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Summary

We describe various aspects of the calculation of estimates of the defect of a 

presentation of an algebraic number field, and the computation of integral bases. We 

concentrate on the efficient treatment of special cases, and describe a new algorithm for 

Hermitian reduction.

The defect of an algebraic field extension is easily seen to be bounded multiplicatively 

by the discriminant of its defining polynomial, and we describe how to refine this 

estimate, and prove a new bound, the reduced discriminant

Next we consider the computation of integral bases for field extensions. Special cases, 

such as quadratic or cyclotomic extensions, are easy to deal with, provided we can 

recognize the latter when they occur, and we have found a criterion that determines this. 

Cubic extensions are the next case to consider, and by combining elements of previous 

authors’ work we have constructed an algorithm that will deal with the general cubic 

field. To find the basis of higher degree extensions we use a method that relies on 

Hermitian reduction of integer matrices, a process akin to Gaussian reduction, but 

preserving the integrality of the matrix. To use this method efficient and fast reduction of 

matrices is essential, and we have spent some time in investigating and devising 

algorithms, and have interesting and useful results in this direction.

We have also implemented in REDUCE an efficient package that manipulates algebraic 

numbers in a coherent fashion, a factorizer for polynomials over algebraic number fields, 

and the Round Two algorithm for the computation of integral bases.



1. Introduction

From the Journal of Symbolic Computation 1987 4(1),

“[Zassenhaus] declared the central tasks of constructive number theory to be
(i) the computation of the group of an equation,
(ii) the computation of an integral basis,
(iii) the computation of the unit group,
(iv) the computation of the class group of an algebraic number field.”

M Pohst

This thesis addresses itself to the second problem—the computation of integral bases.

1.1. Review

For a long time now elementary algebraic number theory has been regarded as just 

that: elementary. Constructions from those as simple as arithmetic operations to those 

as complex as integral bases are taken for granted. Texts demonstrate the existence of
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R J Bradford Introduction

integral bases in a few paragraphs, and later will “pick a basis” barely pausing for 

breath. However, with the advent of constructive mathematics and the mechanization of 

algebra interest has risen again in the algorithmic aspects of these problems. For 

example, if a is a root of x3+x+1, then no-one stops to think about taking the reciprocal 

1/(a+1), but few can actually compute it efficiently or algorithmically (it is a2-a+2). 

Traditionally, each case is treated individually, often with great insight (or hindsight) and 

assorted bags of tricks. It is not surprising, then, that computer algebra has generated 

a re-investigation of mathematics back down to the basics. It is amusing to note the re- 

emergence of “antique” or “Victorian” techniques such as resultants in modern 

computer algebra (CA) systems.

In chapter 2 we start with these basics and describe a package we have implemented 

on top of REDUCE that deals with simple arithmetic over algebraic extensions of the 

rationals. This is not the first algebra system that can handle such extensions—e.g. 

MACSYMA has some capabilities along these lines—but unlike MACSYMA it does it in 

a logical and coherent fashion. Thus we are more resistant to the indeterminate sign for 

square-root tricks that can be used to convince such systems that 1 is -1.

A well-used concept in commutative algebra is that of the Hermite Normal Form of a 

matrix. This again suffers from the usual problems of over-familiarity, but it is in fact 

worse: because there is an obvious constructive proof of its existence, most people are 

willing to stop there. If, however, anyone tries to use the trivial algorithm, they rapidly 

become unstuck on anything other than the smallest of examples. Now, as the exact 

reduction of large sets of linear equations became important (e.g. [Rubin 1985], 

[Adegbeyni & Krishnamurthy 1977]), it was clear that more efficient algorithms had to be 

found. These arrived in the papers [Kannan & Bachem 1979] (with enhancements [Chou 

& Collins 1982]), [Frumkin 1977], [Bradley 1971], with a survey [Alagar & Roy 1984]. In 

[lliopoulos 1985] a semi-modular technique was proposed, and in chapter 3 there are
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R J Bradford Introduction

descriptions and variations on these methods.

Similarly the concept of an integral basis for an algebraic number field (and other field 

extensions in general) has long been used as a routine tool in proofs. For examples see 

chapter 4 on the manipulation of ideals, or any standard textbook. The properties of 

integral bases allow certain information to be read off directly. For example the defect, 

useful as a bound in factorization algorithms, is immediate.

The defect has been used implicitly in the literature (e.g. [BSffgen 1987a]), but only in 

[Rothstein 1984] does it seem to have been recognized as a useful quantity in its own 

right, though the latter is not too sure to what use it should be put. In chapter 5 we 

present several ways of estimating the defect, and show how to sharpen the estimates 

by incorporating tests from [Zassenhaus 1975] and [Vaughan 1985].

Next we turn to the actual computation of integral bases, and in chapter 6 we discuss 

some particularly simple types of field extension for which we can write down a basis 

directly, or with a minimum of calculation. These are quadratic, cubic, and cyclotomic 

extensions.

The first attempt at a general algorithmic approach to the computation of integral bases 

was [Berwick 1926], which dissected the minimal polynomial of the field extension, and 

used results from [Bauer 1907] concerning the Newton polygon. Unfortunately, as 

Berwick admits, his method is incomplete. Unfortunately, also, the method is very long 

and complex, and would require a huge amount of intricate code.

Zassenhaus picked up the problem, and in 1965 produced an algorithm, later called the 

“First Round” algorithm, that would compute the integral basis of any algebraic 

extension of <D. This was later improved in the “Round Two” algorithm [Zassenhaus 

1972], which was implemented by Kehlenbach in 1973. By “Round Four” [Ford 1978],
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Zassenhaus’ approach was completely different. Whereas Round Two used 

commutative algebra techniques and manipulation of matrices, the Round Four 

algorithm returned to “the spirit of the Berwick method” [Ford 1978], and analysed the 

minimal polynomial of the field.

Recent literature [Bbffgen 1987a,1987b] [Ford 1978,1987] has dismissed the Round 

Two as definitely inferior to the Round Four, but we contend this is not completely true. 

In chapter 7 we use results from chapter 3 on Hermite reduction to improve the Round 

Two significantly. This, plus other improvements allow far larger problems to be resolved 

in a reasonable amount of time. We also note that Round Two is not restricted to simple 

extensions: thus we can find an integral basis for an extension like <D(V2,V3,V5,V7) 

directly, without having to compute the minimal polynomial for the extension first.

Our original interest in integral bases was generated by the problem of indefinite 

integration, and in particular the integration of functions over algebraic function fields. 

Whereas Davenport [1981] uses Puiseaux series expansions and techniques from 

algebraic geometry, Trager [1984] uses integral bases as a building block for their 

respective integration algorithms. Due to technical limitations of REDUCE (see chapter 

2) we were led to investigate a simpler problem, namely that of the computation of 

integral bases over algebraic number fields. This is mostly an artificial distinction, as 

most of the algorithms we discuss can be generalized simply to function field of one 

variable. In fact certain aspects (mainly regarding characteristics of fields) become 

simpler when we pass to the function field case. Further, all the theory of chapter 3 

follows through directly.

1.2. Definitions

We shall take Z  to be the set of integers, <D the rationals, and R to be a general integral
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domain (but usually viewing it to be either Z  or <D[X], the ring of polynomials in X  over 

<D), with field of fractions QF(ft). We write R{X) = QF(ft[X]), the field of rational 

functions in X over ft. Also Z p is the p-adic integers, <DP the p-adic numbers, and 

Z /p Z  the integers (mod p).

An (algebraic) integer over ft is a root 0 of a monic polynomial

f(x) = xn+fn-,xn~ '+ - - - + f 0 = 0, (*)

where the coefficients f t e ft. The collection ft[0] of polynomials in 0 over ft, and o, the 

collection of all members of ft(0) that are integral over ft (i.e. satisfy a monic polynomial 

over ft) form integral domains. Each member of the field ft(0) can be expressed in the 

form p(0)/p, with p(y) e ft[y] and q e ft. As we shall see later, not all members of o 

are necessarily representable as this type of ratio with q = 1.

For a1pa2, * ■ ■ ,am e ft(0) we write (a^ofe, • • ■ am) for the module

{ r ^ + f a a z f  • • • +rma m,0 e  f t } ,

i.e. the ft-module generated by the a/.

When we mean ideal generators we shall write

<Oi,a2, • * * ,am>.

Let the n conjugate roots of (*) be 0 = 0(1>, 0(2), • • •, 0(A,). Then the discriminant of ft(0) 

is

0(0) = II(e(/)-e(/))2.
i<J

or
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D(9) =

0(i)
0(2)

0(n)

n S(0) 
S(0) S(02)

S(0n"1) S(0n)

0 ( l ) n - 1

0(2) n-1 

Q(n)n-1

• * S(0n"1)
• ' S(Qn)

•• S(02n_2)

where S is the trace fl(0)-»fl, and we shall generally ignore its sign.

More generally, the discriminant of a full-rank module a=  (a1,a2, • • • a„) in R(0) is the 

determinant disc(a) = 6e\{ap)2, where the a ft are the field conjugates of af in R{Q).

The gcd of two elements (in Z  or <D[X]) is their greatest common divisor, and the Icm 

is their least common multiple. If gcd{a,b) = g, then we can use the extended 

Euclidean algorithm to find cofactors X and p such that Xa+\Lb = g.

A related concept is that of the resultant. For polynomials f  (x) = E /V / * 7 and 9(x ) = 

'EEoQ/X1 their resultant res{f ,g) is the determinant of the Sylvester matrix

f  n f  n-1 f  0 0  • • 0

0 f  n . . . f  1 f  0 • 0

0 f  n f  n-1 ... • f o

9m 9m -1 9o 0  • • 0

0 9m . . . 9i 9o • 0

0 9m 9m—1 ... • 9o

where there are m rows of f  and n rows of g. This value is zero whenever f  and g 

have a non-trivial common factor. Further, we find that

D(0) = res(f(x),d//dx)

where f  (x) is the minimum polynomial for 0.
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Details of algorithms for the extended Euclid and the resultant can be found in 

[Davenport et al 1988].

1.3. Existence and Simple Properties of Integral 

Bases

Let 0 be an algebraic integer over Z . Every member co of Z(G) can be written in the 

form

co =  rn_10 n~‘l+ rn_20 n_2+  ■ ■ ■ + fo

with rf e <D. For co to be a member of o it is necessary, but not sufficient, that #■/ = 

s,/D(0) for Si € Z  (see later).

Now of the integers in o of the type (s„_10n-1+sn_20n“2+ • * ■ +so)/0(0) thare's at ,east 

one (namely 0') with Sj = 0, /> / and O<s,<D(0). Let Xu be the least of such s#-, and

CO/ — (XjjQ^+Xjj^Q'  1 +  . • • +Xi0)/D{Q)

a corresponding integer. This defines a set of integers co0, o^, • • • , co„_i. Now if co = 

(s„_10',“1+sn_20n-2+ • • • s0)/0(0) is any other member of o we see Xn_1i„_11 sn̂ ,  or else 

by division sn̂  = qXn̂ tn̂ +r,  with 0<r<Xn_1i/J_1, and so co-qcon_-i = 

((sn_1-<7X.n_1i„_1)0/,“1+ • ■ • )/D(0) = (r0n_1+ • • • )/D(0) is an integer contradicting the 

minimality of above. Hence s„_-, = mn_̂ Xn_^n_̂  with mn_, e Z , and

= (s '„ .20"-2+ • • • S'o)/D(0) e o.

Repeating, we find

co =  n7„_icon_1+ m n_2con_2+  * ■ • m 0coo, (* )

with m} e Z .

Thus every member of o is expressible in the form of (*), and we say

-1.7-



R J Bradford Introduction

(G>0i ©1, i 00/j—■!)

is an integral basis for o over Z.

The same process can be achieved working over the polynomial ring <D[X] in place of 

Z , with comparisons of degrees replacing those of sizes: every member of o is 

expressible in the form (*) with m/ e Q[X].

Now let M = (niij) be any nxn matrix over Z . If M is unimodular, and therefore 

invertible over Z, and we define

to'/ =  m /ii(Do+/n/i2© i+  * • • + m /i„a>„_1>

then the sets e Z } and (E /i'/© '/: n'i e Z} are equal, as every number

expressible in terms of the to/ is expressible in terms of the co'/, and vice-versa. A 

similar statement holds for the polynomial case.

Hence we see an integral basis is not unique, and we may use this non-uniqueness to 

our advantage. However, if we require a unique basis, then we may specify that one 

with © / =  (X /i/ 0 /-»-A./i/_1e /“ 1+  • • ■ +Xlfi)/dj where dt is coprime to gcd(\i j, • • • 

0<Kjj<dlt for j  = 0, • • • /—1, and 0<Xs<d{ (monic and with equivalent inequalities of their 

degrees for polynomials). Then a divisibility argument as above shows this to be 

unique. In this case of a triangular basis we call to/ a number of rank /.

However, the basis just given may not always be appropriate—If we were thinking in 

terms of lattices, then we would prefer a reduced basis, but in general, for higher 

degrees, it is very hard to discover such a basis. Methods exist, in particular those given 

by Lenstra [Lenstra et al, 1982], to find nearly reduced bases, but to find completely 

reduced bases (at least with respect to the infinity-norm) is NP-hard [Helfrich 1985].

However, it usually does not matter greatly whether we have a completely reduced 

basis (at least, in the areas we shall be discussing), but any basis will do. In fact, the
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time spent on reducing a basis may be better spent on other things. On the other hand, 

any reduction in the size of the integers involved is welcome when we come to 

manipulate bases.



2. Algebraic Numbers

This chapter describes a package we have implemented in REDUCE for the 

manipulation of algebraic numbers. The package regards algebraic numbers as 

elements of abstract extensions of the rational numbers, not as particular real or 

complex numbers.

An extended version of this chapter can be found in our paper [Abbott et al, 1986].

2.1. Review

The manipulation of algebraic numbers by computer algebra systems has long been a 

source of frustration (see, e.g., [Davenport 1981], chapter 2). It is certainly possible to 

declare rewrite rules, of the form

FOR ALL X LET SQRT(X)**2 = X;

(or to build in similar rules) and for very simple calculations this will have the correct
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effects. However, consider the matrix

* *
1 /
/ ' -1  '

An algebra system which merely applies algorithms intended for transcendental 

calculations, and then uses such rewrite rules on the results, will compute a determinant 

of —I —/2, which will simplify to 0, but a rank of 2 (since a trancendental algorithm will 

think that -1 -/2 is non-zero), and this will clearly stay unaltered under such rules. This 

is not a piece of idle speculation: the versions of MACSYMA, REDUCE and SMP to 

which we have access can all be persuaded to give incorrect results when manipulating 

matrices with algebraic entries.

The solution is to apply the simplifications (the polynomials defining the algebraic 

numbers) all the time, and not merely at certain points in the calculation. Fortunately, 

this is now relatively easy to do in REDUCE, thanks to the mechanism of domains 

[Bradford et al, 1986].

Throughout this chapter timings are given in seconds measured on a High-Level 

Hardware Ltd. Orion 1 microcoded super-micro—a machine that runs the REDUCE test 

in 60.5 seconds. REDUCE 3.2 [Hearn 1982] running on top of Cambridge LISP [Fitch & 

Norman 1977] was used for the timings, although the package has also been 

implemented in REDUCE 3.3, and on top of PSL [PSL 1987].

2.2. Requirements

The first major decision we took was to treat algebraic numbers as elements of abstract 

extensions, rather than as specific real or complex numbers. This means that we talk 

about V2 without specifying whether we mean 1.4142... or -1.4142.... This is the 

interpretation that is placed on algebraic numbers by the theory of integration, for 

example, but is not the one required for real algebraic geometry (and associated
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applications such as robotics [Davenport 1985]).

A second decision was to allow multiple algebraic numbers, possibly even algebraically 

dependent ones, to exist in a given REDUCE session. This means that the user is not 

prevented from introducing V2 simply because V8 has been used previously. Of course, 

if she then tries to calculate the reciprocal of V8- 2V2, an error will result. We envisage 

the user (human or higher level program) using the facilities provided to check that a 

new algebraic is independent of appropriate previous algebraics whenever necessary. 

The main motivation for this was to allow an integration system to make free use of the 

algebraic number package, without having to wonder whether the algebraic numbers it 

was using for internal purposes were algebraically dependent on those that the user had 

declared elsewhere. It would be expensive to have to use 21/20 rather than V2 in an 

integration just because the user had previously used 21/20 in a different calculation: we 

believe in local rather than global independence.

A consequence of this decision is that we will not use a primitive element representation 

for algebraic numbers as recommended by Loos [1982]. We did this since primitive 

elements can be extremely expensive to calculate, and also very opaque to the user. 

Najid-Zejli [1985] points out that a primitive element for two roots a and p of the 

polynomial x4+2x3-5  is, as calculated by the well-known algorithms [Trager 1976], a 

root of

y12+18y11+1 32y10+504t9+991 y8+372y7-3028'^-6720y5 

+11435/+9165073+185400^+194400y<-164525.

Not only is this polynomial sufficiently frightening, but the expressions for a and p in 

terms of y involve fourteen-digit numbers. When it comes to a primitive element for 

three of the roots (which is the same as for all of the roots), the defining polynomial has 

coefficients with more than 200 digits.
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2.3. Basic Design

In addition to the “external” requirements presented above, there were additional 

requirements imposed by the structure of REDUCE. It is helpful to the user if data 

items that are actually integers are stored as integers, rather than as elements of the 

algebraic domain, since otherwise one can have two data items that print identically, but 

are actually quite different internally. Hence, for just this chapter, we will reserve the 

word “algebraic” to mean an algebraic number that is not a rational.

The polynomial 2x 2-1  has a root Vv£, and reduction by it involves division (due to the 

leading coefficient), so for simplicity we restrict ourselves to monic polynomials. Hence 

we restrict all elements of the domain to be algebraic integers: clearly this does not 

restrict the range of numbers expressible. The general form of an element of the 

algebraic domain is a multivariate polynomial with integer coefficients and “variables” 

algebraic integers, the whole divided by an rational integer. Such denominators arise 

only as a result of division.

2.4. Division

Of the four arithmetic operations, only division presents us with any real difficulty. (But 

see [Abbott et al, 1986] for a discussion of multiplication). Using the above mentioned 

representation for elements of the algebraic domain, division is best achieved by 

reciprocation and multiplication. Now finding the reciprocal of an algebraic number is 

fairly complicated, and we tried several different methods. All except the first used the 

classical algorithm of finding the relevant cofactor from the gcd calculation.

The first method worked by solving the linear equations

(an_i oP 1+an_2an_2+ • • ■ +ao)(frn_iOtn_1+bn_2<xn 2+ * • • +bo)=1
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directly for the ty given the a}. The LNRSOLVE package in REDUCE seemed the 

easiest way to solve these equations, however complications with the domain structure 

and disappointing performance led us to abandon this idea.

Next we implemented a crude PRS (polynomial remainder sequence) algorithm. The 

coding was easy, and performance was superb on small problems, it did not take long 

for yet another discovery of the notorious coefficient growth inherent in the algorithm. 

We chose Hearn’s [1979] trial divisor scheme to combat this problem, which in Hearn’s 

case reduces coefficient growth to no greater than that of the subresultant PRS.

In our case this was not so. The culprit is the existence of nested algebraic numbers. 

Due to the way in which algebraic numbers reduce modulo minimal polynomials, 

Hearn’s trial divisors hardly ever succeeded in removing a factor—and in this case even 

the crude PRS was usually better! So next we turned to the subresultant algorithm 

[Brown & Traub 1971] [Knuth 1981], and found it greatly superior.

We had noticed during our experiences of fearsome coefficients that the final answer 

had relatively small coefficients compared with intermediate results. An obvious choice 

in such cases is a modular algorithm, and to allow for unlimited size answers some sort 

of lifting scheme must be used. We tried both Hensel style and Chinese Remainder 

based lifting (i.e. powers of one prime or products of several different primes). A 

problem with both of these methods was the need for some sort of bound to lift beyond. 

