

University of Bath

PHD

On the factorization of polynomials over algebraic fields

Abbott, John Anthony

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

On the Factorization

of Polynomials over

Algebraic Fields

submitted by

John Anthony Abbott

for the degree of Ph.D. of the

University of Bath

1988

Attention is drawn to the fact that the copyright of this thesis rests with its author. This
copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.
This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

John Abbott

UMI Number: U012688

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U012688
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

U R I I V t " " • r BAT H

z Z . 1 6 O C T 1989

0. Table of Contents

Chapter 1 INTRODUCTION
Description of the Problem and Our Motivation 1.1
Thesis Organization 1.5
Thanks and Acknowledgements 1.7

Chapter 2 FUNDAMENTALS & DEFINITIONS
Bath Algebraic Number Package 2.1
Representation of Algebraic Numbers 2.3
Obvious and Integral Bases 2.4
The Defect 2.5
Representation of Algebraic Functions 2.5
Discriminant Formula 2.6
Towers, Conjugates, Norms 2.6
The modular-Hensel Paradigm 2.11
The Cantor-Zassenhaus Algorithm 2.12
Swinerton-Dyer Polynomials 2.13
Hensel Lifting 2.15
The Classical Algorithm: Kronecker and Newton 2.17

Chapter 3 RELATED WORK
Univariate Polynomials over Finite Fields 3.1
Multivariate Polynomials over Finite Fields 3.4
Univariate Polynomials over Infinite Fields 3.5
(superexponential behaviour) 3.7
(trial divisions) 3.9
(polynomial time algorithms) 3.10
Multivariate Polynomials over Infinite Fields 3.12
(leading coefficient problem) 3.13
(extraneous factor problem) 3.14
(bad zero problem) 3.14
(polynomial time algorithms) 3.16
Lattice Basis Reduction Algorithms 3.17

Chapter 4 BOUNDS
Precise Statement of the Problem, & Motivation 4.1
Bounding the Denominator 4.3
Bounding the Numerator 4.6
(bounding roots in C, and a conjecture) 4.7

-0.1 -

Table of Contents J Abbott

(binomial expansion) 4.10
(deducing a bound on | by |) 4.11

Chapter 5 LATTICE BASIS REDUCTION
Problem Definition 5.1
Motivation 5.4
Description of Variants 5.6
Comparison 5.12
Empirical Complexity Formula 5.13

Chapter 6 UNIVARIATE HENSEL LIFTING
Assumptions and Notation 6.1
Pure Linear Lifting 6.2
Pure Quadratic Lifting 6.3
Fast Linear Lifting 6.4
Truncated Quadratic Lifting 6.5
Comparison and Analysis 6.5
Lifting the Factors 6.9
Lifting the Correction factors 6.9

Chapter 7 MULTIVARIATE HENSEL LIFTING
Standard Algorithms (Musser, Wang & Rothschild, EEZ) 7.1
Comparison 7.4
Wang’s (EEZ) Tricks 7.6
Extension to Algebraic Number Fields 7.7
Summary—algorithm 7.9

Chapter 8 FACTORIZATION OVER ALGEBRAIC FUNCTION FIELDS
Notation 8.1
Coefficient Bounds 8.3
Substitution Values (stringent case) 8.6
Substitution Values (lax case) 8.10
Conclusion 8.13

Chapter 9 CONCLUSION
Our recommended algorithm 9.6

- 0 . 2 -

1. Introduction

In this introduction we describe the problem which is tackled in the thesis and our

motivation for investigating this area. Having set the scene we then explain how the

thesis is laid out, giving brief summaries of each chapter and showing how the chapters

relate to each other.

Description of the Problem and Our Motivation

In the last ten to fifteen years there have been great advances in the power and

capabilities of computer algebra systems. These systems have become more widely

available as the cost of a computer powerful enough to support such system has

dropped. So although the algebra systems have grown in size as increasing numbers of

facilities are added to them, the computer hardware has developed faster still. Indeed,

there are already home-computers with sufficient resources for the REDUCE algebra

system; and another, smaller algebra system called muMATH has been available for the

IBM personal computer for several years. Thus it seems likely that the number of users

of algebra systems will continue to increase. The algebra systems must then respond by

expanding and offering the tools that these users will need.

Certainly, the systems should be able to cope with polynomial and rational function

arithmetic, at the least. Already this introduces problems; the system should to be able

to remove common factors from rational functions. No user would be satisfied with an

algebra system which gave an answer like

-1.1 -

Introduction J Abbott

x5+2x4-4 x 3+9x2-6x+4
x4+2x3-5 x2+6x-4

instead of the reduced form

x2-x+1
x—1 '

In fact the oldest known algorithm, Euclid’s algorithm, deals with exactly this problem,

but it turns out that there are hidden complications. Euclid’s algorithm becomes very

inefficient on larger problems. Many people have tried a variety of ways of combating

this inefficiency, and consequently have come up with a range of algorithms vastly

superior to Euclid’s. Even so, no single algorithm stands out as the “best”: however,

some of them do perform well in all situations. We shall see this phenomenon time and

again; normally one of two attitudes is taken, either to use an algorithm that is fairly

good all round, or to try to characterise the circumstances under which certain

algorithms are best, and then write a program to select the best algorithm for each

specific problem. Such a program is sometimes called a polyalgorithm.

Once the ability to manipulate rational functions has been included, we can

consider further operations like differentiation and integration. Differentiation is easy.

Many schoolchildren are taught how to differentiate. They are taught that

and a few other rules about how to deal with products and quotients, and also the

“function of a function” rule. With these rules and some standard results about

trigonometric, logarithmic, and exponential functions the children can then differentiate

almost anything — and some of them can even get the right answer! These rules for

differentiation bear a close resemblance to a computer program, and it is not hard to

write a program to differentiate anything the schoolchildren can.

Now we have an algebra system which can handle rational functions and

differentiate them. How about integration? Schoolchildren find integration a bit harder.

- 1 . 2 -

Introduction J Abbott

There is an easy formula for polynomials — just differentiation in reverse. But rational

functions are not so simple. Nasty surprises lurk here. The first problem comes with

trying to integrate 1/x because the formula for integrating powers of x goes wrong.

Instead of using the formula, we magically introduce a logarithm to get log(x), which

differentiates back to 1/x so everything is fine. More difficult rational functions are

tackled either by noticing that the integrand “looks similar to" one in a table so the

answer can be read from the table, or by decomposing into partial fractions and then

using the table. So the children’s ability to integrate is restricted by the tables they use

and their skill at partial fraction decomposition. Another couple of tricks they can use is

substitution (often of a trigonometric function) to transform the integrand into a

recognizable expression, or to apply the rule about integration by parts somehow.

We want to enable our algebra system to integrate. Computers are good at

arithmetic, even on rational functions, but they are far less effective at deciding whether

a formula “looks similar to" one stored in a table, or whether integration by parts can

usefully be applied. Also we do not want the computer to be limited by having to look up

integrals in some (finite) table.

Let us consider another way. Suppose the computer were able to factorize

polynomials, e.g. x2- a 2 = (x+a)(x-a), and x3+2x2+2x+1 = (x+1)(x2+x+1). Then the

computer could split the integrand into partial fractions whose denominators were

irreducible (i.e. cannot be factorized into smaller polynomials). Those fractions with

linear or quadratic denominators can easily be integrated to give a sum of logarithms

and arctangents, but fractions with higher degree denominators are harder. It is well

known that any polynomial in one variable can be factorized into linear factors with

coefficients in (D, so if the denominator were univariate (i.e. contains just one variable),

the computer could factorize it over C so that all the partial fractions would have linear

denominators and integrate to logarithms. This is not entirely satisfactory because if the

integral were just the logarithm of a quartic, say, then this method would have gone to

- 1 . 3 -

Introduction J Abbott

all the trouble to factorize the quartic and produce a sum of the four logarithms of the

linear factors over C of the quartic when a single logarithm and no factorization are all

that are needed. Luckily, some more mathematics allows us to restrict our factorisation

to the easiest possible one that will give the answer ([Trager76] and [Rothstein77]), e.g.

in

J 33* = k>g(x3-x+1),
J x -x + 1

we need not factorize the cubic at all. Of course, we cannot always avoid a complete

factorization, as the following example shows

i f e = 2 ¥ l09(X' V5)- 2 ¥ l° 9(X+V5)-

This also brings us to the question of how to represent V2. We could compute an

approximation to V2 by some root finding method but this is a notoriously ill-conditioned

problem in general [Wilkinson59]. Alternatively, we can use an algebraic representation

of the roots; i.e. we tell the computer to create a special symbol which behaves like a

transcendental except that it yields zero when substituted into the polynomial of which it

is a root (i.e. its defining polynomial). For example, we could create a which satisfies

a2-2 = 0 to solve the integration problem above. Such symbols are called algebraic

numbers because they represent numbers which satisfy a certain algebraic relationship.

However, we find that there is a disadvantage to this approach: we may need to

compute the factorization of a polynomial in terms of these algebraic numbers. Such a

factorization is not always easy; for example if our algebraic number a has defining

polynomial

a4-10a2+1 = 0

and then we determine the factorization of x2-2 in terms of a we get:

Introduction J Abbott

The scheme outlined above is a viable method of integration but has the restriction

that the denominator of the function to be integrated has to be univariate. Yet we can

easily generalise from the example above to get

= - d r 109̂) -

So if we allow the computer to generate symbols which behave like transcendentals

except that they give zero when substituted into a multivariate polynomial (i.e. involving

more one than variable) then the scheme will generalise to cover these cases. Such

symbols are called algebraic functions since they are functions of the variables (other

than the main variable) in the defining polynomial and they satisfy an algebraic

relationship (viz. the defining polynomial). Unfortunately, the disadvantage cited in the

previous paragraph is even more serious in this case.

The aim of this thesis is to consider ways of overcoming these disadvantages by

developing efficient algorithms for producing factorizations of polynomials in terms of

algebraic numbers and functions. Such algorithms are also applicable to many other

areas of computer algebra like simplification of formulae, and quantifier elimination.

Thesis Organization

We have arranged the thesis into nine chapters (including this one) and six

appendices mostly containing tables of results. Here we explain briefly what each

chapter covers and how the chapters relate to each other.

Chapter 2 lays the mathematical foundations upon which the other chapters build.

It Includes all the basic definitions ranging from “algebraic number” to “integral basis”. It

also defines terms related to the realisation of algebraic number fields in REDUCE with

some insight into the details of the implementation. We give an abstract of how the

Hensel lifting technique can be applied to polynomial factorizations, and show where this

fits into the “modular-Hensel” method for factorising polynomials — this being the

- 1 . 5 -

Introduction J Abbott

underlying model for our algorithm. There are a few other miscellaneous definitions too.

Chapter 3 compares and discusses a wide selection of papers concerned with

polynomial factorization. The papers are divided into four categories according to

whether the factorization is over a finite or an infinite field and whether the polynomial to

be factorized is univariate or multivariate. The discussion relies heavily on the ground

work in chapter 2. There is also a short section giving an overview of papers on lattice

basis reduction algorithms.

Chapter 4 abandons the introductory nature of chapters 1 to 3, and takes a close

look at the relative sizes of the coefficients of polynomials and the coefficients of their

factors. The results of this chapter depend on the implementation details described in

chapter 2.

Chapter 5 is concerned with lattice basis reduction as in [LLL82]. In it we explain

how the basis reduction is used, and give a generalisation of this to algebraic number

fields with multiple generators. There is an outline of the original algorithm by Lovdsz

which sets up notation for the chapter. We present the findings of several experiments

to compare a variety of modifications to the original algorithm, and then select one as

being the best overall. An empirical formula for the running time of our implementation

of this algorithm is included. The chapter is virtually self-contained and uses separate

notation from all the others.

Chapter 6 looks into the details of applying Hensel lifting to a factorization of a

univariate polynomial. We pick four strategies from pure linear to truncated quadratic

lifting, and define these using abstract algorithms. A table of results is given, and

followed by simple complexity analyses which agree with the empirical data. Attention is

then focused on the finer details of how to lift the factors and correction factors with

several possibilities being considered. We conclude by picking the combination which

appears to be most efficient in general.

- 1 . 6 -

Introduction J Abbott

Chapter 7 tackles the rather harder problem of using Hensel lifting methods on the

factorizations of multivariate polynomials. It follows on from chapter 6 using the same

terminology. We take a critical look at the three main papers (on the “classical”

method) ignoring the more recent sparsity preserving algorithms. We also generalise

Wang’s leading coefficient trick to algebraic number fields.

Chapter 8 seeks an efficient way of adapting the multivariate Hensel lifting

algorithm to produce factorizations in algebraic function fields. There are two

alternatives: one depends upon a conjecture for its validity, the other is certain to work

but is more restrictive.

Chapter 9 concludes the thesis by presenting a reasonably efficient algorithm for

the factorisation of polynomials over algebraic fields based on the information

discovered throughout the thesis.

Thanks and Acknowledgements

Particular thanks are owed to James Davenport for suggesting the line of

research, and for showing such keen interest in my work. Special mention should be

made to his amazing ability to give accurate references off the top of his head. He was

also always available to correct my misapprehensions (and my mathematics), and to

answer my questions. His great enthusiasm constantly spurred me on. Right from the

start both he and John Fitch would willingly explain REDUCE’s eccentricities as I

stumbled across them. I must thank John Fitch for explaining and maintaining the

Cambridge LISP upon which REDUCE and my programs ran.

Julian Padget was another useful source of help and information. His deep

knowledge of Cambridge LISP frequently came in handy and led to many interesting

conversations. Phil Willis was in charge of the computing group, and I thank him for

organising it so well.

- 1 . 7 -

Introduction J Abbott

Russell Bradford was a perpetual source of amusement as well as an excellent

colleague with whom to do research. We often worked together and criticised one

another’s work. He taught me to program more elegantly and to use long variable

names.

Thanks also to Nick Brealey who proved a little lemma for me, and to Balbir Barn

who did more than his share of the cooking and washing up! Further thanks to Erich

Kaltofen for many interesting and fruitful conversations, and allowing me to finish writing

this thesis at RPI. Finally, thanks to Karen, secretary to the computing group, for all her

work and organisation.

2. Fundamentals and Definitions

In the introduction we explained that we chose to use a symbolic (or algebraic)

representation for roots of polynomials, and we called such symbols algebraic numbers.

This chapter describes some details of the algebraic number package which deals with

the algebraic numbers and upon which the factoriser is built — full details are in

[ABD86]. The extensions of this package to handle algebraic functions are mentioned

briefly. Also some formulae and definitions related to our choice of representation are

given; the formulae will be used elsewhere.

The second part of this chapter explains the modular-Hensel factorization

paradigm (sometimes called the Berlekamp-Hensel paradigm) along with the algorithm

of Cantor & Zassenhaus for polynomial factorization over a finite field (my explanation is

only for odd characteristic). Then we give a definition of the Swinnerton-Dyer

polynomials and describe their factorizations in finite fields. The last section gives a

simplified description of the Hensel lifting process for polynomial factorizations, and also

includes an outline of the classical (Kronecker’s) algorithm.

Algebraic Number Package

We describe here the representation of elements of an algebraic number field as

implemented in the Bath Algebraic Number Package (BANP). Firstly, we give some

mathematical definitions needed in the description. An algebraic number, a, is a

number which satisfies an algebraic relation; that is there is some polynomial with

rational coefficients which has a as a root. It can be shown that there is a unique monic

-2.1 -

Fundamentals and Definitions J Abbott

(i.e. having leading coefficient of 1) polynomial of least degree with rational coefficients

which has a as a root — this polynomial is the minimal polynomial of a. If the minimal

polynomial has integer coefficients then we say that a is an algebraic integer. We

observe that all rational numbers are algebraic numbers since any getD has the trivial

minimal polynomial mq{x) :=x-q \ and similarly observe that all integers are algebraic

integers. Henceforth, we shall implicitly exclude all the rational numbers whenever we

use the phrases “algebraic number" or “algebraic integer”. So it is now true that the

minimal polynomial of an algebraic number has degree at least two; and we define the

degree of an algebraic number to be the degree of its minimal polynomial.

We still need a little more mathematics before we can begin. We define Q(a), the

algebraic number field generated by an algebraic number, a, to be all numbers which

can be represented as sums of rational multiples of powers of a; in other words it is the

set

The degree of Q(a) is defined to be the degree of a. In a similar way we can define the

field generated by several algebraic numbers, a1f. . . ,a„ to be

In this thesis we shall always have an implicit ordering on the generators, so that a/ is

defined as a root of its unique monic irreducible minimal polynomial,

mi{x)e <D(oc1f. . . .ccm^x]; we shall say that a, has degree (over Q(a1f. . . , 0 ^)) .

equal to the degree of m,-. By saying that m,- is irreducible we mean that there are no

polynomials over ©(o^, . . . , a ^) with degrees at least 1 whose product is m,-. This

definition of degree allows us to define easily the degree of Q{clv . . . ,ctn) as the

product of the degrees of the m,-. We comment that the degree of a field is well-defined,

in that it does not depend on how the extension was built up: for example,

- 2 . 2 -

Fundamentals and Definitions J Abbott

Q(V2, V3) = <D(V2 + V3) and we easily see that the degree of <D(V2, V3) is 4 which is also

the degree of Q(V2 + V3) because V2 + V3 has minimal polynomial x4-10x2+1.

