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Abstract

Abstract
Hepatitis A virus (HAV) exhibits slow non-cytopathic replication in tissue culture. When 

adapted to growth in cell culture a change in phenotype to a more rapid and productive 

infection is observed which is associated with changes in the nucleotide sequence of the 

viral genome. Most of these changes are found in the regions of the genome encoding 

non-structural polypeptides. In order to determine the reason for this slow proliferation of 

HAV it is necessary to characterise the non-structural proteins of the virus. It has been 

postulated that slow growth of HAV in cell culture could be due to slow replication of viral 

RNA by an inefficient RNA polymerase and attempts were made here to characterise 

this enzyme.

Constructs which export the P3 HAV-specific sequences into the bacterial periplasmic 

space as a fusion protein with staphylococcal Protein A, with the aim of improving 

solubility, allowed the partial purification, using GTP-agarose affinity chromatography, of 

a 53kDa protein believed to be the HAV 3Dpo1. Unfortunately, the apparent copurification 

of Protein A with the 53kDa protein highlighted the inadequacies of Protein A as a fusion 

partner in this case. Problems of low yield and reproducibility also prompted 

consideration of other methods.

Individual P3 regions, 3AB, 3C, 3D, 3CD and P3 were amplified by PCR and cloned into 

pMAL™-c2, creating MBP gene fusions, directing expression products to the cytosol 

thereby improving the yield and hopefully solubility. Good yields were obtained for some 

of the fusion proteins expressed, however, the final yield of 'purified' 3D was very poor. 

Apparent autocatalysis of the processing intermediates suggested that the MBP-3C 

protease expressed was active. Expression of the MBP-3AB, both as the individual 

fusion protein, and resulting from cleavage of MBP-P3, was lethal, as indicated by the 

lysis of bacterial cultures upon induction. Only HAV 3C was purified, however the pMAL 

expression system did yield several useful products, free from bacterial contamination, 

which were assessed for poly(U) polymerase activity.

A degree of reproducible poly(U) polymerase 'activity' was observed when assaying both 

purified MBP-fusion protein and factor Xa-cleaved fusion protein expressed by 3D/pMAL, 

however this did not display true enzyme 'activity' with a reduction in incorporation of 3H- 

UTP being observed upon increasing concentration of 'enzyme' which is not as one 

would expect.
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1.1 Viral hepatitis
Viral hepatitis was reviewed at a Hepatitis Challenge Workshop held in Vienna in 1996 

by the Viral Hepatitis Prevention Board/International Commission on Occupational 

Health.

Six distinct viruses causing viral hepatitis have been identified, each differing in the 

severity of disease they cause, epidemiological characteristics, modes of transmission 

and recommendations for control. These six viruses are hepatitis A, B, C, D, E, and G 

(Table 1).

Hepatitis A virus (HAV) is characterised by low mortality, no chronic carrier state and 

lifelong immunity following infection. Modes of transmission include faecal-oral, person- 

to-person, and contaminated water and food.

Historically, infection with HAV was common in young children and not considered a 

public health problem. With improved hygiene and socio-economic conditions, however, 

the virus now often strikes at a later age and with more severe consequences.

The outcome of hepatitis B virus (HBV) infection is often severe, with acute HBV 

infection leading to chronic carrier state, cirrhosis, liver cancer and death. Six to 10 

percent of infected adults will become chronic carriers; infection during infancy and 

childhood frequently progresses to the chronic carrier state, with 70-90 percent of 

neonates becoming chronic carriers. Hepatitis B is transmitted through infected blood 

and body fluids, perinatal transmission, horizontal transmisssion, sexual transmission 

and intravenous drug use. Both plasma derived and recombinant vaccines are 

approved for use in most parts of the world; even so, worldwide one million deaths per 

year are directly related to HBV infection. To control the disease, the WHO recommends 

that “the most effective strategy is incorporation of universal hepatitis B vaccination into 

the routine infant or adolescent immunisation schedules”.

Discovered in 1989, the hepatitis C virus (HCV) is a small, single-stranded RNA virus. It 

is estimated that approximately 1 % of the world’s population have HCV. The virus is 

blood-borne, and the majority of those infected with HCV show no symptoms initially. 

Approximately 50% of people infected with HCV become chronic carriers; of these, half 

develop cirrhosis or liver cancer.
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The hepatitis Delta 'virus' (HDV) is associated with hepatitis B. Too small to replicate 

itself, the Delta 'virus' lives as a parasite on the HBV, using the S antigen of HBV to 

multiply. The Delta 'virus' is relatively rare and is not present with every case of HBV 

infection. The progression to chronicity is not uncommon. If HBV infection does become 

chronic, however, the Delta 'virus' speeds the progression to chronic liver disease. 

Vaccination against HBV protects against Delta infection as well.

Formally known as enterically transmitted non-A, non-B (NANB) hepatitis, hepatitis E 

virus (HEV) has no chronic carrier state and does not cause chronic liver disease. 

Hepatitis E infection is highly dangerous, however, for pregnant women, causing up to 

20% mortality in women in their third trimester of pregnancy. Largely transmitted 

through faecal-oral transmission, hepatitis E epidemics are usually waterborne 

epidemics. The disease can be controlled through the provision of safe water and food. 

There is no vaccine as yet, though recombinant vaccines are currently under 

investigation, with the focus now on immunogen, adjuvant and immunisation schedules.

“Hepatitis E looks like hepatitis A but it has the propensity for killing pregnant women” 

says Dr Mark Kane of the World Health Organisation (WHO). Even though prevalence 

rates of HEV are less than one percent in Western Europe and North America “it is a 

major pathogen around the world and we’ll be hearing quite a bit about hepatitis E in the 

next few years”.

Hepatitis F virus (HFV) has been described in only a handful of cases (from France) with 

subsequent experimental transmission to primates (Deka et al., 1994). The virology, 

epidemiology, hepatotropicity and clinical importance of HFV are quite uncertain.

The hepatitis G virus (HGV; also called hepatitis GB virus C or HGBV-C), only recently 

identified in 1995 and fully characterised in early 1996 (Linnen et al., 1996), is an RNA 

virus and as a member of the Flaviviridae family of viruses, is closely related to HCV. 

Associated with acute and chronic hepatitis, HGV is spread parenterally; the virus can 

cause persistent infection and is prevalent in volunteer blood donor populations. HGV 

and HCV infection can be simultaneously transmitted and result in persistent coinfection. 

It is presently unknown whether a normal carrier state exists for patients infected with 

HGV. The role of HGV in cirrhosis and hepatocellular carcinoma also remains to be 

investigated.
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Table 1: Families of hepatitis viruses

VIRUS TYPE FAMILY NUCLEIC ACID GENOME

A Picomavirus ssRNA 27nm

B Hepadnavirus dsDNA 42nm

C Flavivirus ssRNA 45nm

D Viroid or satellite virus ssRNA 36nm

E Calicivirus ssRNA 32nm

G Flavivirus ssRNA 40-60nm

1.2 Hepatitis A
1.2.1 History

Reported epidemics of human disease resembling acute hepatitis A extend back into 

antiquity, although the specific etiology of these outbreaks is, of course, unknown (Ross 

et al., 1991; Lemon, 1994; Hollinger & Ticehurst, 1996). Acute infectious hepatitis was 

first recognised as a transmissable entity in the early twentieth century and was clearly 

separated from homologous serum hepatitis in 1947 when the terms hepatitis A and 

hepatitis B were introduced by MacCallum (MacCallum, 1947).

The virus responsible for hepatitis A was identified by immune electron microscopy in 

1973 by Feinstone et al. Until recently, however, the only method available for the study 

of this disease consisted of experimental infection of primates, the marmoset Sanguinus 

mystax being the animal most extensively used (Ross et al., 1991). More recently, the 

virus has been propagated in a permanent line (FRhK6) of foetal Rhesus monkey kidney 

cells (Provost & Hilleman, 1979). This and other cell culture systems (e.g. African green 

monkey kidney and human hepatoma cell lines) have proved useful for virus assay and 

production (Ross et al., 1991). Lemon et al. (1983) described a modified plaque assay 

which has become the method of choice for quantitation of infectious hepatitis A virus 

(HAV) in many laboratories (Ross et al., 1991).

Portions of the RNA genome of HAV were molecularly cloned by Ticehurst et al. in 1983 

making possible the use of blot hybridisation as a diagnostic test, and the first full-length 

nucleotide sequences of HAV were reported by Cohen et al. (1987a). These studies 

revealed that the genomic organisation of HAV was similar to that of other 

picornaviruses, containing a single large open reading frame presumably encoding a
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polyprotein which is co- and post-translationally processed during replication of the virus. 

The first infectious cDNA clone of HAV was reported by Cohen et al. in 1987(b).

In recent years, there has been a dramatic increase in research into the molecular basis 

of HAV replication and the function of the viral proteins and their effect on viral 

replication. The most recent findings are discussed later on in this chapter under the 

relevant headings.

1.2.2 Hepatitis A infection

1.2.2.1 Epidemiology
Hepatitis A is a widespread infectious disease that is endemic in developing countries, 

and that also may account for up to 25% of all cases of hepatitis in the developed world 

(Tedeschi et al., 1993). In fact, nearly half of the documented cases of viral hepatitis in 

the United States are caused by HAV (Lemon & Thomas, 1997). HAV is excreted in the 

faeces of infected persons and spread via personal contact and ingestion of 

contaminated water or food (Ross et al., 1991). Some outbreaks have been associated 

with ingestion of uncooked shellfish, as shellfish are capable of concentrating HAV from 

polluted waters (Le Guyader, 1993). In 1987/88 in Shanghai, some 292,301 individuals 

contracted hepatitis A from eating contaminated clams.

Transmission of the infection is almost always by the faecal-oral route. Virus shed in the 

faeces is largely or exclusively replicated within the liver, and gains access to the 

intestinal contents by passage through the biliary tract (Figure 1). There have been 

reports of extra-hepatic replication, suggested by the presence of HAV RNA found by 

dot-blot hybridisation in tissues such as the intestine, spleen and kidney, however the 

presence of viral antigens and nucleic acid at these sites may merely indicate immune 

complex deposition or contamination by faecal contents (Taylor etal., 1992).

A significant viraemia (perhaps as high as 1 x 105 infectious particles per millilitre of 

serum) may be present for several weeks in individuals experiencing primary infection 

with HAV, and this may occasionally lead to blood-borne transmission of the virus 

(Lemon, 1994). The viraemia often precedes the development of clinical symptoms by 

7-10 days and was thought to be short-lived (Hollinger & Ticehurst, 1996). A study by
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Yotsuyanagi et al. (1993), however demonstrated that viraemia may exist as long as 7 

days after clinical onset and also after ALT reached peak levels. Transmission by 

transfusion, or recently by contaminated factor VIII has been reported, but such blood- 

borne transmissions are rare (Purcell, 1994).

It is also possible that needle-bome transmission contributes to the spread of HAV 

among intra-venous drug abusers, although this is not known for certain. Virus has been 

found in saliva late in the course of infection, but the source of this virus (possibly blood) 

is not known. Sexual activity may also influence transmission of hepatitis A, especially 

among homosexual males (Ross et al., 1991). This is probably due to enhanced faecal- 

oral transmission related to oral/anal contact. Heterosexual activity may similarly 

influence hepatitis A transmission, but the data are less convincing (Lemon, 1994).

ingestion

contaminated food

virus particles 
expelled in 

faeces

Figure 1: Pathway of hepatitis A infection
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Although infection of young children is usually asymptomatic, infection of older 

individuals often results in clinical illness. In developing countries, rapid improvement in 

sanitation and hygiene can actually result in increased morbidity because infection with 

HAV is often delayed until adolescence or adulthood when the symptoms of infection are 

more severe (Ross etal., 1991; Tedeschi etal., 1993; Hollinger & Ticehurst, 1996). The 

changing epidemiology of hepatitis A is thought to be the result of better sanitation, 

principally in the form of improved treatment of water and sewage and improved 

personal hygiene. Consequently, the epidemiology of hepatitis A has changed from one 

of diffuse person-to-person spread to one of association with specific high risk groups 

(Figure 4) (Purcell, 1994). In countries of low endemicity, HAV infection usually occurs 

in cyclical outbreaks in the general population, according to studies conducted by the 

United States Centres for Disease Control (CDC). The virus circulates in the population, 

striking when large numbers of people become susceptible.

On the basis of cases of hepatitis A reported in 1992 to the CDC, the most frequently 

reported risk factor was household or sexual contact with a person with hepatitis, 

followed by day-care attendance or employment, recent international travel, and 

association with a suspected food- or water-borne outbreak (Shapiro, 1994) (Figure 2). 

Dr Mark Kane of the WHO reckons that hepatitis A is probably the most important travel- 

related, vaccine-preventable disease (see 1.2.2.4).

7



Chapter 1

Personal
contact

24%

Day-care
14%

water
2% Homosexual International 5<yo

contact travel
4% 5%

Figure 2: Risk factors associated with acquiring hepatitis A infection

Adapted from Shaw (1997).

1.2.2.2 Pathology
The incubation period of hepatitis A is approximately 4 weeks, averaging 25 days, with a 

range of perhaps 2-6 weeks (Figure 3). During the incubation period, the liver is infected 

with virus and copious amounts of virus may be shed in the faeces despite the absence 

of symptoms. This is particularly true near the end of the incubation period (Lemon, 

1994). Yotsuyanagi and colleagues (1996) found that faecal shedding of HAV continued 

for up to 3 months after onset of illness, and even after the normalisation of the serum 

ALT levels, a marker of liver cell damage, using the two-stage reverse-transcription (RT)- 

PCR method. Such patients could be a source of further spreading of the virus in the 

community.

Disease is typically abrupt in onset and at times is associated with high fever (Hollinger 

& Ticehurst, 1996). More characteristically, the onset of hepatitis A is marked by

Parenteral 
drug use

Contaminated 
food or
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malaise, nausea, right upper quadrant tenderness, and eventually scleral icterus and 

jaundice, dark urine (at times the colour of Coca-Cola™ and quite frothy) and light clay- 

coloured stool. Diarrhoea is an uncommon manifestation of viral hepatitis A in adults but 

may be seen in children (Ross et al., 1991; Lemon, 1994; Hollinger & Ticehurst, 1996). 

Confluent hepatic necrosis is potentially a progressive lesion that may lead to fulminant 

hepatitis and death (Hollinger & Ticehurst, 1996). Hepatitis A is generally mild to 

moderate in severity with a mortality rate of 0.2% or less, and never becomes chronic. 

However, inapparent infection with shedding of virus may persist for up to 6 months in 

neonates (Purcell, 1994).

1.2.2.3 Immune response and serological diagnosis
Virus-induced cytopathology may not be responsible for the pathologic changes seen in 

HAV infection and it has been suggested that host-mediated immunologic responses 

may contribute to the pathogenesis of hepatitis A (Hollinger & Ticehurst, 1996). The 

humoral immune response to hepatitis A is well characterized. IgM class antibodies to 

the native virion are present in almost all patients by the onset of symptoms, and persist 

for upto a year following infection. IgA and IgG antibodies to HAV also develop within a 

few days of the onset of symptoms. Both IgG and IgM antibodies have been shown to 

have virus-neutralising activity, and the efficacy of passively administered 

immunoglobulins in prevention of symptomatic hepatitis A suggests that IgG anti-HAV is 

protective against subsequent symptomatic re-infection. IgG antibody generally persists 

for the life of the individual. Current evidence suggests that secretory immunity plays 

little if any role in protection against hepatitis A (Lemon, 1994; Hollinger & Ticehurst, 

1996).
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Figure 3: Immunologic and clinically relevant biologic events associated with HAV 
infection in humans
Adapted from Hollinger & Ticehurst (1996) and references therein.

1.2.2.4 Prevention and control
As almost all hepatitis A infections are, as previously mentioned, transmitted by the 

faecal-oral route the most effective means of prevention is an improvement in community 

public health measures. These include the provision of clean water, proper disposal of 

sewage and high standards of personal hygiene (Ross etal., 1991).

Passive immunisation, by administering pooled immune serum globulin (ISG) from 

human beings, has had an efficacy as high as 87% in preventing symptomatic hepatitis 

when administered to household contacts within 2 weeks of exposure (Lemon, 1985).

Since only a single serotype of HAV has been identified and infection results in lifelong
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immunity, a vaccine to prevent the disease is feasible. In recent years, several 

inactivated hepatitis A vaccines prepared from cell culture-grown virus have displayed a 

high level of immunogenicity in clinical trials, and one was licensed for human use in 

1991 (Tedeschi et al., 1993). Duff and Duff very recently (1998) reported that two new 

inactivated vaccines are available, Vaqta™ (Merck and Co., West Point, PA) and 

Havrix™ (Smithkline Beecham, Philadelphia, PA). However, inactivated vaccines are 

often more difficult than attenuated vaccines to administer to large populations and 

prove costly, given the relatively low yields of virus obtained in cell culture, and therefore 

development of an efficacious attenuated vaccine would be advantageous (Lemon, 

1985).

Development of such vaccines is based on the host range change accompanying the 

adaptation and passage of HAV in cell cultures, usually monkey kidney cells. These 

variants appear incapable of initiating infection and also have a markedly reduced ability 

to replicate in the liver. These candidate attenuated vaccines, however, have been 

plagued with problems of poor immunogenicity and at times residual hepatovirulence 

(Lemon, 1994). For optimum safety and efficiency of production of an attenuated 

vaccine, it would be useful to understand the genetic basis of attenuation and virulence 

and how these relate to efficient growth of the virus in cell culture (Tedeschi et al., 1993).

Other possible avenues for vaccine development, reviewed in Andre (1995), include the 

use of either conventional or recombinant DNA techniques to obtain subunit vaccines, 

empty capsids, live viral or bacterial vectors, genetic immunization, synthetic peptides 

and anti-idiotypes (Table 2) overleaf.
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Table 2: Current options for development of an hepatitis A virus

LIVE VACCINE NON-REPLICATING VACCINES

Attenuated HAV strain

Conventionally attenuated

(passaging in cell culture) by recombinant 
DNA techniques

Live attenuated vectors

Viruses (e.g. vaccinia, polio, canarypox) 

Bacteria (e.g. S. Typhimurium)

Inactivated virions

Empty capsid
(produced by recombinant DNA 
technology)

Subunit
Viral capsid polypeptides 
Recombinant DNA fusion proteins

Synthetic peptides

Microencapsulated antioens

“Naked DNA”

Anti-idiotype

As well as the groups featured in Figure 4, the individuals most likely to benefit from 

routine vaccination are children living in communities with a high prevalence of hepatitis 

A; persons with clotting-factor disorders, especially those receiving factor concentrates 

treated with solvent detergents; persons working in laboratories where HAV is handled; 

recipients of liver transplants and those awaiting one; and persons older than 30 years of 

age with chronic liver disease (Duff & Duff, 1998).

• Travellers from industrialised countries to regions of world where HAV is endemic

• Military personnel who regularly travel to endemic areas of the world

• American Indians; native Alaskans

• Preschool children attending day-care centres; staff, parents, and siblings

• Residents and staff of closed communities (institutions)

• Refugees residing in temporary camps following catastrophes

• Homosexually active males

• Parenteral illicit drug users

• Food handlers

• Persons residing in areas where extended community outbreaks exist

Figure 4: High risk groups potentially targeted for vaccination with hepatitis A 
vaccine
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1.2.3 Taxonomy and classification
Despite early classification among the enteroviruses, HAV, provisionally classified in the 

early 1980s as enterovirus type 72 because its biophysical characteristics are like those 

of enteroviruses and cardioviruses, and its biochemical features resemble those of 

enteroviruses (Table 3), is now widely recognised to constitute a unique genus, 

hepatovirus, within the family Picornaviridae, a family of pathogens which includes 

poliovirus (PV), human rhinoviruses (HRVs), encephalomyocarditis virus (EMCV) and 

foot-and-mouth disease virus (FMDV) with which HAV shares many structural and 

biological attributes (Palmenberg, 1989; Stanway, 1990).

This classification is based on several unique features (Figure 5) of HAV including, 

amongst others: liver cell tropism, small and possibly absent VP4 protein, striking 

thermostability, relatively slow and usually noncytopathic replication cycle and a strong 

tendency to initiate persistent infections in cell culture (Lemon, 1994). The nucleotide 

sequence of HAV, while relatively well conserved among different isolates, is also widely 

divergent from those of other picomaviral genera.

• HAV nucleotide and amino acid sequences are dissimilar from those of other 
picornaviruses, as are the predicted sizes of several HAV proteins

• HAV is difficult to adapt to growth in cell culture and usually replicates very slowly 
without cytopathic effect

• HAV is resistant to temperatures and drugs that inactivate many picornaviruses

• HAV exhibits an outstanding stability at pH1, remaining infectious for up to 5 hours

• HAV has only one serotype and one neutralisation site is immunodominant

• An enteroviral-specific monoclonal antibody does not react with HAV

Figure 5: Characteristics distinguishing HAV from other picornaviruses

1.2.4 Physical properties
A striking property of the HAV particle which may well contribute to its potential for 

epidemic spread is its resistance to thermal denaturation. The HAV particle is stable 

when incubated at 60°C for 60 minutes and is only partially inactivated after 10-12 hours 

at 60°C. The temperature at which 50% of PV particles disintegrate and release their 

RNA in the absence of cations is 43°C after 10 minutes compared with 61 °C for HAV 

(Siegl et al., 1984). In the presence of 1M MgCI2, this striking thermal stability is 

substantially enhanced, with the T50iio (temperature at which 50% of particles
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disintegrate after 10 minutes of incubation) of PV and HAV shifting to 61 °C and 81 °C 

respectively, generating empty capsids that retain antigenicity (Hollinger & Ticehurst, 

1996). The HAV particle is remarkably resistant to low pH conditions, with the loss of 

infectivity reported at pH 1.0 (Scholz et al., 1989). The virus is also relatively resistant to 

detergent inactivation, easily surviving 37°C for 30 minutes in 1% sodium dodecyl 

sulphate. There is no information concerning the radiation sensitivity of HAV, although it 

has been suggested that infectivity may be reduced by microwaving HAV-contaminated 

food (Lemon, 1994). A summary of the biophysical characteristics of HAV compared 

with those of other members of the picornavirus family can be found in Table 3.

Table 3: Biophysical characteristics of HAV compared with other picornaviruses

HAV ENTERO■ - RHINO CARDIO APHTHO

Serotypes 1 >70 >130 2 7

Strains 13 6 53

1° Host Humans,
other

primates

Humans,
other

mammals

Humans,
other

mammals

Mice, other 
mammals

Cloven­
footed,
other

mammals

Tissue Tropism Narrow Narrow to 
wide

Narrow Wide Wide

Target Organ Liver Gut Upper
respiratory

tract

CNS, heart Generalised

Sensitivity

Acid (pH3) Stable Stable Labile Stable Labile

Heat (60°C) Stable Labile Labile Labile Labile

Guanidine Resistance Sensitive Sensitive Resistance Resistance

Disoxaril Resistance Sensitive Sensitive Resistance Resistance

Biophysical

Buoyancy density 
(g/cm3 CsCI) '

1.32-1.34 1.34 1.39-1.42 1.34 1.43-1.45

Sedimentation
coefficient 156-160 156-160 149 156 142-146
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1.3 Properties and replicative strategies of 
the picornaviruses

1.3.1 Picornavirus family
The Picornaviridae, among the smallest ribonucleic acid-containing viruses known, 

comprise one of the largest and most important families of human and agricultural 

pathogens. PV, human HAV, and FMDV virus are all members of the picornavirus 

family. So too are the HRVs, the single most important etiologic agents of the common 

cold. Because of the economic and medical importance of picornaviruses, it is not 

surprising that they have been prominently involved in the development of modem 

virology. Foot-and-mouth disease, the most important single pathogen of livestock, was 

in fact the first animal virus to be recognised when Loeffler and Frosch, in 1898, 

discovered that the causative agent passes through Berkfeld filters and was therefore 

much smaller than other microorganisms then known to transmit disease. That 

poliomyelitis was also caused by a virus was announced about a decade later by 

Landsteiner and Popper but it did not come to be called poliovirus until around 1955 

(Rueckert, 1996).

Members of the picornavirus family share a number of structural and organisational 

features (discussed below); however, picornaviruses are diverse in terms of their host 

specificity and the symptoms they induce. The picornavirus family is currently divided 

into five genera: the enteroviruses, the cardioviruses, the rhinoviruses, the aphthoviruses 

and most recently hepatovirus.

PV is the prototypic member of the Picornaviridae family and is classified with the 

enteroviruses, named for their ability to infect the alimentary (enteric) tract. A high 

degree of sequence similarity exists between the enteroviruses and rhinoviruses. 

Rhinoviruses are so called because of their adapted growth in the nasopharyngeal 

tissue; infection of this tissue by rhinovirus is the major cause of the common cold 

(Rueckert, 1996; Stewart & Semler, 1997).

Strains of EMCV make up one of the two serotypes of the cardiovirus genera, which are 

generally murine viruses, although their host range also includes humans, pigs, 

elephants, and squirrels. The second serotype of cardioviruses is Theiler's murine 

encephalomyelitis viruses (TMEV), which as their name suggests, infect mice and result 

in neuronal degeneration. The aphthoviridae include the foot-and-mouth disease
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viruses, which produce vesicular lesions in cloven-footed animals, especially in cattle, 

goats, pigs, and sheep. Formerly a member of the enteroviruses, HAV lacks a high 

degree of sequence homology with the enteroviruses and is now the sole member of the 

hepatovirus genus (Rueckert, 1996; Stewart & Semler, 1997).

As a basic pattern, the viruses divide into four main phylogenic branches, designated 

(arbitrarily) Groups I, II, III and IV. Group I viruses include the FMDV strains 

(aphthoviruses), Group II the murine cardioviruses (EMCV, Mengo, TMEV), Group III the 

hepaiitis A isolates, and Group IV the rhino, polio, Coxsackie, and other enteroviruses. 

For convenience (and whimsy) the strains in the latter group are sometimes referred to 

as "renteroviruses" because they include isolates from the more traditional rhino and 

entero taxonomic designations (Palmenberg, 1990).

 HRV 89

 HRV2

 Coxsackievirus B1

 Enterovirus 9

 Enterovirus 70

 Poliovirus 1

 Coxsackievirus A16

 Bovine enterovirus

 HRV14

 TMEV

 EMCV

 FMDV 01

—  Echovirus 23

—  Echovirus 22

-  Hepatitis A virus

Figure 6: Dendrogram constructed by comparing alignments of amino acid 
sequences for 15 picornaviruses
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Thus, for simplicity in the following sections, the 'renteroviruses' will be discussed 

primarily. Similarly the cardio- and aphtho-viruses will be covered together and finally 

the hepatovirus genus will be discussed.

1.3.1.1 General properties of virions
X-ray crystallographic structures have now been determined for at least one member of 

each picornavirus genus except HAV. All share similar features: a protein shell roughly 

5nm thick and 30nm in diameter surrounding a single strand of mRNA. The RNA core, 

including VPg, is largely invisible to X-ray crystallographic analysis because, unlike the 

protein shell, the RNA has no symmetry and can occupy 60 different orientations in the 

crystal lattice. Therefore, its contribution to the crystallographic diffraction pattern is too 

smeared to be solved by current methods (Rueckert, 1996).

The capsids of all picornaviruses are composed of a 60-subunit protein shell (20-30nm 

diameter) having intrinsic 5:3:2 icosahedral symmetry. Each subunit contains four 

nonidentical polypeptide chains (virion proteins: VP1, VP2, VP3, and VP4) the largest 

three of which share, as a common structural motif, a wedge-shaped, eight stranded, 

antiparallel p barrel configuration (Hogle et al., 1987; Luo et al., 1987; Acharya et al., 

1989; Kim et al., 1989). Sixty of these identical four-segmented subunits, now called 

protomers, are organised into pentameric units (dodecahedral model of shell structure). 

Of these subunits, 60-n are identical mature protomers (VP1, 2, 3, 4) and n are immature 

protomers (VPO, 1, 3). VPO represents an uncleaved precursor of chains VP2 and VP4. 

Picomavirions rarely if ever contain fewer than two immature subunits. The protein shell 

encapsidates a single-copy of the positive-sense RNA genome, which is released into 

the cytoplasm of a target cell (Palmenberg, 1990).

The dissociation of the shell can be explained by the presence of just two kinds of 

bonding domains within each of the identical protein subunits. One domain holds 

pentamers together; the other binds monomers into pentamers. Assembly of the 

picornaviral shell can be understood by the operation of these domains in reverse order 

(Figure 7) (Rueckert, 1996).

17



Chapter 1

Cleavage 
. activates

Protomer 
5S (P1)

first assembly 
domain

Protomer 
5S (0, 3,1)

Completion 
of pentamer 

■activates second 
assembly 

domain 14S Pentamers

A dodecahedron laid out flat

The protein shell has a simple architecture, 
60 subunits organised as 12 pentamers

Assemble 12 
pentamers 

around RNA genome

VIRION 
VPO -►VP4, 2 

Required for infectivity

Figure 7: Dodecahedral model of picornavirus structure and assembly
Adapted from Rueckert etal., 1969.

Coat proteins serve several key functions: (a) they protect the RNA genome from 

nucleases in the environment; (b) they recognise specific cell-coded receptors in the 

plasma membrane and is therefore one important determinant of host range and tissue 

tropism (disease pathology); (c) they determine antigenicity; (d) they carry directions for 

selecting and packaging the viral genome and provides a proteinase involved in 

maturation of the virion; and (e) they disgorge the RNA genome and deliver it through 

the cell membrane and into the cytosol of susceptible host cells. The atomic structure 

has provided significant insight into many of these functions (Rueckert, 1996).

The surface topography of each type of virus is as varied and characteristic as faces in 

the human race, hence the many serotypes listed in Figure 11, Figure 12, Figure 17, and 

Figure 18. Human rhinoviruses and enteroviruses, for example, feature prominent 

canyons, like ragged moats encircling a plateau at the centre of each pentameric unit in 

the shell; cardioviruses and aphthoviruses on the other hand, lack such canyons 

(Rueckert, 1996).
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Myristic acid, also called /7-tetradecanoic acid, is covalently linked to amino terminal 

glycine residues on VP4 and to its precursors VPO, and P1 of most picornaviruses 

(Chow et al., 1987); HAV appears to be an exception (Tesar et al., 1993). Cellular 

enzymes are known to recognise the signal for acylation myristate -Gly-X-X-X-Ser/Thr (X 

= any amino acid) (Rueckert, 1996). In entero- and rhinoviruses the N-terminal glycine 

requires removal of a methionine residue, whereas in the cardio- and aphtho-viruses 

myristylation of the N-terminal glycine requires proteolytic removal of a leader peptide 

(Rueckert, 1996). Myristylation is required for assembly of pentamers (Ansardi et al., 

1992; Moscufu & Chow, 1992) and may also play a role in early stages of infection e.g. 

reorientation of the pentamer and release of VP4 (Chow etal., 1987).

1.3.1.2 General properties ofpicornaviral genome
The picornaviral genome consists of a single "plus" strand of messenger-active RNA that 

can be extracted out of virions by shaking aqueous suspensions of virus with an equal 

volume of buffer-saturated phenol. When the resulting emulsion is separated, proteins 

partition to the phenol-rich phase while RNA remains in the aqueous phase (Rueckert,

1996).

The specific infectivity of the naked RNA is about one millionth that of virions. That this 

infectivity is indeed due to free RNA and not to traces of surviving virions is shown by its 

extreme sensitivity to ribonuclease (<0.01 ng/ml). With intact virions, by contrast, where 

the RNA resides in a protective protein shell, the infectivity is completely resistant to 

ribonuclease even at millionfold higher concentrations. A single break in the RNA, 

whether free or inside the virus, is sufficient to destroy infectivity (Rueckert, 1996).

The first picornaviral RNA to be completely sequenced and molecularly cloned into DNA 

was that of PV1 (Kitamura et al., 1981; Racaniello & Baltimore, 1981). Since this 

landmark work, sequencing of many other picornaviral RNAs has shown a common 

organisational pattern (Figure 8).
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Figure 8: Structure of picornaviral RNA and genetic organisation of its polyprotein
The RNA is organised 5'-VPg-ntr-polyprotein-ntr-poly(A). ntr refers to nontranslated 
regions flanking the polyprotein. L434 is a mnemonic for recalling the polyprotein 
cleavage pattern; L specifies a leader protein found in cardioviruses, Theiler viruses, and 
aphthoviruses, but not in enteroviruses, HRVs, or human HAV. P1, P2, and P3 refer to 
precursor proteins cleaved by virus-coded proteinases into four, three, and four end 
products, respectively (Adapted from Palmenberg, 1990).

Sequence comparisons show significant variations in the size of picornaviral RNAs, 

which range in length from 7,209 to 8,450 bases. The 3' ends of all picornaviral RNAs 

are polyadenylated, as is characteristic of most eukaryotic mRNAs (Ahlquist & Kaesberg, 

1979). However, the 5' ends are not capped in the usual manner with 5'-5' triphosphate 

linkages. Instead, these viruses have small, viral-coded, genome-linked proteins (virion 

protein, genome; VPg) covalently attached by a tyrosine 0 4-phosphodiester bond to the 

5' uridylyl nucleotide of the RNA (Nomoto et al., 1976; Ambros & Baltimore, 1978; 

Rothberg et al., 1978). VPg sequences are rich in basic, hydrophilic amino acids and 

have only one tyrosine residue (the attachment site) at position 3 from the amino end of 

the peptide (Nomoto et al., 1976; Ambros etal., 1978; Rothberg et al., 1978; Ambros & 

Baltimore, 1980; Palmenberg, 1990).

Once released inside the cell, the single-stranded RNA genome must serve several 

distinct functions:

First, the genome serves as an unusual mRNA that successfully competes with cellular 

mRNAs for the cellular translation machinery. As mentioned, picornaviral genomic RNA 

is not capped but, instead linked to VPg. Interestingly, VPg is cleaved from all viral RNA 

molecules that serve as mRNA (VPg-pUUAAAACAG ...->  pUUAAAACAG ...), leaving a 

simple monophosphorylated pU terminus. The reason for removal of VPg, and the 

cellular enzyme catalysing it, is unknown. Initiation of translation is mediated by the 

IRES element, a peculiarly long (400nt) segment of the genomic RNA that directs
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efficient cap-independent translation in all picornaviruses. It has been previously shown 

that the picornaviral IRESes can be classified into three distinct groups on the basis of 

primary sequence and secondary structure conservation and also on the basis of their 

requirements for efficient internal initiation of translation in vitro as discussed later.

Second, the viral genome must carry signals to warrant separation from the components 

of the translational machinery so that it can assume the role of template for RNA 

replication. This switch from translation is important only in the initial stage of replication 

as in later stages the abundantly synthesised plus-strand RNA can choose to become 

mRNA (after VPg cleavage), serve as template for minus-strand synthesis, or be 

encapsidated to form progeny virions. However, the mechanism by which the infecting 

virion RNA switches to transcription is unknown.

Third, the viral RNA must express specific signals for the recognition of the viral 

replication proteins. Finally, progeny RNA that will not engage in translation or RNA 

synthesis will be encapsidated. The packaging process, which may also involve a 

specific packaging signal, is still obscure (Xiang et al., 1997).

1.3.1.3 General properties of picornaviral proteins
To complete a round of infection, a number of complex activities must be performed and 

coordinated. These include replication of the plus-strand RNA via minus-strand 

intermediates, translation, proteolytic processing, inhibition of host cell 

transcription/translation, virion assembly, and cell lysis. These activities must be 

directed by the 26 or more viral polypeptides detected in virus-infected cells, although 

most of these polypeptides are intermediates in the processing of the polyprotein 

precursor with no known function (Porter, 1993). Depending on the genus, about 11 to 

13 fully processed viral polypeptides are produced in infected cells (Figure 9). Of these 

about seven to nine proteins are nonstructural (i.e. noncapsid) proteins and their multiple 

roles both in virus replication and in the associated inhibition of cellular functions are 

discussed, for the different genera, in the relevant sections below.

To simplify homologue identification, in 1983 the European Study Group on the 

Molecular Biology of Picornaviruses adopted a uniform nomenclature system, 

designated L-4-3-4, based upon an idealised map of the picornavirus polyprotein (Figure 

9) (Rueckert & Wimmer, 1984).
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Figure 9: Picornavirus polyprotein and its processing

Processing map of a picornavirus genome. The striped bar over the 5'-nontranslated 
region indicates the presence of a polycytidylic acid tract found in EMC-like viruses and 
aphthoviruses. Synthesis of the protein is from left (N-terminus) to right (C-terminus). 
Growth functions, i.e., proteins needed for RNA synthesis and proteinases required to 
cleave the polyprotein, are encoded downstream from the capsid protein. gr represents 
the guanidine-resistance marker, a genetic locus affecting the action of a drug thought to 
block initiation of RNA synthesis. The 2B gene, hr, carries a host range determinant 
involved in RNA synthesis. The leader protein L is similarly only found in cardio- and 
aphthoviruses. The polyprotein of FMDV contains three 3B (VPg) segments, while all 
other viruses contain only one. Protein 2A has been identified only as a proteinase in 
the rhino- and enterovirus isolates (Adapted from Palmenberg, 1990).
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Mature viral proteins are derived by progressive posttranslational cleavage of the 

polyprotein and this proteolytic processing is a distinguishing feature of the picornavirus 

life-cycle. Though the RNA genomes are effectively monocistronic, the three-tiered 

cascade of primary, secondary and maturation cleavage efficiently produces the 

spectrum of viral proteins necessary for a productive infection (Palmenberg, 1990).

This proteolytic cascade, common to all picornaviruses, is largely mediated by a virally 

encoded protease, 3Cpro, the central enzyme in the cleavage cascade. An exception is 

the first polyprotein scission, a cotranslational (occurring as soon as the ribosome has 

reached the middle, or P2 region, of the genome), autoproteolytic cleavage referred to 

as the primary cleavage. The primary cleavage can occur in one of two places: between 

1D and 2A in enteroviruses and rhinoviruses, or between 2A and 2B in cardio- and 

aphthoviruses. In entero- and rhinoviruses, the cleavage is mediated by a self-coded 

protease 2Apro, and does not require downstream viral proteins. In cardio- and 

aphthoviruses, the cleavage also occurs cotranslationally but the 2A protein is not a 

protease and the mechanism is less understood. Less still is known about this process 

in HAV.

Most subsequent or secondary cleavages are effected by viral protease 3Cpro. The 

eventual result of the secondary cascade is release of all mature viral proteins necessary 

for establishment and completion of a successful infectious cycle as described in 1.3.1.4. 

The final cleavage within picornaviral polyproteins, maturation processing of the 1AB 

peptide (also called VPO), is, interestingly, not catalysed by any of the other identified 

viral proteases (Palmenberg, 1990).

Genetic and biochemical evidence have implicated all nonstructural PV polypeptides, 

including the proteinases, as being involved in genome replication (Wimmer et al., 1993). 

It is important to realise that, in most cases, the virus utilises processing intermediates 

and processing end products for different functions, a strategy designed to expand the 

menu of useful polypeptides derived from a small genome. The best-studied example is 

the P3 region of the polyprotein that yields 3AB and 3CDpro. 3AB is a multifunctional 

RNA-binding protein, the precursor for 3A and 3B(=VPg), the terminal protein, which is 

an essential component in the initiation of RNA synthesis. 3CDpro is a multifunctional 

proteinase, RNA-binding protein and the precursor of 3Cpro and 3Dpc)l (viral RNA 

polymerase). Equally important was the observation that many of the nonstructural 

proteins interact with each other to form homo- or heterodimers, or even oligomers 

(Lama etal., 1994; Molla et al., 1994; Paul etal., 1994; Pata etal., 1995; Xiang, 1995a).
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The most important interactions that have been suggested to play a crucial role in 

genome replication, particularly in PV, are:

1. 3AB + 3CDpro -> [3AB/3CDpro] + cloverleaf -> [3AB/3CDpro/cloverleaf]

2. 3AB + 3CDpro -> [3AB/3CDpro] -» 3AB + 3Cpro + 3Dpo'

3. 3ABmembrane-bound + 3CDpro -> 3A +VPg + 3CDpro

4. VPg + 3Dpo‘ + poly(A) + UTP -> VPgpU(pU) + 3Dptjl + poly(A)+PPj

5. 3AB + 3Dpo' -> [3AB/3D]super'p0‘

6. homointeractions of 2B, 3AB, and 3Dpo1

The AB/CDpro complex, formed after cleavage between the two polypeptide chains, plays 

a central role in these interactions (Molla et al., 1993, 1994). Depending on the 

environment, this complex can react in three different pathways depicted 1-3. 3AB 

stimulates proteolysis of proteinase 3CDpro thereby yielding polymerase 3Dpo‘ (2), while 

3CDpro cleaves membrane-associated 3AB to 3A and VPg (3). 3Dpo' will uridylylate VPg 

to VPg-pU(pU) (4), the primer for initiation of RNA synthesis. 3AB and 3Dpo1 can also 

form a complex with significantly increased polymerase activity (5) (Paul, 1994; Plotch & 

Palant, 1995) and it is likely that this complex is important for the recognition of the 3' 

end of the plus-strand template. At higher enzyme concentration, 3Dpt)l forms 

homooligomers with RNA binding and increased polymerase activity. Head-to-tail 

interactions between polymerase molecules along an extensive interface region have 

been observed in PV, leading to the suggestion that the enzyme complex funtioning in 

chain elongation may therefore be [3ABn/3Dm]superpo1 (Xiang, 1997 and references within).

Of the proteins mapping to the P2 region of the polyprotein, only 2C has been shown to 

have RNA binding activity (Rodriguez & Carrasco, 1993; Rodriguez & Carrasco, 1995). 

2A, a protease plays a role in host-cell shut-off, as well as effecting the primary cleavage 

in some picornaviruses. Protein 2B or 2BC is thought to participate in two of the major 

biochemical alterations that occur during PV infection: the inhibition of protein secretion 

(Doedens & Kirkegaard, 1995), in particular the disassembly of the Golgi complex 

(Sandoval & Carrasco, 1997) and the permeabilisation of the plasma membrane (Lama 

& Carrasco, 1992). These proteins will be discussed in the relevant sections below for 

the different genera.
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Table 4: Structural characteristics of HAV compared with other picornaviruses

HAV ENTERO RHINO CARDIO APHTHO

Virion Proteins
(Mr ) kDa

VP1 <33.2 33.5 32.4 31.7 23.3

VP2 24.8 30 28.5 29 24.7

VP3 27.8 26.4 26.2 25.1 24.3

VP4 <2.5 7.4 7.2 7.2 8.5

VPg 2.4 2.3 2.4 2.2 2.6-2.7

Genome

Length (kb) 7.48 7.44 7.21 7.84 8.4

%(G+C) 38 47 40 50 43

Poly(C)' - - - + +

Poly(C+T)' + - - - -

Similarity HAVs Entero,

Rhino

Rhino,

Entero

Cardio Aphthos

1.3.1.4 General replication stra
Multiplication of picornaviruses occurs entirely in the cytoplasm. The initial event in 

infection is attachment of the virion to specific receptor units embedded in the plasma 

membrane (Figure 10, step 1). The function of receptors is twofold: to position the virion 

to within striking distance of the membrane (step 1), then to trigger a conformational 

change in the virion (step 2), which involves loss of an internally located protein and 

delivery of the viral RNA genome across the membrane and into the cytosol (step 3), 

where translation can begin (step 4) (Rueckert, 1996).

The successful completion of the picornaviral replicative cycle depends largely on the 

ability of the viral RNA species to compete with capped cellular RNAs for the host cell 

translation machinery. For all members of the picornavirus family except the 

cardioviruses, this goal is achieved through the inhibition of initiation of translation of 

capped cellular mRNAs.
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Figure 10: Overview of the picornaviral infection cycle

This inhibition of capped mRNA translation, known as host cell shut-off, is due, at least in 

part, to the proteolytic cleavage of the cellular translation initiation factor elF-4y (formerly 

known as p220), which is part of the elF-4 cap-binding complex. The cleavage of elF-4y 

is carried out by the 2A proteinase during a rhinovirus, PV, and CV infection and by the 

leader (L) proteinase during FMDV infection. Cleavage leads to the inactivation of the
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cap-binding complex, so that cellular capped mRNAs can no longer associate with the 

40S ribosomal subunit. Picornavirus RNA translation can continue unabated in such 

conditions, as it is initiated in a cap-independent manner by ribosomes which have 

entered the RNA internally. Initiation of translation is mediated by the internal ribosome 

entry site (IRES) element, a peculiarly long higher order RNA structure of about 400 nt 

present in the picornaviral 5' NTR. The different picornaviral IRESes can be separated 

into three distinct groups on the basis of sequence and structural considerations 

required for their optimal activity: type I entero-and rhinoviral IRESes (PV, HRV, 

ECHOvirus); type II cardio- and aphthoviral IRESes (FMDV, EMCV); type III IRESes, of 

which the HAV element is the only example to date (Borman and Kean, 1997). 

Translation is a crucial step because synthesis of new viral RNA cannot begin until the 

virus has successfully manufactured the virus-coded RNA-synthesising machinery.

By confiscating ribosomes and other protein-synthesising machinery of the host cell, the 

incoming RNA strand directs synthesis of a polyprotein, which is then cleaved into 

segments while still in the process of synthesis. Translation of a viral message is not 

restricted to a single ribosome; indeed, polysomes carrying up to 40 ribosomes have 

been reported in PV-infected cells. In PV, the first fragment released from the nascent 

polyprotein is a coat precursor protein (P1); the next released is a mid-piece precursor 

protein (P2); and the last segment released is P3. Each segment is released from the 

polyprotein by proteinases encoded in the poly protein (Figure 10).

