

University of Bath

PHD

Educational interface board for multi-family microprocessor teaching

Bakbak, Sami Ibrahim

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Educational Interf ace Board For

m ulti-Fam ily Microprocessor Teaching

Subm itted' by Sami Ibrahim Bakbak

for the degree of Ph.D

of the U niversity of Bath

1988

© COPYRIGHT

A ttention is drawn to the fact that copyright o f th is thesis rest with its author.

This copy o f the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without the prior written consent o f the author.

This thesis may be made available fo r consultation within the University Library

and may be photocopied or lent to other libraries fo r the purposes o f consultation.

Bath, May 1988

UMI Number: U005688

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U005688
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

u n i v e r s i t y ^ : a t h
l i b :?.". .

% 1 4 SEP 1988
eut

SUMMARY

The rapid grow th in the microprocessor population and the

increasing use of microprocessors in education has resulted in m any

different approaches to the problem of microprocessor teaching and

development.

This thesis examines the various common use techniques for

microprocessor education and discusses, compares the advantages and

disadvantages of each approach. A design and im plem entation of an

educational environm ent, for users to investigate and learn about

various cu rren tly available microprocessor fam ilies, is shown.

ACKNOWLEDGEMENTS

I would like to express m y sincere gratitude to the following

people who provided me w ith assistance and encouragement during

the course of this project.

Mr. A.R.Daniels, for his supervision and constant guidance.

Dr. P.F.W hitworth, for his interest and help.

To all member of staff and collegues a t the school of Electrical

Engineering, U niversity of Bath.

Finally, I would like to specially thank my fam ily who gave me

encouragement and support throughout these years.

CONTENTS

SUMMARY

ACKNOWLEDGEMENTS

1. IN T R O D U C T IO N .. 1

1.1 Microprocessor b ack g ro u n d .. 1

1.2 Microprocessor education r e q u i r e m e n t s 3

2. A REVIEW OF MICROCOMPUTER EDUCATIONAL

S Y S T E M S .. 7

2.1 Evaluation K i t s ... 7

2.2 Single Board M ic ro c o m p u te r s ... 8

2.3 Self contained m icrocomputers .. 9

2.4 Com puter s i m u la t io n ... 10

2.5 In-circuit em ulators .. .11

2.6 Mini/M icro c o m m u n ic a tio n ... 14

3. MICROPROCESSOR BUS S T R U C T U R E S .. 17

3.1 I n t r o d u c t io n .. 17

3.1.1 V irtual m e m o r y .. 21

3.2 Motorola MC68000 ... 22

3.3 The Intel 8086 M ic ro p ro cesso r.. 25

3.4 The Intel 80286 .. 28

3.5 Zilog Z80 m icroprocessor.. 28

3.6 The Motorola MC6800 m ic ro p ro c e sso r 30

3.7 The Motorola M6809 M ic r o p ro c e s s o r .. 31

3.8 The Mos Technology 6502 M icroprocessor..................................... 32

3.9 The Texas 9900 m icrop rocesso r... 34

3.10 The Zilog Z8000 M ic ro p ro c e s s o r .. 35

3.11 Zilog Z80000 37

3.12 The MC68020 m ic ro p ro c e sso r ... 39

3.13 The Intel 80386 40

3.14 S u m m a r y .. 42

4. MC68000 COMPUTER S Y S T E M ... 46

4.1 The supportive processor o v e r v i e w ... 46

4.2 The M68010 Microprocessor .. 49

4.3 The M68451 Memory Management U n i t 50

4.4 The Hitachi HD68450 Direct Memory Access

C o n t r o l l e r ... 51

4.5 The MC68000 M ulti-board computer s y s t e m 52

4.5.1 The Central Processing U n i t 53

4.5.2 The M emory Board ... 54

4.5.3 The EPROM/ROM B o a rd ... 55

4.5.4 The Floppy Disc Controller B o a r d 56

4.5.5 Hard Disc Interface B o a r d .. 56

4.5.6 The Bus Display and Peripherals Board 56

4.5.7 Additional b o a r d s ... 57

4.6 The MC68000 Single Board C o m p u t e r .. 58

5. THE SOFTWARE ENVIRONM ENTS... 66

5.1 I n t r o d u c t io n .. 66

5.2 The TRIPOS environm ent ... 67

5.2.1 TRIPOS filing s y s t e m ... 67

5.2.2 TRIPOS T a s k s ... 68

5.2.3 Inter-task c o m m u n ic a t io n .. 70

- iii -

5.2.4 TRIPOS device d r i v e r s ... 71

5.3 The BCPL programming la n g u a g e ... 72

5.4 The UNIX e n v i r o n m e n t ... 73

5.4.1 The development of U N I X ..' . 73

5.4.2 The S tructure of the UNIX operating s y s te m 75

5.4.2.1 The UNIX K e r n e l ... 75

5.4.2.2 The UNIX p r o c e s s ... 76

5.4.2.3 In terrupts and E x c e p t io n s 78

5.4.2.4 Inter-process c o m m u n ic a tio n • 79

5.4.2.5 The UNIX I/O S y s t e m .. 81

5.4.2.6 The UNIX file s y s te m .. 83

5.4.2.7 Directory s t r u c t u r e .. 84

5.4.2.8 The UNIX s h e l l .. 84

5.4.2.9 System b o o t .. 86

5.4.2.10 UNIX u t i l i t i e s .. 87

5.5 The C programming l a n g u a g e ... 88

6. THE EDUCATIONAL INTERFACE B O A R D .. 89

- iv -

6.1 Interface sp e c if ic a tio n ... 92

6.2 H ardw are d e s ig n .. 93

6.2.1 Address decoding l o g i c ... 94

6.2.2 A rbitration l o g i c .. 96

6.2.3 DTACK generation c i r c u i t .. 96

6.2.4 I/O controller ... 97

7. Target s y s t e m s .. 109

7.1 Target system sp e c if ic a tio n ... 109

7.2 The Z80 target s y s te m ..110

7.2.1 C ircuit d e s c r ip t io n .. I l l

7.2.1.1 The target I/O f a c i l i t y ... 113

7.3 The Z80 personality module c a r d ...115

7.4 The Z80 target i n t e r f a c e ...116

7.4.1 M aster to Z80 target memory access 117

7.4.2 The Z80 target to shared memory a c c e s s119

7.4.3 The Z80 target i n t e r r u p t s .. 119

7.5 The MC68000 target system .. 121

- v -

7.5.1 Memory maps and m a n ip u la tio n ... 122

7.6 The M68000 Personality Module C a r d ... 126

7.7 Master to MC68000 target memory a c c e s s .. 126

7.8 M68000 target to shared memory a c c e s s .. 128

7.9 Target In terrup ts .. 129

8. SOFTWARE/HARDWARE IN T E G R A T IO N .. 144

8.1 The UNIX developm ent softw are e n v i r o n m e n t 144

8.1.1 Operation p r o c e d u r e .. 148

8.1.2 Support s o f t w a r e ... 149

8.1.3 The softw are development c y c l e ... 150

8.2 The TRIPOS development software e n v i r o n m e n t 152

9. C O N C L U SIO N S... 154

APPENDIX A : Supportive System Bus S p e c i f i c a t io n159

APPENDIX B : Z80 Target Bus S p e c if ic a t io n ... 163

APPENDIX C : M 68000 Target Bus Specification 164

APPENDIX D : PAL E q u a t io n s ... 165

- vi -

APPENDIX E : The Educational Interface Board Circuit

D ia g r a m ..168

R EFER EN C ES... 169

1. INTRODUCTION

1.1 M icroprocessor background

The advancement of large-scale integration (LSI) and very

large-scale integration (VLSI) technologies have led to the integration

of over one m illion components on a single silicon chip, and the

implementation of most functional units of a traditional processor in

a small piece of silicon has led to a chip called a "microprocessor*. A

microprocessor is the central arithm etic and logic unit of a computer,

which is responsible for the fundam ental operations upon which all

computer intelligence is based. The term was first introduced in 1972,

after the era of microprocessors was heralded in 1971 w ith the

introduction of the Intel 4004, a "micro-programmable computer on a

chip The 4-b it 4004 Central Processing Unit (CPU) contained

2300 transistors and could execute 45 different instructions.

As the earliest microprocessors were 4-bit devices of limited

capabilities they were soon followed by 8-bit microprocessors that

generally contained a central processing unit control circuitry for the

central processing unit, an arithm etic logic unit (ALU) which could

perform m athematical calculations, two 8-bit accum ulators which are

used in "number crunching" tasks, a 16-bit index register to access the

memory, an 8-bit condition code register which displays the results

of the previously executed instruction, a stack pointer which

remembers where stored inform ation was held during an in terrup t

and a program counter that allowed the microprocessor to know

- 1 -

where it is in the program. In order for these microprocessors to

perform their functions efficiently, they utilize their instructions in

several addressing modes

Although the second generation commenced w ith the

introduction of the Intel 8008 in 1972, the domain of 8-bit

microprocessors witnessed several significant improvements in

hardw are and system concepts w ith the introduction of the Intel 8080

and the Motorola 6800 in mid 1974 The advanced 8-bit

microprocessors w ith their 8-bit external data bus usually contain

16-bit internal registers and can easily handle 16-bit words.

The need for increased performance and capabilities called for

16-bit microprocessors. The development of 16-bit microprocessors

began in 1974 w ith the introduction of the PACE chip by National

Semiconductor. The Texas Instrum ents TMS 9900 was introduced

two years later. Subsequently, the Intel 8086 became com m ercially’

available in 1978, the Zilog Z8000 in 1979, and the Motorola

M C68000 in 1980[2l

For most of the present requirem ents and applications, 8 and

16-bit microprocessors have been successful. They have been used to

build system s ranging from simple controllers to complex graphic

design workstations. However, there are some applications where

more processor speed, larger address space, improved performance,

high reliability and functionality are required which can only be

obtained by the use of 32-bit processors

- 2 -

M icroprocessors w ith 32-bit internal paths have been in

existence since 1980. However, the era of true 32-bit microprocessors

begins in 1981 w ith the commercial introduction of the Intel iAPX

4 3 2 ^ (it has been now w ithdraw n from the m arket due to its poor

sales due to the radical nature of its object oriented architecture).

National Sem iconductor was one of first m anufacturers to introduce a

m onolithic 32-bit microprocessor the 32032. Soon after tha t many

pow erfu l 32-bit microprocessors came to existence, like the Intel

80386, Zilog Z80,000, the Motorola MC68020 and recently the

M otorola M C68030.

The early microprocessors perform ed basic CPU functions only.

However as the microprocessor technology advanced, the integration

of a large num ber of auxiliary functions on the same microprocessor

chip became possible resulting in the increase popularity of computers

bu ilt w ith very few chips.

1.2 M icroprocessor education requirem ents

During their fifteen years of existence, microprocessors have

evolved at a dram atic increase in term s of numbers, technology,

com plexity, power, functionality and applications. In conjunction

w ith their progress, the power of the processor peripherals and

support devices increased rapidly . This enormous technological

achievem ent has introduced major problems and difficulties into the

teaching of microprocessor technology to students. The same problem

can also be fe lt by those who educate students in this field.

- 3 -

The design and implementation of any prototype microprocessor

based system has to pass through several education and development

phases before it can reach the production line and the skills and

understanding an Electrical Engineering student requires in order to

design a system involving a microprocessor or a microcomputer m ust

be defined.

Preparation and learning is the first step, where it is necessary

for the student or the engineer to be fam iliar w ith digital techniques.

That is, the basic understanding of the functions of logic gates and

circuits, switching theory, combinational and sequential logic, wave

shaping circuits etc. This stage also requires some knowledge of

com puter organization and microprocessor design techniques. Usually,

the theoretical teaching of the subject to student is well established in

the undergraduate curriculum programme. The same knowledge can

be gained from the special courses offered to engineers who are

w ithout prior knowledge of the subject, or in some cases, by self

education. Such courses cannot cover all the available devices nor can

they examine all the possible approaches to problem solving.

Microprocessor literature, microprocessor and com puter magazines,

and m anufacturers manuals should be consulted regularly for up-to

date knowledge.

The next phase is associated with the selection of the most

suitable microprocessor for the application.

Since there are so many microprocessors available, one should

reach a certain level in appreciation of the abilities of as many

- 4 -

microprocessors as possible before a processor is selected. In order to

select the most suitable microprocessor for the job, it is required for

the student or the engineer to examine several microprocessor

families. If a student or an engineer is only fam iliar w ith one

processor, he w ill check w hether that processor can cope w ith the job

or not. If that is the case, the processor will be used regardless of its

suitability .

However, if the student or the engineer has been introduced to

several microprocessor families, he w ill have the skills and experience

to choose the most suitable processor and fu rth er can examine new

devices fo r their suitability .

In order to expose students to different range of microprocessor

fam ilies suitable equipm ent for the practical sessions in softw are and

hardw are development is needed a so called development system . A

proper development system may have a keyboard and m onitor for

input and output, floppy disc drives for storage, system modules such

as CPU module, memory module, in-circuit em ulator, floppy disc

controller module, system firmware and monitoring modules. The

cost of such a system is usually high and it is essential to provide

sufficient sets of development system for each microprocessor fam ily,

for the num ber of users. The num ber of users could be high, resulting

in unnecessary large investm ent in equipment. This stage of the

development represents the central discussion of this thesis.

Once the processor is selected, a set of questions concerning

hardw are versus software tradeoffs should be answered. Only then

- 5 -

can the detailed hardw are design be started.

The next phase is related to softw are design, since the highest

perform ance of a microprocessor based system is dependent on the

quality of the softw are provided. This stage could be accomplished

by the designer him self or by a softw are expert. The hardw are

designer should a t least provide the necessary softw are required for

testing and debugging the prototype system.

The last phase of the development is related to the production of

a working system which successfully perform s the required

functions.

The work described in this dissertation can be divided to the

following three m ain stages:

i. Examination of the curren tly available microprocessor teaching

techniques.

ii. Design and im plem entation of the new adapted approach.

iii. Integration of the hardw are w ith development softw are

environm ent.

- 6 -

2. A REVIEW OF MICROCOMPUTER

EDUCATIONAL SYSTEMS

The rapid grow th in the microprocessor population and the

increasing use of microprocessors in education has resulted in m any

different approaches to the problem of microprocessor teaching and

development ranging from simple evaluation k its to more complex

in-circuit em ulators.

This chapter examines the various available techniques for

providing microcom puter education and developm ent and discuss the

strengths and weaknesses of each approach.

2.1 Evaluation Kits

Evaluation Kits, like the Motorola MEK6800D2 evaluation

k i t ^ , were originally introduced by the microprocessor

m anufacturers . They are used to fam iliarise users w ith the

fundam entals of a specific microprocessor fam ily . In addition to the

microprocessor, they contain a sm all am ounts of Random Access

M emory (RAM), a resident de-bug monitor, a hexadecimal keypad

which is used for input and a m ultisegm ent light-em itting display

used for output. Only a very lim ited am ount of inform ation can be

displayed at any one time, and programs have to be entered in

hexadecimal code. The lack of a real editing facilities, together w ith

the lim ited am ount of diagnostic inform ations that can be displayed,

and the necessity of entering programs in machine code, increases the

possibility of keying errors and often leads to students frustration .

- 7 -

Although evaluation kits are suitable for gaining fam iliarity w ith a

particular microprocessor fam ily, they are not really suitable for

system educational development or practical applications. As they are

designed to be as cheap as possible, they are very difficult to expand.

2.2 Single Board M icrocomputers

Like the evaluation kits, the major microprocessor

m anufacturers all offer single board com puter fam ilies based on their

own p ro d u c ts^ . The earliest generation of the single board

com puters had sim ilar facilities to the evaluation kits. W ith the

reduced cost of all types of memory and, w ith the support of sixteen

bit microprocessors, an improved softw are features and peripheral

devices are included in the latest version of the single board

computers. The m inim um softw are development facilities for single

board com puters would include a m onitor program to allow users to

single-step their programs and if required examine the

microprocessor’s registers and change memory locations , breakpoint

setting etc. An assembler and an editor is provided to construct and

correct the input programs. Some single board com puter

m anufacturers support high level languages such as BASIC. Usually

such system s would be provided with fu ll QWERTY keyboard, video

and storage facility interface.

Single board com puters would appear to be a low cost approach

to providing a microprocessor educational system, but, by the time

additional facilities (such as the QWERTY keyboard, VDU interface,

T.V or a monitor,floppy disc drive, application modules,etc.) are

added, they are no longer cost-effective specially if m any stations are

to be provided for a group of tw enty to th irty students. Incidentally,

as a result of the added facilities, the board complexity will increase.

The true microprocessor architecture will be hidden if students adopt

high level language, such as BASIC, at the early stage of

microprocessor learning.

2.3 S e lf contained microcomputers

A num ber of self contained microcomputers, sometimes called

"boxed computers' or "personal computers", such as Apple II, ACORN

BBC, and IBM PC, are in common use now in homes, schools, and

universities. They were designed prim arily for use as general purpose

processors of inform ation. Typical system s consist of the

microprocessor, up to 64K bytes of random access memory for 8 bit

processors, read only memory (fo r the operating system and language

com piler/in terpreter), VDU w ith graphics capabilities and

cassettes/floppy drives for storage and retrieval of inform ation.

Sixteen bit processor self contained system s available today have

bu ilt in W inchester technology disk drives up to fo rty megabyte, as

much as megabytes of random access memories, and can support

sim ultaneously several users. They support many high level

languages such as BASIC, Fortran, Pascal and C. Such system s are

increasingly being used for universities and business applications in a

stand alone mode or connected to a host m ainfram e/m ini com puter

system . The hobbyist m arket is also growing for such systems, and

m any companies develop extensive softw are products for use on such

system s.

The boxed com puter system s tend to provide better debugging

facilities than the system s described previously.

The single unit nature of these system s and their compactness

makes it difficult to expand them and difficult to interface their bus to

external devices for direct memory access purposes.

Such system s are useful for teaching com puter concepts and

high level languages. But, due to their capital cost, they are not

suitable if more than one microprocessor fam ily is to be studied.

2.4 Computer sim ulation

For some universities, instead of providing microcomputers to

allow students to approach the problem of microprocessor education,

have run sim ulators, such as M icroSim ^, on a host computer system .

This approach can successfully make a variety of assembly languages

available to the student and can allow a num ber of students to access

the sim ulator w ithout any difficulty in a m ulti-user environm ent. But

true inpu t/ou tpu t programming can not be achieved, nor does such a

system provide the student with exposure to the hardw are or to the

peripheral devices connected to the computer. Although sim ulators

can provide useful software support at all levels, the m ajority of

them cannot provide debugging facilities such as single step or trace

capability.

- 1 0 -

2.5 In-circuit emulators

The introduction of the microcomputer was quickly followed by

the realization that highly specialized design aids are required to

support microcomputer-based development efforts.

The in-circuit em ulators provide the ability to emulate

microprocessor operation in real time, where the system operation is

intended to be at clock speed and to display register and memory

contents to the user for inspection. W ith accompanying software,

em ulators can provide an efficient and powerful development tool to

integrate hardw are and softw are development during all phases of

the development c y c le^ l

There are three categories of in-circuit em ulators av a ilab le^ .

The first of these is the stand-alone em ulator, which can operate _

independently of the microprocessor development system or the host

com puter which is used to develop the microprocessor software.

N orm ally, by using RS-232C links the user can download the target-

system softw are into the stand-alone em ulator, then he can detach

the em ulator and use a CRT term inal to control the em ulator’s

operation. This method offers the benefit of freeing a host com puter or

a microprocessor development system for additional software

developm ent while hardw are/softw are integration is proceeding with

the em ulator.

The second form is the com puter-hosted em ulator, where a host

com puter is required for the emulation of a target processor

operation. Such em ulators like the Microcosm fam ily, supporting the

- 11 -

Intel 8086/186 fam ily of processors, can receive control from an IBM

Personal Com puter, a DEC VAX or an Intel Series III development

system .

The final form is the in-circuit em ulator based-development

system , where a microprocessor development system is required for

the em ulation operation. The in circuit em ulator is built into the

developm ent system to allow the development system to be

connected to the microprocessor target board under investigation.

Through an em ulator cable, which plugs into the target

microprocessor socket, the in- circuit em ulation based development

system can em ulate the target microprocessor and have control a t

operational speeds over all the signals norm ally controlled by the

microprocessor. This pow erful technique allow s program execution

in the system under test to be traced and in terrupted by the user at

the console of the development system . Furtherm ore, resources of the

developm ent system such as m em ory and I/O ports can selectively be

made available to the target system .

The development system usually provide sophisticated

debugging facilities such as single stepping, software tracing,

breakpoints setting, and real time tracing. W ith single stepping, the

program is executed one instruction at a time, where memory

contents, processor register contents and the next several instructions,

a fte r each step, are displayed to the user to check that the results are

those expected. Single stepping is a powerful method of prelim inary

testing, because bugs can be discovered before they can cause any

- 12 -

damage to the program or data. W ith the updated display the user can

a lte r register and m em ory contents while stepping through the same

segment of code repeatedly and hence can test the code for operation

under different conditions. A breakpoint is a trap, set in a program,

which allow s the program to be executed at fu ll speed or in a trace

mode up to where the breakpoint has been set. When the program

reach the breakpoint, execution is halted and the development system

debugger is in control. Setting breakpoints implies that the user can

locate the correct m em ory address for the breakpoint. Symbolic

debugging is a different technique, used by more advanced debuggers,

w here addresses are referred to as sym bolic names, which are defined

by the user in his original symbolic source program.

Since microprocessor design is critically dependent on operation

in real tim e, and since single step and softw are tracing do not provide

complete debugging facilities, m any development system

m anufacturers offer logic analyzer or real time trace facilities in to

the development system . In a real tim e trace, the user can connect test

leads to a selected num ber of points on the target board and run the

test program to capture data in real time; the traced data cannot

include the contents of internal microprocessor registers or of

memory.

The latest em ulators, such as the SDT816 (Symbolic Debugging

Tool for 8 and 16 bit microprocessors) m anufactured by Positron

Com puter Limited U.K, have the ability to assist in symbolic

debugging where a sym bol table is stored locally. Up to th irty two

- 13 -

hardw are breakpoints can be set and the system also provides real

tim e trace facilities. Additional to the system microprocessor, the

SDT816 can also em ulate coprocessor chips and other system chips as

well. As there is an em ulator for every related type of

microprocessor fam ily, the programs can even be executed and tested

before any target board is built.

