
        

University of Bath

PHD

Transition metal complexes partnered with the highly alkylated carborane anion, [1-H-
CLOSO-CB11Me11]

Ingleson, Michael James

Award date:
2004

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



TRANSITION METAL COMPLEXES 
PARTNERED WITH THE HIGHLY ALKYLATED 

CARBORANE ANION, [l-H -CL050-CBiiM e1i]~.

Michael James Ingleson 

A thesis submitted for the degree of Doctor of Philosophy 

University of Bath 

Department of Chemistry 

September 2004

COPYRIGHT

Attention is drawn to the fact that copyright o f this thesis rest with its author. This copy 
of the thesis has been supplied on condition that anyone who consults it is understood to 

recognise that its copyright rests with the author and that no quotation from the thesis 
and no information derived from it may be published without the prior written consent

of the author.

This thesis may be made available for consultation within the University Library and 
may be photocopied or lent to other libraries for the purposes o f consultation.

Signed.



UMI Number: U180395

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U180395
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



” 1

VOC7 A Of! I -  Q £
A H V ' ,  I

i i v a  i c  m i



CONTENTS

Acknowledgements v

Abbreviations vi

Abstract vii

Chapter 1 - Introduction

1.1 Alkane Complexes of Transition Metals 1
1.1.1 Background 1
1.1.2 Indirect Evidence for cr Alkane Complexes 3
1.1.3 Direct Evidence for a  Alkane Complexes 7
1.1.5 Theoretical Studies on a  Alkane Complexes 15

1.2 Models for Alkane a  Complexes 18
1.2.1 Coordination of X-H a  Bonds 18
1.2.2 Coordination of B-H a Bonds 18
1.2.3 Metal a  Dihydrogen Complexes 21
1.2.4 Coordination of Si-H ct Bonds 23
1.2.5 Agostic Interactions 25
1.2.6 Intermolecular CH3-M Interactions 30

1.2.6.1 Charge Neutral CH3-M Interactions 30
1.2.6.2 Electrostatic ‘Enhanced’ CH3-M Interactions 33

1.3 Mono-Anionic Carboranes and their Alkylated Derivatives 36
1.3.1 The [c/o50-CBnH12]' Cluster 36
1.3.2 Alkylated Carboranes 39
1.3.3 The Coordination Chemistry of Alkylated Carboranes 45

1.4 Alkylated Carboranes as Weakly Coordinating Anions 48
1.4.1 Background 48
1.4.2 [c/aso-CBiiMeu]’, A Weakly Coordinating Anion? 50
1.4.3 Anion Decomposition 53

1.5 Scope of Thesis 56
1.6 References 58

Chapter 2 - Silver Phosphine complexes Partnered with [l-H -c/0 S0 -CBnMen]'

2.1 Background 65
2.1.1. Scope of Chapter 74

2.2 Results and Discussion 75
2.2.1 Solid State Investigation into Ag+ and {(PR3)Ag}+ complexes of 

[1-H-c/aso-CBnMen]' 76
2.2.1.1 Agtl-H-c/aso-CBnMen] (1) 76
2.2.1.2 (PPh3)Ag[l-H-c/aso-CBiiMe,i] (2) 82
2.2.1.3 (PCy3)Ag[l-H-c/o5o-CBnMen] (3) 88
2.2.1.4 (P{3,5-Me2-C6H3}3)Ag[l-H-c/o50-CB1iMe11] (4) 93

2.2.2 Ag- H3C Interactions in the Solution Phase 97
2.2.3 DFT Calculations 110
2.2.4 Reactions of (PPh3)Ag[l-H-c/o50-CBi]Me]]] with Lewis-bases 114

2.3 Summary 129
2.4 References 131



Chapter 3 - Full and Half Sandwich Metallocenes Partnered with [1-H-closo-

CBnMen]

3.1 Background 135
3.1.1 Scope of Chapter 146

3.2 Results and Discussion 147
3.2.1 Synthetically Useful Salts 147
3.2.2 Partnering [1-H-c/oso-CBnMen]' with Zirconium Alkyl Complexes 151
3.2.2.1 Cp2ZrMe2 151
3.2.2.2(C5H4Me)2ZrMe2 164

3.2.3 Polymerisation Studies 167
3.2.4 Anion Decomposition 169
3.2.4.1 Reaction with Arenes 169
3.2.4.2 Reaction with Dichloromethane 173

3.2.5 Partnering [l-H-c/oso-CBnMen]’ with Cobalt Complexes 179
3.4 Summary 189
3.5 References 191

Chapter 4 -  [l-H-c/0 S0 -CBnM en]‘ as a Weakly Coordinating Anion susceptible to 

B-C bond Cleavage

4.1 Background 195
4.1.1 Scope of Chapter 201

4.2 Results and Discussion 203
4.2.1 Attempts to Partner [l-H-c/oso-CBnMen]' with {CpMo(CO)3}+ 203
4.2.1.1 Silver Salt Metathesis Reactions 203
4.2.1.2 Hydride Abstraction Reactions 213
4.2.1.3 Alternative Methods to Introduce [l-H-c/oso-CBnMen]' to {CpMo(CO)3}+ 217

4.2.2 Reactions of [l-H-c/ojo-CBnMen]' with [(PR3)xRe(CO)5.x(CH2Cl2)]+ (x = 1,
R = Ph or Cy, x = 2, R = P(OCH2)3CCH3) 218

4.2.3: Attempts to Partner [l-H-c/ojo-CBnMen]' with [Cp*Rh(PMe3)Me]+ 223
4.2.4: Attempts to Partner [l-H-c/oso-CBuMen]' with [rra«j-(,Pr3P)2PtMe]+ 227
4.2.5: Attempts to Generate [Pt('Pr3P)2][l-H-c/o50-CBi]Men]2 239

4.3 Summary 248
4.4 References 249

Chapter 5 - The Hydrogenation of Group 9 Metal Di-olefin Complexes Partnered 

with [l-H-c/0 S0 -CBiiM en]' and [BArp]'.

5.1 Background 253
5.1.1 Scope Of Chapter 261

5.2 Results and Discussion 263
5.2.1 Hydrogenation Reactions of [(PPh3)2Ir(COD)][l-H-c/ojo-CBnMen] 263
5.2.2 Hydrogenation Reactions of [(PR3)2Rh(NBD)][Y] (R = 'Pr or Cy, Y = 

[l-H-c/oso-CBiiMen]* or [BArF]) 270
5.2.2.1 [(iPr3P)2Rh(H2)x(H)2][Y] (x = 1 or 2) 270
5.2.2.2 [(PCy3)2Rh(H2)2(H)2][Y] (Y = [1-H-c/aso-CBnMen]’ or [BArF]') 288

5.3 Summary 294
5.4 References 296



Chapter 6 - High Hydride Content Octahedral Clusters from the Decomposition of 

Rhodium Dihydrogen Complexes.

6.1 Background 299
6.1.1 Scope of Chapter 305

6.2 Results and Discussion 305
6.2.1 [(iPr3P)6Rh6H12][Y]2 (Y = [l-H-c/ojo-CB„M en]* or [BArF]’) 305

6.2.1.1 Characterisation and Discussion 305
6.2.1.2 Preliminary Mechanistic Studies 314
6.2.1.3 Reactivity of [(iPr3P)6Rh6Hi2][Y]2 322

6.2.2 [(PCy3)6Rh6Hx][Y]2 (Y = [1-H-c/ojo-CBnMen]' or [BArF]') 327
6.3 Summary 338
6.4 References 340

Chapter 7 -  Experimental

7.1 Experimental Techniques 343
7.1.1 General 343
7.1.2 NMR Spectroscopy 343
7.1.3 IR Spectroscopy 344
7.1.4 Crystallographic Studies 344

7.2 Synthesis and Characterisation 344
7.2.1 Starting Materials 344
7.2.2 Synthesis 345

7.3 References 376

Appendix - Publications



Acknowledgements

Andy (Dr Weller) is thanked for being so enthusiastic throughout and providing me 

with the help and guidance without which this would not have been possible. Many 

thanks go to Dr Mary Mahon and Dr Gabriele Kociok-KOhn for their work in collecting 

and refining all the crystal structures in this thesis and teaching me the basics. Dr Gus 

Ruggerio is thanked for the DFT calculations on a number o f systems and Professor 

Paul Raithby is thanked for the Hydex analysis on the clusters. Dr Adam Clarke and Dr 

Jonathon Rourke are thanked for performing the 2D NMR Spectrum in Chapters Two 

and Three. The EPSRC are thanked for funding this PhD. I would like to thank 

everyone who I have shared a lab with, including, Nathan, Adem, Mark, Nico, Eduardo, 

Viccy, Gary, Amanda, and last but certainly not least big thanks to Susie and Jamie for 

being there inside and outside work, cheers for all the fun. Thanks to for all the guys 

who I’ve played squash and football with in my lunch hours, it saved me taking out my 

chemistry frustrations on the glassware!

Finally loads of appreciation to my parents for helping me out over the last few years 

and just for being there in general, it’s much appreciated.

v



Abbreviations

A Angstrom (1 x 1 0 '10 metres)

[BArF]- [B(3 ,5 -C6H3(CF3)2)4]-
COD Cyclooctadiene
Cp Cyclopentadiene
Cp* Pentamethylcyclopentadiene

Cy Cyclohexyl
c.v.e. Cluster Valence Electron
DAP Double A Frame Porphyrin

8  Chemical Shift

A Difference

ES Electro-Spray

Et CH2CH3

FAB Fast Atom Bombardment
Fc Ferrocene
HOMO Highest Occupied Molecular Orbital
Hz Hertz
IR InfraRed
k Rate constant
K Equilibrium Constant
kie Kinetic Isotope Effect
L Ligand

LUMO Lowest Unoccupied Molecular Orbital
M Metal

Me CH3

NBD Norbomadiene

NMR Nuclear Magnetic Resonance
Nuc Nucleophile

OTf Trifluromethanesulfonate
PAC Photo-Acoustic Calorimetry

Ph C6H5

ppm Parts per Million

R Alkyl Group

SBI rac-Me2Si(Indenyl)2
Tp Trispyrazolylborate
TMS Trimethylsilyl
TRIR Time Resolved Infra Red



A bstract

Synthetically useful salts of the mono-anionic, highly alkylated carborane, [1-H-closo- 

CBnM en]' have been synthesised and used to introduce this anion to the coordination 

sphere of transition metal complexes. Partnering [l-H-c/oso-CBiiM en]' with a number 

o f phosphine stabilised silver salts led to intimate ion pair formation, involving 

Ag—H3C interactions in both the solid-state and solution. These Ag—H3C interactions 

were shown to be weak, with the anion readily displaced by other poor Lewis-bases. 

Solid-state cation--anion interactions were also ascertained for the zirconocene 

complexes, Cp’2ZrM e(l-H-c/ojo-CBnM eii) (Cp’ = C5H5 or CsRjMe) and equally 

shown to persist in solution. A Co—anion intimate ion pair has also been partially 

characterised. These complexes can be viewed as models for the catalytically important 

metal a  alkane interaction. The weak nucleophilicity o f [l-H-c/oso-CBnM en] has been 

shown by the retarded metathesis reactions involving the [Ag]+ and [Cs]+ salts.

A number o f metal complexes where weak a  donors bind in favour to [1-H-closo- 

CBnMen]* have been isolated. Including, solvent separated ion pairs which can 

undergo decomposition via anion B-C/solvent activation to generate a number of 

functionalised anions via a neutral, internally charge compensated borenium ylide, [1- 

H-c/oso-CBnMen]. Several agostic complexes have also been synthesised with [1-H- 

c/oso-CBnM eii]' as the counter ion and one, [PtMeCP^P^]* demonstrated to undergo 

acid catalysed cyclometallation. Finally, dihydrogen also binds preferably over [1-H- 

c/o-yo-CBnMeii]' to {(PR3)2Rh(H)2}+ fragments (R = 'Pr or Cy), generating complexes 

o f the general formula, [(PR3)2Rh(H2)x(H)2]+ (x = lo r 2). These, by the heterolytic 

cleavage o f dihydrogen, form the novel high hydride content rhodium octahedra, 

[(PR3)6Rh6HY]2+ (Y = 10, 12 or 14), that reversibly bind dihydrogen.



1. Introduction

1.1 Alkane Complexes of Transition Metals

1.1.1: Background:

The selective activation o f inert C-H bonds, particularly the transformation of 

methane to methanol, has become a key aspiration in organometallic chemistry, with the 

potential to convert this most abundant hydrocarbon resource to a useful, transportable 

and valuable product. Currently the industrial uses of alkanes are either inefficient (e.g., 

thermal dehydrogenation) or indirect (e.g., steam reforming of methane to produce 

synthesis gas: carbon monoxide and hydrogen). It is not in the unreactivity o f alkanes 

that lays the difficulty, but rather in the selectivity and the avoidance of the 

thermodynamically favourable products from over-oxidation (CO2 and H2O). 

Controlled and catalytic functionalisation would therefore make methane an invaluable 

chemical precursor. To achieve this, breaking one of the most inert bonds in nature, the 

sp3 C-H linkage, would need to be overcome. Arene C-H activation has been known 

since 19651 and the first reported oxidative addition o f alkanes appeared independently 

from the groups o f Bergmann (Ir) 2 and Graham (Rh) in 1982 (Figure l ) . 3

H

M = Ir. Rh

[Cp*M(PMe3)]
cyclohexane

hv CH4 i 8 atmos.

C6Fi4 OC C H 3
Figure 1: Oxidative addition of saturated alkanes to late transition metals.

1



Since this seminal work an increasingly large number of organometallic systems 

that activate alkane C-H bonds have been documented, spanning virtually the entirety of 

the transition metals .4 This plethora of research has revealed that the homogeneous C-H 

activation o f alkanes by organotransition metal complexes can be divided into two sub- 

areas: (i) the radical based C-H activation (similar to that carried out by a variety of 

enzymes) that does not involve any direct metal-alkane contact, and (ii) systems where 

there is a direct interaction between the alkane and the metal centre resulting in the 

breaking of the C-H bond (usually by an oxidative addition or a a  bond metathesis 

mechanism) .5 The latter type has been more extensively studied due to the 

predominantly diamagnetic complexes, two-electron chemistry and superior C-H 

functionalisation selectivities. From the numerous synthetic, kinetic, mechanistic and 

theoretical studies the intermediacy o f an alkane directly bound to the metal centre has 

been firmly established and is outlined in Figure 2.

\/_
-L' \  /  / °

MLn-L' -  [LnM] LnM - ^ C —  ■■■; " -  LnM

+L’ H

electron rich metal alkane oxidative addition
unsaturated metal a complex alkyl hydride

Figure 2: Oxidative Addition pathway for late transition metals.

The concept o f an alkane as a ligand is counterintuitive as the HOMO of the 

alkane C-H a  bond is low lying, thus poorly electron donating, whilst the a* LUMO is 

high in energy therefore unsuitable for accepting electron density. Despite these adverse 

properties there is a large body of evidence, both indirectly and by direct spectroscopic 

measurements, that proves beyond doubt the importance o f the metal-alkane 

intermediate.6 For arenes the initial complex on the oxidative addition pathway has been

7 7  0shown to be an r| -  arene complex; ' however, for alkanes the <r complex (Figure 2)
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has not been unambiguously experimentally determined (i.e. jointly by spectroscopic 

and solid state methods) and a number o f geometries are possible as shown in Figure 3. 

The following nomenclature will be used throughout.

M H C
\
R

H

M

ti2-C,H

H

H

r|3-C,H,H

Figure 3: Possible bonding modes of an alkane to a metal centre.

The purpose o f this introduction will be to concentrate on the chemistry of R-CH3 --M

interactions in the homogeneous media, as this is the area o f focus o f the research 

reported herein. The extensive fields o f alkane complexation with heterogeneous metal 

surfaces, gas phase systems and naked metal cations will not be discussed here -  but are 

covered in a number o f recent reviews.4 ,6

1.1.2: Indirect Evidence for a  Alkane complexes:

There are two key methods that have provided indirect evidence for the 

existence of alkane complexes. The first is H/D scrambling occurring between a metal 

deuteride complex and its alkyl substituent, prior to alkane reductive elimination, 10 as 

demonstrated by the repeated migration and insertion o f the {CsMesRhtPMea)} 

fragment into a transient a  alkane complex (Figure 4) . 10

3



Rh .„ D  -----------

m° 3P 13c h 2c h 3 Me3P 13c h d c h 3 m®3P c h 213c h 2d

Figure 4: Exchange processes in Cp*Rh(PMe3)(C2H5)D.

A combination of 13C and 2H labelling NMR studies revealed two distinct 

processes. At temperatures below -30°C, H/D exchange occurred purely at the a  

position on the ethyl ligand. At higher temperatures, a second process follows where the 

deuterium is incorporated at the p position. In all instances the H remains associated 

with the labelled 13C, indicative of the intramolecular reversible formation of a a  alkane 

complex that at higher temperatures dissociates, rotates and reattaches to the metal 

through the non labelled CH3 interaction (Figure 5).

-30 °C

(13C)H2DCH3 H3C(13C)H2D

Figure 5: Incorporation o f deuterium into the P position o f the ethyl group at temperatures above -30°C.

Reductive elimination is the microscopic reverse o f oxidative addition and thus 

proceeds along the same reaction trajectory with identical transition states and 

intermediates. 11 The majority of the indirect studies into transient alkane complexes 

have investigated the reductive elimination of an alkane from a metal alkyl/hydride. 

Included in this are a number of systems that by analogous H/D scrambling experiments 

clearly implicate the presence o f a metal a  - alkyl complex . 12’14 Recently, Gross and 

Girolami have reported the first example of a transition metal compound,



[Cp*0 s(dmpm)CH3(H)]+, where the equilibrium between a a  alkane complex and the 

metal alkyl/hydride is dynamic on the NMR time scale (Figure 6 ) . 15 Spin saturation 

transfer experiments provided definitive evidence that the hydrogen atoms in the Os-H 

and the Os-Me groups were undergoing rapid exchange. The rate constant at -100°C 

(calculated using both line shape analysis techniques and spin saturation experiments) 

revealed that an alkane complex is being formed reversibly at -160  times a second. At - 

120°C the fluxionality is halted, giving rise to independent OS-CH3 and Os-H signals, 

whilst above -95°C irreversible reductive elimination occurs.

©

^  1 >
k= 160-170s’1 |

Me2P'"‘, , y ° S'^ / H -100°C Me2P»"‘" T S\ / CH3

PMe2 CH3 £ — PMe2 H

Figure 6: The dynamic equilibrium between an Osmium alkyl/hydride and its respective ct alkane
complex.

Complimentary to the H/D scrambling experiments further evidence of the 

central role of the cr complex comes from the inverse kinetic isotope effect (kie) for the 

reductive elimination o f an alkane from an alkyl hydride complex . 16 Here the relative 

rates of reductive elimination for perprotio and perdeuterio samples are compared. In 

the vast majority o f cases for this process the kie measured is inverse (i.e. less than 

unity). This is a non standard value as deuterium compounds generally give slower rates 

o f reaction due to their stronger bonds, and a ‘normal’ kie is >1 . 10,12,13,17 To elucidate 

the origin of this effect we need to first realise that the isotope effect is predominantly 

associated with the bond making/breaking step with little or no contribution from the 

dissociation o f the formed a  alkane complex. In the intermediate (i.e., the product-like

5



metal a  alkane complex) the deuterium experiences a higher force constant compared to 

that in the reactant (the metal alkyl/hydride), due to the relative strengths o f C-H (or C- 

D) and M-H (or M-D) resulting in the difference in zero point energies being greater in 

the reactive intermediate than in the reactant (Figure 7).6 As this first step is reversible 

and rapid compared to the alkane dissociation step there is a higher pre-equilibrium 

concentration o f the deuterio alkane complex compared to the protio analogue, thus a 

greater overall rate for reductive elimination and a kn/ko <1.

  =x<>1) = y (>1) M + R-H

AG

AG0 M—I

For overall 
reaction

Figure 7: Reaction coordinate for the reductive elimination o f  an alkane from a metal alkyl hydride. This 
shows the larger zero point energy difference between hydrogen and deuterium analogues in the products

relative to the reactants.

Interestingly, recent work by Jones’ group on the Tp*Rh(CNR)(alkyl)nH (n = 1 

or 2) system has shown that the origin of the different equilibrium concentrations for the 

deuterio and protio  systems is in fact due to an inverse kinetic equilibrium effect

1 Q
between the alkyl hydride and the a  alkane complex. In this equilibrium there are 

normal isotope effects in both directions, but the kie is greater for the oxidative addition 

of the coordinated alkane than for the reductive coupling o f the metal hydride/alkyl to

6



generate the metal a  alkane complex (Figure 7), thereby generating the overall inverse 

kie for this process.

1.1.3: Direct Evidence of Metal a  Alkane Complexes:

Direct evidence for the coordination o f alkanes to metal centres was first 

documented in the 1970’s and was achieved by the photoexpulsion o f CO from M(CO)6 

(M = Cr, Mo, or W) in low temperature alkane matrices. Time Resolved Infra Red 

(TRIR) and UV/Vis spectroscopy were used to demonstrate the solvation o f the 16- 

electron fragment {Cr(CO)5} with the matrix host. Mixed matrix experiments proved 

this solvation to be the specific solvation o f the metal fragment with the matrix host 

acting as a weak sixth ligand. 19 Use of a methane matrix at 12K thus resulted in the 

coordination o f a CH4 molecule as the sixth ligand. In an argon matrix doped with ~2% 

CH4 the shift o f the ai maximum for the CO stretch was similar, although less than that 

found for the equivalent (CO)sCrXe complex (both exhibit a small down frequency 

shift) but is drastically different to the complexes Cr(CO)s(r|2-H2) and CrfCOJsOi1- ^ )  

which show a large high frequency shift. This demonstrates that methane is a 

significantly poorer acceptor of electron density than H2 or N2.20 More recently the 

intermediacy o f an alkane (neopentane) complex in a C-H activating process utilising 

the Cp*Rh(CO )2 system has been directly observed using similar methods in liquid

91 99  • • •
krypton. ’ Here initial excitation expels CO and generates two transient complexes 

that rapidly come to equilibrium. The relatively slow oxidative addition of a neopentane 

C-H bond (Figure 8 ) in one of these complexes then follows. Whilst matrix experiments 

allow for the characterisation o f these short-lived compounds (e.g., 

Cp*Rh(CO)((CD3)4C) has a lifetime of only ca. lOOOps) it provides scant information 

to quantify their structure or any further reactivity.

7



 ►
,c o  (C D 3)4C/Kr(l)

vCO = 1946cm*1
Rh, Rh

HOOns

~1000|iS

vCO = 1947cm*1 Rh, oxidative addition

o c - R v " d^ ( C D 3)4C
CD2C(C D 3)3 

vCO = 2008cm*1

Figure 8: Pathway for the oxidative addition of an alkane as monitored by TRIR spectroscopy

To obtain kinetic and thermodynamic information on the metal alkane 

interaction, solution studies in alkane solvents were required. The energetics of alkane 

binding has been determined using Photo Acoustic Calorimetry (PAC). Flash photolysis 

o f M(CO)6 (M = Cr, Mo, W) is used to generate the transient alkane complex, with the 

resultant amplitude of the acoustic wave measured being directly dependent on the 

amount o f heat liberated/absorbed from a chemical process. This requires two 

assumptions, that the solvation o f the product and the reactant are effectively identical, 

and that there is negligible volume change. The enthalpy change measured is then equal 

to the difference in the metal-carbonyl and metal alkane bond energies. As the metal 

carbonyl bond enthalpy is known from gas phase experiments, a range of bond 

enthalpies for M-alkanes has been calculated (Figure 9).

CO M Alkane -AH (kcal/mol)
Cr pentane 8.9 (3.2)

heptane 9.6 (2.3)
isooctane 11.0(2.1)

cyclohexane 12.6(2.1)
CO

M = Cr, Mo, W, S = pentane, 
heptane, iso-octane or cyclohexane

Mo heptane 8.7 (2.7)
W heptane 13.4(2.8)

Figure 9: Binding enthalpies for alkanes to M(CO)5 (errors in parentheses to la ).



Significantly the binding enthalpy of cyclohexane is greater than for the linear 

alkanes, corresponding to a stronger a  bond and consequently a more stable metal 

alkane complex. The authors suggest that a secondary CH2 sigma complex is 

energetically preferred over a primary CH3, with the cyclohexane secondary CH bonds 

being more accessible than those in the linear alkanes. A possible electronic factor to 

explain this trend is that secondary CH bonds are more electron rich than their primary 

counterparts. Long and co-workers in a similar study proposed that this variation is not 

due to different binding enthalpies (AH1) which remained constant, but rather from 

changes in the entropy o f binding (AS1).24 On coordination o f the alkane to the metal its 

freedom of motion is restricted, linear alkanes possessing a greater degree o f freedom 

than their cyclic counterparts, effect a larger (unfavourable) entropic term. These 

energetics are, however, in contrast to metal insertion reactions that occur preferentially 

into primary CH bonds, this contrasting selectivity may arise from the a  complex being

9 cless sterically demanding than the resultant metal alkyl.

Solution phase laser flash photolysis and ultrafast transient spectroscopy has 

provided an insight into the kinetics of alkane complexes and importantly some of the 

factors that control their solution lifetimes. Initial work demonstrated that photolysis of 

Cr(CO)6 in cyclohexane lead to a broad absorption band in the UV/Vis spectrum similar 

to that found in the methane matrix experiments.26 Cr(CO)s(C6Hi2) is produced at 

ambient temperature within 50 ns of UV flash photolysis. The product is extremely 

reactive, decaying within 50 ps.27 Further TRIR experiments have shown that the 

stability o f organometallic alkane complexes increases both across and down Groups V,

9 8  9 0VI and VII (Figure 10). * For the manganese and rhenium complexes, 

CpM(CO)2(alkane), the lifetimes are appreciably longer for the cycloalkane complexes



than for the heptane analogues, in good agreement with the PAC measurements. The 

decay rate o f  CpRe(CO)2(heptane) in the absence o f added ligand was only 40s'1 

making it the longest measured lifetime of any alkane complex. It can be assumed that

9 o
the cyclopentane analogue would persist in solution for even longer.

Group V Group VI Group VII
CpV(CO)3(heptane) (Benzene)Cr(CO)2(heptane) CpMn(CO)2(heptane)

1 x 108 2 x 106 8 x 105
CpNb(CO)3(heptane) CpMn(CO)2(cyclopentane)

7 x 106 3 x 105
CpT a(CO)3(heptane) CpRe(CO)2(heptane)

5 x 106 3 x 103
CpRe(CO)2(cyclopentane)

1 x103

Figure 10: Second order rate constants (mol'1 dm3 s*1) for the reaction o f metal alkane complexes with
CO in alkane solution at 298K.

A low temperature NMR investigation into the photolysis o f a supersaturated 

solution o f CpRe(CO )3 in cyclopentane,31 monitored the formation and reactivity of 

CpRe(CO)2(CsHio) that had a lifetime of ca. 1 hour at 180K. This transient specie was 

characterised by NMR spectroscopy with continuous irradiation of the sample with a 

UV light in the probe maximising the concentration o f the alkane complex. Photolysis 

at -80°C in cyclopentane produced two new resonances: a high field resonance at 5 -  

2.32 ppm, which had a fixed integral of 2H when compared to the correspondingly new 

Cp peak at 8  4.92 ppm (5H). These peaks are attributed to CpRe(CO)2(cyclopentane), 

where the cyclopentane ring is coordinated to the rhenium centre via one of the 

methylene units. The highfield signal appears as a quintet with 3J (HH) coupling of 6 .6  

Hz, fully consistent with four equivalent protons on the two adjacent carbons.
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Figure 11: Possible bonding modes for cyclopentane to CpRe(CO)2 as determined by 'H NMR
Spectroscopy.

The equivalence of the two protons involved implies that either they are both 

involved in the bonding via a r |3-C,H,H linkage or by a fluxional ri2-C,H motif (Figure 

11). Using 13C isotopically enriched cyclopentane the ^(CH ) coupling constant for the 

resonance at -2.32 was found to be 112.9 Hz, compared to that of free cyclopentane 

(129.4 Hz). The expected reduction signifies a reduced bond order between the C and 

the H characteristic o f cr donation to a metal centre. Theoretical studies on a related 

alkane complex W(CO)s(propane) found the lowest energy conformer to be a C-H from 

the methylene group bound in a rj -C,H motif. If a similar bonding mode is assumed 

in CpRe(CO)2(cyclopentane) then the ^(CH) coupling constant is in fact an averaged 

value of one coordinated and one unbound C-H bond. The calculated 1 J(CH) of just the 

coordinated C-H bond is then approximately 95 Hz. This value is consistent with typical 

static agostic interactions that range between 60 and 90 Hz and implies a relatively 

weak interaction with the metal centre in the {CpRe(CO)2} complex .34

Crystallographic evidence for the coordination o f an alkane to a metal centre has 

also been recently reported. An iron (II) metal centre ligated by a double A frame 

porphyrin (Fe - DAP) on crystallisation from fluorobenzene/heptane displays two clear 

interactions with one heptane molecule. As opposed to all the previous structures of 

metal a  C-H bonding where there is an entropic advantage from their intramolecular

11



nature, the Fe-DAP utilises host/guest chemistry to enhance the weak bond between the 

metal and alkane. The backbone of the Fe-DAP complex creates a hydrophobic cavity 

of the correct size and shape for a heptane molecule to reside in (Figure 12).

Figure 12: The double A -fram e Porphyrin, and a representation o f  the two disordered heptane m olecules
interacting with Fe-DAP.

that the heptane is not only bound in place by a host guest effect, although the additional 

stabilising effect provided is undoubtedly important. Crystallographically, the heptane 

molecule is disordered appearing as an «-octane molecule that can be readily modelled 

with half occupancy o f the two terminal carbons. Each o f the two terminal carbons is in 

contact with a single Fe(II) centre, with Fe-C distances o f 2.5 and 2.8 A, comfortably 

within the range expected for weak agostic interactions.34,36 The structural disorder 

prevented free refinement o f the hydrogens and hence the determination of the bonding 

mode in this metal alkane complex. Density functional calculations on a range of Fe (II) 

porphyrin -  alkane interactions (four alkanes were studied, methane, ethane, propane 

and M-butane) all gave Fe- C distances between 2.62 and 2.65 A, consistent with the

.Cl) IB

C104A C103UCI03A

The coordination o f heptane to the Fe11 centre is significant as indicated by the 

non-planarity o f the iron porphyrin (the Fe11 is displaced out o f the plane towards the 

terminal carbon o f the heptane by 0.26 A). This deviation unequivocally demonstrates

12



experimentally determined average Fe—C bonding separation of 2.65 A. In each case 

the geometry o f the Fe—C-H interaction calculated was an unsymmetrical bidentate 

structure with one close Fe-H distance (2 .0 1  to 2.13 A) and one longer (2.62 to 2.65 A).

Figure 13: Calculated r]2 C-H unsymmetrical binding mode and possible fluxionality.

An asymmetric bonding arrangement is still consistent with the NMR study 

performed on CpRe(CO)2(CsHio) if we assume fluxionality on the NMR timescale

^ 1 -j
(Figure 13). The computed binding energies ranged from 10.5 to 16.7 KJmof 

indicative of weak interactions that on the NMR timescale would be in fast exchange, 

thereby making equivalent all the terminal C-H bonds. Meaningful solution studies on 

the Fe -  heptane interaction have proved impossible as there is insufficient solubility in 

non competing solvents and other weak donors (e.g. arenes) have been shown 

previously to readily bind to metalloporhyrins.

A second, more recent, report has analysed by X- ray diffraction a series of 

alkane complexes o f the unsaturated, tris-aryl oxide uranium (III) complex 

[((ArO)3tacn)U] (Figure 14).38 In each case the apical position of the uranium 

coordination sphere is occupied by an alkane ligand. The uranium -  carbon bond 

distances are between 3.731 and 3.798 A, just within the sum of the van der Waals radii 

for a U-CH3 contact (3.9 A) suggestive of a bonding interaction.39
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50 equiv cyclic alkane

n- pentane

[((ArO)3tacn)U(cy-alkane)]

Figure 14: Coordination o f an array o f alkanes to [((ArO)3tacn)U].

Significantly all the structures exhibited close contacts between the axial alkane 

and the peripheral tertiary butyl group from the tacn ligand (contacts from 2.12 to 2.71 

A). This implies that the metal C-H bonding interaction is supplemented by a host guest 

effect between the alkane and the lBu groups o f the macrocyclic ligand, in an analogous 

manner to the Fe-DAP heptane complexation. This does not discount that the axial 

alkane could be held in position solely through the metal-alkane interaction, or 

conversely solely by a host guest effect. Computational studies indicate the bonding 

contact has only a minor contribution from the C-H a  orbital (-2% ) indicative o f a very 

weak alkane to metal bond. Combined with the observed freely refined d(C-H) of 0.96 

A for the hydrogen atoms in proximity to the uranium centre (showing no lengthening 

of the C-H bond) perhaps indicates that host guest interactions predominate. Three of 

the structures were o f sufficient quality to calculate hydrogen positions proximal to the 

uranium centre and all three freely refined as the rj -C,H bonding mode, in good 

agreement with the calculated structures.
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It is significant to note that still there remains a scarcity o f experimental data on 

non-supported metal -  alkane adducts that are accessible under ambient conditions. The 

stablest reported hitherto persists for less than 1 hour in solution at 180 K. Until this is 

remedied the isolation of the first true alkane complex will remain a key objective in 

organometallic chemistry.

1.1.4: Theoretical Studies on a  Alkane Complexes:

Complimentary to the progress made in the experimental investigations into 

these important intermediates a number o f noteworthy theoretical examinations have 

been performed. Many of these specifically scrutinize areas where experimental 

information is scarce, i.e., the coordinating modes and the factors affecting the binding 

strength of CH4 on metal centres. Studies on CpRh(CO)(CH4),40 

[CpIr(PH3)(CH3)(CH4)]+ 41 and CpM(NO)(CH2)(CH4)42 (M = Mo, W) all predict a ri2- 

C,H alkane coordination, whereas the rj -C,H,H mode is calculated to be energetically 

favourable for the 14 electron complexes RhCl(PH3)2 and Ni(PH3)2.43’ 44 An interesting 

comparison involved the ab-initio calculations on the binding energies o f alkanes versus 

fluoroalkanes with respect to the fragment {W(CO)s}. The simple alkanes (CH4 to 

C3H8) bond in the r| -C,H manner as their lowest energy conformers, but the 

fluoroalkanes CHnF4_n preferentially bind via a C-F r\ linkage (Figure 15). This is 

supported by experimental evidence with C-F activation o f fluoromethane occurring in 

preference to C-H activation.
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Figure 15: Calculated binding geometries o f methane and fluoromethane to W(CO)5.

The energy profile for all the r)2-C,H alkane interactions have very low barriers 

to rotation between the C-H positions on the contact carbon, inferring a rapid fluxional 

system with all the C-H bonds being in exchange with one another. The binding of the 

secondary CH2 group in the propane analogue, (CO)sW(propane) is calculated to be 

1.37 kcal/mol energetically more favourable than through the primary CH3 group, 

consistent with the PAC measurements and the relative stabilities of the 

Re-• -heptane/Re• -cyclopentane complexes.30 Another important trend noted is that 

alkane binding strengths increase with chain length, thus the most abundant and 

important alkane, methane will be the least stable adduct.

Reduced variational space analysis techniques by Cundari have indicated two 

factors that can be altered to improve alkane binding: the polarisation of CH4 and the 

degree of charge transfer: CH4 —► M .45 Both are predominantly affected by the charge 

on the metal, with cationic compounds binding alkanes significantly stronger than their 

neutral counterparts. In addition to the metal’s charge, the ligand set can also drastically 

alter alkane binding. A prime example involves the oxidative addition of CH4 to the 14 

electron fragment IrX(PH3)2 (X = Cl, H ) .46 DFT calculations compute that the 

favourable binding mode is via the r|3-C,H,H interaction; however, its energetics are



extremely sensitive to the trans ligand, exemplified by a binding energy that is ~9

kcal/mol stronger for the X= Cl complex (Figure 16).

PH3 p h 3

Cl
'H

PH3
Binding Energy of 7 kcal/mol

p h 3

Binding Energy of 16 kcal/mol

Figure 16: Relatives binding energies of the methane to two similar 14 electron Iridium fragments.

Seigbahn and Svensson have used ab-initio calculations to study the activation 

of methane with compounds that have triplet ground states (e.g., (Rh(Cl)CO} and 

{R11H2}) and related compounds that have singlet grounds states (e.g., {Rh(H)(NH3)} 

and {Rh(H)(CO) } ) . 47 Promisingly, for the prospect o f isolating a stable alkane complex, 

they found that a triplet ground state resulted in low barriers to oxidative addition but 

that singlet ground states are required for strong ct alkane binding. Complexes are 

available that have a low barrier to oxidative addition without forming a strong ct 

complex and thus it is possible that the inverse is true: that a strongly bound ct complex 

exists with a high barrier to oxidative addition. Computational theory also indicates that 

if a cationic complex can be solubilised into alkane solvents then, with the correct 

ligand set a stable alkane complex is an attainable goal.

With the current paucity o f data relating to unsupported metal alkane complexes, 

systems that provide a model for the important M --H3C-R interaction are vital and have 

been exploited to some extent. Model compounds have the advantage o f a dramatically 

increased stability that allows for the isolation and full characterisation of an increasing 

number o f <j-bonded complexes, including some involving M —H3C-R interactions. A
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variety of these will be introduced and discussed in the next section and their relevance 

to ‘true’ alkane complexes examined.

1.2: Models for Alkane a  Complexes:

1.2.1: Coordination of X-H a  bonds:

As well as alkanes, an electron deficient metal centre can react with other X-H 

bonds to readily generate a  complexes where X-H acts a two-electron donor (X = R3B', 

R2B, RsSi, and H). The isolation of the M-(HX) adduct in the condensed phase as a 

stable entity is now feasible due to the altered energies o f the X-H ct and <7* orbitals in 

comparison to their alkane analogues. If X = R3Si or H the X-H bond becomes more 

basic with a higher energy ct bond enhancing electron donation to the metal and 

concurrently, the ct* is lowered in energy becoming more accessible for back donation. 

Furthermore, in dihydrogen complexes the steric hindrance is greatly reduced and the 

degree of back donation into the ct* orbital can be significant.32 When X = BR2, the 

borane complexes have increased hydridic character and in the case o f the borates (X = 

[BR3]'), there is the possibility of a significant ionic contribution to the bonding 

interaction making it debatable if they are true ct complexes.48

1.2.2: Coordination of B-H ct bonds:

[BH4]‘ and R3PBH3 both form stable adducts with a range of metals and are 

isolobal with methane and the higher alkane homologues, giving precedent and valuable 

insights into alkane ct complexes (Figure 17).
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Figure 17: The isolobal relationship between alkanes and borates/phosphine-boranes.

9 i
For BFLf the most common coordination mode is the ri -H,H, though r| -H and 

r|3-H,H,H bonding motifs have all been characterised (Figure 18).49'54

V "  V

j u  0  f .  < f e . v
PhM e2P/// S H r P' > K <  " " i

s  i Me2 H \  Me2 H ^ h V h > h
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/ B\ hH H ^

Figure 18: Examples o f the three possible binding modes observed for [BH4] \  V ,54 r|2-H,H,50 t]3-

H,H,H.49

Moving to the borates of the general formula [R2BH2]', a very common binding 

motif crystallographically characterised is the rj2-H,H mode (e.g., in [Et2BH2]* to [RePh 

2PCH2CH2P(Ph)CH2CH2P(Ph)CH2CH2PPh2], [H2BR2]* (R = C4H8, C5H10 and C8Hi4) to 

Cp2ZrH and [FkBC^CeFy to Cp2Nb) .55'58 With these compounds the degree o f ionic 

bonding is uncertain and the end on bonding in [(PMe2Ph)3Cu(p1-H4B)] is indicative o f

• • • Cx e
the increased polarisation of the B -H ‘ bond. To remove this ambiguity, a neutral 

borane linkage is required. This has been achieved in two manners, firstly utilising the 

Lewis base adducts o f BH3, such as the phosphine boranes (Figure 17), pioneered by



Shimoi.59*61 All the mono-phosphine boranes (R3PBH3) structurally characterised bind 

in an r\l-H m otif (e.g., CpMo(CO)2(r|1-H3B:PMe3), Figure 19). A ‘bis’ phosphine 

diborane [Me3P:BH2BH2:PMe3] (isolobal with butane) binds in a mode not previously 

seen for alkanes, i.e., via a r |2-H,B-B,H interaction from two adjacent borons (Figure 

19).62 It can, however, be viewed as a bidentate ligand, involving two individual r^ -H  

contacts. Alternatively, chelating mono phosphine boranes (general formula 

Ph2PCH2P(Ph)2BH3) have been shown to bind in a r |3-B,H,H fashion .63,64

O
C H

.Mnin H 0 CN U H " E F Me3 Rh

V PMe3
PMe3 g  H

ti1-H r|3-B,H,H

Figure 19: Examples o f the three reported bonding modes for phosphine boranes.

In all o f these compounds a significant decrease in the B-H coupling constant is 

observed analogous to that in CpRe(CO)2(C5Hio), suggesting a reduction in the B-H 

bond strength and some <7 donation. As with the borohydride compounds, however, the 

boron is four coordinate and though neutral, the B-H bonds certainly have some 

hydridic character. An analogous system, (CO^W ^-HsGa-quinuclidine), based on the 

Lewis base adduct o f GaH3, has also been synthesised. 65 Structural studies demonstrate 

a similar end on V -H  interaction with a 16 electron {W(CO)s} fragment as previously 

seen with the mono dentate phosphine boranes. Due to the increased electropositive

c* c
nature o f Ga there will be an even greater polarisation o f the Ga -H ‘ bond.
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The second type of structurally characterised, neutral B-H cr-bonded systems 

involves the base-free three coordinate catechol and pinacol boranes (C6H4O2B-H = 

HBcat, (Me)4C2C>2B-H = HBPin) such as Hartwig’s Cp2Ti(HBcat)2 and Chaudret’s 

(PCy3)2Ru(H)(H2BPin)(HBPin) (Figure 20). These systems are consistently bonded to 

the metal via a r |2-B,H mode, with the donating B-H bond approaching in a side -  on 

geometry.66'68 An unusual feature of these a  borane complexes is that as well as B-H to 

metal donation there is also significant M->B back donation. This is not into the ct 

orbital, as would be expected for an alkane complex, but is into the empty p* orbital on 

the boron. The unusual side on geometry is adopted to strengthen the M-(B-H) 

interaction by maximising efficient metal d -  boron p* orbital overlap whilst not 

weakening the B-H bond .69 This backbonding is not available in alkane complexes -  

somewhat limiting the comparability of a  boranes and ct alkane complexes.

-C  Me
C* / > e

,Hs Me PCy3 /  /^ -M es ^  M e /
M e \ o  I /

\ : b
h '  ^ C L  M e ' / "  o'Mp

B O

H
B

C
Figure 20: A: a borane structure exhibiting the side-on geometry in Cp2Ti(HBcat)2 (viewed down the Cp- 

Cp axis), B: a mixed r|3-B,H,H borate/r)2-B,H structure in (PCy3)2Ru(H)(H2Bpin)(HBpin).

1.2.3: Metal ct Dihydrogen Complexes:

The first metal dihydrogen (H2) complex, W(CO)3(‘Pr3P)2(H2), was discovered 

and fully characterised nearly 2 0  years ago, firmly establishing the ct bond as an

7n *71
important ligand in organometallic chemistry. ’ The H2 molecule can be thought of as 

the zeroth member o f the hydrocarbon series, with equivalent strong bond enthalpies 

(CH3-H and H-H both -104 kcal/mol), comparable bond polarities and frontier orbitals 

(ct and ct*) of similar shape, energy and extent. The solid-state orientation of the



coordinated H2 is side on in a r | 2 binding mode in W(CO)3(‘Pr3P)2(rj2-H2) (a bonding 

mode universal in dihydrogen complexes) . 32 The H-H bond distance in this complex 

was determined to be 0.89A, slightly ‘stretched’ from that of free H2 (0.75 A) but still 

short enough to be indicative o f an intact H-H bond. A wide range o f (H-H) distances 

have since been reported, ranging from the ‘unstretched’ complexes (d(HH) < 1.00 A) 

through to the severely stretched complexes (1.00A < d(HH) < 1.4A), where d(HH) is 

only slightly less than that found in some classical dihydrides (Figure 2 1) . 32

H

L n M  V
— ► L n M ---------------  |  ---------------►  L X

H 'H L" \ ;

/  
LnM,

H H
0.74 A 0.8-1.0A  1.0-1.2 A 1.3-1.4 A > 1 .6  A

‘free’ H2 unstretched elongated - ‘stretched’ classical dihydride
H2 com plex H2 com plexes

Figure 21: The continuum o f  H-H bond distances from crystallographic and NM R spectroscopy studies 
and the classification o f  the varying types o f  (r]2-H 2) metal com plexes.

It has been from extensive studies on the nearly 600 different H2 complexes 

spectroscopically and structurally characterised that much of the fundamental

'X'J
understanding o f ct complexes (including alkane complexes) stemmed from. This 

includes how ct bonding can be viewed in an analogous manner to the Dewar-Chatt- 

Duncanson model for 7t complexes (Figure 22) . 72 The metal hydride bond becomes 

stronger with increasing M to ct* back donation, along with a concomitant decrease in 

the H-H bond order resulting in the observed H-H elongation.

c%■'

< J J  * LnMLnM

^ 6  - m *
M - H 2 bonding M - a lken e bonding

orbitals orbitals

Figure 22: The analogous bonding interactions involving a metal fragment with (r|2-H 2) and (r|2-alkene).
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The stability of the H2 interaction in comparison to that o f alkanes was thought 

to be controlled by the degree of back bonding from the metal, as a series of electron 

deficient metal fragments such as M(CO)s (M = Cr, W) formed very unstable 

dihydrogen adducts.73 Alkanes, in contrast to H2, do not have the ability to be stabilized 

by back donation (as it is disfavoured due to steric reasons) and therefore experience an 

intrinsically weaker interaction. However, more recent work has shown that H2 can bind 

to very electron deficient metal centres where there is no significant contribution from 

back bonding (though heterolytic H-H cleavage can readily occur in these systems) .74,75 

Calculations on a number of models of these systems have demonstrated that for the 

highly electrophilic metals involved (e.g., [(PR.3)M(CO)4]+ (M = Mn or Re, R = Cy, Ph 

or ‘Pr), [Re(CO)3(PR3)2]+ (R = Cy, Ph, Pr), [Fe(PH3)5]2+ and [CpW(CO)3]+) the 

reduction in back donation is almost completely offset by the increased electron

*70 _
donation from H2. ’ The binding of dihydrogen in these super-electrophilic systems

can be considered as analogous to how alkanes would interact - exclusively through 

ct donation with no back donation involved. The prospect that alkanes can bind to these 

fierce electrophiles if  other competing (and invariably superior) electron donors can be 

excluded is therefore reasonable.

1.2.4: Coordination of Si-H ct Bonds:

A large number of ct complexes involving silanes have been characterised and 

are important intermediates in the catalytic dehydropolymerisation of silane to

on 01 n

polysilanes. ’ All exhibit the r| -Si,H bonding mode in the solid state, confirmed by

o/\ on  on
neutron diffraction studies on selected compounds. ’ ’ The structures predominantly

resemble the oxidative addition product (i.e. dMH and dMSi are short characteristic of

classically bonded ligands, with a concomitantly long -  ‘stretched’ Si-H bond) as
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opposed to an unstretched Si-H ct complex where Si-H bond lengths are ‘normal’. 

Solution studies also support a significantly lengthened Si-H bond with the !J (SiH) 

coupling constant falling drastically on coordination (e.g., 200 Hz for free HSiPh3 

decreasing to 65 Hz on coordination to the 16 electron {MeCpMn(CO)2 } ) .84 The origin 

for this is twofold: (i) the greater basicity o f the Si-H bond relative to the C-H (and H-

H) bond results in better ct donor ability; and (ii) as a result a weaker Si-H bond which 

therefore lowers the energy of the ct* orbital making it more accessible for back 

donation. By altering the metal/ligand set a sequence o f (Si-H)-M interactions have 

been synthesised that produce a near continuum along the entirety of the oxidative 

addition pathway for ct silane complexes. The two disparate systems 

Mo(CO)(depe)2(r|2-HSi(H)2Ph) and [CpRu(PMe3)2(rj2-HSiCl3)]+ are prime examples o f

o y  or

unstretched and stretched Si-H bonds respectively (Figure 23). ’

Me  ̂ f Me
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E ,2p\ I  / c  m / I ©

M o ^ - H  ph p __Ru---------H
Et2P MeaP /  \  /

PEt, H Me3P X2H Cl \ Cl
Cl

Figure 23: Mo(CO)(depe)2(r|2-HSi(H)2Ph) and the cation CpRu(PMe3)2(r|2-HSiCl3 )+.

The synthesis of metal silane ct complexes is readily achieved by a number of 

routes, including the addition of silanes to unsaturated metal centres (often generated by 

photolytic/thermolytic dissociation of CO), the displacement o f weaker ct ligands (e.g. 

H2 and agostic C-H), displacement of weakly coordinated solvent molecules and; more 

recently, by the protonation of metal silyl bonds.85'87 Both neutral and cationic silane 

complexes are known, though cationic systems are rare due to their susceptibility to 

undergo heterolytic bond cleavage.85,88 A wide variety o f different silanes, including the
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simplest, SiHt, and from the electron deficient HSiCb, to the electron rich bulky silanes 

(e.g., HSi(SiMe3)3) have all been characterised, with the metals involved ranging from 

groups 5 to 10. The extensive number of stable isolated silane compounds compared 

with alkane complexes is indicative o f the increased metal -  silane stability arising from 

the better ct donating ability of the Si-H bond and the increased back donation into the 

Si-H ct* orbital.89

1.2.5: Agostic C-H Interactions:

The agostic bond, where a metal’s coordination sphere is completed by a ligand 

bending back and ‘clasping itse lf (agostic is derived from the Greek word ayoaoc, - 

meaning to hold oneself) 34 through donation of ct C-H electron density has been known 

since 1965.90,91 A large number of agostic compounds have been characterised ranging 

from main group metals (M = Li, Na, Mg, Ca, e.g. [Li{ja-N(SiMe3)2}2Mg{N(SiMe3)2}] 

Figure 24),92*94 d° transition metals (e.g., M = Zr, Hf, Ti, Ta where the agostic 

interaction is a key intermediate in Ziegler-Natta alkene polymerisation catalysis, e.g. 

[rac-C2H4(indenyl)2ZrC(SiMe3)=CMe2]+ - Figure 24)34, 92,95'97 and all other transition 

metal d electron configurations.32,34,92,98*100

M©2
^,Si xSiMe3 

\  .o '' 3
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„Li Mg NSiMe3

\  /
\  >° \

Si SiMe3
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Figure 24: Agostic interactions in [Li{n-N(SiM e3)2 }2Mg{N(SiMe3)2 }] (left) and [ra c -  
C2H4(indenyl)2ZrC(SiMe3)=CMe2]+.
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From these numerous studies the interaction with the metal centre has been 

found to lie between two extremes, the r |3-C,H,H and the r |2-C ,H  bonding modes. 

These are connected by numerous asymmetrically bound r |3-C,H,H adducts (Figure

The observed structural motif is highly dependant on the length and the freedom 

of motion in the arm that the intramolecular connectivity is through. A variety of 

possibilities from a  through to 8  positions have been observed to bind to the metal 

centre. In the small number of systems where the ligand has undergone little or no

involve a CH3 8  position on phosphine ligands such as PR2 (2 ,6 -Me2C6H3) (where R = 

Ph or Cy) for the agostic connection. This generates an agostic interaction with an 

unstrained six membered ring between the metal and the agostic arm o f the ligand and it 

binds in favour over a number of p and % sites available from the Ph or Cy arms. The 

solution NMR studies o f these systems do not reach a static state and therefore the 

equivalence o f the two coordinated C-H bonds cannot be confirmed.

The r)2-C,H agostic complexes are predominantly found for a  and p compounds, 

where the required deformation of the ligand results in only one C-H bond approaching 

within close enough proximity for a bonding interaction to occur. Due to the

H

Symmetric ti3-C ,H ,H Assymmetric ti3-C ,H ,H t)2-C,H

Figure 25: The continuum o f  possible agostic interaction.

structural deformation to achieve the agostic interaction a symmetric r | 3 C,H,H binding

mode is favoured (verified by neutron diffraction techniques).102' 103 These primarily
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constrained nature, the M-H bond has to lie in the M -C 1-C2 plane (i.e., M-C2-C 1-H 1 

torsion angle = 0°) otherwise the M-H distance is too great for a bonding interaction 

(Figure 26). If a torsional twist were to take place in the C 1-C2 bond to present two C-H 

bonds towards the metal centres both M-H distances would be significantly longer than 

the single agostic M-H distance in the r|2-C,H mode as the C-H bonds now are above 

and below the M -C 1-C2 plane. This prevents sufficient bonding overlap for this mode to 

be energetically favourable over the ri2 -C,H mode (Figure 26).
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Figure 26: The favourable in plane bonding interaction and the twisted unfavourable interaction.

Moving to y and 5 systems the ligand is not so severely perturbed with larger M- 

C 1-C2 angles. Torsional twist o f the C-C bonds can now occur whilst maintaining the 

agostic binding interaction (i.e., short interatomic M-H distances), thus allowing the 

terminal CH3 group to bind in an unconstrained manner to the metal centre (Figure 27). 

It is these examples that occupy the more symmetrical r |3-C,H,H end of the

continuum . 101

H 3 H 2 H3 H 2 H3

c , ^ c , x   C
/ : k h,

c 2 : /

\ 1 / 1 /1 /1 /

H , / | ' f t ! 1*

\ I It 
*

0

M M ~~~ M

p -agostic y -agostic 6 -agostic

M -C 2-C -I-H ! = 0 °  M-C2-C v H i = 6  to 3 3 ° M ^ - C r h h  = 105(6)

(co planar)

Figure 27: Schematic o f  P to 8 agostic com plexes, showing the degree o f  projection o f  the agostic bound
H atom out o f  the M -C i-C 2 plane.101
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It therefore can be concluded that in the less strained, torsionally non-confined, 

agostic complexes the preferred geometry for the CH3 -M  interaction is the symmetric 

or asymmetric r |3-C ,H ,H  motif. This supports the limited experimental and more 

extensive theoretical data so far reported for the structural m otif o f true metal alkane a  

complexes, which also show a r |3-C,H,H binding mode.

Apart from providing insight into the type of bonding mode C-H a  complexes 

favour, information can also be obtained on the C-H bond parameters in agostic 

interactions. Agostic bonds are elongated between 5 and 10% (by neutron diffraction 

studies) with respect to non-bridging hydrogens, implying a reduction in electron 

density in the C-H bond due to its transfer to the electrophilic metal.92 Recently, the first 

example o f a stretched agostic C-H interaction has been characterised in a ‘pincer’ 

ligand system (Figure 28).104 The C-H elongation is 22% in the solid state when 

compared to the normal dcH in benzene and is supported by solution NMR studies with 

the lJ(CH) coupling constant of 50 Hz showing a significant reduction from the 120-130 

Hz found in ‘free’ arene C-H bonds. The lengthened nature o f the C-H bond indicates 

that it could be viewed as a step along the pathway to oxidative addition.

Oxidative Additon X =  Cl, I Proton transfer to
a cis hydride

Figure 28: The possible initial step o f  the reaction elongated agostic pincer com plex to give the observed
trans-[(Cl)Ru(PCP)].
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An alternative possibility is that arrested proton transfer to a c/s-hydride is 

causing the geometry and elongation of the agostic interaction, with the C-H directed 

toward the cis hydride rather than the vacant site. Proton transfer reactions of 

coordinated dihydrogen are well documented and intermolecular dihydrogen bonding 

can be viewed as an intermediate on this reaction coordinate.98 ,105

Work by Crabtree investigating the changes in the M-H agostic bond and the M- 

H-C angle generates a continuum of interactions, with an initial end on approach o f the 

C-H bond that continues into a canted side on geometry with a concurrent increase in 

dcH bond length (Figure 29)." This experimental trajectory for the oxidative addition of 

agostic complexes correlates well with the calculated reaction coordinate for the 

addition o f CH4 to the complexes RhCl(PH3) 3 and IrX(PH3) 2 (X = H, Cl) .46' 106

o
Figure 29: Proposed trajectory for the oxidative addition o f agostic complexes.

However, with measured elongations in the range of only 5 -10%  of the agostic 

C-H bond length only the initial stage on the oxidative addition reaction coordinate has 

been experimentally calculated, thus extrapolation to generate a mechanism for the 

oxidative addition with any confidence is not possible.
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Agostic interaction energies have been revealed by experimental and 

computational studies to be weak (in the range 1 0 -1 5  kcal/mol), comparable to that 

calculated for the complexation of alkanes to M(CO)s (M = Cr, Mo, W)).23’ 107'110 The 

formation of the weak agostic bond is therefore very sensitive to a number of factors 

including ligand steric bulk. This is exemplified in non-bulky systems where the weak 

metal—H3C interaction is insufficient to fix the pendant arm in the correct location (e.g., 

[Ir(H2)(P'Pr2Ph)3]+ has no agostic bonding whilst solid state characterisation of the 

bulkier complex, [Ir(H)2(PCy2Ph)3]+, shows one agostic interaction) , 111 whereas bulky

117phosphines ‘trap’ the C-H bond in the vicinity of the metal by steric effects.

1.2.6: Intermolecular CH3—M Interactions 

1.2.6.1: Charge Neutral CH3***M Interactions

An alternative method to model alkane coordination to transition metals 

involves the use o f intermolecular bonding with either alkyl groups in the solid state 

(where crystal packing forces dominate) or with more polarised E8+-C8‘H3 groups in 

solution. There have been a number o f examples o f each published recently. Elegant 

work by Bums and Andersen provided a model for the r |3-H,H,H coordination motif of 

alkanes by using a CH3X system where X was the electropositive {BeCp*} group, 

thereby increasing the electron density on the methyl group (Figure 30).113 The Lewis 

acid -  base adduct between Cp*BeCH3 and Cp*2Y exhibits a close Yb--C contact of 

2.766(4)A indicative of a significant interaction.
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c ------B e—Yb:

Figure 30: The Lewis base/acid adduct [Cp*2 Yb(|i-Me)Be(C5Me5)].

The geometry of the bridging methyl is symmetrical within errors (Y-Hl 

2.54(4), Y-H2 2.51(5) and Y-H3 2.71(6) A), with the metal positioned over the 

tetrahedral face o f the CH3 group. The Yb-C distance (dybc = 2.766(4) A) is close to the 

average found in the ethylene compound (Cp*)2Yb(C2H4) (2.781(6) A) and is shorter 

than the average in the alkyne complex Cp*2Yb(MeC=CMe) (2.85(1) A ).114

Another M-' H3C close contact has been reported in the rhodium dimer, [Rh2(p- 

0 2CC6H2lPr3)4] where each rhodium’s coordination sphere is completed by an axial CH3 

interaction from an adjacent molecule in the extended structure (Figure 31).115 The two 

independent R h - ^ C  interactions exhibited in the extended lattice both are of an 

asymmetrical r| -H,H,H mode, with the metal capped by the tetrahedral face of the 

bridging methyl. No NMR data was reported. The Rh-C distances (2.80 A and 

2.74A) are at the limit o f the sum (2.81 A) of the ionic radius for Rh(III) (0.81 A) and 

the van der-Waals radius of CH3 (2.00 A) suggesting only a weak M--H3C contact, with 

crystal packing forces dominating.
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Rh1 - C 2 .80A 
Rh1 - Ha  2 .79A 
Rh1 - H b 2 .46A 
Rh1 - H c 2 .66A

R h 2 - C ’ 2 .7 4  A 
Rh2  - H'a  2 .5 8  A 
Rh2  - H 'b 3 .07  A 
R h2 - H 'c 2 .1 8  A

Figure 31: The Intermolecular Rh - H3C interaction in the extended structure o f  [RhaCp^CQPb'Prs),,] 
showing only the 'Pr groups involved in the axial bonding.

A similar example comprises a cyclotriyne Ni(0) complex that crystallises in 

layers, analogous to graphite, with the nickel centre having two axial sites vacant. 116 

Close examination revealed the presence o f two intermolecular C-H contacts to two 

ligands, in a plane above and below (Figure 32).

,O M e M eO .

O M eM eO N i-

M eO

O M e

M eO , O M e

O M e M eO

Figure 32: The intermolecular C-H - Ni interactions between layers o f  N i(0) cyclotriynes.
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The hydrogens on the methyl groups involved were refined isotropically and 

showed long, almost end, on contacts (Ni-H-C distance 2.822(1) A and Ni-H-C angle 

163.5°). The more reliable Ni-C distance at 3.750(4) A lies outside the combined Van 

der Waals radii for Ni(0 ) (1.60 A) and CH3 (2 . 0 0  A) suggesting that the crystal packing 

forces dominate with only a very weak a  contact, if  any, present.

1.2.6.2: Electrostatic ‘Enhanced’ CH3—M Interactions:

Other compounds that can be used as models for alkane a  coordination increase 

the interaction between the metal and the CH3 moiety by introducing charge, thereby 

creating an additional electrostatic force between a cationic metal centre and the anion. 

This is exemplified by the solid state structure o f Li[BMe4 ] determined by X- ray and 

neutron diffraction studies (Figure 33), where the electropositive Li is in close contact 

with the [BMe4]' anion forming a one dimensional coordination polymer. 1 1 7 , 118

Figure 33: Schematic o f  the C -H --Li interactions in L iBM e4 as determined by neutron diffraction.

Two bonding motifs are observed in the extended structure, an r |3-C,H,H and an

r|4 -C,H,H,H. In both motifs the Li—H3C distance is within the sum (2.189(7) A -

2.375(5) A respectively) o f the ionic radius for Li+ (0.9 A) and the van der-Waals radius

for CH3 (2.00 A) implying a significant interaction . 119 The CH 3 geometry is slightly
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distorted from tetrahedral (a compression o f the H-C-H angle in the C-H bonds 

interacting with the lithium - average of H-C-H angle o f 103.5°). No meaningful 

examination of the C-H bond lengths could be undertaken due to the large errors 

associated with low frequency methyl rotational amplitudes that occurred at the 

experimental temperature -  thus, it is uncertain if  there is any reduction in the C-H a  

bond strength from C-H to M electron donation.

Further examples of CH3 groups directly bound to a formally negative atom 

interacting with metal centres include the weakly coordinating methyl borates 

[MeB(C6F5)3]' and the aluminates (e.g., [AlMe4] \  [Me3AlE(R)AlMe3] ' ) .120'126 Weakly 

coordinating anions such as [M eB ^F s^]*  (which will be discussed further in the 

introduction to Chapter 3) have found extensive use in organometallic chemistry and are 

used to generate highly Lewis acidic metal centres by forming loose, readily 

displaceable, interactions with the metal. The general use and specific properties of 

weakly coordinating anions will be reviewed later in this introduction. The generation 

o f the [MeB(C6Fs)3]' anion occurs in - situ on the reaction of the highly Lewis acidic 

B(C6Fs)3 with a metal-methyl, the M5+-C8' polarisation results in the abstraction o f the 

formally negatively charged methyl forming the observed anion. In the absence of any 

Lewis basic molecules (such as THF) there is an interaction between the metal and the 

[MeB(C6F5)3]' through the anion bound methyl group, a M —H3C close contact (Figure 

34). The bridging methyl moieties in these zwitterions can be regarded as an 

intermediate on the methyl abstraction reaction pathway and these complexes play an 

important role in homogeneous metallocene-catalysed olefin polymerisations. 126
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Nb:

F

Figure 34: The zwitterionic com plexes [(M e3S i^ p ) 2Y (p-M e-B (C 6F5) 3 ] ,122 [((tB u)3P=N)2T i{(p-M e- 
B(C6F5)3} 2] 127 and [(PhO C T M S)(ic2- 1 -N (SiM e3)-C5H4N )2N b(p-M e-B (C 6F5)3)].128

Calculations on a number of these systems show that electrostatic interactions 

dominate the bonding between the cationic metal and the bridging methyl group. They 

still, however, represent a pertinent model for M -alkane interactions . 129 The binding in 

the complexes where the hydrogens have been freely refined is the r\2 C,H,H mode.121, 

130 Solution studies on the coordination o f [M e B ^ F s ^ ] ' to d° metal centres 

consistently show an up-field shift of the (p-Me) moiety on coordination to the metal. 131

For the aluminates (e.g., (0 -!Bu2C6 H 3)2M (p-M e2 )AlMe2 (M = Y and Lu) and 

{(Cp*)2Yb(AlMe3)2 -(S-p-C6H4Me) } 2  Figure 35),124, 132 the hydrogen positions have 

been freely refined in only a limited number o f these structures and the only bonding 

motif observed has been the rj3-H,H,H mode. The metal -  H 3C distances in the 

ytterbium compound (2.670(7) A and 2.667(6) A) are well within the combined (3.04 

A) ionic radius of Y (1.04 A) and the van der-Waals o f CH3 (2 . 0 0  A).
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, , ° \  / M\  .M e
'Bu 'Bu ^ > 1 ^

M e M e

Yb •Yb

C J H

Me

Bu M = Y  or Lu R = p-M e-CgH 4

Figure 35: M olecular structures o f  the metal coordinated [A lM e4]' and [M e3A lE(R )AlM e3]' anions.

A related anionic system with a CH 3 periphery has been recently developed by 

Michl and is based on the mono-anionic cluster [c/oso-CBnHn]* that has the advantage 

o f a significantly more delocalised negative charge . 133 These anions are used in this 

thesis and the next section shall discuss these clusters and their bonding in depth.

1.3. M o n o -A n io n ic  C a rb o ra n e s  a n d  th e i r  A lk y la te d  D e riv a tiv es

1.3 .1 : The [c/ostf-CBuHn]' Cluster

The mono-anionic carborane cluster [c/oso-C B nH ^]' was first synthesized by 

Knoth in 1967.134’ 135 The icosahedral cluster core is extremely stable, having a 

delocalised a  bonding framework, a high HOMO-LUMO energy gap, a closo cluster 

core electron count and a high oxidation potential - making it conceptually a three 

dimensional analogue of benzene. These properties combined with its large size (~3.4 A 

average B-B diameter), spherical shape, mono-anionic charge and lack of any lone pairs 

or 7i electron density leads to its relatively weak nucleophilicity and its potential as a 

weakly coordinating anion . 1 2 6 , 1 3 6 , 137
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Despite the inherent stability of the carborane core its periphery has a wide and 

versatile substitution chemistry that can lead to lower nucleophilicities, higher stabilities 

and increased solubilities in low dielectric solvents. The reactivity of the B-H bonds 

varies over the cluster due to the more electronegative carbon at position - 1 polarising 

the cage. The antipodal (B12) boron is the most reactive towards electrophilic attack, 

due to its increased hydridic nature, this is followed by the lower pentagonal belt B-H 

bonds (B7-11) with the upper pentagonal belt (B2-6) being the least susceptible to

110
electrophilic attack. The carbon at position - 1 has no reactivity to electrophiles.

v B(2)-B(6)
~r 'Upper pentagonal belt'

y  'Lower pentagonal belt'

B(12) 
'Antipodal boron'

Figure 36: The labelling o f [c/o5o-CBnH12].

Controlled substitution of the three inequivalent boron vertices is possible, for 

example, in the halogenation reactions the B(12) position is functionalised under mild 

conditions (I2, 20°C), the B (7 -ll) positions under harsh conditions (excess IC1, 20°C), 

while the B(2-6) vertices require forcing conditions (excess IC1, 200°C, 2 days) . 138,139

Recent ab-initio calculations assist in the rationalisation of the observed 

reactivity of [c/oso-CBnHn ] ' .140 From Frontier Molecular Orbital theory it is known 

that the selectivity o f electrophilic attack is highly dependant on the amplitude of the
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HOMO at any particular position. In [c/ojo-CBhH h]’ the HOMO and HOMO -1 (both 

degenerate pairs of molecular orbitals) are relatively close in energy and thus both have 

to be examined when considering the cage’s substitution patterns. The HOMO consists 

o f orbitals at both the lower and upper pentagonal belts, whilst the HOMO-1 

predominantly involves a large amplitude on the antipodal vertex and a smaller on B7- 

12 (Figure 37).

Figure 37: The HOMO and HOMO -  1 o f [c/ojo-CBuH^]' (only one o f each degenerate pair is shown).

Further theoretical studies at the B3LYP/6-31G(d) level by McKee141 on the 

Natural Population Analysis (NPA) Charges o f [c/oso-CBnHn]’ calculated that the 

vertices B (7 -ll)  and B(12) carry partial negative charge (-0.13 and -0.11 respectively) 

whilst B(2-6) are slightly positive (0.03). An inferred order o f reactivity with respect to 

E+ can be postulated from these set o f calculations o f B (7 -ll) » B(12) > B(2-6). The 

combination o f these two investigations goes someway to accounting for the observed 

reactivity at each vertex.

The following mono-anionic compounds are all readily synthesised by

electrophilic substitutions at some or all o f the hydridic B-H bonds: [1 2 -(CH3)2S-c/aso-

CBnHn], [I2-CH3SCH2SCH3-C/050-CBHH11], [12-X- c/ayo-CBjiHn] (X = F, Cl, Br or

I), [7-I-cfojo-CBiiHii], [7,12-X2-c/as0-CBnHio] (X = Cl, Br or I), [7,8,9,10,11,12-Xg-
38
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c/oso-CBiiH6] (X = D, Cl, Br or I), [I-H-c/ojo-CBhXh] (X = F, Cl, Br or I) and [12- 

CX3COOHg-c/<m>-CBiiHn] (X = H or F) . 138,142 The halogenated derivatives of [closo- 

CB11H 12]’ have found extensive use in the stabilisation of reactive cationic complexes 

due to their robust nature and weakly coordinating properties. 143' 148

As opposed to the B-H bond’s hydridic nature, the C-H bond is acidic and 

functionalisation is readily achieved via deprotonation and nucleophilic substitution 

reactions. The various C substituted carborane products include: [l-R-c/o^o-CBnXn] 

(R = alkyl, aryl, halo, X = H, Cl, Br or I), [1-HS-c/ojo-CBhHh], [1-COOH-c/oso- 

CBnH n] [l-R 3Si-c/<wo-CBnHii], [l-Ph2P-c/aso-CBiiHn], [l-R(OH)CH-c/oso- 

CBnH n] (R = alkyl).138, 149'151 These salts are generally characterized as the Cs+ or 

R3NH+ salts. Simple salt metathesis reactions lead to the synthetically useful salts Ag+, 

Tl+, Ph3C+, R3Si+, and H(OEt2) +. 152

1.3.2. Alkylated Carboranes:

The first example o f a C-alkylated mono-anionic carborane was achieved by the 

deprotonation of the C-H vertex by a strong base followed by reaction with a series of 

alkyl halides to give a range of carboranes o f the general formula [l-R-c/oso-CBnHn] 

(Figure 38).149 The 1-alkyl systems are also readily accessible in the final step of the 

synthesis of the carborane cage, by a functionalised carbene insertion into the anion 

[wJo-BhHm]' (albeit in low overall yield) . 153
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H H H

Figure 38: Preparation of [1-c/ojo-R-CBhH m]' via deprotonation.

