UNIVERSITY OF

BATH

University of Bath

PHD

Educational interface board for multi-family microprocessor teaching

Bakbak, Sami Ibrahim

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Educational Interface Board For

multi-Family Microprocessor Teaching

Submitted by Sami Ibrahim Bakbak
for the degree of Ph.D
of the University of Bath
1988

© COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rest with its author.
This copy of the thesis has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published

without the prior written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purposes of consultation.

Bath, May 1988

UMI Number: U005688

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U005688
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVEHSiT‘a’ nE JATH

REIEE

el

34 14 SEP1988

ELE

$o2 | 54D

SUMMARY

The rapid growth in the microprocessor population and the
increasing use of microprocessors in education has resulted in many
different approaches to the problem of microprocessor teaching and

development.

This thesis examines the various commonusetechniques for
microprocessor education and discusses, compares thé‘;dvantages aﬁd
disadvantages of each approach. A design and implementation of an
educational environment, for users to investigate and learn about

various currently available microprocessor families, is shown.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following
people who provided me with assistance and encouragement during

the course of this project.

Mr. A.R.Daniels, for his supervision and constant guidance.

Dr. P.F.Whitworth, for his interest and help.

To all member of staff and collegues at the school of Electrical

Engineering, University of Bath.

Finally, I would like to specially thank my family who gave me

encouragement and support throughout these years.

CONTENTS
SUMMARY
ACKNOWLEDGEMENTS

INTRODUCTION . . ¢ ¢ ¢ ¢ ¢ ¢ o o o &
1.1 Microprocessor background « « « « « o

1.2 Microprocessor education requirements . .

A REVIEW OF MICROCOMPUTER EDUCATIONAL
SYSTEMS [] L] [] [] [] L] L] * * [] [] [] [] * []
2.1 Evaluation Kits « ¢« ¢ ¢ o o o o o o &

2.2 Single Board Microcomputers

L]
L]
L[]
[]
L]
L]

2.3 Self contained microcomputers « « o o .
2.4 Computer simulation « « « o« o ¢ o o
2.5 In-circuit emulators c o s e o o s o

2.6 Mini/Micro communication . « o« « o @

. MICROPROCESSOR BUS STRUCTURES . . .
3.1 Introduction . .« « « ¢ ¢ « ¢ o o o o
'3.1.1 Virtual memory « « « o o o o o @

3.2 MotorolaMC68000 ¢« « ¢ ¢ o o o o o

10

.11

14

17

17

21

22

3.3 The Intel 8086 Microprocessor .

3.4 Thelnte1 80286

3.5 Zilog Z80 microprocessor « « o o o

3.6 The Motorola MC6800 microprocessor

3.7 The Motorola M6809 Microprocessor

3.8 The Mos Technology 6502 Microprocessor

3.9 The Texas 9900 microprocessor .«

3.10 The Zilog Z8000 Microprocessor

3.11 Zilog Z80000

3.12 The MC68020 microprocessor

3.13 TheInte1 80386

3.14 Summary . « ¢ o o o

. MC68000 COMPUTER SYSTEM

4.1 The supportive processor overview

4.2 The M68010 Microprocessor .

4.3 The M68451 Memory Management Unit

—ii -

25

28

28

30

31

32

34

35

37

39

40

42

46

46

49

50

4.4

4.5

4.6

The Hitachi HD68450 Direct Memory Access

Controller &« « o ¢ o o o o o o o o o

The MC68000 Multi-board computer system

4.5.1

4.5.2

4.5.3

454

4.5.5

4.5.6

The Central Processing Unit . . .« .
The Memory Board
The EPROM/ROM Board « . .« . . .
The Floppy Disc Controller Board . .
Harci Disc Interface Board

The Bus Display and Peripherals Board

4.,5.7 Additional boards « « « ¢ o o o o

The MC68000 Single Board Computer . . .

S5S. THE SOFTWARE ENVIRONMENTS

5.1

5.2

Introduction =« « « ¢ o o o o o o =«

The TRIPOS environment e e e o o o .

5.2.1

5.2.2

5.2.3

TRIPOS filing system . « « « . « .
TRIPOS Tasks ¢ ¢ o o o o o o« o

Inter-task communication . « « « &

- 1il -

31

52

33

54

55

56

56

56

57

58

66

66

67

67

68

70

5.2.4 TRIPOS device drivers .

5.3 The BCPL programming language

5.4 The UNIX environment .

5.4.1 The development of UNIX

5.4.2 The Structure of the UNIX operating system

5.4.2.1

5.4.2.2

5.4.2.3

5.4.2.4

5.4.2.5

5.4.2.6

5.4.2.7

5.4.2.8

5.4.2.9

The UNIX Kernel

The UNIX process .

Interrupts and Exceptions

Inter-process communication

The UNIX 1/0 System

The UNIX file system

Directory structure

The UNIX shell .

System boot

5.4.2.10 UNIX utilities .

5.5 The C programming language .

6. THE EDUCATIONAL INTERFACE BOARD

-1V -

71

72

73

73

75

75

76

78

79

81

83

84

84

86

87

88

89

6.1

6.2

Interface specification
Hardwaredesign « « « « « .

6.2.1 Address decoding logic

6.2.2 Arbitration logic . . .
6.2.3 DTACK generation circuit

6.2.4 1/0 controller e o o

7. Targetsystems « o« o o o o o o

7.1

7.2

7.3

7.4

7.5

- Target system specification . .
The Z80 target system « « . .
7.2.1 Circuit description « . .

7.2.1.1

The Z80 personality module card .

The Z80 target interface . . .

7.4.1 Master to Z80 target memory access

The target 1/0 facility

7.4.2 The Z80 target to shared memory access

7.4.3 The Z80 target interrupts

The MC68000 target system .

L]

.

92

93

94

96

96

97

109

109

110

111

113

115

116

117

119

119

121

7.5.1 Memory maps and manipulation « « « ¢ ¢ o ¢ o o 122
7.6 The M68000 Personality ModuleCard « « « « « « « « « 126
7.7 Master to MC68000 target memory access « « « « o « o o« 126
7.8 M68000 target 1o shared memory access « « « « + « o o 128

7.9 TargetInterrupts < « « o ¢« ¢ ¢ o o o o o o o o o 129

SOFTWARE/HARDWARE INTEGRATION 144
8.1 The UNIX developmgnt software environment . « . o . o 144
8.1.1 Operationprocedure . « o« o o « o« o o o o « o 148
8.1.2 Supportsoftware . « « o o« « o o o o« o o o o 149
8.1.3 The software developmentcycle « . « « « « « « o 1350

8.2 The TRIPOS development software environment . . « « . 152

CONCLUSIONS ¢ & ¢ o o o o o o o o o o o o o o o+ o 154
APPENDIX A : Supportive System Bus Specification . . « « « . 159
APPENDIX B : Z80 Target Bus Specification . . « « « 163
APPENDIX C : M68000 Target Bus Specification « « ¢« « « « « « 164

APPENDIX D : PAL Equations o L L] . L L] L] L] L] L L] L] L] L V l 65

- Vi -

APPENDIX E : The Educational Interface Board Circuit

Diagram « « ¢ ¢ ¢ o o o ¢ o o « o o o o o o o ¢ o o 168

REFERENCES . . [] . [[L] L] [. . [[.] L] . ° L] L]] 69

- Vii -

1. INTRODUCTION

1.1 . Microprocessor background

The advancement of large-scale integration (LSI) and very
large-scale integration (VLSI) technologies have led to the integration
of over one million components on a single silicon chip, and the
implementation of most functional units of a traditional processor in
a small piece of silicon has led to a chip called a "microprocessor". A
microprocessor is the central arithmetic and logic unit of a computer,
which is responsible for the fundamental operations upon which all
computer intelligence is based. The term was first introduced in 1972,
after the era of microprocessors was heralded in 1971 with the
introduction of the Intel 4004, a "micro-programmable computer on a
chip® 1. The 4-bit 4004 Central ‘Processing Unit (CPU) contained

2300 transistors and could execute 45 different instructions.

As the earliest microprocessors were 4-bit devices of limited
capabilities they were soon followed by 8-bit microprocessors that
generally contained a central processing unit control circuitry for the
central processing unit, an arithmetic logic unit (ALU) which could
perform mathematical calculations, two 8-bit accumulators which are
used in "number crunching” tasks, a 16-bit index register to access the
memory, an 8-bit condition code register which displays the results
of the previously executed instruction, a stack pointer which
remembers where stored information was held during an interrupt

and a program counter that allowed the microprocessor to know

where it is in the program. In order for these microprocessors to
perform their functions efficiently, they utilize their instructions in
several addressing modes [3),

Although the second generation commenced with the
introduction of the Intel 8008 in 1972, the domain of 8-bit
microprocessors witnessed several significant improvements in
hardware and system concepts with the introduction of the Intel 8080
and the Motorola 6800 in mid 1974 3l The advanced 8-bit
microprocessors with their 8-bit external data bus usually contain

16-bit internal registers and can easily handle 16-bit words.

The need for increased performance and capabilities called for
16-bit microprocessors. The development of 16-bit microprocessors
began in 1974 with the introduction of the PACE chip by National
Semiconductor. The Texas Instruments TMS 9900 was introduced
two years later. Subsequently, the Intel 8086 became commercially'
available in 1978, the Zilog Z8000 in 1979, and the Motorola
MC68000 in 1980!2],

For most of the present requirements and applications, 8 and
16-bit microprocessors have been successful. They have been used to
build systems ranging from simple controllers to complex graphic
design workstations. However, there are some applications where
more processor speed, larger address space, improved performance,
high reliability and functionality are required which can only be

obtained by the use of 32-bit processors (4]

Microprocessors with 32-bit internal paths have been in
existence since 1980. However, the era of true 32-bit microprocessors
begins in 1981 with the commercial introduction of the Intel iAPX -
432[2] (it has been now withdrawn from the market due to its poor
sales due to the radical nature of its object oriented architecture).
National Semiconductor was one of first manufacturers to introduce a
monolithic 32-bit microprocessor the 32032. Soon after that many
powerful 32-bit microprocessors came to existence, like the Intel
80386, Zilog Z80,000, the Motorola MC68020 and recently .the
Motorola MC68030.

The early microprocessors performed basic CPU functions only.
However as the microprocessor technology advanced, the integration
of a large number of auxiliary functions on the same microprocessor
chip became possible resulting in the increase popularity of computers

built with very few chips.

1.2 Microprocessor education requirements

During their fifteen years of existence, microprocessors have
evolved at a dramatic increcase in terms of numbers, technology,
complexity, power, functionality and applications. In conjunction
with their progress, the power of the processor peripherals and
support devices increased rapidly . This enormous technological
achievement has introduced major problems and difficulties into the
tcaching of microprocessor technology to students. The same problem

can also be felt by those who educate students in this field.

The design and implementation of any prototype microprocessor
based system has to pass through several education and development
phases before it can reach the production line and the skills and
understanding an Electrical Engineering student requires in order to
design a system involving a miCroprocessor or a microcomputer must

be defined.

Preparation and learning is the first step, where it is necessary
for the student or the engineer to be familiar with digital techniques.
That is, the basic understanding of the functions of logic gates and
circuits, switching theory, combinational and sequential logic, wave
shaping circuits etc. This stage also requires some knowledge of
computer organization and microprocessor design techniques. Usually,
the theoretical teaching of the subject to student is well established in
the undergraduate curriculum prograrhme. The same knowledge can
be gained from the special courses offered to engineers who are
without prior knowledge of the subject, or in some cases, by self
education. Such courses cannot cover all the available devices nor can
they examine all the possible approaches to problem solving.
Microprocessor literature, microprocessor and computer magazines,
and manufacturers manuals should be consulted regularly for up-to

date knowledge.

The next phase is associated with the selection of the most

suitable microprocessor for the application.

Since there are so many microprocessors available, one should

reach a certain level in appreciation of the abilities of as many

microprocessors as possible before a processor is selected. In order to
select the most suitable microprocessor for the job, it is required for
the student or the engineer to examine several microprocessor
families. If a student or an engineer is only familiar with one
processor, he will check whether that processor can cope with the job
or not. If that is the case, the processor will be used regardless of its

suitability.

However, if the student or the engineer has been introduced to
several microprocessor families, he will have the skills and experience
to choose the most suitable processor and further can examine new

devices for their suitability.

In order to expose students to different range of microprocessor
families suitable equipment for the practical sessions in software and
hardware development is needed a so called development system. A
proper development system may have a keyboard and monitor for
input and output, floppy disc drives for storage, system modules such
as CPU module, memory module, in-circuit emulator, floppy disc
controller module, system firmware and monitoring modules. The
cost of suchv a system is usually high and it is essential to provide
sufficient sets of development system for each microprocessor family,
for the number of users. The number of users could be high, resulting
in unnecessary large investment in equipment. This stage of the

development represents the central discussion of this thesis.

Once the processor is selected, a set of questions concerning

hardware versus software tradeoffs should be answered. Only then

can the detailed hardware design be started.

The next phase is related to software design, since the highest
performance of a microprocessor based system is dependent on the
quality of the software provided. This stage could be accomplished
by the designer himself or by a software expert. The hardware
designer should at least provide the necessary software required for

testing and debugging the prototype system.

The last phase of the development is related to the production of
a working system which successfully performs the required

functions.

The work described in this dissertation can be divided to the

following three main stages:

i. Examination of the currently available microprocessor teaching

techniques.
ii. Design and implementation of the new adapted approach.

iii. Integration of the hardware with development software

environment.

2. A REVIEW OF MICROCOMPUTER
EDUCATIONAL SYSTEMS

The rapid growth in the microprocessor population and the
increasing use of microprocessors in education has resulted in many
different approaches to the problem of microprocessor teaching and
development ranging from simple evaluation Kits to more complex

in-circuit emulators.

This chapter examines the various available techniques for
providing microcomputer education and development and discuss the
strengths and weaknesses of each approach.

2.1 Evaluation Kits

Evaluation Kits, like the Motorola MEK6800D2 evaluation
kit[S], were originally introduced by the microprocessor
manufacturers . They are used to familiarise users with the
fundamentals of a specific microprocessor family . In addition to the
microprocessor, they contain a small amounts of Random Access
Memory (RAM), a resident de-bug monitor, a hexadecimal keypad
which is used for input and a multisegment light-emitting display
used for output. Only a very limited amount of information can be
displayed at any one time, and programs have to be entered in
hexadecimal code. The lack of a real editing facilities, together with
the limited amount of diagnostic informations that can be displayed,
and the necessity of entering programs in machine code, increases the

possibility of keying errors and often leads to students frustration.

Although evaluation Kkits are suitable for gaining familiarity with a
particular microprocessor family, they are not really suitable for
system educational development or practical applications. As they are

designed to be as cheap as possible, they are very difficult to expand.

2.2 Single Board Microcomputers

Like the evaluation kits, the major microprocessor
manufacturers all offer single board computer families based on their
own productsm. The earliest generation of the single board
computers had similar facilities to the evaluation kits. With the
reduced cost of all types of memory and, with the support of sixteen
bit microprocessors, an improved software features and peripheral
devices are included in the latest version of the single board
computers. The minimum software development facilities for single
board computers would include a monitor program to allow users to
single-step their programs and if required examine the
microprocessor’s registers and change memory locations , break point
setting etc. An assembler and an editor is provided to construct and
correct the input programs. Some single board computer
manufacturers support high level languages such as BASIC. Usually
such systems would be provided with full QWERTY keyboard, video

and storage facility interface.

Single board computers would appear to be a low cost approach
to providing a microprocessor educational system, but, by the time

additional facilities (such as the QWERTY keyboard, VDU interface,

T.V or a monitor,floppy disc drive, application modules,etc.) are
added, they are no longer cost-effective specially if many stations are
to be provided for a group of twenty to thirty students. Incidentally,
as a result of the added facilities, the board complexity will increase.
The true microprocessor architecture will be hidden if students adopt
high level language, such as BASIC, at the early stage of

microprocessor learning.

2.3 Self contained microcomputers

A number of self contained microcomputers, sometimes called
"boxed computers" or "personal computers”, such as Apple II, ACORN
BBC, and IBM PC, are in common use now in homes, schools, and
universities. They were designed primarily for use as general purpose
processors of information. Typical systems consist of the
microprocessor, up to 64K bytes of random access memory for 8 bit
processors, read only memory (for the operating system and language
compiler/interpreter), VDU with graphics capabilities and
cassettes/floppy drives for storage and retrieval of information.
Sixteen bit processor self contained systems available today have
built in Winchester technology disk drives up to forty megabyte, as
much as megabytes of random access memories, and can support
simultaneously several users. They support many high level
languages such as BASIC, Fortran, Pascal and C. Such systems are
increasingly being used for universities and business applications in a
stand alone mode or connected to a host mainframe/mini computer

system. The hobbyist market is also growing for such systems, and

many companies develop extensive software products for use on such
systems.
The boxed computer systems tend to provide better debugging

facilities than the systems described previously.

The single unit nature of these systems and their compactness
makes it difficult to expand them and difficult to interface their bus to

external devices for direct memory access purposes.

Such systems are useful for teaching computer concepts and
high level languages. But, due to their capital cost, they are not

suitable if more than one microprocessor family is to be studied.

2.4 Computer simulation

For some universities, instead of providing microcomputers to
allow students to approach the problem of microprocessor education,
have run simulators, such as MicroSim[6], on a host computer system.
This approach can successfully make a variety of assembly languages
available to the st.udent and can allow a number of students to access
the simulator without any difficulty in a multi-user environment. But
true input/output programming can not be achieved, nor does such a
system provide the student with exposure to the hardware or to the
peripheral devices connected to the computer. Although simulators
can provide useful software support at all levels, the majority of
them cannot provide debugging facilities such as single step or trace

capability.

-10 -

2.5 In-circuit emulators

The introduction of the microcomputer was quickly followed by
the realization that highly specialized design aids are required to

support microcomputer-based development efforts.

The in-circuit emulators provide the ability to emulate
microprocessor operation in real time, where the system operation is
intended to be at clock speed and to display register and memory
contents to the user for inspection. With accompanying software,
emulators can provide an efficient and powerful development tool to
integrate hardware and software development during all phases of
(8]

the development cycle

There are three categories of in-circuit emulators availablel9],

The first of these is the stand-alone emulator, which can operate
independently of the microprocessor development system or the host
computer which is used to develop the microprocessor software.
Normally, by using RS-232C links the user can download the target-
system software into the stand-alone emulator, then he can detach
the emulator and use a CRT terminal to control the emulator’s
operation. This method offers the benefit of freeing a host computer or
a microprocessor development system for additional software
development while hardware/software integration is proceeding with

the emulator.

The second form is the computer-hosted emulator, where a host
computer is required for the emulation of a target processor

operation. Such emulators like the Microcosm family, supporting the

11 -

Intel 8086/186 family of processors, can receive control from an IBM
Personal Computer, a DEC VAX or an Intel Series IIl developmem

system.

The final form is the in-circuit emulator based-development
system, where a microprocessor development system is required for
the emulation operation. The in circuit emulator is built into the
development system to allow the development system to be
connected to the microprocessor target board under investigation.
Through an emulator cable, which plugs into the target
microprocessor socket, the in- circuit emulation based development
system can emulate the target microprocessor and have control at
operational speeds over all the signals normally controlled by the
microprocessor. This powerful technique allows program execution
in the system under test to be traced and interrupted by the user at
the console of the development system. Furthermore, resources of the
development system such as memory and I/O ports can selectively be

made available to the target system.

The development system usually provide sophisticated
debugging facilities such as single stepping, software tracing,
breakpoints setting, and real time tracing. With single stepping, the
program is executed dne instruction at a time, where memory
contents, processor register contents and the next several instructions,
after each step, are displayed to the user to check that the results are
those expected. Single stepping is a powerful method of preliminary

testing, because bugs can be discovered before they can cause any

-12 -

damage to the program or data. With the updated display the user can
alter register and memory contents while stepping through the same
segment of code repeatedly and hence can test the code for operation
under different conditions. A breakpoint is a trap, set in a program,
which allows the program to be executed at full speed or in a trace
mode up to where the breakpoint has been set. When the program
reach the breakpoint, execution is halted and the development system
debugger is in control. Setting breakpoints implies that the user can
locate the correct memory address for the breakpoint. Symbolic
debugging is a different technique, used by more advanced debuggers,
where addresses are referred to as symbolic names, which are defined

by the user in his original symbolic source program.

Since microprocessor design is critically dependent on operation
in real time, and since single step and software tracing do not provide
complete debugging facilities, many development system
manufacturers offer logic analyzer or real time trace facilities in to
the development system. In a real time trace, the user can connect test
leads to a selected number of points on the target board and run the
test program to capture data in real time; the traced data cannot
include the contents of internal microprocessor registers or of

memory.

The latest emulators, such as the SDT816 (Symbolic Debugging
Tool for 8 and 16 bit microprocessors) manufactured by Positron
Computer Limited U.K, have the ability to assist in symbolic

debugging where a symbol table is stored locally. Up to thirty two

-13-

hardware breakpoints can be set and the system also provides real
time trace facilities. Additional to the system microprocessor, the
SDT816 can also emulate coprocessor chips and other system chips as
well. As there is an emulator for every related type of
microprocessor family, the programs can even be executed and tested

before any target board is built.

