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University of Bath

Abstract

ASPECTS OF FRACTAL IMAGE 
COMPRESSION

by Paul D. Wakefield

This work extends research on fractal image compression, which began with 

the proposal of the subject by Barnsley and the invention of block-based 

fractal coding by Jacquin. Later work by Monro and others created the Bath 

Fractal Transform (BFT) which improved compression performance by using a 

more complex basis.

Using the most recently published results this thesis continues development of 

the BFT by studying the effects of using an orthogonalisation operator at the 

parent mapping stage, improving the quantization of the transform parameters, 

and comparing methods of rate-distortion switching. In each of these areas 

useful observations and discoveries are made.

Later, a novel technique is introduced which can determine a parent location 

from the basis coefficients in a child block. This is named the Implicit Fractal 

Technique (IFT) and leads to an improvement in rate-distortion performance. 

As well as a complete derivation of the method and a comparison of its effects 

on different images, an attempt is made to extend the method by using a dual 

edge model.

Further work compares the results of zooming with several different fractal 

transforms, and improves zoomed image fidelity when using the IFT. A new 

fractal transform is also proposed which uses a generalised form of self

similarity, and has the potential to give greater fidelity and offers greater 

flexibility for transform design than existing methods. Finally methods of post

processing IFT coded images are investigated.
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Overview

The main contribution of this work is the development of fractal methods for 

image compression. Initially the Bath Fractal Transform (BFT), a fractal image 

compression method invented and developed by Monro and co-workers, is 

adopted and the current state of the art reviewed.

A series of investigations into improvements to the BFT are presented, 

including the use o f an orthogonalisation operator during the parent mapping 

step, truly optimal quantization of transform coefficients, and a rate-distortion 

switching technique where fractal terms are used selectively. These methods 

result in an algorithm which gives substantially improved fidelity.

Subsequently a new Implicit Fractal Technique (IFT) is derived which uses a 

mathematical model to estimate fractal properties of the image. Fidelity is 

improved in edge blocks on an image by exploiting a correlation between the 

basis coefficients of the transform and the location of the parent block relative 

to each child.

Later chapters present a mixture o f work associated with BFT and IFT 

development. These include a comparison of possible quadtree partitioning 

criteria, a proposal for a new fractal transform which increases the fidelity 

which can be potentially achieved by fractal coding, a study of the multi

resolution property of fractal compression, and post-processing of fractal 

coded images.

The aim of this work throughout is to improve the performance of fractal 

transforms relative to other image compression methods. In particular, care is 

taken to focus on increasing the role of the fractal aspects of methods rather 

than the non-fractal components.

Parts of the work contained herein have been published elsewhere. Appendix 

A gives details and contains reproductions of several conference papers.
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C h a p t e r  1

INTRODUCTION

This chapter introduces four topics of relevance to this thesis. The first of 

these is fractals: complex sets which possess detail at all scales and are often 

strikingly beautiful, together with the mathematical tools of fractal geometry for 

analysing them. Secondly, a branch of fractal research entitled Iterated 

Function System theory, which facilitates the generation of fractal sets from 

very simple formulae. Thirdly, image compression, which is the conversion of 

image data into a more compact and efficient form. Finally, the principles of 

how fractal image compression may be possible.

1.1 Fractals

Due to the relative novelty of the subject no strict definition of “fractal” is 

widely used. An ‘expansionist’ definition has been in use since Mandelbrot’s 

original essays [43,44] introduced fractals to the wider world. The reader is 

referred to these for a more complete, heuristic definition including a wide 

range of examples from both mathematics and the physical sciences. In a sense 

the specification is analogous to the characteristics of life [18] - suitably vague.

In the physical world a fractal object is something which has detail at such a 

range of scales as to render a classical geometric description impossible. In the 

physical world there are any number of such shapes: mountains, clouds, the 

path o f lightning etc. As each is inspected more closely, more complex detail is 

revealed.

Take for example maps o f the British coastline [44]. At a scale of 1/100,000 

many bays and peninsulas are visible. When the map is compared with one of
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scale 1/10,000 sub-bays and sub-peninsulas become visible. On a 1/1,000 map 

sub-sub-bays and sub-sub-peninsulas become visible.

In mathematics a fractal set is one with detail at every scale. One classic 

example is that o f the Mandelbrot set, Figure 1.1, defined as the set o f points c 

in the complex plane for which the Julia set o f /(z) = z2 +c is connected.

The Julia set o f a complex polynomial is defined as the closure o f its set o f 

repelling periodic points, so that for all points in the exterior, |/*(z)| -> oo.

From the formula itself one would not guess that both the Julia sets and the 

Mandelbrot set would have boundaries too complex to analyse with traditional 

geometry.

Figure 1.1. Mandelbrot Set. White points are 
members o f the set.
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Yet take one area o f the boundary o f the set and re-render it at a higher 

resolution. More detail can be observed. Repeat this action any number o f 

times and at each stage more detail appears. Some example results are shown in 

Figure 1.2.

Figure 1.2 ‘Zoom’ o f  the Mandelbrot Set at x20, 

x400, x8000, x l60000, x3200000 magnification.
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To facilitate the study of fractals it has been necessary to create a “fractal 

geometry”. First among the tools used to analyse fractals is fractal dimension 

[18] - in simple terms an index of complexity. Using fractal dimension describes 

sets as ^-dimensional where n is typically non-integer for fractal sets and integer 

for ‘Euclidean’ sets. Several different definitions exist, including the Hausdorff- 

Besicovitch dimension: the critical value d = &mHF where H 3(F) = oo if s<d 

and H s(f ) = 0 if s>d  . Where HS(F) is the s -dimensional Hausdorff measure 

of F:

H3 (f ) = liminf [fJ : {t/,} is a S - cover of F 

and the box-counting dimension:

(1.1.1)

. . .  „ lo g ^(F ) (1.1.2)
rf = dm.s F  = lm  r - g(5 .

where NS(F), is the smallest number of sets of diameter at most 8 which can 

cover F , which can be applied to empirical data.

1.2 Iterated Function Systems

An Iterated Function System (IFS) [4,5,34] is a collection of contraction 

mappings on a complete metric space K , whose actions on subsets of K are 

combined to produce a contractive set-valued mapping. The result: An IFS 

possesses a unique attractor set which is typically fractal.

1.2.1 Theory

Let (K,d) be a compact metric space. For example, K may be the disk 

{jc eR 2:W < l} and the distance function may be d(x,y) = |x-y | in R2. Let H[K) 

denote the set of all nonempty closed subsets of K,  then it may be shown that 

H[K) is a compact metric space with the Hausdorff metric
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h{A,B) = sup inf d(x,y) + supinf d(x,y)
x e A  >,£B x e B  y ^ 4

for A , B subsets o f K . (NB, a slightly different definition in terms of S-parallel 

bodies may be found elsewhere, e.g. in [18]).

Let Wj-.K-^K for i = l,2,...,N be a collection of contraction mappings with 

corresponding ratios of contraction 0<5, < 1. Then {K.wr.i = 1,2,...,A |̂ is called 

a contractive iterated function system [5].

Lemma 1: Let {K,w,:i = 1,2, . . . , # }  be an IFS, and define H(k) by

Banach’s fixed point theorem states that a contraction mapping on a complete 

metric space has a unique fixed point, and as a corollary this point is an 

attractive fixed point [39]. Because h is contractive, it follows that an IFS 

possesses a unique attractor A e H(K) defined by

(1.2.2)

i=i ;=1

for A ^H(k)  . Then w is a contraction mapping with

h(w(A)MB)) < sh(A,B), for all A,B e H(K) , (1.2.3)

Proof:

<sh{A,B).
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A = \xmw°n{A) (1.2.4)

where w°°(4) = A and w°"(a ) = w{w° ^ ( a )) for 77 = 1,2,..., and that A is

independent o f A ^H[K) . When K cz Rm, it usually occurs that the Hausdorff-

Besicovitch dimension of A is non-integer [5], in which case A is most 

certainly a fractal.

An approximation of the attractor A of an IFS can be computed by computer 

by adapting the following method of calculation. Define a probability vector

p = {pi,p2,--‘,Pff) with each pt >0 and = 1. Start from x0 eK  and define a 

sequence by choosing successively

computation is relatively easily done for a sufficient number of points. A

An alternative method for the computer rendering o f IFSs is that of [51].

1.2.2 Inverse Problem

The inverse problem is that of choosing contraction mappings wi:K->K such 

that their attractor is or approximates a given set. For example, given a target 

set L and an e > 0 the problem is to find an IFS with attractor A such that

(1.2.5)

where probability p, is attached to the choice xn = w,(x„_,) once x„_, has been 

chosen. Then

A = jj/: there is a subsequence x„ —>■ y (1.2.6)

Observe that a e A  if and only if each open neighbourhood of a contains 

infinitely many elements xn. When K = [0,l]x[0,l]<=R2 for example, such a

computer would plot, say, {xn\n = 51,52,...,500,00()}.
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h{A,L,) < e . Barnsley et al [6] suggest how this problem may be solved in certain 

cases. Their method relies on the Collage Theorem which, for reasons which 

should become clear later, might be termed the “Fundamental Theorem of 

Fractal Image Compression!”

Collage Theorem: Let {K,wt:i = 1,2,...,//] be an IFS. Let a subset L o f K be 

such that

h{L\Jw,(L))<s C1-2-7)

for some s> 0. Then

s  (1.2.8)
< 1 - s ’

where A is the attractor o f the IFS.

Proof:

h{A,l) < h(A,w(L))+h(w{L), i )  < sh{A, l)+h(w(L), i)
=>(l- s)h(A, L) < h(w(L), L)

Hence only a collage, or “lazy tiling,” of L need be made, by continuously 

distorted copies of itself to find a suitable IFS.

Sets defined by the above method can be simple or complex. Figures 1.3 and

1.4 show some examples in R2.

1.2.3 Summary

The method of approximation suggested by Barnsley et al is to continuously 

alter an IFS - rendering and re-rendering - until the attractor of the IFS is

11



acceptably close to the set it is to approximate. This is possible as an attractor 

is continuously dependent on its IFS, that is, a small change in the IFS will 

produce a small change in the attractor.

FYs FYF

*,(*,>>) “ (OStfUy), *,(*,;>.) = (0.5*,0.5>h-i) 

w,(*, y) = (0.5*+l,0.5y+l), w,)*,^) =  (0.5*+1,0.5y)

^ (x .y) =(Q5xfi.5y),w2{x,y)=(0j5x,05y+\) 

>3(x,y) = (0.5x+l,0.5y+l)

w,(x,y) = (0.849* + 0.037y + 0.075,-0.037* + 0849>- + 0.183)
w2(x,y) = (0.197*- 0.226>> + 0.4,0.226* + 0.197>> + 0.049) wi(*>7') = (.824*+.281^1882,-.212*+864^0.111)

w3(x,y) = ( -  0.15*+ 0.283^ + 0.575,026*+ 0237> -  0.084) w2(*,>-) =  (.088*+.521y+0.785,-.464*-.378y+8.096)

*r4(*, y) = (05,0.16_>')

(c) (d)

Figure 1.3. Example IFS attractors, (a) Square, 
(b) Sierpinski triangle, (c) Fem, formula taken 

from [61]. (d) Dragon, from Fractint 19.51

1 Public domain software for generating fractal images. Published by Stone Soup Group, 
http://spanky.triumf.ca/ www/ fractint/fractint.html.
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Although other solutions have been proposed, for example Forte and Vrscay 

[21], in general the inverse problem is difficult and no computationally effective 

solution has yet been presented. However the construction o f a broad range of 

fractal sets from simple transformations is impressive for its own merits.

w, (*, y) = (0.195* -  0.4887 + 0.4431,0344* + 0.4437 + 0.2452), w2 (*,7) = (0.462* + 0.4147 + 0.2511,-0.252* + 0.3617 + 0.5692) 

w3(x,y)  = ( -  0058*-O.077+ 03976,0.453*- 0.1117 + 0.0969), wA(x, 7) = ( -  0,035*+ 0.077 + 0.4884,-0.469*- 0.0227 + 05069) 

w5(*, 7) = ( -  0.637*+ 08562,05017 + 0.2513)

Figure 1.4. Tree. Formula from [61].

1.3 Image Compression

Image data compression is concerned with minimisation o f the number of 

information carrying units used to represent an image [34]. An image which has 

been transformed into a more efficient representation is termed a “compressed 

image.” In the “lossy” case, o f which fractal image compression is an example, 

a certain degree o f deterioration is tolerated to achieve greater compression.

13



Below some essential aspects of the subject are described: image acquisition, 

representation of colour, and distortion and compression measurement.

1.3.1 Image Acquisition

Many images which require compression are computer generated, for example 

graphics used in computer games. However more commonly images are of 

photographic origin, taken from a real scene using a digital camera or scanned 

from a photograph. Below, the basics of grey-scale image acquisition are 

explained - an explanation of colour is beyond the scope of this work.

A camera works by using a lens to focus the light from objects onto the image 

plane of the camera. The use of a lens causes spherical and chromatic 

aberration, but the most important feature, at least from the point of view of 

image compression, is the sampling of the image.

An image produced in a digital camera is usually converted to an electrical 

signal by the use of Charge Coupled Device (CCD) cells. These are MOS 

capacitors that accumulate charge proportional to the number of photons that 

are incident on them [8]. Typically a CCD array samples at 752x582 pixels, 

which is common mainly because of television standards. The analogue charge 

in each CCD cell is then converted to a digital value, and the intensity of the 

signal is split into 2” grey-levels, where n = 8 is common.

A scanner captures images by reflecting off an opaque original or shining light 

through a transparent original into an array or strip of photosensitive (light) 

cells (e.g. CCD cells.) The subsequent process is similar to that in a digital 

camera.

1.3.2 Colour Representation

In image compression colour is usually represented in one of two ways. Firstly 

by a set of red, green and blue (RGB) 8-bit images, which can then be 

combined to produce a displayed or printed image in colour. Secondly by a

14



luminance and two chrominance (YUV2) images, a form where distortion in 

the chrominance (colour) images is much less perceptible and hence is more 

useful for image compression. The YUV form is a linear transformation of 

RGB images, however there are many other such transformations.

In image compression development it is normal for only grey-scale images to 

be considered, as colour images may be approximated in the same way and at 

higher compression ratios. Additionally to the human visual system the 

chrominance component of colour images is by far the most important.

1.3.3 Measurement of Compression and Distortion

The amount of compression an image is subjected to is measured in one of 

two ways. Either by compression ratio which is the ratio of the amount of data 

used to describe the image in its original form to the amount of data used to 

describe the compressed image, or by bits-per-pixel - the compressed data size in 

bits divided by the number of pixels in the image.

The measurement of distortion is more difficult but is commonly measured 

with one of the following formulae [34].

Mean Square Error (MSE):

^ £ = ^ Z ( / ( u y ) - g ( c . / ) )  >ij

Peak Signal to Noise Ratio (PSNR)3:

2 For convenience the initials Y U V  are used to denote the luminance-chrominance images, although in
television engineering YU V usually denotes the modulated signals themselves.

3 Many researchers use the m aximum possible image intensity (typically 256) instead o f  the maximum
found in the image. Comparison with their results is possible using the signal peaks given in Chapter 
4, Figures 4.5.1-4.
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MSE
(1.3.2)

PSNR = -101og10

Signal to Noise Ratio (SNR):

SNR = -1 0 1 o g 10

(1.3.3)

In the above N  is the number of pixels in the image, g  is the original image, 

and /  is the compressed image.

Difficulties arise as these methods for measuring image distortion do not take 

into account how the error is interpreted by the human visual system. Work 

done on this problem [85] suggests that this is not necessarily serious when 

comparing compression methods which differ only slightly.

1.4 Compression Methods

1.4.1 Image Compression Methods

Image compression methods vary widely in their working, but a typical method 

has the following stages

1. The original digital image is transformed into another domain, where the 

new set of data has the property of greater, ideally optimal, packing of the 

information content into a smaller number of the coefficients.

2. Some values of the data set are truncated or discarded, or otherwise 

quantized, in order to save space in the eventual file. The amount of loss 

depends on the required degree of compression.

3. Statistical redundancy in the data is removed by entropy coding, and the data 

is then stored or transmitted.

16



The decompression of the image reverses this process, except of course for 

step 2 which causes loss of information in the recovered image. Some methods 

also lose information at Step 1, i.e. the transform is not invertable. Fractal 

methods to date have been of this type. Often these methods are used because 

they have the advantage of requiring fewer operations to compute and give 

good performance at high compression ratios.

1.4.2 JPEG Image Compression

The Joint Photographic Experts (JPEG) defined a standard for image 

compression in 1988 [78]. This standard is now in very wide use. It is based on 

the Discrete Cosine Transform (DCI) [2]. The general form of the 2- 

dimensional DCT is shown in equations 1.4.1 and 1.4.2:

CO (i + 0.5)Att
N

{ j+0.5)/^ 
M cos

JJ
(/ + 0 5)kn

N

(1.4.2)

Where JV, M  are block side lengths, g{i,j) is the image pixel intensity at (i,j) 

c(k,l) are the transform coefficients at (k,l) , and

a(l) = 1 for 1*0 (1.4.3)

a(l) = —j=r for / = 0 . 
V2

The DCT is an orthogonal, 2-d separable transform and various algorithms 

exploit these facts, and its partial symmetry, to compute the forward and 

inverse version [14].
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1.4.3 Wavelet Transforms

Research into the use of wavelets for image compression has increased rapidly 

over recent years, inspired by the theory of discrete wavelet transforms [15,42]. 

Wavelet coding is based on sub-sampling high- and low-pass filters, matched in 

such a way that they split the data without losing any information. For image 

compression a common choice is one of the family of Daubechies orthogonal 

filters [15] or the bi-orthogonal filters [12,73].

To compress the transform coefficients Shapiro [70] uses a zerotree method 

which exploits the pyramidal nature o f the wavelet filtered image. Said and 

Pearlman achieved improved results with a “Set Partitioning in Hierarchical 

Trees” (SPIHT) algorithm which has more efficient significance map coding 

and produces amongst the best image compression results of any technology to 

date [67].

1.4.4 Other Methods of Image Compression

A range of other methods exist for image compression. For example the DCT 

may be used much more efficiently than in the JPEG standard. In [48] it is 

shown how using a 16x16 partition of the image the DCT coefficients may be 

organised into a pyramid structure and the zerotree algorithm of Shapiro 

applied, with very good results.

Another popular method is vector quantization where image blocks are 

approximated as linear combinations o f blocks, or vectors, from a fixed 

‘library’ of vectors. The key problem here is in the design of the library, since 

its size greatly effects computational requirements.

1.4.5 JPEG 2000

A successor to the JPEG  standard, based on wavelet compression, is now 

under development by ISO/IEC. The main objective of this standard is to 

achieve low bit-rate image coding with rate-distortion and subjective image 

quality performance superior to existing standards. The standard should be
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completed by the end of the millennium and is intended to offer state-of-the-

art compression for at least ten years. The contribution phase of JPEG 2000

technology using 35 test images and has now been completed, with 25 

proposals in total.

In the next stage of JPEG 2000, the convergence phase, best compression 

technologies are to be integrated to yield the best possible compression 

algorithm.

1.5 Quantization and Entropy Coding

1.5.1 Quantization

The transformation of an image from its original form produces a large set of 

coefficients. The coefficients may take a very large range of values, limited only 

by the means o f storing them in computer memory. Quantization takes these 

coefficients and produces integer values, for example in the range 0-255. This 

process dramatically reduces the storage cost o f the coefficients but also 

introduces error. The more ‘coarsely’ the coefficients are quantized the less 

space they require, but the more inaccurate they are compared to the original.

Uniform quantization is the most basic form of quantization and will be used 

throughout in this work, as it is an efficient method and reduces the number of 

variables when designing compression schemes.

To quantize a coefficient it is divided by a quantization factor and rounded to 

the nearest integer.

The quantized coefficient therefore has a maximum value, which depends upon 

the maxmimum value of c .

consisted o f a request for proposed methods and a performance test of the

c'= Round
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To reconstruct the coefficient value

c = c'Q (1.5.2)

Some sets of coefficients may be more important than others, for example the 

DC or grey-level coefficients of the DCT, so it may be necessary to choose 

different values of Q for each set of coefficients.

Other types of quantization exist, such as Lloyd-Max quantization [45], 

however uniform quantization has the added bonus of being scaleable - when 

the quantizer is applied to image blocks of different sizes the quantizer has the 

same effect, simplifying the overall problem. Also it has been shown that often 

entropy coding following uniform quantization is as compact as Lloyd-Max 

[71].

1.5.2 Entropy Coding

Once quantized coefficients have been created they are coded losslessly to 

minimise the amount of space required for storage or transmission. This is 

done by exploiting the statistical properties of the data set.

In lossless coding it is useful to refer to the input as data symbols to be 

compressed and the output from the lossless coder as compressed symbols. 

The data symbols are usually quantised transform coefficients in image 

compression, but they can be anything, provided the coder has a knowledge of 

their statistics.

The entropy of a data set is the average minimum number of bits that a data 

symbol stream can be compressed into:

Entropy -  - X  P*-W l°g2 (P*M) (1-5.3)
x

where Pt(jc) is the probability of x occurring.
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The two most common methods of entropy coding are Huffman coding [28] 

and arithmetic coding [55]. Huffman coding is easier to implement and is thus 

used in this work.

1.5.3 Huffman Coding

Huffman compression [28] is designed to represent a data set in a form 

requiring close to the theoretical minimum number of bits required, given by 

equation 1.5.3. This is achieved by representing common data symbols with 

shorter symbols and rare data symbols with longer symbols. The average effect 

of this method is to reduce the number of bits required overall. When the 

symbol probabilities are negative powers of 2, optimal coding efficiency can be 

achieved.

The Huffman coder forms a tree from the data using the probability of each 

symbol. The rules for its construction are given below.

•  First consider each data symbol x as a one node tree with probability Pr(x).

•  Link the two trees with lowest probabilities and recalculate the new tree’s 

probability

•  Continue to link trees until only one, complete, tree remains.

Figure 1.5 shows a sample Huffman tree and table for symbols A, B, C, D with 

probabilities 0.5, 0.05, 0.1, and 0.35 respectively.

To encode a data set with Huffman coding a tree structure is created using the 

recursive algorithm described above. From this tree a translation table is 

generated, giving a variable length Huffman code for each source symbol. The 

table is created by traversing every path of the tree and storing a zero when a 

left branch is chosen and a one when a right branch is chosen. At the end of 

each path is a source symbol and the sequence o f ones and zeros that led to
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this symbol is the Huffman code. Any source symbol may now be encoded 

using this table.

0.5 0.5

0.15 0.35

0.05

B C

Symbol Code

A 0
B 100
C 101
D 11

Figure 1.5. Huffman tree and corresponding 
table.

To decode a symbol from a stream or string o f bits (i.e. a sequence of bits read 

from a file), one bit is read at a time and the Huffman tree is traversed, 

choosing a left or right branch at each node depending on the value of the bit. 

Eventually a leaf of the Huffman tree is reached and this gives the symbol 

value. This process may be carried out efficiently using a table with three 

columns. The first column contains a numbered list o f nodes and leafs. For 

each node the second and third columns are the node or leaf numbers 

corresponding to choosing a left or right branch. For each leaf the second 

column contains the decoded symbol, and the third column is left blank.

1.5.4 Other Methods

Other methods may reduce the entropy level o f the data itself. For example 

delta coding creates a data set where the difference between symbols is stored 

rather than the symbols themselves. This is useful if there is a simple 

correlation between adjacent symbols.
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Another useful method is run length coding where ‘runs’ of the same symbol 

are replaced by a pair of values - the symbol itself and the number of 

occurrences.

1.6 Fractal Image Compression

The principle of fractal image coding is that the image can be expressed as the 

attractor o f a transform acting in the space of images. This idea stems from the 

work of Barnsley et al on IFSs, where complex shapes are produced from using 

simple transforms, and will be explained in detail in later chapters. The work of 

Jacquin [35] is the first published fractal image coding system, and the next 

chapter begins by reviewing Jacquin’s method and the developments from it.
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C h a p t e r  2

LITERATURE REVIEW

The vast majority of published work on fractal image compression derives 

from the method of Jacquin [35,36]. The method works by partitioning an 

image into square blocks called range blocks and determining the fractal code 

for the image block-by-block. Each block is encoded with two terms: a massic 

term representing the grey-level of the block, and a geometric term, representing 

its similarity to a domain block elsewhere. By this method the self-similarity of 

the image is captured.

The result is an image transformation which when applied iteratively (see 

section 1.2) converges to an approximation to the original image. Research has 

been carried out into each aspect of Jacquin’s algorithm, primarily block 

transform design, quantization, partitioning, searching, and decoding. Each of 

these will be treated below.

2.1 Jacquin’s Method

2.1.1 Encoding

The support S' of a digital image g is partitioned into non-overlapping square 

range cells of two different sizes. The larger squares are of size B xB  and the 

smaller ones of size B/2 x B/2. In the original work these are termed range parent 

and range child blocks respectively, however there are differing uses o f these 

words in the literature and the term parent is reserved here for another purpose 

and the terms range and child are used interchangeably.
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Larger range blocks are used to code smoother areas and smaller blocks to 

capture detail in more complex areas, using the root-mean-square distance to 

measure distortion between the image g and its approximation / :

dif  > s )= ^

A pool of domain blocks is defined using the original image. These blocks are 

twice the size of the range blocks and are found by sliding a window across the 

image, moving in steps of one or more pixels. The step size is typically chosen 

as B jl .

