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Abstract

This thesis describes a novel fault locator for extra high voltage (EHV) transmission 

systems based on artificial intelligence techniques. In particular, the technique 

developed addresses some common problems in fault location and takes into account 

the practical limitations in the design, extending the range of applicability o f the new 

scheme for a whole variety o f practically encountered systems and fault conditions, 

without sacrificing the high accuracy requirements. The method is based on utilising 

voltage and current waveforms at one end o f the line only, and the signals employed 

are based on phase values.

Two fault location techniques are discussed in this thesis that are very effective in 

overcoming the disadvantages and improve the accuracy o f the fault location over 

that attained with traditional techniques. The first technique is based solely on 

artificial neural networks (ANNs) and consists o f two parts: (i) employment o f  an 

ANN for fault type classification and (ii) utilisation o f separate ANNs (one for each 

type of fault) to accurately locate the actual fault position associated with all the 

commonly encountered types o f fault on EHV transmission lines. In order to further 

improve the accuracy in fault location, an integration o f fuzzy logic and ANN is 

adopted in the second technique.
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â> Ic Three-phase currents

u Universe of discourse

A Crisp set

F Fuzzy set

Membership function

u Union

n Intersection

FLS Fuzzy Logic System

S Small

MS Medium Small

M Medium

ML Medium Large

L Large

RMS Root Mean Square error

El Error Index

SCI Single Confidence Index

ACI Average Confidence Index

GEC General Electric Company

La j Eb, Ec, Internal voltages

rms Root mean square value



CHAPTER 1

Introduction

Modem civilization, industrial growth and higher living standards require enormous 

use o f energy. Electrical energy is the most convenient way of generation and 

delivering energy to homes and industries. Electrical power systems are designed and 

managed to deliver this energy to the utilization points with both reliability and 

economy.

1.1 Electrical Power System

The structure of an electric power system is usually very large and complex. It can 

be considered to consist of a generation system, a transmission system, and a 

distribution system. In general, the generation and transmission systems are referred 

to as bulk power supply, and the distribution system is considered to be the final 

means to transfer electric power to the individual consumers. Bulk power 

transmission is made up of a high-voltage network, generally 132-750 kV alternating 

current, designed to interconnect power plants and electric utility systems and to 

transmit power from the generating plants to major load centres.

I
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1.1.1 Generation System

Electrical energy is generated in the generating station. The cost of electric supply 

is influenced by the level of investment in generation. Generation of electricity is 

performed by the conversion of kinetic energy into electrical energy via magnetic 

fields. The kinetic energy released from moving water, expanding steam, wind power, 

etc, is used to rotate a shaft which drives a generator.

The nature of a generator depends upon the source o f energy and this in turn has 

some bearing on the design of the generator. There are power units based on steam, 

gas, water power and diesel engine drives. Generation voltage is in the range o f 11 

to 25 kV and the range o f size o f generators extend from a few hundred kVA to 500 

MVA.

1.1.2 Transmission and Distribution

Bulk generating plant is connected to the consumers' loads by means o f an 

interconnected system o f transmission and distribution network. A high-voltage 

transmission system is required in order to connect bulk generation to the distribution 

systems. Which then supply the electricity on a smaller scale to the consumers [1].

The choice o f transmission voltage is governed by physical factors such as electrical 

losses and economic factors based on the cost o f line construction and maintenance. 

In order to transmit the necessary power over long distances, line losses become 

increasingly important. The use o f high voltage reduces losses by reducing the 

current for a given amount of power. In the United Kingdom, the generating stations 

supply a transmission network which operates at 275 kV and 400 kV, whilst many 

overseas countries have transmission systems operating at 750 kV.
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1.1.3 Networks

Modem power systems are highly interconnected and the power stations are 

synchronised together, effectively acting as a single power source for the whole 

system. High voltage transmission lines are used to interconnect generators and link 

generators to load centres. The interconnections are capable o f carrying power in 

orders o f magnitude of the effective generating capacity.

1.2 Power System Protection

Power systems and their components need to be protected when faults occur due to 

natural hazards as well as human error. The objective o f power system protection is 

to detect the presence o f these faults and to initiate the isolation of the affected 

equipment in the shortest possible time.

1.2.1 Power System Faults

Power system faults can be caused by many factors such as lightning, wind, ice, 

animals, and humans. These faults produce over-current and/or over-voltages at 

various points on the power system, and must be located and cleared before damage 

is caused to expensive equipments.

1.3 Transmission Line Faults

Electrical power systems are designed to ensure a reliable supply of energy with the 

highest possible continuity. Electrical faults can occur at any point in an electric 

power system and the most exposed parts are overhead transmission lines. A 

transmission line is also one of the most difficult parts o f a power system to maintain 

and inspect, simply because of its dimension and the environment it is built in [2].



Chapter 1 Introduction page 4

1.3.1 Accurate Fault Location for Transmission Lines

Fast and accurate location of faults on an electrical power transmission line is vital 

for the economic operation of power systems. This is more so in view of the fact that 

because o f an increase in transmission requirements and environmental pressures, 

power authorities are being forced to maximize the transmission capabilities of 

existing transmission lines. This effectively means that in order to maintain system 

security and stability, there is a demand for minimizing damage by restoring the 

faulted line to normal as quickly as possible, hence the requirements for the 

development o f an accurate fault locator. The degree o f accuracy required is therefore 

increasing and is much higher than would be possible using simple conventional 

techniques. Even a small measurement error may require detailed local examination 

over several kilometres o f a typical line.

1.3.2 Importance of Accurate Fault Location

Some of the important reasons for accurate fault location on transmission lines can 

be summarised as:

• Under normal operating conditions, assessing the condition o f a 

system is fairly simple. However, when a fault occurs, the analysis 

will be much more complicated and at the same time much more 

important, considering the conclusions that could be inferred from the 

results. In this case, defining a fault allows one to subsequently 

simulate it to acquire complete information on the abnormal 

conditions under which the various devices in the system were 

operating at the time the disturbance occurred. Furthermore, in case 

of permanent faults, locating a fault will allow one to go to the exact 

fault point and take appropriate actions to restore power. In the case 

o f non-permanent faults, locating a fault point allows one to identify 

critical points in the system (trees, pollution, defective insulators, etc.)
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and take the required preventive maintenance steps.

Accurate fault location reduces transmission line patrolling and is of 

particular significance in repairing long lines in rough terrain. A fault 

locator is also very useful for evaluating transient faults that could 

otherwise, cause weak spots to occur on transmission and distribution 

systems, resulting in future problems or more serious faults.

The use o f longer distance transmission lines coupled with demand for 

reduced circuit outage times is stimulating a requirement for reliable 

and accurate fault location techniques for transmission lines.

Minimising outage times following a fault is paramount to the security 

and therefore the economical operation of a supply network. This 

means that it is critically important to restore a faulted line as quickly 

as possible.

The need for very high accuracy is generally becoming more 

important since in EHV systems, there is often little visual evidence 

o f a fault, and post-fault clearance tests performed at reduced system 

voltage can be inconclusive.

The growing complexity of electric power systems demands a high 

performance from protection and control equipment. Fault locators 

have gained more importance over the years since it has become more 

difficult to find the fault location as the visible damage o f the line has 

decreased due to the advent o f faster circuit breakers and faster 

protective relays.
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1.4 Current Fault Location Methods

Fault location methods currently used are based on either the theory of travelling 

waves or the analysis of fault and pre-fault voltage and current values at the 

fundamental frequency. When using algorithms based on the theory of the travelling 

waves, the point at which a fault occurs is determined from the delay of a reflected 

wave from the fault point to the point o f measurement. The disadvantages of this 

method are the high costs o f the equipment required and the significant variations in 

the magnitudes and frequency o f travelling waves under different fault conditions. On 

the other hand, the algorithms based on voltage and current values at fundamental 

frequency allow, in general, the determination of the fault distance by finding the 

apparent impedance seen by the relay located at the end of the line. This impedance 

is supposed to be proportional to the distance between the reference point and the 

fault point.

1.4.1 Microprocessor Technology

The rapid progress in microprocessor technology, coupled with developments that 

have taken place in computer software, makes it ideally suitable for applications in 

electric power systems, in particular where high precision is necessary, such as in 

transmission line fault location. These new developments have come as a replacement 

for the previously outlined analog techniques which are less flexible, the accuracy 

attainable is not that high and they demand high maintenance.

The design of microprocessor-based fault locators includes the selection o f a suitable 

algorithm and a hardware platform to implement the selected technique. Several 

approaches to the problem of a transmission line fault location have been 

investigated. Different principles have been applied to the problem and the techniques 

can be broadly classified into single-ended and multiple-ended data measurements.

Fault location techniques using fundamental frequency voltages and currents
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measured at one of the line terminals generally does not provide sufficient accuracy. 

The majority of such techniques are based on lumped parameter line models and the 

objective is to evaluate the complex impedance o f the line up to the fault point, from 

which fault distance can be deduced. Such techniques are particularly prone to 

inaccuracies if fault current is contributed by sources connected to both terminals of 

the line, and especially if fault resistance is present.

When data from multiple ends are used, it is possible to overcome some o f the 

common problems associated with fault location based on single-ended 

measurements. However, a communication medium is required for transmitting fault- 

recorded data to the processing end in the case o f the former.

1.5 Artificial Intelligence Techniques

Artificial intelligence (AI) provides powerful techniques for processing symbolic or 

declarative knowledge and for automated reasoning. In this respect, the advent of 

artificial neural networks has provided power engineers with powerful tools which 

are promising for solving some long-standing power system problems. Neural 

networks possess the ability to perform pattern recognition, prediction and 

optimisation in a fast and efficient manner. This is so by virtue o f the fact that they 

have the ability to map very complex and highly non-linear input/output patterns.

With the recent advances in learning techniques for artificial neural networks 

(ANNs), They are being applied to many areas o f power systems. ANNs show a high 

potential as an alternative to algorithmic and expert system methods; they have been 

used to preform electric load forecasting [3], detection o f faults on power distribution 

feeders [4], autoreclosure for EHV transmission systems [5,6], real-time and off-line 

fault analysis [7], fault identification in an AC-DC transmission system [8] and high 

speed protective relaying [9].

Many intelligent system techniques have been developed over the last decade. Some
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of the major ones include expert systems, fuzzy systems, neural networks and genetic 

algorithms. The applications of these intelligent techniques to power system problems 

has been a subject o f interest over the past years. Because o f the nature of various 

types o f power system problems, different solutions may be required. However, the 

real world power system problems may not fit the assumptions of a single technique. 

One approach to deal with these complex real word problems has been to integrate 

the use of two or more AI techniques in order to combine their different strengths 

and overcome each other's weaknesses to effect hybrid-based solutions.

1.6 Objectives of the Project

The main objectives o f this thesis are:

□ To present an accurate fault location technique for transmission lines based 

on artificial intelligence (AI) techniques. The method is based on utilising 

voltage and current waveforms at the fault locator end o f the line captured 

using digital fault recorders. The technique outlined also includes an accurate 

method for classifying all types o f fault using an ANN.

□ To establish the correct performance of the proposed fault locating technique. 

The approach adopted for this purpose is through modelling the fault locator 

on a computer and investigating the performance that might be expected when 

it is subjected to the simulated fault transient data attained, using the well 

known Electro-Magnetic Transients Program (EMTP).

The effect of transducers (CTs and CVTs) and hardware errors such as the 

effect o f interface modules, anti-aliasing filters and quantisation are taken into 

account in the simulation, so that the information processed through the fault 

locator algorithm is very close to a real-life situation.

The extraction o f the significant features from the simulation waveforms
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based on spectrum analysis is presented. The approach adopted is based on 

frequency domain decomposition of the voltage and current waveforms using 

Discrete Fourier Transform (DFT) for the purposes o f attaining the best 

training data sets for the ANNs.

The algorithm is extensively tested for a whole variety o f practically 

encountered different systems and fault conditions. Furthermore, the effect on 

accuracy o f parameters like fault resistance, system source capacity, different 

fault inception angle, etc, is ascertained.

□ To further improve the accuracy of the fault location technique through an

integrated approach comprising of fuzzy logic and an ANN, called fuzzy 

neural network (FNN). The technique, which utilises voltage and current fault 

data at one line end only, comprises of two stages: the first stage is based 

solely on ANN in order to classify fault types and the second stage is based 

on a FNN whereby fuzzy logic is employed to process the information for a 

second ANN for the purposes of accurately locating a fault on the line.

1.7 Scope of the Thesis

Chapter 2

A literature search o f fault locator techniques for two- and three-terminal 

transmission lines are presented in this chapter. The techniques reviewed are divided 

into two groups:

i) Algorithms using data from one end o f a transmission line only.

ii) Algorithms based on information from all ends of a transmission system.

AI based fault location techniques are also reviewed in this chapter.
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Each technique is described individually and some of the advantages and 

disadvantages are discussed.

Chapter 3

The applications of AI and ANN in power systems are reviewed. Structure o f an 

expert system, a fuzzy logic and neural networks are discussed with particular 

emphasis on multi-layer-perceptron and the back-propagation algorithm that is used 

to adapt the weights to achieve the desired non-linear mapping from inputs to 

outputs. Practical issues concerning the design, training, and testing of ANNs are also 

discussed.

Chapter 4

This chapter describes the simulation of power systems under faults to generate 

accurate and realistic fault data and this is achieved through the employment o f the 

well proven Electro-Magnetic Transients Program (EMTP). The simulation study is 

based on a plain feeder EHV transmission line system. The overhead transmission 

line used in this work is based on a single circuit o f the typical quad-conductor 400 

kV vertical construction line currently used on the UK supergrid system.

Although the fault location technique is based on Computer Aided Design (CAD) 

studies, however, practical considerations, such as the effect of transducers, and 

hardware errors i.e. anti-aliasing filters and quantisation, etc, on the primary system 

fault data are also included in the simulation and these are also briefly discussed.

Chapter 5

An accurate fault location technique using ANNs is presented in this chapter. The 

feed-forward multi-layer ANN based on supervised learning and the widely used 

training rule o f error back-propagation is chosen for this study. The instantaneous
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three phase voltages and currents derived at the fault locator end are used to train and 

test the ANN. An ANN architecture to distinguish between different types of fault 

is proposed and ANN topology for accurate fault location under different system and 

fault conditions is discussed.

Chapter 6

An integrated approach comprising fuzzy logic and ANNs called fuzzy neural 

networks (FNNs) for accurately locating faults on a transmission line is developed 

in this chapter. The method is again based on utilising voltage and current waveforms 

at the fault locator end of the line only and the signals employed are again based on 

phase values.

The approach adopted here is based on separating the problem into two parts: firstly 

to employ and train a single ANN to indicate on which phase(s) the fault is and 

whether there is ground involved in a particular fault, irrespective of the actual fault 

position at this stage; secondly, in order to achieve a good generalisation, to use 

separately designed FNNs (one for each type of fault and each comprising fuzzy 

logic and an ANN) to accurately locate the actual fault position associated with all 

commonly encountered types of fault on EHV transmission lines; these are of course 

all driven from the single ANN designed at the first stage.

Chapter 7

Analysis o f the results are presented in this chapter and the performance of ANN 

for fault classification and fault location is discussed. Results for accurate fault 

location based on FNN is presented and compared with the previously developed 

fault location technique based solely on ANN architectures.
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Chapter 8

Conclusions are drawn and future work is discussed in this chapter.



Chapter 2

An Overview Of Fault Location Algorithms 

For Transmission Lines

2.1 Introduction

Accurate fault location for extra high voltage (EHV) transmission lines has been the 

subject o f much research over many years, and over the past decade, digital and 

microprocessor based systems have become the focus o f attention. Numerous fault 

locators based on different techniques have been developed and implemented, yet 

there appears to be still no optimum solution. This could be due to the fundamental 

limitation of all techniques. Generally, they all perform well for a specific system i.e. 

a particular system configuration, or a particular fault condition, but accuracy is lost 

when applying them more generally.

Microprocessor-based devices have had a better accuracy in locating faults in power 

systems than analogue-based techniques. In this respect, considerable work has been 

done in developing digital techniques for locating faults on transmission lines both 

for two- and three-terminal lines.

The design o f microprocessor-based fault locators includes the selection o f a suitable 

algorithm and hardware to implement the selected technique. Several approaches to

13
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the problem of a transmission line fault location have been developed. Different 

principles have been applied to the problem and techniques for two-terminal lines can 

be broadly classified into single - ended and multiple - ended data measurements.

2.2 Algorithms Using Data From One-End Only

The principles o f the fault location techniques discussed in this chapter are outline 

with reference to the single-line diagram of a power system in a faulted situation 

shown in figure 2.1.

L
4---------------------------------------------k
i X i i

•SA

Figure 2.1 Single line diagram for a two-ended transmission system.

Algorithms using data from just one end of a transmission line are generally based 

on the calculation o f the impedance up to the fault point, from which fault distance 

can be deduced. However, such techniques suffer from errors due to fault current 

contribution by sources connected to both terminals of the line and fault resistance, 

if  present.

Sant and Paithankar [10] have used a fault location technique based on the 

measurement o f the ratio of the reactance of a line from the fault locator up to the 

fault point to the total reactance of the line, i.e. Xf / Xn. Because X„ is a known value, 

the ratio Xf / Xn determines the fault position. The following expression is derived 

for calculating this ratio:
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Xf  (sin01)(cos03)
(2 . 1)

XH (sin02)

where:

= arctan[

(2 .2)

03 = 180° -  (0j + 02)

Equation (2.1) clearly shows that the fault position can be determined by the 

measurement of any two of the three phase angles 0,, 02 and 03. The suggested 

technique for the new digital fault locator is based on measurements o f these angles 

by two digital counters. The technique assumes that the line is connected to a source 

at one end only. The fault location estimates are, therefore, not accurate if  there is 

remote infeed present.

Takagi et al [11] have developed a fault locator that calculates the reactance o f the 

faulted line using a microprocessor, based on one-terminal voltage and current data. 

Errors caused by various factors such as load flow, fault resistance, and the 

unsymmetrical arrangement o f the transmission line, are automatically reduced by 

efficient use o f the software. The method to calculate the distance to a fault point is 

based on the following equation, which expresses a fault point voltage VF and current 

I " AF using the one-terminal data:

VF = VA cosh(yjc) -  ZJA sinh(y;t)

V
IAF = y -  sinh(yx) - IA cosh(yx)

(2.3)
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Two approximations are adopted in equation (2.3), and the distance to a fault is 

obtained using the following equation:

where:

X —» distance to the fault point

vA —> voltage of A-terminal

I a -> current o f A-terminal

VF —> voltage of fault point

I f —> fault current

v~A —> voltage difference between pre-fault and post-fault voltage

I ~ A —» current difference between pre-fault and post-fault (fault 
component current)

I " af —> fault current from A-terminal

z s —» surge impedance

Z l —» transmission line impedance per unit length

Y —> propagation constant

The effect o f the load flow is cancelled by using fault component current IA" in 

equation (2.4), and the effect o f fault resistance is reduced by a manipulation o f the 

previous equations. The technique initially neglects the effect o f shunt capacitance, 

but this effect is compensated for later on.

Schweitzer [12] has proposed a fault location algorithm for transmission lines which 

provides an improvement to the performance of the Takagi algorithm.

Takagi et al [13] in another method have applied the law of superposition to the 

steady state fault analysis; the authors obtain an algebraic equation which contains 

an unknown variable corresponding to the fault distance, using current and voltage 

vectors at the local end. The following expression is derived to obtain a solution to
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the fault location problem:

A(x)Va -  B(x)Ia
r f [i -  m -------- ^ (2 .5)

where k(x), the current distribution factor, is a function of the distance x to the fault, 

and is defined as:

k(x) * ^  (2.6)
FA

As the fault impedance is purely resistive, RF is a real variable. The ratio k(x) also 

becomes real on the assumption that the transmission line is lossless and the source 

impedances at the two ends are purely inductive; thus, by definition, the right hand 

side of equation (2.5) must be real. The basic equation is obtained as follows:

Im
A(x)Va -  B(x)IA

C{x)V'; -  D(x)Ia
= 0 (2.7)

where Im [] denotes the imaginary part o f a complex variable.

The solution x of the equation (2.7) is the distance from the local end to the fault 

point. As this equation is non-linear in nature, an iterative solution technique based 

on Newton-Raphson method is applied. First o f all, the primary data o f transient 

waveforms is smoothed out through digital filtering. Secondly by a transformation 

technique extracts the voltage and current vectors and finally, the Newton-Raphson 

technique is applied to solve the equations. With the practical consideration in mind, 

the application o f fast algorithms such as half-cycle and truncated Fourier Transform, 

and Walsh transform are then examined. Finally, the digital fault locator is tested on 

an artificial transmission line and good performance is obtained. However, since the 

solution assumes lossless circuit elements, for a realistic lossy system, there are 

appreciable errors in the computed distance.
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Takagi et al [14] in the second part o f their work have presented the fundamental 

theory of a fault locator scheme based on the Laplace transform. The superposition 

principle is applied to the transient state of a faulted network. The fault current 

distribution factor is used again in a different manner. They have then applied the 

condition that the voltage across the fault resistance must have the same value if 

calculated for two different values of the Laplace operators. However, the authors 

conclude that the Fourier method is numerically superior to the one based on Laplace 

transform.

Wiszniewski [15] has presented a method based on the standard calculations of 

resistance and reactance using the fault current distribution factor, with an algorithm 

in which an attempt is made to compensate the error introduced by the fault 

resistance. The required algorithm computations are very simple and non-iterative. 

The first expression taking into account the current distribution factor is:

I  A

kf  IA ejX
(2.9)

The final expression for calculating a correct value o f the reactance is obtained as: 

RAtan((Pi) -  XA

a  =  Re

b = Im

(2 .10)

Where,

Za -  Ra + j XA

^L A  =  R LA +  j X LA

< t> L  =  t a n ' '  ( X l a / R l a )  - »

kf=  k e*’

impedance measured at A

line impedance between the fault and the end A

phase angle o f the phase impedance

fault current distribution factor, depending on

the configuration o f the network
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IA —> total line current at the end A during the fault

IL —> pre-fault current

Rf —> fault resistance

The local signals IA, VA and IL enable XA, RA, 'a' and 'b' to be calculated. Therefore, 

the reactance XLA, which is proportional to the true distance between the line end A 

and the fault, may be determined by the means o f equation (2.9). The accuracy of 

the error compensation depends on the assumed values for <|)L and X. In fact, the 

fault-current distribution factor depends on the configuration of the network, but in 

most cases, it may be assumed that X is equal to zero, which implies that the 

distribution factor Iq is real. The angle <J)L may also be considered as constant because 

the expected variations are negligible. However, in some cases, this assumption may 

give rise to incorrect compensation and in this case some refinements are 

implemented. This modified technique shows that the apparent reactance measured 

at one end of the line requires a certain correction to eliminate this error to give 

results truly proportional to the distance to the fault. Correction is based on the 

estimation o f the phase shift between the total fault current at one end of the line and 

the current which flows through the fault resistance. No results or field tests are 

presented, and the effect o f shunt capacitance is neglected.

Erikson et al [16] and Saha et al [2] have developed a microprocessor-based fault 

locator which uses novel compensation techniques to improve the accuracy, 

eliminating the errors inherent in conventional reactance-type measurements. Pre-fault 

and fault data extracted from the AC currents and voltages are used to compute the 

distance to fault. The fault locator program described utilises representative values 

o f the source impedance to determine a correct description o f the network. The 

following equation is the general form of fault location equation, where the values 

o f VA, IA, and IFA are different for each type o f fault:
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aFA

D.
(2 . 11)

where,

Ia. VA -» current and voltage at A

F̂A -» change in the line current

Da —> current distribution factor at station A

zL -> line impedance

P —> percent distance to fault

The final expression is then shown as: 

P2 ~ pk i + k2 -  k3RF = 0 

where:

(2 .12)

ki =

k2 =

*3 =

' A
'SB

' A
'SB + 1

F̂A ( 7SA + ZSB

ZL
+ 1

(2.13)

The complex expression of equation (2.11) contains the unknowns p and RF. 

However, equation (2.11) is separated into two simultaneous equations, one real and 

one imaginary. By eliminating RF , a single expression results with the single 

unknown p. This is solved by using the magnitude and phase derived from Fourier 

analysis routine which yields the fundamental components of the signals. For a 

multiphase system, the fault type has to be defined before using the method.

The proposed equipment was tested under dynamic conditions (field tests) with good 

results. However, the results are given only for a short line, and the effect o f shunt 

capacitance is ignored.
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The techniques developed by Takagi et al [11], Winsznieuski [15], Eriksson et al [16] 

and Saha et al [2] depend on a knowledge of the source impedance values to 

calculate the current distribution factor. However, equivalent source impedances are 

not readily available in all cases. Also, the system configuration changes from time 

to time modifying distribution factors, which must be determined for every fault.

Cook [17] has also presented an approach dealing with the current distribution factor. 

The technique also requires an assumed value of the remote end source impedance 

which is then used to determine the argument of this factor, rather than its 

magnitude. Much smaller errors are claimed by the author for such a technique. The 

effect o f shunt capacitance is, however, neglected.

A fault location method by dynamic system parameter estimation is presented by 

Richards and Tan [18] for a double-end fed transmission line using data from one 

end only. The line is represented as a lumped parameter circuit. The system model 

includes Thevenin equivalents including resistances and inductances at both ends of 

the line, and an unknown fault resistance. The fault location problem is then treated 

as a parameter estimation problem of a dynamic system, in which the response o f the 

physical system is compared to the lumped parameter model. The model's parameters 

are varied until an adequate match is obtained with the physical system response. 

Using instantaneous symmetrical components, the equations are simplified. The fault 

location algorithm does not require filtering o f DC offset and high-frequency 

components. Using the simulated transmission line, several tests were conducted. The 

final estimates are within 1% accuracy in each case. However, the effect o f the shunt 

capacitance is neglected, and the effect of some problems relating to real 

transmission lines, like mutual coupling o f parallel lines or line transposition, are not 

considered.

2.3 Algorithms Using Data from Two Ends

It has been shown by some authors that, using information at both ends of the line,
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can improve significantly the accuracy on fault location for transmission lines. 

Generally, the techniques are independent o f fault impedance or changes in the power 

system source operating configuration. However, communication between the ends 

and in some cases, a method to determine the phase angle o f the voltages and 

currents at a common reference axis are necessary. The accuracy o f fault location 

also depends on synchronising the measurements at both ends o f the line.

Transmission line fault location algorithms developed by Schweitzer [12,19] use 

steady state voltage and current data of both ends o f the line. The author offers an 

improvement upon method of Takagi which uses data from one end only. In this 

technique, firstly the location is computed using a short line model. Where the short 

line approximation is unjustified, i.e. with lines longer than about 80km, the 

derivation may be repeated using distributed-parameter equations. Synchronization 

o f data is implemented for maximum accuracy at the two substations. The two-ended 

algorithm described by the author provides an alternative which does not require any 

assumptions for the system outside the monitored line. The accuracy o f the two- 

ended method is limited by the accuracy by which the parameters o f the lines can be 

determined, and also by the accuracy of the measurement system.

Johns and Jamali [20] have presented an accurate fault location technique for 

transmission lines which uses post-fault voltage and current derived at both line ends. 

The method involves monitoring and filtering the voltages and currents measured at 

each end o f the line so as to produce a measure o f steady state power frequency of 

voltage and current phasors. The algorithm is based on natural modes and matrix 

function theory. A method similar to Schweitzer is used to derive an exact equation 

to obtain the distance to a fault on transmission lines. With reference to figure (2.1), 

the voltage at the fault point VF, using data at end A is:

VF = K^coshfyjt) - ZQsinhfyx)^ (2.14)

and the voltage at the fault point using data at bus B is:
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VF = VBcosh(y(L-x)) -  ZQsinh(y(L-x))IA (2.15)

Equations (2.14) and (2.15) are equated so as to eliminate VF, and the result obtained 

is x, the distance to the fault point, which is:

* = [tan-‘(-BM)]/y (216)

where;

A = ZQcosh(yL)Ib -  sinh(yL)VB + ZJA 

B = cosh(yL)KB -  Z0sinh(yL)/B -  VA

The calculated value of x has a very small imaginary part which is ignored. The real 

part is thus taken to represent the fault distance. In all cases, the algorithm error is 

less than approximately 1.5% and overcomes many problems associated with phase 

values, such as due to line loading, effect of source parameters, power swings, etc.

Sachdev and Agarwal [21] have presented a non-iterative technique that estimates the 

location o f the line fault from fundamental frequency voltages and currents measured 

at the line terminals. These measurements would normally be available if  digital 

impedance relay are used to protect the line. The measurements taken at the two line 

terminals are not required to be synchronized. Also, source impedance, current 

distribution factors and pre-fault currents are not used in the estimation procedure. 

The proposed technique uses the apparent impedances as seen from the terminals o f 

a transmission line. To establish the basic approach, a symmetrical three phase 

system experiencing a balanced three phase fault is considered. The technique was 

tested using simulated data. The results indicate that the estimation errors are less 

than 5% of the line length except for a small section near the mid-point o f the line. 

The effect o f the shunt capacitance is neglected.

In another approach based on two-ended data, Sachdev and Agarwal have proposed 

a procedure to compensate for the effect of the shunt capacitance [22]. An estimate 

is first obtained from the positive sequence reactance using the series lumped line
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model by measurements from both line ends. Based on the initial fault distance, the 

shunt capacitance on each side can be estimated. The sequence charging currents 

through these two capacitances can be calculated using the sequence voltages 

obtained from the previous estimation procedure; the sequence line currents towards 

the fault point are then obtained by subtracting the charging current from the 

previous line current and the fault distance is then estimated again. This procedure 

is repeated until convergence is obtained. A resistive fault path is assumed and the 

fault location depends on the estimated fault resistance and the phase angle difference 

between the zero sequence currents from both line ends.

Girgis, Hart and Peterson [23] have presented a fault location technique for two- and 

three-terminal lines. The method is based on digital computation of the three-phase 

current and voltage phasors at the line terminals. These phasors are obtained at each 

end o f the line and communicated to another processor to calculate the fault position. 

The authors claim that the method is independent o f the fault type and insensitive to 

source impedance variations or fault resistance. Furthermore, it considers the 

synchronisation errors in sampling the current and voltage waveforms at the different 

line terminals. The technique is tested using EMTP-generated transient data and high 

accuracy is shown. However, there is no mention of the effect o f the CVTs, CTs and 

transducer/recording equipment interfaces. The line shunt capacitance is also ignored 

in the algorithm.

Kezunovic et. al. [24] have introduced a new fault location algorithm based on 

synchronized sampling. A time domain model o f a transmission line is used as the 

basis for the algorithm developed. Samples o f voltages and currents at both ends are 

taken synchronously and used to calculate fault location. The authors have discussed 

two different types o f algorithm utilizing a short-line model and a long-line model. 

The performance of both these algorithms are tested using EMTP simulations of 

faults on transmission lines. Small percent o f error is reported for all test cases under 

varying fault conditions. However, variation o f system configurations are not 

considered.
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Zamora et al [25] have presented a technique for fault location for two-terminal 

transmission lines. The method is based on measurements o f the fundamental 

components of fault and pre-fault voltage at the two ends o f a transmission line. 

