

University of Bath

PHD

Viewpoints in practice: explanations explained

Riddle, Steve

Award date:
1997

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

V iew points
In Practice

Explanations Explained
subm itted by

Steve Riddle
for the degree of Ph.D .

of the

University of Bath
1997

COPYRIGHT

A ttention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition tha t anyone who consults it is
understood to recognise that its copyright rests with its author and tha t no quotation
from the thesis and no information derived from it may be published without the prior
w ritten consent of the author.

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Signature of A u th o r ^ . f ..

Steve Riddle

UMI Number: U092740

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U092740
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVERSITY OF BATH |
LIBRARY !

- 1 JIJL 1997
» j i i ^ r» n v

Summary

Viewpoints, which we define as partial specifications in an appropriate language (not
necessarily formal), are used in a number of guises in various facets of software engi
neering, though their most common use is in requirements elicitation and analysis.

The aim of this work is, first, to demonstrate that viewpoints are used as we claim they
are, and can encapsulate information being added in an explanation. Having done this
we use some results from the formal theory of refinement to model the way systems
are described and explained, not only in the field of requirements but also in disparate
areas such as incremental description and tutorial developments given in user manuals.
This achieves the major claim of the thesis, which is tha t explanations can be explained
using the concept of viewpoints and the theory of refinement.

To achieve this claim, we begin with a survey of the use of viewpoints in software
engineering. This includes summaries of research in a number of fields, not limited
to requirements engineering research, and some analysis of their ability to model mul
tiple notations and conflicts. The survey is followed by a review of the theoretical
background to refinement and its applicability to the process of amalgamation of view
points, which provides a set of criteria for coming up with an appropriate refinement
relation, and operations for amalgamation, to model and explain explanations. Having
introduced the approach we assess it, first by comparing it with a framework for view
point development based on seemingly orthogonal ideas, and then using a number of
examples of explanations in which viewpoints can be used to explain the development
steps. These examples include an incremental specification of an operation to select the
next appropriate element from a queue, and some applications related to denotational
semantics.

We conclude that viewpoints can indeed encapsulate such information and that, given
a notion of refinement appropriate to the specification language under consideration,
the relation between viewpoints can be described in a natural way corresponding to
the way explanations are given in the real world.

1

Acknowledgements

The work described in this thesis was carried out with the support of a grant from the
EPSRC. I am grateful also for the supervision and support of Dr Peter J.L.Wallis,
advice and feedback from Dr Lindsay Groves, helpful conversations with Dr Mike
Ainsworth and Dr Dan Richardson, coffee provided by Nic Doye and Jet Kang, and
the love, support, tolerance and helpful suggestions of my wife Sandra.

I am grateful to the Centre for Software Reliability at the Department of Computing
Science, University of Newcastle upon Tyne, for time, discussions and use of facilities
to complete the thesis.

I am also grateful for the comments of anonymous reviewers of earlier versions of
Chapters 2 and 7.

2

C ontents

1 Introduction 9

1.1 W hat is a V iew p o in t... 10

1.2 Viewpoints in P ra c tic e .. 10

1.3 Explanations E x p la in e d .. 11

1.4 Chapter O u t l i n e .. 11

1.4.1 A Survey of Viewpoint T echn iques ... 11

1.4.2 Amalgamation and R efinem en t.. 11

1.4.3 The Refinement Calculus and C o-R efinem ent................................. 12

1.4.4 Viewpoint-Oriented Software Development 12

1.4.5 Viewpoints and E x p lan a tio n s ... 12

1.4.6 Incremental Development of an Algebraic Specification................... 12

1.4.7 Denotational S e m a n tic s .. 13

1.4.8 Summary and Conclusions... 13

1.5 A Note about P ro n o u n s .. 13

2 A Survey of V iewpoint Techniques 14

2.1 Motivation ... 14

2.2 V ie w p o in ts ... 16

2.2.1 I s s u e s ... 16

2.2.2 Software Specification Process .. 18

2.3 Viewpoint A pproaches.. 20

3

2.3.1 C O R E ... 20

2.3.2 Viewpoint R e s o lu tio n .. 21

2.3.3 The Requirements A pprentice... 22

2.3.4 Domain G oals.. 23

2.3.5 P rism a ... 25

2.3.6 ViewPoint Oriented Software Development 26

2.3.7 A R IE S ... 27

2.3.8 Viewpoint Oriented A n a ly s is ... 28

2.3.9 Alternative Viewpoints H ierarchy.. 28

2.3.10 Multi-Paradigm Specification ... 29

2.3.11 Viewpoint Amalgamation: The MFD M odel.................................... 30

2.4 Summary and Conclusions... 31

3 Am algam ation and Refinement 33

3.1 In troduction ... 33

3.2 A m a lg a m a tio n .. 33

3.2.1 Reasoning about A m algam ations.. 34

3.3 R e f in e m e n t... 36

3.3.1 Im p ro v em en t.. 36

3.3.2 Formalising Im p ro v em en t... 37

3.4 Refinement P ro p e r t ie s ... 38

3.4.1 Preserving C orrectness... 38

3.4.2 P r e -o rd e r .. 39

3.4.3 Monotonicity of O perato rs... 40

3.5 Example Refinement R e la t io n s ... 40

3.5.1 E q u a lity .. 40

3.5.2 E quivalence... 40

3.5.3 Domain E x te n s io n .. 41

4

3.5.4 Range R e s tr ic t io n ... 42

3.5.5 T ransform ation .. 43

3.6 Operations for Specification D evelopm en t.. 44

3.6.1 Z Schema C alcu lu s ... 44

3.6.2 VDM-SL ... 46

3.7 Summary and Conclusions... 47

4 The Refinem ent Calculus and Co-Refinement 48

4.1 In troduction ... 48

4.2 The Guarded Command L a n g u a g e ... 49

4.3 Specifications and P rog ram s.. 51

4.4 Refinement Calculus L a w s ... 52

4.4.1 M irac les ... 52

4.4.2 D ata R efinem en t.. 53

4.5 Co-refinem ent.. 53

4.5.1 Links and R estric tions... 54

4.5.2 Co-refinement Properties .. 55

4.6 Compromising Correctness... 56

4.6.1 B ack track in g ... 58

4.7 S u m m a ry ... 58

5 ViewPoint Oriented Software Development 59

5.1 In troduction ... 59

5.1.1 Method D e s ig n ... 59

5.1.2 Method U s e .. 60

5.1.3 ViewPoint D evelopm ent... 61

5.2 ViewPoint Integration and the Amalgamation P r o c e s s 61

5.3 ViewPoints and R efin em en t... 62

5.3.1 Phone E xam ple ... 63

5

5.4 Reasoning with Inconsistent V iew P o in ts ... 64

5.4.1 Banking System E x a m p le .. 65

5.5 Summary and Conclusions.. 67

6 Viewpoints and Explanations 68

6.1 Text Editor T u to r ia l ... 69

6.1.1 The Editor GNU e m a c s .. 70

6.2 Manuals and D o cu m en ta tio n ... 71

6 .2 . 1 Backward S tep s .. 71

6.2.2 Coping with Revised Descriptions .. 72

6.3 Literate P ro g ram m in g .. 73

6.3.1 K nuth’s WEB ... 73

6.3.2 Literate Programming Applications .. 75

6.3.3 Literate Programming and R efinem ent.. 75

6.4 Revision Control S y s te m s ... 76

6.4.1 Ordering between Versions ... 76

6.4.2 Version Ordering and R efinem ent... 77

6.4.3 Merging Versions and Amalgamating V iew po in ts............................ 78

6.5 Conflict between V e rs io n s ... 78

6 . 6 Summary and Conclusions... 79

7 Incremental Developm ent of an Algebraic Specification 80

7.1 In troduction ... 80

7.2 Development of Toolbox Event Manager S p ec ifica tio n 81

7.3 Refinement of Algebraic Specifications.. 85

7.3.1 Refinement Relation for Algebraic Specification............................. 85

7.4 Extension and E nrichm ent... 8 6

7.4.1 Composition O p era tio n s .. 8 6

7.4.2 D ata R efin em en t... 87

6

7.4.3 C o-R efinem ent.. 8 8

7.4.4 Augmented C o-R efinem en t... 89

7.5 Viewpoint D evelopm ent... 89

7.5.1 N extA ndR esti... 89

7.5.2 NextAndRest2 ’. M a sk .. 91

7.5.3 NextAndResti: P rio rities .. 92

7.5.4 NextAndRest4 : Queue/Stack .. 95

7.5.5 NextAndRest5 : R e m o v e .. 97

7.6 Relationships between Viewpoints ... 98

7.6.1 Alternative Viewpoint P resen tation ...102

7.7 Summary and Conclusions...103

8 Denotational Semantics 104

8.1 In troduction .. 104

8.1.1 Semantics of Programming L an g u ag es .. 105

8.2 Basic Form of a Denotational D e sc r ip tio n ...105

8.2.1 Building Semantic D o m ain s ..107

8.3 Semantic Description as Specification...108

8.3.1 C o rrec tn ess ... 109

8.3.2 Refinement Relation for Semantic D esc rip tio n s110

8.3.3 Composition O p e r a to r s .. I l l

8.4 Example: Adding a Button to a C a lc u la to r ... 112

8.4.1 Incremental V iew poin t... 112

8.4.2 A m a lg a m a tio n ...114

8.4.3 R e fin e m e n t... 115

8.5 Example: Adding A ssignm ent..115

8.5.1 Further Composition O p era to rs ...116

8.5.2 Incremental V iew poin t... 117

7

8.5.3 A m alg am a tio n ...117

8 . 6 Further Changes: Continuations ...120

8.6.1 Constructing Continuation Semantics .. 121

8.7 Summary and Conclusions.. 123

9 Summary and Conclusions 124

9.1 S u m m a ry ... 124

9.1.1 Viewpoints can be used to model a number of processes in soft
ware en g in eerin g .. 124

9 .1 . 2 Any investigation of refinement and viewpoints needs a formal
b a s is ... 125

9.1.3 Other work on viewpoints can be assessed with this formal basis 125

9.1.4 Explanations can be explained with these id e a s125

9.1.5 Viewpoints can model, and provide guidance for, example devel
opments ...126

9.2 C onclusions.. 126

9.2.1 Viewpoints in P ra c tic e ... 127

9.2.2 Explanations E x p la in e d .. 127

9.2.3 Backward Refinement and M o d u la rity .. 127

9.2.4 Tools ... 127

9.3 Future re s e a rc h ..128

Bibliography 130

8

Chapter 1

Introduction

This thesis concerns information, in the sense not of facts being endlessly produced by
television and radio, but of explanations — how people explain things to others. The
“things” being explained might be pieces of software, larger systems or simply abstract
concepts. The perspective of the explanation might be tha t of a user, a programmer,
a designer or a specifier. In any of these cases, what is being explained is a viewpoint.

The aims of this thesis are to:

1. Demonstrate that viewpoints are used in everyday explanations, or can be used
to advantage in modelling explanations (Viewpoints in Practice)

This is achieved by a literature survey of techniques which use viewpoints (Chap
ter 2), and by further chapters which model explanations in terms of viewpoints.

2 . Show how formal refinement theory can be used to relate these viewpoints to
gether (Explanations explained), and to provide straightforward mathematical
properties which must be satisfied for such an explanation to be given a formal
approval.

This is achieved by examining refinement theory (Chapter 3) and using it to
develop a theory of refinement between viewpoints. This theory provides the
necessary guidance for reasoning about the validity of derived or amalgamated
viewpoints.

9

1.1 W hat is a Viewpoint

We begin by defining what we mean by a viewpoint, a term originally coined by Mullery
for the requirements tool CORE [Mul79, Som96] and taken up by a number of re
searchers for their own models. The survey in Chapter 2 goes into these modelling
techniques in more detail, and shows tha t they each have a different concept of view
point To attem pt to encompass all these concepts is impossible, but the following
definition is general while still being useful:

D efin itio n 1.1 (V iew poin t) A viewpoint is a partial specification, written in a lan
guage which is not necessarily formal. It may be composed of/with other viewpoints, in
a manner dictated either by the language or by an associated development method.

The absence of a restriction to formal languages allows the following to be a viewpoint:

The clock has a digital display

It is certainly partial in that it does not give a complete specification of the clock
— it even leaves unanswered the question “what clock?” which springs to mind. It
could however be composed with a more formal viewpoint to provide a more complete
specification, in both natural language and mathematical terms, of what it means to
have a digital display. This new viewpoint, formed by amalgamation, could then be
further composed with a viewpoint describing the clock mechanism, and so on until the
whole clock is specified. W hat we have just described is an application of viewpoints
to model a bottom-up description.

While we do not insist on a formal language, tha t is to say a language with a defined
semantics in which it is possible to reason about the properties of the viewpoint being
described, we would at the very least expect tha t it is possible to decide, of a given
sequence of symbols made up of the alphabet of that language, whether or not the
sequence constitutes a valid sentence in tha t language — in other words th a t the
language is decidable. A viewpoint should consist of well-formed sentences from a
given language.

1.2 Viewpoints in Practice

We are interested in how effective viewpoints are in describing the way in which people
explain things to each other — in particular, but not exclusively, the description of

10

aspects of software systems. We argue tha t viewpoints are used in practice more widely
than has been recognised. For example, composition of Z specifications can be seen
as an amalgamation of viewpoints, and incremental development of specifications can
be expressed as an amalgamation of new developments with the original idea. Beyond
software specifications, an document presenting an explanation of a complex subject
using an initial “glossing” description, with subsequent explanations tha t augment or
override information, can be modelled in terms of viewpoints.

1.3 Explanations Explained

The major claim of the thesis is tha t the use of viewpoints in such incremental de
velopments (explanations) can be modelled and formally verified using the theory of
refinement, with extensions where necessary. In this way an incremental explanation
can be shown to be made up of ordered steps which each refine the previous one. In
a real-life example such a process is likely to involve some back-tracking so we also
address this question with respect to refinement theory to identify when, if ever, such
a development can be said to be formally acceptable.

An illustration of a common form of explanation comes in the following outline of
chapters, which moves from initial ideas about viewpoints and refinement, through the
definitions and theory which are needed, to examples of increasing weight of explana
tions which can be explained.

1.4 Chapter Outline

1.4.1 A Survey o f V iew p o in t T echniques

We begin with a survey of a number of approaches to requirements analysis, design,
specification development and programming in which viewpoints are used, though not
always explicitly. We consider the degree to which each of these approaches exploits
viewpoints and the relations between viewpoints.

1 .4 .2 A m algam ation and R efinem ent

We introduce key concepts in the formal treatm ent of combining (amalgamating) view
points and of refinement, identify characteristics which must hold for any relation which
is required for refinement purposes. We identify a series of refinement orderings which

11

can be of use in different situations, depending on the definition of what makes a correct
implementation of a specification.

1.4.3 T he R efinem ent C alculus and C o-R efinem ent

We discuss a particular refinement approach in the light of the theory introduced
previously, and show that the refinement relation used in this calculus can be too
strong to allow some sorts of development; these are discussed together w ith a weaker
version, co-refinement. Following the ideas of co-refinement to a logical conclusion an
even weaker version, compromise, is introduced.

1.4 .4 V iew p oin t-O rien ted Softw are D evelop m ent

First encountered in the survey chapter, the VOSD framework for integration of meth
ods and tools has some distinct differences in outlook from our approach, notably the
highly structured designation of what constitutes a viewpoint and the distributed na
ture of the framework; viewpoints here are loosely coupled, locally managed objects
responsible for directing their own development. We compare the approaches and con
sider how amenable our more general ideas of refinement and amalgamation are to
modelling the VOSD framework.

1.4.5 V iew p oin ts and E xplan ations

An explanatory walk through a number of examples in the real world where viewpoints
can be used to advantage. The chapter is arranged in an incremental manner, building
from tutorial descriptions and user manuals to the writing of documentation with code
(literate programming), version control systems and computer support for cooperative
working (CSCW), and illustrates the claim of the thesis: tha t explanations such as
these can be modelled, explained and assessed using viewpoints and refinement.

Each of these chapters has provided some ground work for the two larger examples
which follow, in which full-sized explanations are explained in terms of refinement.

1.4.6 Increm ental D evelop m en t o f an A lgebraic S p ecification

The first case study concerns the incremental development of specifications. In con
sidering an algebraic, rather than state-based specification language, we develop a new
version of the co-refinement relation introduced in Chapter 3. This example is adapted

12

from an incremental specification of part of the scheduling system for the Apple Mac
intosh Toolbox Event Manager [BCG+89].

1.4 .7 D en o ta tio n a l Sem antics

The semantics of a programming language gives a further example. Denotational se
mantics is used as a tool for the design and implementation of programming languages.
The language concerned is a simple calculator, and we show how a new feature can be
added to the calculator. This is achieved by first identifying the ways in which such
semantic descriptions can be composed and the appropriate version of a refinement
relation to compare the descriptions. As a conclusion we look at how the step from
direct to continuation semantics can be modelled in the same way.

1.4.8 Sum m ary and C onclusions

Finally we review where the previous chapters have got us, how the aims set out in
this chapter been met, and where we might go from here.

1.5 A N ote about Pronouns

Much time and effort has been extended by various worthy writers to avoid apparent
sexism in writing; sentences such as “if a writer wants to avoid appearing chauvinistic,
he/she should look to his/her pronouns” are laudably gender-free, but clumsy and
annoying to read. Making a thesis annoying to read is very probably a Bad Thing.

Various alternatives exist: “it” is pleasingly neutral but best applied only to inanimate
objects; “she” could be used always in an effort to restore balance, but smacks of
positive discrimination; “one” just sounds silly. I toyed with using “they” , but it seems
a shame to sacrifice grammar to political correctness.

The solution adopted here is to use a new word, “he” , with “his” for the possessive
case, to represent both masculine and feminine pronouns. This amalgamation of the
old terms should not be confused with the gender-specific “he” and “his” which are
now superseded. The author will not be held responsible for any conjectured sexism
resulting from such confusion.

13

Chapter 2

A Survey of V iewpoint
Techniques

In this chapter we survey a number of current viewpoint techniques in software engi
neering, which are applied not only to requirements definition but to the whole software
specification process. We take a selection of the most promising work and compare the
approaches.

We begin by introducing reasons for the use of viewpoints in software engineering.

2.1 M otivation

The process of producing requirements documents and formal specifications for any
medium-to-large system is a complex task: before very much development has taken
place the document will have become difficult to maintain. This is due to a number of
factors:

• The users of the system may specify contradictory or inconsistent requirements,
and are likely to want to change them during the process of development.

• There can be no single “correct” way to structure a formal specification from
the elicited requirements; the decomposition of each level will depend on the
interpretation given to the information by the analyst concerned.

• There may be a number of analysts producing requirements documents, perhaps
in different formalisms, with their own assumptions about the problem and with

14

different perspectives on it. Communication between these analysts may be less
than ideal.

• It is not easy to take in several pages of mathematically correct specification,
however much it is accompanied by natural language explanation. In addition,
there is a diverse range of specification languages and paradigms which are best
suited to different stages of the development process, and to expressing different
types of problem.

In fact, even with a carefully co-ordinated software engineering team, in which under
standings shared between members of the team are maintained through documentation,
misunderstandings and breakdowns of communication can still occur [Eas92].

Breaking the problem up into bite-sized pieces of information, which can be under
stood, verified and altered simply, is a common technique. Specification languages
such as Z [Spi89], with its schema calculus, and CLEAR [BG8 6], w ith its parame-
terised theories, help in expressing a problem in modules and encourage information
hiding [Par72b, Par72a]. A key result of studies of modularity is tha t what makes
a good modularisation depends on the point of view of the user of the modularisa
tion; ease of understanding does not necessarily correlate with ease of implementation,
and readability may be orthogonal to efficiency of code [FJ90]. The object-oriented
methodology OMT [RBP+91] uses object, dynamic and functional models of a system
and encourages the use of modules to capture different perspectives of a situation. Tools
such as RAISE [Gro92] and the B toolkit [ALN+91] provide support for incremental
development of specifications, but it is not a simple task to manage inter-relationships
and communications between developing modules.

Central to several of these methodologies is the concept of evolution [Fea89a, Gol83],
also termed incremental specification or elaboration. This is a development method
in which, starting from a basic initial description, changes are made to the developing
specification until a final description is reached: each change is simple enough to be
readily understood. In particular, Feather [Fea89a] considers “parallel elaborations”
which can be refining or adapting elaborations, to be applied independently and in
parallel, to the specification. This is followed by a “recombination” stage in which any
glossed-over dependencies between elaborations, and any other causes of interference,
can be considered. Several of the methods described in this chapter develop this idea
further.

15

2.2 V iew points

The notion of viewpoints has been developed by several authors, working generally
in the field of requirements engineering but also in the process of formal software
specification. The term is derived, as are several of the methods we shall describe, from
the requirements definition language CORE [Mul79, Som96] (Section 2.3.1). While this
method has achieved popularity in industrial use, it has inherent weaknesses which more
recent methods address - see Section 2.3.1

The definition of a viewpoint is subtly different in each approach: for some it is still
an external entity interacting with, and partitioning, the system [Mul79, KS92]; for
others it is a partial, self-contained specification [Wal92, FKN+92], In general, however,
the idea is tha t a viewpoint represents partial knowledge of the system: it may be
incomplete or inconsistent with other viewpoints during a system’s development. Some
of the approaches described do not use the term [RW91, ZJ93], but are nonetheless
concerned with the development of partial specifications.

A common example is the library problem, [Win8 8] which considers the differing posi
tions of library users and library staff: users would like to have a wide choice of books,
long borrowing times and high limits on the number of books they can take out, while
staff will be more concerned with security and stock control. Both parties will wish for
a fast check-in/out system. On a different level, the concepts they are considering will
differ: a single concept will have different names, e.g. borrowing for a user is lending
from the point of view of the staff, or other concepts with the same name will be dif
ferent, e.g. the concept of a “book” is simply a title and author to the user, while it is
also edition, copy number or bar-code for the staff.

2.2 .1 Issues

In comparing viewpoint approaches, the following issues need to be considered:

• W hat is the subject of interest, and where in the development process do view
points come in?

Some methodologies simply use viewpoints to validate the consistency of require
ments elicited from users [LF91, RW91]; alternative approaches formalise require
ments, or retain the partitioning right through the process of requirements and
specification [FKN+92, JFH92].

• How general is the method, and are multiple formalisms supported?

16

The methods cited range from those imposing a viewpoint definition language on
the user [LF91] to those allowing the analyst to work in a number of representation
styles and design methodologies as best fits the problem [FKN+92, JFH92]. The
advantage of multiple formalism support is tha t it provides a more realistic model
of actual development, in which a system’s description will evolve across a number
of representation styles of varying formality.

• How are viewpoints formally defined?

As mentioned above, viewpoints are not defined consistently by all approaches.
Some methods have a very loose definition, others have a formal one, and some do
not explicitly mention viewpoints at all. We are concerned with the way in which
viewpoints are structured and related to each other and what they represent:
for example, an agent (stake-holder or person with an interest in the system), a
requirement, or a partitioning of the problem.

• How are viewpoints used to specify a system?

Once a viewpoints structure has been built for a system, and relationships defined,
there remains the question of how they are used to provide a specification for
the system. Most methods involve integrating or amalgamating the viewpoints
at some stage, although [FKN+92] proposes a system in which no single, flat
specification document need be produced. Inconsistencies between viewpoints
must be identified and resolved before integration is possible; not all methods
consider the identification of inconsistencies in detail.

Approaches to requirements engineering can be broadly divided into the technical, in
which a rigorous approach is used to formalise the elicited requirements and develop
a specification in a formal language; the cognitive, in which knowledge representa
tion techniques are used to model elicited requirements and resolve them by means
of heuristics; and the social, where the emphasis is on extensive fieldwork to obtain
a rich picture of the intended system and its context. The majority of viewpoint ap
proaches in this survey are aids to requirements engineering, and fall into the first
two categories: other work which touches on some of the approaches included here
are cognitive approaches such as planning [AF89], specification critiquing [FN8 8] and
blackboard systems [LLC91], and technical approaches such as views in object-oriented
programming [SS89].

Our comparison of viewpoint approaches is in part motivated by a survey of method
ologies for integration of database schemas [BLN8 6], which considers twelve schema
integration methodologies in depth. Schema integration normally takes place in the

17

conceptual design stage, after separate views have been produced in the requirements
stage. This results in a global, high-level schema. Reasons for differences between
views are equally applicable to partial specifications of program systems — different
perspectives, equivalent constructs modelled differently, incompatible design specifica
tions, common concepts or related concepts. Representations of common concepts may
be identical, equivalent, compatible (not equivalent but not contradictory) or incom
patible: the last two are considered to be conflicts.

Each methodology in the survey can be considered to use some of the following common
steps:

• Pre-Integration

Schemas are identified, relevant information gathered

• Comparison

Correspondence, conflicts and inter-schema properties are determined. Conflicts
are classified as structural conflicts or naming conflicts.

• Conflict resolution

By reference to designers/users — usually a manual process.

• Merging and Restructuring

Producing a global schema which is complete, correct, minimal (no redundancies)
and understandable.

We will make reference to these steps in the following comparisons, and, since the
viewpoint approaches considered are more than integration methodologies, we will also
consider the structure of viewpoints and how they are used to develop a specification.

2.2 .2 Softw are Sp ecification P rocess

The first stage in classifying viewpoint approaches is to consider the stages in the
software specification process to which each approach is addressed. Taking our lead
from [Som96], we consider the specification process to consist of the following steps;

• Requirements Elicitation

The system’s requirements are defined by negotiation with the potential users,
buyers, specifiers and designers. This stage should include a feasibility study.

18

• System Modelling

The next three stages provide input for the requirements document, which will
form the basis of a binding contract between the buyers and the developer. The
System Model details relationships between system components and the environ
ment.

• Requirements Definition

This stage produces an abstract description of the proposed system, with natural
language detailing functional and non-functional requirements (Non-functional
requirements are constraints, such as timing and reliability).

• Requirements Specification

Also termed functional specification, this stage uses techniques such as program
description languages to specify each component of the system. Requirements
validation will normally be a sub-process of this stage. The specification docu
ment is often produced in conjunction with the design, and will form an appendix
to the requirements document.

• System Design

A design is produced, using a variety of available formalisms.

The process is iterative: at each stage, changes may become necessary due to inconsis
tencies coming to light. For example the requirements specification stage may identify
problems, necessitating a change to the requirements definition.

This model of the process is typical, but not set in stone: some of the methods de
scribed suggest changes, notably Viewpoint Resolution (Section 2.3.2) which argues
tha t validation should occur as a sub-process of elicitation.

In the following sections we describe the viewpoint approaches. Each section begins
with a table classifying and summarising the approach; the classifications correspond
to the issues referred to in Section 2.2.1

C o n te x t refers to the purpose of the methodology and its place in the development
process.

F o rm alism refers to whether or not the methodology supports multiple formalisms
and how the alternative views are reconciled.