Now we are ready to discuss how elements of an algebraic number field are

represented inside BANP. Our first concern is to ensure that the representation is

canonical, i.e. we do not want any element to have more than one valid representation.

We begin with the simple case where the field is generated by just one algebraic

integer, a. Let ma be its minimal polynomial. Since ma(x) e Z[x], we can write any

polynomial f (x)e Z [x] as f (x) = q(x)ma{x) + r{x) where q(x), r (x)e Z[x] are the

quotient and remainder respectively. We note that r has degree less than that of ma,

and that r is uniquely determined by f. Upon substituting a for x in the equation above

we get f{a) = q(a)ma[a) + r{a) = r{a) because ma{a) = 0 by definition. This leads

directly to a canonical representation: any element of <D(a) has a unique representation

as r{a)/s where s g Z f and r(x) e Z[x] has degree less than the degree of a and the

gcd of the coefficients of r is coprime to s.

This representation can be extended to fields generated by several algebraic

integers, say a 1#. . . , a n. The representation being /?(a1f. . . ,a„)/S where S e Z + and

ft(x1f. . . ,xn) e Z [X i , . . . ,xn] has degree in each x,- less than the degree of a,-, and

the gcd of the coefficients is coprime to S.

The reader may have spotted that we insist the field generators be algebraic

integers. This is not a restriction since any algebraic number can be multiplied by a

non-zero integer to give an algebraic integer. The condition is purely for computational

efficiency. The facility inside BANP for introducing a new algebraic number actually

creates a symbol for an algebraic integer, called an algebraic kernel, then divides that

symbol by an integer to produce the algebraic number requested. The algebraic integers

used in the internal representations (i.e. a and a 1f. . . ,a n above) are precisely these

algebraic kernels.

- 2 . 3 -

Fundamentals and Definitions J Abbott

We point out, in passing, that the multiple generator case can be reduced to the

simple case by use of primitive elements. In every algebraic number field (of finite

degree) there is at least one algebraic integer which generates the entire field on its

own; such an element is called a primitive element — unfortunately this is not always

true for fields with non-zero characteristic. BANP does not use these for two reasons:

the possibly lengthy calculation of a resultant is needed to find a primitive element, and

they usually lead to very unnatural and cumbersome representations: e.g. <D(V2, V3) has

a primitive element a := V2 + V3 but the representation of V2 in terms of a is the rather

unpleasant 1/2(a3-9a).

More Definitions

We introduce some more phrases that are used throughout this thesis. Some

phrases are widely accepted others are invented for use inside the thesis. The latter

will be called “local definitions”.

Integral Bases

Later on we shall see that the ring of algebraic integers in a field plays an

important role. Our interest lies especially in their representations. BANP effectively

uses the obvious basis (local definition) for K := ©(c^,. . . , a„), namely

basis{a1f . . . ,a n) := {a f1 • • • a *" : V / 0 <, e, < 3a,},

where 3a, means the degree of a,. What this means is that any element of K is just a

sum of rational multiples of basis elements — it is a Q vector space basis (or

equivalently a Q-basis). It would be nice if the ring of integers in K, Ok (abbreviated to

O when it is clear what K is), consisted exactly of those elements of K formed by

summing integer multiples of the basis elements. This is not true in general; for

example, in <D(V5) the element a = 1/j>(1+V5) is an algebraic integer because its minimal

polynomial is ma(x) = x2-x+1. However, such 2-bases for O do exist, and they are

- 2 . 4 -

Fundamentals and Definitions J Abbott

called integral bases: for example, ^ has Z-basis {1 ,1/2(1+V5)} which is thus an

integral basis for Q(V5). Clearly these bases are also (D-bases for K. BANP does not

use an integral basis to represent field elements because determining an integral basis

is time-consuming, and multiplication of elements thus represented is relatively

inefficient.

The Defect

We have seen that the representations of algebraic integers in BANP may involve

fractions, since the obvious basis is not necessarily a Z-basis. This possibility of having

fractions complicates matters a little. It is important that these fractions, in fact, have

only small denominators. This subject is dealt with more fully in chapter 4 (on Bounds),

but mention here the term defect whose definition we generalise from

[Weinberger&Rothschild76]. We define the defect of a <D-basis for K to be the largest

denominator appearing in the representations of the algebraic integers in K. It

immediately follows that integral bases are precisely those bases (of algebraic integers)

with a defect of 1. We illustrate this: in <D(V5) an integral basis is { 1 ,1/2(1+V5)} which

has defect 1, whereas the obvious basis {1, V5) has defect 2.

Extension to Algebraic Functions

Most of the definitions above extend naturally to algebraic functions and algebraic

function fields. We must replace Z by Z [z 1f. . . , z j and <D by <D(z1f. . . ,z^ where

z u . . . ,z x are the transcendentals occurring in one or more of the minimal polynomials;

so the a/ are algebraic functions of the zy-. We retain the term algebraic integer for

those algebraic functions whose (monic) minimal polynomials lie in Z [z 1f. . . , z j . The

canonical representation R{o1f. . . ,ot„)/S has to change slightly: the numerator

f l (x1f. . . ,xn) has coefficients in Z [zu . . . , z j and the degree in each x; is less than

da,-, also S e Z [z 1r. . . ,zx] is coprime to the gcd of the coefficients of R. Again the

algebraic integers used in the representation are algebraic kernels.

- 2 . 5 -

Fundamentals and Definitions J Abbott

The mathematical concepts, primitive element, ring of integers, and integral basis

extend. So does the notion of defect, though it is now an element of Z [z 1f. . . , z j . It is

theoretically just as simple to compute an integral basis for an algebraic function field as

it is for a number field but the calculations are much more long-winded.

Discriminant Formula

In this section we define the discriminant of a basis of an algebraic extension, we

give a formula for the discriminant of the obvious basis, and a proof of the formula. The

proof requires some knowledge of Galois theory. The formula has apparently been

known for some time, but we believe the proof to be new.

The need for finding the discriminant of the obvious basis stems from the

polynomial factoriser described in this thesis. The factoriser needs to know the defect of

the basis so that it can derive the factors from an intermediate result. It seems that it is

as hard to compute the defect as it is to find an integral basis (see, for example,

[Bradford88]). However, the factorizer can still derive the factors if it is given a multiple

of the defect, and it can be shown that the square of the defect divides the discriminant.

So it is sufficient to use the discriminant in place of the defect — actually we can often

find quickly the largest factor whose square divides the discriminant, and this factor

clearly still suffices. This topic is treated fully in chapter 4 on coefficient bounds of

factors.

Towers, Conjugates, and Norms

Before we can define the discriminant we have to bring in a few more

mathematical notions to allow us to deal with the multiple generator case. We shall call

the ground field upon which the algebraic extensions are built K0. So for algebraic

number fields K0 will be Q, and for algebraic function fields it will be Q(z1f. . . ,z t). We

shall call the algebraic extension generators a 1f and denote their minimal

polynomials by m,(x) e K0{au . . . , 0 /^) and their degrees by We can now write our

- 2 . 6 -

Fundamentals and Definitions J Abbott

field as K := K0{a 1f . . . , a n). It turns out to be more convenient to build up to K in a

sequence of steps like this: let K, := K0(a ,) t K2 := K^{a2) = K0{a i, a 2), etc. So we have

created a tower of extensions by adjoining the algebraic symbols one at a time. We can

display this pictorially:

Kn - * l-n
T T dn extensions

Kn ~ 1 —> Ln- 1
T T dn- ! extensions

T T d2 extensions

->

T
id

t d, extensions

0 —> o-JII

This diagram needs to be explained. The column on the left is our tower. We

know from Galois theory that K0 has a unique algebraic closure which we call K. The

definitions of the fields Kj are very abstract, and we have to be more specific to prove

our result. Currently the field Kj is obtained from by adjoining a root of mit but we

have not said which root to adjoin. We now insist that the particular root to be adjoined

be chosen, and so build up a new tower. We shall start from the same ground field, but

call it L0 this time. We construct L, by picking a specific root of m, in K and adjoining

that root to L0. In a similar fashion we construct L2 from L1f and so on. Clearly, the field

Lj not only depends on the choice of root of mi but also on all the earlier choices. We

have dj choices when extending to Lit hence the comments beside the right hand

tower.

We call Lj an embedding of K, in K. By considering all the possible choices there

are for extending Lj to L/+1 we find that Kj has |“Im=i embeddings into K. Later on it

will be necessary to distinguish all these embeddings. We do this as follows. We shall

- 2 . 7 -

Fundamentals and Definitions J Abbott

write ff1f . . . for the different embeddings K, -> K, and o11f. . . ,a 1(y2 for the

possible extensions of o1 \ K ^ - ^ K to an embedding K2 ^>K and so on.

The reader may have realised that a single element of one of the K) may have

many different images in K under the different embeddings. This is nothing more than

a generalisation of the fact that 2 has two square roots, namely 1.414... and -1.414... —

these are just the different images of the symbol V2 in Ac=<D. We call the images of an

element under the different embeddings field conjugates. Note that the field conjugates

need not all be distinct; indeed, the field conjugates of any member of K0 are all the

same! It can be shown that the product of all the field conjugates is always an element

of the ground field, K0. This product is called the norm of the element (with respect to

that particular extension). We shall need to use the norm maps taking elements of L,

into (i.e. the product of the images under the d, extensions of L,^); call this map A/,.

We comment that norms of elements can be computed easily via resultants.

At last we can define the discriminant of a basis. Let the basis be (b1f. . . ,bN),

then its discriminant is defined as the square of the determinant of the matrix;

b ! b2 bn

b\2) b P • • • bjP

bjP • • • b/Pb *

where b p is the / * field conjugate of bj. In the special case that the basis is

{1, a , . . . ,a m_1) where a has minimal polynomial ma of degree m, the result is also

called the discriminant of ma. Additionally, in this special case, the matrix is of

Vandermonde form, from which we find an alternative way of calculating the discriminant

of ma: namely discr{ma) = resultant{ma, m</), where the prime denotes differentiation.

- 2 . 8 -

Fundamentals and Definitions J Abbott

Proposition

Let K0 be a field of characteristic zero. Let Kj = Kj. 1(oc/> for / = 1 , . . . „ n be a

tower of algebraic extensions, with the minimal polynomial of a/ over KtM being m,- of

degree d,. Further, let N, : be the norm map. Then the discriminant of the

obvious basis for Kn

basis{Kn) := {o f1 ■ • • a*" : V/ 0 < e-, < 3a/}

is

discrfm^2*3 </nxA/1(discr(m2))(/3d4 dnxN,{N2{6\scr{m3)))d4ds d"x ■ • •

or alternatively

A/2A/3...(discr(m1))x/V1A/3...(discr(/772))x/V1A/2...(discr(/773))x • • •

where discr(...) denotes the polynomial discriminant function.

Proof

In the case of a simple extension the formulae above reduce to the polynomial

discriminant of m, which is correct. So we shall concentrate on the multiple generator

case. We use an iterative construction for the discriminant matrix.

Let D ! =

1 o^a,) a^af)

1 <y2(ai) a2(a?)

1 a dl(aO a ^ a?)

Now iteratively define for s = 2 , . . . , n

8i(asDs_i)

 ̂82(̂ 5 _i) 82 (as0s_i)
Ds =

&d8{D s -1) &d8(a s Os_ i)

a ito f1"1)

o2(a1dr1)

/ dr\ ' • ' <^(<*1)

8,(0/ ‘ " V i)

- 2 . 9 -

Fundamentals and Definitions J Abbott

where for clarity, we define 8y to have the following property: 8/ oafl • r4 = a r1 • • • r5y

and 8y- o/d = ay- — think of 8y- as meaning pick the y* possible extension of the

embedding. Note that Ds_1 is invariant under each 5/ because all the entries in Ds_, are

fixed — the (/, /) fh entry above couid also be written as 8/(a^"1)D,_1.

Then for the obvious basis, the discriminant is just the square of the determinant

of Dn. So it is sufficient to prove that this determinant squared is:

discrf/r^)*2*3 </'’xA/1(discr(m2)),'3U4d**A' ' ' d"xNi (A/2(discr(m3)))d*ds " dnx

We deduce the formula above. We shall inductively find a unimodular

transformation which diagonalizes the matrices Dk for k = 1 , . . . f n in that order. These

transformations will be constructed only by row operations. The case k = 1 is easy; we

consider the case k > 1. We assume we know some row operations which diagonalize

Dk_i to give A _̂v Applying these row operations to each block of d^d2 • • • d*_i rows of

Dk gives:

S2(A/c-i) 82(0 * A*^) 82(a^*‘ 1Afc_1)

d̂„{0-kk ^k-i)

n

8dk(Ak-1) 8dk(<*kAk-i) '

which has the same determinant as Dk. Again the (/, y) fh entry of this matrix could

also be written as 8/(a/(_1)A*-i-

We can find a sequence of row operations which yield a unimodular transformation

sending

Fundamentals and Definitions J Abbott

to a diagonal matrix diag{Xu . . . ,Xdk), say. Notice that Y l fax f is equal to the square

of the determinant of (t) which is just discern*).

By regarding (*) as a matrix with matrix entries of the size of A*_■, (as it is shown

above) we can apply the transformation which sent (t) to diagonal form to obtain the

diagonal matrix: d/ag^A*.- , , . . . ,XdkAk-i), which has squared determinant

6\scr{mk)d̂ 2 dk~'det{Ak_,)2dk. The claimed result is now immediate.

The modular-Hensel Paradigm

This section contains an overview of the way the standard present-day polynomial

factorization algorithms work. The main point is the diagram below.

The normal route followed during the factorization of a multivariate polynomial over

Z is:

(i) substitute integers for all but one of the variables to get a univariate polynomial;

(ii) factorize the univariate polynomial modulo some prime p;

(iii) find a factorization of the univariate polynomial modulo p* for some k\

(iv) deduce a factorization of the univariate polynomial over Z ;

(v) deduce a factorization of the multivariate polynomial over Z .

There are restrictions on the permitted substitutions in (i) and on the primes

allowed in (ii) which we shall not go into here. The number k can be determined from

information in steps (i) and (ii) so that step (iv) will succeed. We can represent the

-2.11 -

Fundamentals and Definitions

process diagrammatically:

J Abbott

F (x1f . .. ,xn)s Z[xu . . . ,xn] F = GHe Z [x1(. . . ,xn]

•I substitute T unsubstitute

f (x i) g Z N

>1 mod p T (mod g)-1
factorize lift

f = fD(x,) mod p -> fo(xJ=gD(x J h o M mod p -» f = f a=gaha mod q

We shall refer to this diagram frequently throughout the thesis; immediately below we

look at an algorithm for accomplishing the modular factorization step; and the section

following that clarifies the (mod g)-1 step.

The Cantor-Zassenhaus Algorithm

This section contains a short description of the algorithm in [CZ81] for the

factorization of a polynomial over a field of odd characteristic. The algorithm begins by

performing a distinct degree factorization: (e.g. see [Moenck77]) that is, the polynomial

is split up into factors such that all the irreducible (modular) factors of the same degree

occur in their own factor. That this can be done follows from the remarkable fact that:

xqd- x = f [all irreducible factors of degree dividing d

in the field FQ; so successive gcd computations with xq-x , xqZ-x , etc (each time

dividing out the factor found) will produce in sequence the products of the irreducible

factors of degree 1, then degree 2 and so on. We are now ready to give this elegant

algorithm:

The Algorithm

A We may assume the polynomial, f , is square-free. Perform a distinct degree

factorization to obtain a list where fd is the product of all the

irreducible factors of f of degree d. For each fd * 1 apply step B.

-2 .12-

Fundamentals and Definitions J Abbott

B We have been given a polynomial, fde ¥q, all of whose irreducible factors have

degree d ; we must find these irreducible factors. If df = d then f is irreducible, so

return. Otherwise pick a random polynomial, h, of degree 9 / -1 . Compute

k := gcd{f , /71/2(<fd-1)-1). Recursively apply step B to k and flk.

Normally in step B, k is a non-trivial factor of f. The algorithm is fairly similar for

fields of characteristic 2 provided that a primitive cube root of unity is known (this may

require a degree 2 extension of the finite field). Very roughly, the justification behind

step B is that each irreducible factor, g, of fs “generates” a degree r extension of Fq

which we may regard as F^x] mod g{x), and by the Chinese Remainder Theorem

picking a random polynomial modulo f (x) is the same as picking random polynomials

modulo each of the irreducible factors simultaneously; then the 1/j>(gf-1)th power of a

random element of a degree r extension of F, will be 1 or -1 with equal probability,

hence the gcd in step B will pick out just those irreducible factors where the V^qr- 1)th

power happened to be 1. So k is trivial if and only if all the V^qr- 1)th powers have the

same value.

The Swinnerton-Dyer Polynomials

For the sake of most currently implemented polynomial factorization algorithms, it

would be very handy if there were a close correspondence between a polynomial’s true

factorization (i.e. in the infinite field) and its factorization in some finite field. Ideally we

would like to be able to pick a finite field in which the factors of the polynomial

correspond directly to the true factors. Regrettably, this is not possible; the irreducible

polynomial x4+1 factorizes modulo every prime into linear and/or quadratic polynomials.

[Musser78] presents a simple way of salvaging some information from factorisations in

several finite fields — since the true factors map to products of factors in the finite

fields, we may be able to restrict the possible degrees of the true factors. This idea still

cannot show that x4+1 is irreducible over Z , though it shows that true factors cannot

-2 .13-

Fundamentals and Definitions J Abbott

have degrees 1 or 3.