These values are determined by filtering the signals measured by means of devices 

located on both ends of the faulted line. The method to locate a fault point on a 

transmission line is based on the calculation of the distance factor Kv. This method 

is suitable when the fault has been previously detected. This factor is a function only 

o f the impedance of the line model and the distance to the fault point, which is the 

unknown value to be determined. The distance to fault is determined from the 

numerical value o f Kv (defining the fault) and the mathematical function of Kv 

(determined for the particular transmission line under analysis). The numerical value 

o f distance factor Kv, which defines the point at which the fault occurred, is given 

as:

Kv = 1— 1 (2.17)
VVB

The accuracy of the technique is tested using simulated data provided by a fault- 

analysis computer program. The estimated fault locations under different fault 

conditions are within 2.25% of the actual fault location.

2.4 Fault Location Techniques for Three-Teiminal Lines

Three-terminal lines (teed feeders) are an extension of the two-terminal lines with an 

intermediate infeed. Not much work has been reported hitherto for fault location on 

teed feeders. Fault location on multi-terminal lines represents a problem presumably 

due to the infeed currents of the third source and also due to the presence of fault 

resistance.

Girgis et al [23] have presented a technique for locating faults on teed feeders and 

the method is based on utilising information from all three ends. Data from different 

ends are communicated to a processor at one particular end in order to calculate the
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fault location. The local phasors are assumed to have a common reference, but 

synchronization at the different terminals is not required. The method uses the phase 

components and consider the line section to be untransposed. Although this technique 

adequately deals with some of the problems relating to teed feeders, the limited study 

presented is based on neglecting the line shunt capacitance, which would imply that 

the high accuracy attained can only be sustained on relatively short line lengths. 

Moreover, practical considerations such as transducer and hardware errors are not 

considered.

Aggarwal et al [26] have presented an alternative approach to accurately locating 

faults on teed feeders. The technique developed addresses the forgoing problems and 

takes into account the practical limitations. The method is based on utilising voltage 

and current waveforms at all three ends o f typical EHV teed feeders, which are then 

filtered using Discrete Fourier (DFT) techniques so as to produce a measure o f the 

steady-state power frequency voltage and current phasor. the technique makes use of 

superimposed modal components o f voltages and currents rather than total phase 

values. The fault location algorithm is based on designating the line end closest to 

the fault as reference, and identifying the faulted leg before determining the distance 

to fault. The actual distance to fault from the nearest end is then calculated. The fault 

location technique is tested using simulated fault data from practical 400 kV teed 

feeders configurations. Errors of less than 2% are obtained.

2.5 AI-Based Fault Location Techniques

Girgis and Johns [27] have developed a hybrid expert system to identify the faulted 

section and interpret protective apparatus operation in a large interconnected power 

system. The expert system presented by the authors includes four stages. The first 

stage determines the faulted section o f the power system and reports the correct and 

incorrect breaker and relay operation. The second stage interfaces the expert system 

with a data base to combine the real-time phasor measurement of the selected current 

and voltage waveforms with the relays and breaker status. In the third stage, the
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expert system utilizes these phasor quantities to classify the fault. The fourth stage 

interfaces the expert system with fault location algorithms to select the most suitable 

algorithm for the specific situation detected; the main purpose of this stage is to find 

the fault location when the faulted section is a transmission line. Algorithms are 

developed in Fortran to compute the fault location based on the magnitudes and 

angles o f the phase voltages, phase currents and the zero-sequence currents selected 

by the expert system at specified buses during the fault type classification stage. In 

determining the distance to the fault, the mutual coupling between parallel lines, fault 

current, and the fault resistance are sources o f inaccuracy.

Two methods o f fault location techniques are developed. The first method assumes 

that the voltage and current phasors are available at only one terminal o f the line. 

The second method assumes that the current and voltage phasors are obtained from 

both terminals o f the line. The former of the two methods, computes firstly the 

apparent impedance based on a selected voltage and current pairs. These voltage and 

current pairs depend on the fault type; the algorithm compensates for the unknown 

fault resistance by assuming that the fault current in the case of a single-line-earth 

fault to be proportional to the zero-sequence current and proportional to the 

compensated phase current in the case o f interphase faults. The second algorithm 

eliminates the zero-sequence current component of the fault current and the 

associated current distribution factor to avoid inaccuracy in the zero-sequence 

impedance values. A current distribution factor is then developed for the positive and 

negative sequence networks. It requires information on source impedances at the time 

o f the fault occurrence. This paper indicates that the application of expert systems 

for power system protection is promising and deserves further investigation.

Kanoh et al [28] have proposed a fault location method that uses an artificial neural 

network (ANN) to analyze the distribution pattern o f the ground wire current along 

the power line. The proposed ANN comprises three sets of three-layer ANNs which 

follow the back-propagation learning procedure. The first and second ANNs calculate 

candidate-1 and candidate-2 for the fault section using current amplitude and phase
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angle distribution patterns, respectively. The third ANN then defines the actual fault 

location using these candidates and a current amplitude distribution pattern. The 

technique used to determine ANN structure involves analysing the inference process 

of locating the fault point from the ground wire current distribution. In order to 

measure the current distribution patterns, current sensors are installed on the overhead 

ground wire. The method is tested for different fault cases and the accuracy of 98.4% 

is claimed by the authors.

Kandil et al [29] have discussed the possibility of using ANNs to identify faults that 

may have occurred in an AC-DC power system. In this paper, three different ANN 

architectures to distinguish between different types o f faults on the AC-DC system 

are proposed. These can sense AC bus voltages either as rms values (with or without 

phase angle information) or as sampled instantaneous values o f sine waves. The 

output layer o f each ANN consists of six nodes categorising each type o f fault. The 

HVDC system modelled is based on one pole o f the two-pole 1000 MW 

Chateauguay (Hydro-Quebec) back-to-back tie. The model is simulated using the 

EMTDC package. A comparison between the three mentioned methods is made, and 

it is concluded that some confusion can occur in distinguishing a line-to-line fault 

from a remote AC fault and a delay of 1-2 cycles in detection o f faults when using 

rms values is expected due to an algorithm required for determining the rms value.

2.6 Summaiy

A literature review of fault locator algorithms for two- and three-terminal 

transmission lines are discussed. The techniques reviewed are based on using data 

either from one end of the transmission line or from both ends. Al-based fault 

location techniques are also covered in this chapter. Each technique is described 

individually and some of the advantages and disadvantages are stated.



Chapter 3

Artificial Intelligence Techniques

3.1 Introduction

This project is concerned with research into an alternative fault location technique 

based on Artificial Intelligence (AI). It is the study of mental faculties through the 

use of computational models and is defined as the study of ways of making 

machines, especially computers, solve problems intelligently. It consists of a number 

of powerful tools and techniques for problem solving and recent advancement has 

increased the power and popularity of many AI techniques. There are a number of 

AI techniques in use today such as expert systems, fuzzy logic and Artificial Neural 

Networks (ANNs). Various AI applications have been applied to power system 

problems over the years.

3.2 Artificial Intelligence in Power Systems

Modem power systems are required to generate and supply high quality electric 

energy to consumers. In order to achieve this requirement, computers are extensively 

applied to power system operation, planning, monitoring and control; power system 

application programs for analysing system behaviour are stored in computers. For 

example, at the planning stage of a power system network, system analysis programs 

are executed repeatedly; engineers adjust and modify the input data to these programs

2 9
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according to their experience and heuristic knowledge about the system until 

satisfactory plans have been determined. However, the programs developed hitherto 

are based on mathematical models and are implemented using languages suitable for 

numeric computation only. For sophisticated approaches to system planning, for 

example, development of methodologies and techniques to incorporate practical 

knowledge of power engineers into programs (which also include the numeric 

analysis programs) are needed.

Power system analysis programs and other application programs are employed in 

energy control centres for the purposes of investigating and predicting the behaviour 

of power systems under steady-state operations. Whilst these programs are powerful 

tools, their ability to assist operation engineers to make efficient decisions is very 

limited when unplanned or unexpected modes of system operation occur. The 

abnormal modes of system operation may be caused by network faults, active and 

reactive power imbalances, or frequency deviations. An unplanned operation may 

lead to a partial or a complete system blackout. Under these emergency situations, 

power systems are restored back to the normal state according to decisions made by 

experienced operation engineers.

Power system decision problems have been predominately studied and solved through 

numerical analytical programs because of the mathematical inheritance. Because of 

the laborious work involved in data preparation and time required for the detailed 

analysis of the results, the time available for comprehensive assessment and decision 

making has been sacrificed. Such tasks are made very difficult for humans to provide 

effective and efficient solution to the problems without some decision aides. 

Moreover, subjective problem solving approaches can very heavily depend on the 

persons (operator/engineer) own judgment and preferences in performing the task. In 

order to improve the situation, the establishment of an overall method for the 

assessment and enhancement of a power system is urgently required by power 

engineers. Hence, the search for better tools for aiding and guiding decision making 

is inevitable which can primarily improve the man-computer interaction as well as
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break away from the obscureness which traditional computer methods inherit.

AI has provided techniques for encoding and reasoning with declarative knowledge. 

In particular, the advent of ANNs, an intelligent machine learning technique, provides 

neural network modules which can be executed in an online environment. These new 

techniques supplement conventional computing techniques and methods for solving 

power system problems.

3.3 Expert System

An expert system is a rule-based AI application program for doing a task which 

requires expertise. The expert program is built from explicit pieces of knowledge 

extracted from human experts using AI programming techniques such as symbolic 

representation, inference, and heuristic search. Knowledge-based systems can be 

distinguished from other branches of artificial intelligence by their emphasis on 

domain-specific knowledge, rather than the more general problem-solving strategies. 

Since their strength derives from such domain-specific knowledge rather than more 

general problem-solving strategies, expert systems are often call "knowledge-based". 

More recently, expert systems have been developed in many areas such as oil 

exploration, computer-chip design, disease diagnosis and engineering. The application 

of expert systems to power systems field is relatively new. However, there are some 

applications related to power system planning, fault section analysis, fault type 

classification and fault location [30,31].

3.3.1 Structure of an Expert System 
«

Most production expert systems include the basic components related to each other 

as shown in figure 3.1.
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Figure 3.1 Structure o f an expert system.

Expert systems typically have four components:

1) A knowledge base. This source of knowledge includes domain specific facts and 

heuristics useful for solving problems in the domain, generally structured in the form 

of production rules.

2) An inference engine. This is the knowledge processor which is modelled after the 

expert's reasoning. The engine works with available information on a given problem, 

coupled with the knowledge base, to draw conclusions or recommendations.

3) A knowledge-acquisition. The knowledge-acquisition interface assists experts in 

expressing knowledge in a form suitable for incorporation into a knowledge base.

4) A working memory. The working memory or global data base registers the current 

problem status and history of solution to date.

The user interface assists users in consulting the expert system, prompting them for 

information required to solve their problems, displaying the program's conclusions,
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and explaining its reasoning. Generally, these interfaces attempt to provide the user 

with most of the capabilities they would have if they were interacting with a human 

expert.

3.3.2 Characteristics of Expert Systems

Some of characteristics shared by almost all expert systems can be summarised as:

• The system performs at a level generally recognized as equivalent to 

that of a human expert or specialist in the field.

• The system is highly domain specific, that is, it knows a great deal 

about a narrow range of knowledge rather than something about 

everything.

• The system can explain its reasoning, that is, to provide a useful tool 

it must be able to justify its advice, or conclusion.

• If the information with which it is working is probabilistic or fuzzy, 

the system can correctly propagate uncertainties and provide a range 

of alternate solutions with associated likelihoods.

3.4 Fuzzy Logic

Fuzzy logic models the vagueness of human reasoning by reflecting uncertainty about 

a variable's value through the assignment of a set of values to the variable; each 

variable has a degree of membership of the set which reflects the likelihood of the 

variable having that value. A membership function defines the degree of membership 

over the range of possible values or universe of discourse. Such a function can be 

assigned for a linguistic value or a fuzzy set that describes the set of values. It is this 

property that gives fuzzy logic its power to model qualitative reasoning and to be
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used in knowledge representation.

The concepts of fuzzy logic and other AI techniques integrate very well to provide 

a hybrid system. The hybrid system techniques can be developed in a variety of 

ways. One of the most successful areas of AI techniques has been the integration of 

neural networks and fuzzy logic to give birth to an emerging area of research call 

"fuzzy neural networks" or "fuzzy neural system". Paradigms based upon this 

integration are believed to have considerable potential in the area of expert system, 

medical diagnosis, control systems, pattern recognition, and system modelling. Fuzzy 

logic and fuzzy neural networks are discussed in more depth in chapter 5.

3.5 Genetic Algorithms

The theory behind genetic algorithms (GAs) was proposed by John Holland in his 

landmark book Adaptation in Natural and Artificial Systems published in 1975 [32], 

and advanced by many other researchers. Genetic algorithm simulates a heuristic 

probabilistic search technique that is analogous to the biological evolutionary process. 

The difference between GAs and other optimisation techniques is that they work with 

a population of individuals represented by bit strings and need only fitness 

information of objective functions, thus avoiding some stiff mathematical difficulties 

with practical problems. Since GAs search for a group of candidates, they are likely 

to escape from local minimum to arrive at the global minimum. Thus, simple but 

powerful search strategies attract world-wide attention. The main demerits of GAs is 

the time consuming process of search and the combination explosion of off springs 

and its evolutionary process heavily depends on factors such as crossover, mutation 

rate, and chromosome length etc. In order to overcome the deficiencies of 

conventional GAs, many improved genetic algorithms have been presented, such as 

Steady-State Genetic Algorithms, Ranking Genetic Algorithms, Genetic Algorithms 

with Varying Genetic Parameters, and Genetic ALgorithms with Immigration. They 

have improved conventional genetic algorithms to some extent. It is visualised that 

hybrid systems are the way forward in the next generation of intelligent systems.
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Experience with fuzzy logic and genetic algorithms has proven that the combination 

of them can efficiently make up for their own deficiency. Generally speaking, the 

combination strategies of fuzzy logic and genetic algorithms has two modes: (i) 

employ GAs to optimise the parameters of fuzzy logic and (ii) employ fuzzy logic 

to automatically modify the genetic parameters (such as crossover and mutation rate) 

during its optimisation process.

3.5.1 Application of Genetic Algorithms in Power Systems

GAs have emerged as an attractive alternative or complement to conventional 

optimization techniques. GAs with an inherent global optimization property, offer a 

fast, robust and efficient algorithm. Since it was first introduced to solve reactive 

power scheduling in 1991, many papers have appeared which study the feasibility 

and capability of GAs over a broad range of power system problems. The main areas 

include: economic dispatch, unit commitment, reactive optimization, planning and 

power system control.

3.6 Artificial Neural Netwoiks

Artificial neural networks constitute a new approach to computation based on modem 

neurophysiology; a simplified model of the human neuron is organized into networks 

similar to those found in the brain. The human brain is the most complex computing 

device known to man, and its powerful thinking and remembering and problem

solving capabilities have inspired scientists to make machines in its image. To build 

intelligent machines, scientists needed to understand the structure and computations 

o f the brain first. Initially, psychologists and latterly, neurophysiologists studied the 

structure of the nervous system with a view to simulating its functions.

The work of McCulloch and Pitts in 1943 had shown that a network of neurons with 

binary response function was capable of computation. Dean Edmonds and Marvin 

Minsky built an electromechanical learning machine in 1951. In the late 1950s and
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early 1960s, Frank Rosenblatt developed the first successful neuro-computer which 

he call perceptron. During 1960s and 1970s, which is call the dark age of neuro

computing, little explicit research was carried out. However, in the 1980s, several 

events occurred which reestablished neural network research as a credible endeavour 

and culminated in the IEEE First Annual International Conference on Neural 

Networks (ICNN) in 1987. Since then, researchers focusing their efforts in the field 

of neural networks have produced impressive results.

The field is also known as neuro-computation, collective computation, connectionism, 

etc. The term neural network implies that it was originally aimed more towards 

modelling networks of real neurons in the brain. However, the models are extremely 

simplified compared to the latter, though they are very valuable for gaining an insight 

into the principles of biological computation.

3.6.1 Biological Basis for Artificial Neural Networiss

The human brain, the most amazing carbon-based computer in existence, weighing 

a little over three pounds, consists of approximately 10 billion individual nerve cells 

called neurons. All human activities and behaviour can ultimately be traced to the 

activity of these tiny cells. Each neuron is interconnected to many other neurons, 

forming a densely connected network call a neural network. These massive 

interconnections provide an exceptionally large computing power and memory. From 

an information-processing point of view, the signal flow goes from dendrites through 

the cell body and out through the axon. The junction point of an axon with a dendrite 

of another neuron is call synapse. Synapses provide memory to the past accumulated 

experience or knowledge.

The basic building block of the nervous system is the neuron. A schematic diagram 

of the biological neuron is shown in figure 3.2 which comprises of a cell body, 

dendrites and an axon.
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Figure 3.2 A schematic view of the biological neuron.

Each neuron is activated by the flow of biochemicals across the synapses. The 

transmission of these biochemicals across the synaptic junction causes a change in 

the ionic concentration within the neuron, which, in turn, produces a change in its 

electrochemical potential. These inputs may be excitatory (positive) and increasing 

the electrochemical potential of the post-synaptic neuron, or conversely, they may be 

inhibitory (negative) and reduce the electrochemical potential. If the net potential is 

above a certain threshold level then the neuron will "fire" a sequence of pulses along 

an axon leading the synaptic junction of another neuron. The electrochemical 

activities at these synaptic junctions exhibit complex behaviour because each neuron 

makes several hundred interconnections with outer neurons. Each neuron acts as a 

parallel processor because it receives pulses in parallel from neighbouring neurons 

and then transmits pulses in parallel to all neighbouring synapses.

The explanation of biological operation is greatly simplified, when seen from a 

neuro-biological point of view, although, it explains the basic principles involved. 

ANNs are much more simplified than their biological counterparts. They are 

described in the following section.
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3.6.2 Artificial Neural Network Models

Due to the complexity and diversity of the properties of biological neurons, it is 

extremely difficult to compress their characteristics into a model. Towards this goal, 

a model of the biological neuron, also called a neural unit, or simply a neuron has 

been developed in the neural network paradigm. The neuron receives inputs from a 

number of other neurons or from the external world. A weighted sum of these inputs 

constitutes the argument of nonlinear activation function, as illustrated in figure 3.3. 

The neuron is said to have been fired if the weighted sum of its inputs exceeds a 

certain threshold, w0.

Dendrites
Synapse

Nonlinear
activation
function

Threshold, w

Summing
junction

Output
y(t)

Synaptic
weights

Somatic operation 
(aggregation, thresholding, 

and nonlinear activation)

Figure 3.3 Model of an artificial neuron (unit).

Mathematically, the function of a neuron can be modelled as:

n

y (t) = <|i £  -  w0 (3.1)
i=l

where [xls . . . , x j  represent input signals, [wl5 . . . , wn] are the synaptic weights, 

y(t) is the neural output, and 4/[*] is some nonlinear activation function with 

threshold w0.
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Model of the artificial neuron is usually referred to as feed-forward neural network. 

These feed-forward networks respond instantaneously to inputs because they possess 

no dynamic elements in their structure. A schematic representation of a feed-forward 

neural network is shown m figure 3.4.

outputs to other 
neurons 

or 
sensors

mm Neural nodes

Synaptic weights

Figure 3.4 A feed-forward neural netwoik with n-inputs and m-outputs.

A neural extension of feed-forward network is the feedback (dynamic) neural network 

that incorporates feedback and dynamical elements in its structure. There are several 

dynamic neural structures based on different neural paradigms. As mentioned in 

section 3.4, with the parallel growth in the field of fuzzy logic, many neural models 

encompassing the principles of the neural networks and fuzzy logic are also being 

developed.

3.6.3 Nonlinear Activation Function

The nonlmear activation function ¥[•] maps the net input value u(t) e  [-<*>, °°] to a 

neural output, where:

u(t)  =  ] T  Wfo  ( 3 ' 2 )

i=l

In general, the neural output is in the range of [0, 1] for unipolar signals and [-1, 1] 

for bipolar signals. The nonlmear activation operator transforms the aggregate u(t) 

into a bounded neural output y(t); that is:

1 ■■■ ■ ■ i

® § §

Inputs from other 
neurons 

or 
sensors



Chapter 3 Artificial Intelligence Techniques page 40

i=l
(3.3)

Many different forms of mathematical functions can be used to model the nonlinear 

activation function. The most frequently used ones are the identity, the linear 

threshold function, the sigmoid function and the hyperbolic tangent function. The 

hyperbolic tangent function is just a bipolar version of the sigmoid function: the 

sigmoid is a smooth version of a {0,1} step function whereas the hyperbolic tangent 

is a smooth version of a {-1,1} step function. The sigmoid and the hyperbolic tangent 

transfer functions are shown in figure 3.5. The hyperbolic tangent function was used 

in this research because it trained faster and more effectively than the logistic transfer 

function.

Figure 3.5 Sigmoid and hyperibolic tangent functions.
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The sigmoid function is defined by:

7 7 7 1 (3 4)

The hyperbolic tangent function is defined by:

—  a
 ------—  0 .5 )
ez + e z

3.6.4 Neural Network Architecture

The neurons are normally connected to each other in a specified fashion to form the 

neural network. These arrangements of interconnections could form a single layer or 

several layers. In a large number of neural network models, such as the Perceptron, 

Linear Association, Multi-layer feed-forward network and the adaptive resonance 

training (ART) model, the output from the units from one layer is only allowed to 

activate neurons in the next adjacent layer. However, in some models such as 

Kohonen nets, the signal is allowed to activate neurons in the same layer [33,34],

The single-layered feed-forward network illustrated in figure 3.4, can only perform 

certain simple pattem-detection functions. The power of neural computation comes 

from the number of neurons connected in a network structure. Larger networks 

generally offer greater computational capabilities. Arranging neurons in layers or 

stages is supposed to mimic the layered structure of a certain portion of the brain. 

These multilayer networks have been proven to have capabilities beyond those of a 

single layer. The most commonly used neural network architecture is the multilayer 

neural network (MNN) based on error back-propagation (BP) learning algorithm.

3.6.4.1 Multilayer Feed-Forward Networks

The second class of a feed-forward neural network distinguishes itself by the 

presence of one or more hidden layers, whose competition nodes are correspondingly 

called hidden neurons. The function of the hidden neuron is to intervene between the
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internal input and the network output. By adding one or more hidden layers, the 

network is enable to extract higher order statistics i.e. non-linear relationships. A 

schematic representation of a multilayer feed-forward neural network is shown in 

figure 3.6.
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Figure 3.6 A multilayer feed-forward neural netwoik with one hidden layer.

The neural network must have a mechanism for learning. Learning (also called 

training) is done for a subset of the input vectors, called the training set, whose 

properties are known or representative. Learning alters the weights associated with 

the various interconnections and thus leads to a modification in the strength of 

interconnections.

A neural network is characterized by its architecture, its processing algorithm and its 

learning algorithm. The architecture specifies the way the neurons are connected. The 

processing algorithm specifies how the neural network with a given set of weights 

calculates the output vector y for any mput vector x. The learning algorithm specifies 

how the neural network adapts its weights for all given training vectors x. The form 

of learning, where the output is changed towards a desired value is known as
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supervised learning, and is usually performed by a variant o f back-propagation 

algorithm.

3.6.4.2 The Back-Propagation Learning Algorithm

The learning rule o f multilayer perceptrons is called the "generalised data rule", or 

the "back-propagation rule". The main idea is to minimize the error between the 

desired and actual outputs through adjusting the weights by back-propagating the 

error from output layer to hidden layer. It is based on an iterative gradient algorithm 

and is outlined below.

Step 1 Initialize Weights and Thresholds

set all weights and modes thresholds to small random values.

Step 2 Present Input and Desired Outputs

Present a continuously valued input vector space to the input neurons,

/  , and get the desired output, .

Step 3 Calculate actual output

Use the neuron transfer functions to propagate the network input 

vectors through to the output layer neurons.

Step 4 Adapt weights

Use a recursive algorithm starting at the output neurons and work 

back to the first hidden layer to adjust the weights by:

wtf t+ 1) = Wtft)  + * a iyv^ tyw ^ t-1) (3.6)

where w ^t) represent the weights from neuron i, in layer n - 1, to 

neuron j in layer n at iteration t. T| is the learning factor, which 

controls how much o f error is used to adapt the weights, a  is the 

momentum factor which controls how much o f the previous weight
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change is used for the current weight change, and 5j is the error on 

the output node j. If all neuron transfer functions are assumed to be 

Sigmoid, then:

8; = y f  -  y)(dj -  y )  (3.7)

where dj is the desired output of neuron j, and yj is the actual output. 

For node j in the hidden layer:

8/ = I f  -  7P “*8*wj* <3 8>

where k goes from 1 to the number of nodes in the layers above node

j-

Step 5 Iteration

Iterate the computation by presenting new epochs of training examples 

to the network until the free parameters of the network stabilize their 

value and the average squared error computed over the entire training 

set is at a minimum or acceptably small value.

3.6.5 Practical Considerations of ANN

The successful development of ANN approaches for power system problems depends 

on the successful learning of the correct relationship or mapping between the input 

and output patterns by the ANN. In order to achieve this, practical issues surrounding 

the design, training, and testing of a ANN need to be addressed and examined.

3.6.5.1 Learning Process

Amongst the many interesting properties of a neural network, the one that is of 

primary significance is the ability of the network to learn from it environment, and 

to improve its performance through learning; the improvement in performance takes 

place over time in accordance with some prescribed measurement. A neural network
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leams about its environment through an iterative process of adjustments. Ideally, the 

network gains more knowledge about its environment after each iteration of the 

learning process.

An ANN is trained using either supervised or unsupervised learning. If the desired 

output of the ANN is known for each of the training patterns then supervised learning 

is likely to be the most suitable form of training algorithm. Multi-layer feed-forward 

networks (MFNs) are usually trained off-line using supervised learning and then used 

to perform pattern recognition, prediction and classification in an on-line 

environment. For problems in which relationships amongst input patterns are to be 

established, unsupervised learning is more appropriate. In this case, the self- 

organising model, often referred to as the Kohonen model [35], is used.

3.6.5.2 Determining the Best Network Size

The degree of freedom of an ANN equal to the number of inter connection/size, and 

therefore proportional to the number of hidden neurones, must be matched, in some 

sense, to the complexity of the classification boundary. Currently, in the absence of 

parameter/theoretical guidance, the only proposed method of determining the best 

number of hidden neurons is by comparative cross validation among performance of 

several ANNs. Moving from a small number of hidden neurons to a large number 

should decrease the overall probability of error while maintaining an equivalent error 

performance for the test and training data. For a small number of hidden layer 

neurons, the ANN will be unable to learn the training data. As this number is 

increased the training error will reduce until a very large number of neurons are used, 

when the error will start to increase again.
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3.6.5.3 Generalization Versus Memorisation

One of the major features of neural networks is their ability to generalise. There is 

a difference between training and memorization. The generalisation is the ability to 

successfully classify patterns that have not been previously presented. Memorization, 

on the other hand, guarantees that when the ANN is presented with a specific 

element in the training data set, the classifier will respond in exactly the same 

manner that it was trained. In the case of memorization, the response to data other 

than training data is not satisfactory.

The ability to interpolate among the training data does not necessarily imply good 

generalization. A properly trained classier should respond with the same error to the 

training data as to test data. This is a necessary but not sufficient condition. If the 

error from the test data is much higher than that from the training data, then the 

neural system is over determined; in other words, the degrees of freedom in the 

classifier is too high.

3.6.5.4 Feature Extraction

One of the classical problems in pattern recognition is how to extract the 

discriminatory features from a given set of measurements. The mathematical approach 

to feature selection is to identify certain invariant properties of the pattern classes. 

These properties are then used to reduce the dimensionality of the pattern vectors 

either through a linear transformation or through the preferential choice of subset of 

attributes. However, it is important to recognize that the superiority of any one 

procedure is ultimately determined by the problem at hand.

3.6.5.5 Convergence of Training Process

To ensure convergence of the training process is achievable, methods for adjusting 

the learning rate and the momentum, which are parameters in the error back-
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propagation learning algorithm, are required.

3.6.5.6 Scaling of Input Features

The features must be scaled such that the weights of the links of MLP can be 

updated. They should also be scaled in a manner such that the relative importance 

of the features is retained. Scaling methods to achieve these aspects should be 

developed.

3.6.6 ANN Applications in Power Systems

The abilities of ANNs have attracted power system researchers to investigate the 

applications of ANNs in power systems. Since 1989, a great deal of work performed 

in this new area by the researchers have been reported in the literature and in some 

international conferences. About 70% of the reported work on application of ANN 

in power systems is based on the MFN, while other types of networks are used in the 

remaining 30%. The areas to which ANNs have been applied in the last few years 

are summarised below.

Prediction and control

transient stability [36-38] 

steady-state stability [39,40] 

load forecasting [41-43] 

dynamic load modelling [44] 

reactive power control [45]

Identification

protection [46,47] 

fault diagnosis [38,48]
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harmonic source and load [49,50]

Classification

alarm processing [51] 

contingency analysis [52]

Optimisation

optimal power flow [53] 

unit commitment [54] 

generation expansion [55] 

economic dispatch [56]

3.7 Summary

The applications of artificial intelligence and neural network in power system are 

reviewed. Structures of an expert system, a fuzzy logic and neural networks are 

discussed with practical emphasis on multi-layer-perceptron and the back-propagation 

algorithm that is used to adopt the weights to achieve the desired non-linear mapping 

from inputs to outputs. Practical issues surrounding the design, training, and testing 

o f ANNs have also been covered in this chapter.



CHAPTER 4

Power System Simulation And 
Practical Considerations

4.1 Introduction

This chapter describes the simulations used to generate accurate and realistic fault 

data. The simulation of the power system has been done using the well proven 

Electro-Magnetic Transients Program (EMTP) [57]. This contains mathematical 

models of the power system components. It can predict variables of interest within 

electric power systems as a function of time, typically following a disturbance such 

as the switching of a circuit breaker, or the occurrence of a fault. The data was 

calculated at 2 ps (ie simulated at 500 kHz) to give improved accuracy. Every 125th 

data value was recorded so that the output data was produced at the desired sampling 

rate of 4 kHz for subsequent frequency.

4.2 Power System Configuration

The simulation study is based on a plain feeder EHV line system. Figure 4.1 shows 

the power system configuration, in which symbol SI represents source capacity at 

fault locator end (or local end) and S2 represents the receiving end source capacity. 

An X:R ratio of 30 and ZS0:ZS1 ratio of 1.0 were used for each source terminating a 

busbar. The overhead transmission line used in this work is based on a single circuit

4 9
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of the typical quad-conductor 400 kV vertical construction line currently used on the 

UK super-grid system [58]. The earth resistivity is taken to be 100 Qm and the 

power system frequency as 50 Hz.

------------128km-------------
End S End R

©H------------ K©
fault locator end receiving end

Figure 4.1 Power system configuration.

4.3 Source Configuration

In general, the source network can be represented by the Thevenin equivalent circuit 

of a voltage source in series with a source impedance. The source will have mutual 

impedance, and self impedance, Zg and also have positive phase sequence 

impedance, Zla negative phase sequence impedance, Z2 and zero sequence phase 

impedance, Z0.