The in-circuit emulator based-development system is the most
powerful technique available today to the problem of multi-family
microprocessor education and development, and also the most
expensive approach where prices ranging from approximately five
thousand pounds to well beyond fifteen thousand pounds per station.
The high cost is due to their hardware and software complexity. As a
result of the high cost, their main use is in commercial firms, while
their use in education is very limited . Another disadvantage is that
the in-circuit emulators are sold as a complete package, which will tie

the user to the development system manufacturer software only.

2.6 Mini/Micro communication

Another approach to the problem of multifamily
microprocessor teaching is where a minicomputer.is connected to a
target processor by the use of serial or parallel link. Through a
terminal, the student can get access to the host computer, run the
editor and the cross assembler, then down load the object file to the

target processor board for stand-alone execution of programs. In

- 14 -

stand-alone operation, the target board will be connected to a
terminal and the student can use a resident monitor program to
examine and control the execution of programs [10],

The disadvantage of this approach lies in the capital cost of the host

computer plus the complexity of the target hardware.

Another Mini/Micro communication approach is where the
target processor board is interfaced to a minicomputer through an
externally controlled DMA channel. The technique is based on the
processor initializing a counter system which will provide an address
for data to be stored or retrieved when ever this is requested. When a
transfer is requested, the counter system will take control over the
processor bus and will provide the necessary address and control

signals needed to complete the transfer.

Such an approach is described by Holdstock [12], where a
Motorola M6800 target board is interfaced to a Digital Equipment
Corporation PDP 11/20 . Due to the high performance and the high
speed of the host computer used, the implementation of the interface
to the target processor is forced to be as an input/output device using
a DRIIC 16 bit input/16 bit output parallel port. This has the
disadvantage that the user is tied to a manufacturer supplied cards to
provide TTL compatible lines for the target. The high capital cost of

the minicomputer is another disadvantage.

The method examined and implemented in this thesis is similar

to the one suggested by Whitworth [13], The suggested technique was

-15-

based on providing an interface between a Z80 microcomputer and a
target system such that the address, data and control lines of each can
be translated to the timings and levels expected by devices attached to

the other.

This work describes the design and implementation of an
Educational Interface Board (EIB) which will allow the MC68000
based-computer system (master) running the UNIX operating system
to communicate to any eight, sixteen , or thirty two bit

microprocessor based system (1arget).

-16 -

3. MICROPROCESSOR BUS STRUCTURES

3.1 Introduction

As the function of the Educational Interface Board is to provide
a healthy environment for any two dissimilar system buses to
communicate, this chapter begins with a discussion of the basic
requirement needed for a bus to bus interface followed by a study of

various currently available microprocessor bus structures.

The basic structure for any computer system would include the
following three major components, the microprocessor unit (MPU) or
the central processor unit (CPU) (for arithmetic,logic, and control
functions), memory , input/output interface for peripheral control,
and three system buses, the data bus, the address bus and the control

bus.

Regardless of the number of lines the processor may have, the

address, data, and control signals must be available.

The address bus is used by the processor to inform memory and

other peripherals of the location it requires to access.

The data bus transfers information between the processor and

all the peripherals, including thc memory.

The control lines carry all the control signals between the
control unit of the processor and all other devices that make use of

such signals.

-17 -

Bus communication can be divided into two categories,

synchronous and asynchronous.

The synchronous bus requires the information to be present on
the bus at the appropriate time. This procedure implies that the
timing mechanisms of the source and destination devices are
synchronized. Such systems‘ have to be designed to operate sufficiently
slowly in order to accommodate even the slowest devices. The
disadvantage of such systems is that the timing of the information
transfer is determined by the slowest device in the system, hence
preventing fast devices from communicating at their high speed. The
principle advantage of such systems is their simple structure with

less control signals required.

In the alternative approach, ithe asynchronous communication
bus, the bus trans;actions are terminated as soon as the required data
has been passed. An additional control signal is required in such
systems in order for the device being accessed to inform the accessing
device that the data is available. The accessing device may respond
with another control signal to acknowledge the acceptance of data.
The timing of the data transfer depends on the speed of the
communicating device. This flexibility is accomplished at the expense

of a more complex bus control structure.

As the microprocessor fetches and decodes instructions from
memory, a number of control signals will be generated to enable the
processor to synchronize its functions with the other components in

the system. The number and nature of the control signals varies from

- 18 -

one microprocessor manufacturer to another. However, the following

control signals are common to most miCroprocessors.

a. control signal (or signals) to determine the direction of the data

transfer.

b. A means of a request signal by some peripheral devices to take

control over the system bus for direct memory accesses.

c. A means of grant signal that is to be used by the processor to

acknowledge transfer of control to external device.

d. A means of control signal that is to be used by slow memory or
[/0 devices to effectively slow down the processor in order for

the slow device to complete its task.

e. A means of interrupting the processor to demand attention and
to direct the program from its normal activity into another

higher priority service program.

f. A means of gaining absolute control over the processor. This is
usually achieved by the use of RESET control signal, which
resets most of the processor internal registers to zero before
setting up the program counter to point at some pre-determined

location.

As the Educational Interface Board was designed to provide a
demonstrative and supportive tool for users, any features which are
available on the target processor should be available for investigation.

Also, it should be able to monitor and activate all the target control

- 19 -

lines.

In general, the sequence of events involved in processor to

memory or 1/0 transfer is as follow :

i. A means of selecting a memory location to be accessed by

initiating a bus cycle by the processor.

ii. A means of informing the memory device of the direction of the

transfer i.e a read cycle or write cycle.

iii. Indicators to show that the address and/or the data lines are in a

stable state.

iv. An acknowledge indicator to inform the processor that the

device is accepting the transfer.

As there are many processor/memory protocol techniques used,

the above features have to be provided by one method or another.

When two dissimilar buses are to communicate, the following

points require special consideration :

1. The width of the address and data buses of the two

microprocessors concerned.

2. Whether any of the processors is using a multiplexed data and
address bus. If this is the case, the interface board should be

able to demultiplex and multiplex the buses as required.

3. The basic control signals for bus to bus interface must be

available.

-20-

4. Voltage compatibility is an important factor to be considered.
But since the common microprocessor interfaces and drivers
available today are found to be TTL compatible, it is likely that

this will be of any major problem.

The next subsection gives a brief introduction to virtual
memory, memory management, paging and segmentation. These terms
are to be mentioned later when describing various microprocessor bus

structures.

3.1.1 Virtual memory

The first generation of microprocessor-based systems were
implemented around 8-bit microprocessors. The address range of such
systems was limited to 64 Kbytes. But with the decline cost of
dynamic RAM (DRAM), it became economically possible to cover the
entire address space, not including those spaces which are already
occupied by ROM or 1/0 devices, with RAM. Such implementation
has offered one to one correspondence between logical addresses (
which are generated by the processor over its address bus) and
physical addresses (which are real memory locations where data is
rcad from or stored al). But soon the limitation of 64 Kbytes address
range was realized. With today’s 16 and 32 bit microprocessors, this
address range is no longer a problem, however, other variables (such
as cost, size and power consumption) are to be considered. Taking
these factors into account, it becomes impractical to cover the address

range of such processors with RAM.

-21-

Virtual memory has been used to solve such a problem. The
virtual memory technique is based on swapping the unused parts of a
program between main memory and a secondary memory (such as a
hard disk unit) as required. A memory management unit (MMU) is
usually used for this purpose. One of its main functions is to
translate the logical addresses into physical addresses to give the user

the illusion that all the logical addresses are actually implemented.

Two common techniques are used by most memory management
systems, they are paging and segmentation. With paging the memory
is divided into fixed size blocks, pages, usually between 512 bytes and
2K bytes long[44]. With the segmentation approach the logical space
is divided into segments of varying length. Each scheme has its
advantages, paging simplifies the allocation of memory to users and
segmentation simplifies protection of different areas of user memory

space[45 1

The next sections will present the study of several popular 8, 16

and 32-bit microprocessor bus structures.

3.2 Motorola MC68000

The Motorola MC68000 (18] was the first microprocessor to
provide a true 32-bit internal architecture for its address and data
paths. Externally, the MC68000 has a 16-bit (D,-D,s) bidirectional
data bus and a 23-bit (4,-4,,) address bus that directly accesses 16
megabytes of memory. A,, the least significant bit of the address bus

is used internally to the processor to generate the data size specified

-22-

by each instruction.

In simple systems, the MC68000 requires only four output
signals to initiate data movement between memory and the processor.
These signals are the address strobe (AS), the upper data strobe
(UDs), the lower data strobe (LDS), and the read/write signal (R/W).
In a read cycle, the address strobe signal (AS) is asserted to indicate
that a valid data address is being output on the address bus.
Simultaneously, the DS and LDS signals are asserted to enable the
selection of either the lower/upper data byte or both bytes. The
processor now waits for the participant memory or [/O device to
present its data on the data bus and to assert the Data Transfer
ACKnowledge (DTACK) signal to indicate the completion of the data
transfer. This technique is the inverse logic used by most other
microprocessors where the processor will complete the read/write
cycle within a fixed time, unless the input wait signal is asserted.
The major bus interface of the MC68000 is the asynchronous timing
of the data bus transfers. With this interface flexibility, the access
timing of the processor is dynamically controlled on each bus cycle
by the device being accessed via the handshake signal m . Thus,
devices with vastly different access times can be mixed to perform at

maximum speed.

The asynchronous bus structure also handles hardware failures
and invalid memory accesses. If an access is made to invalid memory
or 1/0 location, the DTACK signal will not be asserted. The MC68000

processor provides a mechanism to ensure that the processor will not

23 -

be hung up indefinitely by a device that fails to respond. This is
provided by the input signal, BERR, which when asserted, causes the

processor to enter exception processing to handle the error.

There are three signals associated with the MC68000 bus
arbitration scheme, Bus Request (B8R), Bus Grant (BG), and Bus Grant
ACKnoWledge (BGACK). When the processor receives a bus request
signal, it responds by asserting the BG signal which indicates the bus
will be available as soon as the current bus cycle is completed. The
external device must wait for the AS, DTACK and BGACK signals to
be inactive before it can assert BGACK signal and negating BR signal
to claim the mastership of the bus. The processor output lines then
will enter a high impedance state until BGACK signal is released by
the external device indicating that it is thro;lgh with the bus. The bus
arbitration logic provided by the MC68000 processor is the most

comprehensive and straight forward technique to date.

The MC68000 processor can also take advantage of existing
M6800 support devices. To ensure bus compatibility, the MC68000
uses three special lines to access the 8 bit M6800 family of
synchronous peripherals, they are Valid Peripheral Address (VPA),
clock Enable (E), and Valid Memory Address (VMA) lines. When the
M6800 peripheral address is decoded, the VPA signal is asserted
instead of the normal handshaking signal DTACK. The assertion of
VPA signal informs the processor to become compatible with the
M6800 family by waiting for the proper phase of the E clock and

then asserting the VMA signal to ensure the transfer. The VPA signal

-24 -

serves a different purpose when asserted during an interrupt
acknowledge cycle. It indicates to the processor that it should obtain a

vector from its table rather than the interrupting device.

The bidirectional HALT line of the processor can perform several
functions. Like any other microprocessor halt or hold signal, it is
used to disable the processor. It is used in conjunction with bus error
(BERR) signal to indicate to the processor to try running the bus cycle
again. Also, the halt signal can be used with the RESET line to’

initialize the MC68000 processor.

3.3 The Intel 8086 Microprocessor

The 8086 was the first 16-bit microprocessor to be produced by
Intel. With it came a new generation of business and personal

computer era supported by several manufacturers, notably IBM.

The 8088 is another member of the Intel family which is closely
related to the Intel 8086. Both support sixteen bit transfers within
the processor, and both have twenty address lines to directly access
one megabyte of memory. The address lines of the 8086 are
multiplexed, like its predecessor the 8085, with sixteen data lines and
four status lines in order to have a 40-pin package. However, the
8088 has only eight data lines restricting its transfers with memory
and 1/0 devices to bytes only. Other than the data bus width, both

processors support the same instruction set.

The 8086 central processing unit logic has been divided into an

- 25 -

Execution Unit (EU) and Bus Interface Unit (BIU), mainly to allow
the processor to fetch new instructions from memory while it is busy
executing some other instrﬁctions. ~The two units operate
asynchronously and the processor can in most cases overlap the

instruction fetch with execution.

An important feature provided for the Intel 8086 is the
provision for maximum or minimum mode system. To select the
required mode, an input line (MN/MX) is tied high or low. When in
the minimum mode the processor provides the complete standard
microprocessor control signals required to interface memory or 1/0
devices. In the maximum mode multi-processor system, the processor
can support a variety of Intel’s co-processors which include the 8089
input/output processor and the 8087 numeric data processor. The
minimum mode bus configuration which has less circuit complexity
is more appropriate for this study of microprocessor bus structures,

so only the minimum mode will be refeared to.

There are two address spaces provided by the processor, the
Memory/I0 (M/i0) control signal indicates whether memory or an
1/0 port is being accessed. The sixteen bit data bus is divided into low
and high bytes. A, (the least significant bit) of the address bus and
BHE (bus high enable) signals are used to select the low, the high or
both bytes. An Address Latch Enable (ALE) signal is used to identify
a valid memory address to allow system components to capture the
address information before the same lines carry data information.

The data transmit/receive (DT/R) and data enable (DEN) are two

_ 26 -

new signals not found in earlier Intel processors. They are used to
control the direction and output enable of a bidirectional latched
bufers on the data bus and are designed specifically to work with an
8236/8287 bus transceivers. The input HOLD signal is used by other
devices to request the use of the system buses for direct memory
accesses. When HOLD is asserted, the processor enters a hold state
after completing its current bus cycle. The processor then asserts the
HLDA (hold acknowledge) signal to acknowledge the hold request.
The input signal READY informs the processor that the addressed
memory or I/0 device is ready to complete the current bus cycle.
The bus continues io cycle until the READY signal is asserted. This
signal is useful when the processor is to communicate with devices of

different speeds.

Another innovative feature of the 8086 hardware desigmis the
ability to use it in a wide range of microcomputer system
configurations, from a simple one processor system to a multi-
processor environment. The processor has built in logic to handle bus
access priorities. The signal LOCK , which is provided only in the
maximum mode, is used in a multi-processor system to prevent a
processor from accessing the bus while another processor is reading or
writing a memory location. Software single step facility is another
feature of the Intel 8086 to support the programming of multi-

processor systems.

-27-

3.4 The Intel 80286

The 80286 is the second generation of sixteen bit
microprocessors introduced by Intel. Several advanced features have
been introduced in the 80286 processor, such as memory management
mechanism and hardware provision of multi-tasking programming by
operating in two modes real and protected. The 80286 is sof tware
compatible with its predecessors the Intel 8086 and 80186 when

operated in real mode.

The processor uses separate (non-multiplexed) 16-bit data bus
and 24-bit address bus. Additional to the buses width, the Intel

80286 has a similar bus structure to that of its predecessor the 8086.

3.5 Zilog Z80 microprocessor

The Zilog Z80 was designed as an enhanced version of Intel’s
8080 microprocessor. It is an eight bit microprocessor with sixteen
address lines capable of direct access to sixty four kilobytes of
memory space. The success of the Z80 processor is due to its
capability to execute the entire range of Intel’s 8080 software and in
particular, to use the popular operating system CP/M (Control

Program for Microcomputers) developed by Digital Research.

The Z80 has additional features over the Intel 8080, like an on
board refresh counter for dynamic memory, a non-maskable
interrupt facility, and a vectored interrupt priority structure. Several

Z80 processors are available, offering a range of clock speeds of 2.5

- 28 - . .

MHZ, 4 MHZ and 6 MHZ. Another improvement over the Intel 8080
is that the Z80 requires only a single 5V supply and single phase

clock input.

Similar to the approach development by Intel, the Z80 has
separate memory and input/output address spaces. The MREQ
(memory request) signal is used to select a valid memory address and
the IORQ signal is used to select a valid input/output address space.
RD and WR signals are used to control the direction of data transfers.
In a typical memory read cycle, the MREQ signal will asserted when
the address bus is stable. Then the RD signal is asserted to indicate
that the data can be enabled onto the data bus. Depending on the
accessing of memory or input/output devices, wait states can be
inserted as required. However, not too many wait states can be

inserted, if the role of dynamic memory refresh is not to be affected.

The Z80 was the first microprocessor to include a hardware
facility for automatic dynamic memory refresh. After each
instruction fetch cycle, the refresh control signal becomes active to.

indicate the start of dynamic memory refresh.

When the Z80 processor has to give up its bus to an external
device, the BUSRQ signal must be asserted first to request the bus.
When the Z80 complete its current bus cycle it sets its address, data,
MREQ, IORQ,RD and WR lines to {he high impedance state and

activates BUSAK signal to acknowledge the request.

29 .-

3.6 The Motorola MC6800 microprocessor

The MC6800 was Motorola’s first eight bit microprocessor. It
has 8 lines of data bus, and 16 address lines to access up to 64
kilobytes of fnemory Space. Unlike the Z80 bus timings, the MC6800
requires a two phase non-overlapping clock ¢1 and ¢2. ¢1 and ¢2 are
used as address and data validators respectively. During the first
phase of the clock,an address will be placed on the bus by the
processor. During the second phase of the clock, the data bus will be
active. The implementation of direct memory accesses, refreshing
dynamic' memories, or accommodating slow memories rely heavily on

the clock signal manipulations.

For direct memory access operations, the Three State Control
(TSC) input signal can be used. With TSC activated (high), the
address bus and R/W signal are placed in high impedance state. The
Valid Memory Address (VMA) and Bus Available (BA) signals are
forced low in order to prevent any incorrect read or write data on
any device enabled by the VMA signal. While the TSC line is active,
the ¢1 and ¢2 clocks must be held high and low ,respectively, in
order to delay program execution for DMA operation to take place.
But since the MC6800 processor is a dynamic device, internal
memories require periodic clock cycles to maintain correct data and
the clocks can be stretched for’no more than the required periodic

cycle of 10 microseconds.

Direct memory access operation can also be provided by

completely halting th.e processor, using the input HALT signal, which

-30-

stops program execution. The required periodic cycle of the clock

inputs of 10 microseconds has to be maintained.

As the ¢ 1 and ¢ 2 clocks time the entire M6800 system, any
processor that accesses the M6800 system will be affected by the
action of the M6800 clock. In the master/slave configuration, the
master direct memory access cycle to the M6800 target system must

complete within the 10 microseconds limit.

3.7 The Motorola M6809 Microprocessor

The Motorola M6809 is an enhanced version of the M6800
family of microprocessors. The changes are mainly to improve its

available software facilities.

The M6809 is an 8-bit microprocessor with 16 bit address bus.
Unlike the MC6800, which uses a two phase non-overlapping clock,
the M6809 has an internal clock, which is triggered by an external
crystal, to generate two. quadrature output clocks E and Q. The E
clock phase, which is identical to ¢2 of the M6800, gives a
synchronizing signal to be used as the system’s clock for support
devices. The Q phase of the clock is available to signal that the
address and data leading edge of Q and data is latched on the falling

edge of E.

The input signal MRDY is used to stretch the E and Q clock
signals to enable the processor to interface with slow memory

devices.

-31-

For direct memory accesses, the input signal DMA/BREQ is
used. When activated, it causes the processor to be suspended at the -
end of the current instruction to enable direct memory access
operations. The direct memory access operation is timed with the E
and Q clock signals, so that the required periodic cycle of 10

microseconds is still applied.

A second version of the M6809 family is the M6809E, which
has external clock inputs E and Q. The M6809E uses the TSC input
signal to force the processor into high impedance state for direct

memory accesses or dynamic memory refresh.

Three other status signals are available for the M6809E. The
Last Instruction Cycle (LIC) output signal is activated during the last
cycle of an instruction. The BUSY signal is used to indicate that the
processor is performing functions which should not be interrupted
by other external devices. The Advanced Valid Memory Address
(AVMA) output line will inform that the processor will use the
buses in the following cycle and efficient bus sharing in multi-

processor configuration can be allowed.

3.8 The Mos Technology 6502 Microprocessor

The 6502 is the most popular of the 6500 family of 8-bit
microprocessors manufactured by MOS Technology. The 6502
processor has made its major success in the home computer market

with the leading manufacturers Apple, Acorn BBC and Commodore.

-32-

The 6502 was produced as an enhancement of Motorola MC6800
microprocessor. It has similar CPU concepts and bus structure. The
6502 popularity was due to its increased performance with two index

registers and a more powerful set of addressing modes.

Similar to all 8-bit microprocessors, the 6502 has eight data
lines and sixteen address bus. In a similar way to the M6800 the 6502
uses two phase non-overlapping clock signals to control system
timing. During the first phase the processor sets up a valid memory
address and selects the data direction using the R/W line. Data is then

transferred during the second clock phase.

There are two major differences between the bus structure of
the 6502 and the MC6800. Unlike the M6800, the clock pulses of the
6502 can not be stretched, therefore, the 6502 has to use a different
accesses or refreshing dynamic memories. The 6502 control input
signal RDY, which performs the task of M6800 TSC, DBE and HALT
signals, causes extra machine cycles, wait states, to be inserted within
the normal machine cycle. For wait machine cycles to occur, the RDY
signal must make a high-to-low transition during a phase one high
clock pulse. The external device can hold RDY signal low for any
required time delay. In addition the 6502 processor has no control
signals that can force it into high impedance state, and the processor
address and data buses must be latched during any direct memory
access operation.

