirred into a saturated [PF6 ]’ 

solution of water suggesting that protonation of free NHC occurs from the solvent. 

The crystal structure o f 93 is shown in figure 3.27., with bond lengths and angles in 

table 3.14. 'H NMR spectroscopy for 93 showed characteristic shifts at 8  8.53 (t, 

V Hh = 1.70 Hz) for the imidazolium proton and at 7.31 (d, ^ h h  = 1 -70 Hz) for the 

backbone protons. fPr2 Me2 HPF6 (94) was also observed by ]H and 3 lP{1H} NMR 

spectroscopy.

Figure 3.27. Molecular structure of 93 determined by X-ray crystallography.
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Bond lengths (A)
F(l)-H (l) 2.236(16) N(2)-C(l) 1.3240(17)
N (l)-C (l) 1.3263(17)

Bond angles (°)
P(1)~F(1)-H(1) 123.4(4) C(l)-N(l)-C(2) 108.02(11)

Table 3.14. Selected bond lengths and angles for 93.

Datt noted the formation of what appeared to be the cationic rhodium species 

[Rh(IMes)(PPh3)(CO)3]+ and [Rh(Mes)(P(0-2,4-'Bu2-Ph)3)(C0)3]+ from 

[Rh(IMes)(acac)(CO)], with addition of PPh3 and P(0-2,4-/Bu2-Ph)3 respectively, in 

the hydroformylation reaction described earlier (section 3.3.3.2.).42 The conditions 

of this reaction are much harsher (85 °C and 20 bar H2:C 02) than needed to form 89 

and 90 but nonetheless show that cationic rhodium species forming from neutral 

Rh(I) precursors is not without precedent.

Very recently, Haynes and co-workers have synthesised rhodium cations bearing 

chelating ligands, with two NHC moieties and a pyrimidine group all bound to the 

rhodium centre, as well as a CO ligand (figure 3.28.).74 This complex is formed by 

reacting the free tridentate NHC with the dimeric species, [ {Rh(OAc) }2(p-CO)2] at 

50 °C for 24 hours. The vco stretching frequencies o f these complexes (R = Me 

(1982 cm4), R = Et (1983 c m 1), R = CH2Ph (1982 c m 1)) are higher than observed 

in 89 and 90, suggesting that the tridentate ligand is not as good a donor as the three 

monodentate NHC ligands.

p f 6

r iN

CVrKD
-N N'

/

Rh'

I
R CO R 

R = Me, Et, CH2Ph

Figure 3.28. Chelating ligand on rhodium centre to give cationic species.
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3.5.5.1. Mechanism o f formation o f FRhfNHC) i(CO) 1+

The fact the cations form from the dimeric species discussed earlier (sections

3.5.4.1. and 3.5.4.2.) has been confirmed by the synthesis o f a mixed NHC species. 

Starting from an isolated solution of the mixed dimer 

[{Rh(I'Pr2 Me2 )}2 (ti-CO)2 {Rh(PPh3 )2 }] (87), approximately one equivalent o f ICy 

was added and led immediately to [Rh(I'Pr2 Me2)2 (lCy)(CO)]+ (95) (scheme 3.22.).

93 was isolated and crystallised as the [PFe]' salt. The crystal structure is shown in 

figure 3.29. along with the table of bond lengths and angles (table 3.14.). The ICy 

NHC has joined the rhodium centre trans to the CO group. As in 89 and 90, the 

Rh-carbene bond length (2.1341(13) A) trans to CO is longer than the Rh-C bonds 

to the two I'Pr2 Me2  ligands (2.0818(13) and 2.0677(13) A), which are trans to each 

other.

The mechanism of formation of cationic species from the dimeric species, 

presumably results from decomposition of the dimer into two three-coordinate Rh(I) 

species. These then react with a molecule of free NHC in solution to give the cations 

(scheme 3.23.). The presence o f a bis phosphine intermediate resulting from the 

breakdown of 87 is supported by the appearance of a doublet in the 31P{1H} NMR 

spectrum at 8 34.5 (JpRh = 205.9 Hz) upon addition of one equivalent of I'Pr2 Me2 to 

87 at room temperature. This species disappears upon further addition o f I'Pr2 Me2 .

(84) (92)

Scheme 3.22. Formation of 93 from 87.
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Figure 3.29. Molecular structure of 95 determined by X-ray crystallography.

Bond lengths (A)
Rh( 1 )-C( 1) 1.8392(14) Rh(I)-C(2) 2.0677(13)
Rh(l)-C(28) 2.0818(13) Rh(l)-C(13) 2.1341(13)

Bond angles (°)
C(l)-Rh(l)-C(2) 87.26(6) C(l)-Rh(l)-C(28) 92.26(6)
C(2)-Rh(l)-C(28) 178.34(5) C(l)-Rh(l)-C(13) 173.92(6)
C(2)-Rh(l)-C(13) 89.93(5) C(28)-Rh(l)-C(13) 90.70(5)

Table 3.15. Selected bond lengths and angles for 95.

Although free phosphine is present in solution, NHC must react more favourably 

with the three-coordinate species, or substitute any phosphine ligand that binds 

there. It also appears that using ICy as the NHC causes the reaction from dimer 

through to cation to proceed more rapidly that with I'Pr2Me2 as ICy dimeric species 

were only observed when the amount o f ICy added was substantially reduced. The 

higher instability of ICy dimers may result from the poorer electron donating ability 

of ICy compared to I'Pr2Me2 or from the larger steric bulk o f I'Pr2 Me2 compared to
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ICy stabilising the dimeric species. This fact has already been discussed as the 

possible cause of the lack of observed formation of mononuclear complexes bearing 

cis ICy ligands (page 180).

Following the reaction between [RhH(PPh3 )3 (CO)] 70 and free I'Pr2 Me2  supports the 

observation that the cationic species form after the hydridic and dimeric species in 

solution. 67 (0.05 g) and IlPr2 Me2  (4 equivalents) were placed into a J. Young’s 

reseal able ampoule in the glove box. Upon removal from the glove box, THF 

(approximately 1 mL) was added to the solids. The mixture was briefly agitated to 

encourage dissolution of the solids and the solution was rapidly transferred to an IR 

solution cell. An IR spectrum of the solution was recorded approximately every two 

minutes. Initially (within three minutes of dissolving starting materials) the CO 

stretching frequency of the bis NHC hydride complex [RhH(I'Pr2Me2 )2 (CO)] (84) 

was the most intense peak (1924 c m 1), with a small amount of two or more dimeric 

species present (1602 cm'1 and 1577 cm'1). These lower wavenumber peaks grew 

over the next 130 minutes and the peak at 1924 cm'1 began to lose intensity. The 

appearance of a new terminal CO peak at 1973 cm"1 attributed to 

[Rh(I'Pr2 Me2 )3 (CO)]+ (89) also appeared (figure 3.30.). This suggests that the 

hydridic complex forms almost instantaneously, followed very rapidly by the 

dimeric compounds. The cationic species begin to appear after approximately 6 

minutes and become more prevalent over a further two hours. The loss of 89 and the 

dimeric species during this time without the formation of any other CO-containing 

species suggests that the cationic species do form as a result o f a breakdown of the 

dimeric complexes.
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Figure 3.30. Monitoring formation of products from reaction of 70 and I'Pr2 Me2 run
in a solution cell in THF.

3.5.5.2. NMR studies o f [Rh(NHC)dCO)l+

^C l'H } NMR studies of 89 and 90 show two distinct low field doublet resonances 

assigned to the Rh-carbene carbon (89: 5 179.5 (JcRh = 39.5 Hz), 179.0 (JcRh = 43.2 

Hz); 90 5  180.6 (J CRh = 42.3 Hz), 178.7 (J CRh = 46.0 Hz)). Those with the smaller J  

values are likely to be trans to the carbonyl group as it is a good 7i-acceptor and 

hence leads to a decrease in the coupling constant. 75 The ]H NMR spectrum also 

shows resonances, in a 2:1 ratio, for the backbone protons and the N-substituents, as 

would be expected. 89 exhibits broadening of all the peaks in the ]H NMR spectrum 

at room temperature. Cooling a sample of 89 in CD2 CI2 to -70 °C in the NMR 

spectrometer led to the appearance of three resonances for the CH protons on the 'Pr 

arms (5 5.88, 5.16, 5.00 compared to the two signals at 8  5.50 and 5.00 seen at room 

temperature). The significant splitting of the two components of the peak at 5.50 

ppm to two distinct peaks at 5.88 and 5.16 ppm suggests that when the ligands are 

static, the CO group has a big impact on the shift of the protons. Its high electron 

density causes the protons closer to it to be shielded and pushes their NMR 

resonances upfield. Cooling of a sample of 89 leads to a initial broadening of the 

methyl resonances between 8  2.5 and 8  0.5. These then sharpen and separate at -70
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°C. The change in 'H NMR spectrum for 89 over a series of temperatures is shown 

in figure 3.31.

DCM
60 °C

40 °C

25 °C
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-70
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Figure 3.31. VT spectroscopy studies of the NCH protons in 89 in CD2 CI2  (400 MHz). 

3.5.6. Formation of rRhfN H C^t

Similar cationic species to those formed from reaction of [RhH(PPh3 )3 (CO)] (70) 

with NHCs have been observed from the reaction of [RhH(PPh3 )4 ] (69) with alkyl 

NHCs to give complexes of the general formula [Rh(NHC)4 ]+ (NHC = IEt2 Me2  (96), 

I'Pr2 Me2  (97), ICy (98)). These only form in very small yield (approximately 5-10 

%) and although all the cations have been fully characterised by heteronuclear 

NMR, the only crystal structure that has been obtained with a solvable anion is 

[Rh(IEt2 Me2 )4 ][PPh2 C>2 ] (96) (figure 3.32.). This complex is almost exactly square 

planar (table 3.16.) and the Rh-C bonds are all the same length (2.04 A), within 

experimental error.
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Figure 3.32. Molecular structure o f 96 determined by X-ray crystallography (two 
molecules o f C6 H6  removed for clarity).

Bond lengths (A)
R h(l)-C (l) 2.042(4) R h(l)-C (l)’ 2.042(4)
Rh(l)-C(10)’ 2.047(4) Rh(l)-C(10) 2.047(4)

Bond angles (°)
C(l)-Rh(l)-C(10)’ 179.86(18) C(19)-Rh(2)-C(19y 90.1(2)
C(28)’-Rh(2)-C( 19) 178.97(17) C(10y-Rh(l)-C(l0) 89.7(2)
C (l)’-Rh(l)-C(10)’ 90.37(14) C(28)-Rh(2)-C(28)’ 89.6(2)
C(28)’-Rh(2)-C( 19)’ 90.18(13) c ( i) -R h ( i) -c ( iy 89.5(2)

Table 3.16. Selected bond lengths and angles for 96.

The only similar structures in the literature are two tetrakis silylene complexes 

recently synthesised by Pfaltz and co-workers (99 and 100) (scheme 3.24.).76
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[Rh(cod)2 ]BArF

14 h, hexane
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Scheme 3.24. Synthesis of 99 and 100 by Pfaltz and co-workers.

Pfaltz obtained crystal structures of both complexes. As would be expected, the 

Rh-Si bonds (all close to 2.3 A) are somewhat longer than the Rh-carbene bonds in 

96. 99 and 100 are also square planar, although slightly more distorted than 96 (99: 

Si(l)-Rh(l)-Si(l)’ = 94.63(4) °, Si(l)-Rh(l)-Si(2) = 173.86(2) °, Si(l)-Rh(l)-Si(2)’ 

= 86.72(2) °, 96: C (l)-Rh(l)-C(l)’ = 89.5 °, C (l)’-Rh(l)-C(10) = 179.86 °, 

C (l)’-Rh(l)-C(10)’ = 90.31 °). Again, this is probably a steric effect. The rhodium 

atom and the four carbenic carbons of 96 all lie in the same plane. The imidazole 

rings of the NHC ligands sit out of the plane by 63.048 ° and 60.920 ° with the 

ligands lying trans to each other being exactly perpendicular, (figure 3.33.).
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Figure 3.33. Position of four IEt2 Me2 groups in X-ray crystallographic structure of 
96 (ethyl groups removed for clarity).

This complex is extremely symmetrical and, for this reason, interpretation of the 'H 

and 3 1C{1H} NMR spectra is straightforward. There is one low field resonance in the 

13C{'H} NMR spectrum at 8  192.3 (d, JcRh = 45.0 Hz), from the carbenic carbon 

while the methyl protons on the imidazole backbone and on the ethyl arms each give 

only one resonance in the *H NMR spectrum at 8  2.04 and 0.44 respectively. There 

are, however, two resonances observed for the methylene protons from the ethyl 

groups ( 8  5.41 and 3.78). This is due to restricted rotation of the N-substituents 

causing the two methylene protons to become diastereotopic (figure 3.34.). This 

inequivalence is also apparent from the splitting patterns of these peaks, which are 

doublets of quartets, coupling not only to the methyl group but also to each other 

(2*7hh = 6 . 6  Hz, 3Jhmc = 7.1 Hz). The more deshielded protons, which would be those 

pointing away from the metal centre, can be attributed to the shift at 5.41 ppm.
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Figure 334. NHCs rotate around the Rh-C bonds in 96 but the ethyl arms are static 
leading to different environments for the methylene protons by NMR.

A crystal structure of [Rh(ICy)4 ]+ (98) has also been obtained but in this instance it 

was impossible to solve the anion crystallographically (figure 3.35.). The cation, 

however, shows similar characteristics to 96. The trans NHCs are perpendicular to 

each other, although their angle out of the plane is much less than in 96 (51.226 ° for 

all four imidazole rings) presumably reflecting the larger steric bulk of the 

cyclohexyl rings compared to the ethyl groups. 98 is more symmetrical than 96, with 

the geometry being exactly square planar. The Rh-carbene bonds in 98 (table 3.17, 

all 2.070 (5) A) are also longer than in 96. This suggests that IEt2 Me2  is a better a  

donor than ICy, probably due to the methyl groups on the backbone.

The !H NMR spectrum of 98 is straightforward, like that of 96, exhibiting only three 

resonances: a singlet at 8 7.41 for the NHC backbone protons, a broad multiplet at 8 

6.30-4.42 for the ipso protons on the cyclohexyl arms and another broad multiplet at 

8 2.81-0.73 for the CH2  protons on the cyclohexyl groups. This shows that the four 

NHC ligands around the rhodium centre are all in the same environment.

202



Chapter 3________________________________________Rhodium NHC complexes

Figure 3.35. Molecular structure of 98 determined by X-ray crystallography.

Bond lengths (A)
Rh( 1 )-C( 1) 2.070(5) R h(l)-C (l)’ 2.070(5)
Rh(l)-C(10)’ 2.070(5) Rh(l)-C(10) 2.070(5)

Bond angles (°)
C (l)’-Rh(2)-C(l) 179.8(3) C(l)-Rh(2)-C(l)’” 90.000(1)
C( 1)’ ’-Rh(2)-C( 1)”  ’ 179.8(3) C (l)’-Rh(2)-C(l)” 90.000(1)
C (l)-Rh(2)-C(l)” 90.000(1) C (l)’-Rh(2)-C(l)” ’ 90.000(1)

Table 3.17. Bond lengths and angles for 98.

3.5.6.1. Substitution o f unknown anion in [Rh(tPriMei) (97) with fPFJ'

Unfortunately, substitution of the anions that formed in solution with the tetrakis 

NHC species was not as facile as in the [Rh(NHC)3(CO)]+ species. Only the anion in 

97 was successfully substituted with [PF6 ]' to give the complex [Rh(I'Pr3Me2 )4 ][PF6 ]

(101). This was isolated as a crystalline solid but unfortunately the crystal structure 

had significant internal disorder meaning that it was impossible to refine to a high 

standard. This was attributed to the high symmetry o f the complex. Interestingly,
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however, the substitution of the anions in 97 by [PF6]’ caused the crystalline solid to 

change from yellow to purple.

3.5.6.1.1. UV visible studies on [Rh(I'Pr2Me2)4 ]+ with [PF6 ]' and the unknown anion

UV-visible spectra o f both 97 and 101 were recorded (figure 3.36.). Ideally, the UV- 

visible spectrum of a square planar dg complex, such as 101, should show three 

charge transfer bands from the three possible movements o f electrons shown in 

figure 3.37.

3.5

2.5

\  r

614 nm567 nm

884 nm
428 nm

362 nm

384 nm

300 400 500 600 700 800 900

W avelength (nm)

Figure 3.36. UV-visible spectrum of 101 run in CH2CI2 at room temperature.

dxy 

dx2 -y2 

dz

dxz, dyz

Figure 3.37. d-d transitions possible upon irradiation with UV light.
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The UV-visible spectrum of 101 is more complicated than the expected three 

transitions. This could be due to charge transfers taking place between the metal and 

the ligands. These are likely to be metal to ligand charge transfers (MLCT).
77Aromatic ligands often show MLCT transitions as they have low-lying n* orbitals. 

The imidazolium moiety of an NHC is strictly aromatic by application of Huckel’s 

rule, which states that an aromatic ring must be planar with a p  orbital on each atom 

and that the p  orbital system must contain (4n + 2) n electrons overall (where n is 

any integer).78 As the imidazole ring has 6 % electrons it, it fits this rule and can be 

considered aromatic. In addition, the low oxidation state of the rhodium (I) centre 

means that its d  orbitals will be relatively high in energy and the transitions will be 

able to occur at low energy.77

[Rh(CNEt)4 ]+, another Rh(I) square planar complex, shows five bands in the UV- 

visible spectrum (435 nm, 380 nm, 333 nm, 308 nm, 282 nm).79 These are all 

assigned to MLCT and these are likely to obscure any d-d transitions that are 

occurring. The same phenomenon is seen in [Rh(diphos)2 ]+ complexes (diphos = 

1,2-bis(diphenylphosphino)ethane or 1,2-bis(diphenylphosphino)ethene).80,81

A UV-visible spectrum was run of 97 to compare the spectrum of the complex 

before substitution of the unknown anions by [PFe]'. This showed substantial 

differences in the lower end of the spectrum (figure 3.38.).
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Figure 3.38. Comparison of UV spectra of 97 and 101 (run in CH2 CI2) at room
temperature.

3.5.6.1.2. NMR studies on [Rh(l'Pr2 Me2)4 ]+ with [PF6]‘ and the unknown anion

The ]H NMR spectrum of 101 is extremely broad and does not sharpen even at -70 

°C. There is also no change to the spectrum at higher temperatures (up to 50 °C). 

This suggests that the complex has a much more convoluted structure in solution 

than is expected. Conversely, the *H NMR of 97 is simple and straightforward like 

that observed in 96 and 98 (and discussed on pages 201 and 202), showing just four 

resonances, a septet at 8  6.07 (3J hh = 7.2 Hz) due to the CH protons on the 'Pr arms, 

a singlet at 8  2.16 from the backbone methyl groups and two doublets at 8  1.46 (3J hh 

= 7.2 Hz) and 0.58 (3J Hh = 7.2 Hz) due to the methyl groups on the 'Pr arms (figure 

3.39.).
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A
■ ■ ■ i ■ ■ 1 i 1 ■ ■ ■ i ■ • ■ ■ i • ■ • • i ■ ■ 1 ■ i ■ • • ■ i ■ ■ ■ ■  i 1 1 1 i 1 '  i ■ ■ ■ i ■ • • ■ i ■
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0 . 53 . 0 2 . 5 2 . 0 1.04 . 5 4 . 0 3 . 5 1 . 5

Figure 3.39. *H NMR of 97 (top, in <&-THF) and 101 (bottom in CD2C12) (400MHz,
25 °C).
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The difference between the UV-visible and !H NMR spectra for 97 and 101 

indicates the importance of the anion in these complexes. Unfortunately attempts to 

replace the anion in 97 with BPhT or O Tf led to decomposition of the complex to 

give the hydrogen bonded imidazolium species I'Pr2 Me2 HBPh4  and I'Pr2 Me2 HOTf, 

which are similar to [PF6]‘ complexes which have been isolated and discussed on 

page 191.

3.5.6.2. Mechanism o f formation o f [Rh(NHC)4l+

The probability that these tetrakis NHC complexes form from the initial hydride 

containing species, 71, 72, 73, 74, 75 and 76, analysed in section 3.5.1. is supported 

by plotting the ratio of the hydride peaks in the *H NMR spectrum to the aromatic 

region at a series of times during the first 14 hours of the reaction. The number of 

aromatic protons will be the same at any point in the reaction and so the whole 

region can be set as one integral and given an arbitrary value. The hydride integrals 

can then be directly compared to each other and the total reaction mixture. As can be 

seen in figure 3.40., when 2 equivalents of ICy are added to [RhH(PPh3 )4 ] (69) at 

room temperature, trans-73 forms extremely rapidly and some cis-73 is also present. 

These rapidly decrease in intensity over time and although there is growth of the bis 

NHC products, cis- and trans-76, the major product is obviously something non- 

hydridic. The formation of any dimeric products analogous to 

[ {Rh(PPh2 )2 ) (p-H)(|a.-PPh2)] (83) have not been observed and it is feasible that these 

type o f complexes do not form or that if they do are extremely unstable and break 

apart too rapidly to be seen on a NMR timescale. Certainly, even in low temperature 

*H and 31P{1H} NMR experiments, no evidence for bridging hydride or phosphide 

ligands has been observed.
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3.5.7. Thermolysis of fRhHfPPlnWCCm (70)

Like [RhH(PPh3 )4 ] (69), when the carbonyl complex [RhH(PPh3 )3 (CO)] (70) is 

heated at 70 °C overnight it appears to form a dimeric species with a bridging PPh2  

ligand. This is attributed to [{Rh(CO)}2 (^i-H)(p-PPh2 )] (102) (figure 3.41.).

/ H\
OC Rh Rh CO

V
Ph2

Figure 3.41. Proposed structure of 102.

The coupling patterns for the hydride ligand and the bridging phosphide are much 

simpler than in 83, showing that there are no terminal phosphines. The lH NMR has 

one hydride peak at 8  -11.65 (dt, 2J hp = 16 H z  'JuRh = 20 Hz). The peak is distorted 

due to the similarity of the coupling constants causing the triplet signals to overlap 

(figure 3.42.). The 3 1 P{ 1H} NMR spectrum exhibits a shift at 8  186.2 (t, VpRh = 

117.3 Hz), characteristic of a bridging PPI1 2  over a Rh-Rh bond (see section

3.5.4.1.). The hydride and bridging phosphine peaks are clearly shown to couple to 

each other from a 3 1 P{1H} HMQC experiment. To add further credibility to this 

structure, the 1 3 C{!H} NMR has a doublet of triplets at 8  208.9 (Vcp = 10.1 Hz VcRh 

= 60.4 Hz).

■11.4 •11.5 • 11.8 11.9-11.6 -11.7 ppm

Figure 3.42. Hydride resonance of 102 in dg-THF (400 MHz, 25 °C).

Upon further heating, a trimeric complex can also be seen by multinuclear NMR. 

This was identified by X-ray crystallography as [ {Rh(CO)} 3 (PPh3 )2 (p-PPii2 )3 ] (103)
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(figure 3.43.) and has already been synthesised by Billig et al, 82 The 3 1P{1H) NMR 

shows a multiplet at 5 135.0 for the bridging phosphines and another multiplet at 5 

41.5 for the terminal phosphines. The unique Rh atom in 103 is coordinatively 

unsaturated, being only 14-electron. However, as a cluster, the complex is 

46-electron, which is known amongst these sort o f structures. The electrons are 

likely to be delocalised over the three rhodium centres, adding stability to the 

complex.

Figure 3.43. Molecular structure of 103 determined by X-ray crystallography.

103 could well form from 102 and residual 70 in solution with the loss o f two PPI13 

ligands and two molecules of benzene.

3.5.8. Reactivity o f rhodium-NHC complexes

Preliminary studies have been carried out to probe the reactivity o f the Rh-NHC 

complexes reported in this chapter. Addition o f CO2 to solutions containing the
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hydridic species cis- and /raws-[RhH(I'Pr2 Me2 )(PPh3 )2 ] (72), cis- and 

fra«5 -[RhH(I/Pr2 Me2 )2 (PPh3 )] (75), cis- and /ram-[RhH(ICy)(PPh3)2] (73) and cis- 

and /ram-[RhH(ICy)2(PPh3)] (76) led to insertion of CO2  in all cases into the Rh-H 

bonds. However, reactivity of the mono and bis NHC complexes was generally very 

different. The mono NHC species, 72 and 73, only reacted when subjected to more 

than one atmosphere of CO2  and immediately underwent loss o f CO2  to reform the 

hydride complexes when the CO2  atmosphere was removed. In contrast, the cis- and 

/ram-isomers of the bis NHC species 75 and 76 reacted readily with 1 atmosphere of 

CO2  and did not decompose when the solution was degassed and placed under 

argon, giving cis and /ram-[Rh(I'Pr2 Me2 )2 (PPh3 )(0 C(0 )H)] (104) and cis and trans- 

[Rh(ICy)2 (PPh3 )(OC(0 )H)j (105) respectively. As the trans isomers of the bis NHC 

hydride complexes are predominant in solution the trans isomers o f the formate 

complexes (figure 3.44.) were easier characterise by NMR spectroscopy and so all 

data presented here refers to the trans isomers. Tram-105 gave a characteristic peak 

in the *H NMR spectrum at 8  8.60 (dd, J HRh = 1.6 Hz, 2J HP = 7.1 Hz) for the formate 

proton.

The bis NHC carbonyl species, 85 and 8 6  reacted with CO2  in a similar manner to 

give [Rh(ICy)2 (C0)(0C(0)H)] (106) and [Rh(IMes)2 (CO)(OC(0)H)] (107) (figure 

3.45.). Again, they exhibit the characteristic formate proton peak by NMR at 8  8.60 

( 7 h c  (with l3 C 0 2) = 188.8 Hz, 3J 1IRh = 1.6 Hz) (106) and 8.00 (107). i3 C{‘H} NMR 

spectroscopy also gives characteristic resonances for the formate carbon at 8  167.0

H— C— O— Rh— PPh* H C O— Rh PPh3

(104) (105)

Figure 3.44. Structures o f 104 and 105.
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for 106 and 8  167.3 (which is split to a doublet (Jch = 188.3 Hz) upon use of 1 3 CC>2 ) 

for 107.

r - \  y >
si N— C  /

H— C—O— Rh COH— C—O— Rh CO

\= J\= J

(106) (107)

Figure 3.45. Structures of 106 and 107.

The fact that CO2  is indeed inserting into 8 6  was confirmed by IR spectroscopy. In 

107, made from 1 2 CC>2 , IR bands appear at 1932 (v Co ) ,  1633 (vocoasym) and 1320 

(vocosym ) cm'1. When 1 3 C0 2  was added to 8 6  to give (13)107, the formate bands 

shifted to 1594 (vocoasym) and 1263 (vocosym ) cm'1. Reduced mass calculations place 

the ,3C formate bands at 1561 and 1262 c m 1.

CHN studies showed that the empirical formula was correct ({found (calculated)} 

for 107: C {67.12 (67.34)} H {5.88 (6.29)} N {7.15 (7.14)}) but attempts to study 

crystals o f 107 by X-ray diffraction proved difficult as there was extensive disorder 

across the formate and CO groups. This meant that it was impossible to see whether 

the OC(0)H group was bound to the rhodium in a k or k manner (figure 3.46.).

I / \
L3Rh O C H L3Rh >  H

K 1 1C2

Figure 3.46. The two possible bonding modes of a formate group to a metal centre.

The frequency of the asymmetric voco IR band of 107 (1633 cm ■') is indicative of a 

k  formate species. As discussed in the literature, 8 4 , 8 5  monodentate formate
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complexes have asymmetric bands that appear above 1600 cm"1, whilst bidentate 

shifts appear under 1600 cm"1.

3.5.9. Formation of zwitterionic NHC:CO? adducts

When CO2  was added to solutions of Rh-NHC complexes that could not be isolated 

and therefore contained free NHC, large amounts of white solid crashed out of the 

THF solution upon addition of CO2 . The solid obtained from a reaction mixture 

containing free ICy was isolated, dissolved in CH2 CI2  and layered with hexane. This 

produced crystals suitable for X-ray diffraction and allowed the complex to be 

identified as the zwitterionic NHC:C0 2  adduct, ICy:C0 2  (108). Further studies 

showed that addition of CO2  to a THF solution containing free NHC (I'Pr2 Me2 , ICy, 

IMes) led to immediate formation of NHC:CC> 2 adducts. Analogues of these have 

already been isolated including I'Pr2 Me2 iC0 2  (109)86, IMe:CC>2 8 7  and IPr:CC>2 8 8  

(figure 3.47.).

