
        

University of Bath

PHD

On the factorization of polynomials over algebraic fields

Abbott, John Anthony

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



On the Factorization 

of Polynomials over 

Algebraic Fields

submitted by

John Anthony Abbott

for the degree of Ph.D. of the

University of Bath

1988

Attention is drawn to the fact that the copyright of this thesis rests with its author. This 
copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and that no quotation 
from the thesis and no information derived from it may be published without the prior 
written consent of the author.
This thesis may be made available for consultation within the University Library and 
may be photocopied or lent to other libraries for the purposes of consultation.

John Abbott



UMI Number: U012688

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U012688
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



U R I I V t "  " •  r  BAT H

z Z . 1 6  O C T  1989



0. Table of Contents

Chapter 1 INTRODUCTION
Description of the Problem and Our Motivation 1.1
Thesis Organization 1.5
Thanks and Acknowledgements 1.7

Chapter 2 FUNDAMENTALS & DEFINITIONS
Bath Algebraic Number Package 2.1
Representation of Algebraic Numbers 2.3
Obvious and Integral Bases 2.4
The Defect 2.5
Representation of Algebraic Functions 2.5
Discriminant Formula 2.6
Towers, Conjugates, Norms 2.6
The modular-Hensel Paradigm 2.11
The Cantor-Zassenhaus Algorithm 2.12
Swinerton-Dyer Polynomials 2.13
Hensel Lifting 2.15
The Classical Algorithm: Kronecker and Newton 2.17

Chapter 3 RELATED WORK
Univariate Polynomials over Finite Fields 3.1
Multivariate Polynomials over Finite Fields 3.4
Univariate Polynomials over Infinite Fields 3.5
(superexponential behaviour) 3.7
(trial divisions) 3.9
(polynomial time algorithms) 3.10
Multivariate Polynomials over Infinite Fields 3.12
(leading coefficient problem) 3.13
(extraneous factor problem) 3.14
(bad zero problem) 3.14
(polynomial time algorithms) 3.16
Lattice Basis Reduction Algorithms 3.17

Chapter 4 BOUNDS
Precise Statement of the Problem, & Motivation 4.1
Bounding the Denominator 4.3
Bounding the Numerator 4.6
(bounding roots in C, and a conjecture) 4.7

-0.1 -



Table of Contents J Abbott

(binomial expansion) 4.10
(deducing a bound on | by |) 4.11

Chapter 5 LATTICE BASIS REDUCTION
Problem Definition 5.1
Motivation 5.4
Description of Variants 5.6
Comparison 5.12
Empirical Complexity Formula 5.13

Chapter 6 UNIVARIATE HENSEL LIFTING
Assumptions and Notation 6.1
Pure Linear Lifting 6.2
Pure Quadratic Lifting 6.3
Fast Linear Lifting 6.4
Truncated Quadratic Lifting 6.5
Comparison and Analysis 6.5
Lifting the Factors 6.9
Lifting the Correction factors 6.9

Chapter 7 MULTIVARIATE HENSEL LIFTING
Standard Algorithms (Musser, Wang & Rothschild, EEZ) 7.1
Comparison 7.4
Wang’s (EEZ) Tricks 7.6
Extension to Algebraic Number Fields 7.7
Summary—algorithm 7.9

Chapter 8 FACTORIZATION OVER ALGEBRAIC FUNCTION FIELDS
Notation 8.1
Coefficient Bounds 8.3
Substitution Values (stringent case) 8.6
Substitution Values (lax case) 8.10
Conclusion 8.13

Chapter 9 CONCLUSION
Our recommended algorithm 9.6

- 0 . 2 -



1. Introduction

In this introduction we describe the problem which is tackled in the thesis and our 

motivation for investigating this area. Having set the scene we then explain how the 

thesis is laid out, giving brief summaries of each chapter and showing how the chapters 

relate to each other.

Description of the Problem and Our Motivation

In the last ten to fifteen years there have been great advances in the power and 

capabilities of computer algebra systems. These systems have become more widely 

available as the cost of a computer powerful enough to support such system has 

dropped. So although the algebra systems have grown in size as increasing numbers of 

facilities are added to them, the computer hardware has developed faster still. Indeed, 

there are already home-computers with sufficient resources for the REDUCE algebra 

system; and another, smaller algebra system called muMATH has been available for the 

IBM personal computer for several years. Thus it seems likely that the number of users 

of algebra systems will continue to increase. The algebra systems must then respond by 

expanding and offering the tools that these users will need.

Certainly, the systems should be able to cope with polynomial and rational function 

arithmetic, at the least. Already this introduces problems; the system should to be able 

to remove common factors from rational functions. No user would be satisfied with an 

algebra system which gave an answer like

-1.1 -
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x5+2x4-4 x 3+9x2-6x+4
x4+2x3-5 x2+6x-4

instead of the reduced form

x2-x+1 
x—1 '

In fact the oldest known algorithm, Euclid’s algorithm, deals with exactly this problem, 

but it turns out that there are hidden complications. Euclid’s algorithm becomes very 

inefficient on larger problems. Many people have tried a variety of ways of combating 

this inefficiency, and consequently have come up with a range of algorithms vastly 

superior to Euclid’s. Even so, no single algorithm stands out as the “best”: however, 

some of them do perform well in all situations. We shall see this phenomenon time and 

again; normally one of two attitudes is taken, either to use an algorithm that is fairly 

good all round, or to try to characterise the circumstances under which certain 

algorithms are best, and then write a program to select the best algorithm for each 

specific problem. Such a program is sometimes called a polyalgorithm.

Once the ability to manipulate rational functions has been included, we can 

consider further operations like differentiation and integration. Differentiation is easy. 

Many schoolchildren are taught how to differentiate. They are taught that

and a few other rules about how to deal with products and quotients, and also the 

“function of a function” rule. With these rules and some standard results about 

trigonometric, logarithmic, and exponential functions the children can then differentiate 

almost anything — and some of them can even get the right answer! These rules for 

differentiation bear a close resemblance to a computer program, and it is not hard to 

write a program to differentiate anything the schoolchildren can.

Now we have an algebra system which can handle rational functions and 

differentiate them. How about integration? Schoolchildren find integration a bit harder.

- 1 . 2 -
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There is an easy formula for polynomials — just differentiation in reverse. But rational 

functions are not so simple. Nasty surprises lurk here. The first problem comes with 

trying to integrate 1/x because the formula for integrating powers of x goes wrong. 

Instead of using the formula, we magically introduce a logarithm to get log(x), which 

differentiates back to 1/x so everything is fine. More difficult rational functions are 

tackled either by noticing that the integrand “looks similar to" one in a table so the 

answer can be read from the table, or by decomposing into partial fractions and then 

using the table. So the children’s ability to integrate is restricted by the tables they use 

and their skill at partial fraction decomposition. Another couple of tricks they can use is 

substitution (often of a trigonometric function) to transform the integrand into a 

recognizable expression, or to apply the rule about integration by parts somehow.

We want to enable our algebra system to integrate. Computers are good at 

arithmetic, even on rational functions, but they are far less effective at deciding whether 

a formula “looks similar to" one stored in a table, or whether integration by parts can 

usefully be applied. Also we do not want the computer to be limited by having to look up 

integrals in some (finite) table.

Let us consider another way. Suppose the computer were able to factorize 

polynomials, e.g. x2- a 2 = (x+a)(x-a), and x3+2x2+2x+1 = (x+1)(x2+x+1). Then the 

computer could split the integrand into partial fractions whose denominators were 

irreducible (i.e. cannot be factorized into smaller polynomials). Those fractions with 

linear or quadratic denominators can easily be integrated to give a sum of logarithms 

and arctangents, but fractions with higher degree denominators are harder. It is well 

known that any polynomial in one variable can be factorized into linear factors with 

coefficients in (D, so if the denominator were univariate (i.e. contains just one variable), 

the computer could factorize it over C so that all the partial fractions would have linear 

denominators and integrate to logarithms. This is not entirely satisfactory because if the 

integral were just the logarithm of a quartic, say, then this method would have gone to
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all the trouble to factorize the quartic and produce a sum of the four logarithms of the 

linear factors over C of the quartic when a single logarithm and no factorization are all 

that are needed. Luckily, some more mathematics allows us to restrict our factorisation 

to the easiest possible one that will give the answer ([Trager76] and [Rothstein77]), e.g. 

in

J 33*  = k>g(x3-x+1),
J x -x + 1

we need not factorize the cubic at all. Of course, we cannot always avoid a complete 

factorization, as the following example shows

i f e  = 2 ¥ l09(X' V5)- 2 ¥ l° 9(X+V5)-

This also brings us to the question of how to represent V2. We could compute an 

approximation to V2 by some root finding method but this is a notoriously ill-conditioned 

problem in general [Wilkinson59]. Alternatively, we can use an algebraic representation 

of the roots; i.e. we tell the computer to create a special symbol which behaves like a 

transcendental except that it yields zero when substituted into the polynomial of which it 

is a root (i.e. its defining polynomial). For example, we could create a  which satisfies 

a2-2  = 0 to solve the integration problem above. Such symbols are called algebraic 

numbers because they represent numbers which satisfy a certain algebraic relationship. 

However, we find that there is a disadvantage to this approach: we may need to 

compute the factorization of a polynomial in terms of these algebraic numbers. Such a 

factorization is not always easy; for example if our algebraic number a  has defining 

polynomial

a4-10a2+1 = 0

and then we determine the factorization of x2-2  in terms of a we get:
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The scheme outlined above is a viable method of integration but has the restriction 

that the denominator of the function to be integrated has to be univariate. Yet we can 

easily generalise from the example above to get

= - d r 109̂ ) -

So if we allow the computer to generate symbols which behave like transcendentals 

except that they give zero when substituted into a multivariate polynomial (i.e. involving 

more one than variable) then the scheme will generalise to cover these cases. Such 

symbols are called algebraic functions since they are functions of the variables (other 

than the main variable) in the defining polynomial and they satisfy an algebraic 

relationship (viz. the defining polynomial). Unfortunately, the disadvantage cited in the 

previous paragraph is even more serious in this case.

The aim of this thesis is to consider ways of overcoming these disadvantages by 

developing efficient algorithms for producing factorizations of polynomials in terms of 

algebraic numbers and functions. Such algorithms are also applicable to many other 

areas of computer algebra like simplification of formulae, and quantifier elimination.

Thesis Organization

We have arranged the thesis into nine chapters (including this one) and six 

appendices mostly containing tables of results. Here we explain briefly what each 

chapter covers and how the chapters relate to each other.

Chapter 2 lays the mathematical foundations upon which the other chapters build. 

It Includes all the basic definitions ranging from “algebraic number” to “integral basis”. It 

also defines terms related to the realisation of algebraic number fields in REDUCE with 

some insight into the details of the implementation. We give an abstract of how the 

Hensel lifting technique can be applied to polynomial factorizations, and show where this 

fits into the “modular-Hensel” method for factorising polynomials — this being the
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underlying model for our algorithm. There are a few other miscellaneous definitions too.

Chapter 3 compares and discusses a wide selection of papers concerned with 

polynomial factorization. The papers are divided into four categories according to 

whether the factorization is over a finite or an infinite field and whether the polynomial to 

be factorized is univariate or multivariate. The discussion relies heavily on the ground 

work in chapter 2. There is also a short section giving an overview of papers on lattice 

basis reduction algorithms.

Chapter 4 abandons the introductory nature of chapters 1 to 3, and takes a close 

look at the relative sizes of the coefficients of polynomials and the coefficients of their 

factors. The results of this chapter depend on the implementation details described in 

chapter 2.

Chapter 5 is concerned with lattice basis reduction as in [LLL82]. In it we explain 

how the basis reduction is used, and give a generalisation of this to algebraic number 

fields with multiple generators. There is an outline of the original algorithm by Lovdsz 

which sets up notation for the chapter. We present the findings of several experiments 

to compare a variety of modifications to the original algorithm, and then select one as 

being the best overall. An empirical formula for the running time of our implementation 

of this algorithm is included. The chapter is virtually self-contained and uses separate 

notation from all the others.

Chapter 6 looks into the details of applying Hensel lifting to a factorization of a 

univariate polynomial. We pick four strategies from pure linear to truncated quadratic 

lifting, and define these using abstract algorithms. A table of results is given, and 

followed by simple complexity analyses which agree with the empirical data. Attention is 

then focused on the finer details of how to lift the factors and correction factors with 

several possibilities being considered. We conclude by picking the combination which 

appears to be most efficient in general.
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Chapter 7 tackles the rather harder problem of using Hensel lifting methods on the 

factorizations of multivariate polynomials. It follows on from chapter 6 using the same 

terminology. We take a critical look at the three main papers (on the “classical” 

method) ignoring the more recent sparsity preserving algorithms. We also generalise 

Wang’s leading coefficient trick to algebraic number fields.

Chapter 8 seeks an efficient way of adapting the multivariate Hensel lifting 

algorithm to produce factorizations in algebraic function fields. There are two 

alternatives: one depends upon a conjecture for its validity, the other is certain to work 

but is more restrictive.

Chapter 9 concludes the thesis by presenting a reasonably efficient algorithm for 

the factorisation of polynomials over algebraic fields based on the information 

discovered throughout the thesis.

Thanks and Acknowledgements

Particular thanks are owed to James Davenport for suggesting the line of 

research, and for showing such keen interest in my work. Special mention should be 

made to his amazing ability to give accurate references off the top of his head. He was 

also always available to correct my misapprehensions (and my mathematics), and to 

answer my questions. His great enthusiasm constantly spurred me on. Right from the 

start both he and John Fitch would willingly explain REDUCE’s eccentricities as I 

stumbled across them. I must thank John Fitch for explaining and maintaining the 

Cambridge LISP upon which REDUCE and my programs ran.

Julian Padget was another useful source of help and information. His deep 

knowledge of Cambridge LISP frequently came in handy and led to many interesting 

conversations. Phil Willis was in charge of the computing group, and I thank him for 

organising it so well.
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Russell Bradford was a perpetual source of amusement as well as an excellent 

colleague with whom to do research. We often worked together and criticised one 

another’s work. He taught me to program more elegantly and to use long variable 

names.

Thanks also to Nick Brealey who proved a little lemma for me, and to Balbir Barn 

who did more than his share of the cooking and washing up! Further thanks to Erich 

Kaltofen for many interesting and fruitful conversations, and allowing me to finish writing 

this thesis at RPI. Finally, thanks to Karen, secretary to the computing group, for all her 

work and organisation.



2. Fundamentals and Definitions

In the introduction we explained that we chose to use a symbolic (or algebraic) 

representation for roots of polynomials, and we called such symbols algebraic numbers. 

This chapter describes some details of the algebraic number package which deals with 

the algebraic numbers and upon which the factoriser is built — full details are in 

[ABD86]. The extensions of this package to handle algebraic functions are mentioned 

briefly. Also some formulae and definitions related to our choice of representation are 

given; the formulae will be used elsewhere.

The second part of this chapter explains the modular-Hensel factorization 

paradigm (sometimes called the Berlekamp-Hensel paradigm) along with the algorithm 

of Cantor & Zassenhaus for polynomial factorization over a finite field (my explanation is 

only for odd characteristic). Then we give a definition of the Swinnerton-Dyer 

polynomials and describe their factorizations in finite fields. The last section gives a 

simplified description of the Hensel lifting process for polynomial factorizations, and also 

includes an outline of the classical (Kronecker’s) algorithm.

Algebraic Number Package

We describe here the representation of elements of an algebraic number field as 

implemented in the Bath Algebraic Number Package (BANP). Firstly, we give some 

mathematical definitions needed in the description. An algebraic number, a, is a 

number which satisfies an algebraic relation; that is there is some polynomial with 

rational coefficients which has a  as a root. It can be shown that there is a unique monic
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(i.e. having leading coefficient of 1) polynomial of least degree with rational coefficients 

which has a  as a root — this polynomial is the minimal polynomial of a. If the minimal 

polynomial has integer coefficients then we say that a  is an algebraic integer. We 

observe that all rational numbers are algebraic numbers since any getD  has the trivial 

minimal polynomial mq{x) :=x-q \  and similarly observe that all integers are algebraic 

integers. Henceforth, we shall implicitly exclude all the rational numbers whenever we 

use the phrases “algebraic number" or “algebraic integer”. So it is now true that the 

minimal polynomial of an algebraic number has degree at least two; and we define the 

degree of an algebraic number to be the degree of its minimal polynomial.

We still need a little more mathematics before we can begin. We define Q(a), the 

algebraic number field generated by an algebraic number, a, to be all numbers which 

can be represented as sums of rational multiples of powers of a; in other words it is the 

set

The degree of Q(a) is defined to be the degree of a. In a similar way we can define the 

field generated by several algebraic numbers, a1f. . .  ,a„ to be

In this thesis we shall always have an implicit ordering on the generators, so that a/ is 

defined as a root of its unique monic irreducible minimal polynomial, 

mi{x)e <D(oc1f. . .  .ccm^x]; we shall say that a, has degree (over Q(a1f. . .  , 0 ^)) .  

equal to the degree of m,-. By saying that m,- is irreducible we mean that there are no 

polynomials over ©(o^, . . .  , a ^ )  with degrees at least 1 whose product is m,-. This 

definition of degree allows us to define easily the degree of Q{clv . . .  ,ctn) as the 

product of the degrees of the m,-. We comment that the degree of a field is well-defined, 

in that it does not depend on how the extension was built up: for example,

- 2 . 2 -
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Q(V2, V3) = <D(V2 + V3) and we easily see that the degree of <D(V2, V3) is 4 which is also 

the degree of Q(V2 + V3) because V2 + V3 has minimal polynomial x4-10x2+1.

Now we are ready to discuss how elements of an algebraic number field are 

represented inside BANP. Our first concern is to ensure that the representation is 

canonical, i.e. we do not want any element to have more than one valid representation. 

We begin with the simple case where the field is generated by just one algebraic 

integer, a. Let ma be its minimal polynomial. Since ma(x) e Z[x], we can write any 

polynomial f ( x )e Z [x ]  as f (x) = q(x)ma{x) + r{x) where q(x), r (x)e Z[x] are the 

quotient and remainder respectively. We note that r has degree less than that of ma, 

and that r is uniquely determined by f. Upon substituting a for x in the equation above 

we get f{a) = q(a)ma[a) + r{a) = r{a) because ma{a) = 0 by definition. This leads 

directly to a canonical representation: any element of <D(a) has a unique representation 

as r{a)/s where s g Z f and r(x) e Z[x] has degree less than the degree of a and the 

gcd of the coefficients of r is coprime to s.

This representation can be extended to fields generated by several algebraic 

integers, say a 1#. . .  , a n. The representation being /?(a1f. . .  ,a„)/S where S e Z + and 

ft(x1f. . .  ,xn) e Z [ X i , . . .  ,xn] has degree in each x,- less than the degree of a,-, and 

the gcd of the coefficients is coprime to S.

The reader may have spotted that we insist the field generators be algebraic 

integers. This is not a restriction since any algebraic number can be multiplied by a 

non-zero integer to give an algebraic integer. The condition is purely for computational 

efficiency. The facility inside BANP for introducing a new algebraic number actually 

creates a symbol for an algebraic integer, called an algebraic kernel, then divides that 

symbol by an integer to produce the algebraic number requested. The algebraic integers 

used in the internal representations (i.e. a  and a 1f. . .  ,a n above) are precisely these 

algebraic kernels.
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We point out, in passing, that the multiple generator case can be reduced to the 

simple case by use of primitive elements. In every algebraic number field (of finite 

degree) there is at least one algebraic integer which generates the entire field on its 

own; such an element is called a primitive element — unfortunately this is not always 

true for fields with non-zero characteristic. BANP does not use these for two reasons: 

the possibly lengthy calculation of a resultant is needed to find a primitive element, and 

they usually lead to very unnatural and cumbersome representations: e.g. <D(V2, V3) has 

a primitive element a  := V2 + V3 but the representation of V2 in terms of a is the rather 

unpleasant 1/2(a3-9a).

More Definitions

We introduce some more phrases that are used throughout this thesis. Some 

phrases are widely accepted others are invented for use inside the thesis. The latter 

will be called “local definitions”.

Integral Bases

Later on we shall see that the ring of algebraic integers in a field plays an 

important role. Our interest lies especially in their representations. BANP effectively 

uses the obvious basis (local definition) for K := ©(c^,. . . ,  a„), namely

basis{a1f . . .  ,a n) := {a f1 • • • a *" : V / 0 <, e, < 3a,}, 

where 3a, means the degree of a,. What this means is that any element of K is just a 

sum of rational multiples of basis elements — it is a Q vector space basis (or 

equivalently a Q-basis). It would be nice if the ring of integers in K, Ok (abbreviated to 

O when it is clear what K  is), consisted exactly of those elements of K  formed by 

summing integer multiples of the basis elements. This is not true in general; for 

example, in <D(V5) the element a = 1/j>(1+V5) is an algebraic integer because its minimal 

polynomial is ma(x) = x2-x+1. However, such 2-bases for O do exist, and they are
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called integral bases: for example, ^ has Z-basis {1 ,1/2(1+V5)} which is thus an 

integral basis for Q(V5). Clearly these bases are also (D-bases for K. BANP does not 

use an integral basis to represent field elements because determining an integral basis 

is time-consuming, and multiplication of elements thus represented is relatively 

inefficient.

The Defect

We have seen that the representations of algebraic integers in BANP may involve 

fractions, since the obvious basis is not necessarily a Z-basis. This possibility of having 

fractions complicates matters a little. It is important that these fractions, in fact, have 

only small denominators. This subject is dealt with more fully in chapter 4 (on Bounds), 

but mention here the term defect whose definition we generalise from 

[Weinberger&Rothschild76]. We define the defect of a <D-basis for K to be the largest 

denominator appearing in the representations of the algebraic integers in K. It 

immediately follows that integral bases are precisely those bases (of algebraic integers) 

with a defect of 1. We illustrate this: in <D(V5) an integral basis is { 1 ,1/2(1+V5)} which 

has defect 1, whereas the obvious basis {1, V5) has defect 2.

Extension to Algebraic Functions

Most of the definitions above extend naturally to algebraic functions and algebraic 

function fields. We must replace Z  by Z [z 1f. . .  , z j  and <D by <D(z1f. . .  ,z^  where 

z u . . .  ,z x are the transcendentals occurring in one or more of the minimal polynomials; 

so the a/ are algebraic functions of the zy-. We retain the term algebraic integer for 

those algebraic functions whose (monic) minimal polynomials lie in Z [z 1f. . .  , z j .  The 

canonical representation R{o1f. . .  ,ot„)/S has to change slightly: the numerator 

f l (x1f. . .  ,xn) has coefficients in Z [zu . . .  , z j  and the degree in each x; is less than 

da,-, also S e  Z [z 1r. . .  ,zx] is coprime to the gcd of the coefficients of R. Again the 

algebraic integers used in the representation are algebraic kernels.
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The mathematical concepts, primitive element, ring of integers, and integral basis 

extend. So does the notion of defect, though it is now an element of Z [z 1f. . .  , z j .  It is 

theoretically just as simple to compute an integral basis for an algebraic function field as 

it is for a number field but the calculations are much more long-winded.

Discriminant Formula

In this section we define the discriminant of a basis of an algebraic extension, we 

give a formula for the discriminant of the obvious basis, and a proof of the formula. The 

proof requires some knowledge of Galois theory. The formula has apparently been 

known for some time, but we believe the proof to be new.

The need for finding the discriminant of the obvious basis stems from the 

polynomial factoriser described in this thesis. The factoriser needs to know the defect of 

the basis so that it can derive the factors from an intermediate result. It seems that it is 

as hard to compute the defect as it is to find an integral basis (see, for example, 

[Bradford88]). However, the factorizer can still derive the factors if it is given a multiple 

of the defect, and it can be shown that the square of the defect divides the discriminant. 

So it is sufficient to use the discriminant in place of the defect — actually we can often 

find quickly the largest factor whose square divides the discriminant, and this factor 

clearly still suffices. This topic is treated fully in chapter 4 on coefficient bounds of 

factors.

Towers, Conjugates, and Norms

Before we can define the discriminant we have to bring in a few more 

mathematical notions to allow us to deal with the multiple generator case. We shall call 

the ground field upon which the algebraic extensions are built K0. So for algebraic 

number fields K0 will be Q, and for algebraic function fields it will be Q(z1f. . .  ,z t). We 

shall call the algebraic extension generators a 1f and denote their minimal

polynomials by m,(x) e K0{au . . .  , 0 /^) and their degrees by We can now write our
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field as K  := K0{a 1f . . . , a n). It turns out to be more convenient to build up to K  in a 

sequence of steps like this: let K, := K0(a ,) t K2 := K^{a2) = K0{a i, a 2), etc. So we have 

created a tower of extensions by adjoining the algebraic symbols one at a time. We can 

display this pictorially:

Kn - * l-n
T T dn extensions

Kn ~ 1 —> Ln- 1
T T dn- ! extensions

T T d2 extensions

->

T
id

t  d, extensions

*0 —> o-JII*

This diagram needs to be explained. The column on the left is our tower. We 

know from Galois theory that K0 has a unique algebraic closure which we call K. The 

definitions of the fields Kj are very abstract, and we have to be more specific to prove 

our result. Currently the field Kj is obtained from by adjoining a root of mit but we 

have not said which root to adjoin. We now insist that the particular root to be adjoined 

be chosen, and so build up a new tower. We shall start from the same ground field, but 

call it L0 this time. We construct L, by picking a specific root of m, in K  and adjoining 

that root to L0. In a similar fashion we construct L2 from L1f and so on. Clearly, the field 

Lj not only depends on the choice of root of mi but also on all the earlier choices. We 

have dj choices when extending to Lit hence the comments beside the right hand 

tower.