Protein P3 can be further cleaved by two separate mechanisms (Palmenberg & 

Rueckert, 1982). One mechanism is a monomolecular or cis cleavage, i.e. a 

concentration-independent self-cleavage that yields (a) a proteinase, 3C or 3CD; (b) a 

protein, 3AB, which is involved in initiating RNA synthesis; and (c) an RNA polymerase, 

3D, which can elongate a primer RNA bound to a template RNA. The other mechanism 

is trans cleavage, i.e. bimolecular cleavage, involving one P3 molecule and the 3C 

proteinase generated by cleavage of another P3 precursor molecule. Cis cleavage of 

P3 presumably dominates the early stages of infection when the concentration of viral 

proteinases in the cytosol is low. Insights from the crystal structure of PV suggest that 

proteinase 3C cannot be active in the monomeric form (Chernaia et al., 1993; Matthews 

et al., 1994). Cis or intramolecular cleavage might therefore be accomplished by pairing 

of nascent P3 molecules on closely spaced ribosomes even before they have left the 

viral polysome.
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The first step in synthesis of new viral RNA is to copy the incoming genomic RNA to form 

complementary minus-strand RNA (Figure 10, step 5), which then serves as a template 

for synthesis of new plus strands (step 6). Synthesis of plus-stranded RNA, which 

occurs on smooth endoplasmic reticulum, is initiated so rapidly (20- to 50-fold that of 

minus strands) that it generates multistranded replicative intermediates (Rl) consisting of 

one minus-stranded template and many plus-stranded copies. During the early steps of 

replication, newly synthesised plus-strand RNA molecules are recycled to form additional 

replication centres (step 7 step 5 step 6) until, with an ever-expanding pool of plus- 

stranded RNA, a greater and greater fraction of the plus-stranded RNA in the RC is 

packaged into virions (Rueckert, 1996).

Virion assembly (steps 8 and 9) is controlled by a number of events. One is that, before 

assembly can begin, coat precursor protein P1 must be cleaved to form immature 

protomers composed of three tightly aggregated proteins (VPO, 3, 1). Early in the 

infection cycle this cleavage is likely very slow because the concentrations of P1 and the 

necessary proteinase (3C or 3CD) are low. Later, with increasing proteinase activity, the 

rising concentration of immature (5S) protomers triggers assembly into pentamers (step 

8), which then package the plus-stranded VPg-RNA to form provirions (step 9). Infected 

cells often contain empty 80S protein shells that are reversibly dissociable into 15S 

subunits. Whether pentamers condense around RNA or RNA is threaded into 80S shells 

is still a subject of debate (Rueckert, 1996).

Provirions are not infectious. Formation of infective 150-160S particles (step 10) 

requires a "maturation cleavage" in which most of the VPO chains are cleaved to form 

the mature four-chain subunits (VP4, 2, 3 ,1)  characteristic of picornavirions. Completed 

virus particles, which often form crystals in infected cells, are ultimately released by 

infection-mediated disintegration of the host cell (step 11) (Rueckert, 1996).

The time required for a complete multiplication cycle from infection to completion of virus 

assembly, generally ranges from 5 to 10 hours. The precise timing depends on 

variables such as pH, temperature, the virus, the host cell, the nutritional vigour of the 

cell, and the number of particles that infect the cell (Baltimore et al., 1966). Some 

viruses such as hepatitis A, set up nonlytic infections that persist indefinitely (Provost & 

Hilleman, 1979). The precise characteristics must be established experimentally for 

each virus-cell system.
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The available data on rearrangements (recombinations, deletions, and insertions) of 

picornavirus genomes fit the replicative template switch model postulating that an 

incomplete nascent minus RNA strand leaves the template and resumes its synthesis on 

another template (or another locus of the original template). The nascent strand 

dissociation is believed to be facilitated by the elongation pausing caused by secondary 

structure elements or nucleotide misincorporations. Rearrangements may involve 

(nearly) identical or completely dissimilar pairs of parting and anchoring sites (Agol,

1997). Such rearrangements contribute to both conservation and variation of the 

picornaviral genomes and observations for the individual genera will be discussed under 

the relevant headings.

1.3.2 Enterovirus and rhinovirus genera
The enteroviruses include not only the PVs but also the CVs, the ECHOviruses (Enteric 

Cytopathic Human Orphan), human enteroviruses (68-71) and a number of nonhuman 

enteric viruses.

ENTEROVIRUSES

Human polioviruses 1-3 Human enteroviruses 68-71

Human Coxsackieviruses A1-22, 24 Vilyuisk virus

A23 is ECHOvirus 9 Simian enteroviruses 1-18
Human Coxsackieviruses B1-6 Bovine enteroviruses 1 and 2

Human ECHOviruses 1-7, 9, 11-27, 29-34 Porcine enteroviruses 1-8

ECHO 8 is ECHO 1

ECHO 10 is reovirus, type 1

ECHO 28 is human rhinovirus 1A

Figure 11: Enterovirus serotypes

Infections with the enteroviruses - even the more virulent members of the genus - are 

characterised by a high proportion of subclinical manifestations. The clinical expressions 

of infection, when they do occur, range from severe and permanent paralysis, 

sometimes fatal, to minor undifferentiated febrile illnesses. Although certain 

enteroviruses have been more frequently responsible for epidemics involving a specific 

syndrome, at other times or in other places the same serotypes may be associated with 

sporadic or epidemic infections having different clinical manifestations or producing no 

symptoms. However, different enteroviruses may produce the same syndrome.
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Enteroviruses multiply throughout the alimentary tract and cause a variety of infections. 

Because of their acid stability, enteroviruses that have undergone limited replication in 

the oropharynx survive transit through the stomach and become implanted in the lower 

intestinal tract, where they undergo more extensive multiplication. Rhinoviruses, which 

inhabit the upper respiratory tract, not only differ in that they are acid labile (they begin to 

lose infectivity at pH 6 and are completely unstable at pH 3), and this lability has become 

a defining characteristic of rhinoviruses, but are further distinguished from enteroviruses 

by their low optimal temperature of replication (33°C), reflecting their adaptation to the 

nasopharynx. Inactivation at low pH is associated with appearance of empty capsids 

and a loss of VP4 similar to receptor binding-induced uncoating, but possibly by a 

different mechanism. The buoyant density of enteroviruses in CsCI is 1.34g/ml, whereas 

rhinoviruses have a density of 1.4g/ml. Enteroviruses and some rhinoviruses can be 

stabilised by molar magnesium chloride against thermal inactivation (Melnick, 1996).

Rhinoviruses are the most commonly isolated viruses from persons experiencing mild 

upper respiratory illnesses (common colds). In contrast to the enteroviruses, 

rhinoviruses do not appear to replicate in the intestinal tract. They also differ from 

enteroviruses in their more extreme species specificity and more fastidious growth 

requirements (Rueckert, 1996). There are over 100 different serotypes of HRVs, which 

are divided into two groups based on their cellular receptors. The majority of HRVs 

(belonging to the “major receptor group”) use ICAM-1 as their receptor. The remaining 

rhinoviruses (belonging to the “minor receptor group”), except for HRV87, utilise the low 

density lipoprotein receptor (Zhao etal., 1997 and references therein).

RHINOVIRUSES

Human rhinoviruses 1A-100,1B, "Hanks" Bovine rhinoviruses 1-3

Figure 12: Rhinovirus serotypes

PV is the prototype enterovirus that, in many ways, has spear-headed research not only 

on picornaviruses but on plus-strand RNA viruses in general and, along with rhinoviruses 

and CVs, will be the viruses which feature predominantly in the subsequent section.

1.3.2.1 Properties of virion
The diameter of the HRV is about 300A and the molecular weight of the virus is 

approximately 8.16 x 106 Da, including RNA. The crystal structures of HRV14
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(Rossmann etal., 1985), HRV16 (Oliveira etal., 1993), and HRV3 (Zhao eta!., 1996), all 

major receptor group viruses, have been determined, as well as the structure of HRV1A 

(Kim etal., 1989), a minor receptor group virus.

The PV particle is approximately 28nm (31 oA) in diameter with a molecular mass of 8.43 

x 106 (Hogle et at., 1985). The virion, composed of 60 copies of viral proteins VP1 to 

VP4 as previously described and illustrated in 1.3.1.1, contains an RNA core that when 

unravelled and fully extended for measurement in the electron microscope has a length 

of about 2,500nm. The tightly packed RNA resides in the central cavity of a thin protein 

shell.

Figure 13: Molecular surface of poliovirus type 1 and rhinovirus 14
Molecular surface of PV type 1 Mahoney (left) and rhinovirus 14 (right), radially depth 
cued, as solved by X-ray crystallography by Hogle et al. (1985) and Rossmann et at. 
(1985) respectively. Images courtesy of J. -Y. Sgro on Silicon Graphics taken from 
http://www.bocklabs.wisc.edu/imaQes/polio1.ipg and r14.jpg

With general acceptance of the 60-protomer model of capsid structure, attention focused 

on the structural organisation of the four-segmented protomer. The most prominent 

feature of the protomer, evident in HRV14, was the presence of a prominent cleft or 

“canyon” on its surface. This canyon was later shown to be the acceptor site for the 

receptor used by the virus to infect susceptible host cells. Of the four proteins, VP1 

exhibits the greatest sequence variability and VP4 the least. VP1 is also the dominant
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protein, playing key roles in surface topography and in several viral functions, including 

antigenicity, receptor attachment, and probably also viral uncoating (Rueckert, 1996). In 

PV and HRV the dominant neutralising immunogenic sites reside in the BC loop of VP1. 

Some ECHOviruses and CV As attach to a group of receptors called integrins, which 

have the ability to discriminate between different RGD-containing proteins (Rueckert, 

1996).

In all of the rhinoviruses for which the structure is known, there is some density on the 

fivefold axes that cannot be interpreted as a part of the capsid protein and Zhao and 

colleagues (1997) have proposed that it is a Ca2+ ion. The putative Ca2+ ions in HRVs 

have been proposed to play a role in viral stability. When viruses enter the cell, the 

lower pH of the endosome and the lower Ca2+ concentration in cytoplasm may help to 

release the Ca2+ ion and facilitate virus uncoating.

Empty capsids lacking the viral RNA are generated during infection by most 

picornaviruses. Although such capsids have the same total protein content as do normal 

virions, they are noninfectious and are considered to be a by-product of infection or a 

storage form of capsid proteins. Since empty capsids lack viral RNA, maturation 

cleavage of VPO does not usually occur.

1.3.2.2 Properties of genome
Enteroviruses contain a 7.5 kb single-stranded RNA molecule of positive polarity, which 

has a highly unusual structure that is, nevertheless, representative of many RNA viruses 

which is translated into a large polyprotein. This polyprotein is processed by virally 

encoded proteinases to the P1 region proteins, which form the viral capsid, and the P2 

and P3 region proteins, most of which are required for viral RNA (vRNA) replication as 

previously mentioned.

Human rhinovirus (HRV) is a positive-stranded RNA virus, the genome being about 7.2 

kb in length, with an ORF that encodes for a single polypeptide of about 3000 amino 

acids which is also proteolytically processed; eight of nine cleavages being catalysed by 

the 3C and/or the 3CD proteinases.

VPg is attached to the stem of a stable stem-loop "cloverleaf" structure, the first domain 

of the unusually long 5'NTR. Genetic analyses have shown that the integrity of the stem
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regions in stem loops b and d, but not their sequence, is important for viral viability. On 

the other hand, the sequence of the loops in b and d appears to be very important as 

insertions or nucleotide changes lead to severe RNA replication phenotypes. The 

outstanding length of the 5' NTR of the renteroviruses (610-747nt) and the high degree 

of homology within this region (64%-99%), which exceeds that of any coding region in 

the genome, suggest an important role. Additions to or deletions of part of the NTR of 

PV and HRV genomes resulted in transcripts that were not infectious, while transcripts 

containing completely intact NTRs were infectious. This 5'NTR harbours a second, very 

complex structure, the IRES that consists of domains II to VI. The IRES controls the 

translation of the polyprotein. Rivera et al. (1988) found that of the nine members of 

these genera they studied, conserved features in the 5' NTR included long stretches of 

conserved sequence, pyrimidine-rich regions, and over 20 stem and loop structures. 

Pyrimidine-rich regions have been implicated as serving as recognition sites for 18S 

rRNA which contains a purine-rich region at its 3'-terminal end and may play an 

important role in initiation of translation, initiation of positive-strand replication, and 

packaging (Rivera etal., 1988).

Cloverleaf

VI Initiating
O  AUG

nt 743

Figure 14: Poliovirus 5' NTR with type I IRES
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Following the 5' NTR comes the ORF for the polyprotein that occupies nearly 90% of the 

viral genome. Finally the genome is terminated by the 3' NTR consisting of two stem- 

loop structures and poly(A). The cloverleaf and entire 3' NTR are involved in RNA 

synthesis. Pilipenko et al. (1992) compared the 3' NTR sequences of entero- and 

rhinoviruses and proposed that they have highly organised secondary structures (stem 

loops or domains X, Y, Z) that can be grouped into three categories; (i) a single stem- 

loop structure (Y) in rhinoviruses (e.g. HRV14); (ii) two stem-loop strucutres (Y, X) in 

PVs; and (iii) three stem-loop strucutres (X, Y, Z) in some Coxsackieviruses and 

ECHOviruses (e.g. CV B3). Jacobson et al. (1993) proposed that a pseudoknot, formed 

between sequences in domain Y and upstream sequences may play an important role, 

however some sequences in loops Y and X of PV1 and CV B3 are complementary and 

could interact in a "kissing mode", and this model, which is supported by genetic 

analyses, is currently favoured. Interference with kissing resulted in an RNA replication 

phenotype whereas mutations interfering with the pseudoknot showed little or no effect 

of the growth properties of the corresponding viral variants. The heteropolymeric regions 

of the 3' NTR of different picornavirus species is very diverse, even within a single 

genus. HRV14 has, in addition, evolved a third structural element essential for RNA 

synthesis that maps, surprisingly, to the coding region P1 of the capsid precursor.

1.3.2.3 Properties of viral proteins
Of the viral noncapsid proteins, 2A, 3C, and 3CD are viral proteinases involved in the 

processing specific to PV polyprotein. 2C has ATPase activity, 3B is VPg, 3D is a viral 

RNA-dependent RNA polymerase which has unwinding activity, 2B and 2C are 

considered to play important roles in viral RNA synthesis, and 3A could have an 

important role(s) in uridylylation of VPg in the process of initiating RNA synthesis (Shiroki 

etal., 1995).

In the renteroviruses, the 2A region codes for a cysteine proteinase (2Apro), which shares 

significant sequence homology to the trypsin-like small serine proteases (Sommergruber 

et al., 1989; Lu et al., 1995), cleaves only at tyrosine-glycine bonds in PV, and is 

autocatalytically released from the nascent polyprotein by rapid cotranslational cleavage 

in cis at its own amino terminus at (Y, T, H, F, A, or V)-G dipeptide pairs and studies by 

Wang et al. (1997) suggest that the eight residues upstream of the scissile bond are 

sufficient for the cleavage by HRV2 2A. Cleavage is a prerequisite for further proteolytic 

processing of the capsid precursor region.
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The first cleavage of the HRV polyprotein is catalyzed by the 2A protease and has been 

found to be a co-translational event. This cleavage, occurring between the capsid 

protein VP1 and the N-terminus of 2A itself, separates the viral capsid from the 

nonstructural proteins.

A wealth of evidence, both genetic and biochemical, shows that a second function of 

2Apro is to initiate the cleavage of the large subunit elF-4G (also known as p220) of the 

eukaryotic translational initiation factor 4 (elF-4), thereby causing a shut-off of cap- 

dependent translation of cellular mRNAs (Wang et al., 1997). The inactivation of the 

cellular cap-dependent translational machinery facilitates the IRES-driven translation of 

the viral open reading frame. However, recent studies showed that cap-dependent 

translation could still occur in the presence of cleaved p220. It is believed that PV 2Apro 

does not directly cleave p220, rather it activates a quiescent cellular protease which then 

cleaves p220 (Wyckoff et al., 1990). In contrast, rhinovirus or Coxsackievirus 2Apro is 

capable of cleaving p220 directly. No cellular protein has been shown to be directly 

cleaved by PV 2Apro to date (Yalamanchili etal., 1997a).

In addition, recent studies from a number of groups suggest that the 2Apro protein of PV 

is involved in viral RNA replication and in the frans-activation of IRES-driven translation 

(Molla etal., 1993(b); Macadam etal., 1994; Lu etal., 1995). Interestingly, PV genomes 

containing heterologous 2A-encoding sequences displayed different translational 

activities in vitro, while the kinetics of proteolytic processing of their translation products 

were indistinguishable from those of wild-type PV (Lu et al., 1995).

It has been shown that PV-encoded protease 3Cpro directly inhibits host cell transcription 

catalysed by RNA polymerase II (Pol II) and III both in vivo and in vitro. The TATA- 

binding protein (TBP), a component of transcription factor TFIID, is directly cleaved by 

3Cpro, which leads to Pol II transcription shut-off. The cleaved TBP is unable to form a 

complex with the TATA box. Likewise, the largest subunit of the Pol III DNA-binding 

transcription factor is cleaved by 3Cpro, leading to shut-off of Pol III transcription. 

Apparently cleavage of TBP does not contribute to Pol III transcription shut-off, although 

the multicomplex Pol III transcription factor TFIIIB contains the TBP polypeptide. 3Cpro 

also catalyses shut-off of Pol I transcription. However, the precise nature of the Pol I 

transcription factor(s) inactivated by 3Cpra remains unknown (Yalamanchili et al., 1997a 

and 1997b).
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Davies et a!. (1991) demonstrated that transient expression of 2Apro in eukaryotic cells 

inhibited both cellular translation and transcription. The inhibition of transcription seen in 

cells expressing 2Apro could be due to a primary effect or a secondary effect caused by 

inhibition of translation. TBP contains a cleavable tyrosine-glycine bond, and it was 

recently determined that 2Apro directly cleaves the single tyrosine-glycine bond (at 

position 34) of TBP. This cleavage is also seen in virus-infected cells. Surprisingly, 

despite TBP cleavage at this bond, Yalamanchili et a i (1997a) found that 2Apro was 

unable to inhibit RNA Pol II transcription in vitro.

Ziegler etal. (1995) have not only shown that the protein and RNA components involved 

in the stimulation of IRES-driven translation are interchangeable between rhino- and 

entero-viruses, but not the distantly related cardioviruses, but also that the HRV2 2A 

proteinase is more efficient at stimulating IRES-driven translation than any other protein 

identified to date and that the stimulation correlates with the enzymatic activity of the 2A 

proteinase, the proteolytic conversion of some cellular component(s) being involved in 

2A proteinase-mediated translational transactivation. More recently, Haghighat et al. 

(1996) demonstrated that HRV2 2Apro cleaves purified recombinant elF4G directly in 

vitro, although relatively poorly. In contrast, a complex of elF4G with elF4E is a 

preferable substrate for HRV2 2Apro. It was therefore proposed that elF4F, and not the 

elF4G subunit alone, is the primary target for cleavage by HRV2 2Apro. Consistent with 

these results, restoration of cap-dependent translation in 2Apro-treated extracts requires 

both the elF4E and elF4G subunits of the elF4F complex.

Recently it was found that the expression of PV protein 2B or 2BC results in two of the 

major biochemical alterations that occur during enterovirus infection: the inhibition of 

protein secretion (Doedens & Kirkegaard, 1995), in particular the disassembly of the 

Golgi complex (Sandoval & Carrasco, 1997) and the permeabilisation of the plasma 

membrane (Lama & Carrasco, 1992). The relevance of these activities to the viral life­

cycle remains to be elucidated (van Kuppeveld etal., 1997). Both biochemical functions 

in CV B3 are dependent upon the integrity of one of two hydrophobic domains found 

within enterovirus 2B proteins, one, the more amino-terminal of which, a predicted 

cationic amphipathic a-helix, involved in both the inhibition of protein secretion and the 

permeabilising activity, whereas mutation of the second hydrophobic domain, near the 

C-terminus of 2B, has a greater effect on the secretion inhibition function (van Kuppeveld 

et al., 1997). A moderate degree of hydrophobicity of this domain is essential for the 

function of 2B. In CV B3, mutations which caused a major increase or decrease in 

hydrophobicity as well as the introduction of negatively charged residues interfered with
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virus growth by an effect on its interaction with the membrane (van Kuppeveld et al., 

1995). By interfering with the 2B/2C cleavage site, the importance of efficient processing 

at this site was identified and subsequently it was determined that a critical level of CV 

B3 protein 2B or 2BC, or both, may be required to alter membrane permeability (2C does 

not alter plasma membrane permeability) and, possibly as a consequence, to shut-off 

host cell translation (van Kuppeveld et al., 1996). Sandoval & Carrasco recently (1997) 

demonstrated that transient expression of the PV protein 2B in COS-7 cells causes the 

disassembly of the Golgi complex by a process preceded by the accumulation of the 

protein in the Golgi area. Inhibition of protein secretion during enterovirus infection is not 

a direct result of increased membrane permeability, but is likely to result from alteration 

or sequestration of membranes or proteins required for secretory transport. This could 

simply be a consequence of RNA RC assembly, or it may play an additional role in viral 

amplification such as blocking host antiviral responses (Doedens & Kirkegaard, 1995).

Proteins 2C and 2BC, in the absence of other PV proteins, associate with membranes 

and induce formation of vesicles and therefore may be the viral protein(s) responsible for 

the generation of the small membrane vesicles on which vRNA replication takes place. 

In addition to inducing proliferation of membranous vesicles PV 2BC also alters cellular 

calcium homeostasis (Aldabe et al., 1997). As well as vesicles, protein 2C induces 

formation of a tubular, myelin-like membrane structure which is not seen in PV-infected 

cells (Cho et al., 1994). Although the 2C protein lacks a defined membrane binding 

domain, Echeverri & Dasgupta (1995) demonstrated that the N-terminal region, 

encompassing amino acids 21-54 and containing a putative amphipathic helix, plays an 

important role in membrane binding both in vivo and in vitro, whereas the C terminus 

half, includes the NTPase motifs (RNA binding is abolished when C terminal 74 amino 

acids are removed (Rodriguez & Carrasco, 1993)) and the other amphipathic helix, 

appears to be unecessary for membrane association. More recently however, Teterina 

etal. (1997b) showed that both the N- and C-terminal regions, but not the central region, 

of 2C interact with intracellular membranes and induce major changes in their 

morphology, leading to the prediction that the protein folds into a structure composed of 

three domains, connected by small conserved loops or disordered regions. Prior to this, 

the observation that 2C copurifies with 3AB, led to a speculation that 2C may be 

associated with membranes by virtue of its affinity to 3AB (Takegami et al., 1983). Paul 

et al. (1994) believe it is likely that 2C associates with the membrane through a 

hydrophobic face formed on an alpha helix and/or p sheets. It has been seen since, 

however, that cells expressing plasmid-encoded PV 2C or 2BC protein, in the absence 

of other viral proteins, displayed extensive rearrangement of intracellular membranes, to
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form vesicles as well as other organised membrane structures by virtue of an interaction 

of 2C and 2BC with intracellular membranes (Cho et al., 1994; Aldabe & Carrasco, 

1995).

Protein 2C is a small NTPase with RNA binding properties (Rodriguez & Carrasco, 1993; 

Mirzayan & Wimmer, 1994) located at the cytoplasmic surface of the virus-induced 

membrane vesicles where it may be involved in attaching the vRNA to the membranous 

RC, and is one of the most highly conserved viral proteins among all picornaviruses.

Identification of putative NTP binding motifs in the highly conserved region of the protein 

suggested that 2C may be involved in binding and/or hydrolysis of NTP and led to a 

speculation that 2C may function as an RNA helicase (Gorbalenya et al., 1990), 

consistent with its proposed role in RNA replication. The NTP binding activity of the 

central domain of 2C is not required for vesicle induction, although, when fused to the N- 

terminal domain, profound changes in the specific membrane architecture, generating 

formation of numerous smooth vesicles, is seen (Teterina et al., 1997b). Recently, PV 

2C and 2BC were expressed in E. coli as MBP-fusion proteins and shown to have 

ATPase and GTPase activities (Rodriguez & Carrasco, 1993). A recombinant 

baculovirus expression system was used to produce PV 2C that also displayed ATPase 

activity (Mirzayan & Wimmer, 1994). However, no helicase activity was reported and it 

remains to be seen whether 2C possesses an RNA helicase activity which may perhaps 

function at the initiation step of RNA synthesis (Cho et al., 1994).

Guanidine has been shown to inhibit viral RNA replication by affecting coupling between 

the NTP binding and/or splitting, on the one hand and the 2C function (related to 

conformational changes), on the other, thereby implying that oligomerisation of 2C is an 

essential step in the replication of viral genome (Tolskaya et al., 1994). The data of 

Vance et al. (1997) support a role for 2C in the assembly of mature virions. Perhaps 2C 

affects the association of capsid precursors with each other or with the RNA to facilitate 

the encapsidation of the RNA.

Mutations in 2B and 2C have been shown to be important with respect to RNA synthesis 

and host range change that occurs during adaptation and passage of virus in cell culture 

and leads to attenuation of the virus (Emerson et al., 1993; Graff et al., 1994) and will be 

covered later.
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3B is usually referred to as VPg, a small peptide of 22 amino acids in PV covalently 

linked via tyrosine to the 5' termini of all full-length and nascent viral plus- and minus- 

strand RNAs. PV VPg is removed by a cellular unlinking enzyme (leaving 5' pU) from 

those viral RNAs destined to become mRNAs. An attractive hypothesis is that 5'-linked 

VPg serves as an encapsidation signal, leaving the mRNAs free for translation without 

obstruction from the replication machinery (Porter, 1993).

The PV-encoded, membrane-associated VPg-precursor, 3AB, a 12kDa polypeptide 

abundantly found in PV-infected cells, has been implicated in the initiation of viral RNA 

synthesis and may be used for the delivery of VPg to the membrane-associated PV RC. 

RNA RCs form on membranous vesicles that contain viral proteins, newly synthesised 

viral RNA, and host proteins. Both RNA synthesis and RNA packaging occur in 

association with the membrane-associated RC (Hope et a/., 1997). It has been 

postulated that a uridylylated form of VPg (VPg-pU) or a precursor thereof (3AB-pU) may 

serve as primer for 3Dpo1, a mechanism by which the viral protein would be linked to the 

nascent strand. A second hypothesis proposes that hairpins, formed at the 3' termini of 

the viral RNA, serve as primers. VPg supposedly functions subsequently as a highly 

specific nuclease that cleaves the hairpin structure thereby linking itself to newly 

generated 5' termini of viral RNA (Tobin et al., 1989). Available evidence favours the 

first of these models (Lama et al., 1994).

Expression of PV 3AB and 3A is extremely toxic to bacteria and this toxicity correlates 

with the ability of these proteins to make E. coli cells permeable to different compounds. 

This suggests that the two PV polypeptides may act as pore-forming proteins when 

expressed in E. coli (Lama et al., 1992; Lama & Carrasco, 1996). The C-terminal 22 

amino acids of 3A constitute a hydrophobic domain through which 3AB is believed to be 

anchored onto cytoplasmic smooth membranes where active RNA replication occurs. 

Further evidence making 3AB, which associates with intracellular membranes in isolation 

(Datta & Dasgupta, 1994) and binds directly to polymerase 3D, a likely candidate for the 

membrane tether for 3D polymerase comes from Hope and colleagues (1997) who 

discovered that detergent-solubilised and purified 3AB can be co-immunoprecipitated 

with either 3D polymerase or 3CD protease, which contains all 3D sequences but does 

not exhibit polymerase activity. Detergent-solubilised 3AB has been shown to stimulate 

both the polymerase activity of purified 3D polymerase and the proteolytic activity of 3CD 

in cell extracts. However, detergent-solubilised 3AB is not a substrate for 3CD cleavage, 

whereas membrane-associated 3AB is.
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PV protein 3AB has been shown to form a complex with and stimulate the activity of the 

viral RNA polymerase, 3Dpo1 (Plotch & Palant, 1995) which will be discussed later. More 

recently Hope et al. (1997) described the use of the yeast two-hybrid system to isolate 

and characterise mutations in the 3D polymerase that cause it to interact less efficiently 

with 3AB and concluded that interaction between 3AB and 3D or 3D-containing 

polypeptides plays a role in RNA synthesis during PV infection. Lama et al. (1994) have 

investigated the properties of purified recombinant PV 3AB and have suggested that it 

acts as substrate for viral proteinases and as cofactor for RNA 3Dp0‘. Molla et al. (1994) 

have shown that addition of VPg or 3AB stimulated the appearance of the cleavage 

products of 3CDpro by an effect on the 3C protease of PV.

The 3C regions of all picomaviruses code for a protease (3Cpro) with a critical function as 

the enzyme responsible for the majority of maturation cleavages in the precursor 

polyprotein (Figure 9). PV 3C proteinase proteolytically cleaves the translated 

polyprotein at 9 of 12 specific processing sites and is largely responsible for the 

liberation of the individual gene products. Proteolysis by 3Cpro occurs in a complex and 

incompletely understood cascade of cis and trans cleavages at mainly Q-G, Q-S, Q-A, 

and Q-N pairs (except in FMDV strains for which cleavage sites are more diverse, e.g., 

E-G, V-G, C-N, L-N, and Q-G). PV 3C also participates in the formation of the viral 

replicative initiation complex where it specifically recognises and binds the stem-loop 

structure in the 5' NTR of its own genome (Andino et al., 1990, 1993; Harris et al., 1994). 

The recognition site of 3C is located on the opposite side of the molecule in relation to its 

proteolytic active site and is centred about the conserved KFRDIR sequence of the 

domain linker (Gorbalenya et al., 1989; Hammerle et al., 1992; Mossimann et al., 1997). 

Mosimann et al. have recently (1997) published the refined X-ray crystallographic 

structure of the PV 3C gene product.

PV 3C is comprised of two six-stranded antiparallel p-barrel domains and is structurally 

similar to the chymotrypsin-like serine proteinases. The shallow active site cleft is 

located at the junction of the two p-barrel domains and contains a His40, Glu71, and a 

Cys147, equivalent to Cys146 in HRVs, as the active site nucleophile in the catalytic 

triad (Lawson & Semler, 1991; Leong et al., 1993; Mosimann et al., 1997). The 

polypeptide loop preceding Cys147 is flexible and likely undergoes a conformational 

change upon substrate binding (Mosimann et al., 1997). Certain substitution mutations 

in the putative catalytic triad of PV 3Cpro had differential effects on cleavage at different 

3Cpro-sensitive sites, which complicated the task of identifying the members of the
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catalytic triad (Hammerle etal., 1991; Kean etal., 1991).

Severe inhibition of host cell RNA transcription by all three classes of host cell RNA 

polymerase (Pol I, Pol II, and Pol III) is observed in PV-infected cells, and known as host 

cell transcription shut-off, however, the RNA polymerases themselves are not affected 

by PV infection. There is persuasive evidence that PV 3Cpro specifically and directly 

cleaves the TATA-binding protein (TBP) subunit of transcription factor IID both in vivo 

and in vitro, leading to a loss of formation of of the TBP-TATA box complex in vitro, 

resulting in the inactivation of Pol II transcription (Yalamanchili et al., 1996). More 

recently the cyclic AMP-responsive element binding protein (CREB) mediated activated 

Pol II transcription was shown to be inhibited by proteolytic cleavage of the 

phosphorylated, transcriptionally active form of the CREB protein by 3Cpro (Yalamanchili 

et al., 1997b) and that cleavage mediated by 3Cpro both in vivo and in vitro of another 

transcription activator, Oct-1 occurs (Yalamanchili et al., 1997c). Similarly, a RNA Pol III 

DNA-binding transcription factor, NIC, the a subunit of which actually contacts the Pol III 

promoter and is the target of cleavage, is cleaved and inactivated by 3Cpro (Shen et al., 

1996) In addition, PV 3Cpro completes the proteolysis of an active form of transcription 

factor NIC to an inactive form by about 5h post-infection, suggesting that this is an 

important mechanism for the shut-off of host transcription by Pol III. PV 3Cpro is further 

implicated in the destruction of a transcription factor complex essential for Pol I 

transcription. Thus, 3Cpro may be centrally involved in inhibiting transcription by the 

three major classes of RNA polymerase (Porter, 1993). In 1993 Leong and co-workers 

provided evidence that HRV14 3Cpro, which binds specifically to the 5' NTR of the viral 

RNA, has different domains for this binding and its proteolytic activities. Joachims et al. 

(1995) have also described the cleavage of a cytoskeletal protein, microtubule- 

associated protein 4 (MAP-4) by 3Cpro and 3CDpro in PV and HRV14 which correlated 

with a marked “collapse” of microtubules during late infection.

3Cpro of the renteroviruses is unable to perform, however, the VP0-VP3 cleavage, which 

is carried out by 3CD (Ypma-Wong & Semler, 1987; Takahara etal., 1989) and which in 

the case of purified PV 3CDpro can accumulate due to the cleavage efficiency of 3C at its 

carboxy terminus being rather low (Gauss-Muller et al., 1991). The 3CD precursor of the 

renteroviruses is, in fact, the catalytic unit vested with the cleavage of most capsid 

precursor locations. (Ypma-Wong et al., 1988). Unlike 3Cpro cleavages, the 3CD 

cleavage at VP0-VP3 site in PV requires myristylation of the amino terminus of the 

polyprotein, and an unknown cellular cofactor facilitates efficient 3CD cleavage at the PV
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VP0-VP3 site and, to a lesser extent, at the VP3-VP1 site. It should be kept in mind that 

3CD may also play a role (with or without 3Cpro) in the modification of transcription factor 

complexes associated with the inhibition of cellular Pol I, Pol II, and Pol III transcription 

by PV (Porter, 1993). Genetic evidence has revealed that, surprisingly, 3CDpro has the 

propensity to bind the 5'-terminal cloverleaf of PV RNA, but this occurs only in the 

presence of a 36kDa host factor, one of two proteins (p50 and p36) that interact with this 

cloverleaf structure. Host protein p50 is the eukaryotic elongation factor EF-1a, and p36 

an N-terminal fragment thereof (Harris et al., 1994). Mutations in stem-loop structures 

within the first ~100 nt of the PV 5' NTR and mutations in the 3C domain of protein 3CD 

affect in vitro binding of 3CD to viral RNA and plus-stranded RNA synthesis in infected or 

transfected cells (Andino et al., 1990, 1993). The 3AB-3CDpro complex, however, 

interacts with cloverleaf RNA and binds to 3' RNA fragments of the PV genome in the 

absence of host factor (Harris et al., 1994). Very recently, Roehl et al. (1997) 

demonstrated that the activity of the 3CD/3C proteinase results in the modification of a 

cellular precursor protein, yielding a 38kDa protein which binds to PV negative-strand 

RNA and is thought to be used for assembling a ribonucleoprotein complex at the 3' end 

of PV negative-strand RNA. Hope et al. (1992) concluded from their work that 3CDproM 

(M designates the cleavage site mutant 3CDpro T181K) can process both structural and 

nonstructural precursors of the PV polyprotein and moreover, that cleavage of 3CD, 

inactive as a RNA polymerase (Harris et al., 1992), to 3Dpo1 is needed to activate the 3D 

RNA polymerase (Gauss-Muller et al., 1991). Blair et al. (1996) described mutations in 

the 3C residues (Thr-142 and Ala-172) of 3CD which may exert their effects on RNA 

binding through formation of an RNA binding domain rather than via direct interaction 

with RNA, as might be expected of properly positioned basic amino acid residues. Davis 

et al. (1997) have shown that the 3D domain of 3CD proteinase had some influence on 

substrate recognition, but did not have dramatic impact on its interaction with inhibitors, 

and thus suggest that the active site of 3CD has a similar conformation to that of the 3C 

proteinase.

The 3D regions of all picomaviruses code for a polymerase (3Dp0‘) which exhibits a RNA 

chain elongation activity that is dependent upon an RNA template and a DNA or RNA 

primer. The enzyme has been extensively purified from PV-infected cells, and its cDNA 

has been cloned and expressed in bacterial and insect cells (Richards et al., 1987; 

Plotch et al., 1989; Neufeld et al., 1991). Neufeld et al. demonstrated in 1991 that PV 

RNA polymerase from native and recombinant sources, when purified exhibit identical 

properties validating the use of these recombinant proteins for further studies.
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Several amino acid sequences are conserved among all RNA-templated polymerases, 

most likely reflecting their shared catalytic functions and serving as a signature to identify 

RNA-dependent polymerase function. In PV 3Dpo1, a 52kDa protein, these conserved 

residues include a YGDD sequence (residues 326 to 329), D-233, and G-289. Three- 

dimensional structural analysis of several polynucleotide polymerases reveal striking 

core structures, which are designated fingers, palm, and thumb domains, referring to the 

resemblance of the core structure to a right hand. The conserved residues in PV 3Dpo1 

appear to reside in the palm domain and are thought to contribute to the catalytic pocket 

of the polymerase. D-328 and D-329 are residues which are probably involved in metal 

ion coordination. The roles of the other conserved residues are unknown. These 

enzymes, however, all share properties of template and nucleotide binding, as well as 

catalysis of phosphodiester bond formation. The PV 3Dpo1 contains two peptide 

segments previously shown to cross-link to nucleotide substrates via lysine residues 

(Richards et al., 1995) and in fact, a lysine residue at position 61 of 3Dpo‘ has been 

shown to be essential for polymerase catalytic function and that a basic (lysine or 

arginine) residue at position 276 is required for some other function of 3D important for 

virus growth but not for RNA chain elongation or polyprotein processing (Richards et al., 

1996). Data produced by Richards et al. in 1992 suggested that nucleotide binding 

causes conformational alteration of the polymerase enzyme’s structure.

Together with 2C and the cellular protein actin, 3CD, 3C, and 3D are present in highly 

purified preparations of FMDV and PV. They remain bound in variable amounts to the 

RNAs when they are extracted with phenol. As described before RNA prepared by 

these methods is rapidly degraded, but hydrolysis can be prevented by antibody against 

E. coli-expressed 3D, indicating that it is the RNA polymerase that has nuclease activity 

(Newman & Brown, 1997).

In the studies by Richards etal. in 1987, it was shown that PV polymerase was produced 

(a) by intermolecular cleavage of a fusion protein by another protein with protease 3C 

activity and (b) by cleavage of a fusion protein containing 3C and 3D sequences in the 

same polyprotein. Cho and colleagues (1993) reported that highly purified recombinant 

PV 3Dpo1 can in vitro unwind a long stretch of RNA duplex so as to displace strands for 

continued polymerisation of nascent chains and that the unwinding reaction proceeds in 

an elongation-dependent, ATP-independent manner requiring no additional proteins. It 

was determined also that PV 3Dpo1 was able to add multiple adenylate (A) residues to the 

3' terminus of RNA in a nontemplated manner which was classified by Neufeld et al. in 

1994 as a terminal adenylyl transferase (TATase) activity and proposed to effect the
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initiation of plus-strand synthesis. PV 3Dp0‘ is, in fact, the only protein required for 

elongation of RNA chains in vitro, however current models propose that in vivo 3Dpo‘ 

must function in concert with other viral and/or cellular proteins (Cho et al., 1993) as 

discussed later.

1.3.2.4 Replication
The replication of rhinoviruses is similar to that of enteroviruses except that time to 

completion is more variable and tends to be longer. In one-cycle growth experiments, 

new virus is frequently detectable in 5 to 7 hours, and a cycle is complete in 10 to 12 

hours, whereas first appearance may be as late as 9 hours and completion as late as 15 

to 17 hours. Yields vary from 10 to 200 plaque-forming units (PFU) per cell.

Molecules belonging to the immunoglobulin (Ig) superfamily serve as receptors for the 

major-group HRVs (intercellular cell adhesion molecule 1) and for PV (unknown cellular 

function) (Bibb et al., 1994). Interestingly, Zhang & Racaniello (1997) have shown that 

expression of the PV receptor is not sufficient to permit replication in the mouse gut 

indicating that other factors are involved in determining the ability of PV to replicate in 

this tissue. ECHOviruses 1 and 8 attach to integrin VLA-2 and avp3 integrin is reported 

to be the receptor for CV A9 and ECHOvirus 22. Minor-group HRVs, except HRV87 

(Uncapher et al., 1991), bind to cells via members of the low-density lipoprotein receptor 

family (Zhao et al., 1997). Decay-accelerating factor (DAF, CD55) is recognised as the 

cellular receptor for at least six ECHOvirus serotypes and as a receptor for CVs B1, B3, 

and B5, and is the HeLa cell receptor for enterovirus 70 (Kamauchow et al., 1996). 

Interaction of group B CVs with permissive cells may also involve a nucleolin-like 

membrane protein.

PV enters susceptible cells via the PVR as mentioned above, however the mechanism of 

uptake and uncoating are still unknown (Xiang et al., 1997). PV and HRVs have been 

shown to attach to their receptor molecules on the cell membrane and enter the host cell 

or deliver its RNA by a poorly understood process involving the loss of VP4 and the 

formation of 135S “A” (“Altered”) particles. After the “A” particles, found to be infectious 

in the case of PV (Curry et al., 1996), have released their RNA, they form empty 80S 

particles. In PV, the N-terminus of VP1 is externalised and is available for proteolytic 

cleavage (De Sena and Mandel, 1977) and is thought to be deployed optimally for entry 

of the RNA genome (Curry et al., 1996). While uncoating of major-group viruses results
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in lysis of the endosomal membrane or release of subviral 135S and 80S particles into 

the cytoplasm, as described above, it appears that minor-group rhinoviruses transfer 

their genomic RNA to the cytoplasm through a pore in the endosomal membrane 

(Schober et al., 1998).

Some picomaviruses inhibit cellular protein synthesis soon after infection. In the case of 

PV-infected HeLa cells, shut-off occurs quickly within the half hour or so required for 

attachment, penetration, and uncoating of the RNA genome. Host-cell shut-off and the 

proteins involved have been discussed previously.

Upon entry into the cell, the infecting RNA genome serves as messenger to direct the 

synthesis of virus-specific proteins which are required for RNA replication. The viral 

proteins are synthesised by translating a single large coding region on the genome, and 

the protein products are then produced by cleavage of the nascent polyprotein by the 

mechanisms discussed in 1.3.1.3. The time required for a ribosome to translate the 

RNA genome of PV from one end to the other is about 10 to 15 minutes. Because 

replication cannot begin until the polymerase gene has been completed, this probably 

represents the minimum time between the time of uncoating and the moment when 

synthesis of viral RNA can begin. Elongation of the RNA molecule is performed by 3Dpt)l, 

some of which is found in the cytoplasm of infected cells tightly associated with its RNA 

template and with cellular membranes. Most 3Dpo‘ is found in soluble form. It is not 

likely engaged in RNA synthesis but may simply result from the excess produced by the 

polyprotein strategy of expression.

Because ribosomes are known to bind and initiate translation internally on the PV 

genome, it is perhaps not surprising that elF-2a is found in complexes that map to 

regions (nt 97-182 and nt 510-629) within the 5' NTR. del Angel et al. (1989) speculate 

that the interactions between the complexes and elF-2a may represent an early step in 

virus replication that precedes ribosome binding to PV mRNA.

It is unclear which translation features are required for IRES-driven translation initiation; 

however, it has only recently been shown that cellular proteins other than the generally 

recognised translation initiation factors are necessary. A 50kDa protein has been shown 

to interact with the RNA stem-loop structure located between nt 186 and 221 in PV type 

1 RNA (Najita & Samow, 1990). Another protein present in abundance in HeLa cells 

compared with RRLs, called p52, found to be identical to the previously identified La
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autoantigen, involved in host cells in the termination and reinitiation of RNA polymerase 

III transcription, has been shown to interact with PV RNA consisting of the 

polypyrimidine-rich region and stem loop VI and without which translation of PV in RRLs 

produced aberrantly initiated polypeptides. Das et al. (1994) discovered a small yeast 

RNA called l-RNA which competes with virus RNA structures within the 5' NTR which 

bind the cellular p52 protein. It is reported elsewhere that the addition of at least two 

HeLa cell proteins to RRLs is required for efficient initiation of translation from the PV or 

HRV IRES. One of these, a 57kDa factor has been shown to interact with HRV and PV 

IRESs, as well as EMCV, HAV and FMDV. The physical, biochemical, and antigenic 

properties of p57 were found to be identical to the previously identified polypyrimidine 

tract-binding protein, PTB, which binds to pyrimidine-rich sequences in mammalian 

introns and is involved in pre-mRNA splicing. The second protein, of 97kDa, which 

apparently acts in concert with PTB, remains to be identified. Hellen et al. (1993) 

showed that immunodepletion of HeLa extracts using PTB antibodies nearly abolished 

both PV and EMCV translation; however, addition of purified PTB to these extracts did 

not restore translation, indicating that additional required factors may interact with PTB. 

Blyn and co-workers in 1996 isolated specific host cell proteins that bind to stem-loop IV 

of the PV 5' NTR and identified one of these as poly (rC)-binding protein 2 (PCBP2) and 

in 1997 Blyn et al. demonstrated that PCBP2 is an essential factor required for efficient 

translation of PV RNA in HeLa cells.

In addition to the requirement for noncanonical cellular translation initiation factors, 

IRES-driven translation can be stimulated by viral components. Ziegler et al. (1995) 

demonstrated that the HRV2 2A proteinase is more efficient at stimulating IRES-driven 

translation than any other protein identified to date and that the stimulation correlates 

with the enzymatic activity of the 2A proteinase, the proteolytic conversion of some 

cellular component(s) being involved in 2A proteinase-mediated translational 

transactivation. Hence, 2A is important not only as a downregulator of cellular 

translation, but also as an enhancer of IRES-driven virus-specific translation (Macadam 

etal., 1994).

Efficient functioning of the IRES itself involves two smaller elements in PV: UUUCC, 

considered to be an analogue of the Shine-Dalgarno sequence because of its 

complementarity to a segment at the 3' end of the 18S rRNA, whose position, about 

100nt upstream from the initiating AUG, in the PV system must be strictly fixed, relative 

to upstream c/s-acting elements, and an AUG, which may not necessarily serve as an
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initiation codon (Pilipenko etal., 1992).

One of the major determinants for picomaviral species and tissue tropism is the 

presence or absence of the viral receptor on the cell surface. However, several results 

suggest that the IRES may also represent a determinant of viral tropism. In vitro studies 

have identified different cell factors that bind to the different IRESes and that may be 

required for translation initiation (del Angel et al., 1989). Shiroki et al. suggested in 1997 

that host factor(s) affecting IRES-dependent translation of PV differ between human and 

mouse and that the mutant IRES constructs they created detect species differences in 

such host factor(s), and the interaction between IRES and host factors is an important 

determinant of host specificity of PV replication.