The upshot of this is that the step labeled (mod q)_1 is not trivial. We know only

that each true irreducible factor has image modulo q equal to a product of some

collection of the irreducible factors modulo q. So to find the true factors we try all the

modular factors, and remove all those leading to true factors. We then try all pairs of the

remaining modular factors, then all triples and so on, always removing those modular

factors found to constitute a true factor. This is guaranteed to find all the true irreducible

factors but may take a long time, as we see next.

Unfortunately, the behaviour exemplified by x4+1 is not an isolated incident: there

is an infinite family of polynomials which behave similarly. Members of this family are

known as Swinnerton-Dyer polynomials, named after their discoverer. This set of

polynomials has unbounded degree yet all the members factorise into linear or quadratic

factors modulo every prime. So the best that Musser’s scheme could deduce is that all

true factors have even degree; yet it can be shown that every member is irreducible

over Z . This feature of Swinnerton-Dyer polynomials means that they cause the

standard modular-Hensel factorization algorithms to take an amount of time exponential

in the degree of the input polynomial, i.e. the worst possible case.

We now characterise the Swinnerton-Dyer polynomials by defining them as a

product:

n(x±vp7±vpi± • • • ±vsr)
where the product is taken over all possible choices of signs giving a polynomial of

degree 2” . The p, should be square-free and multiplicatively independent, i.e. for e,e Z

pV ' * • Pn1 = 1 if and only if all the e, are zero. Another, equivalent, characterisation is

that /C:=Q(Vp7, . . . ,VpiT) is a degree 2n extension of <D, and the corresponding

Swinnerton-Dyer polynomial is the minimal polynomial over <D of the primitive element

0:=VpT+ • • ■ -WaT which can also be written as NK:Q{x -Q).

-2 . 14 -

Fundamentals and Definitions J Abbott

This construction can be generalised to “independent” roots of any polynomials in

place of the square roots. For further information see [KMS83]; [ABD85] discusses the

practical importance of this generalised class of unhelpful polynomials.

Hensel Lifting

We have just seen in the scheme above that a crucial step in the modular-Hensel

style algorithms is the determination of a factorization modulo p* given a factorization

modulo p. The process which achieves the determination is called Hensel lifting (often

shortened to liftingf). We shall give only a simplified description of the process here; a

more complete presentation may be found in [Lauer83] for instance.

Lifting is used in two separate ways during factorization; one is part of the

deduction of a factorization over an infinite field given only a factorization in a (suitable)

finite field; the other is part of the conversion of a univariate factorization into a

multivariate one. Although the underlying theory is the same for both uses, the

realisation into practical algorithms is usually very different. For simplicity we shall

restrict the following to the former use, and refer to [Musser75] for a clear discussion

upon the latter.

We shall assume that the factorization of the monic polynomial f modulo p is

f = gh with g and h monic and coprime to one another — we just observe that the

generalisation to the case where there are many factors is not conceptually harder but it

does obscure what happens by complicating the notation.

Because g and h are coprime, we can find polynomials ag and ah such that

+ ot/,/7 s 1 mod p where g is the product of all the factors except g (i.e. h in this

special case), and similarly for h. This may also be viewed as ag = £ -1 mod {g, p) and

ah s / r 1 mod (/), p). We call ag the correction factor for g, and likewise ah the

correction factor for h.

-2 .15-

Fundamentals and Definitions J Abbott

Our immediate aim is to find monic factors G and H with G = g mod p and

H = h mod p such that f = GH mod p2. We begin by writing G = g + pbg and

H = h + pbh, thus automatically satisfying the first two conditions. So all we need do is

find Sg and bh from f , g and h. The only constraints on $g and bh are that their

degrees be strictly less than the degrees of g and h respectively, and that the following

equation holds

GH = gh + p(gbh + hbg) = f mod p2. (*)

We can rewrite this as gbh + hbg = (f-gh)/p mod p from which it is clear that

bg := ag{f-gh)/p and 8/, := ah{f-gh)/p yield a solution of (*) by definition of the

correction factors. However, we have no guarantee that the degrees of bg and 5/,

satisfy the constraints, but by the form of (*) we may add an arbitrary multiple of g to bg

and subtract the same multiple of h from bh. In this way we can reduce 8g modulo g,

and 8h will simultaneously be reduced modulo h.

By the observation above 5g s ag{f-gh)/p mod (p,g) or more simply

bg = a gflp mod (p,g). There is no need to use rational numbers because we can

reduce f modulo (p2,g) and then divide this by p without remainder. This simplification

can easily be generalised to the case of many factors.

So far we have achieved only one step: from a factorization modulo p to one

modulo p2. There are two alternatives here. Either we can consider factors of the form

G + p28q and H + p26H and solve for 8G and bH as above to obtain a factorization

modulo p3; or we can compute new correction factors a G and a« which satisfy

aHG + clgH a 1 mod p2 and use these instead of the previous correction factors to

compute 5g and bH modulo p2 and thus go directly to a factorization modulo p4. The

first alternative is known as linear lifting, the second is called quadratic lifting. We repeat

the lifting step above until the modulus has become sufficiently large — note that it does

not matter whether p is prime provided that the correction factors are known.

-2 .16-

Fundamentals and Definitions J Abbott

We can see from the preceding paragraphs that linear lifting increases the

exponent in the modulus one at a time, whereas quadratic lifting doubles the exponent

each time. This suggests at first sight that quadratic lifting might be much faster, but it is

not entirely clear because a lot more work has to be done for each quadratic step. A

full comparison is the topic of chapter 6.

For the discussion above, we made the assumption that f was monic. This is not

strictly necessary; all we really need to know are the true leading coefficients of the

factors — this is especially relevant when lifting from a univariate factorization to a

multivariate one. In the case when the factors are not monic they must be lifted so that

at all times the leading coefficients of the modular factors are exactly the modular

images of the true leading coefficients. This criterion uniquely determines all the factors

at each lifting step, and it can be shown that this choice of correction terms is always

valid. This topic is dealt with more fully in chapter 7.

The Classical Algorithm: Kronecker & Newton

This section describes the first known algorithm for factorising multivariate

polynomials over Z — the algorithm does not use any form of Hensel lifting. It has two

parts: the first is Kronecker’s trick, the second is a univariate polynomial factorization

method of which Newton was aware. These ideas have been totally ousted by vastly

more efficient modern techniques, though the algorithm in [Lenstra83a] uses

Kronecker’s trick.

Kronecker’s Trick

Our aim here is to factorize a multivariate polynomial when we have access to a

black box which can factorize only univariate polynomials. Let the polynomial to be

factorized be f {x u . . . ,xn), and let dj be the degree of f in xj. We shall use an

inductive argument on the number of variables in the polynomial: the induction starts at

1 because the black box can factorize univariate polynomials. Now we have a

-2 .17-

Fundamentals and Definitions J Abbott

polynomial with n ' t 2 variables and we assume that any polynomial with n - 1 variables

d <+1
can be factorized. So, in particular, we can factorize g := f {x ^, . . . ,xn̂ ,xn1y). If we

substituted for xn in any factor of f we would get a product of one or more

factors of g. By considering all possible products of factors of g and replacing xf,^ by

(where r = s + tdn and 0 < s < dn̂) in the product, we generate a sequence of

polynomials including all the factors of f. The factors of f can be picked out by

performing polynomial divisions. Now we have the factorization of f.

Univariate Factorization (Newton)

For completeness, we now delve into the black box of the previous paragraph —

this algorithm is never used as it converts a polynomial factorization problem into a

much harder integer factorization problem. The box accepts a univariate polynomial

with integer coefficients and computes the irreducible univariate factors over Z . The

key idea here is that a polynomial of degree n is completely determined by its values at

n+1 different points.

Let n be the degree of the polynomial. We evaluate the polynomial at n different
/

points x1f . . . ,xn to get values y 1t . . . ,yn. A factor of degree d will be determined by

its values at d+1 points, say x 1f . . . ,xrf+1. Also the values of any factor at each xy

must be integer divisors of the corresponding yy. So we just factorize all the integers yy

and try to interpolate a polynomial from all possible combinations of the divisors of

y i , . . . ,y</+1. If we find a factor we divide it out and change the yy- appropriately. By

performing the search firstly for degree 1 factors, then degree 2 and so on, we can

guarantee the factors found will be irreducible.

3. Related Work

We present a survey of recent work in the area of polynomial factorization both

over fields of characteristic zero and over finite fields. There are several published

survey papers covering similar ground, e.g. [Kaltofen82], [Kaltofen86], [Lenstra82b] and

[Davenport&Trager81]. Some papers on lattice basis reduction are reviewed too.

This chapter has five sections. The first section considers algorithms for the

factorization of univariate polynomials over finite fields with emphasis on the elegant

algorithm of Cantor & Zassenhaus (described in chapter 2) which is best suited to our

needs. For completeness, the second section briefly surveys ways of factorising

multivariate polynomials in finite fields, and explains why we do not use any of these

algorithms. The third section covers algorithms for deducing a factorisation in an infinite

field from one in a suitable finite field, concentrating on the Hensel lifting approach (with

a potentially exponential recombination cost — see the section on Swinnerton-Dyer

polynomials in chapter 2) but mentioning more recent polynomial time methods. Then

the fourth section deals with schemes for deriving a multivariate factorisation from a

suitable univariate one, including Hensel based methods, sparsity preserving methods,

and again just mentioning the more recent polynomial time algorithms. The final section

comments upon a few algorithms for finding “reduced” bases for integer lattices.

Factorization of Univariate Polynomials over Finite Fields

Berlekamp published the first efficient algorithm for factorization of univariate

polynomials over finite fields in [Berlekamp67], His algorithm is well suited to small finite

-3.1 -

Related Work J Abbott

fields but can become slow In larger ones, the worst case time being 0{n 3+qrn2) where

n is the degree of the polynomial, q is the size of the field, and r ^ n is the number of

factors. The point to note is the linear dependency on q.

Three years later an improved version appeared in [Berlekamp70], so that

factorizations were not (practically) restricted to very small fields. This newer algorithm

had worst time depending on p 1/4(logp)3/2 instead of q, where p is the characteristic of

the field. However, the newer algorithm involves a probabilistic search for roots of a

polynomial in a finite field, and Berlekamp suggests that the expected running time

should be much better than p 1/4+e. In the meantime a variant of the first algorithm was

proposed in [McEliece69] where the null space basis computation was replaced by the

generation of a simple sequence of polynomials. McEliece himself admits that in general

his algorithm is slower than Berlekamp's but suggests that it could be faster if all the

modular factors have low degree. He mentions worst case time as being 0 [n 2e ^) but

conjectures that the average time is about the same as for Berlekamp’s original

algorithm. However, a statistical study in [Mignotte80j shows that McEliece’s algorithm

does not even have polynomial average time, unlike both of Berlekamp’s.

Several modifications to Berlekamp’s second algorithm appeared in [Moenck77].

In particular, one used primes of a special form (p = 2r/?+1 with R ~ r), combined with

a divide-and-conquer root finding algorithm, to produce the factorization deterministically

in 0 (n 3+n\ogp{n + logp)) time. Sample timings in the paper showed this algorithm to

be slightly slower for fields of small characteristic but much faster for large

characteristic. He also discusses what effect using fast polynomial multiplication

techniques has, and develops a scheme using these techniques.

After another gap of three years a new algorithm, quite different from Berlekamp’s,

was discovered [Rabin80]. This was a “Las Vegas” algorithm — provably correct and

probably fast. Also it had a simpler structure than earlier ones. Rabin showed that the

average complexity was better than for any of the others: his complexity formula

- 3 . 2 -

Related Work J Abbott

assumed fast multiplication techniques for polynomials, but even with standard methods

the complexity is still only 0 (n 5logp) expected time.

Rabin’s reign was short, for within a year [CZ81] came along. The algorithm of

Cantor & Zassenhaus is a generalization of the root-finding algorithm in [Rabin80] —

see the description in chapter 2. For fields of odd characteristic their algorithm is an

extremely elegant, very short “Las Vegas” algorithm.

A theoretical and empirical comparison of Berlekamp’s, Rabin’s and Cantor &

Zassenhaus’s algorithms in [Calmet&Loos82] claims that Rabin’s algorithm is slower

than Cantor & Zassenhaus’s which in turn is slower than Berlekamp’s. However, their

comparison was only for factorization over prime fields, and Berlekamp’s algorithm was

tried only for small fields. Our experiments confirm that, in general, Berlekamp’s

algorithm is faster than Cantor & Zassenhaus’s over small prime fields, but that the

situation is reversed for large prime fields (see appendix E). However, if all the factors

have low degree it is more efficient to use distinct degree factorization in place of the

first part of Berlekamp’s method [Coppersmith&Davenport85].

We shall see later that sometimes we do not need the factors themselves, merely

their degrees, this information is readily obtained from a distinct degree factorisation.

Some clever mathematics in [Gunji&Amon81] enables them to deduce the same

information from the dimensions of the null spaces of powers of the Frobenius

homomorphism, which is particularly appropriate when Berlekamp based algorithms are

being used.

An algorithm intermediate between Berlekamp’s and Cantor & Zassenhaus’s is

presented in [Lazard82]. The algorithm is quite short; it begins in the same way as

Berlekamp’s, and finishes with an analogue for idempotents (polynomials equivalent to

their squares modulo the polynomial to be factorized) of the Cantor & Zassenhaus

probabilistic scheme. Unfortunately, Lazard also showed that using classical polynomial

arithmetic, his algorithm is always inferior to Cantor & Zassenhaus’s.

- 3 . 3 -

Related Work J Abbott

Factorization of Multivariate Polynomials over Finite Fields

We include this section for completeness but shall not use any of the algorithms

mentioned here. There are two obvious routes to choose from when trying to factorize a

multivariate polynomial over an algebraic number field:

A B

multivariate multivariate multivariate multivariate
polynomial factors polynomial factors
over <D(a) over Q(a)

T
over <D(a)

1
over <D(a)

T
univariate

i

univariate multivariate
i

multivariate
polynomial factors polynomial factors
over Q(a) over <D(a)

T
over Fp(P)

>1
over Fp(p)

T

univariate
i

univariate univariate
i

univariate
polynomial -> factors polynomial factors
over Fp(P) over Fp(P) over Fp(p) over Fp(p)

Our reason for using A rather than B is because the extraneous factors can be

(virtually) eliminated sooner and at a comparatively low computational cost. It is most

important to avoid extraneous factors since they normally become dense as they are

lifted, leading to large intermediate expressions, especially when the factors are

multivariate as in B. The Hilbert Irreducibility Theorem implies that in method A when

we reduce from a multivariate problem to a univariate one, if we pick random integer

substitution values from a sufficiently great range then we can make the probability of

extraneous factors appearing arbitrarily small. There is no similar result for method B as

can be seen from this example: x4+10x2y2- y 4 s (* -y)(* -2 y)(* -3 y)(x -4 y) mod 5, and,

in fact, this irreducible polynomial factorizes into factors of total degree at most 2

modulo all primes — this is related to the Swinnerton-Dyer polynomials.

We shall just give short comments on some of the papers in this area. In the

previous section we saw that univariate polynomials may be factorized over certain finite

fields deterministically in polynomial time — although the probabilistic algorithms may be

faster if the field is not a prime field. Some recent results have shown that multivariate

- 3 . 4 -

Related Work J Abbott

polynomials too may be factorized in polynomial time: there are both deterministic and

probabilistic algorithms.

The algorithm expounded in [Lenstra83a] reduces multivariate polynomials to

bivariate ones in polynomial time by Kronecker’s trick of substituting high powers of one

variable for another one. The bivariate polynomial is then reduced to a univariate one by

substituting a suitable field element for one of the variables (i.e. working modulo a

polynomial of the form (Y -a)). Hensel lifting to a factorization modulo (Y -a)k followed

by a modified basis reduction algorithm then allows the determination of the factorization

of the bivariate polynomial. For the multivariate case the same algorithm is used except

that the lattice to be reduced is much larger — this directly yields the multivariate factors

rather than deducing them from bivariate ones.

The algorithm in [vzG&K85a] takes a different approach, and comes in

deterministic, probabilistic, and parallel versions. In it they select a variable, say x 1f to

be preserved while the others undergo substitutions of the form x;- := x,+a,- chosen so

that the substituted polynomial remains square-free modulo (x2, . . . ,x„). A root of one

of the irreducible factors of the univariate image is computed and lifted in a

Newton/Hensel construction to become a root modulo a sufficiently high power of the

ideal generated by x2, . . . ,x„. Finally, a linear system is solved to find the minimal

polynomial of the lifted root (i.e. an irreducible factor of the original polynomial). Their

lifting algorithm has been formulated so that it applies equally to factorization over

algebraic number fields.

Factorization of Univariate Polynomials over Infinite Fields

This section concentrates on the modular-Hensel methods; the more recent papers

on polynomial time algorithms are given less attention. Papers treating the cases of

factorization over Z or over algebraic number fields are discussed.

- 3 . 5 -

Related Work J Abbott

Before 1967 the only available algorithms for factorization were the classical ones

such as Newton’s which transformed the problem into one of factorization of integers.

