

University of Bath

PHD

On the computation of integral bases and defects of integrity

Bradford, Russell John

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

On the Computation

of Integral Bases

and

Defects of Integrity

submitted by

Russell John Bradford

for the degree of Ph.D. of the

University of Bath

1988

Attention is drawn to the fact that the copyright of this thesis rests with its author. This
copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.
This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Russell Bradford

UMI Number: U009765

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U009765
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

sp ----- n \ o

Contents

Chapter 1. Introduction

1.1. Review 1.1

1.2. Definitions 1.4

1.3. Existence and Simple Properties of Integral Bases 1.7

Chapter 2. Algebraic Numbers

2.1. Review 2.1

2.2. Requirements 2.2

2.3. Basic Design 2.4

2.4. Division 2.4

2.5. Factorisation of Polynomials 2.6

2.6. Conclusion 2.8

Chapter 3. Hermitian Reduction

3.1. Definitions 3.2

3.2. Simple Hermite Reduction 3.2

3.3. Smith Normal Form 3.3

3.4. More Advanced Methods 3.5

3.5. A Method Based on GCDs 3.5

3.6. Iliopoulos 3.7

3.7. Examples 3.8

3.8. Modular Methods 3.12

3.9. Conclusions 3.12

- i -

Chapter 4. Ideals

4.1. Representation of an Ideal 4.1

4.2. The Norm 4.2

4.3. Multiplication and Division of Ideals 4.3

4.4. The Different 4.4

4.5. Addition or GCD 4.5

4.6. Factorization 4.6

Chapter 5. The Defect

5.1. Special tests 5.3

5.2. Bounding the Index 5.4

5.3. Zassenhaus 5.5

5.4. Vaughan 5.8

5.5. Bounding the Defect 5.10

Chapter 6. Special Cases

6.1. Degree Two Extensions 6.2

6.2. Degree Two Bases 6.3

6.3. Degree Three Extensions 6.5

6.4. Cubic radicals 6.9

6.5. Cydotomic Extensions 6.13

6.6. Radical extensions 6.17

Chapter 7. Algorithms for Integral Bases

7.1. Brute force methods 7.2

7.2. The Round Two Algorithm 7.2

7.3. Its Problems 7.5

7.4. Improvements 7.7

7.5. The Round Four Algorithm 7.10

7.6. Theory 7.13

7.7. Berwick’s Method 7.14

7.8. Conclusions 7.18

Chapter 8. Conclusions

8.1. Review 8.1

8.2. Future Work 8.2

References 8.5

Appendix A Primitive Representations

Appendix B Berwick’s results for radicals

Appendix C Modular Methods for the HNF

Appendix D Effective Tests for Cyclotomic Polynomials

- iii -

Summary

We describe various aspects of the calculation of estimates of the defect of a

presentation of an algebraic number field, and the computation of integral bases. We

concentrate on the efficient treatment of special cases, and describe a new algorithm for

Hermitian reduction.

The defect of an algebraic field extension is easily seen to be bounded multiplicatively

by the discriminant of its defining polynomial, and we describe how to refine this

estimate, and prove a new bound, the reduced discriminant

Next we consider the computation of integral bases for field extensions. Special cases,

such as quadratic or cyclotomic extensions, are easy to deal with, provided we can

recognize the latter when they occur, and we have found a criterion that determines this.

Cubic extensions are the next case to consider, and by combining elements of previous

authors’ work we have constructed an algorithm that will deal with the general cubic

field. To find the basis of higher degree extensions we use a method that relies on

Hermitian reduction of integer matrices, a process akin to Gaussian reduction, but

preserving the integrality of the matrix. To use this method efficient and fast reduction of

matrices is essential, and we have spent some time in investigating and devising

algorithms, and have interesting and useful results in this direction.

We have also implemented in REDUCE an efficient package that manipulates algebraic

numbers in a coherent fashion, a factorizer for polynomials over algebraic number fields,

and the Round Two algorithm for the computation of integral bases.

1. Introduction

From the Journal of Symbolic Computation 1987 4(1),

“[Zassenhaus] declared the central tasks of constructive number theory to be
(i) the computation of the group of an equation,
(ii) the computation of an integral basis,
(iii) the computation of the unit group,
(iv) the computation of the class group of an algebraic number field.”

M Pohst

This thesis addresses itself to the second problem—the computation of integral bases.

1.1. Review

For a long time now elementary algebraic number theory has been regarded as just

that: elementary. Constructions from those as simple as arithmetic operations to those

as complex as integral bases are taken for granted. Texts demonstrate the existence of

-1.1 -

R J Bradford Introduction

integral bases in a few paragraphs, and later will “pick a basis” barely pausing for

breath. However, with the advent of constructive mathematics and the mechanization of

algebra interest has risen again in the algorithmic aspects of these problems. For

example, if a is a root of x3+x+1, then no-one stops to think about taking the reciprocal

1/(a+1), but few can actually compute it efficiently or algorithmically (it is a2-a+2).

Traditionally, each case is treated individually, often with great insight (or hindsight) and

assorted bags of tricks. It is not surprising, then, that computer algebra has generated

a re-investigation of mathematics back down to the basics. It is amusing to note the re-

emergence of “antique” or “Victorian” techniques such as resultants in modern

computer algebra (CA) systems.

In chapter 2 we start with these basics and describe a package we have implemented

on top of REDUCE that deals with simple arithmetic over algebraic extensions of the

rationals. This is not the first algebra system that can handle such extensions—e.g.

MACSYMA has some capabilities along these lines—but unlike MACSYMA it does it in

a logical and coherent fashion. Thus we are more resistant to the indeterminate sign for

square-root tricks that can be used to convince such systems that 1 is -1.

A well-used concept in commutative algebra is that of the Hermite Normal Form of a

matrix. This again suffers from the usual problems of over-familiarity, but it is in fact

worse: because there is an obvious constructive proof of its existence, most people are

willing to stop there. If, however, anyone tries to use the trivial algorithm, they rapidly

become unstuck on anything other than the smallest of examples. Now, as the exact

reduction of large sets of linear equations became important (e.g. [Rubin 1985],

[Adegbeyni & Krishnamurthy 1977]), it was clear that more efficient algorithms had to be

found. These arrived in the papers [Kannan & Bachem 1979] (with enhancements [Chou

& Collins 1982]), [Frumkin 1977], [Bradley 1971], with a survey [Alagar & Roy 1984]. In

[lliopoulos 1985] a semi-modular technique was proposed, and in chapter 3 there are

-1 .2 -

R J Bradford Introduction

descriptions and variations on these methods.

Similarly the concept of an integral basis for an algebraic number field (and other field

extensions in general) has long been used as a routine tool in proofs. For examples see

chapter 4 on the manipulation of ideals, or any standard textbook. The properties of

integral bases allow certain information to be read off directly. For example the defect,

useful as a bound in factorization algorithms, is immediate.

The defect has been used implicitly in the literature (e.g. [BSffgen 1987a]), but only in

[Rothstein 1984] does it seem to have been recognized as a useful quantity in its own

right, though the latter is not too sure to what use it should be put. In chapter 5 we

present several ways of estimating the defect, and show how to sharpen the estimates

by incorporating tests from [Zassenhaus 1975] and [Vaughan 1985].

Next we turn to the actual computation of integral bases, and in chapter 6 we discuss

some particularly simple types of field extension for which we can write down a basis

directly, or with a minimum of calculation. These are quadratic, cubic, and cyclotomic

extensions.

The first attempt at a general algorithmic approach to the computation of integral bases

was [Berwick 1926], which dissected the minimal polynomial of the field extension, and

used results from [Bauer 1907] concerning the Newton polygon. Unfortunately, as

Berwick admits, his method is incomplete. Unfortunately, also, the method is very long

and complex, and would require a huge amount of intricate code.

Zassenhaus picked up the problem, and in 1965 produced an algorithm, later called the

“First Round” algorithm, that would compute the integral basis of any algebraic

extension of <D. This was later improved in the “Round Two” algorithm [Zassenhaus

1972], which was implemented by Kehlenbach in 1973. By “Round Four” [Ford 1978],

-1.3-

R J Bradford Introduction

Zassenhaus’ approach was completely different. Whereas Round Two used

commutative algebra techniques and manipulation of matrices, the Round Four

algorithm returned to “the spirit of the Berwick method” [Ford 1978], and analysed the

minimal polynomial of the field.

Recent literature [Bbffgen 1987a,1987b] [Ford 1978,1987] has dismissed the Round

Two as definitely inferior to the Round Four, but we contend this is not completely true.

In chapter 7 we use results from chapter 3 on Hermite reduction to improve the Round

Two significantly. This, plus other improvements allow far larger problems to be resolved

in a reasonable amount of time. We also note that Round Two is not restricted to simple

extensions: thus we can find an integral basis for an extension like <D(V2,V3,V5,V7)

directly, without having to compute the minimal polynomial for the extension first.

Our original interest in integral bases was generated by the problem of indefinite

integration, and in particular the integration of functions over algebraic function fields.

Whereas Davenport [1981] uses Puiseaux series expansions and techniques from

algebraic geometry, Trager [1984] uses integral bases as a building block for their

respective integration algorithms. Due to technical limitations of REDUCE (see chapter

2) we were led to investigate a simpler problem, namely that of the computation of

integral bases over algebraic number fields. This is mostly an artificial distinction, as

most of the algorithms we discuss can be generalized simply to function field of one

variable. In fact certain aspects (mainly regarding characteristics of fields) become

simpler when we pass to the function field case. Further, all the theory of chapter 3

follows through directly.

1.2. Definitions

We shall take Z to be the set of integers, <D the rationals, and R to be a general integral

-1 .4-

R J Bradford Introduction

domain (but usually viewing it to be either Z or <D[X], the ring of polynomials in X over

<D), with field of fractions QF(ft). We write R{X) = QF(ft[X]), the field of rational

functions in X over ft. Also Z p is the p-adic integers, <DP the p-adic numbers, and

Z /p Z the integers (mod p).

An (algebraic) integer over ft is a root 0 of a monic polynomial

f(x) = xn+fn-,xn~ '+ - - - + f 0 = 0, (*)

where the coefficients f t e ft. The collection ft[0] of polynomials in 0 over ft, and o, the

collection of all members of ft(0) that are integral over ft (i.e. satisfy a monic polynomial

over ft) form integral domains. Each member of the field ft(0) can be expressed in the

form p(0)/p, with p(y) e ft[y] and q e ft. As we shall see later, not all members of o

are necessarily representable as this type of ratio with q = 1.

For a1pa2, * ■ ■ ,am e ft(0) we write (a^ofe, • • ■ am) for the module

{ r ^ + f a a z f • • • +rma m,0 e f t } ,

i.e. the ft-module generated by the a/.

When we mean ideal generators we shall write

<Oi,a2, • * * ,am>.

Let the n conjugate roots of (*) be 0 = 0(1>, 0(2), • • •, 0(A,). Then the discriminant of ft(0)

is

0(0) = II(e(/)-e(/))2.
i<J

or

-1 .5 -

R J Bradford Introduction

D(9) =

0(i)
0(2)

0(n)

n S(0)
S(0) S(02)

S(0n"1) S(0n)

0 (l) n - 1

0(2) n-1

Q(n)n-1

• * S(0n"1)
• ' S(Qn)

•• S(02n_2)

where S is the trace fl(0)-»fl, and we shall generally ignore its sign.

More generally, the discriminant of a full-rank module a= (a1,a2, • • • a„) in R(0) is the

determinant disc(a) = 6e\{ap)2, where the a ft are the field conjugates of af in R{Q).

The gcd of two elements (in Z or <D[X]) is their greatest common divisor, and the Icm

is their least common multiple. If gcd{a,b) = g, then we can use the extended

Euclidean algorithm to find cofactors X and p such that Xa+\Lb = g.

A related concept is that of the resultant. For polynomials f (x) = E /V / * 7 and 9(x) =

'EEoQ/X1 their resultant res{f ,g) is the determinant of the Sylvester matrix

f n f n-1 f 0 0 • • 0

0 f n . . . f 1 f 0 • 0

0 f n f n-1 ... • f o

9m 9m -1 9o 0 • • 0

0 9m . . . 9i 9o • 0

0 9m 9m—1 ... • 9o

where there are m rows of f and n rows of g. This value is zero whenever f and g

have a non-trivial common factor. Further, we find that

D(0) = res(f(x),d//dx)

where f (x) is the minimum polynomial for 0.

-1 .6 -

R J Bradford Introduction

Details of algorithms for the extended Euclid and the resultant can be found in

[Davenport et al 1988].

1.3. Existence and Simple Properties of Integral

Bases

Let 0 be an algebraic integer over Z . Every member co of Z(G) can be written in the

form

co = rn_10 n~‘l+ rn_20 n_2+ ■ ■ ■ + fo

with rf e <D. For co to be a member of o it is necessary, but not sufficient, that #■/ =

s,/D(0) for Si € Z (see later).

Now of the integers in o of the type (s„_10n-1+sn_20n“2+ • * ■ +so)/0(0) thare's at ,east

one (namely 0') with Sj = 0, /> / and O<s,<D(0). Let Xu be the least of such s#-, and

CO/ — (XjjQ^+Xjj^Q' 1 + . • • +Xi0)/D{Q)

a corresponding integer. This defines a set of integers co0, o^, • • • , co„_i. Now if co =

(s„_10',“1+sn_20n-2+ • • • s0)/0(0) is any other member of o we see Xn_1i„_11 sn̂ , or else

by division sn̂ = qXn̂ tn̂ +r, with 0<r<Xn_1i/J_1, and so co-qcon_-i =

((sn_1-<7X.n_1i„_1)0/,“1+ • ■ •)/D(0) = (r0n_1+ • • •)/D(0) is an integer contradicting the

minimality of above. Hence s„_-, = mn_̂ Xn_^n_̂ with mn_, e Z , and

= (s '„ .20"-2+ • • • S'o)/D(0) e o.

Repeating, we find

co = n7„_icon_1+ m n_2con_2+ * ■ • m 0coo, (*)

with m} e Z .

Thus every member of o is expressible in the form of (*), and we say

-1.7-

R J Bradford Introduction

(G>0i ©1, i 00/j—■!)

is an integral basis for o over Z.

The same process can be achieved working over the polynomial ring <D[X] in place of

Z , with comparisons of degrees replacing those of sizes: every member of o is

expressible in the form (*) with m/ e Q[X].

Now let M = (niij) be any nxn matrix over Z . If M is unimodular, and therefore

invertible over Z, and we define

to'/ = m /ii(Do+/n/i2© i+ * • • + m /i„a>„_1>

then the sets e Z } and (E /i'/© '/: n'i e Z} are equal, as every number

expressible in terms of the to/ is expressible in terms of the co'/, and vice-versa. A

similar statement holds for the polynomial case.

Hence we see an integral basis is not unique, and we may use this non-uniqueness to

our advantage. However, if we require a unique basis, then we may specify that one

with © / = (X /i/ 0 /-»-A./i/_1e /“ 1+ • • ■ +Xlfi)/dj where dt is coprime to gcd(\i j, • • •

0<Kjj<dlt for j = 0, • • • /—1, and 0<Xs<d{ (monic and with equivalent inequalities of their

degrees for polynomials). Then a divisibility argument as above shows this to be

unique. In this case of a triangular basis we call to/ a number of rank /.

However, the basis just given may not always be appropriate—If we were thinking in

terms of lattices, then we would prefer a reduced basis, but in general, for higher

degrees, it is very hard to discover such a basis. Methods exist, in particular those given

by Lenstra [Lenstra et al, 1982], to find nearly reduced bases, but to find completely

reduced bases (at least with respect to the infinity-norm) is NP-hard [Helfrich 1985].

However, it usually does not matter greatly whether we have a completely reduced

basis (at least, in the areas we shall be discussing), but any basis will do. In fact, the

-1.8-

R J Bradford Introduction

time spent on reducing a basis may be better spent on other things. On the other hand,

any reduction in the size of the integers involved is welcome when we come to

manipulate bases.

2. Algebraic Numbers

This chapter describes a package we have implemented in REDUCE for the

manipulation of algebraic numbers. The package regards algebraic numbers as

elements of abstract extensions of the rational numbers, not as particular real or

complex numbers.

An extended version of this chapter can be found in our paper [Abbott et al, 1986].

2.1. Review

The manipulation of algebraic numbers by computer algebra systems has long been a

source of frustration (see, e.g., [Davenport 1981], chapter 2). It is certainly possible to

declare rewrite rules, of the form

FOR ALL X LET SQRT(X)**2 = X;

(or to build in similar rules) and for very simple calculations this will have the correct

R J Bradford Algebraic Numbers

effects. However, consider the matrix

* *
1 /
/ ' -1 '

An algebra system which merely applies algorithms intended for transcendental

calculations, and then uses such rewrite rules on the results, will compute a determinant

of —I —/2, which will simplify to 0, but a rank of 2 (since a trancendental algorithm will

think that -1 -/2 is non-zero), and this will clearly stay unaltered under such rules. This

is not a piece of idle speculation: the versions of MACSYMA, REDUCE and SMP to

which we have access can all be persuaded to give incorrect results when manipulating

matrices with algebraic entries.

The solution is to apply the simplifications (the polynomials defining the algebraic

numbers) all the time, and not merely at certain points in the calculation. Fortunately,

this is now relatively easy to do in REDUCE, thanks to the mechanism of domains

[Bradford et al, 1986].

Throughout this chapter timings are given in seconds measured on a High-Level

Hardware Ltd. Orion 1 microcoded super-micro—a machine that runs the REDUCE test

in 60.5 seconds. REDUCE 3.2 [Hearn 1982] running on top of Cambridge LISP [Fitch &

Norman 1977] was used for the timings, although the package has also been

implemented in REDUCE 3.3, and on top of PSL [PSL 1987].

2.2. Requirements

The first major decision we took was to treat algebraic numbers as elements of abstract

extensions, rather than as specific real or complex numbers. This means that we talk

about V2 without specifying whether we mean 1.4142... or -1.4142.... This is the

interpretation that is placed on algebraic numbers by the theory of integration, for

example, but is not the one required for real algebraic geometry (and associated

-2.2-

R J Bradford Algebraic Numbers

applications such as robotics [Davenport 1985]).

A second decision was to allow multiple algebraic numbers, possibly even algebraically

dependent ones, to exist in a given REDUCE session. This means that the user is not

prevented from introducing V2 simply because V8 has been used previously. Of course,

if she then tries to calculate the reciprocal of V8- 2V2, an error will result. We envisage

the user (human or higher level program) using the facilities provided to check that a

new algebraic is independent of appropriate previous algebraics whenever necessary.

The main motivation for this was to allow an integration system to make free use of the

algebraic number package, without having to wonder whether the algebraic numbers it

was using for internal purposes were algebraically dependent on those that the user had

declared elsewhere. It would be expensive to have to use 21/20 rather than V2 in an

integration just because the user had previously used 21/20 in a different calculation: we

believe in local rather than global independence.

A consequence of this decision is that we will not use a primitive element representation

for algebraic numbers as recommended by Loos [1982]. We did this since primitive

elements can be extremely expensive to calculate, and also very opaque to the user.

Najid-Zejli [1985] points out that a primitive element for two roots a and p of the

polynomial x4+2x3-5 is, as calculated by the well-known algorithms [Trager 1976], a

root of

y12+18y11+1 32y10+504t9+991 y8+372y7-3028'^-6720y5

+11435/+9165073+185400^+194400y<-164525.

Not only is this polynomial sufficiently frightening, but the expressions for a and p in

terms of y involve fourteen-digit numbers. When it comes to a primitive element for

three of the roots (which is the same as for all of the roots), the defining polynomial has

coefficients with more than 200 digits.

-2 .3 -

R J Bradford Algebraic Numbers

2.3. Basic Design

In addition to the “external” requirements presented above, there were additional

requirements imposed by the structure of REDUCE. It is helpful to the user if data

items that are actually integers are stored as integers, rather than as elements of the

algebraic domain, since otherwise one can have two data items that print identically, but

are actually quite different internally. Hence, for just this chapter, we will reserve the

word “algebraic” to mean an algebraic number that is not a rational.

The polynomial 2x 2-1 has a root Vv£, and reduction by it involves division (due to the

leading coefficient), so for simplicity we restrict ourselves to monic polynomials. Hence

we restrict all elements of the domain to be algebraic integers: clearly this does not

restrict the range of numbers expressible. The general form of an element of the

algebraic domain is a multivariate polynomial with integer coefficients and “variables”

algebraic integers, the whole divided by an rational integer. Such denominators arise

only as a result of division.

2.4. Division

Of the four arithmetic operations, only division presents us with any real difficulty. (But

see [Abbott et al, 1986] for a discussion of multiplication). Using the above mentioned

representation for elements of the algebraic domain, division is best achieved by

reciprocation and multiplication. Now finding the reciprocal of an algebraic number is

fairly complicated, and we tried several different methods. All except the first used the

classical algorithm of finding the relevant cofactor from the gcd calculation.

The first method worked by solving the linear equations

(an_i oP 1+an_2an_2+ • • ■ +ao)(frn_iOtn_1+bn_2<xn 2+ * • • +bo)=1

-2 .4-

R J Bradford Algebraic Numbers

directly for the ty given the a}. The LNRSOLVE package in REDUCE seemed the

easiest way to solve these equations, however complications with the domain structure

and disappointing performance led us to abandon this idea.

Next we implemented a crude PRS (polynomial remainder sequence) algorithm. The

coding was easy, and performance was superb on small problems, it did not take long

for yet another discovery of the notorious coefficient growth inherent in the algorithm.

We chose Hearn’s [1979] trial divisor scheme to combat this problem, which in Hearn’s

case reduces coefficient growth to no greater than that of the subresultant PRS.

In our case this was not so. The culprit is the existence of nested algebraic numbers.

Due to the way in which algebraic numbers reduce modulo minimal polynomials,

Hearn’s trial divisors hardly ever succeeded in removing a factor—and in this case even

the crude PRS was usually better! So next we turned to the subresultant algorithm

[Brown & Traub 1971] [Knuth 1981], and found it greatly superior.