Similarly, RNA sequences in the 5' NTR of CV B1 and CV B3 are involved in virulence, 

however the sequences involved in the cardiovirulent phenotype are not within the 

boundaries of the predicted IRES. Thus, the interactions between IRESs and cellular 

cofactors involved in translation may only be involved in the cell-type tropism of some 

picornaviruses (Borman et al., 1997; Stewart & Semler, 1997). Johnson and Semler 

(1988) suggest that sequences involved in “replicative fitness” are located in the 5' NTRs 

of picornavirus genomic RNAs.

Further to their investigations into the poor translation efficiency of genome-length HRV 

RNA in vitro using HeLa cell-extract supplemented RRL compared with PV, Todd et al. 

(1997a) suggested that the rate-limiting step for rhinovirus assembly during an infection 

occurs at a step other than translation and the primary impediment for rhinovirus 

production is likely in packaging or capsid assembly discussed later.

One would envisage that the polymerase released from the polyprotein might first bind to 

a specific site near the 3' end and then translocate to the end of the poly(A) tract to 

initiate negative strand RNA synthesis (Oberste & Flanegan, 1988). Flanegan and 

Baltimore (1977) isolated a template-dependent RNA polymerase from PV-infected cells, 

capable of copying poly(A) complexed to an oligo(U) primer, which may be important in 

initiating minus-strand synthesis by making poly(U), and which, by being unable to copy 

poly(A)-deficient RNA, supports the observation that poly(A) is required for infectivity.

The genomic RNA 3' NTR is believed to be a major cis-acting molecular genetic 

determinant for regulating picornavirus negative-strand RNA synthesis by promoting RC
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recognition, however it has been shown that while intact RNA 3' NTRs may be required 

for efficient viral replication, they are not essential and they may have evolved to 

promote or regulate negative-strand synthesis, but the basic mechanism of replication 

initiation is not strictly template specific and may rely primarily upon the proximity of 

newly translated viral replication proteins to the 3' terminus of template RNAs within tight 

membranous RCs (Todd etal., 1997b).

Higher-order RNA structures in the 3' NTR, however, are thought to play a pivotal role in 

the initiation of negative-strand RNA synthesis. The secondary structures predicted for 

the enterovirus 3' NTR all seem to point to a conformation consisting of two (X and Y) to 

three (X, Y, and Z) hairpin structures, in which the poly(A) tract is partly included. It has 

been suggested that interactions occur either between the two predominant loops (X and 

Y) within the 3' NTR or between one hairpin loop (Y) and the flanking coding sequences 

of the 3D RNA polymerase (Jacobson et al., 1993), forming two higher-order tertiary 

RNA structures. The higher-order RNA structure of the 3' NTR appears to be 

maintained by an intramolecular kissing interaction between the loops of the two 

predominant hairpin structures (X and Y) within the 3' NTR, and this kissing interaction 

has been shown by Melchers et al. (1997) to be the essential structural feature of the 

origin of replication required for its functional competence in virus negative-strand RNA 

synthesis.

The presence of such a tertiary structure in the 3' NTRs of both the CV B- and PV-like 

viruses allows the exchange of the 3' NTR between these viruses without affecting 

subsequent replication since the binding sites are identical (Rohll et al., 1995). On the 

other hand, the rhinovirus genus 3' NTR, consisting of a single stem-loop structure 

cannot form a kissing interaction, and a PV chimera containing the HRV14 3' NTR is, 

interestingly, still capable of initiating PV negative-strand synthesis (Rohll et al., 1995). 

One explanation might be that this occurs because ribonucleoprotein (RNP) complex 

formation occurs differently in the rhinovirus 3' NTR, although formation of the complex 

as such is sufficient to initiate replication.

As in the case of other complex higher-order RNA structures like pseudoknots, it is 

reasonable to assume that the kissing interaction in the 3' NTR acts as a specific binding 

site for viral and/or cellular proteins involved in the initiation of negative-strand synthesis. 

Indeed, Harris et al. (1994) have described the formation of a 3'-terminal RNP complex 

composed of a 3AB-3CD interaction with the 3' NTR. The subsequent proteolysis of
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3CDpr° releases the 3D polymerase. Protein 3AB then forms a complex with protein 3D 

to stimulate the activity of the virus polymerase (Harris et al., 1994; Lama et al., 1995; 

Plotch & Palant, 1995) which may use the uridylated VPg to initiate negative-strand RNA 

synthesis. A similar protein 3D interaction with tertiary (pseudoknot) structure in the 3' 

NTR of EMCV has been proposed. Although Harris et al. (1994) did not consider other 

proteins to contribute to the complex formation, Todd et al. recently (1995) provided 

evidence for an interaction of the 3' NTR with certain unidentified cellular proteins as well 

and more recently, (1997b) Todd et al. suggested that, while specific 3'-terminal RNA 

sequences and/or secondary structures may have evolved to promote or regulate 

negative-strand synthesis, the basic mechanism of replication initiation is not strictly 

template specific and may rely primarily upon the proximity of newly translated viral 

replication proteins to the 3' terminus of template RNAs within tight membranous RCs.

The importance of RNA structures in RNA-protein interactions is generally known, and 

the tertiary RNA structure can be essential for stabilising the structure for the subsequent 

interaction with proteins (Frankel etal., 1991).

Studies on cell-free synthesis of minus strands from the plus template indicate that at 

least three proteins are required: virus protein 30^', a VPg donor, and one or more host 

factor proteins [a terminal uridylyl transferase (TUT), and perhaps a protein kinase]. Two 

models have been proposed to explain the initiation of viral RNA synthesis on the 

poly(A) tail by 3D1”1: .

In one model, oligo(U) is added enzymatically to the 3' terminus of the poly(A) by the 

host factor, TUTase, and the oligo(U) hybridises to the poly(A) to initiate RNA chains. 

Subsequently , the genome-linked peptide, VPg, cleaves the hairpin and is linked to the 

5'-end of the oligo(U). In the second model, a uridylylated derivative of VPg is the 

primer, although the evidence suggests that it is mainly plus-strands that are synthesised 

by this mechanism (Takegami et al., 1983). The cellular kinase and uridylylate 

transferase are however no longer under consideration and it has very recently come to 

light that synthetic VPg can be uridylylated with 3Dpt)l in a reaction requiring only poly(A) 

template UTP and magnesium. If uridylylation, however depends on a poly(A) template, 

how does 3Dpt)l select the 3' end of PV RNA over the sea of polyadenylated mRNAs? 

Currently, available evidence suggests that the heteropolymeric 3' NTR preceding the 

poly(A) serves as a recognition signal for RNA selection (Xiang etal., 1997).
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Synthesis of the negative-strand RNA yields a double-stranded intermediate, the RF 

which separates. The role of the RF in replication is not clear, but some of the RF in 

infected cells is in fact hair-pinned, i.e., contains a covalented attached plus and minus 

strand (Wimmer et al., 1993). The involvement of RF as intermediate has not been 

generally accepted but is almost a necessity in view of the role of the cloverleaf. Xiang 

et al. (1997) speculate that the left end of RF may serve as a (double stranded) 

recognition signal for plus-strand RNA synthesis. The negative-strand therefore acts as 

a template for amplification of positive-sense genome. The RNA duplex unwinding 

activity of 3Dpo1 demonstrated by Cho et al. (1993) may be responsible for the separation 

of the two RNA strands of the RF at the replication fork.

Initiation of plus strands in a defined in vitro system by PV 3DpDl either does not occur or 

is extremely inefficient. One reason is likely to be that PV plus-strand initiation depends 

on the formation of a RNP complex on the plus strand, comprising 3CD, 3Cpro, 3Dpo‘ (?), 

and a ribosome-associated cellular protein (p36) bound to the proximal 88 nucleotides of 

the 5' end folded into a cloverleaf-like structure. This structure is dispensable for the 

initiation of PV minus strands, suggesting that the complex is essential only for plus- 

strand initiation (Plotch et al., 1989; Andino et al., 1990, 1993). Indeed Borman et al. 

(1994) have shown that essential viral RNA replication signals are located in the 3' 

region of the PV IRES, some 500 nt downstream from the 5' end of the RNA and that a 

second element is located within the IRES whose disruption only minimally affects 

translation efficiency while greatly impairing RNA synthesis.

Shiroki and co-workers (1995) revealed that a host cellular factor(s) interacts with a RNA 

segment around nt 133 of the plus-strand RNA or the corresponding region of the minus- 

strand, contributing to efficiency of plus-strand RNA synthesis.

It is unclear whether PV 3CD, 3Cpro, and 3Dpot all participate in complex formation, 

although it has been demonstrated that purified, recombinant HRV14 3Cpro binds in vitro 

specifically to the 5' terminal 126 nt of the 5' NTR of the viral RNA in the absence of 

3CD and 3Dpo1. Overall, the results support an intriguing speculative model of 

membrane-bound plus-strand initiation in trans involving the following steps (i) 3Dpo1 (and 

an associated protein(s))?, having just completed the synthesis of a minus strand, 

provides the signal for assembly of the RNP complex on the 5' end of the neighbouring 

plus strand, (ii) The complex catalyses the formation of VPg-pU(-pU) via 3AB. The 

presence of a template RNA molecule in the complex triggers the uridylylation reaction
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(Takeda etal., 1987) (iii) The complex then catalyses the initiation of a new plus strand 

in trans, using the RNA template and the newly formed VPg-pU(-pU) as primer for the 

3Dpo‘ (Takeda et al., 1987), at the 3' end of the neighbouring minus strand newly 

exposed by the formation of the complex (Takegami et al., 1983). The source of 3Dpt)l 

for plus-strand synthesis could be either 3Dpt)l or 3CD already present in the RNP 

complex (Porter, 1993). McBride et al. (1996) have identified cDNAs for several host 

proteins that interact with 3D polymerase, most notabiy a 68kDa protein that associates 

with Src during mitosis, Sam 68. Sam 68 coimmunoprecipitates with 3D polymerase 

from infected cells, is found on PV-induced membranes, and relocalises drammatically 

during PV infection which makes it a strong candidate for a host protein with a functional 

role in PV replication. Banerjee et al. (1997) have demonstrated that 2C specifically 

binds to the 3' cloverleaf structure of the negative-strand RNA but not to the 5'-end 

cloverleaf of the positive-strand and as we have seen already, is important in initiation of 

positive-strand RNA synthesis (see Figure 15).

Replication takes place via a replicative intermediate (Rl) which consists of a full-length 

template strand with some six to eight nascent daughter strands. (Figure 10, step 6). 

The time required for synthesis of each RNA molecule has been estimated at about 45 

seconds. The Rl-dependent plus-strand RNA synthesis proceeds in a viral complex, 

proposed by Plotch and Palant in 1995 to contain PV protein 3AB, which forms a 

complex with and stimulates the activity of the viral RNA polymerase and 3AB, 3Dp0‘ (or 

its precursor 3CD) and viral RNA are brought together in host cell vesicles in which all 

viral RNA synthesis occurs.

Schlegel etal. (1996) revealed that the intracellular rearrangements that accompany PV 

infection result in the formation of double-membrane structures, containing replication 

protein 2C, that contain markers from the ER, the trans Golgi stacks and TGN, and 

lysosomes. The double-membrane structure implies that the membranes do not form by 

a simple budding mechanism from a discrete compartment in the cell but instead must 

form either by a double-budding mechanism or, more likely, by wrapping of cytosol by 

membranous compartments.

Likely candidates for the protein or activity that causes accumulation of these double­

membrane structures and rearrangement of the intracellular secretory apparatus include 

PV 2A, 2C, 2BC, which have been found to induce, in various expression systems, the 

formation of large electron-dense cytoplasmic structures, vesicle formation, and 

membrane rearrangements respectively (Cho etal., 1994; Aldabe & Carrasco, 1995).
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Figure 15: Models of PV minus and plus-strand RNA synthesis
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Direct transfection of plasmids encoding 2B or 3A cause the inhibition of protein traffic 

between the ER and the Golgi apparatus and the expression alone of 3A, found to 

localise to intracellular membranes (Datta & Dasgupta, 1994), causes a normally 

secreted protein to colocalise with an ER luminal protein and which were subsequently 

found redistributed throughout the cytoplasm (Doedens & Kirkegaard, 1995).

Upon isolation from infected cells, the virus-induced vesicles were found to form rosettes 

which surround the RC, can be isolated in a functional state, and continue to initiate, 

elongate and release progeny plus-strand RNA in an in vitro transcription system 

(Takeda et al., 1986). It was later found (Egger et al., 1996) that these rosettes could 

reversibly dissociate into virus-induced vesicles and reassociate into rosettes. These 

vesicles carry a set of viral structural and nonstructural proteins as well as Rl RNA and 

Egger etal. (1996) showed that the initiation and elongation of plus strands on individual 

vesicles are comparable to those in rosettes and also, by use of detergent treatment, 

that initiation, but not elongation, is dependent on vesicular membranes.

To form a rosette could be advantageous for virus replication because it could greatly 

increase the effectiveness and speed of plus-strand RNA synthesis. There are two main 

reasons for this: first, macromolecular crowding, exerted by the mass of vesicles, leading 

to an enhanced concentration of factors necessary for RNA synthesis; and second, the 

providing of more membrane-bound initiation sites (Harris et al., 1994) for the Rl. This 

allows the Rl, or rather its minus-strand template RNA, to easily move on within the 

rosette and to combine with its 3' end with the next initiation site on the same or the next 

vesicle. This would make the rosette, as such, a higher-order structure with functional 

subunits (vesicles), although in the infected cell the rosette could well be a short-lived, 

transient structure, changing its framework of individual vesicles continuously as the 3' 

end of the minus strand moves on (Egger etal., 1996).

A terminal adenylyl transferase (TATase) activity has been identified in preparations of 

purified PV 3Dpo1, which is able to add nontemplated A residues by virtue of this activity. 

The implication of the results of Neufeld et al. (1994) is that in vitro, 3Dpo‘ can synthesise 

minus-strand RNA in a primer- and template-dependent manner and that once that has 

occurred, the minus-strand RNA can fold back to prime elongation of a plus-strand of 

RNA, and this model is compatible with data presented by Andino et al. (1990 and 

1993).
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Figure 16: A possible role for TATase activity during poliovirus plus-strand RNA 
initiation and synthesis
(1) Poliovirus 3Dp0‘ completes synthesis of minus-strand RNA in a template-dependent 
manner. (2) Following addition of the last templated nucleotide, 3D90' adds three to six 
extra A residues by virtue of its TATase activity. (3) The 3'-terminal A residues fold back 
and pair with the U residues in the minus-strand RNA, priming synthesis of plus-strand 
RNA by 3Dpo1. (4) Uridylylated VPg is transferred to the plus-strand RNA between the 
extra A residues on the template and the base-paired product strand. (5) Following 
transesterification, the protein VPg is linked to the nascent plus-strand RNA (Modified 
from Neufeld etal., 1994).
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Once initiated, PV RNA synthesis proceeds exponentially, producing new templates and 

thus continually increasing the rate of synthesis. During this early stage of synthesis the 

rate doubles every 15 minutes until about 10% of the final yield has been produced. At 

this point the rate of synthesis becomes constant, accumulating linearly for an additional 

hour until the number of RNA molecules reaches about 4x105 per cell. Some 2-5% of 

the total viral RNA in infected cells consists of minus strands. The mechanism 

controlling this differential synthesis is not clear. A substantial fraction of the RNA 

synthesised during the exponential phase of synthesis is destined to become mRNA, 

whereas about 50% of that made during the linear phase is packaged into virions. The 

switch from exponential to linear synthetic rate may reflect siphoning of the RNA pool 

into virions. Troxler et al. (1992) found that PV plus-strand RNA was found accumulated 

in the close surroundings of the membrane-bound complex and that riboprobes from two 

different regions of the viral genome hybridised with the same frequency, suggesting that 

the accumulation of hybridisation signal in the vicinity of the RC represents completed 

rather than RI-RNA. They proposed that newly made viral plus-strand RNA is set free 

from the core RC but remains associated with it, thereby forming a steady-state pool. 

This pool might be the site where the viral progeny RNA proceeds to encapsidation, thus 

linking RNA synthesis and virion formation. Specific interactions between the 2A- 

encoding sequence and the capsid proteins exist and a modification of these interactions 

by point mutations destabilises the virus, thereby contributing to the mouse 

neurovirulence of PV1 (LS-a). If this is the case, it is possible that sequences mapping 

to the coding region of 2Apro function as an encapsidation signal (Lu et al., 1994).

The type of subviral particle that associates with progeny RNA and proceeds to RNA 

encapsidation has not yet been identified, although some investigators have proposed 

that 14S pentamers, rather than empty capsids, may be involved in encapsidation of 

progeny plus-strand RNA and in fact Pfister et al. (1995) have shown that encapsidation 

of PV RNA starts in the RC and is initiated by 14S pentamers. RNase digestion 

experiments with isolated RNA-synthesising RC have shown, that upon completion, 

virtually all 36S RNA (in contrast to Rl RNA) becomes RNase accessible, presumably 

after changing its location in the RC. The altered RNase accessibility seems to be 

coupled to or closely following the release of 36S RNA from the Rl, since no RNase- 

protected 36S RNA can be found in an actively RNA-synthesising RC. Concomitantly or 

following the completion of 36S RNA, its association with 14S pentamers occurs.
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1.3.2.4.1 Adaptation to cell culture and attenua tion of virulence

Among the enteroviruses that are cytopathogenic - which include PVs, ECHOviruses, 

many of the CVs, and the enterovirus type 68-71 - growth can usually be obtained 

readily in primary cultures of human and monkey kidney cells and in some cell lines 

[such as HeLa, Vero, buffalo green monkey (BGM), or, for some serotypes, WI-38]. Until 

recently, primates were the only animal host susceptible to all three PV types (Wood & 

Macadam, 1997). The host restriction is due to the absence of a cellular receptor found 

on human and primate cells, the genes of which have been identified and isolated which 

has allowed the establishment of transgenic mouse lines that express the human 

receptor (TgPVR mice). A significant finding concerning PV host range is that variants of 

PV1 that carry the VP1 B-C loop (exposed loop formed by amino acids 95-105), which 

contributes substantially to neutralisation antigenic site I, of PV2 are neurovirulent in 

mice (Murray et al., 1988). Furthermore, Moss and Racaniello (1991) identified second 

site suppressors, which restore virulence to viruses attenuated by changes in the B-C 

loop and suppressor mutations were located in the N-terminal extension of VP1 on the 

interior surface of the virus particle. The B-C loop and the internal suppressors are 

therefore host range determinants. Because the internal host range determinants are in 

a structure known to be important in conformational transitions of the virion, the host 

range of PV may be determined by the ability of virions to undergo transitions catalysed 

by cell receptors.

In contrast, most rhinoviruses of humans, grow efficiently only in human and some 

primate tissues; the presence of receptors on cell surfaces again influences this tissue 

specificity. Initial isolations were accomplished with rhesus monkey kidney tissue 

cultures, but a clear superiority of human tissues for isolation and growth was shown 

later. The increased frequency of isolations with human tissue cultures led to the 

commonly used designation of M- and H-strain rhinoviruses. The M strains grew in both 

monkey and human tissues, whereas the H strains grew only in human tissues; this 

separation is no longer used because it was shown that many H strains could be 

adapted to grow in monkey tissues. Persistent infection of HeLa M cells with type 2 has 

been described, but the basis for persistence was not identified (Couch, 1996).

Continued passage of viruses in vitro leads to incorporation of mutations into its genome 

as the virus adapts to growth in cell culture. The Sabin vaccine strains of the three 

serotypes of PV have played a large part in the effective control of poliomyelitis in 

developed countries and the molecular basis of attenuation of these live viral vaccines
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has been extensively studied. A striking feature has been the discovery of attenuating 

determinants in the 5' NTR of all three vaccine strains. Point mutations in the 5' NTRs of 

PVs, known to be involved in attenuation of neurovirulence (Skinner et a/., 1989), have 

been shown to affect the ability of viruses to grow at elevated temperatures (Macadam et 

al., 1991,1992). This temperature sensitivity is almost certainly a measure of the ability 

of part of the 5' NTR to form a specific secondary structure capable of interacting with 

cellular and/or viral factors and the ultimate effect of secondary structure perturbation by 

attenuating nucleotides may be on translation, mediated by factor-binding deficiencies. 

PVs containining a mutation at amino acid 424 of the 3Dpo1 displayed a temperature 

sensitive phenotype (Burns et al., 1992). The genetic basis of the attenuated phenotype 

of the type 3 vaccine strain (Sabin 3) has been shown to be almost entirely explicable by 

just two point mutations (Westrop et al., 1989). One of these, at nt 472 in the 5' NTR, 

reverts rapidly when the virus replicates in the human gut and other changes including 

intertypic recombination occur frequently in vaccinees and recent evidence suggests 

that, although apparently not encountering factors that favour rapid reversion toward 

high neurovirulence (Georgescu et al., 1997), this attenuation determinant might disrupt 

the interaction of the PV 5' NTR with PTB in the CNS, reducing viral translation, 

replication and neurovirulence (Gutierrez et al., 1997). The other attenuating mutation, 

which involves a substitution at amino acid 91 of the capsid protein VP3, renders the 

virus temperature-sensitive (ts). Similarly a mutation in the puff region of VP2 attenuates 

the myocarditic phenotype of an infectious cDNA of the Woodruff variant of CV B3 

(Knowlton et al., 1996). Determinants of attenuation in the Sabin type 1 strain of PV are 

located in the 5' NTR, the capsid coding region and the viral 3Dpo‘ coding region. These 

mutations also contribute to a temperature sensitive phenotype of replication. The 

contribution of Sabin 3Dpo1 sequences to the inability of the virus to grow at elevated 

temperatures must, Baker et al. (1995) have shown, lie in a function or activity of the 

enzyme other than RNA polymerisation, most likely the initiation step of RNA synthesis.

A live-attenuated strain of rhinovirus type 15 was developed, and differing plaquing 

properties of the wild parent and the attenuated progeny were described. Use of 

attenuated viruses for immunisation would require use of multivalent live preparations; 

dual infection with two serotypes was induced experimentally and has been identified 

naturally. Despite some promise, the live virus vaccine approach has not been pursued. 

Problems for all rhinovirus immunisation approaches are the multiplicity of serotypes and 

the suggestion that most have epidemiological significance (Couch, 1996).
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Recombination is a valuable strategy by which a virus strain can enhance its virulence 

and promote its growth and may be a more efficient means for evolution of a viral 

genome than mutation alone. In the case of two strains of CV B1, one, CV B1N, being 

less virulent than the other myotropic strain (CV B1T), sequencing of the 5' NTR of CV 

B1T demonstrated areas with a greater similarity to particular ECHOviruses than to CV 

B1N (the less virulent strain), suggesting that recombination events might have occurred, 

perhaps influencing the virulence phenotype (Rinehart et al., 1997). Amazingly, there is 

a report detailing the discovery of a nonhomologous recombination event which occurred 

in tissue culture between an engineered PV genomic RNA containing a lethal lesion and 

the human host cell RNA (Charini et al., 1994).

1.3.3 Cardiovirus and aphthovirus genera
The cardioviruses all belong to a single serotype and are here all considered to be 

strains of EMCV. They are generally regarded as murine viruses although their host 

range includes humans, pigs, elephants, and squirrels among others.

CARDIOVIRUSES

Encephalomyocarditis virus Columbia SK

Mengovirus Maus Elberfeld (ME) virus

Theileris murine encephalomyelitis virus (TO, GDVII) MM Virus

Figure 17: Cardiovirus serotypes

Aphthoviruses (foot-and-mouth disease viruses) infect cloven-footed animals, especially 

cattle, goats, pigs, sheep, and, rarely, even humans. Seven immunotypes have been 

identified: these include types A, C, O, Asia-1, and the South African Territory types, 

SAT-1, SAT-2, and SAT-3. Within these seven types, at least 53 subtypes have been 

designated by complement-fixation tests. The serological characteristics of the subtypes 

are sufficiently different to cause difficulty in classification and immunization. The 

aphthoviruses are highly labile, being rapidly inactivated at pH less than 7.

APHTHOVIRUSES

Foot-and-mouth disease virus 1-7 (serotypes A, C, O, SAT-1, 2, 3, Asia-1) 

Figure 18: Aphthovirus serotypes
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FMDV infection results in a severe disease that develops rapidly, with symptoms that are 

often apparent within 24 hours following exposure to the virus. Thus effective vaccines 

need to stimulate a strong immune response prior to infection since postexposure 

boosting of vaccine-induced responses cannot compete with the rapid onset of disease.

Foot-and-mouth disease, an economically important viral disease of livestock, is a 

problem in many developing countries and poses a continuous threat to FMD-free 

nations of North America and Europe as its remarkable antigenic variability complicates 

the development of new effective vaccines.

1.3.3. 1 Properties of virion
Aphthoviruses, cardioviruses and TMEV are all plus-strand viruses with a molecular 

weight of between 2.70 x 106 and 2.93 x 106. Again, the virus capsid of the aphtho- and 

cardioviruses is made up from 60 copies each of four virus-encoded proteins, VP1 to 

VP4; VP1 to VP3 form most of the capsid shell, with VP4 lining the interior surface.

Figure 19: Molecular surface of foot-and-mouth-disease virus and mengo virus
Molecular surface of FMDV (left) and mengo virus (right), radially depth cued, as solved 
by X-ray crystallography determined by Logan et al. (1993) and Luo et al. (1987) 
respectively. Images courtesy of J. -Y. Sgro on Silicon Graphics taken from 
http://www.bocklabs.wisc.edu/imaQes/fmdv.iDQ and menao.ipg.
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The three major capsid proteins of all picornaviruses, VP1, VP2 and VP3, are structurally 

similar to each other and consist of an eight-stranded p-barrel with a jelly-roll topology. 

The surface exposed loops joining the strands of the jelly rolls differ radically between 

the genera, and to a lesser extent between serotypes. These exposed loops define 

much of the antigenic character of each virus. FMDV differs from the other 

picornaviruses in having a relatively smooth surface with one exceptionally long exposed 

loop, the GH-loop of VP1 (residues 134-160), which not only constitutes most of a major 

antigenic site but also contains a conserved RGD (Arg-Gly-Asp) sequence which has 

been demonstrated to be essential for attachment of the virus to cells. This loop is 

highly disordered in the native virus structure of all serotypes examined to date and 

Hewat et al. (1997) have published information on the structure of this receptor-binding 

loop in relation to the rest of the virus capsid and further reinforces the picture of the GH- 

loop acting as a mobile structural module.

Analysis of the structural tendencies of a synthetic peptide corresponding to the GH loop 

from the serotype 01 FMDV was undertaken by de Prat-Gay (1997). The observation 

that a synthetic peptide, corresponding to the GH loop, is largely disordered in aqueous 

solution has implications on the ability of GH loop peptides to elicit humoral protection in 

animals and therefore, on its effectiveness as a vaccine. The loop must be continuously 

subjected to a conflict between sequence conservation to function as receptor 

recognition signal and variation to escape from antibody neutralisation (Mateu, 1995). 

Recently the structure of a complex between the Fab fragment of a neutralising 

monoclonal elicited against FMDV and its 15 amino acid peptide antigen was reported 

(Verdaguer et al., 1996). This type of structural information may eventually allow 

modelling of antibody-entire complex formation, an important event in neutralisation of 

viral infectivity.

There are two subgroups of Theiler's virus, a murine cardiovirus, which are closely 

related, serologically and at the genome level, but which differ in their phenotypes. 

Following intracranial inoculation either an acute encephailitis (strain GDVII) or a chronic 

demyelinating disease (strain DA) ensues. Studies indicate that the viral capsid contains 

determinants for persistence and demyelination (Fu et al., 1990). Jarousse et al. (1996) 

have found that amino acid VP2-141, as well as rendering chimeric virus persistent, can 

modulate the tropism of Theiler's virus and their data indicates that the mechanism by 

which this region affects persistence may involve tropism.
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The acid-labile aphthoviruses inhabit the nasal and oropharyngeal regions with no 

apparent need for acid stability. Indeed it may be that the structure conferring acid 

stability to the virion conveys some still inapparent counteradvantage because the highly 

labile aphthoviruses are among the most contagious viruses known (Rueckert et al.,

1996).

Empty capsids of FMDV, purified by Curry et a/. (1997), were unusual among 

picornaviruses in that most of the capsid precursor VPO had been cleaved into VP2 and 

VP4. Both the N terminus of VP1 and the C terminus of VP4, which pack together close 

to the icosahedral threefold symmetry axis where three pentamers associate, are more 

disordered than they are in the RNA-containing virus. The ordering of these termini in 

the presence of RNA strengthens interactions within a single protomer or between 

protomers belonging to different pentamers. The disorder in the FMDV empty capsid 

forms a subset of that seen in the PV empty capsid, which has VPO intact. Thus, VPO 

cleavage confers stability on the picomavirus capsid over and above that attributable to 

RNA encapsidation.

By contrast to other picornaviruses, the truncation of VP1 in FMDV exposes the five- 

stranded p annulus formed by the N termini of VP3 packing around the icosahedral five­

fold axes. This forms a tube with an average diameter of 11 A. Although VP4 lies below 

this tube, no well-ordered residues obtrude close to the symmetry axis (in PV the N- 

terminal residues and myristic acid form an additional inner layer of structure, resulting in 

a hydrophobic hole (Acharya et al., 1989).

1.3.3.2 Properties of genome
Aphthoviruses possess an RNA genome of approximately 8,400 nucleotides and 

cardioviruses possess an RNA genome of between 7,840 nt (EMCV) and 8,098 nt 

(TMEV).

Again, the protein coding region is flanked on each end by NTRs whose sequences tend 

to be highly conserved and carry signals initiating translation near the 5' end and for 

initiation of RNA synthesis at the 3' ends of the plus and minus strands, respectively.

The 5' NTRs of aphtho- and cardioviruses (with the exception of TMEV) are unique in 

that they contain long homopolymeric polycytidylate (polyC) tracts, between VPg and the
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beginning of the protein coding region, whose length (50-200 bases) and exact location 

relative to the 5' end of the genome (150-330 bases) vary with different isolates of virus. 

Shortening of the long polyC regions markedly reduced the virulence of mengovirus 

(Duke et al., 1990) but not of aphthovirus.

Statistical analyses of RNA folding in 5' NTRs of EMCV, TMEV and FMDV indicate that 

two highly significant folding regions occur in the 5' and 3' portions of the 5' NTR. The 

theoretical, common structural elements predicted in the 3' parts of the 5' NTR occur in a 

c/s-acting element that is critical for internal ribosome binding. Nucleotides in the 

conserved single-stranded polypyrimidine tract for these RNAs are involved in a 

distinctly tertiary interaction that is located about 15nt prior to the initiator AUG. 

Intriguingly, the proposed common tertiary structure in this study shares a similar 

structural feature to that evident in the human enteroviruses and HRVs (Le et al., 1993).

In contrast to the first class of picomavirus IRES elements, representative of the entero- 

/rhinovirus genera which function rather poorly in RRL translation system unless 

supplemented with additional cellular proteins, the second class, found in the cardio- and 

aphthoviruses, also displaying a complex secondary structure though quite distinct, from 

the first class IRES, functions very efficiently in the RRL system. Although often 

regarded as a c/s-acting element, evidence exists that internal initiation of translation by 

severely defective IRES elements can be greatly enhanced by the coexpression (in 

trans) of the parental wt IRES within cells. Moreover, Roberts & Belsham (1997) have 

provided evidence that severely truncated EMCV IRES elements, insufficient to direct 

internal initiation themselves, can complement defective IRES elements.

The AC-folds of aphthoviruses and cardioviruses resemble that of EMCV as shown in 

Figure 20. Interestingly, the IRES of EMCV is now widely used in high-level protein 

expression systems because it is one of the most active translational initiation sites 

known (Elroy-Stein et al., 1989; Elroy-Stein & Moss, 1990; Kaufman et al., 1991; 

Rueckert, 1996).
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Initiating 
AUG 
nt 834

Figure 20: Encephalomyocarditis virus 51 NTR with type 2 IRES

The FMDV encodes three VPg genes in tandem, each with 23 or 24 amino acids, 

whereas the other picornaviruses encode one. The length of the poly(A) tract varies in 

size, being shortest in cardioviruses and longest in aphthoviruses.

Initiation of protein synthesis, normally proceeds from a unique start site on each RNA, 

however, in FMDV, two in-phase AUG codons (separated by 84 bases) initiate synthesis 

with equal frequency. Interestingly, molecules complementary to the translational start 

sites, and both sense and antisense molecules covering the 3' end of the FMDV RNA, 

confer resistance to FMDV infection and it is thought that hybridisation of short 

sequences of both sense and antisense transcripts from the 3' end induces distortion of 

predicted highly ordered structural motifs, which could be required for the synthesis of 

negative-stranded viral RNA, and correlates with inhibition of viral propagation (Gutierrez 

et al., 1994).
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Bae et al. (1989) performed a genomic comparison between the diabetogenic EMCV-D 

and nondiabetogenic EMCV-B and have shown that EMCV-D differs from EMCV-B by 

only 14 nucleotides, consisting of two deletions, one insertion, and eight point mutations.

1.3.3.3 Properties of viral proteins
In the aphtho- and cardioviruses, the leader or L region maps in front of the capsid 

precursor region, 1A to 1D (L is absent in renteroviruses). The L protein of FMDV 

occurs in two distinct forms, termed Lab (23kDa) and Lb (16kDa), which are the result of 

ribosomes initiating translation at the two AUG codons 84 bases apart. Both Lab and Lb 

of FMDV are (thiol?) proteases with multiple activities; they cleave themselves (in cis or 

in trans) from the amino terminus of the capsid protein precursor P1 (Strebel & Beck, 

1986) between a K-G dipeptide, thereby initiating the maturation of the adjacent capsid 

proteins. The two forms of L also initiate the cleavage of the p220 subunit of the 

ribosomal initiation factor elF-4F protein complex, which appears to be partly responsible 

for the inhibition of cellular 5' cap-dependent translation without affecting translation of 

the uncapped viral mRNA. The leader proteins of cardioviruses show no similarity to 

that of FMDV. They contain a zinc-binding motif, however their role in replication and 

pathogenesis is unknown and in fact, deletion of the leader region in the genome of 

TMEV had no effect on the replication and spread of the mutant virus in BHK-21 cells 

(Michiels et al., 1997). In cardiovirus-infected cells p220 is not cleaved and shut-off is 

accomplished by an exceptionally active IRES, which enables the viral RNA to out- 

compete host messages (Rueckert, 1996).

Curiously, the 2Apro region of FMDV is only 16 amino acids in length, and is totally 

conserved amongst all aphthovirus genomic RNAs sequenced to date, yet primary 

scission still occurs at the carboxy terminus at the 2A-2B junction (Ryan et al., 1991). 

No host or viral protease has been implicated in this scission, and the balance of 

evidence favours the astonishing possibility that the sequence at the 2A-2B junction 

(consensus Asn-Pro-Gly-Pro - NPGP) is inherently unstable and literally breaks itself 

without being enzymatically cleaved. Synthetic tetrapeptides containing this sequence 

were spontaneously cleaved to Asn-Pro and Gly-Pro when incubated only in buffer 

(Palmenberg, 1990; Ryan & Drew, 1994). Interestingly, FMDV 2A is able also to 

generate cleavage in attenuated Sabin 3 PV vectors engineered for delivery of foreign 

antigens (Mattion etal., 1996). In the cardioviruses, primary cleavage similarly occurs at 

the 2A-2B junction, and microsequencing revealed that scission occurs, as was
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measured for FMDV A12, at the Gly-Pro pair within the NPGP sequence (Porter, 1993). 

The conserved sequence is extremely rare within current databases - the only examples 

are from cardio-, aphtho- and group C porcine rotaviruses - and is always associated 

with a proteolytic cleavage activity.

The 2A protein of cardioviruses, about 140 amino acids long and lacking sequence 

homology with the 2A of renteroviruses, has a C terminus similar to the 16-amino-acid 

2A protein of aphthoviruses and is also involved in the primary cleavage event. The 

larger part of protein 2A, does not resemble any identified protein sequence, and has 

been shown to be dispensable for RNA replication of the viral genome, although spread 

efficiency was restricted in viruses with large deletions in the 2A region (Michiels et al.,

1997).

Lack of data on proteins 2B, 2C, and their precursor 2BC, for these genera leads me to 

surmise they perform functions similar to those of their counterparts in the 

renteroviruses, generally involving membrane proliferation and an involvement in the 

RC.

In FMDV, all cleavages, other than the autocatalytic cleavage of L from P1 and the 

primary 2A cleavage between 2A and 2B, are catalysed by 3C or a 3C containing 

precursor, except for the maturation cleavage of VPO in the provirion to generate the 

capsid proteins VP4 and VP2 (Grubman etal., 1995).

FMDV 3C residues His-46 and Cys-163 (equivalent to PV 3C His-40 and Cys-147), 

respectively) are implicated as part of the catalytic triad and His-181 (equivalent to PV 

His-161) as part of the binding pocket. The data of Grubman et al. (1995) support the 

prediction of Gorbalenya et al. (1989) in that the third member of the triad is Asp-84 and 

not Asp-98. It is interesting to note, however, that while the scissile bond cleaved by 

other picornavirus 3C enzymes is relatively conserved that for FMDV is highly variable.

In FMDV, 3Cpro also induces the specific cleavage of histone H3, in vivo. Because the 

deleted part of histone H3 is in the amino-terminal region corresponding to the presumed 

regulatory domain of transcriptionally active chromatin, it seems likely that this specific 

cleavage is related to the severe inhibition of host cell RNA transcription observed in 

FMDV-infected cells. It is unclear whether histone H3 cleavage is direct or mediated by 

a host protease.
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For EMCV, the capsid region cleavages, except 1A-1B, are generally carried out by 

released 3C, although 3ABC, 3CD, and 3ABCD precursors also have demonstrable 

trans activity with these same substrates and it is assumed that these precursors play 

additional catalytic roles in the replication cycle, as they do for the enteroviruses and 

rhinoviruses. Engineered mutations preventing 3C-dependent cleavage at the 2C/3A, 

3A/3B, 3B/3C, and 3C/3D processing sites were created and tested in vitro for their 

consequent blocks in the processing cascade and effects on polymerase activity. The 

mutations were also characterized in vivo within the context of full-length genomic 

sequences for defects in RNA synthesis, genetic stability, and subsequent infectivity. 

The data confirm the essential indispensability and preferred order of the natural 

processing cascade and point to a fine balance between 3C protein precursors and 

polyprotein products in establishment of an infectious cycle (Hall & Palmenberg, 1996).

Hahn & Palmenberg (1996) suggest that primary cleavage itself, though necessary, is 

not sufficient to ensure 3Cpro mediated P1 reactivity and that other functional 

requirements highly sensitive to changes, exist within the DIETNPGP sequence of 

EMCV 2A that they studied. Perhaps primary cleavage, occurring where and when it 

does, may ensure proper folding of the L-P1-2A precursor, making it a suitable substrate 

for 3Cpro-mediated processing, or perhaps the order of cleavage events is critical in L- 

P1-2A processing. The preferred cleavage progression being 2A/2B, then L/1A, 1D/2A, 

1C/1D, and 1AB/1C. A failed or sequence-defective primary reaction may, through steric 

hindrance or improper product release, prevent sequential exposure of the other four 

internal sites in their usual turns.

Evidence that FMDV particles contains replicase protein 3D was provided by Newman et 

ai. in 1994, who showed that, in the presence of ammonium ions, the expressed 

polymerase degrades the RNA of the virus indicating that it can act as a hydrolytic as 

well as polymerising enzyme. Sankar & Porter (1991) expressed and purified the 

polymerase of EMCV and found it to exhibit poly(A)-dependent poly(U) polymerase 

activity and RNA polymerase activity, which are both oligo(U) dependent. Interestingly, 

further work on this enzyme revealed that point mutations which drastically affected the 

polymerisation activity corresponded to the active site of E. coli DNA polymerase I, 

suggesting that a basic structural and functional framework is conserved in the most 

distantly related classes of nucleic acid polymerases which supports the validity of 

modelling the active sites of RNA-dependent RNA polymerases on the known structure 

of a DNA polymerase (Sankar & Porter, 1992).
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Cui et al. (1993) demonstrated binding of EMCV 3Dpt)l to the 3' NTR(A) but not to globin 

mRNA, yeast tRNA or the 3' NTR lacking the poly(A) tail. In contrast PV 3Dpot bound to 

PV RNA and virtually all RNAs tested including poly(U), poly(C), and poly(G), although a 

different assay, using partially purified 3Dpo1 was employed (Oberste & Flanegan, 1988). 

This suggests, as before, that the 3' NTR and poly(A) together play an important role in 

viral template selection by 3Dpo1, and may explain why cDNA clones of EMCV lacking 3' 

poly(A) are noninfectious.

1.3.3.4 Replication and adaptation to ceil culture
FMDV enters the cells via a mechanism of receptor-mediated endocytosis in which the 

low pH of the endosomal compartment triggers uncoating of the viral genome. For 

FMDV A12 the receptor has been identified as the Arg-Gly-Asp (RGD)-binding integrin. 

The RGD to which the integrin binds is located on the G-H loop of VP1 and is highly 

conserved among all seven serotypes. Such conservation in a region that otherwise 

varies considerably in length and sequence suggests that all FMDV serotypes use RGD- 

binding integrins, including avp3, as receptors for virus internalisation (Jackson et al.,

1996). They have also shown that type O FMDV has a specific affinity for heparan 

sulphate, an extracellular matrix component, and that this binding most likely is the initial 

event in cellular entry and is required to establish an efficient infection in cells grown in 

culture. It appears therefore, that FMDV attaches to the cell surface via interactions with 

a nonintegrin component of the plasma membrane or extracellular matrix before integrin- 

dependent internalisation.

Jin et al. (1994) recently indicated that EMCV attachment to permissive human cells is 

mediated by a cell surface sialoglycoprotein(S) with a molecular mass of 70kDa, but not 

by glycophorin A, which is the attachment molecule for EMCV on human erythrocytes 

with sialic acid being the residue involved in the virus binding. Human erythrocytes, 

however, do not support EMCV growth, in contrast to a number of nucleated cells in 

which the virus readily replicates.

As before, these viruses must also translate their genome into proteins required for 

replication and again this is achieved through the use of an IRES. Strong experimental 

evidence exists for the requirement of widely conserved motifs in IRES activity in FMDV 

and other picornaviruses and de Quinto & Martinez-Salas (1997) have shown that the

67



Chapter 1

aphthovirus IRES loops located at the most distal part of domain 3, which carries GNRA

and RAAA motifs, are essential for IRES function.

The p52 protein, a nuclear protein that binds to the 3' terminus of nascent RNA

polymerase III transcripts, La, mentioned previously binds to the IRES of EMCV as well

as PV. Studies with EMCV and FMDV RNA established that a p57 protein also cross- 

linked to their IRES elements. As with studies on the renterovirus IRES, the p57 species 

has been identified as the PTB. Two binding sites were identified on the FMDV IRES, 

one close to the 5' end (stem loop H [Figure 20]) and a second around the 

polypyrimidine tract at the 5' terminus of the IRES. The major site of association 

between p57 and the EMCV IRES is in stem-loop H, although evidence for a second site 

in a region further upstream in the 5' NTR was also obtained (Belsham & Sonenberg,

1996). Two additional proteins, p70 and p100 (p97), observed to cross-link fragments of 

various IRES elements, have been shown to bind specifically to multiple fragments of the 

EMCV IRES. It is suggested that each of these proteins recognises primarily, like those 

mentioned in the renterovirus section, a structural feature of the RNA rather than a 

specific sequence (Witherell & Wimmer, 1994).

Recently reported was the observation that the translational activities of the renterovirus 

IRES elements (but not the EMCV or FMDV IRES elements) appear to have been 

stimulated by the FMDV L protease. (Ziegler etal., 1995).

EMCV RNA template specificity has been shown to depend only upon 3Dpo‘, the 3' NTR 

and the poly(A) tail, suggesting the poly(A) tail plays an essential role in viral RNA 

template selection by the polymerase. The fact that EMCV cDNA clones lacking the 15- 

20 3' terminal A residues are non-infectious may be explained by the failure of 3Dpt)l to 

bind to the 3'-terminus of the viral RNA template and initiate negative-strand synthesis 

(Cui etal., 1993).

Newman & Brown (1997) have shown consistently that nonstructural proteins 2C, 3C, 

3CD, and 3D, components of the RC, and the cell protein actin are present in highly 

purified preparations of both FMDV and PV (Newman et al., 1994; Newman & Brown,

1997) and it is thought FMDV replicates in a similar manner to that described previously 

for PV. If 2C has a role in virus structure, it may function by facilitating assembly around 

newly synthesised RNA, moreover the RC proteins, with an affinity for the 5' end of the 

newly synthesised sense RNA and membranes, may be necessary for assembly (Andino
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etal., 1993). In addition, a small protruberance, found on some FMDV complexed with 

antibody against 3D, could be the site from which the RNA is released particularly since 

the 3D is attached to the RNA (Newman & Brown, 1997).

To produce a new generation of safer FMDV vaccines, genetic engineering has been 

used to develop attenuated virions. In one case, attenuation has been achieved by 

removing the coding region for the viral leader proteinase, responsible for inhibition of 

translation of host-cell mRNAs during infection. In another case, the virus has been 

attenuated by deletion of the RGD sequences, that comprise the cell binding site. Ward 

et al. (1997) have most recently shown that a DNA vaccine based on a genome-length 

FMDV nucleic acid that undergoes genomic amplification in inoculated animals can 

immunise swine against foot-and-mouth disease.