A mono-alkyl carborane anion has also been synthesised with a B -R  vertex ( R = 

aryl), in this case the 2-aryl derivative [2 -P h -l-c /o 50-C B n H n]*, which can be formed by 

the insertion o f a functionalised boron into the [wJo-CBioHn]3' anion . 154

A number o f B-alkyl derivatives have also been synthesised via the conversion 

o f B-I vertices to B -C  vertices by palladium catalysed alkylation with Grignard 

reagents. 155 This technique was initially developed by Hawthorne et., a / , 156 for the 

alkylation o f the [c/ayo-B^H n]2* anion. The 1,12 dialkyl carborane derivatives [1-R- 

12-R -c/oso-CBnHio]' are readily synthesised from [1-R-1 2 -I-c/o5o-C B hH h]' by this 

methodology (Figure 39). Partially methylated carboranes have also been prepared from 

the polyiodinated carboranes by a similar Pd catalysed cross coupling with CH3MgI. No 

fully alkylated or hexa-alkylated derivatives were reported to be synthesised and 

isolated cleanly via this route for the mono anionic [CBn]* cluster. 133

H xs MeMgBr, THF H

Reflux, days 
catalytic Cul, 
(PPh3)2PdCI2

24H, CH 3COOH

R and R' = phenyl or alkyl substituent 

Figure 39: Formation of 1,12 dialkyl carboranes from [c/oso-CBnH^]'.
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The highly methylated derivative of the 10-vertex carborane [1-H-closo- 

C BgM eJ has been synthesised from [l-H-c/oso-CB^]* using Pd catalysed cross

1 S7coupling in a sealed tube reaction at high temperatures.

The first successful peralkylation o f the B-H vertices of a carborane was

achieved in the neutral carborane analogue paraA.M-closo-MQiC^BioWiQ that

•  • 1 •  •underwent permethylation with a methyl triflate -  triflic acid mixture. This reaction

when carried out with the more reactive [c/oso-CBnH^]’ lead to unspecified products, 

but not the desired permethylated derivative. 133 The first synthesis of a mono-anionic 

peralkylated carborane [c/ojo-CBnM eu]', was achieved using excess methyl triflate in

the presence of a hindered base (2,6-di-tert-butylpyridine) (Figure 40). 

Me

133

*Bu

excess MeOTf

Figure 40: The formation of [c/o5o-CB|1M e12]* by reaction with excess methyl triflate.

The hindered base was required to react with the triflic acid produced as a by

product of the electrophilic substitution, thereby preventing unwanted side reactions and 

ultimately cage degradation. The permethylation reaction is self-catalysing ensuring that 

[c/oso-CBiiMei2]" is the only functionalised carborane product. Initial mono- 

methylation activates the cage to further electrophilic substitutions due to the electron 

donating nature o f the methyl substituents. 155 An improved synthesis of [closo- 

C BnM e^]' without the need for the expensive hindered base has also been recently 

published. 140 Salts o f the permethyl carborane anion [c/ojo-CBuMen]" are air stable, 

stable to fragmentation in concentrated base and dilute acid, but cage degradation
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occurs slowly on exposure to concentrated acid. This susceptibility to strong acid 

environments has been used to produce two mono fluorinated functionalised derivatives 

of [c/oso-CBnM en]’, the 12 and 7 isomers by reaction with HF . 159 A number o f 1- alkyl 

derivatives can be produced with the general formula [ 1 -K-closo-CB \ \Me i \] by the 

methylation of [l-R-c/oso-CBnHn]" in an identical manner. 140

An alternative route to peralkylated carborane anions is by the treatment of 

[c/ojo-CBhHi2]" with excess RBr (R = Me or Et) in a sealed tube under vacuum at 

raised temperatures. 160 This produces the peralkylated carborane anions [1-H-closo- 

C BiiRn]' as the only boron-containing product (Figure 41). Attempts at peralkylation 

with more sterically demanding alkyl bromides, i.e. ‘PrBr, lead to a mixture of 

polyalkylated carboranes [l-H-c/oso-CBiiHii-nPr,,] (n = 4 to 7); the incomplete nature 

o f this reaction is due to the increased steric effects o f the isopropyl groups.

Excess RBr, Vacuum

Figure 41: The formation o f [l-H-c/ojo-CBnRn]' via the ‘sealed tube method’.

A direct result of the peralkylation o f the monocarborane anion is an increased 

susceptibility to oxidation, owing to the alkyl substituents. Ab-initio calculations 

compute that permethylation reduces the ionisation potential (IP) from 5.19 eV ([<closo- 

CB11H 12*]) to 4.32 eV, still a remarkably large value especially when compared to the 

experimental IP o f F" and Cl* of 3.399 eV and 3.617 eV respectively . 141 Nevertheless the 

formation of the radical [c/aso-CBnMe^]* by electrochemical (potentials greater that 

1.2 V {vs Fc/Fc+}) means or by reaction with PbCh/CFaCOOH proceeds rapidly
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producing an air stable black crystalline solid . 159 The radical [CBnMe^]* is soluble in 

oxidation resistant non-polar solvents (e.g., CCI4, pentane); with its stability attributed 

to the steric protection provided by the peripheral encapsulating CH3 groups.

[c/o5o-CBnM ei2][Y] (Y = group (I) cations excluding Li+) are soluble in polar 

organic solvents (e.g. CH2CI2, Et2 0 ), but sparingly in hydrocarbons. The cation has a 

significant contribution to the solubility properties o f these anions, the lithium salts 

being the most soluble o f all the simple cations, with a measurable solubility even in 

alkanes. 140 Replacement o f the C-l methyl group with higher alkyl homologues further 

improves solubilities of the lithium salts. Lijc/oso-CBnM en] has also proved to be an 

active catalyst for Lewis acid catalysed pericyclic rearrangements, Diels Alder additions 

and ally and silyl ether solvolyses, showing that the Li+ cation is highly Lewis acidic. 161

A mixed halogen/methyl functionalised carborane, [ l-H-2,3,4,5,6 -Me- 

7,8,9,10,11,12-X-c/oso-CBn]' ( X = Cl, Br, or I) has been recently reported, which can 

also be readily synthesised in a two-step manner from [c/o^o-CBnH^]' (Figure 42).162

H xs X2 (or ICI), CH3CO2H H H MeOTf/HOTf

Figure 42: Formation o f [l-H-c/ojo-CBnX6(CH3)5]' from [c/o5o-CBnH|2]‘.

Pentamethylation renders the anion an order o f magnitude greater solubility in 

toluene than the parent [c/ojo-CBnHeXe]* anion, without losing its chemical robustness 

-  a drawback with the permethylated anion [c/ojo-CBnM eu]'. It is indefinitely stable in
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neat triflic acid and more resistant to oxidation, it has in fact been described as the 

‘golden mean’ between [c/oso-CBnH e^]' and [c/aso-CBnM e^]'. A methyl reagent 

that is a stronger methylating agent than methyl triflate has been synthesised utilising 

this anion and used in the stoichiometric reaction of benzene with Mefl-H-c/oso- 

CBiiMesBre] to yield [C6H6Me][l-H-c/<m>-CBnMe5Br6]. Under identical conditions 

methyl triflate shows no significant conversion o f benzene to the toluenium salt (Figure

43).

Room Temperature

Figure 43: The isolation o f a Wheland type intermediate by use o f [l-H-c/ojo-CBnM e5Br6].

The potency of the Me+ in Me[l-H-c/o50-CBnMe5Br6] coupled with the 

robustness of its counter ion is further exemplified by the formation of [Me3C][l-H- 

c/os0 -CBnMe5Br6] that is stable at room temperature under inert conditions (Figure

4 4 ) 163 -phe weakiy coordinating nature o f the [l-H-c/oso-CBnMesXe]’ (X = Cl or Br) 

anion is clearly demonstrated by the absence of any close C+—X contacts (in all 

complexes the interatomic distances are greater than the combined van der-Waals radii) 

and the sum of the C -  C+ - C angles being 360±0.1°.
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Room Temperature

Figure 44: The synthesis o f [Me3 C][l-H-c/as0 -CBnMe5Cl6].

This anion appears to have the combined stability to strong acid/oxidising 

environments o f the hexa-halogenated carborane derivatives, and to some extent the 

improved solubility characteristics of the permethylated carborane anions.

1.3.3: Coordination Chemistry o f Alkylated Carboranes:

In contrast to the well-developed area o f hexa-halogenated carborane 

chemistry,137, 143' 148* 162-171 there are relatively few reported metal complexes with the 

peralkylated carborane anions. The solid state structures o f the thallium (I) and alkali 

(Li+, Na+, K+, Rb+ and Cs+) salts of [c/oso-CBiiMe^]’ co-crystallised with arene 

solvents are known and display a number of different coordination motifs (I -  IV, 

Figure 45) . 172 The carbon vertex was not located in (I) and (IV) due to positional cage 

disorder, but is unambiguously assigned in structures (II) and (III). Methyl hydrogens 

were not located in any of the structures belaying any discussions on the M —H3C 

coordination motifs.

In all four structural motifs the weak electrostatic interactions between the cation 

and [c/o56>-CBnMei2]‘ necessitate strong cation -  r\6 arene interactions. The Tl+, Cs+, 

Rb+ and K+ systems are all isomorphorous with the metal cation sandwiched between
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two effectively parallel r |6-coordinated arenes, (I). The geometry is pseudo  octahedral 

with four equatorial contacts from adjacent cages completing the metal coordination 

sphere (all angles 90 ± 3°) Each anion in turn is coordinated to four metals in the 

extended structure. Processing up the alkali metal group to Na results in an alteration in 

the benzene/anion coordination motif to a pseudo tetrahedral geometry (II). Displaying 

a tilted arene sandwich arrangement and two close anion contacts from the lower 

pentagonal belt (positions 7 and 9) that extend to produce a polymeric chain.

Me

Me

Me

T MeMi/i
M e /

Me \

M = Tl, Cs, Rb and K

N
\

\Li
Me

Me
»M e
Me

MeMe'

I Me
Me

(III)

 I :i'-'Me M e - , V  . " I  H r  Lie

Figure 45: Structural bonding motifs for a series o f  sim ple metal cations partnered with [closo-
C B nM e12] .
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The Li+ analogues contains two independent motifs in the solid state. In both the 

lithium is tetrahedrally coordinated by one rj6-arene and three CH3 interactions from one 

cage anion. In (III) the Li+ is coordinated to positions 7, 8  and 12 on one cage, and 

close examination revealed that these three methyl groups have been pushed apart 

slightly to improve the metal encapsulation. The Li-C distance (average 2.34 A) is 

significantly shorter than the combined (2.90 A) van der-Waals radius for CH3 (2 . 0 0  A) 

and the ionic radius of Li+ (0.90 A). These very close contacts and the anion methyl 

distortion (not observed for any other alkali salts) reflects a significant electrostatic 

interaction between the small lithium cation and the anion. In (IV) the Li interacts in a 

similar manner but consists of chains of half-occupancy ri6-toluene-Li+ complexes on an 

inversion centre. The close contact ion pairing observed goes some way to explaining 

the improved solubility over other alkali salts in non-polar solvents.

The [c/oso-CBiiM en]’ anion has been structurally characterised partnering a 

more complex cation, [nBu3 Sn]+. The reaction o f two equivalents of the strong neutral 

oxidant [c/oso-CBnMe^]* with «-Bu6 Sn2 in an inert solvent (hexane) led to the ready 

formation o f ["B^SnJJW oso-CBnMeu] (Figure 46).173

Figure 46 Structure o f  nBu3Sn[C B n M ei2 ], hydrogen atoms om itted.173
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In the solid state there is a weak interaction between the [nBu3Sn]+ cation and 

two methyl groups o f the [c/oyo-CBnMen]* cage, resulting in a trigonal pyramidal 

geometry around the Sn. The B-CH3*-Sn contacts are significant, as judged by the close 

Sn-C distance (average 2.81 A) lying comfortably within the combined van der-Waals 

radii for CH3 (2 .0 0  A) and Sn (2.17 A) of 4.17 A. Crystallographic disorder of the cage 

anion prevented the determination of the carbon vertex and consequentially the 

identification o f the position of the coordinated vertices (1 and 12 or 2 and 9) was not 

possible. Calculations at the B3LYP/SDD level on the ion pairing energies for the 

model complex Me3Sn[c/aso-CBnMei2] gave the ordering o f coordination energies as 

12 > 7 > 2-6 »  1 when there is only one cage---Sn contact. The calculated Natural 

Population Analyses produced a similar charge distribution, further supporting these 

computations.141 However, due to each cage having two points of contact the 2,9 

coordination m otif is calculated to be more stable in the solid-state by 1 0 .6  kcal/mol. 

The coordination persists in solution as demonstrated by the observed 119Sn NMR 

chemical shift o f 466 ppm. This is drastically further downfield than other 

trialkylstannyl cations, but it is still far lower than the calculated 1700 ppm shift o f a 

truly free cation, suggesting a significant Sn-H3C interaction.

1.4: Alkylated Carboranes as Weakly Coordinating Anions:

1.4.1: Background:

Weakly coordinating anions are vital in commercial olefin polymerisation 

processes, as electrolytes in lithium ion batteries, [M]+ catalysed organic reactions, ionic 

liquids, extraction o f radioactive cations from waste, photoacid generators and to
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stabilise highly electrophilic (or oxidizing) cations. 174 A key property in these systems is

an anion--metal interaction sufficiently weak that reactants or other poor electron

1donors can readily displace it. The previously thought o f ‘non-coordinating anions’ 

such as; [CIO4]', [OTf]', [BF4]', [PF6]' and [SbF6]‘ have all been reported to coordinate

• * 17̂  17Q
readily to Lewis acidic metal ions and are in fact weakly coordinating anions. ' Out 

o f this research came an improved understanding of the properties required to generate 

the next generation o f ‘non-coordinating’ or more aptly ‘super weakly coordinating 

anions’ and they include:

• No basic or nucleophilic sites on the periphery (e.g. lone pairs, hydridic 

hydrogens, multiple bonds or easily polarised single bonds,

• Resistance to bond cleavage by super electrophilic metals,

• Kinetically and thermally stable,

• Delocalised charge distribution,

• Large size to minimize electrostatic attraction,

• Good solubility.

The leading candidates exemplifying the majority o f these properties are the highly 

fluorinated tetraphenyl borates and halogenated derivatives o f the [c/oso-CBnHn]’ 

anion (Figure 47).135,138,180
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; b b

[B(C6F5)4]- [BArFr  i d o s o - CB, ̂  H6Br6]'

Figure 47: Commonly used Weakly Coordinating Anions.

These anions, especially the fluoroborates, have become ubiquitous throughout 

industrial and academic organometallic chemistry, being successfully utilised to isolate 

cationic transition metal complexes with very weak cr donors (i.e. CH2CI2, CH3CI, Et2 0 , 

H2, N2, RsSiH and agostic C-H bonds), highly active olefin polymerisation catalysts and 

proving that there is no such thing as a non coordinating solvent.35,74,75,126,181-183 They 

have also been used to stabilise reactive cations, including silylium cations, protonated 

arenes and other highly Lewis acidic organometallic fragments.137, 184, 185 The major 

drawbacks in these systems have been their poor solubilities in non-polar organic 

solvents and particularly with the borate derivatives a tendency to form liquid clathrates 

thereby frustrating crystallisation . 162 These hindrances limit the prospects of these 

anions in attempts to isolate and structurally characterise stable alkane a  complexes.

1.4.2: [c/0 $0 -CBnM ei2]‘ - a Weakly Coordinating Anion?

Alkylated carborane mono-anions have the potential to attain the solubility 

criteria and thus solubilise reactive superelectrophiles into hydrocarbon media. The 

icosahedral [c/oso-CBn]' cluster core seems ideal for weakly coordinating applications, 

with its large size, delocalised negative charge, no lone pairs and good stability. When
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coupled with the improved solubility and reduced nucleophilicity inherent in 

peralkylation then these compounds could produce the ideal weakly coordinating anion.

A method to determine the coordinating ability o f  these anions relative to other 

commonly used anions involves the soft transition metal scale, based on CpFe(CO)2X 

(where X is the weakly coordinating anion). The average carbonyl stretching frequency 

correlates to the degree o f  back bonding which in turn is highly sensitive on the cationic

* * 137character at Fe -  thus an indirect measure o f  anion coordination (Figure 48). The 

coordination ability determined from these stretching frequencies is that [closo- 

C BnM en]’ is more nucleophilic than [c/oso-CBuF^Bre]', a result that appears counter 

intuitive implying that a lone pair is less coordinating than a C-H <r bond.

Average vCO in 
x toluene (cm'1)

I* 2016

CI04- 2049

C B ^H ^ ' 2049

SbF6* 2050

CB9H5Br5- 2096

C B uM e^' 2098

CBiiH6Br6-____________2108_______

Figure 48: The relative coordinating power of a series o f anions based on the CpFe(CO)2+ system.

It has recently been reported that the solvento complex 

[CpFe(CO)2(toluene)][c/ayo-CBnMei2] is formed on the oxidation o f the dimer 

[CpFe(CO)2 ]2  by the radical [c/oso-CBnM en].140 This is in contrast to a transition 

metal complex o f  the [l-H-c/oso-CBiiHsBre]' anion that remains coordinated in the 

presence o f arene solvents and has been structurally charcterised.166 The combination o f
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these two reports cast doubt on the ordering of these anions and in fact suggests that the

11%peralkylated carborane has the extremely weakly coordinating nature desired. An 

alternative rating system is based on the 29Si NMR chemical shift of ’P^SipC]; however, 

due to [c/<m>-CBnMei2]‘ decomposition it is impossible to compare it using this scale 

(Figure 49).

Compound 8(29Si) ppm Conditions Compound 5(29Si) ppm Conditions

lPr3S i(0 S 0 2C F3) 40 de-toluene 'PraSiO-H-CBnMesBie) 112 c 6d6

'Pr3Si(toluene)+ (F20-BPh4)' 94 d8-toluene ,Pr3Si(1-H-CB11Me5CI6) 113 c 6d6

'PraSKI-H-CBnHsBre) 100 C6D6 ■PraSiO-H-CBnCIn) 114 de-toluene

'PraSiO-H-CBuHsCy 103 <0Qto
O

,Pr3Si(1-H-CB11H5CI6) 115 solid state

'Pr3Si(F20-BPh4) 107 solid state lPr3Si(1-M e-CB11F11) 120 da-toluene

Figure 49: Selected solution and solid state 29Si Chemical Shifts for 'Pr3SiX.

There has been no work at all reported on the coordination behaviour of the 

permethylated carborane anion partnered with transition metals and no further chemistry 

at all on the higher ethyl homologue [c/oso-CBnEt^]' due to its inaccessibility in usable 

quantities. 186

In an analogous manner to the development o f the [BArp]* anion to alleviate the 

coordinating ability o f the BPhT anion and prevent B-C bond cleavage, fluorination of 

the [c/aso-CBiiM en]' cluster has been successful. 136 The reaction of [c/oso-CBnMe^]' 

to give the fully fluorinated product [c/o^o-CBn(CF3)i2]' has been achieved in a two- 

step process (Figure 50).187 This anion is stable up to 250°C, in saturated base solutions 

and in concentrated f^SCVtriflic acid, whilst being electrochemically inert and having a 

large Van der-Waals diameter (~ 1 1 A).
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CB-nC-̂ HriFse-n
Mixture 

8 < n < 18

Figure 50: Synthesis o f the fully fluorinated anion [c/050-CBii(CF3) i2]'.

[c/ow-CBh(CF3)i2]', however, is highly dangerous to use as it explodes upon 

scraping with a metal spatula, the products of the explosive decomposition are BF3, 

[BF4] ', soot and CO2. The high energy o f decomposition is due to two factors, the large 

increase in the bond energy on the formation of a B-F bond relative to a C-F bond and 

the large strain energy due to the severe steric crowding o f the perfluorinated carborane.

1.4.3 Anion Decomposition:

Along with anion coordination the other major limitation in the use of super 

weakly interacting anions is anion decomposition. The ubiquitous [ B ^ F s j J '  anion 

rapidly degrades in the presence o f [A1R.2]+ (though this cation has been isolated with 

[l-H-c/aso-CBnM esB^ ]* ) ,145 [EtZn]+, [H]+ (if no donor solvent is present) and open 

group 14 metallocenes.126, 188’ 189 The equally universally used [BArp]' anion has also 

been demonstrated to decompose in several systems. For example, attempts to partner it 

with [(PPh3)2Pt(Me)(OEt2)]+ and ['P^Si]* resulted in B-C cleavage and fluoride 

abstraction respectively . 190,191 The reaction with silylium cations is noteworthy as anion 

coordination to 'P^Si* is a methodology used to rank weakly coordinating anions.
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It was whilst attempting to generate analogous silylium cations partnered with 

[c/os0 -CBnM ei2]* that its decomposition and susceptibility to strong electrophiles was 

discovered. The reaction of lBu6Si2 with the radical [c/oso-CBnMeu]* (in an analogous 

method to that successfully used in preparing nBu3Sn(c/aso-CBnMei2)) initially 

produced lBu3SiMe and the neutral cage [c/oso-CBnMen] (that is highly reactive to any 

nucleophiles present) rather than the expected [tBu3Si][c/o50-CBnMei2] (Figure 51).140 

*Bu3SiSi*Bu3 + 2 C B ^M e^

I

:Bu3SiMe

borenium ylide

Figure 51: Proposed mechanism for the cage decomposition in the presence o f silylium cations.

A plausible mechanism is proposed in Figure 51, with initial formation of the 

anion coordinated silylium complex, analogous to the characterised [nBu3Sn]+ salt, that 

then abstracts the methyl in the antipodal position generating the borenium ylide closo- 

CBnM en (an anionic cage with eleven ligands and a positive centre at the 12 

position)140 and ‘B ^SiM e - both o f which are detected. The internally charge 

compensated borenium ylide is highly reactive, stable only below -60°C. Above this in 

the presence o f even weak nucleophiles it reacts rapidly to yield a variety of 12- 

substituted products [ 12-Nuc-c/<m>-CB11Men].

A related reaction occurs when the lithium salt o f the permethylated anion is 

heated in an aromatic solvent. With the simplest anion, [c/oso-CBnMen]", multiple 

methyl/aryl exchange occurs to generate an intractable mixture.192 An important point is
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that the lithium salt is vital in mediating this exchange, as other alkali salts exhibit no 

activity, presumably due to lithium’s greater Lewis acidity . 161 Aryl incorporation was 

found to be more specific when the C l methyl is substituted for a dioxaborole ring 

(Figure 52); the lithium is now proposed to be partially coordinated to the oxygen atoms 

reducing its Lewis acidity and allowing for the selective 12 functionalisation.

H "H

1. BuLi

2. 'Pr0 B(C6H 120 2 )

0  Me

-  SiMe4 Me Me

Figure 52: Schematic for the formation o f [l-(C6Hi2O2)B-12-(4’-Br-C6H4)-c/0S0-CBnMe]o]* from Cs-
c/ojo-CB|iH12.

The reaction is postulated to proceed by one o f two mechanisms: the first is S e 2, 

involving the abstraction by Li+ o f the antipodal methyl generating a borenium ylide 

which would then react with the arene by insertion into the Si-C bond followed by 

subsequent attack on the silicon centre by CH3LL An alternative feasible mechanism is 

that Li+ coordination to the methyl in the 12 position activates it towards a  bond 

metathesis. This methodology has also been utilised to incorporate the anion onto a 

polymer support by the heating o f Li[c/o50-CBnMei2] with polystyrene under a high

vacuum. 140
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1.5. Scope of Thesis:

Whilst [c/o50-CBnMei2]" has been demonstrated to provide a degree of 

improved solubility in non-polar solvents (albeit highly cation dependent), its 

robustness in the presence of strong electrophiles can be deficient It has though been 

reported to form stable, well-separated ion pairs (solvento complexes) with softer 

transition metal complexes and M —H3C interactions with a number o f alkali cations and 

[nBu3Sn]+. There is still a dearth in its coordination chemistry especially with respect to 

transition metals and therefore a need for further in-depth investigations into these 

highly attractive peralkylated carborane anions.

LnM

[X-ML'n] Me

Well Seperated Ion Pair Complexes 
Possible Solvento Complexes, or other 

weak donor complexes.

. /  .- -M e  
L'nM "

Anion Coordinated Complexes.

In Alkane Soluble Superelectrophilic Systems

H ©

; “MLn Me 
H ' '

Stable Alkane Complexes

Figure 53: Possible outcomes from the partnering o f [l-H-c/oso-CnMen]" with varying metal
complexes.
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Any metal complexes formed may show either methyl interactions between the 

cage periphery and the metal centre (a model for alkane a  complexes) or interactions 

with solvent molecules and other weak donors whose chemistry would be o f interest in 

their own right (Figure 53). Combination with the optimal cation/ligand combination 

may even grant access to alkane soluble superelectrophiles and a significant step 

towards generating an unsupported a  alkane complex.

In this thesis two major methodologies were followed to decide which cationic 

metal centres to investigate the coordination properties o f the peralkylated carborane 

anion with, the first being based on known metal complexes o f the closely related 

weakly coordinating anions [c/aso-CBnF^Br*]’ and [M eB ^F s^ ]* , where intimate 

anion--cation interactions have been previously unambiguously characterised e.g.,

(R.3P)Ag(c/<m>-CBnFl6Br6), rra«5-(PPh3)2lr(H)2(c/o50-CBnH6Br6) and Cp2ZrMe(p- 

Me)B(C6F5)3 (Figure 54).146' l48> 193

Figure 54: Anion bound metal com plexes, whose [l-H -c/o5o-C B n M eu ]* analogues will be investigated.

In the second case, cationic complexes that are isolobal with the 16 electron fragment 

{CpRe(CO)2 } (that gives alkane complexes o f the longest lifetimes thus documented), 

partnered with [l-H-c/oso-CBnM en] were also investigated. The cationic charge on the 

metal centre should increase the binding strength of weak ligands (e.g., the anion,

H
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solvent or other weak donor) and a range of these complexes that were studied 

throughout this work are shown in Figure 55.

L = CO or PR3 
R = Ph or Cy

'Pr3P Pt P'Pr3

Me

..Re,__

0C i  
0

pr3
Op 1 C\  1

+

1

o C " T ^
^ M C—n 

G - ?  \ < 0
L u c  c

-  O 0

M = Mo, W

M
R'

Me

‘R

M = Co, Rh, R = Me, H 
R' = Me, Ph

Figure 55: Cationic complexes formally isolobal with {CpRe(CO)2}.

These complexes, as well as being cationic congeners o f the {CpRe(CO)2} 

fragment, have all been the focus of related studies which have shown them to exist as 

either solvent coordinated, agostic, dihydrogen, or anion--cation zwitterionic

n r  n n  i  t f t ' l  1 0 4  1Q 0
complexes, ’ thus making them attractive targets for the investigation o f

the coordination properties o f [l-H -c /o so -C B n M en ]' when partnered with these 

cations.
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2: Silver Phosphine Complexes Partnered with [1-H-

C B n M e n ]  •

2.1: Introduction:

The Ag(I) salts, especially those o f anions that have a coordinating ability on par 

with weak donor solvents (e . g Et2 0  or CH2CI2), are o f structural interest due to their

1-3potential for a diverse range o f solvent coordinated or anion coordinated structures. ’ In 

addition, the utilisation o f silver (I) salts for the metathesis o f a halide with a weaker 

coordinating anion is a standard methodology for the formation of either cationic 

solvent or anion-coordinated metal complexes.4 They are also an intermediate on the 

way to the formation o f other synthetically useful salts.5

It is well documented that arenes readily bind to Ag(I) metals and this 

significantly improves their solubility in comparison to other simple salts.6 Saturated 

chlorocarbon solvento Ag(I) complexes -  particularly involving the ‘polar but 

noncoordinating’ dichloromethane are less widespread and have been characterised in

1 7  ftonly a handful o f cases. * ’ These have required anions based on the

pentafluorooxotellurate and polyfluoroalkoxyaluminates moieties. Structures have been 

documented with up to three CH2CI2 molecules interacting with a single silver centre 

(Figure I ) . 1’ 9
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(H 3C )(F 3C )2C

(H 3C )(F 3C )2C

F /^ T e ^ O ^ ,,  Tj|iilrtrtOTeF5

lF 5T e O ^ ^  ' ^ O T e F 5O TeF5

h O TeF5

Figure 1: Solid state structures o f  silver (I) salts o f  weakly coordinating anions exhibiting mono and tris
solvation o f  the Ag(I) cation by CH2C12

Silver (I) salts o f the ubiquitous weakly coordinating anion, [BArp]’, have been 

established by single crystal studies to comprise anion arene interactions, albeit with 

bidentate exo ligation from 1,2-di-iodobenzene or 2,2’-bipyridine . 10 In both complexes 

there is a bidentate bonding motif with the Ag cation sandwiched between two arene 

rings, one structure consisting o f a symmetrical r| -r\ interaction whilst the other 

displays an unsymmetrical r^-T) 1 type (Figure 2).

Figure 2: Solid-state structures o f  the symmetrical and asymmetrical bonding m otifs o f  L2A g(I) salts o f
the [TFPB]' anion.

CF3 c f 3

It is suggested that the alteration in the bonding mode is due to the increase in 

steric bulk associated with moving from 1 ,2 -diiodobenzene to the more bulky 2 ,2 ’- 

bipyridine . 10 The authors suggest that steric hindrance generated by the CF3 substituents



is the principal origin of the weakly coordinating nature o f [BArp]'. This is exemplified 

by the ability o f unencumbered cations to intercalate between two arene rings and form 

stable compounds, in contrast to the ready formation o f solvent coordinated complexes 

when the metal-ligand set possesses significant steric volum e . 11" 14

Halogenated derivatives o f [c/oso-CBnHn]" have been demonstrated to have a 

coordinating ability comparable to that o f the per-alkylated [c/oyo-CBnMeu]" (see 

Introduction) . 15 Coupled with their similar dimensions and spatial arrangement this 

affords a sequence o f anions that provide for a better insight and comparison to the 

coordination properties o f [c/ojo-CBnM eu]’ than the geometrically disparate [BArp]" 

anion. The silver salts o f a range o f hexa, per-halogenated and mixed halogenated mono 

anionic 1 2  -  vertex closo-carboranes have been successfully synthesised and their solid- 

state configuration determinated.5, 16, 17 All of the characterised structures consist o f 

contact ion pairs with the anion coordinated to the Ag(I) cation through a lone pair from 

at least one halogen atom [e.g., Figure 3 Ag(c/o50-CBnH6Cl6)-(p-xylene) and Ag(closo- 

CBi iHeBrg].

Figure 3: Solid state structures o f  [A g(c/o5o-C B u H6Cl6) (p-xylene)] and [A g(c/oso-C B nH 6Br6)],
hydrogen atoms not shown for clarity.
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There are two major repeating motifs observed throughout these systems: (i) the 

anion bridging multiple Ag(I) centres forming a one dimensional co-ordination polymer 

and; (ii) discrete molecules with the silver encapsulated by one carborane anion and a 

number of arene interactions (Figure 5). In general, the systems are far from 

isostructural, involving a variety of mono-, bi-, tri dentate halogen atom binding, r | 1 and 

r| arene interactions and silver coordination numbers from three to six. Silver (I) 

cations are thus able to exist in a wide variety o f coordination environments provided 

there is efficient packing and charge compensation.

A method for the further reduction of the coordinating nature of these anions 

was observed in a ‘dimeric unit’, [AgX2]' (X = [l-H-c/o5o-CBnH 6Br6]‘) that has an

1 fieven lower electrostatic attraction than the simple anion. The effective charge is now 

halved by the coordination of a second [l-H-c/oso-CBnHeBre]’. The lower 

nucleophilicity enabled the first isolation of the anion ‘free’ cation [Fe(tpp)]+ (tpp = 

tetraphenylporphyrinate), where two molecules of p-xylene binds favourably over [(1- 

H-c/o50-CBnH5Br6)2Ag]' (Figure 4).

Figure 4: The cation [Fe(tpp)]+ with axial coordination by two molecules o f p-xylene.

A notable trend from the mixed halogenated carborane anions, [ 1 -H-closo- 

C B n B rsC y , is the tendency for the cation to bind preferentially to the lower

6 8



pentagonal belt (B7 -12) and antipodal Cl lone pairs (Figure 5). This is counter intuitive 

given the presence o f the better electron donor Br atoms in the upper pentagonal belt 

(B2-6) and contradicts the hard-soft acid-base principle . 16 The electron density 

polarisation across the cluster core caused by the electronegative carbon at C l (see 

Chapter One) is still having a significant effect on the coordinating ability of the 

peripheral halogens -  enough to reverse the chlorine/bromine ordering of lone pair 

accessibility. 19

:CI x a?n

A B

Figure 5: A series o f bis-arene silver salts o f A: [l-H-c/ojo-CBnBrsCle], B: [I-H-c/ojo-CBhCIh], all 
exhibiting coordination through {BX} vertices 7 through to 12.

Supporting evidence for this is provided by the coordination behaviour of the [1- 

H-c/oso-CBnXii]' anion (X = Cl or Br) that consistently interacts through the lower 

pentagonal and antipodal positions (e.g., Figure 5).

In arene solvents the coordination persists and contact ion pairs similar to that 

observed in the solid state can be proposed, albeit not to the extent of one-dimensional 

polymers. This sustained interaction is characterised by a change in the chemical shift in 

the n B NMR spectroscopy in comparison with that o f the ‘free’ anion in the caesium 

salt.5 , 17 In stronger donor solvents (e.g. acetone or acetonitrile) the n B NMR chemical 

shifts are similar to those observed for the non-coordinating Cs+ salt, implying the
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formation o f solvento-complexes of the general formula [Ag(solvent)x]+. The solution 

NMR chemical shifts o f these anions provide a valuable handle on their co-ordinating 

power with respect to common solvents.

It is noteworthy that there is no structural information available on the silver 

salts of what hitherto has been classified as the weakest coordinating member o f the 

[closo-CButtn]' derivatives, [l-R -c /a so -C B n F n ]*  (R  = H or CH3) (as determined by 

29Si N M R  chemical shift of ,Pr3Si+) 20’ 21 The mono-fluorinated analogue Ag[12-F- 

c/ojo-CBhHh] has been synthesised and the solid-state structure exhibits no close 

Ag—F contacts. Instead, the silver(I) coordination sphere is occupied by two benzene 

molecules and one terminal B-H contact.22 This is in contrast to the structure o f 

Ag(C6H6)[12-Br-c/o50-CBnHn] which contains a short A g—Br distance of 2.642(1) A 

implicit o f a significant interaction (Figure 6 ). By inference it would be expected that 

the Ag(I) salt o f [l-R -c /o so -C B u F n ]"  would not involve any anion-Ag coordination and 

therefore would presumably lead to solvento complexes.

Figure 6: Structural motifs for the Ag(I) salt o f [12-F-c/oso-CBnHn]' and [12-Br-c/ojo-CBnHn]'.

H H
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Phosphine stabilised silver (I) salts o f mono carborane anions have previously 

been investigated and demonstrate excellent catalytic activity in hetero Diels Alder 

reactions.2 4 ,25 Solid-state studies have revealed that they form contact ion pairs in a 

variety o f bonding modes that persist to some degree in non-interacting solutions 

(Figure 7). In the (PPh3)Ag(anion) complexes the positioning of the {Ag(PPh3)}+ 

fragment is consistently asymmetric over one triangular face o f the carborane cluster. 

The Ag(I) coordination environment is completed by significantly longer intermolecular 

interactions with an anion or phenyl ring from an adjacent unit in the extended lattice. ’

27

Figure 7: Solid state structures o f the asymmetric units o f  a number o f Ag(PPh3)x (x = 1 or 2) 
coordinated to a series o f carborane anions.

As seen previously for the non ligated simple silver salts an interaction persists 

in solution, again indicated by the change in the anion chemical shift in the 1 *B NMR 

spectra. The Csv symmetry of the cage on {Ag(PPh3)}+ coordination is maintained in 

solution, thus the cation fragment is fluxional over the surface o f the cluster on the 

NMR timescale as found in other analogous exo-coordinated Ag(PPh3) carborane 

systems.28,29
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The strength o f the Ag-P bond in these systems is a good measure of the degree 

o f interaction between the anion and cationic fragment. In the {Ag(PPh3)}+ system it 

has furthermore been demonstrated that there is a good correlation between the solid- 

state determined Ag-P bond length and the Javerage(AgP) coupling constant. Both can be 

used to measure the strength of the cation-anion interaction (Table 1), with a stronger 

Ag-P bond (by a greater J(AgP) or a shorter solid-state Ag-P length) indicative of a 

weaker cation--anion interaction. Whilst this is a useful indicator, care has to be taken 

in the interpretation due to the variation in the binding motifs and observed silver 

coordination environments. The results do suggest a logical conclusion that the weakest 

coordinating anion by both techniques is the [c/ostf-CBiiHgCy. A possible 

inconsistency in this system is in the relative ranking of [c/oyo-CBnHn]' and [closo- 

CBnH 6Br6]* that contradicts several alternative rankings (this is probably an artefact of 

the different bonding observed in (PPh3)Ag(c/<m>-CBnHi2) and (PPh3)Ag(c/oyo- 

CBnHsB^ ).15

Anion J(AgP) Hz A g - P  Bond distance (A)

CB^H^ 743 2.3625(7)
C B -j 3 H1 1 Br 621 2.39*
CBnHeBre 715 2.4032(3)
CB^HeCle 770 2.314(2)

* average value o f  the two independent molecules present in the asymmetric unit 

Table 1: Comparison o f the solution and solid-state properties o f a series o f [(Ag(PPh3)]+ complexes.

A comparable method for the nucleophilic ranking o f these anions in the 

Ag(PPh3)+ system is their catalytic activity in hetero Diels Alder reactions. Importantly, 

a number o f classic, weakly coordinating anions have also been investigated and the
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relative coordinating power demonstrated to increase, [c/oso-CBuF^Brs]' < [closo- 

C B 11H 12]’ < CICV * O T f < BF4‘. The relatively high coordinating power suggested by 

this methodology for BF4‘ is suspect and has been attributed to catalyst decomposition 

to inactive oxy-borates under the reaction conditions . 25

Moving from PPh3 to an analogous two electron donor, the carbene 1,3- 

dimesitylimidazol-2-ylidene (IMes), resulted in the isolation of the novel 

disproportionation compound [Ag(IMes)2]2[Ag2(c/o50-CBnHi2)4] as opposed to the 

expected [Ag(IMes)c/o50-CBnHi2] compound (Figure 8 ) . 30 Each Ag(I) centre in the 

dianionic portion is coordinated by three carborane anions only, in an approximately 

trigonal prismatic arrangement.

H  ;A g

Figure 8: [Ag2(C B n H i2)4]2' solid-state structure omitting disorder in the bridging carborane clusters.

Solution studies on the bis-phosphine Ag(PPh3)2+ complexes established a 

fluxional process which has been ascribed to an equilibrium between contact ion pairing 

(e.g., as in the solid-state structure of (PPh3)2AgX (X = [c/oso-CBnH u]’ and [closo- 

CBnH 6Br6]' showing intimate anion cation ion pairing})25, 26 and a linear [Ph3P-Ag-

73



PPh3]+ cation with a well separated anion. This behaviour is indicative of weak 

A g-an ion  interactions not persisting in solution. A noteworthy comparison is obtained 

from the analogous compound with the classic weakly coordinating anion BF4' as the 

counter ion. This produces a nearly linear solid state structure and no solution 

fluxionality ,31 allowing the conclusion that BF4' is less strongly interacting than the 

[closo-CBnHn]' and [c/oso-CBnHeBre]'anions to [Ag(PPh3)2]+.

2.1.1 Scope of Chapter

The coordination chemistry of the highly methylated carborane anion with [Ag]+ 

and phosphine stabilised silver salts has not been studied. This anion with its periphery 

comprised entirely o f methyl groups can be expected to be one of the weaker 

coordinating in the series of anionic derivatives o f [c/oso-CBnHn]’. Structural studies 

will therefore be interesting, as this anion will have a coordinating ability on par with 

weak donor solvents (e.g., Et2 0  and CH2CI2) and can result in the formation of either 

intimate ion pairs or metal-solvent complexes (Figure 9). If there are close anion--cation 

interactions this will, by necessity, involve Ag—F^C contacts -  a model for the a  alkane 

bond. Alternatively, if  solvent separated ion pairs result then this has the potential, if 

they are soluble in hydrocarbon solution, for the formation o f true alkane a  complexes.

‘AgPR3

Intimate Ion Pair Solvent Separated Ion Pair

Figure 9: The two possible resultant products on the partnering o f  the highly alkylated carborane anion
with cationic silver fragments.
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2.2. Results and Discussion:

Michl and co-workers reported the synthesis o f N M e^c/oso-CBuM en] by the 

complete methylation o f N M e^l-M e-c/oso-C BnH n] using methyl triflate followed by 

salt metathesis to prepare a range of other complexes M Jc/oso-CBnM en] (M = Li+, Tl+, 

Ag+, Na+, K+ and Cs+ ) . 3 2 , 33 Consistently, the molecular structures generated by X-ray 

diffraction studies exhibited anion positional disorder, preventing the unequivocal 

location o f the cage carbon (see Introduction) thus frustrating efforts to determine the B- 

CH3 vertices involved in the metal contact.19, 33, 34 To circumvent this and allow for 

unambiguous assignments o f the cage vertices it was necessary to introduce a 

crystallographically prominent marker location to the cage periphery. A facile way to 

accomplish this without drastically altering the synthetic complexity and the chemical 

properties o f the resultant anion is to leave the unique carbon vertex un-methylated. The 

synthesis of Cs[l-H-c/<m>-CBnMen] is consistently achieved in reasonable yield (60 -  

70%) starting from Cs[c/aso-CBnH i2], whilst avoiding the use o f the expensive 

hindered base (Figure 10) . 19

C aH 2, Sulfolane

excess M eOTf

Figure 10: The synthesis and a space filling diagram o f  the [l-H -c/o50 -C B MM en]' anion.

Conversion o f the caesium salt to other simple cations including [HN(Me)2Ph]+, 

[NR4 ]+ and Ag+ is readily accomplished by the use o f a two phase HiOfEXjO extraction 

methodology . 33 A g(l-H -c/o5 o-CBnM en) (I) can be converted to the mono phosphine
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derivatives (R3P)Ag(l-H-c/o.y0 -CBiiMeii) by the addition o f one equivalent o f R3P (R 

= Ph, C6H n and 3 ,5 -Me2C6H3). The solid state structures o f these four compounds will 

be discussed first followed by solution, DFT studies and finally their reactivity with 

additional Lewis bases.

2.2.1: Solid State Investigation into Ag+ and {(R3P)Ag}+ complexes of [1-H-closo- 

CBn Me„]

2.2.1.1: Ag[l-H -c/0 S0 -CBn Men ] (I):

Recrystallisation of the crude solid (I) by the slow diffusion of hexanes into a 

saturated CH2CI2 solution afforded colourless crystals o f suitable quality for X-ray 

diffraction studies. Complex (I) is stable in the solid state under an inert atmosphere 

though under prolonged exposure to light discolouration and ultimately decomposition 

occurs to give uncharacterised products. The solid-state structure of (I) exhibits no 

ambiguity in the location of the carbon vertex and only minor disorder in the hydrogen 

positions on C3 and C 10 is found. This can be readily modelled by half occupancy of 

two separate sets. In the asymmetric unit the silver cation and the anion are not well 

separated (Figure 1 1 ). There is one close A g-F ^C  contact (A g l—C7 2.6535(18) A) 

from a methyl group on the lower pentagonal belt. This is within the combined (3.29 A) 

van der-Waals radius o f CH3 (2 .0 0  A) and the ionic radius o f Ag+ (1.29 A), suggesting a

i t
significant anion-cation interaction. Similar close M -'FLC interatomic distances have 

been previously reported for a number of alkali salts o f the related anion [closo- 

CBnM en]’. The data was of sufficient quality to freely determine the C7 methyl 

hydrogen positions without any restraints and the refined bonding m otif lies between
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C2

1 - 0C1

B2

H7a

B7
C7

H7c
H7b

C 12

Ag1

Figure 11: M olecular structure o f  the asymmetric unit o f  A gfl-H -c /o so -C B u M en ] (1), and the extended solid state structure show ing all A g—H3C contacts in the unit cell.
(ellipsoids drawn at the 30% probability level).

Ag1-C7 2.6535(18) Ag1-C9’ 3.089(2) B9'-C9'-Ag1 95.86(10) C4-B4 1.597(2)
Ag1-H7A 2.17(6) Ag1-C12" 2.762(2) B12"-C12"-Ag1 168.48(14) C7-B7 1.601(2)
Ag1-H7B 2.49(4) Ag1-C10’" 2.7716(18) B10'"-C10’"-Ag1 156.05(12) C8-B8 1.603(2)
Ag1-H7C 2.65(4) B7-C7-Ag1 158.78(13) C7-Ag1-C8' 161.87(5) C9-B9 1.606(2)
Ag 1-C4’ 3.067(2) B4’-C4'-Ag 1 94.18(11) C4'-Ag1-C12" 158.79(5) C10-B10 1.611(2)
Ag1-C8‘ 2.832(2) B8'-C8'-Ag1 101.08(11) C3-B3 1.588(2) C12-B12 1.608(2)

T able 2: Selected bond lengths (A) and angles (°) for (I).



the r |2-C,H and the ti4-C,H,H,H with one close (2.17(6) A) and two longer (2.49(4) and 

2.65(4) A) H-”Ag contacts (Figure 1 2 ).

s '

H
ti4-C,H,H,H

'H
H3-C,H,H

F igu re  12: T he three possible binding m odes for the CH3- M  interaction (the continuum o f  asym metric
intermediates is not show n).

The close contact is at the upper limit of that previously reported for Ag-H 

contacts, albeit in Ag-H-M bridging units (1.4A to 2.2 A ).36,37 The three C-H bonds

(given the usual caveats associated with the free refinement o f hydrogen positions using 

X-Ray diffraction data). The B7-C7 bond length is identical, within experimental errors 

to those of non-coordinating B-CH3 vertices and the B7-C7-Agl angle (158.78(13)°) is 

significantly bent. These findings combine to exclude the possibility of any significant 

CH3 a  donation. Definitive a  interactions studied by neutron diffraction all display

■jo
some C-H bond lengthening.

Inspection of the extended solid-state structure in (1) revealed the close 

proximity o f three additional anions adjacent in the lattice (Figure 11). The overall 

coordination sphere of each Ag(I) in the lattice approaches psewcfo-octahedral with a 

total of six Ag—H3C methyl contacts (range o f A g-H 3C distances of 2.652(2) -  

3.089(2) A). These close contacts consist of mono-dentate (i.e. through one CH3 vertex) 

to three anions and an unsymmetrical tri-dentate (through three vertices) association 

with the remaining anion. Both the octahedral coordination and the varying (mono- and 

tri-dentate) binding natures have precedence in the group 1 salts o f the related anion

exhibit no lengthening and the angles are close to expected for ideal sp hybridisation
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[c/oso-CBiiM e^]’, albeit with arene molecules in the apical positions of the distorted 

octahedron. The anion immediacy in these cases was attributed predominantly to crystal 

packing forces maximising anion -cation interactions . 33 In the absence o f any observed 

deformation o f the contact methyl groups it strongly suggests that this is also the case in 

the observed structure o f (I). These additional contacts explain the asymmetric nature of 

the interaction between the C7 methyl group and the Ag(I) in the asymmetric unit. The 

deviation from linearity (B7-C7-Ag(l) 158.78(13)°) is necessary to allow for the 

accommodation o f the other cage anions. The arguments for a primarily electrostatic 

nature of the bonding in (I) are further strengthened by the examination o f the extended 

packing diagram, which demonstrates that the Ag+ cations occupy distorted tetrahedral 

holes formed by four approximately spherical anions (Figure 13), reminiscent of the 

structure o f the classically ionic complex zinc sulfide (Wurtzite). The radius ratio (r+/r.) 

for the relative radii o f Ag+ (1.29 A) and the approximately spherical [ 1 -H-closo- 

C B iiM en]' (-3 .5  A) at 0.37 lies comfortably in the range permitted for tetrahedral 

coordination (0 . 2 2  -  0 .41).39

Figure 13: Packing diagram for (1) Carborane anions shown as polyhedra and A g+ cations as spheres o f
arbitrary radius.
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An alternative way to view the structure o f (I) is that each carborane anion is 

closely associated with four Ag+ cations (Figure 14). The closest Ag -Ag distance at 

6.567 A is far too long to invoke any Ag -A g interactions.40, 41 These multiple 

interactions produce a three-dimensional coordination polymer in the crystal lattice. The 

longer Ag—H3C contacts are associated with the tri-dentate bonded motif, as would be 

expected when compared to the mono-dentate, predominantly end on contacts. In the 

tri-dentate bonding m otif there is a slight elongation o f the C 8  -  C9 distance (C 8  -  C9 

3.532 A versus the average of the remainder of the anion, 3.471 A). Presumably this is 

to permit the fuller encapsulation of the Ag(I) cations and a similar engulfing effect has 

been seen for the related complex Li(c/as0 -CBnM ei2 ) . 33 Anion methyl distortion 

exemplifies the important point that highly alkylated carboranes are not regular rigid 

icosahedra.

Figure 14: The coordination environment around a single carborane anion.

The observed silver binding locations (apart from a long contact to C4 in the tri- 

dentate interaction) all originate from the lower pentagonal belt or the antipodal cage 

vertices. Theoretical and experimental analysis on other derivatives of [c/oso-CBnHn]"
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have demonstrated an analogous positional preference and has been shown to arise from 

the increased negative charge residing on these vertices relative to the upper pentagonal 

belt. 16,19,42 A simplistic rationalization o f this observation is to consider the origin of 

the dissimilar electron density magnitude at each inequivalent boron position. The cage 

carbon polarises the cluster principally by reducing the electron cloud associated with 

the upper pentagonal belt. This concurrently decreases the degree of electron density 

withdrawal to the connected peripheral groups (halogen or Me). The remoter lower 

pentagonal belt and antipodal boron positions experience this significantly less, 

permitting more o f their associated electron density to be withdrawn to their relatively 

more electronegative periphery (Figure 15). The net effect is a greater partial negative 

charge on the vertices B7-12 leading to the energetic preference for cations to bind to 

the cage through these sites. A parallel effect in the [l-H-c/oso-CBnM en]' anion is 

feasible and B3LYP/SDD calculations on the ion-pairing energies for the four 

inequivalent vertices in nBu3Sn(c/aso-CBnMei2) generate a similar trend in stabilities 

12 « 7-11 >2-5 » 1 .34

5+ 5* 
B------ H

5+ 5' H
B

2.20
2.04
Br 2.96

B------ Halo F 3.98 I 2.66
Cl 3.16 C 2.55

5+ 5'
B CH3

Figure 15: A simplified schematic demonstrating the major electron withdrawing effects in derivatives of 
[c/ojo-CBnHI2]', X = Halogen, H or CH3. The Pauling scale electronegatives are also listed.43

The tight ion paring observed for (I) is in contrast to the Ag(I) salts of weakly 

coordinating anions based on the pentafluorooxotellurates and
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polyfluoroalkoxyaluminates that form solvento complexes on recrystallisation from 

CH2CI2 solutions (e.g., [Ti(OTeFs)6]' and [A1(0 (CH3)(CF3)2]’) . 1,7 Despite the saturated 

C-H exterior of [l-H-c/oso-CBnM en]’ the presence of close anion-cation contacts in

17 0the solid-state assign it as more coordinating than these anions. ’ * The coordination 

polymers formed are, however, comparable to the halogenated derivatives of 

[CB11H 12]'.5’ 16,17,42 The solution behaviour of (I) will be discussed later and shows that 

these contacts are retained.

2.2.1.2: (PPh3)Ag[l-H -c/0 S0 -CBi,M en] (2):

(PPh3)Ag(l-H-c/o5o-CBnM en) (2) is afforded in good yield by the reaction of 

equimolar CH2CI2 solutions of (I) and PPI13. Recrystallisation from the slow diffusion of 

hexanes into a saturated CH2CI2 solution at -20°C provided colourless crystals of 

sufficient quality for X-ray diffraction analysis. Complex (2) crystallises with no 

positional disorder in the cage, allowing for the unambiguous assignment of the cage 

carbon atom. The asymmetric unit (Figure 16) consists o f one {(PPh3)Ag}+ fragment 

and one [l-H-c/oso-CBnMen]* anion in close contact through a single B-CH3 vertex on 

the lower pentagonal belt o f the cage (Agl -  C7 2.544(2) A). This is judged by the 

previously defined criteria o f being closer than the combined van der-Waals radius of 

CH3 and the ionic radius o f Ag+ (3.29 A). The A gl-C7 separation is significantly 

shorter than this ‘outer limit’ implying an appreciable interaction. The distance is 

considerably longer than that found in crystallographically characterised Ag-C single 

bonds (e.g., (PPh3)AgCH2C6F5 2.144(5) A)44 but it is a o f a comparable length to that 

reported for rj1-arene-Ag(I) interactions (e.g., AgCBnH i2'C6H6 2.400(7) A),45 where 

there is evidence for significant a  donor character.46
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H 7 c  H 7a

,C 1 2

Figure 16: M olecular Structure o f  the asymmetric unit o f  (PPh3)A g[l-H -c/o5o-C B 11M e11] (2), thermal ellipsoids are shown at the 30% probability level.

Ag1-P1 2.3871(5) C7-H7a 0.93(3) P1-Ag-1-C7 152.21(6) B7-C7-Ag1 138.88(15)
Ag1-C7 2.544(2) C7-H7b 0.93(3) H7a-C7-B7 108(2) H7c-C7-H7a 116(3)

Ag1-H7a 2.19(3) C7-H7c 0.93(4) H7b-C7-B7 109(2) H7b-C7-H7a 114(2)
Ag1-H7b 2.20(3) C7-B7 1.606(3) H7C-C7-B7 112(2) H7c-C7-H7b 97(2)
Ag1-H7c 3.033(3)

Table 3 Selected Bond Lengths (A) and angles (°) for the asymmetric unit o f  (2).



The hydrogen positions associated with the interacting vertex, C7, were freely 

refined without any constraints. Given the usual caveats inherent in the use of X-ray 

data for the assignment of hydrogen locations a number o f observations can be made. 

The methyl group adopts a r| -C,H,H m otif involving two close Ag-H contacts that are 

identical within experimental error (Ag-H7a 2.19(3) A and Ag-H7b 2.20(3) A) and one 

considerably longer distance (Ag-H7c 3.03(3) A). The Ag-H7 close contacts reside at 

the upper range for crystallographically characterised bridging Ag-H-M complexes (1.4 

- 2 . 2  A).36,37, 47 The asymmetry in this interaction is further illustrated by the B7-C7- 

Agl angle of 138.88(15)° being significantly perturbed from the expected 180° for a 

symmetric end on Ag "H 3C contact.48 Similar metal-methyl bonding motifs have been 

previously characterised for a variety of systems including the anion coordinated 

compounds LiBMe/ 9 and [{ l,3 -(SiMe3)2C5H3}2ZrMe(p-Me)B(C6F5)3]50 and a number 

o f agostic interactions (see Chapter One) . 51

The C-H bond lengths (C7-H7a 0.93(3) A, C7-H7b 0.93(3) A and 0.93(4) A) 

associated with the interacting moiety do not deviate from that expected for C-H bond 

lengths in methyl groups (0.98 A). The H-C-H angles involved are also close to the 

ideal tetrahedral angle o f 109.28° (116(3)°, 114(2)° and 97(2)°). Combined, these two 

sets of structural metrics rule out any significant contribution from a  bonding as this 

would be expected to result in a notable distortion in the methyl group away from 

pseudo-tetrahedral. The intermolecular bonding in (2) is dominated by ionic attractive 

forces as noted for the related anion coordinated systems involving [BMe4]' and 

[MeB(C6Fs)3]' where there is equally no perturbation o f the tetrahedral geometry about 

the interacting B-CH3 moiety 49, 50, 52, 53 Weak Ag-*F interactions in low coordinate
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silver phosphine complexes partnered with BF4' have also been described as being

o 1
essentially electrostatic in origin.

The silver phosphine bond length can be a useful indicator o f the binding 

strength o f anions to the cationic {(PPh3)Ag}+ fragment (see Introduction). In (2) the 

Ag-P distance o f 2.3871(5) A is of a comparable length to the analogous systems 

partnered with [c/aso-CBnH n]' and [c/oso-CBuf^Bre]’ (2.3625(7) A and 2.4032(3) A 

respectively) and even the NO3' anion (2.3918(4) A), whilst being noticeably longer 

than that for the [c/oso-C B nH eC y (2.314(2) A).25,54 Again, over interpretation should 

be restricted due to the disparate binding motifs and degree o f additional intermolecular 

interactions present - a better indicator o f anion coordinating power, that of the solution 

^(AgP) coupling constant, will be discussed later.

In an analogous manner to that observed for (1), examination of the extended 

solid-state structure resulted in the characterisation o f further close anion--Ag contacts 

from adjacent anions (Figure 17). Two additional, albeit significantly longer A g ' H 3C 

connectivities complete the coordination environment around Ag(I) - thus (2) has an 

extended- three dimensional polymeric structure in the solid state. The additional 

contacts (A gl-C 9’ 3.154(2) A and Ag-C1 2 ” 3.336(2) A) are significantly longer in 

comparison to A gl-C7 (2.3871(5) A) and approach the ‘interaction limit’ of 

{Ag}+- *H3C (3.29 A). It is reasonable to assume that the source o f the asymmetric 

binding mode between A gl and C7 are these long-range contacts, with the observed 

arrangement entirely dominated by the maximisation o f electrostatic interactions. The 

contact methyl hydrogens (C9 and C l2) were freely refined without restraints and 

equally display no elongation or angle deformation in comparison to sp3 CH3 moieties.

85



oo
ON

Ag1-C9' 3.154(2) Ag1-C12" 3.336(2)
Ag1-H9a' 2.73(4) Ag1-H12a" 2.45(3)
Ag1-H9b' 2.54(4) Ag1-H12b" 3.434
Ag1-H9c’ 3.338 Ag1-H12c" 3.546
C9-H9a 0.94(4) C12-H12a 0.94(3)
C9-H9b 0.95(4) C12-H12b 0.88(3)
C9-H9c 0.94(4) C12-H12c 0.87(4)
C9-B9 1.600(3) C12-B12 1.598(3)

H9a-C9-H9b 94(3) H12a-C12-H12b 100(2)
H9b-C9-H9c 109(3) H12b-C12-H12c 104(3)
H9a-C9-H9c 95(3) H12a-C12-H12c 106(3)
H9a-C9-B9 114(2) H12a-C12-B12 115(2)
H9b-C9-B9 120(2) H12b-C12-B12 114(2)
H9C-C9-B9 120(2) H12C-C12-B12 115(2)

Table 4: Selected bond lengths (A) and angles (°) 
for the extended structure o f  (2).

Figure 17: The A g(I) coordination sphere for (2). Hydrogen atoms omitted for clarity, except on 
Cl ,  C 9’ C 12” . Thermal ellipsoids shown at 30% probability level.



1

These additional binding motifs (Figure 17) are a second r\ -C,H,H and for the longest 

interaction an V -H . As the interactions are clearly best described as ionic, little insight 

can be taken from these motifs with respect to true a  interactions. Mixed binding modes 

in the extended structure observed in (2 ) are analogous to those previously determined 

by neutron diffraction studies for LiBMe4 that shows a mixture o f r|3-C,H,H and r|4- 

C,H,H,H interactions.49

A number o f connections can be made between the solid-state structures of (1) 

and (2). The interacting vertices in both originate predominantly from the lower 

pentagonal belt and antipodal positions -  as expected from the relative negative charge 

densities. The bonding in each is mainly electrostatic with no visible indication of any a  

orbital contribution. Structurally they are analogous (Figure 18) with the replacement of 

one o f the globular [1-H-c/ayo-CBnMen]' anions for a PPh3 ligand effecting only 

minor changes in the arrangement o f the remaining three anions. The more bulky, less 

symmetrical, PPI13 ligand results in a slightly more diffuse packing arrangement around 

the silver centre, as indicated by the longer secondary A g -F ^C  contacts relative to non 

ligated AgJT-H-c/oso-CBnMen]. Both (1) and (2) can be viewed as having a pseudo 

tetrahedral coordination around the silver centre (Figure 18).
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Figure 18: Space filling diagrams for (1) and (2), at 100% van der-Waals radii.

It would be advantageous to limit the Ag- H3C interactions to those involving 

only a single cage for a number of reasons: (i) to reflect more accurately the solution 

phase coordination as the longer contacts would not be expected to persist in the 

homogeneous environment; (ii) to allow closer comparison to gas phase DFT 

calculations (that do not take into account solution or solid-state effects); and (iii) an 

isolated interaction should reduce the complexity o f any observed Ag—H 3C contacts. A 

straightforward method o f approaching this is to increase the steric bulk associated with 

the phosphine ligand, thereby increasing the congestion at the Ag(I) centre in 

anticipation that this would make it less accessible to supplementary intermolecular 

interactions from the adjacent anions in the lattice.

2.2.1.3: (PCy3)Ag[ 1 -YL-closo-CYluM e,\] (3):

Use o f the more bulky phosphine ligand tricyclohexyl phosphine (PCy3) (a 

Tolman cone angle o f 170° as opposed to PPh3 , 143°)55 allows for the ready synthesis 

and isolation in moderate yield o f (PCy3)Ag(l-H-c/<m>-CBnMen) (3) as a crystalline
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Figure 19: M olecular structure o f  the asymmetric unit o f  (PCy3)A g[l-H -c /o so -C B n M eii] and the extended solid state structure show ing all A g—H3C 
contacts (thermal ellipsoids shown at the 30% probability level). Hydrogen atoms omitted from the extended structure for clarity.

Table 5: Selected bond lengths (A) and angles (°) for the extended structure o f  (3).

Ag-P 2.3881(4) C12-H12b 0.93(5) Ag-C12 2.608(2) B8"-C8"-Ag 153.41
Ag-H12a 2.38(4) C12-H12C 1.02(5) Ag-C4' 2.888(2) C4'-Ag-C12 88.50(8)
Ag-H12b 2.74(5) H12a-C12-H12b 108(3) AgC8" 2.898(2) C12-Ag-C8" 92.92(8)
Ag-H12c 2.21(5) H12a-C12-H12c 120(4) B12-C12-Ag 157.04(18) C4’-Ag-C8" 97.73(7)

C12-H12a 0.92(4) H12b-C12-H12c 80(3) B4'-C4'-Ag 157.38



solid in an analogous manner to that for (2). The solid-state structure o f (3) is shown in 

Figure 19. There is no positional disorder allowing for the unequivocal assignment of 

the cage carbon atom. As found for (1) and (2), the asymmetric unit exhibits one close 

Ag—H3C contact between the cationic silver fragment {(PCy3)Ag}+ and the anion [1-H- 

c/osoC B nM eii]', this time via the antipodal, B12 cluster vertex. The Ag-C12 

separation (2.608(2) A) is comfortably within the previously stipulated upper limit 

indicative o f a significant interaction (3.29 A). The data set was also of sufficient 

quality to allow for the associated hydrogen atoms to be freely refined in the 

penultimate difference map. In a related manner to that exhibited in (2) there are two 

close H —Ag contacts that are identical within experimental error (Ag-H12c 2.21(5) A, 

Ag-H12a 2.38(4) A) and lie at the upper limit o f bridging M-H-Ag units.36, 37 The 

remaining C 1 2 -H bond is further away at 2.74(5) A. The three C 1 2 -H bond lengths are 

all identical; there is, however, some deformation in the bonding angles associated with 

the contact methyl (H12a-C12-H12c 120(4)° and H12b-C12-H12c 80(3)°), with the 

widening o f r| -C,H,H bonding angle causing a concomitant compression of at least 

one of the other H12-C12-H12 angles. This could be suggestive o f a degree of a  

bonding character between the methyl group and the Ag. The absence o f any elongation 

of the implicated C-H bonds and the high errors associated with any hydrogen positions 

determined by X-Ray diffraction data do not support this.

The silver phosphine fragment is not orientated end-on with respect to CH3(1 2) 

but is slanted significantly away from linearity (B12-C12-Ag 157.04(18)°), though 

considerably less than that observed for (2) (B7-C7-Ag 138.88(15)°). The possible 

origin(s) o f this difference are twofold -  firstly an increased electron donation when 

moving from PPI13 to PCy3, or from increased cr donor contribution from the anion C-H
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bonds could be instigating the change in geometry to achieve favourable orbital 

orientation. Alternatively, it could simply be due to packing effects to maximise 

electrostatic interactions. The latter is supported by the examination o f the extended 

lattice that reveals the presence of a further two relatively close Ag-C distances to 

adjacent anions (A g-C4’ 2 .8 8 8 (2 ) A and Ag-C8 ”  2.898(2) A). When viewed down the 

Ag-P axis, (3) appears to have pseudo C3 symmetry with the immediate Ag(I) 

coordination being reminiscent of a propeller m otif (Figure 20). The globular anions 

reside partially between each of the cyclohexyl rings thereby achieving a close 

proximity to the silver in order to maximise Coulombic interactions.

C12
C8"

Figure 20: C om plex (3) view ed down the Ag-P axis show ing the pseudo-C3 symmetry (thermal 
ellipsoids at 30% probability). All hydrogens are removed for clarity.

These further two close contacts are equally bent (B4’-C4’-Ag 157.38° and 

B8 ” -C8 ” Ag 153.41°). The bending of each B-C-Ag angle therefore originates due to 

steric interactions between the cyclohexyl rings and each o f the three anions and the 

observed value presumably represents the energetic minimum achieved on reducing 

cyclohexyl -  anion and anion -  anion steric repulsions whilst maximising electrostatic 

Ag --cage interactions.
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The Ag-P bond length (2.3881(4) A) is longer than that found for three 

coordinate (PCy3)AgL2 complexes (e.g. 2.345(2) A for [(PCy3)Ag(p-Cl)2] and 2.351 A 

for [(PCy3)Ag{(pz2B(pz)2}]),56, 57 but shorter than that found in four coordinate 

complexes (e.g., [(PCy3)AgI]4 average Ag-P distance 2.43(1 )A or [(PCy3)2Ag(r|2-NC>2) 

2.460(1 )A).56,58 Whilst increasing the steric bulk o f the phosphine ligand has induced a 

shift from the geometry exhibited by (1) and (2 ), the ability o f the globular anions to 

partially intercalate between the cyclohexyl rings allows for the close approach of three 

anions and the subsequent failure to isolate the Ag—H3C contacts to a single cluster.

In an attempt to increase further the steric hindrance associated with the 

ancillary phosphine ligand, an analogous synthesis was attempted with tri {ortho-tolyl) 

phosphine (P(o-Tol)3, cone angle 198°). Numerous efforts at obtaining pure crystalline 

material o f (P(o-Tol)3)Ag(l-H-c/o5o-CBnM en) all failed. The only observed 

complexes involved stabilisation from solvent coordination (when solvents more Lewis 

basic than CH2CI2 are utilised e.g., acetone, Et2 0 ) or via phosphine disproportionation 

to yield {(P(o-Tol)3)2Ag}+ {vide infra. -  31P{]H} NMR spectroscopy chemical shifts 

consistent with a linear bis phosphine adduct) and Ag(l-H-c/o5o-CBnM en) (again vide 

infra, with CH3 signal broadening indicative of Ag—H3C -  discussed further in the 

solution studies section). This implies the phosphine is sterically shielding the Ag(I) 

centre enough that no single anion can approach to provide the apparently crucial 

stabilising anion-cation multiple interactions. (Figure 21). The prevention (or 

destabilisation) o f close anion-cation contacts would generate an unsupported 

{(PR.3)Ag}+ fragment (or only weakly supported by CH2CI2 coordination) that without 

the close electrostatic intermolecular interactions appears inherently unstable.
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1 Agll-H-c/oso-CBuMe-n]

1 (o-Tol)3P:

Me 
M«/le

^ - A g -p —

Not Seen - Unstable due to 
unfavourable steric interaction

0.5 AgH-H-c/oso-CBuMe-n] 

+

0.5 [(o-Tol)3P-Ag-P(o-Tol)3] 
[1-H-c/oso-CBiiMen]

Only observed product by 
31P{1H} NMR spectroscopy

Figure 21: Dispropotionation mechanism for the formation of the observed products from the reaction o f
equimolar quantities o f (1) and (o-To!)3P.

Complexes with less sterically demanding anions have been reported and are 

perfectly stable in the solution and the solid-state though even with anions as sterically 

unencumbered as NO2* the bulky (o-Tol)3P prevents any extended solid-state 

interactions and only monomers are observed.58

2.2.1.4:(P(3,5-Me2-C6H3)3)A g[l-H -c/^ -C B 11Me1i] (4):

Following the failure of increasing the phosphine cone angle as a methodology 

to eliminate the extended lattice contacts, an alternative but complementary approach 

was investigated. Re-examination o f the extended structure o f (2) (Figure 17) reveals 

that the meta -  positions of the phenyl rings of the ancillary PPI13 approach to within 3.6 

A to a number o f CH3 moieties on adjacent anions. It was thus reasoned that by the 

placement o f suitable bulky groups in the 3,5 positions on the phenyl rings it would 

prevent external anions approaching and thus confine the A g—H3C interactions to a 

single carborane anion in the solid state. The slow addition o f P(3 ,5 -Me2-C6H3)3 to a 

slight excess (~ 1.1 equivalents) of (1) in CH2CI2 and recrystallisation from 

CH2Cl2/pentane afforded extremely air and moisture sensitive crystals of lower than
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desired quality. Despite repeated attempts, crystals o f superior quality were 

unobtainable. A single crystal X-ray diffraction study was performed on the most likely 

candidate available and though they gave data o f sufficient quality to define the gross 

features of (4) unambiguously (Ri = 0.1008), it was inadequate for the free refinement 

of the hydrogen atoms.

The asymmetric unit of (4) (Figure 22) contains the {(P(3 ,5 -Me2-C6H3)3)Ag}+

fragment in close contact with a single [l-H-c/oso-CBnM en]' anion. There is no
*

positional disorder in the cluster allowing for the unequivocal assignment of the cage 

carbon. The silver centre is in relatively close proximity to two CH3 vertices (Ag-C12 

2.554(10) A and Ag-C7 2.785(10) A) and to one vertex by a longer connectivity (Ag- 

C8 3.166(10) A). All fall within the combined ionic radius o f Ag+ and the van der- 

Waals radius o f CH3 (3.29 A) and thus are considered to be significant. Inspection of 

the extended lattice reveals no anion approaches that are inside this stipulated limit; 

there is the possibility o f one additional contact to an adjacent anion in the lattice (Ag- 

C2 ’ 3.726 A). This would be weak, if  noteworthy at all, falling as it does outside the 

combined van der-Waals radii of CH3 and Ag (3.70 A ).35 Although this may still be the 

origin for the asymmetric orientation o f the (PR.3Ag}+ fragment over a triangular face of 

the anion. An alternative explanation for the asymmetric tridentate binding mode is 

possible, where the experimentally determined binding m otif is energetically favourable 

compared to a symmetrical interaction over a triangular face. The approach o f the C2’ 

methyl observed in the extended lattice would then be attributable solely to efficient 

crystal packing. It would appear that increasing the steric bulk at the distal (with respect 

to Ag(I)) sites on the phenyl rings has switched off any major additional interactions. 

The reduction in electrostatic interactions is consequently compensated for by a
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Ag-P 2.360(3)
Ag-C12 2.554(10)
Ag-C7 2.785(10)
Ag-C8 3.166(10)

C12-Ag-C7 83.5(3)
C12-Ag-C8 75.5(3)
C7-Ag-C8 71.7(3)

B12-C12-Ag 100.1(4)
B7-C7-Ag 96.5(5)
B8-C8-Ag 90.0(4)

Table 6: Selected bond lengths (A) 
and angles (°) for (4)



reduction in the length (and concomitantly an increase in the strength) of the Ag-P bond 

in (4) (2.360(3)A) compared to that established for (2 ) and (3) (2.3871 (5)A and 

2.3881(4)A respectively). Bearing in mind the significant associated errors, there 

appears to be no increase in the inter-methyl distances involved in the Ag connectivity 

in contrast to that observed for the simple lithium salt and to a degree in (2) . 19 The poor 

quality of the data set precludes any further meaningful investigation of the structural 

metrics associated with the anion cation interaction.