We were unable to produce a usable bound so had to adopt a “heuristic” termination 

criterion: in effect, try the answer so far and if it does not work lift a bit more. Yet

1 8+V3another hitch was that, in general, a reciprocal has a denominator e.g.

While modular algorithms normally produce integral answers one can adapt them to 

return rational results using the method in [Wang et al, 1982]. On bigger problems both 

algorithms were vastly superior to the crude PRS while on smaller problems both were
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vastly inferior. The Chinese Remainder method was limited by the speed of determining 

modular reciprocals of algebraic numbers, and the Hensel method was limited by the 

speed of the termination tests. A hybrid algorithm seemed best if a suitable decision 

routine could be devised.

Time trials on each type of algorithm leave no doubt about the superiority of the 

subresultant algorithm on all types of problem: a result somewhat different from that 

predicted by McCallum [1985]. The table below displays the time taken to compute the 

reciprocal of a selection of polynomials (see [Abbott et al, 1986] for details). On the 

eighth test (polynomial 9) the original (crude PRS) method was stopped after about 

60000 seconds; it was trying to multiply together two numbers with about 30000 decimal 

digits. On a separate test with a very large polynomial the Hensel lifting method was 

slightly faster than the subresultant one.

2.5. Factorisation of Polynomials

Given a polynomial with algebraic number coefficients (or one with integer coefficients 

that has to be factored over an algebraic number domain), there are three basic families 

of methods for computing the factorisation.

Comparison of reciprocators
Polynomial Crude Chinese Hensel Sub

p.r.s. Remainder resultant
1 0.00 0.06 0.06 0.00
2 0.20 6.14 3.98 0.28
3 6.44 41.72 44.48 4.12
4 65.56 515.12 444.12 25.36
5 0.20 1.86 1.18 0.18
6 2.30 17.14 6.78 0.98
7 2004.10 562.90 487.24 165.28
9 >63000 133.00 289.58 52.00

10 not tried 585.58 679.24 417.12
13 not tried 255.02 422.30 91.30
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a) One method is to reduce the problem to a (much larger) factoring problem over the 

integers, and is described by Trager [1976] and Landau [1985]. Essentially one 

considers the norm of the desired polynomial. A polynomial of degree n over an 

algebraic extension of degree m will produce a polynomial of degree mn to be factored 

over the integers. This may not seem too bad, but in practice it means that a quartic 

polynomial to be factored over three square roots will involve factoring a polynomial of 

degree 32=4.23 over the integers. This method is relatively straight-forward to 

implement, given the existence of a good integer polynomial factoriser, which REDUCE 

has [Moore & Norman 1981]. Some additional performance improvements that can 

speed up the existing factoriser when dealing with norms can be found in [Abbott et al, 

1985].

b) A second method is to perform the same kind of p-adic reduction as is performed for 

factorisation over the integers [Wang 1976] [Weinberger & Rothschild 1976]. There is a 

peculiar problem that can occur here that does not occur for reduction of the integers. 

For every prime p, the integers map into the numbers (mod p), which are a field. The 

algebraic integers of, say, <D((-1)1/4) do not map as conveniently, since x4+1 factors 

modulo every prime. Hence this method has to work very hard in such cases.

c) A third family of methods was proposed by A.K. Lenstra [1982,1983]. These rely on 

the techniques of short vectors in lattices to deduce a correct factorisation over an 

algebraic number field from a factorisation in a suitable lifting of a (mod p) image.

The distributed version of this package includes a norm-based algorithm, since this is 

relatively short and well-understood. [Abbott 1988] has gone on to implement and 

improve the [Lenstra 1982] algorithm. The question of the relative speeds of the norm- 

based algorithms and the lattice-based ones is hard to answer: preliminary results 

[Abbott et al, 1986] were indecisive.
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2.6. Conclusion

We have implemented a system in REDUCE for the manipulation of elements of 

algebraic number fields as described in this chapter. By using the domain mechanism 

of REDUCE, this method is applicable to calculations involving polynomials, rational 

functions, matrices etc. over these number fields.

Further, it appears that the subresultant PRS division is the most efficient method, at 

least for the problems that we have considered.

As far as factorization of polynomials is concerned, we are still largely reliant on the 

Trager algorithm until the work of [Abbott 1988] is integrated into the distributed 

package. Fortunately, in this thesis such factorizations are not required.



3. Hermitian Reduction

This chapter investigates the Hermitian reduction of integer matrices, a step of great 

importance to the Round Two algorithm. A substantial reduction in the time taken to 

reduce matrices will be reflected in a similar reduction in the time taken to find integral 

bases.

We also take the opportunity to consider the computation of the Smith Normal form of a 

matrix, as its similarities and differences to the Hermite form can be quite illustrative.

We begin with some formal definitions, and then outline some of the current algorithms 

used to compute normal forms, and then describe a new method which, although it may 

not be the best algorithm to use on random matrices, it does seem to be an 

improvement on the type of matrix that appears in the context of the Round Two 

algorithm.
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3.1. Definitions

Let M be a matrix over Z  (respectively over <D[X]), not necessarily square. If we 

consider “less than" to mean “has degree less than” , and “non-negative” to mean “0 or 

has positive leading coefficient” when applied to polynomials we may make the following 

definitions: M is in Hermite normal form (HNF) if it is upper triangular, and each entry is 

non-negative and less than the diagonal element in its column.

Similarly M is in Smith normal form (SNF) if it is diagonal, and each element on the 

diagonal is non-negative and divides the next element on the diagonal (proceeding 

down-and-rightwards).

The Hermite reduced form of M is the matrix M' where M ' is in HNF and M' = UM, for 

some unimodular integer (polynomial for the polynomial case) matrix U.

The Smith reduced form of M is the matrix M' where M ' is in SNF and M' = UMV, for 

some unimodular integer (polynomial) matrices U and V.

We remark that the Hermite and Smith reduced forms of a matrix are unique. We shall 

assume every matrix has no more columns than rows, and has full column rank.

3.2. Simple Hermite Reduction

Hermite reduction of an integer matrix M is an analogue of Gaussian elimination but 

without division. In its place we use the gcd. The aim of Hermite reduction is to find a 

unimodular matrix U such that UM is in Hermite normal form (but we shall be more 

interested in the reduced matrix M ' than U itself). The simplest algorithm to describe to 

do this is as follows:

1. set U to be a nxn unit matrix (where M is a nxm matrix).
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2. for c := 1 to m do

2.1 while there is a non-zero element in the column below the element M& do

2.1.1 find the row out of rows c to n with the smallest non-zero absolute value in 

column c, and swap it with row c. Swap the same rows in U.

2.1.2 if A/f^O, negate that entire row, and negate row c in U.

2.1.3 for each row r from c+1 to n subtract [Mrc/MccJ times row c from row r. 

Subtract the same multiple of like rows in U.

3. for c := 2 to m do

3.1 for each row r from 1 to c-1 subtract |^frc/^ccj times row c from row r.

Subtract the same multiple of like rows in U. This step ensures elements in each 

column are less than the element on the corresponding diagonal.

(this depends on the assumption we have a matrix of full rank.)

A little reflection will reveal that the U calculated above is the one required.

Whereas this may be simple to describe, computationally speaking this is a disastrous 

algorithm. The entries of M in the final result are bounded by the determinant of M

(every element is not greater than the one on its diagonal, and the product of the

diagonal elements is just the determinant) but in the intermediate calculations the off- 

diagonal elements grow enormously. This is a prime example of the curse of CA: 

intermediate expression swell.

3.3. Smith Normal Form

Given an algorithm to compute the Hermite normal form of a matrix, it is a simple step 

to the Smith normal form: repeatedly Hermite reduce and transpose the matrix (and 

each time swap the matrices U and V). After finite number of steps the matrix must
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reduce to a diagonal form (since the elements along the leading diagonal are reduced to 

at most the size of the smallest non-zero element in its column at each step). Thus M 

is diagonal, but not necessarily in Smith normal form, which requires each member of 

the diagonal to divide the next member. A short routine in [Alagar & Roy 1984] 

completes the computation:

1. for / := 1 to n-1 do

1.1 for j  := 1 to n-1 do

1.1.1 g  := g c d {M s ,M jj)

1.1.2 I := lcm{Mg,Mjj)

1.1.3 Find the cofactors X M g + \iM jj = g

- M n  Mg
1.1.4 Row / of U := X(row /)+p(row j)  of U\ row j  of U := — —(row /)+— (row j)

9  9

of U\ column / of V := (column /) + (column j)  of V\ column J of V :=

—ILM ii \M g
 ^(column /') +  (column j)  of V\

9  9

1.1.5 Mg :=  g ;  Mjj :=  /

In step 1.1.4 we are applying the unimodular transformation

X [L
-M jj Mg

9  JI  9

Mg 0

L °  % Jw JI J

1 1
—\iMjj XMjj

9  9

*

9 0
0 /* *

After applying this routine it is clear that the diagonal elements have the required 

divisibility properties.

This method is only as good as the algorithm used to make the Hermite forms. 

However, there are other methods (for example we may adapt Kannan & Bachem’s 

method—see the next section) which may be more suited to finding the SNF directly.
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3.4. More Advanced Methods

In [Kannan & Bachem 1979] there is an algorithm that bounds the growth of 

intermediate results to polynomial size, and [Chou & Collins 1982] modifies this and 

improves the bound. This is an ingenious method that proceeds by successively putting 

the ixi** principal minors into HNF, and ensuring the off-diagonal elements are small 

after each iteration. But even so the example on p.735 of [Alagar & Roy 1984] shows 

there is still considerable swell. They begin with the matrix

32 543 245 239 65 '
23 56 567 54 32
123 234 345 456 567 ,
43 54 65 457 89
432 321 213 87 98V J

and after the first Hermite reduction they have entries as large as 78211420433601, 

which overflows on the next attempt at a reduction. It must be noted that they are 

restricted to single precision integers in their implementation, but the principle of the 

intermediate swell is easily seen.

Further this algorithm is geared to square matrices: to reduce a nxm matrix (n>m) they 

adjoin a (n-m )x{n-m ) identity matrix and reduce the resulting nxn matrix. For tall 

matrices (e.g. 2nxn or n2xn) this is wasteful: indeed the problems we deal with can be 

quite sparse, and Kannan and Bachem’s algorithm, although superior on random square 

matrices, was noticeably slower than the algorithm described in the next section.

3.5. A Method Based on GCDs

As we clear each column in the calculation of the HNF of a matrix, the next element to 

be computed on the diagonal of the reduced form will be just the gcd of the elements in 

and below the diagonal element in its column in the partially reduced matrix. Working 

from this we produced the following algorithm:
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1. set U to be a nxn unit matrix.

2. for c := 1 to m do

2.1 find the row out of rows c to n with the smallest non-zero absolute value in

column c, and swap it with row c. Swap the same rows in U.

2.2 for each row r from c+1 to n do

2.2.1 if Mcc | Mrc then

2.2.1.1 replace row r by row r  minus Mrc/Mcc times row c. Replace row r of U by

itself minus the same multiple of row c of U.

2.2.1.2 else by means of the extended Euclidean algorithm (or otherwise) find g =

gcd(Me0tMlc)l and integers X and p such that Mfcc+pHc = g.

2.2.1.3 and replace row c by X(row c)+p(row r), and row r by

 (row r) (row c). Replace the same rows of U in the same
9 9

manner.

2.3 if Mcc<0, negate that entire row, and negate row c in U.

3. for c := 1 to m do

3.1 for each row r from 1 to c-1 subtract [m«;/^ccJ times row c from row r.

Subtract the same multiple of like rows in U.

Step 2.2.1.3 is valid since

det
X p
Mrc Mqq

XMcc+iiMfc
9

I  9 9

by the definition of X and p, so the transformation is unimodular.

This is superficially similar to the algorithm in [Bradley 1971], but it appears to be more 

efficient in the our case: Bradley’s method requires the computation of n simultaneous
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cofactors to the gcd of n integers, whereas the above method takes advantage of the 

fact that in practical cases in the 2.2 loop the diagonal entry soon converges to the 

gcd of the column, and straight division suffices from then on.

3.6. Iliopoulos

In [Iliopoulos 1985], the author makes the following simple observation: If d is the 

determinant of the n by n square matrix M , then the matrices M and

' m '
K =  HI

r n.

have the same HNF. Thus we can use the lower n rows to reduce the upper n rows 

after each reduction step. This gives a better complexity than even the Chou and Collins 

method. The only problem is the computation of d. Iliopoulos recommends the use of 

rational arithmetic and Gaussian elimination, but modular methods may be an interesting 

alternative.

This method is not directly applicable to non-square matrices, but Iliopoulos notes that 

you can use the determinant of any n linearly independent rows (here n is number of 

columns, supposed no greater than the number of columns.) This will be, in general, a 

multiple of the determinant of the HNF, but is still a useful bound. However, [Davenport 

& Trager 1987] have pointed out that if we take the gcd d of the determinants of two 

random n by n submatrices we are quite likely to very close to the true determinant (in 

the sense that we only have a small multiple of it). Also, as we clear each column, we 

can divide d by the diagonal element in the current column—the remaining entries can 

be no larger than the fraction of the determinant that is left. Of course, this has no effect 

on matrices with HNFs like diag( 1, 1, • • • , 1, d), but can be useful when there are 

small factors along the diagonal.
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3.7. Examples

We implemented the algorithms of Kannan & Bachem, Bradley, and compared them 

with the algorithm above, and with the latter augmented by lliopoulos’s technique.

Each method was tried on the same random set of matrices, using code written in 

REDUCE 3.3 on Cambridge Lisp, running on an Orion. All times are in milliseconds.

Firstly we have some small random square matrices: these were of size no larger than 8 

by 8, with coefficients of absolute value less than 1000.

Random square matrices
K & B Bradley RJB RJB + lliop
380 720 380 760
960 7040 960 2980
980 6600 840 2720
420 1360 320 740
440 1100 400 840
140 220 100 200
100 180 120 240
420 1060 420 880
460 620 320 80
120 140 120 300

Here “K & B” indicates the Kannan and Bachem algorithm, “RJB” is the algorithm of the 

previous section, and “RJB + I Hop” is the same algorithm augmented by the ideas of 

[Iliopoulos 1985].

From these data, it appears that K & B and RJB are about the same speed, with RJB 

having a slight edge. Bradley is definitely poorer, and Iliopoulos seems a consistent 

amount slower.

Next is random large (16 by 16) square matrices.
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Random square matrices
K & B Bradley RJB RJB + lliop
10120
10240
10160
10200
10160
9900
9740
9780
9920

10220

> 3600000 9128
112760
220420
31220
16840
35220
34000
20860
64660
25360

> 3600000

The tests of Bradley and Iliopoulos were terminated after an hour of CPU: neither had 

progressed significantly. Here we see that K & B has the edge, and RJB occasionally 

lagging quite far behind. Thus we expect K & B to be asymptotically better on large 

random square matrices.

Moving from square matrices, we tried small rectangular matrices, namely 2n by n 

matrices, where n<8. These are the shapes of matrices that occur in the Round 2 

algorithm, but the coefficients are entirely random.

Random 2n by n matrices
K & B Bradley RJB RJB + lliop

540 1260 520 1060
1120 8020 760 2000
580 2000 500 940

1000 8000 800 1920
620 2180 480 1000
980 8540 780 1940
140 320 120 300
300 760 260 520

1540 107380 1600 4120
340 480 240 580

Kannan & Bachem is an algorithm specifically for square matrices, but they do suggest 

an adaption to rectangular matrices as follows: embed the matrix M in a 2n by 2n 

matrix
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and reduce this. Instead of doing this, we implemented a hybrid version of K & B and 

RJB that reduces the upper half of M using the straight K & B  algorithm, and then 

reverts to RJB to clear up the bottom half. This is better, as we only consider up to 2n2 

elements, as opposed to An2. The saving is even better when we want to reduce, say, 

n2 by n matrices.

Now considering the table of results above, we notice about the same pattern as for the 

small random square matrices.

Large (32 by 16) rectangular random matrices are next. These better reflect the 

extension degree of a reasonably sized problem. Again, the coefficients of the matrices 

are random.

Random 32 by 16 matrices
K & B Bradley RJB RJB + lliop
20220
20160
19900
19440
19640
19900
19560
19820
19520
19880

> 360000 377100
1123140

38880
114240
288920
337780
42860

121640
71280
23000

> 3600000

Again we stopped the Bradley and Iliopoulos tests after an hour’s CPU. K & B  wins 

consistently again, which is not too surprising considering its implementation: K & B  will 

be faster on the top, square, part, and no slower than RJB on the rest!

All the above tests were on random matrices. It is interesting to consider the behavior of 

the algorithms on the type of matrix that arises in the Round Two algorithm: these are 

decidedly non-random, and have a great deal of internal structure. We computed the
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integral bases for each of the field extensions occurring in section 7.4, using each of the 

algorithms for computing the HNFs in turn.

Integral bases
Degree K & B Bradley RJB RJB + lliop

6 68580 60740 54620 88540
9 440600 399160 317980 1333040

16 2867680 1673740 1355080 >10000000
15 3261780 1792280 1306700 >10000000
9 134980 100160 79440 514520
3 3360 2980 2760 4320

12 621580 406840 321020 >10000000
15 939120 518800 385780 >10000000
9 321240 238060 187420 1276980
9 223020 164740 127880 873540

Now it is clear that RJB is better than the other algorithms in this special case. Note that 

in case 3 we are repeatedly reducing 32 by 16 matrices, but RJB is still more than twice 

as fast.

Also, now, Bradley comes back into contention: indeed it is consistently better than K & 

B. This is due to the relative sparseness of the matrices being reduced, so that multiple 

cofactors are easy to determine. This is in strict contrast to the random cases, where 

most of the time was spent in construction of these cofactors.

The consistently poor times for the Iliopoulos technique are due mostly to the time taken 

to compute the determinant. The table below describes how much time is spent in 

computing determinants in relation to the time spent in reduction for each of the 

extensions above. If the determinant was free (i.e. took no time to compute), then 

RJB+lliop is only marginally slower than the simple RJB. This indicates that RJB is 

keeping the coefficients fairly well down to the size of the determinant (in this particular 

scenario).
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Times for Iliopoulos
Degree Determinant Reduction Total

6 33020 55520 88540
9 1005260 327780 1333040

16 >10000000 - -

15 >10000000 - -

9 428340 86180 514520
3 1460 2860 4320

12 >10000000 - -

15 >10000000 - -

9 1067420 209560 1276980
9 736920 136620 873540

Dense matrices are particularly hard to deal with (and this explains the random 

matrices), but the sparser matrices in the integral basis tests should have benefited 

more. As an implementational note, we used REDUCES determinant routine, which is 

based on the Bareiss two-step method [Bareiss 1968]. Presumably, use of a good 

sparse matrix technique could make significant savings.

3.8. Modular Methods

In Appendix C we discuss what goes wrong when we try to apply modular techniques to 

the computation of HNFs. We are able to compute SNFs in such a manner (e.g. [Alagar 

& Roy 1984]), but the method does not extend to the determination of HNFs, due to a 

lack of any meaningful order relationship in finite fields.

A more profitable avenue of exploration is to consider the reduction of matrices of 

polynomials—univariate and multivariate—as methods already exist to calculate 

polynomial gcds modularly (e.g. [Brown 1971]).