1.3.4 Hepatovirus genus
1.3.4.1 Properties of the virion
The HAV particle is approximately 27nm in diameter and appears roughly spherical by 

electron microscopy (Feinstone et al, 1973) (Figure 21). HAV possesses a non­

enveloped capsid structure (Lemon et al., 1992). Based on the structure of 

picornaviruses generally, the HAV capsid is thought to have icosahedral symmetry and 

to contain 60 copies of each of three major polypeptides, VP1, VP2 and VP3 (Wheeler et 

al., 1986b; Lemon & Robertson, 1993). It is not known whether HAV contains a fourth, 

smaller capsid protein (VP4) which is present in other picornaviruses. The genome of 

HAV potentially encodes a VP4 protein of 21-23 residues (Baroudy et al., 1985; Cohen 

et al., 1987a; Hollinger & Ticehurst, 1996). This putative VP4 sequence contains an 

internal consensus myristylation site (Gly-X-X-X-Ser/Thr, where X is any amino acid) 

starting at residue 5 from the preferred AUG codon (Palmenberg, 1989; Tesar et al.,

1993), which suggests that if VP4 is actually present in the virion and myristylated like 

the VP4 of other picornaviruses, it may be only 17 amino acids in length (2.5kDa) (Chow 

et al., 1987; Palmenberg, 1989; Ross et al., 1991). Myristylation occurs after the 

removal of an initial methionine residue or a leader peptide, resulting in the exposure of 

an N-terminal eight amino acid myristylation signal. Analysis of culture-adapted HAV 

and engineered mutants demonstrated that myristate was not incorporated, nor was a 5- 

residue leader peptide cleaved from 1A or VPO. Thus, VP4 has not been conclusively 

demonstrated in HAV particles; and if it exists, it is much smaller than other picomaviral 

VP4 molecules and not myristylated. Furthermore, data from Tesar et al. (1993)
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indicates that HAV does not require leader cleavage and myristylation of VP4 for growth 

in cultured cells. Ross & Anderson (1991) estimated VP4 to have a relative molecular 

mass of less than 1kDa, which is substantially lower than the 2.5kDa predicted from the 

nucleotide sequence.

Preparations of HAV made from infected cell cultures typically contain large quantities of 

empty capsids. These capsids are composed of three polypeptides VPO (VP2+VP4), 

VP3 and VP1. Mature capsids contain approximately 2 molecules of VPO (Bishop & 

Anderson, 1993). Studies have shown that VPO of the empty capsid is larger than the 

VP2 present in the complete virion, indicating that maturation cleavage of VPO occurs in 

HAV, as in other picornaviruses (Updike et al., 1991). Bishop & Anderson (1993) 

presented results which clearly show that the provirion is a true intermediate in the 

morphogenesis of HAV, with VPO cleavage being dependent on the presence of 

encapasidated viral RNA. What remains unknown, however, is whether the N-terminal 

cleavage product of VPO (that is, the VP4 moiety) is actually incorporated into the virion.

Recent evidence suggests that HAV may differ from other picornaviruses in that a large 

carboxy-terminal extension of VP1 is present in some virions. The function of this 

protein (termed ‘pX’) is unknown (Anderson & Ross, 1990) but is thought to represent a 

VP1-2A precursor that is cleaved by 3Cpro at a Glu-Ser linkage at amino acid position 

273/274 (Probst et al., 1997), 27 amino acids upstream of the predicted C-terminus of 

VP1, resulting in 1-273/VP1 as opposed to the 1-300/VP1 proposed. This cleavage site 

could represent the authentic carboxy terminus of VP1 generated by 3Cpro from the 

40kDa (42kDa) protein (pX) and accounts for the difference between the 37kDa protein, 

which results from the translation of the proposed ORF for VP1, and the 33kDa protein, 

which is the mature VP1 observed in HAV-infected cells and HAV virions. The release 

of VP1 from its 40kDa precursor through cleavage between the Glu-Ser proposed 

(amino acids 764 and 765 of HAV polyprotein), may imply that 3Cpro alone is sufficient to 

perform release of VP1 and that the low specificity of protease 3C for this junction 

sequence is responsible for the relative stability of the VP1 precursor, as in the case of 

3A/3B, which is separated by the amino acid pair Glu-Gly (Dotzauer etal., 1995).
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Figure 21: Electronmicrograph of a hepatitis A virus particle fixed and stained in 
phosphotungstic acid (x400,000)

The conformationally defined immunodominant antigenic site of HAV includes Asp-70 of 

VP3, but amino acid residues in VP1 also contribute to this site, as well as to at least one 

other functionally independent antigenic site (Stapleton & Lemon, 1987; Ping et al., 

1988; Gauss-Muller et al., 1990; Nainan et al., 1992). Interestingly, Emini et al. (1985) 

demonstrated that an anti-HAV antibody response could be primed by PV-specific 

synthetic peptides, suggesting the existence of a degree of higher-order homology 

between the poliovirion and the hepatitis A virion. HAV, however, shows the greatest 

overall homology to EMCV (Diamond et al., 1986). Synthetic peptides derived from the 

capsid proteins of HAV used to search for B-epitopes, revealed that of the three regions 

used (VP1 (amino acids 115-139), VP2 (amino acids 69-99) and VP3 (amino acids 137- 

150)), only free peptide 69-99 from the VP2 protein caused formation of HAV binding 

antibodies. The dominant antigenic site of HAV is highly conserved among all human 

strains, and reversion of neutralisation escape mutants to the wild-type antigenic 

phenotype has been noted when escape mutants have been tested for virulence in owl 

monkeys (Lemon, 1994). Presumably, neutralisation-resistant HAV mutants arise during 

natural infections but do not replicate to significant levels in vivo. It is intriguing to 

consider therefore, that the immunodominant neutralisation epitopes of HAV may have a 

vital functional role in the replication of the virus in vivo and if this is true, then
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neutralisation escape mutants may have lost a function necessary for in vivo replication 

and may be partially or completely attenuated (Stapleton & Lemon, 1987). Extensive 

digestion with high concentrations of trypsin and chymotrypsin result in cleavage 

primarily of VP2, but do not alter the antigenic characteristics, infectivity or exceptional 

thermostability of the virion (Lemon, 1994; Hollinger & Ticehurst, 1996). Domingo and 

colleagues (1993) suggest that there might be a natural restriction of substitutions at 

some antigenic sites due to their possible involvement in virus attachment and entry.

1.3.4.2 Properties of the genome
The genome of HAV is a single-stranded, positive-sense RNA (Coulepis et al., 1981), 

approximately 7500 bases long. A short genome-linked protein (VPg) of 23 amino acids 

is present at the 5'-end (Weitz et al., 1986) followed by a nontranslated region (NTR) of 

approximately 735 bases. This region contains extensive secondary structure, including 

a 5'-terminal hairpin, and as many as 10 AUG codons, scattered about in all three 

reading frames preceding the AUG which initiates the large open reading frame (ORF) 

encoding the polyprotein of HAV (Najarian etal., 1985; Cohen etal., 1987(a); Paul etal., 

1987). Recent data suggest that the 5' NTR contains a cis-acting element which has 

been variably termed an IRES or ‘ribosomal landing pad’ (nt 154-735) (Brown et al., 

1991; Glass etal., 1993; Whetter et al., 1994), and that its structure and organisation are 

remarkably similar to that of the 5' NTR of EMCV of mice (Glass et al., 1993; Le et al.,

1993). The 5' NTR is capable of forming two or more pseudoknots in the noncoding 

region upstream from the IRES. Also present in this region is a pyrimidine tract (pY1 

domain (Id)) between nt 99 to 138 downstream of the putative 5' pseudoknots, unique to 

HAV but which may be structurally analogous to the poly(C) tract of cardio- and 

aphthoviruses (Figure 23), which is not required for growth in cell culture as long as the 

sequence between nt 140 and nt 144 is present (Shaffer et al., 1994). There are other 

pyrimidine-rich tracts within the 5' NTR of HAV, but the pY1 domain is the lengthiest and 

most prominent of these regions. Large deletion mutations involving the first pyrimidine- 

rich tract of the 5' NTR of human HAV define two adjacent domains associated with 

distinct replication phenotypes. The HAV IRES has only a very low level of functional 

activity in infected cells, which may contribute to the slow replication cycle of the virus 

(Whetter et al., 1994). The 5' NTR is extensively conserved among HAV strains 

(generally >92% nucleotide identity) and is very important for replication (Tesar et al., 

1992; Borman et al., 1994). Harmon and co-workers (1991) observed that deletion of 

HAV nt 1 and 2 (both U residues) or nt 2 and 3 (a C residue), which are thought to form
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part of a stem-and-loop, abolishes the infectivity of the RNA. PV lacking the first terminal 

uridylate residues is, on the contrary, infectious. The IRES itself contains sequences 

necessary for viral RNA synthesis per se (Borman et al., 1994).

Initiating 
AUG~ 

nt 741

i replication

lZi trani-slatiQn

ipolypyrimidine tract

Figure 22: Hepatitis A virus 5' NTR with type III IRES

Mutations within the 5' NTR have been shown to be involved in cell culture adaptation as 

discussed later (Brown et al., 1991; Emerson et al., 1993). Considerably greater 

sequence variation is evident within the large ORF, and several distinct genotypes of 

HAV have been described based upon the existence of >15% nonidentity within the 

VP1/2A (or pX) coding region (Lemon, 1994). The 3' end of the genome includes a 

shorter NTR which may also display secondary structure similar to the PV ORF 

(Jacobson etal., 1993) and a polyadenylated tail (Coulepis etal., 1981). A 22S, double­

stranded RNA form, closely resembling the Rl of other picornaviruses, also has been 

detected. The general organisation of the genome is shown in Figure 23.
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Figure 23: Organisation of the positive-stranded genome of hepatitis A virus

There is a small protein (VPg) attached at the 5'-terminus, followed by a nontranslated 
region of approximately 735 bases. A large open reading frame encodes a polyprotein 
of approximately 2235 amino acids which may be divided into three major domains: P1 
(capsid proteins), P2 and P3 (non-structural proteins). The existence of VP4 (1A) 
remains uncertain, as does the possibility of a short leader protein (L, not shown) which 
would precede it within the polyprotein. pX extends into the 2A region shown in this 
figure, making 2A significantly smaller than depicted. The other capsid proteins VP2, 
VP3 and VP1 are also known as 1B, 1C and 1D. The large open reading frame is 
followed by a short 3'-NTR of approximately 64 bases, followed by a 3'-terminal poly(A) 
track.

1.3.4.3 Properties of the viral
In accordance with other picornaviruses, it is presumed that the genetic information of 

HAV is expressed as a single polyprotein which is co- and post-translationally cleaved 

into proteins, named according to the L434 nomenclature of Rueckert and Wimmer 

(1984), involved in genome replication and virion formation (Jurgensen et al., 1993) as 

shown in Figure 24.

HAV protein processing has been difficult to study due to the slow asynchronous, and 

low yielding replication of the virus and its failure to inhibit host-cell protein synthesis, 

although predictions can be made on the basis of sequence homology with other 

members of the Picornaviridae. Relatively little is also known about the specific function 

of the nonstructural proteins of HAV because they do not accumulate in infected cells to 

levels comparable to the capsid proteins (Updike et al., 1991). Anderson & Ross (1990), 

as already mentioned, detected a 42kDa protein, designated ‘pX’, associated with some 

virion preparations which has been suggested to represent VP1 fused to a large 

(approximately 8kD) carboxy-terminal extension i.e. VP1-2A. Jia and co-workers (1993) 

identified a primary cleavage reaction which would generate a capsid protein precursor 

with a C-terminal extension of about one-third of what had been proposed to be the 2A 

sequence. This cleavage was mediated by the 3C protease in trans. If these 

observations are correct, the processing of the HAV polyprotein may differ significantly
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from other picornaviruses (Jia etal., 1993; Jurgensen etal., 1993; Porter, 1993; Lu etal.,

1994).

5‘ pi P2 P3 3'

ntr

\
VPg

| i  a| 1 d >A|2B| 2C |3A|3B| 3C j 3D ntrpolyA

2ABC

■I 1B |capsid proteins 
1A

VPg

U l  30 I
protease polymerase

nrvp2i
VP4 capsid proteins

Figure 24: Proposed proteolytic cascade for hepatitis A virus
Top, HAV genomic RNA, with its 5' VPg linked protein. 5' nontranslated region, long 
single open reading frame, 3' nontranslated region, and polyadenylated 3' end. Open 
reading frame is cleaved into structural proteins (1AB, 1C and 1D [VPO, VP3, and VP1]) 
and nonstructural proteins. Nonstructural proteins with identified functions are below 
(protease, polymerase, VPg) (Adapted from Palmenberg, 1990).

The 2A protein of HAV, a polypeptide thought to be approximately 10KDa, does not 

contain a consensus protease active site, such as found in the 2A protein of PV, and has 

been found to be liberated by proteinase 3C from its precursors P1-2A and VP1-2A (pX) 

(ScultheiB et al., 1994). The truncated viral protein 2A, as implied above may not be 

functional in HAV or may have acquired a different and as yet unidentified role (ScultheiB
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etal., 1994), but 2A is nonetheless relatively large and well conserved (Jurgensen et al., 

1993). The protein pX could contain a 2A fragment produced by cleavage within the 

predicted 2A or it could contain an authentic 2A the size of which had been predicted on 

false positioning of the 2A-2B junction. With this in mind studies have very recently 

shown that the originally predicted Gln-Gly dipeptide cleavage site at position 980-981 of 

the HAV polyprotein (Najairian et al., 1985; Cohen et al., 1987a) has to be relocated to 

position 836-837 and that 2B is significantly larger than previously assumed (27.5kDa) 

(Martin et al., 1995; Gosert et al., 1996). These results not only redefined peptide 2B but 

also showed that 2A of HAV is much smaller than the 10kDa predicted by SchultheiU et 

al. (1994) and would be expected to have a molecular mass of 5.3kDa. 2A of HAV has 

features distinct from that of PV 2A and rhino- and enteroviruses - lack of protease 

activity and lack of p220 inactivation by HAV and thus failure of host-cell shut-off - which 

implies that it is unlikely that 2A of HAV functions in the same manner as the 2A of other 

picornaviruses, and its function remains unknown (Gosert etal., 1996).

Proteins 2B and 2C are also of unknown function, although 2C contains an RNA 

helicase consensus sequence (Porter, 1993; Harris etal., 1994) and in PV is needed 

continually for viral RNA synthesis in the formation and maintenance of RC-associated 

membranous structures as well as in anchoring RCs to these structures.(Cho et al.,

1993) and its function can be provided in trans. HAV 2C protein, like its PV counterpart, 

is thought to be an NTPase and may be involved with sensitivity to guanidine, and which 

in PV has been shown to inhibit viral RNA replication by affecting coupling between the 

NTP binding and/or splitting, on the one hand and the 2C function (related to 

conformational changes), on the other, thereby implying that oligomerisation of 2C is an 

essential step in the replication of viral genome (Tolskaya et al., 1994; Hollinger & 

Ticehurst, 1996). The HAV 2C and 2BC proteins demonstrate efficient membrane 

association properties and causes major rearrangement of the ER and probably Golgi 

and perhaps other intracellular membrane compartments. Its slow growth phenotype is 

therefore not likely due to the inability of 2C to induce membrane changes perse, but the 

absence of such detectable membrane alterations and structural rearrangements into 

viral RCs in HAV-infected cells could be due to production of very low amounts of these 

and other viral proteins in the infected cells (Teterina etal., 1997a).

2B or 2BC is another viral protein of PV required for RNA replication (Datta & Dasgupta,

1994). Mutations in 2B and 2C of HAV have been shown to be important with respect to 

RNA synthesis and host range change that occurs during adaptation and passage of 

virus in cell culture and leads to attenuation of the virus (Emerson et al., 1993; Graff et
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al., 1994; Gosert et al., 1996). The analysis by Teterina et al. (1997a) of the effect of 2C 

(2BC) sequences from either a wild-type strain or a faster replicating cytopathic strain 

demonstrated that mutations acquired in wild-type virus during adaptation to cell culture 

do not change dramatically either the ability of these proteins to associate with 

membranes and induce membrane alterations or the specific architecture of the induced 

membrane structures. Protein 2C, but not 2BC, from the cytopathic strain of HAV 

induced different membrane structures.

Protein 3B has been shown to be the 5' genome-linked viral protein (VPg) of HAV (Weitz 

et al., 1986), initially present in its precursor form 3AB. VPg is required for viral RNA 

replication, and it is believed that the membrane-associated VPg-precursor protein, 3AB, 

may be used for the delivery of VPg into the 5' ends of plus- and minus-strand RNAs 

during replication, as 3AB and 3A are capable of localizing in the endoplasmic reticulum 

and golgi apparatus in transfected HeLa cells in the absence of any other PV protein 

(Datta & Dasgupta, 1994). PV protein 3AB has been shown to form a complex with and 

stimulate the activity of the viral RNA polymerase, 3Dp0‘ (Plotch & Palant, 1995) as 

discussed earlier. Amino acid sequence alignments suggest that membrane binding 

might be due to a hydrophobic stretch near the C-terminus of 3A found in all 

picornaviruses whereas the ability to induce permeability of E. coli membranes is 

determined by an amphipathic helix formed at the N-terminus of 3A of a cytopathogenic 

HAV strain (Pisani etal., 1995). Beneduce and co-workers (1995), expressed protein 3A 

in E. coll and showed that an N-terminal deletion rendered this protein toxic to bacteria. 

Furthermore, Beneduce et al. (1997) have demonstrated that changes in the primary 

sequence involving charged amino acids at the N- and C- termini critically influenced the 

ability of the protein 3A of a cytopathic strain of HAV to change bacterial membrane 

permeability, demonstrating the strict correlation between the structure and pore-forming 

potential of HAV protein 3A. Hypothetical pore-formation into the nuclear membrane 

induced by the protein 3A of a cytopathic strain could account for the accelerated growth 

by promoting a more efficient relocalisation of nuclear proteins to the cytoplasm with 

respect to other strains, thereby possibly leading to a depletion of nuclear proteins 

needed for host cell replication and to cell death (cytopathic effect) (Beneduce et al.,

1997).

All picornaviruses process their polyproteins via a series of cis and trans cleavages, 

catalyzed primarily by the 3C gene product (Harmon et al., 1992). In general, 

picornaviral 3C proteinases adopt a chymotrypsin-like fold and display an active site
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configuration like those of the serine proteinases (Malcolm etal., 1995).

The recently obtained crystal structure for HAV proteinase 3C reveals it is a cysteine- 

containing chymotrypsin-like serine proteinase (Allaire et al., 1994) which seems to be 

the only virus-encoded proteinase which can catalyse cleavage at all sites in the HAV 

polyprotein including the primary cleavage, which separates the precursor of the 

structural from that of the nonstructural proteins (Jia et al., 1991a; Harmon et a!., 1992; 

ScultheiS etal., 1994).

Harris and coworkers (1992) have shown that HAV 3C mediates cleavage at its own N- 

and C-termini and at the proposed junction between 2C and 3A (Jia et al., 1991a), 

however cleavage at its C-terminus is less efficient than at its N-terminus (Harmon etal.,

1992). Comparisons of the HAV 3Cpro with those of other picornaviruses suggested that 

the catalytic triad may be composed of residues His-44, Asp-98 and Cys-172, however 

crystallographic have been interpreted as suggesting that the catalytic site consists only 

of a dyad, including Cys-172 as nucleophile and His-44 as general base, with His-191 

defining the 3C cleavage specificity for glutamine residues (Allaire et al., 1994; Gosert et 

al., 1997; Hollinger & Ticehurst, 1996). Moreover Gosert et al. recently (1997) 

suggested that His-44 and Cys-172 are essential for polyprotein processing, whereas 

Asp-98 is not. Kusov & Gauss-Muller (1997) have shown that HAV 3Cpro is an RNA- 

binding protein with specificity for the most 5'-terminal RNA structures of the HAV 

genome, and further suggest that the RNA-binding region is located in an area distinct 

from the catalytic triad and that HAV 3C might serve multiple, yet unknown, functions 

during the life cycle. Purified PV 3CDpro, a proteinase thought to be essential for 

processing of the P1 capsid precursor, expresses no RNA polymerase activity (Harris et 

al., 1992) and can accumulate due to the cleavage efficiency of 3C at its carboxy 

terminus being rather low (reference within Gauss-Muller et al., 1991). 3CDpro has the 

propensity to bind the 5'-terminal cloverleaf of PV RNA but this occurs only in the 

presence of a 36kDa host factor of uninfected HeLa cells, however the 3AB-3CDpro 

complex interacts with cloverleaf RNA and binds to 3' RNA fragments of the PV genome 

in the absence of host factor (Harris et al., 1994). In contrast to PV, Kusov & Gauss- 

Muller (1997) found that binding of HAV RNA of the 5' NTR was not improved when 

similar concentrations of 3CD were used instead of 3C, suggesting that the 3D moiety 

does not affect the RNA binding specificity of HAV 3C. Furthermore, Jurgensen et al. 

(1993) revealed that for cleavages at 2C/3A and 3C/3D, the complete 3D moiety was not 

required. Kusov & Gauss-Muller (1997) found that HAV 3CD, unlike PV 3CD, was not
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detected as a predominant product of polyprotein processing. Instead, HAV 3ABC, 

whose specific role is unknown, was found to be a relatively stable intermediate when 

the HAV polyprotein was translated in vitro or expressed in bacteria and mammalian 

cells (Harmon et al., 1992; SchultheiR et al., 1994). Kusov et al. (1997) showed that 

recombinant HAV 3ABC specifically interacts in vitro with secondary structures formed at 

both the 5' and 3' terminus of the viral genome. Similar to protein 3AB, HAV 3ABC 

bound to the 3' terminal RNA structure which did not interact with the mature proteinase 

3C. In contrast to 3AB, 3ABC interacted with RNA stem-loop lb and combinations of 

individual secondary structure elements of the 5' NTR. RNA binding of this precursor 

3ABC was 50 times stronger than that of 3AB and 3C, implicating a specific role of this 

stable processing intermediate in viral genome replication. Cleavage of 3CDpro to 3Dp0‘ 

is needed to activate the 3D RNA polymerase (Gauss-Muller et al., 1991). It has been 

shown that 3D is formed by cleavage at the Glu-Arg pair at position 1738 and 1739 of 

the HAV polyprotein (Tesar et al., 1994). The HAV 3D protein produced by autocatalytic 

cleavage of P3 precursor proteins in BS-C-1 cells, however, was found to be virtually 

completely insoluble, unlike its PV counterpart which displayed an extent of solubility.

By analogy with other picornaviruses, HAV 3D is a RNA-dependent RNA polymerase. 

The amino acid homology of HAV 3D with other picornavirus polymerases is low (27- 

33%), but it shares several amino acid motifs with all sequenced RNA-dependent 

polymerases. Updike et al. (1991) have shown that HAV 3D does not accumulate in 

infected BS-C-1 cells. Moreover, 3D was not immunoprecipitated despite labelling 

periods as short as 10 minutes and immediate harvest, suggesting that 3D may have a 

short half-life in infected BS-C-1 cells. It is proposed that the active site of this enzyme 

consists of Tyr343-Gly344-Asp345-Asp346 (Hollinger & Ticehurst, 1996 and references 

therein)

In order for an RNA strand to serve as template for multiple rounds of product RNA 

synthesis, the RNA replicative machinery should either prevent formation of extensive 

base pairing between the template RNA and the complementary strand or contain a 

helicase activity which is able to unwind RNA duplex subsequent to its formation (Cho et 

al., 1993). In addition to RNA-dependent RNA polymerase activity, 3Dpo1 protein 

sequences contribute to 3CD protease activity. Other suggested activities of 3Dpo1 

include RNA unwinding, uridylylation of VPg, interaction with cellular proteins and PV 

RNA near the 5' terminus of the positive strand, and association with membrane 

structures. It was recently determined that 3Dpo1 was able to add multiple adenylate (A)

79



Chapter 1

residues to the 3' terminus of PV RNA in a nontemplated manner and effect the initiation 

of plus-strand synthesis (Neufeld et al., 1994).

1.3.4.4 Replication and adaptation to cell culture
Relatively few studies have addressed the replication of HAV in cell culture. Although 

HAV demonstrates some unique features, such as a very protracted replication cycle, it 

has generally been considered to replicate by a scheme similar to that of other 

picornaviruses (Figure 10).

Ashida and colleagues (1989) investigated propagation of HAV in hybrid cell lines in 

order to facilitate in vitro propagation. Virus grown in vitro is associated with host-cell 

derived material and has been shown to interact with the serum protein fibronectin. 

Dotzauer et al. (1994) recently investigated the replication of HAV in nonprimate cells 

and found that the cell surface receptor(s) and other host factor(s) required for HAV 

replication are present in nonprimate as well as primate cells. Purified HAV will attach to 

a wide range of cultured cells and attachment is affected by the cell type, the presence 

of calcium, temperature and the presence of serum. Results of investigations by Bishop 

and Anderson (1997) suggest that the major effect of calcium in promoting HAV-receptor 

interactions is through a direct effect on the conformation of the viral capsid. The 

enhancing effects of calcium ions and low pH on HAV, they observed, attachment are 

not additive. It is possible that virion-bound host components play a role in virus 

attachment and dissemination (Zajac et al. 1991). Investigation of HAV antigenic variant 

strains (neutralisation escape mutants) demonstrated identical attachment properties 

with neutralisation-susceptible strains, suggesting that the immunodominant antigenic 

site of HAV is not directly involved in cell attachment. Unlike FMDV, RGD peptides were 

also shown to be unable to interfere with HAV attachment, suggesting that the HAV 

binding region does not involve an RGD sequence or the immunodominant neutralisation 

site (Stapleton et al., 1991). The HAV cellular receptor 1 (HAVcr-1) cDNA codes for a 

novel mucin-like class I integral membrane glycoprotein of unknown natural function 

(Cowan & Anderson, 1997; Locarnini, 1997), contains four putative N-glycosylation sites 

and two distinctive regions: an N-terminal Cys-rich region that displays homology to 

sequences of members of the immunoglobulin superfamily, and a mucin-like C-terminal 

region containing 27 repeats of the consensus PTTTTL (Thompson et al., 1998), and 

serves as an African green monkey kidney (AGMK) cell receptor for HAV (Kaplan et al., 

1996). Further investigation revealed that the Cys-rich region of HAVcr-1 and its first
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glycosylation site are required for binding of protective monoclonal antibody 190/4 and 

HAV receptor function (Thompson etal., 1998).

Following uncoating in the cytoplasm releasing the RNA genome, which alone may take 

up to 12 hours in HAV (Updike et a/., 1991), and translation of genomic RNA the viral 

RNA polymerase 3Dpo' is released, in PV, from the C-terminus of the large polyprotein 

precursor by protease-catalyzed autocatalytic cleavage that generates the mature viral 

proteins (Plotch et al., 1989), and presumably replication in HAV is carried out by its viral 

RNA-dependent RNA polymerase, 3DP°I. This enzyme has been well characterised in 

PV but HAV 3Dpo1 is proving to be more elusive.

The replication of HAV is not associated with shutdown of host-cell macromolecular 

synthetic processes, and usually does not lead to demonstrable cytopathic effects. 

However, rapidly replicating, cytopathic (RR/CPE+) strains of HAV, recovered from cells 

which had been persistently infected with virus for a period of many months, do induce a 

cytopathic effect characterised by vacuolation and cellular degeneration, but not 

associated with specific host cell metabolic shutdown (Lemon, 1994). Cytopathic 

variants of HAV have been shown to arise by a combination of genetic recombination 

and point mutations in both the 5' and 3' NTRs and the capsid region VP2, as well as in 

the nonstructural proteins 2A, 2B, 2C, 3A, VPg and SD*50' (Jansen etal., 1988; Lemon et 

al., 1991; Zhang et al., 1995). The results of Zhang et al. (1995) suggest novel 

interactions between the 5' NTR and P2 proteins during HAV replication. Very recently a 

RR/CPE+ strain was isolated from, persistently infected BS-C-1 cells by serial passages, 

sequencing of the the NTRs and coding regions for 2ABC and 3AB of which, revealed 

that mutations are distributed all over these regions and that certain mutated sites 

correspond to those in other cytopathogenic HAV variants, and on investigating the 

mechanisms causing the CPE in cells infected with this variant, Brack et al. (1998) found 

that an apoptotic reaction takes place. Beneduce etal. (1995) suggested that a deletion 

in 3A might be involved in the induction of a CPE, expression of which induces 

modifications of cell membrane permeability which lead to cell death.

Viral translation appears to proceed following internal entry of the 40S ribosomal subunit 

particle within the 3' half of the 5' NTR, just upstream of the AUG initiating the large ORF 

(Le et al., 1993). Recent studies by Tesar et al. (1992) have shown that HAV RNA has 

two potential translation initiation sites, located at 735-737nt and 741-743nt, and that the 

preferred translational start site, however, is the second AUG within the ORF and not the
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first AUG triplet. In vitro translation of HAV in RRLs is thought to be quite inefficient, and 

apparently plagued by both inappropriate termination and aberrant initiation (Glass et al.,

1993). Aberrant initiation is particularly prominent in the P3 region of the genome 

(Lemon, 1994). In addition, internal initiation of HAV translation appears to proceed only 

at a very low level of efficiency even within permissive cells (Whetter et al., 1994). Jia et 

al. (1991b) demonstrated that translation of HAV RNA in RRLs initiates predominantly at 

a large number of internal AUG codons, especially those in the P3 coding region, 

however, replacement of the HAV 5' NTR with EMCV 5' end sequences increased 

initiation at the correct polyprotein start site and both reduced and altered the products 

generated by internal initiation. Since the EMCV RNA 5' end functions quite well in 

RRLs to direct ribosomes to the appropriate AUG, it is likely that successive loading of 

ribosomes at the 5' end, followed by ribosome translocation due to polypeptide chain 

elongation, makes internal RNA regions unavailable for aberrant initiation events. If 

ribosome entry at HAV 5' end RNA sequences requires factors not adequately present in 

RRLs (as appears to be the case for PV RNA), then the failure to load ribosomes at the 

5' end would leave internal sites exposed and available for aberrant initiation. Chimeric 

RNAs containing the EMCV IRES and various lengths of the 5'-terminal HAV sequence 

were analysed and revealed that more than 151 nt from the 5' terminus of HAV were 

found to be required to support virus replication, indicating either, that the signals 

governing RNA replication are localised to the 5'-terminal portion of the HAV 5' NTR or 

that any replication signals that extend within the HAV IRES can be functionally provided 

by the EMCV IRES sequence-structure indicating that the inherent translation efficiency 

of the HAV IRES may not be the major limiting determinant of the slow-growth 

phenotype of HAV (Jia et al., 1996). Similar experiments using constructs retaining the 

HAV 5' NTR extending into various lengths of HAV coding sequences, using PV coding 

sequences as reporter, demonstrates that sequences downstream of the translation 

initiation AUG codon of the HAV IRES provided a four-fold increase of HAV IRES-driven 

translation in vitro over a construct without HAV downstream capsid coding sequences. 

More than 66nt of the HAV capsid coding sequence are necessary to support this 

stimulation (Graff & Ehrenfeld, 1998). Using dicistronic mRNAs translated in vitro, 

Borman & Kean (1997) have shown that the HAV IRES is inhibited by FMDV Lb 

proteinase, as well as by HRV 2A proteinase and, furthermore, have determined that 

HAV IRES requires intact elF4G for activity which is unique among the picomavirus 

IRESes studied to date and may help explain why HAV does not inhibit host cell 

translation during viral infection (Borman & Kean, 1997). It is likely that cell-specific 

translation initiation factors also play a prominent role in this process, although there is a
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need for further work in this area (Whetter et al., 1994). Internal ribosome binding likely 

requires the interaction of trans-acting factors that recognise both the mRNA and the 

ribosomal complex (Witherell & Wimmer, 1994). Glass & Summers (1993) have 

identified a trans-acting activity from liver that stimulates HAV translation in vitro and 

from their data surmised that the absence of factors necessary for HAV translation could 

play a role in the nonlytic slow growth properties exhibited by HAV in tissue culture 

systems. This idea is supported by reports that have suggested the need for 

accumulation of a cellular component(s) for the HAV life cycle to progress in BS-C-1 

cells (Cho & Ehrenfeld, 1991). This could also suggest that the hepatotrophism of HAV 

may be based in part on intracellular tissue-specific factors required for HAV translation 

and not solely rely on cellular receptors for HAV, therefore lack of factors could result in 

an aborted replication of HAV in tissues other than the liver.

Processing of the polyprotein is probably mediated largely or entirely by the 3C protein, 

as described earlier. Borovec & Anderson (1993) suggest that cleavage of the HAV 

polyprotein to produce pentamers is protracted (though not rate limiting) early in 

infection, while the assembly of pentamers into higher structures is a rapid process once 

sufficient viral RNA is produced for encapsidation.

Initially, a negative RNA strand, present in very small quantities in infected cells, is 

synthesised from the plus-strand template. It is reasonable to suppose that the initiation 

of minus-strand synthesis depends on 3Dp0‘ first recognizing and binding to certain viral 

RNA sequences, including the 3' terminus region and it has been observed in purified 

recombinant PV and ECMV that 3Dp0‘ absolutely requires the 3' poly(A) tail of the viral 

RNA in order to bind the 3' NTR and initiate replication (Cui et al., 1993). More recently 

it has been discovered that the 3' NTR is a binding site for 3AB and 3CD of PV and for 

3Dpo‘ of ECMV (Rohll et al., 1995). A pseudoknot structure has been proposed within 

the 3' NTR of PV RNA which may participate in secondary interactions. As yet there is 

no information regarding the relevance of these 3' interactions to HAV, although Nuesch 

and colleagues reported in 1993 that a signal sequence is present in the 3' NTR of the 

HAV genome which is thought to be involved in regulation of viral RNA replication. 

Involvement of various host-cell proteins in the replication of picornaviruses has been 

reported and is discussed in the previous sections. A higher-order structure formed at 

the junction of the 3Dpol-coding sequence and the 3' NTR of the HAV genome (putative 

RNA pseudoknot) significantly improves binding of host proteins and thus suggests that 

this structure might be essential for the formation of the RC initiating minus-strand
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synthesis (Kusov et al., 1996). Like the other picornaviruses, synthesis of the negative 

RNA strand yields a double-stranded intermediate which separates, the negative strand 

acting subsequently as a template for amplification of positive-sense genome. The 

results of Anderson et al. (1988) indicate that while the very small amount of negative- 

strand HAV RNA is used efficiently as a template for RNA synthesis, HAV positive- 

strand RNA is preferentially encapsidated and only poorly utilised as a template for RNA 

synthesis. The means by which HAV exits the ceil is not known, although HAV has been 

found within cytoplasmic vesicles in infected cells in the liver (Hollinger & Ticehurst, 

1996).

Following infection of permissive cell cultures with cell culture-adapted virus, replication 

of the viral RNA has been shown to proceed in an increasing fashion for several days, 

but then becomes reduced in magnitude as persistent infection becomes established. 

The factors responsible for this down regulation in viral RNA replication remain unknown, 

although it has been shown that, at the critical time during virus replication, proteins 

accumulate which interact specifically with a distinct nucleotide sequence within the 3' 

non-coding region of the HAV genome and/or within the 5' terminal region of the HAV 

antigenome (Nuesch et al., 1993) and may have a regulatory action on viral RNA 

synthesis. De Chastonay & Siegl (1987) have also observed a down-regulation of viral 

RNA synthesis following the initial period of replicative activity, perhaps related to the 

generation of defective interfering particles containing RNA with large deletions 

putatively extending from the P1 (capsid-encoding domain) into the nonstructural region 

of the genome. Viral antigen may continue to accumulate after maximal infectivity has 

been reached in infections carried out at low multiplicity of infection. The reasons for this 

are not clear, although empty capsids at times represent the dominant form of antigenic 

material harvested from infected cells (Lemon, 1994).

Although the apparent synchronisation of HAV replication in BS-C-1 cells following 

removal of guanidine inhibition shortens the infection cycle about three- to five-fold (from 

14 days to 4 days), this replication cycle is still 10-fold longer than that of most 

picornaviruses whose cycles are complete within 6-8 hr (Cho & Ehrenfeld, 1991). 

Hypotheses advanced to explain the slow growth of HAV in cultured cells include a delay 

in uncoating of the virus upon entry, asynchronous uncoating, rapid encapsidation of 

plus-strand RNA (Anderson et al., 1988), production of defective genomes, an inefficient 

viral polymerase and rapid degradation of the viral polymerase (Updike et al., 1991 and 

references therein).
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The selective forces influencing the spread of HAV within human populations have 

forced the virus to evolve toward such a poor replicative posture. Infection of the liver 

with a virus having the replication properties displayed by PV or EMCV in cell cultures 

would probably result in rapid, overwhelming hepatic failure and death. However, HAV 

depends upon its secretion into bile by a relatively normal functioning liver in order to be 

shed in faeces and transmitted to other individuals. The inefficient translational activity 

of the HAV IRES, and possibly other HAV replicative functions, detailed above, may 

reflect the adaptation of this RNA virus to a relatively unique epidemiologic niche (Lemon 

etal., 1992).

Continued passage of HAV through cells in vitro leads to incorporation of mutations into 

its genome as the virus adapts to growth in cell culture. These mutants have a shorter 

life-cycle and some display an attenuation in their infectivity which could increase their 

potential in vaccine production (Lemon, 1994). Previous studies have shown that 

mutations which occur during adaptation of HAV to cell culture have been found over the 

entire genome (Graff et al., 1994). Mutations present in the 2B/2C genome region, 

however, are common in different HAV strains and are shown to be essential for an 

enhanced viral growth (Emerson et al., 1993; Tedeschi et al., 1993). Prior to this, 

Robertson et al. (1987) found that, of the capsid regions of attenuated HAV isolates 

studies, only limited amino acid changes were observed in VP4, VP2, and VP3, whereas 

amino acid variability was found within VP1 when they were compared with each other. 

It was recently reported that enhanced viral growth required mutations in both 2B and 2C 

proteins, suggesting that these proteins remain closely associated during HAV 

replication. Mutations in the 5' NTR or P3 proteins had no independent effect, but acted 

cooperatively with mutations in P2 proteins to enhance replication and render the virus 

capable of conventional plaque formation (Zhang et al., 1995). Mutations within the 5' 

NTR have a dramatic effect in effect in enhancing growth in certain cell lines and may be 

of relevance to viral attenuation because the change in host range that accompanies 

adaptation of HAV to growth in monkey kidney cells has been associated with reduced 

hepatovirulence in susceptible primates (Brown et al., 1991). Mutations which alter the 

secondary structure of the 5' NTR may lead to a more effective binding pattern for the 

ribosome in the internal segment and possibly enhance the process of viral translation in 

cell culture (Graff et al., 1994). In addition, mutations in the 5' NTR of a cell-culture 

adapted HAV have been shown to enhance viral replication by facilitating cap- 

independent translation in a cell-type-specific fashion, supporting the concept that 

picornaviral host range is determined in part by differences in cellular translation initiation
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factors (Schultz et al., 1996). Mutations, however, in the 5'-most pyrimidine rich tract of 

HAV have been found to reduce its ability to direct internal initiation of translation 

(Carneiro etal., 1995).

The slow growth of HAV in cell culture has hampered the production of sufficient 

quantities of an attenuated vaccine, however recent research into cell culture adaptation 

and attenuation of virulence looks promising in the search for a more practically and 

economically viable vaccine against hepatitis A. Recently Funkhouser et al. (1996) have 

reported progress towards the development of a genetically engineered HAV vaccine.

1.4 Study of the hepatitis A virus 3D1301
In order to determine the reason for slow proliferation of HAV it is necessary to 

characterise the non-structural proteins of the virus. It has been postulated that slow 

growth of HAV in cell culture may be due to inefficient replication of viral RNA but this 

could also be explained by an inefficient RNA polymerase and attempts have been made 

to characterise this enzyme by cloning the P3 region of the genome and expressing in E. 

coli.

Recently a plasmid (pRITPOL) was designed to export HAV-specific P3 sequences into 

the periplasmic space of E. coli as a fusion protein with staphylococcal Protein A. It was 

hoped that this procedure would increase the solubility of the 3Dpo1 protein which had 

previously accumulated in E. coli as an insoluble, inactive product. In E. coli transformed 

with pRITPOL a weak poly(U) polymerase activity was detected which demonstrated 

Mg2+ dependence, inhibition by Mn2+ and a temperature optimum of approximately 32°C, 

but no protein of the predicted size of 53kDa was detected with human convalescent 

serum by Western blotting.
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Figure 25: Plasmid construction pRITPOL and its parent vector pRIT5

An attempt was therefore made to improve expression levels and enzymic activity by 

making two new constructs based on the plasmid pMEX8, a strong, inducible expression 

vector (Figure 26). The first construct, HAV P3/pMEX8 contains most of the P3 regions 

with the exception of what was thought to be the first 11 amino acids of 3A under the 

control of a tac promoter. The corresponding proteins should be expressed in high 

levels in the cytoplasm. The second construct, Protein A/HAV P3/pMEX8, contains the 

P3 region as above, fused to selected staphylococcal Protein A sequences which direct 

the expression products to the periplasmic space. All three constructs including 

pRITPOL were transformed into E. coli strain JRR-600, a strain deficient in RNase I 

which contains episomal lac Iq, displaying tetracycline-retention of the episome 

(Wolstenholme etal., 1993).
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Purification of a protein believed to be the HAV RNA-dependent RNA polymerase from 

the periplasmic space of E. coli transformed with Protein A/HAV P3/pMEX8 has been 

achieved using affinity chromatography (Palmer, 1994).

A synthetic peptide corresponding to the N-terminus of the 3D region has been used to 

raise antisera in rabbit and this has been used to detect the HAV 3Dpo1 in cells 

expressing the P3 region (Nutter, 1992).
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6031 bpAmp

HAV P3

Icol Signal Sequencef1 oriori Kpn
Ptac

Protein A sequences
Protein A/HAV P3/pMEX
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pRITPOL HAV P3 sequences

HAV P3/pMEX8 HAV P3 sequences

11 ori

ori
pM EX8

3631 bp

Amp
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S ty l
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BstEII
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EcoT22l
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Hindi II

Figure 26: Plasmid constructions HAV P3/pMEX8 and Protein A/HAV P3/pMEX8 
and their parent pMEX8 vector
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1.5 Aims
To summarise, HAV shares many structural and biological attributes with other 

picornaviruses such as PV or EMCV. These include at least a superficially similar, non­

enveloped capsid structure, and a positive-sense RNA genome of approximately 7.5kb 

which contains a single large ORF encoding a polyprotein which is post-translationally 

processed by virally encoded proteases into both structural and nonstructural proteins 

required for viral replication. Although the host range of PV is more restricted than 

EMCV, both of these viruses replicate rapidly in cultured cells. Following attachment, 

penetration, and uncoating there is a rapid shut-down of host-cell macromolecular 

synthesis and initiation of viral replication. Maximum titres of replicated virus are 

generally present within 6 hours or less. In contrast, one-step growth studies with HAV 

show that uncoating alone may take up to 12 hours, and that replication even of virus 

which has been substantially adapted to growth in cell cultures takes many hours more. 

Unlike PV and EMCV which generally cause rapid cytolytic infection, infection of cell 

cultures with HAV typically results in viral persistence, with little or no apparent impact on 

cellular growth.

What accounts for this marked difference in these picornaviruses? The virus appears to 

do poorly almost everything it must do to replicate and increase in number. One of 

several hypotheses advanced to explain this slow growth is the possibility that the 

polymerase enzyme is inefficient or rapidly degraded. The purpose of this investigation 

is to characterise the RNA polymerase activity encoded by the HAV. This is a key 

enzyme in viral replication, but the inefficiency of this process has made it impossible to 

study in vivo. The HAV RNA polymerase has previously been expressed in Escherichia 

coli systems and other vector/expression systems and I now propose to study the 

biochemical properties of the bacterially-expressed enzyme.

The polypeptides previously produced by Wolstenholme and colleagues (1993), however 

showed little or no polymerising activity. In this project, I hoped to improve the current 

expression system to maximise the enzyme yield and investigate the effects of viral and 

cellular cofactors on the in vitro activity of HAV RNA polymerase. This involved the 

cloning, expression and purification of other viral polypeptides e.g. 3AB, and the addition 

of the purified polypeptide to standard in vitro RNA polymerase assays. In this way the 

contribution of the RNA polymerase to the distinctive biological properties of HAV - slow, 

non-cytolytic growth in tissue culture and extremely conserved RNA genome sequence, 

can be assessed.
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Essentially though, at commencement, this investigation had several specific aims.

1. Purification of the poly (U) polymerase, identification of the polypeptide responsible 

for this activity and determination of the N-terminal sequence which was incidently 

discovered in 1994 by Tesar and colleagues.

2. Biochemical characterisation of the poly (U) and RNA polymerase activities of the 

HAV 3Dpo‘ expressed in E. coli.

3. Expression and purification of other viral polypeptides and their effects upon addition 

to standard in vitro RNA polymerase activity assays.

4. Development of a more efficient expression system for the HAV 3Dpo‘. Expression 

levels obtained with the protein A fusion system described in Wolstenholme et al. 

(1993) were rather low, and higher levels of expression was expected to make the 

work described considerably easier.

The cost of an outbreak to society (individual patient, NHS and third parties combined) of 

hepatitis A, in Puglia, Italy, was recently calculated to be L37.406 billion ($US24.45 

million) (Lucioni et al., 1998). The overall aim of this project is the biochemical 

characterisation and reconstitution in vitro of the virus enzyme and it is hoped that in the 

long term, knowledge concerning the replication of viral RNA may permit the 

development of faster-growing 'high-yield' strains of virus that could reduce the cost of 

vaccine production.
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2. Materials and methods
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2.1 Mater
2.1.1 Escherichia
STRAIN GENOTYPE (see Appendix 3) SUPPLIER
XL1-Blue RecA1 endA1 gyrA96 thi-1 hsdR17(rK'ir\K) 

supE44 relA1 lac [F' proAB lacPZAM15Tr\10 
(Tef)]

Stratagene Ltd., 
Cambridge, U.K.

XL2-Blue RecA1 endA1 gyrA96 thi-1 hsdR17 (rK'mK+) 
supE44 relA1 lac [F proAB lacPZAM15 Tn 10 
(Tef) Amy Camr]

Ultracompetent 
Epicurian® XL-2s 
purchased from 
Stratagene Ltd., 
Cambridge, U.K.

TB1 F  ara A(lac-proAB) rpsL (Stf)[08OdlacA 
(lacZ)M15\thi hsdR (rK"mK+)

New England Biolabs, 
Hitchin, U.K.