We had noticed during our experiences of fearsome coefficients that the final answer

had relatively small coefficients compared with intermediate results. An obvious choice

in such cases is a modular algorithm, and to allow for unlimited size answers some sort

of lifting scheme must be used. We tried both Hensel style and Chinese Remainder

based lifting (i.e. powers of one prime or products of several different primes). A

problem with both of these methods was the need for some sort of bound to lift beyond.

We were unable to produce a usable bound so had to adopt a “heuristic” termination

criterion: in effect, try the answer so far and if it does not work lift a bit more. Yet

1 8+V3another hitch was that, in general, a reciprocal has a denominator e.g.

While modular algorithms normally produce integral answers one can adapt them to

return rational results using the method in [Wang et al, 1982]. On bigger problems both

algorithms were vastly superior to the crude PRS while on smaller problems both were

-2.5-

R J Bradford Algebraic Numbers

vastly inferior. The Chinese Remainder method was limited by the speed of determining

modular reciprocals of algebraic numbers, and the Hensel method was limited by the

speed of the termination tests. A hybrid algorithm seemed best if a suitable decision

routine could be devised.

Time trials on each type of algorithm leave no doubt about the superiority of the

subresultant algorithm on all types of problem: a result somewhat different from that

predicted by McCallum [1985]. The table below displays the time taken to compute the

reciprocal of a selection of polynomials (see [Abbott et al, 1986] for details). On the

eighth test (polynomial 9) the original (crude PRS) method was stopped after about

60000 seconds; it was trying to multiply together two numbers with about 30000 decimal

digits. On a separate test with a very large polynomial the Hensel lifting method was

slightly faster than the subresultant one.

2.5. Factorisation of Polynomials

Given a polynomial with algebraic number coefficients (or one with integer coefficients

that has to be factored over an algebraic number domain), there are three basic families

of methods for computing the factorisation.

Comparison of reciprocators
Polynomial Crude Chinese Hensel Sub

p.r.s. Remainder resultant
1 0.00 0.06 0.06 0.00
2 0.20 6.14 3.98 0.28
3 6.44 41.72 44.48 4.12
4 65.56 515.12 444.12 25.36
5 0.20 1.86 1.18 0.18
6 2.30 17.14 6.78 0.98
7 2004.10 562.90 487.24 165.28
9 >63000 133.00 289.58 52.00

10 not tried 585.58 679.24 417.12
13 not tried 255.02 422.30 91.30

-2 .6 -

R J Bradford Algebraic Numbers

a) One method is to reduce the problem to a (much larger) factoring problem over the

integers, and is described by Trager [1976] and Landau [1985]. Essentially one

considers the norm of the desired polynomial. A polynomial of degree n over an

algebraic extension of degree m will produce a polynomial of degree mn to be factored

over the integers. This may not seem too bad, but in practice it means that a quartic

polynomial to be factored over three square roots will involve factoring a polynomial of

degree 32=4.23 over the integers. This method is relatively straight-forward to

implement, given the existence of a good integer polynomial factoriser, which REDUCE

has [Moore & Norman 1981]. Some additional performance improvements that can

speed up the existing factoriser when dealing with norms can be found in [Abbott et al,

1985].

b) A second method is to perform the same kind of p-adic reduction as is performed for

factorisation over the integers [Wang 1976] [Weinberger & Rothschild 1976]. There is a

peculiar problem that can occur here that does not occur for reduction of the integers.

For every prime p, the integers map into the numbers (mod p), which are a field. The

algebraic integers of, say, <D((-1)1/4) do not map as conveniently, since x4+1 factors

modulo every prime. Hence this method has to work very hard in such cases.

c) A third family of methods was proposed by A.K. Lenstra [1982,1983]. These rely on

the techniques of short vectors in lattices to deduce a correct factorisation over an

algebraic number field from a factorisation in a suitable lifting of a (mod p) image.

The distributed version of this package includes a norm-based algorithm, since this is

relatively short and well-understood. [Abbott 1988] has gone on to implement and

improve the [Lenstra 1982] algorithm. The question of the relative speeds of the norm-

based algorithms and the lattice-based ones is hard to answer: preliminary results

[Abbott et al, 1986] were indecisive.

-2 .7-

R J Bradford Algebraic Numbers

2.6. Conclusion

We have implemented a system in REDUCE for the manipulation of elements of

algebraic number fields as described in this chapter. By using the domain mechanism

of REDUCE, this method is applicable to calculations involving polynomials, rational

functions, matrices etc. over these number fields.

Further, it appears that the subresultant PRS division is the most efficient method, at

least for the problems that we have considered.

As far as factorization of polynomials is concerned, we are still largely reliant on the

Trager algorithm until the work of [Abbott 1988] is integrated into the distributed

package. Fortunately, in this thesis such factorizations are not required.

3. Hermitian Reduction

This chapter investigates the Hermitian reduction of integer matrices, a step of great

importance to the Round Two algorithm. A substantial reduction in the time taken to

reduce matrices will be reflected in a similar reduction in the time taken to find integral

bases.

We also take the opportunity to consider the computation of the Smith Normal form of a

matrix, as its similarities and differences to the Hermite form can be quite illustrative.

We begin with some formal definitions, and then outline some of the current algorithms

used to compute normal forms, and then describe a new method which, although it may

not be the best algorithm to use on random matrices, it does seem to be an

improvement on the type of matrix that appears in the context of the Round Two

algorithm.

-3.1 -

R J Bradford Hermitian Reduction

3.1. Definitions

Let M be a matrix over Z (respectively over <D[X]), not necessarily square. If we

consider “less than" to mean “has degree less than” , and “non-negative” to mean “0 or

has positive leading coefficient” when applied to polynomials we may make the following

definitions: M is in Hermite normal form (HNF) if it is upper triangular, and each entry is

non-negative and less than the diagonal element in its column.

Similarly M is in Smith normal form (SNF) if it is diagonal, and each element on the

diagonal is non-negative and divides the next element on the diagonal (proceeding

down-and-rightwards).

The Hermite reduced form of M is the matrix M' where M ' is in HNF and M' = UM, for

some unimodular integer (polynomial for the polynomial case) matrix U.

The Smith reduced form of M is the matrix M' where M ' is in SNF and M' = UMV, for

some unimodular integer (polynomial) matrices U and V.

We remark that the Hermite and Smith reduced forms of a matrix are unique. We shall

assume every matrix has no more columns than rows, and has full column rank.

3.2. Simple Hermite Reduction

Hermite reduction of an integer matrix M is an analogue of Gaussian elimination but

without division. In its place we use the gcd. The aim of Hermite reduction is to find a

unimodular matrix U such that UM is in Hermite normal form (but we shall be more

interested in the reduced matrix M ' than U itself). The simplest algorithm to describe to

do this is as follows:

1. set U to be a nxn unit matrix (where M is a nxm matrix).

-3 .2 -

R J Bradford Hermitian Reduction

2. for c := 1 to m do

2.1 while there is a non-zero element in the column below the element M& do

2.1.1 find the row out of rows c to n with the smallest non-zero absolute value in

column c, and swap it with row c. Swap the same rows in U.

2.1.2 if A/f^O, negate that entire row, and negate row c in U.

2.1.3 for each row r from c+1 to n subtract [Mrc/MccJ times row c from row r.

Subtract the same multiple of like rows in U.

3. for c := 2 to m do

3.1 for each row r from 1 to c-1 subtract |^frc/^ccj times row c from row r.

Subtract the same multiple of like rows in U. This step ensures elements in each

column are less than the element on the corresponding diagonal.

(this depends on the assumption we have a matrix of full rank.)

A little reflection will reveal that the U calculated above is the one required.

Whereas this may be simple to describe, computationally speaking this is a disastrous

algorithm. The entries of M in the final result are bounded by the determinant of M

(every element is not greater than the one on its diagonal, and the product of the

diagonal elements is just the determinant) but in the intermediate calculations the off-

diagonal elements grow enormously. This is a prime example of the curse of CA:

intermediate expression swell.

3.3. Smith Normal Form

Given an algorithm to compute the Hermite normal form of a matrix, it is a simple step

to the Smith normal form: repeatedly Hermite reduce and transpose the matrix (and

each time swap the matrices U and V). After finite number of steps the matrix must

- 3.3, -

R J Bradford Hermitian Reduction

reduce to a diagonal form (since the elements along the leading diagonal are reduced to

at most the size of the smallest non-zero element in its column at each step). Thus M

is diagonal, but not necessarily in Smith normal form, which requires each member of

the diagonal to divide the next member. A short routine in [Alagar & Roy 1984]

completes the computation:

1. for / := 1 to n-1 do

1.1 for j := 1 to n-1 do

1.1.1 g := g c d {M s ,M jj)

1.1.2 I := lcm{Mg,Mjj)

1.1.3 Find the cofactors X M g + \iM jj = g

- M n Mg
1.1.4 Row / of U := X(row /)+p(row j) of U\ row j of U := — —(row /)+— (row j)

9 9

of U\ column / of V := (column /) + (column j) of V\ column J of V :=

—ILM ii \M g
 ^(column /') + (column j) of V\

9 9

1.1.5 Mg := g ; Mjj := /

In step 1.1.4 we are applying the unimodular transformation

X [L
-M jj Mg

9 JI 9

Mg 0

L ° % Jw JI J

1 1
—\iMjj XMjj

9 9

*

9 0
0 /* *

After applying this routine it is clear that the diagonal elements have the required

divisibility properties.

This method is only as good as the algorithm used to make the Hermite forms.

However, there are other methods (for example we may adapt Kannan & Bachem’s

method—see the next section) which may be more suited to finding the SNF directly.

-3 .4 -

R J Bradford Hermitian Reduction

3.4. More Advanced Methods

In [Kannan & Bachem 1979] there is an algorithm that bounds the growth of

intermediate results to polynomial size, and [Chou & Collins 1982] modifies this and

improves the bound. This is an ingenious method that proceeds by successively putting

the ixi** principal minors into HNF, and ensuring the off-diagonal elements are small

after each iteration. But even so the example on p.735 of [Alagar & Roy 1984] shows

there is still considerable swell. They begin with the matrix

32 543 245 239 65 '
23 56 567 54 32
123 234 345 456 567 ,
43 54 65 457 89
432 321 213 87 98V J

and after the first Hermite reduction they have entries as large as 78211420433601,

which overflows on the next attempt at a reduction. It must be noted that they are

restricted to single precision integers in their implementation, but the principle of the

intermediate swell is easily seen.

Further this algorithm is geared to square matrices: to reduce a nxm matrix (n>m) they

adjoin a (n-m)x{n-m) identity matrix and reduce the resulting nxn matrix. For tall

matrices (e.g. 2nxn or n2xn) this is wasteful: indeed the problems we deal with can be

quite sparse, and Kannan and Bachem’s algorithm, although superior on random square

matrices, was noticeably slower than the algorithm described in the next section.

3.5. A Method Based on GCDs

As we clear each column in the calculation of the HNF of a matrix, the next element to

be computed on the diagonal of the reduced form will be just the gcd of the elements in

and below the diagonal element in its column in the partially reduced matrix. Working

from this we produced the following algorithm:

-3 .5 -

R J Bradford Hermitian Reduction

1. set U to be a nxn unit matrix.

2. for c := 1 to m do

2.1 find the row out of rows c to n with the smallest non-zero absolute value in

column c, and swap it with row c. Swap the same rows in U.

2.2 for each row r from c+1 to n do

2.2.1 if Mcc | Mrc then

2.2.1.1 replace row r by row r minus Mrc/Mcc times row c. Replace row r of U by

itself minus the same multiple of row c of U.

2.2.1.2 else by means of the extended Euclidean algorithm (or otherwise) find g =

gcd(Me0tMlc)l and integers X and p such that Mfcc+pHc = g.

2.2.1.3 and replace row c by X(row c)+p(row r), and row r by

 (row r) (row c). Replace the same rows of U in the same
9 9

manner.

2.3 if Mcc<0, negate that entire row, and negate row c in U.

3. for c := 1 to m do

3.1 for each row r from 1 to c-1 subtract [m«;/^ccJ times row c from row r.

Subtract the same multiple of like rows in U.

Step 2.2.1.3 is valid since

det
X p
Mrc Mqq

XMcc+iiMfc
9

I 9 9

by the definition of X and p, so the transformation is unimodular.

This is superficially similar to the algorithm in [Bradley 1971], but it appears to be more

efficient in the our case: Bradley’s method requires the computation of n simultaneous

-3 .6-

R J Bradford Hermitian Reduction

cofactors to the gcd of n integers, whereas the above method takes advantage of the

fact that in practical cases in the 2.2 loop the diagonal entry soon converges to the

gcd of the column, and straight division suffices from then on.

3.6. Iliopoulos

In [Iliopoulos 1985], the author makes the following simple observation: If d is the

determinant of the n by n square matrix M , then the matrices M and

' m '
K = HI

r n.

have the same HNF. Thus we can use the lower n rows to reduce the upper n rows

after each reduction step. This gives a better complexity than even the Chou and Collins

method. The only problem is the computation of d. Iliopoulos recommends the use of

rational arithmetic and Gaussian elimination, but modular methods may be an interesting

alternative.

This method is not directly applicable to non-square matrices, but Iliopoulos notes that

you can use the determinant of any n linearly independent rows (here n is number of

columns, supposed no greater than the number of columns.) This will be, in general, a

multiple of the determinant of the HNF, but is still a useful bound. However, [Davenport

& Trager 1987] have pointed out that if we take the gcd d of the determinants of two

random n by n submatrices we are quite likely to very close to the true determinant (in

the sense that we only have a small multiple of it). Also, as we clear each column, we

can divide d by the diagonal element in the current column—the remaining entries can

be no larger than the fraction of the determinant that is left. Of course, this has no effect

on matrices with HNFs like diag(1, 1, • • • , 1, d), but can be useful when there are

small factors along the diagonal.

-3 .7 -

R J Bradford Hermitian Reduction

3.7. Examples

We implemented the algorithms of Kannan & Bachem, Bradley, and compared them

with the algorithm above, and with the latter augmented by lliopoulos’s technique.

Each method was tried on the same random set of matrices, using code written in

REDUCE 3.3 on Cambridge Lisp, running on an Orion. All times are in milliseconds.

Firstly we have some small random square matrices: these were of size no larger than 8

by 8, with coefficients of absolute value less than 1000.

Random square matrices
K & B Bradley RJB RJB + lliop
380 720 380 760
960 7040 960 2980
980 6600 840 2720
420 1360 320 740
440 1100 400 840
140 220 100 200
100 180 120 240
420 1060 420 880
460 620 320 80
120 140 120 300

Here “K & B” indicates the Kannan and Bachem algorithm, “RJB” is the algorithm of the

previous section, and “RJB + I Hop” is the same algorithm augmented by the ideas of

[Iliopoulos 1985].

From these data, it appears that K & B and RJB are about the same speed, with RJB

having a slight edge. Bradley is definitely poorer, and Iliopoulos seems a consistent

amount slower.

Next is random large (16 by 16) square matrices.

-3 .8 -

R J Bradford Hermitian Reduction

Random square matrices
K & B Bradley RJB RJB + lliop
10120
10240
10160
10200
10160
9900
9740
9780
9920

10220

> 3600000 9128
112760
220420
31220
16840
35220
34000
20860
64660
25360

> 3600000

The tests of Bradley and Iliopoulos were terminated after an hour of CPU: neither had

progressed significantly. Here we see that K & B has the edge, and RJB occasionally

lagging quite far behind. Thus we expect K & B to be asymptotically better on large

random square matrices.

Moving from square matrices, we tried small rectangular matrices, namely 2n by n

matrices, where n<8. These are the shapes of matrices that occur in the Round 2

algorithm, but the coefficients are entirely random.

Random 2n by n matrices
K & B Bradley RJB RJB + lliop

540 1260 520 1060
1120 8020 760 2000
580 2000 500 940

1000 8000 800 1920
620 2180 480 1000
980 8540 780 1940
140 320 120 300
300 760 260 520

1540 107380 1600 4120
340 480 240 580

Kannan & Bachem is an algorithm specifically for square matrices, but they do suggest

an adaption to rectangular matrices as follows: embed the matrix M in a 2n by 2n

matrix

-3 .9 -

R J Bradford Hermitian Reduction

and reduce this. Instead of doing this, we implemented a hybrid version of K & B and

RJB that reduces the upper half of M using the straight K & B algorithm, and then

reverts to RJB to clear up the bottom half. This is better, as we only consider up to 2n2

elements, as opposed to An2. The saving is even better when we want to reduce, say,

n2 by n matrices.

Now considering the table of results above, we notice about the same pattern as for the

small random square matrices.

Large (32 by 16) rectangular random matrices are next. These better reflect the

extension degree of a reasonably sized problem. Again, the coefficients of the matrices

are random.

Random 32 by 16 matrices
K & B Bradley RJB RJB + lliop
20220
20160
19900
19440
19640
19900
19560
19820
19520
19880

> 360000 377100
1123140

38880
114240
288920
337780
42860

121640
71280
23000

> 3600000

Again we stopped the Bradley and Iliopoulos tests after an hour’s CPU. K & B wins

consistently again, which is not too surprising considering its implementation: K & B will

be faster on the top, square, part, and no slower than RJB on the rest!

All the above tests were on random matrices. It is interesting to consider the behavior of

the algorithms on the type of matrix that arises in the Round Two algorithm: these are

decidedly non-random, and have a great deal of internal structure. We computed the

-3.10-

R J Bradford Hermitian Reduction

integral bases for each of the field extensions occurring in section 7.4, using each of the

algorithms for computing the HNFs in turn.

Integral bases
Degree K & B Bradley RJB RJB + lliop

6 68580 60740 54620 88540
9 440600 399160 317980 1333040

16 2867680 1673740 1355080 >10000000
15 3261780 1792280 1306700 >10000000
9 134980 100160 79440 514520
3 3360 2980 2760 4320

12 621580 406840 321020 >10000000
15 939120 518800 385780 >10000000
9 321240 238060 187420 1276980
9 223020 164740 127880 873540

Now it is clear that RJB is better than the other algorithms in this special case. Note that

in case 3 we are repeatedly reducing 32 by 16 matrices, but RJB is still more than twice

as fast.

Also, now, Bradley comes back into contention: indeed it is consistently better than K &

B. This is due to the relative sparseness of the matrices being reduced, so that multiple

cofactors are easy to determine. This is in strict contrast to the random cases, where

most of the time was spent in construction of these cofactors.

The consistently poor times for the Iliopoulos technique are due mostly to the time taken

to compute the determinant. The table below describes how much time is spent in

computing determinants in relation to the time spent in reduction for each of the

extensions above. If the determinant was free (i.e. took no time to compute), then

RJB+lliop is only marginally slower than the simple RJB. This indicates that RJB is

keeping the coefficients fairly well down to the size of the determinant (in this particular

scenario).

-3.11 -

R J Bradford Hermitian Reduction

Times for Iliopoulos
Degree Determinant Reduction Total

6 33020 55520 88540
9 1005260 327780 1333040

16 >10000000 - -

15 >10000000 - -

9 428340 86180 514520
3 1460 2860 4320

12 >10000000 - -

15 >10000000 - -

9 1067420 209560 1276980
9 736920 136620 873540

Dense matrices are particularly hard to deal with (and this explains the random

matrices), but the sparser matrices in the integral basis tests should have benefited

more. As an implementational note, we used REDUCES determinant routine, which is

based on the Bareiss two-step method [Bareiss 1968]. Presumably, use of a good

sparse matrix technique could make significant savings.

3.8. Modular Methods

In Appendix C we discuss what goes wrong when we try to apply modular techniques to

the computation of HNFs. We are able to compute SNFs in such a manner (e.g. [Alagar

& Roy 1984]), but the method does not extend to the determination of HNFs, due to a

lack of any meaningful order relationship in finite fields.

A more profitable avenue of exploration is to consider the reduction of matrices of

polynomials—univariate and multivariate—as methods already exist to calculate

polynomial gcds modularly (e.g. [Brown 1971]).

3.9. Conclusions

Although published complexity analyses dictate that the Iliopoulos technique is

asymptotically the best of the reduction algorithms, tests indicate that the hidden

-3.12-

R J Bradford Hermitian Reduction

multiplicative constant is dominant in practical cases. Also, whereas the Kannan and

Bachem algorithm is visibly superior on large dense square matrices, it lags behind on

fairly sparse, tall matrices. As it is the latter kind of matrix that appears most often in the

workings of the Round Two algorithm, it is advantageous to use the algorithm of section

3.5 in its implementation.

-3.13-

4. Ideals

In the Round Two algorithm there is a great emphasis on the manipulation of ideals, so

we must consider how to represent and use such objects in a computer. Further, a huge

branch of algebraic number theory deals specifically with ideals and much information

can be deduced from considering them. As a simple example, we can discover whether

a prime ideal ramifies in some field by determining whether it divides a particular ideal

associated with the field called the different If it does (i.e. the result of dividing the

prime into the different is integral), then the prime ramifies [Cassels 1986]. So we must

give algorithms for division, and determination of whether an ideal is integral.

4.1. Representation of an Ideal

For a given extension of degree n every module (of full rank) has a basis of the same

size, namely n. Thus it is convenient to represent such bases by a simple vector.

-4.1 -

R J Bradford Ideals

Starting with the algebraic number package described in chapter 2, we found it simplest

to represent a basis directly: so the basis 1, a, a2 is internally represented as the vector

[1, a, a2]. The reason for this is that it makes arithmetic operations on the elements

particularly easy: no new code is required. So for the basis [1, a, (a2+1)/2] the product

of the last8 two elements is just a(oc2+1)/2, which will simplify directly.

However, experience has shown that this is probably not the best method. When using

ideals we are typically led to consider the matrix representing multiplication by a certain

element (see, e.g., the discussion below on division, and the section on the Round Two

algorithm in chapter 7). This entails conversion back and forth between the polynomial

type of representation above, in which it is easy to do the multiplication, and a matrix

representation which is easier to manipulate in other parts of the algorithm. So the

above example we have the matrix

’ 1 0 0 '
0 1 0 ,

1/2 0 1/2 ,

but for this we need extra code for the arithmetic manipulation and reduction of

algebraic numbers, but we gain from not having to convert from the polynomial

representation.