3.9. Conclusions

Although published complexity analyses dictate that the Iliopoulos technique is 

asymptotically the best of the reduction algorithms, tests indicate that the hidden

-3.12-



R J Bradford Hermitian Reduction

multiplicative constant is dominant in practical cases. Also, whereas the Kannan and 

Bachem algorithm is visibly superior on large dense square matrices, it lags behind on 

fairly sparse, tall matrices. As it is the latter kind of matrix that appears most often in the 

workings of the Round Two algorithm, it is advantageous to use the algorithm of section

3.5 in its implementation.
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In the Round Two algorithm there is a great emphasis on the manipulation of ideals, so 

we must consider how to represent and use such objects in a computer. Further, a huge 

branch of algebraic number theory deals specifically with ideals and much information 

can be deduced from considering them. As a simple example, we can discover whether 

a prime ideal ramifies in some field by determining whether it divides a particular ideal 

associated with the field called the different If it does (i.e. the result of dividing the 

prime into the different is integral), then the prime ramifies [Cassels 1986]. So we must 

give algorithms for division, and determination of whether an ideal is integral.

4.1. Representation of an Ideal

For a given extension of degree n every module (of full rank) has a basis of the same 

size, namely n. Thus it is convenient to represent such bases by a simple vector.
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Starting with the algebraic number package described in chapter 2, we found it simplest 

to represent a basis directly: so the basis 1, a, a2 is internally represented as the vector 

[1, a, a2]. The reason for this is that it makes arithmetic operations on the elements 

particularly easy: no new code is required. So for the basis [1, a, (a2+1)/2] the product 

of the last8 two elements is just a(oc2+1)/2, which will simplify directly.

However, experience has shown that this is probably not the best method. When using 

ideals we are typically led to consider the matrix representing multiplication by a certain 

element (see, e.g., the discussion below on division, and the section on the Round Two 

algorithm in chapter 7). This entails conversion back and forth between the polynomial 

type of representation above, in which it is easy to do the multiplication, and a matrix 

representation which is easier to manipulate in other parts of the algorithm. So the 

above example we have the matrix

’ 1 0 0 '
0 1 0 ,

1/2 0 1/2 ,

but for this we need extra code for the arithmetic manipulation and reduction of 

algebraic numbers, but we gain from not having to convert from the polynomial 

representation.

A convenient compromise would be to use matrices when commutative algebra-like 

operations are prevalent (e.g. finding idealizers, or inverting ideals), and to convert back 

to the polynomial form just once at the end. In practice, though, the weight of existing 

code (chapter 2) encouraged us to take the simplistic approach.

4.2. The Norm

Let a be an ideal In R, with Z-basis a = (a1,a2, • • • ,a„). Further let (co^g ,̂ * * * ,(£>n) be
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an integral basis for R over <D.

Write (by Hermite reduction, if necessary)

a 1 = -ico-i,

32  =  32iCJi+3220)2i

<*n =  3/7i(Di+an2C02+ ‘ ' ‘ + 3 nn(0n .

Then the norm N a=  l a ^ a ^  * * * | (see [Hecke 1923], §27).

Now if a is given in terms of generators, say a = <a<\, * - - ,ak>, then we may proceed to 

compute the norm as follows:

1. Set ty = a w ,  Find integral tyj such that ty = Set the 2nxn matrix

M

M =

2. For r 2 to k do

*>u

2.1. Set ty = arto/, 1</<n, and find integers ty j  with ty = S/ty/Wy- Now set

M:=M+
0
b,j

2.2. Hermite reduce M.

3. If we put C/ := Xy=i%®/» we see *hat (ci * ' '  * >cn) is an integral basis for a, and 

also that Na = Mu • • • Mm.

4.3. Multiplication and Division of Ideals

Let a and b be two ideals with Z-bases (a1( • • • ,a„), and (b1f • • • ,bn). Then it is very
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easy to find a basis for their product ab: simply consider the set of generators <a-,bj>, 

Then Hermite reduce their representation matrices with respect to an integral 

basis to produce a set of n basis elements.

Inverting the ideal a is slightly harder. Let a Z-basis for R be • ■ ■ ,&„)■ Now we

can determine matrices M, that represent multiplication by a, with respect to the to 

basis. Let M be the first n rows of the Hermitian reduction of the vertical concatenation 

of the Mi. (Alternatively, proceed as for the norm calculation: repeatedly fill in and 

reduce a 2nxn matrix.) Then the columns of AT1 form a basis for a-1 with respect to 

the to basis.

Of course, now the basis for a-1 is not expressible in terms of just integers, but that 

need not worry us. It is a simple matter to extract the Icm of the denominators, d say, 

manipulate da-1 as an integral ideal, always remembering to divide the d back out when 

we are finished.

Thus to divide Ideals, b/a, say, we find a-1 and d, multiply b by da-1, and return their 

product divided by d.

Incidentally, this provides us with a criterion for inclusion of ideals: recall we have a | b if 

az>b. So we can conclude the latter if b/a is an integral ideal.

4.4. The Different

The different, d, of an algebraic number field K  is a particularly interesting ideal, in that 

a prime p ramifies if, and only if, it divides the different. We can compute the different 

as follows:

The different is defined as d, where d = D_1 = (p1f ■ ■ * .P/,)-1, as a Z-module, where
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S(P/<D/) = 8,y, and (a^, • • • ,©„) is any Z-basis of K (S is the trace K:<D.)

Once we have found D, we may invert, as above.

Now suppose p/ = Y/i©i+Y/2©z  ̂* * * +Yh®n- So P/©y = £*//*© *© / 3nd then S(p/coy) = 

'L kyikS{(Ok(Oj) = 8/y, or

So P/ is the /,th column of (S(to/(Oy))-1.

We note for future reference that this last matrix is computed as part of the Round Two

Now, given d, it a simple matter to discover whether a prime ideal p ramifies: just divide 

p into d, and if the result is an integral ideal (i.e. has integer coefficients when 

expressed in term of the integral basis), then the prime ramifies.

This ideal sum of a and b is also easy to find, as is their gcd: in fact these last two are 

identical. For suppose c = a+b, then c = <a+b, a e a, b e b> =>a, and =>b, so c is a 

common divisor. Conversely, if d=>a, and d=>b, then d=>a+b, as d is an ideal, thus c is 

the greatest common divisor.

To compute we do the following: take bases (a1f ■ ■ • ,a„) and (b1f • ■ • ,bn) and Hermite 

reduce the concatenation of the corresponding matrices. Clearly this is their gcd: hence 

it is also their sum.

Y11 Yin
Y21 ' • • Y2 n

algorithm.

4.5. Addition or GCD
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4.6. Factorization

It is a standard (and basic) theorem that the ideals of an algebraic number field factorize 

uniquely: however, it is much harder to actually perform the factorization. For extensions 

where the integers are simply generated, i.e. of the form Z[a], for some a, we have the 

following, proved by Dedekind (see [Lang 1970]):

Theorem

Suppose the integers o of <D(a) are of the form Z[a], and p is a rational prime. Let a 

have monic minimum polynomial f  over Z , and f  = (rood P)- Then the

decomposition of p in o is as follows:

p = rip-8'.

where p/ = <p,f/(a)>, and these are prime ideals. □

But if we do not have a presentation of the integers of this form, we have to work a bit 

harder. (And some number fields do not have such presentations—see chapter 5). To 

factorize the rational prime p we look for extensions of the homomorphism Z -»Z /pZ  to 

o->o/p. Then the ideals p that divide p are just the kernels of the extended maps. 

Starting with any basis flD1( ©2, * * *, ©„ of o, we must preserve the multiplication tables

W / C O /(, 
k

where cijk e Z, so that

> ( * )
k '  '

where a is the image of a under the map. The equations (*) determine suitable images 

for the T3f under the map, from which we determine the p. It is then a simple matter to 

divide powers of the p into p to determine their degrees.

For example, consider the factorization of 3 in <D(a), where a3 = 19. This has integral 

basis
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Writing p = (a2+a+1)/3, we see

a2 = 3p-a-1, 
p2 = p+2<x44, 

aP = P+6.

Under an extension of the map Z->Z/3Z we must have

®2 = -a -1 ,

P2 = p+2a+1,

«P = p.

Thus a =  1, and p = 0 or 1, giving ideals Pi = <3, a-1, p> and p2 = <3, a-1, p-1>. In
t

fact 3 = p?p2.

Unfortunately, this does not seem to generalise easily into a useful algorithm, the 

problem being that the equations are not always as easy to solve as they were above. 

The technique of Grbbner bases [Buchberger 1984] could be applied to the modular 

equations to produce a triangular set of equations, but it is hard to see how to produce 

a result from them that is meaningful to the user. Clearly, though, there is some 

promise in this approach.

In [Bdffgen & Reichert 1987] the authors use Ford & Zassenhaus’ Round Four algorithm 

to factorize primes. This algorithm (described in chapter 7) finds the p-maximal part of 

<D(a) for any particular p, and this part will suffice for Kummer when we apply 

Zassenhaus’ Structural Stability Theorem [Zassenhaus 1980]. As every ideal divides 

some product of rational primes (i.e. its norm) we can recover the factorization of any 

ideal in this way (by trying to divide each factor of the rational primes into the original 

ideal).
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Given an algebraic extension of degree n, <D(a) of <D (say), with defining polynomial f , 

we can write an integral basis for it in the following form

bQ{a)/d0, t>i(oc)/cf1f • • • , bn̂ {a)!dn-^

where the b,(X) e Z[X] are of degree /, d/ e Z, and the ratios are in their lowest 

terms. (In particular b0(X) = d0= 1.) The number dn̂  we call the defect of the the 

polynomial f . Note that d, \ d/+1, so d, | d„_1t V /, and that the defect is not dependent on 

the particular basis chosen. It is of particular interest as every integer in <D(a) will have 

denominator dividing the defect when expressed in terms of the powers of a.

The defect is of great value in bounding the sizes of denominators of expressions in 

algebraic number fields. In the process of factorizing polynomials over algebraic 

extension of <D using the Lenstra algorithm [Lenstra 1982,1983,1987] an accurate 

determination of a bound for the sizes of the coefficients of the factors can make a huge
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difference in the total time taken to run. A little time spent in improving the bound is 

rewarded with a much greater decrease in time overall. See [Abbott 1988] for details.

We shall abuse notation and talk about the defect of an extension, but notice this is only 

meaningful when we have a particular presentation for the extension in mind. Thus, for 

example, if we let a = V5, and p = (1+V5)/2, then the fields Q(a) and <D(p) are identical, 

with Q-bases (1, a) and (1, P) respectively. But now the integer (1+V5)/2 is expressed 

as

(1+V5)/2 = (1/2)1+(1/2)a 

in terms of the first presentation, but

(1+V5)/2=(0)1+(1)P

in the second. The first presentation has defect 2, but the second has trivial defect, i.e. 

defect 1.

Unfortunately, not every algebraic extension of <D has a presentation with trivial defect. 

An example, from [Artin 1959], has defining equation a3-a 2-2a+8 = 0. This has integral 

basis 1, a, (a2+a)/2, and therefore has defect 2. Artin shows that the integers contained 

in the corresponding field extension cannot be written in the form Z[yJ, for any integer y.

In this chapter we look at ways of bounding the defect short of actually computing a 

basis. Initially we shall merely consider bounding the index of Z[a] in the ring of 

integers. As this is just the square of the product of all the df (the change of basis 

matrix has determinant their product), it is trivial that this (and its square root) will be a 

bound for the defect. We then sharpen this bound by use of certain criteria that allow us 

to divide out some primes from the index. Then we move on to a new statement and 

proof of a theorem that (in general) gives a much sharper estimate than the index.

But first we describe some special tests that are occasionally of use.
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5.1. Special tests

The Defect

In this section we depart from our usual procedure by being interested in the sign of the 

discriminant of a polynomial. If f {x) = xn+an_1xn_1+ • • *+a0 with conjugate roots 0(/), 

we choose the sign of the discriminant such that

disc{ f)  = n ( e (/)- e (/))2 .
/</

There is a little theorem due to Stickelberger that can sometimes be of use in 

determining an integral basis. Let k be an extension of degree n over Q, and a a rank 

n Z-module in o. Then

disc{a) s o or 1 (mod 4).

This is proved by counting the signs on the elements in the expansion of the 

determinantal definition of the discriminant [Artin 1959].

So now suppose we have such a module a, with discriminant d. If it happens that 

dip2 ^ 0 or 1 (mod 4), for every prime p whose square divides d, then a is maximal.

Thus, say, for f  (x) = x3-5x2+2 with discriminant 892 = 22223, we know that the basis 

(1, 0, 02) is maximal as 892/22 = 223 *  3 (mod 4).

This can be augmented with the following: Suppose f  (x) = xn+an̂ x n~A+ • • • +a0 with 

root 0 is an p-Eisenstein polynomial. Then <D(0) is p-maximal. For f  to be p-Eisenstein 

it means that p |^ - f V/, but p2[a0 for the prime p. (This is easily proved using the 

Dedekind criterion of section 5.3: we see f  ■ xn (mod p), so f  0 = x, = xn~\ and h =

(a„_1x/l"1+ • ■ -+a0)/p. Now ao/p is non-zero (mod p), and so g *  = gcdp{h ,f^)=  1. 

Thus p does not divide the defect of <D(0).)

So, for example, for f  (x) = x3-2x2+2, which has discriminant -44, Stickelberger does 

not apply. Only 2 can possibly divide the defect, but f  is 2-Eisenstein, and so is 2-

-5.3-



R J Bradford The Defect

maximal, and therefore globally maximal. Thus the basis is the trivial one.

5.2. Bounding the Index

Given the defining equation of an algebraic number field Q(0) it is straightforward to 

compute the discriminant, D, of that equation. We have the following theorem that 

allows us to make an initial estimate on the size of the index of Z[0] in its ring of 

integers (see [Hecke 1923]).

Theorem

Let p = cn_10n-1+ • • • +c0 be an integer in the field <D(0), of degree n over <D, with the 

cf e <D. Then Dq e Z . Thus the q  have denominators dividing D.

Proof

Consider the field conjugates p(/) = cff_10(/)+ • • • +c0. These equations may be inverted 

to determine the q  in terms of the p(/) and 0(/) as their determinant A(1,0,02, • • ■ ,0"-1) is 

non-zero, where A is the Vandermonde determinant of the 0(/). So Ac* = Ak, where Ak 

is a polynomial in p(/) and 6(/), and hence is an algebraic integer.

Now A2ck = AAk, where the left side is rational, and the right side is an algebraic 

integer. Hence the left is a rational integer, i.e. A2ck = Dck e Z. □

Thus the square of the index in the ring of integers divides the discriminant D, so a 

(usually very rough) multiplicative bound for this index is simply the largest square 

divisor of D (i.e. the largest integer whose square divides the discriminant), if the full 

factorization of D is too hard to find, we can estimate the largest square divisor by 

taking the square root of D. However, such a bound, being non-multiplicative—it is not 

necessarily a multiple of the true number—is less useful. For example in the 

reconstruction of rationals from modular representations [Wang et al, 1982] it is easier to 

reconstruct a rational of known denominator (which is equivalent to reconstructing an
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integer) than it is to find a rational with merely a bounded denominator.

If we are able to factorize large integers—which is in itself a very interesting problem 

(see, for example [Brent 1980,1985] [Morrison & Brillhart 1975] [Knuth 1981] [Lenstra 

1985] and the January 1987 edition of Mathematics of Computation as just a small 

selection of a large literature)—we can find the squared part exactly. This factorization is 

not as daunting as it first might seem, as a good method for finding the discriminant of a 

polynomial [Collins 1967] can return its result in a partially factored form. Also, in a 

typical case, most of the factors are small, and so are amenable to trial division. 

However, once these small factors are removed, factoring the remainder may be fairly 

difficult: in contrast with the factorization of polynomials, finding the square-free part of 

an integer appears to be a very difficult problem. We may use [Rabin 1980] to 

determine if the residue is prime, but if not, we can resort to the above large-integer 

factorization methods.

Once having found the squared part, we may refine it further by application of methods 

of Zassenhaus [1975] or Vaughan [1985] (see the next section). These determine 

whether a given prime divides the defect. Thus, if a prime dividing the squared part 

does not divide the defect, we may divide it and its powers out from the estimate. 

Unfortunately, this also appears to have little effect on the whole, but can be useful (see 

table below), particularly when eliminating large primes.

5.3. Zassenhaus

Two papers [Zassenhaus 1975] and [Vaughan 1985] describe algorithms that determine 

whether a given prime divides the index of Z[0] in its integral closure. They are quite 

dissimilar, the first employing a simple factorization (mod p), and the second involving 

relatively complicated manipulations of characteristic matrices.
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Some Estimates of Defects

polynomial discr sqrt largest square 
divisor

p divides 
defect

sqrt
index

1 x2- x+3 11 3 1 1 1

2 x3+2 2233
=108 10 2.3

=6 1 1

3 x4—x+1 229 15 1 1 1

4 x6+3x5+6x4+x3
-3 x2+12x+16

o6o19
=7.?010 272735 2339

=157464 2339 2334
=648

5 x9-1 5x6-87x3-1 25 2634256
^O 26

2332153
=1013

2332153
=1013

32153
=1012

31253
=7,107

6 x9-54
o8o42

=J.?o*
24321

=2.1011
24321 

=2.1011
321

=101°
313

=2.10®

7 x3-19 3319*
=9747 98 3.19

=57 3 3

8 x2+x+7 33 5 3 3 3

Here we give a proof of Zassenhaus’ method, and produce a test that he describes as 

Dedekind’s Criterion. We generalize the proof to cover the case of R{Q):R, where R is a 

Euclidean domain (e.g. Z  or <D[X]). [Ford 1978] only considers the following in the case 

R=  Z : we shall keep to a suggestive notation. We begin with an observation of 

Berwick [1926]: let 0 have minimum polynomial f(t ) over R. Suppose 

<|>(f)=fr+cr_i fr-1+ • • • +c0 is a polynomial of least degree such that <J>(0)/p is integral.

Here p is a prime element of R (e.g. an irreducible polynomial in <D[X])- So r< d f, the

degree of f  in f. We call R[Q] p-maximal if r -  3f ,  and this corresponds to p not

dividing the index of R[0] in its integral closure, or equivalently, p not dividing the

denominator of any integer.

Write f  = g<jH-s, 3s<3<|>, so that 0 = Now, the first term on the rhs is
P P

integral (by the definition of <j>), so s(0)/p is integral. Hence, (due to the minimality of <)>) 

p | s. Thus <|>| f  (mod p).
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Now consider the minimum polynomial for $(0), w(t) = <j>(f)®+ae_1(|)(f)®"1+ • • • +a0, say, 

with w(0) = 0. We see p divides the a, , and f  \ w. Hence f  | <|>e (mod p).

Thus if f  = p®1 ■ • • g°®, then (j> = p j1 • ■ • p/*, with 1 <f,<e/.

Suppose R[0] is not p-maximal, so Then there must exist a y with fj<ej. Set g = 

Py.  Now g |<J>, and gty \f, both divisions (mod p). So define <J>2 by (J> s g$2t and (j>3 by f  *  

p<M>3 s P24>2<t>3- This gives f  = p2<M>3+p<j>4 = 02<M>3+P£<I>5+P<}>6. , on dividing <t>4 by

9-

Let b =  p(0)<|>2(0)/P. which is integral. We see <J>2f = p2<l>2<l>̂ P̂ <l>2<l>r*-p<l>2<J>6. or 0 = 

P2(0)<J>|(0)<J>3(0) + P9{Q)$2$yt>5(©) + P<M0)<fe(0) = P2b2$d$) + P2b$5{fy + P4>2(Q)<t>6(®)* 

And now <J>2(0)<J>6(0)/P = —/>2<>3(9)—̂><t>s(0). But 3(<f>2̂ e)<^(<t)25r) = dg, so we must have 

<M>6 = 0 (mod p) (as <|> has minimal degree).

Hence s o (mod p), or <t>6 = p<|>7. Finally, we get f = 02<M>yi-pg^5+p2<|>7, where g and 

the <>/ are all monic integral polynomials, and 3p>0. We call this a Berwick 

decomposition of f.