The SYNC output signal is used by the processor as an indication

of the instruction fetch cycle.

-33-

3.9 The Texas 9900 microprocessor

One of the early 16-bit microprocessors to appear on the market
was the 9900 produced by Texas Instruments. The 9900 has been
designed as a one-chip implementation of ‘thc CPU of the 990 series
minicomputer. The 9900 has been a very effective processor for

signal processing applications.

The 9900 has a separate 15-bit address bus and a 16-bit data
bus in a 64-pin integrated circuit package. The 9980 is a reduced pin
count version of the 9900 with only 8-bit data bus and 15-bit address

bus.

The standard 9900 processor requires a four phase non-
overlapping clock, where none of them is used for address or data

¥

validator signal.j

For a typical read cycle, MEMEN (MEMory ENable) output
signal is used to indicate its a memory access cycle. It is also used to
differentiate between memory or 1/0 accesses. The DBIN (Data Bus
In) signal is activated to indicate the beginning of a memory read
cycle, when data should be placed on the bus by the memory device.
The WE (Write Enable) signal is used if it is a memory write cycle to

validate data to be written to memory.

The HOLD input signal is used to force the processor into high
impedance state for direct memory accesses; the external device can
assert the HOLD line active for as long time as it require. The

processor acknowledge the request by asserting HOLDA (HOLD

-34 -

Acknowledge) line.

To accommodate slow memory devices, the READY input signal
is used to indicate to the processor to insert wait state cycles as

required.

3.10 The Zilog Z8000 Microprocessor

The Z8000 family of sixteen bit microprocessors is available in
two versions, the Z8001 and the Z8002. The Z8002, 40-pin package
device, can directly access sixty fourkbytes of memory. The Z8001,
48-pin packagé, is a more 'advancgd processor and capable of
addressing up to eight megabytes of external memory. Other than the
difference in the address range, the two processofs are closely related
to each other. Both processors have time-multiplexed address and

data bus to minimize the pin count of the microprocessor package.

The Z8000 processor architecture utilises a sixteen bit word
organization. Each word of memory is made up of two independently
accessible bytes. The Z8002 uses a sixteen bit address to specify one
of 32K words of memory, where both bytes in a word are
independently accessible. The least significant bit of the address bus,
AOQ, is used to specify an eveﬁ address byte (4,=0) or an odd address
byte (A,=1). The Z8001 uses the concept of segmentation to increase
its address space, where the address map is seen to consist of 128
memory segments per memory address space with each segment

having a 64K bytes. The Intel 8080 provides similar segmentation

-35-

facility, but can only access up to one megabytes of memory.

The Z8000 processor can operate in one of two different modes,
system mode or normal mode. A control bit in the flag and control
word (FCW) indicates the operation mode. In the system mode all
instructions can be executed, while in the normal mode only
unprivileged instructions are executed. The distinction between the
system and normal modes of operations allows the implementation of
a multi-tasking facility, where instructions that can directly affect
the system hardware or can terminate all the programs are privileged
instructions, which should not be executed by the user. In contrast,
the Intel 8086 offers no equivalent hardware logic for multi-tasking

facilities but does provide similar facilities using software method.

The Z8000 processor has two special control lines dedicated to a
multi-processor environment. The Multi-micro Input (MI) signal is
used by the Z8000 processor to prevent other processors from
accessing the bus while it is performing critical manipulations, and
the Multi-micro Output (MO) signal is used to disable the Z8000

processor while another processor is in charge of the bus.

For a typical data transfer cycle, an Address Strobe (AS) signal
indicate a valid address, a Data Strobe (DS) signal shows valid data, a
Read/Write (R/W) signal is used to select the direction of the
transfer, a Byte/Word (B/W) signal 1o select the size of the data field
being transferred, and a Normal/System (N/S) signal is used to
indicate the current operation mode of the processor. Unlike the Z80,

the Z8000 Memory Request (MREQ) signal is used to select a memory

- 36 -

space or input/output space.
This processor has a more flexible dynamic memory refresh

capabilities than its predecessor the Z80 microprocessor.

For direct memory accesses, the external device can request the
control of the bus by asserting a Bus Request (BUSRQ) signal, and,.
when the processor is ready to relinguish the bus, it activates the Bus
Acknowledge (BUSAK) signal to acknowledge the request. The
combination of the BUSRQ and BUSAK signals provide the processor
with hold state logic[m]. The WAIT signal can be used by external
devices to increase the delay between the address strobe and data

strobe during bus transactions.

The STOP input signal can be used to halt the processor
operations and can also be used to provide externally single stepping

logic for programs under development.

3.11 Zilog 280000

The Z80000 is the latest generation of Zilog microprocessors.
The processor features 32-bit advanced architecture which directly
supports operating systems and high level languages. The processor
characteristics and facilities are merely an extension of the Z8000
family with new added features as on-chip memory management and
small on-chip cache memory. The Z80000 has full 32-bit address
and data time multiplexed lines, and can directly address up to 4

gigabyte of memory.

-37 -

The bus status and time signals used by the processor to
perform asynchronous data transfers are similar to those used by its
predecessor the Z8000. The address strobe (AS) signal indicates that
the address and bus status signals are valid. The data strobe (DS)
signal is used to time all data transfers. The read/write (R/W) signal
to select the transfer direction. Two status signals (BL/W and
BW/L) are driven by the processor to specify the size of the data
(byte, word or long word) involved in the transfér operation. Four
status output signals (STO-ST3) are used to encode the type of bus
cycle (such as internal operation, I/0 transaction, halt and NMI
acknowledge) performed by the processor. The external logic can then

decode this information and respond in a number of different ways.

The processor architecture supports two control buses, local and
global. The local bus consists of the two familiar signals BUSREQ and
BUSACK that are used by external devices to gain mastership over the
processor buses for direct memory accesses. In a multiprocessor
environment, the Z80000 can request the mastership of a global bus
by asserting the global bus request line (GREQ) and obtains the

response of the bus arbiter via the global acknowledge signal (GACK).

During each data transfer, two response (RSPO-RSP1) signals are
used by external hardware to return a code to the processor indicating
ready, wait, bus error, or bus retry. The ready response informs the
processor of a successf ul transfer. The wait response tells the
processor that the responding device requires morc time to complete

the transfer, other wait cycle is then added before the sampling of the

_38 -

response lines again. Wait states can also be inserted by programming

the hardware interface control register (HICR).

The Z80000 architecture includes 256 byte of high speed cache
memory used to speed up the processor operations. The cache
memory can be disabled for debugging purposes by using the control

bit in the system configuration control long word register (SCCL).

3.12 The MC68020 microprocessor

The MC68020 microprocessor is the full 32-bit implementation
of the M68000 family architecture. Its address bus is capable of
accessing a large linear (not segmented) address space of four gigabyte
of memory. The MC68020 architecture is merely an extension of

earlier processors in the family.

As the MC68000 processor, the asynchronous bus structure of
the MC68020 uses a 32-bit address and data buses that are non-

multiplexed for simple interface design and high performance.

The MC68020 bus interface includes a new feature, dynamic
bus sizing, which allows the processor to communicate with 8, 16 or
32-bit devices through the usc of the Data transfer and Size
ACKnowledge input signals (DSACK 0 and DSACK 1). The DSACK 0 and
DSACK 1 signals replace and perform the same function as the DTACK
control signal of the MC68000 processor, they also inform the CPU of
size of the port being accessed. Full compatibility with the reduced

data buses of earlier processors in the family has been maintained by

-39 -

the dynamic bus sizing facility.

The MC68020 contains an instruction on-chip cache memory
which improves the overall performance of the processor by reducing
instruction access time. A cache disable signal (CDIS) is used to
disable the activity of the cache memory. The cache memory can also
be disabled by programming the cache control register (CACR). For
debugging purposes, when the processor is forced to access the
external memory to monitor the behaviour of the software and
hardware under test, it is essential for the cache memory to be

disabled.

The MC68020 has a similar bus operation as that described

earlier for its predecessor the MC68000 microprocessor.

3.13 The Intel 80386

The 80386 is the full 32-bit implementation of high

performance microprocessors developed by Intel.
The processor internal structure is divided into six functional
units.

i. The bus unit. Interfaces the CPU to the external system bus and
controls all address, data, and control signals to and from the

ProcCessor.

ii. The prefetch unit. Responsible for fetching instructions from

memory.

- 40 -

iii. The decode unit. Prepares instructions for processing by the

execution unit.
iv. The execution unit. Executes the micro instructions.

v. The segment unit. Translates logical addresses to linear

addresses and performs bus cycle segmentation violation checks.

vi. The paging unit. Translates the linear addresses generated by the
segmentation or prefetch unit into physical addresses.

The internal units of advanced processors, such as the M68020 and

the Intel 80386, are normally pipelined in order to enable them to

operate in parallel on different instructions.

The 80386 has separate 32-bit address and data buses. Its data
bus can be switched between 16 and 32 bits to allow existing 16 bit
devices to communicate with the processor. The instruction set of the
80386 supports byte, word and long word transfers. Four byte
enable signals (BEO-BE3) are used with the address bus to specify the

data bytes that are active.

The 80386 uses only one signal, address status (ADS), to inform
external logic of the beginning of a normal bus cycle. The processor,
then, defines the type of bus cycle with the W/R, M/I0 and D/C
signals.

The 80386 provides bus lock (LOCK) signal of multiprocessor
applications. The lock signal informs other bus masters that the
processor is performing a multiple bus cycle operation that must not

be interrupted.

- 41 -

The processor can run two kinds of bus cycles, non-pipelined
and pipelined. The nori—pipelined bus cycle is used when the
processor is communicating with high speed memories. The pipelined
bus cycle is used to give slow memory systems more time to respond
to a bus cycle. Pipelining is enabled as external devices assert the next
address signal (NA).

The 80386 uses the READY , HOLD and HLDA signals in similar way
as described for the Intel 8086.

3.14 Summary

In this chapter, various microprocessor bus structures have been

examined.

For some microprocessors the data and address bus organization
is multiplexed. Such processors (e.g the Intel 8086) transmit
instructions and addresses over a single 8 or 16 bit system bus. In all
cases, multiplexing is used to reduce pin requirements of the chip .
package. Extra hardware interface would be required in order to

communicate to such devices.

Almost all current microprocessors have provision for a direct
memory access facility to allow transfers between devices and

memory without processor intervention.

Some microprocessors, such as the M6800 processor ,use
memory-mapped input/output. Others, as the Z80, use certain control

lines to distinguish between memory and 1/0 operations.

_42 -

The Z80 microprocessor was used by Whitworth [13], in a

similar study, as the supportive processor. The Z80 is short of many

important hardware features which include the following :

ii.

iii.

The Z80 address range is limited to access only 64K bytes of
mémory. Without implementing any form of memory
management unit (MMU), the processor would be unable to
access the address range of 16-bit processors. If MMU is to be
implemented, the hardware interface complexity would increase

further.

The Z80 data bus lacks the ability to store and manipulate
different types of data. This would make it more difficult for the
Z80 to communicate with 16-bit data buses. To provide this
facility, the hardware interface complexity would increase even

further.

The Z80 arbitration circuitry lacks the facility to connect

several Processors into one system.

Therefore, 8-bit processors in general are not suitable of

supporting the multi-family microprocessor teaching project.

In this study, the MC68000 microprocessor is used as the

supportive processor for the following reasons :

1.

The MC68000 has one of the most comprehensive non-

multiplexed bus structure available to date.

- 43 -

Its powerful addressing capability enable it to access any target

memory location.

The ability of the processor to store and manipulate different
types of data enable it to support 8-bit devices on its 16-bit data

bus. _

The asynchronous timing of the MC68000 bus enables even the
slowest target memory to communicate with the supportive

processor.

The synchronous interface option provided by the MC68000
allows the MC6800 peripherals to interface with the supportive

processor.

The processor bus arbitration logic enables multiple processors

and DMA controllers to share the same bus.

Halt and Bus error signals are available that may used to single
step the bus, abort illegal or invalid access attempts. This is
vital to successfully recover in the event that interface circuits

cause a deadly embrace.

A 3-bit function code signal is present that identifies the purpose

and privilege level of each bus cycle.

The available 3-bit encoded interrupt request input allows six
prioritized, maskable interrupts and one non-maskable
interrupt, with 255 vectors to transfer control to the proper

interrupt handler routine.

_44-

All the above features have dramatically contributed toward the
reduction of the interface hardware complexity and the design of this

interface will be discussed in chapter 6.

Next chapter will provide a hardware description of the

supportive system, the MC68000 computer system.

- 45 -

4. MC68000 COMPUTER SYSTEM

This study was carried out using a multi-board MC68000
computer system as the supportive system in this master/slave
multi-family microprocessor teaching project. The multi-board
system, which was commercially marketed under the name of
DARKSTAR, had been designed by the school of Electrical
Engineering at Bath University. The system was well established,

and considerable hardware and software support is already available.

This chapter gives an overview of some members of the M68000
family of microprocessors, followed by general description of the
main hardware elements which make up the multi-board computer
system, and finally a glance at the Single Board Computer (SBC)

system.

4.1 The supportive processor overview

The supportive system is based on a powerful 16-bit MC68000
microprocessor. The MC68000 microprocessor was the first member
of the M68000 family of microprocessors to be introduced by
Motorola in 1979 [17),

The MC68000 microprocessor provide a true 32-bit internal
architecture, while externally it has a 16-bit data bus and 24-bit
address bus. The processbr can run at up to 12.5 MHZ clock rate. The
bus structures of the MC68000 processor has been discussed in the

previous chapter section 3.2.

- 46 -

Internally the processor offers eight 32-bit data registers (D,-
D), eight 32-bit address registers (A4,-4,), two 32-bit stack pointers,
a 32-bit program counter, and 16-bit status register. The data and
address registers are all general purpose and are not dedicated to
specific tasks, with the exception of A7 which is defined as the
hardware stack pointer. Any data register can be used as an

accumulator and any address register can be an index register.

The MC68000 processor supports 56 powerful instruction types,
which can operate on five different data types, namely individual bits,
binary coded decimal (BCD) digits, 8-bit bytes, 16-bit words and
32-bit long words. The instruction set contains no increment or
decrement commands. Such features can be achieved by the use of
ADD and SUB instructions where the destination operand can be any

register (data or address) or a location in memory.

The instruction set of the processor contains instructions to
perform, data movement, integer arithmetic, binary coded decimal
arithmetic, logical operations, shift and rotate operations, bit
manipulation operations, program control operations and system
control operations. The processor also supports 14 different
addressing modes which fall into several basic types, register direct,
register indirect, immediate, and implied. More detailed information
about the instruction set and the addressing modes can be found in

references [18-20].

All 1/0 devices in an M68000 system are memory mapped,

where no special 1/0 instructions or separate 1/0 bus is required.

-47 -

The processor has a powerful interrupt structure of seven
priority levels with 256 interrupt vectors, most of which are
available for handling vectored interrupt exceptions. Exceptions can
be divided into two priority groups. The highest priority group of
exceptions are reset, bus error (when an accessed location fails to
respond) and address error (when the processor attempts to access a
word or a long word at an odd address). These force exception
| processing to start at the next bus cycle. The lower priority group of
exception are caused by trace conditions (which provide useful
software debugging facility by setting of breakpoints and single
stepping), hardware interrupts, illegal instructions, instruction traps
and privilege violations. When an exception occurs, the processor calls
a service routine to handle that exception. The lowest 1024 bytes of
the MC68000 memory are reserved for holding the addresses for all
these routines, where each address is held in 32 bits long slot known
as an exception vector. Each vector has a number associated with it
which represent its byte address divided by four. During an
interrupt acknowledge cycle, an 8-bit vector must be supplied, on the
data bus (D,-D,), by the interrupting device in order for the

processor to locate the interrupt service routine.

The MC68000 operates in one of two privileged states, user or
supervisor. The supervisor state is the more privileged, and any
instruction can be executed while in this state. Usually, programs
that are associated with the operating system only are run in the

supervisor state. All other programs can be run in the user state

_ 48 -

except several key instructions (such as STOP and RESET), which are
protected from access by the user. Any attempt to execute them will
cause a trap which will pass control back the operating system. This
privilege distinction is very useful in an .operating system
environment where the user should not have direct access to

operating system handling information.

4.2 The M68010 Microprocessor

The MC68010 was the third member of the M68000 family to
be introduced by Motorola in 1982. Internally, the M68010 has the
same 32-bit M68000 architecture, and externally the 16-bit data and
24-bit address buses of the M68000. The processor has a slightly
larger instruction ;et than the M68000, and instruction execution is

generally faster on the M68010.

The MC68010 architecture design goal was to provide virtual
memory and virtual machine support (which had been implemented
in mini and mainframe computer for many years) for the M68000

family.

To have virtual memory capabilities, the processor has to be
able to suspend any task at any point and then restart or continue the
suspended task at a later time. In order to provide virtual memory
support, a processor must be able to perform several basic functions.
They include recognition of a fault, saving any fault related and
internal information and exccution of the exception handler, and

restoring the saved state and resuming normal execution. The

-49 -

MC68000 provided some of these features such as fault recognition,
state save, and exception handler execution. The MC68010 has all
these features together with the ability to save the complete internal

state, restore the state and resume execution.

4.3 The M68451 Memory Management Unit

The M68451 Memory Management Unit (MMU) was designed,
by Motorola, to work with the M68000 family of processors.

All memory management systems begin with memory mapping,
the translation of logical addresses into physical addresses. Logical
addresses are the addresses which are visible to the user and
manipulated by the software. Physical addresses are the bit patterns
transmitted to the memory to identify the memory location to be
accessed. Memory management system translate logical to physical
addresses according to mapping tables, which indicate that certain
blocks of logical addresses are to be translated into certain blocks of
physical addresses. The logical address space of the M68451 is
divided into variable sized segments of 256 bytes or more. Each
MMU device has 32 descriptors which can be used to define the
segment size. For each segment an address translation is performed in
order to produce a physical address. More than one M68451 can be

combined in a system to provide more power and flexibility.

-50-

4.4 The Hitachi HD68450 Direct Memory Access Controller

The HD68450 Direct Memory Access Controller (DMAC) is
designed to complement the performance and architectural
capabilities of the M68000 family of microprocessors by moving
blocks of data between memory and an external storage device, in a
quick manner with minimum intervention from the processor. The
HD68450 has four channels which work independently of each other,
and has signals which are directly compatible with those of the

M68000 bus and those of the M68451 memory management unit.

The main purpose of a direct memory access controller in any
system is to transfer data at very high rates, usually much faster
than a microprocessor, under software control. The term DMA is used
to refer to the ability of a peripheral device to access memory in a

system in the same way as a microprocessor does.

Direct memory access requests may be externally generated by a
device or internally generated by the "auto-request" mechanism of the
DMAC. Auto-requests may be generated either at the maximum rate,
where the channel always has a request pending, or at a limited rate
determined by selecting a portion of the bus width to be available for
DMA activity. External requests can be either burst requests or cycle
steal requests that are generated by the request signal associated with
each channel. The rate of transfer of data is limited both by the

memory response times and the device response times.

-51-

4.5 The MC68000 Multi-board computer system

The research of this project was carried out using the M68000
multi-board computer system running under two different software
environments. The original system was implemented with the
TRIPOS operating system. At a later stage the UNIX operating system
was implemented. The system running under the TRIPOS operating
system will be referred to as system A, while the system running

under the UNIX operating system as system B.

For the purpose of this study, the minimum hardware elements
required for system A would include one MC68000 based CPU board,
a minimum of 256 Kbytes of dynamic random access memory
(DRAM), monitor and/or bootstrapping firmware stored in eraseable
programmable read only memory (EPROM), a floppy disc controller
board, an 8 inch floppy disc drive, a bus display and peripherals
board with front panel offering reset and non-maskable interrupt
facilities, and an RS232-C asynchronous serial port for terminal
connection. System B would require the.upgraded MC68010 CPU
board with two memory management units (MMUs) and direct
memory access controller (DMAC) on board, 1/2 Mbytes of DRAM, a
hard disc interface board, a hard disc drive, bootstrap firmware
stored in EPROMSs, a bus display and peripherals board, and an

RS232-C for terminal connection.

The multi-board computer system was implemented in a double
Euro-card standard rack. These racks have either 9 or 22 slot double

Euro-card to provide the necessary expansion space for future

~52-

development work. A system block diagram is shown in Figure 4.1.

In the following subsections, a brief hardware description of the

main boards is given. More detailed description can be found in

[21] [22]

Tanner and Williams

4.5.1 The Central Processing Unit

At the heart of the system lies the Central Processing Unit
(CPU) board which built around the Motorola MC68000
microprocessor (M68010 is used in later versions of the CPU board).
The board contains all the bus drivers and controls to enable the
processor to communicate and control operations on the backplane.
The function of the processor board can be divided into the following

logic sub-functions :-
a. Address and data control.
b. Control line generation.
c. Halt, reset and interrupt acknowledge state machines.
d. Function code and interrupt request decoding/encoding.
e. Memory map decodes.
f. Clock, bus timeout and timing strobes generation.
g. Buffer control and interrupt acknowledge traps.
h. Power up reset and halt.