A convenient compromise would be to use matrices when commutative algebra-like

operations are prevalent (e.g. finding idealizers, or inverting ideals), and to convert back

to the polynomial form just once at the end. In practice, though, the weight of existing

code (chapter 2) encouraged us to take the simplistic approach.

4.2. The Norm

Let a be an ideal In R, with Z-basis a = (a1,a2, • • • ,a„). Further let (co^g ,̂ * * * ,(£>n) be

-4 .2 -

R J Bradford Ideals

an integral basis for R over <D.

Write (by Hermite reduction, if necessary)

a 1 = -ico-i,

32 = 32iCJi+3220)2i

<*n = 3/7i(Di+an2C02+ ‘ ' ‘ + 3 nn(0n .

Then the norm N a= l a ^ a ^ * * * | (see [Hecke 1923], §27).

Now if a is given in terms of generators, say a = <a<\, * - - ,ak>, then we may proceed to

compute the norm as follows:

1. Set ty = a w , Find integral tyj such that ty = Set the 2nxn matrix

M

M =

2. For r 2 to k do

*>u

2.1. Set ty = arto/, 1</<n, and find integers ty j with ty = S/ty/Wy- Now set

M:=M+
0
b,j

2.2. Hermite reduce M.

3. If we put C/ := Xy=i%®/» we see *hat (ci * ' ' * >cn) is an integral basis for a, and

also that Na = Mu • • • Mm.

4.3. Multiplication and Division of Ideals

Let a and b be two ideals with Z-bases (a1(• • • ,a„), and (b1f • • • ,bn). Then it is very

-4 .3-

R J Bradford Ideals

easy to find a basis for their product ab: simply consider the set of generators <a-,bj>,

Then Hermite reduce their representation matrices with respect to an integral

basis to produce a set of n basis elements.

Inverting the ideal a is slightly harder. Let a Z-basis for R be • ■ ■ ,&„)■ Now we

can determine matrices M, that represent multiplication by a, with respect to the to

basis. Let M be the first n rows of the Hermitian reduction of the vertical concatenation

of the Mi. (Alternatively, proceed as for the norm calculation: repeatedly fill in and

reduce a 2nxn matrix.) Then the columns of AT1 form a basis for a-1 with respect to

the to basis.

Of course, now the basis for a-1 is not expressible in terms of just integers, but that

need not worry us. It is a simple matter to extract the Icm of the denominators, d say,

manipulate da-1 as an integral ideal, always remembering to divide the d back out when

we are finished.

Thus to divide Ideals, b/a, say, we find a-1 and d, multiply b by da-1, and return their

product divided by d.

Incidentally, this provides us with a criterion for inclusion of ideals: recall we have a | b if

az>b. So we can conclude the latter if b/a is an integral ideal.

4.4. The Different

The different, d, of an algebraic number field K is a particularly interesting ideal, in that

a prime p ramifies if, and only if, it divides the different. We can compute the different

as follows:

The different is defined as d, where d = D_1 = (p1f ■ ■ * .P/,)-1, as a Z-module, where

-4.4-

R J Bradford Ideals

S(P/<D/) = 8,y, and (a^, • • • ,©„) is any Z-basis of K (S is the trace K:<D.)

Once we have found D, we may invert, as above.

Now suppose p/ = Y/i©i+Y/2©z ̂* * * +Yh®n- So P/©y = £*//*© *© / 3nd then S(p/coy) =

'L kyikS{(Ok(Oj) = 8/y, or

So P/ is the /,th column of (S(to/(Oy))-1.

We note for future reference that this last matrix is computed as part of the Round Two

Now, given d, it a simple matter to discover whether a prime ideal p ramifies: just divide

p into d, and if the result is an integral ideal (i.e. has integer coefficients when

expressed in term of the integral basis), then the prime ramifies.

This ideal sum of a and b is also easy to find, as is their gcd: in fact these last two are

identical. For suppose c = a+b, then c = <a+b, a e a, b e b> =>a, and =>b, so c is a

common divisor. Conversely, if d=>a, and d=>b, then d=>a+b, as d is an ideal, thus c is

the greatest common divisor.

To compute we do the following: take bases (a1f ■ ■ • ,a„) and (b1f • ■ • ,bn) and Hermite

reduce the concatenation of the corresponding matrices. Clearly this is their gcd: hence

it is also their sum.

Y11 Yin
Y21 ' • • Y2 n

algorithm.

4.5. Addition or GCD

-4 .5-

R J Bradford Ideals

4.6. Factorization

It is a standard (and basic) theorem that the ideals of an algebraic number field factorize

uniquely: however, it is much harder to actually perform the factorization. For extensions

where the integers are simply generated, i.e. of the form Z[a], for some a, we have the

following, proved by Dedekind (see [Lang 1970]):

Theorem

Suppose the integers o of <D(a) are of the form Z[a], and p is a rational prime. Let a

have monic minimum polynomial f over Z , and f = (rood P)- Then the

decomposition of p in o is as follows:

p = rip-8'.

where p/ = <p,f/(a)>, and these are prime ideals. □

But if we do not have a presentation of the integers of this form, we have to work a bit

harder. (And some number fields do not have such presentations—see chapter 5). To

factorize the rational prime p we look for extensions of the homomorphism Z -»Z /pZ to

o->o/p. Then the ideals p that divide p are just the kernels of the extended maps.

Starting with any basis flD1(©2, * * *, ©„ of o, we must preserve the multiplication tables

W / C O /(,
k

where cijk e Z, so that

> (*)
k ' '

where a is the image of a under the map. The equations (*) determine suitable images

for the T3f under the map, from which we determine the p. It is then a simple matter to

divide powers of the p into p to determine their degrees.

For example, consider the factorization of 3 in <D(a), where a3 = 19. This has integral

basis

-4.6-

R J Bradford Ideals

Writing p = (a2+a+1)/3, we see

a2 = 3p-a-1,
p2 = p+2<x44,

aP = P+6.

Under an extension of the map Z->Z/3Z we must have

®2 = -a -1 ,

P2 = p+2a+1,

«P = p.

Thus a = 1, and p = 0 or 1, giving ideals Pi = <3, a-1, p> and p2 = <3, a-1, p-1>. In
t

fact 3 = p?p2.

Unfortunately, this does not seem to generalise easily into a useful algorithm, the

problem being that the equations are not always as easy to solve as they were above.

The technique of Grbbner bases [Buchberger 1984] could be applied to the modular

equations to produce a triangular set of equations, but it is hard to see how to produce

a result from them that is meaningful to the user. Clearly, though, there is some

promise in this approach.

In [Bdffgen & Reichert 1987] the authors use Ford & Zassenhaus’ Round Four algorithm

to factorize primes. This algorithm (described in chapter 7) finds the p-maximal part of

<D(a) for any particular p, and this part will suffice for Kummer when we apply

Zassenhaus’ Structural Stability Theorem [Zassenhaus 1980]. As every ideal divides

some product of rational primes (i.e. its norm) we can recover the factorization of any

ideal in this way (by trying to divide each factor of the rational primes into the original

ideal).

-4 .7-

5. The Defect

Given an algebraic extension of degree n, <D(a) of <D (say), with defining polynomial f ,

we can write an integral basis for it in the following form

bQ{a)/d0, t>i(oc)/cf1f • • • , bn̂ {a)!dn-^

where the b,(X) e Z[X] are of degree /, d/ e Z, and the ratios are in their lowest

terms. (In particular b0(X) = d0= 1.) The number dn̂ we call the defect of the the

polynomial f . Note that d, \ d/+1, so d, | d„_1t V /, and that the defect is not dependent on

the particular basis chosen. It is of particular interest as every integer in <D(a) will have

denominator dividing the defect when expressed in terms of the powers of a.

The defect is of great value in bounding the sizes of denominators of expressions in

algebraic number fields. In the process of factorizing polynomials over algebraic

extension of <D using the Lenstra algorithm [Lenstra 1982,1983,1987] an accurate

determination of a bound for the sizes of the coefficients of the factors can make a huge

-5.1 -

R J Bradford The Defect

difference in the total time taken to run. A little time spent in improving the bound is

rewarded with a much greater decrease in time overall. See [Abbott 1988] for details.

We shall abuse notation and talk about the defect of an extension, but notice this is only

meaningful when we have a particular presentation for the extension in mind. Thus, for

example, if we let a = V5, and p = (1+V5)/2, then the fields Q(a) and <D(p) are identical,

with Q-bases (1, a) and (1, P) respectively. But now the integer (1+V5)/2 is expressed

as

(1+V5)/2 = (1/2)1+(1/2)a

in terms of the first presentation, but

(1+V5)/2=(0)1+(1)P

in the second. The first presentation has defect 2, but the second has trivial defect, i.e.

defect 1.

Unfortunately, not every algebraic extension of <D has a presentation with trivial defect.

An example, from [Artin 1959], has defining equation a3-a 2-2a+8 = 0. This has integral

basis 1, a, (a2+a)/2, and therefore has defect 2. Artin shows that the integers contained

in the corresponding field extension cannot be written in the form Z[yJ, for any integer y.

In this chapter we look at ways of bounding the defect short of actually computing a

basis. Initially we shall merely consider bounding the index of Z[a] in the ring of

integers. As this is just the square of the product of all the df (the change of basis

matrix has determinant their product), it is trivial that this (and its square root) will be a

bound for the defect. We then sharpen this bound by use of certain criteria that allow us

to divide out some primes from the index. Then we move on to a new statement and

proof of a theorem that (in general) gives a much sharper estimate than the index.

But first we describe some special tests that are occasionally of use.

-5 .2 -

R J Bradford

5.1. Special tests

The Defect

In this section we depart from our usual procedure by being interested in the sign of the

discriminant of a polynomial. If f {x) = xn+an_1xn_1+ • • *+a0 with conjugate roots 0(/),

we choose the sign of the discriminant such that

disc{ f) = n (e (/)- e (/))2 .
/</

There is a little theorem due to Stickelberger that can sometimes be of use in

determining an integral basis. Let k be an extension of degree n over Q, and a a rank

n Z-module in o. Then

disc{a) s o or 1 (mod 4).

This is proved by counting the signs on the elements in the expansion of the

determinantal definition of the discriminant [Artin 1959].

So now suppose we have such a module a, with discriminant d. If it happens that

dip2 ^ 0 or 1 (mod 4), for every prime p whose square divides d, then a is maximal.

Thus, say, for f (x) = x3-5x2+2 with discriminant 892 = 22223, we know that the basis

(1, 0, 02) is maximal as 892/22 = 223 * 3 (mod 4).

This can be augmented with the following: Suppose f (x) = xn+an̂ x n~A+ • • • +a0 with

root 0 is an p-Eisenstein polynomial. Then <D(0) is p-maximal. For f to be p-Eisenstein

it means that p |^ - f V/, but p2[a0 for the prime p. (This is easily proved using the

Dedekind criterion of section 5.3: we see f ■ xn (mod p), so f 0 = x, = xn~\ and h =

(a„_1x/l"1+ • ■ -+a0)/p. Now ao/p is non-zero (mod p), and so g * = gcdp{h ,f^)= 1.

Thus p does not divide the defect of <D(0).)

So, for example, for f (x) = x3-2x2+2, which has discriminant -44, Stickelberger does

not apply. Only 2 can possibly divide the defect, but f is 2-Eisenstein, and so is 2-

-5.3-

R J Bradford The Defect

maximal, and therefore globally maximal. Thus the basis is the trivial one.

5.2. Bounding the Index

Given the defining equation of an algebraic number field Q(0) it is straightforward to

compute the discriminant, D, of that equation. We have the following theorem that

allows us to make an initial estimate on the size of the index of Z[0] in its ring of

integers (see [Hecke 1923]).

Theorem

Let p = cn_10n-1+ • • • +c0 be an integer in the field <D(0), of degree n over <D, with the

cf e <D. Then Dq e Z . Thus the q have denominators dividing D.

Proof

Consider the field conjugates p(/) = cff_10(/)+ • • • +c0. These equations may be inverted

to determine the q in terms of the p(/) and 0(/) as their determinant A(1,0,02, • • ■ ,0"-1) is

non-zero, where A is the Vandermonde determinant of the 0(/). So Ac* = Ak, where Ak

is a polynomial in p(/) and 6(/), and hence is an algebraic integer.

Now A2ck = AAk, where the left side is rational, and the right side is an algebraic

integer. Hence the left is a rational integer, i.e. A2ck = Dck e Z. □

Thus the square of the index in the ring of integers divides the discriminant D, so a

(usually very rough) multiplicative bound for this index is simply the largest square

divisor of D (i.e. the largest integer whose square divides the discriminant), if the full

factorization of D is too hard to find, we can estimate the largest square divisor by

taking the square root of D. However, such a bound, being non-multiplicative—it is not

necessarily a multiple of the true number—is less useful. For example in the

reconstruction of rationals from modular representations [Wang et al, 1982] it is easier to

reconstruct a rational of known denominator (which is equivalent to reconstructing an

-5.4-

R J Bradford The Defect

integer) than it is to find a rational with merely a bounded denominator.

If we are able to factorize large integers—which is in itself a very interesting problem

(see, for example [Brent 1980,1985] [Morrison & Brillhart 1975] [Knuth 1981] [Lenstra

1985] and the January 1987 edition of Mathematics of Computation as just a small

selection of a large literature)—we can find the squared part exactly. This factorization is

not as daunting as it first might seem, as a good method for finding the discriminant of a

polynomial [Collins 1967] can return its result in a partially factored form. Also, in a

typical case, most of the factors are small, and so are amenable to trial division.

However, once these small factors are removed, factoring the remainder may be fairly

difficult: in contrast with the factorization of polynomials, finding the square-free part of

an integer appears to be a very difficult problem. We may use [Rabin 1980] to

determine if the residue is prime, but if not, we can resort to the above large-integer

factorization methods.

Once having found the squared part, we may refine it further by application of methods

of Zassenhaus [1975] or Vaughan [1985] (see the next section). These determine

whether a given prime divides the defect. Thus, if a prime dividing the squared part

does not divide the defect, we may divide it and its powers out from the estimate.

Unfortunately, this also appears to have little effect on the whole, but can be useful (see

table below), particularly when eliminating large primes.

5.3. Zassenhaus

Two papers [Zassenhaus 1975] and [Vaughan 1985] describe algorithms that determine

whether a given prime divides the index of Z[0] in its integral closure. They are quite

dissimilar, the first employing a simple factorization (mod p), and the second involving

relatively complicated manipulations of characteristic matrices.

-5 .5-

R J Bradford The Defect

Some Estimates of Defects

polynomial discr sqrt largest square
divisor

p divides
defect

sqrt
index

1 x2- x+3 11 3 1 1 1

2 x3+2 2233
=108 10 2.3

=6 1 1

3 x4—x+1 229 15 1 1 1

4 x6+3x5+6x4+x3
-3 x2+12x+16

o6o19
=7.?010 272735 2339

=157464 2339 2334
=648

5 x9-1 5x6-87x3-1 25 2634256
^O 26

2332153
=1013

2332153
=1013

32153
=1012

31253
=7,107

6 x9-54
o8o42

=J.?o*
24321

=2.1011
24321

=2.1011
321

=101°
313

=2.10®

7 x3-19 3319*
=9747 98 3.19

=57 3 3

8 x2+x+7 33 5 3 3 3

Here we give a proof of Zassenhaus’ method, and produce a test that he describes as

Dedekind’s Criterion. We generalize the proof to cover the case of R{Q):R, where R is a

Euclidean domain (e.g. Z or <D[X]). [Ford 1978] only considers the following in the case

R= Z : we shall keep to a suggestive notation. We begin with an observation of

Berwick [1926]: let 0 have minimum polynomial f(t) over R. Suppose

<|>(f)=fr+cr_i fr-1+ • • • +c0 is a polynomial of least degree such that <J>(0)/p is integral.

Here p is a prime element of R (e.g. an irreducible polynomial in <D[X])- So r< d f, the

degree of f in f. We call R[Q] p-maximal if r - 3f , and this corresponds to p not

dividing the index of R[0] in its integral closure, or equivalently, p not dividing the

denominator of any integer.

Write f = g<jH-s, 3s<3<|>, so that 0 = Now, the first term on the rhs is
P P

integral (by the definition of <j>), so s(0)/p is integral. Hence, (due to the minimality of <)>)

p | s. Thus <|>| f (mod p).

-5 .6-

R J Bradford The Defect

Now consider the minimum polynomial for $(0), w(t) = <j>(f)®+ae_1(|)(f)®"1+ • • • +a0, say,

with w(0) = 0. We see p divides the a, , and f \ w. Hence f | <|>e (mod p).

Thus if f = p®1 ■ • • g°®, then (j> = p j1 • ■ • p/*, with 1 <f,<e/.

Suppose R[0] is not p-maximal, so Then there must exist a y with fj<ej. Set g =

Py. Now g |<J>, and gty \f, both divisions (mod p). So define <J>2 by (J> s g$2t and (j>3 by f *

p<M>3 s P24>2<t>3- This gives f = p2<M>3+p<j>4 = 02<M>3+P£<I>5+P<}>6. , on dividing <t>4 by

9-

Let b = p(0)<|>2(0)/P. which is integral. We see <J>2f = p2<l>2<l>̂ P̂ <l>2<l>r*-p<l>2<J>6. or 0 =

P2(0)<J>|(0)<J>3(0) + P9{Q)2yt>5(©) + P<M0)<fe(0) = P2b2d) + P2b$5{fy + P4>2(Q)<t>6(®)*

And now <J>2(0)<J>6(0)/P = —/>2<>3(9)—̂><t>s(0). But 3(<f>2̂ e)<^(<t)25r) = dg, so we must have

<M>6 = 0 (mod p) (as <|> has minimal degree).

Hence s o (mod p), or <t>6 = p<|>7. Finally, we get f = 02<M>yi-pg^5+p2<|>7, where g and

the <>/ are all monic integral polynomials, and 3p>0. We call this a Berwick

decomposition of f.

Conversely, suppose we have a decomposition f = g2ha¥pgh^+p2h2, where g, h0, /?«,,

h2 e fl[f], each monic, and dg>0. Let b = g{Q)h0{Q)/p. Then d{gh0)<df, so b 4 R[0].

But b2+h^{Q)b+h0(Q)h2{B) = 0, and the /?;(0) are integral. Hence b is integral.

We have proved:

Lemma (Berwick Criterion)

R[0] is not p-maximal exactly when f (f) has an expansion

1 = g2h0+pgh,+p2h2,

g,hj g R[t], each monic, and dg>0. □

Berwick’s criterion can be reduced to another, easier to handle, criterion:

-5 .7 -

R J Bradford The Defect

Lemma (Dedekind Criterion)

Let f have factorization into monic irreducibles f = gV ■ • * qV (mod p). Let f 0 =

0 ! • • • gr , and ^ = p®1"1 • • • g fr '. Write h = (f - f o f j l p , and g * = gcdp(h ,f,) (the

gcd being taken (mod p)). Then R[Q] is p-maximal if, and only if, 9g * - 0.

Proof

Suppose we have a Berwick decomposition. Take an irreducible factor $ of g. Then

clearly £ \g *

Conversely, given the relation f = f Qf^+ph, with g * = gcdp(h ,f0), and dg*>0, we take

g to be any irreducible factor of g * (mod p), and this leads to a Berwick decomposition.
□

Now, given either criterion, we can discover easily whether a given prime divides the

index: R[Q] is p-maximal if pfindex. So given a prime (usually one whose square

divides the discriminant—any others will not divide the index) we turn the handle on the

Dedekind criterion, and p | index exactly when dg* *■ 0.

So we can now throw out a few primes from the index estimate, perhaps. See the table

above for examples. Unfortunately neither this, nor the following section, will supply us

with an estimate of the exponent of those primes that do divide: it is a purely boolean

result.

5.4. Vaughan

Vaughan [1985] also gives a criterion that distinguishes primes that divide the index.

However, this method is much more involved and harder to understand than

Zassenhaus’.

Here is an outline of what happens:

-5 .8-

R J Bradford The Defect

Write f in the slightly different form

f(t) = a0.

We may suppose p2\cSsc f (otherwise p will not divide the index). Factor f (mod p)

into irreducibles

n o = f i w) e/
1=1

If all the e/ = 1 then p does not divide the index. Else find the companion matrix C for

f : this is just

C =

0 0
1 0
0 1

0 0

0 a0
0 a,
0 a2

1 &n-1

For each / with e,>1 calculate f f{C) (mod p2). If this last matrix has zero determinant

(mod p2), then p divides the index. (In practice, we just use “Gaussian” elimination

(mod p2).)

Clearly this involves far more work than Zassenhaus’ method, but Vaughan goes on to

show to how to actually construct an element a of Z[0] with a/p integral when p does

divide the defect.

Vaughan also gives a cheap sufficiency test for a prime p to divide the defect:

If the defining polynomial is xn+an_,xn~'+ • • •+3 ^+ 3 0 over Z , and p la ^
p21 a0, then p | defect.

So if this happens, we need go no further—p must be included in the defect.

It is very easy to prove this using the Dedekind Criterion:

-5 .9 -

R J Bradford The Defect

Suppose f(x) = xn+ ■' • +a2x2+pa1x+p2a0. So f ■ xn+ • • • +a2x2 (mod p). Hence

x \ f o> * | f 1f and whence x2| f 0^i- Then h = (f - f 0f A)/p= a1x+pa0+O(x2) s

a!x+0(x2) (mod p). So if g * = gcdp(h,f^) we see x |p * i.e. 9p*>0, as required. □

So, in fact, this holds for ©[X], say, as well. Again, this is not a necessary condition,

and it will only cast out a few primes in general. See the above table for examples.

This result supplies us with a lower bound for the probability that a random polynomial

has a non-trivial defect. For a prime p divides a1 with probability 1/p, and its square

divides a0 with probability 1/p2. Thus p divides the defect with probability 1/p3. So

Pr(f has a defect) £ £ p1/p3 = 0.175. More than a sixth of all polynomials have a non

trivial defect. This is a very conservative estimate, as tests on random polynomials

(degrees less than 10, coefficients of absolute modulus less than 1000) indicate that as

many as a third of polynomials have a non-trivial defect. Thus we would expect the

above test to notice the defect about 50% of the time it is there. This too is borne out in

practice.