Conversely, suppose we have a decomposition f  = g2ha¥pgh^+p2h2, where g, h0, /?«,, 

h2 e fl[f], each monic, and dg>0. Let b = g{Q)h0{Q)/p. Then d{gh0)<df, so b 4 R[0]. 

But b2+h^{Q)b+h0(Q)h2{B) = 0, and the /?;(0) are integral. Hence b is integral.

We have proved:

Lemma (Berwick Criterion)

R[0] is not p-maximal exactly when f  (f) has an expansion

1 = g2h0+pgh,+p2h2,

g,hj g R[t], each monic, and dg>0. □

Berwick’s criterion can be reduced to another, easier to handle, criterion:
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Lemma (Dedekind Criterion)

Let f  have factorization into monic irreducibles f  = gV ■ • * qV  (mod p). Let f  0 =

0 ! • • • gr , and ^  = p®1"1 • • • g fr '. Write h = ( f - f o f j l p ,  and g *  = gcdp(h ,f,) (the

gcd being taken (mod p)). Then R[Q] is p-maximal if, and only if, 9g *  -  0.

Proof

Suppose we have a Berwick decomposition. Take an irreducible factor $ of g. Then 

clearly £ \g *

Conversely, given the relation f = f Qf^+ph, with g *  = gcdp(h ,f0), and dg*>0, we take

g to be any irreducible factor of g *  (mod p), and this leads to a Berwick decomposition.
□

Now, given either criterion, we can discover easily whether a given prime divides the 

index: R[Q] is p-maximal if pfindex. So given a prime (usually one whose square 

divides the discriminant—any others will not divide the index) we turn the handle on the

Dedekind criterion, and p | index exactly when dg* *■ 0.

So we can now throw out a few primes from the index estimate, perhaps. See the table 

above for examples. Unfortunately neither this, nor the following section, will supply us 

with an estimate of the exponent of those primes that do divide: it is a purely boolean 

result.

5.4. Vaughan

Vaughan [1985] also gives a criterion that distinguishes primes that divide the index. 

However, this method is much more involved and harder to understand than 

Zassenhaus’.

Here is an outline of what happens:
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Write f  in the slightly different form

f( t)  =  a0.

We may suppose p2\cSsc f  (otherwise p will not divide the index). Factor f  (mod p) 

into irreducibles

n o  = f i w ) e/
1=1

If all the e/ = 1 then p does not divide the index. Else find the companion matrix C for 

f : this is just

C =

0 0 
1 0 
0 1

0 0

0 a0 
0 a, 
0 a2

1 &n-1

For each / with e,>1 calculate f f{C) (mod p2). If this last matrix has zero determinant 

(mod p2), then p divides the index. (In practice, we just use “Gaussian” elimination 

(mod p2).)

Clearly this involves far more work than Zassenhaus’ method, but Vaughan goes on to 

show to how to actually construct an element a of Z[0] with a/p integral when p does 

divide the defect.

Vaughan also gives a cheap sufficiency test for a prime p to divide the defect:

If the defining polynomial is xn+an_,xn~'+ • • •+3 ^+ 3 0  over Z , and p la ^  
p21 a0, then p | defect.

So if this happens, we need go no further—p must be included in the defect.

It is very easy to prove this using the Dedekind Criterion:
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Suppose f(x ) = xn+ ■' • +a2x2+pa1x+p2a0. So f  ■ xn+ • • • +a2x2 (mod p). Hence 

x \ f o> * | f 1f and whence x2| f 0^i- Then h = ( f - f 0f A)/p=  a1x+pa0+O(x2) s

a!x+0(x2) (mod p). So if g *  = gcdp(h,f^) we see x |p *  i.e. 9p*>0, as required. □ 

So, in fact, this holds for ©[X], say, as well. Again, this is not a necessary condition, 

and it will only cast out a few primes in general. See the above table for examples.

This result supplies us with a lower bound for the probability that a random polynomial 

has a non-trivial defect. For a prime p divides a1 with probability 1/p, and its square 

divides a0 with probability 1/p2. Thus p divides the defect with probability 1/p3. So 

Pr(f has a defect) £ £ p1/p3 = 0.175. More than a sixth of all polynomials have a non

trivial defect. This is a very conservative estimate, as tests on random polynomials 

(degrees less than 10, coefficients of absolute modulus less than 1000) indicate that as 

many as a third of polynomials have a non-trivial defect. Thus we would expect the 

above test to notice the defect about 50% of the time it is there. This too is borne out in 

practice.

5.5. Bounding the Defect

Now we turn to the problem of bounding the defect. Any of the index bounds above will 

serve as an estimate for the defect since the index is just the square of the product of 

all the denominators of a basis when expressed in terms of the generating elements. 

However, for all but the most trivial of minimum polynomials the square root of the index 

bound is far in excess of the defect. For example, in the table above, example 5 has 

index with square root 31253, whereas the defect is actually 3352.

The next step in refining the bound is the following:

Lemma (see [Hecke 1923], §36)

Let a be integral in ©(0), where the integer 0 has minimum polynomial f(x ) =
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xn+cn̂ x n~‘i+ • • • +c0. Then a can be written in the form

a = -2 R  
r ( 0 ) ’

where g{x) e Z [x].

Proof

Consider the polynomial

g(x) = f g (/) .W - 
£  x -e w

where the a(/) are the field conjugates of a. Then g is a polynomial over the rational 

integers as it is defined over Q by Galois theory, the a(/) are integers, and

is an integral polynomial.

Now putting x = 0, we see g(0) = a f  '(0), as required. □

We define the reduced resultant of coprime integral univariate polynomials f  and g 

resr{ f ,g) = min{ positive integers n = Af+Bg, for some integral polynomials A, B }. 

When f  and g are not coprime, define resr{ f  ,g) = 0. This number divides the usual 

resultant, and is often much smaller. [Rothstein 1984] calls this the pseudo-resultant. 

Analogously we have the reduced discriminant dr{ f ) = res r{ f ,f ') , and it is with this that 

we shall primarily concern ourself.

The previous lemma leads directly to 

Theorem

d efec t(0 |d r( 0 -

Proof

From the definition of the reduced discriminant, we have two polynomials A and B over
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Z  with A f+ B f' = dr . Now A{Q)f (0)+B(0)r(0) = B(0)r(0) = df . So 1/r(0) = B(0)/df. 

Hence, from the previous lemma, any integral a can be expressed as a =  g{Q)B(Q)/6r, 

and g{x)B{x) e Z [x]. □

This is often a great improvement over the classical result—see the table below.

The reduced resultant of two polynomials f  and g over Z  is easy to find: simply use the 

extended Euclidean algorithm to find polynomials A and B over Q with Af+Bg = 

gcd(f ,g). If the gcd is non-trivial (i.e. has positive degree), then the reduced resultant is

0. If not, so the gcd is 1, write A and B as A'/a and B'/b, with A \ B ' over Z  and 

rational integral a and b, and the fractions in their lowest terms. Then the reduced 

resultant is lcm(a,b).

We can also apply Dedekind’s Criterion to the polynomial and, if we are lucky, we can 

eliminate a few primes from the estimate for the defect—for example see polynomials 5 

and 7 in the table. With number 7 we are particularly fortunate to discover the defect

Some Estimates of Defects

polynomial sqrt
index

index
bound d r p divides 

defect
actual
defect

1 x 2- x + 3 1 1 1 1 1

2 x 3+ 2 1 1 1 1 1

3 x4-x+1 1 1 1 1 1

4 x8+3x5+6x4+x3 
-3 x2+1 2x+1 6

2334
=648

2339
=157464

2335
=1944

2335
=1944

2232
=36

5 x9-1 5x6-87x3-1 25 31253
=7.107

32153
=1012

2.3753
=546750

»
£

 
S

>g
CO 

Is
 

CMII

3352
=675

6 x9-54 313
=2.10®

321
=101°

2.35
=486

35
=243

33
=27

7 x3-19 3 3 3.19 3 3

8 x2+x+7 3 3 33
=27

33
=27 3
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exactly.

Example

What Is the reduced discriminant of f{x ) = x2+ax+b, where a, b e Z?

We find

4 f-{2 x+ a )fz = Ab-a2,

so

j  / £ \ a2—4bdr(' )  = 2pccf(a2-4b,a,2,4)

But a2-4b a a (mod 2), so this simplifies to

a2-4b
d ,( /)= <

a even

a2-4b a odd

Example

We estimate the defect for the radical extension f(x) = xn-a , where a e Z  is non-zero. 

Now (-M a )f+ {x lna )f'=  1, so the reduced discriminant is na. Hence the defect divides 

na.

It is possible to sharpen the estimate for this special case, as pointed out by Trager 

[1987]. Let 0n = a, and consider the field <D(0). Extending the field if necessary, we 

may assume it contains a primitive root of unity, go, say. Define the automorphism o r by 

o(0) = g o 0 , and the operators
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Then T/(0y) = nQJ if / = j ,  and is 0 otherwise. So if a = £3/0 ', 3/ e Z , we see 7}(a) = 

/7a,0'. Now the operators 7/ map integers to integers, so if a is an integer, then /73,0' 

must also be an integer. Hence the essential defect, that part of the defect that does not 

arise from perfect /7th powers in 0n“1, divides n. The inessential part can be obtained by 

inspection of the factorization of a.

Thus, for f{x )  = x 3- 1 9 ,  the reduced discriminant (without Dedekind) predicts a defect 

dividing 3.19 = 57, whereas the above proves it must divide 3, as 19 contains no perfect 

squares or cubes.

We may also use one of the tests from section 5.1: if p exactly divides a, then f  is p- 

Eisenstein, and hence p-maximal. This slightly sharpens the above in the case that p 

also divides n. So, for example, the extension x3-3  has trivial defect.

It appears that to find a general tighter bound for the defect one must calculate it 

exactly. One way of doing this is to compute an integral basis and inspect the 

denominators of the basis elements: the defect is the Icm of these, which is simply the 

largest denominator.
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6. Special Cases

This chapter describes the integral bases for some particularly simple extensions, 

namely quadratic, cubic and cyclotomic extensions. These benefit from special treatment 

as their bases can be written down with minimal calculation, and in the cubic case, with 

reference to a fairly small table. We also briefly consider the case of the general radical 

extension.

Quadratic extensions, being the simplest (non-trivial) ones, are by far the most 

commonly occurring ones; further their shapes are extremely well-known (but we must 

still be a little careful—see the example later), so it makes sense not to have to bring on 

the full sledgehammer of a general basis algorithm to crack this nut.

Cubic extensions, however, do not enjoy the privilege of being taught extensively in 

every undergraduate number theory course. They have been fairly well analysed, 

though, and we are able to construct their bases by combining elements of previous
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authors’ work, namely that of Llorente and Nart, and of Voronoi. We use this to give a 

new proof of the shape of an integral basis for a cubic radical extension.

Whereas the above two cases are fairly common, cyclotomic extensions are perhaps 

less used in “ real world” applications. However, we would like to treat them specially as 

they have trivial (defect = 1) bases, and so require no computation to write down. But 

then, of course, we must identify exactly when we are considering such a polynomial, 

and doing so is not easy. For example is x16+x14-x 1 °+xB-x 6+x2+1 cyclotomic or not? 

We assume that we might consider degrees so large that simple table look-up is 

infeasible. By finding a bound for the inverse of Euler’s <|> function we are able to 

produce a test for the cyclotomic property. Alternatively, we can use the results of 

appendix D.

Radical extensions are another class of important and common extensions. We can 

bound their defect simply and sharply, and this may be enough for many purposes 

where the time taken to calculate the complete basis and the exact defect can outweigh 

the gain in time from their knowledge. Factorization of polynomials over algebraic 

number fields is a good example of this. [Berwick 1926] gives a classification of 23 

different cases for the extension by a  root of xn-m , but does not give explicit bases in 

every case.

We start with the simplest case, the quadratics.

6.1. Degree Two Extensions

Although the contents of this section are well known, we include them for completeness.

Let a  be a  root of g{X) = X 2+ a X + b . If there exists a rational prime p  such that p \a 

and p2\b  then a /p  is an integer satisfying X 2+ ( a /p ) X + ( P /p 2) . Thus we may assume
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this is not the case.

If a is even, then we can substitute X -a/2 for X giving /(X ) = X2-(a/2)2+b, and we 

may consider the extension by a root of this equation, as it contains the same integers 

as the original.

If, now, a is odd, then letting X->X-a /2 we get X2-{a/2)2+b, and on putting X-»(1/2)X 

this reduces to X2-a 2+4b, or t f - d  where d = a2-4b. Note that d = 1(mod 4), as a is 

odd. Thus, providing we note the denominator of 2 and the shift by a/2, we can study 

this equation in place of the first.

In either case, we may consider extensions by square roots of integers that are square- 

free (X2-u 2v being replaced by {X/u)2-v ) (We always assume that we are able to find 

such square-free decompositions).

6.2. Degree Two Bases

Now given f  (X) = X2- d ,where d is square-free, we wish to construct an integral basis 

for Q(Vd )/<D. This has discriminant Ad.

So we want to find conditions on m, n e <D such that G = m+nJd is an integer. But this 

is true just when both of 2m and m2-n 2d are rational integers (being the coefficients of 

0’s minimum polynomial). Then (2m)2-d{2n)2, and whence d{2n)2 are both integral. But 

d is square-free, so 2n must be an integer. If 2n is odd, we get (2n)2 a l(mod 4), and 

then {2m)2-d{2n)2 a 0(mod 4) gives (2m)2 a cf(mod 4). Hence d, being a square 

(mod 4) is either 0 or 1(mod4). The former is impossible, as d is square-free. 

Therefore d = 1(mod 4) and 2m is odd.

So we have: if d = 3(mod 4), then 2m and 2n are even, and the integers of <D(Vtf) are
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m+nVd for m,n e Z . If d s i(mod 4), then they are of the form m+n4d
2

, with m b

n(mod 2).

Thus integral bases are as follows:

if cM 1(mod 4), a basis is

with discriminant 4d, and if d s 1(mod 4), a basis is

with discriminant d.

Now looking back at the original defining equation, viz X2+aX+b, we see the second 

alternative occurs exactly when a is odd, tying in nicely with the 2 in the denominator of 

the integers.

In summary, then: if a is even, the integers are Z[Vd] or Z [ ] with d = {al2)2-b , 

according to whether d =  1(mod4) or not; if a is odd, the integers are those of 

Q(— ) with d = a2-4b. Now in this latter case suppose d = e f2, where e is square-

Find the basis for the extension by a root of X2+X+7. Every schoolperson knows how to 

find the basis of a quadratic radical extension, and it always has defect 1 or 2. So in this 

case the defect is “obviously” 1 or 2. But this is not so: comparing with the above we

free. A basis for X2- ^  is (1, Vd/f+1
2

), which is (1, (2g+a)/f +1.   2g+a+f.
2 ' ’ 2 f }

M g+(a+f)/2 
11 f

), as a+f is even.

Example
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see d =  12-4.7 = -27=  33. So e = 3, and f  = 3. The basis is (1 ,a+^ 3^ ) or
O

n + 2
(1,—r —). The defect is therefore 3, which is a little surprising the first time you comeO

across it.

6.3. Degree Three Extensions

Whereas degree two extensions are easy to understand, there is relatively little general 

knowledge concerning degree three extensions—extensions by roots of cubic 

polynomials. However, while it is true that these extensions are harder to study, we can 

still reduce the problem to almost a simple table look-up.

Starting, as with the degree two extension, with the full polynomial F(X) =

X3+aX2+bX+c, we make the substitution X = X-a/3, to give G{X) =

X3+(-a2+3b)x/3+2a3/27-ab/3+c.

If a s 0(mod 3), a = 3d, say, then G is just X3+(b-3d2)X+2d3-bd+c, and we study the 

equation X3-AX+B, where A = 3c f-b , and B = 2d3-bd+c.

Suppose a s  l(mod3), a =  3cf+1, say. Then on letting X->X/3, G becomes 

X3+3(-9c/2-6d+3b-1 )X+54cf3+54d2-27bd+18cf-9b+27c+2 after clearing the 

denominator. Putting A = -(coefficient of X) = 3{9d2+6d-3b+1), and B = (trailing 

coefficient) = 54cf3+54cf2-27bcf+18cf-9b+27c+2, we study the equation X3-AX+B. We 

note for future use that A ■ 3(mod 9), and B a A-l(m od 27).

If, now, a s 2(mod 3), a = 3d+2, say, then G transforms to X3-AX+B with A =

3(9d2+12cf-3b+4), and B = 54d3+108cf2-27bcf+72cf-18b+27c+16. Again we note A = 

3(mod 9), and this time B a -(A-1)(mod 27).

The paper [Llorente & Nart 1983] gives a complete list of alternatives for the
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computation of the index of the ring of integers of a cubic extension in its field of 

fractions. They use the following notation:

we are considering a root 0 of the irreducible polynomial F{X) = X^-aX+b, where 

a,b e Z . F has discriminant A = 4a3-27b2, and the ring of integers O has discriminant 

D, where A = /(0)2D, and /(0) is the index of 0.

For a rational prime p, and m e  Z  write vp{m) for the degree of the greatest power of 

p dividing m, and put vp(Q) = <» with the usual conventions.

First we may assume there is no rational prime p such that

vp(a)>2 and vp{b)>3,

for then we may just consider the integer 0/p with minimum polynomial 

X3-{a /p2)X+{b/p3).

Then we have:

If the rational prime p>3, then

vP{D) =
2 1 <vp{b)<vp{a) 
1 vp(A) is odd 

0 otherwise

For p = 2

v 2( D )  =

3 v2(A) is odd

1 sv2(b)sv2(a)

v2(A) even and a/2Vz<4) ■ 3(mod 4)

0 otherwise

and for p = 3
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f  v3(a) = v3[b) -- 
[  a = 3(mod 9),

5 1^v3(b)<v3(a)
=  2
3 \b ,b 2£ 4(mod 9)

H a )  = v3{b) = 1 
H D ) -  3 3 1 a, 3 \b , a ^3(mod 9), b2 4 a+1(mod 9)

a s 3(mod 9), bz = 4(mod 9), b2 4 a+1(mod 27)

1 = v3{a)<v3{b)
3 1 a , a ^ 3(mod 9), b2 = a+1 (mod 9) 
a ■ 3(mod 9), b2 = a+1(mod 27), v3(A) odd

3fa
a *  3(mod 9), b2 = a+1(mod 27), v3(A) even

As a computational note, we need only consider primes dividing A, as the above imply 

vp{D)>0 =» p | A.

Now this immediately gives us /(0) = VaID , and allows an easy application of Voronoi’s 

method, as follows:

Theorem (Voronoi) (see [Delone & Faddeev 1964])

Let 0 be a root of F(X) = tf-aX + b , where a,b e Z, and suppose there is no integer

whose square divides a and whose cube divides b. Then the integral basis of Q(0) can

be found as follows:

1. if the congruences

a =  3 (mod 9) 
b = ±(a-1) (mod 27)

hold, then find the largest square factor d of A/729 (which is an integer) for which there 

exists a solution t of

F '(f) as 0 (mod 9d)

F(t) = 0 (mod 27cf2)

with -3d/2<t£3d/2. Then a basis is
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1 JM  G2+fG+ (t2-a)
’ 3 ’ 9 d ’

with discriminant A/729d2.

2. If the above congruences are not satisfied, then find then largest square factor d of A 

for which there exists a solution t of

P (f) *  0 (modd)
F(f) = 0 (modd2)

with -d/2<f<3d/2. Then a basis is

a

with discriminant A/d2. □

This ties in neatly with the denominator of 3 introduced by elimination of the X2 term in 

the original full equation.