In a practical EHV transmission line system, sources with a wye connection generally 

have a return path, either through the ground or a neutral conductor. Figure 4.2 

shows an equivalent circuit of a three phase wye-connected source.
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Figure 42  Equivalent three phase source circuit

Where:

RB+jX=Rb+jX=R0+jX=R+jX are source impedance, jX m is mutual impedance and Zn 

is neural impedance.

It is important to note the zero-sequence system, since a wye-connected load with a 

neutral path provides a return path for zero-sequence currents (I0) flowing through the 

three phases. The total three phase current (3I0) flows through the ground. If the 

neutral is grounded through neutral impedance, Zn, an impedance of 3Zn should be 

inserted between the neutral point n and the ground. The reason for this is that the 

neutral current produces a zero sequence voltage drop of 3I0Zn, between the neutral 

point n and the ground.

The zero, positive and negative sequence impedance calculations can be obtained 

from reference [59], which also gives the following two equations:
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z 0 = R + j ( X  + 2 X J  + 3 z n 

Z\ = Z2 = R + j (X -  x m)
(4.1)

If the mutual impedance, Xm , is very small, and the source capacity of short circuit 

level (SCL), transmission line voltage (400 kV), source X:R ratio and Z0\ZX ratio are 

given, then the neutral impedance Zn can be obtained from equation 4.1.

4.3.1 Specifying Source Quantities

In practice, the information about the source in given in terms of short circuit level 

(SCL), X:R ratio and ZS0:ZS1 ratio. Generally, source impedance are predominantly 

reactive with angle in the region 75° to 90°.

The power sources are modelled in the EMTP using three single phase voltage 

sources with a 120° phase shift between each one. At each line end, the shunt 

capacitance of the busbars was assumed to be 0.1 pF which is typical for a 400 kV 

system. The source capacity at each line end was modelled using a series impedance 

whose value was calculated as follows:

(4.2)

Z

V

SVA

source impedance (£2) 

operating voltage (V) 

source short circuit level in VA

Z = R + j X (43)

X = Zsm(tan_1(X:R ratio)) (4.4)
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X:R ratio
(4.5)

where,

X

R source resistance (Q) 

source reactance (£2)

4.4 Transmission Lines Configuration and Parameters

An overhead transmission line consists of resistive and reactive parameters that are 

distributed along the length of the line. They can be represented by an equivalent 

circuit with lumped components as T or n  network. However, it is required for an 

exact representation of a transmission line in that the parameters of the lines be 

uniformly distributed along the whole length of the line. In the three-phase system, 

the characteristic of each phase is influenced by its two neighbours, as well as 

reflection in earth planes and lines.

4.4.1 Transmission Line Design

The function of an overhead three-phase electric power transmission line is to 

transmit bulk power to load centres and large industrial users beyond the primary 

distribution lines. A given transmission system comprises conversion structures and 

equipment at a primary source of supply, including lines, switching, and conversion 

stations, between a generating or receiving point. In this respect, it is very important 

to select the best line configuration to meet the system requirements. The important 

factors affecting choice of line configuration and conductor spacing are:

□ Transmission line voltage.

□ Conductor type and size.

□ Insulator type.
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□ System protection.

□ Grounding.

□ Climatic conditions.

□ Mechanical design.

(a) Span length.

(b) Conductor sag.

(c) Conductor spacing.

(d) Conductor hardware selection.

4.4.2 Electrical Factors

Electrical design dictates the type, size, and number of bundle conductors per phase. 

Phase conductors are selected to have sufficient thermal capacity to meet continuous 

emergency overload and short-circuit current ratings. For EHV transmission lines, the 

number of bundle conductors per phase is selected to control the voltage gradient at 

conductor surfaces, thereby reducing or eliminating corona.

The number of insulator discs, vertical or V-shaped string arrangement, phase-to- 

phase clearance, and phase-to-tower clearance, must be selected to provide adequate 

line insulation. Line insulators isolate the towers from the conductors; therefore they 

must withstand transient over-voltages due to lightning and switching surges.

To protect the phase conductors from lighting strokes, earth wires are located on the 

towers. The towers are well earthed and counterpoise is used parallel to the line to 

reduce the tower footing resistance.

4.4.3 Mechanical Factois

The strength of the conductors, insulator strings, and support structures are considered 

in the mechanical design of the transmission lines. Conductors and suspension 

insulator strings must be strong enough to support the phase conductors with ice and
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specified wind in addition to their own weight.Towers are designed to support the 

phase conductors and earth wires with ice and wind loading.

4.4.4 Environmental Factors

In order to select a line route for a transmission line, the land usage and visual 

impact must be included in the tower design. The effect on local communities and 

population centres, land values, access to property, wildlife, and use of public parks 

and facilities must all be considered. Also, the biological effect of prolonged 

exposure to electric fields near transmission lines must be considered.

4.4.5 Economic Factois

The total installed cost of the line and the cost of line losses over the operating life 

of the line, must be kept at lowest overall level. Power utilities use digital computer 

programs and physical experience to achieve optimum line design.

4.4.6 Transmission Line Transposition

In long transmission lines, if the spacing between phases are unequal, unbalanced 

flux linkages occur, and the phase inductances are unequal. Therefore, to restore 

balance, the conductor positions along the line are exchanged (transposed) at two 

locations such that each phase occupies each position for one-third of the line length.

In practice, it is not common to built overhead lines with transposition towers for 

economic reasons. However, an interchange of conductor positions can be done at 

switching stations in order to balance the voltage drops in the three phases.
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4.4.7 Transmission Line Studied

The overhead transmission line used in this work is based on a single circuit of the 

typical quad-conductor 400 kV vertical construction line currently used on the UK 

super-grid system [58], where a, b and c represent three phase conductors and e 

represents the earth wire. Figure 4.3 shows the construction of transmission line used 

in the simulation of the system.

e

30.5cm

•  •  
•  •

Conductor

6.95m

10.2m

8.3m

Figure 43  400 kV single circuit transmission line construction.

4.4.8 Phase Conductors

Each phase conductor is composed of an aluminium tubular conductor and steel 

reinforced core. Table 4.1 gives the conductor parameters which are taken from the 

GEC Protection Relay Application Guide [60].
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Nominal Stranding and wire Approximate Resistance Sectional Total
Aluminium diameter overall at 20°C area of section

area Aluminium Steel diameter Aluminium area
(mm2) (mm) (mm) (mm) (Q / km) (mm2) (mm2)

400 54/3.53 7/3.18 28.62 0.06740 428.9 484.55

Table 4.1 Aluminium Conductor Steel Reinforced (ACSR) overhead conductor data.

In the line system simulation model, line parameters are selected as below:

i) Phase conductors are 4x54/7/0.33cm a.c.s.r. with 30.5cm bundle

spacing.

2) Earth wire is 54/7/0.33cm a.c.s.r.

3) Earth resistivity is 100 £2m.

4) Conductor resistance is 0.06740 / 4 = 0.0168 Q/km.

5) Earth wire resistance is 0.06740 £2/km.

6) Conductor overall diameter = 28.62 mm.

Using EMTP line constants program [57], parameters of the line are calculated for 

each section of the line.

4.5 Fault Analysis

A fault may occur on a transmission system for a number of reasons, some of the 

common ones being:

□ Lightning, high winds, snow, ice and frost,

□ Switching,

□ Falling debris,

□ Broken conductor(s),

□ Long term ionisation of the air.
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Some of these factors can cause transient faults and some can cause permanent faults 

on the transmission system. Faults give rise to abnormal operating conditions, usually 

excessive currents and voltages at certain points on the system. Protective equipment 

is used on the system to guard against abnormal conditions. Various types of faults 

that occur on transmission lines are simulated herein using EMTP.

4.6 Fault Transient Simulation

To consider all practically encountered different system and fault conditions on 

transmission lines, a range of different faults were simulated. Some of the factors that 

were varied in the simulation are:

■ The source capacity

■ Fault position

■ The fault type

■ The line length

■ The line configuration

■ The fault inception time

■ The fault resistance

4.6.1 The Source Capacity

Fault-transient waveforms are significantly affected by the source parameters. Source 

capacities based on SCL ranging from 2.5GVA to 20GVA are used in the simulation 

study at both ends of the line. Figure 4.4 shows a comparison between the response 

for a solid midpoint fault when the sending source capacity takes both large and 

small values. The voltages, in particular, are much smoother when the source near 

the point of observation is large. Such a response is obtained because the travelling 

wave components of current propagating into the source do not cause significant 

voltage transients if the source impedance is small; i.e. the busbar voltage is held 

nearly constant and is not easily distorted. However, in the case of a small sending-
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source capacity i.e. large source impedance, very considerable waveform distortion 

occurs. This is due to the low capacity of the source adjacent to the point of 

observation, which therefore constitutes a major point of electrical discontinuity from 

which high-frequency components are easily reflected.

o
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200000 5000

0

-5000-200000

-10000-400000 t— 
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TIME(S)
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Figure 4.4 Effect of source capacities on voltage and cuirent wavefonns. 
’a'-earth solid fault at midpoint
(a) sending end s.c.l. = 20 GVA, receiving s.c.l. = 20 GVA
(b) sending end s.c.l. = 2.5 GVA, receiving s.c.l. = 20 GVA
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4.6.2 Fault Position

The transit time between the fault and source discontinuities varies with fault 

position, and it follows that the apparent frequency of the superimposed travelling- 

wave components decreases as the fault position becomes more distant from the point 

of observation. In this simulation study, fault position was varied from 0 to 100% of 

the line length. The fault-transient waveforms for a solid 'a'-earth fault are shown in 

figure 4.5.

600000 4000

Va400000 Vc,
2000

£ 200000

> -200000
-2000

-400000

-4000-600000
0.040.0350.030.02 0.025

TIME (S)

Figure 4.5 Voltage and cuirent wavefoims for receiving end fault
'a'-eaith solid fault at receiving end.
sending s.c.l. = 2.5 GVA, receiving s.c.l. = 20 GVA

4.6.3 The Fault Type

Various types of faults that occur on transmission lines are considered in the 

simulation study. Generally, the fault type on EHV transmission lines can be 

classified as:

□ Single line-to-ground fault

□ Double line-to-ground fault

□ Line-to-line fault
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□ Three phase fault

□ Three-phase-to-ground fault

Faults not involving earth give rise to waveforms which are generally very distorted. 

Figure 4.6 shows the waveforms obtained for an 'a'-'b' fault, and by comparing this 

with an 'a'-earth for corresponding source conditions, shown in figure 4.4(a), it is 

clearly evident that the travelling waves persist for considerably longer in the former 

case.

20000600000

Va400000 Vc
10000
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-20000-600000 + -  

0.02 0.040.0350.030.025
TIME (S)

Figure 4.6 Voltage and cuirent waveforms for line-to-line fault 
’a’-’b' fault at midpoint
sending end s.c.l. = 20 GVA, receiving end s.c.l. = 20 GVA. 

4.6.4 The Line Length

The EHV transmission lines can vary considerably in length. In this thesis, the core 

of the simulation study is based on a line length of 128km for the 400kV 

transmission line. However, Transmission lines with different length are also included 

in the simulation.
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4.6.5 The Line Configuration

Typical configuration of overhead line circuits operating at UK transmission voltages 

is given on reference [60], Training data is based on the line configuration shown in 

figure 4.3. However, other configurations were also used in the simulation as test 

data.

4.6.6 The Fault Inception Time

In practice, faults can occur at any point on wave i.e. the fault inception angle cannot 

be defined in advance. In this study, the faults have been applied at instances 

corresponding to voltage maximum, at 45° angle , and at zero voltage on the faulty 

phase or phases. In the latter case, the travelling waves are reduced because there is 

not a large and sudden voltage change at the point of fault. Figure 4.7 typifies the 

waveforms for fault at voltage zero at the receiving end. Distortion is extremely 

small, and the offset nature of the current waveform is clearly observed.
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Figure 4.7 Voltage and current waveforms for fault applied at voltage zero, 
’a’-eaith solid fault at receiving end.
sending end s.c.l. =2.5 GVA, receiving end s.c.l. = 20 GVA.
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4.6.7 The Fault Resistance

The effect of fault resistance for all types of fault involving a fault resistance was 

examined. The simulations were carried out varying the fault resistance from 0 to 200 

Q  and it was found that values of fault resistance up to 10 Q  made little difference 

to the fault-transient waveforms. Beyond this value, the travelling wave components 

become progressively more damped, and there is a marked reduction in the initial 

voltage change which occurs for faults near voltage maximum. Figure 4.8 shows the 

waveforms obtained for an 'a'-earth fault with fault resistance of 100 Q.
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Figure 4.8 Effect of fault resistance on voltage and current waveforms, 
’a’-earth fault at midpoint
sending end s.c.l. = receiving end s.c.l. = 20 GVA, fault resistance = 100 Q.

4.7 Practical Considerations in the Design of the Fault Locator

It is vitally important that during the performance evaluation of the fault location 

techniques, the voltage and current waveforms presented to the algorithm are as close 

as possible to those experienced in practice. In this respect, off line digital simulation 

of such fault transient waveforms is considered as the most appropriate and economic 

method. Although the fault location technique is based on Computer Aided Design
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(CAD) studies, however, practical consideration, such as the effect of transducers, 

and hardware errors i.e. anti-aliasing filters and quantisation, etc, on the primary 

system fault data are also mcluded in the simulation so that the data processed 

through the fault locator algorithm is very close to the real-life situation.

4.7.1 Fault Locator Scheme

The complete fault locator scheme is shown in figure 4.9. It represents the various 

practical stages before the processing of the fault locator algorithm. In practical fault 

locators, the actual data goes through analogue channels. Therefore it is necessary to 

take mto account the effect of an analogue channel during the neural network training 

process. In this respect, a channel emulator is developed which includes a CVT, a 

low-pass analogue filter and an analogue to digital (A/D) converter.

CT Transmission line

CVT

Fault Location 
Technique based 

on AI

Currents Voltages

Analogue Channel Emulator

Fault Inception Time 
Identification

Analogue to Digital Converter

Figure 4.9 Fault locator scheme.



Chapter 4 Power System Simulation and Practical Considerations pqge 65

4.7.2 Digital Fault Recorder

Digital fault recorders have been used by the power supply authorities to 

continuously monitor sections of power systems to provide a record of fault 

conditions. These recordings provide data prior to and following the fault incident, 

referred to as pre-fault and post-fault information. This enables power engineers to 

look at conditions leading up to the fault, protection operation and how the control 

systems on the circuit responded, e.g. breaker operating times, protection carrier 

channels, etc.

The advent of microprocessor-based recording devices and the analytical capabilities 

provided by such devices, offer significant benefit to the user such as better 

performance and data recording. They provide a more convenient form of presenting 

the information and data processing of the primary system waveforms. In this respect, 

utilities have shown increased interest in implementing accurate fault location 

techniques.

4.7.3 Primaiy System Wavefonns

Transient behaviour of the overhead line has been accurately predicted using the 

EMPT software for simulation of the power system. The precise current and voltage 

information for different EHV power system network configurations are derived 

before and after the fault. The physical arrangement of conductors, the characteristics 

of conductors, the effect of earth return path and effect of frequency dependent 

parameters are considered in the line constant program.

The various factors such as effect of fault type, differing source capacities at both 

ends of the line, fault resistance, etc, which influence the transient phenomena, are 

considered.
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Figure 4.10 typifies the primary voltage and current waveforms generated for the 

400kV system considered, when a single-line-to-ground fault is applied at the middle 

of the line.

400000

200000

S  -200000

^00000

-600000
0.035 0.040.015 0.02 0.025 0.030 0.010.005

HME(S)

(a)

4000

3000 

2000 

S  1000

-1000

-2000 Fault
Inception-3000

-4000
0.035 0.040.025 0.030.015 0.020 0.005 0.01

HME(S)
(b)

Figure 4.10 Typical voltage and cuirent wavefoims, a-phase to ground fault at the 
middle of the line: S1=2.5GVA, S2=20GVA, fault resistance(Rf=lQ).
(a) Fault locator-end three phase voltages.
(b) Fault locator-end three phase cunents.

4.7.4 CVT & CT Transducers

In any fault locator design based on CAD technique, it is extremely important to take 

into account the effect of CTs and CVTs on primary system waveforms as they can
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have a significant bearing on the accuracies attained and therefore on any inferences 

drawn concerning a particular fault locator technique. These effects are incorporated 

into the simulation via the impulse responses of the elements. Time Domain 

Convolution techniques based on impulse responses of the transducers are then 

applied to the waveforms to produce the expected outputs.

The primary system waveforms are fed to CTs and CVTs to permit proper insulation 

level and current carrying capacity in relays, fault recorders and other instruments. 

Conventional CVTs have a very low cut-off frequency typically of 1 kHz whereas 

the CTs have a much wider bandwidth of typically 10 kHz.

4.7.5 Capacitor Voltage Transformer (CVT) Model

A typical CVT model is shown in figure 4.11 This device is basically a capacitance 

potential divider (which uses capacitors C l and C2) coupled with a conventional 

electromagnetic voltage transformer. The divider reduces the system voltage (400 kV 

line voltage) to 63.5 volts rms (phase to neutral). LI is an adjustable tuning 

inductance and T is the voltage transformer. By analysing the CVT model, its 

frequency response can be obtained as shown in figure 4.12 which clearly show that 

there is a sharp attenuation at around 700 Hz. Also there is some alternative of the 

frequency components of the lower end of the spectrum. Therefore, when a fault 

occurs, some high and low frequency signals of line voltage may be damped or 

reduced through the CVT.
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Figure 4.11 Typical Capacitor Voltage Transfoimer (CVT) model.
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Figure 4.12 The frequency response of the CVT.

4.7.6 Current Transfoimer (CT) Characteristics

The function of a current transformer (CT) is to produce a current which equals the 

primary current divided by the turn's ratio. Under normal conditions, the CT operates 

well below the saturation flux and the exciting current drawn by the CT is small. 

However, under heavy fault conditions (particularly under DC offsets), saturation may 

be reached, and the measured fault current which may consist of many frequency 

components could be affected through the CT. To avoid large CT errors while 

measuring fault currents, a CT with turns ratio 2000 : 1 was selected [61].
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4.7.7 Channel Emulator and Analogue to Digital (A/D) Converter

Firstly, the CVT and the anti-aliasing analogue filter frequency responses are 

converted into a CVT impulse response and a filter impulse response respectively. 

Then by using C program, an emulation of the analogue and A/D channel is 

developed. The emulator does two convolution calculations and one A/D conversion. 

In the emulator, an input fault waveform simulation data convolves with the CVT 

impulse response to obtain a CVT output data (63.5 volts rms). The CVT output data 

then convolves with the low-pass filter impulse response to obtain a filter output data 

which has an output of ±8.5 volts range. By selecting ±10 volts as the 12 bit A/D 

converter reference voltage, the A/D converter can give ±2048 quantum levels with 

4.88 mV quantum level accuracy. The low pass filter is employed to avoid abasing 

in voltage and current measurements during the A/D conversion and this comprises 

of a second order Butterworth low-pass filter.

4.7.8 Emulator Tests

Figure 4.13(a) shows the transient fault waveform for a-phase to ground fault at the 

middle of the 400kV transmission line with the system parameters: line length of 128 

km, source capacity of 2.5GVA at SI and 20GVA at S2. By inputting this waveform 

into the emulator, the CVT output, the filter output and the digital output are plotted 

in figures 4.13(b), 4.13(c) and 4.13(d) respectively. Figure 4.13(b) clearly shows a 

±63.5 volts rms transient fault waveform. It also shows that the frequency limitation 

imposed by the CVT significantly reduces the input waveform high-frequency 

components above 700Hz. The analogue output is shown in figure 4.13(c); this 

waveform is the same shape as CVT output waveform in figure 4.13(b), except that 

the magnitude of the voltage is scaled down to ±8.5 volts. The 12 bit digital output 

fault waveform is shown in figure 4.13(d), the digital output range is ±2048.
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Figure 4.13 Emulator test
(a) Hie study of a-phase voltage transient fault waveform.
(b) Hie a-phase voltage transient fault wavefoim output of CVT.
(c) Hie a-phase voltage transient fault wavefoim output of the analogue filter.
(d) Hie a-phase voltage transient fault wavefoim output of the 12 bit A/D converter.
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4.7.9 Fault Inception Time Identification

From figure 4.10 can be seen that the voltage and current samples include both pre

fault and post-fault data; therefore it is necessary to determine the point within the 

recorded data of voltages and currents at which the fault has occurred.

Faults cause distortions in the current and voltage waveforms. Current and voltage 

peaks can change in magnitude and phase with respect to pre-fault conditions. 

Quantized data output of A/D converter is used for fault inception time identification. 

A fortran program was designed to identify fault inception time before the application 

of digital signal processing. This process hinges upon comparing the first three 

present samples from the current waveforms with the samples from the previous 

cycle, and any significant change, exceeding a predefined threshold level, indicates 

the fault inception time.

If the required threshold level is not satisfied for current samples, then the same 

procedure is applied to voltage samples. Different threshold levels are used for 

voltage samples. Figure 4.14(a) and 4.14(b) show that the decrease in the magnitude 

of the voltage samples is relatively less in comparison with the rise in magnitude of 

the current samples driving the fault. It should be mentioned that the fault inception 

identification program is independent of the fault type.
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Figure 4.14 Cuirent and voltage wavefoims immediately after the fault and one cycle prior 
to the fault occunence. A-phase fault at the middle of the line, S1=2.5GVA, S2=20GVA, 
1^=20 f2, pre-fault angle Vs/Vr=30 degree.
(a) Fault locator-end a-phase cuirent
(b) Fault locator-end a-phase line voltage.

4.8 Summaiy

In summary, the system simulation of the power system has been done using the 

EMTP software. It is vitally important that the system simulation be as accurate as 

possible within the bounds of practicality. In this respect, all the practical 

considerations, such as the effect of transducers and hardware errors, on the primary 

system fault data are included in the simulation.



Chapter 5

Accurate Fault Location Technique Based On 

Artificial Neural Networks

5.1 Introduction

Chapter one has outlined the importance and requirement for fast and accurate 

location of faults on electric power transmission lines and chapter three has described 

the technology of artificial neural networks. This chapter brings these two strands 

together and describes a new pattern recognition method for accurate fault location 

based on the application of artificial neural network technique. It possesses certain 

attractive features which are not attainable by the conventional methods. The 

technique is based on a modular approach and it is shown that the trained ANNs are 

able to make correct decision under various system and fault conditions. The 

extraction of the salient features from the simulation waveform is discussed. This 

original work is a necessary precursor to an AI based solution. The main simulation 

for data preparation and training process of the networks is done off-line and the fault 

location technique is based on an off-line application. Since the fault location 

estimation is performed off-line, computation time is not a major issue. However, the 

accuracy obtaining the location of the fault is of fundamental importance.
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5.2 Motivation for Using ANNs

Artificial Neural Networks have emerged as a powerful pattern recognition technique. 

Since the need for pattern recognition arises whenever computers interact with the 

real world, ANNs are broadly useful in a range of applications. Like other pattern 

recognition techniques, ANNs act on data by detecting some form of underlying 

organisation not explicitly given or even known by human experts. The networks can 

recognise spatial, temporal or other relationships and can perform such task as 

classification, prediction and function estimation. This can bridge the gap between 

individual examples and general relationships. This characteristic has encouraged 

various researchers to apply ANNs to solve various power system problems such as 

load forecasting, security assessment, fault diagnosis, etc.

A neural network is characterized by its architecture, its processing algorithm and its 

learning algorithm. The architecture specifies the way the neurons are connected. The 

processing algorithm specifies how the neural network with a given set of weights 

calculates the output vector y for any input vector x. The learning algorithm specifies 

how the neural network adapts its weights for all given training vectors x.

The feed-forward multi-layer neural network with the use of supervised learning and 

common training rule of error back-propagation is used in this research. Supervised 

learning requires an external "teacher" that evaluates the behaviour of the system and 

directs the modifications [62]. The training is accomplished by adjusting the weights. 

This is done by presenting a set of patterns at the input, each with a desirable output 

pattern. Weights are then adjusted to minimize the error between the desired and 

actual output patterns. The standard back-propagation learning rule of Delta-rule, and 

the Hyperbolic tangent transfer function are used for training neural networks 

described herein.
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5.2.1 Advantages o f ANNs

Artificial neural networks (ANNs) are valuable on several counts. Firstly they are 

adaptive, they can take data and learn from it. Thus they infer solutions from the data 

presented to them, often capturing quite subtle relationships. This ability differs 

radically from standard software techniques because it does not depend on the 

programmer's prior knowledge of rules. Neural networks can reduce development 

time by learning underlying relationship even if they are difficult to find and 

describe. They can also solve problems that lack existing solution.

Secondly, A N N s  can generalize: they can correctly process data that only broadly 

resembles the data they were trained on originally. Similarly, they can handle 

imperfect or incomplete data, providing a measure of fault tolerance. Generalization 

is useful in practical applications because real world data is noisy.

Thirdly, the networks are non-linear, they can capture complex interactions among 

the input variables in a system. In a linear system, changing a single input produces 

a proportional change in the output, and the input's effect depends only on its own 

value. In a non-linear system, the effect depends on the values of other inputs, and 

the relationship is a higher-order function. In this respect, systems in the real world 

are often non-linear.

Fourthly, A N Ns are highly parallel, their numerous identical, independent operations 

can be executed simultaneously. Parallel hardware can execute them hundreds or 

thousands of times faster than conventional microprocessors and digital signal 

processors. Now that special-purpose parallel computers and chips have become 

available for neural network implementations, even large networks can achieve real

time speeds, and even everyday products can employ an embedded network. This 

increase in speed and economy makes many applications practical for the first time, 

encouraging further deployment.
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5.2.2 Disadvantages of ANNs

In spite o f several advantages, motivating the application o f ANNs in the field of 

power system problems, there are still some drawbacks in their application. Some of 

these disadvantages are associated with the general application of neural network in 

any field, while others are specific to the application in power system problems. For 

example, the inability for extrapolation beyond the area which is trained for, is 

inherent characteristic to ANNs application in any field.

As the network size increases, the training time is longer. This appears as a critical 

constrain on the way o f ANNs application. The nature o f training data has a 

dominating effect on the learning performance o f ANN, therefore, more effort is still 

required to develop sophisticated techniques for preparation o f training data which 

can result in fast learning performance.

Other disadvantages of ANNs can be outlined as: there is no definite way of 

choosing the optimum architecture, there is no definite way of finding the best 

solution and the solution depends upon the accuracy o f the training set.

5.3 Neural Netwoik Based Scheme

Artificial neural networks have the ability to learn the desired inputs/outputs mapping 

based on training examples, without looking for an exact mathematical model. Once 

an appropriate ANN has been trained, the interconnections or links of the ANN will 

contain a representation o f the non-linearity o f desired mapping between inputs and 

outputs. Feature extraction is the first step to any pattern recognition method to 

effectively reduce the size o f the neural network and improve its performance. In 

order to catch the features in the accurate fault location technique, the instantaneous 

three phase voltages and currents, which contain fault information at different 

frequencies, are used to train the ANN.
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The basic configuration of the ANN-based fault location technique is shown in figure

5.1. The method is based on utilising voltage and current waveforms at the fault 

locator end of the line only and the signals employed are based on phase values. The 

effect of transducers - current transformers (CTs) and capacitor voltage transformers 

(CVTs), and hardware errors such as anti-aliasing filters and quantisation are taken 

into account, so that the information processed throughout the fault locator algorithm 

is very close to real-life situation; this is achieved through a data pre-processing stage 

whereby the primary system waveforms of voltages and currents are subjected to a 

full circuit emulation of the transducers/analogue interface modules via their practical 

frequency responses as described in chapter 4. The resultant data is then passed 

through a model of an analogue to digital (A/D) converter before bemg processed 

through the fault locator algorithm.

CTs

Analogue
Channel
Emulator

Fault
Location

Feature
Extraction

A/D
CVTs

ANN

Figure 5.1 Basic configuration of the ANN-based fault location technique.

5.4 Data Pre-processing

5.4.1 Need fo r Pre-processing

The problem of developmg a fault location technique, based on identifying the 

characteristics of the faulted waveforms, is essentially one of pattern recognition. The 

application of ANN to fault location scheme consists of four basic tasks:

1) Collecting or producing sets of sample of fault voltage and current
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waveforms.

2) Pre-processing the data and extracting the useful features.

3) Selecting and building the most appropriate ANN.

4) Using the processed sample data to train the neural network and then testing

the network on separate sets of processed data.

Pre-processing is an integral part of this strategy since it conditions the raw data into 

a form suitable for input into the ANN. The training cases for a typical 400 kV 

transmission system are generated through the use of EMTP. The simulation 

generates samples of voltage and current waveforms on the three phases. Since the 

fault transients generated on transmission system contain a wide range of frequency 

components, it is impractical to use the time-domain waveforms as the input to an 

ANN. Hence, certain parameters of the identified characteristics must be extracted 

to fully represent the state of the transmission line.

As described in chapter 4, the simulation is based on a sampling frequency of 4 kHz 

and after convolving the primary system data with the unit impulse responses of the 

transducers and voltage/current interface modules, the digital data is quantised 

through a 12-bit A/D for subsequent processing in the fault location algorithm.

5.4.2 Producing Sets of Sample of Fault Voltage and Cuirent Waveforms

In the learning process of ANN-base fault location technique, it is essential to have 

sufficient and practical training data in order for the ANN to be well-trained. In this 

respect, by repeatedly analysing the EMTP simulation samples under various system 

and fault conditions and processing the resulting data, training patterns for the ANN 

were set up. As described in section 4.6, parameters such as effect of fault type, 

differing source capacities at both ends of the line, fault impedance, fault inception 

time and fault position, which influence the transient phenomena, were varied. 

Figures 5.2 and 5.3 typify the output of A/D voltage and current waveforms 

generated at end S (in figure 4.1) of the line under an 'a'-phase-earth fault at the
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midpoint of the line and 'a'-'b' phase fault near end R (in figure 4.1) respectively.
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Figure 52  Output of the A/D for ’a-phas e-earth fault at the midpoint of the line.

(a) The three phase voltages.

(b) The three phase currents.
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Figure 5.3 Output of the A/D for ’a'-V-phase fault at the remote end of the line.

(a) The three phase voltages.

(b) The three phase currents.

5.5 Feature Extraction

As a first step in any pattern classification technique, feature extraction is used to 

reduce the dimension of the raw data and extract useful information in a concise 

form. For the ANNs considered m this thesis, this process leads to a considerable 

reduction in the size of the networks, thereby significantly improving the performance 

and speed of the training process.
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5.5.1 Data Reduction

Reduction in the amount of data is ultimately related to the type and amount of data 

available to represent the problem. In order to prevent the network becoming too 

large, the amount of data should be reduced. The number of inputs to a feed-forward 

network determines the number of nodes in the input layer of the network. In general 

training time required for a feed-forward ANN is related exponentially to the size of 

the network, and this constrains the size of the network. This indicates that a smaller 

number of inputs to the ANN and therefore features would be ideal. However, it is 

essential that the salient information is not removed from the input data.

5.5.2 Training Time

Training time is a main concern of ANN design, specially if the size of the problem 

is large and it is often required to update the learning process by change the training 

patterns. By training time we mean the time required for preparation of training data 

and learning process of ANN. Proper selection of training data has a profound effect 

on the learning ability and training time of an ANN. Furthermore, the sensitivity and 

causality of input/output patterns, can affect the convergence of training, which 

means that the type of input data would provide the best results in the output. For 

example, existence of irrelevant redundant data in the training pattern can slow down 

the process of training. However, long training time of ANN which is taken off-line 

can be justified by the fast operating characteristic of that in the working mode at on

line.