V iew p o in ts identifies how viewpoints (or the equivalent concept) are defined and
structured.

19

M e th o d describes how viewpoints are actually used.

2.3 V iew point Approaches

2.3 .1 C O R E

Context System Modelling, Requirements Definition
Formalism Single specification language used at viewpoint level
Viewpoints Sub-processes of system or external entities: sub-processes are hierar

chically structured into functional subsystems
Method Used to formalise functions and dataflows of processes

CORE (COntrolled Requirements Expression) [Mul79, Mul84] is one of the earliest
requirements methods to define the notion of viewpoints. The CORE process is well
described in the literature [Mul79, Som96, Sto92, KS92]. Viewpoints are identified
in an informal “skull-session” between everyone involved (users, specifiers, buyers),
and classified as functional or non-functional. The method provides general guidelines
for decomposing the functional viewpoints which are internal to the system (direct
viewpoints) into functional sub-systems and analysing their function, input, source,
output and destination. It is at this stage that conflicts relating to information flow
between viewpoints can be identified, as outputs from one viewpoint can be tied up
with inputs to the destination viewpoint.

Further stages analyse the structure of data output by each viewpoint, and identify
transactions across the system. Finally, non-functional aspects of the system (con
straints) are analysed. The system has inherent weaknesses ([KS92, Sto92]):

• A poorly-defined notion of a viewpoint.

• Difficult to model processes which use different representations.

• Provides only general guidelines for identification and structuring of viewpoints,
so it is likely th a t two analysts on the same problem will come up with radically
different viewpoints which cannot be resolved.

• The data-structuring step only analyses output, on the grounds tha t all output
is also input to a destination viewpoint; this means tha t input from indirect
viewpoints (those which are external to the system) will never be analysed.

20

Extensions to CORE

CORE appears weak in areas such as consistency checking and does not support mul
tiple formalisms. More recently there have been proposals for extensions to CORE to
provide for support of specification reuse [Fin8 8] and to model changes in specification
[Sto92].

In the TARA project, Finkelstein [Fin8 8] proposes using the cross-system transactions
identified in the CORE process as the building-blocks for reuse, selecting analogous
transactions from a knowledge base to fit a target partial specification, by a variety
of methods such as pattern matching and generalisation. After selection a transaction
must be restructured to resolve inconsistencies and then “plumbed in” to the partial
specification. The author admits that the method employed is not clean, due to the
top-down nature of the CORE methodology which is not easy to reconcile with the
inherently bottom-up nature of reuse, and concludes that reuse cannot be bolted onto
an existing methodology but must be planned for from the start.

Stokes [Sto92] proposes extensions to CORE to allow for changes in specification, and
presents Z schemas to formalise the method. He proposes two levels of validity for
specifications; evolving and consistent, and introduces the idea of specification con
tinuations as a function from an incomplete (evolving) specification to the minimum
consistent specification.

2.3 .2 V iew p o in t R eso lu tion

Context Validating requirements as sub-process of elicitation
Formalism Views are expressed using a given propositional language
Viewpoints Integration of 3 perspectives of analyst’s view of problem
Method Discrepancies in and between 2 analysts views identified by heuristic

analyser

Viewpoint Resolution [LF91] is a methodology for “very early validation” of require
ments; the authors believe that validation should occur as a sub-process of the elicita
tion stage, rather than in requirements specification as in Section 2.2.2. They provide a
method for formalising viewpoints and analysing them, using a heuristic analyser and
a viewpoint language, VWP1, which is used to express a particular viewpoint, resolve
its internal conflicts and then compare it with other viewpoints. The end result is then
a consistent requirements document.

In this method, which the authors stress is an aid to fact validation and not a re

21

quirements language, a viewpoint is defined as a “standing or mental position used by
an individual when examining or observing the overall context of the proposed sys
tem .” To identify and classify discrepancies, a process of “view construction” is used
to integrate perspectives and hierarchies from a viewpoint. Perspectives are different
modelling aspects; the method uses data perspective, actor perspective and process
perspective, and the is-a and parts-of hierarchies. Each analyst must express the prob
lem in the VWP1 language using each of the three perspectives; the perspectives are
then compared using a heuristic-driven static analyser, and a list of discrepancies is
produced. When there are no more discrepancies, the perspectives are integrated into
a view.

The view of another analyst can then be compared to tha t of the first. The whole
process aids the analysts in understanding the problem and bringing out any invalid
assumptions they may have made.

The static analyser works by finding similar pairs of rules and discrepancies between
them. Classification of discrepancies is based on scores resulting from pattern match
ers and borrows from the artificial intelligence concept of analogy, as in other meth
ods which consider the problem of conflict resolution [LLC91] and specification reuse
[Fin8 8 , Mai91]. The analyser classifies discrepancies as due to: wrong information,
where there is a contradiction between facts; missing information, where hierarchies
are incomplete or some rules or facts are missing; and inconsistency, due to redun
dancy or a contradiction between a fact and the hierarchy.

Viewpoint resolution is a methodology to help the requirements elicitation process, and
thus is not concerned with supporting alternative design methodologies, or incremental
specification. The fact that analysts must learn a new language in which to describe
their perspectives may be a disadvantage, although the authors claim that no more
than two hours training is needed for analysts to be able to use the language.

2.3 .3 T he R equirem ents A pprentice

Context Requirements definition and specification
Formalism Requirements expressed using given propositional language
Viewpoints Incremental requirement statements
Method Takes requirements and reusable components, updates knowledge

base, identifies inconsistencies, suggests solution via heuristics, rea
soning

The Requirements Apprentice (RA) [RW91] is part of the on-going Programmer’s Ap-

22

prentice project being developed at MIT. Whereas Viewpoint Resolution addresses
itself to validation as a subprocess of the requirements elicitation stage, the RA fits
into the the Requirements Definition/Specification stages. It is a knowledge-based sys
tem which encourages reuse of partial requirements documents, supports evolution of
requirements and has facilities for detecting and resolving inconsistencies.

The RA consists of three modules: a “Cliche library” containing a collection of reusable
requirements; a hybrid knowledge-representation and reasoning system termed a “Cake”
with a layered architecture of propositional logic, algebraic reasoning, frames and plan
calculus; and an “Executive” for interaction between analyst and system. Commu
nication is via a formal command language. Requirements are developed by means
of a dialogue between analyst and system in which the analyst issues commands re
garding requirements and the system checks them for consistency in the knowledge
base. Central to the method is the support for informality of requirements; evolving
requirements are provided by the analyst in an incremental manner, and information
which the executive recognises as omitted can be “pended” until the analyst is ready
to provide it or retract other requirements. In addition the library of cliches provides
for reuse of requirements and allows some omitted information to be filled in by default
or deduction. The “Cake” module makes deductions about the evolving requirements
and informs the analyst when a conflict has been identified and what deductions and
underlying premises led to this conflict, and gives suggestions for resolving it. Again
the analyst can choose to deal with the conflict or ignore it for the time being, as it
might be resolved later by further statements.

The Requirements Apprentice does not provide support for multiple formalisms; its
concern is with formalising requirements. The end product of the process is a consis
tent requirements document which is passed onto the next stage in the Programm er’s
Apprentice project.

2.3 .4 D om ain G oals

Context Requirements specification, System specification
Formalism Specification components linked to goals
Viewpoints Goals represent attributes of system. Hierarchical structure of sub

goals determine increase or decrease in satisfaction of parent goal
M ethod Correspondences and conflicts between goals identified by negotiation,

analogy, heuristics; resolution to integrate specifications.

Domain goals [Rob89] develop Feather’s parallel elaboration model [Fea89a] to allow

23

automation, considering the problem of integrating parallel designs using the general
notion of plan integration and negotiation. Domain goals are required attributes of
the system, such as “Loan Period” in a library system; this will have a proposed
value such as “2 weeks” in one perspective. The goals are linked to specification
components which support them. The parallel development method can be used for
multi-perspective design, with alternative perspectives of a single system, and also for
parallel development of different systems with a common basis. This allows for reuse
as in the Requirements Apprentice (Section 2.3.3).

The process of integration of perspectives is achieved via a goal/subgoal structure in
which attributes are used to indicate whether an increase in satisfaction of a subgoal
will result in an increase or a decrease in satisfaction of the parent goal. Goals have
attributes associated with them which are set to zero in the base model and then
altered as a result of elaborations. Elaboration linkages between goals and specification
components are used to ensure that each goal is supported by a specification component,
and each component is justified by a goal.

Integration is a four-step process which corresponds to the steps identified in Sec
tion 2.2.1. Correspondences between specification components are first identified, either
by tool support for components with the same name or by the analyst for differently-
named components with the same meaning. Corresponding components are then struc
turally compared to identify which ones conflict, and conflicting components of each
specification are grouped together based on common domain goals from which they are
derived. This stage can be automated to a significant degree.

The next step attem pts to remove differences in specifications by compromise or sub
stitution. The domain goals from which conflicts stem are analysed by a variety of
(manual) methods; negotiation of attributes, goal substitution, heuristic rules or case-
based solutions. The resolution of conflicts is then mapped back to specification level.
This should involve simple merging and patching of specifications.

Domain goals tackle the question of resolution of conflicts by calling on negotiation and
planning. Tool support is provided by a specification environment, Oz, which allows
creation of domain goal graphs, specifications and integrations. Automated support
for integration is at an early stage.

24

2 .3 .5 P rism a

Context Requirements specification, System specification
Formalism Entity relationship models, dataflow diagrams, Petri nets, interpreted

centrally in first-order logic
Viewpoints Representations of system in most appropriate formalism; information

in each must correspond
Method Formalise elicited requirements; switching between views identifies

conflicts via heuristics

Prism a [NMS89] is described as a pluralistic knowledge-based system reflecting the
fact tha t specifications do not, in practice, live over a single formalism. Specifications
w ritten in different formalisms express particular views of a system; each view com
prises limited perspectives. The Prisma approach is to capture syntactic, semantic
and pragmatic aspects of common methods (entity relationship models, data-flow di
agrams, petri nets) by interpreting them into a common logical notation and provide
tool support for construction and integration of views.

The Prisma framework generalises the traditional “flat” specification process to a mul
tiple view specification, where at each specification level several parallel views are
maintained, with mappings between them such tha t observable properties of one view
should have corresponding properties in another. To solve the problem of translating
between views in different formalisms, views are first interpreted in first-order logic,
and heuristics are used to help in verifying tha t properties from one view are properly
represented in others.

The intended use of the Prisma system is to formalise the requirements obtained by
an analyst as a result of the initial elicitation session with the user. The prototype en
vironment provides an “agenda” mechanism providing advice about tasks which need
to be done in view construction and suggestions to eliminate inconsistencies, a “para-
phraser” which uses the validation heuristics to generate natural language descriptions
of the current view, and a “complementarity checker” which is invoked when the ana
lyst switches between views, informing the analyst of associations between properties
which must be observed when a new view is being constructed from a previous one,
and allowing partial consistency-checking.

The Prism a prototype environment provides partial answers to some of the theoretical
problems of mappings between views; the ideas are generalised by more recent research
in the VOSD framework (Section 2.3.6).

25

2.3 .6 V iew P o in t O riented Softw are D evelop m en t

Context Requirements specification, System specification
Formalism Theoretically unlimited choice of multiple formalisms, also alternative

development strategies
Viewpoints Represent one role of an analyst; define responsibility, development

strategy, formalism. Loosely coupled, non-hierarchical structure
Method Decentralised framework used to manage viewpoints, related only by

local checks. Framework remains in place during full development
cycle

The ViewPoint Oriented Software Development (VOSD) framework [FKN+92] is the
most recent in a number of viewpoint approaches from Imperial College. An earlier
approach of interest is M ulti-Party specification [FF89], an attem pt to model the un
derlying mechanisms of how people write specifications. Development is viewed as a
dialogue between viewpoints, each of which maintains a store of statements to which
it is committed, and which is modified by “speech acts” , governed by dialogue rules.
Using such rules the dialogue progresses by “simple elaboration” or incremental evo
lution. Once the dialogue is completed the specification is represented by the pool of
commitments. While this is an interesting way of looking at the software development
process, it has practical limitations as inconsistencies will only come to light through
sufficient dialogues.

VOSD considers a viewpoint as a partitioning of a system according to agent, devel
opment method and formal representation style; it encapsulates partial knowledge of a
system. Viewpoints here are loosely-coupled, locally-managed entities: the framework
is decentralised and viewpoints are interrelated only by local checks.

The framework is intended to support concurrent, distributed and cooperative work by
multiple agents, each of which might have more than one perspective or responsibility in
the system; in addition to supporting differing formalisms (as in Prisma, Section 2.3.5)
it supports alternative development strategies (top-down, bottom-up). A viewpoint
object contains slots to hold the representation style, domain, specification and work
record (encapsulating partial knowledge about the system and domain) and a work plan
for the viewpoint; the work plan provides actions for creating new viewpoints from a
template, building specifications, and support for checking consistency by in-viewpoint
and inter-viewpoint checks. The VOSD method has been used with some success to
describe development methods such as JSD and SSADM.

26

2 .3 .7 A R IE S

Context Requirements definition and specification, system specification
Formalism Theoretically unlimited choice of multiple formalisms
Viewpoints Presentation of knowledge in central base, used to view/alter require

ments.
Method Incremental development and re-use of standard requirements via

modularised, highly expressive internal representation

Acquisition of Requirements and Incremental Evolution of Specifications (ARIES)
[JFH92] implements ideas from Feather’s 1989 papers [Fea89a, Fea89b]. In this system
a viewpoint is a presentation of partial knowledge. It utilises a single, highly expres
sive modularised internal representation for all information about the problem, and a
variety of presentations are available to view and alter the information. A hierarchi
cal structure of “folders” is used both to separate and to allow sharing of information
between analysts and across projects.

The system supports incremental development via communication between analyst and
system in a manner familiar to the human. There is no need to force the analyst to
learn another requirements language. The analyst makes changes to the presentation,
and these are echoed internally by translating to the internal representation. It also
encourages information hiding and reuse of evolutionary changes. Limited validation
is available by abstraction and reasoning: there is no support as yet for consistency
checking, although it is addressed in [Fea89b].

The system has similarities to the Requirements Apprentice; in this case however the
end product is a validated specification in “Re-usable Gist” which is then passed on to
an optimiser. It can be most directly compared with the VOSD system (Section 2.3.6):
both provide for multiple presentations of emerging specifications, graphical display of
viewpoints and have a semantic-net formalism underlying them; however ARIES uses
a centralised internal representation of the system being developed, while VOSD uses
a framework of loosely-coupled, locally managed viewpoints.

27

2.3 .8 V iew p o in t O riented A n alysis

Context System modelling, Requirements definition
Formalism Single, shared through all viewpoints
Viewpoints Service-oriented external entities, sending control information and re

ceiving services and data. Hierarchical structure
Method Integrate functional requirements and constraints for system by struc

turing and conflict resolution

Viewpoint Oriented Analysis (VOA) [KS92] is an object-oriented framework for re
quirements capture and resolution.

The motivation behind VOA is the need seen by the authors to integrate functional
and non-functional requirements (constraints, such as timing and reliability); CORE
and Viewpoint Resolution see viewpoints as simple sources or sinks of information, or
sub-system processes. In contrast, viewpoints in this framework are “service-oriented”
entities, external to the system but interacting with it, receiving services from the
system and providing control information and data to it. They are divided into active
(those which initiate services) and passive (information sinks).

A four-step process is identified: viewpoint identification, structuring and decomposi
tion of viewpoints, information collection, and information reconciliation. Viewpoints
are structured such that sub-viewpoints are more specialised and inherit services, a t
tributes, control information and constraints from their parents. The information col
lection stage prepares a more detailed specification of each viewpoint in terms of control
information and data generated; this provides a basis for completeness checking. The
information reconciliation stage ensures tha t all services are provided, identifying omis
sions and conflicts in provisions of services across viewpoints.

The method is a requirements resolution technique; tool support is being developed for
graphical manipulation of viewpoints.

2.3 .9 A ltern ative V iew p oin ts H ierarchy

Context Requirements definition
Formalism Viewpoints share common formalism
Viewpoints Self-consistent representations of an agent’s knowledge; hierarchical

structure of sub-viewpoints inherit attributes from parent
Method Sub-viewpoints used to represent conflicting alternatives, to bring out

any assumptions made and force negotiation by analysts

28

Easterbrook [Eas92, EN94] proposes tha t in order to clarify the representation of con
flicts, common ground must be established between viewpoints. He notes tha t the
common ground is explicit in many of the methodologies: for example in incremental
specification methods the common ground is the initial specification, and in Robinson’s
Domain Goals (Section 2.3.4) it is the shared domain model. The VOSD framework
(Section 2.3.6), by contrast, makes no assumptions about common ground.

In this object-oriented methodology, a viewpoint is a self-consistent description of an
area of knowledge with an identifiable originator: a viewpoint is created to represent
the knowledge of each person the analyst comes into contact with. If conflict is de
tected in a viewpoint, the piece of information which caused the conflict is placed in a
descendant viewpoint and the negation of that information is placed in another. Both
inherit the characteristics of the original viewpoint. A hierarchy of viewpoints evolves
as distinctions between viewpoints become clear. The method is not intended to aid
the requirements elicitation process, but is a domain-modelling environment for repre
senting and manipulating elicited knowledge. Tool support is provided by a prototype,
Analyser, which allows the expression of viewpoints in a number of formalisms (first-
order predicate logic, data-flow diagrams, state transition diagrams) and provides a
graphical representation of the evolving viewpoints hierarchy.

Detection of conflicts is achieved by a special viewpoint for each representation scheme
which includes routines for conflict detection and an inference engine. All viewpoints
using that scheme inherit from the special viewpoint. Conflict detection is limited:
it is spotted only by explicit contradictions, and conflicts caused by use of different
terminology (synonyms) will not be caught. There are currently no heuristics for
conflict detection.

2 .3 .10 M u lti-P arad igm Specification

Context Requirements definition and specification, system specification
Formalism Widest possible range of specification languages, design methodologies
Viewpoints Partial specifications in any formalism, semantics interpreted in typed

internal representation (predicate logic)
Method Specifications composed by union of specificands in semantic domain.

Limited consistency checking

Jackson and Zave [JZ93, ZJ93] use an approach to composition of partial specifications
which is similar in motivation to the VOSD and ARIES frameworks: here the emphasis
is not on tool support but on extending the range of specification techniques th a t can

29

be considered.

The technique addresses itself to the diversity of specification techniques — not only
the common algebraic, state-based and set-theory languages, but less formal tech
niques such as data-flow diagrams and decision trees, and problem-specific program
ming paradigms such as functional or object-oriented languages. It involves translating
the semantics of a range of specification techniques into first-order predicate logic. This
provides an extremely general common semantic domain, as types and other structures
can be expressed as predicates — in contrast to the common internal representation
used in the ARIES project which is high-level and strongly typed. The semantic do
main consists of distinct individuals and a finite set of predicates. The semantics of the
composition of partial specifications is then the set of all members of the semantic do
main satisfying all the partial specifications. A set of partial specifications is consistent
if their composition is non-empty.

In practice it is infeasible to translate a large number of partial specifications into pred
icate logic; the result is likely to be a number of large, incomprehensible formulae. The
authors conclude tha t practical consistency checking must come at the same conceptual
level as the specification language.

The aim of the technique is tha t it should enable a specifier to construct specifications
by combining partial specifications w ritten in the language best suited to expressing
and analysing the properties of a system. Further work includes extending the domain
to include control, and investigating the implications for reuse.

2.3 .11 V iew p o in t A m algam ation: T he M F D M od el

Context System specification
Formalism Generic model; instantiated for single formalism
Viewpoints Partial specifications; no structure imposed
M ethod Models amalgamation of two viewpoints by successive refinement steps

until the viewpoints are consistent

The MFD (Modular Formal Description) model [Wal92, ACGW93] is intended to ex
ploit an intuitive understanding of what makes a good modularisation and the way
people write specifications in practice, with the aim of making formal descriptions eas
ier to understand. It is a generic model, independent of any particular descriptive
formalism, and thus can be applied to a number of problem domains: examples are
incremental development and integration of multiple perspectives. The MFD model
provides a conceptual framework for relating different aspects of modularisation. The

30

motivation behind it is the need identified for a general, unconstrained understanding,
abstracting away from specifics of particular specification languages.

The model is used to describe the amalgamation of viewpoints, considered in this case
to be partial specifications. Amalgamation of the viewpoints is regarded as necessary
in order to check for consistency across the whole specification, and so to be able to
implement the specification. This contrasts strongly with the ideas behind methodolo
gies such as VOSD, which regard consistency checking as an issue to be addressed by
inter-viewpoint checks and amalgamation of viewpoints as optional.

The amalgamation process combines formal descriptions, producing an amalgamated
description and an amalgamation trail; the latter is a record of all changes made during
the amalgamation. The rationale behind this is to ensure the process is reversible,
and so enable a different modularisation of a system for implementation purposes. In
addition any changes can be processed by re-winding the amalgamation of a particular
viewpoint, altering or replacing it, and then re-amalgamating.

The amalgamation process is given a formal basis by the theory of co-refinement
[ARW96] (Chapter 3). This is a weaker version of data refinement, in which vari
ables can be added to a specification and refinement laws are shown to hold subject
to a restriction on the values of the added variables. By this process viewpoints can
be refined repeatedly until they are consistent. The model has been applied to amal
gamation of viewpoint specifications written in Z [ACGW93]; a formal definition of
viewpoint amalgamation in terms of co-refinement is presented in [Ain95].

The MFD model is in its infancy; in particular no tool support exists and only a
small number of formalisms have been considered. In motivation it is comparable
with the multi-paradigm approach and the VOSD and ARIES frameworks; the wish is
for a way to describe what happens when different viewpoints resulting from multiple
perspectives or from an incremental change to a specification need to be amalgamated.

2.4 Summary and Conclusions

The viewpoints originated by CORE are a springboard for a wealth of different ap
proaches, and there is wide variation in the definitions, structure and use of viewpoints
- even amongst those approaches which do not use the term explicitly. While most uses
of viewpoints are in the field of requirements engineering, others involve specification
and coding. In later chapters we consider other paradigms in software engineering,
in which the viewpoints idea can be used to formally explain the relation between

31

constituent parts of the development.

We return to the VOSD framework of Finkelstein et al [FKN+92] in Chapter 5, where
we consider the issues raised in attempting to model the distributed framework with
refinement ideas developed in Chapters 3 and 4.

Viewpoints are emerging as an important contribution to the requirements analysis
and formal specification processes. Recent developments include a meeting of the BCS
Requirements Engineering Specialist Group on the subject of “Viewpoints in Require
ments Engineering” (Edinburgh, October 1995) and a special “viewpoints” issue of
the IEE/BCS Software Engineering Journal [SEJ96], in which articles on a number of
techniques featured in this chapter appear. Ongoing research also indicates tha t the
viewpoints paradigm can also be applied to areas such as safety analysis [KS94].

This chapter has illustrated the wide range and use of viewpoints in several guises, with
varying degrees of formality. In the next chapter we consider how the use of viewpoints
can be formalised by considering the notion of a refinement relation.

32

Chapter 3

Am algam ation and Refinem ent

In this chapter we consider the use of a paradigm from formal methods research for
relating viewpoints together. This provides some background for later chapters in
which we consider applications of viewpoints and refinement to model and explain
explanations.

3.1 Introduction

We have established (Chapter 2) tha t viewpoints are used, sometimes implicitly, in
a number of documented approaches to software development. However few of these
approaches deal with viewpoints, and the relationships between them, in any formal
way. Recent work at the University of Bath is concerned with this issue; in particular
Ainsworth [Ain95] (see section 4.5).

In this chapter we begin with a discussion of what we mean by amalgamation of view
points. We then consider refinement and examine the problems which arise from trying
to apply strict refinement theory to the amalgamation process. This leads us to consider
some solutions to those problems.

3.2 Am algam ation

We seek to justify the use of viewpoints to structure and explain systems, by calling
on theoretical refinement work. This will enable us to prove whether or not desirable
properties of each constituent viewpoint are held by their amalgamation.

Amalgamation can be described simply as the composition of viewpoints in the most

33

appropriate way in order to produce a viewpoint which is related to each of its con
stituent viewpoints. Just as we gave (Definition 1.1) a very general definition of what
a viewpoint is, so it is hard to give a much more precise definition of amalgamation
without being overly prescriptive. From that definition we know our viewpoints have
the following properties:-

• They are described in an identified, decidable language

• Operations for composition of viewpoints are provided, as part of the language
or in an associated development method.

Examples of composition operators are sequential composition in a programming lan
guage, conjunction of logical formulae, and concatenation of natural language sentences.

3.2 .1 R eason in g ab ou t A m algam ations

In Chapter 1, we presented an example in which a natural language viewpoint could
be merged with a more formal specification. This illustrates the expressiveness of the
general approach, but we lose the ability to say anything very much about the relation
between the amalgamation and its constituent parts. We could quite easily amalgamate
the natural language sentence “The clock has a digital display” with a formal model of
a steam-engine. W hat tells us that this would be unhelpful is the assumption tha t the
natural language sentence has a meaning that is not consistent with that of the formal
model.

So if we intend reasoning about the relations between viewpoints and their amalgama
tions we need to make a further stipulation:

• The language of the viewpoint has a defined semantics.

The semantics of the language will enable us to relate the meanings of the viewpoints.
This does not prevent us from amalgamating viewpoints in the manner described above.
We should simply be aware tha t some amalgamations will remain unverified, unless we
have a natural-language parser at our disposal (which would inevitably impose some
restrictions on the range of sentences which could be recognised).

Because of the semantics issue it is advisable only to attem pt to reason between view
points whose meanings can be related - as we saw in Chapter 2 ’s survey, some tech
niques ([NMS89, JZ93, JFH92]) achieve this by presenting a common semantic model

34

into which different formalisms are mapped, while others ([KS92, Mul79]) insist on a
common formalism.

In talking about the amalgamation process we use stages identified in the approach of
Wallis [Wal92], introduced in the survey (Section 2.3.11). We divide amalgamation into
separate stages of Coalescence planning and Coalescence. The former applies to the
process of comparing viewpoints for naming conflicts and working out the changes that
need to be made to each. The output of this process is a Coalescence Plan. Coalescence
is then the process of making these changes, via a series of correctness-preserving steps,
and composing the viewpoints, using the composition operations given in the notation
used by the viewpoints. The product of this composition is called the amalgamation of
the viewpoints. A by-product of the amalgamation process is the Amalgamation Trail,

which records a history of the amalgamation. Figure 3-1 illustrates this process: boxes
signify items produced or input to the process, circles are processes and directed arcs
lead between the two.

CoalescenceCoalescence
Planning

Viewpoint

Viewpoint

Coalescence
Plan

Amalgamated
Product

Amalgamation
Trail

Figure 3-1: MFD model process

We will refer to these steps later in the current chapter when we consider applications
of refinement to the amalgamation process, and in Chapter 5 where we compare our
approach to that of ViewPoint Oriented Software Development.