The in-circuit em ulator based-development system is the most

pow erful technique available today to the problem of m ulti-fam ily

microprocessor education and development, and also the most

expensive approach where prices ranging from approxim ately five

thousand pounds to well beyond fifteen thousand pounds per station.

The high cost is due to their hardw are and softw are complexity. As a

resu lt of the high cost, their main use is in commercial firms, while

their use in education is very lim ited . Another disadvantage is tha t

the in-circuit em ulators are sold as a complete package, which will tie

the user to the development system m anufacturer softw are only.

2.6 M in i/M icro com m unication

Another approach to the problem of m ultifam ily

microprocessor teaching is where a m inicom puter. is connected to a

target processor by the use of serial or parallel link. Through a

term inal, the student can get access to the host computer, run the

editor and the cross assembler, then down load the object file to the

target processor board for stand-alone execution of programs. In

- 14 -

stand-alone operation, the target board will be connected to a

term inal and the student can use a resident m onitor program to

examine and control the execution of programs

The disadvantage of th is approach lies in the capital cost of the host

com puter plus the complexity of the target hardw are.

Another M ini/M icro communication approach is where the

target processor board is interfaced to a m inicomputer through an

externally controlled DMA channel. The technique is based on the

processor initializing a counter system which w ill provide an address

fo r data to be stored or retrieved when ever this is requested. When a

transfer is requested, the counter system w ill take control over the

processor bus and w ill provide the necessary address and control

signals needed to complete the transfer.

Such an approach is described by Holdstock 1̂2 ,̂ where a

Motorola M6800 target board is interfaced to a Digital Equipment

Corporation PDP 11 /20 . Due to the high performance and the high

speed of the host com puter used, the implementation of the interface

to the target processor is forced to be as an inpu t/ou tpu t device using

a DR11C 16 bit inpu t/16 bit output parallel port. This has the

disadvantage that the user is tied to a m anufacturer supplied cards to

provide TTL compatible lines for the target. The high capital cost of

the m inicom puter is another disadvantage.

The method examined and implemented in this thesis is sim ilar

to the one suggested by W hitw orth The suggested technique was

- 1 5 -

based on providing an interface between a Z80 microcomputer and a

target system such that the address, data and control lines of each can

be translated to the tim ings and levels expected by devices attached to

the other.

This w ork describes the design and im plementation of an

Educational Interface Board (EIB) which w ill allow the MC68000

based-com puter system (m aster) running the UNIX operating system

to communicate to any eight, sixteen , or th irty tw o bit

microprocessor based system (target).

- 16 -

3. MICROPROCESSOR BUS STRUCTURES

3.1 Introduction

As the function of the Educational Interface Board is to provide

a healthy environm ent for any two dissim ilar system buses to

communicate, this chapter begins w ith a discussion of the basic

requirem ent needed for a bus to bus interface followed by a study of

various currently available microprocessor bus structures.

The basic structure for any com puter system w ould include the

following three m ajor components, the microprocessor un it (M PU) or

the central processor unit (CPU) (fo r arithmetic,logic, and control

functions), m em ory , inpu t/ou tpu t interface fo r peripheral control,

and three system buses, the data bus, the address bus and the control

bus.

Regardless of the num ber of lines the processor m ay have, the

address, data, and control signals m ust be available.

The address bus is used by the processor to inform m em ory and

other peripherals of the location it requires to access.

The data bus transfers inform ation between the processor and

all the peripherals, including the memory.

The control lines carry all the control signals between the

control unit of the processor and all other devices that make use of

such signals.

- 1 7 -

Bus communication can be divided into tw o categories,

synchronous and asynchronous.

The synchronous bus requires the inform ation to be present on

the bus at the appropriate time. This procedure implies tha t the

tim ing mechanisms of the source and destination devices are

synchronized. Such system s have to be designed to operate sufficiently

slow ly in order to accommodate even the slowest devices. The

disadvantage of such system s is that the tim ing of the inform ation

transfer is determ ined by the slowest device in the system , hence

preventing fast devices from communicating at their high speed. The

principle advantage of such system s is their simple struc tu re w ith

less control signals required.

In the alternative approach, the asynchronous communication

bus, the bus transactions are term inated as soon as the required data

has been passed. An additional control signal is required in such

system s in order for the device being accessed to inform the accessing

device that the data is available. The accessing device m ay respond

w ith another control signal to acknowledge the acceptance of data.

The timing of the data transfer depends on the speed of the

communicating device. This flexibility is accomplished at the expense

of a more complex bus control structure.

As the microprocessor fetches and decodes instructions from

memory, a num ber of control signals will be generated to enable the

processor to synchronize its functions w ith the other components in

the system. The num ber and nature of the control signals varies from

- 1 8 -

one microprocessor m anufacturer to another. However, the following

control signals are common to most microprocessors.

a. control signal (or signals) to determ ine the direction of the data

transfer.

b. A means of a request signal by some peripheral devices to take

control over the system bus for direct memory accesses.

c. A means of grant signal that is to be used by the processor to

acknowledge transfer of control to external device.

d. A means of control signal tha t is to be used by slow m em ory or

I/O devices to effectively slow down the processor in order for

the slow device to complete its task.

e. A means of in terrupting the processor to demand attention and

to direct the program from its normal activ ity into another

higher priority service program.

f. A means of gaining absolute control over the processor. This is

usually achieved by the use of RESET control signal, which

resets most of the processor internal registers to zero before

setting up the program counter to point at some pre-determ ined

location.

As the Educational Interface Board was designed to provide a

dem onstrative and supportive tool for users, any features which are

available on the target processor should be available for investigation.

Also, it should be able to m onitor and activate all the target control

- 1 9 -

lines.

In general, the sequence of events involved in processor to

memory or I/O transfer is as follow :

i. A means of selecting a memory location to be accessed by

initiating a bus cycle by the processor.

ii. A means of informing the memory device of the direction of the

transfer i.e a read cycle or w rite cycle.

iii. Indicators to show that the address and /o r the data lines are in a

stable state.

iv. An acknowledge indicator to inform the processor that the

device is accepting the transfer.

As there are m any processor/m em ory protocol techniques used,

the above features have to be provided by one method or another.

When tw o dissim ilar buses are to communicate, the following

points require special consideration :

1. The w idth of the address and data buses of the tw o

microprocessors concerned.

2. W hether any of the processors is using a m ultiplexed data and

address bus. If this is the case, the interface board should be

able to dem ultiplex and multiplex the buses as required.

3. The basic control signals for bus to bus interface m ust be

available.

- 2 0 -

4. Voltage com patibility is an im portant factor to be considered.

But since the common microprocessor interfaces and drivers

available today are found to be TTL compatible, it is likely that

this will be of any major problem.

The next subsection gives a brief introduction to v irtual

m em ory, memory management, paging and segmentation. These term s

are to be mentioned later when describing various microprocessor bus

structures.

3.1.1 V ir tu a l m e m o ry

The first generation of microprocessor-based system s were

implemented around 8-b it microprocessors. The address range of such

system s was lim ited to 64 Kbytes. But w ith the decline cost of

dynam ic RAM (DRAM), it became economically possible to cover the

entire address space, not including those spaces which are already

occupied by ROM or I/O devices, w ith RAM. Such im plem entation

has offered one to one correspondence between logical addresses (

which are generated by the processor over its address bus) and

physical addresses (which are real memory locations where data is

read from or stored at). But soon the lim itation of 64 Kbytes address

range was realized. W ith today’s 16 and 32 bit microprocessors, th is

address range is no longer a problem, however, other variables (such

as cost, size and power consum ption) are to be considered. Taking

these factors into account, it becomes impractical to cover the address

range of such processors with RAM.

- 21 -

V irtual m em ory has been used to solve such a problem. The

v irtua l m em ory technique is based on swapping the unused parts of a

program between main memory and a secondary memory (such as a

hard disk un it) as required. A m em ory management unit (MM U) is

usually used for th is purpose. One of its main functions is to

translate the logical addresses into physical addresses to give the user

the illusion th a t all the logical addresses are actually implemented.

Two common techniques are used by most m em ory management

system s, they are paging and segmentation. W ith paging the memory

is divided into fixed size blocks, pages, usually between 512 bytes and

2K bytes long^44 .̂ W ith the segmentation approach the logical space

is divided into segments of varying length. Each scheme has its

advantages, paging simplifies the allocation of m em ory to users and

segmentation simplifies protection of different areas of user memory

space^45 .̂

The next sections will present, the study of several popular 8, 16

and 32-bit microprocessor bus structures.

3.2 M otorola MC68000

The M otorola MC68000 was the first microprocessor to

provide a true 32-bit internal architecture for its address and data

paths. Externally, the MC68000 has a 16-bit (D 0- D ls) bidirectional

data bus and a 23-bit (̂ 4 1-̂ 4 23) address bus that directly accesses 16

megabytes of mem ory. A 0, the least significant bit of the address bus

is used in ternally to the processor to generate the data size specified

- 2 2 -

by each instruction.

In simple system s, the MC68000 requires only four output

signals to initiate data movement between memory and the processor.

These signals are the address strobe C4S), the upper data strobe

((JDS), the lower data strobe (LD S), and the read /w rite signal (R /iv).

In a read cycle, the address strobe signal (a s) is asserted to indicate

tha t a valid data address is being output on the address bus.

Sim ultaneously, the UDS and LDS signals are asserted to enable the

selection of either the low er/upper data byte or both bytes. The

processor now w aits for the participant m em ory or I/O device to

present its data on the data bus and to assert the Data Transfer

ACKnowledge (DTACK) signal to indicate the completion of the data

transfer. This technique is the inverse logic used by m ost other

microprocessors where the processor w ill complete the read /w rite

cycle w ithin a fixed time, unless the input wait signal is asserted.

The m ajor bus interface of the MC68000 is the asynchronous timing

of the data bus transfers. W ith this interface flexibility, the access

tim ing of the processor is dynam ically controlled on each bus cycle

by the device being accessed via the handshake signal DTACK . Thus,

devices with vastly different access times can be mixed to perform at

maximum speed.

The asynchronous bus structure also handles hardw are failures

and invalid memory accesses. If an access is made to invalid memory

or I/O location, the DTACK signal will not be asserted. The MC68000

processor provides a mechanism to ensure that the processor w ill not

- 23 -

be hung up indefinitely by a device that fails to respond. This is

provided by the input signal, BERR, which when asserted, causes the

processor to enter exception processing to handle the error.

There are three signals associated w ith the MC68000 bus

arbitration scheme, Bus Request (B R), Bus Grant (b g), and Bus Grant

ACKnowledge (BGACK). When the processor receives a bus request

signal, it responds by asserting the BG signal which indicates the bus

w ill be available as soon as the current bus cycle is completed. The

external device m ust w ait for the A S , DTACK and BGACK signals to

be inactive before it can assert BGACK signal and negating BR signal

to claim the m astership of the bus. The processor output lines then

will enter a high impedance state until BGACK signal is released by

the external device indicating that it is through w ith the bus. The bus

arb itration logic provided by the MC68000 processor is the most

comprehensive and straight forw ard technique to date.

The MC68000 processor can also take advantage of existing

M 6800 support devices. To ensure bus com patibility, the MC68000

uses three special lines to access the 8 bit M6800 fam ily of

synchronous peripherals, they are Valid Peripheral Address (VPA),

clock Enable (E), and Valid Memory Address (VMA) lines. When the

M 6800 peripheral address is decoded, the VPA signal is asserted

instead of the normal handshaking signal DTACK. The assertion of

VPA signal inform s the processor to become compatible w ith the

M6800 fam ily by waiting for the proper phase of the E clock and

then asserting the VMA signal to ensure the transfer. The VPA signal

- 24 -

serves a different purpose when asserted during an in terrup t

acknowledge cycle. It indicates to the processor that it should obtain a

vector from its table rather than the interrupting device.

The bidirectional HALT line of the processor can perform several

functions. Like any other microprocessor halt or hold signal, it is

used to disable the processor. It is used in conjunction w ith bus error

(BERR) signal to indicate to the processor to try running the bus cycle

again. Also, the halt signal can be used w ith the RESET line to

initialize the MC68000 processor.

3.3 The Intel 8086 M icroprocessor

The 8086 was the first 16-bit microprocessor to be produced by

Intel. W ith it came a new generation of business and personal

computer era supported by several m anufacturers, notably IBM.

The 8088 is another member of the Intel fam ily which is closely

related to the Intel 8086. Both support sixteen bit transfers w ithin

the processor, and both have tw enty address lines to directly access

one megabyte of m em ory. The address lines of the 8086 are

m ultiplexed, like its predecessor the 8085, w ith sixteen data lines and

four status lines in order to have a 40-pin package. However, the

8088 has only eight data lines restricting its transfers w ith memory

and I/O devices to bytes only. Other than the data bus w idth, both

processors support the same instruction set.

The 8086 central processing unit logic has been divided into an

- 25 -

Execution U nit (EU) and Bus Interface Unit (BIU), m ainly to allow

the processor to fetch new instructions from m em ory w hile it is busy

executing some other instructions. The tw o units operate

asynchronously and the processor can in m ost cases overlap the

instruction fetch w ith execution.

An im portant feature provided for the Intel 8086 is the

provision for m axim um or m inim um mode system . To select the

required mode, an input line (M N/M X) is tied high or low. W hen in

the m inim um mode the processor provides the complete standard

microprocessor control signals required to interface m em ory or I/O

devices. In the m axim um mode m ulti-processor system , the processor

can support a variety of In tel’s co-processors which include the 8089

inpu t/ou tpu t processor and the 8087 num eric data processor. The

m inim um mode bus configuration which has less circuit complexity

is more appropriate for th is study of microprocessor bus structures,

so only the m inim um mode w ill be refeared to.

There are two address spaces provided by the processor, the

M emory/IO (M //o) control signal indicates w hether memory or an

I/O port is being accessed. The sixteen bit data bus is divided into low

and high bytes. A 0 (the least significant bit) of the address bus and

BHE (bus high enable) signals are used to select the low, the high or

both bytes. An Address Latch Enable (ALE) signal is used to identify

a valid m em ory address to allow system components to capture the

address inform ation before the same lines carry data information.

The data transm it/receive (D T /tf) and data enable {D E N) are two

new signals not found in earlier Intel processors. They are used to

control the direction and output enable of a bidirectional latched

buffers on the data bus and are designed specifically to work w ith an

8236/8287 bus transceivers. The input HOLD signal is used by other

devices to request the use of the system buses for direct memory

accesses. When HOLD is asserted, the processor enters a hold state

after completing its current bus cycle. The processor then asserts the

HLDA (hold acknowledge) signal to acknowledge the hold request.

The input signal READY inform s the processor that the addressed

memory or I/O device is ready to complete the current bus cycle.

The bus continues to cycle until the READY signal is asserted. This

signal is useful w hen the processor is to communicate w ith devices of

different speeds.

Another innovative feature of the 8086 hardw are desigrris the

ability to use it in a wide range of microcom puter system

configurations, from a sim ple one processor system to a m u lti­

processor environm ent. The processor has built in logic to handle bus

access priorities. The signal LOCK , which is provided only in the

maximum mode, is used in a m ulti-processor system to prevent a

processor from accessing the bus while another processor is reading or

writing a m em ory location. Softw are single step facility is another

feature of the Intel 8086 to support the programming of m ulti­

processor system s.

- 2 7 -

3.4 The Intel 80286

The 80286 is ' the second generation of sixteen bit

microprocessors introduced by Intel. Several advanced features have

been introduced in the 80286 processor, such as m em ory management

mechanism and hardw are provision of m ulti-tasking programming by

operating in two modes real and protected. The 80286 is softw are

compatible w ith its predecessors the Intel 8086 and 80186 when

operated in real mode.

The processor uses separate (non-m ultiplexed) 16-bit data bus

and 24-bit address bus. Additional to the buses w idth , the Intel

80286 has a sim ilar bus struc tu re to tha t of its predecessor the 8086.

3.5 Zilog Z80 microprocessor

The Zilog Z80 was designed as an enhanced version of In tel’s

8080 microprocessor. It is an eight bit microprocessor w ith sixteen

address lines capable of direct access to sixty four kilobytes of

m em ory space. The success of the Z80 processor is due to its

capability to execute the entire range of Intel’s 8080 softw are and in

particular, to use the popular operating system CP/M (Control

Program for Microcomputers) developed by Digital Research.

The Z80 has additional features over the Intel 8080, like an on

board refresh counter for dynamic memory, a non-m askable

in te rrup t facility, and a vectored in terrup t priority structure. Several

Z80 processors are available, offering a range of clock speeds of 2.5

- 2 8 -

MHZ, 4 MHZ and 6 MHZ. Another im provement over the Intel 8080

is th a t the Z80 requires only a single 5V supply and single phase

clock input.

Sim ilar to the approach development by Intel, the Z80 has

separate m em ory and inpu t/ou tpu t address spaces. The MREQ

(m em ory request) signal is used to select a valid m em ory address and

the IORQ signal is used to select a valid inpu t/ou tpu t address space.

RD and signals are used to control the direction of data transfers.

In a typical memory read cycle, the MREQ signal will asserted when

the address bus is stable. Then the RD signal is asserted to indicate

th a t the data can be enabled onto the data bus. Depending on the

accessing of memory or inpu t/ou tpu t devices, w ait states can be

inserted as required. However, not too m any w ait states can be

inserted, if the role of dynam ic m em ory refresh is not to be affected.

The Z80 was the first microprocessor to include a hardw are

fac ility for autom atic dynam ic memory refresh. A fter each

instruction fetch cycle, the refresh control signal becomes active to

indicate the s ta rt of dynam ic memory refresh.

When the Z80 processor has to give up its bus to an external

device, the BUSRQ signal m ust be asserted first to request the bus.

W hen the Z80 complete its current bus cycle it sets its address, data,

MREQ , IORQ ,RD and WR lines to the high impedance state and

activates BUSAK signal to acknowledge the request.

- 2 9 -

3.6 The M otorola MC6800 microprocessor

The MC6800 was M otorola’s first eight bit microprocessor. It

has 8 lines of data bus, and 16 address lines to access up to 64

kilobytes of m em ory space. Unlike the Z80 bus timings, the MC6800

requires a tw o phase non-overlapping clock 01 and 02 . 01 and 02 are

used as address and data validators respectively. During the first

phase of the clock,an address w ill be placed on the bus by the

processor. During the second phase of the clock, the data bus w ill be

active. The implem entation of direct memory accesses, refreshing

dynam ic memories, or accommodating slow memories rely heavily on

the clock signal m anipulations.

For direct memory access operations, the Three State Control

(TSC) inpu t signal can be used. W ith TSC activated (high), the

address bus and R/W signal are placed in high impedance state. The

Valid M em ory Address (VM A) and Bus Available (BA) signals are

forced low in order to prevent any incorrect read or w rite data on

any device enabled by the VMA signal. W hile the TSC line is active,

the 01 and 02 clocks m ust be held high and low ,respectively, in

order to delay program execution for DMA operation to take place.

But since the MC6800 processor is a dynamic device, internal

memories require periodic clock cycles to maintain correct data and

the clocks can be stretched for no more than the required periodic

cycle of 10 microseconds.

Direct m em ory access operation can also be provided by

com pletely halting the processor, using the input HALT signal, which

- 3 0 -

stops program execution. The required periodic cycle of the clock

inputs of 10 microseconds has to be maintained.

As the 0 1 and 0 2 clocks time the entire M6800 system, any

processor tha t accesses the M6800 system w ill be affected by the

action of the M 6800 clock. In the m aster/slave configuration, the

m aster direct memory access cycle to the M6800 target system must

complete w ithin the 10 microseconds lim it.

3.7 The M otorola M6809 Microprocessor

The M otorola M6809 is an enhanced version of the M6800

fam ily of microprocessors. The changes are m ainly to improve its

available softw are facilities.

The M6809 is an 8-b it microprocessor w ith 16 bit address bus.

Unlike the MC6800, which uses a two phase non-overlapping clock,

the M6809 has an internal clock, which is triggered by an external

crystal, to generate two quadrature output clocks E and Q. The E

clock phase, which is identical to 02 of the M6800, gives a

synchronizing signal to be used as the system ’s clock for support

devices. The Q phase of the clock is available to signal that the

address and data leading edge of Q and data is latched on the falling

edge of E.

The input signal MRDY is used to stretch the E and Q clock

signals to enable the processor to interface w ith slow memory

devices.

- 31 -

For direct m em ory accesses, the input signal DMA/BREQ is

used. W hen activated, it causes the processor to be suspended at the

end of the curren t instruction to enable direct m em ory access

operations. The direct memory access operation is tim ed w ith the E

and Q clock signals, so that the required periodic cycle of 10

microseconds is still applied.

A second version of the M6809 fam ily is the M6809E, which

has external clock inputs E and Q. The M6809E uses the TSC input

signal to force the processor into high impedance state for direct

m em ory accesses or dynam ic m em ory refresh.

Three other sta tus signals are available for the M6809E. The

Last Instruction Cycle (LIC) ou tpu t signal is activated during the last

cycle of an instruction. The BUSY signal is used to indicate tha t the

processor is perform ing functions which should not be in terrupted

by other external devices. The Advanced Valid M emory Address

(AVM A) ou tpu t line w ill inform that the processor w ill use the

buses in the following cycle and efficient bus sharing in m ulti­

processor configuration can be allowed.

3.8 The Mos Technology 6502 Microprocessor

The 6502 is the most popular of the 6500 fam ily of 8-b it

microprocessors m anufactured by MOS Technology. The 6502

processor has made its major success in the home com puter m arket

w ith the leading m anufacturers Apple, Acorn BBC and Commodore.

- 3 2 -

The 6502 was produced as an enhancement of Motorola MC6800

microprocessor. It has sim ilar CPU concepts and bus structure. The

6502 popularity was due to its increased performance w ith tw o index

registers and a more powerf ul set of addressing modes.

Sim ilar to all 8-b it microprocessors, the 6502 has eight data

lines and sixteen address bus. In a sim ilar way to the M 6800 the 6502

uses tw o phase non-overlapping clock signals to control system

tim ing. During the first phase the processor sets up a valid memory

address and selects the data direction using the R/vv line. Data is then

transferred during the second clock phase.