The domain blocks are then classified based on their geometric features as 

either shade blocks, edge blocks, or midrange blocks. A shade block is “smooth” with 

no significant gradient, an edge block has a strong change of intensity, and a 

midrange block has moderate gradient but no significant edge. The edge blocks 

are further split into simple edge blocks and mixed edge blocks. The shade blocks 

are removed from the pool as they remain shade blocks under every possible 

block transformation and so can only be used to approximate other shade 

blocks. Such blocks, however, may also be approximated by the massic part of 

the transformation [36].

Each range block is classified and coded. If the block is a shade block it is 

approximated by a uniformly grey block. If it is midrange every element of the 

midrange domain pool is scanned, and the block is approximated by

g(x,y) « ag(w_1 (x,y)) + A (2-2)

where represents the mapping from domain to range, a  is a contrast

scaling taking one of four values less than one, and A is a luminance shift.

If it is an edge block a segmentation of range and possible domain blocks 

occurs. Each block is assumed to be of sufficiently small dimension to be
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segmented into two regions, one dark, one bright. The dynamic range o f a 

segmented block is then the grey level difference between the bright and dark 

regions. The range block is then approximated by

where i is an isometric mapping o f the block. In this case a is computed so 

that the dynamic ranges o f the range and scaled domain block are equal. O f all 

the edge domain blocks the block which minimises distortion is selected.

2.1.2 Reconstruction

The fractal code may be seen to be a collection o f block mappings using a 

given image whose union approximates the original image. The decoding 

scheme simply consists o f iterating the set o f block mappings, or fractal mappings 

until convergence to a stable decoded image is observed. Results in [36] suggest 

around 10 iterations are required for convergence.

(2.3)

Figure 2.1. Encoding o f  “Peppers” image, 
decoded using “Lena” as starting point.
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2.2 Transform

The block transform of Jacquin’s scheme has the greatest impact on pixel 

values within a range block, and alterations here have a direct impact on the 

performance of the codec. A range o f enhancements have been proposed.

Firstly, almost all fractal coding schemes use the 2:1 spatial contraction of 

domain blocks onto range blocks, but in fact this is not necessary for 

convergence [20]. Increasing the contraction to 3:1 has been found to improve 

decoder convergence [11] but there appear to be few theoretical or practical 

results for any one factor. Gharavi-Alkhansari and Huang [23] use a 

combination of 2:1 and 1:1 domain sizes. 0ien and Lepsoy [58] demonstrate 

that the domain-to-range decimation affects the accuracy of the collage error 

prediction, with 4:1 decimation producing the most accurate prediction of the 

approximation error.

In Jacquin [35], decimation o f the domain blocks to the size of the child blocks 

is achieved by the averaging of groups o f pixels, but other methods may be 

used. In [7] it is reported that the use of an anti-aliasing filter gives superior 

results, whereas in [41] the computational cost is reduced slightly by taking one 

of every four pixels and discarding the rest.

The symmetry operations utilised by Jacquin are widely used. Although Jacquin 

found some of the isometry operations were used more than others, other 

researchers found the probability distribution of their usage was relatively flat 

[82]. In spite o f their widespread usage, there is growing evidence that their 

application is counterproductive in a rate distortion sense [82, 69].

A range of block shapes can be used, corresponding to different ways of 

partitioning the image. Many polygonal shapes have been tried; particularly 

common are rectangular block methods in horizontal-vertical decomposition 

of the image, and triangular blocks in triangular partitions. Section 2.4 deals 

with this subject in more detail.
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To attempt to improve the quality of the geometric part of the transform a 

method has been proposed in [74] called orthogonal basis IFS. Determining a 

basis from the domain blocks in the image, each range block is approximated 

by a linear combination of domain blocks, with the most effective blocks used. 

This method is complex, paticularly because the basis is determined using a 

relatively complex method. However the method has potential since much 

better approximations can be produced to each block.

[23] presents a similar but slightly more general method, using domain blocks 

near the range block and a combination of fixed basis blocks such as used with 

the Bath Fractal Transform, described later. In addition the domain blocks can 

be either larger as in Jacquin or the same size as the range.

One significant early step was the realisation that the scaling term could be 

found directly using an inner product space technique [59], and Fisher [19,ch.3] 

shows that allowing the maximum magnitude o f the scaling coefficient to be as 

high as four gives an improvement in PSNR, although [31] contradicts this for 

coarse quantization cases. In addition to the above proposals attention has 

focused on improvement of the computation o f the transform coefficients.

The technique of mapping the original image to itself to find the solution 

derives from the collage theorem (section 1.2.2). However the collage theorem 

only gives an upper bound on the approximation error.

In [58,57] it is demonstrated that a better bound may be found by using a 

slightly modified transform, where the DC level o f domain blocks is removed, 

and in the same works a method of direct optimisation is presented. However 

it is not proven that these methods lead to significant gain in the rate-distortion 

sense.

In [29] the fractal code is determined by exhaustive search to see to what 

degree collage error coding is suboptimal. The result is an average 1.5 dB
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improvement in SNR with a fixed block size partition - demonstrating that this 

area of investigation is of significant importance.

The grey-level removal from domain blocks, suggested by 0 ien  et al [58] is 

referred to as the orthogonal transform, and is shown to converge more rapidly 

than the original form. Part o f the contribution of this thesis is the application 

o f an othogonalisation operator to the Bath Fractal Transform.

An alternative extension to the transform proposes manipulation of the 

domain block in the frequency domain [7]. The spectral coefficients are split 

into a small number of regions and in each region the coefficients are scaled by 

different factors. The result is a transform which approximates details in blocks 

better than Jacquin’s method and converges more quickly. The overall 

subjective quality at a given bit rate is described as improved.

Finally the transform can be improved by altering the massic part of the 

transform. The most well-known case is the Bath Fractal Transform (BFT) [47] 

which is explained in detail later, and forms the basis for further work. In 

essence the grey-level term is added to by a number o f bi-polynomial terms. 

This improves the approximation quality although increases the bit rate. 

Overall, it has been shown to be more efficient than Jacquin’s method.

2.3 Quantization and Entropy Coding

Quantization and, optionally, entropy coding are a key to achieving 

compression through fractal approximation and several researchers have 

tackled this problem.

[19] contains a comparison o f the bits used to quantize the scaling factors, 

between three and seven bits, and grey level, between five and nine bits, using 

linear quantization at a range of compression factors. Different allocations 

performed better at different compression rates, but Fisher concludes that five 

bits is the best overall choice, which is higher than Jacquin’s original six or
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seven bits to quantize the grey level uniformly and two or three for the scaling 

factor [35]. [19] also advises that Huffman or arithmetic coding should 

subsequently be used.

[31] examines the scaling coefficient and offset for any correlation and 

discovered a correlation of 0.7 to 0.95. This relationship may be exploited to 

reduce the bit requirement of the scaling coefficient, but an alternative is the 

use o f the orthogonal transform of 0ien et al [60].

[72] draws the conclusion from geometrical analysis that higher coefficient 

values should in fact be quantized more finely, since their impact is greater. 

Uniform quantization, it is argued, leads to the over representation of simple 

blocks and weakened performance on highly textured blocks.

Whilst uniform quantization is the most common method, the probability 

density functions of scaling and grey scale coefficients [36] suggest either non

linear quantization or the additional use of entropy coding, typically Huffman 

or arithmetic coding.

The domain block locations and isometries are stored without further 

compression in [35] and this appears to be the norm, with little to suggest a 

better method. Storage of domain block locations is most commonly done by 

storing offset parameters or using an index related to the searching method 

used (see later).

A more advanced aspect of the problem is the distribution of bits efficiently 

throughout the image. An example is [77] which determines the effect of using 

a scaling coefficient in a block and compares its rate-distortion effect with that 

o f splitting a high error block. The coefficient is used only if it is the more 

efficient use o f bits.
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2.4 Partitioning

Jacquin’s partition of the image consisted of a simple two-level quadtree. Many 

other partition types exist and have been used successfully in other image 

compression schemes. The main ones: quadtree, horizontal vertical (HV), 

triangular, and polynomial have been tried with fractal transforms.

2.4.1 Fixed block si^es

Fixed block size partitions arc the simplest possible type, and have received 

little attention because the block transform itself cannot account for varying 

amounts of detail in the image. It is logical therefore to use partitions which 

vary in block size and can use small blocks for high detail areas and large blocks 

for low detail areas.

The exception to this rule is the Bath Fractal Transform which uses a multiple 

grey scale terms to achieve better rate-distortion results. In [53,83] the 

quantization was varied to give different compression ratios with the same 

block partition. The conclusion of [83] however is the same as above, that 

optimal performance can only be achieved with an adaptive partition.

2.4.2 Quadtree

The simplest and often most effective adaptive partition is the quadtree, where 

large blocks from a simple initial partition are recursively split into sets of four 

smaller blocks, using the approximation error as the criterion for splitting. The 

result is a tree structure in which every non-terminal node has four 

descendants, and a partition o f the image where the approximation error is 

distributed quite evenly throughout. A simple partition is illustrated in Figure 

2.2 .

An improvement to the quadtree scheme for fractal image compression was 

proposed by Reusens [63]. Quadtree blocks were overlapped to eliminate block 

artefact and the result was a decrease in the artefact with no increase in bitrate.
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F igure 2.2. Example quadtree partition.

2.4.3 Horizontal-Vertical

A HV scheme works in a similar way to a quadtree but divides rectangular 

blocks with high error into two smaller rectangles. The line of division may be 

found by exhaustive search or based on analysis of the blocks geometry. For 

example blocks can be split along strong vertical or horizontal edges [19, 

Chapter 6]. Figure 2.3 illustrates a simple HV partition.

Clearly HV partitioning is more flexible than the quadtree method, but it is also 

more complex and requires a higher proportion of the total bit allowance to 

describe it. In addition domain searching is more complicated, and some 

compensation must be made for the varying aspect ratios of the range blocks. 

However the comparisons o f Fisher [19] show HV partitions perform 

significantly better for most of the compression range which is of interest. At 

high compression rates of around 40:1 and above the quadtree is superior for 

the Lena image but otherwise the HV partition is clearly superior.

2.4.4 Triangular

Triangular partitioning has also been investigated [56] and shows good visual 

quality compared to the quadtree. Blocking artefact is not as obvious, however 

the extra computational cost and the complexity o f the partition meant this
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partition has not been widely used. Figure 2.4 shows a simple triangular 

partition example.

Figure 2.3. Simple H V  partition.

2.4.5 Polygonal

Reusens [64] compares the above quadtree and HV partition types and 

experiments with a polygonal partition where the image is divided into 

polygonal regions having various numbers of sides. It is stated that the quadtree 

partition accounts for 7% of the total bit cost, the HV partition 20%, and the 

polygonal partition 25%. The rate distortion results for Lena show that the 

greater the proportion of bits allocated to the transform coefficients, as 

opposed to the tree structure, the better the algorithm performs.

2.4.6 Summary

To conclude, quadtree partitioning is a simple and fast method, but allows only 

adaptation in size, not shape, to the characteristics of the image. Other 

methods are reported to give better visual results, but it is not clear which is the 

best method overall. The results of Reusens and Fisher are contradictory, but 

there are a number of differences between their implementations of the two 

methods which may account for the discrepancy. It seems clear however that 

either a quadtree or HV partition will be the most effective option.
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F igure 2.4. Example triangular partition.

2.5 Searching

The method of searching for domain-range matches is a topic containing a 

plethora of ideas. It is the very essence of Jacquin’s method, but is remarkably 

slow, requiring a large pool o f blocks to be tested for each range block to be 

coded.

One method of acceleration is the orthogonal transform presented in [58]. The 

candidate domain blocks are orthogonalised with respect to the grey-scale 

mapping and consequently only the optimal scaling coefficient need be 

computed when each new domain block is considered. As a result the cost of 

evaluating domain-range block matches is reduced. Additionally the use o f 

quadratic polynomial terms in the grey-scale mapping can allow many more 

blocks to be classified as smooth, further reducing the computational cost of 

the encoding.

Commonly though, accelerated searching schemes work by classifying domain 

blocks so that only similar blocks are tested for a match against the range 

during the matching step. Many classification schemes are known and often 

combinations are possible.
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As explained earlier, Jacquin used a scheme that created four subpools of 

domain blocks: shade blocks, simple and mixed edge blocks and midrange 

blocks. For each range block, o f one of these types, all domain blocks were 

tested from the corresponding pool. However further classification or 

characterisation of blocks in each subpool has been found to be effective. By 

quantifying in advance some characteristic of the domain blocks, when a range 

block is to be encoded only those domain blocks which have similar 

characteristics need be searched.

Numerous techniques exist for this purpose, for example:

• Frigaard et al [22] propose a feature space where each domain block is 

represented by an ^-dimensional vector with each co-ordinate continuous, 

and representing a characteristic of the block. The characteristics used were 

the grey-level standard deviation of the block and the number o f dominant 

grey levels.

•  Boss and Jacobs [10] used a system of archetypes, where there were many 

classes of range block each represented by an archetypal member. The 

complex process of determining the archetypes proved somewhat counter 

productive however.

•  Fisher [19,Ch3] chose three domain pools, based on block sizes, and used a 

classification scheme to reduce the complexity of the domain-range 

matching step. The classification used the mean values and variances of 

quadrants of blocks to produce 72 classes.

•  Barthel and Voye [7] used an ordered search which spiraled out from the 

range block and stopped if the approximation error fell below a threshold.
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•  Hiirtgen and Stiller [32] combined a hierarchical search algorithm with block 

analysis giving search time which is only a fraction of Jacquin’s method and 

gives similar fidelity.

•  Saupe [68] used a method based on nearest neighbour searching, in a high 

dimensional space.

Fisher [19,Ch.3] examined the theory that local self-similarity is more common, 

but concluded that the increased likelihood of finding a match close by is not 

caused by local self-similarity but instead by there being more domain blocks to 

choose from close to any given range. Although this conclusion is at odds with 

that of Barthel and Voye [7].

Conclusion

Domain pool searching is of only indirect relevance to this work, and 

consequently the above is only a summary of some of the ideas in an area 

which constitutes a large proportion of the fractal image compression 

literature. It is not clear, even to specialists in this area, which method is most 

effective, but this remains a fascinating area of intensive research and 

investigation.

2.6 Decoding

The approximation to the image is found using the fractal code by iterative 

application to any initial image, as illustrated by Figure 2.1. Most fractal 

mappings are linear [30] and so may be written in the form h-> Th+b. 

Evaluating the expression

f  = (l-T)~'+b (2.4)

therefore gives the attractor image / ,  but is computationally more costly than 

the standard iterative decoding scheme used by Jacquin [35].

36



Convergence

The main problem at the decoding stage is the convergence of the iteration 

sequence. Restricting the magnitude of the scaling factor (2.2) and (2.3) to less 

than 1 in magnitude guarantees convergence. However in [19] and elsewhere it 

is noted that the magnitude limit can be raised to increase performance. This 

leads to problems as there is no obvious guarantee of convergence, and for a 

useful implementation of a fractal coding scheme reliability in this sense will be 

required. Other conditions for contractivity have consequently been studied.

For example, in [30] it is shown that the convergence properties of various 

coding schemes can be analysed in a statistical sense. The fractal mapping can 

be split into one or more mapping cycles, each of which must converge for the 

full mapping to converge. If the spectral radius of a cycle is less than one it will 

converge [30].

As a result the probability density functions of the eigenvalues for various 

choices of design parameters are derived, and the probability of a divergent 

coding is computed. The results suggest a large domain to range size ratio and 

longer mapping cycles are more likely to produce convergent fractal codes.

Similarly Kominek [37] observes that the contractivity varies between pixels 

and is the product of all scalings under which the pixel is mapped. The term 

eventual contractivity is introduced for mappings which form a contraction when 

applied several times. This, it is noted, is a sufficient condition for convergence 

of the transform as a whole.

Kominek [37] also introduces the term partial contractivity which is useful when 

cycles are long but only a limited number of, say four, iterations are applied. 

Only the first part of the cycle will have an effect, and may not be contractive. 

In this case ‘speckle noise’ may be seen in the image.
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Fast Decoding

The efficiency of iterative decoding has also been examined. Whilst fast 

compared with the encoding stage, there is still opportunity for improvement, 

primarily through the use of pyramid decoding schemes [3,50].

Baharav et al [3], for instance, exploit the continuous basis of IFS theory to 

prove that fractal codings can be decoded using a pyramid scheme, and find 

that the decoding can be accelerated by an order of magnitude. [50] presents an 

equivalent scheme, specific to the BFT, which has its origins in the fast 

rendering algorithm of [51].

Zooming

Another aspect of the fractal decoding process is the possibility of increasing 

the image resolution or zooming on only part of the image. The fractal 

transform is independent of resolution by nature so it is simply a question of 

applying the transform using block dimensions, in terms of pixels, which have 

been scaled by the required factor.

Fisher [19] presents an increased resolution image first compressed with 

Jacquin’s algorithm, and finds that details are indeed produced at the new scales 

and that the result is better than the same decoding with pixel replication.

Gotting, Ibenthal, and Grigat [26] contains a more thorough study, using up to 

six polynomial terms for the massic part o f the transform. Gotting et al 

conclude that the subjective quality of the resulting images is proportional to 

the order of the polynomial part of the transform, and is inversely proportional 

to the quantization o f the polynomial parameters. Using a 4x4 block size, their 

x8 magnification of Lenna’s eye is superior to conventional nonlinear 

interpolation.

Polidori and Dugelay [62] identifies the blocking artefact o f zooming as a 

problem area and attempts to compensate with a series of techniques which
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overlap blocks. The result is a reduction in blocking effects, seen in [26], and a 

sharpness o f edges, though much distortion even with small block sizes.

Conclusion

Whilst the above discussion has concentrated on results for the classical 

algorithm, the use of the orthogonal transform allows faster searching at the 

coding stage and has the added advantage o f decoding in a finite number of 

steps [58]. The use o f post-processing techniques for fractal image compression 

has not been investigated to a great extent, although in [19] a simple averaging 

technique applied at range block edges produces an improvement in visual 

quality.

Further work on the challenge of zooming is presented later in this thesis. The 

above work forms the basis for that study.

2.7 Bath Fractal Transform

This thesis aims to add to the study of the Bath Fractal Transform (BFT) and 

build upon work already done in its development. For this reason it receives 

special attention here.

Origins

The origins of the BFT lie in [49], which presents a computationally efficient 

technique for approximating blocks using a self-affine system, relying on a 

theory of invariant functions. To explain the workings of the method it is 

easiest to interpret it using a current fractal image compression framework.

The image is partitioned into domain or parent blocks o f size 8x8 pixels and 

each domain block is subdivided into four equal-sized range or child blocks. As 

each child block is contained by its parent block, this parent is used, subject to 

isometric mapping, without any searching, for the geometric part of the 

transforms.
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Figure 2.5. Image block g  tiled by four children

For the rnassic part linear polynomial terms were introduced giving an 

approximation of the form

g(x,y) »a^w~l{x,y^+p+yx + dy (2-5)

for each block.

The parameters were determined from the collage theorem and were quantized 

and stored indirectly by storing the function values at comer points of blocks.

The result of this transform design is a method which uses self-similarity to 

approximate image blocks independently of each other. The elimination of 

searching from the encoding step makes the method very fast, with 

symmetrical encoding and decoding times. The independence of the 

approximation from one parent to another means each block can be decoded 

independently and this allows simpler decoding algorithms and makes it 

practical to determining the approximation error during the encoding stage.

Generalisation to the BFT

Monro generalised the above method in [46,47] to include any other bi

polynomial massic expressions and combined the method with localised 

searching to give a class of transforms of which Jacquin’s method was one 

particular member.

40



Results presented for a 4x4 child block size over the Gold Hill test image 

compare the effects on performance of different transform options and show 

that the image fidelity improves with both the use of searching and the 

increased complexity of the massic part.

'Non-Searching Parameter Determination

Further work on the BFT has sought to clarify design choices to produce the 

best overall fractal compression method.

By comparing differing degrees of quantization for different blocks sizes it was 

shown that light quantization with varying block sizes was the most efficient 

for achieving rate-distortion performance [81].

When comparing the best rate-distortion curves which could be achieved with 

each order it became clear that the bi-quadratic case was optimal for image 

compression [53,81].

Geometric Options

Various comparisons of the geometric part of the transform were carried out, 

and in [54] it is shown that the use of isometries is counter productive in the 

rate-distortion sense.

The degree of searching to be used was also investigated by Woolley [81]. 

Varying the distance domain blocks could be from the range block when 

searching, showed that allowing larger distances gave better fidelity but higher 

bit cost and that the overall effect on rate-distortion performance was negative. 

The optimal case was concluded to be that with no searching at all.

In an attempt to improve the performance o f the non-searching case, 

investigations of various divisions of the parent into children were carried out 

[17,81]. This revealed that allowing the split point to vary yields better rate- 

distortion results, although this result is effectively superseded by the work 

described below on partitioning.
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Partitioning

Based on the success o f varying block sizes with light quantization, 

consideration was given to the use of quadtree and HV partitioning schemes. 

Comparing collage error, Sobel edge value, and attractor error for the splitting 

criterion showed that the use of actual error gave only slightly better results 

than the edge value, whereas the collage error was inferior by a significant 

amount [81].

A comparison of the HV and quadtree schemes showed quadtree to be the 

better performer overall.

Conclusion

Most of this thesis is concerned with either improving the BFT, or the 

introduction of new transforms which rely on BFT work.

2.8 Other Methods

In addition to the previously mentioned improvements to Jacquin’s original 

algorithm, much promising work has been done on hybridising fractal 

compression with other methods or interpreting fractal compression in other 

frameworks.

Fractal Wavelet Coding

The most successful of these are the various subband coding schemes [66]. The 

principle is to decompose the image into a set of subbands and to predict 

coefficients in one subband from those in higher subbands. In [65] this is done, 

using a vector quantizer when the domain-range matching procedure fails.

A number of researchers appear to have discovered the possibility of fractal- 

wavelet coding simultaneously [16,38,79]. In [38] it is shown that the 

orthogonal transform can be effected in the wavelet domain using a Haar 

wavelet. An advantage o f such schemes is, of course, that decoding takes only a
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finite number of steps and convergence criteria are not required. As stated in

[38], using other wavelets than Haar leads to a reduction in blockiness.

Davis [16] reports that allowing range blocks which are poorly matched to be 

stored by their wavelet coefficients allows the algorithm to degrade gracefully 

for images which are not self-similar.

Krupnik, Malah, and Kamin [38] suggest that this technique may be easily 

extended for increasing image resolution.

Fractal Matching Pursuit

Matching pursuit is a general and flexible method for solving optimization 

problems in a range of subjects. It works by using an over-complete set of 

functions for coding and then determining which functions are most 

important. Gharavi-Alkhansari and Huang [24] presents an adaptation of 

matching pursuit to the fractal optimization process. The result is a method 

which is reported as competitive with the best fractal coding schemes and 

comparable in performance to wavelet coding.

Conclusion

The work of Culik and Kari [13] proposes the use of weighted finite automata 

(WFA) for fractal image compression, though this is not summarised here, and 

other methods are possible. Work on the implicit fractal transform, contained 

in this thesis, suggests that fractal coding can be hybridised with practically any 

other method. The above work with subband coding, wavelets, and matching 

pursuits indicates the potential of this area for further investigation.

2.9 Summary and Conclusions

This survey has summarised the research work done on fractal image 

compression since its inception.
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Jacquin’s original method represented a breakthrough for fractal image 

compression, and much work followed its publication. Most sought to improve 

and extend the method, but more recently hybrids with other image 

compression techniques have been introduced.

In parallel to the direct practical development of the work is the increase in 

understanding of the underlying principles of fractal transforms resulting from 

work such as that o f Forte and Vrscay [13,75]. These publications aim to 

provide a unifying mathematical treatment of different types o f fractal 

transforms, specifying a set of rules for their construction.

Summary

A wide range of ideas have been published for improving the determination of 

scaling and massic coefficients, increasing the number of geometric and massic 

terms, improving the subsampling of domain blocks to range block size, and 

determining the best domain to range contraction factor. Studies have 

attempted to determine the optimal quantization and entropy coding methods 

and the best partition scheme (quadtree, HV, triangular, or polygonal).

The searching part of Jacquin’s algorithm has received special attention. Being 

slow to encode, a wide range of schemes for accelerating the process using 

classification, hierarchical searching, and fast domain-range match computation 

have been proposed and investigated.

Concerning the decoding stage, pyramid decoding schemes have been 

proposed, and analysis of alternative criteria for convergence has been carried 

out. Also the effects of zooming and increasing image resolution with fractal 

transforms have been examined.