But with current methods it is much easier to factorize polynomials than integers. The

first step towards the current approach came when Berlekamp published an efficient

algorithm [Berlekamp67] for the factorization of univariate polynomials over finite fields,

which he subsequently improved [Berlekamp70]. Also, around the same time

[Zassenhaus69] presented quadratic Hensel lifting, paving the way for the modem

factorization algorithms. These algorithms have the following (simplified) structure:

f (x) e Z [x] f(x) = g(x)h(x)e Z[x]

X mod p T(mod g)-1
factorize lift

fp{x)m o6p -> fP{x)=gp{x)hp(x) mod p f = f q=9q(x)hq(x) mod q

Probably the earliest implementation of such an algorithm was in 1971 by Musser

[Musser71], and certainly by 1975 there were working implementations of such

algorithms ([Musser75] and [Wang&Rothschild75]) with extensions to perform

multivariate factorizations. And within a year these algorithms had been extended further

so they could factorize over algebraic number fields. An apparent drawback of these

algorithms is the theoretical worst case complexity which is exponential in the degree of

the polynomial to be factorised: for any irreducible polynomial, f , there are infinitely

many primes, p, such that f factorises completely into linear factors; so if f has degree

n then during the (mod g)~1 step we must try all possible combinations of up to nl2

factors before discovering that f is irreducible, and there are " C ^ • • * +nC„,2 ^ 2n_2

possibilities. However, it was widely believed that these algorithms were for all practical

purposes polynomial time when operating over Z despite their theoretical exponential

complexity, but when operating over algebraic number fields the behaviour seemed truly

exponential.

The problem of producing a factorization over an algebraic number field is

significantly harder. The classical reduction from factorization over an algebraic number

- 3 . 6 -

Related Work J Abbott

field to factorization over the integers was improved in [Trager76] which presented a

completely general algorithm capable of factorization even over algebraic function fields!

However this method has some disadvantages: the transformed polynomial, to be

factorized over Z , has high degree (viz degree of original polynomial x degree of field

extension) as well as large coefficients; and also the polynomials so created tend to

factorize into many irreducibles in the finite field causing the undesirable exponential

behaviour [ABD85j.

An alternative approach described in [Weinberger&Rothschild76] is a

generalization of the method for factorizing over Z . The method computes several

factorizations mod p — one for each factor of the minimal polynomial mod p — then

combines these factorizations using the Chinese Remainder theorem in addition to the

usual combinatorial search. A major disadvantage of this method is that if there are

several factors of the same degree in each of the modular factorizations then the only

way to find the true factors to which they correspond is to try all the possible

combinations of modular images: for example, consider trying to factorize x4-10x2+1

over <D(a) where a has minimal polynomial ma(x) = x4-24x2+4; if we work modulo the

prime 1201 then ma{x) = (x+51)(x+259)(x+942)(x+1150) so we shall have to perform

four factorizations over the corresponding extension fields (all are F 12oi in this case); as

all the finite fields are the same, each factorization will be the same, namely

f{x) s (x+202)(x+327)(x+874)(x+999); now, to see if there is a linear factor of f we

must apply the Chinese Remainder algorithm to all the 4x4x4x4 = 256 possible ways of

picking a factor of f in each field corresponding to a factor of ma; we find that there is

no linear factor, so we try all the 6x6x6x6 = 1296 ways of picking pairs of factors from

each of the four factorizations; in this case f turns out to be irreducible over the field

given.

So if each of the factorizations mod p contains lots of extraneous factors there

will be two exponentially large searches one on top of the other — this can be arranged

- 3 . 7 -

Related Work J Abbott

using two Swinnerton-Dyer polynomials: let the extension be generated by a root of a

Swinnerton-Dyer polynomial, and let the polynomial to be factorized be another using

different primes from those used to create the extension polynomial; so no matter which

prime is used the algorithm has to consider many factorizations, one for each factor of

the extension polynomial, and each factorization contains many extraneous factors of

degree one or two. In this way we can find a polynomial of degree n and a degree n

field extension which will cause the algorithm to perform more than n"2 Chinese

Remainder operations. A similar construction using the same Swinnerton-Dyer

polynomial for both the extension and f gives an infinite family of examples in which

none of the modular factors of f is extraneous, yet the algorithm may still need more

than n°2 Chinese Remainderings!

An implementation in MACSYMA showed Trager’s method to be faster than a

polyalgorithm [Wang76] which used Weinberger & Rothschild’s if the minimal polynomial

remained irreducible (i.e. not needing the Chinese Remainder algorithm) and otherwise

the classical method from van der Waerden.

It was well-known that all the algorithms above had exponential worst case

complexity, due the combinatorial search at the end. This behaviour was especially

apparent for certain types of polynomial, e.g. those produced in Trager’s method

[ABD85] which are closely related to the Swinnerton-Dyer polynomials and their

generalizations [KMS83]. It was not clear how to avoid this potential combinatorial

explosion totally but, it could be alleviated. [Musser78] suggests that several modular

factorizations be determined and used to restrict the possible degrees of factors — his

model indicated that on average five modular factorizations were needed to establish

irreducibility of a random input polynomial.

A year later Collins derived an important result about the average complexity of

the search. Two ways of searching the products had emerged: one was to try all

products of degree 1, then all products of degree 2, etc; the other was to try each

- 3 . 8 -

Related Work J Abbott

modular factor, then products of pairs of modular factors, and so on. Both methods are

exponential in the worst case, but [Collins79] assumes a couple of plausible conjectures

and then shows that on average the latter approach takes polynomial time whereas the

former is still exponential.

An important aspect of the search procedure is the trial division routine. The

exponential behaviour mentioned above corresponds exactly to the case when almost all

of the trial divisions must fail. So we want to detect failed trials as quickly as possible to

mitigate the impact of the exponential search. We do this by utilising a sophisticated trial

division technique. We observed empirically that the trial divisions which failed, produced

quotients and remainders with huge coefficients; for example, trying to divide (x-8) into

x30- ! Wj|| yield a quotient with coefficients greater than 1026 and a remainder greater

than 1027. Yet we can often tell just by looking at the first two or three coefficients of the

quotient that they are so large that the quotient cannot be a true factor, and so the

division is doomed to failure. This suggests an algorithm where the coefficients of the

quotient are examined for “feasibility” as they are produced, with the trial division failing

as soon as any coefficient becomes too big. We call this scheme early abort trial

division, and it is equally applicable to trial divisions over Z and over algebraic number

fields. Its usefulness for factorizations over algebraic function fields depends on whether

reasonably small bounds on the coefficient size can be determined.

We also discovered that for trial divisions over Z it is usually sufficient to test the

integer divisibility of the constant terms and/or the sums of the coefficients

(corresponding to evaluating the polynomials at 0 or 1 and testing divisibility of the

images) [ABD85]. This simple test is far less effective over algebraic number fields

because of the need to divide by an algebraic number — if the field extension is large

then even computing the polynomial quotient and remainder is faster.

Although the search just described is theoretically the most time-consuming stage,

it was quickly observed that normally most of the factorization time was spent lifting the

- 3 . 9 -

Related Work J Abbott

factors. So effort was concentrated on achieving this stage efficiently. A comparison of

different schemes in [Wang79b] indicated that parallel quadratic lifting was always best,

though [M&Y74] is reported to have contradictory evidence. Our experimental results in

chapter 6 support Wang’s view; and [Weinberger&Rothschild76] claims, without proof,

that quadratic lifting is asymptotically faster by some constant factor. Zassenhaus, who

wrote the seminal paper on quadratic lifting [Zassenhaus69], is convinced that quadratic

lifting is faster than linear [Zassenhaus78]. The possibility of determining the

factorization modulo a large prime with the intention of avoiding some lifting steps was

considered in [Calmet&Loos82]. They showed that it is faster to factorize in a small field

and perform more lifting steps, than it is to try to save a few of the lifting steps.

Even in the light of the research just mentioned, the lifting stage continued to

dominate the other stages in terms of time consumed. However, several people had

noticed that when factorizing over Z some of the true factors are produced correctly

early in the lifting process. So it has been suggested [Wang83] that trial divisions be

performed at certain points during the Hensel lifting. Of course, this can only detect true

factors with small coefficients and which remain irreducible modulo the chosen prime. If

any true factors are found they can be removed thus simplifying the later, more

expensive, lifting steps; and possibly reducing the total number of lifting steps too. This

trick is probably less effective if quadratic lifting is used because the p-adic accuracy

doubles each step; though if the true factors have very small coefficients it may still be

worthwhile. Also there does not appear to be a suitable generalization for factorization

over algebraic number fields as the cost of computing the prospective true factor from

the modular image is relatively high (in Lenstra’s algorithm) if the minimal polynomials

do not remain irreducible modulo p.

The next major developments in this area were the polynomial time algorithms.

The first such algorithm for factorizing univariate polynomials over Z was published in

[Zassenhaus81]. It was followed shortly in 1982 by another one presented in [LLL82].

-3 .10-

Related Work J Abbott

This latter algorithm replaced the combinatorial search with Lovasz’s polynomial time

lattice basis reduction. Unfortunately the cross-over point when the exponential time

methods become slower is for much larger problems than we can currently handle —

[Goebbels85] reports a modification of [LLL82] which may be faster.

Another application of Lovasz’s basis reduction algorithm to factorization is given

in [Lenstra82] where Lenstra presents a variant of Weinberger & Rothschild’s method

replacing the part of the combinatorial search associated with the Chinese Remainder

algorithm by a lattice basis reduction. Lenstra compared his own implementations of his

and Weinberger & Rothschild’s methods, and concluded that his method is superior.

Lenstra’s algorithm appears to be the currently fastest factorizer over algebraic number

fields — certainly much faster than Trager’s (see appendix F). This algorithm is a

foundation stone of this thesis.

Since 1982 a lot of effort has been centred on extending the capabilities of

polynomial time algorithms. The extension to factorization over algebraic number fields

took less than a year: [Lenstra83] is a direct generalization of the integer case in

[LLL82], but recommends [Lenstra82] for practical purposes. Some methods have been

found which avoid factorization in finite fields by approximating roots: the basis reduction

algorithm can be used to find minimal polynomials of rational approximations to

algebraic numbers, so we can compute an approximate complex root of a polynomial

and then find the irreducible factor to which it corresponds ([Lenstra84] and

[Sch0nhage84]). Equivalently we could compute a p-adic approximation to a root and

determine its minimal polynomial [Viry85]. The extensions of these algorithms to

algebraic number fields would increase the dimensions of the lattices by a factor equal

to the extension degree of the algebraic number field. All these algorithms are currently

inferior to the modular-Hensel ones.

-3.11 -

Related Work J Abbott

Factorization of Multivariate Polynomials over Infinite

Fields

This section reviews some alternatives for lifting from a univariate factorisation to a

multivariate one. The more recent papers about sparse lifting or lattice based schemes

are commented on only briefly as these have been devised chiefiy to produce

polynomial time algorithms — their applicability to real problems being somewhat

questionable.

All modern algorithms for factorizing multivariate polynomials work by reducing the

problem to the factorization of univariate polynomial and then lifting this factorization

until the true multivariate factors can be found. These Hensel based algorithms are, in

general, greatly superior to the classical method (Kronecker’s) of substituting high

powers of one variable for all the other variables which tends to produce a univariate

polynomial of extremely high degree. Another feature of the modem algorithms is that

most of them perform the “easy” reductions to primitive square-free polynomials at the

start; however, such calculations are significantly harder than in the univariate case

(see, for example, [Wang&Trager79]).

The first of the modern algorithms appeared around 1971 [Musser71]. The more

widely available paper [Musser75] presents the theory behind Hensel lifting, and then

considers various possible ways of realising this. One particular interpretation is claimed

to be most promising, based on a complexity analysis (not in the paper). A short while

later a variant was published in [Wang&Rothschild75]. There were many similarities

between them, but also some notable differences; Musser appears to be in favour of a

quadratic construction for lifting the multivariate factors, and of a degree ordered search

through the modular factors; whereas Wang & Rothschild prefer linear lifting and a

cardinality ordered search. We have already noted that [Collins79] showed (under some

plausible assumptions) the degree ordered search for univariate factors to be inferior,

-3 .12-

Related Work J Abbott

and it seems reasonable to expect the same for multivariate factors.

Another initial difference was that Wang & Rothschild lifted all the variables at

once thus avoiding the rational function computation (and associated multivariate gcds)

apparently needed in the variabie-by-variable scheme favoured by Musser. In fact,

Musser expressly avoided the rational functions by calculating in a polynomial ideal.

However, after a couple of years Wang changed his mind [Wang77] and followed

Musser’s suggestions. Wang also reported that the change reduced intermediate

expression size in addition to yielding greater speed.

The generalization of the lifting methods to algebraic number fields posed no real

problems except that fractions may appear in the representations of the coefficients. It is

quite clear from the theoretical part of [Musser75] that no further complications would

arise. A comparison of [Wang76] with [Wang&Rothschild75] emphasises the similarities.

The practical limitations of the implementations of the algorithms above led to

some heuristic improvements. Experience with factorizations over Z led to the

recognition of three major problems: the leading coefficient problem, the “bad zero”

problem, and the extraneous factor problem. Both the leading coefficient and the

extraneous factor problem had been known from univariate factorizations, but the “bad

zero” problem was new. All three problems manifested themselves in the same way,

namely the formation of needlessly large intermediate expressions.

The Leading Coefficient Problem

The leading coefficient problem occurs when the polynomial to be factorized is not

monic. The Hensel lifting algorithm needs to know the leading coefficients of the factors

otherwise it cannot work — see chapter 2. In the univariate case we were able to force

all the factors to have a leading coefficient equal to that of the original polynomial, and

consequently pay a small price in having to work with slightly larger numbers than

strictly necessary. Such an approach is more serious for multivariate polynomials since

-3 .13-

Related Work J Abbott

we generate high powers of the leading coefficient, which could be dense multivariate

polynomials.

The Extraneous Factor Problem

These are factors which are not modular images of true factors, for example

x2+6x+2y2 = (x+2)(x+4) mod (y-2) but neither (x+2) nor (x+4) is an image mod (y-2)

of a true factor. Extraneous factors are bad news in two respects: firstly they usually

become increasingly dense as the lifting proceeds, consuming lots of space and

computation time; and secondly they lead to a combinatorial search at the end. Only the

latter effect was apparent during univariate factorisations.

The “Bad Zero” Problem

This occurs when picking zero as a substitution value for all the variables violates

one of the conditions of square-freeness and full degree of the image. Consequently, we

must either calculate modulo a polynomial ideal of the form (X2~a2, . . . ,xn-a n) while

lifting or we must rewrite the original polynomial in terms of yy := xy—ay. Both

possibilities can produce large dense multivariate polynomials. Musser recommends

rewriting the original polynomial as that happens only once at the start and once at the

end whereas there may be many calculations modulo the polynomial ideal.

Some Solutions

All three problems (for factorization over Z) were effectively tackled in [Wang78].

A clever trick solved the leading coefficient problem, a new approach precluded the “bad

zero” problem, and the extra flexibility in the new algorithm allowed sufficient freedom

that extraneous factors were virtually eliminated. Wang’s trick for predetermining the

leading coefficients is discussed in chapter 7 where a generalisation of the trick to work

in algebraic number fields is given.

-3 .14-

Related Work J Abbott

Another advantage of knowing the leading coefficients was that other coefficients

of the factors may be determined merely by a simple division if the factors are

sufficiently sparse. Wang exploited this possibility and sometimes could find the

complete factorization without needing to lift. This idea of “predicting” coefficients was

extended further in [Lucks86]. Lucks’s method worked better than Wang’s when the

factors were fairly dense. Lucks stopped short of considering the largest linear system

generated by the known and unknown coefficients, and solving that as far as possible

— he may have decided it was not worthwhile.

The importance of preserving sparsity became widely recognised after Wang’s

paper appeared. A notable step in this direction was taken in [Zippel79] (also

[Zippel81]). Here the usual Hensel lifting method, which we have already observed can

lead to dense intermediate results, is replaced by a probabilistic lifting process. If

Zippel’s algorithm is lucky (which it normally is) then intermediate results are never

bigger than the final result — though this may be exponentially larger than the input,

e.g. consider xp-1 (for p prime) which has size Ci{!og p) but has a factor of size ii(p).

Wang expressed some further ideas on the subject in [Wang79a], though his method

cannot guarantee that intermediate expressions are no larger than the answer.

Independent confirmation of the pitfalls mentioned above is given in

[Moore&Norman81] who also comment that picking suitable integer substitution values

can be time-consuming. Their experience agrees with [Wang78] that two or three

different integer substitutions are usually enough to avoid extraneous factors during the

multivariate lifting. They adopted Zippel’s ideas on preserving sparsity.

Recent Papers

There is a description in [Lugiez84] of a clever way of lifting all the variables at

once. The usual method involves the computation of exponentially many derivatives:

f - (f mod (* 2- a 2, . . • ,xn-a n)k) =

-3 . 15-

Related Work I AKKaMW f t k / U V U

£ e ^ ----------~ (X Z ~ 3 2) 2 * ' * i x n ~ & n) " •

®2+ ' ’ ' +«/»=* dX22 ' ’ '

Instead of this, Lugiez uses Euler’s identity (below) about homogeneous polynomials to

generate a system of k linear equations.

rt
T*xj~z7m = 171 f Euler’s Identity
7=1 axi

where M s a homogeneous polynomial of total degree m in xv . . . ,xn. Lugiez shows

that his method is better than the one in [Wang&Rothschild75] but gives no comparison

with the improved version in [Wang78]. He did not consider the problem of dense

intermediate results. He also mentioned the parallel with partial fraction decomposition,

which is essentially the same problem. A year later he came up with a totally different

lifting scheme [Lugiez85] which is currently limited to bivariate factorizations. This idea

needs further development before it can compete with the more general algorithms.