35

3.3 Refinement

We now consider the concept of a refinement relation between viewpoints. We begin
with a discussion of the intuitive notion of an “improvement” , to motivate a more
formal definition of refinement.

3.3.1 Im provem ent

Most of the time, we have little difficulty in “real life” in identifying when something
is an improvement over something else; a modem which transfers data at a rate of 28.8
Kilobytes per second is surely better than one which works at 14.4. However, implicit
in this comparison is the idea tha t the speed requirement is more im portant than others
such as price and reliability; a modem which operates at twice the speed but which
costs twice as much and is half as reliable isn’t much of an improvement. A lesson here
is that requirements need to be made as explicit as possible — if we have been explicit
in setting out our requirements including stipulations on cost and reliability, there is
clearly no improvement if these requirements are not met in the final product. If the
basis on which comparison is being made is not specified precisely, it makes no sense
to talk about an improvement (though this would not stop a salesman from trying to
do so).

Part of making the basis of comparison clear includes identifying the perspective from
which the comparison is being made; the above example may be an improvement for
the customer if price is reduced and reliability is increased; however for the provider
of the product, the opposite may be the case (though in reality other economic factors
would have to be taken into account, dictated by the laws of supply and demand,
among others).

The following short tale will illustrate some of the issues.

The Broken Photocopier

Office photocopiers are justly famous for duplicating the content of sheets of paper of
varying sizes cleanly, quickly and accurately — unless the human operator is in a hurry,
or the task is of great importance, in which case the photocopier will usually create a
paper jam.

Such a product is, inevitably, subject to relentless enhancement and one such is the
addition of a stapler. Amalgamate a photocopier with a stapler and what you get is a

36

photocopier which, having produced a pile, or several sorted piles, of output, shuffles
the piles so tha t the corners all match up and staples the top left corner of each pile1.
So far, so good.

However, in being merged with the photocopier the stapler picks up one of the pho
tocopier’s more annoying habits; the tendency to jam. The photocopier behaves as it
always has when a jam occurs; it ceases to work until the jam is cleared. Thus, an
otherwise perfectly functioning photocopier is out of action because of an errant staple
which requires an engineer to come out and fix. No m atter that the frantic human
operator doesn’t even want the paper stapled.

As a result of customer feedback, the photocopier is subject to a further improvement;
the “I don’t want a stapler” button. W ith great pomp and ceremony the manufacturers
announce the enhancement: if you have a problem with the stapler, simply press this
button.

W hat is of interest to us in this sorry tale is that the initial change appeared to provide
an improvement, but on more detailed investigation it didn’t. This is because the old
version could be relied on to work as long as certain conditions were maintained such
as power, correct use, paper tray not empty, paper not jammed. In the new version,
these conditions could all hold and the photocopier could still not work. We would like
to be able to rely on an improved version being able to produce any result consistent
with our requirements for the original one.

However, if we can “stabilise” the stapler in some way, we may be able to identify an
improvement as far as “everything else” goes. This is effectively what occurs in the
next iteration; a mechanism is found for disabling the stapler, and an improvement can
be observed.

3.3 .2 Form alising Im provem ent

This discussion has lead us to the point of being able to say that, as long as it is ex
plicit what is being compared, we should have no trouble in being able to recognise an
improvement when we see one. Being explicit about what is being compared involves
identifying how we can be sure that the final product is correct with respect to its spec
ification; in the case of the above examples this would involve demonstrating tha t each
of the properties stipulated in the original requirements are held by the final product.
We use specification here to mean an agreement between supplier and customer which

Hn answer to the question “Do such things exist in real life”, yes, they do: this thesis has been
photocopied on one.

37

sets out the required properties to be exhibited by the product.

If we define a relation < such tha t A < B means tha t A can do (at least) everything B
can do, then we have a relation tha t is reflexive (A is as good as A) and transitive (B
is at least as good as A, and C is at least as good as B , so C is at least as good as A).
It therefore defines a pre-order over the domain of A and B (modems, photocopiers,
what have you). We would also insist tha t the relation preserves correctness, so tha t if
there is some initial specification S which is satisfied by A, and A < B , then S must
also be satisfied by B.

We will call a relation which has these properties a refinement relation, defined below.
We will speak in terms of viewpoints, which may as we have seen be any kind of
“product” , or fragment of a product, which we may be interested in.

D efin ition 3.1 (R efin em en t) For two viewpoints A and B , B refines A iff B can be
used in place of A and behave in the same way as A. This is written A C B.

We have observed that there are some developments of viewpoints which, while intu
itively appearing to “refine” previous versions, do not maintain all the properties held
by those versions. This may arise, for example, when some property is thought better
of and removed from the next iteration.

3.4 Refinement Properties

While the method of generating and verifying a refinement may be particular to a
specific refinement process, we identify some properties which should apply to any
refinement method, whatever the nature of the actual viewpoint being refined.

3.4.1 P reserv ing C orrectness

We cannot describe a viewpoint simply as “correct” ; it must be correct with respect
to something. In terms of specifications, a program will be correct with respect to a
specification if the program will always term inate when the specification says it should,
and every possible final state of the program will satisfy the specification. Suppose a
program P which is correct with respect to an initial specification S. If we derive a
further program P' from P then for P' to refine P , P ' must also be correct with respect
to S. Similarly, if we derive a specification S ' from S, if we require tha t S f refine S

38

then any program which is correct with respect to S ' must also be correct with respect
to S.

3 .4 .2 P re-order

As outlined above the refinement relation should be transitive and reflexive. Transitiv
ity enables us to make refinements in a stepwise, iterative manner, allowing us from n
steps of the form Pi C Pi+i to conclude that Pq C P j. Reflexivity gives us a base case
for the process.

Having a relation which is a pre-order and preserves correctness allows us to assemble
our viewpoints by Vertical Composition [ST95] — another name for stepwise refine
ment, as described above. A complementary way to build viewpoints comes from
Horizontal Composition, illustrated in Figure 3-2. This allows development to proceed
by decomposing the viewpoint into modules, and refining just some of those modules
while keeping the rest constant. Reflexivity ensures that “keeping the rest constant”
still provides a refinement.

A

CB +

B '

Figure 3-2: Horizontal Composition: A is decomposed into B and C , and B is then
refined to B ' . We then have A □ B ' + C

However, we do need to show some care over the choice of operations used to com
pose our viewpoints — these are the operations used by the relevant language of the
viewpoints concerned.

39

3.4 .3 M o n o to n ic ity o f O perators

The process of development outlined above depends on the fact that, if F (P) is a
viewpoint which contains a sub-viewpoint P, and we derive some Q such tha t P C Q,
we have F(P) □ F(Q). This in tu rn relies on the operations used to compose F(P)
being monotonic with respect to refinement.

Definition 3.2 (M onotonicity) A function f is monotonic with respect to an order
ing < if, whenever X < Y , f (X) < f (Y) .

Monotonicity is a property that needs to be considered, especially in the case of pa-
rameterisation and abstraction [Mor8 8 b]. Programmers are taught the dangers of call-
by-name procedure calls, and that call-by-value is the safer method; this is because of
the potential loss of monotonicity due to the possibility of distinct variable names in a
procedure taking on the same actual param eter (aliasing).

3.5 Exam ple Refinement Relations

By way of illustration we now list some refinement relations which satisfy the properties
given in Section 3.4.

3.5.1 E q u ality

If A = B we can certainly be sure tha t B is an acceptable replacement for A. It trivially
has the required properties of pre-order and correctness preservation. Equality is the
weakest form of refinement and isn’t really of much practical use for development!

3.5 .2 E quivalence

If A = B we have a more interesting ordering. The difference between this and the
last case is tha t A and B may structurally be quite different; but looked on as black
boxes, A and B operate over the same state space and take the same input to the same
output. B can thus replace A in any context and the properties hold as required. While
this may not seem any better than equality it is in fact used as the ordering in some
algebraic specifications and functional program developments, in which the function
domains are fixed. For example the two functions

40

twice : N —y N

twice (x) = x + x

double : N —> N

double(x) = x * 2

are equivalent, but not equal.

The orderings in both these cases are equivalence orderings, a special case of pre-
ordering.

3 .5 .3 D om ain E xten sion

The next step in the ordering of orderings is to step out of equivalence into pre-order.
We define a conservative extension as follows:

D efinition 3.3 (Conservative Extension) For two functions f and g, g is a con
servative extension of f iff dom. f C dom# and g(x) = f (x) for all x G dom / .

Our earlier function double, defined over the natural numbers, can be refined by ex
tending its domain to the integers:

doublelnt : Z -* Z

doublelnt(x) = x *2

The new function will always provide an answer compatible with the old one when
given a non-negative integer.

The conservative extension is certainly reflexive. Transitivity comes from the relation
dom / C dom g in the definition. If we define correctness for functions simply in terms
of mapping inputs to outputs then this ordering will preserve correctness: however, we
may wish to ensure that our function is undefined for certain inputs - for example the
function div , defined as

div : Z x Z + —> Z

41

di v(x , y) = x / y .

We would prefer tha t any function which refines this function be undefined for y = 0;
a new improved div+ which gave a value to div+(x, 0) would be a novelty, but would
not be correct.

3.5 .4 R ange R estr ic tion

At first sight restricting the range of a viewpoint may not seem much of an improvement.
Consider however the function sqrt:

sqrt : M+ —> M.

sqrt(x) = {y : y2 = x)

If we now come up with a function posSqrt which will always return the positive square
root, we have restricted the range to R+ (and removed non-determinism into the bar
gain). Since a positive square root is a square root, our new function can be said to be
an improvement over the old one. We define range restriction:

Definition 3.4 (Range restriction) For two functions f and g, g is a range restric
tion of f i j f ia n g C ran / and

V y € ra n g. 3 x G dom / • y = f (x) A y = g(x)

The definition ensures that anything produced by g could also have been produced by
/ from the same input.

Such a relation is still a pre-order, transitivity coming as a result of the subset relation.
Preservation of correctness again depends on the definition of correctness; if we specified
just tha t the result of our square root function should return a result in the range
{—oo . . . oo}, the posSqrt function will be correct (since anything in the range { 0 .. . oo}
is certainly in the larger range). If however we required tha t it was equally likely for a
negative square root to be returned as for a positive one, posSqrt will not be correct.
A random-number generator would not be regarded as correct if the number between
0 and 1 tha t it returned was always 0.673, and anyone tossing a coin would be annoyed

42

to find it always came down heads.

The above refinement relations have dealt with examples expressed as functions, for
the sake of simplicity. Our viewpoints may be functions; or they may be state-based
specifications, predicates or anything with a defined semantics. The semantics allow us
to characterise a viewpoint as a function over a state-space or between tru th values.

A further point to note about the above relations is tha t there is an implication or
dering on them: equality => equivalence => extension, and equality =$■ equivalence =$■
restriction. Restriction and extension are not comparable in the ordering.

3.5 .5 T ransform ation

The next kind of refinement is one often used in program development from spec
ifications. We may need, for reasons of implementation, to change from one data
representation to another which is more concrete. The chosen representation will be
subject to restrictions imposed by factors such as the target language and the size of
the data to be dealt with.

In this case we would need to relate the new representation to the old by means of an
abstraction. In terms of functions again, we would define a transformation as:

D efin itio n 3.5 (T ran sfo rm a tio n) For two functions f and g and abstractions absd,
absr , g is a transformation of f iff:

V x E d o m /. 3 x ' G domp • x = absd(x') A f (x) = absr (g(x'))

In the definition absd and absr are abstraction functions on the domains and ranges
respectively of the functions / and g. These abstraction functions must be surjective,
so th a t all of the domain of / is represented in the domain of g.

Such a relation will be reflexive if the abstractions are simply identity transformations.
By composing the abstraction functions between two successive transformations we may
obtain a composite transformation, so providing the transitive property. Correctness,
however, may appear to have gone out of the window.

However, the use of such a transformation is to change from one particular viewpoint
model to another; correctness then should be defined as correctness of the model with
respect to the initial specification. So preservation of correctness would be to ensure
that the new model is also correct with respect to that initial specification.

43

This kind of transformation is called data refinement and is widely used in practice.
The complement to data refinement is algorithmic refinement, which is concerned with
making the viewpoint “more algorithmic” by reducing non-determinism and removing
non-executable statements. A particular refinement method will use a combination of
these techniques to derive a program from its specification.

All of the relations listed above have been shown to be valid as a refinement relation.

3.6 Operations for Specification Developm ent

In the foregoing sections we have discussed the necessary properties of a refinement
relation and have mentioned the need for specification building operations. In this
section we will review these operations, in preparation for the operations we will be
introducing for particular approaches to specification (of varying formality) identified
in later chapters.

Choice of specification building operations involves a trade-off between expressive power
and ease of understanding [ST95]. At the simplest level, operations can be limited to
enrichment to add details to a specification and hiding to remove details. Even with
these limited operations there is a reasonable degree of expressive power.

3.6.1 Z Schem a C alculus

The Z schema calculus provides a methodology for the structuring of Z schemas. A
schema typically has two parts, and may also be given a name:

 nam e__
x , x \ y : N

x' > x + y

The first section (the declaration part) includes type declarations, the second (the
predicate part) a specification relating the variables in the schema. Various notational
conventions are used, such as in this case where x' refers to the value of x in the state
after the operation represented by the schema, and x to its value in the state before
the operation. A further convention is to prepend A to a name to include both the
before and after states.

44

An enrichment operator is provided by schema inclusion. Given a schema named
existing sc h e m a , we can define an enriched one as follows:

 enriched s c h e m a ___
existing sch em a
further declarations

new predicates

This is equivalent to explicitly re-specifying the declarations and predicates from the
existing schema.

Hiding is also provided:

Schema2 = Schemal \ (A Hidden)

has the effect of removing before-state and after-state variables of Hidden from the
declaration of the schema, existentially quantifying them in the predicates part. Hiding
is used in the operation known as promotion [Woo89], where a schema defined on an
individual entity is generalised to become defined on a complete system. The convention
is to signify a framing schema by prepending the symbol 4>.

In addition to these operations the calculus provides more general operations for com
bining schemas: schema conjunction and schema disjunction. Schemas are conjoined by
assembling the declaration parts and forming the conjunctions of the predicates, and
disjoined by assembling the declarations and forming disjunctions of the predicates.
Before this operation the schemas must be “normalised” , so that the declarations have
only type declarations. In the case of a schema such as

 Ex 1___
x : 1 . . 1 0

y : N

x x y < 1 0 0

normalisation takes the range declaration into the predicate:

45

 E xlnorm
x, y : N

1 < x < 1 0

x x y < 1 0 0

The normalised schemas can then be combined.

Finally, a schema can be negated by negating the predicate after normalisation — thus
the predicate in the above example would be (x < 1 V x > 10) V x x y > 100.

3.6 .2 V D M -SL

VDM (Vienna Development Method) [Jon90] has some similarities with Z [HJN93].
Development in VDM proceeds via data reification and operation decomposition; struc
turing operations are presented in the VDM specification language (VDM-SL[Daw91]).
A VDM document is a list of definition blocks or a module list — specifications can
be built using the “flat” language of definition blocks, but for any large specification
modules are necessary if there is to be any chance of the document being understood.

A VDM module also consists of two parts:

m o d u le name
interface part
definition part

en d name

The definition part defines entities of the module, while the interface part identifies
entities imported from other modules (offering enrichment), entities exported from the
module (to be made available to other modules for importing) and parameters and
instantiations in the case of parameterised modules.

These constructs are more limited than those provided by the Z schema calculus, as
what VDM-SL provides is a language for structuring a VDM document. The operations
provided by the Z schema calculus are more geared towards the development of the
specification. Other methods such as B [ALN+91] and CLEAR [BG8 6] also provide
operations for specification structuring. In addition extensions to VDM and Z have
been proposed which provide further techniques for building large specifications.

46

3.7 Summary and Conclusions

The previous sections have illustrated the use of specification construction operations
in the two most widely-known model-based specification languages. Each of these has
a standard operation of enrichment.

In later chapters we will present some specification developments in which various spec
ification building operations are used. For example, Chapter 7 uses a simple algebraic
specification language which does not commit itself to any type declarations but only
equational axioms (for didactic purposes). The basic operations we use are function
composition, application and abstraction, and the refinement relation is conservative
extension. Chapter 8 deals with the realm of denotational semantics and identify op
erations more clearly identifiable as enrichments. In each of these chapters, we will
identify the operations and definition of refinement being used, and show th a t the
necessary properties hold:

• Refinement relation is pre-order and preserves correctness

• Operations on specifications axe monotonic

In this chapter we have discussed

• The concept of amalgamation of viewpoints.

• Background and motivation for refinement relations.

• Necessary properties of refinement relations and specification development oper
ations to ensure correct developments.

This chapter has provided the background information and foundations which are nec
essary before we can undertake a further investigation of the use of viewpoints and
refinement for modelling and explaining explanations in the chapters which follow.

47

Chapter 4

The Refinem ent Calculus and
Co-Refinem ent

In this chapter we present an example paradigm for refinement of software specifications
which illustrates some of the different kinds of refinement dealt with in the previous
chapter. This leads on to particular refinement relations that are especially suited to
explaining explanations.

4.1 Introduction

The paradigm of stepwise refinement [Wir71, Dij72] for the development of software
is the basis from which more theoretical ideas have been developed, via D ijkstra’s
weakest precondition semantics [Dij76, Gri81] and Hoare’s work on data representation
[Hoa72], to the refinement calculi of Morgan [Mor94] and Back [Bac8 8], and the use of
refinement methods in specification languages like Z [PST91] and VDM [Jon90].

The motivation behind the development of these approaches comes from the observa
tion that, given a specification of a large system, verification of an implementation with
respect to tha t specification is not a straightforward task; testing can never been ex
haustive (although the specification can be used to generate test cases automatically).
A formal proof that the implementation satisfies the specification is infeasible for a
large program, due to the size and nature of proofs involved. An alternative approach
is to use the paradigm of “divide and conquer” to develop the program incrementally
from the specification, and prove each of these smaller steps to be correct.

The version of the refinement calculus we discuss here is Morgan’s; in fact there are

48

three major varieties of the refinement calculus, the earliest being Back’s [Bac78].
Morris [Mor87] has also developed an approach. While each of these is a distinct
method they are strongly related, and each makes a starting point from D ijkstra’s
language of guarded commands ([Dij76]).

4.2 The Guarded Command Language

The idea behind D ijkstra’s guarded command language was to present a “toy” language
to use for didactic purposes. It has three simple statements:

• skip, the most simple, which does nothing

• abort, which, even worse, doesn’t even do nothing (it will not terminate)

• assignment a := E, assigning the value of the expression E to a.

These primitive statements can be composed via operators:

• Sequential composition (SI ; S2)

• Alternation (if . .. fi)

• Repetition (d o ... od)

Alternation and repetition are expressed in terms of guarded commands B{ -> S i. A
guard B is a boolean value, and S is the program fragment executed if B is true.

A program fragment expressed in this language begins in a state satisfying a predicate
(the precondition) and, if it terminates, will establish another predicate (the postcon
dition).

Dijkstra’s concern was with characterising the semantics of a program S by identifying
it as a predicate transformer, tha t is a rule for deriving, for any postcondition R the
weakest precondition wp(S,R) defined as follows:

Definition 4.1 (Weakest Precondition wp) For a programS and postcondition R,
wp(S,R) is the weakest precondition sufficient to ensure that, i f begun in a state satis
fying wp(S,R) , S will terminate in a state satisfying R.

A specification of program S can now be w ritten pre => wp(S,post), meaning tha t if
executed in a state satisfying pre, S will term inate in a state satisfying post.

49

Dijkstra identified four conditions which should by held by the predicate transformer
of any program fragment S.

1. Law o f th e E x c lu d ed M iracle . wp(S, false) = false. Since there are no
states satisfying false, there can be no initial state from which execution of S will
term inate and establish false.

2. M o n o to n ic ity . For any two postconditions Q , R such tha t Q => R, wp{S , Q) =>
wp(S, R).

3. A -D istribu tion . For any two postconditions Q , R we have (wp(S, Q) A wp(S , R)) =
wp(S , Q A R).

4. V -D istribu tion . For Q , R as before (wp(S, Q) V wp (S , R)) => wp(S , Q V R).

The final law is not an equality like the third, since the implication does not necessarily
hold in the opposite direction: there is a non-deterministic choice between Q and R.

The predicate transformers for the guarded command language are constructed so tha t
they adhere to these rules: the primitives we mentioned above have their semantics
characterised as:

VR.wp(skip, R) = R

V R.wp(abort, R) = false

VR.wp(x := E , R) = R[x\E]

The notation i?[a;\E] means tha t all occurrences of x in R are replaced by E.

There is no S such that wp(S, R) = true for all postconditions R , as tha t would violate
the first condition (Law of the Excluded Miracle) above.

The composition operators (;, if . . . fi, do . . . od) also have their semantics charac
terised in terms of weakest preconditions. For example:

V R.wp (Si; S2 ,R) = wp(Si, wp(S2,R))

By structural induction each of the operators can be shown to have the four properties
above; this includes showing the monotonicity of the predicate transformers, ju st as we

50

discussed in Section 3.4.3.

4.3 Specifications and Programs

Morgan adds to the guarded command language the specification statement [Mor8 8 c],
which enables executable code to be derived piecewise from an initial abstract specifi
cation without the need for a translation step between languages.

D efin itio n 4.2 (S p ecifica tion S ta te m e n t) A specification statement, written

w: p r e , p o s t

denotes an abstract program which, begun in a state satisfying the predicate p re is
guaranteed to terminate in a state satisfying the predicate p o s t, changing at most the
values of variables in the frame, w.

The addition of the specification statement blurs the distinction between specifications
and programs; a program can contain specification statements and so may not be exe
cutable. A program which contains only code is a “concrete” program, while one which
has no code is an “abstract” program (which we will continue to call a specification).

The specification statement, having been added to the language, must also have its
semantics defined:

V R.wp(w : pre , post , R) — pre A (V w.post => R)

Both specifications and programs are characterised as predicate transformers in this cal
culus; in this way they are given a common semantics, as we discussed in Section 3.2.1.

Refinement in this calculus is then defined as:

D efin itio n 4.3 (R efin em en t) For programs P and Q, P C Q iff for all predicates
R, wp(P,R) =£► wp(Q,R)

A consequence of this definition is tha t Q may term inate for preconditions th a t P
would not term inate for; and that it may be more deterministic. The properties we
stipulated earlier will hold; reflexivity and transitivity come as a result of the properties
of the implication.

51

As we noted in Section 3.4, correctness will be preserved as long as the definition
of correctness permits termination for initial states outside the precondition of the
specification.

4.4 Refinement Calculus Laws

Refinement proceeds in this calculus by a number of laws which have been proved to
be sound; these include:

I f pre => pre' th en

w : | pre , post C w : p re ', post weaken precondition

I f post' => post th e n

w : pre , post Q w : pre , post' j strengthen postcondition

These two laws correspond to domain extension and range restriction in Sections 3.5.3
and 3.5.4. Other laws provide for algorithmic and data refinement.

4.4 .1 M iracles

The extensions made by Morgan to D ijkstra’s language are not limited to specifications;
he also introduces local variables and allows conjunction of programs. Local variables
preserve each of the properties outlined by Dijkstra, but conjunction, defined as the
weakest program that refines all the programs being conjoined, loses the property of
A-distribution.

The specification statement also breaks the law of the Excluded Miracle, by allowing
the specification [true, false], which can establish false for any initial state. Such a
specification is called a miracle. Thus the only property left of D ijkstra’s original list
is monotonicity.

Miracles cannot be implemented, of course; their use will lead to infeasible code. How
ever, a comparison can be made with complex numbers; they are of use in a derivation,
but cannot be a part of a solution in the real domain. Similarly miracles have their
uses. A guarded command is actually a miracle; in code it should only be perm itted as
part of an alternation or repetition, but the form B —>■ S is of use in data refinement.

52

4 .4 .2 D a ta R efinem ent

D ata refinement in the refinement calculus uses an abstraction function as discussed
in Section 3.5.5. In fact there are alternative approaches to data refinement and the
abstraction can be represented as a predicate transformer, or as a predicate called a
coupling invariant

One method for data refinement is the auxiliary variables approach [Mor8 8 a], in which
concrete variables are added to the specification, related by the coupling invariant to
the abstract ones, and then using refinement laws the superseded abstract variables
are removed. W ith abstract variables a, concrete variables c and coupling invariant
Cl, specification Sa is data-refined to specification S c iff for all postconditions R not
containing c,

(3 a • C l A wp(SAi R)) =>• wp(Sc , (3 a • C l A R))

We then write Sa dici Sb -

We have shown that the refinement calculus deals with the concerns we have identified
in Section 3.4. The next step is to consider situations to which normal refinement rules
may not apply.

4.5 Co-refinement

Where two or more viewpoint specifications are to be amalgamated, as described in
Section 3.2), the resulting amalgamated viewpoint will contain variables from each of
the component viewpoints. If the variables are common to all viewpoints then the
relationship between the viewpoints should be straightforward, at least in terms of the
data; however there may be variables in the amalgamation which are present in only
some of the constituent viewpoints.

We then run into difficulties if we wish to describe the relationship between each of the
initial specifications and their amalgamation, as we need to consider the effect of these
“extra” variables; we cannot simply ignore the extra variables as they may restrict the
behaviour of the amalgamation, hence disqualifying it as a refinement.

Co-refinement, a weaker version of refinement, has been proposed by Ainsworth [Ain95,
AW94] to deal with situations of this kind. A co-refinement holds between specifications
A and B if there are some circumstances under which refinement appears to hold

53

between them; i.e. there is some state in which the additional variables take values
which allow a refinement relation to hold. The work on co-refinement described here is
expressed in terms of Morgan’s specification statements — we derive alternative forms
in later chapters.

To simplify the definition of co-refinement the concept of an implicit signature of a
specification is first introduced.

D efin itio n 4.4 (Im p lic it s ig n a tu re) [War93] The implicit signature of specifica
tion A, denoted sig A, is the set of variables used in the specification.

Co-refinement is then defined (in terms of specification statements) as follows:

D efin itio n 4.5 (C o-re fin em en t) Specification A is co-refined by specification B , writ
ten A & B, iff

3(sig B — sig A) • A C B

This is the general form of co-refinement, which due to the extra variables may impose
constraints on the refinement. A special case of co-refinement is non-restrictive co
refinement, which occurs when a refinement relation holds for all values of the additional
variables.

Co-refinement can be seen as a weakened form of data-refinement. The coupling in
variant in this context is also referred to as an eyepiece: if we return to the analogy
of a customer who has to be satisfied, we can say that he will be satisfied by an amal
gamation if we use the eyepiece to show tha t the amalgamation satisfies his original
viewpoint - the customer looks at the amalgamation “through” the eyepiece.

4 .5 .1 Links and R estr ic tion s

In two viewpoints A and B, which are amalgamated to form C, it may be th a t different
variables from A and B are mapped to the same variable in C . This is referred to as
a link. In the converse case, constraints imposed on the extra variables mean tha t a
refinement holds only for certain values of these variables: this is a restriction. The
coupling invariant relates both of these concepts, and is the conjunction of a linking
predicate and a restricting predicate.