The BFT added to the body of fractal image compression research and much 

work has been done to find the optimal design parameters. The degree of 

searching, number of massic parameters, use of isometries, and partitioning
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options have been investigated and the best case has been shown to be that of 

the non-searching, bi-quadratic case, without isometries, using a quadtree 

partition with only light quantization o f the coefficients.

Hybrid methods for fractal image compression have received attention as well. 

Recently fractal-wavelet compression has become popular and results from this 

subject show great promise.

Conclusions

To conclude, fractal image compression is and remains an area of great 

research interest. To date several algorithms have achieved rate-distortion 

performance which is close to that of wavelet compression, which is widely 

acknowledged to be superior at this time.

The design of fractal transforms presents a number of problems, as pointed 

out by Wohlberg [80], there are few theoretical results on which design 

decisions can be based and the categories of choices are not independent, in 

the sense that any comparative analysis of coding performance between 

different options in one of these categories is usually contingent on the 

corresponding choices in the other categories.

The answer seems to be to adopt the approach of Monro and Woolley, and 

others, producing rate-distortion curves for a set of images, varying one 

parameter at a time to see which value gives the best result. This method 

should certainly give a good result, though there is no guarantee the optimal 

solution will be found.

An important area of research which has received little attention is the nature 

of self-similarity, though this has been examined [80]. The assumption of piece- 

wise self-similarity is made in every fractal coding scheme, but it is important to 

understand what degree of self-similarity to expect. After studying this 

problem, Wohlberg has concluded that a small but significant degree of local
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self-similarity is to be expected, but questions whether this implies that fractal 

image coding is worthwhile.

In the original work presented in this thesis, the development of block 

transforms for fractal coding is continued. This approach has been shown to 

have the potential to achieve excellent performance, and justifies further work. 

The BFT is a development of fractal block coding and the work presented later 

will significantly increase its effectiveness and extends its performance by taking 

advantage of local self-similarity to a greater degree.
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C h a p t e r  3

THEORY OF FRACTAL IMAGE COMPRESSION

This chapter describes the theory o f block based fractal image compression. A 

mathematical framework is introduced which is designed to describe later work 

in this thesis.

The framework uses continuous functional representation of images and fractal 

mappings. Translation of the theory into a discrete setting for practical 

application is straightforward.

3.1 Introduction

Definitions

Every image has an image support, S , which is a rectangular subset of the plane.

‘S' = [*1,>'i]x[*2,.y2] c R 2 (3 1 1 )

An image is therefore a single valued function, with domain S .

If the class of images on an image support S is denoted by X, then fractal 

image compression encodes an image by finding a fractal image operator - a 

mapping F:X-» X - which is contractive with respect to some metric d , on 

the complete space X . I.e.

3se[0,l[ such that ),f(^2) ) - sd(h},h2) for all /?,,h2 eX . (3.1.2)

It is known from Banach’s contraction mapping theorem [39] that a contractive 

function has a unique fixed point which is globally attractive, and consequently 

when applied repeatedly to any initial point the resulting sequence of points is
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convergent to this attractor. I.e. if the fixed point is /  and the initial image is 

h then V(n)(h)-> f  as «-»oo, where F(n) is the w-fold composition of V . As 

V is an operator on the space of images this fixed point is an image.

Collage Theorem

The essence of fractal image compression is the attempt to find a fractal image 

operator which has a fixed point close to a given (source) image, hence fractal 

coding has also been termed attractor image coding.

The problem of finding V is known as the inverse problem (see section 1.2.2) and 

is generally hard to solve except in specific cases. The partial solution found by 

Barnsley uses the collage theorem (section 1.2.2), which is redefined for fractal 

image compression using the terminology introduced in this chapter.

Collage Theorem for Fractal Image Coding. Let F be a fractal image operator, 

contractive on a metric space (X,d), with attractor image /  eX and ratio of 

contraction s . If g is an image in X then

Fractal Coding using the Collage Theorem

When approximating an image g with a fixed point /  e X , the collage 

theorem gives a bound on the approximation error. Assuming V is described 

by a number of parameters and is sufficiently simple, an ‘optimal’ V may be 

determined by minimising the right hand side of (3.1.3).

Most fractal compression transforms to date have been block-based and the 

aim of this thesis is to improve their design. For such transforms the collage 

theorem is easily applied. In each block, V is described by a number of 

parameters, assumed to be independent o f other blocks. As a consequence

(3.1.3)
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parameter choices for individual blocks do not significantly affect the overall 

ratio of contraction, and the denominator in (3.1.3) is ignored.

Using the RMS metric

4 ^  a )  = JH(hiix,y )-b2{x,y)) dxdy  for h},h7 e X
(3.1.4)

the contribution over an individual block C to the overall error is the square- 

error of the block:

For a class of fractal image operators (3.1.5) produces a problem which can be 

solved using least squares minimisation.

alternative means, the collage theorem method is the most easily used and 

widely applicable solution to date, and is used in the fractal methods o f this 

thesis.

3.2 Encoding

To code an image, a tiling or partition of the image support S  is created, 

consisting of N  cells, denoted by Ck for k = 1,...,N . A block taken from a cell 

is termed a child block.

For each cell, Ck , the action of V on an image function h supported on Ck is 

specified by

e(h,(C\h2(cj) = dxdy (3.1.5)
C

Whilst work has been done (see Chapter 2) on determining fractal codes by

Vih){x,y) = pk(x,y) + ekh(w~kl(x,y)), (x,y) e Ck . (3.2.1)

Where pk is a linear combination of n basisfunctions,
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<•=1

(3.2.2)

Commonly, as in Jacquin’s method, pk is a constant grey level

Pk(x>y) = c* (3.2.3)

though much work on the BFT has used polynomial and cosine functions.

The second term in the right hand side of (3.2.1) expresses the piecewise self

similarity of the child block over Ck to a block elsewhere in the image. The

is called a parent or parent block.

To take account of the degree of self-similarity a scaling factor, ek , is applied to 

the parent. The mapping wk is usually determined by searching the image to 

find the parent block which best matches the child.

The scaling factor ek and the coefficients of the basis approximation are found 

by minimising

over Ck , or equivalently by approximating the target image g over Ck as best

Once V is known its contractivity may be calculated and checked. If V is not 

contractive a limit is placed on the maximum magnitude of the scaling factors

Note: The above method does not generally produce an optimal code for the 

image even within the capabilities of the fractal method, as only an upper

function wk is a contractive affine map on S , and a block taken from wkl{ck^

(3.2.4)

as possible by pk(x,y) + ekh(w~kl(x,y)) •

\ek,k so that|e* |< l for all k .

50



bound on the approximation error, the collage error, is used to find the 

transform coefficients. A suitable method of finding the optimal coefficients 

has yet to be discovered.

3.3 Decoding

To decode the image an image resolution, usually equal to that of the original, 

is decided. The finite resolution equivalent of V is applied repeatedly to an 

initial image to form a sequence of iterates. For example if h0 is the initial 

image

hM =V{h^) fo r /> 0  (3.3.1)

As explained earlier, the sequence (^f) ^ converges regardless of which initial

image is chosen. By measuring d[hM,v{h^  as each new iteration is computed,

the decoding procedure is terminated when the distance between iterates falls 

below a certain threshold.

The basis image may be used for h0.

h0(x,y) = pk(x,y) for (x,y) e Ck . (3.3.2)

This has the effect of accelerating the convergence process, because the basis 

should be quite close to / .

Decoding at higher resolutions is straightforward, though more iterates are 

generally needed. A discrete equivalent of V is found as before, with all block

sizes increased by the factor o f the resolution increase.

If all parent blocks are local to the corresponding child blocks it is possible to 

‘zoom-in’ on parts of an image without decoding the whole image at a higher 

resolution. In either case the fractal approximation generates additional detail.
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3.4 Modifications

3.4.1 Orthogonalisation

In implementations which use searching to find domain-range matches the 

computational complexity can be reduced by orthogonalising the parent block 

with respect to the basis [60]. This process effectively removes basis 

components from the parent In the case of Jacquin’s original transform this 

means removing the constant grey-level component.

Definition: Two functions are orthogonal in a Hilbert space if their inner product 

is zero.

In this case (hx ,h2) = jjfy (x,y)h2 (x,y)dxdy for a cell C .
c

Any set of functions may be orthogonalised using the Gram-Schmidt procedure1

[39]:

If hx,h2,...,hm are orthogonal functions defined on a cell C, m> 1, then for any 

function h

(3.4.1)

is an orthogonal function, where ||/j|| = <J(h,h) .

By using this formula recursively the basis of functions in (3.2.2) may be 

orthogonalised, making computation of the massic coefficients easier, as shown 

in [59].

In the same way, the parent block may be orthogonalised with respect to an 

orthogonal basis. Denoting the orthogonalisation operator by O and the using 

h to denote the shrunken and mapped parent, defined on a cell C ,

(hj ,h)hj
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Equation (3.2.1) now becomes:

V{h)(x,y) = p k + ekh(x , } ) . (3.4.3)

Lemma: If  is a set of n orthogonal functions then

_ M  (3.4.4)
ct =

over each child block.

Proof: By the Projection Theorem [39] there is a unique r(x,y) in the 

orthogonal complement of the space spanned by the basis, such that

g{x>y) = Z  ckpi fa y ) +r(x>y)  ̂ ^
1=1

Since r[x,y) is orthogonal to each basis function

( l 4 ‘ )

from which (3.4.4) is easily derived.

3.4.2 Normalisation

For similar reasons of computational efficiency, the basis and parent functions 

may be normalised. An additional desirable effect is to make quantization 

easier.

1 The normalisation o f  functions has been omitted from the procedure and is dealt with later.



If h is a function then the normalised version is simply:

h (3.4.7)
INI

Using an orthonormal basis therefore, equation (3.4.4) becomes

(3.4.8)

3.5 Quantization

For quantization of the transform coefficients many methods exist. As 

explained in section 1.5 and applied in previous BFT work, uniform 

quantization followed by entropy coding is an efficient method.

For each transform coefficient cki, i = I...n, and ek a quantization coarseness 

factor is defined which represents the width of one quantization bin. This is 

denoted Qt for coefficient i and Qf  for the fractal coefficient ek.

After quantization each coefficient is represented by a quantization bin 

number, qkJ for ckJ, and qk f  for ek. The reconstructed coefficients are

denoted by c\^ and e\ .

For a coefficient c with quantization factor Q , the quantization bin is given by

q = roundl c/ (3.5.1)

where round{x) is the integer closest to x and N is the side length in pixels of 

the block2. The recovered coefficient c' is therefore given by

2 The use o f  the block size in the quantization step causes the quantization error to be spread evenly 
through the image, as shown later in section 4.2.
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c ' = q - Q N . (3.5.2)

Analysis

The effects of quantization on a discrete image block are studied. Denoting 

discrete image blocks with capitals, the error formula of (3.1.5) becomes

e{A,B) = | lA- SIP = ± t [ 4 . j )  -  -SM )
(3.5.3)

(■=0 j =0

for 3Si N x N block.

Assuming that the basis and fractal functions are orthonormal, the error in the 

collage approximation is

= M  - 2 L c , { g , b ) ^ c ]  + ,
(3.5.4)

where G is a discrete block from the image we wish to approximate, H is a 

contracted parent block and the discretized version of the basis.

Proof:

G-Y^cA-eH
i=]

= |G||2- ’Z{G,c,B,)-{G,eH)
1 =  1

n  n  n  . . n

~ Z ( c A , g )  + Y E { c , B ,  ,CjBj )  + 1L( c A , e H )
/= 1 i=\ j= 1 i=l

n

-  (eH,G) + ’Z(eH,c,B) + |MT
i=]

= IlGlI2 -2e(G,H)+e2

So, of course, if all coefficients are zero the error is ||G||2. The decrease in this 

error due to basis function / is
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2 c,{G,B,)-cf (3.5.5)

and for the fractal term

2 e ( G ,H ) - e 2. (3.5.6)

As a result the effects o f quantization can be easily measured.

In general a coefficient c  with quantization factor Q , function B , bin number

q and reconstructed value c' gives a decrease in collage error using the

quantized coefficient of

2 c'{G,B)-c'2 . (3.5.7)

Let c'=c + 8 ,  then

2c' (G, b ) -  c'2 = 2 (c + S)(G, b ) ~ ( c + S f  

= 2c(G,b ) - c2 - ( - 2 S(G,B)+2 cS(G,b ) + S2)

Since c = (G,B) (see equation 3.4.8)

2c'(g ,b ) - c'2 = 2c(g ,b ) - c2 - 8 2 . (3 -5 *8)

Hence the loss in approximation quality due to quantization is simply 8 2.

Assuming the probability distribution p{x) of the coefficient is locally linear, the 

mean value of 8 is ^  ^ 4  and the mean loss due to quantization

(3.5.9)
12  '

Proof: Assuming the bin is centred on zero,
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since p(x)+/>(-*) = p{0). Hence



C h a p t e r  4

METHOD

The implementation details o f a fractal image compression scheme have a 

significant effect on the performance of the scheme. A set of parameters for 

the BFT are selected based on previous work (section 4.1). The details of 

quantization, entropy coding, and partitioning are explained in sections 4.2-4.4.

In the studies presented in later chapters decisions must be made between new 

parameter choices. The basis for these decisions will be their comparative 

performance in practice and consequently an effective method for comparison 

must be developed and justified (section 4.5). In the development of new 

techniques it will also be necessary to determine which technique performs best 

in practice. This comparison method is used here also.

4.1 BFT Parameters

The conclusions o f Woolley [81] are used as a foundation for the extensions of 

and improvements to the BFT in this work. The following describe the main 

parameter choices which have been shown in previous work to give the best 

implementation.

Searching

Examination of the value of searching has showed it to be less effective in 

overall rate-distortion than the non-searching case [82]. A similar result holds 

for block isometries [82], confirmed by Saupe [69]. Although more advanced 

methods o f searching exist, e.g. [9], and some of these may provide 

competitive performance, this thesis develops the non-searching avenue of 

investigation which has been successful so far.
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Centred parent

The study of searching [81,ch.5] shows that the probability density function of 

parent locations is simple, with probability of a match decreasing as distance 

from the child increases. The most probable parent location is that of a parent 

centred on the child.

Consequently when using a fixed parent location a slightly better 

approximation can be obtained by using a centred parent for each child rather 

than the original parent-child arrangement first introduced in [49], where an 

image block was divided into four children and was used as the parent for each 

child. A centred parent location has been used for fractal coding by Bethel 

[8,Ch3].

Unfortunately to render a single centred parent block a larger part of the 

approximation must be computed at the same time, whereas a parent block in 

the original arrangement can be computed independently. However this is a 

relatively minor disadvantage. A comparison of the rate distortion effects of 

using a centred parent has been performed although has not been published 

other than in [76]. The results show a small gain in fidelity at the same bit rate 

across a range o f images. The highest increase observed was 0.44 dB at 0.4 bits- 

per-pixel on the Boats image.

Polynomial Basis

Woolley [81,Ch.3] compares the effects o f using different sets of basis 

functions (3.2.2) for a full range of fixed block size partitions and degrees of 

quantization.

The sets compared are bi-linear, pk[x,y) = ck0 +ckx2j3x+ck22j?>y, bi-quadratic,

Pk(*,}) = ck,o + ck,i2V3x + ck 2i S y  + ck 36-Js(x2 -  +ck,4c S ( y 2 -  X l j  > etc* When

results for different orders, degrees of quantization, and block sizes were 

compared it was found that the order 2 (bi-quadratic) transform with light
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quantization produced the best results for all block sizes. This effectively 

proves that the bi-quadratic transform is optimal for a quadtree 

implementation.

Consequently the bi-quadratic basis is adopted for the work in this thesis. 

Incidentally the effects of using an equivalent cosine basis have been examined 

[76,8,p75], and a cosine basis was in fact used in [77]. The coding performance 

of a cosine basis is essentially identical to that of the polynomial equivalent.

Quadtree Partition

The results of Woolley [81,Ch.8] show that quadtree partitions perform 

significantly better than fixed block size partitions. H-V partitions were also 

examined but were shown to be generally inferior to quadtree partitions.

Decoding

For simplicity iterative decoding is used, rather than pyramid decoding (see 

section 2.6.) This gives exactly the same reconstruction as other methods and 

so is adequate for the study of the techniques presented in this thesis. A 

pyramid decoding scheme could be implemented if greater speed was required.

4.2 Quantization

The method o f uniform quantization described in section 3.5 will be applied to 

transform coefficients.

The effect o f quantization is the same for each coefficient, so if each basis 

function and the fractal function are all equally important = Qf  = Q is

constant for all / . Different coefficients will have different probability 

distributions, with the higher order basis functions being less useful and having 

a lower variance. In principle the difference in distributions will be taken into 

account at the entropy coding stage. However in practice, as illustrated by 

other work which has studied quantization in fractal schemes, for example [53],
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it has been found to be more effective to quantize the higher order basis 

functions more coarsely. This issue will be examined in later chapters.

The use of the block size in the quantization step (equation 3.5.1) means the 

coefficients have quantization error proportional to the number of pixels in the 

block. This means the quantization error is distributed evenly throughout the 

image and a good visual result is produced. Although this is not optimal in 

purely rate-distortion terms, if the block size is not used in the quantization 

step the distributions of a coefficient would vary in standard deviation between 

block sizes, making entropy coding more difficult. For example, a block of size 

mN will have a probability distribution with standard deviation m times greater 

than that for a size N  block.

4.3 Entropy Coding

The method of entropy coding employed is Huffman coding, which is 

explained in section 1.5.3. For more detail see [28]. Whilst no comparison of 

methods of entropy coding is performed, Huffman coding is widely regarded 

as giving good performance for fractal coding and has been used in previous 

work on the BFT [81,8] and other fractal coding schemes [19].

The Huffman algorithm itself is straightforward, but optionally the Huffman 

tree may be generated in advance using a large sample of coefficients or some 

model of the coefficient distributions. Both cases have the advantage that the 

Huffman table is constant and does not need to be included in the compressed 

form of the image. However neither gives an optimal compression of the 

source data.

No examination of this problem has been carried out since it should not affect 

the comparative results of methods in this thesis. All Huffman tables will be 

stored as part of the compressed image.
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4.4 Quadtree Partitioning

Quadtree partitioning begins in this work by tiling the image with a set of macro 

blocks o f size 32x32, with smaller blocks at image edges if the image dimensions 

are not multiples of 32. Partitioning proceeds by either estimating or finding 

the approximation error in each block. The block with the highest error is then 

split into four squares of equal size. The error value of the smaller squares is 

recalculated and the new blocks are added to the partition. The process of 

splitting the block with the highest error continues until some criterion for its 

termination is met. Typically this criterion is that the maximum block error falls 

below a certain fidelity threshold or that some maximum number o f allowed 

blocks is reached, but it is possible to have more advanced criteria, such as 

calculating or estimating the bit cost of the encoding so far and terminating the 

process if the target compression ratio has been reached.

Several criteria were examined by Woolley [81]:

1. Edge value: An edge image is produced by applying a Sobel mask [25] to the 

image. The edge value of a block is then the sum of the edge values of pixels 

in this block.

2. RMS error: A block is coded, quantized, and rendered. The approximation 

error is then used.

3. Collage error: The error in the collage approximation (see equation 3.2.4).

These criteria were compared and, as would be expected, the RMS error 

performed best. However it was discovered that the edge value criterion gave 

very similar results whilst being considerably easier to compute. The collage 

error performed comparatively poorly.
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For much of the work presented in this thesis the RMS error cannot be used as 

a split criterion as its computation is too complex. This leaves a choice of edge 

value or collage error. Although edge value performs better it is pessimistic 

about the performance of fractal transforms - it assumes edge blocks are 

poorly approximated and smooth blocks well approximated. Whilst the latter 

should be true, the former contradicts most expectations of fractal block 

transforms. For example, Jacquin’s work uses a fractal term only for edge and 

midrange blocks. In fact the edge value criterion is a good choice for 

transforms which produce only smooth approximations.

Whilst the collage error may not perform better overall it is assumed that for 

the purposes o f comparing two block transforms, using the collage error for 

each one will give results which are representative of the potential coding 

performance of the two methods.

Storage

The quadtree is stored by constructing a binary sequence in the following 

manner. Each macro block is taken in turn, and its quadtree is traversed and 

stored recursively. A node is represented by a zero and a leaf by a one. (A node 

representing a split in the block, a leaf being a transformation).

To save space the binary code for the quadtree may be compressed by entropy 

coding or by some other method such as run-length coding. Additionally the 

depth of the quadtree is limited by the minimum block size possible. In this 

case 2x2, since the bi-quadratic terms will store this block accurately, excepting 

quantization error.

4.5 Comparison Method

A fractal coding method is evaluated by comparing it with other methods, and 

to do this its performance must be measured. Potentially the performance of 

the method could be measured or estimated mathematically by calculating its
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performance for some general class of images, but in practice it is common to 

simply examine the results of applying the compression method to several test 

images at a range of compression ratios.

A fundamental drawback exists to both methods however. Whilst the 

compression ratio of a compressed image may be easily measured, its fidelity 

cannot. One formula for distortion might be

( 4 ' 5 , 1 )

M  ’

where M  is the number of people who will view the image and di some rating 

of the distortion perceived by the f 1 viewer. Clearly this expression cannot be 

calculated and so some substitute method most be found.

The best practical method for measuring distortion is to take a sample of 

people and ask them to rate the distortion of the image on some scale. The 

average distortion can then be calculated. To evaluate an image compression 

scheme would therefore require viewers to rate different images compressed at 

a range of compression ratios. This is both difficult to organise and after 20 

minutes o f looking at versions of Gold Hill viewers responses will almost 

certainly have changed! However this psycho-visual method is one of several 

useful options.

The alternative is to create a numerical measure of error which can be 

determined by computer. The least-square error is one widely used example 

(see equation 3.1.5). It is particularly easy to calculate and this gives the added 

advantage o f being useful in mathematically optimising aspects of coding 

schemes. Unfortunately the square-error, which forms the basis for mean- 

square-error, PSNR, and SNR (equations 1.1-3), gives results which do not 

always correspond to the perceived error.
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Other formulae for measuring error have consequently received attention in 

the literature [85,27]. These new formulae seek to match the perceptions of the 

human visual system as closely as possible and have had some success. For 

example in [85] PSNR is reported as having a correlation of 0.653 with 

subjective ratings, whereas a new “segmentation-based error metric” has a 

rating of 0.875. In general these new methods are hindered by the lack of 

understanding of the human visual system and the fact that subjective 

distortion depends significantly on image content.

For simplicity the square-error based measures will be used, though attention 

will be paid to the visual quality of pictures as well. General rules observed 

from the study of error measurement will be taken into account, such as that 

the MSE resulting from different types of distortion should be given different 

weights, in particular the result o f [84] that blocking artefact is more annoying 

than blurring or ringing even if the MSE is the same.

Images used

A set of test images is used to generate comparative results. The number, type, 

resolution, and origin of the set of test images presents a very large number of 

choices. One good choice would be to use the JPEG2000 test images (see 

section 1.3.5), but comparisons will be done using the set o f four test images 

used in previous BFT work, namely Lena, Gold Hill, Barbara 2, and Boats. O f 

these Lena and Gold Hill are the most frequently used in the literature, and 

consequently will receive the most attention. The originals of these images are 

printed on the following pages.

4.6 Compressed File Format

The structure of a compressed file is simple:
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Image dimensions 

Number of blocks

Quadtree

List of blocks with fractal coefficients (optional) 

coefficient 1: Huffman tree + encoded symbols 

coefficient 2: Huffman tree + encoded symbols

coefficient n: Huffman tree + encoded symbols

F igure 4.6.1: Structure o f  a compressed file
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Figure 4.5.1: Lena test image. 
Signal peak 226.
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Figure 4.5.2: Gold Hill test image. 
Signal peak 235.
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Figure 4.5.3: Barbara 2 test image. 
Signal peak 235.
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Figure 4.5.4: Boats test image. 
Signal peak 220.
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C h a p t e r  5

ORTHOGONALISATION AND NORMALISATION

5.1 Introduction

Orthogonalisation and normalisation o f the parent block have been proposed 

by 0 ien  et al [60] as a means of accelerating the searching process and decoding 

process in fractal image compression schemes. In this chapter it is 

demonstrated that orthogonalisation and normalisation are of significant value 

for the non-searching case o f the BFT, giving an improvement in rate 

distortion performance without extra computational cost.

As a starting point the quantization parameter Q = 4 is used for all basis 

functions, which can have coefficient values as large as 256, as determined by 

Bethel for an orthonormal quadratic basis [8]. This parameter choice was 

determined as optimal by comparing alternative choices for various fixed block 

size partitions o f the Gold Hill test image. Later work will examine the 

quantization o f basis coefficients more closely.

The study of orthogonalisation and normalisation begins by first comparing the 

effects on fidelity, using fixed block size partitions and quadtree partitions with 

different numbers of blocks, for each of the test images, but no quantization. 

Secondly the distribution of the fractal coefficients is examined to see how the 

orthogonal and non-orthogonal coefficients differ statistically. Finally the 

quantization parameters for fractal coefficients in the different methods are 

optimised and the rate-distortion results compared.
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5.2 Orthogonalisation

The formula used for orthogonalisation is given in Chapter 3. Figure 5.2.1 

shows an example o f orthogonalisation from the Gold Hill test image.