There are tw o major differences between the bus structure of

the 6502 and the MC6800. Unlike the M6800, the clock pulses of the

6502 can not be stretched, therefore, the 6502 has to use a different

accesses or refreshing dynam ic memories. The 6502 control input

signal RDY, which perform s the task of M6800 TSC, DBE and HALT

signals, causes extra machine cycles, w ait states, to be inserted within

the norm al machine cycle. For wait machine cycles to occur, the RDY

signal m ust make a high-to-low transition during a phase one high

clock pulse. The external device can hold RDY signal low for any

required tim e delay. In addition the 6502 processor has no control

signals that can force it into high impedance state, and the processor

address and data buses m ust be latched during any direct memory

access operation.

The SYNC ou tpu t signal is used by the processor as an indication

of the instruction fetch cycle.

- 3 3 -

3.9 The Texas 9900 microprocessor

One of the early 16-bit microprocessors to appear on the m arket

was the 9900 produced by Texas Instrum ents. The 9900 has been

designed as a one-chip im plem entation of the CPU of the 990 series

m inicom puter. The 9900 has been a very effective processor for

signal processing applications.

The 9900 has a separate 15-bit address bus and a 16-bit data

bus in a 64-pin integrated circuit package. The 9980 is a reduced pin

count version of the 9900 w ith only 8-b it data bus and 15-bit address

bus.

The standard 9900 processor requires a four phase non­

overlapping clock, where none of them is used for address or data

validator signal. '

For a typical read cycle, MEMEN (MEMory ENable) output

signal is used to indicate its a memory access cycle. It is also used to

differentiate between m em ory or I/O accesses. The DBIN (Data Bus

In) signal is activated to indicate the beginning of a m em ory read

cycle, when data should be placed on the bus by the m em ory device.

The WE (W rite Enable) signal is used if it is a memory w rite cycle to

validate data to be w ritten to memory.

The HOLD input signal is used to force the processor into high

impedance state for direct memory accesses; the external device can

assert the HOLD line active for as long time as it require. The

processor acknowledge the request by asserting HOLDA (HOLD

- 3 4 -

Acknowledge) line.

To accommodate slow memory devices, the READY input signal

is used to indicate to the processor to insert w ait state cycles as

required.

3.10 The Zilog Z8000 M icroprocessor

The Z8000 fam ily of sixteen bit microprocessors is available in

tw o versions, the Z8001 and the Z8002. The Z8002, 40-pin package

device, can d irectly access sixty fourkbytes of memory. The Z8001,

48-pin package, is a more advanced processor and capable of

addressing up to eight megabytes of external memory. Other than the

difference in the address range, the tw o processors are closely related

to each other. Both processors have tim e-m ultiplexed address and

data bus to minimize the pin count of the microprocessor package.

The Z8000 processor architecture utilises a sixteen bit word

organization. Each w ord of memory is made up of tw o independently

accessible bytes. The Z8002 uses a sixteen bit address to specify one

of 32K words of memory, where both bytes in a w ord are

independently accessible. The least significant bit of the address bus,

AO, is used to specify an even address byte (/10=0) or an odd address

byte (a 0=1). The Z8001 uses the concept of segmentation to increase

its address space, where the address map is seen to consist of 128

m em ory segments per memory address space with each segment

having a 64K bytes. The Intel 8080 provides sim ilar segmentation

- 3 5 -

facility , but can only access up to one megabytes of mem ory.

The Z8000 processor can operate in one of two different modes,

system mode or normal mode. A control bit in the flag and control

w ord (FCW) indicates the operation mode. In the system mode all

instructions can be executed, while in the norm al mode only

unprivileged instructions are executed. The distinction between the

system and norm al modes of operations allows the im plem entation of

a m ulti-task ing facility, where instructions that can directly affect

the system hardw are or can term inate all the programs are privileged

instructions, which should not be executed by the user. In contrast,

the Intel 8086 offers no equivalent hardw are logic for m ulti-tasking

facilities bu t does provide sim ilar facilities using softw are method.

The Z8000 processor has tw o special control lines dedicated to a

m ulti-processor environm ent. The M ulti-m icro Input (MI) signal is

used by the Z8000 processor to prevent other processors from

accessing the bus while it is perform ing critical m anipulations, and

the M ulti-m icro O utput (Md) signal is used to disable the Z8000

processor while another processor is in charge of the bus.

For a typical data transfer cycle, an Address Strobe (a s) signal

indicate a valid address, a Data Strobe (DS) signal shows valid data, a

R ead/W rite (R /w) signal is used to select the direction of the

transfer, a Byte/W ord (B /w) signal to select the size of the data field

being transferred, and a N orm al/System (N /s) signal is used to

indicate the current operation mode of the processor. Unlike the Z80,

the Z8000 M emory Request (MREQ) signal is used to select a memory

- 3 6 -

space or in p u t/o u tp u t space.

This processor has a more flexible dynamic m em ory refresh

capabilities than its predecessor the Z80 microprocessor.

For direct m em ory accesses, the external device can request the

control of the bus by asserting a Bus Request (BUSRQ) signal, and,,

when the processor is ready to relinguish the bus, it activates the Bus

Acknowledge (BUSAK) signal to acknowledge the request. The

combination of the BUSRQ and BUSAK signals provide the processor

w ith hold state l o g ic a l The WAIT signal can be used by external

devices to increase the delay between the address strobe and data

strobe during bus transactions.

The STOP input signal can be used to halt the processor

operations and can also be used to provide externally single stepping

logic for program s under development.

3.11 Zilog Z80000

The Z80000 is the latest generation of Zilog microprocessors.

The processor features 32-bit advanced architecture which directly

supports operating system s and high level languages. The processor

characteristics and facilities are m erely an extension of the Z8000

fam ily w ith new added features as on-chip memory management and

sm all on-chip cache memory. The Z80000 has fu ll 32-bit address

and data tim e m ultiplexed lines, and can directly address up to 4

gigabyte of memory.

- 3 7 -

The bus sta tus and time signals used by the processor to

perform asynchronous data transfers are sim ilar to those used by its

predecessor the Z8000. The address strobe (a s) signal indicates tha t

the address and bus status signals are valid. The data strobe (DS)

signal is used to tim e all data transfers. The read /w rite (R /w) signal

to select the transfer direction. Two status signals (BL/W and

BW / L) are driven by the processor to specify the size of the data

(byte, w ord or long w ord) involved in the transfer operation. Four

sta tu s ou tpu t signals (ST0-ST3) are used to encode the type of bus

cycle (such as internal operation, I/O transaction, halt and NMI

acknowledge) perform ed by the processor. The external logic can then

decode th is inform ation and respond in a num ber of different ways.

The processor architecture supports tw o control buses, local and

global. The local bus consists of the tw o fam iliar signals BUSREQ and

BUSACK th a t are used by external devices to gain m astership over the

processor buses fo r direct memory accesses. In a m ultiprocessor

environm ent, the Z80000 can request the m astership of a global bus

by asserting the global bus request line (GREQ) and obtains the

response of the bus arbiter via the global acknowledge signal (jGACK).

During each data transfer, two response (RSP0-RSP1) signals are

used by external hardw are to return a code to the processor indicating

ready, w ait, bus error, or bus retry . The ready response inform s the

processor of a successful transfer. The w ait response tells the

processor that the responding device requires more time to complete

the transfer, other wait cycle is then added before the sampling of the

- 3 8 -

response lines again. W ait states can also be inserted by programming

the hardw are interface control register (H1CR).

The Z80000 architecture includes 256 byte of high speed cache

m em ory used to speed up the processor operations. The cache

m em ory can be disabled for debugging purposes by using the control

bit in the system configuration control long word register (SCCL).

3.12 The MC68020 microprocessor

The MC68020 microprocessor is the full 32-bit implementation

of the M 68000 fam ily architecture. Its address bus is capable of

accessing a large linear (not segmented) address space of four gigabyte

of memory. The MC68020 architecture is m erely an extension of

earlier processors in the fam ily.

As the MC68000 processor, the asynchronous bus structure of

the MC68020 uses a 32-bit address and data buses th a t are non­

m ultiplexed for simple interface design and high performance.

The MC68020 bus interface includes a new feature, dynamic

bus sizing, which allows the processor to communicate w ith 8, 16 or

32-bit devices through the use of the Data transfer and Size

ACKnowledge input signals (DSACKO and DSACK l) . The DSACK 0 and

DSACK l signals replace and perform the same function as the DTACK

control signal of the MC68000 processor, they also inform the CPU of

size of the port being accessed. Full com patibility w ith the reduced

data buses of earlier processors in the fam ily has been m aintained by

- 3 9 -

the dynam ic bus sizing facility.

The M C68020 contains an instruction on-chip cache memory

w hich im proves the overall perform ance of the processor by reducing

instruction access tim e. A cache disable signal (CDIS) is used to

disable the activ ity of the cache memory. The cache m em ory can also

be disabled by program m ing the cache control register (CACR). For

debugging purposes, when the processor is forced to access the

external m em ory to m onitor the behaviour of the softw are and

hardw are under test, it is essential for the cache memory to be

disabled.

The MC68020 has a sim ilar bus operation as that described

earlier fo r its predecessor the MC68000 microprocessor.

3.13 The In tel 80386

The 80386 is the fu ll 32-bit implementation of high

perform ance microprocessors developed by Intel.

The processor internal structure is divided into six functional

units.

i. The bus unit. Interfaces the CPU to the external system bus and

controls all address, data, and control signals to and from the

processor.

ii. The prefetch unit. Responsible for fetching instructions from

m em ory.

- 4 0 -

iii. The decode unit. Prepares instructions for processing by the

execution unit.

iv. The execution unit. Executes the micro instructions.

v. The segment unit. Translates logical addresses to linear

addresses and perform s bus cycle segmentation violation checks.

vi. The paging unit. Translates the linear addresses generated by the

segmentation or prefetch unit into physical addresses.

The internal units of advanced processors, such as the M68020 and

the Intel 80386, are norm ally pipelined in order to enable them to

operate in parallel on different instructions.

The 80386 has separate 32-bit address and data buses. Its data

bus can be switched between 16 and 32 bits to allow existing 16 bit

devices to communicate w ith the processor. The instruction set of the

80386 supports byte, w ord and long w ord transfers. Four byte

enable signals (BE0-BE3) are used w ith the address bus to specify the

data bytes that are active.

The 80386 uses only one signal, address status (ADS), to inform

external logic of the beginning of a normal bus cycle. The processor,

then, defines the type of bus cycle with the W /R, M / I d and D/C

signals.

The 80386 provides bus lock (LOCK) signal of multiprocessor

applications. The lock signal informs other bus m asters that the

processor is perform ing a m ultiple bus cycle operation that m ust not

be interrupted.

- 41 -

The processor can run tw o kinds of bus cycles, non-pipelined

and pipelined. The non-pipelined bus cycle is used when the

processor is com m unicating w ith high speed memories. The pipelined

bus cycle is used to give slow memory system s more tim e to respond

to a bus cycle. Pipelining is enabled as external devices assert the next

address signal (NA).

The 80386 uses the READY, HOLD and HLDA signals in sim ilar w ay

as described fo r the Intel 8086.

3.14 Sum m ary

In this chapter, various microprocessor bus structures have been

examined.

For some microprocessors the data and address bus organization

is m ultiplexed. Such processors (e.g the Intel 8086) transm it

instructions and addresses over a single 8 or 16 bit system bus. In all

cases, m ultiplexing is used to reduce pin requirem ents of the chip

package. Extra hardw are interface would be required in order to

com m unicate to such devices.

Almost all current microprocessors have provision for a direct

m em ory access facility to allow transfers between devices and

m em ory w ithout processor intervention.

Some microprocessors, such as the M6800 processor ,use

m em ory-m apped inpu t/ou tpu t. Others, as the Z80, use certain control

lines to distinguish between m em ory and I/O operations.

- 4 2 -

The Z80 microprocessor was used by W hitw orth in a

sim ilar study , as the supportive processor. The Z80 is short of many

im portan t hardw are features which include the following :

i. The Z80 address range is lim ited to access only 64K bytes of

m em ory. W ithout implementing any form of memory

m anagement unit (MMU), the processor would be unable to

access the address range of 16-bit processors. If MMU is to be

im plemented, the hardw are interface complexity w ould increase

f u rther.

ii. The Z80 data bus lacks the ability to store and m anipulate

different types of data. This would make it more difficult for the

Z80 to communicate w ith 16-bit data buses. To provide this

facility , the hardw are interface complexity would increase even

f urther.

iii. The Z80 arbitration circu itry lacks the facility to connect

several processors into one system .

Therefore, 8-bit processors in general are not suitable of

supporting the m ulti-fam ily microprocessor teaching project.

In this study, the MC68000 microprocessor is used as the

supportive processor for the following reasons :

1. The MC68000 has one of the most comprehensive non­

m ultiplexed bus structure available to date.

- 4 3 -

2. Its pow erful addressing capability enable it to access any target

m em ory location.

3. The ab ility of the processor to store and m anipulate different

types of data enable it to support 8-bit devices on its 16-bit data

bus. .

4. The asynchronous tim ing of the MC68000 bus enables even the

slowest target m em ory to communicate w ith the supportive

processor.

5. The synchronous interface option provided by the MC68000

allow s the MC6800 peripherals to interface w ith the supportive

processor.

6. The processor bus arb itration logic enables m ultiple processors

and DMA controllers to share the same bus.

7. Halt and Bus error signals are available th a t m ay used to single

step the bus, abort illegal or invalid access attem pts. This is

vital to successfully recover in the event th a t interface circuits

cause a deadly embrace.

8. A 3-bit function code signal is present that identifies the purpose

and privilege level of each bus cycle.

9. The available 3-bit encoded in terrup t request input allow s six

prioritized, m askable in terrup ts and one non-m askable

in te rrup t, w ith 255 vectors to transfer control to the proper

in te rrup t handler routine.

- 4 4 -

All the above features have dram atically contributed tow ard the

reduction of the interface hardw are complexity and the design of this

interface w ill be discussed in chapter 6.

Next chapter will provide a hardw are description of the

supportive system , the MC68000 com puter system.

- 4 5 -

4. MC68000 COMPUTER SYSTEM

This study was carried out using a m ulti-board MC68000

com puter system as the supportive system in this m aster /slave

m ulti-fam ily microprocessor teaching project. The m ulti-board

system , which was commercially m arketed under the name of

DARKSTAR, had been designed by the school of Electrical

Engineering at Bath U niversity. The system was well established,

and considerable hardw are and softw are support is already available.

This chapter gives an overview of some members of the M68000

fam ily of microprocessors, followed by general description of the

main hardw are elements which make up the m ulti-board computer

system , and finally a glance at the Single Board Com puter (SBC)

system .

4.1 The supportive processor overv iew

The supportive system is based on a pow erful 16-bit MC68000

microprocessor. The MC68000 microprocessor was the first member

of the M68000 fam ily of microprocessors to be introduced by

Motorola in 1979

The MC68000 microprocessor provide a true 32-bit internal

architecture, while externally it has a 16-bit data bus and 24-bit

address bus. The processor can run at up to 12.5 MHZ clock rate. The

bus structures of the MC68000 processor has been discussed in the

previous chapter section 3.2.

- 4 6 -

Internally the processor offers eight 32-bit data registers (D0-

Z) 7) , eight 32-bit address registers C40- / i7), two 32-bit stack pointers,

a 32-bit program counter, and 16-bit sta tu s register. The data and

address registers are all general purpose and are not dedicated to

specific tasks, w ith the exception of A7 which is defined as the

hardw are stack pointer. Any data register can be used as an

accum ulator and any address register can be an index register.

The MC68000 processor supports 56 pow erful instruction types,

w hich can operate on five different data types, namely individual bits,

b inary coded decimal (BCD) digits, 8 -bit bytes, 16-bit words and

32-b it long words. The instruction set contains no increment or

decrem ent commands. Such features can be achieved by the use of

ADD and SUB instructions where the destination operand can be any

register (data or address) or a location in memory.

The instruction set of the processor contains instructions to

perform , data movement, integer arithm etic, binary coded decimal

arithm etic, logical operations, sh ift and rotate operations, bit

m anipulation operations, program control operations and system

control operations. The processor also supports 14 different

addressing modes which fall into several basic types, register direct,

register indirect, immediate, and implied. More detailed inform ation

about the instruction set and the addressing modes can be found in

references [18-20].

All I/O devices in an M68000 system are memory mapped,

w here no special I/O instructions or separate I/O bus is required.

- 4 7 -

The processor has a pow erful in terrup t struc tu re of seven

p rio rity levels w ith 256 in te rrup t vectors, m ost of which are

available for handling vectored in terrup t exceptions. Exceptions can

be divided into tw o p rio rity groups. The highest p rio rity group of

exceptions are reset, bus error (w hen an accessed location fails to

respond) and address error (w hen the processor attem pts to access a

w ord or a long w ord at an odd address). These force exception

processing to s ta rt a t the next bus cycle. The lower p rio rity group of

exception are caused by trace conditions (which provide useful

softw are debugging facility by setting of breakpoints and single

stepping), hardw are in terrupts, illegal instructions, instruction traps

and privilege violations. When an exception occurs, the processor calls

a service routine to handle tha t exception. The lowest 1024 bytes of

the MC68000 m em ory are reserved for holding the addresses for all

these routines, where each address is held in 32 bits long slot known

as an exception vector. Each vector has a num ber associated w ith it

which represent its byte address divided by four. During an

in te rrup t acknowledge cycle, an 8-bit vector m ust be supplied, on the

data bus (z>0-£>7), by the in terrupting device in order for the

processor to locate the in terrup t service routine.

The MC68000 operates in one of two privileged states, user or

supervisor. The supervisor state is the more privileged, and any

instruction can be executed while in this state. U sually, programs

tha t are associated w ith the operating system only are run in the

supervisor state. All other programs can be run in the user state

- 4 8 -

except several key instructions (such as STOP and RESET), which are

protected from access by the user. A ny attem pt to execute them will

cause a trap which w ill pass control back the operating system . This

privilege distinction is very usef ul in an operating system

environm ent where the user should not have direct access to

operating system handling inform ation.

4.2 The M 68010 M icroprocessor

The MC68010 was the th ird m ember of the M 68000 fam ily to

be introduced by Motorola in 1982. Internally, the M 68010 has the

same 32-bit M68000 architecture, and externally the 16-bit data and

24-bit address buses of the M68000. The processor has a slightly

larger instruction set than the M68000, and instruction execution is

generally faster on the M68010.

The MC68010 architecture design goal was to provide virtual

memory and v irtual machine support (which had been implemented

in mini and m ainfram e com puter fo r m any years) for the M68000

fam ily.

To have v irtual memory capabilities, the processor has to be

able to suspend any task at any point and then restart or continue the

suspended task at a later time. In order to provide v irtua l memory

support, a processor m ust be able to perform several basic functions.

They include recognition of a fau lt, saving any fau lt related and

internal information and execution of the exception handler, and

restoring the saved state and resuming normal execution. The

- 4 9 -

M C68000 provided some of these features such as fau lt recognition,

sta te save, and exception handler execution. The MC68010 has all

these features together w ith the ability to save the complete internal

state, restore the state and resume execution.

4.3 The M68451 M em ory M anagement U nit

The M68451 Memory Management Unit (MMU) was designed,

by Motorola, to w ork w ith the M 68000 fam ily of processors.

All memory management system s begin w ith memory mapping,

the translation of logical addresses into physical addresses. Logical

addresses are the addresses which are visible to the user and

m anipulated by the softw are. Physical addresses are the bit patterns

transm itted to the m em ory to identify the memory location to be

accessed. Memory management system translate logical to physical

addresses according to mapping tables, which indicate that certain

blocks of logical addresses are to be translated into certain blocks of

physical addresses. The logical address space of the M68451 is

divided into variable sized segments of 256 bytes or more. Each

MMU device has 32 descriptors which can be used to define the

segment size. For each segment an address translation is perform ed in

order to produce a physical address. More than one M68451 can be

combined in a system to provide more power and flexibility.

- 5 0 -

4.4 The H itachi HD68450 Direct M em ory Access Controller

The HD68450 Direct Memory Access Controller (DMAC) is

designed to complement the performance and architectural

capabilities of the M68000 fam ily of microprocessors by moving

blocks of data between m em ory and an external storage device, in a

quick m anner w ith minim um intervention from the processor. The

HD68450 has four channels which work independently of each other,

and has signals which are d irectly compatible w ith those of the

M 68000 bus and those of the M68451 memory management unit.

The main purpose of a direct memory access controller in any

system is to transfer data at very high rates, usually much faster

than a microprocessor, under softw are control. The term DMA is used

to refer to the ability of a peripheral device to access m em ory in a

system in the same w ay as a microprocessor does.

Direct memory access requests m ay be externally generated by a

device or in ternally generated by the "auto-request" mechanism of the

DMAC. A uto-requests may be generated either at the m axim um rate,

w here the channel alw ays has a request pending, or at a lim ited rate

determ ined by selecting a portion of the bus w idth to be available for

DMA activity. External requests can be either burst requests or cycle

steal requests that are generated by the request signal associated w ith

each channel. The rate of transfer of data is lim ited both by the

m emory response times and the device response times.

- 51 -

4.5 The MC68000 M ulti-board computer system

The research of this project was carried out using the M68000

m ulti-board com puter system running under two different software

environm ents. The original system was implemented w ith the

TRIPOS operating system . At a later stage the UNIX operating system

was implemented. The system running under the TRIPOS operating

system w ill be referred to as system A, while the system running

under the UNIX operating system as system B.

For the purpose of th is study, the m inimum hardw are elements

required for system A would include one MC68000 based CPU board,

a minim um of 256 K bytes of dynamic random access memory

(DRAM), m onitor and/or bootstrapping firmware stored in eraseable

program m able read only m em ory (EPROM), a floppy disc controller

board, an 8 inch floppy disc drive, a bus display and peripherals

board w ith front panel offering reset and non-m askable in terrup t

facilities, and an RS232-C asynchronous serial port fo r term inal

connection. System B would require the upgraded MC68010 CPU

board w ith two memory management units (MM Us) and direct

memory access controller (DMAC) on board, 1/2 M bytes of DRAM, a

hard disc interface board, a hard disc drive, bootstrap firmware

stored in EPROMs, a bus display and peripherals board, and an

RS232-C for terminal connection.

The m ulti-board com puter system was implemented in a double

Euro-card standard rack. These racks have either 9 or 22 slot double

Euro-card to provide the necessary expansion space for fu ture

- 52 -

development work. A system block diagram is shown in Figure 4.1.