5.5.3 Feature Extraction Algorithm

Feature selection is more of an art than a science. The goal of feature selection is to 

eliminate as much unnecessary information as possible while still retaining the salient 

information in a compact form. Useful features are those which vary widely from 

class to class, are easy to measure and calculate and which are not correlated with
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other features. This process is difficult to automate and must be based on an intuitive 

understanding of the problem. Although there exist some well-established techniques 

of feature extraction algorithms, in general whether or not a feature can be selected 

in reality, is problem dependent.

For development of this accurate fault location technique, an extensive series of 

studies revealed that the most distinct characteristics of the waveforms are those 

associated with the variation of the frequency components over time. Therefore the 

technique adopted here for feature extraction is the one based on time domain 

frequency decomposition of voltage and current waveforms using the Discrete Fourier 

Transform (DFT); a one cycle window was employed for this purpose.

5.5.4 Frequency Decomposition

The faulted voltage and current waveforms of the transmission line vary with time, 

and the frequency components within the waveforms evolve with time during the 

progression of the fault. Frequency transforms which take an input array and produce 

a frequency domain representation are a powerful technique for examining the 

behaviour of sequential waveforms. The basic merit of a frequency domain 

representation is that the signal in question can be fully represented, over an interval, 

by the superposition of a number of frequency harmonics. To obtain the frequency 

spectra of a discrete array, DFT is used. It transforms the input array signal into an 

array of complex coefficients. These coefficients specify the amount of each 

frequency harmonic required. The fourier transform utilises the property that 

harmonics of the fundamental frequency are orthogonal in order to calculate the 

values of the coefficients of the frequency spectrum.

5.5.5 Discrete Fourier Transform (DFT)

The DFT is the basis of all discrete-time spectral analysis. It represents a discrete- 

time signal {x(n)} by a function X(/) (or X(co)) in the frequency domain [63]. It is
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a simple extension of Fourier transform concept, but relies heavily upon the Fourier 

series although time and frequency domains are interchanged. The DFT general 

formula is given as:

where CO is the angular frequency, T§ is the sampling intervals and n  is the sample 

number. The infinite summation is lost by using a windowing function w(n) to limit 

the summation to N samples of x(n). The section which is used for analysis lies in 

the region 0<n<(N-l). Effectively the original signal x(n) is being viewed through a 

rectangular window w(n), and

The signal presented for analysis is then: 

x'{n) = x(ri) . w(n)

Calculation of the DFT on N samples from the time domain produces N/2 positive- 

frequency phasors and N/2 negative-frequency phasors, given N in total, although for 

a real signal these two sets will be conjugates. The interval along the frequency axis 

is Q, rad/sec or 8, Hz. This then is the fundamental frequency, or the frequency 

different between any adjacent pair of phasors. The prime parameters of the DFT is 

then given by:

X(<o) = £  x(n) . eK~wT' t) (5.1)

1 Qznz(N-l)  
0 elswhere

(5.2)

(5.4)

or,

N - * s = f s
(S£)

where / ,  is the sampling frequency.

Now that the frequency scale has been discretised, the DFT equation can be rewritten 

in a new form. Incorporating the rectangular window into equation 5.1,
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X(kQ) = 5 > (n )  . e'w *“ (5.6)
n=0

The exponent reduces to -2rckn/N and it is usual to refer to the frequency variable 

only by the index k. Thus the equation is normally rewritten as:

AM
X(k) = £ • * (« ) .  W'**

n =0

where;

J2n

W = e N

The W  is called the twiddle factor and holds the key to the evaluation of the DFT, 

and forms the basis for the transformation.

5.5.6 Spectral Analysis

Figure 5.4 depicts the frequency spectra of the three-phase voltages and currents for 

the fault condition shown in Figure 5.2; likewise, Figure 5.5 shows the frequency 

spectra (again as observed at end S, in figure 4.1) for an ’a'-'b'-phase fault near end 

R, in figure 4.1, (shown on figure 5.3). It is apparent from the foregoing that the 

frequency spectra are distinctly different for the two types of fault. In this respect, 

it is important to note that the frequency spectra attained vary quite significantly 

under different types of fault, fault location, fault inception angle, etc.

In these simulations, points taken over one cycle of the 50Hz fundamental correspond 

to 80 samples of data in the time domain, which maps to 40 frequency magnitudes 

in the frequency domain. This represents a sampling rate of 4 kHz. This 40 

dimensional feature space can then be further reduced by using empirical information, 

such as the CVT frequency response to discard frequencies above 700 Hz.

(5.7)

(5.8)
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From the variation of different frequency components over the training set as shown 

m figure 5.4 and 5.5, it can be seen that the 50Hz components is the most significant, 

followed by the DC component. The application of this variance criteria is used to 

select frequencies to be presented to an ANN for it to attempt to leam and solve the 

problem of accurate fault location for transmission lines.
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Figure 5.4 Frequency spectra for an 'a'-phase-earth fault at the m idpoint

(a) Spectra of three-phase voltages.

(b) Spectra o f three-phase currents.
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Figure 5.5 Frequency spectra for an 'a’-V-phase fault at the remote end.

(a) Spectra o f three-phase voltages.

(b) Spectra of three-phase currents.

5.5.7 Training Data

In order to design a neural network, it is vitally important to train it correctly and 

then test it. In supervised learning ANNs are trained from a set of data examples 

which are associated with a desired outcome. These data examples can be considered 

as a vector which represents the state of the input. For example, a data example X
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can be represented as:

X = (5.9)

\ n)

The training set will consist of many training examples that will allow the ANN to 

learn to solve the task required and be capable of generalisation. When expressed as 

a vector, it is clear that each data example X can be considered as a point in n 

dimensional space. An ANN will attempt to find a mapping from this; this involving 

training the problem space into the solution space. For the accurate fault location 

problem considered in this chapter, it is required to map from the training set the 

exact location of the fault on transmission lines. However, the problem lies in two 

parts; fault type classification and fault location.

The inputs to the ANN comprise of a set of features based on the three-phase 

voltages V., Vb; v c and three-phase currents I„ Ib, Ic. With regard to the procedure 

for feature selection, an acceptable simple criterion used here is that a variable as a 

feature for the ANN input should provide more information for fault type 

classification and fault location than those not selected. In this respect, an extensive 

series of studies have revealed that the following frequency components (attained 

through the previously mentioned time-domain frequency decomposition of the fault 

waveforms) are representative of the vast majority of different system and fault 

conditions encountered in practice:

1) DC Component.

2) Fundamental Component.

3) Components over 100 - 350 Hz range.

4) Components over 400 - 1000 Hz range.

These are then converted into four features for each measured signal, those associated
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with (3) and (4) above comprising of the summated signal energy at all discrete 

frequencies within their appropriate range; with this approach, it becomes possible 

to confine the number of inputs into the ANN to 24 elements for the 6 signals.

Examples of inputs into the ANN for two different fault conditions are shown in 

figure 5.6.
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Figure 5.6 Examples of inputs into the ANN.

(a) 'a’-phase-earth fault at the midpoint (fault condition shown in figure 5.2).

(b) ’a'-V-phase fault at the remote end (fault condition shown in figure 5 3 ).
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After the appropriate features have been selected, a large number of simulations were 

performed off-line to generate a good representative data for training and testing the 

ANN, which cover wide system and fault conditions; accurate fault location is the 

process which requires fine training an ANN. Thus the ANN should be trained by 

data under a known fault type and fault positions. Figure 5.7 shows a set of training 

data for a specific fault condition. The distance to fault was varied from 0 to 100% 

of the line length, at regular intervals of 10%. The training data has been scaled to 

the neurodynamic range and is presented to the network randomly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Inputs into the ANN

Figure 5.7 Training data f o r ’a’-phase-earth fault, sending end s.c.l. = 2.5GVA, receiving end 

s.c.l. = 20GVA, fault resistance = IQ , fault inception angle = 90

The performance of the ANN is then tested using both patterns within and outside 

the training set. This is particularly so with reference to the speed of convergence and 

accuracy attained, essentially to ascertain if modification to the ANN structure or
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further training is necessary. The approach adopted here is based on the error-back- 

propagation training algorithm whereby an input pattern corresponding to a particular 

fault condition is fed to the ANN and the output of the network is compared with the 

desired output pattern corresponding to that fault condition.

5.5.S Scaling of input/output

For effective training of the ANN, scaling of both the input and output values is 

required. Scaling refers to the desired range of values required at the input and output 

of the network. The range into which the values must be scaled are primarily defined 

by the transfer functions in the nodes. If the input value to a node is large then the 

output of the node, defined by the transfer function, will be in an area of the function 

where the output is almost saturated. This means that the network is unable to learn. 

Similarly, the network may perform better when output values are within a certain 

range. For example, in training a back-propagation network, whose output layer has 

a sigmoid transform, will function better if desired output values are between 0 and 

1.

The same scaling method must be used for both training and testing data. A linear 

scaling which for a variable X in the range of [X ^ , X ^ ]  will assign the value A in 

the range of [Amin, AmaJ  is adopted to linearly scale the inputs to the network. This 

scaling is suitable for the transfer function. Thus the general equation to scale the 

inputs is:

A  * A mx ^ m in

Xmax rain

(5.10)

The required network output value must indicate the class to which the input belongs. 

In the fault location problem, the training target output values were set to the actual 

distance to the fault on the line, and scaled in the range from 0 to 1 ie 1 corresponds 

to 100% of the line length.
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5.6 ANN Topology for Accurate Fault Location

In order to find the best network topology for accurate fault location under all 

practically encountered different system and fault conditions, an extensive series of 

studies have revealed that it is not satisfactory to merely employ a smgle ANN and 

attempt to train it with a large amount of data. A much better approach is to separate 

the problem into two parts: firstly to employ and train a single ANN to indicate on 

which phase(s) the fault is and whether there is ground involved in a particular fault, 

irrespective of the actual fault position at this stage; secondly, in order to achieve a 

good generalisation, to use separately designed ANNs (one for each type of fault) to 

accurately locate the actual fault position associated with all the commonly 

encountered types of fault on EHV transmission lines; these are of course all driven 

from the single ANN designed at the first stage and the input data for the ANNs is 

generated the same way as that for the single ANN. Although this modular approach 

requires many networks, they are nonetheless quite simple in architecture, much 

easier to tram and require significantly less training data than would otherwise be the 

case if simply one single ANN were to be employed; more importantly (as shown 

later), the accuracy achieved in fault location is significantly enhanced. Figure 5.8 

illustrates the accurate fault locator scheme based on ANNs.
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Figure 5.8 Schematic diagram of fault location technique based on ANNs.
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5.6.1 Netwoik Architecture

There are many types of ANNs but the most commonly used are the previously 

discussed (in chapter 3) multilayer feed-forward networks (MFNs). A typical layout 

of such a network was shown in figure 3.6. It is a fully-connected three-layer (input, 

hidden, and output) feed-forward ANN, which has been used in fault classification 

and fault location problem. The network architecture chosen depends on the problem 

being addressed. The number of inputs to the network is determined by the number 

of elements or features in the input vector.

Having one or more hidden layers allows the network to make more complex 

associations between input and output [64], The number of nodes required in the 

hidden layer(s) depends on the complexity of the relationship between the inputs and 

outputs. If there are too many nodes in the hidden layer(s) the network will simply 

learn all of the input/output relationships individually without learning to generalise 

relationships for previously encountered data. If, however, there are not enough nodes 

in the hidden layer(s), then the network will not be able to learn to classify the inputs 

correctly. This applies similarly to the number of adjustable weights; too many 

weights will allow the network to learn all of the training set explicitly, and too few 

will not allow it to classify inputs correctly.

Considering the complexity of the accurate fault location problem and the amount of 

data available, in order to determine the appropriate size of the hidden layers, 

different combinations of the following network training methods were chosen and 

tested:

□ different connections (full or non-full) between the processing elements.

□ different number of hidden layers.

□ different hidden neurons in each layer.

□ different transfer functions (sigmoid, linear, and hyperbolic tangent).

□ different learning set data (sequential or random) in training the network.

□ different error back-propagation schemes.
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5.6.2 Fault Type Classification

The fault type classification technique is based on training a three-layer perceptron 

by the Delta-Bar-Delta learning algorithm [65], The outputs of the ANN comprise of 

four variables A, B, C and G; of these, a value close to unity for any of the first 

three variables corresponds to the appropriate a, b or c phases being faulty and a near 

unity value of G signifies that ground is involved in a fault. This ANN logic is 

depicted in table 5.1.

ANN-logic for output representation

A B c G TYPE OF FAULT

0 0 0 0 no fault

1 0 0 1 a-phase-earth fault

0 1 0 1 b-phase-earth fault

0 0 1 1 c-phase-earth fault

1 1 0 0 a-b-phase fault

0 1 1 0 b-c-phase fault

1 1 0 a-c-phase fault

1 1 0 1 a-b-phase-earth fault

0 1 1 1 b-c-phase-earth fault

1 1 1 a-c-phase-earth fault

1 1 1 0 3-phase fault

1 1 1 1 3-phase-earth fault

Table 5.1 ANN-logic fo r output representation of fault type classification technique.

The ANN architecture is based on 24 inputs, 4 outputs and 14 neurons in the hidden 

layer as shown in figure 5.9.

The training patterns for different fault types were selected considering different 

system and fault conditions for three fault positions on the line (near end S in figure

4.1, midpoint and near end R in figure 4.1). The performance of the ANN is then 

evaluated using various test cases for different fault positions.
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Figure 5.9 ANN architecture for fault type classification.

5.6.3 Fault location

As mentioned in section 5.6.2 and shown in figure 5.8, separate ANNs are designed 

to accurately locate fault position for each type of fault under all practically 

encountered different system and fault conditions. They are all driven from the single 

ANN designed to classify the fault type and the input data for the ANNs is generated 

the same way as that for the single ANN.

The MFNs shown in figure 5.10, with 24 neurons in the input layer and 1 in the 

output layer were chosen, where the output shows the location of the fault. The 

number of hidden neurons vary slightly for each ANN. ANNs are trained with 

different training data to cater for all types of commonly encountered faults.
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Figure 5.10 Stnicture of the ANNs for fault location.

5.7 Summary

An accurate fault location technique based on ANN is developed in this chapter. A 

single ANN is trained to classify the fault type and separate ANNs are designed to 

accurately locate the actual fault position associated with all the commonly 

encountered types of fault on EHV transmission lines.

Data pre-processing of the simulated waveforms is discussed and the time-domain 

frequency decomposition of voltage and current waveforms using DFT is adopted in 

the feature extraction process. In this respect, four features for each measured signal 

are selected as inputs to the ANNs.



Chapter 6

Fault Location Technique Based On 

Fuzzy Neural Networks

6.1 Introduction

This chapter describes a fault location technique using fuzzy neural networks (FNN). 

The technique is essentially an extension o f the one described previously in chapter 

5, in which a hybrid approach based on integration o f fuzzy logic and artificial neural 

networks (ANNs) is adopted. Like before it which utilises voltage and current fault 

data at one line end only and comprises o f two stages: the first stage is based solely 

on an artificial neural network (ANN) in order to classify fault types and the second 

stage is based on a FNN whereby fuzzy logic is employed to process the information 

for a second ANN for the purposes o f accurately locating a fault on the line. It is 

clearly shown that with this integrated approach, the accuracy in fault location is 

significantly improved over other techniques solely based on ANN architectures.

ANN-based techniques have the potential advantage over conventional techniques in 

significantly improving the accuracy in fault location. This is so by virtue o f the fact 

that ANNs have the capability o f non-linear mapping, parallel processing and 

learning; these attributes make them ideally suited for providing a high accuracy in 

fault location under a wide variety of different systems and fault conditions.

9 7
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However, there are still a number of contingencies under which an ANN-based fault 

location technique’s performance can be adversely affected. The technique presented 

herein thus proposes the use o f fuzzy logic to further improve the accuracy o f an 

ANN-based fault location technique.

6.2 Introduction to Fuzzy Logic

6.2.1 Fuzzy Logic Technology

The enormous success o f commercial applications, which are at least partially 

dependent on fuzzy technologies, has led to a surge o f curiosity about the utilisation 

o f fuzzy logic for scientific and engineering applications. Over the last ten years, 

fuzzy models have taken over more conventional technologies in many scientific 

applications and engineering systems, especially in control systems and pattern 

recognition. The success in the application o f fuzzy technology has been such that 

the interest in this subject area is growing.

6.2.2 Characteristics of Fuzzy Logic System

Fuzzy logic provides an inference morphology that enables approximate human 

reasoning capabilities to be applied to knowledge-based systems, such as perceptual 

and linguistic attributes. Also, this theoiy provides a mathematical strength to capture 

the uncertainties associated with human cognitive processes like thinking and 

reasoning.

6.2.2.1 Fuzzy set

Fuzzy set theory, introduced by Zadeh in 1965 [67], is an extension of conventional 

set theory. It provides a mathematical tool for dealing with linguistic variables (also 

called fuzzy variables). In traditional (or nonfuzzy) set theory, the sets considered are 

defined as a collection o f objects having some very general property; nothing special
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is assumed or considered about the nature of the individual objects. On the other 

hand, fuzzy variable has a degree of membership or degree of truth which for the 

range of a variable, is described by a membership function.

6.2.2.2 Fuzzy set representation

It is more convenient to as recall the definition of ordinary sets which henceforth will 

be referred to crisp sets. For the sake o f future definition o f fuzzy sets, the crisp sets 

are defined by introducing membership functions. Specifically, if  U is a universe of 

discourse, then a crisp set A in U is characterized by a membership function, denoted 

as pA, which is defined as follows:

1 i f  x  e A ^

0 i f x  € A

Therefore, the membership function corresponding to a crisp set will only take values 

0 or 1. Hence according to this perspective, the world is viewed as black or white. 

On the other hand, a fuzzy set F defined in a universe o f discourse U is 

characterized by a membership function pF which takes values in the closed interval 

[0,1]. According to this definition, it is clear that a crisp set is also a fuzzy set. 

However, the inverse is not necessarily true as illustrated by the following example.

Example:

U = Positive real numbers.

A = The crisp set of positive real numbers.

F = The fuzzy set of positive real numbers "much" greater than 1.

Membership functions for A and F are shown in figure 6.1.
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Figure 6.1 The crisp and fuzzy sets of "positive" real numbers.

6.2.2.3 Linguistic Variable and Hedges

An Important application o f fuzzy sets is in "computational linguistic" whose aim is 

to calculate with natural language statements in a similar way as logic calculates with 

logical statements. Fuzzy sets and linguistic variables can be used to determine the 

meaning of this natural language, which can then be manipulated. A linguistic 

variable is assigned values which are expressions such as words, phrases or 

sentences. As an example o f the linguistic variable size, terms such as small, 

medium, and large can be employed to describe the variable size on a linear scale. 

This is shown in figure 6.2.

Small Medium Large
1

Membership
Value

0
100 200 300 400 500 Size

Figure 6.2 Fuzzy membership function for linguistic variable size.

A linguistic hedge or modifier is an operation that modifies the meaning o f a term, 

or more generally, o f a fuzzy set. Thus, a larger set o f values will be generated for 

any particular linguistic variable. For example, the small size fuzzy set could be
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defined as: very small, very very small, more or less small, not very small and so on.

The set theoretical operation of union (u ), intersection (n ), and complement for fuzzy 

sets are defined via their membership functions. Let A and B denote a pair of fuzzy 

sets in X with membership functions |iA(x) and pB(x), respectively. The membership 

function pAuB(x) of the union A uB  and the membership function fiAnB(x) o f the 

intersection A nB  are defined as follows:

The complement of the fuzzy set A is defined by the membership function:

6.2.2.4 Fuzzy Set Operations

(6.2)

(6.3)

(*) = ! -  1^(*) (6.4)

6.2.3 Fuzzy Logic Systems

Figure 6.3 shows a fuzzy logic system (FLS), which comprises o f four principal 

components: a fuzzification interface, a fuzzy rule base, an inference engine, and a 

defuzzification interface.
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Figure 6.3 The general structure of FLS.

1) Fuzzification interface involves the following functions:

■ Measures the values o f input variables.

■ Performs a scale mapping that transforms the range of values o f input 

variables into corresponding universe o f discourse.

■ Performs the function o f fuzzification that converts input data into 

suitable linguistic values which may be viewed as labels o f fuzzy sets.

2) Fuzzy rule base consists of a set of linguistic control rules written in the form:

"IF a set o f conditions are satisfied,

THEN a set o f consequences are inferred".

3) The fuzzy inference engine is a decision-making logic performing the inference 

operations o f the fuzzy rules. Based on the fuzzy IF-THEN rules in the fuzzy rule 

base and the compositional rule o f inference [68], the appropriate fuzzy sets are 

inferred in the output space. There are two principal methods o f inference in fuzzy 

systems: the max-min inference and the max-product inference. Many other 

techniques are mentioned in the literature. Each method of composition o f fuzzy 

relations reflects a special inference machine and has its own significance and 

applications. The max-min method is the one used by Zadeh in his original paper on
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approximate reasoning using natural language IF-THEN rules.

In most fuzzy problems, the rules are generated based on post experience. 

Concerning problems that deal with fuzzy engines or fuzzy control, one should know 

all possible input-output relationships even in fuzzy terms; the input-output 

relationships, or rules, are than easily expressed with IF-THEN statements, such as:

Here "and/or" signifies logical union or intersection, A and B are fuzzified inputs, 

and C is action for the rule.

The following common methods are among those proposed in the literature for 

composition operation B = A ° R, where A is the input defined on the universe X, 

B is the output defined on universe Y, and R is a fuzzy relation characterizing the 

relationship between specific inputs (x) and specific outputs (y):

IF A and/or B THEN C

max-mm \iB(y) = max{min[pA(x), p*(*,y)]} (6.5)

max-product pB(y) = max[pA(;t) . p^(x,y)] (6.6)
xeX

max-max \iB(y) = max{max[pA(x), p ^ y )]} (6.7)

nun-max pB(y) = min{max[pA(x), p*(x,y)]} (6.8)

min-min \iB(y) = min{min[pA(x), p^(x,y)]l (6.9)

max-average \iB(y) = i  max[pA(x) + p^(x,y)]
2 xeX

(6.10)
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Graphical representation

Let A, B and C denote fuzzy set in universe of discourse U, V and W respectively, 

then figures 6.4 and 6.5 illustrate the graphical interpretation of the max-min and 

max-product inference methods for a simple single-rule system i.e. IF A and B 

THEN C.

U Vv mm W

Figure 6.4 Graphical inteipretation o f max-min inference method.

WU V mm

Figure 6.5 Graphical interpretation o f max-product inference method.

4) Defuzzification interface performs the following functions:

■ A scale mapping that converts the range of values of output variables 

into corresponding universe of discourse.

■ Defuzzification that yield a nonfuzzy (crisp) control action from an 

inferred fuzzy control action.

A commonly used defuzzification rule is the centroid method, according to which the 

defuzzification interface produces a crisp output defined as the centre of gravity of 

the distribution of possible action.
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6.2.4 Fuzzy Logic Applications to Power Systems

As previously discussed in chapter 1, a Power System consisting of a number of 

generating plants, busbars and transmission lines exhibits a high order o f non- 

linearity. Because o f its very nature, fuzzy logic would seem to be directly applicable 

to the analysis and control of power systems. However, work in this area has been 

rather limited. But, because of the constraints imposed upon most power utilities 

throughout the world due to economic and environmental reasons, there is increased 

interest in the subject o f expert systems and fuzzy logic in running power networks 

more efficiently, even though this may entail on-line operation near to stability limits.

The fuzzy logic approach has been applied in one form or another to a range of 

power system problems, which Control staff deal with on a day to day basis, such 

as power system stability control, power system stability assessment, power system 

optimization, power system protection, etc.

6.3 Hybrid Intelligent Systems

Recent developments have involved combining the relative powers of AI techniques 

to solve power system problems. Because of the nature of various types o f power 

system problems, different types of solution may be required. The real world power 

system problems may neither fit the assumption o f a single AI technique nor be 

effectively solved by the strengths and capabilities of a single AI technique. In this 

respect, to solve complex power system problems with a high level of accuracy and 

reliability, two or more AI techniques are combined to increase their strength and 

overcome each other's weaknesses and generate hybrid solutions.

By integration o f various AI techniques, hybrid intelligent systems as shown in figure 

6.6 are developed. It is now becoming apparent that hybrid intelligent systems are 

very important in overcoming the drawbacks associated with purely symbolic AI- 

based representations for dealing with complex real world problems.
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Figure 6.6 Hybrid intelligent systems.

The hybrid intelligent systems can be developed in a variety of ways. Some types of 

hybrid system can be summarised as: fuzzy neural networks, fuzzy expert systems, 

fuzzy controlled genetic algorithm, genetic based fuzzy systems and genetic neural 

networks. In recent years, hybrid intelligent systems have been applied to various 

power system problems such as: load forecasting [69,70], static security assessment 

[71] and power system stability [72]. To establish the basic concepts of the accurate 

fault location technique described in this chapter, fuzzy neural networks are discussed 

in the following section.

6.3.1 Fuzzy Neural Networks

Over the last decade, several parallel advances have been made in two distinct AI 

techniques: fuzzy logic and ANNs. While fuzzy logic provides an inference 

mechanism under cognitive uncertainty, ANNs offer exciting advantages such as 

learning, adaptation, fault-tolerance, parallelism and generalization. The ANNs, 

comprising of neuron like processing elements, are capable of coping with 

computational complexity, non-linearity and uncertainty. In view of this versatility 

o f ANNs, it is believed that they hold great potential as building blocks for a variety
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of behaviours associated with biological neural networks.

One of the important characteristics of ANNs is that they can classify inputs. 

Furthermore, the ANN can continuously classify and also update classifications. On 

the other hand, FLS can deal with fuzzy information and is capable o f providing 

crisp outputs. However, in FLS there is no learning and, even vaguely, the input- 

output relationships ( the fuzzy rules) must be known in advance.

In fact, concepts o f fuzzy logic and ANNs integrate very well to give birth to 

emerging area of research called "fuzzy neural networks". Paradigms based upon this 

integration are believed to have considerable potential in the area o f medical 

diagnosis, control systems, pattern recognition, and system modelling. Two possible 

models o f FNN are schematically shown in figure 6.7(a) and 6.7(b). In figure 6.7(a), 

the fuzzy interface block provides an input vector to the ANN with response to 

logistic values. In this respect, the ANN can be trained to yield desired outputs, 

extract the fuzzy rules and learn membership functions from the training data. On the 

other hand, in the scheme presented in figure 6.7(b), an ANN derives the fuzzy 

inference mechanism ie., the ANN adjusts the fuzzy parameters.

In FNN, the ANN part is primarily used for its learning and classification capabilities 

and for pattern association and retrieval. The ANN part automatically generates fuzzy 

logic rules and membership functions during the training period. In addition, even 

after training, the ANN keeps updating the membership functions and fuzzy logic 

rules as it learns more and more from its input signals. Fuzzy logic,*on the other 

hand, is used to infer and provide a crisp or defuzzified output when fuzzy 

parameters exist.
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Figure 6.7 Two models of fuzzy neural networks.

(a) Feedforward architecture: ANN responds to the fuzzy inputs.

(b) Feedback architecture; ANN drives the fuzzy inference mechanism.

6.4 Fuzzy NN based fault location Scheme

6.4.1 Basic Configuration of the Technique

The FNN-based fault locator as developed in this work scheme is shown in figure 

6.8. The technique consists of two stages: (i) fault type classification based solely on 

ANN architecture and (ii) precise location o f a fault on the line based on an 

integrated network comprising fuzzy logic and an ANN.
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The method is based on utilising voltage and current waveforms at the fault locator 

end of the line only and the signals employed are based on phase values. The effect 

of transducers - current transformers (CTs) and capacitor voltage transformers 

(CVTs), and hardware errors such as anti-aliasing filters and quantisation are taken 

into account, so that the information processed throughout the fault locator algorithm 

is very close to real-life situation; this is achieved through a data pre-processing stage 

as discussed previously in chapter 5.

CT Transmission Line

CVTFault
Locator-End

Currents

S T
Voltages

S T

Data Pre-Processing

ANN for Fault Type Classification

A C GB

Separate FNNs for Fault Location

Fault Location 

Figure 6.8 FNN-based fault location scheme.

The fault type classification technique is essentially the same as that described in 

section 5.6.2, where it was used in the fault location technique based solely on 

ANNs. As discussed before, separately designed FNNs, one for each type of fault and 

as shown in figure 6.8, are used herein, to accurately locate the actual fault position
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associated with all the commonly encountered types of fault on EHV transmission 

lines; as discussed later, this approach further improves the accuracy o f the fault 

location technique over that based solely on ANNs.

6.4.2 FNN Fault Locator Structure

The fuzzy logic is classified as an extension o f binary Boolean Logic [73]. It is a 

class in which the transition from membership to non-membership is gradual rather 

than abrupt. As mentioned before, both the ANN and the fuzzy logic have some 

drawbacks when used on their own. The ANN can produce mapping rules from 

empirical training data sets through learning, but the mapping rules in the network 

are not visible and are difficult to understand. On the other hand, since the fuzzy 

logic does not have learning capability, it is difficult to tune the rules. In order to 

overcome these difficulties, the link between symbolic processing (fuzzy) and 

numerical processing (neural) has been investigated in recent years, and this has 

resulted in hybrid architectures based on integrating the representational ability of 

fuzzy systems [68,73], often referred to as a fuzzy neural network (FNN).

Figure 6.9 illustrates the FNN considered herein. The FNN carries out fuzzy 

inference with ANN structure, and adjusts the fuzzy parameters using ANN learning. 

The ANN has been trained to extract the best rules and to learn membership 

functions from the training set.

The structure o f the FNN is determined by the functions used to represent the 

linguistic fuzzy variables; these are employed to set up fuzzification, ANN learning 

and defuzzification strategies. The centre o f gravity defuzzification algorithm is used 

to produce a crisp output which indicates the actual fault location on a transmission 

line.

The information flow through a FNN can be clearly seen from figure 6.9. A crisp 

input (a single value rather than fuzzy or probability distribution) is presented to the



Chapter 6 Fault Location Technique Based on Fuzzy Neural Networks page 111

network, and the memberships of the multivariate fuzzy input linguistic variables 

(represented by fuzzy sets) are calculated. The confidence in each of the fuzzy output 

linguistic variables is then determined, and the network output is obtained by 

defuzzifying the information.

The FNN employed comprises of three components: fuzzifier, ANN learning and 

defuzzifier.

output

ANN structure

fuzzification

defuzzification

Output
Layer

Hidden
Layer

Figure 6.9 Fuzzy Neural Network Structure.

6.4.2.1 Fuzzification

A fuzzification operator has the effect of transforming crisp data into fuzzy sets; 

symbolically:

* = Juzzifier( x0 ) (6.11)

where x0 is a crisp input value from a process; x is a fuzzy set and the fuzzifier 

represents a fuzzification operator. The triangular membership functions are used to
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define the fuzziness of the system.