An orthogonal version of the BFT was implemented, using the parameters 

previously described. To determine the exact effects o f the orthogonalisation 

process a number o f comparisons with the original transform were made.

Figure 5.2.1. Orthogonalisation o f image blocks.
(a) Section o f  Gold Hill with parent and child 

locations marked, (b) Parent, (c) Child, (d)
Orthogonalised parent, (e) Orthogonalised child.

5.2.1 Effect on Approximation Quality in Blocks

To determine the basic effect o f orthogonalisation on image quality the test 

images were encoded with fixed block size partitions varying in size from 4x4 

to 32x32. When comparing the decoded images an increase in fidelity was 

observed for those that had been coded by the orthogonal transform.

On average the improvement was 0.28 dB, with greater improvement for small 

block sizes than large ones. The effect for 4x4 blocks for example ranged from 

0.44dB for the Gold Hill image to 0.95 dB for the Boats image. Figure 5.2.2 

shows the PSNR results for the Boats image.
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5.2.2 Distribution of Coefficients

The distributions of the fractal coefficients, derived from the 8x8 partition o f 

Gold Hill, were examined for significant differences. As Figure 5.2.3 shows, the 

distributions are very similar, and the main difference is that coefficients close 

to zero occur more often in the orthogonal case.

original

■— orthogonal

30

cr
»  28  
Q.

26

24

22

20
4x4 8x8 16x16 32x32

block size

Figure 5.2.2. Results for Boats image.

Two further observations are made. Firstly that positive coefficients occur 

more often than negative ones, and are generally greater in magnitude. 

Secondly, that the non-orthogonal coefficients must be restricted in magnitude 

to guarantee convergence, whereas the orthogonal coefficients do not appear 

to require any such as restriction.

5.2.3 Quadtree Results

To compare the orthogonal and non-orthogonal transforms the test images 

were encoded with quadtree partitions with between 800 and 16000 blocks.
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The orthogonal transform gives better PSNR figures across all test images with 

different quadtree partitions. Figure 5.3.1 shows a comparison o f the 

orthogonal and non-orthogonal transforms for the Lena image.

original
0.14

- orthogonal

0.12

0.1>*

TO-Qo
0.08

a.

.02

0.51.5 1 -0 .5 0 1 1.5 2

coefficient value

Figure 5.2.3. Probability distribution o f  fractal 
coefficients derived from Gold Hill test image 

with 8x8 partition.

A quadtree partition gives a very large improvement in fidelity for the same 

number o f blocks. For comparison with a fixed block size partition see Figure 

5.2.4. On average, the orthogonal transform for fixed block size partitions gave 

0.28 dB improvement over the four test images, averaging 5440 blocks for 

Lena and 8606 for the others. Using a quadtree partition with this number of 

blocks, the effect o f orthogonalisation was an average improvement o f 0.36 dB. 

This increase over the fixed block size case may be assumed to be caused by 

the more accurate error prediction o f the orthogonal transform.
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(?) (b)
Figure 5.2.4 Partition results for Boats image, 

using orthogonal transform, (a) Fixed 8x8 block 
size, PSNR 27.85dB. (b) Quadtree with the 

same number o f  blocks but o f  varying sizes, 
PSNR 30.62dB.
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Q=0.005
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Figure 5.2.5. Quantization curves for Gold Hill 
test image, original transform.
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5.2.4 Q uantization

To determine the optimal quantization bin width for the fractal coefficients it is 

assumed there is a single optimal value and that the performance o f the 

method increases as this value is approached. This assumption has been used in 

previous work on the BFT and other fractal methods, and experimental results 

indicate its validity.

Published quantization results for the original transform do not easily convert 

to the quantization scheme used here so the process o f optimisation is 

repeated. This has some value however, in that a larger set o f test images is 

used.

33 T

32

31

30

«  29
CL Q=1

28

Q=0.527

Q=0.2526

0.7 0.80 0.1 0.2 0.3 0.4 0.5 0.6

bpp

Figure 5.2.6. Quantization curves for Gold Hill 
test image, orthogonal transform.

The optimal quantization parameter was found to be Q -  0.02 for the original 

transform. When compared with <2 = 0.04, <2 = 0.01, and <2 = 0.005, 0  = 0.02 

gave better performance for all images and bit rates. Figure 5.2.5 shows the 

comparison for Gold Hill.
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For the orthogonal case similar results held but the best quantization was much 

coarser - around 0.5 for all test images, as illustrated by Figure 5.2.6, which 

shows Gold Hill results for 1, 0.5, and 0.25. The rate-distortion curve for 0.4 

was practically identical to the 0.5 case.

The basic reason for the difference between the orthogonal and non- 

orthogonal transforms is that the orthogonal case has its basis components 

removed and so has only a residual component which is effected by the 

quantization.

32

31

30
tr
w 29 
a. old parent-child arrangement

28
centred parent

27

orthogonal, centred parent26

0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6

bpp

Figure 5.2.7. Comparative rate-distortion 
performance for Gold Hill.

5.2.5 Comparison

The use o f a centred parent gives a clear improvement in fidelity over the old 

parent-child arrangement. Figure 5.2.7 illustrates the gain for the Gold Hill test 

image. However, the orthogonalisation o f the parent improves the BFT still 

further for all test images at all bit rates. At 0.2 bits-per-pixel the average 

improvement over the set o f test images was 0.48dB, and at 0.4 bits-per-pixel 

0.53 dB. In general lower compression ratios showed a slightly larger
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improvement due to orthogonalisation. Figure 5.2.8 shows example 

compression of the Gold Hill test image.

Figure 5.2.8. Compressed section o f  Gold Hill, 
(a) 0.2 bpp original transform, PSNR 27.85dB. 

(b) 0.2 bpp orthogonal transform, PSNR 28.21dB.
(c) 0.4 bpp original transform, PSNR 29.88dB. 

(d) 0.4 bpp orthogonal transform, PSNR 30.30dB.
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5.3 N orm alisation

In the previous section blocks were orthogonal but not normalised. 

Consideration is now given to whether there is any further benefit to be gained 

by normalisation (section 3.4.2).

5.3.1 F ixed Block Size Results

The results are very similar to the orthogonal version, although there is a small 

improvement in every case, on average 0.04dB.

5.3.2 Q uadtree Results

Ih e  quadtree results are practically identical to the orthogonal transform for all 

images except Lena, illustrated in Figure 5.3.1.

37

36

oc 32 
zwQ.

29
Non-orthogonal

Orthogonal

-  Orthonormal26

8000 100000 2000 4000 6000 12000

num ber of blocks

Figure 5.3.1. Quadtree results for Lena test 
image.
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5.3.3 Q uantization

Following the same procedure as in the previous section the optimal 

quantization parameter was determined to be Q -  4 , which matched the results 

for the basis functions which are also orthonormal. This parameter choice was 

slightly better on all images except for Barbara 2, on which <2 = 8 was 

marginally better. Overall however there was little difference between the 

quantization choices either numerically or visually.

35 t

33

original

orthogonal
27

-  orthonormal26

0.90 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

bpp

Figure 5.4.1. Comparison o f transforms on the 
Lena test image.

5.4 C om parison of M ethods

Comparing the optimal rate distortion curves o f the original, orthogonal, and 

orthonormal methods, both the new methods are significantly better than the 

original transform. Between the orthogonal and orthonormal transforms there 

is hardly any difference. On the Lena test image the orthonormal transform
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was marginally better, see Figure 5.4.1, but on other images this situation was 

reversed.

5.5 Conclusion

The use of orthogonal and orthonormal transforms has been studied in this 

chapter and the main result is that both types of transform are better than the 

original. There are several reasons why this is the case. From the fixed block 

size results the basic potential of an orthogonal transform for approximation is 

greater. When implemented in a quadtree scheme the comparative fidelity 

increases slightly further, suggesting that the orthogonal transform may be 

better suited to the collage based split criterion being used. From the 

quantization study it is clear that the orthogonal transform is significantly less 

susceptible to quantization error than the non-orthogonal equivalent; 

orthogonalised fractal coefficients may be quantized 25 times more heavily. 

The conclusion is that orthogonal transforms are significantly better for fractal 

image compression, and it may be hypothesised that this is due primarily to the 

removal of the DC level from the parent block, which normally dominates the 

working of the fractal transform.

Figure 5.5.1. Gold Hill compression at 0.4 bpp. 
(a) JPEG standard, (b) orthogonal transform.
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Additionally, the use of a normalisation factor in the parent mapping has been 

investigated. It may be expected that this mapping has a disadvantage in 

increasing the magnitudes in parents with small norms and decreasing 

magnitudes in parents with large norms. The uncertainty present in the collage 

theorem suggests that parents with larger norms are more ‘trustworthy’ for the 

purposes of recursive mapping. However this does not appear to affect the 

results which show a practically identical level of performance to the 

orthogonal transform. A transform based on DC level removal alone may be 

worth investigating as a low-complexity variant of orthogonalisation, in further 

work. The use of normalisation adds to the decoding time of the image code, 

requiring approximately one extra multiplication-per-pixel per iteration.
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C h a p t e r  6

OPTIMAL QUANTIZATION

6.1 Introduction

The quantization o f transform coefficients has a very great effect on the 

performance of the whole fractal compression algorithm. By choosing 

quantization parameters poorly a good technique may give rate-distortion 

performance far below what is possible. For this reason the problem of 

quantization is given special consideration here.

Although quantization has been investigated at some length in [81] and [53], 

the most relevant work is that of Bethel [8] which uses the same quantization 

scheme as this work. In Bethel’s work the coefficient of each basis function is 

quantized with the same parameter and a comparison of Q = 1,2,4,8 is presented 

for the Gold Hill test image using a polynomial basis of order six with no 

fractal term. The rate-distortion curve shows clearly that <2 = 4 is the best 

choice at a wide range of bit rates.

The fractal compression scheme differs from that examined in the comparison 

of [8] by using a fractal term, a quadtree rather than fixed block size partition, 

and a bi-quadratic basis. Additionally the comparison of results was only 

presented for the Gold Hill test image. In this chapter quantization is examined 

for all four test images.

The orthonormal transform previously introduced is used and, as suggested in 

the previous chapter, the fractal coefficient is quantized with the same 

quantization parameter as the basis functions.
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6.2 R ate D istortion Com parison

To determine optimal quantization parameters image quality was compared at a 

range o f bit-rates using different parameter values. Using the 0.1-1 bits-per- 

pixel range, rate-distortion curves were computed for each of the test images. 

The results1 are shown in Figure 6.1-4.
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Figure 6.1. Comparison o f  quantization 
parameters for Lena test image.

1 Barbara 2 results include the case Q =16 because high degrees o f  quantization gave better performance 
when this image was compressed.
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Figure 6.2. Comparison o f  quantization 
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Figure 6.3. Comparison o f  quantization 
parameters for Barbara 2 test image.
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Figure 6.4. Comparison o f  quantization 
parameters for Boats test image.

No parameter value gives best performance in every case, though Q = 4 is a 

good choice for the Lena, Gold Hill, and Boats images. Q = 2 performs better 

at the higher bit rates for the Lena image, whereas Q = 8 performs better at 

lower bit rates for the Boats image. The results for Barbara 2 are unusual in 

that Q = 8 is optimal for practically the whole range o f bit rates.

To conclude, optimal quantization is image dependent, but Q -  4 is the best 

single choice as this generally gives very good results. However, it does not 

always produce the best results that the fractal compression method is capable 

of.
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6.3 Optimal Quantization

The results of the last section show how the optimal quantization parameter 

value varies between images and across the range of bit-rates. This means that 

choosing one parameter value to use on all images will not get optimal 

performance from the compression scheme.

A novel solution to this problem is presented in this section. Notice that in any 

image the optimal quantization parameter decreases with bit-rate and that it is 

generally higher for images which are more difficult to approximate. E.g. 

Barbara 2. This suggests a dependency of the optimal quantization parameter 

on the bits-per-pixel (a) and image complexity (b ).

Formula

Using the simplest possible formula, the quantization parameter Q can be 

defined as

Q{b,c) = a0 +axb +a2c . (6.3.1)

To measure the complexity o f an image the following function of blocks of 

four pixels is introduced:

EY(pl,p2tp3,pA) = \p -p l\ + \p -p 2\ + \p -p i\ + \p -p A\ (6.3.2)

where p is the average of the pixel intensities px, p2, p3, p4. The complexity 

of an image is then quantified as the average of the above measurement of edge 

value applied to all blocks of four pixels in the image.

To determine the a0,a^,a2 values in (6.3.1) a subset of the results in the 

previous section is taken and used in a least-squares optimisation. I.e. a set of 

data points {((?,.,ft,cf.);/= l,...,wj is chosen, where Qt is the best quantization 

parameter value observed at bit rate ft,., for a test image with complexity c{.
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This subset o f results was chosen intuitively from amongst the test images and 

rates o f compression used.

The result o f the optimisation was:

3.13 55+0.24046-4.4513c. (6.3.3)

Using this formula the quantization parameter is determined at the time of 

encoding from the target bit-rate and the complexity o f the image.

Results

To evaluate the method rate-distortion curves were again produced for each o f 

the four test images. The results are shown in Figures 6.5-8.
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Figure 6.5. Optimal quantization for Lena test 
image.
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Figure 6.6. Optimal quantization for Gold Hill 
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Figure 6.8. Optimal quantization for Boats test 
image.

The formula for the quantization parameter gives optimal performance or 

near-optimal performance on every image. Compared with the previously used 

choice of 0  = 4 this is a significant improvement. The Lena image compressed 

at 0.9 bits-per-pixel, for example, has a PSNR 0.46 dB higher with the new 

quantization scheme. On the Barbara 2 test image, for which Q -  2 was the 

best choice the formula gives results which are as good as this for bit rates 

below 0.6 bits-per-pixel, and better at higher rates. Similarly for the Boats 

image where different parameter choices are optimal at different bit rates the 

formula gives results which match the optimal choice at any rate.

6.4 Psycho-visual Trial

As explained in section 4.5, PSNR is an imperfect measure of image quality. An 

important method for judging the merits of different transform options is the
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psycho-visual trial, where a sample group of people identify preferred images 

from those produced under different options.

Quantization
level

Gold Hill Barbara 2
PSNR Rating PSNR Rating

Q=2 26.43 10 33.78 28
Q=4 27.86 11 34.44 7
Q=8 28.33 15 32.59 0

Figure 6.9. Psycho-visual results, showing 
PSNR and the number o f  people who 

thought each image was best.

In the case of quantization it is useful to have an idea of the correlation 

between PSNR results and observed quality. To achieve this two sets of images 

were produced showing image sections of Gold Hill and Barbara 2 at the same 

bit rate with different quantization options. A group of volunteers were asked 

to select the best image from each group. The results are shown in Figure 6.9, 

and the images used in Figures 6.10 and 6.11.

(a) (b) (c)
Figure 6.10. Gold Hill image section compressed 

at 1 bpp. (a) Q =2. (b) Q =4. (c) Q=8.

The results show that there is a basic correlation between PSNR and observed 

quality for the Gold Hill image. The rating of an image was higher with the 

PSNR, although all images were relatively popular and there was no clearly 

preferred option. For the Barbara 2 image the extra blocks given by higher 

quantization did not impress viewers and the lowest quantized image proved
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the most popular. This was not in agreement with the PSNR, but the PSNR 

for this image was relatively high.

6.5 Summary

This chapter has presented an investigation of the quantization parameters for 

different test images. Graphs of the rate-distortion performance of the fractal 

compression scheme under different parameter values show the importance of 

this area to the attainment of good overall performance.

Section 6.2 compared a number of possible parameter values over the four test 

images in a similar way to that of [8], and it was seen that the optimal 

parameter choice depended both on the degree of compression and the image 

being compressed.

A method was then introduced which determined the parameter value 

automatically. Using a formula derived from the previous results, optimal 

performance of the method was obtained consistently over all test images and 

bit-rates.

(a) (b) (c)
Figure 6.11. Barbara 2 image section compressed 

at 1 bpp. (a) Q =2. (b) Q =4. (c) Q=8.

A psycho-visual trial confirmed the basic correlation between PSNR and 

observed quality, although it should be bome in mind that this correlation was 

not perfect.
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Overall this chapter’s results are a significant step towards making fractal image 

compression schemes more competitive. In the case of the optimal 

quantization scheme, further study may prove useful. More complex formulae 

derived from a wider range of images may give results which are better still.

93



C h a p t e r  7

RATE-DISTORTION SWITCHING

7.1 Introduction

In the previous two chapters fractal transforms were used in which every block 

was approximated using a basis component and a fractal component (see 

equation 3.2.1). However the fractal component may not always be necessary 

as many blocks may be smooth enough to require only the basis part o f the 

approximation. For example, Figure 7.1 shows the basis approximation to a 

section o f Gold Hill with an 8x8 block size partition. The basis does not 

approximate the windows well, but in areas where the intensities are flatter the 

approximation quality is relatively good.

Figure 7.1. Basis approximation to a section o f  
the Gold Hill image.

In this chapter a technique called rate-distortion switching is examined. This is a 

process whereby the fractal term is used selectively to increase compression
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and improve overall rate-distortion performance. For each block in the image 

partition a bit can be used to tell the decoder whether that block is 

approximated using a fractal term or not.

Rate-distortion switching of fractal transforms was first proposed by Bethel in 

[77] and is also studied in [8]. It works by comparing the improvement in 

fidelity per bit caused by the fractal term with the gradient of the rate- 

distortion curve. If  the improvement per bit lies below the curve the fractal 

term is decreasing the overall performance of the method, whereas if the 

improvement exceeds the curve’s gradient the fractal term has a beneficial 

effect on the overall performance.

Selective use of fractal terms is not new and was used by Jacquin [35], though 

not optimally. In [8] the rate-distortion based method was used to compress 

the Gold Hill image, though the improvement over the normal approach was 

not reported. In this chapter a more thorough examination of its effects is 

presented, and the method is then developed through several new variations.

7.2 Theory

When encoding an image using a quadtree partition, blocks are split 

progressively until the encoding reaches the target bit rate. At each stage a 

certain number of bits have been used from the bit budget (the maximum 

number allowed.) Each time a block is split the fidelity o f the approximation is 

improved and bits from the bit budget are used.

This process results in a rate-distortion curve which may be expressed 

mathematically as a continuous function P{b) of the bit rate b .

dP(b) (7.2.1)
db
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is therefore the gradient of the rate distortion curve for the image being 

encoded. The effect o f a fractal term on a block is an increase in PSNR of AP 

at a cost in bits of Ab . Therefore in essence

AP dPib) (7.2.2)
—  < — —  => fractal term decreases overall performance 
Ab db
AP dP(b)
 > — —  ==> fractal term increases overall performance
Ab db
AP dP(b)
—  = — —  => fractal term has no effect on overall performance 
Ab db

7.3 Implementation

Equation 7.2.2 determines whether a block should be approximated with a 

fractal term or not, but several compromises are required to use the method in 

practice.

Firstly, the use of a fractal term in one block alters P(b) resulting in a complex 

problem where to get the best result the use of a fractal term would have to be 

re-evaluated for every block whenever P(b) changed. It is assumed for 

simplicity that the changes in the gradient are not too great. Alternatively a 

‘second pass’ may be made when the quadtree is complete or almost complete 

to decide finally where fractal terms will be used.

Secondly, the value o f P(b) is not known for the target bit rate, it is estimated

as the image is compressed. The gradient is steeper at lower bit rates so the 

criterion for using a fractal term is harder to satisfy earlier in the encoding 

process.

Thirdly, the effect of the fractal term on fidelity in a block is not known at the 

encoding stage, and can only be estimated using the Collage Theorem.
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Fourthly, determining the bit cost when the Huffman table is only computed 

after the basic encoding is complete is not possible, and therefore the current 

theoretical entropy o f coefficients is used to estimate the eventual bit cost.

To store the list o f blocks with fractal coefficients a string of zeros and ones is 

produced, with zero for a non-fractal block and one for a fractal block. Further 

compression o f this data may be possible, such as using Run-Length-Encoding, 

but this was no t examined.

7.4 Results

Rate-distortion curves were generated for each o f the four test images and 

compared. The switch increased compression and reduced fidelity but the 

overall effect was little change to the overall performance. For several images 

the switching method actually produced slightly inferior results at lower 

compression ratios. Figure 7.2 shows the rate-distortion curve for the Gold Hill 

image.

w 30

29
normal

sw  itched
27

0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1
bpp

Figure 7.2. Results for Gold Hill.
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Enhanced Method

The above results are not encouraging, but when switching the fractal term the 

final gradient o f the rate-distortion curve is no t known and so the method is 

not necessarily optimal. Once the partition is complete the gradient is known, 

not accounting for variations caused by the switching process itself, and the 

fractal terms may be switched more accurately.

This extra switching phase was implemented and the rate-distortion effects 

evaluated. The results show an increase in the number o f fractal terms being 

used and an improvement in fidelity for all images.

sw  itched

enhanced

25 -1------------1------------1------------1----------- 1------------1----------- 1------------1------------1------------1------------
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bpp

Figure 7.3. Enhanced switching for Gold Hill 
image.

Variations

It is not necessary to switch fractal terms on or off during the quadtree 

construction, and so two alternative versions o f this method exist. Either a 

basis-only quadtree partition may be produced (Variation 1) or a partition 

where fractals are used in every block (Variation 2). Fractal terms can then be 

accurately switched on or off after the partitioning is complete.
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Comparing rate-distortion results for these new methods, the first version 

produces inferior results, whereas the second method is similar in performance 

to the enhanced method and slightly better at higher bit rates on several 

images. It also has the advantage of being simpler to compute. Figure 7.3 

shows results for the Lena image.

enhanced

Variation 1

Variation 2

27 J------------1------------1------------1------------1------------1-----------1— —— i------------ 1------------ 1------------
0 0.1 0.2  0.3 0 .4  0.5 0.6 0.7 0.8 0.9 1

bpp

Figure 7.3. Comparison o f  variations for Lena 
image.

Note that the reason these methods differ in performance is that they produce 

different partitions of the image. The second variation uses a fractal term in 

every block and when the error is significantly lower than the basis only 

approximation the splitting process is effected. Figure 7.4 shows an example of 

this for part of the Lena image. Along the edges of the hat the second variation 

has not split blocks to such a small size and has used the blocks saved to 

improve other parts of the image. The result is that the second variation 

produces a partition which is closer to optimal and hence gives better overall 

results.
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(a) (b) (c)
Figure 7.4. Quadtree partitions for section o f  
Lena image at 0.2 bits-per-pixel. (a) Original 

image, (b) Variations 1. (c) Variation 2.

Usage of Fractal Terms

Adopting the second variation as the preferred method the usage o f fractal 

terms was examined. Figures 7.5 and 7.6 show the location of blocks using 

fractal terms. On average fractal terms were used in the approximation of 18% 

of image area.

7.5 Summary

In this chapter the rate-distortion based switching technique proposed by 

Bethel was examined for different test images. It was found that the basic 

method gave no significant gain in performance - wherever bits were saved by 

not using a fractal term the loss in fidelity was sufficient to cancel out any 

advantage.

Several variations on the method were investigated and it was found that the 

rate-distortion switching should be carried out after the partitioning o f the 

image. The method used in [77] corresponds to Variation 1 here, and was not 

the best implementation. Better results were obtained when fractal terms were 

initially used for every block.

Using the rate-distortion switching technique saved significantly on the bit cost. 

At 0.4 bits-per-pixel an average o f 28% more blocks were available to the
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partitioning process. The average area of the image approximated using fractal 

terms at this bit-rate was 18% and as expected blocks using fractal terms 

appeared to be those with more complex details such as edge blocks and 

texture blocks.

Figure 7.5. Fractal term usage for test images. 
Blocks with fractal terms are marked, (a) Lena 

original, (b) Lena fractal blocks, covering 17% o f  
image area, (c) Gold Hill original, (d) Gold Hill 

fractal blocks, covering 17%.

Previously the psycho-visual aspects of the use of fractal terms have been 

studied by Monro and others, and these show that it may be desirable to allow 

more fractal terms because they are visually more pleasing, even though the 

PSNR decreases slightly. In their study of the Gold Hill image 21% of the
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image area was covered with fractal blocks in the Variation 1 case. However 

when the likelihood of fractal terms being used was artificially increased, the 

optimal visual result was found to cover 43% of the image with fractal blocks. 

The maximum number of fractal terms which could be used without significant 

loss in fidelity was 61%.

Figure 7.6. Fractal term usage for test images. 
Blocks with fractal terms are marked, (a) Barbara 2 
original, (b) Barbara 2  fractal blocks, covering 22% 
o f  image area, (c) Boats original, (d) Boats fractal 

blocks, covering 17%.
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C h a p t e r  8

IMPLICIT FRACTAL TECHNIQUE

8.1 Introduction

In this chapter a novel technique is introduced which improves fidelity by 

computing parent locations from basis coefficients.

In much work on fractal compression the optimal parent location is found by 

searching, giving better image fidelity but at a high cost in bits when the 

location is stored. Typically the trade off between bit cost and fidelity leads to 

the conclusion that searching is counter productive for the overall performance 

of a fractal scheme [82,69].