We call Lj an embedding of K, in K. By considering all the possible choices there 

are for extending Lj to L/+1 we find that Kj has |“Im=i embeddings into K. Later on it 

will be necessary to distinguish all these embeddings. We do this as follows. We shall
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write ff1f . . .  for the different embeddings K, -> K, and o11f. . .  ,a 1(y2 for the 

possible extensions of o1 \ K ^ - ^ K  to an embedding K2 ^>K  and so on.

The reader may have realised that a single element of one of the K) may have 

many different images in K under the different embeddings. This is nothing more than 

a generalisation of the fact that 2 has two square roots, namely 1.414... and -1.414... —  

these are just the different images of the symbol V2 in Ac=<D. We call the images of an 

element under the different embeddings field conjugates. Note that the field conjugates 

need not all be distinct; indeed, the field conjugates of any member of K0 are all the 

same! It can be shown that the product of all the field conjugates is always an element 

of the ground field, K0. This product is called the norm of the element (with respect to 

that particular extension). We shall need to use the norm maps taking elements of L, 

into (i.e. the product of the images under the d, extensions of L,^); call this map A/,. 

We comment that norms of elements can be computed easily via resultants.

At last we can define the discriminant of a basis. Let the basis be (b1f. . .  ,bN), 

then its discriminant is defined as the square of the determinant of the matrix;

b ! b2 bn

b\2) b P  • • •  bjP

bjP  • • • b/Pb *

where b p  is the / *  field conjugate of bj. In the special case that the basis is 

{1, a , . . .  ,a m_1) where a  has minimal polynomial ma of degree m, the result is also 

called the discriminant of ma. Additionally, in this special case, the matrix is of 

Vandermonde form, from which we find an alternative way of calculating the discriminant 

of ma: namely discr{ma) = resultant{ma, m</), where the prime denotes differentiation.
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Proposition

Let K0 be a field of characteristic zero. Let Kj = Kj. 1(oc/> for / = 1 , . . .  „ n be a 

tower of algebraic extensions, with the minimal polynomial of a/ over KtM being m,- of 

degree d,. Further, let N, : be the norm map. Then the discriminant of the

obvious basis for Kn

basis{Kn) := {o f1 ■ • • a*" : V/ 0 < e-, < 3a/}

is

discrfm^2*3 </nxA/1(discr(m2))(/3d4 dnxN,{N2{6\scr{m3)))d4ds d"x ■ • • 

or alternatively

A/2A/3...(discr(m1))x/V1A/3...(discr(/772))x/V1A/2...(discr(/773))x • • • 

where discr(...) denotes the polynomial discriminant function.

Proof

In the case of a simple extension the formulae above reduce to the polynomial 

discriminant of m, which is correct. So we shall concentrate on the multiple generator 

case. We use an iterative construction for the discriminant matrix.

Let D ! =

1 o^a,) a^af) 

1 <y2(ai) a2( a?)

1 a dl(aO a ^ a? ) 

Now iteratively define for s = 2 , . . . ,  n

8i(asDs_i)

 ̂82(̂ 5 _i) 82 (as0s_i)
Ds =

&d8{D s -1) &d8(a s Os_ i)

a ito f1"1)

o2(a1dr1)

/ dr\ ' • ' <^(<*1 )

8,(0/ ‘ " V i )
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where for clarity, we define 8y to have the following property: 8/ oafl • r4 = a r1 • • • r5y 

and 8y- o/d = ay- — think of 8y- as meaning pick the y* possible extension of the 

embedding. Note that Ds_1 is invariant under each 5/ because all the entries in Ds_, are 

fixed — the (/, /)  fh entry above couid also be written as 8/(a^"1)D,_1.

Then for the obvious basis, the discriminant is just the square of the determinant 

of Dn. So it is sufficient to prove that this determinant squared is:

discrf/r^)*2*3 </'’xA/1(discr(m2)),'3U4d**A' ' '  d"xNi (A/2(discr(m3)))d*ds " dnx

We deduce the formula above. We shall inductively find a unimodular 

transformation which diagonalizes the matrices Dk for k = 1 , . . .  f n in that order. These 

transformations will be constructed only by row operations. The case k = 1 is easy; we 

consider the case k > 1. We assume we know some row operations which diagonalize 

Dk_i to give A _̂v Applying these row operations to each block of d^d2 • • • d*_i rows of 

Dk gives:

S2(A/c-i) 82(0 * A*^) 82(a^*‘ 1Afc_1)

d̂„{0-kk ^k-i)

n

8dk(Ak-1) 8dk(<*kAk-i) ' 

which has the same determinant as Dk. Again the (/, y) fh entry of this matrix could 

also be written as 8/(a/(_1)A*-i-

We can find a sequence of row operations which yield a unimodular transformation 

sending
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to a diagonal matrix diag{Xu . . .  ,Xdk), say. Notice that Y l fax f  is equal to the square 

of the determinant of (t) which is just discern*).

By regarding (*) as a matrix with matrix entries of the size of A*_■, (as it is shown 

above) we can apply the transformation which sent (t) to diagonal form to obtain the 

diagonal matrix: d/ag^A*.- , , . . .  ,XdkAk-i), which has squared determinant

6\scr{mk)d̂ 2 dk~'det{Ak_,)2dk. The claimed result is now immediate.

The modular-Hensel Paradigm

This section contains an overview of the way the standard present-day polynomial 

factorization algorithms work. The main point is the diagram below.

The normal route followed during the factorization of a multivariate polynomial over

Z  is:

(i) substitute integers for all but one of the variables to get a univariate polynomial;

(ii) factorize the univariate polynomial modulo some prime p;

(iii) find a factorization of the univariate polynomial modulo p* for some k\

(iv) deduce a factorization of the univariate polynomial over Z ;

(v) deduce a factorization of the multivariate polynomial over Z .

There are restrictions on the permitted substitutions in (i) and on the primes 

allowed in (ii) which we shall not go into here. The number k can be determined from 

information in steps (i) and (ii) so that step (iv) will succeed. We can represent the

-2.11 -



Fundamentals and Definitions 

process diagrammatically:

J Abbott

F (x1f . .. ,xn)s Z[xu . . .  ,xn] F  = GHe  Z [x1( . . . ,xn]

•I substitute T  unsubstitute

f (x  i ) g Z N

>1 mod p T  ( mod g )-1
factorize lift

f = fD(x,) mod p -> fo(xJ=gD( x J h o M  mod p -» f = f a=gaha mod q

We shall refer to this diagram frequently throughout the thesis; immediately below we 

look at an algorithm for accomplishing the modular factorization step; and the section 

following that clarifies the ( mod g)-1 step.

The Cantor-Zassenhaus Algorithm

This section contains a short description of the algorithm in [CZ81] for the 

factorization of a polynomial over a field of odd characteristic. The algorithm begins by 

performing a distinct degree factorization: (e.g. see [Moenck77]) that is, the polynomial 

is split up into factors such that all the irreducible (modular) factors of the same degree 

occur in their own factor. That this can be done follows from the remarkable fact that:

xqd- x  = f [  all irreducible factors of degree dividing d 

in the field FQ; so successive gcd computations with xq-x ,  xqZ-x ,  etc (each time 

dividing out the factor found) will produce in sequence the products of the irreducible 

factors of degree 1, then degree 2 and so on. We are now ready to give this elegant 

algorithm:

The Algorithm

A We may assume the polynomial, f ,  is square-free. Perform a distinct degree 

factorization to obtain a list where fd is the product of all the

irreducible factors of f of degree d. For each fd *  1 apply step B.
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B We have been given a polynomial, fde ¥q, all of whose irreducible factors have 

degree d ; we must find these irreducible factors. If df = d then f is irreducible, so 

return. Otherwise pick a random polynomial, h, of degree 9 / -1 .  Compute 

k := gcd{f , /71/2(<fd-1)-1). Recursively apply step B to k and flk.

Normally in step B, k is a non-trivial factor of f. The algorithm is fairly similar for 

fields of characteristic 2 provided that a primitive cube root of unity is known (this may 

require a degree 2 extension of the finite field). Very roughly, the justification behind 

step B is that each irreducible factor, g, of fs “generates” a degree r extension of Fq 

which we may regard as F^x] mod g{x), and by the Chinese Remainder Theorem 

picking a random polynomial modulo f (x)  is the same as picking random polynomials 

modulo each of the irreducible factors simultaneously; then the 1/j>(gf-1)th power of a 

random element of a degree r extension of F, will be 1 or -1 with equal probability, 

hence the gcd in step B will pick out just those irreducible factors where the V^qr-  1)th 

power happened to be 1. So k is trivial if and only if all the V^qr-  1)th powers have the 

same value.

The Swinnerton-Dyer Polynomials

For the sake of most currently implemented polynomial factorization algorithms, it 

would be very handy if there were a close correspondence between a polynomial’s true 

factorization (i.e. in the infinite field) and its factorization in some finite field. Ideally we 

would like to be able to pick a finite field in which the factors of the polynomial 

correspond directly to the true factors. Regrettably, this is not possible; the irreducible 

polynomial x4+1 factorizes modulo every prime into linear and/or quadratic polynomials. 

[Musser78] presents a simple way of salvaging some information from factorisations in 

several finite fields — since the true factors map to products of factors in the finite 

fields, we may be able to restrict the possible degrees of the true factors. This idea still 

cannot show that x4+1 is irreducible over Z , though it shows that true factors cannot
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have degrees 1 or 3.

The upshot of this is that the step labeled ( mod q)_1 is not trivial. We know only 

that each true irreducible factor has image modulo q equal to a product of some 

collection of the irreducible factors modulo q. So to find the true factors we try all the 

modular factors, and remove all those leading to true factors. We then try all pairs of the 

remaining modular factors, then all triples and so on, always removing those modular 

factors found to constitute a true factor. This is guaranteed to find all the true irreducible 

factors but may take a long time, as we see next.

Unfortunately, the behaviour exemplified by x4+1 is not an isolated incident: there 

is an infinite family of polynomials which behave similarly. Members of this family are 

known as Swinnerton-Dyer polynomials, named after their discoverer. This set of 

polynomials has unbounded degree yet all the members factorise into linear or quadratic 

factors modulo every prime. So the best that Musser’s scheme could deduce is that all 

true factors have even degree; yet it can be shown that every member is irreducible 

over Z . This feature of Swinnerton-Dyer polynomials means that they cause the 

standard modular-Hensel factorization algorithms to take an amount of time exponential 

in the degree of the input polynomial, i.e. the worst possible case.

We now characterise the Swinnerton-Dyer polynomials by defining them as a 

product:

n(x±vp7±vpi± • • • ±vsr)
where the product is taken over all possible choices of signs giving a polynomial of 

degree 2” . The p, should be square-free and multiplicatively independent, i.e. for e,e Z  

pV ' * • Pn1 = 1 if and only if all the e, are zero. Another, equivalent, characterisation is 

that /C:=Q(Vp7, . . .  ,VpiT) is a degree 2n extension of <D, and the corresponding 

Swinnerton-Dyer polynomial is the minimal polynomial over <D of the primitive element 

0:=VpT+ • • ■ -WaT which can also be written as NK:Q{x -Q).
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This construction can be generalised to “independent” roots of any polynomials in 

place of the square roots. For further information see [KMS83]; [ABD85] discusses the 

practical importance of this generalised class of unhelpful polynomials.

Hensel Lifting

We have just seen in the scheme above that a crucial step in the modular-Hensel 

style algorithms is the determination of a factorization modulo p* given a factorization 

modulo p. The process which achieves the determination is called Hensel lifting (often 

shortened to liftingf). We shall give only a simplified description of the process here; a 

more complete presentation may be found in [Lauer83] for instance.

Lifting is used in two separate ways during factorization; one is part of the 

deduction of a factorization over an infinite field given only a factorization in a (suitable) 

finite field; the other is part of the conversion of a univariate factorization into a 

multivariate one. Although the underlying theory is the same for both uses, the 

realisation into practical algorithms is usually very different. For simplicity we shall 

restrict the following to the former use, and refer to [Musser75] for a clear discussion 

upon the latter.

We shall assume that the factorization of the monic polynomial f modulo p is 

f = gh with g and h monic and coprime to one another — we just observe that the 

generalisation to the case where there are many factors is not conceptually harder but it 

does obscure what happens by complicating the notation.

Because g and h are coprime, we can find polynomials ag and ah such that

+ ot/,/7 s 1 mod p where g is the product of all the factors except g (i.e. h in this 

special case), and similarly for h. This may also be viewed as ag = £ -1 mod {g, p) and 

ah s / r 1 mod (/), p). We call ag the correction factor for g, and likewise ah the 

correction factor for h.
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Our immediate aim is to find monic factors G and H  with G = g mod p and 

H = h mod p such that f = GH mod p2. We begin by writing G = g + pbg and 

H = h + pbh, thus automatically satisfying the first two conditions. So all we need do is 

find Sg and bh from f , g and h. The only constraints on $g and bh are that their 

degrees be strictly less than the degrees of g and h respectively, and that the following 

equation holds

GH = gh + p(gbh + hbg) = f mod p2. (*)

We can rewrite this as gbh + hbg = ( f-gh)/p  mod p from which it is clear that 

bg := ag{f-gh)/p  and 8/, := ah{f-gh)/p  yield a solution of (*) by definition of the 

correction factors. However, we have no guarantee that the degrees of bg and 5/, 

satisfy the constraints, but by the form of (*) we may add an arbitrary multiple of g to bg 

and subtract the same multiple of h from bh. In this way we can reduce 8g modulo g, 

and 8h will simultaneously be reduced modulo h.

By the observation above 5g s ag{f-gh)/p mod (p,g) or more simply 

bg = a gflp  mod (p,g). There is no need to use rational numbers because we can 

reduce f modulo (p2,g) and then divide this by p without remainder. This simplification 

can easily be generalised to the case of many factors.

So far we have achieved only one step: from a factorization modulo p to one 

modulo p2. There are two alternatives here. Either we can consider factors of the form 

G + p28q and H  + p26H and solve for 8G and bH as above to obtain a factorization 

modulo p3; or we can compute new correction factors a G and a« which satisfy 

aHG + clgH a 1 mod p2 and use these instead of the previous correction factors to 

compute 5g and bH modulo p2 and thus go directly to a factorization modulo p4. The 

first alternative is known as linear lifting, the second is called quadratic lifting. We repeat 

the lifting step above until the modulus has become sufficiently large — note that it does 

not matter whether p is prime provided that the correction factors are known.
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We can see from the preceding paragraphs that linear lifting increases the 

exponent in the modulus one at a time, whereas quadratic lifting doubles the exponent 

each time. This suggests at first sight that quadratic lifting might be much faster, but it is 

not entirely clear because a lot more work has to be done for each quadratic step. A 

full comparison is the topic of chapter 6.

For the discussion above, we made the assumption that f was monic. This is not 

strictly necessary; all we really need to know are the true leading coefficients of the 

factors — this is especially relevant when lifting from a univariate factorization to a 

multivariate one. In the case when the factors are not monic they must be lifted so that 

at all times the leading coefficients of the modular factors are exactly the modular 

images of the true leading coefficients. This criterion uniquely determines all the factors 

at each lifting step, and it can be shown that this choice of correction terms is always 

valid. This topic is dealt with more fully in chapter 7.

The Classical Algorithm: Kronecker & Newton

This section describes the first known algorithm for factorising multivariate 

polynomials over Z  — the algorithm does not use any form of Hensel lifting. It has two 

parts: the first is Kronecker’s trick, the second is a univariate polynomial factorization 

method of which Newton was aware. These ideas have been totally ousted by vastly 

more efficient modern techniques, though the algorithm in [Lenstra83a] uses 

Kronecker’s trick.

Kronecker’s Trick

Our aim here is to factorize a multivariate polynomial when we have access to a 

black box which can factorize only univariate polynomials. Let the polynomial to be 

factorized be f {x u . . .  ,xn), and let dj be the degree of f in xj. We shall use an 

inductive argument on the number of variables in the polynomial: the induction starts at 

1 because the black box can factorize univariate polynomials. Now we have a
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polynomial with n ' t  2 variables and we assume that any polynomial with n - 1 variables

d <+1
can be factorized. So, in particular, we can factorize g := f {x ^, . . .  ,xn̂ ,xn1y ). If we 

substituted for xn in any factor of f we would get a product of one or more

factors of g. By considering all possible products of factors of g and replacing xf,^ by 

(where r = s + tdn and 0 < s <  dn̂ )  in the product, we generate a sequence of 

polynomials including all the factors of f. The factors of f can be picked out by 

performing polynomial divisions. Now we have the factorization of f.

Univariate Factorization (Newton)

For completeness, we now delve into the black box of the previous paragraph —  

this algorithm is never used as it converts a polynomial factorization problem into a 

much harder integer factorization problem. The box accepts a univariate polynomial 

with integer coefficients and computes the irreducible univariate factors over Z . The 

key idea here is that a polynomial of degree n is completely determined by its values at 

n+1 different points.

Let n be the degree of the polynomial. We evaluate the polynomial at n different
/

points x1f . . .  ,xn to get values y 1t . . .  ,yn. A factor of degree d will be determined by 

its values at d+1 points, say x 1f . .  . ,xrf+1. Also the values of any factor at each xy 

must be integer divisors of the corresponding yy. So we just factorize all the integers yy 

and try to interpolate a polynomial from all possible combinations of the divisors of 

y i , . . .  ,y</+1. If we find a factor we divide it out and change the yy- appropriately. By 

performing the search firstly for degree 1 factors, then degree 2 and so on, we can 

guarantee the factors found will be irreducible.



3. Related Work

We present a survey of recent work in the area of polynomial factorization both 

over fields of characteristic zero and over finite fields. There are several published 

survey papers covering similar ground, e.g. [Kaltofen82], [Kaltofen86], [Lenstra82b] and 

[Davenport&Trager81]. Some papers on lattice basis reduction are reviewed too.

This chapter has five sections. The first section considers algorithms for the 

factorization of univariate polynomials over finite fields with emphasis on the elegant 

algorithm of Cantor & Zassenhaus (described in chapter 2) which is best suited to our 

needs. For completeness, the second section briefly surveys ways of factorising 

multivariate polynomials in finite fields, and explains why we do not use any of these 

algorithms. The third section covers algorithms for deducing a factorisation in an infinite 

field from one in a suitable finite field, concentrating on the Hensel lifting approach (with 

a potentially exponential recombination cost — see the section on Swinnerton-Dyer 

polynomials in chapter 2) but mentioning more recent polynomial time methods. Then 

the fourth section deals with schemes for deriving a multivariate factorisation from a 

suitable univariate one, including Hensel based methods, sparsity preserving methods, 

and again just mentioning the more recent polynomial time algorithms. The final section 

comments upon a few algorithms for finding “reduced” bases for integer lattices.

Factorization of Univariate Polynomials over Finite Fields

Berlekamp published the first efficient algorithm for factorization of univariate 

polynomials over finite fields in [Berlekamp67], His algorithm is well suited to small finite
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fields but can become slow In larger ones, the worst case time being 0{n 3+qrn2) where 

n is the degree of the polynomial, q is the size of the field, and r ^ n is the number of 

factors. The point to note is the linear dependency on q.

Three years later an improved version appeared in [Berlekamp70], so that 

factorizations were not (practically) restricted to very small fields. This newer algorithm 

had worst time depending on p 1/4(logp)3/2 instead of q, where p is the characteristic of 

the field. However, the newer algorithm involves a probabilistic search for roots of a 

polynomial in a finite field, and Berlekamp suggests that the expected running time 

should be much better than p 1/4+e. In the meantime a variant of the first algorithm was 

proposed in [McEliece69] where the null space basis computation was replaced by the 

generation of a simple sequence of polynomials. McEliece himself admits that in general 

his algorithm is slower than Berlekamp's but suggests that it could be faster if all the 

modular factors have low degree. He mentions worst case time as being 0 [n 2e ^ )  but 

conjectures that the average time is about the same as for Berlekamp’s original 

algorithm. However, a statistical study in [Mignotte80j shows that McEliece’s algorithm 

does not even have polynomial average time, unlike both of Berlekamp’s.

Several modifications to Berlekamp’s second algorithm appeared in [Moenck77]. 

In particular, one used primes of a special form (p = 2r/?+1 with R ~ r), combined with 

a divide-and-conquer root finding algorithm, to produce the factorization deterministically 

in 0 (n 3+n\ogp{n + logp)) time. Sample timings in the paper showed this algorithm to 

be slightly slower for fields of small characteristic but much faster for large 

characteristic. He also discusses what effect using fast polynomial multiplication 

techniques has, and develops a scheme using these techniques.

After another gap of three years a new algorithm, quite different from Berlekamp’s, 

was discovered [Rabin80]. This was a “Las Vegas” algorithm — provably correct and 

probably fast. Also it had a simpler structure than earlier ones. Rabin showed that the 

average complexity was better than for any of the others: his complexity formula
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assumed fast multiplication techniques for polynomials, but even with standard methods 

the complexity is still only 0 (n 5logp) expected time.

Rabin’s reign was short, for within a year [CZ81] came along. The algorithm of 

Cantor & Zassenhaus is a generalization of the root-finding algorithm in [Rabin80] —  

see the description in chapter 2. For fields of odd characteristic their algorithm is an 

extremely elegant, very short “Las Vegas” algorithm.

A theoretical and empirical comparison of Berlekamp’s, Rabin’s and Cantor & 

Zassenhaus’s algorithms in [Calmet&Loos82] claims that Rabin’s algorithm is slower 

than Cantor & Zassenhaus’s which in turn is slower than Berlekamp’s. However, their 

comparison was only for factorization over prime fields, and Berlekamp’s algorithm was 

tried only for small fields. Our experiments confirm that, in general, Berlekamp’s 

algorithm is faster than Cantor & Zassenhaus’s over small prime fields, but that the 

situation is reversed for large prime fields (see appendix E). However, if all the factors 

have low degree it is more efficient to use distinct degree factorization in place of the 

first part of Berlekamp’s method [Coppersmith&Davenport85].

We shall see later that sometimes we do not need the factors themselves, merely 

their degrees, this information is readily obtained from a distinct degree factorisation. 

Some clever mathematics in [Gunji&Amon81] enables them to deduce the same 

information from the dimensions of the null spaces of powers of the Frobenius 

homomorphism, which is particularly appropriate when Berlekamp based algorithms are 

being used.

An algorithm intermediate between Berlekamp’s and Cantor & Zassenhaus’s is 

presented in [Lazard82]. The algorithm is quite short; it begins in the same way as 

Berlekamp’s, and finishes with an analogue for idempotents (polynomials equivalent to 

their squares modulo the polynomial to be factorized) of the Cantor & Zassenhaus 

probabilistic scheme. Unfortunately, Lazard also showed that using classical polynomial 

arithmetic, his algorithm is always inferior to Cantor & Zassenhaus’s.
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Factorization of Multivariate Polynomials over Finite Fields

We include this section for completeness but shall not use any of the algorithms 

mentioned here. There are two obvious routes to choose from when trying to factorize a 

multivariate polynomial over an algebraic number field:

A B

multivariate multivariate multivariate multivariate
polynomial factors polynomial factors
over <D(a) over Q(a) 

T
over <D(a)

1
over <D(a) 

T
univariate

i

univariate multivariate
i

multivariate
polynomial factors polynomial factors
over Q(a) over <D(a) 

T
over Fp(P)

>1
over Fp(p)

T

univariate
i

univariate univariate
i

univariate
polynomial -> factors polynomial factors
over Fp(P) over Fp(P) over Fp(p) over Fp(p)

Our reason for using A rather than B is because the extraneous factors can be 

(virtually) eliminated sooner and at a comparatively low computational cost. It is most 

important to avoid extraneous factors since they normally become dense as they are 

lifted, leading to large intermediate expressions, especially when the factors are 

multivariate as in B. The Hilbert Irreducibility Theorem implies that in method A when 

we reduce from a multivariate problem to a univariate one, if we pick random integer 

substitution values from a sufficiently great range then we can make the probability of 

extraneous factors appearing arbitrarily small. There is no similar result for method B as 

can be seen from this example: x4+10x2y2- y 4 s (* -y )(* -2 y )(* -3 y )(x -4 y ) mod 5, and, 

in fact, this irreducible polynomial factorizes into factors of total degree at most 2 

modulo all primes — this is related to the Swinnerton-Dyer polynomials.

We shall just give short comments on some of the papers in this area. In the 

previous section we saw that univariate polynomials may be factorized over certain finite 

fields deterministically in polynomial time — although the probabilistic algorithms may be 

faster if the field is not a prime field. Some recent results have shown that multivariate
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polynomials too may be factorized in polynomial time: there are both deterministic and 

probabilistic algorithms.

The algorithm expounded in [Lenstra83a] reduces multivariate polynomials to 

bivariate ones in polynomial time by Kronecker’s trick of substituting high powers of one 

variable for another one. The bivariate polynomial is then reduced to a univariate one by 

substituting a suitable field element for one of the variables (i.e. working modulo a 

polynomial of the form (Y -a )). Hensel lifting to a factorization modulo (Y -a )k followed 

by a modified basis reduction algorithm then allows the determination of the factorization 

of the bivariate polynomial. For the multivariate case the same algorithm is used except 

that the lattice to be reduced is much larger — this directly yields the multivariate factors 

rather than deducing them from bivariate ones.

The algorithm in [vzG&K85a] takes a different approach, and comes in 

deterministic, probabilistic, and parallel versions. In it they select a variable, say x 1f to 

be preserved while the others undergo substitutions of the form x;- := x,+a,- chosen so 

that the substituted polynomial remains square-free modulo (x2, . . .  ,x„). A root of one 

of the irreducible factors of the univariate image is computed and lifted in a 

Newton/Hensel construction to become a root modulo a sufficiently high power of the 

ideal generated by x2, . . .  ,x„. Finally, a linear system is solved to find the minimal 

polynomial of the lifted root (i.e. an irreducible factor of the original polynomial). Their 

lifting algorithm has been formulated so that it applies equally to factorization over 

algebraic number fields.