6A.2.2 Acquisition of fuzzy knowledge and inference by neural netwoiks

The operation of a FNN can best be understood by considering the basic 

configuration of a fuzzy logic system (FLS) with pre-processing (fuzzifier or 

encoder) and reformation (defuzzifier or decoder) as shown in figure 6.10. In such 

a system, a set o f linguistic rules or conditional statements in the form of: "IF a set 

o f conditions is satisfied, THEN a set o f consequences are inferred" are employed; 

the fuzzifier maps the crisp sets in the input universe U to a fuzzy set in U, and the 

defuzzifier maps the fuzzy sets in the output universe V of pure fuzzy logic system’s 

output, to the crisp sets in V. However, it is virtually impossible to define these rules 

in a FLS on its own from the training set; this is so by virtue o f the fact that the 

training data is highly complex in nature and is constituted by the interaction of 

many variables under different system and fault conditions. An integrated structure 

whereby the inference engine in figure 6.10 is replaced by an ANN (as shown in 

figure 6.9) is a much better alternative to deal with the problem and this is the 

approach adopted in the technique presented herein. The main attribute o f such a 

structure is that the ANN automates the process of determining the membership 

function parameters and learns the best rules from the training set. After the training 

process, the resultant weights and biases become the principle base and the ANN 

takes over as the inference engine.

Principle
Base

Fuzzy
Inference

Engine

y in VXinU
ReformationPreprocessing

Fuzzy sets in V; y (V)Fuzzy sets in U; x (U)

Figure 6.10 Basic structure of a fuzzy logic system.
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The structure of the ANN employed within the FNN has one hidden layer and an 

output layer comprising o f five nodes. It is a feedforward, fully connected network 

in which a hyperbolic tangent function is employed as the activation function. As 

mentioned before, once a fault has been classified to be of a particular type by the 

fault-classification ANN at the first stage, the appropriate FNN is then enabled for 

fault location identification at the second stage o f the technique. In this respect, it 

should be noted that there are different FNNs employed (each with a slightly 

different architecture in terms o f the number o f hidden neurons and o f course 

different training data) to cater for all types of commonly encountered faults.

Extracted features through spectrum analysis o f the training data, described in the 

pre-processing stage in section 5.4, are converted into fuzzy sets; these are then used 

as inputs to train each ANN. The location of the fault is coded into a number o f 

fuzzy membership functions determined by the desired resolution. In this study, five 

membership functions have been used. The number of output neurons o f each ANN 

are the same as the number of the fuzzy membership functions.

6.4.2.3 Defuzzification

As shown in figure 6.9, the defuzzifier produces a crisp output from the fuzzy set 

which in turn is the output of the ANN learning block. In the defuzzification process, 

each membership function is weighted by the state o f the corresponding output 

neuron of the ANN. The location of the fault is then obtained using centroid 

defuzzification as given by:

R
E W a W

Fault Location = —----------  (6-12)

E Mify)
i=l

where:

n is the number o f quantization level of the output, 

y{ is the output value at the quantization level i,
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HB(yj) is the value of membership function of the output fuzzy set at y i .

6.4.3 Training data

Training data for FNN is obtained essentially the same way as that described in 

section 5.5.7. As for the fault location technique based solely on ANN structure, the 

inputs to the ANN comprise of a set of features based on the three-phase voltages 

Va, Vb, Vc and three-phase currents Ia, Ib, Ic. With regard to the data pre-processing 

stage shown in figure 6.8, the following four frequency components are also 

considered here as the best features for each measured signal to generate the inputs 

to FNNs.

1) DC Component.

2) Fundamental Component.

3) Components over 100 - 350 Hz range.

4) Components over 400 - 1000 Hz range.

Figure 6.11 illustrates the frequency components for the "a"-phase current for a 

variety o f fault conditions. From this, it can be seen that the training data is highly 

complex and different classes in the training set have overlap. Thus, by using fuzzy 

logic, this problem of overlap can be overcome by mapping of the membership of 

different data points in the different classes.
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Figure 6.11 Frequency components fora-phase current

6.4.3.1 Fuzzification of crisp information for the FNNs

This section describes how triangular membership functions describing the fuzziness 

of the transmission system are used to convert the previously described extracted 

features into fuzzy sets for the FNN and these are shown in figure 6.12(a). In order 

to facilitate this process, the overhead transmission line is divided into five sections 

as shown in figure 6.12(b). Each output neuron corresponds to the value of the 

membership function. As can be seen for a fault at say 48 km of the line, the 

membership function (and the ANN output) is [0 0.5 0.5 0 0].
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Membership function

MS ML
1

0
Univers of discourse

(a)
Membership function

Y2 Y3 Y4 Y5

(Fuzzified) 
Y2=0.5 ^  
Y3=0.5

X(Km)
128 

Fault LocationX=48

Figure 6.12 Input/output membership functions.

(a) Membeiship functions of linguistic values(S: small, MS: medium small, M: medium, 

ML: medium laige, L: large).

(b) Membership functions for the fuzzification mapping of the output neurons.

Inputs to ANN are fuzzy sets (Sj, S2, S n) in the universe o f discourse (X„ X2,

Xn) respectively. These fuzzy sets are obtained by converting the DC and other 

frequency components attained through the frequency decomposition o f the time- 

domain waveforms. As shown in figure 6.12(a), five linguistic terms as "small", 

"medium small", "medium", "medium large" and "large" are used to convert the crisp 

values to fuzzy inputs. In this respect, the structure o f ANN consists o f 60 neurons 

in the input layer and five neurons in the output layer. The FNN has been trained to 

yield desired fuzzy outputs. Table 6.1 illustrates the linguistic values o f inputs and 

the fuzzy outputs for an 'a'-phase to ground fault occurring at the middle o f the line 

and an 'a’-'b'-phase fault occurring at the remote end o f the line; the frequency spectra 

associated with these faults are shown in figure 5.4 and 5.5 respectively. The 

training data for the FNN consists o f fuzzy inputs/outputs with respect to these
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linguistic terms and their membership functions. The location of the fault is then 

obtained using centroid defuzzification with respect to the membership functions 

shown in figure 6.12(b).

Fault T ype
Frequency Linguistic Values For Inputs Fuzzy Outputs

Component »b K v . v b v c Y1 Y2 Y3 Y4 Y5

DC MS ML ML M ML ML

a-phase-earth
fault

50 Hz M L ML MS ML M 0 0 1 0 0

100-350 Hz MS ML M S MS ML

400-1000 Hz MS M S MS M L

DC L ML MS S MS M

50 Hz L M MS MS ML L 0 0 0 0 1

a-b-phase fault 100-350 Hz M L ML MS ML L

400-1000 Hz MS M ML M MS ML

Table 6.1 Fuzzy input/output training data representation.

6.5 S um m ary

The applications of fuzzy logic and fuzzy logic systems are reviewed. Structures of 

hybrid intelligent systems with practical emphasis on fuzzy neural networks are 

discussed in this chapter.

An integrated approach comprising fuzzy logic and ANNs for accurately locating 

faults on a transmission line, and further improve on the accuracy attainable from 

fault location techniques based solely on ANN architectures, is also discussed in this 

chapter. The technique consists of two stages: (i) fault type classification based solely 

on ANN architecture and (ii) precise location of a fault on the line based on FNNs.



Chapter 7

Performance Evaluation Of The Fault Location

Techniques

7.1 Introduction

This chapter is concerned with the performance evaluation of the two proposed fault 

location techniques described in the previous two chapters. The chapter has been 

divided into two main parts to describe the performance of each technique. In the 

first part, the performance evaluation of the ANN topology for accurate fault location 

technique is discussed and the analysis of the results for fault type classification and 

fault location based solely on ANN architectures are presented. The second part is 

principally concerned with quantifying the improvements affected the accuracy 

through the employment of a fault location technique based on an integrated approach 

comprising fuzzy logic and ANN called fuzzy neural network (FNN).

The effects of differing source capacities, fault resistance, fault inception time, fault 

type, etc on the accuracy are examined for each technique.

It should be mentioned that the results presented in this chapter have been selected 

from an extensive series of training and test set examples from simulations of faults, 

generated as described in chapter 4. They attempt to represent, in the best suitable

1 18
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way, the overall performance of the fault locator under a whole variety of system and 

fault conditions encountered in practice.

In order to obtain the results, customised programs were written in FORTRAN and 

C languages, and standard software packages such as DADiSP [74] (for waveform 

analysis) and Neural Works Professional II Plus [75] (for setting up ANN 

architectures) were used.

7.2 Performance Evaluation of the Technique Based Solely on ANNs

7.2.1 Preprocessing of Training / Test Data

In order to demonstrate the effectiveness of the proposed approach, it is necessary 

to pre-process training/test data. In this respect, as mentioned before, the required 

training and test data was generated for faults using EMTP software and then pre

processing the resulting data. Each case in the training set represents a different fault 

condition. Approximately, 3000 training/test set examples were prepared to evaluate 

the performance of the technique. Roughly, 60% of these cases were used for training 

of the ANNs, and the other 40% were used for the subsequent testing.

An illustrative study

as discussed before, the performance of the ANN depends on the training/test data, 

in this respect, it is important to fully examine the outputs of each process 

implemented for a typical fault condition. Figure 7.1 shows such waveforms when 

an a-phase-earth fault has occurred at the middle of the line. Figures 7.1(a) and 7 .1(b) 

show the primary system voltage and current waveforms, at the fault locator end of 

the line. Figures 7.1(c) and 7.1(d) show the effect of CVTs and CTs on the voltage 

and current waveforms, respectively, it is apparent that the CVT has a significant 

influence on the voltage waveforms in that the high frequency transients are heavily 

attenuated; the corresponding analogue channel outputs are shown in figures 7.1(e) 

and 7.1(f). These waveforms are the same shape as the CVTs and CTs outputs,
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except that the magnitudes are scaled down to ±8.5 volts for the voltage waveforms 

and ±2 amps for the current waveforms. The resultant data is then passed through 

a 12 bit A/D converter and the output signals are shown in figures 7.1(g) and 7.1(h). 

The A/D converter gives ±2048 quantum levels with 4.88 mV quantum level 

accuracy.

Figure 7.2 depicts the frequency spectra of the three-phase voltages and currents for 

the fault condition shown m figure 7.1, and the inputs into the ANN are shown in 

figure 7.3. As expected the dominant component in each signal is of the power 

frequency ie. 50 Hz. These are obtained through the previously described feature 

extraction technique employed, whereby four features for each measured signal are 

extracted from the frequency spectra shown in figure 7.2.
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10 15 20 25 30 35 40
Time (msec)
(e)

15 20 25 30 35 40
Time (msec)

(f)

10 15 20 25 30 35 40
Time (msec)

( g )

10 15 20 25 30 35 40
Time (msec)

<h)

-1000

Figure 7.1 Example of data pre-processing for ANN training; a-phase-earth fault at the 

middle of the line, s.c.l. at the sending-end=20GVA, s.c.l. at the receiving-end=2.5GVA, 

R=1Q.

(a) and (b) Primary system voltage and current waveforms.

(c) and (d) CVTs and CTs outputs.

(e) and (f) Analogue channel outputs.

(g) and (h) A/D outputs.
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Figure 7.2 Frequency spectra fo r fault condition on figure 7.1.

(a) Spectra of three-phase voltages.

(b) Spectra of three-phase currents.
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Figure 7.3 Inputs into the ANN for the fault condition on figure 7.1.

7.2.2 Feature Extraction

The feature extraction process is independent of the ANN architecture except for the 

fact the number of feature extracted constrains the number of inputs into the ANN 

and therefore simplifies its architecture. As mentioned in chapter 5 section 5, a 

frequency decomposition approach was adopted as the feature extraction process, 

utilising the following frequency components: DC components, fundamental 

components, components over 100-350 Hz range and components over 400-1000 Hz 

range. The four frequency components for 'a'-phase voltage, representing a vast 

majority of different system and fault conditions, are shown in figure 7.4. The peak 

of these frequency components vary with respect to each fault condition.
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Figure 7.4 Frequency components fo r 'a'-phase voltage under different fault conditions.
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7.2.3 ANN Topology for Fault Classification/Location

In order to find the best network topology for accurate fault location under all 

practically encountered different system and fault conditions, various ANN topologies 

were experimented with. The main functions that an ANN has to perform in this 

application are:

• Fault type classification.

• Fault location.

The first approach to the problem of accurate fault location on EHV transmission 

lines was based on a single ANN to both classify the type of the fault and locate the 

fault position. Figure 7.5 illustrates the structure of this algorithm which shows the 

input vectors and the nature of the outputs as discussed in chapter 5 section 6.

Fault 
> Location

Figure 7.5 Structure o f fault location algorithm using a single ANN.

A multi-layer feed-forward ANN using supervised learning and common training rule 

of error-back-propagation was used for this technique. Here, the structure of the ANN 

consists of 24 neurons in the input layer and 5 in the output layer. ANN training was 

conducted using 1500 fault patterns generated under different system and fault 

conditions.

In order to provide an indication of the ANN learning performance, the root mean 

square (RMS) error over a training epoch has been plotted against the number of

ANN
For 

Faul Type 
Classification 

and 
Fault location

Feature
Extraction
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training iterations as shown in figure 7.6, and the performance of the fault location 

output for one set of examples (100 training patterns) is shown in figure 7.7. The 

performance and speed of the training process depends upon the size of the network 

and the amount of data (training patterns) presented to the network.

In order to improve the performance of the training, various ANN structure were 

designed and tested. However, as shown in figures 7.6 and 7.7, the network cannot 

converge within the required RMS error criterion of 0.01 and it does not have the 

generalisation capability. It is thus impractical to merely employ a single ANN and 

attempt to train it with a large amount of data. Obviously, the network failed to 

converge and produce the correct results. In this respect, a much better approach, as 

mentioned in section 5.6, is to separate the problem into two parts:

1) Use a single ANN for fault type classification

2) Use separate ANNs (one for each type of fault) for fault location.

RMS Error

0.8

0.6

0.4

0.2

30000 40000 500002000010000500
Number of iterations

Figure 7.6 ANN RMS error (conveigence capability of ANN).
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Figure 7.7 Performance of the fault location for a set of training examples (generalisation 

capability of ANN).

7.2.4 Performance of ANN for Fault Type Classification

A three-layer perceptron based on the Delta-Bar-Delta learning algorithm was trained 

for the fault type classification problem. In this study, 60 training patterns were used 

in the training set and the performance of the ANN was then evaluated using various 

unseen cases.

The first task in this approach was the selection of the most appropriate ANN 

architecture. In this respect, a range o f ANN architectures were trained and tested. 

The general performance was good for even simple types of network, and is so by 

virtue of the good separation of classes provided by the feature extraction process, 

and the good selection o f logic for the output of the ANN. The RMS error is plotted 

in figure 7.8, which indicates a very good performance of the ANN learning and fast 

convergence o f the training process. The generalisation capability o f the ANN for 

four typical output values is illustrated in figure 7.9. This shows a good 

generalisation capability which is due to the good selection o f the training set. One 

iteration during training took about 4 milliseconds, therefore, the total training time
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was about 32 seconds corresponding to 8000 iterations. It should be mentioned, these 

computing time are for a 486-66 MHz PC. O f course this time would be shorter for 

a more powerful PC.

RMS Error

0.8

0.6

0.4

0.2

80004000 70002000 3000 5000 600010 1000
Number of iterations 

Figure 7.8 Conveigence capability of the ANN.

7.2.4.1 Analysis of Test Results

Following the training of the ANN, a separate set o f test patterns were supplied as 

input to the ANN involved in the fault-type classification in order to evaluate its 

performance. Table 2 gives some examples o f the test results. The left four columns 

are the desired outputs, ideally '1' or 'O' (corresponding to the fault types as indicated 

by the logic shown in Section 5.6.2), and the right four columns are the actual 

outputs of the ANN; each test case comprises o f four different fault positions at 

distances o f 8, 62, 96 and 120 km, respectively from end S (see figure 4.1). It is 

evident from the results that although the ANN gives a high accuracy, there are small 

fluctuations in the actual ANN outputs around T  and 'O'; since in practice this cannot 

be avoided, small threshold levels have to be built into the ANN algorithm in order 

to minimise the degree of uncertainty. In this application, these levels were set such 

that if the output fell within the range <0.1 then it would be classed as ’O' ie, a 

healthy phase indication, and if it fell within the range >0.9 then it was classed as 

unity ie, a faulted phase indication.
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Figure 7.9 Generalisation capability of the ANN training.
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Test Cases Desired Output Actual Output

Case 1 
S1=2.5GVA  
S2=20GVA  

Rf=lf>

1.0000 0.0000 0.0000 1.0000 1.0110 -0.0055 0.0021 0.9971

1.0000 0.0000 0.0000 1.0000 1.0096 -0.0038 0.0090 0.9923

1.0000 0.0000 0.0000 1.0000 1.0021 -0.0089 0.0568 0.9803

1.0000 0.0000 0.0000 1.0000 1.0326 -0.0253 0.0128 0.9913

Case 2
S1-2.5G V A
S2=20GVA

Rf=100Q

1.0000 0.0000 0.0000 1.0000 0.9763 0.0045 -0.0042 1.0057

1.0000 0.0000 0.0000 1.0000 0.9761 0.0163 0.0162 1.0187

1.0000 0.0000 0.0000 1.0000 0.9959 0.0047 -0.0050 1.0091

1.0000 0.0000 0.0000 1.0000 0.9469 0.0212 0.0113 1.0215

Case 3
S1=2.5GVA  
S2=20GVA  

Rf= 10012

1.0000 1.0000 0.0000 1.0000 1.0104 1.0045 -0.0617 1.0055

1.0000 1.0000 0.0000 1.0000 1.0044 1.0087 -0.0280 1.0770

1.0000 1.0000 0.0000 1.0000 0.9899 1.0089 0.1032 0.9969

1.0000 1.0000 0.0000 1.0000 1.0008 1.0210 -0.0054 1.0229

Case 4 
S1=20GVA  
S2=2.5GVA

1.0000 1.0000 0.0000 0.0000 0.9999 1.0020 -0.00045 0.0025

1.0000 1.0000 0.0000 0.0000 1.0103 0.9915 -0.0054 0.0235

1.0000 1.0000 0.0000 0.0000 0.9873 1.0136 -0.0015 -0.0241

1.0000 1.0000 0.0000 0.0000 1.0016 0.99609 0.0085 0.0041

Case 5 
S1 = 15GVA 
S2=20GVA  

Rf=50£2

0.0000 1.0000 1.0000 1.0000 0.0032 0.9603 1.0646 0.9174

0.0000 1.0000 1.0000 1.0000 -0.0141 1.00214 0.99878 0.9680

0.0000 1.0000 1.0000 1.0000 0.0095 1.0114 1.0211 1.0090

0.0000 1.0000 1.0000 1.0000 -0.0130 0.9324 0.9750 1.0275

Case 6 
S1=2.5GVA  
S2=20GVA  

R f^lQ

1.0000 0.0000 1.0000 1.0000 1.00121 -0.0021 0.9457 1.0098

1.0000 0.0000 1.0000 1.0000 0.9940 0.0012 0.9321 1.0010

1.0000 0.0000 1.0000 1.0000 1.0190 -0.0190 0.9540 0.9121

1.0000 0.0000 1.0000 1.0000 1.0013 0.0021 1.0210 1.0010

Case7
S1=2.5GVA
S2=20GVA

R f^lQ

1.0000 1.0000 1.0000 1.0000 1.0204 1.0166 1.0074 0.9687

1.0000 1.0000 1.0000 1.0000 1.0306 1.0223 0.9823 0.9446

1.0000 1.0000 1.0000 1.0000 1.0378 1.0363 1.0002 1.1146

1.0000 1.0000 1.0000 1.0000 1.0126 1.0021 1.0698 1.0668

Table 7.1 Test cases for fault type classification.
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7 .2 .4 .2  P erfo rm an ce  E v a lu a tio n

In order to quantitatively evaluate the performance of the fault classification 

technique, three indices are proposed as follows:

Error index (El) = No. of error decisions / No. of total tests 

Single Confidence Index (SCI) = Desired - Iactual / desired 

Average Confidence Index (ACI) = Sum of SCI / No of tests

Table 7.2 presents the overall performance of tests earned out over 200 system and 

fault conditions, which indicates that the overall confidence index is 99.66% with no 

single error decision.

Single Confidence Index

A B C G

Min 99.8% 99.98% 99.82% 99.2%

Max 99.9% 99.9% 99.9% 99.9%

Average Confidence Index 99.8% 99.5% 99.85 99.55%

Overall Confidence Index 99.66% Error Index 0%ii

Table 7.2 Performance evaluation of fault type classification.

7.2.5 Performance o f Fault Location

This section presents the performance evaluation of the fault location technique under 

different system and fault conditions. The trained ANNs involved in the second stage 

of the fault location technique were tested with a separate set of test data unseen by 

the ANNs before. As mentioned in chapter 5, this stage comprises of a number of 

ANNs (each corresponding to a different type of fault), the appropriate ANN being 

activated by the outputs from the ANN in the first stage (as described above in 

section 7.2.4).
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7.2.5.1 ANN Structure

Through a series of tests and modifications, the optimal number of hidden neurons 

in the single hidden layer for the best performance of each ANN was obtained. Table 

7.3 typifies the number of hidden neurons used to design the structure of each ANN. 

As mentioned in chapter 5, 24 neurons in the input layer and 1 in the output layer 

were chosen, where the output shows the location of the fault.

Type o f Fault Num ber o f hidden Neurons

a-phase-earth fault 15

b-phase-earth fault 15

c-phase-earth fault 15

a-b-phase fault 18

b-c phase fault 18

a-c phase fault 18

a-b-phase-earth fault 20

b-c-phase-earth fault 20

a-c-phase-earth fault 20

3-phase fault 14

3-phase-earth fault 16

Table 7.3 Optimal num ber of hidden neurons for each ANN.

Determining the best net size

The degree of freedom of the ANN equal to the number of inter connection / size, 

and therefore proportional to the number of hidden neurones, must be matched, in 

some sense, to the complexity of the classification boundary. Currently, in the 

absence of parameter / theoretic guidance, the only proposed method of determining 

the best number of hidden neurons is by comparative cross validation among several 

ANNs. As shown in figure 7.10 (for four typical fault type), moving from a small 

number of hidden neurons to a large number should decrease the overall probability
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of error while maintaining an equivalent error performance for the best and training 

data. When the perceptron's performance on training data begins to lag when the 

number o f hidden neurons increase, the process o f memorization may have started. 

There is always a range where the error of the ANN is relatively unchanged. This 

should be the best range for ANN structure.
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Figure 7.10 RMS errors vs number of hidden neurons.
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7.2.5.2 ANN Training

ANN training was conducted using different training sets for each type o f fault. In 

this respect, an extensive series of studies have shown that each ANN training based 

on a set o f approximately 150 different training patterns are sufficient to cater for all 

practically encountered different system and fault conditions.The networks were then 

trained by randomly processing the training patterns using the back-propagation 

learning algorithm. It is important to adopt this approach because if the data is 

presented in a sequential fashion, and similar data is grouped together, then the 

network may start to loose what it has learned from one end o f the data set to 

another. At the start o f the data set, it learns one set of relationships and as it moves 

towards the end of the data set, it learns a different set of relationships, forgetting 

what it learned at the start. RMS error criteria is used herein to evaluate the learning 

performance. The learning performance for the ANNs representing: a-phase-earth 

fault, a-b-phase fault a-b-phase-earth fault, and 3-phase-earth fault is shown in figure

7.11. In all cases, it is shown that the ANNs reached the required RMS criterion of 

0.01% in approximately 30 000 learning iterations. The epoch of 100 was chosen to 

show the performance of each network for all training iterations. A smaller epoch 

such as one is also useful for viewing the performance o f the network classification 

type, because the largest individual errors are often more important than the rms 

error.

In general, the rms error becomes lower as training progresses, as shown in figure

7.11. Although this process is slower in large networks, in such networks, the error 

reduces further. Training data which produces consistently larger errors than average 

is typically taken from samples around the boundaries of each class o f patterns, or 

at the limits for that class.
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Figure 7.11 Performance of ANNs training for different types of fau lt
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7.2.5.3 Analysis of Test Results

Separate sets o f test data were supplied as input to each ANN involved in the fault 

location stage in order to evaluate their performance under different fault and system 

conditions. The error for fault location is expressed as a percentage o f the length of 

the line, and is given as:

M actual location -  desired location irv*% error = -----------------------------------------------  x 100
length o f  the line

Effect of source capacity: As discussed in section 4.6, the source parameters, 

particularly their capacities, significantly affect the fault transient waveforms. 

Therefore, it is vitally important to verify the effect o f source capacity on the 

performance o f the proposed fault location technique. Tables 7.4 and 7.5 show the 

effect o f source capacity on the accuracies attained for some examples o f test results. 

The source capacities are varied from a large value to a very small value at each end 

o f the line in both tables respectively. In order to illustrate the performance o f the 

fault location technique under varying source capacities, three different fault positions 

at distances o f 0, 64, and 128 km, respectively from end S (shown in figure 4.1), are 

used to show the results for each type of fault. A small fault resistance o f 1 £2 for 

the faults involving earth, and a fault inception angle of 90° is used in all the test 

cases.

It is clearly evident from the results that the accuracy achieved in fault location is 

high, being < 2%  in all the test cases. The technique also retains its high accuracy 

at low capacities for different types o f faults. This is a major advantage particularly 

since source capacities constantly change according to the load demand.
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Fault Type SCLat 
S (GVA)

SCL at 
R (GVA)

Desired 
Output (km)

Actual 
Output (km)

%
Error

a-earth fault 2.5 20 0.0000 1.8721 1.46

a-earth fault 10 20 64.0000 63.0123 0.77

a-earth fault 20 20 128.0000 126.3265 1.31

a-b-phase fault 20 20 0.0000 0.9532 0.74

a-b-phase fault 15 20 64.0000 65.8760 1.46

a-b-phase fault 0.5 20 128.0000 130.3410 1.82

a-b-earth fault 5 20 0.0000 1.1085 0.86

a-b-earth fault 10 20 64.0000 62.5670 1.11

a-b-earth fault 15 20 128.0000 129.6541 1.29

3-phase-earth fault 0.5 20 0.0000 1.9470 1.52

3-phase-earth fault 10 20 64.0000 63.6650 0.26

3-phase-earth fault 15 20 128.0000 127.0101 0.77

Table 7.4 Effect of source capacity on accuracy for differing source capacities at the sending- 

end (end S) of the line.

Fault Type SCLat 
S (GVA)

SCL at 
R (GVA)

Desired 
Output (km)

Actual 
Output (km)

%
Error

a-earth fault 20 20 0.0000 0.7210 0.56

a-earth fault 20 10 64.0000 65.1803 0.92

a-earth fault 20 20 128.0000 129.6565 1.29

a-b-phase fault 20 0.5 0.0000 1.1501 0.89

a-b-phase fault 20 15 64.0000 62.4670 1.19

a-b-phase fault 20 20 128.0000 125.8032 1.71

a-b-earth fault 20 2.5 0.0000 0.8500 0.66

a-b-earth fault 20 10 64.0000 66.0891 1.63

a-b-earth fault 20 20 128.0000 127.5540 0.34

3-phase-earth fault 20 0.5 0.0000 1.4501 1.13

3-phase-earth fault 20 15 64.0000 64.7501 0.58

3-phase-earth fault 20 20 128.0000 129.2181 0.95

Table 7.5 Effect of source capacity on accuracy for differing source capacities at the

receiving-end (end R) of the line.
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Effect of fault resistance: It is vitally important to ascertain if the fault location 

estimation is significantly influenced by changes in fault resistance. In order to 

examine the accuracy of fault location algorithm to different fault resistances, a series 

o f unseen test cases were created. The tests cases were carried out varying the fault 

resistance from 1 to 200 Q for one particular type of fault. The effect of fault 

resistance is not studied for phase-phase faults, since in practise the fault resistance 

for such type o f faults rarely exceeds 1 £2.

Table 7.6 shows the effect o f fault resistance on the accuracies attained for the 

transmission system shown in figure 4.1 subject to an a-phase-earth fault and a-b- 

earth fault respectively, at 64 km from end S. Table 7.7 illustrates the same effect 

for 3-phase-earth fault near end R (the error attained in this case is due to the fact 

that the line considered is untransposed). It is clearly evident from the results that the 

ANNs give accurate evaluation of fault position that is largely independent o f the 

fault resistance. An extensive series o f tests have shown that this is the case for all 

types o f fault involving fault resistance. This is a very significant advantage over 

conventional techniques, particularly those based on impedance to fault 

measurements, which tend to produce excessive errors when dealing with resistive 

faults.
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Desired 
Output (km)

Rf
(O)

a-phase-earth fault a-b-phase-earth fault

Actual 
Output (km)

%
Error

Actual 
Output (km)

%
Error

64.0000 0 64.7843 0.61 64.9456 0.73

64.0000 25 62.8941 0.86 65.3210 1.03

64.0000 50 63.0453 0.74 62.1204 1.46

64.0000 75 66.1014 1.64 65.3450 1.05

64.0000 100 65.6548 1.30 62.7541 0.97

64.0000 125 61.8124 1.71 66.2140 1.73

64.0000 150 62.3127 1.31 62.0191 1.54

64.0000 175 66.1440 1.67 61.6401 1.84

64.0000 200 61.7140 1.78 66.5012 1.95

Table 7.6 Effect of fault resistance on fault location's accuracy, ANNs test examples fora- 

phase-earth fault and a-b-phase-earth fault

Desired 
Output (km)

Rf
(O)

3-phase-earth fault

Actual Output 
(km)

%
Error

128.0000 0 127.1201 0.68

128.0000 25 129.4510 1.13

128.0000 50 129.5912 1.24

128.0000 75 126.8940 0.875

128.0000 100 129.6019 1.25

128.0000 125 126.5461 1.13

128.0000 150 126.3219 1.31

128.0000 175 130.1210 1.65

128.0000 200 130.6140 2.04

Table 7.7 Effect of fault resistance on fault location's accuracy, ANN test examples for 3- 

phase-earth fault
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Effect of fault inception angle: For the results presented hitherto, the faults have been 

applied either at an instant corresponding to voltage maximum or at zero voltage in 

the faulty phase or phases. The former o f the two is the worst case from the point 

of view of travelling wave distortion. The other extreme, i.e. when the fault is 

applied at zero voltage, distortion is extremely small in the voltage waveforms 

because there is not a large and sudden voltage change at the point o f the fault, 

however, the latter results in a large DC offset in the current waveforms.

It is thus important to verify the performance of ANNs for faults at different 

inception angles to those studied previously. The effect of fault inception angle 

variation on the accuracies attained is thus examined for all types o f fault. Tests were 

performed for faults applied at instances corresponding to voltage maximum, at 45° 

angle, and at zero voltage on the faulty phase or phases. Table 7.8 presents the 

overall performance o f tests carried out over 20 different test cases for each type of 

fault, which indicates that the fault location technique maintains a high degree of 

accuracy which is almost independent o f the fault inception angle. This feature is 

important since in practice, faults can occur at any point on wave i.e. the fault 

inception angle cannot be defined in advance. This study clearly demonstrates that 

the fault location algorithm is virtually immune to any errors caused by either the 

higher frequency transients, which are associated with faults near voltage maximum 

or DC offsets caused by faults near voltage zero.
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Fault Type
% Error

. ____
0° angle 45° angle 90° angle

a-earth fault 1.85 1.90 2.00

b-earth fault 1.71 1.58 1.38

c-earth fault 1.69 1.71 1.62

a-b-phase fault 1.68 1.80 1.95

b-c-phase fault 1.46 1.53 1.64

a-c-phase fault 1.34 1.65 1.41

a-b-phase-earth fault 1.88 2.00 1.44

b-c-phase-earth fault 1.12 1.35 1.63

a-c-phase-earth fault 1.22 1.51 1.50

3-phase fault 1.66 1.36 1.54

3-phase-earth fault 1.81 1.59 2.00

Table 7.8 The effect of fault inception angle on the accuracy. Maximum % error for all type 

of faults for different fault conditions. Faults applied at different angles with respect to 'a1- 

phase.