The implicit fractal technique (IFT) presents an advance in this regard. A 

correlation is observed between the basis approximation and the optimal 

parent location. By analysing the basis coefficients and using a specially 

constructed edge model a method is derived in which the parent location can 

be determined from the basis approximation in a block without direct 

reference to the image - a process which can be repeated at the decoding stage 

and hence makes storage of the parent location unnecessary.

The IFT is a novel method which improves image fidelity in each block and 

has been published in [77] and [52].

8.2 Derivation

For an orthonormal bi-quadratic basis defined on [- 0.5,0.5] x [- 0.5,0.5]
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b0(x,y) = 1, bi(x,y) = 2^3x ,b2(x,y) = 2y[3y , (8.2.1)

b3(x,y) = 6y[5(x2 - ) / n ) , b4(x,v) = (y2 -  X 2) ■

The problem is to find the parent location :rom the coefficients c0,...,c4 with 

respect to the above basis.

Edge Model

A model of an edge passing through a child block is introduced, see Figure 8.1. 

The edge is assumed to be straight and the intensity values constant on either 

side. In the left-hand region, marked as regien A, the intensity value is / ,  in the 

right-hand region, region B, the intensity is r . For the time being it is assumed 

that the edge is within 45° of the vertical, slcpes to the right, and lies to the left 

of the centre of the child block. Other edge orientations will be dealt with later.

Figure 8.1. Model o f  a simple edge.

If the edge model matches the contents of a child block it is clear where the 

parent should be located. The parent shoulc map the edge exactly onto itself as
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illustrated by Figure 8.2, and so the mid-point of the edge will be the fixed 

point o f the contraction mapping.

block

Parent

Figure 8.2. Example parent-child alignment.

The parent location can be easily determined from only the parameters a and 

6 , by first calculating the midpoint m o f the line segment making up the edge 

within the child block.

m = — ,oj if b > a > -0.5
(8.2.2)

and m = 26-1 - 2 a - 1 
'4(6-a),

if 6 > -0.5 > a .

The parent location is then computed so that the mid-point o f the line is the 

fixed point of the contraction mapping:



where k is the child block side length in pixels and c is the child location1.

To determine a and 6 formulae are derived for each of the basis coefficients 

c,,c2,c3 in terms o f the model parameters. Full details are found in Appendix 

B. For example, for c,:

Ci = ( / -  r)
lS{4(b3 - a 3)-3{b-a))

24(6 -  a) for b>a> -0.5.
(8.2.4)

As the parent location is independent o f the intensity values / and r they are 

eliminated by calculating ratios of the basis coefficients. For b>a> -05,

c3 /c, =
Vl5(2(64 -  a 4) + a2 - b 2)

4(b3 -  a3) -  3(b -  a)

(8.2.5)

c2/cA =
l i b - a f

4{p3 -  a3) -  3(6 -  a)

for 6 > -0.5 > a

\c3 / c A  =
Vl5(462 - l ) 2
8(463 -1 -36)

(8.2.6)

\c2 / cJ =
463 -  12a62 -  12a6 -  3a -  36 -  1 

2(463 - l-3 6 )(6 -a )

and for 6 = a

2 yfl5 (8.2.7)

1 Block locations are specified by the co-ordinates o f  their bottom-left comers.
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\c2 / cx = 0.

8.3 Look-up Table Solution

Using the equations 8.2.5-7 the problem may now be efficiently solved using a 

look-up table. The table is created using a range o f possible a and b values 

and for each pair of values a pair of ratios, using the appropriate equation 

(8.2.5-7), is calculated. A new line is added to the table consisting of the ratios 

and the midpoint corresponding to a and b as calculated from equation 8.2.2. 

Figure 8.3 shows an example table based on an even distribution of a and b 

values.

C3/c 1 c2/ Cl a b ™x my
0.87 1.00 -1.25 -0.25 -0.38 0.38
0.87 0.93 -1.00 -0.25 -0.38 0.33
0.48 1.00 -1.00 0.00 -0.25 0.25
0.87 0.80 -0.75 -0.25 -0.38 0.25
0.48 0.83 -0.75 0.00 -0.25 0.17
0.16 1.00 -0.75 0.25 -0.13 0.13
0.87 0.40 -0.50 -0.25 -0.38 0.00
0.48 0.50 -0.50 0.00 -0.25 0.00
0.16 0.67 -0.50 0.25 -0.13 0.00
0.00 1.00 -0.50 0.50 0.00 0.00
0.65 0.00 -0.25 -0.25 -0.25 0.00
0.31 0.18 -0.25 0.00 -0.13 0.00
0.00 0.36 -0.25 0.25 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Figure 8.3. Example IFT table generated 
for 4x4 block size.

At the encoding and decoding stages the parent location can now be 

determined from the basis coefficients. From the basis approximation to the 

block, l^/ql and |Cj/cJ are calculated and the table is searched for the closest 

matching ratios. This gives the midpoint of the line.
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A lg o r ith m  IFT
begin
• Compute basis coefficients, cx,cy,c2x,c2y
•  { Compute ratios }
• if (cx = 0) then begin

• if (cy = 0) then ryx:=0; else ryx:=oo;
• if (c2x = 0) then r2xx:=0; else r2xx:=oo;

• end
• else begin

• ryx:=cy/cx;
• r2xx: =c2x/'cx;

• end
• if (cy = 0) then begin

• if (cx = 0) then rxy:=0; else rxy:= oo;
• if (c2y = 0) then r2yy:=0; else r2yy:=oo;

• end
• else begin

• rxy:=cx/cy;
• r2yy:=c2y/cy;

• end
• if (|cx| > |cy|) then begin

• rl:=r2xx; r2:=ryx;
• end
• else begin

• r l :=r2yy; r 2 :=rxy;
• end
• arl:=|rl|; ar2:=|r2|;

•  { Search table for best match }
• { arl[n], ar2[n], a[n], b[n] }
• best_error=oo;
• best_a=0.5; best_b=0.5;
• for each (I:l..n) begin

• error=(arl-arl[i])*(arl-arl[i]) + (ar2-ar2[i])*(ar2-ar2[i]) ;
• if (error < best_error) then begin

• best_error:=error;
• best_a:= a [i];
• best_b:=b[i];

• end
• end

•  { Compute fixed point }
• if (a>-0.5) then begin

• pi:=(b+a)/2; pj:=0;
• end
• else begin

• pi =(2*b-1)/4; pj = (-2*a-l)/(4*(b-a));
• end

• { Calculate reflections }
• if (arl^rl and ar2=r2) best_pj:=-best_pj;
• if (arl=rl and ar2=r2) best_pi:=-best_pi;
• if (arl=rl and ar2*r2) begin

• best_pi=-best_pi;
• best_pj=-best_pj;

• end
• if (|cy| > |cx|) then
• begin

• temp:= pi;
• Pi:= Pj;
• p j :=temp;

• end 
end

F igu re 8.4. P seudocode for IFT algorithm.

108



Recall however that the edge is assumed to be within 45° of the vertical, slopes 

to the right, and lies to the left o f the centre of the child block. By considering 

the symmetry o f the problem other orientations can be determined with the 

same method and look-up table.

Firstly if |cx | < |c21 the edge is assumed to be predominantly vertical and the 

algorithm is identical but the y  coefficients and x coefficients are switched. 

Secondly by using absolute values when searching the look-up table the signs of 

the ratios can be subsequently used to determine a reflection of the midpoint 

and give a solution for other cases. If c2jcx is negative and c2lcx positive m is 

reflected in the horizontal axis. If c2/cx is positive and c2/cj is positive m is 

reflected in the vertical axis. If  Cy/ĉ  is positive and c2lcx negative m is 

reflected in both axes.

Figure 8.4 shows pseudo-code for this algorithm.

8.4 Evaluation

Initial Test

To begin with the method was used to encode a synthetic image, chosen to test 

a wide range of edge orientations and parent locations. The 256x256 disk image 

in Figure 8.5 was produced and partitioned into blocks of size 16x16.

Approximations with the bi-quadratic basis, the centred parent, and the implicit 

fractal parent location were compared and the IFT is seen to dramatically 

improve the approximation of edges for all orientations and gives a virtually 

perfect reconstruction of the original.

Practical Application

The implicit fractal technique was then used in the encoding of the test images 

using an 8x8 block size partition. The PSNR results are shown in Figure 8.6.
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(?) (b)

(c) (d)
Figure 8.5. Approximation o f a synthetic image 

using 16x16 blocks, (a) Original, (b) Basis 
approximation, (c) Centred parent, (d) IFT parent.

Quantized
Image Centred IFT Centred IFT
Lena 

Gold Hill 
Barbara 

Boats

29.79
28.99
23.68
27.89

30.13
28.99
23.67
27.90

29.34
28.56
23.57
27.57

29.64
28.59 
23.56
27.59

Figure 8.6. Comparative PSNR results for 8x8 
block size partition o f  test images.
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It appears the main improvement over the centred case is for the Lena image. 

Approximation quality in other images does not seem to be affected much by 

the new technique. Similar results hold when using quantized coefficients, with 

Q = 4 .

It appears that the edge model is better suited to some images than others, and 

when the model does not suit the block the centred parent location is a good 

choice. Figures 8.7 and 8.8 show the improvement which is obtained by using 

the method on the Lena image.

Figure 8.7. Fixed block size approximation using 
centred parent location.

Quadtree Implementation

To evaluate the practical usefulness of the new technique the IFT was 

implemented in the compression scheme developed over the past three 

chapters, including use of the rate-distortion switching technique of Chapter 7.
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Figure 8.8. Fixed block size approximation using 
implicit parent location.

On average the new technique resulted in a small increase in fidelity of 0.04dB, 

a very small improvement, but in fact the method results in an improvement 

for some images and a loss in fidelity for others. For Lena the average 

improvement was 0.14dB, for Gold Hill no change, for Barbara 2 -0.07dB, and 

for Boats 0.12dB. Figure 8.9 shows results for the Lena test image. Visually 

edges tended to be sharper with the IFT.

8.5 Summary

The implicit fractal technique estimates the optimal parent location well for 

some blocks and poorly on others. In general it gives performance similar to 

that of the centred parent but outperforms it on some images.

For images containing a reasonable number of edges similar to that used in the 

model, e.g. Lena, the IFT gives superior results. In the class of test images
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chosen Lena is the only image which is obviously of this nature but the results 

for Boats were also improved by the IFT. The greatest improvement observed 

was 0.27dB at 0.1 bits-per-pixel for the Lena image.

Two factors suggest the continued use of this method. Firstly the complexity 

of the method is low when encoding a block. The length of the lookup table 

for the 8x8 block size has only 52 entries and the searching process may be 

performed using integer arithmetic. Secondly the fidelity contributed by greater 

edge definition is visually more significant than the PSNR results suggest.

38

36

a  33  z
toa.

IFT

centred
28

0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6

bpp

Figure 8.9. Rate-distortion results for 

Lena test image.
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C h a p t e r  9

EXTENSION OF THE IFT

9.1 Introduction

In the previous chapter a novel technique for determining the parent location 

relative to an image block was presented. In this chapter an extension to this 

method is examined with the aim of encoding a wider range of image features 

and hence achieving higher fidelity.

The new method is designed by first examining the usage of basis coefficients 

by the IFT to see what range of ratios is available that do not conflict with the 

existing method. This suggests a new edge model and equations are derived in a 

similar manner to those o f the IFT. When the fractal mapping of a block is 

determined a decision is made, regarding which method to use based on the 

values of the basis coefficient ratios.

9.2 Preliminary Observations

In the previous chapter the IFT worked because, for a simple edge, the ratios 

of the basis coefficients have a unique value which can be used to determine 

the optimal parent. Figure 9.1 shows the distribution of these ratios.

All values are positive for the reasons given previously, but additionally

restricted to a maximum value of 1 and has a maximum value of

1.078274.
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F igure 9.1. Distribution o f  basis ratios for IFT.

Incidentally, some points are very close together which suggests the values of 

a and b used to create the table, which simply form a uniform sample, are not 

optimal. However the non-uniform distribution of the ratios does not appear 

to affect performance to a significant extent as if this were the case 

quantization would reduce the fidelity gain of the IFT over the centred parent 

location, which does not occur. Also, similar ratios correspond to similar block 

locations and at worse lead to a slight increase in encoding time.

With the range of ratios used by the method restricted, the key to extending 

the IFT would appear to be the development of a feature model which 

represents basis functions whose coefficient ratios lie outside this range.

Examining the ratio ĉ /  in particular, Figure 9.2 shows some sample ratios in 

one dimension. As the ratio increases past 1 the curve becomes more U-shaped
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and it is hypothesised that image blocks producing this effect are the ones 

which may be approximated by an extended version of the IFT.

0:5

0.40.5

0.3

0.2

-0.3 - 0.2 0.3 0.4

-0:2

Figure 9.2. Sum o f  X  and X 2 basis functions for 
different ratio values.

9.3 D ual Edge M odel

A simple feature producing 

termed a Dual Edge Model.

values above 1 is shown in Figure 9.3. This is

To approximate this feature a dual parent transform must be adopted. In this 

transform two parents are designated, one on the midpoint of each line 

segment. When the fractal mapping is applied the parent with midpoint nearest 

to each pixel is used for that pixel.
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Figure 9.3. Dual edge model.

9.4 Derivation

To derive a solution for this new feature model a similar approach to that taken 

in Chapter 8 can be adopted. It may be seen that the integral is a sum of two 

integrals o f the type derived for the IFT. In the first integral, regions A and B

have intensity value and region C intensity value O - ^ / i  • In the second, 

region A has intensity O -^j/^  and regions B and C have intensity

sum of these blocks corresponds to the edge model above, and since the sum 

of the integrals is equal to the integral o f the sums the formulae used to derive 

the IFT can be used again. Details of the solution are given in Appendix C.

9.5 Implementation

A lookup table is constructed as before, from a range of a and b values, using 

which the parameters of the model and hence the parent locations may be 

determined from the basis coefficients. The distribution o f the resulting ratios
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in the lookup table is shown in Figure 9.4. The ratios and are plotted

for each o f the five cases in the solution and the absolute values o f these ratios 

were plotted for the IFT.

□ XFT e a se l O XFT c a se 2

A XFT ca se3 -  XFT ca se 4

o  XFT ca se5

o  °
o  o  <

O O o  o

-2—1
c2/c1

Figure 9.4. Distribution o f  basis coefficient 
ratios1.

As Figure 9.4 shows, when the absolute values o f the ratios are stored there will 

be some conflict with the existing implicit fractal method. However the

extended method uses the third ratio cy  which does not need to be
A i

restricted to positive values. The signs o f and are always identical 

which means when the absolute value o f cy  is stored, the negative sign o f the
/  ci

1 There are a relatively small number o f  data points for case 1. They are located along the y-axis.
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third ratio will still produce good matches. Other cases must be excluded when 

the magnitude of the first two ratios is within the pre-determined range of the 

ratios under the IFT and the third ratio is small. Based on empirical results the 

original edge model is used if

< 1 and < 1.5 and <1.5. (9.1)

Otherwise the dual edge model is used. New rules for reflecting the midpoints 

are described in Appendix C.

9.6 Results

Initial tests showed the extended IFT worked successfully, however when 

compressing practical images very little change in fidelity was produced. For the 

Lena test image using an 8x8 partition the increase in fidelity of the new 

method over the original IFT was precisely 0.024608 dB. This very small 

change corresponded to approximately 10% of blocks using the dual edge 

method to a significant degree. Figure 9.5 illustrates the kind of improvement 

seen in this image.

(a) (b) (c)
Figure 9.5. (a) Lena with 8x8 block size 
approximation, (b) IFT approximation.

(c) extended IFT approximation.

When a quadtree is created large blocks tend to use the dual edge model, then 

as smaller blocks are approximated the single edge model is used more
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frequently. Unfortunately it appears the fidelity in the large blocks does not 

increase sufficiently, due to the dual edge model to give an improvement in the 

overall performance of the quadtree algorithm. The rate-distortion results 

showed no improvement for the method.

9.7 Summary

This work on extension of the IFT has been a success in the sense of having 

created a new implicit fractal method, but a failure in that no gain in coder 

performance has been achieved. The implicit fractal method introduced in 

Chapter 8 has been extended in the logical way but with no improvement in 

the method’s effectiveness in terms of visual or numerical fidelity. This suggests 

the IFT uses the correlation that exists between the fractal and basis parts of 

the block transform to a practically maximal degree.

Further work in this area could examine the effects of ‘normalising’ the set of 

coefficients rather than using ratios. I.e. determining fractal information from 

the set

{c) 4  ’cVc ’V c ’Ci/ j where c=Vc.2+ci+<=t+ci. (9'2)

Also an alternative to the feature model approach is to derive a lookup table 

from test images, using a statistical correlation found from a large amount of 

test data. One further area which is potentially rewarding is the use of inter

block correlations.

120



C h a p t e r  1 0

PARTITIONING CRITERIA

10.1 Introduction

As explained in Chapter 4 a quadtree partition of the image is created by 

dividing the image support into 32x32 blocks and recursively splitting blocks 

with high approximation error into smaller blocks which can be approximated 

more easily. The key to the success of the process is the estimation of the 

approximation error in each block.

In [81] several estimation methods were compared and it was found that the 

amount o f edge content, measured by summing the convolution of the image 

with a Sobel edge filter, was similar in performance to using the approximation 

error itself. The use of the collage error, the error when mapping the original 

image onto itself, was shown to perform relatively poorly.

For the reasons given in section 4.4 the collage error has been used so far in 

this thesis for the purpose o f development o f fractal transforms, however, now 

that most of the comparison work has been completed the issue of partitioning 

criteria can be addressed.

This chapter presents an examination o f the effectiveness o f several split 

criteria, including one new method which has not been tried before.

10.2 Methods

To achieve optimal coding performance, the error in a block G should be used 

as the partitioning criteria, given by the formula
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n ^ n  n

G -YjC fi ,-eH  =||G||2-2Zc,(G,Bl) + '£cf - 2 Jfi,H)+e7
i= l  i=1 /=1

where H is the parent block from the decoded attractor image.

In practice* because the fractal part o f the expression is not known, the error 

must be estimated. Numerous ways of doing this exist and three of the most 

likely techniques are described below.

Collage Error

This is the method used in previous chapters and is given by equation 3.2.4. It 

is related to the collage theorem (equation 3.1.3) and works by replacing H in 

equation 10.1 with a parent block taken from the original image. By the nature 

of the coding process this block should be close to the attractor block it 

replaces.

Edge Value

An edge image is produced by applying Sobel masks, see Figure 10.1, across the 

image. The edge value of a block is then computed as the sum of the absolute 

values of the edge image pixels in that block. The idea behind the method is 

that blocks with more edge information will be harder to approximate and 

hence have higher approximation errors.

- 1 - 2 - 1' - 1 0 1"
0 0 0 - 2 0 2
1 2 1 - 1 0 1

F igure 10.1. Vertical and horizontal Sobel filters.

Pessimistic Collage Error

This is a new method. The collage error uses the original image to predict the 

attractor error, but in practice many of the details of the image are not present 

in the attractor image and criterion efficiency is lost. Using equation 3.5.6, a
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potentially more realistic error estimate is obtained by averaging parent blocks 

taken from the original image and the basis approximation, this is termed a

pessimistic collage error.

10.3 Results

To evaluate the effects of different partitioning criteria a comparison was 

performed in the usual way. The four test images were compressed at a range 

of bit rates using the different methods. Figure 10.2 shows the rate distortion 

curves for the Gold Hill test image which was typical of all four test images. 

Figure 10.3 shows an example compression of the Lena image at 0.2 bits-per- 

pixel, with each of the partitioning criteria.

34

33

32

31 -
DC

m 30CL

29
Collage

28
Sobel27

Pessimistic26 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
bpp

Figure 10.2. Rate-distortion results for Gold Hill 
test image.

The results show that the previous work of Woolley [81] has been superceeded 

by new developments in the transform itself. The collage error now
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outperforms the Sobel based error by an average of 0.97 dB across the whole 

range.

The pessimistic collage error performs comparably with the collage error, and 

produces a similar partition of the image as seen in Figure 10.4.

(b) (c)
Figure 10.3. Lena image compressed at 0.2 bits- 

per-pixel, using different partitioning criteria.
(a) Collage error, (b) Sobel error, (c) Pessimistic 

collage error.

10.4 Summary

In this chapter three quadtree partitioning criteria were examined, two of which 

were examined previously in [81] and a third which was introduced in this 

chapter.

As a result of developments in the fractal transform the collage error is now 

the best partitioning method of these three.

These results additionally justify the earlier argument, given in Chapter 4, for 

the use of the collage error rather than Sobel based error.
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(c)
Figure 10.4. Partitions o f  the Gold Hill test image 

based on different criteria, (a) Collage error, (b) 
Sobel error, (c) Pessimistic collage error.
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C h a p t e r  11

PROPOSAL: A NEW FRACTAL TRANSFORM

11.1 Introduction

One limitation which applies to fractal image compression is the maximum 

possible fidelity the block transform is capable of achieving. With almost all 

fractal transforms the fractal part of the approximation is a contracted, scaled, 

and possibly rotated and reflected block from elsewhere in the image. Some 

work has used more advanced mappings based on variations of the above 

scheme to improve fidelity [7].

In this chapter the notion of local self-similarity is defined formally and this 

definition is used to generalise fractal coding to give it the potential for further 

improvement. An innovative new technique is presented which is capable of 

giving far greater fidelity and is particularly remarkable in that it is independent 

of the image partition used.

11.2 Definition of Local Self-Similarity

The self-similarity used by fractal image compression is commonly referred to 

as piecewise self-similarity. An image is piecewise self-similar if there exist regions 

o f the image, usually rectangular blocks, which are identical or near-identical 

under affine transformation. Local self-similarity is a special case where one 

region is contained in a larger piecewise self-similar region, such as in the IFT 

and BFT.

This later case is important as previous studies [81,80] have shown it to be the 

most useful type of self-similarity for image compression. For local self

similarity the affine transformation has a unique fixed point within the child
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block. For example, in the IFT this fixed point is the midpoint of a line 

segment. Since under the affine mapping all other points are mapped closer to 

the fixed point, this point is referred to as the centre of self similarity, and is 

illustrated in Figure 11.1.

Child block

Centre of self
similarity

Pixels in parent block 
mapped towards centre

Parent block

Figure 11.1. Local self-similarity.

11.3 Theory

Using the above description, a new fractal transform is defined based on the 

use o f centre points of self-similarity, or seed points, where each seed point will 

represent the centre of self-similarity in some local region. These seed points 

are used to define a self similarity function, ff (x ) , which is equivalent to the union

of the contraction mappings normally used to describe the mapping of parent 

blocks onto child blocks. This function describes which pixels of the image are 

mapped onto which pixels at the decoding stage, and so explicitly describes the 

self-similarity of the image. A fundamental aspect of encoding an image with 

this transform will be the choice of the number of seed points and their 

location. No theoretical approach to this aspect of the transform is described 

here, but the problem is discussed in later sections.
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Definition

Let {xy;y = l . . . v j  be a set of seed points and S the image support, and let the

image support be partitioned into cells = l...jvj such that each cell

contains only one seed point.

Then the self-similarity function JF(x) is defined by

where xy is the seed point in the cell containing x , and c is the ratio of the 

contraction to be used.

It should be clear that if the partition of the image support consists of child 

blocks and the ratio of contraction is 2, then fF(x) describes the usual mapping 

between parent and child. For example, in Figure 11.1, the centre of self

similarity is a seed point and the child block is one cell of the partition.

Voronoi Partitioning

The partition used by this method is independent of the usual quadtree 

partitioning of the image and so must be determined by some other means. 

One possible solution is to use an automatically computed Voronoi partition.

By associating pixels with the nearest seed point a Voronoi partition of the 

image support is created with each cell one region of self-similarity. A mapping 

is thereby created for the whole image where each pixel is mapped onto by 

pixels from a location determined by the nearest seed point. Domain and range 

blocks used in traditional fractal image compression are replaced and a more 

powerful tool for capturing the self-similarity of images is produced.

For each seed point x7 there is one cell, denoted SJy the set of points in S 

which are closer to the seed point than any other. I.e.

(11.2)
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The result is a partition of the image support illustrated by the Voronoi 

diagram in Figure 11.2. This mapping is independent of the quadtree image 

partition used and is effectively block-less.

Figure 11.2. Voronoi diagram resulting from  
eight seed points.

Decoding

The decoding o f the image is achieved as with traditional fractal compression 

schemes, except that the function W is used in place of w*1 in equation (3.2.1).

11.4 Implementation

This transform may be implemented in a variety of ways but to illustrate its 

potential a sample image was encoded using seed points placed along the edges 

of the word “Fractal” in the image and a Voronoi partition was computed.
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The decoded image showed an impressive level of fidelity compared to 

conventional methods, as seen in Figure 11.3

(c) (d)
Figure 11.3. Effects o f  new fractal transform, 

(a) Original image, (b) Basis, (c) Local searching 
fractal approximation, (d) New seed point-based 

approximation.

11.5 Further Work

The description of self-similarity in this method is block-less when used with a 

Voronoi partition. The key problems which must now be solved are the 

determination of the seed points, and their storage - both of which may be 

computationally costly.