Now we know that /(G) is just the product of the denominators of the elements of the 

basis, so in calculating / we have already determined d. In the first case d = /(0)/27, 

and in the second case d = /(G) exactly.

Example

Find an integral basis for the extension of 0(a) of O where a is a root of g{Y) =

y 3-3V2-3V '-3. This is not in the form required, so we substitute X  = Y+1 to give

f  (X) = X3-6X -3, and so a = 6, and b = - 8. We find A = 864 = 2533, which has largest 

square divisor 2432.

Now using the tables above:

p = 2: v2(A) = 5, which is odd, so v2(D) = 3.

p = 3 :3 1 a, 3 fb , a ^ 3 (mod 9), and b2 £ a+1 (mod 27), so v3(0) = 3.
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p>3: vp(A) = 0, so vp(D) = 0.

Hence we have D = 2333> and /'(0) = V2533/2333 = 2. Therefore the value of cf in 

Voronoi’s congruences must be 2.

It is simple to check that the second set of congruences apply (a £ 3(mod 9)) with t = 0. 

Thus a Z-basis for 0(0), where f{Q) = 0 is

1 .  9 ,

which is equivalent to

1 . 9 .  - f -

Substituting back a = 0-1, we get (after simplifying)

„ a2+1
1 . — —

as a basis for the original problem.

The bound given by Llorente & Nart has allowed to pass directly to a basis, without 

testing all of the square divisors of 2S33, and has reduced a potentially long algorithm to 

one that was simple and quick to do by hand.

6.4. Cubic radicals

A common case for the cubic extension is an extension by a cube root, i.e. by a root of 

a polynomial of the form X^-b. The above analysis follows through directly, giving a new 

proof of the shape of integral bases for cubic radicals (e.g. [Cassels 1987]).

Let F{X) = X3-^ , with b cube-free, b = e f2, say, with e square-free, and F(0) = 0. 

Now we have A= 27b2 = 27e2/ 4= 3(3e f2)2. So the largest square divisor of A is
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(3e f2)2. Also a = 0 ^ 3(mod 9), so we are in the second case of the Voronoi method, 

and the defect d is Va/D , or d2 = 27e2f 4/D.

Then for p = 2 or p>3 we see vp{D) = 2 or 0 according to whether p \b  or p\b . For 

p = 3, we have v3(0) = 5 if 3 |0 , and, if 3 fb, we have v3(D) = 1 or 3 according to 

whether b *  ±1(mod 9) or b 4 ±1(mod 9).

Therefore

D =
35n p 2 s ip

3 n P 2 P s ±1(mod9), 

33r iP 2 otherwise

where the product is over primes p | b, p *  3.

The field discriminant is A = 33b2, thus

/(0)2 = A/D = 3 2b2/D

3I1P

3 b
n p

b
U p

3| b

b = ±1 (mod 9), 

otherwise

or

m  =

3I1P
3/7

n p
b

U p

3| b

b = ±1 (mod 9).

otherwise

Now b = e f2, with e square-free, so this reduces to
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f  3
/<e> =  {  ,

3f b = ±1(mod 9) 
otherwise.

We are now in a position to use Voronoi’s equations.

If b £ ±1(mod 9), then d = f  in the equations, and a solution to

3f2 = 0 (mod f)  
t3-b  = 0 (mod f )

is simply t = 0. Therefore a basis is

1 . e ,

The case of b = ±1 (mod 9) is a little more tricky to work through.

So suppose b = ±1(mod 9). Note that b s b3 = e3f 6 = e3(mod 9) by Fermat’s theorem 

(4>(9) = 6). We wish to find a solution to

f
3f2 = 0 (mod 3 0  
t3-b  a 0 (mod 9 /2)'

If f  s 1(mod3), then f 3 = 1(mod9), so (e f)3= e3f 3 = b. 1 s  b(mod9), and 

f z\{e f)3-b  = (e f)3- e f2, (and 3 fO . hence {e f)3= b(mod 9^2). Thus t = ef satisfies 

the second equation; it trivially satisfies the first. So a basis is1

 ̂ A B2+efto-e2f 2
1’ 0* 3? ’

which is equivalent to

4 A Q2+ef&+f 
3 f  ’

as e2f  s l(mod 3) implies e2f 2 = 1 (mod 30 -

If, now, f  s -l(m od 3), so f 3 = -1(mod 9), then a solution is t = - e f , since {-e f)3 =

1 b is reversed in sign with respect to Voronoi’s equations, and so must t be as well.
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- e3f 3 b (-b)(-1) b d(mod 9), and f 2\{-e f)3-b  as before. So a basis is

, a 02-e f 0+e2/ 2 
’ ’ 3 f

or

, 0 Q2-e fb - f
' ’ 3 f

as e2f  b -1(mod 3) implies e2f 2 = - f  (mod 3f).

There is a slight infelicity in the above, as we have not necessarily found a t with 

-3 f  /2<t<9f2/2. However, if we replace ef by its least residue (mod 3 0 . the solution 

follows through as before (since (e f-k .3 f)3 a {e f)3{mod 9), and f 2\{e f-k .3 f)3).

We have proved 

Theorem

Let b be cube-free, b = e f2, say, with e and f  square-free, and 0 a root of X3-b  = 0. 

If b 4 ±1(mod 9), then an integral basis for Q(6) is

1, e, -y-,

and if b a ±l(mod 9), a basis is

„ (1+e0+s02/n
1. e. 3

with s = ±1, s = f  (mod 3). □

See [Cassels 1987] for an alternative derivation.

So the defect when b = ±1(mod 9) is 3 f , and when b 4 ±1(mod 9) it is simply f.

Thus a surprising example is 93-1 9 =  0, which has basis (1, 0, (1+190+02)/3), or 

equivalently (1, 0, (1+0+02)/3).

An exhaustive discussion of degree three extensions can be found in [Delone &
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Faddeev 1964].

6.5. Cyclotomic Extensions

(The ideas in this section have been expanded and improved in [Bradford & Davenport 

1988], which is reproduced in appendix D)

The next special case to consider are the cyclotomic extensions, and these have a 

particularly simple form of integral basis.

A cyclotomic polynomial is an irreducible factor of xn-1, for some n. Some simple 

examples are x2+1, x4+x3+x2+x+1, and x8-x 8+x4-x 2+1—these are all irreducible factors 

of x60- ! . The shape of a basis for an extension by a root of such a polynomial is given 

by the following theorem:

Theorem (see [Cassels 1986])

Let C be a primitive root of unity, where p is prime. Then an integral basis for Q(£)/Q 

is just (1 * * - □

It may not always be easy to spot that a polynomial in hand is cyclotomic, as the form 

of the coefficients is not a true guide: for example the largest irreducible factor of x105-1 

has 2 as a coefficient, and there exist cyclotomic polynomials with arbitrarily large 

coefficients [Vaughan 1974]. The leading and trailing coefficients must be ±1, though. 

The polynomial must be of degree <|>(n) for some n, and therefore must have even 

degree (except for the polynomials x±1), as <j>(n) is even for n>2.

We may extend this to restrict the degrees of cyclotomic polynomials further as follows:

suppose 2* ||<j>(/7). Then n has at most k distinct odd prime divisors. For if n is even,

8 8 
n =  2rp jp /8/ with r> 1, then 2r+s~112r~1 J 1 f j(p ,-1 ) = <J>(n), and so r+s-1<fc. Then

T lP i /=1/=i
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a 0
s<k. If n is odd, n = U p P . then 2s | a

n = ${n), and s^k, as before.
a

UP!
/=1

From this we see if m is twice an odd number, then m cannot be a <|>(n), for any n, 

unless m+1 is prime.

Thus it is impossible for a degree 14 polynomial to be cyclotomic: nor can a degree 50 

polynomial be so.

Now given a polynomial with a satisfactory degree, how can we determine if it is actually 

cyclotomic? Of course, we may take a (symbolic) root and raise it to successive powers 

to see if it reaches unity, but the question arises of when to stop and answer “no”. 

Similarly for dividing the polynomial into Xn-1 for increasing values of rt. However, we 

have the following theorem:

Theorem

n = 0(<|>(n)1+c) for any fixed e>0.

Proof

Let e>0 be fixed, and put f (n ) = . Then f{n)  is multiplicative (i.e. / ( as) = f{r)f{s)

when gcd{r,s) = 1 ). And for a prime power pm

m

m

= 2 p

Thus /  (pm)< 1 if 2p , which is to say pm̂ 2 e.
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Hence by the multiplicativity of f , for any integral n>2, we find f{n)zC , where C =

n maxf f  (pm), 1} depends only on e.
1+j.

pm<2 e 

1

So n 1-f€̂ Qj)(n), which means /?£Cl4€<|>(/7)1+€, or n = 0(<|>(n)l4€), as claimed. □

This is the “best possible” result of this form, as for every C>1, there exists an n with 

n>C$(n). To see this we simply take n = JJp, a product of so many distinct primes that 

PiTT— ->C. (That this can be done is itself a non-trivial fact related to the divergence of
Pi- 1

the sum 2i°°1/A- See [Hardy & Wright 1979]).

From the proof of the theorem we have 

Corollary

n̂ 3<j>(n)3/2 for all n^2.

Proof
1 2

n ^  n 2 i+~ _ 0
Here e =  1/2, f{n ) =  . =  - t t t .  an d  the prime powers less than 2 6 =  2r are 2, 2Z,<|>(n)

3, 5, and 7. So

C=  n  max{f(Pm),1}
p m < 2 3

= f(2 ).f(2 2)./(3).1.1 as f  (5), f(7)<i

2 2/3 4 2 /3  g2/3 

= ~1 2 2~

242/3

Then n<Ca/2<|>(/7)3/2 = ^ •$ {n )3/2 = 3<t>(/?)3'2. n

In fact straight calculation proves n<5${n) for all n<3000, which covers most practical 

cases.
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So given an irreducible polynomial we can now effectively determine if it is cyclotomic as 

follows: take a root of the polynomial and raise it iteratively to a sufficiently high degree, 

where “sufficiently high” is as given above. If at some point we get a unit, the 

polynomial is cyclotomic, and if not, the polynomial is not.

Another interesting problem is to spot when f  (X) is a shifted cyclotomic—when does 

there exists an integer n for which f(X+n) is cyclotomic? These extensions have bases 

with the same shape as cyclotomic extensions, and it would be worthwhile if a cheap 

test could be found to check for this.

Every cyclotomic polynomial has ±1 as a trailing coefficient. Now given f  (X) we can 

substitute X+n for X and equate the trailing coefficient to ±1 and solve for n. But this is 

just solving the equation f{n ) = ±1 for n. If either of these latter equations have any 

integral solutions we may substitute back and inspect the resulting polynomial to see if it 

is cyclotomic. In this way we can reduce the problem to that of recognising cyclotomics.

This need not involve the potentially costly factorization of f  (X)±1: if it turns out to be 

too expensive to do this we can substitute X = ±1, ±2 or other small integers to see if 

these happen to be roots. This will not recognise all shifted cyclotomics, but it has a 

chance at finding a few.

Example

What of the polynomial f{X ) = X16+X14-X 10+X8-X 6+X2+1 ? This has degree 16, so we 

need only check powers of a root up to the 80th degree. It turns out that none of these 

powers are ±1, so f  (X) is not cyclotomic.

However, the same procedure shows that g(X) = X16+X14-X 10-X 8-X e+X2+1 is 

cyclotomic—it is a factor of X60- ! . It is interesting to note that both f  and g satisfy the
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trivial distinctive properties of cyclotomics, such as allowable degrees, small coefficients, 

/  = ± the reverse of f , and so on.

6.6. Radical extensions

Radical extensions rank amongst the most commonly used algebraic number fields, 

partly due to a psychological bias, but also, it seems, partly due to the nature of the 

problems that are investigated.

These again can, and should, be specially treated if at all possible, for their form already 

implies a great deal about the defect and the shape of the basis. For example, we can 

simply bound the essential defect in a radical extension by the degree of the root, and 

this is enough for many purposes.

[Berwick 1926] gives a complete classification into 23 cases of radical extensions, and 

outlines how to compute a basis in each case. In Appendix B we reproduce a few of 

these cases, and these suffice to illustrate the flavour of Berwick’s approach.

Now we are presented with the same problem we had for cyclotomic extensions: given 

the polynomial defining the extension, how do we effectively determine whether we are 

looking at a radical extension or not? Fortunately, this is an easy question to answer.

Suppose f  (X) = Xn+an-iX n~'+ • • *+a0. Then for f to be a radical, we must have 

f{X+c) = Xn+b for some c and b. Then we necessarily have c = -a n̂ /n , this being 

the only transformation that eliminates the degree n-1 term. If we are lucky, then 

f{X+c) = Xn+b, as required. If not, then no transformation will do.

This is a little different from the more general [Trager & Yun 1976], which determines if 

f  can be completed to an n * power of some polynomial. This technique may be useful 

if we are able to compute compute an integral basis relative to some extension of <D
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(which may, or may not, exist: see [Edgar 1979]).

-6.18-



7. Algorithms for Integral 

Bases

In this chapter we describe the various principal algorithms that have been proposed to 

calculate integral bases. They can be grouped into three classes: the “brute force” 

methods, where we plough straight in and check every number in sight; the “basis 

manipulation” methods, where we proceed by refinement of an approximate basis (the 

Round Two algorithm); and the “polynomial manipulation” methods, that work on the 

defining polynomial for the field extension (The Round Four and Berwick algorithms).

In the case of the Round Two algorithm we have made certain improvements that 

enable it to work on a larger range of problems.
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7.1. Brute force methods

Traditional constructions of integral bases run along the following lines [Cohn 1978]: 

start with the Z-module a in <D(a), of degree n over <D. If a is not maximal, then there 

exists a prime p whose square divides the index of a in <D(a). We check the pn- 1 non

zero elements of the form (£{te/a/)/p for integrality, where 0 £ q < p, and the a, form a 

basis for a. If we find an integer 9 amongst these numbers, we have a larger module 

<a, e>, with smaller index, and we can repeat the process, which must eventually 

terminate.

This proves the effectiveness of the problem, but of course this is totally inappropriate 

for practical use-^he number of elements to be tested can be very large, and each test 

requires the calculation of a norm, which itself can be quite expensive. We may apply 

the results of chapter 5 on the defect, but still this is not going to reduce the number of 

tests to a manageable level.

7.2. The Round Two Algorithm

To attack this problem Zassenhaus devised an algorithm—the so-called Round One, the 

start of a naming scheme that he hoped would indicate the progress of new 

algorithms—that would compute an integral basis more efficiently, without a protracted 

search. This was rapidly developed into the Round Two, [Zassenhaus 1972] which [Ford 

1978] implemented and compared with the Round Four, the current version. When 

[Trager 1984] required integral bases for function fields he adapted the Round Two, and 

this was our starting point.

As we are to inspect the internal workings of this algorithm, here is an outline [Ford 

1978]. See also [Trager 1984] for a particularly lucid explanation and proofs.
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First a couple of definitions. The radical of an ideal m in a ring R is the set { r e  R. 

rn e m for some n}, which is just the intersection of all prime ideals dividing m. The 

idealizer o\ m is { r e  QF{R): rm c/n )

The result we exploit is 

Theorem

The domain V (an integral extension of R) is integrally closed if and only if the idealizer 

of the radical of the discriminant of V equals V. □

This leads to the following algorithm:

1. We start with the defining polynomial f{x) of degree n, a root 6, and the ring V with 

trivial basis 1,0, * • •,  0n-1. Let the discriminant of V be d.

2. Find those rational primes p whose squares divide d, and let q be their product. If 

(7 = 1, then return the current basis.

3. Find the radical Jq of q in V.

4. Find the idealizer of Jq, and the change of basis matrix M from the current basis to 

the basis of the idealizer.

5. If the determinant k of M is a unit, then return V as the integral closure with the 

current basis.

6. Set d:=d/k2, set V to be the idealizer (and the current basis to be that of the 

idealizer), then return to step 2.

So how do we compute the radical of the discriminant? Considering first the p-radicaI

Jp, there are two cases: the first when p>n, and the second when p<n. In the former

case we have
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Lemma

Let the p-trace-radicalbe the set {u:Vw, p | S(uw)}, S the trace V:R. If p>n, then the 

p-trace-radical equals the p-radical. □

To find the p-trace-radical we proceed as follows:

1. Start with the basis ©1, ©2, • • • , ©„ ,  and compute the matrix

M =

S (to f)

S(co2k>,)

S(concoi)

S(©i©n)
S(©2©„)

S(©„2)

3. Let M be the vertical concatenation of M and pi, where / is the nxn identity matrix, 

and Hermite reduce this matrix.

4. Invert the matrix forming the first n rows of M (i.e., the non-zero part), and the 

columns of this Inverse form a basis for the radical Jp.

It is trivial to extend this to find the radical of q, rather than just p. Simply replace the pi 

by ql.

Now, if we have pen, the p-radical in contained in the p-trace-radical, but is not 

necessarily equal to it. In this case we have to work a little harder to find the radical.

1. Beginning with the basis © 1 , ©2, • • • , © „ ,  we wish to find the Frobenius matrix B 

that represents the linear map ©,—>©,p, V/. To do this compute the matrices Wh which 

represent multiplication by ©/. For each / now multiply the row vector (1,0, • • •,  0) p 

times on the right by Wj. The resulting vector is the /,th column of B.

2. Find the integer k with pk~'<n<pk, and M = Bk.

3. Let M be the vertical concatenation of M and pi, and Hermite reduce this matrix.
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4. Invert the matrix forming the first n row of M (i.e., the non-zero part), and the 

columns of this inverse form a basis for the radical Jp.

The above two algorithms are spliced together at their respective steps 3: after we have 

Hermite reduced and cleared the lower n rows, we “fill in" the gap by the matrix of the 

other algorithm (be it the trace matrix or the power of the Frobenius matrix), row reduce 

again, and invert only when we have exhausted our list of primes. This works since the 

radical Jq is just the intersection of the radicals Jp, for p \ q.

Now having produced the radical, we wish to find its idealizer. Doing this is fairly similar 

to the above. (Also see section 4.3 for the computation of ideal inverses.)

1. We have the bases co1f co2, • ■ ■, ©„ for the number ring, and mu m2, * • • , mn for 

an ideal m in it (i.e., the basis we just found for the radical). For each /, 1 </</?, 

compute the representation matrices for the linear transformations a-xx/n/. However, 

calculate them with respect to input basis the co-basis, and output basis the m-basis.

2. Form the vertical concatenation of the n matrices, and Hermite reduce this tail 

matrix.

3. The columns of the inverse of the non-zero part of the reduced matrix form a basis 

for the idealizer of m.

7.3. Its Problems

The Round Two algorithm is very fast on polynomials of low degree, but slows down 

dramatically when given a fair-sized polynomial of large degree or large coefficients. The 

first and very influential difficulty is that of the creation and manipulation of large {nxn 

and n2xn) integer matrices. It is easy to see that Hermite reduction is central to the
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algorithm, and that a good method for the reduction steps will benefit the entire 

algorithm enormously. This problem was tackled in chapter 3, and the tables in section 

3.7 show the range of variation in performance possible—and the algorithms used there 

all far outstrip the naive method of matrix reduction.

The second problem is inherent in the algorithm itself. The method has what may be 

described as a “slow convergence" to the integral basis. To understand what this 

means, consider the following example: we wish to find a basis for the extension by the 

root 0 of the polynomial f  (x ) = x®-54. We count the number of times we go around the 

discriminant -> radical -> idealizer loop, and watch the determinant of the change of 

basis matrix from the old basis to the new. This latter measure tells us, in some sense, 

how fast we are approaching the integral basis.

On successive passes around the loop, the change of basis matrix has determinant 3, 

9, 3, 9, 3, 9, 3, 9, 3, and finally, 1. The index of Z[0] in its integral closure is 328, and it 

takes 10 iterations to find it.