54

4 .5 .2 C o-refinem ent P rop erties

Note that A □ B =>- A ^ B. Algorithmic refinement can be seen as a special case of
co-refinement, in which the signatures are equal.

We have noted desirable properties of a refinement relation (Section 3.4). These do not
all hold for co-refinement:

• Co-refinement is a pre-order. It is reflexive (any specification trivially refines, and
hence co-refines, itself) and transitive (if A B and B C, A ^ C follows by
definition), though this will involve identifying the links and restrictions on C by
combining the coupling invariants at each step.

• Correctness is preserved by co-refinement in the same way as it is for data refine
ment.

• Horizontal composition of co-refinements (described in Section 3.4) will be more
problematic, due to the potential loss of monotonicity in adding variables to a
viewpoint which may interfere with other variables. Augmented specifications,
introduced below, are intended to deal with this problem.

An augmented specification is defined as follows:

Definition 4.6 (Augm ented Specification) An augmented specification is a tuple
(S,C,7Z) made up of a specification S, a predicate describing links C, and a predicate
describing restrictions 1Z.

The augmented specification is a specification which keeps a record of its coupling
invariant (links and restrictions). Initially such a specification will have the predicate
true for its links and restrictions; subsequent amalgamations will lead to a gathering
of links and restrictions, so tha t at each amalgamation step a new link predicate and
restriction predicate are derived and added to the augmented specification by logical
conjunction.

Augmented co-refinement is then defined using augmented specifications:

Definition 4.7 (Augm ented Co-refinement) (A, C a , 7 Z a) & (B , C b , 7 1 b) i f f

(A ^ { C a b ATZa b) B)

A (C b = C a A C a b)

A (71 b = 71a A TZa b)

55

where C a b and TZab are the links and restrictions, respectively, on this particular co
refinement between A and B.

The intention of the augmented specification is to ensure tha t the amalgamation is
consistent with the rest of the specification.

4.6 Compromising Correctness

The refinement relations identified in Chapter 3 can cope with straightforward devel
opments; however there are inevitably stages in any development when a development
may not be correctness-preserving. We have already identified situations where cor
rectness is not preserved by a refinement, but in some cases the refined version is still
of some use: Ainsworth’s co-refinement addresses this situation.

Outside the realm of programs and specifications it is common to have to come to some
compromise over the product. We would like to be able to characterise this kind of
relation, in order to use the relation in cases where conflicts arise between viewpoints.
Such a relation carries on where co-refinement leaves off: if the restrictions imposed by
an amalgamation cannot be satisfied, we have a conflict, and the compromise is that
action which must be taken to satisfy the restriction. In the realm of explanations
on which we are concentrating in the present work, we may have a situation in which
an initial description glosses over certain facts which must later be explained properly
with a phrase like “we said A before, but in actual fact B ” — and B turns out to be
incompatible with A.

In such situations we would proceed by first identifying how the restriction might
be satisfied — that is, which part of the original viewpoint must be altered. We
would then create a new viewpoint from the old with the problematic feature removed.
For example, suppose we have a viewpoint specification (expressed as a specification
statement) for the real roots of a quadratic equation:

A = x ,y :
ax2 + bx + c = 0

b2 > 4ac , ay2 + by + c = 0

(b2 > 4ac) =$> x ^ y

If developers then decide tha t only one root can be provided, a new specification with
all references to y removed would be produced,

56

B := x: b2 > 4ac , ax2 + bx + c = 0

In normal development terms we have a backwards step in going from A to B; we will
call this backward refinement. The step from A to B is a compromise because of the
reduction in functionality provided.

In a larger example A might be composed of specifications Ai, A2 . . . An, and B com
posed of B u B2 . . . B n. If we have V« : 1 < i < n.A,- C 5 j, then the composition rules
give us AC. B. This simplification assumes A and B are both structured into ordered
modules in the same manner.

A compromise identifies the case where there is at least one j : 1 < j < n such that
Aj % Bj. A measurement of acceptability of the compromise can be made based on
how many parts are lost and their relative importance. Clearly we are no longer talking
about a refinement here; at best we have a refinement of some sub-specification of A,
in other words a viewpoint formed from A which is refined by B. More generally this
viewpoint will be co-refined by B. The following then identifies a compromise relation:-

D efin itio n 4.8 (C om prom ise) For specifications A and B composed of modules A,- :
1 < i < n and Bi : 1 < i < m, B is a compromise of A (written A I) B) i f there is
a non-empty set V C { 1 ,. . . , n) such that the composition of modules (J Aj : j E V is
co-refined by B.

In the case of our quadratic equation example, the viewpoint (J Aj is the specification
x: [6 2 > 4ac , ax2 + bx + c = 0 which is co-refined by B (as it is equal to B).

This relation is reflexive, and symmetric but not transitive, and does not preserve
correctness so (as we would expect) is a non-starter for formal development. It is not a
pre-order, and neither is it an equivalence relation because of the absence of transitivity.
However it can combine with refinement in the following ways:-

• A C B A B D C ^ A D C

• A D B A B C C ^ A D C

Thus a development in which there is one compromise is characterised as a compro
mise. The benefit of the compromise relation is in characterising a development in
which compromise takes place as not preserving correctness, and in providing another
generalisation of refinement (co-refinement is the special case where V = { 1 , . . . , n}).

57

4.6 .1 B acktracking

A related situation occurs in a development where three stages A , B , C are related
{A C B C (7), and it is then required to change B. This may be because B is a
product released to the public and C is the next release under development, and a
bug-fix has to be applied to B. The bug-fix release B' will be a compromise of R, as
at the very least some part of R ’s functionality will still hold true in B ' . But what is
the relation between B' and C l

By symmetry we have B' B, and by the relation to refinement identified above we
have B' C C. The next step in the development would then be to merge the bug-fixes
into C to produce a C' tha t is

• a compromise of C, C D C'

• a refinement of 5 ', B' C C1

The actual merging activity to produce C' would consist of amalgamating the changes
between B and B' with C . In practice a configuration management system such as
RCS will deal with this situation: in Section 6.4 we consider how viewpoints can model
this case.

4.7 Summary

This chapter has provided an overview of a particular method for stepwise refinement
of specifications, and shown how it can be adapted, and the corresponding refinement
relation weakened, to deal with situations which arise in viewpoint amalgamation.
Subsequent chapters will deal with situations in which an explanation is taking place,
and show how this can be modelled as a series of viewpoint amalgamations in which a
refinement process is taking place.

58

Chapter 5

V iew Point Oriented Software
Developm ent

In this chapter we address the ViewPoints framework [NKF94], and related research [HN95,
LFKN95] introduced in Chapter 2’s survey, as an example of an approach th a t deals
with relationships between viewpoints, and assess the usefulness of the refinement the
ory introduced in Chapters 3 and 4 to model these relationships.

We will endeavour to be consistent in the use of terminology here, using “ViewPoint”
to refer to the specific object used in the framework, and reserving “viewpoint” for the
more general use.

5.1 Introduction

To recap (Section 2.3.6), ViewPoints provide a loosely-coupled, locally managed frame
work of distributable objects which encapsulate partial knowledge of a system or do
main. ViewPoint-Oriented Software Development (VOSD) is designed primarily for
use in requirements engineering, to develop requirements elicited from multiple per
spectives. It can be divided into two broad stages, Method Design and Method Use.

5.1 .1 M eth od D esign

Method design is the design or reuse of templates. A template is a special kind of
ViewPoint in which only the first two of five “slots” are defined:

1. Style — the notation used for the ViewPoint’s specification.

59

2. Work Plan — a description of the ViewPoint’s development process, the actions
that may be used in the development.

Actions fall into categories of assembly actions, in-ViewPoint check actions (en
suring syntactic correctness of a ViewPoint), inter-ViewPoint check actions (to
check consistency between ViewPoints), and trigger actions, to create a new in
stantiated ViewPoint from a template.

The Method is then defined as a collection of templates with relations between them,
which must be satisfied for consistency. A collection of templates thus implements a
specific development method.

5.1 .2 M eth od U se

Method use is the instantiation of the templates as ViewPoints. The remaining slots
in a ViewPoint are:

3. Domain — the ViewPoint’s area of interest in the overall system.

4. Specification — of the Viewpoint domain in the Style notation, developed as per
the Work Plan.

5. Work Record — history and current state of development of the ViewPoint spec
ification (actions performed from the Work Plan), to enable requirements trace-
ability.

ViewPoint relations are instantiated (in-ViewPoint and inter-ViewPoint) from the tem
plate relations. The check actions defined in a template are instantiated as rules: in-
Viewpoint rules can be classed as syntactic checks, and inter-ViewPoint rules would
typically describe equivalence relations between corresponding elements and can be
used passively to confirm consistency between ViewPoints, or actively for interchange
and transformation of data between ViewPoints. In this way a domain-specific View
point is instantiated from a generic template.

A requirements specification will typically consist of a number of potentially overlap
ping ViewPoint specifications, which need not, in the course of the development, be
consistent with each other; a central tenet of the ViewPoints approach is tha t inconsis
tency is not only inevitable in a multiple perspectives development, it is actively to be
encouraged so as to elicit more information about the system; inconsistency encourages
ViewPoint owners to communicate and negotiate to resolve their differences.

60

5.1 .3 V iew P oin t D evelop m ent

The actions and process model included in the Work Plan of a ViewPoint may be used
to drive the development of a distributed system. Development for each ViewPoint
progresses by recourse to its inter-ViewPoint rules, once the in-ViewPoint rules have
been satisfied to show that the ViewPoint is well-formed. The invocation of a rule,
expressed in general terms as a relation 71 between source and destination ViewPoint

V P s , VPD,
V VPS 3 VPD • VPS 71 VPD

results first in a check for the existence of such a VPr>. Trigger actions are used to create
an appropriate instantiation of a template if necessary. The rule is then applied, and
either succeeds or fails; failure leads to actions to deal with the inconsistency implied
by the failure. The inconsistency is either resolved or left pending. This application of
rules implies some transfer of information between source and destination ViewPoint;
the rules are used not merely for static comparison but also to drive communication
between ViewPoints.

The distributed nature of the framework means that, in general, consistency checks
are not controlled by some central controlling ViewPoint, though a “global ViewPoint”
can be defined by the Method Designer to ensure consistency across all ViewPoints
if necessary. Instead the checks are driven by each ViewPoint, and inter-ViewPoint
communication proceeds by asynchronous message-passing.

5.2 ViewPoint Integration and the Am algam ation Process

There seems to be no immediate parallel to our notion of amalgamation in this decen
tralised framework, as the whole point of the framework is to maintain ViewPoints as
distributed objects. The closest notion is integration, the process of comparing View
points for consistency; two ViewPoints are deemed integrated if they are consistent, but
no “amalgamated” ViewPoint need be formed. In some cases only a partial integration
will be possible, as not all rules may be satisfied.

Our model of viewpoint amalgamation does however include stages analogous to those
in the process identified above; our first stage is tha t of Coalescence Planning, where
the viewpoints are compared for clashes and commonalities, producing a Coalescence
Plan as output. This corresponds to the identification of inter-ViewPoint rules to be
invoked. The history listed in the Work Record is analogous to the Amalgamation

61

Trail (Section 3.2).

5.3 V iewPoints and Refinement

There are points in the process where an implicit refinement takes place: again we
divide this into method design and method use stages.

• Method Design

— Template development will feature incremental modifications, and refine
ments such as we have been discussing here will hold between versions of
the templates.

• Method Use

— Instantiation of ViewPoints is a refinement, as detail is added to a template.

— In the subsequent development of ViewPoints a refinement will hold at each
stage as in the method design stage.

— Consistency checking, via inter-ViewPoint rules. The failure of a rule can be
seen as identifying a restriction on the refinement relation tha t should exist
between the ViewPoints; if the restriction were satisfied, the rule would not
fail.

In addition, if an integrated ViewPoint is constructed, as the ViewPoint owners or
Method designer may decide to do, we can represent the construction of an integrated
ViewPoint by identifying a co-refinement (Section 4.5) between the integration and
each constituent ViewPoint. The nature of the co-refinement depends on the im pact
of “foreign elements” in the integration (those elements external to a particular con
stituent ViewPoint). A non-restrictive co-refinement will result if the foreign elements
do not have any impact on the original ViewPoint, and a restrictive co-refinement will
apply if new rules are imposed on a ViewPoint by the integration. In the case of partial
integration, there may be a restrictive co-refinement for some ViewPoints, and no re
finement at all for those ViewPoints which remain inconsistent (this would be modelled
as a restriction that could not be satisfied). This would not be a valid amalgamation
in terms of our model; in the VOSD framework it implies further action must be taken
to deal with the inconsistency.

62

5.3 .1 P h o n e E xam ple

For example, in [EN95] consistency checking in an evolving specification is illustrated;
relations between two ViewPoints of a telephone are used to identify and resolve in
consistencies. The ViewPoints are described using state transition diagrams. Initial
ViewPoints from the perspective of a caller (Ann) and a callee (Bob) have some states
in common, such as “idle” and “connected” . There axe also inconsistencies, due largely
to a different concept of “connected” in each ViewPoint; Ann has a transition “re
place receiver” between her “connected” and “idle” states, whereas Bob does not. An
inter-ViewPoint rule enforcing this condition is written:

R! : V VPd {STD ,D s) (5.1)

VPs-transition(X , Y) A VPD.state(X) A state(Y) =>- VPD-transition(X, Y)

This rule says tha t for all destination ViewPoints containing state transition diagrams
with the same domain as the source ViewPoint (in this case the domain is “Telephone”),
if the source ViewPoint has a transition between two states, both of which appear in
the destination ViewPoint, then the transition must also appear in the destination
ViewPoint. In our terminology, there is a co-refinement between source and destina
tion ViewPoint in which the links include the states and transitions common to both
ViewPoints.

Applying rule 5.1 in this case gives rise to a predicate missing, which is recorded in
the development history for the source and destination ViewPoint; it is then up to the
developers to decide how (and if) to resolve it. This can be modelled as an (unsatisfied)
restriction on the co-refinement; only if the predicate missing was negated would there
be some circumstances in which the co-refinement could be satisfied.

The main difference in our use of links and restrictions is that in our method the retrieve
relations are defined between the amalgamated viewpoint and the constituents, rather
than between each ViewPoint as here. This is because of the decentralised approach of
the VOSD framework; it is the constituent ViewPoints which are driving the consistency
checks and “deciding” which other ViewPoints they should be consistent with.

Once the ViewPoints have been found to be consistent, an integration might be formed
by union of the state transition diagrams; we can model this process using co-refinement
by considering the retrieve relations identified above; using “Phone” for the integrated
ViewPoint, assuming a transition other -party-hang s-up in the Phone ViewPoint, the

63

retrieve relation for the Phone would include

(o th e r -p a r ty -h a n g S -u p p = callee-rep laces-receiverA) A

(o th e r -p a r ty -h a n g s -u p p = ca l le r -re p la c e s -rec e iv e rs)

We use subscripts A, B and P for the ViewPoints of Ann, Bob and the amalgamated
Phone, respectively. This identifies a link, and there will be links for each state and
transition tha t is brought into the integrated ViewPoint relating it to its source.

Applicability restrictions should not occur for ViewPoints tha t are consistent, but are
likely to arise when consistency checks are being carried out. Restrictions on the
correctness of an amalgamated ViewPoint may arise even with consistent ViewPoints;
for example, we can identify a restriction between Ann’s ViewPoint and the integrated
Phone by observing that the correctness of the Phone with respect to A nn’s ViewPoint
depends on the Phone only being used to make calls, not to receive them. This leads
us to identify a state of the Phone which does satisfy Ann’s ViewPoint, namely one in
which the Phone is restricted to outgoing calls only.

5.4 Reasoning with Inconsistent V iewPoints

We have stressed that the idea of the ViewPoints framework is to allow development of
ViewPoints tha t may be inconsistent, in order to encourage better understanding of the
requirements. Consistency checks are thus performed only at particular “checkpoint”
stages in the development, or between certain ViewPoints which may be considered
more tightly coupled than others. The ViewPoints framework uses classical logic to
detect inconsistencies [FGH+93] and use them to motivate further action. The analogy
presented is of a database in which some inconsistencies tha t arise are useful — such
as in a tax-payer’s records — because it shows the tax inspector tha t he needs to
investigate.

Consistency is checked between the specifications of two ViewPoints by translating the
specification knowledge of each into classical logic, and adding classical-logic-translated
versions of the inter-ViewPoint rules. Comparison of the resulting logical formulae,
commences using a logical theorem prover and the Closed World Assumption (CWA),
a concept from database theory. The CWA allows, given the absence of a fact a from
a list of facts and their consequences, the conclusion -> a. Any inconsistencies arising
at this stage give rise to the invocation of meta-rules to cope with the inconsistency —
though not, necessarily, to resolve it. Possible actions include ignoring, circumventing

64

(ignoring temporarily) or removing the inconsistency.

Problems arise however in attem pting to reason about ViewPoints which are incon
sistent; use of classical logic breaks down if both a and -■ cv hold in a logical system,
as rules of inference mean that anything at all can then be trivially deduced. One
alternative being developed [HN95] is based on Quasi-classical (QC) logic [BH95], in
which trivial formulae cannot be derived; the logic is weaker than classical logic, and
only in the “final step” permits disjunction introduction. In QC logic a query (classi
cal formula) follows from a set of assumptions exactly when there is a derivation of a
conjunctive normal form 1 of the query from the assumptions using QC deduction rules.
These rules are a subset of those which hold in classical logic; for example, introduc
tion and elimination of negation, conjunct elimination, resolution, distribution and De
Morgan’s laws all hold, but laws which can lead to trivial derivations in the presence
of inconsistency do not.

Reasoning with inconsistent ViewPoints can be achieved via labelled QC logic; unique
labels are attached to each item of information, and propagate to deduced consequences
by combining the labels of the premises. In this way, when an inconsistency arises the
sources of the inconsistency are easier to locate from the labels.

5.4 .1 B anking S ystem E xam ple

The example given in [HN95] is of two ViewPoints in a banking system. They disagree
over the association between a cashier and a terminal: one has a predicate

has-exactly-one(Cashier, Terminal)

and the other has
has-exactly-two{Cashier, Terminal)

Inter-ViewPoint rules would include the following:

VX, Y has-exactly-one (X , Y) -i has-exactly-two (X , Y)

which would lead to an inconsistency in this case; but non-trivial implications following
from these relations include

1 a conjunction whose conjuncts are a disjunction of one or more literals.

65

VX, Y has-exactly-one(X , Y) =>- has-one-or-.more(X , Y)

VX, 7 has-exactly—two(X , Y) =>■ has-one-or-more (X , Y)

so a non-trivial consequence, has-one-or-more{Cashier, Terminal), follows from the
inconsistent ViewPoints.

Looking at these predicates in refinement terms, we can see that

VX, F has-one-or-m ore(X , Y) □ V(X, Y)has-exactly-one(X , Y)

and VX, Y has-one-or-more (X , Y) C V(X, Y)has-exactly-two{X , Y)

since anything satisfying has-exactly-one will certainly satisfy has-one-or-more, and
similarly with has-exactly-two. This “backward” step corresponds to the ideas dis
cussed in Section 4.6. Backtracking is likely to be inevitable in such a development in
the course of “negotiation” between ViewPoints.

Another way to look at this is as an amalgamation of the two predicates has-exactly-one
and has-exactly-two to form has-one-or-more\ however there is no refinement to
be observed from the predicates to their amalgamation. We could argue for a vac
uous co-refinement here: that has-exactly-one H has-one-or-more with restriction
has-exactly-one. This is comparable to the following in terms of co-refinement of
specification statements (introduced in section 4.2):

A = x \ : true , x\ = 1

B = X2 ' [true , X2 > 1

We follow the general practice of adding numeric subscripts to those variables (x in this
case) shared between the viewpoints being compared. We can identify a co-refinement
between A and B with a link X2 = x\ and restriction X2 = 1.

Thus we can identify a similarity in approach between the use of logical reasoning in
the ViewPoints framework and results in general viewpoint amalgamation; the identi
fication of the generalised predicate has-one-or-more is produced by a process similar
to the MFD concept of coalescence, and identification of links and restrictions in the

66

amalgamation give a formal verification of a co-refinement. Indeed, such a formal
verification can be used to back up the results of a derivation in QC-logic.

5.5 Summary and Conclusions

Finkelstein et al [FKN+92, NFK94] can be said to have the most structured idea of
viewpoints, as discussed in Chapter 2. They have developed a versatile framework for
viewpoints, and their work on relationships between ViewPoints deals with many of
the issues raised in comparing multiple perspectives.

While the decentralised ethos of the ViewPoints approach appears to be at odds with
our approach to viewpoint amalgamation, we have identified some parallels and some
areas where formal ideas about refinement and co-refinement can be used to some ad
vantage. This ties in with some of the further research being done in the ViewPoints
framework to use a category-theoretical basis [FM95] to formalise the approach, repre
senting rules and relations in terms of functors mapping between objects and morphisms
of different formalisms.

Integration of ViewPoints, which is achieved by verification of consistency by appli
cation of inter-ViewPoint rules, can be modelled as a process of coalescence leading
optionally to amalgamation — though ViewPoints are described as integrated when
they are consistent and need not be “physically” amalgamated.

The advantage of using our ideas about amalgamation and refinement to model the
process that goes on in the ViewPoints framework is that we are able to give some
guidance about when ViewPoints can be said to be correct with respect to an initial
ViewPoint. A ViewPoint is correct with respect to another if all of the inter-ViewPoint
rules are satisfied for the ViewPoints. Developments are perm itted which break the
correctness, but eventually the resultant inconsistencies must be dealt with: only when
the correctness rules again apply can we say that a ViewPoint refines another. In
this way the framework provides enough expressiveness to allow developers to explore
alternative strategies: our approach additionally specifies which strategies provide a
valid refinement.

67

Chapter 6

V iew points and Explanations

This chapter can be seen as an incremental description of the way viewpoints and
refinement can be used to model incremental descriptions (or, explain explanations).
The chapters which follow treat examples on the theme of explanations in more detail:
here we introduce some of the concepts involved in explanations and address some of
the issues arising from the use of viewpoints and refinement to model them.

We begin with a look at how first-year undergraduates at a University might be taught
to use an editor (Section 6.1); we then build on the tutorial idea by extending the
description to user manuals (Section 6.2).

Documentation in general be improved by use of the paradigm of literate programming
(Section 6.3), which itself advocates an incremental approach. This paradigm is par
ticularly useful for providing a mechanism for specifying variants of a system, although
a more general mechanism is provided by revision control systems (RCS) (Section 6.4).

RCS is, in turn, a useful tool for configuration management, although it does not
provide a framework for resolution of conflict (Section 6.5).

Having given an overview of the chapter, we “refine” it below by fleshing out the details.
Such a presentation of material is a common form of explanation, and can be called
a refinement in a similar sense to the way a table of contents is refined by the rest of
the document: an adding of detail and a reduction of undeveloped sections. Indeed,
some simple document management systems provide a way of viewing a document by
presenting first the table of contents, then performing an in-line expansion of selected
sections.

68

6.1 Text Editor Tutorial

In the EMACS editor all text that you type will be entered into the document
that you are creating. So that the computer can differentiate between text to
be entered and instructions to do something, two special keys are available.
One is the CONTROL key labelled ’CTRL’ and the other is the ESCAPE key.

The CONTROL key is like a special SHIFT key in as much as it should be held
down while another key is hit. The ESCAPE key on the other hand is typed
before the command character is typed.

The convention used here is that if the control key should be used with the
letter a, say, then it will be shown as CTRL-a , if an escape sequence is
required it is shown as ESC a.

STARTING THE EDITOR

emacs name This starts the editor.
If the file ’name’ exists the first 22 lines

of the file will be displayed.
If the file does not exist then it is created

and the first 22 empty lines are displayed.

CURSOR CONTROL KEYS

CTRL-f move cursor right one character (Forward)

CTRL-b move cursor left one character (Back)

CTRL-p move cursor up one line (Previous)

CTRL-n move cursor down one line (Next)

Figure 6-1: Excerpt from emacs tutorial file

First year students at the University of Bath School of Mathematical Sciences tend to
fall into one of two main streams: those with some computing experience and those
with none. When it comes to teaching them how to use the University’s computing
facilities, they are placed into groups of mixed abilities and given a tutorial introduction
to the machines. This includes how to log on, basic file concepts in the UNIX operating
system, and how to edit files. W hat the students learn here should set them up to be
able to use computers in later years with confidence, in different working environments
to those provided by the University; thus the emphasis is on grasping the key concepts
before getting involved with specifics. For this reason the editor taught for some years
in these tutorials was v i, it being the standard editor for Unix systems. However, it

69

can be quite obtuse to learn for beginners, and now the editor taught is GNU emacs1 as
it is very widely used and more friendly to the beginner.

6.1 .1 T h e E ditor G N U em acs

The students are each given a text file in their home directory which contains an emacs
tutorial, and told to run emacs on the file by typing emacs em acs. ex in a shell window.
An excerpt from this file is presented in figure 6-1.

The file takes a typical approach in tutorial exercises by presenting the information in
stages; if we asked the student what they know about the editor at various stages as
they progress through the text2, we might progress from “Nothing” initially through
“You use CTRL-f to move the cursor forwards and CTRL-D to delete” and on to the
other cursor control keys. At each stage we can think of the domain of emacs-related
knowledge in the student’s mind being extended. To do this we should choose a lan
guage in which to represent the knowledge that has been developed; for example a
semantic description or logical predicate. Such a naive representation is, of course,
treading on the .toes of research in human-computer interaction, knowledge represen
tation and intelligent tutoring systems.

The viewpoint formed in whatever modelling language we choose will have some gaps
in it: for example, what happens when the cursor moves over the end of a line etc, and
what the meanings of certain keys are. Lastly the unfortunate student as yet has no
idea how to leave the editor, nor of what would happen if he tried to.

The remainder of the tutorial document fills in these gaps, resolving the issues of what
the ESC key is for, and how to leave the editor, in addition to introducing a number
of other commands. We could now formulate a viewpoint of the emacs knowledge
gained by extending the earlier description, in a piecewise fashion as each new bit of
knowledge was gained. In this small case this should not present any problems as
the information given does not contradict what was said earlier, and a straightforward
refinement defined in terms of “knowledge being enriched” can be observed. This will
not always be the case, as we shall see in the next section.

In fact the emacs editor has much more to it than these basic key commands suggest;
it is described as an extensible, programmable self-documenting editor with a large
user community creating and maintaining code. This results in there being more than

1 Produced by the Free Software Foundation’s GNU (Gnu’s Not Unix) project. The acronym Emacs
is said to mean anything from “Editing MACros” to “Eats Memory And Crashes Systems”.

2Assuming that the student we are modelling is a truly model student.