TG1 F  traD36 laqf* A(laqZ)M15 proA+B+/supE  
(hsdM-mcrB)5(rK'rr\K'McrB') thi A(lac-proAB)

Amersham International 
Pic, Little Chalfont, U.K.

JRR-600 Produced by conjugation of MRE-600 cells 
with XL1-Blue cells

Courtesy of Janet Rider, 
University of Bath, U.K.

2.1.2 Escherichia
PLASMID GENOTYPE AND SIZE SUPPLIER
pBluescript™ Ampr, 2.96kb Stratagene Ltd., Cambridge,

U.K.
pMEX8 Ampr, 3.63kb United States Biochemical, 

Cleveland, OH, U.S.A.
pRIT5 Ampr, 6.9kb Pharmacia, St. Albans, U.K.
pMAL-c2 Ampr, 6.7kb New England Biolabs, Hitchin, 

U.K.

2.1.3 Enzymes
Restriction endonucleases and DNA modifying enzymes with associated buffers were 

purchased from New England Biolabs, Hitchin, U.K. or from the Promega Corporation, 

Southampton, U.K. with the exception of T4 DNA Ligase which was purchased from 

Gibco BRL, Paisley, U.K. and Expand™ Long Template PCR System, Expand™ High 

Fidelity PCR System and RNAse A which were from Boehringer Mannheim, Lewes, U.K. 

Sequenase™ sequencing kits were obtained from United States Biochemicals, 

Cleveland, OH, U.S.A.

92



Chapter 2

2.1.4 Antibodies
Antibodies directed against a synthetic 3D peptide were courtesy of Miss E. Nutter. The 

synthetic peptide amino acid sequence is:-

M I E Y R L K S Y D W W R M  F Y D Q C  

This corresponds to the C-terminus of the predicted sequence of HAV 3D (nucleotides 

7339 through to 7398 (Appendix 2 (7.2.3). By coupling this to thyroglobulin and forming 

an emulsion with the TiterMax™ Research Adjuvant (Sigma-Aldrich Chemical Company 

Ltd., Poole, U.K.) the serum collected from animals injected contained antibodies against 

the 3Dpo'. The titre of this antibody was found by Miss E. Nutter to be >1004.

Human convalescent serum was kindly supplied by the PHLS Laboratories, Royal United 

Hospital, Bath, U.K.

Anti-MBP antiserum was from New England Biolabs for use in pMAL expression 

analysis.

2.1.5 General laboratory reagents
Molecular biology grade chemicals were obtained from Fisons, Loughborough, U.K. 

Bacteriological culture media and Tris-saturated phenol:chloroform:isoamyl alcohol were 

obtained from the Sigma-Aldrich Chemical Company Ltd., Poole, U.K. Water-saturated 

phenol was from Rathbum, Walkerburn, U.K. Absolute ethanol was obtained from 

Hayman Ltd., Witham, U.K. Ultrapure Sequagel™ Sequencing Systems and Protogel™ 

acrylamide solutions were obtained from National Diagnostics, Hull, U.K. Falcon 

plasticware was supplied by Becton Dickinson and Company, Plymouth, U.K. and Nunc 

plasticware by Life Technologies, Glasgow, U.K. Whatman 3MM Chromatography 

Paper was from Whatman International Ltd., Maidstone, U.K. Trans-Blot® Transfer 

Medium (Pure Nitrocellulose Membrane) was from Bio-Rad Ltd., Hemel Hempstead, 

U.K.

Ultrapure dNTP sets were obtained from Pharmacia Biotech, St. Albans, U.K. Wizard™ 

Minipreps DNA Purification System kits were purchased from Promega and 

Sequenase™ Version 2.0 DNA Sequencing kits (United States Biochemical) from 

Amersham International Pic., Little Chalfont, U.K. The ECL kits and all radiochemicals 

were also purchased from Amersham International Pic. GENECLEAN //® kits (Bio101 

Inc.) were from Anachem, Luton, U.K. and QIAquick PCR Purification kits and QIAfilter
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Midi kits from QIAGEN Ltd., Dorking, U.K. Blue sensitive X-ray film was obtained from 

Genetic Research Instrumentation, Dunmow, U.K.

Oligonucleotides were synthesised either by R&D Systems Europe Ltd., Abingdon, U.K. 

or by Perkin Elmer - Applied Biosystems, Warrington, U.K.

2.1.6 Media and solutions
The composition of media and solutions used in the Methods section are given below. 

Solutions were sterilised either by autoclaving at 120°C, 1.41 KPa for 20 minutes, or by 

filtering using Millipore 0.22pM syringe filters. All solutions were stored at room 

temperature in colourless glass or plastic bottles, unless otherwise stated.

2.1.6.1 Enzyme buffers
2. 1.6. 1. 1 Polymerases and modifying
ENZYME REACTION BUFFER (1x)
Taq DNA polymerase 50mM KCI

10mM Tris-HCI (pH9.0) 
0.1% (v/v) Triton X-100

Vent® DNA Polymerase 10mM KCI
20mM Tris-HCI (pH8.8 @24°C) 
10mM (NH4)2S 04 
2mM MgS04 
0.1% (v/v) Triton X-100

Expand Polymerase Enzyme Mix 50 mM Tris-HCI (pH 9.2) 
16mM (NH4)2S04 
2.25 mM MgCI2

Polynucleotide Kinase (PNK) 70mM Tris-HCI (pH7.6) 
10mM MgCI2 
5mM DTT

Calf Intestinal Alkaline 
Phosphatase (CIAP)

50mM NaCI 
10mM Tris-HCI 
10mM MgCI2
1mM DTT, pH7.9@25°C

T4 DNA Ligase 50mM Tris-HCI (pH7.6) 
10mM MgCI2 
1mM ATP 
1mM DTT 
5% (w/v) PEG8000

Enzymes and buffers were stored at -20°C or as per manufacturer's recommendations.
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2.1.6.1.2 Restriction endonucleases, their buff ers and reaction 
conditions used
RESTRICTION
ENDONUCLEASE

CONDITIONS REACTION BUFFER (1x) w m fw
INACTIVATE?

Sac I 
Kpn I

Buffer 1
BSA (lOOpg/ml) 
37°C

1mM Bis Tris Propane-HCI 
1mM MgCI2
0.1 mM DTT (pH7.0 @25°C)

YES
NO

Xmn I Buffer 2
BSA (100pg/ml) 
37°C

5mM NaCI 
1mM Tris-HCI 
1mM MgCI2
0.1 mM DTT (pH7.9 @ 25°C)

YES

Cac8 I Buffer 3
37°C

10mM NaCI 
5mM Tris-HCI 
1mM MgCI2
0.1 mM DTT (pH7.9 @ 25°C)

YES

BamH I Unique Buffer 
BSA (lOOpg/ml) 
37°C

15mM NaCI 
1mM Tris-HCI 
1mM MgCI2
0.1 mM DTT (pH7.9 @ 25°C)

NO

Sal I Unique Buffer 
BSA (100|ig/ml) 
37°C

15mM NaCI 
1mM Tris-HCI 
1mM MgCI2
0.1 mM DTT (pH7.9 @ 25°C)

YES

All enzymes and buffers stored at -20°C as per manufacturer's recommendations.

Double digests were conducted using the buffer directed by the manufacturer as detailed 

in section 2.2.4.1.

2.1.6.2
MEDIUM COMPONENTS
Luria-Bertani (LB) Broth 1 % (w/v) bacto-tryptone 

1% (w/v) NaCI 
0.5% (w/v) yeast extract

LB-Agar LB Broth 
1.5% (w/v) agar

DYT 1.6% (w/v) bacto-tryptone 
0.5% (w/v) NaCI 
1 % (w/v) yeast extract

LB-Glucose LB Broth
0.02% (w/v) glucose
(added post autoclaving as filter-sterilised stock solution)

LB-Expression LB Broth
1mM IPTG (added post autoclaving)

Rich Broth (pMAL) 1 % (w/v) bacto-tryptone 
0.5% (w/v) NaCI 
0.5% (w/v) yeast extract 
0.2% (w/v) glucose
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2.1.6.3 General
BUFFER COMPONENTS
Chloroform 24:1 (v/v) Chloroform:isoamyl alcohol
Phenol Obtained distilled and stored at 4°C, equilibrated with 2 volumes 

50mM Tris-HCI (pH8.0)
(stored in the dark at -20°C)

Phenol/chloroform 50% (v/v) Phenol equilibrated with 10mM Tris-HCI, pH7.6 
49% (v/v) chloroform 
1 % (v/v) isoamyl alcohol 
(stored in the dark at 4°C)

Ethidium Bromide 10mg/ml stock, stored in the dark at 4°C
RNAse A 
(DNAse free)

10mg/ml stock in TE Buffer, incubated at 95°C for 30 minutes 
and stored at -20°C.

PBS 0.14M NaCI 
2.7mM KCI 
10mM Na2HP04 
1.76mM KH2P04, pH7.4

2.1.6.4 Buffers used in plasmid
analysis
BUFFER COMPOSITION
GTE Buffer 25mM Tris-HCI (pH8.0) 

10mM EDTA 
50mM glucose

Standard Lysis Buffer 0.2M NaOH
(made up just prior to use) 1% (w/v) SDS
Potassium Acetate Solution 3M potassium acetate

11.5% (v/v) glacial acetic acid, pH4.6
TE 10mM Tris-HCI 

1mM EDTA, pH7.6
10x TBE 0.89M Tris-HCI 

0.89M H3BO3 

20mM EDTA, pH8.0
6x Loading Buffer 0.25% (w/v) bromophenol blue 

0.25% (w/v) xylene cyanol FF 
15% (w/v) Ficoll
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2.1.6.5 Buffers used in protei
2.1.6.5.1 SDS-PAGE gel ele
BUFFERS COMPOSITION
30% (w/v) Acrylamide 
(stored at 4°C)

28.4% (w/v) acrylamide 
1.6% (w/v) bis-acrylamide
Deionised by stirring with dextran beads for 2 hours 
and filtered.

Solution A (Protogel) 
(stored in dark at 4°C)

29.2% (w/v) acrylamide
0.8% (w/v) N,N'-methylenebisacrylamide

Solution B/Resolving Gel Buffer 
(stored in dark at 4°C)

18.2% (w/v) Tris-HCI 
0.4% (w/v) SDS, pH8.8

Solution C/Stacking Gel Buffer 
(stored in dark at 4°C)

6.1% (w/v) Tris-HCI 
0.4% (w/v) SDS, pH6.8

Solution D/10% APS 
(made up just prior to use)

10% (w/v) ammonium persulphate

SDS-PAGE Sample Buffer 
(stored at 4°C)

50mM Tris-HCI (pH6.8)
0.1M dithiothreitol (DTT)
2% (w/v) SDS
0.1% (w/v) bromophenol blue 
10% (v/v) glycerol

Tank Buffer 25mM Tris-HCI 
0.25M glycine 
0.1% (w/v) SDS, pH8.3

Fix 45% (v/v) methanol 
10% (v/v) acetic acid

Coomassie Blue Stain Fix
0.25% (w/v) Coomassie Brilliant Blue R-250

2.1.6.5.2 Western blotting and
BUFFER COMPOSITION
Transfer Buffer 39mM glycine 

48mM Tris base 
0.037% (w/v) SDS 
20% (v/v) methanol, pH8.3

10x Ponceau-S 2% (w/v) Ponceau-S 
30% (w/v) trichloroacetic acid 
30% (w/v) sulfosalicylic acid

Blocking Buffer 5% (w/v) Marvel™ non-fat dried milk 
0.02% (w/v) NaN3 in PBS

Phosphate-free, Azide-free 
Blocking Buffer

5% (w/v) Marvel™ non-fat dried milk 
0.15M NaCI 
50mM Tris-CI

Washing Buffer 0.15M NaCI 
50mM Tris-CI
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2.1.6.6 Buffers used in protein techniques
2.1.6.6.1 Buffers used in protein isolation
BUFFER COMPOSITION
IC Resuspension Buffer 50mM Tris-HCI (pH8.1) 

0.15M NaCI 
0.25mM EDTA

PS Resuspension Buffer 0.3M Tris-CI (pH8.1)
1mM EDTA 
0.5mM MgCI2 
20% (w/v) sucrose
(sucrose added post autoclaving as filter sterilised stock)

2.1.6.6.2 GTP-Agarose affinity chromatography buffers
BUFFERS COMPOSITION
Equilibration Buffer (stored at 4°C) 50mM KCI

10(iM NaF
Elution Buffer (stored at 4°C) Equilibration Buffer

5mM ATP

2.1.6.6.3 FPLC buffers
BUFFER COMPOSITION
Column Equilibration Buffer 10mM Tris-CI

25mM NaCI, pH8.0
Buffer A 20mM Tris-CI

25mM NaCI, pH8.0
Buffer B 20mM Tris-CI

0.5M NaCI, pH8.0
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2.2 Methods
2.2.1 Techniques used in DNA preparation and 
synthesis
2.2.1.1 Calcium chloride competent cells
Competent cells were made using the calcium chloride method (adapted from Mandel 

and Higa, 1970). A 5pl culture of the desired cell strain, generally E. coli TG1 cells, in 

LB was incubated with shaking at 37°C overnight. An aliquot (200|il) of overnight culture 

was added to 50ml DYT and incubated with shaking at 37°C until an A55o of 0.3 was 

reached. The cells were placed on ice for 5 minutes, centrifuged at 1,090g, 4°C for 5 

minutes and the pellet resuspended in 20ml 0.1M CaCI2. After a further 20 minutes on 

ice, the cells were centrifuged as above and the pellet resuspended in 2ml 0.1M CaCI2. 

Competent TG1s were used within 24 hours. Ultracompetent Epicurian® XL2s were 

used as directed by manufacturer.

2.2.1.2 Transformation and culture of clones
DNA (50-100ng) was added to 200(j.l competent cells and incubated on ice for 40 

minutes. The cells were heat shocked at 42°C for 90 seconds, 1ml DYT was added and 

the cells incubated at 37°C for 40 minutes before being plated onto LB agar plates 

containing ampicillin at 100pg/ml for transformant selection. Plates were then incubated 

at 37°C overnight. Individual colonies were lifted and transferred aseptically to 10ml of 

LB containing 100pg/ml ampicillin. The cultures were incubated overnight at 37°C with 

shaking.

2.2.1.3 a-Complementation
Transformed competent cells which utilised the replacement of the lacZ gene with 

foreign DNA were selected for on LB ampicillin plates supplemented with the 

chromogenic substrate X-gal and the inducer IPTG as described in Sambrook et al., 

(1989).
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2.2.1.4 Storage of bacterial cultures
Bacterial cultures were stored indefinitely at -20°C with the addition of 15% (v/v) sterile 

glycerol, as described in Sambrook etal., (1989).

2.2.1.5 Plasmid DNA preparations
2.2.1.5.1 ‘Mini’-scale

2.2.1.5.1.1 Standard alkaline lysis method

Small amounts (~10|ng) of plasmid DNA were isolated from cultures using a modified 

alkaline lysis method (Bimboim and Doly, 1979). 1.5ml of an overnight culture was 

centrifuged for 1 minute, and the supernatant removed. The pellet was resuspended, 

with mixing, in 100|xl of ice-cold GTE and then 200pl of freshly prepared Standard Lysis 

Buffer was mixed in by repeatedly inverting the tube. The tube was incubated on ice for 

5 minutes, before 150jil of chilled Potassium Acetate Solution was added and the tube 

vortexed. After a further 5 minutes on ice the tube was centrifuged at 12,000g for 5 

minutes at 4°C and the supernatant preserved. The DNA was then extracted once with 

phenol:chloroform and precipitated for 15 minutes at -20°C with 2 volumes of ethanol. 

After a 10 minute centrifugation the pellet was washed with 70% (v/v) ethanol and dried 

under vacuum. The pellet was then resuspended in TE containing lO^g/ml RNAse A.

2.2.1.5.1.2 Promega “Wizard”™miniprep method

3ml of an overnight culture were centrifuged in a benchtop microcentrifuge in two 

microcentrifuge tubes at 10,000g for 90 seconds. Each of the pellets was resuspended 

by vortexing in 100|liI of Cell Resuspension Solution (50mM Tris-HCI (pH7.5), 10mM 

EDTA, 100pg/ml RNAse A) and the two aliquots combined. 200pJ of Cell Lysis Solution 

(0.2M NaOH, 1% (w/v) SDS) were added and the tube’s contents mixed by inverting 

several times. After the addition of 200pl of Neutralisation Solution (1.32M potassium 

acetate) the tube was again inverted several times and spun at top speed (10,000g) in a 

microcentrifuge for 5 minutes. The clear supernatant was retained and the pellet of 

bacterial debris discarded.
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A Wizard™ Minicolumn was prepared by attaching the barrel of a 3ml syringe to the 

Minicolumn and 1ml of resuspended Wizard™ Minipreps DNA Purification Resin was 

added to the Minicolumn/syringe assembly. The clear supernatant was transferred to 

the barrel of the Minicolumn/syringe assembly and the plunger pushed home gently, 

after which the syringe was removed from the column and the plunger withdrawn. The 

syringe barrel was then reattached and 2ml of Column Wash Solution (80mM potassium 

acetate, 8.3mM Tris-HCI (pH7.5), 40jxM EDTA and 55% (v/v) ethanol) was passed 

through the Minicolumn. The syringe was again removed and the Minicolumn 

transferred to a clean 1.5ml microcentrifuge tube. The Minicolumn was centrifuged at 

10,000g in a microcentrifuge for 2 minutes to dry the resin. Plasmid DNA was eluted by 

adding 50|xl of water, waiting 1 minute and then centrifuging at 10,000g for 30 seconds.

2.2.1.5.2 ‘Midi’-scale

2.2.1.5.2.1 Alkaline lysis method

50ml of DYT media containing ampicillin at 100pg/ml was inoculated with 200pl of 

glycerol stock and incubated with shaking at 37°C overnight. Cells were harvested by 

centrifugation in a Sorvall SS34 rotor at 3,000g for 5 minutes. The pellet was 

resuspended in 4ml of GTE and the cells lysed with 4ml of fresh Standard Lysis Buffer. 

The alkali was neutralised by the addition of 4ml of neutralising solution (3M sodium 

acetate, pH4.8) and the mixture centrifuged in a Sorvall SS34 rotor at 17,400g for 5 

minutes.

The supernatant was mixed with an equal volume of isopropanol and centrifuged at 

17400g for 5 minutes. The pellet was resuspended in 500pl of sterile water in a 

microcentrifuge tube and the alkaline lysis and neutralisation steps repeated using 250pl 

volumes in order to eliminate any remaining cellular DNA. The pellet obtained after a 

second isopropanol precipitation was resuspended in 500pl of sterile water and 

incubated for 5 minutes with an equal volume of 6M LiCI in order to precipitate RNA. 

After centrifuging at high speed for 2 minutes the DNA in the supernatant was ethanol 

precipitated (as described in 2.2.2.2) and the subsequent pellet resuspended in 400pl of 

TE (pH7.8). RNA was digested by the addition of DNAse-free RNAse to a concentration 

of 100pg/ml and incubation at 37°C for 30 minutes. The reaction was stopped by the 

addition of 20pl 10% (w/v) SDS and incubation at room temperature with 6M LiCI for 15 

minutes and pelleted by centrifugation at high speed. DNA in the supernatant was
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ethanol precipitated and the subsequent pellet resuspended in sterile water before 

extraction of protein once with phenol:chloroform:isoamyl alcohol (25:24:1) and twice 

with chloroform:isoamyl alcohol (24:1). After a final ethanol precipitation, the DNA pellet 

was resuspended in 100(il sterile water.

2.2.1.5.2.2 QIAGEN “QIAfilter”™Midi method

LB containing chloramphenicol (180mg/l) improves yield of low-copy-number plasmids 

containing the ColE1 origin of replication, such as pMAL-c2, and they can then be 

treated as high-copy-number plasmids and as such the following procedure was adhered 

to:

The bacterial pellet was resuspended in 4ml of Resuspension Buffer (50mM Tris-HCI 

(pH8.0), 10mM EDTA, lOO^ig/ml RNAse A). 4ml of Lysis Buffer (0.2M NaOH, 1% SDS) 

was added, the solution was mixed gently and then 4ml of chilled Neutralisation Buffer 

(3M potassium acetate (pH5.5)) was added. Immediately the tube was mixed gently and 

the lysate transferred to the barrel of the QIAfilter Midi cartridge where it was incubated 

at room temperature for 10 minutes. Meanwhile, a QIAGEN-tip 100 was equilibrated by 

applying 4ml of Equilibration Buffer (0.75M NaCI, 50mM MOPS (pH7.0), 15% (v/v) 

ethanol, 0.15% (v/v) Triton X-100) and allowing the column to empty by gravity flow. The 

plunger was inserted into the QIAfilter Midi cartridge and the cell lysate filtered while 

holding it over the previously equilibrated QIAGEN-tip. The cleared lysate enters the 

resin by gravitational flow and the QIAGEN-tip washed twice with 10ml Wash Buffer (1M 

NaCI, 50mM MOPS (pH7.0), 15% (v/v) ethanol). The DNA was eluted with 5ml Elution 

Buffer (1.25M NaCI, 50mM Tris-HCI (pH8.5), 15% (v/v) ethanol), precipitated with 3.5ml 

room-temperature isopropanol and centrifuged at 15,000g for 30 minutes at 4°C. The 

supernatant was carefully removed and the DNA was washed with 2ml of 70% (v/v) 

ethanol, centrifuged at 15,000g for 10 minutes and the supernatant again carefully 

removed. The pellet was air-dried for approximately 5 minutes and then dissolved in a 

suitable volume of sterile distilled water or TE Buffer.

2.2.1.5.3 ‘Maxi’-scale

2.2.1.5.3.1 Alkaline lysis method using CsCI and EtBr

This method is a modification of the method of Birnboim and Doly (1979) and is
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designed to be used in conjunction with a subsequent purification step such as 

equilibrium centrifugation in CsCI>ethidium bromide gradients.

From the cells stored at 4°C, 500pl was used to inoculate 500ml LB broth with ampicillin 

(100^g/ml). The cells were grown overnight, then pelleted by centrifugation at 3,000g for 

20 minutes at 4°C. The pellet was resuspended in 8ml of GTE. The cells were lysed by 

adding 16ml Standard Lysis Buffer and then incubated on ice for 10 minutes. The cell 

debris was precipitated with 5ml Potassium Acetate Solution and then pelleted by 

centrifuging at 10,000g for 30 minutes at 4°C. The supernatant was decanted and kept. 

Nucleic acids were precipitated from the supernatant with 0.6 volumes of propan-2-ol at 

room temperature for 10 minutes, then pelleted by centrifugation at 10,000g for 10 

minutes at room temperature. The vacuum dried pellet was resuspended in 10ml of 

sterile distilled water and the volume accurately noted. Exactly 1g of CsCI for every 1ml 

(or part thereof) of DNA solution was added, with 300pl of 10mg/ml Ethidium Bromide 

(EtBr) and this solution transferred to Beckman heat-sealable tubes. The tubes were 

balanced to within 10mg, sealed and centrifuged at 340,000g for 18 hours.

The lower, supercoiled plasmid band was taken and solvent extracted with amyl-alcohol 

to remove the EtBr. The aqueous phase was diluted with 1ml sterile distilled water and 

then the DNA precipitated with 3 volumes ice cold absolute ethanol. The vacuum dried 

pellet was resuspended in 1ml sterile distilled water, then precipitated with 2ml absolute 

ethanol plus 100|il 3M sodium acetate (pH5.2). The vacuum dried pellet was 

resuspended in 1ml sterile distilled water and precipitated as before. This pellet was 

resuspended in 200pl sterile distilled water.

2.2.1.5.3.2 Alkaline lysis method using LiCI

From the cells at 4°C, 100ml LB broth was inoculated, cells pelleted and resuspended in 

4ml GTE as before. The cells were lysed with 8ml Standard Lysis Buffer and incubated 

on ice for 10 minutes. Cell debris from the lysate was precipitated with 15ml ice-cold 

Potassium Acetate Solution and the suspension incubated on ice for 15-30 minutes. 

The suspension was centrifuged at 1,000g for 15 minutes at room temperature. The 

supernatant was filtered through muslin into another tube. Nucleic acids were 

precipitated by adding 18ml propan-2-ol and incubating on ice for 30 minutes. The 

nucleic acids were pelleted by centrifugation for 30 minutes as before and the air dried
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pellet resuspended in 1ml TE Buffer. The suspension was split between two tubes, 

500pl 6M LiCI added to each tube and incubated on ice for 15 minutes. The 

RNA/protein/salt complex was pelleted at 20,000g for 10 minutes at room temperature. 

The supernatants were split between two tubes and 1ml of -20°C absolute ethanol 

added to each tube and incubated at -20°C for 30 minutes. The nucleic acids were 

pelleted by centrifuging for 10 minutes at 20,000g at room temperature. The pellets 

were then washed in 500|al 70% (v/v) ethanol and repelleted by centrifugation as before. 

The pellets were vacuum dried and combined by resuspension in 400pl TE Buffer. RNA 

was removed by the addition of 4jil (10mg/ml) RNAse A and incubation at 37°C for 30 

minutes. The sample was further incubated with 20pl 10% (w/v) SDS at 75°C for 10 

minutes. 420^1 6M LiCI was added and incubated for 15 minutes at room temperature 

before centrifugation as before. The supernatant was split between two tubes, 1ml 

absolute ethanol was added to each tube and the tubes incubated on ice for 30 minutes. 

The DNA was pelleted by centrifugation at 20,000g for 30 minutes at room temperature. 

The pellets were washed in 500^1 70% (v/v) ethanol, then repelleted by centrifugation for 

10 minutes at 20,000g at room temperature. The pellets were resuspended in 400pl 

sterile distilled water, then solvent extracted with an equal volume of phenol/chloroform 

(1:1). This was followed by 2 further equal volume chloroform extractions, then an 

absolute ethanol precipitation. The pelleted DNA was resuspended in 100jxl sterile 

distilled water and could be used in further procedures.

2.2.2 Techniques used in the purification of DNA
2.2.2.1 Extraction of DNA with phenol:ch loroform
Purification of DNA by phenolxhloroform extraction was routinely performed as 

described in Sambrooketal. (1989).

2. 2. 2.2 Concentration of DNA by ethanol precipitation
DNA was concentrated by precipitation with 0.1 volumes 3M sodium acetate (pH5.2) and 

2.5 volumes absolute ethanol at -70°C for 20 minutes or -20°C overnight, centrifuged at 

high speed for 20 minutes, washed in 70% (v/v) ethanol and resuspended in sterile 

water.
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2.2.2.3 Purification of DNA from agarose gels
Bands of DNA were excised from agarose gels and purified using a GENECLEAN IIs Kit 

(Bio101, Inc.) or a Sephaglas BandPrep™ Kit (Pharmacia) as described below.

With Sephaglas, the band of interest was cut out with a clean razor blade and any 

excess agarose trimmed away. The gel slice was weighed and 250|il (or 1 jxl for each 

mg of agarose, whichever is the greater) of gel solubiliser (buffered Nal) added. The 

agarose was dissolved by incubating the tube at 60°C for 10 minutes. 5pl of Sephaglas 

BP (20% (w/v) Sephaglas in aqueous solution) was added (or 5 1̂ per estimated pg of 

DNA present) the contents of the tube mixed by vortexing and incubation continued on 

the bench for a further 5 minutes with additional periodic vortexing. The Sephaglas was 

spun down at top speed in a microcentrifuge for 1 minute and the supernatant aspirated. 

40pl (or 8x the volume of Sephaglas used) of wash buffer (60% (v/v) ethanol, 20mM 

Tris-HCI (pH 8.0), 1mM EDTA, 0.1 mM NaCI) was added and the pellet resuspended by 

vortexing. The Sephaglas was again spun down and the supernatant aspirated. This 

step was repeated twice and the pellet was air dried for 10 minutes.

DNA was eluted by adding a suitable volume of elution buffer (10mM Tris-HCI, 1mM 

EDTA), not less than half the volume of Sephaglas used, vortexing briefly to resuspend 

the pellet and incubating at room temperature for 5 minutes. The Sephaglas was spun 

down again for 1 minute at top speed and the supernatant carefully removed and 

retained.

With the GENECLEAN //® Kit, 0.5 volume of TBE Modifier™ and 4.5 volumes of Nal 

stock solution were added to a given volume of agarose, excised from a gel, and the 

tube incubated at 45-55°C until the agarose completely dissolved. To solutions 

containing 5 îg or less of DNA, 5pl of GLASSMILK® suspension were added with an 

additional 1̂ 1 GLASSMILK® being added for each 0.5pg of DNA above 5pg. After 

addition of the GLASSMILK® suspension to the solution, the tube was mixed and placed 

on ice for 5 minutes to allow binding of the DNA to the silica matrix, mixing every 1-2 

minutes to ensure that the GLASSMILK® stayed suspended. The silica matrix with the 

bound DNA was next pelleted by centrifugation. The Nal supernatant was removed and 

discarded and the white pellet washed 3 times with NEW WASH by adding 

approximately 10-50 volumes of ice-cold NEW WASH to the pellet. Elution of the DNA 

was achieved by resuspending the washed, white pellet in water and heating to 45-55°C 

for 2 or 3 minutes. The tube was next centrifuged for about 30 seconds and the
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supernatant containing the DNA removed and placed in a new tube.

2.2.2.4 Removal of short fragments of DNA
Fragments of DNA less than 100bp in size, contaminating fragments, glycerol, salts, or 

enzymes were removed after enzymatic reactions, if necessary, using the QIAGEN 

QIAquick PCR Purification Kit. 5 volumes of buffer PB were added to the DNA solution 

and the mixture loaded onto a QIAquick spin column. The column was centrifuged for 2 

minutes at 10,000g and the eluate discarded. 750pl of buffer PE was loaded onto the 

column which was centrifuged as before and the eluate again discarded. The last traces 

of wash buffer were removed by a final spin for 1 minute at 10,000g. The purified DNA 

was eluted from the column by the addition of 30|xl of water and incubation for 2 minutes 

prior to a final spin at 10,000g for 2 minutes.

2.2.3 Techniques used in the analysis of DNA
2.2.3.1 Estimation of concentration of DNA
The concentration of nucleic acid was calculated from readings of the absorbance at 

260nm on a Perkin Elmer UVA/IS Lambda 11 Spectrometer. For double-stranded DNA, 

at 260nm, 10D  = 50pg/ml and for single stranded oligonucleotides, at 260nm, 10D = 

20pg/ml (Sambrook et al., 1989). Contamination with protein was calculated using the 

ratio: absorbance at 260nm / absorbance at 280nm. A ratio of > 1.8 was taken to 

indicate purity.

2.2.3.2 Agarose gel electrophoresis of DNA
Agarose gel electrophoresis was performed as described in Sambrook et al. (1989). 

DNA samples for agarose contained 0.16 volumes of 6x loading buffer. These were 

loaded onto 1x TBE gels of varying percentage agarose, containing 50ng/ml ethidium 

bromide. Gels were typically run at 6Vcm'1 for an hour prior to visualisation under UV 

illumination. Phage X DNA cut with the restriction enzyme Pst I was used as a size 

marker. Gels were photographed under UV light using a Polaroid camera with yellow 

filter and Polaroid 667 black and white ISO 3000/36° film.
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2.2.3.3 Sequencing of cloned PCR products
DNA was sequenced using the dideoxynucleotide chain termination method of Sanger et 

al. (1977), using T7 DNA polymerase in a Sequenase™ Version 2.0 DNA Sequencing Kit 

(United States Biochemical/Amersham). Samples were electrophoresed on a 6% (w/v) 

acrylamide sequencing gel, for 2-4h at 30mA, 40W. Gels were fixed in 10% (v/v) 

methanol, 10% (v/v) acetic acid, dried, and exposed to Kodak X-Omat LS™ film at room 

temperature overnight. A number of clones were sequenced directly on an automated 

Perkin Elmer ABI PRISM™ 377 DNA Sequencer.

2.2.3.3.1 Preparation of polyacrylamide gels fo r  sequencing
The gels were cast in rigs supplied by Flowgen. Both glass plates were washed in water 

and polished with 95% (v/v) ethanol. The back plate was laid flat and coated in a 

mixture of 200pl silane, 25ml absolute ethanol and 1.2ml 10% (v/v) acetic acid. After 5 

minutes the plate was rinsed first with water then with ethanol and polished. The front 

plate was similarly coated in 1% (v/v) dichlorodimethylsilane in 1,1,1, trichloroethane, left 

for 5 minutes, washed with water and polished with 95% (v/v) ethanol. The gel rig was 

assembled with 0.2mm spacers and a gel mixture of the required acrylamide 

concentration was made up, adding 300(xl of fresh 16% (w/v) ammonium persulphate 

(APS) and 30jllI of TEMED just before pouring. The gel was poured in a horizontal 

position and the reverse (flat) face of a 0.2mm thick shark’s tooth sequencing comb 

inserted into the upper edge of the gel. The acrylamide was allowed to set for an hour 

before the comb was removed and reversed so that the teeth impinged about 1.5mm 

into the surface of the gel.

The gel rig was mounted vertically in the equipment supplied and the reservoirs filled 

with 1xTBE. The wells were washed clear of urea and any loose polyacrylamide 

fragments with a pasteur pipette to prevent interference with the DNA samples. 3̂ 1 of 

each sample was loaded onto the gel which was run at a limiting 45W. The run was 

terminated after approximately 45 minutes when the first blue dye had reached the 

bottom of the gel. After the run, the two plates were separated and the back plate with 

attached gel was fixed with 10% (v/v) methanol, 10% (v/v) acetic acid for 10 minutes 

then rinsed under a gentle flow of water for a further 10 minutes. After drying in an oven 

at 90°C the gel was autoradiographed.
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2.2.3.3.2 Searching of sequence databases
The databases were searched using the specified sequence and GCG Tfasta program 

(Devereux et. al. 1984). The Tfasta method compares the specified amino acid 

sequence with the products of ail six reading frames of the query nucleic acid sequence, 

using the method of Pearson and Lipman (1988).

2.2.4 Techniques used in the manipulation of DNA
2.2.4.1 Restriction digests ofpiasmidDNA
The restriction digest was performed generally in a total volume of not greater than 50pl. 

Plasmid DNA (up to 1pg) in sterile water, 0.1 volumes of the appropriate 10x reaction 

buffer and 1Unit/(pg DNA) of the relevant restriction enzyme were mixed gently and 

incubated under optimal conditions of time and temperature (generally 37°C overnight). 

If necessary, 0.01 volumes of 100x BSA (10mg/ml) were also added to the digest. The 

digest was stopped by the addition of EDTA to 5mM and/or heat inactivation of the 

restriction enzyme (generally 75°C for 20 minutes). When using thermostable enzymes 

an additional QIAquick purification step was used instead.

DNA needing double digestion under incompatible conditions was digested with one 

restriction enzyme, the restriction enzyme inactivated, the DNA ethanol precipitated and 

then re-digested with the second restriction enzyme. In some cases, usually where an 

enzyme was thermostable, a QIAquick purification step was used after the first digest 

and the purified DNA digested with the second restriction enzyme.

2.2.4.2 Ligations
Ligations were performed with varying vectoninsert ratios (generally a 3-fold molar 

excess of vector, a 3-fold molar excess of insert and equal amounts of vector and insert). 

Two vector only controls were included, one without ligase. An optimal amount of vector 

(250ng), the corresponding amount of insert, 0.2 volumes 5x T4 DNA Ligase buffer and 

5Units T4 DNA Ligase were mixed in a minimal volume, generally 20pl.

Blunt end ligations were incubated at room temperature overnight whereas sticky end 

ligations were incubated at 16°C overnight. Ligations were diluted 5-fold in sterile water
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before adding to competent cells.

2.2.4.3 The polymerase chain reaction (PCR)
PCR amplification of DNA fragments was performed using oligonucleotide primers 

designed to specific sequences within the desired regions. Four different PCR methods 

were employed: Promega Taq polymerase, Vent DNA Polymerase and Expand Long 

Template and Expand High Fidelity as detailed below.

PCR was performed in a 100^1 total volume, containing 0.1 volumes 10x Taq DNA 

Polymerase buffer, 1.5-4mM MgCI2, 0.2mM dNTPs, 1pM each primer and approximately 

100ng DNA template. If necessary, magnesium titrations were performed, in which the 

concentration of Mg2+ was varied from 1 to 4mM, in order to achieve the optimal amount 

of specific product. The reaction mix was overlaid with sterile mineral oil in a 0.5ml 

microcentrifuge tube.

Using a PTC-100™ from MJ Research, Inc., the template was fully denatured at 95-96°C 

for 5 minutes (a hotstart reaction). 2.5Units Taq DNA Polymerase (Promega) was added 

and generally 30-40 cycles of denaturation at 95°C for 1 minute, annealing at 37-65°C 

for 1 minute, and extension at 72°C for 1 minute commenced. The cycles were followed 

by a final extension of 72°C for 5 minutes. Exact conditions were dependent on the 

annealing temperature and GC content of the primer pairs (see calculation of annealing 

temperature in Appendix 2, part d) and the length of the template, and are given in figure 

legends.

In some cases, the proof reading enzyme, VentR® DNA Polymerase (New England 

Biolabs) was used. Conditions were similar but used a different 10x reaction buffer. 

Again exact conditions are listed in figure legends.

PCR amplifications using Expand™ Long Template and Expand™ High Fidelity PCR kits 

(Boehringer Mannheim) were also undertaken.

Template DNA (250ng), 0.1 volumes of 10x reaction buffer (0.5M Tris-HCI (pH9.2 @ 

25°C), 0.16M (NH4)2S04, 17.5mM MgCI2), 0.35mM dNTPs, 0.3pM sense primer and 

0.3pM antisense primer and 2.5Units Expand™ Long Template were incubated at 94°C
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for 2 minutes and then subjected to 30 cycles of 94°C for 30 seconds, 50-65°C for 30 

seconds and 68°C for 2 minutes. Any PCR products were subjected to an extension of 

68°C for 5 minutes.

In preliminary experiments with the Expand High Fidelity PCR kit, reactions involved 

mixing 0.1 volumes of 10x buffer (0.5M Tris-HCI (pH9.2 @ 25°C), 0.16M (NH4)2S04, 

15mM MgCI2), 0.2mM dNTPs, 0.3pM sense primer, 0.3pM antisense primer, 2.6Units 

Expand High Fidelity PCR System enzyme mix, and template DNA (100ng) in a thin- 

walled tube and subjecting it to the following cycles: denaturation at 94°C for 2 minutes, 

10 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds and 

elongation at 72°C for 2 minutes, followed by 20 cycles of the same conditions but with 

an extra 20 seconds for each elongation step of each cycle. Any PCR products were 

subjected to a final extension of 72°C for 5 minutes. Exact optimal conditions, however, 

for each primer pair are listed in figure legends.

2.2.4.4 Subcloning PCR products
PCR products were analysed on 1-3% agarose gels and bands of the predicted size 

were excised and purified with Sephaglas or GENECLEAN. Primers incorporating 

unique restriction sites resulted in PCR products that were digested with the appropriate 

restriction enzyme, re-purified and ligated into a suitable digested vector, either pMAL- 

c2, pBluescript™ or pMEX8.

PCR primers that did not incorporate restriction sites resulted in PCR products that were 

phosphorylated and ligated into a blunt ended, dephosphorylated vector as products 

generated using Taq DNA polymerase have a 5’ A overhang due to the terminal 

transferase activity of this enzyme. The purified, amplified DNA was simultaneously 

blunt-ended and phosphorylated with the addition of 0.1 volumes of Pharmacia's 10x 

One-Phor-AII buffer PLUS (0.1M Tris-acetate (pH7.5), 0.1M magnesium acetate, 0.5M 

potassium acetate), DNA Polymerase I (5Units), T4 Polynucleotide Kinase (10Units) and 

0.5mM ATP and incubated for 3 minutes at room temperature before 0.2mM dNTPs 

were introduced. The reaction mixture was incubated at 37°C for 30 minutes, after 

which time the reaction was terminated by the addition of EDTA to a final concentration 

of 50mM. The DNA was extracted once with an equal volume of 

pheno!:chloroform:isoamyl alcohol (25:24:1) and once with an equal volume of
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chloroform:isoamyl alcohol (24:1). The DNA was ethanol precipitated and resuspended 

in sterile water.

1-5pg vector (pBluescript) was digested with EcoRV at 37°C for 2 hours. Following heat 

inactivation of the enzyme at 75°C for 20 minutes, the linearised vector was 

dephosphorylated with 6pl CIAP (10Unit/|il) in CIAP buffer with incubation at 37°C for 1 

hour. The enzyme was inactivated with EDTA to 5mM and heat to 75°C for 10 minutes. 

The DNA was extracted once with an equal volume of phenol:chloroform:isoamyl alcohol 

(25:24:1) and once with an equal volume of chloroform:isoamyl alcohol (24:1), ethanol 

precipitated and resuspended in sterile water.

Both insert and vector were run out on a 1% agarose gel, and the quantity of each 

estimated before ligation. Vector and insert were mixed in varying ratios as described 

under Ligations (2.2.4.2).

2.2.5 Techniques used in protein analysis
2.2.5.1 Estimation of protein concentration
Protein concentration was estimated by the method of Bradford (1976) using a kit from 

Bio-Rad and a standard curve prepared from dilutions of bovine serum albumin.

Alternatively 0.2ml of dye reagent (a solution of 0.06% (w/v) Coomassie Brilliant Blue 

G250 in 0.3M perchloric acid, filtered through Whatman No1) was added to 0.8ml of 

samples containing 1-20pg protein. Samples were left to stand for 5-30 minutes then 

absorbance at 595nm was measured against a blank prepared from 0.8ml of sample 

buffer and 0.2ml dye reagent.

2.2.5.2 Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis

2.2.5.2.1 Preparation of samples
Protein samples were mixed with Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) Sample Buffer, boiled for 5 minutes and allowed to cool 

before analysis by SDS-PAGE and Western blotting.
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The concentrated GTP-affinity column eluate and crude sample were diluted 1:1 in SDS- 

PAGE Sample Buffer.

2.2.5.2.2 Preparation and running of polyacrylamide gels
This method of analysis was performed initially using the discontinuous buffer system of 

Laemmli (1970):

Samples were electrophoresed through a large polyacrylamide gel consisting of a 12% 

(w/v) resolving gel and a 6% (w/v) stacking gel comprised of the components listed in 

Table 5, using Tank Buffer, at a current of 40-65mA/gel using a Protean II (Bio-Rad) gel- 

rig. In both cases polymerisation was achieved by the use of ammonium persulphate 

(APS) and N,N,N',N-tetramethylethylenediamene (TEMED).

Table 5: Composition of 12% SDS-PAGE gels
RESOLVING GEL (ml) STACKING GEL (ml)

30% (w/v) Acrylamide 20 1.8
Resolving Gel Buffer 12 -

Stacking Gel Buffer - 7.2
ddH20 16 7.2

10% (w/v) APS 0.2 0.1
TEMED 0.05 0.01

(volumes shown are sufficient for one large gel)

Molecular weight markers, sometimes pre-stained (Bio-Rad) were used according to the 

manufacturer’s instructions.

Small 1mm thick 12% SDS-PAGE mini-gels (Gradipore) were used for the non- 

discontinuous, rapid analysis of partially-purified protein eluted from the GTP-agarose 

affinity column. 2 0 jli.I of sample prepared using the method described were loaded onto 

the mini-gel and electrophoresed at 20-40mA for approximately VA hours. The 

production of these gels was later discontinued.

Later SDS-PAGE analysis employed the Atto™ Mini gel system and a series of buffers 

A-D. The gels in this system proved more manageable than the larger gels.

Similarly, resolving gels for this mini system were made by mixing the components listed
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in Table 6 and they were poured into an "Atto™" minigel rig. Gels were overlaid with 

water-saturated butan-1-ol and allowed to set for 20 minutes. The butan-1-ol layer was 

discarded and the comb inserted between the gel plates. 5% stacking gels were made 

by combining the necessary components, again listed in Table 6. This was poured onto 

the resolving gel and allowed to set for a further 40 minutes. 10pl of sample was loaded 

into each well and gels were run in tank buffer at 175V for 90 minutes.

Table 6: Composition of 10% SDS-PAGE gel
RESOLVING GEL (ml) STACKING GEL (ml)

Solution A 6 0.9
Solution B 4.5 -

Solution C - 1.5
Solution D 0.08 0.01

TEMED 0.01 0.01
Water 7.5 3.6

(volumes shown are sufficient for two mini-gels)

2.2.5.3 Coomassie stain of polyacrylamide gels
Following electrophoresis the gel was stained for 1 hour at room temperature in 

Coomassie Blue Stain and then destained in several changes of fix until the background 

colour was removed.

2.2.S.4 Western transfer to nitrocellulose membranes
The method used for Western blotting has been adapted from the method used by 

Towbin etal. (1979). Protein samples were subjected to SDS-PAGE as described, using 

pre-stained molecular weight markers.

The graphite plates of a Pharmacia LKB NovaBlot Multiphor II electroblotter were rinsed 

in water. Six gel-sized pieces of Whatmann 3MM filter paper were soaked in Transfer 

Buffer and individually stacked onto the bottom plate, carefully eliminating any air 

bubbles formed, using a glass rod. Nitrocellulose paper presoaked in transfer buffer was 

placed on top of this and then the SDS gel was added to the stack. The sandwich was 

completed with a further six pieces of pre-soaked filter paper and the electroblotter was 

then run with the cathode at the base at 0.8mA.cm‘1 for 1% hours. Transfer efficiency 

was assessed by staining the gel with Coomassie Blue Stain at room temperature 

overnight followed by 8 hours in destain solution.
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2.2.5.5 Immunodetection of bound HAV proteins
Protein bands on the nitrocellulose were visualised by staining with Ponceau-S, marked 

with pencil or waterproof ink, and destained by washing with distilled water prior to 

probing with antibodies.

Detection was performed using the horseradish peroxidase chemiluminescent detection 

method which exploits indirect immunodetection with a peroxidase conjugated 

secondary serum. Detection relies on the oxidative action of peroxide on luminol, a 

cyclic diacylhydrazide, the activated oxidised form of luminol decays back to its ground 

state with the concomitant emission of light. The ECL kit was used which also contains 

enhancers such as phenols, in the presence of which, both the intensity and duration of 

the chemiluminescent reaction are enhanced.