External faults: In any fault locator, although a high accuracy for internal faults is 

of primary concern, nonetheless, it should also be stable under external faults. For 

the fault location technique described herein, an external fault produces an estimation 

which is consistently very much higher than that expected for an internal fault, 

results shown in table 7.9 being a typical example. It is evident, from the results that 

when the ANNs give such abnormally high values, then it can be safely assumed that 

the fault is external. Studies have shown that the aforementioned is the case for all 

practically encountered external faults.

Fault Type
Fault Location (km)

Behind the Busbar 
at end S

beyond the Busbar 
at end R

a-phase-earth fault -801 1024

a-b-phase-earth fault -756 981

Table 7.9 Performance of ANNs under external faults.
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Effect of line configuration: As mentioned before, the 400 kV vertical single-circuit 

configuration lines commonly encountered in the UK, are used to create the training 

and test data. However, it is also important to examine the performance of the fault 

location technique for faults on other configurations. Table 7.10 typifies the degree 

of accuracy attained for a 400 kV vertical double-circuit line and 500 kV horizontal 

single-circuit line under 'a'-phase-earth fault. The results clearly demonstrate that the 

technique retains its high accuracy for distance estimation for different line 

configurations, the magnitude of errors in terms of accuracy being less than about 2% 

for most of the fault conditions studied. This is a major advantage and indicates that 

the technique is robust and can be used for different transmission systems.

Desired 
Output (km)

Rf
(A)

400 kV 
Vertical double-circuit

500 kV 
Horizontal single-circuit

Actual 
Output (km)

%
Error

Actual 
Output (km)

%
Error

0 1 0.9210 0.72 1.2401 0.97

18 10 16.8491 1.15 19.3510 1.05

48 50 46.8910 0.86 49.6204 1.26

64 100 65.4104 1.10 62.7150 1.00

68 50 67.5148 0.38 69.8401 1.44

80 10 81.6084 1.25 78.2840 1.34

90 10 88.1020 1.48 92.1101 1.65

100 1 101.1014 0.86 101.7111 1.33

128 100 125.8140 1.70 130.3505 1.83

Table 7.10 Effect o f line configuration on the accuracy for a-phase-earth fault, s.c.l. at the 

sending-end=10GVA, s.c.l. at the receiving-end=20GVA.

Transmission line length: The EHV transmission line lengths can vary considerably 

in length. Therefore, it is vitally important to ascertain as to what extent the fault 

location accuracy is affected as a result of a change in the line length. Table 7.11 

illustrates the performance of the ANN-based technique for 'a'-phase-earth faults 

when subjected to the line lengths of 80, 100 and 150 km respectively. The system 

configuration shown in figure 4.1 is used to create the test cases.
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The results summarised in table 7.10 and 7.11 clearly demonstrate that the accuracy 

of the fault location technique described herein is little affected by changing the line 

configuration and line length.

It should be also mentioned that the performance of the ANN for fault type 

classification in the first stage of the technique is little affected by a variation in line 

configuration or line length.

Line Length 
(km)

Rf
(A)

Desired 
Output (km)

Actual 
Output (km)

%
Error

80 1 0.0000 0.8219 1.02

80 1 60.0000 59.2037 0.99

80 1 64.0000 65.3210 1.65

100 1 0.0000 1.2050 1.20

100 1 64.0000 62.1078 1.89

100 1 100.0000 97.9841 2.01

150 1 10.0000 13.0120 2.00

150 1 64.0000 61.5014 1.66

150 1 150.0000 158.4540 2.30

Table 7.11 ANN performance for a-phase-earth fault for different line length.

7.3 Performance Evaluation of the Technique Based on FNNs

This section is concerned with the performance evaluation of the integrated approach 

comprising fuzzy logic and ANNs for locating faults on transmission lines. It should 

be mentioned here that like the previous case, this approach also comprises of two 

stages: a fault type classification stage and a fault location stage. In this respect, the 

fault type classification stage is exactly the same as that employed previously; it is 

the second stage ie. fault location stage, which is based on FNNs.
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7.3.1 Fuzzification of the Training Data

In order to obtain the training data for FNNs, the previously discussed frequency 

components considered as the best features for each measured signal, are converted 

to fuzzy sets using triangular membership functions. The membership functions used 

to convert the frequency components of'a'-phase current (shown in figure 6.11) are 

illustrated in figure 7.12 and the corresponding fuzzy sets for an 'a’-phase-earth fault 

at 0, 64 and 128km, respectively from end S (in figure 4.1), are shown in table 7.12. 

These fuzzy sets are used as the inputs to train the ANNs and the desired fuzzy 

outputs are defined based on the membership function shown in figure 6.12 (b).

Membership function 
, S MS 1

0.8
0.6
0.4
0.2

280200 24080 120 
Universe of discourse (DC components)

160
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200
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, S F MS ML
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Figure 7.12 Membership functions for fuzzification of 'a-phase current

Membership functions of linguistic values (S: small, MS: medium small, M: medium, ML:

medium laige, L: large).
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Fault Position 
(km)

Frequency
Component Crisp Data Fuzzy Input Data

DC 60.82 0.00 0.16 0.84 0.00 0.00

Fundamental 183.71 0.00 0.00 0.00 0.00 1.00

0 100-350 Hz 167.75 0.00 0.00 0.00 0.00 1.00

400-1000 Hz 87.58 0.33 0.67 0.00 0.00 0.00

DC 101.81 0.19 0.81 0.00 0.00 0.00

Fundamental 52.77 0.00 0.00 0.00 0.59 0.41

64 100-350 Hz 6.82 0.00 0.00 0.3 0.7 0.00

400-1000 Hz 20.56 0.81 0.19 0.00 0.00 0.00

DC 15.00 0.83 0.17 0.00 0.00 0.00

Fundamental 94.50 0.00 0.00 0.71 0.29 0.00
128 100-350 Hz 89.04 0.00 0.16 0.84 0.00 0.00

400-1000 Hz 51.88 0.45 0.55 0.00 0.00 0.00

Table 7.12 Fuzzification of the ’a’-phase current for a-phase-earth fault 

7.3.2 FNN Training

FNN training is conducted using different training sets for each type of fault. 

Training patterns are the same as those used to train the ANNs in the previous 

section. In order to evaluate the performance of the training process, the RMS error 

criteria of 0.01 is used. Figure 7.13 illustrates the performance of the training process 

for an 'a'-phase-earth fault and 'a'-'b'-earth fault. It is clearly shown that the networks 

have a very good training performance and convergence capability. This could be 

attribute to good separation of classes provided, by using fuzzy sets as the training 

data.
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Figure 7.13 RMS error vs training iterations for FNNs.

7.3.3 Defuzzification

The location of the fault is obtained using centroid defuzzification as given by 

equation 6.12. Table 7.13 illustrates defuzzification of the fuzzy outputs for different 

'a'-phase-earth fault test cases.

Desired Output(km) ANN Fuzzy Outputs Defuzzification
1.00 0.9308 0.0781 -0.0246 0.02138 -0.0115 1.50

32.00 0.0770 0.9102 0.0236 -0.0160 0.01911 31.10
92.00 0.0188 0.0005 0.1191 0.8248 0.0500 91.99
8.00 0.7424 0.3023 -0.0514 0.0351 -0.0172 7.47

48.00 -0.0288 0.5756 0.4254 0.0312 -0.0145 47.30
120.00 0.0082 -0.0212 0.0013 0.2688 0.7449 120.31
96.00 0.0101 0.0050 0.0733 0.8443 0.0761 94.81
18.00 0.4379 0.56815 0.0040 0.0127 -0.0060 18.58

Table 7.13 Defuzzification of fuzzy outputs for a-phase-earth fault examples.
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7.3.4 Analysis o f Test Results

Like in the previous case, the trained FNNs involved in the second stage of the fault 

location technique were tested with a separate set of test data unseen by the FNNs 

before. As mentioned before, this stage comprises of a number of FNNs, each 

corresponding to a different type of fault, the appropriate FNN being activated by the 

outputs from the ANN in the first stage. Table 7.14 gives some examples of the test 

results.

Fault Type
SCL at 

Sl-GVA

SCL at 

S2-GVA

Rf

(«)

Desired
Output
(Km)

Actual
Output
(Km)

%

Error

a-phase-earth fault 2.5 5 1 18.0000 18.5701 0.44
a-phase-earth fault 2.5 5 1 48.0000 47.3402 0.51
a-phase-earth fault 2.5 15 1 0.0000 1.118426 0.92
a-phase-earth fault 2.5 15 50 5.0000 4.4394 0.43
a-phase-earth fault 15 2.5 1 100.0000 99.4633 0.42
a-phase-earth fault 20 2.5 100 82.0000 83.3833 1.0
a-phase-earth fault 20 2.5 100 100.0000 99.0838 0.72

a-b-phase fault 20 2.5 - 100.0000 99.5221 0.37
a-b-phase fault 15 2.5 - 64.0000 62.7108 1.00
a-b-phase fault 5 20 - 62.0000 61.0615 0.73

a-b-phase-earth fault 5 20 20 62.0000 61.0615 0.73
a-b-phase-earth fault 20 5 50 62.0000 62.8382 0.65
a-b-phase-earth fault 10 20 100 8.0000 9.3341 1.04

3-phase fault 2.5 20 - 0.0000 1.3010 1.01
3-phase fault 10 20 - 64.000 63.2100 0.61
3-phase fault 20 20 - 128.0000 126.9105 0.85

3-phase-earth fault 20 2.5 100 42.0000 42.0944 0.85
3-phase-earth fault 2.5 20 50 64.0000 65.2010 0.94
3-phase-earth fault 20 2.5 100 82.0000 83.3833 1.0

Table 7.14 Fault location results obtained from testing FNNs under different fault condition.

It is clearly evident from the results that the accuracy achieved in fault location is 

very high, being <1% in the majority of cases. An extensive series of studies have 

shown that the fault location technique described herein maintains this high accuracy
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and robustness under a vast majority of different system and fault conditions; equally 

importantly, the improvement attained over the previous technique based solely on 

ANNs ie, without the integration of fuzzy logic and an ANN, is very significant, as 

indicated by the results shown in the following section. In practice, this improvement 

in accuracy is vitally important since it wouid considerably narrow the span of a line 

length which would be necessary to be scrutinised; this in turn would expedite the 

precise location of a fault thereby enabling the line to be restored to normal quickly.

7.3.4.1 Improvement on the Accuracy of Fault Location

This section demonstrates the improvement in the accuracy attained over the fault 

location technique based on ANNs. In order to illustrate the effect of different system 

and fault conditions, the FNNs are tested with the same sets of testing data as used 

in the previous technique based solely on ANN architectures and the results are 

compared in terms of the maximum percent error obtained for each technique.

7.3.4.2 Effect of Source Capacity

The overall performance of both techniques under differing source capacities is 

shown in table 7.15. It should be mentioned that the degree of accuracy attained 

herein, for each type of fault, is based on the same tests applied to both techniques. 

This is apparent that there is a significant reduction in error in the case of the FNN- 

based technique, this being reduced from about 2.5% (in the case of ANN-based 

technique) to = 1%.

Fault Location 
Technique

% Maximum Fault Location Error
a-phase-earth

fault
a-b-phase

fault
a-b-phase-earth

fault
3-phase-earth

fault
ANN 2.20 2.51 2.62 2.51
FNN 1.00 0.90 1.01 1.00

Table 7.15 Effect of source capacity for different types of fault under 50 test cases for each 

type of fault
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7.3.4.3 Effect of Fault Resistance

FNNs were tested for all types of fault involving fault resistance. The results in table 

7.16 clearly show a very high accuracy for fault location and further improvement 

in the accuracy. This is again a significant achievement over the previous technique. 

The maximum percent of error obtained in table 7.16 is based on the same test cases 

applied to both techniques.

Fault Location 
Technique

% Maximum Fault Location Error
a-phase-earth

fault
a-b-phase-earth

fault
3-phase-earth

fault
ANN 2.00 2.50 2.01
FNN 1.00 1.00 1.01

Table 7.16 Effect of fault resistance for different types of fault

7.3.4.4 Effect of Fault Inception Angle

In order to evaluate the performance of FNNs for faults at different inception angles, 

the test cases presented in table 7.8 were used to examine the accuracy o f the fault 

location for different types of fault under variations in the fault inception angle. 

Table 7.17 gives a summary of the results. It is apparent that the accuracy attained 

by the FNN fault location technique is largely independent of the fault inception 

angle and also shows improvement on the accuracy of the previous fault location 

technique.
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Fault Location 
Technique

Inception
Angle

c/o Maximum Fault Location Error

a-phase-earth
fault

a-b-earth
fault

a-b-phase
fault

3-phase-earth
fault

ANN 0 1.85 1.88 1.68 1.81

FNN 0 1.00 1.02 0.95 1.00

ANN 45 1.90 2.00 1.80 1.59

FNN 45 1.01 1.00 0.90 1.01

ANN 90 2.00 1.63 1.95 2.00

FNN 90 1.00 1.02 1.00 1.02

Table 7.17 Effect of fault inception angle on the accuracy of both techniques.

7.3.4.5 Effect of External Faults

Like the previous case, the FNNs were tested for external faults behind the busbar 

near end S and beyond the busbar near end R (in figure 4.1), and same results as 

those shown in table 7.9 was obtained. Henceforth, an error orders of magnitude 

higher than that expected for an internal fault indicates the existence of an external 

fault.

7.3.4.6 Effect of Line Configuration

Like the previous case, FNNs were tested with a set of unseen data (same test cases 

as the previous technique) comprising faults at different positions on the line for 400 

kV vertical double-circuit lines and 500 kV horizontal single-circuit lines. Table 7.18 

summarises the results and shows the improvement on the accuracy based on the new 

approach.
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Fault Location 
Technique

% Maximum Fault Location Error
Vertical double-circuit H orizontal single-circuit

ANN 1.70 1.83

FNN 0.90 1.00

Table 7.18 Test results for a-phase-earth fault on different line configurations.

7.3.4.7 Effect of Transmission Line Length

In order to evaluate the performance of FNNs for faults on different transmission line 

lengths, the same test cases as shown in table 7.11 were used to examine the 

accuracy of the results. Table 7.19 illustrates the results attained on the accuracy for 

different line lengths; here again, aforementioned case, there is a vast improvement 

in accuracy.

Fault Location 
Technique

% Maximum Fault Location Error
Line length (km )

80 100 150

ANN 1.65 2.01 2.5

FNN 0.90 1.01 1.10

Table 7.19 Test results for a-phase-earth fault on different transmission line length.

7.4 S um m aiy

The performance evaluation of the two Al-based fault location techniques is 

discussed. Through a series of tests and modifications, it is shown that a single ANN 

can very accurately classify the type of fault on the EHV transmission lines under 

all practically encountered system and fault conditions. In order to illustrate the 

effectiveness of the ANN fault location technique, each ANN was tested with a 

separate set of unseen data and their performance on the accuracy of the results are 

presented.
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The results presented herein, clearly show that an FNN gives a high accuracy in fault 

location under a whole variety of different system and fault conditions, and further 

improves on the accuracy attainable from fault location techniques based solely on 

ANN architectures.



CHAPTER 8

Conclusions And Future Work

8.1 Introduction

This thesis presents a novel fault locator for EHV transmission systems based on 

artificial intelligence techniques, and shows a vastly improved performance over 

conventional techniques. The technique addresses some of the common problems in 

fault location and can be applied to a whole variety of practically encountered system 

and fault conditions, without sacrificing the high accuracy requirements.

8.2 Previous woik

A number o f special algorithms have been proposed in the literature to the problem 

of transmission lines fault location and these have been developed for two- and three- 

terminal transmission lines. These have been divided into algorithms which use data 

from one end of the line only and those that employ data from the two ends. There 

are, however, many disadvantages to these algorithms: fault resistance is not taken 

into account, there is a need to synchronise register devices located at both ends of 

the line (in the case o f two- or three-ended measurements), the effect o f line 

capacitance is disregarded, pre-fault loading condition is considered totally balanced, 

etc.

153
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8.3 Artificial Neural Networks

Application of ANNs to power system problems is an interesting subject which has 

attracted many researchers. Due to highly nonlinear nature o f power system 

problems, different types o f solution may be required. In this respect, ANNs have 

shown the potential to deal with non-linearity because of the parallelism. In the case 

of fault location, ANNs provide an encouraging prospect to accurate fault location 

problem on EHV transmission systems. Amongst various forms o f ANNs, the multi

layer network is the most promising, in particular, its integration with fuzzy logic is 

a new and interesting concept for solving many complex power system problems.

8.4 Fuzzy logic and ANN

Fuzzy logic and ANNs work together, ANN classify and learn rules for fuzzy logic 

and fuzzy logic infers from unclear ANN parameters. Incorporating fuzzy principles 

into ANN gives more user flexibility and a more robust system. Fuzziness in this 

case means more flexibility in the definition o f the system; boundaries can be 

described more generally, not crisply; inputs can be described more vaguely, yet 

better control can be achieved.

8.5 Fault Location Techniques

Two fault location techniques are discussed in this thesis, that are very effective in 

overcoming the disadvantages aforementioned and improve the accuracy o f the fault 

location over that attained with traditional techniques. The method is based on 

utilising voltage and current waveforms at the fault locator end of the line only and 

the signals employed are based on phase values. The first technique is based solely 

on ANNs and consists of two parts: (i) employment of an ANN for fault type 

classification and (ii) utilisation o f separate ANNs (one for each type o f fault) to 

accurately locate the actual fault position associated with all the commonly 

encountered types o f fault on EHV transmission lines. In order to further improve the
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accuracy in fault location, an integration of fuzzy logic and ANN is adopted in the 

second technique.

The techniques, although based on CAD, nonetheless take into account the practical 

limitations associated with voltage / current transducers and hardware so that the 

performance attained is close to that which would be expected from a hardware 

model under service conditions.

8.6 Perfoimance

■ The choice o f feature extraction scheme is critical to the time taken for the

neural network to train, and more importantly to the results emanating from 

the actual testing. In this respect, although there are many methods available 

for extracting the features, an extensive series of studies have shown that the 

one based on frequency domain decomposition is best suited for the 

application discussed herein and this is one adopted here. Moreover, series o f 

tests have revealed that the four frequency components namely DC 

components, fundamental components, components over 100-350 Hz range 

and components over 400-1000 Hz range, are the most significant in that they 

are representative of the vast majority o f different system and fault conditions

and then are the ones employed as input features into the ANNs; this feature

extraction methodology is near optimal in both correctly classifying the type 

o f fault and in defining the fault position on EHV transmission systems with 

a high degree o f accuracy.

■ The overall performance o f the ANN for fault type classification under a vast 

majority of different system and fault conditions, has indicated a confidence 

index o f about 99.66% with no single error decision. This clearly shows that 

the ANN is very effective in classifying all types of fault on EHV 

transmission systems.
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It has been observed that for the majority of cases studied, the maximum fault 

location error attained via the first technique ie., the one based solely on 

ANN architecture, is less than 2%. It is also evident from the results that the 

best accuracies are always found for single-phase-earth fault (most commonly 

encountered) when compared to other types of fault.

It is clearly shown that the technique retains its high degree of accuracy under 

differing source capacities at both end o f the line. This demonstrates the 

flexibility o f the proposed algorithm which is a major achievement over the 

conventional techniques, particularly in view o f the fact that source capacities 

can vary at random depending upon the local requirements.

It is also shown that the fault locator gives an inherently accurate evaluation 

o f fault position that is not significantly influenced by changes in fault 

resistance and fault inception angle. The former is a very significant 

advantage over conventional techniques, particularly those based on 

impedance to fault measurements, which tend to produce excessive errors 

when dealing with resistive faults.

For the fault locator described, an external fault always produces an 

estimation which is consistently very much higher than that expected for an 

internal fault. This very important feature o f the algorithm makes it totally 

immune to any mal-operation for external faults.

The technique has been tested for a typical vertical double-circuit and a 

horizontal single circuit configurations encountered in practice. It is found 

that the technique has the ability to retain a high degree of accuracy for the 

other configurations under different fault conditions and this in term verifies 

the robustness o f the fault locator algorithm developed.

The technique also gives an acceptable degree o f accuracy for transmission
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lines with different line lengths.

8.6.1 Improvement on the Accuracy

The second part o f the tests are concerned with presenting the performance 

evaluation o f the FNN fault location technique. This is a novel fault locator for EHV 

transmission systems, based on an integrated approach, and shows a vastly improved 

performance over conventional techniques, this technique, comprising fuzzy logic and 

ANNs, gives an accuracy of <1% under a vast majority of different system and fault 

conditions encountered in practice and is a considerable improvement over other 

artificial intelligence techniques in particular the one based solely on ANN 

architectures as discussed previously; this is a major advantage in practice since it 

would expedite the exact location o f a fault by significantly reducing the span o f a 

line length that would have to be scrutinised.

8.7 Future Work

8.7.1 Testing the Proposed Algorithm with Data from a Real System

As emphasised in the thesis, an extensive series o f tests have been conducted to 

ascertain the accuracy of the proposed Al-based techniques under different system 

and fault conditions, using the EMTP software and a data pre-processing stage; every 

effort has been made to develop the techniques using extensive training and test data 

covering the vast majority o f different system and fault conditions. As a next logical 

step, the algorithm should be tested with real input data captured from practical 

systems. This is important in view o f the fact that although the technique takes into 

account the practical limitations associated with voltage / current transducers and 

hardware errors such as anti-aliasing filters and quantisation and it is expected that 

it should retain the high degree o f accuracy in fault location, in practice there is 

always a level o f spurious noise present on the measured signals and this can have 

some bering on the performance achievable in practice.
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8.7.2 Suggestion for Implementation of the Technique in a Real System

As emphasised earlier, the proposed technique is based on an off-line application and 

makes use o f information from one-end only for the fault distance estimation and 

consequently a communication link is not necessary. In this respect, the data can be 

captured from a digital fault recorder which can be subsequently processed in the 

fault location algorithms (described in this thesis) on a standard PC in an off-line 

mode.

8.7.3 Application of the Technique to Three-Teiminal Lines

Three-terminal lines (teed feeders), although attractive both from environmental and 

economical points o f view, pose additional problems caused by the intermediate 

infeed from the third terminal and therefore require special attention. In this respect, 

accuracy requirements in fault locator is very important. The proposed Al-based fault 

location technique can be relatively easily extended for accurate fault location on 

EHV teed feeders.

8.7.4 Application of the Technique to Series-Compensated Lines

Requirement exists for a reliable fault locator to be used for accurate fault location 

on series-compensated transmission lines. Series capacitor compensation in long 

distance EHV transmission lines is a widely accepted method to compensate 

inductive reactance voltage drop, increase steady state and transient stability margin 

etc. There are, however, difficult problems encountered in locating faults on such 

lines, and these arise primarily due to the varying amount of capacitance in the 

circuit, which can cause mal-operation of distance relays and fault locators may not 

be able to accurately determine the fault position. Due to the entirely different 

principles used in the proposed fault location technique, there is a strong possibility 

o f overcoming such problems using the aforementioned AI concepts. Such 

applications should therefore be investigated.
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8.7.5 Application of the Technique to Power Distribution Systems

The need to locate permanent and transient faults in distribution systems have been 

essential for power companies to provide continuance service without any major 

outages. In such systems, although the level o f transients during a fault is very low, 

the presence o f local taps and remote infeed can adversely affect the performance of 

fault location technique. Application of ANNs and fuzzy logic to accurate fault 

location on distribution systems provides an attractive alternative and this aspect of 

the research should be investigated.

8.7.6 Alternative Training Methods: Genetic-Based ANN

Although error-back-propagation is the most widely used method to train multilayer 

perceptrons, it is not necessarily the best approach. Back-propagation is attractive 

because it can be performed within the ANN structure. However, the technique has 

a number o f limitations. For example, since the error-back-propagation technique is 

not designed to be adaptive, all data must be used every time the weights are 

updated. I f  a set o f old data becomes irrelevant, the ANN is retrained by using the 

entire new data set. Also, when new data is in conflict with old data, the effect o f old 

data cannot be removed unless the ANN is retrained without the old data. The 

importance o f some data cannot be easily weighted. In addition, if  the size o f the 

ANN is not adequately selected, or the convergence criterion is not realistic, 

thousands o f iterations may be required to train a layered perceptron and in some 

cases, the required convergence error may never be achieved due to the ANN getting 

into a local minima. An alternative to the error-back-propagation is genetic algorithm 

(GA) which is an evolutionary algorithm based on the concept o f natural selection 

and genetics. As an attractive alternative the application of GA (which relies on a 

convergence error based on a global minima) to improve the speed and performance 

o f the ANNs in proposed Al-based techniques should be investigated.
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AN ACCURATE FAULT LOCATION TECHNIQUE FOR TRANSMISSION 
LINE USING ARTIFICIAL NEURAL NETWORK
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ABSTRACT

The aim of this paper is to present an accurate fault location technique using artificial 
neural networks(ANNs). The feed-forward multi-layer neural network (NN) with the 
use of supervised learning and the common training rule of error back-propagation is 
chosen for this study. The instantaneous three phase voltages and currents derived at 
the fault locator point on the line which contain fault information at different 
frequencies are used to train and test the artificial neural network(ANN). In this paper, 
neural network architecture to distinguish between different types of faults is proposed 
and neural network topology for accurate fault location under different system 
conditions is discussed.
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Neural network, Fault Location, Fault Classification, Transmission Line
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Introduction

Electrical power systems are designed to ensure a reliable supply of energy with the 
highest possible continuity. Electrical faults can occur at any point in an electric power 
system and the most exposed parts are over head transmission lines. A transmission line 
is also one of the most difficult parts of the power system to maintain and inspect, 
simply because of its dimension and the environment it is built in [1].

Fast and accurate location of faults on an electrical power transmission line is vital for 
economic operation of power systems. This is more so in view of the fact that because 
of an increase in transmission requirements and environmental pressures, power 
authorities are being forced to maximize the transmission capabilities of existing 
transmission lines. This effectively means that in order to maintain system security and 
stability, there is a demand for minimizing damage by restoring the faulted line to 
normal as quickly as possible, hence the requirements for the development of an 
accurate fault locator. The degree of accuracy required is therefore increasing and is 
much higher than could be obtained using simple conventional techniques. Even a small 
measurement error may require detailed local examination over several kilometres of 
a typical line.

Artificial intelligence provides powerful techniques for processing symbolic or 
declarative knowledge and for automated reasoning. In this respect, the advent of 
artificial neural networks has provided power engineers with powerful tools which are 
promising for solving some long standing power system problems. Neural networks 
possess the ability to perform pattern recognition, prediction and optimisation in a fast 
and efficient manner. This is by virtue of the fact that they have the ability to map very 
complex and highly non-linear input/output patterns.

This paper presents the fault location technique, which uses NN for accurately locating 
all types of faults on transmission line. The results, in this paper, show that the trained 
NN is able to make correct decision under various system fault conditions.

Neural Networks

Neural networks constitute a new approach to computation based on modem 
neurophysiology; a simplified model of the human neuron is organized into networks 
similar to those found in the brain.These networks, having characteristics analogous to 
human intelligence, are solving problems that have proven difficult or impossible to 
solve using conventional computation [2]. Recently, researchers focusing their efforts 
on neural nets have produced impressive results.

The principal components of a neural network consists of a number of neurons which 
are the elementary processing units that are connected together according to some 
pattern of connectivity, this model of a neuron is illustrated in Figure 1.

Neuron j is characterized by the number of inputs xl ....xn, the weights w jl,...,w jn 
connecting each input to the neuron, its activation function a and its output oj. The
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inputs of a particular type are combined together to give a net input netj of the jth unit. 
Typically, the weighted contributions from all inputs are summed to determine an 
activation level for that unit:

W]kXk (1 )

The neuron uses this net input, together with information on its current activation state 
to determine its new state of activation. Therefore neuron j will have activation values 
of the form:

O ^ F i n e t j )  = F ( ^  WjkXk) (2)

There are several activation functions. The most frequently used ones are the identity, 
the linear threshold function and the sigmoid function. The neurons are normally 
connected to each other in a specified fashion to form the neural network. These 
arrangements of interconnections could form a single layer or several layers. In a large 
number of neural network models, such as the Perceptron, Linear Association, Multi
layer feed-forward network and the ART model, the output from the units from one 
layer is only allowed to activate neurones in the next adjacent layer. However, in some 
models such as Kohonen nets, the signal is allowed to activate neurons in the same 
layer [3,4].

Lastly, the neural network must have a mechanism for learning. Learning (also called 
training) is done for a subset of the input vectors, called the training set, whose 
properties are known or representative. Learning alters the weights associated with the 
various interconnections and thus leads to a modification in the strength of 
interconnections.

A neural network is characterized by its architecture, its processing algorithm and its 
learning algorithm. The architecture specifies the way the neurons are connected. The 
processing algorithm specifies how the neural network with a given set of weights 
calculates the output vector o for any input vector x. The learning algorithm specifies 
how the neural network adapts its weights for all given training vectors x.

Power System Simulation

The simulation of the power system has been done using the well proven Electro- 
Magnetic Transients Program (EMTP). The overhead transmission line used in this 
work is based on a single circuit of the typical quad-conductor 400 kV vertical 
construction line currently used on the UK supergrid system [5]. The earth resistivity 
is taken to be 100 Qm and the power system frequency of 50 Hz was used. Figure 2(a) 
and 2(b), show power system and line configurations. An X:R ratio of 30 and Zs0:Zsl 
ratio of 1.0 were used for each source.

Neural Network Based Scheme

Neural networks have the ability to learn the desired inputs/outputs mapping based on 
training examples, without looking for an exact mathematical model. Once an
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appropriate neural network has been trained, the interconnections or links of the NN 
will contain a representation of the nonlinearity of desired mapping between inputs and 
outputs. Feature extraction is the first step to any pattern recognition method to 
effectively reduce the size of the neural network and improve its performance. In order 
to catch the features in the accurate fault location technique, the instantaneous three 
phase voltages and currents, which contain fault information of different frequency 
components, are used to train the NN. Since the fault transients generated on 
transmission system contain a wide range of frequency components, it is impractical to 
use the time-domain waveforms as the input to a NN.

The method is based on utilising voltage and current waveforms at the fault locator end 
of the line. The signals for estimation of fault location are based on phase values. The 
effect of transducers (CTs and CVTs) and hardware errors such as anti-aliasing filters 
and quantisation are taken into account, so that the information processed throughout 
the fault locator algorithm is very close to real-life situation.

Feature Extraction

Transient behaviour of the overhead line has been accurately predicted using EMTP for 
simulation of the power system. Figure 3(a) and 3(b) show the primary voltage and 
current waveforms related to typical 400 kV transmission line as seen at the sending- 
end of the line.