In the following subsections, a brief hardw are description of the

main boards is given. More detailed description can be found in

Tanner^21-! and Williams^22!.

4.5.1 The Central Processing Unit

At the heart of the system lies the Central Processing Unit

(CPU) board which built around the Motorola MC68000

microprocessor (M 68010 is used in later versions of the CPU board).

The board contains all the bus drivers and controls to enable the

processor to communicate and control operations on the backplane.

The function of the processor board can be divided into the following

logic sub-functions

a. Address and data control.

b. Control line generation.

c. Halt, reset and in terrup t acknowledge state machines.

d. Function code and in terrupt request decoding/encoding.

e. Memory map decodes.

f. Clock, bus timeout and timing strobes generation.

g. Buffer control and in terrupt acknowledge traps.

h. Power up reset and halt.

The board occupies the first physical end position on the

- 53 -

backplane, w ith the necessary resistance term inators, to reduce the

noise levels on the backplane, are provided. The in terrup t request

lines are "daisy-chained" through the backplane giving the highest

p rio rity in terrup t level to cards nearest to the processor card.

The CPU card have the facility for two on-board MC68451

M emory Management Units. The Memory Management Unit (MMU)

provide the address translation and protection over the whole of the

M C68000’s 16 megabyte address space. Each MMU provides 32

separate segments of variable sizes which can be used to separate User

and Supervisor memory, program and data spaces. The MMU can also

provide memory management facility for other bus m asters such as

d irect memory access controllers. This type of facility provides the

basis for m ulti-task ing /m ulti-user operating system s by providing

fu ll protection for individual users. The later version of the CPU

board offers on-board HD68450 Direct Memory Access Controller

(DMAC) for direct memory access facility. A simplified block

diagram of the CPU board is shown in Figure 4.2.

4.5.2 The Memory Board

Next to the processor board lies a quarter of a megabyte of

Random Access Memory (RAM) board. The main memory array

consists of up to th irty -tw o 64K bit dynamic random access memory

(DRAM) devices arranged in two banks of 64K x 16 bit words. Each

bank has an additional bank of 64k x 6 DRAM devices which are

used to store check words generated by the error detection and

correction unit. The dynamic random memory devices used on the

- 5 4 -

m em ory board have access times of 200 nanoseconds and require a

m ultiplexed address bus.

The m em ory board features fu ll error detection and correction

facility w ith various modes of operation. It can detect and correct

e rro rs w ithout inform ing the processor, bus error the system if

double or single bit errors are detected, or bus error the system only

w hen double bit errors are detected. A typical access to the memory

board will consist of the following sequence, read the m em ory array,

detect and correct errors, generate new check, bits, and then w rite

back to the m em ory device. The error detection and correction adds a

delay of 60 nanoseconds to the m em ory access time, m aking a typical

m em ory cycle tim e of approxim ately 500 nanoseconds when an 8

MHz CPU board is used.

W ith the advancement of the memory technology, la ter memory

boards had been designed w ith capacities of 1/2 megabyte, 1

m egabyte and 2 megabyte w ith error detection facilities. A schematic

diagram of the memory board is shown in Figure 4.3.

4.5.3 The EPROM/ROM Board

The Eprom/Rom board provides all the non-volatile data to the

processing unit. The card was designed to contain upto 16

Eproms/Rom s in any size from IK by 8 to 8K by 8. The Eprom/Rom

size is switch selectable and the board base address can be anywhere

w ith in the 16 megabyte address space on a boundary defined by the

cu rren t memory size of the card. Thus, the Eprom/Rom board can

- 5 5 -

support a variety of Eprom/Rom devices to supply either 16K, 32K,

64K or 128K bytes of nonvolatile data. A block diagram of the

EPROM/ROM board is shown in Figure 4.4.

4.5.4 The Floppy Disc Controller Board

The Floppy Disc Controller (FDC) board is based on a W estern

Digital chip set FD1793-02 Form atter/C ontroller device The

controller is capable of supporting upto four 8 inch or 4.25 inch

double or single sided disc drivers, w ith single or double density

recording form at. The controller support a wide range of controller

functions such as disc form atting, single and m ultiple sector read or

w rite, reading and w riting of entire tracks and performing any head

seeks required before read or w rite access. Figure 4.5 shows a

schematic diagram of the FDC board.

4.5.5 Hard Disc Interface Board

A hard disc controller board has been designed to provide a mass

storage facility for the system. The hard disc controller board

contains a M arksman interface to control upto two W inchester

technology disc drives w ith capacities of 40 or 160 mega-bytes. The

later disc interface used the Adaptec ACB-4000 series W inchester

disc controllers w ith the Maxtor X T -1000 series W inchester disks.

4.5.6 The Bus Display and Peripherals Board

At the other physical end of the backplane lies the bus display

and peripherals board. This board contains two M6850 asynchronous

- 56 -

communication interface adapters (ACIAs) w ith eight individually

sw itch selectable baud rates from 110 baud to 9600 baud. The ACIAs

drives tw o serial I/O RS232 channels. A MC6840 Programmable

T im er Module (PTM) is used on board to provide three independent

counter/tim er channels. These tim ers can be used as event counting,

period m easurement, frequency m easurement or watchdog timers.

Each tim er can be clocked externally or in ternally connected to the 8

MHZ system E clock.

The bus display card is connected to a fron t panel and contains

diagnostic light-em itting diodes to show the user the cu rren t logic

state of the processor backplane. The fron t panel also contains Reset

and A bort (non-m askable in te rrup t) switches which are debounced

by the display card before passing to the backplane. A block diagram

of the bus display and peripherals board is shown in Figure 4.6.

4.5.7 Additional boards

The following add-on peripheral boards are also have been

designed for the MC68000 m ulti-board com puter system .

i. Floating point board, for additional m athem atical ability . The

board contains four AM 9511/A M 9512 Floating Point

Processors.

ii. General purpose I/O board with battery backed real tim e clock.

iii. High resolution colour graphics controller board. The high

resolution colour graphics board is based on the Thompson

EF9366 colour graphics controller and features 2 pages of 512 x

- 5 7 -

512 pixels in 8 colours.

iv. High speed interprocessor communications bus for m ulti­

processor applications.

v. SASI standard interface for secondary disc storage devices.

vi. M ulti-L ink local area netw ork card. M ulti-link is a low cost

ring type local area netw ork which provides v irtua l character

stream data links between netw ork stations. The m ulti-link

netw ork provides a file transfer mechanism to other computers

and access to shared prin ters and plotters.

4.6 The MC68000 Single Board Computer

During the course of this study a single board im plem entation of

the m ulti-board system was designed by Dale The Single Board

Com puter (SBC) m aintained com patibility w ith the m ulti-board

system peripheral cards, and had used the original backplane as its

communication medium.

The single board com puter was designed to operate in a stand

alone mode, either as a complete com puter system, or as an intelligent

controller. It was also designed to provide the necessary arbitration

and inter-processing signalling to allow several single board

com puters to be fitted to a common backplane to produce a m ulti­

processor system environm ent.

The single board com puter contains the following hardware

- 5 8 -

facilities

a. MC68000 or MC68010 microprocessor running at 12.5 Mhz

clock.

b. Tw oM C68451 MMU.

c. HD68450 DMA controller - fo r high throughput to I/O devices

and m em ory to memory copying.

d. Parallel interface and tim er providing a SASI interface.

e. Floppy disc interface.

f. Dual RS232 serial I/O channels.

More detailed inform ation about the hardw are development of

the com puter system can be found in Dale^23 .̂

- 5 9 -

60

-

Address Bus

Data Bus

Control Bus

HRG COMMSDMAC FDCEPROM FPPDRAM

Terminate

& Bus

CPU Display

Terminal
I/O & Bus

Terminate

Communication Bus

Figure 4.1 M ulti-board System Architecture

Physical
Logical Address Bus Address Bus

Control Bus

Data Bus

MMU 1
8MHZ

1 0 PAGE

M MU 0
BERR

DMA C

Clock

DECODE

TIMEOUT

EPROM

2x2716

BUFFERS

TERMIN

& BUS

BOARD

OFF

M C68000

CPU

M C68440

DMAC

2xMC68451

MMU

Figure 4.2 CPU Board Architecture

B
A

C
K

P
L

A
N

E

B
A

C
K

PL
A

N
E

O'N>

Address Bus

h

V

A
V

ADDRESS
BUFFER

Control Bus

CONTROL
STATUS
REGISTER

A

DECODE

[ADD-MUX

&
REFRESH
COUNTER)

M ultiplexed Address Bus ■A
V

CHECK RAM

T f ~
CHECK BUS

o

i ERROR
TIMING & DETECTION

CONTROL - a
&

CORRECTION

u .
3-W AY
DATA

BUFFERS

D,
V

/ —

Data Bus

MEMORY

ARRAY

Figure 4.3 Memory Board

Address Bus

Control Bus

A

V

ADDRESS
BUFFER

■f

CONTROL

BUFFERS

DTACK

BERR

BOARD

DECODE

TIMING

&

BUFFER

CONTROL

Data Bus

H

► -
BRDSEL

r z

HBE

LBE

DATA

BUFFER
t

y

c s o
: \

EPROM

DECODE
f
k .f
1f
k1 V

--------------- >
CS1

EPROM

ARRAY

Figure 4.4 EPROM/ROM Board

B
A

C
K

PL
A

N
E

O '■U

Address Bus

FLOPPY
DISC
FORMATTER/

CONTROLLER

SEL
BRDSEL RD

OFF

BOARD

BUFFERS

WT

Control Bus

Data Bus

DDEN

AUX

IRQ

DREQ
DRQ

DACK

PREADY

AUXILARY

REGISTER

INTERRUPT

CONTROL

TIMING &

BUFFER

CONTROL

ADDRESS

DECODE

Figure 4.5 FDC Board

B
A

C
K

PL
A

N
E

ON
L /i

DISP

ACIAO PTM

Address Bus

Control Bus

Data Bus

BAUD RATE

GENERATOR

ACIA

MC6850

ACIA

MC6850 MC6840

PTM 7 SEGMENT

DISPLAY

DECODE
AND

BUFFER
CONTROL

OFF

BOARD

BUFFERS

DISPLAY
DRIVER
AND
Bus

TERMIN­
ATION

Figure 4.6 Display Driver and Peripheral Board

5. THE SOFTWARE ENVIRONMENTS

5.1 Introduction

An operating system has been defined as "programs implemented

in either software or firmware that make the hardware usable*

These are the program s which allow the interaction between the user

and the machine. The operating system is also a resource manager; it

manages processors, storage, inpu t/ou tpu t devices, and data.

The programs that the operating system consists of can be

divided into tw o main categories, the system Kernel and the

applications softw are. The Kernel consists of those program s which

in teract d irectly w ith the hardw are, providing common services to

program s such as processor and m em ory allocation, in te rrup t

handling, I/O control and file management. The applications programs

are those which perform general functions as editors, assemblers,

compilers and text form atters.

The supportive system used in this research, the MC68000

com puter system, offers the fu ll power of tw o pow erful operating

system s, TRIPOS and UNIX. The two operating system environm ents

were used for program development and hardw are testing. Each of

the softw are environm ents provide a powerful program editing and

development. They also m aintain a cross-assembler for each target

microprocessor supported. Various of high level languages, such as

BCPL and C, are also supported.

- 6 6 -

The tw o operating system environm ents and their programming

languages are described in the following sections.

5.2 The TRIPOS environm ent

TRIPOS is a single-user m ulti-tasking operating system,

originally developed at the Computing Science Laboratory a t

Cambridge. It was designed as a portable operating system in order to

be implemented in different com puter system s, such as LSI-4, PDP-

11, Nova^28 ̂ and MC68000 based com puter systems. Most of the

operating system is w ritten in the system programming language,

BCPL, w ith only some system prim itives such as device drivers and

the task scheduler w ritten in assem bly language.

A wide range of u tilities and programming tools are supported

by the TRIPOS environm ent. Compilers fo r languages other than

BCPL, such as Fortran, ALGOL and Pascal, are available. A num ber

of cross assem blers to support a variety of eight and sixteen bit

microprocessors, other than the MC68000, are also available. The

main utilities which were used in this project include the text editor,

the BCPL compiler, the MC68000 Macro Assembler and the Z80 cross

assembler. Detailed inform ation about the TRIPOS utilities can be

found in the Tripos User Guide^25 ̂ and the Tripos Programming

Guide^26l

5.2.1 TRIPOS filing system

The objective of a filing system is to provide a facility for

storing data in groups and to logically connect them in way such that

- 6 7 -

they can be easily accessed.

Any filing system should be able to provide the following general

functions:

i. Create and delete files.

ii. Open and close files.

iii. Read/w rite data from /to files.

iv. List the contents of a file.

v. Rename and copy files.

Additional to the general features mentioned above, TRIPOS

offers a tree struc tu re filing system for both directory and user files.

The filing system is implemented as a task called the filing system

task or handler, which is responsible for managing data files on

secondary devices such as floppy discs and W inchester discs.

5.2.2 TRIPOS Tasks

The standard TRIPOS operating system is generally loaded w ith

the following tasks:

i. Command Line In terpreter (CLI).

ii. Debug task.

iii. Console Handler.

iv. Filing system task.

A user interacts w ith the operating system through the CLI,

which in terprets the command lines received from the console

handler via the term inal device driver and attem pts to execute them.

- 68 -

The console handler task is used to coordinate all input and

ou tpu t w ith the term inal device. The data entered at the term inal is

directed, by default, to the CLI and the output is to appear at the

term inal. By using escape sequences the console handler can redirect

the input to any specified task and, in particular, the debug task.

The debug task provides an interactive debugging tool fo r

examining and modifying task variables, monitoring CPU registers

and memory, setting break points, program code disassem bly and

single stepping facility. The debug task can run in tw o modes, as a

TRIPOS task when accessed through the console system by typing the

escape sequence, or in a stand alone mode. The later mode is entered

following the execution of an exception routine, which signal

hardw are failure, or a TRAP instruction. W hile the debug task is in

the stand alone mode, it is impossible for the operating system to

continue.

W hen a disc is m ounted for either w riting or reading, a restart

task is created. The task is responsible for checking for the valid ity of

the disc structure. Until the valid ity check is completed, the disc is

w rite protected.

As each TRIPOS task represents a particular function of the

operating system , there is allocated a priority for each task. The

scheduler is responsible for organising task execution according to

priority levels. Only one task is allowed to run at a time, while other

tasks could be either waiting for something to occur, such as line

prin ter acknowledgement or data to arrive from disc, or have been

- 6 9 -

in terrupted and waiting to continue execution.

When a task is created by the CREATTASK prim itive, a unique

positive num ber, known as the task number, is assigned to it. The

task num ber is used to index the task table where a pointer to the

Task Control Block (TCB) can be found. Each TCB is associated w ith

a particu lar task. The TCB contains all the inform ation, such as a

p rio rity level and linked list of packets, which is required by the

system to schedule and control the task.

5.2.3 Inter-task communication

An integral feature of TRIPOS is its message passing system. It

is a mechanism where the communication between tw o tasks (or a

task and a device) is achieved by sending packets. The Kernel

manages the transfer of packets between tasks and devices by using

the prim itive calls QPKJX)t which queues a packet, and TASKWAI7X).

The field structure of a TRIPOS packet is shown below :

Link

Destination

Type

Result 1

Result 2

Argum ent 1

Argum ent 2

Argum ent n

Tripos Packet Structure

- 7 0 -

Packets can be linked together on a work queue by pointing the

link field of one packet to the link field of the next. The destination

field of the packet contains an integer num ber which is used to

identify the destination of the packet. If the integer is positive, the

destination where the packet is to be send is a task. If it is negative,

the destination is a device driver. The type field contains a number

which indicates the type of action required by the receiving task or

device. The result fields are reserved for values which w ill be

returned to the packet originator. These values concern the

completion or failure of the requested action. The argum ent fields

represent any extra messages which might be needed by the task or

the device to which the packet is sent.

5.2.4 TRIPOS device drivers

Unlike the UNIX operating system , TRIPOS is a sim ple system

to add devices to.

Each device driver requires five assem bly code routines. An

I N IT routine is used to initialise the device in order to be ready to

receive packets. The I N IT routine is called either when the device is

created or during the initialisation of the operating system . An

U NI N IT routine is required when the device driver is to be removed

from the operating system. A START routine is called to initiate any

new packets which are sent to the driver. A STOP routine is called to

cancel the processing of packets. Finally, an I N T routine is used to

provide any necessary action which is required to service a packet or

- 71 -

an in te rrup t from the physical device.

Sim ilar to tasks, each created device driver is assigned a device

num ber (negative integer) which is used to index the device table in

order to allocate a pointer to the Device Control Block (DCB).

5.3 The BCPL programming language

The Algol report^36 ̂ which was published in 1963 made

enormous progress in the design of programming languages, especially

the im plem entation of block structure and the stack mechanism .

Since then, several new languages have been developed which have

adopted some ideas from the Algol report including the block

structu re technique. One of these languages was CPL (Combined

Programming Language) developed a t London and Cambridge

Universities. A detailed description of the CPL language can be found

in reference [37].

CPL had led to the invention of a fam ily of languages which

include BCPL, B and C. They have been proved to be of a suitable use

in com piler-w riting and system programming^-38 .̂

BCPL (Basic CPL) was designed by M.Richards in 1967 2̂8l It

was designed as a simplified CPL. The most im portant simplification

of the language is its single data type, unlike other programming

languages where data variables have to be declared (e.g integer, real,

character). The user is free to store any type of data in the variables

of his program.

- 7 2 -

BCPL is a block structured system language, where each source

program consists of one or more compiled modules. Modules

communicate through the use of a stack and a global vector. The

global vector contains all the declared global variables and the

pointers to all global functions and routines. This arrangement makes

the linking of the compiled modules very fast and also eliminates any

need for GOTO statem ents.

BCPL provides standard control flow prim itives such as

SW ITCHON and IF for selection and W H IL E and FOR for iteration.

It has a well defined lib rary of useful functions and routines. The

functions are im m ediately available as BCPL function calls in the

standard library .

BCPL is a pow erful language under TRIPOS, since the m ajority

of the operating system is w ritten in this language. Further detailed

inform ation about the language can be found in reference [39].

5.4 The UNIX environm ent

UNIX describes a fam ily of computer operating system s

developed at the Bell Laboratories, and it a registered trade m ark of

AT&T.

5.4.1 The development of UNIX

UNIX was originally developed at Bell Laboratories, in 1969, by

members of a research group led by K.Thompson to provide a flexible

- 7 3 -

and pow erful environm ent for softw are d e v e lo p m e n ta l

The original UNIX was produced for the Digital Equipment

Corporation PDP-7 m inicomputer and was w ritten in assembly

language. One of Thompson’s colleagues, D.Ritchie, designed a high

level language called C in 1973, and, as the C language evolved and

became suitable, UNIX was rew ritten in C and implemented on the

PD P-11/40 com puter system^31l Since that time, UNIX and the great

m ajority of softw are developed for use w ith UNIX has m aintained

use of the C language.

By w riting the m ajority of the system in a high level language,

the operating system becomes easy to read, understand, change, and

move to other machines thus makes the probleiiLpf implementing it

on a new host machine much less tim e consuming than if the whole

system were w ritten in assembly code. The portability of the system

together w ith the advent of the powerful 16-bit microprocessors,

have led to the popularity of UNIX operating system among a wide

range of mini and micro based com puter systems.

In 1973, the UNIX system and its u tilities became only

available to educational and research institutes for a nominal fee,

which had assisted in the growing popularity and enhancement of the

system in later years.

In 1981, AT&T released UNIX system III as their first

comm ercially supported version. And in 1983, UNIX system V was

- 7 4 -

released and the latest version to be released at the tim e of w riting is

UNIX system V.3.

There are several versions of the UNIX operating system

curren tly in use and supported worldwide. The most notable of these

are, UNIX 4.2 developed at Berkeley, UNIX system V and V.3

developed by AT&T and XENIX developed by Microsoft.

The supportive system used in this project is implemented w ith

UNIX version V.

5.4.2 The Structure o f the UNIX operating system

To im plem ent UNIX on a new machine, the m inim um hardw are

configuration w ould include a processor of at least, a m inim um of

256K bytes of main storage, a simple m em ory management unit, a

high speed disc drive and a term inal connected to a serial interface.

UNIX is a m ulti-tasking, m ulti-user tim e-sharing, operating

system . It consists of a Kernel and commands.

5.4.2.1 The UNIX Kernel

The Kernel is the program at the heart of the operating system

which manages the system resources by providing a hierarchical file

system , handling in terrupts, allocating main memory for an executing

process, controlling input and output, scheduling processes for

execution on the CPU, and m any other functions.

- 7 5 -

The Kernel perm anently resides in prim ary memory and

occupies the lowest m em ory locations.

There are tw o levels of execution modes supported by UNIX

system , user and Kernel. The UNIX kernel routines are always

executed in the privileged Kernel mode, where they can have access to

all device registers, system and user addresses and can execute any

instruction. All other program code can be executed in user mode

w ith the exception of privileged instructions and certain accesses as

direct input or output. The user program can perform input/ou tpu t

accesses by calling the Kernel via a trap instruction, which when

executed, changes the execution mode to Kernel.

5.4.2.2 The UNIX process

A process is defined in the Unix litera ture as a task in various

different states of execution. M any processes can appear to be

executing sim ultaneously as the Kernel schedules them for execution.

Each process is allowed to read or w rite its data, but it can not read

or w rite to other processes. Processes can communicate w ith each

other and w ith peripheral devices by using system calls, which will

enable the user processes to access the Kernel facilities in a controlled

manner.

In the UNIX system , the Kernel allocates the following four

memory segments for every process, i) The process header, which is

not directly addressable by the user process, and contains information

which describe the a ttribu tes of the process, ii) The text segment

- 7 6 -

which contains the re-entrant executable machine code for the

process, iii) The data segment which contains both the initialised and

the uninitialised data, iv) The stack segment which contains the stack

of the process when it is running in the user mode.

The Kernel identifies each process by its unique process number,

called the process identification num ber or PID. And the Kernel

contains a process table w ith an en try which describes the state of

every active process in the system.

New processes can be created by using the forJd) system call.

This call requests the operating system to make an identical copy of

the procesiFTnvoking the fork system call. The process tha t executed

the fo rk system call is the parent process, where the new created

process is the child process. Every process has one parent, bu t it can

have m any child processes.

