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SUMMARY

This thesis describes the development of mathematical models for the simulation of underwater 

breathing apparatus and the human respiratory system. The objective is to provide the designer with a tool 

for the analysis and design of underwater breathing apparatus. Such a tool is likely to offer considerable 

insight into the assessment of the limits of a broad range of equipment without risk to human life.

Mathematical models have been developed for the individuals components of the underwater 

breathing apparatus to predict overall system performance. A technique to simulate the variation of gas 

composition in the breathing apparatus is presented which allows breathing gas poisoning to be indicated. 

An approach to simulate the carbon dioxide absorption in an axial flow scrubber has been developed. The 

models have been used to simulate the performance of a semi-closed-circuit breathing system and a surface 

demand diving system during unmanned test conditions. Good agreement is obtained between the predicted 

and measured data. Simulation has been used to assess system modifications to improve system 

performance.

A realistic human respiratory system model has been developed. The mass balance equations and 

a chemical buffering system have been used as a basis for the development of this model. The model 

incorporates mechanical and chemical control of breathing which provides an automatic control of 

respiration at different environmental conditions. The parameters required for the human respiratory system 

model have been obtained from published clinical measurement where possible the unknown parameters 

have been identified by comparing the simulation results with available experimental data. The human 

respiratory model has been used for assessing human interaction with different kinds of underwater 

breathing apparatus. The simulations of manned diving operation using the semi-closed-circuit breathing 

system and the surface demand diving system indicate that the models enables more detailed system 

performance during actual diving condition to be explored and allow decompression process to be studied.

Finally, the simulations of a submarine escape system and an industrial pneumatic system have 

demonstrated that the developed techniques can be applied to other gas based system, providing substantial 

benefit for system designers.
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NOTATION
Symbol Parameters

A Contact area

Aa Interfacial area of absorbent per unit volume of bed

Af  Flow area

AT A Atmospheric pressure

B Bulb modulas

C Gas concentration in blood
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Cd Discharge coefficient

Ck Actuator leakage coefficient

Cm Mass flow parameter
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Cv Specific heat at constant volume

D Diffusion coefficient
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F  Force

Fc Coulomb friction force

Fm Flow momentum force

FP Net pressure force
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G Gain

H  Heat transfer
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CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

A fundamental requirement of any underwater breathing system is that it must be capable of 

meeting a diver’s respiratory demand under all operating conditions. These can vary considerably, 

depending on the depth of dive, the activity being undertaken, and the physical and psychological state of 

the diver. The success and circuit performance of such systems depends on how effectively the design can 

meet the above criteria. Failure to meet any of these requirements can adversely affect the diver’s 

performance and in certain circumstances place the diver’s safety at risk.

While manned and unmanned tests are clearly required for system certification, the design process 

needs conceptual information before hardware is built. This is an ideal application for the use of computer 

simulation. Such a technique is likely to offer considerable insight into the behaviour of the system under 

a diverse range of operating conditions and may save considerable fabrication and test expenditures as well 

as system development time.

The aim of this thesis is to develop a range of modelling techniques which can provide a tool in 

the analysis and design of underwater breathing apparatus.

12 OVERVIEW OF UNDERWATER BREATHING SYSTEMS AND THEIR DESIGN

Breathing apparatus used by divers falls into two main groups: self-contained equipment, in which 

the diver carries a supply of breathing gas in cylinders, and surface-supplied equipment, where the breathing 

gas is supplied to the diver through a long hose from the surface.

1.2.1 Self-contained apparatus

Self-contained diving apparatus has the advantage of making the diver far more mobile and
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allowing a much greater range of action. This kind of breathing apparatus can be further divided into 

closed-circuit and open-circuit equipment.

(i) Closed/Semi-closed-circuit breathing apparatus

In this type of apparatus, an example of which is shown in figure 1.1, the gas breathed by the 

diver is rebreathed from a flexible bag called counterlung via a canister of chemical absorbent which 

removes carbon dioxide from the exhaled gas. Various valves are incorporated to allow rapid make-up and 

exhaust of gas from the counterlung in response to changes in ambient pressure. The closed/semi-closed- 

circuit breathing apparatus may be used for breathing pure oxygen or an oxy-nitrogen mixture. This kind 

of apparatus has the advantages of greater endurance and not leaving a trial of tell-tale bubbles on the 

surface. Hence, this kind of apparatus has been used widely for military purposes.

(ii) Open-circuit breathing apparatus

By far the most commonly used open-circuit breathing apparatus is the open circuit SCUBA (Self- 

Contained Underwater Breathing Apparatus) diving set. The principle of this breathing system is outlined 

in figure 1.2. This apparatus consists of one or more cylinders of compressed gas (usually air) connected 

by a manifold to a first-stage regulator which supplies a sensitive second-stage regulator or ‘demand valve’ 

actuated by the breathing of the diver. The first- and second-stage regulators may be in one housing, or they 

may be in separate housing connected by an interstage hose. In the latter configuration the first-stage 

regulator is mounted on the cylinder manifold and the second-stage demand valve is mounted in a housing 

attached to the mouthpiece. There are many demand valve designs in addition to that shown in figure 1.3. 

Some are designed such that the supply flow, once initiated, provides a venturi or vortex effect. This creates 

a pressure drop in the diaphragm chamber which causes the valve to be held open (ie. inhalation is 

‘assisted’) until flow is no longer accepted by the user. Some use a pilot-operated valve assemblies design 

so that a very small drop in diaphragm chamber pressure will produce a relatively large increase in supply 

flow. The purpose of the various designs is to provide the necessary supply flow with minimum suction 

effort.

1.2.2 Surface supplied equipment

Surface supplied equipment is frequently used in commercial diving, because of its unlimited gas
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supply and the suitability in communicating with other divers. The ventilated helmet and surface demand 

diving system are the two dominant types of surface supplied equipment in modem commercial diving.

(i) Ventilated helmet

The ventilated helmet is the only form of modem breathing apparatus which can be traced directly 

to the ancient diving assemblies. It is effectively an inverted bucket to which has been added a watertight 

suit or a neck seal to prevent water from entering, an air supply, and valves for regulating the gas flow into 

and out of the helmet (figure 1.4). The diver breathes the air in his helmet. The air supply to the helmet 

must, therefore, be sufficient to ensure adequate ventilation of the helmet and prevent a build-up of carbon 

dioxide.

(ii) Surface-demand diving system

The principle of this breathing system is outlined in figure 1.5. According to the figure, the 

second-stage demand valve is supplied via an ‘umbilical’ hose from a large capacity source located 

remotely from the diver such as the surface. The pressure of the air supply to the diver is regulated at the 

surface-control panel (first stage valve) according to the diver’s depth. From a performance viewpoint the 

system can be very well modelled by envisioning the hose and regulators arrangement as in the SCUBA 

diving set.

13 PHYSIOLOGICAL DESIGN PRINCIPLES OF UNDERWATER BREATHING APPARATUS

It will be obvious from the description of the breathing apparatus that, in order to design an 

equipment to satisfy the diver’s requirements, knowledge of respiratory physiology is essential. In 

particular, it is necessary first to understand the effects of both increased pressure and underwater breathing 

apparatus on the physiological state of the diver, and, second, to specify in a quantitative manner suitable 

physiological design parameters.

The physiological requirements which must be realized may be summarized as follows. First, the 

equipment must supply the diver with adequate ventilation at all levels of physical exertion. Second, the 

partial pressures of oxygen, carbon dioxide and inert gas present in the breathing gas mixture must be
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maintained within tolerable limits. Finally, any increase in the work of breathing due to either gas density 

or equipment design must not become excessive. The following sections have more detailed description of 

these requirements.

13.1 Ventilation rate

As work rate increases, the lung ventilation is expected to increase so that more oxygen can be 

delivered. The Respiratory Minute Volume (RMV) is the term used to define the ventilation rate, which is 

the volume of gas inhaled and exhaled per minute. Table 1.1 shows the relationship between the RMV and 

the work rate. From this table it can be seen that the breathing apparatus must be capable of meeting such 

a specification at a severe work rate of 75 L/min RMV. Sometimes a RMV of 90 L/min is required.

13.2 Oxygen partial pressure

There is a great deal of information on oxygen toxicity (Bennett and Elliott, 1982) derived mainly 

from studies carried out under chamber conditions. The oxygen toxicity is brought on by breathing oxygen 

at too high a partial pressure. It is thought to be due to the intoxication of the breathing centres in the brain. 

The symptoms are unreliable and the onset varies both from individual to individual and from day to day. 

It generally occurs at any depth where oxygen has a partial pressure greater than two bar, and so diving 

is limited (depending upon the breathing gas) to a safe depth. Hypoxia is the other form of gas poisoning. 

This occurs if the partial pressure of oxygen being breathed falls below 03 bar and is always caused by 

an excess of inert gas. The first parts of the diver affected by hypoxia are the frontal lobes of the brain. 

A loss of awareness, judgement and responsibility results and so the symptoms are not apparent to the 

diver.

13.3 Carbon dioxide partial pressure

The presence of carbon dioxide in the inspired breathing gas will normally result in an increase 

of ventilation and alveolar carbon dioxide partial pressure, both of which are detrimental to the diver’s 

efficiency, particularly during exercise. At 0.1 bar of inspired carbon dioxide partial pressure the pulse rate 

slows down and the blood pressure drops resulting in unconsciousness and, in extreme cases, death. Thus 

the onset of carbon dioxide poisoning can be recognised by the increased breathing rate followed by 

breathlessness and exhaustion. At rest, an inspired carbon dioxide partial pressure of 13 mbar will produce
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an increase of 33% in alveolar ventilation (Lanphier, 1969). Although tolerable at rest, this would represent 

an unacceptable respiratory burden during heavy exercise. A more acceptable limit would be no more than 

5 mbar.

13.4 Problems of inert gas

The two dominant types of inert gas used in the underwater diving equipment are nitrogen and 

helium. The presence of these inert gases in the breathing gas gives rise to the problems of decompression 

and narcosis, when the inert gas is nitrogen.

(i) Narcosis

At depths much exceeding 30 m, nitrogen becomes narcotic. It has an increasing effect as the 

depth increases. The diver becomes light-headed, irresponsible and lacking in powers of concentration. This 

leads to a limitation of depth to 24 m for inexperienced divers or those who dive infrequently. By constant 

regular diving to depths of up to 54 m, a diver may adapt to the narcotic effect of nitrogen and may 

perform better. Helium is not narcotic, and for this reason it is used for deep diving.

(ii) Decompression

The term decompression applies to a reduction in pressure either from atmospheric pressure to sub- 

atmospheric, as when climbing to altitude in an aircraft, or from raised pressure back towards sea level, 

as when leaving bottom and starting the ascent after a dive. The important of decompression lies in the 

effect it has on the dissolved gas in the body. When a person is exposed to a raised pressure, the volume 

of inert gas dissolved in the body will be increased; at first quickly and then more slowly, until no more 

gas will dissolve, this condition of equilibrium is called saturation. During a dive, nitrogen from the air or 

mixture (or helium from oxy-helium mixture) goes into the solution in the body (ie. blood, tissue and fat) 

at a steadily decreasing rate while oxygen bonds with the haemoglobin. On reducing pressure, when 

ascending fast, the inert gases come out of solution and bubbles may me formed, producing the symptoms 

of decompression sickness which can have the following effects:

a) Damage to tissue and nerve endings,

b) Blockage of small blood vessels, interfering with the blood supply to other parts of the body.

c) Inflammation in affected areas and possible haemorrhage.
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Professor Haldane and his co-worker (Boycott, 1908), working in the early 1900s, advanced the 

hypothesis that bubbles would form in the body if the pressure of gas within the body was more than 2.25 

times the pressure outside the body. They postulated that it would be safe to decompress rapidly at the ratio 

of a 2:1 after prolonged exposure on compressed air. For non-saturated air diving in which the nitrogen is 

not saturated in the solution of the body, higher pressure ratios may be safe. Haldane used his hypothesis 

to produce the first set of decompression tables. A diver ascends, stopping at intervals to allow the nitrogen 

in the body to be given off safely without forming bubbles. Haldane’s original tables were reasonable safe 

and were in use for many years. The Royal Naval has modified Haldane tables in order to reduce the time 

spent on decompression and yet retain the greatest degree of freedom from decompression sickness. Table 

12  shows the data most often used for air diving and is extremely safe. This table has increments in depths 

of 3 m. Thus stoppage data for 30 m would be used for a dive to 28 m. A steady ascent rate of 1 m in 

three seconds should be maintained. In this table there is a risk below the limiting line, where 

decompression sickness becomes more likely. When using gas mixtures instead of air (ie. 60%02/40%N2 

or 40%02/60%N2), the decompression time for a given depth can be reduced, because of the reduced 

nitrogen tension in body tissues. For a mixture with lower level of nitrogen, the diving schedule of less 

deep diving depths (given in table 1.2), which have shorter decompression time, can be used. Table 1.3, 

known as Equivalent Air Depth table, is the diving depth conversion table for the gas mixtures of 

60%(y40%N2 and 40%02/60%N2. According to table 1.3, when the breathing gas is 60%02/40%N2, the 

18 m diving schedule shown in table 1.2 is used for a 24 m depth of dive. With a 32.5%(V67.5%N2 

mixture the difference is insignificant and table 1.2 is to be used. It should be noted that different tables 

are required for oxy-helium diving.

13.5 Work of breathing

In establishing the respiratory effort which underwater breathing apparatus will inpose upon the 

diver, there are a number of important independent variables. These are airway resistance, hydrostatic 

imbalance and compliance. Airway resistance is the pressure differential along the airways required to 

induce a gas flow rate. Hydrostatic pressure imbalance is the differential water pressure existing between 

the hydrostatic pressure at the level of the lung centroid and the breathing gas supply pressure. Compliance 

represents the elastic properties of the system in terms of volume change per unit of pressure applied. Each 

of these variables contributes to the total pressure which is generated in order to effect a change in lung

6



volume. On the basis of a pressure-time recording alone, it is difficult to estimate respiratory work. A more 

informative record is the pressure-volume diagram, as it can give some insight into the separate hydrostatic, 

elastic and resistive components of work. Figure 1.6 shows typical pressure-volume (P-V) loops for 

common types of underwater breathing apparatus. In this figure pressures are measured at the mouthpiece 

relative to its hydrostatic pressure. The volume is obtained by deducting a fixed reference volume from the 

changing lung volume. The area of the P- V loop is a measure of the respiratory work done on the apparatus 

by the diver (ie. external resistive work). On the basis of the literature reviewed (Bennett and Elliott, 1982), 

it is recommended that the external resistive work per volume of gas inhaled and exhaled should not exceed 

the limit of

The coefficients (0.5 and 0.02) are chosen to maintain external work within the limits of comfort according 

to the available physiological data. From the test data available in the literature (Bennett and Elliott, 1982)

Apparatus should not be accepted if the above limit is exceeded.

1.4 EXPERIMENTAL EVALUATION OF UNDERWATER BREATHING APPARATUS

Testing of underwater breathing apparatus has evolved over a number of years. It has been 

undertaken using both manned and unmanned tests. Unmanned tests allow underwater breathing apparatus 

to be evaluated to its limits of performance and, more importantly, allows potentially dangerous equipment 

to be identified without placing the diver at risk. Confirmation of the underwater breathing apparatus’ 

capacity to work in real situations is established during expensive manned test. The common facilities used 

in the unmanned evaluation of underwater breathing apparatus comprise a hyperbaric chamber, which 

simulates the diving depth pressure, and a breathing simulator that reproduces human respiratory demands 

and gas exchange. A typical set up of the unmanned test is shown in figure 1.7. The objectives of the

 I  ■ 0.5 + 0.02 RMV J I  Litre (1.1)

it is clear that only a few select systems can meet this respiratory work limit within the designated 

ventilation range. For practical purposes a second limit of tolerance is proposed:

-  0.5 + 0.04 RMV J I  Litre (1.2)
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unmanned tests can be subdivided into two basic areas: one associated with respiratory mechanics (ie. flow, 

resistance and work of breathing) and the second with the quality of inspired gas (ie. oxygen, carbon 

dioxide and inert gas partial pressure). With confidence obtained from unmanned tests, the manned trials 

can concentrate on more subtle human factors such as buoyancy and mobility.

1.5 A REVIEW OF THE SIMULATION OF UNDERWATER BREATHING APPARATUS

Progress has been made both in the United kingdom and the United States in the development of 

mathematical models for the simulation of underwater breathing apparatus (Antoon, Middleton and Nucklos, 

1986 and Baz and Gilheany, 1988). However, their model performance is often either derived using data 

relating to steady state operation of the system components or by using ‘black box* modelling techniques. 

Steady state models are unable to account for dynamic effects such as the inertia of moving parts or rapid 

pressure fluctuations and are consequently of limited use. Black box models merely replicate component 

performance at the actual test conditions and cannot be used with confidence at other operation conditions. 

Several researches have already undertaken the development of full dynamic models for diving system; 

notable among these are Mittleman (1989), Tilley (1991) and Tomlinson (1992). Even with the excellent 

work of these researches there has been a conspicuous lack of generality in the computer models that have 

been written to describe breathing systems, and an unfortunate disregard for certain thermodynamic 

variables. The present analysis represents a further step in refining and extending their models in order to 

obtain a general and realistic model for the design of underwater breathing apparatus.

1.6 THE USE OF COMPUTER SIMULATION PACKAGES

With conventional simulation techniques, a new simulation program has to be written each time 

when a component is changed or a different system encountered. This is a very time consuming and 

expensive procedure. Clearly, an automatic procedure is necessary to assemble already prepared component 

model subroutines to simulate any circuit which a designer cares to envisage. For this reason, several 

simulation packages have been developed. Three commonly used example are, Bathj£? (Richard and Tilley, 

1991), developed over a number of years by the Fluid Power Centre, University of Bath, DSH (Backe, 

1985) developed at the Technical University of Aachen in Germany and the commercially developed
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Flowmaster. Due to the availability and accessibility of Bathj^, it was selected as the simulation package 

to be used in this study. This package provides a user environment which has been targeted towards the 

user who is either involved in the design or assessment of systems. The following facilities are provided 

by the package:

i) Automatically linking the component models together to form the system simulation program,

ii) A library of models representing the behaviour of a range of components,

iii) Utilities to assist the designer in creating new models,

iv) An inbuilt facility for displaying simulation results in graphical form.

v) A facility which allows for automatic changes in dimensional and performance data or circuit 

configuration.

Since the analysis of dynamic systems consists of a large set of first order differential equations, 

an accurate numerical integration algorithm is required. Bath#? uses a sophisticated integration method, 

based on the LSODA package developed by Petzold (1983), to solve all the first order differential equations 

in the overall model. The algorithm has been modified by Richard (1991) to enable it to be incorporated 

within the Bath#?. The two main modification were:

a) The development of communication protocols between the component models and the integrator.

b) Special procedures allowing physical discontinuities (ie. valves opening and closing) to be handled 

efficiently. In addition, time and event tracking of discontinuities are controlled from within the models.

1.7 THE SCOPE OF THIS THESIS

The remainder of this thesis is divided into six chapters. Although each chapter contains its own 

introduction the basic topic of each is as follow;

Chapter 2 describes the modelling technique used for the simulation of the underwater breathing apparatus. 

In addition, the development of a breathing simulator model is described, which enables unmanned test 

condition to be simulated.

Chapter 3 describes the mathematical models developed for the semi-closed-circuit breathing apparatus and 

the surface demand diving system. Validation of the mathematical models are reported and modifications 

to improve system performance are discussed.
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Chapter 4 described the development of an accurate human respiratory system model which enables the 

human interaction with the underwater breathing apparatus to be predicted.

Chapter 5 describes the work for validating and identifying the unknown parameters of the human 

respiratory system model. The simulation studies in which the human respiratory system model is connected 

to the two breathing system models developed in chapter 3 are reported.

Chapter 6 describes the further use of the developed simulation technique for other gas based systems such 

as the submarine escape system and industrial pneumatic systems.

Chapter 7 draws conclusions from the work described in this thesis and suggests some areas for further 

work.
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TABLES FOR CHAPTER 1

Work
effort

Breaths 
per minute

Tidal Volume 
(L)

Respiratory Minute 
Volume RMV (L/min)

Rest 12 0.5 6
Light work 15 1.5 22.5

Moderate work 20 2 40
Heavy work 25 2 50
Hard work 25 2.5 62.5

Extremely hard work 30 2.5 75
Maximum possible work 30 3 90

Table 1.1 Average human ventilation rate at different work rates

Depth not 
exceeding 

(m)

Duration time leaving 
surface to the 

beginning of ascent 
not exceeding 

(min)

Stoppages at different depths 
including the time of ascent 

(min)

9m 6m 3m

Total time for 
depression 

(min)

9 No limit - - - -

135 _ _ -

165 - - 5 5
195 - - 10 10

12 225 - - 15 15
255 - - 20 20
330 - - 25 25
390 - - 30 30
660 

Limiting Line
* ■ 35 35

Over 660 - - 40 40

85 _ _ _ _

105 - - 5 5
120 - - 10 10
135 - - 15 15
145 - - 20 20
160 - - 25 25
170 - 5 25 30

15 190
Limiting Line

~ 5 30 35

240 _ 10 40 50
360 - 30 40 70
450 - 35 40 75

over 450 - 35 45 80

....continue

Table 12 Diving table for air
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...continue

Depth not 
exceeding 

(m)

Duration time leaving 
surface to the 

beginning of ascent 
not exceeding 

(min)

Stoppages at different depths 
including the time of ascent 

(min)

9m 6m 3m

Total time for 
depression 

(min)

60 _

70 - - 5 5
80 5 5 10
90 - 5 10 15
100 - 5 15 20
110 - 5 20 25
120 - 5 25 30

18 130
Limiting Line

■ 5 30 35

140 _ 10 30 40
180 - 20 40 60
255 10 35 45 90
325 20 40 45 105

over 495 35 40 50 125

40 _ • •

55 - - 5 5
60 - 5 5 10
70 - 5 10 15
75 - 5 15 20
85 - 5 20 25
90 - 5 25 30

21 95
Limiting Line

5 5 25 35

105 5 5 35 45
120 5 10 40 55
135 5 20 45 70
150 5 30 45 80

30 _ . - .

40 - - 5 5
50 - 5 5 10
55 - 5 10 15
60 - 5 15 20

24 70 - 5 20 25
75

Limiting Line
- 5 25 30

80 5 5 30 40
90 5 10 35 50
105 5 20 40 65

....continue

Table 12 Diving table for air
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...continue

Depth not 
exceeding 

(m)

Duration time leaving 
surface to the 

beginning of ascent 
not exceeding 

(min)

Stoppages at different depths 
including the time of ascent 

(min)

12m 9m 6m 3m

Total time for 
depression 

(min)

25 _

30 - - - 5 5
40 - - 5 5 10
45 - - 5 10 15
50 - - 5 15 20
55 - - 5 20 25
60 - 5 5 20 30

27 65
Limiting Line

- 5 5 25 35

70 _ 5 10 30 45
75 - 5 15 30 50
80 - 5 20 35 60
90 - 5 25 40 70
100 - 5 30 45 80

20 _ _ _ .

25 - - - 5 5
30 - - 5 5 10
35 - - 5 10 15
40 - - 5 15 20
45 - - 5 20 25
50 - 5 5 20 30

30 55
Limiting Line

- 5 5 25 35

60 _ 5 10 30 45
70 - 5 20 35 60
75 5 5 20 40 70
80 5 5 30 40 80

17 _ . -

20 - - 5 5
25 - - 5 5 10
30 - - 5 10 15
35 - - 5 15 20

33 40 - - 5 20 25
45

Limiting Line
- 5 5 20 30

50 _ 5 10 25 40
55 - 5 15 30 50
60 - 5 20 35 60

....continue

Table 12 Diving table for air
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...continue

Depth not 
exceeding 

(m)

Duration time leaving 
surface to the 

beginning of ascent 
not exceeding 

(min)

Stoppages at different depths 
including the time of ascent 

(min)

12m 9m 6m 3m

Total time for 
depression 

(min)

14 _ _ * _  .

20 - - - 5 5
25 - - 5 5 10
30 - - 5 15 20
35 - - 5 20 25

36
4 0

Limiting Line
5 5 25 35

45 _ 5 10 25 40
50 - 5 15 30 50
55 5 5 20 35 65
60 5 10 25 40 80
70 5 20 30 45 100

11 _ _ - _ -

15 - - - 5 5
20 - - 5 5 10
25 - - 5 10 15
30 - - 5 20 25

39 35
Limiting Line

5 5 20 30

40 _ 5 10 25 40
45 5 5 15 30 55
50 5 5 20 35 65
55 5 10 25 40 80
60 5 15 30 45 95

9 _ •

10 - - - 5 5
15 - - 5 5 10
20 - 5 10 15
25 - - 5 15 20

42 30
Limiting Line

5 5 20 30

35 _ 5 10 25 40
40 5 5 15 30 55
45 5 10 15 35 65
50 5 15 20 40 80

 continue

Table 12  Diving table for air
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...continue

Depth not 
exceeding 

(m)

Duration time 
leaving surface to 
the beginning of 

ascent not exceeding 
(min)

Stoppages at different depths 
including the time of ascent 

(min)

15m 12m 9m 6m 3m

Total
time
for

depression
(min)

8 _ _

10 - - - - 5 5
15 - - - 5 5 10
20 - - - 5 15 20

45
25

Limiting Line
_ 5 5 20 30

30 _ . 5 10 25 40
35 - 5 5 10 30 50
40 - 5 10 15 35 65
45 - 5 15 20 40 80
50 5 5 15 25 45 95
55 5 10 20 30 50 115

10 . 5 5 10
15 - • - 5 10 15
20 - - 5 5 15 25

48
25

Limiting Line
■ 5 10 20 35

30 _ 5 5 10 25 45
35 - 5 10 15 30 60
40 - 5 10 20 40 75
45 5 5 15 25 45 95
50 5 10 20 30 45 110
55 5 15 25 40 45 130

10 . . 5 5 10
15 - - - 5 10 15

51
20

Limiting Line
“ 5 5 15 25

25 • . 5 10 25 40
30 - 5 5 15 30 55
35 - 5 10 20 35 70
40 5 5 15 25 35 85
45 5 10 20 30 40 105

....continue

Table 12  Diving table for air
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...continue

Depth not 
exceeding 

(m)

Duration time 
leaving surface to 
the beginning of 

ascent not exceeding 
(min)

Stoppages at different depths 
including the time of ascent 

(min)

15m 12m 9m 6m . 3m

Total
time

for
depression

(min)

10 » . 5 5 10
15 - - 5 5 10 20

54
20

Limiting Line
• 5 10 15 '30

25 • 5 5 10 25 40
30 - 5 10 15 35 65
35 5 5 15 20 40 85
40 5 10 20 25 45 105

10 • 5 5 10
15 ■- - 5 5 15 25

57
20

Limiting Line
• " 5 10 20 35

25 5 5 15 25 50
30 5 5 10 20 35 75
35 5 5 15 30 45 100

10 . 5 10 15

60
15

Limiting Line
- - 5 5 15 25

20 5 5 10 20 40
25 - 5 10 15 30 60
30 5 5 15 20 40 85

Table 12  Diving table for air

Depth of dive not exceeding 
(m)

Equivalent air depths in metre 
60%(y40%N2 mixture 40%CV60%N2 mixture

12 9 12
15 9 15
18 12 18
21 15 21
24 18 21
27 24
30 27
33 30
36 33
39 36
42 39

Table 13 Table of equivalent air depth
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Figure 1.2 Open-circuit breathing apparatus
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CHAPTER 2 
MATHEMATICAL MODELLING OF

UNDERWATER BREATHING APPARATUS

2.1 INTRODUCTION

A mathematical analysis of the behaviour of a gas based system, such as breathing apparatus, will 

generally yield a large set of algebraic and differential equations (Andersen, 1976), the latter falling into 

two general classes, ordinary and partial. The current research considers the solution of ordinary differential 

equations where the only independent variable is time. Using this approach to simulate the breathing 

system, it is necessary to undertake a detailed theoretical analysis of each component to formulate 

appropriate mathematical models. The following sections give a detailed theoretical analysis for the wide 

range of components used in the breathing apparatus. In addition, a model of the breathing simulator is 

provided so that the simulations of underwater breathing apparatus under unmanned test condition can be 

performed.

22  BASIC COMPONENT MODELS

Components commonly used in the breathing system can be divided into two basic elements. These 

are (a) capacitive elements (such as gas storage bottle, pipes and hoses) and (b) restrictive elements (such 

as orifices and valves). The theoretical analysis for these elements are developed and described in the 

following subsections.

2.2.1 Capacitive elements

Consider a volume of gas undergoing a change in state during a small period of time A/ as shown 

in figure 2.1. If the volume has fixed boundaries across which mass and energy transfer may occur, the 

energy change in the gas volume during the small interval At is given by

-  U„ -  + AH" (2.1)

There are other sources of energy which might be considered in some application but which are negligible 

for the work concerned here. These include internal heat generation due to vibrational or radioactive heating.
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The energy of the gas within the volume may be considered in terms of specific internal energy 

u, kinetic energy and potential energy. The inflow and outflow energies include similar terms but with the 

addition of a ‘flow-work’ term pu. Hence,

AEv = A [m (u + gz + v2/2)] (2.2)

Uln * 2 Am.n(u + gz  + v 2/2 + p v ) in (23)

U o u  = 1 Amou,(u + 8Z + y2/2 + (2*4)

For the breathing system, it is reasonable to expect the kinetic and potential energy terms to be small, 

certainly negligible when compared to the specific enthalpy and specific internal energy terms. The change 

in kinetic or potential energy between inflow and outflow will be even less significant as the difference 

between the inlet and outlet flow areas is small. Using the definition of specific enthalpy, h = u + pu, and 

considering the changes in quantities to occur with respect to the time interval A/, equation (2.1) becomes

A[mB] - T ^ L h  (2.5)
A/ At ^  A t ~  A* A t

Then as A/ -*> 0, equation (2.5) becomes 

mu + mu = 2 m, h, - I m  -  W + H. (2*6)in  In out oaf oat in

Note that m is the net mass flow rate in the gas volume (ie. = 2mln - The thermodynamic

definitions and laws are used in order to obtain the expressions of u and h in terms of gas properties. The 

procedure is fully described in Appendix A and leads to the expressions shown in table 2.1. Hence, 

equation (2.6) becomes

m CyT  ♦ m [S*C r(T -T )]  = I  m,„[« + C,(r-f)],„ -  I  m j i ,  + C ,(T -T )]„  -  (2-7)

Rearranging equation (2.7) gives 

f  '  IZCy [ 2  '  2 -  ACrT -  + (2.8)
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The outflow from the gas volume in equation (2.8) must have the same properties and gas temperature as 

those within the gas volume. Hence

(CFT)M = c,r (2-9)

(h -  Cpf ) „  ” h -  Cpt  (2-10)

The inflow fluid properties in equation (2.8) will be different from the properties within the gas volume. 

However, the variation of CP with temperature is small for the gas used in breathing systems. In this case 

the value for CP within the gas volume can also be used for the inflow CP, with only a small loss of 

accuracy. It can also be assumed that the same reference values for u(p,t) and h(p,f) can be used 

throughout the analysis. From the definition in table 2.1, (i.e. h - CPf  = u - CVT), equation (2.8) reduces 

to

t  = '  [ X m„CpT„ -  Z m„CpT -  mCrT -  ♦ H„ ] (2.11)
ffl Co y

The rate of heat transfer Hm can be found from the consideration of convection, conduction and 

radiation and can be represented by a general expression:

H. = k.A  ( T - T )  <2-12)in  A m r  v M r  /

where kh is the overall heat transfer coefficient.

For the breathing system the work done on or by the gas is considered to be related to the change 

in the gas volume. In this case,

W * P V (2.13)
out

Note that negative V represents a reduction in the gas volume and the work done on the gas.