Factorization of Univariate Polynomials over Infinite Fields

This section concentrates on the modular-Hensel methods; the more recent papers 

on polynomial time algorithms are given less attention. Papers treating the cases of 

factorization over Z  or over algebraic number fields are discussed.
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Before 1967 the only available algorithms for factorization were the classical ones 

such as Newton’s which transformed the problem into one of factorization of integers. 

But with current methods it is much easier to factorize polynomials than integers. The 

first step towards the current approach came when Berlekamp published an efficient 

algorithm [Berlekamp67] for the factorization of univariate polynomials over finite fields, 

which he subsequently improved [Berlekamp70]. Also, around the same time 

[Zassenhaus69] presented quadratic Hensel lifting, paving the way for the modem 

factorization algorithms. These algorithms have the following (simplified) structure:

f ( x ) e Z [ x ] f(x) = g(x)h(x)e Z[x]

X mod p T( mod g)-1
factorize lift

fp{x)m o6p  -> fP{x)=gp{x)hp(x) mod p f = f q=9q(x)hq(x) mod q

Probably the earliest implementation of such an algorithm was in 1971 by Musser 

[Musser71], and certainly by 1975 there were working implementations of such 

algorithms ([Musser75] and [Wang&Rothschild75]) with extensions to perform 

multivariate factorizations. And within a year these algorithms had been extended further 

so they could factorize over algebraic number fields. An apparent drawback of these 

algorithms is the theoretical worst case complexity which is exponential in the degree of 

the polynomial to be factorised: for any irreducible polynomial, f ,  there are infinitely 

many primes, p, such that f factorises completely into linear factors; so if f has degree 

n then during the ( mod g)~1 step we must try all possible combinations of up to nl2 

factors before discovering that f is irreducible, and there are " C ^  • • * +nC„,2 ^ 2n_2 

possibilities. However, it was widely believed that these algorithms were for all practical 

purposes polynomial time when operating over Z  despite their theoretical exponential 

complexity, but when operating over algebraic number fields the behaviour seemed truly 

exponential.

The problem of producing a factorization over an algebraic number field is 

significantly harder. The classical reduction from factorization over an algebraic number
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field to factorization over the integers was improved in [Trager76] which presented a 

completely general algorithm capable of factorization even over algebraic function fields! 

However this method has some disadvantages: the transformed polynomial, to be 

factorized over Z , has high degree (viz degree of original polynomial x degree of field 

extension) as well as large coefficients; and also the polynomials so created tend to 

factorize into many irreducibles in the finite field causing the undesirable exponential 

behaviour [ABD85j.

An alternative approach described in [Weinberger&Rothschild76] is a 

generalization of the method for factorizing over Z . The method computes several 

factorizations mod p — one for each factor of the minimal polynomial mod p — then 

combines these factorizations using the Chinese Remainder theorem in addition to the 

usual combinatorial search. A major disadvantage of this method is that if there are 

several factors of the same degree in each of the modular factorizations then the only 

way to find the true factors to which they correspond is to try all the possible 

combinations of modular images: for example, consider trying to factorize x4-10x2+1 

over <D(a) where a has minimal polynomial ma(x) = x4-24x2+4; if we work modulo the 

prime 1201 then ma{x) = (x+51)(x+259)(x+942)(x+1150) so we shall have to perform 

four factorizations over the corresponding extension fields (all are F 12oi in this case); as 

all the finite fields are the same, each factorization will be the same, namely 

f{x) s (x+202)(x+327)(x+874)(x+999); now, to see if there is a linear factor of f we 

must apply the Chinese Remainder algorithm to all the 4x4x4x4 = 256 possible ways of 

picking a factor of f in each field corresponding to a factor of ma; we find that there is 

no linear factor, so we try all the 6x6x6x6 = 1296 ways of picking pairs of factors from 

each of the four factorizations; in this case f turns out to be irreducible over the field 

given.

So if each of the factorizations mod p contains lots of extraneous factors there 

will be two exponentially large searches one on top of the other — this can be arranged
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using two Swinnerton-Dyer polynomials: let the extension be generated by a root of a 

Swinnerton-Dyer polynomial, and let the polynomial to be factorized be another using 

different primes from those used to create the extension polynomial; so no matter which 

prime is used the algorithm has to consider many factorizations, one for each factor of 

the extension polynomial, and each factorization contains many extraneous factors of 

degree one or two. In this way we can find a polynomial of degree n and a degree n 

field extension which will cause the algorithm to perform more than n"2 Chinese 

Remainder operations. A similar construction using the same Swinnerton-Dyer 

polynomial for both the extension and f gives an infinite family of examples in which 

none of the modular factors of f is extraneous, yet the algorithm may still need more 

than n°2 Chinese Remainderings!

An implementation in MACSYMA showed Trager’s method to be faster than a 

polyalgorithm [Wang76] which used Weinberger & Rothschild’s if the minimal polynomial 

remained irreducible (i.e. not needing the Chinese Remainder algorithm) and otherwise 

the classical method from van der Waerden.

It was well-known that all the algorithms above had exponential worst case 

complexity, due the combinatorial search at the end. This behaviour was especially 

apparent for certain types of polynomial, e.g. those produced in Trager’s method 

[ABD85] which are closely related to the Swinnerton-Dyer polynomials and their 

generalizations [KMS83]. It was not clear how to avoid this potential combinatorial 

explosion totally but, it could be alleviated. [Musser78] suggests that several modular 

factorizations be determined and used to restrict the possible degrees of factors —  his 

model indicated that on average five modular factorizations were needed to establish 

irreducibility of a random input polynomial.

A year later Collins derived an important result about the average complexity of 

the search. Two ways of searching the products had emerged: one was to try all 

products of degree 1, then all products of degree 2, etc; the other was to try each
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modular factor, then products of pairs of modular factors, and so on. Both methods are 

exponential in the worst case, but [Collins79] assumes a couple of plausible conjectures 

and then shows that on average the latter approach takes polynomial time whereas the 

former is still exponential.

An important aspect of the search procedure is the trial division routine. The 

exponential behaviour mentioned above corresponds exactly to the case when almost all 

of the trial divisions must fail. So we want to detect failed trials as quickly as possible to 

mitigate the impact of the exponential search. We do this by utilising a sophisticated trial 

division technique. We observed empirically that the trial divisions which failed, produced 

quotients and remainders with huge coefficients; for example, trying to divide (x-8) into 

x30- !  Wj|| yield a quotient with coefficients greater than 1026 and a remainder greater 

than 1027. Yet we can often tell just by looking at the first two or three coefficients of the 

quotient that they are so large that the quotient cannot be a true factor, and so the 

division is doomed to failure. This suggests an algorithm where the coefficients of the 

quotient are examined for “feasibility” as they are produced, with the trial division failing 

as soon as any coefficient becomes too big. We call this scheme early abort trial 

division, and it is equally applicable to trial divisions over Z  and over algebraic number 

fields. Its usefulness for factorizations over algebraic function fields depends on whether 

reasonably small bounds on the coefficient size can be determined.

We also discovered that for trial divisions over Z  it is usually sufficient to test the 

integer divisibility of the constant terms and/or the sums of the coefficients 

(corresponding to evaluating the polynomials at 0 or 1 and testing divisibility of the 

images) [ABD85]. This simple test is far less effective over algebraic number fields 

because of the need to divide by an algebraic number — if the field extension is large 

then even computing the polynomial quotient and remainder is faster.

Although the search just described is theoretically the most time-consuming stage, 

it was quickly observed that normally most of the factorization time was spent lifting the
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factors. So effort was concentrated on achieving this stage efficiently. A comparison of 

different schemes in [Wang79b] indicated that parallel quadratic lifting was always best, 

though [M&Y74] is reported to have contradictory evidence. Our experimental results in 

chapter 6 support Wang’s view; and [Weinberger&Rothschild76] claims, without proof, 

that quadratic lifting is asymptotically faster by some constant factor. Zassenhaus, who 

wrote the seminal paper on quadratic lifting [Zassenhaus69], is convinced that quadratic 

lifting is faster than linear [Zassenhaus78]. The possibility of determining the 

factorization modulo a large prime with the intention of avoiding some lifting steps was 

considered in [Calmet&Loos82]. They showed that it is faster to factorize in a small field 

and perform more lifting steps, than it is to try to save a few of the lifting steps.

Even in the light of the research just mentioned, the lifting stage continued to 

dominate the other stages in terms of time consumed. However, several people had 

noticed that when factorizing over Z  some of the true factors are produced correctly 

early in the lifting process. So it has been suggested [Wang83] that trial divisions be 

performed at certain points during the Hensel lifting. Of course, this can only detect true 

factors with small coefficients and which remain irreducible modulo the chosen prime. If 

any true factors are found they can be removed thus simplifying the later, more 

expensive, lifting steps; and possibly reducing the total number of lifting steps too. This 

trick is probably less effective if quadratic lifting is used because the p-adic accuracy 

doubles each step; though if the true factors have very small coefficients it may still be 

worthwhile. Also there does not appear to be a suitable generalization for factorization 

over algebraic number fields as the cost of computing the prospective true factor from 

the modular image is relatively high (in Lenstra’s algorithm) if the minimal polynomials 

do not remain irreducible modulo p.

The next major developments in this area were the polynomial time algorithms. 

The first such algorithm for factorizing univariate polynomials over Z  was published in 

[Zassenhaus81]. It was followed shortly in 1982 by another one presented in [LLL82].
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This latter algorithm replaced the combinatorial search with Lovasz’s polynomial time 

lattice basis reduction. Unfortunately the cross-over point when the exponential time 

methods become slower is for much larger problems than we can currently handle —  

[Goebbels85] reports a modification of [LLL82] which may be faster.

Another application of Lovasz’s basis reduction algorithm to factorization is given 

in [Lenstra82] where Lenstra presents a variant of Weinberger & Rothschild’s method 

replacing the part of the combinatorial search associated with the Chinese Remainder 

algorithm by a lattice basis reduction. Lenstra compared his own implementations of his 

and Weinberger & Rothschild’s methods, and concluded that his method is superior. 

Lenstra’s algorithm appears to be the currently fastest factorizer over algebraic number 

fields — certainly much faster than Trager’s (see appendix F). This algorithm is a 

foundation stone of this thesis.

Since 1982 a lot of effort has been centred on extending the capabilities of 

polynomial time algorithms. The extension to factorization over algebraic number fields 

took less than a year: [Lenstra83] is a direct generalization of the integer case in 

[LLL82], but recommends [Lenstra82] for practical purposes. Some methods have been 

found which avoid factorization in finite fields by approximating roots: the basis reduction 

algorithm can be used to find minimal polynomials of rational approximations to 

algebraic numbers, so we can compute an approximate complex root of a polynomial 

and then find the irreducible factor to which it corresponds ([Lenstra84] and 

[Sch0nhage84]). Equivalently we could compute a p-adic approximation to a root and 

determine its minimal polynomial [Viry85]. The extensions of these algorithms to 

algebraic number fields would increase the dimensions of the lattices by a factor equal 

to the extension degree of the algebraic number field. All these algorithms are currently 

inferior to the modular-Hensel ones.
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Factorization of Multivariate Polynomials over Infinite 

Fields

This section reviews some alternatives for lifting from a univariate factorisation to a 

multivariate one. The more recent papers about sparse lifting or lattice based schemes 

are commented on only briefly as these have been devised chiefiy to produce 

polynomial time algorithms — their applicability to real problems being somewhat 

questionable.

All modern algorithms for factorizing multivariate polynomials work by reducing the 

problem to the factorization of univariate polynomial and then lifting this factorization 

until the true multivariate factors can be found. These Hensel based algorithms are, in 

general, greatly superior to the classical method (Kronecker’s) of substituting high 

powers of one variable for all the other variables which tends to produce a univariate 

polynomial of extremely high degree. Another feature of the modem algorithms is that 

most of them perform the “easy” reductions to primitive square-free polynomials at the 

start; however, such calculations are significantly harder than in the univariate case 

(see, for example, [Wang&Trager79]).

The first of the modern algorithms appeared around 1971 [Musser71]. The more 

widely available paper [Musser75] presents the theory behind Hensel lifting, and then 

considers various possible ways of realising this. One particular interpretation is claimed 

to be most promising, based on a complexity analysis (not in the paper). A short while 

later a variant was published in [Wang&Rothschild75]. There were many similarities 

between them, but also some notable differences; Musser appears to be in favour of a 

quadratic construction for lifting the multivariate factors, and of a degree ordered search 

through the modular factors; whereas Wang & Rothschild prefer linear lifting and a 

cardinality ordered search. We have already noted that [Collins79] showed (under some 

plausible assumptions) the degree ordered search for univariate factors to be inferior,
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and it seems reasonable to expect the same for multivariate factors.

Another initial difference was that Wang & Rothschild lifted all the variables at 

once thus avoiding the rational function computation (and associated multivariate gcds) 

apparently needed in the variabie-by-variable scheme favoured by Musser. In fact, 

Musser expressly avoided the rational functions by calculating in a polynomial ideal. 

However, after a couple of years Wang changed his mind [Wang77] and followed 

Musser’s suggestions. Wang also reported that the change reduced intermediate 

expression size in addition to yielding greater speed.

The generalization of the lifting methods to algebraic number fields posed no real 

problems except that fractions may appear in the representations of the coefficients. It is 

quite clear from the theoretical part of [Musser75] that no further complications would 

arise. A comparison of [Wang76] with [Wang&Rothschild75] emphasises the similarities.

The practical limitations of the implementations of the algorithms above led to 

some heuristic improvements. Experience with factorizations over Z  led to the 

recognition of three major problems: the leading coefficient problem, the “bad zero” 

problem, and the extraneous factor problem. Both the leading coefficient and the 

extraneous factor problem had been known from univariate factorizations, but the “bad 

zero” problem was new. All three problems manifested themselves in the same way, 

namely the formation of needlessly large intermediate expressions.

The Leading Coefficient Problem

The leading coefficient problem occurs when the polynomial to be factorized is not 

monic. The Hensel lifting algorithm needs to know the leading coefficients of the factors 

otherwise it cannot work — see chapter 2. In the univariate case we were able to force 

all the factors to have a leading coefficient equal to that of the original polynomial, and 

consequently pay a small price in having to work with slightly larger numbers than 

strictly necessary. Such an approach is more serious for multivariate polynomials since
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we generate high powers of the leading coefficient, which could be dense multivariate 

polynomials.

The Extraneous Factor Problem

These are factors which are not modular images of true factors, for example 

x2+6x+2y2 = (x+2)(x+4) mod (y-2) but neither (x+2) nor (x+4) is an image mod (y-2) 

of a true factor. Extraneous factors are bad news in two respects: firstly they usually 

become increasingly dense as the lifting proceeds, consuming lots of space and 

computation time; and secondly they lead to a combinatorial search at the end. Only the 

latter effect was apparent during univariate factorisations.

The “Bad Zero” Problem

This occurs when picking zero as a substitution value for all the variables violates 

one of the conditions of square-freeness and full degree of the image. Consequently, we 

must either calculate modulo a polynomial ideal of the form (X2~a2, . . .  ,xn-a n) while 

lifting or we must rewrite the original polynomial in terms of yy := xy—ay. Both 

possibilities can produce large dense multivariate polynomials. Musser recommends 

rewriting the original polynomial as that happens only once at the start and once at the 

end whereas there may be many calculations modulo the polynomial ideal.

Some Solutions

All three problems (for factorization over Z ) were effectively tackled in [Wang78]. 

A clever trick solved the leading coefficient problem, a new approach precluded the “bad 

zero” problem, and the extra flexibility in the new algorithm allowed sufficient freedom 

that extraneous factors were virtually eliminated. Wang’s trick for predetermining the 

leading coefficients is discussed in chapter 7 where a generalisation of the trick to work 

in algebraic number fields is given.
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Another advantage of knowing the leading coefficients was that other coefficients 

of the factors may be determined merely by a simple division if the factors are 

sufficiently sparse. Wang exploited this possibility and sometimes could find the 

complete factorization without needing to lift. This idea of “predicting” coefficients was 

extended further in [Lucks86]. Lucks’s method worked better than Wang’s when the 

factors were fairly dense. Lucks stopped short of considering the largest linear system 

generated by the known and unknown coefficients, and solving that as far as possible 

— he may have decided it was not worthwhile.

The importance of preserving sparsity became widely recognised after Wang’s 

paper appeared. A notable step in this direction was taken in [Zippel79] (also 

[Zippel81]). Here the usual Hensel lifting method, which we have already observed can 

lead to dense intermediate results, is replaced by a probabilistic lifting process. If 

Zippel’s algorithm is lucky (which it normally is) then intermediate results are never 

bigger than the final result — though this may be exponentially larger than the input, 

e.g. consider xp-1 (for p prime) which has size Ci{!og p ) but has a factor of size ii(p). 

Wang expressed some further ideas on the subject in [Wang79a], though his method 

cannot guarantee that intermediate expressions are no larger than the answer.

Independent confirmation of the pitfalls mentioned above is given in 

[Moore&Norman81] who also comment that picking suitable integer substitution values 

can be time-consuming. Their experience agrees with [Wang78] that two or three 

different integer substitutions are usually enough to avoid extraneous factors during the 

multivariate lifting. They adopted Zippel’s ideas on preserving sparsity.

Recent Papers

There is a description in [Lugiez84] of a clever way of lifting all the variables at 

once. The usual method involves the computation of exponentially many derivatives:

f -  ( f mod (* 2- a 2, . .  • ,xn-a n)k) =
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Instead of this, Lugiez uses Euler’s identity (below) about homogeneous polynomials to 

generate a system of k linear equations.

rt
T*xj~z7m = 171 f Euler’s Identity
7=1 axi

where M s  a homogeneous polynomial of total degree m in xv . . .  ,xn. Lugiez shows 

that his method is better than the one in [Wang&Rothschild75] but gives no comparison 

with the improved version in [Wang78]. He did not consider the problem of dense 

intermediate results. He also mentioned the parallel with partial fraction decomposition, 

which is essentially the same problem. A year later he came up with a totally different 

lifting scheme [Lugiez85] which is currently limited to bivariate factorizations. This idea 

needs further development before it can compete with the more general algorithms.

Most of the recent work in this area has been more of theoretical than practical 

importance — none of this work is used in this thesis. These theoretical advances have 

aimed at producing polynomial time algorithms. As there are sparse multivariate 

polynomials whose factors have exponentially more terms than the original polynomial 

[vzG&K85b], the complexity is allowed to depend on both input and output sizes. In 

[vzG&K85b], there is a family of polynomials which undergo an exponential growth when 

made primitive or square-free — almost all of the current implementations of multivariate 

polynomial factorizers reduce the input polynomial to primitive square-free factors as the 

first two steps. The same paper gives a complete description of probabilistic algorithms 

for the factorization of multivariate polynomials over both finite and infinite fields in 

polynomial time. This paper has several notable features, such as the ability to deduce 

leading coefficients automatically, in addition to circumventing the need to perform 

square-free and primitive decompositions. Two related papers are [Kaltofen85b] which 

reduces a multivariate polynomial to a bivariate one in polynomial time, and 

[Kaltofen85a] which reverses the process (i.e. lifts the factors) in polynomial time.
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A radically different angle is taken in [vdH&L85] where lattice reduction plays a key 

role. The idea is to replace all except one of the variables by sufficiently accurate 

rational approximations of algebraically independent transcendental numbers; then 

factorize the resulting univariate polynomial; the multivariate factors can then be derived 

directly by using Lovasz’s lattice reduction algorithm. The method has two obvious 

trouble spots: one is the need for simultaneous transcendence measures, the other is 

the slow speed of current implementations of the basis reduction algorithm. The authors 

suggest that the method may be useful for bivariate factorizations but probably not for 

polynomials in three or more variables.

Lenstra, on his own, has come up with an alternative way of using lattice basis 

reduction to achieve the same end [Lenstra87]. His method is similar to the standard 

modular-Hensel ones except that the combinatorial search is replaced by a lattice basis 

reduction which can be performed in polynomial time — this paper claims polynomial 

time but it assumes densely encoded polynomials, unlike Kaltofen’s papers which 

assume the more realistic sparse encoding.

Lattice Basis Reduction Algorithms

This section glances at a few algorithms for finding nearly orthogonal vectors 

which generate the same lattice as the vectors supplied to the algorithm. An alternative 

equivalent viewpoint is that the algorithms find particularly short generators. There is a 

very pronounced trade-off between speed of achieving a reduction and the degree of the 

reduction produced. Lovdsz’s algorithm in [LLL82] turns out to be the one best suited to 

our purpose — a few papers consider improvements to this algorithm.

The problem of finding shortest vectors, Minkowski reduced bases, etc, for integer 

lattices has been studied for a long time; for example, a way of finding the shortest 

vector was given in [Dieter75]. However, it was not until late 1981 that any polynomial 

time basis reduction algorithm was known. Lovdsz’s algorithm first appeared in [LLL82].
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It is a generalization of Euler’s reduction method for two vectors, but the basis is only 

fairly weakly reduced. The reduction is nonetheless strong enough for many applications 

—  our particular interest lies in the factorization algorithm in [Lenstra82].

Subsequent papers dealing with this topic are mostly in two categories: those 

which apply the algorithm ultimately to perform stronger reduction but at a cost in time 

complexity, for instance [Schnorr86] and [Helfrich85]; and those which endeavour to 

achieve the same reduction faster, such as [Sch6nhage84], [Schnorr85], [Kaltofen83], 

and [Vall6e87]. Our interest centres on the latter category because we do not need an 

especially strong reduction, we just want an adequate reduction quickly. It is not always 

clear whether the “faster” algorithms are practically useful but Schbnhage’s 

improvements look promising. Afflerbach and Groethe claim to be able to compute 

Minkowski reduced bases very quickly [A&G85] using a clever search method.
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This chapter considers the question of how targe the factors of a given univariate 

polynomial can be. Clearly the degree of any factor must be less than the degree of the 

original polynomial, but it is not so clear what size coefficients the factor may have. We 

start by giving a precise statement of the problem under investigation, and we give an 

example showing that the problem is not trivial (even in the simplest case of 

factorization over Z). We proceed directly to a solution in two parts: firstly we go over 

ways of bounding the denominators that can appear, and then we show how to bound 

the numerators in essentially the same manner as that in [Weinberger&Rothschild76]. 

We state a conjecture which leads to a tighter bound for the numerator, and give 

supportive evidence for the conjecture.

Statement of the Problem

In this section we set up the notation for the chapter, and formulate the task 

exactly. Our problem is that we have a polynomial, f(x)  = over an algebraic

number field, K,  and we want to know how “big” the coefficients of any factor of f can 

be; i.e. if YJEtPi*1 divides M *). how “big” are the b;? We can express this precisely.

We are given an algebraic number field K, and a polynomial f , over K. Let d be 

the extension degree of K over Q, so we can choose d algebraic integers, 

p1f p2, . . . ,  p</, which form a <D-basis for K; i.e. K = (D<p1f. . .  ,p<*>. We shall 

represent all elements of K  with respect to this basis, e.g. a, = 2 y iia/yP/ with 3,1 aije 

Let the (unknown) factor of f{x)  be g{x) = '£j!!0bjXi . As for the a-, we represent

-4.1 -



Bounds J Abbott

bj = Syl^/yPy with all by g <D. Thus our aim is to bound the sizes of the denominators 

and numerators of the by in terms of n, m, the a/ t and the py.

Motivation

We start off by demonstrating that this problem is not all that easy even in the 

simplest case of factorization over Z . The intuitive first guess that factors have smaller 

coefficients than their product is wrong, as the following example shows:

x41- x 40-x 39+x36+x35-x 33+x32-x 30-x 27+x23+x22 

- x 21- x 20+x19+x18- x 14- x 11+x9-x 8+x6+x5-x 2-x+1 

is divisible by the apparently much larger

x33+7x32+27x31+76x30+1 74x29+343x28+603x27+968x26+1 442x25 

+2016x24+2667x23+3359x22+4046x21+4677x20+5202x 19+5578x 18+5774x 17 

+5774x16+5578x 15+5202x 14+4677x 13+4046x 12+3359x1 1+2667x 1°+201 6 x 9 

+1 442x8+968x7+603x6+343x5+1 74x4+76x3+27x2+7x+1 .

Here we have a factor with coefficients almost 6000 times the size of the coefficients of 

the polynomial it divides — examples of arbitrarily high degree (and arbitrarily great 

coefficient growth) can be constructed using a method from [Mignotte81].

To explain why we want to know such bounds, we shall restrict to the easy case of 

factorization over Z ; the same arguments hold for algebraic number fields but the 

algebra is more complicated. We shall talk about the ( mod g)_1 step in the standard 

modular-Hensel procedure (see chapter 2 page 11). It is important that any true factor 

corresponding to a factor modulo q can be found quickly from the modular image. We 

ensure this by insisting that the modular images of coefficients of true factors be distinct 

— if each modular coefficient were the image of at least k > 1 possible true coefficients 

then a modular factor of degree m would have at least km pre-images whose 

coefficients permitted them to be putative true factors, and we would have to search 

through them all. One way to arrange for the one-one correspondence is to find a limit
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on the absolute value of any true coefficient and then make q greater than twice the 

limit (to allow for positive and negative coefficients). This is what we do, and why we 

need the bounds discussed in this chapter.

Bounding the Denominator

In chapter 2 the notions of algebraic integer and defect were introduced, and we 

shall be using them here. The aim of the first part of this section is to find a (small) 

multiple of the defect with minimal effort; then we consider actually computing the 

defect. We reiterate the argument in [Weinberger&Rothschild76]. The mainstay of what 

follows is (one version of):

Gauss’s Lemma

Let O denote the ring of algebraic integers of our field K\ and let 

9(x)  -  'Zj=c9jx i £ 0[x]  and /J (x ):= £ yV >  jXJ e 0[x]  with grhs *  0 then if each 

coefficient of g(x)h{x)  is divisible in O by t e O then each product gjhk is also divisible 

in O by t.