70

one variety of emacs around, leading inevitably to problems of incompatibility between
packages and installations. We return to this topic in section 6.4.

6.2 Manuals and Docum entation

A user manual for a program or system will typically take the same path as that outlined
in the tutorial: beginning with the broad picture, and getting to the finer details later
on. However, in more complex cases there will be more involved than simply fleshing
out details; facts glossed over for the sake of simplicity will need to be returned to
and perhaps totally re-formulated. This backtracking is illustrated in figure 6-2, and
can be explained using the idea of “compromise” identified in Section 4.6. The version
numbers in the figure denote the progress being made; there is a refinement (defined
here as simply being “better defined”) between version 1 and version 2 , and between
versions 1.1 and 2.1, but a “backward refinement” between versions 2 and 1.1. The
relation between version 1 and version 1 . 1 is not clear; in general they need not be
related at all.

Version 1

Version 1.1

Version 2.1

Version 2

Figure 6-2: Backtracking development

6 . 2 . 1 B a c k w a rd S te p s

The picture can easily become more complicated, as the following short “explanation”
which might have come from a simplistic manual illustrates.

We have four facts presented to the reader in the following order:

1 . All cows are brown.

71

2 . Cows like to eat grass.

3. When cows are lying down in a field, it is about to rain.

4. I lied in viewpoint 1: Some cows are black and white.

After choosing a viewpoint model, such as logical predicates, to represent the given
facts, the process of amalgamating the given facts (which we can model as logical
conjunction of predicates, perhaps using a language such as Prolog) results in the
following accumulation of knowledge (translated back into natural language):

• All cows are brown (viewpoint 1).

• All cows are brown and like to eat grass (1 A 2).

• All cows are brown and like to eat grass, and when they’re lying down in a field,
it is about to rain (1 A 2 A 3).

• Cows may be brown or black and white, they like to eat grass, and when they’re
lying down in a field, it is about to rain (4 A 2 A 3).

The refinement relation in the model of logical predicates would be based on implica
tion: viewpoint 3 => viewpoint 2 =>■ viewpoint 1.

The reader, in recovering from friesian shock, has had update his knowledge. In this
case he was safe to amalgamate viewpoint 4 (some cows are black and white) with 2
and 3. However, if this bomb-shell had been dropped at a much later stage in this
long road toward becoming an expert in dairy farming, there might be some viewpoint
which depended upon the hue of the herd, such as “cows are difficult to spot against a
brown background” . So the trainee herdsman must sort out those facts which are true
of all cows from those which are true only of the brown ones.

6.2 .2 C oping w ith R ev ised D escrip tion s

We see that the reader may be left to sort out for himself the inconsistencies a backtrack
ing in an explanation may leave, though a good manual should avoid this happening as
much as possible. It is no coincidence tha t this development bears more than a passing
resemblance to merges performed in revision control systems, to which subject we will
soon turn our attention.

72

While the example given above is certainly trivial it is similar in structure to a descrip
tion which might be given in a user manual, as opposed to a technical reference manual
which will be structured in a different way.

A technical manual, documenting how/why a program was written rather than how
to use it, is even more likely than a user manual to be difficult to understand, even
inaccurate, and as a result, only get referred to in desperation should all else fail. W hat
such a manual should be is well-structured, unambiguous and capable of explaining
the design of the code. The paradigm of literate programming, which is gaining in
popularity as a means of writing and documenting code, can improve this situation.

6.3 Literate Programming

Literate programming is a means of combining documentation and source code to
gether, typically in a single file. Tools are then used to create program source or
readable documentation from this file. The original literate programming tool was
developed by Knuth [Knu92] to implement the typesetting software, with the phi
losophy tha t “an experienced system programmer . . . needs two things simultaneously:
a language like TgX for formatting, and a language like C for programming . . . when
both are appropriately combined, we obtain a system tha t is much more useful than
either language separately” .

6.3.1 K n u th ’s W E B

K nuth’s system was called WEB, underlining the idea that a program is made up of many
interconnected pieces3. One program, tangle, produces C source from a WEB document,
and another, weave, produces TgX source documenting the program. We can think
of a WEB document as an amalgamation of a program viewpoint and a documentation
viewpoint, but the WEB system provides much more. Rather than being an over-blown
version of “verbose commenting” , it enables programs to be elaborated in a flexible
order; variables do not have to be defined before use, for example, since the tangle

program will put everything in the right place, and partially defined subroutines and
modules can be added to later in the WEB document. Thus the order of the document
is determined by how the writer thinks the material can best be put across.

A further advantage of literate programming is tha t the document produced by the
weave program includes an automatically generated index and table-of-contents, with

3 Although the name itself is apparently in honour of Knuth’s mother-in-law, Wilda Ernestine Bates

73

each code module cross-referenced. It can also contain anything a TgX document can
contain — figures, mathematical formulaeand so on.

Figure 6-3 shows an extracted module from an example literate program, in which
« t e x t » = introduces the definition of a program fragment labelled by te x t , [[
name]] identifies name as being a variable, and sections are delimited by @. The use of
these symbols enables the formatting programs to produce indexes of all occurrences
of variables, and the section in which a variable is defined, and show the dependencies
between sections.

@ This program has no in p u t, because we want to keep i t s im ple.
The r e s u l t of th e program w il l be to produce a l i s t of th e f i r s t
thousand prime numbers, and t h i s l i s t w i l l appear on th e [[o u tp u t]]
f i l e .

S ince th e re i s no in p u t, we d e c la re th e value [[m = 1000]] as a
com pile-tim e c o n s ta n t .
The program i t s e l f i s capable of g e n e ra tin g th e f i r s t [[m]] prime
numbers fo r any p o s i t iv e [[m]] , as long as th e com puter’ s f i n i t e
l im i ta t io n s a re no t exceeded.
« p ro g ram to p r in t th e f i r s t thousand prim e num bers»=
program p r in t .p r im e s (o u tp u t) ;

const m = 1 0 0 0 ;
CCother c o n s ta n ts of th e program>>

v ar <<v a r ia b le s of th e program>>
beg in < < prin t th e f i r s t [[m]] prime num bers»
end.

<3

Figure 6-3: Extract from example literate program written in noweb[Ram94].

One problem which becomes apparent with this style of writing is the need for typo
graphical symbols to denote modules and so on; tool support for creation of literate
programs is developing [BG92, BC90, GW91], which will enable the writer to concen
tra te on documenting the code rather than getting the symbols right.

The use of a single source for code and documentation means tha t code maintenance
should also be easier; the cross-referencing and indexing makes code changes simpler,
as the potential side-effects of changes are made explicit.

74

6 .3 .2 L iterate P rogram m ing A pp lication s

Literate programming has itself evolved from its WEB origins and many alternative
tools have been developed [AO90, Ram94], taking the emphasis away from specific
programming languages to allow the best language for the program to be used. Some
tools are also able to produce the “woven” human-readable output in the form of
hypertext (HTML) for viewing with a World-Wide-Web4 browser.

6.3 .3 L iterate Program m in g and R efinem ent

It is not only programs that can benefit from the literate approach: written in this way
— for example the development of the semantics for the calculator, and in particular the
addition of an assignment operation (section 8.5) could be achieved via a WEB source
document, with additions and alterations to the syntax and semantics presented as
modules. Some research [Pep91, Sen92, Mor93, JLM+94] into the marriage of literate
programming with formal methods indicates that the paradigm may have much to
offer.

A module of a document presented as a literate program is a viewpoint in our terminol
ogy. The composition operations provided allow modular structuring, and the ta n g le
tool performs the necessary operations to produce an amalgamation — a single, flat
file which is not intended to be read by human eyes.

Any viewpoint of the system should be refined by the amalgamation, as compilation
of the amalgamation provides a correct implementation of the literate program. Fur
thermore, it is an intention of the literate programming paradigm to enable an under
standing of some part of the actual program — the amalgamation — to be obtained
by looking at the relevant part (or parts).

A further use of literate programming tools is to support “site versions” of a source
program. Changes to a program can be incorporated into a “change file” which, with a
file processing tool like the Unix d i f f command, can be used to automatically update
any new version of the source itself. Once again this is simply a case of a viewpoint
containing the changes being amalgamated with a viewpoint containing the source:
however problems with refinement can arise due to the possibility of overriding parts
of the source viewpoint. This is a part of the functionality of revision control systems,
as we shall see in the following section.

4Different Web!

75

6.4 Revision Control System s

A revision control system such as RCS [Tic85] maintains the current version of a pro
gram and provides a way to return to previous versions of a program using a series of
backward “deltas” or context differences between a version and its predecessor. A new
program (or document, or anything contained in a file) is first registered by its writer
by checking it in; this results in the file being given a version number, normally 1 . 1 ,
and a new revision group file called f i lename,v is created, holding the contents of this
version. The original file is normally deleted. The checking-in process also involves
adding a textual description of the initial version.

Anyone wishing to update the file first checks it out; this results in the contents of
the most recent revision in f i lename ,v being placed into filename, and the status of
the file is marked as locked to prevent anyone else from trying to update it. If people
simply want to examine the file they can check it out w ithout locking it; this simply
means they will be unable to check it in again (a master copy of the latest version
remains in the group file). An updated version of the file is checked in and a log entry
given; the version number will then be updated, normally from 1 . 1 to 1 . 2 .

These version numbers are of the form (release-number.level-number). A major mile
stone in the development of the file will result in an increment of the release-number
— this is done explicitly by the person doing the checking-in. Otherwise the default
action is to increment the level-number.

6 .4 .1 O rd e r in g b e tw e e n V e rs io n s

In a simple, straight-line development there can be said to be an ordering between
versions; 1 . 1 < 1 . 2 < 2 . 1 < __ The ordering is based simply on “being developed
from”; there is no formal requirement that 2 . 1 be in any way better defined than 1 . 2 ,
so we are back to an informal idea of refinement based on “improvement” -— 2 . 1 would
be called an improvement of 1 . 2 , but the nature of the improvement could be anything
from a bug-fix to a re-write of a procedure (or more). Correctness cannot be relied
upon to be maintained.

Such a development is termed a “slender revision tree” ; in reality branches will appear
on the tree in situations where versions earlier than the current one need to be worked
on; in the above, version 1 . 2 may be the most recent production version of a program,
being used by customers, but version 2 . 1 is the development version. If a bug is
reported in version 1 . 2 , a fix will be required; this version will have to be checked

76

out and fixed, then checked in on an alternate branch (as calling it 1 .3 would upset
the ordering — it would not be true to say 1.3 < 2 .1 . The branch revision would be
numbered 1 . 2 . 1 . 1 . It would then be advisable for the most recent development version
to benefit from the bug-fix; the changes in 1 . 2 . 1 . 1 should (if possible) be merged with
2 . 1 to produce 2 . 1 . 1 . 1 . Other situations, such as changes which are made only to a
customer site version of a product and must then be made by the customer to the next
release when it arrives, will result in similar branching.

6 .4 .2 V e rs io n O rd e r in g a n d R e f in e m e n t

The < pre-order on version numbers is not a formal refinement ordering, since there
is no guarantee of preserving of correctness between the versions themselves. If the
product is a text document, for example, the revisions to the text itself are likely to
involve addition, replacement and removal of segments of text, and a program being de
veloped is likely to undergo similar alterations. The problem here is tha t the operation
of overriding is not monotonic with respect to any meaningful ordering relation.

The ordering in the situation of variant branches becomes more complicated. We
do not have, in the above discussion, 1 .2 .1 . 1 < 2 .1 , for example, but we do have
1 .2 .1 . 1 < 2 .1 .1 .1 . Plaice and Wadge[PW93] present a different approach to revision
control which stresses the fact that it is the version labels, not the versions themselves,
which have an ordering defined on them. Their approach aims to deal more effectively
with the presence of variant branches. They define an algebra of versions, with a
refinement order defined on them: in this approach numeric version labels are used
only for the main branch, with sub-versions or variants labelled alpha-numerically.
Refinement is defined as an ordering on version numbers, with an additional axiom for
variants: V □ V% V ' . Versions can be combined with a join operator +; the authors
present a complete partial order over the version space.

The advantage of this approach is that components which exist in a number of variant
forms can be used to build a composite version by selecting the variant most relevant
to the required system; the most relevant variant is the closest available in the partial
order.

Since the version space is defined with a partial order and composition operations
have a precise semantics, it seems tha t this approach is very much in tune with the
refinement ideas presented in this thesis; this is an example of refinement being used to
relate together different viewpoints which can be amalgamated in different ways. The
join operator represents the amalgamation of two versions but makes no guarantees

77

tha t the versions can be assembled in a meaningful way. In this way the version space
idea presents one projection of the ideas in this thesis: tha t a refinement ordering can
be used to relate versions of a system together.

6 .4 .3 M e rg in g V e rs io n s a n d A m a lg a m a t in g V ie w p o in ts

We have drawn an analogy with the merging operation in RCS and the amalgamation
of viewpoints. How a merger is actually performed is within the power of the human
doing the merging; the process is partially automated by a three-way file comparison
which compares two revisions with respect to a common ancestor. If these versions are
called r l , r 2 and anc respectively, then wherever anc and only one of the revisions
agree on a segment of text it is the segment in the differing revision which survives
into the merged version. If all three differ an error is flagged and human intervention
is necessary.

The merging situation without human intervention can be modelled using compromise
(Section 4.6). In this case we have anc 13 r l and anc 13 r2, and the action of the three-
way d i f f program is to break the versions into modules containing comparable text
segments. Each text segment in the resultant version merged is a result of a comparison
between each of the three versions, and we will have at least one of r l 13 merged,
r2 13 merged. We cannot guarantee both of these holding, nor anc D merged. However,
it should be hoped that in all but the most drastic revisions a compromise should hold
between all versions.

6.5 Conflict between Versions

In the case above the compromise relation was applied to the merger case where at least
two text segments agreed. It can happen in such configuration management systems
tha t two developers will make changes to the same version of a component, independent
of each other. In this case it is quite likely that the ancestor differs from both revisions,
and the developers will then wish to merge their revisions. Tools to aid co-operative
working (CSCW tools), some of which were discussed in the survey in Chapter 2 , will
support this process.

The resolution of conflicts will entail a process of amalgamation, guided by negotiation
between the developers using a framework such as VOSD, discussed in Chapter 5.
The telephone example cited in that chapter is an example of an evolving specification
in which viewpoint owners make their own alterations and then have to deal with

78

resulting conflict when the viewpoints are compared. In the worst case the resultant
version which resolves the conflict may bear no resemblance to either, so even that
weakest of relations, the compromise, will not hold. A more satisfactory resolution
would be one tha t does succeed in reaching a compromise between both developers.

The difference between the two kinds of merger is in the kind of compromise achieved;
in the successful 3-way merge the resultant merged version is composed of modules
(viewpoints), each of which is found in at least one of r l and r2. In the conflict-
resolved merger each of the modules in the merged version is (at best) a compromise
of the relevant module in at least one of r l and r 2 .

6.6 Summary and Conclusions

This chapter has dealt with the idea that a number of processes through which things
are explained can be modelled with viewpoints, amalgamation and refinement. This
idea has been applied to an ordered sequence of subjects from tutorial explanations,
through user manuals, literate programming, version control systems and on to conflict
resolution in a cooperative working framework.

In the case of revision control systems we have seen that existing orderings between
versions do not guarantee the correctness of the development, only placing versions in
an order according to version number.

We have seen that straightforward refinement, and even the weaker co-refinement, can
not help in all situations where we can intuitively see an “enhancement” taking place;
backtracking developments such as Figure 6-2 involve a form of “backward refinement”
or compromise, which cannot preserve correctness. In the chapters which follow we
treat two examples of explanations in more detail than the overview presented in this
chapter, using viewpoints and refinement with some success to explain the explanations
which are taking place.

79

Chapter 7

Increm ental Developm ent of an
Algebraic Specification

In this chapter we present an example of an explanation in the form of an incremental
specification taken from a journal paper, and apply our refinement ideas to model the
relations between successive steps.

T.l Introduction

Incremental specification is a common paradigm for presenting and developing a system;
presenting information a piece at a time improves clarity and enables developer and
reader to continue at a convenient pace without getting prematurely bogged down in
details.

The example used for this chapter comes from [BCG+89], an incremental specification
of part of the functionality of the Apple Macintosh Toolbox Event Manager. We begin
by summarising the example as presented in [BCG+89], and then consider how a refine
ment relation should be defined for the style of specification used in the example. We
then return to each stage in the development of the example to model the development
between each incremental step as a refinement, in order to construct a correctness proof
for the development.

80

7.2 Developm ent of Toolbox Event Manager Specification

The event manager is provided for the benefit of applications developers, enabling them
to select the next input event (key press, mouse click etc) from a queue of pending events
and take the action appropriate to that event. It is the selection of the next element
of the queue that is the concern of this example.

We begin the development with an algebraic specification for a simple, unbounded
queue, by specifying a function NextAndRest which, given a queue, will return a tuple
whose first element is the next element in the queue and whose second element is the
remainder of the queue. The queue itself is represented as:

queue = empty | add(queue, element)

and our initial version of NextAndRest is as follows:

NextAndRest\(add(q, e)) = (7.1)

if isEmpty(q)

th e n (e,q)

else (n, add(r, e)) w h ere (n, r) = NextAndRest\(q).

Thus our initial requirement for the next element in the queue is tha t it should be the
first (the one tha t has been there longest). The next element in a queue represented
as (add(add(add(empty, a), b), c), d) is thus a. Note tha t we have swept under the
carpet such issues as the definitions of empty , add, element as well as the fact that
NextAndRest is only defined for non-empty queues; such are the liberties of partial
specifications.

W ith equation 7.1 as our initial specification, we can begin the incremental process of
fleshing out the specification. Motivation for each elaboration is a crucial part of the
development, so we include direct textual quotes from [BCG+89] at each stage.

. . . the application programmer can pre-empt the queue order by select
ing specific event types . . . thus ignoring prior queued events of non-selected
types. We therefore modify NextAndRest to take an extra param eter “m”
to be thought of as a “mask” , and we assume . . . a function “wanted” which
tests whether a given element is to be included according to a given mask.

The resulting new version of NextAndRest is first w ritten as

81

NextAndRest2(add(q, e) , m) = (7.2)

if wanted(e , m) a n d N oneW anted(q, m)

th e n (e,g)

else (n, add(r, e)) w h ere (n, r) = NextAndRest2{q , m)

None Wanted (empty, m) = t ru e

None Wanted (add (q, e), m) = n o t wanted(e , m) a n d N on eW an ted (q , m)

Comparing the structure of this version with the previous one leads to a useful gener
alisation, via a new function None:

N o n e (e m p ty ,t) — t r u e (7.3)

N on e(add(q , e), t) = n o t t (e) a n d N o n e(q , t)

New versions of both the previous specifications of NextAndRest can now be presented;

N extAndResti(add(q, e)) = (7.4)

if N on e(q , A e'. t r u e)

th e n (e , q)

else (n, a d d (r , e)) w h ere (n, r) = NextAndRest\(q).

NextAndRest2(add(q, e) , m) = (7.5)

if wanted(e , m) an d N on e(q , A e'.wanted(e'.m))

th e n (e, <7)

else (n, a d d (r , e)) w h ere (n, r) = NextAndRest2(q , m)

The full development is presented in tables 7.1 and 7.2, together with the motivating
text from the original paper.

Our aim in the remainder of the chapter is to express each of these versions of the
specification as the result of an amalgamation of a previous stage with an “incremental
viewpoint” , one which encapsulates the information being added. Note tha t we do not
insist on performing the amalgamation with the most recent stage; as the following
development will illustrate, it can be more natural to combine increments with earlier,
more abstract versions. We begin by considering the style of specification used in the
example, and identifying a suitable refinement relation.

82

T ex t V iew po in t

Initial Viewpoint

NextAndResti(add(q, e)) =
if isEmpty(q)
then (e, q)
else (n, add(r, e))
where (n,r) = NextAndResti(q).

The initial viewpoint is re-written to introduce
a function None, generalising the test to be
applied for selection of the next element.

NextAndResti(add(q, e)) =
if None(q, A e' . true)
then (e, q)
else (n, add(r, e))

where (n, r) = NextAndResti(q)
None(empty, t) = true
None(add(q, e), t) =

not £(e) and None(q, t)

“... the application programmer can pre-empt
the queue order by selecting specific event
types ... We therefore modify NextAndRest to
take an extra parameter “m” to be thought
of as a “mask”, and we assume ... a function
“wanted” which tests whether a given element
is to be included according to a given mask”

NextAndRest2(add(q, e), m) =
if wanted(e, m)

and None(q, A e'.wanted{e'.m))
then (e, q)
else (n, add(r, e))

where (n, r) = NextAndRest2 (q, m)

“... The candidate queue elements for selection
are now restricted ... further to those of max
imal priority in the queue ... The criterion for
selecting e from add(q, e) is that there be no
wanted elements in q which are not of lower
priority than e”

NextAndRestz{add(q, e) ,m) =
if wanted(e, m)

and None(q, A e'.wanted(e'.m)
and not higher(e, e'))

then (e,q)
else (n, add(r , e))

where (n, r) = NextAndRest%{q, m)

Table 7.1: Viewpoint presentation, extracted from [BCG+89]. Continued on page 84

83

T ex t V iew po in t

Some events need to be treated as if they
form part of a stack rather than a queue.
The not higher function is generalised to a
preEmpts function which acts on queue-type
or stack-type events.
“. .. We assume a predicate “sType” which in
dicates that an event is of “stack” (i.e. last-in-
first-out) type . . . We denote its complement
by “qType” ... Equal-priority events are ei
ther all of queue type or all of stack type
„ . I f sType(e), the criterion is that there be
no wanted elements of higher priority than e”.

NextAndResU(add(q, e), m) =
if wanted(e, m)

and None(q, A e'.wanted(e'.m)
and preEmpts(e' , e))

then (e, q)
else (n, add(r, e))

where (n, r) = NextAndRest^q, m)
preEmpts (e', e) =

qType(e) and not higher(e, e')
| sType(e) and higher(e' , e)

Some events are of rType, which means that
related events must be discarded.
“... adding a new activate event causes ones al
ready in the Event Pool to be discarded, while
the presence of a deactivate event in the Event
Pool means that for the moment any incom
ing ones are discarded ... [we] remove the dis
carded (de) activate events at the time that a
(de)activate event is selected from the Event
Pool”.

NextAndRest$(q,m) =
(n, if rType(n) then

RemoveAll(q, n) else r)
where (n , r) = NextAndRest^q, m)

Remov e All (empty, e) = empty
Remove All (add (q, e'), e) =

if related(e, e') then r else add(r, e')
where r = RemoveAll(q, e)

Table 7.2: Viewpoint presentation, continued from page 83.

84

7.3 Refinement of Algebraic Specifications

Formal specification techniques are generally classed as model-based or algebraic. Z
and VDM are model-based, in the sense that a system is modelled in terms of under
stood mathematical concepts such as sets, sequences and relations, by defining states
and operations in terms of how the state is affected. Algebraic (or property-based)
specifications specify an object or type in terms of relations between operations on
tha t type. Co-refinement [Ain95] has been developed in terms of Z and the refinement
calculus. Algebraic specification provides us with an opportunity to consider refinement
in different surroundings. A full algebraic specification in a language such as CLEAR
[BG8 6] or Larch [GHW85] will include a sort (type) definition, declaration of imported
specifications, signatures of operations, and equational axioms defining the operations
themselves. By contrast, the style of algebraic specification we are using is concerned
only with the axioms; sorts and signatures are omitted, but assumed to be defined.
Basic operations are also assumed to be defined and imported from a library of such
operations. W hat we are left with, as will become clear in the following section, is a
collection of equational axioms acting as a function definition; a specification written
in this style is thus a partial specification, and this fits our idea of viewpoints.

7.3.1 R efinem ent R ela tion for A lgebraic Sp ecification

Any refinement relation must be correctness-preserving, as we have seen in Chapter 3.
We will define correctness of an implementation of an algebraic specification as fol
lows: if the implementation terminates at least for those initial conditions for which
the algebraic specification is defined, and establishes final conditions satisfied by the
specification, it is correct with respect to the specification. This definition means that
the implementation can be more deterministic than the specification, which as we have
noted might not be acceptable in some circumstances - but it allows an implementa
tion of NextAndRest to be defined for the case where the queue is empty, which our
specifications do not.

A refinement relation for this style of “functional” algebraic specification can be ex
pressed as a relation between functions. We use the conservative extension introduced
in Section 3.5.3:

D efin itio n 7.1 (R efin em en t) For functions f and g, f □ g iff

dom / C domp

85

and
Vs 6 dom / : g(x) = /(a?)

So <7 is applicable wherever / is, and g will be at least as correct as / ; thus a function
defined on positive integers is refined by one defined over the natural numbers, as long
as it is indistinguishable from the first when limited to positive integer input.

This relation is a pre-order and preserves correctness, so it has the necessary properties
to allow stepwise development as outlined in Chapter 3.

7.4 Extension and Enrichment

There is a clear association between the refinement theory we have been discussing
and the theory of abstract data types [Ehr82], In this theory a specification is a triple
D = (S , St, E) where S is a set of sorts (types), St a set of operation signatures over S
and E a 5-sorted set of St equational axioms.

Classically an extension describes a function / between specifications Do and D\ such
tha t Dq is a sub-specification of D\\ this means tha t So C Si, SIq Q ^ i , and Eq C E\.
A conservative extension describes the case where / preserves correctness.

An enrichment classically describes an extension where there is no addition to the types
of the specification, only to the operation signatures and equational axioms.

However in the literature (for example, [ST95]) “enrichment” is applied as a general
term for the addition of sorts, operations and axioms to a specification. This is the sense
in which we use it, in for example Section 3.6. Successive enrichments are in effect what
is taking place in this example; however since our viewpoints identify only equational
axioms, rather than sorts and operations, the refinement relation is axiomatic.

7.4.1 C om p osition O perations

Operations for composing specifications are for our purposes limited to function com
position (f o g), application (f(g)) and A abstraction.

f o g denotes a function whose domain is the domain of g and whose range is the range
of f; composition is only possible where dom / = ran p.

i f ° 9) (x) = f (g (x)) -

86

f (g) denotes the application of higher-order function / to function g. Thus the domain
of / is a function space (/ is also called a functional):

dom / = (a —> (3)

For example, if double : x !->• 2x is a function defined on integers and map is a
function with signature (a —» (3) —> (a list —> (3 list), then map(double) will be
a function which takes a list of integers and returns the list with each element
doubled.