The crystal structure of 108 is shown in figure 3.48. The significant bond lengths 

and angles for all four NHC:CC> 2 adduct structures are compared in table 3.18.. The 

most significant thing to note is that of all the structures, 108 is the only one that has 

perceptibly different C- 0  bond lengths (1.2432(16) and 1.2396(16) A). This implies 

that the charge on the OCO moiety is not centralised. In addition, the C-N bond 

distances of the imidazole ring are quite different (1.3511(16) and 1.3783(17) A), 

suggesting the positive charge is also slightly delocalised between one of the

O ^ O  O ^ N >
(109)

Figure 3.47. Structures of reported NHC:CC> 2 zwitterions.
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nitrogens and the imidazole ring. This phenomenon has also been noted in IPr:C02 

(C-N distances are 1.334(4) and 1.376(4) A).88

C ( 3 )

Figure 3.48. Molecular structure o f 108 determined by X-ray crystallography.

Bond lengths (A) C(4)-0(l) ( (4 ) -0 (2) C(l)-C(4) C(l)-N(l) C(l)-N(2)
ICy:C02 (108) 1.2432(16) 1.2396(16) 1.5342(18) 1.3511(16) 1.3783(17)
l,Pr2Me2:C 02 (109) 1.231(3) 1.231(3) 1.536(5) 1.336(3) 1.336(3)
IM e:C02 1.2398(15) 1.2398(15) 1.523(3) 1.3452(16) 1.3452(16)
IPr:C02 1.225(4) 1.221(4) 1.5 1(4) 1.334(4) 1.376(4)

Bond angles (°) 0 >(l)-C(4)-0(2) N(l)-(C(l)-N(2)
ICy:C02 (108) 130.00(13) 109.08(11)
l'Pr2Me2:C02 (109) 131.2(4) 108.0(3)
IM e:C02 129.8(2) 107.15(16)
IPr:C02 129.9(3) 107.1(2)

Table 3.18. Selected bond engths (A) and angles (°) or 108 and other NHC:C02
zwitterions. Numbering system is that used in 108 and is not comparable with

published data.

The imidazole ring, the backbone methyl groups and the CO2 carbon all sit in the 

same plane with the two oxygen atoms 180 0 to each other and 45 0  out of the central 

plane. The two cyclohexyl rings lie in the same plane as each other and 

perpendicular to the imidazole ring.

108 shows two IR bands at 1656 and 1461 cm"1 compared with the positions 

reported for IPr:C02 at 1687 cm '1 88 and 109 at 1666 and 1437 cm"1.86 Louie et al.
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report that 109 decarboxylates between 136 and 164 °C . 8 8  It is also suggested that 

109 equilibrates with free CO2 , as addition o f 1 3 CC> 2  to a solution of 109 leads to 

enhancement of the carbonyl peak of the complex. This could explain the spurious 

elemental analysis results obtained for 108. Although percentage hydrogen and 

nitrogen measurements were extremely close to values calculated, percentage carbon 

measured was consistently around 5 % lower than the calculated values. However, 

no detailed investigation has been carried out into the possibility that 

decarboxylation of 108 is occurring.

3.6. Conclusions

A series of mono, bis, tris and tetrakis rhodium NHC complexes, some neutral, 

hydridic species and some cationic complexes, have been synthesised. These have 

been extensively characterised by spectroscopic and crystallographic techniques. 

This has allowed comparison of the structures over a whole range o f rhodium-NHC 

complexes, giving an insight into how addition of more NHC ligands affects the 

structure, and hence the chemical properties of complexes.

From table 3.19., it can be seen that the angle that the imidazole ring is set away 

from the central plane of the complex decreases as more NHC ligands are 

complexed to the metal centre, although the effect is less pronounced between three 

and four NHCs. From these angles it can also be surmised that IMes has the greatest 

steric effect around a metal centre, followed by I'Pr2 Me2  then IEt2 Me2  and ICy. This 

assumption is based solely on the amount that the ligands are pushed out of the 

metal centre but agree well with Nolan’s buried volume model (discussed in section

1.2.2.). From the Rh-carbene bond lengths also presented in table 3.19., it appears 

that IEt2 Me2  is the best a  donor, due to the shorter bond lengths in [Rh(IEt2 Me2 )4 ]+ 

(96) compared to [Rh(ICy)4 ]+ (98). It is likely that this is due to the methyl groups 

on the backbone. However, by the same token, comparison of the Rh-carbene bond 

lengths in [Rh(I'Pr2 Me2 )3 (CO)]+ (89) and [Rh(ICy)3 (CO)]+ (90), suggest that ICy is a
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better a  donor than I'Pr2 Me2 . However, as I*Pr2 Me2  is more sterically bulky than 

ICy, these elongated Rh-C bonds are probably likely to be due to steric effects.

NHC Angle out 
of plane (°)

Rh-carbene bond lengths (A)

72 rP r 2 Me2 83.662 2.068(2)
80 IMes 75.732 2.024(3)
8 6 IMes 70.341

62.507
2.0165(16) 2.0191(17)

89 I'Pr2 Me2 67.042
63.597
52.887

2.1490(13) 2.0775(13) 2.0738(14)

90 ICy 64.046
52.295

2.1321(12) 2.0642(11) 2.0638(11)

95 I'Pr2 Me2/
ICy

64.318
57.139
54.320

2.1341(13) 2.0818(13) 2.0677(13)

96 IEt2 Me2 63.048
60.920

2.047(4) 2.047(4) 2.042(4) 2.042(4)

98 ICy 51.226 2.070(5) 2.070(5) 2.070(5) 2.070(5)
Table 3.19. Comparison of angles of imidazole rings out of plane and Rh-carbene 

bond lengths across a series of mono, bis, tris and tetrakis NHC Rh complexes.

As discussed early on in the introduction of this chapter, Rh-NHC complexes 

bearing chloride ligands have been synthesised by Lappert, £etinkaya and Crudden
•  39and have been found to be active in various catalytic cycles, including silylation, 

cyclopropanation3 3  and hydroformylation34. However, nothing has been reported on 

the effectiveness of hydride bearing Rh-NHC complexes in catalysis and the new 

complexes reported in this thesis have yet to be investigated in detail in catalysis. 

Weberskirch has recently proposed that in the hydroformylation of 1-octene by 

Rh-NHC COD complexes, the active catalyst is actually a hydrido-carbonyl species 

(scheme 3.25).89
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NHC NHC NHC NHC

-X CO OC— Rh X OC— Rh H

CO X CO

NHC = IMes, lAd 
X = Cl, Br, I

Scheme 3.25. Mechanism proposed by Weberskirch for the formation of 
catalytically active [RhH(NHC)(CO)2 ] in hydroformylation of 1 -octene.

This suggests that the hydrido-carbonyl complexes synthesised and reported here 

may well be active catalysts in hydroformylation reactions.

Spontaneous C-H activation of an IMes ligand has been observed at room 

temperature to give [Rh(IMes)” (PPh3 )2] (82). Similar C-H activations have not been 

seen on the alkyl NHC complexes synthesised, even upon heating. This may simply 

be due to sterics as the bulky IMes ligand is forced to twist in such a way on the 

metal centre that the complex becomes predisposed to C-H activation. That this C-H 

activation is reversible on addition o f H2  may enable this complex to be used as a 

catalyst in indirect Wittig reactions like the ruthenium complex, 

[RuH(IMes)(PPh3 )2 (CO)] (16), which also undergoes reversible C-H activation of 

the IMes ligand and has been described in chapter 2.

The cationic complexes, [Rh(NHC)4 ]+ (NHC = IEt2 Me2 ,1'Pr2 Me2, ICy), that have 

been isolated from reaction of rhodium hydride precursors with free NHC at room 

temperature, are highly unusual and without precedent in the literature. Indeed, it 

had been suggested that it was not possible to attach four NHCs around a rhodium 

centre . 7 6  A rare mixed NHC species, [Rh(I'Pr2 Me2 )(ICy)(CO)][PF6 ] (95), has also 

been synthesised. The rapid ease of synthesis of these complexes from 

[RhCl3 *xH2 0 ], their high stability and the probability of being able to make them in 

biologically inert solvents, suggests that they could be used in applications such as 

radiation delivery to tumour cells, which was discussed in section 3.3.6.
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4. Experimental

4.1. General procedures

All manipulations were carried out using standard Schlenk line, high vacuum and 

dry glove box techniques under argon or nitrogen.

Solvents were purchased from Fisher, were distilled under nitrogen and stored under 

argon. Ethanol and 1-hexanol were distilled over magnesium turnings and iodine. 

Hexane, THF and benzene were collected from purple solutions of sodium 

dispersion and benzophenone with a few additional drops of ethylene glycol in the 

case of hexane. Toluene and pyridine were dried over sodium. Pentane was distilled 

over CaH2  and stored over a potassium mirror. All solvents were used dried and 

degassed unless otherwise stated.

Deuterated NMR solvents (purchased from Sigma-Aldrich) were dried over 

potassium, transferred via vacuum and stored over potassium mirrors except for 

CDCI3 and CD2CI2 which were dried over CaH2.

NMR data was recorded on Varian Mercury 400 MHz or Bruker Avance 400 MHz 

and 300 MHz spectrometers. The reference compound in 3 1 P{1H} NMR experiments 

was H3 PO4  and CFCI3  in 1 9F, both referenced externally to 0 ppm. For the *H NMR 

experiments, the protio solvent present in the NMR tube was taken as the reference. 

(CHCI3 : 8  7.26, CDHC12: 8  5.31, C6 D 5 H: 8  7.15, dy-THF: 8  3.57, CD2 HC6 D 5  

(toluene): 8  2.09, ^-pyridine: 8  8.72). 13C NMR experiments were also referenced 

internally (CDC13: 8  77.4, CD2 C12: 8  53.1, C * ^ : 8  128.7, cfo-THF: 8  25.3, 

CD3 C6 D 5 : 8  21.3, ^-pyridine: 8  123.5). Values throughout this section are quoted 

in ppm.
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IR spectra were obtained on a Nicolet Nexus FTIR spectrometer and recorded as 

nujol mulls unless otherwise stated.

Absorption spectra were measured using a Perkin Elmer Lambda 20 UV-visible 

spectrometer. Samples were analysed in a 10.0 mm path length quartz cell, fitted 

with a PTFE tap and borosilicate degassing bulb.

UV photolysis studies at the University of Bath were carried out using an Oriel 125 

W mercury arc lamp. Samples, typically o f a concentration o f 0.02 mol dm' in 

deuterated solvent in a J. Young’s resealable NMR tube, were immersed in either 

deionised water (for room temperature conditions) or a dry ice/acetone mix (< -50 

°C) in a partially silvered dewer.

The set-up for in situ photolysis at the University o f York has been described in 

detail elsewhere. 1 ,2  It consisted of a HeCd laser beam (A. = 325 nm, 55mW) guided 

towards the sample through a modified probe o f a Bruker Avance 400 MHz NMR 

spectrometer, which irradiated the sample (typically 0.004 mol dm " 3  concentration) 

from the side. Parahydrogen was prepared by cooling H2  to -253 °C over a 

paramagnetic catalyst (activated charcoal) as has been described previously.

TRIR measurements were carried out at the University o f Nottingham and details of 

the diode laser based TRIR apparatus have been described in more detail 

previously . 4  The IR source is a continuous wave IR diode laser (Mutek MDS 1100). 

In these experiments, the change in IR transmission at one IR frequency was 

measured by an appropriate fast MCT detector, following UV excitation of the 

sample by a pulsed Nd:YAG laser (Spectra Physics Quanta-Ray GCR-12; 355 or 

266 nm) which initiates the photochemical reactions. A spectrum was built up on a 

‘point-by-point’ basis by repeating this measurement at different infrared 

frequencies.
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X-ray crystallography studies were performed on a Nonius KappaCCD machine 

typically at 150 K. Structure calculations and drawings were carried out using the 

SHELX suite of programmes. 5 ,6

All chemicals were purchased from Sigma-Aldrich, except for [RhCl3 #xH2 0 ] and 

[RuCl3 *H2 0 ], which were kindly donated by Johnson Matthey pic., and used as 

received unless otherwise stated. Trimethylvinylsilane was stored over molecular 

sieves. Ethene (Aldrich, 99.9%), D2  (Aldrich, 99.8%), 13CO (Cambridge Isotopes, 

99%), and 1 3 CC> 2 (Cambridge Isotopes, 99%) were used as received.

Elemental analyses were performed at the University of Bath and Elemental 

Microanalysis Ltd, Okehampton, Devon.

4.2. Methods of synthesis

4.2.1. N-heterocvclic carbenes

l,3-diethyl-4,5-dimethylimidazol-2-ylidene (IEt2 Me2): The NHC was prepared 

from the thiol salt using a method adapted from the literature. 7  13.8 g ( 1 0 0  mmol) 

diethyl thiourea and 8 . 8  g (100 mmol) 3-hydroxy-2-butanone were refluxed in 250 

mL o f 1-hexanol for 12 hours in a 3-necked round bottomed flask. The solvent was 

removed on the rotary evaporator and the residue washed with water (100 mL) and 

undried ether (100 mL). The white solid obtained (1,3-diethyl-4,5- 

dimethylimidazolium thione) was dried under vacuum. 1 . 8  g of this product was 

dissolved in THF (30 mL) in a 3-necked round bottomed flask and cooled in an ice 

bath. 1 . 0  g potassium (finely chopped) was added and the mixture refluxed under a 

slow flow of argon for 4 hours during which time a sticky blue solid (KS) formed. 

The solution was filtered using a cannula filter and the filtrate pumped down to 

dryness under vacuum. A pale yellow oil was obtained. Yield: 1.3 g (83 %). *H 

NMR (C6 D6, 400 MHz, 25 °C): 6  3.79 (q, VnMe = 7.1 Hz, 4H, CH 2 CH3), 1.69 (s, 

6 H, H 3 CC=CCH 3  backbone), 0.44 (t, V hh = 7.1  H z ,  6 H, CH2 CH3).
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1.3-diisopropyI-4,5-dimethylimidazol-2-ylidene (I'PriM ei): The NHC was
•j

prepared from the thiol salt using a method adapted from the literature. 16.0 g ( 1 0 0  

mmol) di-isopropyl thiourea and 8 . 8  g (100 mmol) 3-hydroxy-2-butanone were 

refluxed in 250 mL of dry 1-hexanol for 12 hours in a 3-necked round bottomed 

flask. The solvent was removed on the rotary evaporator, washed with water (100 

mL) and undried ether (100 mL) and the residue recrystallised from ethanol/water 

(1:1, 50 mL) overnight at -20 °C. The colourless needles that precipitated (1,3- 

diisopropyl-4,5-dimethylimidazolium thione) were filtered and dried under vacuum.

1.1 g o f this product was dissolved in dry THF (30 mL) in a 3-necked round 

bottomed flask and cooled in an ice bath. 0.5 g potassium (finely chopped) was 

added and the mixture was refluxed for 4 hours during which time a sticky blue solid 

formed. This was filtered using a cannula filter and the filtrate was pumped down to 

dryness under vacuum to give a pale yellow solid in quantitative yield. ]H NMR 

(THF, 300 MHz, 25 °C): 6  4.18 (sept, V hh  = 6 . 6  Hz, 2 H, CH(CH3)2), 2.05 (s, 6 H, 

H 3 CC=CCH3  backbone), 1.40 (d, V HH = 6 . 6  Hz, 1 2 H, CH(CH3 >2).

1.3-cyclohexyl-imidazol-2-ylidene (ICy): A suspension o f paraformaldehyde (3.0 

g) in toluene (15 mL) was cooled in an ice bath. Cyclohexylamine (23.0 mL, 200 

mmol) was added dropwise over 1 hour. HC1 (4M in dioxane, 25.0 mL) was then 

added dropwise over 30 mins, maintaining the temperature below 25 °C. The white 

cloudy mixture was allowed to warm to room temperature before addition of glyoxal 

(11.5 mL). The mixture was stirred for 1 hour before toluene (30 mL) was added. 

Water (10.8 mL) was removed from the reaction mixture using a Dean-Stark trap. 

The volatiles were removed from the remaining mixture in vacuo affording ICyHCl 

as a brown sticky solid. This was dissolved in water (75 mL) and tetrafluoroboric 

acid (13 mL) was added, immediately precipitating ICy*HBF4  as a pale brown solid. 

Yield 26.0 g (41 %). *H NMR (CDC13, 400 MHz, 25 °C): 8  8.91 (t, V hh  = 1.7 H z , 

1H C-H), 7.41 (d, V hh  = 1.7 H z , 2H, HC=CH backbone), 4.29 (tt, V hh  =11.9, V hh  

= 3.9 Hz, 2H, ipso-Cft Cy), 2.17-2.13 (m, 4H, Cy CH2), 1.90-1.87 (m, 4H, Cy CH2), 

1.73-1.62 (m, 6 H, Cy CH2), 1.50-1.39 (m, 4H, Cy CH2), 1.30-1.18 (m, 2H, Cy 

CH2).
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NaH (0.3 g, 12.5 mmol) and NaO'Bu (0.03 g, 0.3 mmol) were added to ICy*HBF4  

(2.0 g, 5.2 mmol) in a Schlenk flask and dried under vacuum for several hours. THF 

(20 mL) was added at room temperature and the mixture stirred for 4 hours. The 

volatiles were removed in vacuo producing a solid brown residue. Sublimation at 

100 °C for 1 hour afforded ICy as an air-sensitive white solid, which was retrieved 

in a glove box. Yield: 0.8 g ( 6 6  %). 'H NMR (C6 D6, 400 MHz, 25 °C): 8  6.61 (s, 

2 H, HC=CH backbone), 4.10 (tt, VHH = 1 1 .8 , Vhh = 3.7 Hz, 2 H, ipso-CH Cy), 2.06 

(m, 4H, Cy CH2), 1.69-1.62 (m, 8 H, Cy CH2), 1.49-1.46 (m, 2H, Cy CH2), 1.30-

1.01 (m, 6 H, Cy CH2).

l r3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes): This procedure was 

adapted from the method reported in literature. 8 , 9

Bis-(2A6-trimethvlphenv0imine: 67.6 g (500.0 mmol) o f 2,4,6-

trimethylphenylamine and 36.3 g o f a 40 % aqueous glyoxal solution (250.0 mmol) 

were added to a 500 mL round bottomed flask and dissolved in 250 mL of undried 

ethanol. The mixture was stirred for 3 days at room temperature during which time a 

thick yellow solid precipitated out. The precipitate was isolated by filtration through 

a Buchner filter and washed with cold, undried ethanol (100 mL). By reducing the 

filtrate to about 50 % and leaving the solution in the fridge over night, a second crop 

o f solid was obtained. The product was dried initially in air and then under vacuum. 

Yield: 68.5 g (94 %).‘H NMR (CDCI3, 300 MHz, 25 °C): 8  8.13 (s, 2H, HC=CH 

backbone), 6.93 (s, 4H, m-CH), 2.32 (s, 6 H,p-CH3), 2.19 (s, 12H, o-CHj).

Synthesis of 1.3-dimesitvlimidazolium chloride: 19.3 g (66.0 mmol) o f bis-(2,4,6- 

trimethylphenyl)imine and 2 . 0  g (6 6 . 0  mmol) of paraformaldehyde were dissolved in 

undried toluene in a 1 L round bottomed flask. The reaction mixture was heated to 

100 °C then immediately allowed to cool to 40 °C at which point 16.5 mL (66.0 

mmol) of 4M HC1 in dioxane was added via pipette. The solution turned dark orange 

and was stirred at 70 °C for 5 hours after which time a light brown solid precipitated 

out of the now dark brown solution. The reaction was stirred at room temperature for
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a further 36 hours and the solid product was collected by Buchner filtration, washed 

with cold THF (100 mL) and air dried. Yield: 14.3 g (63 %).*H NMR (undried 

CDC13, 300 MHz, 25 °C): 8  10.31 (s, 1H, CH), 7.65 (s, 2H, HC=CH), 6 . 8 8  (s, 4H, 

w-CH), 2.22 (s, 6H,/7-CH3), 2.04 (s, 12H, 0-CH3).

1.3-bis-(2A6-trimethvlphenyl)imidazol-2-ylidene (IMes): 4.0 g (0.028 mol) of 1,3- 

dimesitylimidazolium chloride and 1.4 g (0.036 mol) of KO*Bu were placed in a 

flame dried Schlenk tube and dried under vacuum overnight. The solids were then 

cooled using dry ice/acetone whilst 50 mL of THF was added. The reaction was left 

stirring in the dry ice/acetone bath for 2 0  mins and then gradually warmed to room 

temperature and stirred for another 15 mins. After this time, the solution was 

reduced to dryness under vacuum and the solid pumped on for 2  hours to make sure 

no residual solvent was present. The solid was redissolved in toluene, filtered 

through a glass filter cannula, under argon to remove all traces of KC1 and pumped 

to dryness. Hexane was added and the mixture stirred until a precipitate began to 

appear. This was left at -30 °C overnight to enforce precipitation of the NHC. The 

fine cream solid was collected by cannula filtration. Yield: 2.2 g (62 %). *H NMR 

(C6 D6, 300 MHz, 25 °C): 8  6.80 (s, 4H, m-CH), 6.51 (s, 2H, HC=CH), 2.16 (s, 6 H, 

p-CH3), 2.14 (s, 12H, 0-CH3).

4.2.2. Ruthenium precursors

[Ru(Cl)2 (AsPh3 )3 (CO)]: This method was based on a literature route. 1 0  

Triphenylarsine (7.4 g, 2.4 mmol) was dried under vacuum for 30 mins in a 500 mL 

3-necked round bottomed flask. This was then dissolved in approximately 200 mL 

of undried, degassed 2-methoxyethanol. [RuCl3 *xH2 0 ] (1.2 g, 4.5 mmol) dissolved 

in approximately 60 mL of undried, degassed 2-methoxyethanol and aqueous 

formaldehyde ( 8 8  mL, 40% w/v solution, degassed by argon bubbling) were added 

rapidly and successively to the boiling methoxyethanol solution o f AsPh3. The 

mixture was heated to reflux for 2  hours under a slow flow of argon, during which 

time the solution became pale orange. After cooling, the solution was reduced in
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volume to 80 mL before addition of 80 mL of cold, undried methanol. The yellow 

precipitate formed was separated by filtration on a Buchner funnel and washed with 

cold, undried ethanol (2 x 50 mL) and undried hexane (50 mL). The resultant 

product was dried under vacuum to give 4.1 g (81 %, based on [RuCbOLLO]) of 

yellow microcrystalline powder. IR (cm 1): 1949 (vco)

[Ru(H)2 (AsPh3 )3 (CO)J (20): This method was based on a literature route . , 0  

[Ru(Cl)2 (AsPh3 )3 (CO)] (2.1 g, 1.7 mmol) and NaBH4  (4.0 g, 1.1 mmol) were placed 

in a 500 mL 3-necked round bottomed flask. They were dissolved in EtOH (200 

mL), brought to reflux and stirred for 1.5 hours. After cooling, the resulting tan 

slurry was filtered on a Buchner filter and washed with 3 x 100 mL of undried 

ethanol. The solid was dissolved in undried toluene (100 mL) and this solution was 

filtered using a Buchner filter. Removal of the solvent in vacuo afforded a brown 

residue which was dissolved in 100 mL of undried ethanol. The solution was stirred 

overnight, during which time a white powder precipitated out. The powder was 

filtered, washed twice with 2 x 100 mL of dry ethanol, followed by 100 mL of dry 

hexane. The final product was then dried under vacuum to give 1.8 g (89 %) of 

white powder. 'H NMR (C6 D6, 300 MHz, 25 °C): 8  -9.44 (d, V hh  = 6 . 6  H z ,  1H, Ru- 

H), -9.92 (d, Vhh = 6 . 6  Hz, 1H, Ru-H); IR (cm 1): 1930 (vco).

[Ru(H)2 (PPh 3 )3 (CO)] (15): This method has been adapted from the literature. 9 ,1 1  

Three Schlenk tubes, (1) (2) and (3), were charged with [RuCL-xlLO] (2.1 g, 8  

mmol) in 80 mL of ethanol; aqueous formaldehyde (80 mL, 40 % w/v solution, 

degassed by argon bubbling) and potassium hydroxide (2.40 g, 40 mmol) in 80 mL 

of ethanol respectively. Solutions (1), (2) and (3) were added rapidly and 

successively to a boiling solution o f PPI1 3  (12.6 g, 48 mmol) in EtOH (280 mL). The 

solution was heated at reflux under a slow flow of argon for 25 mins and then cooled 

in an ice bath. The resulting grey precipitate was filtered on a Buchner filter and 

washed with 2 x 50 mL of undried ethanol, 50 mL of deionised water and 50 mL of 

undried hexane. The crude powder was dissolved in undried benzene (100 mL) and 

passed through neutral alumina (ca. 2 g). The solution was reduced in vacuo until
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solid had just begun to precipitate at which point undried methanol (50 mL) was 

stirred in to enforce precipitation. This was filtered to yield a white solid. Yield: 5.0 

g ( 6 8  %, based on [RuC13 *H2 0]). 'H  NMR ( C 6 D 6  300 MHz, 25 ° C ) :  5 -6.53 (ddt, 

V „ p  = 15.3 Hz, V h p  = 30.5 Hz, V|„, = 6 . 1  Hz, 1 H, Ru-H), -8.29 (ddt, VHp = 74.5 Hz, 

2 . / h p  = 28.1 Hz, V h h  = 6.1 Hz, IH, Ru-H); 3 1 P{'H} NMR ( C s D s ,  121 MHz, 25 ° C ) :  5 

58.2 (d, VpP = 16.8 Hz, PPh3), 46.1 (t, VPP = 16.8 Hz, PPh3); IR (cm 1): 1960 (vco).

4.2.3. Ruthenium-NHC complexes

/rfl/is-(IMes)-[Ru(H)2 (IMes>2 (AsPh3 )(CO)] (21):

Into a flame-dried Young’s ampoule was placed [Ru(H)2 (AsPh3 )3 (CO)] (20) (0.05 g, 

0.048 mmol) and IMes (0.05g, 0.16 mmol). Benzene (20 mL) was vacuum 

condensed in and the solution heated at 75 °C for four days. The solution turned a 

deep red and NMR spectroscopy of a sample extracted and redissolved in C<sD6  

showed the major product to be 21. Isolation of the complex proved impossible due 

to the highly reactive nature of the AsPh3  group. ]H NMR (C6 D6 , 400 MHz, 25 °C): 

5  -5.71 (d, V h h  = 5.9 H z , Ru-H), -8.93 (d, V h h  = 5.9 Hz, Ru-H).
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/rfl/is-[Ru(H>2 (IMes)2 (PPh3 )(CO)] (17):

_ / /

O C

W

PPh3  (0.013 g, recystallised twice from ethanol) was added to a solution of trans- 

[Ru(H)2 (IMes)2 (AsPh3 )(CO)] (21) (synthesised from 0.05 g 20) in the glove box. 

NMR studies showed complete conversion to 17 immediately at room temperature. 

The product could not be isolated due to the highly reactive nature of the PPh3  

group. ‘H NMR (C6 D6, 300 MHz, 25 °C): 8  7.33-7.25 (m, 15H, PPh3), 6.94, 6.79 

(both br s, 4H, H9, H 7), 6.09 (s, 4H, HC=CH), 2.35 (s, 12H, H 4), 2.15 (s, 24H, H3), 

-5.89 ( d d ,  V h p  = 18.8 Hz, V h h  = 7 .1 H z ,  1 H, R u - H ) ,  -7.39 ( d d ,  V h p  = 93.5 Hz, V h h  

= 7.1 Hz, 1H, Ru-H); 3 IP{‘H} NMR (CsDc, 162 MHz, 25 °C): 5 47.3 (s, Ru-PPh3); 

selected I3 C{‘H} NMR (C6 D6, 100 MHz, 25 °C): 8  205.9 ( d ,  V c p =  8.5 Hz, Ru- 

CO), 187.2 ( d ,  V C P  = 6 . 8  Hz, Ru-C:); IR (cm 1) ( CftDt): 1869 (vco)-

[Ru(H)2 aM es)(PPli3 )2 (CO)l (16):

r = \

OC'

The preparation for this complex is adapted from that reported in the literature. 

[Rh(H)2 (PPh3 )3 (CO)j (15) (0.5 g, 0.55 mmol) and IMes (0.5 g, 1.65 mmol) were 

dissolved in 30 mL toluene and the mixture heated at 80 °C for 3 days. Removal of 

solvent gave a dark oily residue to which was added 30 mL ethanol. After stirring 

the solution for 2 hours at room temperature a white solid precipitated. This was 

filtered under argon using a cannula filter and washed with ethanol ( 3 x 1 0  mL) and 

hexane ( 1 x 1 0  mL) to give [Ru(H)2 (IMes)(PPh3 )2 (CO)] (16). Yield: 0.24 g (45 %). 