Most of the recent work in this area has been more of theoretical than practical

importance — none of this work is used in this thesis. These theoretical advances have

aimed at producing polynomial time algorithms. As there are sparse multivariate

polynomials whose factors have exponentially more terms than the original polynomial

[vzG&K85b], the complexity is allowed to depend on both input and output sizes. In

[vzG&K85b], there is a family of polynomials which undergo an exponential growth when

made primitive or square-free — almost all of the current implementations of multivariate

polynomial factorizers reduce the input polynomial to primitive square-free factors as the

first two steps. The same paper gives a complete description of probabilistic algorithms

for the factorization of multivariate polynomials over both finite and infinite fields in

polynomial time. This paper has several notable features, such as the ability to deduce

leading coefficients automatically, in addition to circumventing the need to perform

square-free and primitive decompositions. Two related papers are [Kaltofen85b] which

reduces a multivariate polynomial to a bivariate one in polynomial time, and

[Kaltofen85a] which reverses the process (i.e. lifts the factors) in polynomial time.

-3 .16-

Related Work J Abbott

A radically different angle is taken in [vdH&L85] where lattice reduction plays a key

role. The idea is to replace all except one of the variables by sufficiently accurate

rational approximations of algebraically independent transcendental numbers; then

factorize the resulting univariate polynomial; the multivariate factors can then be derived

directly by using Lovasz’s lattice reduction algorithm. The method has two obvious

trouble spots: one is the need for simultaneous transcendence measures, the other is

the slow speed of current implementations of the basis reduction algorithm. The authors

suggest that the method may be useful for bivariate factorizations but probably not for

polynomials in three or more variables.

Lenstra, on his own, has come up with an alternative way of using lattice basis

reduction to achieve the same end [Lenstra87]. His method is similar to the standard

modular-Hensel ones except that the combinatorial search is replaced by a lattice basis

reduction which can be performed in polynomial time — this paper claims polynomial

time but it assumes densely encoded polynomials, unlike Kaltofen’s papers which

assume the more realistic sparse encoding.

Lattice Basis Reduction Algorithms

This section glances at a few algorithms for finding nearly orthogonal vectors

which generate the same lattice as the vectors supplied to the algorithm. An alternative

equivalent viewpoint is that the algorithms find particularly short generators. There is a

very pronounced trade-off between speed of achieving a reduction and the degree of the

reduction produced. Lovdsz’s algorithm in [LLL82] turns out to be the one best suited to

our purpose — a few papers consider improvements to this algorithm.

The problem of finding shortest vectors, Minkowski reduced bases, etc, for integer

lattices has been studied for a long time; for example, a way of finding the shortest

vector was given in [Dieter75]. However, it was not until late 1981 that any polynomial

time basis reduction algorithm was known. Lovdsz’s algorithm first appeared in [LLL82].

-3 .17-

Related Work J Ahhott

It is a generalization of Euler’s reduction method for two vectors, but the basis is only

fairly weakly reduced. The reduction is nonetheless strong enough for many applications

— our particular interest lies in the factorization algorithm in [Lenstra82].

Subsequent papers dealing with this topic are mostly in two categories: those

which apply the algorithm ultimately to perform stronger reduction but at a cost in time

complexity, for instance [Schnorr86] and [Helfrich85]; and those which endeavour to

achieve the same reduction faster, such as [Sch6nhage84], [Schnorr85], [Kaltofen83],

and [Vall6e87]. Our interest centres on the latter category because we do not need an

especially strong reduction, we just want an adequate reduction quickly. It is not always

clear whether the “faster” algorithms are practically useful but Schbnhage’s

improvements look promising. Afflerbach and Groethe claim to be able to compute

Minkowski reduced bases very quickly [A&G85] using a clever search method.

-3 .18-

4. Bounds

This chapter considers the question of how targe the factors of a given univariate

polynomial can be. Clearly the degree of any factor must be less than the degree of the

original polynomial, but it is not so clear what size coefficients the factor may have. We

start by giving a precise statement of the problem under investigation, and we give an

example showing that the problem is not trivial (even in the simplest case of

factorization over Z). We proceed directly to a solution in two parts: firstly we go over

ways of bounding the denominators that can appear, and then we show how to bound

the numerators in essentially the same manner as that in [Weinberger&Rothschild76].

We state a conjecture which leads to a tighter bound for the numerator, and give

supportive evidence for the conjecture.

Statement of the Problem

In this section we set up the notation for the chapter, and formulate the task

exactly. Our problem is that we have a polynomial, f(x) = over an algebraic

number field, K, and we want to know how “big” the coefficients of any factor of f can

be; i.e. if YJEtPi*1 divides M *). how “big” are the b;? We can express this precisely.

We are given an algebraic number field K, and a polynomial f , over K. Let d be

the extension degree of K over Q, so we can choose d algebraic integers,

p1f p2, . . . , p</, which form a <D-basis for K; i.e. K = (D<p1f. . . ,p<*>. We shall

represent all elements of K with respect to this basis, e.g. a, = 2 y iia/yP/ with 3,1 aije

Let the (unknown) factor of f{x) be g{x) = '£j!!0bjXi . As for the a-, we represent

-4.1 -

Bounds J Abbott

bj = Syl^/yPy with all by g <D. Thus our aim is to bound the sizes of the denominators

and numerators of the by in terms of n, m, the a/ t and the py.

Motivation

We start off by demonstrating that this problem is not all that easy even in the

simplest case of factorization over Z . The intuitive first guess that factors have smaller

coefficients than their product is wrong, as the following example shows:

x41- x 40-x 39+x36+x35-x 33+x32-x 30-x 27+x23+x22

- x 21- x 20+x19+x18- x 14- x 11+x9-x 8+x6+x5-x 2-x+1

is divisible by the apparently much larger

x33+7x32+27x31+76x30+1 74x29+343x28+603x27+968x26+1 442x25

+2016x24+2667x23+3359x22+4046x21+4677x20+5202x 19+5578x 18+5774x 17

+5774x16+5578x 15+5202x 14+4677x 13+4046x 12+3359x1 1+2667x 1°+201 6 x 9

+1 442x8+968x7+603x6+343x5+1 74x4+76x3+27x2+7x+1 .

Here we have a factor with coefficients almost 6000 times the size of the coefficients of

the polynomial it divides — examples of arbitrarily high degree (and arbitrarily great

coefficient growth) can be constructed using a method from [Mignotte81].

To explain why we want to know such bounds, we shall restrict to the easy case of

factorization over Z ; the same arguments hold for algebraic number fields but the

algebra is more complicated. We shall talk about the (mod g)_1 step in the standard

modular-Hensel procedure (see chapter 2 page 11). It is important that any true factor

corresponding to a factor modulo q can be found quickly from the modular image. We

ensure this by insisting that the modular images of coefficients of true factors be distinct

— if each modular coefficient were the image of at least k > 1 possible true coefficients

then a modular factor of degree m would have at least km pre-images whose

coefficients permitted them to be putative true factors, and we would have to search

through them all. One way to arrange for the one-one correspondence is to find a limit

- 4 . 2 -

Bounds J Abbott

on the absolute value of any true coefficient and then make q greater than twice the

limit (to allow for positive and negative coefficients). This is what we do, and why we

need the bounds discussed in this chapter.

Bounding the Denominator

In chapter 2 the notions of algebraic integer and defect were introduced, and we

shall be using them here. The aim of the first part of this section is to find a (small)

multiple of the defect with minimal effort; then we consider actually computing the

defect. We reiterate the argument in [Weinberger&Rothschild76]. The mainstay of what

follows is (one version of):

Gauss’s Lemma

Let O denote the ring of algebraic integers of our field K\ and let

9(x) - 'Zj=c9jx i £ 0[x] and /J (x):= £ yV > jXJ e 0[x] with grhs * 0 then if each

coefficient of g(x)h{x) is divisible in O by t e O then each product gjhk is also divisible

in O by t.

Useful lemma

If f {x)e (1 /a)0[x] is monic, and f (x) = g(x)h(x) over K with g and h monic

then g{x),h{x)e (1 /a)0[x].

Proof (from [Weinberger&Rothschild76])

Pick b such that g{x),h{x)e (1/b)0[x], then b2f{x) = bg{x)bh{x). Define gy and

hj as in Gauss’s lemma, and apply that lemma to get {b2/a)\bgjbhk in other words

agjhij e O V/,fr. Putting j = r or k = s proves that each gy and each hk lies in (1/a)0.

So, given a general polynomial f (x) e K[x], if we can find an integer, MVO, such

that M' f { x) e 0[x] then we know that the coefficients of the factors of f can be taken

- 4 . 3 -

Bounds J Abbott

to lie in M~10 where M is the leading coefficient of It is easy to find a suitable

M using our representation: just set M' to be the lowest common multiple of the

denominators appearing in the representations of the coefficients (though this value may

be too large by a factor equal to the true defect) — recall that the algebraic kernels are

algebraic integers so any sum of products of them is an algebraic integer.

We are now about to discover one of the complications concomitant with

generalisation to algebraic number fields. In the case when K = <D we have the ring of

integers O = Z , but even in a simple extension, K = Q(a), we do not necessarily have

O = 2[a]. For example, if a3-3 a 2-3 a -3 = 0 then K = 0(a) has ring of integers

O = 2 < 1 , a, 1/2(a2+1)>. This means that clearing denominators by multiplying by M

above does not guarantee that fractions will not appear in our representations of the

coefficients of the factors. This brings us back to the defect (of a basis) which we

defined in chapter 2 as

d e fec t^ , p2, • • * . Pd) = min(/e Z + : O cy^1Z<Pi, P2. * • • . Pd>)-

We show that the square of the defect of a basis divides its discriminant; which

means that D, the largest number whose square divides the discriminant of a basis, is a

multiple of the defect. Let co1t • • • , be any integral basis, and R = (r,y) be the

matrix sending (co,)-»(P/), i.e. P /= J^f/y^y- Thus by definition of an integral basis,

R e G L d{2), and in particular det{R)€ 2 . It is clear from the definition of the

discriminant (in chapter 2) as the square of a determinant that

discr{$u p d) = det(R)2discr{<ou . . . f tod).

It can be shown that the discriminant of an integral basis is an integer (and is the same

for all integral bases of a given field). We complete the proof by showing that the defect

divides det{R). Let the inverse matrix of R have entries (Sy). Then by Cramer’s rule

det{R) is a common denominator for all the Sy-; and, we also have that ©/ =

from which it is clear that O c D_1Z<p1f. . . ,p</> QED.

- 4 . 4 -

Bounds J Abbott

In practice, 0 may be hard to find, as it apparently requires integer factorization;

for example the discriminant of x7-1 1 x6-19x5+25x4+37x3+18x2+7x-19 is

16838677302720365219 (a prime) which is square-free but we have to try all primes up

to more than 1000000 to discover this (or use some sophisticated primality test).

Instead of computing 0 we can use an easy-to-find multiple of it, such as the

discriminant itself, or some intermediate compromise derived from a partial factorization

— we may safely let 0 denote the compromise value.

Combining the results above we conclude that the largest denominator that could

appear in the coefficient of any factor divides MD. However, this is often a gross

overestimate even if there is no compromise in finding 0 ; for example, in the field

generated by a ninth root of 54, we calculate 0 to be 24321 = 167365651248 whereas

the smallest possible value for 0 is 27. This leads us to the alternative approach.

At the other end of the spectrum there is the policy of investing a great deal of

effort in actually calculating the defect in the hope that it pays off by saving work in later

computations. Some recent work by Bradford [Bradford88] on Zassenhaus’s “second

round” algorithm for determining integral bases has made this approach viable. Once

we know an integral basis (and hence the defect), we can easily find the minimal value

for M by expressing the coefficients of f in terms of the integral basis elements. This

gives us the best possible denominator bound short of knowing the answer. We have

performed some experiments to compare this approach with the less sophisticated one

described at the start. Our results show that the initial investment is usually worthwhile,

largely because the basis reduction becomes very much quicker with the smaller

numbers. We present a selection of results in the table below:

- 4 . 5 -

Bounds J Abbott

Comparison of Denominator Bounds
Example Estimate Defect Free

[Lenstra82] [Weinberger76] Defect
1 5.50 5.56 5.40
2 4.08 4.70 3.94
3 9.62 9.76 9.58
4 72.8 83.8 43.6
5 2198 1211 974

The entries in the table are total factorization times for the example indicated using

the denominator bound indicated: Estimate means the largest number whose square

divides the discriminant, Defect means that an integral basis was calculated for the field

during the factorization and the defect was taken as the denominator bound, and Free

Defect is the same as Defect but excluding the time taken to find the integral basis (if

many factorizations are to be performed in the same field then the integral basis need

be found only once).

Bounding the Numerator

We have achieved the first part of our aim, and now turn our attention to the

second. We begin by explaining fully our goal and the route we take to reach it. Then

we dive into the details of the solution.

We assume that a denominator bound has already been found, and we call it A.

Thus with the notation at the beginning of this chapter we get Aby e Z for all / and j\

and our goal is to get an upper bound for | Ab,y | . The interest in the Aby is because

they are integers and thus (relatively) easily obtained from a modular image; so these

are the values we compute in the (mod g)"1 step of the factorization algorithm. We

chose not to use the algorithm in [WGD82] for reasons of efficiency, even though this

algorithm can derive rational numbers directly from their modular images. The results in

the table immediately above discourage use of their algorithm still further.

Our route follows closely those of other authors (e.g. [Weinberger&Rothschild76]).

Firstly, we find an upper bound for the magnitudes of the roots of f in C. Then by

- 4 . 6 -

Bounds J Abbott

binomial expansion we bound the magnitudes of the coefficients of any factor — any

factor is merely a product of linear factors (x -a) as a runs through a subset of the roots

of f. Finally, we deduce a bound on | Ab,y | from the magnitude bounds.

(a) Bounding Roots In G

We are given a polynomial f {x)s K[x] and must calculate an upper bound for the

magnitudes of its roots. Already there is the question of which embedding K -*C should

we use? The bound on the roots has to be valid for all the possible embeddings. So this

dissuades us from calculating the perfect bound by isolating the roots of all the

embeddings to sufficient accuracy — a process which is known to be ill-conditioned

anyway [Wilkinson59]. We must look elsewhere for an answer. There are several

formulae in the literature which yield an upper bound, but they need to know the

magnitude (in G) of the coefficients. Although we may not know the magnitude of any

image of an element of K in G, we can still find an upper bound on the magnitudes of

all possible images of that element in G.

We consider two problems simultaneously: that of bounding the maximum of the

magnitudes of the possible images of an algebraic number field element, and that of

bounding the maximum of the magnitudes of the roots of a polynomial with coefficients

in an algebraic number field. We begin by introducing a piece of notation: we denote

the maximum of the magnitudes of the embeddings of a e K into G by ||a ||. It follows

immediately that for any a, p e K and q e <D

IIot+p|| < ||a|| + ||p||, ||ga|| = \q \ ||a ||, and ||cxpll < ||a ||||p ||-

We argue by induction on the degree of the algebraic number field extension. If

the extension degree is 1 then the field is just <D and it is trivial to bound the magnitude

of an element of <D. We can bound the magnitudes of the roots of Q[x] just

by finding the largest real root of \an \ xn~YJj^ I ay | xl as described below.

- 4 . 7 -

Bounds J Abbott

Now we treat the case of an extension of degree greater than 1. We assume that

any element of any field of lower extension degree can be bounded, and also the roots

of any polynomial with coefficients in a field of lower extension degree can be bounded.

Recall that an element of the field is represented as Cyp/ with the cy lying in the

smaller field, Kr So we can bound all the ||cy || by induction, and also we can bound

|| pr || by computing a bound for the roots of the minimal polynomial of pf (which has

coefficients in Kr^). So the original field element is bounded by C j A] where

C j Z \ \ C j \ \ and A £ ||p,||.

It remains to bound the magnitudes of the roots of a polynomial over the field. We

do this by reducing the problem directly to a root bounding problem over <D. Let the

polynomial be YJj=oaixi and consider the new polynomial II an || || ay-1| xJ. It is

clear that the magnitude of any root of the original polynomial does not exceed the

largest real root of the derived polynomial. One point remains: we know only upper

bounds for the || ay || not their exact values, but this does not matter if we insist that all

polynomials be monic (which they are in our application), so ||an || =1 .

The preceding argument has left the legacy of having to find the largest real root

of a polynomial of the form l {x) := xn-J^j!~^bjX] with all the by > 0. There are three

well-known theoretical bounds:

1+max{bn_1f bn_2..........b0}

which is due to Cauchy, and can be found in [Mignotte76];

max{nbn_i, ^nbn_2, ■ ■ ■, (nb0)Vn}

which is also due to Cauchy; and

2max{b„_1i . . . ,bSm)

which can be found in [Knuth69] as exercise 4.6.2-20. The following lemma shows that

- 4 . 8 -

Bounds J Abbott

1 has precisely one positive root (or is just xn).

Lemma

If 9(x) = xn-J^p^bixi with all b,>0 then g{x) has exactly one positive root or

g(x) = xn.

Proof By induction on n.

If n = 1 the result is trivial.