Useful lemma

If f {x)e  (1 /a)0[x] is monic, and f (x)  = g(x)h(x)  over K  with g and h monic 

then g{x),h{x)e (1 /a)0[x].

Proof (from [Weinberger&Rothschild76])

Pick b such that g{x),h{x)e (1/b)0[x], then b2f{x) = bg{x)bh{x). Define gy and 

hj as in Gauss’s lemma, and apply that lemma to get {b2/a)\bgjbhk in other words 

agjhij e O V/,fr. Putting j  = r or k = s proves that each gy and each hk lies in (1/a)0.

So, given a general polynomial f (x) e K[x], if we can find an integer, MVO, such 

that M' f { x ) e  0[x]  then we know that the coefficients of the factors of f  can be taken

- 4 . 3 -



Bounds J Abbott

to lie in M~10  where M is the leading coefficient of It is easy to find a suitable

M  using our representation: just set M' to be the lowest common multiple of the 

denominators appearing in the representations of the coefficients (though this value may 

be too large by a factor equal to the true defect) — recall that the algebraic kernels are 

algebraic integers so any sum of products of them is an algebraic integer.

We are now about to discover one of the complications concomitant with 

generalisation to algebraic number fields. In the case when K = <D we have the ring of 

integers O = Z , but even in a simple extension, K = Q(a), we do not necessarily have 

O = 2[a]. For example, if a3-3 a 2-3 a -3  = 0 then K = 0(a) has ring of integers 

O = 2 < 1 , a, 1/2(a2+1)>. This means that clearing denominators by multiplying by M 

above does not guarantee that fractions will not appear in our representations of the 

coefficients of the factors. This brings us back to the defect (of a basis) which we 

defined in chapter 2 as

d e fec t^ ,  p2, • • * . Pd) = min(/e Z + : O cy^1Z<Pi, P2. * • • .  Pd>)-

We show that the square of the defect of a basis divides its discriminant; which 

means that D, the largest number whose square divides the discriminant of a basis, is a 

multiple of the defect. Let co1t • • • , be any integral basis, and R = (r,y) be the 

matrix sending (co,)-»(P/), i.e. P /= J^f/y^y- Thus by definition of an integral basis, 

R e G L d{2 ), and in particular det{R)€ 2 .  It is clear from the definition of the 

discriminant (in chapter 2) as the square of a determinant that

discr{$u p d) = det(R)2discr{<ou . . .  f tod).

It can be shown that the discriminant of an integral basis is an integer (and is the same 

for all integral bases of a given field). We complete the proof by showing that the defect 

divides det{R). Let the inverse matrix of R have entries (Sy). Then by Cramer’s rule 

det{R) is a common denominator for all the Sy-; and, we also have that ©/ = 

from which it is clear that O c  D_1Z<p1f. . .  ,p</> QED.
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In practice, 0  may be hard to find, as it apparently requires integer factorization; 

for example the discriminant of x7-1 1 x6-19x5+25x4+37x3+18x2+7x-19 is 

16838677302720365219 (a prime) which is square-free but we have to try all primes up 

to more than 1000000 to discover this (or use some sophisticated primality test). 

Instead of computing 0  we can use an easy-to-find multiple of it, such as the 

discriminant itself, or some intermediate compromise derived from a partial factorization 

—  we may safely let 0  denote the compromise value.

Combining the results above we conclude that the largest denominator that could 

appear in the coefficient of any factor divides MD. However, this is often a gross 

overestimate even if there is no compromise in finding 0 ; for example, in the field 

generated by a ninth root of 54, we calculate 0  to be 24321 = 167365651248 whereas 

the smallest possible value for 0  is 27. This leads us to the alternative approach.

At the other end of the spectrum there is the policy of investing a great deal of 

effort in actually calculating the defect in the hope that it pays off by saving work in later 

computations. Some recent work by Bradford [Bradford88] on Zassenhaus’s “second 

round” algorithm for determining integral bases has made this approach viable. Once 

we know an integral basis (and hence the defect), we can easily find the minimal value 

for M by expressing the coefficients of f in terms of the integral basis elements. This 

gives us the best possible denominator bound short of knowing the answer. We have 

performed some experiments to compare this approach with the less sophisticated one 

described at the start. Our results show that the initial investment is usually worthwhile, 

largely because the basis reduction becomes very much quicker with the smaller 

numbers. We present a selection of results in the table below:
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Comparison of Denominator Bounds
Example Estimate Defect Free

[Lenstra82] [Weinberger76] Defect
1 5.50 5.56 5.40
2 4.08 4.70 3.94
3 9.62 9.76 9.58
4 72.8 83.8 43.6
5 2198 1211 974

The entries in the table are total factorization times for the example indicated using 

the denominator bound indicated: Estimate means the largest number whose square 

divides the discriminant, Defect means that an integral basis was calculated for the field 

during the factorization and the defect was taken as the denominator bound, and Free 

Defect is the same as Defect but excluding the time taken to find the integral basis (if 

many factorizations are to be performed in the same field then the integral basis need 

be found only once).

Bounding the Numerator

We have achieved the first part of our aim, and now turn our attention to the 

second. We begin by explaining fully our goal and the route we take to reach it. Then 

we dive into the details of the solution.

We assume that a denominator bound has already been found, and we call it A. 

Thus with the notation at the beginning of this chapter we get Aby e Z  for all / and j\ 

and our goal is to get an upper bound for | Ab,y | . The interest in the Aby is because 

they are integers and thus (relatively) easily obtained from a modular image; so these 

are the values we compute in the ( mod g)"1 step of the factorization algorithm. We 

chose not to use the algorithm in [WGD82] for reasons of efficiency, even though this 

algorithm can derive rational numbers directly from their modular images. The results in 

the table immediately above discourage use of their algorithm still further.

Our route follows closely those of other authors (e.g. [Weinberger&Rothschild76]). 

Firstly, we find an upper bound for the magnitudes of the roots of f in C. Then by
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binomial expansion we bound the magnitudes of the coefficients of any factor — any 

factor is merely a product of linear factors (x -a) as a  runs through a subset of the roots 

of f. Finally, we deduce a bound on | Ab,y | from the magnitude bounds.

(a) Bounding Roots In G

We are given a polynomial f {x)s K[x] and must calculate an upper bound for the 

magnitudes of its roots. Already there is the question of which embedding K -*C  should 

we use? The bound on the roots has to be valid for all the possible embeddings. So this 

dissuades us from calculating the perfect bound by isolating the roots of all the 

embeddings to sufficient accuracy — a process which is known to be ill-conditioned 

anyway [Wilkinson59]. We must look elsewhere for an answer. There are several 

formulae in the literature which yield an upper bound, but they need to know the 

magnitude (in G) of the coefficients. Although we may not know the magnitude of any 

image of an element of K in G, we can still find an upper bound on the magnitudes of 

all possible images of that element in G.

We consider two problems simultaneously: that of bounding the maximum of the 

magnitudes of the possible images of an algebraic number field element, and that of 

bounding the maximum of the magnitudes of the roots of a polynomial with coefficients 

in an algebraic number field. We begin by introducing a piece of notation: we denote 

the maximum of the magnitudes of the embeddings of a e K into G by ||a ||. It follows 

immediately that for any a, p e K and q e <D

IIot+p|| < ||a|| + ||p||, ||ga|| = \q \  ||a ||, and ||cxpll < ||a ||||p ||-

We argue by induction on the degree of the algebraic number field extension. If 

the extension degree is 1 then the field is just <D and it is trivial to bound the magnitude 

of an element of <D. We can bound the magnitudes of the roots of Q[x] just

by finding the largest real root of \an \ xn~YJj^ I ay | xl as described below.
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Now we treat the case of an extension of degree greater than 1. We assume that 

any element of any field of lower extension degree can be bounded, and also the roots 

of any polynomial with coefficients in a field of lower extension degree can be bounded. 

Recall that an element of the field is represented as Cyp/ with the cy lying in the 

smaller field, Kr So we can bound all the ||cy || by induction, and also we can bound 

|| pr || by computing a bound for the roots of the minimal polynomial of pf (which has 

coefficients in Kr^). So the original field element is bounded by C j A ] where 

C j Z \ \ C j \ \  and A  £ ||p,||.

It remains to bound the magnitudes of the roots of a polynomial over the field. We 

do this by reducing the problem directly to a root bounding problem over <D. Let the 

polynomial be YJj=oaixi and consider the new polynomial II an || || ay-1| xJ. It is

clear that the magnitude of any root of the original polynomial does not exceed the 

largest real root of the derived polynomial. One point remains: we know only upper 

bounds for the || ay || not their exact values, but this does not matter if we insist that all 

polynomials be monic (which they are in our application), so ||an || =1 .

The preceding argument has left the legacy of having to find the largest real root 

of a polynomial of the form l {x)  := xn-J^j!~^bjX] with all the by > 0. There are three 

well-known theoretical bounds:

1+max{bn_1f bn_2..........b0}

which is due to Cauchy, and can be found in [Mignotte76];

max{nbn_i, ^nbn_2, ■ ■ ■, (nb0)Vn} 

which is also due to Cauchy; and

2max{b„_1i . . .  ,bSm) 

which can be found in [Knuth69] as exercise 4.6.2-20. The following lemma shows that
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1 has precisely one positive root (or is just xn).

Lemma

If 9(x) = xn-J^p^bixi with all b,>0 then g{x) has exactly one positive root or 

g(x) = xn.

Proof By induction on n.

If n = 1 the result is trivial.

We may assume n > 1 and g { x ) * x n. The derivative divided by n (i.e. g'{x)/n) 

satisfies the conditions of the lemma, and so has at most one positive root. Clearly 

g[x)—*°o as x —><», and £(0)=0. We have assumed that not all the b, are zero, so let by 

be non-zero. Then for e = Vzb ^ n~j) we have en -  bjd < 0, so in particular g(c) < 0. 

Thus g has at least one positive root. QED

The three formulae above give upper bounds for the real root of 1 , although it is 

easy to compute an arbitrarily close rational approximation — which is what we do. Let 

us define rb{?) to be the positive root of 1.

Recall that our real goal is to bound the roots of any (monic) polynomial, say 

f := xn + ai x*> ancl f Is ° ne °f the stepping stones. We have observed 

experimentally that by substituting

a n -1
X - > X ------------

n

in f (to kill the xn_1 term) then computing a root bound for the substituted polynomial 

(by finding a close rational approximation to the positive root of J) always gives a better 

bound. The program used to perform the experiments is given in appendix C. Based on 

these results we make a conjecture:
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Conjecture

Define f{x) = x \ aj \ x  ̂ where f{x) = xn+ J ^ ^ a Jxi e <D[x]. Then, with rb 

defined as above,

where f 8{x)=f{x-&) and 8 is chosen so that f & has no xn_1 term.

(b) Binomial Expansion

The next part of our route is to derive a bound on the magnitude of the coefficients 

of any factor. We assume a bound, B, on the magnitude of any root of f is known. We 

need consider only factors of degree at most half the degree of f since at most one 

factor can have degree greater than half that of f.

Let us begin by considering a factor of degree r, then we can consider the effect 

of varying r. A factor of degree r will have coefficients bounded by || (x+B)r ||. ,  and this 

bound can be attained so it is tight — II Ml -  means the maximum of the absolute 

values of the coefficients of f. By the binomial expansion

We want to find out which coefficient is the biggest, and to do this we look at ratio of 

adjacent coefficients in the expansion:

By inspection we see that the ratio decreases as j  increases, so the largest coefficient 

will be for the least integer value of j  giving a ratio below 1. Thus the largest coefficient

and it is easy to see that a factor of higher degree has a higher bound, so we set

\ 8 \+rb(h)<rb(J)  V f ( x ) e  C[x]

Coeff(xJ+')
Coeff{x>)

will correspond to j  = . This is the magnitude bound for a factor of degree r,
6+1
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r = [n/2\  to get a bound on the magnitudes of the coefficients of any factor of degree 

up to n/2. We could also retain r and j  as parameters in the bound — see the section 

on trial divisions in chapter 3.

(c) Deducing a Bound on | by |

We have reached the last, but hardest, leg of our journey. From (a) and (b) above, 

we have a denominator bound, A, and a magnitude bound, B, for any image in €  of any 

coefficient of any factor of f. In other words for the algebraic numbers

bj = Eyt^yPye K, we know that Aby are integers, and that all their images in C have

magnitude at most B. Our aim is to deduce a bound on the integers | Aby | .

The key fact is that the magnitude bound is valid for any image in <D. So we can 

set up the following system of linear equations:

Pi P2

p p  p p

pi*> b p

prf
p p

p

Afc/i
Ab/2

Abj
A b P

Abid Abf*

where for any pe K we write p, p(2), . . .  ,p(d) for the field conjugates of p. Observe 

that all the elements on the right hand side are bounded in magnitude by AB. We shall 

derive some bounds by inverting this linear system.

Obviously the values of the by depend on the (D-basis p1f. . .  ,prf; we shall 

assume that the obvious basis (defined in chapter 2) for 0 (a 1t a2, . . .  , a t) is being 

used:

{a°'a.%2..a?r : 0<e,<c/egree(a/)}.

This choice of basis gives the matrix a special structure from which we can derive three 

formulae. By Cramer’s rule each Aby is the ratio of two determinants; the denominator 

being the discriminant of the basis. The formulae come from different estimates for the
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numerator determinant. Hadamard’s bound yields:

B d ,A d || a, 0 d i d r ' ) || a21| ||a,||
< --------------------------- m s ---------------------------

where d,- is the degree of a,- over the field <D(a1t a2, . . . ,  am). If we regard the 

determinant as a sum of d! terms and bound each term, we get

, _  , Bd\ || a, || d ( d ' ~ ' ) || a21 d ’' d r ' )  ■ ■ ■ || a,  | d{d ' ~ ' ]

1 1 <  ------------------------

which is never smaller than Hadamard’s bound. However, a result of Landau 

[Mignotte74] tells us that

T id a l  : I«|>1 and 1(a) = 0} < \\f ||2 

where ||f II2 denote the Euclidean norm of the coefficients of 1. This inequality in 

conjunction with a rearrangement like ab2c3 = (abc)(bc)(c) leads to the last formula:

4-{dr  1) M d  2-i)
, Bd\\\ /7711|2 1 ||m2||2 2 - - \ \ m r \\2 r

|A^ '  <  -----------------------------

where m, is the minimal polynomial of a, over a2> . . . ,  a,^).

Unfortunately, a bound in Wang [Wang76] (attributed to Weinberger) which 

seemed to be greatly superior is erroneous [Abbott&Davenport88]. The formula for a 

simple extension <D(a) of degree d was:

We found a family of counter-examples to this formula. One member of the family is: 

a3 = 42 so a  maps into C as 3.476.. or -1.738..±/'3.010... Let w = 21a2+73a-127, so 

the images in (D of w have magnitude at most B = 381. The formula above implies that 

the coefficients in the representation of w as a linear combination of {1, a, a2} are 

strictly less than 127 — a contradiction.

In conclusion, we have achieved all that we set out to do at the start. We are able 

to find the best possible denominator bound, and subject to the veracity of a conjecture
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we can find quite a good bound on absolute values of images in C of algebraic 

numbers. However, the results in (c) often yield poor bounds, though they can be shown 

to be tight in certain cases. The following table shows how our numerator bound 

compares with the “optimal” one (i.e. derived by hindsight):

Comparison of Numerator Bounds

Example Times using our bound Times using optimal bound
Bound Lifting Basis Total Bound Lifting Basis Total

1 11875 2.6 0.3 8.7 191 2.0 0.2 8.1
2 4149 3.1 0.6 5.5 48 2.2 0.3 3.9
3 2208 5.9 1.3 12.3 3 2.2 0.5 5.3
4 8x1012 6.7 34.1 130 400000 4.2 13.2 41
5 2x1028 164 1500 4400 6x1013 67.0 218 997
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5. Lattice Basis Reduction

The general topic of this chapter is the basis reduction algorithm which is an 

essential step in Lenstra’s factorizer [Lenstra82]. Although it is not assumed that the 

reader has already looked at [LLL82], we try to keep our notation compatible with that 

paper. We begin by setting up the notation and terminology for the chapter, and then 

give a recap of Lovdsz's algorithm. We follow this with a discussion of various 

modifications made to Lovasz’s lattice basis reduction algorithm as presented in [LLL82]. 

Our experiments had shown that the basis reduction normally consumes a significant 

proportion of the total factorization time, so it is important to achieve the reduction as 

efficiently as possible. So we summarise the results of experiments designed to 

compare the various modified algorithms, and then select one of these as being the 

“best” for our purposes. Finally, we give an empirical formula for the time taken by our 

chosen algorithm.

Notation and Statement of the Problem

We are given the generators bv . . . ,  bn of a lattice in Z 77, and the aim is to find 

another basis of almost orthogonal vectors; or equivalently, a basis with very short 

vectors: for example, (writing the basis vectors as the rows of a matrix):

100 o’ -5 -5
61 1 reduces to

r 12 8

which means that any Z-linear combination of (100 0) & (61 1) can be written as a Z - 

linear combination of (-5 -5) & (-12 8), and vice versa.
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We comment that any two bases of a lattice can be mapped to one another by 

integral unimodular transformations; i.e. the matrices corresponding to the 

transformations have determinant ±1, and integer entries. We define the orthogonality 

defect of a basis to be the ratio of the product of the lengths of the basis vectors to the 

volume of the parallelopiped whose edges are those vectors (or, equivalently, the 

determinant of the matrix whose rows are those vectors, provided the matrix is square). 

The orthogonality defect is a measure of how far a basis is from being orthogonal — the 

lower the defect the closer to orthogonal the basis is (the defect is always greater then 

1).

In accordance with [LLL82] we use the following notation:- 

ty are the (input) vectors defining the lattice;

bj are the corresponding Gram-Schmidt vectors (i.e. the component of b, orthogonal to 

span(bi, . . .  ,bM ));

Bj = I b i |2, is the square of the Euclidean length of bj;

[Ljj = {bj, bj)lBj is the scaled inner product of bj  and b, \ and

It so happens that the input bases generated by the factorization algorithm are 

triangular (i.e. one vector has all except the first coordinate equal to zero, another has 

all except the first two, and so on) which makes the initial computation of the quantities 

above particularly easy.

We now recap Lovdsz’s algorithm (using the notation above), and give an example 

run. Comments are between square brackets.

Lovdsz’s Algorithm

(1) Compute the bj  and p,y.

B, := \bj \ 2 and 

k := 2.

- 5 . 2 -



Lattice Basis Reduction J Abbott

(2) [b-i, , bk^  are fully reduced amongst themselves, so we look at bk]

Subtract [\ikk̂ }b k̂  from bk to ensure that In**-! | <1/2.

If Bk < (3/4-p**--\)Bk_-i then do (4) otherwise do (3) — [if swapping bk with bk̂  

would give a bk_, of less than V3/4 the length of the current bk̂  then do the swap 

otherwise don’t bother].

(3) [we add bk to those already reduced]

Make all \\ikj \  < 1/2 by subtracting appropriate multiples of bk-2, bk-3, * * * from 

bk.

If k = n then exit, otherwise k := k+1 and go to (2).

(4) [we get a worthwhile reduction by swapping bk with bk̂ ]

Swap bk with bk̂ , and update the corresponding \i and B values.

If k > 2 then k := k - 1 [we have lost one reduced vector by swapping].

Go to (2).

We shall illustrate the algorithm by showing how the example above becomes 

reduced. Initially b, = (100 0) and b2 = (61 1).

Step (1) B, = 10000, B2 = 10000 and p21 = 0.61.

Step (2) b2 = (-39 1) and p21 = -0.39.

Step (4) b̂  = (-39 1), b2 = (100 0), 8 1 = 1522, and p21 = -2.56.

Step (2) b2 = (-17 3) and p21 = 0.44.

Step (4) b ! = (-17 3), b2 = (-39 1), B, = 298, and p21 = 2.23.

Step (2) b2 = (-5 -5) and p21 = 0.23.

Step (4) bi = (-5 -5), b2 = (-17 3), B̂  = 50, and p21 = 1.40.

Step (2) b2 = (-12 8) and p21 = 0.40.

Step (3) exit.

The above example is exceptional because there were only two vectors; normally 

upon reaching step (3) another vector will be looked at, allowing further reductions.
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Notice that even two small vectors need several vector subtractions and swaps during 

the reduction process.

Why do we need lattice basis reduction?

At first sight there seems to be very little connection between the factorization of 

polynomials and basis reduction. Indeed, Trager’s algorithm [Trager76] can do 

everything Lenstra’s [Lenstra82] can, and more; and Trager’s algorithm never needs to 

find a reduced lattice basis. However, we have already commented that Lenstra’s 

algorithm is significantly faster, and the work of this thesis is to extend the realm of 

applicability of Lenstra’s algorithm to that of Trager’s. Our need for basis reduction is 

purely for Lenstra’s algorithm.

The basis reduction occurs as part of the ( mod g)_1 step of the overall algorithm 

(see diagram in chapter 2). At this stage the information we have is: a tower of 

extensions K0 = Q and, for each / = 1 , . .  . ,  r the extension K) = /^ (a ,) ;  the minimal 

polynomial, mlt over of each a,, and their corresponding modular equivalents 

Ko := Fp and for i = . . .  ,r  the extensions Kj = K/_i(a,), where a, has minimal

polynomial fflj over Kj.-,. Recall that m, is square-free modulo p, and that we may have 

had to select the m, from several alternatives — the basis reduction is going to 

compensate for the effect of discarding the other possibilities for 777/.

We can use an alternative notation for the Kh namely K0 = Z /(p) and Kj = 

K/-i[x/]/(777,(x/)) = Z[x1, . . .  ,x,]/(p, m^x-,), . . .  , m , ( X i ) ) .  This notation allows us to 

express the effect of lifting more easily. Let q be some power of p. Then define R0 to 

be Z/(g). For each / from 1 to r let mt{x) & R^[x]  be the unique factor of the 

canonical image of m,{x) in R^[x]  satisfying m^x) = m;(x) mod p; and let Rj denote 

fl/-i[*/F(flJ/(x/))- Thus we obtain a succession of rings R0t . . . ,  Rr.

The ( mod qr)-1 step involves taking elements of Rr to elements of Kr in a special 

way. We have chosen q so that each element of Rr corresponds to at most one
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element of Kr which is small enough to occur as a coefficient of a factor of f. We want 

a means of finding that element of Kr given its image in Rr. This is where the basis 

reduction comes into play.

To use the basis reduction algorithm we must view the coefficients of factors in Kr 

as elements of Z rf. We do this in the obvious way: we already have a Z-basis for the 

coefficients of any factor (once we have cleared the denominators — see chapter 4), 

namely the obvious basis for Kr: { a f1 • • • a® ': 0 < e,- < d, }. We merely associate the 

basis element a f 1 • • • a®' with the unit vector ^  where s = e1+cf1e2+ • • ■ 

+did2 * * * dr̂ er.

Now, Rr is a lattice inside Z rf, generated by qe1t . . . , q e d and the vectors 

6 0
associated with cti1 * • • a /m ^ a ,) e Kr with 0 < e, < d/-3m, and for j  *  i 0 < ey < dj. 

We can calculate a reduced basis for this lattice, say It can be shown

[Lenstra82] that for all values of q greater than some q0{B) the fundamental region for 

the gj contains a ball of radius B — the fundamental region of a basis, vv . . .  ,y^, is 

the region:

We assume that q has been chosen so that all coefficients of the factors of f  lie inside 

this fundamental region.

We know that any element of Z rf is congruent modulo Rr to a unique element 

inside the fundamental region. This is how we find the “smallest” element of Kr with a 

given modular image.

We are now ready to present the modifications we used to try to speed up the 

reduction of integer lattice bases. All the versions are fairly close to the original 

algorithm. We describe seven variants, and then give a table comparing the
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performance of five of these. The comparison was based on the five examples in 

[Lenstra82] which we give in appendix D.

Using Rational Numbers

Our first implementation followed the diagram on page 521 of [LLL82] to the letter. 

All quantities were represented as rational numbers (as supplied by Cambridge LISP 

[Fitch77]). It soon became clear that this was hopelessly slow: the fifth factorization 

example in [Lenstra82] produced a basis which took more than six hours to reduce, 

whereas Lenstra claimed to have completed the entire factorisation in under a minute. 

Closer examination revealed that most of the time was spent reducing the rational 

numbers to minimal form, i.e. calculating integer gcds.

There was little consolation in the discovery that one of the factors Lenstra gave is 

reducible. Lenstra did point out that the coordinates of the input basis in his 

implementation were restricted to being smaller than 24a, unlike ours which had 

coordinates as large as 7111=6.3x 1093. This emphasises the importance of using proven 

bounds if we wish to guarantee that the algorithm finds all of the irreducible factors.

Trying Floating Point

Our next idea was to represent the bf, Bit and p,y as floating point numbers, 

keeping the bj as integer vectors. No change was made to the algorithm. Now the basis 

reductions were very fast but sometimes the output bases were not properly reduced. 

The culprit was cumulation of rounding error as the p ,y  were updated.

We tried to circumvent the problem by recomputing the bf, but were thwarted by 

the need to find inner products accurately. We abandoned the use of floating point 

numbers because of this poor behaviour on large lattices; also there were problems with 

representing the very large numbers involved, and there could be portability problems.
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A possibility we have yet to try is the use of high precision floating point numbers. 

A self-correcting algorithm is given in [Schnorr85] along with guidelines about the 

minimum accuracy necessary. Schnorr shows his algorithm to have superior complexity 

to that quoted in [LLL82], but it is not clear whether his algorithm would be faster in 

practice. We have not implemented Schnorr’s algorithm.