Based on the perfect gas law, the rate of change of pressure inside the gas volume is obtained by 

differentiating the equation of state, that is:

P = — m -  — V + — T (2.14)
V V V
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Substituting equations (2.11), (2.12) and (2.13) in equation (2.14) gives

f  \
(2.15)

Using the relationships of gas properties in table 2.1, equation (2.15) can be rewritten as

P - l  K -  1 mm T) -  P ?  ♦ T„ -  T ) (2.16)

The analysis of the overall heat transfer coefficient U between the gas and the surrounding is 

complicated, and experimental data is desirable in order to develop reliable values. It is worth mentioning 

one other method of accounting for the pressure variation without taking into account the heat transfer 

coefficient. The determination of the pressure variation related to heat transfer may be regarded as being 

approximately polytropic in form (Rogers and Mayhew, 1973 and Andersen, 1976) and it can be assumed 

that

It is generally assumed that for slow movements of gas, heat is transferred through the boundary 

maintaining an internal constant gas temperature and the polytropic index n in equation (2.17) will be 1, 

resulting in an isothermal process. For rapid changes in conditions, little heat can flow into or out of the 

gas and an adiabatic condition is assumed in which n will be equal to y. In many instances it is sufficiently 

accurate to assume that the process is in between isothermal and adiabatic conditions [ie. w=(l+y)/2].

Once the rate of change of pressure has been determined, the rate of change of gas temperature 

inside the gas volume can be obtained in terms of P, m and V by rearranging equation (2.14) into the 

following form:

P - ^ [ R { Z * laTla -  Z * J T )  - P V ] (2.17)

t  « —  ( P V  + VP -  m R T )  
P V

(2.18)

The approach described above assumes that the pressure and temperature are uniform throughout 

the gas volume. This form of analysis is termed lumped parameter theory.
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2.2.2 Restrictive elements

Restrictive elements are those components requiring a sizable local pressure drop to cause gas to 

flow. For convenience they will be classified as fixed restrictions - which have constant area and are 

usually called orifices - and variable restrictions - which are called valves. In the case of the breathing 

apparatus, gas compressibility is an important factor. Hence, the theory of compressible fluid dynamics is 

required for the analysis. A relevant formula which has been shown to predict the mass flow rate through 

an orifice fairly accurately (Andersen, 1976) is given by

9 f m
.  C ,C mA ,P ,

(2.19)

The data published by Grace and Lapple (1951) has been found to be very useful in forming the 

relationships between the discharge coefficient Cd and the pressure drop for nozzles, square-edged orifices 

and sharp-edged orifices. Figure 2.2 has been re-plotted from their published. The value of the mass flow 

parameter Cm in equation (2.19) is obtained depending upon whether the flow is sonic or subsonic.

If (PJPU) £ [2/(y+l)]T/(r',) then the flow is subsonic and

2y
R{y -  1)

f  N
P*
P

\ • /

(2.20)

Otherwise, the flow is sonic and is said to be choked. In this case,

C =
\ / ( T - D

r 1
2y (221)

R(y  + 1)

The analysis of the thermodynamic behaviour of gas flow through an orifice and valve may 

commence with the steady state energy balance equation. For a given streamline, the energy equation is 

expressed as

CPT  + J -v 2 = constant 
F 2

(222)

This is the form of equation for steady adiabatic gas flow in which the gas neither does work on the 

surroundings nor has work done on. In the case of an orifice or valve used in the breathing system, the heat 

transfer across the boundary can be neglected as the surface area across the boundary is very small. As the
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inlet and outlet chambers (see figures 23(a) and (b)) are comparatively larger than the flow area (i.e. 

vu*tvd« v j) ,  the energy equation can be written as

CpT. * CpTf * y v /  -  Cr Td (2.23)

Hence, for gas flowing through an orifice or valve, the outflow gas temperature is assumed to be equal to 

the inflow gas temperature as the recovery of the gas temperature occurs. If an attempt is made to 

determine the gas temperature Tf  at the flow restriction, the isentropic relationship (Rogers and Mayhew, 

1973) can be used:

7  _

f  N
Pj_

S‘,
y-W

(234)

The above equation only applies when the flow is subsonic ( i.e (PJPH) £ [2/(y+l)]T*T',) ). For sonic flow 

conditions, equation (2.24) becomes

(235)

23 SIMULATING THE VARIATION OF GAS COMPOSITION IN BREATHING APPARATUS

In order to determine the variation of gas composition in the system models, a capacitive element 

which contains N kinds of constituent gases, as shown in figure 2.4, is considered. It is assumed that the 

gas inside the capacitive element is well mixed. When a gas stream with mass flow rates, q,„ and q ^ ,  

containing different gas mixture concentrations, flows into and out of the capacity element, the 

concentration of each constituent gas T  inside the capacity element will change with time. Each mass 

constituent, m„ can be defined by continuity of mass: the mass transfer rate of constituent gas ‘i* is given 

by

mH  ( U f l
at mln m

Note that mlnJ /  m,„ is the mass fraction of constituent gas *i* in the incoming gas and m, /  m is the mass 

fraction of constituent gas T  inside the capacity element. Equation (2.26) can be solved by integration 

provided that the initial mass of constituent gas ‘i’ is known. Since the mole fraction of constituent gas *i*
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is equal to the volumetric fraction of constituent gas ‘i’ (ie. y ^ V J  V), the initial mass of gas ‘i’ inside 

the capacitive element can be obtained from the following relationship :

r m \  m
J i ,\  y

/  \
(2.27)

The initial total mass of gas mixture m in equation (2.27) can be obtained by the equation of state for the 

gas, ie.

m -  M
f  \

PV
R T

\  0 j

(2.28)

According to Rogers and Mayhew (1973), the molecular weight of the gas mixture is given by

N y

M  = Y  _±M
/-I v

(2.29)

Hence, the initial mass of constituent gas *i' can be obtained from the initial volumetric fraction of 

constituent gas T  and equation (2.26) can be used to determine the transient change inside the capacitive 

elements. For the restrictions, the mass fraction of the constituent gases are simply based on the incoming 

gas conditions.

2.4 DETERMINING THE GAS PROPERTIES OF A MIXTURE

As before, it is assumed that a mixture of gas contains N kinds of constituent gases. According 

to Dalton’s law for the mixture of perfect gases, if a mixture of gas occupies a volume V at a temperature 

T, the pressure Pt of gas T  when it alone occupies the volume V at temperature T is given by

P =
M. V

(230)

By substituting V=mRT/P, the equation of state for a gas, in the above equation, the partial pressure P, is 

therefore determined from the mass fraction and total pressure using the formula

P  = P

/  > r \
m, Ri o

m M.R\  y I ' ;

(231)
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An expression for the specific gas constant R  in terms of the mass fractions of constituent gases 

is given by

/  \  
m.

m
\

1
Id ,

(232)

Further, the specific heat at constant pressure CP of the mixture is given by

m,

/-i m
(233)

A knowledge of R  and CP enables the specific heat at constant volume C v to be determined using the 

relationship

Cy — Cp ~ R (234)

Hence, the ratio of specific heat can be found using 

Y =  Cp /C y (235)

According to Reid, Prausnitz and Sherwood (1977), the expression for determining the viscosity 

of a gas mixture which contains N  kinds of constituent gases is given by

i* -  E f t /
N f  V

X,
1 + E %

j

\  J-

(236)

The ratio of the mole fractions X l and X}  in equation (2.36) can be obtained from the mass fraction of 

corresponding gases using the formula

^  (m/m)A/,

X t
(237)

The term 0 <y in equation (2.36) is based on the Wilke Estimation Method (Reid, Prausnitz and Sherwood, 

1977) which is the best known and one of the most accurate methods for the estimation of viscosity of gas 

mixtures and is given by

„ .  t1 +
*/8 [l

10.5
(238)

According to Sutherland’s empirical formula (Engineers Year Book, 1994), the viscosity for the individual
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constituent gas is practically independent of pressure but varies with temperature, ie.

f  T"+ S '  ^
(239)

Hence, the viscosity of a gas mixture can be determined from the mass fractions of constituent gases and 

the viscosities of individual constituent gas. In addition, table 2.2, which illustrates the physical properties 

of individual gases, provides information to determine the gas properties of a mixture.

2.5 GAS STORAGE CYLINDER MODEL

Gas cylinders which are used as the storage supply for the breathing system can be considered as 

a single control volume such that equations (2.17) and (2.18) can be used to determine the rate of change 

of pressure and temperature inside the gas cylinders. Since the gas cylinders have a fixed volume, equations 

(2.17) and (2.18) can be written as

It is clear that = 0 when the gas cylinders are charging, and = 0 when the gas cylinders are 

discharging. The cylinders pressure and temperature are obtained by integrating the above equations with 

respect to time.

2.6 PIPE & HOSE MODEL

The use of pipes and flexible hoses are common in breathing apparatus. Hie time required for a 

pressure signal to travel the length of a pipe is the length divided by the speed of sound. This time delay 

is neglected for relatively short pipes at present. Hence the lumped parameter approach discussed earlier 

can be used to determined the rate of change of pressure and temperature inside the pipe (or hose):

' b o
(2.40)

(2.41)

Pp = J L R ( l m lJ l n - I . m MaTp)
P

(2.42)

(2.43)
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The above approach considers the flow of gas in the pipe where friction is negligible. However, 

if the flow resistance associated with the pipes or hoses is likely to influence the overall system 

performance, friction must be accounted for. In this case, it is assumed that the flow in a uniform cross- 

section pipe is steady and the velocity is sufficiently uniform over the section for the flow to be adequately 

described in ‘one-dimensional’ terms. For steady one-dimensional flow with uniform pipe diameter dp the 

momentum equation is given by

dP  x j  A 4f d l  v2 A   + v dv +  ___   * 0
P

(2.44)

The final term in equation.(2.44) corresponds to the Darcy’s formula for head loss due to friction. It is 

necessary to point out that the gravity term is neglected for simplicity. To integrate equation (2.44), the 

relation between density and pressure must be known and this depends on the degree of heat transfer. 

Consider first the case of zero heat transfer, which gives an adiabatic flow condition and the energy 

equation (2.22) can be used. The solution of equation (2.44) for adiabatic condition is most conveniently 

obtained in terms of the Mach number. The procedure is fully described by Massey (1987) and gives the 

following expression:

_1_
2y

f  \  
1 _ 1 * T + l In

f  \
Mad (y - l)M a ,2 * 2

Mad2 Mau2
V. J

4 y Ma
\  “ J

( r -1  )Mad2 * 2
2 A , (2.45)

where Mau and Mad are the Mach number of the flow at pipe upstream and downstream respectively.

2*,

Since Mcr-^/(yRT), \~q/(pA^, p-P/(RT), and CP=Ry/(y-l), equation (2.45) becomes

2fL .
/  , , > f  ^

Pi _ Pu
RT. ’  R T

V “ )
+ H i

4y
In

T Pd u
P.T\  d V

v / /2  + CPTU

v / /2  + CpTd
(2.46)

Rearranging the equation (2.46) and noting that vJ/2 + CPTU -  v//2  + CPTd for adiabatic conditions, the 

mass flow rate through the pipe is given by

—
4/X v + 1 —L + H i In p  Lu d
dp y P. Td u

k J

(2.47)
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In general, any quantity of heat may be transferred to or from'the gas. This general case is too 

complicated to be considered at present, but a particular example of practical interest is that in which the 

heat transfer is such as to keep the temperature of the gas constant, that is, in which the flow is isothermal. 

The analysis for isothermal flow is very similar to that for adiabatic flow, the only difference is that the 

energy equation is replaced by the simple condition where T -  constant or dT/T -  0. Massey (1987) has 

also derived an expression to determine the mass flow rate through the pipe at isothermal conditions:

% - Af
N

Pu2 -  P S (2.48)
R T [ AfLp!dp + 2\n(P JP d) ]

Comparing equations (2.47) and (2.48), a single equation can be developed for both adiabatic and 

isothermal condition:

%  = A f

R T  RTd (2.49)

Similar to equation (2.17), it is sufficiently accurate to assume that the process is in between isothermal 

and adiabatic conditions. Hence, n equal to (l+y)/2 is applied.

Extra losses in the pipe also occur when the flow is caused to change its direction by the external 

influences such as bends, end-fittings, and abrupt enlargements and contractions. These losses can be 

expressed in terms of an equivalent length of unobstructed straight pipe in which an equal loss will occur. 

According to Massey (1987), this effective pipe length is given by

* « * • ' L, + w w  (2-50)

The value of loss coefficient K  depends on the change of flow angle. Table 2.3 shows a few typical values. 

For the analysis, the effective pipe length Lprff will replace the actual pipe length Lp in equation (2.49).

The friction factor/ varies according to whether laminar or turbulent conditions occur in the pipe. 

For laminar flow, the friction factor is given by

f = \ 6 / R e  t2-51*

where Re = Reynolds number = qp dJ(Af  n) < 2000.
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Substituting equation (2.51) in equation (2.49), an expression for the mass flow rate in laminar 

pipe flow is obtained as follows:

(¥ , + KWP + 16irLpMp -  A f r  * 0 (2.52)

where

>F. -UlL  In H  l i
P . T 

\  d “ y
R T RTJ

Massey (1987) has suggested that when the flow is laminar (which has a very small Mach number of flow), 

the fluid may, with small error, be treated as incompressible and the compressible term 'F; in equation 

(2.52) can be neglected.

In the case of turbulent flow, assumed to be when /te>2000, the value of friction factor / not only 

depends primarily on the relative roughness of the pipe surface, but also on the Reynolds number of the 

flow. The Colebrook equation gives an implicit relationship for the friction factor as

1

F T
- 1.74 + 2 log. 2 r + 18.6

R e jA f
0 (2.53)

For a given relative roughness r and Reynolds number Re the friction factor can be obtained using iteration. 

However, as the determination of Reynolds number requires the mass flow rate and the mass flow rate 

depends on the friction factor, it is necessary to use a sophisticated iteration method to obtain a rapid and 

converging solution off  For this reason Muller’s method is used to solve this implicit relationship. Hiis 

method converges at a rate similar to the Newton-Raphson method but does not require a derivative and, 

after the starting values are obtained, only requires one function evaluation per iteration. Hence, a function 

F(f) is established in Colebrook equation in which equation (2.53) becomes

1 - 1 . 7 4 + 2  log., 2 r + 18.6

R e f i f  j
= F ( f ) (2.54)

The procedure is to substitute an estimated f  value in equation (2.49) to obtain the qp and Re values and 

then use equation (2.54) to obtain the function F(f) value. At the beginning of the iteration, the initial 

estimated/  value is set to be the mean of the expected highest and lowest/ values. According to the Moody
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diagram (Massey, 1987), it is reasonable to assume that the highest and lowest /  values are

/** 2 1  
T e /  =

1
4 [ 1.74 -  2 log,0(2 r) ]2

During a simulation, it is convenient to use the last solution of/ as the estimated value as this can lead to 

a faster convergence, especially when steady state conditions are approached. It is acceptable that the 

iteration will be terminated when function F(f) is close to zero within a very small tolerance (i.e. lx l O'20). 

After substituting the/ value obtained from the iteration in equation (2.49), the qp represents the mass flow 

rate in turbulent pipe flow.

It is known that the flow will be choked at the outlet of the pipe when the ratio between the 

downstream and upstream pressures is below a certain value, see figure 2.5. For adiabatic and isothermal 

flow the limiting conditions of downstream Mach number Md ,at which an initially subsonic flow becomes 

choked, are given by 1 and 1/V(y) respectively. Hence, the choked mass flow rate is given by

VcH  =  P cH V cHA f  *  P cH —  ArRTJ f
(2.55)

where n = y for adiabatic condition, n 551 for isothermal condition.

Substituting equation (2.55) in equation (2.49) and replacing Pd by PcH, an implicit relationship for the 

minimum pressure ratio (Pcl/PH) at which the flow starts to choke is obtained:

1
» ( P J P J  TJTd n

1 ^fch^p , n + 1 , _ -  " p -  k +  In
a_ n P T,

\  " d j
= 0 (2.56)

In this case, the Colebrook equation is unsuitable to evaluate the friction factor f ch for choked flow in 

equation (2.56) as the equation is implicit. For convenience an alternative explicit formula given by Haaland 

(1983), which varies by less than 2 percent from equation (2.53), is used:

1
-  -I-* log,

6.9
Re.L

/  \ . n

3.7
(2.57)

where the Reynolds number for choked flow is given by

.  P*V* d,  .  P,*
ch ~  . .  “  -------

V \
n .

Tl t *'
(2^8)
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Hence, the minimum pressure ratio (Pck/Pu) for choked flow can be obtained from equation (2.56) by again 

using Muller’s method. According to figure 2.5, if the actual pressure ratio (P/P„) is less than the pressure 

ratio (Pch/Pu), the flow is said to be choked and the choked mass flow rate is determined from equation

(2.49) using the value of pressure ratio (Peh/Pu) for choked flow.

In this friction pipe (or hose) model, the pressure losses due to friction and fittings are simulated 

as a friction orifice positioned at either the middle or one end of the pipe, see figures 2.6(a) and (b), where 

the mass flow rate at the friction orifice is determined by equation (2.49). Referring to figure 2.6(a), the 

pipe model is conceptually, a ‘volume-restriction-volume’, and for the pipe model relating to figure 2.6(b), 

the model is conceptually a ‘volume-restriction’. In addition, equation (2.42) and (2.43) are used to 

determine the rate of change of pressure and temperature in these volumes. This approach can provide an 

extensive range of links between friction pipe models and component models.

2.7 LONG PIPE MODEL

The analysis outlined in the previous section is based upon lumped parameter theory. That is, the 

pressure is considered to change instantaneously at all points along the pipe/hose length. Although this is 

a reasonable approximation for the behaviour in relatively short pipes, the analysis breaks down with long 

pipe/hoses owing to wave propagation effects. As a consequence of the flow change, a pressure wave front 

is made to propagate through the gas at the speed of sound. This means that a time delay is introduced 

before the pressure at the hose inlet responds to the change in outlet conditions. A similar delay will also 

be introduced by the returning wave generated when the flow conditions at the inlet respond to the change 

in pressure. In practice, the situation is further complicated by partial reflections of the travelling waves 

due to a mismatch in impedances at the ends of the line. The resulting process of waves travelling in 

different directions along the hose is similar to those occurring in the classical analysis of water hammer 

in long pipelines.

In the case of surface supply diving equipment, oscillatory flow motion will occur within the 

supply umbilical due to the cyclic changes in the diver’s respiratory demand. This repeated flow cycle can 

be classified as unsteady flow and the flow inertia effects need to be considered. In addition, the
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gravitational head may be significant in some cases. Hence, the momentum equation for a unsteady one­

dimensional flow with uniform diameter (see figure 2.7) can be written as

+ + gsin<  ̂ + v4 t  + 4 “  “ 0 (2*59)p dl dp 2 dl dt

Since the velocity and pressure in a long line subject to pressure transients are continuous functions 

of position and time, the long umbilical can be modelled by representing it as a series of individual 

interconnected pipes as shown in figure 2.8. According to equation (2.59), the rate of change of flow at 

pipe element ‘i* can be obtained from

dv, l (PM -P ,) 4f, v, Iv, I v
_ _  =   -     -  gsin<b -  _ l(v ; -v,, ) (2.60)

p, 5/ T  2 8/ iJn

Note that p, in equation (2.60) is the mean density in element *i* (ie. p r (P i_J+P)/[R(Tl_l+T)J) and vAow and 

vu„ are the gas flow velocities entering and leaving element *i’ (ie. yi.ou~q/(piA  ̂ and vUn-q /(p h,A^) 

respectively. The term v, I v, I in place of v/ in equation (2.60) is to ensure that the term changes sign as 

v, changes sign (where I v; I means the magnitude of v regardless of its sign). After multiplying equation 

(2.60) by p4f> the rate of change of mass flow rate through element T  can be obtained from

dq, Aj(P  , -P ,) A f q |v I q.
   = —:___!___  - _________ -  P,Arg sm(b -  _ l(v , -v,, ) (2.61)
dt 8/ d 2 ‘ ** 51 i'ou iJn

p

The mass flow rate at element *i* is determined by integrating the above equation with respect to time. 

Equations (2.51) and (2.53) are used to determine the friction factor f  at element *i* for laminar and 

turbulent flow. Again Muller’s method is used to solve the implicit relationship in equation (2.53) for 

turbulent flow.

As with the short pipe model, the rate of change of pressure and temperature in element *i* can 

be obtained using the same form as equations (2.42) and (2.43). In order to model the choked flow in the 

umbilical, the first and the end elements of the long pipe model will be modelled using the approach 

described in section 2.6 for steady flow in a short pipe where the pipe length is dl. Hence, this approach 

enables the behaviour of both unsteady and choked flow in a long line to be modelled together.
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2.8 GAS CONTROL VALVE MODEL

Valves may be classified in various ways. Those discussed in breathing apparatus can be divided 

into four basic types: spool type, poppet type, diaphragm type and mushroom type. These are shown in 

figure 2.9. The valve can be modelled as two distinct operations. Firstly, gas flows through the valve 

opening. Secondly, the valve head motion is determined by the various forces acting on the valve head 

assembly. The mass flow rate through the opening of the valve is determined using a similar approach to 

that described in section 2.2.2 where the flow area Af  is related to the valve opening displacement xv. In 

the case of spool type valve, the flow area is annular and is given by

xv (2-62)

For a poppet type valve, the flow area is also annular but, in this case, is determined using the following 

equation:

Af - n d vj xv sina (2.63)

The motion of the valve head is found by taking into account the forces acting on the valve head 

assembly. These include

(a) weight of the valve head assembly related to the direction of motion (Me g sinfy);

(b) pressures acting on the valve head assembly;

(c) spring compression force (k xv);

(d) viscous force (fv dxjdi)\

(e) Coulomb resistance force (Fc);

(f) flow momentum force (Fw).

The direction of the flow momentum force depends on the flow direction of the fluid which applies an 

equal and opposite force to the boundary walls of the valve head assembly. Hence, the valve head 

acceleration can be generally expressed as

d 2x  1
— I  = _  [ M egsin<j) + F  - / v d x jd t  ± k(xv+xk) -  Fcsign(dxjdt) -  Fm ] (2-64)
dt Me

The net pressure force FP is given by the algebraic sum of the opening and closing pressure forces acting 

on the valve head, which vary according to the valve design. The negative sign in the term k xv corresponds



to the valve head being forced to close under the action of a spring. The Coulomb friction force Fc depends 

on the direction of motion. If the inflow momentum is small in relation to the outflow momentum at the 

opening (i.e. vu «  Vy), the flow momentum force can be determined by

is the flow angle leaving the valve head. For convenient a flow force factor/;, is used to represent these 

two variables (ie. f m=cosy/Cc).

2.9 AXIAL FLOW CARBON DIOXIDE SCRUBBER MODEL

An axial flow scrubber is commonly used in recirculating breathing equipment for the purpose of 

carbon dioxide absorption. The model developed far this device needs to take into account two performance 

characteristics. These are the pressure losses across the axial flow scrubber and the absorption of carbon 

dioxide by the absorbent.

2.9.1 Modelling the pressure losses across an axial flow scrubber

The pressure losses in the axial flow scrubber are introduced by the porous absorbent, canister and 

the two baffle plates as shown in figure 2.10. The frictional pressure drop through the porous absorbent 

can be correlated in the usual way by defining a friction factor/in the Darcy’s equation (Wallis, 1969):

qf  Vy coscp (2.65)

where the contraction coefficient Cc is the ratio between the vena contracta area and the flow area and <p

5/7 - /J 6 p v .a L, (AtfJ V y) (2.66)

where Aemr is the total surface area of the absorbent particles and Vv is the available flow volume (volume

of voids). For spherical particles of diameter de, the hydraulic mean depth Vy/Ae mr is given by

(2.67)

where e is the ratio of the volume of voids to the total bed volume.

For particles which are not spherical, a shape factor O is often defined such that de is replaced by 

dJQ>. The average velocity through the interstices between the particles ve in equation (2.66) is related to
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the volumetric flux (ie. v ,a  v/e). Substituting equations (2.67) into equation (2.66) and redefining a friction 

factor 7=3/ / 2 we obtain

5/7 = 4 /

f  \  
1 - £

'/2 pV ,2 *
a .

(2.68)

The friction factor defined by equation (2.68) is usually correlated in terms of a Reynolds number (Wallis, 

1969) which is defined in terms of the average fluid velocity and tlie hydraulic mean depth. Thus

Re = P v, de (2.69)
( l - e ) p

The experimentally determined friction factor /  on the values of Res obtained by Burke and Plummer 

(Ergun, 1952) is shown in figure 2.11. In addition, a theoretical equation from Ergun (1952) is plotted on 

the graph as well, that is

/ =  —  + 0.875 
Re.

(2.70)

Inclusion of the above friction factor in the Darcy equation led to the following equation for the pressure 

drop through the porous absorbent inside the axial flow scrubber and is applicable for both laminar and 

turbulent flow conditions:

5/7 - 2  Ls
7 5 p v ,(l-e )  0.875 pv,

d :

f \  
1 -8

V £ y

(2.71)

In addition, the pressure losses introduced by the two baffle plates at either end of the canister can be 

obtained using a ‘k factor method' (Massey, 1987) similar to that outlined by Tilley (1990). Hence, the total 

pressure losses across the scrubber is given by

pv,
5/7 = K  _  + 21  
y  3 2

75pv (1 -e )  0.875pv,

7}  +

f  \  

1 -8 (2.72)

By rearranging equation (2.72), the flow velocity v, through the scrubber can be obtained.

2.9.2 Modelling the carbon dioxide absorption process in an axial flow scrubber

Although there has been a considerable quantity of data published on the design and efficiency 

of carbon dioxide absorbent scrubbers for recirculating breathing equipment (Anthony and Potts, 1979,
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Nuckols, Purer and Denson, 1983), it is nevertheless difficult to understand how the absorption process 

functions. Virtually all these investigations have relied on expressing the duration and efficiency of the 

absorbent system as a time of breakthrough (that is the point at which the carbon dioxide concentration in 

the gas mixture through the absorbent system exceeds the physiological limit for human respiration). 

Consequently, these investigations rely heavily on experimental testing. Therefore, it is the intention of the 

author to develop a modelling technique which allows the performance of an carbon dioxide absorbent 

scrubber to be predicted. A detailed derivation of the modelling technique for the absorption process in the 

scrubber is beyond the scope of this thesis.

(i) Absorption chemistry

First, consider the chemical reaction involved in the absorption of carbon dioxide by the absorbent 

in the scrubber. In this case, sodalime (typically 3% sodium hydroxide and 97% calcium hydroxide) is used 

as the absorbent. The absorption process of carbon dioxide by the sodalime can be expressed by the 

following series of reactions:

C02 + H20  —* H2C 03 (I)

H2C03 + 2NaOH —  Na2C03 + 2H20  (II)

Na2C03 + Ca(OH)2 —  2NaOH + CaC03 (HI)

Note that, in this process, water is necessary to initiate the carbon dioxide absorption and also water is a 

by-product of the absorption process. If the incoming gas stream is saturated with water vapour, the water 

produced in the absorbent bed may not be picked up. This water will then tend to coat the outer surfaces 

of the absorbent particles, causing a decrease in absorption efficiency. If the incoming gas stream is too 

dry, the initiation of the reaction may be inhibited, thereby limiting further absorption. As a general rule, 

moisture levels of the incoming gas stream must be maintained above 70% RH when using sodalime 

(Nuckols, Purer and Denson, 1983).

(ii) Absorption in a packed-bed

Considering a flow of gas mixture through a section of porous absorbent media, an energy or mass 

balance across an elementary section of a column such as that shown in figure 2.12 can be written 

generally:

Accumulation = Input - Output - Loss by absorption
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In order to obtain the fundamental equation for the absorption process, it is necessary to define certain 

parameters. Let c(l,t) and w(l,t) be the concentrations of carbon dioxide in the gas mixture and in the 

absorbent, respectively, at time i after the entrance of a gas mixture into the column and at distance / from 

the input end of the column. These c and w are expressed in moles of COj in a unit volume of gas mixture 

and moles of absorbed COj in a unit mass of absorbent respectively. Referring to figure 2.12, the mass 

balance on the gas and absorbent phase contained within the section dl can be expressed as

dc = dc _ P, dw (2.73)
H i  ’HI 7 1

Note that ve is the average .fluid velocity in the interstices between the particles (ie. sve -  v,). In equation 

(2.73) it is assumed that the velocity of the fluid is constant across the bed in which the longitudual 

diffusion and the axial dispersion are neglected. Equation (2.73) must be coupled with another equation 

representing the behaviour of the absorbent. Thomas (1944) has given a most useful treatment of the 

absorption design problem and the rate of absorption in the absorbent can be represented by

dw Ac
d t  Pfl Mc “ Ucfe- c ) ZJ w

(2.74)

The expression in the square bracket is called ‘the kinetic driving force’ and the mass transfer coefficient 

km describes the transition of a component from one phase to another (Sherwood, Pigford and Wilke, 1975). 

Note that A„ is the total interfacial area of the absorbent in a unit volume of packed bed and cfe is the feed 

concentration of carbon dioxide to the column. Hie equilibrium factor £ in equation (2.74) is used to define 

the chemical reaction in the absorbent which is either irreversible or reversible. The criteria for the 

irreversible and reversible reactions are, respectively, C, = 0 and C, > 0 (Ruthven, 1984). At present, as the 

reactions (II) and (HI) are irreversible (Anthony and Potts, 1979, Nuckols, Purer and Denson, 1983), it is 

reasonable to treat the whole process to be an irreversible reaction. Therefore, equation (2.74) simply 

becomes

dw kmAa C(^ _ W ^
dt

(2.75)

Hence, the dynamic response of the absorption in the column is given by the solution [c(l,t),w(I,t)] to 

equations (2.73) and (2.75), subject to the initial and boundary conditions imposed on the column. Bohart 

and Adams (1920) were able to reduce equations (2.73) and (2.75) to a linear equation by introducing a
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transformation of the dependent variables. Their solutions for the boundary conditions on c(l,t) and w(l,t), 

such that c(0, t) =c/(,=constant and w(l,0)=0, are given by

c

c. + <?v‘-  1 (2.76)

w
(2.77)

where

km Aa c,
vi/j = m 4 ft

wpB

\

Vv.
k .A .  I

v. £

These solutions will lead to the formations of the concentration profiles in the column and the output 

concentration curve as sketched in figures 2.13(a), (b) and (c).

However, equations (2.76) and (2.77) cannot be applied to the conditions where the input 

concentration of C02 and the flow velocity through the scrubber vary with time and also where the flow 

direction is changing during the breathing cycle. Therefore, it is necessary to establish an approach to model 

the absorption process allowing these conditions to be considered. Again consider a column divided into 

N  numbers of small elements as shown in figure 2.14. By using equation (2.75), the rate of absorption in 

element T  can be written as

d w , _  K  A a c >

dt P b

(2.78)

Referring to figure 2.14, if the direction of flow through the column is from the left, then the rate of change 

of C02 concentration in element *i* requires information on the C02 concentration from the upstream 

condition which is in the element ‘i-1 and from equation (2.73) we can write down directly the expression 

for the rate equation in element ‘i \  that is

dC‘ -  V'  (  c  - c  ) -  P* dW‘ 
dt 51 M 1 e dt

(2.79)

However, if the direction of flow through the column is from the right, then the term ch, in equation (2.79) 

will be changed to cl+J. In this manner, all the time derivative terms dw/dt and dc/dt in each of the 

elements can be solved using numerical integration.
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Referring to figure 2.14 again, the first element from the input end, which can be at either side 

of the column, requires the input flow concentration cfe from the upstream model for the determination of 

the rate of change of CO2 concentration. However, according to the analysis in section 2.3, the component 

models connected to the scrubber supply the mass fraction of CO2 rather than the concentration of C02. 

Therefore, it is necessary to establish a relationship between the concentration and mass fraction of C02 

in the scrubber model, that is

At the same time, the scrubber model is required to supply the mass fraction of C02 to the downstream 

model. This output mass fraction of C02 can be obtained from the C02 concentration at the last element 

from the input end c]am imposing the downstream condition, and equation (2.80) can be rearranged into the 

following form for determining the output mass fraction of C02:

where qs is obtained from equation (2.72) and using the relation q=  pvy4,.