We may assume n > 1 and g { x) * x n. The derivative divided by n (i.e. g'{x)/n)

satisfies the conditions of the lemma, and so has at most one positive root. Clearly

g[x)—*°o as x —><», and £(0)=0. We have assumed that not all the b, are zero, so let by

be non-zero. Then for e = Vzb ^ n~j) we have en - bjd < 0, so in particular g(c) < 0.

Thus g has at least one positive root. QED

The three formulae above give upper bounds for the real root of 1 , although it is

easy to compute an arbitrarily close rational approximation — which is what we do. Let

us define rb{?) to be the positive root of 1.

Recall that our real goal is to bound the roots of any (monic) polynomial, say

f := xn + ai x*> ancl f Is ° ne °f the stepping stones. We have observed

experimentally that by substituting

a n -1
X - > X ------------

n

in f (to kill the xn_1 term) then computing a root bound for the substituted polynomial

(by finding a close rational approximation to the positive root of J) always gives a better

bound. The program used to perform the experiments is given in appendix C. Based on

these results we make a conjecture:

- 4 . 9 -

Bounds J Abbott

Conjecture

Define f{x) = x \ aj \ x ̂ where f{x) = xn+ J ^ ^ a Jxi e <D[x]. Then, with rb

defined as above,

where f 8{x)=f{x-&) and 8 is chosen so that f & has no xn_1 term.

(b) Binomial Expansion

The next part of our route is to derive a bound on the magnitude of the coefficients

of any factor. We assume a bound, B, on the magnitude of any root of f is known. We

need consider only factors of degree at most half the degree of f since at most one

factor can have degree greater than half that of f.

Let us begin by considering a factor of degree r, then we can consider the effect

of varying r. A factor of degree r will have coefficients bounded by || (x+B)r ||. , and this

bound can be attained so it is tight — II Ml - means the maximum of the absolute

values of the coefficients of f. By the binomial expansion

We want to find out which coefficient is the biggest, and to do this we look at ratio of

adjacent coefficients in the expansion:

By inspection we see that the ratio decreases as j increases, so the largest coefficient

will be for the least integer value of j giving a ratio below 1. Thus the largest coefficient

and it is easy to see that a factor of higher degree has a higher bound, so we set

\ 8 \+rb(h)<rb(J) V f (x) e C[x]

Coeff(xJ+')
Coeff{x>)

will correspond to j = . This is the magnitude bound for a factor of degree r,
6+1

-4 .10-

Bounds J Abbott

r = [n/2\ to get a bound on the magnitudes of the coefficients of any factor of degree

up to n/2. We could also retain r and j as parameters in the bound — see the section

on trial divisions in chapter 3.

(c) Deducing a Bound on | by |

We have reached the last, but hardest, leg of our journey. From (a) and (b) above,

we have a denominator bound, A, and a magnitude bound, B, for any image in € of any

coefficient of any factor of f. In other words for the algebraic numbers

bj = Eyt^yPye K, we know that Aby are integers, and that all their images in C have

magnitude at most B. Our aim is to deduce a bound on the integers | Aby | .

The key fact is that the magnitude bound is valid for any image in <D. So we can

set up the following system of linear equations:

Pi P2

p p p p

pi*> b p

prf
p p

p

Afc/i
Ab/2

Abj
A b P

Abid Abf*

where for any pe K we write p, p(2), . . . ,p(d) for the field conjugates of p. Observe

that all the elements on the right hand side are bounded in magnitude by AB. We shall

derive some bounds by inverting this linear system.

Obviously the values of the by depend on the (D-basis p1f. . . ,prf; we shall

assume that the obvious basis (defined in chapter 2) for 0 (a 1t a2, . . . , a t) is being

used:

{a°'a.%2..a?r : 0<e,<c/egree(a/)}.

This choice of basis gives the matrix a special structure from which we can derive three

formulae. By Cramer’s rule each Aby is the ratio of two determinants; the denominator

being the discriminant of the basis. The formulae come from different estimates for the

-4.11 -

Bounds J Abbott

numerator determinant. Hadamard’s bound yields:

B d ,A d || a, 0 d i d r ') || a21| ||a,||
< --------------------------- m s ---------------------------

where d,- is the degree of a,- over the field <D(a1t a2, . . . , am). If we regard the

determinant as a sum of d! terms and bound each term, we get

, _ , Bd\ || a, || d (d ' ~ ') || a21 d ’' d r ') ■ ■ ■ || a, | d{d ' ~ ']

1 1 < ------------------------

which is never smaller than Hadamard’s bound. However, a result of Landau

[Mignotte74] tells us that

T id a l : I«|>1 and 1(a) = 0} < \\f ||2

where ||f II2 denote the Euclidean norm of the coefficients of 1. This inequality in

conjunction with a rearrangement like ab2c3 = (abc)(bc)(c) leads to the last formula:

4-{dr 1) M d 2-i)
, Bd\\\ /7711|2 1 ||m2||2 2 - - \ \ m r \\2 r

|A^ ' < -----------------------------

where m, is the minimal polynomial of a, over a2> . . . , a,^).

Unfortunately, a bound in Wang [Wang76] (attributed to Weinberger) which

seemed to be greatly superior is erroneous [Abbott&Davenport88]. The formula for a

simple extension <D(a) of degree d was:

We found a family of counter-examples to this formula. One member of the family is:

a3 = 42 so a maps into C as 3.476.. or -1.738..±/'3.010... Let w = 21a2+73a-127, so

the images in (D of w have magnitude at most B = 381. The formula above implies that

the coefficients in the representation of w as a linear combination of {1, a, a2} are

strictly less than 127 — a contradiction.

In conclusion, we have achieved all that we set out to do at the start. We are able

to find the best possible denominator bound, and subject to the veracity of a conjecture

-4 .12-

Bounds J Abbott

we can find quite a good bound on absolute values of images in C of algebraic

numbers. However, the results in (c) often yield poor bounds, though they can be shown

to be tight in certain cases. The following table shows how our numerator bound

compares with the “optimal” one (i.e. derived by hindsight):

Comparison of Numerator Bounds

Example Times using our bound Times using optimal bound
Bound Lifting Basis Total Bound Lifting Basis Total

1 11875 2.6 0.3 8.7 191 2.0 0.2 8.1
2 4149 3.1 0.6 5.5 48 2.2 0.3 3.9
3 2208 5.9 1.3 12.3 3 2.2 0.5 5.3
4 8x1012 6.7 34.1 130 400000 4.2 13.2 41
5 2x1028 164 1500 4400 6x1013 67.0 218 997

-4 .13-

5. Lattice Basis Reduction

The general topic of this chapter is the basis reduction algorithm which is an

essential step in Lenstra’s factorizer [Lenstra82]. Although it is not assumed that the

reader has already looked at [LLL82], we try to keep our notation compatible with that

paper. We begin by setting up the notation and terminology for the chapter, and then

give a recap of Lovdsz's algorithm. We follow this with a discussion of various

modifications made to Lovasz’s lattice basis reduction algorithm as presented in [LLL82].

Our experiments had shown that the basis reduction normally consumes a significant

proportion of the total factorization time, so it is important to achieve the reduction as

efficiently as possible. So we summarise the results of experiments designed to

compare the various modified algorithms, and then select one of these as being the

“best” for our purposes. Finally, we give an empirical formula for the time taken by our

chosen algorithm.

Notation and Statement of the Problem

We are given the generators bv . . . , bn of a lattice in Z 77, and the aim is to find

another basis of almost orthogonal vectors; or equivalently, a basis with very short

vectors: for example, (writing the basis vectors as the rows of a matrix):

100 o’ -5 -5
61 1 reduces to

r 12 8

which means that any Z-linear combination of (100 0) & (61 1) can be written as a Z -

linear combination of (-5 -5) & (-12 8), and vice versa.

-5.1 -

Lattice Basis Reduction J AbbOtt

We comment that any two bases of a lattice can be mapped to one another by

integral unimodular transformations; i.e. the matrices corresponding to the

transformations have determinant ±1, and integer entries. We define the orthogonality

defect of a basis to be the ratio of the product of the lengths of the basis vectors to the

volume of the parallelopiped whose edges are those vectors (or, equivalently, the

determinant of the matrix whose rows are those vectors, provided the matrix is square).

The orthogonality defect is a measure of how far a basis is from being orthogonal — the

lower the defect the closer to orthogonal the basis is (the defect is always greater then

1).

In accordance with [LLL82] we use the following notation:-

ty are the (input) vectors defining the lattice;

bj are the corresponding Gram-Schmidt vectors (i.e. the component of b, orthogonal to

span(bi, . . . ,bM));

Bj = I b i |2, is the square of the Euclidean length of bj;

[Ljj = {bj, bj)lBj is the scaled inner product of bj and b, \ and

It so happens that the input bases generated by the factorization algorithm are

triangular (i.e. one vector has all except the first coordinate equal to zero, another has

all except the first two, and so on) which makes the initial computation of the quantities

above particularly easy.

We now recap Lovdsz’s algorithm (using the notation above), and give an example

run. Comments are between square brackets.

Lovdsz’s Algorithm

(1) Compute the bj and p,y.

B, := \bj \ 2 and

k := 2.

- 5 . 2 -

Lattice Basis Reduction J Abbott

(2) [b-i, , bk^ are fully reduced amongst themselves, so we look at bk]

Subtract [\ikk̂ }b k̂ from bk to ensure that In**-! | <1/2.

If Bk < (3/4-p**--\)Bk_-i then do (4) otherwise do (3) — [if swapping bk with bk̂

would give a bk_, of less than V3/4 the length of the current bk̂ then do the swap

otherwise don’t bother].

(3) [we add bk to those already reduced]

Make all \\ikj \ < 1/2 by subtracting appropriate multiples of bk-2, bk-3, * * * from

bk.

If k = n then exit, otherwise k := k+1 and go to (2).

(4) [we get a worthwhile reduction by swapping bk with bk̂]

Swap bk with bk̂ , and update the corresponding \i and B values.

If k > 2 then k := k - 1 [we have lost one reduced vector by swapping].

Go to (2).

We shall illustrate the algorithm by showing how the example above becomes

reduced. Initially b, = (100 0) and b2 = (61 1).

Step (1) B, = 10000, B2 = 10000 and p21 = 0.61.

Step (2) b2 = (-39 1) and p21 = -0.39.

Step (4) b̂ = (-39 1), b2 = (100 0), 8 1 = 1522, and p21 = -2.56.

Step (2) b2 = (-17 3) and p21 = 0.44.

Step (4) b ! = (-17 3), b2 = (-39 1), B, = 298, and p21 = 2.23.

Step (2) b2 = (-5 -5) and p21 = 0.23.

Step (4) bi = (-5 -5), b2 = (-17 3), B̂ = 50, and p21 = 1.40.

Step (2) b2 = (-12 8) and p21 = 0.40.

Step (3) exit.

The above example is exceptional because there were only two vectors; normally

upon reaching step (3) another vector will be looked at, allowing further reductions.

- 5 . 3 -

Lattice Basis Reduction J Abbott

Notice that even two small vectors need several vector subtractions and swaps during

the reduction process.

Why do we need lattice basis reduction?

At first sight there seems to be very little connection between the factorization of

polynomials and basis reduction. Indeed, Trager’s algorithm [Trager76] can do

everything Lenstra’s [Lenstra82] can, and more; and Trager’s algorithm never needs to

find a reduced lattice basis. However, we have already commented that Lenstra’s

algorithm is significantly faster, and the work of this thesis is to extend the realm of

applicability of Lenstra’s algorithm to that of Trager’s. Our need for basis reduction is

purely for Lenstra’s algorithm.

The basis reduction occurs as part of the (mod g)_1 step of the overall algorithm

(see diagram in chapter 2). At this stage the information we have is: a tower of

extensions K0 = Q and, for each / = 1 , . . . , r the extension K) = /^ (a ,) ; the minimal

polynomial, mlt over of each a,, and their corresponding modular equivalents

Ko := Fp and for i = . . . ,r the extensions Kj = K/_i(a,), where a, has minimal

polynomial fflj over Kj.-,. Recall that m, is square-free modulo p, and that we may have

had to select the m, from several alternatives — the basis reduction is going to

compensate for the effect of discarding the other possibilities for 777/.

We can use an alternative notation for the Kh namely K0 = Z /(p) and Kj =

K/-i[x/]/(777,(x/)) = Z[x1, . . . ,x,]/(p, m^x-,), . . . , m , (X i)) . This notation allows us to

express the effect of lifting more easily. Let q be some power of p. Then define R0 to

be Z/(g). For each / from 1 to r let mt{x) & R^[x] be the unique factor of the

canonical image of m,{x) in R^[x] satisfying m^x) = m;(x) mod p; and let Rj denote

fl/-i[*/F(flJ/(x/))- Thus we obtain a succession of rings R0t . . . , Rr.

The (mod qr)-1 step involves taking elements of Rr to elements of Kr in a special

way. We have chosen q so that each element of Rr corresponds to at most one

- 5 . 4 -

Lattice Basis Redaction J Abbott

element of Kr which is small enough to occur as a coefficient of a factor of f. We want

a means of finding that element of Kr given its image in Rr. This is where the basis

reduction comes into play.

To use the basis reduction algorithm we must view the coefficients of factors in Kr

as elements of Z rf. We do this in the obvious way: we already have a Z-basis for the

coefficients of any factor (once we have cleared the denominators — see chapter 4),

namely the obvious basis for Kr: { a f1 • • • a® ': 0 < e,- < d, }. We merely associate the

basis element a f 1 • • • a®' with the unit vector ^ where s = e1+cf1e2+ • • ■

+did2 * * * dr̂ er.

Now, Rr is a lattice inside Z rf, generated by qe1t . . . , q e d and the vectors

6 0
associated with cti1 * • • a /m ^ a ,) e Kr with 0 < e, < d/-3m, and for j * i 0 < ey < dj.

We can calculate a reduced basis for this lattice, say It can be shown

[Lenstra82] that for all values of q greater than some q0{B) the fundamental region for

the gj contains a ball of radius B — the fundamental region of a basis, vv . . . ,y^, is

the region:

We assume that q has been chosen so that all coefficients of the factors of f lie inside

this fundamental region.

We know that any element of Z rf is congruent modulo Rr to a unique element

inside the fundamental region. This is how we find the “smallest” element of Kr with a

given modular image.

We are now ready to present the modifications we used to try to speed up the

reduction of integer lattice bases. All the versions are fairly close to the original

algorithm. We describe seven variants, and then give a table comparing the

- 5 . 5 -

Lattice Basis Reduction J Abbott

performance of five of these. The comparison was based on the five examples in

[Lenstra82] which we give in appendix D.

Using Rational Numbers

Our first implementation followed the diagram on page 521 of [LLL82] to the letter.

All quantities were represented as rational numbers (as supplied by Cambridge LISP

[Fitch77]). It soon became clear that this was hopelessly slow: the fifth factorization

example in [Lenstra82] produced a basis which took more than six hours to reduce,

whereas Lenstra claimed to have completed the entire factorisation in under a minute.

Closer examination revealed that most of the time was spent reducing the rational

numbers to minimal form, i.e. calculating integer gcds.

There was little consolation in the discovery that one of the factors Lenstra gave is

reducible. Lenstra did point out that the coordinates of the input basis in his

implementation were restricted to being smaller than 24a, unlike ours which had

coordinates as large as 7111=6.3x 1093. This emphasises the importance of using proven

bounds if we wish to guarantee that the algorithm finds all of the irreducible factors.

Trying Floating Point

Our next idea was to represent the bf, Bit and p,y as floating point numbers,

keeping the bj as integer vectors. No change was made to the algorithm. Now the basis

reductions were very fast but sometimes the output bases were not properly reduced.

The culprit was cumulation of rounding error as the p ,y were updated.

We tried to circumvent the problem by recomputing the bf, but were thwarted by

the need to find inner products accurately. We abandoned the use of floating point

numbers because of this poor behaviour on large lattices; also there were problems with

representing the very large numbers involved, and there could be portability problems.

- 5 . 6 -

Lattice Basis Reduction J Abbott

A possibility we have yet to try is the use of high precision floating point numbers.

A self-correcting algorithm is given in [Schnorr85] along with guidelines about the

minimum accuracy necessary. Schnorr shows his algorithm to have superior complexity

to that quoted in [LLL82], but it is not clear whether his algorithm would be faster in

practice. We have not implemented Schnorr’s algorithm.

Using Integers

A closer look at [LLL82] revealed that we need use only integer arithmetic: they

show that the dj are sufficient denominators for the and so we need manipulate only

the dj and d y p ,y . A new version was duly implemented, and was between four and ten

times as fast as the original.

However, we were still dissatisfied with the performance, and so investigated

further: we noticed that intermediate calculations involved extremely large integers,

which were normally the dyp/, values associated with the last few vectors — this

observation led to:

An Incremental Method

It is readily apparent that the flow of control in Lovdsz’s algorithm is unaffected by

the values of bm,dm and dypm/ until k first reaches the value m. Therefore we gain

nothing at all by calculating and updating the values of d y p ,y and d, for / greater than

largest value k has reached so far. In fact, since these values of dyp,y and d,- are

normally large, a lot of time is wasted manipulating them.

This suggested a sort of “lazy evaluation” scheme where each time k attains a

new maximum value we immediately compute all the new d y p *y and dk. Thereafter, the

new values are kept up-to-date no matter how small k may subsequently become —

there could be a compromise here where large values of d y p ,y and di are “forgotten” if k

becomes small.