The board occupies the first physical end position on the

-53-

backplane, with the necessary resistance terminators, to reduce the
noise levels on the backplane, are provided. The interrupt request
lines are "daisy-chained" through the backplane giving the highest

priority interrupt level to cards nearest to the processor card.

The CPU card have the facility for two on-board MC68451
Memory Management Units. The Memory Management Unit (MMU)
provide the address translation and protection over the whole of the
MC68000’s 16 megabyte address space. Each MMU provides 32
separate segments of variable sizes which can be used to separate User
and Supervisor memory, program and data spaces. The MMU can also
provide memory management facility for other bus masters such as
direct memory access controllers. This type of facility provides the
basis for multi-tasking/multi-user operating systems by providing
full protection for individual users. The later version of the CPU
board offers on-board HD68450 Direct Memory Access Controller
(DMAC) for direct memory access facility. A simplified block
diagram of the CPU board is shown in Figure 4.2.

4.5.2 The Memory Board

Next to the processor board lies a quarter of a megabyte of
Random Access Memory (RAM) board. The main memory array
consists of up to thirty-two 64K bit dynamic random access memory
(DRAM) devices arranged in two banks of 64K x 16 bit words. Each
bank has an additional bank of 64k x 6 DRAM devices which are
used to store check words generated by the error detection and

correction unit. The dynamic random memory devices used on the

-S54 -

memory board have access times of 200 nanoseconds and require a

multiplexed address bus.

The memory board features full error detection and correction
facility with various modes of operation. It can detect and correct
errors without informing the processor, bus error the system if
double or single bit errors are detected, or bus error the syétérn ohly
when double bit errors are detected. A typical access to the memory
board will consist of the following sequence, read the memory array,
detect and correct errors, generate new check bits, and then write
back to the memory device. The error detection and correction adds a
delay of 60 nanoseconds to the memory access time, making a typical
memory cycle time of approximately 500 nanoseconds when an 8

MHz CPU board is used.

With the advancement of the memory technology, later memory
boards had been designed with capacities of 1/2 megabyte, 1
megabyte and 2 megabyte with error detection facilities. A schematic

diagram of the memory board is shown in Figure 4.3.

4.5.3 The EPROM/ROM Board

The Eprom/Rom board provideé all the non-volatile data to the
processing unit. The card was designed to contain upto 16
Eproms/Roms in any size from 1K by 8 to 8K by 8. The Eprom/Rom
size is switch selectable and the board base address can be anywhere
within the 16 megabyte address space on a boundary defined by the

current memory size of the card. Thus, the Eprom/Rom board can

- 55-

support a variety of Eprom/Rom devices to supply either 16K, 32K,
64K or 128K bytes of nonvolatile data. A block diagram of the
EPROM/ROM board is shown in Figure 4.4.

4.5.4 The Floppy Disc Controller Board

The Floppy Disc Controller (FDC) board is based on a Western
Digital chip set FD1793-02 Formatter/Controller device (241 The
controller is capable of supporting upto four 8 inch or 4.25 inch
double or single sided disc drivers, with single or double density
recording format. The controller support a wide range of controller
functions such as disc formatting, single and multliple sector read or
write, reading and writing of entire tracks and performing any head
seeks required before read or write access. Figure 4.5 shows a

schematic diagram of the FDC board.

4.5.5 Hard Disc Interface Board

A hard disc controller board has been designed to provide a mass
storage facility for the system. The hard disc controller board
contains a Marksman interface to control upto two Winchester
technology disc drives with capacities of 40 or 160 mega-bytes. The
later disc interface used the Adaptec ACB-4000 series Winchester

disc controllers with the Maxtor XT-1000 series Winchester disks.

4.5.6 The Bus Display and Peripherals Board
At the other physical end of the backplane lies the bus display

and peripherals board. This board contains two M6850 asynchronous

- 56 -

communication interface adapters (ACIAs) with eight individually
switch selectable baud rates from 110 baud to 9600 baud. The AClAs
drives two serial 1/0 RS232 channels. A MC6840 Programmable
Timer Module (PTM) is used on board to provide three indeﬁendent
counter/timer channels. These timers can be used as event counting,
period measurement, frequency measurement or watchdog timers.
Each timer can be clocked externally or internally connected to the 8

MHZ system E clock.

The bus display card is connected to a front panel and contains
diagnostic light-emitting diodes to show the user the current logic
state of the processor backplane. The front panel also contains Reset
and Abort (non-maskable interrupt) switches which are debounced
by the display card befére bassing to the backplane. A block diagram
of the bus display and peripherals board is shown in Figure 4.6.

4.5.7 Additional boards

The following add-on peripheral boards are also have been

designed for the MC68000 multi-board computer system.

i. Floating point board, for additional mathematical ability. The
board contains four AMO9511/AM9512 Floating Point

Processors.
ii. General purpose 1/0 board with battery backed real time clock.

iii. High resolution colour graphics controller board. The high
resolution colour graphics board is based on the Thompson

EF9366 colour graphics controller and features 2 pages of 512 x

-57-

512 pixels in 8 colours.

iv. High speed interprocessor communications bus for multi-

processor applications.
v. SASI standard interface for secondary disc storage devices.

vi. Multi-Link local area network card. Multi-link is a low cost
ring type local area network which provides virtual character
stream data links between network stations. The multi-link
network provides a file transfer mechanism to other computers

and access to shared printers and plotters.

4.6 The MC68000 Single Board Computer

During the course of this study a single board implementation of
the multi-board system was designed by Dale [23], The Single Board
Computer (SBC) maintaiﬁed compatibility with the multi-board
s;fstem peripheral cards, and had used the original backplane as its

communication medium.

The single board computer was designed to operate in a stand
alone mode, either as a complete computer system, or as an intelligent
controller. It was also designed to provide the necessary arbitration
and inter-processing signalling to allow several single board
computers to be fitted to a common backplane to produce a multi-

processor system environment.

The single board computer contains the following hardware

- 58 -

facilities :-

a. MC68000 or MC68010 microprocessor running at 12.5 Mhz

clock.
b. Two MC68451 MMU.

c. HD68450 DMA controller - for high throughput to 1/0 devices

and memory to memory copying.
d. Parallel interface and timer providing a SASI interface.
e. Floppy disc interface.
f. Dual RS232 serial I/0 channels.

More detailed information about the hardware development of

the computer system can be found in Dale(23],

- 59 -

09

CpPU
& Bus

Terminate

Address Bus

Data Bus

Control Bus

ORAM

EPROM

Figure 4.1 Multi-board System Architecture

FPP

DMAC

FDC

HRG

Display
Terminal
170 & Bus

Terminate

COMMS

=0

|IE]

Communication Bus

.[9

: Physical
oPU Logical Address Bus Address Bus OFF
MMU
MC68000 o
1
Contro BUS | 2xMC68451 L BUFFERS |
Data Bus & BUS
i TERMIN
_ T tTMMU1
Clock SMHZ |
1
IOPAGE
MMUO
BERR | §800PAGE
¢ 800PAGE
DMAC : DMAC DECODE ‘
MC68440 | |] &
TIMEOUT
y
EPROM
2x2716

I 1

Figure 4.2 CPU Board Architecture

ANVIdAHOVH

._ZQ_

INVIdNOVE

d\ /b

ADDRESS A\
Address Bus BUFFER /ADD‘MUX Multiplexed Address Bus
&
¥
REFRESH L -
COUNTER
CHECK RAM M
z
DECODE CHECK BUS
| [| <
4 ERROR
‘ < 3] TIMING & DETECTION
&
CONTROL
(Control Bus CORRECTION
| I
CONTROL 3-WAY
STATUS DATA
REGISTER BUFFERS

AS)
-

Do

I

4/\>

Data Bus

Figure 4.3 Memory Board

MEMORY

ARRAY

A ADDRESS

- €9 -
ANVIdADVE

Address Bus BUFFER

'1& P -

CSo
BOARD A EPROM Coron
DECODE \ DECODE .Y
y ARRA
- ' CS7
BRDSEL
CONTROL '
- Control Bus)
\ /| BUFFERS _1}
TIMING HBE
DTACK & '
BUFFER
BERR CONTROL LBE

, B
\ Data Bus | BUFFER

A DATA C

Figure 4.4 EPROM/ROM Board

-Vg_

ANVIdNOVY

Address Bus

ADDRESS TIMING & SEL FLOPPY
B —
SECODE RDSEL BUFFER %5 DISC
OFF — FORMATTER/
CONTROL wWT)
BOARD CONTROLLER
BUFFER
ERS - | TT 3
Control Bus
] 1 11 | 1171]
Data Bus
DDEN
INTERRUPT AUXILARY
CONTROL AUX REGISTER
|
— | IRQ
DREQ :
— DRQ
DACK ,
PREADY

Figure 4.5 FDC Board

-99_'.

ANVIdNOVY

DISPLAY
DRIVER
AND

Bus
TERMIN.
ATION

ACIAO

DECODE
AND

BUFFER

CONTROL

DISP

BAUD RATE
GENERATOR

L VIOV

Address Bus

J 1

[|

Control Bus

J

Data Bus

OFF
BOARD
BUFFERS

| |

[1

1R

L1

l

LI

[{1 1]

LI 1

|

LI I

ACIA
MC6850

1NN

I

LI]

ACIA
MC6850

PTM
MC6840

7 SEGMENT
DISPLAY

Figure 4.6 Display Driver and Peripheral Board

5. THE SOFTWARE ENVIRONMENTS

5.1 Introduction

An gperating system has been defined as "programs implemented
in either software or firmware that make the hardware usable" [43],
These are the programs which allow the interaction between the user
and the machine. The operating system is also a resource manager; it

manages processors, storage, input/output devices, and data.

The programs that the operating system consists of can be
divided into two main categories, the system Kernel and the
applications software. The Kernel consists of those programs which
interact directly with the hardware, providing common services to
programs such as processor and memory allocation, interrupt
handling, I/0 control and file management. The applications programs
are those which perform general functions as editors, assemblers,

compilers and text formatters.

The supportive system used in this research, the MC68000
computer system, offers the full power of two powerful operating
systems, TRIPOS and UNIX. The two operating system environments
were used for program development and hardware testing. Each of
the software environments provide a powerful program editing and
development. They also maintain a cross-assembler for each target
microprocessor supported. Various of high level languages, such as

BCPL and C, are also supported.

- 66 -

The two operating system environments and their programming

languages are described in the following sections.

5.2 The TRIPOS environment

TRIPOS is a single-user multi-tasking operating system,
originally developed at the Computing Science Laboratory at
Cambridge. It was designed as a portable operating system in order to
be implemented in different computer systems, such as LSI-4, PDP-
11, Nova[ZB] and MC68000 based computer systems. Most of the
operating system is written in the system programming language,
BCPL, with only some system primitives such as device drivers and

the task scheduler written in assembly language.

A wide range of utilities and programming tools are supported
by the TRIPOS environment. Compilers for languages other than
BCPL, such as Fortran, ALGOL and Pascal, are available. A number
of cross assemblers to support a variety of eight and. sixteen bit
microprocessors, other than the MC68000, are also available. The
main utilities which were used in this project include the text editor,
the BCPL compiler, the MC68000 Macro Assembler and the Z80 cross
assembler. Detailed information about the TRIPOS utilities can be

[25]

found in the Tripos User Guide and the Tripos Programmihg

Guide[26].

5.2.1 TRIPOS filing system
The objective of a filing system is to provide a facility for

- storing data in groups and to logically connect them in way such that

67 -

they can be easily accessed.
Any filing system should be able to provide the following general

| functions:
i. Create and delete files.
ii. Open and close files.
iii. Read/write data from/to files.
iv. List the contents of a file.
v. Rename and copy files.

Additional to the general features mentioned above, TRIPOS
offers a tree structure filing system for both directory and user files.
The filing system is implemented as a task called the filing system
task or handler, which is responsible for managing data files on

secondary devices such as floppy discs and Winchester discs.

5.2.2 TRIPOS Tasks
The standard TRIPOS operating system is generally loaded with

the following tasks:
i. Command Line Interpreter (CLI).
ii. Debug task.

iii. Console Handler.

iv. Filing system task.

A user interacts with the operating system through the CLI,
which interprets the command lines received from the console

"~ handler via the terminal device driver and attempts to execute them.

- 68 -

The console handler task is used to coordinate all input and
output with the terminal device. The data entered at the terminal is
directed, by default, to the CLI and the output is to appear at the
terminal. By using escape sequences the console handler can redirect

the input to any specified task and, in particular, the debug task.

The debug task provides an interactive debugging tool for
examining and modifying task variables, monitoring CPU registers
and memory, setting break points, program code disassembly and
single stepping facility. The debug task can run in two modes, as a
TRIPOS task when accessed through the console system by typing the
escape sequence, or in a stand alone mode. The later mode is entered
following the execution of an exception routine, which signal
hardware failure, or a TRAP instruction. While the debug task is in
the stand alone mode, it is impossible for the operating system to

continue.

When a disc is mounted for either writing or reading, a restart
task is created. The task is responsible for checking for the validity of
the disc structure. Until the validity check is completed, the disc is

write protected.

As each TRIPOS task represents a particular fuﬁction of the
operating system, there is allocated a priority for each task. The
scheduler is responsible for organising task execution according to
priority levels. Only one task is allowed to run at a time, while other
tasks could be either waiting for something to occur, such as line

printer acknowledgement or data to arrive from disc, or have been

~ 69 -

interrupted and waiting to continue execution.

When a task is created by the CREATTASK primitive, a unique
positive number, known as the task number, is assigned to it. The
task number is used to index the task table where a pointer to the
Task Control Block (TCB) can be found. Each TCB is associated with
a particular task. The TCB contains all the information, such as a
priority level and linked list of packets, which is required by the

system to schedule and control the task.

5.2.3 Inter-task communication

An integral feature of TRIPOS is its message passing system. It
is a mechanism where the communication between two tasks (or a
task and a device) is achieved by sending packets. The Kernel
manages the transfer of packets between tasks and devices by using
the primitive calls QPK7(), which queues a packet, and TASKWAIT(). .
The field structure of a TRIPOS packet is shown below :

Link

Destination

Type
Result 1

Result 2

Argument 1

Argument 2

Argument n

Tripos Packet Structure

. -170 -

Packets can be linked together on a work queue by pointing the
link field of one packet to the link field of the next. The destination
field of the packet contains an integer number which is used to
identify the destination of the packet. If the integer is positive, the
destination where the packet is to be send is a task. If it is negative,
the destination is a device driver. The type field contains a number
which indicates the type of action required by the receiving task or
device. The result fields are reserved for values which will be
returned to the packet originator. These values concern the
completion or failure of the requested action. The argument fields
represent any extra messages which might be needed by the task or

the device to which the packet is sent.

5.2.4 TRIPOS device drivers

Unlike the UNIX operating system, TRIPOS is a simple system

to add devices to.

Each device driver requires five assembly code routines. An .
INIT routine is used to initialise the device in order to be ready to
receive packets. The /NIT routine is called either when the device is
created or during the initialisation of the operating system. An
UNINIT routine is required when the device driver is to be removed
from the operating system. A START routine is calied to initiate any
new packets which are sent to the driver. A STOP routine is called to
cancel the processing of packets. Finally, an /NT routine is used to

provide any necessary action which is required to service a packet or

-71 -

an interrupt from the physical device.

Similar to tasks, each created device driver is assigned a device
number (negative integer) which is used to index the device table in

order to allocate a pointer to the Device Control Block (DCB).
5.3 The BCPL programming language

The Algol report[36] which was published in 1963 made
enormous progress in the design of programming languages, especially
the implementation of block structure and the stack mechanism .
Since then, several new languages have been developed which have
adopted some ideas from the Algol report including the block
structure technique. One of these languages was CPL (Combined
Programming Language) developed at London and Cambridge
Universities. A detailed description of the CPL language can be found

in reference [37].

CPL had led to the invention of a family of languages which
include BCPL, B and C. They have been proved to be of a suitable use

in compiler-writing and system programming[38].

BCPL (Basic CPL) was designed by M.Richards in 1967 (28], 1¢
was designed as a simplified CPL. The most important simplification
of the language is its single data type, unlike other programming
languages where data variables have to be declared (e.g integer, real,
character). The user is free to store any type of data in the variables

of his program.

-72 -

BCPL is a block structured system language, where each source
program consists of one or more compiled modules. Modules
communicate through the use of a stack and a global vector. The
global vector contains all the declared global variables and the
pointers to all global functions and routines. This arrangement makes
the linking of the compiled modules very fast and also eliminates any

need for GOTO statements.

BCPL provides standard control flow primitives such as
SWITCHON and /F for selection and WH/LE and FOR for iteration.
It has a well defined library of useful functions and routines. The
functions are immediately available as BCPL function calls in the

standard library.

BCPL is a powerful language under TRIPOS, since the majority
of the operating system is written in this language. Further detailed

information about the language can be found in reference [39].

5.4 The UNIX environment

UNIX describes a family of computer operating systems
developed at the Bell Laboratories, and it a registered trade mark of

AT&T.

5.4.1 The development of UNIX

UNIX was originally developed at Bell Laboratories, in 1969, by

~members of a research group led by K.Thompson to provide a flexible

- 73 -

and powerful environment for software development[31].

The original UNIX was produced for the Digital Equipment
Corporation PDP-7 minicomputer and was written in assembly
language. One of Thompson’s colleagues, D.Ritchie, designed a high
level language called C in 1973, and, as the C language evolved and
became suitable, UNIX was rewritten in C and implémcnted on the
PDP-11/40 computer system[3 1]. Since that time, UNIX and the great
majority of software developed for use with UNIX has maintained

use of the C language.

By writing the majority of the system in a high level language,
the operating system becomes easy to read, understand, change, and
move to other machines thus makes the problem_of implementing it
on a new host machine much less time co.nsuming than if the whole
system were written in assembly code. The portability of the system
together with the advent of the powerful 16-bit microprocessors,
have led to the popularity of UNIX operating system among a wide

range of mini and micro based computer systems.

In 1973, the UNIX system and its utilities became . only
available to educational and research institutes for a nominal fee,
which had assisted in the growing popularity and enhancement of the

system in later years.

In 1981, AT&T released UNIX system Il as their first

commercially supported version. And in 1983, UNIX system V was

- 74 -

released and the latest version to be released at the time of writing is

UNIX system V.3.

There are several versions of the UNIX operating system
currently in use and supported worldwide. The most notable of these
are, UNIX 4.2 developed at Berkeley, UNIX system V and V.3
developed by AT&T and XENIX developed by Microsoft.

The supportive system used in this project is implemented with

UNIX version V.

5.4.2 The Structure of the UNIX operating system

To implement UNIX on a new machine, the minimum hardware
configuration would include a processor of at least, a minimum of
256K bytes of main storage, a simple memory management unit, a

high speed disc drive and a terminal connected to a serial interface.

UNIX is a multi-tasking, multi-user time-sharing, operating

system. It consists of a Kernel and commands.

5.4.2.1 The UNIX Kernel

The Kernel is the program at the heart of the operating system
which manages the system resources by providing a hierarchical file
system, handling interrupts, allocating main memory for an executing
process, controlling input and output, scheduling processes for

execution on the CPU, and many other functions.

75 -

The Kernel permanently resides in primary memory and

occupies the lowest memory locations.

There are two levels of execution modes supporied by UNIX
system, user and Kernel. The UNIX kernel routines are always
executed in the privileged Kernel mode, where they can have access to
all device registers, system and user addresses and can execute any
instruction. All other program code can be executed in user mode
with the exception of privileged instructions and certain accesses as
direct input or output. The user program can perform input/output
accesses by calling the Kernel via a trap instruction, which when

executed, changes the execution mode to Kernel.

5.4.2.2 The UNIX process

A process is defined in the Unix literature as a task in various
different states of execution. Many processes can appear to be
executing simultaneously as the Kernel schedules them for execution.
Each process is allowed to read or write its data, but it can not read
or write to other processes. Processes can communicate with each
other and with peripheral devices by using system calls, which will
enable the user processes to access the Kernel facilities in a controlled

manner.

In the UNIX system, the Kernel allocates the following four
memory segments for every process. i) The process header, which is
not directly addressable by the user process, and contains information

which describe the attributes of the process. ii) The text segment

- 76 -

which contains the re-entrant executable machine code for the
process. iii) The data segment which contains both the initialised and
the uninitialised data. iv) The stack segment which contains the stack

of the process when it is running in the user mode.

The Kernel identifies each process by its unique process number,.
called the process identification number or PI/D. And the Kernel
contains a process table with an entry which describes the state of

every active process in the system.

New processes can be created by using the fork() system call.
This call requests the operating system to make an identical copy of
the process invoking the fork system call. The process that executed
the fork system call is the parent process, where the new created
process is the child process. Every process has one parent, but it can

have many child processes.

A process can be in one of the following states, where each state

has its own characteristics which describe the process.

i. The process running in user mode.
ii. The process running in Kernel mode.

iii. The process is in ready to run state. Processes in this state are
waiting for the scheduler to determine which process to run

next.

- 77 -

iv. The process is in sleeping state.

A sleeping process is a process which is waiting for an event to
occur, such as data from a slow device, waiting for 1/0 to complete
from a peripheral device or waiting for a process to exit. The code and
data of a sleeping process can either be resident in memory or
swapped out to disk in order to provide more space in memory for
other processes. This technique allows many processes to run on a

system with limited main memory resources.