Using Integers

A closer look at [LLL82] revealed that we need use only integer arithmetic: they 

show that the dj are sufficient denominators for the and so we need manipulate only 

the dj and d y p ,y . A new version was duly implemented, and was between four and ten 

times as fast as the original.

However, we were still dissatisfied with the performance, and so investigated 

further: we noticed that intermediate calculations involved extremely large integers, 

which were normally the dyp/, values associated with the last few vectors — this 

observation led to:

An Incremental Method

It is readily apparent that the flow of control in Lovdsz’s algorithm is unaffected by 

the values of bm,dm and dypm/ until k first reaches the value m. Therefore we gain 

nothing at all by calculating and updating the values of d y p ,y  and d, for / greater than 

largest value k has reached so far. In fact, since these values of dyp,y and d,- are 

normally large, a lot of time is wasted manipulating them.

This suggested a sort of “lazy evaluation” scheme where each time k attains a 

new maximum value we immediately compute all the new d y p *y  and dk. Thereafter, the 

new values are kept up-to-date no matter how small k may subsequently become —  

there could be a compromise here where large values of d y p ,y  and di are “forgotten” if k 

becomes small.
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Fortunately, the dj and c fy ji/y  for the first f r - 1  vectors contain enough information to 

allow us to find dk and dj\ikj without having to keep the values of the bf, e.g. see 

algorithm R in [Kaltofen83]. Unfortunately, the relevant calculations involve summing 

rational numbers (to give an integer sum), and we know no efficient way of doing this 

using only integer arithmetic; but we can represent each summand as an integer and a 

floating point fractional part, and since the sum is an integer we can safely round the 

sum of the floating point parts to the nearest integer to obtain the exact result. Without 

such a device it is computationally expensive to find the new dj\ikj and dk.

Looking Only at Leading Digits

In our particular application of the basis reduction algorithm, most of the original 

coordinates were zero or very large, with just a few 1s. The initial behaviour of the 

algorithm was dictated by the relative sizes of the large numbers. We guessed that the 

least significant digits had no influence until all the numbers were smaller, thus giving 

rise to another modification: we scale the basis down (effectively throwing away the 

least significant digits), reduce the scaled down basis and find the associated 

unimodular transformation, then apply the same transformation to the full-size basis with 

the intention of reducing its orthogonality defect preparatory to applying the reduction 

algorithm.

We scale down the large lattice to a smaller one by dividing all the coordinates of 

all the b, by some integer, k, and rounding. To maintain linear independence we may 

need to alter one of the coordinates in each vector by ±1; in this process it is important 

to preserve the sign of each coordinate of each vector. Our attempts to find a way of 

picking a good value for k revealed an unexpected effect.

This scheme is infeasible because the unimodular transformation matrix can have 

extremely large entries: e.g. when factorising the fifth example from [Lenstra82] the 

original basis has numbers with 104 digits, the reduced basis has numbers with 35
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digits, the transformation matrix taking the reduced basis to the original basis has 

numbers with 69 digits (hardly surprising since the reduced basis is nearly orthogonal), 

but its inverse has entries with 241 digits.

We explain why this is a problem. Let L be the matrix whose rows are the basis 

vectors for the large lattice, and S be the matrix for the smaller (scaled down) lattice; so 

L = kS+e where k is the scale factor and e is a matrix with entries not exceeding k in 

absolute value. We had wanted to reduce 5  to the matrix R via some unimodular U (so 

R = US), in the hope that UL would have smaller orthogonality defect than L. This 

hope is false in the light of the observation of the previous paragraph, because 

UL = kUS+Ue = kR+Ue, and as U can be so large Ue may have entries far larger 

than any entry in kR or even L.

A simple way to avoid the hazard of large entries in U is to keep track of the size 

of the largest entry in U, and as soon as the truncation error multiplied by U (i.e. Ue) is 

large enough to affect the behaviour, we apply the transformation U to L and start 

again, probably with a new scale factor. We have not yet fully implemented this scheme. 

It is reported in [Kaltofen83] that Odlyzko has found a similar approach but using floating 

point numbers instead of integer quotients.

Connection with Lehmer’s Integer GCD Algorithm

A definite drawback of the above approach is that part way through the reduction 

process those vectors that have been reduced tend to be far smaller than those not yet 

looked at. This means that k cannot be very large otherwise all the information in the 

smaller reduced vectors will be lost. We could arrange for different scale factors for 

each vector much as in Lehmer’s algorithm for computing integer gcds [Knuth81].

The connection between basis reduction and integer gcd computation is quite 

close. In fact, integer gcd computation is merely basis reduction in a one-dimensional 

lattice; for example the lattice in Z  generated by (169) and (481) has the reduced basis

- 5 . 9 -



Lattice Basis Reduction J Abbott

(13) (or (-13)).

This variable scaling looks particularly promising for the case of reducing a pair of 

vectors. For example, consider these two bases:

1 -1  
999 999

1 -2  
999 999

which is reduced, and

which reduces to
1 -2  

1199 599

The two original bases would appear the same if we scaled all the coordinates by 1/10 

(preserving signs), but if we scale the short vectors by 1 and the long vectors by 1/10 

then we get a smaller basis whose transformation to a reduced basis yields the correct 

reduction for the original basis. We applied this idea to the version which performs 

“localized” reduction of pairs of vectors — for details see page 5.12.

Preprocessing the Basis

A rather different approach was to preprocess the basis to reduce its orthogonality 

defect by a few quick and simple transformations before using the full power of Lovdsz’s 

algorithm. Just by looking at the original bases one can see many “obvious" reductions. 

This led to the idea of writing a routine to simulate crudely the reduction algorithm.

In essence the algorithm pretends that bf = bit hoping that normally this would not 

be too inaccurate. In detail, the preprocessing algorithm is as follows:

(1) Set k = 1.

(2) We assume b1(. . . ,  bk are already Z-reduced {k > 2 always). We ensure all

[L'kJ- := {bk, bj)/ \bk |2e ( -1/2,1/2] by subtracting multiples of bk_h bk_2, • ■ * from bk

repeatedly until the condition is met.

(3) If | bk | > | btf_t | we just increase k by 1 or exit if there are no more vectors. 

Otherwise we swap bk and bk_1( reduce k by 1 (unless k = 2) and go to step (2).
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By saying that b^, . . .  ,bk^  are Z-reduced, we mean that |b,| < |b/+1| for 

i = 1 , . . . ,  k -2  and that | p'fS I ^ 1/2  for all 0 < s < r < k.

A crude analysis of this algorithm yielded an atrocious worst case complexity, due 

to the formulation of the test in step (3). Nevertheless it processed the bases produced 

during the factorisation of the five examples in [Lenstra82] about thirty times as quickly 

as the original routine, and the final orthogonality defects were only slightly greater than 

those of the fully reduced bases.

The bad news is that sometimes step (2) can be very slow, the reason being that 

ensuring that all p'*y e (-V2, Vfe] is not entirely trivial. Since the bj are not actually 

orthogonal, some p'w may change value when a multiple of bj is added to bk. In 

particular the value of p'w is no longer guaranteed to lie in (-V z , V2] and may lead to a 

re-reduction. Just occasionally, the program has to go back and forth many thousands 

of times as various p'w wander outside (-V2, V2] before control can pass to step (3).

We tried a crude method of solving this problem: we used the incremental basis 

reduction routine to complete the reduction when more than, say, 100 attempts at 

taming the p'kj had occurred. This hybrid showed good overall performance although 

the time taken varied erratically with the size of the input basis.

Localized Reduction of Blocks

We noticed that the program often swapped (step (4) in Lovasz’s algorithm) the 

same pair of vectors several times in succession. And after each swap the relevant p,y 

must be updated, involving a lot of needless computation. We can achieve this more 

efficiently by reducing the pair of vectors completely (only updating pw m ), and then 

updating the other p,y and cf, just once at the end. The benefits were instant: 

incorporating this idea into the incremental algorithm produced a routine about as fast as 

the hybrid preprocessing version at its best, and which showed no signs of erratic 

variation. This is currently the best version.
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[Sch5nhage84] discusses a similar approach allowing block reduction of several 

vectors before updating all the p ,y . He claims superior asymptotic complexity over 

Lovdsz’s algorithm for the correct choice of block size. We have not implemented 

Schdnhage’s algorithm.

We had hoped to observe a distinct improvement in this version when we modified 

it to use a variable scaling scheme. Indeed experiments showed that the part of the 

algorithm which had consumed most of the time was greatly accelerated by the change. 

However, although we found the correct linear combination much faster, all the time that 

was saved in that section was consumed by the scaling down computations and the 

application of the transformation to the two full-size vectors.

Comparison of the Algorithms

Below is a table of times taken by five of the versions mentioned above. The 

headings Rational, Integer, Incremental, Preprocess, and Block refer respectively to the 

original implementation using LISP rational numbers, the version using the d) as 

denominators, the incremental version, the preprocessor assisted by the incremental 

routine, and the version which uses blocks of two vectors. The bases used for testing 

all come from trying to factorise Lenstra’s five examples (using Weinberger’s estimate 

for the denominators); the sixth basis is an alternative basis produced from Lenstra’s 

fifth example. The examples are given in appendix D.

Comparison of Basis Reduction Routines

Basis
Time taken for the Reduction (seconds)

Rational Integer Incremental Preprocess Block
1 2.96 0.30 0.32 0.22 0.30
2 13.14 1.46 1.16 0.80 0.78
3 63.38 5.02 3.56 2.52 3.08
4 2356 248 107 27.02 55.22
5 18714 5428 2801 2291 1449
6 23356 4881 2362 1214 1423
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From this table we see that both preprocess and block display superior 

performance for our type of problem. The tabulated results also hint at the large 

variations observed for the preprocess method. We select block as being best suited for 

our purposes because of its consistency.

Empirical Complexity Formula

One problem we identified early on during the implementation of the factoriser was 

what criterion should we use to guide our choice(s) of finite field. Experiments showed 

that picking different finite fields could cause a great variation in the overall factorisation 

time. It soon became clear that choices favourable for the Cantor-Zassenhaus factorizer 

were unfavourable for the lattice basis reduction, and conversely. We decided to try to 

estimate the total running times parameterised by the choice of finite field (so all the 

minimal polynomials of the extension generators must be factorised) and the distinct 

degree factorization of f. This spurred us to investigate the dependency of the basis 

reduction on these parameters. We give our conclusions below.

Extensive timings using the block modification (on various bases produced during 

factorisations over simple extensions of <D) have yielded an empirical formula for the 

complexity: time = (n785d10)1/3 where n = log{Hensel bound) which is the same as the 

maximum length of any coordinate of any (input) basis vector, 5 is the finite field 

extension degree (so there were 5 orthogonal vectors in the input basis), and d is the 

dimension of the lattice (i.e. the original extension degree). The formula was derived by 

a trivariate linear regression of log(f/me) against log(n), log(d), and log(8) [using 

MinitabJ. The times were obtained for n = 1 , . . .  ,20, d = 4,5,6,7, and 8 = 1 , . . .  ,d -1 : 

we picked a random polynomial of degree d with small coefficients (<100) and having 

full Galois group; then different choices of prime and modular factor gave the various 

possible 5 values; finally, the bases were generated by lifting linearly to p-adic height 

just greater than (224)n — the choice of 224 was based on the mistaken belief that the
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underlying large integer arithmetic routines worked with 24 bit “digits”; actually the 

routines used 32 bit “digits” but this should introduce only a constant scale factor. The 

multiplication routine used a classical algorithm as opposed to a more modem “fast” 

method.

A series of experiments addressed the question of where in the lattice basis 

reduction routine does the time go. The results were slightly unexpected; normally most 

of the time is spent computing the linear combinations of bk_-i and bk (about 40% of the 

total reduction time), then second and third places went to updating the values of the p ,y  

according to the linear combinations computed, and to the test whether to swap (roughly 

20% each, but there was considerable variation). Of the rest of the time, about half was 

spent finding the initial values of p ,y  when the vector b, is first included in the basis.



6. Univariate Hensel Lifting

This chapter presents our experiences with several ways of lifting a factorization of 

a univariate polynomial mod p to a factorization mod pk. We start by stating our basic 

assumptions and defining the quantities used in the algorithms. Then the four lifting 

schemes are explained in detail, with a comparison of all four, including experimental 

results which support our choice of truncated quadratic lifting as being the best general 

purpose scheme. The last part looks closely at the Implementation considerations for 

lifting the factors and correction factors.

Assumptions

We begin by outlining the assumptions for the whole chapter. We consider only 

the case where the factors to be lifted are coprime — this is automatically true if the 

original polynomial is square-free. The schemes we discuss below all lift the factors in 

parallel as suggested in [Wang76] — [Musser75] explicitly indicates use of a serial 

approach which simplifies notation and programming, and Zassenhaus’s papers 

([Zassenhaus69] and [Zassenhaus78]) imply the same though possibly only for 

notational clarity. We view the problem as that of lifting factors (as do Musser and 

Wang) as opposed to lifting primitive idempotents which Zassenhaus discusses.

Notation

We denote the polynomial to be factorized by f. Let p be a prime modulo which f 

is square-free (and of full degree) and let the factors of f modp be f ^ , . . .  , f s — in
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fact, they will be irreducible in our application, but we need only know that they are 

coprime in this chapter. For clarity we shall assume that f and all the fj are monic. All 

the algorithms use what we call the correction factors, written as a 1f. . . ,  as to produce 

the refined factorization. The correction factors are defined as the reciprocals of the 

products of all the other factors in the following sense: V / a j f j  = 1 mod (p, fj), or

equivalently ay := (fy)~1 mod (p, fj) where fj  := n o .  We are ready to give definitions
i * j

of the algorithms and pass a few comments on them. The algorithms below employ the 

simplification to the lifting of the factors outlined in chapter 2 and examined later in this 

chapter (page 6.9).

Pure Linear Lifting

This is the simplest scheme. A factorization mod p is refined to a factorization 

mod p2, and then to one mod p3, and so on. The algorithm looks like:

Input: Factors f ^ , . . . , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f . .  . , f s mod pk.

(1) <7 := P-

(2) Compute the correction factors a 1f. . . ,  as mod q.

(3) While q < pk do

(3.1) q := qxp.

(3.2) Lift each factor: for j  = 1 , . . . ,  s do fj := fj + (aj f )  mod [q,fj).

It is clear that this algorithm needs k steps to compute the answer. However, 

each step is very easy.

- 6 . 2 -



Univariate Hensel • ifting J Abbott

Pure Quadratic Lifting

This scheme is nearly as simple as pure linear lifting, the essential difference 

being that the correction factors are computed inside the loop. The name derives from 

the fact that a factorization mod p21 is lifted to one mod p2/+1 each time round the loop. 

The algorithm for quadratic lifting is:

Input: Factors f y , . . .  , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f u . . .  , f s mod pK where K  is the least power of 2 

greater than or equal to k.

(1) q : =p .

(2) While q < pk do

(2.1) Compute the correction factors ^  as mod q — not actually needed on

the final iteration.

(2.2) q := q2.

(2.3) Lift each factor: for j  = 1 , . . .  ,s do fj := fj + (ay f)  mod (q, f j ).

It is easy to see that the loop is executed at most 1+log2(k) times, but more work 

has to be done each time round the loop. Another drawback of quadratic lifting is that 

pK may be much larger than p k — in fact, pK may be almost as large as (pk)2. The 

disadvantage of this overshoot is that the computations at needlessly high accuracy are 

time consuming. Indeed, if classical arithmetic is used then the last time round the loop 

will take about four times as long as the penultimate time (assuming all polynomials are 

completely dense), and about sixteen times as long as the antepenultimate one, etc. 

because the computation time is dominated by the cost of the integer multiplications. 

Thus about three-quarters of the total lifting time is taken in the final iteration of the loop; 

hence, in the worst case, virtually three-quarters of the lifting time is wasted.
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Fast Linear Lifting

We observed earlier that pure linear lifting requires many iterations. Although the 

computations inside each loop are quick and simple, they are not quick enough to 

compensate for the large number of iterations. The method used in REDUCE’s 

factorizer endeavours to alleviate this: both the factors and the correction factors are 

lifted quadratically until the modulus is just smaller than the wordsize of the computer 

(assuming that single word integer computations are significantly faster than multiword 

ones), thereafter only the factors are lifted (necessarily linearly).

The benefits of this scheme are that fewer iterations are needed than for pure 

linear lifting, yet each iteration is almost as quick and easy (except for the first few 

negligible quadratic steps). There may be a small amount of overshoot but this is 

regarded as being small enough not to matter. Here is the algorithm:

Input: Factors . . .  , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f 1f . . . ,  f5 mod pK where K > k is at most wordsize 

times k.

(1) q: = p .

(2) While q < p k do

(2.1) If q <  wordsize then Q := q and compute the correction factors

a 1(. . .  ,a r mod q. [quadratic step only if <7 < wordsize]

(2.2) q := qxQ.

(2.3) Lift each factor: for j  = 1 , . . . ,  s do fj := fj + (aj f )  mod {q,fj).

We can see a close similarity between this algorithm and that for pure quadratic 

lifting — they are the same until the condition in (2.1) becomes false when the algorithm 

looks just like the linear lifting one.
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Truncated Quadratic Lifting

Our experiments showed that pure quadratic lifting could be very fast, but also that 

it performed badly when it produced a large overshoot. Clearly a way of avoiding 

excessive overshoot would improve the poor performance in those cases. Truncated 

quadratic lifting was designed to fulfill this purpose. We lift quadratically while the 

desired accuracy is greater than the fifth power or if it happens to lie between the third 

and fourth powers. Then we perform one, two or four linear lifting steps (i.e. correction 

factors are not lifted) to pass the desired accuracy. We explain later (page 6.8) how this 

criterion arose. This scheme will be the same as pure quadratic lifting except in the 

cases where particularly great overshoot would occur. A suitable algorithm is:

Input: Factors . . .  , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f \ , . . .  , f s mod p K where 3k/2 > K >k.

(1) q ■= P-

(2) While q < p k do

(2.1) If qs < p k or q3 < p k < q 4 then compute the correction factors

a 1y. . . ,  as mod q and Q := q.

(2.2) q := qxQ.

(2.3) Lift each factor: for j  = 1 , . . .  ,s  do fj := fj + (ay f)  mod {q,fj).

Notice how similar this is to the pure quadratic and fast linear cases, the only 

change is the condition at (2.1). We explain below why we chose the condition at step

(2 .1).
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Comparison of the Algorithms

We implemented all four of the algorithms above and tried them on many different 

examples. The table below gives the times (in seconds) taken to perform a few Hensel 

lifts. The examples 1 to 5 are taken from [Lenstra82] (see also appendix D), the last 

example was produced in the course of factorizing x9-54  over an extension of <D by one 

of its roots. The dominance of truncated quadratic lifting over the alternatives considered 

here is plain to see. The figures also highlight how much time can be wasted [difference 

between pure quadratic and truncated quadratic] during the final iteration in pure 

quadratic lifting even though our implementation of the pure quadratic algorithm did not 

lift the correction factors on the last iteration.

Comparison of Hensel Liftina Methods

Example

[Lenstra82]

Lifting Method

Pure Linear Fast Linear Pure Quadratic Truncated Quadratic
1 5.78 2.10 1.88 1.90
2 4.48 1.94 2.48 1.94
3 14.58 4.44 5.50 4.30
4 40.94 7.50 4.82 4.82
5 1786 246 106 106

x 9-54 1201 169 66.70 43.70

We give here a theoretical argument to support our selection of algorithm. Our 

argument works by estimating the relative times of the different algorithms. We shall be 

realistic and suppose that classical arithmetic is used, so that the cost of multiplying two 

integers together is proportional to the product of their lengths; and in particular, 

arithmetic mod pJ takes time proportional to j 2. We also make a couple of plausible 

assumptions; the first is that all polynomials involved in the lifting process are completely 

dense, so that the cost of each lifting step depends only on the initial and final moduli (in 

fact, we take the cost to be proportional to the square of the final modulus). The 

second assumption is that the cost of lifting the correction factors (in quadratic steps) is 

proportional to the cost of lifting the factors with proportionality constant k  which
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depends on the degrees of the factors but is independent of the modulus.

The analysis for pure linear lifting is easy. The total cost is just the sum of the

costs of lifting the factors alone by one power of p each step. Hence the entire cost is

roughly proportional to

Pure Linear = 4 + 9 + 16 + • ■ ■ + k2 

= (2 Ac3+3/f 2+Ac—6)/6

The fast linear algorithm is the same except for a practically negligible contribution 

from the initial quadratic phase. Suppose the quadratic phase lifted the correction 

factors to modulus p7, then the overall cost is:

Fast Linear = quadratic part + y'2(4 + 9 + • • • + K2)

-  quadratic part + j 2{2K3+3 K2+K-6)/6

where K  := is the number of linear steps taken by the algorithm. If we ignore the

contribution from the initial quadratic lifting then we see that the cost is roughly k3/3j 

which is about Mj *  of the asymptotic cost of pure linear lifting. Allowing for the fact that 

we neglected the cost of the quadratic lifting this suggests we should take y to be as 

large as possible.

For quadratic lifting we must include the cost of lifting the correction factors. Let K 

be the least power of 2 greater than or equal to k. So we shall lift both correction 

factors and factors to modulus pKl2 then just the factors to modulus pK. The cost for 

lifting the factors is thus 4 + 1 6 +  • • • + 4* ;  and for the correction factors it is 

k (4 +  16 +  • • • +  4* _1). Summing the geometric series we deduce the total cost as:

Pure Quadratic = 4(4k + k 4* - 1- 1- k )/3 .

In the worst case 2K is almost 2k, and substituting 2k for 2K into the total cost we 

conclude that the cost is at most 4(4/c2+ k /c2- 1- k )/3 . This is obviously quadratic in k 

whereas the complexity for either of the linear algorithms is cubic. Further experiments 

showed that for very small values of k, fast linear lifting is better than pure quadratic,
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but in practice k is never that small.

The basic idea behind truncated quadratic lifting is to lift quadratically until the last 

few lifts when it becomes more efficient to lift linearly. However, we must be precise 

about when to switch to linear lifting. Using the assumptions above we can estimate the 

cost of various lifting combinations, and compare these:

Costs ol Lifting Combinations
Combination Final modulus Cost
L P2 4
LL P3 13
LLL P4 29
LLLL P5 54
LLLLL P6 90
LLLLLL P7 139
LLLLLLL P8 203
LLLLLLLL P9 284
QL P4 20+4k
QLL P6 56+4k
QLLL P8 120+4k
QLLLL p 10 220+4k
QQL P8 84+ 20k
QQLL P12 228+20k
QQQL p16 340+84k

The unit of cost is a quarter of the cost of lifting from modulo p to modulo p2.

By considering this table we see that if we need to lift beyond p5 (starting from p) 

then it always more efficient to perform a quadratic step; however, for smaller lifts linear 

lifting is superior except if we have to lift to p4 when a quadratic step is worthwhile 

provided k  < 2. The table also shows how much can be saved by using truncated 

quadratic lifting versus pure quadratic or pure linear lifting: for example, to lift to p10 

costs respectively 220+4k, 340f84ic, and 384 — so we win unless k > 41. Using the 

lifting algorithms detailed in the rest of this chapter, we have found experimentally that k  

is usually in the range 0.9 < k < 1.4. Finally, we observe that by its very construction 

truncated quadratic lifting is never inferior to pure quadratic lifting.
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Lifting the Factors

Here we state the generalised form of Hensel lifting referred to in chapter 2 (page 

13). We have available a factorization modulo pa, say f = fy • ■ - fs, and a set of 

correction factors a 1( . . .  ,a« correct modulo pb. We want to compute a factorization 

modulo pa+b efficiently from this information.

We shall continue to assume that f and all the fj are monic (actually it suffices to 

know what the leading coefficients will lift to). So the change to fj is just pa8,- where 

6/ := {oLj{f~Ylfj)/pa) mod {pbJi). The question is how to compute the 8, quickly?

It is not too hard to spot that pa8, s (a, f )  mod (pa+b,fj). So, in fact, we just 

reduce f modulo (pa+b,fj) directly, then multiply by a/ and reduce modulo (pa+b,fj) 

again — this gives 8/. Note that each a , is already reduced modulo (pb,fj).

Another scheme, used in REDUCE’s factoriser, calculates the residue (i.e. 

f{x)~Y[f j{x)e  Z[x]) at the start and updates its value as the f t are lifted; but this 

seems less efficient, especially as computing the residue in Z  can generate needlessly 

large numbers: e.g. x2+1 s (x+2057)(x+1068) mod 3125 but the residue in Z[x] is 

-3125x-2196875 which has a coefficient greater than one million. In general, by 

considering the product of the constant terms we can see that if there are t extraneous 

modular factors then the residue in Z  may have coefficients as large as p at.

Lifting the Correction Factors

We showed earlier in this chapter that quadratic lifting is better than linear, 

provided that the correction factors could be lifted with about the same amount of work 

as the factors. We now study some ways of actually lifting the correction factors. Note 

that the correction factors are always lifted quadratically: the inputs to the algorithms are 

fy, . . .  , f s modulo q2 and a 1f. . .  ,a s modulo q, and the result will be lifted correction 

factors A y , . . .  , A a modulo q2.
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Several people have noticed the connection between this problem and that of 

partial fraction decomposition, namely:

1 «i a*_ _ _ s_ +.. .+_ mod(7.

This indicates that it might be worth looking at algorithms in that field, such as the one 

in [Kung&Tong77].

All the methods we consider lift the correction factors by finding the and then 

using the lifting technique for reciprocals. We recall the remarkably simple way of lifting 

reciprocals: if g = f~' mod q and we want to compute h = f~y mod q2 then 

h = g{2- fg)  mod q2 where we may take any representative of g mod q2: we know 

fg = 1 mod q so we may define e by fg = 1+qe mod q2, now consider hf mod q2 this 

is just fg{2-fg)  = (1+ge)(1-ge) = 1 mod q2. So provided we can find the f-, mod q2 

efficiently, we can lift the a, quickly.