Another example is f {x)  = x®-15x6-87x3-125, where we divide out 15, 225, 3, 9, 3, 9, 

3, 9, and 1. This slow convergence property is part of the algorithm, and although we 

have a way of improving this a little, it remains an essential feature.

The calculation of representing matrices can be time consuming: to find the matrix 

representing multiplication by a, say, we multiply each element ©/ of the current basis in 

turn by a, re-express in terms of the ©/, and extract the coefficients of the result. 

However, the ©/ may themselves be expressions in terms of the original basis (perhaps 

powers of a root of the defining polynomial for the extension), and so we must keep in 

hand a change of basis matrix that converts from the original basis to the current basis. 

Alternatively we might re-compute the multiplication tables for the new ©/ each time 

around the bop.
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7.4. Improvements

We have made some improvements to the Round Two algorithm in the areas of Hermite 

reduction, multiple extensions, and slow convergence. The chapter on Hermite reduction 

deals with the former, and here we deal with the latter.

The Round Two algorithm manipulates bases, whereas the Round Four manipulates 

polynomials (see later). This distinction is very important, as it means the latter requires 

a defining polynomial for the extension (which may be more naturally written in terms of 

multiple extensions), whereas the former needs only be given a basis. For example, to 

find a basis for the number field <D(V2,V3,V5,V7) the Round Two needs only know the 

polynomials x2-2, x2-3, x2-5, and x2-7, from which it can generate the initial basis (1, 

V2, V3, V2V3 , V5, V2V5 , V3V5, • • • , V2V3V5V7). From this it can carry on through the 

algorithm as before.

On the other hand, Round Four must be given a single polynomial like

x16-1 36x14+6476x12-1 41912x10+1513334x8-7453176x6+13950764x4-5596840x2+46225,

the minimum polynomial for V2+V3+V5+V7, a primitive element for this extension. Most of 

the coefficients of this polynomial are larger than every number appearing in the 

computation of a basis using the Round Two (excepting the discriminant). Also, 

computing its discriminant alone takes more time than the entire Round Two calculation.

This is more of a problem than it might seem at first, as if we use the degree 16 

polynomial to find a basis and we wish to re-express it in terms of the simple square- 

roots, we are obliged to factorize this large polynomial over the smaller intermediate 

fields to determine how to write (say) V2 in terms of a root. This can be a very hard 

task. Alternatively we can use the method of Appendix A which only involves the 

manipulation of linear simultaneous equations.
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For example, for V2 we have the appalling representation

V2 = (1000302037/63406080)9-(4763001509/105676800)93
+(1547O95997/634O6O8O)0S-(1572360191/317030400)07+(5894795/12681216)09 

-(6720901/317O3O4OO)011+(627/14O9O24)013-(1O37/317O3O4OO)015

where 0 is a root of the above polynomial. Section 2.2 describes an even worse 

example of this effect.

We can also attack the problem of slow convergence. It does not affect the validity of 

the algorithm [Trager 1986] if, instead of directly taking the idealizer of the radical, we 

raise the radical to a power first—say square it or cube it. Of course, we must consider 

the time taken to power an ideal into account when comparing the straight method 

against the new method, but as the table shows, we can improve the rate of 

convergence.

number of iterations 
original squared cubed fourth

1 5 5 5 5
2 9 5 5 5
3 8 5 4 4
4 14 8 8 8
5 4 3 3 3
6 2 2 2 2
7 6 4 4 4
8 4 3 3 3
9 10 6 6 6
10 7 4 4 4

Here the extensions are

1 0(0), 06+305+604+03-302+120+16=0
2 0(0), 09-1506-8703-1 25=0
3 0(V2,V3,V5,V7)
4 0(0), 015-675O=O
5 0(0,<(>), 03-2=O, <f)3—30=0
6 0(0), 03-28=O
7 0(0,(J)), 03-4=O, <f)4—3=0
8 0(0,0), 05-2=O, 03-1 50=0
9 0(0), 09-54=O

10 0(0), 09-686=O
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Clearly we should not bother with powers higher than 2 (if these examples are 

representative).

The time taken to raise an ideal to a power is significant—of the same order as finding 

an idealizer (see section 4.3), but nevertheless the following shows we can still compute 

some bases faster by squaring the radical:

time taken 
original squaring

1 56 76
2 3183 2490
3 1350 1068
4 1324 964
5 81 87
6 34 41
7 329 293
8 393 381
9 187 163
10 127 98

Times here are in seconds.

The extensions 1, and 6 do not benefit from the squaring, as is to be expected: we are 

doing the extra work without reducing the number of iterations. The saving is 

sometimes marginal, and we can lose or gain a little on those cases where we eliminate 

just one iteration (numbers 5 and 8). Of course in the case of bases with trivial defect, 

powering the radical is always going to lose. Perhaps an intermediate strategy would be 

to square all but the first radical: this will pass trivial bases as fast as possible, but most 

other cases will still gain some advantage from this technique (the exceptions being 

those bases that require just two iterations—the first to find the defect, and the second 

to check there is no more, and we lose on the second iteration).
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7.5. The Round Four Algorithm

For comparison we give an outline here of the Round Four Algorithm of Ford and 

Zassenhaus abstracted from [Ford 1978], [BSffgen 1987a] and [Ford 1987]. 

Unfortunately, the text and the program listing in [Ford 1978] do not agree in certain 

details and the description given by BOffgen is incomplete. The best source, although 

very brief, is [Ford 1987], from which we borrow some notation.

We work (mod p), for each prime p that divides the defect, and then combine the 

results to form the complete global integral basis.

The principal idea is given f  and q, a power of p, to produce either a Berwick or 

Eisenstein element (giving the basis) or to determine a factorization f  b f Af 2 (mod q). 

Here q -  p d+1 where p d exactly divides the discriminant of f  [Ford 1978], or q = p2d, 

where pd exactly divides the reduced discriminant of f  [Bfiffgen 1987a]. Either bound 

will suffice, and often the latter is smaller. If we obtain a factorization, we can recurse 

on the factors f , and f 2 and later recombine their bases to find the basis for the full 

ring.

Let O ^ a e  o have minimum polynomial x/,+an_1xn~1+ ■ ■ • +a0. Then define v*(a) = 

min{ v(an-k)/k} . This is just min{ v.(a)} over all extensions Vi of v to K, and if v*(a)>0,
k J *

a is a semi-local integer.

An element 9 is p-primary if its minimum polynomial mB factorizes as a power of a 

single irreducible (mod p). For a p-primary 0, we use the following notation: nB is the 

unique irreducible factor of m0 (mod p); de= 8ne; NB -  9me/d0; 0! = /ie(0); / . ^ e  =

v’*(01), with L0 and MQ positive and coprime integers: ^ 0- 5©^©= 1, with r0 and s0 

non-negative integers; 02 = 0ir®/ps#.
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The algorithm is somewhat convoluted, and is best described as a list of rules. At each 

pass, read down the list until you come to the first applicable rule, and obey it. Then 

return to the top of the list and repeat.

We start with a := co, co a root of f .

0. If at any point we come across an element that satisfies the Dedekind criterion, we

are finished.

1. If we find an element that is not p-primary, we can use it to find a factorization of f  

(mod q), and recurse on the factors (see below).

2. Similarly, if we find a p-primary 0 with cfe|'cfa, replace a := a+0.

3. Further, if we chance upon a 0 with MQ\Ma, set a := a+a2+0|/p c. where a, b and c 

are non-negative integers satisfying aMa+bMQ-c  = gcd{Ma,Me).

4 . Whenever a is updated, check whether v*(a) =  0 . If not, a := a+1, when the equality 

holds.

5. Check if dma = n. If not, put a := a+Zcpco, for some choice of k to ensure ma has full 

degree.

6. Unless La = 1, a := a+a2.

7. If now Na = 1, then a is a Berwick element, and we are done. Similarly, If Ma>Na,

we have an Eisenstein element, and are finished. Otherwise, put p := 0-2 “IP

S' Whenever p is updated, do the following: set k := Mav*(p), and y := Xp/af. Here \  is 

a local unit chosen to make y a global integer.

9. Let ph be the power of p that divides the defect (an upper bound for h will have to
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do here). Let j  be that non-negative integer at which -j+phN a attains a minimum, and
ida

pick integral r greater than (h+ j-p l iN ^ id a. Put h .

10. If 8 e Z[a], replace p := a *(8-7).

11. Otherwise, search amongst elements of the type y*-h(a), where h{x) e Z[x], and 

dh<da. Eventually we must find a non p-primary element which we can use to factorize 

f.

So how do we recover the factorization of f  (mod q) given a non-p-primary element? 

We have

Theorem [Zassenhaus 1980]

Suppose a e Z p[<»] with minimum polynomial factorizing into coprime parts ma = m^m2 

(mod p). Then there exist e1t e2 e Z p[co] with

a) e,e2 = 0 (mod q),

b) ei+e2 s 1 (mod q),

c) 6f 3 e f  (mod q),

and such that the sum

<D q ( ( o )  =  © ^ ^ ( t o J + e a Q q t t o ) .

is direct. Further, let f  -,{x) e Z [x ] be the monic polynomials of least degree with 

e, f/(w) 3 0 (mod q). Then f  s f 1f 2 (mod q).

Proof

We sketch the construction.

mi and m2 are coprime (mod p), so we can find r^X) and r2(X) e Z [X ] with

m1(X )r1(X)+/772(X)r2(X) 3 1 (mod p),
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and 3r1<3m2> dr^dm^. Set ê  = m^{a)r^{a). Now repeatedly substitute e ^ e 2-2 e f 

(mod q2) until we have the desired p-adic accuracy (i.e. when e, does not change.) 

Then e2 = 1-©i (mod q). □

Recombining bases for the coprime factors is simple.

Theorem

Let f  m f , f 2 (mod p), the f k coprime. Let a basis for fk be (gkjk{©*)). where 1<y*<3f*, 

and fk{(ok) = 0.

Then (co1, ^ (© ^ ( c o ) ) ,  0<j<df \ k = 1,2; 1 <jk<dfk is a Z-span for f .  □

7.6. Theory

The idea behind the Round Four is the following: a completely ramified extension K:Q 

has trivial integral basis. So we look for generating elements 0 in K  that have Berwick or 

Eisenstein minimum polynomials, as then Q(6) must be completely ramified (see 

[Cassels 1986] for proofs). This is the bulk of the algorithm: searching for elements with

ever-increasing v *  value, for when we stop we must have such an element. If we are 

forced along the alternate path, i.e. to factorize f (mod q), \nq are able to fit the parts 

back together again by means of

Lemma (Zassenhaus1 Structural Stability)

Let i, f 2 e Z [x ] be monic of equal degree, with roots Gi and 62 respectively, p a 

rational prime, q a sufficiently large power of p, ■ f 2 (mod q), and h(x) e -^Z [x].

Then /?(02) is an integer whenever h{Q̂ ) is such. □

This says we need only work to a finite p-adic accuracy, rather than having to work in 

K, the completion of K, as we might expect to be required (of course, K  is not 

representable exactly in a computer, just as we are unable to represent R). Ford [1978] 

uses the lemma with q = p r+\  where p r \\disc[f^. However, [Bbffgen 1987a] uses a
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refinement that allows us to take q = p2s, where ps \\6r{ f ,), the reduced discriminant of 

fy, and this is often a good saving. For example, the polynomial x9-15x6-87x3-125 has 

discriminant 2634256 = 1026, but the square of the reduced discriminant is just 2231456 = 

3.1011.

We might hope to avoid the backtracking in Round Four, and directly compute the 

factorization f  over the ring Z /pmZ. Unfortunately, we do not have unique factorization 

over such rings, for example x4-x 2+8 factorizes both as (x-21)(x+21)(x2-72) and as 

(x-107)(x+1 0 7 )(x 2- 7 2 )  (mod 28), but x-21 fx2-72 (mod 256).

Simple Hensel lifting of the factorization (mod p) will not suffice. Note x4-x 2+8 = 

x2(x+1)2 (mod 2), which will not lift to any three-factor decomposition without judicious 

merging of factors at some point of the process. This is clearly a combinatorial problem, 

but whether it is a relevant problem is harder to see. If we are working on a problem 

with bad combinatorial complexity it is quite likely that the problem is too big to solve 

anyway.

We are assured, however, that each coprime part will lift to any accuracy (to 

(x 2+ 7 1 ) (x 2- 7 2 )  in the above example). So the Round four algorithm does just this, and 

tries each factor. If we come unstuck, then there is enough information in the way it fails 

to further factorize the offending factor. So x2+71 will be seen to factorize as 

(x-21)(x+21), say. See [Bdffgen 1987a]. While this does involve some backtracking on 

factors, we are spared the possible exponential problem of recombination.

7.7. Berwick’s Method

Here we outline the method given in [Berwick 1926] for the computation of integral 

bases. It is not a complete method in the sense that there exist extensions for which it 

can not find a basis, but in those cases it will definitely stop and answer to that effect.
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Berwick describes this as follows:

“Failing cases exist, but the approximations given are sufficient to cover any 
numerical equation not specially constructed to defy them."

This premise is somewhat more shaky in the era of computer algebra. However, 

Berwick also claims that there always will exist a simple rational transformation that will 

translate the problem into a solvable one, but he does not substantiate this claim.

The method relies on the manipulation of the defining polynomial, just as the Round 

Four algorithm, but the manipulations are of a more elementary nature. Thus this is 

also restricted to simple extensions, with all the related disadvantages.

We start with the minimal polynomial a(z), with root 6. (We shall try to keep to the 

original notation). We need the concepts of partial bases and the stem of a basis. 

Suppose the basis is of the form

V i(6) ¥ 2(6) ¥/>-i(0)
' A, 1 A2 ’ An_, ’

where the A/ divide the discriminant D{0), and the y /(0) are numbers of rank / (i.e. 6

appears to the power exactly / in ¥ /(0))  For a prime p, let || Ar, then it suffices to

determine integers

3*1(0) 3>2(9) 3>n-i(0)
’ p*' ’ p *  ’ p"»-i

for those p whose square divide D. This is called the partial basis (mod p).

Conversely, for each p. there is an integer of least rank with denominator p^. Write 

(Meyp*1 for this number. Then the integers

< <j>i(0) <M0) <M0)
> n I O » / ’

P P2 P'

are the stem of the partial basis (mod p). Thus the r*  element of the stem is an integer
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of least rank with denominator p r.

If we factorize a(z) into irreducibles (mod p)

a{z) = t^tr/'tO jC z / 2 • • • <s>w{z),w,

Berwick shows

(^ (z )  =  w f" ’1© * ‘,-2 * • • c&wt

with

This is the so-called first dissection of the basis. It strongly illustrates the relationship 

between the factorization of the minimum polynomial and the elements of the stem, and 

allows us to deduce the form of the partial basis when all the f/ are unity: we must have 

3(1)! = da, i.e., the smallest rank of a number with a non-trivial denominator is da, 

namely a(0)/p = 0. Thus, as expected, the basis is the trivial one.

Berwick now proves two vital lemmas: let (p) be the ideal corresponding to p, and 

consider its ideal factors. Firstly, we find that each prime factor of p divides one of 

®i(9). (MO).' * *. <M 6) at least once. Secondly, no two of these integers are divisible 

by the same prime ideal factor of p. This means that if we can find the prime-powers 

dividing p we can construct the stem.

We can lift the factorization of a so that a typical factor (o(z)f has the following 

expansion:

to{z)f

+p(C /-i.i© (^)'"1+C/-2,i© (^)'"2+ * • • +C01) 
+P2(Cf-1f20>{*),-1+Cr-2l3©(*)/-2+ • * * +C02)

+ ■ * * +prf(£/_1i</(D(z),_1+£/_2(</©(z),”2+ • • • +Co</)»

where 3©(z) = g, with d^j<g, and the £,y not divisible by p.
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We now draw a Newton’s polygon: set up axes, and mark the node (x, y) if the 

polynomial Cjy(z) is non-zero. Then take the upwards convex hull of these points. The 

nodes along a typical edge can be described as

P ° t i i ( Z ) t’ ( U z ) G > ( Z ) l ‘‘ + p ' ' U z ) O l { z ) U - ' l u +  ■ ■ ■ + P % ( Z ) )

= p°o)(r)p2(z),

where gcd{u,v) = 1, and some of the £/ may be zero. Here v/u is the slope of the edge 

(= -gradient).

Let Wt be the ideal containing the polynomials py^xy(a{z)x with xv+yu^t, x>0, y>0. 

Then it follows that Z[z) factorizes uniquely (mod w ^ +1) as

Z(z) = UE(Z)"E'(Z)“ ' • • •

with

M m + M 'm '+  • • • -  j .

This is the second dissection. The divisor Z{z)M corresponds to an ideal £ dividing p, 

and when all the M are unity, we have separated the prime factors of p.

This far is a consequence of [Bauer 1907], who gives the following theorem 

Theorem

For each prime p over p the ratio vp(0)/e(p) is equal to the slope of one of the sides of 

the Newton polygon, and conversely, if X is such a slope, then there is a prime p 

dividing p with X = vp(e)/e(p). □

Berwick now proceeds to the third dissection. If v lattice points on the line y  = p lie 

within the Newton polygon, then the terms in the first p lines of the lift of (o(z)f above 

are all divisible by gj(z)v or co/(z)v. Writing these terms as g)/(z)vx/*(z) we discover

X1*(Z)X2*(Z) • • • Xwk(z)lpk

in integral. It is further proved that, in a good case,
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<fr*(9) = Xu(0)X2*(0) ' ‘ • Xw*(9).

At the first glance this method seems fairly simple, but in practice no-one seems to have 

implemented it seriously. Why is this? Firstly, and most importantly, it is not complete. 

There exist cases on which it fails, so the method cannot be used as a true algorithm. 

Berwick makes general statements about the failing cases, but admits there is no known 

general route to the solution.

A psychologically more influential reason is that Berwick’s presentation [Berwick 1926] is 

extremely hard to read and understand. The notation leaves much to be desired— 

constant re-use of the same symbols to mean different things, often within a single 

section—and an erratic style do not induce the reader to study the monograph too 

deeply.

7.8. Conclusions

We have essentially two reasonable algorithms for computing integral bases, namely the 

Rounds Two and Four. Whereas the Round Four may well be the better algorithm to 

use for simple extensions [Ford 1978,1987] [Bbffgen 1987a], Round Two has still a tot 

to offer for fields more naturally represented in terms of a multiple extension, particularly 

when we use the results of chapter 3 on Hermite reduction.

Ford’s thesis [Ford 1978], and [Ford 1987] claim that, in practice, the Round Four is 

about n1*2 times better in execution time than the Round Two. It must be noted that 

Ford uses naive algorithms throughout, particularly for the Hermite reduction of matrices, 

algebraic number arithmetic, and the calculation of minimum polynomials. Clearly, 

advances in the methods used for these (namely the gccf-based algorithm of section 

3.5, and a subresultant algorithm) will be strongly reflected in the measured results. 

However, [Bdffgen 1987a] improves the Round Four, and gives some extremely
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impressive times for the calculation of bases for some large degree polynomials.

The Round Four can also produce some unexpected results: for example one run 

proved that the integers of Q(a), where a9 = 54 are of the form Z[p], where

P = (10<xMa7+13a6-9a4-3a3+9a+9)/27,

with minimum polynomial

x9-3x8-30x7+2082x6+31560xs-2101440x4 
+35227884x3-425798778x2+1077058005x -4301913079

Whether the user would rather see results in terms of a with denominators, or p without 

denominators is a different question, though.
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8. Conclusions

8.1. Review

In this thesis we have covered a few of the aspects of the estimation of defects and the 

computation of integral bases. Beginning with the basics of the arithmetic of algebraic 

number fields we have progressed to the point of being capable of manipulating ideals 

and using them in a effective (in both senses of the word) way to be able to calculate 

integral bases for any number field (within reason).