Western blots were incubated in Blocking Buffer at room temperature on a shaking table 

for 1-2 hours, frequently overnight. The blots were incubated with shaking for 2 hours at 

4°C in primary antiserum diluted 1:1000 in Blocking Buffer. All subsequent steps were 

carried out at room temperature on a shaking table unless stated otherwise. The 

membranes were washed three times in 100ml PBS for 10 minutes each and then 

transferred to a tray containing Washing Buffer and incubated for 10 minutes. The 

membranes were incubated for 1 hour with the enzyme-coupled secondary reagent 

diluted 1:2000 in Phosphate-Free, Azide-Free Blocking Buffer. Unbound secondary 

serum was removed by washing 3 times with 10 minute washes in Washing Buffer as 

before.

3ml of each of the detection reagents were combined and poured onto the drained 

membranes. The luminescence reaction was allowed to proceed for 1 minute, before 

draining off excess solution, wrapping the filter in Saranwrap™ and autoradiography. A 

series of exposures were taken, starting with 1 minute and increasing or decreasing this 

time as required.

2.2.6 Techniques used in protein expression
2.2.6.1 Expression of 3D polypeptide in JRR constructs
10 1̂ aliquots of glycerol stock cultures were used to inoculate 10ml LB containing the 

appropriate antibiotics. The overnight cultures were incubated with shaking at 

approximately 32°C. 1ml of overnight culture was used to inoculate 10ml LB-Glucose
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and incubated overnight at 32°C. 1ml of overnight LB-Glucose culture was used to 

inoculate 50ml LB-Glucose and incubation was continued for a further 4 hours. Aliquots 

for analysis were removed at this stage. Cells were pelleted and washed twice with 

50ml of 50mM NaCI solution before being resuspended in LB-Expression. The cultures 

were incubated at 32°C overnight for 15 hours. Aliquots were removed 2 hours after 

induction and after overnight induction for analysis.

2.2.6.2 Intracellular extraction of the 3D polypeptide
1ml aliquots removed from the expression medium were pelleted in a microcentrifuge. 

The supernatant was removed by aspiration and the cells resuspended in IC 

Resuspension Buffer. These samples were lysed by sonication (4x 30 seconds) and 

were observed to clarify. The lysate was spun in a microcentrifuge to sediment insoluble 

material and the supernatants predicted to contain the RNA-dependent RNA polymerase 

were removed for analysis.

2.2.6.3 Periplasmic space extraction of the 3D protein
10ml samples were removed from the overnight cultures and the cells pelleted by 

centrifugation in a Sorvall SS-34 rotor at 2,500g at 4°C for 10 minutes. The pellet was 

resuspended in 2.5ml of PS Resuspension Buffer, allowed to stand at room temperature 

for 10 minutes and re-pelleted. Periplasmic extracts were prepared by osmotic shock in 

2.5ml of ice-cold 0.5mM MgCI2) allowing to stand on ice for a further 10 minutes. Finally 

the extract was centrifuged at 12,000g for 10 minutes and the supernatants removed for 

analysis.

2.2.6.4 Expression of HAVproteins from pMAL 
constructs

Pilot experiments to identify the optimal conditions for expression of each protein were 

undertaken by inoculating 80ml of Rich Broth (containing 100^g/ml ampicillin) with 0.8ml 

of an overnight culture of XL2s transformed with pMAL/3AB, pMAL/3C, pMAL/3CD, 

pMAL/3D or pMAL/P3. The culture was incubated at between 30 and 37°C, depending 

on the construct, with shaking to an A 60o of -0 .5  (approximately 334 hours). 1ml of 

culture was taken and centrifuged at maximum speed in a microcentrifuge tube for 2
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minutes. The supernatant was discarded and the pellet resuspended in 100|il of SDS- 

PAGE sample buffer prior to storage at -20°C.

IPTG was added to the remainder of the culture to a final concentration of 0.3mM and 

the culture incubated for between 2 and 15 hours depending on the individual construct. 

A 0.5ml sample of induced culture was taken at various time points and processed as 

above.

Large-scale expression experiments were set up by inoculating 1L cultures of Rich 

Medium, containing ampicillin at 100jug/ml, with 10ml of overnight culture of the required 

plasmid construct.

2.2.7 Techniques used in protein purification
2.2.7.1 GTP-Agarose affinity chromatography
The following procedure was carried out at 4°C using a method based on that of 

Richards etal. (1992) in the purification of poliovirus RNA polymerase.

A 1ml GTP-agarose column was packed and washed thoroughly in equilibration buffer to 

remove all traces of glycerol. A 10ml sample of periplasmic space extract was dialysed 

overnight against equilibration buffer and filtered prior to loading the column. 5ml of the 

solution was loaded onto the column at a rate of 0.1-0.2ml/min and the column was 

washed with 2ml equilibration buffer. Bound protein was eluted with 2ml elution buffer 

and fractions of 0.5ml were collected. The column was re-equilibrated with 2ml 

equilibration buffer.

The procedure was scaled-up by packing a 5ml GTP-agarose column and purifying the 

protein from approximately 25ml of dialysed, filtered periplasmic space extract.

Protein-containing fractions eluted from the affinity column were concentrated 

approximately 20 times on Filtron 10 centrifugation filter units and analysed as described 

above.
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2.2.7.2 Amylose affinity chromatography
1L of culture, containing the desired construct, induced for the appropriate time was 

harvested by centrifugation at 4,000g for 20 minutes and the supernatant discarded. 

The pellet of cells was resuspended in 50ml column buffer. This suspension was frozen 

overnight at -20°C and then thawed in cold water. The sample was placed in an ice- 

water bath and sonicated in short pulses of 15 seconds or less. The release of protein 

was monitored using the Bradford assay, by adding 10jul of the sonicate to 1.5ml 

Bradford reagent and mixing. Absorbance at 595nm was measured. Sonication was 

continued until the released protein reached a maximum (usually about 2 minutes 

sonication time). The suspension was then centrifuged at 9,000g for 30 minutes. The 

supernatant (crude extract) was saved and diluted if necessary to 2.5mg/ml with column 

buffer. 15ml of amylose resin (New England Biolabs) was poured in a 2.5x10cm column. 

The column was washed with 8 column volumes of Column Buffer. The diluted crude 

extract was loaded at a flow rate of [10x (diameter of column in cm)2]ml/h. This is about 

1ml/min for a 2.5cm column. The column was washed with 10-12 column volumes of 

Column Buffer. The fusion protein bound to the amylose was eluted with Column Buffer 

+10mM maltose. 10-20 fractions of 0.2 column volumes were collected. The protein- 

containing fractions were identified by Bradford assay and pooled and, if necessary, 

concentrated to about 1 mg/ml in a Centriprep™ concentrator (Amicon).

2.2.7.3 Cleavage of fusion proteins with Factor Xa
Factor Xa cleavage was carried out at a w/w ratio of 1 % the amount of fusion protein 

(e.g., 1mg factor Xa for a reaction containing 100mg fusion protein). A factor Xa 

cleavage pilot experiment was set up by mixing 20pl fusion protein (1 mg/ml) with 0.2|ig 

factor Xa and incubated at room temperature. 5\i\ samples taken at 2, 4, 8, and 24 hour 

intervals were mixed with 5(xl 2x SDS-PAGE sample buffer and stored at 4°C. A mock 

fusion control and an uncut fusion control were included. The samples were boiled for 5 

minutes and run on an SDS-PAGE gel. The pilot experiment was scaled up for the 

portion of fusion protein to be cleaved. Complete cleavage was ascertained by SDS- 

PAGE analysis.

2.2.7.4 Q-sepharose ion-exchange chromatography
Ion exchange chromatography was performed on a fast protein liquid chromatography
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(F.P.L.C.) system (Pharmacia LKB, Sweden).

A 1ml Mono-Q (anionic exchange) column was equilibrated with Column Equilibration 

Buffer and left running until a level baseline was obtained. The fusion protein cleavage 

mixture, dialysed against Buffer A overnight, was loaded onto the equilibrated column at 

a flow rate of 0.5ml/min. After unbound material had washed through the column (4-10 

volumes of Buffer A), bound material was eluted with a linear NaCI gradient, 20mM-0.5M 

(Buffer A-Buffer B) over 40ml, at a flow rate of 0.5ml/min. Fractions of 1ml were 

collected. Any A 28o peaks were concentrated using Centricon concentrators, checked by 

SDS-PAGE analysis, and the desired protein frozen by beading in liquid nitrogen and 

stored subsequently at -70°C.

2.2.8 Assay forpoly(A):poly(U)-dependent poly(U) 
polymerase activity

The assay was carried out essentially as described by Flanegan & Baltimore (1977) 

except for the removal of phosphoeno/pyruvic acid and pyruvate kinase from the reaction 

mixture and replacement of actinomycin D with rifampicin to inhibit E. coli RNA 

polymerase.

50|ul (the amount assayed depended on the concentration of protein in the preparation, 

generally between 5 and 50[xl) of cell lysate supernatant, MBP-fusion protein, fusion 

protein cleavage mixture or purified protein were assayed in a total volume of 125pl 

containing 50mM Hepes buffer (N-2-hydroxyethylpiperazine-N'-ethanesulphonic acid) 

(ph7.4), 8mM Mg(CH3COO)2, 1.7^M [5,6-3H] UTP (10pCi per reaction), 20pg/ml 

poly(A):poly(U) template, 74Units RNA-guard, 4mM DTT, 20pg/ml rifampicin and 

RNAse-free ddH20.

Assays were carried out at 31°C. 20pl aliquots were removed from the reaction mixture 

at various time intervals and precipitated for 10 minutes in 60pl ice-cold 8% (w/v)TCA to 

which had been added 400jig yeast carrier tRNA. The acid-insoluble material was 

collected on GF/C filters (Whatman) by filtration and the radioactivity solubilised in 5ml 

“Optiphase” scintillation fluid before being counted on a Packard Tricarb 1500 liquid 

scintillation counter.
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Aliquots were precipitated at 0, 14, 2, 5, 10 and 15 minute intervals and incorporated 

radioactivity assessed as above.

2.2.9 Oligonucleotides
2.2.9.1 In house synthesis and deprotection of 

oligonucleotides
Oligonucleotides were synthesised in house, using the phosphoramidite method, on an 

Applied Biosystems 381A DNA Synthesiser using chemicals supplied by Cruachem, 

Glasgow, UK. Oligonucleotides were deprotected with ammonia solution of Analar 

grade at 55°C for 6 hours. The ammonia was neutralised with glacial acetic acid and the 

oligonucleotide precipitated with absolute ethanol. The precipitated oligonucleotide was 

spun, washed, dried and resuspended in 1ml sterile water. The absorbance at 260nm 

was taken and the oligonucleotide diluted to a working stock solution of 20pM.

Other oligonucleotides, purchased from Perkin-Elmer, were used with the Expand™ kits 

at the required concentration.

2.2.9.2 Radiolabelling of oligonucleotides
Oligonucleotides at 2pM were radiolabelled with 5|xCi [y-32P]ATP (specific activity 

3000Ci/mmol; 10mCi/ml) and 10Units T4 Polynucleotide Kinase in 0.1 volumes of 10x 

buffer at 37°C for 30 minutes. The enzyme was inactivated with EDTA (pH8.0) to 5mM 

and 1 volume of sequencing stop dye (95% (v/v) formamide, 20mM EDTA, 0.05% (w/v) 

xylene cyanol FF) was added. The radiolabelled oligonucleotide was heated at 80°C for 

3 minutes and electrophoresed on a 12% (w/v) acrylamide sequencing gel for 1 hour at 

30mA, 40W. The gel was immediately exposed to Kodak X-Omat LS™ film at room 

temperature for 15-30 minutes.
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3. Detection and 
purification of HAV 3Dp0‘ 

in Protein A/HAV 
P3/pMEX8 and 

pRITPOL constructs
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3.11ntroduction
The first report of an HAV specific polymerase activity was by Wolstenholme et al. 

(1993) where the HAV 30^ ' was expressed in an E. coli vector carrying the protein A 

gene fused to most of the P3 region of the genome. The purpose of the Staphylococcal 

protein A was to maintain soluble viral proteins which would be correctly post- 

translationally cleaved and hence, conserve enzyme activity. E. coli transformed with 

this plasmid exhibited poly (U) polymerase activity in the periplasmic space. This was 

found to be similar to that of other picornaviruses in that it was primer-dependent, with a 

requirement for magnesium, inhibition with manganese and an optimum temperature of 

30°C. However, the activity measured was much lower than reported for other 

picomavirus enzymes and attempts by other workers to express this enzyme in bacteria, 

or anywhere else for that matter, have been unsuccessful (Gauss-Muller et al., 1991; Jia 

et al., 1991a; Updike et al., 1991; Harmon et al., 1992; Tesar et al., 1994). Prior 

attempts at expressing this enzyme in the baculovirus expression system in this 

laboratory proved unsuccessful (Nutter, 1992).

With the ultimate aim of this project being the biochemical characterisation of the HAV 

polymerase, a necessary first step was the production of highly purified protein. This 

would also allow the identification of the protein species that is responsible for the 

poly(U) polymerase activity detected previously in the periplasmic space of bacteria 

transformed with pRITPOL and Protein A/HAV P3/pMEX8. A number of strategies have 

been described for the purification of picomaviral polymerases, but the most rapid 

approach is based on affinity chromatography using GTP-agarose, poly(A)-Sepharose or 

a similar matrix. By applying a suitable ammonium sulphate cut to such a matrix and 

eluting with increasing concentrations of ATP the eluted fractions can be monitored for 

poly(U) polymerase activity. Previously, preliminary experiments (Palmer, 1994) 

indicated that HAV-specific polypeptides from the periplasmic space of E. coli 

transformed with pRITPOL or Protein A/HAV P3/pMEX8 will bind to GTP-agarose and 

can be eluted with ATP, but at the commencement of this project it was uncertain 

whether these polypeptides were responsible for the poly(U)-polymerase activity 

detected.

3.1.1 Protein purification
Before embarking on the purification of a protein, however, a few key questions must
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first be addressed. Thus: what is the protein required for? Which would be the most 

suitable source? What is known about the protein? How should the protein be 

assayed? By answering these questions the aims of the purification and criteria for 

success were defined, and the background knowledge required to plan a suitable 

strategy was acquired.

3.1.1.1 What is the protein required for?
The purification of a protein is frequently not the end point itself, but is the means to 

obtain a pure protein for further studies. These studies may be on the activity of the 

protein, on its structure, or on its structure-function relationships. The requirements of 

these studies will define how much of the purified protein is required, whether loss of 

activity can be tolerated, how pure it should be, and the time and cost of purifying it. 

Thus, for studies on enzyme activity relatively small amounts of active protein will be 

required. High purity will probably not be essential provided any interfering activities are 

removed. Cost will probably not be very important, but speed will be important to 

minimize activity losses. In contrast, structural studies require larger amounts of highly 

pure protein. Cost and time will be of secondary importance, except for structure- 

function studies where activity is required and therefore speed will probably be 

important. Here, the protein was required eventually for activity assays and as such only 

small amounts of relatively pure protein were required.

3.1.1.2 What source should be used?
With the advent of gene cloning techniques proteins can now be expressed in high 

amounts in cells which can be grown in culture. In addition to the above-mentioned 

advantages the percentage of the protein of interest is usually higher than in its native 

source, thus making purification easier. The host cell should be chosen with care since 

each has its advantages and disadvantages. E. coli is the most commonly used host 

due to ease of handling, however, proteins are often not secreted, and in addition are 

often produced in an insoluble form (known as inclusion bodies). Secreted proteins are 

usually easier to purify since there are fewer contaminating proteins present. Inclusion 

bodies can be relatively easily purified and consist mainly of expressed protein, however 

the protein must be denatured and refolded to obtain a soluble, active form. With this 

information in mind, the constructs directing expressed proteins to the periplasmic space 

were employed in the first instance especially with regard to the affinity chromatography
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steps.

Cloned proteins can also be modified to ease purification. Thus, a basic tail may be 

added to aid purification by ion-exchange chromatography, or part of another protein 

may be added and exploited for affinity purification. After purification, the foreign part of 

the protein is removed by chemical or enzymatic cleavage. The pMAL protein 

purification system, discussed fully in Chapter 4, is an example of this, where fusion 

proteins bound to maltose-binding protein (MBP) are produced.

3.1.1.3 What do we know about the protein?
The RNA polymerase activity encoded by the hepatitis A virus is crucial for replication 

but so far, it has not been identified in vitro for HAV due to the inefficiency of this 

process. Previously the 3D region from several picomaviruses have been expressed in 

E. coli and the RNA-dependent RNA polymerase activity has been shown to be 

contained within the 3D protein sequence (Flanegan & Baltimore, 1977; Lowe & Brown, 

1981; Morrow et al., 1987; Plotch et al., 1989; Sankar & Porter, 1991; Newman et al., 

1994). Of some concern was whether enzyme produced by expression of cDNAs in 

bacterial cells would be structurally and functionally identical to enzyme synthesized in 

the natural mammalian host cell. Neufeld et al. (1991) have shown that PV enzyme 

preparations from bacteria, insect, or mammalian cells are indistinguishable by all 

measured criteria, and this research validates the use of these proteins for additional 

mechanism and structure studies. It was therefore reasonable to assume that the same 

would be true of the HAV enzyme.

3.1.1.4 How can the protein be assayed?
Assays devised for the investigation of polymerase activity in other picomaviruses 

(Flanegan & Baltimore, 1977; Sankar & Porter, 1991) were used as the basis for an 

assay developed by Palmer (1994) which was used in this research and is discussed 

further in Chapter 5.
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3.2 Results
3.2.1 Expression of P3 prote
Proteins expressed by the following constructs were extracted from the cytosol or 

periplasmic space as described in Chapter 2. Presence of protein was assessed using 

method 2.2.5.1 in order to ensure the extraction process was correct and/or complete, 

prior to SDS-PAGE. Controls, JRR-600, pMEX8 and pRIT5 were run at the same time. 

Generally two gels were run simultaneously. One was stained with Coomassie Blue, the 

other Western blotted, probed with an anti-3D peptide antibody and visualised using an 

ECL kit. Once transferred the nitrocellulose was stained with Ponceau-S and the location 

of lanes and any visible bands was marked before destaining and probing with antibody.

Table 7: Expression plasmids

PLASMID CONSTRUCT PROTEINS EXPRESSED WHERE?
Protein A/HAV P3/pMEX8 in JRR-600 Periplasmic expression
HAV P3/pMEX8 in JRR-600 Intracellular expression
PMEX8 in JRR-600 (control) Intracellular expression
pRITPOL in JRR-600 Periplasmic expression
pRIT5 in JRR-600 (control) Periplasmic expression

Induction of E. coli cultures transformed with the recombinant plasmids produced a 

number of novel, HAV-specific proteins which were visualised by Western blotting using 

the polyclonal rabbit a-3D peptide antibody. These proteins had apparent molecular 

weights of 36kDa, 53kDa, 77kDa, and 117kDa. The Western blot is shown in Figure 27, 

however the corresponding Coomassie-stained gel is not shown. Predicted sizes for the 

P3 proteins are 36kDa (Protein A-3A), 2.5kDa (3B), 24kDa (3C) and 53kDa (3D), as 

shown in Table 8, along with simplified tabulated results of initial expression studies.
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Table 8: Summary of results observed for initial expression experiment

HAV P3 
PROTEINS 
EXPECTED

PREDICTED 
SIZE (kDa)

PROTEIN A/ 
HAV P3/ 
pMEX8

HAVP3/pMEX8 pMEX8 pRITPOt

Protein A- 
3ABCD

117 s S'? X X

3CD 77 s s X S
3D 53 s s X S

Protein A- 
3A

36 s X X S

A clear band of approximately 117kDa, likely to correspond to Protein A-3ABCD can be 

seen in the lane containing Protein A/HAV P3/pMEX8 induced overnight, as would be 

expected, however, no such band is observed with pRITPOL, lanes 5 and 6, as we 

would expect. Surprisingly lane 2, containing HAV P3/pMEX8, displays a band of 

~117kDa however, with the absence of Protein A sequences in this construct, this band 

cannot correspond to Protein A-3ABCD, in this case anyway.

The next band of interest is ~77kDa, thought to correspond to 3CD, and appears in the 

lanes containing HAV P3/pMEX8 and Protein A/ HAV P3/pMEX8. No distinct band can 

be seen at this molecular weight in the lanes containing pRITPOL but a darker smear 

possibly indicates its presence.

Bands of 53kDa can be observed in lanes containing each of the three constructs with 

Protein A/HAV P3/pMEX8 and HAV P3/pMEX8 appearing as the more successful 

constructs. Lanes containing pRITPOL show the presence of a 53kDa protein but the 

banding is not so well defined. Finally, a 36kDa protein, thought to be Protein A-3A, can 

be seen in lanes 3 and 6, as would be expected of the constructs pRITPOL and Protein 

A/HAV P3/pMEX8 containing protein A sequences. This polypeptide is not observed in 

the lane containing HAV P3/pMEX8 nor in the pMEX8 control lane.

Interestingly, a large amount of protein expresses at about 32kDa in lanes containing 

induced Protein A/HAV P3/pMEX8 and pRITPOL and could correspond to protein ABC, 

a remarkably stable processing intermediate whose specific role is unknown (SchultheilJ 

etal., 1994), however such a cleavage, between Protein A sequences and 3A is unlikely 

in these constructs nor is it likely that an antibody raised against the C-terminus of 3D 

would react with this polypeptide. It is possible that the protein A sequences or some
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part thereof, in these constructs, could be responsible for this observation.

As well as the proteins of interest a great number of other bands can be seen in Figure 

27, demonstrating the need for further purification.

kDa 1 2 3 4 5 6

106*

80^

49 .5 *

32.5^ 

27 .5^

Figure 27: Initial expression studies of P3 proteins in E. coli

This figure shows a Western blot of a 12% SDS-PAGE gel (Coomassie-stained - not
shown) probed with polyclonal rabbit peptide anti-HAV 3Dpo1 antibody and visualised
using a light reaction - exposed for 15 seconds.

Lane 1: pMEX8 induced for 2h (control)
Lane 2: HAV P3/pMEX8 incduced overnight
Lane 3: Protein A/HAV P3/pMEX8 induced 2h
Lane 4: Protein A/HAV P3/pMEX8 induced overnight
Lane 5: pRITPOL expressed 2h
Lane 6: pRITPOL expressed overnight
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3.2.2 Initial GTP-agarose a
Attempts were subsequently made to purify 3D RNA polymerase from E. coli 

transformed with the plasmid constructs detailed in Table 7, using its nucleotide binding 

properties with the help of GTP-agarose. Pilot experiments were first carried out, which 

coincidentally allowed better visualisation of the proteins present in whole cell extracts 

and allowed further investigation into the suitability of GTP-agarose affinity 

chromatography as a method for purification of the 3Dpo1 (Palmer, 1994). Initial gels of 

whole-cell lysate samples appeared smeared and, hence, a series of gels were 

subsequently run with whole cell, crude extract, and insoluble extract samples, as well 

as crude extract and insoluble extract bound batch-wise to GTP-agarose samples, in an 

attempt to clarify the protein bands present from induction of the available constructs, 

prior to GTP-agarose affinity column chromatography. Western blots probed with anti 

3D-peptide antibody, yielded clearer results than their corresponding Coomassie-stained 

gels and hence more attention is paid to these results.

Table 9: Summary of proteins induced by pMEX8 constructs
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With Protein A/HAV P3/pMEX8, a number of novel bands were observed by Coomassie- 

staining of the SDS-PAGE gel (Figure 30), including bands of 53kDa and 77kDa, and 

possibly one of 36kDa and one of 117kDa. Furthermore, clear immunoreactive bands 

were observed at 36kDa, 45kDa, 53kDa, 77kDa and 117kDa (Figure 31), as well as 

numerous bands between 28kDa and 62kDa. The major band of approximately 32kDa
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could correspond to 3ABC, a stable intermediate whose specific role is unknown 

(Schultheifc et al., 1994), although, again one would not expect cleavage between 

Protein A and the truncated 3A to occur nor would one expect binding to the anti-3D 

antibody. As before, the 36kDa protein could be Protein A-3A, that of 53kDa could be 

3D, the 77kDa protein could represent the 3CD protein, and the 117kDA protein could be 

Protein A-3ABCD.

Soluble proteins binding to the GTP-agarose have molecular weights of, 32kDa 

(3ABC?), 77kDa (3CD?) and 53kDa (3D?). Proteins of between 32 and 36kDa are also 

observed to bind to GTP-agarose possibly representing Protein A-3A or parts thereof. 

Furthermore, faint bands of between 42 and 48kDa are observed which could represent 

bacterial proteins. No protein of 24kDa, corresponding to 3C, was observed which is as 

expected as anti-3D would not react with this protein.

The lane showing insoluble extract was essentially disregarded as the process of 

spinning the insoluble matter down with GTP-agarose, served only to concentrate it and 

not to 'select' those proteins specifically binding to the GTP.

Expression of the P3 proteins in HAV P3/pMEX8 and analysis by SDS-PAGE (Figure 28) 

revealed numerous novel proteins - 36kDa, 53kDa, 77kDa and again possibly 117kDa. 

As previously mentioned the latter band cannot represent Protein A-3ABCD as this 

construct is deficient in Protein A sequences.

Bands of ~28kDa, ~32kDa, 47kDa, ~53kDa, and 77kDa appear on the Western blot 

(Figure 29) and of these it appears that three are soluble and bind to GTP-agarose 

which are the 53kDa, 77kDa and 32kDa proteins. It is not known what the proteins of 

~28, ~32 and 47kDa correspond to and perhaps are evidence of bacterial contamination.

Little can be deduced from the control gel (Figure 32) showing proteins expressed upon 

induction of the pMEX8 vector alone, however immunoreactive proteins of ~79kDa and a 

faint band of ~53kDa can be seen on the Western blot (Figure 33), the latter of which 

interestingly does not bind to GTP-agarose. In addition to these, numerous bands of 

between ~25 and 32kDa can be seen, of which only a protein of ~31kDa binds to GTP- 

agarose.
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Samples of pRIT5 and pRITPOL used in pilot experiments were grown in LB-glucose 

throughout induction as pRIT5 is constitutive. In initial assessment of these constructs 

however, IPTG was added to all cultures as it may cause changes in bacterial protein 

expression even if it is not inducing gene expression from a plasmid.

Three dominant bands with an apparent molecular weight of, 53kDa, 77kDa, and 

117kDa, are visible on the Coomassie-stained gel (Figure 34) of pRITPOL. More can be 

gleaned from the Western blot (Figure 35) which shows that proteins of between -26 

and 31kDa, ~32kDa (3ABC7), 36kDa (Protein A-3A?), 45kDa, 50kDa, 53kDa (3D?) and 

77kDa (3CD?) are present and react with the anti-3D antibody. Of these proteins, it 

appears that a protein of ~31kDa, as well as those of ~32kDa, 36kDa, 53kDa, and 

77kDa are soluble and bind to the GTP-agarose.

In the pRIT5 control experiment various bands were observed (Figure 36 and Figure 37), 

although bands of the sizes predicted to correspond to FIAV P3 proteins were not 

apparent. As well as bands of ~85kDa, 65kDa, and ~33kDa, faint immunoreactive 

bands of between 32 and 65kDa were also observed in whole cell lysate samples. The 

proteins present which bound GTP-agarose included the 33kDa protein, possibly 

corresponding to a Protein A polypeptide, and two others of approximately 65 and 85kDa 

in weight of unknown identity.

A summary of these results can be found in Table 10.

Table 10: Summary of proteins expressed in pRIT5 constructs
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45 ►
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Figure 28: Expression of P3 proteins in E. coli transformed with HAV P3/pMEX8 
(Coomassie-stained 10% SDS-PAGE gel)

markers
whole cell lysate 
crude extract > uninduced
insoluble extract J 
whole cell lysate 
crude extract L induced 2h
insoluble extract J 
whole cell lysate ^ 
crude extract L induced 5h
insoluble extract J
crude extract induced 5h "1 GTP-agarose 
insoluble extract induced 5h J binding

Lane 1:
Lane 2:
Lane 3:
Lane 4:
Lane 5:
Lane 6:
Lane 7:
Lane 8:
Lane 9:
Lane 10
Lane 11
Lane 12

kDa 1 2 3 4 5 6 7 8 9 10 11 12

175*

8 3 *
6 2 *

47 .5*

32.5*

2 5 *

16.5*

6 .5 *

Figure 29: Expression of P3 proteins in E. coli transformed with HAV P3/pMEX8 
(Western blot of SDS-PAGE gel shown above)

This figure shows a Western blot probed with polyclonal rabbit peptide anti-HAV 3Dpd 
antibody and visualised using a light reaction - exposed 15 seconds. Lane order as 
above.
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1 2  3 4 5 6 7 8 9 10 11 12

200 ►

21.5^  — -

Figure 30: Expression of P3 proteins in E. coli transformed with Protein A/HAV 
P3/pMEX8 (Coomassie-stained 10% SDS-PAGE gel)
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Lane 7: 
Lane 8: 
Lane 9: 
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markers
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crude extract i- uninduced
insoluble extract J
whole cell lysate
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insoluble extract J
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insoluble extract J
crude extract induced 5h \  GTP-agarose 
insoluble extract induced 5hJ binding
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 31: Expression of P3 proteins in E. coli transformed with Protein A/HAV 
P3/pMEX8 (Western blot of SDS-PAGE gel shown above)

This figure shows a Western blot probed with polyclonal rabbit peptide anti-HAV 3Dp0‘ 
antibody and visualised using a light reaction - exposed 15 seconds. Lane order as 
above.
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Figure 32: Expression of proteins in E. coli transformed with pMEX8 - control 
(Coomassie-stained 10% SDS-PAGE gel)
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Figure 33: Expression of proteins in E. coli transformed with pMEX8 - control 
(Western blot of SDS-PAGE gel above)

This figure shows a Western blot probed with polyclonal rabbit peptide anti-HAV 3Dp0‘ 
antibody and visualised using a light reaction - exposed 15s. Lane order as above.
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Figure 34: Expression of P3 proteins in E. coli transformed with pRITPOL 
(Coomassie-stained 10% SDS-PAGE gel)
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Lane 9: 
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insoluble extract J
whole cell lysate
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insoluble extract J
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crude extract induced 5h \  GTP-agarose 
insoluble extract induced 5hJ binding
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47.5^

32.5^
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Figure 35: Expression of P3 proteins in E. coli transformed with pRITPOL (Western 
blot of SDS-PAGE gel above)

This figure shows a Western blot probed with polyclonal rabbit peptide anti-HAV 3Dp0‘ 
antibody and visualised using a light reaction - exposed 15 seconds. Lane order as 
above.
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Figure 36: Expression of proteins in E. coli transformed with pRIT5 - control 
(Coomassie-stained 10% SDS-PAGE gel)
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Figure 37: Expression of proteins in E. coli transformed with pRIT5 - control 
(Western blot of SDS-PAGE gel above)

This figure shows a Western blot probed with polyclonal rabbit peptide anti-HAV 3Dp0‘ 
antibody and visualised using a light reaction - exposed 15 seconds. Lane order as 
above.
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Batch-wise GTP-agarose affinity appeared successful at purifying the cell lysates to a 

certain degree, however it was assumed proper column chromatography was required 

for improved purification as no 'elution' step was employed during this assessment.

3.2.3 GTP-agarose affinity chromatography
On the basis of both previous studies in this laboratory and the pilot results, an attempt 

was made to purify 3D RNA polymerase from the periplasmic space of E. coli in order to 

obtain a pure sample of enzyme, free from contamination with bacterial proteins, for use 

in assay and possibly sequencing procedures.

Promising initial results were obtained from a 1ml affinity column (results not shown) but 

an increase in the amount of eluted protein was required to improve visibility of protein 

bands on SDS-PAGE gels and Western blots. The purification process was scaled up to 

a 5ml column, allowing a reduction in pressure in the column and an increase in flow 

rate. A number of bands were seen on the gel stained with Coomassie Blue, 

demonstrating that many different proteins in the periplasmic space have an affinity for 

GTP (not shown).

Results of Western blotting using the polyclonal rabbit peptide antibody showed a couple 

of HAV-specific bands which had been purified from the periplasmic space. These 

bands had apparent molecular weights of 36kDa and 53kDa; the protein of 36 kDa 

probably corresponds to Protein A-3A and the other is thought to be the 3Dpo1 enzyme 

(Figure 38). Other proteins visualised in pilot gels and by Western blotting which did not 

bind to the GTP-agarose affinity column had molecular weights of 32kDa (3ABC?), 

77kDa (3CD) and 117kDa (Protein A-3ABCD). Western blots probed with human 

convalescent serum (Public Health Laboratories Service Laboratories, Royal United 

Hospital, Bath, U.K.) were unsuccessful in visualising these proteins, probably due to the 

inability of the antibodies to bind to denatured proteins. In addition, it is uncertain 

whether the convalescent serum contains antibodies raised against non-structural HAV 

proteins, although anti-3D reactivity in sera from acute and convalescent HAV patients 

has previously been demonstrated by Jia et al. (1992), however, reactivity was 

demonstrable only with antigen that had not been denatured with SDS, suggesting that 

the antibodies were primarily directed against conformation-specific epitopes. In some 

cases a gel of JRR-600 extract was run and blotted. This blot was exposed to the 

antibody in the hope that the non-specific binding observed previously would be
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minimised. The pre-adsorbed diluted antibody was then added directly to blots where a 

degree of improvement in clarity of results was observed but did not warrant the extra 

labour involved.

It should be noted that the eluted fractions were concentrated approximately 20-fold 

before analysis by SDS-PAGE. A gel with E. coli transformed with the plasmid controls, 

pRIT5 and pMEX8, was run and yielded a blot (Figure 39) with no obvious 

immunoreactive bands when probed with antibody and subjected to ECL analysis.

Shortly thereafter, however, this result was not reproducible and other methods were 

investigated as described in 3.3.

To summarise, however, this result indicates that it is possible to isolate an HAV-specific 

53kDa protein from the periplasmic space of E. coli transformed with Protein A/HAV 

P3/pMEX8 and to a lesser extent pRITPOL, supporting the decision made to persevere 

with bacterial expression systems. Unfortunately, the samples used here were 

concentrated to minute amounts for SDS-PAGE analysis and as difficulties were 

encountered in reproducing this result, samples were not available for activity assay 

analysis nor protein sequencing.
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kDa 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 38: Proteins eluted from the GTP-agarose affinity column

This figure shows a Western blot probed with polyclonal anti-HAV 3Dp0‘ antibody and 
visualised using a light reaction - exposed 15 seconds.

pRITPOL eluted from column

Lane 1: crude sample of pRITPOL
Lane 2: fraction 1
Lane 3: fraction 2
Lane 4: fraction 3
Lane 5: fraction 4
Lane 6: fraction 5 „
Lane 7: crude sample of Protein A/HAV P3/pMEX8
Lane 8: fraction 1
Lane 9: fraction 2
Lane 10: fraction 3
Lane 11: fraction 4
Lane 12: fraction 5

Protein A/HAV P3/pMEX8 eluted from column
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kDa 1 2 3 4 5 6 7 8 9 10 11 12

66.2 ►!

45 ►

31 ►

21.5 H

Figure 39: Proteins eluted from the GTP-agarose affinity column (control)

This figure shows a Western blot probed with polyclonal anti-HAV 3Dp0‘ antibody and 
visualised using a light reaction. Exposed 15 seconds.

Lane 1: crude sample of pRIT5
Lane 2: fraction 1 '
Lane 3: fraction 2
Lane 4: fraction 3 ► pRIT5 eluted from column
Lane 5: fraction 4
Lane 6: fraction 5 >
Lane 7: crude sample of pMEX8
Lane 8: fraction 1 "
Lane 9: fraction 2
Lane 10: fraction 3 ► pMEX8 eluted from column
Lane 11: fraction 4
Lane 12: fraction 5 y
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3.3 Discussion
As a first step in the characterisation of the polymerase enzyme, I required a purified 

preparation of HAV 3Dpo1. Initially, expression was achieved by using the available 

plasmid constructs, pRITPOL, Protein A/HAVP3/pMEX 8 and HAVP3/pMEX8 which 

contained the P3 region from a truncated 3A to 3D. This allowed expression of all of the 

P3 products and therefore allowed normal post-translational processing of the 

polyprotein to yield mature 3Dpo1. This was initially important since no information on the 

actual site of cleavage in this region was available at that time, and the exact N-terminus 

of the 3D protein could not be definitely ascertained.

Proper post-translational processing appears to have been both possible and present 

with bands corresponding to both processing intermediates and mature products being 

observed - the 33kDa protein, possibly of 3ABC (more likely to be Protein A), the 53kDa 

protein of 3D, and the 77kDa protein of 3CD, as well as a band of 117kDa proposed to 

correspond to protein A-3ABCD - in various permutations in E. coli carrying the different 

constructs.

The pilot experiment gels gave a clearer indication of the immunoreactive species 

present upon induction of the constructs and revealed some interesting results with 

regard to GTP-agarose-binding of some of these species. The 53kDa protein was 

observed to bind consistently to the GTP-agarose, as was the 36kDa protein proposed 

to be Protein A-3A which is as expected. The 77kDa protein, although observed to bind 

to GTP-agarose in pilot experiments, was later absent from GTP-agarose column 

fractions eluted, which is probably due to the batch-wise pilot method being unsuitable 

for this purification purpose with the column chromatography method yielding much 

clearer results as discussed below. So, all in all, the 3CD is either more sporadic in its 

binding to GTP-agarose or else the pilot binding is an artefact. Evidence supports the 

latter hypothesis, that 3CD fails to bind to GTP, confirming the observation that the 

precursor of 3Dpo1, 3CDpro, displays no RNA polymerase activity (Harris etal., 1992).

A 33kDa protein, the size predicted for 3ABC, was observed to bind GTP in pRITPOL 

and Protein A/HAV P3/pMEX8. Previously during this study this band was assumed to 

have something to do with the 36kDa protein corresponding to Protein A-3A or perhaps 

could be Protein A alone although cleavage between Protien A and 3A was deemed 

unlikely. Interestingly though, RNA binding of the stable precursor polypeptide 3ABC has 

recently been shown to be 50 times stronger than that of 3AB and 3C, implicating a
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specific role of this stable processing intermediate in viral genome replication which 

would possibly account for its presence here (Kusov et al., 1997). As we would neither 

expect this protein to cleave itself from Protein A nor expect it to react with the anti-3D 

antibody however, a Protein A component, probably the IgG domain accounts for the 

presence of the large immunoreactive band observed at ~33kDa present in recombinant 

samples, the soluble protein of which binds GTP in Protein A/HAV P3/pMEX8 and 

pRITPOL, but, as expected, not in HAV P3/pMEX8 which lacks the Protein A sequences.

The presence of a major immunoreactive species of ~53kDa in samples eluted from a 

GTP-agarose affinity column was a real boost, however all of the concentrated fraction 

was loaded for analysis and as such, activity assays could not be undertaken. After 

these initially encouraging results, however, the reproducibility of the detection of the 

polymerase remained disappointingly uncertain and yields were frequently low, with 

fractions from the GTP-agarose affinity column often containing more than one protein. 

Here, inconsistent results for expression of 3D from both periplasmic and cytosolic 

preparations prompted the use of a different approach as these problems were expected 

to cause problems in further purification steps and it was anticipated that by making a 

fusion plasmid using pMAL™-c2, one could, with the resulting MBP-fusion protein, 

achieve better yields and purification. The cloning of genes into this plasmid, initial 

expression assessment of the fusion plasmids, large-scale expression and attempts at 

purification of the 3Dpo1 and other P3 nonstructural proteins will be covered in Chapter 4. 

Chapter 5 is devoted to 3Dpo1 enzyme activity and the effects, on this activity, of addition 

of the P3 nonstructural proteins I was able to 'purify'.

In conclusion though, this affinity chromatography protocol has been successful in 

initiating the purification of a protein from the periplasmic space of E. coli transformed 

with either Protein A/HAV P3/pMEX8 and pRITPOL, moreover the immunoreactive and 

GTP-binding 53kDa protein observed is the predicted size of the polymerase 3Dpo1; 

however its activity as a polymerase enzyme was not confirmed by enzyme assays. The 

aim of obtaining a sample of enzyme free from contamination with bacterial proteins was 

not realised, even though the Western blots appeared very encouraging. It is likely that 

a number of the proteins observed on Coomassie-stained gels would not react with the 

HAV-specific antibody, yet would bind and elute with the desired protein, therefore this 

affinity chromatography method can really only be regarded as a semi-purification step 

and further purification steps would be required. The results herein also indicate that 

Protein A is perhaps not the fusion partner of choice for subsequent attempts.
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4. Amplification of P3, 3AB, 
3C, 3CD and 3D from HAV 

P3/pMEX8 and their 
expression and purification 
using the pMAL™ system
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4.1 Introduction
Although the 3Dpo1 has been successfully expressed in the periplasmic space of E. coli using 

the available constructs, the amount of protein produced is low, making some of the 

experiments described above difficult and time-consuming. Tesar et al. (1994), who enjoyed 

good expression levels in a bacterial system and were surprised by the lack of measurable 

RNA polymerase activity, later observed that the HAV 3D proteins sedimented after low- 

speed centrifugation, suggesting that the protein was insoluble or somehow associated with 

large subcellular components, this is in contrast with observations made for PV.

A number of proteins have been expressed in E. coli in the Department of Biochemistry at 

Bath University using vectors based on the strong, inducible tac promoter, and gene fusions. 

Although not essential for the assay experiments described, high-level expression of the 3Dp0‘ 

would make it easier to detect low-activity enzyme, and may permit the purification of 

sufficient protein to allow biophysical characterisation. In this case it was decided to, as well 

as continuing attempts with the available constructs, create a fusion protein which, once 

purified, is separated into fusion partner and target protein, by chemical or enzymatic 

cleavage. By cloning the gene of interest into the pMAL vector, a gene fusion was created 

with the MBP-encoding malE gene, which, it was hoped, would ease purification of the 

desired protein and that the MBP-fusion partner would help keep the protein soluble. 

Transformed E. coli are grown and the culture induced to produce MBP-fusion protein 

constituting up to 30% of the cellular protein. Fusion protein expressed form pMAL™-c2 

constitutes 20-40% of the total cellular protein, while fusion protein expressed from pMAL™- 

p2, directing fusion protein to the periplasmic space constitutes 5-10% of the total cellular 

protein. So, whilst enjoying limited success with periplasmically expressed protein, the 

greater yields of fusion protein likely with pMAL™-c2 swung the balance in its favour.

4.1.1 The pMAL ™-c2 expression system
The E. coli plasmid expression vector pMAL-c2 is a fusion protein vector (Figure 40); the 

peptide encoded by the cloned sequence is expressed as a fusion protein linked by its N- 

terminus to a 40.6kDa MBP. Expression of the fusion protein is under the control of the high 

activity inducible Ptac promoter. Under normal growth conditions the promoter is silent due to 

binding of the Ptac inhibitor, encoded by the Laclq gene. Addition of IPTG disrupts this 

interaction resulting in high-level transcription of the Ptac gene product. The malE gene 

encoding the MBP (Duplay et al., 1984) lies downstream of this promoter, followed by a
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sequence which codes for a factor Xa cleavage site. The multiple cloning site is located 

immediately 3' to this recognition sequence permitting the insertion of a chosen coding 

sequence in the correct reading frame and subsequent recovery of the protein of study by 

factor Xa cleavage. Growth of transformed cells in the presence of IPTG induces high-level 

expression of the MBP fusion product. pMAL-c2 also includes the LacZ gene to allow 

blue/white selection of plasmids containing inserts, and the p-lactamase gene (Ap) which 

confers ampicillin resistance for the selection of transformants.

Laclq
Col El ori

Ptac

M13ori malE

Sacl
Xmnl
EcoRI
Bam HI
Xbal
Sail
Pstl
H indlll

Amp lacZ

pBR322 ori

Figure 40: Map of the prokaryotic expression vector pMAL™-c2

Although it was possible that the lack of detectable HAV RNA polymerase activity, 

encountered by Tesar and colleagues (1994), was due to the absence of soluble protein in 

their preparations, an alternative explanation is that the poly(U) polymerase assay or the 

assay conditions are inappropriate for the HAV enzyme. The assay was optimised for the 

poliovirus 3D protein (Flanegan & Baltimore, 1977) and works well for the EMCV enzyme as 

well (Sankar & Porter, 1991). With HAV, only very low levels of activity have been unreliably 

detected which could imply that the RNA polymerase may require certain factors for activity 

not present in the reaction mixture used previously (Palmer, 1994).
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Knowledge of the amino-acid sequence of the N-terminus of the 3D protein allowed attempts 

to express this molecule in bacterial cells, without the rest of the P3 region of the HAV 

genome. Furthermore, it has been established that levels of polymerase activity observed for 

PV are greatly enhanced by addition of purified 3AB which may be a co-factor for 3Dpt)l in viral 

transcription (Lama et al., 1994). This led us to surmise that pertiaps the same could be true 

of HAV and addition of purified 3AB to the reaction mixture could be the missing piece to the 

puzzle.

Undoubtedly 3CD plays an important role and, with its interaction With both 3AB and the 5'- 

terminal cloverleaf, is essential for RNA replication (Xiang et al., 1995b). Harris et al. (1992) 

have suggested that PV 3CDpro has no polymerase activity. The same could be true of HAV, 

however one cannot eliminate the possibility that the HAV 3CD may be a component of the 

RNA polymerase. It was therefore decided to clone certain individual genes into the pMAL™- 

c2 expression vector and the polyproteins expressed would be used in assays for polymerase 

activity as well as providing information on the effect, on this activity, of the individual 

polyproteins. Interestingly, expression of protein 3A in E. coli with an N-terminal deletion 

rendered this protein toxic to bacteria (Beneduce et al., 1995). Moreover, the toxic potential 

to bacteria of protein 3AB of a cytopathic strain of HAV has been demonstrated, and found to 

be similar to that observed in PV (Pisani et al., 1995; Beneduce et al., 1997). The P3 region 

amplified here, and the constituent 3AB, were lacking the first 14 amino acids, and 

expression of the truncated 3AB region in this system could result in bacterial cell lysis if 

recombinant 3AB is active, thereby performing as a 'positive control'. With HAV 3C known to 

be expressable as a soluble and active enzyme in bacterial expression systems (Gauss- 

Muller et al., 1991; Malcolm et al., 1992), it became feasible to use this protein as a 'positive 

control' for the expression system used here as well.