5.5. Bounding the Defect

Now we turn to the problem of bounding the defect. Any of the index bounds above will

serve as an estimate for the defect since the index is just the square of the product of

all the denominators of a basis when expressed in terms of the generating elements.

However, for all but the most trivial of minimum polynomials the square root of the index

bound is far in excess of the defect. For example, in the table above, example 5 has

index with square root 31253, whereas the defect is actually 3352.

The next step in refining the bound is the following:

Lemma (see [Hecke 1923], §36)

Let a be integral in ©(0), where the integer 0 has minimum polynomial f(x) =

-5.10-

R J Bradford The Defect

xn+cn̂ x n~‘i+ • • • +c0. Then a can be written in the form

a = -2 R
r (0) ’

where g{x) e Z [x].

Proof

Consider the polynomial

g(x) = f g (/) .W -
£ x -e w

where the a(/) are the field conjugates of a. Then g is a polynomial over the rational

integers as it is defined over Q by Galois theory, the a(/) are integers, and

is an integral polynomial.

Now putting x = 0, we see g(0) = a f '(0), as required. □

We define the reduced resultant of coprime integral univariate polynomials f and g

resr{ f ,g) = min{ positive integers n = Af+Bg, for some integral polynomials A, B }.

When f and g are not coprime, define resr{ f ,g) = 0. This number divides the usual

resultant, and is often much smaller. [Rothstein 1984] calls this the pseudo-resultant.

Analogously we have the reduced discriminant dr{ f) = res r{ f ,f ') , and it is with this that

we shall primarily concern ourself.

The previous lemma leads directly to

Theorem

d efec t(0 |d r(0 -

Proof

From the definition of the reduced discriminant, we have two polynomials A and B over

-5.11 -

R J Bradford The Defect

Z with A f+ B f' = dr . Now A{Q)f (0)+B(0)r(0) = B(0)r(0) = df . So 1/r(0) = B(0)/df.

Hence, from the previous lemma, any integral a can be expressed as a = g{Q)B(Q)/6r,

and g{x)B{x) e Z [x]. □

This is often a great improvement over the classical result—see the table below.

The reduced resultant of two polynomials f and g over Z is easy to find: simply use the

extended Euclidean algorithm to find polynomials A and B over Q with Af+Bg =

gcd(f ,g). If the gcd is non-trivial (i.e. has positive degree), then the reduced resultant is

0. If not, so the gcd is 1, write A and B as A'/a and B'/b, with A \ B ' over Z and

rational integral a and b, and the fractions in their lowest terms. Then the reduced

resultant is lcm(a,b).

We can also apply Dedekind’s Criterion to the polynomial and, if we are lucky, we can

eliminate a few primes from the estimate for the defect—for example see polynomials 5

and 7 in the table. With number 7 we are particularly fortunate to discover the defect

Some Estimates of Defects

polynomial sqrt
index

index
bound d r p divides

defect
actual
defect

1 x 2- x + 3 1 1 1 1 1

2 x 3+ 2 1 1 1 1 1

3 x4-x+1 1 1 1 1 1

4 x8+3x5+6x4+x3
-3 x2+1 2x+1 6

2334
=648

2339
=157464

2335
=1944

2335
=1944

2232
=36

5 x9-1 5x6-87x3-1 25 31253
=7.107

32153
=1012

2.3753
=546750

»
£

S

>g
CO

Is

CMII

3352
=675

6 x9-54 313
=2.10®

321
=101°

2.35
=486

35
=243

33
=27

7 x3-19 3 3 3.19 3 3

8 x2+x+7 3 3 33
=27

33
=27 3

-5.12-

R J Bradford The Defect

exactly.

Example

What Is the reduced discriminant of f{x) = x2+ax+b, where a, b e Z?

We find

4 f-{2 x+ a)fz = Ab-a2,

so

j / £ \ a2—4bdr(') = 2pccf(a2-4b,a,2,4)

But a2-4b a a (mod 2), so this simplifies to

a2-4b
d ,(/)= <

a even

a2-4b a odd

Example

We estimate the defect for the radical extension f(x) = xn-a , where a e Z is non-zero.

Now (-M a)f+ {x lna)f'= 1, so the reduced discriminant is na. Hence the defect divides

na.

It is possible to sharpen the estimate for this special case, as pointed out by Trager

[1987]. Let 0n = a, and consider the field <D(0). Extending the field if necessary, we

may assume it contains a primitive root of unity, go, say. Define the automorphism o r by

o(0) = g o 0 , and the operators

-5.13-

R J Bradford The Defect

Then T/(0y) = nQJ if / = j , and is 0 otherwise. So if a = £3/0 ', 3/ e Z , we see 7}(a) =

/7a,0'. Now the operators 7/ map integers to integers, so if a is an integer, then /73,0'

must also be an integer. Hence the essential defect, that part of the defect that does not

arise from perfect /7th powers in 0n“1, divides n. The inessential part can be obtained by

inspection of the factorization of a.

Thus, for f{x) = x 3- 1 9 , the reduced discriminant (without Dedekind) predicts a defect

dividing 3.19 = 57, whereas the above proves it must divide 3, as 19 contains no perfect

squares or cubes.

We may also use one of the tests from section 5.1: if p exactly divides a, then f is p-

Eisenstein, and hence p-maximal. This slightly sharpens the above in the case that p

also divides n. So, for example, the extension x3-3 has trivial defect.

It appears that to find a general tighter bound for the defect one must calculate it

exactly. One way of doing this is to compute an integral basis and inspect the

denominators of the basis elements: the defect is the Icm of these, which is simply the

largest denominator.

-5.14-

6. Special Cases

This chapter describes the integral bases for some particularly simple extensions,

namely quadratic, cubic and cyclotomic extensions. These benefit from special treatment

as their bases can be written down with minimal calculation, and in the cubic case, with

reference to a fairly small table. We also briefly consider the case of the general radical

extension.

Quadratic extensions, being the simplest (non-trivial) ones, are by far the most

commonly occurring ones; further their shapes are extremely well-known (but we must

still be a little careful—see the example later), so it makes sense not to have to bring on

the full sledgehammer of a general basis algorithm to crack this nut.

Cubic extensions, however, do not enjoy the privilege of being taught extensively in

every undergraduate number theory course. They have been fairly well analysed,

though, and we are able to construct their bases by combining elements of previous

-6.1 -

R J Bradford Special Cases

authors’ work, namely that of Llorente and Nart, and of Voronoi. We use this to give a

new proof of the shape of an integral basis for a cubic radical extension.

Whereas the above two cases are fairly common, cyclotomic extensions are perhaps

less used in “ real world” applications. However, we would like to treat them specially as

they have trivial (defect = 1) bases, and so require no computation to write down. But

then, of course, we must identify exactly when we are considering such a polynomial,

and doing so is not easy. For example is x16+x14-x 1 °+xB-x 6+x2+1 cyclotomic or not?

We assume that we might consider degrees so large that simple table look-up is

infeasible. By finding a bound for the inverse of Euler’s <|> function we are able to

produce a test for the cyclotomic property. Alternatively, we can use the results of

appendix D.

Radical extensions are another class of important and common extensions. We can

bound their defect simply and sharply, and this may be enough for many purposes

where the time taken to calculate the complete basis and the exact defect can outweigh

the gain in time from their knowledge. Factorization of polynomials over algebraic

number fields is a good example of this. [Berwick 1926] gives a classification of 23

different cases for the extension by a root of xn-m , but does not give explicit bases in

every case.

We start with the simplest case, the quadratics.

6.1. Degree Two Extensions

Although the contents of this section are well known, we include them for completeness.

Let a be a root of g{X) = X 2+ a X + b . If there exists a rational prime p such that p \a

and p2\b then a /p is an integer satisfying X 2+ (a /p) X + (P /p 2) . Thus we may assume

-6 .2 -

R J Bradford Special Cases

this is not the case.

If a is even, then we can substitute X -a/2 for X giving /(X) = X2-(a/2)2+b, and we

may consider the extension by a root of this equation, as it contains the same integers

as the original.

If, now, a is odd, then letting X->X-a /2 we get X2-{a/2)2+b, and on putting X-»(1/2)X

this reduces to X2-a 2+4b, or t f - d where d = a2-4b. Note that d = 1(mod 4), as a is

odd. Thus, providing we note the denominator of 2 and the shift by a/2, we can study

this equation in place of the first.

In either case, we may consider extensions by square roots of integers that are square-

free (X2-u 2v being replaced by {X/u)2-v) (We always assume that we are able to find

such square-free decompositions).

6.2. Degree Two Bases

Now given f (X) = X2- d ,where d is square-free, we wish to construct an integral basis

for Q(Vd)/<D. This has discriminant Ad.

So we want to find conditions on m, n e <D such that G = m+nJd is an integer. But this

is true just when both of 2m and m2-n 2d are rational integers (being the coefficients of

0’s minimum polynomial). Then (2m)2-d{2n)2, and whence d{2n)2 are both integral. But

d is square-free, so 2n must be an integer. If 2n is odd, we get (2n)2 a l(mod 4), and

then {2m)2-d{2n)2 a 0(mod 4) gives (2m)2 a cf(mod 4). Hence d, being a square

(mod 4) is either 0 or 1(mod4). The former is impossible, as d is square-free.

Therefore d = 1(mod 4) and 2m is odd.

So we have: if d = 3(mod 4), then 2m and 2n are even, and the integers of <D(Vtf) are

-6.3-

R J Bradford Special Cases

m+nVd for m,n e Z . If d s i(mod 4), then they are of the form m+n4d
2

, with m b

n(mod 2).

Thus integral bases are as follows:

if cM 1(mod 4), a basis is

with discriminant 4d, and if d s 1(mod 4), a basis is

with discriminant d.

Now looking back at the original defining equation, viz X2+aX+b, we see the second

alternative occurs exactly when a is odd, tying in nicely with the 2 in the denominator of

the integers.

In summary, then: if a is even, the integers are Z[Vd] or Z [] with d = {al2)2-b ,

according to whether d = 1(mod4) or not; if a is odd, the integers are those of

Q(—) with d = a2-4b. Now in this latter case suppose d = e f2, where e is square-

Find the basis for the extension by a root of X2+X+7. Every schoolperson knows how to

find the basis of a quadratic radical extension, and it always has defect 1 or 2. So in this

case the defect is “obviously” 1 or 2. But this is not so: comparing with the above we

free. A basis for X2- ^ is (1, Vd/f+1
2

), which is (1, (2g+a)/f +1. 2g+a+f.
2 ' ’ 2 f }

M g+(a+f)/2
11 f

), as a+f is even.

Example

-6.4-

R J Bradford Special Cases

see d = 12-4.7 = -27= 33. So e = 3, and f = 3. The basis is (1 ,a+^ 3^) or
O

n + 2
(1,—r —). The defect is therefore 3, which is a little surprising the first time you comeO

across it.

6.3. Degree Three Extensions

Whereas degree two extensions are easy to understand, there is relatively little general

knowledge concerning degree three extensions—extensions by roots of cubic

polynomials. However, while it is true that these extensions are harder to study, we can

still reduce the problem to almost a simple table look-up.

Starting, as with the degree two extension, with the full polynomial F(X) =

X3+aX2+bX+c, we make the substitution X = X-a/3, to give G{X) =

X3+(-a2+3b)x/3+2a3/27-ab/3+c.

If a s 0(mod 3), a = 3d, say, then G is just X3+(b-3d2)X+2d3-bd+c, and we study the

equation X3-AX+B, where A = 3c f-b , and B = 2d3-bd+c.

Suppose a s l(mod3), a = 3cf+1, say. Then on letting X->X/3, G becomes

X3+3(-9c/2-6d+3b-1)X+54cf3+54d2-27bd+18cf-9b+27c+2 after clearing the

denominator. Putting A = -(coefficient of X) = 3{9d2+6d-3b+1), and B = (trailing

coefficient) = 54cf3+54cf2-27bcf+18cf-9b+27c+2, we study the equation X3-AX+B. We

note for future use that A ■ 3(mod 9), and B a A-l(m od 27).

If, now, a s 2(mod 3), a = 3d+2, say, then G transforms to X3-AX+B with A =

3(9d2+12cf-3b+4), and B = 54d3+108cf2-27bcf+72cf-18b+27c+16. Again we note A =

3(mod 9), and this time B a -(A-1)(mod 27).

The paper [Llorente & Nart 1983] gives a complete list of alternatives for the

-6.5-

R J Bradford Special Cases

computation of the index of the ring of integers of a cubic extension in its field of

fractions. They use the following notation:

we are considering a root 0 of the irreducible polynomial F{X) = X^-aX+b, where

a,b e Z . F has discriminant A = 4a3-27b2, and the ring of integers O has discriminant

D, where A = /(0)2D, and /(0) is the index of 0.

For a rational prime p, and m e Z write vp{m) for the degree of the greatest power of

p dividing m, and put vp(Q) = <» with the usual conventions.

First we may assume there is no rational prime p such that

vp(a)>2 and vp{b)>3,

for then we may just consider the integer 0/p with minimum polynomial

X3-{a /p2)X+{b/p3).

Then we have:

If the rational prime p>3, then

vP{D) =
2 1 <vp{b)<vp{a)
1 vp(A) is odd

0 otherwise

For p = 2

v 2(D) =

3 v2(A) is odd

1 sv2(b)sv2(a)

v2(A) even and a/2Vz<4) ■ 3(mod 4)

0 otherwise

and for p = 3

-6 .6-

R J Bradford Special Cases

f v3(a) = v3[b) --
[a = 3(mod 9),

5 1^v3(b)<v3(a)
= 2
3 \b ,b 2£ 4(mod 9)

H a) = v3{b) = 1
H D) - 3 3 1 a, 3 \b , a ^3(mod 9), b2 4 a+1(mod 9)

a s 3(mod 9), bz = 4(mod 9), b2 4 a+1(mod 27)

1 = v3{a)<v3{b)
3 1 a , a ^ 3(mod 9), b2 = a+1 (mod 9)
a ■ 3(mod 9), b2 = a+1(mod 27), v3(A) odd

3fa
a * 3(mod 9), b2 = a+1(mod 27), v3(A) even

As a computational note, we need only consider primes dividing A, as the above imply

vp{D)>0 =» p | A.

Now this immediately gives us /(0) = VaID , and allows an easy application of Voronoi’s

method, as follows:

Theorem (Voronoi) (see [Delone & Faddeev 1964])

Let 0 be a root of F(X) = tf-aX + b , where a,b e Z, and suppose there is no integer

whose square divides a and whose cube divides b. Then the integral basis of Q(0) can

be found as follows:

1. if the congruences

a = 3 (mod 9)
b = ±(a-1) (mod 27)

hold, then find the largest square factor d of A/729 (which is an integer) for which there

exists a solution t of

F '(f) as 0 (mod 9d)

F(t) = 0 (mod 27cf2)

with -3d/2<t£3d/2. Then a basis is

-6.7-

R J Bradford Special Cases

1 JM G2+fG+ (t2-a)
’ 3 ’ 9 d ’

with discriminant A/729d2.

2. If the above congruences are not satisfied, then find then largest square factor d of A

for which there exists a solution t of

P (f) * 0 (modd)
F(f) = 0 (modd2)

with -d/2<f<3d/2. Then a basis is

a

with discriminant A/d2. □

This ties in neatly with the denominator of 3 introduced by elimination of the X2 term in

the original full equation.

Now we know that /(G) is just the product of the denominators of the elements of the

basis, so in calculating / we have already determined d. In the first case d = /(0)/27,

and in the second case d = /(G) exactly.

Example

Find an integral basis for the extension of 0(a) of O where a is a root of g{Y) =

y 3-3V2-3V '-3. This is not in the form required, so we substitute X = Y+1 to give

f (X) = X3-6X -3, and so a = 6, and b = - 8. We find A = 864 = 2533, which has largest

square divisor 2432.

Now using the tables above:

p = 2: v2(A) = 5, which is odd, so v2(D) = 3.

p = 3 :3 1 a, 3 fb , a ^ 3 (mod 9), and b2 £ a+1 (mod 27), so v3(0) = 3.

-6 .8-

R J Bradford Special Cases

p>3: vp(A) = 0, so vp(D) = 0.

Hence we have D = 2333> and /'(0) = V2533/2333 = 2. Therefore the value of cf in

Voronoi’s congruences must be 2.

It is simple to check that the second set of congruences apply (a £ 3(mod 9)) with t = 0.

Thus a Z-basis for 0(0), where f{Q) = 0 is

1 . 9 ,

which is equivalent to

1 . 9 . - f -

Substituting back a = 0-1, we get (after simplifying)

„ a2+1
1 . — —

as a basis for the original problem.

The bound given by Llorente & Nart has allowed to pass directly to a basis, without

testing all of the square divisors of 2S33, and has reduced a potentially long algorithm to

one that was simple and quick to do by hand.

6.4. Cubic radicals

A common case for the cubic extension is an extension by a cube root, i.e. by a root of

a polynomial of the form X^-b. The above analysis follows through directly, giving a new

proof of the shape of integral bases for cubic radicals (e.g. [Cassels 1987]).

Let F{X) = X3-^ , with b cube-free, b = e f2, say, with e square-free, and F(0) = 0.

Now we have A= 27b2 = 27e2/ 4= 3(3e f2)2. So the largest square divisor of A is

-6 .9 -

R J Bradford Special Cases

(3e f2)2. Also a = 0 ^ 3(mod 9), so we are in the second case of the Voronoi method,

and the defect d is Va/D , or d2 = 27e2f 4/D.

Then for p = 2 or p>3 we see vp{D) = 2 or 0 according to whether p \b or p\b . For

p = 3, we have v3(0) = 5 if 3 |0 , and, if 3 fb, we have v3(D) = 1 or 3 according to

whether b * ±1(mod 9) or b 4 ±1(mod 9).

Therefore

D =
35n p 2 s ip

3 n P 2 P s ±1(mod9),

33r iP 2 otherwise

where the product is over primes p | b, p * 3.

The field discriminant is A = 33b2, thus

/(0)2 = A/D = 3 2b2/D

3I1P

3 b
n p

b
U p

3| b

b = ±1 (mod 9),

otherwise

or

m =

3I1P
3/7

n p
b

U p

3| b

b = ±1 (mod 9).

otherwise

Now b = e f2, with e square-free, so this reduces to

-6.10-

R J Bradford Special Cases

f 3
/<e> = { ,

3f b = ±1(mod 9)
otherwise.

We are now in a position to use Voronoi’s equations.

If b £ ±1(mod 9), then d = f in the equations, and a solution to

3f2 = 0 (mod f)
t3-b = 0 (mod f)

is simply t = 0. Therefore a basis is

1 . e ,

The case of b = ±1 (mod 9) is a little more tricky to work through.

So suppose b = ±1(mod 9). Note that b s b3 = e3f 6 = e3(mod 9) by Fermat’s theorem

(4>(9) = 6). We wish to find a solution to

f
3f2 = 0 (mod 3 0
t3-b a 0 (mod 9 /2)'

If f s 1(mod3), then f 3 = 1(mod9), so (e f)3= e3f 3 = b. 1 s b(mod9), and

f z\{e f)3-b = (e f)3- e f2, (and 3 fO . hence {e f)3= b(mod 9^2). Thus t = ef satisfies

the second equation; it trivially satisfies the first. So a basis is1

 ̂ A B2+efto-e2f 2
1’ 0* 3? ’

which is equivalent to

4 A Q2+ef&+f
3 f ’

as e2f s l(mod 3) implies e2f 2 = 1 (mod 30 -

If, now, f s -l(m od 3), so f 3 = -1(mod 9), then a solution is t = - e f , since {-e f)3 =

1 b is reversed in sign with respect to Voronoi’s equations, and so must t be as well.

-6.11 -

R J Bradford Special Cases

- e3f 3 b (-b)(-1) b d(mod 9), and f 2\{-e f)3-b as before. So a basis is

, a 02-e f 0+e2/ 2
’ ’ 3 f

or

, 0 Q2-e fb - f
' ’ 3 f

as e2f b -1(mod 3) implies e2f 2 = - f (mod 3f).

There is a slight infelicity in the above, as we have not necessarily found a t with

-3 f /2<t<9f2/2. However, if we replace ef by its least residue (mod 3 0 . the solution

follows through as before (since (e f-k .3 f)3 a {e f)3{mod 9), and f 2\{e f-k .3 f)3).

We have proved

Theorem

Let b be cube-free, b = e f2, say, with e and f square-free, and 0 a root of X3-b = 0.

If b 4 ±1(mod 9), then an integral basis for Q(6) is

1, e, -y-,

and if b a ±l(mod 9), a basis is

„ (1+e0+s02/n
1. e. 3

with s = ±1, s = f (mod 3). □

See [Cassels 1987] for an alternative derivation.

So the defect when b = ±1(mod 9) is 3 f , and when b 4 ±1(mod 9) it is simply f.

Thus a surprising example is 93-1 9 = 0, which has basis (1, 0, (1+190+02)/3), or

equivalently (1, 0, (1+0+02)/3).

An exhaustive discussion of degree three extensions can be found in [Delone &

-6.12-

R J Bradford Special Cases

Faddeev 1964].

6.5. Cyclotomic Extensions

(The ideas in this section have been expanded and improved in [Bradford & Davenport

1988], which is reproduced in appendix D)

The next special case to consider are the cyclotomic extensions, and these have a

particularly simple form of integral basis.

A cyclotomic polynomial is an irreducible factor of xn-1, for some n. Some simple

examples are x2+1, x4+x3+x2+x+1, and x8-x 8+x4-x 2+1—these are all irreducible factors

of x60- ! . The shape of a basis for an extension by a root of such a polynomial is given

by the following theorem:

Theorem (see [Cassels 1986])

Let C be a primitive root of unity, where p is prime. Then an integral basis for Q(£)/Q

is just (1 * * - □

It may not always be easy to spot that a polynomial in hand is cyclotomic, as the form

of the coefficients is not a true guide: for example the largest irreducible factor of x105-1

has 2 as a coefficient, and there exist cyclotomic polynomials with arbitrarily large

coefficients [Vaughan 1974]. The leading and trailing coefficients must be ±1, though.