A process can be in one of the following states, w here each state

has its own characteristics which describe the process.

i. The process running in user mode.

ii. The process running in Kernel mode.

iii. The process is in ready to run state. Processes in th is state are

waiting for the scheduler to determ ine which process to run

next.

- 7 7 -

iv. The process is in sleeping state.

A sleeping process is a process which is waiting fo r an event to

occur, such as data from a slow device, waiting for I/O to complete

from a peripheral device or waiting for a process to exit. The code and

data of a sleeping process can either be resident in memory or

swapped out to disk in order to provide more space in memory for

other processes. This technique allows m any processes to run on a

system w ith lim ited main memory resources.

Processes on a UNIX system are term inated by executing the

exit() system call.

5.4.2.3 Interrupts and Exceptions

An exception condition refers to an unexpected software

in te rrup t which causes a break in the norm al execution of a process,

and control is transferred to an exception handler. Exceptions are

different from in terrup ts, which are caused by asynchronous events

that are external to a process.

When an exception occurs, the Kernel checks the validity of the

process, saves an image of the state of the curren t process and

transfers control to the exception handler. A fter the handler

completes its service, the Kernel restores the state of the current

process and proceeds w ith the process execution. The UNIX system

- 7 8 -

uses the same procedure to handle exceptions and in terrupts.

5.4.2.4 Inter-process communication

For m any m ulti-tasking operating systems, such as TRIPOS,

in ter-task communication is provided m ainly by tw o mechanisms,

message queues and system data areas.

In the message queues mechanism, the Kernel stores messages on

a linked list (queue) for tasks to communicate w ith each other. This

mechanism enables tasks to suspend execution on a queue to w ait for

other tasks to read or w rite from the queue. The system data area is

the other mechanism where tasks communicate w ith each other via

global area which is accessible to all tasks. This mechanism allows

large quan tity of inform ation to be shared between tasks.

Communication between processes in the UNIX system V is

achieved by the use of signals, pipes, shared m em ory segments,

inter-process messages and semaphores.

Signals are used to in terrup t the execution of a running process

and to synchronise a process execution w ith other events. Processes

m ay send each other signals by using the system call killO, or the

Kernel m ay send signals to processes on detection of an abnormal

exception such as an illegal instruction. For the UNIX System V,

there are nineteen signals. Some are associated w ith process memory

violations and others are used to inform the occurrence of events

w ith in the Kernel, such as when the user hangs up a term inal.

- 7 9 -

A UNIX pipe is a file which allows the transfer of a stream of

data between processes in a first-in, first-out manner. Pipes also allow

the synchronisation of process execution. Processes can redirect their

standard ou tpu t to a pipe to be read by other processes. Users can

communicate w ith the pipe communication channel by the use of

system calls for files, such as readO and write() . The synchronisation

between reading and w riting processes is m aintained by the Kernel.

There is another kind of pipes, which is supported by UNIX

system V, called named pipes. Named pipes are identical to the pipes

mentioned above, except in the w ay that a process in itially accesses

them.

Shared m em ory segments represent a mechanism which allows

processes to communicate directly w ith each other via a common

m em ory. Each segment is mapped into the data space of the process

which is linked to it and is accessed as a data segment.

Inter-process message queues represent another mechanism

which allows communication between processes via the use of queues

(linked lists) which are maintained by the Kernel.

The inter-process semaphore facility provides semaphore system

calls to allow processes to synchronise execution. An implementation

of semaphores is described by the D ijkstra Algorithm^33l

- 8 0 -

5.4.2.5 The UNIX I/O System

In the UNIX system , peripheral devices are presented to the user

through a uniform interface. This interface is known as a device

driver. Device drivers are self contained pieces of code to allow a

process or the Kernel to communicate w ith peripheral devices, such as

disks and term inals. The Kernel manages these devices by dividing

them into tw o types, block devices and character devices.

Block devices are associated w ith disks and magnetic tape type

devices, where input and ou tpu t transfer is perform ed in structured

fixed size blocks of data.

Character device interface is used by devices which use

unstructured input and ou tpu t transfer such as term inals. Disk and

tape drivers can also be referenced as character devices.

Under the UNIX system , device drivers are treated as files.

The interface between the Kernel and the device d river is achieved by

the use of the following five system calls: openO, closef), readO,

w rite() and seek().

The open system call is the first step a process m ust take to

access a file. The notation for the open system call is as follow:

fd = openi filename, flags, modes);

Flags indicate w hether reading, writing, or both are to be

perform ed. Modes gives the file permissions if the file is being

-8 1 -

created. The open system call retu rns an integer known as a user file

descriptor (f d) which w ill be used in references to the file. The

Kernel follow s the same procedure for opening a device as it does for

opening files.

The close system call is used by a process when it no longer

needs to access an open file. The syntax for the close system call is:

closeffd);

where fd is the file descriptor for the open file.

Reading from a file or w riting to it can be accomplished using

the following system calls:

num ber = read(fd , buffer, count);

and num ber = writef fd , buffer, count);

Buffer is the location of data in the user process into which the input

w ill be placed, count is the num ber of bytes the user requires to read,

and num ber is the actual num ber of bytes read.

As files consist of a sequence of characters, reading from a file or

w riting to it is often sequential. However, the system call seekf)

allow processes to access a file in a non-sequential manner by

adjusting the offset w ithin the file. The notation of the seek system

call is as follow:

- 8 2 -

position = seeki fd , offset, reference);

Offset is a byte offset, reference indicates from which position the

offset should be considered, and position is the returned byte offset

which where the next read or w rite w ill start.

5.4.2.6 The UNIX file system

The UNIX file struc tu re is hierarchical (tree structured), where

directories can contain other directories as well as ordinary files. The

top directory of the tree struc tu re is called the root directory. From

the root directory (node), the user can reference any other node in the

filling system.

A UNIX file system on disk consists of a sequence of logical

blocks, each containing 512“ bytes. The first block on the device is

called the boot block and is reserved for the system bootstrap

program which is read to boot and initialise the operating system. The

second block is called the super block. It contains all the information

about the block struc tu re of the device such as the size of the disk,

file system name and list of free blocks. The th ird block in the file

system contains the ’i-node’ list. Each i-node represents one file or

directory and contains the following inform ation concerning the state

of the file or directory:

- 8 3 -

a. Time of creation, tim e of modification, time of last access.

b. Size of file in bytes.

c. User and group tha t the file belong to.

d. N um ber of links to the file.

e. Type of entry: file, directory, a block or character device.

f. Nine permission bits which are used by the operating system to

provide security of file inform ation on UNIX.

The remaining blocks in the file system are free storage area, and

are used fo r file data.

5AJ2.1 Directory structure

The root directory in the UNIX file system is referred to as is a

d irectory of files. Files at the leaf node of the tree are either

directories, regular files, or special device files. A name of a file is

given by a path name th a t describes how to locate the file in the file

system hierarchy.

5.4.2.8 The UNIX shell

The shell is the UNIX command line in terpreter (CLI)

mechanism for communication between users and the system . The

shell program is usually executed by users a fte r loging into the

system . The shell program is not part of the Kernel. It is not

perm anently a resident in main mem ory, it can be swapped as

- 8 4 -

required, and can be modified to a particular environm ent.

The shell provides each program it executes w ith three open

files, input file, ou tpu t file, and error output file. These files are

usually assigned by default to term inal devices, bu t they can be

redirected to any file or device as needed.

The shell is both a command line interpreter and a command

programming language. It provides m any features, such as input and

ou tpu t redirection and pipes. The redirection of input and output is

achieved using the following command:

Is > new file

where Is is a command for printing a list of the file names in the

cu rren t directory. The ’> ’ instructs the shell to close the standard

ou tpu t and open the file ’newfile’. All the ou tpu t generated w ill be

redirected to the ’newfile’.

Pipes are another feature of the shell program, where the ou tpu t

of one program can be connected to the input of another.

The hierarchical file system structure and the shell command

interpreter are two m ajor advantages that UNIX provides over most

microcomputer operating system s. And the m any features of the

shell, had also contributed to the popularity and flexibility of the

UNIX operating system .

- 8 5 -

5.4.2.9 System boot

The bootstrapping process can be defined as follow: loading the

Kernel into main mem ory, initialising the system and starting

execution.

The bootstrapping procedure goes through a series of stages in

order to get a copy of the Kernel into the main memory. F irst the

bootstrap procedure reads the boot block of a disk, then loads it into

the m em ory for execution. As a result, a copy of the Kernel w ill be

loaded into the m em ory and the Kernel takes fu ll control. When the

Kernel s ta rt running, it begins an initialisation phase which includes

clock, m em ory, drivers and system tables.

A fter initialisation, the Kernel m ounts the root file system onto

root directory, and spaw ns a single process from a file called 9 in it9.

When init is executed, it connects its standard input and output to the

defau lt console term inal for reading and w riting, and it forks to

create a shell for th is console device. The shell, which acts as a

command interpreter, allow s the communication between the console

term inal, operated by a user, and the operating system . As the console

term inal is the only active device in the system at this stage, the

system is said to be running in a single-user mode.

To bring the system into m ulti-user, init is inform ed to create a

getty process for each term inal device in the system which is going to

be active. When the user ID is entered, the getty process executes a

- 8 6 -

process called login. Login prom pts for user password and, if it is

correct, a shell is executed. The system remains in m ulti-user mode

un til it instructed to enter single-user mode when receiving a

’handgup’ signal f rom other process.

5.4.2.10 UNIX utilities

The UNIX u tility environm ent contains a wide range of

softw are tools, including a program checker (lin t) and a source code

management u tility {make). The make command is a very useful tool

tha t allows the softw are developer to build new versions, or re-create

old versions, of a complex softw are application in a semi autom atic

fashion.

The UNIX environm ent provides a set of programs called the

Source Code Control System (SCCS) whose main function is to

reconstruct, update and retrieve any previously released version of a

program.

Another u tility which is currently supported under UNIX at

Bath is a program called Omnia, which was originally developed for

the POLESTAR system . Omnia is a universal tw o pass assembler, it

cu rren tly provides assemblers for several microprocessors MC68000,

MC6800, Z80, Intel 8086 and 6502.

- 8 7 -

5.5 The C programming language

As stated in section 5.3, C is a general purpose programming

language originally developed for the PDP-11 under UNIX. One of its

first uses was to rew rite UNIX operating system which was

previously w ritten in PDP-11 assembly code. The C language is a

portable machine-independent, very productive software

development, high level language.

In contrast to BCPL (which is a typless language tha t supports

only one object, the machine w ord) C is a typed language that

provides different basic data objects such as integers, characters and

floating point num bers. Other derived types include pointers, unions

and structures.

One of the im portant features of the language is its support of

pointers to other data such as variables and functions. Pointers are

variables which contain addresses of other variables. C also provides

pointer arithm etic and type conversion on pointer assignment.

Under the UNIX operating system , C has a rich softw are u tility

environm ent, which include lin t and make. The C language would be

less successful if it was used under other operating system s, such as

CP/M or MS-DOS, that lack such facilities.

A detailed inform ation about the C programming language can

be found in the book by Kernighan & Ritchie^40l

- 8 8 -

6. THE EDUCATIONAL INTERFACE BOARD

This chapter begins w ith a discussion of some methods used for

dual-processor communication followed by description of the

Educational Interface Board (EIB) specification and design.

The interface design for dual-processor communication is based

on the concept tha t the available microprocessors have a mechanism

of releasing control of the bus to an external device to perform direct

m em ory access operations.

There are several m ethods by which processors can communicate

w ith each other. For example, it is possible to interface processors by

a serial link, as shown in Figure 6.1, or parallel bus fo r direct

communication. Both types of communication could be

stra igh tforw ard and easily implemented, bu t have several

disadvantages. If the tw o processors vary in their processor speed,

then the fast processor can over run the slower processor thereby

resulting in a delay or loss of data Also, parallel communication

requires complex synchronization procedures, and the cost of

implementing such protocol is high The communication between

the processors in this type of interface is not based on the release of

bus control by one processor in order for the other to perform direct

m em ory accesses, and neither of the processors can control the

operation of the other. Such a scheme is not suitable for th is study

w here the supportive processor is required to evaluate and examine

- 8 9 -

target processors and to directly retrieve data from the target

m em ory w ithout assistance.

The straightforw ard scheme tha t satisfies the concept tha t each

processor has a mechanism for releasing bus control to an external

device is shown in Figure 6.2. In th is scheme each device is capable of

signalling for bus control. When the request is granted, the requested

processor can directly take control over the bus. The tw o processors

share a common bus so tha t each processor m ay access the m em ory of

the other. If the tw o processors used are of different type, then

control signal conversion would be essential. The disadvantage of

such scheme is th a t no buffers are employed which w ill lim it the

execution to only one processor a t a time. Bus conflict between the

tw o buses can occur as a resu lt of directly connecting the buses.

To prevent bus conflict and to allow for sim ultaneously

independent operation each system bus m ust be buffered. Such a

scheme is shown in Figure 6.3. Although the tw o processors can

execute programs sim ultaneously and they share common resources,

neither of the processors can access the local m em ory of the other.

This facility is im portant if the supportive processor is to evaluate

and examine the target processor.

The scheme adapted in this study is shown in Figure 6.4. It is

sim ilar to the scheme suggested by W hitw orth for eight bit

supportive processor.

The design of each target system should be as simple as possible

w ith enough random access m em ory on board for independent

- 9 0 -

operations.

Since the function of the EIB is to allow the supervisory system to

evaluate and communicate w ith the target system and to control and

m onitor its in terrup t, HALT and RESET lines, the target system is not

required to perform direct memory access to the supportive system.

On the other hand, the target system can communicate w ith the

supervisory system through the common communication area, that of

shared mem ory. The one w ay direct m em ory access operation

simplifies the interface design and prevents target processors from

slowing down the supervisory system.

The use of shared m em ory in a m ulti-processor system is useful

for passing large blocks of data and for providing hold and work

w ith shared data.

The EIB is designed to be universal in order to adapt to any

curren tly available microprocessor based system . When plugged into

the supportive system , the EIB w ill allow users to evaluate a variety

of microprocessor fam ily based systems. This approach will provide

the needed hardw are to serve as an economical evaluation tool for

target system s and w ill dem onstrate a perform ance-to-cost ratio

which is very favourable to educational institutes.

- 91 -

6.1 In te r fa c e specification

It is necessary that the interface board support and provide the

following hardw are facilities :

a. Direct m em ory access into the target m em ory and I/O locations

by the supervisor processor.

b. Each processor m ust perform its own operations and both

processors may run sim ultaneously.

c. A communication area, shared m em ory, accessible by both

processors on first come first served basis m ust be available.

Access w ill be delayed only if both processors attem pt to access

the shared memory sim ultaneously.

d. An arbitration circuit m ust be used to prevent bus collision

during shared m em ory accesses and to grant access to the

processor w ith higher priority .

e. W ait-state generation logic m ust be available for each processor.

If the shared m em ory is in use by one processor, the wait

generation logic is responsible for suspending the other processor

from accessing the shared memory un til it is free.

f. A parallel inpu t/ou tpu t controller is required to allow the

supervisor processor to examine and control the target system

in terrupt, halt and rest lines.

g. A facility is needed to dem ultiplex and m ultiplex the target bus

as required.

h. DTACK generation circuit responsible for generating DTACK

signal to suit the access tim es of different target systems m ust

be included.

i. Address decoding logic to generate the required m aster and

target request signals is necessary.

A schematic arrangem ent of the supportive and target systems is

shown in Figure 6.5. Each type of target processor requires a unique

personality module card (PMC) which plugs into the interface board.

The PMC is responsible for any control signal transform ation

required by the particu lar target processor. The design and

im plem entation of some personality module cards w ill be discussed

in chapter 7.

A detailed block diagram of the EIB is shown in Figure 6.6, and

the complete circuit diagram is given in Appendix E.

To allow for individual operations of each system and to prevent bus

conflict, all data, address and control lines for both system s are

buffered as they enter or leave the interface board. A ll the buffers are

activated or deactivated as required by the accessing processor. The

control signals that enable/disenable data and address buffers (m aster

side) is shown in Figure 6.7. The data direction buffers (m aster side)

are controlled by the (R/vv) signal of the MC68000 processor. Figure

6.8 shows the control signals needed to drive the data buffers (target

side).

- 9 3 -

6.2 Hardware design

6.2.1 Address decoding logic

The addressing capability of the supportive processor enables it

to access any target m em ory or I/O location. For the purpose of this

study , a free area of 128 k-bytes of the supportive memory m ap is

chosen to handle the interface activities. This area corresponds to the

hexadecimal addresses 86000016 to 87F F F F lb.

Using DIL sw itches and the 2521 comparator, the interface

board w ill respond w hen the selected m aster addresses are accessed.

As shown in Figure 6.9, when any of the m aster addresses S6xxxx 16 is

decoded, a ’m atch’ signal w ill be generated from the 2521 com parator

which w ill enable the 74LS138 decoder.

The function of the decoded m aster addresses are as shown in

the following table :

- 9 4 -

ADDRESS FUNCTION

(8 60000—&60xxx)16

(8 62000—862xxx) 16

(8 64000—86Axxx)16

(866000—866xxx)16

(8 68000—868xxx)16

(8 6A 000—86Axxx)16

(86C 000—86Cxxx)16

{86E 000—86Exxx)16

(870000—8 T F F F F \b

Master Shared Memory Request (MSMR)

Master Target I/O Request (7 7 /0)

Target Access latch (TACC)

PI A Enable (PIAEN)

Vector Latch (VECL)

Extra Byte Address Latch (EBAL)

PI A interrupt input port A (PI AC A 1)

PI A interrupt input port B (PIACB 1)

Master Target Memory Request (MTMR)

Table 6.1

- When the m aster requests direct m em ory access to the target

m em ory, a M aster Target M emory Request (MTMR) signal is asserted.

This signal is routed through the personality module card to assert

the Target Bus Request (TBR) signal. The Target Bus G rant (TBG)

signal w ill be asserted according to the target processor bus request

cycle protocol.

Each target system has a reserved area in its m em ory map for

shared memory accesses. As shown in Figure 6.10 tw o latches and

tw o comparators are used to decode the target address lines (TA n -

TA 23) to generate the Target Shared Memory Request (TSMR) signal.

The TSMR signal is also routed to the PMC to im m ediately assert

the target wait line signal TWA IT irrespective of w hether the m aster

is using the shared m em ory or not. The TWA IT signal w ill be active

- 9 5 -

for 500 nanoseconds in order to prevent the target from requesting

another access to the shared m em ory before the previous request is

arb itrated .

6.2.2 Arbitration logic

The common m em ory is accessible by the tw o processors on first

come first serve basis. The arbitration circuitry will allow the

higher priority request, MSMR or TSMR, to access the shared

m em ory. Each shared memory access request made by either

processor w ill be granted if the m em ory is not in use. If the shared

m em ory is in use by one processor, the other processor requesting

shared m em ory access is required to w ait un til the access by the other

processor is complete. An arbitrated signal (MSMRA or TSMRA) is

asserted for the processor perm itted to use the shared memory. Since

accessing of the shared memory has to take as little time as possible,

the arbitration circuit is driven by high speed clock of 16 MHz. The

arb itration circuitry is shown in Figure 6.11.

A separate circuit is used to generate the correct tim ing for the

shared memory RAM enable and read /w rite signals.

6.2.3 DTACK generation circuit

When the supervisory processor addresses any valid memory

location w ithin the interface memory range, the D T A C K (Data

T ransfer ACKnowledge) signal is expected to be asserted within 50

- 9 6 -

microseconds, otherwise a bus error condition w ill be signalled to the

processor. The DTACK signal is used to allow the supervisory

processor to be interfaced to slow m em ory devices. As shown in

Figure 6.12, the length of the delay can be set using the DIP switch.

6.2.4 I/O controller

As the MC68000 processor is a hardw are compatible w ith its

predecessor the M 6800 fam ily, the M6821 Peripheral Interface

A dapter (PIA) is used as the parallel inpu t/ou tpu t controller to

m onitor and control target in terrup t, ha lt and reset lines.

The PIA device contains tw o 8-bit ports, port A and port B. Each of

the 16 lines can be program m ed to be input or output. Each port

consists of three program m able internal registers, output register,

data direction register and control register. On the supportive

addressing range they appear as the low order bytes of tw o adjacent

16-bit words.

The m aster address lines A 13 and A 14 are connected to the PIA chip

select lines. Two other address lines A x and A 2 are also connected to

the PIA to select the internal registers.

The PIA is connected to the m aster in terrup t daisy-chain

circuitry . When either of the PIA in terrup t request lines is asserted

and the processor In terrup t Acknowlege IN (I A IN) is active, the

in terrup t daisy chain state machine will generate a local IACK signal

which will assert the VPA line (Valid Peripheral Address) as shown

in Figure 6.13 . Active VPA line alerts the M 68000 processor that a

M 6800 peripheral (PIA) requires its attention and that it m ust

- 9 7 -

synchronise it self w ith the clock signal (E). On enabling VMA (Valid

M emory Address), the M 68000 addresses the PIA and indicates that

it is ready to interact in synchronisation w ith clock E. M6800

peripherals in general do not generate vector numbers. The M68000,

therefore, uses the autovector procedure which allows it to access the

seven autovectors of the exception table.

The PIA port A is programmed to be an output port, and PIA

port B as input port. Two of the PIA outputs are used on the main

board and the rest are routed to the personality module and therefore

have functions particular to the target processor being used. The tw o

PIA outputs used on the main board are PAO, PA1. O utput PAO

inform s the main board w hether the target is an eight bit or a sixteen

bit processor. O utput PA1 enable/disable target shared m em ory

accesses.