We need to be convinced that the composition operations discussed above preserve
monotonicity, as discussed in Section 3.4. Observe that for refinement with function
composition, for functions f , g , h:

f Qg =>
dom / C dom g

=> dom (h o f) C dom (h o g)

Vx G dom/ : g(x) = f (x)

=> V/(ar) G dom h : h(g(x)) = h(f (x))

=> h o f \Z h o g

(refinement definition)

(dom(h o f) — dom / for any h, f)

(by definition)

(h is a function)

(refinement definition)

A similar derivation supports the monotonicity of function application;

/ E 9 =* H f) C h(g) (7.6)

7.4 .2 D a ta R efinem ent

D ata refinement is discussed in general terms in Section 3.5.5. By analogy with the
notion of an abstraction function between abstract and concrete states, we define data
refinement for algebraic specification by defining a mapping function between new and
old domains and ranges; thus for a data refinement from a function defined on integers
to one defined on reals, an abstraction function would be one casting reals back to
integers. We can adapt the refinement definition, Definition 7.1 to give the following
for data refinement:

87

Definition 7.2 (D ata refinement) For functions f and g, f diabs 9 iff

dom (/ o abs) C dom <7

and

Va: G dom g : f (a b s (x)) = abs(g(x))

We use / ^ abs g to denote data refinement through the abstraction function abs. In
fact the abstraction function has two distinct parts: one for the domain and one for the
range (codomain). The domain abstraction recovers the domain of the initial function,
and the range abstraction the range of the initial function. In the above abs has been
used for both, as will be the case when the domain and the range are equal.

7 .4 .3 C o -R e f in e m e n t

We can expect to come across situations, as discussed in Chapter 3, in which straight
forward data-refinement is too strong to describe what is going on. We can adapt the
co-refinement definition from Section 4.5 for our specification style as:

Definition 7.3 (Co-refinement)

/ E l , r 9 iff

dom(/ o /) C domp

A Vs € domy : r =$■ f (l (x)) = l (g(x))

Co-refinement is defined in terms of data refinement; an alternative notation for the
above (c.f. Section 7.4.2) would be

r => f g

I is a function from (dom g) to (dom /) (and from (ran^) to (ra n /) - we again make
the simplifying assumption that domain and range are equal). I is the link for this co
refinement (see Section 4.5.1), and is a surjective function, r is the restriction, which
we represent as a predicate specifying the conditions under which a refinement relation
holds.

In the case where domain and range are different the definition can be simply extended
to give a domain link and a range link. In the remainder of the example we will only

be talking about links on the domains of the functions, so the implicit range link is the
identity mapping.

7 .4 .4 A u gm en ted C o-R efinem ent

We use a similar definition of augmented co-refinement to tha t developed in Chapter 3,
to aid in the composition of specifications.

For “augmented” functions (/ ,£ / , 77y) and (g,Cg,1 lg) (see definition 4.6), augmented
co-refinement from f to g holds with link Cjg and restriction 7Zfg iff:

f =<(cfgAnfg) 9

A C g = C f g O C f

A IZg = I Z f A 7Zfg

7.5 Viewpoint Developm ent

Each stage in the development can be seen in terms of viewpoint amalgamation. If we
consider the first version of NextAndRest (equation 7.1) as our initial viewpoint, each
of the following stages can then be represented as the result of an amalgamation of a
previous stage with an “incremental viewpoint” ; one which encapsulates the informa
tion to be added. This corresponds with the way in which a system might be informally
described in terms of “what the hearer already knows” plus “additional information” .

As each viewpoint will be some development of a previous viewpoint, there will be some
relation between it and the original viewpoint. We will investigate this relation - our
method is to encapsulate each change in such a way as to indicate what information
is being added, and identify how this change is to be combined with previous versions
to produce a new version. In Section 7.6 we look again at the viewpoints produced at
each stage in the development and consider the relation between them.

We first look at the initial adjustment to the specification.

7.5 .1 NextAndResti

The change from equation 7.1 to equation 7.4 is fairly minor, involving the re-writing
of isEmpty(q) as None(q , A e. t ru e) . This is not much of an increment in tha t no in

89

formation is added; we are simply presenting an alternative version of the specification.
However, we do need to justify the replacement. We do this by forming an abstraction
of the function N extA ndResti , which can then be instantiated to form a new function
equivalent to the old one. We present this method in detail at this stage, as it will be
used in later stages.

The function NextAndResti can be generalised as follows;

A bsT est(add(q , e)) test = (7.7)

if te s t (q , e)

th e n (e , q)

else (n, add(r, e)) w h ere (n, r) — AbsTest q test

The effect of the abstraction is to define a function which will select, as the next
element, the one that is nearest the end of the queue which satisfies the function test.

N extAndResti(q) is then expressible simply as an instantiation, N extAndResti(q) =

AbsTest q A(q, e) .isE m pty(q) — in this case, the test ignores the current element and
succeeds only if the rest of the queue is empty.

Since we have (from the definition of N on e , equation 7.3):

isEmpty = A q.N one(q , A e. t r u e) (7.8)

we can conclude from the monotonicity of function application (equation 7.6)

AbsTest q A(q, e) .isEm pty(q) = AbsTest q \ (q , e).(A q.None(q, A e'. t r u e))(<?)

= AbsTest q \ (q , e).None(q, A e' . t r u e) (7.9)

We have renamed the variable e in A e. t r u e to e', to show tha t this is different from
the other e in the equation.

Starting at the other end, the new version of our function (equation 7.4) can be pa-
rameterised to a form equal to equation 7.9, and we can conclude tha t the versions are
equivalent (and hence trivially refine each other). Equation 7.8 is kept as a record of
the development.

In the next, and remaining, stages of the development we will begin with a table
summarising the activity at this stage, in terms of the current viewpoint, incremental

90

viewpoint and amalgamated “product” viewpoint.

7 .5 .2 NextAndRest^: M a sk

C u rre n t V iew p o in t NextAndResti
In c re m e n ta l V iew po in t Mask
P ro d u c t V iew p o in t NextAndRest2 = NextAndResti ° Mask

The information to be added here is the mask, used to select only those events which
are wanted. The description given in [BCG+89] motivates us to think of the addition
of the mask by specifying the new viewpoint in terms of the old one; if all the events
fit the mask, we would have a viewpoint equivalent to the previous version. Thus if we
have a function which acts as a filter, throwing out anything not fitting the mask, we
can then plug the filtered version of the queue into the original function.

We make use a higher-order function filter, defined as follows;

filter fn empty = empty (7-10)

filter fn (add(q, e)) =

if (fn e) th e n add ((filter fn q), e)

else (filter fn q)

(7.11)

filter applies the function fn to each element of the queue; if the function returns nil
the element is removed from the queue.

W ith this we can build

Mask(q,m) = (7.12)

filter A e.wanted(e,m) q

W ith this function we can now specify the new version of NextAndRest as follows;

NextAndRest2 (q, m) = NextAndResti(Mask(q , m)) (7-13)

W hat we have done here is to represent the new version as an amalgamation of the
initial version (NextAndResti) and the increment (Mask).

This way of specifying the new version has the advantage over the old version of encap
sulating the added information succinctly, in a manner closer to the way the increment

91

was textually described. We can also clearly see what relation this version has to the
previous one; it will behave in the same way as NextAndResti if all events fit the mask,
i.e. V e.wanted(e,m).

Note tha t the two versions (NextAndResti and NextAndRest2) are not equivalent. This
is because the functions are defined on different domains, due to the introduction of
the mask. W hat we have is a (restricted) co-refinement (discussed in Section 7.4.3).
The restriction is (V e.wanted(e, m)), as identified above.

We can also identify a link in this co-refinement. It must map tuples of queue and
mask back to queue: the function A(q, m).q will achieve this.

Using QUEUE and M A SK to denote the domains of variables q and m respectively,
we have

dom NextAndResti o A{q,m).q = (QUEUE x M ASK)

= dom NextAndRest2

which satisfies the first part of our co-refinement definition (Definition 7.3), and

(V e.wanted(e,m) =>■

NextAndResti(\(q ,m).q(q,m)) = (NextAndRest2 (q, m)))

V(<7 , m) 6 dom NextAndRest2

which satisfies the second part, so we have

NextAndResti ^ (A(<7,m).g,V e . w a n t e d (e , m)) ^ ^ ^ A n d R e s t 2 ~

7 .5.3 N e x tA n d R e s t3: P r i o r i t i e s

Current Viewpoint
Incremental Viewpoint
Product Viewpoint

NextAndRest2 = NextAndResti o Mask
Priority
NextAndRest3 = Priority o Mask

The remaining versions of NextAndRest take advantage of the common format intro
duced in the initial development. We again use the abstraction function from Sec
tion 7.5.1:

92

Abs Test (add (q, e)) test = (7-14)

if test(q, e)

th e n (e, q)

else (n, a d d (r , e)) w h ere (n, r) = AbsTest q test

Supplying new values for test will produce new versions as required; the way we progress
is different in emphasis to that presented in the original development, and owes some
thing to the approach of [PW93], referred to in Chapter 6 1. We create “Priority” and
“Stack” versions, and “Mask” is a variant or sub-version which can be combined with
the main versions as we choose. We present the increment for a priority queue as

Priority (q) = (7-15)

AbsTest q A(q, e) .N on e(q , A e'. n o t higher(e , e'))

We can now combine this increment with the mask increment to give NextAndRest3 as
described:

NextAndRests(q , m) = P riority (Mask (q, m)) (7.16)

Just as we had a co-refinement between NextAndResti and NextAndRest2 , we have a
co-refinement between Priority and NextAndRest3 with link A(q , m) . q and restriction
V e.w anted(e , m). The proof is the same:

dom Priority o A(q, m).q = (Q U EU E x M A S K)

= dom NextAndRest3

and

(V e. wanted (e,m) =>

P r io r i ty (\ (q ,m) .q (q ,m)) = (NextAndRest^^, m)))

V(g, m) G dom NextAndRest^

satisfying the co-refinement definition, and so

1In their notation we might use NextAndResti %Mask%Priority to denote the Priority variant of
the Mask variant of version 1 of NextAndRest

93

P riority |=L (\(qjrn).q,\/e.wanted(e,m))N6XtAndRest3'

We are more interested in the relation between NextAndRest% and NextAndRest3 . They
are defined as

NextAndRest2 — NextAndResti 0 Mask

NextAndRest3 = Priority o Mask

so we can break the problem down by examining the relation between NextAndResti

and Priority .

Now, since

NextAndResti = AbsTestq X(q: e).None{q, A e'. t r u e)

P riority = AbsTestq A(<7, e) .N on e(q , A e'.-> h igher(e , e'))

the two functions will be equivalent when the next element is guaranteed to have the
highest priority, i.e.

V(<7, e) (N on e(q , A e'. t r u e) = N on e(q , A e1.-* h igher(e , e7)))

One way to achieve this is to place a restriction on the refinement so tha t all elements
are of equal priority:

V(e, e').-i higher(e, e') =$>■

(V(g, e) .N one(q , A e'. t r u e) = N on e(q , A e;.-i higher(e , e')))

This restriction is arguably a little strong — all we required was tha t the “Next”
element always be of highest priority. Another way to achieve this would be to sort the
queue by priority before taking the next element, but this would be computationally
expensive and would result in the “Rest” of the queue returned by the function also

94

being sorted — imposing a strong restriction on the correctness of the function.

W ith the “equal priority” restriction we now have a co-refinement,

N e x t A n d R e s t i [g (id ,V (e ,e /) . - ' h i gh e r (e , e l)) P f ' ‘i o f “i t y

as we can see by examining the domains:

dom NextAndResti o id = QUEUE

= dom Priority

This trivially satisfies the first co-refinement rule and

(V(e, e').-i higher(e, e') =$■ NextAndResti(q) = Priority(q))

V q G dom Priority

satisfies the second.

We are perm itted to compose functions and maintain co-refinement, as long as we keep
the restriction: thus

NextAndResti 15 (i d , v (e , e ') . —i h i g h er (e , e ')) Priority

=>- (NextAndResti o Mask) Ig (id>v(e,e').-. high e r (e , e ')) (Priority o Mask)

NextAndRest2 ^ (id ,v (e ,e /).~> h i gh e r (e je 7)) NextAndRest3

We consider other relations between NextAndResti, NextAndRest^ and NextAndRest%
in Section 7.6.

7 .5.4 N e x tA n d R e s t4: Q u e u e / S t a c k

Current Viewpoint
Incremental Viewpoint
Product Viewpoint

NextAndRest3 = Priority o Mask
QueueStack
NextAndRest^ = QueueStack o Mask

Whereas auxiliary functions like wanted and higher were left unspecified in previous
versions, here we give a definition for the function preEmpts, which uses some (unde-

95

fined) predicates sType and qType. This we add to our viewpoint:

preEmpts (e1, e) =

qType(e) an d n o t higher(e, e') \ sType(e) a n d higher(e', e)

The “Queue/Stack” increment can then be presented as:

QueueStack(q) = (7.17)

AbsTest q A(<7 , e).None(q: A e1 .preEmpts (e1, e))

Note tha t this increment replaces the previous one (Priority); it uses PreEmpts where
Priority used n o t higher. We can see, however, tha t where all elements satisfy qType,
the two will be equivalent.

The advertised version of NextAndRest4 is now described as:

NextAndRest4 (q , m) = QueueStack (Mask (q,m)) (7.18)

We again approach the relation between NextAndRest3 and NextAndRest4 by looking
at their constituent functions:

NextAndRest3 = Priority o Mask

NextAndRest4 = QueueStack o Mask

Priority = AbsTestq A(q, e).None(q , A e'.-> higher(e, e'))

QueueStack = AbsTestq \(q , e). None (g, A e' .preEmpts (e/, e))

Priority and QueueStack will be equivalent whenever preEmpts is equivalent to - 1 higher:

V(g, e)(None(q , A e7.—» higher(e, e')) = None(q, A e'.preEmpts(e', e)))

A sufficient restriction (again, arguably too strong) for this to be achieved is V e.qType(e).
We then have

96

P riority jg (w > y e_qTypê QueueStack

and by composition

(Priority o M ask) Ig j y e .q Type (e)) (QueueStack o M ask)

=>- NextAndRest3 Ig (id,v e .qTy pe (e)) NextAndRest4

Other alternatives can also be built, such as a maskless priority queue which we discuss
in Section 7.6.

7 .5 .5 NextAndRest 5 : R e m o v e

Current Viewpoint NextAndRest4 = QueueStack o Mask

Incremental Viewpoint Remove

Product Viewpoint NextAndRest5 = Remove o QueueStack o Mask

The idea behind this final stage is that, as well as being of qType or sType, events
may be additionally of rType\ if such an event is selected, all “related” events must be
discarded from the queue. While NextAndRest5 is presented by simply wrapping an
auxiliary function around NextAndRest4, the increment itself is not dependent upon
any particular version of NextAndRest — it might make most sense to describe it this
way, but there is no reason why we should not build it on top of any other version. If
we create a simpler “front end” function Remove:

R em ove(q , e) = (e ,if rType(e) then R em oveA ll(q , e) else q) (7.19)

for Rem oveAll as defined above (Table 7.2), then the advertised new version can be
specified as:

NextAndRest${q , m) = Remove{NextAndRest±{q , m)) (7.20)

or

NextAndRests(q, m) = Rem ove(QueueStack(M ask(q, m))) (7.21)

We can see the function Remove as the compliment of our earlier Mask.

For co-refinement between NextAndRest4 and NextAndRest5, we observe tha t they are

97

equivalent when Remove is the identity function. This will be achieved if

(V e.-i rType(e))

which gives us a sufficient (strong) restriction:

V e -i rType(e) =>•

(Remove o QueueStack o Mask = QueueStack o Mask)

=>• NextAndRest4 GZ (id ? V e .- . rType^N ex tA n d R es t^

We now go on to consider what other relations hold between the identified viewpoints.

7.6 Relationships between Viewpoints

branch Mask

trunk Fifo Priority QueueStack

branch Remove

Figure 7-1: Viewpoint version dependencies. Priority is built on Fifo, Queuestack is
built on Priority.

As we have noted, the advantage of organising the increments in this way is tha t
we have isolated those parts which can be presented in any order and those which
depend on previous stages. Figure 7-1 illustrates this. We can create whatever ver
sion of NextAndRest we wish to, making a “pick & mix” selection of one item from

98

the central “trunk” , and optionally one or both of the branches. Thus we can have
simply the vanilla Fifo version (the simple First-In-First-Out queue, corresponding to
N extA ndR est\), a M a s k ’n ’ Fifo version corresponding to NextAndRest2 , a P r io r i ty ’n ’
Mask version corresponding to NextAndRest^ , etc. We can also build alternative ver
sions such as Fifo V Remove (a version of NextAndResti which removes any events
related to the selected one if applicable) or Priority , which acts simply as the presented
increment above (NextAndRests without the mask).

More formally, these different versions can be combined using function composition for
our amalgamation operator.

Using this notation, we can build twelve combinations as follows:

1. Fifo — X q. AbsTest q X(q, e) .N on e(q , A e ' . true) NextAndResti

2. Priority = A q. AbsTest q A(q, e) .N on e(q , A e'. not higher(e , e'))

3. QueueStack = A q. AbsTest q A(g, e) .N on e(q , A e'. preE m pts(e ' , e))

4. Fifo o Mask = A(q, m). F ifo(M ask(q , m)) NextAndRest2

5. Priority o Mask = A(q , m) . Priority (Mask (q, m)) NextAndRest3

6. QueueStack o Mask = A(g, m). QueueStack(M ask(<7, m)) NextAndRest4

7. Remove o Fifo = X q. Remove (Fifo (q))

8. Remove o Priority = X q. Rem ove(Priority(q))

9. Remove o QueueStack — X q. R em ove(QueueStack(q))

10. Remove o Fifo o Mask = X(q, m). Rem ove(F ifo(M ask(q , m)))

11. Remove o Priority o Mask = Xq. Remove (Priority (Mask (q, m)))

12. Remove o QueueStack o Mask = Xq. Rem ove(Q ueueStack(M ask(q , m)))
NextAndRest^

A number of co-refinements are observable here: to begin with, we have shown in the
derivations (Section 7.5) that there is a co-refinement between each of the versions on
the main branch, i.e.

Fifo ^ (V(e,e/).-i higher{e,e'))Pr'i'0'rtiy ^ (id f y e.qType(e)) QueueStack

99

and we have used function composition to show

F i f o o Mask E } V(e,e ').- higher(e,e'))p r i o r i t y o Mask

^ (id , V e . qTy p e(e)) QueueStack o Mask

or, to give them their original names,

N extAndRest2 E (i d 1 V (e ,e '') .- | h i g h e r (e , e ')) N e x t A n d R e s t ^

— (id , v e . q T y p e (e))NextAndRest^

and we also have, from Sections 7.5.2 and 7.5.5:

NextAndResti E (X(q tm) . q , V e . w a n t e d (e , m)) NextAndRest2

NextAndRest4 E îd ve rType^ N e x tA n d R e s t^

Thus each of the functions presented in the original development is a co-refinement of
its predecessor (and of all its predecessors), i.e. (omitting links and restrictions for the
moment)

N extAndResti E NextAndRest2 E NextAndRest3 E NextAndRest4 E NextAndRest5

Figure 7-2 illustrates the relations between each of the viewpoints presented. The bold
numerals 1 .. .5 indicate NextAndRest^ ^ respectively.

Using the augmented co-refinement relation (Section 7.4.4) to collect links and restric
tions as we go, we have the following:

N extAndResti != (x(q,m).q , v e . w a n t e d (e , m)) NextAndRest2

^ (A(q , m) . q , V e . w a n t e d (e , m) A V e , e ' . - i h i gh er (e , e t)) N e x t A n d R e s t ^

— (\ (q , m) . q , V e . w a n t e d (e , m) A V e,e' .-> h igher (e , e ') A V e . qT yp e(e)) NextAndRest4

— (\ (q , m) . q , V e . w a n t e d (e , m) A V e , e ' . - i h igher (e , e ') A V e . (qT yp e (e) A -> r Ty p e (e)))

NextAndRest5

We can then conclude from the transitivity given by augmented co-refinement

100

Fifo

- /

Mask

Remove o QueueStack o Mask(5)

QueueStack o Mask (4)

QueueStack

Priority o Mask (3)

Priority

Mask (2)

Fifo (1) Remove

Figure 7-2: Viewpoint relations

101

N e x t A n d R e s t i != (A (q , m) . q , V e . w a n t e d (e , m) A V e , e ' h i g h e r (e , e ') A V e . (qT yp e(e) A -i r Ty pe (e)))

NextAndRest5

So the final version is a co-refinement, with a strong restriction, of the initial one. We
have shown that, under certain defined circumstances, NextAndRest5 will behave as
NextAndRest 1.

7.6 .1 A ltern a tiv e V iew p oin t P resen ta tion

The presentation of the increments given here is not, of course, unique. One alternative
which keeps the same number of increments but presents them differently is to make
each viewpoint a “filter” , like the Mask increment above. The initial viewpoint, which
we have called Fifo , remains unchanged as does the Mask increment. The Priority

increment can be presented as a sorting function, PrioritySort(q) , which takes a queue
and sorts it so tha t the highest priority event is at the head of the queue, and the order
of equal priority events is preserved.

N extAndRest3 is then presented as NextAndResti 0 PrioritySort o Mask.

The QueueStack increment is harder to achieve. A function is needed which (regardless
of whether the queue has already been sorted) reverses the order in the queue of all
sType events. Thus the effect of this filter is to render the queue as entirely qType.

Calling this function Stack2 Queue, we can present NextAndRest4 as

NextAndResti o S tack2 Queue o PrioritySort o Mask

The final Remove increment is already presented as a filter, so we present NextAndRest5

as simply

Remove o NextAndResti 0 Stack2Queue o PrioritySort o Mask

This presentation of the viewpoints is not necessarily preferable; while it would appear
more straightforward to present everything in terms of filters and function composition
rather than application and instantiation, the tortuous nature of the QueueStack incre
ment does not lend itself to comprehension. An advantage of this approach is tha t it is
easier to see which of the steps can be combined arbitrarily and in different orders. The

102

M a sk , if used, must be the first function to be used because it transforms the domain.
Rem ove can only be applied at the end, as it acts on the selected element. The two
filters PrioritySort and Stack2 Queue, however, can be exchanged without affecting the
result, they can or removed independently. This differs from the previous presentation
in which QueueStack superseded Priority due to the use of the higher function.

7.7 Summary and Conclusions

We have succeeded in showing that a refinement relationship holds between each of
the steps in the presentation, thus providing a formal basis behind this method of
incremental specification, and demonstrated how new information in a system can be
presented as an independent unit.

We are still dealing with a slightly idealised example; the development is in reality
post-hoc, in tha t it does not reflect the inevitable back-tracking tha t would occur
if the development were begun from scratch (a situation identified in Section 4.6.1
as consisting of related compromises). However, the example is representative as an
explanation of the functionality of the event queue.

Implementing the resulting viewpoints could lead to some inefficiencies, especially in the
last section where a PrioritySort function has to sort the queue each time NextAndRest

is called. This is an illustration of a point made in Section 2.1, tha t what makes a good
modularisation (or explanation, in this case) from the point of view of the specifier may
not be so good from the point of view of an implementer. In this case the implementer
might choose to implement the add function so tha t it always maintains the queue in
a sorted state.

The presentation of these independent units is comparable, especially in the additional
use of “filters” in the previous section, to the use of pipes and filters in the UNIX op
erating system [Wal93]. The units as presented can be thought of as re-usable building
blocks.

In the next chapter we consider the application of viewpoints and refinement to an
explanation of the semantics of programming languages.

103

Chapter 8

D enotational Semantics

We have already noted the necessity of expressing the semantics of a language to
enable us to reason about any viewpoint expressed in that language. D ijkstra’s guarded
command language (Section 4.2) has its semantics expressed in terms of predicate
transformers, and we saw in Section 4.3 how it has been extended to make the process
of program development more straightforward.

In this chapter we will look at how the language in which the semantics of programming
languages are expressed can similarly be used as a basis for refinement of viewpoints.
The viewpoints we are dealing with are specifications of a programming language, so
we are looking at things one level up from previous examples (and considering the
semantics of semantics).

8.1 Introduction

While it is not normal to speak of refinements between semantic descriptions, a common
approach in texts such as [Gor79, Sch8 6] is to begin with a very simple language and add
features to it. We will introduce some concepts in denotational semantics and provide
a simple example borrowed from [Sch8 6], to illustrate the idea of adding features to
a description of a programming language, which we can model as amalgamating a
viewpoint with another viewpoint representing the changes. We then use refinement
to to investigate the relationship between the resulting viewpoint and its components.

104

8.1 .1 Sem an tics o f Program m ing Languages

The description of a programming language’s syntax, typically in Backus-Naur form
(BNF), specifies the set of all legal statements in a language and hence is an impor
tan t piece of knowledge to implement a compiler for that knowledge; a parser for the
language can be built from the BNF definition. This says nothing about the meaning
of the statements, however.

A possible approach to the definition of a programming language’s semantics is to pro
vide a compiler for tha t language. This corresponds to the operational approach, ex
emplified by the Vienna Definition Language [Weg72]. A second approach is axiomatic
semantics, in which logical axioms and inference rules related to the language’s con
structs are given, and a formal proof can be built to show a program has a certain
property.

Denotational semantics provides a bridge between these two approaches, as it provides
a means of defining semantics in a non-operational way by modelling a program ’s
meaning as a mathematical function. The main feature of denotational semantics
is a valuation function. Valuation functions are high-level and abstract, providing a
modular structure is especially of interest to us in the present work.

The approaches are complementary: each provides a basis for reasoning, and each can
be said to have its own place in the development of a computer language. Axiomatic
semantics is the most abstract and can be used to give initial specifications of a lan
guage. A denotational definition may follow from that, which can be used in a proof
tha t it satisfies the axioms given in the more abstract semantics. The denotational
definition can then be implemented using an operational definition.

Denotational semantics has a wide body of literature and research associated with it
[Sch8 6 , Ten76] and its modular features suggest it will be amenable to consideration
from our “viewpoints” approach.

8.2 Basic Form of a Denotational Description

A denotational description provides a function corresponding to a program, to be ap
plied to its initial state. This function is defined over the sub-expressions of the pro
gram. Figure 8-1 provides an example denotational description.

There are three parts to the description:-

105

A b s tr a c t S y n tax :

P G Program
S G Expr-Seq
E G Expr
N G Numeral

P ::= ON S
S : := E TOTAL S | E TOTAL OFF
E : : = Ei + E2 | E i * E2 | IF E 1 . E 2 . E 3 | LASTANS | (E) j N

Semantic Algebras:

Truth Values
Domain t G Tr = B
Operations

true, false : Tr
not : Tr Tr
or : Tr x Tr —>■ IV

Tr x D x D ->■ D

Natural Numbers
Domain n G Nat = N
Operations

zero, one, . . . : Nat
plus, times : Nat x Nat —>• Nat
equals : Nat x Nat —»• Tr

Valuation Functions:
P :Program— ► N at*

PHON SJ = S[S]](zero)

S :Expr-Seq— >• N a t — ► N at*
S[[E TOTAL S] = A n. le t n' = E[[E]](n)m n' cons SUSKn')
S[[E TOTAL OFF]] = An. E[E]](n) cons n il

E :Expr—> N a t -> N a t
E[[Ei + E2] = An. E[[Ei]](n) plus E[[E2]](n)
E[[Ei * E2J = An. E[[Ei]](n) tim es E[[E2]](n)
E[IF Ei,E2,E3]] = An. E[[Ei]](n) equals zero ->■ E[E2]](n) 0 E[E3Kn)
E[[LASTANS]] = A n. n
E[(E)]] = An. E[[E]](n)
E[[N]] = A n. N[NJ

N : Numeral — » N a t (definitions omitted)

Figure 8-1: Calculator semantics, from [Sch8 6]

106

1. Abstract Syntax — defined in terms of syntax domains and BNF rules. Rather
than use terminal symbols as a concrete syntax BNF description would, each
rule is expressed in terms of the tokens (or words) which are members of a syntax
domain. For example in Figure 8-1, P E Program indicates tha t P is an arbitrary
non-terminal in the syntax domain Program.