The selection of seed points is the main challenge. Initially a set of equally 

spaced seed points could be chosen and then additional points added in regions 

which have high predicted approximation error - analogous to the block-based 

quadtree method used in previous chapters.

An aim of further work could be to remove blocks from fractal coding 

altogether. By choosing, say, 1000 seed points a set of 1000 areas is created 

which could replace the block based partitions used in traditional methods 

altogether. The approximation of the original image intensity in each region 

could be achieved using modified versions of current methods, with a basis 

defined on a support which was specific to each block. This may cause further
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difficulties however when quantizing the resulting coefficients unless the basis 

functions are normalised for every different region shape.

The most difficult problem remains the determination of new seed points, as 

the addition of seed points changes the surrounding regions rather than just 

the one which the seed point lies in. This means a large amount of 

computation is required to try all or any significant number of possible seed 

point locations. A simple method will need to be found which can predict the 

best location o f the seed point. Perhaps an IFT-like method would succeed.

11.6 Summary

In fractal coding, a function wk traditionally describes the similarity of one 

block to another. It has been shown that the use of rotation and reflection is 

inefficient and that local searching is particularly effective. In these cases the 

seed point of the mapping completely describes the self-similarity of the image 

for these two blocks, assuming that the ratio of contraction is fixed.

This new transform comprises a set of seed points representing centres of self

similarity in given areas which are used to define a self-similarity function W 

for the image. The flexibility of the transform makes the improvement of local 

searching methods possible. Each point is treated individually and the fractal 

part of the transform is block-less. Many current methods are subsets of this 

method.

A new fractal transform has been proposed which has the potential to increase 

the fidelity of fractal coding. Little investigation of how it may be implemented 

has been presented. The provisional results obtained from the synthetic image 

indicate it will be of value when used correctly in a finished compression 

scheme. However, much work will be needed to determine an efficient means 

of identifying and storing seed points, and working with polygonal partitions. 

One possibility is to form an initial set o f seed points and anneal or use a
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genetic algorithm to improve. Such a solution would, however, be 

computationally very costly.
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C h a p t e r  1 2

RESOLUTION ENHANCEMENT AND ZOOMING

12.1 Introduction

The increasing of image resolution may be desired in several situations. For 

example when viewing a photograph a user may wish to zoom-in on an area of 

interest, or when an image is printed at poster size it needs to be interpolated, 

or an image may be taken from a low-resolution image source, such as many 

CCD cameras, and can be viewed more easily if the resolution is first increased.

As explained in Chapter 2, fractal codings are independent o f resolution, 

describing a surface over a continuous support. To decode at a finite resolution 

iterates are produced using appropriate decimation. Following this approach it 

should be clear that the image may be decoded to a higher resolution than the 

original and by the nature of the self-similarity mappings the new image has 

detail at finer scales not previously present.

An image may be decoded at a higher or lower resolution than the original 

quite easily, and by extension individual areas of the image may be Roomed. I.e. 

displayed independently at a higher resolution. The problem of both zooming 

and resolution enhancement is that the extra detail created may not correspond 

well to the original. The new detail may give a better quality image than before, 

but this is not guaranteed. Since the original is not available at the new 

resolution, the results can only be evaluated subjectively, or synthetically by 

sub-sampling before zooming.

Previous investigations have been carried out in this area, including [19], [26] 

and [52]. This chapter examines several aspects o f the problem: the differences 

between common fractal transforms when zooming, zooming on compressed
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images, the maximum performance of fractal transforms for zooming, and the 

enhancement of fractal codes for improved results.

12.2 Implementation

To decode at a different resolution to that of the original is not difficult. 

Assuming the fractal code stored in memory contains block locations measured 

in pixels, these values must be scaled by the appropriate factor and, critically, 

the basis and fractal coefficients must also be scaled by the same factor because 

o f the normalisation process (see Chapter 5).

To zoom on one part of an image implies determining a higher resolution 

decoding of the image in that section. Exactly what this involves depends on 

the fractal transform used. As parent blocks are mapped from areas in the 

image beyond the section of interest, a larger area may need to be decoded, 

dependent on the number of iterations used. If searching is part of the 

transform, and blocks are mapped from non-local parts of the image, then the 

whole image will typically need to be decoded at the higher resolution. 

Transforms using local self-similarity, such as the IFT and the centred parent 

BFT, have a computational advantage in that only a relatively small area 

surrounding the image section of interest needs to be decoded.

12.3 Results

Comparison of Fractal Tran forms

A number of versions of the block transform have been developed and the 

main differences are the use of searching and the complexity of the basis. The 

four test images were encoded with three different fractal transforms designed 

to be representative of those commonly in use. The first is based on Jacquin 

[35], involving only local searching with a DC basis. The second uses the BFT 

bi-quadratic basis, also with local searching. The third is the implicit fractal 

technique presented earlier.
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In the zoomed images a sharpening of features was observed, and if the 

approximation at the original resolution was good the high resolution image 

was better. Some extra distortion was observed when the approximation quality 

was lower, particularly when using the local searching transform with DC basis. 

Figure 12.1 shows a xl6 zoom of the brim of Lena’s hat which illustrates this 

effect.

Figure 12.1. Lena hat, zoomed approximations, (a)
Original displayed at same size, (b) Jacquin-type 

fractal transform with D C  basis, (c) BFT with bi
quadratic basis and local searching, (d) ImpUcit 

fractal technique.

Zooming Compressed Images

In practice a fractal coding will result from compressing an image and this gives 

a quadtree partition with quantization error as well as detail loss caused by the 

transform.

These extra factors have a visible effect on the zoomed image quality, but only 

in proportion to the effect on the approximation at the original resolution. 

Blockiness and loss of detail are still apparent, but when the original 

approximation is good the zoomed image has sharpened features. Figure 12.2 

illustrates this, showing a zoom of Lena’s hat at 0.2 bits-per-pixel. For
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comparison the approximation is also shown with resolution increased by an 

anti-aliasing filter, which is commonly used for this purpose.

Figure 12.2. Lena compressed at 0.2 bits-per- 
pixel. (a) Original image, (b) IFT approximation, 
(c) Fractal zoom, (d) Interpolated approximation.

High Fidelity Zooming

The maximum effect achievable when zooming a fractal encoding is of interest 

as the fractal transform could potentially provide a novel method of enhancing 

resolution in uncompressed images. To achieve maximum fidelity images were 

encoded using a 4x4 block size, local searching transform, with bi-polynomial
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basis. Again features were sharpened when the images were zoomed, although 

a small amount of visually annoying artefact is introduced. Comparison with 

the conventionally interpolated image favours the fractal zoom, see Figure 12.3.

W (b) (c)
Figure 12.3. Zoomed high fidelity approximation.

(a) Original image, (b) Zoom ed fractal 
approximation, (c) Fractal approximation 

interpolated by anti-aliasing filter.

12.4 Enhanced IFT Zooming

It has been shown that the performance of fractal coding schemes may be 

improved by using implicit parent locations because of their very low bit-cost. 

As a result the IFT is given some special consideration here. The result of 

zooming with an implicit fractal transform can be seen in Figures 12.1 and 12.2. 

However the optimal use for compression of this transform means only a 

relatively small number of blocks use a fractal term. When zooming this can be 

more noticeable. For example the approximation of Lena’s shoulder in Figure 

12.4(b) shows one block in the top left does not use a fractal term despite 

being part of an edge. Whereas further down the shoulder, artefact is created 

where a non-fractal block produces a small ‘notch’ which is propagated by 

mapping onto neighbouring blocks.

The implicit fractal zoom may be improved by introducing new fractal terms 

into the fractal code. Using the mathematical edge model from the coding stage 

the intersection of edges in fractal blocks with non-fractal blocks is estimated. 

If two edges meet the sides of a non-fractal block, the block is assumed to have
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an edge in the original judged to be too insignificant in the MSE sense to be 

coded or an edge which was lost when the image was digitised. The parent 

location and fractal coefficient is then computed based on the location of the 

intersecting edges and the average of the coefficients of the fractal blocks. The 

result is the elimination of this kind of artefact, see Figure 12.4(c).

Figure 12.4. Enhanced IFT zooming, (a) Original 
image section, (b) Zoom ed implicit fractal 

approximation, (c) Enhanced zoom.

(b) (c)

12.5 Summary

From the results in this chapter several observations can be made:

• When edges and other image features are well approximated at the original 

resolution they are sharp and fairly well preserved in the zoomed or 

resolution enhanced images
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• The DC basis transform results in more distortion than other transforms, 

while the more complex basis, as used in the BFT and IFT, gives more 

stable decoding in both the local searching transform and the implicit fractal

cases

• Edges do not always match well at block boundaries even when the 

approximation quality at the original resolution is good

Zoomed images were produced from several different fractal coding techniques 

commonly employed for compression. The zooming process worked as 

expected from the theory and the fractal zooms produced looked generally 

better than the original approximations. The fractal transform gave sharp edges 

in each of the edge blocks preserved in the approximation at normal 

resolution, although edges between blocks did not always line up. The 

performance o f the zoomed implicit fractal transform was improved by 

introducing additional fractal terms.

A further observation is that fractal coding techniques can be used to increase 

the resolution of uncompressed images. Using a small block size partition, a 

complex basis, and searching locally for the best parent-child mapping the 

image can be coded at a very high fidelity then decoded at a higher resolution. 

The result is an image which has sharper features than if a more traditional 

interpolation method was applied.
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C h a p t e r  1 3

POST-PROCESSING

13.1 Introduction

There are three types of artefact present in images compressed with fractal 

methods, namely loss o f detail within blocks, quantization error, and 

blockiness. Little can be done about the detail lost within a block but the 

quantization error and blockiness can be quite easily reduced after the image is 

decoded by introducing a post-processing stage where the image is filtered. The 

result can be a significant improvement in visual quality especially at higher 

compression ratios.

Relatively little work has been carried out on filtering fractal coded images in 

this way, see [40] and [19]. Common filters such as median and averaging filters 

may be applied, and can be used across the image or only at block edges. New 

methods could be created by first modelling the block error and then deriving a 

filter.

This chapter presents a comparison of filtering methods when applied to 

images compressed with the fractal transform developed in this thesis.

13.2 Methods

Median Filtering

The median filter is widely used in image processing, for example to remove 

impulse and other noise. To filter a pixel all pixels within a certain range are 

examined and the median pixel value is found. This is a relatively complex 

method in computational terms and increases in complexity exponentially with 

the filter size. Filters are of size 3x3, 5x5, 7x7 etc.
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Averaging Filter

The averaging filter takes all pixel values with a certain range and averages their 

values. Wherever the averaging filter is applied the image is smoothed. Filters 

are of the same sizes as the median filters.

Weighted Averaging Method

This is a common method, suggested for fractal image compression by Fisher

[19], and is applied only at block edges. If a and b are adjacent pixels from

different child blocks, these are replaced by w]a + w2b and w2a+wfi

respectively. For blocks of size 4x4 = 5/6 and w2 = 1/6. For larger blocks

w, = 2/3 and w2= 1/3. For 2x2 blocks no averaging is used. For larger blocks of

size 16x16 or greater the degree of blockiness is increased and pixels internal to

the block are smoothed as well. If the pixel values are a , b , c , and d , with b

and c being the two adjacent pixels from different blocks, their values are

i j  3a + 2b + c 2b + c b + 2c , b + 2c + 3d ,replaced b y -------------,  , --------- , a n d ------------  respectively.

13.3 Results

To evaluate the different methods an average performance was computed for 

each method for each block size over the four test images. The 3x3 averaging 

and median filters were applied both for every pixel and only at block edges. 

The results are shown in Figure 13.1.

block size median filter at 
block edges

averaging 
filter at block 

edges

Fisher’s
method

median filter averaging
filter

4x4 -2.32 -2.80 -0.21 -2.73 -3.40
8x8 +0.05 0.00 +0.06 +0.02 -0.14

16x16 +0.11 +0.16 +0.12 +0.14 +0.18
32x32 +0.04 +0.10 +0.11 +0.07 +0.13

Figu re 13.1. Improvement over original PSNR for 
methods with 3x3 filter.
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No filter improves the results for 4x4 block size, and the 16x16 block size 

shows the greatest improvement from filtering- Fisher’s method, described 

earlier, generally performs well, as shown in Figure 13.2.

Fisher’s  
method

- 0.21
+0.06 
+ 0.12
+ 0.11

Figure 13.2. Improvement over original PSNR  
for Fisher's method.

For the larger block sizes the discontinuity between the blocks is more 

apparent and greater filtering may be justified. To determine whether this was 

the case 5x5 filters were applied in the same manner. The results, in Figure 13.3 

show that the improvement can be greater, though not for the 8x8 block size. 

For the 16x16 block size the median filter performs slightly better. The 

averaging filter performs worse than before. At the 32x32 block size all 

methods give improved results.

block size median filter at 
block edges

averaging filter 
at block edges

median filter averaging
filter

8x8 -0.20 -0.49 -0.48 -1.11
16x16 +0.14 +0.13 +0.16 +0.07
32x32 +0.08 +0.11 +0.13 +0.17

Figure 13.3. Improvement over original PSNR  
for filtering methods with 5x5 filter.

Fisher’s method is simple and, when the 4x4 block size is excluded, gives 

competitive results. Consequently it may be regarded as the best method.

To determine the effects of this filter in practice the four test images were 

compressed at rates of 0.1 to 1.0 bits-per-pixel. After post-processing the 

average improvement was 0.1 ldB. Figure 13.4 shows the Lena image
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compressed at 0.2 bits-per-pixel before and after post-processing1. The effects 

of averaging and median filtering block edges is also shown.

(C) (d)
Figure 13.4. Comparison o f  post-processing 

methods, (a) Lena compressed at 0.2 bits-per- 
pixel, PSNR 30.68dB. (b) Median filtered image, 

PSNR 30.78dB. (c) Averaging filtered image, 
PSNR 30.80dB. (d) Image filtered with Fisher1 s 

method, PSNR 30.98dB.

1 Blockiness is less apparent when the image is printed than when it is displayed on a computer screen.



13.4 Psycho-Visual Trial

To evaluate the visual quality of the filtering methods, two sets o f images were 

produced and volunteers asked to choose the best from each set. A 128x128 

section of the Gold Hill image was coded with 8x8 blocks and a 256x256 

section of the Lena image was coded with 16x16 blocks. Each image was then 

filtered with the methods listed in Figures 13.1 and 13.2. Figure 13.5 shows the 

results.

Filtering
method

Golc HHI Lena
PSNR Rating PSNR Rating

median filter at 
block edges 24.14 7 24.33 3

averaging filter 
at block edges 24.15 5 24.39 4

Fisher’s
method 24.32 7 24.36 9

median
filter 24.06 2 24.38 3

averaging
filter 24.04 10 24.46 13

Figure 13.5. Psycho-visual results, showing PSNR  
and number o f  viewers who thought image was 

best. Unfiltered PSNR was 24.31dB for G old Hill 
image section, 24.16dB for Lena image section.

13.5 Summary

In this chapter several basic filtering methods were examined and their 

suitability for post-processing images compressed with the IFT was evaluated. 

The conclusion was that the best method was that o f Fisher [19] which gave 

good PSNR performance compared to other methods and is computationally 

very simple.

The result o f post-processing with this transform is an average increase in 

PSNR of 0.1 ldB, and visually most of the blocking artefact is eliminated. More 

improvement occurs for highly compressed images, where blockiness is greater.
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A psycho-visual trial suggested that PSNR and observed quality were not highly 

correlated. In particular the PSNR for the Gold Hill image section with the 

averaging filter applied was the lowest in the group, however it was the most 

popular with viewers. For both images Fisher’s method and the averaging filter 

scored well. The median filter was particularly unpopular.

When zooming images blocking artefact is also a significant problem and no 

attempt to solve it has been undertaken here. The filters considered are too 

Sveak’ to be effective in this case, since the block sizes involved are much 

larger.
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C h a p t e r  14

SUMMARY

'Background Work

This thesis began by describing some of the basic ideas behind fractal image 

compression and proceeded to survey the research work done in this area.

Jacquin’s original method represented a breakthrough as the first fully 

automatic fractal image compression scheme, and much work followed its 

publication. Most sought to improve and extend the method, but more 

recently hybrids have been created using other image compression techniques. 

A wide range o f ideas have been published for improving the determination of 

transform coefficients, modifying the transform itself, and improving the way 

domain blocks are mapped to range blocks. Attempts have been made to 

determine the optimal quantization and entropy coding methods and the best 

partition scheme (quadtree, HV, triangular, or polygonal).

The searching part of Jacquin’s algorithm has received special attention. Being 

slow to encode, a wide range of schemes for accelerating the process using 

classification, hierarchical searching, and fast domain-range match computation 

have been proposed and investigated.

Concerning the decoding stage, pyramid decoding schemes have been 

proposed, and analysis of alternative criteria for convergence has been carried 

out. Also the effects of zooming and increasing image resolution with fractal 

transforms have been examined.

The BFT added to the body of fractal image compression research by 

extending the massic part of Jacquin’s transform. Much work has been done to 

find the optimal design parameters, including the degree of searching, number
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of massic parameters, use of isometries, and partitioning methods. Previous 

work has shown the best implementation to be that of the non-searching, bi

quadratic case, without isometries, using a quadtree partition with only light 

quantization of the coefficients.

As pointed out by Wohlberg [80], the design of fractal transforms presents a 

number of problems, since there are few theoretical results on which design 

decisions can be based. Chapter 4 described the approach used to develop 

fractal compression throughout the remainder of the work, based on the 

comparative performance of compression schemes over four test images at bit 

rates o f between 0.1 and 1.0 bits-per-pixel.

The theory behind the fractal compression schemes in this work was laid out in 

Chapter 3, this chapter described in detail how an image may be specified as a 

fixed point o f a contraction mapping, termed a fractal image operator; operating 

on a space o f images. The Collage Theorem provides a mechanism for 

determining the contraction mapping in terms of a number of parameters, and 

these parameters are then stored in place of the original image.

To decode, a sequence of images is constructed by applying the fractal image 

operator repeatedly to any initial image, and it was noted that this procedure 

may be extended to allow Rooming on images and resolution enhancement.

Two possible modifications to the basic fractal transform were also explained, 

namely ortbogonalisation and normalisation. The first o f these decorrelates the 

coefficients o f the basis and parent blocks, and the second normalises them to 

simplify the encoding process.

Finally, Chapter 3 described the method of linear quantization of transform 

coefficients and analysed the effects of different degrees of quantization.

Chapter 4 described the focus of this work in more detail. The BFT is one 

competitive method of fractal image compression and it was decided that this
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transform was a promising subject for further development and could also be 

used as a basis for new transforms. The state of the art, as regards the BFT, 

was therefore reviewed in detail, referring to the work of Monro, Dudbridge, 

Woolley, and Bethel.

The conclusions of Woolley that a non-searching, bi-quadratic transform with 

quad-tree partition is the optimal implementation was adopted, although it is 

acknowledged that the use of more advanced techniques may potentially alter 

Woolley’s results. Uniform quantization followed by Huffman coding was 

adopted for use throughout the thesis based on its relative simplicity, good 

performance, and that it allows fair comparison of different implementations.

However, the quad-tree partitioning criteria comparison carried out by Woolley 

was effectively disregarded. The choice of Sobel based criterion is 

counterproductive for the purposes of fractal transform development - where 

fractal mappings are intended to adequately describe edges and texture in 

blocks.

A method of comparative evaluation for new work was also given, as 

mentioned above.

Improvements to the BFT

Firstly Chapter 5 studied the use of orthogonal and orthonormal transforms. 

The main result was that both types of transform are better than the original, 

for several reasons. From fixed block size results, the basic potential of an 

orthogonal transform for approximation is greater, and when implemented in a 

quadtree scheme the comparative fidelity increased slightly further, suggesting 

that the orthogonal transform may be better suited to the collage based split 

criterion. From the quantization study it was clear that the orthogonal 

transform is also significantly less susceptible to quantization error than the 

non-orthogonal equivalent; orthogonalised fractal coefficients may be
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quantized 25 times more heavily. The conclusion is that orthogonal transforms 

give significantly better overall results for image compression.

The use o f a normalisation factor in the parent mapping was investigated and 

showed a practically identical level of performance to the orthogonal 

transform.

Chapter 6 presented an investigation of the parameters used to quantize the 

fractal coefficients. Unlike most previous studies several test images were used 

and this gives the results an increased value. By comparing the rate-distortion 

performance of the fractal compression scheme under different parameter 

values it was seen that the optimal choice varies from image to image and 

between bit rates. A method was subsequently introduced which successfully 

determined the parameter value automatically. Using a formula derived from 

the previous results, optimal performance of the method was obtained 

consistently over all test images and bit-rates.

The next topic of investigation was the rate-distortion based switching 

technique invented by Bethel, which uses a fractal term in a block if and only if 

it improves the overall rate-distortion performance of the scheme. It was 

found that several variations on the method were possible and that the optimal 

implementation carries out switching after the partitioning of the image is 

complete. The method used in [77] did not give the best results. Better results 

were obtained when fractal terms were initially used for every block.

Using the rate-distortion switching technique saves significantly on the bit cost. 

At 0.4 bits-per-pixel an average of 28% more blocks are available to the 

partitioning process. The average area of the image approximated using fractal 

terms at this bit-rate is 18% and as expected blocks using fractal terms are 

those with more complex details such as edge blocks and texture blocks.
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New Techniques

The implicit fractal technique is a new invention which estimates the optimal 

parent location from the basis coefficients in each block. Compared with the 

centred parent scheme used previously the IFT can give noticeable 

improvement in image fidelity, particularly for images like Lena and Boats. On 

other images it gives performance similar to that of the centred parent.

The method works by modelling edges in terms of several parameters. A 

straight edge with constant grey level values either side is assumed to run 

through a block, and formulae for basis coefficients can be derived in terms of 

the location of the line. The optimal parent location is easily computed for a 

simple edge, and a look-up table containing sets of basis coefficient ratios with 

corresponding parent locations can be created. Using this table in both 

encoding and decoding stages allows a parent location to be determined for 

each block from just the basis coefficients by searching the look-up table for a 

closest match.

This is a predictive method and requires no extra bits to specify the parent 

location. On average the method gives an improvement in fidelity, particularly 

in certain types of image, to which the edge model is well suited.

Two advantages to the method are its low complexity: the length of the lookup 

table for the 8x8 block size has only 52 entries and the searching process may 

be performed using integer arithmetic. And secondly the fidelity contributed by 

greater edge definition is visually more significant than the PSNR results 

suggest.

In Chapter 9 the IFT was extended to use a more advanced edge model and so 

improve fidelity in each image block. The ratios o f coefficients used by the 

existing technique were examined to determine what range of values were 

unused by the method. A new dual edge model was then created which produced 

ratio values generally distinct from the ratios o f the IFT. From the model,
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formulae for coefficients, and hence a look-up table, were derived as before. A 

switch was then implemented in the block encoding and decoding functions 

which would determine which edge model to use.

The extended IFT worked in approximating a wider range of blocks with the 

fractal part of the code, but the number o f blocks which benefited from the 

dual edge model was sufficiently small to leave the overall rate-distortion results 

unimproved. It was concluded that the IFT uses the correlation that exists 

between the fractal and basis parts of the block transform to a practically 

maximal degree.

Chapter 10 examined three quadtree partitioning criteria using the fractal 

transform developed over previous chapters. Two of these were examined in 

[81]. Comparing performance over the full set of test images showed that the 

collage error was now the best choice for partitioning, as a result of 

developments in the fractal transform. A novel criterion was tried but did not 

improve results.

Chapter 11 introduced a new fractal transform. In fractal coding an affine map 

usually describes the similarity of one block to another. But when rotations and 

reflections are not used, local self-similarity can be conveniently described using 

a seed point.

A new transform is described which uses seed points to represent centres of 

self-similarity in given areas, making the improvement of local searching 

methods possible. Each point is treated individually and the fractal part of the 

transform is block-less. Many current methods are subsets of this method. The 

new fractal transform has the potential to increase the fidelity of fractal coding 

although little investigation of how it may be implemented has been done. 

Provisional results obtained from the synthetic image indicated it will be of 

value when used correctly in a finished compression scheme.
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Decoding

Resolution enhancement and zooming on a particular area of an image are two 

intrinsic advantages of fractal image coding. Relatively little work has been 

carried out to examine the effectiveness of fractal transforms for this purpose 

and Chapter 12 attempted to redress the balance.

After experimentation several observations were made:

• When edges and other image features are well approximated at the original 

resolution they are sharp and fairly well preserved in the zoomed or 

resolution enhanced images

• The DC basis transform results in more distortion than other transforms, 

while the more complex basis, as used in the BFT and IFT, gives more 

stable decoding in both the local searching transform and the implicit fractal 

cases

• Edges do not always match well at block boundaries even when the 

approximation quality at the original resolution is good

Zoomed images were produced from several different fractal coding techniques 

commonly employed for compression. The zooming process worked as 

expected from the theory and the fractal zooms produced looked generally 

better than the original approximations. The fractal transform gave sharp edges 

in each of the edge blocks preserved in the approximation at normal 

resolution, although edges between blocks did not always line up.