Chapter 3 described various matrix reduction methods, and introduced a new method 

that appears to be the most efficient to use in the Round Two algorithm—it doesn’t fare 

too badly in the general case, either. This illustrates the fact that the best algorithm to 

use in a particular case is not necessarily found by picking the “best" algorithm off the
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software shelf.

In chapter 5 we defined the defect of a polynomial, and gave several methods for 

estimating it, culminating in a new theorem involving the reduced discriminant.

We combined work of previous authors in chapter 6 to create a new algorithm for 

describing the integral bases of cubic extensions. This we used to give a new proof of 

the shape of the basis for a cubic radical. Further, we described a method of 

recognizing cyclotomic polynomials, so we can treat these particularly simple field 

extensions specially.

We extended and improved the Round Two algorithm to cope with compound field 

extensions, and coupled with the results of chapter 3, we have extended the range of 

problems it can deal with immensely.

The major components of this work have been implemented in REDUCE, particularly the 

Round Two algorithm and the Hermite reduction algorithms, using which we generated 

most of the examples in this thesis.

In the appendices we present a easy method for retrieving the simple representation of 

numbers from a primitive-element representation; we describe some of Berwick’s work 

on the bases for radical extensions; and we discuss why we can’t directly apply modular 

methods to the calculation of Hermite normal forms of matrices.

8.2. Future Work

Clearly this is the first step along a long path. We should dearly like to implement a 

good algorithm for the computation of integral bases over algebraic function fields of one 

or more variables. This would immediately allow us to use the work of [Trager 1984],
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and its generalisation [Bronstein 1987] on the integration of elementary functions. The 

former uses an adaptation of the Round Two to calculate bases, and [Berwick 1926] 

claims that his method also extends to function fields of one variable.

In the case of function fields, it should be worthwhile to investigate the use of modular 

or, perhaps, Z-adic [Char et al 1984] [Davenport & Padget 1985] methods for matrix 

reduction—very good algorithms already exist for the computation of the gcd of 

polynomials [Wang 1978].

Whereas the theorem of section 5.5 leads to a much better bound for the defect than 

before, and is a sharp bound (as is the index estimate), it is still often far in excess of 

the true value. The problem seems to revolve about the fact that the defect is 

dependent on the defining polynomial, whereas the reduced discriminant is a property of 

the field—we cannot expect much progress in using field invariants to predict polynomial 

properties! Looking at a random set of polynomials one is led to conjecture that the 

defect of f {x)  = xn+an_1x/?_1+ • - • +a0 may well be bounded by n.max{ | a, | } , but this 

is In fact false. The defect of x8+12x6+158x4-228x2+3721 (a primitive polynomial for 

<D(/, V3, ^-5)) is 62464, but defects of this (relative) size seem fairly rare. A better 

bound for the defect would be welcomed by many algorithms.

[Berwick 1926] includes some work on the computation of bases of relative field 

extensions, e.g. find a basis for <D(V5,VT0) over Q(VTO). Unfortunately, this is generally 

doomed to failure, as [Edgar 1979] testifies: no such basis exists! However, it could be 

interesting to consider relative extensions—indeed Berwick uses them to produce some 

useful results on radicals.

It is also important that these algorithms should be made generally available, which 

means they should be incorporated into computer algebra systems. Simath appears to 

be the leader in the field for such matters [Reichert 1987], and Cayley will include such
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things in a few years’ time [Butler & Cannon 1988]. Our implementation in REDUCE 

works well, but there is a great deal of streamlining that could be done, particularly in 

the area of data representation. Also the Round Four needs to be properly implemented, 

and the generalizations of both algorithms to algebraic function fields.
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Appendix A. Primitive 

Representations

Here is a description of a short but useful method of converting elements from a 

primitive representation to one more suited for human consumption. Given the extension 

<D(a):(D, where a4-10a2+1 = 0, what does the number (-9a+11a3)/2 really mean?

A.1. Conversion from Primitive Representation

Given the primitive representation of an extension we wish to recast results in an 

easier-to-read multiple extension form. For example, given the primitive element V2+V3 

for the extension <D(V2,V3):<D, how do we recover the expression for V2? We shall 

illustrate the general method by means of an example.
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Let a = V2+V3 , the primitive element. Powering a we see

1 - 1.
a = V2+V3,
a2 = 5+V2V5,
a3 -  11V2+9V3.

We can rewrite this as

1 0  0 0 1
p * 
1

0 1 1 0 <2 a
5 0 0 2 V3 — a2
0 11 9 0 V2V3 a3

or Mu = v, say.

From now, the solution should be obvious. To find V2 we divide through by M, and we 

get

V2 = (0 1 0 0)u = (0 1 0 0)M“1v
= (2nd row of W 1)v,

or, V2 = (-9a+11o3)/2.

The generalisation is clear.

Incidentally, this allows us to create primitive elements without having to find the minimal 

polynomial. To do this we take a putative primitive element—a = V2+V3 , say, find the 

matrix M, as above, and whenever det M *  0, a is primitive.

Also we can prove some other small results: thus for a,b e Z  (or even in Q), the 

element a =  Va+VF is primitive for the extension ©(VF.VF):© whenever a *  b. To 

prove this, consider the matrix of coefficients:
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M

this has determinant 4{b-a).

1 0  0 0
0 1 1 0

a+b 0 0 2 ’
0 a+35 3a+b 0

Some other results along these lines:

a is primitive when
Va+V5 a*b
Va+Vb+Vc a *b ,b *c ,c *a ,

and a2+b2+c2*2{ab+bc+ca) 
a i^+di/3 a*±b
Va +51/3 64a3+2752*0

Further examples become unwieldy very quickly.

We note in passing that the only solutions of a2+b2+c2 = 2{ab+bc+ca) over Q have 

<D(a) = Q{b) = <D(c) (i.e. all the ratios alb, b/c, and c/a are squares in CD). Similarly, 

the rational solutions of 64a3+2752 = 0, are parameterized by a = -3 u2, b = 8u3, 

u € Q. Thus b is a perfect cube.
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Appendix B. Berwick’s results 

for radicals

Here we present some of the results for radicals as given in [Berwick 1926]. Berwick 

divides radical extensions into 23 different cases, but here we give examples of just a 

few, but which suffice to give the general flavour of this method.

In the following we shall take p to be a prime, and the bases are all (mod p).

1. ep-a  = 0, gcd{a,p) = 1. This divides into two cases:

a) ap-a  £ 0(mod p2), when the basis is (1,0, • • • ,0P_1), i.e. trivial, with defect 1.

b) ap-a  ■ 0(mod p2), when it is (1,0, • • • ,0P_2, (0p-1+a0p_2+ • • • +ap_1)/p), with defect 

P-
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This agrees with the previous results on cubic radicals, as a3-a  = 0(mod 9) «=» s 

±1(mod 9).

2. Qph-a , where /i>1, gcd{a,p) = 1. Define j  by pJ\\aph-a , so j>  1. Put n = ph. 

There are three cases:

a) /  = 1. The basis is trivial.

b) y^/7+1. Define T|r(0) = ep/,“f(p“1)+apA_r0p,,~r(p-2)+ • • • +ap/,~'(p-1). Then the stem of the 

basis is

•ni(0) ‘n1(0)Ti2(0) *n1(0)Ti2(0) • * "n/_i(0)
11 P ' p2 p H

with defect pH .

c) y>/)+1. The stem is

*Hl(0) Tfl(0)Tl2(0) ■n1(0)Tl2(0) * * * T|̂ (0)
® I _  I  O  9 > h  Ip p pft

with defect ph.

3. 0/p/,-a , where pccf(a.p) = pccf(/,p) = 1. This has stem

1 ^ ( 0') *ni(e/)ri2(e/) • • *tu(0')
I  ,  I  9 9

P  pk

where k = j - 1 if /</)+1, and k = h if y>/i+1. The defect is pk.

4 and 5. 0n-a , a = pmb, where gcd[n,p) = gcd{b,p) = 1 or gcd{m,p) = gcd{b,p) =

1. These two cases can be treated together. Let f = gcd{m,n), u = n/t, v = m/t, and

e(r)= [rm /nj. Then a basis is the term-wise cross product of
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The defect in these cases is p(r-1)*'+e(/?-1) = ^

6. n = pk\  a = p qb, where q = ph, gcd{p,b) = 1, and bp # b(mod p2), excepting the

case when bp~1 = i+p(mod p2), and p = q and f> 0 (where f  is defined below).

If k'<h, then the basis is (1 ,Qlpv, • • • ,0n“1/p(,M,K), where v = ph~k\  by 2 above. If h =

0, so q = 1, the basis is trivial, by 4. So now define k = k '-h , k=  Mq, e = pk = q f r', 

with integral fz 0, 1^r'«7, and q =  rr'. Also set c =  eicOc'-IJ/Oc-l), c ' = 

er(K/+1-1)/(K-1), b i = least positive residue of (bp_1-1)/p (mod p), and b2= b̂  if q>p, 

or b2 = b i-1 when q = p. Let x(0) = 9e-pb, if f  = 0, or 0®-pb+pb10®K, when f -  1, or 

0®-pb+pP10®K + 2/UPibP”/^i^2 ‘10eK(lc/”1)/(K"1) *n tha case thaf ^>1- Finally, set Xi(0) = 

(0e-pb )r+prb0erK+ 2 /la1Pr^ p"/^i^2"100rK(1c/”1>/(lc-1)* Then a stem of the basis is

In this highly complex case the defect is just pq.

The other cases are much in the same vein, only with increasingly strange and 

complicated formulae.

Example

03-19 = 0. By factorizing the discriminant we see we must consider the primes 3 and 

19.

p = 3: this is case 1(b), with a = 19, and 193 = 19 (mod 32). The basis (mod 3) is (1, 0,

1 0® 0 ® - ° x (e )  0 - 2cx (e )2 

’ p ’ p2 ’ p3 ’ 
0* - * X i ( 0) 0 ® -c'- c x i ( 0 ) x (e )

ee-<f-1)cx (0)f-1

0®-cHr- 1)cXi(e)x(0)r- 1
P2f

0 M r '- l )c 'x 1(e )''-1  0 0-(r'-1)c'-(r-1)cX i (e )r ' - 1 ^ e )r-1

p^-r+1 ’ * ’ ’ ’ p^
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(02+19&Kl92)/3), or (1, 0, (02+0+1)/3).

p = 19: this is case 4, with n = 3, a = 191.1, m = 1, and b = 1. We find t = ^ , u  = 3  ̂

and v = 1. The basis (mod 19) is (1, 0/p°, 02/p°), or (1, 0, 02).

Hence the fuii basis is



Appendix C. Modular Methods 

for the HNF

In the realm of computer algebra it seems to be a maxim that modular algorithms are 

“best.” It is repeatedly found that a problem that was intractable due to the inherent 

expression swell becomes orders of magnitude faster to solve using modular 

techniques. A typical case is that of the greatest common divisor of polynomials as 

described in [Brown 1971]. Thus when we were faced with the swell in the computation 

of Hermite normal forms we were naturally led to consider the applicability of modular 

methods.

In this appendix we discuss modular methods for computing the SNF and the HNF of an 

integer matrix. Unlike the SNF, the HNF does not lend itself naturally to modular
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methods; the problems seem to be due to the lack of an ordering compatible with 

modular arithmetic.

C.1. A Little Theory

In [LUneburg 1985] we find Kaplansky’s two simple necessary and sufficient conditions 

which determine whether matrices over an integral domain R can be brought into Smith 

normal form:

1. every finitely generated ideal of R is principal,

2. for a,b,c e R with gcd(a,b,c) = 1, there exist p,q e R such that 

gcd(pa,pb+qc)=1.

Now a gcd is defined only up to units, and every non-zero element of Z /pZ , p prime, is 

a unit, so we have gcd{a,b)=1 for every a,b e Z /pZ . Thus we can reduce matrices 

over Z /p Z  to Smith normal form—this much is clear, as every element is invertible, and 

simple gaussian elimination follows through. However, it is not terribly useful, since once 

we realise all elements are units, the SNF is immediately a diagonal matrix of ones and 

zeros.

However, the SNF must be unique, so the SNF of the modular matrix must be the 

modular image of the SNF. In particular, a diagonal element of the SNF of the modular 

matrix will be zero (mod p.) p prime exactly when p divides the corresponding element 

of the non-modular SNF (and it will be 1 otherwise). We can use this to generate an 

algorithm to calculate the SNF (see below).

Thus we are guaranteed the existence of a SNF (mod p), but HNFs are an entirely 

different problem.
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C.2. Modular Methods

Appendix C

The naive approach to the construction of a modular algorithm is to take a matrix 

modulo several primes, perform Hermite reduction on the images using the small 

number arithmetic, and then to use the Chinese Remainder algorithm to piece the 

results back together again to form the Hermite form of the original matrix. However, it 

is not as simple as this.

First we must choose some moduli to work with. We may partition the possible moduli in 

two ways:

1. into those smaller and those larger than the determinant

2. into those that divide the determinant and those that don’t.

Of course, we generally do not know the determinant in advance, so we have no 

immediate way of discovering which of the above holds for any given modulus.

We may use Hadamard’s bound for the determinant:

detM £ n z H ?/=i/=i

but this, though a sharp bound, is often an extremely generous over-estimate of the true 

determinant, and it is unclear whether we gain computationally by working modulo such 

a large number. (Recall that working modularly requires divisions by the modulus: these 

divisions may well outweigh the gain from using slightly smaller numbers.) Further, it is 

not a multiplicative bound—we can not deduce anything about the factors of the 

determinant from it.

Secondly, we cannot deduce any useful information in computing the HNF of a matrix 

modulo a number which divides a diagonal element—this simply reduces to zero, and 

any off-diagonal information is hard to interpret.
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However, when calculating the SNF modulo a prime (say) that divides the determinant, 

the matrix reduces to the form

1

1
0 

0.

and we may deduce the corresponding pattern of primes dividing the diagonal elements 

of the SNF.

We might expand this to calculate the SNF by pieces:

1. let the determinant be d = I I  Pi’1-

2. let diagi :* 1, for / = 1 , . . . ,  n, where n is the number of rows of the matrix.

3. for each p/ dividing d do

3.1 for j  >  1 to ©/ do

3.1.1 calculate the SNF modulo ptl .

3.1.2 if the /c* element of the diagonal of the SNF is 0, then set diagk := diagkxpit 

for k = 1 , . . . ,  n.

4. result is diag.

This works since if a diagonal element is non-zero (mod p/) then either it is 1, when p 

does not divide that element, so we do not update diag, or it is non-invertible. In this

case it has a non-trivial gcd with p /, and so is of the form pjq, with /</, and p  \q. Thus

the requisite power of p  has been attained from previous iterations of the 3.1 bop.

This algorithm has the obvious flaws that the determinant must first be calculated (say 

by another Chinese Remainder algorithm), and then it must be factorized. This latter
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step in all probability would far outweigh any possible advantage of the modular steps. 

Also it requires a potentially large number of modular SNF calculations, namely 2"je

In [Alagar & Roy 1984] there is an algorithm that calculates the SNF modulo some 

prime-powers under the assumption we can find enough primes at random that divide 

the determinant. Clearly this will fail for those matrices with determinants with large

enough prime factors, e.g. for matrices like
1 1
1 2"

with n chosen so that 2n-1 is prime.

In the same paper there is another algorithm based on the simple row-subtraction 

algorithm outlined above in which they use primes not dividing the determinant. However 

the algorithm contains the phrase “For several carefully selected primes...” (p. 742), and 

in the conclusion they say, “One of the interesting theoretical questions that still remain 

to be solved is the characterization of primes that produce a desirable diagonal form of 

an integer matrix from which one can compute the correct SNF.”

C.3. Experimental Experience

Hand calculation on a few small examples convinced us that, although we did not yet 

have an algorithm, a few experimental programs should be written to test some of the 

ideas outlined above.

We wrote a program that would generate random matrices and compute their HNF or 

SNF by the gcd and cofactor method (section 3.5), and then reduce modulo a selection 

of small primes, and find their normal forms modulo these primes. Then we could easily 

check whether the modular reduced form was the same as the reduced modular form.

This produced very disappointing results. Almost none of the pairs matched. Closer 

examination revealed that the elements on the diagonals were on the whole correct up 

to some values x being replaced by p -x , where p was the modulus we were working
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with. Some off-diagonal elements were correct, but others deviated in no discernible 

pattern.

Furthermore, changing the way the modular algorithms operated (e.g. rather than 

repeated subtraction of rows we might compute a “normalised” row by multiplying a row 

by the inverse of the diagonal coefficient, and then have a single subtraction of the 

relevant multiple of the normalised row) changed completely the characteristics of the 

reduced matrix.

C.4. The Problems

Reduction (Hermite or Smith) depends on unimodular transformations, i.e. those with 

determinant ±1. This means that any element along the diagonal may be ± its true value 

in the modular image, and when working modulo several different primes this can easily 

lead to incompatible modular images. Thus

1 0 o ' 1 0  0 * 1 o  o ’

0  2  0 reduces mod 3 to 0  2  0 which in SNF is 0  1 0

P  0  4 , 0  0  1 . 0  0  2 .

It is difficult to see how such incompatibilities could be resolved—apart from a hideous 

combinatorial trial. Simply demanding transformations with determinant +1 will not avoid 

this problem (this can be achieved by negating one row whenever a pair are swapped) 

as even this does not guarantee the correct signs on the coefficients—different modular 

images may require different rows to be swapped, so signs are distributed on different 

elements.

Another difficulty is typified by the following:

1 2 1 2 1 0
0 7 
* «

reduces mod 3 to 0 1
b 4

which in HNF is 0 1
b 4

In this example the order information of Z  is destroyed—the natural order on Z  does
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not map to an order on Z /pZ . Indeed, it is easy to see there is no compatible ordering 

on Z /pZ . Hence we cannot expect the condition on elements above the diagonal to 

map faithfully to a modular case. This does not happen merely because we are working

modulo a prime less than the determinant of the matrix: consider
1 3n+2 
0 3 with

determinant 3, which in HNF is
1 2
0 3 , but for p=3n+1 and n large, modulo p this

becomes
1 1 
0 3 , which is incompatible with the image of the reduction. Other examples

of this sort are in [Alagar & Roy 1984]: they note an example where a large modulus 

fails, namely

109 481 480
423 1866 1863 
536 2363 2361

with determinant 18, and trial modulus 41. Interestingly, this modulus is not larger than 

the determinant of the 2x2 leading minor (which is 69)—this may be significant. Were 

they to take the Hadamard bound (approx 6.4x109) they would be assured of having a 

modulus larger than all sub-determinants. But we see what price they would have to 

pay: probably this number is bigger than all those that appear in a straight, non-modular 

computation.
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Abstract.

We present two efficient tests that determine if a given polynomial is cyclotomic, 
or is a product of cyclotomics. The first method uses the fact that all the roots of 
a cyclotomic polynomial are roots of unity, and the second the fact that the degree 
of a cyclotomic polynomial is a value of <f>(n), for some n. We can also find the 
cyclotomic factors of any polynomial.

The Problem.

A cyclotomic polynomial is an irreducible factor of xn — 1, for some n. These 
are an interesting class of polynomials, as they have distinctive properties: for 
example, if 9 is a root of some cylotomic polynomial of degree d, say, the extension 
Q(0) has trivial integral basis over Q, i.e. has integral basis 1, 9, 92, . . .  , 9d~l . 
The famous Kronecker-Weber theorem states that every abelian extension of Q is 
contained in a cyclotomic extension. See [Cassels] for proofs of these statements. 
A curious class of theorems about factorizations of trinomials f ( x )  first require the 
removal of all powers of x, and all cyclotomic factors [Ljunggren] [Davenport 83, 
Davenport 88]. This idea is formalised as Schinzel’s K  operator, meaning “remove 
all cyclotomic factors and factors of x” [Schinzel]. Schinzel’s theorems tell us about 
the factorizations of K ( f )  for appropriate / .