Voltage and current waveforms are sampled at a regular interval and quantised for 
digital protection proposes [6]. Samples of data often require transformation and 
manipulation to render the inherent information into a form suitable for the neural 
network. Feature extraction process typically involves some reduction in the amount 
of data, which reduces the number of input nodes and thus the size of the neural 
network required [7]. Transforming the data and reducing the amount of data results 
in requiring a smaller neural network to perform the desired function, with a resulting 
reduction in the training and an increased ability to generalise.

Applying Discrete Fourier Transform (DFT) to the current and voltage waveforms, 
figure 4 (a) and (b) show the spectra of the a-phase voltage and current under an a- 
phase to ground fault occurring at the middle of the line and a-phase to b-phase fault 
at the remote end of the line respectively. It is important to note that different fault 
types occurring at different locations produce different frequency components. This also 
means that these signals vary with fault type, location and fault inception angle.

Input Data for NN

The inputs of NN are composed of Va, Vb, Vc, ia, ib, ic. Using spectrum analysis for 
each cycle at the sampling frequency of 4000 Hz certain frequency bands are used as 
the potential features. The four parameters for each phase current and voltage are:
1) DC Component; 2) Fundamental Component
3) Components over 100 + ...+350 Hz range
4) Components over 400 + ... +1000 Hz range
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Therefore the number of neurons in the input layer is reduced to 24 elements by taking 
four components of frequency bands for each waveform.

Neural Network Topology

As explained before different transient frequency components are caused by different 
fault type, fault location and fault inception angle. The fault type indicates in which 
phase there is a fault and whether the fault connects to ground or not, no matter where 
the fault position is. Hence, this is a rough detection problem. The precis fault location 
needs to be known after the fault is detected. This belongs to a fine detection problem. 
Thus, the two issues can not be solved in one neural network, since the NN would not 
converge. Thus the first step is to find a neural network topology best suited for 
locating a fault and recognizing the fault type, under all practically encountered 
different system and fault conditions, is to separate the NNs.

The feed-forward multi-layer neural network with the use of supervised learning and 
common training rule of error back-propagation is used for this study. Supervised 
learning requires an external "teacher" that evaluates the behaviour of the system and 
directs the modifications [8]. The training is accomplished by adjusting the weights. 
This is done by presenting a set of patterns at the input, each with a desirable output 
pattern. Weights are then adjusted to minimize the error between the desired and actual 
output patterns.

Fault Type Classification

The output of the NN are made up of A, B, C, and G which indicate a, b, c phase 
operation states and connection to ground information respectively. Each of the A, B 
and C which approaches a value 1 means that phase is faulty. The G which approaches 
1 indicates the fault is connected to ground. Table 1 shows fault type identification for 
output of NN1.

Using a 3-layer feed-forward NN as shown on figure 5 and taking back-propagation 
Learning Rule, a hidden layer with 14 neurons was selected for NN1.

Analysis of Test Results

Table 2 shows the test results which are used for testing NN1. The left four items 
indicate the desired outputs, and the right four items indicate the actual outputs. The 
results show faults under various fault conditions. Although the NN1 is trained under 
fixed fault points, it can detect faults for every point under various conditions.



Related Publications Page 174

A B C G TYPE OF FAULT
0 0 0 0 no fault
1 0 0 1 a phase to ground fault

0 1 0 1 b phase to ground fault
0 0 1 1 c phase to ground fault

1 1 0 0 a phase to b phase fault

0 1 1 0 b phase to c phase fault

1 1 0 a phase to c phase fault

1 1 0 1 a - b phase to ground fault

0 1 1 1 b - c phase to ground fault

1 1 1 a - c phase to ground fault

1 1 1 0 three phases fault

1 1 1 1 three phases to ground fault

Table 1. Fault type classification for Neural Network output 

Network Architecture for Fault Location

In order to find NN topology for accurate fault location and to have a good generalization, a 
number of different NN topology were tried. From this experience, Separate NNs are designed 
to locate all eleven types of faults on transmission lines. They will all be driven from NN1 and 
the input data was generated the same way as input data for NN1.

The feed-forward multi-layer NN with 24 neurons in the input layer and 1 in the output layer 
were chosen, where the output shows the location of the fault. To consider complexity of the 
problem and the amount of die data available, different combinations of the following network 
training methods were chosen and tested: (l)different number of hidden layers; (2)different 
hidden neurons in each layer; (3)different transfer functions; (4)different learning set data 
(sequential or random) in training the networks; (5)different error back-propagation schemes.

Throughout a series of tests and modification separate network were designed for each type of 
fault. Due to page limitation, only the NN for performing of a-phase to ground fault is shown 
on figure 6. The network is a four-layer preceptron, with 24 inputs, 1 output, and 18 neurons 
in the first hidden layer and 6 neurons in the second hidden layer.

The trained network was then tested by a number of test data, which are generated in the same 
way as training data. Table 3 shows the test results for a-phase to ground fault which are tested 
by the NN.
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Conclusions

This paper presents a novel fault location technique by using artificial neural networks 
for transmission line, which has better performance than the conventional techniques. 
The technique shows NNs can solve the problem where the traditional schemes have 
difficulty.

The paper places emphasis on the feature extraction of NNs and designing of NNs. the 
test results show the trained NNs can very accurately classify fault type and locate fault 
position under various system and fault conditions such as different fault types, system 
source capacity, fault resistance and position of the fault.
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Figure 2(a) Power System Configuration. Figure 2(b) Transmission Line Configuration.

Figure 3(a) Fault Locator-End Three Phase Voltages Figure (3b) Fault Locator-End Three Phase Currents
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AN ACCURATE FAULT LOCATION TECHNIQUE FOR 
TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK
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ABSTRACT
The aim of this paper is to present an accurate fault location 
technique using artificial neural networks(ANNs). The feed-forward 
multi-layer neural network (NN) with the use of supervised learning 
and the common training rule of error back-propagation is chosen for 
this study. The instantaneous three phase voltages and currents 
derived at the fault locator point on the line which contain fault 
information at different frequencies are used to train and test the 
artificial neural network(ANN). In this paper, a neural network 
architecture to distinguish between different types of faults is 
proposed and neural network topology for accurate fault location 
under different system conditions is discussed.

1. INTRODUCTION
Fast and accurate location of faults on an electrical power 
transmission line is vital for economic operation of power systems. 
This is more so in view of the fact that because of an increase in 
transmission requirements and environmental pressures, power 
authorities are being forced to maximize the transmission capabilities 
of existing transmission lines. This effectively means that in order to 
maintain system security and stability, there is a demand for 
minimizing damage by restoring the faulted line to normal as quickly 
as possible, hence the requirements for the development of an 
accurate fault locator. The degree of accuracy required is therefore 
increasing and is much higher than could be obtained using 
conventional techniques. Even a small measurement error may 
require detailed local examination over several kilometres of a 
typical line.

solving problems that have proven difficult or impossible to solve 
using conventional computation [3]. Recendy, researchers focusing 
their efforts on neural nets have produced impressive results.

The ANNs considered in this paper consist of a large number of 
simple processing elements called nodes. Signals are passed between 
nodes along weighted connections, where the weights are the 
network’s adjustable parameters. The arrangement of the network's 
nodes and connections defines its architecture and there are many 
possible variations. One popular arrangement is shown in Figure 1, 
where the nodes are arranged into layers and each node in one layer 
has connections only within the preceding layers.

Input
Output
layer

Network
Input Network

Otput

Figure 1: A feed-forward multi-layer network.

Artificial intelligence provides powerful techniques for processing 
symbolic or declarative knowledge and for automated reasoning. In 
this respect, the advent of artificial neural networks has provided 
power engineers with powerful tools which are promising for solving 
some long standing power system problems. In this respect, neural 
networks possess the ability to perform pattern recognition, 
prediction and optimisation in a fast and efficient manner. This is by 
virtue of the fact that they have the ability to map very complex and 
highly non-linear input/output patterns.

With the recent advances in learning techniques of artificial neural 
networks(ANNs), ANNs are being applied to many areas of power 
systems. ANNs show a high potential as an alternative to algorithmic 
and expert system methods. ANNs have been used to preform 
electric load forecasting[l], detection of faults on power distribution 
feeders[2), autoreclosure for EHV transmission systems, real-time 
and off-line fault analysis, fault identification in an AC-DC 
transmission system and high speed protective relaying.

The network input is presented to the first layer and this information 
is propagated feed-forwards through the network such that the output 
signal of each node never forms part of its input signal. After the 
input has been propagated through the network, the signals at the 
output layer provide the network output.

2. POWER SYSTEM SIMULATION
The simulation of the power system has been carried out using the 
well proven Electro-Magnetic Transients Program (EMTP). The 
overhead transmission line used in this work is based on a single 
circuit of die typical quad-conductor 400 kV vertical construction 
line currendy used on the UK supergrid system [4]. The earth 
resistivity is taken to be 100 flm and the power system frequency of 
50 Hz was used. Figure 2(a) and 2(b), show power system and line 
configurations. An X:R ratio of 30 and Zs0:Zsl ratio of 1.0 were 
used for each source.

This paper presents a fault location technique, which uses NN for 
accurately locating faults on transmission line under all types of 
faults encountered in practice. The results, in this paper, show that 
the trained NN is able to make correct decision under various system 
fault conditions.

1.1 Neural Networks Terminology
Neural networks constitute a new approach to computation based on 
modem neurophysiology; a simplified model of the human neuron is 
organized into networks similar to those found in the brain.These 
networks, having characteristics analogous to human intelligence, are

\ 128km /\S1

fault locator end receiving end
Figure 2(a): Power system configuration.
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Figure 2(b): Transmission line configuration.

3. NEURAL NETWORK BASED SCHEME
Neural networks have the ability to learn the desired inputs/outputs 
mapping based on training examples, without looking for an exact 
mathematical model. Once an appropriate neural network has been 
trained, the interconnections or links of the NN will contain a 
representation of the non-linearity of desired mapping between inputs 
and outputs. Feature extraction is the first step to any pattern 
recognition method to effectively reduce the size of the neural 
network and improve its performance. In order to catch the features 
in the accurate fault location technique, the instantaneous three 
phase voltages and currents, which contain fault information at 
different frequencies, are used to train the NN. Since the fault 
transients generated on transmission system contain a wide range of 
frequency components, it is impractical to use the time-domain 
waveforms as the input to a NN.

The method is based on utilising voltage and current waveforms at 
the fault locator end of the line. The signals for estimation of fault 
location are based on phase values. The effect of transducers (CTs 
and CVTs) and hardware errors such as anti-aliasing filters and 
quantisation are taken into account, so that the information processed 
throughout the fault locator algorithm is very close to real-life 
situation.

4. FEATURE EXTRACTION
Transient behaviour of the overhead line has been accurately 
predicted using EMTP for simulation of the power system. Figure 
3(a) and 3(b) show the primary voltage and current waveforms 
related to typical 400 kV transmission line as seen at the sending-end 
of the line.

£

Figure 3(a): Fault locator-end three phase voltages.

<

Voltage and current waveforms are sampled at a regular interval and 
quantised for digital protection proposes [5]. Samples of data often 
require transformation and manipulation to render the inherent 
information into a form suitable for the neural network. Feature 
extraction process typically involves some reduction in the amount 
of data, which reduces the number of input nodes and thus the size 
of the neural network required [6]. Transforming the data and 
reducing the amount of data results in requiring a smaller neural 
network to perform the desired function, with a resulting reduction 
in the training and an increased ability to generalise.

Applying Discrete Fourier Transform (DFT) to the current and 
voltage waveforms, figure 4 (a) and (b) show the spectra of the 'a'- 
phase voltage and current under an 'a'-phase to ground fault 
occurring at the middle of the line and 'a'-phase to 'b'-phase fault at 
the remote end of the line respectively. It is important to note that 
different fault types occurring at different locations produce different 
frequency components. This also means that these signals vary with 
fault type, location and fault inception angle.

Spectra o f the a Phase Voltage

FREQUENCY (Hz)

Spectra o f the a Phase Current

FREQUENCY (Hz)

Figure 4(a): Spectrum analysis; a phase to ground fault at the 
middle of the line.

Spectra of the a Phase Voltage
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Spectra o f the a Phase Current

Figure 3(b): fault locator-end three phase currents.
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Figure 4(b): Spectrum analysis; a phase to b phase fault at the end 
of the line.

5. INPUT DATA FOR NN
The inputs of NN are composed of Va, Vh, Vc, i,, ib, i,.. Using 
spectrum analysis for each cycle at the sampling frequency of 4000 
Hz, certain frequency bands are used as the potential features. The 
four parameters for each phase current and voltage are:
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1) DC Component.
2) Fundamental Component.
3) Components over 100 +...+350 Hz range.
4) Components over 400 + ... + 1000 Hz range.

Therefore the number of neurons in the input layer is reduced to 24 
elements by taking four components of frequency bands for each 
waveform.

6. NEURAL NETWORK TOPOLOGY
As explained before, different transient frequency components are 
generated by different fault types, fault location and fault inception 
angle. The fault type indicates in which phase there is a fault and 
whether the fault connects to ground or not, no matter where the 
fault position is. Hence, this is a rough detection problem. The 
precise fault location needs to be known after the fault type has been 
detected. This entails a fine detection problem. Thus, the two issues 
can not be solved in one neural network, since the NN would not 
converge. Thus the first step is to find a neural network topology 
best suited for locating a fault and recognizing the fault type, under 
all practically encountered different system and fault conditions, is.

The feed-forward multi-layer neural network with the use of 
supervised learning and common training rule of error back- 
propagation is used for this study. Supervised learning requires an 
external ’teacher” that evaluates the behaviour of the system and 
directs the modifications [7]. The training is accomplished by 
adjusting the weights. This is done by presenting a set of patterns at 
the input, each with a desirable output pattern. Weights are then 
adjusted to minimize the error between the desired and actual output 
patterns.

(ljdifferent number of hidden layers; (2)different hidden neurons in 
each layer; (3)different transfer functions; (4)different learning set 
data (sequential or random) in training the networks; (5)different 
error back-propagation schemes.

Throughout a series of tests and modifications, a separate network 
were designed for each type of fault. Due to page limitation, only the 
NN concerned with an 'a'-phase to ground fault is considered. The 
network is a four-layer perccptron, with 24 inputs, i output, and 18 
neurons in the first hidden layer and 6 neurons in the second hidden 
layer.

The trained network was then tested by a number of test data, which 
are generated in the same way as training data. Table 2 shows the 
test results for an 'a'-phase to ground fault which are tested by the 
NN. It is clearly evident that the NN gives a very high accuracy in 
fault location for this type of fault. Although not shown here, this is 
also the case for other types of faults.

10. CONCLUSIONS
This paper presents a novel fault location technique by using 
artificial neural networks for transmission line, which has a vastly 
improved performance in terms of accuracy compared with the 
conventional techniques. The technique shows NNs can solve the 
problem where the traditional schemes have difficulty.

The paper places emphasis on die feature extraction of NNs and 
designing of NNs. The test results show the trained NNs can very 
accurately classify fault type and locate fault position under various 
system and fault conditions such as different fault types, system 
source capacity, fault resistance and position of the fault.

8. FAULT TYPE CLASSIFICATION References:
The outputs of die NN are made up of A, B, C, and G which [1]
indicate a, b, c phase operation states and connection to ground 
information respectively. Each of the A, B and C which approaches 
a value 1 means that phase is faulty. The G which approaches 1 
indicates the fault is connected to ground. [2]

Example: A B C G
0 0 0 0....................... no fault
1 0 0 1.............. a phase fault [3]
1 1 0 0............a-b phase fault
1 1 1 1.............3-phase fault [4]

A 3-layer feed-forward NN with back-propagation Learning Rule and
14 neurons in die hidden layer was selected for fault type
classification. [S]

8.1 Analysis of Test Results
Table 1 shows the test results which are used for testing NN1. The [6]
left four items indicate die desired outputs, and the right four items 
indicate the actual outputs. The results show faults under various 
fault conditions. Although the NN1 is trained under fixed fault 
points, it can detect faults for every point under various conditions. [7]

9. NETWORK ARCHITECTURE FOR FAULT LOCATION
In order to find NN topology for accurate fault location and to have 
a good generalization, a number of different NN topologies were 
tried. From this experience. Separate NNs are designed to locate all 
eleven types of faults on transmission lines. They are all driven from 
NN1 and the input data is generated the same way as input data for 
NN1.
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The feed-forward multi-layer NN with 24 neurons in the input layer 
and 1 in the output layer was chosen, where the output shows the 
location of the fault. Bearing in mind the complexity of the problem 
and the amount of the data available, different combinations of the 
following network training methods were chosen and tested:
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Tabic 1. Test Cases for Fault Type Classification 
Desired Output 

A B C
Actual Output

B C

easel source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = 1G
1.000000 0.000000 0.000000 1.000000 1.011094 -0.005564 0.002189
1.000000 0.000000 0.000000 1.000000 1.009681 -0.003867 0.009098
1.000000 0.000000 0.000000 1.000000 1.002198 -0.008918 0.056867
1.000000 0.000000 0.000000 1.000000 1.032604 -0.025302 0.012839

case2 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = 25G
1.000000 0.000000 0.000000 1.000000 1.004467 -0.013390 -0.008907
1.000000 0.000000 0.000000 1.000000 0.878603 -0.013466 0.001625
1.000000 0.000000 0.000000 1.000000 1.020388 -0.012546 0.017788

case3 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = 50G
1.000000 0.000000 0.000000 1.000000 1.006127 -0.000088 -0.004785
1.000000 0.000000 0.000000 1.000000 0.998842 -0.000370 0.027632
1.000000 0.000000 0.000000 1.000000 1.008211 -0.000587 -0.005221

case4 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = 75G
1.000000 0.000000 0.000000 1.000000 0.998658 0.001370 -0.004710
1.000000 0.000000 0.000000 1.000000 0.992289 0.008573 0.020636
1.000000 0.000000 0.000000 1.000000 1.003691 0.001675 -0.005093

case5 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = ioog
1.000000 0.000000 0.000000 1.000000 0.976371 0.004585 -0.004212
1.000000 0.000000 0.000000 1.000000 0.976109 0.016361 0.016260
1.000000 0.000000 0.000000 1.000000 0.995934 0.004722 -0.005080
1.000000 0.000000 0.000000 1.000000 0.933369 0.006688 -0.003461
1.000000 0.000000 0.000000 1.000000 0.946971 0.021203 0.013316

case6 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = 1G
1.000000 1.000000 0.000000 0.000000 1.017133 1.010564 -0.071688
1.000000 1.000000 0.000000 0.000000 1.034088 1.004155 -0.082066
1.000000 1.000000 0.000000 0.000000 1.007674 0.998853 0.005622
1.000000 1.000000 0.000000 0.000000 0.924853 1.021994 0.180527
1.000000 1.000000 0.000000 0.000000 0.956661 1.017044 0.150242

case7 source capacity at SI = 2.5GVA , S2 = 20GVA , Rf = IQ
1.000000 1.000000 1.000000 1.000000 1.020454 1.016629 1.007422
1.000000 1.000000 1.000000 1.000000 1.030693 1.022364 0.982367
1.000000 1.000000 1.000000 1.000000 1.037847 1.036369 1.000222

Table 2. Test cases for fault location, a-phase to ground fault 
Desired Actual
Output Output
(Km) (Km)

case 1 source capacity at SI =2.5GVA, at S2=20GVA, Rf = ID
62.0000 63.0745
120.0000 119.8063
8.0000 7.6481

case 2 source capacity at SI =20GVA, at S2=2.5GVA, Rf = IQ
1.0000 0.8007
128.0000 127.3414

case 3 source capacity at S1=2.5GVA, at S2=20GVA, Rf = 25£1
60.0000 59.9401
120.0000 120.2625

case 4 source capacity at S1=2.5GVA, at S2=20GVA, Rf = 50fl
18.0000 20.0167
60.0000 59.6146
120.0000 120.8432

case 5 source capacity at SI =2.5GVA, at S2=20GVA, Rf = 75G
18.0000 20.0354
60.0000 58.7553
120.0000 119.9437

G

0.997017
0.992361
0.980379
0.991368

1.065959
0.958465
0.994778

0.999904
0.997932
1.001869

1.003653
1.008668
1.004690

1.005741
1.018738
1.009168
0.994014
1.021569

0.154254
0.092595
-0.000511
0.155483
0.034190

0.968767
0.944676
1.116488

case 6 source capacity at SI =2.5GVA, at S2=20GVA, Rf = 100G
60.0000 58.5333
120.0000 118.3701
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FUZZY NEURAL NETWORK APPROACH TO ACCURATE FAULT 
LOCATION ON TRANSMISSION LINES

M. Joorabian, R. K. Aggarawal 
MIEE, SMIEEE

School of Electronic and Electrical Engineering, University of Bath, UK

ABSTRACT
A new technique for accurate fault location on transmission lines is 
discussed. The technique is based on a hybrid intelligent model that 
integrates artificial neural networks (ANN) and fuzzy logic system 
(FLS). The frequency components of the instantaneous three phase 
voltages and currents derived at the fault locator-end of the line are 
used to train an ANN to classify the fault type, and a separate FNN 
is used to accurately locate all types of fault on transmission lines.

1. INTRODUCTION
Accurate location of transmission line faults has been a subject of 
interest for several years. The major reason for this activity is that 
an accurate location of fault can reduce the time required for 
restoring service to customers. A very high degree of accuracy is 
thus required that cannot be obtained using conventional techniques; 
this is principally so because of the wide variations in both system 
and fault conditions that occur in practice and these in turn can have 
a significant influence on die degree of accuracy achievable with 
conventional fault location techniques.

Artificial neural network (ANN)-based techniques have the advantage 
over conventional techniques in significantiy improving the accuracy. 
This is so by virtue of the fact that ANNs have the capability of non
linear mapping, parallel processing and learning; these attributes 
make them ideally suited for providing a high accuracy in fault 
location under a wide variety of different systems and fault 
conditions. However, These are still a number of contingencies 
under which an ANN-based fault location technique's performance 
can be adversely affected. This paper thus proposes die use of fuzzy 
logic to further improve the accuracy of an ANN-based fault location 
technique.

The fuzzy logic is characterized as an extension of binary Boolean 
Logic. It is a class in which the transition from membership to non- 
membership is gradual rather than abrupt. Both the ANN and the 
fuzzy logic have some drawbacks when used on their own. The ANN 
can produce mapping rules horn empirical training data sets through 
learning, but the mapping rules in die network are not visible and are 
difficult to understand. On the other hand, since die fuzzy logic does 
not have learning capability, it is difficult to tune the rules. In order 
to solve these difficulties, in recent years the link between symbolic 
processing (fuzzy) and numerical processing (neural) has been 
investigated, and this has resulted in architectures in which an 
attempt has been made to integrate the representational ability of 
fuzzy systems, and it is often call fuzzy neural network (FNN).

The potential of the learning depends on back-propagation ANN, and 
triangular membership functions define the fuzziness of the system. 
The ANN acts as the operator of fuzzy inference for optimisation 
process, and automates the process of determining the membership 
function parameters.

The results, in this paper, from the performance of the technique 
confirm that the FNN approach can be used as an attractive and 
effective means for very accurately locating faults on transmission 
lines and the FNN improves the performance attainable from the 
technique based solely on an ANN architecture as described in 
reference [1].

2. FUZZY NEURAL NETWORK ARCHITECTURE 
The basic configuration of the fuzzy logic system (FLS) used in this 
paper is shown in figure 1. There are four basic elements in a fuzzy 
system: fuzzification, fuzzy rule base, fuzzy inference engine, and 
defuzzification.

The fuzzification is a mapping from the crisp sets in the input 
universe U to a fuzzy set in U. Hence, the fuzzification interface 
provides a link between the non-fuzzy outside world and the FLS 
framework. A fuzzy set [2] defined in U is characterised by a 
membership function pA: U-»[0, 1], and is labelled by a linguistic 
term A. Five linguistic values such as "small", "medium small", 
"medium", "medium large", "large" are used in this paper.

The fuzzy rule base is a set of linguistic rules or conditional 
statements in die form of: "IF a set of conditions is satisfied, THEN 
a set of consequences are inferred". In the fuzzy inference engine 
fuzzy logic principles are used to combine fuzzy IF-THEN rules 
from the fuzzy rule base into a mapping from fuzzy input sets to 
fuzzy output sets.

The defuzzification stage produces a non-fuzzy (crisp) output for FLS 
from the fuzzy set that is the output of the inference block. The 
centroid defuzzification, the most commonly used method, is used 
here.

yin  VXinU

Fuzzy Rule 
Base

Fuzzy
Inference

Engine

Fuzzy sets In U;x(U) Fuzzy sets In V|y(V)

Figure 1. The basic configuration of the fuzzy logic system (FLS)

The fuzzy inference engine and die fuzzy rule base blocks in FLS are 
changed with an ANN to design the structure of die fuzzy neural 
network (FNN) used in this paper (figure 2). In this respect ANN 
automates the process of determining the membership function 
parameters and learns the best rules from the training set After the 
training process, the resultant weights and biases are formed; the 
fuzzy rule base and the ANN structure will be the inference engine.

Output

Cantroid defuzzifcation

ANN

Figure 2. Fuzzy neural network structure (FNN)

4. FUZZY NN BASED FAULT LOCATION SCHEME 
In order to find the best network topology for accurate fault location 
and recognizing the fault type under all practically encountered 
different system and fault conditions, first, an ANN is trained to 
indicate in which phase there is a fault and whether the fault
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connects to ground or not, no matter where the fault position is, and 
secondly to have a good generalization, separate FNNs are designed 
to accurately locate all eleven types of faults on EHV transmission 
lines.They are all driven from ANN and the input data is generated 
the same way as input data for ANN. The method is based on 
utilising voltage and current waveforms at the fault locator end of the 
line. The signals for estimation of fault location are based on phase 
values. The effect of transducers (CTs and CVTs) and hardware 
errors such as anti-aliasing filters and quantisation are taken into 
account, so that the infoimation processed throughout the fault 
locator algorithm is very close to real-life situation.

4.1 Fault Type Classification
Fault type classification technique is described in the previous work 
in reference [1]. The technique is based on training a three-layer 
perceptron by the Delta-Bar-Delta learning algorithm[3]. The outputs 
of the ANN are made up of A, B, C, and G which indicate a, b, c 
phase operation states and connection to ground information 
respectively. Each of the A, B and C which approaches a value 1 
means that phase is faulty. The G which approaches 1 indicates the 
fault is connected to ground.

Example: A B C G
0 0 0 0.........................no fault
1 0 0 1......a phase earth fault
1 1 0 0.............. a-b phase fault
1 1 1 1......3-phase earth fault

The ANN consists of 24 inputs 4 outputs and 14 neurons in the 
hidden layer.

4.2 Fault Location
The structure of FNN is determined by the functions used to 
represent the linguistic fuzzy variables, the fuzzy logic operators, 
fuzzification, ANN learning and defuzzification strategies have been 
employed. The centre of gravity defuzzification algorithm is used to 
produce crisp output and obtain accurate fault location on EHV lines. 
As shown in figure 2, a crisp input (a single value rather than a 
fuzzy or possibility distribution) is presented to the network, and the 
memberships of the multivariate fuzzy input linguistic variables 
(represented by multivariate fuzzy sets) are calculated. The 
confidence in each of the fuzzy output linguistic variables are then 
determined, and the network output is obtained by defuzzifying the 
information.

Defuzzifier produces a crisp output for our FNN from the fuzzy set 
that is the output of the ANN learning block. The output of the ANN 
is defuzzified where each membership function is weighted by the 
state of the corresponding output neuron. The location of the fault is 
then obtained using centroid defuzzification:

F a u l t  L o c a t i o n  = — -------------------------------------

where:
n is the number of quantization level of the output, 
y, is the output value at the quantization level i,
*iA( y , ) is the value of membership function of the output 
fuzzy set at yt .

5. TRAINING DATA FOR FNN

5.1 POWER SYSTEM SIMULATION
The simulation of the power system has been carried out using the 
well proven Electro-Magnetic Transients Program (EMTP). The 
overhead transmission line used in this work is based on a single 
circuit of the typical quad-conductor 400 kV vertical construction

line currently used on the UK supergrid system (4). The earth 
resistivity is taken to be 100 Qm and the power system frequency of 
50 Hz was used. Figure 3(a) and 3(b), show power system and line 
configurations. An X:R ratio of 30 and Zs,,:Zs, ratio of 1.0 were 
used for each source.

\ 128km /1 \v s2

fault locator end receiving end
Figure 3(a): Power system configuration.

ft 95m 1

Figure 3(b): Transmission line configuration.

5.2 Feature Extraction
Transient behaviour of the overhead line has been accurately 
predicted using EMTP for simulation of the power system. Figure 
4(a) and 4(b) show the primary voltage and current waveforms 
related to typical 400 kV transmission line as seen at the sending-end 
of the line.

£

MB

Figure 4(a): Fault locator-end three phase voltages.

1000

-2000

-MOO

Figure 4(b): fault locator-end three phase currents.

Voltage and current waveforms are sampled at a regular interval and 
quantised for digital protection proposes [5]. Applying Discrete 
Fourier Transform (DFT) to the current and voltage waveforms, 
figure 5 and 6 show the spectra of the 'a'-phase voltage and current 
under an 'a'-phase to ground fault occurring at the middle of the line 
and 'a'-phase to 'b'-phase fault at the remote end of the line 
respectively. It is important to note that different fault types 
occurring at different locations produce different frequency 
components. This also means that these signals vary with fault type, 
location and fault inception angle.
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Figure 5. Spectrum analysis; a phase to ground fault at the middle 
of the line.
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Figure 6. Spectrum analysis; a phase to b phase fault at the remote 
end of the line.

The crisp inputs of FNN are composed of V,, Vh, Vc, i,, i^ i,.. 
Using spectrum analysis for each cycle at the sampling frequency of 
4000 Hz, certain frequency bands are used as the potential features. 
The two parameters for each phase current and voltage are:

1) DC Component.
2) Fundamental Component.

The training pattern vectors are selected from a set of data files 
representing different faults. The training set has to be carefully 
chosen so that all the different fault and system conditions are 
included.

5.3 Fuzzification of crisp data
As shown in figure 2 the FNN described in this paper contains three 
components: fuzzifier, ANN learning and defuzzifier. Using 
triangular membership functions and with respect to the linguistic 
terms we have defined the fuzziness of system. Extracted features 
from the spectrum analysis are converted to fuzzy sets. Therefore the 
inputs to ANN are fuzzy sets (S,, S,, .... SJ in the universe of 
discourse (X,, X2  XJ respectively. These fuzzy sets are

obtained by converting the DC and fundamental components from the 
spectrum analysis.

Five linguistic terms as "small", "medium small", "medium", 
"medium large" and "large” are used to convert the crisp values to 
fuzzy inputs. In this respect, the structure of ANN consists of 60 
neuron in the input layer and five neuron in the output layer. The 
ANN has been trained to yield desired fuzzy outputs. The location 
of the fault was then obtained by defiizzifing the fuzzy outputs.

As far as the ANN architecture was concerned, the feed-forward 
multi-layer neural network with the use of supervised learning and 
common training rule of error back-propagation is used for this 
study.

In order to find the best network topology for accurate fault location 
and to have a good generalization, separate FNNs are designed to 
locate all eleven types of faults on transmission lines.