The gross structural silver coordination environment observed in (4) - namely an 

asymmetric tridentate m otif is similar (albeit with closer Ag -HsC contacts) to that

observed in the extended structure of (1) and in that previously reported for [(r|6-

• 22
C6H6)Li][c/o5o-CBnM ei2]. It is also not dissimilar to that noted for (2) and (3) both of 

which equally consist o f three A g-T ^C  contacts. The main difference is that the steric 

blocking in (4) generates a situation where all three contacts can only originate from one 

anion. The structure o f (4) provides further insight into the inherent instability of the 

analogous complex with ancillary ortho-tolyl phosphine ligation. Two of the phenyl 

ortho hydrogens are orientated towards the coordinated anion and are sufficiently close 

(3.181A and 3.414A -  note that while high errors are associated due to the poor quality 

data set, they still indicate the close approach of the two groups) that on their 

replacement with CH3 groups significant unfavourable steric interactions would be 

unavoidable. P-C bond rotation to project the ortho methyl groups away from the anion 

is not feasible due to the crowded environment created by the three-phenyl moieties in 

close proximity. As (4) is the only example where the interactions all stem from a single 

anion it is experimentally the closest to that expected to exist in the solution phase and
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therefore can be viewed as a model for the solution behaviour o f (2) to (4) as discussed

next.

2.2.2: Ag—H3C Interactions in the Solution Phase

The four complexes discussed so far all exhibit silver methyl interactions in the 

solid-state; it is o f  interest to investigate the behaviour o f these compounds in weakly 

coordinating solutions. The use o f a weak donor solvent would be expected to favour 

the formation o f contact ion pairs whilst in acetone solvento complexes of the general 

formula [Ag(acetone)x][Anion] would exist in preference . 5 A comparison of the 

NMR spectra o f (1) in a non-coordinating solvent (CD2CI2 , A) and a 

coordinating solvent (d6 -  acetone, B) is informative (Figure 23).

14 12 10 0 8 0 6 0 4 0 2 0 0 -0 2 -0.4 -0 6 -0 8 -1 0 -1.2 14 - J 6  -18 14 1.2 1 0 0 8  0 6  0 4  0 2  0 0  -0 2 -0 4 -06  -0 8 -1.0 -12  -14 - 1 6  -18

Figure 23: 1H { 11B} N M R  spectra o f  A g[l-H -c/<wo-CBn M en ] (1) in A: (C D 3)2C = 0  and B: CD2CI2. * =
minor impurity from silica grease.

For (1) in d6 acetone, the anion CH3 signals are sharp (frequency width at half 

magnitude (fwhm) ~ 1Hz) and the three inequivalent vertices are well resolved. The 

relative intensities observed are 15H:15H:3H as expected, with Csv symmetry
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maintained. This is further confirmed by examination of the n B NMR spectrum that 

consists of three singlets in a 1H:5H:5H ratio. In contrast the ^ ^ B }  spectrum of (1) in 

CD2CI2 exhibits poorly defined signals for the three environments, significantly 

broadened (fwhm ~ 30Hz) suggesting that the A g -H 3C interactions are persisting in 

solution. The signals for two of the inequivalent positions are coincident (most probably 

B7-11 and B12 methyl as these the most proximate) with observed relative intensities of 

15HT8H. The n B NMR spectrum possessing Csv indicates that on the NMR timescale 

the {(PPh3)Ag}+ is fluxional over the cluster periphery thereby making equivalent the 

pentagonal belt vertices. A comparison of the chemical shifts between A and B is not 

valid due to undetermined solvent effects inherent in NMR spectra collected in different 

solvents. A more suitable assessment of the chemical shift change of (1) in contact with 

the {(PPh3)Ag}+ fragment is possible using the relevant shifts from the non

coordinating salt nBu4N [l-H -c/aso-CBnM eii] in the same solvent, CD2 CI2 (Figure 24).

s s

I 4 I 2 10 0 I 0 2 0 0 -0 2 -0.4 .0 6 1 4 I I

Figure 24: ‘H { n B } NM R spectra o f  A: A gtl-H -c/oyo-C B n M e,,] and B: [nB u4N ][l-H -c/o50-C B n M e,,] 
in CD2C12 solutions. * = minor impurity from silicone grease, # =  N C H 2 from ammonium cation.
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Changing the cation from [nBu4N]+ to Ag+ results in the same broadening in the 

line widths associated with the B-CH3 resonances as moving from acetone to CD2CI2. 

Additionally, there is a small downfield shift, predominantly o f the antipodal vertex (of 

- 0 .2 ppm) and a related lesser shift o f the lower pentagonal belt protons (assuming the 

signal at -0.355 is due to the BCH3 (7-11) vertices see later), resulting in the 

compression of the signals related to the anion. The upper pentagonal belt proton 

chemical shift in (1), by contrast, remains virtually identical to that observed for the 

non-interacting cation though it is significantly broadened. The exact unequivocal 

characterisation o f each methyl resonance and in depth discussion of the behaviour is 

presented later for the mono phosphine complexes (2) to (4).

The addition to CD2CI2 solutions of (1) of less than two molar equivalents of a 

more coordinating solvent (e.g. toluene, MeCN, H2O and Et2 0 ) reduces the broadening 

observed in the cluster methyl groups and a concomitant downfield shift in the solvent 

signal relative to ‘free’ non coordinated solvent. An exemplary example o f this is in 

^ { " B }  NMR spectra o f (1) in the presence of one equivalent o f Et2 0 . The etherate 

protons are deshielded by 1.12 ppm and 0.47 ppm (relative to non coordinated Et2 0  in 

CD2CI2, 3.48 and 1.20 ppm) indicative of metal coordination. 12,13 A suggested structure 

is shown in Figure 25, with the reduced degree of coordination of the anion the likely 

source of the slightly sharper CH3 resonances.

Me

Figure 25: A plausible solution structure o f Et20:A g(l-H -c/ojo-C B 1iMei1)
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Similar anion displacement by Et2 0  and MeCN has been reported in the mixed 

metal complex [Me2Pt(p-L)2Ag2(solv)x][Y ]2 (L = 2 ,6 -bis(diphenylphosphino)pyridine, 

solv = Et20  or MeCN, x = 1 or 2 and Y = C104* or BF4') and both solvento complexes 

have been crystallographically characterised.59 The reaction o f Ag[Al(OC(CF3)3)4]' with 

three stoichiometric equivalents o f ethene in dichloromethane yielded the tri ligated 

product 0 i2-C2H4)3Ag[Al(OC(CF3)3)4]1 that can be viewed as a model for the solvated 

structures o f A g[l-H-c/o5o-CBnMen] in coordinating solvent and also exhibits a 

downfield shift o f the ligated solvent.2 Attempts to dissolve (1) in hydrocarbon solvents 

failed, with no detectable solubility even in hot cyclohexane. The same behaviour was 

observed for all the silver (I) salts compounds discussed in this chapter.

Analogous line broadening and downfield chemical shift changes are observed 

for compounds (2) to (4) and due to their related behaviour the three compounds will be 

discussed together. On comparison of the chemical shifts for (2), (3) and (4) to 

[nBu4N ][l-H-c/o5<9-CBnMeii] all experience a line broadening effect and a downfield 

shift for the cluster methyl protons -  as demonstrated for (2) by Figure 26 ((3) and (4) 

are effectively indistinguishable in this spectral region).

The key noteworthy points are: (i) the increase in line width to ca. 30 Hz 

(fwhm); and (ii) the ordering of the methyl region, with the relative intensities of each 

signal being 15H:3H:15H in contrast to that noted for the [nBu4N]+ salt (15H:15H:3H). 

This correlates to a 5:1:5 ratio of the cluster methyl groups, with unequal shifting of the 

inequivalent positions. The Csv symmetry apparent in the 1H {11B} NMR spectra is 

corroborated by the UB NMR spectra o f each of these compounds that all have 1:5:5 

comparative intensities.
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Figure 26: lH { nB } N M R  spectrum (C D 2C12) o f  the methyl region o f  com plex (2) (top) and [nBu4N ][l-H -
c/o5o-C B n M en] (bottom).

There are only slight changes in the chemical shifts to higher field for (2) to (4) 

when compared to the n B NMR spectrum for [nBu4N][l-H-c/o5 o-CBnM en], 

demonstrating that the bonding interaction predominantly involves the peripheral 

methyl groups, with the interior boron cluster effectively screened. This is in contrast to 

metal complexes o f the [c/oso-CBnHu]* anion where there are intimate B—M 

associations and correspondingly significant upfield shifts . 2 5 , 2 6 , 6 0  As expected in the 

NMR spectrum there is considerable additional line broadening due to quadrupolar 

relaxation from n B -  this effect is also seen with non-interacting cations (e.g. Cs+/NR4 + 

salts).

There are two possibilities that can equally account for the observed methyl 

signal arrangement in the * ! ! { 1 *B} NMR spectrum: an ordering (low field to high field) 

of BCH3(7-11), BCH 3(12) then BCH3(2-6); or, alternatively, BCH 3(2-6), BCH 3(12) then
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BCH3(7 - 1 1 ). The antipodal signal is unequivocally characterised as the intermediate 

peak by its fivefold reduced integral. To resolve unambiguously the uncertainty in the 

identification o f each pentagonal belt signal for complexes (2), (3) and (4) two 

alternative yet complimentary experiments were undertaken: 1H { 1 Selective} NMR 

spectroscopy and a combination of n B-n B COSY and 'H -1̂  HMQC NMR 

spectroscopy. The need for the explicit identification o f peak position is crucial as the 

degree o f CH3" A g  interaction in this system is defined by the scale of broadening and 

magnitude o f the downfield chemical shift of the involved BCH3 vertex. Therefore, 

identification o f the individual resonances and the extent of the change in chemical shift 

(respective to the [nBu4]+ salt) will give an indication to the degree o f interaction of each 

inequivalent anion position (i.e. a larger chemical shift change implies a stronger 

Ag—H3C associated with that vertex).

Regrettably the two complimentary methods do not corroborate each other. The 

^selective} spectrum o f (2) appeared to give the sequence C7-11: C12: C2-6 (from 

downfield to highfield). This conclusion was reached by the extent o f line sharpening of 

individual peaks on the decoupling of a specific boron signal. However, this experiment 

was somewhat ambiguous due to the overlapping signals and only small differences in 

respective line widths generating an inherent uncertainty in these results. The 

conclusions from the 2D correlation spectroscopy were found to be more reliable. To 

verify the validity of this methodology the experiment was initially performed on 

CD2CI2 solutions o f [nBii4N] and [Cs]+ [1-H-c/aso-CBnMen] and both gave identical 

conclusions. The relevant spectra for the [nBii4N]+ salt are shown in Figure 27.
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Figure 27: A standard n B -MB COSY indistinguishable for all compounds (left), 'H -"B  HMQC for
[nBu4N] [ 1 -U-closo-CB,, M e ,, ]

The boron vertices in the n B NMR spectra are easily assigned by the n B-n B 

COSY experiment as B12, B7-11 and B2-6 (from downfield to high field), with only 

the B7-11 positions exhibiting a correlation to the other two resonances. The *H -  n B 

HMQC experiment for [nBu4N][l-H-c/o50-CBnM en] is equally clear-cut. The relative 

assignments from cross peaks are as follows (low field to high field) BCH3(2 -6 ), 

BCH3(7-11) and BCH 3(12). It is interesting to note that the lower pentagonal belt 

borons (B7-11) have a long range correlation with the cage C-H vertex and all three 

inequivalent CH 3 positions in the cluster (albeit with a much reduced intensity to the 

correlation with its individual CH 3 resonance). Attempts to run HMQC experiments on 

(2) and (3) failed and so the assignment is solely from the analysis of (4).
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Figure 28: 'H -UB HMQC spectrum o f  com plex 4. Peaks marked with an asterisk arise from residual
pentane from recrystallisation.

Figure 28 shows the 'H -1̂  HMQC for compound (4) and the assignment 

proceeds as follows: B12 correlates to the central CH3 signal -supported by this integral 

measuring only to 3H. The B2-6 cross-peak connects with the methyl signal furthest 

down field unambiguously identifying this as CH3(2 -6 ). The remaining resonance 

(upfield 15H integral signal) by both the process of elimination and by correlation is 

therefore attributed to the protons CH3(7 - 1 1 ). Again long range interactions between 

B7-11 and CH3(2 -6 ) and the cage C-H are observed, but due to their presence in the 

[nBu4N]+ spectra are not indicative of any metal coordination per se.

With the unequivocal assignment of the vertices achieved it is now possible to 

discuss the degree o f chemical shift change for each compound in comparison to 

[nBu4N][l-H-c/o50-CBnMen]. All three methyl resonances are shifted downfield on
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metal coordination, CH3(2 -6 ) the least (average 0.06 ppm), followed by CH3(7 -1 1 ) (av. 

0.18 ppm). The most significant shift is that involving the antipodal position CH3( 1 2 ) 

(average 0.33 ppm). This has the effect of altering the relative positions of the three 

signals producing the experimental 5:1:5 integral ratio (Table 6 ).

Chemical Shift 5
Compound CH3(2-6) CH3(7-11) CH3(12)

[nBu4N][1-H-CB11Me11l -0.18 -0.43 -0.55
(PPhsJAgll-H-CBuMen] -0.14(0.04) -0.28(0.15) -0.22(0.33)
(PCyalAgil-H-CB^MenJ -0.13(0.05) -0.23(0.2)* -0.23(0.32)*

(P(3)5-Me2-C6H3)3)Ag[1-H-CB11Me11] -0.08(0.1) -0.23(0.2) -0.21(0.34)

Table 6: The chem ical shift o f  the anion m ethyl resonances for (2), (3), (4) and [nBu4N ][l-H -c/o^ o-  
C B n M en ]. V alues in parentheses indicate degree o f  chem ical shift relative to the ‘free anion’. * =denotes

coincidental signals.

A number of observations can be made from the data listed in Table 6  -  firstly 

and perhaps most noteworthy is the similarity in the chemical shifts o f (2), (3) and (4) 

considering the disparate nature o f their crystalline structures. This is a strong indicator 

that the solution {(PR3)Ag}+---anion coordination in the three systems is 

indistinguishable, implying the loss o f the extended interactions in (2) and (3) and a 

possible solution phase structure approximating to that o f the solid-state structure of (4). 

Examining the degree o f chemical shift change it is noted that it increases in the 

direction CH3(2 -6 ) < CH3(7 - 1 1 ) < CH3( 12), suggesting that the silver fragment 

experiences a greater interaction with the antipodal vertex in solution. That all 

resonances are broadened and shifted demonstrates that the {(PR.3)Ag}+ moiety is in 

contact with each inequivalent position, a fluxional process over the entire BCH3 

periphery on the NMR time scale. The origin o f the broadening effect on metal 

coordination remains ill-defined and could arise from unresolved 109/107Ag-H coupling 

or an undetermined relaxation mechanism associated with the proximate silver
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phosphine fragment. Slow molecular tumbling induced broadening of the large contact 

ion pair can be discounted due to the sharp well-defined signals associated with the 

various phosphine ligands. In each case no !J (AgH) coupling was visible despite

61*63bridging hydrides have coupling constants of the magnitude of 70 -  20Hz.

Definitive confirmation that the CH3—Ag interactions are maintained in solution 

could not be provided by 1H {109Ag} NMR spectroscopy due to the failure to locate the 

silver signal despite numerous attempts. Instead the downfield shift and significant 

broadening do provide sufficient proof of the persistence o f these contacts in the 

homogeneous environment. Additional confirmation is provided by the disruption of 

this interaction by the presence o f any greater Lewis basic molecule (discussed shortly).

11 i
C{ H} NMR studies on these systems revealed no pertinent information on the 

solution coordination -  the BCH3 resonance appear as a broad coincident signal with no 

chemical shift change compared to [nBu4N][l-H-c/o50-CBnMen] and no determinable 

coupling constants in the ^C ^H }  NMR spectrum. Cooling CD2CI2 solutions of (2) -  

(4) to 190K did not freeze out the fluxionality, with C5V symmetry maintained. The 

broadening is reduced somewhat, (partially attributable to the thermal decoupling of 

boron) and there is a general upfield shift for signals corresponding to the methyl 

resonances to lie between that for (2) and [nBu4N] [ 1 -H-c/oso-CBi iMei 1]. This data 

suggests that at low temperatures the Ag * H3C interactions are reduced -  possibly by 

the formation o f a solvent complex of the type (PPh3)Ag(CH2Cl2)(l-H-c/o50- 

CBnM en). The gradual heating o f (2) to temperatures above 40°C rapidly lead to 

complex decomposition by !H, n B and 31P{!H} NMR spectroscopy to unidentified and 

intractable products. The anion by both ^ { “ B} and n B NMR spectroscopy was 

severely degraded with numerous cage environments visible. The metal coordination is
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therefore activating the cage towards methyl abstraction and further reactivity, as 

observed for the lithium and silyl salts of the related anion [c/oso-CBnMe^]".19’ 64 

Simple alkali salts o f [ l-H -c /o so -C B u M en ]' are stable in solution up to high

19temperatures and in the solid state to above 200°C.
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F igure 29: E xam ples o f  com p lexes that exhibit chem ical shift changes o f  the metal coordinated methyl 
group, (4 ), Cp*2Y b (p-M e)B eC p* and ( l ,2 -M e 2-C 5H 3)2Z rM e(p-M e)B(C 6F5)3.

Literature precedence for a downfield shift on methyl coordination to a metal 

comes from the complex (r|5-C5Me5)2Yb(p-Me)Be(r|5-C5Me5) (Figure 29), that has 

been crystallographically determined to involve an Yb-CFL—Be bridging (p-Me) motif. 

The similar downfield shift on coordination (compared to Me-BeO^-CsMes)) o f O.lppm 

was described as predominantly electrostatic in origin. In contrast, agostic interactions 

with metal complexes with a d electron count > 0 , display upfield shifts of the 

coordinated CH3 groups.65 A more applicable comparison utilises the analogous 

intermolecular interaction between a metal centre and an anion bound methyl group in 

[MeB(C6Fs)3] \  A CSD database search on structurally characterised contact ion pair 

complexes revealed 19 transition metal complexes with LnM-(p-Me)-B(C6F5)3 

structures (M predominantly is Zr,50,66'77 but also includes Nb ,78 Ti,79'81 Y ,52 and Hf82). 

In the solution studies these complexes all demonstrated an upfield shift of the (p-Me) 

moiety in comparison to that o f the free [M e B ^ F s ^ ] ' anion and in contrast to that 

observed in (1) to (4).83 This behaviour may be ascribed to the disparate metal involved,

107



with upfield shifts occurring with hard d° metals whilst for the softer [Ag]+ d10 

configuration a downfield shift is consistently observed. The behaviour of d° complexes 

and other polymerisation pre-catalysts with bridging (p-Me) moieties will be discussed 

further in the Chapter Three.

Compounds (2) and (3) display the expected doublet of doublets in the room 

1 1 1temperature P{ H} NMR spectrum (each single phosphorus environment is coupling

to both 109Ag and 107Ag, 1=14 relative abundance 51.8% and 48.2% respectively). The 

1P{ H} NMR spectrum for complex (4) in contrast is a poorly defined doublet, with the 

individual 107/109Ag-P coupling not visible. The average J(AgP) at 731 Hz is less than 

that for (2) and (3). As stated previously the 31P{]H} NMR of these complexes is 

indicative o f the Ag-P bond strength and concomitantly the degree of Ag---anion 

interactions. The !J coupling constants for (2) and (3) at 824 Hz and 766 Hz 

respectively are amongst the highest reported for Ag(I) phosphine complexes,84 

indicative o f very strong Ag-P bond and a low coordinate Ag(I) with a weak 

anion-cation interaction. A comparison o f the coupling constant of complex (2) with 

{(PPh3)Ag}+ fragments partnered with related carborane mono anions positions (2) as 

the most weakly coordinating in this series with an average Ag-P significantly higher 

than that for the previously lowest nucleophilic carborane [c/oso-C BnH eC y (761

26 31 1Hz). Broadened P{ H} signals are often indicative o f fluxionality at room 

temperature on the NMR time scale -  the observed broad, poorly resolved spectrum for 

(4) therefore suggests that there is an exchange process occurring here .85 A plausible 

mechanism for this is that (4) is in equilibrium between an anion coordinated complex 

and a solvento complex (Figure 30). Support for this hypothesis comes from the 

isolation of stable Ag(I) -CH2CI2 complexes with other weakly coordinating anions. 1,7,8
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Low temperature NMR data on (2), where there is significant line sharpening indicative 

of less intimate Ag—H3C contacts and (as will be discussed later) the displacement of 

[1-H-c/oso-CBnMeii]' by other weak donor solvents (e.g., Et2 0 ).

n(CH2CI2)Ag P-

F igu re 30: P ossib le solution behaviour o f  (4) an explanation for the observed fluxionality.

The distinct solution behaviour o f (4) in comparison to (2) and (3) may be a 

result of its inability to form extended contacts to more than one anion. Although these 

can be expected to be weak they may result in [(PR3)Ag(l-H-c/o50-CBnMen)] (R = Ph 

or Cy) persisting as a dimer (or an oligomer) in solution. A dimeric solid-state structure 

has previously been reported for the related system [(P P l^A g^/oso -C B nH n)] so they 

are feasible entities.27

The solid state and solution infra-red spectra of (2) give little information. There 

is no decrease in the frequency o f the major signals when (2 ) is compared to a non

interacting cation, signifying no weakening of the C-H bond. This is in line with a 

predominantly ionic contribution to the Ag--anion interaction.
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2.2.3: DFT Calculations

DFT calculations on the isolated anion [l-H-c/oso-CBnM en]' and complex (2) 

have been performed by Dr Gus Ruggerio (University o f Bath) at the B3LYP/DZVP 

level. Calculated charges o f the three inequivalent B-CH3 vertices in [1-H-closo- 

C BnM en]' closely correlate with that previously reported independently by McKee 

(B3LYP/6-31* level) and Michl and co-workers (B3LYP/SDD level) .3 4 ,86 The lower 

pentagonal belt vertices (BCH3 7-11) carry the greatest negative charge (-0.13), the 

antipodal only slightly less (-0.09) whilst the upper pentagonal belt B-CH3 groups are 

positive (+0.07). Therefore, from a purely electrostatic approach, cations such as 

{(PR3)Ag}+ would be expected to interact most favourably with BCH3(7 - 1 1). However, 

this does not take into account multiple M —H3C interactions and any (albeit small) 

covalent contributions with a metal fragment.

[1-H-c/oso -CB^M e^Hf 
charge (NBO)

[closo -C B nM e^f 
(NPA) Charges (NBO) Charges

vertex b c h 3 b c h 3 b c h 3
12 -0.09 -0.1 -0.09

7 to 11 -0.13 -0.14 -0.15
2 to 6 0.07 0.05 0.11

Table 7: Com parison o f  Charges (from N B O /N P A ) analysis on the anions [1-H -c/oso-C B nM en ]' and
[c/oso-C B , ,M e12]'.34,86

Calculations by the Michl group have demonstrated that a simple electrostatic 

model does not predict the more stable isomer, with calculations on [Me3Sn][c/o5o- 

CBnM en] finding that the 12-isomer is the energetic minimum even though the 7-11 

vertices carry more negative charge. There are similar energetics reported for the 

unmethylated parent carborane anion [c/oso-CBnHn]', where calculations suggest a 

greater magnitude o f electron density at the lower pentagonal belt but reactivity
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• 07
(specifically the selective halogenation) suggests the 12 position is the most negative. 

The calculated energies o f the three possible monodentate isomers of [(PPh3)Ag(l-H- 

c/oso-CBuMeii)] and a tridentate motif, as seen for (4), are shown in Figure 30. In 

agreement with the calculations on Me3Sn(c/<m>-CBnMei2), the relative energies o f the 

three mono-dentate structures for (2 ) show that the 1 2 -isomer is marginally 

energetically favoured over the 7-isomer by 1.9 kcal mol"1, with the 2-isomer a further 

4.3 kcal mol"1 higher. The optimised geometries for these three bonding modes are all 

essentially end on with a slight elongation o f the associated B-C bond (1.64 A compared 

to an average 1.60 A calculated in free anion and 1.589(4) -  1.606(4) A in a number of 

experimentally determined structures) and a minor flattening of the B-C-H angles away 

from tetrahedral (106 -107°). The slight deformation of the bonding vertices are 

possibly an indication o f a small sigma covalent interaction between H3C and the Ag(I) 

cation. These geometries are not observed in the solid-state structures with the extended 

lattice interactions distorting the local Ag(I) environment and producing the observed 

packing arrangement in (2) and (3). Complex (4) displays no such extended interactions 

existing in the crystalline phase as a triangular face bridged arrangement (p-7,8,12) -  

albeit with a slight asymmetry in the binding towards the 7,8 positions. This structure is 

a better model for gas phase calculations, as it involves no intermolecular interactions.
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(a) 2-is>omer; +8.1

(b) (c) 7 isomer: +3 .812-isomer: +1.9

(d) jn-7,8,12-isomer: 0

Figure 31: DFT optimised structures (B3LYP/D ZVP level) o f  the isomers o f  (2). Energies (kcal m o l1) 
are given relative to the calculated most stable isomer, (g-7,8,12-isom er).

Calculations on this isomeric form yielded a new energy minima 1.9 kcal mol' 1 

below that of the 12-isomer. The (p-7,8,12) isomer exhibits no lengthening of the three 

complexed BCH3 vertices when compared to the calculated structure of the free anion 

(1.60 A) or structurally determined bond lengths. Specific comparisons between the 

structural metrics of the calculated (p-7,8,12) isomer and those observed for (4) are not

112



warranted due to the high errors associated with (4) and the single extended contact in 

the solid state that may well have a small influence on the observed structure.

Transition state calculations on the potential energy surface between these 

isomeric forms were not carried out on this system due to the large number of atoms 

involved. The fact that the slow exchange regime is not reached even at 190 K is an 

indication o f the low barriers inherent in the migration o f the metal fragment over the 

cage periphery. This combined with the low energy difference between the tridentate 

and mono-dentate isomers provide a possible mechanism for fluxionality pathway and 

the observed Csv symmetry (Figure 32).

H

Me

Ag

PR3

Figure 32: Possible mechanism for the solution fluxionality o f  (PR 3)A g(l-H -c/o5o-C B n M en) supported
by DFT calculations on low  energy conformers.

A alternative mechanism via a bidentate coordinated {(PR.3)Ag}+ fragment 

cannot be discounted -  this type o f bonding m otif has not been computationally 

investigated. The low barriers to fluxionality and the small energy differences between 

all four isomers (maximum of 8 . 1  kcal m ol'1) explain the observed broadening of all 

three methyl vertices in the ^ { " B }  NMR spectrum as each position is easily 

accessible. The 2-isomer, calculated as the energetically least favourable interaction, is 

supported by solution studies with this position exhibiting the least downfield chemical 

shift change. That the 12-isomer is perturbed to a greater extent than the 7-isomer is
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again corroborated by the respective calculated energies -  though the degree of shift for 

the 7-isomer may be artificially low due to averaging over the five equivalent positions 

(two vertices interacting and three innocent at any one time).

2.2.4. Reactions of (PPh3)Ag(l-H-c/os0 -C B nM en) with Lewis bases

The reactivity o f (2) with respect to other anions and additional Lewis bases was 

investigated to provide further information on the strength o f the Ag—H3C interaction. 

Initial studies examined the effect o f solvents other than CH2CI2 on the persistence of 

the anion cation interactions. The first indication for the ready displacement of [1-H- 

c/oso-CBuMen]* came from the d6-acetone solution o f (2). Unsurprisingly the methyl 

region o f the *H NMR was now sharp (fwhm ~lH z) with three well resolved resonances 

in a 15H:15H:3H integral ratio confirming that the anion has Csv symmetry. This is 

verified by the n B NMR spectrum exhibiting a 1:5:5 ratio. The 31P{XH} NMR spectrum 

displays the expected concentric doublet o f doublets but with a decrease in the *J(AgP) 

coupling (average !J(AgP) of 762 Hz), characteristic o f the presence of a stronger 

coordinated ligand(s). Analogous anion displacement from the coordination 

environment of silver by excess acetone has previously been observed for the simple 

silver salt (1) and for related carborane mono anions.5 The observed coupling constant 

falls between that for (PPh3)Ag(c/as0 -CBnH 6Br6) (711 Hz) and (PPh3)Ag(c/o5o- 

CBnH 6Cl6) (770 Hz) where, in each case the Ag(I) centre is tri-coordinated to the anion 

through three halogen atoms sharing a triangular face (see Introduction). Due to the 

similar electronegativities of Cl and O (3.16 and 3.44 respectively) and an analogous 

degree o f polarisation of the C8+= 0 8' bond (electronegativity difference 0.89) compared
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to the B8+-C15' bond (electronegativity difference 1.12)43 the similar observed J(AgP) 

coupling constants in the solution structures o f (PPh3)Ag(c/o5o-CBnH6Cl6) and 

[(PPh3)Ag(acetone)n][l-H-c/ay0 -CBnM eii] must make them closely related.

On the addition o f three equivalents of Et20 to a CD2CI2 solution of (2 ) an 

analogous switching off of the cage-metal interaction occurs by ^ ^ B }  NMR 

spectroscopy, along with a concomitant reduction in the !J(AgP) coupling constant to 

801 Hz. Crystals suitable for X-ray diffraction analysis were obtained from the slow 

diffusion o f pentane into a concentrated etherate solution o f (2). The asymmetric unit 

consists of two crystallographically independent [(PPh3)Ag][l-H-c/o50-CBnMen] 

fragments, in which each Ag(I) cation is coordinated to two Et20 molecules (Figure 33). 

The structural metrics for both independent molecules o f [(PPh3)Ag(OEt2)2][l-H-c7aso- 

CBnM en] (5) are essentially identical within errors and will be discussed together.

The coordination environment around the Ag(I) centres appears to be a distorted 

trigonal planar geometry, with the sum o f angles around each silver (360.0(2)° and 

358.4(2)°) approximating to 360°. The O-Ag-O angle, however, is significantly 

depressed (94.0(2)° and 89.4(2)°) in each moiety. Examination of the extended lattice 

environment proximate to the Ag(I) centres reveals close approaches o f two adjacent 

anions to each silver. The distances (A gl-C9’ 3.466 A, A gl-C 6”  3.675 A, Ag2-C24’ 

3.569 A and Ag2-C21”  4.235 A) are all outside the earlier stated prerequisite for a 

significant interaction (3.29 A). Three o f the contacts do, however, fall within the 

combined (3.70A) van der-Waals radii of CH3 (2.00A) and Ag (1.70A) suggestive of a 

weak interaction.43 The silver etherate orientation lend support to the existence and 

significance o f this interaction. The A g-0 distances for the four coordinated ether
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0 1

P 2
A g1 P1

©

Ag1-P1 2.377(2) Ag2-P2 2.362(2)
Ag1-01 2.539(7) Ag2-03 2.418(6)
Ag1-02 2.248(6) Ag2-04 2.291(8)

P1-Ag1-01 103.13(19) P2-Ag2-03 122.70(18)
P1-Ag-1-02 162.86(17) P2-Ag2-04 146.3(2)
02-Ag-01 94.0(2) 03-Ag2-04 89.4(2)

Sum of angles 
around Ag1 360.0(2) Sum of angles 

around Ag2
358.4(2)

Table 8: Selected Bond Lengths (A) and angles (°) for (5)

Figure 33: Molecular Structure o f both crystallographically independent molecules in the asymmetric unit 
of [(PPh3)Ag(OEt2)2][l-H-c/o5o-CBi1M e11], (5). Hydrogen atoms removed for clarity (thermal ellipsoids

shown at 30% probability level).



molecules are disparate, involving one short contact (A g l-02  2.248(6) and Ag2-04 

2.291(8)A) and one long contact (A gl-O l 2.539(7) and A g2-03 2.418(6)A). The 

inequivalent nature o f the bound ethers is further demonstrated by a closer inspection of 

the immediate silver coordination sphere -  which in fact approaches a trigonal 

bipyramidal structure.

H

Me

Figure 34: The pseudo trigonal pyramidal geometry o f  one o f  the independent m olecules o f  (5), viewed
as a schematic (left) and along the A g-P axis (right).

The closer Et20 contact is approaching a tram  position to the PPh3 group (P l- 

A g l-02  162.86(17) and P2-Ag-2-04 146.3(2)A) whilst the longer is approximately cis 

to the phosphine (P l-A gl-O l 103.13(19) and P2-Ag-03 122.70(18)A) and their 

increased bond lengths may partly be to minimise steric repulsion between the phenyl 

rings and the ethyl moieties. The pseudo-vacant site is then occupied by the two 

proximate anion contacts (Figure 34) producing a distorted trigonal bipyramidal 

geometry. The longer A g-0 bond lengths are comparable to the only other reported 

LAg(OEt2) complex ([(CO)3Fe(p-2,6-bis(diphenylphosphino)pyridine)

Ag2(Et20)][C104]2 A g-0 2.456(3) A) and to A g-0  single bonds ([Ag(0-2- 

C6H4Me)(PPh3)3] 2.386(5) A), but the these are appreciably longer than the two short 

A g-0 bonds in (5) (2.248(6) A and 2.291(8) A) suggesting that these Et20 are
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significantly more tightly bound .88 The P-Ag bond length (2.377(2) A) is comparable to

o 1
(2), (3) and (4), indicative o f an equally strong Ag-P bond.

Solution studies on crystalline (5) display an Et2 0  : (PPli3)Ag(l-H-c/<m>- 

CBnM en) ratio o f 2:1 confirming the structure from X-ray diffraction. The Csv 

symmetry o f the cage is maintained at both room temperature and at 200 K by 1H{11B} 

and n B NMR spectroscopy. In the ^ { " B }  spectrum the cage CH3 resonances are sharp 

(fwhm ~ 1 Hz) and at positions close to that reported for the [nBu4N]+ salt, suggesting 

that the long range anion--Ag contacts observed In the solid state do not persist in 

solution. The downfield shift observed in the ^ { " B }  NMR spectrum for the Et2 0  

signals (3.55 and 1.26 ppm) is indicative o f coordination to an electrophilic metal. 12 ,14 

The 31P{1H} NMR spectrum consists of the expected concentric doublet of doublets 

with a Javerage(AgP) coupling of 801 Hz. This implies that the etherate molecules are 

weakly bound in solution only interacting slightly more strongly than the anion [1-H- 

c/aso-CBiiM en]' (Javerage(A gP) 824 Hz). Addition o f  other weak ligands (10 equiv - 2,3 

dimethyl butene, 5 equiv - MeCN) to (2) also resmlts in the facile switching off o f 

A g-'H 3C interactions (judged by the sharpening and upfield shift o f the methyl 

resonances) further demonstrating the weakly coordinating nature of the [1-H-closo- 

CBiiM en]' anion and providing extra proof for clos;e solution interactions between the 

{PR3Ag}+ fragment and the anion in (2), (3) and (4).

In addition to the reactivity o f (2) with respect to neutral Lewis bases, the 

coordinating power o f [l-H-c/aso-CBnM en]' was; investigated in comparison to a 

number o f common weakly coordinating anions.9 , 155 The addition of one equivalent of 

[nBu4N][c/oso-CBiiH6Br6] to a CD2CI2 solution o f  (2) resulted in the immediate
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formation o f the known (PPh3)Ag(c/aso-CB i iH6Br6 )27 and [nBi^N][l-H-c/oso- 

CBnM eii] (Figure 35).

[nBu4N][c/oso-CB11H6Br6]

[nBu4N][1-H-c/oso-CB11Me11]
*AgPPh3“AgPPh3

Figure 35: The displacement o f  [l-H -c/o5o-C B n M en ]' from {A g(PPh3) } + by the addition o f
[nB u4N ] [closo-CB ,, H6Br6] .

The anion exchange is unequivocally determined by the sharpening and upfield 

shift o f the [1-H-c/oyo-CBnM en]' anion in the !H {1 !B} NMR spectrum and by the 

change in the J a V e r a g e ( A g P )  coupling constant observed in the 31P{*H} NMR spectrum 

(824 Hz in (2) to 720 Hz) to that previously reported for (PPh3)Ag(c/o5o-CBnH6Br6).24, 

25 In contrast the analogous reaction with addition o f [nBu4N][B(C6F5)4] resulted in no 

change in either the CH3 region o f the 1!B) NMR spectrum or in the 31P{1H} NMR 

spectrum, demonstrating the persistence o f (2). An anion coordinating power sequence 

with respect to the {Ag(PPh3)}+ fragment can therefore be proposed: [closo- 

CBnH6Br6]' > [l-H -c/oso-CBiiM en]' > [B(C6F5)4] \  This ranks [1-H-c/ojo-CBnM en]’ 

as less coordinating than one of the most weakly coordinating anions known, but more 

coordinating than [B(C6Fs)4]' in this system.15,21

The addition o f one equivalent o f ["BiuN ^l-H-c/oso-CBiiM en] to a CD2CI2 

solution of (2) results in the observance o f only one set o f cage resonances. Although 

the CH3 resonances remain somewhat broadened, there is a degree o f sharpening (fwhm 

18 Hz) and upfield shift on comparison to pure (2). The observed ]H { 1 !B} NMR cage
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C-H signal at 5 1.20 ppm lies at the exact midpoint between that for (2) and [nBu4N ][l- 

H-c/oso-CBnMeii] (5 1.26 and 1.14 ppm respectively). The 31P{1H) NMR spectrum 

displays a significantly broadened doublet in a similar region of the spectrum to that 

observed for (2). These observations are consistent with an anion exchange process 

between a coordinated and a ‘free’ [l-H -c/ojo-CBnM en]” taking place rapidly on the 

NMR timescale.

Unsurprisingly, addition o f one equivalent o f the strong Lewis base PPI13 to a 

CD2CI2 solution o f (2 ) resulted in the de-coordination o f [l-H-c/ojo-CBuMen]", as 

determined by the standard line sharpening and upfield shift o f the cage methyl 

resonances in the !H {n B} NMR spectrum. Recrystallisation o f the solution by the slow 

diffusion of pentanes into a CH2CI2 solution at - 2 0 °C yielded colourless crystals 

suitable for X-ray diffraction study. This revealed the complex was the expected 

[(PPh3)2Ag][l-H-c/o50-CBnMen], (6 ) (Figure 36). Complex (6 ) crystallises in the 

space group P63/m, containing only 1/6 o f each anion and cation. The remaining portions 

of the cation and anion were generated by virtue o f the 6 -fold (identical to the 3/m 

symmetry operation) axis on which the silver and phosphorus atoms were located. The 

fraction o f the anion contributing to the asymmetric unit contained four cage atoms (all 

treated as borons) and four methyl groups, all at half occupancy, affording one complete 

anion that is disordered equally over two sites. The disorder prevented the unambiguous 

location o f the cage carbon in [l-H-c/oso-CBnM en]'.

The structure of (6 ) is linear by definition o f the enforced symmetry in this Laue 

class, with a Pl-Ag-PF angle of 180°. This is in contrast to that reported for the related 

complex [(PPh3)2Ag][BF4] (156.65(4)°), where the possibility o f a weak dative bond or
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Figure 36: Molecular Structure o f the cationic portion o f [(PPhs^AgJIT-H-c/oso-CBuMen], (6). Thermal ellipsoids are shown at the 30% probability level. Symmetry 
transformations used to generate equivalent atoms: -x+y,-x+l,-z+l/2; -y+l,x-y+l,z; -x+y,-x+l,z; x,y,-z+3/2; -y+l,x-y+l,-z+3/2; -x+y,-x+l,-z+3/2. Hydrogens omitted for

clarity.

Ag1-P1 2.4101(7) P1-C1 1.8179(18) P1-Ag1-P1' 180

Table 9: Selected Bond Lengths (A) and angles (°) for (6).



a significant electrostatic attraction between the Ag(I) centre and the anion is 

suggested .31 The A g—F distance in [(PPh3)Ag][BF4] o f 2.67 A is well within the 

combined (2.79-2.89 A) ionic radius of Ag(I) (1.29 A) and the van der-Waals radius of 

F (1.5-1 .6  A) suggestive o f a significant interaction .43 Inspection o f the extended lattice 

in (6 ) reveals the close approach of three proximal anions at a distance o f 3.460 A, 

longer than the previously defined 3.29 A limit for a significant interaction, but within 

the combined (3.70A) van der-Waals radii o f Ag and H 3C. The close approach can be 

expected to be predominantly crystal packing in origin, with the most efficient space 

filling arrangement involving the assembly of the globular anions between the dumb 

bell like linear cations (Figure 37). A weak H3C —Ag interaction cannot be ruled out 

however, with the lack o f bending of the P-Ag-P bond then ascribed to the symmetric 

arrangement of the three proximate anions around the silver centre.

Figure 37: Packing diagram for compound (6), [l-H -c /o jo -C B n M en]' anions shown at 100% van der-
Waals radius.

Similar linear [P-Ag-P]+ motifs have been previously achieved by the utilisation 

of bulkier phosphines to prevent any close anion/solvent contacts (e.g., 

[(Mes3P)2Ag][BF4]‘ and [(Mes3P)2Ag][PF6] ) . 8 9 ,90 A noteworthy comparison is with the 

solid-state structure o f (PPh3)2Ag(c/o5 o-CBnH 6Br6 ) .26 The Ag(I) environment in this
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case is essentially tetrahedral with the intimate coordination o f two bromine atoms from 

the anion resulting in a Pl-Ag-P2 angle of 120.43(6)° (Figure 38).

PPh3

Figure 38: The solid state structures o f [(Ph3P)2Ag][l-H-c/as0-CBnM en] and (Ph3P)2PAg(c/ojo-
CBi|H6Br6) respectively.

This structural disparity suggests that the [c/aso-CBiiH6Br6]* anion is more 

strongly interacting with the metal, forcing the change in geometry. This ranks the [1-H- 

c/oso-CBnM en]' as the weaker coordinating anion o f the two (as expected from earlier 

studies in this chapter). The Ag-P bond length in (6 ) (2.4101(7) A) is longer than that 

reported for the mono phosphine complexes (2 ) (2.3871(5) A) and (PPh3)AgNC>3 (2.369 

A). This is as expected as these complexes only involve one strongly Lewis basic 

molecule. It is comparable to that reported for [(P P t^ A g ^ B F /J  (2.4177(12) A and 

2.4219(13) A) implying that the anion interaction in both is equally weak. It is 

significantly shorter than the four coordinate complexes (PPh3)2Ag(c/o5o-CBnH6Br6) 

(2.448(2) A and 2.451(2)A) and (PPh3)2Ag(c/o5o-CBiiHi2) (2.4698(3) A and 2.4741(3)

solution Csv symmetry). The methyl cage resonances are sharp (fwhm ~ 1 Hz) and 

appear at chemical shifts close to [nBii4N] [ 1 -H-c/oso-CB 11 Me 11 ], demonstrating that the

M

Me

The ^ { “ B) NMR spectrum of (6 ) shows a 2:1 ratio o f phosphine to cage, with 

Csv symmetry of the anion maintained (n B NMR spectroscopy also confirms the
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long cation--anion contacts observed in the solid state do not persist in solution. The 

31P{1H} NMR spectrum displays the expected concentric doublets from coupling to 

I0?/!09Ag, with an average J(AgP) coupling constant o f 561 Hz. An identical spectra is 

also observed on the addition of two equivalents o f PPh3 to (1). Analogous behaviour is 

observed on the addition o f two equivalents o f (3 ,5 -Me2-C6H3)3P to (1 ) (no broadening 

of CH3 anion resonances in the ^ ^ B }  NMR spectrum and a J aVerage(AgP) of 540 Hz).

The magnitude o f this coupling constant agrees well with that observed for other

11predominantly two coordinate species such as [(PPh3)2Ag][BF4] (550 Hz). The 

31P{1H} solution behaviour o f related compounds that have close anion associations in 

the solid state (e.g., (PPh3)2Ag(c/oso-CBnH6Br6), ((PPh3)2Ag)(c/o5o-CBnHi2) and 

(PPh3)2Ag(NC>3)) are drastically different, displaying a broad singlet at room 

temperature indicative o f rapid ligand exchange -  an effect commonly seen in the 

31P{1H} NMR spectra o f [(PPh3)2AgLx] (x = 1 or 2, L in this case are the respective 

anions) complexes.91,92 In these cases it appears that the anion coordination to the silver 

centre is switching on the phosphine dissociation.

Fluxionality in C2D2CI4 solutions o f (6 ), though not observed at room

1 »

temperature, can be induced by heating to temperatures above 40°C, with the P{ H} 

NMR resonance becoming a broad singlet indicative o f phosphine exchange. The 

mechanism of this exchange process is unclear, with an analogous anion coordination to 

cause fluxionality unlikely due to the lack o f any close anion—cation interactions in the 

solid state and no observed shift or broadening o f the anion methyl resonances in the 

^ { " B J  NMR spectrum at these raised temperatures. Cooling this sample back to 

temperatures below 40°C regenerates the concentric doublet o f doublets. Heating may
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result in the establishment o f an equilibrium between the structurally characterised 

complex (6 ) and a disproportionation product produced by scission o f an Ag-P bond.

*AgPPh3

Static - No Fluxionality Low concentration - Static Fluxional

Figure 39: A possible initiation step in the thermally induced fluxionality observed in (6).

Support for a disproportionation mechanism to explain the observed fluxionality 

is obtained on addition of 0 .1  equivalents o f PPI13 to a CD2CI2 solution of (6 ). This

1

results in a P{ H} NMR spectrum that displays a broad singlet at room temperature -  

confirming that the presence of a low concentration of uncoordinated phosphine is 

sufficient to induce fluxionality in this system. The ^ { " B }  NMR spectrum of this 

solution displays no anion-■-cation interactions. Recrystallisation o f this sample by the 

slow diffusion o f pentanes yielded two colourless crystalline polymorphs suitable for X- 

ray diffraction studies, one set being complex (6 ). A structure determination on the 

second polymorph revealed a complex with the same empirical formula to (6 ), but the 

product of a disproportionation reaction, namely [(PPh3)4Ag][(l-H-c/aso- 

C BnM en)2Ag] (7) (Figure 40). Complex (7) crystallises in the cubic space group F-3d, 

with the asymmetric unit containing only 1/12 of each anion and cation. The fraction of 

the anion contributing to the asymmetric unit contained only two cage atoms (both 

treated as borons) and two methyl groups. Due to the high symmetry inherent in this 

space group the unambiguous location of the cage carbon in [l-H-c/oso-CBnM en]' was

125



P1-Ag1 2.6019(19)
P1-Ag1-P1’ 109.47(1)

Ag2-C1 6.140(5)
Ag2-C2 3.868(5)
B1-C1 1.618(7)
B2-C2 1.601(7)

T able 10: Selected Bond Lengths (A) and A ngles (°) 
for (7).



impossible. The cation [(PPh3)4Ag]+ is tetrahedral (P l-A g -P l’ 109.47(1)) with an Ag-P 

bond length (2.6019(19) A) similar to that previously reported for [(PPh3)4Ag][X] (X = 

[CIO4]' and [N 0 3] \  Ag-P distances in the range 2.643(3) A to 2.671(4) A).93,94 More 

noteworthy is the structure o f the anion, which in the extended lattice is surrounded by 

four anions resulting in 12 A g-F^C  contacts (Figure 40). The Ag—C distance is 3.868 

A (all 12  interactions are symmetrically equivalent) falling outside of the combined 

(3.70 A) van der-Waals radii for Ag and CH3. This is significantly longer than that 

found in the simple silver salt (1), where a Ag(I) centre is likewise encapsulated by four 

anions, with the A g—C distances ranging from 2.6535(18) A to 3.089(2) A. The 

packing observed around Ag2 in (7) is therefore not the most efficient way of 

minimising anion*-cation distance and thereby maximising the electrostatic interaction 

and must be enforced by the high symmetry o f the space group. The Ag2 coordination 

environment is essentially tetrahedral with the silver centre sitting symmetrically over 

four triangular faces (each made up o f three methyl groups) thus the observed distance 

is likely to be the closest the Ag2 cation can get to each anion whilst still retaining the 

high symmetry. A similar tetrahedral geometry about the metal centre has been 

observed in (r|6-C6H6)Na(c/os0 -CBnM ei2).33 The tetrahedral environment consists of 

two anions and two arenes; however, in this case the M —CH3 contacts at 2.70 A are 

within the combined (3.16 A) ionic radius o f Na+ (1.16 A) and the van der-Waals radius 

o f CH3 (2.00 A). It thus appears that the packing arrangement is dominated by the 

highly symmetrical propeller like cations [Ag(PPh3)4]+, with the vast majority of 

[(PPh3)4Ag][X] salts possessing very high symmetry (e.g., cubic when X = [Mo6 0 i9]2‘ 

and rhombohedral when X= [C104]', [N 03] \  [PF6]“ and [SbF6] ') .93'97
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A similar disproportionation reaction has been previously reported in the 

addition of one equivalent of IMes to Agjc/oso-CBnHn]. The only product 

is[(IMes)2Ag][Ag2(c/oso-CBnHi2)4], a dianion where the Ag(I) centres are surrounded 

solely by the carborane anion.30 An analogous anion has also been reported with [closo- 

CBnH 6Br6]‘ which forms the [Ag(c/o50-CBnH6Br6)2]’ anion on the reaction of 

Ag[c/aso-CBnH6Br6] with [Fe(tpp)Br] (tpp = tetraphenylporphryinate) . 18

Dissolution o f a crystalline sample of (7) into CD2CI2 resulted in ^ ^ B }  and 

31P{1H} NMR spectra essentially identical to that of (6 ) with no Ag—H3C interactions 

visible in solution. The observed fluxionality induced in (6 ) on heating or by addition of 

a slight excess o f PPI13 is presumably an equilibrium between the linear [(PPh3)-Ag- 

(PPh3)]+ cation and the disproportionation product. (Figure 41).

[(PPh3)4Ag]+

Figure 41: Possible solution equilibrium o f (6) established on heating or by the addition o f a slight excess
of PPh3.

On cooling a sample of (6 ) that has had a slight excess o f PPh3 added (i.e. is

i t  I

fluxional at room temperature as determined by a P{ H} NMR resonance that is a 

broad singlet) to -70°C three broad doublets are observed with J(AgP) coupling 

constants o f 237 Hz, 320 Hz and 545 Hz. The major product at 237 Hz can be
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characterised as the [(PPh3)4Ag]+ cation by comparison to the related cation [((p- 

MeC6H4)3P)4Ag]+ which has J(AgP) coupling constants in the range 224 Hz to 230 

Hz.85 In the [(p-Me-C6H4)3P]4AgX systems ligand lability involving phosphine 

dissociation is observed at temperatures above -70°C. The behaviour of (6) here is 

analogous and the remaining two low temperature 31P{!H} doublets can, by further 

comparison to literature values, be readily assigned to the tris and bis phosphine adducts

o  c
respectively. Furthermore, contrasting the FAB+ mass spectrometry spectra of pure 

(6) and a ‘fluxional sample’ gives corroborating evidence for phosphine dissociation. 

Pure (6) only displays peaks due to [(PPh3)Ag]+ and [(PPh3)2Ag]+ cations, whilst the 

fluxional sample consists o f these two plus the [(PPh3)3Ag]+ cation.

Addition o f one equivalent o f [nBu4N][cAm>-CBnH6Br6] or an excess of the

cyclic sulphoxide complex C4H8SO2 to a solution of (6 ) both also induce fluxionality -  

11 1with the P{ H} NMR spectra consisting of only a broad singlet. Therefore any 

addition of a Lewis base stronger than the [l-H-c/ojo-CBnM en]" can coordinate to a 

Ag(I) centre instigating phosphine dissociation and fluxionality.

2.3: Summary.

Reported herein is the synthesis of the silver salt Ag[l-H-closo-CBnM en] and a 

number of (PR3)Ag(l-H-c/o^o-CBnMen) complexes displaying A g—H3C interactions 

in the solid state. These are the first reported examples o f A g- contacts, and the 

first o f a transition metal closely associated with a highly methylated carborane mono

anion. Variation in the phosphine results in extended coordination polymers that can be 

broken up into discrete contact ion pairs by increase o f  distal (with respect to the silver
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centre) steric bulk. By a combination of structural analysis and DFT calculations it is 

concluded that the nature of the bonding interaction is predominantly electrostatic, 

although the presence of a small orbital contribution (i.e. a a  donor effect) cannot be 

ruled out. This is as previously observed for the Group I cations partnered with the 

related anion [c/oso-CBnM e^]' which also form intimate A g-FLC  contacts that are 

attributed to electrostatic attraction.

These Ag—H3C interactions have been unambiguously proven to persist in 

CD2CI2 solution for all the complexes, demonstrating that these interactions are 

significant and not an artefact of crystal packing forces. Key spectroscopic indicators 

have been observed (primarily the considerable broadening and downfield shift of anion 

CH3 groups) that will be useful markers in the development o f the chemistry of these 

anions. The weakly coordinating nature o f [l-H-c/oyo-CBnMen]" has also been 

unequivocally shown, with the coordinating power o f the anion being less than [closo- 

CBnH6Br6]’, but more than the ubiquitous [B(C6F5)4]' anion. The anion has also been 

readily demonstrated to be displaced from the Ag(I) coordination sphere by Lewis bases 

more donating than CD2CI2.

The behaviour o f [(PPh3)2Ag][l-H-c/os0 -CBiiM en] has been investigated and 

the solid state structure determined, which shows the first truly linear bis (PPI13) silver 

adduct. Fluxionality in [(PPh3)2Ag][l-H-c/o5o-CBnM en] has also been demonstrated to 

require the addition of an external Lewis base (be it anion or neutral ligand, or a donor 

solvent) to coordinate to the Ag(I) centre and initiate phosphine dissociation.
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The investigations into Ag—H 3 C  interactions in both the solid-state and solution 

phase are important due to the role of metal alkane complexes as intermediates in 

numerous C - H  activation reactions. The complexes characterised here can be presented 

as a model for these interactions (Figure 42) -  especially those involving cationic Au(I) 

complexes, where a Au(I)—H 4 C  a  complex is postulated as an intermediate in the

• QO

catalytic oxidation of methane to methanol.
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3 Full and Half Sandwich Metallocenes Partnered with the 
[l-H-c/oso-CBuMeji]' anion.

3.1. Background.

The rapid recent expansion of new polymerisation catalysts based on single site,

been the group IV d° complexes, either as simple metallocenes (e.g., CP2MX2 (X = 

halide or alkyl, M = Ti, Zr or Hf)) or as ‘constrained geometry’ complexes e.g., half 

sandwich complexes or a^a-m etallocenes (Figure 1).

X = Halo or alkyl M = Ti ,ZrorHf

F igure 1: A  = a standard m etallocene, B = h a lf sandwich am ido com plex (R  = bulky alkane) and C = an
ansa m etallocene.

The complexes represented in Figure 1 are precatalysts for olefin polymerisation 

and require activation by a co-catalyst to generate the active complex. The putative 

active species for homogeneous polymerisation, is the cationic alkyl complex [LnMR]+ 

that is formally represented as having a ‘vacant site’ on the metal centre (Figure 2). In 

reality the unsaturation is generally alleviated by anion or solvent coordination (albeit a 

weak, easily displaced coordination). Therefore the term ‘virtual’ vacant site is more 

appropriate.3 The most extensively studied metal precatalysts are the Group IV 

metallocenes and the following discussion will be based on these (M = Ti, Zr or H f

homogeneous organometallic complexes has centred on the improvement of catalyst 

activities and in the control of the key polymer properties. 1 ,2 A major area of focus has

A B C
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unless otherwise specified). The concepts though are equally applicable to the 

constrained geometry, non-metallocene and non-Group IV metal complexes.

There are three main routes to access the catalytically active cation (Figure 2):

(i) The activation o f a di-halogen precursor: this is the most widely used industrially and 

predominantly uses aluminium alkyls as the co-catalysts. The co-catalyst role is two 

fold, initially alkylating the metallocene then initiating the polymerisation by Lewis 

acidic alkyl abstraction to form the active catalyst. MAO (methyl aluminoxane) is 

consistently used as a highly efficient activator for these systems.4 Despite the success 

o f the MAO co-catalyst in generating highly active metallocene polymerisation catalysts 

there remains an ambiguity over its role in the activation o f the metal centre and the 

nature of the resultant anionic species formed despite extensive research in both

9 c
academia and industry. ’

X = Halo, R = alkyl

F igure 2: Com m on routes to generate the catalytically active com p lex  for o lefin  polym erisation, ‘o ’
signifies a virtual vacant site.
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(ii) Anion metathesis to precipitate an inorganic MX salt (M = Ag, TI, Na and X = 

halide) and partner the metallocene with a weaker coordinating anion, e.g., the halide

A 0 • • •  •abstraction reaction with Na[BArp] (the co-catalyst in this case), (iii) Activation of 

dialkyl metallocenes. This has received considerable interest due to its advantages over 

the ill-defined MAO based systems. These include the formation o f well-defined 

characterisable ion-pair systems -  allowing for reactivity trends to be studied in-depth 

and rationalised. The activation of dialkyl metallocenes can be further broken down to 

three distinct types (Figure 3).

ML

R

Oxidative Cleavage of M-R 
Bonds by Charged Complexes

One electron oxidants 
e.g. [Ag]Y or [Cp2Fe]Y

-Ag0, Cp2Fe

Protonolysis of M-R Bonds

+ [H(OEt2)]Y, [HNR3]Y

RH, NR3
X^ R

□
Alkyl Abstraction by Lewis Acids

+ LA or [Ph3C][Y]

-[LA- - RJ- or Ph3CR

\©^R

□
F igu re 3: The various methods for the activation o f  the d ialkyl m etallocene pre-catalysts.
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The reaction o f CP2MR2 with one electron {e.g., Ag[Y] or Cp2Fe[Y]) oxidants 

has been demonstrated to yield cleanly the desired active catalyst and when R = Me, Vi 

an equivalent o f ethane {e.g., the reaction of Agfc/oso-CBnHn] with (C5FLjMe)2ZrMe2, 

which cleanly yields (C sfyM e^Z rM e^-c/oso-C B nH n), Figure 4) .7' 10

v Ag[c/oso-CBiiHi2l
\  %xwMe or

^  [Cp2Fe][c/oso-CB11H12]
Me -------------------------►

- 0.5 ethane

M“" vMe

F igure 4: The oxidative cleavage o f  Zr-Me to generate the intimate ion pair (C 5H 4M e)2ZrMe(T)1-c /o jo -
C B ,|H i2).

Protonlysis o f metal alkyl bonds has been extensively used to activate the pre

catalysts since Bochmann and co-workers reported the synthesis o f [Cp2Ti(NH3)Me]+

• • 1119by the addition o f ammonium salts to the dialkyl precursors. ’ To prevent the 

coordination o f the resultant amine (thereby reducing catalyst activity) bulky tri-alkyl 

ammonium cations were developed and used to synthesis a range o f cationic complexes 

without the undesirable R3N —M+ formation. 13' 15 However, coordination of these bulky 

amines has still been observed for a number o f systems e.g., [k2-

Me2Si(NtBu)2Zr(CH2Ph)NMe2Ph][B(C6F5)4].16, 17 The acidic carborane nido-C2B9H 13 

can also protonate M-R bonds, generating a zwitterionic complex (Figure 5) . 13’ 15

Me
Me

MeT ^
Et

Et

MVZraS,Me H -|£ — U|„H
- M e

M e - ^ ^ ^ - M e

-CH4

Me

M e ^ "

Et Mev_

Me

Me

Me

Et M e /

M e - ^ ^ ^ M e HH 

Me h

F igu re  5: Protonation o f  a zirconium alkyl bond by the acid ic w'Jo-carborane C2B 9H 13.
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The final methodology outlined in Figure 3 involves the transfer o f a methide 

(CH3') from the metallocene to a suitable Lewis acid. Alkyl abstraction is readily 

achieved by the addition of the trityl [CPh3]+ cation, forming a neutral by-product 

(Ph3C-Me when R = Me) that does not interfere with olefin polymerisation .18'21 NMR 

investigations into the mechanism of alkyl abstraction (when R = Me) revealed that the

initial product is the methyl bridged dimer [(Cp2ZrMe)2(p-Me)]+ that reacts with a

, 9 22 
further equivalent o f [PI13C] to generate the monomeric cationic complex (Figure 6 ).

0.5 eqiuv [CPh3][Y] 0.5 eqiuv [CPh3][Y]

F igu re 6: R eaction m echanism  for the m ethyl abstraction by trityl salts. (Y  = [B(C6F5)4]‘)

The intermediate can be cleanly synthesised by the addition of Vi an equivalent

of [Ph3C][B(C6F5)4]', and is in itself an active catalyst for olefin polymerisation (albeit

01with a lower turn-over frequency than the respective monomeric complex) . The 

[Ph3C]+ cation has also been reported to act as one electron oxidant, though not with 

respect to d° metal alkyls, where alkyl abstraction is the only mode of activity 

documented.23,24

The most commonly used neutral Lewis acid is B ^ F s ^ , 25'27 that on methide 

abstraction generates the anion, [M e B ^ F s^ ] '. Other suitable Lewis acids demonstrated 

to activate CP2MR2 complexes are dehydroxylated alumina,28 Al(C6Fs)329 and numerous 

functionalised three coordinate boranes (Figure 7) .2,30'32 33
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F F

B(C6F5)3 PBB bpb pnb

F igu re  7: Com m on perfluorinated aryl boranes and their acronym s.

The reactions resulting in the formation of the [M e B ^ F s^ ] ' anion are of 

particular interest, as in the absence of a stronger Lewis base the product formed is a 

contact ion pair. A range of these zwitterion complexes have been crystallographically 

characterised and the anion is bound to the metal centre through a bridging methyl 

moiety, e.g., ( l ,2 -Me2Cp)2ZrMe(p-Me)B(C6F5)3 and (C6H4N(!Bu))2 0 ZrMe(p- 

Me)B(C6F5)3 (Figure 8).25' 26' 34

Bu

Me
O— Zr

Bu

F igu re 8: E xam ples o f  the zw itterion com plexes exhibiting the bridging (p -M e) m oiety.

These isolated complexes are efficient catalysts for olefin polymerisation and 

require no additional MAO co-catalyst. The anion--cation binding motif (a M-Me-B
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linkage) is reminiscent o f the [l-H-c/oso-CBnM en]' interaction with the simple alkali 

salts and the phosphine stabilised silver salts.35’37 It can also be viewed as a model for 

the metal alkane a  bond, with a close M'" H3C contact implicit o f a significant 

interaction (Zr-”C distances ranging from 2.497(12) A  for the only non metallocene Zr- 

(p-Me)-B, to between 2.549(3) A and 2.640(7) A for the zirconecenes).25, 3 4 ,38 The 

effect on the anion on its binding to a zirconium cation has been compared to that o f the 

‘free’ anion, with a slight elongation of the B-CH3 bond occurring on coordination 

(from 1.638(5) A to 1 .6 6  A - 1.69 A). This suggests that the interaction with 

electrophilic zirconium is having a slight weakening effect on the B-CH3 bond. The Zr- 

CH3-B angle is generally non linear (ranging from 160 to 174°), whilst the geometry 

around the boron remains tetrahedral -  suggesting a non-covalent interaction. The Zr-H 

contacts where reported (closest 2.25(3) A) are longer than bridging hydrides (1.78(2) to 

2.05(3) A) and agostic interactions (2.16 A), further demonstrating the weak nature of

01 *)f\the Zr—H3C connection. ’ The solution behaviour o f these zwitterions is also 

noteworthy, with an upfield shift of the methyl protons o f [MeB(C6F5)3]" in the ]H NMR 

spectrum on coordination to a metal centre proving the persistence of the Zr—H3C 

interaction in solution.39 NMR studies on ( l ,2 -Me2Cp)2ZrMe(|ii-Me)B(C6F5)3 shows that 

the anion is firmly bound at room temperature, but on heating becomes fluxional by two 

processes, anion dissociation/reassociation (Zr-Me bond cleavage) and M-CH3/BCH3 

exchange (B-Me bond cleavage, Figure 9) .25,26
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\  ^ (n -M e * )B (C 6F5)3 

Zr\
Me

Via Zr-Me Bond Cleavage

Me

Zr Me*

Via B-Me Bond Cleavage

[MeB(C6F5)3r

\  ^ .(n-M e)B(C6F5)3 
Z r''

Me*

Figure 9: The two fluxional processes that take place on heating [(l,2-M e-C5H3)2ZrMe(p-Me)B(C6F5)3].

The weak binding of the [M e B ^ F s^ ] ' anion and the reversible cleavage of the 

B-Me bond results in the sequential reaction o f Cp*2ZrMe(p-Me)B(C6F5)3 with 

dihydrogen (Figure 10).40 The anion is readily displaced from the metal coordination 

sphere to produce the dihydrogen adduct, that then undergoes stepwise hydrogenolysis 

to yield the mono- and dihydride complexes.

Zr. +h 2

/  '''(M-Me)B(C6F5)3 -CH

+H
CH

/  '> -M e )B (C 6F5)3 " ‘

Figure 10: The stepwise hydrogenolysis o f Cp*2ZrMe(p-Me)B(C6F5)3.
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These [M e B ^ F s^ ] ' complexes show a range of stabilities, 

(C6H4N(tBu))2 0 ZrMe(p-Me)B(C6F5)3 decomposes within hours at room temperature in 

hydrocarbon solvents (e.g. toluene), while in contrast the metallocene-derived products 

can be stable in solution for days.2 Common decomposition routes (in hydrocarbon 

solvents) include anion B-C bond cleavage (C6F5 transfer to the metal) and fluoride 

abstraction from the anion by the electrophilic metal.25, 41 In halocarbon solvents (e.g. 

CH2CI2) rapid chloride abstraction can occur.42

The related bulkier Lewis acidic boranes (Figure 7) do not form zwitterionic 

complexes on methide abstraction, the unfavourable steric interactions prevent the close 

approach and the formation of the M-(p-Me)-B bridge. Instead they form monomeric 

solvent separated ion pairs or the (p-Me) bridged ‘intermediate’ zirconium dimers. The 

reaction of less sterically hindered metal complexes (e.g. Cp*ZrMe3) with B(C6Fs)3 

generates solvent separated ion pairs,43, 44 whilst when R = benzyl (e.g., in the ansa 

zirconocene rac-(Me2Si(indenyl)2)ZrR2) alkyl abstraction leads to intramolecularly 

stabilised separated ion pair (Figure 11).38

\ ©

M e''^  .CH3
Mo \ '

[MeB(C6F5)3r

Figure 11: Examples o f well-separated ion pair complexes resulting from alkyl abstraction.
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In all these isolated systems there is an important balance that needs to be 

addressed. To prevent compound decomposition the metal centre needs to be stabilised 

by an interaction with a Lewis base; however; strong coordination reduces catalyst 

activity. Therefore the interaction must be sufficient to preserve the site in the absence 

of alkene, but weak enough to be easily displaced thus not suppressing activity. The 

effect of the anion is best exemplified by catalyst polymerisation activity data, with the 

order of coordinating power for a series of anions as [MeB(C6Fs)3]‘ > [B(C6F4SiR3)4]' > 

[B(C6F5)4]* > [CN{B(C6F5)3}2]’. The least coordinating anion produces catalysts with 

the lowest activation barrier for the displacement by the substrate and thus highest turn 

over frequencies.22,31,41,45

Apart from the group IV metallocene based olefin polymerisation catalysts, 

there is a rapidly growing number of alternatives, particularly utilising late transition 

metal catalysts.1,46,47 The unique properties of these systems, including, their ability to 

produce highly branched polymers and to incorporate highly polar monomers without 

catalyst deactivation make them a highly attractive alternative. One of the most 

extensively studied areas of these late transition metal systems is the CpCo (III) 

complexes, pioneered by Bergmann (CpCo(PPh3)2Me2) and Brookhart ([Cp*Co(L)Et]+ 

L = C2H4, PMe3 P(OMe)3 and P(C6H4R)3) (Figure 12).48'55

(MeO)3Px 7  X (M eO )3P (M eO )3P

Resting State

Figure 12: Dynamic processes involved in [Cp*Co(P(OMe)3)Et][Y] ( Y = [BF4]' or [BArF]*).
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The polymerisation active state involves a cationic Co(III) alkyl complex 

[CpCo(L)Me]+.48,56 Studies on the model complex CpCo(PPh3)Me2 demonstrated the 

reversible dissociation o f PPI13 to form the Co(III) complex CpCoMe2, that is stable, yet 

electronically unsaturated. This complex readily undergoes methyl exchange with 

CpCo(PPli3)Me2 and interestingly with Cp2ZrMe2 via a methyl bridged dimer54 - similar 

to that characterised previously for the cationic zirconocene methyl bridged dimers 

(Figure 13).2

e
Z r - — Me— Zr

Figure 13: The methyl bridged dimers formed by the sequential replacement o f an unsaturated CpCoMe2
fragment for a [Cp2ZrMe]+.

The behaviour o f the 16-electron fragment {CpCoMe2} is similar to that 

previously reported for the cation [Cp2ZrMe]+, both o f which alleviate their 

coordinative unsaturation by the formation of methyl bridged dimers. In the absence of 

any Cp2ZrMe2, [Cp2ZrMe]+ has been shown to bind [M e B ^ F s^ ] '. Thus a 

[CpCo(L)Me]+ cation would be expected to behave similarly and in the exclusion of 

other Lewis bases form a contact ion pair -  though no such compounds are currently 

known. Furthermore an isolobal relationship can be drawn between the d6, 16 electron 

fragments, {CpCo(PR3)Me+} and {CpRe(CO)2} (Figure 14), a complex that has been 

used to generate the stablest unsupported alkane complexes reported.57 ,58 The cationic 

charge in the {CpCo(PR3)Me+} fragment should provide a significant supplementary 

force to aid the binding o f weak donors.

Me

CoCo

MeMe Me
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Figure 14:The isolobal relationship between the 16e‘ fragments {C pR eC 02} and {CpCo(PR3)M e+}.

3.1.1: Scope of Chapter.

This chapter will discuss the synthesis of further reagents to introduce the [1-H- 

cAm>-CBnMen]' anion to the metal coordination sphere o f cationic metal centres that 

are based on these polymerisation pre-catalysts. The partnering of [1-H-closo- 

C B nM en]' with a number o f cationic zirconocene complexes will be discussed, 

including their solid-state characterisation and solution studies (e.g., polymerisation 

activity, anion--cation interactions). The solid-state structure of intimate Zr—H3C 

interactions is of interest as a model for the binding of alkanes to transition metals, as 

well as providing a comparison to the retarded methide abstraction complexes M —(p- 

Me)B(C6F5)3. Decomposition pathways have been investigated, including the 

identification of metal mediated cage activated products.

Attempts to partner the [l-H -c/ayo-C B nM en]- anion with Co(III) complexes 

analogous to those used by Bergmann and Brookhart is also outlined, including a 

number of complexes formed from the reductive elimination o f ethane from a transient 

Co(IV) complex. Finally, the initial characterisation o f a Co—anion bound complex is 

presented which exhibits anion methyl chemical shift changes in the ^  NM R spectrum 

indicative of metal—CH3 contacts (see Chapter Two).



3.2. Results and Discussion:

3.2.1. Synthetically Useful Salts:

The synthesis of the [HNMe2Ph]+ salt o f the [1-H-c/ayo-CBnMen]' anion is 

readily accomplished by the use of a two phase FI20/E t20  extraction methodology in an 

analogous manner to that used for Ag[l-H-c/o^o-CBnM en]'. The neutral radical [1-H- 

c/oso-CBnMeii]* can also be accessed utilising the synthesis previously reported for the 

related permethylated radical [c/oso-CBnM eiJ*.59 More importantly (for the activation 

of zirconocene polymerisation pre-catalysts) the [Ph3C]+ (trityl) cation is synthesised in 

a one step manner from the reaction of equimolar quantities o f CsjT-H-c/oso-CBnMen] 

and Ph3CBr in CH2C12 (Figure 15).

Ph3CBr, CH2CI2

Figure 15: The reaction scheme for the formation o f [PhsC^l-H-c/oso-CBnMen].

The resultant brown oil is recrystallised from the slow diffusion of hexanes into 

a saturated CH2C12 solution, yielding crystalline material suitable for an X-ray 

diffraction study (Figure 16). This confirmed that the compound composition was 

[CPI13] [ 1 -H-c/oso-CB 1 iMe 11] (8 ). The asymmetric unit o f (8 ) contains one trityl cation 

and one [1-H-c/ojo-CBnM en]' anion, with no observed disorder allowing for the 

unambiguous location o f the cage carbon atom. The most significant feature of the 

structure is a close approach of an anion CH3 vertex to the carbocation. The C7-C13 

distance at 3.67 A lies just within the sum (3.70 A) of the van der-Waals radii o f carbon
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Figure 16: Molecular structure o f  [Ph3C ][l-H -c/o5o-C B n M eii] (8), (thermal ellipsoids at 30% probability level) 
and the extended contacts observed in the lattice form ing a one dim ensional polymer (hydrogens omitted).