- 5 . 7 -

Lattice Basis Reduction J Abbott

Fortunately, the dj and c fy ji/y for the first f r - 1 vectors contain enough information to

allow us to find dk and dj\ikj without having to keep the values of the bf, e.g. see

algorithm R in [Kaltofen83]. Unfortunately, the relevant calculations involve summing

rational numbers (to give an integer sum), and we know no efficient way of doing this

using only integer arithmetic; but we can represent each summand as an integer and a

floating point fractional part, and since the sum is an integer we can safely round the

sum of the floating point parts to the nearest integer to obtain the exact result. Without

such a device it is computationally expensive to find the new dj\ikj and dk.

Looking Only at Leading Digits

In our particular application of the basis reduction algorithm, most of the original

coordinates were zero or very large, with just a few 1s. The initial behaviour of the

algorithm was dictated by the relative sizes of the large numbers. We guessed that the

least significant digits had no influence until all the numbers were smaller, thus giving

rise to another modification: we scale the basis down (effectively throwing away the

least significant digits), reduce the scaled down basis and find the associated

unimodular transformation, then apply the same transformation to the full-size basis with

the intention of reducing its orthogonality defect preparatory to applying the reduction

algorithm.

We scale down the large lattice to a smaller one by dividing all the coordinates of

all the b, by some integer, k, and rounding. To maintain linear independence we may

need to alter one of the coordinates in each vector by ±1; in this process it is important

to preserve the sign of each coordinate of each vector. Our attempts to find a way of

picking a good value for k revealed an unexpected effect.

This scheme is infeasible because the unimodular transformation matrix can have

extremely large entries: e.g. when factorising the fifth example from [Lenstra82] the

original basis has numbers with 104 digits, the reduced basis has numbers with 35

- 5 . 8 -

Lattice Basis Reduction

digits, the transformation matrix taking the reduced basis to the original basis has

numbers with 69 digits (hardly surprising since the reduced basis is nearly orthogonal),

but its inverse has entries with 241 digits.

We explain why this is a problem. Let L be the matrix whose rows are the basis

vectors for the large lattice, and S be the matrix for the smaller (scaled down) lattice; so

L = kS+e where k is the scale factor and e is a matrix with entries not exceeding k in

absolute value. We had wanted to reduce 5 to the matrix R via some unimodular U (so

R = US), in the hope that UL would have smaller orthogonality defect than L. This

hope is false in the light of the observation of the previous paragraph, because

UL = kUS+Ue = kR+Ue, and as U can be so large Ue may have entries far larger

than any entry in kR or even L.

A simple way to avoid the hazard of large entries in U is to keep track of the size

of the largest entry in U, and as soon as the truncation error multiplied by U (i.e. Ue) is

large enough to affect the behaviour, we apply the transformation U to L and start

again, probably with a new scale factor. We have not yet fully implemented this scheme.

It is reported in [Kaltofen83] that Odlyzko has found a similar approach but using floating

point numbers instead of integer quotients.

Connection with Lehmer’s Integer GCD Algorithm

A definite drawback of the above approach is that part way through the reduction

process those vectors that have been reduced tend to be far smaller than those not yet

looked at. This means that k cannot be very large otherwise all the information in the

smaller reduced vectors will be lost. We could arrange for different scale factors for

each vector much as in Lehmer’s algorithm for computing integer gcds [Knuth81].

The connection between basis reduction and integer gcd computation is quite

close. In fact, integer gcd computation is merely basis reduction in a one-dimensional

lattice; for example the lattice in Z generated by (169) and (481) has the reduced basis

- 5 . 9 -

Lattice Basis Reduction J Abbott

(13) (or (-13)).

This variable scaling looks particularly promising for the case of reducing a pair of

vectors. For example, consider these two bases:

1 -1
999 999

1 -2
999 999

which is reduced, and

which reduces to
1 -2

1199 599

The two original bases would appear the same if we scaled all the coordinates by 1/10

(preserving signs), but if we scale the short vectors by 1 and the long vectors by 1/10

then we get a smaller basis whose transformation to a reduced basis yields the correct

reduction for the original basis. We applied this idea to the version which performs

“localized” reduction of pairs of vectors — for details see page 5.12.

Preprocessing the Basis

A rather different approach was to preprocess the basis to reduce its orthogonality

defect by a few quick and simple transformations before using the full power of Lovdsz’s

algorithm. Just by looking at the original bases one can see many “obvious" reductions.

This led to the idea of writing a routine to simulate crudely the reduction algorithm.

In essence the algorithm pretends that bf = bit hoping that normally this would not

be too inaccurate. In detail, the preprocessing algorithm is as follows:

(1) Set k = 1.

(2) We assume b1(. . . , bk are already Z-reduced {k > 2 always). We ensure all

[L'kJ- := {bk, bj)/ \bk |2e (-1/2,1/2] by subtracting multiples of bk_h bk_2, • ■ * from bk

repeatedly until the condition is met.

(3) If | bk | > | btf_t | we just increase k by 1 or exit if there are no more vectors.

Otherwise we swap bk and bk_1(reduce k by 1 (unless k = 2) and go to step (2).

-5 .10-

Lattice Basis Reduction J Abbott

By saying that b^, . . . ,bk^ are Z-reduced, we mean that |b,| < |b/+1| for

i = 1 , . . . , k -2 and that | p'fS I ^ 1/2 for all 0 < s < r < k.

A crude analysis of this algorithm yielded an atrocious worst case complexity, due

to the formulation of the test in step (3). Nevertheless it processed the bases produced

during the factorisation of the five examples in [Lenstra82] about thirty times as quickly

as the original routine, and the final orthogonality defects were only slightly greater than

those of the fully reduced bases.

The bad news is that sometimes step (2) can be very slow, the reason being that

ensuring that all p'*y e (-V2, Vfe] is not entirely trivial. Since the bj are not actually

orthogonal, some p'w may change value when a multiple of bj is added to bk. In

particular the value of p'w is no longer guaranteed to lie in (-V z , V2] and may lead to a

re-reduction. Just occasionally, the program has to go back and forth many thousands

of times as various p'w wander outside (-V2, V2] before control can pass to step (3).

We tried a crude method of solving this problem: we used the incremental basis

reduction routine to complete the reduction when more than, say, 100 attempts at

taming the p'kj had occurred. This hybrid showed good overall performance although

the time taken varied erratically with the size of the input basis.

Localized Reduction of Blocks

We noticed that the program often swapped (step (4) in Lovasz’s algorithm) the

same pair of vectors several times in succession. And after each swap the relevant p,y

must be updated, involving a lot of needless computation. We can achieve this more

efficiently by reducing the pair of vectors completely (only updating pw m), and then

updating the other p,y and cf, just once at the end. The benefits were instant:

incorporating this idea into the incremental algorithm produced a routine about as fast as

the hybrid preprocessing version at its best, and which showed no signs of erratic

variation. This is currently the best version.

-5.11 -

Lattice Basis Reduction J Abbott

[Sch5nhage84] discusses a similar approach allowing block reduction of several

vectors before updating all the p ,y . He claims superior asymptotic complexity over

Lovdsz’s algorithm for the correct choice of block size. We have not implemented

Schdnhage’s algorithm.

We had hoped to observe a distinct improvement in this version when we modified

it to use a variable scaling scheme. Indeed experiments showed that the part of the

algorithm which had consumed most of the time was greatly accelerated by the change.

However, although we found the correct linear combination much faster, all the time that

was saved in that section was consumed by the scaling down computations and the

application of the transformation to the two full-size vectors.

Comparison of the Algorithms

Below is a table of times taken by five of the versions mentioned above. The

headings Rational, Integer, Incremental, Preprocess, and Block refer respectively to the

original implementation using LISP rational numbers, the version using the d) as

denominators, the incremental version, the preprocessor assisted by the incremental

routine, and the version which uses blocks of two vectors. The bases used for testing

all come from trying to factorise Lenstra’s five examples (using Weinberger’s estimate

for the denominators); the sixth basis is an alternative basis produced from Lenstra’s

fifth example. The examples are given in appendix D.

Comparison of Basis Reduction Routines

Basis
Time taken for the Reduction (seconds)

Rational Integer Incremental Preprocess Block
1 2.96 0.30 0.32 0.22 0.30
2 13.14 1.46 1.16 0.80 0.78
3 63.38 5.02 3.56 2.52 3.08
4 2356 248 107 27.02 55.22
5 18714 5428 2801 2291 1449
6 23356 4881 2362 1214 1423

-5.12-

Lattice Basis Reduction J Abbott

From this table we see that both preprocess and block display superior

performance for our type of problem. The tabulated results also hint at the large

variations observed for the preprocess method. We select block as being best suited for

our purposes because of its consistency.

Empirical Complexity Formula

One problem we identified early on during the implementation of the factoriser was

what criterion should we use to guide our choice(s) of finite field. Experiments showed

that picking different finite fields could cause a great variation in the overall factorisation

time. It soon became clear that choices favourable for the Cantor-Zassenhaus factorizer

were unfavourable for the lattice basis reduction, and conversely. We decided to try to

estimate the total running times parameterised by the choice of finite field (so all the

minimal polynomials of the extension generators must be factorised) and the distinct

degree factorization of f. This spurred us to investigate the dependency of the basis

reduction on these parameters. We give our conclusions below.

Extensive timings using the block modification (on various bases produced during

factorisations over simple extensions of <D) have yielded an empirical formula for the

complexity: time = (n785d10)1/3 where n = log{Hensel bound) which is the same as the

maximum length of any coordinate of any (input) basis vector, 5 is the finite field

extension degree (so there were 5 orthogonal vectors in the input basis), and d is the

dimension of the lattice (i.e. the original extension degree). The formula was derived by

a trivariate linear regression of log(f/me) against log(n), log(d), and log(8) [using

MinitabJ. The times were obtained for n = 1 , . . . ,20, d = 4,5,6,7, and 8 = 1 , . . . ,d -1 :

we picked a random polynomial of degree d with small coefficients (<100) and having

full Galois group; then different choices of prime and modular factor gave the various

possible 5 values; finally, the bases were generated by lifting linearly to p-adic height

just greater than (224)n — the choice of 224 was based on the mistaken belief that the

-5 .13-

Lattice Basis Reduction J Abbott

underlying large integer arithmetic routines worked with 24 bit “digits”; actually the

routines used 32 bit “digits” but this should introduce only a constant scale factor. The

multiplication routine used a classical algorithm as opposed to a more modem “fast”

method.

A series of experiments addressed the question of where in the lattice basis

reduction routine does the time go. The results were slightly unexpected; normally most

of the time is spent computing the linear combinations of bk_-i and bk (about 40% of the

total reduction time), then second and third places went to updating the values of the p ,y

according to the linear combinations computed, and to the test whether to swap (roughly

20% each, but there was considerable variation). Of the rest of the time, about half was

spent finding the initial values of p ,y when the vector b, is first included in the basis.

6. Univariate Hensel Lifting

This chapter presents our experiences with several ways of lifting a factorization of

a univariate polynomial mod p to a factorization mod pk. We start by stating our basic

assumptions and defining the quantities used in the algorithms. Then the four lifting

schemes are explained in detail, with a comparison of all four, including experimental

results which support our choice of truncated quadratic lifting as being the best general

purpose scheme. The last part looks closely at the Implementation considerations for

lifting the factors and correction factors.

Assumptions

We begin by outlining the assumptions for the whole chapter. We consider only

the case where the factors to be lifted are coprime — this is automatically true if the

original polynomial is square-free. The schemes we discuss below all lift the factors in

parallel as suggested in [Wang76] — [Musser75] explicitly indicates use of a serial

approach which simplifies notation and programming, and Zassenhaus’s papers

([Zassenhaus69] and [Zassenhaus78]) imply the same though possibly only for

notational clarity. We view the problem as that of lifting factors (as do Musser and

Wang) as opposed to lifting primitive idempotents which Zassenhaus discusses.

Notation

We denote the polynomial to be factorized by f. Let p be a prime modulo which f

is square-free (and of full degree) and let the factors of f modp be f ^ , . . . , f s — in

-6.1 -

Univariate Hensel Lifting J Abbott

fact, they will be irreducible in our application, but we need only know that they are

coprime in this chapter. For clarity we shall assume that f and all the fj are monic. All

the algorithms use what we call the correction factors, written as a 1f. . . , as to produce

the refined factorization. The correction factors are defined as the reciprocals of the

products of all the other factors in the following sense: V / a j f j = 1 mod (p, fj), or

equivalently ay := (fy)~1 mod (p, fj) where fj := n o . We are ready to give definitions
i * j

of the algorithms and pass a few comments on them. The algorithms below employ the

simplification to the lifting of the factors outlined in chapter 2 and examined later in this

chapter (page 6.9).

Pure Linear Lifting

This is the simplest scheme. A factorization mod p is refined to a factorization

mod p2, and then to one mod p3, and so on. The algorithm looks like:

Input: Factors f ^ , . . . , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f . . . , f s mod pk.

(1) <7 := P-

(2) Compute the correction factors a 1f. . . , as mod q.

(3) While q < pk do

(3.1) q := qxp.

(3.2) Lift each factor: for j = 1 , . . . , s do fj := fj + (aj f) mod [q,fj).

It is clear that this algorithm needs k steps to compute the answer. However,

each step is very easy.

- 6 . 2 -

Univariate Hensel • ifting J Abbott

Pure Quadratic Lifting

This scheme is nearly as simple as pure linear lifting, the essential difference

being that the correction factors are computed inside the loop. The name derives from

the fact that a factorization mod p21 is lifted to one mod p2/+1 each time round the loop.

The algorithm for quadratic lifting is:

Input: Factors f y , . . . , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f u . . . , f s mod pK where K is the least power of 2

greater than or equal to k.

(1) q : =p .

(2) While q < pk do

(2.1) Compute the correction factors ^ as mod q — not actually needed on

the final iteration.

(2.2) q := q2.

(2.3) Lift each factor: for j = 1 , . . . ,s do fj := fj + (ay f) mod (q, f j).

It is easy to see that the loop is executed at most 1+log2(k) times, but more work

has to be done each time round the loop. Another drawback of quadratic lifting is that

pK may be much larger than p k — in fact, pK may be almost as large as (pk)2. The

disadvantage of this overshoot is that the computations at needlessly high accuracy are

time consuming. Indeed, if classical arithmetic is used then the last time round the loop

will take about four times as long as the penultimate time (assuming all polynomials are

completely dense), and about sixteen times as long as the antepenultimate one, etc.

because the computation time is dominated by the cost of the integer multiplications.

Thus about three-quarters of the total lifting time is taken in the final iteration of the loop;

hence, in the worst case, virtually three-quarters of the lifting time is wasted.

Univariate Hensel Lifting J Abbott

Fast Linear Lifting

We observed earlier that pure linear lifting requires many iterations. Although the

computations inside each loop are quick and simple, they are not quick enough to

compensate for the large number of iterations. The method used in REDUCE’s

factorizer endeavours to alleviate this: both the factors and the correction factors are

lifted quadratically until the modulus is just smaller than the wordsize of the computer

(assuming that single word integer computations are significantly faster than multiword

ones), thereafter only the factors are lifted (necessarily linearly).

The benefits of this scheme are that fewer iterations are needed than for pure

linear lifting, yet each iteration is almost as quick and easy (except for the first few

negligible quadratic steps). There may be a small amount of overshoot but this is

regarded as being small enough not to matter. Here is the algorithm:

Input: Factors . . . , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f 1f . . . , f5 mod pK where K > k is at most wordsize

times k.

(1) q: = p .

(2) While q < p k do

(2.1) If q < wordsize then Q := q and compute the correction factors

a 1(. . . ,a r mod q. [quadratic step only if <7 < wordsize]

(2.2) q := qxQ.

(2.3) Lift each factor: for j = 1 , . . . , s do fj := fj + (aj f) mod {q,fj).

We can see a close similarity between this algorithm and that for pure quadratic

lifting — they are the same until the condition in (2.1) becomes false when the algorithm

looks just like the linear lifting one.

- 6 . 4 -

Univariate Hensel Lifting J A K K a W n u u v i i

Truncated Quadratic Lifting

Our experiments showed that pure quadratic lifting could be very fast, but also that

it performed badly when it produced a large overshoot. Clearly a way of avoiding

excessive overshoot would improve the poor performance in those cases. Truncated

quadratic lifting was designed to fulfill this purpose. We lift quadratically while the

desired accuracy is greater than the fifth power or if it happens to lie between the third

and fourth powers. Then we perform one, two or four linear lifting steps (i.e. correction

factors are not lifted) to pass the desired accuracy. We explain later (page 6.8) how this

criterion arose. This scheme will be the same as pure quadratic lifting except in the

cases where particularly great overshoot would occur. A suitable algorithm is:

Input: Factors . . . , f s mod p of the univariate polynomial f , and the desired

degree of refinement pk.

Output: Refined factors of f : f \ , . . . , f s mod p K where 3k/2 > K >k.

(1) q ■= P-

(2) While q < p k do

(2.1) If qs < p k or q3 < p k < q 4 then compute the correction factors

a 1y. . . , as mod q and Q := q.

(2.2) q := qxQ.

(2.3) Lift each factor: for j = 1 , . . . ,s do fj := fj + (ay f) mod {q,fj).

Notice how similar this is to the pure quadratic and fast linear cases, the only

change is the condition at (2.1). We explain below why we chose the condition at step

(2 .1).