‘H NMR (C6 D6, 400 MHz, 25 °C): 8  -6.36 (ddd, VHPc = 26.8, VllPc = 23.6, V h h  =
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6.0 Hz, 1H, Ru-H), -8.08 (ddd, V hp, = 81.2, V hpc = 33.6, Vhh = 6.0 Hz, 1H, Ru-H); 

^ { 'H }  NMR (QOS, 162 MHz, 25 °C): 5 59.0 (d, VPP = 14.8 Hz, Ru-PPh3), 47.8 

(d, VPP = 14.8 Hz, Ru-PPh3).

|RuH(IMes)"(PPh3)2(CO)| (18):

O C '

0 . 0 2  g (0 . 2 1  mmol) of [Ru(H)2 lMes(PPh3 )2 (CO)] (16) was put in a resealable 

Young’s NMR tube and dissolved in C6 D6 , which was vacuum condensed in to the 

tube. 1 atm of ethene was added and this led to complete conversion of the complex 

to the C-H activated product, 18, at room temperature within 15 minutes. *H NMR 

(QDs, 400 MHz, 25 °C): 8  -7.97 (dd, V h p .  = 102.4, V h p .  = 30.8 Hz, 1 H, Ru-H); 

3 IP{‘H> NMR (Q A ,, 162 MHz, 25 °C): 8  53.7 (d, VPP = 18.1 Hz, Ru-PPh3), 28.4 

(d, VPP= 18.1 Hz,PPh3).

[Ru(H)2 (IMes)’(PPh3 )2 (CO)] (19):

—  2 ~ 310 9. /_ // ^  m M 65 11. 8— N N I

1 0  1I  1 4

Ru ^  7 
OCT | PPh3 

H

The preparation has been reported in the literature. 1 2  [Ru(H)2 (PPli3 )3 (CO)] (15) (0.70 

g, 0. 76 mmol) was heated with IMes (0.80 g, 2.6 mmol) in 20 mL toluene for 12 

days at 110 °C. Removal of the solvent gave a dark oil, which was stirred in ethanol 

for 24 hours to afford a white precipitate. This was washed with ethanol ( 3 x 1 0  mL) 

and hexane (1 x 10 mL) to give 18. Yield: 0.1 g (46 %). *H NMR (C6 D5 CD3, 400 

MHz, 25 °C): 8  7.51 (d, Vhh = 1.6 Hz, 1H, H i), 7.38-7.30 (12H, m, PPh3), 6.95- 

6.90 (18H, m, PPh3), 6.83 (2H, s, H70), 6.35 (1H, br s, H74), 6.19 (d, Vhh = 1.6 Hz,
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1H, H2), 6.14 (1H, br s, H76), 2.29 (3H, s, CH 3 6 ), 2.17 (3H, s, CH 3 5), 1.73 (3H, s, 

CH 3 7), 1.56 (6 H, s, CH 3 4), -6.99 (1H, t, 2Jm  = 28.4 Hz, Ru-H); 3 1 P{ 1H} NMR 

(C6 D 5 CD3, 162 MHz, 25 °C): 6  55.1 (s, PPh3); IR (cm 1): 1914 (vco).

^-(IEt2Me2)-[Ru(H)2(IEt2Me2)(PPh3)2(CO)](29):

PPh-

O C
PPh3

The complex was prepared according to literature procedures. 1 3  

[Ru(H)2 (PPh3 )3 (CO)] (15) (1.4 g, 1.53 mmol) and IEt2 Me2  (700 mg, 4.60 mmol) 

were heated at 70 °C in toluene (20 mL) for 20 hours. The volatiles were then 

removed in vacuo and the red/brown oily residue stirred in ethanol (30 mL) 

overnight. The resulting beige solution was filtered to yield a green solid, which was 

subsequently dissolved in benzene and heated for 1 hour at 70 °C. The solution 

turned pink and a white solid precipitated out. The volatiles were removed in vacuo 

and the solid dissolved in THF (10 mL) and layered with hexane (30 mL) affording 

29 as a white, crystalline solid. Yield 0.48 g (39 %). *H NMR (<4-THF, 400 MHz, 

25 °C): 8  7.62-7.48 (m , 12H, PPh3), 7.25-7.07 (m , 18H, PPh3), 3.69 (q , Vhh = 6 . 6  

Hz, 2H, CH2 CH3), 3.28 (q , V h h =  6 . 6  Hz, 2H, CH2 CH3), 2.00 (s, 3H, H 3 CC=CCH 3  

backbone), 1.72 (s, 3H, H 3 CC=CCH3), 1.01 (t, Vhh = 6 . 6  Hz, 3H, CH2 CH3), 0.34 (t, 

V hh  = 6 . 6  Hz, 3H, CH2 CH3), -6.38 (dt, V h p = 26.3 Hz, V h h  = 5.5 Hz, 1 H, Ru-H), 

-9.99 (dt, Vhp = 24.7 Hz, Vhh = 5.5 Hz, 1H, Ru-H); 3 iP{'H} NMR Ms-THF, 162 

MHz, 25 °C) 8  63.7 (s, Ru-PPh3); IR (cm 1): 1913 (vco).

234



Chapter 4 Experimental

fljc-(IEt2 Me2 )-[Ru(H>2 (IEt2 Me2 )(PPh3 )2 (CO )](3 3 ):

^ -(IE t 2 Me2 )-[Ru(H)2 (IEt2 Me2 )(PPh3 )2 (CO)] (29) (0.010 g, 0.012 mmol) was put 

into a J. Young’s resealable NMR tube, dissolved in approximately 0.6 mL of dg- 

THF or J#-toluene and subjected to UV light (X > 285 nm) for 5 hours at -50 °C.

spectroscopy. 'H  NMR (d^THF, 400 MHz, -30 °C): 8  7.78-6.81 (m, 30H, PPh3), 

4.64 (dq, 3./,imc = 7.1 Hz, V,m = 20.9 Hz, 1 H CHaHCHj), 4.51 (dq, VHMe = 7.1 Hz, 

V h h  = 20.9 Hz, 1 H, CHbHCH3), 4.30 (dq, VHMe = 7.1 Hz, V h h  = 20.9 Hz, 1 H,

H 3 CC=CCH3  backbone), 1.84 (s, 3H, H3 CC=CCH3  backbone), 1.23 (t, V h h  = 7.1 

Hz, 3H, CH2 CH 3 ), 1.15 (t, V h h  = 7.1 Hz, 3H, CH2 CH3), -6.03 (ddd, V h p  = 30.7 Hz, 

V h p  = 21.4 Hz, V h h  = 2.7 Hz, 1 H, Ru-HA), -8 . 1 0  (ddd, V h p  = 85.6 Hz, V h p  = 28.5 

Hz, V h h  = 2.7 Hz, 1H, Ru-H); 3 ,P{'H} NMR (rfj-THF, 162 MHz, -30 ° C ): 8  64.45 

(d, VPP = 15.45 Hz, Ru-PPh3), 51.1 (d, VPP = 15.5 Hz, Ru-P); l3C NMR (</«-THF, 

100 MHz, -30 °C) 8  208.1 (m, Ru-CO), 186.3 (dd, VCP = 78.1 Hz, V Cp = 8.3 Hz, 

Ru-C:); IR (cm 1): 1877 (vco).

eq, ox-(ICy)2 -[Ru(H)2 (ICy)2 (PPh 3 )(CO)] (55):14

After this amount o f time 45 % had converted to the axial isomer by H NMR

CHcHCH3), 2.90 (dq, V n M e = 7.1 Hz, V h h  = 20.9 Hz, 1H, CHdHCHj), 2.04 (s, 3H,
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[Ru(H>2 (PPh3 )3 (CO)] (15) (0.275 g, 0.3 mmol) and ICy (0.23 g, 1.0 mmol) were 

dissolved in toluene (30 mL) and heated at 70 °C in a Schlenk flask under argon for 

16 hours. The volatiles were removed in vacuo and the residue washed with hexane 

( 2 x 1 0  mL) and filtered. The resulting cream solid was dissolved in THF (10 mL) 

and layered with hexane to yield cream coloured crystals of 55. Yield 0.14 g (53 %). 

'H  NMR (C6D6, 400 MHz, 25 °C): 8  7.88 (m, 6 H, PPh3), 7.12 (m, 6 H, PPh3), 7.04 

(m, 3H, PPh3), 6.63 (br s, 2H, HC=CH backbone), 6.59 (d, Vhh = 2 . 2  Hz, 1 H, 

HC=CH backbone), 6.56 (d, J,ni = 2.2 Hz, 1H, HC=CH backbone), 5.93 (br s, 2H, 

ipso-CH Cy), 5.48 (m, 1H, ipso-CH Cy), 5.28 (m, 1H, ;>.to-CH Cy), 2.91 (m, 1H, 

ipso-CH Cy), 2.37 (m, 2H, Cy CH2), 1.87-0.77 (m, 38H, Cy CH2), -5.39 (dd, Vhp =

40.1 Hz, 2J h h  = 4.4 Hz, 1H, Ru-H), -9.10 (dd, V h p  = 30.2, 2J h h  = 4.4 Hz, 1H, Ru- 

H); 3 iP{‘H} (C6 D6, 162 MHz, 25 °C): 8  60.8 (s, Ru-PPh3); IR (cm 1): 1864 (vco).

<Le,ox-(ICy)2 -[Ru(H)2 (ICy)2 (PPh3 )(CO)| (56):

OC

\= J

^-ICy-[Ru(H)2 (ICy)2 (PPh3 )(CO)] (55) (0.010 g, 0.012 mmol) was put into a J. 

Young’s resealable NMR tube and dissolved in C6 D6 . The sample was subjected to 

UV light (X, > 285nm) for three days at room temperature. This resulted in the 

isomerisation of the compound to give the trans NHC product in 92 % yield, by 

NMR spectroscopy. NMR ( C ^ ,  400 MHz, 25 °C): 8  8.32-6.42 (m, 19H, PPh3  

and HC=CH backbone), 6.15-5.16 (m, 4H, ipso-CH Cy), 3.23-0.43 (m, 40H, Cy 

CH2), -5.00 (d, 2J h p  = 37.9 Hz, 1H, Ru-HA), -7.48 (d, 2Jm  = 99.3 Hz, 1H, Ru-63); 

^ P ^H }  NMR (CeDe, 162 MHz, 25 °C): 8  50.0 (s, Ru-PPh3); ^ C J ^ }  NMR (C<£>6 , 

100 MHz, 25 °C): 8  210.6 (d, 2JCp = 4.6 Hz, Ru-CO), 192.6 (d, 2JCp  = 8.3 Hz, Ru- 

C:), 143.2 (d, J Cp = 23.9 Hz, P(/-C6 H5)3), 134.9 (d, 2JCP = 11.9 Hz, Pfc-QHsW , 

128.8 (s, P(p-C6 H5)3), 128.2 (d, VCP = 7.4 Hz, P(w-C6 H5 )3 ), 117.1 (s, HC=CH
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backbone) 59.0 (s, ipso-CH Cy), 34.0, 27.0, 26.8 (all s, Cy CH2); IR (cm 1): 1889 

(vco)-

4.2.4. Rhodium precursors

[RhH(PPh 3 )4 ] (69): The method was adapted from the literature. 1 5  Hot solutions of 

[RhCl3 *xH2 0 ] (0.26 g, 1.0 mmol) and potassium hydroxide (0.4 g) in ethanol (20 

mL each) were added rapidly and successively to a vigorously stirred, boiling 

solution o f triphenylphosphine (recrystallised twice from ethanol, 2.62 g, 1 0  mmol) 

in ethanol (100 mL) in a 3-necked round bottomed flask. The mixture was brought 

to reflux for 25 mins and then allowed to cool to room temperature. The precipitated 

product was filtered through a cannula filter and then washed with ethanol (50 mL), 

water (degassed, 50 mL), ethanol (50 mL) and hexane (50 mL). The yellow solid 

was then dried under vacuum overnight to remove all traces of solvent. Yield: 1.0 g, 

(75 %, based on [RhCl3 -3H2 0]). ‘H NMR (CeD*, 400 MHz, 25 °C): 5 8.00-6.50 (m, 

60H, PPh3), -8.06 (d, ' j 1TOl = 13.2 Hz, 1H, Rh-H); ^P j'H }  NMR (C6 D6, 162 MHz, 

25 °C): 8  37.8 (br s, Rh-PPh3); IR (c m 1): 2035 (v„Rh).

|R hlI(PPh 3 )3 (CO)| (70): Adapted from literature . 1 5  [RhCl3 »xH2 0 ]  (0.26 g, 1.0 

mmol) in 20 mL hot ethanol was added to a vigorously stirred, boiling solution of 

recrystallised triphenylphosphine (twice from ethanol, 2.64 g, 10 mmol) in 100 mL 

o f ethanol in a 3-necked round bottomed flask. After a 15 second delay, aqueous 

formaldehyde (10 mL, 40 % w/v solution) and potassium hydroxide (0.4 g) in 

ethanol were added rapidly and successively to the reaction mixture. The mixture 

was brought to reflux for 15 mins and then allowed to cool to room temperature. The 

precipitated product was filtered through a cannula filter and then washed with 

ethanol (50 mL), water (degassed, 50 mL), ethanol (50 mL) and hexane (50 mL). 

The bright yellow, crystalline solid was then dried under vacuum overnight to 

remove all traces o f solvent. Yield 0.63 g (60 %, based on [RhCl3 *3 H2 0 ]). JH NMR 

(CeDfc 400 MHz, 25 °C): 5 8.32-6.58 (m, 45H, Rh-PPh3), -9.26 (br s, 1H, Rh-H);
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3 1 P{‘H} NMR (C6 D6, 162 MHz, 25 °C): 6  40.8 (d, 'yPRh = 153.2 Hz, Rh-PPh3), 29.6 

(br s, Rh-PPh3); IR (cm 1): 2041 ( v h r iO , 1921 (vco).

4.2.5. Rhodium-NHC complexes

4.2.5.1. fRhH(NHCL(PPhi)yl (NHC = IEhMe?. TPnMe?. ICv. x  = 1. 2 or 3 v = 0. 1 

or 2 )

In a typical procedure, [RhH(PPh3 )4 ] (69) (0.05 g, 0.043 mmol) and free NHC 

(IEt2 Me2 , 1 'Pr2 Me2 , ICy 2-6 equivalents) were put into a J. Young’s resealable NMR 

tube in the glove box. Approximately 0.6 mL of C6 D6  or c^-THF was added via 

vacuum transfer. Immediate reaction occurred at room temperature to give a mixture 

of products bearing one, two, three or four NHCs (scheme 4.1.). The ratio of 

products that formed was dependent on the amount of NHC added and the length of 

time the reaction was left for. In many cases, mixtures could not be separated. In 

these instances, resonances associated with the NHC groups could not be assigned to 

specific products due to overlapping signals. Thus, the NMR data for analogues of I- 

V presented below reports definitive resonances only. When an isomer for a 

particular complex is not reported it is because it was not observed. The data for the 

cationic species (analogues of VI) are reported later in section 4.2.8.

H H H

I I I
NHC— Rh----- PPh3 + pph3— Rh PPh3 + NHC Rh PPh3

H | I I
PhsP//,, | PPh3 NHC NHC

J^ R h — PPh3 r t  ,  I II III

ph3p I THF or C6H6
PPh3 NHC H NHC

(69) + H— Rh---PPh3 + NHC— Rh----- NHC + NHC Rh NHC

I I I
NHC NHC NHC

I V  V  V I

Scheme 4.1. Formation of 6  NHC containing products from reaction of 69 and free
NHC at room temperature.
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cis-[RhH(IEt2Me2)(PPh3)2] (cis-71):

Selected NMR data: 'H  NMR (<&-THF, 400 MHz, 25 °C): 8  -5.70 (ddd, 2Jhpb =

113.0 Hz, V h p* = 25.2 Hz, 'Jmk = 24.7 Hz, 1H, Rh-H); ^P f'H } NMR (A-THF, 162 

MHz, 25 °C): 5 49.2 (dd, 'Jpr* = 148.1 Hz, 2Jf f  = 24.5 Hz, Rh-PAPh3), 41.4 (dd, 

' j FRh = 136.5 Hz, 2J PP = 24.5 Hz, Rh-PBPh3).

trans-fRhH(IEt2MeJ(PPhi) 2l(lrans-71):
H

Selected NMR data: 'H NMR (<7a-THF, 400 MHz, 25 °C): 8  -9.59 (dt, = 23.6 

Hz, ‘jHRh = 11.0 Hz, 1H, Rh-H); 3 iP{'H} NMR (rfa-THF, 162 MHz, 25 °C): 8  45.4 

(d, VpRh = 175.0 Hz, Rh-PPh3).

cis-[RhH(IEl2M eM PPh3)J (cis-74):

Selected NMR data: 'H  NMR (rf«-THF, 400 MHz, 25 °C): 8  -8.82 (dd, 2J h p  = 29.1 

Hz, VHRh = 15.9 Hz, 1H, Rh-H); 3 1 P{'H) NMR (dj-THF, 162 MHz, 25 °C): 8  38.5 

(d, ' j PRh = 135.2 Hz, Rh-PPh3); 1 3 C{‘H} NMR (rfs-THF, 100 MHz, 25 °C): 8  197.2 

(dd, VcRh = 57.0 Hz, VCp = 13.8 Hz, Rh-C:), 185.3 (dd, '/cm, = 42.2 Hz, 2J CP = 15.6 

Hz, Rh-C:).
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trans-[RhH(IEt2M e^2(PPh 3)] (trans- 74):

H-----Rh— PPh-

N N1

Selected NMR data: 'H  NMR (rfrTHF, 400 MHz, 25 °C): 5 -4.67 (dd, 2J h p  = 121.3 

Hz, ‘j F|Rh = 35.1 Hz, 1H, Rh-H); 3 1 P{'H} NMR (dg-THF, 162 MHz, 25 °C): 54.7 (d, 

Vprh = 159.7, Rh-PPh3); '^ { 'H }  NMR (rfs-THF, 100 MHz, 25 °C): 8  199.9 (dd, 

VCRh = 46.1 Hz, 2J CP = 10.1 Hz, Rh-C:).

[RhH flE tiM eM  (78):

Selected NMR data: ‘H NMR (dg-THF, 400 MHz, 25 °C): 8  -7.35 (d, ' j HRh = 22.0 

Hz, 1H, Rh-H); 1 3 C{'H} NMR Ms-THF, 100 MHz, 25 °C): 8  205.2 (d, ' j CRh = 58.0 

Hz, Rh-C:), 202.0 (d, 'Jcri, = 40.0 Hz, Rh-C:).

cis-tRhH(tPrJ4eMPPh,)x/ (cis-72):

Selected NMR data: !H NMR (dit-THF, 400 MHz, 25 °C): 8  6.12 (sept, Vim = 7.2 

Hz, 2H, NCH(CH3)2), -6.10 (ddd, 2J hp» = 111.9 H z , ' j HRh = 30.2 Hz, 2J HP, = 24.7 

Hz, 1H, Rh-H); 3 IP{'H} NMR (*-THF, 162 MHz, 25 °C): 8  49.7 (dd, 'J p r i ,  = 148.5
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Hz, Vpp = 23.0 Hz, Rh-PAPh3), 41.6 (dd, V?™ = 138.9 Hz, V PP = 23.0 Hz, Rh- 

PBPh3).

trans-[RhH(IiPr2Me2)(PPh3) 2] (trans-72):
H

P h ,P — Rh— PPh3

Removal of solvent from the initial reaction mixture gave a dark coloured residue.

°C overnight to afford small orange crystals. These were fully characterised by X- 

ray crystallography. 'H NMR M rTHF, 400 MHz, 25 °C): 8  7.80-6.80 (m, 30H, 

PPh3), 5.93 (sept, Vhh = 6.7 Hz, 2H, NCH(CH3 >2 ), 2.13 (s, 6 H, H 3 CC=CCH3  

backbone), 0.71 (d, Vhh = 6.9 Hz, 12H, NCH(CH3 )2 ), -10.13 (dt, 'JnRh = 10.5 Hz, 

Vhp = 25.5 Hz, 1H, Rh-H); 3 iP{‘H} NMR (cfe-THF, 162 MHz, 25 °C): 8  42.7 (d, 

' j PRh = 176.2 Hz, Rh-P); l3 C{‘H> NMR (J«-THF, 100 MHz, 25 °C): 8  198.6 (dt, 

VCRh = 47.5 Hz, Vcp = 10.5 Hz, Rh-C:), 142.7 (virtual t, |‘Jcp + VCp| = 16.1 Hz, P(<- 

CsHs)), 134.8 (virtual t, |2J cp +  VCP| = 6 . 1  Hz, P ^ - C ^ ) ) ,  128.4 (s, PO j-C sH s ) ) ,

127.8 (virtual t, |VCp + VCP| = 3.7 Hz, P(m-C6 H6)), 124.7 (s, H3 CC=CCH 3  

backbone), 53.8 (s, NCH(CH3)2), 21.5 (s, NCH(CH3 )2 ), 10.3 (s, H3 CC=CCH 3  

backbone); CHN % {found (calculated)}: C {69.90 (69.80)} H {6.49 (6.39)} N 

{3.53 (3.46)}.

cis-fRhH(fPr2Me2)  2 (PPh])I (cis-75):

This was dissolved in the minimum amount of ethanol (ca. 0.5 mL) and cooled at -5
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Selected NMR data: 'H  NMR MrTHF, 400 MHz, 25 °C): 5 6.09 (sept, 3J Kii = 7.5 

Hz, 2H, NCH(CH3)2), 5.71 (sept, V hh = 7.5 Hz, 2H, NCH(CH 3 >2 ), -9.54 (dd, 2J hp =

32.2 Hz, Vinth = 15.4 Hz, 1H, Rh-H); 3 1 P{‘H} NMR (rfs-THF, 162 MHz, 25 °C): 5

37.9 (d, ' j PRh =138.1, Rh-PPh3).

trans-lRhII(tPr2Mei)2 (PPh3)] (trans-75):

Selected NMR data: 'H  NMR (cfe-THF, 400 MHz, 25 °C): 5 6.50 (sept, 3J Hh = 7.1 

Hz, 4H, NCH(CH3 )2 ), -5.43 (dd, 2 J Hp = 121.0 Hz, ' j HRh = 34.6 Hz, 1H, Rh-H); 

3 IP{'H} NMR (4s-THF, 162 MHz, 25 °C): 5 52.1 (d, ' j PRh = 161.1 Hz, Rh-PPh3); 

l3 C{'H} NMR (dj-THF, 100 MHz, 25 °C): 8  200.5 (dd, './CRh = 45.3 Hz, 2JCP = 11.0 

Hz, Rh-C:).

cis-[RhH(ICy)(PPh3) 2J (cis-73):

Selected NMR data: ‘H NMR (dj-THF, 400 MHz, 25 °C): 8  -5.88 (ddd, 2Jhp» =

112.0 Hz, ' j HRh = 30.2 Hz, 2J Hp„ = 25.2 Hz, 1H, Rh-H); 3 iP{'H} NMR (</s-THF, 162 

MHz, 25 °C): 8  49.2 (dd, ' j PRh = 148.1 Hz, 2J PP = 24.5 Hz, Rh-PAPh3), 42.6 (dd, 

' j PRh = 142.9 Hz, 2 yPP = 24.5 Hz, Rh-PBPh3).

Rh— PAPh3
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trans-[RhH(ICy)(PPh3)2]  (trans-73):
H

Ph3P— Rh----- PPh3

'H NMR (ds-THF, 400 MHz, 25 °C): 8  7.78-6.89 (m, 30H, Rh-PPh3), 6.83 (s, 2H,

(dt, VHP = 24.7 Hz, 'Jhiui = 11.0 Hz, 1H, Rh-H); 3 1 P{‘H} NMR (da-THF, 162 MHz, 

25 °C): 8  44.0 (d, './m  = 175.1 Hz, Rh-P); ' ^ { ‘H} NMR (rfrTHF, 100 MHz, 25 

°C): 8  199.8 (dt, ' j CRh = 46.9 Hz, 2./CP = 11.0 Hz, Rh-C:), 142.4 (virtual t, | ‘J C p  + 

VCp| = 17.5 Hz, P(/-C6 H6)), 134.8 (virtual t, |27 Cp +  VCP| = 8.3 Hz, P^-CjHs)), 128.5 

(s, P(p-C6 H6 )), 127.8 (virtual t, |VCp + 57CP| = 3.7 Hz, P(m-C6 H6)), 116.4 (s, HC=CH 

backbone), 60.6 (s, NC(C5 Hi0)), 33.8,26.6, 26.4 (all s, Cy CH2).

cis-lRhHQCyMPPh,)] (cis-76):

Selected NMR data: ‘H NMR (rfr THF, 400 MHz, 25 °C): 8  -9.05 (dd, 2Jhp = 32.4 

Hz, ‘JHRh = 15.4 Hz, 1H, Rh-H); 3 1 P{'H} NMR (dj-THF, 162 MHz, 25 °C): 8  38.8 

(d, 'JPR), = 136.6 Hz, Rh-PPh3).

HC=CH backbone), 4.75 (m, 2H, ipso-CR Cy), 2.90-0.26 (m, 20H, Cy CH2), -9.49
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trans-[RhH(ICy)2(PPh 3)] (trans-76):

H NMR (cfo-THF, 400 MHz, 25 °C): 5 7.45-7.00 (m, 15H, PPh3), 6.75 (s, 4H,

HC=CH backbone), 5.31 (m, 4H, ipso-CH Cy), 2.26-0.60 (m, 40H, Cy CH2), -4.99 

(dd, 2J hp = 122.4 Hz, Vhr), = 34.6 Hz, 1H, Rh-H); NMR Ms-THF, 162

MHz, 25 °C): 5 53.3 (d, VPRh = 160.9, Rh-PPh3); '^ { 'H }  NMR (dg-THF, 100 

MHz, 25 °C): 8 199.3 (dd, VCRh = 44.7 Hz, 2JCP = 11.0 Hz), 143.7 (d, J CP = 19.0 Hz, 

P(i-C6H6)), 133.9 (d, 2J Cp = 12.4 Hz, P(m-C6H6)), 127.5 (d, VCP = 7.3 Hz, P(o- 

C6H6)), 127.4 (s, PO-C6H6)), 115.4 (s, HC=CH backbone), 59.1 (s, ipso-CU Cy),

36.4, 26.8,26.7 (all s, Cy CH2).

IRhHQCyhl (79):

Selected NMR data: 'H NMR (4s-T H F, 4 0 0  MHz, 25 °C): 8 -8.12 (d, ‘JnRh = 21.4 

Hz, 1H, Rh-H); l3C{‘H} NMR (*-THF, 100 MHz, 25 °C); 8  205.2 (d, ‘Jmy, = 47.0 

Hz, Rh-C:), 200.8 (d, './crh = 46.0 Hz, Rh-C:).
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4.2.5.2. Reaction oflMes with [RhH(PPhi)jl (69) 

cis-[RhH(IMes)(PPh3)2]  (80):

Rh PPh.

PPh

[RhH(PPh3 )4] (69) (0.05 g, 0.043 mmol) and free IMes (0.05 g, 0.25 mmol) were put 

into a J. Young’s resealable NMR tube in the glove box. Approximately 0.6 mL of 

C6 D6  or ds-THF was added via vacuum transfer. The solution was heated at 50 °C 

for 48 hours at which point there was no 69 left and 80 could be seen by and 

3 1 P ( 1H} NMR spectroscopy. Layering the initial THF solution with EtOH led to 

growth of crystals suitable for X-ray diffraction. However, the complex could not be 

obtained in large enough quantities to assign 1 3C{ 1H} NMR data. CHN analysis 

could not be performed as some C-H activated product was always present. *H NMR 

(rfs-THF, 400 MHz, -50 °C): 8  8.10-6.60 (m, 34H, PPh3 and m-CH), 6.24 (d, 3J,,h = 

20 Hz, 1H, HC=CH backbone), 6.10 (d, % „  = 20 Hz, 1H, HC=CH backbone), 2.29 

(s, 6 H, p-CH}), 1.89 (s, 6 H, o-CH3), 1.78 (s, 6 H, o-CH3), -6.98 (d, Vhp = 109.2 Hz, 

2Jhpc = 33.2 Hz, 'Jhrii = 22.8 Hz, 1H, Rh-H); 3 1 P{'H} NMR (rfj-THF, 162 MHz, 25 

°C): 6  39.5 (br, dd, 'Jprj, = 171.0 H z, 2J pp = 57.0 Hz), 36.7 (br, dd, ' j PRh = 146.0 Hz, 

2Jee = 57.0 Hz); n C{'H} NMR (<*-THF, 100 MHz, 25 °C): 8  209.8 (m, Rh-C:).
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[Rh(IMes) 9 ’(PPh 3)  2J (82):
7
I

6 12 A/UHB| ^ 1 8|
* )<— >?h— PPh3
2̂ N I

I pph3
9 9
I II

1 0 ^ ^ 1 0
II I
5

A solution of [RhH(IMes)(PPh3 )2 ] (80) formed in situ in THF was degassed and 1 

atmosphere of ethene was added at room temperature. The solution was then heated 

at 50 °C for 1.5 hours at which point the sole product was 82. Attempted isolation of 

the complex was unsuccessful. Assignment was primarily performed using 

i3 C{'H}-‘H HMBC and 1 3 C{'H}-'H HMQC spectra. 'H NMR (</«-THF, 400 MHz, 

25 °C): 8  7.17-6.76 (m, 30H, Rh-PPh3), 6.44 (s, 1H, H I4 ), 6.41 (s, 1H, HC=CH 

backbone), 5.11 (s, 1H, H / 6 ), 2.54 (m, 1H, H I8 A), 1.78 (s, 3H, H 7), 1.33 (m, 1H, 

0.70 (br s, 3H, H 6 ); 3 1 P{'H} NMR (rfj-THF, 162 MHz, 25 °C) : 8  44.9 (dd, 

' j PRh = 155.0 Hz, 2JpP = 60.2 Hz, Rh-PPh3), 36.0 (dd, 'Jprj, = 142.1 Hz, 2J PP = 60.2 

Hz, Rh-PPh3); 1 3 C{‘H} NMR Wr THF, 100 MHz, 25 °C): 8  201.0 (ddd, 2J Cp =

105.7 Hz, 'Jbuh = 57.9 Hz, 2J CP = 15.6 Hz, Rh-C7), 146.1 (dd, llbtn = 6.4 Hz, VCp =

1.8 Hz, C /7), 138.2 (s, CIS), 135.8 (s, C /2), 129.1 (s, C /3), 124.2 (s, C / 6 ), 123.0 

(s, C /4), 26.2 (ddd, './CRh = 58.2 Hz, VCp = 18.8 Hz, VCP = 1 1  Hz, C 18), 21.3 (s, 

C7), 16.4 (s, C 6 ).