A little more thought shows that we really need just f-, mod {q2, fj). We 

investigated six possibilities, some of which calculate fj and others which produce 

fj mod {q2,fj) directly. We label the methods (a) to (f).

(a) For each / divide fj into f mod q2 (should go exactly) then reduce the

quotient modulo {q2, fj)\ or equivalently, reduce f modulo (q2,fj2) then divide 

the remainder by fj\

(b) For each / reduce all fj {j*i) modulo fj then form their product modulo f,\

(c) Calculate and store f , , f - i f 2, - - - ' f ‘\ f 2 m’ mfs-V> a!so do the reverse list

f5, fsfs-1, . . . ,  fsfs—1 ’ f 2- Form the products of one element from each 

list to generate the f,\

(d) split the fj in a “balanced” fashion (try to balance either total degree or 

number of factors in each “half") and apply a divide-&-conquer approach like 

the algorithm in [Kung&Tong77].
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(e) split the f ■, in an “unbalanced” fashion, i.e. take the factor of least degree as

one “half” and the rest as the other — this is a serial method: at the j lh 

iteration we compute Y l iU fh • • • *11 l*jfi and also IT iS f i>

(f) use the derivative of f as follows: we know f = Y [ f j  mod q2 so 

f  = mod q2, which implies that f ' =  f j ' f j  mod (q2,fj)\ so fj  can be 

found easily — this was inspired by the Newton-Raphson iteration technique 

for root finding.

We expected (d), the balanced divide-and-conquer, to be best; however intuition 

can be misleading. We implemented all six methods of lifting and compared them on a 

variety of examples. To our surprise the seemingly inefficient method (b) of multiplying 

together lots of fj turned out to be very good overall. A selection of the results is given 

in the table below:

Comparison of Correction Factor Lifting Methods
Example Time taken to Derform the liftina
[LLL82] a b C d e f

1 28.8 23.8 23.8 25.9 26.1 35.3
2 27.7 21.5 22.2 25.2 29.1 26.0
3 51.4 42.2 38.7 42.3 46.5 61.9
4 53.3 39.4 41.9 48.4 49.4 49.8
5 570 423 477 653 792 438

x9-54 182 152 153 167 161 176

These times are interpreted PSL 3.4 on a Sun 3/50

A general complexity analysis of these algorithms does not produce a usable 

result, but if we restrict to the very special case when all the fj have equal degree d we 

can get some interesting results. We assume it takes (a+1)(b+1) basic multiplications 

to multiply two polynomials of degrees a and b ; and similarly it takes b{a-b+1) basic 

multiplications to form a quotient and/or remainder of a polynomial of degree a with a 

monic one of degree b. Armed with these two results we may proceed.

Method (a) is easy to analyse giving a total number of multiplications:
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s(d(sd-cf+1) + d((s-1)c/-d+1)) = sd{{2s-3)d+2).

Method (b) is almost as simple once we realise a multiplication modulo a polynomial is 

just a multiplication followed by remaindering. We find that (b) has complexity:

s(s d{d-d+1) + (s-2)[d2+d(2(cf-1)-d+1)]) = 2sd((s-2)cf+1).

Observe that to reduce all the fj to fj mod fj takes sd((s-2)cf+l) multiplications, so to 

beat method (b), any method which produces the fj and then reduces these must find 

the fj in less than sd((s-2)d+1) multiplications.

Method (c) calculates fj rather than fj mod f j ’, even so it takes longer than 

method (b):

2((d+1 )2+(cf+1 )(2d+1)+ • • • +(d+1)((s-2)d+1)) + 

(d+1)((s-2)d+1)+(2d+1)((s-3)d+1)+ • • • +((s-2)d+1)(cf+1)

= (s-2)[(s-1)(s+6)d2/6f(2s-1)d+2].

To analyse method (d) we make a further simplifying assumption that s is a power 

of 2, say s = 2°. We define the function x(a) to be the number of multiplications taken 

by method (d) when there are 2° factors of degree d. We can write down a recurrence 

relation on x(a):

x(a) = 2x(a-1) + 2x2<*-1x(2<,~1d+1)x((2ff-1-1)d+1) + (2°^1cf+1)2.

Converting x(a) into a summation we derive the closed form:

2o<J-2cr2
o2(jf2 4
2 " 1 _2®f1+i

3

Replacing each 2° by s gives the result

4s 2-1

+ d2°(20+1-1) + 2°(<y+3)-1

d 24 —2s-1 + ds(2s-1) + s(3+log2s)-1
4

which is again cubic in s.

Method (e) is a bit easier to analyse, but again it produces fj. At the j *  iteration 

the cost is
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(/-i)[((/-2)d+i)(d+i) + (jtf+i)(c/+i)], 

and summing this for /  = 1 , 2 , . . .  ,s -1  yields the total number of multiplications:

2cf2(s-1)2(s-3) 2s(s-1)(s-2) (s-1)(s-2)
3 3 2 ’

and once more this is cubic in s.

The differentiation method, (f), produces f / f / 'mod but is faster than (b): the 

number of multiplications being

sd + s(d((scf-1)-d+1) + d(2cf-1)) = s(s+1)cf2.

However, it is less efficient because we must also lift the values of ( f/0-1 mod f ■, which 

nearly doubles the amount of work.

In summary we have shown that under the special circumstances of all factors 

having equal degree (and that there are 2s of them for the divide and conquer method) 

that the multiplication method has best complexity, and our experimental results concur. 

In fact, the experimental results indicated that method (b) performs very well overall, 

consistently being the best or second best out of all six competitors.
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The topic of this chapter is the deduction of the multivariate factorization of 

f ( x1f . . .  ,xt) given the univariate factorization of f{xu a2, . . .  ,at) where a2, . . .  ,a r 

are suitably chosen integers. We shall consider only fairly standard Hensel lifting 

techniques — in particular we ignore the recent lattice based methods, as these seem 

to be less practical currently and also because we have a generalisation only of the 

classical method for lifting factorisations over algebraic function fields.

We begin by looking at the standard algorithms of Musser and of Wang for 

factorization over Z . We compare these methods and look at the practical problems 

that arise during the computations. These problems were discovered shortly after the 

first implementations were completed, and various strategies for alleviating or 

circumventing them have been published. We then look at possible extensions and 

adaptations of these methods to producing factorizations over algebraic number fields; 

in particular, we give an extension of Wang’s leading coefficient prediction method 

[Wang78]. Extensions to algebraic function fields are discussed in the next chapter.

The Standard Algorithms

We surveyed several papers in this area in chapter 2, and here we shall be most 

interested in [Musser75], [Wang&Rothschild75], and [Wang78]. We present the 

algorithms proposed in these papers and then compare their merits paying attention to 

implementation issues. Finally we highlight the features used in our algorithm based on
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the foregoing comparison.

Musser’s Algorithm

Input: a square-free primitive multivariate polynomial f {x , t . . .  ,xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2, . . . , a f e Z  i.e. such that the image 

f{x, ,a2t . . .  ,a t) remains square-free and retains full degree in x v

(2) Factorize the univariate polynomial f{xua2, . . • ,at) over Z  to obtain factors

f  1 »  •  •  •  » f S '

(3) Pick a large prime p (perhaps just smaller than the largest single-precision

integer) such that f{xua2, . . .  ,at) remains square-free and retains full degree 

in x 1; and reduce the f -, modulo p. So we have f = f  ̂  ■ fs mod

(p, X2~a2, . . .  ,xt- a t) —  note that the may be reducible modulo p, but they

are all relatively prime.

(4) Let e-, be 1+3X/( f ).

(5) For j  := 2 , . . . ,  t do [lift the variables in succession]

(5.1) Quadratically lift the factorization to be valid modulo the ideal

(p, ( x g - a /2.......... (xy- a y)^,(x/+1-a y+1)--------,(xf-a f)).

(6) Now lift quadratically in powers of p to obtain a factorization valid modulo 

(P2*.(*2- 22) . . .  p (x,-ar)e') where p2* is larger than any coefficient which 

may occur in the factorisation.

(7) Finally determine the true factors via a combinatorial search — normally this 

should be trivial.
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Wang & Rothschild’s Algorithm

Input: a square-free primitive multivariate polynomial f {xu . . .  ,xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2 l . . . , a ( e Z  i.e. so that the homomorphic

image f mod (x2- a 2, . .  • ,  xt- a t) has full degree in x̂  and remains square- 

free.

(2) Factorize the univariate polynomial f (x1fa2, - . .  ,at) over Z  to obtain factors

f 1f . . . ,  fs. So we have f = f , • • • fs mod J where J is the ideal

(x2- a 2, . . .  ,xt- a t) in the ring Z[x2, . . .  ,xt\.

(3) For i := 2, . . . ,  1 +total_degree(f) do [lift homogeneous degree of the factors]

(3.1) Lift the factors fj so that mod J'

(4) Use a combinatorial search to find the true factors.

Wang’s Improved (EEZ) Algorithm

This is almost identical to Musser’s algorithm except that the prime chosen at step

(3) is taken to be greater than a coefficient bound for the factors (thus making step(6) 

unnecessary), and that the lifting at step (5.1) is linear. The definition of “suitable” in 

step (1) has to be tightened: we want the homomorphic image to be of full degree and 

square-free and, in addition, we want the distinct irreducible factors of the coefficient of 

the highest power of x, each to have a “unique” prime divisor, that is for each of the 

distinct irreducible factors of this leading coefficient there is a prime which divides the 

homomorphic image of that factor alone — it has been emphasised [Norman&Moore81] 

that this extra condition may not be easy to fulfill. However, there is great benefit 

derived from Wang’s coefficient prediction scheme and other heuristic tricks which can 

reduce the number of factors to be lifted — we discuss these below.
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Comparison

The main difference is between Wang & Rothschild’s algorithm and the other two; 

the distinction between the latter two being primarily a selection of devices to avoid 

extraneous factors or to detect factors early. We start by weighing the pros and cons of 

the two types of algorithm, then we talk about the various devices used in the EEZ 

algorithm.

Firstly we look at Wang & Rothschild’s algorithm. It has a simpler structure than 

Musser's: the lifting is just in powers of a single ideal, and all the variables are lifted at 

once. The algorithm naturally works with polynomials as opposed to the apparent need 

for rational functions in Musser’s approach. There are some disadvantages related to 

the behaviour on sparse polynomials: for example, reduction of a polynomial modulo the 

ideal J  is hard unless all the a, are zero (and rewriting in terms of y-, := x/+a, will 

normally generate a dense polynomial), and also the lifting process itself generates 

dense intermediate results even when there are no extraneous factors (e.g. reducing 

x2y2z 2+1 modulo J6, where J is the ideal (x -1 ,y-2,z-3 ), gives us

6x2y2z -9 x 2y2+4x2yz2-24x2yz+36x2y -4x2z 2+24x2z-36x2+2xy2z 2-12xy2z+18xy2

-8xyz2+48xyz-72xy+8xz2-48xz+72x-y2z 2+6y2z -9 y 2+4yz2-24yz+36y-4z2+24z-35

a completely dense polynomial of 26 terms with coefficients as large as 72). In general,

reducing the polynomial n / =1*yVl •rodulo produces a completely dense polynomial

with n* terms, where J is the ideal generated by (Xi -a1f. . .  ,xt- a t }.

As we have just commented, Musser's approach appears to need rational function 

arithmetic at first sight. Musser obviated this need by retaining ideal generators like 

(xz-a2f 2, so that the rational functions are represented as polynomials modulo these 

generators. He also introduced a numerical modulus p to avoid rational number 

arithmetic — we shall shortly see a reason for us not to do this. The variables are lifted 

one at a time, so we can take advantage of sparsity in the true factors: using the 

example above we get
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x2y2z 2+1 s 7 mod ((x-1 
mod ((x-1 
mod ((x-1 
mod ((x-1 
mod ((x-1

, (y-2), (z-3)) 
2, (y-2), (z-3))S12x-5  

=  6 x 2+1
3  36x2y-36x2+1
= 9xzyz+1 mod ((x-1
s 6x2y2z -9 x 2y2+1 mod ((x-1
s x2y2z2+1 mod ((x-1

from which it is clear that we avoid the excessive intermediate expression growth 

inherent in Wang & Rothschild’s method. We comment that even with this lifting scheme 

it is still possible for intermediate results to be denser than the factor we are lifting to, 

but only by a factor of e-1 where e is the degree of the factor in the variable that is 

currently being lifted. It should be noted that the sequence of ideals used as moduli in 

this lifting scheme is totally different from the sequence J,J2,J3,

Musser uses quadratic lifting of the variables which is potentially hazardous 

because any extraneous factors are almost always dense — in other words lifting 

beyond the minimum necessary modulus could produce needlessly large intermediate 

results. For example, in the worst case we would lift to a factorization modulo

2d 2 2d 2
(P>(x2~a2) r  . • • • .  (X f -a f) r ) which could give coefficients each having

2r_1n (© y -1) terms. Of course, if none of the factors is extraneous (as is normally the

case) then such growth cannot occur if we lift too far.

Musser also suggests rewriting the polynomial to be factorised in terms of 

y; := x/+a, on the grounds that the ideal then has a very simple form allowing rapid 

calculation modulo the ideal. Again there is the risk that the substituted polynomial can 

have a number of terms exponential in the number of variables: for example, rewriting 

x2y2z2+1 in terms of X  = x -1 , Y = y-2 , and Z  = z -3  gives a completely dense 

polynomial of 27 terms. Certainly, such a substitution would be infeasible if the input 

polynomial has high degree in many variables since the substituted polynomial could 

have as many as n ( 1+d * /)  terms.
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Wang’s Tricks

Let us consider some of the tricks devised by Wang to expedite the lifting. Wang 

points out that by trying several sets of randomly chosen values for the a, in step (2) [of 

Musser’s algorithm] we can be almost certain that none of the factors is extraneous, 

thereby avoiding both the potentially expensive step (7) and the highly dense lifted 

factors —  Wang suggests picking three sets of values as a good compromise between 

performing many univariate factorizations and getting the correct splitting pattern. He 

also observes that factors of low degree can be detected inexpensively at an early stage 

of the lifting process by performing trial divisions. This idea is better suited to linear 

lifting than to quadratic lifting because when quadratic lifting is used, each step performs 

more lifting than all the earlier steps together i.e. “early detection” of a factor of degree 

k, say, will only occur once all factors have been lifted to degree 2s where s is the least 

integer such that 2s > k. Also the need to update the lifted correction factors when a 

factor is removed is dissuasive though the relevant calculations are quite simple: if fj 

can be removed then each ay for j  *  i must be multiplied by fj (and, of course, reduced 

modulo f j ) ’, also we replace f by f I f This explains Wang’s choice of linear lifting at 

step (5.1).

Another significant contributor to the success of the EEZ algorithm is the 

predetermination of the leading coefficients by a clever trick: the leading coefficient is 

factorized, and then the values for the a, are chosen so that for each of the distinct 

irreducible factors of the leading coefficient there is at least one prime dividing the image 

of that factor and none of the others. The factors of the leading coefficient can then be 

distributed correctly just by performing integer divisibility tests. When the factors are 

sufficiently sparse other coefficients can be deduced directly, possibly doing away with 

the need to lift at all.

The tricks just described could equally be applied to Wang & Rothschild’s 

algorithm, but the “early detection" by trial divisions would not work out easily for
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Musser’s algorithm as the numerical modulus may be too small.

It should be pointed out that there is no use in lifting beyond half the maximum 

degree (either total degree [for Wang & Rothschild] or degree in the variable being lifted 

[for Musser]) since at most one of the factors has degree greater than half the 

maximum. In other words we can safely replace step (4) in Musser’s algorithm by

(4) Let e-, be 1 +V2dx.{f).

Similarly in Wang & Rothschild’s algorithm the loop starting at step (3) need only 

go as far as 1 +V2total_degree{f).

Factorization over Algebraic Number Fields

The discussion above was made under the assumption that the factorization was 

happening over Z . The situation is a little different when the coefficient domain is a ring 

of algebraic integers. Wang & Rothschild's algorithm works without modification (other 

than the change in factorization domain in step (2)). Musser’s algorithm generalizes with 

no problem, except for the use of a numerical modulus p; the problem being that we 

cannot guarantee that the minimal polynomials of the extension generators remain 

irreducible modulo p. Our options include ignoring p, using some sophisticated 

conversion method from a finite field to an algebraic number field (e.g. Weinberger & 

Rothschild’s, or Lenstra’s), and using a heuristic method such as that in [Langemyr87]. 

The last approach is particularly well suited to this application: only those primes dividing 

the defect or a denominator in the canonical representation of the coefficients of the 

correction factors cause difficulty, any other primes may be used.

Regrettably, Wang’s leading coefficient prediction trick generalises in a rather 

complicated way. The reason for this is that there may not be unique factorization in the 

ring of algebraic integers: for example in <D(V̂ 5) we have the distinct factorizations 

6 = 2x3 = (1+V=5)x(1-V::5) yet all of 2, 3, (l+V ^) and (l-V 1̂ ) are irreducible. We do 

have unique factorization into ideals in the ring of integers but it is not clear how to
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apply this facility here.

Davenport [private communication] suggested taking norms and then factorizing 

the resulting integers. This neatly bypasses the non-unique factorization problem; 

however we cannot necessarily find integer values for the a, such that the norms of the 

images of the distinct factors of the leading coefficient each have a prime factor not 

dividing any of the other norms; if the leading coefficient is x f  + *1  and the field is <D(/) 

then the leading coefficient factorizes into (x+iy){x-iy) and whatever integer values for 

a2 and a3 we pick, the two factors have equal norms.

However, by employing the argument in [Trager76] we can show that if we allow 

a2 to be a general algebraic integer then we can force each norm to have its own prime 

factor as required by Wang’s trick. What we do is compute the square-free 

decomposition of the leading coefficient and then pick integer values a3, . . . ,  at so that 

the square-free components retain full degree in x2 and remain square-free — let g(x2) 

denote the image of the leading coefficient. Form the product of the distinct irreducible 

factors of g as h{x2) := P(x2)/gcd(g(x2), g'(x2)). Applying theorem 2.3 in [Trager76] 

we can find an algebraic integer, p, such that h{x2~p) has a squarefree norm. We can 

then pick an integer value M for x2 so that each of the factors of the norm of ^(x^P) 

has a prime factor not dividing any other factor. Thus using the value M -p  for a2 

completes a suitable set of substitution values for permitting use of Wang’s prediction 

technique. In practice, a random algebraic integer value for a2 should usually suffice.

If the above method is too complicated we can always resort to the simpler ways 

of eliminating the leading coefficient problem. We can force the polynomial being 

factorized to be monic by the obvious, though costly, substitution; or we can force all the 

factors to have leading coefficient equal to that of the original (effectively multiplying the 

original polynomial by a high power of its leading coefficient). These two ideas are 

usually deemed too inefficient on account of the potential growth encumbent in raising 

multivariate polynomials to high powers.
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More recently Kaltofen has pointed out that the method described in [Kaltofen85a] 

for determining the leading coefficients applies (without modification) to our problem, and 

is probably the most efficient method. We give a short overview of Kaltofen’s method. 

From the univariate factorization f{xu a2, . . . ,  a() = f ^ x A) f 2{x 1) • • • M * i )  lift to each 

possible bivariate factorisation: let the factorisation involving x 1 and xk be 

f \ k)fj>k) • • • f j k)- We assume that there are no extraneous factors and that the leading 

coefficient of each of the bivariate factors is correct, i.e. the leading coefficient of f }k) is 

the image of the leading coefficient of fj under the substitutions xr -> af V r *  1 or k. 

Thus the list of leading coefficients from f , . . . ,  f£k) is a factorization of the image of 

the leading coefficient of the original polynomial. Now we can recursively apply the 

method to each of these factorisations of the leading coefficient to obtain the true 

leading coefficients of f 1r. . . ,  / s, the factors of the original polynomial. Observe that 

some gcd computations may be needed to satisfy the coprimeness condition for Hensel 

lifting; and also observe that we may need to perform t- 1 lifting operations from the 

univariate factorisation to yield all of the various bivariate factorizations because any 

factor of the leading coefficient involving just one variable, xk say, can be correctly 

distributed from information contained solely in the factors f \k), . . .  , f j k) — such a 

factor would merely map to a field element in all the other homomorphic images.

Summary

We conclude by describing our algorithm for lifting from a univariate factorization to 

a multivariate one — selecting the best features of the methods we looked at. The 

algorithm is very similar to the EEZ method.

- 7 . 9 -



Multivariate Hensel Lifting J Abbott

Our Algorithm

Input: a square-free primitive multivariate polynomial f (x1f . . . ,  xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2, . . . , a f e Z  i.e. satisfying

f{x^,a2, . - • ,at) has full degree and is square-free.

(2) Factorize the univariate polynomial f {xua2, . . .  ,at) over Z  to obtain factors 

f 1f . . . ,  fs. In fact, we repeat steps (1) and (2) for three (following Wang’s 

recommendation) sets of substitution values as a ploy to avoid extraneous 

factors — see chapter 3.

(3) Determine the correct leading coefficients of the factors by Kaltofen’s method: 

often we will need only a few of the bivariate lifts since, for example, if each 

factor of the leading coefficient of f involves at least one of x2 or x3 then the 

bivariate lifts for these two variables will be sufficient.

(4) Pick a suitable (large) prime p greater than twice the largest integer that may

occur in any factor once denominators have been cleared — such a bound

can be determined using Kronecker’s substitution and a univariate coefficient 

bound for factors. An alternative is to use a heuristic bound, but this risks 

producing reducible factors should the heuristic fail. Reduce the modulo p, 

so we have f = f , -  • • fs mod (p, X2~a2, . . .  ,xt- a t) — note that the f\ may 

be reducible modulo p, but they are all relatively prime.

(5) Let dj be dXj{f), and e,- be [vad/j.

(6) For j  >= 2 , . . . ,  t do [lift the variables in succession]

(6.1) Linearly lift the factorization to be valid modulo

(p, {X2~a2)d2------,(x/_1-ay_1)d/-1,(xy-ay)^,(x/+1-a y+1) , . . .  ,(*,-a ,)).

Perform trial divisions on each lifting step once the exponent of (xy-a y)
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exceeds djls (average degree in xy of the factors).

(6.2) Possibly one factor may have to be computed by division if it contains xy to a 

power greater than ey~ 1 . After this final determination we have a factorisation 

correct modulo

(p, (x2- a 2)dz, . . .  ,(*y-ayA(xy+1-ay+1)------
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8. Factorization over Algebraic 

Function Fields

The aim of this chapter is to present and discuss a method for factorizing 

polynomials over algebraic function fields: for example, if a2-4/7-1 = 0 then x2+x-n  = 

(x+1/2(1+a))(x+1/2(1-a)); and if a2-(n+1)3 = 0 then x2- n - 1 =  (x+a/(n+1))(x-a/(n+1)). 

The general paradigm will be to substitute suitable integer values for those 

transcendentals upon which the algebraic functions depend — thus converting the 

algebraic functions into algebraic numbers (possibly even rationals or integers). Then 

factorize the resulting polynomial over the algebraic number field corresponding to the 

original algebraic function field, and finally lift this factorization so that the true 

factorization can be found.

Notation

We set up some notation here for the rest of the chapter. The polynomial we wish 

to factorize is f. The field over which the factorization is to be made is 

K  := ©( Z! , . . .  ,z t, a 1f. . .  ,a r) where the z; are transcendentals and the ay are 

algebraic. We assume the field has been built up via a succession of algebraic 

extensions giving us a tower starting from K0 := ©(z^ . . .  ,z T); for j  > 0 Kj := K^{a.j). 

Thus K = Kr. Let mi be the minimal polynomial for a, over the field —  this places 

an implicit ordering on the a,* as in the algebraic number case. We may also assume
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without loss of generality that each m, is monic and has coefficients lying in the ring 

Z [z u . . .  , z x, a y , . . .  , 01m] — thus each ay is an algebraic integer in a broader sense 

of the phrase (so, for example, the product of two polynomials over Z  in the ay- will not 

contain any fractions).

There are two ways to view multivariate polynomials over algebraic function fields: 

as an essentially multivariate polynomial, or as a univariate polynomial (with all the 

variables except one absorbed into the algebraic function field). The latter view is the 

simpler; however, such a view is more restrictive in that we cannot in general find the 

content as an element of an algebraic function field: for example, over the field <D(z,a) 

where a2- z  = 0 we might say that the polynomial g(x) := (z2-z )x+(z - 1 )(1—cx) has 

content z-1  because g{x) = (z-1)(zx+1-a), but equally we could say that it has 

content z - a  because g(x) = (z-a)((z+a)x+z-1). In contrast, the former viewpoint 

does allow us to find the content in terms of those variables not contained in the 

algebraic function field. This extra capability lead us to choose the former view.

Having chosen the multivariate representation, we now explain how we can reduce 

to the case of f being univariate over K. This is very simple: the lifting techniques of 

chapter 7 apply even when the coefficient domain is an algebraic function field; that is, 

we can choose integer substitution values for all except one of the variables to yield a 

univariate polynomial which we factorise, then we deduce the multivariate factorization.

Hence, for the remainder of this chapter we shall take f (x) to be a univariate 

polynomial in K[x]. We also make the simplifying assumption that f is monic —  if it is 

not, the best strategy appears to be to force all the factors to have leading coefficient 

equal to that of f ; in this way we avoid the need to invert elements of K. The lack of 

unique factorization in K makes it essentially impossible to find the “true” leading 

coefficients of the factors (certainly Kaltofen’s method cannot work as it requires the 

formation of a GCD-free basis).
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Bounds on Coefficients of Factors

As for the earlier algorithms we need to find how large coefficients can get so we 

know how far to lift the modular factorization. The coefficients in an algebraic function 

field have two measures of size: the size of the numerical coefficients as well as the 

degree in the z,-.