- 9 8 -

Processor

A 00

00 Processor

Figure 6.1 Connection o f tw o Processors using Serial Interface

Common System Bus

BUS
ARBITR­
ATION

MemoryProcessor A Processor BMemory

Figure 6.2 Connection of tw o Processors to Enable Access to Shared Resources

System Bus to
Shared M emory & Input/O utput

Local BusLocal Bus

BUS
ARBITR­
ATION

ProcessorProcessor MemoryM emory

Figure 6.3 Connection of tw o Processors, each w ith Local Bus and Resources,

to a Common Bus w ith Shared Resources

- 1 0 0 -

Shared Memory

Arbitration &
Bus Signal
Conversion

Supportive

Processor
Bus & W ait
Requests

TargetBus & Wait
Requests Processor

M C68000

Target BusSuppoortive Bus

Figure 6.4 Adopted Connection Scheme of Supportive/Target Interface

- 101 -

z

BUS
DISPLAY &
PERIPHERAL
I/O
Board

DMAC

Board

Supportive System Bus

Board

RAM

Board

Xt

EPROM/

Board
Board

Educational
1
1i

Interface 1
1 PMC

Board 1
1
i

Target System Bus

Target

System

Board

Figure 6.5 Supportive Target Interface Architecture

M
as

te
r

Sy
ste

m
Bu

s

LS245LS245
Data
Bus

Data BusA45 D45
74LS245

H45

LS245LS245

Control
Signals

B45 E45

K To Target:
P A 0 -P A 7 \Resel- HiU&

1/ Interrupt
Lines

Arbitration &
Control
Circuitry

Personality
Module &
Logic

Target
Control SignalsPIA

6821
LS245

PB0-PB7
C45 Master

Control
SignalsDTACK

IRQ
LS244 LS623 LS245Address

Bus

A44 F45A23

.74
LS245LS623LS244 A .- A

B44 G45B23

Address
Decoding

Logic

MSMR
MTMR
TSMR
PIAEN

LS244 Address BusLS623

C44 C23

Figure 6.6 Educational Interface Board Architecture

MLDS
LDEN

MSMRA

HDENMTMR A

MUDS

MADEN

MAS

Figure 6.7 Logic Circuit to Generate Data and Address Enable Signals (M aster side)

MTMRA

MR/W

TSMRA

TR/W

Data Directic

MTMRA
LEN

TSMRA

HEN

PAO(8/16)

Figure 6.8 Data and Direction Enable (Target side)

M A S

ri5v

a

3x1 K

1

M A n~ MA 23
\
23

1

2521
Comparator

1 9
I t

t r y
4 x lK

5v

741 ,S 1 38
MA U-M A 15

Match

. M S M R

fA C C

PJAEN

VECL
EBAL
PC A 1
PCB1

MTl

Figure 6.9 Address Decoding Circuit

- 105 -

TAS

Comparator

2521

74LS373

T A 12 _ TA15MDO- MD3

EN

PA1

Match 1TACC

Match2
PAO-

Comparator

2521
74LS373

T A 1 6 _ TA23M D 4 -M D 1 1

TAS

P A 0 (8 / l6)

Figure 6 .1 0 Target Shared Memory Request Circuit

- 1 0 6 -

TSM

5 v

16 MHZ

MS M R O

O MSMR A

O TSMRA

TSMR o

- < < } 16 MHZ

5v

74LS74

CLR

PR

74I.S74

PR

CLR

Figure 6.11 Master/Targei Shared Memory Arbitration Circuit

RELWA1T

TACC 74L S 197

BUFREL

LDS

UDS

D T A C K O

Figure 6.12 DTACK Generation Circuit

- 107 -

8 MH2

PA0-PA7
PIA

6821

PB0-PB7

IRQ A

IRQB

IRQ < 0

MHZ

-O - J A C KJA C K I N
82S129

M A S 74LS374 I X £>■ IACKOUiPROMM A

M A
/c.I TM A

Figure 6.13 Interrupt Daisy Chain Logic

- 1 0 8 -

7• Target systems

7.1 Target system specification

As the com plexity moves tow ard the supportive system , the

target system should be as sim ple as possible w ith m inim um facilities

on board. The simple target system should be based on a CPU,

m em ory and basic I/O structure . The function of the supportive

machine is to assist in the interpretation and control of such systems.

The target system s should be provided w ith an EPROM facility

in order fo r the target board to run programs a in stand alone mode.

Random access m em ory m ust be present at the reset vector space of

the target microprocessor, and fo r stand alone operation the EPROM

m ust occupy the vector space. Therefore, it is im portant tha t the

board should provide a facility in order to be able to m anipulate the

reset vector between the tw o types of memory.

For dem onstration purposes each target board should have

parallel and serial I/O devices to enable the user to add his specific

hardw are application.

The target board should be divided into tw o distinct halves as

shown in Figure 7.1. These are the CPU w ith its associated clock and

buffers and the m em ory and I/O devices. Thus, the functionality of

the board can be described as follow s : The target CPU signals are to

be buffered and applied to the J1 connector of the board. The J1

connector supplies all the signals required by the m em ory buffers and

- 1 0 9 -

decode logic c ircuitry . This means that the backplane alw ays contains

valid target signals irrespective of the device being accessed. As the

target m em ory is alw ays decoded from the J1 address bus, a direct

m em ory access cycle has to acquire the backplane from the target

processor and control the backplane as a norm al target bus master.

This separation between CPU and m em ory also allow s the target

m em ory or I/O to be completely disabled to enable the processor to

w ork w ith user installed m em ory and I/O devices.

Two different target system boards are used in this work, one

system is based on an eight bit microprocessor, the Z80, while the

other board is based on a sixteen bit processor, the MC68000. The use

of the tw o different target processors w ill dem onstrate the versatility

of the interface board. Two different personality m odule cards are

designed to accompany the target boards.

7.2 The Z80 target system

The Z80 target board is a complete microprocessor system w ith

the m inim um basic devices on board. They include the CPU, memory

and basic in p u t/ou tpu t device. When the target board is plugged into

the supportive development system backplane together w ith the

interface board, a new environm ent is created to allow the user to

study and evaluate the target processor. Any user special hardw are

application can be added to work w ith the target system .

- 1 1 0 -

7.2.1 Circuit description

The Z80 target board contains a fu lly buffered Z80A processor

running at 4 MHZ clock. The clock generation circuit is bu ilt around

a 16 MHZ oscillator which is then divided down to 4 MHZ signal.

As shown in Figure 7.2, the Z80 address and data lines leaving

the processor are buffered, the address bus by the 74LS244 devices (ic

18,20), the data lines by the bi-directional buffer 75LS245 (ic22).

These devices are enabled while the Z80 has control of the backplane,

and disabled when a direct m em ory access operation has been

requested and granted by the BUS ACKnowldge (BUSACK) signal. The

direction of the data buffer is controlled by the DBUF signal. This

signal is activated (i.e data tran sfe r tow ard the CPU) w hen ever the

processor is perform ing a read operation or receiving an in te rrup t

vector during an in te rrup t cycle. The processor control lines are

buffered using the 74LS244 device. The buses are buffered on the edge

of the board to protect the on board devices from noise induced on the

backplane.

The memory decoding logic can access up to 32 K bytes of static

RAM and 32 Kbytes of EPROM. Referring also to Figure 7.2, the

address data and control lines for both the memory and I/O device

are buffered from the backplane (ic 17,19,21) . The address

and control buffers are continuously enabled while the data buffer is

enabled by (EN) signal and the direction control is by the (DIR)

signal. The EN signal is activated for all memory or I/O read and

w rite cycles. The direction control signal DIR drives tow ard the

- I l l -

m em ory devices for all onboard memory w rite cycles, and tow ard the

J1 connector (backplane) fo r read cycles from off board memory. The

m em ory decoding logic circuit is shown in Figure 7.3. The decoding is

achieved by the use of prom and 3 to 8 decoder. Address lines A n-A 15

and switches (S0-S2) are applied to the prom. The switches are to

inform the prom of the size of m em ory device cu rren tly in use, while

the address lines allow the prom to recognise 2K pages of memory.

Three outputs signals from the prom are decoded by the 74LS138 to

select the chip enable of the m em ory device requested. The fourth

ou tpu t signal (m e m) generated from the prom is also fed to the

decoder. This signal, when in a low state, indicates tha t an onboard

m em ory is being accessed. The decode logic produces signals to enable

four RAM and four EPROM devices. Using the RAM/EPROM swap

switches (S3-S6) together w ith the chip select signals enable the RAM

and EPROM devices to swap positions in the m em ory m ap in order to

locate the reset vector address. The RAM sockets can support 2K or

8K devices (e.g 6116 and 6264), w hile the EPROM can support 2K,

4K and 8K devices (e.g 2716, 2732 and 2764).

As mentioned previously, the size of the m em ory device is

defined by the switches S0-S2. The RAM maps are as follows :

8000

8800

9000

9800

A000

F800

FFFF

2K RAM

RAM 3

RAM 2

RAM 1

RAM 0

S.M

8000

A000

C000

E000

F800

FFFF

8K RAM

RAM 3

RAM 2

RAM 1

RAMO

S.M

- 112 -

An area of 2K bytes (F SOO-FFFF)lb is reserved on the target

m em ory map for shared m em ory activities.

The EPROM decode is achieved in a sim ilar m anner w ith the

sw itches S0-S2 to select the size of the EPROM device. The memory

m aps of the EPROM are shown as follows :

2K EPROM
0000

0800

1000

1800

2000

7FFF

4K EPROM 8K EPROM

EPROM 0
0000

1000

2000

3000

4000

—
EPROM 0

EPROM 1 EPROM 1

EPROM 2 EPROM 2

EPROM 3 EPROM 3

• .

•
7FFF

•

0000

2000

4000

6000

7FFF

EPROM 0

EPROM 1

EPROM 2

EPROM 3

7.2.1.1 The target I/O fa c ility

The Z80 target board also contains two Z80 PIO devices, Dual­

channel Asynchronous Receiver/Transm itter (DART) and tw o Z80

counter tim ers (CTC). One of the tim ers is comm itted to generate the

baud rates for the DART serial conversion. A visual display output

comprising of an array of eight LEDs is also provided on board the

target card.

- 113 -

An area in the Z80 m em ory map is reserved to address the I/O

devices, it is decoded as follow s :

0090-0093 CTC1 the first counter tim er chip

0094-0097 DART the dual channel serial device

0098-009B PIOl the first parallel I/O device

009C-009F PI02 the second parallel I/O device

00A0-00A3 CTC2 the second counter tim er chip

00A4-00A7 LEDs these fou r locations provide w rite
only access to the 8 LEDs on the
board edge.

00A8-00AB DIL these fou r locations provide read
only access to the 8 w ay DIL sw itch
on the board edge.

The Z80 in p u t/ou tpu t devices are connected together using daisy

chain in te rrup t priority system . The daisy chain is then routed to the

backplane to allow other devices to be connected. The inpu t/o u tp u t

lines generated by the two Z80 PIOs are applied to the bottom

connector (J2) of the double eurocard to enable external devices to be

controlled if any external experiment is to take place. AS one of the

counter tim ers is used to provide baud rates for the DART device, the

second counter tim er is applied to the J2 connector. The control and

data lines of the Z80 DART are translated to RS232 levels and passed

to J2 connector. The pinout of J1 connector is given in Appendix B. If

a term inal is to be connected to the Z80 DART via J2, then it can be

- 114-

used to examine and alter the m em ory and registers of the Z80 target.

This action is only possible under the control of a m onitor program

that can reside in one of the EPROM sockets, and if desired the target

system can run completely independent of the supervisory system.

The open collector lines, in terrup t request, non-maskable

in terrup t, bus request and halt are provided w ith pull up resistors

and are available on the backplane and hence can be m onitored by the

supervisory processor via the interface card. The in te rrup t request

line O n t) is taken to all the target I/O devices so th a t these devices

m ay in te rrup t the processor if required.

A power up reset facility is provided on board the target system

by the use of the 555 tim er. The reset signal generated is taken to the

backplane reset signal via an open collector buffer. The reset signal is

buffered from the backplane and applied to the CPU, DART and CTC

reset lines. This signal is also applied to a red LED, via open collector

buffer which, when illum inated indicates that the Z80 target system

is in a reset state. The board can be reset m anually using a toggle

sw itch which when set, resets the 555 tim er. If the sw itch is

perm anently positioned tow ard reset state, then the supportive

system would be unable to gain control of the target system.

Sim ilarly, the halt line is taken to another red LED which, when

illum inated, indicates that that the processor is in halt state.

7.3 The Z80 personality module card

As the educational interface board is designed to be universal to

- 115 -

easily adapt to any microprocessor system , a dedicated Personality

M odule Card (PMC) for each type of target processor is, therefore,

required. The PMC is sm all in size and can be plugged on top of the

interface board. Each PMC is responsible for the control signal

conversion required by the target processor in order to establish

communication between the tw o system s. The complete circuit

diagram of the Z80 PMC is shown in Figure 7.9. The circuit

description of the PMC w ill be included in the discussion of the Z80

target interface section.

1A The Z80 target in terface

The data bus of the m aster processor, the MC68000, is sixteen

b it wide, while the Z80 target is eight bit wide. The m aster processor

is capable of communicating using either the entire da ta bus to

transfer words of data or using upper or lower data bus fo r byte

transfer.

As shown in the general layout of the interface board Figure 6.6,

the function of the bi-directional buffer (ic H45) is to allow the

m aster processor to communicate w ith eight bit target system s using

both upper and lower data bus. This buffer w ill also enable the eight

b it target processors to access the high order byte of the shared

m em ory. The control circuit to drive this buffer is shown in Figure

7.4. The target address line AO is passed to the interface board and

used as the target upper byte request signal (TUBR). W hen inverted

it is used as the target low er byte request (TLBR).

- 1 1 6 -

All the major Z80 control signals are buffered as they enter the

personality card. The extra address (771 urT A 2z) and data (TD s-T D ls)

lines which are not used on board the interface card, in the case of an

eight bit target processor, are set to low state on board the personality

card.

7.4.1 Master to Z80 target memory access

The m aster processor can request direct m em ory access to the

target system by accessing any of the target m em ory request hex

addresses (870000—81FFFF)16. When any of these addresses is accessed,

a m aster Target Memory Request (MTMR) signal is generated by the

interface address decoding logic. This signal is passed to the

personality card and applied to the circuit shown in Figure 7.5a to

generate the Z80 Target BUS REQuest signal (TBUSREQ). The Z80 bus

request signal has a high priority level and is alw ays recognised by

the processor at the end of the current machine cycle. When the

processor detects that BUSREQ is active, it forces the address bus, data

bus and the control signals MREQ, 10RQ , RD and WR into a high

impedance state so that the supervisor processor can take control of

the buses to start direct memory access operation.

The m aster processor is inform ed of the target bus m astership

by the assertion of the Z80 BUS ACKnowledge (BUSACK) signal. The

BUSACK signal is passed to the interface board as M aster Target

M emory Request A rbitrated (MTMRA) signal. This signal is used to

enable/disable the data and address buffers on the interface board. It

is also applied to a D -type flip flop to generate a RELWAIT w ithin 500

- 11 7 -

nanoseconds. The RELWAIT signal is taken to the interface board to

assert the DTACK signal in order to term inate the m aster target

m em ory access cycle. The delay generated by the flip flop is to ensure

th a t the m aster does not try fo r ano ther-target access before the

previous target access cycle is completed. It also allow s enough tim e

fo r the data bus to be stable.

W hen the m aster gains control over the target bus, it s ta rt a

norm al Z80 read or w rite cycle, as requested, to the target m em ory

by issuing target M emory REQuest (m r e q) signal and the appropriate

target read or w rite signal.

If a target I/O address is decoded on board the in terface card,

the M aster Target I/O Request (MTIOR) signal w ill be asserted

together w ith the MTR line. As the m aster gains control over the

target buses as in the target m em ory access, it begins a Z80 I/O read

or w rite cycle by asserting the target (lORQ) line and the appropriate

target read or w rite signal. The logic circuit to generate the major

target control signals, MREQ, IORQ, RD and WR is shown in Figure

7.6.

In the m aster to a target access w rite cycle, the personality card

m ust term inate the target cycle before it term inates the m aster cycle

to ensure th a t the valid data is latched to the target m em ory before

the m aster relinquish the data bus. W hen in the m aster to target read

cycle, the personality card is responsible fo r term inating the m aster

cycle before it term inates the target cycle to ensure th a t the m aster

has captured the correct data. R ead/w rite cycle tim ing diagram is

- 1 18 -

shown in Figure 7.5b.

7.4.2 The Z80 target to shared memory access

As the Zilog Z80 processor accesses any of the shared memory

addresses, a Target Shared M emory Request (T SM R) signal is

generated on board the interface card. The TSMR and M SMR signals

are fed to the arbitration circuit to decide which system will have

access to the shared memory. If the target request has a higher

p rio rity level than the m aster, an arb itrated TSMR signal (TSMR A) is

generated. The TSMRA signal together w ith the appropriate target

Read/W rite signal are used on board the interface card to select the

required shared RAM. The arb itrated signal, T S M R A , is also used to

enable data and address buffers (target side).

The TSMR and the TSMRA signals are routed to the Z80

personality module card and applied to the circuit shown in Figure

7.7. W hen either or both of the signals are asserted, Z80 w ait states

are inserted for a period of 500 nanoseconds to ensure that the target

processor does not request another shared memory access before the

previous cycle is completed.

7.4.3 The Z80 target in terrup ts

The Z80 personality module card allows direct m aster control of

target I N T , N M I , BUSREQ and RESET lines using the interface PI A.

These lines are activated by the m aster programming the PI A as

shown in the following table :

- 119 -

PIA A 7 PIA A6 PIA A5 Function

0 0 0 Homestate

0 0 1 IN T immediate

0 1 0 N M I "

0 1 1 RESET *

1 0 0 BUSREQ

TABLE 7.1

The ou tpu t lines PIA A3 and PIA A4 are programmed to enable or

disable any possible target I N T or N M I requested by the supportive

system . The input lines (PIA BO-PIA B5) are programmed to m onitor

the following target signals: ~

PIA BO The IN T Line

PIA B1 " N M I "

PIA B2 H RESET "

PIA B3 " BUSACK "

PIA B4 H BUSREQ "

PIA B5 " H A L T "

In mode 2 of the Z80 maskable in terrupt, the in terrupting device

supplies the starting address of the in terrup t service routine by

placing an eight bit vector on the data bus during the in terrupt

acknowledge (I A C K) cycle. Figure 7.8 shows the circuit used to

supply the vector num ber during IA C K cycle.

- 120 -

7.5 The MC68000 target system

The 68000 target board is based on the MC68000L8 CPU

running a t 8 MHZ clock. Sim ilar to the Z80 target board, the overall

struc tu re of the M68000 target board is divided into tw o halves, the

processor w ith its clock and buffers, and the m em ory and

inpu t/ou tpu t devices.

The functionality of the M 68000 target board is also sim ilar to

that of the Z80. The M 68000 processor signals are buffered and

applied to the J1 connector, and m em ory buffers and decode logic

receive all the relevant inform ation from the J1 connector. This

makes the backplane alw ays carries valid M 68000 target signals.

The board carries tw o M68230 PI/T (Programm able Interface

and Tim er) devices which supply 40 lines of parallel I/O and two

counter tim ers along w ith tw o M6850 serial ACIAs, fu lly buffered to

RS232 levels, w ith baud rate clocks available from M C I4411 baud

rate generator. A simple I/O structu re of 16 LEDs and 16 DIL

switches complete the target peripheral facilities.

As the target processor is reset, it fetches eight bytes of data

from memory locations 0-7 and uses these locations to load the

program counter and stack pointer. In total, the first K ilobyte of

m em ory locations is reserved for 255 vectors, each of th irty -tw o bits.

Buffering of the target buses is provided in a sim ilar w ay to that

described for the Zilog Z80 target system . The tw enty three address

lines are buffered as they leave the processor by three 74LS244

- 121 -

devices. The data bus is buffered by tw o 74LS245 devices. The

address and data buffer devices are enabled while the M68000 target

has control of the backplane and they are disabled when the target

passes control to another bus m aster by asserting Bus Grant

ACKnowledge (BGACK) signal. The R /w target line is used to select

the appropriate direction of the data buffer.

7.5.1 Memory maps and m anipulation

The m em ory decode logic provides chip enable signals for four

RAM and four EPROM devices. The RAM* sockets can support 2K or

8K devices (e.g.6116 and 6264). The EPROM can also support 2K and

8K devices (e.g. 2716 and 2764). The m em ory maps fo r the EPROM

and RAM area changes depending on the size of the installed devices.

The size of the m em ory devices are defined by tw o switches S I8 and

S19 on board the target card.

10000

10FFF

The RAM maps are as follow s :

2K RAM
0000

1000

2000

8K RAM

RAM 0
0000

4000

8000

RAM 0

RAM 1 RAM 1

• •

•
10000

10FFF

•

S.M S.M

An area of 4K bytes (10000-1OFF/7)16 is reserved on the target

m em ory map for shared memory activities.

- 12 2 -

The EPROM decode w orks in a sim ilar m anner, w ith the switch

S I9 to define the size of the EPROM device.The EPROM memory

m aps are as follow s :

2K EPROM 8K EPROM
2000

3000

4000

EPROM 0
8000

COOO

10000

11000

EPROM 0

EPROM 1 EPROM 1

• S.M

•

The reset vector and program can be m anipulated to allow the

target system to develop M 68000 based applications. For the target

to operate in a stand alone mode, the EPROM devices m ust occupy the

program and vector space. Using switches S20 and S21 the facility of

swapping the RAM and EPROM devices can be achieved.

Memory decoding as shown in Figure 7.10 is achieved by a 14L4

PAL (ic l5), tw o 74LS138 decoders (ics 16,17) and a 10L8 PAL

(ic 18). Three output signals from icl5 are used to enable and select

memory devices, a fou rth enables I/O access. Address lines ^ 12-̂ 23

and switches SI 8 and S I9 are the inputs to the PAL ic l5 . The MEM

signal from ic l5 is the global memory enable line w hilst outputs A

and B form an encoded addressing inputs depending on the size

selection switches S I8 (fo r RAM devices) and S I9 (for EPROM

devices). The encoded chip select signals are decoded by ics 16,17 and

- 123 -

qualified by address strobe (a s) signal. Upper and lower byte

devices are selected w ith UDS and L D S lines respectively. The PAL

equations used for the memory and I/O decode is given in Appendix

D.

The I/O devices on the M 68000 target board are memory

mapped so they can be placed as desired. AS shown in Figure 7.10,

the I/O devices are enabled by ic l9 and a 74LS138 decoder ic20. The

inputs to icl 9 consists of a global I/O enable signal from ic l5, address

lines A 2- A n and A S . Three ou tpu ts A,B,C are applied to a 74LS138

decoder (ic20) to select the relevant I/O device. Three signals M 6800,

11 OP AGE and VPADRIVE are generated by icl 9. M l 800 and 11 OP AGE

are I/O enable lines fo r external I/O on separate boards available at

the J2 connector. M 6800 is fo r M 6800 type peripherals and 11 OP AGE

is for M 68000 type peripherals. The output VPADRIVE is used to

assert VPA for all M 6800 devices. This forces the M 68000 target into

a pseudo M6800 synchronous cycle and thus allows the interfacing of

M 6800 peripherals.