4.2.5.3. fRhHCNHG)i(CO)I (NHC = 7Pr,Me,. ICv. IMes)

[RhH(PPh3 )3 (CO)] (70) (0.05 g, 0.043 mmol) and free NHC (l'Pr2 Me2, ICy, IMes, 2- 

6  equivalents) were put into a J. Young’s resealable NMR tube in the glove box. 

Approximately 0.6 mL of C6 D 6  or */$-THF was added via vacuum transfer. 

Immediate reaction occurred at room temperature to afford complexes of the general 

formula [RhH(NHC)2 (CO)] and [Rh(NHC)3 (CO)]+ (scheme 4.2.). In many cases,
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mixtures could not be separated. In these instances, resonances associated with the 

NHC groups could not be assigned to specific products due to overlapping signals. 

Thus, the NMR data for analogues of I  and II presented below reports definitive 

resonances only. When an isomer for a particular complex is not reported it is 

because it was not observed. The data for the cationic species (analogues o f III) are 

reported later in section 4.2.8.

Scheme 4.2. Formation of 3 NHC containing products from reaction of 70 and free NHC at
room temperature.

Selected NMR data: *H NMR (</«-THF, 400 MHz, 25 °C): 8  6.12 (sept, 3Jm  = 6 . 6  

Hz, 2H, CH(CH3)), 5.66 (sept, 3Jhh = 6 . 6  Hz, 2H, CH(CH3)), -6.44 (d, ,JkRh = 19.2 

Hz, 1H, Rh-H).

*‘Rh— PPh3  [ £

THF or C6H6
NHC— Rh CO

H

H— Rh CO + NHC— Rh CO

NHC NHC

PPh3 NHC
I

NHC
I I

NHC
m(70)

cis-[RhH(fPr2 Me^2(CO)] (cis-84)

trans-[RhH(IiPr2Me2)2(CO)]  (trans-84):
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Selected NMR data: 'H  NMR (dg-THF, 400 MHz, 25 °C): 5 6.00 (sept, Vhh = 6 . 6  

Hz, 4H, ipso-CH Cy), -4.84 (d, %!«, = 25.8 Hz, 1H, Rh-H).

trans-IRhH(ICy)2 (CO)] (85):

H— Rh---- CO

Selected NMR data: 'H NMR (rfs-THF, 400 MHz, 25 °C): 8  7.04 (s, 4H, HC=CH 

backbone), 5.30 (m, 4H, ipso-CH Cy), 2.53-0.77 (m, 40H, Cy CH2), -4.55 (d, 'Jhrj, 

= 25.8 Hz, 1H, Rh-H); 1 3 C{'H} NMR (ds-THF, 100 MHz, 25 °C): 8 196.0 (d, 'JcRh 

= 59.7 Hz, Rh-CO), 192.5 (d, VCRh = 46.0 Hz, Rh-C:), 116.2 (s, HC=CH backbone),

60.3 (s, ipso-CH Cy), 34.0,26.8,26.4 (all s, Cy CH2); IR (cm 1): 1919 (vco).

trans-fRhH(IMes)rfCO)] (86):

Removal of solvent from the original solution gave a light brown sticky solid. 

Dissolving this in ethanol (1 mL) gave immediate precipitation of a bright yellow 

microcrystalline solid identified as 8 6 . Crystals were not able to be obtained directly 

from this solid. However, crystals of excellent quality were grown from a crude 

benzene solution o f the compound (with free NHC and free phosphine present), 

layered with hexane. *H NMR (</«-THF, 400 MHz, 25 °C): 8  6.91 (s, 4H, HC=CH 

backbone), 6.74 (s, 8 H, m-CH), 2.37 (s, 12H, p-CH3), 1.78 (s, 24H, o-CH3), -4.71 

(d, Vnah = 26.3 Hz, 1H, Rh-H); i3 C{'H} NMR (dg-THF, 100 MHz, 25 °C): 8  197.7 

(d, ‘J CRh = 44.1 Hz, Rh-:C), 194.5 (d, 'JcRh = 60.7 Hz, Rh-CO), 138.7 (s, C5), 136.8
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(s, C 8 ), 136.4 (s, C 6 ), 128.9 (s, C 7), 121.1 (s, HC=CH backbone), 21.1 (s,/?-CH3),

18.4 (s, o-CH3); IR (cm-1): 2036 ( vh ri,) , 1914 (vco); CHN % {found (calculated)}: C 

{69.80 (69.72)} H {6.65 (6.67)} N {7.56 (7.36)}.

4.2.6. Rhodium formate products

[Rh(ICy)2(PPh3)(0C(0)H)] (105):

r =\

H—C—O Rh PPh:

\= J

£raws-[RhH(ICy)2 (PPh3 )] (76) was formed in C6 D6  in a J. Young’s resealable NMR 

tube. 1 atm CO2  was then added at room temperature. Volatiles were removed in 

vacuo and the residue was washed with hexane affording a yellow/orange, oily solid. 

'H  NMR (Q A , 400 MHz, 25 °C): 8  8.60 (dd, 3J HRh = 1.6 Hz, Vm> = 7.1 Hz, 1 H, 

OC(O)H), 6.48 (s, 4H, HC=CH backbone), 5.65 (m, 4H, ipso-CH Cy), 2.18-0.37 

(m, 40H, Cy CH2); ^ { ‘H} NMR (C6 A , 162 MHz, 25 °C): 8  56.6 (d, 'jpRh = 217.0 

Hz, Rh-PPh3).

[Rb(ICy)2(C 0)(0 l3C(0)H)] (106):

/ = \

H—C—O Rh CO

\= J

A solution of [RhH(ICy)2 (CO)] (85) in C&e formed in a J. Young’s resealable 

NMR tube was degassed. 1 atm o f 1 3 CC> 2 was added at room temperature and the 

solution immediately changed from dark red to a bright yellow. A bright yellow 

precipitate also formed immediately. This was removed by cannula filtration and 

the volatiles removed in vacuo. The residue was washed with hexane affording a
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sticky yellow solid. ‘H NMR (C6D6, 400 MHz, 25 °C): S 8.60 (dd, 'Jhc = 188.8 Hz, 

3J h r s  = 1. 6  H z , 1H, OC(O)H), 6.56 (s, 4H, HC=CH backbone), 5.88 (tt, 3J h h  = 12.1 

Hz, Vhh = 3.8 Hz, 4H, ipso-CH Cy), 1.95-0.73 (m, 40H, Cy CH2); 1 3 C{’H} NMR 

(Q A ,, 100 MHz, 25 °C): 5 193.2 (d, 'Jem, = 77.2 Hz, Rh-CO), 185.4 (d, 'Jou, = 

42.3 Hz, Rh-C:), 167.0 (s, OC(O)H) 117.2 (s, HC=CH backbone), 60.81 (s, ipso- 

CH Cy), 34.9, 27.1, 26.6 (all s, Cy CH2); IR (cm 1): 1930 (vco), 1619 (vocoaW , 

1237 (VoCOsym)-

[Rh(IMes)2(CO)(OC(0)H)] (107):

H-C— O— Rh CO

A  sample of [RhH(IMes)2 (CO)] (8 6 ) (0.02 g) was dissolved in C6D6 in a J. Young’s 

resealable NMR tube and degassed. 1 atm CO2  was added at room temperature and 

this immediately resulted in the solution changing from bright yellow to almost 

colourless. IR spectra of both 1 2 C( > 2  and 1 3 CC> 2 material was recorded. ]H NMR 

(C6 D6, 400 MHz, 25 °C): 5 8.00 (s, 1H, OC(O)H), 6 . 8 6  (s, 8 H, w-CH), 6.13 (s, 4H, 

HC=CH backbone), 2.29 (s, 12H, p-CH3), 2.03 (s, 24H, 0 -CH3 ); i3 C{'H} NMR 

(C6 D6, 100 MHz, 25 °C): 8  191.9 (d, 'Jem, = 77.2 Hz, Rh-CO), 188.67 (d, 'Jcrj, =

44.1 Hz, C l), 167.3 (s, OC(0)H (from '^ { 'H J - 'H  HMBC 'J ch = 188.3 Hz)), 138.0,

137.6, 136.7 (all s, C5 C 6 , CS), 129.9 (s, C7), 122.6 (s, C2), 21.9 (s, p-CH}), 19.5 

(s, 0 -CH 3 ); IR (cm 1): 1932 ( v c o ), 1633 (vocoasym), 1320 (vocosym ), 1594 

(voi3coasym ), 1263 ( v 0 i3cosym); CHN % (found (calculated)}: C  (67.12 (67.34)} H 

(5.88 (6.29)} N (7.15 (7.14)}.
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ICy:C02 (108):

r = \

O '  No

A solution of ICy (0.02 g) in degassed THF (0.6 mL) was cooled using liquid N2. 

C 0 2  was condensed across using a vacuum. As the solution was warmed, a pale 

yellow solid immediately precipitated out. Crystals were grown from CD2 CI2  

layered with hexane and the compound was identified by X-ray diffraction 

techniques as a zwitterionic species consisting o f a carbene:C0 2  adduct, which is 

formed in quantitative yield. !H NMR (CD2 CI2 , 400 MHz, 25 °C): 8  7.01 (s, 2H, 

HC=CH backbone), 5.05 (tt, Vhh = 11.5 Hz, V rh = 3.8 Hz, 2H, ipso-CH Cy), 2.14 

(m, 4H Cy CH2), 1.86 (m, 4H, Cy CH2), 1.61-1.37 (m, 12H, Cy CH2); 13C {]H} 

NMR (CD2 CI2 , 100 MHz, 25 °C): 8  155.4 (s, C :-C02), 144.4 (s, C :-C 02), 116.5 (s, 

HC=CH backbone), 58.3 (s, ipso-CH), 33.8, 25.6 (both s, Cy CH2), 25.3 (s,p -  Cy 

CH2); IR (Cm'*)! 1658 (VocO asym ), 1461 (VocO sym )-

4.2.7. Dimeric and trimeric species

[{Rh(PPh3)2}20i-H)0i-PPh2)] (83):

Ph3Pex  PBPh3

/ Rh\  / R\
P W  P c ^  PAPh3

Ph Ph

A solution of [RhH(PPh3 )4 ] (69) (0.05 g, 0.043 mmol) heated in THF (0.75 mL) at 

70 °C for 4 days (or 100 °C overnight) dimerises to the complex 83. Small red 

crystals were grown from THF/ethanol. Yield: 0.02 g (38 %). *H NMR (c/^-THF, 

400 MHz, 25 °C): 8  7.81-6.15 (m, 70H, aromatic protons), -8.81 (m, 1H, Rh-H-Rh); 

31P NMR (fife-THF, 162 Hz, 25 °C): 8  174.1 (ttt, measured from spectra: VpRh = 

136.5 Hz, 2/pcpb= 221.0 Hz, 2JpcpA = 15.5 Hz, Pc), 41.9 (m, values from simulation:

‘jp.Rh = 195.3 Hz, VpARh = 7.8 Hz, VPaPa.= 34.7 Hz, 2J PaPb = 28.6 Hz, VPaPb = 4.0 Hz,
2 1 1  JpApc = 15.0 Hz, P a), 31.4 (m, values from simulation: *7pBRh = 158.2 Hz, JpBRh =
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2.9 Hz, Vpbpb = 2.3 Hz, Vpbpa = 28.6 Hz, 4 J ^ Pa = 4.03 Hz, 2 Jpbpc = 221.3, PB); CHN 

% {found (calculated)}: C {67.88 (70.01)} H {5.05 (4.97)}.

[{Rh(CO)}2(p-H)0i-PPh2)] (102):

/ H\
OC Rh Rh CO

\ /
Ph2

A THF solution o f [RhH(PPh3 )3 (CO)] (70) (0.10 g (0.086 mmol) in 0 . 6  mL) was 

heated at 70 °C for 1 day. After this time about 50 % had dimerised to give 102. 'l I 

NMR (ds-THF, 400 MHz, 25 °C): 5 7.19-6.81 (m, 10H, Rh-PPh2 -Rh), -11.65 (dt, 

2J Hp = 16 H z VuRh = 20 Hz, 1H, Rh-H-Rh); 31P NMR (r/j-THF, 162 Hz, 25 °C): 6

186.2 (t, ‘jpRh= 113.4 Hz, Rh-PPh2 -Rh); '^ { 'H }  NMR Ms-THF, 100 MHz, 25 °C): 

8 208.9 ('Jciu, = 60.4 Hz, VCP = 1 0 . 1  Hz, Rh-CO).

[ {Rh(CO)}3(PPh3)2(|X-PPh2)3) (103):
CO
I

Ph2P ^ Ry ^ P P h 2

Ph3P Rh-------Rh-— PPh,
/  \  /  \

OC P CO 
Ph2

This complex has been reported in the literature. A THF solution o f 

[RhH(PPh3 )3 (CO)] (70) (0.10 g (0.086 mmol) in 0.6 mL) was heated at 70 °C for 4 

days. After this time the solution was pumped to dryness under vacuum, redissolved 

in 2 mL of toluene and layered with 10 mL of ethanol. This yielded dark green 

crystals suitable for X-ray diffraction analysis. Yield 0.06 g (47 %). *H NMR (dg- 

THF, 400 MHz, 25 °C): 5 8.50-5.87 (m, aromatic protons); 3 1 P{!H} NMR (4rTHF, 

162 Hz, 25 °C): 8  135.0 (m, Rh-PPh2 -Rh), 41.5 (m, Rh-PPh3).
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[{Rh(IiP r2Me2)2)}(fi-CO)2{Rh(PPh3)2}] (87):

Rh Rh

V

[RhH(PPh3)3(CO)] (70) (0.025 g, 0.027 mmol) and l'Pr2Me2 (0.014 g, 0.08 mmol) 

were dissolved in C2I)2 in a J. Young’s resealable NMR tube. From the H NMR 

spectrum this appeared to form a mixture o f cis- and /ran.v-[ Rh H (I Pr2Me2 )2(C()) ]. 

However, a small amount o f 87 was seen by phosphorus NMR and when the 

solution was layered with hexane large, dark red crystals o f 87 were isolated. Yield: 

0.01 g (32 %). 'H  NMR (C6D6, 400 MHz, 25 °C): 5 7.89-7.69 (m, 12H, PPh3), 7.11- 

6.92 (m, 18H, PPh3), 6.02 (sept, Vhh = 7.1 Hz, 4H, NH(CH3)2 ), 1.75 (s, 12H, 

H3CC=CCH3 backbone), 1.26 (d, VHH = 7.1 Hz, 12H, NH(CH3)2 ), 0.98 (d, 3Jhh = 

7.13 Hz, 12H, NH(CH3)2 ); 31P('H } NMR (C6D6, 162 MHz, 25 °C): 6 37.6 (dd, 

'./PRh = 236.5 Hz, Vpm, = 7.7 Hz, Rh-PPh3); 13C{'H} NMR (C6D6, 100 MHz, 25 

°C)17: 8 191.2 (d, VCRh = 57.0 Hz, Rh-C:), 141.5 (virtual t, | 'J c p  + 3-/CP|= 12.9 Hz, 

P(/-C6H6)), 135.2 (virtual t, |VCP + VCP|= 8.3 Hz, P(m-C6H6)), 124.6 (s, 

CH3C=CCH3 backbone), 54.1 (s, C(CH3)2), 22.3, 21.7 (both s, C(CH3)2), 11.0 (s, 

CH3C=CCH3); IR (cm 1): 1708 (vco); CHN % (found (calculated)}: C (62.33 

(62.83)} H (6.27 (6.15)} N (4.93 (4.88)}.
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4.2.8. Cationic species 

[Rh(IEt2Me2)4] [P(Ph2)(0 )2] (96):

[RhH(PPh3 )4 ] (69) (0.05 g, 0.043 mmol) and IEt2Me2 (0.014 g, 0.092 mmol) were 

dissolved in dry J^-THF in a J. Young’s resealable NMR tube. When the solution 

was pumped dry, redissolved in benzene and layered with hexane, pale yellow 

crystals of 96 precipitated out. NMR (cfe-THF, 400 MHz, 25 °C): 8 5.41 (dq, 

VHMe = 7.1 Hz, V h h =  6.6 Hz, 8H, CHaHCH3), 3.78 (dq, VHMe = 7.1 Hz, V h h  = 6.6 

Hz, 8H, CHbHCH3), 2.04 ( s , 24H, H 3CC=CCH3 backbone), 0.44 (t, V h h  = 7.1 H z , 

24H, CH2CH3); I3C{'H> NMR (4s-THF, 100 MHz, 25 °C): 5 192.3 (d, Vcm. = 45.0 

Hz, Rh-C:), 124.3 (s, CH3C=CCH3 backbone), 43.9 (s, CH2CH3), 14.5 (s, CH2CH3),

9.4 (s, CH3C=CCH3 backbone).

[RhCIPrjM ej)^ (97): [RhH(PPh3)4] (69) (0.05 g, 0.043 mmol) and I'Pr2Me2 (0.048 

g, 0.26 mmol) were dissolved in dry t/^-THF. When this solution was pumped to 

dryness, dissolved in benzene and layered with hexane, pale yellow crystals 

precipitated out. These were identified by NMR as 97 but the anion could not be 

identified. 'H NMR (rfj-THF, 400 MHz, 25 °C): 5  6.07 (sept, V hh  = 7.2 Hz, 8H, 

NCH(CH3)2), 2.16 (s, 24H, H3CC=CCH3 backbone), 1.46 (d, V hh  = 7.2 Hz, 24H, 

NCH(CH3>2), 0.58 (d, V hh = 7.2 Hz, 24H, NCIRCHj^); 13C{'H} NMR (rfj-THF, 

100 MHz, 25 °C): 6 192.5 (d, Van, = 46.9 Hz, Rh-C:), 125.4 (s, H3CC=CCH3 

backbone), 53.2 (s, N C ^ C H ^ ) ,  20.9 (s, NCH(CH3)2 ), 10.5 (s, H3CC=CCH3 

backbone).
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[RhffPriMezMlPFd (101):

A sample of 97 (ca. 0.02 mg) was dissolved in CD2 CI2  (0.6 mL) and a saturated 

water solution of KPF6 (0.01 g in 2 mL) was stirred in and agitated for 15 mins. This 

led to substitution of the unknown anion to give 101. Although the solution did not 

change colour, cuboid crystals that grew from a CD2 CI2  solution layered with 

pentane were a lilac colour when viewed through one face and red wine coloured 

when viewed through a different face. Unfortunately the X-ray diffraction data was 

unable to be solved to within a low enough R2 value due to the high symmetry o f the

complex. 'H NMR (CD2C12, 400 MHz, 25 °C): 8 4.00 (br, 8H, NCH(CH3)2), 2.16 

(br s, 24H, H 3CC=CCH3 backbone), 1.55 (br d, V hh = 6.9 Hz, 48H, N C H ^Ifch); 

3IP{‘H} NMR (CD2C12, 162 MHz, 25 °C): 8 -145.0 (sept, J PF = 711.0 Hz, PF6'); IR 

(cm 1): 722 (vPF).

[Rh(ICy)4]+ (98):

ICy (0.15 g, 0.65 mmol) and [RhH(PPh3 )4 ] (69) (0.13 g, 0.11 mmol) were dissolved 

in tffe-THF in a J. Young’s resealable ampoule. The solution was stirred at room
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temperature for 24 hours. After this time the THF was removed in vacuo and the 

remaining sticky red solid redissolved in benzene (0.3 mL). This was layered with 

hexane. Pale yellow crystals precipitated out and from X-ray analysis were identified 

as [Rh(ICy)4 ]+. The crystal data was unfortunately not good enough to identify the 

anion conclusively. *H NMR (</«-THF, 400 MHz, 25 °C): 8 7.81-6.80 (m, 10H, 

anion), 7.41 (s, 8H, HC=CH backbone), 6.30-4.42 (br m, 8H, ipso-CU Cy), 2.81- 

0.73 (br m, 80H, Cy CH2).

[RhH(PPh3)3(CO)] (70) (0.025 g, 0.027 mmol) and I'Pr2Me2 (0.027 g, 0.16 mmol) 

were dissolved in cfe-THF in a J. Young’s resealable NMR tube. Upon layering the 

solution with hexane, crystals of 91 grew, which were analysed using X-ray 

diffraction. It is likely that the anion associated with each molecule of 

[Rh(iPr2Me2)3(CO)]+ is different 'H  NMR (dj-THF, 400 MHz, -70 °C): 8 6.03 

(sept, Vhh = 6.9 Hz, 2H, H4/5), 5.34 (sept, Vhh = 6.9 Hz, 2H, H4/5), 5.16 (sept, 

Vhh = 6.85 Hz, 2H, H6), 2.35 (s, 6H, H 16/17), 2.25 (s, 12H, H /8), 1.48 (broad, 

12H, H I 1/ 1 2 ), 0.74 (d, Vhh = 6.9 Hz, 12H, H8/7/9/10), 0.67 (d, Vhh = 6.9 Hz, 12H, 

H8/7/9/10); ,3C{'H} NMR (<7j-pyridine, 100 MHz, 25 °C): 8 192.2 (d, Vera, = 62.5 

Hz, Rh-C 7), 180.1 (d, Vera, = 46.9 Hz, Rh-C3), 179.2 (d, Vera, = 42.3 Hz, Rh-C2)

126.2 (s, C 15), 126.2 (s, C l3/14), 51.7 (s, C6 ), 51.0 (s, C4/S), 23.5, 23.3 (both s, 

C l 1/12), 22.6, 21.9 (both s, C 7/8/9/10), 10.4 (s, CIS), 10.3 (s, C/6/77); IR (cm'1): 

1955 (vco); CHN % {found (calculated)}: C {57.20 (52.23)} H {7.92 (8.66)} N 

{8.47(9.14)}.

[R haiP r2Me2)3(C0)][(P((CH3)2)3(0)4)H](91)
Me. Me

1 8
\

S \
1 7  1 6
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[Rh(IiPr2Me2)3(CO)][PF6] (89):

10\
/

1 4 ~ 1 3

1 6

/*
" 4 \

1 3 .\  „ 
1 5 -Rh- Cf0

✓
1 8

1 5 '

/ 6 \ 9 \  / 2 n  / 7

1 2  1 1  y  5  N  N  4

. 1 4  1 3
10

1 7 1 6

PF*

[RhH(PPh3)3(CO)] (70) (0.025 g, 0.027 mmol) and rPr2Me2 (0.027 g, 0.16 mmol) 

were dissolved in J^-THF in a J. Young’s resealable NMR tube. Upon layering the 

solution with hexane, yellow crystals grew, which were identified as 

[Rh('IPr2Me2)3(CO)]+ by NMR spectroscopy. A saturated, degassed solution of 

KPF6 (0.01 g) in deionised water (2 mL) was stirred into a CD2 CI2  solution of 

[Rh('IPr2Me2 )3(CO)]+ (0.6 mL) and agitated for 15 mins. The water layer was then 

removed via cannula. The counterions were replaced to give 89. Yellow crystals o f 

excellent quality were grown from a CD2 CI2  solution layered with pentane. ]H NMR 

(CD2 CI2 , 400 MHz, -70 °C): 8 5.88 (br sept, VHH = 6.6 Hz, 2H, H5/6), 5.16 (br sept, 

Vhh = 6.6 Hz, 2H, H4), 5.00 (br sept, Vhh = 6.6 Hz, 2H, H5/6), 2.18 (s, 6H, 1116),

2.09 (s, 6H, H 141 IS), 2.05 (s, 6H, H 14115), 1.45 (d, Vhh = 6.6 Hz, 6H, H7/8), 1.38 

(br t (actually two d overlapping), 12H, H7/8 and H9II0/11/1 2 ), 1.30 (d, Vhh = 

6.55Hz, 6H, H9/10/11/12), 0.57 (d, Vhh = 6.55Hz, 6H, H9/10/11/12), 0.48 (d, Vhh 

= 6.55Hz, 6H, H9I10I11I12); l9F NMR (CD2C12, 376.5 MHz, 25 °C): 8 73.6 (d, VFP 
= 709.2 Hz, PF<Q; 31P{'H} NMR (CD2C12, 162 MHz, 25 °C): 8 -144.47 (sept, VPF =
709.2 Hz, PF6 ); NMR (CD2C12, 100 MHz, 25 °C): 8 191.2 (d, VCRh = 64.3

Hz, Rh-CO), 179.47 (d, Vcri, = 39.5 Hz, Rh-C3), 179.0 (d, VCRh = 43.2 Hz, Rh-C2)

126.7 (s, C /5), 125.5 (d, 6.4 Hz, C 13/14), 53.3 (s, C<5), 50.6 (s, C4/5), 21.8, 21.5 

(both s, C l6/17), 20.18 (s, C /8), 10.0 (s, C7/8/9/10), 8.0 (s, C /// /2 ) ;  IR (cm 1): 

1953 (vco), 722 (vPF); CHN % {found (calculated)}: C {50.00 (49.94)} H {7.40 

(7.33)} N {10.29(10.18)}.
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[Rh(ICy)3(CO)][PF6] (90):

PF,

;8~N

[RhH(PPh3)3 (CO)] (70) (0.025 g, 0.027 mmol) and ICy (0.037 g, 0.16 mmol) were 

combined in a J. Young’s resealable NMR tube and dissolved in or <4-THF 

and left at room temperature. After 48 hours a yellow crystalline solid precipitated 

out of solution. This was identified by NMR spectroscopy as being 

[Rh(ICy)3(CO)]+. ‘H NMR (^-pyridine, 400 MHz, 25 °C): 8 7.67 (s, 2H, HP), 7.48 

(s, 4H, H 7/8), 4.68 (br m, 4H, H 4/5), 4.34 (br m, 2H, H6), 2.55-0.60 (m, 60H, Cy 

CH2); i3C NMR (rfj-pyridine, 100 MHz, 25 °C): 8 192.1 (d, ' j CRh = 61.6 Hz, Rh- 

C /), 180.79 (d, 'JcRh = 41.4 Hz, C2), 178.55 (d, 1 J CRh = 46.0 Hz, C3), 120.1 (s, CP),

119.2 (s, C7/8), 60.5 (s, 05), 58.8 (s, C4/5), 35.7 (s), 34.1 (s), 25.8 (m), 25.2 (s),

24.8 (s) (all Cy CH2); IR (cm 1): 1952 (vco).

A saturated, degassed solution o f KPI), (0.01 g) in deionised water (2 mL) was 

stirred into a C1)2C12 solution o f [Rh(lCy)3(CO)]+ (0.6 mL) and agitated for 15 mins. 

The water layer was then removed via cannula. This resulted in the substitution of 

the unknown anions for [PF6]' giving 90 in complete conversion. Large yellow 

crystals were grown from a CD2C12 solution, layered with pentane. H NMR 

(CD2C12, 400 MHz, 25 °C): 8 7.09 (s, 4H, H8/9), 7.03 (s, 2H, HP), 4.6 (br m, 2H, 

H<5), 4.34 (br m, 4H, H4/5), 2.41-0.17 (m, 60H, Cy CH2); l9F NMR (CD2C12, 376.5 

MHz, 25 °C): 8 73.6 (d, 1J Fp = 711.3 Hz, PF6); 31P{'H} NMR (CD2C12, 162 MHz, 

25 °C): 8 -144.5 (sept, ‘J rf  = 711.3 Hz, PF6); l3C{lH} NMR (CD2CI2, 100 MHz, 25 

°C): 8 190.9 (d, ' j CRh = 62.5 Hz, Rh-C7), 180.6 (d, 'jfcRh = 42.3, Rh-C2), 178.7 (d, 

VcRh = 46.0, Rh-C3), 118.3 (s, CP), 117.7 (s, C 7/8), 59.5 (s, C<5), 58.1 (s, C4/5),
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34.4, 33.8, 25.1, 24.7, 24.2, 24.0 (all s, ICy); IR (cm 1): 1956 (vco), 723 (vPF); CHN 

% {found (calculated)}: C {56.2 (56.78)} H {7.32 (7.46)} N {8.46 (8.64)}.