(iii) Determination of the mass transfer coefficient

The above theoretical analysis can describe a satisfactory prediction of the absorption process 

provided that the mass transfer coefficient km is correctly chosen. Therefore, it is necessary to obtain a 

suitably accurate value for km. First, consider a C02 concentration profile from a gas stream to the surface 

of the absorbent as shown in figure 2.15(a). This figure also illustrates two phases categorized as the mass 

transfer of C02 from the gas stream to the absorbent surface (phase P) and the chemical absoiption at the

in,C02 (2.80)

Clas MC02 & (2.81)
m

It is reasonable to write the following equation for the determination of the total C 02 absorption

rate:

N

Qc02,up = Pb ^  M cq2
(2.82)

Hence, the actual output mass flow rate of the scrubber can be found using the relationship .

Qc02,up (2.83)



surface (phase Q). If the transitions in these phases are described by two individual mass transfer

coefficients as kmg in phase P and kmehem in phase Q, the overall mass transfer coefficient km can be defined

by the following concentration flux equation (Sherwood, Pigford and Wilke, 1975):

k ( c - c ) * k . c = k c  (2.84)mg  V * -  a s ' mjcktm as m

Then,

T ’ T T * T -  (“ 5)

Numerous studies (Danckwerts, 1970, Szekely, Evans and Sohn, 1976) have been carried out with 

the object of measuring the mass transfer coefficient k ^  between the gas stream and particle surface. For 

this kind of mass transfer, Smith (1981) has summarized that the Stanton number for mass transfer kmJ v s 

is an empirical function of the Reynolds number pvjlJn  and the Schmidt number /c/pD. This is represented 

by the following equation, which is mostly used for the engineering estimation:

(2.86)0 1”  _ 0.458
( V 
p v, d.

v . {p d \ e •?=

The best determination of the diffusion coefficient D in the Schmidt number far the C Q  mixed with the 

air is that due to Vargaftik (1975), which is obtained from the known diffusion coefficient value with the 

known condition. The equation is given by

D ° ’P ' (2.87)
P

Experimental values of the known diffusion coefficient D ' and the power index 6  of C02 mixed with the 

air are available for equation (2.87) as illustrated in table 2.4. Hence, the mass transfer coefficient ^  

between the gas stream and the absorbent surface can be found.

The mass transfer coefficient kmehem for the chemical absorption at the surface can be calculated 

from the Arrhenius equation (Smith, 1981), that is

■ CA M .)

The value of the apparent frequency factor f A and the activation energy of the surface reaction Ew  in 

equation (2.88) can be evaluated from molecular properties of the reacting species. Since the reaction 

between the sodalime and COj is instantaneous (Nuckols, Purer and Denson, 1983), the value of km ehem must
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be more than the value of by a large amount and referring to equation (2.85), km will approach the 

value kmg as shown in figure 2.15(b). Therefore, kmchem can be ignored and km = k^ .

2.10 BREATHING SIMULATOR MODEL

The breathing simulator which is used for the unmanned testing can be modelled as a linear 

actuator with one side connected to the breathing equipment (delivery side) and the other side connected 

to the gas space of the hyperbaric chamber (balance side). Using equations (2.17) and (2.18), the rate of 

change of pressures and temperatures in the delivery and balance sides of the breathing simulator can be 

obtained using

p U ' ~ l R  -  2 * m u Tu)  -  P* K  ] <2-89)
¥u

* u ~ - r r  l p « v» * p u K -  V *  Tu ] <2-90)
u v u

-  P,„K  ] <2-91)
v lb

t B -  J * .  [ P,bV,b + P,bv,t -  mlbRTlb ] (292)
lb ¥  lb

For the delivery and balance sides of the breathing simulator the rate of change of both volumes are the 

same but opposite in sign. It is considered that the variation is simply equal to the respiratory demand 

volumetric flow rate:

K  ' - K - Q r  (2-93)

The complex processes associated with the human respiratory system have been simplified by 

assuming that the respiratory demand in the breathing simulator varies sinusoidally with time and Qr at any 

time can be determined according to:



In the case of the breathing simulator performing the gas exchange process, the oxygen uptaken 

rate q02up needs to be included in the outflow mass flow rate term of equations (2.89) and (2.90). 

Similarly, the carbon dioxide production rate qC02.pr needs to be included in the inflow mass flow rate term 

of equations (2.89) and (2.90). These allow a more precise evaluation of the pressure and 

temperature inside the breathing simulator. In addition, the equations to determine the rate of change of the 

mass of oxygen and carbon dioxide in the breathing simulator model need to be modified.

For the oxygen, 

dm, _ „ m in,02 V ' „ m 02
j .  ~  ^ i n  ’  ’ " '  ' 2 ^  ^ o u l  ' $ 0 2 , 1at m,_ m (2.95)

For the carbon dioxide, 

dmC02 E  "dt m:_ m
C02

out— “ —  9 CQ2j>r (2.96)

In most of the studies (Bennett and Elliott, 1982), the oxygen consumption and CO  ̂production 

rates are abbreviated V02 and Vc02 respectively and also expressed in litres per minute corrected to standard 

conditions (STPD) where STPD stands for standard Temperature (0°C) and Pressure (1.013 bar) for Dry 

air. Using the equation of state for a gas, the oxygen consumption and COj production rates in kg/s can 

be obtained from Vo2 and Vco2 respectively by

1
$  0 2 ,up

f  \
P M1.013 lv l02

R° T™ /
x .

02 60 xlO3 (2.97)

$C02j>r
P M1 1 .013 l n C02 V xr  C02

1
60 xl(p (2.98)

Table 2.5 assembles most of the available data on the oxygen consumption and C02 production of human 

specific work efforts. The relationship between V02 and VC02 can be expressed by the ventilation ratio Rv:

D _ v  IV
v  “  C02 02

(239)

The value of Rv can be approximated and range from 0.7 to 1.0 (Bennett and Elliott, 1982).

2.11 RESPIRATORY WORK IN BREATHING

According to section 1.3.5, the respiratory work expended during a breathing cycle is of prime
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importance to the diver's performance. During unmanned testing, the respiratory work is assessed from a 

breathing loop formed by plotting the mouth differential pressure against the breathing simulator displaced 

volume over a complete breathing cycle, similar to figure 1.6. The mouth differential pressure is the 

difference between the gas pressure at the mouth piece and the hydrostatic pressure acting immediately at 

the mouth piece. In order to compare the unmanned testing at different tidal volume conditions, the 

breathing simulator displayed volume is obtained by deducting a fixed reference volume from the actual 

breathing simulator volume:

Referring to section 1.3.5, the area enclosed within the resulting breathing loop is the external 

resistive work and the work done is determined according to,:

Replacing dV by (dV/dt)dt and noting that the rate of change of volume is equivalent to the respiratory 

demand volumetric flow rate Q„ an expression can be found for the external respiratory work as follows,

As the principle aim is to minimize the respiratory work of breathing, equation (2.102) can be used 

as the basis of a performance optimization algorithm in the simulation of breathing systems.

2.12 CLOSURE

A number of mathematical models has been developed for a wide range of underwater breathing 

apparatus. A technique to simulate the variations of gas composition in the breathing apparatus is described. 

In addition, an approach to simulate the carbon dioxide absorption process in the axial flow scrubber has 

been developed. It is intended that these modelling techniques will be applied for the simulation of different 

kinds of breathing apparatus. 7116 simulation results of different underwater breathing apparatus are 

documented in the next chapter.

(2.100)

(2.101)

(2.102)
o
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TABLES FOR CHAPTER 2

Definition Specific internal energy, u Specific, enthalpy, h

Cp -  Cv -  R , CpICy -  y 

h -  CpT -  u -  CyT

U * CyT

u * u + Cy(T  -  f )

h = CpT 

h = A + Cp(T -  T)

Table 2.1 The expression of u and h in terms of gas properties

Gas
Molecular 

Wei^it 
M  (kg/mole)

Specific heat 
at constant 

Pressure 
Cp (J/kg K)

Specific heat 
at constant 

Volume 
Cy (J/kg K)

Coefficient of 
Viscosity 

at 0°C 
H ( ia 6Pa s)

Sutherland’s
Constant

S

Air 29 1009 721 17 120
C02 44 858 660 13.8 240
He 4 5234 3153 18.6 100
n 2 28 1034 733 16.6 111
0 2 32 909 649 19.2 127

Table 12  Physical properties of gases 0°C
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Conditions Values of K

90° elbow bend 0.9
45° elbow bend 0.4

Side outlet of *T* junction 1.8
Square-edge end fittings 0.5

Protruded pipe at end fittings 1

Table 23  Approximate loss coefficient K  for commercial pipe fittings

Gas D \ cm2/s 6

Air-C02 0.142 1.7
0 2-C02 0.138 1.8
n 2-c o 2 0.144 1.73

h 2o -c o 2 0.146 1.84
Air-H20 0.216 1.8

Table 2.4 Experimental values of diffusion coefficient D ’ and 6 a X T -  273 K and P = 1.013 bar

Work
effort

Breaths
per

minute

Tidal Volume 
(L)

Respiratory Minute 
Volume 

RMV (L/min)

0 2 Consumption 
rate 

(L/min)

Rest 12 0.5 6 0.25
Light work 15 1.5 22.5 0.9

Moderate work 20 2 40 1.6
Heavy work 25 2 50 2
Hard work 25 2.5 62.5 2.5

Extremely hard work 30 2.5 75 3

Table 2.5 Breathing characteristic associated with human specific work efforts
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Figure 2.1 A volume of gas undergoing a flow process
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Figure 22  Discharge coefficient for nozzles, square-edged orifices and sharp-edged orifices
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Figure 23(a) Flow of gas through an orifice

Figure 23(b) Flow of gas through a valve
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Figure 2.4 Gas streams flow into and out of a capacitive element
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Figure 2.5 Constant ifL/dp lines on an qp̂ l(RTJ/(A/PJ versus P/Pu plot (/j=y=1.4)
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Figure 2.6 Representation o f friction pipe model
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P + (SP/Sl)  dl 

v + (8v / 81) dl

Figure 2.7 A section of flow in a long pipe

Figure 2A  Series of individual interconnected pipes
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(a) Spool type

(b) Poppet type

(c) Diaphragm type

(d) Mushroom type 

Figure 2.9 Basic types of valve
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Figure 2.10 Axial flow carbon dioxide scrubber
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Figure 2.11 Experimental meassurement of flow through porous media compared with Ergun's equation
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Figure 2.12 Mass conservation in a packed-bed
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Figure 2.13(a) Gas phase C02 concentration profile in a packed-bed
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Figure 2.13(b) Absorbent phase C02 concentration profile in a packed-bed
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Figure 2.13(c) Output C02 concentration breakthrough curve from a packed-bed
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Figure 2.15(b) Solution of equation (2.85)
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CHAPTER 3 
COMPUTER SIMULATION OF 

UNDERWATER BREATHING APPARATUS

3.1 INTRODUCTION

In order to validate the mathematical models developed in Chapter 2, two different kinds of 

breathing systems which have been mentioned already in section 1.2 are simulated in this chapter. The first 

is a semi-closed-circuit breathing system which is by far the most commonly used re-breathing apparatus 

for military operations. The second is a surface demand diving system which is the dominant type of 

apparatus used in modem commercial diving. For simplicity, these simulations are investigated under 

unmanned testing condition.

3.2 SIMULATION OF A SEMI-CLOSED-CIRCUIT BREATHING SYSTEM

3.2.1 Introduction

The semi-closed-circuit breathing system is a kind of recirculating breathing system. Although not 

exactly the same, it is similar in appearance to the equipment shown in figure 3.1. The breathing circuit 

is a pendulum type in which the diver breaths through the mouthpiece, convoluted breathing tube and axial 

flow carbon dioxide absorbent scrubber from and into an inflated bag called a counterlung. The ‘constant 

mass flow jet’ gas control unit, which is fitted in the line of gas storage bottles, pressure regulating valve, 

inter-connecting pipe and an acoustic jet (orifice), is preset to supply a constant oxygen fraction of mixed 

gas to the counterlung at any depth of water. Over-pressurization of the counterlung is prevented by the 

use of a pressure relief valve. The buoyancy and breathing comfort of the diver is controlled by an 

additional buoyancy control valve which vents gas from the counterlung to the surrounding water. A 

schematic of the breathing system is given in figure 32.

3.2.2 Previous component models development

A range of models related to the semi-closed-circuit breathing system has been developed by Tilley 

and Tomlinson (1990). Their models are mainly to investigate the work in breathing related to the breathing 

equipment. Hie following sections describe the theoretical analysis of their models.

56



(i) Models of constant mass flow jet unit

For the theoretical analysis developed by Tilley, isothermal conditions were assumed to apply such 

that the temperature of the gas is considered to remain constant at all points throughout the system. Hence, 

the rate of change of pressures inside the gas storage bottles and inter-connecting pipe can be obtained 

from:

The mass flow rates through the acoustic jet and pressure regulating valve were obtained by 

equation (2.19) mentioned in section (2.2.2). The motion of the pressure regulating valve (figure 3.3) was 

simulated using a similar approach to that described in section (2.8) where the dynamic motion was 

considered. After equating the forces acting on the valve head, the net pressure force is given by;

(ii) Model of counterlung

In the study by Tilley, the counterlung has been modelled as a linear actuator, as shown in figure 

3.4(a), subjected to the pressures acting on the frontal area. Equating the forces acting on the counterlung

Note that Pc is the hydrostatic pressure acting on the centre of the counterlung face. In writing equation

(3.4), the friction term has been represented by the resistance pressure model The resistance pressure 

was determined from practical test. A typical set of results is shown in figure 3.4(b), indicating a significant

where the coefficients Cl,, Cl? ... , Cl„+, are different for the inflation and deflation process. Satisfactory

(3.1)

(3.2)

and the net spring force is given by;

(33)

face gives the following expression for the counterlung face acceleration

d \  u (Pc - Pc - Pr)Ae ~ f A (3.4)
d t2 Me

difference between the inflation and deflation curves leading to a hysteresis loop. In order to model the

resistance pressure, the test data have been represented using the following polynomial:

(3.5)



agreement between the measured and predicted curves was obtained using polynomials of order 4 or 5. For 

isothermal expansion, the rate of change of counterlung pressure is obtained by;

dP R T
' = ___ 1 ( I  m. -  I  m -  pV  ) (3.6)

Work has been undertaken by Tomlinson (1993) to obtain an improved model of the counterlung 

such that the resistance term can be predicted theoretically. The improved expression for the counterlung 

face acceleration is given by;

d \  ^ Megsm<$> -  pwFfgsin<t> + {Pc-'Pc)Ac-  f x c-  k x c-  Fc 
dt2 Me

(3.7)

The new counterlung model considers the material stiffness ke and Coulomb resistance force Fc as well as 

the component weight Me g sinfy and buoyancy force pw Ve g sinfy which are dependent on diver 

orientation. The inproved counterlung model also includes the effect of changes in pressure centroid and 

area acted on by pressure forces.

(iii) Models of counteiiung pressure relief and buoyancy control valves

The counterlung pressure relief valve, as shown in figure 3.5, operates when the difference 

between the counterlung pressure and the external water pressure exceeds a set level. The valve consists 

of a rubber diaphragm held in place by a compression spring and the valve cracking pressure is determined 

by the initial spring compression. Tilley neglected the flow momentum effects on the valve and assumed 

the valve to respond instantaneously to pressure changes. Hence, the valve opening is obtained directly by;

v .  (i>'  '  ^  A’ -  r f3JllJ-

where Pv is the hydrostatic pressure acting on the outlet of the valve. Referring to figure 3.5, the flow area 

of the valve is annular and the discharged mass flow rate is determined using equation (2.19).

The buoyancy control valve, as shown in figure 3.6, prevents the counterlung from becoming 

overinflated by venting excess gases through the venting plate to the surrounding water. If the counterlung 

pressure falls below the external hydrostatic pressure, ingress of water is prevented by a mushroom type 

non-return valve. This mushroom valve which is a lightweight rubber diaphragm has been simulated using
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a different approach. According to the test data reported by Imison (1985), Tilley has suggested that the 

pressure-flow characteristic of the mushroom valve is linear and is given by;

e„- SL (pr  rM- pJ  <3-9>
Note that Pbc] is the pressure between the mushroom valve and the variable restriction.

A variable restriction is provided to allow the diver to close the valve fully if required. When the 

valve is opened, the flow area is annular and is given by;

Af ~ n xv sin a  (3.10)

The gas flow through the variable restriction was determined using equation (2.19).

The venting plate comprises a series of holes which has been represented as a single lumped flow 

area in Tilley’s analysis. Hence, equation (2.19) was used to calculate the flow rate where the upstream 

pressure in equation (2.19) is the pressure between the variable restriction and the plate, Pfa2, and the 

downstream pressure is the external water pressure. Tilley has assumed the changes in pressure, P^ j and 

Pbe2 in the small internal volume of the buoyancy control valve responded instantaneously so that the 

analysis of the small internal volume has been ignored. Continuity is achieved in the model by undertaken 

successive iterations until the mushroom valve, variable restriction and venting plate flows equate within 

a specified tolerance.

(iv) Pressure losses in the mouthpiece, flexible breathing tube and carbon dioxide scrubber

The flow resistance effects in the mouthpiece, flexible breathing tube and carbon dioxide scrubber 

are considered in Tilley’s models. To take into account the reduction in flow area at the mouthpiece 

together with a change in flow direction, the analysis for the loss was based on ‘k factor method’ (Massey, 

1987) obtained from measured results (figure 3.7). Thus the pressure drop and flow relationships for the 

mouthpiece is;

Sp = 1.82 (3-ID
2

The breathing tube is a kind of flexible convoluted tube. The flow resistance associated with the 

tube directly influences the effort expended by the diver in breathing. Inclusion of the friction introduced
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by the convolutions and the bend of the tube in the analysis led to the following equation suggested by 

Yeaple (1966) for the pressure loss:

5p  = 1-
dbl + 0.35 T\  bl y j

r x x>.s

v 9 ° y

pvh
T "

(3.12)

The pressure losses in the axial flow scrubber were simulated using the approaches similar to that 

outlined in section 2.9.1. However, in Tilley’s model the absorption of C02 was not taken into account and 

the equation to determine the pressure loss through the porous absorbent was derived from experimental 

data. The pressure losses introduced by the two baffle plates at either end of the canister were obtained 

using the ‘k factor method’ as described in section 2.9.1. Thus the total pressure loss including the canister 

and the soda lime is

8p -  K  + 2 L ’ 2
838pv 27.3n°V'5v,1‘5 14.6pv,:

 ‘ --------------------------------------------------+ ” T -d .2
IS

(3.13)

The agreement obtained between equation (3.13) and the experimental data is shown in figure 3.8.

According to the simulation studies undertaken by Tilley, equations (3.11) to (3.13) were 

rearranged in the form where the flow rates were determined in terms of 8p. The determined flow rates 

were then used to calculate the rate of change of pressures inside the breathing tube and the mouthpiece 

using the same equation (3.1) developed for the inter-connecting pipe. In equation (3.13) the relationship 

between the flow rate and the pressure loss is implicitly defined and an iteration procedure is used to obtain 

a solution of v,.

(v) Breathing simulator

The breathing simulator has been modelled by Tilley using a similar approach to that outlined in 

section 2.10, except that the gas exchange process has not been included. In addition, Tilley has simulated 

the pressure losses associated with the breathing simulator pipework using the k factor method which is 

different from the friction pipe model described in section 2.6.

(vi) Hydrostatic pressure acting on the breathing system

Slight variation in hydrostatic pressure acting on the diver and breathing apparatus have a
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significant effect on performance. Tilley’s models enable the difference between the pressure at the 

reference diving depth and the pressure acting at the diver’s mouth and at the two pressure control valves 

to be assessed. The reference depth of dive is taken from the water surface to the centre of the counterlung 

face. At this condition the hydrostatic pressure acting on the centre of the counterlung face is given by;

If the distances from the centre of the counterlung face to the mouth and the counterlung valves are zm and 

zv respectively then

The negative signs correspond to the diver being upright and the positive signs apply when the diver is 

inverted. If the diver is horizontal, face up or down, the reference height is taken to be from the water 

surface to the back of the counterlung, that is the diver’s chest. In this case zm = zv = 0.

3J23 System simulations and results using previous models

The block diagram shown in figure 3.9, shows how the computer models developed by Tilley are 

interconnected for the purposes of the simulation. Each component model is represented as a box connected 

by links to other boxes. The boxes have ports, which represent the order in which parameters such as flow 

rate and pressure are transmitted to and from the models on links. In this manner, all the capacity elements 

receive flow rates from their adjoining components as input and supply pressure as output. The restriction 

and flow resistance models receive pressure from their adjoining components as input and supply flow rate 

as output. Referring to the block diagram, the model of the mouthpiece combines the pressure losses due 

to the mouthpiece, breathing tube and the breathing simulator pipework. The model of the breathing tube 

combines the volume of the mouthpiece and itself. The reason for lumping the losses and volumes is to 

avoid small interconnecting gas volumes. If these are included, very long simulation run times will result, 

with no noticeable change in the simulation results. The data used in the models is presented in table 3.1.

(3.14)

IP = IP * p gzm e  r w ©  m
(3.15)

P  = IP * p gz
V e  r w d  V

(3.16)

The first simulation study made by Tilley was under the arrangement where the mass flow jet unit 

was tested in isolation. Under this condition, a mixture of gas was discharged from the storage gas bottles 

through the valve to the ambient sea water pressure. The results obtained for this simulation are shown in



figure 3.10. Comparisons were made with preliminary experimental test results obtained by the 

Experimental Diving Unit, Portsmouth. From the comparisons, it was shown that the predicted results were 

in close agreement with the experimental data.

The second simulation study made by Tilley was under the test arrangement where gas was simply 

transferred between the breathing simulator and the counterlung. Under this condition, there was no 

additional supply or loss of gas to or from the circuit. The predicted breathing loops (formed by plotting 

the mouth differential pressure against the breathing simulator displayed volume) obtained from the 

simulation using two typical respiratory demand at diving depths of 20 m and 40 m are presented in figures

3.11 and 3.12. From the figures, it can be seen that both peak-to-peak mouth differential pressure and loop 

area increase with breathing demand and depth. As a consequence, the diver will have to expend more 

energy when breathing at these conditions. This was confirmed by the predicted values of the external 

resistive work per volume of gas inhaled and exhaled at these conditions, see table 3.2. It was also found 

that these values did not exceed the recommended respiratory work limits defined in equation (1.2) (ie. 3 

J/L for 62.5 RMV and 3.5 J/L for 75 RMV). It is essential to show that the simulation predicts realistic 

system behaviour at depth. Hence, figures 3.11 and 3.12 also include the corresponding experimental 

breathing loops obtained using the hyperbaric test facility at DRA, Alverstoke. Again there was good 

agreement between the simulation and experiment.

The third simulation study made by Tomlinson (1993) was to establish an improved counterlung 

model. This simulation was under the condition where gas was supplied to the counterlung using a 

breathing simulator in the absence of the mouthpiece and the breathing tube. The data used in the new 

counterlung model is presented in table 3.3. The additional supply or loss of gas to or from the circuit were 

not considered in this study as well. The predicted pressure-volume loop formed by plotting the counterlung 

differential pressure (PC-!PC) against counterlung displayed volume (Vc-Ve) is compared with the experimental 

data as shown in figure 3.13. The simulation shows good agreement with experiment. In addition, a 

simulation of the semi-closed-circuit breathing system with the improved counterlung model developed by 

Tomlinson has been established in order to gain confidence in using this improved counterlung model with 

the complete system. This additional simulation was under the same condition as the simulation established 

by Tilley. The predicted breathing loops obtained from this simulation are presented in figure 3.14. These
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figures also includes the corresponding experimental breathing loops. Again it was found that the agreement 

between the simulation and experiment was very good. Therefore, the improved counterlung model can be 

used with confidence for further work.

3.2.4 Further development of component models

Based on the success obtained during the simulation studies undertaken by Tilley and Tomlinson, 

further work has been made for the extension of the simulation to include the variations in the composition 

of breathing gas. As the pressures and the flow rates in the semi-closed-circuit breathing system can be 

simulated, it is convenient to apply the techniques described in section 23  for the further development of 

the system models to simulate the variation in the composition of breathing gas. Other aspects to be 

considered in the models include the conversion of oxygen to carbon dioxide in the breathing simulator 

model and the absorption of carbon dioxide in the axial flow scrubber model. Hence, the simulation 

techniques described in section 2.9 and 2.10 are used in the new breathing simulator and axial flow carbon 

dioxide scrubber models.

Comparing equation (2.71) for determining the pressure losses across the axial flow scrubber with 

Tilley’s empirical model, ie. equation (3.13), it has found that the term with vs1J does not appear in 

equation (2.71). However, if the fraction void space e of 0.35 is used in equation (2.71), two very close 

curves given by equations (2.71) and (3.13) are obtained, see figure 3.15. Hence, equation (2.71) can be 

used instead of Tilley’s empirical model with the benefits of applicable for assessing different fraction void 

space values and avoiding the use of iteration procedure as equation (2.71) is explicitly defined.

3.2.5 System simulations and results

An important area to be investigated in the following studies is the gas composition inside the 

mouthpiece whose constituents determine the inspired gas conditions. Therefore, the combined mouthpiece, 

breathing tube and breathing simulator pipework pressure losses model mentioned in section 3.2.3 needs 

to be separated in order to compute the gas composition in the mouthpiece precisely. The new block 

diagram for the semi-closed-circuit breathing system simulation is shown in figure 3.16(a). In addition, 

figure 3.16(b) shows the simulation schematic of the breathing system in Bathj$?. According to section 2.3, 

all the restriction models must allow the transfer of the mass of constituent gases between their adjoining
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capacitive element models as the capacitive elements require these to determine the mass of the constituent 

gases. Referring to the block diagram, the mass of the constituent gases are transmitted through the links 

as an array of four quantities which represent the oxygen, nitrogen, helium and carbon dioxide. This array 

of variables is called a ‘vector type variable' which can simplify the establishment of the models for the 

simulation. In the scrubber model ten elements are used initially. Also all the C02 concentrations c and w 

in the scrubber model are vector type variables.

(i) Constant flow through the C02 scrubber model

The scrubber model has been tested using a simple arrangement where a constant velocity of gas 

mixture flows through the scrubber in one direction only. This allows the technique for the simulation of 

the absorption process in the scrubber to be justified before being used in a full simulation. Hie test 

simulation was undertaken where an air mixture contained 4.76% (volume to volume ratio) of carbon 

dioxide was supplied constantly at a flow rate of 3.15 L/min to the scrubber. Under this condition, the 

pressure in the scrubber was maintained at an atmospheric pressure of 1.013 bar. This simulation was set 

up to follow the standard test procedure used in the Royal Navy for measuring the duration of C02 

absorbent. During this standard test, the running time is recorded until the downstream C02 concentration 

of 0.02% (volume to volume ratio) is detected. This period of time reported as the ‘ACTIVITY’ is a 

specified parameter used in the Royal Navy to express the duration of C02 absorbent. The data used in the 

C02 scrubber model for this simulation is shown in table 3.4. The results obtained from this simulation are 

shown in figure 3.17. This figure includes the simulated partial pressure of C02, termed Pco2, at the 

upstream and downstream of the scrubber. From figure 3.17(b) it can be seen that during the first 66.3 

minutes of the simulated run-down test, the simulated Pco2 at the downstream of the scrubber is below the 

recommended value of 2.02x10*4 bar (which is 0.02% volume to volume ratio of C02). Comparison was 

made with the sodalime’s ‘ACTIVITY’ time obtained from the standard test. Good agreement was obtained 

(where the experimental ‘ACTIVITY’ time is 67 minutes). In addition, the predicted gas and absorbent 

phases of C02 concentration at individual elements in the scrubber model are presented in figure 3.18.

(ii) Complete system simulation

It is essential to show that the scrubber model can be applied to the condition where the gas flows 

through the scrubber in forward and backward directions during the breathing cycle. Hence, two examples
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are presented in order to assess the suitability of the scrubber model for this condition. Both examples apply 

to the test arrangement where the semi-closed-circuit breathing system is connected to a breathing 

simulator. Under this condition, the breathing simulator starts with the Respiratory Minute Volume (RMV) 

of 22.5 IVmin and a C02 production of 0.9 L/min for 4 minutes. A RMV of 50 L/min and a C02 

production of 2 L/min are then set in the breathing simulator for 6 minutes. This switching of rates is 

repeated continuously until the lowest inspired C02 level at the mouthpiece is greater than a partial pressure 

of 6 mbar. The above test arrangement is one of the standard test procedure used in Royal Naval for testing 

the closed-circuit breathing equipment. The simulated diving depth for these two examples are 25 m and 

54 m. According to the Royal Navy (Diving manual, 1987), three standard mixtures have been chosen for 

the constant mass flow jet unit to cover the range of depths down to 54 m. The mixtures used, the required 

supply volumetric flow rate and the maximum depths in which they may be safely used are illustrated in 

table 3.5 and these will be applied in the models of the constant mass flow jet unit. Since the experimental 

test performed at DRA, Alverstoke, has not considered the oxygen uptaken process, the consumption of 

oxygen in the breathing simulator is not taken into account in the simulation at present. The data used in 

the models is the same as in table 3.1. Table 3.6 illustrates the additional data used in the models.

The predicted 1*C02 at the mouthpiece obtained from the simulations at diving depths of 25m and 

54 m are presented in figures 3.19 and 3.20 respectively. These figures indicate that at each breathing cycle 

the maximum value of 1*C02 is the level of end tidal 1*C02 expired by the breathing simulator and the 

minimum value of PC02 is the level of inspired Pco2. These figures also show that the level of inspired Pco2 

at the high ventilation rate region is higher than the low ventilation rate region. This is due to the C02 in 

the gas stream passing through the scrubber without having the opportunity to move radially to contact the 

absorbent surface and being absorbed during the cycles of high ventilation rate. From the figures it can be 

seen that the time of the inspired Pco2 taken to reach 5 mbar in the simulation relating to 54 m depth (57 

minutes) is less that the simulation relating to 25 m depth (78 minutes). As a consequent, the duration of 

the C02 scrubber will reduce with an increase in diving depth. The corresponding experimental results 

which were obtained by DRA, Alverstoke, were used to validate the simulation (ie. 58 minutes for 54 m 

depth and 77 minutes for 25 m depth). Again good agreement between the simulation and experiment was 

obtained.

65



Having validated the scrubber model, the consumption of the oxygen in the breathing simulator 

can now be considered in the complete system simulation. The following simulation considers the diving 

schedule carried out from the water surface to the depth of 54m and then returning back to the surface. The 

duration time from leaving the surface to the beginning of the ascent is 20 mins. Hence, the simulated 

diving schedule should follow the recommended schedule described in table 1.2 for 54 m dive and 20 mins 

descending and bottom times. Referring to table 3.5, the mass flow jet unit requires to supply a gas mixture 

of 32.5%02/67.5%N2 at a flow rate of 13 L/min (measured at the surface) for a 54 m dive.- This 

composition of gas mixture is also used as the initial volumetric fraction of constituent gases in all the 

component models of the system at the beginning of the simulation as well. Under the simulation condition, 

an overall oxygen consumption of 2 L/min (STPD) and a ventilation ratio of 1 are applied in the breathing 

simulator model. According to table 2.5, the RMV of 50 L/min and the breath per minute of 25 are used 

for the V02 equal to 2 L/min. After these breathing characteristic have been identified, the whole system 

simulation can be started.

The whole system was simulated over a period of 50 mins and 10 seconds. The results obtained 

for this simulation are shown in figures 3.21,3.22,3.23 and 3.24. The simulated diving schedule as shown 

in figure 3.21(a) follows the recommended diving schedule. The predicted pressure and volume of the 

counterlung are shown in figures 3.21(b) and (c) respectively. These figures show that the pressure inside 

the counterlung follows the ambient hydrostatic pressure changes and the counterlung has not collapsed. 