To improve the results from zooming images compressed with the IFT a 

method o f introducing additional fractal terms was designed. This used the 

intersection points of edges in adjacent blocks with the block boundary to 

predict an edge location. The parent was then placed so that the midpoint of
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the edge was the common point of both the child and parent The fractal 

coefficient was the average of the fractal coefficients of the adjacent blocks.

It was also found that fractal coding techniques can be used to increase the 

resolution of uncompressed images. Using a small block size partition, a 

complex basis, and searching locally for the best parent-child mapping the 

image can be coded at a very high fidelity then decoded at a higher resolution. 

The result is an image which has sharper features than if a more traditional 

interpolation method was applied.

The post-processing of images to remove compression artefact is common in 

block-based coding schemes. Several basic filtering methods were compared in 

Chapter 13 when post-processing images compressed with the IFT. It was 

found that blockiness could effectively be reduced by an averaging filter applied 

at block edges. The best method was that of Fisher [19] which gave good 

performance compared to other methods and is computationally very simple. 

The average increase in PSNR is 0.1 ldB with this method, and visually most of 

the blocking artefact is eliminated. More improvement occurs for highly 

compressed images, where blockiness is greater.

Conclusion

Overall this thesis has presented work which includes a sequence of 

improvements to fractal compression, beginning with the Bath Fractal 

Transform and ending with an orthogonalised implicit fractal transform, with 

optimal quantization, rate-distortion switching, improved partitioning and 

effective post-filtering. The increase in fidelity over the original method is 

considerable, as illustrated in the next chapter.
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C h a p t e r  1 5

CONCLUSIONS

Discussion

A number o f studies and new ideas were presented in this thesis, each designed 

to improve the fidelity obtained by fractal transforms at any given bit-rate and 

for any image.

The first of these was orthogonalisation, which gives a significant improvement 

in the performance of the BFT. Previously it had been applied to a Jacquin- 

type compressor with the intention of reducing complexity, but in this work it 

was shown that its real benefit lies in improvement of the quantization of the 

transform coefficients. With greater quantization of the fractal coefficient the 

performance of the method in rate-distortion terms is improved.

The study of quantization led to the development o f a novel automatic 

quantization scheme which adapted the coarseness of the quantization 

according to the complexity of the image and the desired degree of 

compression. This optimal result is advanced compared with other work done 

in the fractal image coding field, including that of Fisher and others, and 

previous work on the BFT. It is a step forwards in making fractal image 

compression schemes more competitive. Further study may prove useful - 

more complex formulae derived from a wider range of images may give better 

results.

Rate-distortion switching for fractal image compression was proposed by 

Bethel and improved here. This method gives a useful improvement in the 

fidelity at any given bit rate by using fractal terms optimally. The results in this 

thesis show this to be an excellent improvement which can be made to any
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fractal compression scheme which creates its partition progressively. Probably 

best performance is obtained with schemes using a more complex basis where 

the basis part of the transform is more likely to give an adequate approximation 

on its own.

The implicit fractal technique introduced in this thesis is a novel and quite 

advanced addition to the fractal image compression literature. It was first 

published in [77] and is a particularly good example of technique development. 

Beginning with the conjecture that a correlation exists between basis 

coefficients and parent location, the problem is modelled, and from this model 

a solution which is practically applicable is derived. Results for the IFT show an 

improvement in fidelity over the centred parent case, which is often particularly 

striking at edges in the image.

The basic idea o f correlation between the fractal and non-fractal parts of the 

scheme may be more widely applicable, however. Any scheme may in principle 

be improved by using a fractal mapping if a modelling of image features is 

carried out. For example, the effects o f a straight edge can be modelled in 

terms of the parameters of a compression scheme and from this a correlation 

may potentially be found and used to predict fractal information.

The IFT was extended to use a dual edge model as well as the normal model, 

but it was concluded that useful extension of the IFT from its existing form is 

probably impossible. The study presented showed that a range of basis ratios 

was unused by the IFT, and the most common image feature corresponding to 

these ratios was chosen. However no significant improvement in fidelity was 

possible. The information contained in the basis coefficients is presumably too 

limited.

A study of quadtree partitioning showed that the collage error is the best 

partitioning criterion. A better approach to this problem may be to examine 

the estimation of the error on a block wise basis to gain a more detailed insight
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in to the workings of different methods. The accuracy of the collage 

approximation could therefore be evaluated exactly, and this could provide 

further insight into the workings of the fractal transform.

A new fractal transform has been proposed and is intended as a step towards 

realising the original intention o f using fractals to compress images. The novel 

feature of this new transform is that the fractal relationships are not block 

based and are more flexible than with conventional fractal coding. Much 

further work is required to produce an effective compression method with this 

transform but this could prove a rewarding area of study.

Zooming and resolution enhancement were examined in this work and the 

main conclusion was that if the original approximation quality is good the 

zoomed image should be visually superior. The key problem is that small errors 

in the approximation are also magnified to a large scale when the image is 

zoomed. A method of increasing resolution in uncompressed images was also 

examined. Further work will show whether this is a useful method, by 

comparison over a larger number of images.

Blockiness resulting from large blocks in the image partition is visually quite 

noticeable and post-processing methods were examined to try to reduce or 

eliminate this effect. O f the limited range of options compared it was 

concluded that Fisher’s method gave best results and removed most of the 

blocking artefact without destroying detail.

Comparative Performance

This thesis began by adopting the BFT in its optimal implementation, as 

known in 1996 from the publication of [81]. Improvements have been made 

and new transforms introduced which give greater fidelity at a given bit-rate 

and the difference in performance is illustrated by Figure 15.1 which shows 

‘before’ and ‘after’ rate-distortion curves.
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JPEG  remains the standard image compression method, although JPEG  2000 

is under consideration, and the rate-distortion performance o f JPEG  is also 

shown in Figure 15.1. The IFT outperforms JPEG  at high compression ratios 

but gives inferior performance at lower ratios. The main reason for this is that 

this fractal transform has been developed from the BFT which has always been 

designed as a low complexity method. In particular it has only a small number 

of parameters to be computed per block, and does not usually use searching. 

From Figure 15.1 it may be seen that the point at which the fractal scheme 

becomes more efficient than JPEG  has risen to 0.36 bpp for the Lena image, 

from 0.23 bpp, which is quite useful.
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Figure 15.1. Comparison o f  rate-distortion 
performance over Lena test image.
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JPEG IFT

Figure 15.2. Comparison o f  JPEG compressed 
images with IFT compressed images, at rates o f  
0.2, 0.4, and 0.6 bits-per-pixel. PSNR increase 

from using the IFT is 1.40dB, O.OOdB, and -0.38dB 
respectively.
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Future Work

The difference in performance between fractal coding methods and other 

methods, such as wavelet coding, has narrowed so that a relatively small further 

improvement would make fractal coding a truly competitive compression 

technology.

To improve block-based fractal coding further there are several avenues of 

investigation. The use of more complex bases or fractal mappings is one area, 

but also the details of the schemes introduced in this thesis may be investigated 

in more detail.

One important area of research which has received little attention is the nature 

of self-similarity, though [80] is one study. The assumption of piece-wise self

similarity is made in every fractal coding scheme, but it is important to 

understand what degree of self-similarity to expect. After studying this 

problem, Wohlberg has concluded that a small but significant degree of local 

self-similarity is to be expected, but questions whether this implies that fractal 

image coding is worthwhile.

This leads to the question of whether further work on block-based fractal 

coding is indeed justified. Despite the extensive work presented in this thesis 

fractal coding is still not competitive with wavelet coders. At best it may be said 

that fractal coding is of low complexity and gives very good performance at 

low bit-rates - two characteristics which make it suitable for numerous 

applications, for example multimedia. To increase the performance at lower 

compression ratios a larger basis or fractal mapping incorporating multiple 

fractal terms may be effective.

Hybrid schemes such as fractal-wavelet coding show greater promise. Several 

researchers [16,38,79] have shown that fractal coding may be re-formulated in a 

wavelet context. This leads to an improvement in compression and 

decompression time, increased compression performance, and removes the
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tiling artefact of block based fractal coding. An application of the IFT concept 

in this area of research may prove worthwhile.

Conclusion

This thesis has attempted to always use fractal methods to achieve better results. 

An overall improvement may always be obtained by hybridising with a better 

image compression method where the fractal component plays are relatively 

minor role, but this does not lead to a better understanding of the problem of 

exploiting self-similarity.

This thesis continued the development o f fractal block transforms and has 

achieved improvements in fidelity with several novel techniques. The resulting 

transform has the advantage of very competitive performance at low bit-rates 

with low computational complexity.
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ABSTRACT
The performance of any block based image coder can be 
improved by applying fractal terms to selected blocks. Two 
novel methods are used to achieve this. Firstly the coder 
determines whether a local fractal term will improve each 
image block by examining its rate/distortion contribution, so 
that only beneficial fractal terms are used. Secondly, the 
decoder deduces the offset parameters for the local fractal 
transform from the basis functions alone, by inferring the 
dominant edge position, so that no offset information is 
required. To illustrate the method, we use a quadtree 
decomposed image with a truncated DCT basis. Using a 
standard test image, the proportion of the picture area 
enhanced by fractals decreases from 16.1% at 0.6 bpp to 
8.1 % at a high compression ratio of 80:1 (0.1 bpp). The fractal 
terms contribute less than 5% of the compressed code in all 
cases. The PSNR is improved slightly, and edge detail is 
visually enhanced.

1. BACKGROUND
To compress an image, define an Iterated Function 

System (IFS)[ 1 -5] of order N  to be W = {wk, k = 1,..., N  ) , 
where the wk are contraction mappings, each defined on a 
subset Ak of the image support. The attractor of IT is a 
non-overlapping tiling of the image, as in Figure 1. A fractal 
function f ( x ,y ) ,  is then defined which approximates the 
brightness g(x, y). An image block taken from the location 
Ak is referred to as the parent and an image block taken from

wk( Ak ) is referred to as the child. For each tile the function 
is specified by a recursive mapping vk such that

f ( w k(x, >)) = vk(x, y ,f ( x ,  y)) for (x, y) in Ak. (1 

In this work we use mappings of the form
vk(x, y ,f)  = p k(x0 + bx, yQ + by) + e j k (bx, 8y) (2

w here (x0,y 0) is th e  bo ttom  le ft co rn er o f Ak and 

n
pk(xQ + b x , y0 + 8y) = ^  c. bji&x, by), is an approximation

i= i

by basis functions j b . }, ek is the single fractal coefficient

Covered by tiles

An image
block

W2 (g)

W4(g)

Figure 1. Fractal transforms apply contraction mappings 
of parent blocks onto child blocks.

and7̂ . is the parent block f k(bx, 5y) = f ( x Q + bx, yQ + by) 
orthogonalized with respect to the basis using

i=l

where <b., f k> = ] } /* (  x, y ) b( ( x , y )  dx dy

(3

(4

and the basis functions are normalized by <bi , b>  = 1

To solve, the known image g(x, y) is used in place of the 
unknown fractal function / (jc, y) and the approximation is 
known to be valid by the Collage Theorem [1 ].

The process is fractal because of the self-similarity 
inherent in v .̂ The mappings form an ensemble of functions
which, when iterated or otherwise rendered [5], form an 
approximation to the image. Usually the tiling of the image 
is by square or rectangular child blocks, and it is often 
assumed that p k is a simple brightness level. Much work has
concentrated on reducing the complexity of searching for the 
best parent to map onto each child [6,7].

An alternative approach uses more complex basis 
functions [7, 8] and restricts or even eliminates searching. 
Such an approach is the Bath Fractal Transform (BFT) [9, 
10] with which a pre-determined tiling without searching 
gives the greatest accuracy at a given compression ratio, 
when used with a quadratic basis. In combination with the 
Accurate Fractal Rendering Algorithm (AFRA) [5], the BFT 
has been used for real time fractal video [11],
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Parent
block

g ( A k ) Child
block
wk(g)

Figure 2. A local fractal transform, with the child block 
inside the parent block. For a strong edge, the parent/child 

relationship can be deduced from the basis function.

2. IMPLICIT FRACTALS
In th is  w ork  w e im prove the  perfo rm ance  o f 

non-searching fractal compression by allowing any relative 
position of child block and parent block provided the child 
is local to the parent. We start from the observation that 
fractal terms enhance edges in images provided the 
alignment of the edges in the mapping is correct. To exploit 
this, we determine the dominant edge of the child block from 
the basis functions alone, using a mathematical model of the 
edge. We position the parent block so that the edge passes 
through it in the same relative position, as illustrated by 
Figure 2. The method applies to any choice of basis functions 
and to any image partition.

Once the coder has calculated the basis coefficients for 
a child block, the same process of edge determination and 
matching to find the parent can be carried out as will be used 
in the decoder. The coder can then decide whether using a 
fractal term will improve the rate/distortion characteristic of 
the image. The compressed code contains only the fractal 
coefficient ek, because the offset of the child within the parent
will be computed by the decoder from the same information 
that was used by the coder.

The coder froms a non-fractal approximation to all or 
part of the image by any coding method. The code for any 
image block adds Ab bits to the total image code, and 
increases its total MSE by AMSE. If the slope of the rate 
distortion curve is determined numerically by the coder as it 
compresses a partition of the image, then the terminal slope 
dMSE/db  is know quite accurately, point A in Figure 3. The 
coder can then examine each image block to determine 
whether a fractal term will improve the compression. It is 
assumed that the term inal slope will not be altered 
appreciably by this process.

If a fractal is used, it will contribute further bits, Abfrac
and improve the image MSE by A M S E ^ .  The fractal term 
is beneficial in rate/distortion terms if and only if

AMSE'frac
Abfrac

dMSE
d b

(5

Rate/Distortion 
Characteristic of 

Image

Steeper, 
use fractal

Less steep, 
don’t use fractal.

d M S E

0 “ a T

Figure 3. A block is selected for fractal enhancement by 
the terminal slope of the rate/distortion characteristic.

as illustrated by Figure 3. The estimate of Ab^rac can be
completely accurate, even if entropy coding is used. The 
collage theorem [1,2] would normally be used to estimate 
AMSEjrac, which is not completely accurate although bounds
on its accuracy can be computed. The gradient is also more 
difficult to compute if the basis functions and the fractal 
component are not orthogonal.

3. IMPLEMENTATION AND EVALUATION
To evaluate the method, for p k  ( x ,  y ) we used a DCT

basis limited to the 6 terms , CQ| , CQ2 , C |Q Cj ] and

C20- Coowas quantized to 7 bits, and the other coefficients to
6 bits, with a fixed Huffman table derived from a test set of 
images. An image is partitioned into 32 x 32 pixel blocks, 
and within each partition a quadtree structure was formed so 
that the basis approximation MSE was distributed as evenly 
as possible over the image. Because it seldom occurs that a 
fractal term is used with the initial partition, it is acceptable 
to carry out the fractal selection only as blocks are split.

Given the DCT coefficients, we can classify a block as 
being predominantly horizontal or predominantly vertical by 
comparing I C ,0 | to C0) | . To apply the implicit fractal, we
search a 2D table using the edge model, which gives the edge 
location as a function of the ratios

r  =
C20
c 10

similarly Tyy =

and yx

c01

c 10

c02
c01

for a vertical edge and

and r  = C,o for horizontalxy c o\

(i.e. is more negative at point A  in Figure 3.)

It can be shown that these ratios are independent of the 
intensity on either side of the edge according to the model 
used, Figure 4. The location is reflected horizontally and/or 
vertically according to the signs of the ratios.

The fractal coefficient is then found by solving equation 
2 for ek. By the Collage Theorem ,/(x, y) is approximated by

the original parent block g ( x, y), orthogonalized with 
respect to the basis [1, 7]. In our experiments, using a
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Figure 4. A simple model of an edge, in which I and r 
are the flat intensities on either side of the edge.

Huffman coded fractal coefficient ek adds less than 2 bits to
the code of each block in which it is used. Because the 
decoder can determine the fractal offset vectors from the 
basis approximation, the fractal terms are very efficiently 
coded.

Figure 5 shows the improvement in edge definition that 
can be obtained in a synthetic image. The implicit fractal 
method improves all orientations of the edge by computing 
the optimum parent location from the decoded basis function.

In Table 1 we list the results of coding the test image 
Gold Hill over a range of compression ratios. Figure 6 shows 
clearly the improvement in edge detail obtained in the Lenna 
image where the implicit fractal enhancement is applied.

4. DISCUSSION AND CONCLUSIONS
We have introduced a technique for applying fractal 

transforms in combination with other image coding methods. 
It could be used to improve any image coding system in 
which the original and approximated images are available to 
the coder, including wavelet compression. Once an image 
has been coded by the basis approximation, one can examine 
any partition of the image to decide where a fractal term will 
improve the rate/distortion characteristic.

We have incorporated a fractal term in the test examples 
only where the L2 measured rate/distortion performance is 
not degraded according to our prediction. While the PSNR 
is slightly improved over the whole image, in the blocks 
actually coded with a fractal the improvement will be several 
times larger, and the visual quality contributed by greater 
edge definition can be striking, as the examples show. This 
suggests that the condition for inclusion of a fractal term 
might be too severe, if the objective is optimum visual 
quality. It might be useful, for example, to select fractal 
enhancement for blocks with significant edges even if the 
PSNR is slightly degraded.

The implicit fractal method is particularly powerful 
because the offset information can be determined by the 
decoder from its reconstruction of the basis approximation. 
Over an entire picture, if only a proportion of blocks are 
firactally enhanced at an average compression penalty of 2 
bits per block, the overall cost per pixel will be negligible.

bpp

PSNR
Basis

Approx

PSNR
Centred

Child

PSNR
Implicit
fractal

Fractal 
% of 

Picture 
Area

Fractal
terms
bpp

0.6 31.39 31.50 31.53 16.1 .028

0.5 30.74 30.88 30.90 16.1 .123

0.4 30.01 30.16 30.18 15.4 .018

0.3 29.15 29.33 29.35 14.8 .014

0.2 28.09 28.28 28.30 13.0 .009

0.1 26.60 26.70 26.71 8.1 .004

Tabie 1. implicit fractal applied to the standard test image 
Gold Hill.
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(c) (d)
Figure 5. Edge enhancement with implicit fractals, fixed 16x16 blocks, (a) Original, (b) Basis approximation, 

(c) Local fractal with child centred on parent, (d) Local fractal with implicit alignment.

(a) DCT basis, PSNR 29.14 (b)

Figure 6. Detail at 0.2 bpp. The PSNR

Implicit fractal, PSNR 29.21 (c) Blocks selected for Implicit Fractal
difference is small, but the implicit fractal improves edges visually.
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ABSTRACT
One advantage o f  fractal image compression schemes is 

their multiresolution properties. An image can be decoded 
at higher or lower resolutions than the original, and it is 
possible to ‘zoom-in’ on sections o f  the image. Even so the 
problem o f  fractal zooming has received very little attention.
In this paper we examine these multi-resolution properties.
We study the problem o f fractal zooming in general and in 
particular with a hybrid fractal transform with implicit 
fractal terms. When decoding at a resolution higher than the 
original, artefact can be created which affects the visual 
quality o f  the zoomed image. We present one solution to the 
problem o f obtaining clear and sharp edges where the 
original approximation quality was good. Our enhanced 
implicit fractal transform method compares favourably with 
f r a c ta l  zoom ing  using  p re v io u s  s ta n d a rd  fr a c ta l  
approximation algorithms.

1. BACKGROUND

Much interest has focused on the Iterated Function 
System (IFS) as a method of image coding, the theory of 
which is widely available in the literature. [1-6]. To compress 
an image, define an IFS to be W= {wk, lc = 1,..., N  }, where 

the wk are contraction mappings, each defined on a subset 

Ak of the image support S.

The attractor of W is a non-overlapping tiling of the 
image. A fractal function f ( x ,  y), is then defined which 
approximates the image brightness g(x, y). An image block 
taken from the location Ak is referred to as the parent and its

mapping wk( Ak ) is referred to as the child. For each tile the 

brightness function is specified by a recursive mapping 

such that

f ( w k(x, >’)) = vk(x, y , f ( x ,  >’)) for (x, y) in A k. (1)

In this work we use mappings of the form

vk(xQ + bx, yQ + by,J) = pk(xQ + bx, yQ + by) + e j k (bx, by)

(2)

/
Child
block \wk(g)

Parent^ t
block f \/ \

Figure 1. A local fractal transform, with an edge 
aligned in the parent and child blocks.

w here (xQ,y Q) is the bottom  le ft co rn e r o f Ak and

pk(xQ+ b x , yQ + §>’) = I  c. b f ix ,  by), is an approximation 
;=1

by basis functions {b . }, ek is the single fractal coefficient 

a n d ^  is the parent block f k(bx, by) = / ( +  8jc, y0 + by)
orthogonalized with respect to the basis. To solve, the known 
image g is used in place of the unknown fractal function/ and 
the approximation is known to be valid by the Collage 
Theorem if suitable conditions are satisfied [1],

Usually the tiling of the image is by square or 
rectangular child blocks, and it is often assumed that pk is a

simple brightness level. Much work has concentrated on 
reducing the complexity of searching for the best parent to 
map onto each child [6, 7]. An alternative approach uses 
more complex basis functions [7, 8] and can restrict or even 
eliminate searching. With the Bath Fractal Transform (BFT) 
[9, 10] a pre-determined tiling without searching gives the 
greatest accuracy at a given compression ratio, when used 
with a quadratic basis. In combination with the Accurate 
Fractal Rendering Algorithm (AFRA) [5], the BFT has been 
used for real time fractal video [11].
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Figure 2. Lena image with zoomed areas marked.

A recent development [12] is the use of an implicit 
parent block location which the decoder can determine from 
the basis coefficients. If the existence of an edge is assumed, 
its location can be calculated from the ratios of the low order 
DCT coefficients using a pre-generated look-up table. The 
parent block location is then computed so that the edge is 
aligned in the shrunken parent and child, as in Figure 1. This 
implicit parent method has been shown to give a striking 
improvement in visual fidelity on some images. In [12] the 
implicit fractal was used in a near-optimal implementation 
in the rate-distortion sense. Table 1 shows measurements 
taken on the Lena image. The PSNR is slightly higher than 
that obtained by Fisher and Menlove at similar compression 
ratios [13], with much lower coder complexity (at 0.2 bpp, 
2.8 sec. on a 200 MHz Pentium compared with 1122.1 sec 
on a Silicon Graphics IRIS 4D/35.)

2. FRACTAL ZOOMING

The fractal encoding is independent of resolution and a 
finite resolution decoding is perform ed with iterates 
produced at the desired resolution. In this manner the image 
or part of the image may be decoded to a higher resolution 
than the original, producing a ‘zoomed’ image.

To determine the effects of zooming we chose several 
fractal transforms that would result in a high fidelity 
approximation to the original. We used fixed size 6x6 child

(a) (b) (c) (d)

Figure 3. Zooming x16 (x256 pixels) in fractally encoded images with fixed 6x6 child blocks, (a) Original image, 
enlarged by pixel replication, (b) Zoomed fractal with DC basis and local searching.(c) Zoomed fractal with 

limited cosine basis and local searching, (d) Zoomed implicit fractal.
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bpp

PSNR
Basis

Approx

PSNR
Centred

Child

PSNR
Implicit
fractal

Fractal 
% of 
Area

Fractal
terms
bpp

0.6 35.35 35.29 35.57 10.5 .016

0.5 34.62 34.53 34.80 15.4 .017

0.4 33.68 33.68 33.83 10.1 .010

0.3 32.43 32.42 32.66 13.2 .009

0.2 30.71 30.70 31.07 16.9 .007

0.1 28.13 28.09 28.35 26.3 .005

Figure 4. Cose up of edge in Figure 3(c), showing 
misalignment at block boundaries.

Table 1. Implicit fractal applied to Lena.

blocks with searching over ±5 child block widths for the best 
12x12 parent. We implemented a standard fractal transform 
as invented by Jacquin [2] with a simple DC basis, and also 
a version with a 2D DCT basis limited to the 6 lowest order 
term s. We com pared these with an im plicit fractal 
approximation [12] also using a fixed 6x6 block size 
partition. Because the distance of the parent from the child is 
limited in extent, when zooming we need to render only the 
area of interest extended by 5 child blocks, rather than the

(a) (b) (c) (d)
Figure 5. Fractal zooming x16 and enhanced fractal zooming with implicit fractals, using fixed 6x6 child blocks, 

(a) Original image with pixel replication, (b) Zoomed basis image, (c) Implicit fractal zoom.
(d) Enhanced implicit fractal zoom.
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entire image which would be huge. This greatly reduces the 
computation cost. Figure 2 marks two areas of interest. The 
results of zooming on the upper one of these by a factor of 
16 in each spatial dimenstion (giving 256 times as many 
pixels) for each transform are displayed in Figure 3.

From these results we make several observations:

1. When edges are well approximated at the origi
nal resolution they are sharp and fairly well pre
served in the zoomed images

2. The ‘traditional’ DC basis zoom produces sig
nificant distortion, while the more complex basis, 
as used in the BFT, gives more stable decoding for 
both the local searching transform and the implicit 
fractal

3. Edges do not always match well at block 
boundaries (see figure 4).

3. ENHANCED ZOOMING WITH IMPLICIT 
FRACTALS

In [12] the implicit fractal transform, used in a optimal 
quad-tree implementation provided excellent rate/distortion 
results. It was also shown that the performance of fractal 
coding schemes is improved by using implicit parent 
locations because they have zero bit-cost. As a result, we give 
the implicit fractal transform special consideration for 
zooming.