[Rh(I'Pr2Me2)2(ICy)(CO)] [PF6] (95):

[{Rh(PPh3)2}(n-CO)2 {Rh(IiPr2Me2)2 }] (87) (0.10 g, 0.0875 mmol) and ICy (0.02 g, 

0.086 mmol) were dissolved in dg~THF (0.6 mL) in a J. Young’s resealable NMR 

tube. Reaction was observed immediately at room temperature by 31P NMR and 

after a few days at room temperature a yellow solid precipitated out. This was 

dissolved in CD2C12 (0.6 mL) and a degassed solution of KPF6 (0.01 g) in deionised 

water (2 mL) was stirred in. The water was taken off by cannula and the remaining 

CD2C12 solution layered with pentane (2 mL). Small, bright yellow crystals grew 

which were suitable for analysis by X-ray diffraction and were identified as 95. *H 

NMR (CD2C12, 400 MHz, 25 °C): 5 7.00 (s, 1H, HC=CH backbone), 5.57 (sept, 

Vhh = 7.1 H z, 4H, NCH(CH3)2), 4.45 (tt, V hh = 6.9 Hz, V hh = 4.05 Hz, 2H, ipso- 

CH Cy), 2.21 (s, 12H, H3CC=CCH3 backbone), 1.45 (d, V„„ = 7.1 Hz, 24H, 

NCH(CH3)), 1.82-0.74 (m, 20H, Cy CH2); 31P{’H} NMR (CD2C12, 162 MHz, 25 

°C): 8 -144.5 (sept, VPF = 711.0 Hz, PF6‘); IR (cm-1): 1956 (vco), 721 (vPF); 

,3C{‘H} NMR (CD2C12, 100 MHz, 25 °C): 5 194.7 (d, VCRh = 74.5 Hz, Rh-C/),

185.1 (d, VCRh = 42.3 Hz, C2), 178.0 (d, VCRh = 40.4 Hz, Rh-C3), 128.2 (d, VCRh =
11.9 Hz, C8 ), 118.0 (s, C /7), 58.1 (d, VCRh = 13 Hz, CIO), 51.4, 50.7 (both s, C4 /6 ),

22.0 (s, C9), 21.8, 20.6, 20.1 (all s, Cy CH2), 10.1, 7.8 (both s, CJ/7); CHN % 

{found (calculated)}: C {52.53 (50.53)} H {7.42 (7.05)} N {9.67 (8.58)}.
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ICyHPF6 (93):

H

>Fe

KPF6 (0.01 g) in degassed deionised water (2 mL) was added to a CH2 CI2  (0.6 mL) 

solution containing free ICy. When the solution was layered with diethylether, very 

pale yellow crystals grew that were suitable for X-ray diffraction and were identified 

as 94. ‘H NMR (CD2C12, 300 MHz, 25 °C): 8 8.53 (t, Vhh = 1-70 Hz, 1H, CH), 7.31 

(d, Vhh = 1.7 H z, 2H, HC=CH backbone), 4.23 (tt, Vhh = 12.0 Hz, Vhh = 4.0 Hz, 

2H, ipso-CH Cy), 2.27-1.17 (m, 20H, ICy CH2); 19F NMR (CD2C12, 376.5 MHz, 25 

°C): 8 73.1 (d, VFP = 711.0 Hz, PF6 ); 31P NMR (CD2C12, 162 MHz, 25 °C): 8 

-144.4 (sept, VPF = 711.0 Hz, PF6 ); IR (cm 1): 723 (vPF); CHN % {found 

(calculated)}: C {47.20 (47.62)} H {6.30 (6.66)} N {7.31 (7.40)}.

I 'P r2Me2HPF6 (94):

H

> f6-

KPF6 (0.01 g in 2 mL of degassed, deionised water) was added to a CH2 CI2  solution 

(0.6 mL) containing free rPr2Me2 , from NMR the presence of 95 could be seen. *H 

NMR (CD2 CI2 , 300 MHz, 25 °C): 8 8.26 (br s, 1H, CH imidazolium proton), 4.45 

(sept, V= 6.6 Hz, 2H, CH(CH3>2 ), 2.27 (s, 6H, CH3C=CCH3 backbone), 1.57 (d, V  
= 6.6 Hz, 12H, CH(CH3)2); 31P NMR (CD2C12, 162 MHz, 25 °C): 8 -144.4 (sept, 

VPF = 711.0 Hz, PF6‘); 723 (vPF).
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5. Appendices
5.1. Appendix 1: crystallographic data, bond lengths and angles for 

[RhH(rPr2Me2)(PPh3)2] (72).1

[R hH a,P r2Me2)(PPh3)23

Empirical formula C47H5,N2 P2Rh

Formula weight 808.75

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 24.0740(3)A a = 90° 

b = 10.48500(10)A |3 = 116.866(1)° 

c =  18.6690(2)Ay = 90°

Volume 4203.73(8) A3
Z 4

Density (calculated) 1.278 Mg/m3

Absorption coefficient 0.516 mm'1

F(000) 1688

Crystal size 0.25 x 0.25 x 0.20 mm

Theta range for data collection 3.80 to 27.48°

Index ranges -31 <=h<=31; -13<=k<= 13; -24<=1<=24

Reflections collected 30096

Independent reflections 4803 [R(int) = 0.0342]

Absorption correction Semi-empirical from equivalents

Reflections observed (>2o) 4346

Max. and min. transmission 0.91 and 0.88

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4803 / 1 / 270

Goodness-of-fit on F2 1.055

R indices (all data) R1 = 0.0346 w R 2 = 0.0758

Largest d iff peak and hole 0.414 and -0.629 eA'3
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Bond lengths (A) for R hH (rP r2Me2 )(PPh 3 ) 2

Rh(l)-H (l) 1.5965

Rh(l)-P(l) 2.2368(4)

P(l)-C(13) 1.828(2)

P(1)-C(19A) 1.846(4)

N (l)-C (l) 1.361(2)

N(l)-C(3) 1.476(2)

C(2)-C(2)#l 1.353(4)

C(3)-C(4) 1.515(3)

C(7)-C(8) 1.397(3)

C(8)-C(9) 1.385(3)

C(10)-C(ll) 1.375(3)

C(13)-C(18) 1.389(3)

C(14)-C(15) 1.369(4)

C(16)-C(17) 1.396(5)

C( 19)-C(20) 1.3900

C(20)-C(21) 1.3900

C(22)-C(23) 1.3900

C(19A)-C(20A) 1.3900

C(20A)-C(21A) 1.3900

C(22A)-C(23A) 1.3900

H (l)-Rh(l)-C(l) 180.0

Rh(l)-C(l) 2.068(2)

Rh(l)-P(l)#l 2.2368(4)

P(l)-C(7) 1.8425(18)

P(1)"C(19) 1.852(2)

N(l)-C(2) 1.402(2)

C (l)-N (l)#l 1.361(2)

C(2)-C(6) 1.490(3)

C(3)-C(5) 1.518(3)

C(7)-C(12) 1.398(3)

C(9)-C(10) 1.389(3)

C(ll)-C(12) 1.395(3)

C(13)-C(14) 1.395(3)

C(15)-C(16) 1.361(5)

C(17)-C(18) 1.391(4)

C(19)-C(24) 1.3900

C(21)-C(22) 1.3900

C(23)-C(24) 1.3900

C(19A)-C(24A) 1.3900

C(21A)-C(22A) 1.3900

C(23A)-C(24A) 1.3900

H (l)-Rh(l)-P(l) 80.2
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Bond angles (°) for RhH(I,Pr2Me2)(PPh3)2

C(l)-Rh(l)-P(l) 99.804(13) H( 1 )-Rh( 1 )-P( 1 )# 1 80.2

C(l)-Rh(l)-P(l)#l 99.804(13) P(l)-R h(l)-P(l)#l 160.39(3)

C(13)-P(l)-C(7) 99.86(8) C( 13)-P( 1 )-C( 19 A) 106.67(19)

C(7)-P(1)-C(19A) 98.14(15) C(13)-P(l)-C(19) 98.68(16)

C(7)-P(1)-C(I9) 104.33(12) C( 19A)-P( 1 )-C( 19) 9.2(3)

C(13)-P(l)-Rh(l) 115.30(6) C(7)-P(l)-Rh(l) 120.65(6)

C( 19A)-P( 1 )-Rh( 1) 113.83(17) C(19)-P(l)-Rh(l) 114.83(12)

C(l)-N(l)-C(2) 111.60(15) C(l)-N(l)-C(3) 120.92(16)

C(2)-N(l)-C(3) 127.49(16) N (l)#l-C (l)-N (l) 104.0(2)

N (l)#l-C (l)-Rh(l) 128.02(10) N (l)-C(l)-Rh(l) 128.02(10)

C(2)#l-C(2)-N(l) 106.42(10) C(2)#l-C(2)-C(6) 127.58(13)

N(l)-C(2)-C(6) 125.99(18) N(l)-C(3)-C(4) 111.82(18)

N(l)-C(3)-C(5) 112.78(17) C(4)-C(3)-C(5) 112.56(19)

C(8)-C(7)-C(12) 118.20(17) C(8)-C(7)-P(l) 117.81(14)

C(12)-C(7)-P(l) 123.87(14) C(9)-C(8)-C(7) 121.07(19)

C(8)-C(9)-C(10) 119.9(2) C(11)-C(10)-C(9) 119.89(19)

C(10)-C(l 1)-C(12) 120.4(2) C(11)-C(12)-C(7) 120.47(19)

C(18)-C(13)-C(14) 119.0(2) C(18)-C(13)-P(l) 117.29(16)

C(14)-C(13)-P(l) 123.60(18) C(15)-C(14)-C(13) 121.0(3)

C(16)-C(15)-C(14) 120.1(3) C(15)-C(16)-C(17) 120.6(3)

C( 18)-C( 17)-C( 16) 119.5(3) C(13)-C(18)-C(17) 119.8(3)

C(20)-C( 19)-C(24) 120.0 C(20)-C(19)-P(l) 117.3(2)

C(24)-C(19)-P(l) 122.7(2) C( 19)-C(20)-C(21) 120.0

C(22)-C(21 )-C(20) 120.0 C(21)-C(22)-C(23) 120.0

C(22)-C(23)-C(24) 120.0 C(23)-C(24)-C( 19) 120.0

C(20A)-C(19A)-C(24A) 120.0 C(20A)-C( 19A)-P( 1) 117.9(3)

C(24 A)-C( 19 A)-P( 1) 122.1(3) C( 19A)-C(20A)-C(21 A) 120.0

C(22A)-C(21 A)-C(20A) 120.0 C(21 A)-C(22A)-C(23A) 120.0

C(24A)-C(23A)-C(22A) 120.0 C(23A)-C(24A)-C(19A) 120.0
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5.2. Appendix 2: crystallographic data, bond lengths and angles for 

[RhH(IMes)(PPh3)2] (80).2

[RhH(IMes)(PPh3)2]

Empirical formula C6 1 H6 3 N 2 O P 2 RI1

Formula weight 1004.98

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Triclinic

Space group P-l

Unit cell dimensions a =  12.1420(2)A a  = 102.252(1)° 

b = 13.1670(2)A p = 90.491(1)° 

c = 16.2580(3)A y = 90.206(1)°

Volume 2539.89(7) A3
Z 2

Density (calculated) 1.314 Mg/m3

Absorption coefficient 0.443 mm ' 1

F(000) 1052

Crystal size 0.20 x 0.20 x 0.03 mm

Theta range for data collection 3.58 to 27.53°

Index ranges -15<=h<= 15; -16<=k<=17; -21<=1<=21

Reflections collected 40799

Independent reflections 11530 [R(int) = 0.0795]

Reflections observed (>2a) 7475

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 11530/ 11 /609

Goodness-of-fit on F2 1 . 0 1 0

Final R indices [I>2o(I)] R 1 =0.0502 wR2  = 0.0912

R indices (all data) R‘ = 0.1050 wR 2  = 0.1064

Largest diff. peak and hole 0.827 and -0.738 eA‘3
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Bond lengths (A) for [RhHCIMesWPPhjfc]

Rh(l)-C(l) 2.024(3)

Rh(l)-P(l) 2.2894(8)

P(l)-C(22) 1.838(3)

P(2)-C(46) 1.847(3)

P(2)-C(40) 1.855(3)

N(l)-C(2) 1.390(4)

N(2)-C(l) 1.378(4)

N(2)-C(4) 1.447(4)

C(4)-C(5) 1.390(4)

C(5)-C(6) 1.394(5)

C(6)-C(7) 1.373(5)

C(7)-C(l 1) 1.517(5)

C(9)-C(12) 1.501(5)

C(13)-C(14) 1.397(4)

C(14)-C(19) 1.509(4)

C(16)-C(17) 1.386(5)

C(17)-C(18) 1.384(4)

C(22)-C(27) 1.389(4)

C(23)-C(24) 1.376(4)

C(25)-C(26) 1.371(5)

C(28)-C(33) 1.388(4)

C(29)-C(30) 1.385(5)

C(31)-C(32) 1.373(5)

C(34)-C(35) 1.394(4)

C(35)-C(36) 1.382(4)

C(37)-C(38) 1.385(4)

C(40)-C(45) 1.389(4)

C(41)-C(42) 1.382(4)

C(43)-C(44) 1.372(4)

Rh(l)-P(2) 2.2527(8)

P(1)"C(34) 1.836(3)

P(l)-C(28) 1.856(3)

P(2)-C(52) 1.849(3)

N (l)-C (l) 1.370(4)

N(l)-C(13) 1.438(4)

N(2)-C(3) 1.385(4)

C(2)-C(3) 1.335(4)

C(4)-C(9) 1.394(4)

C(5)-C(10) 1.496(5)

C(7)-C(8) 1.380(5)

C(8)-C(9) 1.395(5)

C(13)-C(18) 1.398(4)

C(14)-C(15) 1.388(4)

C(15)-C(16) 1.387(5)

C(16)-C(20) 1.514(5)

C(18)-C(21) 1.517(4)

C(22)-C(23) 1.398(4)

C(24)-C(25) 1.381(5)

C(26)-C(27) 1.395(4)

C(28)-C(29) 1.392(4)

C(30)-C(31) 1.369(5)

C(32)-C(33) 1.387(5)

C(34)-C(39) 1.403(4)

C(36)-C(37) 1.384(4)

C(38)-C(39) 1.377(4)

C(40)-C(41) 1.394(4)

C(42)-C(43) 1.374(5)

C(44)-C(45) 1.390(4)
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C(46)-C(51) 1.386(4)

C(47)-C(48) 1.386(4)

C(49)-C(50) 1.372(5)

C(52)-C(57) 1.389(4)

C(53)-C(54) 1.392(4)

C(55)-C(56) 1.371(5)

0(102)-C(103) 1.402(7)

C(105)-C(104) 1.481(8)

C(104)-C(103) 1.529(9)

C(201)-C(205) 1.565(14)

0(203)-C(204) 1.559(15)

C(46)-C(47) 1.397(4)

C(48)-C(49) 1.381(5)

C(50)-C(51) 1.396(4)

C(52)-C(53) 1.393(4)

C(54)-C(55) 1.379(4)

C(56)-C(57) 1.388(4)

0(102)-C(101) 1.404(7)

C(105)-C(101) 1.509(8)

C(201)-C(202) 1.376(13)

C(202)-0(203) 1.425(13)

C(204)-C(205) 1.484(15)
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Bond angles (°) for

C(l)-Rh(l)-P(2) 155.43(8)

P(2)-Rh(l)-P(l) 99.38(3)

C(34)-P(l)-C(28) 96.61(13)

C(34)-P(l)-Rh(l) 1 1 2 .0 1 ( 1 0 )

C(28)-P(l)-Rh(l) 128.45(10)

C(46)-P(2)-C(40) 98.86(13)

C(46)-P(2)-Rh(l) 110.94(11)

C(40)-P(2)-Rh(l) 126.10(10)

C(l)-N(l)-C(13) 125.1(2)

C(l)-N(2)-C(3) 111.5(3)

C(3)-N(2)-C(4) 122.2(3)

N (l)-C(l)-Rh(l) 128.3(2)

C(3)-C(2)-N(l) 106.8(3)

C(5)-C(4)-C(9) 121.5(3)

C(9)-C(4)-N(2) 117.7(3)

C(4)-C(5)-C(10) 122.1(3)

C(7)-C(6)-C(5) 122.2(3)

C(6)-C(7)-C(ll) 120.9(4)

C(7)-C(8)-C(9) 122.6(3)

C(8)-C(9)-C(12) 120.8(3)

C(18)-C(13)-C(14) 121.3(3)

C(14)-C(13)-N(l) 119.4(3)

C(15)-C(14)-C(19) 121.1(3)

C(16)-C(15)-C(14) 122.4(3)

C( 17)-C( 16)-C(20) 120.9(3)

C(18)-C(17)-C(16) 122.3(3)

C(17)-C(18)-C(21) 120.8(3)

C(27)-C(22)-C(23) 118.3(3)

C(23)-C(22)-P(l) 115.1(2)

[RhH(IMes)(PPh3)2]

C(l)-Rh(l)-P(l) 105.14(8)

C(34)-P(l)-C(22) 106.56(14)

C(22)-P(l)-C(28) 98.09(13)

C(22)-P(l)-Rh(l) 112.38(10)

C(46)-P(2)-C(52) 103.99(13)

C(52)-P(2)-C(40) 99.39(14)

C(52)-P(2)-Rh(l) 114.57(10)

C(l)-N(l)-C(2) 111.7(3)

C(2)-N(l)-C(13) 123.0(3)

C(l)-N(2)-C(4) 125.2(3)

N(l)-C(l)-N(2) 102.7(2)

N(2)-C(l)-Rh(l) 128.4(2)

C(2)-C(3)-N(2) 107.2(3)

C(5)-C(4)-N(2) 120.7(3)

C(4)-C(5)-C(6) 118.1(3)

C(6)-C(5)-C(10) 119.7(3)

C(6)-C(7)-C(8) 118.1(3)

C(8)-C(7)-C(ll) 121.0(4)

C(8)-C(9)-C(4) 117.4(3)

C(4)-C(9)-C(12) 121.8(3)

C(18)-C(13)-N(l) 119.1(3)

C(15)-C(14)-C(13) 117.9(3)

C(13)-C(14)-C(19) 121.0(3)

C(17)-C(16)-C(15) 117.8(3)

C( 15)-C( 16)-C(20) 121.2(3)

C(17)-C(18)-C(13) 118.2(3)

C(13)-C(18)-C(21) 121.0(3)

C(27)-C(22)-P(l) 126.5(2)

C(24)-C(23)-C(22) 120.7(3)
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C(23)-C(24)-C(25) 120.6(3) C(26)-C(25)-C(24) 119.5(3)

C(2 5)-C(26)-C(27) 120.5(3) C(22)-C(27)-C(26) 120.3(3)

C(33)-C(28)-C(29) 116.9(3) C(33)-C(28)-P(l) 118.2(2)

C(29)-C(28)-P(l) 124.8(2) C(30)-C(29)-C(28) 120.9(3)

C(31)-C(30)-C(29) 120.8(3) C(30)-C(31)-C(32) 119.6(3)

C(31 )-C(32)-C(33) 119.4(3) C(28)-C(33)-C(32) 122.3(3)

C(3 5)-C(34)-C(3 9) 118.0(3) C(35)-C(34)-P(l) 124.7(2)

C(39)-C(34)-P(l) 117.3(2) C(3 6)-C(3 5)-C(34) 121.0(3)

C(3 7)-C(3 6)-C(3 5) 120.2(3) C(3 6)-C(3 7)-C(3 8 ) 119.5(3)

C(3 9)-C(3 8)-C(3 7) 120.5(3) C(3 8)-C(3 9)-C(34) 120.7(3)

C(45)-C(40)-C(41) 117.2(3) C(45)-C(40)-P(2) 1 2 1 .2 (2 )

C(41)-C(40)-P(2) 121.4(2) C(42)-C(41 )-C(40) 121.2(3)

C(43)-C(42)-C(41) 120.6(3) C(42)-C(43)-C(44) 119.5(3)

C(43)-C(44)-C(45) 120.1(3) C(40)-C(45)-C(44) 121.4(3)

C(51 )-C(46)-C(47) 117.8(3) C(51)-C(46)-P(2) 117.1(2)

C(47)-C(46)-P(2) 124.9(2) C(48)-C(47)-C(46) 120.9(3)

C(49)-C(48)-C(47) 120.4(3) C(50)-C(49)-C(48) 119.7(3)

C(49)-C(50)-C(51) 120.0(3) C(46)-C(51 )-C(50) 121.2(3)

C(57)-C(52)-C(53) 117.5(3) C(57)-C(52)-P(2) 119.1(2)

C(53)-C(52)-P(2) 123.4(2) C(54)-C(53)-C(52) 121.2(3)

C(55)-C(54)-C(53) 119.8(3) C(56)-C(55)-C(54) 119.9(3)

C(5 5)-C(5 6)-C(5 7) 120.3(3) C(56)-C(57)-C(52) 121.2(3)

C( 103)-O( 102)-C( 101) 111.6(5) C( 104)-C( 105)-C( 101) 103.8(5)

C( 105)-C( 104)-C( 103) 107.1(5) 0 (  102)-C( 103)-C( 104) 106.3(5)

0 (  102)-C( 101 )-C( 105) 109.1(5) C(202)-C(201 )-C(205) 107.3(11)

C(201 )-C(202)-0(203) 1 0 2 .2 ( 1 2 ) C(202)-0(203)-C(204) 107.1(11)

C(205)-C(204)-0(203) 1 0 1 .0 ( 1 1 ) C(204)-C(205)-C(201) 104.6(11)
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5.3. Appendix 3: crystallographic data, bond lengths and angles for 

[{Rh(PPh3 )2 }2 (n-H)(n-PPh2)] (83).3

[{Rh(PPh3 )2 }2 (li-H)(p-PPh2)]

Empirical formula C84 H7 1 P5  Rh2

Formula weight 1441.08

Temperature 293(2) K

Wavelength 0.67750 A
Crystal system Monoclinic

Space group P2i/c

Unit cell dimensions a = 24.3635(11)A a  = 90° 

b = 13.4417(6)A (3 = 95.026(1)° 

c = 21.1106(10)A y = 90°

Volume 6886.9(5) A3
Z 4

Density (calculated) 1.390 Mg/m3

Absorption coefficient 0.641 mm ' 1

F(000) 2960

Crystal size 0 .18x0 .10x0 .10  mm

Theta range for data collection 1.65 to 28.92°

Index ranges -34<=h<=34; -19<=k<=19; -30<=1<=30

Reflections collected 80730

Independent reflections 20885 [R(int) = 0.0802]

Reflections observed (>2o) 13601

Absorption correction SADABS

Max. and min. transmission 0.8843 and 0.9427

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 20885/ 1 /821

Goodness-of-fit on F2 0.795

Final R indices [I>2o(I)] R ! = 0.0321 wR2  = 0.0559

R indices (all data) R 1 = 0.0570 w R 2 = 0.0589

Largest diff. peak and hole 0.560 and -0.412 eA ' 3
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Bond lengths (A) for [{Rh(PPh3)2}2(p-H)(ii-PPh2)]

Rh(l)-H (l) 1.7888 Rh(l)-P(l) 2.2378(5)

Rh(l)-P(3) 2.2599(5) Rh(l)-P(2) 2.3266(5)

Rh(l)-Rh(2) 2.9226(2) Rh(2)-H(l) 1.8193

Rh(2)-P(5) 2.2454(5) Rh(2)-P(l) 2.2488(5)

Rh(2)-P(4) 2.3320(5) P(l)-C (l) 1.826(2)

P(l)-C(7) 1.841(2) P(2)-C(13) 1.833(2)

P(2)-C(19) 1.842(2) P(2)-C(25) 1.845(2)

P(3)-C(31) 1.8361(19) P(3)-C(37) 1.847(2)

P(3)-C(43) 1.848(2) P(4)-C(55) 1.8399(19)

P(4)-C(49) 1.8420(19) P(4)-C(61) 1.8541(19)

P(5)-C(73) 1.840(2) P(5)-C(79) 1.8518(19)

P(5)-C(67) 1.856(2) C(l)-C(6) 1.397(3)

C(l)-C(2) 1.398(3) C(2)-C(3) 1.383(3)

C(3)-C(4) 1.391(3) C(4)-C(5) 1.370(3)

C(5)-C(6) 1.398(3) C(7)-C(12) 1.391(3)

C(7)-C(8) 1.395(3) C(8)-C(9) 1.397(3)

C(9)-C(10) 1.380(4) C(10)-C(ll) 1.358(4)

C(ll)-C(12) 1.399(3) C(13)-C(14) 1.388(3)

C(13)-C(18) 1.402(3) C(14)-C(15) 1.383(3)

C(15)-C(16) 1.376(3) C(16)-C(17) 1.376(3)

C(17)-C(18) 1.381(3) C(19)-C(24) 1.382(3)

C(19)-C(20) 1.393(3) C(20)-C(21) 1.380(3)

C(21)-C(22) 1.375(3) C(22)-C(23) 1.373(3)

C(23)-C(24) 1.390(3) C(25)-C(26) 1.388(3)

C(25)-C(30) 1.391(3) C(26)-C(27) 1.398(3)

C(27)-C(28) 1.369(4) C(28)-C(29) 1.365(4)

C(29)-C(30) 1.401(3) C(31)-C(32) 1.381(3)

C(31)-C(36) 1.400(3) C(32)-C(33) 1.393(3)

C(33)-C(34) 1.383(3) C(34)-C(35) 1.381(3)
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C(35)-C(36) 1.396(3)

C(37)-C(38) 1.394(3)

C(39)-C(40) 1.379(3)

C(41)-C(42) 1.384(3)

C(43)-C(48) 1.389(3)

C(45)-C(46) 1.373(3)

C(47)-C(48) 1.385(3)

C(49)-C(50) 1.400(2)

C(51)-C(52) 1.379(3)

C(53)-C(54) 1.395(3)

C(55)-C(60) 1.392(3)

C(57)-C(58) 1.370(3)

C(59)-C(60) 1.383(3)

C(61)-C(62) 1.396(3)

C(63)-C(64) 1.371(3)

C(65)-C(66) 1.389(3)

C(67)-C(72) 1.403(3)

C(69)-C(70) 1.386(3)

C(71)-C(72) 1.386(3)

C(73)-C(74) 1.390(3)

C(75)-C(76) 1.368(4)

C(77)-C(78) 1.399(3)

C(79)-C(84) 1.394(3)

C(81)-C(82) 1.372(3)

C(83)-C(84) 1.393(3)

C(37)-C(42) 1.389(3)

C(38)-C(39) 1.379(3)

C(40)-C(41) 1.373(3)

C(43)-C(44) 1.383(3)

C(44)-C(45) 1.394(3)

C(46)-C(47) 1.380(3)

C(49)-C(54) 1.384(3)

C(50)-C(51) 1.372(3)

C(52)-C(53) 1.377(3)

C(55)-C(56) 1.391(3)

C(56)-C(57) 1.389(3)

C(58)-C(59) 1.372(3)

C(61)-C(66) 1.387(3)

C(62)-C(63) 1.385(3)

C(64)-C(65) 1.370(3)

C(67)-C(68) 1.391(3)

C(68)-C(69) 1.390(3)

C(70)-C(71) 1.362(3)

C(73)-C(78) 1.388(3)

C(74)-C(75) 1.385(3)

C(76)-C(77) 1.376(3)

C(79)-C(80) 1.392(3)

C(80)-C(81) 1.387(3)

C(82)-C(83) 1.381(3)
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Bond angles (°) for [{Rh(PPh3)2}2(p-H)(n-PPh2)]

H(l)-Rh(l)-P(l) 85.7

P(l)-Rh(l)-P(3) 101.097(19)

P(l)-Rh(l)-P(2) 148.80(2)

H(l)-Rh(l)-Rh(2) 36.3

P(3)-Rh(l)-Rh(2) 146.050(15)

H(l)-Rh(2)-P(5) 164.4

P(5)-Rh(2)-P(l) 99.809(18)

P(5)-Rh(2)-P(4) 102.269(18)

H(l)-Rh(2)-Rh(l) 35.6

P(l)-Rh(2)-Rh(l) 49.188(13)

C(l)-P(l)-C(7) 105.52(9)

C(7)-P(l)-Rh(l) 108.60(6)

C(7)-P(l)-Rh(2) 123.44(7)

C(13)-P(2)-C(19) 100.96(9)

C(19)-P(2)-C(25) 99.17(9)

C(19)-P(2)-Rh(l) 111.80(7)

C(31)-P(3)-C(37) 109.12(9)

C(37)-P(3)-C(43) 99.29(9)

C(37)-P(3)-Rh(l) 109.11(7)

C(55)-P(4)-C(49) 101.68(8)

C(49)-P(4)-C(61) 98.10(8)

C(49)-P(4)-Rh(2) 122.68(6)

C(73)-P(5)-C(79) 97.00(9)

C(79)-P(5)-C(67) 100.95(9)

C(7 9)-P(5)-Rh(2) 121.79(6)

C(6)-C(l)-C(2) 117.92(19)

C(2)-C(l)-P(l) 117.59(14)

C(2)-C(3)-C(4) 119.6(2)