Figures 3.22,3.23 and 3.24 show the simulated partial pressures of constituents gases [oxygen (a), nitrogen

(b) and carbon dioxide (c)] inside the breathing simulator, mouthpiece and counterlung respectively. These 

figures show that the differences of oxygen and nitrogen partial pressures between the breathing simulator, 

mouthpiece and counterlung are very small. For the carbon dioxide, the levels of partial pressure are, 

however, different between the counterlung and the breathing simulator as the scrubber absorbs the carbon 

dioxide in the path between the counterlung and the breathing simulator. Referring to figure 3.23, the partial 

pressures of all the inspired gases are within the physiological limits throughout the diving schedule. Hence, 

the breathing system can provide safe breathing gas for the diver under this condition.

Due to lack of the appropriate experimental data, comparison between the theoretical prediction 

and the current Simulation is made. The following equations given by the Diving manual (1987) enable the

66



steady state volume percentage of oxygen inside the counterlung to be calculated:

0 2 supply flow  =
%02 inside the storage bottle

* Supply flowTUo

% 02 inside the counterlung =
O. supply flow  -  O, used

j _ x 100
Supply flow -  O, used

\

Since the above parameters are known, the steady-state volume percentage of oxygen inside the counterlung 

can be evaluated as 20%. According to Dalton’s Law, the volume fraction of a constituent gas is equal to 

the partial pressure fraction of this constituent gas (ie. V, /  V = P, /P ) , therefore, the volume fraction of 

0 2 inside the counterlung relating to the simulation can be evaluated as well. Referring to figure 3.21(b) 

and 3.24(a), the steady state volumetric fractions of 0 2 inside the counterlung at different diving depth are 

calculated as 20%, result in 1.26/6.3104 bar ratio at 54 m depth, 0.38/1.9 bar ratio at 9 m depth, 0.32/1.6 

bar ratio at 6 m depth and 0.26/1.3 bar ratio at 3 m depth. Hence, it is shown that the simulation enables 

the oxygen composition in the breathing equipment to be predicted.

3.2.6 Improving system performance

An important aspect relating to the design of underwater breathing apparatus is to ensure that the 

effort expended by the diver is as low as possible. This implies that steps must be taken to minimize the 

flow resistances in the mouthpiece, breathing tube and C02 scrubber. Worthwhile improvements in 

performance are possible by making changes to the mouthpiece, breathing tube and scrubber dimensions. 

Figure 3.25 shows the effect of increasing the mouthpiece diameter by 30%. Compared with the original 

simulation using the respiratory demand of 30 breaths/min and 75 RMV at the diving depth of 40 m (figure 

3.12(b), this modification reduced the peak-to-peak mouth differential pressure variation by 0.75 kPa and 

also lowered the external resistive work from 3.23 J/L to 2.68 J/L. Figure 3.25(b) shows the predicted PC02 

at the mouthpiece obtained from the simulation at the diving depth of 25 m. This simulation was under the 

same condition as the simulation established relating to figure 3.19 except for the increase of mouthpiece 

diameter. It was found that the time of inspired Pc02 taken to reach 5 mbar is the same as before (78 

minutes). Hence, this modification has not decreased the duration of the breathing system and enables the 

work in breathing to be reduced. Although the simulation indicated the increase of mouthpiece diameter 

can improve system performance, it is impractical to increase the mouthpiece diameter larger than the 

diver’s mouth.
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Another possibility to reduce the resistive work of breathing is to increase the breathing tube 

diameter. Two simulation results shown in figures 3.26(a) and (b) are under the same condition as their 

original simulations relating to figures 3.12(b) and 3.19 respectively, except that the breathing tube diameter 

has been increased by 100%. From the figures it can be seen that the peak-to-peak mouth differential 

pressure variation is reduced by 0.5 kPa and the time of inspired 1*C02 taken to reach 5 mbar is reduced to 

4000 seconds (66.7 minutes) in which the duration of the breathing system is reduced. The reason for the 

reduction of system duration is due to the increased dead space which causes a larger amount of C02 

accumulated in the breathing tube without passing through the C02 scrubber. Hence, this suggestion cannot 

be applied.

A further improvement which can reduce the breathing tube flow resistance is to use a smooth bore 

breathing tube instead of the convoluted tube. Again similar simulations were established but in this case, 

neglecting the breathing tube friction related to the convolutions. Figure 3.27 shows that the peak-to-peak 

differential pressure variation is reduced by 0.5 kPa and the time of inspired Pco2 taken to reach 5 mbar 

is unchanged (78 minutes). Hence, this modification is applicable for the improvement of the breathing 

system.

The last possibility investigated was to increase the CQj scrubber diameter. In order to avoid 

increasing the scrubber weight acting on the counterlung, the length of the absorbent bed was reduced to 

remain the sodalime volume constant. As before, the original simulation results were used as a reference 

for a comparison with the new simulation results. Figure 3.28 shows the simulation results obtained when 

the scrubber diameter was increased by 50%. This indicated that although the peak-to-peak mouth 

differential pressure variation was reduced by 1 kPa, the time of inspired Pco2 taken to reach 5 mbar was 

also reduced to 2820 seconds (47 minutes). This is due to the decreased flow velocity through the absorbent 

bed (caused by the increase of cross sectional area) leading to a reduced mass transfer coefficient (see 

equation 2.86). This modification will reduce the duration of the breathing system and clearly cannot be 

applied in practice.
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33 SIMULATION OF A SURFACE DEMAND DIVING SYSTEM

33.1 Introduction

The surface demand diving system is a type of open circuit breathing system. The system consists 

of two control valves interconnected by a length of flexible hose. The principle of this breathing system 

is outlined in figure 3.29. The breathing gas which can be an oxy-nitrogen or oxy-helium mixture is 

supplied from the surface control panel through a long hose (umbilical).

33.2 Component models development

The simulation techniques described in chapter 2 have been used to model the gas storage 

cylinders, the surface supply umbilical and the breathing simulator. Since the gas composition within the 

surface demand diving system is constant, the technique to simulate the variation of gas composition in the 

breathing system is unnecessary except for the demand regulator model where the gas composition will vary 

due to the mixing of the diver’s exhaled gas and the supply gas. The following sub-sections described the 

detailed theoretical analysis of the additional models required far the breathing system.

(i) Pressure reducing valve

The pressure reducing valve, as shown in figure 3.30, is connected to the storage bottle inside the 

control panel. Its purpose is to reduce the gas pressure from the high pressure storage bottle to an 

intermediate pressure of approximately 1 0 - 1 5  bar. The control action is achieved by an arrangement 

referred to as a piston actuated high pressure seat. The seat is pneumatically balanced, viz. the high pressure 

supply gas surrounding the seat does not exert a force on the seat itself. This ensures that the outlet 

pressure from the valve is maintained constant despite a continually decreasing supply pressure as a 

consequence of the cylinder discharging. The requirement of the outlet pressure is regulated according to 

the diver’s depth.

Referring to figure 3.30, the reduced pressure acts on the piston tending to close the valve and is 

resisted by the ambient pressure acting on the valve. Hence, the net opening pressure force acting on the 

spool is given by;

F PJr> S (Pam- P « a ) A pi (3.17)
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Two springs also act on the valve spool. The force generated by the larger spring acting on the 

piston tends to open the valve, whereas the smaller spring tends to close the valve. Hence, the net opening 

spring force acting on the spool is given by;

Fv .  '  kJ XU. -  *.) -  ♦ *,) <318>

After identifying the net pressure force and net spring force acting on the valve head, the approach 

described in section 2.8 can be used to simulate the valve head motion and the gas flow through the valve.

(ii) Demand regulator

The basic operating principle of the demand regulator is shown diagrammatically in figure 3.31, 

where a lever forms a connection between a balance piston valve and a flexible diaphragm. One side of 

the diaphragm is exposed to external water pressure and the other to the gas pressure acting internally in 

a control chamber formed in the valve body. The body also incorporates a mouthpiece outlet Gas is 

supplied to the balance piston valve at a pressure controlled by the reducing valve at the surface panel. 

When the diver inhales, the pressure in the control chamber is reduced, resulting in a pressure imbalance 

at the diaphragm. This causes the diaphragm to move the lever which in turn opens the balance piston 

valve. Hence, the supply gas flows into the balance piston chamber and then a small bending chamber, 

located inside the main control chamber, straight to the mouthpiece. At the completion of the inhalation 

phase of the breathing cycle, the pressure in the control chamber recovers, allowing the diaphragm to return 

to its original position thus closing the valve. As the diver exhales, the main control chamber pressure will 

rise until a point is reached where the gas pressure is sufficient to open the mushroom valve fitted to the 

valve body. This allows the exhaled gas to be vented to the surrounding water.

For the purposes of the analysis, the forces acting on the balance piston valve, diaphragm and lever 

are considered separately as shown in figure 3.32.

Forces actine on the balance piston valve

According to figure 3.32(a), the balance piston valve is pneumatically balanced in which the supply 

gas pressure does not exert a force on the valve seat itself. The pressure inside the main control chamber 

acts on the valve stem tending to close the valve. This force is resisted by the pressure an the other side
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of the balance piston. Hence, the net opening pressure forces acting on the balance piston is given by;

<3 J9 >

The opening force is resisted by two compressed springs in the main control chamber. The initial 

compressed displacement of the springs are determined by the setting of an adjustor, see figure 3.31. Hence, 

the opening spring force acting on the balance piston is given by;

f ,m * -  K ( xu . + XJ  -  + XJ  <3-2°)

As with the pressure reducing valve, the force due to fluid momentum tends to close the valve. 

The magnitude of the momentum force Fm is determined using equation (2.65). Also a speed dependent 

viscous friction farce f ,  d x jd t  and stick/slip friction (Coulomb friction) Fc are assumed to be acting on the 

balance piston. In addition to the above forces, the piston is also subjected to an opening force due to the 

lever. If the force from the lever is Fĵ bv* then equating the forces acting on the balance piston gives;

flM Fcsisn dt ~  P ,M  ~  F i M

d ZX.
+ Met * (3*21)

"irv " dr

Forces actine on the diaphragm

If the hydrostatic pressure acting on the diaphragm is greater than the gas pressure inside the main 

control chamber, the net pressure forces acting on the diaphragm will tend to deflect the lever and open 

the balance piston valve. Hie net pressure forces acting on the diaphragm is given by;

(3.22)

Due to the flexibility of the diaphragm, the effective area acted on by the pressure forces varies 

considerably throughout the operational range. When the diaphragm is fully extended, the effective area 

is a minimum. This effect has been accounted for in the model using a simple linear relationship with 

diaphragm displacement:

^ d i  ~  ^ d l  ~  di ~  ^ d i ) X d J * d l
(323)

As a consequence of the movement of the diaphragm, water will be drawn into or pumped out 

from the end cover chamber. This will introduce a pressure loss which will either increase or reduce the
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hydrostatic pressure acting on the diaphragm. The magnitude of the pressure loss will be dependent on the 

area of the slots at the end cover and can be determined as follows:

c Pw 8p = -JL 
2

A
£ C t ,

\  J j

(3.24)

The water flow rate induced by the diaphragm can be obtained from the following expression:

Qj, ~ (dxdl/d t)  Adl (3.25)

When the valve is opened, water will be drawn into the end cover chamber and the actual 

hydrostatic pressure acting on the diaphragm will drop. Hence, the actual hydrostatic pressure acting on the 

diaphragm is given by;

n ,  -  S V - -  SP <W >

Similarly, when the valve is closing, water will pass from the end cover chamber to the surrounding causing 

Pdl to increase. The actual hydrostatic pressure acting on the diaphragm during valve closure is given by;

(3.27)

Furthermore, the net opening pressure force acting on the diaphragm is assisted by the spring 

located between the diaphragm and the end cover, see figure 3.32(b). Hence, the opening spring force is 

given by

F , *  =  k  '  x d , )  , ( 3 ‘2 8 )

Assuming F LMl is the force from the lever, equating the forces acting on the diaphragm gives;

F  * F + F  -  f  -  Me . l i t  P-29)L,dt P Ji t,di J v ^  dl ^^2

Forces actinz on the level

The lever provides the link between the diaphragm and the poppet, and is subjected to the forces 

shown in figure 3.32(c). Taking moments about O, then:

-  V i *  -  (3-30)

72



Having established the forces acting on the lever, the next step is to determine the geometric relationships 

between the linear motion of the balance piston and diaphragm and the angular rotation of the lever. The 

following relationships apply to the lever:

= /Lsin(0 + 0^ )  , b3 -  b2( 1 + tan20) ■ ^ sec 2© , b4 * lLcos(0 + 0^ )
, xdi = /J c o s 0/ix -  cos(0 + 0A)]-  b2 tan0

and,

d x *  -  I « w n  4. a  \ d e  -  h  d ( l
~3T - sm(e V-3T ' b'-3T

(3J1)

d 2xj. (  dQ^

v y
♦ lt .*0(6 +0* )  * 1® -  b. 'd e '1 + b d 2d 

1 d t2
(332)

Similarly, the following relationships between x^  and 0 can be derived.

-  b2sectQ™  -  b , l l  
d t 2 at at

(3.33)

d 2x>
dt

— * 2b7sec2©tan0 
2 2 dt\  y

+ 6, sec29,^.i? = 2/j.tan0 
2 d t2 3

rdQ '
I T

+ b d 2Q 
3 d t2

(334)

Substituting for f l m  and Flm in equation (3.30), and introducing and Fdl as follow:

F*  = Fm * f vd x j d t  + Fc sig n (d x jd t)  -  Fpjrv -  FsJn)
F d> =  F P4i +  F ^  ~ f v d x j d t

Then, equation (3.30) becomes:

r d 2Q h I .  ■ b,
L d t 2 ’

/  N
d 2xd

F., -  MeJt___ t -  h F  + Me. d Xbv2  ̂ *  *  d t2 J _  f  d Q
~ m dt

(335)

Substituting for the terms including x^  and xdi using equations (3.32) and (3.34), the lever angular 

acceleration is given by;

d 2Q 1 b\F* -  b2FbV -  (bib4Med.+2biMehvb2ianQ) 'd e * f  </0 
~ mH t

(336)
d t2 {lL+bfMedl+b2Mek'bi )L

0 is obtained by numerically integrating equation (3.36), which allows data relating to the motion of both 

balance piston and diaphragm to be determined using the outlined geometrical relationships.
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Flows through the balance piston

As the flow through the balance piston valve seat is annular, the flow area can be determined

from:

(3.37)

The mass flow rate through the valve seat is determined using equation (2.19). After leaving the valve seat,

there is a tiny gap in between the valve stem and the housing of the balance piston chamber, see figure 

3.32(a). If the flow area of the hole or the gap is relatively large, the pressure inside the balance piston 

chamber, the small bending chamber and the main control chamber will be approximately the same, and 

P /c  =  P fm  =  P b v  However, if the hole and the gap introduce a significant pressure loss, then clearly these 

pressures will not be equal. In this case it will be necessary to use equation (2.19) to determine the mass 

flow rates through the hole and the gap.

Mouthpiece flow

The flow through the mouthpiece during inhalation and exhalation is the combination of the flows 

from and to the main control chamber and the small bending chamber. In line with the studies undertaken 

by Tilley (1991), the relationship between pressure loss and gas flow for the mouthpiece can be assessed 

using the ‘k factor method’. Hence, the mass flow rates from the main control chamber and from the small 

bending chamber are given by;

Mushroom valve flow

For the purpose of the analysis, the mushroom valve is assumed to react instantaneously to the 

change in control chamber pressure. The relationship between pressure difference and volumetric flow rate

3.2.2(iii). Hence, when the difference between the control chamber pressure and the mushroom valve

the gas passes through a small hole from the balance piston chamber to a small bending chamber. Also

(338)

* - W  2P AP*. '  K>~
(339)

can then be found using a similar approach to that derived for the buoyancy control valve in section
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hydrostatic pressure is greater than the cracking pressure the valve will be operated and the flow rate 

will be;

Pressures inside the demand regulator chambers

The volumes of the balance piston chamber and the small bending chamber are fixed. Hence, the 

rate of change of pressures and temperatures inside these chambers can be obtained using the same form 

as equations (2.42) and (2.43) developed for a short pipe. However, the main control chamber volume will 

vary due to the movement of the diaphragm. Therefore, the expression to determine the rate of change of 

pressure and temperature inside the main control chamber must include an additional work done term, 

which is related to the change of chamber gas volume where V,e = - Adl dxjdt, and are given by

(iii) Hydrostatic pressure acting on the breathing system

Taking the reference depth of a dive from the water surface to the mouthpiece, the hydrostatic 

pressure acting on the mouthpiece is given by;

If the distances from the mouthpiece to the centre of the diaphragm and to the mushroom valve are zdi and 

z„y respectively (both below the mouthpiece), then

The positive signs correspond to the diver being upright and the negative signs apply when the diver is 

inverted.

Q„v -  SL (P lc -  -  P J (3.40)

The mass flow rate can be obtained as follow;

(3.41)

Pl e- n [ R  ( Z m lti Tin -  I  m ^ T , )  -  P J h ] / Vk (3.42)

(3.43)

IP * P  , + p gzmp at r  mp
(3.44)

(3.45)

IP = IP ± p gz
HIV mp r w b  |

(3.46)



33.3 System simulations and results

The block diagram and the Bath#? simulation schematic of the surface demand diving system 

simulation are shown in figure 3.33(a) and (b) respectively. Currently, the conversion of oxygen to carbon 

dioxide is not taken into account in the breathing simulator model. Hie data used in the models is presented 

in table 3.7.

Before undertaking the simulation studies, the number of elements to be included in the long 

umbilical pipe model needs to be identified. Although more elements will lead to a more accurate 

prediction, the simulation will be obtained at the expense of longer simulation run times. Therefore, it is 

necessary to ascertain the minimum number of elements which can provide acceptable predictions. Figure 

3.34 illustrates the simulation results of the breathing system using long pipe models consisting of 1,5,10 

and 20 elements. Air was supplied from the panel. The simulations were obtained at respiratory demands 

of 25 breaths/min and 62.5 RMV for a 50 m diving depth. Referring to figure 3.34, the breathing loops 

formed by plotting the mouth differential pressure against the breathing simulator displayed volumes are 

nearly identical. However, the predicted variations in supply pressure at the demand regulator (umbilical 

outlet pressure), using different numbers of elements in the umbilical pipe model, are different. It is 

acceptable that the umbilical pipe model with 10 elements is sufficient to provide good predictions as the 

results obtained from 10 and 20 elements model are very close. Hence, the umbilical pipe model with 10 

elements is used for further simulations. The following sections are the assessments of the breathing system 

under different operating conditions.

(i) Different respiratory demands

The effect of different respiratory demands on the operation of the surface supply diving system 

is illustrated in figure 3.35, using the breathing loops obtained at 15 breaths/min & 22.5 RMV, 25 

breaths/min & 62.5 RMV and 30 breaths/min & 90 RMV. All the results were predicted at a diving depth 

of 50 m and at the demand regulator supply pressure 10 bar above diving depth pressure (ie. 15 bar 

pressure at the outlet of the surface panel). The predictions clearly indicate that the operation of the diving 

set is extremely sensitive to respiratory demand. In the case of higher demands, both peak-to-peak mouth 

differential pressure and loop area increase with breathing demand. As a consequence, the diver will have 

to expend more energy when breathing at the higher demands. This was confirmed by the predicted values
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of the external resistive work per volume of gas inhaled and exhaled at these conditions, see table 3.8. It 

was also found that these values did not exceed the recommended respiratory work limits defined in 

equation (1.2) (ie. 1.4 J/L for 22.5 RMV, 3 J/L for 62.5 RMV and 4.1 J/L for 90 RMV).

(ii) Different diving depths

Three predicted responses are presented in figure 3.36, obtained at the respiratory demand of 30 

breaths/min & 90 RMV for diving depths of 10,50 and 60 m. For the 10 and 60 m depth simulations, the 

supply pressures at the demand regulator were set, respectively, at 10 bar and 12 bar above diving depth 

pressure (ie. 11 bar pressure at the outlet of the surface panel for 10 m depth and 18 bar pressure at the 

outlet of the surface panel for the 60 m depth simulation).

From the figures it can be seen that the breathing loops become fatter with increasing diving depth. 

This is due to the gas density increasing with depth, thus leading to higher mass flow resulting in more 

pressure losses in the flow path of the breathing system. This results in an increase in the diver’s breathing 

effort to overcome the increased flow resistance. In addition, when the breathing system is operating at 30 

breaths/min & 90 RMV at 60 m depth of dive, the predicted external resistive work which is 4.44 J/L 

exceeds the recommended respiratory work limit of 4.1 J/L. Hence, the diver will experience breathing 

difficulty at this condition.

(iii) Different gas supply mixtures

Figure 3.37 shows the difference between using air and an oxy-helium mixture (80%He/20%02) 

as the supply gas to the breathing system. The predicted breathing loops were obtained using a respiratory 

demand of 30 breaths/min & 90 RMV at a diving depth of 50 m. The demand regulator supply pressure 

is the same in both simulations. Referring to figure 3.37, both peak-to-peak mouth differential pressure and 

loop area are reduced when oxy-helium mixture is used as the supply gas. This is due to different gas 

properties (the gas constant R increases from 287 J/kg K for air to 867 J/kg K for oxy-helium mixture), 

leading to faster pressure responses in the components. In addition, figure 3.38 shows the predicted 

breathing loops, obtained at the conditions of 85 m diving depth and 30 breaths/min & 90 RMV respiratory 

demand using oxy-helium mixture as the supply gas. The predicted external resistive work is computed as

2.4 J/L. This indicates that the breathing system still does not exceed the recommended respiratory work
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limit (4.1 J/L) even at 85 m depth. Hence, considerable benefits can be gained from using oxy-helium 

mixture as the supply gas.

(iv) Comparisons between predicted and measured results

It is essential to show that the simulation predicts realistic system behaviour. Hence, figures 3.35 

to 3.37 also include the corresponding experimental breathing loops obtained at DRA, Alverstoke. The 

agreement achieved clearly demonstrates the suitability of the developed models for the simulation of the 

surface demand diving system.

(v) Comparing the work of breathing with the semi-closed-drcuit breathing system

A further simulation has been established to compare the work of breathing for the surface demand 

diving system with the semi-closed-circuit breathing system. The predicted breathing loop presented in 

figure 3.39(a) is obtained from a simulation using the respiratory demand of 30 breaths/min and 75 L/min 

RMV at 40 m depth air diving. Figure 3.39(a) shows the breathing loop obtained earlier from the simulation 

of the semi-closed-circuit breathing system under the same breathing conditions and diving depth. These 

simulations show that under the same conditions the surface demand diving system has smaller peak-to- 

peak mouth differential pressure variation and a lower mean level of mouth differential pressure. Hence, 

the diver will have to expend less energy when using the surface demand diving system. It is noticeable 

that the semi-closed-circuit breathing system has two more components in the breathing path (ie. breathing 

tube and C02 scrubber) in which additional resistive work is required. The shapes of the two breathing 

loops are different. This is due to the characteristic of the counterlung which requires larger elastic work 

and leads to an increase in the system pressure at the end of exhalation phase.

(vi) Simulated 54m diving schedule

The performance of the surface demand diving system has been investigated under a complete 

diving schedule. The following simulation considers a diving schedule from the water surface to a depth 

of 54 m and then returning back to the surface. The same diving schedule and breathing characteristics used 

for the semi-closed-circuit breathing system for a 54 m dive simulation have been used. The whole system 

was simulated over a period of 50 mins 10 seconds. The results obtained for this simulation are shown in 

figures 3.40, 3.41 and 3.42. Figure 3.40(a) shows the simulated diving schedule. The simulated pressures
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inside the demand regulator and the breathing simulator are shown in figures 3.40(b) and (c) respectively. 

These figures show that the breathing gas pressure follows ambient pressure changes. Figures 3.41 and 3.42 

shows the simulated partial pressures of the constituent gases [oxygen (a), nitrogen (b) and carbon dioxide

(c)] inside the breathing simulator and the demand regulator respectively. From figure 3.42 it can be seen 

that the partial pressures of the inspired gases are within the physiological limits throughout the diving 

schedule. Hence, the diver will be in no danger from gas poisoning at these conditions.

33.4 Improving system performance

Similar to that outlined for the semi-closed-circuit breathing system, worthwhile improvements in 

reducing work of breathing is possible by making changes to the mouthpiece. Figure 3.43 shows the effect 

of increasing the mouthpiece diameter by 30 %. This simulation was undertaken at the same condition as 

the earlier simulation using the respiratory demand of 30 breaths/min and 90 L/min RMV at a 60 m diving 

depth (figure 3.36(c)). It can be seen that although during exhalation the mouth differential pressure is 

reduced, there is no change during inhalation. This means that the flow resistance of the mouthpiece is 

insignificant when gas flows from the demand regulator to the mouth. An improvement to assist breathing 

during inhalation is to use a stiffer spring located between the diaphragm and the end cover. This allows 

the balance piston valve to open more easily during inhalation. To test this, a simulation was established 

with the diaphragm spring rate increased by 100 %. Figure 3.44 shows the simulation result which indicates 

that less work is required during inhalation. If both modification are applied, the peak-to-peak mouth 

differential pressure variation reduces (see figure 3.45) and, therefore, the diver will expend less energy 

under the same conditions.

3.4 CLOSURE

Further work has been made to extend and improve the semi-closed-circuit breathing system 

models developed by Tilley and Tomlinson. The variation of gas composition within the system model and 

the absorption of carbon dioxide in the axial flow scrubber model has now been included and the models 

used to predict the duration of the semi-closed-circuit breathing system. Good correlation is obtained 

between the predicted and measured data. The simulation studies indicate that the duration of the C02 

absorbent scrubber reduces with increasing diving depth. The simulation studies show that increasing the
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mouthpiece diameter, breathing diameter, C02 scrubber diameter, and using a smooth bore breathing tube 

enable the work for breathing to be reduced. However, the simulations have identified that increasing the 

breathing tube and C02 scrubber diameters will reduce the duration of the breathing system. Therefore, 

increasing the breathing tube and C02 scrubber diameters are not practical modifications.

Mathematical models have been developed for the surface demand diving system and have been 

used to predict the performance of this type of breathing system. Good correlation is obtained between 

predicted and measured data. The simulation studies indicate that the operation of the breathing system is 

sensitive to respiratory demand and diving depth. The work of breathing is found to increase with 

respiratory demand and diving depth. In addition, the simulation studies indicate that the diver will expend 

less breathing effort when using a oxy-helium mixture (20%(V80%He) rather than air.

Comparisons between the performances of the surface demand diving system and the semi-closed- 

circuit breathing system indicate that under the same operating conditions, the work of breathing of the 

surface demand diving system is less. Hence, the diver will expend less energy when using the surface 

demand diving system. In addition, a 54 m diving schedule recommended by the Royal Navy has been 

simulated for both breathing systems. It is shown that the developed simulation techniques enable the 

variation of gas composition in both breathing systems to be predicted.
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TABLES FOR CHAPTER 3

Models Variables Values Units

Gas bottles Initial gas pressure 100 bar
Total gas volume 4.4 L

Pressure Exposed diaphragm diameter 35.6 mm
regulating Valve seat diameter 1.575 mm

valve Maximum valve opening 1.42 mm
Poppet angle 45 degrees

Effective mass of moving parts 0.01 kg
Spring rate of inlet valve head spring 7400 N/m

Initial compression of inlet valve head spring 2.3 mm
Spring rate of large spring 630000 N/m

Initial compression of large spring 4.5 mm
Viscous friction coefficient 100 N/(m/s)

Coulomb friction 0 N

Interconnecting Pipe internal diameter 10 mm
pipe Pipe length 0.07 m

Acoustic jet Diameter of orifice 0.229 mm

Counterlung Mean width of counterlung 0.24 m
Distance between the top and bottom of counterlung 0.2 m

Effective mass of moving parts 1 kg
Viscous friction 1000 N/(m/s)

Pressure Diameter of valve seat 20 mm
relief valve Exposed diameter of rubber diaphragm 50 mm

Cracking pressure due to spring pre-loaded 3 kPa

Buoyancy Pressure difference to open mushroom valve 0.1 kPa
control valve Mushroom valve flow/pressure gradient 500 (L/min)/kPa

Number of turns from fully closed position 0.1 -
Thread pitch for variable restriction 12 threads/inch

Variable restriction poppet angle 20 degrees
Variable restriction seat diameter 5.56 mm
Diameter of holes in venting disc 0.432 mm
Number of holes in venting disc 92 -

Axial flow Mean diameter of absorbent media granules 1.4 mm
C02 absorbent Depth of absorbent media 70 mm

scrubber Diameter of canister 140 mm
Internal diameter of breathing tube inlet connection 19 mm

Angle of inlet connection to canister centre-line 45 degrees
Number of holes in each baffle plate 90 -

Baffle plate hole diameter 6.35 mm
k factor for flow entering baffle plate holes 0.25

k factor for supporting mesh 2.4 -
Voidage 0.35 -

continue,

Table 3.1 Data used in the previous models of the semi-closed-circuit breathing system
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Models Variables Values Units

Breathing Breathing tube internal diameter 23 mm
tube Length of breathing tube 0.6 m

Number of breathing tube convolution 28 -

Breathing tube convolution pitch 62 mm
Breathing tube bend angle 60 degrees
Breathing tube bend radius 150 mm

Breathing tube inlet connection diameter 19 mm
k factor for inlet connection 0.1 -

Mouthpiece Flow area of mouthpiece 350 mm2
Effective length of mouthpiece 0.068 m

k factor for mouthpiece 1.82 -

Breathing Initial breathing simulator volume 0.5 L
simulator Reference volume for display 3 L

Additional pipework volume 6 L
Effective pipework diameter 25 mm

k factor for pipework 9.6 -

Distances Distance between the counterlung valve and
the centre of counterlung 

Distance between the mouth and
0.125 m

the centre of counterlung 0.24 m

Table 3.1 Data used in the previous models of the semi-closed-circuit breathing system

Conditions External resistive work

62.5 L/min RMV (20 m dive) 1.62 J/L
75 L/min RMV (20 m dive) 2.17 J/L

62.5 L/min (40 m dive) 2.36 J/L
75 L/min RMV (40 m dive) 3.23 J/L

Table 32  Predicted external resistive work per volume gas inhaled and exhaled obtained from the
simulation of the semi-closed-circuit breathing system
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Variables Values Units

Mean width of counterlung 0.24 m
Distance between the top and bottom of counterlung 02 m

Effective mass of moving parts 1 kg
Viscous friction 1000 N/(m/s)

Initial counterlung material stiffness 3500 N/m
Increased counterlung stiffness 9000 N/m

Counterlung displacement when counterlung stiffness increased 0.035 m
Coulomb friction when diver in supine upright position 2 N

Increased Coulomb friction when diver in supine upright position 50 N -
Coulomb friction when diver in supine upside-down position 2 N

Increased Coulomb friction when diver in supine upside-down position 50 N
Coulomb friction when diver in prone face up position 10 N

Increased Coulomb friction when diver in prone face up position 45 N
Coulomb friction when diver in prone face down position 30 N

Increased Coulomb friction when diver in prone face down position 80 N

Table 3 J  Data used in Tomlinson’s improved counterlung model

Variables Values Units

Mean diameter of absorbent media granules 1.4 mm
Depth of absorbent media 148.54 mm

Diameter of canister 30 mm
Internal diameter of breathing tube inlet connection 30 mm

Angle of inlet connection to canister centre-line 0 degrees
Number of holes in each baffle plate 90 -

Baffle plate hole diameter 1.5 mm
k factor for flow entering baffle plate holes 025 -

k factor for supporting mesh 0 -
Voidage 0.35 -

Bulk density, mass of absorbent per volume of bed 900 kg/m3
Absorbent capacity 0.01 moles/kg

Diffusion coefficient between C02 and air at 1 atm, 0°C 0.142 cmVs
Surface area per unit volume of absorbent 42 cm2/cm3

Effective factor of surface area 028 -

Table 3.4 Data used in the C02 scrubber model for the simulation of ‘ACTIVITY’ test

Gas mixture Supply volumetric flow rate Maximum allowable
(Volumetric fraction) (Measured at surface) diving depth

60°/oO2 / 40%N2 6 L/min 25 m
40%O2 / 60%N2 12 L/min 40 m

32.5%02 / 67.5%N2 13 L/min 54 m

Table 3.5 Constant mass flow jet unit required gas mixture and volumetric flow rate at their 
corresponding maximum depth of dive
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Models Variables Values Units

Axial flow Mean diameter of absorbent media granules 1.4 mm
C02 Depth of absorbent media 70 mm

absorbent Diameter of canister 140 mm
scrubber Internal diameter of breathing tube inlet connection 19 mm

Angle of inlet connection to canister centre-line 45 degrees
Number of holes in each baffle plate 90 -

Baffle plate hole diameter 6.35 mm
k factor for flow entering baffle plate holes 0.25 -

k factor for supporting mesh 2.4 -

Voidage 0.35 -
Bulk density, mass of absorbent per volume of bed 900 kg/m3

Absorbent capacity 0.01 moles/kg
Diffusion coefficient between C02 and air at 1 atm, 0°C 0.142 cm2/s

Surface area per unit volume of absorbent 42 crrf/cm3
Effective factor of surface area 0.28 -

Table 3.6 Data used in the further developed models of the semi-closed-circuit breathing system

Models Variables Values Units

Gas bottles Initial gas pressure 150 bar
Total gas volume 22 L

Pressure Exposed diaphragm diameter 36.8 mm
reducing Valve seat diameter 10 mm

valve Maximum valve opening 3 mm
Poppet angle 30 degrees

Effective mass of moving parts 0.05 kg
Spring rate of inlet valve head spring 2000 N/m

Initial compression of inlet valve head spring 2 mm
Spring rate of large spring 192000 N/m

Initial compression of large spring 7.64 mm
Viscous friction coefficient 100 N/(m/s)

Coulomb friction 0 N

Supply Pipe internal diameter 12.5 mm
umbilical Pipe length 115 m

k factor for bends and fittings 0 -

Relative roughness 0.0001 -

Balance piston Valve seat diameter 8.64 mm
valve of the Piston end diameter 8.4 mm

Demand Valve head stem diameter 2.5 mm
regulator Valve stem and piston chamber contact tolerance 0.2 mm

Piston chamber exit hole diameter 5 mm
Balance piston chamber volume 2.577 mL

Piston displacement for free flow 0.02 mm
Valve seat flow force factor 2 -

Speed dependent friction coefficient 20 N/(m/s)
Balance piston Coulomb friction 0 N

 continue

Table 3.7 Data used in the models of the surface demand diving system
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.continue

Models Variables Value
s

Units

Main chamber Maximum diaphragm diameter 60 mm
of the Minimum diaphragm diameter 40 mm

Demand regulator Lever dimension 30 mm
Distance from pivot point to poppet valve 2.5 mm

Lever angle 40 degrees
Maximum diaphragm travel distance 4 mm

Effective mass of balance piston assembly 20 grammes
Effective mass of diaphragm assembly 10 grammes

Adjustor large spring stiffness 2606 N/m
Initial compression of adjustor large spring 4.8 mm

Adjustor small spring stiffness 635 N/m
Initial compression of adjustor small spring 1.8 mm

Diaphragm spring stiffness 31.3 N/m
Initial compression of diaphragm spring 25 mm

Speed dependent friction coefficient 20 N/(m/s)
Main control chamber volume 38 mL

Small bending Small bending chamber volume 2 mL
chamber of the Small bending chamber flow area 64 mm2

Demand regulator k factor of small bending chamber flow path 2 -

Cover slot Cover slot flow area 270 mm2
chamber of the Cover slot volume 40 mL

Demand regulator Cover slot flow coefficient 0.9 -

Mouthpiece in Mouthpiece flow area 380 mm2
Demand regulator k factor of mouthpiece flow path 2 -

Mushroom valve Pressure difference to open the valve 0.064 kPa
Pressure/flow gradient 570 (L/min)/kPa

Breathing Initial breathing simulator volume 4 L
simulator Reference volume for display 7 L

Additional pipework volume 22 L
Effective pipework diameter 31.75 mm

k factor of the pipework 0 -
Relative roughness for pipework lxlO-4 -

Distances Distance from mouthpiece to diaphragm’s centre 20 mm
Distance from mouthpiece to mushroom valve 40 mm

Table 3.7 Data used in the models of the surface demand diving system

Conditions External resistive work

22.5 L/min RMV (50 m dive) 0.85 J/L
62.5 L/min (50 m dive) 2.05 J/L

90 Umin RMV (50 m dive) 3.625 J/L

Table 3.8 Predicted external resistive work per volume gas inhaled and exhaled obtained from the 
simulation of the surface demand diving system
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CHAPTER 4 
MATHEMATICAL MODELLING OF 

HUMAN RESPIRATORY SYSTEM
4.1 INTRODUCTION

In order to simulate the breathing apparatus under real human diving conditions, the model of the 

human respiratory system is required. Thus, the computer model will enable the full capabilities of the 

human to be assessed when using the breathing equipment, allowing the operational limits of the equipment 

to be assessed without risk to human life.