The polynomial must be of degree <|>(n) for some n, and therefore must have even

degree (except for the polynomials x±1), as <j>(n) is even for n>2.

We may extend this to restrict the degrees of cyclotomic polynomials further as follows:

suppose 2* ||<j>(/7). Then n has at most k distinct odd prime divisors. For if n is even,

8 8
n = 2rp jp /8/ with r> 1, then 2r+s~112r~1 J 1 f j(p ,-1) = <J>(n), and so r+s-1<fc. Then

T lP i /=1/=i

-6.13-

R J Bradford Special Cases

a 0
s<k. If n is odd, n = U p P . then 2s | a

n = ${n), and s^k, as before.
a

UP!
/=1

From this we see if m is twice an odd number, then m cannot be a <|>(n), for any n,

unless m+1 is prime.

Thus it is impossible for a degree 14 polynomial to be cyclotomic: nor can a degree 50

polynomial be so.

Now given a polynomial with a satisfactory degree, how can we determine if it is actually

cyclotomic? Of course, we may take a (symbolic) root and raise it to successive powers

to see if it reaches unity, but the question arises of when to stop and answer “no”.

Similarly for dividing the polynomial into Xn-1 for increasing values of rt. However, we

have the following theorem:

Theorem

n = 0(<|>(n)1+c) for any fixed e>0.

Proof

Let e>0 be fixed, and put f (n) = . Then f{n) is multiplicative (i.e. / (as) = f{r)f{s)

when gcd{r,s) = 1). And for a prime power pm

m

m

= 2 p

Thus / (pm)< 1 if 2p , which is to say pm̂ 2 e.

-6.14-

R J Bradford Special Cases

Hence by the multiplicativity of f , for any integral n>2, we find f{n)zC , where C =

n maxf f (pm), 1} depends only on e.
1+j.

pm<2 e

1

So n 1-f€̂ Qj)(n), which means /?£Cl4€<|>(/7)1+€, or n = 0(<|>(n)l4€), as claimed. □

This is the “best possible” result of this form, as for every C>1, there exists an n with

n>C$(n). To see this we simply take n = JJp, a product of so many distinct primes that

PiTT— ->C. (That this can be done is itself a non-trivial fact related to the divergence of
Pi- 1

the sum 2i°°1/A- See [Hardy & Wright 1979]).

From the proof of the theorem we have

Corollary

n̂ 3<j>(n)3/2 for all n^2.

Proof
1 2

n ^ n 2 i+~ _ 0
Here e = 1/2, f{n) = . = - t t t . an d the prime powers less than 2 6 = 2r are 2, 2Z,<|>(n)

3, 5, and 7. So

C= n max{f(Pm),1}
p m < 2 3

= f(2).f(2 2)./(3).1.1 as f (5), f(7)<i

2 2/3 4 2 /3 g2/3

= ~1 2 2~

242/3

Then n<Ca/2<|>(/7)3/2 = ^ •$ {n)3/2 = 3<t>(/?)3'2. n

In fact straight calculation proves n<5${n) for all n<3000, which covers most practical

cases.

-6.15-

R J Bradford Special Cases

So given an irreducible polynomial we can now effectively determine if it is cyclotomic as

follows: take a root of the polynomial and raise it iteratively to a sufficiently high degree,

where “sufficiently high” is as given above. If at some point we get a unit, the

polynomial is cyclotomic, and if not, the polynomial is not.

Another interesting problem is to spot when f (X) is a shifted cyclotomic—when does

there exists an integer n for which f(X+n) is cyclotomic? These extensions have bases

with the same shape as cyclotomic extensions, and it would be worthwhile if a cheap

test could be found to check for this.

Every cyclotomic polynomial has ±1 as a trailing coefficient. Now given f (X) we can

substitute X+n for X and equate the trailing coefficient to ±1 and solve for n. But this is

just solving the equation f{n) = ±1 for n. If either of these latter equations have any

integral solutions we may substitute back and inspect the resulting polynomial to see if it

is cyclotomic. In this way we can reduce the problem to that of recognising cyclotomics.

This need not involve the potentially costly factorization of f (X)±1: if it turns out to be

too expensive to do this we can substitute X = ±1, ±2 or other small integers to see if

these happen to be roots. This will not recognise all shifted cyclotomics, but it has a

chance at finding a few.

Example

What of the polynomial f{X) = X16+X14-X 10+X8-X 6+X2+1 ? This has degree 16, so we

need only check powers of a root up to the 80th degree. It turns out that none of these

powers are ±1, so f (X) is not cyclotomic.

However, the same procedure shows that g(X) = X16+X14-X 10-X 8-X e+X2+1 is

cyclotomic—it is a factor of X60- ! . It is interesting to note that both f and g satisfy the

-6.16-

R J Bradford Special Cases

trivial distinctive properties of cyclotomics, such as allowable degrees, small coefficients,

/ = ± the reverse of f , and so on.

6.6. Radical extensions

Radical extensions rank amongst the most commonly used algebraic number fields,

partly due to a psychological bias, but also, it seems, partly due to the nature of the

problems that are investigated.

These again can, and should, be specially treated if at all possible, for their form already

implies a great deal about the defect and the shape of the basis. For example, we can

simply bound the essential defect in a radical extension by the degree of the root, and

this is enough for many purposes.

[Berwick 1926] gives a complete classification into 23 cases of radical extensions, and

outlines how to compute a basis in each case. In Appendix B we reproduce a few of

these cases, and these suffice to illustrate the flavour of Berwick’s approach.

Now we are presented with the same problem we had for cyclotomic extensions: given

the polynomial defining the extension, how do we effectively determine whether we are

looking at a radical extension or not? Fortunately, this is an easy question to answer.

Suppose f (X) = Xn+an-iX n~'+ • • *+a0. Then for f to be a radical, we must have

f{X+c) = Xn+b for some c and b. Then we necessarily have c = -a n̂ /n , this being

the only transformation that eliminates the degree n-1 term. If we are lucky, then

f{X+c) = Xn+b, as required. If not, then no transformation will do.

This is a little different from the more general [Trager & Yun 1976], which determines if

f can be completed to an n * power of some polynomial. This technique may be useful

if we are able to compute compute an integral basis relative to some extension of <D

-6.17-

R J Bradford Special Cases

(which may, or may not, exist: see [Edgar 1979]).

-6.18-

7. Algorithms for Integral

Bases

In this chapter we describe the various principal algorithms that have been proposed to

calculate integral bases. They can be grouped into three classes: the “brute force”

methods, where we plough straight in and check every number in sight; the “basis

manipulation” methods, where we proceed by refinement of an approximate basis (the

Round Two algorithm); and the “polynomial manipulation” methods, that work on the

defining polynomial for the field extension (The Round Four and Berwick algorithms).

In the case of the Round Two algorithm we have made certain improvements that

enable it to work on a larger range of problems.

-7.1 -

R J Bradford Algorithms for Integral Bases

7.1. Brute force methods

Traditional constructions of integral bases run along the following lines [Cohn 1978]:

start with the Z-module a in <D(a), of degree n over <D. If a is not maximal, then there

exists a prime p whose square divides the index of a in <D(a). We check the pn- 1 non

zero elements of the form (£{te/a/)/p for integrality, where 0 £ q < p, and the a, form a

basis for a. If we find an integer 9 amongst these numbers, we have a larger module

<a, e>, with smaller index, and we can repeat the process, which must eventually

terminate.

This proves the effectiveness of the problem, but of course this is totally inappropriate

for practical use-^he number of elements to be tested can be very large, and each test

requires the calculation of a norm, which itself can be quite expensive. We may apply

the results of chapter 5 on the defect, but still this is not going to reduce the number of

tests to a manageable level.

7.2. The Round Two Algorithm

To attack this problem Zassenhaus devised an algorithm—the so-called Round One, the

start of a naming scheme that he hoped would indicate the progress of new

algorithms—that would compute an integral basis more efficiently, without a protracted

search. This was rapidly developed into the Round Two, [Zassenhaus 1972] which [Ford

1978] implemented and compared with the Round Four, the current version. When

[Trager 1984] required integral bases for function fields he adapted the Round Two, and

this was our starting point.

As we are to inspect the internal workings of this algorithm, here is an outline [Ford

1978]. See also [Trager 1984] for a particularly lucid explanation and proofs.

-7 .2-

R J Bradford Algorithms for Integral Bases

First a couple of definitions. The radical of an ideal m in a ring R is the set { r e R.

rn e m for some n}, which is just the intersection of all prime ideals dividing m. The

idealizer o\ m is { r e QF{R): rm c/n)

The result we exploit is

Theorem

The domain V (an integral extension of R) is integrally closed if and only if the idealizer

of the radical of the discriminant of V equals V. □

This leads to the following algorithm:

1. We start with the defining polynomial f{x) of degree n, a root 6, and the ring V with

trivial basis 1,0, * • •, 0n-1. Let the discriminant of V be d.

2. Find those rational primes p whose squares divide d, and let q be their product. If

(7 = 1, then return the current basis.

3. Find the radical Jq of q in V.

4. Find the idealizer of Jq, and the change of basis matrix M from the current basis to

the basis of the idealizer.

5. If the determinant k of M is a unit, then return V as the integral closure with the

current basis.

6. Set d:=d/k2, set V to be the idealizer (and the current basis to be that of the

idealizer), then return to step 2.

So how do we compute the radical of the discriminant? Considering first the p-radicaI

Jp, there are two cases: the first when p>n, and the second when p<n. In the former

case we have

-7.3-

R J Bradford Algorithms for Integral Bases

Lemma

Let the p-trace-radicalbe the set {u:Vw, p | S(uw)}, S the trace V:R. If p>n, then the

p-trace-radical equals the p-radical. □

To find the p-trace-radical we proceed as follows:

1. Start with the basis ©1, ©2, • • • , ©„ , and compute the matrix

M =

S (to f)

S(co2k>,)

S(concoi)

S(©i©n)
S(©2©„)

S(©„2)

3. Let M be the vertical concatenation of M and pi, where / is the nxn identity matrix,

and Hermite reduce this matrix.

4. Invert the matrix forming the first n rows of M (i.e., the non-zero part), and the

columns of this Inverse form a basis for the radical Jp.

It is trivial to extend this to find the radical of q, rather than just p. Simply replace the pi

by ql.

Now, if we have pen, the p-radical in contained in the p-trace-radical, but is not

necessarily equal to it. In this case we have to work a little harder to find the radical.

1. Beginning with the basis © 1 , ©2, • • • , © „ , we wish to find the Frobenius matrix B

that represents the linear map ©,—>©,p, V/. To do this compute the matrices Wh which

represent multiplication by ©/. For each / now multiply the row vector (1,0, • • •, 0) p

times on the right by Wj. The resulting vector is the /,th column of B.

2. Find the integer k with pk~'<n<pk, and M = Bk.

3. Let M be the vertical concatenation of M and pi, and Hermite reduce this matrix.

-7 .4-

R J Bradford Algorithms for Integral Bases

4. Invert the matrix forming the first n row of M (i.e., the non-zero part), and the

columns of this inverse form a basis for the radical Jp.

The above two algorithms are spliced together at their respective steps 3: after we have

Hermite reduced and cleared the lower n rows, we “fill in" the gap by the matrix of the

other algorithm (be it the trace matrix or the power of the Frobenius matrix), row reduce

again, and invert only when we have exhausted our list of primes. This works since the

radical Jq is just the intersection of the radicals Jp, for p \ q.

Now having produced the radical, we wish to find its idealizer. Doing this is fairly similar

to the above. (Also see section 4.3 for the computation of ideal inverses.)

1. We have the bases co1f co2, • ■ ■, ©„ for the number ring, and mu m2, * • • , mn for

an ideal m in it (i.e., the basis we just found for the radical). For each /, 1 </</?,

compute the representation matrices for the linear transformations a-xx/n/. However,

calculate them with respect to input basis the co-basis, and output basis the m-basis.

2. Form the vertical concatenation of the n matrices, and Hermite reduce this tail

matrix.

3. The columns of the inverse of the non-zero part of the reduced matrix form a basis

for the idealizer of m.

7.3. Its Problems

The Round Two algorithm is very fast on polynomials of low degree, but slows down

dramatically when given a fair-sized polynomial of large degree or large coefficients. The

first and very influential difficulty is that of the creation and manipulation of large {nxn

and n2xn) integer matrices. It is easy to see that Hermite reduction is central to the

-7 .5-

R J Bradford Algorithms for Integral Bases

algorithm, and that a good method for the reduction steps will benefit the entire

algorithm enormously. This problem was tackled in chapter 3, and the tables in section

3.7 show the range of variation in performance possible—and the algorithms used there

all far outstrip the naive method of matrix reduction.

The second problem is inherent in the algorithm itself. The method has what may be

described as a “slow convergence" to the integral basis. To understand what this

means, consider the following example: we wish to find a basis for the extension by the

root 0 of the polynomial f (x) = x®-54. We count the number of times we go around the

discriminant -> radical -> idealizer loop, and watch the determinant of the change of

basis matrix from the old basis to the new. This latter measure tells us, in some sense,

how fast we are approaching the integral basis.

On successive passes around the loop, the change of basis matrix has determinant 3,

9, 3, 9, 3, 9, 3, 9, 3, and finally, 1. The index of Z[0] in its integral closure is 328, and it

takes 10 iterations to find it.

Another example is f {x) = x®-15x6-87x3-125, where we divide out 15, 225, 3, 9, 3, 9,

3, 9, and 1. This slow convergence property is part of the algorithm, and although we

have a way of improving this a little, it remains an essential feature.

The calculation of representing matrices can be time consuming: to find the matrix

representing multiplication by a, say, we multiply each element ©/ of the current basis in

turn by a, re-express in terms of the ©/, and extract the coefficients of the result.

However, the ©/ may themselves be expressions in terms of the original basis (perhaps

powers of a root of the defining polynomial for the extension), and so we must keep in

hand a change of basis matrix that converts from the original basis to the current basis.

Alternatively we might re-compute the multiplication tables for the new ©/ each time

around the bop.

-7 .6-

R J Bradford Algorithms for Integral Bases

7.4. Improvements

We have made some improvements to the Round Two algorithm in the areas of Hermite

reduction, multiple extensions, and slow convergence. The chapter on Hermite reduction

deals with the former, and here we deal with the latter.

The Round Two algorithm manipulates bases, whereas the Round Four manipulates

polynomials (see later). This distinction is very important, as it means the latter requires

a defining polynomial for the extension (which may be more naturally written in terms of

multiple extensions), whereas the former needs only be given a basis. For example, to

find a basis for the number field <D(V2,V3,V5,V7) the Round Two needs only know the

polynomials x2-2, x2-3, x2-5, and x2-7, from which it can generate the initial basis (1,

V2, V3, V2V3 , V5, V2V5 , V3V5, • • • , V2V3V5V7). From this it can carry on through the

algorithm as before.

On the other hand, Round Four must be given a single polynomial like

x16-1 36x14+6476x12-1 41912x10+1513334x8-7453176x6+13950764x4-5596840x2+46225,

the minimum polynomial for V2+V3+V5+V7, a primitive element for this extension. Most of

the coefficients of this polynomial are larger than every number appearing in the

computation of a basis using the Round Two (excepting the discriminant). Also,

computing its discriminant alone takes more time than the entire Round Two calculation.

This is more of a problem than it might seem at first, as if we use the degree 16

polynomial to find a basis and we wish to re-express it in terms of the simple square-

roots, we are obliged to factorize this large polynomial over the smaller intermediate

fields to determine how to write (say) V2 in terms of a root. This can be a very hard

task. Alternatively we can use the method of Appendix A which only involves the

manipulation of linear simultaneous equations.

-7.7-

R J Bradford Algorithms for Integral Bases

For example, for V2 we have the appalling representation

V2 = (1000302037/63406080)9-(4763001509/105676800)93
+(1547O95997/634O6O8O)0S-(1572360191/317030400)07+(5894795/12681216)09

-(6720901/317O3O4OO)011+(627/14O9O24)013-(1O37/317O3O4OO)015

where 0 is a root of the above polynomial. Section 2.2 describes an even worse

example of this effect.

We can also attack the problem of slow convergence. It does not affect the validity of

the algorithm [Trager 1986] if, instead of directly taking the idealizer of the radical, we

raise the radical to a power first—say square it or cube it. Of course, we must consider

the time taken to power an ideal into account when comparing the straight method

against the new method, but as the table shows, we can improve the rate of

convergence.

number of iterations
original squared cubed fourth

1 5 5 5 5
2 9 5 5 5
3 8 5 4 4
4 14 8 8 8
5 4 3 3 3
6 2 2 2 2
7 6 4 4 4
8 4 3 3 3
9 10 6 6 6
10 7 4 4 4

Here the extensions are

1 0(0), 06+305+604+03-302+120+16=0
2 0(0), 09-1506-8703-1 25=0
3 0(V2,V3,V5,V7)
4 0(0), 015-675O=O
5 0(0,<(>), 03-2=O, <f)3—30=0
6 0(0), 03-28=O
7 0(0,(J)), 03-4=O, <f)4—3=0
8 0(0,0), 05-2=O, 03-1 50=0
9 0(0), 09-54=O

10 0(0), 09-686=O

R J Bradford Algorithms for Integral Bases

Clearly we should not bother with powers higher than 2 (if these examples are

representative).

The time taken to raise an ideal to a power is significant—of the same order as finding

an idealizer (see section 4.3), but nevertheless the following shows we can still compute

some bases faster by squaring the radical:

time taken
original squaring

1 56 76
2 3183 2490
3 1350 1068
4 1324 964
5 81 87
6 34 41
7 329 293
8 393 381
9 187 163
10 127 98

Times here are in seconds.

The extensions 1, and 6 do not benefit from the squaring, as is to be expected: we are

doing the extra work without reducing the number of iterations. The saving is

sometimes marginal, and we can lose or gain a little on those cases where we eliminate

just one iteration (numbers 5 and 8). Of course in the case of bases with trivial defect,

powering the radical is always going to lose. Perhaps an intermediate strategy would be

to square all but the first radical: this will pass trivial bases as fast as possible, but most

other cases will still gain some advantage from this technique (the exceptions being

those bases that require just two iterations—the first to find the defect, and the second

to check there is no more, and we lose on the second iteration).

-7.9-

R J Bradford Algorithms for Integral Bases

7.5. The Round Four Algorithm

For comparison we give an outline here of the Round Four Algorithm of Ford and

Zassenhaus abstracted from [Ford 1978], [BSffgen 1987a] and [Ford 1987].

Unfortunately, the text and the program listing in [Ford 1978] do not agree in certain

details and the description given by BOffgen is incomplete. The best source, although

very brief, is [Ford 1987], from which we borrow some notation.

We work (mod p), for each prime p that divides the defect, and then combine the

results to form the complete global integral basis.

The principal idea is given f and q, a power of p, to produce either a Berwick or

Eisenstein element (giving the basis) or to determine a factorization f b f Af 2 (mod q).

Here q - p d+1 where p d exactly divides the discriminant of f [Ford 1978], or q = p2d,

where pd exactly divides the reduced discriminant of f [Bfiffgen 1987a]. Either bound

will suffice, and often the latter is smaller. If we obtain a factorization, we can recurse

on the factors f , and f 2 and later recombine their bases to find the basis for the full

ring.

Let O ^ a e o have minimum polynomial x/,+an_1xn~1+ ■ ■ • +a0. Then define v*(a) =

min{ v(an-k)/k} . This is just min{ v.(a)} over all extensions Vi of v to K, and if v*(a)>0,
k J *

a is a semi-local integer.

An element 9 is p-primary if its minimum polynomial mB factorizes as a power of a

single irreducible (mod p). For a p-primary 0, we use the following notation: nB is the

unique irreducible factor of m0 (mod p); de= 8ne; NB - 9me/d0; 0! = /ie(0); / . ^ e =

v’*(01), with L0 and MQ positive and coprime integers: ^ 0- 5©^©= 1, with r0 and s0

non-negative integers; 02 = 0ir®/ps#.

-7.10-

R J Bradford Algorithms for Integral Bases

The algorithm is somewhat convoluted, and is best described as a list of rules. At each

pass, read down the list until you come to the first applicable rule, and obey it. Then

return to the top of the list and repeat.

We start with a := co, co a root of f .

0. If at any point we come across an element that satisfies the Dedekind criterion, we

are finished.

1. If we find an element that is not p-primary, we can use it to find a factorization of f

(mod q), and recurse on the factors (see below).

2. Similarly, if we find a p-primary 0 with cfe|'cfa, replace a := a+0.

3. Further, if we chance upon a 0 with MQ\Ma, set a := a+a2+0|/p c. where a, b and c

are non-negative integers satisfying aMa+bMQ-c = gcd{Ma,Me).

4 . Whenever a is updated, check whether v*(a) = 0 . If not, a := a+1, when the equality

holds.

5. Check if dma = n. If not, put a := a+Zcpco, for some choice of k to ensure ma has full

degree.

6. Unless La = 1, a := a+a2.

7. If now Na = 1, then a is a Berwick element, and we are done. Similarly, If Ma>Na,

we have an Eisenstein element, and are finished. Otherwise, put p := 0-2 “IP

S' Whenever p is updated, do the following: set k := Mav*(p), and y := Xp/af. Here \ is

a local unit chosen to make y a global integer.

9. Let ph be the power of p that divides the defect (an upper bound for h will have to

-7.11 -

R J Bradford Algorithms for Integral Bases

do here). Let j be that non-negative integer at which -j+phN a attains a minimum, and
ida

pick integral r greater than (h+ j-p l iN ^ id a. Put h .

10. If 8 e Z[a], replace p := a *(8-7).

11. Otherwise, search amongst elements of the type y*-h(a), where h{x) e Z[x], and

dh<da. Eventually we must find a non p-primary element which we can use to factorize

f.

So how do we recover the factorization of f (mod q) given a non-p-primary element?