C(4)-C(5)-C(6) 120.6(2)

H(l)-Rh(l)-P(3) 162.6

H(l)-Rh(l)-P(2) 82.6

P(3)-Rh(l)-P(2) 98.619(19)

P(l)-Rh(l)-Rh(2) 49.515(13)

P(2)-Rh(l)-Rh(2) 115.300(14)

H(l)-Rh(2)-P(l) 84.6

H(l)-Rh(2)-P(4) 79.4

P(l)-Rh(2)-P(4) 150.255(19)

P(5)-Rh(2)-Rh( 1) 147.224(14)

P(4)-Rh(2)-Rh(l) 110.459(14)

C(l)-P(l)-Rh(l) 125.58(7)

C(l)-P(l)-Rh(2) 112.54(6)

Rh(l)-P(l)-Rh(2) 81.297(16)

C(13)-P(2)-C(25) 103.07(9)

C(13)-P(2)-Rh(l) 121.45(7)

C(25)-P(2)-Rh(l) 117.07(6)

C(31)-P(3)-C(43) 97.88(9)

C(31)-P(3)-Rh(l) 117.92(7)

C(43)-P(3)-Rh(l) 121.51(6)

C(55)-P(4)-C(61) 100.72(9)

C(5 5)-P(4)-Rh(2) 106.99(6)

C(61)-P(4)-Rh(2) 122.95(6)

C(73)-P(5)-C(67) 105.17(9)

C(73)-P(5)-Rh(2) 120.75(7)

C(67)-P(5)-Rh(2) 108.49(7)

C(6)-C(l)-P(l) 124.29(16)

C(3)-C(2)-C(l) 121.6(2)

C(5)-C(4)-C(3) 119.9(2)

C(l)-C(6)-C(5) 120.3(2)
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C(12)-C(7)-C(8) 117.3(2)

C(8)-C(7)-P(l) 116.86(16)

C(10)-C(9)-C(8) 119.1(3)

C(10)-C(ll)-C(12) 120.4(2)

C(14)-C(13)-C(18) 118.27(19)

C(18)-C(13)-P(2) 124.52(16)

C(16)-C(15)-C(14) 120.2(2)

C(16)-C(17)-C(18) 120.1(2)

C(24)-C( 19)-C(20) 117.9(2)

C(20)-C(19)-P(2) 123.67(16)

C(22)-C(21 )-C(20) 120.4(2)

C(22)-C(23)-C(24) 119.7(2)

C(26)-C(25)-C(30) 118.2(2)

C(3 0)-C(25)-P(2) 120.37(18)

C(28)-C(27)-C(26) 120.0(3)

C(2 8)-C(29)-C(3 0) 120.9(3)

C(32)-C(31)-C(36) 118.64(18)

C(36)-C(31)-P(3) 123.69(16)

C(34)-C(33)-C(32) 120.0(2)

C(34)-C(35)-C(36) 120.6(2)

C(42)-C(37)-C(38) 117.9(2)

C(38)-C(37)-P(3) 115.58(15)

C(40)-C(39)-C(38) 120.0(2)

C(40)-C(41 )-C(42) 120.7(2)

C(44)-C(43)-C(48) 117.60(19)

C(48)-C(43)-P(3) 119.55(16)

C(46)-C(45)-C(44) 120.3(2)

C(46)-C(47)-C(48) 120.3(2)

C(54)-C(49)-C(50) 117.89(17)

C(50)-C(49)-P(4) 122.50(15)

C(50)-C(51 )-C(52) 120.74(19)

C(12)-C(7)-P(l) 125.67(17)

C(7)-C(8)-C(9) 121.7(2)

C(ll)-C(10)-C(9) 120.6(2)

C(7)-C(12)-C(l 1) 120.9(2)

C(14)-C(13)-P(2) 117.15(15)

C( 15)-C( 14)-C( 13) 120.7(2)

C(17)-C(16)-C(15) 120.1(2)

C(17)-C(18)-C(13) 120.6(2)

C(24)-C(l 9)-P(2) 118.37(16)

C(21 )-C(20)-C( 19) 120.8(2)

C(23)-C(22)-C(21) 119.8(2)

C( 19)-C(24)-C(23) 121.3(2)

C(26)-C(25)-P(2) 121.10(17)

C(25)-C(26)-C(27) 121.1(2)

C(29)-C(28)-C(27) 119.8(2)

C(25)-C(3 0)-C(29) 120.0(2)

C(32)-C(31)-P(3) 117.26(14)

C(31 )-C(32)-C(33) 121.2(2)

C(35)-C(34)-C(33) 119.6(2)

C(35)-C(36)-C(31) 120.0(2)

C(42)-C(37)-P(3) 126.47(16)

C(3 9)-C(3 8)-C(3 7) 121.2(2)

C(41)-C(40)-C(39) 119.6(2)

C(41 )-C(42)-C(37) 120.5(2)

C(44)-C(43)-P(3) 122.85(16)

C(43)-C(44)-C(45) 121.2(2)

C(45)-C(46)-C(47) 119.2(2)

C(47)-C(48)-C(43) 121.4(2)

C(54)-C(49)-P(4) 119.55(14)

C(51)-C(50)-C(49) 121.08(19)

C(53)-C(52)-C(51) 119.1(2)
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C(52)-C(53)-C(54) 120.5(2)

C(5 6)-C(5 5)-C(60) 118.46(18)

C(60)-C(55)-P(4) 116.71(15)

C(5 8)-C(5 7)-C(5 6) 120.3(2)

C(5 8)-C(5 9)-C(60) 120.5(2)

C(66)-C(61 )-C(62) 117.83(18)

C(62)-C(61)-P(4) 119.11(15)

C(64)-C(63)-C(62) 120.1(2)

C(64)-C(65)-C(66) 120.3(2)

C(68)-C(67)-C(72) 117.38(19)

C(72)-C(67)-P(5) 124.26(16)

C(7 0)-C(69)-C(68) 119.9(2)

C(70)-C(71)-C(72) 121.2(2)

C(78)-C(73)-C(74) 118.29(19)

C(74)-C(73)-P(5) 123.59(17)

C(7 6)-C(7 5)-C(74) 120.1(2)

C(76)-C(77)-C(78) 120.1(2)

C(80)-C(79)-C(84) 117.57(18)

C(84)-C(79)-P(5) 122.26(16)

C(82)-C(81 )-C(80) 120.4(2)

C(82)-C(83)-C(84) 119.5(2)

C(49)-C(54)-C(53) 120.67(18)

C(56)-C(55)-P(4) 124.82(15)

C(5 7)-C(5 6)-C(5 5) 120.39(19)

C(57)-C(58)-C(59) 119.9(2)

C(5 9)-C(60)-C(5 5) 120.4(2)

C(66)-C(61)-P(4) 123.02(15)

C(63)-C(62)-C(61) 121.0(2)

C(65)-C(64)-C(63) 120.0(2)

C(61)-C(66)-C(65) 120.8(2)

C(68)-C(67)-P(5) 118.30(15)

C(69)-C(68)-C(67) 121.4(2)

C(71 )-C(7 0)-C(69) 119.4(2)

C(71 )-C(72)-C(67) 120.6(2)

C(78)-C(73)-P(5) 117.76(16)

C(75)-C(74)-C(73) 121.1(2)

C(75)-C(76)-C(77) 120.1(2)

C(73)-C(78)-C(77) 120.3(2)

C(80)-C(79)-P(5) 120.11(16)

C(81 )-C(80)-C(7 9) 121.1(2)

C(81)-C(82)-C(83) 120.0(2)

C(83)-C(84)-C(79) 121.4(2)
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5.4. Appendix 4: crystallographic data, bond lengths and angles for 

[RhH(IMes)2(CO)] (86).4

[Rh H(IMes)2(C O)]

Empirical formula C 4 3  H 4 7  N 4  O Rh

Formula weight 738.76

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Orthorhombic

Space group Pbca

Unit cell dimensions a =  17.2090(1)A a  = 90° 

b = 19.1070(1)A |3 = 90° 

c = 23.1810(1)A y = 90°

Volume 7622.20(7) A3
Z 8

Density (calculated) 1.288 Mg/m3

Absorption coefficient 0.485 mm'1

F(000) 3088

Crystal size 0.60 x 0.50 x 0.40 mm

Theta range for data collection 3.52 to 30.04°

Index ranges -24<=h<=24; -26<=k<=26; -32<=1<=32

Reflections collected 149425

Independent reflections 11139 [R(int) = 0.0496]

Reflections observed (>2o) 9193

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.79 and 0.76

Refinement method Full-matrix least-squares on F

Data / restraints / parameters 1 1139 /0 /453

Goodness-of-fit on F2 1.082

Final R indices [I>2o(I)] R ‘ = 0.0338 wR2 = 0.0876

R indices (all data) R1 = 0.0455 wR2 = 0.0977

Largest diff. peak and hole 1.025 and -0.757 eA‘3
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Bond lengths (A) for [RhH(IMes>2(CO)]

Rh(l)-H(l) 1.76(3) Rh(l)-C(l) 1.843(2)

Rh(l)-C(23) 2.0165(16) Rh(l)-C(2) 2.0191(17)

0(1)-C(1) 1.144(3) N(l)-C(2) 1.356(2)

N(l)-C(3) 1.392(2) N(l)-C(5) 1.434(2)

N(2)-C(2) 1.368(2) N(2)-C(4) 1.394(2)

N(2)-C(14) 1.437(3) N(3)-C(23) 1.361(2)

N(3)-C(24) 1.398(2) N(3)-C(26) 1.439(2)

N(4)-C(23) 1.372(2) N(4)-C(25) 1.393(2)

N(4)-C(35) 1.434(2) C(3)-C(4) 1.331(3)

C(5)-C(6) 1.393(2) C(5)-C(10) 1.393(3)

C(6)-C(7) 1.384(3) C(6)-C(ll) 1.500(3)

C(7)-C(8) 1.380(4) C(8)-C(9) 1.396(4)

C(8)-C(12) 1.508(4) C(9)-C(10) 1.387(4)

C(10)-C(13) 1.508(3) C(14)-C(15) 1.393(3)

C(14)-C(19) 1.402(3) C(15)-C(16) 1.395(3)

C(15)-C(20) 1.511(3) C(16)-C(17) 1.387(3)

C(17)-C(18) 1.387(3) C(17)-C(21) 1.514(3)

C(18)-C(19) 1.390(3) C(19)-C(22) 1.501(3)

C(24)-C(25) 1.345(3) C(26)~C(31) 1.396(2)

C(26)-C(27) 1.401(3) C(27)-C(28) 1.391(3)

C(27)-C(32) 1.509(3) C(28)-C(29) 1.394(3)

C(29)-C(30) 1.386(3) C(29)-C(33) 1.511(3)

C(30)-C(31) 1.394(3) C(31)-C(34) 1.503(3)

C(35)-C(36) 1.392(3) C(35)-C(40) 1.401(3)

C(36)-C(37) 1.394(3) C(36)-C(41) 1.505(3)

C(37)-C(38) 1.394(3) C(38)-C(39) 1.388(3)

C(38)-C(42) 1.517(3) C(39)-C(40) 1.390(3)

C(40)-C(43) 1.509(3)
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Bond angles (°) for [RhH(IMes)2(CO>]

H(l)-Rh(l)-C(l) 178.6(9)

C(l)-Rh(l)-C(23) 94.61(8)

C(l)-Rh(l)-C(2) 92.41(8)

C(2)-N(l)-C(3) 111.70(16)

C(3)-N(l)-C(5) 123.24(16)

C(2)-N(2)-C(14) 123.76(15)

C(23)-N(3)-C(24) 112.09(15)

C(24)-N(3)-C(26) 123.96(15)

C(23)-N(4)-C(35) 123.79(14)

0(1)-C(l)-Rh(l) 178.5(2)

N(l)-C(2)-Rh(l) 128.42(13)

C(4)-C(3)-N(l) 106.84(18)

C(6)-C(5)-C(10) 121.99(19)

C(10)-C(5)-N(l) 118.91(17)

C(7)-C(6)-C(l 1) 120.69(19)

C(8)-C(7)-C(6) 122.2(2)

C(7)-C(8)-C(12) 121.1(3)

C(10)-C(9)-C(8) 121.8(2)

C(9)-C(10)-C(13) 122.2(2)

C(15)-C(14)-C(19) 122.05(19)

C( 19)-C( 14)-N(2) 118.69(19)

C( 14)-C( 15)-C(20) 121.6(2)

C(17)-C(16)-C(15) 121.8(2)

C(18)-C(17)-C(21) 120.38(19)

C(17)-C(18)-C(19) 122.54(18)

C( 18)-C( 19)-C(22) 121.68(18)

N(3)-C(23)-N(4) 103.10(14)

N(4)-C(23)-Rh( 1) 129.90(13)

C(24)-C(25)-N(4) 106.82(17)

H(l)-Rh(l)-C(23) 85.3(8)

H(l)-Rh(l)-C(2) 87.6(8)

C(23)-Rh(l)-C(2) 172.91(7)

C(2)-N(l)-C(5) 125.02(15)

C(2)-N(2)-C(4) 111.19(17)

C(4)-N(2)-C(14) 125.05(17)

C(23)-N(3)-C(26) 123.91(14)

C(23>N(4)-C(25) 111.66(16)

C(25)-N(4)-C(35) 124.09(15)

N(l)-C(2)-N(2) 103.43(15)

N(2)-C(2)-Rh(l) 128.14(13)

C(3)-C(4)-N(2) 106.84(18)

C(6)-C(5)-N(l) 119.08(17)

C(7)-C(6)-C(5) 117.86(19)

C(5)-C(6)-C(l 1) 121.44(18)

C(7)-C(8)-C(9) 118.2(2)

C(9)-C(8)-C(12) 120.7(3)

C(9)-C(10)-C(5) 117.8(2)

C(5)-C(10)-C(13) 120.1(2)

C(15)-C(14)-N(2) 119.26(17)

C( 14)-C( 15)-C( 16) 118.01(19)

C( 16)-C( 15)-C(20) 120.3(2)

C(18)-C(17)-C(16) 118.3(2)

C(16)-C(17)-C(21) 121.4(2)

C(18)-C(19)-C(14) 117.33(19)

C( 14)-C( 19)-C(22) 120.98(18)

N(3)-C(23)-Rh( 1) 127.00(13)

C(25)-C(24)-N(3) 106.32(16)

C(31)-C(26)-C(27) 122.04(17)
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C(31)-C(26)-N(3) 119.04(16) C(27)-C(26)-N(3) 118.92(16)

C(28)-C(27)-C(26) 118.09(18) C(28)-C(27)-C(32) 121.05(19)

C(26)-C(27)-C(3 2) 120.86(18) C(27)-C(28)-C(29) 121.42(19)

C(30)-C(29)-C(28) 118.75(19) C(30)-C(29)-C(33) 121.1(2)

C(28)-C(29)-C(33) 120.2(2) C(29)-C(30)-C(31) 122.04(19)

C(30)-C(31)-C(26) 117.64(18) C(30)-C(31)-C(34) 120.89(17)

C(26)-C(31 )-C(34) 121.47(17) C(36)-C(35)-C(40) 122.11(17)

C(3 6)-C(3 5 )-N (4) 120.17(16) C(40)-C(3 5)-N (4) 117.72(16)

C(3 5)-C(3 6)-C(3 7) 117.83(18) C(35)-C(36)-C(41) 121.96(17)

C(37)-C(36)-C(41) 120.19(17) C(38)-C(37)-C(36) 121.83(19)

C(3 9)-C(3 8)-C(3 7) 118.41(19) C(39)-C(38)-C(42) 120.9(2)

C(37)-C(38)-C(42) 120.7(2) C(3 8)-C(39)-C(40) 122.00(19)

C(3 9)-C(40)-C(3 5) 117.82(18) C(39)-C(40)-C(43) 121.70(18)

C(35)-C(40)-C(43) 120.47(18)
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5.5. Appendix 5: crystallographic data, bond lengths and angles for 

[{Rh(rPr2Me2)}(^-CO)2{Rh(PPh3)2](87).5 

[{Rh(l'Pr2Me2)}((*-CO)2{Rh(PPh3)2]

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

Volume

Z

Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Reflections observed (>2o) 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2  

Final R indices [I>2a(I)]

R indices (all data)

Absolute structure parameter

C3 0 H 3 5 N 2 O P Rh 

573.48 

150(2) K 

0.71073 A 

Monoclinic 

C2

a =  18.7420(2)A a  = 90° 

b = 13.3980(2)A p = 118.4930(10)° 

c =  12.55700(10)Ay = 90°

2771.21(6) A3 

4

1.375 Mg/m3 

0.698 mm'1 

1188

0.50 x 0.25 x 0.10 mm

3.56 to 28.27°

-24<=h<=24; -17<=k<=17; -16<=1<=16 

23814

6654 [R(int) = 0.0472]

6310

Semi-empirical from equivalents 

0.88 and 0.57

Full-matrix least-squares on F2  

6654/ 1 /317

1.057

R’ = 0.0267 wR2  = 0.0611 

R 1 = 0.0304 wR2 = 0.0635 

-0.040(19)
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Largest diff. peak and hole 1.022 and -0.916 eA'3
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Bond lengths (A) for [{Rh(I,Pr2Me2)}(n-CO)2 !Rh(PPh3)2|

Rh(l)-C(l)#l 1.995(3)

Rh(l)-P(l)#l 2.3019(6)

Rh(l)-Rh(2) 2.6939(3)

Rh(2)-C(l)#l 2.005(3)

Rh(2)-C(2) 2.073(2)

P(l)-C(19) 1.836(2)

0(1)-C(1) 1.1570(18)

N(l)-C(3) 1.403(3)

N(2)-C(2) 1.365(3)

N(2)-C(10) 1.481(3)

C(3)-C(8) 1.495(3)

C(5)-C(6) 1.516(4)

C(10)-C(ll) 1.518(4)

C(13)-C(18) 1.394(4)

C(14)-C(15) 1.390(4)

C(16)-C(17) 1.394(5)

C(19)-C(20) 1.392(4)

C(20)-C(21) 1.383(4)

C(22)-C(23) 1.377(4)

C(25)-C(30) 1.394(4)

C(26)-C(27) 1.396(5)

C(28)-C(29) 1.379(5)

Rh(l)-C(l) 1.995(3)

Rh(l)-P(l) 2.3019(6)

Rh(2)-C(l) 2.005(3)

Rh(2)-C(2)#l 2.073(2)

P(l)-C(25) 1.831(3)

P(l)-C(13) 1.845(2)

N(l)-C(2) 1.355(3)

N(l)-C(5) 1.479(3)

N(2)-C(4) 1.402(3)

C(3)-C(4) 1.354(3)

C(4)-C(9) 1.488(4)

C(5)-C(7) 1.527(4)

C(10)-C(12) 1.528(4)

C(13)-C(14) 1.401(4)

C(15)-C(16) 1.360(6)

C(17)-C(18) 1.383(4)

C(19)-C(24) 1.391(4)

C(21)-C(22) 1.383(4)

C(23)-C(24) 1.394(4)

C(25)-C(26) 1.395(4)

C(27)-C(28) 1.363(5)

C(29)-C(30) 1.389(4)

283



Chapter 5 Appendices

Bond angles (°) for [{Rh(IlPr2Me2>}(n-CO)2{Rh(PPh3)2]

C (l)#l-R h(l)-C (l) 95.64(16)

C (l)-Rh(l)-P(l)#l 109.60(3)

C(l)-Rh(l)-P(l) 107.83(3)

C(1 )# 1 -Rh( 1 )-Rh(2) 47.82(8)

P( 1 )# 1 -Rh( 1 )-Rh(2) 118.543(16)

C(l)-Rh(2)-C(l)#l 95.03(16)

C( 1 )# 1 -Rh(2)-C(2)# 1 86.29(9)

C( 1 )# 1 -Rh(2)-C(2) 168.07(7)

C(l)-Rh(2)-Rh(l) 47.52(8)

C(2)# 1 -Rh(2)-Rh( 1) 132.57(6)

C(25)-P(l)-C(19) 102.14(11)

C(19)-P(l)-C(13) 97.99(12)

C(19)-P(l)-Rh(l) 117.78(8)

C(2)-N(l)-C(3) 111.5(2)

C(3)-N(l)-C(5) 127.2(2)

C(2)-N(2)-C(10) 121.76(19)

0(1)-C(l)-Rh(l) 125.7(3)

Rh(l)-C(l)-Rh(2) 84.663(6)

N(l)-C(2)-Rh(2) 130.01(17)

C(4)-C(3)-N(l) 106.5(2)

N(l)-C(3)-C(8) 125.5(2)

C(3)-C(4)-C(9) 127.8(2)

N(l)-C(5)-C(6) 113.5(2)

C(6)-C(5)-C(7) 113.6(2)

N(2)-C(10)-C(12) 112.3(2)

C(18)-C(13)-C(14) 118.2(2)

C(14)-C(13)-P(l) 125.3(2)

C(16)-C(15)-C(14) 121.2(3)

C(18)-C(17)-C(16) 119.6(3)

C (l)# l-R h(l)-P(l)# l 107.83(3)

C (l)#l-R h(l)-P(l) 109.60(3)

P(l)#l-R h(l)-P (l) 122.91(3)

C(l)-Rh(l)-Rh(2) 47.82(8)

P(l)-Rh(l)-Rh(2) 118.543(16)

C(l)-Rh(2)-C(2)#l 168.07(7)

C(l)-Rh(2)-C(2) 86.29(9)

C(2)# 1 -Rh(2)-C(2) 94.87(12)

C( 1 )# 1 -Rh(2)-Rh( 1) 47.52(8)

C(2)-Rh(2)-Rh( 1) 132.57(6)

C(25)-P(l)-C(13) 103.58(12)

C(25>P(l)-Rh(l) 114.13(8)

C(13)-P(l)-Rh(l) 118.58(8)

C(2)-N(l)-C(5) 1 2 1 .2 (2 )

C(2)-N(2)-C(4) 111.27(19)

C(4)-N(2)-C(10) 127.0(2)

0(1)-C(l)-Rh(2) 149.6(3)

N(l)-C(2)-N(2) 104.35(19)

N(2)-C(2)-Rh(2) 125.54(16)

C(4)-C(3)-C(8) 127.9(2)

C(3)-C(4)-N(2) 106.4(2)

N(2)-C(4)-C(9) 125.8(2)

N(l)-C(5)-C(7) 1 1 0 .8 (2 )

N(2)-C(10)-C(ll) 112.3(2)

C(ll)-C(10)-C(12) 1 1 2 . 1 (2 )

C(18)-C(13)-P(l) 116.46(19)

C(15)-C(14)-C(13) 119.9(3)

C(15)-C(16)-C(17) 119.8(3)

C( 17)-C( 18)-C( 13) 121.2(3)
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C(20)-C( 19)-C(24) 119.4(2)

C(24)-C(19)-P(l) 118.6(2)

C(20)-C(21 )-C(22) 120.1(3)

C(22)-C(23)-C(24) 121.1(3)

C(30)-C(25)-C(26) 117.7(3)

C(26)-C(25)-P(l) 119.7(2)

C(28)-C(27)-C(26) 119.8(3)

C(28)-C(29)-C(30) 120.2(3)

C(20)-C(19)-P(l) 122.01(19)

C(21 )-C(20)-C( 19) 1 2 0 .6 (2 )

C(23)-C(22)-C(21) 119.6(2)

C( 19)-C(24)-C(23) 119.3(3)

C(30)-C(25)-P(l) 1 2 2 .2 (2 )

C(27)-C(26)-C(25) 121.2(3)

C(27)-C(28)-C(29) 120.3(3)

C(29)-C(30)-C(25) 120.7(3)
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5.6. Appendix 6: crystallographic data, bond lengths and angles for 

[Rh(I'Pr2 Me2 )3 (CO)][PF6] (89).

[Rh(I'Pr2Me2)3(CO)][PF6]

Empirical formula C3 4  H6 o F6  N 6  O P Rh

Formula weight 816.76

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group P-l

Unit cell dimensions a = 9.9830(1)A a = 80.367(1)° 

b = 12.7140(1)A P = 76.200(1)° 

c = 16.4590(1)A y = 80.032(1)°

Volume 1980.69(3) A3
Z 2

Density (calculated) 1.369 Mg/m3

Absorption coefficient 0.534 mm ' 1

F(000) 856

Crystal size 0.45 x 0.40 x 0.40 mm

Theta range for data collection 3.56 to 30.91°.

Index ranges -14<=h<= 14; -18<=k<= 18; -22<=1<=23

Reflections collected 40529

Independent reflections 12310 [R(int) = 0.0399]

Reflections observed (>2a) 11164

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.82 and 0.70

Refinement method Ful 1-matrix least-squares on F2

Data / restraints / parameters 12310/0 /461

Goodness-of-fit on F2 1.046

Final R indices [I>2o(I)] R 1 = 0.0306 wR2  = 0.0743

R indices (all data) R 1 = 0.0361 wR2  = 0.0774

Largest diff. peak and hole 0.864 and -0.846 eA ' 3
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Bond lengths (A) for [Rh(I1Pr2Me2)3(CO)][PF6]

Rh(l)-C(l)

Rh(l)-C(24)

P(l)-F(2)

P(1)"F(1)

P(l)-F(5)

0(1)-C(1)

N(l)-C(3)

N(2)-C(2)

N(2)-C(10)

N(3)-C(14)

N(4)-C(13)

N(4)-C(21)

N(5)-C(25)

N(6)-C(24)

N(6)-C(32)

C(3)-C(8)

C(5)-C(6)

C(10)-C(12)

C(14)-C(15)

C(15)-C(20)

C(16)-C(17)

C(21)-C(22)

C(25)-C(30)

C(27)-C(29)

C(32)-C(34)

1.8367(15)

2.0775(13)

1.5839(17)

1.5897(12)

1.5920(12)

1.1415(19)

1.3974(18)

1.3649(18)

1.4764(19)

1.3999(19)

1.3554(18)

1.472(2)

1.395(2)

1.3546(17)

1.4725(18)

1.497(2)

1.520(2)

1.524(2)

1.348(3)

1.497(2)

1.528(2)

1.521(2)

1.493(2)

1.524(2)

1.512(2)

Rh(l)-C(13)

Rh(l)-C(2)

P(l)-F(4)

P(l)-F(6 )

P(l)-F(3)

N(l)-C(2)

N(l)-C(5)

N(2)-C(4)

N(3)-C(13)

N(3)-C(16)

N(4)-C(15)

N(5)-C(24)

N(5)-C(27)

N(6)-C(26)

C(3)-C(4)

C(4)-C(9)

C(5)-C(7)

C(10)-C(ll)

C(14)-C(19)

C(16)-C(18)

C(21)-C(23)

C(25)-C(26)

C(26)-C(31)

C(27)-C(28)

C(32)-C(33)

2.0738(14)

2.1490(13)

1.5886(17)

1.5912(13)

1.5960(13)

1.3682(17)

1.4743(19)

1.3948(18)

1.3620(19)

1.481(2)

1.398(2)

1.3658(17)

1.4825(19)

1.3983(19)

1.352(2)

1.497(2)

1.530(2)

1.528(2)

1.498(2)

1.527(2)

1.517(3)

1.353(2)

1.496(2)

1.527(2)

1.523(2)
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Bond angles (°) for

C(l)-Rh(l)-C(13) 87.95(6)

C( 13)-Rh( 1 )-C(24) 177.56(5)

C(13)-Rh(l)-C(2) 90.01(5)

F (2)-P( 1 )-F (4) 178.80(11)

F(4)-P(l)-F(l) 89.65(9)

F(4)-P(l)-F(6) 90.81(11)

F(2)-P(l)-F(5) 88.24(9)

F(l)-P(l)-F(5) 91.37(7)

F(2)-P(l)-F(3) 91.60(10)

F(1)-P(1)"F(3) 178.84(9)

F(5)-P(l)-F(3) 89.08(8)

C(2)-N(l)-C(5) 122.24(12)

C(2)-N(2)-C(4) 111.59(12)

C(4)-N(2)-C(10) 125.99(12)

C(13)-N(3)-C(16) 122.04(12)

C(13)-N(4)-C(15) 110.87(13)

C(15)-N(4)-C(21) 127.93(14)

C(24)-N(5)-C(27) 122.36(12)

C(24)-N(6)-C(26) 1 1 1 . 1 0 ( 1 2 )

C(26)-N(6)-C(32) 127.29(12)

N(2)-C(2)-N(l) 103.87(11)

N(l)-C(2)-Rh(l) 127.85(10)

C(4)-C(3)-C(8) 127.55(15)

C(3)-C(4)-N(2) 106.56(13)

N(2)-C(4)-C(9) 125.79(15)

N(l)-C(5)-C(7) 112.80(14)

N(2)-C( 10)-C( 12) 111.24(13)

C( 12)-C( 10)-C( 11) 113.15(13)

N(4)-C( 13)-Rh( 1) 126.29(11)

[Rh(I‘Pr2Me2)3(CO)][PF6]

C(l)-Rh(l)-C(24) 90.23(6)

C(l)-Rh(l)-C(2) 176.38(6)

C(24)-Rh( 1 )-C(2) 91.90(5)

F(2)-P(l)-F(l) 89.49(9)

F(2)-P(l)-F(6) 90.02(10)

F(l)-P(l)-F(6 ) 89.38(7)

F(4)-P(l)-F(5) 90.94(10)

F(6)-P(l)-F(5) 178.10(10)

F(4)-P(l)-F(3) 89.27(11)

F(6)-P(l)-F(3) 90.21(8)

C(2)-N(l)-C(3) 111.23(12)

C(3)-N(l)-C(5) 126.47(12)

C(2)-N(2)-C(10) 122.41(12)

C(13)-N(3)-C(14) 110.87(13)

C( 14)-N(3)-C( 16) 126.74(13)

C(13)-N(4)-C(21) 121.07(13)

C(24)-N(5)-C(25) 110.74(12)

C(25)-N(5)-C(27) 126.86(13)

C(24)-N(6)-C(32) 121.52(12)

0(1)-C(l)-Rh(l) 177.73(16)

N(2)-C(2)-Rh(l) 128.24(10)

C(4)-C(3)-N(l) 106.75(13)

N(l)-C(3)-C(8) 125.68(15)

C(3)-C(4)-C(9) 127.63(14)

N(l)-C(5)-C(6) 110.81(13)

C(6)-C(5)-C(7) 113.19(15)

N(2)-C(10)-C(l 1) 112.36(12)

N(4)-C(13)-N(3) 104.80(12)

N(3)-C(13)-Rh(l) 128.90(10)
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C(15)-C(14)-N(3) 106.49(14) C( 15)-C( 14)-C( 19) 128.29(15)

N(3)-C(14)-C(19) 125.16(16) C( 14)-C( 15)-N(4) 106.97(13)

C( 14)-C( 15)-C(20) 127.70(17) N(4)-C(l 5)-C(20) 125.33(17)

N(3)-C(16)-C(18) 110.73(13) N(3)-C(16)-C(17) 114.00(14)

C(18)-C(16)-C(17) 111.57(14) N(4)-C(21 )-C(23) 111.01(14)

N(4)-C(21 )-C(22) 112.65(16) C(23)-C(21 )-C(22) 114.34(17)

N(6)-C(24)-N(5) 104.78(11) N(6)-C(24)-Rh( 1) 126.03(10)

N(5)-C(24)-Rh(l) 129.12(10) C(26)-C(25)-N(5) 106.84(13)

C(26)-C(25)-C(30) 127.51(16) N(5)-C(25)-C(30) 125.64(16)

C(25)-C(26)-N(6) 106.54(13) C(25)-C(26)-C(31) 127.87(15)

N(6)-C(26)-C(31) 125.60(15) N(5)-C(27)-C(29) 111.57(13)

N(5)-C(27)-C(28) 113.41(14) C(29)-C(27)-C(28) 111.56(14)

N(6)-C(32)-C(34) 111.81(13) N(6)-C(32)-C(33) 112.00(13)

C(34)-C(32)-C(33) 112.81(16)
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5.7. Appendix 7: crystallographic data, bond lengths and angles for 

[Rh(ICy)3 (CO)][PF6] (90).