Processes on a UNIX system are terminated by executing the

exit() system call.

5.4.2.3 Interrupts and Exceptions

An exception condition refers to an unexpected software
interrupt which causes a break in the normal execution of a process,
and control is transferred to an exception handler. Exceptions are
different from interrupts, which are caused by asynchronous events

that are external to a process.

When an exception occurs, the Kernel checks the validity of the
process, saves an image of the state of the current process and
transfers control to the exception handler. After the handler
completes its service, the Kernel restores the state of the current

process and proceeds with the process execution. The UNIX system

- 78 -

uses the same procedure to handle exceptions and interrupts.

5.4.2.4 Inter-process communication

For many multi-tasking operating systems, such as TRIPOS,
inter-task communication is provided mainly by two mechanisms,

message queues and system data areas.

In the message queues mechanism, the Kernel stores messages on
a linked list (queue) for tasks to communicate with each other. This
mechanism enables tasks to suspend execution on a queue to wait for
other tasks to read or write from the queue. The system data area is
the other mechanism where tasks communicate with each other via
global area which is accessible to all tasks. This mechanism allows

large quantity of information to be shared between tasks.

Communication between processes in the UNIX system V is
achieved by the use of signals, pipes, shared memory segments,

inter-process messages and semaphores.

Signals are used to interrupt the execution of a running process
and to synchronise a process execution with other events. Processes
may send each other signals by using the system call kill(), or the
Kernel may send signals to processes on detection of an abnormal
exception such as an illegal instruction. For the UNIX System V,
there are nineteen signals. Some are associated with process memory
violations and others are used to inform the occurrence of events

within the Kernel, such as when the user hangs up a terminal.

- 179 -

A UNIX pipe is a file which allows the transfer of a stream of
data between processes in a first-in, first-out manner. Pipes also allow
the synchronisation of process execution. Processes can redirect their
standard output to a pipe to be read by other processes. Users can
communicate with the pipe communication channel by the use of
system calls for files, such as read() and write(). The synchronisation

between reading and writing processes is maintained by the Kernel.

There is another kind of pipes, which is supported by UNIX
system V, called named pipes. Named pipes are identical to the pipes
mentioned above, except in the way that a process initially accesses

them.

Shared memory segments represent a mechanism which allows
processes to communicate directly with each other via a common
memory. Each segment is mapped into the data space of the process

which is linked to it and is accessed as a data segment.

Inter-process message queues represent another mechanism
which allows communication between processes via the use of queues

(linked lists) which are maintained by the Kernel.

The inter-process semaphore facility provides semaphore system
calls to allow processes to synchronise execution. An implementation

of semaphores is described by the Dijkstra Algorithm[33].

-80-

5.4.2.5 The UNIX 1/0 System

In the UNIX system, peripheral devices are presented to the user
through a uniform interface. This interface is known as a device
driver. Device drivers are self contained pieces of code to allow a
process or the Kernel to communicate with peripheral devices, such as
disks and terminals. The Kernel manages these devices by dividing

them into two types, block devices and character devices.

Block devices are associated with disks and magnetic tape type
devices, where input and output transfer is performed in structured

fixed size blocks of data.

Character device interface is used by devices which use
unstructured input and output transfer such as terminals. Disk and

tape drivers can also be referenced as character devices.

Under the UNIX system, device drivers are treated as files.
The interface between the Kernel and the device driver is achieved by
the use of the following five system calls: open(), close(), read(),
writel) and seek().

The open system call is the first step a process must take to

access a file. The notation for the open system call is as follow:

fd = open(filename, flags, modes);

Flags indicate whether reading, writing, or both are to be

performed. Modes gives the file permissions if the file is being

- 81-

created. The open system call returns an integer known as a user file
descriptor (fd) which will be used in references to the file. The
Kernel follows the same procedure for opening a device as it does for

opening files.

The close system call is used by a process when it no longer

needs to access an open file. The syntax for the close system call is:

close(fd);

where fd is the file descriptor for the open file.

Reading from a file or writing to it can be accomplished using

the f ollowing system calls:

number = read(fd, buffer, count);
and number = write(fd, buffer, count);

Buffer is the location of data in the user process into which the input
will be placed, count is the number of bytes the user requires to read,

and number is the actual number of bytes read.

As files consist of a sequence of characters, reading from a file or
writing to it is often sequential. However, the system call seek()
allow processes to access a file in a non-sequential manner by
adjusting the offset within the file. The notation of the seek system

call is as follow:

-82-

position = seek(fd, offset, reference);

Offset is a byte offset, reference indicates from which position the
offset should be considered, and position is the returned byte off'set

which where the next read or write will start.

5.4.2.6 The UNIX file system

The UNIX file structure is hierarchical (tree structured), where
directories can contain other directories as well as ordinary files. The
top directory of the tree structure is called the root dire(;tory. From
the root directory (node), the user can reference any other node in the

filling system.

A UNIX file system on disk consists of a sequence of logical
blocks, each containing 512~ bytes. The first block on the device is
called the boot block and is reserved for the system bootstrap
program which is read to boot and initialise the operating system. The
second block is called the super block. It contains all the information
about the block structure of the device such as the size of the disk,
file system name and list of free blocks. The third block in the file
system contains the ’i;node’ list. Each i-node represents one file or
directory and contains the following information concerning the state

of the file or directory:

83

a. Time of creation, time of modification, time of last access.
b. Size of file in bytes.

c. User and group that the file belong to.

d. Number of links to the file.

e. FType of entry: file, directory, a block or character device.

f. Nine permission bits which are used by the operating system to

provide security of file information on UNIX.

The remaining blocks in the file system are free storage area, and

are used for file data.

5.4.2.7 Directory structure

The root directory in the UNIX file system is referred to as is a
directory of files. Files at the leaf node of the tree are either
directories, regular files, or special device files. A name of a file is
given by a path name that describes how to locate the file in the file

system hierarchy.

5.4.2.8 The UNIX shell

The shell is the UNIX command line interpreter (CLI)
mechanism for communication between users and the system. The
shell program is usually executed by users after loging into the
system. The shell program is not part of the Kernel. It is not

permanently a resident in main memory, it can be swapped as

-84 -

required, and can be modified to a particular environment.

The shell provides each program it executes with three open
files, input file, output file, and error output file. These files are
usually assigned by default to terminal devices, but they can be

redirected to any file or device as needed.

The shell is both a command line interpreter and a command
programming language. It provides many features, such as input and
output redirection and pipes. The redirection of input and output is

achieved using the following command:

ls > newfile

where Is is a command for printing a list of the file names in the
current directory. The ’>’ instructs the shell to close the standard-
output and open the file 'newfile’. All the output generated will be

redirected to the 'newfile’.

Pipes are another feature of the shell program, where the output

of one program can be connected to the input of another.

The hierarchical file system structure and the shell command
interpreter are two major advantages that UNIX provides over most
microcomputer operating systems. And the many features of the
shell, had also contributed to the popularity and flexibility of the

UNIX operating system.

- 85-

5.4.2.9 System boot

The bootstrapping process can be defined as follow: loading the
Kernel into main memory, initialising the system and starting

execution.

The Bootstrapping procedure goes through a series of stages in
order to get a copy of the Kernel into the main memory. First the
bootstrap procedure reads the boot block of a disk, then loads it into
the memory for execution. As a result, a copy of the Kernel will be
loaded into the memory and the Kernel takes full control. When the
Kernel start running, it begins an initialisation phase which includes

clock, memory, drivers and system tables.

After initialisation, the Kernel mounts the root file system onto
root directory, and spawns a single process from a file called ’init’.
When init is executed, it connects its standard input and output to the
default console terminal for reading and writing, and it forks to
create a shell for this console device. The shell, which acts as a
command interpreter, allows the communication between the console
terminal, operated by a user, and the operating system. As the console
terminal is the only active device in the system at this stage, the

system is said to be running in a single-user mode.

To bring the system into multi-user, init is informed to create a
getty process for each terminal device in the system which is going to

be active. When the user /D is entered, the getty process executes a

- 86 -

process called login. Login prompts for user password and, if it is
correct, a shell is executed. The system remains in multi-user mode
until it instructed to enter single-user mode when receiving a

’handgup’ signal from other process.

5.4.2.10 UNIX utilities

The UNIX utility environment contains a wide range of
software tools, including a program checker (lint) and a source code
management utility (make). The make command is a very useful tool
that allows the software developer to build new versions, or re-create
old versions, of a complex software application in a semi automatic

fashion.

The UNIX environment provides a set of programs called the
Source Code Control System (SCCS) whose main function is to
reconstruct, update and retrieve any previously released version of a

program.

Another utility which is currently supported under UNIX at
Bath is a program called Omnia, which Was originally developed for
the POLESTAR system. Omnia is a universal two pass assembler, it
currently provides assemblers for several microprocessors MC68000,

MC6800, Z80, Intel 8086 and 6502.

-87-

5.5 The C programming language

As stated in section 5.3, C is a general purpose programiming
language originally developed for the PDP-11 under UNIX. One of its
first uses was to rewrite UNIX operating system which was
previously written in PDP—ll assembly code. The C language is a
portable machine-independent, very productive software

development, high level language.

In contrast to BCPL (which is a typless language tha_t supports
only one object, the machine word) C is a typed language that
provides different basic data objects such as integers, characters and
floating point numbers. Other derived types include pointers, unions

and structures.

One of the important features of the language is its support of
pointers to other data such as variables and functions. Pointers are
variables which contain addresses of other variables. C also provides

pointer arithmetic and type conversion on pointer assignment.

Under the UNIX operating system , C has a rich software utility
environment, which include lint and make. The C language would be
less successful if it was used under other operating systems, such as

CP/M or MS-DOS, that lack such facilities.

A detailed information about the C programming language can

be found in the book by Kernighan & Ritchiel40],

- 88 -

6. THE EDUCATIONAL INTERFACE BOARD

This chapter begins with a discussion of some methods used for
dual-processor communication followed by description of the

Educational Interface Board (EIB) specification and design.

The interface design for dual-processor communication is based
on the concept that the available microprocessors have a mechanism
of releasing control of the bus to an external device to perform direct

mMemory access operations.

There are several methods by which processors can communicate
with each other. For example, it is possible to interface processors by
a serial link, as shown in Figure 6.1, or pérallel bus for direct
communication. Both types of communication could be
straightforward and easily implemented, but have several
disadvantages. If the two processors vary in their processor speed,
then the fast processor can over run the slower processor thereby
resulting in a delay or loss of data [41], Also, parallel communication
requires complex synchronization procedures, and the cost of
implementing such protocol is high [42) The communication between
the processors in this type of interface is not based on the release of
bus control by one processor in order for the other to perform direct
memory accesses, and neither of the processors can control the
operation of the other. Such a scheme is not suitable for this study

where the supportive processor is required to evaluate and examine

-89 -

target processors and to directly retrieve data from the target

memory without assistance.

The straightforward scheme that satisﬁeé the concept that each
procéssor has a mechanism for releasing bus control to an external
device is shown in Figure 6.2. In this scheme each device is capable of
signalling for bus control. When the request is granted, the requested
processor can directly take control over the bus. The two processors
share a common bus so that each processor may access the memory of
the other. If the two processors used are of different type, then
control signal conversion would be essential. The disadvantage of
such scheme is that no buffers are employed which will limit the
execution to only one processor at a time. Bus conflict between the

two buses can occur as a result of directly connecting the buses.

To prevent bus conflict and to allow for simultaneously
independent operation each system bus must be buffered. Such a
scheme is shown in Figure 6.3. Although the two processors can
execute programs simultaneously and they share common resources,
neither of the processors can access the local memory of the other.
This facility is important if the supportive processor is to evaluate

and examine the target processor.

The scheme adapted in this study is shown in Figure 6.4. It is
similar to the scheme suggested by Whitworth (131 ¢or eight bit

supportive processor.

The design of each target system should be as simple as possible

with enough random access memory on board for independent

-90-

operations.
Since the function of the EIB is to allow the supervisory system to

evaluate and communicate with the target system and to control and

monitor its interrupt, HALT and RESET lines, the target system is not
required to perform direct memory access to the supportive system.
On the other hand, the target system can communicate with the
supervisory system through the common communication area, that of
shared memory. The one way direct memory access operation
simplifies the interface design and prevents target processors from

slowing down the supervisory system.

The use of shared memory in a multi-processor system is useful
for passing large blocks of data and for providing hold and work

with shared data.

The EIB is designed to be universal in order to adapt to any
currently available microprocessor based system. When plugged into
the supportive system, the EIB will allow users to evaluate a variety
of microprocessor family based systems. This approach will provide
the needed hardware to serve as an economical evaluation tool for
target systems and will démonstrate a performance-to-cost ratio

which is very favourable to educational institutes.

-91 -

6.1

Interface specification

It is necessary that the interface board support and provide the

following hardware facilities :

a.

Direct memory access into the target memory and I/0 locations

by the supervisor processor.

Each processor must perform its own operations and both

processors may run simultaneously.

A communication area, shared memory, accessible by both
processors on first come first served basis must be available.
Access will be delayed only if both processors attempt to access

the shared memory simultaneously.

An arbitration circuit must be used to prevent bus collision
during shared memory accesses and to grant access to the

processor with higher priority.

Wait-state generation logic must be available for each processor.
If the shared memory is in use by one processor, the wait
generation logic is responsible for suspending the other processor

from accessing the shared memory until it is free.

A parallel input/output controller is required to allow the
supervisor processor to examine and control the target system

interrupt, halt and rest lines.

‘A facility is needed to demultiplex and multiplex the target bus

as required.

- 92 -

h. DTACK generation circuit responsible for generating DTACK
signal to suit the access times of different target systems must

be included.

i. Address decoding logic to generate the required master and

target request signals is necessary.

A schematic arrangement of the supportive and target systems is
shown in Figure 6.5. Each type of target processor requires a unique
personality module card (PMC) which plugs into the interface board.
The PMC is responsible for any control signal transformation
required by the particular target processor. The design and
implementation of some personality module cards will be discussed

in chapter 7.

A detailed block diagram of the EIB is shown in Figure 6.6, and
the complete circuit diagram is given in Appendix E.
To allow for individual operations of each system and to prevent bus
conflict, all data, address and control lines for both systems are
buffered as they enter or leave the interface board. All the buffers are
activated or deactivated as required by the accessing processor. The
control signals that enable/disenable data and addresé buffers (master
side) is shown in Figure 6.7. The data direction buffers (master side)
are controlled by the (R/W) signal of the MC68000 processor. Figure
6.8 shows the control signals needed to drive the data buffers (target

side).

-93-

6.2 Hardware design

6.2.1 Address decoding logic

The addressing capability of the supportive processor enables it
to access any target memory or 1/0 location. For the purpose of this
study, a free area of 128 k-bytes of the supportive memory map is
chosen to handle the interface activities. This area corresponds to the

hexadecimal addresses 860000, to 87FFFF .

Using DIL switches and the 2521 comparator, the interface
board will respond when the selected master addresses are accessed.
As shown in Figure 6.9, when any of the master addresses 86xxxx iS
decoded, a 'match’ signal will be generated from the 2521 comparator

which will enable the 74L.S138 decoder.

The f uncfion of the decoded master addresses are as shown in

the following table :

~94 -

ADDRESS FUNCTION

(860000—860xxx)4 Master Shared Memory Request (MSMR)
(862000—862xxx), | Master Target 1/0 Request (77/0)
(864000—864xxx), | Target Access latch (M_cc)
(866000—866xxx), | PIA Enable (PIAEN)

(868000-868xxx);, | Vector Latch (VECL)

(86A 000—86Axxx),y | Extra Byte Address Latch (EBAL)

(86C 000—86Cxxx)y, | PIA interrupt input port A (PIACA 1)
(86E 000—86Exxx), | PIA interrupt input port B (PIACB1)

(870000—-87FFFF),, | Master Target Memory Request (MTMR)

Table 6.1

- When the master requests direct memory access to the target
memory, a Master Tafget ‘Memory Request (MTMR) signal is asserted.
This signal is routed through the personality module card to assert
the Target Bus Request (7BR) signal. The Target Bus Grant (7BG)
signal will be asserted according to the target processor bus request

cycle protocol.

Each target system has a reserved area in its memory map for
shared memory accesses. As shown in Figure 6.10 two latches and
two comparators are used to decode the target address lines (T4 ;-

TA ,3) to generate the Target Shared Memory Request (7SMR) signal.

The TSMR signal is also routed to the PMC to immediately assert
the target wait line signal TWAIT irrespective of whether the master

is using the shared memory or not. The TWAIT signal will be active

-95-

for 500 nanoseconds in order to prevent the target from requesting
another access to the shared memory before the previous request is

arbitrated.

6.2.2 Arbitration logic .

The common memory is accessible by the two processors on first
come first serve basis. The arbitration circuitry will allow the
higher priority request, MSMR or TSMR, to access the shared
memory. Each shared memory access request made by either
processor will be granted if the memory is not in use. If the shared
memory is in use by one processor, the other processor requesting

shared memory access is required to wait until the access by the other

processor is complete. An arbitrated signal (MSMRA or TSMRA) is
asserted for the processor permitted to use the shared memory. Since
accessing of the shared memory has to take as little time as possible,
the arbitration circuit is driven by high speed clock of 16 MHz. The

arbitration circuitry is shown in Figure 6.11.

A separate circuit is used to generate the correct timing for the

shared memory RAM enable and read/write signals.

6.2.3 DTACK generation circuit
When the supervisory processor addresses any valid memory
location within the interface memory range, the DTACK (Data

Transfer ACKnowledge) signal is expected to be asserted within 50

- 96 -

microseconds, otherwise a bus error condition will be signalled to the
processor. The DTACK signal is used to allow the supervisory
processor to be interfaced to slow memory devices. As shown in

Figure 6.12, the length of the delay can be set using the DIP switch.

6.2.4 1/0 controller

As the MC68000 processor is a hardware compatible with its
predecessor the M6800 family, the M6821 Peripheral Interface
Adapter (PIA) is used as the parallel input/output controller to
monitor and control target interrupt, halt and reset lines.
The PIA device contains two 8-bit ports, port A and port B. Each of
the 16 lines can be programmed to be input or output. Each port
consists of three programmable internal registers, output register,
data direction register and control register. On the supportive
addressing range they appear as the low order bytes of two adjacent
16-bit words. “
The master address lines A,; and A,, are connected to the PIA chip
select lines. Two other address lines A, and A, are also connected to

the PIA to select the internal registers.

The PIA is connected to the master interrupt daisy-chain
circuitry. When either of the PIA interrupt request lines is asserted
~and the processor Interrupt Acknowlege IN (IAIN) is active, the
interrupt daisy chain state machine will generate a local JACK signal
which will assert the VPA line (Valid Peripheral Address) as shown
in Figure 6.13 . Active VPA line alerts the M68000 processor that a

M6800 peripheral (PIA) requires its attention and that it must

97 -

synchronise it self with the clock signal (E). On enabling VMA (Valid
Memory Address), the M68000 addresses the PIA and indicates that
it is ready to interact in synchronisation with clock E. M6800
peripherals in general do not generate vector numbers. The M68000,
therefore, uses the autovector procedure which allows it to access the

seven autovectors of the exception table.

The PIA port A is programmed to be an output port, and PIA
port B as input port. Two of the PIA outputs are used on the main
board and the rest are routed to the personality module and therefore
have functions particular to the target processor being used. The two
PIA outputs used on the main board are PAO, PAl. Output PAO
informs the main board whether the target is an eight bit or a sixteen
bit processor. Output PA1 enable/disable target share.dr memory

accesses.

- 98 -

Processor = § a 5 ow \{___ Processor
p-4 1]
55 2 3
A v 2 B = B
RS (8

Figure 6.1 Connection of two Processors using Serial Interface

Common System Bus

Memory

Processor A

h 4

BUS
ARBITR-
ATION

Processor B

Memory

. Figure 6.2 Connection of two Processors to Enable Access to Shared Resources

L.ocal Bus

N

e

N\NZ

Memory

System Bus to
Shared Memory & Input/Output

/t Local Bus

V_T

A~

Processor
A

Figure 6.3 Connection of two Processors. each with Local Bus and Resources.

-

BUS
ARBITR-
ATION

NS

Processor
B

-~

to a Common Bus with Shared Resources

- 100 -

SNZ

Memory

N

>AV

Shared Memory

Arbitration &
Bus Signal
Conversion

!