We have

Theorem [Zassenhaus 1980]

Suppose a e Z p[<»] with minimum polynomial factorizing into coprime parts ma = m^m2

(mod p). Then there exist e1t e2 e Z p[co] with

a) e,e2 = 0 (mod q),

b) ei+e2 s 1 (mod q),

c) 6f 3 e f (mod q),

and such that the sum

<D q ((o) = © ^ ^ (t o J + e a Q q t t o) .

is direct. Further, let f -,{x) e Z [x] be the monic polynomials of least degree with

e, f/(w) 3 0 (mod q). Then f s f 1f 2 (mod q).

Proof

We sketch the construction.

mi and m2 are coprime (mod p), so we can find r^X) and r2(X) e Z [X] with

m1(X)r1(X)+/772(X)r2(X) 3 1 (mod p),

-7.12-

R J Bradford Algorithms for Integral Bases

and 3r1<3m2> dr^dm^. Set ê = m^{a)r^{a). Now repeatedly substitute e ^ e 2-2 e f

(mod q2) until we have the desired p-adic accuracy (i.e. when e, does not change.)

Then e2 = 1-©i (mod q). □

Recombining bases for the coprime factors is simple.

Theorem

Let f m f , f 2 (mod p), the f k coprime. Let a basis for fk be (gkjk{©*)). where 1<y*<3f*,

and fk{(ok) = 0.

Then (co1, ^ (© ^ (c o)) , 0<j<df \ k = 1,2; 1 <jk<dfk is a Z-span for f . □

7.6. Theory

The idea behind the Round Four is the following: a completely ramified extension K:Q

has trivial integral basis. So we look for generating elements 0 in K that have Berwick or

Eisenstein minimum polynomials, as then Q(6) must be completely ramified (see

[Cassels 1986] for proofs). This is the bulk of the algorithm: searching for elements with

ever-increasing v * value, for when we stop we must have such an element. If we are

forced along the alternate path, i.e. to factorize f (mod q), \nq are able to fit the parts

back together again by means of

Lemma (Zassenhaus1 Structural Stability)

Let i, f 2 e Z [x] be monic of equal degree, with roots Gi and 62 respectively, p a

rational prime, q a sufficiently large power of p, ■ f 2 (mod q), and h(x) e -^Z [x].

Then /?(02) is an integer whenever h{Q̂) is such. □

This says we need only work to a finite p-adic accuracy, rather than having to work in

K, the completion of K, as we might expect to be required (of course, K is not

representable exactly in a computer, just as we are unable to represent R). Ford [1978]

uses the lemma with q = p r+\ where p r \\disc[f^. However, [Bbffgen 1987a] uses a

- 7.13 -

R J Bradford Algorithms for Integral Bases

refinement that allows us to take q = p2s, where ps \\6r{ f ,), the reduced discriminant of

fy, and this is often a good saving. For example, the polynomial x9-15x6-87x3-125 has

discriminant 2634256 = 1026, but the square of the reduced discriminant is just 2231456 =

3.1011.

We might hope to avoid the backtracking in Round Four, and directly compute the

factorization f over the ring Z /pmZ. Unfortunately, we do not have unique factorization

over such rings, for example x4-x 2+8 factorizes both as (x-21)(x+21)(x2-72) and as

(x-107)(x+1 0 7)(x 2- 7 2) (mod 28), but x-21 fx2-72 (mod 256).

Simple Hensel lifting of the factorization (mod p) will not suffice. Note x4-x 2+8 =

x2(x+1)2 (mod 2), which will not lift to any three-factor decomposition without judicious

merging of factors at some point of the process. This is clearly a combinatorial problem,

but whether it is a relevant problem is harder to see. If we are working on a problem

with bad combinatorial complexity it is quite likely that the problem is too big to solve

anyway.

We are assured, however, that each coprime part will lift to any accuracy (to

(x 2+ 7 1) (x 2- 7 2) in the above example). So the Round four algorithm does just this, and

tries each factor. If we come unstuck, then there is enough information in the way it fails

to further factorize the offending factor. So x2+71 will be seen to factorize as

(x-21)(x+21), say. See [Bdffgen 1987a]. While this does involve some backtracking on

factors, we are spared the possible exponential problem of recombination.

7.7. Berwick’s Method

Here we outline the method given in [Berwick 1926] for the computation of integral

bases. It is not a complete method in the sense that there exist extensions for which it

can not find a basis, but in those cases it will definitely stop and answer to that effect.

-7.14-

R J Bradford Algorithms for Integral Bases

Berwick describes this as follows:

“Failing cases exist, but the approximations given are sufficient to cover any
numerical equation not specially constructed to defy them."

This premise is somewhat more shaky in the era of computer algebra. However,

Berwick also claims that there always will exist a simple rational transformation that will

translate the problem into a solvable one, but he does not substantiate this claim.

The method relies on the manipulation of the defining polynomial, just as the Round

Four algorithm, but the manipulations are of a more elementary nature. Thus this is

also restricted to simple extensions, with all the related disadvantages.

We start with the minimal polynomial a(z), with root 6. (We shall try to keep to the

original notation). We need the concepts of partial bases and the stem of a basis.

Suppose the basis is of the form

V i(6) ¥ 2(6) ¥/>-i(0)
' A, 1 A2 ’ An_, ’

where the A/ divide the discriminant D{0), and the y /(0) are numbers of rank / (i.e. 6

appears to the power exactly / in ¥ /(0)) For a prime p, let || Ar, then it suffices to

determine integers

3*1(0) 3>2(9) 3>n-i(0)
’ p*' ’ p * ’ p"»-i

for those p whose square divide D. This is called the partial basis (mod p).

Conversely, for each p. there is an integer of least rank with denominator p^. Write

(Meyp*1 for this number. Then the integers

< <j>i(0) <M0) <M0)
> n I O » / ’

P P2 P'

are the stem of the partial basis (mod p). Thus the r* element of the stem is an integer

-7.15-

R J Bradford Algorithms for Integral Bases

of least rank with denominator p r.

If we factorize a(z) into irreducibles (mod p)

a{z) = t^tr/'tO jC z / 2 • • • <s>w{z),w,

Berwick shows

(^ (z) = w f" ’1© * ‘,-2 * • • c&wt

with

This is the so-called first dissection of the basis. It strongly illustrates the relationship

between the factorization of the minimum polynomial and the elements of the stem, and

allows us to deduce the form of the partial basis when all the f/ are unity: we must have

3(1)! = da, i.e., the smallest rank of a number with a non-trivial denominator is da,

namely a(0)/p = 0. Thus, as expected, the basis is the trivial one.

Berwick now proves two vital lemmas: let (p) be the ideal corresponding to p, and

consider its ideal factors. Firstly, we find that each prime factor of p divides one of

®i(9). (MO).' * *. <M 6) at least once. Secondly, no two of these integers are divisible

by the same prime ideal factor of p. This means that if we can find the prime-powers

dividing p we can construct the stem.

We can lift the factorization of a so that a typical factor (o(z)f has the following

expansion:

to{z)f

+p(C /-i.i© (^)'"1+C/-2,i© (^)'"2+ * • • +C01)
+P2(Cf-1f20>{*),-1+Cr-2l3©(*)/-2+ • * * +C02)

+ ■ * * +prf(£/_1i</(D(z),_1+£/_2(</©(z),”2+ • • • +Co</)»

where 3©(z) = g, with d^j<g, and the £,y not divisible by p.

-7.16-

R J Bradford Algorithms for Integral Bases

We now draw a Newton’s polygon: set up axes, and mark the node (x, y) if the

polynomial Cjy(z) is non-zero. Then take the upwards convex hull of these points. The

nodes along a typical edge can be described as

P ° t i i (Z) t’ (U z) G > (Z) l ‘‘ + p ' ' U z) O l { z) U - ' l u + ■ ■ ■ + P % (Z))

= p°o)(r)p2(z),

where gcd{u,v) = 1, and some of the £/ may be zero. Here v/u is the slope of the edge

(= -gradient).

Let Wt be the ideal containing the polynomials py^xy(a{z)x with xv+yu^t, x>0, y>0.

Then it follows that Z[z) factorizes uniquely (mod w ^ +1) as

Z(z) = UE(Z)"E'(Z)“ ' • • •

with

M m + M 'm '+ • • • - j .

This is the second dissection. The divisor Z{z)M corresponds to an ideal £ dividing p,

and when all the M are unity, we have separated the prime factors of p.

This far is a consequence of [Bauer 1907], who gives the following theorem

Theorem

For each prime p over p the ratio vp(0)/e(p) is equal to the slope of one of the sides of

the Newton polygon, and conversely, if X is such a slope, then there is a prime p

dividing p with X = vp(e)/e(p). □

Berwick now proceeds to the third dissection. If v lattice points on the line y = p lie

within the Newton polygon, then the terms in the first p lines of the lift of (o(z)f above

are all divisible by gj(z)v or co/(z)v. Writing these terms as g)/(z)vx/*(z) we discover

X1*(Z)X2*(Z) • • • Xwk(z)lpk

in integral. It is further proved that, in a good case,

-7.17-

R J Bradford Algorithms for Integral Bases

<fr*(9) = Xu(0)X2*(0) ' ‘ • Xw*(9).

At the first glance this method seems fairly simple, but in practice no-one seems to have

implemented it seriously. Why is this? Firstly, and most importantly, it is not complete.

There exist cases on which it fails, so the method cannot be used as a true algorithm.

Berwick makes general statements about the failing cases, but admits there is no known

general route to the solution.

A psychologically more influential reason is that Berwick’s presentation [Berwick 1926] is

extremely hard to read and understand. The notation leaves much to be desired—

constant re-use of the same symbols to mean different things, often within a single

section—and an erratic style do not induce the reader to study the monograph too

deeply.

7.8. Conclusions

We have essentially two reasonable algorithms for computing integral bases, namely the

Rounds Two and Four. Whereas the Round Four may well be the better algorithm to

use for simple extensions [Ford 1978,1987] [Bbffgen 1987a], Round Two has still a tot

to offer for fields more naturally represented in terms of a multiple extension, particularly

when we use the results of chapter 3 on Hermite reduction.

Ford’s thesis [Ford 1978], and [Ford 1987] claim that, in practice, the Round Four is

about n1*2 times better in execution time than the Round Two. It must be noted that

Ford uses naive algorithms throughout, particularly for the Hermite reduction of matrices,

algebraic number arithmetic, and the calculation of minimum polynomials. Clearly,

advances in the methods used for these (namely the gccf-based algorithm of section

3.5, and a subresultant algorithm) will be strongly reflected in the measured results.

However, [Bdffgen 1987a] improves the Round Four, and gives some extremely

- 7.18 -

R J Bradford Algorithms for Integral Bases

impressive times for the calculation of bases for some large degree polynomials.

The Round Four can also produce some unexpected results: for example one run

proved that the integers of Q(a), where a9 = 54 are of the form Z[p], where

P = (10<xMa7+13a6-9a4-3a3+9a+9)/27,

with minimum polynomial

x9-3x8-30x7+2082x6+31560xs-2101440x4
+35227884x3-425798778x2+1077058005x -4301913079

Whether the user would rather see results in terms of a with denominators, or p without

denominators is a different question, though.

-7.19-

8. Conclusions

8.1. Review

In this thesis we have covered a few of the aspects of the estimation of defects and the

computation of integral bases. Beginning with the basics of the arithmetic of algebraic

number fields we have progressed to the point of being capable of manipulating ideals

and using them in a effective (in both senses of the word) way to be able to calculate

integral bases for any number field (within reason).

Chapter 3 described various matrix reduction methods, and introduced a new method

that appears to be the most efficient to use in the Round Two algorithm—it doesn’t fare

too badly in the general case, either. This illustrates the fact that the best algorithm to

use in a particular case is not necessarily found by picking the “best" algorithm off the

-8.1 -

R J Bradford Conclusions

software shelf.

In chapter 5 we defined the defect of a polynomial, and gave several methods for

estimating it, culminating in a new theorem involving the reduced discriminant.

We combined work of previous authors in chapter 6 to create a new algorithm for

describing the integral bases of cubic extensions. This we used to give a new proof of

the shape of the basis for a cubic radical. Further, we described a method of

recognizing cyclotomic polynomials, so we can treat these particularly simple field

extensions specially.

We extended and improved the Round Two algorithm to cope with compound field

extensions, and coupled with the results of chapter 3, we have extended the range of

problems it can deal with immensely.

The major components of this work have been implemented in REDUCE, particularly the

Round Two algorithm and the Hermite reduction algorithms, using which we generated

most of the examples in this thesis.

In the appendices we present a easy method for retrieving the simple representation of

numbers from a primitive-element representation; we describe some of Berwick’s work

on the bases for radical extensions; and we discuss why we can’t directly apply modular

methods to the calculation of Hermite normal forms of matrices.

8.2. Future Work

Clearly this is the first step along a long path. We should dearly like to implement a

good algorithm for the computation of integral bases over algebraic function fields of one

or more variables. This would immediately allow us to use the work of [Trager 1984],

-8 .2-

R J Bradford Conclusions

and its generalisation [Bronstein 1987] on the integration of elementary functions. The

former uses an adaptation of the Round Two to calculate bases, and [Berwick 1926]

claims that his method also extends to function fields of one variable.

In the case of function fields, it should be worthwhile to investigate the use of modular

or, perhaps, Z-adic [Char et al 1984] [Davenport & Padget 1985] methods for matrix

reduction—very good algorithms already exist for the computation of the gcd of

polynomials [Wang 1978].

Whereas the theorem of section 5.5 leads to a much better bound for the defect than

before, and is a sharp bound (as is the index estimate), it is still often far in excess of

the true value. The problem seems to revolve about the fact that the defect is

dependent on the defining polynomial, whereas the reduced discriminant is a property of

the field—we cannot expect much progress in using field invariants to predict polynomial

properties! Looking at a random set of polynomials one is led to conjecture that the

defect of f {x) = xn+an_1x/?_1+ • - • +a0 may well be bounded by n.max{ | a, | } , but this

is In fact false. The defect of x8+12x6+158x4-228x2+3721 (a primitive polynomial for

<D(/, V3, ^-5)) is 62464, but defects of this (relative) size seem fairly rare. A better

bound for the defect would be welcomed by many algorithms.

[Berwick 1926] includes some work on the computation of bases of relative field

extensions, e.g. find a basis for <D(V5,VT0) over Q(VTO). Unfortunately, this is generally

doomed to failure, as [Edgar 1979] testifies: no such basis exists! However, it could be

interesting to consider relative extensions—indeed Berwick uses them to produce some

useful results on radicals.

It is also important that these algorithms should be made generally available, which

means they should be incorporated into computer algebra systems. Simath appears to

be the leader in the field for such matters [Reichert 1987], and Cayley will include such

-8 .3-

R J Bradford Conclusions

things in a few years’ time [Butler & Cannon 1988]. Our implementation in REDUCE

works well, but there is a great deal of streamlining that could be done, particularly in

the area of data representation. Also the Round Four needs to be properly implemented,

and the generalizations of both algorithms to algebraic function fields.

-8 .4 -

R J Bradford Conclusions

References

[Abbott 1988] “On Factorization of Polynomials over Algebraic Fields,” Abbott J.A., PhD.

thesis, University of Bath, 1988.

[Abbott et al 1985] A Remark on Factorization, Abbott J.A., Bradford R.J., & Davenport

J.H., SIGSAM Bulletin 19(2), May 1985.

[Abbott et al 1986] The Bath Algebraic Number Package, Abbott J.A., Bradford R.J., &

Davenport J.H., Proceedings ACM Symposium on Symbolic and Algebraic

Computation, B.W. Char (Ed), pp. 250-253, 1986.

[Adegbeyni & Krishnamurthy 1977] Finite Field Computation Technique for Exact

Solution of Systems of Linear Equations and Interval Linear Programming

Problems, Adegbeyni E.O., & Krishnamurthy E.V., International Journal of

Systems Science 8(10), pp. 1181-1192,1977.

[Alagar & Roy 1984] A Comparative Study of Algorithms for Computing the Smith

Normal Form of an Integer Matrix, Alagar V.S., & Roy A.K., International Journal

of Systems Science 15(7), pp. 727-744,1984.

[Artin 1959] “Theory of Algebraic Numbers,” Artin E., Mathematisches Institut,

GOttingen, 1959.

[Bareiss 1968] Sylvester’s Identity and Multistep Integer-Preserving Gaussian

Elimination, Bareiss E.H., Mathematics of Computation 22, pp. 565-578, 1968.

[Bauer 1907] Zur Allgemeinen Theorie der Algebraischen Grdssen, Bauer M., J. reine

angew. Math. 132, pp. 21-32,1907.

[Berwick 1926] “ Integral Bases,” Berwick W.E.H., Cambridge Tracts in Mathematics and

Mathematical Physics 22, Cambridge University Press, 1926.

[BOffgen 1987a] Der Algorithmus von Ford!Zassenhaus zur Berechnung von

Ganzheitbasen in Polynomaigebren, BOffgen R, Annales Universitatis

Saraviensis 1(3), SaarbrOcken, 1987.

-8 .5 -

R J Bradford Conclusions

[Bdffgen 1987b] Personal Communication, June 1987.

[BBffgen & Reichert 1987] Computing the Decomposition of Primes p and p-adic

Absolute Values in Semisimple Algebras over <D, BCffgen R., & Reichert M.A.,

Journal of Symbolic Computation 4(1), pp. 3-10, August 1987.

[Bradford & Davenport 1988] Effective Tests for Cyclotomic Polynomials, Bradford R.J.,

& Davenport J.H., Submitted to ISSAC/AAECC 1988.

[Bradford et al 1986] Enlarging the Reduce Domain of Computation, Bradford R.J.,

Hearn A.C., Padget J.A., & Schrtifer E., Proceedings ACM Symposium on

Symbolic and Algebraic Computation, B.W. Char (Ed), 1986.

[Bradley 1971] Algorithms for Hermite and Smith Normal Matrices and Linear

Diophantine Equations, Bradley G.H., Mathematics of Computation 25(116), pp.

897-907, October 1971.

[Brent 1980] An Improved Monte Carlo Factorization Algorithm, Brent R.P., BIT 20, pp.

176-184, 1980.

[Brent 1985] Some Integer Factorization Algorithms using Elliptic Curves, Brent R.P.,

Report CMA-R32-85 Australian National University, September 1985.

[Bronstein 1987] “ Integration of Elementary Functions,” Bronstein M., PhD. thesis,

University of California, Berkeley, 1987.

[Brown 1971] On Euclid's Algorithm and the Computation of Polynomial Greatest

Common Divisors, Journal of the ACM 18(4), pp. 478-504, October 1971.

[Brown & Traub 1971] On Euclid’s Algorithm and the Theory of Subresultants, Journal of

the ACM 18(4), pp. 505-514, October 1971.

[Buchberger 1984] A Survey on the Method of Groebner Bases for Solving Problems in

Connection with Systems of Multi-variate Polynomials, Buchberger B.,

Proceedings RSYMAC, Riken, Wako-Shi, Japan, N. Inada & T. Soma (Ed), pp.

7.1-7.15, August 1984.

[Butler & Cannon 1988] The Cayley System for Discrete Algebraic and Combinatorial

-8 .6 -

R J Bradford Conclusions

Structures, Butler G., & Cannon J., University of Sydney. Circulated on

USENET, February 1988.

[Cassels 1986] “Local Fields,” Cassels J.W.S., London Mathematical Society Student

Texts 3, Cambridge University Press, 1986.

[Char et al 1984] GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD

Computation, Char B.W., Geddes K.O., & Gonnet G.H., Proceedings

EUROSAM 1984, J. Fitch (Ed), Springer LNCS 174, pp. 285-296.

[Chou & Collins 1982] Algorithms for the Solution of Systems of Linear Diophantine

Equations, Chou T-W.J., & Collins G.E., SIAM J. Computing 11(4), pp. 687-708,

November 1982.

[Cohn 1978] “A Classical Invitation to Algebraic Numbers and Class Fields," Cohn H.,

Springer-Verlag Universitex, New York, 1978.

[Collins 1967] Subresultants and Reduced Polynomial Remainder Sequences, Collins

G.E., Journal of the ACM 14(1), pp. 128-142, January 1967.

[Davenport 1981] “On the Integration of Algebraic Functions," Davenport J.H., Springer

LNCS 102, 1981.

[Davenport 1985] Computer Algebra for Cylindrical Algebraic Decomposition, Davenport

J.H., TRITA-NA-8511, NADA, KTH, Stockholm, September 1985. Also appears

as Bath Computer Science Technical Report 88-10.

[Davenport & Padget 1985] HEUGCD: How Elementary Upperbounds Generate

Cheaper Data, Davenport J.H., & Padget J.A., Proceedings EUROCAL 1985,

B.F. Caviness (Ed), Springer LNCS 204, pp. 18-28.

[Davenport & Trager 1987] Private communication, 1987.

[Davenport et al 1988] “Computer Algebra,” Davenport J.H., Siret Y., & Tournier E.,

Academic Press, 1988.

[Detone & Faddeev 1964] “The Theory of Irrationalities of the Third Degree,” Delone

B.N., & Faddeev D.K., AMS Translations of Mathematical Monographs 10,

-8.7-

R J Bradford Conclusions

1964.

[Edgar 1979] A Number Field without any Integral Basis, Edgar H.M., Math. Mag. 52,

pp. 248-251, 1979.

[Fitch & Norman 1977] Implementing LISP in a High-Level Language, Fitch J.P., &

Norman A.C., Software—Practice and Experience 7, pp. 713-725,1977.

[Ford 1978] “On the Computation of the Maximal Order in a Dedekind Domain,” Ford

D.J., PhD. thesis, Ohio State University, 1978.

[Ford 1987] The Construction of Maximal Orders over a Dedekind Domain, Ford D.J.,

Journal of Symbolic Computation 4(1), pp. 69-75, August 1987.

[Frumkin 1977] Polynomial Time Algorithms in the Theory of Linear Diophantine

Equations, Frumkin M.A., in “ Fundamentals of Computation Theory,” M.

Karpirtski (Ed), Springer LNCS 56,1977.