[Rh(ICy)3 (CO)][PF6]

Empirical formula C4 6  H7 2  F6  N 6  O P Rh

Formula weight 972.98

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group P2i/c

Unit cell dimensions a = 15.0300(1 )A a = 90° 

b =  15.0630(l)Ap = 96.431(1)° 

c = 21.6460(2)A y = 90°

Volume 4869.75(6) A3
Z 4

Density (calculated) 1.327 Mg/m3

Absorption coefficient 0.446 mm ' 1

F(000) 2048

Crystal size 0.50 x 0.50 x 0.15 mm

Theta range for data collection 3.65 to 30.06°.

Index ranges -21 <=h<=21; -21 <=k<=21; -30<=1<=30

Reflections collected 86647

Independent reflections 14144 [R(int) = 0.0397]

Reflections observed (>2o) 12777

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.88 and 0.78

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 14144 /0 /550

Goodness-of-fit on F2 1.030

Final R indices [I>2o(I)] R] = 0.0286 wR2  = 0.0719

R indices (all data) R 1 = 0.0331 wR2  = 0.0755

Largest diff. peak and hole 0.478 and -0.819 eA ' 3
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Bond lengths (A) for [Rh(ICy)3(CO)][PF6]

Rh(l)-C(l) 1.8322(15) Rh(l)-C(17) 2.0638(11)

Rh(l)-C(32) 2.0642(11) Rh(l)-C(2) 2.1321(12)

P(l)-F(5) 1.5818(13) P(l)-F(l) 1.5858(11)

P(1)"F(3) 1.5904(11) P(1)"F(6) 1.5916(13)

P(1)"F(2) 1.5946(11) P(1)"F(4) 1.5949(11)

0(1)-C(1) 1.143(2) N(l)-C(2) 1.3665(16)

N(l)-C(3) 1.3878(19) N(l)-C(5) 1.4719(17)

N(2)-C(2) 1.3675(17) N(2)-C(4) 1.3851(19)

N(2)-C(l 1) 1.4696(17) N(3)-C(17) 1.3628(15)

N(3)-C(18) 1.3878(16) N(3)-C(20) 1.4734(16)

N(4)-C(17) 1.3619(15) N(4)-C(19) 1.3905(16)

N(4)-C(26) 1.4705(16) N(5)-C(32) 1.3607(15)

N(5)-C(33) 1.3901(16) N(5)-C(35) 1.4728(16)

N(6)-C(32) 1.3673(15) N(6)-C(34) 1.3888(15)

N(6)-C(41) 1.4740(16) C(3)-C(4) 1.334(2)

C(5)-C(10) 1.5261(19) C(5)-C(6) 1.5304(19)

C(6)-C(7) 1.536(2) C(7)-C(8) 1.528(2)

C(8)-C(9) 1.523(2) C(9>C(10) 1.525(2)

C(11 )-C( 16) 1.5325(19) C(11)-C(12) 1.535(2)

C(12)-C(13) 1.520(2) C(13)-C(14) 1.517(2)

C(14)-C(15) 1.520(3) C(15)-C(16) 1.523(2)

C(18)-C(19) 1.3449(19) C(20)-C(21) 1.5233(18)

C(20)-C(25) 1.5279(19) C(21)-C(22) 1.5316(19)

C(22)-C(23) 1.525(2) C(23)-C(24) 1.522(2)

C(24)-C(25) 1.527(2) C(26)-C(27) 1.5267(18)

C(26)-C(31) 1.5296(19) C(27)-C(28) 1.530(2)

C(28)-C(29) 1.527(2) C(29)-C(30) 1.520(2)

C(30)-C(31) 1.527(2) C(33)-C(34) 1.3468(19)

C(35)-C(40) 1.5204(18) C(35)-C(36) 1.522(2)
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C(36)-C(37) 1.536(2) C(37)-C(38) 1.527(3)

C(38)-C(39) 1.518(3) C(39)-C(40) 1.533(2)

C(41)-C(42) 1.5222(18) C(41)-C(46) 1.5323(19)

C(42)-C(43) 1.535(2) C(43)-C(44) 1.527(2)

C(44)-C(45) 1.526(2) C(45)-C(46) 1.5265(19)
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Bond angles (°) for [Rh(ICy)3(CO)][PF6]

C(l)-Rh(l)-C(17) 88.44(6)

C( 17)-Rh( 1 )-C(32) 177.39(5)

C(17)-Rh(l)-C(2) 90.93(5)

F(5)-P(l)-F(l) 90.90(8)

F(1)-P(1)~F(3) 179.68(7)

F(l)-P(l)-F(6 ) 89.27(7)

F(5)-P(l)-F(2) 89.55(9)

F(3)-P(l)-F(2) 89.99(6)

F(5)-P(l)-F(4) 90.28(8)

F(3)-P(l)-F(4) 89.57(6)

F(2)-P(l)-F(4) 179.53(7)

C(2)-N(l)-C(5) 127.53(11)

C(2)-N(2)-C(4) 1 1 1 . 1 1 ( 1 2 )

C(4)-N(2)-C(l 1) 120.63(12)

C( 17)-N(3)-C(20) 124.20(10)

C( 17)-N(4)-C( 19) 110.75(10)

C( 19)-N(4)-C(26) 125.21(10)

C(32)-N(5)-C(35) 122.95(10)

C(32)-N(6)-C(34) 111.03(10)

C(34)-N(6)-C(41) 124.08(10)

N(l)-C(2)-N(2) 103.36(11)

N(2)-C(2)-Rh(l) 128.49(9)

C(3)-C(4)-N(2) 107.41(14)

N(l)-C(5)-C(6) 109.99(12)

C(5)-C(6)-C(7) 111.92(13)

C(9)-C(8)-C(7) 111.59(13)

C(9)-C(10)-C(5) 111.25(12)

N(2)-C(ll)-C(12) 109.69(12)

C(13)-C(12)-C(ll) 112.32(13)

C(l)-Rh(l)-C(32) 89.05(6)

C(l)-Rh(l)-C(2) 177.86(7)

C(32)-Rh( 1 )-C(2) 91.60(5)

F(5)-P(l)-F(3) 89.22(9)

F(5)-P(l)-F(6) 179.80(10)

F(3)-P(l)-F(6) 90.61(8)

F(l)-P(l)-F(2) 90.31(7)

F(6)-P(l)-F(2) 90.57(8)

F(l)-P(l)-F(4) 90.13(7)

F(6)-P(l)-F(4) 89.60(8)

C(2)-N(l)-C(3) 111.50(12)

C(3)-N(l)-C(5) 120.93(12)

C(2)-N(2)-C(l 1) 128.24(11)

C(17)-N(3)-C(18) 111.29(10)

C( 18)-N(3)-C(20) 124.05(11)

C( 17)-N(4)-C(26) 1 2 2 .6 6 ( 1 0 )

C(32)-N(5)-C(33) 111.18(10)

C(33)-N(5)-C(35) 125.08(10)

C(32)-N(6)-C(41) 123.54(10)

0(1)-C(l)-Rh(l) 178.8(2)

N(l)-C(2)-Rh(l) 128.13(9)

C(4)-C(3)-N(l) 106.62(14)

N(l)-C(5)-C(10) 109.82(11)

C(10)-C(5)-C(6) 1 1 1 . 1 2 ( 1 1 )

C(8)-C(7)-C(6) 111.86(13)

C(8)-C(9)-C(10) 110.30(14)

N(2)-C(l 1)-C(16) 109.46(12)

C(16)-C(ll)-C(12) 111.58(12)

C( 14)-C( 13)-C( 12) 110.70(14)
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C( 13)-C( 14)-C( 15) 111.63(13)

C(15)-C(16)-C(l 1) 113.05(12)

N(4)-C(17)-Rh(l) 127.51(9)

C(19)-C(18)-N(3) 106.52(11)

N(3)-C(20)-C(21) 112.65(11)

C(21 )-C(20)-C(25) 110.40(11)

C(23)-C(22)-C(21) 111.26(12)

C(23)-C(24)-C(25) 111.35(13)

N(4)-C(26)-C(27) 1 1 1 .6 6 ( 1 1 )

C(27)-C(26)-C(31) 112.04(11)

C(29)-C(28)-C(27) 111.30(12)

C(29)-C(30)-C(31) 110.79(13)

N(5)-C(32)-N(6) 104.12(10)

N(6)-C(32)-Rh(l) 128.17(8)

C(33)-C(34)-N(6) 106.82(11)

N(5)-C(35)-C(36) 1 1 0 .2 0 ( 1 1 )

C(3 5)-C(3 6)-C(3 7) 110.22(14)

C(3 9)-C(3 8)-C(3 7) 110.42(13)

C(3 5)-C(40)-C(3 9) 1 1 0 .6 6 ( 1 2 )

N(6)-C(41 )-C(46) 109.77(10)

C(41 )-C(42)-C(43) 109.66(12)

C(45)-C(44)-C(43) 111.29(12)

C(45)-C(46)-C(41) 110.32(12)

C(14)-C(15)-C(16) 111.68(14)

N(4)-C(17)-N(3) 104.24(10)

N(3)-C(17)-Rh(l) 128.20(8)

C(18)-C(19)-N(4) 107.20(11)

N(3)-C(20)-C(25) 1 1 0 .6 8 ( 1 0 )

C(20)-C(21 )-C(22) 110.14(12)

C(24)-C(23)-C(22) 110.47(12)

C(24)-C(25)-C(20) 109.37(11)

N(4)-C(26)-C(31) 109.34(10)

C(26)-C(27)-C(28) 111.29(12)

C(30)-C(29)-C(28) 110.57(12)

C(30)-C(31)-C(26) 111.52(12)

N(5)-C(32)-Rh(l) 127.65(9)

C(34)-C(33)-N(5) 106.83(11)

N(5)-C(35)-C(40) 111.97(11)

C(40)-C(3 5)-C(3 6 ) 111.15(12)

C(38)-C(37)-C(36) 110.47(19)

C(38)-C(39)-C(40) 111.34(13)

N(6)-C(41)-C(42) 113.40(11)

C(42)-C(41 )-C(46) 1 1 0 .2 1 ( 1 1 )

C(44)-C(43)-C(42) 111.66(13)

C(44)-C(45)-C(46) 110.37(12)
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5.8. Appendix 8: crystallographic data, bond lengths and angles for 

[Rh(I/Pr2Me2)3(C0)][(PMe2)3(0)4H](91).6

[Rh(I,P r2Me2)3(CO)] [(PMe2)3(0 )4H]

Empirical formula C4 0  H 7 9 N 6 O5  P3 Rh

Formula weight 919.91

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group Pc

Unit cell dimensions a = 10.2330(1)A □ = 90° 

b = 12.8590(1)A □ = 94.501(1)° 

c =  18.6340(2)A □ =90°

Volume 2444.42(4) A3
Z 2

Density (calculated) 1.250 Mg/m3

Absorption coefficient 0.492 mm ' 1

F(000) 982

Crystal size 0.15 x 0.15 x 0.15 mm

Theta range for data collection 3.65 to 30.05°

Index ranges -14<=h<= 14; -18<=k<= 17; -26<=1<=26

Reflections collected 48250

Independent reflections 14250 [R(int) = 0.0384]

Reflections observed (>2D) 13384

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 14250/2 /525

Goodness-of-fit on F2 1.074

Final R indices [I>2 □ (I)] R‘ =  0.0305 wR2  = 0.0682

R indices (all data) R‘ = 0.0356 wR 2  = 0.0705

Absolute structure parameter -0.042(11)

Largest diff peak and hole 1.129 and -0.537 eA'3
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Bond lengths (A) for [Rh(l‘Pr2Me2)3(C0 )][(PMe2)3(0 )4H]

Rh(l)-C(l) 1.833(2)

Rh(l)-C(13) 2.0770(18)

P(l)"0(2) 1.5975(17)

P(l)-C(36) 1.851(3)

P(2)-0(4) 1.6221(16)

P(2)-C(38) 1.860(2)

P(3)-0(5) 1.5909(16)

P(3)-C(40) 1.865(3)

0(1)-C(1) 1.147(3)

N(l)-C(3) 1.395(3)

N(2)-C(2) 1.363(2)

N(2)-C(10) 1.489(3)

N(3)-C(14) 1.403(2)

N(4)-C(13) 1.360(2)

N(4)-C(21) 1.477(3)

N(5)-C(25) 1.404(3)

N(6)-C(24) 1.360(2)

N(6)-C(32) 1.483(2)

C(3)-C(8) 1.493(3)

C(5)-C(7) 1.518(3)

C(10)-C(ll) 1.518(3)

C(14)-C(15) 1.347(3)

C(15)-C(20) 1.493(3)

C(16)-C(17) 1.524(3)

C(21)-C(22) 1.527(3)

C(25)-C(30) 1.496(3)

C(27)-C(28) 1.518(3)

C(32)-C(34) 1.515(3)

Rh(l)-C(24) 2.0762(18)

Rh(l)-C(2) 2.1362(19)

P(l)-0(3) 1.6532(16)

P(l)-C(35) 1.859(2)

P(2)-0(3) 1.6287(17)

P(2)-C(37) 1.861(3)

P(3)-0(4) 1.6566(16)

P(3)-C(39) 1.870(3)

N(l)-C(2) 1.362(2)

N(l)-C(5) 1.480(2)

N(2)-C(4) 1.391(3)

N(3)-C(13) 1.358(2)

N(3)-C(16) 1.481(3)

N(4)-C(15) 1.401(3)

N(5)-C(24) 1.358(2)

N(5)-C(27) 1.473(2)

N(6)-C(26) 1.405(2)

C(3)-C(4) 1.365(3)

C(4)-C(9) 1.501(3)

C(5)-C(6) 1.518(3)

C(10)-C(12) 1.523(3)

C(14)-C(19) 1.498(3)

C(16)-C(18) 1.522(4)

C(21)-C(23) 1.512(4)

C(25)-C(26) 1.354(3)

C(26)-C(31) 1.494(3)

C(27)-C(29) 1.520(3)

C(32)-C(33) 1.526(3)
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Bond angles (°) for [Rh(I<Pr2Me2)3(CO)] [(PM e^O ^H ]

C(l)-Rh(l)-C(24) 88.44(8)

C(24)-Rh(l)-C(l 3) 175.89(7)

C(24)-Rh(l)-C(2) 90.39(7)

0(2)-P(l)-0(3) 111.26(9)

0(3)-P(l)-C(36) 107.15(12)

0(3)-P(l)-C(35) 106.47(10)

0(4)-P(2)-0(3) 112.68(8)

0(3)-P(2)-C(38) 106.50(10)

0(3)-P(2)-C(37) 109.54(12)

0(5)-P(3)-0(4) 112.04(9)

O(4)-P(3)-C(40) 106.25(12)

0(4)-P(3)-C(39) 105.09(11)

P(2)-0(3)-P(l) 137.98(11)

C(2)-N(l)-C(3) 111.84(16)

C(3)-N(l)-C(5) 125.79(16)

C(2)-N(2)-C(10) 122.28(17)

C(13)-N(3)-C(14) 110.89(16)

C(14)-N(3)-C(16) 126.50(16)

C(13)-N(4)-C(21) 121.47(16)

C(24)-N(5)-C(25) 111.13(15)

C(25)-N(5)-C(27) 127.46(16)

C(24)-N(6)-C(32) 122.30(15)

0(1)-C(l)-Rh(l) 178.8(2)

N(l)-C(2)-Rh(l) 127.66(13)

C(4)-C(3)-N(l) 105.92(18)

N(l)-C(3)-C(8) 126.91(19)

C(3)-C(4)-C(9) 126.3(2)

N(l)-C(5)-C(7) 111.43(18)

C(7)-C(5)-C(6) 113.08(18)

C(l)-Rh(l)-C(13) 88.58(8)

C(l)-Rh(l)-C(2) 178.14(9)

C(13)-Rh(l)-C(2) 92.67(7)

0(2)-P(l)-C(36) 112.54(12)

0(2)-P(l)-C(35) 110.69(11)

C(36)-P(l)-C(35) 108.47(12)

0(4)-P(2)-C(38) 110.40(11)

0(4)-P(2)-C(37) 106.50(11)

C(3 8)-P(2)-C(3 7) 111.29(12)

O(5)-P(3)-C(40) 111.75(12)

0(5)-P(3)-C(39) 112.15(11)

C(40)-P(3)-C(39) 109.17(14)

P(2)-0(4)-P(3) 143.64(11)

C(2)-N(l)-C(5) 122.17(16)

C(2)-N(2)-C(4) 111.45(17)

C(4)-N(2)-C(10) 126.25(17)

C(13)-N(3)-C(16) 122.57(15)

C(13)-N(4)-C(15) 111.10(17)

C(15)-N(4)-C(21) 127.41(17)

C(24)-N(5)-C(27) 121.38(15)

C(24)-N(6)-C(26) 111.05(14)

C(26)-N(6)-C(32) 126.20(15)

N(l)-C(2)-N(2) 104.02(16)

N(2)-C(2)-Rh(l) 128.10(14)

C(4)-C(3)-C(8) 127.1(2)

C(3)-C(4)-N(2) 106.76(18)

N(2)-C(4)-C(9) 127.0(2)

N(l)-C(5)-C(6) 113.41(17)

N(2)-C(10)-C(ll) 111.86(17)
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N (2)-C( 10)-C( 12) 111.97(18)

N(3)-C(13)-N(4) 104.66(15)

N(4)-C(13)-Rh(l) 126.09(13)

C(15)-C(14)-C(19) 127.0(2)

C( 14)-C(l 5)-N(4) 106.53(19)

N(4)-C(l 5)-C(20) 126.0(2)

N(3)-C(16)-C(17) 112.66(18)

N(4)-C(21 )-C(23) 111.70(18)

C(23)-C(21 )-C(22) 113.9(2)

N(5)-C(24)-Rh( 1) 127.30(13)

C(26)-C(25)-N(5) 106.56(17)

N(5)-C(25)-C(30) 125.16(19)

C(25)-C(26)-C(31) 128.30(18)

N(5)-C(27)-C(28) 112.11(17)

C(28)-C(27)-C(29) 113.28(18)

N(6)-C(32)-C(33) 110.24(16)

C(ll)-C(10)-C(12) 112.46(18)

N(3)-C( 13)-Rh( 1) 128.72(13)

C(15)-C(14)-N(3) 106.80(18)

N(3)-C(14)-C(19) 126.16(19)

C( 14)-C( 15)-C(20) 127.5(2)

N(3)-C(16)-C(18) 111.74(19)

C(18)-C(16)-C(17) 111.76(19)

N(4)-C(21)-C(22) 111.1(2)

N(5)-C(24)-N(6) 104.74(15)

N(6)-C(24)-Rh( 1) 127.95(13)

C(26)-C(25)-C(30) 128.27(19)

C(25)-C(26)-N (6) 106.48(16)

N(6)-C(26)-C(31) 125.13(17)

N(5)-C(27)-C(29) 112.16(17)

N(6)-C(32)-C(34) 113.40(17)

C(34)-C(32)-C(33) 113.54(17)
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5.9. Appendix 9: crystallographic data, bond lengths and angles for 

[Rh(rPr2Me2)2(ICy)(CO)][PF6](95).7

[R h(rPr2Me2)2(ICy)(CO)] [PF6]

Empirical formula C39 Cl2 F6 N6 O P Rh

Formula weight 953.76

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Triclinic

Space group P-l

Unit cell dimensions a = 10.5110(1)A a  = 84.158(1)° 

b = 14.4190(1)A p = 78.804(1)° 

c =  15.4100(1)A y = 86.557(1)°

Volume 2277.22(3) A3
Z 2

Density (calculated) 1.391 Mg/m3

Absorption coefficient 0.589 mm'1

F(000) 996

Crystal size 0.25 x 0.25 x 0.20 mm

Theta range for data collection 3.53 to 30.54°

Index ranges -15<=h<=15; -20<=k<=20; -21<=1<=21

Reflections collected 47613

Independent reflections 13880 [R(int) = 0.0351]

Reflections observed (>2o) 12834

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.90 and 0.85

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 13880 /0 /517

Goodness-of-fit on F2 1.040

Final R indices [I>2o(I)] R 1 = 0.0305 wR2 = 0.0756

R indices (all data) R1 = 0.0348 w R 2 = 0.0778

Largest diff. peak and hole 0.883 and -0.687 eA'3
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Bond lengths (A) for lRh(IiPr2Me2)2(ICy)(CO)](PF4]

Rh(l)-C(l) 1.8392(14) Rh(l)-C(2) 2.0677(13)

Rh(l)-C(28) 2.0818(13) Rh(l)-C(13) 2.1341(13)

Cl(l)-C(39) 1.746(2) Cl(2)-C(39) 1.729(2)

P(l)-F(2) 1.5695(14) P(1)"F(1) 1.5841(13)

P(1)"F(4) 1.5871(13) P(l)-F(5) 1.5871(15)

P(l)-F(6) 1.5892(12) P(l)-F(3) 1.6036(12)

0(1)-C(1) 1.1445(18) N(l)-C(2) 1.3668(16)

N(l)-C(3) 1.4012(18) N(l)-C(5) 1.4798(19)

N(2)-C(2) 1.3530(18) N(2)-C(4) 1.4007(18)

N(2)-C(10) 1.4783(19) N(3)-C(13) 1.3671(17)

N(3)-C(14) 1.3900(18) N(3)-C(16) 1.4744(17)

N(4)-C(13) 1.3647(17) N(4)-C(15) 1.3899(18)

N(4)-C(22) 1.4729(17) N(5)-C(28) 1.3598(17)

N(5)-C(29) 1.4001(19) N(5)-C(31) 1.4846(18)

N(6)-C(28) 1.3681(16) N(6)-C(30) 1.3997(18)

N(6)-C(36) 1.4817(18) C(3>C(4) 1.356(2)

C(3)-C(8) 1.495(2) C(4)-C(9) 1.495(2)

C(5)-C(6) 1.525(2) C(5)-C(7) 1.530(2)

C(10)-C(12) 1.514(3) C(10)-C(ll) 1.521(2)

C(14)-C(15) 1.347(2) C(16)-C(21) 1.527(2)

C(16)-C(17) 1.533(2) C(17)-C(18) 1.535(2)

C(18)-C(19) 1.519(3) C(19)-C(20) 1.529(3)

C(20)-C(21) 1.531(2) C(22)-C(27) 1.528(2)

C(22)-C(23) 1.529(2) C(23)-C(24) 1.526(2)

C(24)-C(25) 1.522(3) C(25)-C(26) 1.526(3)

C(26)-C(27) 1.534(2) C(29)-C(30) 1.357(2)

C(29)-C(34) 1.496(2) C(30)-C(35) 1.496(2)

C(31)-C(32) 1.514(2) C(31)-C(33) 1.514(2)

C(36)-C(37) 1.524(2) C(36)-C(38) 1.526(2)
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Bond angles (°) for [Rh(TPr2Me2)2(ICy)(CO)][PF6]

C(l)-Rh(l)-C(2) 87.26(6)

C(2)-Rh(l)-C(28) 178.34(5)

C(2)-Rh(l)-C(13) 89.93(5)

F(2)-P(l)-F(l) 91.14(11)

F(l)-P(l)-F(4) 178.65(10)

F(l)-P(l)-F(5) 89.51(11)

F(2)-P(l)-F(6) 90.59(8)

F(4)-P(l)-F(6) 89.10(8)

F(2)-P(l)-F(3) 89.17(8)

F(4)-P(l)-F(3) 90.92(7)

F(6)-P(l)-F(3) 179.76(9)

C(2)-N(l)-C(5) 121.32(12)

C(2)-N(2)-C(4) 111.38(12)

C(4)-N(2)-C(10) 127.69(13)

C(13)-N(3)-C(16) 126.69(11)

C( 13)-N(4)-C( 15) 111.47(12)

C( 15)-N(4)-C(22) 122.00(12)

C(28)-N(5)-C(31) 120.92(12)

C(28)-N(6)-C(30) 110.94(12)

C(30)-N(6>C(36) 126.43(12)

N(2)-C(2)-N(l) 104.75(11)

N(l)-C(2)-Rh(l) 128.62(10)

C(4)-C(3)-C(8) 127.69(15)

C(3)-C(4)-N(2) 106.44(13)

N(2)-C(4)-C(9) 125.03(15)

N(l)-C(5)-C(7) 111.30(13)

N(2)-C(10)-C(12) 110.36(15)

C(12)-C(10)-C(ll) 115.58(16)

N(4)-C(13)-Rh(l) 127.14(9)

C(l)-Rh(l)-C(28) 92.26(6)

C(l)-Rh(l)-C(13) 173.92(6)

C(28)-Rh( 1 )-C( 13) 90.70(5)

F(2)-P(l)-F(4) 90.01(10)

F(2)-P(l)-F(5) 179.17(11)

F(4)-P(l)-F(5) 89.34(10)

F(l)-P(l)-F(6) 90.19(8)

F(5)-P(l)-F(6) 89.92(9)

F(l)-P(l)-F(3) 89.79(8)

F(5)-P(l)-F(3) 90.33(9)

C(2)-N(l)-C(3) 110.76(12)

C(3)-N(l)-C(5) 127.31(12)

C(2)-N(2)-C(10) 120.58(12)

C(13)-N(3)-C(14) 111.35(12)

C( 14)-N(3)-C( 16) 121.85(12)

C( 13)-N(4)-C(22) 126.50(11)

C(28)-N(5)-C(29) 111.30(12)

C(29)-N(5)-C(31) 127.77(13)

C(28)-N(6)-C(36) 121.90(11)

0(1)-C(l)-Rh(l) 174.78(15)

N(2)-C(2)-Rh(l) 126.64(10)

C(4)-C(3)-N(l) 106.67(12)

N(l)-C(3)-C(8) 125.58(14)

C(3)-C(4)-C(9) 128.51(14)

N(l)-C(5)-C(6) 113.74(13)

C(6)-C(5)-C(7) 111.38(12)

N(2)-C(10)-C(ll) 112.56(13)

N(4)-C(13)-N(3) 103.68(11)

N(3)-C(13)-Rh(l) 129.17(9)
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C(15)-C(14)-N(3) 106.77(13)

N(3)-C(16)-C(21) 109.32(13)

C(21)-C(16)-C(17) 111.86(13)

C(19)-C(18)-C(17) 111.66(17)

C( 19)-C(20)-C(21) 110.91(16)

N(4)-C(22)-C(27) 110.91(12)

C(27)-C(22)-C(23) 111.59(12)

C(25)-C(24)-C(23) 111.72(15)

C(25)-C(26)-C(27) 110.86(15)

N(5)-C(28)-N(6) 104.54(11)

N(6)-C(28)-Rh( 1) 129.33(10)

C(3 0)-C(29)-C(34) 128.23(15)

C(29)-C(30)-N(6) 106.70(12)

N(6)-C(30)-C(35) 125.15(15)

N(5)-C(31)-C(33) 111.98(13)

N (6)-C(3 6)-C(3 7) 114.15(12)

C(3 7)-C(3 6)-C(3 8) 111.97(13)

C( 14)-C( 15)-N (4) 106.72(12)

N(3)-C(16)-C(17) 110.69(12)

C(16)-C(17)-C(18) 111.61(14)

C( 18)-C( 19)-C(20) 111.75(14)

C( 16)-C(21 )-C(20) 111.79(15)

N(4)-C(22)-C(23) 109.66(12)

C(24)-C(23)-C(22) 111.81(14)

C(24)-C(25)-C(26) 111.37(14)

C(22)-C(27)-C(26) 110.43(14)

N(5)-C(28)-Rh( 1) 126.13(10)

C(30)-C(29)-N(5) 106.53(13)

N(5)-C(29)-C(34) 125.24(15)

C(29)-C(30)-C(35) 128.07(15)

N(5)-C(31)-C(32) 112.19(13)

C(32)-C(31)-C(33) 113.30(15)

N(6)-C(36)-C(38) 110.51(13)

C1(2)-C(39)-C1(1) 113.09(13)
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5.10. Appendix 10: crystallographic data, bond lengths and angles for ICyHPF6

(94).8

ICyHPF 6

Empirical formula C 1 5  H2 5  F6  N 2  P

Formula weight 378.34

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Orthorhombic

Space group Pbca

Unit cell dimensions a =  14.61600(10)A a = 90° 

b = 15.11600( 10)A p = 90° 

c =  16.1410(2)Ay = 90°

Volume 3566.12(6) A3
Z 8

Density (calculated) 1.409 Mg/m3

Absorption coefficient 0 . 2 1 2  mm ' 1

F(000) 1584

Crystal size 0.25 x 0.25 x 0.25 mm

Theta range for data collection 3.76 to 27.48 °.