The first dynamic analysis of the human respiratory system appeared in 1954 (Grodins), and 

although it represented a step forward in considering dynamics, it was limited to a single forcing function 

ie. C02 inhalation. It also represented a much oversimplified treatment which nevertheless led to non-linear 

differential equations. At the time of its formulation, the state of the computer art was relatively primitive 

and exploration of a more general and realistic model was not practical. With the development of large- 

scale computing facilities, interest in the realistic dynamic analysis of complex multivariate biological 

control systems has increased rapidly (Grodins, 1965). Beginning with Defares in 1960, the original 

dynamic model of the respiratory system has been refined and extended by several workers using digital 

simulation (Grodins, 1967, Dickinson, 1977, Saunders, 1980, Sarhan, 1987 and Tomlinson, 1994). The 

present analysis represents a further step in this continuing process in order to obtain a general and realistic 

human respiratory model.

42  GENERAL DESCRIPTION OF HUMAN RESPIRATORY SYSTEM

The overall process of respiration comprises four subprocesses in series, as shown in figure 4.1. 

They are i) convective transport of gas to the pulmonary alveoli by ventilation, ii) diffusion from the alveoli 

into the blood in the pulmonary capillaries, iii) convective transport to the tissue capillaries by circulation 

of the blood, and iv) diffusion from the tissue capillaries into surrounding cells. Subprocesses i) and ii) 

together constitute pulmonary respiration (external respiration). Subprocess iii) is called blood gas transport, 

and subprocess iv) is known as tissue respiration (internal respiration).
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During breathing, air passes forwards and backwards along the trachea which in turn divides into 

two tubes, and each of these tubes then divides into two more, and so on. In all, there are 20-23 such 

divisions, resulting in 1 to 8 million terminal tubes. Each of these has at its end numerous blind sacs, called 

alveoli, where gas exchange occurs. Oxygen continuously diffuses out of the gas in the alveoli (alveolar 

gas) into the bloodstream, and C02 continuously diffuses into the alveoli from the blood through the thin 

alveolocapillary membrane. On leaving the lung, the oxygenated blood passes through the pulmonary vein 

and then into the left heart. The blood is then ejected from the left heart into the aorta and arteries, which 

run in parallel to the individual organs. By repeated branching the large arteries give rise to a larger number 

of smaller arteries, these to still more arterioles, and these in turn to the capillaries. In the capillaries, which 

form dense networks, dissolved substances (such as 0 2 and C02) are exchanged between the blood and the 

surrounding tissue. The capillary blood then flows into the smallest veins, the venules. These fuse, with a 

decrease in number and increase in lumen diameter, to form the small veins, which in turn fuse to form 

the large veins. The deoxygenated blood flows back to the right heart which pumps the deoxygenated blood 

back to the lung.

The effect of breathing are continuously monitored by chemoreceptors, which detect changes in 

0 2 and C02 partial pressures, and by mechanoreceptors, which survey changes in thoracic mechanics. The 

activity of these receptors allows ventilation to be adjusted automatically so that arterial blood gases are 

kept within acceptable limits despite changing internal and external conditions. The overall control of blood 

circulation is the responsibility of a population of neurons in the central nervous system, for simplicity 

called ‘centres'. On the basis of their locations the centres involved in circulatory regulation are designated 

as medullary, hypothalamic and cortical. These centres are fully described by Thews and Vaupel, 1985.

In developing the mathematical model, the human respiratory system described above can be. 

divided into three categories. These categories are mechanics of breathing, gas exchange process and control 

of breathing and blood circulation. Following sections describe the model development for these categories.

4.3 SIMULATING THE MECHANICS OF BREATHING

The ventilation of the alveoli required for gas exchange is brought about by a rhythmic alternation
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of inspiration (breathing in) and expiration (breathing out). Each inspiration draws fresh air, rich in oxygen, 

through the passageways into the alveolar space, and each expiration expels oxygen-poor air charged with 

carbon dioxide through the same passageways into the surrounding. The air movements during inspiration 

and expiration result from the rhythmic alternation between expansion and diminution of the thoracic cavity. 

The mathematical models described below are developed to simulate such a breathing process.

4.3.1 Model of nose and mouth

The nasal passage (nose) is the natural path for air flow into and out of the lung during quiet 

breathing, and is largely responsible for filtering, warming and humidifying the inspired air. The resistance 

of the nasal passages is very high; it may comprise 50% of the total airway resistance during quiet nose 

breathing. The mouth accounts for about 25% of total airway resistance during quiet mouth breathing. 

However, these fractions may increase at increased levels of ventilation, such as those encountered during 

exercise.

The law relating pressure drop and flow rate for the nasal passageway and mouth is far from linear 

(Sullivan and Chang, 1990), being dependent on gas velocity, density and viscosity, in addition to the 

internal geometry, including skin friction losses and losses due to changes in flow direction. The 

experimental pressure loss against Reynolds number relationships for an average adult at three primary parts 

of the respiratory flow system are shown in figure 4.2; the nasal passage, the mouth to alveoli, and the 

central airways. The dimensionless relationships shown in figure 4.2 have the advantage of being valid for 

different breathing gases and densities. Using the data in figure 4.2 leads to the following two relationships 

between the pressure loss and Reynolds number associated with the nose and mouth: 

i) Nose

= 0.05
V2pvn 

i) Mouth

1 + 1000 +
106

~Re_
(4.1)

_
^ p v m

=  0.01 1 + 1000 +
106

T T
y J

(42)

where Re„=pv„d /// and Rem=pvjl/fi. Note that d  is the reference diameter (ie. 22.5 mm) which is defined
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in the experiment conducted by Sullivan and Chang (1990). In this way, the results can be compared 

directly in which the reference diameter is used as a characteristic dimension. Rearranging equation (4.1) 

and (4.2), the mass flow rates through the nose and mouth are given by

(43)
q" 100.1 ^  d

50000p + 400.4 p 8/? 50000p 
d

(4.4)

20.02  \  d
1 0 0 0 0 P + 80.08 p8/j lOOOOp

d

The models of nose and mouth are acting in parallel. It is a straight forward matter to switch from normal 

nasal breathing to mouth breathing, as occurs in heavy exercise or when using breathing equipment.

43.2 Model of tracheobronchial tree (trachea and respiratory passageways)

In order to simplify the model, the tracheobronchial tree, extending from the nasal passageway to 

the alveolar compartment, has been divided into three distinct regions (figure 4.3): the extrathoracic zone, 

the intrathoracic extrapulmonary zone and intrathoracic intrapulmonary zone. A uniform (but time-varying) 

pressure is assumed to exist in each zone, allowing lumped parameter theory described in chapter 2 to be 

used in the model. According to the models developed by Tomlinson (1994), isothermal conditions are 

assumed to apply such that the temperature of the gas is considered to remain constant at all point 

throughout the system.

(i) Extrathoracic zone

The extrathoracic zone includes the downstream side of the nasal passageway and extends to the 

trachea. The rate of change of extrathoracic pressure Pa is dependent on the net flow rate from the nose, 

mouth and extrapulmonary zone, and is given by

(43)

(ii) Intrathoracic extrapulmonary zone

The intrathoracic extrapulmonary airflow passageways are considered to be elastic walls, which
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distend under the transmural (differential) pressure between the air passage and pleural compartments. The 

air passage pressure taken as the mean of intrathoracic and extrathoracic pressures, acts to open the airway. 

Pleural pressure acts on the other side of the wall, tending to close the airway. The flow rate is derived for 

a variable area orifice (figure 4.4) representing one passageway in the tracheobronchial tree. The smooth 

muscle surrounding the passageway is idealized as a mass-spring damper system acted on by the transmural 

force outlined above. It is assumed that the nominal displacement of a single airway, xntmuai, is the radius 

of a single airway when the transmural pressure is zero (Hyatt, 1958, Denison, 1981 and Lamdet, 1982). 

Hence, the full dynamic equation for the force acting on the wall of a single airway is given by

d 2x
Me.wl' d r

P + P .
-  P. Awl -  J U * )

(4.6)

Successive integration of acceleration d2x jd ?  in equation (4.6) gives the velocity dxjd t and displacement 

xai of a single airway, respectively. The effective flow area of the airways is thus determined:

K  (4 J)

The small airways are the site of insertion of the elastic and collagen fibres which contribute to 

the elastic recoil of the lung. The fibres exert traction on the walls of the airways and so help to maintain 

their shape; for this reason the function of the fibres has been compared to that of the guy lines of a tent. 

During a force expiration the volume of the lung decreases; the traction which is exerted by the guy lines 

then diminishes and the nominal displacement of the airway xnom al is reduced in consequence. This process 

leads to the static closure of the airways (Cotes, 1979). Hence, the static decrease of airway nominal 

displacement needs to be accounted for and is assumed to have linear relation with the lung volume:

nomfii '  *.,(K - WI (v„ - v„) (4-8>
where xal is the maximum nominal displacement of a single airway when traction is not applied. 

However, during quiet breathing the airways are essentially tethered to the parenchymal lung tissue; the 

traction pulls outward on the airways and helps to keep them open. Hence, the expression to determine the 

airway nominal displacement during quiet breathing is given by

-  * * *  * ** w  -  y j  / (K„ -  y j  (4-9)
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Using the data in figure 4.2 again, the relationship between the pressure loss and the Reynolds 

number (ie. Rea=pvji /fi) associated with the airways in the extrapulmonary zone can be obtained as

5P
X pvfl

0.002 1 + 1000 +
10*

Re.
(4.10)

Rearranging equation (4.10), the mass flow rate through the intrathoracic extrapulmonary zone is given by

q -
4.004

f  ^
2000(i

+ 16.016p5/7 -  2000>i 
d

(4.11)

Similar to the extrathoracic zone, the rate of change of intrathoracic extrapulmonary pressure Pit 

is dependent on the net flow rates from extrapulmonary and intrapulmonary zones and is given by

dPu _ R T  . .
"3 T  '  ~ r  ' %

(4.12)

(iii) Intrathoracic intrapulmonary zone

The region close to the alveolar compartment is termed the intrapulmonary zone. The order of 

magnitude of the velocity of flow and the Reynolds number at this part of the airways are very small as 

the flow area is large (Bennett and Elliott, 1982 and Fung, 1990). It is reasonable to assume that the flow 

in this part of airways is purely laminar (Tomlinson, 1994) and the mass flow rate is given by

9 * - p  ( P u - r j q ,  (4.13)

where p is the mean density (ie. =(Pit+PJ/(2RT)). The flow gradient Hip takes into account the pertinent 

characteristic of the airways: length, diameter, number of parallel passages, roughness of wall, etc.

43.3 Model of lung

Over 300 years ago, an Oxford physiologist John Mayow constructed a mechanical model of the 

lung using a bladder inside a pair of bellows. This was the first attempt to understand the lung as a 

mechanical device into which air flowed. Modem researchers have extended Mayow’s original concept. The 

lungs have been likened to “ a pair of bellows with an elastic recoil mechanism furnished by a spring” 

(Keele, Noil and Joels, 1982). The concept of a moving piston forms the basis of the lung model to account 

for the motion and gas flow processes associated with the lungs (Tomlinson, 1994). The operation of the
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lung is idealized as a linear piston of area A, (figure 4.5) with spring and viscous resistance effects. The 

motion of the piston is considered to be along the actuator axis (at approximately 90 degrees to the spinal 

column) and may be inclined at any angle, depending on the orientation of the human. The piston is acted 

on by a number of forces and is idealized as a point mass attached to the human by a spring. One side of 

the piston is subjected to alveolar pressure, which acts to expand the lung, and the other side is acted on 

by intrapleural pressure, which acts to deflate the lung. Hence, the equation of motion of the lung wall can 

be written as

d 2x, dx, iA, Av
'~ d F  '  (P-' '  P”) A' ~ f l[T  '  k'(x' "

Successive integration of acceleration <fx, /  dt2 in equation (4.14) gives the velocity dx, /  dt and 

displacement x, of the lung face, respectively.

The stiffness (or elastance), k, (inverse of compliance) of the lung varies considerably over the 

working range of the lung, from residual volume to total lung capacity (Bennett and Elliott, 1982). Figure 

4.6 shows the variation of lung volume with the transmural (differential) pressure between the alveolar and 

pleural compartments (marked L), and the pleural compartment and the atmosphere (marked W) of a 

normal healthy human. The gradients of these graphs are proportional to compliance of the lung or chest 

wall and the reciprocals are the respective elastances. Hence, a relationship between the lung elastance 

AP/AV, and the lung volume V, can be obtained (see figure 4.7(a)). Since stiffness is defined as the ratio 

of the rate of change of force with respect to displacement, AF, /  Ax„ it is related to elastance AP, /  AV, by

.  AF' .  Ai APi .  A2 AP> (4.15)
7 Ax, AV, I A, AV,

When the spring force due to the lung (acting on the pleural compartment) is exactly balanced by 

the pressure force, the lung is at the rest position. Since the lung volume at the rest position is defined as 

the functional residual capacity (FRC) (Bennett and Elliott, 1982), the lung displacement, x^ , , at rest is 

given by

x .  J *  (4.16)

At this condition, alveolar pressure is equal to atmospheric pressure, and air flow from the lung is zero.
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At FRC, the intrapleural pressure Pp, is sub-atmospheric (Bulfour Slonim and Hamilton, 1987), with a 

typical value taken as -5 cm water.

It is necessary to define the nominal displacement of the lung face, xnoml, at which the net force 

acting on the lung is zero. In steady state, equation (4.14) can be written as

*, (*. -  -  (p ., -  p „ ) A, <4 J7 >

Now at FRC, P„rPpi = 5 cm water = P5cm- Substituting in equation (4.17) for x, and P„rPpl we obtain

* , < * « , . 4  <4J8)
Therefore:

P<„A,
^nom j ^ r a t j ^5 c m " l  (4.19)

The observations of the motion of breathing indicate that the lung effective area acted on by the 

forces varies considerably at some operational ranges, especially, in the small lung volume region. A linear 

relationship is assumed between the effective area and the lung volume:

( V - V  )
A , - A , -  (A, -  A.) K ' fn) (4.20)

' ' ' 7

but for V, > Vfa

A, • A ,  (4-21)

The lung is regarded as a control volume V, varying with time during the breathing process and 

the variation in lung volume can be evaluated using

dV. dxi / i i = A  i (4.22)
dt ’ dt

The analysis of alveolar pressure needs to consider all the individual gas exchanged inside the alveolar 

compartment (ie. 0 2, C02 and inert gas exchange). Hence, the rate of change of alveolar pressure is given



In equation (4.23), the individual gas mass flow rate through the alveolar membrane can be obtained by

(4.24)

where Q ^  , is the individual gas volumetric flow rate through the alveolar membrane corrected to standard 

conditions (STPD).

33.4 Model of pleural compartment

The pleural compartment plays a vital role in respiration. Forces are generated in the intercostal 

muscles acting on the ribcage and the diaphragm due to the neurogenic messages sent by the brain. During 

quiet breathing, this process is involuntary but can be overridden, such as when a person fully inspires or 

expires. The force generated by the intercostal muscles and diaphragm creates the pleural pressure that 

drives lung motion.

The pleural compartment can be modelled on similar lines to that of the lung, with two notable 

differences. First, there is no flow of gas into and out of the pleural compartment, and second, the 

compartment is filled with liquid and tissue rather than gas as in the lung. The face of the pleural 

compartment is idealized as a plane piston of area Aph which moves under the action of the forces 

generated by the ribcage and diaphragm, pleural pressure, and ambient pressure. The motion of the pleural 

compartment face is considered to be along the same axis as the lung (90 degrees to the spinal column). 

The faces of the pleural compartment are subjected to pleural pressure and ambient pressure Pmm, which 

together with the intercostal and diaphragm thoracic forces act to change the compartment volume. Hence, 

the equation of motion of the pleural wall is

// V
Me   P1  = F, + ( P , -  P ) A .  -  f  P1  -  k A x , - x  .) C4*25)pi m  P* am ' pi J. ^  /»/' pi j iampl'

The thoracic force Fth is the net force generated by the ribcage and diaphragm due to the neurogenic control 

system. This force is idealized as acting at a single point on the face of the pleural compartment. In reality, 

it is far more complex, being the summation of the intercostal force generated by the ribcage and the 

diaphragm force. Equation (4.25) can be rearranged allowing successive integration of acceleration to give 

the velocity and displacement of the pleural wall.
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The stiffness kpl of the pleural compartment varies considerably over the range of lung movement 

from residual volume to total lung capacity (Bennett and Elliott, 1982). The variation in lung volume with 

the transmural pressure is shown in figure 4.6, the curve marked W representing the variation in chest wall 

transmural pressure, APpJ, (the differential between pleural and ambient pressure). From this, the variation 

in APpl /  LV1 with lung volume shown in figure 4.7(b) is obtained. Similar to the hing, the stiffness kp, can 

be determined using the same form of equation (4.15):

A P
k = A 2 pl (4.26)
" " t v ;

The pleural displacement , at which the net force on the pleural compartment is zero, can 

be obtained using the same approach adopted for the lung model. The pleural displacement, xmtĴ  , at rest 

can be calculated according to the lung functional residual capacity and the pleural volume at rest position:

x  _ ( Vfrc *  V r*,,pi ) (4J7)
rmj>l j

Pl

Since at FRC, the intrapleural pressure Pp, is sub-atmospheric (ie. PprP.m~ -5 cm water= -P5em) and no 

thoracic force is applied, the steady state equation is given by

k p l  ( X natj>l ~  X nonj>l) ~  ~ ^ S c m  ^ p l  (4«28)

Then

x , - x  , * P* " (4-29)n a m fl  rtst.pl i

pi

As the pleural compartment is attached closely to the lung face, it is reasonable to assume that the effective 

area of pleural compartment Ap, is equal to the effective area of the lung A,.

The pleural compartment is regarded as a closed control volume of trapped pleural fluid of volume 

VpJ. The pleural volume is compressed during inhalation increasing the pleural pressure, and expands during

123



exhalation, decreasing the pleural pressure. According to Tomlinson (1994), the rate of change of pleural 

volume is determined by the velocities of the pleural and lung faces:

d V P> _  d x P> A  .  d x > A

" I T  " ~dT pl I T  1
(430)

and the rate of change of pleural pressure is given by

d P , B , pi -  pj_
~ d T  V.

f  ^
dx, d x .

a .
di 1 dt p'

(431)

4.4 SIMULATING THE GAS EXCHANGE PROCESS

Constituent gas flow takes place through three distinct mechanisms in the respiratory system. They 

are i) atmosphere to alveolar compartment, ii) diffusion across the alveolar membrane and iii) carriage of 

gas in the blood to and from the tissue. These effects are accounted for in the models of the nasal 

passageways, tracheobronchial tree, alveolar membrane, pulmonary vein and artery, heart, veins, arteries 

and tissue.

4.4.1 Constituent gas concentrations through nasal passageway to alveolar

The mass transfer rate of constituent T  from the nasal passageways to alveolar can be obtained 

by the continuity of mass equation described in section 2.3. In the case of the alveolar compartment the 

control volume is divided into two zones: one which allows gas diffusion and another which does not. The 

latter is termed the alveolar dead zone and the rate of change of gas constituents in this zone is given by:

dmocwj _ ,
“ 7 T ~

_ mDa*J
in Dalv

(4.32)

where is the fraction of alveolar dead space to the tidal volume VT ( ie . /^ -^ y iV ) .  In addition, 

the rate of change of gas constituents in the alveolar compartment which allows gas diffusion is given by

dm
dt

. m
a -  a"ip jrt „  “ to,ow „

m m a!
QacJ

(433)

It is common to distinguish between the alveolar dead space and the anatomical dead space VDman 

comprising the volume of the respiratory passages, extending from the nostrils and mouth down to (but not
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including) the alveoli. A more useful conceptual explanation may instead be attributed to the physiological 

dead space VD which comprises all the parts of the respiratory tract in which there is no gas exchange:

V - V + V (434)T D r  Dalv Danai '  '

For VT > 0.875L, VD = 0.2 Vj. Hence,

-  0.2 -  (435)
*T

For VT < 0.875L, VD = V ^ ,  = 0.175L and by definition

/*  -  0 (436)

4.4.2 Diffusion of gases across alveolar membrane

Gas transfer through the alveolar capillary membrane depends on the gas tension gradient, the 

solubility of gas in the blood, the molecular weight of the gas, and the properties of membrane. This 

relationship is expressed by Fick’s law (Fung, 1990):

J  -  -D A ^£  (437)
A /

The diffusion conditions in the lung are excellent as the blood in the lung capillaries is separated from the 

alveolar spaces by only a thin sheet of tissue. The entire diffusion path A/ extends over a distance of the 

order of only 1 pm (Ganong, 1987).

The Oj and C02 molecules diffuse over the same path but in opposite directions. In the pulmonary 

capillary bed (alveolar blood), haemoglobin is oxygenated at the same time that C02 is eliminated, see 

figure 4.8. In a resting individual the red blood cells remain within the pulmonary capillary for only about 

0.75 second, which inposes a limit on the time available for gas transfer. However, this contact time is still 

sufficient to adjust the gas partial pressures in the blood almost entirely to the alveolar compartment values 

(Thews and Vaupel, 1985) (see figure 4.9). Even when blood flow is increased during exercise in which 

the contact time is reduced to one third of normal (approximately 0.25 second), the partial pressure of 0 2 

in blood will still become equal to that in the alveoli before the end of the capillary is reached (Berne and 

Levy, 1988). The diffusion resistance presented by the alveolar membrane to C02 is about 23 times smaller
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than that to 02; that is, other conditions being equal, 23 times as much C02 as 02 diffuses through a given 

layer. This means that in the lung of a healthy person the partial pressure of C02 in the pulmonary capillary 

bed becomes practically identical to those in the alveoli.

For inert gas, it is known that approximately 0.01 second is required for dissolving inert gas 

molecules through the alveolar membrane into the pulmonary capillary bed. Therefore, it is quite certain 

that the blood leaving the pulmonary bed is fully equilibrated with the inert gas pressure in the alveoli as

Using equation (231), the individual gas partial pressures inside the alveolar can be obtained. 

Hence, the individual gas concentrations in the alveolar blood can be calculated using Henry-Dalton law:

The proportionality factor So is called the solubility coefficient, its magnitude depends on the nature of the 

dissolved gas and the properties of the solvent. However, the relationship between P02 and 0 2 concentration 

in the blood is not linear as in equation (4.38), but is sigmoid in shape (see figure 4.10). The 0 2 

dissociation curve is shifted to the right by an increase in temperature, a rise in the C02 tension, or a 

decrease in pH (termed the Bohr shift). Therefore, at any given partial pressure of 0 2, haemoglobin is less 

saturated with oxygen. The C02 dissociation curve relating the C02 content of the blood to PC02 is shown 

in figure 4.11. The relationship between C02 content and PC02 in the blood is not linear as well. The total 

quantity of CQ in the blood is more than twice that of 0 2. The degree of oxygenated blood affects the C 02 

dissociation curve. The greater the saturation of haemoglobin with 0 2, the less will be the C02 content for 

a given Pco2- This effect, called the Haldane effect, is caused by the greater ability of reduced haemoglobin 

to buffer H* ions and to form carbamino haemoglobin. According to the relations in figures 4.10 and 4.11, 

the C02 and 0 2 dissociation curves can be represented in the following form adopted by Grodins (1967) 

with the Haldane and Bohr effects included:

well.

(438)

CCQ2 * 0.5384(1 -  e '*™9Pa") + 0.1891 -  (0.1891 -  0.125)Ca2/C 02-0 .0 2 8 9 (439)

-1 .0 2  r\P„ y (4.40)
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The variable r\ in equation (4.40) is given by

Y] = 0.44921/7// -  0.1009§p//2 + 0.0066815/7//3 -  0.454 (4.41)

where

pH  = 9 -  log,0Cp.

0.51PCO2/760
(4.42)

C„. = 795
Cca2 -  0.5IP C02/ 760

Note that the units of P02 and PC02 are mmHg. It can be seen that equations (4.39) to (4.42) cannot be 

solved explicitly for the desired variables CQ2 and Cca2. Hence, it is necessary to use an iteration procedure 

to obtain the solutions.

The volumes of individual gases that are exchanged in the alveolar can be calculated from the 

difference in the amount of gas in the blood flowing into and out of the alveolar:

where is the concentration of individual gases from the pulmonary artery and C„, is the concentration 

of individual gases in the alveolar blood.

4.4.3 Carriage of constituent gases through blood vessels

The transient variations in concentration of gas ‘i’ inside the blood vessel (ie. artery, vein and 

capillary) can be determined using the following mass balance equation:

dC, _ QbJ„C/n, -  Qb.omt̂ 'i (4.44)

where Vh is the volume of blood inside the vessel.

A certain proportion of blood flowing from the pulmonary artery is shunted to the pulmonary vein 

without gas exchange taking place in the alveolar. This is termed the ‘veno-arterial shunts* (Thews and 

Vaupel, 1985),^. Hence, the concentration of gas flowing into the pulmonary vein is

(4.43)

' I t

Cpvj ” (1 “ fjh) + fshCpaj (4.45)
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4.4.4 Metabolic process in tissue and brain compartment

The amount of energy obtained by metabolic processes depends on the nature of the foodstuffs 

that are broken down (carbohydrates, proteins, fats). For example, complete oxidation of glucose is 

described by the overall reaction

C6Hi20 6 + 602 6C02 + 6H20  + AE

Under physiological condition, AE, the free energy (free enthalpy) has a value of 683kcal/mol (2.86 

MJ/mol). An indication of the types of foodstuffs involved in metabolic processes is given by the 

respiratory quotient RQ:

CO, output V~m
RQ = n r i L = (4.46)O, intake v  

2 r  0 2

In oxidation of glucose and other carbohydrates the number of moles of COj formed is equal to the number 

of moles of consumed, so that RQ -  1.0. The RQ for protein breakdown is 0.8, and for fat breakdown 

it is 0.7. In a normal individual at rest or during light work under ordinary conditions, VC02 will possibly 

be about 0.8 of During very prolonged exertion, or in work done without normal recent food intake, 

RQ may drop towards 0.7. In many instances it is sufficiently accurate to assume that RQ -  0.8.

The 0 2 consumption of a person under rest conditions - that is, in the absence of special physical 

exertion - averages 0.265 L/min. During the performance of work more oxygen is required, depending on 

the amount of physical effort involved. For general orientation, table 4.1 lists the 0 2 consumption rate of 

men doing work requiring various amounts of exertion. As has been mentioned, 0 2 uptake rises as work 

load increases. During light work 0 2 uptake rises slowly in parallel with the increase in blood flow through 

the muscle (figure 4.12) and after 3-5 min it reaches a constant level. Referring to figure 4.12, at the 

beginning of the work session the 02 uptake does not correspond to the energy requirement of the working 

musculature, which bridges this gap by drawing on anaerobic energy sources. The amount by which the 

volume of 0 2 uptake fails to reach the initial 0 2 requirement (shaded area in figure 4.12) is called the 

oxygen debt. When work is stepped, the 0 2 uptake returns slowly to the initial level (repayment of the 

oxygen debt). According to figure 4.12, an arbitrary time constant (first order lag) can be assigned to the 

response of actual oxygen consumption rate in the tissue: 

dV  V -  V0 2 Ji _  T 02 ji,dem  T 0 2  j i  . . .

s r '  r  (4-47)
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Knowing the 0 2 consumption and C02 production rates in the tissue, the corresponding rate of 

change of 0 2 and C02 concentration in the tissue, in relation to the inlet and outlet flow, can be determined 

from

^ 11.02 Q b jn  C ,n 0 2 Q  ^ -  K (4.48)
dt

(4.49)

In the case of brain, the rates of change of 0 2 and C02 concentration are given by

(4.50)

dC B .C 02  =  Q b jn ^ i

dt
■bjn ln,C02 C02JI

(4.51)

Note that the sum of V02M and V023 is the overall the 0 2 consumption rate. The average 0 2 consumption 

rate in the brain is 0.05 L/min (Thews and Vaupel, 1985).