Supportive
| Bus & Wait

Requests

Processor

MC68000 -

Bus & Wait
Requests

-

Suppoortive Bus

Figure 6.4 Adopted Connection Scheme of

-101 - |

i

Target

Processor

Supportive/Target Interface

N4

Target Bus

-0l -

BUS
DISPLAY &
PERIPHERAL
1/0

Board

=

DMAC

.- Board

3T

FDC

Board

ngs

Supportive System Bus

RAM

Board

1T

EPROM/
ROM

Board

IC

CPU

Board

3C

Educational
Interface

Board

PMC

o am. - —— —

Target System Bus

Figure 6.5 Supportive Target Interface Architecture

==

Target
System
Board

Master System Bus

LS245

Data
Bus
A45

L8245

B45

LS245

C45

LS244

Address
Bus

Ad4

LS244

LS244

c44

IRQ

PIA
6821

K To Target:

PAO-PA7\Resel-HiU&
/ Interrupt

Lines

PB0-PB7
Address MSMR
Decoding MTMR
. TSMR
Logic PIAEN

Figure 6.6 Educational

DTACK

7418245
H45

Control
Signals

Arbitration &

Control
Circuitry

Personality
Module &

Logic

Master
Control
Signals

Interface Board Architecture

Target
Control Signals

LS623

A23

LS623 A.-A

B23

LS623

C23

LS245

D45

LS245

E45

LS245

F45

74
LS245

G45

Address Bus

Data Bus

MLDS -
LDEN

MSMRA r———\
MTMRA HDEN
! MUDS
\
MADEN
MAS

Figure 6.7 Logic Circuit to Generate Data and Address Enable Signals (Master side)

Data Directic
TSMRA

TR/W
¥ 0

MTMRA
LEN

TSMRA ﬁl —
HEN
-
PAO(8/16) |

Figure 6.8 Data and Direction Enable (Target side)

- -104 -.

MAS
3x1 K
1
2521
Comparator
MA n~MA 23
1
It
19
4x1K
Sv
.MSMR
fAcc
741,S138 PJAEN
MA U-MA 15
VECL
EBAL
PCA1l
PCB1
Match
MTI

Figure 6.9 Address Decoding Circuit

105 -

TAS

74LS373 Comparator
MDO- MD3 2521 TA12_TA15
EN
PA1
TACC Match 1 TSM
Match2
PAO-
7418373 Comparator
MD4-MD11 2521 TA16_TA23

TAS
PAO(8/16)

Figure 6.10 Target Shared Memory Request Circuit

- 106 -

MSMR O

TSMR o

S5v

PR

16 MHZ
74LS74

CLR

CLR

741.S74

<< } 16 MHZ
PR

Sv

Figure 6.11 Master/Targei Shared Memory Arbitration Circuit

RELWAIT

TACC

BUFREL

LDS
UDS

74LS197

DTACK O

Figure 6.12 DTACK Generation Circuit

-107-

(0]

(0]

MSMR A

TSMRA

8§ MH2

IRQ <0

JACKIN

MAS
MA
MA
MA

PAO-PA7

PIA
6821
PB0-PB7
IRQA
IRQB
MHZ
82S129
74L.S374
PROM
T e

Figure 6.13 Interrupt Daisy Chain Logic

- 108 -

-0- JACK

£>m IACKOUi

7. Target systems

7.1 Target system specification

As the complexity moves toward the supportive system, the
target system should be as simple as possible with minimum facilities
on board. The simple target system should be based on a CPU,
memory and basic I/O structure. The function of the supportive

machine is to assist in the interpretation and control of such systems.

The target systems sﬁould be provided with an EPROM facility
in order for the target board to run programs a in stand alone mode.
Random access memory must be present at the reset vector space of
the target microprocessor, and for stand alone operation the EPROM
must occupy the vector space. Therefore, it is important that the
board should provide a facility in order to be able to manipulate the

reset vector between the two types of memory.

For demonstration purposes each target board should have
parailel and serial 1/0 devices to enable the user to add his specific

hardware application.

The target board should be divided into two distinct halves as
shown in Figure 7.1. These are the CPU with its associated clock and
buffers and the memory and 1/0 devices. Thus, the functionality of
the board can be described as follows : The target CPU signals are to
be buffered and applied to the J1 connector of the board. The J1

connector supplies all the signals fequired by the memory buffers and

- 109 -

decode logic circuitry. This means that the backplane always contains
valid target signals irrespective of the device being accessed. As the
target memory is always decoded from the J1 address bus, a direct
memory access cycle has to acquire the backplane from the target
processor and control the backplane as a normal target bus master.
This separation between CPU and memory also allows the target
memory or [/0 to be completely disabled to enable the processor to

work with user installed memory and I/0 devices.

Two different target system boards are used in this work, one
system is based on an eight bit microprocessor, the Z80, while the
other board is based on a sixteen bit processor, the MC68000. The use
of the two different target processors will demonstrate the versatility
of the interface board. Two different personality module cards are

designed to-accompany the target boards.

7.2 The Z80 target system

The Z80 target board is a complete microprocessor system with
the minimum basic devices on board. They include the CPU, memory
and basic input/output device. When the target board is plugged into
the supportive development system backplane together with the
interface board, a new environment is created to allow the user to
study and evaluate the target processor. Any user special hardware

application can be added to work with the target system.

-110 -

7.2.1 Circuit description
The Z80 target board contains a fully buffered Z80A processor
running at 4 MHZ clock. The clock generation circuit is built around

a 16 MHZ oscillator which is then divided down to 4 MHZ signal.

As shown in Figure 7.2, the Z80 address and data lines leaving .
the processor are buffered, the address bus by the 74L.S244 devices (ic
18,20), the data lines by the bi-directional buffer 75LS245 (ic22).
These devices are enabled while the Z80 has control of the backplane,
and disabled when a direct memory access operation has been
requested and granted by the BUS ACKnowldge (BUSACK) signal. The
direction of th-e data buffer is controlled by the DBUF signal. This
signal is activated (i.e data transfer toward the CPU) when ever the
processor is performing a read operation or receiving an interrupt
vector during an interrupt cycle. The processor control lines are
buffered using the 741.S244 device. The buses are buffered on the edge
of the board to protect the on boardwdevices from noise induced on the

backplane.

The memory decoding logic can access up to 32 Kbytes of static
RAM and 32 Kbytes of EPROM. Referring also to Figure 7.2, the
address data and control lines for both the memory and I/0 device
are buffered from the backplane (ic 17,19,21). . The address
and control buffers are continuously enabled while the data buffer is
enabled by (EN) signal and the direction control is by the (DIR)
signal. The EN signal is activated for all memory or I/0 read and

write cycles. The direction control signal DIR drives toward the

- 111 -

memory devices for all onboard memory write cycles, and toward the
J1 connector (backplane) for read cycles from off board memory. The
memory decoding logic circuit is shown in Figure 7.3. The decoding is
achieved by the use of prom and 3 to 8 decoder. Address lines A ;-4 4
and switches (SO-S2) are applied to the prom. The switches are to
inform the prom of the size of memory device currently in use, while
the address lines allow the prom to recognise 2K pages of memory.
Three outputs signals from the prom are decoded by the 74LS138 to
select the chip enable of the memory device requested. The fourth
output signal (MEM) generated from the prom is also fed to the
decoder. This signal, when in a low state, indicates that an oﬁboard
memory is being accessed. The decode logic produces signals to enable
four RAM and four EPROM devices. Using the RAM/EPROM swap
switches (§3-S6) together with the chip select signals enable the RAM
and EPROM devices to swap positions in the memory map in order to
locate the reset vector address. The RAM sockets can support 2K or
8K devices (e.g 6116 and 6264), while the EPROM can support 2K,
4K and 8K devices (e.g 2716, 2732 and 2764).

As mentioned previously, the size of the memory device is

defined by the switches SO-S2. The RAM maps are as follows :

2K RAM 8K RAM
8000 8000

RAM 3 RAM 3
8800 A00O0

RAM 2 RAM 2
9000 C000

RAM 1 RAM 1
9800 EOOCO

RAMO RAMO
A000 F800 |

. S.M
FFFF
F800
SM

FFFF

-112 -

memory map for shared memory activities.

An area of 2K bytes (F800—FFFF),, is reserved on the target

" The EPROM decode is achieved in a similar manner with the

switches SO-S2 to select the size of the EPROM device. The memory

maps of the EPROM are shown as follows :

0000
0800
1000
1800
2000

7FFF

7.2.1.1

2K EPROM

EPROM 0O

EPROM 1

EPROM 2

EPROM 3

The target 170 facility

0000
1000
2000
3000
4000

7FFF

4K EPROM

EPROM O

EPROM 1

EPROM 2

EPROM 3

0000
2000
4000
6000
7FFF

8K EPROM

EPROM O

EPROM 1

EPROM 2

EPROM 3

The Z80 target board also contains two Z80 PIO devices, Dual-

channel Asynchronous Receiver/Transmitter (DART) and two Z80

counter timers (CTC). One of the timers is committed to generate the

baud rates for the DART serial conversion. A visual display output

comprising of an array of eight LEDs is also provided on board the

target card.

-113 -

An area in the Z80 memory map is reserved to address the 1/0

devices, it is decoded as follows :

0090-0093 CTC1 the first counter timer chip
0094-0097 DART the dual channel serial device
0098-009B PIO1 the first parallel 1/0 device
009C-009F PIO2 the second parallel 170 device
O0AO0-00A3 CTC2 the second counter timer chip

0O0A4-00A7 LEDs these four locations provide write
only access to the 8 LEDs on the
board edge.

OOA8-00AB DIL these four locations provide read
only access to the 8 way DIL switch
on the board edge.

The Z80 input/output devices are connected together using daisy
chain interrupt priority system. The daisy chain is then routed to the
backplane to allow other devices to be connected. The input/output
lines generated by the two Z80 PIOs are applied to the bottom
connector (J2) of the double eurocard 1o enable external devices to be
controlled if any external experiment is to take place. AS one of the
counter timers is used to provide baud rates for the DART device, the
second counter timer is applied to the J2 connector. The control and
data lines of the Z80 DART are translated to RS232 levels and passed

to J2 connector. The pinout of J1 connector is given in Appendix B. If

a terminal is to be connected to the Z80 DART via J2, then it can be

-114 -

used to examine and alter the memory and registers of the Z80 target.
This action is only possible under the control of a monitor program
that can reside in one of the EPROM sockets, and if desired the target

system can run completely independent of the supervisory system.

The open collector lines, interrupt request, non-maskable
interrupt, bus request and halt are provided with pull up resistors
and are available on the backplane and hence can be monitored by the
supervisory processor via the interface card. The interrupt request
line (JNT) is taken to all the target 1/0 devices so that these devices

may interrupt the processor if required.

A power up reset facility is provided on board the target system
by the use of the 555 timer. The reset signal generated is taken to the
backplane reset signal via an open collector buffer. The reset signal is
buffered from the backplane and applied to the CPU, DART and CTC
reset lines. This signal is also applied to a red LED, via open collector
buffer which, when illuminated indicates that the Z80 target system
is in a reset state. The board can be reset manually using a toggle
switch which when set, resets the 555 timer. If the switch is
permanently positioned toward reset state, then the supportive
system would be unable to gain control of the target system.
Similarly, the halt line is taken to another red LED which, when

illuminated, indicates that that the processor is in halt state.

7.3 The Z80 personality module card

As the educational interface board is designed to be universal to

- 115 -

easily adapt to any microprocessor system, a dedicated.Personality
Module Card (PMC) for each type of target processor is, therefore,
required. The PMC is small in size and can be plugged on top of the
interface ‘board. Each PMC is responsible for the control signal
conversion required by the target processor in ‘order to establish
communication between the two systems. The complete circuit
diagram of the Z80 PMC is shown in Figure 7.9. The circuit
description of the PMC will be included in the discussion of the Z80

target interface section.

7.4 The Z80 target interface

The data bus of the master processor, the MC68000, is sixteen
bit wide, while the Z80 target is eight bit wide. The master processor
is capable of communicating using either the entire data bus to
transfer words of data or using upper or lower data rbus for byte

transfer.

As shown in the general layout of the interface board Figure 6.6,
the function of the bi-directional buffer (ic H45) is to allow the
master processor to communicate with eight bit target systems using
both upper and lower data bus. This buffer will also enable the eight
bit target processors to access the high order byte of the shared
memory. The control circuit to drive this buffer is shown in Figure
7.4. The target address line AO is passed to the interface board and
used as the target upper byte request signal (TUBR). When inverted

it is used as the target lower byte request (TLBR).

-116 -

All the major Z80 control signals are buffered as they enter the
personality card. The extra address (TA ,,-TA,;) and data (TDgTD,s)
lines which are not used on board the interface card, in the case of an
eight bit target processor, are set to low state on board the personality

card.

7.4.1 Master to Z80 target memory access

The master processor can request direct memory access to the
target system by accessing any of the target memory request hex
addresses (870000—87FFFF),,. When any of these addresses is accessed,
a master Target Memory Request (MTMR) signal is generated by the
interface address decoding logic. This signal is passed to the
personality card and applied to the 01rcu1t shown in Figure 7.5a to
generate the Z80 Target BUS REQuest signal (TBUSREQ). The Z80 bus
request signal has a high priority level and is always recognised by
| the processor at the end of the current machine cycle. When the
processor detects that BUSREQ is active, it forces the address bus, data
bus and the control signals MREQ, IORQ, RD and WR into a high
impedance state so that the supervisor processor can take control of

the buses to start direct memory access operation.

The master processor is informed of the target bus mastership
by the assertion of the Z80 BUS ACKnowledge (BUSACK) signal. The
BUSACK signal is passed to the interface board as Master Target
Memory Request Arbitrated (M7MRA) signal. This signal is used to
enable/disable the data and address buffers on the interface board. It

is also applied to a D-type flip flop to generate a RELWAIT within 500

-117 -

nanoseconds. The RELWAIT signal is taken to the interface board to
assert the DTACK signal in order to terminate the master target
memory access cycle. The delay gencratcd by the flip flop is to ensure
that the inaster does not try for another-target access before the
previous target access cycle is completed. It also allows enough time

for the data bus to be stable.

When the master gains control over the target bus, it start a
normal Z80 read or write cycle, as requested, to the target memory
by issuing target Memory REQuest (MREQ) signal and the appropriate

target read or write signal.

o If | a target 1/0 address is decoded on board the interface card,
thé Master Target 1/0 Request (M_TTOT) signal will be asserted
together with the MTR line. As the master gains control over the
target buses as in the target memory access, it begins a Z80 1/0 read
or write cycle by asserting the target (JORQ) line and the appropriate
target read or write signal. The Iogic circuit to generate the major
target control signals, MREQ, IORQ, RD and WR is shown in Figufe
7.6.

In the master to a target access write cycle, the personality card
must terminate the target cycle before it terminates the master cycle
to ensure that the valid data is latched to the target memory before
the master relinquish the data bus. When in the master to target read
cycle, the personality card is responsible for terminating the master
cycle before it terminates the target cycle to ensure that the master

has captured the correct data. Read/write cycle timing diagram is

-118 -

shown in Figure 7.5b.

7.4.2 The Z80 target to shared memory access
As the Zilog Z80 processor accesses any of the shared memory

addresses, a Target Shared Memory Request (7SMR) signal is

generated on board the interface card. The TSMR and MSHER signals
are fed to the arbitration circuit to decide which system will have
access to the shared memory. If the target request has a higher
priority level than the master, an arbitrated 7SMR signal (TSMRA) is
generated. The 7SMRA signal together with the appropriate target
Read/Write signal are used on board the interface card to select the
required shared RAM. The arbitrated signal, TSMRA, is also used to

enable data and address buffers (target side).

The 7SMR and the TSMRA signals are routed to the Z80
personality module card and applied to the circuit shown in Figure
7.7. When either or both of the signals a;"e asserted, Z80 wait states
are inserted for a period of 500 nanoseconds to ensure that the target
processor does not request another shared memory access before the

previous cycle is completed.

7.4.3 The Z80 target interrupts

The Z80 personality module card allows direct master control of

target INT, NMI, BUSREQ and RESET lines using the interface PIA.
These lincs are activated by the master programming the PIA as

shown in the following table :

~

- 119 -

PIA A7 PIA A6 PIA AS Function
0 0 0 Homestate
0 1 INT immediate
0 1 0 NMI "
0 1 1 RESET "
1 0 0] BUSREQ
TABLE 7.1

The output lines PIA A3 and PIA A4 are programmed to enable or
disable any possible target INT or NMI requested by the supportive
system. The input lines (PIA BO-PIA BS5) are programmed to monitor

the following target signals: -

PIA BO The INT Lin_e
PIA B1 " NMI "
PIA B2 " RESET "
PIA B3 " BUSACK "
PIA B4 " BUSREQ "
PIA BS " HALT "

In mode 2 of the Z80 maskable interrupt, the interrupting device
supplies the starting address of the interrupt service routine by
placing an eight bit vector on the data bus during the interrupt
acknowledge (JACK) cycle. Figure 7.8 shows the circuit used to

supply the vector number during IACK cycle.

-120 -

7.5 The MC68000 target system

The 68000 target board is based on the MC68000L8 CPU
running at 8 MHZ clock. Similar to the Z80 target board, the overall
structure of the M68000 target board is divided into two halves, the
processor with its clock and buffers, and the memory and

input/output devices.

The functionality of the M68000 target board is also similar to
that of the Z80. The M68000 processor signals are buffered and
applied to the J1 connector, and memory buffers and decode logic
receive all the relevant information from the J1 connector. This

makes the backplane always carries valid M68000 target signals.

The board carries two M68230 PI/T (Programmable Interface
and Timer) devices which supply 40 lines of parallel I/0 and two
counter timers along with two M6850 serial ACIAs, fully buffered to
RS232 levels, with baud rate clocks avéilable from MC14411 baud
rate generator. A simple I/0 structure of 16 LEDs and i6 DIL

switches complete the target peripheral facilities.

As the target processor is reset, it fetches eight bytes of data
from memory locations 0-7 and uses these locations to load the
program counter and stack pointer. In total, the first Kilobyte of

memory locations is reserved for 255 vectors, each of thirty-two bits.

Buffering of the target buses is provided in a similar way to that
described for the Zilog Z80 target system. The twenty three address

lines are buﬂ'ered as they leave the processor by three 7415244

-121 -

devices. The data bus is buffered by two 74L.S245 devices. The
address and data buffer devices are enabled while the M68000 target
has control of the backplane and they are disabled when the target
passes control to another bus master by asserting Bus Grant
ACKnowledge (BGACK) signal. The R/W target line is used to select

the appropriate direction of the data buffer.

7.5.1 Memory maps and manipulation

The memory decode logic provides chip enable signals for four
RAM and four EPROM devices. The RAM sockets can support 2K or
8K devices (e.g.6116 and 6264). The EPROM can also support 2K and
8K devices (e:g. 2716 and 2764). The memory maps for the EPROM
and RAM area"chAnges depending on the size of the installed devices.
The size of the memory devices are defined by two switches S18 and

S19 on board the target card.

The RAM maps are as follows :

2K RAM 8K RAM
0000 0000

RAM O RAMO
1000 4000

RAM 1 RAM 1
2000 8000
10000 10000

S.M SM

10FFF 10FFF

An area of 4K bytes (10000—-10FFF),, is reserved on the target

memory map for shared memory activities.

-122 -

The EPROM decode works in a similar manner, with the switch
S19 to define the size of the EPROM device.The EPROM memory

maps are as follows :

2K EPROM 8K EPROM
2000 8000
EPROM O EPROM 0O
3000 CO000
FPROM 1 EPROM 1
4000 10000
S.M
11000

The reset vector and program can be manipulated to allow the
target system to develop M68000 based applications. For the target
to operate in a stand alone mode, the EPROM devices must occupy the
“~program and vector space. Using switches S20 and S21 the facility of

swapping the RAM and EPROM devices can be achieved.

Memory decoding as shown in Figure 7.10 is achieved by a 14L4
PAL (ic15), two 74LS138 decoders (ics 16,17) and a 10L8 PAL
(ic18). Three output signals from ic15 are used to enable and select
memory devices, a fourth enables 1/0 access. Address lines A ,-A;
and switches S18 and S19 are the inputs to the PAL icl15. The MEM
signal from icl5 is the global memory enable line whilst outputs A
and B form an encoded addressing inputs depending on the size
selection switches S18 (for RAM devices) and S19 (for EPROM
devices). The encoded chip select signals are decoded by ics 16,17 and

-123 -

qualified by address strobe (AS) signal. Upper and lower byte
devices are selected with UDS and LDS lines respectively. The PAL
equations used for the memory and 1/0 decode is given in Appendix

D.

The I/0 devices on the M68000 target board are memory
mapped so they can be placed as desired. AS shown in Figure 7.10,
the 170 devices are enabled by ic19 and a 74LS138 decoder ic20. The
inputs to ic19 consists of a global 1/0 enable signal from icl$5, address
lines A,-A,, and AS. Three outputs A,B,C are applied to a 74L.S138
decoder (ic20) to select the relevant 1/0 device. Three signals M 6800,
T7OPAGE and VPADRIVE are generated by ic19. M6800 and 7/OPAGE
are 1/0 enable lines for external I/0 on separate boards available at
the J2 connector. M6800 is for M6800 type peripherals and //OPAGE
is for M68000 type peripherals. The output VPADRIVE is used to
assert VPA for all M6800 devices. This forces the M68000 target into
a pseudo M6800 synchronous cycle and thus allows the interfacing of

M6800 peripherals.

As stated previously, the one important difference between the
M68000 and many other microprocessors is its ability to carry out
asynchronous data transfer between itself and memory or peripheral
devices. The asynchronous data transfer between the processor and
other devices is controlled by .ﬁve signals, AS, UDS, LDS, R/W and

DTACK.