Index ranges -18<=h<= 18; -19<=k<= 19; -20<=1<=20

Reflections collected 62341

Independent reflections 4064 [R(int) = 0.0427]

Reflections observed (>2o) 3235

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.95 and 0.90

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4 0 6 4 /0 /2 2 2

Goodness-of-fit on F 1.033

Final R indices [I>2o(I)] R l=  0.0353 wR2 = 0.0881

R indices (all data) R1 =0.0490 wR2 = 0.0971

Largest diff. peak and hole 0.231 and -0.248 eA ' 3
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Bond lengths (A) for ICyHPF$

P(l)-F(4)

P(l)-F(3)

P(l)-F(5)

F(l)-H (l)

N(l)-C(2)

N(2)-C(l)

N(2)-C(10)

C(4)-C(9)

C(5)-C(6)

C(7)-C(8)

C(10)-C(ll)

C(11 )-C( 12)

C(13)-C(14)

1.5893(9)

1.5934(9)

1.5995(9)

2.236(16)

1.3750(18)

1.3240(17)

1.4812(16)

1.5171(19)

1.532(2)

1.521(2)

1.521(2)

1.532(2)

1.514(2)

P(l)-F(2)

P(1)“F(6)

P(l)-F(l)

N (l)-C(l)

N(l)-C(4)

N(2)-C(3)

C(2)-C(3)

C(4)-C(5)

C(6)-C(7)

C(8)-C(9)

C(10)-C(15)

C(12)-C(13)

C(14)-C(15)

1.5916(9)

1.5935(9)

1.6019(8)

1.3263(17)

1.4821(16)

1.3727(18)

1.349(2)

1.5175(19)

1.519(2)

1.528(2)

1.5234(18)

1.521(2)

1.5319(19)
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Bond angles (°) for ICyHPF*

F(4)-P(l)-F(2) 179.12(5)

F(2)-P(l)-F(3) 89.78(5)

F(2)-P(l)-F(6) 90.71(5)

F(4)-P(l)-F(5) 89.99(6)

F(3)-P(l)-F(5) 179.54(6)

F(4)-P(l)-F(l) 89.59(5)

F(3)-P(l)-F(l) 90.14(5)

F(5)-P( 1 )-F( 1) 89.53(5)

C(l)-N(l)-C(2) 108.02(11)

C(2)-N(l)-C(4) 128.37(11)

C(l)-N(2)-C(10) 126.28(11)

N(2)-C(l)-N(l) 109.38(11)

C(2)-C(3)-N(2) 107.26(13)

N(l)-C(4)-C(5) 109.20(11)

C(4)-C(5)-C(6) 110.02(12)

C(6)-C(7)-C(8) 111.05(13)

C(4)-C(9)-C(8) 109.08(12)

N(2)-C(10)-C(15) 111.20(11)

C(10)-C(l 1)-C(12) 109.98(12)

C(14)-C(13)-C(12) 111.43(13)

C(10)-C(15)-C(14) 109.06(12)

F(4)-P(l)-F(3) 90.32(6)

F(4)-P(l)-F(6) 90.17(5)

F(3)-P(l)-F(6) 90.26(5)

F(2)-P(l)-F(5) 89.91(5)

F(6)-P(l)-F(5) 90.07(5)

F(2)-P(l)-F(l) 89.54(5)

F(6)-P(l)-F(l) 179.53(5)

P(1)"F(1)-H(1) 123.4(4)

C(l)-N(l)-C(4) 123.50(11)

C(l)-N(2)-C(3) 108.16(11)

C(3)-N(2)-C(10) 125.38(11)

C(3)-C(2)-N(l) 107.18(12)

N(l)-C(4)-C(9) 111.68(11)

C(9)-C(4)-C(5) 112.11(11)

C(7)-C(6)-C(5) 111.06(13)

C(7)-C(8)-C(9) 111.51(13)

N(2)-C(10)-C(l 1) 109.63(11)

C(ll)-C(10)-C(15) 111.78(12)

C(13)-C(12)-C(ll) 110.77(13)

C(13)-C(14)-C(15) 110.50(12)
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5.11. Appendix 11: crystallographic data, bond lengths and angles for 

[Rh(ffit2Me2)4][PPh202H] (96).9

[Rh(IEt2Me2)4] [PPh20 2H]

Empirical formula C60H86N8O2P Rh

Formula weight 1085.25

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Monoclinic

Space group C2

Unit cell dimensions a = 23.6780(2)A a  = 90° 

b = 11.4130(1)A p = 108.191(1)° 

c = 22.5860(3)A y = 90°

Volume 5798.52(10) A3
Z 4

Density (calculated) 1.243 Mg/m3

Absorption coefficient 0.370 mm'1

F(000) 2312

Crystal size 0.30 x 0.25 x 0.05 mm

Theta range for data collection 3.53 to 20.00°

Index ranges -22<=h<=22; -10<=k<=10; -21<=1<=21

Reflections collected 29137

Independent reflections 5357 [R(int) = 0.0396]

Reflections observed (>2o) 5209

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.96 and 0.87

Refinement method Full-matrix least-squares on F

Data / restraints / parameters 5357/ 1 /650

Goodness-of-fit on F2 1.043

Final R indices [I>2o(I)] R ‘ = 0.0242 wR2 = 0.0588

R indices (all data) R1 = 0.0272 wR2 = 0.0602

Largest diff. peak and hole 0.478 and -0.429 eA‘3
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Bond lengths (A) for [Rh(IEt2Me2)4][PPh2 0 2 H]

Rh(l)-C(l) 2.042(4)

Rh(l)-C(10)#l 2.047(4)

Rh(2)-C(28) 2.041(4)

Rh(2)-C(19) 2.040(4)

P(l)-0(1) 1.484(3)

P(l)-C(37) 1.824(4)

N (l)-C (l) 1.379(5)

N(l)-C(4) 1.446(5)

N(2)-C(3) 1.395(5)

N(3)-C(10) 1.381(5)

N(3)-C(13) 1.450(5)

N(4)-C(12) 1.405(5)

N(5)-C(19) 1.374(5)

N(5)-C(22) 1.458(5)

N(6)-C(21) 1.407(5)

N(7)-C(28) 1.377(5)

N(7)-C(31) 1.461(5)

N(8)-C(30) 1.395(5)

C(2)-C(3) 1.342(6)

C(3)-C(7) 1.503(6)

C(8)-C(9) 1.504(6)

C(ll)-C(15) 1.496(6)

C(13)-C(14) 1.515(6)

C(20)-C(21) 1.332(5)

C(21)-C(25) 1.491(6)

C(26)-C(27) 1.506(6)

C(29)-C(33) 1.497(6)

C(31)-C(32) 1.527(5)

C(37)-C(38) 1.395(6)

Rh(l)-C(l)#l 2.042(4)

Rh(l)-C(10) 2.047(4)

Rh(2)-C(28)#2 2.041(4)

Rh(2)-C(19)#2 2.040(4)

P(l)-0(2) 1.492(3)

P(l)-C(43) 1.830(4)

N(l)-C(2) 1.388(5)

N(2)-C(l) 1.375(5)

N(2)-C(8) 1.457(5)

N(3)-C(l 1) 1.401(5)

N(4)-C(10) 1.355(5)

N(4)-C(17) 1.459(5)

N(5)-C(20) 1.394(5)

N(6)-C(19) 1.368(5)

N(6)-C(26) 1.469(5)

N(7)-C(29) 1.394(5)

N(8)-C(28) 1.368(5)

N(8)-C(35) 1.463(5)

C(2)-C(6) 1.497(6)

C(4)-C(5) 1.507(6)

C(11)-C(12) 1.341(5)

C(12)-C(16) 1.484(5)

C(17)-C(18) 1.520(6)

C(20)-C(24) 1.500(6)

C(22)-C(23) 1.509(6)

C(29)-C(30) 1.338(6)

C(30)-C(34) 1.497(6)

C(35)-C(36) 1.512(6)

C(37)-C(42) 1.396(6)
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C(38)-C(39) 1.386(6)

C(40)-C(41) 1.378(6)

C(43)-C(48) 1.278(8)

C(43)-C(44) 1.388(9)

C(44)-C(45) 1.364(11)

C(46)-C(47) 1.379(12)

C(49)-C(54) 1.362(7)

C(50)-C(51) 1.361(7)

C(52)-C(53) 1.327(7)

C(55)-C(56) 1.380(7)

C(56)-C(57) 1.373(7)

C(58)-C(59) 1.365(6)

C(48A)-C(47A) 1.3911

C(44A)-C(45A) 1.49(2)

C(39)-C(40) 1.363(6)

C(41)-C(42) 1.384(6)

C(43)-C(44A) 1.317(14)

C(43)-C(48A) 1.672(7)

C(45)-C(46) 1.378(13)

C(47)-C(48) 1.405(11)

C(49)-C(50) 1.381(7)

C(51)-C(52) 1.375(8)

C(53)-C(54) 1.357(7)

C(55)-C(60) 1.421(6)

C(57)-C(58) 1.382(6)

C(59)-C(60) 1.361(6)

C(47A)-C(46A) 1.324(19)

C(45A)-C(46A) 1.42(3)
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Bond angles (°) for [Rh(IEt2Me2)4][PPh202H]

C(l)-Rh(l)-C(l)#l 89.5(2)

C( 1 )# 1 -Rh( 1 )-C( 10)# 1 90.37(14)

C( 1 )# 1 -Rh( 1 )-C( 10) 179.86(18)

C(28)-Rh(2)-C(28)#2 89.6(2)

C(28)#2-Rh(2)-C( 19) 178.97(17)

C(28)#2-Rh(2>C(19)#2 90.18(13)

0 (l)-P (l)-0 (2 ) 121.30(17)

0(2)-P(l)-C(37) 108.69(18)

0(2)-P(l)-C(43) 109.05(19)

C(l)-N(l)-C(2) 111.8(3)

C(2)-N(l)-C(4) 126.1(3)

C(l)-N(2)-C(8) 123.8(3)

C(10)-N(3)-C(ll) 111.4(3)

C(11)-N(3)-C(13) 125.2(3)

C( 10)-N(4)-C( 17) 123.4(3)

C( 19)-N(5)-C(20) 111.6(3)

C(20)-N(5)-C(22) 125.4(3)

C( 19)-N(6)-C(26) 123.2(3)

C(28)-N(7)-C(29) 111.8(3)

C(29)-N(7)-C(31) 125.4(3)

C(28)-N(8)-C(35) 122.9(3)

N(2)-C(l)-N(l) 102.7(3)

N (l)-C(l)-Rh(l) 128.7(3)

C(3)-C(2)-C(6) 130.6(4)

C(2)-C(3)-N(2) 106.7(3)

N(2>C(3)-C(7) 122.6(4)

N(2)-C(8)-C(9) 113.0(4)

N(4)-C( 10)-Rh( 1) 129.8(3)

C(12)-C(l 1)-N(3) 106.9(3)

C( 1 )-Rh( 1 )-C( 10)# 1 179.86(18)

C(l)-Rh(l)-C(10) 90.37(14)

C( 10)# 1 -Rh( 1 )-C( 10) 89.7(2)

C(28)-Rh(2)-C( 19) 90.18(13)

C(28)-Rh(2)-C(l 9)#2 178.97(17)

C( 19)-Rh(2)-C( 19)#2 90.1(2)

0(1)-P(1)-C(37) 108.11(19)

0(1)-P(1)-C(43) 108.0(2)

C(37)-P(l)-C(43) 99.53(19)

C(1>N(1)-C(4) 122.1(3)

C(l)-N(2)-C(3) 111.7(3)

C(3>N(2)-C(8) 124.4(3)

C(10)-N(3)-C(13) 123.5(3)

C( 10)-N(4)-C( 12) 112.4(3)

C(12)-N(4)-C(17) 124.2(3)

C(19)-N(5)-C(22) 123.0(3)

C(19)-N(6)-C(21) 111.8(3)

C(21 )-N(6)-C(26) 124.9(3)

C(28)-N(7)-C(31) 122.8(3)

C(28)-N(8)-C(30) 112.5(3)

C(30)-N(8)-C(35) 124.5(3)

N(2)-C(l)-Rh(l) 128.6(3)

C(3)-C(2)-N(l) 107.1(3)

N(l)-C(2)-C(6) 122.3(4)

C(2)-C(3)-C(7) 130.6(4)

N(l)-C(4)-C(5) 113.4(3)

N(4)-C(10)-N(3) 103.1(3)

N(3)-C( 10)-Rh( 1) 127.1(3)

C(12)-C(l 1)-C(15) 128.9(4)
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N(3)-C(ll)-C(15) 124.2(4)

C(11)-C(12)-C(16) 130.3(4)

N(3)-C(13)-C(14) 114.3(4)

N(6)-C(19)-N(5) 102.8(3)

N(5)-C( 19)-Rh(2) 128.6(3)

C(21 )-C(20)-C(24) 129.7(4)

C(20)-C(21 )-N(6) 106.3(3)

N(6)-C(21 )-C(25) 123.4(4)

N(6)-C(26)-C(27) 113.3(3)

N(8)-C(28)-Rh(2) 128.8(3)

C(30)-C(29)-N(7) 107.0(3)

N(7)-C(29)-C(33) 123.0(4)

C(29)-C(30)-C(34) 131.1(4)

N(7)-C(31 )-C(32) 112.8(3)

C(38)-C(37)-C(42) 117.8(4)

C(42)-C(37)-P(l) 121.0(3)

C(40)-C(39)-C(38) 120.8(5)

C(40)-C(41 )-C(42) 119.7(4)

C(48)-C(43)-C(44A) 101.3(8)

C(44A)-C(43)-C(44) 24.3(6)

C(44A)-C(43)-C(48A) 110.5(7)

C(48)-C(43)-P(l) 122.5(4)

C(44)-C(43)-P(l) 115.8(5)

C(43)-C(44)-C(45) 118.5(8)

C(47)-C(46)-C(45) 117.1(8)

C(43)-C(48)-C(47) 120.7(8)

C(51 )-C(50)-C(49) 119.0(5)

C(53)-C(52)-C(51) 122.0(5)

C(49)-C(54)-C(53) 120.3(5)

C(55)-C(56)-C(57) 119.6(5)

C(59)-C(5 8)-C(5 7) 120.5(5)

C(11)-C(12)-N(4) 106.3(3)

N(4)-C( 12)-C( 16) 123.4(3)

N(4)-C(17)-C(18) 113.4(3)

N(6)-C( 19)-Rh(2) 128.5(3)

C(21 )-C(20)-N(5) 107.4(3)

N(5)-C(20)-C(24) 122.9(4)

C(20)-C(21 )-C(25) 130.3(4)

N(5)-C(22)-C(23) 113.7(3)

N(8)-C(28)-N(7) 102.3(3)

N(7)-C(28)-Rh(2) 128.9(3)

C(30)-C(29)-C(33) 129.9(4)

C(29)-C(30)-N(8) 106.3(4)

N(8)-C(30)-C(34) 122.6(4)

N (8)-C(3 5)-C(3 6) 113.6(4)

C(38)-C(37)-P(l) 121.2(3)

C(3 9)-C(3 8)-C(3 7) 120.3(4)

C(39)-C(40)-C(41) 120.1(4)

C(41)-C(42)-C(37) 121.2(4)

C(48)-C(43)-C(44) 121.5(6)

C(48)-C(43)-C(48A) 33.4(3)

C(44)-C(43)-C(48A) 118.7(5)

C(44A)-C(43)-P( 1) 132.4(7)

C(48 A)-C(43)-P( 1) 116.2(3)

C(46)-C(45)-C(44) 121.6(8)

C(46)-C(47)-C(48) 120.1(9)

C(54)-C(49)-C(50) 120.1(5)

C(50)-C(51)-C(52) 119.0(5)

C(52)-C(53)-C(54) 119.5(5)

C(5 6)-C(5 5)-C(60) 120.0(5)

C(5 8)-C(5 7)-C(56) 120.1(5)

C(58)-C(59)-C(60) 121.0(4)
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C(59)-C(60)-C(55) 118.7(4) C(47A)-C(48A)-C(43) 122.23(19)

C(46A)-C(47A)-C(48A) 118.0(8) C(43)-C(44A)-C(45A) 126.4(12)

C(46A)-C(45A)-C(44A) 116.4(11) C(47A)-C(46A)-C(45A) 126.1(13)
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5.12. Appendix 12: crystallographic data, bond lengths and angles for [Rh(ICy)4 ]+

(98).10

[Rh(ICy)4]+

Empirical formula C6i HggNgRh

Formula weight 1046.38

Temperature 150(2) K

Wavelength 0.69340 A

Crystal system Tetragonal

Space group P42i2

Unit cell dimensions a =  17.8829(10)A a = 90° 

b = 17.8829(10)A p = 90° 

c =  12.5784(15)A y = 90°

Volume 4022.5(6) A3

Z 2

Density (calculated) 0.864 Mg/m3

Absorption coefficient 0.244 mm'1

F(000) 1130

Crystal size 0.05 x 0.05 x 0.02 mm

Theta range for data collection 3.35 to 21.53°

Index ranges -17<=h<=18; -18<=k<=8; -12<=1<=13

Reflections collected 12220

Independent reflections 2471 [R(int) = 0.0572]

Reflections observed (>2a) 2070

Absorption correction SADABS

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2471 / 0 /  159

Goodness-of-fit on F2 1.106

Final R indices [I>2o(I)] R l = 0.0541 wR2 = 0.1427

R indices (all data) R 1 = 0.0648 wR2 = 0.1488

Largest diff. peak and hole 0.996 and -0.621 eA 3
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Bond lengths (A) for [Rh(ICy)4]+

Rh(2)-C(l)#l 2.070(5) Rh(2)-C(l) 2.070(5)

Rh(2)-C(l)#2 2.070(5) Rh(2)-C(l)#3 2.070(5)

N (l)-C (l) 1.384(7) N(l)-C(2) 1.410(7)

N(l)-C(4) 1.466(7) N(2)-C(l) 1.351(7)

N(2)-C(3) 1.372(7) N(2)-C(9) 1.472(8)

C(2)-C(3) 1.309(9) C(4)-C(8) 1.528(8)

C(4)-C(5) 1.529(8) C(5)-C(6) 1.530(8)

C(6)-C(7) 1.509(8) C(7)-C(42) 1.538(9)

C(8)-C(42) 1.514(9) C(9)-C(14) 1.535(9)

C(9)-C(10) 1.537(9) C(10)-C(ll) 1.529(9)

C(ll)-C(12) 1.539(9) C(12)-C(13) 1.498(10)

C(13)-C(14) 1.513(9)

313



Chapter 5 Appendices

Bond angles (°) for [Rh(ICy)4]+

C( 1 )# 1 -Rh(2)-C( 1) 179.8(3)

C( 1 )-Rh(2)-C( 1 )#2 90.000(1)

C( 1 )-Rh(2)-C( 1 )#3 90.000(1)

C(l)-N(l)-C(2) 109.5(5)

C(2)-N(l)-C(4) 122.9(5)

C(l)-N(2)-C(9) 126.8(5)

N(2)-C(l)-N(l) 103.0(4)

N(l)-C(l)-Rh(2) 127.3(4)

C(2)-C(3)-N(2) 107.1(5)

N(l)-C(4)-C(5) 110.6(5)

C(4)-C(5)-C(6) 111.3(5)

C(6)-C(7)-C(42) 110.4(5)

N(2)-C(9)-C(14) 111.8(5)

C(14)-C(9)-C(10) 109.2(5)

C(10)-C(l 1)-C(12) 108.6(6)

C(12)-C(13)-C(14) 112.4(6)

C(8)-C(42)-C(7) 111.0(6)

C( 1 )# 1 -Rh(2)-C( 1 )#2 90.000(1)

C( 1 )# 1 -Rh(2)-C( 1 )#3 90.000(1)

C( 1 )#2-Rh(2)-C( 1 )#3 179.8(3)

C(l)-N(l)-C(4) 127.5(5)

C(l)-N(2)-C(3) 112.7(5)

C(3)-N(2)-C(9) 120.3(5)

N(2)-C(l)-Rh(2) 129.7(4)

C(3)-C(2)-N(l) 107.6(5)

N(l)-C(4)-C(8) 110.2(5)

C(8)-C(4)-C(5) 110.5(5)

C(7)-C(6)-C(5) 112.7(5)

C(42)-C(8)-C(4) 111.7(5)

N(2)-C(9)-C(10) 111.1(5)

C(11)-C(10)-C(9) 113.6(6)

C(13)-C(12)-C(l 1) 111.5(5)

C(13)-C(14)-C(9) 113.4(5)
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5.13. Appendix 13: crystallographic data, bond lengths and angles for ICy:CC>2

(108).

IC y:C 02

Empirical formula C 1 6 H2 4 N 2 O2

Formula weight 276.37

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P21/a

Unit cell dimensions a =  12.1770(2)A a = 90° 

b = 9.4380(2)A p = 111.608(1)° 

c =  13.9000(3)Ay = 90°

Volume 1485.22(5) A3

Z 4

Density (calculated) 1.236 Mg/m3

Absorption coefficient 0.082 mm'1

F(000) 600

Crystal size 0.17 x 0.15 x 0.10 mm

Theta range for data collection 3.60 to 27.49°

Index ranges -15<=h<= 15; -12<=k<= 12; -18<=1<=18

Reflections collected 26351

Independent reflections 3385 [R(int) = 0.0955]

Reflections observed (>2a) 2552

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3385 / 0 /  182

Goodness-of-fit on F2 1.021

Final R indices [I>2o(I)] R1 = 0.0437 wR2 = 0.0949

R indices (all data) R‘ = 0.0694 wR2 = 0.1065

Largest diff. peak and hole 0.305 and -0.349 eA'3
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Bond lengths (A) for ICy:C0 2

0(1)-C(4)

N (l)-C(l)

N(l)-C(5)

N(2)-C(3)

C(l)-C(4)

C(5)-C(8)

C(6)-C(16)

C(7)-C(8)

C(9)-C(14)

C(ll)-C(12)

C(13)-C(14)

1.2432(16)

1.3511(16)

1.4877(16)

1.3844(17)

1.5342(18)

1.5221(19)

1.522(2)

1.527(2)

1.5294(19)

1.522(2)

1.5286(19)

0(2)-C(4)

N(l)-C(2)

N(2)-C(l)

N(2)-C(9)

C(2)-C(3)

C(5)-C(19)

C(6)-C(7)

C(9)-C(10)

C(10)-C(ll)

C(12)-C(13)

C(16)-C(19)

1.2396(16)

1.3783(17)

1.3482(17)

1.4906(15)

1.3525(19)

1.5256(18)

1.526(2)

1.5257(18)

1.5248(18)

1.525(2)

1.5312(19)
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Bond angles (°) for ICy:C(> 2

C(l)-N(l)-C(2) 109.08(11) C(l)-N(l)-C(5) 126.83(11)

C(2)-N(l)-C(5) 123.80(11) C(l)-N(2)-C(3) 109.14(11)

C(l)-N(2)-C(9) 127.69(11) C(3)-N(2)-C(9) 122.90(11)

N(2)-C(l)-N(l) 107.22(11) N(2)-C(l)-C(4) 126.96(11)

N(l)-C(l)-C(4) 125.81(11) C(3)-C(2)-N(l) 107.50(12)

C(2)-C(3)-N(2) 107.06(12) 0(2)-C(4)-0(l) 130.00(13)

0(2)-C(4)-C(l) 115.21(11) 0(1)-C(4)-C(1) 114.79(11)

N(l)-C(5)-C(8) 108.88(11) N(l)-C(5)-C(19) 111.66(11)

C(8)-C(5)-C(19) 111.00(11) C(16)-C(6)-C(7) 111.35(12)

C(8)-C(7)-C(6) 111.44(13) C(5)-C(8)-C(7) 110.08(12)

N(2)-C(9)-C(10) 109.71(10) N(2)-C(9)-C(14) 109.11(10)

C(10)-C(9)-C(14) 111.28(11) C(11)-C(10)-C(9) 110.56(11)

C(12)-C(l 1)-C(10) 110.72(12) C(11)-C(12)-C(13) 109.90(12)

C(12)-C(13)-C(14) 111.14(12) C(13)-C(14)-C(9) 110.90(11)

C(6)-C(16)-C(19) 111.61(12) C(5)-C(19)-C(16) 109.26(11)
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5.14. References
(1) Asymmetric unit consists of Vi o f a molecule, with the central ruthenium, 

carbene carbon and hydride located on a crystallographic 2-fold rotation axis 
that serves to generate the remainder of the molecule. Hydride hydrogen 
located and refined at 1.6 A from the central metal. The phenyl ring based on 
C19 is disordered over 2 sites in a 60:40 ratio. Both partial occupancy 
fragments refined as rigid hexagons. Atoms in minor component are labelled 
with suffix ’A'.

(2) Asymmetric unit contains 1 molecule of THF solvent which exhibits
substantial disorder. Optimal convergence achieved by treating solvent as 2 
fragment of with 7:3 occupancy ratio. Hydride readily located and refined at 
distance of 1.6 A from central metal.

(3) Bridging hydride located and refined to have similar bond distances to each
rhodium centre.

(4) HI located and refined without and restraints.
(5) Asymmetric unit is 14 of a dimmer molecule. The remainder is generated via

a 2-fold rotation axis on which both Rhl and Rh2 are sited.
(6) H2 located and refined without constraints. No absorption correction (on

merit).
(7) Asymmetric unit contains 1 molecule of dichloromethane.
(8) Potential for lots of C-H...F interactions in lattice.
(9) The asymmetric unit in this structure consists of two crystallographically 

independent cation halves, with the central metal in each case located on a 2- 
fold rotation axis implicit in the space group symmetry, an addition to one 
PI1 2PO2 ' anion, and 2 benzene molecules. 5 carbons in one of the phenyl 
rings in the anion exhibited 70:30 disorder, which was duly modelled.

(10) Early refinements of the structural model indicated that there was diffuse 
electron density in the lattice. Subsequent examination with PLATON 
showed that it contains large regions between molecules and that these are 
occupied by fractional amounts of solvent, but disorder was so extensive that 
a sensible atomic model could not be developed. The solvent was modelled 
using the SQUEEZE procedure in PLATON. This yielded an estimate of the 
solvent content (based on the approximate number o f electrons contained in 
the voids) as being in the region of 2 whole carbons and 4 hydrogen atoms 
per unit cell. F(000) and related parameters, as presented, are derived on the 
basis of inclusion of this solvent in the unit cell. Data cut off at a resolution 
of 0.95 A is a consequence of a decline in diffracting ability of the crystal at 
higher Bragg angles, which is probably a symptom of the presence of diffuse 
solvent.
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