4.4.5 Circulation of blood

heart -circulates. The output of the heart per unit time is the cardiac output QbJf. From the left ventricle, 

blood is pumped through the arteries and arterioles to the tissue and brain. This is ‘major (systemic) 

circulation’. From the right atrium, blood flows to the right ventricle, which pumps it through the vessels 

of the lung - the lesser (pulmonary) circulation. The cardiac output of both systemic and pulmonary 

circulations are the same. It is apparent that the increase in cardiac output is observed during the 

performance of work and table 4.2 illustrates the change in cardiac output with exercise.

The structure of the blood vessels is such that their walls are somewhat stretchable, so that their 

diameter can vary depending on the momentary internal pressure. To a first approximation, however, a 

general idea of the way blood flows in the circulation system can be obtained by considering the rules that

The blood vessels together form a closed system of tubes within which the blood - driven by the
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govern flow in rigid tubes. The driving force for the flow of a fluid is a pressure gradient, which serves 

to overcome the resistance to flow. In this case the volumetric flow rate is proportional to the pressure 

difference between the beginning and end of the tube:

In this relation, analogous to Ohm’s law, /^represents the resistance to flow. The most resistance vessels 

in the circulation system are the arterioles. Because of their small diameters they account for almost 50% 

of the total resistance of the circulation. The capillaries contribute only about 25% of the total resistance 

of the system. Although each individual capillary presents more resistance per unit length than an individual

greater numbers of them in parallel. The total resistance of the systemic circulation which is called the total 

peripheral resistance (TPR) is derived from all the series and parallel resistance of the various parts of the 

system. For the pulmonary circulation, the total resistance is about one-tenth of the TPR. The distribution 

of resistance mentioned above causes the pressure in the cardiovascular system to change according to the 

curve shown in figure 4.13.

The change in pressure in blood vessels can be obtained by solving the continuity differential 

equation:

Since the cardiac output has not considered the pulsation effect of the actual blood flow, the blood pressure 

Pb in the circulation system is representing the mean pressure inside the blood vessel.

4.5 SIMULATING THE CONTROLS OF RESPIRATION AND BLOOD CIRCULATION

Respiration has an automatic type of regulatory system which is housed in the brainstem. It 

responds to a whole variety of information about activity and environment from mechanoreceptor and 

chemoreceptor and reflexly adjusts breathing to best provide for a person’s needs. It works completely 

without human conscious intervention during sleep, while under anaesthesia, or while awake but not 

thinking about breathing.

Qb = dp / Rf (4.52)

arteriole, the contribution of the capillaries is smaller because the capillaries are shorter and there are

(4.53)
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The overall control of blood circulation is the responsibility of the populations of neurons in the 

central nervous system, for simplicity called ‘centres’. These centres (with their checks and balances) are 

responsible for the alteration of blood distribution necessary to meet the changing requirements of different 

tissues in response to a wide spectrum of physiological and pathological conditions.

In developing the mathematical model, the human respiratory system is presented in conventional 

control system terms with its two major components of controlled system and controller. The model 

adopted for the controlled systems (respiratory and blood circulation systems) have been illustrated in the 

previous sections. The form of the controllers for the regulation of breathing and blood circulation are 

described below.

4.5.1 Mechanical control of breathing

Two separate neural mechanisms regulate the mechanical movement of breathing. One is 

responsible for voluntary control and the other for automatic control. The voluntary activities in breathing 

which include speaking, clearing throats, breath holding and farced expiration and inspiration can override 

the automatic control of breathing. The voluntary control system is located in the cerebral cortex and sends 

impulses to the respiratory motor neurons via the corticospinal tracts. The. automatic control system is 

located in the pons and medulla, and the output from this system to the respiratory motor neurons is located 

in the lateral and ventral portions of the spinal cord. Spontaneous respiration is produced by a rhythmic 

discharge of motor neurons that innervate the respiratory muscles at the pleural compartment to generate 

thoracic force. In addition, ‘stretch receptors’ in the lung parenchyma convert the stretching stimulus (which 

relates to the lung volume) into a burst of nerve impulses, which provide a feedback signal to the 

respiratory centres.

Initially, it is assumed that the combination of proportional and integral control actions can be used 

to define the required thoracic force to drive the lung in demand motion for both voluntary and automatic 

control. The equation of the controller with this combined action is given by

Note that V, dtm is the demand lung volume at the end of inspiration or expiration period (ie. VUtm = VT + 

V* during inspiration and VUem = Vfrc during expiration).
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4.5.2 Chemical control of breathing

The chemical control system, which is an automatic control action, serves to maintain homeostasis 

and to guarantee the adjustment of respiration to the overall metabolic rate. Here the controlled variables 

are the C02 partial pressure and the 0 2 partial pressure in the brain arterial blood. Elevation of the arterial 

P C 02  increases the lung ventilation Vr Figure 4.14, obtained from Bulfour Slonim and Hamilton (1987), 

shows the relationships of ventilation and arterial PC02- This figure also shows that at a given PC02, 

ventilation increases in a hyperbolic fashion as the arterial P02 is reduced. It is possible to increase 

ventilation by increasing the tidal volume VT or decreasing the total breath duration since Vr = Vj/t^. 

Obviously, the variation of total breath duration is due to a variation of both of its two components, 

inspiratory and expiratory times, tinp and t ^ .  Variation within tidal volume and inspiratory and expiratory 

times are positively correlated (Cunningham and Gardner, 1977) and the findings from the average human 

subject is summarised in figure 4.15 which shows mean VT plotted against mean t,np to the right and against 

to the left of a common origin. It is seen how tinp changes relatively little over a wide range of 

ventilation rates, where the decrease in is thus due predominantly to a shortening of t ^ ,  roughly 

hyperbolic in relation to Vr  At high ventilation a breakpoint is seen, above which both tlnp and decrease 

as VT increases further. Cunningham (1977), Garden (1977), Murray-Smith (1988) and Sarhan (1987) have 

mathematically defined the chemical controllers according to the data similar to that shown in figures 4.14 

and 4.15. The form of the controllers are given as follow:

Inspiratory flow controller

VT
_ I  = 0.062

inp

23.2
P a .0 2 ~  30

( P a.c o 2 -  35.2) (4.55)

(for PmC02 >38 mmHg)

VT
_ I  = 0.062
^Inp

1 + 23.2
^ - 3 0

( 2.8 ) (4.56)

(for PaC02 < 38 mmHg) 

Inspiratory time controller 

tinp -  1.29 -  0.07 VT

(for VT< 2.08 L)

0.65
tinp Vr -  0.88

+ 0.59

(4.57)

(4.58)

(for VT> 2.08 L)
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Expiratory time controller

11.1 (4.59)
(0.62 /0.062) ( VjJ tmp) + 2.73

Hence, the tidal volume is evaluated from

(4.60)

where Vj/tmp is taken from equation (4.55) or (4.56) and from equation (4.57) or (4.58), arid the total 

time for one respiratory cycle is

Therefore, the respiratory frequency and lung ventilation rate are given by

Note that the partial pressures of 0 2 and C02 from the artery, Pa C2 and PU.C02 in equations (4.55) 

and (4.56), can be obtained by rearranging equations (4.41) and (4.42), since the concentration of 0 2 and 

C02 in the artery blood can be evaluated from the mass balance equations.

4.5.3 Regulation of breathing during exercise

Simulation of the dynamics of the respiratory system in response to exercise provides a means of 

examining competing hypotheses concerning the interaction of the neurogenic and chemical components 

of the respiratory drive. As ventilation increases in exercise, changes in the breathing pattern are expected 

to occur, through changes in tidal volume and in tinp and t ^ .

Sarhan (1987) has performed several simulations with the control structure exactly as described 

in the previous section. Some mismatch was revealed between the model response and real data indicating 

the need for modification of the controller. In reality, the increased ventilation during exercise cannot be 

ascribed exclusively to the action of the chemical drives. There is considerable evidence of a 'central co- 

innervation’ to the respiratory centres by the motor centres, especially when the work is just beginning. As

^ 2. breaths/min (4.62)

Vr = Nb VT L/min (4.63)
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work continues, additional neuronal feedback from the working musculature and moving joints influences 

respiration. Sarhan has considered two hypotheses for these effects:

i) Multiplicative interaction between the neurogenic and chemical components - increasing the gain of the 

inspiratory flow controller (ie. the parameter 0.062 in equation (4.55)) whilst keeping the threshold constant 

( ie. the parameter 35.2 in equation (4.55)). This corresponds to increasing the slope of the Vr versus C02 

characteristic (see figure 4.16(a)).

ii) Additive interaction - decreasing the threshold in the inspiratory flow controller (ie. the parameter 35.2), 

keeping the gain constant (ie. the parameter 0.062); that is, shifting the Vr versus C02 characteristic to the 

left (see figure 4.16(b)).

In the simulations of both hypotheses, the variation in the parameter defining gain (ie. 0.062) and 

the threshold (ie. 35.2) was assumed proportional to the level of overall 0 2 consumption V02lo\

Gain = 0.062 O 2jo

0.265
(4.64)

Threshold -  35.2
( 3-5 -  VQ24o ) (4.65)
( 3.5 -  0.265 )

Note that the overall 0 2 consumption rate V02jo is the sum of v02Ji and Vo2£' According to Sarhan, the 

results obtained, assuming additive interaction between C02 chemical drive and exercise neurogenic drive, 

are physiologically plausible. Hence, the inspiratory flow controller including the effect of exercise becomes

VT
- L  = 0.062

inp

1 + 23.2
^ - 3 0

PaC02 " 35.2 (3 '5 .~ V°Uo) 
a'C02 (3.5 -  0.265)

(4.66)

(for P„co2 >38 mmHg)

V
—  * 0.062
^inp

1 + 23.2
^ - 3 0

38 -  35.2 (3.5 -  V02JO)
(3.5 -  0.265)

(4.67)

(for PaC02 < 38 mmHg)
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4.5.4 Control of blood circulation

While regional regulatory mechanisms are matching the blood flow through individual organs to 

the demands of the moment, supra-regional control processes simultaneously ensure that all cardiovascular 

functions are adjusted to changes in the circulatory situation. Particular aspects of this global task are the 

control of an adequate cardiac output, ensuring that the perfusion for each organ is sufficient. Activation 

of the peripheral chemoreceptors by hypoxia (decreased P02) or of the central chemosensitive structures by 

hypercapnia (increased PC02) can affect cardiac output to some degree. According to Asmussen (1943) and 

Scarborough (1951), the response of cardiac output is given by

Q b jj  ~  (  Q bJtjum  +  ^  Q bji.02  +  ^  QbJ1,C02 ~  Q -bfl )  ^  XH
(4.68)

For Pa02 < 104 mmHg

*Q bjw 2 -  9.6651 -  0.2885PaD2 * 2.9241x10^ ( P ^ f  -  1.0033x1 O'5 (P ,C2)3 

and for Pa Q2 £ 104 mmHg

^  Qbjt.02 ~ ®

For Pa Co2 K 40 mmHg

^  QbJf,C02 ~ 0

for 40 mmHg < PaCo2 -  60 mmHg

^ QbJf,C02 = ( Pa,C02 “ 40 )

and for Pa Co2 > 60 mmHg 

*Qb*,C02 * 0

Note that QbwHtn<mi is the normal cardiac output which increases with exercise. Table 4.2 illustrates the 

relationship between the cardiac output and exercise.

The regulation of blood flow in the brain is of special importance in the model due to the fact that 

the brain contains the control mechanism for the adjustment of respiration. In addition, the brain blood flow 

is also under the control of metabolic factors. An increase in PC02 causes the brain blood vessel to expand,
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and thus increases blood flow through the brain. The decrease of P02 has the same effect. Using the 

information from the literature (Patterson, 1965), the responses of brain blood flow rate is given by

Gm -  ( + -  A f t , . ^  -  Q u  > / t ,  <469>

For Pm 02 <104 mmHg

Afi.Ao; * 2-785 -  0.1323P  02 + 2.6032x10-’ ( P ^ f -  2 . 3 2 4 x 1 0 ♦  7.6559x1 O'* 

and for Pm0! £ 104 mmHg

*Q ».o2 -  0

For ptC01 < 38 mmHg

ACm.™ * 2.323x10-’ -  3.1073x10"’ />tC02 * 8.0163x10-*

for 38 mmHg < PaCo2 -  44 mmHg

A e „ .c «  -  o

and for P, c01 > 44 mmHg

A eu>Cor * -15.58 ♦ 0.76P.col -  U 95xl0-’ (/>.co2)’+ 9.39x10-’ (PtC02)’ -  2.1745x10-’

Note that is the normal blood flow rate in the brain and is 15 % of normal cardiac output QbJJwnam.

4.6 CLOSURE

A physio-chemical approach involving the formulation in terms of mass balance equations, 

chemical buffering system, etc. has been used as a basis for the development of the human respiratory 

model. Thus, accurate models are formed, involving the complex interaction between lung and chest wall 

motion, airflow through the airways, gas exchange in alveolar and tissue, blood circulation and neurogenic 

control of breathing.

It is intended that the model will be used for assessing human interaction with different kinds of 

underwater breathing apparatus.
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TABLES FOR CHAPTER 4

Work
Effort

Breaths 
per minute

Tidal volume 
(L)

Ventilation rate 
(L/min)

0 2 uptaken rate 
(L/min STPD)

Rest 12 0.5 6 0.265
Light work 15 1.5 22.5 0.9

Moderate work 20 2 40 1.6
Heavy work 25 2 50 2
Hard work 25 2.5 62.5 2.5

Extremely hard work 30 2.5 75 3

Table 4.1 Measured 0 2 uptaken rate and breathing characteristic associated with specific work efforts

Work 
(kg m/min)

02 uptaken rate 
(L/min STPD)

Cardiac output 
(L/min)

Rest 0.265 6.4
288 0.91 13.1
540 1.43 15.2
900 2.143 17.8
1260 3.007 20.9

Table 4.2 Changes in cardiac output with exercise

137



hp
/'A

pv
2

Right heart

Trachea Ventilation

Alveolar 
diffusion

,

Left heart

Transport in . 
circulating blood

Diffusion 
in tissues

Figure 4.1 Human respiratory system

1000

100
Nasal Passage

1 Mouth to Alveoli

Central Airways

Re=pvd/p

Figure 4.2 Dimensionless pressure losses within the nasal passages, mouth to alveoli and central airways

138



Extra - Thoracic Intra - Thoracic

E x tra  - P u lm o n ary

A m bien t

In tra  - P u lm o n ary  

P * A lv eo la r

P ressure

N a sa l
P a ssa g e w a y s

V  \
T rach ea

P ressu re

B ro n ch ia l
P a ssa g e w a y s

D is ta l
A irw ay s

Figure 43  Division of tracheobronchial passageways

E xtra -th o rac ic  P re s su re  . . _  _p  A c tiv e  P ressu re  S en s iu v e
A re a  o f  A irw ay

P.
ura] 

P ressu re

V  
P leu ra l

M ean
.P re s s u re .

B i-D ire c tio n a l R o w

P le u ra l P ressu re

■ 'Variable
R o w  A re a  o f  A irw ay

I P*
In tra -th o rac ic  
E x tra -p u lm o n a ry  p re ssu re

Figure 4.4 Variable flow area of a single tracheobronchial airway

B ro n ch ia l

A lv eo la r
C o m p artm en t L u n g

F a c e

— BAB. B
k __________________ n

UUUr,
y

PH

P leu ra l 
/ 'C o m p a r t m e n t

Figure 4.5 Motion of lung idealized as linear actuator

139



Chest wall Lung Chest wall
an d  L u n g

lie

V o lu m e

Irv

-3 0  -2 0  -1 0  0  10 2 0  3 0  4 0  5 0  c m  w a te r

T ran s  m u ra l P ressu re

Figure 4.6 Variation in lung volume with transmural pressures

c m  w a te r  /  L
3 0  1

2 0 -

10 -

654320 1
L U N G  V O L U M E  - L  

Figure 4.7(a) Lung elastance variation with lung volume

c m  w a t e r / L

5 0 -

3 0 -

20 -

10 -

L U N G  V O L U M E - L

Figure 4.7(b) Chest wall elastance variation with lung volume

140



Plasma

h 2o  h c o 3 c i

c r

i
i

i'I
Hb +  HHb + C 02

Red blood cell

CO. Alveolus

Figure 4.8 Oxygen and carbon dioxide exchange in alveolar compartment

Alveolar level
100

50
Mixed venous level

0.750.25

Time in capillary (seconds)
0.50

Figure 4.9 Change in partial pressure of 0 2 in blood during transit through the pulmonary capillary bed

141



0 2 and C02 concentration (mL/L blood)

Figure 
4.10 

Dependence 
of the 

02 dissociation 
curve 

in 
blood

Percentage of satuated 0 2 in blood 

8 8 8 8 1

8

8

Percentage of satuated 0 2 in blood

o

8

8

§



0 2 debt
ml/min

1 2 5 0 -

o) 1000 -

7 5 0 -

5 0 0 -

2 5 0 -

Steady state

Resting level  ̂

Work
“ 1-----

6
Time

Repayment
of 0 2 debt

Recovery

10
T"

12
min

Figure 4.12 Oxygen uptake during and after light dynamic work at constant intensity

Velocity

1000

Cross sectional 
area I

c m /s

g i  1
CO >

CD> cr oc
c m 2 
-r4000

--3500

CO
CO
CD

<0
CD

V - <0
CD O CO CD
L— V — 3
o 0 ) Q . C

k— CO CD
< <  O  >

m mHg
140 t

Figure 4.13 Pressure of the vascular beds in the various parts of the cardiovascular system during rest conditioi

143



5 0 -

vr 4 ° -

(L/min)

3 0 -  

20 -  

10 -

0 -  „  ,—  ,
30 35 40 45 50 p co2 (mmHg)

Figure 4.14 Ventilatory responses to the arterial PCQ2 and P02

range

2-break
point

range

1-

sect.•xp

Figure 4.15 The steady state pattern of breathing in man

Exercise Rest

PC02

RestExercise

Figure 4.16 Testing o f two controller hypotheses in exercise

Pcoj 44 P0;? 40

Responses

 co2

Pco, 35

60 8040

144



CHAPTER 5
COMPUTER SIMULATION OF HUMAN RESPIRATORY

SYSTEM AND ITS INTERACTION WITH 

UNDERWATER BREATHING APPARATUS

5.1 INTRODUCTION

In order to test the mathematical model developed in the last chapter, a number of simulation 

studies have been undertaken to provide results which can be validated using available physiological data. 

Once this has been established, the human respiratory system model can be used with confidence to 

simulate manned diving operations using various types of breathing equipment. A block diagram, shown 

in figure 5.1, indicates how the mathematical models developed in the last chapter interconnect for the 

purpose of the simulation. Figure 52 shows the simulation schematic of the human respiratory system in 

Bath#;.

5.2 DATA REQUIREMENT FOR THE HUMAN RESPIRATORY SYSTEM MODEL

The mathematical models developed in the last chapter require extensive data in order to perform 

an accurate simulation of the human respiratory system. Table 5.1 presents the data which has been 

gathered from a number of sources (Grodins, 1967, Sarhan, 1987, Sullivan, 1990, Ganony, 1987, Fung, 

1990, Keele, 1982 and Bulfour, 1987). It is necessary to mention that the data is based on average healthy 

human subjects and is therefore applicable for assessing the breathing performance of qualified divers. 

Although the data is extensive, there are still several parameters which could not be found in any related 

literature. This is due to the difficulty in measuring these parameters (eg. neural activity of the respiratory 

centre in the brain) or the lack of information regarding the data required for dynamic models (eg. viscous 

friction). Hence, it has been necessary to simplify some of the mathematical models in order to reduce the 

number of unknown parameters. In the case of the tracheobronchial airways model, an instantaneous model 

is used to replace the dynamic model of the airway wall motion and equation (4.6) becomes

[ (P .  +P„)I2 - P p, l ^ , - K , (  -  J w  ) (5-1)

145



Rearranging equation (5.1), the tracheobronchial single airway radius is given by

x., =

“ "

= p  +pet it -  P ,2\  >
pi

wl + x. (5.2)

For the pleural compartment model, it is assumed that the variation in pleural compartment volume 

is not significant and the pleural displacement can be obtained directly from the lung volume:

- ( * ' „ ♦ > ' , ) /  Ap, (5.3)

In writing the above equation, the pleural compartment can be assumed to response instantaneously to 

pressure changes and the dynamic equation (4.25) can be replaced by

( pp, -  p . .  ) = K, < > -  F» <5-4>

Therefore, the pleural pressure can be determined directly from 

P , = *>' ( ** ~ J—*  * ~ F'" ♦ p  (5.5)
p i a am

Apl

Equations (5.1) to (5.5) enable the unknown parameters of Mewh Meph Bpl and the viscous friction associated 

with the airway wall and pleural compartment motion to be neglected. This simplification leads to a faster 

simulation run time compared with the use of dynamic equations (4.6), (4.25), (4.30) and (4.31).

53  VALIDATION OF THE HUMAN RESPIRATORY SYSTEM MODEL

Experimental results are required in order to provide information which can be compared with the 

simulation results as part of the unknown parameter identification process. Subsequently, the validation of 

the complete model can then be undertaken. It is clear that model validation is an integral part of the model 

development process and not the final step (Murray-Smith and Carson, 1988).

In addition, careful consideration must be given to the range of experimental tests necessary to 

validate the model so that it can be used extensively for widely differing requirements. In order to devise 

meaningful correlation studies, experimental tests on average normal subjects are envisaged. The following 

simulations have been established to predict respiratory parameters for i) maximum inspiratory-expiratory

146



flow-volume test, ii) continuous breathing test, iii) maximal voluntary ventilation test and iv) responses at 

different physiological conditions test.

5.3.1 Maximum inspiratory-expiratory flow-volume test

Maximum inspiratory and expiratory flow against lung volume curves have been simulated for 

corresponding principal lung volumes, including residual volume and total lung capacity Vtlc. These 

relationships are of major importance in assessing the condition of the lung and respiratory flow 

passageways and, in particular, reflect the limitations of flow. At present the chemical control of respiration 

is disconnected and the automatic control is overridden by voluntary control. The predicted maximum 

inspiratory-expiratory flow-volume curve, as shown in figure 5.3(a), was constructed by plotting the mouth 

volumetric flow rate against the plotted lung volume (ie. = VUe - V,) when the lung inspires from residual 

lung volume to total lung capacity V* and then exhales as forcefully, rapidly and completely as possible 

to residual volume Airflow reaches a peak near the beginning of the expiration and decreases as the 

lung volume decreases. During a maximum inspiration, pleural and alveolar pressures are significantly sub- 

atmospheric and the flow resistance of the tracheobronchial airways remains constant, see figures 5.3(b), 

(c) and (d). On forced expiration the level of pleural and alveolar pressures remain at 45 cm H20  and then 

increase until the residual volume is achieved. The fact that mouth air flow falls to zero at residual volume, 

when the lung is known to contain one or two litres of gas and has a high positive pressure applied to it, 

implies that at some point all paths from the alveoli to the mouth must be shut off completely. The is 

confirmed by figures 53(d) and (e) which show the airway resistance to increase rapidly in a hyperbolic 

fashion during expiration due to the closure of the airways. In addition, figure 5.3(f) shows the range of 

thoracic force applied for the maximum inspiratory and expiratory flow manoeuvre, indicating the 

maximum thoracic force that can be generated, (ie. 700 N for inspiration and -700 N for expiration). The 

experimental data obtained from Denison (1981,1983) are incorporated in figure 5.3. Good agreement 

between the simulation and experiment is obtained.

Having validated the model at atmospheric conditions, the effect of increased ambient pressure 

upon the maximum inspiratory and expiratory flow limitation can be simulated. Figure 5.4(a) shows the 

simulated maximum inspiratory-expiratory flow curves for 1, 2, 4, 8 ATA ambient pressures. A very 

marked reduction not only in peak flow but also the flow at all lung volume range is seen. It appears that
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the decreasing flow rates achievable as density increases may limit the ambient pressure at which human 

can work effectively. The simulation results in figure 5.4(a) are in good agreement with the experimental 

data obtained by Miller (1971) (also included on figure).

The effect of external resistance on the relationship between maximum breathing flow rate and 

lung volume was also investigated. Figure 5.4(b) shows the simulation results of forced inspiratory and 

expiratory manoeuvres through the mouthpieces of various diameters. It can be seen that the added external 

resistance will reduce the maximum inspiratory and expiratory flows. It is necessary to mention that the 

same respiratory work effort is applied to all different mouthpiece diameters. A good match is achieved 

when the model behaviour is compared with the experimental data of Denison (1981) and Vorosmarti 

(1979) which is included in the figure.

At this stage, it was concluded that the assumed values for the unknown parameter illustrated in 

table 5.2 gave satisfactory predictions and, as a consequence, were used in subsequent simulations. During 

the unknown parameter identification process, it was interesting to find that when the single airway wall 

stiffness k̂ ,, was set to 100 N/m, the shape of breathing loop shown in figure 5.3 changed to that shown 

in figure 5.5, indicating an asthmatic condition (Denison, 1981). Thus, the model can successfully predict 

respiratory problems.

53.2 Continuous breathing test

The first simulation for continuous breathing test was established for quiet breathing at rest. An 

idealized metabolic process was simulated, in which the overall 0 2 consumption rate was set at 0.265 L/min 

and the respiratory quotient RQ at 0.8. Table 4.1 contains the breathing characteristics for breathing at rest. 

At this stage, the chemical control of respiration was still disconnected and the demand lung volume and 

inspiration and expiration times were user defined. This provided a means of examining the model 

hypotheses concerning the gas exchange process and mechanical control of breathing. The predicted 

variation in lung volume, given in figure 5.6(a), shows a tidal volume of approximately 0.5 L. Die 

predictions of pleural and alveolar pressures are shown in figure 5.6(b). The pleural pressure varies from 

approximately -5 cm water at FRC, to -7.5 cm water at maximum inspiration. The corresponding variations 

in alveolar pressure are 0.7 to -0.7 cm water. These pressures are of the same order as published data
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described by Fung (1990), indicating that the hypothesis for the mechanical control of breathing, equation

(4.54), is plausible at this condition. The variations in alveolar and pulmonary artery and vein 0 2 and C 02 

partial pressures with time are given in figures 5.6(c) and (d). These pressure levels are in close agreement 

with the published data described by Mines (1986). In addition, figures 5.6(e) and (f), respectively, show 

that the mean levels of 0 2 and C02 diffusion rates in the alveolar membrane are the same as the overall 

0 2 consumption and C02 production rates, indicating that the hypothesis for gas exchange process in the 

model is appropriate.

Further simulations were performed to examine the mechanical control of breathing during 

exercise. The overall 0 2 consumption rate was set at 2 L/min in which the tidal volume of 2 L and the 

breathing frequency of 25 breaths per minute (ie. 1 second inspiration time and 1.4 second expiration time) 

were applied. The predicted variation in lung volume, given in figure 5.7(a), shows a tidal volume of 

approximately 2.17 L at which the breathing pattern cannot follow the demand pattern. Hence, the 

hypothesis for the mechanical control of breathing is not plausible at this condition and needs to be revised. 

It is reasonable to assume that the form of controller for automatic activities (ie. continuous breathing) is 

different from the controller for voluntary activities (ie. forced respiration). During continuous breathing, 

a variable proportional control action has been incorporated in the controller equation such that equation

(4.54) becomes

r* - g,( r*. - r,.) vljUm - v,)dt ♦ gg(^„.0 - v, ) <5-6>

Note that VldmĜ is the demand lung volume profile which provides an automatic guidance of lung motion 

during automatic activities. For instance, a first order lag is assigned to the response of the demand lung 

volume profile:

dV  V -  V
lJem,G _ lJem,G (5.7)
dt xG

The time constant xG is assumed to be related to the inspiration and expiration times (ie. xG = 0.8tinp during 

inspiration and xG = 0 .8 ^  during expiration).

The above hypotheses were examined by performing the simulation with the same breathing 

characteristic of 2 L tidal volume and 25 breaths/min breathing frequency. Figure 5.7(b) shows the
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corresponding simulated result using Gg of 10000. It can be seen that the lung motion can now follow the 

demand breathing pattern at 2 L tidal volume. A series of simulations has been performed with different 

demand breathing patterns and the results are promising. Therefore, the hypotheses of equation (5.6) and 

(5.7) appears to be plausible for the continuous breathing simulation.

53.3 Maximal voluntary ventilation test

In order to understand the human respiratory system, it is necessary to appreciate the limitations 

imposed on a human's breathing capability. One of the most prominent factors is the limitation of 

ventilatory capacity which is described as maximal voluntary ventilation M W  (Bennett and Elliott, 1982 

and Miller, 1971). Basically, the M W  is a measure of the air intake when a person breaths as hard as 

possible for a short period with a prescribed frequency of 100 breaths/min. Hie average human’s M W  

when air is breathed at atmospheric pressure condition is about 200 L/min (Miller, 1971). It is worthwhile 

to examine the model in which the same M W  could be obtained. As a test, an excessive 250 L/min 

ventilation rate (ie. 2.5 L tidal volume and 100 breaths/min breathing frequency) was applied in the model. 

The predicted variation in lung volume, given in figure 5.8(a), shows that a tidal volume of 2.5 L and a 

ventilation rate of 250 L/min were maintained, revealing that an unrealistic result is obtained. It was found 

that the thoracic force (figure 5.8(b)) generated by the mechanical controller exceeds the range of thoracic 

force (ie. 700 N to -700 N) found in the maximum inspiratory-expiratory flow-volume test, see figure 

5.3(f). This is the likely cause of the unrealistic simulated results. Hence, the simulation was repeated with 

the thoracic force constrained to the recommended range (ie. -700 < <; 700). Figure 5.9 shows the

corresponding simulated lung volume variation, indicating that a tidal volume of 2 L and the ventilation 

rate of approximately 200 L/min are obtained. Therefore, a considerable improvement is achieved using 

the limited force range.

Further simulations were performed to predict the M W  at different ambient pressures and 

breathing gas mixtures (ie. 80%He and 20%O2). Figure 5.10 shows the corresponding simulation results 

of the M W  for these conditions. It is necessary to mention that all the simulations in figure 5.10 were 

performed with a demand tidal volume of 2.5 L and a breathing frequency of 100 breaths/min applied in 

the model. From the figure it can be seen that the M W  with both air and oxy-helium mixture drops very 

rapidly as ambient pressure is increased, and, at the same pressure level, a higher M W  can be obtained
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when breathing the oxy-helium mixture. Hence, considerable benefits are to be gained from using oxy- 

helium mixture as the breathing gas. The corresponding experimental data obtained by Miller (1971) is 

included in figure 5.10. The agreement achieved clearly demonstrates the suitability of the model for 

assessing the limitation of ventilatory capacity at different ambient pressures and breathing gas mixture 

conditions.

53.4 Responses at different physiological conditions

The simulation results on the behaviour of the complete human respiratory model (ie. including 

chemical control) under different physiological conditions can be obtained by applying a step input of the 

following stimuli:

i) increase in the fractional concentration of C02 in inhaled air;

ii) reduction of inhaled oxygen;

iii) muscular exercise;

iv) change of ambient pressure.

The following predicted variables have been used for comparison purposes with published experimental 

data: ventilation rate, tidal volume, breathing frequency and the partial pressures of Oj and C02 in the 

arterial blood.