[Heam 1979] Non-Modular Computation of Polynomial Gcd using Trial Division, Hearn

A.C., Proceedings EUROSAM 1979, E.W. Ng (Ed), Springer LNCS 72, pp.

227-239.

[H'earn 1982] REDUCE—A Case Study in Algebra System Development, Proceedings

EUROCAM 1982, J. Calmet (Ed), Springer LNCS 144, pp. 263-272.

[Hecke 1923] “Voriesung tiber die Theorie der algebraischen Zahlen,” Hecke E.,

Akademische Verlagsgesellshaft, Leipzig, 1923. English translation “Lectures on

the Theory of Algebraic Numbers,” Springer Graduate Texts in Mathematics 77,

1981.

[Helfrich 1985] Algorithms to Construct Minkowski Reduced and Hermite Reduced

Lattice Bases, Helfrich B., Theoretical Computer Science 41, pp. 125-139,

1985.

[Iliopoulos 1985] Gaussian Elimination over a Euclidean Ring, Proceedings EUROCAL

1985, B. Buchberger (Ed), Springer LNCS 204, pp. 29-30.

[Kannan & Bachem 1979] Polynomial Algorithms for Computing the Smith and Hermite

-8 .8 -

R J Bradford Conclusions

Normal Forms of an Integer Matrix, Kannan R., & Bachem A., SIAM J.

Computing 8(4), pp. 499-507, November 1979.

[Knuth 1981] ‘The Art of Computer Programming, Vol II, Seminumerical Algorithms,”

Second Edition, Knuth D.E., Addison-Wesley, 1981.

[Landau 1985] Factoring Polynomials over Algebraic Number Fields, Landau S., SIAM J.

Computing 14(1), pp. 184-195, February 1985.

[Lang 1970] “Algebraic Number Theory,” Lang S.L., Springer Graduate Texts in

Mathematics 110,1970.

[Lenstra 1982] Lattices and Factorization of Polynomials over Algebraic Number Fields,

Lenstra A.K., Proceedings EUROCAM 1982, J. Calmet (Ed), Springer LNCS

144, pp. 32-39.

[Lenstra 1983] Factoring Multivariate Polynomials over Finite Fields, Lenstra A.K.,

Proceedings 15th ACM Symposium on the Theory of Computing, pp. 189-192,

1983.

[Lenstra 1985] Factoring Integers with Elliptic Curves, Lenstra H.W., Preprint,

Universiteit van Amsterdam, 1985.

[Lenstra 1987] Factoring Multivariate Polynomials over Algebraic Number Fields, Lenstra

A.K., SIAM J. Computing 16(3), pp. 591-598, June 1987.

[Lenstra et al 1982] Factoring Polynomials with Rational Coefficients, Lenstra A.K.,

Lenstra H.W., & Lov£sz L., Math. Ann. 261, pp. 515-534, 1982.

[Llorente & Nart 1983] Effective Determination of the Decomposition of the Rational

Primes in a Cubic Field, Llorente P., & Nart E., Proceedings of the AMS 87(4),

pp. 579-585, April 1983.

[Loos 1982] Computing in Algebraic Extensions, Loos R., in Computing Suppl. 4,

Springer-Verlag, pp. 173-187,1982.

[Luneburg 1985] On a Little but Useful Algorithm, Liineburg H., in “Algebraic Algorithms

and Error-Correcting Codes,” Springer LNCS 229, J. Calmet (Ed), pp. 296-301,

-8 .9 -

R J Bradford Conclusions

1985.

[McCallum 1985] An Improved Projection Operation for Cylindrical Algebraic

Decomposition, McCallum S., Computer Science Tech. Report 548, University

of Wisconsin at Madison, February 1985.

[Moore & Norman 1981] implementing a Polynomial Factorization and GCD Package,

Moore P.M.A., & Norman A.C., Proceedings ACM Symposium on Symbolic and

Algebraic Computation, P.S. Wang (Ed), pp. 109-116,1981.

[Morrison & Brillhart 1975] A Method of Factoring and the Factorization of Fr Morrison

M.A., & Brillhart J., Mathematics of Computation 29(129), pp. 183-205, January

1975.

[Najid-ZejB 1985] Extensions a1g§briques: cas g£n£ral et cas des radicaux, Najid-Zejli

H., Thdse de troisteme cycle. IMAG, Grenoble, June 1985.

[PSL 1987] “PSL 3.4 Users Manual.” Galway W., Griss M.L., Morrison B., Othmer B.,

and Hewlett-Packard Company, the Utah Portable Artificial Intelligence Support

Systems Project, Computer Science Department, University of Utah, 1987.

[Rabin 1980] Probabilistic Algorithm for Testing Primality, Rabin M.O., Journal of

Number Theory 12, pp. 128-138, 1980.

[Reichert 1987] Presentation of Simath given at EUROCAL 1987, Leipzig.

[Rothstein 1984] On Pseudo-Resultants, Rothstein M., Proceedings EUROSAM 1984, J.

Fitch (Ed), Springer LNCS 174, pp. 386-396.

[Rubin 1985] Polynomial Algorithms for m x (m+1) Integer Programs and m x (m+k)

Diophantine Systems, Rubin D.S., Operations Research Letters 3(6), pp. 289-

291, February 1985.

[Trager 1976] Algebraic Factoring and Rational Function Integration, Trager B.M.,

Proceedings SYMSAC 1976, pp. 219-226.

[Trager 1984] “ Integration of Algebraic Functions,” Trager B.M., PhD. thesis, MIT, 1984.

[Trager 1986] Private Communication, August 1986.

-8.10-

R J Bradford Conclusions

[Trager 1987] Private Communication, 1987.

[Trager & Yun 1976] Completing rfh Powers of Polynomials, Trager B.M., & Yun D.Y.Y.,

Proceedings ACM Symposium on Symbolic and Algebraic Computation, R.D.

Jenks (Ed), pp. 351-355,1976.

[Vaughan 1974] Bounds for the Coefficients of Cyclotomic Polynomials, Vaughan R.C.,

Michigan Math. J. 21, pp. 289-295,1974.

[Vaughan 1985] On Computing the Discriminant of an Algebraic Number Field, Vaughan

T.P., Mathematics of Computation 45(172), pp. 569-584, October 1985.

[Wang 1976] Factoring Multivariate Polynomials over Algebraic Number Fields, Wang

P.S., Mathematics of Computation 30(134), pp. 324-336, April 1976.

[Wang 1978] An Improved Multivariate Polynomial Factoring Algorithm, Wang P.S.,

Mathematics of Computation 32(144), pp. 1215-1231, October 1978.

[Wang et al 1982] P-adic Reconstruction of Rational Numbers, Wang P.S., Guy M.J.T.,

& Davenport J.H., SIGSAM Bulletin 2, pp. 2-3,1982.

[Weinberger & Rothschild 1976] Factoring Polynomials over Algebraic Number Fields,

Weinberger P.J., & Rothschild L.P., ACM Transactions on Mathematical

Software 2(4), pp. 335-350, December 1976.

[Zassenhaus 1972] On the Second Round of the Maximal Order Program, Zassenhaus

H., in “Applications of Number Theory to Numerical Analysis,” S.K. Zaremba

(Ed), Academic Press, pp. 389-431,1972.

[Zassenhaus 1975] On Hensel Factorization II, Zassenhaus H., Symposia Mathematica

15, pp. 499-513, 1975.

[Zassenhaus 1980] On Structural Stability, Zassenhaus H., Communications in Algebra

8(19), pp. 1799-1844, 1980.

-8.11 -

Appendix A. Primitive

Representations

Here is a description of a short but useful method of converting elements from a

primitive representation to one more suited for human consumption. Given the extension

<D(a):(D, where a4-10a2+1 = 0, what does the number (-9a+11a3)/2 really mean?

A.1. Conversion from Primitive Representation

Given the primitive representation of an extension we wish to recast results in an

easier-to-read multiple extension form. For example, given the primitive element V2+V3

for the extension <D(V2,V3):<D, how do we recover the expression for V2? We shall

illustrate the general method by means of an example.

- A.1 -

R J Bradford Appendix A

Let a = V2+V3 , the primitive element. Powering a we see

1 - 1.
a = V2+V3,
a2 = 5+V2V5,
a3 - 11V2+9V3.

We can rewrite this as

1 0 0 0 1
p *
1

0 1 1 0 <2 a
5 0 0 2 V3 — a2
0 11 9 0 V2V3 a3

or Mu = v, say.

From now, the solution should be obvious. To find V2 we divide through by M, and we

get

V2 = (0 1 0 0)u = (0 1 0 0)M“1v
= (2nd row of W 1)v,

or, V2 = (-9a+11o3)/2.

The generalisation is clear.

Incidentally, this allows us to create primitive elements without having to find the minimal

polynomial. To do this we take a putative primitive element—a = V2+V3 , say, find the

matrix M, as above, and whenever det M * 0, a is primitive.

Also we can prove some other small results: thus for a,b e Z (or even in Q), the

element a = Va+VF is primitive for the extension ©(VF.VF):© whenever a * b. To

prove this, consider the matrix of coefficients:

- A.2-

R J Bradford Appendix A

M

this has determinant 4{b-a).

1 0 0 0
0 1 1 0

a+b 0 0 2 ’
0 a+35 3a+b 0

Some other results along these lines:

a is primitive when
Va+V5 a*b
Va+Vb+Vc a *b ,b *c ,c *a ,

and a2+b2+c2*2{ab+bc+ca)
a i^+di/3 a*±b
Va +51/3 64a3+2752*0

Further examples become unwieldy very quickly.

We note in passing that the only solutions of a2+b2+c2 = 2{ab+bc+ca) over Q have

<D(a) = Q{b) = <D(c) (i.e. all the ratios alb, b/c, and c/a are squares in CD). Similarly,

the rational solutions of 64a3+2752 = 0, are parameterized by a = -3 u2, b = 8u3,

u € Q. Thus b is a perfect cube.

- A.3-

Appendix B. Berwick’s results

for radicals

Here we present some of the results for radicals as given in [Berwick 1926]. Berwick

divides radical extensions into 23 different cases, but here we give examples of just a

few, but which suffice to give the general flavour of this method.

In the following we shall take p to be a prime, and the bases are all (mod p).

1. ep-a = 0, gcd{a,p) = 1. This divides into two cases:

a) ap-a £ 0(mod p2), when the basis is (1,0, • • • ,0P_1), i.e. trivial, with defect 1.

b) ap-a ■ 0(mod p2), when it is (1,0, • • • ,0P_2, (0p-1+a0p_2+ • • • +ap_1)/p), with defect

P-

-B.1 -

R J Bradford Appendix B

This agrees with the previous results on cubic radicals, as a3-a = 0(mod 9) «=» s

±1(mod 9).

2. Qph-a , where /i>1, gcd{a,p) = 1. Define j by pJ\\aph-a , so j> 1. Put n = ph.

There are three cases:

a) / = 1. The basis is trivial.

b) y^/7+1. Define T|r(0) = ep/,“f(p“1)+apA_r0p,,~r(p-2)+ • • • +ap/,~'(p-1). Then the stem of the

basis is

•ni(0) ‘n1(0)Ti2(0) *n1(0)Ti2(0) • * "n/_i(0)
11 P ' p2 p H

with defect pH .

c) y>/)+1. The stem is

*Hl(0) Tfl(0)Tl2(0) ■n1(0)Tl2(0) * * * T|̂ (0)
® I _ I O 9 > h Ip p pft

with defect ph.

3. 0/p/,-a , where pccf(a.p) = pccf(/,p) = 1. This has stem

1 ^ (0') *ni(e/)ri2(e/) • • *tu(0')
I , I 9 9

P pk

where k = j - 1 if /</)+1, and k = h if y>/i+1. The defect is pk.

4 and 5. 0n-a , a = pmb, where gcd[n,p) = gcd{b,p) = 1 or gcd{m,p) = gcd{b,p) =

1. These two cases can be treated together. Let f = gcd{m,n), u = n/t, v = m/t, and

e(r)= [rm /nj. Then a basis is the term-wise cross product of

R J Bradford Appendix B

The defect in these cases is p(r-1)*'+e(/?-1) = ^

6. n = pk\ a = p qb, where q = ph, gcd{p,b) = 1, and bp # b(mod p2), excepting the

case when bp~1 = i+p(mod p2), and p = q and f> 0 (where f is defined below).

If k'<h, then the basis is (1 ,Qlpv, • • • ,0n“1/p(,M,K), where v = ph~k\ by 2 above. If h =

0, so q = 1, the basis is trivial, by 4. So now define k = k '-h , k= Mq, e = pk = q f r',

with integral fz 0, 1^r'«7, and q = rr'. Also set c = eicOc'-IJ/Oc-l), c ' =

er(K/+1-1)/(K-1), b i = least positive residue of (bp_1-1)/p (mod p), and b2= b̂ if q>p,

or b2 = b i-1 when q = p. Let x(0) = 9e-pb, if f = 0, or 0®-pb+pb10®K, when f - 1, or

0®-pb+pP10®K + 2/UPibP”/^i^2 ‘10eK(lc/”1)/(K"1) *n tha case thaf ^>1- Finally, set Xi(0) =

(0e-pb)r+prb0erK+ 2 /la1Pr^ p"/^i^2"100rK(1c/”1>/(lc-1)* Then a stem of the basis is

In this highly complex case the defect is just pq.

The other cases are much in the same vein, only with increasingly strange and

complicated formulae.

Example

03-19 = 0. By factorizing the discriminant we see we must consider the primes 3 and

19.

p = 3: this is case 1(b), with a = 19, and 193 = 19 (mod 32). The basis (mod 3) is (1, 0,

1 0® 0 ® - ° x (e) 0 - 2cx (e)2

’ p ’ p2 ’ p3 ’
0* - * X i (0) 0 ® -c'- c x i (0) x (e)

ee-<f-1)cx (0)f-1

0®-cHr- 1)cXi(e)x(0)r- 1
P2f

0 M r '- l)c 'x 1(e)''-1 0 0-(r'-1)c'-(r-1)cX i (e)r ' - 1 ^ e)r-1

p^-r+1 ’ * ’ ’ ’ p^

-B.3-

R J Bradford Appendix B

(02+19&Kl92)/3), or (1, 0, (02+0+1)/3).

p = 19: this is case 4, with n = 3, a = 191.1, m = 1, and b = 1. We find t = ^ , u = 3 ̂

and v = 1. The basis (mod 19) is (1, 0/p°, 02/p°), or (1, 0, 02).

Hence the fuii basis is

Appendix C. Modular Methods

for the HNF

In the realm of computer algebra it seems to be a maxim that modular algorithms are

“best.” It is repeatedly found that a problem that was intractable due to the inherent

expression swell becomes orders of magnitude faster to solve using modular

techniques. A typical case is that of the greatest common divisor of polynomials as

described in [Brown 1971]. Thus when we were faced with the swell in the computation

of Hermite normal forms we were naturally led to consider the applicability of modular

methods.

In this appendix we discuss modular methods for computing the SNF and the HNF of an

integer matrix. Unlike the SNF, the HNF does not lend itself naturally to modular

-C.1 -

R J Bradford Appendix C

methods; the problems seem to be due to the lack of an ordering compatible with

modular arithmetic.

C.1. A Little Theory

In [LUneburg 1985] we find Kaplansky’s two simple necessary and sufficient conditions

which determine whether matrices over an integral domain R can be brought into Smith

normal form:

1. every finitely generated ideal of R is principal,

2. for a,b,c e R with gcd(a,b,c) = 1, there exist p,q e R such that

gcd(pa,pb+qc)=1.

Now a gcd is defined only up to units, and every non-zero element of Z /pZ , p prime, is

a unit, so we have gcd{a,b)=1 for every a,b e Z /pZ . Thus we can reduce matrices

over Z /p Z to Smith normal form—this much is clear, as every element is invertible, and

simple gaussian elimination follows through. However, it is not terribly useful, since once

we realise all elements are units, the SNF is immediately a diagonal matrix of ones and

zeros.

However, the SNF must be unique, so the SNF of the modular matrix must be the

modular image of the SNF. In particular, a diagonal element of the SNF of the modular

matrix will be zero (mod p.) p prime exactly when p divides the corresponding element

of the non-modular SNF (and it will be 1 otherwise). We can use this to generate an

algorithm to calculate the SNF (see below).

Thus we are guaranteed the existence of a SNF (mod p), but HNFs are an entirely

different problem.

-C.2-

R J Bradford

C.2. Modular Methods

Appendix C

The naive approach to the construction of a modular algorithm is to take a matrix

modulo several primes, perform Hermite reduction on the images using the small

number arithmetic, and then to use the Chinese Remainder algorithm to piece the

results back together again to form the Hermite form of the original matrix. However, it

is not as simple as this.

First we must choose some moduli to work with. We may partition the possible moduli in

two ways:

1. into those smaller and those larger than the determinant

2. into those that divide the determinant and those that don’t.

Of course, we generally do not know the determinant in advance, so we have no

immediate way of discovering which of the above holds for any given modulus.

We may use Hadamard’s bound for the determinant:

detM £ n z H ?/=i/=i

but this, though a sharp bound, is often an extremely generous over-estimate of the true

determinant, and it is unclear whether we gain computationally by working modulo such

a large number. (Recall that working modularly requires divisions by the modulus: these

divisions may well outweigh the gain from using slightly smaller numbers.) Further, it is

not a multiplicative bound—we can not deduce anything about the factors of the

determinant from it.

Secondly, we cannot deduce any useful information in computing the HNF of a matrix

modulo a number which divides a diagonal element—this simply reduces to zero, and

any off-diagonal information is hard to interpret.

-C.3-

R J Bradford Appendix C

However, when calculating the SNF modulo a prime (say) that divides the determinant,

the matrix reduces to the form

1

1
0

0.

and we may deduce the corresponding pattern of primes dividing the diagonal elements

of the SNF.

We might expand this to calculate the SNF by pieces:

1. let the determinant be d = I I Pi’1-

2. let diagi :* 1, for / = 1 , . . . , n, where n is the number of rows of the matrix.

3. for each p/ dividing d do

3.1 for j > 1 to ©/ do

3.1.1 calculate the SNF modulo ptl .

3.1.2 if the /c* element of the diagonal of the SNF is 0, then set diagk := diagkxpit

for k = 1 , . . . , n.

4. result is diag.

This works since if a diagonal element is non-zero (mod p/) then either it is 1, when p

does not divide that element, so we do not update diag, or it is non-invertible. In this

case it has a non-trivial gcd with p /, and so is of the form pjq, with /</, and p \q. Thus

the requisite power of p has been attained from previous iterations of the 3.1 bop.

This algorithm has the obvious flaws that the determinant must first be calculated (say

by another Chinese Remainder algorithm), and then it must be factorized. This latter

-C.4-

R J Bradford Appendix C

step in all probability would far outweigh any possible advantage of the modular steps.

Also it requires a potentially large number of modular SNF calculations, namely 2"je

In [Alagar & Roy 1984] there is an algorithm that calculates the SNF modulo some

prime-powers under the assumption we can find enough primes at random that divide

the determinant. Clearly this will fail for those matrices with determinants with large

enough prime factors, e.g. for matrices like
1 1
1 2"

with n chosen so that 2n-1 is prime.

In the same paper there is another algorithm based on the simple row-subtraction

algorithm outlined above in which they use primes not dividing the determinant. However

the algorithm contains the phrase “For several carefully selected primes...” (p. 742), and

in the conclusion they say, “One of the interesting theoretical questions that still remain

to be solved is the characterization of primes that produce a desirable diagonal form of

an integer matrix from which one can compute the correct SNF.”

C.3. Experimental Experience

Hand calculation on a few small examples convinced us that, although we did not yet

have an algorithm, a few experimental programs should be written to test some of the

ideas outlined above.

We wrote a program that would generate random matrices and compute their HNF or

SNF by the gcd and cofactor method (section 3.5), and then reduce modulo a selection

of small primes, and find their normal forms modulo these primes. Then we could easily

check whether the modular reduced form was the same as the reduced modular form.

This produced very disappointing results. Almost none of the pairs matched. Closer

examination revealed that the elements on the diagonals were on the whole correct up

to some values x being replaced by p -x , where p was the modulus we were working

-C.5-

R J Bradford Appendix C

with. Some off-diagonal elements were correct, but others deviated in no discernible

pattern.

Furthermore, changing the way the modular algorithms operated (e.g. rather than

repeated subtraction of rows we might compute a “normalised” row by multiplying a row

by the inverse of the diagonal coefficient, and then have a single subtraction of the

relevant multiple of the normalised row) changed completely the characteristics of the

reduced matrix.

C.4. The Problems

Reduction (Hermite or Smith) depends on unimodular transformations, i.e. those with

determinant ±1. This means that any element along the diagonal may be ± its true value

in the modular image, and when working modulo several different primes this can easily

lead to incompatible modular images. Thus

1 0 o ' 1 0 0 * 1 o o ’

0 2 0 reduces mod 3 to 0 2 0 which in SNF is 0 1 0

P 0 4 , 0 0 1 . 0 0 2 .

It is difficult to see how such incompatibilities could be resolved—apart from a hideous

combinatorial trial. Simply demanding transformations with determinant +1 will not avoid

this problem (this can be achieved by negating one row whenever a pair are swapped)

as even this does not guarantee the correct signs on the coefficients—different modular

images may require different rows to be swapped, so signs are distributed on different

elements.

Another difficulty is typified by the following:

1 2 1 2 1 0
0 7
* «

reduces mod 3 to 0 1
b 4

which in HNF is 0 1
b 4

In this example the order information of Z is destroyed—the natural order on Z does

-C.6-

R J Bradford Appendix C

not map to an order on Z /pZ . Indeed, it is easy to see there is no compatible ordering

on Z /pZ . Hence we cannot expect the condition on elements above the diagonal to

map faithfully to a modular case. This does not happen merely because we are working

modulo a prime less than the determinant of the matrix: consider
1 3n+2
0 3 with

determinant 3, which in HNF is
1 2
0 3 , but for p=3n+1 and n large, modulo p this

becomes
1 1
0 3 , which is incompatible with the image of the reduction. Other examples

of this sort are in [Alagar & Roy 1984]: they note an example where a large modulus

fails, namely

109 481 480
423 1866 1863
536 2363 2361

with determinant 18, and trial modulus 41. Interestingly, this modulus is not larger than

the determinant of the 2x2 leading minor (which is 69)—this may be significant. Were

they to take the Hadamard bound (approx 6.4x109) they would be assured of having a

modulus larger than all sub-determinants. But we see what price they would have to

pay: probably this number is bigger than all those that appear in a straight, non-modular

computation.