C 13-C 14 1.433(5) C 14-C 13-C 20 119.0(3) C 7-C 13 3 .696
C 13-C 20 1.440(4) C 14-C 13-C 26 119.3(3) C 13-C 7-B7 136 .16
C 13-C 26 1.449(4) C 20-C 13-C 26 121.7(3) C13-C9' 3 .659

C13-C9'-B9' 144 .45

Table 1: Selected bond lengths (A) and angles (°) for (8).



and CH3. A further contact in the extended lattice from an adjacent anion (C9’-C13 

3 .6 6 A) also falls within this limit, resulting in the extended structure propagating into a 

one-dimensional polymer (Figure 16). Similar extended structures have been observed 

for [PI13C]2\closo~Q 12F 12] and [Ph3C][c/o50-Me3NBi2Fn]. 60, 61 These complexes also 

exhibit anion--cation contacts just inside the sum (3.17A) o f van der-Waals radii of 

carbon and fluorine (Figure 17). Inspection of the geometry around the carbocation core 

in (8 ), revealed a trigonal planar arrangement, with angles around the central C 

approximating to 120° and the sum of the three C-C13-C angles is 360.0(3)°. The lack 

of any distortion does not rule out any interaction per se as the symmetrical 

arrangement o f the two C13---H3C contacts above and below the plane (C7-C13-C9’ 

176.76°) produces a trigonal bipyramidal arrangement with the same planar PI13C core.

Figure 17: Solid State structures of [Ph3C]2[c/0 S0 -B |2F12], [Ph3C][l-NM e3-c/o5o-B|2F]1] and 
Bu3Sn(c/oj0 -CBuMei2) with their respective distances to the Group IV cations.

The weak contacts in the perfluorinated borane systems have been ascribed to 

crystal packing forces due to their longer BF--+CPh3 (2.992(6) A, 2.942(6) A, and 

3.087(2) A) distances when compared to [Ph3.xC(p-OMe-C6H4)x][BF4] (x = 1 and 2 , 

2 .6 8  A and 2.58 A respectively) where the contacts are significant.62 The isoelectronic
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to (8) complex, nBu3Sn(c/<m>-CBnMei2) displays close cation—anion interactions 

which are significant, but these by contrast to (8) are much shorter (2.81 A) than the 

combined (3.87 A) van der-Waals radii o f a carbon (1.7A) and a Sn atom (2.17 A).63 

The findings from these related complexes strongly suggests that the long contacts 

observed in (8) can be attributed solely to efficient crystal packing rather than any 

specific interaction.

Solution NMR spectroscopy on complex (8) in CD2CI2 is informative as the 

resonances attributable to the anion methyl vertices in the 1H{11B} NMR spectrum (- 

0.21 ppm, -0.40 ppm and -0.62 ppm) are close to that reported for the non-interacting 

cation [nBu4N]+ in the same solvent (0.18 ppm, -0.44 ppm and -0.56 ppm). The 

carbocation resonance in the ^C ^H } at 212 ppm is also close to that reported for 

analogous complexes with the weakly coordinating fluorinated boranes, 

[CN{B(C6F5)3}2]', and [B(C6F5)4]* anions (211 ppm, 210 ppm and 211 ppm 

respectively).45, 60, 61* 64 The similarity of the solution 13C{!H} NMR resonances 

combined with the lack o f any chemical shift change in the 1H{11B} NMR spectrum 

shows that the long contacts observed in the solid state do not persist in solution. 

Heating a toluene solution of (8) overnight resulted in no cage decomposition (vide 

infra). This is a further indication of the absence of intimate anion--cation contacts, as 

the [Li]+ and the [Ag]+ (see Chapter one) salts where close cation anion interactions 

have been characterised undergo cage activation at raised temperatures.65

The three complexes, (8), [l-H-c/ojo-CBnMeii]*, and [HNMe2Ph][l-H-c/os0 - 

CBnM en] will be used throughout the remainder o f this chapter as reagents for 

introducing the highly alkylated carborane anion to metal centres. The neutral radical
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[l-H -c/oso-C B nM en]* has excellent solubility in hydrocarbon solvents, but the [Ph3C]+ 

and [HNMe2Ph]+ cations possess no detectable solubility in hydrocarbon solvents, 

similar to the Ag(I) salts reported in Chapter 2.

3.2.2: Partnering [l-H -c/0 5 0 -CBnMeu]? with Zirconium alkyl complexes.

3.2.2.1: Cp2ZrMe2

The reaction o f equimolar quantities of (8 ) (or [l-H -c/oso-C B nM en]*) with the 

simple zirconocene Cp2ZrMe2 in arene solvents (e.g., benzene, toluene or 

fluorobenzene, (C6H5F)) rapidly produced a bright yellow solution in dilute 

concentrations. In higher concentrations the formation o f higher aggregates and the 

precipitation o f an oil phase occurs, as reported for the activation o f zirconocenes by the 

fluorinated borates, Lewis acidic boranes and MAO.45, 66 Recrystallisation of a dilute 

C6H5F solution by the slow diffusion of pentanes at -20°C yielded large yellow crystals 

suitable for X-ray diffraction studies. This revealed that the asymmetric unit consisted 

of the contact ion pair Cp2ZrMe(l-H-c/050-CBnMen), (9), and a molecule o f 

disordered fluorobenzene, readily modelled by equal occupancy o f two separate sets of 

sites (Figures 18 and 19).

+ [Ph3C][1 -H-c/oso-CB-i 1 Me-i -| ]

MeCPh3 or Ethane

MeIVIeMe

F igure 19: The form ation o f  (9 ), via the reaction o f  Cp2ZrM e2 with (8 ), or the neutral radical [1-H -closo-
CB„Me„r.
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Zr1-C13 2.2612(15)
Zr1-C12 2.516(2)

Zr1-H12a 2.38(2)
Zr1-H12b 2.34(2)
Zr1-H12c 2.45(2)

ZM-C12-B12 172.2(1)
B12-C12 1.6235(19)

C12-H12a 0.84(2)
C12-H12b 0.97(2)
C12-H12c 0.99(2)

B12-C12-H12a 103(1)
B12-C12-H12b 109(1)
B12-C12-H12C 113(2)
C12-Zr1-C13 89.1(1)

T able 2: Selected bond lengths (A) 
and angles (°) for (9).



Complex (9) consists of a bent sandwich structure with the Cp rings canted away 

from the anion, this structural feature is common throughout the zwitterionic 

metallocene complexes (e.g., (l,2-Me2Cp)2ZrMe(p-Me)B(C6F5)3 and Cp*2ZrMe(p- 

Me)B(C6F5)3).25 The anion-•-cation interaction is through the antipodal BCH3(12) vertex 

o f the anion and generates a Zr-(p-Me)-B bridging moiety reminiscent of the 

[MeB(C6F5)3]' analogoues.2,25 The H3C---Zr distance is close, with a Zrl-C12 distance 

o f 2.516(2) A, comparable to that of Zr metallocenes partnered with [MeB(C6F3)3]’ 

(which range from 2.549(3) A and 2.640(7) A) and is significantly longer (by 0.255 A) 

than the terminal Zr-Me distance (2.2612(15) A). A direct comparison with the 

analogous complex [Cp2ZrMe(p-Me)B(C6Fs)3] is particularly relevant as any 

differences in the structural metrics will originate solely from the change in the anion. 

The molecular structure with pertinent bond lengths and angles is shown in Figure 20.67

ii

Zr-C11 2.251(3)
Zr-C12 2.556(2)

C11-Zr-C12 87.70(9)
C12-B 1.667(3)

Zr-C12-B 169.10(16)

Figure 20: M olecular Structure o f  Cp2ZrM e(fi-M e)B(C6F5 ) 3  and selected bond lengths (A) and angles (°).

The Zr-bridging methyl distance in (9) is shorter by 0.04 A, whilst the Zr- 

terminal Me is longer in (9) by 0.01 A. These differences taken together suggest that the 

[l-H -c/oso-CBuM en]' anion is interacting slightly more strongly with the cationic 

zirconium than its [MeB(C6F3)]' counterpart. The Zr-C12-B12 linkage in (9) is
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essentially linear (172.2(1)°) and is close to that reported for Cp2ZrMe(p-Me)B(C6Fs)3 

(169.10(16)°), suggesting that the intermolecular bonding in (9) is unaffected by steric 

interactions, unlike the bulkier metallocene ( l ,2 -Me2Cp)2ZrMe(p-Me)B(C6F5)3, which 

has a Zr-(p-Me)-B angle of 161.8(2)°. It also infers that there are no additional 

intermolecular interactions to anions adjacent in the lattice, as is the case for a number 

of {PR.3Ag}+ complexes. Examination o f the extended structure reveals that the closest 

additional Zr-FEC contact at 4.546 A is considerably longer than would be expected for 

any significant contact. The B12-C12 bond length (1.6235(19) A) shows no elongation 

when compared to the same vertex in non-interacting complexes (e.g., Complex (5), 

[(Ph3PAg(OEt2)2][l-H-c/o50-CB1iMeii] 1.6233(14) A).

The data collection for (9) was of sufficient quality to allow for the free 

refinement of the hydrogen positions associated with the interacting vertex. This 

revealed three equally close (within errors) Zr-H contacts (average 2.39 A). These are 

significantly longer than that found in the P-agostic complex 

[(MeCsH4)2Zr(CH2CH3)PMe3][BPh4] (2.16 A, no error reported) suggesting that the 

anion binding in (9) is weaker than this agostic interaction.68 These Zr-H distances are 

however comparable to that in Cp2ZrMe(p-Me)B(C6Fs)3, though in this case there are 

only two reported close contacts averaging to 2.38 A. The tetrahedral geometry around 

C12 is not perturbed, with the associated bond angles and lengths (Figure 18) close to 

the ideal sp3 (within the significant errors). Calculations on the closely related 

[M e B ^ F s^ ] ' bound complexes determined that the interaction between the 

{Cp2ZrMe} and { M eB ^ F s^ }  fragments was predominantly electrostatic in origin.2 In 

(9) due to the lack o f any distortion o f the binding B-CH3 vertex the same conclusion 

can be reached for [l-H -c/ojo-CBnM en]’.
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It is o f interest to investigate the solution behaviour of (9), particular to 

determine if the close contact ion pair observed in the solid-state structure persists in 

solutions of weakly coordinating solvents. On dissolution in dg-toluene, complex (9) 

affords a bright yellow solution that exhibits a single Cp resonance in the *H{1 !B} NMR 

spectrum at 5.55 ppm and a terminal Zr-Me signal at 0.29 ppm, similar to that observed 

for Cp2ZrMe(p-Me)B(C6F5)3 .25 The Csv symmetry of the cage is maintained in solution, 

indicated by both and n B NMR spectroscopy. Moreover, the Zr -H3C contact 

persists in solution, with a significant chemical shift change observed for the B-CH3 

resonances in comparison to a non-interacting cation ([(PPh3)2Rh(NBD)]+) in an 

identical solvent (Figure 21).

BCHj(2-6) ‘Free’ ll-H-c/oso-CBuM eu]'

060 0-40 -040 -080

BCH3(2-6)
CpjZrMeGi-MeXl-H-c/oso-CBnMeii)

Zr-Me

060 0 2D 000 -030 -0(90 -080-0.40

Figure 21: A comparison o f  the anion CH3 region in the 'H {n B} N M R  spectra for free [\-W-closo-
C B n M en ]' and (9), both in d8-toluene.
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A comparison of the two spectra shows the methyl resonances for (9) to be 

significantly broadened and the individual chemical shifts moved to higher field. The 

unambiguous assignment o f the individual vertices was achieved by a combination of 

n B-n B COSY and 1H -11B HMQC NMR spectroscopy. The change in chemical shift in 

the 1H{11B} NMR spectrum of (9) in comparison to that o f free [l-H-c/oso-CBnM en]’ 

is significant for all three vertices and consistently upfield. The CH3( 12) vertex 

experiences the greatest shift (-0.91 ppm), followed by CH3(7 - 1 1 ) (-0.42 ppm) and 

CH3(2 -6 ) the least (-0.24 ppm). A similar pattern is observed for the degree of 

broadening (pwhm) associated with each resonance; (CH3( 12) 14.2 Hz, CH3(7 - 1 1 ) 6.7 

Hz and CH3(2 -6 ) 3.4 Hz) compared to ~1 Hz for the free anion overall. This suggests 

that in solution the interaction between the anion and cationic zirconium fragment is 

primarily through the 12 and 7-11 BCH3 vertices. Chemical shift changes of a similar 

magnitude have been observed for this anion partnered with {(PR3)Ag}+ fragments, 

though in this case in an opposite direction (Chapter Two). An upfield chemical shift 

change o f equally large magnitude (AS = -1.14 ppm) has been reported for the 

analogous Cp2ZrMe(p-Me)B(C6F5)3 (B-Me, 0.10 ppm) when compared to ‘free’ 

[MeB(C6Fs)3]' (B-Me, 1.24 ppm).25, 39 The 13C{!H} NMR spectrum of (9) is 

uninformative with the anion CH3 groups appearing as a very broad signal.

Cooling a dg-toluene solution of (9) to progressively lower temperatures results 

initially in the CH3( 1 2 ) resonance broadening (at 273 K), followed by a significant 

sharpening at 223 K. Concomitantly the chemical shift for this vertex moves further 

upfield, ultimately to 8-1.00 ppm (223 K) with the signals for CH3(2 -6 ) and CH3(7 - 11) 

moving in the opposite direction, approaching that observed for the free anion. The Cp 

resonances also shifts to 5.23 ppm. The upfield chemical shift change to the CH3O 2 )
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vertex at low temperature implies that there is some freezing out of a fluxional process. 

This low temperature structure approaches that observed in the solid state, i.e. 

Cp2ZrMe(1 2 -p-Me-l-H-c/aso-CBiiMeio) as CH3( 1 2 ) is shifted, but CH3(2 - 1 1 ) are not. 

Alongside this major compound are resonances at approximately 10% relative intensity 

(at 223 K) including a second Cp signal at 5.30 ppm and six observable broad low 

intensity anion methyl resonances between 60.65 and -0.90 ppm in the 1H{11B} NMR 

spectrum. This is suggestive o f a second compound in which the anion has lost the Csv 

symmetry seen in the room temperature spectrum and also for the 12-isomer. This 

compound is assigned as the 7-isomer, Cp2ZrMe(7 -p-Me-l-H-c/aso-CBiiMeio) (Figure 

22), presumably the un-observed BCH3 signal is coincident with one o f more intense 

1 2 -isomer resonances.

H
n .Me

r
I

LnM ' ' '
Me

F igu re 22: The 7 inequivalent B -C H 3 vertices in [1-H -c/oso-C B nM en]* resulting on metal coordination
through the 7 position.

Returning the solution to 298 K resulted in the original spectrum with only one 

Cp resonance observed. Therefore, a dynamic equilibrium exists between the two 

isomers (Figure 23) that is frozen out at 223 K.
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le q (2 2 3 K )

MeMeMe

F igu re 23: The dynam ic equilibrium between tw o possib le isom ers o f  Cp2Z rM e(l-H -c/o5o-C B n M en ).

The presence o f two isomeric forms agrees with calculations on the charge 

distribution across BCH3 vertices in the [l-H-c/oso-CBnM en]' anion, with the BCH3(7 - 

1 1 ) and BCH3O 2 ) vertices being approximately equally negative, whilst the BCH3(2 -6 ) 

positions have an overall positive charge (see Chapter One).63, 69 The related anion 

[c/oso-CBnHn]' has also been demonstrated to bind as two isomers in the complexes 

CpMo(CO)3(c/ojo-CBn H 12) and CpFe(CO)2(c/o50-CB, 1H 12).70' 71

Compound (9) is stable at room temperature for days in arene solvents, similar 

to that reported for non bulky Cp systems partnered with the [M e B ^ F s^ ] ' anion. 

Prolonged standing in solution results in the gradual decomposition of (9) (weeks) 

which is significantly accelerated on heating. The decomposition of a series o f 

zirconcenes partnered with [l-H-c/oso-CBnM en]' will be discussed in section 3.2.4.

The reaction of complex (9) with hydrogen results in no change in the 1H{11B} 

NMR spectrum, with anion coordination still observed as determined by the distinctive 

upfield shift o f the anion CH3 resonances. No hydride resonances were detected and the 

Zr-Me signal at 5 0.29 ppm was still present. This is in contrast to the reaction o f H2 

with Cp2ZrMe(p-Me)B(C6F5)3, in which the [M e B ^ F s^ ] ' anion is displaced from the 

Zr coordination sphere by H2, initiating the stepwise hydrogenolysis to ultimately
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<1 f
produce Cp2Z r(H )(|i-H )B (C 6F 5)3 and two equivalents o f  m ethane. The lack o f

c/oso-CBnM en]' is more coordinating than H2 and [M eB ^F s^]* . In contrast, the 

reaction of the stronger Lewis base MeCN does cleanly displace the [1-H-c/oso 

CBnMen]* anion and forms [Cp2ZrMe(MeCN)][l-H-c/o50-CBnMen] as the only 

product (by ^ ^ B }  NMR spectroscopy and comparison to [Cp2Zr(R)MeCN][BPh4]).10

Attempts to generate (9) via the protonation o f Cp2ZrMe2 with the ammonium 

salt, [HNMe2Ph][l-H-c/o5o-CBnMen] in an analogous manner to that using 

[HNMe2Ph][B(C6Fs)4],21 failed. The resultant complex showed only a single Cp 

resonance in the ^ { " B J  NMR spectrum but anion CH3 resonances indicative of a non

coordinated cage. Hlatky and Turner have previously reported that the reaction of 

[HNR3][BPh4] with less substituted metallocenes (including Cp2ZrMe2) underwent 

secondary reactions after the initial protonation step to give catalytically inactive 

materials.15, 20 Furthermore, neutral amine coordination to the cationic metal centre 

partnered with the weakly coordinating [ B ^ F s W  anion has been reported for a mono- 

Cp titanium catalyst [{(C5Me4)Si(Me)2N(!Bu)}Ti(Me)(NR3)]+ and two non-Cp

1 ( \ 17 77zirconium complexes (Figure 24). ’ ’

reactivity observed implies, that with respect to the {Cp2ZrMe}+ fragment, the [1-H-

.Ti-"iiNR3
X X  vN Me

^  \  / r^ N M e 2Ph
N

Me3Sk ,N //„ (Zr©
/ IZr— NMe2Ph

F ig u re  24: E xam ples o f  cationic d° metal cations stabilised by coordinated amine.
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No attempts were made to isolate the product from the reaction of 

[HNMe2Ph][l-H-c/aso-CBiiM eii] and Cp2ZrMe2 due to the absence o f any cage 

interactions. It is plausible that amine coordination followed by subsequent secondary 

reactions occur in a related manner.

The reaction o f Cp2ZrMe2 with lA an equivalent o f [Ph3C][l-H-c/aso-CBnMeii] 

produces [{Cp2ZrMe}2(p-M e)][l-H-c/0 S0 -CBnM en], (10) as the major product (vide 

infra). Compound (10) is also synthesised as the major product by the addition of an 

excess of Cp2ZrMe2 to (9) (Figure 25).

+ 1 equiv 
Cp2ZrMe20.5 eqiuv (8)

Figure 25: The synthetic routes to [ {Cp2ZrMe}2(|i-Me)][ 1 -H-c/oso-CB | , Me 11 ].

The ^ ^ B }  NMR spectrum shows no cage interactions with anion resonances 

identical to that for the free anion in dg-toluene (though compound (10) is only 

sparingly soluble in non-polar hydrocarbon solvents -  as previously reported for the

99[B(C6Fs)4]' analogue). The resonances for the cation portion o f (10) are as reported 

previously for the [B(C6F5)4]' and PBB anions.45, 73 Crystals suitable for an X-ray 

diffraction study were obtained by the slow diffusion o f pentane into a dilute C6H5F 

solution at -20°C. The asymmetric unit o f (10) consisted of a well-separated discrete 

anion and two Cp2ZrMe2 moieties (Figure 26). The bridging methyls are on special 

positions, that when the symmetry operations are performed generate two

160



ON

f a

Zr1-C13 2.4182(16)
Zr1-C14 2.259(7)

Zr1a-C13a 2.351(1)
Zr1a-C14 2.748(17)

C14-Zr1-C13 89.6(3)
Zr1-Cl3-Zr1_2 164.4(5)

Zr1a-C13a-Zr1a_2 152(3)
Zr2-C25 2.4243(15)
Zr2-C26 2.266(7)

Zr2a-C25a 2.265(12)
Zr2a-C26 2.68(2)

C26-Zr2-C25 90.6(6)
Zr2-C25-Zr2_2 175.4(12)

Zr2a-C25a-Zr2a_2 176(6)

Table 3: Selected bond lengths (A) and angles (°) for (10).

Figure 26: The molecular structure o f [(Cp2ZrMe)2(|i-Me)][l-H-c/o5o-CB1iM ei1], (10) (only one o f the two crystallographically 
independent dimers shown (thermal ellipsoids shown at the 30% probability level, hydrogens are removed for clarity). A 

disordered molecule o f solvent co-crystallite (C6H5F), and the disordered cation component are not shown. Symmetry 
transformations used to generate the equivalent atoms (denoted by _2):(x+l,y,-z+l/2) and (-x,y,-z+l/2).



crystallographically inequivalent [{Cp2ZrMe}2(p-Me)]+ fragments. Both cation 

fragments are disordered across the Zr-Me-Zr bridges; this is readily modelled in each 

case by a 50% occupancy o f the two sites. Due to the disorder and the large thermal 

ellipsoids present in the structure o f (1 0 ) only the gross structural metrics can be 

discussed with any confidence. The two {Cp2ZrMe} portions o f each individual dimer 

are by definition identical to each other and the two crystallographically independent 

dimers are grossly similar. One of the dimers approaches linearity (Zr2-C25-Zr2_2 

175.4(12)° and Zr2a-C25a-Zr2a_2 176(6)°) comparable to that reported for the only 

other reported (p-Me) metallocene dimer [{(C5Me2H3)2ZrMe}2(p-Me)][MePBB] 

(170.9(4)°);73 however, the second is notably more bent (Zrl-C13-Zrl_2 164.4(5)° and 

Zrla-C13a-Zrla_2 152(3)°). This does suggest that the bridging CH3 moiety is sp2 

hybridised, with a symmetrical interaction. This is supported by the similar chemical 

shifts observed for (10) and [{(CsMe2H3)2ZrMe}2(p-Me)][MePBB] .22 A valid 

comparison o f the terminal and bridging Zr-Me distances is not warranted due to the 

difference between the two Zr-terminal Me distances (e.g., Zrl-C14 2.259(7)A versus 

Zrla-C14 2.748(17)A) generated by the disorder in (10). The only major disparity in the 

structures o f (1 0 ) and [{(C5Me2H3)2ZrMe}2(p-Me)][MePBB] worth noting is in the 

respective orientation of the terminal methyls, eclipsed in (1 0 ), compared to staggered 

in [{(C5Me2H3)2ZrMe}2(p-Me)][MePBB]. The staggered methyl geometry reported 

may well be necessitated by the bulkier (CsMe2H3) groups forcing the geometry to a 

‘trans ' (staggered) arrangement (with respect to the angling of the Cp2Zr moieties 

around the ‘linear Zr-Me-Zr core). In the less hindered congener (10), the eclipsed 

formation is not sterically unfavourable and the unsubstituted Cp rings can be bent into 

the same plane (Figure 27).
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experimentally sterically unfavourable experimentally
observed 'eclipsed' not observed 'eclipsed' observed 'staggered'

conformation conformation conformation

F igu re 27: Schem atic dem onstrating the unfavourable M e—M e interactions in the eclipsed geom etry o f  
the [{(C 5M e2H 3)2Z rM e}2(fj.-M e)]+ cation and the tw o other experim entally observed structures.10

Compound (10) can be converted to the contact ion pair complex (9) by the 

reaction with a second half an equivalent of [Ph3C][l-H-c/o50-CBnMen]. Thus, the 

reaction pathway to form (9) can be expected to pass through (10) as an intermediate, as 

previously shown for the [ B ^ F s ^ ] ' systems (Figure 28), and thus places the anionic 

[l-H-c/oyo-CBiiM en]' as less coordinating than the neutral zirconocene Cp2ZrMe2.

0.5 equiv (8)0.5 eqiuv (8)

■Ph3CMe

F igu re 28: The stepw ise reaction m echanism  for the form ation o f  (9 ) via the [{C p2Z rM e}2(p -M e)]+
cation.

Whilst this stepwise behaviour is similar to that observed for the [M eB ^F s^]*  

and the [ B ^ F s ^ ] ' anion analogues, moving to the even bulkier [MePPB]' anion results 

in the reaction being terminated at the intermediate stage and the ((1-CH3) dimer isolated 

excusively.31



3.2 .2 .2 : (C5H 4M e)2ZrM e2

In an attempt to determine the strength of the binding interaction between the [1- 

H-c/ojo-CBnM eii]' anion and the cation in these zirconcene complexes a symmetry 

probe was introduced into the Cp rings. Replacing the unfunctionalised 

cyclopentadienyl for the mono methylated CsFLjMe (Cp’), introduces the possibility of 

diastereotopic Cp’ proton signals in an analogous manner to that utilised by Marks and 

co-workers in (C5H 3Me2)2ZrMe(p-Me)B(C6F5)3.2, 25, 26 In Cs symmetrical systems i.e. 

the starting dimethyl complex Cp’2ZrMe2 there is a mirror plane bisecting the Me-Zr- 

Me angle resulting in only two proton resonances for the Cp’ ring. In an asymmetric 

system Cp’2Zr(X)(Y) (e.g., Cp’2Zr(Me)(l-H-c/o5o-CBnMen)) there is loss of this 

mirror plane, consequentially the Cp’ protons are now inequivalent and four resonances 

can be expected in the NMR spectrum (Figure 29).

H3C h3c

Mirror Symmetry, 2 Cp' Diastereotopic, 4 Cp'
aromatic resonances aromatic resonances

F igu re 29: Sym m etric and asym metric substituted zirconocenes, resulting in an increase in the number o f
aromatic signals in the 'H N M R  spectrum.

If the there is tight ion pairing in Cp’2Zr(Me)(l-H-c/o50-CBnMen) then the 

NMR spectrum will display four aromatic signals. If the anion--cation interaction is 

weak and the dissociation/rebinding fast on the NMR timescale the X and Y positions
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become equivalent through time averaging and a pseudo mirror plane is induced in the 

zirconocene (Figure 30).

MeMe
U & M e

anion dissociation

M0M̂ leMe

F igu re 30: T he equilibrium  expected  on anion dissociation to produce a tim e averaged mirror plane.

The reaction o f Cp’2ZrMe2 with one equivalent o f (8 ) in dg-toluene results in a 

single major product that is assigned as the close contact ion pair Cp^ZrMeO-H -closo- 

CBnM en), (11). Characterisation is based on an upfield chemical shift (relative to the 

free anion) and broadening in the ^ { " B }  NMR spectrum for the anion CH3 resonances 

(CH3(2 -6 ) 0.14 ppm, CH3(7 - 1 1) 0.0 3ppm and CH3( 1 2 ) -0 .57 ppm) as observed for (9). 

Further confirmation is provided by the Zr-Me signal in the ^ { " B J  NMR spectrum 

that resonates at 0.30 ppm, almost identical to that reported for (9) (0.29 ppm). The 

degree o f chemical shift change implies that in compound (1 1 ), the anion--cation 

interaction is similar to that in (9). Importantly the four diasteroetopic Cp’ aromatic 

resonances observed, show that the anion binding is static at room temperature (Figure 

31). A ]H COSY NMR spectrum and the presence o f only one Cp’ methyl signal in the 

^ { " B J  spectrum confirm that there is only one {Cp^Zr} complex present in solution.
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5.005.40 5.205.80 5.60

F igure 31: The aromatic Cp region o f  the 'H {n B} NM R spectrum o f  (11), * denotes an unknown 
impurity, # signifies a decom position product.

The tight anion binding and lack o f fluxionality at room temperature in complex 

(11), is as observed for the related complex (C5H3Me2)2ZrMe(p-Me)B(C6F5)3 which 

shows no signal broadening below 40°C.25 In an attempt to facilitate anion dissociation 

a d8-toluene solution o f compound (11) was gradually heated. At temperatures above 

60°C rapid decomposition takes places, whilst below this temperature no discemable 

signal broadening occurred, frustrating attempts to obtain thermodynamic values for the 

AH* and AS* o f anion dissociation. The earlier onset o f signal broadening observed in 

(C5H3Me2)2ZrM e(p-M e)B(C6F5)3 when compared to ( 1 1 ), ranks the [M e B ^ F s ^ ] ' as 

more weakly coordinating than the [l-H -c/oso-C B nM en]' anion with respect to 

zirconocene cations. This is in line with the respective solid-state structures, where there 

is a shorter Zr(p-Me) bond length in (9) than in Cp2ZrMe(p-Me)B(C6Fs)3 . The 

decomposition product from heating a solution o f (11), showed a severely decomposed 

anion region in the ^ { " B }  and n B NMR spectra (see section 3.2.4 for further 

discussion). A number o f constrained geometry complexes o f the general formula 

(CGC)Zr(Me)(p-Me)B(C6F5)3 also undergo thermal decomposition at low 

temperatures.2 It is interesting to note that for the related compound C p ^ Z rM e ^ 1- 

c/oso-CBhHi2) a fluxional process is occurring, generating a Cs solution structure and
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•n
only two resonances for the Cp’ protons. The solid-state structural metrics and the poor 

polymerisation activity both indicate a strong anion--cation interaction. This implies 

that an alternative mechanism to anion dissociation is causing the observed Cs 

symmetry

Repeated attempts to obtain crystalline material o f Cp’2ZrMe(l-H-c/as0- 

C BnM en) to allow for a solid-state comparison with (9) failed. Similarly, the 

analogous reaction o f  (8) with the bulkier metallocene, Cp*2ZrMe2 repeated yielded a 

mixture o f  products (as judged by the number o f  Cp* CH3 resonances observed in the 

NMR spectrum), and a decomposed anion region. Attempts to partner the 

related anion, [c/ojo-CBuH^]" to zirconocenes other than [Cp2ZrMe]+ and 

[(Cp’̂ ZrM e] equally failed due to the instability o f  the products.

3.2.3: Polym erisation Studies.

Polymerisation studies discussed herein were performed at the University o f 

East Anglia by Professor Manfred Bochmann and co-workers. The pre-catalyst 

(SBI)ZrMe2 (SBI = rac-Me2Si(indenyl)2, Figure 32) has previously been used to 

provide highly reactive polymerisation catalysts (over three times the productivity 

compared to Cp2ZrMe2)74 on the addition o f a suitable co-catalyst (e.g., B(C6Fs)3, 

[Ph3C][B(C6F5)4], [Ph3C][{B(C6F5)3}2CN], Figure 32).45 The anion partnering the 

cationic complex has a considerable effect on the activity o f  the cationic zirconocene, 

with dissociation o f  the weakly coordinating anion the entry point into the catalytic 

cycle.75'77
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B  C = N  B

F igu re 32: The structure o f  the pre-catalyst (SBI)ZrM e2 and the co-catalyst [CPh3][{B (C 6 F5) 3 }2CN].

The activity of metal catalysts partnered with a variety of anions is another 

method for determining their relative co-ordinating ability. (SBI)ZrMe2 on reaction with 

8 in toluene gave an overall activity of 45 kg mol'1 h '1 bar'1 for the polymerisation of 

ethylene (at room temperature). This value shows that the {(SBI)ZrMe}+/[l-H-c/ay0- 

CBnM en]' combination produces a moderately active catalyst based on the scale of 

merit proposed by Gibson and co-workers.1 To put this value in context, however, the 

highest activity reported for the (SBI)ZrMe2/co-catalyst combination for the production 

of polyethylene (without AIR3 scavenger) is 20,400 kg mol'1 h '1 bar'1 using 

[CPh3][{B(C6F5)3}2CN] (albeit at the raised temperature of 60°C).74 This clearly shows 

that the coordinating nature of the [l-H-c/oso-CBnMen]' anion drastically impairs the 

catalyst active site, whereas the very weakly interacting [{ B ^ F s^ ^ C N ] ' anion has a 

much higher activity. A more valid comparison is with the [M eB ^F s^ ]' anion 

congeners, unfortunately all the reported (SBI)ZrMe2/B(C6F5)3 polymerisation studies 

also involved tri-alkyl aluminium scavengers (to react with trace impurities that can 

readily deactivate the active catalyst). For example an identical 

(SBI)ZrMe2/[Ph3C][{B(C6F5)3}2CN] combination with 1000 equivalents of Al'Bu3
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scavenger gives an increased activity of 760,400 kg mol'1 h'1 bar'1 (again at the raised 

temperature of 60°C).45 Marks and co-workers have performed scavenger-free ethylene 

polymerisation studies using Cp2ZrMe(p-Me)B(C6F5)3 which results in an activity of 

4,500 kg mol'1 h'1 bar'1.25 This is a hundred-fold higher than that found for the 

(SBI)ZrMe2/[Ph3C][l-H-c/as0-CBnMen] combination, demonstrating again the greater 

nucleophilcity of the [l-H-c/ojo-CBnMen]' anion. However, it should be noted that the 

rapid anion decomposition observed on the reaction of Cp*2ZrMe2 with [CPh3][l-H- 

c/oso-CBiiMen] may indicate that the lower activity recorded here is due to catalyst 

decomposition. The possibility of anion decomposition is further supported by the fact 

that complexes partnered with the more coordinating anion [WW0-C2B9H12]* has a 

greater activity (e.g., Cp2ZrMe(wz<7o-C2B9Hi2) 265 kg'1 mol*1 h'1 bar'1).13 An alternative 

possibility for the significantly lower activity in [ 1 -H-c/oso-CB 11 Me 11 ]' partnered 

complexes is their reduced solubility in non-polar hydrocarbons (e.g., toluene), which 

may have resulted in an artificially reduced concentration.

3.2.4: Anion Decomposition. 

3.2.4.1: Reaction with Arenes

In all the cationic zirconocene complexes that have been partnered with the [1- 

H-c/o5o-CBnMen]* anion decomposition occurs, albeit at varying rates (slowly for (9), 

but rapid with the {Cp*2ZrMe}+ fragment). Heating these complexes further accelerates 

the degradation and generates similar NMR spectra to that observed by room 

temperature decomposition. The Cp and Cp’ congeners behave in a closely related 

manner and they will be discussed together in this section.
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The complete loss of all resonances associated with (9) occurs within an hour 

w'hen a toluene solution is heated at 60°C. The *H NMR spectrum shows numerous Cp 

resonances (5.86 ppm, 5.67 ppm and 5.50 ppm) and a complex cage region. Figure 33 

shows the resultant n B and lU NMR spectra (anion and Zr-Me region only) from the 

heating o f a toluene solution of (9) at 70°C for 1 hour.

H NMR Anion CH3 and 
Zr-Me region

B NMR

TT
4

T
2

T0 T
-2

T1
•4

T1
•6

T T"
-10 T r

-1 2 -0 80060 040 020 0.00 -0 20 -040 -060-8

F igure 33: The n B and 'H NM R spectrum for a d8-toluene sample o f  (9) heated at 70°C for 1 
hour, show ing anion B -C H 3 region only -  a representative spectrum o f  the anion decomposition products.

The Cp resonances o f the decomposition products are not assignable to (9) or 

Cp2ZrM e2 . The n B NMR spectrum gives clues to the products formed, showing that the 

Csv symmetry is maintained, but with a number o f broad antipodal signals between 5 

and 0 ppm. Mass spectrometry (FAB-) shows three anionic products: the 

unfunctionalised cage [1-H-c/aso-CBnMen]* (297.5 m/z); a signal at 360.5 m/z 

attributable to [l-H-12-Ph-c/ojo-CBnMeio]" (to remain Csv symmetric the anion must 

be substituted in the 12 position as indicated by n B spectroscopy) and a signal at 375.5 

m/z that is assignable to [l-H-12-(CH3C6H4)-c/o.yo-CBiiMeio]' (Figure 34). The 12- 

tolyl substituted cage can exist as a number of isomers (adding to the NMR spectrum 

complexity), although to keep the local Csv symmetry the cage must again be only 12- 

substituted. The only identifiable signal in the FAB+ mode on a number of attempts was 

assigned as {Cp2ZrMe(OH 2)}+ (283.1 m/z,) (Figure 34).
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Me

FAB + 283.1 m/z FAB- 360.5m/z para and meta isomers
FAB- 375.5m/z

F igu re  34: O bserved cation and anion com plexes from the decom position  o f  (9 ) in toluene.

Metal "anion coordination must play a central role in the deactivation 

pathway as the [MeB(C6F5)3]‘ analogue is stable at 80°C for hours, ruling out a 

coordinated solvent decomposition mechanism. Secondly, heating the non-coordinating 

salt Cs[l-H-c/ay0-CBiiMen] in CeHsF/toluene mix results in no decomposition. The 

initial step on a proposed decomposition pathway is the anion--Zr complexation via the 

12 position as observed in the solid state structure of (9). Two plausible mechanisms are 

then conceivable, (i) Decomposition could be initiated by the thermal abstraction of a 

methide to generate Cp2ZrMe2 and the reactive borenium ylide {l-H-c/oso-CBnMen}, 

reported previously.65, 78 The borenium ylide will then react further with a molecule of 

solvent (toluene), producing a H+ (or CH3+) via an Se2 mechanism (Figure 35). This 

would then go on to react with Cp2ZrMe2, generating CH4 (or C2H6). The resultant 

zirconocene cation would then not undergo any further reaction due to the improved 

stability provided by coordination to an anion bound arene. Complexes based on 

{Cp2ZrMe}+ are well documented to bind to anionic arene containing complexes {e.g., 

[BPhJ*, [B(4-R-Ph)4]').79'81 (ii) Alternatively, anion coordination to the metal centre 

could activate the B-C bond to undergo formal ct bond metathesis with the toluene
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solvent forming the aryl substituted cage and the cation Cp2ZrMe+ which could react 

further as detailed above.

[Cp2ZrMe(L)][1-H-c/oso-CB11Me1i] [Cp2ZrMe(L)][1 -H-12-Aryl-c/oso-CBj iMe10]
U

+ L
( L = H20  or

n
+ L
( L = H20  or 
other trace 
impurity)

other trace 
impurity)

-Me

A

Cp2ZrMe2

+ Me

-CH4 or C2H6 (via 
H+ or CH3+ 

respectively)

H

Me
Me  ̂ /

Zr

borenium ylide

Me

Figure 35: a proposed mechanism for the metal mediated anion activation, accounting for the observed 
anion and cation fragments observed in the FAB mode Mass spectroscopy

Both o f these mechanisms have been proposed previously in the lithium 

mediated Me/aryl exchange. This involves the exchange o f a B -  CH3 moiety for a B- 

para-CeHtBr moiety with the concomitant loss of SiMe4 (Figure 36).

Figure 36: The B-Me/Aryl-Si exchange reaction that takes place on heating the Li salt o f [l-M e4C20 2B-
c/ojo-CBnMen]*.

The presence o f [Cp2ZrMe(OH2)]+ and unfunctionalised [l-H -c/oso-C B nM en]' 

is not unexpected as the fiercely electrophilic {Cp2ZrMe}+ will readily scavenge any 

trace water and on doing will shut down the metal mediated decomposition pathway.
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An analogous decomposition is observed when Cp*2ZrMe2 is reacted with (8 ) at low 

temperatures in C6H5F, the only anion signal in the FAB- mode mass spectrum being 

that for the twice-activated cage [l-H -c/ojo-C B nM e^C eH iFy. The FAB+ mode 

spectrum exhibits a signal correspond to Cp*2Zr(Me)F (Figure 37).

Me
Me FAB- 457.4m/z Me^ Z r  ' ' FAB+395.0 m/z

Figure 37: The observed molecular ions from the reaction o f [CPh3][l-H-c/o5o-CBiiMeii] and
Cp*2ZrMe2 in C6H5F

NMR spectroscopy was not informative in the unambiguous assignment o f these 

compounds and attempts to obtain pure material failed. Nevertheless a similar 

decomposition mechanism similar to that discussed previously is feasible, the key 

intermediate again being the neutral borenium ylide [l-H-c/oso-CBuMeio], proposed 

previously by Michl and co workers.65,78

3.2.4.2: Reaction with Dichloromethane.

On dissolution o f (9) or (1 0 ), in CD2CI2 rapid compound decomposition also 

occurs to give an anion CH3 region in the ^ { " B }  NMR spectrum of high complexity. 

The n B NMR spectrum is also significantly altered from that of (9), with an increased 

number o f peaks indicating loss of anion Csv symmetry. Mass spectroscopy again was 

useful in helping to elucidate the structures of both anion and cation products. The 

FAB+ mode consisted o f two major compounds, identified as {Cp2Zr(Me)Cl}+ and
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{Cp2ZrCl}+ (Figure 38), chloride inclusion clearly indicating solvent activation is taking 

place.

FAB+ 270.1 m/z FAB+255.1m /z FAB-317.3m /z FAB-338.3m /z

Figure 38: The major identifiable products from the FAB mass spectra o f (9) decomposed in CD2C12.

The FAB mass spectrum also clearly showed chloride incorporation on the cage 

anion, with the major product being [l-H -c/oso-CBnM egCy, which is not Csv 

symmetric, explaining the greater complexity observed in the n B spectrum. The second 

minor product (again by mass spec, only) was the mono chlorinated derivative [1-H- 

c/oso-CBiiMeio]'. There are two possible activation steps in dichloromethane, the first 

is the previously hypothesised methyl abstraction from the anion by the cationic 

zirconocene. This is unlikely as in hydrocarbon solvents the intimate ion pair (9) is 

stable at room temperature for days. More likely is the displacement of the [1-H-closo- 

CBnMen]* anion from the zirconium coordination sphere and the formation o f a 

transient dichloromethane adduct that rapidly decomposes via chloride abstraction 

(Figure 39).

+ [CH2CI]
H2cci2

c h 3c h 2ci
^  J  ©  Me

reactive boronium ylide

Figure 39: Schematic showing the formation o f the boronium ylide by methyl abstraction by a highly
reactive {CH2C1}+ cation.
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This would generate a reactive {CH2C1}+ fragment that could then activate the 

cage by methyl abstraction to form CH3CH2CI and the borenium ylide. Alternatively, 

the decomposition o f the CH2CI2 complex may be assisted by the attack of a weak base 

at the carbon o f the coordinated CH2CI2, in this case the anion [l-H-c/oso-CBnM en]’. 

A related mechanism has been proposed for the decomposition o f a CH2CI2 coordinated 

complex in the highly electrophilic compound [(PR3)Re(CO)4(Cl2CH2)]+.82 Here 

nucleophilic attack o f Et2 0  results in the formation o f the chloride analogue 

(PR3)Re(CO)4Cl and the oxonium cation [ClCH2 0 Et2]+ (Figure 40).

+ [CICH2OEt2][BArF]

reactive boronium ylide + MeCH2CI

Figure 40: The etherate nucleophilic attack on a Rhenium DCM complex proposed by Kubas and co 
workers and a related mechanism plausible for the decomposition o f the (9) in CH2C12 solution.

The binding o f CH2CI2 in favour o f [l-H-c/oso-CBnM en]' has precedent, in the 

formation of [(PPh3)Ag(Et20 )2]+ (see Chapter One) and a series of dichloromethane 

adducts with rhodium or rhenium cations (discussed further in Chapter Four). 

Furthermore cationic zirconium complexes partnered with weakly coordinating anions

175



are documented to form chloride complexes by solvent activation with no anion 

decomposition.

Confirmation of the identity o f both cation and anion complexes identified by 

the FAB mode mass spectra was obtained on moving to the Cp*2ZrMe2 system. The 

reaction o f equimolar equivalents of Cp*2ZrMe2 and 8 , followed by recrystallisation 

from the slow diffusion of pentane into a CH2CI2 solution yielded pale yellow crystals 

o f suitable quality for X-ray diffraction analysis. This revealed the compound to be 

[Cp*2Zr(OH2)C l][l-H -7 , 1 2 -Cl2-c/ojo-CBnMe9], with no close anion--cation contacts 

and no anion disorder allowing for the assignment of the cage carbon vertex (Figure 

41). The Zr-O distance (2.2210(16) A) is comparable with other Zr(IV) water 

complexes e.g., [CpjZr^HvSOsXHaCVhf (2.276(5) A and 2.242(5) A) 84 and 

[Cp2Zr(H2 0 )3]2+ (2.261(7) A, 2.195(7) A and 2.239(7) A) . 85 The anion clearly showed 

substitution o f two B-Me vertices (B7 and B12) for chlorides. The B-Cl distances (B7- 

Cll 1.818(2) A and B 1 2 -C12 1.843(2) A) are slightly longer than that reported for 

identical B-Cl vertices in [l-H -c/o jo-C B nB rsC y (B7-C7 1.790(8) A and B12-C12 

1.782(9) A) and in [l-H-c/oso-CBnClii]- (B7-C17 1.776(3) A and B 1 2 -C112 1.775(3) 

A ) .86 The substitution occurring in the 7 and 12  positions is consistent with the charge 

density calculations performed on this anion (Chapter two), with the transient {CH2C1}+ 

attacking the positions o f greatest electron density (BCH3(7 - 1 1 ) and BCH3( 1 2 )). The 

formed borenium ylide will then abstract chloride from the solvent.65 The second 

{CH2C1}+ reactive fragment then produced can either abstract a methyl from the 

functionalised cage (producing the observed di-chlorinated cage anion) or with 

Cp2ZrMe(Cl) resulting in the cation [Cp2ZrCl]+. This ultimately scavenges water to 

produce the observed [Cp2Zr(H2 0 )Cl]+.
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CI3

B2
Zr

O

B7

H2 B12CI1
H1

CI2

Figure 41: The Molecular structure o f [Cp*2Zr(OH2)Cl][l-H-7,12-Cl2-c/050-CBnMe9] (thermal ellipsoids are shown at 30% probability level).

Zr-0 2.2210(16) 0-Zr-CI3 90.6(1) CI1-B7 1.818(2)
Zr-CI3 2.4226(6) 0-H(1)

0-H(2)
0.79(4)
0.81(4)

CI2-B12 1.843(2)

Table 4: Selected bond lengths (A) and angles (°) for Cp*2Zr(OH2)Cl[ 1 -H-7,1 2-C12-c/oso-CB ! iMe9].



In depth mechanistic discussion is not appropriate due the unclean nature of the 

reaction and the failure to observe any of the intermediates, or the expected by-product, 

CH3CH2CI by NMR spectroscopy or GC/MS.

The ‘H{n B} NMR spectrum of [Cp*2Zr(OH2)Cl][ 1 -H-7,12-Cl2-c/oio-CBi,Me9] 

exhibits the 5 expected signals in the anion CH3 region from 0.348 ppm to 0.165 ppm 

(Figure 42).

H

Cl

Figure 42: The inequivalent boron and methyl positions in [l-H-7,12-Cl2-c/o.s0-CBnMe9]\

The coordinated H2O molecule resonates at 1.821 ppm, shifted downfield from that of 

free H2O in CD2CI2 (1.60 ppm) as expected on coordination to an electrophilic metal. 

The llB NMR spectrum only shows five broad signals for the anion, with two 

resonances presumably being coincident.
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3.2.5: P artnering  [l-H-c/ostf-CBnM en]' with Cobalt Complexes.

In an attempt to partner the cationic 16 electron fragment {CpCo(PPh3)Me}+

with [l-H-c/oso-CBiiMen]', the dialkyl precursor, CpCo(PPh3)Me2 was reacted with an

equimolar quantity o f [Ph3C][l-H-c/ojo-CBnM en] in CD2CI2. Rapid gas evolution was

observed and the 1H {I1B} NMR spectrum of the resultant purple solution showed broad,

poorly defined signals in the anion CH3 and cation PPI13 aromatic regions, indicative o f

11 1quadrupolar broadening by a paramagnetic complex. The P{ H} NMR spectrum 

displayed no observable signal. Recrystallisation of a CH2CI2 solution of the reaction 

mixture by the slow diffusion of pentanes produced two major sets o f crystals (amber 

cuboids and purple platelets) in equal quantities. Both sets were o f suitable quality for 

X-ray diffraction studies to be undertaken. On analysis, the amber cuboids were 

identified as the paramagnetic, 17 electron, Co(II) complex, [CpCo(PPh3)2][l-H-c/o50- 

CBnM en], (12). The asymmetric unit (Figure 43) consisted o f a well separated ion pair 

(the closest C0 —H 3C is 5.068 A), with no observed disorder. The Co(II) centre is 

approximately Cs symmetric with the cyclopentadienyl group sitting on top of a {C0 L2} 

fragment. The Pl-Co-P2 bond angle (100.64(2)°) is similar to that for the only other 

characterised [CpCo(PR3)2]+ complex, [CpCo(PEt3)2][BF4] (101.21(3)°), that also 

crystallises with approximate Cs symmetry.87 The Co-C average distance in (12) (2.101 

A) is further comparable to that in [CpCo(PEt3)2][BF4] (2.083 A), as is the average Co- 

P distance in (12) (2.231 to 2.230 A in [CpCo(PEt3)2][BF4]). No direct solid-state 

comparison with [CpCo(PPh3)2] complexes was possible, due to the lack of any 

structurally determined examples. Characterisation o f paramagnetic (12), explains the 

poorly resolved ^ ^ B }  NMR spectrum and the absence o f any resonance in the 

31P{JH} NMR spectrum. A disproportionation mechanism must be occurring in 

solution, with free PPI13 capturing the unsaturated 15 electron fragment
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C17

oo
o

O C 14

£ .

Co-P1 2.2108(6)
Co-P2 2.2519(2)

P1-CO-P2 100.64(2)
Co-C13 2.098(2)
Co-C14 2.087(2)
Co-C15 2.118(2)
Co-C16 2.083(2)
CO-C17 2.118(2)

Table 5: Selected Selected bond lengths (A) and 
angles (°) for (12).

Figure 43: Molecular structure o f the cation portion o f [CpCo(PPh3)2][l-H-c/oso-CB11M ei1], (12), thermal
ellipsoids shown at the 30% probability level.



{CpCon(PPh3)}+. This suggests that the other crystallised product, present in equal 

proportion, would involve no phosphine ligation.

An X-ray Diffraction study on the purple platelets revealed the molecular

structure to be the discrete ion pair, [CpCo(r|5-CPh3)][l-H-c/o50-CBiiMen], (13), the

88[BF4]' salt o f which has been previously characterised only by NMR spectroscopy.

Thus the overall reaction observed is as shown in Figure 44.

2 [CPhsHCBnMenH]

2X A   ►  . ® C o. -  I ©

V" V/ Me one electron oxidation Co (13)
Me CH2CI2/C6H5F Ph3P PPh3 I

(12 ) s b

Figure 44: An overall reaction scheme for the addition o f (8) to CpCo(PPh3)Me2.

The cation portion o f compound (13) was heavily disordered, with the Cp and 

coordinated C6H5 phenyl ring occupying two sites in a 3:1 ratio. Figure 45 displays the 

structure o f [CpCo(rj5-CPh3)]+, with only the positions corresponding to the major 

occupancy species shown. The structural metrics o f both disordered sets are identical 

(within experimental errors) and only those for the 75% occupancy sites will be 

discussed here. The anion displays no structural disorder, with the cage carbon 

unambiguously identified. No anion—cation interactions were observed in the extended 

lattice (closest Co—H3C contact at 5.361 A). The triphenylmethane (trityl) group is 

coordinated to the Co centre through a single phenyl ring in an r |5 manner, forming a 

‘half open’ cobaltacinium sandwich complex. This binding m otif for trityl has been
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Figure 45: Molecular structure o f the cation portion o f [CpCo(r|5CPh3)][l-H -c/as0 -CBiiMen], (13), (two views) only one o f the two disordered sets shown for the Cp and 
the coordinated phenyl ring (disorder at 75%:25%), the greater probability positions shown. The structural metrics for the 25% occupancy set o f disordered positions are

identical within errors. Thermal ellipsoids at 30% probability level.

Co-C18 2.522(6) C18-C19 1.457(5) C18-C24-C31 122.1(4) C24-C18 1.369(6) C32-C33 1.367(5)
Co-C19 2.121(4) C18-C23 1.454(5) C18-C24-C25 124.0(4) C24-C31 1.504(5) CO-C13. 1.987(6)
Co-C20 2.088(5) C19-C20 1.410(6) C31-C24-C25 113.5(3) C24-C25 1.528(6) Co-C14 2.021(5)
Co-C21 2.101(6) C20-C21 1.384(10) C23-C18-C19 107.3(3) C25-C26 1.366(6) Co-C15 2.072(4)
CO-C22 2.056(7) C21-C22 1.402(11) C19-C18-C23-C24 170.8 C26-C27 1.381(7) Co-C16 2.014(4)
Co-C23 2.122(4) C22-C23 1.407(9) C32-C32-C36 117.8(3) C31-C32 1.380(4) Co-C17 1.976(7)

Table 6: Selected bond lengths (A) and angles (°) for (13).



previously determined in the solid state structures o f [Ti(CO)4 {rj5-CPh3} ]', and 

Re(CO)3(Ti5-CPh3) (Figure 46).89’90

CoRe.

Figure 46: The structurally characterised r|5-trityl coordinated metal complexes, [Ti(CO)4{r|5-CPh3}]\
Re(CO)3(Ti5-CPh3) and (13).

The structural metrics of the coordinated trityl clearly indicate that the phenyl 

ring is bound in a r)5- manner to the Co (Co-C19 to Co-C23 distances ranging from 

2.056(7) A to 2.122(4) A compared to C0 -C I8 2.522(6) A). The coordinated phenyl 

ring is folded at the C l9 and C23 positions (dihedral angle 33.1°), similar foldings are 

reported for [Ti(CO)4{ri5-CPh3}]', Re(CO)3(ri5-CPh3) and CpFeO^-CeMesCHi) 91 

(14.9°, 22° and 33° respectively). Noteworthy is the latter example, the isoelectronic 

{CpFe} complex, where the coordinated ring experiences an almost identical 

deformation. The C-C distances around the central trityl carbon indicate the double 

bond character between C24 and C l8 , with the two non-bonding phenyl rings having 

significantly longer C24-C bonds (1.528(6) A and 1.504(5) A) than C24-C18 (1.369(6) 

A). Analogous distances are found in the two examples o f r |5-phenyl rings coordinated

on r

to {(CO)4Ti} fragments. The four bonds of the coordinated r| phenyl moiety are all 

equivalent (within experimental errors, C-C average 1.401 A) and are significantly 

shorter than the two non-aromatic C-C bonds (C18-C19 1.457(5) A and 1.454(5) A). 

Both o f these sets o f C-C bond lengths are similar to that reported for [Ti(CO)4(r|5- 

CPh3)]‘ (a C-C aromatic average o f 1.396 A and a C-C single bond average o f 1.458 A).
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Complex (13) is best described as a {CpCo111} unit bound to a (r|5-dienyl) group 

with little indication o f any ring slippage to an r | 3 allyl complex, as determined by the 

similar Co-C bond lengths for the five coordinated positions. The structural metrics of 

the [CpCo(r|5-dienyl)]+ in (13) (average C-Co distance to the r |5-dienyl ligand, 2.098 A 

and average Co-C distance to the Cp ligand, 2.014 A) bear excellent resemblance to 

those reported previously for [CpCo(r|5-C7H9)][BPh4] (2.06 A and 2.05 A respectively), 

and [{CPCo}2{ti5,ti5-3 ,8 -(CH3)2(CioHio)}][PF6]2 (2.074 A and 2.049 A).92’ 93 

Dissolution o f pure crystalline (13) in CD2CI2 produced a purple solution with a NMR 

spectrum that correlates well that reported previously for the [BF4]' congener that has 

not been structurally characterised. [CpCo(r|5-CPh3)][BF4] is formed by the 

displacement o f two molecules of ethene (or a diene) from a neutral precursor -  with a 

one electron oxidation of the cobalt centre by [CPh3]+proposed, facilitating diene

00

dissociation.

It is possible to postulate a mechanism (Figure 47) for the observed formation of 

(12) and (13), with (8 ) acting as a one electron oxidant in the initial step, a role trityl 

salts are well documented to fulfill.94 This would produce a transient Co(IV) complex 

(A), that reductively eliminates ethane to generate a 15 electron Co(II) fragment 

{CpCo(PPh3)}+, (B). A similar process occurs on the oxidation o f Cp*Rh(PPh3)Me2, 

that loses ethane intramolecularly and ultimately yields [Cp*Rh(PPh3)(solv)2]2+ (solv = 

acetone, acetonitrile or THF) .95 This reactive fragment is stabilised in solution by the 

formation o f the an r)3-adduct with the triphenylmethane radical to generate the 18 

electron complex [CpCo(r)3-CPh3)(PPh3)][l-H-c/o5o-CBiiM en], (C). There is good 

precedence for the r\ coordination of trityl radicals to metal centres, with a number of
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3 3structurally characterised complexes reported (e.g., (r| -CPh3)Re(CO)4 and M(r| - 

CPh3)(acac) M = Pt or Pd).96, 97 Eighteen electron complexes based around 

{CpCo(PPh3)} are well established to be fluxional in solution, primarily via the ready 

dissociation o f  PPI13.51,53,54,98,99

I
,Co.

Ph3P

[CPhaHCBuMenH]
 ►

V /7Me one electron oxicJation \ e CH2CI2/C6H5F

'

1

Jo?
Ph3P S ^ e

-CH3C H ^  ^
Co® P

Me Ph3P

(A) (B)

% A

/ / Co\
Ph3P PPh3

(12)

€>
Co

^  /
Disproportionation 

--------------
- 1/2 *CPh3

*CPh3

/x /X

(13) (C)

Figure 47: A  plausible m echanism  explaining the formation o f  the observed products [CpCo(PPh3)2]+
and [CpCo(r|5-CPh3)]+.

The ‘free’ PPI13 present in solution will then displace the coordinated trityl, 

generating the observed Co(II) complex, [CpCo(PPh3)2][l-H-c/o5o-CBnMen]. In (r)3- 

CPh3)Re(CO)4, the coordinated trityl is facilely displaced by reaction with a number o f  

Lewis bases, e.g., CO, C f and PR3 (R = low Tolman angle groups).96 The 

disproportionation reaction can only produce a maximum o f  Vi equivalent o f  the 

[CpCo(PPh3)2]+. The remaining {CpCo(r|3-CPh3)}+ can then undergo a {CpCo} to CPh3 

electron transfer, to generate the diamagnetic rj5-adduct [CpCo(r|5-CPh3)]+. Again

3 r
literature precedence for an r\ to r| isomerisation o f the coordinated trityl ligand is
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T c
available with (r| -CPh3)Re(CO)4 on heating, losing a molecule o f  CO to produce (rj - 

CPh3)Re(CO)3 quantitatively.90

In rigorously dried solvents a small quantity o f  air stable yellow crystals are also 

produced ( - 5%). Isolation, revealed that these crystals were [Cp2Co][l-H-c/oso- 

C BnM en], by comparison o f the !H{!1B} NMR spectrum to the known complexes 

[CP2C0][BPI14] and [Cp2Co][PF6].100> 101 The formation o f the cobaltacinium cation, 

indicates that a competing disproportionation reaction is also occurring in solution. It is 

plausible that the 18-electron cation [CpCo(r| -CPh3)(PPh3)] discussed earlier (or 

equally some unreacted starting material, CpCo(PPh3)Me2) can dissociate 

cyclopentadienyl. This can then go on to displace the r|5-bound [CPI13]' ligand, which

a n
has previously been demonstrated to substitutionally labile, forming the observed 

[Cp2Co]+. Cyclopentadienyl exchange has been unambiguously shown to occur between 

the compounds (CsH4Me)Co(PPh3)Me2 and CpCo(PPh3)2,53 thus a related Cp 

dissociation process is certainly feasible here.

More interestingly, in CH2CI2 distilled under N2 instead o f  argon, the identical 

reaction between CpCo(PPh3)Me2 and [CPh3][l-H-c/o5o-CBnMen] yielded a different 

minor product, blue crystalline material and no [Cp2C o][l-H -c/o50-CBnM en]. Isolation 

o f  this complex, termed here ‘CpCo(PPh3) ’ produced a NMR spectrum in CD2CI2 

that strongly suggested a Co" H3C interaction -  judged by the chemical shift change in 

comparison to [nBu4N][l-H-c/o5o-CBnM en] (Figure 48).
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1H NMR [nBu4N][1 -H-c/oso-CB!,M e,,]

[nBu4N]*
-0.19(6.8)
-0.43(7.9)

-0.55(15.1)

['CpCo(PPh3)r
-0.26(19.4) 
-0.55(32.8) 
-0.71 (-150)

1H NMR [,CpCo(PPh3)’][1-H-c/oso-CB11Me11]

-0.60 -0.80 -0.90-0.30 -0.40 -0.50 -0.70- 0.10 - 0.20

Figure 48: The *H N M R  spectra o f  [nBu4N ]+ and [‘CpCo(PPh3) ’]+ salts o f  [1-H -c/oso-C B nM eu]' in 
CD2C12. Chem ical shifts are giving in ppm and the values in parenthesis are the pwhm (Hz) (a satisfactory 

value for the B C H 3(12) for the cobalt compound was not obtained due to overlapping signals).

The ‘H NMR spectra on comparison clearly show an upfield shift and a 

significant broadening of all the anion CH3 resonances. Other resonances in the 

spectrum of [‘CpCo(PPh)3’]+ (including the triplet due to CDHCI2) are well resolved. 

Similar chemical shift changes and signal broadening have been reported for complex 

(9), where close anion--cation pairing has been unambiguously proved. The only other 

signals in the ’H NMR spectrum are in the aromatic region where three broadened 

singlets are observed -  probably due to PPI13. No resonance for the Cp protons is visible 

and in the 31P{!H} NMR spectrum no signal at all is detectable, even after a large 

number of scans (5000). The n B NMR spectrum shows the expected three signals, 

signifying that the compound has C5V symmetry in solution. A plausible structure for 

this complex is shown in Figure 49.
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I [1-H-c/oso-CBnMen]*
J * .„  --------------------►

Ph3p ^ ^  Y^Me -C2H6
Me

F igu re 49: T he reaction schem e for the formation o f  and a possib le structure o f  the blue crystals,
‘C pCo(PPh3) \

The tentative formulation o f the blue crystals as CpCo(PPh3)L( 1 -H-closo- 

C BnM en) (L = N2, O2, or another 2 electron donor) is based on a number o f facts, (i) 

The anion CH3 resonances in the 1H {11B} NMR spectrum experiencing a significant 

line broadening and chemical shift change, (ii) The presence o f  three broad signals in 

the aromatic region o f the ^ { " B }  NMR spectrum indicative o f PPI13 bound to a Co(II) 

centre -  a similar broadening is observed in the spectrum o f  (12). (iii) The absence o f  

any Cp signal in the ^ { " B }  NMR spectrum and the lack o f  any signals in the 31P {!H} 

NMR spectrum is also seen for (12), a Co(II) compound that has been unambiguously 

assigned as ligated by Cp and PPh3. (iv) The requirement o f an impurity in the CH2CI2 

apparently prevents cyclopentadienyl dissociation and the formation o f [Cp2Co][l-H- 

c/oso-CBiiMen].

In an attempt to improve the yield o f these blue crystals and allow for their 

further characterisation, the oxidation o f the starting compound CpCo(PPh3)Me2 was 

attempted with [ 1 -H-c/oso-CB 1 iMei 1]*. This will prevent the formation o f  the trityl 

coordinated compound (12), whilst still activating CpCo(PPli3)Me2. As expected the 

reaction o f  CpCo(PPh3)Me2 and [l-H-c/o^o-CBnMen]* in the same ‘impure’ CH2CI2 

equally evolved gas and on recrystallisation produced the blue crystalline compound 

[‘CpCo(PPh3)’] in larger quantities. Numerous batches o f crystalline material o f  suitable

Ph3P

L = O 2, N2, or a 2 
electron ligand
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quality for X-ray diffraction analysis were synthesised, but due to the highly disordered 

nature o f  the structure, diffraction did not extend past a 20 angle o f 20°, insufficient for 

structure solution. Frustratingly, this still proved to be the case when the higher flux X- 

rays from synchotron source radiation was used -  preventing the identification o f this 

interesting compound. It is possible to postulate a structure o f the compound where 

there is a clear anion--cation interaction, but beyond this the remaining ligand set is 

unfortunately ambiguous. Though it is clear that the presence o f  oxygen or an extra 

ligand present in the poorly purified CH2CI2 is critical in the formation o f this complex.

3.4: Summary.

This chapter reports the synthesis o f the complexes, [HNMe2Ph] [ 1 -W-closo- 

C BnM en], [l-H-c/oso-CBnM en]* and [Ph3C][l-H-c/as0-CBnM en]. The latter two 

have been used to introduce the anion to the coordination sphere o f  zirconium cations. 

Cp2ZrMe(l-H-c/0S0-CBnMen), (9), has been cleanly synthesised and demonstrated in 

the solid-state to involve an intimate Zr---H3C interaction from the antipodal position o f  

the anion. It can be viewed as a [l-H -c/050-CBnM en]' analogue to the active 

polymerisation catalyst, Cp2ZrMe(p-Me)B(C6F5)3.2 The nature o f  the metal --anion 

contact again has been shown to be predominantly ionic in origin, as previously 

observed for the Group 1 metal cations,35 the phosphine stabilised silver complexes (see 

Chapter two) and the related [M e B ^ F s^ ]’ coordinated compounds.

The Zr---H3C interactions have been unambiguously proven to persist in 

aromatic hydrocarbon solutions, with significant chemical shift changes and broadening 

o f the anion CH3 vertices observed. The coordinating nature o f the [l-H-closo-
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CBiiM en]' anion has been investigated, and found to be more nucleophilic than 

dihydrogen and the [M e B ^ F s^ ]’ anion with respect to {Cp2ZrMe}+. It has though 

been shown to be less coordinating than the neutral alkyl complex Cp2ZrMe2, and than 

stronger Lewis bases (e.g., MeCN).

The decomposition chemistry o f the zirconocene/[l-H-c/o.s0 -CBiiM eii]' contact 

ion pairs have been studied. With the anion being susceptible to methyl abstraction, 

either initiated by a cationic metal centre, or an electrophilic solvent derived fragment. 

A number o f the anionic decomposition products have been identified and substitution 

demonstrated to occur in the 12 and 7-11 cage positions, consistent with an electrophilic

7 o
substitution mechanism -  via the postulated borenium ylide reactive intermediate.

Attempts to partner [l-H-c/oso-CBnM en]’ with a cobalt cation via reaction with 

the trityl salt was shown to yield predominantly the disproportionation product, (1 2 ) and 

the r |5-trityl coordinated compound, (13). A possible mechanism for the formation of 

these observed species has been discussed. Alongside this, the initial characterisation of 

a Co- H3C(anion) complex has been reported that can be synthesised reproducibly in 

good yield using [l-H-c/oso-CBnMen]*. Attempts to further characterise this 

interesting compound have been frustrating by the weakly diffracting nature of its 

crystalline form.

The investigations into M —H3C interactions in both the solid-state and solution 

phase are important due to the role of metal alkane complexes as intermediates in 

numerous C-H activation reactions. The complexes characterised here can be presented
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as a model for these interactions (Figure 50), as Group IV and IX metal compounds

• 102 have been documented to be intimately involved in C-H activation processes.

d° Model Complex Alkane a Complex d7 Model Complex 
(postulated)

F igu re  50: A  com parison betw een the m odel com plexes discussed in this chapter and metal alkane
com plexes
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4 [l-H-c/0 S0 -CBn Men]" as a weakly coordinating anion 
susceptible to B-C bond cleavage.

4.1 Background.

Until recent years, synthetic chemists considered dichloromethane (CH2CI2) as a

ligand towards cationic metal centres came from the pioneering work o f Beck and

o f  anions with the cationic fragment {CpMo(CO)3}+, showing that a number o f  

‘classically’ weakly nucleophilic anions5 (e.g. [OTf]', [BF4]*, [AsF6]* and [SbF6]')6*8 

were interacting with the metal centre. However, with the anion [PF6] \  an equilibrium 

between the anion and the CH2CI2 coordinated complexes was established (Figure 1), 

with the dichloromethane complex favoured at low temperature.3,4

Recent work on this system has expanded the number o f  anions that form 

contact ion pairs with the {CpMo(CO)3}+ fragment, with [closo-CB nH ^]’ and [12-Br- 

c/oso-CBiiHn]- both being demonstrated to be closely associated with the metal

more complicated outcome, producing three complexes, identified as the hydride 

bridged dimer, [(CpMo(CO)3)2{p-H}][c/aso-CBnH6Br6], the anion coordinated 

CpMo(CO)3(c/o.so-CBiiH6Br6) and the solvent separated ion pair

19 •

polar, but non-coordinating solvent. ’ The earliest indication that CH2CI2 could act as a

Siinkel.3,4 This centred on the investigation into the coordination behaviour o f a range

[CPh3][X] orH[X]
-HCPh3 or H2

X = [AsF6]-,[SbF6r
or[BF4]- O C c

[CPh3][PF6]

+

F igu re  1: The anion dependence involved in the form ation o f  contact ion pairs or solvent 
separated ion pairs for the {C pM o(C O )3}+ cationic fragment

centre.9,10 Use o f  the more weakly coordinating, [c/oso-CBnHeBre]* anion11 results in a

195



[CpMo(CO)3(ClCH2Cl)][c/o50-CBiiH6Br6] (Figure 2). Unfortunately, no direct 

evidence for the coordination o f dichloromethane was obtainable for this system by 

standard spectroscopic techniques.

F igu re  2: The three molybdenum  containing products from the reaction o f  C pM o(CO )3 H and
[Ph3C ][c/o5o-CBnH 6Br6] in C D 2C12.

The first, definitive solution characterisation o f a metal bound CH2CI2 molecule

was obtained by Gladysz et al. in 1989. Protonation o f  the methyl group in

CpRe(NO)(PPh3)Me by the etherate acid o f either the [BF4]' or [PF6]' anions generated

the cationic complex [CpRe(NO)(PPh3)(ClCH2Cl)]+, A (Figure 3).12 The coordination

11o f CH2CI2 was unequivocally characterised by low temperature C NMR spectroscopy, 

which showed a signal that was shifted downfield with respect to free CH2CI2 (A8 +24.3 

ppm) and coupled to phosphorus.

H(OEt2)n[X] 
.Re -CH4

O N * / ^ P P h 3 < -60°C 
Me

X = [BF4]-or[PF6]-

O N *'/ PPh3

/ Cl 
L H2Cn

Cl
A

> -60°C
..Re,

Ph3P * /
ON Cl

Re
S> 0

PPh3

F igu re 3: The synthesis and subsequent decom position o f  the cation [C pR e(N O )(PPh3)(C l2CH2)]+.

The coordinated CH2CI2 was readily displaced by stronger Lewis bases, (e.g., 

CH3CN, OPPI13, [CN]’, [Br]', CO or ethene), whilst compound A rapidly decomposes at

196



ambient temperatures to generate the chloride bridged dimer, [{CpRe(NO)(PPh3)}2(p- 

C1)][X] by chloride abstraction from CH2CI2. The thermal instability o f  the parent 

dichloromethane complex precluded attempts to obtain material suitable for X-ray 

diffraction analysis.

\

The solid-state determination o f a mononuclear M+ ”CH2Cl2 complex was 

reported soon after for the mixed metal complex, Ag2(CH2Cl2)4Pd(OTeF5)4, with each 

silver centre coordinated by two CH2CI2 molecules in a bidentate manner (Figure 4) .1

F ig u re  4: The m olecular structure o f  A g 2 (CH 2Cl2 ) 4 Pd(O TeF 5 )4.