(i) C02 breathing and hypoxia

The model behaviour during C02 breathing can be explored by increasing the fractional 

concentration of C02 in the inspired air (ie. 5,6  and 7% C02). The effect of hypoxia in the model response 

has been examined by reducing the inspired 0 2 concentration from 21% to 9, 8 and 7%. The levels in C02 

breathing and hypoxia are maintained for 20 and 10 minutes respectively. 7116 comparison of the steady- 

state features of the C02 breathing and hypoxia with the corresponding experimental data from Cunningham 

(1977), Garden (1977) and Reynolds and Milhom (1973) are presented in tables 5.3 and 5.4 respectively. 

It can be seen that a mismatch between the model response and the experimental data is obtained, in 

particular in the case of the breathing frequency. This may be due to the imprecise parameters used in the 

inspiratory and expiratory time controllers (ie. equations (4.57), (4.58) and (4.59)). Therefore, more precise
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equations for the inspiratory and expiratory time controllers have been derived using the data presented in 

figure 4.15:

Inspiratory time controller

tlnp -  1.5 -  0.0526 VT (5.8)

(for VT< 1.9 L)

t = + 0.59 (5.9)
VT -  1.285

(for VT> 1.9 L)

Expiratory time controller

1 = 0.64 t. * __________ 111__________  (5.10)
* ' (0.4/0.062) ( +  2.73

When using these new controllers in the simulation, the steady-state results obtained for C02 

breathing and hypoxia produced a considerable improvement as shown in tables 5.5 and 5.6.

In the steady state, the model response is now within the physiological range. The transient 

response to the levels of 5% CQ breathing and 7% 0 2 hypoxia are shown in figures 5.11 and 5.12 

respectively. There is a similarity between the transient patterns yielded by the model and those found in 

data presented by Garden (1977) (For 5% C02 breathing the time to reach the steady state was 20 minutes, 

and for 7% 0 2 hypoxia the steady state could not be reached after 10 minutes). The model is shown to 

predict a better on-transient pattern than the Sarhan model (1987) which produces an over-shoot during the 

hypoxia test (Murray-Smith and Carson, 1988).

(ii) Exercise

The response of the model due to exercise has been studied by increasing the 0 2 consumption rate 

in the tissue model. Table 5.7 illustrates the steady-state features of the model response to different 0 2 

consumption rates (ie. 0.9, 1.6, 2, 2.5 and 3 L/min). A good match with the experimental data shown in 

table 4.1 is obtained. For example, at the extremely hard work condition, the model predicts a breathing 

rate of 29 breaths/min, 2.55 L lung tidal volume, 74 L/min ventilation rate and 3 L/min 0 2 consumption 

rate compared with measured data of 30 breaths/min, 2.5 L lung tidal volume, 75 L/min ventilation rate 

and 3 L/min 0 2 consumption rate. The transient response to the 2L/min 0 2 consumption rate is shown in
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figure 5.13. The transient produced by the model does not agree well with available data (Berne, 1988), 

in particular the ventilation rate (see figure 5.14). However, by introducing an offset plus exponential effect 

for the metabolic rate variation in the inspiratory flow controller (ie. equation (4.66) and (4.67)), that is

V V
y  _ O2,iojem 02,u>jiem / 1 _ _ w/120 \ (5.11)
* o i jo  -----2----------  2

some improvement in the transient response has been achieved (see figure 5.15).

After examining the model response to different stimuli, the interaction between two stimuli was 

investigated. The following simulation was performed for a step input of 1.14 L/min 0 2 consumption rate 

for 5 minutes followed by 5 min of 1.14 L/min 0 2 consumption rate with 4% C02 breathing. The result 

is shown in figure 5.16. A good match with the experimental data described by Sarhan (1987) is achieved.

(iii) Response to ambient pressure change

A sudden drop in ambient pressure, which occurs, for example, when cabin pressure is suddenly 

lost in a plane flying at high altitude, causes a fall in inspired P02 as the inspired air contains the same 

percentage of 0 2 at both high and sea levels. The model response to this sudden decompression from 

altitude (corresponding to 565 mmHg) to a pressure of 258 mmHg (such as would result from the blowing 

out of a partially-pressurised aircraft window at 27,000 feet) was simulated. The predicted arterial P02 and 

PC02- shown in figure 5.17, were compared with the experimental data described by Dickinson (1977). It 

should be noted that 90 seconds after decompression 100% of 0 2 was substituted for air and this accounts 

for the subsequent rapid increase in the partial pressure of 0 2. It is interesting to see that the simulation 

agrees well with the measurements not only in terms of the initial transient but also during the later phases 

of the experiment.

The ambient pressure increases by 1 atmosphere for every 10 m of depth in sea water and every

10.4 m of depth in fresh water. Therefore, at a depth of 31 m in the ocean, a diver is exposed to a pressure 

of 4 atmospheres. Hence, an increase of P02 will occur and this may elicit a variety of breathing responses. 

Figure 5.18 shows the model response to a gradual increase in ambient pressure from 1 ATA to 4 ATA. 

Note that the simulation was performed under resting condition (ie. 0.265 L/min 0 2 consumption rate is 

applied). From the figure it can be seen that after a slight increase in ventilation rate at the beginning, the
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ventilation rate is driven back to its original value. This type of behaviour matches the experimented data 

obtained by Morrison and Florio (1980).

Further simulations were performed to examine the model response to exercise under hyperbaric 

conditions. Figure 5.19(a) shows the predicted steady-state ventilation rates to different 0 2 consumption rate 

(ie. 0.9,1.6,2,2.5 and 3 L/min) under an ambient pressure of 4 ATA. In addition, the predicted ventilatory 

responses to exercise under 1 ATA condition obtained from table 5.7 are included in the same figure. It 

can be seen that there is no change in ventilation rate at the lower work loads, but the ventilation rate at 

the high work loads reduces at higher pressures. These changes may be brought about partly by higher P02  

and partly by the increased gas density. The corresponding experimental data obtained by Morrison and 

Florio (1980) is shown in figure 5.19(b), revealing a good match between the predicted and experimental 

results.

5.4 SIMULATION STUDIES OF HUMAN INTERACTION WITH UNDERWATER BREATHING 

APPARATUS

The results presented in the previous sections show that the human respiratory system model is 

able to predict respiratory response under different breathing gas mixture and ambient pressure conditions. 

Hence, the model can be used to predict the manned diving operations when using the semi-closed-circuit 

breathing system and the surface demand diving system. Two studies are considered to assess the 

limitations of these two breathing systems imposed on the diver. The first is to investigate the maximal 

voluntary ventilation M W  of the diver when using the breathing apparatus. This can provide more detailed 

information relating to the limitations that the two breathing systems impose on the diver's breathing 

capability. The second study is to assess the performance of the two breathing systems under complete 

diving schedules. This enables details of the breathing systems to be explored under real diving conditions. 

A further area investigated is the decompression process illustrated in table 1.2. In addition, an indicator 

is defined in order to predict the decompression sickness during the dive.

5.4.1 Establishing an indicator for the prediction of decompression sickness

According to section 1.3.4, for the prevention of decompression sickness a diver cannot
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decompress at more than a pressure ratio of 2:1 after prolonged exposure on compressed air (saturated 

diving). For non-saturated dives, in which the inert gas is not saturated, it is reasonable that the partial 

pressure of the inert gas inside the tissue cannot be 2 times higher than the inert gas partial pressure of the 

breathing gas. It is known that whenever the gas being breathed changes, the arterial blood instantly follows 

this change (Bennett and Elliott, 1982). For simplicity, therefore, the partial pressure of the inert gas in the 

arterial blood is used as a means of analysis. Since the transient response of the inert gas concentration 

inside the tissue and the arterial blood can be predicted in the simulation, the partial pressure of the inert 

gas inside the tissue and the arterial blood can be obtained using the Henry-Dalton law:

(5.12)

'  CtJ„ / SobM (5.13)

Hence, the ratio of the inert gas partial pressures obtained from equations (5.12) and (5.13) can be used 

to indicate the likelihood of decompression sickness.

5.4.2 Simulation of manned diving operations using the semi-closed-circuit breathing system

Figure 5.20 is the Bathj^ simulation schematic diagram of a diver using the semi-closed-circuit 

breathing system. This figure shows the simple manner in which the two system models can be connected 

together.

Several M W  tests when using the semi-closed-circuit breathing system at different diving depths 

have been simulated using similar conditions to those described in section 5.3.3 where the chemical control 

of the respiration is disconnected and an excessive 250L/min ventilation rate (ie. 2.5 L tidal volume and 

100 breaths/min breathing frequency) is applied in the respiratory system model. The gas mixture used in 

the diving set was air. Figure 5.21 shows that the predicted M W  drops rapidly as the diving depth is 

increased. When the diving depth of 54 m is reached, a M W  of 74 L/min is obtained which is very close 

to the average maximum human ventilation rate during heavy exercise (ie. 75 L/min RMV for 3 L/min 

0 2 consumption rate). Hence, it is not applicable that the semi-closed-circuit breathing system is used at 

depths more than 54 m. Similar results were obtained when using a 32.5%(y67*5%N2 gas mixture. The 

M W  of the diver without the breathing apparatus (figure 5.10) is also included in figure 5.21, indicating 

that the semi-closed-circuit breathing system imposes further limitations on the diver’s capability.
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The suggestions described in section 326 of increasing the mouthpiece diameter by 30% and using 

smooth bore breathing tube to reduce the work of breathing have been investigated using the same 

conditions outlined above. The simulation results obtained are included in figure 5.21, showing that at the 

same diving depth the modified diving set allows slightly higher M W  to be achieved.

Following the M W  test, simulations of the semi-closed-circuit breathing system operating at 

different diving schedules and decompression processes were undertaken. The first simulation considered 

the diving schedule carried out from the water surface to a depth of 54 m and then returning back to the 

surface. The time from leaving the surface to the beginning of the ascent was 20 mins which was the same 

as the unmanned test simulation described in section 3.2.5. The decompression process described in table 

12  for a 54m dive and 20 mins bottom time was applied and a gas mixture of 32.5%02/67.5%N2 was used 

in the diving set. An overall 0 2 consumption rate of 2 L/min (STPD) was applied in the respiratory system 

model after the diver immersed into the water. When the diver returned back to the surface, the overall 0 2 

consumption rate was set back to the rest condition (ie. 0.265 L/min STPD). The diving schedule was 

simulated over a period of 4000 seconds. The results obtained from the simulation are shown in figures 

5.22, 5.23 and 5.24. The simulated diving schedule shown in figure 5.22(a) follows the recommended 

diving schedule. The transient response of the overall 0 2 consumption rate and the lung ventilation rate are 

shown in figure 5.22(b) and (c) respectively. Figure 5.23 shows the simulated partial pressures of 

constituent gases [02(a), N2(b) and C02(c)] at the mouthpiece which are within the physiological limits 

throughout the diving schedule. Figure 5.24 shows the predicted variations of nitrogen concentration and 

ratio inside the human body. From the figure it can be seen that the N2 concentration in the arterial blood 

follows very closely the N2 concentration in the pulmonary blood, and the N2 concentration in the tissue 

changes slowly to its equilibrium level. These match the information described by Bennett and Elliott 

(1982) where the N2 concentration in the arterial and pulmonary blood are the same and the N2 

concentration in the tissue follows slowly. Referring to figure 5.24(b), during the decompression process 

the N2 partial pressure ratio (ie. PlU/2 /P b̂ 2) does not exceed the recommended limit of 2. Hence, the diver 

will not experience decompression sickness under this diving schedule.

The second simulation considered the same diving depth but with a different bottom time. The 

duration time from leaving the surface to the beginning of the ascent was taken to be 10 mins. A shorter
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decompression stoppage time, illustrated in table 1.2, for this diving schedule was undertaken with the same 

overall 0 2 consumption rates. Figure 5.25(a) shows that the diving schedule follows the recommended 

diving schedule and indicates that the diver has not stopped at the 9 m depth. The predicted N2 partial 

pressure ratio between the tissue and the arterial blood [figure 5.25(b)] shows that although the diver does 

not stop at 9 m, the N2 partial pressure ratio still does not exceed the limit. This was due to the fact that 

the N2 concentration in the tissue did not reach its equilibrium when the diver started to leave the bottom. 

Hence, a shorter decompression time is appropriate in this case.

The third simulation considered the same decompression schedule use in the last simulation but 

having a longer bottom time of 20 mins. Figure 5.26(a) shows the corresponding diving schedule. The 

simulated N2 partial pressure ratio between the tissue and the arterial blood is shown in figure 5.26(b). 

From the figure it can be seen that when the diver starts to leave the bottom, the N2 concentration has 

reached its equilibrium level, and after the diver arrives at the first stop (6 m depth), the N2 partial pressure 

ratio exceeds the limit. Hence, decompression sickness is likely to appear. Therefore, the decompression 

stoppage time used in the first diving schedule simulation is more appropriate.

The final simulation considered the diving schedule carried out from the water surface to a depth 

of 45 m and then returning straight back to the surface without any stops. The duration time from leaving 

the surface to the beginning of the ascent was 3 mins. Figure 527(a) shows the corresponding diving 

schedule. The predicted N2 partial pressure ratio between the tissue and the arterial blood shown in figure 

527(b) indicates that the N2 partial pressure ratio does not exceed the limit and decompression sickness 

will not occur in this case. This simulation shows that the model can be used to recommend diving 

schedules which allow the diver to perform a dive without commencing any stops during the decompression 

process.

5.4.3 Simulation of manned diving operations using the surface demand diving system

The Bath#? simulation schematic of a diver using the surface demand diving system is illustrated 

in figure 5.28. Since Bath#? provided automatic procedure to assemble already developed component 

models to simulate the circuit, only a little effort was required to set up the circuit in figure 5.28 by 

replacing the diving set from the circuit shown in figure 5.20.

157



Similar M W  tests to those described for the semi-closed-circuit breathing system have been 

applied to the surface supply system. Again the gas mixture was air. Figure 5.29 shows a comparison of 

the diver’s M W  when using the surface demand and the semi-closed-circuit breathing systems. This shows 

that the predicted M W  using the surface demand diving system has a similar profile to that of the semi- 

closed-circuit breathing system but, at the same diving depth, the M W  related to the surface demand 

diving system is higher. This indicates that the surface demand diving system will impose less limitation 

on the diver’s breathing capability than the semi-closed-circuit breathing system.

The modifications, suggested in section 3.3.4 for reducing the work of breathing when using the 

surface demand diving system have also been investigated. Figure 5.29 includes the predicted M W  tests 

when using the modified diving set in which the mouthpiece diameter and demand valve’s diaphragm 

spring stiffness were increased by 30% and 100% respectively. It can be seen that at the same diving depth 

slightly higher M W  is obtained. Hence, these modification are applicable.

The use of oxy-helium mixture (80%He/20%p2) in the surface demand diving system has also 

been studied during the M W  simulations. The simulation results are included in figure 5.29, showing that 

at the same diving depth the use of oxy-helium mixture allows a significantly higher M W  to be performed. 

Hence, much deeper dives are possible when a oxy-helium mixture is used as the breathing gas.

Further simulations have been established to study the surface demand diving system during real 

diving operation. The following studies considered the diving schedule of 54 m diving depth and 20 mins 

of duration time from leaving the surface to the beginning of the ascent in line with the decompression 

process illustrated in table 1.2. An overall 0 2 consumption rate of 2 L/min (STPD) was applied during the 

dive.

The simulation results using air as the breathing gas are shown in figures 5.30, 5.31 and 5.32. 

Figure 530(a) shows that the simulated diving schedule follows the recommended diving schedule. The 

transient response of the overall 02 consumption rate and the lung ventilation rate are shown in figure 

5.30(b) and (c) respectively. The predicted partial pressure of constituent gases at the mouthpiece shown 

in figure 5.31 are within the physiological limits throughout the diving schedule. The predicted variations
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of nitrogen concentration and ratio inside the human body are shown in figure 5.32. From this figure it can 

be seen that during the decompression process the N2 partial pressure ratio between the tissue and the 

arterial blood does not exceed the limit, indicating that decompression sickness is unlikely to occur at this 

condition.

The previous simulation was repeated using the oxy-helium mixture (80%He/20%02> as the 

breathing gas. Figure 5.33 shows the simulation results. From the figure it can be seen that when the diver 

commences the first stop (at 9 m depth), the helium partial pressure ratio between the tissue and the arterial 

blood exceeds the limit, indicating that the use of oxy-helium mixture is more likely to cause the 

decompression sickness. Hence, different decompression schedules are required for the oxy-helium mixture. 

Figure 5.34 shows the simulation results of using a different decompression schedule where a stop at 15 

m depth was applied instead of 9 m, see figure 5.34(a). Figure 5.34(b) shows that when the diver 

commences the first stop, the helium partial pressure ratio between the tissue and the arterial blood is 

reduced. Although during the second stop (at 6 m) the helium partial pressure ratio is slightly higher than 

in figure 5.33(b), the limit has not been exceeded. Therefore, this diving schedule is appropriate for this 

conditions.

5.5 CLOSURE

The parameters required for the models developed in chapter 4 have been obtained from published 

clinical measurements. However, some of the respiratory parameters are difficult to quantify and define. 

This difficulty has been overcome by comparing the simulation results with available experimental data, 

allowing the unknown parameters to be checked and refined. The simulation of maximum inspiratory- 

expiratory flow volume manoeuvre, continuous breathing test, maximal voluntary ventilation test and 

different physiological conditions test have been used to examine the hypotheses adopted for the models. 

Through a systematic process of model extension and testing, a more realistic representation of the human 

respiratory system and its control has been achieved. Simulations of C02 breathing and hypoxia have 

suggested that the parameters in the inspiratory and expiratory flow controllers derived by Sarhan need to 

be refined in order to produce a more accurate result. The simulation of ambient pressure change shows 

realistic behaviour and good correlation with measured respiratory parameters. Also, the transients produced
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by the model agree well with the available experimental data. At this stage, the human respiratory system 

model enables the effects of variations in respiratory parameters and environmental conditions to be 

assessed.

The human respiratory system model has been used to simulate the manned diving operation when 

using the semi-closed-circuit breathing and the surface demand diving systems. Two simulation studies have 

been undertaken to assess the limitations which these breathing systems impose on a diver. The first study 

simulates the M W  of the diver at different diving depths and the second study simulates different diving 

schedules. The latter has included the assessment of the decompression process. The simulations of the 

M W  test have indicated that, at the same diving depth, the surface demand diving system allows higher 

lung ventilation rates to be performed and the use of oxy-helium mixture as the breathing gas is more 

suitable for deep dive operations. The simulations of a complete diving schedule have demonstrated that 

the developed models are capable of simulating real diving operations and able to indicate the likelihood 

of decompression sickness during a dive. It has been found that the use of oxy-helium mixture as the 

breathing gas is more likely to produce decompression sickness than air. Hence, a more modest diving 

schedule for the oxy-helium is required.
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TABLES FOR CHAPTER 5

Variables Value Unit

Lung face maximum area 0.125 m2
Lung face minimum area 0.105 m2

Mouth cross sectional flow area 1.26x1 O'3 • m2
Nose cross sectional flow area 3.976X10-4 m2

Lung face effective mass of moving part 0.5 kg
Number of airways in intrathoracic extrapulmonary zone 16400 -

Brain capillary bed blood flow resistance 5.7 (L/min)/bar
Muscle capillary bed blood flow resistance 570 (L/min)/bar

Pulmonary capillary bed blood flow resistance 39.9 (L/min)/bar
Flow resistance at intrapulmonary zone 0.01 cm water/(L/s)

Saturated 0 2 concentration in blood 02 L/L blood
Solubility of nitrogen in blood 0.0137 L/L blood ATM'1
Solubility of helium in blood 0.0087 L/L blood ATM1

Solubility of nitrogen in tissue 0.017964 L/L blood ATM1
Solubility of helium in tissue 0.009276 L/L blood ATM'1

Volume of blood in aorta 1.266 L
Volume of blood in vein 3.034 L

Volume of blood in brain artery 0.546 L
Volume of blood in brain vein 0.154 L

Volume of blood in pulmonary artery 0.25 L
Volume of blood in pulmonary vein 025 L

Volume of blood in brain capillary bed 0.9 L
Anatomical dead space 0.175 L

Lung functional residual capacity 2.4 L
Gas volume in extrathoracic zone 0.123 L
Gas volume in intrathoracic zone 0.052 L
Volume of pleural compartment 10 L

Lung residual volume 1.2 L
Volume of blood in tissue capillary bed 29 to 39 L

Total lung capacity 6 L
Brain blood flow time constant 6 seconds

Cardiac output time constant 6 seconds
Metabolic rate time constant 60 seconds

Table 5.1 Available data for the mathematical models of human respiratory system
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Variables Value Unit

Single airway wall forces acting area 2.316xl0"6 m2
Blood fluid bulk modulus 17500 bar

Viscous friction 1000 N/m2
Proportional gain 335 -

Integral gain for inspiration 6.7 -

Integral gain for expiration 50 -

Single airway wall stiffness 7000 N/m
Lung closing volume 0.9 L

Added nominal displacement of single airway when
traction applied 0.0002 m

Maximum nominal displacement of single airway when
traction not applied 0.0001 m

Table 5.2 Assumed values for the unknown parameters of the human respiratory models

Inspired Pre-stimulus control Steady state

Variable C02 % Data Model Data Model

5 5.7 6.8 20.6 20.0
Ventilation rate 6 5.8 6.8 32.0 31.0

(L/min) 7 6.0 6.8 45.6 45.8

5 0.59 0.5 1.15 1.05
Tidal volume 6 0.58 0.5 1.53 1.42

(L) 7 0.60 0.5 1.79 1.91

5 11.5 12.8 17.9 19.0
Breathing frequency 6 11.8 12.8 21.0 22.0

(breaths/min) 7 12.1 12.8 25.5 24.0

5 102.0 105 131.8 131.0
Pa.02 6 100.9 105 132.1 136.0

(mmHg) 7 102.8 105 144.0 142.0

5 432 39.5 47.5 45.2
Pa.C02 6 42.5 39.5 48.9 51.5

(mmHg) 7 43.1 39.5 56.2 58.1

Table 53  Model and actual human response to C02 breathing
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Inspired Pre-stimulus control Steady state

Variable 0 2 % Data Model Data Model

9 5.9 6.8 9.5 9.9
Ventilation rate 8 5.8 6.8 12.3 13.2

(L/min) 7 6.1 6.8 16.0 17.3

9 0.49 0.5 0.68 0.60
Tidal volume 8 0.48 0.5 0.91 0.74

(L) 7 0.50 0.5 125 0.90

9 12.5 12.8 13.5 16.8
Breathing frequency 8 12.4 12.8 14.0 18.0

(breaths/min) 7 12.7 12.8 14.9 19.1

9 106.9 105 44.7 43.0
P a ,02 8 105.1 105 42.6 40.0

(mmHg) 7 103.3 105 38.8 37.0

9 412 39.5 35.3 33
Pa.CO2 8 42.1 39.5 34.1 32

(mmHg) 7 42.6 39.5 31.3 29

Table 5.4 Model and actual human response to hypoxia

Inspired Pre-stimulus control Steady state

Variable C O ,0/® Data Model Data Model

5 5.7 6.8 20.6 21.0
Ventilation rate 6 5.8 6.8 32.0 31.0

(L/min) 7 6.0 6.8 45.6 43.6

5 0.59 0.5 1.15 1.25
Tidal volume 6 0.58 0.5 1.53 1.69

(L) 7 0.60 0.5 1.79 2.00

5 11.5 12.8 17.9 16.5
Breathing frequency 6 11.8 12.8 21.0 18.0

(breaths/min) 7 12.1 12.8 25.5 21.3

5 102.0 105 131.8 131.0
Pa.02 6 100.9 105 132.1 136.0

(mmHg) 7 102.8 105 144.0 142.0

5 43.2 39.5 47.5 47
Pa.CO2 6 42.5 39.5 48.9 51

(mmHg) 7 43.1 39.5 56.2 58

Table 5.5 Modified model and actual human response to C02 breathing (with the improvement of 
inspiratory and expiratory time controllers)
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Inspired Pre-stimulus control Steady state

Variable 0 2 % Data Model Data Model

9 5.9 6.8 9.5 9.45
Ventilation rate 8 5.8 6.8 12.3 12.7

(L/min) 7 6.1 6.8 16.0 15.5

9 0.49 0.5 0.68 0.68
Tidal volume 8 0.48 0.5 0.91 0.86

(L) 7 0.50 0.5 1.25 1.10

9 12.5 12.8 13.5 13.80
Breathing frequency 8 12.4 12.8 14.0 14.65

(breaths/min) 7 12.7 12.8 14.9 1530

9 106.9 105 44.7 43.5
Pa,02 8 105.1 105 42.6 41.0

(mmHg) 7 1033 105 38.8 38.0

9 412 39.5 35.3 34.5
PM.C02 8 42.1 39.5 34.1 33.5

(mmHg) 7 42.6 39.5 31.3 30.0

Table 5.6 Modified model and actual human response to hypoxia (with the improvement of inspiratory 
and expiratory time controllers)

Work
Effort

Breaths 
per minute

Tidal volume 
(L)

Ventilation rate 
(L/min)

0 2 uptaken rate 
(L/min STPD)

Rest 12.8 0.5 6.8 0.265
Light work 15.8 1.2 19 0.9

Moderate work 19.5 1.9 38 1.6
Heavy work 23.0 2.1 48 2
Hard work 26.0 2.35 60 2.5

Extremely hard work 29.0 2.55 74 3

Table 5.7 Model response to exercise
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Figure 5.2 Simulation schematic of human respiratory system in Bathfp
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CHAPTER 6 
OTHER GAS BASED SYSTEMS

6.1 INTRODUCTION

Based on the success obtained during the simulation study of the underwater breathing apparatus 

and the human respiratory system, further investigations were undertaken to extend the simulation 

techniques to other gas based systems. The work included the simulation of a submarine escape system and 

industrial pneumatic systems. Thus, the additional work show how the developed simulation techniques can 

be used for assessing and improving other gas based systems.

62  SIMULATION OF A SUBMARINE ESCAPE SYSTEM

6.2.1 Introduction

In the event of an occupant being trapped in an immobilised submarine, one method of escape is 

by means of a submarine escape immersion suit and system. This suit, shown in figure 6.1, incorporates 

a built-in life-jacket and an enclosed hood to sustain the escaper during ascent. When inside an escape 

tower, see figure 6.2, the escaper connects the suit to an air supply control system by means of an extension 

hose. The life-jacket is initially inflated, allowing air through two relief valves into the hood far the escaper 

to breathe normally. Excess air inside the hood is expelled through a small vent to the surroundings. 

Simultaneously, the tower is flooded and pressurised to submarine ambient sea water pressure. When the 

escape tower pressure is equal to that outside the submarine, a hatch opens automatically and the escaper 

floats to the surface due to the buoyancy of the suit. When one submariner has escaped from the tower, 

it is depressurised and drained ready for the next escaper. It is vital that the escaper does not breath high 

pressure air for prolonged periods so that the pressurisation process needs to be short. In addition, the air 

supply control system, which senses the tower pressure, must maintain the hood pressure significantly above 

the hydrostatic pressure acting on the hood throughout the pressurisation process. Failure to meet this 

requirement can lead to the ingress of water into the hood, reducing the buoyancy of the suit for the escape.

A schematic representation of the escape suit and the air supply control system is shown in figure
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6.2. The supply air, stored in two pressurized cylinders, passes through a puncture valve and its pressure 

is lowered to a working level by a pressure reducing valve. Subsequently, the low pressure air is fed 

through a pressure control valve which is situated inside the escape tower. This valve, which senses the 

tower pressure and the downstream air pressure from a feedback pipe, supplies the air through a plunger 

valve and a corrugated hose to the life-jacket. The dual pressure relief valves, which are located at the 

shoulder position, vent gas from the life-jacket to the hood. It is important that hood pressure is sufficiently 

above surrounding water pressure to prevent water ingress with consequent danger to the escaper. Excessive 

air inside the hood will leave through the small vent at bottom of the hood to the surrounding water.

6.2.2 Component models development

The simulation techniques described in chapter 2 have been used to develop the models for this 

study. The approach developed to simulate the variation of gas composition is not included as the gas 

composition within the system is constant. The following sections give details of the theoretical analysis 

developed for the system models.

(i) Air storage supply cylinders

The storage supply cylinders are modelled as a single control volume using the same approach 

described in section 2.5.

(ii) Puncture valve

When a submarine escape commences, a puncture valve (figure 6.3) is used to rupture a 

diaphragm, allowing high pressure air from the storage cylinders to enter the system. The gas flow 

discharged by the valve can be determined using the similar approach to that outlined for the restrictive 

element, see section 2.2.2.

(iii)Pressure reducing valve

A schematic of the pressure reducing valve used in the air supply control system is shown in figure 

6.4. Referring to figure 3.26, it is found that the mechanism of this valve is similar to the pressure reducing 

valve used in the surface demand diving system. Therefore, the valve head motion and the gas flow through 

this valve can be determined using a similar approach to that described in section 3.3.2(i).
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(tv) Pressure control valve

The function of this valve is to ensure that the escape suit inflates in a safe manner as the tower 

is pressurised. The valve (figure 6.5) consists of a diaphragm, which balances the downstream pressure 

(from a feedback pipe) against the water pressure inside the tower. The valve action ensures that the output 

pressure closely matches the variation in ambient water pressure but is maintained slightly above it. 

Referring to figure 6.5, the water pressure and the valve outlet pressure exert a force on the diaphragm and 

the spool head to open the valve. The feedback pressure acts on the diaphragm tending to close the valve. 

Hence, the net opening pressure force acting on the spool is given by

Since the material of the diaphragm is very stiff, it is reasonable to consider that the stiffness of the 

diaphragm will tend to close the valve. Hence, the net spring force acting on the spool is given by

After identifying the net pressure force and the net spring force acting on the valve, the approach described 

in section 2.8 can be used to simulate the valve head motion and the gas flow through the valve.

The dynamic changes of the gas and water pressures acting on the diaphragm may have a 

significant influence on the valve performance. Hence, more accurate models for the gas and water 

chambers inside the valve have been developed. For the gas chamber, the rate of change of pressure and 

temperature inside can be obtained by

The mass flow rate through the feedback pipe restrictor in equation (6.3) can be obtained using the same 

form as for the restrictive element.

(6.1)

F, - (6.2)

F Jb ~  ~77~  (  Q jbjn ^ in  ~  Qjb.oul ^ /b  )  +  F Jb ^ d i  *cv  ]V A
(63)

(6.4)
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For the water chamber the rate of change of water pressure is given by 

P « B [ Q  -  (A .. -  A )x  ] / V  (6-5)w w  L v dt e v '  ev J  w

The volumetric flow rate of water through the holes at the external of the valve can be determined using 

the approximated approach described by McCloy and Martin (1973), that is

( L - c , ad '7
\

2 bp (6.6)

The term bp is the difference between the hydrostatic pressure acting on the Outside of the valve and the 

water pressure inside the valve.

(v) Plunger valve

This valve (figure 6.6) connects the air supply to the suit and operates when the corrugated hose 

is plugged in and the central rod of the valve is pushed down, providing an annular flow path for air flow. 

It is reasonable that the approach described in section 2.2.2 for the restrictive element can be used to 

determine the mass flow through the valve.

(vi) Pipe

The flow resistance associated with the pipes is considered in the simulation of the submarine 

escape system and the technique described in section 2.6 is used.

(vii) Corrugated hose

The pressure losses due to corrugation, bendings and end-fittings of the hose are modelled as for 

a pipe using an equivalent relative roughness factor for the corrugations.

(yiii) Life-jacket

In order to obtain the correct life-jacket shape, two tucks in the material are required. These tucks 

effectively create two ports which separate the life-jacket into three chambers as shown in figure 6.7. For 

each chamber, the pressure is obtained using an equation of a similar form to that of the counterlung, see 

equation (3.4). In this case, the dV/dt term represents the rate of change of life-jacket volume during 

inflation and deflation. In reality the life-jacket does not collapse during the pressurisation process. Hence,
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the dynamic analysis accounting for the life-jacket volume is not required (i.e. dV/dt = 0). The mass flow 

rates through the two ports are obtained using the flow equation for the restrictive element.