Degree Bound

The first guess is a naive generalisation of the degree bound for factorization over 

number fields: the degree in each zy of any factor is no larger than the degree in that 

same zy- of (any coefficient of) the input polynomial or of any coefficient in any minimal 

polynomial. Unfortunately there is a family of counter-examples to this guess: let p be 

an odd prime greater than 9, and let q be the largest integer less than Vp (so in 

particular, q > 3); now consider the algebraic function a defined by (z+a)p = 2+zq, then 

the polynomial xp-(2+zq)q factorizes over <D(z, a) as

(x - ( z -k x )p ) (x p -1+ (z -kx ) p x p-2+  • • • +(z+a)Q(p~1)) 

but (z+a)(?(p_1) = (z+a)p(<M)(z+a)p~C7 = zp+q2~2q+ • • • (lower powers of z). So we have 

a factor which has degree in z almost twice the maximum of the degrees in z of f and 

of the minimal polynomial of a — since q > 3 we have q2-2q  > 0.

Arguing along the lines of Trager’s algorithm [Trager76] we can find upper bounds 

on the possible degrees in the zy as follows. We define the degree in zy of an algebraic 

function, a, with minimal polynomial ma{y) = £ 5 fijy' to be

dZia := max”
m-i

m

/=o ’

We extend dz. to K by defining the degree of a product to be the sum of the degrees of 

the terms, and the degree of a sum to be the maximum of the degrees of the 

summands. For example, if a  has minimal polynomial ma{y) = y2- z  and p has minimal 

polynomial mp(y) = y2-a z  then 3za = 1/2 and 3zp = 3/4. This definition of degree is just
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a simple upper bound on the order of the pole (or the zero, if negative) in a as zy tends 

to infinity. The following example shows that dZj can be different from the order at 

infinity. Let a2-z -1  = 0, and p2-z -2  = 0. So dz(a) = 3Z(P) = 1/2. Then according to the 

definition 9*(a-p) = 1/2, yet our conventions lead us to think that a-p  has a zero of 

order 1/2 at infinity (i.e. a pole of order -1/2). This definition of degree takes the 

maximum over all possible choices of roots — both a and - a  are square-roots of z+1. 

Note that with the restrictions placed on the minimal polynomials of the algebraic 

functions our degree function is always non-negative on algebraic kernels.

Now we can work through Trager's method to find our bound: we may have to 

make a linear substitution (x -> x+5) in f{x) := a/x' to obtain a polynomial which 

has a square-free norm. The degree in each zy of the linear shift, 8, is at most the 

maximum of the degrees in zy of the algebraic functions au . . . , a f since 5 is only a 

Z-linear combination of the algebraic generators. So we find that an upper bound for 

the degree of any coefficient of the shifted polynomial is

Finally, this quantity must be multiplied by the extension degree to produce a bound on 

the degree of the square-free norm. Unfortunately this is often far too large: in the 

counter-example above the bound turns out to be p2 which is much larger than 

2p > p+q2-2q.

A good heuristic bound for the degree in Zj of the factors seems to be 

dZjf + 2/3^ym/' This 9ives the more reasonable figure of p+q2 in the counter-example 

above. We should explain that we have no justification for the validity of this bound in 

the general case; however, we are unaware of any situations where it is invalid.

Wang's idea of using early detection is still to be recommended because even the 

heuristic bound may be far too large.

dz,{f{x+$)) < max J/9,5 + dza
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Numerical Bounds

Again we can follow through Trager’s algorithm estimating the largest possible 

integers that may occur: let n be the degree of f , and cf, be the degree of m, (i.e. d, is 

the extension degree [Kj-.K^]), then from the proof of theorem 2.3 in [Trager76] we find 

that the shift 8=: s ^ -i- • • +s,ar can be constrained to have \sk \ z V 2d 2n2. This 

gives sufficient information for us to compute an upper bound on the sizes of numerical 

coefficients in the square-free norm from which we can derive upper bounds on the 

sizes of coefficients of the factors of the norm. Finally we must compute a bound on 

the sizes of the coefficients in the factors of the original polynomial, and this we do by 

estimating coefficient sizes during a polynomial remainder sequence. Note that the 

factors of the norm must have degree divisible by the extension degree [Kr:K0] (since 

the factors of the norm are themselves norms), and this may help lower the bound. 

Unfortunately, this method gives bounds that are far too large: for example, if 

f(x) = x2+ x -z  and a2-4z-1=0 then we know the true factors are x+1/2(1+a) and 

x+1/2(1-a ) but the bounding process gives Is ^  <8 , so the square-free norm has 

coefficients with magnitude at most 256, and Gel’fond’s bound (e.g. [Wang75]) for the 

factors of the norm is almost 281000; lastly we simulate a polynomial remainder 

sequence estimating degree and numerical bounds to get the bound for the factors of f 

to be greater than 5000000.

Strictly we have no need for a numerical bound as the lifting can be performed 

without numerical modulus, but as observed in [Musser75] this leads to calculations with 

rational numbers, thereby incurring the cost of integer gcd computations. In spite of this, 

it seems best not to use a numerical modulus until there is a significant improvement in 

the tightness of the coefficient bound. We can decide whether to use rationals or 

modular numbers based on the tightness of our bound: suppose computing the gcd of 

two n -digit integers takes as much time as k multiplications of n -digit integers then if 

our multiplication algorithm is quadratic then it is better to use modular arithmetic only if
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our bound has length at most about Vk+2 times the size of the numbers appearing in 

the rational number computation.

Substitution Values

We consider two attitudes to selecting the integers, a,, we shall be substituting for 

the transcendentals z,-. One is to have fairly weak restrictions on the permitted values 

but then have to work hard during the reconstruction of the true factors from the 

modular ones. The other attitude is to place stringent conditions on the permitted values 

which lead to a less onerous reconstruction.

Stringent Case

Let us first look at the case where we are more restrictive in our choice of 

substitution values. Ideally, we want values which would lead to a trivial reconstruction.

We begin by making some definitions. Let a 1f. . . , a Te Z  be the chosen 

substitution values for z 1f. .  . ,z t respectively. We observe that the algebraic functions 

become algebraic integers under this substitution: the minimal polynomial for maps to 

a monic polynomial with integer coefficients, and the minimal polynomials for the other 

a / inductively are monic and have algebraic integer coefficients. Let (3, be the algebraic 

integer to which a/ maps. We can show this situation neatly in a diagram:

Kr = Kr_i(ar.,) -> Mr = Mr_,{pr_,)
T  T

T  T

K ^ K 0(a,) - >  Mi  =  M 0(P 1)
T  T

K0 = Q {Z i  zx) -> M0 = Q

where the Kt are the elements of the original tower, and the Mj are their images under

the substitution Zy-»ay.
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A good starting point is to consider the images, py, of the algebraic functions ay. 

To make the reconstruction trivial it would be advantageous if each algebraic integer py 

had the same degree as its pre-image ay — i.e. we want the image of the minimal 

polynomial of each ay to be irreducible over so that Py is defined as a root of the 

image of my(y) in Mj[y]. Note that with this restriction the M, are uniquely determined 

by the ay. Also, we want to be certain that the substitution produces no extraneous 

factors.

Luckily, we can meet all these conditions: hardly surprising since we have a lot of 

freedom to choose the a,. In fact, by picking random values for the a, from a sufficiently 

wide range we can be almost certain that the conditions will be satisfied. To show this 

we employ a primitive element for K — the theorem of the primitive element guarantees 

its existence, and [Trager76] presents an algorithm for computing one (we do not 

actually need to compute a primitive element but we shall refer to the algorithm). Let a 

be any primitive element for K  over K0, and let ma be its minimal polynomial over K0. 

So K = K0(a) and we may apply the factQrisation algorithm in [Trager76] which 

proceeds by computing a square-free norm and then showing that this has a 

factorisation over K0 which corresponds directly to the factorisation of the original 

polynomial over the original field. Our argument uses this fact to show that there is a 

choice of substitution values with the required properties.

We can apply Trager’s square-free norm algorithm to produce a polynomial in 

g{x)e  <D[z1#. . .  , z x][x] whose factorization over <D corresponds to the true factorization 

of f. An effective version of Hilbert’s irreducibility theorem presented in [Kaltofen84] 

enables us to reduce to a bivariate polynomial easily: it says that a random vector 

(a3, . . .  ,af)e Z r_2 with |a, | < M  will (with controllably high probability, 1-482s/M m 

where 8 is the total degree of f ) keep the factors of g irreducible over Q under the 

homomorphism V />  3 zy-»ay. Then the last step to a univariate polynomial can be 

achieved by, say, a result in [Fried74]; i.e. we can almost certainly ensure the complete
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absence of extraneous factors. Any such set of substitution values will automatically 

keep ma irreducible because otherwise extraneous factors would appear — recall that 

norms can be calculated using resultants and that res{fg, h) = res( f , h)res{g, h), so 

if one of the minimal polynomials mapped to a reducible polynomial then all the 

irreducible factors of the square-free norm would map to reducible factors.

We assume that at least one suitable set of substitution values can be found —  

picking random values for a3, . . . ,  af (the range 0 to 224-1 as supplied in Cambridge 

LISP is fine for all practical purposes) and then computing a suitable value for a2 will 

probably find a valid set straightaway, if not we just pick another random set. Indeed, 

Kaltofen privately suggested we use random values (e.g. between 0 and 224-1) for the 

a,- and then assume that all the conditions were met without bothering to check them, 

and thus saving a great deal of effort. In the unlikely event that one of the conditions be 

violated (e.g. minimal polynomials of some of the algebraic functions mapping to 

reducible polynomials) we will discover it during the factorization process and only then 

pick a new random set.

The rigorous alternative is to check for each / that the image of the minimal 

polynomial m, remains irreducible over and that the image of f  is square-free. 

[Musser78] suggests that we can check irreducibility with short expected time just by 

factorising in a few finite fields and performing a degree compatibility check, with the 

possibility of having to perform a complete factorization in unlucky cases [KMS83]. Of 

course, checking f for square-freeness is not hard.

Once we have a valid set of a,- and a factorization of the homomorphic image of f , 

we have only to lift the factors. The factors are assumed all to lift to true factors so we 

need not worry about extraneous factors (nor leading coefficients as these are all forced 

equal to that of f). However, we do still have to worry about denominators appearing in 

the coefficients, as in the example given near the start of this chapter. The arguments 

in chapter 4 giving a couple of denominator bounds apply equally to algebraic function
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fields: the square of the common denominator appearing in the representation of any 

algebraic integer with respect to a particular basis divides the discriminant of that basis 

(the discriminant formula is valid for algebraic function fields too); alternatively, we can 

compute an integral basis to get an exact result (this involves even lengthier 

computations than for algebraic number fields). Either way, we get an integer and a 

polynomial in Z [ z u . . .  , z t] which can be used to clear all denominators.

The Hensel lifting proceeds much as for normal multivariate lifting (chapter 7) 

except that the minimal polynomials of each py must be lifted along with the factors. 

Once the Hensel lifting has been completed, we just replace each J3y by ay to obtain the 

factorization of f over K. We illustrate this with a short example:

to factorise f (x)  := x2- z 4+2z2a -z  over K := <D(a) where ma{a) := a2- z  = 0; we might 

pick the substitution value 2 for z (any non-square integer will do); 

a  maps to p with minimal polynomial mp(x) := x2-2  = 0, thus 

K maps to <Q(P), and 

f maps to g{x) = x2-18+8p. 

g factorizes into (x+4-P)(x-4+P) over Q(P);

we regard this as a factorization modulo (z-2), and lift the factorization in powers of this 

ideal:

f (x) = (x +4z-4~P)(x-4z+4+P) mod (z-2)2, 

ma(P) = p2- z  mod (z -2 )2; 

f (x) = (x+z2-p )(x -z 2+p) mod (z-2 )3, 

ma(P) = p2- z  mod (z -2 )3.

Hence 1 (x) = (x+z2-a ) (x -z 2+a) is the factorization of f into irreducibles over K.

In summary, we can probably reduce the algebraic function field factorization 

problem to an algebraic number field one with very little effort. The algebraic number
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field factorization has to be over a field of the same extension degree as the original 

algebraic function field was over K0; the coefficients of the image polynomial tend to be 

large because the images of the z-, have to be chosen from such a wide range. Like the 

reduction, the lifting process and reconstruction of the factors is quite simple. Clearly, 

the running time is dominated by the factorization for all but the smallest extensions. 

Now we turn to another method.

Lax Case

Here we investigate the possibility of allowing choices for the a,- which do not keep 

the minimal polynomials, m;, irreducible. We still insist that f and all the m,- remain 

square-free so that we can apply Hensel lifting later on — recall that f and the m,- are 

all assumed to be monic, so no extra conditions about non-vanishing leading coefficients 

are needed. The purpose behind looking at this more complicated variant is to avoid the 

need to factorize over a field of such high extension degree; instead the lifting stage has 

to work harder to make up for the “lost” algebraic extensions.

When any image (modulo the evaluation ideal) of a minimal polynomial, my, 

becomes reducible we can apply generalizations of the methods used with algebraic 

number fields where a generator has a minimal polynomial which factorises modulo the 

chosen prime. There we had two possible approaches: one was Weinberger & 

Rothschild’s which used the Chinese Remainder Theorem to recover the true answer, 

the other was Lenstra’s which deduced the true answer from a factorization derived by 

using just one of the factors of the minimal polynomial to generate the finite field. The 

disadvantages of possibly super-exponential behaviour (see chapter 3) inherent in 

Weinberger & Rothschild’s approach still remain for this application, so we adopt a 

method akin to Lenstra’s.

We pick one of the irreducible factors, my, of the image of my to use as the 

minimal polynomial of py, the algebraic integer which will correspond to ay. The new
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tower of extensions can be represented with a similar diagram to that used for the 

stringent case:

Kr -  /Cr_i(ar_i) -> Mr = Mr_̂ {$r_<)
T  T  < dr extensions

T  T  < d 2 extensions
K, = K0(a,) -» Mi = M0(Pi)

t  T  < d i  extensions
Kq = <D(Zi, . . .  , zz) —> Mq — (D

Note that in this situation the Mi are not necessarily uniquely determined, so we make

some consistent set of choices.

Using methods from our stringent case, we can factorize the homomorphic image 

of f over Mr = Q(p1f . . . ,%), and then lift the factors to be correct modulo 

/ := {{zz-azf2, . .  . ,  (zz- a z)0x). To be able to deduce the coefficients of the true factors 

we must lift far enough that

S := {Z22 • • • z{*a f 1 • • • a *' : 0 ^ js < Bs and 0 <*ks < 9as} 

maps to a (D-lineariy independent set modulo /, where Bs is a degree bound for zs in 

any coefficient of any factor. Clearly e, > max{B/, 3z./77y } but we have not yet been able 

to determine a sufficient value. Observe that S is a Q-basis for our field K.

If a sufficient value for each ef can be found then the coefficients of the true

factors can be found by solving the system of linear equations derived from the images

of the elements of S. We give the same example as we did for the stringent case to 

show how the method works.

To factorize f (x) := x2- z 4+2z2a -z  over K  := <D(a) where ma(a) := a2- z  = 0; we 

might pick the substitution value 4 for z (we allow square integers now); ma{x) maps to 

x2-4  which is reducible over <D: x2-4  = (x-2)(x+2). We must choose one of these 

factors as the minimal polynomial for p (the image of a). Let us pick mp(x) = x -2  —  in
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effect a  maps to 2. So f maps to g{x) := x2-196 and K maps to Q. We can factorize 

the image of f over the image of K : g{x) = (x-14)(x+14). In this case there are no 

extraneous factors of g, and we have already commented that a random choice of 

substitution values almost certainly avoids them in general.

We find how far we must lift the factorization by estimating the maximum degree in 

z of any coefficient of any factor: in this example we use the crystal ball algorithm to 

estimate the degree bound at 2. So each coefficient will be a (D-linear combination of 1, 

z, z2, a, az, az2. Hence we must lift far enough to get at least 6 degrees of freedom 

(where degrees of freedom is extension degree of algebraic number field times the 

product of the powers of the ideal generators). In this case we lift to (z-4)6 and can 

easily verify that the Q-basis for coefficients remains linearly independent modulo 

(z -4 )6. We also find that

q 7z 5- 180z 4+201 6z 3-1  3440z 2+80640z +6451 2 _  . . ..6
P ------------------------------*3^072--------------------------  (Z- 4)

and

7z 5-1  80z 4+201 6z 3-1 4451 2z 2+80640z +64512
9{*)  = x+-

X —

131072

7z 5-1  80z 4+201 6z 3-1  4451 2z 2+80640z +64512 mod (z-4 )6.
131072

From this we immediately spot the true factorisation: f (x)  = {x -z2+a){x+z2-a), 

though in general it would have to be deduced by inverting the linear map.

It can be seen from this example that we needed to factorize only over Q even 

though the ultimate factorization was over an algebraic field. We can also see there are 

some definite disadvantages to this method. In particular, whenever the image of my is 

reducible my is necessarily an extraneous factor and so will lead to increasingly dense 

intermediate results (the lifts of my modulo high powers of the ideal) if standard Hensel 

lifting is used. This behaviour was becoming apparent even in the small example above:
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just look at the image of a modulo (z-4)6! Also if there are many zy then then the linear 

system to be inverted will be exceedingly large — this fact alone precludes application 

of a “lax” method to moderately large problems.

Conclusion

We have presented two ways of achieving what we set out to do. One is a 

probabilistic method with the drawback of requiring the factorization of a polynomial with 

large coefficients over an algebraic number field with extension degree equal to that of 

the algebraic function field. The other lacks a proof of how far the Hensel lifting must 

go, but requires a factorization over an algebraic number field of much lower extension 

degree than the algebraic function field. Also the latter allows smaller substitution values 

which will help expedite the factorization. Neither algorithm seems at first sight to be 

superior to the other; the second method will need more space since it necessarily 

suffers from intermediate expression growth during the lifting stage.

The two methods considered in this chapter are of little practical value as they 

stand because both of them are too slow when solving anything but the very smallest of 

factorization problems. Thus there is plenty of scope here for further work, and 

development of efficient algorithms: for example, determination of tighter bounds on the 

coefficients would be very worthwhile. A fast deterministic method of picking small 

substitution values suitable for the first method would give a truly viable algorithm for 

factorization over algebraic function fields. Even better would be an algorithm that could 

reduce the algebraic function field factorization to a relatively easy factorization over an 

algebraic number field of small extension degree over <D, and then retrieve the factors of 

the original polynomial possibly using a modified lattice reduction algorithm.
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We now reflect on what has been discussed in chapters 2 to 8; we summarize our 

findings, and suggest areas for further study. The broadest conclusion is that, using a 

“classical” approach like ours, one can implement a suite of routines for the factorisation 

of a polynomial over an algebraic number field. The package will be fast enough to 

factorize polynomials of degree up to about 20 over algebraic number fields of extension 

degree (over Q) up to about 10 in a reasonable time on a machine with the power of a 

Sun 3/160, say. The results in appendix F demonstrate our algorithm is definitely 

superior to Trager’s [Trager76]; and according to [Lenstra82], Weinberger & Rothschild’s 

method is inferior to the algorithm from which we developed ours—also the MACSYMA 

group at MIT found Trager’s method to be superior to Weinberger and Rothschild’s.

The extensions to factorization over algebraic function fields are still too slow to be 

useful. A sparse lifting method is required to achieve the conversion from a factorization 

over an algebraic number field to one over an algebraic function field.

These are succinct statements of what we have discovered:

• It is worth computing the optimal denominator bound (via integral bases).

• We have tightened the numerator bound, but there is room for further 

improvement.

• The “block” version of Lovasz’s algorithm is consistently quick. We have 

subsequently extended the rational number recovery method [WGD82] to 

algebraic number fields; this uses Lovasz’s algorithm.
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• Choice of prime: the finite field factorization and lattice basis algorithms have 

opposing requirements. The decision should be determined by estimating the 

total factorization time for each choice.

• Univariate factor lifting is best achieved by our own truncated quadratic 

method.

• Trial divisions during the recombination of univariate factors should use an 

“early abort’' scheme

• Multivariate lifting should be performed with a sparse algorithm, but this does 

not generalise easily to determination of factorizations over algebraic function 

fields.

The next few paragraphs expand on these succinct statements.

In chapter 4, we observed the importance of determining good coefficient bounds, 

and saw to our surprise that it is worth expending the effort of finding the optimal 

denominator bound by computing an integral basis. The effect of using a tight 

numerator bound (using foresight) can be even more dramatic (see the table on page 

4.13), but the bound we currently use is far too large. So a method of obtaining a 

tighter numerator bound will enable factorizations to be found much faster because of 

the consequent reduction in both Hensel lifting time and basis reduction time. A 

possible avenue is to use approximations to the images in €  of the algebraic numbers 

involved, though this can be ill-conditioned. Recently a promising new result has 

appeared in [CMP87].

The importance of good bounds is re-emphasised in chapter 8 where we the 

bounds for factorisation over algebraic function fields are especially poor. There we were 

forced to use trial divisions (over an algebraic function field) during the lifting process. 

We also showed that to employ a numerical modulus to our advantage during the lifting
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process needs quite a tight upper bound on the numerical size of possible factors—we 

know of no suitable bound.

The next centre of attention was the lattice basis reduction algorithm: the keystone 

of the entire algorithm. We saw in chapter 5 that for factorizations over large (degree > 

3) algebraic number fields most of the time is spent in this algorithm. We also developed 

some improvements to the reduction algorithm making it significantly faster: indeed, the 

clear-cut superiority over Trager's algorithm depends on these improvements. Even so, 

whenever the minimal polynomial(s) become reducible mod p the basis reduction is still 

a highly time-consuming step during a factorization. Thus further improvements to the 

basis reduction algorithm would certainly have a sizeable impact on the overall 

efficiency. Consequently, there ought to be an investigation into how to adapt the basis 

reduction algorithm so that it takes advantage of the special structure of the bases that 

occur in our applications.

Subsequently to the work for this thesis we have found an extension of the rational 

number reconstruction algorithm (e.g. [WGD82]) to algebraic number fields. This 

permits use of an upper bound on the denominator which is not a multiple of the true 

denominator: for example, the square-root of the discriminant. The algorithm is very 

similar to Lenstra’s reconstruction; this suggests it would still be quicker to compute an 

integral basis.

We can explain qualitatively why a finite field favourable for the lattice reduction is 

unfavourable for the finite factorization, and vice versa. It is easier to compute 

factorizations over smaller finite fields but the reconstruction (i.e. lattice reduction) 

always has to “lift” to the full extension degree — this manifests itself as smaller finite 

fields giving rise to initial bases with larger orthogonality defect. So the choice of finite 

field is a compromise, which is best determined by computing an estimate of the total 

factorization time for a few candidate fields and then picking the most promising of 

those. Unfortunately, this will be depend on the details of the finite field factorization,
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basis reduction and Hensel lifting routines. However, we have an empirical complexity 

formula for the basis reduction routine.

The remaining sections of the factorizer which consume a significant amount of 

processing time are the lifting stages. Our algorithms for lifting the univariate 

factorization appear to be as fast as possible, but the algorithm for lifting from a 

univariate factorization to a multivariate one is based on an “old” method. The principal 

disadvantage of this general scheme is that it suffers from “fill-in” (i.e. it produces dense 

intermediate results even though the input and final output may both be sparse): in 

chapter 8 we saw that the method can generate excessively large intermediate results 

even when there are no extraneous factors, and worse still, if the “lax” viewpoint was 

taken (when the minimal polynomials map to reducible images; page 8.10), then this 

pathological behaviour is guaranteed to occur!

Certainly the more modern sparse lifting methods can readily be adapted to 

operate over algebraic number fields; however, the necessary modifications to allow 

them to lift from a factorization over an algebraic number field to the corresponding 

factorization over an algebraic function field are far from obvious. Development of the 

necessary modifications seems a fruitful area for continued research, and would 

certainly lead to a viable factorization algorithm for algebraic function fields.

Theoretically the most time-consuming stage of our factorization process is the 

part where combinations of modular factors are multiplied together and then converted 

to putative true factors which are then verified or discarded. Under the worst conditions 

this has exponential complexity, though under normal circumstances only a small 

proportion of the total time is spent trying combinations. Our intention was to produce a 

useful tool for finding factorizations over algebraic fields rather than to construct an 

asymptotically fast algorithm. By applying sparse lifting techniques to the problem of 

chapter 8, one may be able to build a polynomial time algorithm based on a published 

polynomial time univariate factorization algorithm. This looks like an area worthy of
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further research.

Before summarising our algorithm we return to one of our original motivations: 

symbolic integration. We find that our algorithm has somewhat limited applicability 

because even quite small integration problems can lead to huge factorization problems: 

e.g. to integrate a univariate rational function with quintic denominator is infeasible since 

in general it requires the factorization of a quadratic over an extension field of degree 

60. This enormous growth is inherent in the integration problem because a splitting field 

will normally have extension degree equal to the factorial of the degree of the 

polynomial we wish to split (i.e. the extension degree can be super-exponential in the 

degree of the polynomial).

Recent papers have proposed ways of solving larger integration problems by 

permitting the solution to contain expressions of the form:

£  g(a)log/?(x,a)
/(a)=0

where the factorization over a splitting field is implicit. Of course, we can obtain an 

explicit answer only by factorizing over the splitting field.

One area that stands to gain considerably from the development of an efficient 

factorizer is that of computing a GrObner basis. Davenport has reported [Davenport87] 

some extremely encouraging results from performing factorizations during the 

determination of a GrObner basis. GrObner bases have lately become highly important in 

computer algebra where many problems (e.g. ideal membership, robot kinematics and 

geometrical theorem proving) can be solved quite simply given an algorithm to calculate 

a Grdbner basis.
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Our Recommended Algorithm

We give just the algorithm for factorization over algebraic number fields.