6. Analysis of Test Results

6.1 Testing ANN for fault type classification
Test results indicate that the performance of the fault classification 
technique is very accurate. Table 1 shows the test results which are 
used for testing ANN for fault type classification. The left four items 
indicate the desired outputs, and the right four items indicate the 
actual outputs. The results show faults under various fault conditions 
and fault positions. Although the ANN is trained under fixed fault 
points, it can detect faults for every point under various conditions.

6.2 Testing FNN for fault location
The FNNs trained networks were then tested by a number of test 
data, which are generated in the same way as training data. Table 2 
summarises some of the fault location results obtain from testing 
FNNs for fault location. The algorithm has been tested for a wide 
variety of simulated fault conditions. These simulation studies have 
shown the accuracy of FNN technique for all types of faults. As seen 
in table 2 the proposed technique is highly accurate and very robust.

10. CONCLUSIONS
A fuzzy neural network for accurate fault location has been 
developed. The technique is based on neural network and fuzzy logic 
technology. The test results in this paper clearly show that the 
trained ANN can accurately detect all types of faults, and FNNs are 
able to accurately locate faults under various system and fault 
conditions such as different fault types, system source capacity, fault 
resistance, fault inception and position of the fault. The results in 
this paper clearly show that with an integrated FNN approach, the 
accuracy in fault location is significantly improved over other 
techniques solely based on an ANN architecture.
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Test cases Desired Output Actual Output

case 1 
SI =2.5GVA 
S2=20GVA 

R f=lQ

1.0000 0.0000 O.(XXX) 1.0000 1.0110 -0.0055 0.9971
1.0000 0.0000 0.0000 1.0000 1.0096 -0.0038 0.0090 0.9923
1.0000 0.0000 0.0000 1.0000 1.0021 -0.0089 0.0568 0.9803
1.0000 0.0000 0.0000 1.0000 1.0326 -0.0253 0.0128 0.9913

case 2 
SI =2.5GVA 
S2=20GVA 

Rf=50ft

1.0000 0.0000 0.0000 1.0000 1.0061 -0.0001 -0.0047 0.9999
1.0000 0.0000 0.0000 1.0000 0.9988 -0.0003 0.0276 0.9979
1.0000 0.0000 0.0000 1.0000 1.0082 -0.0005 -0.0052 1.0001
1.0000 0.0000 0.0000 1.0000 0.9978 -0.0069 -0.0168 1.0642

case 3 
SI =2.5GVA 
S2=20GVA 

Rf= 100ft

1.0000 0.0000 0.0000 1.0000 0.9763 0.0045 -0.0042 1.0057
1.0000 0.0000 0.0000 1.0000 0.9761 0.0163 0.0162 1.0187
1.0000 0.0000 0.0000 1.0000 0.9959 0.0047 -0.0050 1.0091
1.0000 0.0000 0.0000 1.0000 0.9469 0.0212 0.0113 1.0215

case 4 
SI =2.5GVA 
S2=20GVA 

R f= lft

1.0000 1.0000 0.0000 0.0000 1.0171 1.0105 -0.0716 0.1542
1.0000 1.0000 0.0000 0.0000 1.0340 1.0041 -0.0820 0.0092
1.0000 1.0000 0.0000 0.0000 1.0076 0.9988 0.0056 -0.0005
1.0000 1.0000 0.0000 0.0000 0.9566 1.0170 0.1502 0.0341

case 5 
SI =2.5GVA 
S2=20GVA 

Rf=l£2

1.0000 1.0000 1.0000 1.0000 1.0204 1.0166 1.0074 0.9687
1.0000 1.0000 1.0000 1.0000 1.0306 1.0223 0.9823 0.9446
1.0000 1.0000 1.0000 1.0000 1.0378 1.0363 1.0002 1.1146
1.0000 1.0000 1.0000 1.0000 1.0126 1.0021 1.0698 1.0668

Table 1. Test Cases for Fault Type Classification: each case represents different system and fault condition
for different location on the line.

Fault Type SCL at 
Sl(GVA)

SCL at 
S2(GVA) Rf(Q)

Desired
Output(km)

Actual
Output(km)

%
error

a-phase fault 2.5 5 1 18.0000 18.5701 0.44

a-phase fault 2.5 5 1 32.0000 31.1082 0.69

a-phase fault 2.5 5 1 48.0000 47.3402 0.51

a-phase fault 2.5 15 1 0.0000 1.18426 0.92

a-phase fault 2.5 15 1 5.0000 4.4394 0.43

a-phase fault 2.5 15 1 128.000 129.2763 0.99

a-phase fault 15 2.5 1 42.0000 41.0027 0.78

a-phase fault 15 2.5 1 82.0000 81.7920 0.16

a-phase fault 15 2.5 1 100.000 99.4633 0.42

a-phase fault 20 2.5 100 42.0000 42.0944 0.85

a-phase fault 20 2.5 100 82.0000 83.3833 1.0

a-phase fault 20 2.5 100 100.000 99.08389 0.72

a- b fault 5 20 20 62.0000 61.0615 0.73

a- b fault 20 5 50 62.0000 62.8382 0.65

a- b fault 10 20 100 8.0000 9.3341 1.04

Table 2. Fault location results obtained from testing FNNs under different fault conditions.
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A Fuzzy Neural Network Approach to Accurate 
Transmission Line Fault Location

M. Joorabian R.K. Aggarwal ( Senior M. IEEE) Y.H. Song (Senior M. IEEE ) 
School of Electronic & Electrical Engineering; University o f Bath, Bath, United Kingdom

A bstract—This paper describes an accurate fault location technique 
using fuzzy neural networks(FNN). The technique, which utilises 
voltage and current fault data at one line end only, comprises o f two 
stages: the first stage is based solely on an artificial neural 
network(ANN) in order to classify fault types and the second stage is 
based on a FNN whereby fuzzy logic is employed to process the 
information for a second ANN for the purposes of accurately locating 
a fault on the line. It is clearly shown that with this integrated 
approach, the accuracy in fault location is significantly improved over 
other techniques solely based on ANN architectures.

Keywords: Fault location, Transmission lines, Fuzzy logic, Neural 
networks.

1 INTRODUCTION

Fast and accurate location of faults on an electrical power 
transmission line is vital for economic operation of power 
systems. This is more so in view of the fact that because of 
an increase in transmission requirements and environmental 
pressures, power authorities are being forced to maximize the 
transmission capabilities of existing transmission lines. This 
effectively means that in order to maintain system security and 
stability, there is a demand for minimizing damage by restoring 
the faulted line to normal as quickly as possible, hence the 
requirements for the development of an accurate fault locator. 
The degree o f accuracy required is therefore increasing and is 
much higher than would be possible using conventional 
techniques. Even a small measurement error may require 
detailed local examination over several kilometres of a typical 
line.

With the advent of microprocessor-based devices, better 
accuracy in locating faults in power systems has attracted much 
interest. Hitherto, considerable work has been done in 
developing digital techniques for locating faults on 
transmission lines. Sant and Paithnaker[l] have proposed a 
fault location technique that uses fundamental frequency 
voltages and currents measured at one of the line terminals. 
However, the technique assumes that the line is fed from one 
end only. The fault location estimates are, therefore, not 
accurate if fault current is contributed by sources connected to 
both terminals o f the line and fault resistance is present.

Takagi et al[2], Winszniewski[3] and Eriksson et al[4] have 
used pre-fault currents, post-fault voltages and currents 
observed at one terminal of the line, and fault current 
distribution factors. However, impedances of equivalent sources 
connected to the line terminals are required for estimating 
current distribution factors and these are not readily available 
in all cases. Also, the system configuration changes from time 
to time modifying the distribution factors and these must be 
known at the time a fault occurs. There are some disadvantages 
to the algorithms developed in reference[5]; for example, the 
fault resistance is not taken into account and the effect of line 
shunt capacitance is neglected. Those developed in 
references[6-7] require a communication medium and fault 
recorded data at the two ends needs to be synchronised.

Artificial neural network(ANN)-based techniques have the 
potential advantage over conventional techniques in 
significantly improving the accuracy in fault location. This is 
so by virtue of the fact that ANNs have the capability of non
linear mapping, parallel processing and learning; these 
attributes make them ideally suited for providing a high 
accuracy in fault location under a wide variety of different 
systems and fault conditions. However, there are still a number 
of contingencies under which an ANN-based fault location 
technique's performance can be adversely affected. The 
technique presented herein thus proposes the use o f fuzzy logic 
to further improve the accuracy of an ANN-based fault location 
technique.

This paper is concerned with outlining an integrated approach 
comprising fuzzy logic and ANNs for accurately locating faults 
on a transmission line. The technique is based on utilising 
voltages and currents at one end of the line and its 
performance is illustrated with respect to a typical 400kV 
transmission system of the type encountered on the British 
supergrid system. The results presented clearly show that an 
FNN gives a high accuracy in fault location under a whole 
variety o f different system and fault conditions, and further 
improves on the accuracy attainable from fault location 
techniques based solely on ANN architectures^].

2 FUZZY NN BASED FAULT LOCATION SCHEME

As mentioned before, the technique consists of two stages: (i) 
fault type classification based solely on ANN architecture and
(ii) precise location of a fault on the line based on an 
integrated network comprising fuzzy logic and an ANN.
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Fig. I. A com plete fault location schem e 
based on FNNs.

The complete fault locator scheme is shown in Fig. 1. The 
method is based on utilising voltage and current waveforms at 
the fault locator end o f  the line only and the signals employed 
are based on phase values. The effect o f  transducers - current 
transformers (CTs) and capacitor voltage transformers (CVTs), 
and hardware errors such as anti-aliasing filters and 
quantisation are taken into account, so that the information 
processed throughout the fault locator algorithm is very close 
to real-life situation; this is achieved through a data pre
processing stage whereby the primary system waveforms o f  
voltages and currents are subjected to a full circuit emulation 
o f  the transducers/analogue interface modules via their practical 
frequency responses. The resultant data is then passed through 
a model o f  an analogue to digital (A/D) converter before being 
processed through the fault locator algorithm.

In order to find the best network topology for accurate fault 
location under all practically encountered different system and 
fault conditions, an extensive series o f  studies have revealed 
that it is not satisfactory to merely employ a single ANN and 
attempt to train it with a large amount o f  data. A much better 
approach is to separate the problem into two parts: firstly to 
employ and train a single ANN to indicate on which phase(s) 
the fault is and whether there is ground involved in a particular 
fault, irrespective o f  the actual fault position at this stage; 
secondly, in order to achieve a good generalisation, to use 
separately designed FNNs (one for each type o f  fault and each 
comprising fuzzy logic and an ANN) to accurately locate the 
actual fault position associated with all the commonly 
encountered types o f  fault on EHV transmission lines; these are 
o f  course all driven from the single ANN designed at the first 
stage and the input data for the FNNs is generated the same

way as that for the single ANN. Although this modular 
approach requires many networks, they are nonetheless quite 
simple in architecture, much easier to train and require 
significantly less training data than would otherwise be the 
case if  simply one single ANN were to be employed; more 
importantly (as shown later), the accuracy achieved in fault 
location is significantly enhanced.

2.1 Fault Type Classification
The fault type classification technique is essentially the same 

as that described in reference[8]. It is based on training a three- 
layer perceptron by the Delta-Bar-Delta learning a!gorithm[9]. 
The outputs o f  the ANN comprise o f  four variables A, B, C 
and G; o f  these, a value close to unity for any o f  the first three 
variables corresponds to the appropriate a, b or c phases being 
faulty and a near unity value o f G signifies that ground is 
involved in a fault. This ANN logic is depicted in the 
following example:

Exam ple o f  AN N -logic for output representation
A ii c I. I VIT. 01 I A IT  1
0 6 6 no fault
1

... ..
6 ■ I a-phase-earth  fault
i ' 0 "" a-b fault

1 1 i ! 3-phase-earth fault

The ANN architecture is based on 24 inputs, 4 outputs and 14 
neurons in the hidden layer.

2.2 Fault Location
The fuzzy logic is classified as an extension o f  binary 

Boolean Logic[10]. It is a class in which the transition from 
membership to non-membership is gradual rather than abrupt. 
Both the ANN and the fuzzy logic have some drawbacks when 
used on their own. The ANN can produce mapping rules from 
empirical training data sets through learning, but the mapping 
rules in the network are not visible and are difficult to 
understand. On the other hand, since the fuzzy logic does not 
have learning capability, it is difficult to tune the rules. In 
order to overcome these difficulties, the link between symbolic 
processing(fuzzy) and numerical processing(neural) has been 
investigated in recent years, and this has resulted in hybrid 
architectures based on integrating the representational ability o f  
fuzzy system s[10 ,ll], often referred to as a fuzzy neural 
network (FNN).

Fig. 2 illustrates the FNN considered herein. The FNN carries 
out fuzzy inference with ANN structure, and adjusts the fuzzy 
parameters using ANN learning. The ANN has been trained to 
extract the best rules and to learn membership functions from 
the training set.

The structure o f  the FNN is determined by the functions used 
to represent the linguistic fuzzy variables; these are employed
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to set up fuzzification, ANN learning and defuzzification 
strategies. The centre o f  gravity defuzzification algorithm is 
used to produce a crisp output which indicates the actual fault 
location on the transmission line.

The information flow through a FNN can be clearly seen 
from Fig. 2. A crisp input (a single value rather than fuzzy or 
probability distribution) is presented to the network, and the 
memberships o f  the multivariate fuzzy input linguistic variables 
(represented by fuzzy sets) are calculated. The confidence in 
each o f  the fuzzy output linguistic variables is then determined, 
and the network output is obtained by defuzzifying the 
information.

fuzzification
Hidden

defuzzification

ANN stru c tu re

Fig. 2. Fuzzy neural netw ork structure.

set in U, and the defuzzifier maps the fuzzy sets in the output 
universe V o f  pure fuzzy logic system's output, to the crisp sets 
in V. However, it is virtually impossible to define these rules 
in a FLS on its own from the training set; this is so by virtue 
o f  the fact that the training data is highly complex in nature 
and is constituted by the interaction o f  many variables under 
different system and fault conditions. An integrated structure 
whereby the inference engine in Fig. 3 is replaced by an ANN  
(as shown in Fig. 2) is a much better alternative to deal with 
the problem and this is the approach adopted in the technique 
presented herein. The main attribute o f  such a structure is that 
the ANN automates the process o f  determining the membership 
function parameters and learns the best rules from the training 
set. After the training process, the resultant weights and biases 
become the principle base and the ANN takes over as the 
inference engine.

Principle
Base

X i n U
Preprocessing

7  :

Fuzzy
Inference

Engine b M .Reformation
y inV

Fuzzy sets in U ;x(U ) " "  " * Fuzzy sets in V ;y(V )

Fig. 3. Fuzzy Logic System  (FLS).

The FNN employed comprises o f  three components: fuzzifier, 
ANN learning and defuzzifier.

2.2.1 Fuzzification
A fuzzification operator has the effect o f  transforming crisp 

data into fuzzy sets; symbolically:

x = fiazifieii xB) (1)

where x0 is a crisp input value from a process; x is a fuzzy set 
and the fuzzifier represents a fuzzification operator[12]. The 
triangular membership functions are used to define the 
fuzziness o f  the system.

2.2.2 Acquisition of fuzzy knowledge and inference by 
neural networks

The operation o f  a FNN can best be understood by 
considering the basic configuration o f  a fuzzy logic system  
(FLS) with pre-processing (fuzzifier or encoder) and 
reformation (defuzzifier or decoder) as shown in Fig. 3. In 
such a system, a set o f linguistic rules or conditional 
statements in the form of: "IF a set o f  conditions is satisfied, 
THEN a set o f  consequences are inferred" are employed; the 
fuzzifier maps the crisp sets in the input universe U to a fuzzy

The structure o f  the ANN employed within the FNN has one 
hidden layer and an output layer comprising o f  five nodes. It 
is a feedforward, fully connected network in which a 
hyperbolic tangent function is employed as the activation 
function. As mentioned before, once a fault has been classified  
to be o f  a particular type by the fault-classification ANN at the 
first stage, the appropriate FNN is then enabled for fault 
location identification at the second stage o f  the technique. In 
this respect, it should be noted that there are different FNNs 
employed (each with a slightly different architecture in terms 
o f  the number o f  hidden neurons and o f  course different 
training data) to cater for all types o f  commonly encountered 
faults.

Extracted features through spectrum analysis o f  the training 
data are converted into fuzzy sets; these are then used as inputs 
to train each ANN. The location o f  the fault is coded into a 
number o f  fuzzy membership functions determined by the 
desired resolution. In this study, five membership functions 
have been used. The number o f  output neurons o f  each ANN  
is the same as the number o f  the fuzzy membership functions.

2.2.3 Defuzzification
As shown in Fig. 2, the defuzzifier produces a crisp output 

from the fuzzy set which in turn is the output o f  the ANN  
learning block. In the defuzzification process, each membership
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function is weighted by the state o f  the corresponding output 
neuron o f  the ANN. The location o f  the fault is then obtained 
using centroid defuzzification as given by:

earth fault at the midpoint o f  the line.

Fault Location = — ------------

E n»(y.)
(2)

where: n is the number o f quantization level o f  the output, 
y t is the output value at the quantization level i, 
m(yi) *s value o f  membership function o f  the 
output fuzzy set at y{ .

3 PREPROCESSING OF THE FAULTED SYSTEM 
VOLTAGE AND CURRENTS

3.1 Power System Simulation

The simulation o f  the power system has been carried out 
using the well proven Electro-Magnetic Transients Program 
(EMTP). The overhead transmission line used in this work is 
based on a single circuit o f  the typical quad-conductor 400 kV 
vertical construction line currently used on the UK supergrid 
system [12]. The earth resistivity is taken to be 100 Hm and 
the power system frequency as 50 Hz. Figs 4(a) and 4(b) show 
the power system and line configuration studied. An X:R ratio 
o f  30 and Zs0:Zs, ratio o f  1.0 were used for each source 
terminating a busbar. The simulation is based on a sampling 
frequency o f  4kHz and after convolving the primary system 
data with the unit impulse responses o f  the transducers and 
voltage/current interface modules, the digital data is quantised 
through a 12-bit ADC for subsequent processing in the fault 
location algorithm.

End S End R
128km 0

(a)

6.95m b 

,10.2m .

(b)

i  o
iS - 200 

1̂00 
-600

2

0.04 0.02 0.025 0.03 0.035 0.04
TIME(S)
(a)

Fig. 4. The system  studied.
(a) P ow er system  configuration
(b) T ransm ission line configuration.

3.2 Feature Extraction
Fig. 5 typifies the primary system voltage and current 

waveforms generated at end S o f  the line under an 'a'-phase-

Fig. S. Typical fault sim ulation w aveform s at the fault locator end
(a) The three phase voltage.
(b) The three phase currents.

As a first step in any pattern classification technique, feature 
extraction is used to reduce the dimension o f  the raw data and 
extract useful information in a concise form. For the ANN 
considered here, this process leads to a considerable reduction 
in the size o f  the network, thereby significantly improving the 
performance and speed o f  the training process.

The technique adopted here for feature extraction is the one 
based on time domain frequency decomposition o f  voltage and 
current waveforms using the Discrete Fourier Transform 
(DFT); a one cycle window is employed for this purpose. Fig
6 depicts the frequency spectra o f  the 'a'-phase voltage and 
current for the fault condition shown in Fig. 5; likewise, Fig.
7 shows the frequency spectra (again as observed at end S) for 
an 'a'-'b'-phase fault near end R. It is apparent from the 
foregoing that the frequency spectra are distinctly different for 
the two types o f fault. In this respect, it is important to note 
that the frequency spectra attained vary quite significantly 
under different types o f  fault, fault location, fault inception 
angle, etc.

120

100

80

60

40

20

0IOOO 10000
FREQUENCY (Hz) 

(•)
FREQUENCY (Hz)<b)

Fig. 6. Frequency spectra for an 'a '-phase-earth  fault at the midpoint.
(a) Spectra o f  a phase voltage.
(b) Spectra o f  a phase current.
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3.4 Fuzzification of crisp information fo r the FNN

1200

KMX)

600

400

$00
FREQUENCY (Hz)

(a)

Iniii.
FREQUENCY (Hz)

(b )

This section describes how triangular membership functions 
describing the fuzziness o f  the transmission system are used to 
convert the previously described extracted features into fuzzy 
sets for the FNN and these are shown in Fig. 8a. In order to 
facilitate this process, the overhead transmission line is divided 
into five sections as shown in Fig. 8b. Each output neuron 
corresponds to the value o f  the membership function. For a 
fault at 48 Km o f  the line, the membership function (and the 
ANN output) is [0 0.5 0.5 0 0],

Fig. 7. Frequency spectra for an 'a '-'b'-phase fault at the rem ote end.
(a) Spectra o f  a phase voltage.
(b) Spectra o f  a  phase current.

3.3 Training data

In order to design a neural network, it is vitally important to 
train it correctly and then test it. The ANN involved in the first 
stage o f  the fault location technique is trained with the data 
obtained from the simulation o f  faults on a plain 400 kV 
transmission line shown in Fig. 4.

The inputs to the ANN comprise o f  a set o f  features based on 
the three-phase voltages V„ Vb, Vc and three-phase currents I,, 
Ib, Ic. With regard to the procedure for feature selection, an 
acceptable simple criterion used here is that a variable as a 
feature for the ANN input should provide more information for 
fault type classification than those not selected. In this respect, 
an extensive series o f  studies have revealed that the following  
frequency components (attained through the previously 
mentioned time-domain frequency decomposition o f  the fault 
waveforms) are representative o f  the vast majority o f  different 
system and fault conditions encountered in practice:
1) DC Component.
2) Fundamental Component.
3) Components over 100 - 350 Hz range.
4) Components over 400 - 1000 Hz range.

These are then converted into four features for each measured 
signal, those associated with (3) and (4) above comprising o f  
the summated signal energy at all discrete frequencies within 
their appropriate range; with this approach, it becomes possible 
to confine the number o f  inputs into the ANN to 24 elements 
for the 6 signals.

The performance o f  the ANN is then tested using both 
patterns within and outside the training set. This is particularly 
so with reference to the speed o f  convergence and accuracy 
attained, essentially to ascertain if  modification to the ANN  
structure or further training is necessary. The approach adopted 
here is based on the error-back-propagation training algorithm 
whereby an input pattern corresponding to a particular fault 
condition is fed to the ANN and the output o f  the network is 
compared with the desired output pattern corresponding to that 
fault condition.

Membership function Membership function

Y3 Y4 Y5MS ML

0
Uni vers o f discourse

Fault LocationX-48

(a) (b)

Fig. 8. Input/output m em bership functions.
(a) M em bership functions o f  linguistic values(S: sm all, M S: m edium

small, M: m edium , ML: m edium  large, L: large).
(b) M em bership functions for the fuzzification m apping  o f  the output

neurons.

Frequency
Com ponent

Linguistic Val ues F or Inputs F uzzy O utpu ts

l. •« V. v k V. Y 1 Y2 Y3 Y4 Y5

D C MS ML ML M ML ML

SO H z M L ML MS ML M 0 0 1 0 0
100-350 Hz MS ML M $ MS ML

400-1000 Hz MS M S MS M L

Table 1. Fuzzy input/output training data representation.

Inputs to ANN are fuzzy sets (S,, S2, ..., S„) in the universe 
o f  discourse (X„ X2, ..., X J  respectively. These fuzzy sets are 
obtained by converting the DC and other frequency 
components attained through the frequency decomposition o f  
the time-domain waveforms. As shown in Fig. 8a, five 
linguistic terms as "small", "medium small", "medium", 
"medium large" and "large" are used to convert the crisp 
values to fuzzy inputs. In this respect, the structure o f  ANN  
consists o f  60 neuron in the input layer and five neurons in the 
output layer. The FNN has been trained to yield desired fuzzy 
outputs. Table 1 illustrates the linguistic values o f  inputs and 
the fuzzy outputs for an 'a'-phase to ground fault occurring at 
the middle o f  the line; the frequency spectra associated with 
this fault is shown in Fig. 6. The training data for FNN 
consists o f  fuzzy inputs/outputs with respect to these linguistic 
terms and their membership functions. The location o f  the fault 
is then obtained using centroid defuzzification with respect to 
the membership functions shown in Fig. 8b.
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4 ANALYSIS OF TEST RESULTS AND DISCUSSION

4.1 Performance o f ANN fo r  fault type classification

Following the training o f  the ANN, a separate set o f  test 
patterns were supplied as input to the ANN involved in the 
fault-type classification in order to evaluate its performance. 
Table 2 gives some examples o f  the test results. The left four 
columns are the desired outputs, ideally T  or 'O' 
(corresponding to the fault types as indicated by the logic 
shown in Section 2.1), and the right four columns are the 
actual outputs o f  the ANN; each test case comprises o f  four 
different fault positions at distances o f  8, 62, 96 and 120 km, 
respectively from end S . It is evident from the results that 
although the ANN gives a high accuracy, there are small 
fluctuations in the actual ANN outputs around '1' and 'O'; since 
in practice this cannot be avoided, small threshold levels have 
to be built into the ANN algorithm in order to minimise the 
degree o f  uncertainty. In this application, these levels were set 
such that if  the output fell within the range <0.1 then it would 
be classed as 'O' ie, a healthy phase indication, and if  it fell 
within the range >0.9 then it was classed as unity ie, a faulted 
phase indication.

Test Cases Desired Output Actual Output

Case 1
SI=2.5GVA
S2=20GVA

R f ^ i n

1.00000.00000.0000 1.0000 1.0110 -0.0055 0.0021 0.9971
1.00000.00000.0000 1.0000 1.0096 -0.0038 0.0090 0.9923
1.00000.00000.0000 1.0000 1.0021 -0.0089 0.0568 0.6803
1.0000 0.00000.0000 1.0000 1.0326 -0.0253 0.0128 0.9913

Case 2
S1=2.5GVA
S2=20GVA

R f= io o n

1.00000.00000.00001.0000 0.9763 0.0045 -0.0042 1.0057
1.00000.0000 0.00001.0000 0.9761 0.0163 0.0162 1.0187
1.00000.00000.0000 1.00000.9959 0.6047 -0.0050 1.0091
1.00000.00000.0000 1.00000.9469 6.61 l l 0.0113 1.0215

Case 3 
S1=2.5GVA 
S2=20G VA

Rf=100Q

1.0000 1.00000.00001.0000 1.0104 1.0045 -0.0617 1.0055
1.0000 1.00000.00001.0000 1.0044 1.0087 -0.0280 1.0770
1.00001.00000.00001.00006.9699 1.0089 0.1632 0.9969
1.0000 1.0000 0.00001.0000 1.0008 1.0210 -0.6654 1.0229

Case 4
S1=2.5GVA
S2=20GVA

R f = in

1.00001.00001.00001.0000 1.0204 1.0166 1.0074 0.9687
1.00001.00001.00001.0000 1.6306 1.0223 0.9823 0.9446
1.0000 1.0000 1.0000 1.0000 1.0378 1.0363 1.0002 1.1146
1.0000 1.0600 1.00001.0000 1.0126 1.0021 1.0698 1.0668

Table 2. Test cases fo r fault type classification.

In order to quantitatively evaluate the performance o f  the 
fault classification technique, three indices are proposed as 
follows:

Error index (EI)=No o f  error decisions /  No o f  total tests 
single confidence index (SCI)=Idesired - Iactual / desired 
Average confidence index (ACI)=Sum o f  SCI /  N o o f  tests 

Table 3 presents the overall performance o f  tests carried out 
over 200 system and fault conditions, which indicates that the 
overall confidence index is 99.66% with no single error 
decision.

A B C G

Single Confidence Index Min 99 8% 99 98% 99 82% 99 2%

Max 99 9% 99 9% 99 9% 99 9%

A verage Confidence Index 99 8% 99 5% 99 85 99.55%

Overall Confidence Index 99.66% E rro r Index 0%

Table 3. Perform ance evaluation o f  fault type c lassifica tion .

4.2 Performance o f FNN fo r  fault location

Like in the previous case, the trained FNNs involved in the 
second stage o f  the fault location technique were tested with 
a separate set o f  test data unseen by the FNNs before. As 
mentioned before, this stage comprises o f  a number o f  FNNs 
(each corresponding to a different type o f  fault, the appropriate 
FNN being activated by the outputs from the ANN in the first 
stage. Table 4 gives some examples o f  the test results. The 
error for fault location is expressed as a percentage o f  the 
length o f  the line, and is given as:

% error = actua  ̂ i°cation ~ desired location  ̂ jq q

Fault Type
SCL at 

SI-GVA

SCL at 

S2-GVA

R f

( « )

D esired
O utput
(Km)

Actual
O utput
(Km)

%

Error

a-earth fault 2.5 5 1 18.0000 18 5701 0 44

a-earth fault 2.5 5 1 480000 47.3402 0.51
a-earth fault 2.5 15 1 0 0000 1.118426 0.92
a-earth fault 2.5 15 50 5 0000 4 4 3 9 4 0 4 3

a-earth fault 15 2.5 1 100 000 99 4633 0.42

a-earth  fault 20 2.5 100 82 0000 83 3833 1.0
a-earth fault 20 2.5 100 100.000 99 0838 0.72

a-b fault 20 2.5 - 100 000 99.5221 0 3 7

a-b fault 5 20 - 62.0000 61.0615 0.73

a-b-earth fault 5 20 20 62.0000 61.0615 0.73
a-b-earth fault 20 5 50 62 0000 62.8382 .065

a-b-earth fault 10 20 100 8 0000 9 3341 1.04

3-phase-earth fault 20 2.5 100 420000 42 0944 0.85

3-phase-earth fault 20 2.5 100 82.0000 83 3833 1.0

Table 4. Fault location results obtained from tes tin g  F N N s u n d e r d iffe ren t 
fault condition.

It is clearly evident from the results that the accuracy 
achieved in fault location is very high, being <1%  in the 
majority o f  cases. An extensive series o f  studies have shown  
that the fault location technique described herein maintains this 
high accuracy and robustness under a vast majority o f  different 
system and fault conditions; equally importantly, the 
improvement attained over the previous technique based solely  
on ANNs ie, without the integration o f  fuzzy log ic  and an 
ANN, is very significant, as indicated by the results show n in
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Table 5. In practice, this improvement in accuracy is vitally 
important since it would considerably narrow the span o f  a line 
length which would be necessary to be scrutinised; this in turn 
would expedite the precise location o f  a fault thereby enabling 
the line to be restored to normal quickly.

Accurate fau lt location technique A N N FNN

T raining patterns 105 105

Testing  patterns 95 140

M axim um  error in fault location 2.2% 1%

Table 5 Test results for a-phase-earth fault.

5 CONCLUSION

This paper presents a novel fault locator for EHV 
transmission systems, based on artificial intelligence 
techniques, and shows a vastly improved performance over 
conventional techniques. Furthermore, this technique, based on 
an integrated approach comprising fuzzy logic and ANNs, 
gives an accuracy o f  <1% under a vast majority o f  different 
system and fault conditions encountered in practice and is a 
considerable improvement over other artificial intelligence 
techniques solely based on ANN architectures; this is a major 
advantage in practice since it would expedite the exact location 
o f  a fault by significantly reducing the span o f  a line length 
that would have to be scrutinised.

The technique, although based on CAD, nonetheless takes 
into account the practical limitations associated with voltage /  
current transducers and hardware so that the performance 
attained is close to that which would be expected from a 
hardware model under service conditions.
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