Here the Ag+ cation is coordinated by both CH2CI2 and the anion ([OTeFs]'). 

Since this publication, five further compounds exhibiting A g—C1CH2C1 interactions 

have been structurally determined. They include a mixture o f ri1 and rj2 CH2CI2 

coordination modes, mixed C ^C ^/anion coordination and purely CH2CI2 Ag+

1 *3 in

coordination, with no anion involvement. ' The presence o f  intimate A g—CICH2CI 

interactions found in these systems is in contrast to the simple silver salt and the 

phosphine stabilised silver salts o f the [l-H-c/oso-CBnMen]" anion (see Chapter Two).

Aside from these Ag(I) examples, a number o f  other metal dichloromethane 

complexes have been structurally characterised, involving a variety o f metals from
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across the periodic table. There are three related d6, Group VII, metal cationic 

complexes, that in each case exhibit a mono dentate M —CICH2CI interaction and

10 7 i
require the use o f the weakly coordinating anion [BArp]* (Figure 5).

Me

PPh3 P'PpjO,'c \  l® ^ c °
.̂Mn

C Cl

V
Me

F igu re 5: The three group VII CH2C12 com plexes structurally characterised, in each case the [BArF]'
anion has been om itted.

In the case o f the manganese complex, there is an additional stabilising 

hydrogen bonding interaction between an acidic proton from the coordinated CH2CI2 

and one oxygen from a phosphite ligand. A number o f other related complexes have 

been synthesised and characterised by solution spectroscopic methods only. It is 

important to note that in these systems the product formed is highly anion dependent. 

On moving to the analogous complexes partnered with other weakly coordinating 

anions {e.g., [BF4 ]', [OTeFs]' or [OTf]*) intimate ion pairs are formed (e.g., cis-

Re(CO)4(PPh3)(FBF3), m-Re(CO)4(PPh3)(OTeF5) and mer-Mn(CO)3(P(OEt)3)2(r| 1 -

temperatures to generate chloride bridged dimers analogous to that previously observed

OTf) . 22'24 The CH2CI2 coordinated compounds again all decompose at ambient

by Gladysz, some anion decomposition was also observed . 12 Furthermore, it is
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noteworthy that an increase in the steric bulk around the metal centre (albeit with a 

concomitant reduction in the electrophilicity o f these cationic centres) results in these 

systems relieving their coordinative unsaturation via an agostic interaction rather than 

CH2CI2 binding (e.g., [fran.s-(PR3)2Re(CC))3][BArF] R = Ph, Cy or 'Pr, and trans- 

[(PCy3)2Mn(CO)3][BArF] (Figure 6)).25'27

H

PCy3 _  PR3

^ + *

° c ® . c °  ° c \  l ^ c °
, ^ Rie \  R = Ph, 'Pr or Cy 

C«I

PCy2

'O H
\  ^ PR 2
R

F igu re  6: Cation portions o f  group VII cations stabilised by agostic interactions.

These agostic complexes, like their related CH2CI2 congeners, require the robust, 

weakly coordinating anion [BArp]\ use o f [OTf]' results in anion coordination, whilst 

the [BF4]' analogue suffers from rapid decomposition even at low  temperatures.

Four d6 metal complexes o f CH2CI2 have also been structurally characterised, 

[RuH(CO)(CH2Cl2)(PtBu2Me)2][BArF]', [Cp*M(PMe3)Me(CH2Cl2)][BArF]' (M = Rh or 

Ir) and [RhCl(CH2Cl2)(dimethyl-benzyl-bis-oxazaline)][BArF] (Figure 7).28'31

P
H

Bu

\  tli\CI- ©  I . n
/ C!^ C I ^ R|Û h  / / M\  Rij'^C\-CH2C\

| Me3P J  CICH2C.

M e ^  ' \ ^ tBu M = Rh or Ir '  '
lBu

F igu re 7: The rem aining d6 m etal -  C12CH2 com plexes (cation portions on ly) structurally characterised.

All o f  these complexes are readily synthesised by salt metathesis reactions from 

their analogous triflate coordinated precursors. The complexes shown in Figure 7,
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whilst being extremely air and moisture sensitive, are more stable with respect to 

chloride abstraction when compared to the Groups VII examples, presumably due to the 

reduced electrophilicity at the metal centre (i.e. no strongly n -  acidic groups).

Q
The final structurally characterised M —CI2CH2 complex is based on the d 

square planar cationic fragment, {fr*<my-('Pr3P)2PtH } +,32 again partnered with the 

[BArp]* anion. The dichloromethane adduct is readily accessible by two routes (Figure 

8).

h2c^

? ' Na[BArF] Cl OEt2
I CH 2CI2 I®  xs CH 2CI2 . I ©

'Pr3P  Rt P'Pr3 ----------   ■ ►  'Pr3P------ Rt--------P'Pr3 ' 'Pr3P Rt P'Pr3
j -NaCI | |
H H H

F igu re 8: The synthetic routes to the CH2C12 coordinated com plex [/raAi5-('Pr3P )2Pt(H )(C H 2Cl2)][B A rF].

This dichloromethane complex is surprisingly stable persisting even in the 

presence o f O2 and adventitious H20  for days, although the addition o f a twofold excess 

of a stronger Lewis base, (L) effects the clean conversion to new products of the general 

formula [(‘Pr3P)2Pt(H)(L)]+. Decomposition of the CH2CI2 complex requires forcing 

conditions and again proceeds via chloride abstraction.

The complexes discussed herein are not meant to be an exhaustive list o f all the 

known dichloromethane complexes, rather it is meant to highlight the important and the 

structurally characterised examples that will be investigated further in this chapter.

2 0 0



4.1.1 Scope of Chapter:

Chapters Two and Three detailed examples where M —H3C interactions between 

a number o f  metal complexes and the anion [l-H -c/oso-CBnM en]' have been 

characterised, and crucially, shown to persist in dichloromethane solutions. These 

findings demonstrate that, for certain cationic metal-ligand sets, [l-H-c/oso-CBnMen]* 

can be more coordinating than CH2CI2. This chapter discusses attempts to synthesise a 

number o f  complexes partnered with the [1-H-c/aso-CBnM en]' anion instead o f the 

[BArp]* anion. These would have the potential o f  either producing intimate ion pair 

complexes or, the analogous sohento  complexes. Further precedence for this 

methodology is that in a number o f these systems CH2CI2 is displaced from a metal’s 

coordination sphere by ‘classically’ weakly coordinating anions (e.g., [OTeFs]', [BF4]' 

and [OTf]*). As [l-H-c/oso-CBnM en]* has been demonstrated previously to be more 

coordinating than [BArp]* then the displacement o f CH2CI2 by this anion is also feasible.

[ l„m

[ U M — CI2C H 2] [ BArF ] ...............................

F igu re  10: T he tw o possib le results expected on synthesising know n CH2C12 com plexes partnered with
[l-H -c /o jo -C B n M e n f.

On the successful synthesis o f these analogous complexes partnered with [1-H- 

c/oso-CBnM eii]' two possible outcomes can be envisaged (Figure 10): (i) Solvent

Me
1 Me Solvent 
Me Separated Ion 

Pair

Intimate 
Ion Pair
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separated ion pairs that would be analogous to the reported [BArp]' complexes, (ii) 

Intimate ion pair complexes that by necessity would involve M -H 3C interactions and 

provide a further model for metal alkane interactions.
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4.2: Results and Discussion:

4.2.1: Attempts to partner [l-H-c/oso-CBnMen]' with {CpMo(CO)3}+.

Following the seminal work by Beck3,4> 7’ 8 and the success at partnering the 16 

electron {CpMo(CO)3}+ fragment with the carborane mono-anions [c/aso-CBnHn]’, 

[12-Br-c/0S0-CBnHii]' (and to a limited extent [c/o£0 -CBnH 6Br6]*),9’ 10,33,34 a number 

of synthetic pathways to introduce the [l-H-c/oso-CBnM en]’ anion were studied 

(Figure 11).

x = Cl, I

^  f > °
Mo Mo

o o c  
o

M° f—-V
0 C '

0  oCo

Figure 11: Synthetic routes to generate the cationic fragment (CpMo(CO)3}+, the vacant site depicted in 
reality would be occupied either, by a solvent molecule or an anion interaction.

4.2.1.1: Silver Salt Metathesis reactions.

Metathetical reactions employing the silver salt o f the closely related anion, 

[c/05O-CBnH6Br6]‘ have been reported to have mixed success in generating metal 

cations. In the CpMo(CO)3X system (X = halide) the reaction is arrested, not 

proceeding past an intermediate stage (Figure 12) .9 In contrast, the reaction of
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CpFe(C0)2l with Ag[c/ayoCBnH6Br6] was reported to result in the complete 

metathesis to give CpFe(CO)2(c/o^o-CBnH6Br6), although this compound was only 

identified by IR spectroscopy.35 Thus, the halide abstraction from CpMo(CO)3X 

utilising Ag[l-H-c/o^o-CBnM en] was explored.

Mo(CO)3Cp

Ag[c/oso-CB11H6Br6] Br

Mo(CO)3Cp

Figure 12: The retarded metathesis reaction o f CpMo(CO)3I with Ag[c/<m>-CB11H6Br6], terminated at the
intermediate stage.

The reactivity discussed herein will focus on the salt metathesis reactions when, 

X = I although similar results were obtained with X = Cl (vide infra). Consistently with 

CpMo(CO)3Cl, however, the reactions showed a number o f other unidentified products 

(totalling to ~15% overall content, based on the combined Cp resonances in the 

NMR spectrum) along with some anion decomposition.

The addition of one equivalent of Ag[l-H-c/o50-CBnM en] to CpMo(CO)3I in a 

CD2CI2 solution resulted in a !H NMR spectrum with a single Cp resonance at 5 5.76 

ppm, shifted downfield from that of CpMo(CO)3I in the same solvent (8 5.67 ppm). The 

IR spectrum of a CH2CI2 solution of this complex showed a number o f CO stretching 

bands (2055, 2043 and 1966 cm '1). This is a more complex spectrum to those reported 

for the anion coordinated compounds with {Ag2l2} cores observed in the analogous
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silver salt metathesis reactions with [c/ojo-CBhHu]" (2054 and 1973 cm’1), and [closo- 

CBnH6Br6]‘ (2055 and 1975 cm '1),9’34 suggesting a different structure. Crystals of this 

complex suitable for an X-ray diffraction analysis were obtained by the slow diffusion 

o f hexanes into a CH2CI2 solution at -20°C (some white powder -  later characterised as 

Ag[l-H-c/aso-CBiiMeii] was also observed). This revealed the structure (Figure 13) to 

also have a dicationic {Ag2l2} core, but in contrast to the three structurally characterised 

carborane coordinated intermediate complexes (Figure 14), the silver coordination 

spheres are completed by two further ‘terminal’ interactions to CpMo(CO)3l to give 

[Ag2{CpMo(CO)3I}6][l-H -c/0 SO-CBiiMeii]2, 14-1.

Mo(CO)3Cp H,
Cp(CO)3Mo,

,Mo(CO)3Cp

Cp(CO)3Mo' Mo(CO)3Cp

Cp(CO)3Mo‘Mo(CO)3Cp Mo(CO)3Cp

Figure 14: The structural disparity between the carborane bound intermediates (X = Br or H, bound via 
V  or r\2 linkages, dependent on anion) and the CpMo(CO)3I ‘ligated’ Ag adduct, 14-1.

There are two [l-H-c/oso-CBnMen]" anions present for charge balance, but no 

close M*-anion contacts are observed. The two symmetry related Ag+ cations in 14-1 

are in an approximate tetrahedral geometry generated by four iodine atoms, two 

bridging and two terminal (Figure 15).
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Figure 13: Molecular structure o f the di-cationic portion o f compound 14-1, hydrogens omitted for 
clarity. Symmetry transformations used to generate equivalent atoms: -x+1 y -z+1/2. Thermal ellipsoids

shown at the 30% probability level.

Ag 1-11 2.9123(4)
Ag1-I2 2.8171(4)
Ag1-I3 2.7872(4)
Mo1-l1 2.8704(5)
Mo2-l2 2.8578(5)
Mo3-l3 2.8537(5)

Ag1-l1-Mo1 108.507(13)
Ag1_2-l1-Mo1 124.805(14)

Ag1-l2-Mo2 115.451(15)
Ag1-l3-Mo3 105.866(13)

Ag1 2-11 2.8918(4)
Ag1-Ag1 2 3.0376(6)
I3-Ag1-I1_2 120.361(15)

I3-Ag1-I2 124.805(14)
I3-Ag1-I1 108.417(14)

I2-Ag1-I1 2 109.977(14)
I(1_2)-Ag-I1 104.342(13)
I2-Ag1-I1_2 103.137(14)

I1-Ag1-Ag1_2 58.114(12)
I3-Ag1-Ag1_2 100.863(9)

Table 1: Selected bond lengths (A) and angles (°) for 
Compound 14-1.



Figure 15: The immediate environment around each silver centre, demonstrating the tetrahedral geometry
about A g+.

A similar tetrahedral arrangement has been observed in 

[Ag{CpW(CO)3l}4 ][BF4 ] (Figure 16),36 which is another example where a neutral 

organometallic metal halide complex has displaced a counterion from the Ag+ 

coordination sphere. This can be viewed as a monomeric version o f compound 14-1 

(albeit with an extra molecule of CpW(CO)3l).

w(co)3cP BF4
I
I

,A g
Cp(CO)3W— I — W(CO)3Cp

/
Cp(CO)3W

Figure 16: The molecular structure o f  [A g{C pW (C O )3I}4][BF4].

The {Ag2 l2 } core is significantly deviated away from planarity, approaching a 

butterfly geometry, hinged around the II — Il_2 vector by 63.1°, similar to that observed 

for the structure o f  [CpMo(CO)3I:Ag(r|1-c/o50-CBiiHi2)]2 (hinge angle of 56.80).34 In 

contrast planar cores {Ag2 l2 } have been found for [CpMo(CO)3l:Ag(r|2- 1 2 -Br-c/as0 - 

C B nH iO h and [CpMo(CO)3I:Ag(r)3-closo-CBu H6Br6)]2 9
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The A g-'A g separation at 3.0376(6) A lies within that o f the combined van der 

Waals radii o f two silver atoms (3.44A) ,37 indicative o f a ligand supported argentophilic

TO
interaction. The four Ag-I bond lengths in 14-1 are disparate, with the two terminal 

interactions being shorter (Agl-I2  2.8171(4) A, Agl-I3 2.7872(4) A) than the two 

bridging bonds (A gl-Il 2.9123(4) A and 2.8918(4) A) as would be expected. Though 

these bond lengths are within in the range (2 .8  to 2.9 A) expected for dative R-I—Ag 

bonds and are comparable to that in [Ag{CpW(CO)3l}4][BF4] (2.832(1) A).36, 39 

Furthermore, the Mo-I distance of the bridging CpMo(CO)3l moiety (2.8704(5) A) is 

stretched to some extent in comparison to the two terminal fragments (2.8578(5) A and 

2.8537(5) A), possibly indicating a slight activation of this Mo-I bond to halide 

abstraction.

The solid state structure of 14-1 possesses two inequivalent CpMo(CO)3l 

environments (terminal and bridging) in a 2:1 ratio. This inequivalence is not observed 

in the solution phase NMR spectra. On the dissolution o f a crystalline sample of 14-1 

into CD2CI2 the resultant NMR spectrum shows only one Cp signal at 5 5.76 ppm 

and a Cp : anion ratio of 3:1. The anion resonances in both the and n B NMR spectra 

exhibit the expected 3 signals (signifying C5V symmetry is maintained in solution), with 

the chemical shifts and line widths effectively identical to that observed for [nBu4N ][l- 

H-c/oso-CBnM eii], indicating no M —anion interactions. Cooling the sample to -60°C 

resulted in no significant changes in the NMR spectrum, indicating a fast fluxional 

process is making all the CpMo(CO)3l molecules equivalent. It is unlikely that this 

process occurs through the cleavage of a Mo-I bond -  rather a more probable 

mechanism would involve the scission of the {Ag2l2} core into ‘monomeric’ fragments 

(Figure 17).
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2+ +

Cp(CO)3Mo.
>1 ^Mo(CO)3Cp

-----------------
Mo(CO)3Cp

Cp(CO)3Mo-----
cAg Mo(CO)3Cp 2

Cp(CO)3M o ^
^ M o (C O )3Cp

^ M o (C O )3Cp

Figure 17: A possible fluxional process that would result in the single Cp resonance observed in the !H
NMR spectrum

Precedence for this proposed equilibrium and the existence o f a monomeric 

[Ag{CpMo(CO)3l}3]+ cation comes from the characterisation o f the closely related 

[Ag{CpW(CO)3l}4]+ cation that has a central Ag+ surrounded by four CpW(CO)3l 

ligands.

Continuation of the reaction over the course o f a further 14 days results in a 

gradual disappearance of the CO stretching bands in the IR spectrum corresponding to 

complex 14-1, with them ultimately being completely displaced by a more complex set 

of new stretching bands between 2066 and 1963 cm '1. A white precipitate is also 

observed, which we assign to Agl. The ]H NMR spectrum showed the presence of a 

single Cp signal at 8  5.77 and, in combination with the IR spectrum, allowed for the 

formulation o f this new compound as [{CpMo(CO)3}2(p-I)][l-H-c/ayo-CBiiM en], 15-1 

by comparison to previously reported [{CpMo(CO)3}2(p-I)][BPh4] complex.40 

Definitive identification of the final metathesis product as [{CpMo(CO)3}2(p-X)][l-H- 

c/oso-CBnM en], 15, was obtained by an X-ray diffraction analysis for the chloride 

congener, 15-C1 (prepared in an identical manner to the iodide -  albeit with a significant 

proportion o f cage decomposition present, -20% ), Figure 18. The structure is 

unremarkable with the Cl' symmetrically bridging two {CpMo(CO)3}+ fragments (M ol-
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Mo2
Mo1

CM

C18

01

M01-CI1 2.5390(11)
M02-CH 2.5393(10)

CM01O1O2

128.61(4)
M01-C18 2.049(5)
C18-01 1.127(5)

T ab le  2: Selected  bond lengths (A )and  
angles (°) for Com pound 15-CI.

F igu re 18: M olecular structure o f  cationic portion o f  C om pound 15-CI, hydrogens om itted for clarity. Thermal
ellipsoids show n at the 30%  probability level.



Cll 2.5390(11) A and Mo2-Cll 2.5393(10) A), that are arranged in a trans orientation 

to each other. The Mo-Cl-Mo angle is large (128.61(4)°) eliminating, as expected, the 

possibility o f any Mo--Mo bonding, a similar M-X-M angle has been reported for 

[{CpFe(CO)2}2(M )][B F 4] (110.8(1)°),‘41,42 Complexes 15, are presumably formed by 

the halide abstraction from CpMo(CO)3X to generate the 16 electron fragment 

{CpMo(CO)3}+ which is then trapped by the remaining CpMo(CO)3X. Intermediate 14 

and the final metathesis product 15 are the only Cp containing species formed, even 

when a large excess o f Agfl-H-c/oso-CBnM en] is used. The intermediacy of 14 on the 

pathway to 15 is demonstrated in the 1:1 reaction of A g[l-H -closo- 

CBnM en]:CpM o(CO)3l by two findings, the first being examination of the relative 

mole fractions o f 14 and 15 (calculated by NMR spectroscopy, integrating the 

respective Cp resonances to an internal standard). Figure 19 demonstrates the immediate 

formation o f the intermediate species, 14-1, followed by its slow conversion to produce 

the halide bridged dimer; importantly the mass balance is constant throughout the 

transformation indicating that 14 is converted cleanly to 15.

100 

90 f 

80 -

♦
70 ♦

60  -co
|  50

o 40 -| 
E

30 i  

20 

10

0 50 100 150 200  250  300

Time (h)

Figure 19: Plot o f  mole fraction versus time for compounds 14-1 ( ♦ )  and 15-1 (■ ).
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Secondly dissolution o f crystalline 14-1 in CD2CI2 resulted, after a period o f days in two 

Cp containing products, the final metathesis product 15-1, and CpMo(CO)3l (by 

comparison to an independently synthesised sample), along with the precipitation o f a 

white solid -A g l (Figure 20).

:p(CO)3Mo

Cp(CO)3Mo*

\ |  Mo(CO)3Cp 

= /

sAg

f  V
‘Mo(CO)3Cp

Cp(CO)3Mo"
‘Mo(CO)3Cp

2+

days

_ +

.—-Mo.
°C  /  \
r P  C

—Mo- _
/ \ T C°

C n 0  0  .

+ 2 CpMo(CO)3l 

+ 2 Agl

F igu re 20: The overall reaction stoichiom etry for the reaction o f  14-1 to generate the final metathesis
product.

CpMo(CO)3l is formed as a by-product in this reaction due to insufficient A g[l- 

H-c/oso-CBiiM en]. In a 1:1 reaction o f CpMo(CO)3l and A g[l-H -c/ojo-C BnM en], 15 

is the only CpMo containing product ultimately formed. Addition o f  an excess (10 fold) 

o f  Ag[ 1 -H-closo-CB 1 iMe 11 ] does not result in complete metathesis to CpMo(CO)3(l-H- 

c/oso-C BnM en), the reaction being arrested at the halide bridged dimer. This is in 

contrast to [{CpFe(CO)2}2(ft-I)] [BF4], that on the addition o f  one equivalent o f  Ag[BF4] 

does progress to give the complete metathesis product, CpFe(CO)2(BF4).42 This strongly 

implies that anion nucleophilicity is an important factor in driving halide metathesis 

through to completion -  with weakly coordinating anions only proceeding slowly, if  at 

all. 43

A related investigation into the chloride abstraction from a bulky platinum 

diimine system [(N-N-chelate)Pt(Me)Cl] with Ag[BF4] revealed a similar phenomenon
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(Figure 21), with the initial formation of a dimeric Ag bridged dimer, that in non

coordinating solvents proceeds to give the chloride bridged dimer.44 The formation of 

only two Cl—Ag contacts, in contrast to 14, presumably arises due to the greater steric 

bulk around the metal centre, thus preventing any higher aggregation.

Pr

Me

Pr

ri’i. Me
V  As[BF4]

M e " ^ ^  ^01 CH2CI2

Pr. Pr

Pr

Me

Pr

Me

Pr Pr

f N\  / • “ / " V~ A9 /V I
Cl Me N ^ M e

pt ^Me'Wi/
Pr. Pr Pr Pr

Me Me,

Me^N N^Me

F igu re  21: Reaction schem e leading to the chloride bridged platinum dimer.

Following the absence of a metathesis product in the analogous [closo- 

CBnH6Br6]' system, it was somewhat surprising to observe any further reaction with the 

less coordinating [l-H-c/oso-CBnM en]' anion to afford the halide bridged dimer 15. 

The lack of any further reaction beyond the intermediate {Ag2l2} complex in the [closo- 

CBnH6Br6]‘ congener has been previously ascribed to the significant steric bulk 

associated with [c/oso-CBnHeBre]'. This prevents any anion attack on the molybdenum 

centre and consequently metathesis consummation. Metathesis reactions occurring via 

the intermediate complexes 14 do by contrast, proceed, presumably due to the 

significantly decreased steric congestion associated with the iodide from CpMo(CO)3l, 

allowing it to attack the Mo centre.

4.2.1.2: H ydride Abstraction Reactions:

Following the failure of the silver salt metathesis pathway to generate 

{CpMo(CO)3}+ an alternative route, the hydride abstraction from CpMo(CO)3H by the
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trityl salt, [Ph3C][l-H>c/o50-CBiiM en] (reported in Chapter Three) was investigated. 

This methodology has had previous success in introducing the anions [12-Br-closo- 

CBiiH n]', [c/os0-CBnH6Br6]' [PF6] \  [SbF6]‘ and [BF4]' to the metal coordination 

sphere (Figure 22) 4,9,45

Mo + [Ph3C][X] — '  *1CP.- ?. - ► Mo%
n C H CH2C|2 n cO C c  n O C c  X

0  O 0  O

X = [12-Br-c/oso-CB-nHnJ-, [closo-CBu H6Br6]', [PF6]-. [SbF6r or [BF4]'

F igu re  22: A  general schem atic for the formation o f  the anion bound com p lexes C pM o(C O )3” X.

The reaction o f  [Ph3C][l-H-c/o^o-CBnMen] with one equivalent o f  

CpMo(CO)3H in CD2CI2 resulted in [{CpMo(CO)3}2(H”H)][l-H-c/o5o-CBnM en] as the 

major product. In addition to this product unreacted [Ph3C][l-H-c/o5o-CBnMen] and 

some cage methyl decomposition products (~ 10% based on the and n B NMR 

spectra) were also observed. The hydride-bridged dimer was consistently the major 

product, despite attempts with different concentrations, slow addition o f a 

CpMo(CO)3H solution and using a large excess o f  [Ph3C][l-H-c/o5o-CBnMen]. In an 

analogous manner (albeit much faster) to the formation o f  compound 15, hydride 

abstraction results in the formation o f the unsaturated 16 electron fragment 

{CpMo(CO)3}+ which rapidly reacts with the strongest nucleophile present in solution, 

CpMo(CO)3H, generating the observed product. The small percentage o f cage 

decomposition product may arise from a {CpMo(CO)3}+ fragment that coordinates and 

subsequently activates CD2CI2 (or alternatively the anion). FAB mass spectroscopy 

identified the anion [HCBnMeioCl]' in the reaction mixture, seen previously (Chapter 

Three) and a similar mechanism o f formation is feasible here. The rapid formation o f
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the stable hydride bridged dimer and the absence o f any observed anion coordinated 

compound places the [l-H-c/oso-CBnM en]' anion as less nucleophilic than [closo- 

CBnH 6Br6]‘ with respect to the {CpMo(CO)3}+ fragment. Hydride abstraction in the 

presence o f a good Lewis base (L = acetone, H2O or 3-pentanone) cleanly results in the 

formation o f [CpMo(CO)3L][l-H-c/o^o-CBiiMen] as the only Cp containing product 

(by NMR spectroscopy) .6

The clean formation of [CpMo(CO)3(0 =CEt2)][l-H-c/o5o-CBnM en] and (see 

Experimental) its mono-phosphine congener, [CpMo(CO)2(PPh3)(0 =CEt2)][l-H-c/o^o- 

CBnM en] allows for the investigation of their potential in the transfer hydrogenation 

catalytic cycle developed by Bullock (Figure 23).46,47

O OH
I I  [CpMo(CO)2(PPh3)(0=CEt2)][X] |
0  — - 1 ■ ■ ^  Q

E t' ^ E t  H2 (< 4  a tm os), 23°C  E t ' ' ' ' / ^ E tH
X = [OTf]-, [BF4]- or [TFPB]*

F igu re 23: T he transfer hydrogenation o f  3-pentanone catalysed by [CpM o(CO)2(PPh3)(0 = C E t2)][X ].

Importantly, in this system a direct relationship between catalyst activity and the 

coordinating ability of the anion has been demonstrated. The very weakly coordinating 

anion, [BArp]' generated a more active catalyst than congeners with the ‘classically’ 

weakly coordinating anions [PF6]‘ and [BF4]'.46 The published protocol for the 

hydrogenation o f 3-pentanone outlined by Bullock was closely followed and allows for 

the comparison o f the relative nucleophilicity o f the anions [BArp]', [c/<m>-CBnH6Br6]‘ 

and [l-H-c/oso-CBnM en] in a catalytic process.47 Figure 24 shows the number of 

catalyst turnovers with respect to time for the hydrogenation of 3-pentanone to 3-
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pentanol, under 4 atmospheres of H2 and catalysed by [CpMo(CO)3(0 =CEt2 )][l-H- 

c/os’o-CBnM eii] (generated in situ from the reaction o f CpMo(PPh3)(CO)2H and 

[Ph3C][l-H-c/o50-CBnMen], in the presence of 10 equivalents o f 3-pentanone). In 

addition the catalytic efficiency for the analogous compounds partnered with [BArp]' 

and [c/osoC B iiH 6Br6]' are also shown.

12

10

[1-H-c/oso-CBuMen]'
8

6

[c/oso-CBnH6Br6]'4

2

0
10 12 140 2 6 84

Time (days)

Figure 24: The respective number o f  turnovers for the hydrogenation o f  0= C E t2 by H2 catalysed by 
[CpM o(PPh3)(CO )2(0= C E t2)][X], X = [BArF] (A), [l-H -c /o so -C B u M e,,]' ( ♦ )  and

[c /0 5 0 -C B n H 6B r6f  ( ■ ) .

With the [l-H -c/0 5 0 -CBiiM eii]' anion ( 8  turnovers after 12 days) the catalyst 

outperforms the [c/aso-CBnH 6Br6]‘ analogue (5 turnovers after 12 days), but is 

significantly slower than the [BArp]’ system (12 turnovers after 6  days). This allows for 

the anions to be ranked in a decreasing order of nucleophilicity, [c/oj,o-CBnH 6Br6 ]' > 

[l-H -c/oso-CBnM en]' > [BArp]- with respect to the {CpMo(CO)2 (PPh3)}+ fragment. 

An identical ordering was found for the coordinating ability o f these three anions with 

respect to the {(PR.3 )Ag}+ cationic fragment (Chapter Two). Direct comparison against 

the [BF4]' and [PF6]’ anions was not possible, as qualitative measurements only, were
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reported for these two systems. They were though, determined to be considerably less 

active than their [BArp]' counterpart on the basis o f the final yield o f product.46 Use o f  

other anions including, [c/ojo-CBhH u ]", [12-Br-c/oso-CBnHii]' and [OTf]' generated 

catalytically inactive compounds, confirming that they are significantly more co

ordinating.33

4.2.1.3: Alternative methods to introduce [l-H-c/0 S0 -CBnM en]' to {CpMo(CO)3}+.

With the formation o f  the dimeric complexes 15 and [{CpMo(CO)3}2(p-H)][l- 

H-c/oso-CBnM en] preventing the isolation and subsequent investigation into the 

coordination behaviour o f  [CpMo(CO)3][l-H-c/os0-CBnMen] a further two alternative 

routes were looked at that cannot form analogous bridged complexes: (i) the oxidative 

cleavage o f the dimer {CpMo(CO)3}2 by the neutral radical [l-H-c/oyo-CBnM en]*, and 

(ii) the salt metathesis o f  CpMo(CO)3(OTf) with Cs[l-H -c/o50-CBnM en] (Figure 25).

eg co
| [1-H-c/oso-CB^Men]*

Mo--------Mo -----------------------------------*
i

•Moc— „ 
0<r°  o c  

o

Mo.
Cs[1 -H-c/oso-CB! 1 Men]

- CsOTf n C ^ V ^ 0T fo o c
0

F igu re 25: Further attempts to form the 16 electron fragm ent, {C pM o(C O )3}+

Due to the similar reactivity patterns observed for these two systems they shall 

be discussed together. In CD2CI2, both the and n B NMR spectra showed that the 

attempted formation o f the monomeric cationic compound resulted in a highly complex 

anion region. This was even the case with samples synthesised at low temperatures (- 

78°C), implying that the compound formed is highly reactive, undergoing rapid anion 

decomposition. A plausible mechanism involves the formation o f  a [Mo—
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complex, that initiates the anion decomposition, either by direct chloride abstraction, or 

via a nucleophilic attack on the coordinated CH2CI2 by [l-H-c/oso-CBnMen]* (see 

Chapter Three). Complexes of the general formula [CpMo(CO)3(ClCH2Cl)]+ are well 

documented, having been reported previously partnered with [PF6]* and [closo-

In order to gain further insight into a possible mechanism for the electrophilic 

metal induced decomposition of [l-H-c/oso-CBnM en]' in CH2CI2, a similar system, 

[(PCy3)Re(CO)4(CH2Cl2)][BArp], was investigated that has been previously

4.2.2: Reactions of [1-H -c/^ -C B n M en]’ with [(PR3)xRe(CO)5-x(CH2Cl2)]+ (x = 1, 

R = Ph or Cy, x = 2, R = P(OCH2)3CCH3).

The reaction of [Ph3C][l-H-c/o5o-CBnMen] with three different rhenium 

complexes, (PCy3)Re(CO)4Me, (PPh3)Re(CO)4Me and (P(OCH2)3CCH3)2Re(CO)3Me 

in CH2C12 generated, in each case, a dichloromethane coordinated complex analogous to 

the previously reported [BArp]' congeners (Figure 26).19,20,48

CB,iH6Br6]-3’4’ 9

9 1demonstrated to undergo anion decomposition via a CH2C12 coordinated complex.

Me

Me

F igu re  26: The three synthesised Re-dichlorom ethane adducts.

218



The characterisation of these compounds was based on and 31P{1H} NMR 

spectroscopy which were identical to the [BArp]' analogues (apart from the differences 

associated with the change of counterion) . 19'21 The further reactivity of these three 

complexes is similar and therefore, the following discussion will focus solely on the 

decomposition o f [(PCy3)Re(CO)4(r)1-ClCH2Cl)][l-H-c/o5o-CBnM en], 16, the findings 

though are equally applicable.

Complex 16 is formed, as the major product following the methide abstraction 

from (PCy3)Re(CO)4Me at low temperature (-78°C) in CD2CI2 (~ 90% by NMR 

spectroscopy). On standing at room temperature in CD2CI2 solution, the 31P{1H} NMR 

resonance associated with 16 decreases, until after 8 hours no signal attributable to 16 is 

observed. Concomitant to the disappearance of 16, is the formation o f one new major

signal (~ 70%) in the 31P{!H} NMR spectra that by comparison to the [BArp]*

 ̂1
analogue, is readily identified as the chloro-bridged dimer [{(PCy3)Re(CO)4}2(p- 

Cl)]+. A number o f other unidentified minor signals were also observed in the 31P{1H} 

NMR spectrum. Alongside this change in the 31P{1H} spectrum, there is activation of 

the anion, with the ^  and 1 *B NMR spectra exhibiting an increased complexity in the 

anion B-CH3 regions (Figure 26).
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Figure 26: The cage region o f  the 'H {n B} and n B NM R spectra for the reaction o f  [(PCy3)Re(CO)4Me] 
with [Ph3C ][l-H -c /o jo -C B 11M e,i] in CD2C12, after 30 minutes and 12 hours respectively, * = vacuum

grease.

FAB- mass spectroscopy confirmed the presence o f three anionic cage species: 

the unfiinctionalised cage [l-H-c/oso-CBnM en]', a monochlorinated cage [H- 

CBnMeioCl]* and a bischloriniated cage [H-CBnM e9Cl2]". A plausible mechanism to 

explain the observed products is outlined in Figure 27.

H

■ch3ch2ci

Me -[CH2CI]'

Cl

Figure 27: Possible decom position mechanism for [(PCy3)R e(C O )4(C l2CH2)][l-H -c /o j 0 -C B n M en].

The first step in this proposed pathway, the attack on the coordinated 

dichloromethane by a weak nucleophile (in this case the anion, [l-H -c/oso-C B nM en]’), 

has precedence. Gladysz has previously observed the nucleophilic attack o f X' (X = Cl, 

Br) on [CpRe(NO)(PPh3)(Cl2CH2)]+ to produce CpRe(NO)(PPh3)Cl and C1CH2X . 49
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Furthermore, it has been previously shown that in the analogous [BArp]’ complex to 16, 

Et2 0  readily attacks the coordinated dichloromethane, producing the neutral chloride 

compound and the ethyloxonium ion [ClCH2 0 Et2]+ (Figure 28).21 In general the 

coordination o f a halocarbon to a metal centre, even though it is a weak interaction, 

greatly increases its susceptibility to attack by nucleophiles.

PR3

0 C^  I ^ Co
_^-Re__

° c  I c h 2ci

8  r

PR3

oC

o c _  I . C °
Re^  + [CICH2OEt2][BArF]

‘Cl

C
OEtzO

F igu re  28: Ether attack on a cationic dichlorom ethane com plex.

In the decomposition of 16 the anion would have to be the nucleophile, with [1- 

H -c/oso-C B nM en]' attacking in a manner analogous to Et20  in Figure 28. The 12 

vertex of [c/ojo-CBnM eu]' is nucleophilic enough to coordinate to [Sn(nBu)3]+, 

forming a Sn—H3C interaction with some covalent character,50 demonstrating that [1-H- 

c/oyo-CBiiMen]' can have appreciable nucleophilic behaviour. An Sn2 type attack 

would generate the neutral chloride complex and the neutral borenium ylide (Figure 27), 

via the elimination of chloroethane from the transient complex, [I2 -CICH2CH3-I-H - 

c/o^o-CBiiMeio]. The borenium ylide would then readily abstract chloride from CH2CI2 

to generate the observed anion. Repeated attempts to detect the presence of 

chloroethane by GC/M S and NMR techniques unfortunately failed.

The presence o f the two other anions, [l-H-c/oso-CBnM en]’ and [l-H-c/oso- 

C B nM egC y  observed by NMR and MS techniques can be readily rationalised. The 

initially formed [l-H-12-Cl-c/oso-CBiiMeio]' would compete with [1-H-c/o.so-
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CBnM en]' with respect to the nucleophilic attack on a second molecule o f  

[(PCy3)Re(CO)4(Cl2CH2)]+. This would then yield the bis functionalised product and, 

prevent all o f  the [l-H -c/oso-CBnM en]' from undergoing mono-chlorination.

26The methide abstraction from the Heinekey bis-phosphine analogue,

[(PCy3)2Re(CO)3Me] by [Ph3C][l-H-c/aso-CBiiMen] in CD2CI2 led to the agostic

compound [rra«s-wer-(PCy3)2Re(CO)3][l-H-c/o.s0-CBiiMeii] {vide infra), as

77 » •
previously determined for the [BArp]' analogue (Figure 29). This agostic complex 

undergoes no anion decomposition, further implicating a coordinated CH2CI2 complex 

as initiating anion decomposition.

PCy3

oc^  I ^ c o_^Re._
Oc  I Me

PCy3

[Ph3C][1 -H-c/oso-CBi -i M e^ l -----------------------------
CD2CI2 

- MeCPh3

PCy3

F igure 29: The form ation o f  the y -agostic com pound, [trans-mer-(pCyi)-Jte{CO){\[\-Y{-closo-
CBjiMen].

Following the findings that the highly electrophilic metal CH2CI2 complexes 

result in the rapid anion B-C bond cleavage, it becomes necessary to utilise complexes 

that are less fiercely electrophilic {i.e., no 71 acidic ligands) whilst still being 

electronically unsaturated. Examples o f them are the two fragments 

{Cp*Rh(PMe3)Me}+ and {Pt('Pr3P}2H}+, 30, 32 that have been demonstrated to bind 

weak donor molecules readily when the counterion is [BArp]* and they do not undergo 

facile decomposition o f the coordinated CH2CI2. The formation o f analogous 

compounds partnered with the [l-H -c/oso-CBnM en]' anion will be discussed next.

2 2 2



4.2.3: Attempts to partner [l-H-c/0 S0 -CBnMen]' with [Cp*Rh(PMe3)Me]+.

The reaction o f Cp*Rh(PMe3)Me(OTf) 30 with one equivalent of Cs[l-H-c/o5o- 

C B nM en]' in CH2CI2 led to the formation o f the previously characterised 

dichloromethane coordinated complex [Cp*Rh(PMe3)Me(ClCH2Cl)][l-H-c/o50- 

CBnM en], 17 (Figure 30).30 No decomposition o f compound 17 was observed over a 

period o f days in solution. The increased stability o f 17 in contrast to 16 and can be 

attributed to the reduced electrophilicity at the metal centre resulting in a coordinated 

CH2CI2 molecule that is less activated towards nucleophilic attack.

Csfl-H-c/oso-CB^Men]
 ►

p c h 2ci2
-CsOTf

Cstl-H-c/oso-CBuMenJ

17

F igu re  30: The observed products from the salt m etathesis reactions betw een C s[l-H -c /o jo -C B n M en ]  
and Cp*Rh(PM e3)M e(O T f) in CH2C12 and C6H5F respectively.

When performed in fluorobenzene (C6H5F), the rapid C-H activation of the 

solvent results followed by the loss of methane (observed at 8  0 .2 0  ppm) and the 

formation of an isomeric mixture of the triflate coordinated complexes (Figure 30). 

Similar arene, and halo arene activation has been reported for the analogous iridium 

complex, Cp*Ir(PMe3)Me(OTf), including the C-H activation of 1,2-difluorobenzene.51 

Interestingly, the use of 1,2-di-substituted arenes prevented the formation of isomeric 

products with only the meta positions activated.51 It was anticipated that use o f a polar, 

1,3,5 substituted arene would prevent any C-H activation by sterically blocking the 

arene C-H bonds. In this manner, the analogous reaction was attempted with 5-fluoro-
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meta-xylene as the solvent. No gas evolution was observed and a white precipitate 

rapidly formed. On removal o f the solvent in vacuo and dissolution in CD2CI2 a 

compound with chemical shifts identical to that o f  17 was produced, the further 

precipitation o f  a small quantity o f  white solid was also noted. This result was initially 

interpreted as the formation o f a cationic rhodium complex containing an interaction 

weaker that o f  the Rh—CICH2CI contact (Figure 31).

Cs[1 -H-c/oso-CBi -i Me-i ft

0 Rh
Me3P '" /

Me

possible anion or solvent 
coordinated complex

-CsOTf

CH2CI2
17

CH3

F igu re  31: The proposed reactivity for the salt m etathesis reaction carried out in 5-fluro-m eta-xyIene.

Crystalline material was obtainable from a 5-fluoro-w-xylene solution by the 

slow diffusion o f pentanes at -20°C, though o f  insufficient quality for an X-ray 

diffraction study. Dissolution o f these into CD2CI2 gave an unexpected ratio o f Cp* : [1- 

H-c/oso-CBnMeii]* o f  2:1 (by *H NMR spectroscopy). The 31P {1H} NMR spectrum 

showed a single resonance at 84.8ppm with a Rh-P coupling constant o f 165.7 Hz, 

different from that o f  complex 17, (63.2 ppm ( 163.2 Hz)). The 19F NMR spectrum 

displayed one singlet at 6 - 78.69 ppm, shifted downfield from that o f  the monomeric 

starting material Cp*Rh(PMe3)Me(OTf) in CD2CI2 (8-79.1 ppm),30 significantly it also 

does not correspond to that o f ‘free’ triflate (-79.0 ppm for [(nHex)4N][OTf] in 

CD2CI2).51 Addition o f  an excess o f Cs[l-H-c/o5o-CBnM en] to this sample resulted in 

the clean formation o f  17 and the precipitation o f  a white solid, classified as CsOTf.

224



These combined findings led to the characterisation o f  the isolated crystals as the 

retarded metathesis complex [{Cp*Rh(PMe3)Me}2(fJ.-OTf)][l-H-c/os0-CBnMen] 

(Figure 32). The initial misleading observation o f the clean formation o f 17 from this 

reaction, presumably arose from the presence o f unreacted Cs[ 1 -W-closo-CB i iMei i] that 

on dissolution in a more coordinating solvent, CD2CI2, completed the metathesis, 

explaining the further precipitation also observed. For the complete metathesis to occur 

there again appears to be a minimum nucleophilicity required for the attacking molecule 

without which only a retarded salt exchange or no reaction at all takes place (i.e. CH2CI2 

Vs 5-fluoro-m-xylene/[l-H-c/oso-CBiiMeii]*). This is analogous to the behaviour 

observed in the silver salt metathesis reactions between CpMo(CO)3X and Ag[l-H - 

c/oso-CBnM en]' described earlier in this chapter.

,Rh
Me3PxV  OTf 

Me

2 Cs[1-H-c/oso-CBiiMe-|i] 

5-fluoro-m-xylene 
-1 CsOTf Me3J NV  ^ [ O T f ] ^  \ P M e 3

Me

1 Cs[1-H-c/oso-CBiiMei-i]

CH2CI2
17

1 CsOTf

F igu re 32: The role o f  solvent in the m etathesis reaction betw een C s[l-H -c /o 5 o -C B n M en ] and
Cp*Rh(PMe3)Me(OTf).

The ability o f [OTf]' to act as a bridging anion is well documented, with a large 

number o f ligand supported and unsupported bridging triflate complexes structurally

t\ C1) C*7
characterised with a range o f metals, including cationic d complexes. ' Furthermore, 

the bidentate binding mode o f [OTf]' has been characterised recently in a unsaturated 

rhodium fragment ('P ^P ^R h^-O T f).58
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Compound 17 is also accessible from Cp*Rh(PMe3)Me2 by reaction with either 

the trityl salt, [Ph3C][l-H-c/o50-CBnM en] or the neutral radical [l-H-c/ctfo-CBuMen]* 

(albeit in each case the reaction is not as clean as via the Cp*Rh(PMe3)Me(OTf) route). 

The radical mechanism for the formation o f the related anion coordinated complex, 

Cp*Rh(PPh3)Me(PF6) (from Cp*Rh(PPh3)Me2 and [Cp2Fe][PF6]) has previously been 

determined by Tilset to occur via a two electron oxidation o f  Cp*Rh(PPh3)Me2, with the 

concomitant intramolecular loss o f ethane to generate [Cp*Rh(PPh3)(solv)2] followed 

by a rapid intermolecular methyl transfer from Cp*Rh(PPh3)Me2.59 It is reasonable to 

assume that the generation o f 17 via the radical [l-H-c/oyo-CBnM en]* proceeds by a 

closely related mechanism (Figure 33), as the formation o f  ethane (singlet 5 0.86 ppm) 

is confirmed by the !H NMR spectrum.

S 3

.Rh.
Me3P* /  

Me
’Me

2 [1-H-c/oso-CB-nMe-i-i]*
CH2CI2  ►

-CH3CH3

3 5 2

Me3p " 7
solv

,Rh 
sN'  ̂ solv

2+

Cp*Rh(PMe3)Me2 
 ► 17

F igu re  33: Proposed radical m echanism  for the form ation o f  17.

With the formation o f 17 possible from two neutral compounds, 

Cp*Rh(PMe3)Me2 and [l-H-c/two-CBnMen]*, the reaction was attempted in 

cyclohexane. Immediate gas evolution was observed followed by the precipitation o f a 

tan solid; there were no detectable Rh containing products in the cyclohexane solution. 

Dissoluionof the tan solid in CD2CI2 resulted in a rapid colour change to vermillion and 

NMR spectra consistent with the formation o f 17 as the predominant product (~ 70% 

based on the Cp* resonance). The minor products presumably arise from C-H activation
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o f the alkane solvent, as reported for Cp*Ir(PMe3)Me(OTf). There was no cage 

decomposition observed.51 ,60 A number of ‘layer’ reactions were attempted to isolate 

crystalline material of the tan solid. This consisted o f one reactant in cyclohexane 

layered with the other compound dissolved in pentane. On diffusion this yielded only a 

fine precipitate, therefore a buffer solution o f hexane was introduced between the two 

reactant carrying layers to prevent a rapid reaction, but no crystalline material was 

formed despite repeated attempts under a range of conditions. The lack of a suitable 

solvent has frustrated further attempts to identify this compound, with CH2CI2, THF and 

other weakly basic solvents coordinating to the metal, facile C-H activation preventing 

the use o f arenes and haloarenes and C-H activation occurring with saturated alkanes. It 

is tempting to suggest that this ‘tan solid’ is attributable to a anion coordinated complex 

(Figure 34), however an agostic complex is also feasible.

F igu re  34: A  suggested structure for the ‘tan so lid ’ com plex  isolated.

4.2.4: Attempts to Partner [l-H-c/flso-CBnM en]' with [tra/is-fPraP^PtMe]*.

The final CH2CI2 system investigated is based on that reported by Kubas et al., 

[fra»5-Pt(Me)(ClCH2Cl)('Pr3P)2][BArF], which is an extremely stable, well 

characterised dichloromethane complex. A major drawback for the formation of the 

analogous compound partnered with [l-H-c/oso-CBnM en]' stems from the synthesis 

requiring the etherate acid [H(OEt2)2][BArp]. This is not feasible for the [1-H-closo-
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C B nM en]' anion due to the instability o f the anion to strong acid environments, 

frustrating attempts to synthesise [H(OEt2)2][l-H-c/o50-CBnMen].61 An alternative

Na[BArp], this is also not viable due to the formation o f retarded metathesis products 

previously observed when utilising Agfl-H-c/oso-CBnM en] and Cs[l-H-c/o.s0 - 

CBnM en] (see earlier this Chapter). Instead the readily synthesised czs-^P^P^Pth/^ 

was used as a starting point to investigate the coordination chemistry of [1-H-closo- 

C B nM en]' with respect to unsaturated 14-electron {(‘P^P^Pth}* fragments.

The reaction o f equimolar quantities of c/$-(*Pr3P)2PtMe2 with [Ph3C][l-H- 

c/oso-CBnM en] in either CH2CI2 or fluorobenzene (C6H5F) resulted in the formation o f 

/ra«5-[PtMe(1Pr3P)2][l-H-c/o1so-CBiiMen], 18 and MeCPh3 (Figure 35). Complex 18 is 

also produced on reaction with the one electron oxidant [l-H-c/oso-CBuMen]*, 

producing, one equivalent o f methane (8 0.20 ppm) consistent with a one electron 

homolysis reaction.

The [MeB(C6F5)3]' analogue o f 18 is also accessible by the reaction o f cis- 

('Pr3P)2PtMe2 with B(C6Fs)3. Crystals suitable for an X-ray diffraction study, obtained

a C6H5F solution. This revealed the structure to be a T-shaped planar platinum (II)

synthesis published involved the salt metathesis o f /7ww-Pt(H)Cl('Pr3P)2 with

H

lPr3P Rt Me

Me

P'Pr3

[CPh3][1 -H-closo-CB^Me^] 
or

[1-H-c/oso-CBnMen]*

CH2CI2 or C6H5F 

[Y]

Me
[Y] = [1-H-c/oso-CB11Me11]*

18

F igu re  35: The various routes to access the agostic com plex, 18.

via the [l-H -c/oso-C B uM en ]*  route were grown by the slow diffusion of pentanes into
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cation, stabilised by one y agostic interaction, with the anion, [l-H-c/oso-CBnM eii]' not 

proximate in the lattice (Figure 36). Similar d T-shaped metal complexes have been 

previously structurally characterised for Rh,63 Pd64 and P t .65

The geometry around the Pt(II) centre is pseudo square planar (the sum of angles 

about the Pt centre is equal to 360.0°) generated by two trans phosphine, the methyl and 

one close agostic approach of a CH3 group from one phosphine (Ptl-C31 2.858(6)A). 

There is no close approach of the anion in the extended lattice, and no solvent co

crystallite. The hydrogen atoms attached to C31 were located in the final difference map 

and refined subject to being restrained at a distance o f 0.89 A from C31. This resulted in 

a bonding m otif where one hydrogen is directed towards (Ptl-H31a 2.24(4) A) and two 

hydrogens directed away from the Pt(II) centre, with the latter showing significantly 

longer non-bonding distances (Ptl-H31b 3.67(5) A and Ptl-H31c 2.94(4) A). The 

closest Pt-C distance is a long agostic interaction, significantly greater than that 

observed for the related complexes, [Pt{PCy2(2 ,6 -Me2C6H3)}{PCy2(2 -Me-6 -CH2- 

C6H3)}]+, B (Figure 37) ,65 that has a Pt-C distance o f 2.432(6) A and the p-agostic Pt 

complexes (Pt-C distances of 2.28(2) A and 2.309(5) A).66'68 There is no observed 

lengthening o f the agostic C-H bond, which within errors is identical to the non agostic 

C-H bonds, consistent with the limited C-H elongation (5-10%) observed for agostic

69interactions.
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Pt1-P 1 2 .3 1 6 1 (1 2 )
P t-P 2 2 .3 0 2 4 (1 2 )

P t1 -C 13 2 .0 2 6 (5 )
P t1 -H 31a 2 .2 4 (4 )

Pt-C 31 2 .8 5 8 (6 )
C 1 3 -P t1 -H 3 1 a 1 6 4 .0 (1 1 )

P 1 -P t1 -P 2 1 7 1 .0 8 (4 )
C 13-P t1 -P 1 9 3 .3 6 (1 5 )
C 1 3 -P t1 -P 2 9 4 .8 1 (1 5 )
C 3 1 -C 2 9 -P 2 1 0 8 .2 (4 )
C 29-P 2-P t1 9 7 .9 9 (1 6 )
C 20-P 1-P t1 1 0 6 .6 7 (1 5 )
C 22-C 2 0 -P 1 1 1 1 .9 (3 )

T able 3: Selected Bond Lengths (A) 
and A ngles (°) for 18.



_ +

18

ti2-C ,H

F igu re 37: T he differing Pt-H3C agostic interactions characterised in 18 and [Pt{PC y2(2,6-
M e2C6H 3)} {PC y2(2-M e-6-C H 2-C 6H3)}][B A rF], B  (anions not show n) 65

Comparison o f the CH3 binding modes involved in the agostic interactions for 

complexes 18 and B is noteworthy and valid (given the usual caveats) as both data sets 

allowed for the free refinement of the associated hydrogen positions. Complex 18, 

involving a y agostic interaction, shows a r\ -C,H binding m otif (see Chapter One) 

whilst the 5 agostic interaction in B, presents two hydrogens equally towards the metal 

(Pt-H distances o f 2.085 A and 2.057 A respectively) resulting in a symmetrical rj3- 

C,H,H mode. This, as recently outlined by Barratta et al. 70 is as expected, as complex 

18 has to undergo significant ligand distortion to achieve the favoured geometry for 

agostic bonding, thus allowing for the close approach o f only a single C-H bond. This 

ligand deformation is clearly visible on inspection o f the relative phosphine geometries 

(Figure 36). The agostically bound phosphine is bent towards the Pt centre (Ptl-P2-C29, 

97.99(16)°), being significantly distorted compared to that of the non agostically bound 

phosphine ligand (e.g., P tl-Pl-C20, 106.67(15)°) and the average Pt-P-Ca angle in 

[('Pr3P)2Pt(Me)N3] (112.70) .71 The long agostic interaction in compound 18 relative to 

B, implies that it is inherently weaker. This is consistent with the short trans Pt-a 

bonded methyl distance o f 2.026(5) A, that lies at the short end o f Pt(II)-Me bonds.72
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Complex 18 in a CD2CI2 solution possesses Cs symmetry at room temperature 

(by *H and 31P{1H} NMR spectroscopy), presumably due to the rapid intramolecular 

exchange of the agostic C-H bond, thereby making equivalent the CH3 groups on both 

phosphines. Cooling to 190 K does not result in any significant change in the NMR 

spectra, indicating a facile exchange process and a weaker interaction to that found in B, 

in which the fluxionality is frozen out at 178 K .65 The value of the 2J(PtC//3) coupling 

constant (106 Hz) is large in comparison to complexes with more strongly bound trans 

ligands, e.g., trans-PtMeClOP^P^ (83 Hz) and rra«5-PtMe(OTf)('Pr3P)2 (96 Hz) .73 

Furthermore the Pt-C/A resonance in 18 is shifted notably downfield (81.69 ppm) when 

compared to both the [Cl]' and [OTf]' congeners in the same solvent (80.47 ppm and

0.81 ppm respectively) .73

The closely related cation [P tH C P ^P ^V 2 binds a range o f solvent molecules 

(PhBr, Phi, CH2CI2, Et2 0  and THF) in preference to the formation o f an agostic 

interaction. Definitive proof that the agostic contact, which is structurally characterised 

in complex 18, persists in CD2CI2 is provided by the addition of 5 equivalents of 

CH2CI2 to a C6H5F solution of 18. This resulted in no change in the chemical shifts or in 

the coupling constants (a more sensitive indicator to the identity of the trans-to methyl 

ligand), with both ^(PtP) and the 2J(Pt-C//3) remaining unaltered. Addition of a 

stronger Lewis base e.g., THF to a C6H5F solution o f complex 18 contrastingly 

provided a significant shift in the NMR resonances and coupling constants (discussed 

later). The disparity in the coordination behaviour o f these two closely related 14 

electron cationic fragments, {PtMe('Pr3P)2}+ and {PtH(,Pr3P)2}+ is suggested to be 

essentially steric in origin. Close examination of the orientation o f the trans phosphine
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ligands reveal that in {PtH(‘Pr3P)2 }+ they are bent towards the hydride ligand reducing 

the steric crowding and allowing the approach of an extra ligand (Figure 38).

- + S X(°)
IPh 163.75
BrPh 163.89

P'Ppj CH2CI2 165.77
THF 166.50

188.17° 181.24° X

F igure 38: The effect o f  the cis ligands on the P-Pt-P bond angle.

By contrast, in compound 18 the phosphines are angled away from the methyl 

ligand, shielding the Pt more effectively. This change in angle is not completely an 

artefact o f the agostic interaction deforming the phosphine ligand geometry, as it is 

present (albeit to a lesser extent) in the azide bound complex ('Pr3P)2Pt(Me)N3 ,71 thus is 

a real factor. This effect is further demonstrated by examination of the space-filling 

diagram for the related compounds (Figure 39).

{PtMe(,Pr3P)2r  {PtH('Pr3P)2}+

Figure 39: Space filling diagrams for the {PtMe('Pr3P)2 }+ cation (looking down the Pt-C axis) and the 
{PtH('Pr3P)2} + cation (looking down the Pt-H axis). Both generated from their respective 4 coordinate

compounds with the fourth ligand removed.

As is clearly visible in the structure o f the {PtH{'Pr3P}2 }+ cation there is a more 

open environment trans to the hydride, allowing for the ready access of a small, fourth 

ligand to the platinum centre. In contrast, the structure of (PtM e(‘Pr3P)2 }+ is much more
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sterically congested, explaining the observed preference o f the agostic bond 

spectroscopically characterised over the binding of weak ligands (e.g. CH2CI2). This is 

further supported by the related congener, [PtH(lBu3P)2][BArF] (where 'P^P has been 

replaced by the electronically similar but sterically bulkier phosphine, ‘B ^ P ) , 74 

spectroscopically characterised as a three coordinate compound, presumably stabilised 

by an agostic interaction analogous to complex 18. A similar steric controlled bonding 

regime has been observed in the complexes [(PCy3)xRe(C(>3)5-x]+, when x = 1 , CH2CI2 

binding is favoured, whilst on increasing the steric crowding about the metal (i.e. x = 2 ), 

an agostic interaction is preferred. ’

The structure o f complex 18 was also investigated by gas phase DFT 

calculations at the B3LYP//LANL2DZ level using the Gaussian 03 package of 

programs (calculations performed by Dr Gus Ruggerio) . 75 The resulting calculated 

structure shows good correlation to the solid-state structure, including only one close Pt- 

H contact (Figure 40).

P13

C5H55

Figure 40. DFT calculated structure for 1. Selected bond lengths and angles: Pt2-C l 2.053 A, Pt2-P3 
2.430 A, Pt2-P 13 2.436 A, Pt2-C5 3.245 A, Pt2-H55 2 .610  A. P-Pt-P 171.55°
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Compound 18 in a CD2CI2 solution is not significantly changed after 10 days 

heating at 40°C, whilst heating at 70°C overnight in C6H5F led to a mixture of 

intractable products and some cage decomposition (by and n B NMR spectroscopy). 

Addition o f two equivalents of [nBu4N][c/os0 -CBnH6Br6] resulted in no change in the 

31P{ JH[} NMR spectrum indicating the persistence o f the agostic interaction. This is not 

surprising when you consider the weakly coordinating nature and large size of the anion 

[l-H-c/o^0 -CBiiH 6Br6]‘, 11 in conjunction with the sterically crowded environment 

around the Pt(II) centre. The agostic interaction in complex 18 is displaced by smaller 

Lewis bases, stronger than CD2CI2. Addition of 1 atmosphere of H2 to a CD2CI2 

solution o f 18 yielded an equilibrium between the two previously characterised 

complexes, /ra«5-[PtH(1Pr3P)2(r|2-H2)]+ and f/ww-[PtH(,Pr3P)2(ClCH2Cl)]+ as well as 

methane (Figure 4 1).32 This presumably occurs via the activation of a dihydrogen 

adduct, and this mechanism is supported by the formation o f CH3D (a 1:1:1 triplet at 

8  0.19 ppm) when the hydrogenolysis is carried out with D2 (no CH4 is observed). A 

similar reactivity has been observed for the Pt-agostic complex B, that undergoes 

hydrogenolysis and Pt-C bond cleavage, generating a platinum hydride complex.65

H
HyH

*Pr3P Fjt P'Pr3

H

'Pr3P Fjt P'Pr3

H

F ig u re  41: The displacem ent o f  the agostic interaction in 18 and the subsequent hydrogenolysis.

not observed
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Addition o f 5 equivalents of THF to a CD2CI2 solution of 18 resulted in a

• I 31 I
significant chemical shift alteration and signal broadening in the H and P{ H} NMR

spectra, indicative o f fluxionality. Cooling the solution to 230 K resulted in a freezing

1 ^ 1 1
out of the exchange process and two sets of signals in the H and P{ H} NMR spectra. 

The minor set corresponded to the agostic complex 18 at this temperature, the major 

compound we assign as the THF adduct [PtMe(THF){'Pr3P}2]+, 19. Two THF 

environments were observed, free THF and one set of resonances for the coordinated 

THF molecule that were shifted downfield (8  3.90 and 1.90 ppm in the *H NMR 

spectrum) compared to that of free THF (5 3.60 and 1.82 ppm). The displacement of 

agostic interactions by THF is well documented (e.g., the reaction o f [Cpa|e2Ti][BPI14] 

with THF) ,76 including examples where the THF molecule is only weakly bound and

77highly labile, as found in complex 19. The equilibrium distribution at this temperature 

is one that favours the THF adduct over the agostic compound in a 4:1 ratio.

'Pr
Me

18

+ 5 THF

Keq~4

O

'Pr3P-

0
1

T
Me

19

■P'Pr3
10 days

-CH4

O0 ‘ 
I

Pr3P Pt

H2C-

P'Pr2

20

Figure 42: T he form ation o f  the cyclom etallated product 20, from the formal C-H activation o f  19.

On standing (10 days) this solution slowly undergoes cyclometallation o f  one o f  

the CH3 groups o f  one phosphine, with the reaction cleanly generating 

[Pt(‘Pr3P)(lPr2PC(H)MeCH2)(THF)]+, 20 (characterised by comparison to the complex 

Pt('Pr3P)(lPr2PC(H)MeCH2)(OTf))73, along with methane (Figure 42). Complex 20 

represents the formal C-H activation o f a pendant CH3 group, followed by the rapid loss
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of methane (observed at 8  0.20 ppm). THF is essential to the reaction, as complex 18 is 

stable in CH2CI2 solution for weeks at room temperature, with no detectable 

cyclometallation even on heating at 40°C for 7 days. Previous work on the closely 

related compound PtM e^P^P^O Tf), which is equally stable to cyclometallation, 

showed that catalytic quantities of acid was required to form the cyclometallated 

product, Pt('Pr3P)(1Pr2PC(H)MeCH2)(OTf) . 73 A combination o f results led us to 

conclude that the presence of a catalytic quantity of an unknown and adventitious acid 

similarly is initiating cyclometallation. (i) Addition of lOmol % o f HC1 to the 18/19 

equilibrium mixture led to the accelerated formation o f 2 0  as the major product, with a 

minor compound detected that was characterised as PtChC'P^P^ . 73 (ii) Compound 18, 

in the presence o f 5 equivalents of THF and the hindered base 2,6-di-tert-butyl pyridine 

does not cyclometallate. The source o f the acid is uncertain, though the most likely 

possibility is from the presence of adventitious water, the acidity of which would be 

drastically increased on coordination to a cationic {Pt(II)}+ centre, and such aqua 

complexes are well known .78 A full mechanism supported by these findings and 

consistent with previous studies on C-H activation in mono and dicationic Pt(II) 

systems is outlined in Figure 43 .73,79‘81
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D
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Pr3P — — R t--------- P'Pr2
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2+

E

F igure 43: A  plausib le m echanism  for the acid catalysed form ation o f  the m etallocycle 20.

THF plays a critical role in this reaction, acting as both a Bronsted base and a 

Lewis base. Furthermore, THF free samples of complex 18 show no susceptibility to 

protonation. This can be attributed to the THF adduct, 19 being more electron rich than 

the agostic compound 18, and is supported by their respective J(Pt-C//3) coupling 

constants, 8 6  Hz for 19 and 106 Hz for 18. Similar findings have been reported 

previously, with the complex [PtMe(Cl)('Pr3P)2] readily undergoing protonation, but 

[PtMe(OTf)(‘Pr3P)2] proving stable in this respect in acidic media .73 Complexes related 

to intermediates C -  E have been previously proposed by Labinger and Bercaw in the 

mechanism of intramolecular C-H activation in the presence o f base by Pt(II) dications

ftnbearing a-diimine ligands. The slow nature o f the reaction (10 days) could be 

attributable to two different factors: (i) the formation of the cationic complex Pt(II)-OH2 

complex, which is postulated as the acid source. It has been previously reported that 

H2O has to be added in 2  equivalents to achieve complete displacement of coordinated
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CH2CI2 in [Pt(H)(ClCH2Cl)('Pr3P)2]+, thus as water in these reactions is present in low 

concentrations (rigorously dried solvents) it would compete unfavourably against 

complexes 18 and 19, resulting in an extremely low concentration o f the aqua complex, 

(ii) A slow protonation step. The protonation of compound 19 by trace acid would be 

expected to be slow as it is documented that cationic Pt(II) alkyls are relatively stable to 

protonlysis.79’ 80' 82

Q

'Pr3P  Pt P'Pr2

H2C-----

h2, c d 2ci2

o 0
1

Pr3P  fjt P'Pr3

H

F ig u re  43: The hydrogenolysis o f  the cyclom etallated com plex 20.

Complex 20 readily reacts with H2> resulting in the opening of the metallacycle 

to generate [PtH(THF)(‘Pr3P)2]+, previously characterised by Kubas et al. (Figure 44) .32 

Analogous reactivity o f other cationic Pt(II) cyclometallated complexes with H2 has 

been reported, including with the related compound B, that also undergoes Pt-C bond 

cleavage in the presence of H2.65’83

4.2.5: A ttem pts to generate [Pt(,P r3P)2][l-H-c/£?so-CBnMeii]2

Following the formation of the agostic complex 18, attempts where made to 

remove the second methide group from [PtMe('Pr3P)2]+ thereby generating a formally 

12 electron Pt(II) di-cation that may exhibit cation--anion contacts. The reaction of 18 

with one equivalent o f [Ph3C][l-H-cAm>-CBnMen] in CD2CI2 resulted in no change in 

the and 31P{1H} NMR spectra after 7 days. However, addition to this reaction
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mixture of 5 equivalents o f THF resulted in the immediate formation (< 5 minutes) of 

the cyclometallated complex 20 (Figure 45).

YJ  'Pr

+

5 equivalents of THF
‘P ^ P  Pt P'Pr2

+

18

1 [Ph3C][1-H-c/oso-CB11Me11] 
CD2CI2 H2C k

20 N

F igu re 45: T he rapid cyclom etallation o f  com pound 18 on the addition o f  one equivalent o f  [CPh3][ l-H -
c/o^o-C B uM en] in the presence o f  THF.

The dramatic rate acceleration in the formation o f 20 is presumably due to an 

increased acid concentration. This can be generated by adventitious H20  reacting with 

the free trityl salt generating Ph3COH and H+. [Ph3C]+ salts are well documented to 

react with moisture, even in the solid state.84 However, there is no direct evidence for 

the formation o f the resultant carbinol, Ph3COH by NMR spectroscopy. With H20  

present in low concentrations this would consequently result in low, perhaps 

undetectable levels o f Ph3COH. Along with the formation o f complex 20 via this route 

there remains the presence of nearly one equivalent o f unreacted [Ph3C][l-H-c/oso- 

CBnM en] (by *H NMR spectroscopy) discounting an alternative mechanism via direct 

methide abstraction from the THF adduct 19. An analogous rate acceleration is 

observed when [Ph3C][l-H-c/o5o-CBnMen] is replaced with B(C6Fs)3. This 

presumably is also by the reaction of the Lewis acid with trace H20 , forming the strong 

acid H[HOB(C6Fs)3], that has been previously reported to readily protonate Pt-Me 

bonds.85 No [MeB(C6F5)3]‘ was observed, consistent with this.
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Complex 20 is not stable in CH2CI2, frustrating efforts to obtain crystalline 

material (attempts in other solvent mixtures e.g., C6H5F led only to oils). Complex 20, 

on standing in CH2CI2 solutions, undergoes a gradual decomposition predominantly 

generating (~80% by 31P {1H} NMR spectroscopy) one phosphorus containing product. 

This has been identified as the chloride bridged dimer, [{Pt('Pr3P)2(p-Cl)}2][l-H -c/o50- 

CBnMen]2, due in part to chloride abstraction from the solvent (Figure 46).

H

MeCMe .Me

M eTR

MeMe

F igu re 46: The chloride bridged dimer formed on com plex 2 0  standing in CH2C12 solutions.

Confirmation that the decomposition product was indeed [{Pt^P^P^p- 

Cl)}2][l-H-c/ojo-CBnM eii]2 was attained by an X-ray diffraction study on suitable 

crystals grown by the slow diffusion o f hexanes into a CH2CI2 solution (Figure 47). The 

asymmetric unit consisted o f one cationic {PtCl('Pr3P)2}+ fragment, one [1-H-closo- 

CBnM eii]' (that was not proximate), and a molecule o f  CH2CI2 o f  solvation. The anion 

shows no positional disorder, with the cage carbon freely refined, the CH3 isopropyl 

groups are equally disordered over two sites that is readily modelled by 50% 

occupancies. On performance o f the associated symmetry operations the dimeric 

dicationic [ {Pt('Pr3P)2} 2(fJ'“C 1)2]2+ is formed, with the vacant site observed in the 

asymmetric unit occupied by an additional bridging chloride. The geometry at the Pt(II)

iPr3\  / C\  / PiPF3 
Pt Pt

/  \  /  \  i'Pr3P Cl P Pr3
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I

Pt1 2

Q

( f

Pt1-P1 2.2915(8)
Pt1 -P2 2.3007(8)
Pt1-CI1 2.4032(8)

Pt1-CI1_2 2.4147(8)
P1-Pt1-P2 106.52(3)
P1-Pt1-CI1 87.55(3)

P2-Pt1-CI1_2 87.19(3)
CI1-Pt1-CI1 2 78.74(3)

T ab le  4: Selected  bond lengths (A) and 
angles (°) for [{Pt('Pr3P)2}2(p -C l)2]22.

F igu re  47: The m olecular structure o f  the dication [{Pt('Pr3 P)2} 2(|i-C I)2]2+, on ly  one com ponent o f  the disordered isopropyl 
m ethyls are show n. H ydrogen atom s om itted for clarity. Sym m etry transformations used to generate equivalent atom s, 

x + l ,-y ,- z + l and -x ,-y ,-z . Thermal ellipsoids show n at the 30%  probability level.



centre is distorted square planar (sum of angles = 360°), with the C ll-P tl-C ll_2  angle 

compressed (78.74(3)°) by the greater steric demand of the terminal 'P^P groups. The 

geometric parameters related to the {P2PtCl}2 core are unremarkable and bare excellent 

agreement with the closely related complex [{Pt(dbpp)}2(p-C1)2][BF4]2 (dbpp = di-tert- 

butylphosphinopropane) . 86 A related decomposition has been reported for the similar 

solvento Pt(II) species, [PtMe(solv)(tmeda)]+ (solv = Et2 0  or THF) that on standing at 

room temperature in CH2CI2 solutions formed the analogous chloride bridged dimer 

[{Pt(tmeda)}2(}!-Cl)2][BArF]2 and methane.87, 88 Bercaw et a l  suggests the possible 

intermediacy o f the isolated hydrido-carbene complexes [(tmeda)PtH{(=C(Me)(OEt)}]+ 

and [(tmeda)PtH(=CCH2CH2CH20 )]+ (Figure 48) formed via the double a-H  

abstraction of the coordinated solvent molecule. A related mechanism is possible here, 

though due to the unclean nature of the decomposition and failure to identify any 

intermediates further in-depth discussion is not appropriate.