In [12] fractal terms were only used in a minority of 
blocks, in which they improved the PSNR of the compressed 
image, as in Table 1. When zooming, the non-fractal blocks 
are less visually satisfactory. For example, in Figure 5 (c), 
one block near the top left comer does not have a fractal term 
despite being part of an edge. Elsewhere along Lena’s 
shoulder, ‘notches’ are created by non-fractal blocks, which 
are propagated by iteration onto neighbouring blocks.

We improve the implicit fractal zoom by introducing 
additional fractal terms at the decoding stage. Using the 
mathematical edge model from the coding stage, we estimate 
where edges in fractal blocks will intersect non-fractal 
blocks. If two edges meet the sides of a non-fractal block, we 
assume that block had an edge in the original which was 
judged to be too insignificant in the MSE sense to be coded, 
or which was lost when the image was digitised. We then 
compute a parent location and fractal coefficient based on the 
location of the intersecting edges and the coefficients of the 
fractal blocks. The improvement may be seen in Figure 5 (d).

4. DISCUSSION AND CONCLUSIONS

We have zoomed on images encoded with several 
different fractal techniques commonly employed for image 
coding and compression. The zooming process worked as 
expected and all the fractal zooms we produced looked better

than pixel replication from the original resolution. The fractal 
zoom provides sharp edges in each of the edge blocks which 
are reasonably well preserved in the normal decoding, 
although edges between blocks do not always line up. 
Increasing the number of fractal blocks improved the visual 
quality of the zoomed implicit fractal transform.

Detail introduced by zooming is not present in the 
original pictures, so there is no ‘original’ with which to 
compare. As a result evaluation must be subjective, based on 
whether the new detail is visually an acceptable extension of 
the original. Assuming the original approximation quality is 
good we conclude that the zoomed image can be visually 
superior to pixel replication. We believe zooming on edges 
is a key problem in the development of fractal zooming. We 
see this as an important area of interest in further work.
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Abstract
Fractal unage compression successfully uses self- 
similarity within an image to achieve compression. By 
adapting fractal image compression techniques to image 
enhancement, an innovative new fractal technique fo r  
visual enhancement o f  JPEG compressed images is 
created. A fter detecting the self-similarity characteristics 
o f a degraded JPEG image, details spoiled by 
quantization are enhanced using an iterative scheme and 
the fractal nature o f  the method allows resolution 
enhancement and fracta l zooming. The effect o f  the 
scheme is an increase in the visual quality o f  edges in 
the image fo r  almost all areas and sharp results when the 
image resolution is increased.
This application o f  fractal theory to the problem o f  
image enhancement reveals a number o f  interesting 
avenues o f investigation and promises techniques which 
can be used in combination with conventional methods, 
exploiting both self-similarity and statistical properties 
to achieve enhancement.

1. Background

Compression of still images with the JPEG standard 
[1] is important for many applications which depend on 
media with limited capacity. At compression ratios of up 
to 10 to one and sometimes higher only a small 
perceptual deterioration in image quality occurs. At 
greater compression ratios however the perceptual quality 
decreases rapidly due to the greater quantization of DCT 
frequency coefficients. Quantization causes loss of image 
details and blocking and consequently several techniques 
have been proposed to reduce these aretfacts. Primarily 
these have been aimed at reducing blockiness whilst 
attempting to retain detail [2,3].

Fractal methods provide a new potential source of 
image enhancement techniques. Images can be 
compressed using fractals by storing information about

the self-similarity of an image, resulting in a fractal code 
which is independent of the resolution of the source 
image and is efficient enough to allow high compression 
ratios. We show here that the methods of fractal image 
compression may be adapted so that the self-similarity of 
an image can be used for image enhancement. Because of 
the mutli-resolution properties of fractals this method can 
also be used to increase the image resolution. We 
investigate the results for various compression ratios and 
find that fractal transforms, originally developed for 
compression, are useful for enhancement of JPEG 
compressed images.

Figure 1. S o m e  exam ple parent and child blocks,
w h o se  relationship d escrib es the self-similarity of the 
im age.

2. Method

The method introduced here has two stages. Firstly the 
self-similarity characteristics of the JPEG image are
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determined using a procedure based on the encoding 
stage of a local search fractal transform [5-6]. Secondly 
an iterative procedure is applied to the image to restore 
frequency information lost during the quantization 
process.

2.1 Characterisation Stage

To characterise the image a square partition of the 
image is created with 8x8 pixel child blocks. For each 
child block C a 16x16 pixel parent block location is 
determined from all blocks of that size within a certain 
pixel distance of the child as illustrated by Figure 1.

To determine the location each possible parent is 
taken in turn, is decimated to the size of the child and 
has its DC component removed. The parent is then scaled 
to match the child as closely as possible. I.e.

||c-aP|| (1)
is minimised. The parent location which gives the largest 
effect is chosen, so that laHPl is maximal. But
alternatively the parent which best minimises (1) can be 
chosen. The result is a parent location and fractal 
coefficient a  for each child, representing the piecewise 
self-similarity of the image.

JPEG
im age

enhanced
im age

CBP

PBP

BA

Figure 2: Operation of enhancement function. CBP - 
child block provider; PBP - parent block provider; O - 
orthogonalisation operator; BA - block assembler; T 
- threshold switch.

2.2 Enhancement Stage

Using the self-similarity information determined 
above, a function t is defined which operates on the 
space of images.

For an image jc, t(x) is constructed by copying the 
original JPEG image s then adding fractal components. 
For each cell in the partition a child block C is taken 
from s at that location and a parent P  is taken from jc at 
the corresponding parent location. This block is

contracted to the size of the child by averaging and then 
has its DC component and child block component 
removed by Gram-Schmitt orthogonalisation [7]:

P = P - { P , l ) l - ( p , c ) c  (2)

where 1 is the matrix of l ’s and C = C -(C ,l) l .  (X,Y)  
denotes the inner product of image blocks.

The block aP is then the fractal component added, 
where a  is the fractal coefficient corresponding to that 
child block. It should be noted that it is required that Tbe 
a contraction mapping so that the iteration procedure 
described below will be convergent. Guaranteeing this 
property is a problem which remains largely unsolved in 
fractal image compression, but in practice this is not 
usually a cause for concern. From our experience it is 
reasonable to require |cr| < 5 .

Enhancement of the image requires a finite sequence 
of iterates to be computed starting with the original 
image s and using the function v.

J,T(j),T2(j).......T M(s) (3)
The number of iterations, M,  is chosen large enough for 
the sequence to effectively converge and for this purpose 
we use M -  [_log2 m j , where m is the largest child
dimension. If the enhanced image is to be the same 
dimensions as the original then m = 8 and the number of 
iterates is 3. If decoding at higher resolutions [6] the 
underlying JPEG image must now be resized and the 
determined parent locations scaled appropriately. The 
number of iterations is then calculated using the above 
formula. The M'th iterate z M(s) is the final, enhanced 
version of the image.

The operation of ris illustrated in Figure 2.

3. Evaluation

To evaluate the method we enhanced the grey-scale 
test images Lena, Gold Hill, Barbara 2, and Boats after 
compression at 10:1, 20:1, 30:1, and 40:1. We allowed a 
distance of 8 pixels between the centres of the parent and 
child and in (1) we used the L2 norm with corresponding 
inner product in (2).

The result was a noticeable improvement in the 
blurred edges and a slight reduction in blockiness in flat 
areas. A section of the Gold Hill result at 20:1 is shown 
in Figure 3. Only rarely did the fractal method reduce 
visual quality.

To appraise the multi-resolution properties of the 
method we rendered the enhanced 20:1 Gold Hill image 
at x2 resolution. This result is also shown in Figure 3. In 
this image edges are sharper and there is no extra
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pixelation. Finer texture has been introduced by the self- 
similarity mapping.

To demonstrate the compatibility of this method with 
algorithms for reducing blockiness we applied a very 
simple averaging filter at the block edges after the fractal 
enhancement procedure was completed. The result was a 
considerable reduction in blockiness and retention of 
sharpened edges. Figure 4 shows the results for a section 
of the Lena image.

To enhance an image takes about two minutes. To 
produce a faster method we can replace the searching 
part of the algorithm with the implicit fractal method 
presented in [4]. This results in less visual improvement 
than the basic method, but the algorithm is considerably 
faster.

4. Conclusions

We have demonstrated a method for enhancement of 
JPEG images which uses a fractal technique adapted 
from fractal image compression. The method requires no 
information from the original image. The method 
dramatically increases sharpness of edges and details. 
Although a small number of blocks are made worse by 
the procedure and the PSNR of the enhanced images 
compared with the uncompressed source is lower, the 
overall effect is an increase in the visual fidelity of JPEG 
compressed images in all the examples tried. In 
resolution enhancement the visual quality is improved 
and it is possible to ‘zoom-in5 on particular areas of an 
image (see [6]). We have demonstrated this method in 
combination with a de-blocking technique and see no 
reason why more advanced methods should not also be 
used. The fractal method providing a natural complement 
to conventional methods.

The primary application of this method is in

improving the visual quality of compressed images, 
either on its own or in combination with other methods. 
We have demonstrated it here on images degraded by 
JPEG coding, but it may be adapted to work on images of 
various kinds. There exist many compressed images 
where the original is no longer available. This technique 
should work whenever a degradation process leaves self
similarity intact. At this stage of development this 
technique shows promise for use in a number of areas.
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Figure 4. Fractal enhancement with smoothing of JPEG Lena image, (a) JPEG image at 20:1 compression,
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A p p e n d i x  B

DERIVATION OF IMPLICIT PAREN T LOCATIONS 
FOR A POLYNOM IAL BASIS

Edge Model

In order to determine the optimal parent location a sinple edge model is used:

Figure B .l. Edge model used fo: derivation 
o f  parent locatioin.

Given a basis approximation to a child blo'ck tlhe parameters a and b are 

determined using the model above. This gives th e  location o f a straight line 

through the child block and the parent block ispkaced so that the mid-point of 

this line is a common point in both the paren t a id  child.
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Mid-point

The midpoint is denoted m .I£b> a>  -0.5

■ b + a 
~ = 2

If b > -0.5 > a

m = 2b - \  - 2a - I
4 4 (b-a);

Parent location

The parent location is

p -  c - k v2+S -i

where k  is the block size and c is the location o f the bottom  left com er o f the 

child.

Basis Approximation

The basis approximation has the form

l{x,y) « c0 +c12>/3x+c22V3y + c36yls{x2 -  1/12̂  + c4\2xy + c56y[5(y2 -1/12)

where l(x ,y ) is the image intensity. Each o f the coefficients is calculated by 

inner product o f its corresponding basis function with the image block l(x,y) . 

For example
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Derivation for c,

For b>a> -0.5 the integral over region A  is

a 0.5 b 0.5

|  2tJ3x jdydx + j  2y/3x jdydx
jr=—0.5 >=-0.5 x=a

b

2x -a -b  
^  2(b-a)

H r  r x - 2x + ax+bx
= 24 r +

~dx
-0.5 x —a

2^(4(b3 - a 3)-3 (b -a j)  
24(b -  a)

Because the basis function is orthogonal with respect to the DC function, the 

integral over one area is equal to the negative of the integral over the 

complement when I  is constant As a result

24(b-a)

A  simpler explanation is to say that adding or subtracting a constant value to 

the block will not effect the coefficient value. Hence adding -r  gives l - r  in 

region A  and 0 in region B, from which the above result should be clear.

For b > -03 > a the integral over region A  is

b 0.5

|  2-\/3.x: |  dydx
x=0 2 x -a -b

y= 2 (b -a )

= > 4  1 7
x -  2x2 +ax+bx
2 + 2 (b-a) dx

2 V3 (4B3 -1  -  3Z>) 
24 (b-a)

Hence
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= (/-r)
. 24(6 -  a) ,

For a = b the integral over region A  is

J 2-n/3x j dydx
*=-0.5 >-=-0.5

a

= 2V3 J xdxdx
- 0.5 

2 ~ ~  8

Hence

c, = ( / - r ) 2 V 3 l y - -

Derivation for c2

For b> a> -05 the integral over region A  is

a 0.5

J 12yf3ydydx + j j l ^ y d y d x
*=-0.5 y=-0.5 x=a 2 x -a -b

y=̂ a )
r~ r 1 - A x 2 + Aax + Abx-a2 - l a b  - o

=2^ b +-----------------  *

2^3 (b -a )2 
12 (b -  a)

x -a

Hence

= (/-r)
2i/3 (6 - 0) 

. 12(6-a )

For b > -0.5 > a the integral over region A  is
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|  |  I'JSydydx
*=-0.5 x -a -b  

y  2(6-o)

1— r 1 - x2 + 2ax + 2b x -a 2 - 2ab
- 2 S i y  ---------------

2^3(463 -  \2ab2 -  Uab -3 a -3 b - l)
48 (b -a )2

Hence

2>/3(4&3 -  Uab2 - 12ab -3 a -  

48(b-a)1

For a = b the integral over region A  is

a 0.5

J j 2>/3ydydx
x=-0.5jy=-0.5 

=  0

Hence

z2 = 0

Derivation for c3

For b>a> -0.5 the integral over region A  is



b 0.5

j  \&J5(x2 -  }{^jdydx + \  j  6 S ( x 2 -}{^ d y d x
*=-0.5 y=-0.5 x=a 2 x -a -b

y=Kb̂ )
, 1 a 0.5 b 0.5

= -&J5— ——  + &J5 J \  x2dydx + &J5 j  J jc2dydx
^  *=-0.5 >-=-0.5 x=a 2 x -a -b

y  2 (b-a)

,-b+a + l r- r . n  r x2 - 2x3+ax2 +bx2 
~ “6^  24 + 6V5 j  x dx + &j5 J y  +-------------  dx

-0 .5  x -a  v '

r b+a + 1 r 2 (b4 - a 4)+ b -a
2 < b ’_ a)

6^ ( 2(ft4 - a4) + a2 - b2)
= 24 (b-a)

Hence

= (/- r)
&j5(2(b4- a 4) + a2- b 2)

24(b -  a)

For ft > -0.5 > « the integral over region A. is

b 05

J j 6j5\x2 -Y ^d y d x
-0.5 2 x -a -b

y= 2 (b -a )

r  \ V 2 1-  (2ft + 1)2m6jil, k**'-*J5xtr3=-0.5 2 x - a -b
^  2(b -a )

b 2 - 2x3 +ax2 +bx2

=-0.5 2(ft -  a) dx-& Jl
(2ft + 1)2 
96(ft-tf)

16ft4 +8ft +3 (2ft+ l)
192(ft-a) 96(b-a\

6>/5(4ft2 - l ) 2 

192(ft-a)

Hence
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(y js(4b2 - 1)
2 \

192 (b-a)

For a = b the integral over region A  is

a 0.5

j \̂ {x2~yn )dydx
*=-0.5 ,y=-0.5 

a

= 6Vs F 2 - X 2 dx

- ^ T - 5

Hence

Derivation for cA

For b>a> -0.5 the integral over region A  is

a 0.5 b 0.5

J Jej5[y2 -  Y\2jdydx + j j bjl[y2 -  Y^dydx
*=—0.5 v=—0.5 *=a 2x - a - b

y=H J ^ a )

h 4- 4 -1  a 0-5 * 0.5

= -6^5— ^ —  + 6>/5 j + j j y 2dydx
^  *=-0.5 y=-0.5 x=a 2x -a -b

y=^ a )

b + a + l
= -6^5— ^ —  + 6^5 \ } { 2dx

24 *=-0.5

/- r -b 2-3a2b + Ax2 - 6ax2 - 6bx2 + 3a2x+6abx + 3b2x
+6l/Jl ------------------------  *

r~b + a + 1 r-b+a +1

= 0

Hence
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CA =  0

For b > -0.5 > a the integral over region A  is

/  \  
j  j  6y[5[y2 -

r=-0.5 2 x - a - b 
^  2(b -a )

b 0.5

=6VJL*=-0.5 x -a -b  
y ~2 (b-a)

96 (b-a)
r -b 3-3a2b + 4x3 - 6ax2 -6 bx2 + 3a2x + 6abx + 3b2x r  (2b + 1)2= 6̂ 5 J ----------------- -  <&-6V5-

* = - 0.5 12{b-a)
«J5(l6a2b2 +4 b2 + I6a2b + l+4a +4b + 4a2 +I6ab + I6ab2)

32 (b-a )3

Hence

'y/5(l6a2b2 +4b2 +16a2b + l + 4a + 4b +4a2 +I6ab + \6ab2)  ̂

32 (b - a f

For a = b the integral over region A  is

Hence

a 0.5

I \ y 1-Y \2 dydx
x=-0.5 y=-Q.S 

=  0

c4 = 0.

Summary of Solutions

For b>a> -05 (confirmed with numerical results)

2i/3(4(63- a 3) - 3 ( 6 - a ) ) '  

24(6-a )  ,
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For b > -0.5 > a (confirmed with numerical results - except c4)

;i = (/-#■) 24(6-a )

= ( /-r )
2^3^463 -  12a62 -  12a6 - 3 a - 3 b - 1)

48(6-a )

= ( /-r )
6V5(4Z»2 - 1)

192(6-a )

= ( /- r )
i/5 (l6aV  +4b1 + 16a!i  + l+ 4a  + 4A + 4a! + 16aA + 16aA2)

. 32(A-a)3 ,

For 6 = a (confirmed with numerical results)



C4 =0

Remember, in software these sampled functions will be normalised. This means 

the coefficient values will be smaller by a factor of the block size. I.e. N for an 

N x N block.

Look-up Table Solution

The simplest solution found to this problem uses a look-up table. First note 

that the intensity values / and r  are not of relevance to the parent location. 

Only a and b need be determined. A look up table is constructed with l^/ql

and \c2 /cj| values on the left hand side and the midpoint corresponding to the 

a and b values on the right. The table is constructed by choosing a range of 

values for a and b with a uniform distribution, with a density inversely 

proportional to the size of the child block.

For b>a> -0.5

Vl5(2(bA -a*)+a2 -b 2)
c jc ,=  P ^ ---------- >-

4{b3- a 3)-?(b-a)

_ 2 (b -a f
Cl , _ 4 ( A W ) -3 ( A - a)

For b > -03 > a

Vl5(462- l ) 2
C3 /  C, =  \ ------------- —r

S(4b3-l-3 b )

4b3 -  Uab2 -  Uab -  3a -  3b -1
C , /  C, = ---------------7-----------------------r-------------------------

l(4b3 - \- 3 b \b -a )

For b = a
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2t/15c, / c, =  a
3 1 3

c2 /  c, = 0 .

When encoding a child block it is first approximated by the basis functions so 

that the ratios |c3/c,| and |c2/c,| are known. The previously constructed table

is now searched to find the closest matching ratios, and this gives the midpoint 

of the line running through the block. From this information the optimal 

parent location can be easily calculated (see earlier).

Use of Symmetry

The solution so far is for an edge which has an angle from the vertical of less 

than 45 degrees, slopes to the right, and lies to the left o f the centre of the 

child block. Results for all other angles can be computed from the symmetry of 

the polynomial functions. The set of rules used to achieve this are as follows:

Firstly if 1̂  | < |c?21 the edge is assumed to be predominantly vertical and the 

algorithm is identical but the y  coefficients and x coefficients are switched. 

Secondly by using absolute values when searching the look-up table the signs of 

the ratios can be subsequently used to determine a reflection of the midpoint 

and give a solution for other cases. If  Cj/q is negative and c2 /c x positive m is 

reflected in the horizontal axis. If c^lcx is positive and c2 / c x is positive m is 

reflected in the vertical axis. If c3/cj is positive and c2 /c { negative m is 

reflected in both axes.
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A p p e n d i x  C

DERIVATION OF EXTENDED IFT

Edge Model

The edge model used is shown in Figure C.l. Tne intensity value in regions A 

and C is O and in region B M .

Figure C .l. Edge model used for derivation 
o f  parent location.

Intercept Points

The intercept points of the left edge with the bottom and top of the child 

block are denoted ax and bx respectively, for the right edge the intercepts are 

a2 and b2. For the left edge
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a , = a -
^ l + ( b - a f

and b , = b -
i j l + ( b - a )2

4 4

and for the right edge

-------- OllVJ —U-1---------
4 2 4

Mid-point

The mid-points of the lines are given by the same formulae as in the IFT 

derivation.

Dualparent mapping

Two parent blocks are used - one for each edge. The common point for each 

parent is the midpoint of the corresponding line. Hence the location of the 

parent is given by the same formula as in the IFT derivation.

Each point in the child block however is only mapped onto from one parent. 

Which parent is used depends on which line the point in die child block is 

closest to.

Derivation

It may be seen that the integral is a sum of two integrals of the type derived for 

the IFT. In the first integral regions A and B have intensity value and

region C intensity value O -  . In the second, region A has intensity O -

and regions B and C have intensity • The sum of these blocks corresponds

to the edge model above, and since the sum of the integrals is equal to the 

integral of the sums the formulae used to derive the IFT can be used again.

Hence assuming the centre (dashed) line is within 45 degrees of the vertical, 

slopes to the right, and lies to the left o f the origin the coefficient values will

be:
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Case 1: 0 > b  = a >  -0.25,

c, =(0-M) 2 V 3 ^ - i j - 2 V 3 V _ i Y
2 8 J,

c~ =0

/ /

c4 =0

Case 2: 0.5 > 6, > a, > -03,

c. = ( 0 - M )
i j l ^ b ,1 - a ^ - j b ,  -q,)) 2S(*(b^ - a ^ - j b ,  -a ,)) 

24(6,-a ,)  24(*,-«,)

c2 = 0

6^5{l{bxA - a x } + a 2 -6 ,2) 64s{l{b2 - a 24) + a22 - b22)

24(6,-a ,) 24(ft2- a 2)

c4 =0

Case 3: 0.5 > b2 and a2 > -0.5 > a.

cx=(0 - M )
2V3(4Z»,3-1-36,) 2V3(4(b23 - a23) -3 (b2 - a2)) 

24(6, -  a,) 24(^2 -  a2)

c2 =(0 - M )
273(46,3 -  12a,6,2 -  12a,6, -  3a, -  36, - 1) 2 7 3 ^  -  a2)

2 \

48(6,-a ,) ' 12(62 a2)
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c, = (O -  M )
6V5(46,2 - l ) 2 6j5[l{b2A- a 24)+a22 -b 22)

192 (ft ,-a ,)  24 (b2 - a 2)

cd = ( 0 -  M)
V5(l6a,2ft,2 +4 ft,2 +16 a 2bl + l+4a, +4 ft, + 4a,2 + 16a,ft, + 16a,ft,2)

32(*i -a ,)

Case 4: ft, > -03 > a2

Cy = ( 0 ~  M)
2>/3(4ft,3 - l - 3 f t , )  2V3(4 2̂3 -1  -  362)

24(ft,-a,) 24 (b2 - a 2)

c2 = (0 -M )

i j s ^ b y 3 -12a,ft,2 -12a,ft, -3a , -3ft, - l )

48( b y - a y f  

2a/3(4b2 -  Ua2b22 -  12a2ft2 -  3a2 -  3ft2 - 1)

48(b2 - a 2y

c, = (0 - M)
6^ 5( 4b y 2  - 1)2 6V5(4ft22 - 1)

2\

192(ft ,-a ,)  192(ft2 - a 2)

c4 = (0 -M )

V5(l6a,2ft,2 +4ft,2 +16a,2ft, + l+ 4 a ,  +4ft, +4a,2 +16a,ft, + 16a,ft,2)

32(ft,-a ,)3

V5^16a2 ft2 +4ft2 +16a2 ft2 + l  + 4a2 +4ft2 +4a2 +16a2ft2 +16a2ft2 )

32(ft2 - a 2)3

Case 5: ft2 > 03 and a2 > -03 > a , ,

Cy = ( 0 ~  M )
2V3(4ft,3 — 1 - 3ft,) 2V3(4ft23 - l - 3 f t 2)

24(ft, -  a,) + 24(ft2 - a 2)
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2V3(4Z>!3 - 120,^ 2 - 120,6, -  3o, -  36, - 1)

c2 = ( 0 - M )

+

i -« i )
2V3(4623 -  I2a2b22 -  Ua2b2 -  3o2 -  362 - l)

48(62 - o 2)2

c3 = (0 -  M)
6a/5(46,2 - 1)2 6V5(4622 - 1)

2 A

1 9 2 (6 ,-0 ,)  192(62 - o2)

V5(l6o,26,2 +46,2 + 16o,26, +1 + 4o, +46, +4o,2 +16o,6, +16o,6,2)

c4 =( 0 - M)
V5|l6#2 ^ 2 4Z>2 + 16 2̂ ^2 1 4̂ ?2 “I" 4̂ 2 +4^2 + 16#2^2 16 2̂ 2̂ j

32(62 - a 2\

The ratios of the coefficients can be easily computed from these formulae.
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