(ix) Pressure relief valve

This valve, shown in figure 6.8, operates when the difference between the upstream and 

downstream pressures exceeds a set level. It consists of a lightweight rubber diaphragm, held in place by 

two compression springs whose initial spring compression determines the valve cracking pressure. Hence, 

the approach described in section 2.8 is used again for simulating the valve with the net pressure and spring 

forces given by

<6-7>

F,  -  (**„ ♦ O

A step change discontinuity is observed in the measured pressure drop at a particular mass flow 

rate as shown in figure 6.9. The original model did not show this discontinuity so further analysis was 

required to account for it. Assuming flow around a cylinder, as shown in figure 6.10(a), such that the 

change in the flow pattern is from laminar flow to turbulent flow results from developments in the 

boundary layer (Massey, 1983). At first, this transition takes a rather complicated form: laminar fluid close 

to the wall moves away as it enters the attached eddies; transition then occurs very quickly and the 

turbulent flow reattaches to the wall a small distance downstream from the laminar separation. This 

transition causes a change of flow pattern around the cylinder and this is assumed to occur to the flow 

passing through the pressure relief valve (figure 6.10(b)). As a consequence, the flow momentum force 

increases causing an extra closing force on the valve head during the high flow rate period (which is the 

turbulent region). In the model, when /te>4.8x10s, it is assumed that the flow angle changes from 90° to 

60°. This modification provides a better correlation between the measured and predicted pressure-flow 

characteristics as shown in figure 6.9.

(x) Hood

The hood has been modelled as an inverted bucket with two inlet flows from the dual pressure 

relief valves and an outlet flow through a small vent to the surroundings. The model accounts for air 

flowing out of the small vent q„ using the gas flow equation for the restrictive element and water flowing
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in through the small vent using the water flow equation in the pressure control valve (equation 6.6). 

In the latter case, the pressure acting on the inlet of the small vent includes the head of water inside the 

hood (see figure 6.11) and is given by

IP , = P. + p g z (6.9)sv jn  h *  jv

In addition, the variation of depth of water inside the hood can be obtained by 

dz„/d, = Q J A „  (6.10)

According to figure 6.11, the local contact surface area between the air and water inside the hood can 

be obtained by the following relationship:

A = [A - A  ] (z„/zj +A (6.H)aw  L aw  tfv J  v M h r  sv

During the pressurisation process, the escape suit requires high pressure air in order to prevent 

hood collapse. Since the escaper breathes in air from the hood, the gas volume of the hood and the lung 

can be regarded as a single control volume through which air flows and water may ingress into the hood 

during the charging process. Using the same approach for the capacity element, the rate of change of hood 

pressure and temperature can be written as

A  ’  "i/—r v [ ♦ P-Q~ 1 <612>vh vi

T
t  — * [ pA v. * v.) -  P. Q  - m R T A  (6.13)

Pk ( VM + v,)

Note that Vh is the gas volume inside the hood.

(xi) Hydrostatic pressure acting on the system

The hydrostatic pressure acting on the system has a significant effect on performance and it is 

important to account for this in the models of the pressure control valve and the hood. When the tower is 

flooded to a certain water level, the pressure head above the pressure control valve is taken from the water 

surface inside the chamber to the centre of the valve. At this condition the hydrostatic pressure acting on 

the pressure control valve is

IP = P + p g z (6.14)
ev taw o  cv
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If the distance from the water surface inside the tower to the small vent in the hood is then the 

hydrostatic pressure acting outside of the small vent is

P  = P + p g z  (6.15)SV,OUt tow  r  V o  JV

where the pressure of the air space inside the tower Plow is the pressurisation profile occurring in the escape 

tower.

6.2.3 Simulation studies and results

Examples are presented which show how the simulation can be used to assess and improve system 

performance. Both apply to the unmanned test arrangement where the suit is worn by a mannequin, using 

an imitation lung. The water inside the chamber is pressurized to a scheduled profile, until a submarine 

ambient water pressure corresponding to a depth of 180 m is achieved. Figure 6.12 shows the pressurisation 

profiles far conditions (28 and 21 seconds), which are represented by the depth of water. A block diagram, 

shown in figure 6.13, show the interconnections of the models. Figure 6.14 is the simulation schematic of 

the submarine escape system in Bath#?. The data used in the models is presented in table 6.1.

It is important that ingress of water into the hood is prevented during the pressurisation process. 

If the pressure difference between the hood and the air space inside the chamber is less than the pressure 

head of water between the surface of water inside the chamber and the small vent at the bottom of the hood 

(which is 0.0525 bar), water will enter into the hood with consequent danger to the escaper. Hence, this 

pressure difference is used to express the degree of water ingress into the hood during the pressurisation 

process. Recordings of this pressure difference were taken from a test rig for comparison with the 

simulation. The pressure differences between all other important system elements and the air space were 

also measured in order to correlate with the simulation.

The simulation predictions using pressurisation periods of 28 and 21 seconds are presented in 

figures 6.15 and 6.16 respectively. It can be seen that the effect of reducing the pressurisation period gives 

a larger ‘dip* in the pressure difference profile between the hood and the air space inside the chamber. As 

a consequence, there is a greater tendency for water to enter the hood at the higher pressurisation rate. The 

simulation clearly shows that the operation of the submarine escape system is sensitive to the pressurisation 

rate.
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Referring to figures 6.15(a) and 6.16(a), the pressure loss in the pipe connecting the pressure 

reducing valve to the pressure control valve increases with increasing pressurisation rate and the upstream 

pressure of the pressure control valve therefore decreases. Similar increases in the differential pressures 

between the air space inside the chamber and the pressures at the control valve outlet and the plunger valve 

outlet occur with increasing pressurisation rate, as shown in figures 6.15(b) and 6.16(b). This does not 

occur with the differential pressures between the air space inside the chamber and the pressures at the relief 

valve inlet and the hood. The significant flow resistance in the pipes connecting the pressure reducing 

valve to the pressure control valve and the flow path between the plunger valve and the life-jacket have 

a pronounced effect on system performance, as these flow resistances become increasingly significant at 

high pressurisation rates. The corresponding experimental data obtained using the hyperbaric chamber are 

included in figures 6.15 and 6.16. From the comparisons it is shown that the simulation predictions are in 

close agreement with experimental data.

6.2.4 Improving system performance

The simulation studies have identified that excessive pipe flow resistances lead to poor efficiency 

of the system during the high pressurisation rate. Significant improvements in performance are possible by 

increasing the sizes of pipes and ports inside the life-jacket. Figure 6.17 shows the effect of increasing the 

internal diameter for the pipe connecting the pressure reducing valve to the pressure control valve by 50% 

and the flow area for the ports inside the life-jacket by 100%. The upstream pressure profiles of both the 

pressure control valve and pressure relief valve increase at the period of high pressurisation rate and the 

pressure difference between the hood and the air space inside the chamber remains constant throughout the 

pressurisation process. The escaper will therefore be protected from water ingress under this condition.

63 SIMULATION OF INDUSTRIAL PNEUMATIC SYSTEMS

63.1 Introduction

Pneumatic systems are used extensively in many different industries including aerospace, process 

control, nuclear and mining. The requirements for these systems can vary considerably from simple linear 

actuator circuits to sophisticated automatic control systems. The system designer must ensure that 

performance, safety and reliability are achieved at an economic cost. This requires a detailed performance
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assessment at the design stage. Computer simulation can be used to assist the designer in achieving the 

desired specifications. It can be used to assess conceptual designs, compare competing designs, aid system 

development, investigate the consequences of component malfunctions and to identify in-service problems. 

For this reason, models have been developed specifically for fluid power applications with the aim of 

simulating the industrial pneumatic systems.

6.3.2 Component models development

There are six types of components commonly used in industrial pneumatic system. These are (a) 

gas bottles, (b) orifices or restrictions, (c) valves, (d) linear actuators, (e) compressors and (f) pipes/hoses. 

Since the simulation techniques for the gas bottle, orifice, valve and pipe have already described in chapter 

2, the following subsections only describe the theoretical analysis developed for the models of linear 

actuator and the compressor.

(i) Linear actuator

Linear actuators are used to convert gas pressure or flow into force or motion. The piston motion 

can be obtained using a similar approach to that outlined for the valve. In this case, the spring compression 

force (ks xac)  and flow momentum force (Fm) are not considered and the piston acceleration is obtained by 

the following equation:

In the case of equal piston areas, see figure 6.18, the net pressure force in equation (6.16) is given by

Using equation (2.17) and (2.18), the rate of change of pressures and temperatures in chambers ‘1’ and ‘2\ 

are determined as follows:

For chamber 1

(6.16)

(6.17)

P n (6.18)

(6.19)
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For chamber 2

^ a c t 2  ~  ~ p   [  ^  ~  ^  ^ o u l 2  ^ a c t?  )  +  ^ a e i ^ ^ p i  ~  ^  r o d )* a c t  ]
(6.20)

(621)

The mass flow rate due to piston leakage is considered in the inflow and outflow mass flow rates and is 

assumed to be in linear relationship with the pressure difference between the two chambers:

(ii) Compressors

Most pneumatic power sources use a compressor. These may vary in size from small industrial 

bench supplies for air driven tools up to 600 bar units consuming 15,000 hp. Most units are either 

reciprocating piston units or vane type. The problem with compressors is keeping the unit cool, and while 

air cooling is satisfactory for the small units, water cooling is essential for big compressor sets.

If the size, speed and inlet condition (such as gas density) of the compressor are known, the mass 

flow rate in kg/s supplied by the compressor can be determined by

where the units of compressor size Veom and speed © are cc/rev and rev/min respectively.

Electrical and petrol motor are commonly used for driving the compressor. The torque given from 

the compressor to the motor can be determined by

Qie * Cle (Pacu\ ~ Paetp) (6.22)

© (6.23)
60

Tor = ( P -  P )  —  x lO"6 v 2n (624)

It is necessary to point out that work done on the gas from the compressor is significant in this



case and the gas temperature will be rise through the compressor. The outflow temperature can be obtained 

using the irreversible adiabatic relationship:

The value of polytropic index n depends on the amount of cooling at the compressor. When there is perfect 

cooling, where the outflow temperature is equal to the inflow temperature, the polytropic index is 1 

(isothermal compression). When there is no cooling, the polytropic index is equal to y (isentropic 

compression). It is possible that the polytropic index n lies between 1 and y, depending on the effectiveness 

of the cooling system. If n<l, the gas is cooled below the inlet temperature.

63.3 Simulation studies of a position feedback linear actuator system

To illustrate the way in which the developed models can be used to simulate the performance of 

industrial pneumatic systems, a position feed-back control actuator system is considered. Figure 6.19 and 

6.20 show the block diagram and Bath#? simulation schematic of the system respectively.

Referring to figure 630, a equal area linear actuator, mounted horizontally, is used to move a load 

through a distance of 4 m. The requirements for the system are that the actuator should have a stop at 2 

m during extension and another stop at 3 m during retraction. Also the time to reach those stops should 

not be more than 10 seconds. The system consists of an air storage bottle, a pressure reducing valve for 

reducing the supply air to a more manageable pressure and a three position, four port, closed centre 

directional control valve for flow modulation. A transducer is used to sense the position of the actuator 

piston and provide an output signal to a differencing element which compares this feedback signal with the 

desired actuator position value. The task of the differencing element is to perform the subtraction of these 

two signal to give an output referred to as the error or deviation. The deviation signal is fed to a first-order 

lag controller which represents valve dynamics and a proportional controller. The response from the lag 

is then fed to the directional control valve to determine the valve fractional opening. The measuring unit, 

differencing element and controller can be pneumatic or electronic instruments. The computer models of 

these control elements have already been well developed in the Bath#? simulation package. A detail 

description of the control element models can be found in Appendix B.
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The data used in the computer models is presented in table 6.2. The results obtained from the 

simulation are shown in figure 6.21. This figure includes the comparison of desired and achieved actuator 

positions, fractional displacement of the direction control valve, pressures in both chambers of the actuator 

and the gas pressure inside the storage bottle. From figure 6.21(a) it can been seen that the response of the 

actuator is clearly unacceptable where the time to reach the stops are more than 10 seconds. Also, there 

is a slight overshoot in the actuator displacement. Hence further simulations were undertaken to investigate 

modifications which would give better performance. Figure 6.22 shows the effect of increasing the 

proportional controller gain by a factor of two. The response obtained for this modification is shown in 

figure 6.22(a). Although the time to reach the desired actuator positions was reduced, a further overshoot 

occurred. The achieved actuator position overshot the desired value, resulting in the directional control 

valve moving in the reverse direction, see figure 6.22(b), causing extra air usage from the storage bottle, 

see figure 6.22(d). The response obtained from this modification shows that the circuit was clearly 

incapable of controlling the actuator precisely. The circuit was modified further to incorporate a lead-lag 

compensator, see Appendix B. The data used in the lead-lag compensator model is presented in table 6.3. 

It is noticed that the same magnitude of gain is used in the lead-lag compensator model. Hie simulation 

results, presented in figure 623, indicates that satisfactory performance is obtained (figure 6.23(a)) with 

less air usage (figure 6.23(d)) than the previous modification.

6.4 CLOSURE

The modelling technique described in chapter 2 has been extended to develop mathematical models 

for a submarine escape system and an industrial pneumatic system. The models have been used to assess 

the performance of both systems.

During the simulation of the submarine escape system, good correlation was obtained between 

predicted and measured data. The simulation studies have indicated that the operation of the submarine 

escape system is sensitive to the pressurisation rate as this increases the flow resistances in the pipe 

connecting the pressure reducing valve to the pressure control valve and in the flow path between the 

plunger valve and the life-jacket, resulting in ingress of water to the hood of the escape suit. The simulation 

was also used to assess system modifications in order to improve system performance. Tliese indicate that
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a larger internal diameter for the pipe connecting the pressure reducing valve to the pressure control valve 

and an increased flow area for the ports inside the life-jacket can provide a greater safety margin for the 

escaper throughout the pressurisation process.

The simulation of the position feed-back control actuator system has been used as an example to 

illustrate the way in which the developed models can be used to simulate the performance of industrial 

pneumatic systems. Two extra component models have been developed for the purpose of the simulation. 

These are linear actuator and pneumatic compressor models. The simulation studies indicate how simulation 

can be used as a tool for the design of industrial pneumatic systems.
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TABLES FOR CHAPTER 6

Models Variables Values Units

Storage bottles Initial gas pressure 200 bar
Total gas volume 212 L

Puncture valve Valve opening diameter 15 mm

Connection pipe Pipe internal diameter 15.875 mm
Pipe length 6.096 m

k factor for bends and fittings 0.0001 -

Relative roughness 0.002 -

Pressure Exposed piston diameter 30 mm
reducing Valve seat diameter 7 mm

valve Maximum valve opening 2.5 mm
Poppet angle 30 degrees

Effective mass of moving parts 0.108 kg
Spring rate of inlet valve head spring 12960 N/m

Initial compression of inlet valve head spring 5 mm
Spring rate of large spring 143600 N/m

Initial compression of large spring 15.4 mm
Viscous friction coefficient 500 N/(m/s)

Coulomb friction 0 N

Connection pipe Pipe internal diameter 10.4 mm
Pipe length 4.972 m

k factor for bends and fittings 9 -

Relative roughness 0.0001 -

Pressure Diaphragm diameter 165 mm
control valve Valve seat diameter 25.5 mm

Maximum valve opening 4 mm
Effective mass of moving parts 3.5 kg

Stiffness of main spring 60800 N/m
Initial compression of main spring 8 mm

Diaphragm stiffness 167200 N/m
Valve displacement when diaphragm stiffness occurs 2 mm

Viscous friction coefficient 1000 N/(m/s)
Coulomb friction 0 N

Average thickness of air space behind the diaphragm 0.0125 m
Diameter of feedback port damper 1.25 mm
Volume of water inside the valve 0.367 L

Water Bulk modulas 20500 bar
Diameter of external holes 5 mm
Number of external holes 4 -

Connection pipe Internal pipe diameter 22.2 mm
Pipe length 0.3 m

k factor for bends and fittings 0 -

Relative roughness 0.0001 -

 continue

Table 6.1 Data used in the models of the submarine escape system
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.continue

Models Variables Values Units

Feedback pipe Internal pipe diameter 5.3 mm
Pipe length 0.66 m

k factor for bends and fittings 3.6 -

Relative roughness 0.0001 -

Plunger valve Valve seat diameter 22 mm
Valve opening distance 6 mm

Corrugated hose Mean internal diameter 18 mm
Hose length 1 m

k factor for bends and fittings 0.2 -

Relative roughness 0.001 -

Life-jacket Inlet chamber volume 3 L
Right chamber volume 4.5 L
Left chamber volume 4.5 L

Flow area of internal port 280 mm2

Pressure Diaphragm diameter 38 mm
relief valve Valve seat diameter 14 mm

Maximum valve opening 6 mm
Effective mass of moving mass 0.0015 kg

Spring stiffness 2300 N/m
Initial compression of spring 2 mm

Viscous friction 1000 N/(m/s)
Coulomb friction 0 N
Flow force factor 0 -

Change of flow force factor 2.5 -

Reynolds number when flow force changed 960000 -

Diameter of external holes 6 mm
Number of external holes 4 -

Hood Maximum gas volume inside the hood 24 L
Imitation lung volume 5.6 L

Maximum air/water contact area 12250 mm2
Small vent flow area 8400 mm2

Height of the lower part of the hood 0.312 m

Distances Distance from the water surface inside the tower to 
the centre of the control valve diaphragm 0.536 m

Distance from the water surface inside the tower to 
the small vent of the hood 0.57 m

Table 6.1 Data used in the models of the submarine escape system
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Models Variables Values Units

Storage bottles Initial gas pressure 50 bar
Total gas volume 10 L

Pressure Exposed diaphragm diameter 35.6 mm
reducing Valve seat diameter 1.575 mm

valve Maximum valve opening 1.42 mm
Poppet angle 45 degrees

Effective mass of moving parts 0.01 kg
Spring rate of inlet valve head spring 7400 N/m

Initial compression of inlet valve head spring 2.3 mm
Spring rate of large spring 630000 N/m

Initial compression of large spring 1.5 mm
Viscous friction coefficient 100 N/(m/s)

Coulomb friction 0 N

Connection pipe Pipe internal diameter 10 mm
Pipe length 1 m

k factor for bends and fittings 0 -

Relative roughness 0.0001 -

Direction Maximum flow area from supply to ‘A’ port lx l O'6 m2
control valve Maximum flow area from ‘B’ to return port 5x1 O'5 m2

Maximum flow area from supply to ‘B’ port lx l O'6 m2
Maximum flow area from ‘A’ to return port 5x1 O'5 m2

Connection pipes Internal pipe diameter 10 mm
(2) Pipe length 1 m

k factor for bends and fittings 0 -

Relative roughness 0.0001 -

Equal area Actuator internal diameter 35 mm
linear actuator Actuator rod diameter 20 mm

Actuator stoke 5 m
Actuator mounting angle 0 degrees

Effective mass of moving parts 10 kg
External load 0 N

Speed dependent friction coefficient 100 N/(m/s)
Coulomb friction 0 N

First-order lag Controller gain 0.08 -

controller Time constant of first-order lag 0.5

Table 6.2 Data used in the models of the position feedback control linear actuator system

Variables Values Units

Controller gain 0.16 .

Time constant t 1 second
Time constant factor a 0.5 -

Table 63  Data used in the lead-lag controller model
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Figure 6.16 Predicted and measured results during 21 seconds pressurisation process

209



30

20

10

0
3020100

  P ressu re  reducing valve ou tle t

  P ressure  control valve in le t

 P ressure  control valve ou tle t

Time (sec)
(a) Pressures

xlO
-1

£
-O

4)CJc
i
•o
£9

Cu

7

6

5

4

3

2

1

0
0 10 20 30

  H ood

  P ressure  re lie f valve inlet ( life - ja ck e t)

 P lu n g er va lve  ou tle t

* P ressure  contro l valve outlet

Time (sec)
(b) Pressure differences between various components and air space inside the chamber 
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Figure 6.21 Simulation results of the position feed-back control linear actuator system



Pr
es

su
re

 
(b

ar
) 

Po
si

tio
n 

(m
)

5

D e sired

h iev ed

— ---- 1
0 1 2 3 4 5 6 7 8 9  10

T im e  (sec)

(a) Desired and achieved actuator position

-10
xlO

T im e  (sec)

(b) Fractional displacement of direction control valve

xlO XlO
-1

1000 .

999

99820
Chamber 1 997Chamber 2

996

992
10

991

990 .

989

988

987

986

0 985

XlO93 5 6 7 80 1 2 4

T im e  (se c )

(c) Gas pressures at chamber 1 and 2 of the actuator

T im e  (se c )

(d) Gas pressure inside the storage bottle

Figure 6.22 Simulation results with the increase of controller gain

213



Pr
es

su
re

 
(b

ar
) 

Po
si

tio
n 

M
s

D esired

A c h iev e d Y
u.

— -----1
0 1 2 3 4 5 6 7 8 9  10

T im e  (sec)

xlO
-10

0 1 2 3 4 5 6 7 8 9  10

T im e  (sec)

xlO

(a) Desired and achieved actuator position (b) Fractional displacement of direction control valve

XlO xlO

1000 .

999

Chamber 1 998Chamber 220
997

996 

la  995
- O

e  394

2  993

10
991

990 .

989

988

987

986

0 985

3 5 6 7 8 90 1 2 4 2 3 4 5 6 7 8 90 1
T im e  (sec) T im e  (sec)

(c) Gas pressures at chamber 1 and 2 of the actuator (d) Gas pressure inside the storage bottle

Figure 6.23 Simulation results of the modified position feed-back control linear actuator system

214



CHAPTER 7 
CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS

This thesis discusses the development of mathematical models for the simulation of underwater 

breathing apparatus and the human respiratory system. The aim is to provide the designer with a tool which 

can be used for analysis and design of underwater breathing apparatus.

The modelling techniques presented in chapter 2 describes the development of the component 

models for the simulation of underwater breathing apparatus, which include gas storage bottle, pipe/hose, 

gas control valve and axial flow scrubber. A technique to simulate the variation of gas composition in the 

breathing apparatus is presented which allows the partial pressure of constituent gases to be predicted. An 

approach to simulate the carbon dioxide absorption process in the axial flow scrubber has been developed, 

which enables the duration of the axial flow scrubber to be predicted. In addition, a breathing simulator 

model has been developed which allows the simulation results to be compared with the available unmanned 

testing results.

The simulations of the semi-closed-circuit breathing system and the surface demand diving system 

under unmanned test condition are presented in chapter 3. Additional models have been developed for these 

two systems. The simulations were undertaken to study the work of breathing and the quality of the 

breathing gas when using these two systems. Good correlation is obtained between the predicted and 

measured data. 1116 simulations have been used to assess system modifications to improve system 

performance. Comparisons between the performances of the surface demand diving system and the semi- 

closed-circuit breathing system indicate that under the same operation of conditions, the diver will expend 

less energy when using the surface demand diving system.

The development of the mathematical model for the simulation of human breathing process is 

described in chapter 4. The mass balance equations and a chemical buffering system have been used as a 

basis for the development of the human respiratory model. The models include the complex interaction

215



between lung and chest wall motion, airflow through the airways, gas exchange in alveolar and tissue, and 

blood circulation. For the neurogenic controller, the model incorporates mechanical and chemical control 

of breathing, providing an automatic control of respiration at different environmental conditions.

The parameters required for the development of the human respiratory system model have been 

obtained from published clinical measurement. The unknown parameters have been identified by comparing 

the simulation results conducted in chapter 5 with experimental data. The simulations of maximum 

inspiratory-expiratory flow volume manoeuvre, continuous breathing test, maximal voluntary ventilation 

test and different physiological conditions (ie. C02 breathing, hypoxia, exercise and change of ambient 

pressure) have been used to extend and test the human respiratory model. The simulation results agree well 

with available experimental data and the model has been used to simulate manned diving operation when 

using various types of breathing equipment. The models developed for the semi-closed-circuit breathing 

system and the surface demand diving system have been used for the manned diving simulations. The 

limitations of these two systems have been assessed by performing simulations using maximal voluntary 

ventilation test and at different diving schedules. The maximal voluntary ventilation test studies have 

confirmed that the use of oxy-helium mixture as the breathing gas allows higher diver’s ventilation to be 

performed and enables the diver to carry out harder tasks at deeper depths. The simulation studies at 

different diving schedules have demonstrated that the models are able to predict the occurrence of 

decompression sickness during a dive and enable safe diving schedules to be developed.

The simulation studies in chapter 6 illustrate that the simulation techniques can be applied to other 

gas based systems. Mathematical models have been developed for a submarine escape system and good 

agreement is obtained between the simulation and experimental results. Modifications have been identified 

using the simulation to improve system performance. Additional models have been developed for the 

pneumatic industries and the simulation of a position feed-back actuator system has demonstrated that the 

developed models can assist engineer for the design of industrial pneumatic systems.

Overall the work presented in this thesis provides a viable basis for the simulation of underwater 

breathing apparatus and the human respiratory system. The mathematical models developed are very general 

such that they can be used for other gas based systems.
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72  RECOMMENDATIONS FOR FURTHER WORK

The work documented in this thesis indicates that the simulation techniques can be used for other 

gas based system. Hence, if this research is to be continued, it is considered that studies into the following 

areas would be worthwhile.

7.2.1 Other kinds of breathing equipment

Since the developed models are very general, the simulation techniques can be applied to other 

kinds of breathing equipment, for example, the breathing apparatus used for fire and poisonous gas rescue, 

for high altitude and high speed flight and the patient for treatment use (ie. life support systems).

7.2.2 Enhancing the human respiratory system model

Further enhancement of the human respiratory system model is required to simulate the multitude 

of complex interacting effects that go to make up the respiratory system. These include the 

thermoregulation and humidity factors. Since the goal of the human thermoregulation is to keep body 

temperature constant at a preset level, a change in the respiratory control will occur when the surrounding 

temperature changes. The incorporation of the thermoregulation in the model will allow the response of a 

human at extreme hot or cold condition to be predicted. Humans living in humid climates are particularly 

susceptible to respiratory irritation due to the abrupt change from humid surface air to dry breathing air. 

Hence, the estimations of humidity factors could be considered so that further requirements of the breathing 

apparatus could be assessed.

7.2.3 Medical applications

The human respiratory system model has been shown to be capable of predicting the effects of 

respiratory disease. Hence, if experimental data obtained from a broad range of patients, who have different 

kinds of respiratory diseases , is available, the human model can be validated for different respiratory 

diseases. This model can then be used for the assessment and design of respiratory treatment equipment 

(ie. life support system).
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A PPEN D IX  A 

DEVIATION OF GAS PROPERTY RELATIONSHIPS

Since the specific internal energy u and specific enthalpy h are thermodynamic properties, it is 

possible to represent them as functions of any two other thermodynamic properties:

u = u ( p , T ) (A.l)

h -  h ( p ,T  ) <A*2>

Applying the chain rule to equations (A.l) and (A.2) for small changes du, dh, dp and dT gives;

du -  i s .
dp 

dhdh

j  dudp + __
dT

j  ^ dhdp + __
dT

dT

dT

(A.3)

(A.4)

The following analysis shows the derivation of the four derivatives in equations (A.3) and (A.4):

du dh du dh
~dp

»
r dp

*
T T f

P dT

There are several fundamental definitions of properties which can be used in this analysis 

including:

Specific enthalpy

h -  u + p  i)

Specific heat capacity at constant volume

C , = i!i
F dT

Specific heat capacity at constant pressure

r  -  dh 
p ~ dT

Coefficient of cubic expansion 

1 do

(A.5)

(A.6)

(A.7)

P = u dT
(A.8)
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Isothermal compressibility

k  =  -1 —

u dp

From the definition of enthalpy, equation (A.5),

dh -  du + p d u  + u dp 

Combining equations (A.4), (A.7) and (A. 10) now gives the expression

du = —

dp
dp + CpdT  -  p d u  -  u dp

and dividing through by dT leaves

du_ = dh_
~dT ~ ~dp

dp ^ ~ du dp S .  + Cp -  P —̂ ~ -  o - i -
dT dT dT

(A.9)

(A.10)

(A .ll)

(A.12)

This equation seems complex but can be simplified if applied to a particular process. If a constant pressure 

process is assumed (ie. dp= 0) and applying to equation (A.12) gives the much simpler relationships

du
1dT

= CP - p du
~dT

Equation (A.8) can be rearranged and substituted into the above equation to give

du
"dT

-  C. -  Pup

(A.13)

(A.14)

The first law of thermodynamic states that the increament of heat transfer per unit mass is

d(H/m) * du + p d u  

From the second law of thermodynamic

d(H/m) = Tds 

Combining equations (A. 15) and (A. 16) gives

(A.15)

(A.16)

Tds -  du + p d u  (A.17)

Rearranging equation (A.10) to give du and substituting in equation (A.l 7) gives

dh -  Tds  + udp (A.18)
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Dividing equation (A.l8) by dp leaves

dh rj, ds  = T   + i)
dp dp

For a constant temperature process

dsdh_
dp

= T __
T dP

+ U

According to Maxwell relationship

ds
~dp

—

dT

Equation (A.20) becomes 

dudh_
dp

= -T .
dT

+ D

Rearranging equation (A.8) to give du/dT\. and substituting in equation (A.22) gives

—

dp
* - p u T  + u

Equation (A.l 1) can be rearranged by dividing through by dp, 

dT dudu dh 
dp dp

+ Cp-i—. -  p   -  o
r dp y  dp

Now for a constant temperature process (ie. dT=0), equation (A.24) becomes

du = dh dv•  n
~dp T ~dP T 9P

-  u

Rearranging equation (A.9) to give 5o/0p|r and substituting in equation (A.25) gives

du
~dp

-  —

T dP
+ / ? K U  -  U

Substituting equation (A.23) gives

du n  71_  —pKU -  PuF
dp
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(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



Using equations (A.7), (A.14), (A.23) and (A.27), equations (A.3) and (A.4) become 

du = (/JKV -  p o T) dp  + (Cp -  pup ) d T  (A.28)

dh = (u  -  p o T) dp  + CpdT  (A.29)

For air and other gases which obey the ideal gas law

/?u = R T  (A-3®)

then

P = !  (AJ1)
T

and

tc = i  (A J2)
P

Hence,

/>ku -  poT  * 0 (A*33)

and

o -  puT  = 0 (A-34)

whereas

Cp -  Pop = Cp -  E L  *= Cp -  R = Cv (AJ5)

Using equations (A.33), (A.34) and (A.35), the differential form of equations (A.28) and (A.29) now 

become

du = Cv dT  (AJ6)

dh = Cp dT  (A37)

For small time intervals over which component and system parameter vary only a small amount, the gas
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properties Cv and CP can be taken as constant over the integration range ip.T) to ip,T)\ then 

ti -  u = Cv £ d T  (A J8)

h -  h -  C„ [ TdT£ d T  (AJ9)

Now Cv and CP represent means values of the properties over the integration range. Equations (A.3 8) and 

(A.39) are readily solved to yield

u = u + C v( T - f )  (A.40)

h = h + Cp ( T  -  T)  (A.41)

The above equations may also be differential with respect to time:

u - C y T  (A.42)

h -  Cp T (A.43)

Since Cp/Cv=y, CP-CV=R and p u - R T equation (A.5) can be written as

h •= u + (C p -  Cy) T  (A.44)

Rearranging the above equation, a relationship between h and u can be obtained as

h -  CPT -  ii -  CVT (A.45)
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APPENDIX B
DESCRIPTION OF CONTROL ELEMENT MODELS IN BATH/b

The first-order lag model is a dynamic model of the form:

r out

1 +  T S
(B.l)

The gain G and time constant t  are assumed fixed, s is a complex variable of the Laplace transformation. 

The derivative of the output signal is computed from the input signal as follow:

y^u * ( G y *  (BJ)

Hence, the output signal is obtained by integrating the above equation with respect to time.

The lead-lag model is a dynamic model of the form:

_ G(  1 + t s)  
Y* 1 +

(B 3)

Compared to the first-order lag model, the time constant factor £ is an extra variable. Hie output signal 

is computed as follow:

A -  (y" '  A ) (B^)

y „  - <?(A + tA) (B-5)

where A is called derivative of the lag and is obtained by integrating equation (B.4) with respect to time.
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