Pt

F igu re 48: The hydrido carbene com plexes formed from the decom position  o f  [(tm eda)Pt(M e)(solv)]+ 
(so lv  =  Et20  or THF), that ultim ately in CH2C12 g ives the chloride bridged dimer.

Complex 18 was likewise treated with one equivalent of the neutral radical [1- 

H-c/oso-CBnMen]* in an another attempt to generate the {Pt(,Pr3P)2}+fragment. In 

CH2CI2 solutions the reaction proceeded immediately, generating one phosphorus 

containing compound by 31P{1H} NMR, that was identified as the dication
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[{Pt('Pr3P)2 }2(^-C l)2 ]2+ by comparison to the earlier characterised sample. However, 

this time anion functionalisation had also occurred (as determined by *H and n B NMR 

spectroscopy) to give predominantly one product in which the 1 2 -vertex o f the anion 

had undergone methyl substitution.

[1-H-c/oso-CBnMei

J \ JV
[1 -H-12-CI-c/oso-CB! 1 Me10f

000 -060 -0 80-0 20 -0  40

Figure 49: A comparison o f  the ’H (left) and n B (right) NM R spectra in CD 2C12 o f  [l-H -c/oso- 
C B n M eu]' and [l-H -12 -C l-c /0 so -C B n Meio]' generated from the reaction o f  18 with one equivalent o f  [ 1 -

H-closo-CB 11 M e] j ] \

There is no observable signal in the 'H NMR spectrum for the antipodal methyl, 

concomitantly the antipodal signal in the n B spectrum had shifted downfield 

significantly (Figure 49). Mass spectroscopy (FAB- mode) allowed for the 

characterisation o f the functionalised anion as the mono chlorinated derivative, 

[HCBnMeioCl]* (317.2m/z) and in conjunction with the Csv symmetry observed by 

NMR techniques, functionalisation solely takes place in the 12 position generating [1- 

H-12-Cl-c7aso-CBiiMeio]’. Corroboration of this assignment was forthcoming from an 

X-ray diffraction study on yellow crystals grown by the slow diffusion of pentane into a 

DCM solution at room temperature. The dicationic core is identical (within errors) to 

that reported for [{Pt(1Pr3P)2 }2 (p-Cl)2 ][l-H-c/o.?0 -CBiiM eii]2 , whilst the anion shows 

chloride functionalisation in the twelve position (Figure 50). The B-Cl distance in [1-H- 

12-Cl-c/aso-CBnMeio]’ at 1.823(7) A is slightly longer than that reported for the
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identical B-Cl vertices in [l-H-c/ojo-CBnBrsCk]" (B12-C112 1.782(9) A) and in [1-H-

c/ojo-C B nC ln]' (B12-C112 1.775(3) A).89 Whilst the B-CH 3 distances in [1-H-12-C1- 

c/o^o-CBiiMeio]' are each effectively identical to that observed for the unfunctionalised 

cage [l-H -c/oso-CBnM eii]'.

Figure 50: The m olecular structure o f  [l-H -12-C l-C B nM ei0] \  with selected bond lengths (A). Thermal 
ellipsoids are shown at the 30% probability level.

As to the mechanism of formation, the neutral radical [l-H-c/oso-CBnM en]* is 

stable in CH2CI2 for days, with no diminishing o f its intense colour. Furthermore, on 

addition o f one equivalent o f ferrocene to a CH2CI2 solution o f [l-H-c/ojo-CBnM en]* 

the compound [Cp2Fe][l-H-c/o50-CBiiMen] was immediately formed as the only 

product, indicating that anion decomposition requires a suitable metal fragment. The 

mechanism o f anion functionalisation is believed to occur via the formation of the 

solvent stabilised dicationic complex, [PtfChCFbX'PrsP^]2* (Figure 51). The formation

ft n
of dicationic Pt(II) solvento complexes are well documented.

B 2-C 2
B 7-C 7
B12-C11

1 .600(10)

1 .771(9)
1 .823(7)
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F igu re  51: T he form ation o f  the dicationic CH2CI2 com plex, a possib le intermediate in the radical
initiated anion decom position reaction.

Highly electrophilic cationic metals like the proposed [Pt(ClCH2Cl)('Pr3P)2]2+ 

have also previously been shown to decompose in CH2CI2 solution to generate chloride 

bridged dimers and neutral metal chlorides.90 A similar process is feasible here. 

Chloride abstraction in [Pt(Cl2CH2)(‘Pr3P)2]2+ would generate {PtCl('Pr3P)2}+, that then 

dimerises to give the observed cationic product. Concurrently, the by-product, the 

fragment {CH2C1}+ could then activate the cage as described previously via a borenium 

ylide mechanism.91, 92 A direct activation of the [1-H -c/oso-C B nM en]' anion by the 

electrophilic Pt(II) centre is equally feasible, as is a radical process. The reaction is not 

catalytic, as addition o f only 10 mol % of [l-H -c/oso-C B nM en]* to complex 18 led to 

functionalisation o f only a small percentage of the anion and the major phosphine 

containing product remained the agostic complex 18. The cage substitution occurring at 

the 12  position is consistent with the charge density calculations performed on this 

anion (Chapter Two).

The analogous reaction was carried out in the non-chlorinated solvent, C6H5F, to 

avoid formation o f the stable chloride bridged dimer. This was transferred to CD2CI2 for 

NMR analysis. This showed two phosphine containing products (by 31P{1H} NMR 

spectroscopy), and a complex anion region (in both the and n B NMR spectra). The 

observed 31P{!H} NMR spectrum resonances did not correspond to [{PtCP^P^^O^-
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Cl)2]2+, PtMe(Cl)('Pr3P ) 2 or PtCl2('Pr3P) 2 (vide infra), and attempts to isolate pure 

material from this reaction failed. However, mass spectroscopy was useful in allowing

for the characterisation o f a number of products.

Me,
MeMê
Me

Me' Me

Me
Me

Me

Ci6BiiF1CI1H32
397.2m/z

C22B11F2H36
457.2m/z

C 2 1 B 1 1 C I1 F 2 H 3 3  

477.1 m/z
C 2 7 B 1 1 F 3 H 3 7

477.1 m/z

Me,
MeMe;
Me

C 3 1 B 1 1 C I 1 F 4 H 3 5

637.5m/z C 3 6 B 1 1 C I1 F 5 H 3 6

718.4m/z
C 4 i B 11CI1F6H 37

797.4m/z

F igu re 52: The range o f  anions observed from the reaction o f  [ l-H -c /o jo -C B n M en ]* w ith com plex 18, in 
C6H5F, fo llow ed  by dissolution in CD2C12- substitution positions are arbitrary.

The FAB- mode showed the formation of seven different functionalised anions, 

including anions that had undergone up to seven substitutions. The identified anions are 

shown in Figure 52, with substitutions shown in arbitrary positions

As for the previous cage functionalisation, the involvement o f the Pt(II) complex 

is crucial as the radical [l-H -c /o so -C B n M en ]*  is stable in C6H5F solution for days. The 

reaction is clearly catalytic with up to seven functionalisations occurring. A possible 

mechanism for this would be again to invoke the formation o f the borenium ylide, this
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time possibly formed on methide abstraction by the electrophilic {Pt^P^P^}* complex. 

The reactive borenium ylide can then undergo reaction with the solvent, C6H5F 

analogous to the Li+ mediated B-CH3 activation .91 Importantly, this generates one 

equivalent o f H+ for each functionalisation -  thus providing the catalytic turnover of H+ 

required in this reaction. The anion, [l-H-c/oso-CBnM en]' is known to be sensitive to 

strong acid environment, undergoing B-C bond protonlysis.61 The incorporation of Cl 

into the cage periphery must occur on dissolution of the reaction mixture into CD2CI2.

4.3: Summary

This Chapter reports efforts to form intimate contact ion pairs between [1-H- 

c/oso-CBiiM en]' and a range of cationic metal centres. This was frustrated by: (i) 

retarded metathesis reactions due to the low nucleophilicity o f the anion, resulting in the 

failure to generate the desired unsaturated cationic metal centre; (ii) the preferential 

binding of CH2CI2 to the metal centre over [1-H-c/aso-CBnM en]'; (iii) the formation of 

cationic agostic complexes; and finally (iv) the susceptibility o f [l-H-c/<m>-CBnMen]* 

to decomposition, preventing the isolation o f reactive metal cations that may have 

contained M -T ^C  interactions.

The mechanism o f cage activation is still unclear, but probably occurs via the 

borenium ylide reactive intermediate. The large range o f cationic metal complexes that 

have been demonstrated to initiate anion decomposition has implications with respect to 

the use o f [1-H-c/oso-CBnM en]' as a weakly coordinating anion. The lack of 

robustness of this anion towards electrophilic B-C cleavage will therefore be an
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important consideration in any future attempts to partner [l-H-c/oso-CBnM en]' with 

metal cations.
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5: The hydrogenation of group 9 metal di-olefin complexes
partnered with [l-H-c/0 S0 -CBnMen]" and [BArF]\

5.1: Background.

The complexes [L2M(diene)] [anion] (L = phosphine or nitrogen donor, M = Rh 

or Ir, diene = COD (cyclooctadiene) or NBD (norbomadiene), Figure 1) have attracted 

considerable attention as they are pre-catalysts for the transition metal catalysed 

hydrogenation o f alkenes. 1'6 One o f the most important of these is the Crabtree catalyst, 

[(pyridine)(PCy3)Ir(COD)][PF6], that is highly effective for the hydrogenation of 

sterically hindered internal alkenes at room temperature and low H2 pressures (Figure 

l ).7,8

R3Pr 3p.

> C  r = * 7  > <  y y  ~ > c  .
R3P \ \  I R3P ^  Cy3P^ ^ \ \

[(PR3)2lr(COD)]+ [(PR3)2Rh(NBD)]+ Crabtree’s Catalyst

F igu re 1: Som e generic cationic hydrogenation catalyst precursors, including the Crabtree catalyst.

[PF6]

The chemistry o f the Crabtree catalyst (and its monodentate bisphosphine 

analogues) has been studied in depth and the ‘resting’ state o f these catalysts in 

coordinating media has been shown to be [LL’Ir(H)2(solv)2]+ (solv = acetone, THF or 

ethanol), which are accessed simply by hydrogenation of the COD precursor. 1,7

H-
H*

L'

I
= lri

I
L

S = acetone, ethanol
or THF

F igu re 2: The resting state for the active hydrogenation catalyst form ed on the hydrogenation o f  
[L L ’Ir(CO D)]+ precursors in coordinating solvents.
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These active catalysts have proved to be highly electrophilic yet remarkably 

stable to C H C I3  and C H 2C I2 , solvents that normally react with late transition metal 

hydrides rendering them inactive to hydrogenation.9 In non-coordinating solvents (e.g., 

C H 2C I2) the active catalyst is not stabilised by a strongly binding solvent, allowing for 

more facile alkene coordination and concomitantly, a drastic acceleration in the rate of 

hydrogenation. The increase in activity, however, comes at the expense of catalyst 

longevity: and on complete hydrogenation o f the olefin the inactive dimer, 

[{IrH(PR3)2}2(p.-H)3]+, is formed along with one equivalent o f HX (X = [PF6]‘, Figure

3).

FUP

FUP

[PF6]
+7 H;

CH2CI2 
- cyclo-octane

[PFel

+ HPF6

F igu re 3: The deactivation products on the hydrogenation o f  [(PR 3)2Ir(CO D)][PF6]

Mixed ligand systems such as Crabtree’s catalyst decompose in a similar manner 

to yield a trinuclear analogue (Figure 4).10 Crabtree proposed that the precursors to these 

deactivation complexes were mono-cationic complexes [LLTrFy* (the identification of 

the hydride ligands as the classically or non-classically bonded congeners was not 

reported), and it was shown that these complexes, on deprotonation by NEt3, lead to 

[{IrH(PR3)2}2(|i-H)3][PF6].1 [L2lrH6]+ complexes can be accessed by the protonation of 

the polyhydride complex, [(PCy3)2lrH5] which yielded [(PCy3)2lr(H2)2(H)2]+, as 

characterised by Tj NMR measurements (Figure 4).11
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Cy3 \ |

H /  h \  h  
Cy3P ' i ' j , PCy3

H H
py py

[pf6]2
L’

H

H
H
VH

F igure 4: The decom position product (left) isolated from Crabtree’s catalyst (py = pyridine) and the 
proposed intermediate (right), L and L ’ = phosphine or nitrogen 2 electron donor.

Cationic dihydrogen complexes, [LL’M(H2)]+, are well documented to be highly

1
acidic, with some complexes even having an acidity higher than triflic acid. 

Furthermore, cationic iridium dihydrogen complexes have been demonstrated to readily 

lose a proton to the anion (e.g., in [(triphos)Ir(H2)(H)2][BPh4] where protonation o f the 

anion generates the trihydride, (triphos)Ir(H3), BPI13 and benzene).13 The dihydrogen 

ligands in [(PCy3)2lr(H2)2(H)2]+ have also been shown to be labile, easily displaced by 

coordinating solvents generating [Ir(H)2(PCy3)2(solv)2]+ (solv = MeCN or acetone). A 

closely related complex stabilised by two agostic interactions has also been reported.14, 

15 This complex has been shown to add dihydrogen stepwise via a coordinatively 

unsaturated dihydrogen-dihydride complex ultimately to give the [ (P ^ ^ P h ^ Ir ^ ^ F y *  

complex (Figure 5) .16

< Me [BArF] — [BArFJ —

Bu /%
Ph"4 X /CH2 
H___I . . - H
W ^ \ H

'Bu
P h . |  'Bu

P
I

*Bu
P h . | ‘Bu

P ^
1

h2, c d 2ci2 
---------------► H ' I  H

h2, c d 2ci2 
--------------- ► h ' - ' T V

1 c h 2 < -213K I > -213K I H
___P.___/

P h ' 1 C .
Bu  ̂ Me Bu Me

Ph— lBu 
*Bu

Ph—

‘Bu

F igure 5: The bis-agostic com plex, [Ir(H)2(PtBu2Ph)2][BA rF] w hich undergoes stepw ise addition o f  two
m olecu les o f  dihydrogen.
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Similar investigations have also been carried out on analogous rhodium systems, 

especially the Schrock-Osbom hydrogenation catalyst precursors, [L2Rh(NBD)] [anion] 

(Figure l ) .5 The catalytic cycle for these complexes has been previously elucidated, 

with hydrogenation in coordinating solvents resulting in complexes of the general 

formula, [(PR.3)2Rh(H)2(solv)2]+ (solv = MeCN, 2-butanone, dimethylacetamide and

1 7EtOH). No rhodium complexes analogous to the polyhydride iridium complexes, 

[(PR3)2lr(H2)2(H)2]+ have been reported. Studies on the [(PR.3)2RhH2(solv)2]+ complexes 

have shown that in addition to being highly active hydrogenation catalysts for simple 

olefins they are also effective as olefin isomerisation catalysts. The activity of these 

complexes in isomerisation has been previously ascribed to their acidic nature, which

1 ftgenerates the catalytically active mono-hydride species by loss o f a proton (Figure 6 ).

P R 3

- H+  R h ^ " " S0*V Active alkene
| isomerisation
| s° lv catalyst 

P R 3

F igu re 6: The acidic nature o f  com plexes o f  the general form ula [(PR 3 )2RhH2(so lv ) 2 ]+.

Since these precursors are cationic in nature it is necessary to partner them with 

a suitable anion. The counterion in the catalytically active specie is ‘non-innocent’, with 

significant activity increases in the hydrogenation o f olefins and improved 

enantioselectivities achieved simply by alteration of the anion . 19'22 Anion effects have 

been reported in a number of systems based on the Schrock-Osbom catalyst

23.75 •

precursors. ' An example that exemplifies the importance o f the counterion in the 

activity of these systems utilises the pre-catalyst [(dppb)Rh(COD)]+ (dppb = 

diphenylphosphinobutane) developed by van Koten (Figure 7) .25

P r 3

H-
H* :Rh:

-solv

‘solv

P R 3
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Catalyst activity in the hydrogenation of 1-Octene 

V TOF (h r1)

Ph2

[BPh4] 12

[BF4] 67

[BArF] 80

F igu re  7: A nion effects on the hydrogenation o f  1-O ctene.

An inverse correlation was observed between the coordinating power of the 

anion and the turnover frequency (TOF), with the weakest coordinating anion, [BArp]', 

generating a catalyst with the highest activity. This is a strong indicator that the catalytic 

cycle at some stage involves a cation-anion interaction, which with more coordinating 

anions (e.g., [BPLJ’) lowers the catalysts’ activity by binding to the metal centre in 

competition to the substrate. Support for this comes from the isolation of the intimate 

ion pair, (dppb)Rh(rj6-PhBPh3) formed from hydrogenation o f the COD precursor, with 

the anion binding in favour to H2 and CH2CI2. Other contact ion pairs have also been 

formed from analogous reactions with precursors partnered with the perchlorate anion 

([CIO4]'), and a range o f sulfonates.21,27

A number o f derivatives of [c/ojo-CBhHu]’ have been paired with the Schrock- 

Osbom and iridium pre-catalysts and their reactivity towards hydrogen investigated.22,28 

Differing reactivity pathways have been found depending on the anion’s coordinating 

ability. For the precursors [(PPh3)2Rh(NBD)][Y] (Y = [c/gjo-CBhHu]', [12-Br-c/ojo- 

C B nH n]', [c/aso-CBiiH6Br6]' and [l-H -c/oso-C B nM en ]') two distinct sets of 

compounds were synthesised, contact ion pairs and arene bridged dimers (Figure 8 ) .22,29
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[Y] = [c /o so -C B u H ^]'
[12-Br-c /oso-CB nH n]
[c/oso-CBuHgBre]'
[1 -H -c /oso-C B n M e^]'

X  = H or Br

PPh3 [Y] = [closo- CB , ! H6Br6]-
or [1 -H -c /oso-C B ^M e^]'

F igu re 8: The tw o sets o f  com pounds form ed on the hydrogenation o f  [(PPh3)2R h(N B D )]+ partnered with
[c /o j 0 -C B iiH 12]' and its derivatives.

Contact ion pairs are formed with the relatively coordinating [c/oso-CBuHn]*

^  A

and [12-Br-c/<m>-CBiiHn]‘ anions, whilst with the more weakly coordinating [closo- 

CBnH6Br6]‘ and [l-H-c/oso-CBnMen]* anions the {(PPh3)2Rh}+ fragment dimerises 

through a phosphine based arene ring in preference to forming Rh---anion interactions. 

Related monomeric arene coordinated complexes have also been reported, 

[(PPh3)2Rh(r)6-C6H5Me)][c/oio-CBi iH^Bre] and [(dppe)Rh(ti6-C6H6)][BF4].22' 31

The use o f the arene bridged dimer, [(PPh3)(PPh2-ri6-C6H5)Rh]2[c/ojo- 

CBnH 6Br6]2 in hydrogenation reactions led to the isolation and characterisation of a 

deactivation product, [{Rh(H)(PPh3)2}2(^-Cl)2(p-H)][c/ayo-CBiiH6Br6] (Figure 9),22 

similar to that observed in the iridium congener.1
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Figure 9: The cation portion o f  the deactivation product, [{Rh(H)(PPh3)2} 2 (p-Cl)2 (|J.-H)]+.

The chlorides incorporated into this deactivation product must originate from 

activation o f the solvent, CH2CI2. An analogous iridium product, [{IrH(PPh3)2}2(n- 

Cl)2(p-H)]+, has been previously synthesised by the addition o f HC1 to the dimer 

[{IrH(PPh3)2}2(|J--H)3]+ (Figure 10) .32 This implies that the formation of the rhodium 

deactivation product may well be a consequence o f a decomposition pathway that 

produces H+.

F igure 10: The form ation o f  the iridium dimer, [{IrH(PPh3)2} 2 (p -C l) 2 ( |i-H )]+ by the action o f  HC1 on the 
hydrogenation deactivation product [{IrH(PPh3)2} 2 (H-H)3]+.

The importance of the anion in these systems is further exemplified by the recent 

isolation and characterisation o f the contact ion pair complex (PPh3)2lr(H)2(c/ojo- 

CBnH6Br6) (Figure l l ) .33



F igu re 11: The low  temperature equilibrium betw een the contact ion pair ((PPh3)2Ir(H)2(c/oso- 
C B n H6Br6) and the solvent separated ion pair.

The [c/oso-CBiiHeB^]' anion plays a crucial role in stabilising this system, with 

the anion coordinating in favour o f dihydrogen, this intimate ion pair then prevents the 

decomposition observed with the more weakly coordinating anions (e.g., [BArp]’, [BF4]* 

and [PF6]'). In the absence of H2 ((PPh3)2lrH2(c/050-CBnH6Br6) has been demonstrated 

to be in equilibrium at low temperatures with the DCM coordinated compound (Figure 

11). This is contrast to the agostic complex, [(PlBu2Ph)2lr(H)2][BArF], formed in 

CH2CI2 when the phosphine contains the superior agostic bond donor group, *Bu. 14

To circumvent the formation o f arene-bridged dimers and thereby allow for 

further studies into the coordination behaviour o f {(PR3)2Rh}+ fragments it is necessary 

to move away from PPh3 to saturated phosphine analogues. A number o f exo-closo 

rhodacarboranes complexes, (PR^RhCc/oso-CBnHn) (R = OMe and Cy) have been 

synthesised with saturated phosphines (Figure 12, left), again via the hydrogenation of 

the NBD precursor. Unfortunately, the analogous complexes with anions more weakly 

coordinating than [c/ojo-CBuH^]', (e.g., [c/ayo-CBnF^Bre]* or [BArp]') have not yet 

been reported.
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H

H— Rh N = N -------Rh— H

P'Pr3

P'Pr3

P'Pr3

Cy3P

PCy3

F igure 12: A nion and sm all m olecule coordination to rhodium bis-(saturated)-phosphine com plexes.

A triflate coordinated analogue and a N2 bridging adduct have also been 

isolated using the {(PR3)2Rh}+ scaffold (R = ’Pr3P, Figure 12) . 34'36

5.1.1 Scope of C hapter

The following chapter discusses the hydrogenation o f two sets of compounds, 

[(PPh3)2Ir(COD)] [ 1 -H-c/oso-CB 1 iMe 11] and [(PR3)2Rh(NBD)] [Y] (R = Cy or jPr, Y = 

[l-H-c/oso-CBiiM en]' or [BArp]’). On hydrogenation o f the diene, reactive 14 electron 

fragments ({(PR3)2MH2}+ or {(PR3)2M}+) can be expected to be generated. Similar 

unsaturated fragments have been previously shown to alleviate their coordinative 

unsaturation in a number o f ways: (i) anion coordination, generating contact ion pairs; 

(ii) solvento complexes (in coordinating media); (iii) intramolecular interactions, either 

by an agostic bond or via dimerisation through a pendant arene ring; and (iv) 

dihydrogen binding.

For the iridium system the reactivity o f [(PPh3)2lr(COD)][l-H-c/o5o-CBnMen] 

will be determined by the coordinating ability of the [l-H-c/oso-CBnM en]’ anion, 

which if  nucleophilic enough will form a contact ion pair analogous to
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(PPh3)2lrH2(c/os0 -CBnH 6Br6).33 Alternatively if dihydrogen binds in favour, then a 

reactivity similar to that previously elucidated for the [BF4]* and [BArp]’ anions can be 

expected (Figure 13).

[(PPh3)2lr(COD)][1-H-c/oso-CB11M e11]

Pphs Me 

H j  M e » l / \ —̂ \ - M e

+ H2

PPh,
Me

Contact Ion Pair

Ph3PX  /  \  „.*'H 
Ph3P » — J r^ 'iH if jlr ;— PPh3 vx' V  y  v  J

H H 'P P h ,

Decomposition product via a separated ion pair

F igure 13: The tw o expected possib le outcom es from the hydrogenation o f  [(PPh3)2Ir(C O D )][l-H -c/oso-
CBnMen].

The four possibilities mentioned earlier are all equally feasible as methods for 

the {(PR.3)2RhH2}+ or {(PR.3)2Rh}+ fragments to alleviate their coordinative unsaturation 

(Figure 14), and the results from these Rh systems will be discussed in the second half 

o f this chapter.

H ‘

PR,

Rh— [Y]

p r 3

Anion Coordinated 
Complexes

PR3 "|[Y] 

| ^solv 

H solv 

PR3
Solvento  complexes

M

R = 'Pr or Cy 

[Y] = [1-H -c /oso-C B ^M e^]' 
or [BArF]'

R R
\ /
P— R

H. ,H

H I '"H
I /

^ P — R J  
R \

R
Agostic Complexes

[Y]

H

PRa *] [Y]

I > H
p r 3

Dihydrogen complexes

F igure 14: The possib le outcom es from the hydrogenation reactions o f  [(PR3)2R h(N B D )][Y ].
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5.2: Results and Discussions:

5.2.1: Hydrogenation Reactions of [(PPh3)2lr(C O D )][l-H -c/0 S0 -CBnM en].

The precursor complex [(PPh3)2lr(COD)][l-H-c/aso-CBiiM en] is readily 

prepared in a two step synthesis from [Ir(COD)Cl]2 in an analogous manner to the 

[c/oso-CBnF^B^] congener.33 Deep red crystalline material is readily obtainable from 

the diffusion of hexanes into a saturated CH2CI2 solution. Treatment of a stirred solution 

of [(PPh3)2lr(COD)][l-H-c/as0 -CBnM en] in CD2CI2 with H2 resulted in the reduction 

of the diene and formation of a yellow solution. The *H NMR spectrum of this solution 

showed a hydride region corresponding to the clean formation of the cation, 

[{IrH(PPh3)2}2(|>H)3]+.3 In an attempt to observe any intermediate compounds the 

hydrogenation was carried out at -80°C in CD2CI2. At this temperature the only 

hydrogenation product in the ]H NMR spectrum was attributable to 

[(PPh3)2lr(H)2(COD)][l-H-c/05o-CBiiMen], by comparison to the known [PF6]' salt 

(Figure 15).37’38

H\ ,Ax-
Ph3P |

P Ph3

-80 C c-------
c h 2c i2

Ph3P

Ph3P

20°C^

CH2CI2 H 'P P h 3 

+ H+
On gradual warming to 20°C

 -   —

Figure 15: The reactivity o f  [(PPh3)2 lrC O D ][l-H -c/o5o-C B i|M en ] on hydrogenation in CH2C12

On warming to ambient temperature the COD is hydrogenated followed by the

immediate formation of [{IrH(PPh3)2}2(p-H)3]+, with no detectable intermediates, again

as seen for the [PF6]' analogue.3 On standing, CH2CI2 solutions of [{IrH(PPh3)2}2(^-

H)3][l-H-c/o50-CBiiM en] and the acid by-product, “H [l-H -c/050-CBnM en]”, undergo
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a further reaction, with cage decomposition observed (with complex anion resonances in 

both the and n B NMR spectra). After 24 hours the reaction is complete with no [1- 

H -c/oso-C B iiM en]' remaining. Mass spectroscopy (FAB- mode) showed the presence 

o f [HCBnM eioCl]’ and [H C B n M e ^ y  that presumably form via the borenium ylide 

mechanism discussed previously (Chapter Four). Along with this anion 

functionalisation, [{IrH(PPh3)2}2(p-H)3]+ is cleanly converted to [{IrH(PPh3)2}2(n- 

H )(p-Cl)2]+ (by NMR and mass spectroscopy), a reaction that also occurs on the 

addition o f HC1 to [{IrH(PPh3)2h(n-H )3][PF6] (Figure 16).38

CD2CI2

[Y] = [HCBuMemCI]
" Hn-H-c/oso-CBuMen]" and [HCB^M egCy

F igu re 16: T he acid initiated decom position o f  [{IrH(PPh 3 )2} 2 (p -H )3][ l-H -c /o jo -C B )iM eii].

With the failure to observe any anion coordinated compound and the activation 

of CH2CI2, hydrogenation of [(PPh3)2lr(COD)][l-H-c/o50-CBnMen] using C6H5F as 

the solvent was next investigated. The initial hydrogenation predominantly (~90% by 

*H NMR spectroscopy in CD2CI2 after removal o f the C6H5F) generated 

[{IrH(PPh3)2}2(p-H)3][l-H-c/ojo-CBiiM en] presumably along with “H[l-H-c/o^o- 

CBnM en]”. A number o f other products, present in low yield, were also detected.

-j 1 1

Numerous resonances were observed in the P{ H} NMR spectrum and in the hydride 

region of the *H NMR spectrum. Recrystallisation of this crude mixture allowed for the 

isolation o f a small number of yellow crystals suitable for an X-ray diffraction study.
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This showed them to be [(PPh3)2lr(H ){l-H -12-(r|6-C6H4F)-c/o50-CBiiM eio}][l-H- 

c/oso-CBiiM en], 21 (Figure 17).

The solid-state structure shows that the [l-H -c/oso-C BnM en]’ anion has 

undergone a B-CH3 bond cleavage reaction with C6H5F, the solvent, to afford the arene- 

substituted anion. There is no disorder in the anion methyl positions, with the cage 

carbon unambiguously identified, revealing that the anion functionalisation has 

occurred at the 12 position affording [l-H-12-(C6H4F)-c/o^o-CBnMeio]' (Figure 18). 

Related 12-aryl substituted derivatives o f  [l-R -c/oso-C BnM en]' have been synthesised 

by a [Li]+ Lewis-acid catalysed reaction, generating the anion [l-(C6Hi202)B-12-(4’-Br- 

C6H4)-c/<wo-CBiiMeio]' that has also been structurally characterised (Figure 18 and 

Chapter One for synthetic details).40 DFT calculations show that the lower hemisphere 

of the cage bares the most negative charge, and this is consistent with the B-CH3 

activation at this position by a Lewis-acid (see Chapter Two).41

Me Me 

85%: 15% ratio meta.para (by X-ray)

Me Me 
MelMe

Me Me 

100% para-isomer

F igure 18: The tw o related crystallographically characterised [l-R -1 2 -a ry l-c /o jo -C B n M eio]’ anions.

In compound 21 the fluorine occupies three sites (two meta and one para), 

resulting in an overall occupancy ratio determined by X-ray crystallography
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Ir-P1 2.3138(6)
lr-P2 2.3159(6)
Ir-H 1.41(3)

P1-lr-P2 97.83(2)
P1-lr-H 84.3(14)
P2-lr-H 80.5(14)

B12-C13 1.591(3)
I r-C 13 2.438(2)
I r-C 14 2.332(2)
I r-C 15 2.373(2)
lr-C16 2.384(2)
I r-C 17 2.285(2)
lr-C18 2.309(2)

C13-C14 1.421(3)
C13-C18 1.427(3)
C14-C15 1.407(3)
C15-C16 1.393(4)
C16-C17 1.411(4)
C17-C18 1.408(3)

T ab le  1: Selected  bond Lengths (A) and A n gles (°) 
for com plex (21).

F igu re 17: M olecular structure o f  the cationic portion o f  com plex  (21), the fluorine is disordered over 
meta and para  sites, w ith only the para  position  show n. H ydrogen atom s apart from the Ir-H are not 

show n for clarity. Thermal ellip so ids are show n at the 30%  probability level.



o f 85%: 15% (meta\para). This is in contrast to [l-(C 6Hi2 0 2 )B-1 2 -(4 ’-Br-C6H4)-c/o,so- 

CBnMeio]’, which is formed cleanly as the para  isomer. The B-Caryi bond length in 21 

(1.591(3) A) is similar to that in [l-(C 6Hi202)B -12-(4 ’-Br-C6H4)-c/o50-CBnMeio]* 

(1.597(3) A). The bound arene in 2 1  is asymmetrically r|6 coordinated to the 

{(P P l^ IrH }2* fragment (all C-C distances are the same within errors), with Ir-Caryi 

distances ranging from 2.285(2) A to 2.438(2) A. The asymmetric nature o f this 

coordination presumably helps minimise the steric repulsion between the two PPI13 

groups and the bulky anion. The cage bound aryl carbon (C l2, Figure 17) has the 

longest Ir-C length (2.438(2) A), consistent with this the carborane also moves away 

from the PPh3 ligands, tilted by 7.3° above the arene plane. The hydride ligand was 

located and freely refined in the final electron difference map. The Ir-H distance is 

1.41(3) A comparable, within errors, to that o f the related complex, [(N-C5-N-Tp- 

H)Ir(PPh3)2H][BF4] (1.52(7) A, Figure 19 - A), where the hydride was also located.42 

Both phosphines in 21 are bent back from lying orthogonal to the arene ring, consistent 

with the presence o f a hydride and generating a pseudo  octahedral environment around 

the iridium, with the carborane functionalised arene capping one face. This produces a 

compound geometrically analogous to [(N-C5-N-Tp-H)Ir(PPh3)2H][BF4] (Figure 19) 42

F igu re 19: The geom etrically and chem ically related com plexes, [(N -C 5-N-Tp-H )Ir(PPh3)2H ][BF4] and
21 .



The overall formulation as an Ir(III) centre comes from the presence o f two 

anions in the asymmetric unit, a coordinated arene functionalised anion and a non- 

proximate, unfunctionalised anion. Compound 21, as far as we are aware, is the first 

characterised Ir-fluorobenzene complex (or a derivative thereof); Ru(II), Cr(0), and 

Rh(I) fluorobenzene complexes are known.43*45 Cationic iridium phosphino-hydride 

complexes have been reported to coordinate with other more electron rich arenes (e.g., 

[Ir(r|6- l ,3 ,5-Me3-C6H3)(lPr3P)(H)2][BF4])46 Mass spectroscopy on the crystalline 

material revealed the presence o f  the parent cation [(PPh3)2fr(H){l-H-12-(r|6-C6H4F)- 

c/o5o-CBnM eio}]+ (FAB+ mode, m/z 1095.5 with the correct isotopic distribution 

pattern) and the free functionalised anion [l-H -12-(r|6-C6H4F)-c/o5o-CBiiMeio]’ (FAB- 

mode, m/z 377.3) in addition to the unsubstituted anion [HCBnMen]* (m/z 297.3). Due 

to the small number o f crystals o f  complex 21 isolated it was not possible to obtain any 

further clean spectroscopic data, thus definitive characterisation resides only on the 

solid-state structure and mass spectroscopy.

Repeated attempts to obtain a larger quantity o f  crystalline material o f complex 

21 for complete spectroscopic analysis failed. NMR spectra run on crude samples 

showed a mixture o f  compounds, the predominant component always being 

[{IrH(PPh3)2}2(fi-H)3]+. However, by comparison with the closely related complex A, 

(Figure 19), it was possible to identify a hydride signal in the NMR spectrum 

potentially ascribable to complex 21 . The major isomer, as based on the 

crystallographically determined meta'.para ratio, present in solution will be the meta 

fluorinated arene anion. This isomer o f  21 possesses inequivalent phosphine 

environments, making the expected hydride signal a doublet o f doublets. In a C6D6 

solution o f the crude reaction mixture the only hydride signal in the ]H NMR that is not
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assigned to the dimer [{IrH(PPli3)2}2(p-H)3]+ is a doublet o f  doublets at 5 -23.90 ppm, 

shifted upfield from that in A, (5 - 18.91 ppm). The coupling constants o f this signal 

(2J(PH) 13 and 23 Hz) are comparable to that reported for A  (2J(PH) 12 and 20 Hz), 

suggesting that this is the hydride signal associated to 21 . A hydride signal with 

identical 2J(PH) coupling constants is also observed in CD2CI2 solution at 5 -24.36 ppm. 

Unfortunately, no information could be obtained from the 31P {JH} spectrum, due to 

complex overlapping signals in the region 21 would expect to resonate (8 +15 to 8 0 

ppm).

The mechanism for the formation o f complex 21 is probably acid based, with 

one equivalent o f  H+ generated for each [{IrH(PPh3)2}2(|>H)3]+ formed (present as the 

major product). This unsupported proton would then effect B-C bond cleavage by 

protonlysis, generating the borenium ylide (as discussed in Chapters Three and Four) 

that could then react with the solvent, C6H5F, in an electrophilic substitution reaction 

producing the observed anion, [l-H-12-(C6H4F)-c/o5<9-CBnMeio]'. The trapping o f a 

{(PPh3)2lrH}2+ fragment would then form 21. The related anion, [c/oso-CBnM en]' has 

been previously reported to undergo acid mediated cage decomposition.39, 47 

[{IrH(PPh3)2}2(^-H)3][l-H-c/o5o-CBnMen] does not react on standing in C6H5F to 

generate 21, ruling out this as an intermediate on the pathway to 21 . This means the 

hydride bridged dimer and 21 must form by parallel routes.

With a reactivity pattern for the hydrogenation o f  [(PPh3)2lr(COD)] [ 1 -W-closo- 

CBnM en] similar to that reported for the [PFe]* and [BArp]’ analogues (albeit with cage 

decomposition also observed) [l-H -c/oso-C B nM en ]' can be classed as less 

coordinating than [c/aso-CBiiH6Br6]’ with respect to the {(P P l^hT U }* fragment. In an
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attempt to produce more stable complexes that may exhibit M--anion interactions the 

related rhodium precursors were synthesised and their reactivity with H2 investigated.

5.2.2: Hydrogenation Reactions of [(PR3)2Rh(NBD)] [Y] (R = 'Pr or Cy, Y = [1-H- 

c/0 S0 -CBnM eii]' or [BArp]’).

The precursor complexes [(PR3)2Rh(NBD)][Y] (R = ‘Pr or Cy, Y = [1-H-closo- 

CBiiMen]* or [BArp]') are readily prepared in a two step synthesis from [(NBD)RhCl]2

 ̂o
in an analogous manner to the [c/oso-CBnHn] congener. Orange crystalline material 

is obtainable in reasonable yield (~ 50%) for each compound from the diffusion of 

hexanes into a saturated CH2CI2 solution.

5.2.2.1:[(iPr3P)2Rh(H2)x(H)2][Y] (x = 1 or 2).

Treatment o f a stirred solution of [('Pr3P)2Rh(NBD)][l-H-c/o.s0 -CBiiMeii] in 

CD2C12 with ~ 4 atmospheres of H2 (generated by backfilling a degassed sample with 

H2 at 77 K, the pressure on warming to room temperature should be ca. 4 atmospheres, 

298/77 = 3.9) resulted in the reduction of the diene and the rapid formation o f a pale 

yellow solution. The NMR spectrum at 298 K showed one set of signals for the 'Pr 

groups, and one broad hydride signal centred at 8  -8 .62 ppm of integral 3.6 H 

(compared to the 'Pr signals), no resonance for free dihydrogen (5 4.60 ppm) was 

observed, suggesting a fluxional process involving free and coordinated H2. Similar 

room temperature NMR spectra are reported for the complexes (‘Pr3P)2Ru(H2)2(H)2 

(8  JH hydride, -8.31 ppm) and [(PCy3)2lr(H2)2(H)2]+ ( 8  JH hydride, broad singlet -8.3
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ppm).11, 48 The 31P{1H} NMR spectrum showed the formation o f a single phosphine 

containing product, a broadened doublet centred at 560.4ppm (^(RhP) 107 Hz). 

Cooling this sample below 220 K resulted in the freezing out o f some of the exchange 

processes and the 31P{ 1H} NMR spectrum at 200 K showed two phosphine containing 

products, both doublets (5 68.4 ppm ^(RhP) 92 Hz and 862.1 ppm ^(RhP) 100 Hz), 

with the ratio o f the resonances approximately 2:1. The *H NMR spectrum at this 

temperature showed five new resonances in the hydride region (Figure 20).

12 -14 -16 -18 -20 -22 -240 ■2 -4 •6 8 -10

Figure 20: The hydride region o f  the 'H NM R spectrum at 200K  o f  the products from the hydrogenation 
o f [ ( ‘Pr3P)2R hN BD ][Y ]. * =  ‘Pr CH3 groups. -  = [(,Pr3P)2Rh(H2)(H )2(CH2Cl2)]+ and ■ =

[(Pr3P)2Rh(H2)2(H )2]+.

By comparison to the related compounds, [(PR3)2 lr(H 2)xH2][Y] (where Y is a 

weakly coordinating anion and x = 1 or 2 ) ,11’ 15, 16, 48 these two complexes are 

formulated as the mono cations, [('Pr3P)2Rh(H 2)2 (H)2]+, 22-(H2) 2 (■) and

[('Pr3P)2Rh(H2)(H)2(CH2Cl2)]+, 22-(H2) (^ ) in a 1:2 ratio (Figure 21). The assignment 

o f the sixth ligand in the mono-dihydrogen adduct, 22-(H2) as a molecule of 

dichloromethane is tentative as there is no direct spectroscopic evidence for coordinated 

CH2CI2 , though it should be noted that this is often the case .4 9 ’51 However, an agostic 

interaction can be ruled out, as for octahedral complexes analogous to 2 2 , hydrides 

trans to an agostic interaction or a ‘vacant’ site resonate significantly further upfield in 

the *H NMR spectrum (e.g., [(P,Bu2Ph)2 lr(H 2)(H)2][BArF] (-41.2 ppm ) 16 and 

[(PlBu2Ph)2lr(H)2 l] (-44.4 ppm)52) to that observed in 22-(H2) (-22.42 ppm). In contrast,
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hydride ligands trans to coordinated CH2CI2 molecules (e.g., 

[(PPh3)2lr(H)2(CH2Cl2)][c/050-CB1iH6Br6], {-23.2 ppm} and [(iPr3P)2Pt(H)(Cl2CH2)] 

[BArp], {-22.8 ppm}) do resonate in this region.33,49

P'Pr3 P‘Pr3

[(iPr3P)2RhNBD][BArF]
^  n

H 1:2 ratio at 200K (-12.66)
H

| \
p'Pr3 CH2CI

Cl
(-14.14)

P'Pr3

22-(H2)2 22-(Hz)

F igu re  21: The products from hydrogenation o f  [(‘Pr3P)2 R h (N B D )]+ under 4 atm ospheres o f  H2 (N M R  
chem ical shifts o f  the hydride resonances at 200K  are show n in parentheses).

These assignments were confirmed both by Ti measurements at 200 K (400 

MHz) and the observation o f a HD coupling constant in partially deuterated samples. 

The Tj values (Figure 22) are consistent with the three hydride resonances between -  

12.66 ppm and -22.42 ppm being classical hydrides (> 80 ms) and the resonance at -  

1.91 ppm corresponding to a coordinated dihydrogen ligand (<50 ms). Unfortunately, 

the Ti measurement for the resonance at -0.28 ppm (94 ms) is outside the range 

normally seen for r| -H2 ligands, although this may though be due to the presence of 

vacuum grease that is coincident with this signal, formulation as a Rh(V) complex is 

unreasonable though.

(Ti = 360ms)

(Ti = 234ms)

(T1 = 238ms)

F igu re 22: T he Ti measurements for 22-(H2)2 and 22-(H2) at 20 0  K and 400 M Hz.
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All the hydride/dihydrogen rhodium complexes previously reported exhibit only 

a single hydride resonance at all accessible temperatures , 5 1 ,5 4 ' 56 preventing any direct 

comparison o f their respective Ti values. The values for 22-(H2) and 22-(H2)2 are in 

contrast to that reported for [(PCy3)2lr(H 2)2(H)2]+ (48 ms IrH2 and 73 ms IrH), 11 where 

the Ti values are believed to be significantly time averaged and not therefore ‘true’ 

values for the individual sites.

Degassing a CD2C12 sample of 22 by three freeze/pump/thaw cycles and 

subsequently backfilling with D2 (~ 4 atm.) resulted in a decrease in intensity for all the 

hydride resonances. The r |2-H2 resonance corresponding to 22-(H2)2 in the NMR 

spectrum below 220 K was now observed as a broad triplet due to HD coupling, (Figure 

23). The asymmetric nature o f the triplet is the result o f  residual dihydrogen, the 

spectrium of 22-(H2) 2 is super-imposed.

A partially deuterated sample 
.o f [(‘Pr3P)2Rh(H2)2(H )2]+

J(‘Pr3P)2Rh(H2)2(H)2]

- 2.81.0 1.2 1.4 1.6 1.8 - 2.0 - 2.2 -2 .4 - 2.6

F igure 23: The dihydrogen region o f  the 'H NM R spectra at 190 K o f  the partially deuterated and non-
deuterated sample o f2 2 - (H 2)2.

The formation of HD must occur via a fluxional process affecting the exchange 

o f a coordinated D2 molecule with a cis hydride. An extensive experimental and 

theoretical treatment o f this process has been performed on the related system
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[(PlBu2Ph)2lr(H2)2(H)2]+, where the formation of HD is also observed on the addition of 

D2 to [(PtBu2Ph)2lr(H)2]+. 16 The fluxional process for site exchange between a cis 

hydride and H2 ligands has been proposed to occur via a ‘M-H3’ transition state and

17 57energy barriers as low as 1.5 kcal/mol have been reported (Figure 24). ’

'— ^ro tation

I D /  J  I H
LnM  1 ■ v L M l ____X - ^  w  LnM ------- 1 cis hydride transfer

D n u  D

F igu re  24: A  possib le  fluxional process explaining the form ation o f  H D  via a cis-hydride transfer.

The broad nature of the triplet in Figure 23 is due to the overlapping unresolved 

resonances for the large number of possible isotopomers that result on the partial 

deuteration o f 22 ([(‘P^P^RhHe-xDx]*). Complex, yet well resolved, overlapping 

isotopomer patterns have previously been observed and accurately simulated in a 

number o f systems, allowing for !J(HD) coupling constants to be extracted.4 8 ,51 The 

inherently broad nature of the dihydrogen resonance associated with the protio 2 2 -(H2)2 

and the large number o f possible isotopomers prevents a similar well-resolved system 

being observed here. An accurate value for the HD coupling constant in 22 therefore 

was not obtainable, although an approximate value o f 29 Hz is obtainable from the 

broad triplet -  but in-depth interpretation o f this value (i.e. calculation of the H-H 

distance) is not valid. Nevertheless, the observation o f a HD coupling constant in 22- 

(H2)2 is further proof of the existence of an intact H2 ligand, as classical hydrides would 

exhibit very small (<2 Hz) (HD) coupling. No triplet was observable for the (H2) signal 

in the mono dihydrogen complex, 2 2 -(H2), over the temperature range 180 K-210 K, 

with deuteration only resulting in a general broadening o f this resonance.
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An Isotopic Perturbation o f Resonance (IPR) is observed for the partially 

deuterated sample o f  22-(H2)2, with the broadened triplet (centred at approximately -  

1.95 ppm), shifted upfield by 44 ppb compared to that o f  the perprotio  isotopomer. 

Similar upfield IPRs have been observed in the cationic rhodium system 

[Cp*Rh(PMe3)H(H2)]+, showing upfield shifts o f  31 ppb (dj isotopomer) and 121 ppb 

(d2 isotopomer), and in the partially deuterated isotopomers o f the isoelectronic 

(lPr3P)2Ru(H2)2(H)2 (40 ppb upfield).48 A smaller IPR o f  20 ppb was also observed for 

22-(H2) (though there are significant errors inherent in this values due to the extremely 

broad nature o f this resonance), confirming that this signal is indeed due to a 

dihydrogen ligand.

No deuterium was incorporated into the phosphine iso-propyl groups in 22 in 

contrast to ('Pr3P)2Ru(H2)(H)2, where H/D exchange occurs and is postulated to proceed 

via the C-H activation o f an agostic complex (Figure 2 5 )48 Similarly no deuterium was 

incorporated into the phosphine groups on addition o f  D2 to [(P^^PfrhhfFh)] [BArF] 

even after prolonged heating.15

No deuterium  
incorporation

P'Pr3

Deuertium
Incorporation

F igu re 25: R eactions o f  the isoelectronic com plexes, [(,Pr3P ) 2 R h(H 2)(H )2 (C H 2 Cl2 )]+ and 
(1Pr3P)2 Ru(H2)(H ) 2  with deuterium.
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Close examination of the hydride region of 22 over the range 180 K -  200 K 

revealed a product distribution that was highly temperature dependent (Figure 26).

200K

190K

180K

^ - - - - - - - - - - - - - - - L a.
■ i "  ■ > 1 1 1 111"1 1 ■'  i ' 111 r  1 1 ' r  1 1 1 1 r  1 1 1 1 ’ 11 ’ i 1 r i  1 1 ' "  " i  • ■ "  i ■ ■ ■ ' " i 1 1 T ' i "  i 1 1 1 1 1 1 1 ' 1 1 i ■ ■1 ■ i ’ 1 1 ' i ' ■ ■ ■ i ’ ■'  ■ i ■'

0 -2 -4 -6 -8 -10  -12 -14  -16  -18 -20  -22 -24 -2 6  -28  -3 0  -32  -34  -36  -38 -40  -42

F igure 26: The product distribution o f  the {('Pr3P)2 Rh(H)2 }+ fragment under 4 atmospheres o f  H2 over 
the temperature range 180 K to 200 K. ■ = 22-(H 2)2- -*■ = 22-(H 2). * =  hydride tram  to a vacant/agostic

site in 22-(H 2).

The NMR spectra at 200 K and 190 K consist o f predominantly two 

complexes, 2 2 -(H 2 )2  and 2 2 -(H 2) as discussed. Interestingly, in each of these spectra 

there is also a small hydride resonance at -40.9 ppm. On cooling further to 180 K this 

resonance increases in intensity, concomitant with a significant decrease in 2 2 - ( H 2)2* 

The reduction in the concentration of 2 2 -(H 2 )2  is attributable to a decrease in the 

solubility of H2 in CD2CI2 at very low temperatures . 58 The hydride resonance at -40.9 

ppm is assigned to a hydride ligand trans to a vacant/agostic site in the mono

dihydrogen complex [('Pr3P)2Rh(H2)(H)2 ]+, (Figure 27).
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Major Complexes at T = 180K

i i
P'Pr3 pipr3 P'Pr3

H - ^ l     ' H
. Mu  Z ^ R h tC  H Z ^ R h  M
H—  I H—  I  Cl H------- I

H \
P'Pr3 P'Pr3 CH2CI P'Pr3

I

Major Complexes at T > 190K

F igu re 27: The various com plexes observed in the variable temperature 'H  N M R  spectra for 
{('Pr3P)2 Rh(H )2 }+ under 4  atm ospheres o f  H2 pressure.

The assignment of this third complex at low temperature is based on the 

comparison of the chemical shift with other well-characterised Group IX cationic 

octahedral complexes where a hydride is trans to a vacant/agostic site, (e.g., 

[(P'Bu2Ph)2lr(H2)(H)2][BArF] {-41.2 ppm},“  [(P'Bu2Ph)2Ir(H)2(CO)][BArF] {-36.5 

ppm},5’ [(P'Bu2Ph)2lr(H)2][BArF] {-37.1 ppm } 15 and (P'Bu2Ph)2lr(H)2l {-44.4 ppm}52).

On warming the sample above 220 K, the two hydride resonances assigned to 

2 2 -(H2) coalesce without any broadening of the dihydrogen resonance. This is 

consistent with a two-site hydride exchange process through a five coordinate transition 

state with C2V symmetry (Figure 28), this is an exchange mechanism that for 

[(PtBu2Ph)2lr(H2)H2]+ has been calculated to have low energetic barriers.59

P'Pr3 PiPr3 P'Pr3
H

  Rh H  ^.Rh----- 1 —u  ^  h
I I A H
P P r3 P‘Pr3 P P r3

F igure 28: A  schem atic o f  the fluxional process that m akes the tw o hydride resonances equivalent in 22-
(H2).
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Complex 22 is extremely sensitive, decomposing rapidly in the presence of 

traces of H2O or O2 to generate a mixture of unidentified products. It is, however, stable 

in dichloromethane solutions under a H2 atmosphere for days at low temperature. This 

is in contrast to the ruthenium analogues that abstract chloride from CH2CI2 to form 

(PR3)2Ru(H2)(H)C1.48’ 60 Attempts to isolate solid material o f these dihydrogen adducts 

repeatedly failed, whilst solution IR spectroscopy was not useful in the characterisation 

of these compounds, with no M-H stretching bands observed. At room temperature 

under 4 atmospheres of H2 a gradual decomposition o f 22 occurs, that is accelerated on 

heating, the resultant products of which will be discussed in Chapter 6 . Addition of 5 

equivalents o f MeCN to a freshly prepared sample o f 22 resulted in the clean 

displacement o f the dihydrogen ligands and the formation o f one new compound, 

[('Pr3P)2Rh(H)2(MeCN)2]+, with the hydride region changing to a well resolved doublet 

o f triplets (centred at 8  -19.1 ppm) and a 31P{!H} NMR spectrum with a doublet now 

centred at 59.7 ppm (108 Hz). Analogous dihydrogen displacement by MeCN has been 

reported for [(PCy3)2lr(H2)2(H)2]+.n

In the 180 K !H NMR spectrum of 22 under 4 atmospheres of H2, a further 

hydride signal of low intensity at 23.11 ppm (Figure 26) is also visible, while the 

31P{!H} NMR spectrum at this temperature also shows a doublet at 54.5 ppm (*J (RhP)

111 Hz). This is the only product after the removal o f H2 in-vacuo. The !H NMR 

spectrum shows a single integral two hydride resonance at a similar position (5 -23.18 

ppm) that is now fully resolved into a doublet of triplets. This new complex is assigned 

as a dichloromethane adduct, 22-DCM (Figure 29).
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P'Pr3 PPh3 H
Hydride Chemical

Shift (298K) -24.36ppm -23.2ppm -22.8ppm
(22-DCM)

F igu re  29: Cationic m etal-dichlorom ethane com plexes with a tram -hydride geom etry, along with their
respective chem ical shifts.

At room temperature the doublet o f triplets remains, though shifted upfield to -  

24.36ppm. This resonance is in a similar region to that reported for known cationic 

complexes where a hydride is trans to a coordinated dichloromethane molecule (e.g.,

[(PPh3)2lr(H)2(CH2Cl2)][closo-CB\iH6Br6], {-23.2 ppm} and [(iPr3P)2Pt(H)(CH2Cl2)]

due to the identical spectra observed (apart from the anion resonances) on moving from 

[1-H-c/oyo-CBiiMen]* to [BArp]". A formulation as a bis-agostic complex is also 

unfavoured due to the absence of any extremely high field resonance such as are 

observed for the hydrides in the cation [(PlBu2Ph)2lr(H)2]+ {-36.5 ppm } . 15 However, no 

resonances attributable to coordinated dichloromethane were observable by NMR 

spectroscopy at 180 K. The formation of a dichloromethane adduct, 22-DCM when 22 

is not stored under H2 is in contrast to the behaviour o f ('Pr3P)2Ru(H2)2(H)2, which

under vacuum forms the hydride bridged dimer, (1Pr3P)2(H)Ru(p-H)3Ru(H)2(lPr3P)2, 

(Figure 30).48

F igure 30: The reversible formation o f  the hydride bridged dim er resulting w hen (1Pr3P)2Ru(H2) 2 (H ) 2  is
not kept under a H2 atmosphere.

[BArp], {-22.8 ppm}, Figure 29).33,49 An anion coordinated complex can be discounted

P'Pr3

H

I H
P'Pr3



The facile loss of H2 from 2 2 -(H2)2 is also different to the iridium complex 

[(PCy3)2lr(H2)2(H)2]+ which exists only as the bis-dihydrogen adduct at -80°C under no 

H2 pressure. This is probably due to the stronger bonds that 5d metals form when 

compared to their respective 4d metal complex.51 Addition o f 4 atmospheres of H2 to 

22-DCM results in room temperature NMR spectra consistent with the reformation of 

the mono and bis dihydrogen adducts, the displacement o f coordinated CH2CI2 by H2 in 

Group IX cationic metals has been previously documented15, 51 and in fact is an 

established route to dihydrogen complexes of the transition metals . 12,50

Attempts to isolate the postulated dichloromethane complex, 22-DCM 

repeatedly failed with both the [BArp]' and [1-H-c/ayo-CBnMen]" anions. This is 

possibly due to its inherent instability, with decomposition o f 22-DCM fully occurring 

in solution within 24 hours to give a complex mixture (vide infra). Some yellow crystals 

of sufficient quality for an X-ray diffraction study were obtained from the [BArp]* 

analogue in small quantity on recrystallisation o f the decomposition products. This 

allowed for the identification of one of the decomposition products as 

[{('Pr3P)2Rh(H)}2(|i-Cl)2][BArp]2, 23 (Figure 31). The asymmetric unit consists of a 

folded (lPr3P)2Rh(p-Cl)2Rh(‘Pr3P)2 dimer, with two non-proximate [BArp]" anions, 

making the dimer dicationic overall. The Rh-Rh distance (3.5892(3) A) and the large 

hinge angle (153.8° at the Cl—Cl vector) precludes any metal-metal interaction. Two 

possible explanations can equally account for the dicationic nature of the dimer, (i) A 

mixed Rh(I)/Rh(III) dimer, and such dimers structurally similar to 23 are documented 

(Figure 32).61, 62 (ii) A Rh(III)/Rh(III) dimer with two hydrides, similar to the iridium 

and rhodium dimers, [{M(H)(PPh3)2}2(n-Cl)2((a-H)]+ (M = Rh or Ir). NMR
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Rh1-CI1 2.4069(8)
Rh1-CI2 2.4342(8)
Rh1-P1 2.3194(9)
Rh1-P2 2.3216(9)
Rh1-H1 1.40(5)
Rh1-C8 2.980(4)

Rh1-Rh2 3.5892(3)
Rh1-P1-C6 100.19(12)
P1-C6-C8 111.9(3)
P1-Rh1-P2 106.82(3)
C8-Rh1-H1 152(2)

Rh2-CI1 2.4737(8)
Rh2-CI2 2.4066(8)
Rh2-P3 2.2227(9)
Rh2-P4 2.2918(8)
Rh2-H2 1.52(4)
Rh2-C38 3.154(4)

Rh2-P4-C36 94.55(12)
P4-C36-C38 112.6(3)
P3-Rh2-P4 104.48(3)

C38-Rh2-P3 155.66(8)
H2-Rh2-CI1 170.1(15)

T able 2: Selected bond Lengths (A) and 
A ngles (°) for com plex (23).



spectroscopy could easily distinguish between these two sets o f complexes, but 

unfortunately the few remaining crystals of 23 rapidly melted at room temperature

spectrum of this mixture did show two hydride resonances, but due to the unclean 

nature o f the system it is impossible to assign either to 23 with any confidence, 

therefore the characterisation o f 23 is based solely on the X-ray crystallography study as 

repeated attempts to grow and isolate crystalline material o f 23 were unsuccessful. Two 

hydrides could be located and freely refined in the final electron difference map (given 

the usual caveats about the observation and location inherent from the low scattering 

factor of hydrides) and one found to be terminally bound to each rhodium

Formulation as a Rh(I)/Rh(III) dimer is further discounted after close 

examination o f the geometry around each rhodium centre. The environment around Rh2 

is clearly not square planar with P3 appearing to occupy an axial position of a distorted 

octahedron. The situation involving Rhl is less straightforward with a square planar 

geometry observed (sum of angles about Rhl of 360.8°), consistent with that expected 

for a mixed Rh(I)/Rh(III) dimer. However, the P2RI1CI2 core is not planar as expected 

for a Rh(I) centre, (e.g., in the solid state structure o f {( 'P ^P ^R h ^-C l) }2 and

RhCl(PCP)(p-Cl)2Rh(COD) Figure 32))61,63 with a Pl-Rhl-C12 angle bent out of the 

plane (163.04(3)°).

resulting in their recombination with the crude oil that had also formed. A *H NMR

F igu re 32: Exam ples o f  planar Rh2Cl2 cores in a R h(I)/Rh(I) and a Rh(I)/Rh(III) dimer.
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In addition the Rh-P bond lengths are significantly greater in 23 (Rhl-PI 

2.3194(9) A and R hl-P2  2.3216(9) A) than that for { ( 'P r^ R h O i-C O h , (2.262(2) A 

and 2.246(2) A).63 Finally, one of the pendant CH3 groups o f a phosphine has a close 

approach to the rhodium centre (Rhl-C 8 2.980(4) A), which whilst greater than the sum 

(2.81 A) of the ionic radius for Rh(III) (0.81 A) and the van der Waals radius of CH3 

(2 .0 0  A) is significant due to the considerable deformation o f the involved 'Pr group 

(R hl-P l-C 6  100.19(12)°), in comparison to those non bonded (average Rhl-P-C angle 

o f 114.6°). These findings combined with the predominance o f M(III)/M(III) dimers as 

the decomposition products resulting from the hydrogenation o f diene precursors 

strongly suggest that Rhl is equally in the +3 oxidation state. To achieve charge balance 

two hydrides therefore must also be associated with the dimer. Examination o f the 

penultimate electron difference map indeed revealed the presence o f two hydrides 

(given the usual caveats for the detection o f hydrides using X-ray data), one terminally 

bound to each rhodium. This is in contrast to the related mono-cationic decomposition 

product, [{Rh(H)(PPh3)2}2(p-Cl)2(p-H)]+ (Figure 33), where the two rhodium centres 

are bridged in addition to two chlorides by a hydride and a metal-metal bond. The

99formation of which also involves activation of CH2CI2, the solvent. Importantly, 

[{Rh(H)(PPh3)2}2(p.-Cl)2(p-H)]+ and a related iridium decomposition product,

[{IrH(PR3)2}2(fi-H)3][PF6 ].1 were formed under H2 pressure -  possibly accounting for

00the additional bridging hydride present in each.

F igu re 33: The cation portion o f  the deactivation product, [(PPh3)2 H R h(p-C I)2 (p-H ))R hH (PPh3) 2 ]+

Y= [c/oso-CBuH^r 
or [c/oso-CB-i -j H6Br6]‘
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In 23 the hydride associated with Rh2 is located tram  to a bridging chloride 

(Cll-Rh2-H2 170.1(15)°), and the large trans effect o f the hydride ligand is clearly 

visible in the lengthening of the tram  Rh-Cl bond (Rh2 -Cll 2.4737(8) A, in comparison 

to Rh2-C12 2.4066(8) A), confirming its correct location. A similar effect is observed in 

RhCl(PCP)(p-Cl)2Rh(COD), where the bridging chloride tram  to the larger tram  effect 

ligand (phenyl) has a considerably longer bond length (2.555(3) A) than that tram  to a 

terminal chloride (2.377(2) A).61 The second hydride, HI is located tram  to the 

p agostic interaction and completes the distorted octahedral environment around R hl. 

The octahedral geometry around Rh2 is equally completed by one very long p agostic 

bond, (Rh2-C38 3.154(4) A). The two agostic interactions in 23 are long in comparison 

to the only other six coordinate Rh(III) agostic compound, Rh(2 ,4 ,6 -Me3-C6H2)3 (Figure 

34) ,64 where there are three agostic interactions with Rh(III)—H3C distances o f 2.78, 

2.78 and 2.79 A (no errors reported), implying that those in 23 are at best only weak 

contacts.

F igu re 34: The only other structurally characterised Rh(III) six coordinate agostic com plex, R h(2,4,6-
M e3-C6H2)3.

The arrangement of the two sets of phosphine groups in 23 respectively 

‘perpendicular’ to each other minimises the unfavourable steric congestion and this is 

the most likely cause o f the deviation away from a pure octahedral geometry observed
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at both rhodium centres. The numerous other products formed alongside 23 precludes 

any in-depth discussion into a mechanism, but the substitution o f a hydride for a 

chloride on a metal centre utilising chlorinated solvents is well documented and is likely

to be taking place here (Figure 35).65

P'Pra

H—©, 
H

R h^
I
P'Pr3

Cl^ -CH3CI 
,c |: c h 2 — a — Cl

P'Pr3 

11
Rh

P'Pr3

dimerises  ► ■ f  £Pr2Pv^ I
'Pr3P 7— Rh— C I ^ RhvA /  ^ci V

P'Pr,

P'Pr3

2+

23

F igu re 35: A  possib le m echanism  accounting for the form ation o f  the observed dimer, 23.

A further attempt to obtain crystalline material o f a solvento complex of 

the fragment {('Pr3P)2Rh(H)2}+ from C6H5F and pentane led to the formation of yellow 

needles suitable for an X-ray diffraction study. The asymmetric unit (Figure 36) 

contains two crystallographically inequivalent molecules o f the compound [(r|6- 

C6H5F)Rh('Pr3P)2][BArF], 24, the structural metrics of which are identical within errors, 

therefore only one will be discussed here. The C6H5F molecule in 24 is rj6 coordinated 

to the {('Pr3P)2Rh}+ fragment (with all C-C distances effectively identical) and the 

arrangement of the phosphines is planar with respect to the Rh-arene vector. The 

combination o f the r |6 bonded arene and the planar P-Rh-P arrangement further 

precludes the presence o f any hydride ligands in 24. Similar capping of {(PR3)2Rh}+ 

fragments by arenes has been previously reported, though with the more electron rich 

arenes, C6H5CH3 and C6H2(CH3)4. 3 1 ,66 As discussed earlier for complex 21, C6H5F 

complexes has been documented to bind to cationic metal centres .43 ,44 The only other 

structurally characterised Rh(I)-C6HsF adduct shows significantly different coordination 

behaviour, with either a monomeric r |4 or a bridging anti-\\.-r|4-r |4 fluorobenzene
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C4 C6 C3

Rh1-P1 2.304(2)
Rh1-P2 2.326(2)
Rh1-C1 2.362(9)
Rh1-C2 2.313(9)
Rh1-C3 2.338(9)
Rh1-C4 2.311(9)
Rh1-C5 2.302(9)
Rh1-C6 2.361(8)
C1-F1 1.342(12)

P1-Rh-P2 98.19(7)

T ab le  3: Selected bond Lengths (A) and angles (°) for 
com plex (24).

F igu re 36: M olecular structure o f  one o f  the crystallographically inequivalent cationic portions from the A S U  o f  
com plex (24). H ydrogens atom s are not show n for clarity. Thermal ellipsoids are show n at the 30% probability level.



complex formed, (Figure 37), the considerable steric demand of the p-diiminate ligand

(\7is responsible for these unusual bonding motifs.

r|-4

Rh

a « /■* . .  ^  . an ti U -r|4-r|4Ar = 2,6-Me2-C6H3 ^ ' 1

F igu re 37: The coordination m odes o f  C6H5F to the bulky {(P-diim inate)R h} fragment.

The formation o f both 23 and 24 lends further credence to the fact that the 

cationic fragment {('Pr3P)2Rh(H)2}+ forms sohento  complexes in preference to anion 

bound complexes, thereby frustrating attempts to explore the properties of Rh—H3C 

anion interactions.

The analogous hydrogenation was also attempted with the 

[(PMe3)2Rh(NBD)][l-H-c/o5o-CBnMen] precursor, however this led to intractable 

mixtures o f unidentified products. In an attempt to obtain solid material of the 

dihydrogen adducts to allow for complete characterisation (i.e. solid state and IR 

spectroscopy) and for direct comparison to Crabtree’s [(PCy3)2lr(H2)2(H)2]+, the 

hydrogenation of the analogous PCy3 precursor was investigated, the results o f which 

are discussed next.
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5 .2 .2 .2 :[(PCy3)2Rh(H2)2(H)2][Y] (Y = [ l-H -c /^ -C B n M e n ]' or [BArF]*).

In an analogous manner to the 'P^P  congener, [(PCy3)2Rh(NBD)][l-H-c7 aso- 

C BnM en] was treated with 4 atmospheres of H2, resulting in a gradual colour change 

(~5 minutes) from orange to yellow. The resultant and *H{3 !P} NMR spectra at 298 

K displayed no hydride signals. The ^ P ^ H }  NMR spectrum showed the clean 

formation of one compound, a significantly broadened doublet centred at 54.3 ppm. An 

identical spectrum (apart from the differences in those associated with the anion) is 

obtained on the hydrogenation of [(PCy3)2Rh(NBD)][BArp] under the same conditions. 

In both cases, no resonance was observed for free dihydrogen (5 4.60 ppm), indicating 

that a fluxional process is taking place involving free and coordinated H2 .49 On cooling 

to 200 K the ^ P j 'H }  NMR spectrum displays a sharp, well-resolved doublet at 8  60.1 

ppm (^(RhP) 92.4 Hz). The hydride region of the 'H NMR spectrum (Figure 38) now 

consisted of a singlet at -14.14 ppm (integral 2.2 H) and a broader resonance at -1.81 

ppm (integral 4 H, relative to the anion resonances), in addition a broad singlet 

corresponding to free dihydrogen was also visible downfield at 4.50 ppm.

o

CNJ
f  CN
|

j- r r -r -r T ' T T 1TrT
-7

-T-r-p-r 1_rT TT TT"r T r
1 ■2 -3 -4 -5

Figure 38: The hydride region o f  the 'H NM R spectrum resulting from the hydrogenation o f  
[(PCy3)2R h(N B D )][Y ], in CD 2C12 at 200 K (integrated against the anion and 'Pr3 resonances).
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By comparison of the chemical shifts and relative integrals of the two observed

hydride resonances to the isoelectronic complex, [(PCy3)2lr(H2)2H2]+ (Figure 39) 11 and

the 'Pr3 congener, 22, this new complex is formulated as [(PCy3)2Rh(H2)2(H)2]+, 25-

(H2)2• The highfield signals are assigned as a hydride ligand (-14.14 ppm) and a

dihydrogen ligand (-1.81 ppm) respectively. This compound is an important addition to

a series o f analogous iso-electronic di-hydrogen complexes previously reported (Figure 

39)  11,60

H«
H‘

PCy3
H.

: |r < ^
■Kf

PCy3

,H
_Q H-

H'

PCy3
H.

:RhC^
H-

PCy3

H
.H

H-
H‘

PCy3

I H '

:RuC[
H'

PCy3

H
.H

25-(H2)2

F igure 39: The three iso-electronic com pounds, [(PC y3)2M (H 2) 2 (H )2 ]n+ (M  = Ir, Rh, n = 1, M  = Ru, n =0).

In the ^ { ^ P }  NMR spectrum the signal at -14.14 ppm splits into a doublet 

(^(RhH), 21.6 Hz) at this temperature, although the dihydrogen ligand is still a broad 

singlet. As for the ‘Pr3 analogue an unresolved fluxional process presumably accounts 

for the broadness of the hydride resonances in 25-(H2)2-

Measurement of the Ti values for 25-(H2)2 at 190 K (at 400 MHz) allows for the 

unambiguous assignment o f the highfield signals as a dihydrogen and a hydride ligand 

(20.8 ms, Rh-(H2) -1.81 ppm and 259.7 ms, Rh-(H) -14.14 ppm) respectively. These 

relaxation times are comparable to other Group IX, d6 non-time averaged 

hydride/dihydrogen complexes (e.g., [IrH(H2)(bq)(PPh3)2]+ (bq = benzoquinone) Ti 

(500 MHz, 188 K) (H2) = 30ms, (H) = 390 ms) . 11 We were not successful in observing
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any HD coupling constant for complex 25-(H2)2 on addition of D2 . Infrared 

spectroscopy (in both H2 saturated CH2CI2 and C6HsF solutions) was not useful in the 

characterisation o f 25-(H2)2, with no signals in the terminal Rh-H region (1500 -  2300 

cm '1) o f the spectra. This is possibly due to a very weak Rh-H stretching band, as

/o _
documented for the iridium congener. The lack of any M-H stretching bands in both 

2 5 - ( H 2)2 and its iridium analogue is in contrast to the neutral ruthenium analogue, for 

which two strong bands (1927 and 1890 cm '1) are observed. Complex 25-(H2)2 is 

extremely sensitive to dihydrogen pressure, with the clean formation only occurring 

under 4 atmospheres of pressure. Under lower pressures (1 and ~2 atmospheres of H2) 

different, more complex and ^ P ^ H }  NMR spectra were recorded at low 

temperatures (Figures 40 and 41).

•4 atm os. H:

2 atmos. H;

1 atmos. H:

Figure 40: The 'H NM R spectra in CD2Cl2 at 190 K o f  {(PCy3)2RhH2}+ at varying H2 pressures, the 
sharp singlet at ~  Oppm = vacuum grease. ■ = 25-(H 2)2, •  = [(PCy3)2Rh(H2)(H )2L]+ (25)-(H 2) and = 

the peak attributable to [(PCy3)2Rh(H)2(CH2Cl2)]+, 25-D C M .
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~4 atmos. H2

1*W\

~2 atmos. H2

J 1

U

~1 atmos. H2

64 62 ' 60 58 56  ‘ 54 52 50 48 46  44 42  40  38 36

Figure 41: 31P {'H } NM R spectra in CD2C12 at 180K o f  {(PCy3)2RhH2}+ at varying H2 pressures. ■ = 25- 
(H 2)2, •  = [(PCy3)2Rh(H2)(H )2L]+, 25-(H 2) and ^ = [(PCy3) 2Rh(H)2(C H 2Cl2)]+, 25-D C M .