If  we wish to make use of such properties, we must be able to determine when we 
have a cyclotomic polynomial in hand. For example, is z 16+ar14—x10+ z 8—x6-f ®2+ l  
cyclotomic? There are several “obvious” tests to try on such a polynomial / ,  such as 
/  must have leading coefficient 1, and trailing coefficient ± 1; /  =  ±  the reverse of / ;  
or even — after inspecting a few examples — that all the non-zero coefficients 
are ±1. Unfortunately, the last test is invalid, as [Vaughan] testifies: there exist 
cyclotomic polynomials with arbitrarily large coefficients. The factors of * 105 — 1 
are the first interesting example. More subtle techniques involve realizing that the 
degree d of a cyclotomic polynomial is always a value of <f>(n), for some n (here <f> is 
Euler’s totient function [Hardy & Wright]). Thus such /  (excepting a r il)  must have 
even degree, as <f>(n) is even for n >  2. We can extend this to restrict the degrees 
of cyclotomic polynomials further: suppose 2* is the power of 2 dividing d =  
then n has at most k distinct odd prime divisors. For if n is even, n =  2r n*= i Pi*’ 
with r  > 1 (so n has s distinct prime divisors), then

2 r + . - l  | 2 r - l  ( „ / -  1 )  =  H n ) ,

*=1  1=1

and so r +  s — 1 <  k. Then s <  k as r > 1. Alternatively, if n is odd, n =  Il!= i pY i 
then

2> i (« / n  ̂ *) r ib .  ~ x) = ^ ( n)>
t=l *=1
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and 8 <  k, as before. Hence no polynomial of degree 14 is cyclotomic: neither is 
any of degree 50: if m is twice an odd number, then it cannot be a <f>(n), for any n, 
unless m +  1 is prime.

However, these tests are by no means sufficiently discriminating, and we would like 
a definite test for cyclotomicity. One way to check whether the polynomial /  is 
cyclotomic is to divide it into x” — 1 for various values of n, but how will we know 
when to stop and reply “/  is not cyclotomic”? The second method we give addresses 
this type of problem. On the other hand, we know that the roots of a cyclotomic 
polynomial are all roots of unity, and the first method exploits this.

The “Graeffe” M ethod.

If  /  is cyclotomic, then by its definition it divides some xn — 1, and so any root of /  
is a nth root of unity. We can drive this implication in the opposite direction given 
a construction by Graeffe, used in numerical analysis (see [Hildebrand]).

Procedure Graeffe.

Given a polynomial /  produce a polynomial f \  =  graeffe(/) whose roots are exactly 
the squares of the roots of / .

1. Write f ( x )  =  flf(x2) +  xh(x2), where g(x2) and xh(x2) are the even and odd 
parts of / .

2. Set / i(x )  =  flf(x) 2 — xh{x)2.

3. Normalize f i  to have positive leading coefficient.

Then f \  is as described. Noting that the square of a root of unity is itself a root of 
unity we have the following test:

Given an irreducible / ,  compute f \ .

1. I f  / i(x ) =  /(x ) , then /  is cyclotomic.

2. I f  / i(x ) =  / ( —x), and / ( —x) is cyclotomic, then /  is cyclotomic.

3. I f  f i  =  / | ,  where f i  is cyclotomic then /  is cyclotomic.

4. Otherwise /  is not cyclotomic.

Proof

1. Take a root a  of / .  Then f i = f  implies a2, a4, . . .  , a2*, . . .  are all roots of
/ .  Eventually we must have a* =  with i  >  j , and then a =  1. Further,
all the roots of /  must be powers of a, as /  is irreducible.

2. If  n is odd, (—x)n — 1 =  —(xn +  1) and this divides x2n — 1. Otherwise
(—x)n -  1 =  x n -  1.

3. The roots of f  are the square roots of the roots of a cyclotomic, and so /  is 
itself cyclotomic. □

Conversely, any cyclotomic polynomial satisfies this. The case f i = f  occurs when 
/  divides xn — 1, n odd: the roots are cycled around on top of each other. / i(x )  =  
/ ( —x) happens when n is twice an odd number: the roots of f \  are n /2 th roots
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of unity. The last case is when 4 divides n: pairs of roots are mapped on top of 
each other, and we get the square of a cyclotomic polynomial. This procedure must 
terminate, as steps 1 and 2 occur at most once, and step 3 reduces the degree of / .  
(Note that step 2 cannot happen twice in a row, for then a a root of /  implies a 4
is a root of / ,  then so is a 16, and so forth, whence again /  is cyclotomic. Then n
and n/ 2  are both twice an odd number.)

We can apply this test to /  =  x16 +  * 14 — x10 +  x8 — x6 +  x2 +  1. We find that

f i  =  z 16 +  2x15 +  z 14 -  2x13 -  x10 +  7x8 -  x6 -  2x3 +  x2 +  2x +  1 
=  (x8 +  x7 — x5 +  x4 — x3 +  x +  l ) 2

=  f h  say-

Proceeding with / 2,

/ 3 =  graeffe(/2)
=  x8 — x7 +  4x6 +  x5 — x4 +  x3 +  4x2 — x +  1,

which is not a square, nor is it / 2(±x). Hence /  is not cyclotomic.

Trying /  =  x16 +  x14 — x10 — x8 — x6 +  x2 -f 1 we get

/ i  =  x16 +  2x15 +  x14 -  2x13 -  4x12 -  4X11 -  x10 +  4x9 +  7x8
+  4x7 — x6 — 4x5 — 4x4 — 2x3 +  x2 +  2x +  1 

=  (x8 -f x7 — x5 — x4 — x3 +  x +  l ) 2

= f l

And now / 3(x) =  graeffe(/2(x)) =  / 2(—x), and graeffe(/3) =  / 3, so this polynomial 
is cyclotomic. Note that /  divides x60 — 1, / 2 divides x30 — 1, and / 3 divides x15 — 1.

The “inverse <f>”  Method.

Suppose we have an irreducible polynomial /  of degree d. I f  /  is cyclotomic, we 
know that it divides x” — 1 for some n, and d — <f>{n). So the problem is to discover 
all the possible values for n, and try the division. To aid this we have the following 
theorem:

Theorem

n =  0 (^(n)1+£) for any fixed e >  0 .

Proof

Let € >  0 be fixed, and put flr(n) =  n1^ 1+cV ^ (n)- Then g is multiplicative (i.e. 
g[rs) =  g(r)g(s) when gcd(r,s) =  1), and for a prime-power pm,

m/(l+c) 

pm/( 1+c)

"  Pm(l -  l/p )

< 2pm( ^ _1) as p >  2

=  2  p - m £ / ( 1 + 6 ) .
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Thus g(pm) < 1 whenever 2p“ mc/(1+e) <  1, which is to say pm >  21+1 ê. Now, by 
the multiplicativity of g, for any n >  2, we find g(n) <  C, where

c  =  J I  max{<7(pm), 1}
pm< 21+1/*

depends only on e.

So n1/(1+e) <  which means n <  C 1+c<f>(n)1+e, or n =  0(<f>(n)1+e), as
claimed. □

This is the “best possible” result of this form, as for every C >  1 there exists an 
n with n > C<f>(n). To see this we simply take n =  flP*) a product of so many 
distinct primes that riP»/(p* — 1) >  C. (That this can be done is related to the 
divergence of the sum 1/p*. See [Hardy & Wright].)

From the proof of the theorem we have

CoroUary

n < 3<f>(n)3/ 2 for all n > 2 .

Proof

Here c =  1/2, </(n) =  n2/ 3/^(n), and the prime-powers no greater than 21+1 £̂ =  23 
are 2, 22, 3, 5, and 7. So

c  -  I I  max{<jr(pm), 1}
pm<23

=  g(2).g(22).g (3 ).l.l as $(5), g(7) <  1 
22/3 2̂/3 32/3

“  "1  2 2”
242/ 3 

~  4 *

Then n <  C3/ 2<̂ (n) 3/ 2 =  ^ ( ” ) 3/2 =  3^(n)3/2. □

In fact straight computation shows that n <  5<̂ (n) for n <  3000, which covers most 
practical cases.

So given an irreducible polynomial we can now effectively determine if it is cyclo
tomic as follows: take a root of the polynomial and raise it iteratively to a sufficiently 
high degree, where “sufficiently high” is as given above. If  at some point we get a 
unit, the polynomial is cyclotomic, and if not, it is not.

Now we can re-test the irreducible polynomial /  =  x16 +  x14 — x10 -I- x8 — x6 +  x2 -1-1 
given above. This has degree 16, so we need only check powers of a root up to the 
80th degree. It turns out that none of these powers are 1, so /  is not cyclotomic.

However, the same procedure applied to x16 -1- x14 — x10 — x8 — x6 -I- x2 +  1 shows 
that this example is cyclotomic — a root raised to the 60th power is unity. Thus it 
is a factor of x60 — 1, which can be checked by division.

[Hardy & Wright] prove a stronger result than the above, namely <f>(n) >  e_7 n / log log n |  
for all sufficiently large n (where 7  =  0.577... is Euler’s constant). From this we de
duce that n =  0(<f>(n) log log <f>(n)). Again, tables show that n <  9.2<j>(n) loglog^(n)
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for all n <  3000. However, 9.2<j>(n) log log ̂ (n) >  5^(n) whenever <f>{n) >  6 , so this 
is generally not as useful as the previous bound in this region. This is an example 
of where asymptotic complexity theory is misleading about practical cases.

Non-irreducible polynomials

What happens, now, if we don’t know whether /  is irreducible? We might hope 
the tests will identify any factor of some xn — 1 (not just the irreducible ones). 
Unfortunately, both tests as they stand fail: for example, if /  =  (x — l ) 2, then /  
is not of the required form, but graeffe(/) =  / .  Write $d(x) for the irreducible 
cyclotomic polynomial of degree <j>(d), and set /  =  $ 7^ 15, a degree 14 polynomial. 
Then the simple degree bound from the inverse <f> is 70. In fact / 1 x105 — 1 (and no 
smaller exponent will do), and the degree-bounding method will not detect this.

The 4>s satisfy the useful relation xn — i  =  IL | .  • * ( * ) •  Suppose $d(x) and $ e(*) 
divide xn — 1 and xm — 1 respectively. If  d ^  e then gcd($d,$e) =  1, and then 
$d(x)$e(x) | xlcm(n,m) — 1 follows directly from the above relation. Generalizing, a 
product of distinct irreducible cyclotomics divides a polynomial of the type xn — 1, 
for some n.

The Graeffe method extends to such products — in fact the same algorithm with 
the irreducibility condition dropped will recognize any square-free polynomial that 
divides some x" — 1. From /  we find f \ . Put f si =  gcd(/i, /();  this part corresponds 
to those factors that are squared by Graeffe. Reconstructing this part is simple —  
it is just f s(x) =  / , '(x 2). f p =  g c d ( / / / , , / i )  is the self-mapping part, and the 
remainder /„  =  f f f » f p is the part that maps on to its negative. We can now 
recurse on / , ,  f p and /„, splitting each into three parts (some of which may be 
unity, of course). Then /  is a factor of a xn — 1 if each of / , ,  f p and f n are.

As a contrived example, consider /  =  x8 -f 2x6 +  x5 -f 2x4 +  x3 +  2x2 +  1. Here 
f i  =  x8 +  4x7-f 8x6 +  11x5 +  12x4 +  11x3-|-8x2-|-4x-|-1, / , '  =  x -f 1, f» =  =
x2-f 1, f p =  x4 +  x3 +  x2 +  x +  l, and finally f m =  x2 —x +  1. In fact /  was $ 4$ 5$ 6> 
as this decomposition verifies.

Alternatively, we note that the $s are cheap to compute (see below), and can follow 
an alternative path: take the inverse <j> bound for /  and generate, in turn, each 
of the for d less than the bound. If  any of these divide / ,  we have achieved a 
factorization. If  none do, then /  is not a divisor of some xn — 1.

So for /  =  $ 7$ i5 =  x14 +  x11 +  x9 +  x8 -  x7 +  x6 +  x5 +  i 3 +  1, the inverse <f> 
bound is 70, and we generate $ 1, $ 2> • • •» dividing each into / .  Of course we find 
$ 7  I /» giving a quotient factor for which we re-compute the bound, and continue 
generating and dividing $s. If  we had got as far as $35 without finding a factor, 
we would know that /  has no proper cyclotomic factor (we need only try as far as 
<j)~1(n/2), as a proper factor will have degree no larger than n /2).
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A n Application

The polynomials x" — 1 are exceptionally easy to factorize: this follows from the 
product relation for the <£s. Thus the irreducible factors of xn — 1 are simply the 
3><i(x) for the divisors d of n. These irreducibles are themselves easy to generate by 
the means of the following:

1. I f  d =  1, then $ i(x ) =  x — 1;

2. else if d =  pr , then $ p»-(x) =  (xpr — l ) / (x pP 1 — 1);

3. else if p || d, then $d(*) =  $d/p(xp) /$ d/p(x);

4. else ifp 2 | d, then $d(x) =  $d/p(xp).

Now these facts combined will allow us to create a specialized factorization algorithm 
for certain polynomials. For suppose we have been given a square-free / ,  and have 
found that it is a product of cyclotomics, and it divides x" — 1, say (this degree n 
is easily computed once we know /  does actually divide an xn — 1). We now take 
each of the irreducible factors of xn — 1, and try dividing them into / .  For large 
degrees, this can be a great saving over using the general factorizing algorithm.

As an example we factorized x105 — 1, (0.6 seconds on a Sun 3/160 running Reduce 
3.3) and multiplied together its two largest factors (degrees 48 and 24) to give 
a degree 72 polynomial / .  Factorizing /  in the normal way took 806.8 seconds. 
However, it took just 0.2 seconds to run the cyclotomic test on / ,  and then 1.5 
seconds to recover the factorization of /  (in the worst case of trying all the wrong 
factors first), making a total of 0.2+ 0.6+1.5 =  2.3 seconds. Similarly we took only 
4.7 +  50.8 +  185.9 =  241.4 seconds to factorize the degree 240 +  480 =  720 factor 
of * 1155 — 1 that is the product of the two largest irreducible factors. (The reader 
may care to contemplate the cost of running the [Berlekamp] algorithm on a 7202 
matrix!)

Algebraic Extensions.

Over algebraic extensions of Q it may well be that a rational irreducible cyclotomic 
polynomial will factorize further. For example, over Q(z) we see x4 +  1 factorizes 
as (x2 +  *)(x2 — *). The “inverse <f>” method adapts directly to recognize such a 
factor. For an /  of degree d defined over an extension of degree e over Q we simply 
take the degree bound given for d above and multiply it by e. Then this bound is 
sufficiently large.

Alternatively, we may take the norm of / ,  and use either of the methods above: for 
/  divides its norm, and hence if the norm divides xn — 1, then so does / .

- D.7-



Shifted Cyclotomics.

Another interesting question is to spot when /(s )  is a shifted cyclotomic — when 
does there exist an integer m for which f ( x  +  m) is cyclotomic? Field extensions 
generated by such polynomials are “really” just cyclotomic extensions, and it would 
be worthwhile if a cheap test could be found to exploit this.

Every cyclotomic polynomial has ±1 as a trailing coefficient. Now given /(x )  we 
can substitute x +  m for x and equate the trailing coefficient to ±1 and solve for 
m. But this is just solving the equations f(m )  =  ±1 for m. If  either of these 
latter equations have any integral solutions we may substitute back and inspect the 
resulting polynomial to see if it is cyclotomic. In this way we reduce the problem 
to that of recognising cyclotomic3.

Let f ( x )  =  x8 +  17x7 +  126s6 +  531s5 +  1389s4 +  2303s3 +  2354s2 +  1349s +  331. 
Then /(s )  +  1 is irreducible (and therefore has no integral roots), but /(x )  — 1 =  
(s +  l)(x  -|- 2)(x +  3)(s2 +  4s +  5)(x3 +  7s2 +  16s +  11). Now /(x  — 1) =  x8 +  
9x7 +  35s6 +  76s5 +  99s4 -f 76s3 +  4x +  1, which is not cyclotomic. However, 
/ (x  — 2) =  x8 +  x7 — x5 — x4 — x3 +  s +  1 is cyclotomic — it is $ 30.

We need not perform the potentially costly factorization of f (x )  ±  1: suppose x — c 
is a linear factor of <jr(x) =  sn +  . . .  +  Co, then c | Co, i.e. c is a factor of the trailing 
coefficient. So for f ( x )  — 1 =  x8 +  . . .  +  330, we see 330 =  2.3.5.11, and so the only 
possible integer roots are ±1, ±2, ±3, ±5, and ±11. If  it still turns out to be too 
expensive to factor the trailing coefficient we can substitute x =  ±1, ± 2  or other 
small integers to see if these happen to be roots. This will not recognise all shifted
cyclotomics, but it has a chance of finding a few.

nth power Graeffe.

We can ask the question of whether we can generalise the Graeffe procedure to 
produce a polynomial whose roots are the cubes, of the fourth powers, or even 
higher, of a given polynomial / .  The cubic case is fairly easy to deal with:

1. Write f ( x )  =  g(x3) +  xh(x3) ±  x2Jb(x3), where g(x3), xh(x3) and x2Jb(x3) are 
the parts of /  with exponents that are =  0, 1 and 2 (mod 3), respectively.

2. Set /i(x )  =  g(x)3 +  xh(x)3 +  x2fc(x)3 — 3xg(x)h(x)k(x).

Then f i  has the desired properties. For the fourth and higher powers, it becomes
inconvenient to formulate and use decompositions as above, and instead we use the 
following:

Theorem

The polynomial
graeffen(/(x ))  =  resultanty(/(y ), yn -  s) 

has roots exactly the nth powers of the roots of / .

Proof

If  a  is a root of /(x ), then a ” is a root of / ( v^s), whose norm is just graeffen(/(s )). 
□
As an example consider /(x )  =  x4 — s2 +  1. We see graeffe(/) =  graeffe2( / )  =
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(x2- x  +  l ) 2, graeffe3( / )  =  (x2 +  l ) 2, graeffe4( / )  =  (x2+ x  +  l ) 2, and graeffe12( / )  =  
(x — l ) 4. /  is a factor of x12 — 1.

This also allows us to generate the decomposition formulae for the graeffen, as given 
above. Thus if we set /(x )  =  <7+ x h + x 2fc+x3/, then, symbolically, graeffe4(/(x )) =  
resultanty(/(y ), y4 — x) =  y4 — x(4 g2hl +  2 g2h2 — Agh2k — h4) +  x2{Agkl2 +  2h2/2 — 
Ahk2l+ k 4) — x3/4, which is the decomposition equation for the fourth order Graeffe.

Much of the above for the simple Graeffe follows through directly for the higher order 
Graeffes. Taking /  =  $ 4$ 5$6 =  x8-f 2x6 +  x5 +  2x4 +  x3 +  2x2 +1  again, and using, 
say, graeffe3, we get f \  =  graeffe3( / )  =  x8+3x7+5x6+7xs-|-8x4+7x3+5x2+ 3 x + l,  
then gcd(/, f { )  =  x6 +  x5 +  2x4 +  2x2 +  2x2 +  x + 1  is the part of /  corresponding to 
those factors 4>n with 3 /n, which are mapped onto themselves by graeffe3; and the 
remainder f /g c d ( f , f \ )  corresponds to those factors with 3|n, which are mapped 
onto perfect cubes.

Conclusion.

We can determine effectively and cheaply whether a given polynomial is cyclotomic. 
The second test supplies us with the degree of the xn — 1 that it divides, but requires 
the /  to be irreducible, whereas the first allows us to decompose certain polynomials.
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