-C.7-

Appendix D. Effective Tests for

Cyclotomic Polynomials

This paper was presented at ISSAC/AAECC 1988.

Effective Tests for C yclotom ic Polynom ials

R.J.Bradford & J.H.Davenport,
School of Mathematical Sciences,

University of Bath,
Claverton Down,

Bath,
England BA2 7AY

Abstract.

We present two efficient tests that determine if a given polynomial is cyclotomic,
or is a product of cyclotomics. The first method uses the fact that all the roots of
a cyclotomic polynomial are roots of unity, and the second the fact that the degree
of a cyclotomic polynomial is a value of <f>(n), for some n. We can also find the
cyclotomic factors of any polynomial.

The Problem.

A cyclotomic polynomial is an irreducible factor of xn — 1, for some n. These
are an interesting class of polynomials, as they have distinctive properties: for
example, if 9 is a root of some cylotomic polynomial of degree d, say, the extension
Q(0) has trivial integral basis over Q, i.e. has integral basis 1, 9, 92, . . . , 9d~l .
The famous Kronecker-Weber theorem states that every abelian extension of Q is
contained in a cyclotomic extension. See [Cassels] for proofs of these statements.
A curious class of theorems about factorizations of trinomials f (x) first require the
removal of all powers of x, and all cyclotomic factors [Ljunggren] [Davenport 83,
Davenport 88]. This idea is formalised as Schinzel’s K operator, meaning “remove
all cyclotomic factors and factors of x” [Schinzel]. Schinzel’s theorems tell us about
the factorizations of K (f) for appropriate / .

If we wish to make use of such properties, we must be able to determine when we
have a cyclotomic polynomial in hand. For example, is z 16+ar14—x10+ z 8—x6-f ®2+ l
cyclotomic? There are several “obvious” tests to try on such a polynomial / , such as
/ must have leading coefficient 1, and trailing coefficient ± 1; / = ± the reverse of / ;
or even — after inspecting a few examples — that all the non-zero coefficients
are ±1. Unfortunately, the last test is invalid, as [Vaughan] testifies: there exist
cyclotomic polynomials with arbitrarily large coefficients. The factors of * 105 — 1
are the first interesting example. More subtle techniques involve realizing that the
degree d of a cyclotomic polynomial is always a value of <f>(n), for some n (here <f> is
Euler’s totient function [Hardy & Wright]). Thus such / (excepting a r il) must have
even degree, as <f>(n) is even for n > 2. We can extend this to restrict the degrees
of cyclotomic polynomials further: suppose 2* is the power of 2 dividing d =
then n has at most k distinct odd prime divisors. For if n is even, n = 2r n*= i Pi*’
with r > 1 (so n has s distinct prime divisors), then

2 r + . - l | 2 r - l („ / - 1) = H n) ,

*=1 1=1

and so r + s — 1 < k. Then s < k as r > 1. Alternatively, if n is odd, n = Il!= i pY i
then

2> i (« / n ̂ *) r ib . ~ x) = ^ (n)>
t=l *=1

- D .2 -

and 8 < k, as before. Hence no polynomial of degree 14 is cyclotomic: neither is
any of degree 50: if m is twice an odd number, then it cannot be a <f>(n), for any n,
unless m + 1 is prime.

However, these tests are by no means sufficiently discriminating, and we would like
a definite test for cyclotomicity. One way to check whether the polynomial / is
cyclotomic is to divide it into x” — 1 for various values of n, but how will we know
when to stop and reply “/ is not cyclotomic”? The second method we give addresses
this type of problem. On the other hand, we know that the roots of a cyclotomic
polynomial are all roots of unity, and the first method exploits this.

The “Graeffe” M ethod.

If / is cyclotomic, then by its definition it divides some xn — 1, and so any root of /
is a nth root of unity. We can drive this implication in the opposite direction given
a construction by Graeffe, used in numerical analysis (see [Hildebrand]).

Procedure Graeffe.

Given a polynomial / produce a polynomial f \ = graeffe(/) whose roots are exactly
the squares of the roots of / .

1. Write f (x) = flf(x2) + xh(x2), where g(x2) and xh(x2) are the even and odd
parts of / .

2. Set / i(x) = flf(x) 2 — xh{x)2.

3. Normalize f i to have positive leading coefficient.

Then f \ is as described. Noting that the square of a root of unity is itself a root of
unity we have the following test:

Given an irreducible / , compute f \ .

1. I f / i(x) = /(x) , then / is cyclotomic.

2. I f / i(x) = / (—x), and / (—x) is cyclotomic, then / is cyclotomic.

3. I f f i = / | , where f i is cyclotomic then / is cyclotomic.

4. Otherwise / is not cyclotomic.

Proof

1. Take a root a of / . Then f i = f implies a2, a4, . . . , a2*, . . . are all roots of
/ . Eventually we must have a* = with i > j , and then a = 1. Further,
all the roots of / must be powers of a, as / is irreducible.

2. If n is odd, (—x)n — 1 = —(xn + 1) and this divides x2n — 1. Otherwise
(—x)n - 1 = x n - 1.

3. The roots of f are the square roots of the roots of a cyclotomic, and so / is
itself cyclotomic. □

Conversely, any cyclotomic polynomial satisfies this. The case f i = f occurs when
/ divides xn — 1, n odd: the roots are cycled around on top of each other. / i(x) =
/ (—x) happens when n is twice an odd number: the roots of f \ are n /2 th roots

- D.3 -

of unity. The last case is when 4 divides n: pairs of roots are mapped on top of
each other, and we get the square of a cyclotomic polynomial. This procedure must
terminate, as steps 1 and 2 occur at most once, and step 3 reduces the degree of / .
(Note that step 2 cannot happen twice in a row, for then a a root of / implies a 4
is a root of / , then so is a 16, and so forth, whence again / is cyclotomic. Then n
and n/ 2 are both twice an odd number.)

We can apply this test to / = x16 + * 14 — x10 + x8 — x6 + x2 + 1. We find that

f i = z 16 + 2x15 + z 14 - 2x13 - x10 + 7x8 - x6 - 2x3 + x2 + 2x + 1
= (x8 + x7 — x5 + x4 — x3 + x + l) 2

= f h say-

Proceeding with / 2,

/ 3 = graeffe(/2)
= x8 — x7 + 4x6 + x5 — x4 + x3 + 4x2 — x + 1,

which is not a square, nor is it / 2(±x). Hence / is not cyclotomic.

Trying / = x16 + x14 — x10 — x8 — x6 + x2 -f 1 we get

/ i = x16 + 2x15 + x14 - 2x13 - 4x12 - 4X11 - x10 + 4x9 + 7x8
+ 4x7 — x6 — 4x5 — 4x4 — 2x3 + x2 + 2x + 1

= (x8 -f x7 — x5 — x4 — x3 + x + l) 2

= f l

And now / 3(x) = graeffe(/2(x)) = / 2(—x), and graeffe(/3) = / 3, so this polynomial
is cyclotomic. Note that / divides x60 — 1, / 2 divides x30 — 1, and / 3 divides x15 — 1.

The “inverse <f>” Method.

Suppose we have an irreducible polynomial / of degree d. I f / is cyclotomic, we
know that it divides x” — 1 for some n, and d — <f>{n). So the problem is to discover
all the possible values for n, and try the division. To aid this we have the following
theorem:

Theorem

n = 0 (^(n)1+£) for any fixed e > 0 .

Proof

Let € > 0 be fixed, and put flr(n) = n1^ 1+cV ^ (n)- Then g is multiplicative (i.e.
g[rs) = g(r)g(s) when gcd(r,s) = 1), and for a prime-power pm,

m/(l+c)

pm/(1+c)

" Pm(l - l/p)

< 2pm(^ _1) as p > 2

= 2 p - m £ / (1 + 6) .

- D.4-

Thus g(pm) < 1 whenever 2p“ mc/(1+e) < 1, which is to say pm > 21+1 ê. Now, by
the multiplicativity of g, for any n > 2, we find g(n) < C, where

c = J I max{<7(pm), 1}
pm< 21+1/*

depends only on e.

So n1/(1+e) < which means n < C 1+c<f>(n)1+e, or n = 0(<f>(n)1+e), as
claimed. □

This is the “best possible” result of this form, as for every C > 1 there exists an
n with n > C<f>(n). To see this we simply take n = flP*) a product of so many
distinct primes that riP»/(p* — 1) > C. (That this can be done is related to the
divergence of the sum 1/p*. See [Hardy & Wright].)

From the proof of the theorem we have

CoroUary

n < 3<f>(n)3/ 2 for all n > 2 .

Proof

Here c = 1/2, </(n) = n2/ 3/^(n), and the prime-powers no greater than 21+1 £̂ = 23
are 2, 22, 3, 5, and 7. So

c - I I max{<jr(pm), 1}
pm<23

= g(2).g(22).g (3).l.l as $(5), g(7) < 1
22/3 2̂/3 32/3

“ "1 2 2”
242/ 3

~ 4 *

Then n < C3/ 2<̂ (n) 3/ 2 = ^ (”) 3/2 = 3^(n)3/2. □

In fact straight computation shows that n < 5<̂ (n) for n < 3000, which covers most
practical cases.

So given an irreducible polynomial we can now effectively determine if it is cyclo
tomic as follows: take a root of the polynomial and raise it iteratively to a sufficiently
high degree, where “sufficiently high” is as given above. If at some point we get a
unit, the polynomial is cyclotomic, and if not, it is not.

Now we can re-test the irreducible polynomial / = x16 + x14 — x10 -I- x8 — x6 + x2 -1-1
given above. This has degree 16, so we need only check powers of a root up to the
80th degree. It turns out that none of these powers are 1, so / is not cyclotomic.

However, the same procedure applied to x16 -1- x14 — x10 — x8 — x6 -I- x2 + 1 shows
that this example is cyclotomic — a root raised to the 60th power is unity. Thus it
is a factor of x60 — 1, which can be checked by division.

[Hardy & Wright] prove a stronger result than the above, namely <f>(n) > e_7 n / log log n |
for all sufficiently large n (where 7 = 0.577... is Euler’s constant). From this we de
duce that n = 0(<f>(n) log log <f>(n)). Again, tables show that n < 9.2<j>(n) loglog^(n)

- D.5 -

for all n < 3000. However, 9.2<j>(n) log log ̂ (n) > 5^(n) whenever <f>{n) > 6 , so this
is generally not as useful as the previous bound in this region. This is an example
of where asymptotic complexity theory is misleading about practical cases.

Non-irreducible polynomials

What happens, now, if we don’t know whether / is irreducible? We might hope
the tests will identify any factor of some xn — 1 (not just the irreducible ones).
Unfortunately, both tests as they stand fail: for example, if / = (x — l) 2, then /
is not of the required form, but graeffe(/) = / . Write $d(x) for the irreducible
cyclotomic polynomial of degree <j>(d), and set / = $ 7^ 15, a degree 14 polynomial.
Then the simple degree bound from the inverse <f> is 70. In fact / 1 x105 — 1 (and no
smaller exponent will do), and the degree-bounding method will not detect this.

The 4>s satisfy the useful relation xn — i = IL | . • * (*) • Suppose $d(x) and $ e(*)
divide xn — 1 and xm — 1 respectively. If d ^ e then gcd($d,$e) = 1, and then
$d(x)$e(x) | xlcm(n,m) — 1 follows directly from the above relation. Generalizing, a
product of distinct irreducible cyclotomics divides a polynomial of the type xn — 1,
for some n.

The Graeffe method extends to such products — in fact the same algorithm with
the irreducibility condition dropped will recognize any square-free polynomial that
divides some x" — 1. From / we find f \ . Put f si = gcd(/i, /(); this part corresponds
to those factors that are squared by Graeffe. Reconstructing this part is simple —
it is just f s(x) = / , '(x 2). f p = g c d (/ / / , , / i) is the self-mapping part, and the
remainder /„ = f f f » f p is the part that maps on to its negative. We can now
recurse on / , , f p and /„, splitting each into three parts (some of which may be
unity, of course). Then / is a factor of a xn — 1 if each of / , , f p and f n are.

As a contrived example, consider / = x8 -f 2x6 + x5 -f 2x4 + x3 + 2x2 + 1. Here
f i = x8 + 4x7-f 8x6 + 11x5 + 12x4 + 11x3-|-8x2-|-4x-|-1, / , ' = x -f 1, f» = =
x2-f 1, f p = x4 + x3 + x2 + x + l, and finally f m = x2 —x + 1. In fact / was $ 4$ 5$ 6>
as this decomposition verifies.

Alternatively, we note that the $s are cheap to compute (see below), and can follow
an alternative path: take the inverse <j> bound for / and generate, in turn, each
of the for d less than the bound. If any of these divide / , we have achieved a
factorization. If none do, then / is not a divisor of some xn — 1.

So for / = $ 7$ i5 = x14 + x11 + x9 + x8 - x7 + x6 + x5 + i 3 + 1, the inverse <f>
bound is 70, and we generate $ 1, $ 2> • • •» dividing each into / . Of course we find
$ 7 I /» giving a quotient factor for which we re-compute the bound, and continue
generating and dividing $s. If we had got as far as $35 without finding a factor,
we would know that / has no proper cyclotomic factor (we need only try as far as
<j)~1(n/2), as a proper factor will have degree no larger than n /2).

- D .6 -

A n Application

The polynomials x" — 1 are exceptionally easy to factorize: this follows from the
product relation for the <£s. Thus the irreducible factors of xn — 1 are simply the
3><i(x) for the divisors d of n. These irreducibles are themselves easy to generate by
the means of the following:

1. I f d = 1, then $ i(x) = x — 1;

2. else if d = pr , then $ p»-(x) = (xpr — l) / (x pP 1 — 1);

3. else if p || d, then $d(*) = $d/p(xp) /$ d/p(x);

4. else ifp 2 | d, then $d(x) = $d/p(xp).

Now these facts combined will allow us to create a specialized factorization algorithm
for certain polynomials. For suppose we have been given a square-free / , and have
found that it is a product of cyclotomics, and it divides x" — 1, say (this degree n
is easily computed once we know / does actually divide an xn — 1). We now take
each of the irreducible factors of xn — 1, and try dividing them into / . For large
degrees, this can be a great saving over using the general factorizing algorithm.

As an example we factorized x105 — 1, (0.6 seconds on a Sun 3/160 running Reduce
3.3) and multiplied together its two largest factors (degrees 48 and 24) to give
a degree 72 polynomial / . Factorizing / in the normal way took 806.8 seconds.
However, it took just 0.2 seconds to run the cyclotomic test on / , and then 1.5
seconds to recover the factorization of / (in the worst case of trying all the wrong
factors first), making a total of 0.2+ 0.6+1.5 = 2.3 seconds. Similarly we took only
4.7 + 50.8 + 185.9 = 241.4 seconds to factorize the degree 240 + 480 = 720 factor
of * 1155 — 1 that is the product of the two largest irreducible factors. (The reader
may care to contemplate the cost of running the [Berlekamp] algorithm on a 7202
matrix!)

Algebraic Extensions.

Over algebraic extensions of Q it may well be that a rational irreducible cyclotomic
polynomial will factorize further. For example, over Q(z) we see x4 + 1 factorizes
as (x2 + *)(x2 — *). The “inverse <f>” method adapts directly to recognize such a
factor. For an / of degree d defined over an extension of degree e over Q we simply
take the degree bound given for d above and multiply it by e. Then this bound is
sufficiently large.

Alternatively, we may take the norm of / , and use either of the methods above: for
/ divides its norm, and hence if the norm divides xn — 1, then so does / .

- D.7-

Shifted Cyclotomics.

Another interesting question is to spot when /(s) is a shifted cyclotomic — when
does there exist an integer m for which f (x + m) is cyclotomic? Field extensions
generated by such polynomials are “really” just cyclotomic extensions, and it would
be worthwhile if a cheap test could be found to exploit this.

Every cyclotomic polynomial has ±1 as a trailing coefficient. Now given /(x) we
can substitute x + m for x and equate the trailing coefficient to ±1 and solve for
m. But this is just solving the equations f(m) = ±1 for m. If either of these
latter equations have any integral solutions we may substitute back and inspect the
resulting polynomial to see if it is cyclotomic. In this way we reduce the problem
to that of recognising cyclotomic3.

Let f (x) = x8 + 17x7 + 126s6 + 531s5 + 1389s4 + 2303s3 + 2354s2 + 1349s + 331.
Then /(s) + 1 is irreducible (and therefore has no integral roots), but /(x) — 1 =
(s + l)(x -|- 2)(x + 3)(s2 + 4s + 5)(x3 + 7s2 + 16s + 11). Now /(x — 1) = x8 +
9x7 + 35s6 + 76s5 + 99s4 -f 76s3 + 4x + 1, which is not cyclotomic. However,
/ (x — 2) = x8 + x7 — x5 — x4 — x3 + s + 1 is cyclotomic — it is $ 30.

We need not perform the potentially costly factorization of f (x) ± 1: suppose x — c
is a linear factor of <jr(x) = sn + . . . + Co, then c | Co, i.e. c is a factor of the trailing
coefficient. So for f (x) — 1 = x8 + . . . + 330, we see 330 = 2.3.5.11, and so the only
possible integer roots are ±1, ±2, ±3, ±5, and ±11. If it still turns out to be too
expensive to factor the trailing coefficient we can substitute x = ±1, ± 2 or other
small integers to see if these happen to be roots. This will not recognise all shifted
cyclotomics, but it has a chance of finding a few.

nth power Graeffe.

We can ask the question of whether we can generalise the Graeffe procedure to
produce a polynomial whose roots are the cubes, of the fourth powers, or even
higher, of a given polynomial / . The cubic case is fairly easy to deal with:

1. Write f (x) = g(x3) + xh(x3) ± x2Jb(x3), where g(x3), xh(x3) and x2Jb(x3) are
the parts of / with exponents that are = 0, 1 and 2 (mod 3), respectively.

2. Set /i(x) = g(x)3 + xh(x)3 + x2fc(x)3 — 3xg(x)h(x)k(x).

Then f i has the desired properties. For the fourth and higher powers, it becomes
inconvenient to formulate and use decompositions as above, and instead we use the
following:

Theorem

The polynomial
graeffen(/(x)) = resultanty(/(y), yn - s)

has roots exactly the nth powers of the roots of / .

Proof

If a is a root of /(x), then a ” is a root of / (v^s), whose norm is just graeffen(/(s)).
□
As an example consider /(x) = x4 — s2 + 1. We see graeffe(/) = graeffe2(/) =

- D.8 -

(x2- x + l) 2, graeffe3(/) = (x2 + l) 2, graeffe4(/) = (x2+ x + l) 2, and graeffe12(/) =
(x — l) 4. / is a factor of x12 — 1.

This also allows us to generate the decomposition formulae for the graeffen, as given
above. Thus if we set /(x) = <7+ x h + x 2fc+x3/, then, symbolically, graeffe4(/(x)) =
resultanty(/(y), y4 — x) = y4 — x(4 g2hl + 2 g2h2 — Agh2k — h4) + x2{Agkl2 + 2h2/2 —
Ahk2l+ k 4) — x3/4, which is the decomposition equation for the fourth order Graeffe.

Much of the above for the simple Graeffe follows through directly for the higher order
Graeffes. Taking / = $ 4$ 5$6 = x8-f 2x6 + x5 + 2x4 + x3 + 2x2 +1 again, and using,
say, graeffe3, we get f \ = graeffe3(/) = x8+3x7+5x6+7xs-|-8x4+7x3+5x2+ 3 x + l,
then gcd(/, f {) = x6 + x5 + 2x4 + 2x2 + 2x2 + x + 1 is the part of / corresponding to
those factors 4>n with 3 /n, which are mapped onto themselves by graeffe3; and the
remainder f /g c d (f , f \) corresponds to those factors with 3|n, which are mapped
onto perfect cubes.

Conclusion.

We can determine effectively and cheaply whether a given polynomial is cyclotomic.
The second test supplies us with the degree of the xn — 1 that it divides, but requires
the / to be irreducible, whereas the first allows us to decompose certain polynomials.

Acknowledgements.

Thanks to JAA for pointing out some bugs, and to MM for pointing out Graeffe in
the first place.

References.

[Berlekamp] Factoring Polynomials over Finite Fields, Berlekamp, E.R., Bell System
Tech. J., 46(1967), pp. 1853-1859.

[Cassels] “Local Fields,” Cassels, J.W.S., London Mathematical Society Student
Texts 3, Cambridge University Press, 1986.

[Davenport 83] Factorization o f Sparse Polynomials, Davenport, J.H., Proceedings
EUROCAL 1983, Springer LNCS 162, pp. 214-224.

[Davenport 88] Polynomes cyclotomiques, factorisation et l ’operateur K de Schinzel,
Davenport, J.H., preprint, University of Strasbourg, 1988.

[Hardy & Wright] “An Introduction to the Theory of Numbers,” Hardy, G.H., and
Wright, E.M., (5th edition) Clarendon Press, Oxford, 1979.

[Hildebrand] “Introduction to Numerical Analysis,” Hildebrand, F.B., International
Series in Pure and Applied Mathematics, McGraw-Hill, 1956.

[Ljunggren] On the Irreducibility o f Certain Trinomials and Quadrinomials, Ljung-
gren, W., Math. Scand. 8(1964), pp. 65-70.

[Schinzel] “Selected Topics on Polynomials,” Schinzel, A., University of Michigan
Press, Ann Arbor, Michigan, 1982.

[Vaughan] Bounds for the Coefficients o f Cyclotomic Polynomials, Vaughan, R.C.,
Michigan Math. J. 21(1974), pp. 289-295.

- D.9 -