These sets o f spectra, along with their the relative integrals, Ti measurements 

and comparison with [(PR3)2 lr(H2)x(H)2 ][BArF] (x = 1, 2 )" ' 16' 59 and 22 allow for the 

identification o f a number o f these products. Under 4 atmospheres of H2 , the 

predominant complex observed is 25-(H2)2- On lowering the H2 pressure to ~2 

atmospheres, two major compounds are visible by 31P{1H} NMR spectroscopy, one 

being 25-(H2)2- The NMR spectrum at this pressure exhibits a broad resonance with 

a chemical shift o f 5 -0.11 ppm, which, again by comparison, can be assigned to the 

(H2) ligand in a mono-dihydrogen complex, [(PCy3)2Rh(H2)(H)2 ]+, which is the second 

doublet in the 31P{1H} NMR spectrum. The sixth coordination site on the rhodium 

centre appears to be occupied by two different ligands in a ratio 2:1 (determined by 

integration o f the separate sets of hydride resonances). An agostic interaction can again 

be ruled out due to the significant downfield chemical shift characteristic o f hydrides 

that are trans to agostic interactions The major sets o f hydride signals (at -0 .11, -12.63 

and -22.58 ppm) we tentatively assign as the dichloromethane adduct (Figure 42),
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however, no direct evidence for a coordinated dichloromethane molecule was observed 

by low temperature NMR spectroscopy. The minor set of signals possibly arises from 

an impurity present in low concentration (e.g., N2 or H2O).

(-1 4.1 7; PCy3 PCy3 PCy3

(-21.99)
h Cl

c d 2ci
PCy3

531P{1H} (190K) 60.2ppm 53.9ppm 47.0ppm

F igu re 42: The assignm ent and chem ical shifts o f  the major com plexes form ed with {(P C y 3 )2 RhH2}+ in 
C D 2 C12  solutions at various H 2  pressures (cationic portions only show n).

At one atmosphere of dihydrogen there is no 25-(H2)2 remaining and the mono-

their place a doublet at 8 -22.99 ppm is now the major product (along with a smaller 

doublet further upfleld). Two new resonances are also seen in the 31P{!H} NMR 

spectrum. The major hydride signal (5 -21.99 ppm) is tentatively assigned as the 

dichloromethane adduct, [(‘Pr3P)2Rh(H)2(CD2Cl2)]+ (Figure 42), with a chemical shift

coordinated dichloromethane molecule (e.g., [(PPh3)2lr(H)2(CH2Cl2)][c/oyo-

CBnHfiBrs], {-23.2 ppm} and [(iPr3P)2Pt(H)(Cl2CH2)][BArF]) {-22.8 ppm } ) .33- 49 Anion 

coordinated complexes can be ruled out due to the similar spectra observed on moving 

between the [BArp]' and [l-H-c/oso-CBnM en]' anions. Increasing the hydrogen 

pressure in this sample to 2  atmospheres or above returns the spectra to those of a 

mixture of mono and bis-dihydrogen adducts (Figure 43).

dihydrogen adduct is drastically reduced in intensity (by 1TT NMR spectroscopy). In

comparable to that reported for known cationic complexes where a hydride is trans to a
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low H2 pressure

high H2 pressure

PCy3

\  high H2 pressure
PCy3 CH2CI

+
H—  
H— Rh

PCy3

PCy3PCy3 CH2CI

F igu re 43: The hydrogen pressure dependency o f  the products observed from the hydrogenation o f

Under 4 atmospheres o f dihydrogen pressure complex 25-(H2)2 is stable at low 

temperature for days. At room temperature 25-(H2)2 is stable for hours and heating to 

50°C further accelerates this decomposition. The products resulting from this 

decomposition will be discussed in Chapter 6 . Complex 25, under dihydrogen does not 

react with chlorinated solvents, in contrast to the ruthenium analogue that rapidly 

produces (PCy3)2RuHCl(H2)x (x = 1 or 2 ) on standing in CD2CI2, even at low 

temperatures.69 Attempts to isolate bulk solid material o f 25 invariable failed, due to the 

requirement o f high H2 pressures, the mixture of products and its inherent instability. 

However, crystalline material of only adequate quality was obtained o f the [1-H-closo- 

CBnMen]* salt and an X-ray diffraction study carried out. Whilst the nature of the 

crystal and the significant disorder in the final refinement prevented a fully satisfactory 

result, the gross structural parameters of 25 were determinable (Figure 44). Analogous 

to (PR3)2Ru(H2)2(H)2 (R = Cy48 or ‘Pr70) the phosphines are located trans to each other 

(P-Rh-P 179.65(15)°) with a ‘normal’ P-Rh distance, 2.352(3)A (e.g., compared to 

2.336(3)A and 2.357(3)A in [(PCy3)2Rh({E}-CH=CHCy)(acac)][BF4] ) .71 No further 

information is obtainable, though importantly no significant residual electron density is 

located near the rhodium centre, strongly suggesting that this is a di-hydrogen adduct, 

(PCy3)2RhHx.

[(PC y 3 )2 R h(N B D )][Y ] ([Y] = [BArF] or [ l-H -c /a so -C B n M e ,,]’.
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Figure 44: The m olecular structure o f  the cationic portion o f  2 5 -(H 2)x, the poor data set prevented the 
location o f  the hydrides (see text). Only one set o f  tw o equally occupied cycloh exy l phosphine positions

are shown for clarity.

The reactivity of complex 25 is similar to that o f 22, being highly sensitive to 

H2O and O2. The dihydrogen ligands are labile, rapidly displaced on the addition of 

MeCN to form [(PCy3)2Rh(H)2(MeCN)2]+, with the hydride region changing to a well- 

resolved doublet o f triplets (centred at 8  -18.9 ppm). Attempts to form the dihydrogen 

free fragment {(PCy3)2Rh(H)2}+, by pumping in vacuo, appeared to give similar results 

to 22, with hydride resonances in similar region of the spectra to 22-DCM and equally 

no indication of any anion interaction as expected.

5.3: Summary.

This chapter reports the hydrogenation of Group IX bisphosphine precursors 

partnered initially with the [1-H-c/ojo-CBnMen]' anion, in an attempt to engender
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contact ion pair formation and allow for the further investigate of the M —H3C 

interaction. In the iridium precursors the reactivity o f the [1-H-c/ojo-CBnM en]' 

congener closely follows that previously reported for the [BArF]' and [PF6]* anions, with 

no metal anion interactions formed. This is in contrast to the [c/050-CBnH6Br6]' anion 

that forms an intimate ion pair complex, allowing for the rating o f these weakly 

nucleophilic anions with respect to the {(PPh3)2lr(H)2}+ fragment as follows; [closo- 

CBnH 6Br6]' > [l-H-c/oso-CBnM eii]' » [PF6]~ w [BArF]‘. An anion decomposition 

product involving anion B-C and solvent C-H activation was also isolated, presumably 

forming via an acid catalysed mechanism.

The analogous rhodium systems partnered with [l-H-c/oso-CBnMen]* afforded 

dihydrogen complexes o f the general formula [(PR.3)2Rh(H2)x(H)2]+ (x = 1 or 2 R = 'Pr 

or Cy). These dihydrogen adducts were demonstrated to be extremely sensitive to 

temperature, dihydrogen pressure and to the presence o f Lewis bases. The [BArF]‘ 

congener was found to equally produce a mixture o f dihydrogen complexes. 

Characterisation by Ti measurements, HD coupling constant and solid state studies 

show these complexes to be closely related to the known iridium analogues and 

structurally similar to (PCy3)2Ru(H2)2(H)2. On the removal o f dihydrogen from these 

complexes, solvent coordinated species are suggested to form, in preference to intimate 

ion pairs. An interesting DCM activated dimeric decomposition product, 

[{('Pr3P)2(H)Rh}2(p-Cl)2]2+ that has two agostic interactions was also isolated. A 

decomposition product, the octahedral rhodium clusters, [(PRs^Rh^Hx] , that gradually 

forms when the mixture of dihydrogen adducts are left standing under a H2 atmosphere 

will be discussed next, along with some initial reactivity studies.
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6: High hydride content octahedral clusters from the
decomposition of rhodium dihydrogen complexes.

6.1 Background:

The previous chapter described the characterisation o f a number o f new cationic 

rhodium dihydrogen adducts. The general reactivity o f the coordinated H2 in such 

complexes can be split into three distinct processes: oxidative addition, heterolytic 

cleavage and elimination o f H2. O f importance towards the decomposition of the 

[(PR3)2Rh(H2)x(H)2]+ cations is the second process: heterolytic cleavage of coordinated 

H2. A full and comprehensive review o f the other two processes has also been 

published, 1 and an excellent recent in-depth review o f the heterolytic splitting of H2 has 

just been published. This introduction shall therefore only cover the salient points 

involved in the decomposition of 2 2 -(H2)x and 25-(H2)x.

Heterolytic cleavage of H2, otherwise termed ‘deprotonation of coordinated H2’, 

has been demonstrated to be favoured in the presence of ‘super’ electrophilic metal 

centres that are invariably cationic.3 In these complexes the coordinated dihydrogen 

becomes extremely polarised, H8+-H5', and is often highly acidic.4, 5 A number of 

general properties are required for dihydrogen complexes to exhibit strong acidity: short 

H-H bonds (i.e., no M to H2 a* back bonding); a cationic metal centre; and a labile H2 

molecule. Molecules which meet these requirements are [Cp*Re(H2)(CO)(NO)]+ and 

[Re(H2)(CO)4(PR3)]+.6, 7 Following the breaking o f the H-H bond into H+ and H' 

fragments the hydride binds to the metal centres whilst the proton is transferred to a 

Lewis base, which can be the anion, ancillary ligand or solvent (Figure 1).
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LnM-H + [HB][Y] LnMH + [H][Y] [L(n. 1)M-(LH)][Y]

Transfer to an Transfer to Transfer to an
External Base the anion Ancillary Ligand

F igu re  1: T he p ossib le  protonation routes fo llow ing the heterolytic c leavage o f  H 2  coordinated to an
electrophilic metal.

The transfer o f a proton from coordinated dihydrogen to an ancillary ligand (L) 

followed by the dissociation of HL+, results in a coordinatively unsaturated metal 

centre, with the two electrons originally present in the H-H bond transferred to the M-H 

bond. This process is comparable to the role that hydrogenases play in nature, catalysing 

the reversible transformation of H2 into H* (Figure 2), via the splitting of a coordinated 

dihydrogen molecule.

H2 2H+ + 20-

F igu re  2: The equilibrium process catalysed by hydrogenases.

The heterolytic cleavage of coordinated H2 should be important in complexes 

2 2 -(H2)x and 25-(H2)x that clearly possess the necessary criteria discussed above for the 

coordinated H2 to be significantly acidic. As we will show the decomposition products 

formed from these adducts result from the heterolytic cleavage of H2 which forms 

unsaturated fragments that self-assemble to generate higher nuclearity rhodium clusters.

A number o f mid and late transition metal mononuclear complexes have been 

reacted directly with dihydrogen (presumably via a transient coordinated H2 species) 

generating metal clusters. The octahedral cluster W6(H)5(C-‘Pr)(0-lPr)i2 is formed from
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the reaction o f H2 with W2('Bu)2(0 -1Pr)4, and is believed to form via the heterolytic 

cleavage o f H2 (Figure 3) . 8 , 9

'Pr-0 ,'Bu

\  /  H2, 3 atoms.
'Pr-0— W = W — O-'Pr ---------------------

/  \  - iso-butane
'Bu O-'Pr -iso-butene

W6H5(C-iPr)(0-iPr)12 
40% yield

Figure 3: Formation o f  the octahedral cluster, W 6(H )5(C -‘Pr)(0-'Pr)l2.

Reactivity studies on W6(H)5(C-‘Pr)(0 -'Pr)i2 have demonstrated that it catalyses 

H/D exchange in ethene, undergoes site-selective alcoholysis, hydrogenolysis and 

reversible hydrogenation (Figure 4 ) . 1 0 , 11 With chelating phosphines a dimer, W2 (H)2 (0 - 

'Pr)4(dmpe) 2  and a tetramer, W ^ F I^ O 'P r^ d m p m ^ h a v e  been isolated . 11

Figure 4: The reversible hydrogenation o f  the W6(H )5(C -1P r)(0 -lPr)12 cluster.

Q =W  

•  = H 

O = O-'Pr

The platinum precursors (PR3)Pt(C2H4 ) 2  also react with H2 (albeit under high 

pressure ~ 300 atmospheres) giving a number o f Pt-hydride clusters, the nuclearity of 

which is highly dependent on the phosphine steric bulk (Figure 5) . 12' 14
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P te u zP h •  = H

\  ^P'PrzPh

B u3P.

Pt3 H6 (PtBU3)3

•  PlBu2Ph 

Pt5H8(PtBu2Ph)5

Ph'PrzP*^ ^  

Pt4H8(PiPr2Ph)4

Decreasing phosphine steric bulk

F igu re 5: The clusters resulting from the hydrogenation o f  a number o f  (PR 3 )Pt(C 2 H 4 ) 2  precursors.

These were the first, well characterised, clusters reported where the H : M ratio 

exceeds unity, i.e., there are more hydrides than metal centres in the cluster. Previous 

work on the copper polyhydrides, (P R ^ C i^ f^ , had set the benchmark for this ratio.15,16 

On the loss of a number of the hydrides (by the use of ethene as a hydrogen acceptor) 

Pt3H6(PtBu3)3 condenses further to form the higher nuclearity cluster P U f^ P 1! ^ ) ^ 13

Of particular relevance to the work described in this chapter are clusters 

resulting from the hydrogenation of the Rh(I) allyl precursors, (r|3-C3H5)Rh(PR.3)2,17' 19 

that can be viewed as neutral analogues of the Schrock-Osbom pre-catalysts studied in 

Chapter 5. On exposure to hydrogen these neutral precursors rapidly evolved propane 

and form highly fluxional dimeric or trimeric complexes, again depending on the bulk 

of the R substituent. These complexes react further with dihydrogen, with each 

oligomer reversibly binding one molecule of H2 to form higher hydride content species 

(Figure 6). Reaction stoichiometries were determined by hydrogen titrations, although 

definitive identification o f each complex was not reported. NMR spectroscopic and 

reactivity studies strongly suggests that the structure o f the dimer product to be

(PR3)2(H)Rh(n-H)3Rh(PR3)2.18
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RaP\ /P R 3

H4 Rh2 (PR3)4

PR3

R = OMe or OEt

HsRh3(PR3)6

R = O'Pr

F ig u re  6 : The rhodium phosphine oligom ers formed on the hydrogenation o f  Cn3 -C 3 H 5 )R h(PR 3 ) 2 .

A Group IX complex with a hydride : metal ratio o f 2 : 1 has also been recently 

reported, though this was not formed via the hydrogenolyisis of a monomeric 

precursor. Treatment of Ir4(CO)i2 with P P I 1 3  under a H2 atmosphere produced in 

quantitative yield two isomers of the cluster compound, I^H gfC O M P P l^  (Figure 7), 

that is an unusually stable high hydride cluster, showing no reactivity to base or CO.

P P h 3 P P h 3

P P h 3 P P h 3

F igure 7: The two isom ers o f  Ir4 H 8 (C O )4 (PPh 3 ) 4 .

A decomposition product from the hydrogenation o f the widely used Crabtree 

catalyst, [(PCy3)(py)Ir(COD)][PF6], has also been structurally characterised and shown 

to be a hydride capped tri-iridium cluster (Figure 8).21



F igu re  8 : The tri nuclear iridium cluster formed from the hydrogenation o f  the Crabtree catalyst in
CH 2 C12.

^ i
Finally, a tetrahedral cluster, [Ru4H6(C6H6)4] , has also been reported that is 

ligated by both classical and non-classical hydrides (based on Ti measurements), and is 

synthesised by the reaction o f molecular hydrogen with [(CeFWRuChh. This reaction 

has been shown to be pressure sensitive with low (1.5 atmospheres) H2 pressures 

resulting in the tetra hydride analogue that is also dicationic, [Ru4H4(C6H6)4]2+. In both 

cases heterolytic cleavage of dihydrogen is intimately involved in the cluster formation, 

with six equivalents o f acid (HC1) formed for each tetramer. Interestingly, the hexa 

hydride, [Ru4H6(C6H6)4] , does not lose dihydrogen even under high vacuum; instead, 

dioxygen is required to effect formal reductive elimination, with the concomitant 

formation of H2O. (Figure 9).23

•  = H

+ 0.5 o 2l -h2o

60 bar H

•  = H

F igu re  9: The reversible dehydrogenation o f  [Ru4 H 6 (r|6 -C 6 H 6 )4 ]2+
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More sterically bulky arenes shield the cluster core and significantly slow this 

reversible process. This complex is an active catalyst for the biphasic hydrogenation of 

benzene to cyclohexane.24 The reversible addition o f H2 to a cluster to form dihydrides 

has been reported in a number of other systems and can occur with or without

no
significant alteration to the cluster framework.

6.1.1: Scope of Chapter

This chapter will discuss the decomposition products formed when 

[(PR3)2Rh(H2)x(H)2]+ (x = 1 or 2, R = 'Pr or Cy) is kept under an atmosphere of 

dihydrogen. Characterisation o f high hydride content {Rh6} clusters will be presented, 

along with some theoretical comparison to more ‘classical’ cluster complexes. Initial 

insights into the mechanism of formation and some early reactivity studies will also be 

discussed.

6.2: Results and Discussion.

6.2.1: [(‘PraP^RhfiHnHYh (Y = [l-H-c/0 5 0 -CBnMen]' or [BArF]’).

6.2.1.1:Characterisation and Discussion.

Complex 22 (either as the [l-H-c/ojo-CBnM en]' or [BArF]' salt) on standing in 

a C6H5F solution at room temperature under a dihydrogen atmosphere undergoes a 

gradual darkening in colour, from pale yellow through to brown. The NMR spectra after 

the colour change displayed resonances in the !H and 31P{1H) NMR spectra that
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corresponded to the cation, [HP(‘Pr)3]+, 26Pr (8 31P{1H} 46.6 ppm singlet, 5 1 H 5.31 

ppm d of q *J(PH) 336 Hz, 3J(HH) 4.4 Hz) .29 Concomitant with this, two doublets, one 

being at very low field (110.5 ppm and 59.8 ppm respectively in CD2CI2) were also 

observed in the 31P{1H} NMR spectrum. The JH NMR spectrum of this sample showed 

only two phosphine environments, with one set of ‘P ^P  signals ascribable to 26Pr, and 

the two remaining phosphine containing products presumably resonating coincidentally. 

The hydride region showed two resonances, a doublet o f triplets centred at -24.9 ppm 

and a broad singlet at -21.40 ppm. Recrystallisation o f the [BArp]' counterion reaction 

mixture, under an atmospheric pressure of dihydrogen, yielded dark red crystals suitable 

for X-ray diffraction (in 45% yield based on rhodium content vide infra). The 

asymmetric unit consisted of a RI13 triangular unit and one anion that was not proximate. 

The performance o f the associated symmetry operations generated a [Rh6] core and a 

second anion, making the cluster dicationic. The molecular structure is a regular 

octahedron formed from six {PRh} fragments (Figure 10), the Rh-Rh bond lengths are 

identical within errors, with the triangular faces approximating to equilateral triangles 

and three equivalent square planes completing the geometrical facets of this cluster. The 

Rh-Rh distances (average 2.719 A) are similar to those found in the ‘classical’ RJi6 

octahedral cluster, Rh6(CO)i6 (2.794 A).30 Examination o f the penultimate electron 

difference map revealed six edge-bridging hydrogens in the asymmetric unit (given the 

usual caveats about the location and positioning o f hydrogens using X-ray 

crystallography), with each refining satisfactorily as having a full occupancy. The 

molecular structure o f the {('P^PJRh^ cluster is therefore completed by twelve edge 

bridging hydrides, resulting in an overall formulation as [('Pr3P)6Rh6(H)i2]2+, 27-Hn. 

The closest H-H distance (2.042 A) precludes the possibility o f coordinated dihydrogen, 

and identifies all twelve as “classical” hydrides.
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F igu re 10: The m olecular structure o f  the dicationic portion o f  [(1Pr3 P )6 Rh6 H )2 ][BA rF]2 , 2 7 -H 12, 
sym m etry related positions generated by the fo llow ing transformations, -x ,-y ,-z + 2  and -x + l ,-y + l ,- z + l .  

Hydrogen atom s except the bridging hydrides rem oved for clarity. Thermal ellipsoids show n at the 30%
probability level.

Rh1-Rh2 2.7142(2) Rh1-Rh2-Rh3 59.967(6) Rh1-H6 1.59(4) Rh3-H3 1.96(3)
Rh1-Rh3 2.7209(2) Rh1-Rh3-Rh2 60.206(6) Rh2-H2 1.38(3) Rh3'-H4 1.64(4)
Rh2-Rh3 2.7303(2) Rh2-Rh1-Rh3 60.309(6) Rh2-H3 1.70(3) Rh3'-H5 1.86(3)
Rh1-P1 2.2461(6) Rh1-H1 1.82(3) Rh2-H4 1.85(4) Rh1-Rh2-Rh1' 89.601(7)
Rh2-P2 2.2450(6) Rh1-H2 2.04(3) Rh2'-H6 1.93(4) Rh1'-Rh1-Rh2 90.399(7)
Rh3-P3 2.2444(6) Rh1-H5 1.66(3) Rh3-H1 1.66(3) Rh3-Rh2-Rh3' 89.433(7)

T ab le  1 : Selected bond lengths (A) and angles (°) for com pound 27 -H i2.
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The [l-H -c/os0 -C B nM en]‘ analogue may be prepared in the same way, and on 

recrystallisation yielded dark red crystals and a set o f colourless crystals, both o f which 

were suitable for X-ray diffraction studies. A  crude data collection (resulting in a w R i = 

10.6%) on the colourless crystals confirmed the formation of [HP('Pr)3][l-H-c/o50- 

CBnM en] as a by-product (Figure 11).

Figure 11: The molecular structure o f  [HP('Pr3)][l-H-c/o.s'0 -C B 11M e |1], hydrogen atoms are not shown 
and thermal ellipsoids are at the 30% probability level. The anion is disordered and the cage carbon atom

was not located.

The identification of 27-Hi2 was supported by an X-ray diffraction study 

performed on the dark red crystals, again revealing a dicationic Rh6 octahedron which 

possessed similar gross structural parameters to the [BArp]’ analogue, equally supported 

by six phosphines and twelve hydrides. A simplified schematic of this cluster is shown 

in Figure 12, with only the P6RI16H 12 core structure shown.

Rhl

H112

Rh3

Figure 1 2 : The {Rh6P6H i2} + core o f  [(Tr3P)6Rh6H 12][l-H -c/0.s7>CBi1M en]2, with the disordered hydride
environment labelled.
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However, there are some minor, structural differences in the two dicationic 

clusters structurally characterised. [(lPr3P)6Rh6H i2][l-H-c/aso-CBiiM en ]2 does not 

reside on a centre o f inversion, making all Rh-P and Rh-Rh vertices inequivalent and 

the range of Rh-Rh distances in this octahedron is noticeably greater (2.7181(3) -  

3.0597(5) A). The twelve bridging hydrides were still located in this structure, eleven 

readily refined with full occupancy as edge bridging hydrides, the final bridging 

position, involving the Rhl and Rh3 edge is not spanned by a hydride. Instead the 

refinement revealed a positional disorder, with the expected bridging hydride apparently 

disordered over two terminal sites. It is interesting to note that this unique hydride 

arrangement is also the location of the longest Rh-Rh distance (Rhl-Rh3 3.0597(5) A 

compared to an average = 2.794 A). The phosphine associated with Rhl is also 

disordered over two sites o f equal occupancy. These slight differences are not believed 

to infer a different complex, though the two terminal hydride positions could be treated 

as fully occupied, generating a cluster with 13 hydrides, without any detrimental effect 

on the refinement. However, based on the solution chemistry o f this cluster (discussed 

next), particularly the observed diamagnetism of these crystals, formulation as a 12 

hydride-containing cluster is still favoured (both a H 13 and a Hn(p-H 2) cluster would 

have 77 cluster valence electrons and therefore be paramagnetic). The relatively small 

distortions compared to the [BArp]* congener are ascribed to crystal packing effects 

resulting from the change in the anion, and the large degree o f positional disorder in the 

immediate environment around R h l.

Due to the limitations inherent in the location o f hydrides using X-ray 

diffraction data it was important to unambiguously confirm the number o f hydrides
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associated with these clusters, this was achieved by three complimentary techniques. 

Firstly, HYDEX31 analysis (performed by Professor Paul Raithby, Department of 

Chemistry, University o f Bath) confirmed that the lowest energy positioning of 12

0 41hydrides around a {Rli6P6} core is as all edge bridging, with no hydrides in terminal 

positions, further suggesting that the two terminal sites observed in the [1-H-closo- 

CBnM eii]’ solid-state structure are an artefact o f disorder. Attempts to fit 8 face 

capping hydrides with four other terminal hydrides, or placing all twelve hydrides as 

terminal resulted in the experimentally observed structure with twelve bridging hydrides 

(Figure 13).

F igu re 13: The calculated hydride positions in 2 7 -H 12 from H Y D E X  analysis.

This analysis, however, only gives limited support to the experimental location 

of the 12 hydrides as edge bridging and it does not prove that the twelve hydrides 

observed are actually real and not, for example, ten fluxional edge bridging hydrides 

disordered over twelve positions.

In solution, both salts (bar the signals associated with the anion) display 

identical spectra, with the 3lP{1H} NMR spectrum showing only one phosphorus 

environment (5 110.5 ppm ^(RhP) 140 Hz) and a single broad hydride resonance at -
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21.44 ppm in the !H NMR spectrum. The integral of this hydride resonance was 12H 

(repeatedly found for both salts, on independently synthesised samples and with a 5 s 

relaxation time to prevent saturation). The identical spectra for both salts and most 

importantly a matching 12 H integral hydride signal, confirm that both solid-state 

structures correspond to 27-Hn- Definitive confirmation o f the presence of 12 hydrides 

was forthcoming from mass spectrometry (FAB+ mode), with the radical cation, 

[(‘PrsP^RhsHn]**, observed at 1590.3 m/z with the expected isotope pattern for 

RI16C54H 138P6 (Figure 14).

A 1590.91590.3
1590.3

1591.3

1592.2

r| itt, rrr, . ,■

1594.4

"I ■ 'T 1 | I 1 " | I

1580 1600
m/z

F igu re 14: Calculated (A ) and observed (B ) mass spectrum for the radical cation [('PrsPleRheH^f*

Progressively cooling a sample of 27-Hi2 to 200 K in CD2CI2 resulted in a 

gradual broadening o f the hydride resonance, until at 210 K it broadens into the base 

line. The slow exchange regime was not obtained, indicating a rapid fluxionality of the 

hydrides over the surface o f the cluster. The hydride resonance remained a broad singlet 

in the !H{31P} NMR spectrum at 200 K, with no Rh-H or P-H coupling observed. With 

the unequivocal formulation o f 27-Hn now in hand, a full discussion of this cluster is 

possible. The structure o f 27-Hn bares striking resemblance to that for the early 

transition metal halides with edge bridging n donor ligands, exemplified by [Nb6(p.- 

CO12CI6]4' (Figure 15)32 as opposed to the late transition metal clusters (e.g., Rh6(CO)i6,

Figure 15). A further link between 27-Hn and the early transition metal halide clusters
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is found on performing a cluster valence electron count (c.v.e) on 27-Hn. This revealed 

an identical number o f c.v.e (76) when compared to [M ^Cp-Cl^Ch]4", again in contrast 

to that expected for late transition metal octahedrons (e.g., Rh6(CO)i6 has 86 c.v.e).

[Nb6(|i-CI)6CI12]4’ Rh6(CO)16

Figure 15: The solid-state structures o f  [Nb6(^-C l)6C l12]4‘ and Rh6(CO )i6.

That complex 27-Hi2 has 76 c.v.e rather than 86 and shows a structural 

resemblance to [Nb6 (p-Cl)i2Cl6]4’ can be rationalised readily. Shifting from chlorides in 

the Nb cluster to hydrides and phosphines in 27-H n generates a deficiency of 24 

electrons for cluster bonding. This shortfall is exactly offset by the move from Nb to 

Rh, which produces a net increase in metal electrons o f 24 electrons, resulting in the 

observed identical c.v.e counts and therefore the close structural connection. This is an 

example of the electron count driving structure.

An even closer structural relationship is observed on comparison of 27-Hn to a 

neutral Zr6Cli2P6H2 cluster (Figure 16),33’34 although in this case the cluster is supported 

by the considerably less bulky phosphine PMe2Ph (respective cone angles PMe2Ph = 

121°, 'P^P = 160°).35 The c.v.e count for this closely related cluster is 74 electrons, two 

lower than that for 27-H n.
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PMe2Ph

PMe2Ph

Rh— •  = Rh-H Zr— O = Zr-CI
Figure 16: The close structural similarity between 27-H12 and Zr6(p.-Cl)12H2(PMe2Ph)6 (hydride positions

not known).

Along with the isolation o f Zr6(p-Cl)i2H2(PMe2Ph)6 a cationic analogue was 

also synthesised, [Zr6(p-Cl)i2H3(PEt3)6]+. The hydrides were not located in either of 

these 74 c.v.e count cluster solid state structures, though by comparison to closely 

related analogues, [ZxeC\\%YU]A' and [Z^ClisHs]3' (equally 74 c.v.e clusters) it is 

probable that they are face bridging in a (p-3) mode.36 Hexa-nuclear clusters with the 

[Nb6(p-Cl)i2Cl6]4- type atomic arrangement can exist equally with c.v.e. counts of 74 

and 76, dependent on the metal-ligand set involved. The cluster [Ta6Cli2(OTf)6]n‘ (n = 

2, 3 or 4) can exist as both of these c.v.e counts, being reversibly reduced 

electrochemically in two one-step processes to the 76 c.v.e cluster (Figure 17),37 

although only the 74 and the paramagnetic 75 c.v.e count clusters have been isolated.38

OTf

OTf.

Ta
OTf

$ k .f—O
OTf 

74 c.v.e

2 - OTf “ I 3-

OTf
'OTf

OTf

75 c.v.e

OTf

-Ta:
OTf.

r f r i — OTf

OTf

VaCl—O Tf

OTf

76 c.v.e

Ta— O = Ta-CI

Figure 17: The reversible reduction o f the [Ta6Cl|2(OTf)6]2' cluster.
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6.2.1.2: Preliminary Mechanistic Studies

Deuteration studies on the decomposition of 22-(H2)x have unambiguously 

demonstrated that the proton source in the formation o f 26Pr is external dihydrogen, 

with the replacement o f H2 for D2 in the synthesis o f 22 affording [DP‘Pr3][Y], as shown 

by a 1:1:1 triplet (§46.1 ppm, *J(DP) 68 Hz) in the 31P{1H} NMR spectrum. The 

formation of 27-Hn therefore clearly involves the heterolytic activation of coordinated 

dihydrogen, as seen previously in the synthesis of [Ru4H6(r| -C6H6)] , with the 

transfer o f a proton to the phosphine generating 26Pr. Intramolecular transfer o f a 

proton from coordinated H2 to an ancillary ligand is well known (e.g., [Os(r| - 

H2)(CO)(pyridine-2-thiolate)(PPh3)2][BF4], Figure 18),2’ 39 although to the best of our 

knowledge there are no examples o f this process involving a phosphine.

F igu re  18: The reversible proton transfer from coordinated dihydrogen.

For proton transfer to occur in 22 a dihydrogen adduct (either the mono or the 

bis complex) has to be more acidic than [HP'Pr3]+, which has a pKa o f 9.0. Extensive 

work has been performed on the estimation of the pKa’s o f dihydrogen complexes,40 and 

complexes that are cationic are significantly more acidic than their neutral counterparts. 

2 2 -(H2)2 also must have a considerably lower pKa than the neutral [ ( 'P ^ P ^ R u ^ M H ^ ] 

(pKa = 39), in which protonated phosphine does not form 41
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Following the characterisation of 26Pr there are still a number of possible 

mechanisms that could account for the formation of 27-Hn. Hexa-nuclear clusters are 

well documented to self-assemble spontaneously from unsaturated mono nuclear 

precursors,37 such as the fragment {(,Pr3P)Rh(H)x) that may well be formed after the 

loss o f 26Pr (Figure 19).

{( 'P r^ R M H ),}

Rh-H

F igu re 19: Cluster formation possib ly  via a {('Pr3P)R h(H )x} fragment.

This aggregation may occur directly from a mono-nuclear compound or via an

intermediate cluster that would then undergo an equally well known fragment

condensation reaction.40 To elucidate this process the decomposition of 22 in C6H5F

 ̂1 1under 4 atmospheres o f H2 was monitored periodically by P{ H} NMR spectroscopy. 

Unfortunately the lack o f suitable deuterated solvent (C6D5F) prevented the acquisition 

of suitable NMR spectra, whilst CD2CI2 was not used due to side reactions that occur 

in competition to cluster formation, resulting in a more complex spectrum. The array of 

31P{!H} NMR spectra are shown in Figure 20 for the duration o f the cluster synthesis 

(monitoring for longer times resulted in no further change in the spectra).

315



v ©  « 0

lh

12h

24h 

48h

»̂ wnV
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Figure 20: The 31P {'H } NM R spectra for the decomposition at 40°C o f  22 in C6H5F under 4 atmospheres
o f  H2.

A number o f important points can be taken from the analysis of these spectra: (i) 

after five days (120 h) the reaction is complete, with three major phosphine containing 

products, 26Pr, 27-Hi2, and a doublet at 58.4 ppm (^(R hP) 115 Hz, Complex A) being 

observed; (ii) after 12 hours, the reaction shows the presence o f significant quantities of 

26Pr, along with two intermediates at -95  ppm; (iii) the intermediates are gradually 

converted into 27-H n over the course of the next 96 hours (confirmed by an 

examination of the mass balance of the system -  Figure 21); (iv) the higher field doublet 

(initially at 60.3 ppm (22), ^(RhP) 112 Hz) gradually shifts upfield over the course of



the reaction, until it is centred at 58.4 ppm (^(RhP) 115 Hz), with a concomitant growth 

of the resonance attributable to 26Pr.

70

60

26Pr

40

o 30 -
‘60 ppm’ region.

10 -

Intermediates at ~95ppm

12 24 48 72 96 1201

Tlme(h)

Figure 21: Mass balance for the various phosphine containing products in the decomposition at 40°C o f  
22 in C6H5F under 4 atmospheres o f  H2 (values for 'Pr3P = 0  omitted for clarity). ■ = the intermediates at 

~95ppm , ♦  = 2 7 -H ]2, X = doublet in the range 58.4 to 60.0 , A  = 26Pr.

Inspection o f the mass balance of this system (Figure 21) suggests that the 

intermediate complexes forms via the heterolytic cleavage o f coordinated dihydrogen, 

with both the intermediate and 26Pr present in equal concentration after 1 hour. The 

formula of the neutral rhodium fragment formed after loss of 26Pr would be 

{('Pr3P)RhH3 }, this could exist as a mono nuclear species further ligated by dihydrogen, 

generating a mixed hydride/dihydrogen complex (perhaps the 18 electron complex 

('Pr3P)Rh(H)3(r|2-H2 )2). A more plausible formulation for this complex is as a tri- 

nuclear cluster formed from the unsaturated {('Pr3P)RhH 3 } fragment. The chemical shift 

(-95 ppm) for this complex is shifted downfield significantly away from the region 

expected for mono-nuclear complexes. Late-transition metal tri-nuclear clusters formed 

from the hydrogenation o f mono-nuclear precursors are well-documented (see section 

6.1) and generally have a low c.v.e count o f 42 electrons (e.g., Pt3H6(P!Bu3)3 and 

Rli3H3(POMe3 )6  -  unfortunately no 31P{1H} NMR spectra were reported for this
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rhodium trimer)13,19 or 44 electrons (e.g., [Ir3H7(PCy3)2(py)3]2+)21. This is compared to 

more classical electron precise trimers that have 48 c.v.e. An analogous structure with 

42 c.v.e can be drawn for the intermediate in this system (Figure 22), which could then 

react further, possibly via an electronically unsaturated cationic species (generated by 

reaction with the acid by-product or the acidic 22-(H2)x adducts) ultimately giving 27- 

H n .

H\
H Rh'

-H;

H
. H— _ / __'P'Pr3

/  H -  *  2  

'Pr3p HH/ R| \
H p 'P r3 

42 c.v.e

H

H Rhr j  \ \
/  \ pZ -H  H 

Pr3P H/ R|h\
H p ip r3 

40 c.v.e

-2 H ;
27-H 12

F igu re 22: A  postulated m echanism  for the formation o f  2 7 -H 12 v ia  the tw o observed intermediate
com plexes.

The 42 c.v.e count trimer shown in Figure 22 is also analogous to the early 

transition metal clusters, e.g., [Nb3Clio(PR3)3] \ 34, 42 that have the same number of 

cluster electrons. Trimeric clusters with this c.v.e count generally are stable with respect 

to further agglomeration; therefore, for further fragment condensation to occur, an 

unsaturated intermediate compound is probably required. Examination of the 

intermediate region o f the 31P{1H} NMR spectra (Figure 20) shows two products, one 

that initially predominates, but gradually reduces in intensity, with a concomitant 

growth in the other intermediate. This could be due to a process like that shown in 

Figure 22. The coalescence of two trimeric clusters yielding a hexa-nuclear cluster is 

documented and often occurs with ligand expulsion, (e.g., in the synthesis of 

[Mo6S8(PEt3)6] by the reductive dimerization o f two trinuclear molybdenum chloro- 

sulfido clusters).43 The conversion of an intermediate oligomeric complex into a 

hexameric cluster has also been postulated to account for the formation of
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WeCH^CC'PrXO'Pr)^, with the fusion of a number o f reactive dimers yielding the 

octahedral cluster.11 Specific precedence for a lower nuclearity cluster forming a higher 

one by the loss o f hydrides is found when the tri-nuclear Pt cluster, Pt3H6(PtBu3)3, self 

assembles on dehydrogenation to form the cluster PLi^CP^usX.12-14 However, without 

further physical data on the structure of the intermediates involved in the formation of 

27-Hi2 this remains conjecture.

Equally importantly in this system is the elucidation o f the by-product (termed 

complex A from here on), that accounts for approximately 50% of the rhodium content 

in this system. The ]H NMR spectrum of A on removal o f all free hydrogen has a 

hydride resonance at -24.90 ppm that on phosphorus decoupling collapses from a 

doublet o f triplets to a doublet (^(RhH) = 37 Hz). Therefore, the single hydride 

environment in this complex is coupling to two equivalent phosphines ( J(PH) 14 Hz) 

and one rhodium. Complex A is not the solvento complex 22-DCM, due to different 

chemical shifts and coupling constants in both the *H and 31P{1H} NMR spectra. An 

accurate determination o f the number of hydrides in A is frustrated by the constant 

presence of residual cluster, 27-Hn, preventing a precise integration against the anion or 

'P^P resonances. An integral value corrected for the concentration o f 27-H n gives a 

value of ~1.5 hydrides per {('P^PXRh} fragment. This could be interpreted in a number 

of ways, as either a {(‘P^PXRhH} fragment, a {('Pr3P)2RhH2}+ fragment or a cluster 

compound averaging to this ratio. The {('P^PXRhH} fragment has been previously 

reported to form from the decomposition of {('Pr3P)2(H)Rh}2(n-N2), and is only 

transient, eventually resulting in the formation of unidentified complexes that are 

postulated to be oligomeric clusters in nature.44 Complex A is not the mono-nuclear 

compound (‘P^PXRhH,45 or in fact any monomeric Rh(I) complex due to the small
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^(RhP) coupling constant (112 Hz) observed in the 31P{1H} NMR spectra 

(Rh(I)(P‘Pr3)2 complexes generally have coupling constants in the region o f -150 Hz).44 

The dimeric compound {('Pr3P)2RhH }2 can also be ruled out, as this compound has a 

hydride resonance centred at -14.5 ppm, significantly downfield from that in A.45 

Furthermore, complex A is not the Rh(III) compound ('P^P^RhHs, (where the hydrides 

resonate as a broad singlet at -12.5 ppm )44 It is also not assignable as 22-(H2)x (x =1 or 

2). We thus tentatively assign A as a trimeric, 42 c.v.e count cluster, either 

Rh3H3('Pr3P)6 or [Rh3H6(‘Pr3P)6]3+ (Figure 23), similar to the known compounds 

Rh3H3(POMe3)6 and Pt3H6(PBu3)3 respectively.13,18 However, in A the hydrides have to 

be in terminal positions as a bridging mode would lead to a multiplicity drastically 

higher than that observed.18 A cationic p-3 hydride capped trimer analogous to the 

decomposition product from Crabtree’s catalyst can also be discounted due to the 

observation o f only one, non-fluxional, hydride environment in A. Mass spectrometry 

was not useful in characterising these complexes, as only a signal due to the fragment 

{('Pr3P)2Rh}+} was observed.

H / ' Pr3 
'Pr-jP \  /
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'Pr3P> h  
H \
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H—:Rh« 
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\ 7 1 X \

P'Pr3

■Rh— H 
| \
I H
P'Pr3

F igure 23: Postulated structures o f  com plex A , both are terminal hydride Rh trimers with cluster valence
electron count o f  42.

An unsaturated cluster with a valence electron count of 42 is favoured as the 

chemical shifts corresponding to A change under a dihydrogen atmospheres, with a
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downfield shift o f the doublet observed in the 31P{*H} NMR spectrum (to 61.80 ppm, 

^(RhP) 112 Hz). The hydride resonance previously observed as a doublet o f triplets is 

now not detectable at room temperature, the resonance for free dihydrogen is also not 

observed, again indicating that a fluxional exchange process is occurring. This exchange 

is extremely facile, not being frozen out at 195 K. The observed reaction with 

dihydrogen may well be producing a R l^ H s ^ 'P ^  or [ R l^ H s ^ 'P ^ ] 3*, this reactivity 

is consistent with 42 c.v.e count trimers, that can readily accept two electron donors to 

reach the equally stable count of 44 c.v.e.46 An analogous addition o f dihydrogen is also

1 fiobserved for Rh3H3(POMe3)6, which is also a 42 c.v.e rhodium trimer. Due to the 

repeated failure to isolate crystalline material of A there is considerable uncertainty in 

its identity, precluding any further discussion.

A number of attempts were made to improve on the synthesis of the cluster 

compound 27-Hn by varying H2 pressure, temperature, and the solvent used. On 

moving to higher H2 pressures (10 atmos.) there was a decrease in the amount of 27-Hi2 

formed (yield only 20%, the by-product was still complex A formed in 80% yield). This 

is in contrast to the copper polyhydrides and the (R3P)xPtxHy clusters that need high H2 

pressures (up to 300 atm.) to form in good yield.12' 15 The reaction at a lower H2 pressure 

(~1 atmosphere) did not greatly affect the outcome, with the synthesis leading to a 40%

: 60% ratio of 27-Hn : A. The presence of excess dihydrogen is vital, as an attempt to 

form 27-Hi2 under an argon atmosphere led to no observable cluster products. All 

further reactions were performed under the apparent optimum of 4 atmospheres of H2 

pressure. At low temperatures (268 K) no detectable decomposition to 27-Hn had 

occurred after 5 days, with the predominate rhodium containing product remaining 22- 

(H2)x, although small quantities of the intermediate complexes (-5% , by 31P{*H} NMR
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spectrum) were observed. At higher temperatures, (refluxing C6H5F, 368 K) a much

quicker colour change was observed, with all the starting 2 2 -(H2)x consumed within 15

minutes, a new complex at 60.4 ppm in the 31P(1H} NMR spectrum (doublet ^(RhP)

118 Hz) was the only rhodium containing product observed, along with 2 equivalents of

26Pr. Attempts to recrystallise this product failed. Longer refluxing times led to only

1the resonance associated with 26Pr being present in the P{ H} NMR spectrum, with 

metallic rhodium also deposited. At 323 K, reduced yields o f 27-Hn were observed 

{vide infra), thus it was concluded that 313 K was the optimum temperature for this 

reaction. An attempt was also made in replacing fluorobenzene for dichloromethane. 

This led to the formation of 27-Hn, but only in a low yield; a number of other products 

were also observed in the 31P{!H} and NMR spectra. These presumably arise from 

chloride abstraction (as found for 22-DCM) by the unsaturated reactive intermediates. 

Once formed, however, cluster 27-Hn and complex A are stable for weeks in CH2CI2 

solutions. Other anions (e.g., [PF6]’ and [BF4]') are not suitable for this system, with 

anion decomposition preventing cluster formation. On extended heating (14 days) of a 

solution of complex A under H2, no 27-Hn is formed; therefore, A is not an 

intermediate on the pathway to 27-Hn- The optimum conditions were found to be ~4 

atmospheres of H2, C6H5F as the solvent, 5 days duration, 40°C heating and with a 

robust, weakly coordinating anion also essential.

6.2.1.3:Reactivity of [(iPr3P)6Rh6Hn][Y]2.

In solution 27-H n is stable for days, but on evacuation for several hours, both

1 3 1 1  •the H and P{ H} NMR spectrum show a significant change. The hydride resonance in 

the !H NMR spectrum shifts from -21.40 to -25.50 ppm, concomitantly the associated
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integral decreases from 12 H to 10 H (again relative to the anion and 'Pr resonances, 

determined on a number o f different samples, with a 5 s delay to prevent pre-saturation). 

The 31P{ 1H} NMR spectrum had also changed, now showing a doublet centred at 107.5 

ppm with a much reduced coupling constant (^(RhP) 110 Hz). This process is 

reversible, as on addition of dihydrogen 27-Hn is cleanly reformed (Figure 24). The 

observation o f a single hydride resonance suggests a fluxional system where the 

hydrides are in rapid exchange as it is impossible to arrange 10 bridging ligands around 

a L6M6 core and maintain Oh symmetry. Attempts to confirm the number of hydrides by 

mass spectrometry failed, with no cluster compound seen at all, and attempts to obtain 

crystalline material were not successful. Despite this, the complex can be assigned as 

the ten-hydride species, [('PrsP^RheHio]2*, 27-Hio with reasonable confidence solely 

from NMR spectroscopy.

Vacuum 2h, -H2

+ H

76 c.v.e
74 c.v.e

F igure 24: The reversible loss o f  H 2 from 2 7 -H 12, generating 2 7 -H 10 (hydride locations not known).

The isolation o f these two closely related stable clusters, differing by only two 

hydrides is achievable due to the two possible stable cluster valence electrons counts 

(74 and 76 respectively) for the octahedrons with this geometric arrangement. Clusters 

that are able to co-exist as each of these two c.v.e counts have been previously reported 

{e.g., the [Ta6Cli2(OTf)6] cluster that can exist as the 2- or the 4- complex).38, 47 The
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1 1 09reversible loss/addition o f H2 to a cluster framework has also been reported. * The 

loss of a number o f the inner hydride ligands (here the bridging ligands are termed inner 

and the terminal ligands axial) in 27-Hn is unusual for [M6(n2-X)nY 6]n systems, as in 

the plethora o f early transition metal clusters with comparable geometries the inner 

ligands are substitutionally inert, whilst the axial ligands are labile. This disparity may 

well be due to the differing electron donor properties, with bridging halides acting as a 

three electron donor in comparison to H', a one electron donor.

Extended evacuation of 27-Hn (5 days) resulted in the complete loss of the

1 1
resonances associated with the cluster in both the H and the P{ H} NMR spectra. In

fact, no hydride resonances in the NMR spectrum and no rhodium containing 

 ̂1 1products in the P{ H} NMR spectrum were observed. This reaction is irreversible as 

recharging the solution with H2 did not result in the regeneration o f either 27-Hjo or 27- 

H n. This decomposition must be initiated by further vacuum induced loss of 

dihydrogen.

Deuteration studies on 27-Hn showed that placing a solution of 27-Hn under a 

D2 atmosphere resulted in no reduction in the intensity o f the associated hydride signal. 

This clearly shows that there is no exchange between the hydrides on 27-Hn and D2, a 

finding that is supported by the observation of individual signals for both 27-Hn and 

free H2 (4.60 ppm) in the *H NMR spectrum when placed under a H2 atmosphere. 

However, placing a sahiple of 27-Hio under a D2 atmosphere resulted in a hydride 

resonance (-21.38 ppm) very similar to that observed for the perprotio isotopomer, 27- 

H n (-21.44 ppm) and a 31P{1H} NMR spectrum corresponding to the high hydride 

cluster, while the hydride resonance still integrated to 10 H. This is consistent with the
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formation o f the isotopomer, [('Pr3P)6Rh6 (H)io(D)2]2+ (Figure 25). In each o f the 

deuterium reactions no free H2 or HD was observed.

__ vacuum 2h + D2
No Reaction  X   27‘H12 ---------------- ►  27-H10 ---------------- ►  27-H10D2

F igure 25: The respective reactivities o f  27-H ]2 and 2 7 -H 10 towards D 2.

Complexes 27-HJ2 and 27-Hio are stable to significant concentrations of weak 

acid (in the form o f the protonated phosphine 26PR, pKa o f 9.0),40 with no protonation 

occurring. The reactivity of the related zirconium clusters, [ZreXjgHs]3’ (X = Cl or Br) 

was found to be dependent on the steric shielding supplied by the bridging halides, with 

[Z^BrigHs]3' considerable more stable than its chloride congener.36 A similar steric 

protection could well be the source of the stability of 27-Hi2, as the space filling 

diagram reveals an almost complete encapsulation o f the RI16H 12 core by the alkyl 

periphery (Figure 26).

Figure 26: The space filling diagram o f  the dicationic portion o f  27 -H i2.

The cluster, 27-Hj2, however does react with acetonitrile to generate a mixture 

of unidentified products as determined by 31P{1H} and NM R spectroscopy. Addition
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of an excess (100 fold) of 1-hexene to a dihydrogen saturated solution of 27-Hn 

resulted in the complete hydrogenation to hexane (by G.C. analysis); however, the 

system is not recyclable with no activity to a second batch of 1-hexene. NMR 

spectroscopy on the post-hydrogenation solution showed that no 27-Hn remained, 

furthermore no signals were detected in the hydride region o f the lH NMR spectrum or 

in the 31P{1H} NMR spectrum.

In an attempt to isolate crystalline material o f the postulated RI13 cluster 

(complex A) the decomposition of the dihydrogen adduct with a bulkier phosphine, 

PCy3 was investigated. The significant steric crowding around the periphery of 27-Hn 

suggests that an increase in the Tolman cone angle o f 10° may also be sufficient to 

prevent the condensation of the intermediate complexes, allowing for their isolation and 

full characterisation. Importantly, by analogy to the early transition metal clusters the 

use of the more electron donating phosphine, PCy3, may also stabilise clusters with a 

lower valence electron count (i.e., a 8  hydride analogue o f 27 with a c.v.e o f 72). In the 

early transition metal cluster analogues the electron donor strength of the axial ligand is 

the primary factor in influencing the relative stabilies o f the possible formal oxidation 

states of the M 6X 12 core.38 This is exemplified by the niobium series (Figure 27), that 

with n acceptor ligands (phosphines, [CN]') favour the 76 c.v.e count, with n donor 

ligands (e.g., halide) the 74 c.v.e count and very basic ligands (e.g., primary amines) 

resulting in a significant alteration in the octahedral structure, changing from twelve 

edge bridging halides to eight face capping halides.48*50
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F igu re 27: The effect o f  axial ligand n donor ability on the geom etry o f  stable octahedral N iobium  halide
clusters.

6 .2 .2 :[(PCy3)6R h6Hx][Y ]2 (Y = [ l - H -c /^ -C B n M e„]- o r [BArF]’).

The !H and 31P{1H} NMR spectra of 23-(H2)x on standing in CD2CI2 solutions at 

ambient conditions under 4 atmospheres of H2 showed the slow formation of 

[HPCy3][Y] (26Cy) in an analogous manner to 2 2 -(H2)x. A heterolytic cleavage of 

coordinated dihydrogen is therefore again occurring, which is accelerated on heating 

fluorobenzene solutions o f 23-(H2)x to 50°C. After 5 days the 31P{1H} NMR spectrum 

of the brown solution (in H2 saturated CD2CI2) appeared to show four products, (26Cy), 

a broad doublet centred at 52.73 ppm ('jRhP 101 Hz, the major rhodium containing 

product ~ 85%), a broad singlet at 88.5 ppm and finally another broad singlet at 109.6 

ppm. The hydride region of the !H NMR spectrum however consisted o f only two 

resonances, a major and a minor, both broad singlets at -24.50 and -21.63 ppm 

respectively. In addition to the resonances associated with 26Cy and that attributable to 

cyclohexyl phosphine (1.01 to 2.19 ppm), at approximately 0.50 ppm a very broad 

singlet was also observed. The spectra were identical for both the [1-H-closo- 

CBnM en]' and the [BArp]' anions. Recrystallising a concentrated C6H5F sample of the
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[l-H-c/oso-CBiiM en]' reaction mixture by the slow diffusion of pentanes at room 

temperature under a dihydrogen atmosphere yielded a set o f brown crystals and a set of

1 3 1 1colourless crystals. H and P{ H} NMR spectroscopy on the colourless crystals 

allowed them to be characterised as 26Cy. An X-ray diffraction study on the brown 

crystals (isolated in only 10% yield) revealed that the asymmetric unit consisted of a 

{(PCy3)Rh}6 cluster core, analogous to that observed in 27-Hi2, two anions (that 

showed no positional disorder) and one molecule o f CH2CI2. Figure 28 shows the 

molecular structure o f the dicationic cluster core with pertinent bond distances and 

angles.

Despite a decent data set (wRi = 5.7%) the hydrides could not be refined reliably 

and thus were not considered in the final stages o f refinement. Examination of the 

structural metrics revealed an essentially symmetrical dicationic {PRh}6 octahedral 

core, however the Rh3 apex does appear to be slightly elongated. The Rh-Rh bond 

lengths range from 2.7201(8) to 3.1315(9) A, possibly suggesting an inequivalent 

hydride substitution pattern on the cluster core. However, considering that the solid 

state structure of the [1-H-c/ayo-CBnMen]’ salt o f 27-Hi2 had an equally wide range of 

Rh-Rh distances (2.7181(3) -  3.0597(5) A) this is probably a packing artefact.
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F igu re 28: The m olecular structure o f  the dicationic portion o f  [(PC y 3 )6Rh6H x ][l-H -c /o jo -C B |1M ei1] 2 , 
28-H x , hydrogen atom s associated with the cluster were not located, and all hydrogens are omitted for 

clarity. Thermal ellipsoids show n at the 30% probability level.

Rh1-Rh3 3.1315(9) Rh2-Rh5 2.7201(8) Rh1-P1 2.2347(19) Rh4-Rh1-Rh5 58.326(18)
Rh1-Rh4 2.777(1) Rh2-Rh6 2.7585(7) Rh2-P2 2.2482(17) Rh4-Rh1-Rh6 85.77(2)
Rh1-Rh5 2.8116(7) Rh3-Rh4 2.9244(7) Rh3-P3 2.2478(19) Rh5-Rh2-Rh4 59.961(18)
Rh1-Rh6 2.8648(7) Rh3-Rh6 2.7984(7) Rh4-P4 2.2710(19) Rh5-Rh1-Rh3 86.07(2)
Rh2-Rh3 2.7922(7) Rh4-Rh5 2.7235(7) Rh5-P5 2.2466(19) Rh5-Rh2-Rh3 94.95(2)
Rh2-Rh4 2.7301(7) Rh5-Rh6 2.7436(7) Rh6-P6 2.2628(18) Rh4-Rh2-Rh6 88.80(2)

T ab le  2: Selected bond lengths (A) and angles (°) for com pound 2 8 -H x .
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The [BArp]' congener, [(PCy3)6Rh6Hx][BArp]2 (Figure 29) was also 

recrystallised in an analogous manner (again requiring a dihydrogen atmosphere and 

again in poor yield). As for complex 27-H n this anion produces a more symmetrical 

octahedral core. The asymmetric unit consists of a RI13 triangular face, and one heavily 

disordered anion that is remote.

Rh1-Rh2 2.8034(9) 
Rh1-Rh3 2.8493(9) 
Rh2-Rh3 2.8841(10) 

Rh1-Rh2-Rh3 60.11(2) 
Rh1-Rh3-Rh2 58.54(2) 
Rh2-Rh1-Rh3 61.35(2) 

Rh1-P1 2.248(2) 
Rh2-P2 2.236(2) 
Rh3-P3 2.246(3) 

Rh1-Rh3-Rh3' 89.96(3) 
Rh1'-Rh1-Rh3 89.99(3) 
Rh1'-Rh2-Rh3 89.66(3)

Table 3: Selected  bond lengths (A) and angles 
(°) for [(PCy3)6Rh6H x][B A rF]2.

F igu re 29: The {P R h}6 core o f  [(PCy3)6Rh6Hx] 
[BArF]2, thermal ellipsoids at the 30% probability level.

Definitive characterisation o f the number o f hydrides present in these clusters is 

based on a combination o f NMR and mass spectroscopy. The ]H NMR spectrum of

^ 1
crystals o f the {PRh}6 cluster under a dihydrogen atmosphere displayed a broad 

hydride resonance at -21.53 ppm, that is not in exchange with free dihydrogen 

(observed at 4.60 ppm). In addition to the signals corresponding to the anion and PCy3 

there is an additional broad resonance at 0.50 ppm. The integration of these signals 

(repeated on numerous independently synthesised samples, with a 5 second delay) gave 

a relative integral (in comparison to the anion resonances) o f approximately 2 : 1 2  (0.50
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ppm and -21.53 ppm resonances respectively Figure 30). The spectra are independent 

o f the anion utilised.

CD
CD

(if-Hi)?

c\i

O i-H)

jiuL J uH
i ' ' ' 111 *' ' i ' ' ' 11 ' ' ' 111 ' 1 ' i ' ' ' '  i ’
6 4 2 0  -2 -4 -6 -1 0  -12  -14 -16  -18  -20  -22  -24  -26  -28

Figure 30: The 'H NM R spectrum (in CD2C12) o f  the [(PCy3)6Rh6H x][l-H -c /o j,o-C B n M en]2 cluster 
under a dihydrogen atmosphere, (* = resonance attributable to vacuum grease).

The observed NMR spectrum suggests the presence of twelve hydrides 

(possibly edge bridging) as previously seen for 27-H n that are also not in exchange 

with free H2 (6 4.60 ppm). However, there is also an integral two, broad resonance at 

0.5 ppm, which is in the range expected for coordinated dihydrogen.1 This allows for a 

tentative formulation as [(PCy3)6Rh6 Hi2(H2 )][Y]2 , 28-H]4, with 12 edge bridging 

hydrides and two hydrides (possibly o f the non-classical variety) in a different chemical 

environment. The calculation o f T 1 values on these two hydrides confirmed that the
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resonance at -21.53 ppm is a hydride (with a relaxation time o f 157 ms), however the 

Ti value for the 0.50ppm resonance was unobtainable, possibly due to its broadness and 

proximity to the PCy3 resonances. A 'H I31?} NMR spectrum was effectively identical 

to the non decoupled spectrum. Dihydrogen can coordinate to clusters, as shown in the 

compound [Ru4 H6(C6H6)4]2+ where one hydride resonance is characterised as an intact 

r |2-H2 ligand by the short Ti value of 34 ms.22 The 31P{1H} NMR o f 28-Hu showed two 

broad resonances at 88.5 ppm and at 109.6 ppm, in a relative ratio of 2:1, demonstrating 

two inequivalent phosphine environments in this cluster. Support for the number of 

hydrides around the |PRh}62+ core was forthcoming from mass spectroscopy, which 

identified the molecular di-cation [(PCy3)6RhH[4]2+ at 1158.3 m/z (Figure 31).

1158.0 1158.3
1158.5

1156.2

Figure 31: A theoretical, B observed isotope pattern for [(PCy3)6Rh6H 14]2+, 2 8 -H 14, ( 1 158.3m/z), the 
observed ‘shoulder’ at 1156.2 is assignable to [(PCy3)6Rh6H 10]2+ ( 1 156.2m/z)

As well as providing confirmation o f the hydride count in 28-HJ4 the mass 

spectrum also suggests that 28-Hi4 can lose a number of hydrides to form a ten hydride 

complex {e.g., as observed for 27-Hio). Cluster 28-Hi4 does lose a number of hydrides 

under vacuum, though this takes considerably longer than for 27-Hn. After 2 days 

evacuating there is still a significant amount o f 28-Hj4 as well as two new equally broad 

hydride resonances at -26.51 ppm and -28.45 ppm, interestingly these two signals are in 

a respective ratio o f 8 : 2. Further evacuation (> 3 days) results in the complete loss of 

resonances attributable to 28-Hi4, cleanly forming one product as determined by the
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31P{!H} NMR spectrum this time a single sharp doublet at 92.1 ppm (^(RhP) 97.8 Hz). 

The two hydride resonances observed in the !H NMR spectrum were repeatably 

integrated to 8 H and 2 H respectively (again on a number o f samples each with a 5 

second delay). This allows for the formulation o f the low hydride cluster as 

[(PCy3)6Rh6Hio][Y]2, 28-Hio, again with two inequivalent hydride positions. The 

integral eight hydride signal may well be attributable to eight face bridging hydrides, in 

an analogous manner to that observed for the halides in Nb6l8(NH2Me)6 and for the 

seven hydrides in Th6Bri5H7 (here the seven hydrides are disorder over the eight 

faces).50,51 This reaction is reversible (Figure 32), with 2 8 -H 14 quantitatively reformed 

on exposure of a solution of 28-Hio to a dihydrogen atmosphere. No intermediate 

cluster complex with 12 hydrides, analogous to 27-Hi2 is observed in either the or 

the 31P{1H} NMR spectra.

Extended Vacuum

+ Ha

F igure 32: The reversible addition/loss o f  dihydrogen to the {(P C y3)6Rh6} cluster core.

The observation of both sets of hydride signals after 2 days vacuum rules out a 

rapid room temperature equilibrium between the two clusters, 28-Hi4 and 28-Hio. The 

formation of a ten hydride cluster octahedral was expected as this would result in a 74
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c.v.e count, a known stable electronic configuration for these systems and is analogous 

to 27-Hio. However, the formation of a 14 hydride cluster certainly was not, as this 

formally counts to 78 c.v.e an unprecedented value (a paramagnetic [NbeClis]5" cluster 

has been previously reported with a c.v.e. count o f 77). A possible explanation that 

may account for this unusually high cluster count comes from some preliminary EHMO 

calculations (performed by Dr A. S. Weller) which reveals a small HOMO LUMO gap 

for a model complex. Therefore, it is feasible that a small 2 electron donor (like H2) that 

can penetrate the cyclohexyl periphery could bond with the cluster. An early transition 

metal cluster with 20 ligands around the M6 core, [Zr6Cli2(PR3)6H2] has been reported 

and suggested to have 2 face bridging hydrides as well as the unambiguously 

characterised twelve edge bridging chlorides. An analogous structure could be 

suggested in 2 8 -H14, with twelve edge bridging hydrides and either two hydrides or one 

dihydrogen molecule face bridging. However, the positioning and the nature (classical 

or non-classical) o f these hydrides will not be unambiguously resolved until a full 

neutron diffraction analysis has been performed.

The disparity in the behaviour o f the respective ('P^P and PCy3) high hydride 

content {PRh}62+ clusters is further highlighted by the reaction o f 28-Hh with D2. The 

NMR spectrum of a degassed sample of 28-Hh when placed under an atmosphere of 

D2 shows a hydride signal in the expected region (-21.58 ppm), however the associated 

integral has been reduced to 9.8 H. Furthermore, both free H2 (4.60 ppm) and HD 

(triplet *J(DH) 42 Hz at 4.57 ppm) are observed (Figure 33).
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Figure 33: The uncoordinated dihydrogen region o f  the 'H NM R spectrum o f  a degassed solution o f  28-
H 14 under D 2.

Unsurprisingly no resonance is now observed at 0.50ppm (the position o f the 

proposed dihydrogen ligand), this would be expected to be the weakest bound, and thus 

most readily displaced by D 2 (or lost under vacuum). The formation of D2 must involve 

the cleavage o f a molecule o f coordinated D2 , this probably occurs on the unsaturated 

cluster, 28-Hio, as 28-Hi4 does not undergo an exchange process with free H2 .

In contrast to the 'P^P  analogue the loss o f hydrides resulting in the conversion 

of 28-Hh to 28-Hio is not facile, requiring a number of days under high vacuum to 

complete the transformation. Therefore, dissolution o f the bulk crystalline sample 

previously used in the X-ray diffraction analysis can be relied upon to give a 

representative spectrum, importantly with a reliable hydride environment. Crystals of 

both the [l-H -c/oso-CBiiM en]' and [BArF]‘ congeners on dissolution in CD2CI2 

unambiguously show a signal at 0.50 ppm and -21.53 ppm, identifying them both as the 

high hydride cluster, 28-Hi4.

The fluxionality of 28-H]4 was also examined, with a CD2 CI2 sample under 4 

atmospheres o f H2 progressively cooled down to 195 K. At 250 K in the *H NMR
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spectrum the tentatively assigned coordinated dihydrogen resonance has shifted 

downfield to approximately 0.75 ppm, an accurate integration at this temperature is not 

possible due to it partially overlapping with the broad PCy3 resonances. The hydride 

resonance has become more complex, splitting into five broad singlets between -16.5 

and -27.6  ppm and one very broad signal approximately centred at -21.3 ppm. This 

indicates that one o f the fluxional processes has been frozen out, though the extremely 

broad hydride resonance indicates that the slow exchange regime has not been reached. 

The ^ P ^ H }  NMR spectrum still consists o f two broad singlets, again in a 1:2 ratio. The 

inequivalent hydride environments could well be associated with the additional H2 

ligand, as this is not seen for 27-Hn at this temperature. Further cooling to 195 K 

resulted in no significant change in the ^ P j 1!-!} NMR spectrum, but there is another 

increase in the complexity o f the hydride region (Figure 34).

O  CT) CD CNJ ( J )  t -  0 0

C\j CN t -  t -  T-  ^  d

nr—1— r—r—1— 1 1— r—i— 1 1— * • >— r 1 1 >
•14 -16 -18 -20 -22 -24 -26 -28 -30 -32

Figure 34: The hydride region o f  the *H NM R spectrum o f  2 8 -H ,4 at 195K (integrated against anion
resonances).

Eight signals now are observed between -16.78 ppm and -27.89 ppm, 

integrating each results in a 2 : 1 :2 :2 :1 :2 : 1 : 1  ratio, totalling 1 2  protons as expected from 

the room temperature spectra. The ‘dihydrogen’ resonance is not observed, possibly due 

to it now being coincident with the broadened, complex, PCy3 signal. The !H{31P} 

spectra shows no significant change in the hydride region, with eight major resonances 

still observed. Therefore, the binding of the additional hydrides in 28-Hh in comparison
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to 27-Hj2 has resulted in two different phosphine environments (ratio 2 :1), and eight 

(possibly edge bridging) different hydride environments (2:1:2:2:1:2:1:1 ratio). Due to 

the complexity of the system and the uncertainty in whether the addition ligand(s) is 

two hydrides or a dihydrogen molecule means that any discussion about the location of 

individual hydrides at low temperature is not possible. The important point is that 

coordination of an extra ligand has occurred on alteration o f the phosphine to PCy3, 

resulting in a cluster that is chemically very different to the lPr3P congener. This is 

shown by addition o f an excess of acetonitrile to 2 8 -H 14, on which the NMR 

spectrum still shows one broad hydride signal, that is slightly shifted to -21.56 ppm, (in 

comparison to 2 8 -H 14 -21.53 ppm), however a broad resonance is still observed at 

0.5ppm indicating that the cluster, 28-Hu, has persisted. This is further supported by the 

lack of free dihydrogen in the ]H NMR spectrum, which would be expected if a H2 

molecule has been displaced by MeCN. Furthermore, 28-Hio is stable under vacuum for 

14 days in contrast to 27-Hio. The disparity in the behaviour o f 2 8 -H14 when compared 

to 27-Hn may have two origins, steric or electronic: (i) the additional two electron 

donor ligand(s) (r| -H2 or (H)2) stabilises the cluster core and prevents attack o f an 

external Lewis base by donation into a low lying LUMO, or (ii) an increased steric 

protection due to the bulkier phosphine. A comparison o f the space filling diagrams of 

27 and 28 show an extremely congested periphery in 28 with the cyclohexyl rings 

interlocked, which must provide a better steric shield than the ‘P^P  ‘shroud’ where 

there appears to be less steric crowding (Figure 35). This is analogous to the increase in 

cluster stability found on moving to a bulkier halide in [Z^XigHs]3' ( X = Cl or Br) .36
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R = 'P r

Figure 35: A comparison o f  the respective space filling diagrams for the {(PR3)R h}6 clusters (R = Cy
and ’Pr).

The severe steric crowding in 28 may also be the source of the significantly 

poorer yield consistently observed (maximum isolated yields 28-H h  -10% , 27-H j2 

repeatably above 40%), with the other complex (possibly a trimer) that presumably is 

less sterically crowded, forming as the major product for 28.

Unfortunately, as found for the 'P^P system, attempts to isolate crystalline 

material associated with the other doublet observed in the 31P{!H} NMR spectrum from 

the crude reaction mixture repeatably failed. Due to the similarity o f the two phosphine 

systems (both resulting in (PR h } 6  clusters) these by-products are probably closely 

related, thus the discussion in the earlier section about possible structures is equally 

valid here. Attempts to synthesise these clusters from the analogous PMe3 precursors 

failed, forming an intractable mixture o f unidentified products.

6.3. Su m m ary

This chapter has elucidated a number o f the decomposition products from the 

dihydrogen adducts 22-(H2)x and 23-(H2)x, one o f  which has been shown
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unambiguously by a mixture o f X-ray diffraction, NMR and mass spectroscopy to be 

the high hydride containing rhodium octahedron [(PR3)6Rh6Hi2][Y ]2 (R = ‘Pr). A by

product in the formation of these clusters has been isolated and characterised as the 

protonated phosphine [HPR3]+, 26. This allowed for the mode o f decomposition of the 

dihydrogen adducts to be clearly identified as a heterolytic cleavage process with proton 

transfer to an ancillary ligand. Thus, the cationic dihydrogen adducts have a pKa lower 

than that o f 26 (9.0). The clusters have been demonstrated to reversibly lose a number 

o f their hydrides, with 27 existing as either 12 (76 c.v.e) or 10 hydrides (74 c.v.e). An 

analogy between the structure and reactivity of 27 and the early transition metal clusters 

that can equally reversibly shuttle between 76 and 74 c.v.e counts has been highlighted. 

The compound 27-Hn has been demonstrated to be an active hydrogenation catalyst for 

simple linear alkenes and as such can be viewed as a molecular model for the colloidal 

group 9 hydrogenation catalysts. ’ The synthesis o f 27-Hn has been currently 

optimised to yield between 40 and 50% crystalline product (based on rhodium content).