As stated previously, the one im portant difference between the

M 68000 and many other microprocessors is its ab ility to carry out

asynchronous data transfer between itself and m em ory or peripheral

devices. The asynchronous data transfer between the processor and

other devices is controlled by five signals, A S , U D S , L D S , R/VV and

D T A C K .

The D TACK generation circuit is shown in Figure 7.11. It

consists of sh ift register ic25 (74LS273) driven by the 8 MHZ clock

- 1 2 4 -

and enabled by the assertion of the UDS and/or LDS driving an open

collector device ic52 (7403) qualified by an ’on-board' memory access

signal MEM via Link array LK21. This circuit allows the setting of

D T A C K for 125 nanoseconds memory access tim e incremented by 125

ns to 1000 ns using LK21 in order to adapt to most situations. If the

D T A C K signal is not asserted during a cycle, then the processor w ill

theoretically wait indefinitely. Provision has been made to drive the

processor into exception processing by asserting the Bus ERRor

(BERR) line some tim e a fte r the D T A C K signal was expected. This w ill

then allow the operation of the M 68000 to be recovered.

The target in te rrup t structure possesses 192 usable vectors for

peripherals that can provide a vector num ber, such as the MC68000

I/O devices, and seven autovectors allocated for devices tha t do not

generate a vector num ber, such as the M6800 peripheral devices.

The hardw are in terrup ts used by the on-board I/O devices are

encoded by ic23 of Figure 7.12a, into three lines IPL 0,1,2 required by

the target processor. There are seven levels of in terrupts, six

maskable in terrupts (levels 1 to 6) and one non-m askable (level 7).

Using the link array ic24, the in terrup t outputs from the peripheral

devices and backplane lines J2C2 and J2C3 can be set as required. The

J1C2 is connected for level 7 to ensure that the m aster interface has

priority over other in terrupts. To ensure that devices requiring auto­

vectoring addresses A x-A ^ and IA C K line are decoded by ic21, Figure

7.12b, and passed to link array ic22. During an IACK cycle these

three address lines are coded w ith the in terrup t level num ber that is

- 1 2 5 -

being processed. If the VPA line of the processor is asserted at this

tim e, then auto-vectoring begins. The pinout of J1 connector is given

in Appendix C.

7.6 The M 68000 P ersonality Module Card

As both the supportive and target processors are identical, the

interface between the two system s is straightforw ard and of low

com plexity. The personality card is m ainly consists of three state

machines, one for initiating the m aster to target bus request, the

second for initiating the target to shared m em ory read /w rite access

and the th ird is responsible for generating the m aster to target

in terrup t, halt and reset signals. The complete circuit diagram of the

M 68000 PMC is shown in Figure 7.16.

7.7 M aster to MC68000 target m em ory access

The m aster processor uses the same procedure to generate the

m aster to target request signal (M TR) as described for the Z80 target

system .

The target memory request addresses (8 7 0 0 0 0 -8 7F F F F)lb access

64 Kilobytes of memory, which is sufficient for eight bit target

processors. For sixteen bit processors, such as the M68000 target

processor, a latch (74LS374) is used on board the PMC to supply the

highest address byte in order for the m aster system to be able to

access the entire memory range of the target processor.

- 1 2 6 -

The generated MTR signal, on board the interface card, is routed

to the M68000 PMC and applied as one of the inputs to the state

machine shown in Figure 7.13a. The MTR signal forces the target Bus

Request (BR) line to be active. The M68000 target is a t a lower bus

p rio rity level than the m aster, and will relinguish the bus after it has

completed its current bus cycle. The target inform s all other potential

bus m astership devices that it w ill release bus control at the end of

the current bus cycle by asserting the Bus G rant (B G) signal. The

target B G , A S , D T A C K and BG A CK signals are also applied as inputs to

the state machine shown in Figure 7.13a. As soon as the TBG is

asserted and the T A S , TDTACK and TBGACK are negated, the

supportive processor takes over the control of the target bus by

asserting the TBGACK signal. The asserted TBG ACK signal is routed

back to the interface board to enable the data and address buffers.

This signal1 is also used in the m aster D T A C K generation circuit to

term inate a m aster to target m em ory cycle by asserting the m aster

D T A C K signal after the specified tim e of the generation circuit. This,

in tu rn , w ill term inate bus m astership by the negation of the target

BG A CK signal. Figure 7.13b shows the bus request cycle tim ing

diagram.

When the m aster gains control over the target bus, it s ta rts a

norm al M68000 read or w rite cycle, as requested by the m aster, to

the target memory by issuing the appropriate control signals R/W,

A S , LDS and U D S.

The active TBGACK signal is used on board the PMC to enable

- 127 -

unidirectional buffer to pass m aster R / W , L D S , (JDS , A S and DTACK

signals to their equivalent target lines.

7.8 M68000 target to shared m em ory access

The target system can request access to the shared m em ory by

accessing any of the reserved S.M addresses. The target S.M address is

compared, on board the interface board, w ith the previously latched

S.M address. If it matches, a TSMR signal is generated. The TSMR

signal is arb itrated w ith MSMR line. If the target request is a t a

higher priority level than the m aster request, then an arb itrated

target request signal (T S M R A) is generated. The target arbitrated

signal is used to enable the address buffers and used together w ith

target LDS and UDS lines to activate the data buffers. It is also used to

enable the shared m em ory during target read /w rite cycles.

The T S M R , TSMRA and TR/VV signals are applied to the circuit

shown in Figure 7.14a to generate TWA IT signal which is used to w ait

the target processor for approxim ately 200 nanoseconds before

asserting target DTACK to signal to the term ination of the target

cycle. The delay is to ensure that the target system does not request

another S.M access before the previous cycle is term inated. The target

to shared memory read /w rite cycle timing diagram is shown in

Figure 7.14b.

- 128 -

7.9 Target Interrupts

Similar to the Z80 PMC, the M 68000 PMC provides direct

m aster control and monitoring of the target in terrupts, ha lt and reset

lines by programming the PIA interface device. The PIA A5,A6 and

target IN TA C K signal are applied to the circuit shown in Figure 7.15a

to generate target in terrup t, halt, reset and vector latch signals. The

vector latch signal is used, during an in te rrup t acknowledge cycle, to

release the interrupting device supplied vector to the target processor.

The timing diagram of this circuit is shown in Figure 7.15b. Port B

of the PIA is programmed as inputs to m onitor the target I N T , H A L T

and RESET lines.

- 1 2 9 -

z1

V

DATA CONTROL

ADDRESS

DATA CONTROL

ADDRESS

CPU

BUFFERS &

CLOCK

MEMORY &

I/O DEVICES

I/O SIGNALS

Figure 7.1 Target Board Architecture

74LS24474LS244
A 8~A 15

\

Z80A

74LS24474LS244
A 0-A 7A o~A 7

\ 74LS24574LS245
D 0- D 7D q- D 7

DIR G

DBUF
B U S A C K

(Figure 7.2 Z80 Target Address and Data Buffers!

82S126

3xlK

(3

4xlK

MREQ

MEM

74LS138

iu
13

17.

Id

ROMO

R0M1

ROM 2

ROM3

RAM3

RAM2

RAMI

RAMO

5v

Figure 7.3 Target (Z 80) Memory Decoding Logic

MTMRAM TM RA
M U D S - MR/W

74LS245
DIR8 /1 6 - t > < H EX

H45
TSMRA

TSMRA
fU B R

TR/W

Figure 7.4 Data and Direction Enable for Byte and Word Accesses;
i

- 1 3 2 -

8 MHZ T

MTR -

TR/VV .

M D T A C K -

J I

IB

17
74LS374

f it
19 IS

1C 1

IS 3.

(Z 3

q 4

c 7

£

2 xfT

82S126

(Z-

TBUSREQ
■ o

Figure 7.5 Z80 BUSREQ Generation Circuit

A/r/? |
 ►

TR/W

M DTACK

TBUSREQ

Read Cycle W rite Cycle

Figure 7.5b Master to Target (Z80) Read/W rite Timing Diagram.

- 133 -

M TRA

5v

MTR

4x 1 k

MREQ

10 RQ
o _

RD

■o

MT1 /OR

74LS24412-74 LS 13 9

MR/VV £ > >

Figure 7.6 Z80 A / / ^ . 70/?<2 . RD . & WR Generation Circuit

5 v

IK

Z80 TWAIT
74LS161

8 MHZ

CLR

TSMR

TSMRA

Figure 7.7 Target (Z 80) Wait Generation Circuit.

- 1 3 4 -

VECL

M l

IORQ

74LS24474LS373

Figure 7.8 Circuit to supply Vector Number
during an IACK cycle.

- 135 - !

In
te

rf
ac

e
B

oa
rd

J3

C9

A4

C3

C6

A6

A5

C4

A9

AS

B7

A3

C30
A31
B31
C31
A32
R32
C32
B2

C5

A7

C8

B8

H
X_oJD,

8 M H Z-

RELWAIT

74LS174

Qt

MDTACK-

ENR

MTRA-

M TR-

MTI/OR-

MR/W -

TAS

TR/W -

VECL-

PDO *
PD1
P D 2--------1
PD 3-------- -
P D 4____ 11
P D S _____*
PW _ _ _ ,7
P D 7-------T

ENL— n

TSMRA J
TUBR

C44

CLR

74LS373

A44

s *
t (
1 I
I t ii

IJ >3
it
19 IT

t l

J3 J4

A 28 PBO INT C18
B28 PB1 NMI A18
C28 PB2 RESET A 20
A29 PB3 BUSACk C31
B29 PB4 BUSREQ C20
C29 PBS HALT C21

o

1. 1
74LS139 I t 4

74LS244

J. c.

D44 i f D8

8 MHZ

74LS244

D36

J4
TDO A 23
TD1 C23
TD2 A24
TD3 C24
TD4 A 25
TD5 C25
TD6 A 26
TD7 C26

MTR-

TR /W —

MDTACK -

TLBR -TAO (J4 A5)

. c ± . *1 ,JI
V <r i*

n i
v i

82S12674LS374
it j
1 4

D28
C T E8
• i
2 *

■—RESET A20

5V

BUSACK C31

MREQ C16

IORQ A16

RD A19

WR C19

d 74LS138

<̂ TF- <h

4xlK

74LS244

BUSREQ

L f t n n

74LS161 WAIT

8 MHZ i

TSMR

TSMRA ̂

M l

IORQ F ig u re 7 .9 Z 80 P e r s o n a lity M ou d le C ard

J4

A21

CIS

A1S

C20 Z8
0

T
ar

ge
t

A 17-^412- / 1 23

S18

14L4

ic l5

(J
IC

fs

M E M

2xlK

A o - /4

A

B’ 74LS138

C ic!6

L D S — ^

UDS
A

B 74LS138
C

ic l7

1 /0 Global

17 Z

/C

12L6

ic 19

18

>5*

/4
13

f t 9

i s T

Iff £

t s jr

— A S

ft

IS 3

t
’S ,

B

74LS138

ic20

■Af 6800

H O P AGE
VPADRIVE

10L8

icl 8

2x lK

RAMOL

RAMIL

ROMOL

R0M 1L

RAMOH

RAM 1H

ROMOH
R0M 1H

S20

To Chip
Select (CS) of
I/O Devices

Figure 7.10 Target (M C 68000) Memory & I/O Decoding Circuits

- 137 -

MEM

DTACK

74LS273
HERR

LK21

Figure 7.11 Target (M C 68000) D TACK Generation Circuit

5V

IPL2

IPL1

1PL0

I 7

74LS348

A o

A i
A 2

ic23

Io

2K2

3
3

3

3

3
3

3
3

HED B

ic24

t XL

0 -
c -
c -
c-
c -
o -
o -
o -

NMI J1C2

J N T AC IA 1

IN T A C IA 2

IN T PI IT la

INTPI IT \b

- IN TPI IT 2a

IN TPI IT 2b

1NTPTM

IN T 2

IN T 1

J2C3

J2C2

(a)

Figure 7.12 Target (M C68000) 1 /0 Devices Interrupts

- 138 -

<5v

A 2-

A 3 .

IN T A C K

Yi

74LS138

ic21

f<>

I?

2K2

2K2

HED A

ic22

ft

It \1

A* I j

12 *

II 2

lo H

5v

(b)

Figure 7.12 6800 Interrupt Request and on Board Interrupt Enable

6800IRQ

INTO N

- 139 -

8MHZ

MTR

TBG ■

TAS

TDTACK

it

>n

14

' j

■V-

74LS374

I t i f

16 i

IF i

11 3

4» 4

6 7

S 6

I S

I3| IS
C S 2 CS1

82S129

lo Q:

I?

Q:

Qj_

Qo

TBR

TBGACK

(MTRA)

Figure 7.13a M 68000 Bus Request Generation Circuit

MTR

TBG

TAS —

TDTACK

TBR

TBGACK

Inputs

Outputs

Figure 7.13b Bus Request Cycle Timing Diagram
1.10

8 MHZ

TSMR -

TSMRA ■

TR/W .

V
It •J

17 i t

74LS374
f*r >s

13 n

ft ?

7 (,

V s

3 z

IS

/

1

3

*r

7

6

S

82S126
TWA IT

n

Figure 7.14 (a) TWAIT Generation Curcuit During

Target (M 68000) to S.M Access

TSMR

TSMRA

TR/W

TW AIT (*- 200ns

Read Cycle

300ns

Write Cycle

Figure 7.14 (b) TWAIT Timing Diagram

- 141 -

8 MHZ

V
18
n

PAS

PA6

74LS374

T INTACK'

It 18

IS n

1* IC

9 s

c 4

5 3

2 2

is

82S147

iz

TINT

VECEN

THALT

TRESET

Figure 7.15a Supportive System to Target (M 68000): Interrupt, Halt and Reset

PA5-

PA6

T INTACK-

Inputs

TINT

TH ALT ---

IRESET __

Outputs

Figure 7.15b Supportive to Target I N T H A L T &RESET Timing Diagram

- 142 -

In
te

rf
ac

e
B

oa
rd

n
A3

C30
A31
B31
C31
A32
B32
C32
B2

A4

C6

A6
A5

B3

B8

C8

A8

B6

VECL

7
' ,
X «
' ,/ ir

TINT

8 MHZ

•MLS373 74LS244 TD2 - A24 THALT74LS374 82S147

" VECEN
TINTACK

TD7 - C26

RELWAIT—

MTRA
MTR

8 MHZ

T A 16
T A 17 74LS374 82S126TLBR - TLDS 74LS373

74LS244
TUBR — TUT55

TA20 TINTACK—
TA21 TDTACK
TA22
TA23

TR/W

74LS244

TUDS

8MHZ VECEN

TWAIT ' f l

^ E > ^ t
82S12674LS374

TDTACK
74LS174 i

TDTACK

A9 MR/W-

A10 MAS-

CIO MLDS-

BIO MUDS-

C3 MDTACK-

C5 E N l -

C2 TSMR

A7 TSMRA-

TO /\X7D / I K/ W

H

B5 TAEN__ J

TADIR 1

Fig. 7.16 M 68000 Personality Module Card

J4

C2

C21

A 20

C17

C20

C22
A22

C3

A19

C16

A 16

C19

M
68

00
0

T
ar

ge
t

8. SOFTWARE/HARDWARE INTEGRATION

This chapter brings the development of the Educational

Interface Board for M ultifam ily Microprocessor Teaching to its

logical conclusion by describing the final stages of system integration

and testing under two different operating system environments,

TRIPOS and UNIX.

8.1 The UNIX developm ent so ftw are environm ent

In order for the Educational Interface Board to be implemented

on the supervisory system supporting UNIX, a device driver is

required to be w ritten and build into the UNIX Kernel.

The device driver is the softw are interface between the

peripheral device and the Kernel modules which control the device.

As stated in chapter five, the I/O system of UNIX is designed

around tw o device models, block and character. The block interface

is suitable for devices such as disks and tapes which look like a

random access storage to the rest of the system and treat data in

blocks. The character device interface is suitable for devices which

use unstructured input and output transfer such as term inals and

netw ork media.

The structure of the UNIX operating system perm its the user

interface to a device to go through the file system, where all devices

(including the educational interface board) are treated and accessed as

- 144 -

regular files. The device file differs from a regular file by the file type

located in its inode table which specifies character or block, interface.

The internal representation of a UNIX file is given by three

system tables, inode table, file table and user file descriptor table.

The inode table gives the a ttribu tes of the file such as file owner,

access permissions and access times. The file table contains global

Kernel inform ation such as the byte offset in the file where the user’s

next read or w rite w ill start. The file descriptor table is allocated for

every process, and contains inform ation which identifies all open files

fo r a process. A file descriptor is returned by the Kernel fo r openO

and creati) system calls.

The device file interface is m ainly consists of a few system calls

which perform special operations. They include open, read, w rite and

close a device. The algorithm s which handle these functions are part

of the Kernel. The Kernel first executes the openO system call, which

opens the device file and sets up entries in the system tables, to allow

a process to communicate and access data on the device file. The

Kernel then retu rns the user file descriptor to the calling process.

When executing readO or write() system calls, the Kernel uses the

file descriptor as an index to access the three system tables, and from

the inode table the Kernel locates the required data. For character

devices such as the interface board driver, the input output control

system call, ioctlO , is used to provide an interface which enable

processes to control the device. The ioctlO system call has the

following notation :

- 1 4 5 -

iocttifd, command, arg);

W here f d is the file descriptor returned previously by the openO

system call. Command is a request passed by the user program to the

d river to perform certain actions such as accessing shared memory or

target memory. Arg is a param eter which points to a structure.

W hen a process is no longer required to access an open device, the

Kernel closes it by executing the system call close() . The Kernel

manages the close operation by m anipulating the file descriptor and

the corresponding file table and inode table entries.

The development of the device driver goes through the following

phases : i) developing the driver softw are on a UNIX machine which

is provided w ith all parts of the Kernel, ii) building the UNIX

Kernel, iii) T ransferring the Kernel to any other UNIX development

system , iv) testing and debugging. Once the driver is built into the

system , the environm ent for softw are development and debugging

becomes very restricted,

and any development or correction made to the driver

w ould require going over the development phased mentioned above.

This can result in frustra ting development efforts. On the other hand,

since the driver is w ritten in C language, this can improve the

development time and allow for higher level functions to be included

in the driver.

For the MC68000 educational interface board, a UNIX special

character device called H/c?ev/m^a has been created w ithin the filing

system .

- 146 -

The user program is responsible for feeding the driver w ith the

required inform ation to carry out the requested tasks. The user has to

define in his program a buffer, where the data is to come from or go

to, size of the buffer, which represent the num ber of characters to be

transferred , and also has to set an address offset. Before the user can

actually perform any read or w rite to the target memory a request

m ust be made to the Kernel to open the specified device file. The

argum ents of the open call specify the device name and read w rite

mode type. If the open is successful, it returns a valid file descriptor

and the device is ready for action. An unsuccessful a ttem pt w ill

result in the return of -1. The user, is then required to use the ioctlO

call to inform the driver of type of action to be taken. As the Kernel

receives the request command, it compares it w ith the command

options supported by the driver. If a successful match, then the

requested routine w ill be called, else an input output error is reported

to the user.

If a valid request has been made, then all the input and output

communications is done using the tw o calls readO and writeO. For

both calls, the first argum ent is the file descriptor returned previously

by the openO call. The second and th ird argum ents are the buffer and

buffer size,

which were defined earlier in the user program. Each of the read and

w rite calls returns a byte count which specifies the actual num ber of

data transferred. A returned num ber of zero indicates an end of file,

and -1 w ill signal to the user th a t there is an error of some kind as

- 147 -

the returned byte count in a w rite call does not equal the num ber of

bytes supposed to be w ritten.

For shared memory read accesses, the first test is to check that the

total num ber of characters to be read does not exceed the shared

m emory space lim it, which was set to 4 kbytes. If the test is

successful, shared memory address is set to the shared memory

address (860000)16 plus any address offset supplied by the user. A

counter is set to zero, and a test is made on the num ber of characters.

W hile the num ber of characters is valid, a pass(c) routine is called to

re tu rn characters to the user, and the shared memory address and the

counter are increased by one. For shared memory w rite access, a

cpassO routine is called to pick up characters from the user’s buffer.

Characters are to be transferred until the byte count goes to zero or

an error occurs, where a -1 is returned.

8.1.1 Operation procedure

First, the user selects the target microprocessor board which is

required to be studied. Its appropriate personality module card is then

plugged into the educational interface board, and the tw o boards are

plugged into the provided system backplane slots.

In order not to generate any illegal in terrup t which will cause the

system to enter a halt state, it is preferable that the UNIX system is

shut down before any boards are plugged in. A fter all the cards are

in place, the system can then be rebooted. During the bootstrapping

procedure, the Kernel begins an initialisation phase which includes all

- 148 -

the drivers. And as the educational interface board is initialised,

communication w ith the target system can start. The bootstrapping

procedure of the UNIX system has been described in chapter 5.

8.1.2 Support software

A part from the wide range of utilities and programming tools

supplied w ith the UNIX system, such as the C and Fortran compilers

and the Omnia assembler, a num ber of small softw are programs have

been w ritten specifically for the support and testing of the

m aster/target interface environm ent. The exmem.c is a short C

language program which examines the contents of either target or

shared memory locations. When it is executed, the user is required to

enter T for target m em ory or S for shared m em ory, start address in

hex and the num ber of bytes required to be examined. The hexload.c

is another C program used to down load the Intel Hex records into the

specified target m em ory location. The loaded code can then be

executed by issuing a RUN command. Other commands have also

been tested. They include halt and reset the target system, stop and

resum e program execution and interrupting target processor. A

num ber of Z80 and MC68000 assembly code programs have also been

w ritten to test target to shared memory read and write, moving

blocks of data between the target and shared memories, reading from

target input port and w riting to target output port fo r visual display.

A fter verifying tha t the m aster/target interface is operating

correctly and as expected, an educational debug softw are system can

then be developed, in the programming language C, to provide a

- 149-

debugging environm ent facility for monitoring the target activities

via direct memory access.