The DTACK generation circuit is shown in Figure 7.11. It

consists of shift register ic25 (74LS273) driven by the 8 MHZ clock

- 124 -

and enabled by the assertion of the UDS and/or LDS driving an open
collector device ic52 (7403) qualified by an 'on-board’ memory access
signal MEM via Link array LK21. This circuit allows the setting of
DTACK for 125 nanoseconds memory access time incremented by 125
ns to 1000 ns using LK21 in order to adapt to most situations. If the
DTACK signal is not asserted during a cycle, then the processor will
theoretically wait indefinitely. Provision has been made to drive the
processor into exception processing by asserting the Bus ERRor
(BERR) line some time after the DTACK signal was expected. This will

then allow the operation of the M68000 to be recovered.

The target interrupt structure possesses 192 usable vectors for
peripherals that can provide a vector number, such as the MC68000
170 devices, and seven autovectors allocated for devices that do not

generate a vector number, such as the M6800 peripheral devices.

The hardware interrupts used by the on-board 1/0 devices are
encoded by ic23 of Figure 7.12a, into three lines IPL 0,1,2 required by
the target processor. There are seven levels of interrupts, six
maskable interrupts (levels 1 to 6) and one non-maskable (level 7).
Using the link array ic24, the interrupt outputs from the peripheral
devices and backplane lines J2C2 and J2C3 can be set as required. The
J1C2 is connected for level 7 to ensure that the master interface has
priority over other interrupts. To ensure that devices requiring auto-
vectoring addresses A ,-A; and 7ACK line are decoded by ic21, Figure
7.12b, and passed to link array ic22. During an 1ACK cycle these

three address lines are coded with the interrupt level number that is

-125 -

being processed. If the VPA line of the processor is asserted at this
time, then auto-vectoring begins. The pinout of J1 connector is given

in Appendix C.

7.6 The M68000 Personality Module Card

As both the supportive and target processors are identical, the
interface between the two systems is straightforward and of low
complexity. The personality card is mainly consists of three state
machines, one for initiating the master to target bus request, the
second for initiating the target to shared memory read/write access
and the third is responsible for generating the master to target
interrupt, halt and reset signals. The complete circuit diagram of the

M68000 PMC is shown in Figure 7.16.

7.7 Master to MC68000 target memory access B

The master processor uses the same procedure to generate the
master to target request signal (MTR) as described for the Z80 target

system.

The target memory request addresses (870000—87FFFF), access
64 Kilobytes of memory, which is sufficient for eight bit target
processors. For sixteen bit processors, such as the M68000 target
processor, a latch (74LS374) is used on board the PMC to supply the
highest address byte in order for the master system to be able to

access the entire memory range of the target processor.

- 126 -

The generated MTR signal, on board the interface card, is routed
to the M68000 PMC and applied as one of the inputs to the state
machine shown in Figure 7.13a. The MTR signal forces the target Bus
Request (BR) line to be active. The M68000 target is at a Jower bus
priority level than the master, and will relinguish the bus after it has
completed its current bus cycle. The target informs all other potential
bus mastership devices that it will release bus control at the end of
the current bus cycle by asserting the Bus Grant (BG) signal. The
target BG, AS, DTACK and BGACK signals are also applied as inputs to

the state machine shown in Figure 7.13a. As soon as the TBG is

asserted and the TAS, TDTACK and TBGACK are negated, the
supportive processor takes over the control of the target bus by
asserting the TBGACK signal. The asserted TBGACK signal is routed
back to the interface board to enable the data and address buffers.
This signal® is also used in the master DTACK generation circuit to
terminate a master to target memory cycle by asserting the master
DTACK signal after the specified time of the generation circuit. This,
in turn, will terminate bus mastership by the negation of the target
BGACK signal. Figure 7.13b shows the bus request cycle timing

diagram.

When the master gains control over the target bus, it starts a
normal M68000 read or write cycle, as requested by the master, to
the target memory by issuing the appropriate control signals R/W,

AS, LDS and UDS.

The active TBGACK signal is used on board the PMC to enable

-127 -

unidirectional buffer to pass master R/W, LDS, UDS, AS and DTACK

signals to their equivalent target lines.

7.8 M68000 target to shared memory access

The target system can request access to the shared memory by
accessing any of the reserved S.M addresses. The target S.M address is
compared, on board the interface board, with the previously latched
S.M address. If it matches, a TSMR signal is generated. The TSMR
signal is arbitrated with MSMR line. If the target request is at a
higher priority -level than the master request, then an arbitrated
target request signal (7SMRA) is generated. The target arbitrated
signal is used to enable the address buffers and used together with
target LDS and UDS lines to activate the data buffers. It is also used to

enable the shared memory during target read/write cycles.

The TSMR, TSMRA and TR/W signals are applied to the circuit
shown in Figure 7.14a to generate TWAIT signal which is used to wait
the target processor for approximately 200 nanoseconds before
asserting target DTACK to signal to the termination of the target
cycle. The delay is to ensure that the target system does not request
another S.M access before the previous cycle is terminated. The target
to shared memory read/write cycle timing diagram is shown in

Figure 7.14b.

- 128 -

7.9 Target Interrupts

Similar to the Z80 PMC, the M68000 PMC provides direct
master control and monitoring of the target interrupts, halt and reset
lines by programming the PIA interface device. The PIA A5,A6 and
‘target INTACK signal are applied to the circuit shown in Figure 7.15a
to generate target interrupt, halt, reset and vector latch signals. The
vector latch signal is used, during an interrupt acknowledge cycle, to
release the interrupting device supplied vector to the target processor.
The timing diagram of this circuit is shown in Figure 7.15b. Port B
of the PIA is programmed as inputs to monitor the target INT, HALT

and RESET lines.

-129 -

ey
b

mO- OmZ Z o0

OO mZZ20o0O

J CPU
DATA CONTROL BUFFERS &
ADDRESS CLOCK
MEMORY &
DATA CONTROL
ONTRO 1/0 DEVICES
ADDRESS
1/0 SIGNALS

Figure 7.1 Target Board Architecture

- 130 --

DIR

EN

741.8244
AgAgs
17
! 19
1
741.S5244
AgA,

19

74L8245

21

moH0OmZ 200

_‘*:.

ﬁ 741.8245

- 131 -

DBUF —

7415244
A S'A 135
18
! Inl
Z80A
CPU
7415244
Ay-Aq
20
1 1
DD,
22 i
DIR G
1 \q
k] BUSACK

Figure 7.2 780 Target Address and Data Buffers

Sv

2 4x1K
< « <
AIS /5 12 ! 5 - ROMO
A, ; n 2 L ROM1
A 2l 828126 e 21 7418138 R ROM2
Ay, 3 S 4 ” ROM3
Ay 4 RFSH —¢ u RAM3
- 7 MREg —= fo RAM2
< ¢ VEN 3 RAM1
_ s 7 RAMO
S0-S2
_— N,l Iu
< r—
-3x1K
Sv
Figure 7.3 Target (Z80) Memory Decoding Logic
BD ,-BD,
MTMRA MTMRA
MUDS i -@/W
741.5245
N DIR
TSMRA
TSMRA W@/W
TUBR o
BDg-BD s

Figure 7.4 Data and Direction Enable for Byte_:;nd Word Accesses;5

-132 - .

8 MHZ _L
I“ lo - "% 3
\V4
k-3 19 Is L
TBUSREQ
[4 ¢ 1 L E
___[_ 14 7418374 73 2 825126
MTR 2 2 2 DN
TR/W 8 i 4
MDTACK z < 1
b s [A 0
el 2 2 (1
Figure 7.5 Z80 BUSREQ Generation Circuit
_ |
MTR |
'l
T r—-—-
|
TR/W |
f
S |
MDTACK |
T r__
I
TBUSREQ |
Read Cycle Write Cycle

Figure 7.5b Master to Target (Z80) Read/Write Timing Diagram.

~133 -

—l—Sv

MTR
§ %é % 4x1K
1K ']

. MREQ

MTIJOR 12 1o 2 s o
IORQ

14
74]. 1z 4 7418244 '
1.S139 6 ~
RD
2 4
in < 14 ~
= WR
4 3 |
2 ~
MR/W —po—4
AR
Figure 7.6 Z80 MREQ. IORQ. RD. & WR Generation Circuit
780 TWAIT
7418161
8 MHZ — 2N
H
T«
CLR
]

D
TSMRA

Figure 7.7 Target (Z80) Wait Generation Circuit.

- 134 -

VECL

7418373 7415244
PDy-PD, TDyTD,

Figure 7.8 Circuit to supply Vector Number
during an IACK cycle.

-135-|

-9l -

Interface Board

J3

A4

c

A6

A9

A8

B7

A3

All
B31
C3
A32
B32
C32
B2

Figure 7.9 Z80 Personality Moudle Card

13 J4
A28 | PBO iNT |cis sV
u B28 | PBI NMI | A18 I3 , ;ﬁ
T Cc28 | PB2 RESET | A20
D, 0 A29 | PB3 BUSACK | C31 C26 PAS ——— 1A .
1 B29 | PB4 BUSREQ | C20 !
JUSRE 4LS138
s MHZ—) 74LS174 c29 | pBs HALT | C21 A27 PA6 g 74LS13
pls B27 PAT—— 3|C
1 13
P "
RELWAIT Ca4
"3 3 Qg 5) u 844 12
CLR 15 nl
MDTACK — T
o
ENR "'QG’ o 2 't
—_— 7418139 7415244
MTRA " n i§
MTR ——E -
R D44 n
MTL/OR t—u D8
4x1K
L I
MR/W 12 Do _ X sV
T - g
T. It s
BUSREQ
. . L L] oL
TR/W. /8%
£ “ E36 ¢
n
2] sV
! " o 1
§ MHZ IT__] K|
dj Il 3 ~ 1y 2] [1]
3 T 2 1 J4 wl V L P a 74105161 W‘_A]-'ﬂ
g s s © % ég; -1 € 1 .
1] 74LS373 ¢ c| 74LS244 |4 N 8 MHZ—25
Fo2 2 JD2 AM 74LS374 4 gas126
PD3 ——* it 2 TD3 C4 — " a
PD4 '3 n_u ' __TD4 A2s MTR
‘P‘DSV 14 § 3 1 TDS C25 TR/W- [b ¢
PD6 n] Ad44 [] D36 s TD6 A2 _ D28 E8
D7 “ 3 TD7 C2 MDTACK—1 1
- X c ")
— 1] " v mm -
ENL- e
11— o
TSMRA 1
TUBR =
TR -4 Ll _TA0 (J4 AS)

A17

Z80 Target

[}
z A x . 9 RAMOL
= 21p 74LS138 1. T ol RAMIL
/s K] PR :; ¢ «l___ROMOL
| = 0L | romiL
AIZ-A 23 __1“
141.4 LDS is 5 RAMOH
MEM UDS 4 ol RAMIH
A n of ., f—ROMoH
1c
ic15 B 7415138 | 2 .| ROM1H
- S18 3] -]
. N 14 D L. 2 4| 520
" —[I‘l i s . “ :
S19 >
2x1K 2x1K =
5V 5V
1/0 Global
k4 8) A
17 2 B)
< 32 To Chip
12L6 C Select (CS) of
i 1/0 Devices
ArAy, 7415138 :
ic20
X3 —
ic19 -I-;——-M6800
—————] /JOPAGE
'3 VPADRIVE

Figure 7.10 Target (MC68000) Memory & 1/0 Decoding Circuits

-137 -

UDS

LDS

CLK

DTACK
o——

' ,f——o0 /"
LR . R
2 7418273 | O

| D, BERR
D= S A

' '————-o”
0, LK21
E . 'L__o
D,
. s
1 C
' . e o
v ic25
: osi2—o0

Figure 7.11 Target (MC68000) DTACK Generation Circuit

AAA-

1, 4 ' NMI J1C2

INTACIA 1
D INTACIA?2

HED B INTPI/T 1a
INTPI/T 1b
INTPI /T 2a
ic23 ‘ ic24- INTPI]T2b

IPL} ———A, Io oy
Lo—|a, L

7418348

IPL2———{A,

+—p

INT2 J2C3

INT1 J12C2

(a)

Figure 7.12 Target (MC68000) 1/0 Devices Interrupts

- 138 -

Y,
741.S138
A l L .
Ay 2 '
2 ic21)
A, ol
INTACK .
Yo

3’— 68001R0

D‘—— INTON

16 h)
< 2 5 1 o]
HED A
lo 4 14 \
1" 4 /s WJ]
iz 5 ic22 o L v
'3 é n 2
(4 7 1o L]
3
A o b
§ 22K 2
Sv
(b)

Figure 7.12 6800 Interrupt Request and on Board Interrupt Enable

-139 -

8$MHZ

1} [} 13 Iy
\V4 p—
" "] €52 Cs1
____E—. o7 13 [} lo Q3 . m
MTR 14 741L.S374 5 2 £2S129
TBG < = 2 4|22 p TBGACK
TAS ! ki 4 (MTRA)
TDTACK k4 i z
4 X3 14 " Ql
3 2 5 12 Qa
Figure 7.13a M68000 Bus Request Generation Circuit
MTR
TBG
Inputs
FAS mmmmmmmm e =
FDTACK ~= = — = === =-
—
TBR —]
Outputs
TBGACK .
|

Figure 7.13b Bus Request Cycle Timing Diagram
140

8 MHZ
1]
’

3 9
17 /¢

7418374
= L} s
I'SMR ————— 13 7]
TSMRA——n——|8 4
TR/W 7 6
4 K}
3 2

H

' e g TWAIT
825126

3 o)

Figure 7.14 (a) TWAIT Generation Curcuit During

TSMRA

Target (M68000) to S.M Access

TR/IW

]
[

TWAIT I" 200ns“|

l'_ 300ns _‘l

Read Cycle

—_— - e e ek e e e b e - e i e e e e e - - -

Write Cycle

Figure 7.14 (b) TWAIT Timing Diagram

- 141 -

PAS

TINTACK

o

8 MHZ

-

i

7418374
"

7

Y

3

e TINT
'2 e VECEN
2 e THALT
e TRESET

825147

Figure 7.15a Supportive System to Target (M68000): Interrupt, Halt and Reset

PAS T
PA6 Inputs
TINTACK

—
- -
TINT —— ¥ —,
THALT - - = — —— — — — —

Outputs

TRESET — — @ o o e e

Figure 7.15b Supportive to Target /NT HALT &RESET Timing Diagram

- 142 -

Interface Board

A3 VECL

C30
A31
B31
C31

B32
C32
B2

A4 RELWAIT—

C6

A6 MTRA
AS

B8 TLBR- T

MTR

LDS

Cc8 TUBR —TUTSS5

A8

A9 MR/W-
A10 MAS-
CIO MLDS-
BIO MUDS-

3 MDTACK-

cs ENI -
2 TSMR
A7 TSMRA-
D/ TR
H
B5S TAEN__J
B6 TADIR 1

7 *MLS373 74LS244

TA16

TA17
74LS373

TA20
TA21
TA22
TA23

SMHZ

74LS374

8 MHZ
TD2 - A24 74LS374
TINTACK
TD7 - C26
8 MHZ
7418374 825126
TDTACK
VECEN
TWAIT ' fl
825126
74LS174 i

Fig. 7.16 M 68000 Personality Module Card

TINT
828147 THALT
" VECEN
74LS244
TINTACK—
TR/W
74LS244
TUDS

J4

C2
C21

A20

C17

C20

C22
A22

C3

A19

Cl6
A6

TDTACK
A E > A T C19

TDTACK

M68000 Target

8. SOFTWARE/HARDWARE INTEGRATION

This chapter brings the development of the Educational
Interface Board for Multifamily Microprocessor Teaching to its
logical conclusion by describing the final stages of system integration
and testing under two different operating system environments,

TRIPOS and UNIX.

8.1 The UNIX development software environment

In order for the Educational Interface Board to be implemented
on the supervisory system supporting UNIX, a device driver is

required to be written and build into the UNIX Kernel.

The device driver is the software interface between the

peripheral device and the Kernel modules which control the device.

As stated in chapter five, the I/0 system of UNIX is designed
around two device models, block and character. The block interface
is suitable for devices such as disks and tapes which look like a
random access storage to the rest of the system and treat data in
blocks. The character device interface is suitable for devices which
use unstructured input and output transfer such as terminals and

network media.

The structure of the UNIX operating system permits the user
interface to a device to go through the file system, where all devices

(including the educational interface board) are treated and accessed as

- 144 -

regular files. The device file differs from a regular file by the file type

located in its inode table which specifies character or block interface.

The internal representation of a UNIX file is given by three
system tables, inode table, file table and user file descriptor table.
The inode table gives the attributes of the file such as file owner,
access permissions and access times. The file table contains global
Kernel information such as the byte offset in the file where the user’s
next read or write will start. The file descriptor table is allocated for
every process, and contain:; information which identifies all open files
for a process. A file descriptor is returned by the Kernel for open()

and creat() system calls.

The device file interface is mainly consists of a few system calls
which perform special operations. They include open, read, write and
close a device. The algorithms which handle these functions are part
of the Kernel. The Kernel first executes the open() system call, which
opens the device file and sets up entries in the system tables, to allow
a process to communicate and access data on the device file. The
Kernel then returns the user file descriptor to the calling process.
When executing read() or write() system calls, the Kernel uses the
file descriptor as an index to access the three system tables, and from
the inode table the Kernel locates the required data. For character
devices such as the interface board driver, the input output control
system call, ioctl(), is used to provide an interface which enable
processes to control the device. The ioc_'tl() system call has the

following notation :

- 145 -

ioctl(fd, command, arg);

Where fd is the file descriptor returned previously by the open()
system call. Command is a request passed by the user program to the
driver to perform certain actions such as accessing shared memory or
target memory. Arg is a parameter which points to a structure.
When a process is no longer required to access an open device, the
Kernel closes it by executing the system call close(). The Kernel
manages the close operation by manipulating the file descriptor and

the corresponding file table and inode table entries.

The development of the device driver goes through the following
phases : i) developing the driver software on a UNIX machine which
is provided with all parts of the Kernel. ii) building the UNIX
Kernel. iii) Transferring the Kernel to any other UNIX development
system. iv) testing and debugging. Once the driver is built into the
system, the environment for software development and debugging
becomes very restricted,
and any development or correction made to the driver

would require going over the development phased mentioned above.
This can result in frustrating development efforts. On the other hand,
since the driver is written in C language, this can improve the
development time and allow for higher level functions to be included

in the driver.

For the MC68000 educational interface board, a UNIX special
character device called "/dev/m# has been created within the filing

system.

- 146 -

The user program is responsible for feeding the driver with the
required information to carry out the requested tasks. The user has to
define in his program a buffer, where the data is to come from or go
to, size of the buffer, which represent the number of characters to be
transferred, and also has to set an address off'set. Before the user can
actually perform any read or write to the target memory a request
must be made to the Kernel to open the specified device file. The
arguments of the open call specify the device name and read write
mode type. If the open is successful, it returns a valid file descriptor
and the device is ready for action. An unsuccessful attempt will
result in the return of -1. The user, is then required to use the ioctl()
call to inform the driver of type of action to be taken. As the Kernel
receives the request command, it compares it with the command
options‘ supported by the driver. If a successful match, then the
requested routine will be called, else an input output error is reported

to the user.

If a valid request has been made, then all the input and output
communications is done using the two calls read() and write(). For
both calls, the first argument is the file descriptor returned previously
by the open() call. The second and third arguments are the buffer and
buffer size,

which were defined earlier in the user program. Each of the read and
write calls returns a byte count which specifies the actual number of
data transferred. A returned number of zero indicates an end of file,

and -1 will signal to the user that there is an error of some kind as

- 147 -

the returned byte count in a write call does not equal the number of

bytes supposed to be written.

For shared memory read accesses, the first test is to check that the
total number of characters to be read does not exceed the shared
memory space limit, which was set to 4 kbytes. If the test is
successful, shared memory address is set to the shared memory
address (860000),, plus any address offset supplied by the user. A
counter is set 1o zero, and a test is made on the number of characters.
While the number of characters is valid, a pass(c) routine is called to
return characters to the user, and the shared memory address and the
counter are increased by one. For shared memory write access, a
cpass() routine is called to pick up characters from the user’s buffer.
Characters are to be transferred until the byte count goes to zero or

an error occurs, where a -1 is returned.

8.1.1 Operation procedure

First, the user selects the target microprocessor board which is
required to be studied. Its appropriate personality module card is then
plugged into the educational interface board, and the two boards are
plugged into the provided system back plane slots.
In order not to generate any illegal interrupt which will cause the
system to enter a halt state, it is preferable that the UNIX system is
shut down before any boards are plugged in. After all the cards are
in place, the system can then be rebooted. During the bootstrapping

procedure, the Kernel begins an initialisation phase which includes all

- 148 -

the drivers. And as the educational interface board is initialised,
communication with the target system can start. The bootstrapping

procedure of the UNIX system has been described in chapter 3.

8.1.2 Support software

Apart from the wide range of utilities and programming tools
supplied with the UNIX system, such as the C and Fortran compilers
and the Omnia assembler, a number of small software programs have
been written specifically for the support and testing of the
master/larget interface environment. The exmem.c is a short C
language program which examines the contents of either target or
shared memory locations. When it is executed, the user is required to
enter T for target memory or S for shared memory, start address in
hex and the number of bytes required to be examined. The hexload.c
is another C program used to down load the Intel Hex records into the
specified target memory location. The loaded code can then be
executed by issuing a RUN command. Other commands have also
been tested. They include halt and reset the target system, stop and
resume program execution and interrupting target processor. A
number of Z80 and MC68000 assembly code programs have also been
written to test target to shared memory read and write, moving
blocks of data between the target and shared memories, reading from

target input port and writing to target output port for visual display.