Amplification of the required regions, however, was first of all necessary. As detailed in 

Chapter 1, the HAV P3/pMEX8 construct contains the HAV gene sequence stretching from a 

truncated 3A to 3D. In utilising this HAV sequence in HAV P3/pMEX8, endeavors to amplify 

the specific P3, 3AB, 3C, 3CD and 3D regions for subsequent subcloning were made (Figure 

41).
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Figure 41: Diagram of the desired amplification products

The five regions pictured above were successfully amplified and cloned into pMAL-c2™, and 

have undergone sequence analysis. Preliminary expression studies using these constructs, 

proved successful for some of the aforementioned regions, and the purified polyproteins 

produced from overexpression of some of these fusion proteins have been used in enzyme 

assays in an attempt to determine the activity, and requirements for such activity, of the HAV 

RNA polymerase. This approach to amplification and cloning of the desired genes/regions 

and the subsequent expression and purification of the related gene products and their results 

are discussed below, with the enzyme activity information covered in Chapter 6.

The objective of the work included in this chapter, therefore, was three-fold:

1. Development of a more efficient expression system

2. Purification of the polymerase enzyme

3. Purification of other P3 nonstructural proteins
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4.2 Results
4.2.1 Construct verification

DNA analysis
DNA extracted, using a standard mini-prep (2.2.1), from harvested cultures grown from 

glycerol stocks (courtesy of Dr. J. Rider) was checked for the presence of the HAV P3 insert 

by digesting a small volume with suitable restriction enzymes and analysing the results on a 

1% (w/v) agarose gel.

The sizes of the bands appearing on the gel corresponded with the expected fragment sizes 

as detailed below:

Table 11: Restriction products of HAV P3/pMEX8

RESTRICTION ENZYME FRAGMENT SIZES (kb)
EcoRI 4.2

1.8
H/ndlll 4.7

1.3
Pst\ 3.7

1.4
0.9

4.2.2 Amplification by the P
Following the protocol outlined in 2.2.4.3, a number of PCRs, using primers HAV4 and HAV7- 

9 (Appendix 1), were carried out. Samples were then analysed on 1% (w/v) agarose gels as 

in 2.2.3.2, visualised under UV light and on completion of a successful PCR, purification of 

the amplified DNA was achieved using the Sephaglas BandPrep Kit from Pharmacia, as 

detailed in 2.2.5.

Attempts at amplifying the 3AB, 3C, 3CD, 3D and P3 regions from HAV P3/pMEX8 proved 

difficult. The PCR products were run on a 1% (w/v) agarose gel, but no bands corresponding 

to the 3AB at 0.24kb, 3C at 0.6kb, 3CD at 2.1 kb, 3D at 1.4kb or P3 at 2.4Kb were seen. 

Whenever PCR products were viewed in an agarose gel under UV light, there were always 

products of a very low molecular weight, which, it was concluded, were possibly the primers 

annealing together to form ‘primer-dimers’.
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4.2.2.1 Radiolabelling of HAV primers
End-labelling of the HAV primers and running with a primer of known size on a 

polyacrylamide gel (result not shown) revealed that they were all of approximately the correct 

size and no real degradation was seen. Continued attempts at amplification of these 

products, however, remained unsuccessful.

4.2.2.2 Sequencing of HAV P3/pMEX8
The plasmid construct HAV P3/pMEX8 was subsequently manually sequenced in order to 

identify the reason behind this continuing problem with amplifcation. Sequencing of the 

construct HAV P3/pMEX8 showed that the 5'-terminal nucleotides of the 3A region were 

missing thought to have been 'nibbled away', revealing that the primers constructed for 

amplification of 3AB and P3 had nothing to bind to apart from each other (Figure 42) and that 

the problem lay with the template and not the primers.

The sequence of HAV P3/pMEX8 should read:

pMEX8 HAV P3

& c a t g g g t a c X g t c t t t t c c a t c t g g t g a a c c a t c g a a t t c c a a a t t a t c t g g c t t t t t c c a a t c t  .T T

Manual sequencing however yielded the following results and from the bottom of the gel the 

sequence actually read:

pMEX8 HAV P3

C C A T G G G T A C T T T T T C C A A T C T . . .

This revealed that much of the 3A region was missing and new primers were required which 

encompassed this missing region, or at least the most part of it.
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pBluescript SK pMEX8 3' pMEX8 5' HAV P3/pMEX8 3' HAV P3/pMEX8 5'

T G C A  T G C A  T G C A  T G C A  T G C A

Figure 42: Manual sequencing of HAV P3/pMEX8 and pBluescript and pMEX8 
(controls)
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A new oligonucleotide primer synthesised (HAV9) encompassed the missing region and 

further attempts at amplifying these regions yielded bands at 0.24kb and 2.4kb using forward 

primer HAV9 and reverse primers HAV8 and HAV4 respectively (Appendix). These bands 

correspond to the 3AB region and P3 region of HAV (Figure 43). Bands were excised from 

the gel and purified using the Sephaglas BandPrep kit as previously described for 

subsequent cloning.

2.4kb

0.24kb

Figure 43: PCR amplification of 3AB and P3

Using Promega Taq polymerase and HAV primers. Conditions as described in Chapter 2.

4.2.2.3 Successful amplification
With lack of progress in amplifying the remaining regions, reactions employing the Expand 

PCR kits were undertaken, as per the manufacturer’s instructions, using the HAV family of 

primers (HAV4 and HAV8-12) and products obtained were treated as detailed above.

Immediate improvements were observed when the Expand kits were used, as indicated by 

the amplification again of P3 and 3AB with bands of 2.4kb and 0.24kb respectively, as well as 

bands of 2.1 kb and 1.46kb corresponding to 3CD and 3D respectively (Figure 45).
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s *

0 24kb

Figure 44: Amplification of 3AB and P3

Using Expand High Fidelity PCR Kit and HAV primers.

1 x 94°C for 2 minutes 
f  94°C for 30 seconds 

30 x^ 65°C for 30 seconds 
I  72°C for 2 minutes 

1 x 72°C for 5 minutes

150



Chapter 4

Figure 45: Amplification of 3C, 3CD and 3D

Using Expand High Fidelity PCR Kit and HAV primers.

1 x 94°C for 2 minutes
f  94°C for 30 seconds

30 x i  50°C for 30 seconds
I  72°C for 2 minutes

1 x 72°C for 5 minutes

Unfortunately, shortly after this, PCR reactions became non-reproducible using the cycles 

and solutions previously successful and, after making checks, it appeared that the HAV 

primers used had degraded. New ready-pure primers, the LJ family (Figure 46 and 

Appendix), purchased from Perkin Elmer were used for all subsequent PCR reactions. 

These reactions also employed the Expand kits already mentioned.
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4.2.3 Amplification by the P
The LJ family of primers were used in all subsequent amplification reactions (Figure 46) and 

their sequences can be found in the Appendix. The position on the genome of the HAV 

primers used prior to this, and their sequences can also be found in Appendices 1 and 2.

pMEX8MEX8 3A 3B

Figure 46: Position on genome of LJ primers

See Appendix 2 for sequences

4.2.3. 1 Successful amplification
P3

Successful amplification of all the desired products: 3AB signified by a band at 0.24kb, 3C by 

a band at 0.66kb, 3CD by a band at 2.1 kb, 3D by a band at 1.5kb and P3 by a band at 2.4kb 

ensued (Figure 47) and these products were gel purified and attempts at cloning these 

products into the vector pMAL-c2™ were made.
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Figure 47: Amplification of 3AB, 3C, 3CD, 3D and P3

Using Expand High Fidelity PCR Kit and LJ primers. Cycles and temperatures as described 
in Chapter 2.

4.2.4 Cloning of HAV regions
3D into pMAL ™-c2

Subsequent DNA inserts, amplified using Expand PCR kits, were successfully purified 

straight from the reaction mixtures using the QIAgen PCR purification kit and ligated into 

pMAL™-c2, cut with Xmn\ and BamHI, and verification of the existence of these new 

constructs has been confirmed by restriction digest (Figure 48 to Figure 50), protein 

expression (Figure 51 to Figure 54) and sequence analysis (Figure 55 and Figure 56).
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4.2.5 Confirmation of successful
Screening for the presence of inserts was undertaken in the following ways:

4.2.5.1 Restriction digestion of p
Minipreps of the putative constructs 3AB/pMAL, 3C/pMAL, 3D/pMAL, 3CD/pMAL and 

P3/pMAL were produced and double-digested using the restriction enzymes Sacl, found just 

upstream from the Xmn\ site used for cloning and BamH\, one of the sites used for cloning, 

resulting in the removal of the insert from the vector, in positive clones, thus yielding two 

bands: one the size of the vector alone, approximately 6.6kb and one the size of the 

respective insert.

In the case of Figure 48 we can see the desired bands of both 2.1 kb (3CD) and 1.5kb (3D), 

visualised by UV light on the agarose gel. Similarly, in Figure 49, where one can clearly see 

the desired band of 0.66kb representing 3C and in Figure 50, we can see that clones AB2 

and AB4 are cloned successfully, as are P3-5 and P3-8 to the right of this figure.

Figure 48: Clone confirmation of 3D/pMAL and 3CD/pMAL by restriction digest
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3C/pMAL

Figure 49: Clone confirmation of 3C/pMAL by restriction digest

x  AB/pMAL (cut) P3/pMAL (cut)
&■

6.6kb'

0.24kb'

2.4kb

Figure 50: Clone confirmation of 3AB/pMAL and P3/pMAL by restriction digest
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4.2.5.2 Protein expression in pu
A culture of each of the new constructs, 3AB/pMAL, 3C/pMAL, 3CD/pMAL, 3D/pMAL and 

P3/pMAL was grown in LB, containing the appropriate antibiotics until an OD6oo of 0.5 was 

reached. A 1ml aliquot was removed and IPTG was added to the remainder of the culture to 

a concentration of 0.3mM. This was incubated at 37°C for 2 hours and then the uninduced 

and induced cultures were centrifuged at 15,000g, the pellets resuspended in reducing 

sample-buffer, boiled for 5 minutes and then subjected to SDS-PAGE on a 10% gel which 

was subsequently blotted to nitrocellulose. Blots probed with the available anti-3D peptide 

antibody yielded little in the way of conclusive evidence and hence are not shown.

With the exception of 3AB/pMAL, bands of the size estimated for the respective fusion 

proteins were observed (Figure 51 to Figure 54). These proteins were expected to have the 

molecular masses shown in Table 12.

Table 12: Predicted molecular weights of fusion proteins produced

HAV PROTEIN HAV PROTEIN (kDa) FUSION PROTEIN FUSION PROTEIN (kDa)

P3 89 MBP-P3 139.8

3CD 77 MBP-3CD 127.8

3D 53 MBP-3D 103.8

3C 24 MBP-3C 74.8

3AB -12 (truncated) MBP-3AB 62.8

4.2.5.2.1 Expression of 3D/pMALand 3CD/pMA L
As can be clearly seen dramatic differences can be seen in all four possible clones of 

3D/pMAL and 3CD/pMAL as compared with the control which shows a band of ~50kDa 

probably corresponding to the MBP-p-gal-a fusion which has a molecular weight of 50.8kDa 

(Figure 51 and Figure 52). Bands of ~125kDa and ~100kDa, thought to correspond to MBP- 

3CD and MBP-3D can be seen. Interestingly, a faint band at about 75kDa can also be seen 

and is thought represents MBP-3C, which could imply that the protease activity of 3CD is 

active in this instance.
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4.2.5.2.2 Expression of3AB/pMAL?
Attempts at expressing the MBP-3AB protein resulted in either clearing of the culture or 

production of what appeared to be MBP alone. Sequencing of clone 4 of 3AB/pMAL revealed 

93.8% identity with the complete RNA genome of HAV in a 243bp overlap (Figure 56), 

however attempts at culturing bacteria containing this construct proved difficult, with clearing 

of the cultures being observed shortly after induction. Further DNA analysis on this construct 

revealed that the insert had been expelled from the plasmid. Further attempts at subcloning 

proved unsuccessful. With hindsight this result should have been expected due to the toxicity 

to bacteria of expressed 3AB (Beneduce etal., 1995; Pisani etal., 1995).

4.2.5.2.3 Expression of P3/pMAL
A similar effect is seen in Figure 53 and Figure 54 where in clone 8 of MBP-P3, at ~139kDa, 

MBP-P3 can be seen to be cleaving itself into what appears to be perhaps the nonstructural 

proteins. If this is the case and it cleaves off 3D and 3C (or 3CD for that matter) from itself, 

what remains bound to MBP will be 3AB. In a sense this is a negative result as the whole P3 

region was not obtained, however, with problems encountered during 3AB/pMAL expression, 

this construct could still perhaps be of some use. Prolonged induction of P3/pMAL resulted in 

clearing of cultures similar to that seen in 3AB/pMAL implying that MBP-3AB was the 

resultant product of the autocatalysis being observed, however time did not permit proper 

assessment of growth kinetics. This is supported by the presence of a band of approximately 

63kDa which could correspond to MBP-3AB and appears on both the Coomassie-stained gel 

and on the Western blot. Interestingly a band of ~43kDa can be seen upon induction of clone 

5 of P3/pMAL indicating either an out of frame fusion or a severe protein degradation 

problem.

4.2.S.2.4 Expression of 3C/pMAL
Expression of MBP-3C was easily observed with a protein of about 75kDa being produced as 

can be seen in lanes 9 and 11 of Figure 53 and Figure 54. Using this construct as a positive 

control for bacterial expression it was apparent that this system was working successfully and 

was worthy of pursuance.
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kDa 1

200^
116^ 

97.4^
kM

6 6 ^

1 2  3 4 5 6 7 8 9  10 11

4 5 *

31^

K  * *  • -  -w*

Figure 51: Coomassie-stained 10% SDS-PAGE gel of 3CD/pMAL and 3D/pMAL

Lane 1: markers
Lane 2: uninduced „ pMAL (control)
Lane 3: induced I
Lane 4: uninduced
Lane 5: induced 3CD (clones 1 and 3)
Lane 6: uninduced
Lane 7: induced
Lane 8: uninduced
Lane 9: induced  ̂ 3D (clones 1 and 2)
Lane 10: uninduced
Lane 11: induced

kDa 1 2 3 4 5 6 7 8 9

2 0 8 *

20.4H

S

115^

49.5^

34.8^

28.3^

Figure 52: Western blot of gel of 3CD/pMAL and 3D/pMAL

Lane order as above. Exposure of 4 seconds.
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Figure 53: Coomassie-stained 10% SDS-PAGE gel of P3/pMAL and 3C/pMAL

Lane 1: markers
Lane 2: uninduced „ pMAL (control)
Lane 3: induced I
Lane 4: uninduced
Lane 5: induced k P3 (clones 5 and 8)
Lane 6: uninduced
Lane 7: induced
Lane 8: uninduced
Lane 9: induced  ̂ 3C (clones 1 and 2)
Lane 10: uninduced
Lane 11: induced

208^
115^

49.5^

34.8^

28.3^

20 .4 ^

Figure 54: Western blot of gel of P3/pMAL and 3C/pMAL

Lane order as above. Exposure of 5 seconds.
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4.2.5.3 Sequencing of putative
Samples containing approximately 300-500ng of miniprep DNA and 3.2pmol of malE primer 

were sequenced on an automated ABI 377 Prism Sequencer. Sequences were analysed 

using the GCG suite of programs and this confirmed that the genes had been successfully 

cloned. The results are shown summarised in Table 13. Typical results are shown in Figure 

55 and Figure 56 for P3/pMAL and 3AB/pMAL respectively.

Table 13: Summary of sequencing results for pMAL constructs

CONSTRUCT IDENTITY OVERLAP (bp)
Human HAV RNA, 
complete genome 
(hpacg)

3C/pMAL (clone 2) 60.8% 549

hpacg 3CD/pMAL (clone 3) 88.2% 825
hpacg 3D/pMAL (clone 2) 86.1% 648
hpacg P3/pMAL (clone 8) 96.6% 412
hpacg 3AB/pMAL (clone 4) 93.8% 243

160



Chapter 4

H u m a n  h e p a t i t i s  v i r u s  t y p e  A  R N A , c o m p l e t e  g e n o m e  

A C C E S S IO N  N U M B E R  M 2 0 2 7 3

9 6 .6 %  i d e n t i t y  i n  4 1 2  b p  o v e r l a p

6 0  7 0  8 0  9 0  1 0 0  1 1 0

p 3 8 . s e  A A C A A C A A C C T C G G G A T C G A G G G A A G G A G C T T T C C A T C T G G T G A A C C A T C N A A C T C T A A A

I I I I I I I I I I I I I I I I I I I I : I I II I I I  
h p a c g  G A T A G T G C A A T G G C A G A G T T T T T T C A G T C T T T T C C A T C T G G T G A A C C A T C G A A T T C C A A A  

5 0 2 0  5 0 3 0  5 0 4 0  5 0 5 0  5 0 6 0  5 0 7 0

1 2 0  1 3 0  1 4 0  1 5 0  1 6 0  1 7 0

p 3 8 . s e  T T A T C T G G C T T T T T C C A A T C T G T T A G T A A T C A C A A G T G G G T T G C T G T G G G A G C T G C A G T T  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
h p a c g  T T A T C T G G C T T T T T C C A A T C T G T T A C T A A T C A C A A G T G G G T T G C T G T G G G A G C T G C A G T T  

5 0 8 0  5 0 9 0  5 1 0 0  5 1 1 0  5 1 2 0  5 1 3 0

1 8 0  1 9 0  2 0 0  2 1 0  2 2 0  2 3 0
p 3 8 . s e  G G TG T T C T T G G A G T G C T C G T T G G G G G A T G G T T T G T G T A T T A G C A T T T C T C C C G A A A A G A G  

I I I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
h p a c g  G G T A T T C T T G G A G T G C T C G T T G G G G G A T G G T T T G T G T A T A A G C A T T T C T C C C G A A A A G A G  

5 1 4 0  5 1 5 0  5 1 6 0  5 1 7 0  5 1 8 0  5 1 9 0

2 4 0  2 5 0  2 6 0  2 7 0  2 8 0  2 9 0
p 3 8  . s e  G A A G A G C C A A T T C C A A C T G A A G G G G T A T A T C A T G G T G T A A C T A A N C C T A A G C A A G T G A T T

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I : I I I I I I I I I I I I I I I
h p a  e g  G A A G A G C C A A T T C C A G C T G A A G G G G T A T A T C A T G G T G T A A C T A A G C C T A A G C A A G T G A T T  

5 2 0 0  5 2 1 0  5 2 2 0  5 2 3 0  5 2 4 0  5 2 5 0

3 0 0  3 1 0  3 2 0  3 3 0  3 4 0  3 5 0
p 3 8  . s e  A A A T T A G A T G C A G A T C C A G T A G A A T C T C A G T C A A C T T T G G A A A T A G C A G G A C T G G T T A G G  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
h p  a  c  g  A A A T T A G A T  G CAG AT C C A G T A G A A T  CT CAG T C A A C T T T  G G A A A TA G C A G G A C T GG TTAG G  

5 2 6 0  5 2 7 0  5 2 8 0  5 2 9 0  5 3 0 0  5 3 1 0

3 6 0  3 7 0  3 8 0  3 9 0  4 0 0  4 1 0

p 3 8  . s e  A A G A A T T T G G T T C A G T T T G G A G T T G G A G A G A A G A A T G G A T G T G T G A G A T G G G T T A T G A A T  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
h p  a  c  g  A A G A A T T T  G G TT C A G T T T  G G AG TT G G AG AG A AG AA T G GAT GT GT G AG A T G G G TTA T  G AA T 

5 3 2 0  5 3 3 0  5 3 4 0  5 3 5 0  5 3 6 0  5 3 7 0

4 2 0  4 3 0  4 4 0  4 5 0  4 6 0  4 7 0

p 3 8 . s e  G C C T T A N G G G T N A A A G A T G A T T G G T T G C T T G T A C C T T C C C A T G C T T A C N N A T T T G A A G A A  

I I I II I : I I I I : I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I : : I I I I I I I I I 
h p a c g  G C C T T A G G G G T G A A A G A T G A T T G G T T G C T T G T A C C T T C C C A T G C T T A C A A A T T T G -A G A A  

5 3 8 0  5 3 9 0  5 4 0 0  5 4 1 0  5 4 2 0  5 4 3 0

4 8 0  4 9 0
p 3 8 . s e  A G A T T A T G A A N T G A T G G A G T T T

I I I I I I I I I I : I I I I I I I I I I I
h p a c g  A G A T T A T G A A A T G A T G G A G T T T T A T T T T A A T A G A G G T G G A A C T T A C T A T T C A A T T T C A G C  

5 4 4 0  5 4 5 0  5 4 6 0  5 4 7 0  5 4 8 0  5 4 9 0

Figure 55: Alignment of part of putative P3/pMAL with part of the sequence encoding 
the complete RNA genome of human HAV

This sequence represents the highest nucleotide identities obtained from searching the 
Genbank and EMBL databases using the GCG programme Fasta (Pearson & Lipman, 1988).
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H u m a n  h e p a t i t i s  v i r u s  t y p e  A  R N A , c o m p l e t e  g e n o m e  
A C C E S S IO N  N U M BE R  M 2 0 2 7 3

9 3 . 8 %  i d e n t i t y  i n  2 4 3  b p  o v e r l a p

6 0  7 0  8 0  9 0  1 0 0  1 1 0
a b 4  . s e  A A C A A C A A C C TC G G G A T C G A G G G A A G G A G C T T T C C A T C T G G T G A A C C A T C G A A C T C T A A A

I I I I I I I I I I I I I I I I I I I I I I I II I I I  
h p a c g  G A T A G T G C A A T G G C A G A G T T T T T T C A G T C T T T T C C A T C T G G T G A A C C A T C G A A T T C C A A A  

5 0 2 0  5 0 3 0  5 0 4 0  5 0 5 0  5 0 6 0  5 0 7 0

1 2 0  1 3 0  1 4 0  1 5 0  1 6 0  1 7 0
a b 4 . s e  T T A T C T G G C T T T T T C C A A T C T G T T A G T A A T C A C A A G T G G G T T G C T G T G G G A G C T G C A G T T  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
h p a c g  T T A T C T G G C T T T T T C C A A T C T G T T A C T A A T C A C A A G T G G G T T G C T G T G G G A G C T G C A G T T  

5 0 8 0  5 0 9 0  5 1 0 0  5 1 1 0  5 1 2 0  5 1 3 0

1 8 0  1 9 0  2 0 0  2 1 0  2 2 0  2 3 0

a b 4 . s e  G G T G T T C T T G G A G T G C T C G T T G G G G G A T G G T T T G T G T A T T A N C A T T T C T C C C N A A A A G A G

I I I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I : I I I I I I I I I I : I I I I I I I
h p a c g  G G TA TT C TT G G A G T G C T C G T T G G G G G A T G G T T T G T G T A T A A G C A T T T C T C C C G A A A A G A G  

5 1 4 0  5 1 5 0  5 1 6 0  5 1 7 0  5 1 8 0  5 1 9 0

2 4 0  2 5 0  2 6 0  2 7 0  2 8 0  2 9 0
a b 4  . s e  G A A N A G C C A A T T  C C A A C T GAAN G G G TA TA T  C A T  GGT G T A A C T A A N  C C T A A G C A A G T  G A T T

I I I : I I I I I I I I I I I I I I I I : I I I I I I I I I I I I I I I I I I I I I I : I I I I I I I I I I I I I I I
h p a  e g  G A A G A G C C A A TT  CCAG C T G AA G G G G TA TA T  C A T  GGT G T A A C T A A G C C T A A G C A A G T G A T T  
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Figure 56: Alignment of part of putative 3AB/pMAL with part of the sequence encoding 
the complete RNA genome of human HAV

This sequence represents the highest nucleotide identities obtained from searching the 
Genbank and EMBL databases using the GCG programme Fasta (Pearson & Lipman, 1988).

4.2.6 Pilot experiments showing expression and 
amylose binding capabilities

Initially, pilot experiments were undertaken for each of the successful constructs, in order to 

find out the conditions for protein expression ideally suited to each construct. The samples
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run on the SDS-PAGE gels were initially uninduced, induced for 1 hour, induced for 2 hours, 

induced for 3 hours, crude cell extract, insoluble matter and protein bound to amylose. 

Coomassie-stained gels and anti-MBP probed Western blots are shown below for each HAV 

construct except 3AB/pMAL.

4.2.6.1 Pilot expression of3C/pMAL
When expression of MBP-3C was satisfactory a distinct band of ~75kDa was observed, 

(lanes 5 to 10 of Figure 57) which reacted with anti-MBP antibody and yielded a major band 

of ~75kDa (Figure 58). Crude extract lanes showed that the band of interest was relatively 

soluble and it appeared also to be the dominant band bound to amylose in lane 10 of these 

two figures. The lane containing undiluted protein bound to amylose resin in Figure 58 

revealed, however a few other proteins which bound to amylose resin. It was clear however 

that the polypeptide predominantly binding to amylose was that corresponding to the MBP-3C 

species. Some bands appeared smaller than they actually were on the gel and blot due to 

slight 'smiling' caused by temperature fluctuations.

4.2.6.2 Pilot expression of3CD/pMAL
In the case of the pilot experiment with 3CD/pMAL, polypeptides (~125kDa) of about the size 

expected for MBP-3CD (127.8kDa) were observed. In addition very faint bands of ~90kDa, 

75kDa, 66kDa, and 44kDa were observed on the Coomassie-stained gel (Figure 59) of 

3CD/pMAL. Only the 75kDa, 66kDa and 44kDa bands were observed to be soluble and 

either only weakly reacted with the anti-MBP antibody (Figure 60) or were present in very 

small amounts. Some of these bands present can be accounted for however, with the band 

of 75kDa possibly corresponding to MBP-3C, if the 3CD has undergone autocatalysis at its 

natural cleavage site. It is expected that the 43kDa protein would possibly correspond to 

MBP2* indicating either an out of frame fusion or a severe protein degradation problem. No 

proteins were observed to bind to amylose resin. Again 'smiling' of the bands has occurred.
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kDa 1 2 3 4 5 6 7 8 9 10

Figure 57: Pilot expression of 3C/pMAL - Coomassie-stained gel

Lane 1: markers
Lane 2: uninduced \  pMAL (control)
Lane 3: induced J
Lane 4: uninduced
Lane 5: induced 1 hour
Lane 6: induced 2 hours
Lane 7: induced 3 hours
Lane 8: crude extract
Lane 9: insoluble extract
Lane 10: protein bound to amylose resin

kDa 1 2 3 4 5 6 7

3C/pMAL

208► 
11 5*

79^

49.5^

34.8^
28.3^

20 .4^

Figure 58: Pilot expression of 3C/pMAL - Western blot

Exposure of 1 minute. Lane order as above with samples diluted 1:10 with the addition of:- 
Lane 11: crude extract (neat)
Lane 12: protein bound to amylose resin (neat)
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Figure 59: Pilot expression of 3CD/pMAL - Coomassie-stained gel

Lane 1: markers
Lane 2: uninduced 1 pMAL (control)
Lane 3: induced J
Lane 4: uninduced
Lane 5: induced 1 hour
Lane 6: induced 2 hours
Lane 7: induced 3 hours
Lane 8: crude extract
Lane 9: insoluble extract
Lane 10: protein bound to amylose resin

kDa 1 2 3 4 5 6

V  3CD/pMAL
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79^

49.5^

34.8^
28.3^
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m  s

Figure 60: Pilot expression of 3CD/pMAL - Western blot

Exposure of 5 minutes. Lane order as above with samples diluted 1:10 with the addition of:- 
Lane 11: crude extract (neat)
Lane 12: protein bound to amylose resin (neat)
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4.2.6.3 Pilot expression of 3D/pMAL
Upon induction with IPTG, 3D/pMAL expressed high levels of a dominant protein of ~100kDa 

proteins, expected to represent MBP-3D (Figure 61). Expression of this protein increased 

proportionally with induction time. The MBP-3D appeared to be soluble to an extent, however 

the bulk of it was insoluble and temperature of induction was subsequently altered (reduced 

to 23°C) in the hope of remedying this. A very faint band was observed by SDS-PAGE to 

bind to amylose resin, however this was easier to see on the Western blot (Figure 62). A 

smaller band of ~75kDa appears to bind amylose resin as well, if not better, than the putative 

MBP-3D protein, however its identity is unknown.

4.2.6.4 Pilot expression of P3/pMAL
The results of the pilot experiment with P3/pMAL were confusing. A novel band of ~139kDa 

can be seen in lanes 5, 6 and 7 (Figure 63). The lane showing crude extract revealed that 

the actual MBP-P3 present was insoluble and only proteins of 95kDa, ~83kDa, ~75kDa, 

63kDa, and ~43kDa were present in the soluble crude extract. For the mostpart, these 

proteins, however were also present in varying degrees in the control. The band of 63kDa 

could correspond to MBP-3AB and appeared to be present in P3/pMAL lanes only. A clear 

band of ~139kDa could be seen in the insoluble extract lane which shows promise, but 

autocatalysis, or at least proteolysis, is obviously occurring as the MBP fusion protein binding 

to amylose resin is only 43kDa long, which could correspond to degraded MBP alone. The 

83kDa protein could correspond to MBP-3ABC, however this remains unknown.

Similar results were seen in the Western blot of P3/pMAL (Figure 64) with a band of the 

predicted size being visible in lanes 5, 6 and 7, but the amylose affinity resin bound either to a 

much smaller protein or to no protein at all and MBP was present alone. Bands of ~75kDa 

and ~83kDa were also observed, the latter of which could as already mentioned correspond 

to MBP-3ABC, but this remains unknown. Analysis of neat crude extract revealed that a 

minute amount of P3/pMAL was soluble, along with a protein of ~83kDa and one of ~66kDa. 

Attempts continued at changing conditions to yield more favourable results.
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Figure 61: Pilot expression of 3D/pMAL - Coomassie-stained gel

Lane 1: markers
Lane 2: uninduced \  pMAL (control)
Lane 3: induced J
Lane 4: uninduced
Lane 5: induced 1 hour
Lane 6: induced 2 hours
Lane 7: induced 3 hours
Lane 8: crude extract
Lane 9: insoluble extract
Lane 10: protein bound to amylose resin

3D/pMAL

kDa 1 2 3 4 5 6 7 8 9 10 11 12

208 ►

49.5^

34.8 ►
28.3^

20 .4^

Figure 62: Pilot expression of 3D/pMAL - Western blot

Exposure of 2 minutes. Lane order as above with samples diluted 1:10 with the addition of> 
Lane 11: crude extract (neat)
Lane 12: protein bound to amylose resin (neat)
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Figure 63: Pilot expression of P3/pMAL - Coomassie-stained gel

Lane 1: markers
Lane 2: uninduced \  pMAL (control)
Lane 3: induced J
Lane 4: uninduced
Lane 5: induced 1 hour
Lane 6: induced 2 hours
Lane 7: induced 3 hours
Lane 8: crude extract
Lane 9: insoluble extract
Lane 10: protein bound to amylose resin

kDa 1 2 3 4 5 6 7
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Figure 64: Pilot expression of P3/pMAL - Western blot

Exposure of 1 minute. Lane order as above with samples diluted 1:10 with the addition of: 
Lane 11: crude extract (neat)
Lane 12: protein bound to amylose resin (neat)
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Table 14: Expressed proteins demonstrating solubility and amylose binding 
capabilities

BAND (kDa) EXPRESSED SOLUBLE AMYLOSE BINDING
-139 (MBP-P3?) V X X

-125 (MBP-3CD?) V X X
-100 (MBP-3D?) S s ?
-75 (MBP-3C?) s V
-63 (MBP-3AB?) s ? ? ?

4.2.7 Large-scale purification
After optimisation of the expression conditions for each construct, large-scale production was 

launched. Generally 1L cultures of each construct were grown as detailed in 2.2.7.2, 

however due to poor yield at times, cultures of 4L were used in some cases, by inoculating 4L 

of Rich Media with 40ml of overnight culture and growing to an A6oo of -0.5 or cell density of 2 

x 108 cells/ml. Essentially, the same protocol was followed but scaled up to accommodate 

the larger volumes involved. By reducing the temperature of induction (Bishai et al., 1987) to 

23°C and inducing for longer (one has to increase the time of induction to compensate for the 

slower growth at reduced temperature - the rule of thumb used here was 2x for every 7°C 

below 37°C) solubility was marginally increased for MBP-3D, however degradation or 

cleavage of the putative processing intermediates, P3 and 3CD was still observed.

Protein-containing fractions eluted from amylose columns were identified by Bradford Assay, 

pooled and concentrated to approximately 1 mg/ml for subsequent factor Xa cleavage as 

described in 2.2.7.3. Pilot experiments to assess factor Xa cleavage yielded the following 

results. In each case a band of the size predicted for MBP was seen at -50kDa, and in some 

cases uncut fusion protein and the target protein alone at their respective masses were 

observed. As can be seen, the yields were variable and low.

4.2.7.1 Factor Xa cleavage o f MBP
Factor Xa cleavage of a sample hoped to contain MBP-P3 yielded unusual results as shown 

in Figure 65. The appearance of two bands upon factor Xa cleavage of 'MBP-P3' indicates 

that it is in fact a fusion protein and not just MBP alone. The obvious bands are ~55kDa,
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corresponding to uncut fusion protein and a band of ~50kDa, probably corresponding to 

MBP. The small second cleavage product is not observed on the gel as the markers indicate 

that a protein of approximately 21,5kDa is the smallest protein likely to be observed. Perhaps 

the protein released, and lost, could correspond to 3AB, or 3A. The approximate size of 

MBP-3AB is 63.8kDa. Perhaps the band of ~55kDa could correspond to MBP-3A, however 

this is unlikely unless further degradation has occurred or the 3A region is truncated more so 

than previously thought. It must be borne in mind that a truncated 3A region was used for 

cloning purposes. Interestingly, prolonged induction times of P3/pMAL also caused clearing 

of the culture and this could imply that autocatalytic cleavage is occurring releasing toxic 

MBP-3AB or MBP-3A, resulting in 'leaky' cells as was observed with expression of HAV 3A 

by both my 3AB/pMAL construct and by Beneduce etal. (1995).

kDa 1 2 3 4 5 6

200^
116*

97.4^

66^

45^

31 ►

21.5^

Figure 65: Factor Xa cleavage of MBP-P3

Coomassie-stained 10% SDS-PAGE gel.

Lane 1: markers
Lane 2: uncut ^
Lane 3: 2 hour digestion
Lane 4: 4 hour digestion
Lane 5: 8 hour digestion
Lane 6: 24 hour digestion.

\

/
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4.2.7.2 Factor Xa cleavage of MBP
In the case of 3C/pMAL the band of 75kDa corresponding to MBP-3C was clearly present in 

all 7 lanes (Figure 66). As expected, and hoped for, digestion with factor Xa produced a 

further two bands of ~50kDa (expected to be MBP) and one of 24kDa, the size of the target 

protein, 3C, alone.

4.2.7.3 Factor Xa cleavage of MBP
3D/pMAL eluted from column appeared to be a heterogeneous mixture even before cleavage 

commenced. The uncut sample originated from pooled concentrated samples eluted from a 

15ml amylose column, as was described in Chapter 2. The bands appearing at the very top 

of the gel of molecular mass ~100kDa may be MBP-3D. Other bands of ~75kDa and ~66kDa 

were also observed throughout the samples, as well as a band of ~50kDa (MBP) and the 

target protein appears as a very faint smear at 53kDa as expected. This result is not as 

'clean' as that of 3C/pMAL but suggested that it would be possible to purify 3Dp0‘ from this 

material. Since I was unable to purify sufficient quantities of MBP-3CD and MBP-P3 due to 

insolubility and self-cleavage, only MBP-3D and MBP-3C were pursued to this stage.

31 ►

Figure 66: Factor Xa cleavage of MBP-3C

Coomassie-stained 10% SDS-PAGE gel.

Lane 1: markers
Lane 2: uncut
Lane 3: 2 hour digestion
Lane 4: 4 hour digestion ► pilot-scale
Lane 5: 8 hour digestion
Lane 6: 24 hour digestion.
Lane 7: 24 hour digestion large-scale
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kDa 1 2 3 4 5 6

Figure 67: Factor Xa cleavage of MBP-3D

Coomassie-stained 10% SDS-PAGE gel.

Lane 1: markers
Lane 2: uncut
Lane 3: 2 hour digestion
Lane 4: 4 hour digestion ► pilot-scale
Lane 5: 8 hour digestion
Lane 6: 24 hour digestion.
Lane 7: 24 hour digestion large-scale

All three of the fusion proteins containing 3D sequences were analysed further for eventual 

use in activity assays. Although P3/pMAL offered little hope for eventual purification of the 

whole P3 region, the observed bacterial lysis was interesting and was worthy of further 

investigation, unfortunately time for extensive research was unavailable, however attempts at 

purifying the MBP-P3 protein continued.

4.2.8 FPLC purification of prot
cleavage mixture

As described in Chapter 2, FPLC using anion exchange chromatography with a Mono-Q 

column was the chosen method for purifying the target protein away from MBP and factor Xa 

as it provided an additional purification step for removing trace contaminants.

172



Chapter 4

4.2.8.1 FPLC analysis of MBP-3C
The elution profile for 3C is not shown here, however, SDS-PAGE analysis of the fractions 

collected are shown in Figure 68 and Figure 69 and indicates that the system continued to 

work.

kDa 1

m t
97 .4*

*—

66 ►
4 5 ^
31 ► —

21.5^

2 3 4 5 6 7 8 9 1011 12Eg  --- ----

„ ■ -

Figure 68: SDS-PAGE analysis of fractions of eluted from Mono-Q column loaded with 
MBP-3C cleavage mixture- gel 1

Coomassie-stained 10% SDS-PAGE gel

Lane 1: markers
Lane 2: aliquot of sample loaded onto column
Lane 3: aliquot of flow-through during equilibration of column
Lane 4: fraction 8
Lane 5: fraction 9
Lane 6: fraction 10
Lane 7: fraction 11
Lane 8: fraction 12
Lane 9: fraction 13
Lane 10: fraction 14
Lane 11: fraction 15
Lane 12: fraction 16

Protein of ~50kDa, corresponding to MBP was observed along with protein of ~75kDa (uncut 

MBP-3C?), however no protein bands of 24kDa, corresponding to the target 3C protein were 

observed. Close inspection of the equilibration flow-through of the Mono-Q column revealed 

that the 3C target protein had in fact passed straight through the column and predominantly 

uncleaved or MBP alone was bound to the column. The gels showing this are not shown as 

the bands were very faint and only visible with the help of a light box. The fractions of flow­

through were subsequently concentrated to ~1 mg/ml and the resultant solution containing 3C 

was beaded into liquid nitrogen for storage. It was thought that protease activity assays could 

be set up if time permitted.
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1 2 3 4 5 6 7 8 9 10 11 12

21 .5 ^

Figure 69: SDS-PAGE analysis of fractions eluted from Mono-Q column loaded with 
MBP-3C cleavage mixture - gel 2

Coomassie-stained 10% SDS-PAGE gel

Lane 1: markers
Lane 2: fraction 17
Lane 3: fraction 18
Lane 4: fraction 19
Lane 5: fraction 20
Lane 6: fraction 21
Lane 7: fraction 22
Lane 8: fraction 23
Lane 9: fraction 24
Lane 10: fraction 25
Lane 11: fraction 26
Lane 12: fraction 27

4.2.8.2 FPLC analysis of MBP-3D
The elution profile for MBP-3D cleavage mixture is shown below and revealed the apparent 

low yield.
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Figure 70: Chart recording of FPLC of 3D-MBP cleavage mixture

6ml fusion protein cleavage mixture (~1 mg/ml) was loaded at a rate of 0.5ml/min. Chart 
recorder running at 0.5cm/ml and 0.5 full scale deflection. Trace represents OD2eo-
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kDa

97.4

1 2 3 4 5 6 7 8 9 10 11 12

200^  —

Figure 71: SDS-PAGE analysis of fractions eluted from Mono-Q column loaded with 
MBP-3D cleavage mixture - gel 1

Coomassie-stained 10% SDS-PAGE gel

Lane 1: 
Lane 2: 
Lane 3: 
Lane 4: 
Lane 5: 
Lane 6: 
Lane 7: 
Lane 8: 
Lane 9: 
Lane 10 
Lane 11 
Lane 12

markers
aliquot of sample loaded onto column
aliquot of flow-through during equilibration of column
fraction 17
fraction 18
fraction 19
fraction 20
fraction 21
fraction 23
fraction 24
fraction 25
fraction 26

SDS-PAGE analysis of the fractions eluted from a Mono-Q column loaded with cleaved MBP- 

3D revealed little, with MBP being the protein most easily observed followed by a protein, of 

~80kDa. Fractions thought to contain any protein of the desired size were concentrated and 

the results can be seen in Figure 73.

176



Chapter 4
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31^

Figure 72: SDS-PAGE analysis of fractions eluted from Mono-Q column loaded with 
MBP-3D cleavage mixture - gel 2

Coomassie-stained 10% SDS-PAGE gel

Lane 1: markers
Lane 2: fraction 27
Lane 3: fraction 28
Lane 4: fraction 29
Lane 5: fraction 30
Lane 6: fraction 31
Lane 7: fraction 32
Lane 8: fraction 33
Lane 9: fraction 34
Lane 10: fraction 35
Lane 11: fraction 36
Lane 12: fraction 37
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kDa 1 2 3 4 5 6

Figure 73: Concentration of proteins eluted from Mono-Q column loaded with MBP-3D 
cleavage mixture

Coomassie-stained 10% SDS-PAGE gel 

Lane 1: markers
Lane 2: original MBP-3D eluted from amylose column and concentrated
Lane 3: factor Xa cleavage products loaded onto Mono-Q
Lane 4: fraction 18 (MBP)
Lane 5: fraction 27 concentrated (~48kDa?)
Lane 6 fraction 31 and 32 pooled and concentrated (~52kDa?)

Once concentrated the volume of 'purified' protein obtained with 3D in particular, was minute, 

however the fractions thought to contain protein of, roughly, the desired mass were 

concentrated to ~0.5mg/ml, beaded into liquid nitrogen and stored for assay purposes. The 

results indicate that yields of the putative 3D polypeptide were very low (~5pg from 4 litres of 

culture) and it was not completely pure, however, yields were sufficient to permit assays for 

RNA polymerase activity to be carried out, on both the MBP-3D fusion protein and the 

cleaved MBP-3D.
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4.3 Discussion
As a first step in the characterisation of the polymerase enzyme, a purified preparation of 

HAV 3Dpo1 was required and having enjoyed limited success with bacterial expression 

systems, it was thought best to continue down this path. Some problems were encountered 

with regard to template sequence, primer denaturation etc., however once solved, 

amplification of the desired regions was successful and allowed subsequent subcloning into 

pMAL™-c2. Restriction analysis indicated that fragments of the expected size have been 

cloned into this expression vector and sequencing results show that the inserts have been 

cloned into pMAL™-c2 in the correct orientation. Expression of the desired proteins was 

successful to an extent. Some insolubility was initially observed which in some cases was 

helped to a degree by inducing cultures at lower temperatures for a longer time period as 

recommended by the manufacturer. Harvesting of the cells had to be undertaken as quickly 

as possible keeping the cells chilled at all times, which reduced the loss of protein through 

degradation by proteases released from the bacterial cells during harvesting.

The inserts, P3, 3C, 3CD and 3D, ligated into pMAL-c2, have been over-expressed in E. coli, 

some of the fusion proteins have been affinity purified, cleaved from the MBP by Factor Xa 

and one, possibly two of these have been separated from the MBP. Overexpression of 

processing intermediates, such as P3 and 3CD yielded both encouraging and disappointing 

results: the proteins appeared to be active in their fusion protein form, as autocatalytic 

cleavage appears to have occurred in the correct positions, resulting in the constituent 

proteins being seen by SDS-PAGE analysis, however, this proteolysis could be due to 

indigenous bacterial proteinases recognising the respective cleavage junctures within the 

expressed proteins of 3CD and P3. Others have experienced such autocatalytic activity 

when expressing processing intermediates and have had to generate mutants with changes 

in the cleavage sites to allow purification of the precursor (Harris et al., 1994 and references 

therein; Kusov & Gauss-Muller, 1997 and references therein). Although active as fusion 

proteins which was encouraging, the protein linked to the MBP after autocatalysis, important 

for affinity chromatography, was thought to be 3C, in the case of 3CD, and 3AB, in the case 

of P3. As such, affinity purification of these intermediates was not ultimately possible.

Protein 3AB of other picomaviruses has been shown to be toxic and the data obtained here 

suggest that HAV 3AB, as a fusion with MBP, is also active in bacterial cells with the 

observation that clearing of the cultures upon induction occurred, probably correlating with 

lysis of cells as described by Beneduce et al. (1995) and Pisani et al. (1995). Furthermore, 

as previously mentioned, the truncated 3A region cloned in would result in a 3A protein
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lacking the N-terminal amino acids and the data presented in this Chapter supports the 

observation of Beneduce et al. (1995) that such an N-terminal deletion would render this 

protein toxic to bacteria. Shortly afterwards, results obtained during expression of this 

construct revealed that there was a problem. Subsequent DNA analysis of the 3AB/pMAL 

constructs revealed that the plasmid had lost its insert, the 3AB region. Further attempts at 

cloning this region proved unsuccessful. Similarly, if P3/pMAL was induced for extended 

periods of time (8 to 16 hours), clearing of the culture was observed which could be due to 

autocatalysis or degradation causing release of MBP-3AB or MBP-3A, and this product again 

causing cell lysis. This result could imply that the 3C protease was also active in the system 

used. While this was a disappointing result, with regard to eventual purification of 3AB, with 

hindsight, it was a predictable result and indicates that the system is working. So, with good 

circumstantial evidence that 3C and 3AB were active in this expression system, it was 

thought worthwhile to attempt purification and activity analysis of the 3D protein.