2. Semantic Algebras — the domains and operations that are used to describe the
semantics of the language. In Figure 8-1, domain Nat has nullary operations
zero, one, . . . , and binary operations plus, times, equals. The domain of tru th
values Tr includes an infix choice operator (_ —>_[]_) : Tr x D x D —y D, which
provides an if-then-else construct.

3. Valuation Functions — the main part of the denotational description, which
defines a function for each legal sub-expression of the program. In figure 8-1,
the valuation function P[0N Sj has signature Program-* Nat and denotes the
meaning of a program as the meaning of a further valuation function S on the
text of the program S. The brackets [[...]] serve to separate syntax tokens from
function definition.

Modelling a program’s meaning as a function makes it possible to compare two state
ments in a language and show that they are equivalent if they have the same denotation.

8.2 .1 B u ild in g Sem antic D om ains

The domains used in the semantic algebra can be based on primitive domains such
as B,N , or compound domains which are formed by sums or products of domains,
functions on domains, or lifting domains.

An example in Figure 8-1 is Nat* which is a sequence or list space on Nat with the
following operations for building lists:

nil : Nat*
cons : Nat x Nat* —y Nat*
hd : Nat* —y Nat
tl : Nat* —y Nat
null : Nat* —y Tr

and the following simplification properties

hd(a cons I) = a
tl(a cons I) = I

107

null (nil) = true
null (a cons I) = false

Simplification properties are used in proofs about properties of a semantic description.

The product space (A x B) has operation builders:

V a G A, b € B : (a, b) G A x B
f s t - . A x B ^ A
snd : A x B —>• B
and simplification properties:

f s t (a , b) = a
snd(a , b) = b

Function domains have the following operation builders:

• Lambda abstraction: (Xx.e) e A - t B ^ V a e A , e[a;\a] is a unique value in B.

• Function application: for g : A —> B and a G A, g(a) G B

Lifted domains are used for functions which may not return a value for all elements in
their domain: for example the div function is not defined for (n div 0). The symbol _L,
pronounced “bottom ” , is used for an undefined value. A lifted domain A± is formed
by union: A±_ = A U {-L }.

The abbreviation let is used for a general form of lambda abstraction: (let x = e\ in 62)
abbreviates Az.e2)ei, if the domain of e\ is not lifted.

8.3 Semantic Description as Specification

A semantic description is a formal specification, and any programming language which
implements tha t description must satisfy the specification. There are similarities
w ith the style of specification used in an algebraic specification language such as
CLEAR [BG86], with sorts defined by the semantic algebras and equational axioms
by the valuation functions. In common with Z and VDM we have a “definition” part
and a “predicate” part.

However, the use of axioms is more a feature of axiomatic semantics; what we are
missing here is tha t denotational semantics express the meaning of a program as a
function , and a semantic description is itself a function on a program. The signature of

108

a semantic description S is S : Program —>• (A —> £) , where -A and 5 are the domain
and range of the function which models the meaning of the program.

A denotational semantic viewpoint can be defined as any semantic description, with the
possibility of some gaps and inconsistencies in the description. A viewpoint that will
be used as a specification of a programming language, however, needs to be consistent
and complete.

Before we go any further we need to identify a suitable refinement relation for semantic
viewpoints. We begin with a definition of correctness for semantic descriptions and
programming languages.

8.3.1 C orrectness

D efin itio n 8.1 (C o rre c t im p lem en ta tio n) A programming language is a correct
implementation of a semantic description iff all programs in that language satisfy the
valuation function in the semantic description.

In particular this definition means that a programming language which contains state
ments to which no valuation function applies will not be a correct implementation of
the semantic description.

We can now say that for a programming language L, another language L' preserves
the correctness of L if it also satisfies Us semantic description. However, this suggests
that if U has been modified to allow a wider range of program statements, correctness
will not be preserved: Us semantic description will not include the extra program
statements.

Following this line of reasoning, if a semantic description S is amalgamated with an
other to form a new description S ' , any programming language which implements S'
should also be a possible implementation of S. The problem is tha t our definition of
correctness is too strong to allow any modifications to the semantics other than those
which maintain equivalence. Any two languages which are both correct with respect
to a semantic description will have the same meaning, since it is the semantic descrip
tion which defines their meaning. If they have the same meaning, the languages are
equivalent.

However, we know how to deal with problems of this sort — we simply weaken our
definition of correctness.

D efin ition 8.2 (C o n sis ten t im p le m e n ta tio n) A programming language L is a con

109

sistent implementation of a semantic description S iff, for all programs P in the lan
guage L (P € L), either S(P) is undefined or P satisfies S.

8 .3 .2 R efinem ent R ela tion for Sem antic D escrip tion s

W ith this weakened definition of “correctness” , we can require that, for a refinement
relation to hold between a semantic description S and an extended description S ' , any
implementation of S ' must be a consistent implementation of S.

Recalling that a semantic description is an expression of a program’s meaning as a
function, we can define a refinement relation as follows:

D efinition 8.3 (Refinement) For semantic descriptions S and S ' , and respective
implementations L and l ! , S C. S ' iff for all programs P G L,

P E L ' and
S (P) = S '(P)

Thus refinement between semantic descriptions is defined as equivalence between mean
ings of a program in each of the semantic descriptions. The meaning of a program is a
function too, from input to output or from initial state to final state, so S(P) = S '(P)
exactly when their graphs are equal, that is S(P)(x) = S '(P)(x) for all x.

This refinement relation is reflexive (if S — S ' and L = L ', refinement will hold) and
transitive: for S, S ', S" and L, L ', L" such that S C S' and S ' C S " , we have for all
programs P ,

(P € P e L') a {p e L' P e L")
(P eL= > P G L")

and

(S{P) = S '(P)) A (S"(P) = S"(P))
^ S (P) = S"{P)

The relation preserves our weaker definition of correctness, consistent implementation:
if L is a consistent implementation of S , and we derive (S', L') such tha t S C S' and
L' is a consistent implementation of S', then L' is a consistent implementation of S.

The proof is as follows: if we take any program P in the language L', it may or may
not be a valid program in the language L. If it is, then P € L and by the refinement
relation S '(P) = S(P), so consistency is satisfied. Otherwise, S(P) will not be defined
so consistency is satisfied.

110

8 .3 .3 C om p osition O perators

To develop a denotational description of a programming language we need to define
operations to build specifications, in addition to the domain construction operators
introduced in Section 8.2.1. These can then be used in an amalgamation of two view
points representing denotational descriptions, and as long as we use operators tha t are
monotonic with respect to the refinement ordering, we will be able to show tha t the
amalgamation refines its constituent viewpoints.

Using the notation syn(S),alg(S) and val(S) to refer to the abstract syntax, semantic
algebra and valuation function parts of semantic viewpoint S, we can identify operations
to perform on a semantic viewpoint:

• Adding to the abstract syntax

If we wish to extend the range of expressions in our programming language, we
start by making an addition to the abstract syntax. If we simply do this, however,
we have an inconsistent viewpoint as the valuation function is not defined over the
new expression. Thus after adding to the syntax, if we wish to regain consistency
(which we are only obliged to do if we wish to implement the viewpoint), the
valuation function must also be extended.

• Extending the valuation function

This can be done without also making the syntax change, but again an incon
sistent viewpoint will result. We will only have a refinement if both operations
are performed. For the moment we will insist that the new valuation function
introduce no new semantic domain, i.e. operations used in the function are al
ready defined in the semantic algebra. For new syntactic expression token: :=e
and new valuation /|e]]

S U S', where S ' = S [syn (S)\syn (S) U {token: := e},val(S)\val(S) U {/[[e]]}],
provided /[[ej and token: :=e are not already defined in 5 , and all semantic
domains used in the definition of / are in S'. If / is already defined in S , the
signature of / must be identical.

This is indeed a refinement, since any program for which S (P) is defined will have
the same meaning in S'. The operation of extending the syntax and valuation
function is monotonic, since the new function will not interfere with any function
already in the viewpoint.

W ith these basic operators we can go through a simple example, using the earlier

111

introduced calculator example.

8.4 Example: Adding a B utton to a Calculator

This example comes from [Sch8 6], which presents the semantics of a simple calculator.
Figure 8-1 is a summary of the semantics; we are dealing with a calculator which, in
addition to being able to cope with sums and products, has an elementary decision
operator (IF).

The valuation functions can be expanded on by the following commentary. A calculator
program consists of a press of the ON button followed by a sequence of expressions.
After the final expression has been terminated with a press of the TOTAL button, the
OFF button terminates the program. The calculator also has a last-answer memory
feature, hence the form of the signature for S : Expr-Seq —> Nat -» Nat*. An ex
pression sequence is evaluated as a function from the current “LASTANS” (initially
zero) to a sequence of numbers.

A sam p le program w ould thus be “ON 3 + 4 TOTAL IF LASTANS 5 ,6 TOTAL LASTANS

+ (2 * 7) OFF” . T h is is evaluated as follows:

PJON 3 + 4 TOTAL IF LASTANS 5 ,6 TOTAL LASTANS + (2 * 7) OFF]

= S[[3 + 4 TOTAL IF LASTANS 5 ,6 TOTAL LASTANS + (2 * 7) 0FF](zero)

= let n' = E [3 + 4]](zero) in
n' cons SJIF LASTANS 5 ,6 TOTAL LASTANS + (2 * 7) 0F F](n ')

The E expression evaluates to:

E[[3 + 4]] (zero)

= E [3] (zero) plus E[[4]] (zero)
= N [3] plus NJ4J
= three plus four = seven

so the S expression becomes:

S [I F LASTANS 5 ,6 TOTAL LASTANS + (2 * 7) O FF](seven)

And so on, leading to an output sequence of (seven, six , twenty).

8.4 .1 Increm en ta l V iew poin t

An exercise in [Sch8 6] deals with adding a new button to the calculator which should
test for equality, to be used in conjunction with the IF button; thus we would be able

112

to say

IF (5+4)= (3*3),2 ,3

which would give 2. This suggests tha t the test for equality should return zero for true,
non-zero for false, and the new valuation function would look like this:

EflEi = E2]](n) = E[[Ei]](n) equals E jE 2]](n) —>■ zero |] one

A new part also needs to be added to the abstract syntax, for E : := Ei = E2 .

We now come to the question of how a new version of the semantic description given
in figure 8-1 is formed with this new feature. We consider our initial viewpoint to be
this semantic description.

We can express the additional information as an incremental viewpoint, as follows:

A b s tra c t Syntax:

E 6 Expr
E : := Ei = E2

Sem antic A lg eb ras :

T ru th Values

N a tu ra l Numbers

V a lu a tio n F unctions:
E :Expr—> Nat Nat

E |E i = E2]](n) = E[[Ei]](n) equals E[[E2]](n) —» zero (] one

W hat we have is a valuation function only defined for expressions of the form Ei =
E2 . This viewpoint is clearly quite useless on its own, being recursively defined with
no base case. It is fact arguable whether we need to include the algebras for tru th
values and natural numbers, but we would argue that it is, since in amalgamating the
viewpoint with the original we need to know whether any new semantic domains are
to be added.

113

8 .4 .2 A m algam ation

Having identified the new information we now need to amalgamate it with the ini
tial viewpoint. We divide this into coalescence planning and coalescence stages (Sec
tion 3.2).

In coalescence planning we identify what changes need to be made to achieve the
amalgamation. To add the new piece of syntax to the viewpoint we need first check
tha t it is unique, i.e. tha t E : := Ei = E2 is not already in the viewpoint. We operate
under the assumption that items with the same name refer to the same item, i.e. that
E in the incremental viewpoint is the same as E in the original.

The result of this check is that the new syntax is not already defined, but tha t the
syntax domain E is already defined. The resulting action to perform in coalescence
will therefore be to augment the syntax domain E with the new form. This check also
shows tha t a valuation function needs to be defined for the new syntax.

The next stage is to check the semantic algebra. The algebraic domains in the incre
mental viewpoint are a subset of those in the original one, and have the same operations
and signatures.

Finally the valuation functions. The new function E is already defined in the original
viewpoint, but not on the expression Ei = E2 . So it can be added, after checking that
E ’s signature is the same as in the original viewpoint. This check also discharges the
condition on the addition of abstract syntax, e l s the new valuation function defines the
semantics of the new piece of syntax.

The result of the planning stage is tha t the following action should take place (where
Calc, Inc and Calc-New refer to the initial, incremental and amalgamated viewpoints):

A ctio n : Calc-New is to be formed from

Calc[syn(Calc)\syn(Calc) U E : := Ei = E2 ,
val(Calc)\val(Calc) U

E[Ei = E2 j(n) = E[[Ei]](n) equals E[[E2]](n) —> zero |] one]

The coalescence stage is then simply the putting into effect of the above action. The
checks and justifications which came out of the planning stage will form a part of the
amalgamation trail.

114

8 .4 .3 R efinem ent

Our amalgamated product, Calc-New, is a refinement of Calc, because the expres
sion above defining the new viewpoint uses only the operations we have defined in
Section 8.3.3, which satisfy our refinement definition.

The feature added could not be said to be very complicated, however. We next take
into account a more complex feature to be added to the calculator, involving a change
to the semantic algebras of the description.

8.5 Example: Adding Assignment

We now want to be able to deal with a further new feature, which is a more involved
alteration: adding an assignment operation. The physical calculator will need a number
of extra buttons for identifiers, to be called A,B,C,D, and a := button (for “becomes” ,
or “takes the value”). New expressions would be of the form:

A := 5 + 6
B := IF (A = 4), 3 , 2

D := (A + 4) * (A + 5)

Such an increment needs a number of changes:

• New syntax domain for identifiers, with BNF rule. A decision needs to be made
as to whether I := E is a normal expression or not. Expressions of the form (A

:= 5) + A would be legal in some languages — for example in C, the statement
b = (a = 5) + a ; assigns the value 5 to a and 10 to b. For the calculator this
would over complicate matters, so we will identify I := E as a special kind of
expression by altering the syntax for expression sequences S to include I := E

TOTAL S.

• New semantic domain, Store, a function from identifiers to natural numbers, with
operations to create an empty store, read and update the store

• New valuation functions for identifiers and assignments. An identifier is simply
an expression, whose meaning is the natural number in the store referenced by
the identifier. The meaning of an assignment is to update the store for a given
identifier.

• New signatures for expression sequences S and expressions E , which will need be
altered to take into account the store, rather than just the value held in the simple

115

LASTANS store. It is natural to explain the store as an extension of the single-cell
memory we already have. The valuation functions for expression sequences and
expressions will change from

S : Expr-Seq —> Nat —> Nat*
E : Expr —> Nat —> Nat

to

S : Expr-Seq —> (Nat x S to re) —> Nat*
E : Expr —>■ (Nat x S to re) —>■ Nat

since both the last answer and the current store are to be maintained.

These changes will allow a program sequence such as the following:

Input Display

1 0 + 5 TOTAL 15
A := LASTANS TOTAL 15
LASTANS + 2 TOTAL 17
B := A * 10 TOTAL 150

8 .5 .1 Further C om p osition O perators

In order to make these changes we will need more composition operators than those
already given in Section 8.3.3. The first applies to the semantic algebra:

• A new domain can be added to the algebra by stating its signature and operations;
as long as the names of the domain and its operations are not already used in
the viewpoint, this operation will not affect the rest of the viewpoint (compare
the addition of local variables in the refinement calculus). So for any semantic
viewpoint S and new semantic domain D,

S C S[alg(S)\alg(S) U D] provided D is free in S.

This operation has the necessary property of monotonicity, because alg(S) C
(a lg(S)U D).

• Changing valuation functions. We have already seen that valuation functions
can be extended. We can also transform them, as in Section 3.5.5, by changing
their range. This involves the use of an abstraction function from the old range
to the new one: i.e. we replace a valuation function F : D —> X -* Y by
F ’ : D —» X ' —>• Y ' with an abstraction function a : (X ' —> Y ') —> (X —> Y),
where for arbitrary piece of abstract syntax d,

116

F][d]| = a(F’Id])

If a suitable abstraction a can be found, the valuation function F can be ex
changed for F '. However, F is used in function composition by other valuation
functions, and may use other valuation functions in its definition: these may also
need to be changed if F is replaced by F '. We have to make some limitations on
the form of F f, as follows:

We define the top-level syntactic domain of a denotational description as the
(unique) domain which does not feature as an non-terminal (i.e. on the right-
hand-side) in the BNF of any other syntactic domain. Thus in the calculator
example P is the top-level syntactic domain. A top-level valuation function is the
valuation function for the top-level domain.

We require for our refinement definition that for semantic descriptions S and S',
any program in the implementation of S is also a valid program, with the same
meaning, in the implementation of S'. The meaning of a program P in S is
defined as S(P), which is the return value of the top-level valuation function of
S when applied to P. Thus our definition is equivalent to T s(P) — T s '(P) f°r
all programs P in the implementation of S.

The general form of T 5 is A d .$ (F ;(d i)), where the F t are valuation functions
called on sub-expressions d{ of the syntactic expression d , and $ is the function
applied to the results of these valuations. If any of the Fi are changed we require
tha t it is possible to change $ to keep T 5 constant. Thus:

3$'. $(F,(rfi)) = &{*’>(*))
The definition of T 5 can then be changed to T ’s = $ '(F ’j(di)), and since Ts =
T 's , the new semantic description refines the old one.

The effect of this restriction on F' and the creation of $ is to reconstruct the
monotonicity that is otherwise lost by the transformation.

8.5 .2 Increm ental V iew p oin t

Figure 8-2 shows an incremental viewpoint representing the changes we need to make
to the abstract syntax, semantic algebras and valuation functions.

8.5 .3 A m algam ation

The coalescence planning phase will identify the following changes to be made before
Calc-New can be amalgamated with the incremental viewpoint Assign :

117

A b s tr a c t S y n tax :

S G Expr-Seq
E G Expr
I G Identifier

S ::= I := E TOTAL S | I := E TOTAL OFF
E : I

Semantic Algebras:

Natural Numbers

Identifiers
Domain i G Id = Identif ier

Store
Domain s G Store = Id — >• N a t
Operations

i n i t s t o r e : Store
in i t—store = \ i . zero
read—store : Id —> Store —► N a t
r e a d s t o r e = X i . As. s(i)
w ri te —store : Id —¥ N a t — > Store — > Store
w ri te—store = X i . An. A s . (Xj . j = i — ► n |] s)

Valuation Functions
S :Expr-Seq— »■ (iVaf x Store) —» JVatf*

S[I := E TOTAL Sj = A(n,s).
l e t (n ' , s') = (E[[E]](n, s), iynie_s£ore[[l]] E[[E]](n,s) s)

in n' cons S[S](n ' , s')
S|I := E TOTAL OFF]] = A(n, s).

l e t (n ' , s') = (E[E]](n, s), w r i t e s to r e ^ I ^ E[[E]](n,s) s)
in n cons nil

E :Expr— ► (N a t x Store) — > N a t
E[[l]] = A(n, s) . r e a d - s to re ^ L \s

Figure 8-2: Assign: Incremental viewpoint for the addition of assignment

118

• Abstract Syntax: I E Id e n t i f ie r is a new domain. S E Expr-Seq and E E

Expr are defined in Calc-New , but Assign gives them new BNF forms. There is no
conflict here so the syntax of the amalgamation will be formed by syn(Calc—New)U
syn(Assign). New valuation functions need to be given for the new syntax.

• Semantic Algebras: The domain Nat is identical in both viewpoints. Id is new
in Assign. The semantics can be formed by alg(Calc-New) U alg(Assign).

• Valuation Functions: Functions S and E have different signatures in Assign from
those in Calc-New. Comparing val(Calc-New) with vaUAssign) shows th a t fur
ther changes are necessary: each of the equations for S and E in val(Calc-New)
must be altered to have the same signature. We have defined those expressions
tha t actually use the store; others will simply pass it along with the last answer
memory.

So the coalescence action is twofold: first the functions from the old viewpoint
must be updated have the same signature as the new one, and then the amalga
mated viewpoint is formed by collecting these functions.

All but the last of the coalescence activities are straightforward. They use operations
we have introduced in Sections 8.3.3 and 8.5.1. The valuation function changes need
the transformation operation we defined in Section 8.5.1.

We are changing the functions for S and E, giving them new signatures:

S :Expr-Seq—> (Nat x Store) —> Nat*

and

E :Expr—>• (Nat x Store) —> Nat

The abstraction function as is defined for S as:

as : ((Nat x Store) —> Nat*) —> (Nat —> Nat*)
as = A/. A n. f (n , in its to re)

and similarly a#:

a>E '■ ((Nat x Store) —>• Nat) (Nat —> Nat)
o>E — A/ . A n. f (n , in its to re)

The old versions of E and S are equivalent to ag(E ’) and as(S ’), for new versions
E ’ and S ’. We now need to consider the effect on the other valuation functions in the
viewpoint.

119

The only other valuation function that features as part of the definition of E is N . This
definition will not need to be changed as the Nat argument was not passed to N in the
original viewpoint.

This leaves only the top-level valuation function P , which must define an equivalent
meaning for any program, between old and new versions. The old definition of P is:

P :Program —> Nat*
P [O N SJ = SJSJ(zero)

Due to the signature change in S’, the right hand side of this definition must now
provide a (Nat x Store) argument. The function we choose for $ is, by no coincidence,
similar to our abstraction function: it maps the (zero) to the corresponding value in
the new domain, (z e ro , init—store). Our new P is therefore

P ' :Program—>• Nat*
P 'JO N SI = S'[[SJ (zero)

The coalescence step then consists simply of assembling the new functions, and remov
ing the ’ decorations.

8.6 Further Changes: Continuations

We have already mentioned (Section 8.1.1) that alternative versions of semantics exist
(axiomatic, operational). W ithin the denotational approach there are also differences;
up to now we have been using direct semantics. Such semantics emphasise the structure
of a language; an equation like

E p u + E 2 J(n) = E p J H plus E[[E2 J(n)

makes no attem pt to prescribe the intended order of evaluation. In some applications
however the concept of concept of control is necessary to express order of evaluation;
it can be modelled by a semantic construct called a continuation.

This allows modelling of control flow as presented in “goto” jumps, returns from pro
cedures, errors or interrupt handling. Continuation semantics incorporates this idea,
representing the “rest of the program” as a continuation (a function from machine-
state to machine-state, taking the current state to the state at the term ination of the
program); this provides a way to override the “normal continuation” for jumps, error
handling and so on.

120

Standard denotational semantics texts [Gor79, Sch8 6] deal with the complexity of the
continuations issue by first explaining direct semantics and then motivating the addition
of continuations, in a manner similar to the discussion in the previous paragraph. This
is clearly an incremental change such as we have been discussing.

The general process followed in texts is to present the semantics of some command
in direct semantics and introduce a command continuation, using it to replace the
direct semantics version with one in continuation style; in the case of [Sch8 6] this
is via a direct semantics which involves a command stack, which is replaced by the
continuation function. Similarly expression semantics are altered to include the order
of evaluation.

The question of the relationship between direct and continuation semantics is quite
complex — proving tha t two definitions describe the same program is made difficult by
the different structures of the definitions. A better way, coinciding with our approach
to explanations in this thesis, would be to derive a continuation semantics definition
from a direct one.

8 .6 .1 C on stru ctin g C ontinuation Sem antics

As an example, suppose we have a valuation function

C d : Command —>■ Storej_ —»■ Storej_

in direct semantics. Adding continuations to this valuation function we would expect
to result in

C c '• Command —> Cmdcont —> Cmdcont

where the command continuation is Cmdcont = Storej_ —>■ Storej_.

Sethi and Tang [ST80] proposed a method for constructing continuation semantics from
a direct semantics. Their method is to define, for each construct [[C]], the continuation
semantics from the direct semantics. An overview of the method follows.

If F and F ' are domains of function values in direct and continuation semantics re
spectively, it is possible to define transformations for each term T in F to derive a
corresponding T ' in F '. The derivation is done in small stages by using an auxiliary
operator 5 as a syntactic place-holder, starting with 6 T, which represents the (as yet
undefined) continuation semantics version of T in F', and ‘pushing’ 5 onto smaller
sub-expressions of T using transformation rules.

121

To show tha t T and T' represent related values, all intermediate expressions in the
derivation have meanings in either the direct or continuation domain. Representing a
term as a tree, any sub-term below 8 represents values from the direct domain and the
rest represent values from the continuation domain. Thus 8 is used as a bridge between
the direct and continuation worlds to enable the derivation to be made a step at a
time. We can make a comparison between this and the progression from specification
to program; the refinement calculus uses the specification statement as a bridge for a
similar reason.

A predicate is defined to test the equivalence of values from each of the domains.
For direct value v E V and continuation value w E K -* A, the values satisfy the
equivalence predicate if either both are _L, both T or, for v' equivalent to v, w =
A k.k(v ') for expression continuation k. This predicate is written pk(r>, w).

In each step of the transformation from a v E V to a, w E K —> A from v E V, the
equivalence predicate is maintained. The method is an incremental development, of the
same nature as we have been modelling in this chapter. We can use the stipulations we
make about refinement to verify that the method is acceptable for generating a correct
continuation term T ' from a direct term T.

• Correctness. We define correctness as follows: for two terms T, T ', T ' is cor
rect with respect to T if the equivalence predicate defined above is satisfied
(P k (T, r)).

• M onotonicity. The 8 function has the following property:

For term T consisting of subterms Ti, T2 , we write their composition as T =
T\ © T2 for monotonic operation ©. Then 8 T = 8 (T i © T2) = © ^(Th).

This property is necessary for the “pushing” method of term derivation, and also
gives us the property of preservation of monotonicity we need.

• Refinement relation. We can define a refinement relation as follows:

For some terms v in the direct domain and w in the continuation domain such that
pk(i;, w), if w' is obtained from w by transformation operations and pk(i;, w '),
then w is refined by w'.

This refinement relation maintains correctness and is reflexive (w is obtained
from w by the identity transformation) and transitive (since each transformation
maintains the predicate).

122

So the process of transformations outlined above is valid as a refinement method, as it
has the necessary properties we have been discussing.

8.7 Summary and Conclusions

In this Chapter we have been able to use the refinement methods we have developed
in Chapters 3 and 4 to examine developments in denotational semantics. We have
used refinement to reason about the relations between versions of a simple calculator,
and shown tha t the same ideas can be used to examine the foundations of a published
approach to developing a continuation semantics definition from a direct one.