The cyclohexyl phosphine cluster 28 has shown significantly different behaviour 

to its 'P^P analogue, existing as a dicationic {PRh}6 cluster ligated by either 10 or 14 

hydrides. The 14 hydride cluster formally counts to 78 c.v.e, an unprecedented value for 

octahedral clusters o f this geometric arrangement. Furthermore, this cluster is 

considerably more resistant to hydride loss and exhibits no cluster break down in the 

presence of an excess o f MeCN. The hydride environment has also been shown to be 

significantly different to 27, with inequivalent hydride environments in both 28-Hu and 

28-Hio. The presence o f an intact dihydrogen bonded to the cluster has also been 

suggested. The synthesis of this cluster is currently not optimised with yields of only 

circa 10%.
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Both these sets of clusters by reversibly uptaking and releasing dihydrogen can 

be viewed as models for hydrogen storage devices.54 Significant further works needs to 

be performed on these clusters to elucidate further the mechanism of formation and to 

investigate what should be a wide and interesting reactivity. Definitive confirmation of 

the hydride bonding mode and identification of their location in these clusters still needs 

to be obtained.
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7 E x p e r im e n t a l

7.1 Experimental techniques

7.1.1 General

All manipulations were performed under an inert atmosphere of argon, using standard 

Schlenk-line and glove box techniques. Glassware was dried in an oven at 130°C overnight 

and flamed with a blowtorch, under vacuum, three times before use. CH2CI2, C4H8SO2,, 

CH3CN and pentane were distilled from CaH2. C6H5F was distilled from P2O5, toluene and 

hexane from sodium, THF and diethyl ether from sodium wire /benzophenone ketal 

indicator. C6D6 and ds-toluene were dried over a potassium mirror; CD2CI2 was distilled 

under vacuum from CaFh. Microanalyses were performed by Mr. Alan Carver (University 

of Bath Microanalytical Service). Gas Chromotography was performed on a Perkin-Elmer 

Autosystem XL. Mass spectrometry were performed by Mr Chris Cryer (University of Bath 

Mass Spectrometry Service) and the EPSRC National Mass Spectrometry Service Centre, 

University of Wales, Swansea

7.1.2 NMR spectroscopy

’I!, n B, 13C and 31P NMR spectra were recorded on Varian 400 MHz, Bruker Avance 400 

MHz or Bruker Avance 300 MHz FT-NMR spectrometers. Residual protio solvent was 

used as reference for JH NMR spectra (CD2CI2: 8  = 5.32, C7D8: 8  = 2.10, C3D6O: 8  = 2.09)
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and 13C NMR spectra (CD2CI2: 6  = 53.8). n B and 31P NMR spectra were referenced against 

BF3.0 Et2 (external) and 85% H3PO4 (external) respectively. Chemical shifts are quoted in 

ppm. Coupling constants are given in Hz.

7.1.3 Infrared spectroscopy

Infrared spectra were recorded on a Nicolet NEXUS FT-IR spectrometer. Solid-state 

samples were prepared using oven-dried potassium bromide. Solution spectra were 

recorded using a 0 .1mm solution cell.

7.1.4 Crystallographic studies

Crystallographic measurements for all structures were recorded on a Nonius Kappa CCD 

diffractometer with Mo Ka radiation (0.71073 A). Structure solution followed by full- 

matrix least-squares refinement was performed by using the SHELX suite of programs 

throughout. Hydrogens were included in calculated positions unless otherwise stated.

7.2 Syntheses and characterisation

7.2.1 Starting materials

The starting materials Csfc/oso-CBnH^ ] ,1 [l-H-c/oso-CBnM en ]*,2 HN(Me)2Ph[l-H- 

c/aso-CBiiMen] ,3 Cs[c/oso-CBnMei2],3 Csjc/oso-CBuHeBre] ,4 CPl^jc/oso-CBuHeBre] ,5 

nBu4N[c/ojo-CB 1 iH6Br6] ,5 MoCp(CO)3Cl,6 MoCp(CO)3I,6 MoCp(CO)3Me,7
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CpMo(CO)3H , 8 CpMo(CO)2(PPh3)H,9’ 10 (CpMo(CO)3)2>“ (CpW(CO)3)2,“

CpMo(CO)3(OTf) , 12 {(NBD)RhCl} 2, 13 {(COD)IrCl} 2, 14 Cp*Rh(PMe3)(Me)Cl, 15

Cp*Rh(PMe3)Me2, 16 Cp*Rh(PMe3)Me(OTf) , 16 Cp'2ZrMe2 (Cp = C5HS, C5tt,M e or 

C5Me5) , 17 K[BArF] , 18 nBu4N[BArF] , 18 (PCy3)Re(CO)4Me, 19 (PPh3)Re(CO)4Me, 19 

(PPh3)2Re(CO)3Me,20 (PCy3)2Re(CO)3Me,20 (CH3C(CH20 )3P)2Re(C0)3Me,21

CpCo(PPh3)Me2 and ('Pr3P)2PtMe2 were all prepared by previously published methods 

or a variation thereof. All other chemicals were used as received from Aldrich, Acros, Alfa 

Aesar, Fisher, Fluka, or Strem Chemicals.

7.2.2 Synthesis

Satisfactory microanalyses on a majority of the compounds containing the highly alkylated 

carborane anion were unobtainable, consistently being low in carbon content despite 

repeated attempts with pure crystalline samples.

Cs[l-H-c/os0 -CBnM eii]: A modified preparation based on that reported24 previously by 

Michl et al. was used. Csfc/os'o-CBnHu] (1.5 g, 5.4 mmol) and CaFh (8 .6 6  g, 216 mmol) 

are loaded into a 250 ml three necked round bottom flask and sulfalone, ~25ml was added 

via syringe. This reaction mixture was then heated in an oil bath to ~35°C, (NOTE it is 

important not to go higher than this as MeOTf is volatile and boils at 41°C) and ~12 ml 

MeOTf was extracted into a 20 ml syringe and added at a rate of addition of 0.707 ml/h via 

a syringe pump. After three days of stirring a second portion of MeOTf ( ~ 6  ml) and 

C4H8SO2 (~10 ml) was added to ensure full conversion. The reaction mixture was sealed 

and stirred for a further two days whilst monitoring the reaction daily by n B NMR. If after
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2 further days the reaction has not reached clean methylation then a further 6  mis of MeOTf 

was added via syringe in one portion and the stirring continued for a further day. When 

complete cage functionalisation had occurred the reaction mixture was opened to the 

atmosphere, CARE must be taken as both M eOTf and a large am ount of CaH2 will still 

be present. The product is extracted from the reaction mixture by the addition of 2 x 200 

ml portions of CH2CI2, filtering each through a sintered glass frit into a round bottom flask 

(500 ml) to leave a colourless solution and a white solid. To the combined (-400 ml) DCM 

solution was added 100 ml of NH4OH and the heterogeneous solution stirred for 5 mins. 

The CH2CI2 was then removed in vacuo. The remaining NH4OH solution was extracted 

with 3 x 50 ml Et2 0 , the ether portions are then combined. The white solid isolated earlier 

was transferred to a 250 ml flask and cooled in an ice bath, then a 10% HC1 solution was 

slowly added until the mixture is -pH  7. Once neutralised, the aqueous solution is extracted 

with 3 x 50 ml portions of ether. The ether portions are combined with those from earlier. 

The combined etherate extractions are converted to the Cs salt by washing with 3 x 50 ml 

portions of CsCl 10% w/v aqueous solution. The H2O washings are combined and in turn 

extracted with 3 x 50 ml portions of Et2 0 . All Et2 0  solutions are combined and the solvent 

removed in vacuo to leave an off-white solid. Residual sulfolane is removed by vacuum 

distillation at 180°C. The remaining solid is dissolved in boiling water and filtered hot and 

on cooling yields crystalline white solid that is washed x 2  with cold aliquots of H2O and 

dried in vacuo to yield 1.67 g of pure Cs[l-H-c/ojo-CBi]Men].

Yield: 72%

5 ^ { “ B} (298 K, d6 -acetone): 6  1.27 (1H, s, Ccage -  H), -0.02 (15H, s, B(2)CH3- 

B(6 )CH3), -0.25 (15H, s, B(7)CH3 -  B(11)CH3) and -0.34 (3H, s, B(12)CH3).
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8  n B (298 K, d6 - acetone): -0.73 (IB, s B(12», -8 .8 6  (5B, s B(7)-B(l 1)), -12.22 (5B, s, 

B(2)-B(6)).

[Ag(l-H-c/os0 -CBiiM en)], (1): Cs[l-H-c/o50-CBnMen] (407 mg, 0.95 mmol) was 

dissolved in Et2 0  (30ml) treated with three 30 ml portions of 10% w/v AgNC>3 aqueous 

solution. The combined aqueous layers were extracted with 3 aliquots of Et2 0  (25 ml). The 

combined Et2 0  portions were evaporated to dryness in vacuo. The resultant off-white solid 

was redissolved in CH2CI2 (2 0 ml) filtered and the solvent removed in vacuo to leave a 

white solid that was dissolved in minimum CH2CI2, layered with hexanes at -30°C in the 

dark. Colourless crystals of [Ag(l-H-c/ayo-CBiiMeii)] (303 mg, 0.75 mmol) were isolated. 

Yield: 79%

8  *H{n B} (298 K,de-acetone): 8  1.09 (1H, s, Ccage-H), -0.16 (15H, s, B(2)CH3-B(6)CH3), - 

0.39 (15H, s, B(7)CH3-B(11)CH3), -0.51 (3H, s, B(12)CH3).

8  n B (298 K, de-acetone): -0.66 (IB, s, B(12)), -8.84 (5B, s, B(7)-B(ll)), -12.22 (5B, s, 

B(2)-B(6)).

8  ‘H{"B} (298 K, CD2CI2): 8  1.27 (1H, s, Ccage-H), -0.15 (15H, s, B(2)CH3-B(6)CH3), - 

0.33 (15H, s, B(7)CH3-B(11)CH3), -0.54 (3H, s, B(12)CH3).

8  n B (298 K, CD2CI2): 1.5 (IB, s, B(12)), -5.9 (5B, s, B(7)-B(l 1)), -8.5 (5B, s, B(2)-B(6)). 

Elemental Analysis: Calcd. for Ci2H34BnAgi: %C 35.6; %H 8.40. Found: %C 33.1; %H 

8.31.

Ag(PPh3)(l-H-c/oso-CBnM en), (2): PPI13 (60mg, 0.23mmol) was dissolved in CH2CI2 

(5ml) and added dropwise to a foil covered Schlenk flask charged with Ag[l-H-c/o^o-
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CBiiMen] (92mg, 0.23mmol). The resulting solution was stirred for 16 h, cannula filtered 

and the solvent removed in vacuo. The white solid formed was redissolved in the 

minimum volume of CH2CI2, layered with hexanes, then placed in a freezer overnight at -  

30°C to afford 122 mg (0.183 mmol) of Ag(PPh3)(l-H-c/0 so-CBnMen) as colourless 

crystals.

Yield: 81%

8  'H{n B} (298 K, CD2CI2): 7.66 -  7.36 (15H, m, C6/ /5), 1.26 (1H s, C //cage), -0.14 (15H, 

br. s, BC//3), -0.22 (3H, br. s, BCH}), -0.28 (15H, br. s, BCH3).

8  n B (298 K, CD2C12 assignments from n B-n B COSY): -1.31 (IB, s), -9.03 (5B, s), - 

12.05 (5B, s).

8 1JC{‘H } (298 K, CD2CI2): 133.93 (s, Cphe„yi), 132.33 (s, Cphe„yi), 130.00 (s, Cp„enyi), 

128.23 [d, CPhe„yi, J(CP) 37], 61.33 (s, Ccage), -0.74 - -6.00 (br. m, CH3).

8  3lP {'H } (298 K, CD2C12): 18.21 [dd, / ( 109AgP) 853, ./(l07AgP) 794].

IR  (KBr): v = 2921, 2895,2829, 2736cm1.

Elemental Analysis: Calc, for CaoPL^AgiBnPi: %C, 54.0; %H, 7.35. Found: %C, 53.4; 

%H, 7.30.

Ag(PCy3)(l-H-c/oso-CBnM en), (3): The procedure for Ag(PPh3)(l-H-c/o5o-CBnMen) 

was followed except that 60 mg, (0.11 mmol) of PCy3 and 43mg (0.11 mmol) of Ag[l-H- 

c/oso-CBiiMen] were used. This afforded 34 mg (0.05 mmol) of colourless crystals.

Yield: 46%
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8 'H{u B} (298 K, CD2CI2): 5 2.01 -  1.75 (18H, m, Cy), 1.37 -1.21 (16H, m, Cy and Ccage- 

H), -0.13 (15H, br s, B(7)CH3-B(11)CH3), -0.23 (18H, v.br s B(12)CH3 and B(2)CH3- 

B(6)CH3).

8 "B  (298 K, CD2CI2,): -1 .8 1  ( I B ,  s B (1 2 ) ) ,  -9 .1 6  (5 B , s, B ( 7 ) - B ( l  1)), - 1 1 .7 7  (5 B , s, B (2 ) -  

B (6 ) ) .

8 3IP {'H } (298 K, CD2CI2): 49.88 [dd, J(A gI09P) 821, J (A gl07P) 711],

IR  (KBr): v = 2932,2893,2856,2827 c m 1.

Elemental Analysis: Calcd. for C3oH67AgiBnPi: %C, 52.6; %H, 9.8. Found: %C, 52.0, 

%H, 9.8.

Ag(P({3,5-(CH3)2C6H3}3)(l-H-closo-CBiiMeii), (4 ):  The procedure for Ag(PPh3)(l-H- 

c/oso-CBnMeii) was followed except that 39 mg, (0.11 mmol) of P({3,5 - (CH3)2C6H3}3 

and 50 mg (0.12 mmol) of Ag[l-H-c/o5o-CBnMen] were used. This afforded 53 mg (0.07 

mmol) of (4 )  as colourless crystals.

Yield: 63%

8 ‘H{llB} (298 K, CD2CI2O: 8 7 .2 8  -  7 .0 2  (9 H , m, P h ), 2 .3 9  (1 8 H , s, P h -C H 3), 1 .3 0  (1 H , s, 

Ccage-H), -0 .0 8  (1 5 H , br s, B (7 )C H 3-B (1 1 )C H 3) , -0 .2 1  (3 H , br s, B (1 2 )C H 3) ,  and - 0 .2 3  

(1 5 H , br s, B (2 )C H 3 -  B (6 )C H 3).

8 n B (298 K, CD2CI2): -1 .7 3  ( I B ,  s B ( 1 2 ) ) ,  -9 .1 2  (5 B , s B ( 7 ) - B ( l  1 )), -1 1 .7 9  (5 B , s, B (2 ) -  

B (6 ) ) .

8 31P {!H > (298 K, CD2CI2): 19.14 [br d, Av. J(AgP) 731,].

Elemental Analysis: Calcd. for C36H6iAgiBnPi: %C 57.6; %H 8.13. Found: %C 58.1; %H 

8.42.
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[(OEt2)2Ag(PPh3)(l-H-closo-CBiiMeii)], (5): Crystalline PPh3Ag(l-H-c/oj0 -CBnMen) 

(30 mg,) was dissolved in Et20  (5 ml) in a Young’s tube and layered with pentane. 

Recrystallisation in the dark at -30°C resulted in colourless crystals suitable for X-ray 

diffraction. The crystalline material immediately starts to lose diethyl ether on removal 

from the mother liquor and thus, satisfactory microanalysis and yield were not obtainable.

8  *H (298 K, CD2CI2): 7.65 -  7.37 (15H, m, Ph), 3.55 (8H, q, O-CHi), 1.26 (12H, t, CH3) 

1.17 (1H, s, Ccage-H), -0.16 (15H, s, B(2)CH3-B(6)CH3), -0.38 (15H, s, B(7)CH3- 

B(11)CH3), -0.45 (3H, s, B(12)CH3).

8  n B (298 K, CD2C12): 1.98 (3H, s, 12B), -5.72 (15H, s, B7-11), -8.63 (15H, s, B2-6)

8  31P{‘H} (298 K, CD2CI2): 18.95 (dd, 'j(A gl09P) 858, 'j(A g l07P) 774).

(PPh3)2Ag[l-H-c/oso-CBiiMen], (6 ): PPh3 (144 mg, 0.28 mmol) was dissolved in CH2C12 

(5 ml) and added drop wise to a foil covered Schlenk flask charged with Ag[l-H-c/oso- 

CBnMeii] (56 mg, 0.14 mmol). The resulting solution was stirred for 16 hours, cannula 

filtered and solvent removed in vacuo. The white solid formed was redissolved in 

minimum CH2C12, layered with hexanes, then placed in a freezer overnight at -30°C to 

afford 6 8  mg (0.07 mmol) of Ag(PPh3)2(l-H-c/os0 -CBiiMen) as colourless crystals.

Yield: 53%

8  ‘H{"B} (298 K, CD2CI2): 7.70 -  7.40 (30H, m, Cffls), 1.16 (1H s, CHcage), -0.16 (15H, s, 

BCHj), -0.44 (15H, s, BCH}), -0.51 (3H, s, BCH}).

8  n B (298 K, CD2CI2): -0.9 (IB, s), -8.9 (5B, s), -12.2 (5B, s).

8  31P {‘H } (298 K, CD2CI2): 17.421 [dd, J ( l0,AgP) 580, J ( l07AgP) 502],

350



Elemental Analysis: Calcd. for C48H64AgiBnP2: %C, 62.0; %H, 6.94. Found: %C, 60.1; 

%H, 6.91.

[Ag(P({3,5-(CH3)2C6H3}3)2(l-H-c/<7so-CB11Meii)]: Synthesis as for (PPh3)2Ag[l-H-c/oyo- 

CBnMen].

8 *H{n B} (298 K, CD2C12): 7 .2 7  -  7 .0 3  (1 8 H , m, Ph), 2 .3 4  (3 6 H , s, Ph-Me), 1.15  (1 H , s, 

Ccage-H), -0 .1 7  (1 5 H , s, B (2 )C H 3- B (6 )C H 3), -0 .3 9  (1 5 H , s, B ( 7 ) C H 3-B (1 1 )C H 3), -0 .5 1  (3 H ,  

s, B (1 2 )C H 3)

8 n B (298 K, CD2CI2): -0.99 (IB, s, B(12)), -8.95 (5B, s, B(7)-B(l 1)), -12.14 (5B, s, B(2)- 

B(6)).

8 31P{'H} (298 K, CDjCh): 18.66 (dd, '/(A gl09P) 577, 'j(A g 107P) 500).

(Ag(PPhj)4)[(Ag{l-H-c/ojo-CB11M e„}2)], (7): Ag(PPh3)( l-H -c W C B „ M e „ )  (30 mg, 

0.05 mmol) was dissolved in 5 ml CH2C12 and to it was added a CH2C12 solution of PPh3 

(13 mg, 0.05 mmol). The resulting solution was stirred for 16 hours in the dark, cannula 

filtered and the solvent removed in vacuo yielding o f 31 mgs of white powder. 

Redissolving in minimum CH2C12 and layering with hexanes at -30°C resulted in 

colourless crystals of both polymorphs.

Yield: 74%

NMR and IR data identical to that reported for [Ag(PPh3)2(l-H-c/ayoCBnM en)].

[nBu4N][l-H-c/0S0 -CBnM eii]: Csfl-H-c/o^o-CBnMen] (150 mg, 0.35 mmol) was 

dissolved in 30 ml of Et20  and washed three times with nBu4NBr (560 mgs, 1.75 mmol)
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dissolved in 100 ml of H2O. The aqueous portion was extracted three times with 20 ml 

portions o f Et2 0 . The ether washing were combined and evaporated to dryness to yield 105 

mg of white solid.

Yield: 57%

8  'H{"B} (298 K, d6 -acetone): 8 3 .6 5  -  3 .5 1  (8 H , m , N -C H 2) , 2 .0 8  -  1 .93  (8 H , m , C H 2),  

1 .6 7  -  1 .48  (8 H , m, C H 2), 1 .27  (1 H , s, C c a g e -H )  1 . 1 9 -  1.11 (1 2 H , t, C H 3)  -0 .0 2  (1 5 H , s, 

B (2 ) C H 3-B (6 )C H 3) , -0 .2 5  (1 5 H , s, B (7 )C H 3 -  B (1 1 )C H 3)  and - 0 .3 4  (3 H , s, B (1 2 )C H 3).

8  UB (298 K, d« - acetone): -0 .7 3  ( I B ,  s B ( 1 2 ) ) ,  -8 .8 6  (5 B ,  s B ( 7 ) - B ( l l ) ) ,  -1 2 .2 2  (5 B , s, 

B ( 2 ) -B (6 ) ) .

8  ‘H ^'B } (298 K,CD2CI2, selected): 1.22 (1H, s, C caBe -  H) -0.184 (15H, s, B(2)CH3- 

B(6)CH3), -0.435 (15H, s, B(7)CH3 -  B(11)CH3) and -0.555 (3H, s, B(12)CH3).

[Me4N][l-H -duso-CB n M Ci i ]: This was synthesised as for the [nBu4N]+ salt. Chemical 

shifts for (1-H-c/oso-CBnMeii) were identical to those for [nBu4N][l-H-c/oso-CBnMen].

8  'H{n B} (selected, 298 K, d6 -acetone): 3 .2 5  (1 2 H , s, NMe„).

Calculation Details (performed by Dr G. Ruggerio). Gas-phase geometry optimisation 

for all multi-nuclear solutes were performed using the Gaussian 98 program using DFT at

•j/?  0 7
the B3LYP hybrid method with the DZVP basis sets. Geometry optimisation for 

minimas used the Bemy routine. No symmetry constraints were imposed. The charge 

distributions were obtained from the DFT wavefunction employing a natural population 

analysis. The silver complex study used the double-zeta-valence-polarisation (DZVP) basis 

set developed for DFT. Previous work on metals using this basis set has shown that DZVP
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produces structures and energies comparable to those obtained using the better tested basis 

set, 6-31+G(d).28 In the original communication,29 we reported that the 7 isomer was 

slightly favoured energetically over the 12-isomer by ca 1.4 kcal mol' 1 -  the opposite of 

that reported here. Subsequent refinements of the model since have revealed new local 

minima, and the 12-isomer is in fact 1.9 kcal mol' 1 more stable than the 7-isomer. This is 

now consistent with calculations previously reported for [Me3Sn][c/o^o-CBnMei2].30 Since 

the potential energy surface for the isomers of 2  is quite flat, great care must be taken with 

geometry optimisation to ensure convergence towards stationary points with zero gradients. 

Even though the RMS residual force in our original calculations was well below the usual 

standard exit threshold for convergence they may not be the lowest energies possible when 

investigating large flexible systems, such as those discussed here. By tightening the cut-offs 

on forces (opt=tight keyword) and the step size that are used to determine convergence it 

was possible to lower the gradient and energy of the system so that modest (ca. 3 kcalmol'1) 

improvements where made over our original calculations. Nevertheless, the conclusion is 

still exactly the same: interaction of the metal fragment with those {BCH3} vertices on the 

lower hemisphere o f the cage is energetically favored over those on the upper part, fully 

consistent with the observed chemical shift changes o f the methyl groups in the *H NMR 

spectra.

[Ph3C][l-H-c/0 S0 -CBnM eii], (8 ): Cs[l-H-c/o5o-CBnMen] (0.351 g, 0.82 mmol) was 

dissolved in 15 ml toluene/MeCN (1:2 mix) and added in one portion to a solution of 

Ph3CBr (0.265 g, 0.82 mmol) in toluene. Immediately, a yellow solution formed and stirred 

for two hours. Solvents removed in vacuo to leave a brown oil and some white precipitate.
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15 ml of dry DCM added and the solution was cannula filtered. The CH2CI2 layer was 

concentrated to 2ml and layered with hexanes at -30°C to afford 0.296 g (0.55 mmol) of 

[Ph3C][l-H-c/o.so-CBiiMeii] as brown block crystals.

Yield: 67%

8  ‘H{n B} (298 K CD2CI2): 7.6-8.25 (15H, 3 multiplets trityl arene H’s), 1.00 (1H s cage 

CH), -0.21 (15H s B2-6 CH3), -0.40 (15H s B7-11 CH3), -0.62 (3H s B12 CH3).

8  n B (298 K  CD2C12): -0.87 (IB s), -8.90 (5B s), -12.19 (5B s).

8 13C{‘H} (298 K CD2CI2): 211.55 (s, C+), 144.41 (s, C phe„yi), 143.53 (s, C phe„yi), 140.69 (s, 

Cphenyl). 131.49 (S , Cphenyl).

Elemental Analysis: Calcd. for C31H49B 11: %C: 68.9, %H: 9.1 %N: 0. Found %C: 66.7, 

%H: 8.92, %N: 0.

Despite numerous attempts with crystalline samples that were pure by NMR spectroscopy, 

satisfactory microanalysis could not be obtained.

Accurate Mass Spec: (FAB+) calcd for C 19H 15: 243.1174; Found: 243.1174m/z

Cp2ZrMe(l-H-c/flS0 -CBnM eii), (9): A Young’s tube was charged with [Ph3C][l-H-c/o.so- 

CBiiMen] (0.041 g, 0.076 mmol) and Cp2ZrMe2 (0.019 g, 0.076 mmol). Fluorobenzene 

was cooled to 243 K and 5 ml added by cannula to give a yellow solution. The sample was 

then layered with n-pentane at 243 K to yield 0.020 g o f yellow crystalline solid of 

Cp2ZrMe( 1 -H-closo-CB 11 Me 11).

Yield: 48%.

6  ^ { " B )  (298 K, dg-tol): 5.55 (10H, s, Cp), 1.48 (1H, s, cage C-H), 0.36 (15H, s, B-CH3 

(2-6)), 0.29 (3H, s, Zr-Me), 0.02 (15H, s, B-CH3(7-11)) and -0.59 (3H, s, B-CH3(12).
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8  n B (298 K, ds-tol): 3.6 (1H, s, B12), -3.6 (5H, s, B7-11), -5.9 (5H, s, B2-6),

8  13C{'H} (298 K, ds-tol): 119.9 (Cp), 68.0 (v. br CHcage), 44.4 (Zr-Me, s), 3.9 (v. br B- 

CH3)

IR  (fluorobenzene v(CH3), cm'1): 2962 vs, 2929 s, 2873 s.

[(Cp2ZrM e)2OA-Me)][l-H-c/<W0 -CBnM en], (10): A Young’s NMR tube was loaded with 

[Ph3C][l-H-c/o50-CB]iMen] (0.020 g) and two equivalents of Cp2ZrMe2 (0.019 g) 

followed by 0.35 ml of C6D6. The resultant NMR spectra showed [(Cp2ZrMe)2(p-Me)]+ as 

the sole cationic product by comparison to the previously reported [BArF]' analogue.31 

8  ^ { “ BJ (298 K, ds-tol): 5.59 (s, 20H, Cp,), 1.44 (1H, s, cage C-H), 0.57 (15H, s, B-CH3 

(2-6)), 0.39 (15H, s, B-CH3(7-11)),0.32 (3H, s,B-CH3(12)), -0.19 (6 H, s, Zr-CH3), -1.22 (s, 

3H Zr-(p-Me)).

8  n B (298 K, d8-tol): 3.3 (1H, s, B12), -3.5 (5H, s, B7-11), -6.1 (5H, s, B2-6).

(C5H4Me)2Zr(Me)(l-H-c/050-CBiiMen), (11): This compound was synthesised in an 

analogous manner to the Cp derivative; repeated attempts to obtain solid material all failed. 

Characterisation was performed on the isolated oil.

8  ^ { " B }  (298 K, ds-tol): 5.69 (2H, Cp, dd, 3J(HH) 4 .5 ,4J(HH) 2.3), 5.59 (2H, Cp, dd, 

3J(HH) 5.6 4J(HH) 2.9), 5.40 (2H Cp, dd, 3J(HH) 5 .6 ,4J(HH) 2.6), 5.15 (2H, Cp, dd, 3J(HH) 

4.6, 4J(HH) 2.3), 1.69 (s, 6 H, CpMe), 1.48 (1H, s, cage C-H), 0.35 (15H, s, B-CH3 (2-6)), 

0.30 (3H, s, Zr-Me), 0.03 (15H, s, B-CH3(7-11)) and -0.57 (3H, s, B-CH3(12).

8  n B (298 K, ds-tol): 3.7 (1H, s, B12), -3.6 (5H, s, B7-11), -5.9 (5H, s, B2-6).
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[Cp*2Zr(O H 2)C l][l-H -7 ,1 2 -Cl2-c/0so-CBnMe9]: A Young’s tube was charged with 

Cp*2ZrMe2 (0.020 g, 0.05 mmol) and 27 mgs of [PhsCJfl-H-c/oso-CBnMen] and 

dissolved in 3 ml of C6H5F. The resultant yellow solution was reduced to dryness in vacuo 

and redissolved in CH2CI2 and layered with hexanes at -20°C. A small number of pale 

yellow crystals formed alongside a dark yellow oil.

8 (298 K,CD2C12): 1.82 (s, 2H, OH2), 1.63 (s, 30H, Cp*,), 1.29 (1H, s, cage C-H),

0.35 (6H, s, B-CH3), 0.26 (6H, s, B-CH3),0.25 (6H, s, B-CH3), 0.24 (6H, s, B-CH3), 0.165 

(s, 3H B-CH3).

8 n B (298 K,CD2CI2): 2.82 (s), -4.47 (s), -8.99 (s), -9.79 (s) and -12.58 (s).

Polymerisation Studies (performed at the University of East Anglia): A 250ml all glass 

reactor vessel was flame-dried in vacuo and then charged with toluene (50ml). This was 

placed under an atmosphere of ethylene and allowed to saturate. A solution of [Pli3C][l-H- 

c/ctfo-CBuMen] (0.01 lg) in toluene (4ml) was added. Finally a solution of (SBI)ZrMe2 

(SBI = rac-Me2Si(Indenyl)2, 0.08g) was added. The colour became yellow (from orange) 

and some precipitated polymer was observed. After 5 minutes the reaction was terminated 

by the injection of methanol (5ml). The polymer was precipitated into methanol (300ml) 

and HC1, collected via filtration and dried at 50°C for 16h. The final yield of polyethylene 

was 76mg.

Activity: 45kg mol*1 h’1 bar'1 (a moderate value from comparison to literature data).32

[CpCo(PPh3)2][ l-H -c /^ -C B ,iM en ], (12) and [CpCo(ti5-Ph-CPh2)][l-H-c/o50- 

CBn Men ], (13):
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A Young’s tube was loaded with CpCo(PPh3)Me2 (0.030 g, 0.08 mmol) and [Ph3C][l-H- 

c/o.yo-CBiiMeii] (0.045 g, 0.08 mmol) and dissolved in 5 ml of CH2CI2. Immediate gas 

evolution occurs and the solution changes from an orangey/brown to a purple colour. 

Recrystallisation by the slow diffusion of pentanes at room temperature yielded crystalline 

material of [CpCo(Ti5-PhCPh2)][ 1 -H-c/oso-CB,,M e,,] and [CpCo(PPh3)2][l-H-c/oso- 

CBnMeii]. No NMR data for [CpCo(PPh3)2]+ can be reported due to the rapid relaxation 

times inherent in paramagnetic complexes.

[CpCo(t|S-PhCPh2)] [ 1 -H-c/oso-CB, ,M e,,]:

8  ‘H{n B}(298 K, CD2CI2): 7.80 (t of t, para-coordinated-phenyl, J(HH) 5, J(HH) 1), 7.74 

-  7.38 (6 H, m, Ph), 7.14 -  7.11 (4H, m, Ph), 5.79 (2H, d of d, J(HH) 5.6 and 7.6), 5.68 (2H, 

d o f d, J(HH) 7.6 and 1), 5.50 (5H, s Cp), 1.15 (1H, s cage C-H), -0.18 (15H, s, B2^CH3), - 

0.43 (15H, s, B7-11CH3) and -0.55 (3H, s, B 12CH3).

8  n B (298 K, CD2CI2): -0.90 (IB, s, B12), -8.94 (5B, s, B7.11) and -12.13 (5B, s, B2̂ ).

[{CpMo(CO)3I}3-Ag(l-H-cfos0 -CBiiMeii)]2, (14-1): The compounds [CpMo(CO)3I] 

(0.027 g, 0.07 mmol) and Ag[ 1-H-c/oso-CBnM en] (0.029 g, 0.07 mmol) were stirred in 

CH2CI2 in the dark for one hour. The dark red solution was filtered and the solvent removed 

in vacuo to leave a dark red light sensitive oil. Crystals suitable for X-ray diffraction were 

grown by dissolving the solid in minimum CH2CI2, layering with hexanes and placing in a 

-30°C freezer overnight. This yielded dark red crystals and some dark red powder -  this 

intermediate compound could not be isolated cleanly due to the presence of some 

metathesis product after recrystallisation. The NMR data is from an in situ preparation 

monitored after 1 h and showed only one product (judged by the number of Cp rings).
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6  ‘H{n B}(298 K, CD2CI2): 5.76 (15H, s, Cp), 1.15 (1H, s cage C-H), -0.18 (15H, s, B2. 

6CH3), -0.43 (15H, s, B7.11CH3) and -0.55 (3H, s, Bi2CH3).

8  "B  (298 K, CD2CI2): -0.88 ( I B ,  s, B,2), -8.92 (5 B , s, B 7. 11)  and -12.18 (5 B , s, B « ).

IR  (CH2C12 v(CO) (cm-1)): 2055sh, 2043s and 1966s.

[{CpMo(CO)3}2(^-Cl)][l-H-c/0 S0 -CBnM eii], (14-C1): A Young’s NMR tube was 

charged with Agfl-H-c/oso-CBuMen] (0.020g) and CpMo(CO)3Cl (0.014g) to which 

0.3ml of CD2CI2 was added to give a deep red solution. The reaction was kept in the dark 

and was periodically monitored by !H { 1 *B} NMR spectroscopy until after 7 d there was 

primarily only one Cp resonance. The solution was transferred to a Young’s tube and 

layered with n-hexanes to give 0.0 lOg of dark red powder.

Yield: 25%

8  ‘H ^ 'B }  (298 K, CD2C12): 5.81 (5H, s, Cp), 1.15 (1H, s, cage C-H), -0.18 (15H, s, B2. 

6CH3), -0.43 (15H, s, B7-iiCH3) and -0.55 (3H, s, B,2CH3).

8  n B (298 K, CD2C12): -0.96 (IB, s, Bi2), -8.94 (5 B , s, B 7-11)  and -12.19 (5 B , s, BM).

IR (CH2CI2,v(CO) (cm-1): 2073s, 2065sh, 1999br.

[{CpMo(CO)3}2(p-I)][l-H-c/0S0 -CBnM en], (15-1): A Young’s NMR tube was charged 

with Ag[l-H-c/<m>-CBiiMen] (0.024 g, 0.06 mmol) and CpMo(CO)3l (0.022 g, 0.06 

mmol) and dissolved in 0.3 ml of CD2CI2 to give a deep red solution. The reaction was kept 

in the dark and was periodically monitored by ^ { " B )  NMR spectroscopy until after 12 

days there was primarily only one Cp resonance. The solution was transferred to a Young’s 

tube and layered with n-hexanes to give 0.014 g of dark red crystals.
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Yield: 53%

8  ‘H{"B} (298 K, CD2CI2): 5.82 (5H, s, Cp), 1.15 (1H, s, cage C-H), -0.18 (15H, s, B2. 

6CH3), -0.43 (15H, s, B7.11CH3) and -0.55 (3H, s, B |2CH3).

8 "B  (298 K, CD2CI2): -0.91 (IB, s, B t2), -8.93 (5 B , s, B 7. 11)  and -12.17 (5 B , s, B2.6).

IR  (KBr,v(CO) (cm '1): 2066s, 2054s, 1992br, 1981br and 1963sh.

Accurate Mass Spec: Calcd: 617.004m/z, Found: 617.00m/z

[(CpMo(CO)3)2(p-H)] [l-H-c/nso-CBnMeii], (15-CI): In a typical reaction'. A Young’s 

NMR tube was charged with CpMo(CO)3H (0.014 g), [Ph3C][l-H-c/o5o-CB]iMen] (0.030 

g) and CD2CI2 (0.3 cm3) to produce primarily [(CpMo(CO)3)2(p-H)][l-H-c/ayo-CBnMen] 

and one half an equivalent of unreacted [Ph3C][l-H-c/o5o-CBnMen]. An alternative 

synthesis using a 2:1 ratio of CpMo(CO)3H : [Ph3C][l-H-c/o5o-CBnMen] produced 

[(CpMo(CO)3)2(p-H)][l-H-c/o50-CBnMen] with no remaining [Ph3C][l-H-c/o.so- 

CBiiMen]. Attempts to isolate solid analytically pure material repeatedly failed. By NMR 

spectroscopy, the hydride-bridged dimer was always the predominant product. Addition 

over a range of temperatures (-78°C to 25°C) gave the same ratio of products.

8 1H (298 K, CD2CI2): 5.55 (10H, s, Cp), -0.12 (15H, s, B2.6CH3), -0.40 (15H, s, B7.nCH3) 

and -0.52 (3H, s, B 12CH3), -21.26 (1H, s, Mo-H-Mo).

8  "B  (298 K, CD2CI2): -0.97 (IB, s), -8.93 (5B, s), -12.10 (5B, s).

[(CpMo(PPh3)(CO)2(CH3CH2C(O)CH2CH3)][l-H-c/0 S0 -CBu M en], and ■h NMR 

reaction monitoring of the hydrogenation of 3-Pentanone to 3 Pentanol:
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CpMo(CO)2(PPh3)H (0.050 g, 0.11 mmol) and [Ph3C][l-H-c/o5o-CB,iMen] (0.059 g, 0.11 

mmol) and 0=CEt2 (0.11 ml, 1.1 mmol) were added to a Young’s NMR tube and dissolved 

in 0.3 ml CD2C12. This gave a clean mixture of the cis and trans isomers of 

[(CpMo(PPh3)(CO)2(CH3CH2C(0 )CH2CH3)][l-H-c/ojo-CB,iMei,] (55%:45% by 'HNM R 

spectroscopy) the NMR data for the cation corresponds to that previously reported by 

Bullock et al.33 The solution was then degassed by three freeze/pump/thaw cycles and 

backfilled at 77 K with H2. The pressure of H2 in the tube on warming to room temperature 

should be ca. 4 atmospheres (298/77 = 3.9). The pressure was maintained periodically by 

recharging with H2 at 77 K. To ensure thorough diffusion of gas into the solvent the tube 

was slowly spun using a mechanical stirring motor. !H NMR measurements were 

periodically taken over the course of 14 days and the number of catalyst turnovers was 

monitored by measuring the disappearance of the 0=CEt2 peak at 6  = 2.47 (q, CH2) versus 

the appearance of Et2CHOH peaks at 8  = 5.54 (m, CH) and 8  = 0.97 (t, CH3).

[(PCy3)Re(CO)4(CH2Cl2)][l-H-c/0S0 -CBiiMeii], (16): A Young’s NMR tube was 

charged with (PCy3)Re(CO)4Me (0.028 g) and [Ph3C][l-H-c/0 j 0 -CBnMen] (0.025 g). 0.3 

ml of CD2C12 was vacuum transferred in and the solution was warmed to -78°C to generate 

a pale yellow solution. Characterisation was carried out by NMR studies run immediately at 

25°C and the cation signals are identical to that reported for the [BA^]' analogue. 19

[((PCy3)Re(CO)4)2(n-Cl)] [Y] (Y = a num ber of functionalised cages): A CD2C12 

solution of [(PCy3)Re(CO)4(CH2Cl2)][l-H-c/o50-CBiiMen] decomposes at 25°C to give 

predominantly one phosphine containing product identified by comparison to the [BArp]'
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analogue and accurate mass spec to be [((PCy3)Re(CO)4)2(p-Cl)]+.19 Along with the 

formation of this chloride bridged dimer there is decomposition of the anion to give [1-H- 

12-Cl-c/oso-CBi lMeio] and other unidentified products.

[l-H-12-Cl-c/0S0-CB„Meio]:

5 n B (298 K, CD2CI2): 3.82 (s, IB), -8.84 (s, 5B), -12.33 (s, 5B).

Mass Spec: Calcd: 317.7 m/z. Found: 317.3 m/z

[(P(OCH2)3CMe)2Re(CO)3(CH2Cl2)][l-H-c/(?50-CBiiMe11]: A Young’s NMR tube was 

charged with (P(OCH2)3CMe)2Re(CO)3Me (0.015 g) and [Ph3C][l-H-c/aso-CB,iMen] 

(0.014 g). 0.3 ml of CD2C12 was vacuum transferred in and the solution was warmed to - 

78°C to generate a yellow solution. Characterisation was carried out by NMR studies run 

immediately at 25°C and the cation signals are identical to those reported for the [BArp]' 

analogue.21

[(PCy3)2Re(CO)3][l-H -c/0S0 -CBiiMen]: A Young’s NMR tube was charged with 0.025 g 

of (PCy3)2Re(CO)3Me and 0.016 g of [Ph3C][l-H-c/aso-CBiiMeii] and 0.3 ml of CD2C12 

was vacuum distilled in. On warming to room temperature an orange solution rapidly 

formed whose formulation as the agostic complex [(PCy3)2Re(CO)3][l-H-c/oso-CBnMeii] 

is consistent with that reported previously by Heinekey.34

[Cp*Rh(PMe3)(Me)(CH2Cl2)][l-H -c /^ -C B i,M eii], (17): Cs[l-H-c/ojo-CBn Men]

(0.020 g) and Cp*Rh(PMe3)(Me)(OTf) (0.022 g) were dissolved in CH2Cl2 in a Young’s 

ampoule. The resultant red solution was stirred for 15 mins, filtered to remove CsOTf and
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the solvent removed in vacuo. Redissolving in CD2CI2 allowed characterisation vide infra 

by comparison to the previously reported [BArF]* analogue. 16 The yield was quantitative by 

NMR spectroscopy.

[(Cp*Rh(PMe3)Me)2(^-O Tf)][l-H -c/^o-CBi1Me11]: Cs[1-H-cIoso-CBuMqu ] (0.018 g) 

and Cp*Rh(PMe3)(Me)(OTf) (0.020 g) were dissolved in 5-fluoro-m-xylene in a Young’s 

ampoule and the resultant red orange solution was stirred for 15 minutes and filtered into a 

Young’s recrystallisation tube. Red/orange crystals were grown by the slow diffusion of 

pentane into a saturated 5-fluoro-m-xylene solution at -20°C.

Yield: 44%

8 *H (298 K, CD2C12): 1.66 (d, 30H, 3J(RhH) 2.4), 1.51 (d, 18H, 2J(PH) 10), 1.14 (s, 1H, 

CHCage), 0.83 (dd, 6H, 2J(RhH) 6 .0 ,3J(PH) 1.2), -0.19 (s, 15H, B-CH3(2-6)), -0.44 (s, 15H, 

B-CH3(7-11)), -0.56 (s, 3H, B-CH3(12)).

8  3l?{lU} (298 K, CD2CI2): 3.8 (d, ^(RhP) 165.7)

8  19F (298 K, CD2CI2): -78.69 (s)

[('Pr3P)2Pt(M e)][l-H-c/0 S0 -CBnMeii], (18): A Young’s ampoule was charged with 

equimolar quantities of [('Pr3P)2PtMe2] (0.020 g) and [1-H-c/ayo-CBnMen]* (0.011 g) (or 

alternatively 0.020 g of [Ph3C][l-H-c/aso-CBnMeii] and 5 ml of C6H5F was added, 

resulting in the formation of a yellow solution. Yellow crystals were obtained by the slow 

diffusion of pentane at -20°C.

8 XH (298 K, CD2CI2): 2.56 (m, 6H, 'Pr CH), 1.69 (t, 3H, Pt-Me, 2J(PtH) 106,3J(PH) 5.6), 

1.34 (dd, 36H, jPr CH3, 3J(PH) 14.8 3J(HH) 7.6), 1.15 (s, 1H CHcage), -0.18 (s, 15H, B-
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CH3(2-6)), -0.43 (s, 15H, B-CH3(7-11)), -0.55 (s, 3H, B-CH3(12)).

5 3IP{‘H} (298 K, CD2CI2): 47.1 ('j(PtP) 2757)

8  n B (298 K, CD2CI2): -0.51 (s, IB), -8.60 (s, 5B), -11.90 (s, 5B).

8  13C{*H} (298 K, CD2CI2): 60.19 (s, Cage C), 23.24 (t, 'j(PC) 14, 'Pr3P C-H), 18.82 (s, 

'Pr3P CH3), -3.82 (br s, B-CH3), -14.11 (s, 'j(PtC) 755, Pt-CH3).

Accurate Mass Spec (ES+): Theoretical for C]9H4sP2Pti = 530.2639 m/z. Experimentally 

Observed = 530.2637 m/z

[/rfl/is-(iP r3P)2Pt(Me)(THF)] [ 1 -H-c/aso-CB i \ M ei, ], (19): To a solution of

[(IPr3P)2Pt(Me)][l-H-c/o5o-CBnMen] (prepared in situ) in CD2CI2 was added via syringe 5 

equivalents of THF (20 pi). The room temperature NMR spectra are fluxional, with only 

one sets of broadened signals visible in the 31P{1H} NMR, the Me trans to the fluxional site 

is also significantly broadened. At 230 K, the fluxionaility is frozen out and two sets of 

signals are visible -  one is the agostic complex, [('Pr3P)2Pt(Me)][l-H-c/o5o-CBiiMeii]. The 

other is assigned as [/ra«5-(,Pr3P)2Pt(Me)(THF)][l-H-c/ojo-CBnMen], also present in the 

’H NMR spectra are the signals for free THF.

6  *H (298 K, CD2CI2): 2.56 (m, 6H, 'Pr CH), 1.58 (br s, 3H, Pt-Me, 2J(PtH) 98), 1.33 (dd, 

42H, 'Pr CH3, 3J(PH) 14.8 3J(HH) 7.2), 1.14 (s, 1H CHcage), -0.18 (s, 15H, B-CH3(2-6)), - 

0.43 (s, 15H, B-CH3(7-11)), -0.55 (s, 3H, B-CH3(12)).

8  3IP{1H} (298 K, CD2CI2): 46.1 (br s'j(PtP) 2771)

Low Tem perature Data:

8  'H  (230 K, CD2CI2): 3.90 (m, 4H, THF), 2.33 (m, 6 H, 'Pr CH), 1.90 (m, 4H THF), 1.28
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(vt, 42H, 'Pr CH3, 3J(PH) 13.4 3J(HH) 6.7), 1.11 (s, 1H CHcage), 0.76 (t, 3H, Pt-Me 2J(PtH) 

8 6 Hz, 3J (PtP) 5.2 )-0.25 (s, 15H, B-CH3(2-6)), -0.54 (s, 15H, B-CH3(7-11)), -0.67 (s, 3H, 

B-CH3(12)).

8  31P{‘H} (230 K, CD2C12): 40.3 ('j(PtP) 2820)

[(iPr3P)(THF)Pt{KJ-P(iPr2)(CH(CH3)CH2)}][l-H-c/<»so-CBiiMen], (20): 5 equivalent of 

THF is added via a syringe to 20 mgs of [/raHS-('Pr3P)2Pt(Me)][l-H-c/ayo-CBnMeii] 

dissolved in CD2CI2. On standing the solution gradually lightened in colour from yellow to
<11 1

colourless over the course of 10 days (periodically monitoring o f the reaction by P{ H} 

NMR spectroscopy until only one complex is present) to produce quantitatively (by 

'H{3iP}, 31P{'H) and 13C{'H} NMR spectroscopy) [(PnPXTHF^tfK2-

P('Pr2)(CH(CH3)CH2)}][l-H-c/ojo-CBiiMeii]. Solid material was unobtainable despite 

repeated attempts. Facile loss of the coordinated THF molecule prevented satisfactory 

microanalysis.

8  ‘H{3,P} (220 K, CD2CI2): 3.92 (m. 4H, THF 0 (CH2CH2)2), 2.97 (1H, m, PtCH2CHMeP) 

2.58 (2 H, m, PtCH2CHMeP(CHMe2)2), 2.21 (3H, m , Pt-P(CHMe2)3, 1.92 (6 H, m, 

0(CH 2CH2) THF and PtCH2CHMeP), 1.41 -  1.05 (34H, 7 sets o f d, PtCH2CHMeP, Pt- 

P(CHMe2) 3 and PtCH2CHMeP(CHMe2)2 and an obscured cage C-H) [1,41 (d, 3J(HH) 7), 

1.38 (d, 3J(HH) 7), 1.29, (d, 3J(HH) 7), 1.24 (d, 3J(HH) 7), 1.15 (d, 3J(HH) 7), 1.12 (d, 

3J(HH) 7) and 1.05 (d, 3J(HH), 7)], -0.21 (s, 15H, B-CH3(2-6)), -0.46 (s, 15H, B-CH3(7- 

11)), -0.59 (s, 3H, B-CH3(12)).

8 31P{1H} (220 K, CD2CI2): 41.8 (d, 2J (PtP) 358 ‘j(PtP) 3010), -15.8 (d, 2J(PtP) 358, 

'j(PtP) 2124)
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8  "B  (298 K, CD2CI2): -0.60 (s, IB), -8.75 (s, 5B), -12.08 (s, 5B).

8  l3C{‘H} (220 K, CD2CI2): 75.25 (s, THF), 59.79 (s, Cage C), 34.19 (d, 31 J(PC)), 29.99 

to 17.46 (complex overlapping isopropyl signals and remaining THF signal), -3.20 (br s, B- 

CH3), -17.40 (d, 2J(PC) 22, 'j(PtC) not observed, Pt-CH2).

Accurate Mass Spec (ES+): Theoretical for CisKU^Pti (M* -THF) = 514.2331 m/z. 

Experimentally Observed = 514.23312 m/z.

[('Pr3P)2Pt(p-Cl)]2[l-H -1 2 -Cl-c/0 S0 -CBnMeio]2: A Young’s ampoule was charged with 

[('Pr3P)2PtMe2] (0.020 g, 0.037 mmol) and two equivalents of [l-H -c/oso-CBiiM eii]*  

(0.022 g, 0.074 mmol) and 5ml of CH2CI2 was added, resulting in the formation of a yellow 

solution (the reaction can alternatively be carried out by the sequential addition of [1-H- 

c/oso-CBnM eii]* - which proceeds via the agostic complex [('P^P^PtMeJIT-H-c/ayo- 

C B nM en]). Yield is quantitative by ^ P ^ H ) NM R spectroscopy. Yellow crystals (0.028 g) 

were obtained by the slow diffusion of pentane at -20°C.

Yield: 70%

8  ‘H (298 K, CD2CI2): 2.48 (m, 12H, Tr CH), 1.50 (dd, 72H, ‘Pr CH3, 3J(PH) 15.6 3J(HH) 

7.2), 1.17 (s, 2H CHcage), -0.14 (s, 30H, B-CH3(2-6)), -0.32 (s, 30H, B-CH3(7-11)),

8  31P{*H} (298 K, CD2CI2): 38.5 ('j(PtP) 3706)

8  n B (298 K, CD2CI2): 3.97 (s, IB), -9.35 (s, 5B), -12.67 (s, 5B).

Mass Spec: FAB- Calcd: 317.7 m/z. Found: 317.3 m/z

[(PPh3)2lr(C8H,2)][l-H-c/<?50-CB1iMeii]: [(COD)IrCl]2 (0.083 g) was loaded into a 

beaker with PPI13 (0.129 g) and 15 ml of ethanol. The suspension was stirred for 15 mins
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during which time a homogeneous red solution is formed. Upon addition of Ag[c/oso-l-H- 

CBiiMen] (0.100 g) dissolved in 5 ml of ethanol an immediate precipitate was observed. 

The ethanol was removed in vacuo and the residue redissolved in 5 ml of CH2CI2. AgCl is 

removed by filtration and the product recrystallised by the slow diffusion of hexanes into 

the CH2CI2 solution at 25°C to afford 0.145 g of red crystalline solid.

Yield: 52%

8  'H  (CDCI3, 298 K): 7.30 (m, 30H, C6H5), 4.16 (s, 4H, C8H 12), 2.20 (m, 4H, C8H12), 1.95 

(m, 4H, C8H i2), 1.28 (s, 1H, C H ^ ) ,  -0.04 (s, 15H, B-CH3(2-6)), -0.27 (s, 15H, B-CH3(7- 

11)), -0.45 (s, 3H, B-CH3(12)).

8  “ B (298 K, CDCIj): -0.61 (s, IB), -8.75 (s, 5B), -12.08 (s, 5B).

8  31P{'H} (298 K, CDCIj): 18.9 (s)

Elemental Analysis: Calcd: %C 55.7; %H 6.77; Found: %C 54.1, %H 6.62

[('Pr3P)2Rh(NBD)][BArF]: A Schlenk flask was charged with {(NBD)RhCl}2 (0.100 g, 

0 .2 2  mmol) and 15 ml of CH2CI2 was added. A hexane solution of 'P^P (0.86 mmol) was 

added in one portion and the resultant solution stirred for 15 minutes. K[BArp] (0.392 g, 

0.44 mmol) in CH2CI2 was added in one portion followed by a 15 ml portion of degassed 

H2O. The biphasic mixture was vigorously mixed for 15 minutes and the H2O layer 

extracted. Hexane was added to the point of cloudiness and cooled to -20°C resulting in the 

formation of 0.320 g of vermilion crystalline material.

Yield: 54%
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8 'H  (298 K, CD2CI2): 7.74 (8H, s, o-Ar BArf), 7.57 (4H, s, m-Ar BArF), 4.82 (4H, s 

alkene NBD), 3.91 (2H, s, NBD), 2.19 (6H, septet, ’Pr), 1.55 (2H, s, NBD), 1.38 (36H d of 

d, 'Pr).

8 n B (298 K, CD2CI2): -5.88.

8 31P {'H} (298 K, CD2CI2): 33.82 (d, 'j-RhP 146)

Elemental Analysis: Calculated: C 49.7%; H: 4.5%; Found: C 49.4%; H: 4.5%.

[(lPr3P)2Rh(NBD)][l-H-c/oso-CBnMen]: An identical method to the [BArF]' salt was 

followed starting with 0.057 g of {(NBD)RhCl}2 and 0.100 g of Ag[l-H-c/oso-CBiiMen], 

on recrystallisation resulted in 0.136 g.

Yield: 64%

NMR Data for the cationic portion identical to that for [(‘PrsP^Rh(NBD)][BArf].

8 ’H{n B} (298 K, CD2C12): 1 .13  (1 H , br. s C -H cage), -0 .1 5  (1 5 H , s, B CHi), -0 .3 8  (1 5 H , s, 

B C H ) ) ,  - 0 .5 5  (3 H , s, B C Hy).

8 n B (298 K, CD2CI2): 0.12 (IB, s), -7.92 (5B, s), -11.19 (5B, s).

[(PCy3)2Rh(NBD)][l-H-c/oso-CB„Meii]: {(NBD)RhCl}2 (0.050 g, 11 mmol), Ag[l-H- 

c/0 5 0 -CBiiMen] (0.088 g, 11 mmol) and 2,5-norbomadiene (15 pi, 15 mmol) were stirred 

in CH2CI2 for 2 h. The resultant vermilion solution was filtered and the solvent removed in 

vacuo to leave a red/orange solid, which was redissolved in CH2CI2 and a CH2CI2 solution 

of PCy3 (0.122g .43mmol) was added drop wise and the mixture wasstirred for 30 minutes. 

The compound was crystallized by the addition of hexanes.

Yield: 0.096 g (41%)

367



5 ‘H{UB} (298 K, CD2CI2): 4.75 (s, 4H, C7H8), 3.9 (s, 2H, C7H8), 2.2 -  1.3 (m 6 6 H PCy3, 

2H C7H8 and 1H cage C-H). -0.05 (15H, s, BCH2), -0.38 (15H, s, BCH,), -0.55 (3H, s, 

B C//3).

8  "B  (298 K, CD2CI2): -0.8 (IB, s), -8.9 (5B, s), - 12 .2  (5B, s).

8  31P {'H} (298 K, CD2CI2): 23.340 J(RhP) 145

Elemental Analysis: Calcd: %C; 62.7, %H 10.3. Found: %C 62.1, %H 10.1.

IR  (CH2CI2, v(l-H-c/oso-CB„M en ) c m 1): 2928,2892,2853.

[(PCy3)2Rh(NBD)][BArF]: A Schlenk flask was charged with {(NBD)RhCl}2 (0.080 g,

0.17 mmol) and dissolved in 15 ml of CH2CI2. A CH2CI2 solution of PCy3 (0.194 g, 34 

mmol) was added in one portion and the resultant solution stirred for 15 minutes. K[BArp] 

(0.313 g, 0.35 mmol) in CH2CI2 was added in one portion followed by a 15 ml portion of 

degassed H2O. The biphasic mixture was vigorously mixed for 15 minutes and the H2O 

layer extracted. Hexane was added to the point of cloudiness and the sample was cooled to 

-20°C resulting in the precipitation of 346 mgs of an orange crystalline solid.

Yield: 62%

NMR data for the cationic portion is identical to that found for [(PCy3)2Rh(NBD)][l-H- 

c/oyo-CBuMeii]

6  !H (selected 298 K, CD2CI2): 7.72 (8H, ortho aromatic BA^), 7.57 (4H, para aromatic 

BArp).

8  n B (298K, CD2CI2): -5.90 (s,)

Elemental Analysis: Calculated: C 55.6%; H 5.4%. Found: C 55.8%; H 5.4%.
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[(iP r3P)2Rh(H 2)xH2][Y]: (x = 1 (22-(H2)) or 2 (22-(H2)2) and Y = [l-H-c/oso-CBiiMen]- 

or [BArF]”)

A typical experiment consisted of charging a Young’s NMR tube with 0.015g of 

[('Pr3P)2Rh(NBD)][Y]. Addition of 0.3 ml of CD2CI2 generated an orange solution. The 

sample was freeze/pumped/thawed three times before being backfilled with H2 at 77 K (~ 4 

atmospheres of H2). On thawing the solution rapid changes colour from orange to pale 

yellow. Attempts to isolate solid material repeatedly failed.

Yield: Quantitatively by NMR spectroscopy

8 ‘H (CDjCh, 298 K for Y = BArF): 7.73 (s, 8H, ortho arene), 7.57 (s, 4H, para arene), 

2.31 (m, 6H, ‘Pr bridgehead 3J (HH) 7.14), 1.25 (vq, 36H, CH3 3J(HH) 7 .14,3J(PH) 14.83), 

-8.62 (v. br 3.6H, (H2)/H).

8 31P{'H} (CD2CI2, 298 K): 60.4 (d, 'j(RhP) 107).

8 n B NMR (CD2CI2, 298 K): -5.9 (s).

Mass Spec: (FAB+ NOB A Matrix) Calcd for [(iPr3P)2Rh(H)2(H2)]+: 427.4145 m/z Found: 

427.3.

Ratio of x = 1 :x = 2 at 190K ~4:1 

[(iP r3P)2Rh(H2)H2] [BArF] (22-(H2)):

8 *H NMR (CD2CI2, 190 K): 8 7.61 (s, 8H, ortho arene), 7.46 (s, 4H, para arene), 2.08, (m, 

6H, ‘Pr bridgehead), 1.02 (m, 36H, CH3), -0.28 (br 2H (ti2-H2), Tj 94ms), -12.66 (s br, 1H, 

Ti 238ms), -22.42 (s br, 1H T x 234ms).

8 31P{jH} (CD2C12, 190 K): 62.1 (d, lJ (RhP) 100)
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[(iP r3P)2Rh(H2)2H2][BArF](22-(H2)2):

8 'H  NMR (CD2CI2, 190 K): 6 7.61 (s, 8H, ortho arene), 7.46 (s, 4H, para arene), 2.08, (m, 

6H, ‘Pr bridgehead), 1.02 (m, 36H, CH3), -2.06 (v. br 4H (ti2-H2), Ti 43 ms), -14.23 (s br,

1H, Ti 360 ms),

8 31P{3H} (CD2CI2, 190 K): 8 68.4 (d, 'j(RhP) 92)

Assignment of the hydrides in each complex comes from Ti measurements at 190 K using 

the software provided with a Bruker Advance 400MHz spectrometer using the best fit 

curves and comparison of observed chemical shifts with the previously reported complexes 

[(R3P)2Ir(H2),H 2][BArF] (x =  1 ,2).35’36

[(‘PrjP )2Rh(HD),H2][BArF]: A solution of [(‘PrjP^RhCH^xHJtY] in CD2CI2 in a Young’s 

NMR tube was frozen in liquid nitrogen, evacuated and then sealed and warmed to room 

temperature, the solution was then refrozen and D2 added at low temperature. All other 

NMR signals in the *H and 31P{1H} spectra were identical to [(‘P ^ P ^ R M ^ x ^ J tY J .

8 ‘H (190 K, CD2CI2) (for x =2): 1.95 (t, 'j(DH) 29).

The HD coupling for the (x=l) dihydrogen adduct could not be resolved at any 

temperature, due to overlap of signals from the broad 'Pr CH3 resonances.

[(iP r3P)2RhH 2][Y], (22-DCM) Y = [l-H-c/<W0 -CBn Men] or [BArF]:

A sample o f [ ( 'P ^ P ^ R h ^ ^ ^ f Y ]  was formed in situ by the hydrogenation of 

[('Pr3P)2Rh(NBD)][Y] in C6H5F. The solvent was evaporated to dryness and pumped on for 

5 hours to leave a dark yellow oil. Attempts to obtain solid material repeatedly failed due to 

the ready decomposition of this compound. NMR data shown for Y = [BArf]*
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5 *H (CD2CI2, 298 K): 7.72 (s, 8H, ortho arene), 7.56 (s, 4H, para arene), 2.33 (m, 6H, jPr 

bridgehead), 1.25 (vq, 36H, CH3 3J(HH) 7 .6 ,3J(PH) 14.4), -24.36 (d o f t  2H, ^(RhH) 40.4, 

2J(PH) 14.4).

6 31P{1H} (CD2CI2, 298 K): 57.6 (d, ‘j(RhP) 104).

8 n B NMR (CD2CI2, 298 K): -5.9 (s).

Mass Spec: (FAB+ NOBA Matrix) Calcd for [('PrjP^RhCH^f: 423.4 m/z Found: 423.3.

[(iP r3P)2Rh(ri6-C6H 5F)][BArF] (24): 0.030 g of [('Pr3P)2Rh(NBD)][BArF] was loaded into 

a Young’s ampoule and dissolved in 5 ml of C6H5F. The orange solution was thoroughly 

degassed by three freeze/pump/thaw cycles and backfilled with H2 at 77 K. On liquefying 

the solution rapidly turned yellow and was stirred for 15 minutes. The solvent was then 

removed in vacuo and the resulted brown oil pumped to dryness. Redissolving in 3 ml of 

C6H5F produced a dark yellow solution that was layered with pentane at -20°C. Slow 

diffusion of pentane resulted in a mixture of yellow crystals and brown oil. Extraction of 

the yellow crystals that melted at room temperature, cleanly gave [('Pr3P)2Rh(r|6- 

C6H5F)][BArF].

8 *11 (298 K, CD2CI2): 7.72 (s, 8H, ortho arene BArF), 7.56 (s, 4H, para arene BArF), 7.36 

(m, 2H, C6H5F), 7.15 (m, 1H, C6H5F) 7.06 (m, 2H, C6H5F), 2.32 (m, 6H, jPr CH), 1.27 (m, 

42H, 'Pr CH3).

8 (298 K, CD2CI2): 57.6 (d, ]J(RhP) 109)

8 n B (298 K, CD2CI2): -6.6

8 19F (298 K, CD2CI2): -62.91 (CF3 BArF), -113.95 (C6H5F)
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[(PCy3)2Rh(H2)2(H)2][Y] (25-(H2)2): (Y = l-H-closo-CBuMen o rB A rF)

A typical experiment consisted of charging a Young’s NMR tube with 0.020 g of 

[(PCy3)2Rh(NBD)][Y], addition of 0.3 ml of CD2CI2 generated an orange solution. The 

sample was freeze/pumped/thawed three times before being backfilled with H2 at 77 K (~ 4 

atmospheres o f H2). On thawing the solution rapid changes colour from orange to pale 

yellow. Attempts to isolate solid material repeatedly failed.

Yield: Quantitatively by NMR spectroscopy

8 *H (CD2C12, 298 K  for Y = BArF): 7.73 (s, 8H, ortho arene), 7.57 (s, 4H, para arene), 

2.24 -  1.05 (m, 66H, PCy3), no hydride signal visible 

8 3IP{'H} (CD2CI2, 298 K): 54.3 (br d, 'j(RhP) 109.6).

8 n B ((CD2C12, 298 K): -5.9 (s).

Selected 8 'H  NM R (CD2CI2, 180 K): -1.80 (br 4H (r|2-H2), T, 21 ms (400MHz)), -14.17 

(s br, 2H, T, 260 ms (400 MHz)).

Selected 8 ‘H NMR (CD2CI2, 200 K): -1.81 (br 4H (ri2-H2), T, 58 ms), -14.14 (s br, 2H,

Ti 147 ms).

8 31P{'H} (CD2C12, 200 K): 60.1 (d, 'j(RhP) 92.4)

[(Cy3P)2RhH 2][Y], (25-DCM) Y = [l-H-c/oso-CBn Me,,] o r [BArF):

A sample of [(Cy3P)2Rh(H2)2H2][Y] was formed in situ by the hydrogenation of 

[(Cy3P)2Rh(NBD)][Y] in C6H5F. The solvent was evaporated to dryness and pumped on for 

5 hours to leave a dark yellow oil. Attempts to obtain solid material repeatedly failed due to 

the ready decomposition of this compound. NMR data shown for Y = [BArf]'
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8 *H (CD2CI2, 298 K): 7.74 (s, 8H, ortho arene), 7.54 (s, 4H, para arene), 2.46 -  1.27 (m, 

66H, PCy3) -24.03 (br d. 2H, 'j(RhH) 41.5).

8 31P{'H} (CD2CI2, 298 K): 53.9 (d, 'j(RhP) 111.3).

8 n B NMR (CD2CI2, 298 K): -5.9 (s).

[(iPr3P)6Rh6Hi2]tl-H-c/ojo-CBuMen]2 + 4 [HPCPrfcHl-H-cfoso-CBnMen]:

A Young’s tube was charged with (0.030 g, 3.7xl0'5 mol) [(Pr3P)2Rh(NBD)][ 1 -H-closo- 

CBnM en] and C6H5F (5 ml) was added. This was fully degassed by three freeze-pump- 

thaw cycles then immediately backfilled with H2 at 4 atmospheres pressure (77 K) resulting 

in a colour change from orange to yellow. Stirring for 4 days yielded a further gradual 

darkening of the solution to brown. The solvent was layered with pentane under 1 

atmosphere of H2 at room temperature and yielded black and colourless crystals (co

product [HP('Pr)3][l-H-c/o5o-CBiiMen] that were separated manually. A second crop of 

crystalline [(‘PrsP^RheH^Hl-H-c/oso-CBnMeiik was isolated by redissolving the non

crystalline product in C6H5F and combining with the supernatant and layering with pentane 

at room temperature under 1 atmosphere of H2.

[(iPr3P)6Rh6H12][l-H-c/050-CB1iMeii]2 (27-Hi2):

8 *H (298 K, CD2CI2): 2.31 (br, m 18H, C-H Pr), 1.28 (m, 108H, CH3 Pr), 1.16 (s, 2H 

cagec-H), -0.17 (s, 30H), -0.43 (s, 30H), -0.54 (s, 6H), -21.44 (br s, 12 H relative to Pr 

signals, 5 s delay to avoid saturation, integration consistent over 4 independently 

synthesized samples).

8 n B (298 K, CD2C12): 0.17 (s, IB), -7.89 (s, 5B), -11.14 (s, 5B),
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8 3IP{‘H[ (298 K, CD2C!2): 110.5 (d, 140)

Accurate Mass Spec: (FAB+ CH2C12 Matrix): Calcd. [RhsCPrjP^Hid**: 1590.96 m/z, 

Found: m/z 1590.3.

[HP('Pr)3][l-H -c/0 S0 -CBnM eii] (26Pr): (Anion signals coincident to that in

[('Pr3P)6Rh6Hi2] [ 1 -U-closo-CB i iMei i ]2.

8 *H (298 K, CD2C12): 5.31 (1H, d of q 'j(PH) 336, 3J(HH) 4.4), 2.68 (3H, m P r C-H) and 

1.56 (18H, dd, 3J(PH) 17.4,3J(HH) 7.8).

8 31P{'H} (298 K, CD2C12): 46.6 (s)

[(P rjP ^R hsH iJIB A rph (27-H12)

Synthesis as for [('PrjP^RhsH12][ 1 -H-c/oso-CB 11 Me11 ]2, starting with 0.100 g o f 

[('Pr3P)2Rh(NBD)][BArF], yielded 0.014 g  o f dark red crystals from the initial 

recrystallisation and a further 0.003 g  from a repeated recrystallisation o f the 

supernatant.

8 'H  (298 K, CD2CI2): 7.63 (s, 16H, ortho arene) 7.47 (s, 8H, para arene), 2.35 (m, 18H, 

'Pr bridgehead) 1.26 (m, 108H, CH3), -21.40 (br, s, 12H).

8 “ B(298 K, CD2CI2): -5.9 (s)

8 J,P{'H} (298 K, CD2C12): 110.5 (d, J(RhP) 140)

Elemental Analysis:

Yield: 37% (first crop),

8% (second crop)

374



[(lP r3P )6R h 6H 1o][Y]2 (Y  =  [1 -H -c/oso-C B n M en ] or [BArF]) (2 7 -H i0): A Young’s NMR 

tube was charged with crystalline [('P^P^RheHioHYk and dissolved in 0.5 ml of CH2CI2, 

removal of the solvent in vacuo and evacuating for 2 hours cleanly gave 

[(‘Pr3P)6Rh6Hio][Y]2. Attempts to obtain solid material with either anion repeatably failed. 

The yield was quantitative by !H and 3IP{*H} NMR spectroscopy (NMR data for the cation 

portion only listed, the anion NMR data is identical to that reported for the 

[('Pr3P)6Rh6Hi2][BArF]2 and [(lPr3P)6Rh6Hi2][l-H-c/o50-CBnMen]2 complexes 

respectively). The hydride content has been determined only by numerous integrations on 

different samples of [('Pr3P)6Rh6Hio][Y]2 and consistently integrates to 10H relative to the 

'Pr signals (128 scans, 3seconds delay to avoid saturation). No accurate Mass Spec data was 

obtainable.

8 ‘H (298 K, CD2CI2): 2.23 (m, 18H, *Pr bridgehead) 1.22 (m, 108H, CH3), -25.50 (br, s, 

10H).

8 31P{'H) (298 K, CD2CI2): 107.5 (d, J(RhP) 110)

[(PCy3)6Rh6Hi4][Y]2 (28-HJ4): The synthesis is identical to that for [('P^P^Rl^H^JIXh, 

except the precursor compound [(PCy3)2Rh(H2)2(H)2][Y] is heated at 50°C. 

[(PCy3)6Rh6H i4][Y]2: (Anion shifts identical to that reported earlier)

8 *H (selected, 298 K, CD2CI2): 2.19 -  1.01 (m 198H, PCy3) 0.51 (v. br, s 2H) -21.53 (br s, 

12H).

8 31P{'H} (298 K, CD2C12): 109.6 (br s), 88.5 (br, s)

Mass Spec: (FAB+ NOBA Matrix): Calcd [(PCy3)6Rh6H,4]2+: 1158.0 m/z, Found: 1158.3 

m/z.
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[(PCy3)6R h6Hio][Y]2 (2 8 -H14): This was prepared by a related synthesis as for the 'Pr3 

derivative, though evacuation for 3 days was required to reduce the hydride content fully. 

Solid material is unobtainable for this H 10 cluster. Yield is also quantitative by *H NMR 

and 3IP{1H} spectroscopy. The hydride content has been determined by numerous 

integrations on different samples of [(PCy3)6Rh6Hio][Y]2 and consistently integrates to 8 H: 

2 H relative to the PCy3 and anion signals (128 scans, 5 s delay to avoid saturation) Cation 

NMR shifts only listed.

8  *H (selected, 298 K, CD2CI2): 2.28 -  1.14 (m 198H, PCy3), -26.51 (br s, 8H), -28.45 (br 

s, 2H)

5 31P{1H} (298 K, CD2CI2): 92.1 (d, ^(RhP) 97.8)

Mass Spec: (FAB+ NOBA Matrix): Calcd/[Rh6(PCy3)6Hio]2+: 1156.0 m/z, Found: 1156.2 

m/z.
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