Multivariate Factorization

Input: a multivariate polynomial f ( xu . . . , x n) e K [ x ^ , . . . , x n] where K is an

algebraic number field.

Output: the irreducible factors of f over K.

(1) perform content and square-free decompositions on f , then apply the following 

steps to each component.

(2) map down to a univariate factorization problem by picking suitable substitution 

values a2, . . .  ,an for x2, . . .  ,xn.

(3) compute the univariate factorization using the algorithm below.

(4) determine leading coefficients using Kaltofen’s method (see page 7.9), and 

use a sparse lifting method to complete the factorization (e.g. [Zippel79] or 

[Zippel81]).

Univariate Factorization

Input: a univariate polynomial f (x) e K[x] where K is an algebraic number field

Output: the irreducible actors of f over K.

(1) Form the monic square-free components of f \ do the following to each 

component.

(2) Compute an integral basis for K and thus obtain the optimal denominator 

bound (see page 4.5).
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(3) Compute a numerator bound: bound the magnitude of roots of f in  C using rb 

(page 4.9); use the binomial theorem (page 4.11) to get an upper bound on 

the magnitude of the coefficients of any factor; take the smaller of the 

Hadamard and Landau-Mignotte bounds (page 4.12).

(4) Try a few primes (not diving the denominator bound) and pick the one giving 

smallest factorization time estimate. Apply the Cantor-Zassenhaus algorithm 

to find the factors mod p.

(5) Use truncated quadratic lifting (page 6.5) to get the factors mod pk for k 

sufficiently large. Details of lifting algorithms are on pages 6.9 & 6.10

(6) Use the “block” variant (page 5.11) of Lovasz’s algorithm to compute the LLL- 

reduced basis preparatory to conversion (page 5.4) of the modular factors.

(7) Recombine the factors in cardinality order (pages 3.8 & 3.9), using early abort 

trial division (page 3.9)—we can also test the putative factors for sufficiently 

small coefficients by modifying r and j  on page 4.11



10. References

[Abbott&Davenport88] J A Abbott and J H Davenport, “A Note on a Paper by Wang: 

Another Surprising Property of 42,” Math Comp 51(184), pp 837-839 

[ABD85] J A Abbott, R J Bradford and J H Davenport, “A Remark on Factorization,” 

SIGSAM Bulletin 19 (May 1985) pp 31-33 & 37 

[ABD86] J A Abbott, R J Bradford and J H Davenport, “The Bath Algebraic Number 

Package,” Proc SYMSAC 86 (Waterloo) pp 250-253 

[ACP77] S K Abdali, B F Caviness and A Pridor, “Modular Polynomial Arithmetic in 

Partial Fraction Decomposition,” Proc 1977 MACSYMA User’s Conf pp 253-261 

[A&G84] L Afflerbach and H Grothe, “Calculation of Minkowski-Reduced Lattice Bases,” 

Computing 35 pp 269-276 

[Berlekamp67] E R Berlekamp, “Factoring Polynomial Over Finite Fields," Bell System 

Technical Journal 46 pp 1853-1859 

[Berlekamp70] E R Berlekamp, “Factoring Polynomials over Large Finite Fields,” Math 

Comp 24(111) pp 713-735 

[Bradford88] R J Bradford, “On the Computation Of Integral Bases and Defects of 

Integrity,” PhD thesis, Univ of Bath 

[Calmet&Loos82] J Calmet and R Loos, “Deterministic versus Probabilistic Factorization 

of Integral Polynomials,” Proc EUROCAM 82 (Marseille) Springer LNCS 144 pp 

117-125

[CZ81] D G Cantor and H Zassenhaus, “A New Algorithm for Factoring Polynomials 

over Finite Fields,” Math Comp 36(154) pp 587-592

-10.1 -



References J Abbott

[CMP87] L Cerlienco, M Mignotte, and F Piras, “Computing the Measure of a 

Polynomial,” JSC 4 pp 21-33 

[Collins79] G E Collins, “Factoring Univariate Integral Polynomials in Polynomial 

Average Time,” Proc EUROSAM 79 (Marseille) Springer LNCS 72 pp 317-329 

[Coppersmith&Davenport85] D Coppersmith and J H Davenport, “An Application of 

Factoring,” J Symb Comp 1 pp 241-243 

[Davenport87] J H Davenport, “Looking at a Set of Equations,” Bath Computer Science 

Technical Report 87-06 

[D&T81] J H Davenport and B M Trager, “Factorization over Finitely Generated Fields,” 

Proc SYMSAC 81 (Snowbird) pp 200-205 

[Dieter75] U Dieter, “How to Calculate Shortest Vectors in a Lattice,” Math Comp 

29(131) pp 827-833

[F&P85] U Fincke and M Pohst, “Improved Methods for Calculating Vectors of Short 

Length in a Lattice, Including a Complexity Analysis,” Math Comp 44(170) pp 

463-471

[Fried74] M Fried, “On Hilbert’s Irreducibility Theorem,” JNT6 (1974) pp 211-231 

[G&T85] P Gianni and B Trager, “Gcds and Factoring Multivariate Polynomials Using 

GrObner Bases,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp 409-410 

[vzG&K85a] J von zur Gathen and E Kaltofen, “Factorization of Multivariate Polynomials 

over Finite Fields,” Math Comp AS (Jul 1985) pp 251-261 

[vzG&K85b] J von zur Gathen and E Kaltofen, “Factoring Sparse Multivariate 

Polynomials,” J Comp & Sys Sc/31 (Oct 1985)

[Goebbels85] F Goebbels, “Factorization of Rational Polynomials in the Zassenhaus 

Norm,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp 146-147 

[G&A81] H Gunji and D Arnon, “On Polynomial Factorization over Finite Fields,” Math 

Comp 36(153) pp 281-287 

[Helfrich85] B Helfrich, “Algorithms to Construct Minkowski Reduced and Hermite

-10 .2 -



References J Abbott

Reduced Lattice Bases,” Theor Comp Sci 41 pp 125-139 

[vdH&L85] M-P van der Hulst and A K Lenstra, “Factorization of Polynomials by 

Transcendental Evaluation,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp 

138-145

[Kaltofen82l E Kaltofen, “Factorization of Polynomials,” Computing, Suppl 4 pp 95-113 

[Kaltofen83] E Kaltofen, “On the Complexity of Finding Short Vectors in Integer 

Lattices," Proc EUROCAL 83 (London) Springer LNCS 162 pp 236-244 

[Kaltofen84] E Kaltofen, “Effective Hilbert Irreducibility,” Proc EUROSAM 84 Springer 

LNCS 174 pp 277-284 

[Kaltofen85a] E Kaltofen, “Sparse Hensel Lifting,” Proc EUROCAL 85 (Linz) Springer 

LNCS 204 pp 4-17

[Kaltofen85b] E Kaltofen, “Polynomial Time Reductions from Multivariate to Bi- and 

Univariate Integer Polynomial Factorization,” SIAM J Comp 14 (May 1985) 

[Kaltofen86] E kaltofen, “Polynomial Factorization 1982-1986,” presented at Computers 

and Mathematics at Stanford University (Aug 1986)

[KMS83] E Kaltofen, D R Musser and B D Saunders, “A Generalized Class of 

Polynomials that are Hard to Factor,” SIAM J Comp 12 (Aug 1983) pp 473-483; 

see also Proc SYMSAC 81 (Snowbird) pp 188-194 

[Knuth81] D E Knuth, “Seminumerical Algorithms,” Addison-Wesley 1981 (2nd ed) 

[K&T77] H T Kung and D M Tong, “Fast Algorithms for Partial Fraction Decomposition,” 

SIAM J Comp 6 (Sep 1977) pp 582-593 

[Landau85] S Landau, “Factoring Polynomials over Algebraic Number Fields,” SIAM J 

Comp 14 (Feb 1985) pp 184-195 

[L&McC87] L Langemyr and S McCallum, ‘The Computation of Polynomial Greatest 

Common Divisors over an Algebraic Number Field,” preprint to appear in Proc 

EUROCAL 87  (Leipzig)

[Lauer83] M Lauer, “Generalized p-adic Constructions,” SIAM J Comp 12 (May 1983)

-10 .3 -



References J Abbott

pp 395-410

[Lazard82] D Lazard, “On Polynomial Factorization,” Proc EUROCAM 82 (Marseille) 

Springer LNCS 144 pp 126-134 

[Lenstra82a] A K Lenstra, “Lattices and Factorization of Polynomials over Algebraic 

Number Fields,” Proc EUROCAM 82 (Marseille) Springer LNCS 144 pp 32-39; 

see also A K Lenstra, “Lattices and Factorization of Polynomials,” SIGSAM 

Bulletin 15(3) (Aug 1981) pp 15-16 

[Lenstra82b] A K Lenstra, “Factorization of Polynomials,” Computational Methods in 

Number Theory I (Mathematical Centre Tract 154) Mathematisch Centrum, 

Amsterdam 1982 (eds Lenstra & Tijdeman)

[Lenstra83a] A K Lenstra, “Factoring Multivariate Polynomials over Finite Fields,” Proc 

15* Symp Th of Comp 1983 pp 189-192 

[Lenstra83b] A K Lenstra, “Factoring Polynomials over Algebraic Number Fields," Proc 

EUROCAL 83 (London) Springer LNCS 162 pp 245-254 

[Lenstra84] A K Lenstra, “Polynomial Factorization by Root Approximation," Proc 

EUROSAM 84 (Cambridge) Springer LNCS 174 pp 272-276 

[Lenstra87] A K Lenstra, “Factoring Multivariate Polynomials over Algebraic Number 

Fields,” SIAM J. Comp 16 pp 591-598 

[LLL82] A K Lenstra, H W Lenstra and L Lovdsz, “Factoring Polynomials with Rational 

Coefficients,” Math Ann 261 pp 515-534 

[Lucks86] M Lucks, “A Fast Implementation of Multivariate Polynomial Factorization,” 

Proc SYMSAC 86 (Waterloo) pp 228-232 

[Lugiez84] D Lugiez, “A New Lifting Process for the Multivariate Polynomial 

Factorization,” Proc EUROSAM 84 (Cambridge) Springer LNCS 174 pp 297-309 

[Lugiez85] D Lugiez, “Fast Hensel Lifting Implementation,” Discr Math 56 pp 214-225 

[McEliece69] R J McEliece, “Factorization Of Polynomials over Finite Fields,” Math 

Comp 23 pp 861 -867

-10 .4 -



References J Abbott

[Mignotte74] M Mignotte, “An Inequality about Factors of Polynomials,” Math Comp 

28(128) pp 1153-1157 

[Mignotte76] M Mignotte, “Some Problems about Polynomials,” Proc SYMSAC 76 pp 

227-228

[Mignotte80] M Mignotte, “Factorization of Univariate Polynomials: a statistical study,” 

SIGSAM Bulletin 14(4) (Nov 1980) pp 41-44 

[Mignotte81] M Mignotte, “Some Inequalities about Univariate Polynomials," Proc 

SYMSAC 81 (Snowbird) pp 195-199 

[Mignotte82] M Mignotte, “Some Useful Bounds,” Computing, Suppl 4 pp 259-263 eds 

Buchberger, Collins, Loos (Springer-Vertag)

[M&Y74] A Miola & D Y Y Yun, “The Computational Aspects of Hensel-type Univariate 

Polynomial Greatest Common Divisor Algorithms," Proc EUROSAM 74 pp 46-54 

[Moenck77] R T Moenck, “On the Efficiency of Algorithms for Polynomial Factoring,” 

Math Comp 31(137) pp 235-250 

[M&N81] P M A Moore and A C Norman, “Implementing a Polynomial Factorisation and 

GCD Package," Proc SYMSAC 81 (Snowbird) pp 109-116 

[Musser71] D R Musser, “Algorithms for Polynomial Factorization,” PhD thesis (Tech 

Rep 134, Comp Sci Dept) Univ of Wisconsin, Sep 1971 

[Musser75] D R Musser, “Multivariate Polynomial Factorization,” Journal ACM 22 (Apr

1975) pp 291-308

[Musser78] D R Musser, “On the Efficiency of a Polynomial Irreducibility Test,” Journal 

ACM 25 (Apr 1978) pp 271-282 

[Rabin80] M O Rabin, “Probabilistic Algorithms in Finite Fields,” SIAM J Comp 9 (May 

1980) pp 273-280

[Rothstein77] M Rothstein, “A New Algorithm for the Integration of Exponential and 

Logarithmic Functions,” Proc 1977 MACSYMA Users’ Conference pp 263-274; 

and also see his PhD thesis “Aspects of Symbolic Integration and Simplification

-10 .5 -



References J Abbott

of Exponential and Primitive Functions,” Univ of Wisconsin, 1976.

[Schnorr85] C P Schnorr, “A More Efficient Algorithm for Lattice Basis Reduction,” 

preprint for Proc ICALP 86 

[Schnorr86] C P Schnorr, “A Hierarchy of Polynomial Time Lattice Basis Reduction 

Algorithms,” preprint for Theory of Algebra, Coll Math Soc Janos Bolyai 44 (publ 

North Holland)

[Sch0nhage84] A Schbnhage, “Factorization of Univariate Integer Polynomials by 

Diophantine Approximation and an Improved Basis Reduction Algorithm,” 

preprint to appear in Proc ICALP 84 (Antwerpen)

[Trager76] B M Trager, “Algebraic Factoring and Rational Function Integration,” Proc 

SYMSAC 76 pp 219-226 

[Vall6e87] B Vallbe, “An Affine Point of View on Minima Finding in Integer Lattices of 

Lower Dimensions,” to appear in Proc EUROCAL 87 

[Viry85] G Viry, “Polynomial Factorization over Z[x]," Proc AAECC-3 (Grenoble) 

Springer LNCS 229 pp 326-332 

[Wang75] P S Wang, “Factoring Multivariate Polynomials over the Integers,” Math 

Comp 29(131) pp 935-950 

[Wang76] P S Wang, “Factoring Multivariate Polynomials over Algebraic Number 

Fields,” Math Comp 30(134) pp 324-336 

[Wang77] P S Wang, “Preserving Sparseness in Multivariate Polynomial Factorization,” 

Proc 1977 MACSYMA Users' Conf pp 55-64; see also [Wang78], and P S 

Wang, “Factoring Larger Multivariate Polynomials," SIGSAM Bulletin 10(4) (Nov

1976) p 42

[Wang78] P S Wang, “An Improved Multivariate Polynomial Factoring Algorithm,” Math 

Comp 32(144) pp 1215-1231; see also [Wang77], and P S Wang, “The EEZ- 

GCD Algorithm,” SIGSAM Bulletin 14(2) (May 1980) pp 50-60 

[Wang79a] P S Wang, “Analysis of the p-adic Construction of Multivariate Correction

-10 .6 -



References J Abbott

Coefficients in Polynomial Factorization: Iteration vs Recursion,” Proc 

EUROSAM 79 (Marseille) Springer LNCS 72 pp 291 -300 

[Wang79b] P S Wang, “Parallel p-adic Constructions in the Univariate Polynomial 

Factoring Algorithm,” Proc 1979 MACSYMA Users’ Conf pp 310-318 

[Wang83] P S Wang, “Early Detection of True Factors in Univariate Polynomial 

Factorization," Proc EUROCAL 83 (London) Springer LNCS 162 pp 225-235 

[WGD82] P S Wang, M J T Guy and J H Davenport, “P-adic Reconstruction of Rational 

Numbers," SIGSAM Bulletin, (2) (May 1982).

[Wang&Rothschild75] P S Wang and L P Rothschild, “Factoring Multivariate 

Polynomials over the Integers,” Math Comp 29(131) pp 935-950 

[Wang&Trager79] P S Wang and B M Trager, “New Algorithms for Polynomial Square- 

free Decomposition over the Integers,” SIAM J Comp 8 pp 300-305 

[Weinberger&Rothschild76] P J Weinberger and L P Rothschild, “Factoring Polynomials 

over Algebraic Number Fields," ACM ToMS2 (Dec 1976) pp 335-350 

[Wilkinson59] J H Wilkinson, “The Evaluation of the Zeros of Ill-conditioned 

Polynomials,” Num Math 1 pp 150-180 

[Zassenhaus69] H Zassenhaus, “On Hensel Factorization, I,” J N  71 pp 291-311 

[Zassenhaus78] H Zassenhaus, “A Remark on the Hensel Factorization Method,” Math 

Comp 32(141) pp 287-292 

[Zassenhaus81] H Zassenhaus, “Polynomial Time Factoring of Integral Polynomials,” 

SIGSAM Bulletin 15(2) (May 1981) pp 6-7 

[Zippel79] R Zippel, “Probabilistic Algorithms for Sparse Polynomials,” Proc EUROSAM 

79 (Marseille) Springer LNCS 72 pp 216-226; see also Proc 1979 MACSYMA 

Users’ Conf pp 308-309 

[Zippel81] R Zippel, "Newton’s Iteration and the Sparse Hensel Algorithm,” Proc 

SYMSAC 81 (Snowbird) pp 68-72

-10 .7 -



Appendix A. Notation

Symbol
Z
<D
R
<D
A
*<,
O(o)
Ok
Z n

* x f
da
dKa
g c d ( f , g ) 
det{M)

x
{x}
II Mi­
ll MU 
II a  ||

(b j -M
\bj\
R<b , , . . .  ,bn> 
0{ f (n) )
Q(f{n))
i x 2T^2>  • • • >x n ~ 3 n )
(x2-a2, . . .  , xn-an) 
GLd{ Z)

Meaning
the ring of integers
the field of rationals
the field of real numbers
the field of complex numbers
the field of algebraic numbers
the finite field of size q
the extension of <D generated by a
the ring of integers in the algebraic number field K
the vector space over Z  of dimension n
the unit vector in the j th direction (chapter 5 page 2)
the degree of f
the degree of f in x
the degree of the algebraic number a  over the obvious field
the degree of a  over the field K
the greatest common divisor of f and g
the determinant of M
the largest integer not exceeding x
the smallest integer not less than x
the integer closest to x, rounded down in ambiguous cases
height of f >=£a/x /- i.e. max{ | a01, . . . ,  | an \ }
the m-norm of f , i.e. | a-, \m)Vm
the maximum of the absolute values of the field conjugates of a

subintervals of the real line

inner product of vectors bj and bk (only In chapter 5)
Euclidean length of the vector bj (chapter 5)
the fl-module generated by d1f . . .  ,bn
functions bounded above by a fixed multiple of f{n)  for large n
functions bounded below by a fixed multiple of f (n) for large n
ideal generated by the polynomials x2-a 2 through xn-a n
km power of the ideal
the set of dxd invertible matrices with integer entries



Appendix B. Glossary

This is a list of brief definitions of terms as used in this thesis. Fuller definitions 

are in chapter 2, “Fundamentals and Definitions”. The definitions are alphabetically 

ordered (except for the first two).

Phrase

Q-basis

Z-basis

algebraic closure

algebraic function 

algebraic integer 

algebraic kernel 

algebraic number 

BANP

conjugate

defect

Definition

A is a Q-basis for B if every element of 0  is a sum of rational 

multiples of elements of A

A is a Z-basis for B if every element of B is a sum of integer 

multiples of elements of A

of a field F  is a field F  containing all roots of all polynomials over 

F

a root of a multivariate polynomial (rational numbers excluded)

a root of a monic polynomial with non-fractional coefficients

a symbol in the computer for an algebraic integer

a root of a univariate polynomial (rational numbers excluded)

the Bath Algebraic Number Package (also handles algebraic 

functions)

see field conjugate

the biggest denominator in the representation of any algebraic 

integer
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degree

degree

discriminant

discriminant 

embedding 

extension 

field conjugate 

fundamental region

Hensel lifting 

integral basis 

Kronecker’s trick 

lifting

minimal polynomial 

monic 

multivariate 

norm

obvious basis 

orthogonality defect

primitive element

of an algebraic symbol is the degree of its minimal polynomial

of an extension field is the product of the degrees of the 

generators

the square of the determinant of the basis elements and all their 

field conjugates

of a polynomial f is resultant{f, f')

a map allowing one field to be regarded as a subset of another

F(a) where F  is a field and 3  f (x) e F[x] : f (a)=0

one of the images under an embedding into an algebraic closure

for a basis bu . . .  t bp is the set of points

(P l£ l+  * * • +Pn£n : - 1/2  < p,• < Vz]

a way of obtaining solutions mod p n from one mod p

a Z-basis for the ring of algebraic integers

substituting high powers of one variable for all the others

see Hensel lifting

of a is the monic polynomial of least degree having a as a root

having leading coefficient 1

having several variables

product of all the field conjugates 

0 0
for ©(c^, . . .  ,a„) is {c  ̂1 • • • ann : 0<e,<3a/}

ratio of the product of the lengths of the basis vectors to their 

determinant

an element of a field which will generate the field on its own 

- B-2 -



Appendix B J. Abbott

simple extension 

Swinnerton-Dyer

tower

univariate

an extension by a single algebraic element

polynomials factorise into linears and quadratics modulo all 

primes

a sequence of simple extensions 

having only one variable



Appendix C. Program to Test a 

Conjecture

Below is a listing of the FORTRAN 77 program used to test the conjecture in 

chapter 4 (on bounds). We ran the program with input values for size being successively

1, 2, 4, 8 16, 32, 64, and 128 for each value of degree going from 3 to 9 inclusive. The

complete absence of output lends considerable support to the conjecture.

The Program

C This is a FORTRAN program to test a conjecture in my thesis,

complex a(10), b(10), shift, coeff, eye 

integer i, j, k, degree, choose 

real size, rb

C Set the variable ’eye’ to be the complex number i.

eye = (0.0,1.0)

C Ask for the degree of the polynomials to be tested, and also

C for a bound on their height.

print*, "Enter degree and height bound" 

read*, degree, size

C Now do 1000 random tests of polynomials of degree ’degree’ and
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C height at most ’size’ 

do 999 k=  1, 1000 

do 10 i = 1, degree 

10 a(i) = ((2.0*rand(0)-1.0)*size)*eye + ((2.0*rand(0)-1.0)*size)

a(degree+1) = 1 

C The complex array ’a’ now holds a monic polynomial

C sum from i=1 to degree+1 (a(i)*x**(M)).

shift = -a(degree)/float(degree) 

do 20 i = 1, degree+1 

coeff = a(i)

do 50 j = i+1, degree+1 

50 coeff=coeff + a(j)*choose(j-1 ,i-1 )*shift**(j-i)

20 b(i) = coeff

C The complex array 'b' holds the monic polynomial derived from ’a’

C by making the linear substitution x -> x-a(degree)/degree

C which causes the term in x**(degree-1) to vanish.

C The conjecture is that rb(a) >= rb(b)+absolute_value(shift) always,

C where rb(a) and rb(b) represent the values calculated in the next

C two lines

rba = rb(a, degree) 

rbb = rb(b, degree)

C "fudge factor" in the line below as rb may be too large by a

C factor of 1.0001 -- see the code for rb(). Print only if the conjecture fails.

if (rbb + cabs(shift) .ge. 1.0001*rba) print*, (rbb + cabs(shift))/rba, a 

999 continue

end
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C This function takes a polynomial of degree ’degree’ held in ’poly*

C as sum from i=1 to degree+1 (poly(i)*x**(i-1)).

C The result is a real number close to the largest (and sole positive)

C real root of the derived polynomial:

C x**degree - sum from i=1 to degree (cabs(poly(i))*x**(i-1))

C where cabs() is the complex absolute value function

real function rb(poly, degree) 

complex poly(10) 

integer degree 

real low, high, mid, val

C We assume the positive root lies between 0 and 9999, and search for 

C it using a simple binary chop method,

low = 0.0 

high = 9999.0 

40 if (high - low .It. O.OOOrhigh) go to 987

mid = (low+high)/2 

val = mid**degree 

do 30 i = 1, degree 

30 val = val - cabs(poly(i))*mid**(i-1)

if (val .gt. 0.0) then 

high *  mid

else

low = mid

endif 

go to 40 

987 rb = high
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C

123

end

Below is the standard combinatorial ’choose’ function 

integer function choose(n, r) 

integer answer, i, r, n

answer = 1 

if (n-r .It. r) r = n-r 

do 123 i = 1, r

answer = (answer * (n-i+1))/i 

choose = answer 

end
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Appendix D. Lenstra’s Examples

At many points during this thesis the five examples given in [Lenstra82] are used 

as test cases. The examples he gave are listed below in the order they appeared in the 

original paper. In each case f is the polynomial to be factorized and m is the minimal 

polynomial of the extension generator.

Example 1

f{x)  = r(47x®+21 x5+598x4+1 561 x3+1198x2+261 x+47)
47

/77(a) = a2-a+3  

Example 2

'  = l 6 (16x8-1 ’

/77(a) = a3+2

Example 3

f (x) = x8-x 7- x 6+x4- x 2+x+1 

m(a) = a4-a+1
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Example 4

f ( x )  = x 3-  3

/77(a) = a6+3a5+6a4+a3-3 a 2+12a+16

Example 5

f  (x ) = x9+9x8+36x7+69x6+36x5-99x4-303x3-450x2-342x-226  

m( a) = a9-15a6-87a3-1 25



Appendix F. Trager vs Lenstra

The table below compares our implementations of the factorization algorithms in 

[Trager76] and [Lenstra82] on the examples given in [Lenstra82]. The entries in the 

table are times in seconds for the complete factorization under REDUCE 3.3.

Trager versus Lenstra
Example Trager Lenstra

1 155 10.4
2 14.0 8.4
3 2720 39
4 299 92
5 >3000 2430

Notice that there is a very great variation in the ratios of the times. In our 

experience, the “simpler” factorizations take about the same amount of time whereas 

more difficult problems increasingly favour Lenstra’s algorithm — the figures in the table 

bear this out after allowing for fluctuations in the running times.
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