The debug too], which consists of a range of commands, is to

provide

the following essential features :

i. Direct data manipulation of shared memory, target memory and

target I/O locations.

ii. Data transfer between shared and target memories.

iii. Load and save in Intel hex form at.

iv. Examine and m odify target registers.

v. Single step and execute program. In single stepping the program

is executed one single instruction at a tim e to allow the user to

inspect the contents of memory, registers and to check that the

results are as those expected.

vi. Relative jum p offset insertion.

vii. Breakpoints insertion. This feature is to enable the user to view

the effects of memory accesses at specified addresses in program

memory.

8.1.3 The software development cycle

The softw are development cycle goes through several

development phases before the program is successfully executed in

the target memory. The first step in the development process is

defining the functions of the program, followed by the designing

- 1 5 0 -

phase. Then comes the phase of coding the program in either

symbolic assem bly language or high level language. Using the ready

available powerful UNIX tools such as editors and file management,

the code is typed and saved as a source file. Depending on the source

file type, the Omnia assembler or a cross compiler is used to translate

the sources code to an Intel hex form at object file. The object code is

down loaded, via direct memory access, into the target memory and

debugged. At the end of the debugging phase, the development

process enters its final phase by executing the program on the target

system .

A key advantage of choosing UNIX, in this study, over other

available operating system s is its m ultiuser environm ent and its

pow erful u tility tools. As users benefit from sharing the expensive

devices such as high speed printers and storage media, they also

benefit from sharing only one target system. During the software

development cycle, users usually spend a great deal of tim e in

designing, coding and typing their programs before they actually

reach the stage of downloading the object code, into the target

memory, for debugging. A t th is stage only one user is allowed to

communicate w ith the target system , the other users would be busy

at different development phases.

- 151 -

8.2 The TRIPOS developm ent so ftw are environm ent

As have been seen in chapter 5, TRIPOS and its programming

language provide a good and simple environm ent for hardw are
t

development. Because TRIPOS device drivers (unlike UNIX drivers)

are not an integral part of the Kernel, no special Kernel is needed to

be build or rebuild each time any changes or corrections are made to

the driver. This feature will result in a simple and straight forw ard

im plem entation of new devices. The tim e taken to produce a TRIPOS

device driver is considerably reduced by this feature, and the time

for debugging and implementing test program s is also less.

Some TRIPOS devices can even communicate directly w ith the

microprocessor w ithout the need for drivers. These devices are

m em ory mapped and they use the system backplane bus for

communication. If a device is required to in te rrup t the processor for

any reason, then a device driver is required. The packet transfer

technique, which is used to communicate between two tasks or a task

and a device driver, and the structu re of TRIPOS device driver have

been described in chapter 5.

Once the educational interface board and the selected target

board are plugged into the provided slots, power is applied to the

system . The supervisory disc based system is then boot strapped,

from the system floppy disc, to load the TRIPOS operating system,

and various operating system s ta rt up procedures, such as setting

tim e and date, are perform ed.

- 152 -

A set of softw are test programs, sim ilar to those w ritten under

the UNIX environm ent, have been developed in BCPL language to

support the m ulti-fam ily microprocessor interface environm ent

running TRIPOS. Two different target boards, the Zilog Z80 and the

Motorola MC68000, have been used successfully in the testing

process.

The use of two different target processors is to dem onstrate the

universatility of the technique used in this project. Eight, sixteen and

th ir ty tw o bit processors can be interfaced to the MC68000

supportive system through the educational interface board. But due to

pin lim itations in J1 connector of the supervisory system backplane,

only byte and word accesses are possible. And the integration of

educational interface hardw are w ith tw o different softw are

environm ents is to dem onstrate the flexibilities of the approach used

to the problem of m ultifam ily microprocessor education and

development.

- 153 -

9. CONCLUSIONS

The aim of this study has been to develop an economical

educational environm ent to allow students to examine and

understand the behaviour of the curren tly available 8, 16 and 32 bit

microprocessor families.

It is apparent, from the review of the available microcomputer

educational system s described in chapter 2, that the in-circuit

em ulator is one of the most pow erful techniques available for this

purpose. However it is probably also the most complex and

expensive approach. The high cost of such specialized system s has

forced the m anufacturers of in-circuit em ulator based development

system s to offer communication link programs and high-level

softw are development and debugging tools fo r use w ith a wide range

of host computers in order to allow users to connect in-circuit

em ulators to their own host computer. For educational institutions,

the provision of a sufficient num ber of such working stations is often

a severe financial constraint.

An examination of the bus structures of various microprocessor

fam ilies has shown that there is little fundam ental difference

between the control timing sequences of m any processors. These

sequences are used for address and data validation as well as

direction control and most microprocessors also have provision for

- 154 -

direct memory access. The success of this study has been based on the

ability to exploit these common features to transform between the

bus signals of different processors in order to provide a universal

development environment.

The general purpose Educational Interface Board (EIB) which

has been designed and implemented provides a communication

environm ent for users to study, m onitor and control the operation of

a wide range of different microprocessor based target systems. The

supervisory and target processors form an asynchronous, shared

memory m ultiprocessor system . This development environm ent can

be used to compare the performance of microprocessors from

different fam ilies quickly and sim ply, w ithout having to invest in the

complete development system m arketed by each m anufacturer.

The MC68000 processor was chosen as the supportive processor

because it was considered to be the most pow erful and versatile

microprocessor available when this study started. Several features of

its architecture support the implementation of the tw o sophisticated

operating systems, the single user TRIPOS system and the m ulti-user

UNIX system,used during this study. These features include the large

linear addressing space available, dual-state processing and a seven

level in terrupt priority scheme. The architecture of the MC68000 is

also conducive to the use of high level languages such as BCPL and C

which are, respectively, the prim ary development languages fo r the

two operating system s implemented. Use of the relatively advanced

MC68000 processor w ith its large hardw are capability on the

- 155 -

supportive section of the development system has meant that the

component count on the interface board used with a particular target

processor has been minimised.

This hardw are interface has been successfully tested under two

different softw are environments. The TRIPOS operating system was

used first because of its inherent sim plicity and the straight forw ard

m anner in which it handles hardw are. This simplified debugging and

made test software easy and quick to implement. The recent

introduction of the Commodore Amiga machine (which operates

under a TRIPOS based operating system and uses the MC68000) has

fu rth e r increased the popularity of TRIPOS and a range of high level

languages and software development packages are now

available f^*7̂

TRIPOS is, however, essentially a single user system but its

portab ility makes it cost effective and would allow the provision of

enough work stations for m ulti-fam ily microprocessor educational

purposes.

During the course of this study, the UNIX operating system

became well established for MC68000 based computing system s and

the development system has been integrated into and operated in this

environm ent. It offers several advantages to the user. Additional to

the wide acceptance of this operating system , it offers m any tools

d irectly applicable to softw are development for microprocessors.

These include tools for program editing , document creation and

- 1 5 6 -

form atting, file maintenance and project management. The richness of

the native capabilities of the system makes it easily extensible to

tasks it was not designed to perform originally, such as control of

external microprocessor based target systems. In the education and

training field, a unified procedure for file editing, storage,

downloading of object code, debugging and the m onitoring of target

system s is an attractive feature. Since the m ulti-user/m ulti-task ing

capability is the most im portant feature of this operating system,

users have the benefit of sharing the fu ll system resources.

They can, therefore, each sim ultaneously access the system during all

the phases of the microprocessor softw are development cycle and

development programs can be shared among several users. No

duplication of target hardw are is required and the UNIX environm ent

has proved to be highly successful when used w ith m ultiple

microprocessor softw are development system in the educational

environm ent.

The proposed microprocessor development system has the major

advantages of universatility , flexibility and economy. The num ber of

components needed in each target system has been minimized and

most of the necessary complexity is associated w ith the universal

supportive system. It should be possible to interface any currently

available microprocessor to the supportive system using the EIB. The

hardw are is capable of being integrated into several softw are

environm ents, thereby providing the user w ith his own choice. The

system is easy to use and appears to be cost effective. The EIB used in

- 157 -

the UNIX environm ent therefore seems to satisfy the ever increasing

demand for m ulti-fam ily microprocessor education at low cost.

- 158 -

APPENDIX A : Supportive System Bus Specification

Back-plane pin-outs

Edge C onnecto r J1
Pin No. Row a Row b

32 +5V +5V
31 -5V -5V
30 D14 D15
29 D12 D13
28 D10 D ll
27 D8 D9
26 D6 D7
25 D4 D5
24 D2 D3
23 DO D1
22 AS BG
21 ECLK HALT
20 RESET BR
19 R /W DTACK
18 VMA VPA
17 BERR BGAGK
16 UDS LDS
15 CLK A20
14 A18 A19
13 A16 A17
12 A14 A15
11 A12 A13
10 A10 A ll
09 A8 A9
08 A6 A7
07 A4 A5
06 h i A3
05 A21 A1
04 A22 A23
03 -12V -12V
02 + 12V +12V
01 OV OV

- 159 -

Back-plane pin-outs

Edge C onnecto r J2
P in N o. R ow a R ow b

32 +5V +5V
31 + 15V -15V
30 FC0 DLY1
29 FC1 DLY2
28 FC2 DLY3
27 FC3 DLY4
26 INTACK DLY5
25 DLY6
24 DLY7
23 IRQ1 DLY8
22 IRQ 6 lOPG
21 IRQ 5 68 PG
20 IRQ 4
19 IRQ 3
18 IRQ 2
17 IRQ l
16 BGOUT BGIN
15 IAOUT IAIN
14
13
12
11
10
09
08
07
06
05
04
03
02
01 OV OV

- 1 6 0 -

M aster Signal Descriptions

Dn Data bus lines

An Address bus lines

68PG Partial address decode to signal 6800 device page address.

IOPG Partial address decode to signal 10 device page address.

AS System address strobe

UDS Upper data strobe - when asserted signals D 1S-D& valid

LDS Lower data strobe - when asserted signals Z>7-Z)0 valid.

R/ W Read w rite line

D T A C K Data acknowledge - signals successful completion of bus cycle.

BERR Bus error - signals and term inate bad bus cycle.

FCn Function codes - signals bus cycle type.

DLYn Delay signals - DLY1 is asserted 1 clock cycle follow ing assertion
of data strobe. Used by peripherals fo r tim ing D T A C K .

VPA Valid 6800 peripheral address - driven low by 6800 type
devices to start 6800 bus cycle.

VMA Valid memory address.

ECLK 6800 device clock - 1 MHZ clock used for 6800 device
synchronous bus cycles.

CLK System and arbitration clock - 8 MHZ.

BR Bus request - driven by bus m aster to request bus access.

BGOUT Bus grant - out daisy chain signal. Backplane connects
BGOUT to BGIN of successive slots.

B G IN Bus grant - in daisy chain signal - bus m asters receive
bus grant on this pin and propagate it on BGOUT .

- 161 -

IREQn

IAOUT

JA IN

In terrup t request-driven low by requesting peripheral.

In terrup t acknow ledge out daisy chain signal-backplane
connects IAOUT to IA IN on successive slots.

In terrup t acknowledge in daisy chain signal-peripherals
receive in te rrup t acknowledge on this pin and propagate to
successive slots by driving IA O U T .

- 1 6 2 -

APPENDIX B : Z80 Target Bus Specification

Back-plane pin-outs

Edge C onnecto r J 1
Pin No. Row a Row b

32 +5V +5V
31 BAI BAO
30 PULLED UP 2*CLK
29 PULLED UP PULLED UP
28
27
26 D6 D7
25 D4 D5
24 D2 D3
23 DO D1
22
21 M l HALT
20 RESET BREQ
19 RD WR
18 NMI INT
17 WAIT RDY
16 IORQ MREQ
15 CLK RFSH
14 OV OV
13 OV OV
12 A14 A15
11 A12 A13
10 A10 A ll
09 A8 A9
08 A6 A7
07 A4 A5
06 A2 A3
05 AO A1
04 IEO I El
03 -12V
02 + 12V
01 OV OV

- 163 -

APPENDIX C : M68000 Target Bus Specification

Back-plane pin-outs

Ed?e C onnecto r J 1
Pin No. Row a Row b

32 +5V +5V
31 A22
30 D14 D15
29 D12 D13
28 DIO D ll
27 D8 D9
26 D6 D7
25 D4 D5
24 D2 D3
23 DO D1
22 AS BG
21 ECLK HALT
20 RESET BR
19 R /w DTACK
18 VMA VPA
17 BERR BGAGK
16 UDS LDS
15 CLK A20
14 A18 A19
13 A16 A17
12 A14 A15
11 A12 A13
10 A10 A ll
09 A8 A9
08 A6 A7
07 A4 A5
06 A2 A3
05 A21 A1
04 A23
03 -12V INTA
02 +12V INT
01 OV OV

- 164 -

APPENDIX D : PAL E quations

This Appendix describes the signals generated by the PALs and the

equations used.

As has been shown in Figure 7.10, the memory and I/O decode of the

M68000 target system is achieved using a 14L4 PAL driving a pair of

74LS138 decoders.

Three outputs from the PAL drive the A,B and C inputs of the L SI38 pair,

the remaining output is used to enable the I/O decode circuit w ith a global

enable of a 2K area at 8000016 to 80F F F lb.

MEM = A x .j4U.TT4.RAM.ROM
+ Ax.A15.AJAA 13.RAM.iKMf
+ A x .A 15 .R A M .ROM
+ A x .RAM .ROM
+ A x .A 15 .R A M .ROM
+ A x .A 15.A 14.A 13.R A M .ROM

Where AT = A 2 3 .A 2 2.A~2l.A 20.A 19.A 18. A 17
.A 16.A 15.A 14.A 13.A 12

The first term enables the m em ory decode dependent on the address lines

and the RAM and ROM size selection.

The next tw o term s, A and B, can be considered as a two bit encoded signal

that is then decoded by the 74LS138 and via a fu rth e r PAL to select one of

four pairs of RAM or ROM. As the target is a 16 bit processor the devices

are selected in pairs.

A = aI.aU .aT 4.a12.R A M .R O M
+ A x .A 15.A 14.RAM.iKMf
+ Ax .A 15 .A 14.A 13.A 12.RAM.iKMf

- 165 -

+ Ax .A 15.A 14.A 13.A 12 .RAM .ROM
+ A x.A \5 .A 14. RAM .ROM
4- A x .A 14 .R A M .ROM

B = A x . A 15 .A 14.A 13.RAM .RO M
+ A x .A 1 5 .R A M .R 0 M
+ A x . A 15.RAM .ROM
+ A x .A 15.R A M .R O M

The f ourth output term is asserted over the 2K page at 8000016

10& 68 = A 23 .A 22.A 21.A 20.A 19.A 18. A 17
.A 16.A 15.A 14.A 13.A 12

- 166 -

IC19 is a 12L6 PAL which is used to encode the low address lines in order

that, when decoded by a 74LS138, an even map can be obtained. Three of

the outputs drive the A,B and C inputs on the decoder the remaining three

are used as a globle ’6800’ I/O device decode, a global ’68000’ I/O device

decode (both available at the J2 connector) and a VP A decode to initiate

6800 cycles and Auto-vectoring.

A = IO&68.AS.A l l .A 10 .A 9.A 8 .A 7.A 6.A 5 . A 4.A 3.A 2
+ IO&68.AS.A 11.A 10.A 9.A S.A 7.A 6.A 5. A 4.A3.A2
-I- IO&68.AS.A11 .A 10 .A 9.A 8 .A 7.A 6

B = IO&68.AS.aTT.A10.A^.A8.A7.A6.A5. A 4 .A T
+ IO&68.AS.A 11.A 10.A 9.A 8.A 7

C = IO&68.AS.ATT.A \0 .A ~ 9 .A % .A 1 .A 6 .A 5

VPADRV = IO&68.AS.ATT

IOPAGE = IO&68.A11

M 6800 = IO&68.AU.

- 167 -

APPENDIX E : The Educational Interface Board Circuit Diagram

The following page shows the complete circuit diagram of the

M C68000 educational interface board.

- 1 6 8 -

1)2)5
A2-45 A5I6

AI61
H245 •

K245

C 245

MLDS (JJ CIO)

at

A244

A 129

tp
A374

\ 6 2 3

A 124

 TAEN

Till

G 245

B244

:i>23
C 244

H373 C521

U N I V E R S I T Y OF BATH
s c h o o l o f e l e c t r i c a l e n g i n e e r i n g

.fASIM A)!1

Educational In terface Board For T he

LATEST ISSUE 1 * 7 T tyM C68000 Based-System

REFERENCES

[1] Noyce R.N., and Hoff M.E.,jr : "A history o f microprocessor

development at Intel? , IEEE Micro, V ol.l, No.l Feb.1981

[2] Gupta A., and Toong Hoo-Mind : "Microprocessors The F irst Twelve

Years", Proceedings of the IEEE, Vol.71, N o .ll nov.1983

[3] Farrell J.J. : "Advanced Personal Computers and Their Processors",

M ini/M icro 1983 conference records.

[4] Fernandez E.B. : "Comparison and evaluation o f 32-bit

microprocessors", M ini/M icro S.E 1984 conference records.

[5] Strang B., and W oodhams F. : "Microprocessor training equipment",

microprocessors and m icrosystems, Vol.4, No.5 June 1980.

[6] Cosserat D. "MicroSim-a new approach to program development",

microprocessors and microsystems, Vol.3, No.2, March 1979, pp.95-

98.

[7] W hitw orth I. : "Teaching microprocessor techniques to nonelectronics

engineers", microprocessors and microsystems, Vol.4, No.5 June 1980.

[8] Teja E.R. : "In-circuit emulators aid designers as they move from 8 to

16-bit processors", EDN, August 4, 1982, pp.65-75.

- 1 6 9 -

[9] Everett C. : "New 16-bit microprocessor emulators add features,but

performance quirks limit usefulness", EDN, August 9, 1984, pp.93-

104.

[10] Glover J.R.,JR : "integrating hardware and software in a computer

engineering laboratory", IEEE Transaction on Education, Vol.E-24,

N o .l, Feb. 1981.

I l l] Lumley R.M. : " A n industrial microcomputer education program ,

IEEE Transaction on Education, Vol.E-24, N o.l, Feb. 1981.

[12] Holdstock k. : " A n interface between a PDP11/20 and an M6800",

Final year undergraduate project, University of Bath, 1979.

“ [13] W hitw orth P.F. : H A Multi-Family Multi-Microprocessor Education

and Development System", PhD thesis, 1983, University of Bath.

[14] Smith D. : " 32-bit microprocessr chips offer system-like benefits", EDN,

September 19, 1985.

[15] Osborne A. A n introduction to microcomputers volume 2 some real

microprocessors", Osborne & Assoc.,Inc.

[16] Motorola : " MC68000 16-Bit Microprocessor Users Manual", Second

Edition Motorola Inc, 1980.

[17] W inpigler D.J : " The 32-bit architecture o f the M68000 family",

M ini/M icro N.E, 1984 conference records.

- 1 7 0 -

[18] Osborne A. and Kane G.:" 16-Bit Microprocessor Handlxx)k",

O sborne/M cG raw -H ill, 1981.

[19] Scanlon L.J. :M The 68000 Principles and programming , Howard

W.Sams & Co.,Inc.

[20] King T. & Knight B. " Programming The M68000", 1983, Addison-

Wesley Publishers Ltd.

[21] Tanner D.G " Real-Time Simulation o f Power Systems", PhD Thesis,

1982, U niversity of Bath.

[22] W illiams S.K " Power System Optimisation and Stability Studies using

Real-Time Simulation", PhD Thesis, 1986, University of Bath.

[23] Dale L.A " Real-Time Modelling o f Multimachine Power System", PhD

Thesis , 1986, University of Bath.

[24] W estern Digital Corp. : " Western Digital 1983 Components

Handbook", 1983.

[25] King T.J. : " Tripos user guide ", school of Mathematics, University of

Bath, 1983.

[26] King T.J. : " Tripos programming guide ", school of Mathematics,

University of Bath, 1983.

- 171 -

[27] King T.J. : " Tripos technical guide ", school of Mathematics,

U niversity of Bath, 1983.

[28] Richards M., A lyward A.R., Bond P., Evans R.D., & Knight B.J. : "

TRIPOS-A Portable Operating System fo r Mini-computers * Software-

Practice and Experience, Vol. 9, 1979, pp .513-526.

[29] Bourne S.R : " The U N I X system*, International Computer Science

Series, 1983.

[30] Ritchie D. and Thompson K. : H The U N I X Time-Sharing System*, The

Bell System Technical Journal, July-A ugust 1978.

[31] Thompson K. : " U NI X Implementation*, The Bell System Technical

Journal, July-A ugust 1978.

[32] Ritchie D.M. : " The U N IX I / O System ", The Bell System Technical

Journal, May 1979.

[33] D ijkstra E.W. : H Cooperating Sequential Processes*, in programming

languages, ed. F.Genuys, Academic Press, New York, 1968.

[34] Bach M.J. : H The design o f the U NI X operating system*, Prentice-Hall

International, Inc., 1986.

[35] Bourne S.R. : H The U N IX Shell*, The Bell System Technical Journal,

July-A ugust 1978.

- 172 -

[36] Naur P.(Ed.) : " Revised Report on the Algorithmic Language ALGOL

60", The Com puter Journal, 5(1963).

[37] Barron D.W.et al. : M The main features o f CPL*, The Computer

Journal, 6(1963).

[38] Emery G. : " BCPL and C", Blackwell Scientific Publications, 1986.

[39] Richards M. : " BCPL the language and its compiler', Cambridge

U niversity Press, 1980.

[40] Kernighan B. and Ritchie D. : " The C programming language",

Prentice-Hall Inc., 1978.

[41] Hoffner Y. and Smith M. F. : Communication between two

microprocessors through common memory*, microprocessors and

m icrosystems, Vol:6, No.6, Ju ly /A ugust 1982.

[42] W eitzman C. : " Distributed m icrofm im i computer systems*, Prentice-

Hall, 1981.

[43] Deitel H.M : " A n Introduction to Operating Systems*, Addison-W esley

Publishing company, 1984.

[44] Hudson M. and Hausmann G. : * A designer guide to virtual memory

management*, Electronic Engineering, Ju ly 1985, PP.55-68.

- 1 7 3 -

[45] Phillips D. : " Memory-management varieties suit different application

areas”, EDN, September 6, 1984, pp. 135-143.

[46] Mitchell H.J. :M 32-Bit Microprocessors”, Collins Ltd., 1986.

[47] Gledhill L. \ Tripos-life after the Amiga”, Electronics & W ireless

W orld, Vol.93, N o .l619, September 1987.

- 174