After verifying that the master/target interface is operating
correctly and as expected, an educational debug software system can

then be developed, in the programming language C, to provide a

- 149 -

debugging environment facility for monitoring the target activities

via direct memory access.

The debug tool, which consists of a range of commands, is to
provide

the following essential features :

i. Direct data manipulation of shared memory, target memory and

target 1/0 locations.
ii. Data transfer between shared and target memories.
ii. Load and save in Intel hex format.
iv. Examine and modify target registers.

v. Single step and execute program. In single stepping the program
is executed one single instruction at a time to allow the user to
inspect the contents of memory, registers and to check that the

results are as those expected.
vi. Relative jump off'set insertion.

vii. Breakpoints insertion. This feature is to enable the user to view
the effects of memory accesses at specified addresses in program

memory.

8.1.3 The software development cycle

The software development cycle goes through several
development phases before the program is successfully executed in
the target memory. The first step in the development process is

defining the functions of the program, followed by the designing

- 150 -

phase. Then comes the phase of coding the program in either
symbolic assembly language or high level language. Using the ready
available powerful UNIX tools such as editors and file management,
the code is typed and saved as a source file. Depending on the source
file type, the Omnia assembler or a cross compiler is used to translate
the sources code to an Intel hex format object file. The object code is
down loaded, via direct memory access, into the target memory and
debugged. At the end of the debugging phase, the development
process enters its final phase by executing the program on the target

system.

A key advantage of choosing UNIX, in this study, over other
available operating systems is its multiuser environment and its
powerful utility tools. As users benefit from sharing the expensive
devices such as high speed printers and storage media, they also
benefit from sharing only one target system. During the software
development cycle, users usually spend a great deal of time in
designing, coding and typing their programs before they actually
reach the stage of downloading the object code, into the target
memory, for debugging. At this stage only one user is allowed to
communicate with the targét system, the other users would be busy

at different development phases.

- 151 -

8.2 The TRIPOS development software environment

As have been seen in chapter 5, TRIPOS and its programming
language provide a good and simple environment for hardware
development. Because TRIPOS devi(;e drivers (unlike UNIX drivers)
are not an integral part of the Kernel, no special Kernel is needed to
be build or rebuild each time any changes or corrections are made to
the driver. This feature will result in a simple and straight forward
implementation of new devices. The time taken to produce a TRIPOS
device driver is considerably reduced by this feature, and the time

for debugging and implementing test programs is also less.

Some TRIPOS devices can even communicate directly with the
microprocessor without the need for drivers. These devices are
memory mapped and they use the system backplane bus for
communication. If a device is required to interrupt the processor for
any reason, then a device driver is required. The packet transfer
technique, which is used to communicate between two tasks or a task
and a device driver, and the structure of TRIPOS device driver have

been described in chapter 5.

Once the educational interface board and the selected target
board are plugged into the provided slots, power is applied to the
system. The supervisory disc based system is then boot strépped,
from the system floppy disc, to load the TRIPOS operating system,
and various operating system start up procedures, such as setting

time and date, are performed.

- 152 -

A set of software test programs, similar to those written under
the UNIX environment, have been developed in BCPL language to
support the multi-family microprocessor interface environment
running TRIPOS. Two different target boards, the Zilog Z80 and the
Motorola MC68000, have been used successfully in the testing

process.

The use of two different target processors is to demonstrate the
universatility of the technique used in this project. Eight, sixteen and
thirty two bit processors can be interfaced to the MC68000
supportive system through the educational interface board. But due to
pin limitations in J1 connector of the supervisory system backplane,
only byte and word accesses are possible. And the integration of
educational interface hardware with two different software
environments is to demonstrate the flexibilities of the approach used
to the problem of multifamily microprocessor education and

development.

- 153 -

9. CONCLUSIONS

The aim of this study has been to develop an economical
educational environment to allow students to examine and
understand the behaviour of the currently available 8, 16 and 32 bit

microprocessor families.

It is apparent, from the review of the available microcomputer
educational systems described in chapter 2, that the in-circuit
emulator is one of the most powerful techniques available for this
purpose. However it is probably also the most complex and
expensive approach. The high cost of such specialized systems has
forced the manufacturers of in-circuit emulator based development
systems to offer communication link programs and high-level
software development and debugging tools for use with a wide range
of host computers in order to allow users to connect in-circuit
‘emulators to their own host computer. For educational institutions,
the provision of a sufficient number of such working stations is often

a severe financial constraint.

An examination of the bus structures of various microprocessor
families has shown that there is little fundamental difference
between the control timing sequences of many processors. These
sequences are used for address and data validation as well as

direction control and most microprocessors also have provision for

-154 -

direct memory access. The success of this study has been based on the
ability to exploit these common features to transform between the
bus signals of different processors in order to provide a universal

development environment.

The general purpose Educational Interface Board (EIB) which
has becn designed and implemented provides a communication
environment for users to study, monitor and control the operation of
a wide range of different microprocessor based target systems. The
supervisory and target processors form an asynchronous, shared
memory multiprocessor system. This development environment can
be used to compare the performance of microprocessors from
different families quickly and simply, without having to invest in the

complete development system marketed by each manufacturer.

The MC68000 processor was chosen as the supportive processor
because it was considered to be the most powerful and versatile
microprocessor available when this study started. Several features of
its architecture support the implementation of the two sophisticated
operating systems, the single user TRIPOS system and the multi-user
UNIX system,used during this study. These features include the large
linear addressing sbace available, dual-state processing and a seven
level interrupt priority scheme. The architecture of the MC68000 is
also conducive to the use of high level languages such as BCPL and C
which are, respectively, the primary development languages for the
two operating systems implemented. Use of the relatively advanced

MC68000 processor with its large hardware capability on the

- 155 -

supportive section of the development system has meant that the
component count on the interface board used with a particular target

processor has been minimised.

This hardware interface has been successfully tested under two
different software environments. The TRIPOS operating system was
used first because of its inherent simplicity and the straight forward
manner in which it handles hardware. This simplified debugging and
made test software easy and quick to implement. The recent
introduction of the Commodore Amiga machine (which operates
under a TRIPOS based operating system and uses the MC68000) has
further increased the popularity of TRIPOS and a range of high level
languages and software development packages are now
available ¥
TRIPOS is, however, essentially a single user system but its
portability makes it cost effective and would allow the provision of

enough work stations for multi-family microprocessor educational

purposes.

During the course of this study, the UNIX operatingbsystem
became well established for MC68000 based computing systems and -
the development system has been integrated into and operated in this
environment. It offers several advantages to the user. Additional to
the wide acceptance of this operating system, it offers many tools
directly applicable to software development for microprocessors.

These include tools for program editing , document creation and

- 156 -

formatting, file maintenance and project management. The richness of
the native capabilities of the system makes it easily extensible to
tasks it was not designed to perform originally, such as control of
external microprocessor based target systems. In the education and
training field, a unified procedure for file editing, storage,
downloading of object code, debugging and the monitoring of target
systems is an attractive feature. Since the multi-user/multi-tasking
capability is the most important feature of this operating system,
users have the benefit of sharing the full system resources.

They can, therefore, each simultaneously access the system during all
the phases of the microprocessor software development cycle and
development programs can be shared among several users. No
duplication of target hardware is required and the UNIX environment
has proved to be highly successful when used with multiple
microprocessor software development system in the educational

environment.

The proposed microprocessor development system has the major
advantages of universatility, ﬂexibiiity and economy. The number of
components needed in each target system has been minimized and
most of the necessary complexity is associated with the universal
supportive system. It should be possible to interface any currently
available microprocessor to the supportive system using the EIB. The
hardware is capable of being integrated into several software
environments, thereby providing the user with his own choice. The

system is easy to use and appears to be cost effective. The EIB used in

- 157 -

the UNIX environment therefore seems to satisfy the ever increasing

demand for multi-family microprocessor education at low cost.

- 158 -

APPENDIX A : Supportive System Bus Specification

Back-plane pin-outs

Edge Connector J1
Pin No. Row a Row b
32 +5V +5V
31 -5V -5V
30 D14 D15
29 D12 D13
28 D10 D11
27 D8 D9
26 D6 D7
25 D4 DS
24 D2 D3
23 | DO D1
22 AS BG
21 ECLK HALT
20 RESET BR
19 R/W DTACK
18 VMA VPA
17 BERR BGAGK
16 UDS LDS
15 CLK A20
14 Al8 Al9
13 Al6 Al7
12 Al4 AlS
11 Al2 Al3
10 Al0 All
09 A8 A9
08 Ab A7
07 A4 AS
06 A2 A3
05 A2l Al
04 A22 A23
03 -12V -12V
02 +12V +12V
01 oV oV

- 159 -

Back-plane pin-outs

Edge Connector J2
Pin No. Row a Row b

32 +5V +5V
31 +15V -15V
30 FCO DLY1
29 FC1 DLY2
28 FC2 DLY3
27 FC3 DLY4
26 INTACK | DLYS
25 DLY6
24 DLY7
23 IRQ 7 DLY8
22 IRQ6 10PG
21 IRQS 68 PG
20 IRQ 4
19 IRQ3
18 IRQ2
17 IRQ1
16 BGOUT BGIN
15 IAOUT IAIN
14
13
12
11
10
09

- 08
07
06
05
04
03
02
01 oV ov

- 160 -

Master Signal Descriptions :-

Dn
An
68 PG
I0PG
AS
UDS
LDS
R/W
DTACK
BERR
FCn

DLYn

VPA

VMA

ECLK

CLK

BGour

BGIN

Data bus lines

Address bus lines

Partial address decode to signal 6800 device page address.
Partial address decode to signal 10 device page address.
System address strobe

Upper data strobe - when asserted signals D 5-Dg valid

Lower data strobe - when asserted signals D,-D, valid.

Read write line

Data acknowledge - signals successful completion of bus cycle.
Bus error - signals and terminate bad bus cycle.

Function codes - signals bus cycle type.

Delay signals - DLY1 is asserted 1 clock cycle following assertion

of data strobe. Used by peripherals for timing DTACK .

Valid 6800 peripheral address - driven low by 6800 type
devices to start 6800 bus cycle.

Valid memory address.

6800 device clock - 1 MHZ clock used for 6800 device
synchronous bus cycles.

System and arbitration clock - 8 MHZ.
Bus request - driven by bus master to request bus access.

Bus grant - out daisy chain signal. Back plane connects
BGOUT to BGIN of successive slots.

Bus grant - in daisy chain signal - bus masters receive
bus grant on this pin and propagate it on BGOUT .

- 161 -

IREQn Interrupt request-driven low by requesting peripheral.

1A0UT Interrupt acknowledge out daisy chain signal-backplane
connects JAOUT to IAIN on successive slots.

1AIN Interrupt acknowledge in daisy chain signal-peripherals
receive interrupt acknowledge on this pin and propagate to
successive slots by driving JAOUT .

- 162 -

!

APPENDIX B: Z80 Target Bus Specification

Back-plane pin-outs

Edge Connector J1
Pin No. ow a Row b

32 +5V +5V
31 BAI BAO
30 PULLED UP | 2*CLK
2293 PULLED UP | PULLED UP
2
27
26 D6 D7
25 D4 DS
24 D2 D3
23 DO D1
22 .
21 M1 HALT
20 | RESET BREQ
19 | RD_ WR
18 NMI INT
17 WAIT RDY
16 IORQ MREQ
15 CLK RFSH
14 ov ov
13 ov oV
12 Al4 AlS
11 Al2 Al3
10 Al0 All
09 A8 A9
08 A6 A7
07 A4 AS
06 A2 A3
05 AOQ Al
04 IEO 1EI
03 -12V
02 +12V
01 ov oV

- 163 -

APPENDIX C : M68000 Target Bus Specification

Back-plane pin-outs

Edge Connector J1
Pin No. Row a Row b
32 +5V +S5V
31 A22

30 D14 D15

29 D12 D13
28 D10 D11
27 D8 D9
26 D6 D7
25 D4 DS
24 D2 D3
23 | DO D1
22 AS BG
21 ECLK HALT
20 RESET BR
19 R/wW DTACK
18 VMA VPA
17 BERR BGAGK
16 UDS LDS
15 CLK A20
14 Al8 A19
13 Alé6 Al7
12 Al4 AlS
11 Al2 Al3
10 Al0 All
09 A8 A9
08 A6 A7
07 A4 AS
06 A2 A3
05 A2l Al
04 A23
03 -12V INTA
02 +12V INT
01 oV ov

- 164 -

APPENDIX D : PAL Equations

This Appendix describes the signals generated by the PALs and the
cquations used.
As has been shown in Figure 7.10, the memory and 1/0 decode of the
M68000 target system is achieved using a 14L4 PAL driving a pair of
74L.S138 decoders.
Three outputs from the PAL drive the A,B and C inputs of the LS138 pair,
the remaining output is used to enable the 1/0 decode circuit with a global

enable of a 2K area at 80000,, to 80FFF .

MEM = Ax.A15.A14.RAM.ROM
+ Ax.A15.4 14.A 13.RAM.ROM
+ Ax.A15.RAM .ROM
+ Ax .RAM .ROM
+ Ax.A 15.RAM.ROM
+ Ax.A15.A14.A 13.RAM .ROM

Where Ax = A23.422.A21.A20.A19.A18. A 17
A16.A15.A14.A13.A12

The first term enables the memory decode dependent on the address lines
and the RAM and ROM size selection.

The next two terms, A and B, can be considered as a two bit encoded signal
that is then decoded by the 74L.S138 and via a further PAL to select one of
four pairs of RAM or ROM. As the target is a 16 bit processor the devices

are selected in pairs.

- 165 -

+ Ax.A15.A 14.A13.4 12.RAM .ROM
+ Ax.A15.4 14.RAM .ROM
+ Ax .A 14.RAM .ROM

The fourth output term is asserted over the 2K page at 80000,

104 68 = A23.A22.A21.A20.A19.A18. A17
A16.A15.A14.A13.A 12

- 166 -

IC19 is a 12L6 PAL which is used to encode the low address lines in order
that, when decoded by a 74L.S138, an even map can be obtained. Three of
the outputs drive the A,B and C inputs on the decoder the remaining three
are used as a globle ‘6800’ 170 device decode, a global ’68000° 1/0 device
decode (both available at the J2 connector) and a VPA df;code to initiate

6800 cycles and Auto-vectoring.

10&68AS_ZT‘ A10.A9.A8.A7.A6.A5. A4.A3.A2
+IO&68AS OA__9_A_8_A_7A_£A5 A4.A3.A2
+ 10&68.AS. A 10.A9.A8.A7.A6
B = 10&68.AS.A11.A10.A9.A8.A7.A6.A5. A4.A3

+ 10&68.AS.4 11 o A9.A8.A7

C =10&68.AS.A11.A10.A9.A8.A7.A6.A5
VPADRV =10&68.AS.A 11
IOPAGE = 10&68.A11

M 6800 = I0&68.4 11.

- 167 -

APPENDIX E : The Educational Interface Board Circuit Diagram

The following page shows the complete circuit diagram of the

MC68000 educational interface board.

- 168 -

A2-45 A516

H245 -«

€245

MLDS (1J CI0)

A244

A374

B244

C244

IMA)!1

Al61

A 129

H373

at

n2)s

K245

1623

A 124
TAEN

Till

G245

i>23

Cs521

UNIVERSITY OF BATH

schoolofelectrical engineering

fAS

Educational Interface Board For The

MC68000 Based-System LATEST ISSUE

1%7 Tty

REFERENCES

(1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

Noyce R.N., and Hoff M.E.,jr : "A history of microprocessor
development at Intel”, IEEE Micro, Vol.1, No.1 Feb.1981

Gupta A., and Toong Hoo-Mind : "Microprocessors The First Twelve
Years", Proceedings of the IEEE, Vol.71, No.11 nov.1983

Farrell J.J. : "Advanced Personal Computers and Their Processors",

Mini/Micro 1983 conference records.

Fernandez E.B. : ‘"Comparison and evaluation of 32-bit

microprocessors", Mini/Micro S.E 1984 conference records.

Strang B., and Woodhams F. : "Microprocessor training equipment”,

microprocessors and microsystems, Vol.4, No.5 June 1980.

Cosserat D. :"MicroSim-a new approach to program development",
microprocessors and microsystems, Vol.3, No.2, March 1979, pp.95-

98.

Whitworth 1. : "Teaching microprocessor techniques to nonelectronics

engineers", microprocessors and microsystems, Vol.4, No.5 June 1980.

Teja E.R. : "In-circuit emulators aid designers as they move from 8 to

16-bit processors", EDN, August 4, 1982, pp.65-75.

- 169 -

(9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

Everett C. : "New 16-bit microprocessor emulators add featuresbut
performance quirks limit usefulness”, EDN, August 9, 1984, pp.93-
104.

Glover J.R.JR : "Integrating hardware and software in a computer
engineering laboratory”, 1EEE Transaction on Education, Vol.E-24,

No.1, Feb.1981.

Lumley R.M. : " An industrial microcomputer education program’,

IEEE Transaction on Education, Vol.E-24, No.1, Feb.1981.

Holdstock k. : " An interface between a PDP11/20 and an M6800",

Final year undergraduate project, University of Bath, 1979.

Whitworth P.F. : " A Multi-Family Multi-Microprocessor Education
and Development System”, PhD thesis, 1983, University of Bath.

Smith D. : " 32-bit microprocessr chips offer system-like benefits”, EDN,
September 19, 1985.

Osborne A. :" An introduction to microcomputers volume 2 some real

microprocessors", Osborne & Assoc.,Inc.

Motorola : " MC68000 16-Bit Microprocessor User’s Manual", Second
Edition Motorola Inc, 1980.

Winpigler D.J : " The 32-bit architecture of the M68000 family",

Mini/Micro N.E, 1984 conference records.

- 170 -

[18]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Osborne A. and Kane G.." 16-Bit Microprocessor Handbook",
Osborne/Mc Graw-Hill, 1981.

Scanlon L.. :" The 68000 Principles and programming", Howard
W.Sams & Co.,Inc.

King T. & Knight B. " Programming The M68000", 1983, Addison-
Wesley Publishers Ltd.

Tanner D.G " Real-Time Simulation of Power Systems", PhD Thesis,
1982, University of Bath. |

Williams S.K " Power System Optimisation and Stability Studies using
Real-Time Simulation", PhD Thesis, 1986, University of Bath.

Dale L.A " Real-Time Modelling of Multimachine Power System", PhD
Thesis , 1986, University of Bath.

Western Digital Corp. : " Western Digital 1983 Components
Handbook", 1983.

King T.J. : " Tripos user guide ", school of Mathematics, University of

Bath, 1983.

King T.J. : " Tripos programming guide ", school of Mathematics,
University of Bath, 1983.

-171 -

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

King TJ. : " Tripos technical guide ", school of Mathematics,
University of Bath, 1983.

Richards M., Alyward A.R., Bond P., Evans R.D., & Knight B.J. : "
TRIPOS-A Portable Operating System for Mini-computers " Software-
Practice and Experience, Vol. 9, 1979, pp.513-526.

Bourne S.R : " The UNIX system”, International Computer Science

Series, 1983.

Ritchie D. and Thompson K. : " The UNI X Time-Sharing System", The
Bell System Technical Journal, July-August 1978.

Thompson K. : " UNIX Implementation”, The Bell System Technical

Journal, July-August 1978.

Ritchie D.M. : " The UNIX I/O System", The Bell System Technical
Journal, May 1979.

Dijkstra E.W. : " Cooperating Sequential Processes", in programming

languages, ed. F.Genuys, Academic Press, New York, 1968.

Bach M.J. : " The design of the UNIX operating system”, Prentice-Hall

International, Inc., 1986.

Bourne S.R. : " The UNIX Shell", The Bell System Technical Journal,
July-August 1978.

-172 -

[36]

[38]

[39]

[40]

(41]

[42]

[43]

Naur P.(Ed.) : " Revised Report on the Algorithmic Language ALGOL
60", The Computer Journal, 5(1963).

Barron D.W.et al. : " The main features of CPL", The Computer
Journal, 6(1963).

Emery G. : " BCPL and C", Black well Scientific Publications, 1986.

Richards M. : " BCPL the language and its compiler", Cambridge
University Press, 1980.

Kernighan B. and Ritchie D. : " The C programming language",

Prentice-Hall Inc., 1978.

Hoffner Y. and Smith M. F. : " Communication between two
microprocessors through common memory", microprocessors and

microsystems, Vol.6, No.6, July/August 1982.

Weitzman C. : " Distributed micro/mimi computer systems", Prentice-

Hall, 1981.

Deitel H.M : " An Introduction to Operating Systems", Addison-Wesley
Publishing company, 1984.

Hudson M. and Hausmann G. : " A designer guide to virtual memory

management”, Electronic Engineering, July 1985, PP.55-68.

-173 -

[45]

[46]

[47]

Phillips D. : " Memory-management varieties suit different application

areas", EDN, September 6, 1984, pp.135-143.
Mitchell H.J. :" 32-Bit Microprocessors”, Collins Ltd., 1986.

Gledhill L. :"Tripos-life after the Amiga", Electronics & Wireless
World, Vo01.93, No.1619, September 1987.

- 174 -