Chapters 7 and 8 have dealt in detail with the theme of “explanation as incremental
development” . The chapters have used different, but related, formalisms. The use of
retrieve relations between stages can be compared to the category-theoretical approach
of [FM95] in which functors are used to map between objects and morphisms; this could
be termed as a generalisation of our approach as we have considered only relations
between steps expressed in a single formalism; category theory can be used to relate
different formalisms through functors, thus addressing the issue of heterogeneity in
specification development. These functors are a more theoretical way of describing
relations as we have considered them in this work.

123

Chapter 9

Sum m ary and Conclusions

The aim of this thesis has been to demonstrate that, in a number of fields in software
engineering and more generally in the way people explain things, viewpoints and re
finement are a natural and useful way to describe what is going on. We have done this
by introducing a number of case studies where explanations are given, and showing in
each case tha t the information given can be encapsulated as a viewpoint, and related
to explanations of other parts of a system, sometimes as part of an amalgamation. In
this concluding chapter we present a brief summary of where we’ve been and then draw
some conclusions about our approach and areas of further research that may result.

9.1 Summary

9.1 .1 V iew p o in ts can be used to m od el a num ber o f processes in so ft
w are engineering

We set out a number of pages ago by investigating the use of viewpoints in software
engineering (Chapter 2). This brought to light a wide range of viewpoint techniques,
not all of which explicitly used the term “viewpoint” to describe what they were doing.
They were included in the survey because they nevertheless used partial descriptions
to model, or maintain the development of, a system under consideration. There were
different agendas in the use of viewpoints, though most were interested in them as an
aid to the elicitation and validation of requirements ([LF91, NMS89, RW91, KS92]).
Not all allowed overlap of viewpoints (multiple perspectives) or the use of different
notations for different parts of the problem (multiple paradigms). A major conclusion
from the survey was tha t formalising the relations between viewpoints and dealing with

124

inconsistencies were key issues.

9.1 .2 A n y in vestiga tion o f refinem ent and v iew p o in ts needs a form al
basis

For this reason we went on (Chapter 3) to consider the notion of a refinement relation
between viewpoints as an aid to modelling the relationships between viewpoints. The
foundations of refinement theory, and the necessary properties of a refinement relation
and specification composition operator, were presented. Conclusions were tha t before
identifying a refinement relation, a definition of correctness of a final product with
respect to an initial specification was necessary. Refinement can then be defined in
such a way as to ensure correctness is preserved.

Amalgamation of viewpoints can only be reasoned about when those viewpoints are
expressed in a language with a defined semantics, in which it is possible to say whether
two viewpoints are equivalent.

In Chapter 4 we took an example of a refinement approach, Morgan’s refinement calcu
lus, which is built upon the semantic characterisation of a simple programming language
(Dijkstra’s wp semantics). This was used to illustrate the ideas from Chapter 3.

We also considered situations where a refinement definition might be too strong, and the
use of weaker relations such as co-refinement, where under certain conditions B could
refine A, on to “compromise” where B behaved mostly as A, provided a customer gave
way on some details. This last kind of “improvement” , characterised also as “backward
refinement” , is useful for modelling such occasions as backtracking or amalgamating
conflicting viewpoints, but preservation of correctness cannot be relied upon.

9.1 .3 O ther work on v iew p oin ts can b e assessed w ith th is form al basis

Returning to an example from the survey chapter, we considered in more detail the
distributed framework of VOSD (Chapter 5), and considered how we might model the
relationships between those ViewPoints as refinements, and how the VOSD approach
to inconsistency can be modelled using our co-refinement and compromise ideas.

9 .1 .4 E xp lan ation s can b e exp la in ed w ith th ese ideas

Chapter 6 considered, at an introductory level, a number of ideas based on the theme of
“explaining how people explain things” ; from user manuals through literate program

125

ming to version control systems, we demonstrated tha t viewpoints, amalgamation and
refinement can be successfully used to model, explain and reason about what is going
on.

9 .1 .5 V iew p o in ts can m od el, and provide guidance for, exam p le de
velop m en ts

The examples of “explanatory development” which followed considered in more detail
the ideas outlined in previous chapters, to put some practical flesh on the theoretical
bones. In each case a clear notion of refinement and a composition operation, both
conforming to the properties set out in Chapter 3, were necessary to be presented before
going on with the development.

• Chapter 7 provided a detailed investigation of amalgamations and used the ideas
of refinement developed to verify that the new version correctly represented all
the information collected.

• Chapter 8 dealt with the development of semantic descriptions by first identifying
a viewpoint describing the initial information, encapsulating the new information
as a new viewpoint, and forming an amalgamation of the two to give the full
state of information at the new stage.

These chapters demonstrated that, for specification development of this kind, view
points and refinement could be used to good effect to describe what goes on. They
also showed that, as long as certain mathematical properties were held by the devel
opment method (monotonic operators, defined notion of correctness), viewpoints and
refinement provide a systematic approach to proving that derived or amalgamated
viewpoints have the properties we require of them.

9.2 Conclusions

Our aim as stated in the Introduction was twofold: to demonstrate the use of viewpoints
in everyday explanations (Viewpoints in Practice); and to show how the formal theory
of refinement, co-refinement and amalgamation could be used to model and validate
these explanations (Explanations explained). We first needed to define what we meant
by a viewpoint, which we have tried to do in general terms so as to encompass, as far as
possible, the differing perspectives many people have on what constitutes a viewpoint.

126

9.2 .1 V iew p o in ts in P ractice

The conclusion of Chapters 2, 5 and 6 is that the concept of viewpoints, in some form,
are used in many situations. They are utilised in models and frameworks to aid the
requirements, specification and/or coding process, in validation and elicitation; but
they can also be used to describe other, more disparate fields.

9.2 .2 E xp lan ation s E xplained

The use of amalgamation, and the exploration of the relationships between viewpoints
with refinement, has been dealt with at some length in the remaining chapters. We
have concentrated on using a refinement relation appropriate to the viewpoints being
considered; thus for the algebraic specification style used for the Toolbox Event Man
ager, a relation based on conservative extensions was appropriate. For denotational
semantics a relation based on the equivalence of languages implementing a semantic
description was used. The relations were shown to be pre-orders, preserving correctness
and monotonicity, and so were adequate for our purposes.

By contrast a relation based on compromise, which is a pre-order but does not preserve
correctness, is not sufficient as a refinement relation. This does not prevent us reasoning
about compromise developments such as backtracking and removal of inconsistencies
— but it shows us tha t we must not rely on the correctness or composability of a
“compromised” viewpoint.

9.2 .3 B ackw ard R efinem ent and M odularity

This issue of compromise or “backward refinement” is likely to be worthy of further
study. The research into viewpoints initiated at Bath is part of a long-term interest in
modularity, exemplified in key papers by Parnas [Par72b, Par72a]. Chapter 2 raised
the subject of elaboration of such modules [Fea89a, Fea89b], from which much of the
present work stems. The need to backtrack in such a development, inevitable in real-life
developments, justifies further investigation of ways to express formally the relationship
between steps in the development.

9.2 .4 T ools

There are a number of CASE tools available for specification development, in addition
to those cited in Chapter 2, which provide an integrated environment for developing and

127

maintaining multiple versions of systems. Statemate [HLN+90], a tool used to produce
and maintain different graphical representations of a system (statecharts, data-flow
diagrams and activity charts), is an example of this. Tool support for viewpoints is
provided by the experimental systems of VOSD and VOA [KS92], which as we have seen
(Sections 2.3.6 and 2.3.8) provide an environment for the development of viewpoints.
It would be useful to provide an addition to the set of tools which used a theorem
prover (such as HOL [Gor87] or its commercial incarnation, ICL Proofpower [Jon92])
for investigation and verification of relations between developed viewpoints.

9.3 Future research

This thesis has identified some issues which could be investigated further.

• More varieties of refinement exist than we have considered here: for example
the failures-divergences model of CSP [Hoa85], in which refinement holds be
tween two specifications if the failures and divergences (situations leading to non
termination) have been reduced. The application of ideas such as co-refinement
and compromise to such notions of refinement could be investigated in a similar
way to the approach used here.

• We have noted that a development in which a new version is more determin
istic than the old one might, in some circumstances (such as safety or security
critical applications) be regarded as an incorrect development. In this thesis we
used an explicit definition of correctness in which removing non-determinism was
perm itted, but further examples in which this would not be the case could be
interesting: refinement would be limited to an equivalence relation.

• There are other fields in which an ordering relation is induced as part of a de
velopment. For example in object-oriented modelling, an object decomposition
produces a model of an entity in terms of generalised classes, such as a hierar
chy tha t divides Living Things into Mammals and Non-mammals and goes on
down to humans. At each level of the hierarchy there is a relation, usually called
“is-a” - a human is a mammal and a mammal is a living thing, so a human is
a living thing. The is-a relation is a pre-order, but object modelling provides
other kinds of relation which are unlikely to be pre-orders, such as “part-of” and
general associations. There are roles for viewpoints in this field: formalisation of
relations aids in reasoning about inheritance, for example. Although approaches
such as VOSD use an object-based model for their viewpoints, the presence of

128

an ordering being classes (and between classes and their instances) suggests tha t
refinement could be exploited further.

• Chapter 6 introduced a number of subjects which encroached on other territories,
such as Artificial Intelligence, knowledge representations and natural language
understanding. These were only dealt with on a superficial level: there is a great
deal of scope for identifying how these fields approach the issues of conflict and
inconsistency in accumulated knowledge, and how this knowledge is represented,
in order to use viewpoints and refinement to model the process.

We conclude tha t explanations have, to some extent, been explained as set out in the
aims of this thesis, and the problem areas of backtracking and compromise have been
identified as worthy of further research. Interest in viewpoints is increasing at the
present time in a manner th a t threatens to render the survey in Chapter 2 obsolete: it
is hoped tha t the material presented here will contribute to the further development of
these viewpoint methodologies.

To begin with it had been too stark, too crazy, too much what the man
in the street would have said “Well, I could have told you that” about.

Then some phrases like ‘Interactive Subjectivity Framework’ were
invented, and everyone was able to relax and get on with it.

Douglas Adams, Life the Universe and Everything

129

Bibliography

[ACGW93]

[AF89]

[Ain95]

[ALN+91]

[AO 90]

[ARW96]

[AW94]

[Bac78]

M Ainsworth, AH Cruickshank, LJ Groves, and PJL Wallis. Formal spec
ification via viewpoints. In J Hosking, editor, Proc. 13th New Zealand
Computer Society Conference, pages 218-237. New Zealand Computer So
ciety, 18-20 August 1993.

JS Anderson and S Fickas. A proposed perspective shift: viewing specifica
tion design as a planning problem. In Proc. 5th Int. Workshop on Software
Specification and Design, pages 177-184, Los Alamitos, CA, 1989. IEEE
Comp. Soc. Press.

M Ainsworth. Viewpoints and Refinement: A formal basis for viewpoint
amalgamation using refinement techniques. PhD thesis, University of Bath,
1995.

J-R Abrial, MKO Lee, DS Neilson, PN Scharbach, and IH Sorenson. The
B-Method. In VDM ’91: Formal Software Development Methods. LNCS
552, pages 398-405. Springer-Verlag, 1991.

Adrian Avenarius and Siegfried Oppermann. FWEB: A literate program
ming system for Fortran 8 X. ACM SIG PLAN Notices, 25(1):52—58, 1990.

M Ainsworth, S Riddle, and PJL Wallis. Formal validation of viewpoint
specifications. Software Engineering Journal, pages 58-66, January 1996.

M Ainsworth and PJL Wallis. Co-refinement. In D Till, editor, Proc. 6 th
BCS-FACS Refinement Workshop, pages 151-166, City University, Lon
don, 5 th-7th January 1994. Springer-Verlag.

R-J Back. On the correctness of refinement steps in program development.
Technical Report A-1978-4, Department of Computer Science, University
of Helsinki, 1978.

130

[Bac88]

[BC90]

[BCG+89]

[BG8 6]

[BG92]

[BH95]

[BLN8 6]

[Daw91]

[Dij72]

[Dij 7 6]

[Eas92]

[Ehr82]

R-J Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25:593-624, 1988.

Marcus E. Brown and Bart Childs. An interactive environment for literate
programming. Journal of Structured Programming, 11 (1): 11—25, 1990.

CT Burton, SJ Cook, S Gikas, JR Rowson, and ST Sommerville. Speci
fying the Apple M acintosh™ Toolbox Event Manager. Formal Aspects of
Computing, 1:147 - 171, 1989.

RM Burstall and JA Goguen. An informal introduction to specifications
using CLEAR. In N Gehani and AD McGettrick, editors, Software Speci
fication Techniques, pages 363-389. Addison-Wesley, 1986.

Judy M. Bishop and Kevin M. Gregson. Literate programming and the
LIPED environment. Journal of Structured Programming, 13(l):23-34,
1992.

P Besnard and A Hunter. Quasi-classical logic: Non-trivializable classical
reasoning from inconsistent information. Technical report, Department of
Computing, Imperial College, London, UK, 1995.

C Batini, M Lenzerini, and AB Navathe. A comparative analysis of
methodologies for database schema integration. AC M Computing Surveys,
18(4):323-364, December 1986.

J Dawes. The VDM-SL reference guide. P itm an Publishing, 1991.

EW Dijkstra. Notes on structured programming. In O J Dahl, EW Dijkstra,
and CAR Hoare, editors, Structured programming, pages 1-72. Academic
Press, 1972.

EW Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

S Easterbrook. Domain modelling with hierarchies of alternative view
points. Cognitive Science Research Paper CSRP 252, University of Sussex,
1992.

H D Ehrich. On the theory of specification, implementation and param-
eterisation of abstract data types. Journal of the ACM , 29(l):206-227,
January 1982.

131

[EN94]

[EN95]

[Fea89a]

[Fea89b]

[FF89]

[FGH+93]

[Fin8 8]

[FJ90]

[FKN+92]

[FM95]

[FN88]

S Easterbrook and B Nuseibeh. Managing inconsistencies in an evolving
specification. Technical report, Imperial College Dept of Computing, Au
gust 1994. Submitted for publication.

S Easterbrook and B Nuseibeh. Managing inconsistencies in an evolving
specification. In Proc. 2nd International Symposium on Requirements En
gineering (RE ’95), pages 48-55, York, UK, March 1995. IEEE CS Press.

MS Feather. Constructing specifications by combining parallel elabora
tions. IEEE Transactions on Software Engineering, 15(2):198—208, 1989.

MS Feather. Detecting interference when merging specification evolutions.
In Proc. 5th Int. Workshop on Software Specification and Design, pages
169-176, Los Alamitos, CA, 1989. IEEE Comp. Soc. Press.

A Finkelstein and H Fuks. Multi-party specification. In Proc. 5th Int.
Workshop on Software Specification and Design, pages 185-195, 1989.

A Finkelstein, D Gabbay, A Hunter, J Kramer, and B Nuseibeh. Inconsis
tency handling in multi-perspective specifications. In Proc. Ĵ th European
Software Engineering Conference, Garmisch, Germany, 13-17th September
1993. Springer-Verlag. Also Technical report no. Doc 93/2.

A Finkelstein. Re-use of formatted requirements specifications. Software
Engineering Journal, 3(5): 186-198, 1988.

JS Fitzgerald and CB Jones. Modularizing the formal of a database system.
In D Bjorner, CAR Hoare, and H Langmaack, editors, VDM ’90: VDM and
Z - formal methods in software development. LNCS 428. Springer-Verlag,
1990. Also University of Machester Technical Report UMCS-90-1-1.

A Finkelstein, J Kramer, B Nuseibeh, L Finkelstein, and M Goedicke.
Viewpoints: a framework for integrating multiple perspectives in system
development. International Journal of Software Engineering and Knowl
edge Engineering, 2(1):31—57, 1992.

JL Fiadeiro and T Maibaum. Interconnecting formalisms: Supporting
modularity, reuse and incrementality, 1995.

S Fickas and P Nagarajan. Critiquing software specifications. IEEE Soft
ware, pages 37-47, November 1988.

132

[GHW85]

[Gol83]

[Gor79]

[Gor87]

[Gri81]

[Gro92]

[GW91]

[HJN93]

[HLN+90]

[HN95]

[Hoa72]

[Hoa85]

JV Guttag, J J Horning, and JM Wing. The Larch family of specification
languages. IEEE Software, 2(4), 1985.

NM Goldman. Three dimensions of design development. In Proc. 3rd Nat.
Conf. Artificial Intelligence, pages 130-133, Washington D.C., Aug 1983.

Michael J C Gordon. The denotational description of programming lan
guages. Springer-Verlag, 1979.

Michael J C Gordon. HOL: A proof generating system for higher-order
logic. In G Birtwistle and PA Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis. 1987.

D Gries. The Science of Programming. Texts and Monographs in Computer
Science. Springer-Verlag, 1981.

The RAISE Language Group. The R A ISE specification language. BCS
Practitioner Series. Prentice-Hall International, 1992.

E. M. Gurari and J. Wu. A WYSIWYG literate programming system (pre
liminary report). In 1991 ACM Computer Science Conference: March 5-7,
1991, San Antonio Convention Center, San Antonio, Texas: Proceedings:
Preparing for the 21st Century, pages 94-104. ACM, 1991.

IJ Hayes, CB Jones, and JE Nicholls. Understanding the differences be
tween VDM and Z. Technical Report UMCS-93-8-1, Department of Com
puter Science, University of Manchester, United Kingdom, 1993.

D Harel, H Lachover, A Naamad, A Pnueli, M Politi, R Sherman, A Shtull-
trauring, and M Trakhtenbrot. Statemate — a working environment for the
development of complex reactive systems. IEEE Transactions on Software
Engineering, 16(4):403-414, 1990.

A Hunter and B Nuseibeh. Managing inconsistent specifications: Reason
ing, analysis and action. Technical Report 95/15, Department of Comput
ing, Imperial College, London SW7 2BZ, UK, October 1995.

CAR Hoare. Proof of correctness of data representations. Acta Informatica,
1:271-281, 1972.

CAR Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice-Hall, 1985.

133

[JFH92]

[JLM+94]

[Jon90]

[Jon92]

[JZ93]

[Knu92]

[KS92]

[KS94]

[LF91]

[LFKN95]

WL Johnson, M Feather, and DR Harris. Representation and presentation
of requirements knowledge. IEEE Transactions on Software Engineering,
18(10) :853—869, 1992.

DT Jordan, CJ Locke, JA McDermid, CE Parker, BAP Sharp, and I Toyn.
Literate formal development of Ada from Z for safety critical applications.
In V Maggioli, editor, SAFECOMP ’94• 13th International Conference
on Computer Safety, Reliability and Security, pages 1-10, Anaheim, Cal
ifornia, USA, October 1994. European Workshop on Industrial Computer
Systems Technical Committee 7.

CB Jones. Systematic Software Development using VDM. International
Series in Computer Science. Prentice-Hall, second edition, 1990.

RB Jones. Methods and tools for the verification of critical properties.
In R Shaw, editor, Proc. 5th BCS-FACS refinement workshop. Springer-
Verlag, 1992.

M Jackson and P Zave. Domain descriptions. In Proc. IEEE International
Symposium on Requirements Engineering, pages 56 - 64. IEEE Computer
Society Press, 1993.

DE Knuth. Literate Programming. Stanford University, Center for the
Study of Language and Information, 1992.

G Kotonya and I Sommerville. Viewpoints for requirements definition.
Software Engineering Journal, 7(6):375-387, 1992.

G Kotonya and I Sommerville. Integrating safety analysis and requirements
engineering. Technical Report SE/3/1994, Lancaster University Comput
ing Department, LANCASTER, LAI 4YR, UK, 1994.

JCSP Leite and PA Freeman. Requirements validation through viewpoint
resolution. IEEE Transactions on Software Engineering, 17(12): 1253-1269,
December 1991.

U Leonhardt, A Finkelstein, J Kramer, and B Nuseibeh. Decentralised
process enactment in a multi-perspective development environment. In
Proc. 17th International Conference on Software Engineering (ICSE-17),
pages 255-264, Seattle, USA, 1995. IEEE CS Press.

134

[LLC91]

[Mai91]

[Mor87]

[Mor88a]

[Mor88b]

[Mor88c]

[Mor93]

[Mor94]

[MRG88]

[Mul79]

[Mul84]

[NFK94]

SE Lander, VR Lesser, and ME Connell. Knowledge-based conflict resolu
tion for cooperation among expert agents. In Computer-Aided Cooperative
Product Development. LNCS 492, pages 253-268. Springer-Verlag, 1991.

N Maiden. Analogy as a paradigm for specification reuse. Software Engi
neering Journal, 6(1):3—16, 1991.

JM Morris. A theoretical basis for stepwise refinement and the program
ming calculus. Science of Computer Programming, 9(3):287—306, 1987.

CC Morgan. Auxiliary variables in data refinement. Information Processing
Letters, 1988. Reprinted in [MRG88].

CC Morgan. Procedures, parameters, and abstraction: Separate con
cerns. Science of Computer Programming, 11 (1): 17—27, 1988. Reprinted in
[MRG88].

CC Morgan. The specification statement. AC M Transactions on Pro
gramming Languages and Systems, 10(3):403—419, July 1988. Reprinted in
[MRG88].

CC Morgan. The refinement calculus, and literate development. In
B Moller, H Partsch, and S Schuman, editors, Formal Program Devel
opment, volume 755 of Lecture Notes in Computer Science, pages 161-182.
Springer Verlag, 1993.

CC Morgan. Programming from Specifications. International Series in
Computer Science. Prentice-Hall, second edition, 1994.

CC Morgan, K Robinson, and P Gardiner. On the refinement calculus.
Technical Monograph PRG-70, Oxford University Computing Laboratory
Programming Research Group, 1988.

GP Mullery. CORE — a method for controlled requirements specification.
In Proc. 4th Int Conference on Software Engineering, pages 126-135, 1979.

GP Mullery. Acquisition — environment. In M Paul and HJ Siegert,
editors, Distributed Systems — Methods and Tools for Specification. LNCS
190, chapter 3, pages 45-130. Springer-Verlag, 1984.

B Nuseibeh, A Finkelstein, and J Kramer. Method engineering for multi
perspective software development. Information and Software Technology
Journal, 1994.

135

[NKF94]

[NMS89]

[Par72a]

[Par 72b]

[Pep91]

[PST91]

[PW93]

[Ram94]

[RBP+91]

[Rob89]

[RW91]

[Sch86]

B Nuseibeh, J Kramer, and A Finkelstein. A framework for expressing the
relationships between multiple views in requirements specification. IEEE
Transactions on Software Engineering, 20(10):760-773, October 1994.

C Niskier, T Maibaum, and D Schwabe. A look through PRISMA: Towards
pluralistic knowledge-based environments for software specification acqui
sition. In Proc. 5th Int. Workshop on Software Specification and Design,
pages 128-136, Los Alamitos, CA, 1989. IEEE Computer Soc. Press.

DL Parnas. On the criteria to be used in decomposing systems into mod
ules. Communications of the ACM , 15:1053-1058, 1972.

DL Parnas. A technique for software module specification with examples.
Communications of the ACM , 15(5):330 - 336, 1972.

P. Pepper. Literate program derivation: a case study. In M. Broy and
M. Wirsing, editors, Methods of programming. Selected papers on the CIP-
Project, pages 101-124. 1991.

B Potter, J Sinclair, and D Till. An Introduction to Formal Specification
and Z. International Series in Computer Science. Prentice-Hall Interna
tional (UK) Ltd, United Kingdom, 1991.

J Plaice and WW Wadge. A new approach to version control. IEEE
Transactions on Software Engineering, 19(3):268-276, 1993.

Norman Ramsey. Literate programming simplified. IEEE Software,
11(5):97-105, 1994.

J Rumbaugh, M Blaha, W Premerlani, F Eddy, and W Lorenson. Object-
Oriented Modelling and Design. Prentice-Hall International Inc., New Jer
sey, 1991.

WN Robinson. Integrating multiple specifications using domain goals. In
Proc. 5th Int. Workshop on Software Specification and Design, pages 219—
225, 1989.

HB Reubenstein and RC Waters. The Requirements Apprentice: auto
mated assistance for requirements acquisition. IEEE Transactions on Soft
ware Engineering, 17(3):226-240, 1991.

DA Schmidt. Denotational semantics: a methodology for language devel
opment. Allyn and Bacon, 1986.

136

[SEJ96]

[Sen92]

[Som96]

[Spi89]

[SS89]

[ST80]

[ST95]

[Sto92]

[Ten76]

[Tic85]

[Wal92]

[Wal93]

[War 9 3]

[Weg72]

Software engineering journal special issue: Viewpoints for software engi
neering, January 1996.

C. T. Sennett. Demonstrating the compliance of Ada programs with Z
specifications. In Proc. 5th BCS-FACS Refinement Workshop, pages 70-
87, 1992.

I Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.

JM Spivey. The Z Notation - A Reference Manual. Prentice-Hall, 1989.

J J Shilling and PF Sweeney. Three steps to views — extending the object-
oriented paradigm. SIG PLAN Notices, 24(10) :353—361, 1989.

R Sethi and A Tang. Constructing call-by-value continuation semantics.
Journal of the ACM , 27(3):580-597, July 1980.

D Sannella and A Tarlecki. Model-theoretic foundations for program devel
opment: basic concepts and motivation. Submitted for journal publication,
March 1995.

DA Stokes. Towards a formal specification of revisable CORE: allowing for
change. Software Engineering Journal, 7(6):393-408, 1992.

RD Tennant. The denotational semantics of programming languages. Com
munications of the ACM , 19(8):437-453, 1976.

W F Tichy. RCS — a system for version control. Software-Practice and
Experience, 15(7):637-654, July 1985.

PJL Wallis. A new approach to modular formal description. Technical
Report 92-57, University of Bath, 1992.

PJL Wallis. Looking at building blocks: An experiment in component
description. In Second International Workshop on Software Reusability,
Lucca, 1993: Position Paper Collection, 1993.

N Ward. Adding specification constructors to the refinement calculus. In
JC P Woodcock and PG Larsen, editors, F M E ’93: Industrial-Strength For
mal Methods. LNCS 670, pages 652-670, Odense, Denmark, 1993. Formal
Methods Europe, Springer-Verlag.

P Wegner. The Vienna Definition Language. Computing Surveys, 4:5-63,
1972.

137

[Win88]

[Wir71]

[Woo89]

[ZJ93]

J Wing. A study of 12 specifications of the library problem. IEEE Software,
5:66-76, 1988.

N W irth. Program development by stepwise refinement. Communications
of the ACM , 14(4):221 - 227, 1971.

JC P Woodcock. Structuring specifications in Z. Software Engineering
Journal, 4(1) :51—66, 1989.

P Zave and M Jackson. Conjunction as composition. Transactions on
Software Engineering and Methodology, 2(4):379-411, 1993.

138