When concentrating on the polymerase and protease proteins, limited success was realised. 

Purification of 3C in acceptable amounts was relatively easy (It was at this stage of the 

project that Bergmann et al. (1997) published their results of the refined crystal structure of 

this protein), however the larger 3D polymerase proved harder to purify with yields being 

dismally low and solubility presenting a problem as others have found (Palmer, 1994; Tesar 

et al., 1994). Attempts at improving solubility by reducing induction temperatures (Bishai et 

al., 1987) proved marginally helpful, but the yield of 'pure protein1 obtained from 4 litres of 

culture remained poor (<5pg of 'pure' 3D compared with >500pg of 'pure' 3C). It could be 

that the fusion protein produced was just too large for the bacteria to cope with. Very large- 

scale expression of this construct would be necessary to actually isolate the target 3Dpo1 

protein, however, the facilities are not available here. Protease assays of the 3C protein 

purified would have been another aspect for investigation if time permitted.

Essentially though, a variety of products resulted from these expression experiments which 

could subsequently be used in activity assays. These included soluble cell extract, MBP- 

fusion proteins and MBP-fusion cleavage mixture. The 'purified' 3D obtained was thought 

insufficient for activity assay analysis. Assays were undertaken as described in Chapter 5 

using the whole cell extract, MBP-fusion protein and the MBP-fusion cleavage mixture 

samples described above with the hope of observing some incorporation of 3H-UTP signifying 

the presence of active polymerase enzyme.
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5. Assay for 
poly(A):oligo(U)- 

dependent poly(U) 
polymerase activity and 
the effect of other non- 

structural P3 proteins on 
this activity

181



Chapter 5

5.1 Introduction
Previous attempts to express the HAV 3D region in E. coli have been unsuccessful, 

resulting in intracellular accumulation of an insoluble product which showed no activity 

(Updike et al., 1990) although the 3C proteinase has been successfully expressed in E. 

coli (Gauss-Muller, 1991). Efforts to detect and characterise a biochemical activity of the 

3D protein have so far been unsuccessful (Tesar et al., 1994) although a weak poly(U) 

polymerase activity was detected in the periplasmic space of E. coli carrying pRITPOL 

(Wolstenholme et al., 1993). The poly(U) polymerase described had many of the 

properties expected for a picomavirus 3Dpo', with a temperature optimum of about 30°C, 

a requirement for Mg2+ and not Mn2+, and a dependence on the presence of an 

oligonucleotide primer for activity.

Particular problems highlighted previously include the absence of apparent soluble 

protein in preparations used for activity assays and, perhaps, inappropriate conditions 

used for assays. In addition, repeated efforts to show RNA polymerase activity in 

extracts of HAV-infected BS-C-1 cells, either in a template-dependent form or as an 

enzyme-template complex, have also been negative (Tesar et al., 1994 and references 

therein). Preliminary data obtained in this laboratory by Palmer (1994) indicated that a 

poly(A):oligo(U)-dependent poly(U) polymerase activity, representative of RNA 

polymerase activity, was present in the cytoplasm of E. coli transformed with HAV 

P3/pMEX8 and in the periplasmic space of E. coli transformed with Protein A/HAV 

P3/pMEX8 as well as pRITPOL. For Palmer (1994) reproducibility of initially

encouraging results using this assay, however, presented a problem, and a number of 

strategies were employed by Palmer (1994) in order to improve the protocol:

1. E. coli strain change to JM-105

Eliminated the possibility that the reason for poor enzymic activity was due to 

construct instability in JRR-600. In the current project, the strain used for assay 

analysis of pMAL constructs was XL-2 and miniprep analysis revealed that the 

constructs had been faithfully retained in each case.

2. Reduced induction period

Long induction period of 15 hours leading to degradation of the RNA-dependent RNA 

polymerase? 5 hour induction was believed to be sufficient for good expression of 

the 3D protein without risking degradation, however both induction periods were 

employed here.
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3. Addition of RNAse inhibitors

Eliminated the possibility that low activity encountered previously was the result of 

nuclease-destruction of the radiolabelled RNA due either to reagent contamination or 

endogenous nucleases in the extracts. Then, as in this study, RNA-guard and 

dithiothreitol (DTT) were added to the reaction.

4. Poly(A):poiy(U) template

To exclude the possibility that a lack of observed 3Dpo1 activity was due to a defective 

oligo(U) primer a new template and primer were investigated by Palmer (1994). 

Poly(A):poly(U) replaced poly(A) as the template and oligo(U) as the primer. This 

method assumes that there are imperfections in the template in the form of missing 

uracil and adenine residues. Any breaks along the poly(U) strand would therefore be 

filled in by the enzyme, utilising the tritiated UTP. The poly(A):poly(U) template was 

used in the activity assays reported here.

Here, the poly(A):oligo(U)-dependent poly(U) polymerase assay, originally developed for 

the PV RNA-dependent RNA polymerase, modified by Palmer (1994) as described in 

Chapter 2 and explained above, was applied in the detection of HAV RNA-dependent 

RNA polymerase activity in the available purification products from the pMAL protein 

purification system. It was hoped that improvements to the results already obtained in 

this laboratory would be made by use of a more 'pure' enzyme preparation in the form of 

MBP-fusion protein, MBP-3D. In addition, it was expected that the MBP fusion partner 

would aid the solubility of the 3D protein. Investigation into the effects of other 

nonstructural proteins on any enzyme activity observed could also be undertaken using 

similar preparations of fusion proteins representing the 3CD and P3 regions. At 

commencement, it was hoped that a 'purified' sample of 3AB or its fusion protein would 

be available at this stage to determine whether this protein exerts the same stimulation 

on HAV polymerase activity as its PV counterpart does on PV polymerase activity, 

however, as previously discussed this was not possible.

Using the HAV 'optimised' protocol, the poly(U) polymerase activity of whole cell lysate 

(induced for 5 and 15 hours), as well as purified MBP-fusion protein and factor Xa 

cleaved fusion protein was assessed. Unfortunately, the yield of 'purified' proteins 3D 

obtained was insufficient for assay analysis. Data gleaned from whole cell lysate 

experiments appeared confusing and predictions as to what was occurring could not be 

made, however results obtained from assays undertaken using MBP-fusion proteins 

proved more promising possibly due to the absence of bacterial contamination.
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Furthermore, the results obtained appeared to be reproducible.

This Chapter could be regarded as an investigation into the suitability of the 

'optimised/modified' poly(U) polymerase assay as well as an assessment of the 

effectiveness of using purified fusion proteins or their cleavage products in such assays.
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5 . 2  Results
5.2.1 Assays of crude cell

constructs
Poly(U) polymerase assays of soluble cell lysates of pMAL and 3D/pMALt and the effect 

of 3CD/pMAL and P3/pMAL lysates induced also for 5 and 15 hours were undertaken as 

described and the incorporation of 3H-UTP in nmoles/mg protein was plotted against 

time (Figure 74).
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Figure 74: Incorporated 3H-UTP for assays of cell lysates induced fo r 5 hours

Standard reaction mixture of 125pl containing 50pg protein (25pg single sample assays), 
50mM Hepes, 8mM Mg(CH3COO)2, 1.7pM [5,6-3H] UTP, 20pg/ml poly(A):poly(U) 
template, 74Units RNA-guard, 4mM DTT, 20pg/ml rifampicin was incubated at 31 °C and 
samples taken at the time points indicated above. All measurements are the average of 
triplicate samples.

Data from assays undertaken using cell lysates of induced pMAL constructs (5 hour 

induction) appeared similar to data obtained by Palmer (1994) for the HAV P3/pMEX8, 

Protein A/HAV P3/pMEX8 and pRITPOL constructs, with high incorporation at time 'O'
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which decreased to virtually background levels by the next time point. Reaction mixtures 

were set up simultaneously and incubated on ice until one minute prior to addition of 

enzyme extract at time 'O'. Initial readings were high for all 'enzyme mixtures' tested, but 

the amount of radiolabelled precipitate measured at 'O' minutes decreased as the pre­

assay incubation time increased. This suggested that a precipitate incorporating 

radiolabelled UTP was forming rapidly as the reaction mixture was set up and appeared 

to partially redissolve before addition of enzyme extract. The precipitate may affect 

polymerase activity by depriving the enzyme of assay constituents and/or forming an 

inactive complex with the enzyme. The decrease in detected labelled RNA observed 

could however be due to the presence of nucleases in the reaction mixture. The 

conditions described may not therefore be appropriate for assay of the putative HAV 

RNA polymerase. The 3D/pMAL soluble lysate exhibited the greatest incorporation of 

3H-UTP, which was a promising result, however, pMAL alone gave a reading well above 

background levels. Levels of incorporation for a combination of 3D/pMAL and 

3CD/pMAL appear to be above background levels, however, the standard error apparent 

could indicate no real incorporation. The concentration of protein present could cause 

interference, with single lysate assays exhibiting greater incorporation throughout the 15 

minutes. Strangely, doubling the concentration of 3D/pMAL appeared to reduce 

incorporation which is not as we would expect if incorporation was really reflecting 

enzyme activity.

It was hoped that by incorporating more time points poly(U) polymerase activity could be 

better assessed and as such the assay was repeated with soluble lysates induced for 5 

hours and 15 hours (Figure 75 and Figure 76) with sampling taking place at t=0, 34. 2, 5, 

10, and 15 minutes.
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Figure 75: Incorporated 3H-UTP for assays of soluble lysates induced for 5 hours

Standard reaction mixture as before. All measurements are the average of triplicate 
samples.

Results for 5 hour induced lysates incorporating more time points revealed little more 

than those using only three time points. A measure of activity, which decayed over time, 

was observed with 3D/pMAL. When assayed in combination with soluble lysates 

of3CD/pMALs incorporation of 3H-UTP was also apparent but at a lower level and at a 

rate which decayed more rapidly than 3D/pMAL alone. This was an encouraging result 

in that, at least some 'activity' was seen and found to be reproducible (Typical data 

shown). Lysates of 3D/pMAL mixed with lysates of P3/pMAL and 3D/pMAL were 

observed to show little activity and in fact exhibited no 'activity' above that observed for 

pMAL.
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Figure 76: Incorporated 3H-UTP for assays of cell lysates induced for 15 hours

Standard reaction as before. All measurements are the average of triplicate samples.

The incorporation of 3H-UTP observed for 15 hour induced whole cell lysates was 

dramatically lower than the corresponding figures for 5 hour induced lysates with the 

highest reading being less than 14nmoles/mg protein compared with more than 

30nmoles/mg protein observed for samples induced for 5 hours. Furthermore, data 

obtained for the lysates of pMAL fusions expressed for 15 hours were confusing to say 

the least with pMAL alone giving one of the highest readings. If this was really indicative 

of true enzyme activity, one would expect an increase in activity with an increase in 

protein concentration, however this was not observed here and the samples containing 

pMAL or 3D/pMAL alone gave higher readings than those samples containing mixtures 

of lysates. It could be, yet again, that the sheer amount of protein present in samples 

induced for such a length of time is causing problems or interfering in some way. 

Doubling the amount of 3D/pMAL would be expected to give a higher level of 

incorporation of 3H-UTP as there is more putative enzyme present, however the activity 

observed for this combination was little more than background suggesting that the 

precipitation of UTP observed was not due to a true enzyme activity.
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The curve representing the 3D/pMAL and 3CD/pMAL lysate mixture displayed an 

increase in 'activity' which peaked at about 10 minutes then decayed rapidly, however no 

real conclusions could be drawn from these results. This could be due to RNAse in the 

lysate being active in spite of the inclusion of inhibitors in the assay buffer. It was hoped 

that by assaying the purified MBP-fusion proteins, lacking contamination from bacterial 

proteins, a better picture of the activities of the expressed fusion proteins could be 

obtained. Furthermore, all subsequent experiments were set up just prior to assaying in 

order to reduce pre-assay incubation time in the hope of minimising the possible 

precipitation of assay certain constituents. Moreover, all assays were started with the 

addition of enzyme as is normal, however radiolabelled UTP became the penultimate 

solution added to the reaction in the hope of remedying the precipitation problem.

5.2.2 Assays of MBP-fusion proteins
Fusion proteins, eluted from amylose columns, were concentrated to ~1 mg/ml and 

assayed for poly(U) polymerase activity using the 'optimised' protocol employed 

previously. The fusion proteins assessed, included MBP-3D, MBP-3CD and MBP-P3 

and combinations thereof. The results of four separate assays are shown below in 

Figure 77 and Figure 78.
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Figure 77: Incorporated 3H-UTP for assay of purified MBP-fusion proteins

Identical assays undertaken, A and B. All measurements are the average of triplicate 
samples.
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Figure 78: Incorporated 3H-UTP for assay of purified MBP-fusion proteins

Identical assays undertaken, A and B. All measurements are the average of triplicate 
samples.
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Assays of purified MBP-fusion proteins again yielded very confusing results with assays 

conducted on subsequent days yielding slightly differing results. Four typical results are 

shown in Figure 77 and Figure 78. Although differences were apparent, a consistent 

encouraging observation was that a certain degree of incorporation was seen for the 

MBP-3D protein. Unfortunately, again the sample containing double quantities of MBP- 

3D revealed very low activity in all assays. In some assays MBP-3D mixed with MBP-P3 

showed an increase in the amount of radiolabelled UTP incorporated at about 10 

minutes which, although very slight, could be due to the processing of the P3 releasing 

polypeptides useful or essential for polymerase activity. One would expect in this 

situation to see a 'lag' phase. This slight 'activity', however decayed toward 15 minutes 

and in all cases displayed incorporation not much higher than that observed for MBP 

alone.

5.2.3 Assays of fusion protein ciea vage products
Digestion of the MBP-fusion proteins used previously with factor Xa for 24 hours, as 

described in Chapter 2, yielded cleavage products which although not purified from the 

MBP, were employed in another set of activity assays. Again, four sets of typical results 

are shown in Figure 79 and Figure 80.
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Figure 79: Incorporated 3H-UTP for assays of MBP-fusion cleavage products

Identical assays unertaken, A and B. All measurements are the average of triplicate 
samples. ^
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Figure 80: Incorporated H-UTP for assays of MBP-fusion protein cleavage 
products

Identical assays undertaken, A and B. All measurements are the average of triplicate 
samples.
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In the case of the cleaved fusion proteins, poly(U) activity was apparent for the cleavage 

products of MBP-3D alone. The activity observed decayed after 2 minutes, almost down 

to background levels and well below initial levels, indicating degradation of RNA. 

Interestingly the incorporation of radiolabelled UTP in the case of cleaved MBP-3D 

occurs rapidly and decay is evident after, at most 5 minutes. This is, in contrast to the 

incorporation observed for analysis of fusion proteins, where the MBP-3D apparently 

incorporates 3H-UTP only after at least 5 minutes. Perhaps this is indicative of a 'lag' 

phase? In some cases, the cleavage products of MBP-3CD mixed with MBP-3D gave a 

higher than 'background' reading initially which then decayed to background levels. 

Again, the increased protein present appeared to reduce activity, however cleaved MBP- 

3CD and cleaved MBP-P3 yielded low results which would not be expected if only 

protein saturation hampered the enzyme activity. Unfortunately, as before doubling the 

concentration of cleaved MBP-3D drastically impaired the incorporation of 3H-UTP 

apparent.

Interestingly, when plotted together (Figure 81), the results for the MBP-fusion proteins 

and their cleaved products revealed that only the cleaved MBP-3D displayed dramatic 

poly(U) polymerase activity. When assayed in conjunction with MBP-3CD and MBP-P3, 

cleaved or uncleaved, all exhibited similar activity profiles, not discemable from the 

control levels observed for MBP alone. Others have used fusion proteins for successful 

characterisation of viral polypeptides, however, it was observed here that the 3D protein 

required cleavage from, but not necessarily separation from, the MBP for activity. The 

reason for this is not known. In conclusion, however, this was a very encouraging result 

and implied that the assay, as modified by Palmer (1994), could be suitable for the 

investigation and characterisation of the HAV 3Dpo1. The reason why increasing the 

concentration of MBP-3D cleaved or otherwise reduces the activity observed for MBP- 

3D alone, remains unknown. It appears though, that the semi-purified 3D protein 

obtained using the pMAL purification system was both soluble and active and as such, 

fulfilled some of the aims of this project. Time unfortunately did not permit further 

investigation of this result.
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Figure 81: Incorporated 3H-UTP for assays of both MBP-fusions and their cleavage 
products

Plot of a typical MBP-fusion protein assay result superimposed on a plot of cleaved 
MBP-fusion protein assay result. All measurements are the average of triplicate 
samples.
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5.3 Discussion
In principle, one of the more easily assayed functions of the polypeptides encoded by the 

nonstructural regions of picomaviruses is the RNA-and poly(U) polymerising activity of 

the picomavirus 3Dpo1. The 3Dpo1 of other picomaviruses have been successfully 

expressed in bacterial cells and have been shown to have properties similar to the 

activities detected in infected cells. Generally, bacterially expressed picomavirus RNA 

polymerases are primer-dependent, usually assayed using a poly(A):oligo(U) template, 

show a requirement for magnesium ions and are inhibited by manganese, with a 

temperature optimum of about 30°C (Morrow et al., 1987; Richards et al., 1987; Plotch et 

al., 1989; Neufeld et al., 1991; Sankar & Porter, 1991). Wolstenholme et al., 1993 

detected a novel poly(U) polymerase activity in the periplasmic space of E. coli cells 

transformed with pRITPOL and this activity showed many of the expected properties of a 

picomavirus 3Dpo‘.

Preliminary assay data of pMAL constructs (5 hour induced cell lysates) appeared 

similar to data obtained by Palmer (1994) for the Protein A/HAV P3/pMEX8, HAV 

P3/pMEX8 and pRITPOL constructs used previously, with initial high counts at time 'O' 

which decreased to background levels by the next time point. These results support the 

observation that a precipitate incorporating radiolabelled UTP was forming rapidly as the 

reaction mixture was set up, indicating that perhaps the assay conditions of the putative 

HAV RNA polymerase may not be appropriate. It is conceivable that the RNA 

polymerase is being subjected to degradation or precipitation in the assay or the enzyme 

extract due to an inherent insolubility as observed previously (Tesar et al., 1994). It 

should be noted that the 'zero' time-points were taken after addition of enzyme and a 2 

second vortex, and as such are not true zeros. This could imply that a rapid 

incorporation is observed in the 2 seconds it takes to vortex the tube.

Palmer (1994) observed that the 'incorporation' did not decay as rapidly for Protein 

A/HAV P3/pMEX8 or pRITPOL as observed for the HAV P3/pMEX8 construct, possibly 

due to a lower concentration of endogenous nucleases located in the periplasmic space 

than in the intracellular extract. Here, only intracellular extracts were used and as such 

no comparison regarding decay could be made. Decay of the 'activity' was however 

observed, and in some cases was very rapid, often decaying to background levels after 

only 2 to 5 minutes.

Fears of degradation of the RNA-dependent RNA polymerase due to a long induction
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period of 15 hours appeared unfounded; however, the vast quantities of protein present 

in some samples appeared to interfere with the putative polymerase activity although the 

mechanisms of this interference are not known. It could be, however, that degradation is 

occurring, hence the low activity observed. If this was the case, however, it would be 

unlikely that the 3D/pMAL and pMAL lysates would show the degree of activity, albeit 

low, displayed. Furthermore, the 3' NTR may be required which is known in EMCV to be 

involved in binding of the polymerase prior to replication, poly(A) alone being unable to 

bind the enzyme (Cui et al., 1993), and it is conceivable that a lack of both poly(A) tail 

and the 3' NTR in this case prevents binding of HAV 3Dpo1 to the poly(A):poly(U) 

template.

Several explanations could be forwarded for the lack of activity observed in cell lysate 

experiments, including phosphatase contamination of the reaction mixture which may 

cause UTP degradation such that little UTP can participate in chain elongation. This 

could be remedied by addition of phosphatase inhibitors to the reaction mixture. The 

primer or template may be defective or inappropriate thereby inhibiting elongation of the 

poly(U) chain. It has been shown that when assaying purified picornaviral RNA 

polymerase, activity becomes absolutely dependent on addition of exogenous template 

and primer. 50% of normal enzyme activity, however, has been observed in 

experiments lacking oligo(U), possibly due to the presence of a host factor which 

normally acts as a primer in vivo (Wolstenholme et al., 1993). This could also be 

explained by the presence of RNase which is not inhibited by the inhibitors used; 

moreover, perhaps the 3D could have RNase activity itself. The latter could be 

especially true in the case of purified fusion proteins free from bacterial contamination, 

unless of course the enzyme has either co-purified with an RNase or perhaps been 

contaminated during column chromatography with an RNase.

The much sought-after observation of 'activity' of a bacterially-expressed 3Dp0‘ 

demonstrated that the assay described could be suitable for the investigation and 

perhaps eventual characterisation of the HAV 3Dp0‘. The effect of other nonstructural 

proteins on this 'activity' could not definitively be investigated, with little in the way of 

conclusive evidence from addition of MBP-3CD or MBP-P3 (possibly MBP-3AB, MBP- 

3A, or MBP?) in their variously 'purified' forms to polymerase assays. The observation 

that the addition of 3CD/pMAL to 3D/pMAL yielded 'activity' above background in some 

cases was interesting; however, upon addition of more purified forms of these proteins 

this augmentation was not apparent, implying an artefactual nature of this result. As
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described, purification of 3AB was not realised and as such, addition of this protein to 

standard polymerase assays was not effected which is unfortunate in light of the 

stimulation afforded by its PV counterpart of PV 3Dpo1 which amounts to nearly 100-fold 

(Lama etal., 1994).

Although not shown, 3C/pMAL, 3CD/pMAL and P3/pMAL, and their respective purified 

fusion proteins and cleavage products, assayed alone yielded no incorporation above 

background levels. The lack of activity observed in assays of the two processing 

intermediates could be due to incorrect cleavages due to processing interference caused 

by bacterial proteases, although this seems unlikely in view of the SDS-PAGE and 

Western analysis results demonstrating, what appears to be, correct cleavage, be it 

autocatalytically or by bacterial intervention. Even more unlikely is the presence of 

bacterial proteases in purified fusion protein samples implying that this lack of activity is 

due to another unknown effect. In the case of the putative MBP-P3 or P3/pMAL, lack of 

activity could purely be due to the fact that no real HAV-specific polypeptides were 

present and only MBP or a degradation product was present in the reaction. Obviously, 

the apparent insolubility of MBP-P3 and MBP-3CD would compound the matter, resulting 

in the absence of the desired protein in the reaction mixture, with only constituent 

proteins present.

Assuming that the incorporation observed when assaying MBP-3D (and its Factor Xa 

cleavage product) alone is not artefactual, it is apparent that addition of MBP-3C, MBP- 

3CD, MBP-3D, MBP-P3, or MBP (and their respective cleavage products) reduces the 

incorporation observed with MBP-3D (or its cleavage product) alone. This could be due 

to interference or competition from excess protein by an unknown mechanism. With 

regard to this phenomenon in the assays where doubling the amount of MBP-3D in the 

reaction also reduces the apparent incorporation, it is possible that by assaying a more 

dilute sample would dilute out an inhibitor present in the sample, thus allowing more 

incorporation to occur. After an initial increase in incorporation with time a reduction is 

observed in most of the graphs showing MBP-3D or MBP-3D cleavage products and it 

would be beneficial to investigate the cause of this, whether it be due to RNases or some 

other mechanism of degradation.

The weak poly(U) polymerase activity observed previously by Wolstenholme and 

colleagues (1993) could arise in one of three possible ways, listed overleaf:
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1. Protein 3CD is active as a polymerase

If this is the case, one would expect the activity to decline rapidly as cleavage would 

result in production of 3C and 3D, both lacking activity.

2. Polymerase becomes active when cleavage of 3CD releases 3D

If this is the case, one would expect to see a lag phase and sigmoid curve, as with 

time an increase in the enzyme concentration would be seen resulting in an increase 

in activity.

3. Both of the above occur

If both 1 and 2 are true, one would expect an intermediate result. It is unlikely that 

both would have the same activity, one would be more active than the other.

The basis for the slow growth properties of HAV likely resides in the activities and 

functions of its nonstructural proteins or RNA sequences. The absence of virus-induced 

interference with host cell macromolecular synthesis and the failure to accumulate 

nonstructural proteins during infection (Updike et al., 1991) have impeded the 

characterisation of viral proteins by standard analyses of infected cell cultures. Some 

progress has been made, however by expression of subgenomic HAV cDNAs in 

recombinant systems (Gauss-Muller et al., 1991; Jia e ta l,  1991a; Harmon et al., 1992). 

It has been suggested that the slow replication of HAV in cell culture may be due to 

inefficient replication of viral RNA (Anderson et al., 1988) although this also could be 

explained by an inefficient viral RNA polymerase however expression of the HAV 3D in 

E. coli remains elusive, with prior attempts resulting in intracellular accumulation of an 

insoluble product which showed no activity (Updike et al., 1990). Overall, therefore, the 

lack of activity observed is not a new phenomenon. A similar lack of polymerase activity 

has been routinely observed when attempting to assay HAV 3D protein from other 

expression systems. Repeated efforts to show RNA polymerase activity in extracts of 

HAV-infected BS-C-1 cells, either in a template-dependent form or as an enzyme- 

template complex, have also been negative (Tesar etal., 1994 and references therein).

+0

To conclude, however, two observations were made from the work undertaken here. 

Firstly, the addition of large quantities of protein appeared to inhibit activity. Secondly, 

the cleavage products of the purified MBP-fusion protein 3D did appear to have some 

poly(U) polymerase activity albeit at a low level. With hindsight, the use of, perhaps PV 

3Dpo1, as a positive control would have been useful to assess the performance of the
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6. Conclusions
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Hepatitis A virus has been classified as a separate genus in the picomavirus family on 

the basis of relatively low sequence relatedness between its RNA or protein sequences 

and those of members of the other picomavirus genera (Francki et al., 1991). Moreover, 

HAV undergoes a slow, relatively prolonged, nonlytic growth cycle resulting in persistent 

infection of cultured cells, in contrast to the rapid, lytic cycles of other picomaviruses in 

most host cells (Wheeler et al., 1986a; De Chastonay & Siegl, 1987; Harmon et al., 

1989; Cho & Ehrenfeld, 1991).

The main aim of this project was to characterise the non-structural P3 proteins of the 

HAV in order to elucidate the reason for its slow proliferation in cell culture which is 

causing practical and economic difficulties in vaccine production. Although not wholly 

successful in achieving the ultimate aim of characterisation of the 3 0 ^  enzyme of HAV, 

certain advances towards this aim were attained throughout this project. These include:

1. Successful expression of a polypeptide of the same size as the 3Dpo1 enzyme 

and its partial purification from the periplasm using a GTP-agarose affinity 

protocol.
The GTP-agarose purification protocol was successful in partially purifying the 

putative 53kDa RNA polymerase from the periplasmic space extract, however a 

second protein of 36kDa, presumed to be Protein A-3A, was copurified. The fact that 

the Protein A sequence encodes an IgG binding domain indicates its inadequacies as 

a fusion partner especially in this case. If this result were reproducible a further 

purification step, ammonium sulphate fractionation or ion-exchange chromatography, 

would be necessary before the 53kDa protein is sufficiently pure for use in an assay 

system free from bacterial proteins. It is interesting to note that the failure of 3CD to 

bind to GTP supports the observation that the precursor of PV 3Dpo1, 3CDpro, has no 

RNA polymerase activity (Harris et al., 1992). However, it remains possible that the 

HAV CD may be a component of the RNA polymerase.

2. Successful amplification and cloning of P3 regions, 3AB, 3C, 3CD, 3D and the 

whole of P3, into the pMAL™-c2 expression vector.

Amplification of the constituent regions was successful only after problems with 

template had been solved. Cloning of all of the aforementioned recombinant 

plasmids regions and transformation of bacteria with these recombinants proved 

successful with bands of the desired size being observed upon restriction digest. 

This success was further supported by the presence of bands, in all but one case, of 

the predicted sizes of the respective fusion proteins as well as sequencing evidence.
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3. Expression of apparently active polypeptides MBP-3C and MBP-3AB as well as 

expression of MBP-3CD, MBP-3D and MBP-P3.

Several points can be raised regarding the expression of the MBP-fusion proteins in 

terms of their activity, solubility and yield. Expression of MBP-3AB resulted in lysis of 

bacteria supporting the observations of Beneduce et al. (1995) and Pisani et al. 

(1995) that protein 3A or 3AB is toxic to bacteria. The 3AB region cloned into 

pMAL™-c2 actually codes for a protein lacking the first 14 amino acids, thereby 

lacking the N-terminal negatively charged amino acids thought to be essential for 

formation of an a-helix with amphipathic properties (Pisani et al., 1995). Furthermore, 

the data of Beneduce et al. (1997) indicate that both the formation of a putative 

amphipathic helix and the presence of negative charges at N-terminus are crucial for 

the cytotoxic feature of 3A. This is in contrast with the observations made here, 

where, upon induction, cell lysis occurred. Unable to purify this protein, the effect of 

this polypeptide on polymerase activity could not be investigated with regard to the 

100-fold stimulation of 3Dpt)l as observed in PV upon addition of purified PV 3AB 

(Lama et al., 1994). The plasmid lost the insert and further attempts at cloning were 

unsuccessful.

Expression of the P3 and 3CD intermediates revealed that autocatalysis was 

occurring indicating that either the 3C protease was active or that indigenous bacterial 

proteinases were effecting cleavage at the correct cleavage sites. Although, again 

this showed a degree of activity of the MBP-3C protease expressed in this system, it 

meant that purification of the intermediates was not possible and generation of inserts 

containing a mutation at the respective cleavage site would be necessary. Solubility 

of fusion proteins varied with 3C being very easily expressed and purified, 3D, 3CD 

and P3 were invariably insoluble but by inducing at reduced temperatures, often at 

21-23°C, for longer periods, solubility and thereby purification were somewhat 

improved.

Another interesting observation worthy of a mention is the probable cleavage of MBP- 

P3 to MBP-3A or MBP-3AB which was evident by virtue of the fact that prolonged 

induction of P3/pMAL resulted in lysis of bacteria similar to that seen for 3AB/pMAL. 

A band of the size predicted for MBP-P3 was observed in these cells but was found to 

be almost wholly insoluble. Cleavage with factor Xa revealed that only a very small 

protein could be fused to MBP, possibly 3A, but more likely to be a component of the 

induced MBP protein. This suggests that only very low concentrations of 3AB are
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required to lyse the bacterial cells.

Acceptable yields were obtained for few of the fusion proteins, with large cultures 

being required for each. Losses at each step of purification meant that the eventual 

yield of purified protein (3C and 3D only) was minimal. Even at this stage the purity of 

3D was questionable, with contaminating proteins of other molecular weights.

4. Assessment of the poly(U) polymerase activity of pMAL constructs by 

assaying soluble cell lysates, MBP-fusion proteins and their factor Xa cleavage 

products.

Two observations in particular can be highlighted from the series of activity assays 

undertaken. Firstly, the addition of more protein to the assay appeared to interfere 

with the incorporation of radiolabelled UTP. Moreover, on doubling the concentration 

of putative polymerase 'enzyme' a drastic diminution of incorporation was observed. 

This poses a problem when analysing enzyme activity as one would expect an 

augmentation of incorporation when increasing the concentration of enzyme. 

Secondly, reproducible incorporation of large amounts of 3H-UTP was observed 

consistently when assaying MBP-3D, and in particular its factor Xa cleavage 

products. Comparison of all the collected data revealed that only the cleaved MBP- 

3D incorporated radiolabelled UTP at levels above background, however the 'enzyme' 

did not exhibit classic 'enzyme activity' which was unfortunate. Apparent 

contamination of the protein with RNase would possibly account for the decay in 

incorporation observed with time, however, samples free from bacterial contamination 

also exhibited such decay, which could be due to copurification with an RNase, 

contamination of the fusion protein with an RNase possibly from the column, or 

perhaps the MBP-3D protein possesses some RNase activity itself. Increasing 

enzyme concentration would increase the RNase concentration which could 

contribute to the diminished incorporation observed when doubling the concentration 

of the putative polymerase enzyme.

If further investigation into the HAV RNA-dependent RNA polymerase is successful in 

the long-term, then it will go some way to explaining the slow and non-cytopathic growth 

of this virus in tissue culture, and eventually lead to the development of a more 

appropriate and less expensive vaccine against hepatitis A.
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7. 1 Appendix 1

7. 1. 1 Primer location

MEX8 3A 3B 3D MEX8

HAV9

rlA V 8

HA^IO

HAV11

HAV12
HAV4

Figure 82: Schematic of HAV P3/pMEX8 showing approximate location of HAV 
primers

Numbering consistent with text. Not to scale.

7.1.2 Calculation of annealin
primer
Predicted melting temperatures (Tm) of HAV primers estimated using the 

equation:

Tm = 61.8+((41(G+C)-675)/number of nucleotides)
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7.2 Appendix 2
7.2.1 Primer sequences and location on genome

<3 A
4 9 8 1  T T G T G G T C T C A G G G A A T T T C A G A T G A T G A T A A T G A T A G T G C A A T G G C A G A G T T T T T T C A G  5 0 4 0  

L W S Q G I S D D D N D S A M A E F F Q

5 0 4 1  T C T T T T C C A T C T G G T G A A C C A T C G A A T T C C A A A T T A T C T G G C T T T T T C C A A T C T G T T A C T  5 1 0 0  
S F P S G E P S N S K L S G F F Q S V T

5 1 0 1  A A TC A C A A G TG G G TTG C TG TG G G A G C TG C A G TTG G TA TTC TTG G A G TG C TC G TTG G G G G A  5 1 6 0  

N H K W V A V G A A V G I L G V L V G G
3 A X 3 B

5 1 6 1  T G G T T T G TG T A T A A G C A TT TC T C C C G A A A A G A G G A A G A G C C A A TT C C A G C T G A A G G G G TA  5 2 2 0  
W F V Y K H F S R K E E E P I  P A E G V

5 2 2 1  T A T C A T G G T G T A A C T A A G C C T A A G C A A G T G A T T A A A T T A G A T G C A G A T C C A G T A G A A T C T  5 2 8 0  
Y H G V T K P K Q V I  K L D A D P V E S  

3 B X 3 C
5 2 8 1  C A G T C A A C TT TG G A A A T A G C A G G A C T G G T T A G G A A G A A T T T G G T T C A G T T T G G A G T T G G A  5 3 4 0  

Q S T L E I A G L V R K N L V Q F G V G

5 3 4 1  G A G A A G A A TG G A T G TG T G A G A T G G G T TA TG A A TG C C TT A G G G G TG A A A G A T G A T TG G T TG  5 4 0 0  
E K N G C V R W V M N A L G V K D D W L

5 4 0 1  C T T G T A C C T T C C C A T G C T T A C A A A T T T G A G A A A G A T T A T G A A A T G A T G G A G T T T T A T T T T  5 4 6 0  
L V P S H A Y K F E K D Y E M M E F Y F

5 4 6 1  A A T A G A G G T G G A A C T T A C T A T T C A A T T T C A G C T G G T A A T G T T G T C A T T C A A T C T T T G G A T  5 5 2 0  
N R G G T Y Y S I  S A G N V V I  Q S L D

5 5 2 1  G T G G G A T T T C A G G A T G T T G T T C T G A T G A A G G T T C C T A C A A T T C C T A A G T T T A G A G A T A T T  5 5 8 0  
V G F Q D V V L M K V P T I  P K F R D I

5 5 8 1  A C C C A A C A T T T T A T T A A G A A G G G A G A T G T G C C T A G A G C T T T G A A T C G T C T G G C A A C A T T A  5 6 4 0  
T Q H F  I  K K G D V P R A L N R L A T  L

5 6 4 1  G TG A C A A C TG T G A A T G G A A C T C C T A T G T T A A T T T C T G A G G G G C C A T T A A A G A T G G A A G A G  5 7 0 0  
V T T V N G T P M L I  S E G P L K M E E

5 7 0 1  A A A G C T A C T T A T G T T C A T A A G A A A A A T G A T G G T A C A A C A G T T G A T T T A A C T G T G G A C C A G  5 7 6 0  
K A T Y V H K K N D G T T V D L T V D Q

5 7 6 1  G C ATG G A G A G G A A A A G G C G A G G G TC TTC C TG G A A TG TG TG G TG G G G C C TTG G TTTC A TC A  5 8 2 0  

A W R G K G E G L P G M C G G A L V S S

5 8 2 1  A A T C A G T C T A T A C A G A A T G C A A T T T T G G G T A T T C A T G T T G C T G G A G G A A A T T C A A T T C T T  5 8 8 0  
N Q S I Q N A I L G I H V A G G N S I L

3C>
5 8 8 1  G T T G C A A A A T T G G T T A C T C A A G A A A T G T T C C A A A A T A T T G A T A A G A A A A T T G A A A G T C A G  5 9 4 0  

V A K L V T Q E M F Q N I D K K I E S Q  
<3D

5 9 4 1  A G A A T C A T G A A A G T G G A A T T T A C T C A G T G T T C A A T G A A T G T A G T C T C C A A A A C G C T T T T T  6 0 0 0  
R I M K V E F T Q C S M N V V S K T L F

6 0 0 1  A G A A A G A G T C C C A T T C A T C A T C A C A T T G A T A A A A C C A T G A T C A A T T T T C C T G C A G C T A T G  6 0 6 0  
R K S P I H H H I  D K T M I N F P A A M
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6 0 6 1  C C T T T T T C T A A A G C C G A A A T T G A T C C A A T G G C T A T G A T G T T A T C T A A G T A T T C A T T A C C C  6 1 2 0  
P F S  K A E I  D P M A M M L S K Y  S L P

6 1 2 1  A T  T  G TA G A A G A G  C C AG AG  G AT T A T A A A G A A G  C T  T  C A A T  T  T  T  T  T A T  C A A A A T A A A A T A G T A  6 1 8 0  
I V E E P E D Y K E A S I  F Y Q N K I V

6 1 8 1  G G C A A G A C T C A G C T A G T T G A T G A T T T T C T A G A T C T T G A T A T G G C C A T T A C A G G G G C C C C A  6 2 4 0  
G K T Q L V D D F L D L D M A I T G A P

6 2 4 1  G G A A T T G A T G C T A T T A A T A T G G A T T C A T C T C C T G G A T T T C C T T A T G T T C A A G A G A G G T T G  6 3 0 0  
G I D A I N M D S S P G F P Y V Q E R L

6 3 0 1  A C C A A A A G A G A T T T A A T T T G G T T G G A T G A G A A T G G T T T A T T G C T G G G A G T T C A T C C A A G A  6 3 6 0  
T K R D L I W L D E N G L L L G V H P R

6 3 6 1  T T G G C T C A G A G A A T T T T G T T C A A T A C T G T C A T G A T G G A A A A T T G T T C T G A T T T G G A T G T T  6 4 2 0  
L A Q R I  L F N T V M M E N C S D L D V

6 4 2 1  G T T T T T A C  T A C T  T  G C C C A A A A G A T  G A A T  T  GAGAC C A T  T  G G AGAAG GT GT T  G G A A T C A A A A  6 4 8 0  
V F T T C P K D E L R P L E K V L E S K

6 4 8 1  A C A A G A G C T A T T G A T G C T T G T C C T C T G G A T T A C A C A A T T T T G T G T C G A A T G T A C T G G G G T  6 5 4 0  
T R A I D A C P L D Y T I L C R M Y W G

6 5 4 1  C C A G C T A T T A G T T A T T T T C A T T T G A A T C C A G G G T T C C A T A C A G G T G T T G C T A T T G G C A T A  6 6 0 0  
P A  I  S Y F H L N P G F H T G V A I G I

6 6 0 1  G A T C C T G A C T G T C A G T G G G A T G A A T T A T T T A A A A C A A T G A T A A G A T T T G G A G A T G T C G G T  6 6 6 0  
D P D C Q W D E L F K T M I  R F G D V G

6 6 6 1  C T T G A T T T A G A T T T T T C T G C T T T T G A T G C T A G T C T T A G T C C A T T T A T G A T T A G G G A A G C A  6 7 2 0  
L D L D F S A F D A S L S P F M I R E A

6 7 2 1  G G T A G A A T T A T G A G T G A A T T G T C T G G A A C T C C A T C C C A T T T T G G A A C A G C T C T C A T G A A T  6 7 8  0 
G R I M S E L S G T P S H F G T A L M N

6 7 8 1  A C T A T C A T T T A T T C T A A G C A T T T G C T G T A C A A C T G T T G T T A T C A T G T T T G T G G T T C A A T G  6 8 4  0 
T I I Y S K H L L Y N C C Y H V C G S M

6 8 4 1  C C T T C T G G G T C T C C T T G C A C A G C T T T G C T G A A T T C A A T T A T C A A T A A T G T C A A T T T G T A T  6 9 0 0  
P S G S P C T A L L N S I I N N V N L Y

6 9 0 1  T A T G T G T T T T C C A A G A T A T T T G G A A A G T C T C C A G T T T T C T T T T G T C A G G C T T T G A A G A T T  6 9 6 0  
Y V F S K I  F G K S P V F F C Q A L K I

6 9 6 1  C T C T G T T A T G G A G A T G A T G T T C T T A T A G T T T T T T C C C G A G A T G T T C A G A T T G A T A A T C T T  7 0 2 0  
L C Y G D D V L I V F S R D V Q I D N L

7 0 2 1  G A T T T G A T T G G A C A A A A A A T T G T A G A T G A G T T T A A G A A A C T T G G C A T G A C A G C T A C T T C T  7 0 8  0 
D L I  G Q K I V D E F K K L G M T A T S

7 0 8 1  G C T G A C A A A A A T G T A C C T C A G C T G A A G C C A G T T T C A G A A T T G A C T T T T C T C A A G A G A T C T  7 1 4 0  

A D K N V P Q L K P V S E L T F L K R S

7 1 4 1  T T C A A T T T G G T A G A A G A T A G G A T C A G A C C T G C A A T T T C G G A A A A A A C C A T T T G G T C T T T G  7 2 0 0  
F N L V E D R I R P A I  S E K T I W S L

7 2 0 1  A T A G C A T G G C A G A G A A G T A A C G C T G A G T T T G A G C A G A A T T T G G A A A A T G C T C A G T G G T T T  7 2 6 0  
I A W Q R S N A E F E Q N L E N A Q W F
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7 2 6 1  G C T T T T A T G C A T G G C T A T G A G T T T T A T C A G A A A T T T T A T T A T T T C G T T C A G T C T T G T T T G  7 3 2 0  
A F M H G Y E F Y  Q K F Y Y F V Q S C L

7 3 2 1  G A G A A A G A G A TG A TA G A A TA C A G A C TA A A A TC A TA TG A TTG G TG G A G A A TG A G A TTC TA T  7 3 8 0  
E K E M I E Y R L K S Y D W W R M R F Y

3 D >
7 3 8 1  GACCAGTGCTTCATTTGTGACCTTTCATAA 7 4 1 1  

D Q C F I C D L S  *

7.2.2 Primer
PRIMER SEQUENCE Tm

U1
(sense)

Cac 81
5'TCG GCAAGC TTT CCA TCT GGT GAA CCA TCA AAT TCT 
AAA TTA TCT AGT TTT TTC CAA TCT3<

70.7°C

LJ2
(sense)

Cac 81
5'TCG GCAAGC AGA ATA ATG AAA GTG GAA TTT AGT3< 63.2°C

LJ3
(sense)

Cac 81
5'TCG GCAAGC ACT TTG GAA ATA GCA AGT3- 59.6°C

LJ4
(anti­
sense)

8am HI
5'TCT ACT GGATCC TTA TCA CTG AGA TTC TAC TGG3» 61.8°C

LJ5
(anti­
sense)

Bam HI
5'TCT ACT GGATCC TTA AAC AAA TCA CTG ACT TTC AAT TTT
c t 3.

61.4°C

LJ6
(anti­
sense)

Bam HI
S'TCT ACT GGATCC TTA AAC AAA TCA TGA AAG GTC ACA A* 61.0°C
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PRIMER SEQUENCE ESTIMATED
Tm

HAV4
(anti­
sense)

Sal I
5'TCC GTCGAC TTA AAC AAA TCA TGA AAG GTC ACA A , 57.6°C

HAV8
(anti­
sense)

Kpn I Nsi I
5'A GCC GGTACC ATGCAT TTA TCA CTG AGA TTC TAC
t g g 3.

62.4°C

HAV9
(sense)

Kpn I
5'T CGG GGTACC ATG TCT TTT CCA TCT GGT GAA CAA 
TCG AAT TCC AAA TTA TCT GGC I I T I IC CAA TCT3.

68.2°C

HAV 10
(sense) Xmn I

S'T CGG GAAGGATTTC ATG AAC TTT GGA AAT AGC AGG 
A»

60.1°C

HAV11
(anti­
sense)

Sal I
S'TCC GTCGAC TTA AAC AAA TCA CTG ACT TTC AAT 
TTT Cy

57.8°C

HAV12
(sense)

Xmn I
5'T CGG GAAGGATTTC ATG AAT TAT GAA AGT GGA GTT 
TAC TCA G3.

61.3°C

7.2.3 Sequence of pepti
production

M I E Y R L K S Y D W W R M F Y D Q C
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7.3 Appendix 3

7.3.1 Escherichia colj
MARKER DESCRfPTION

Amy Amylase

Ara Mutation destroys ability to use arabinose

Carrf Chloramphenicol resistance

EndA1 DNA specific endonuclease 1, mutation improves quality and 

quantity of miniprep

F Contains the F plasmid

GyrA46 DNA gyrase subunit A

HsdR(rkmk+) Ablates type I restriction but not methylation of E. coli strain K

Lac Unable to utilise lactose

Laclq Overproduces the lac repressor protein

LacZ p-Galactosidase

LacZM15 Specific N-terminal deletion permitting a-complementation

ProAB Requires proline for growth

RecA1 Recombination deficient

RelA1 Permits RNA synthesis in absence of protein synthesis

RpsL 30S ribosomal subunit S12: mutation confers streptomycin 

resistance

SupE44 Suppressor of amber (UAG) mutations

Thi Requires thiamin (vitamin B1) for growth

TnlO(tetR) Contains the TN10 transposon, conferring tetracycline resistance
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