- 6 . 5 -

Univariate Hensel Lifting J Abbott

Comparison of the Algorithms

We implemented all four of the algorithms above and tried them on many different

examples. The table below gives the times (in seconds) taken to perform a few Hensel

lifts. The examples 1 to 5 are taken from [Lenstra82] (see also appendix D), the last

example was produced in the course of factorizing x9-54 over an extension of <D by one

of its roots. The dominance of truncated quadratic lifting over the alternatives considered

here is plain to see. The figures also highlight how much time can be wasted [difference

between pure quadratic and truncated quadratic] during the final iteration in pure

quadratic lifting even though our implementation of the pure quadratic algorithm did not

lift the correction factors on the last iteration.

Comparison of Hensel Liftina Methods

Example

[Lenstra82]

Lifting Method

Pure Linear Fast Linear Pure Quadratic Truncated Quadratic
1 5.78 2.10 1.88 1.90
2 4.48 1.94 2.48 1.94
3 14.58 4.44 5.50 4.30
4 40.94 7.50 4.82 4.82
5 1786 246 106 106

x 9-54 1201 169 66.70 43.70

We give here a theoretical argument to support our selection of algorithm. Our

argument works by estimating the relative times of the different algorithms. We shall be

realistic and suppose that classical arithmetic is used, so that the cost of multiplying two

integers together is proportional to the product of their lengths; and in particular,

arithmetic mod pJ takes time proportional to j 2. We also make a couple of plausible

assumptions; the first is that all polynomials involved in the lifting process are completely

dense, so that the cost of each lifting step depends only on the initial and final moduli (in

fact, we take the cost to be proportional to the square of the final modulus). The

second assumption is that the cost of lifting the correction factors (in quadratic steps) is

proportional to the cost of lifting the factors with proportionality constant k which

- 6 . 6 -

Univariate Hense! Lifting J Abbott

depends on the degrees of the factors but is independent of the modulus.

The analysis for pure linear lifting is easy. The total cost is just the sum of the

costs of lifting the factors alone by one power of p each step. Hence the entire cost is

roughly proportional to

Pure Linear = 4 + 9 + 16 + • ■ ■ + k2

= (2 Ac3+3/f 2+Ac—6)/6

The fast linear algorithm is the same except for a practically negligible contribution

from the initial quadratic phase. Suppose the quadratic phase lifted the correction

factors to modulus p7, then the overall cost is:

Fast Linear = quadratic part + y'2(4 + 9 + • • • + K2)

- quadratic part + j 2{2K3+3 K2+K-6)/6

where K := is the number of linear steps taken by the algorithm. If we ignore the

contribution from the initial quadratic lifting then we see that the cost is roughly k3/3j

which is about Mj * of the asymptotic cost of pure linear lifting. Allowing for the fact that

we neglected the cost of the quadratic lifting this suggests we should take y to be as

large as possible.

For quadratic lifting we must include the cost of lifting the correction factors. Let K

be the least power of 2 greater than or equal to k. So we shall lift both correction

factors and factors to modulus pKl2 then just the factors to modulus pK. The cost for

lifting the factors is thus 4 + 1 6 + • • • + 4* ; and for the correction factors it is

k (4 + 16 + • • • + 4* _1). Summing the geometric series we deduce the total cost as:

Pure Quadratic = 4(4k + k 4* - 1- 1- k)/3 .

In the worst case 2K is almost 2k, and substituting 2k for 2K into the total cost we

conclude that the cost is at most 4(4/c2+ k /c2- 1- k)/3 . This is obviously quadratic in k

whereas the complexity for either of the linear algorithms is cubic. Further experiments

showed that for very small values of k, fast linear lifting is better than pure quadratic,

- 6 . 7 -

Univariate Hensel Lifting J Abbott

but in practice k is never that small.

The basic idea behind truncated quadratic lifting is to lift quadratically until the last

few lifts when it becomes more efficient to lift linearly. However, we must be precise

about when to switch to linear lifting. Using the assumptions above we can estimate the

cost of various lifting combinations, and compare these:

Costs ol Lifting Combinations
Combination Final modulus Cost
L P2 4
LL P3 13
LLL P4 29
LLLL P5 54
LLLLL P6 90
LLLLLL P7 139
LLLLLLL P8 203
LLLLLLLL P9 284
QL P4 20+4k
QLL P6 56+4k
QLLL P8 120+4k
QLLLL p 10 220+4k
QQL P8 84+ 20k
QQLL P12 228+20k
QQQL p16 340+84k

The unit of cost is a quarter of the cost of lifting from modulo p to modulo p2.

By considering this table we see that if we need to lift beyond p5 (starting from p)

then it always more efficient to perform a quadratic step; however, for smaller lifts linear

lifting is superior except if we have to lift to p4 when a quadratic step is worthwhile

provided k < 2. The table also shows how much can be saved by using truncated

quadratic lifting versus pure quadratic or pure linear lifting: for example, to lift to p10

costs respectively 220+4k, 340f84ic, and 384 — so we win unless k > 41. Using the

lifting algorithms detailed in the rest of this chapter, we have found experimentally that k

is usually in the range 0.9 < k < 1.4. Finally, we observe that by its very construction

truncated quadratic lifting is never inferior to pure quadratic lifting.

- 6.8 -

Univariate Hensel I iftinn J Abbott

Lifting the Factors

Here we state the generalised form of Hensel lifting referred to in chapter 2 (page

13). We have available a factorization modulo pa, say f = fy • ■ - fs, and a set of

correction factors a 1(. . . ,a« correct modulo pb. We want to compute a factorization

modulo pa+b efficiently from this information.

We shall continue to assume that f and all the fj are monic (actually it suffices to

know what the leading coefficients will lift to). So the change to fj is just pa8,- where

6/ := {oLj{f~Ylfj)/pa) mod {pbJi). The question is how to compute the 8, quickly?

It is not too hard to spot that pa8, s (a, f) mod (pa+b,fj). So, in fact, we just

reduce f modulo (pa+b,fj) directly, then multiply by a/ and reduce modulo (pa+b,fj)

again — this gives 8/. Note that each a , is already reduced modulo (pb,fj).

Another scheme, used in REDUCE’s factoriser, calculates the residue (i.e.

f{x)~Y[f j{x)e Z[x]) at the start and updates its value as the f t are lifted; but this

seems less efficient, especially as computing the residue in Z can generate needlessly

large numbers: e.g. x2+1 s (x+2057)(x+1068) mod 3125 but the residue in Z[x] is

-3125x-2196875 which has a coefficient greater than one million. In general, by

considering the product of the constant terms we can see that if there are t extraneous

modular factors then the residue in Z may have coefficients as large as p at.

Lifting the Correction Factors

We showed earlier in this chapter that quadratic lifting is better than linear,

provided that the correction factors could be lifted with about the same amount of work

as the factors. We now study some ways of actually lifting the correction factors. Note

that the correction factors are always lifted quadratically: the inputs to the algorithms are

fy, . . . , f s modulo q2 and a 1f. . . ,a s modulo q, and the result will be lifted correction

factors A y , . . . , A a modulo q2.

- 6 . 9 -

Univariate Hensel Lifting J Abbott

Several people have noticed the connection between this problem and that of

partial fraction decomposition, namely:

1 «i a*_ _ _ s_ +.. .+_ mod(7.

This indicates that it might be worth looking at algorithms in that field, such as the one

in [Kung&Tong77].

All the methods we consider lift the correction factors by finding the and then

using the lifting technique for reciprocals. We recall the remarkably simple way of lifting

reciprocals: if g = f~' mod q and we want to compute h = f~y mod q2 then

h = g{2- fg) mod q2 where we may take any representative of g mod q2: we know

fg = 1 mod q so we may define e by fg = 1+qe mod q2, now consider hf mod q2 this

is just fg{2-fg) = (1+ge)(1-ge) = 1 mod q2. So provided we can find the f-, mod q2

efficiently, we can lift the a, quickly.

A little more thought shows that we really need just f-, mod {q2, fj). We

investigated six possibilities, some of which calculate fj and others which produce

fj mod {q2,fj) directly. We label the methods (a) to (f).

(a) For each / divide fj into f mod q2 (should go exactly) then reduce the

quotient modulo {q2, fj)\ or equivalently, reduce f modulo (q2,fj2) then divide

the remainder by fj\

(b) For each / reduce all fj {j*i) modulo fj then form their product modulo f,\

(c) Calculate and store f , , f - i f 2, - - - ' f ‘\ f 2 m’ mfs-V> a!so do the reverse list

f5, fsfs-1, . . . , fsfs—1 ’ f 2- Form the products of one element from each

list to generate the f,\

(d) split the fj in a “balanced” fashion (try to balance either total degree or

number of factors in each “half") and apply a divide-&-conquer approach like

the algorithm in [Kung&Tong77].

- 6 . 1 0 -

Univariate Hensel Lifting J Abbott

(e) split the f ■, in an “unbalanced” fashion, i.e. take the factor of least degree as

one “half” and the rest as the other — this is a serial method: at the j lh

iteration we compute Y l iU fh • • • *11 l*jfi and also IT iS f i>

(f) use the derivative of f as follows: we know f = Y [f j mod q2 so

f = mod q2, which implies that f ' = f j ' f j mod (q2,fj)\ so fj can be

found easily — this was inspired by the Newton-Raphson iteration technique

for root finding.

We expected (d), the balanced divide-and-conquer, to be best; however intuition

can be misleading. We implemented all six methods of lifting and compared them on a

variety of examples. To our surprise the seemingly inefficient method (b) of multiplying

together lots of fj turned out to be very good overall. A selection of the results is given

in the table below:

Comparison of Correction Factor Lifting Methods
Example Time taken to Derform the liftina
[LLL82] a b C d e f

1 28.8 23.8 23.8 25.9 26.1 35.3
2 27.7 21.5 22.2 25.2 29.1 26.0
3 51.4 42.2 38.7 42.3 46.5 61.9
4 53.3 39.4 41.9 48.4 49.4 49.8
5 570 423 477 653 792 438

x9-54 182 152 153 167 161 176

These times are interpreted PSL 3.4 on a Sun 3/50

A general complexity analysis of these algorithms does not produce a usable

result, but if we restrict to the very special case when all the fj have equal degree d we

can get some interesting results. We assume it takes (a+1)(b+1) basic multiplications

to multiply two polynomials of degrees a and b ; and similarly it takes b{a-b+1) basic

multiplications to form a quotient and/or remainder of a polynomial of degree a with a

monic one of degree b. Armed with these two results we may proceed.

Method (a) is easy to analyse giving a total number of multiplications:

-6.11 -

Univariate Hensel Lifting J Abbott

s(d(sd-cf+1) + d((s-1)c/-d+1)) = sd{{2s-3)d+2).

Method (b) is almost as simple once we realise a multiplication modulo a polynomial is

just a multiplication followed by remaindering. We find that (b) has complexity:

s(s d{d-d+1) + (s-2)[d2+d(2(cf-1)-d+1)]) = 2sd((s-2)cf+1).

Observe that to reduce all the fj to fj mod fj takes sd((s-2)cf+l) multiplications, so to

beat method (b), any method which produces the fj and then reduces these must find

the fj in less than sd((s-2)d+1) multiplications.

Method (c) calculates fj rather than fj mod f j ’, even so it takes longer than

method (b):

2((d+1)2+(cf+1)(2d+1)+ • • • +(d+1)((s-2)d+1)) +

(d+1)((s-2)d+1)+(2d+1)((s-3)d+1)+ • • • +((s-2)d+1)(cf+1)

= (s-2)[(s-1)(s+6)d2/6f(2s-1)d+2].

To analyse method (d) we make a further simplifying assumption that s is a power

of 2, say s = 2°. We define the function x(a) to be the number of multiplications taken

by method (d) when there are 2° factors of degree d. We can write down a recurrence

relation on x(a):

x(a) = 2x(a-1) + 2x2<*-1x(2<,~1d+1)x((2ff-1-1)d+1) + (2°^1cf+1)2.

Converting x(a) into a summation we derive the closed form:

2o<J-2cr2
o2(jf2 4
2 " 1 _2®f1+i

3

Replacing each 2° by s gives the result

4s 2-1

+ d2°(20+1-1) + 2°(<y+3)-1

d 24 —2s-1 + ds(2s-1) + s(3+log2s)-1
4

which is again cubic in s.

Method (e) is a bit easier to analyse, but again it produces fj. At the j * iteration

the cost is

-6 .12-

| UamaaI I
w m i v u i i u i u a i v i i g w i l . i i u i i %J J Abbott

(/-i)[((/-2)d+i)(d+i) + (jtf+i)(c/+i)],

and summing this for / = 1 , 2 , . . . ,s -1 yields the total number of multiplications:

2cf2(s-1)2(s-3) 2s(s-1)(s-2) (s-1)(s-2)
3 3 2 ’

and once more this is cubic in s.

The differentiation method, (f), produces f / f / 'mod but is faster than (b): the

number of multiplications being

sd + s(d((scf-1)-d+1) + d(2cf-1)) = s(s+1)cf2.

However, it is less efficient because we must also lift the values of (f/0-1 mod f ■, which

nearly doubles the amount of work.

In summary we have shown that under the special circumstances of all factors

having equal degree (and that there are 2s of them for the divide and conquer method)

that the multiplication method has best complexity, and our experimental results concur.

In fact, the experimental results indicated that method (b) performs very well overall,

consistently being the best or second best out of all six competitors.

-6 .13-

7. Multivariate Hensel Lifting

The topic of this chapter is the deduction of the multivariate factorization of

f (x1f . . . ,xt) given the univariate factorization of f{xu a2, . . . ,at) where a2, . . . ,a r

are suitably chosen integers. We shall consider only fairly standard Hensel lifting

techniques — in particular we ignore the recent lattice based methods, as these seem

to be less practical currently and also because we have a generalisation only of the

classical method for lifting factorisations over algebraic function fields.

We begin by looking at the standard algorithms of Musser and of Wang for

factorization over Z . We compare these methods and look at the practical problems

that arise during the computations. These problems were discovered shortly after the

first implementations were completed, and various strategies for alleviating or

circumventing them have been published. We then look at possible extensions and

adaptations of these methods to producing factorizations over algebraic number fields;

in particular, we give an extension of Wang’s leading coefficient prediction method

[Wang78]. Extensions to algebraic function fields are discussed in the next chapter.

The Standard Algorithms

We surveyed several papers in this area in chapter 2, and here we shall be most

interested in [Musser75], [Wang&Rothschild75], and [Wang78]. We present the

algorithms proposed in these papers and then compare their merits paying attention to

implementation issues. Finally we highlight the features used in our algorithm based on

-7.1 -

Multivar Soto I ler.sel LiftsnQ J Abbott

the foregoing comparison.

Musser’s Algorithm

Input: a square-free primitive multivariate polynomial f {x , t . . . ,xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2, . . . , a f e Z i.e. such that the image

f{x, ,a2t . . . ,a t) remains square-free and retains full degree in x v

(2) Factorize the univariate polynomial f{xua2, . . • ,at) over Z to obtain factors

f 1 » • • • » f S '

(3) Pick a large prime p (perhaps just smaller than the largest single-precision

integer) such that f{xua2, . . . ,at) remains square-free and retains full degree

in x 1; and reduce the f -, modulo p. So we have f = f ̂ ■ fs mod

(p, X2~a2, . . . ,xt- a t) — note that the may be reducible modulo p, but they

are all relatively prime.

(4) Let e-, be 1+3X/(f).

(5) For j := 2 , . . . , t do [lift the variables in succession]

(5.1) Quadratically lift the factorization to be valid modulo the ideal

(p, (x g - a /2.......... (xy- a y)^,(x/+1-a y+1)--------,(xf-a f)).

(6) Now lift quadratically in powers of p to obtain a factorization valid modulo

(P2*.(*2- 22) . . . p (x,-ar)e') where p2* is larger than any coefficient which

may occur in the factorisation.

(7) Finally determine the true factors via a combinatorial search — normally this

should be trivial.

- 7 . 2 -

Multivariate Hense! Lifting J Abbott

Wang & Rothschild’s Algorithm

Input: a square-free primitive multivariate polynomial f {xu . . . ,xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2 l . . . , a (e Z i.e. so that the homomorphic

image f mod (x2- a 2, . . • , xt- a t) has full degree in x̂ and remains square-

free.

(2) Factorize the univariate polynomial f (x1fa2, - . . ,at) over Z to obtain factors

f 1f . . . , fs. So we have f = f , • • • fs mod J where J is the ideal

(x2- a 2, . . . ,xt- a t) in the ring Z[x2, . . . ,xt\.

(3) For i := 2, . . . , 1 +total_degree(f) do [lift homogeneous degree of the factors]

(3.1) Lift the factors fj so that mod J'

(4) Use a combinatorial search to find the true factors.

Wang’s Improved (EEZ) Algorithm

This is almost identical to Musser’s algorithm except that the prime chosen at step

(3) is taken to be greater than a coefficient bound for the factors (thus making step(6)

unnecessary), and that the lifting at step (5.1) is linear. The definition of “suitable” in

step (1) has to be tightened: we want the homomorphic image to be of full degree and

square-free and, in addition, we want the distinct irreducible factors of the coefficient of

the highest power of x, each to have a “unique” prime divisor, that is for each of the

distinct irreducible factors of this leading coefficient there is a prime which divides the

homomorphic image of that factor alone — it has been emphasised [Norman&Moore81]

that this extra condition may not be easy to fulfill. However, there is great benefit

derived from Wang’s coefficient prediction scheme and other heuristic tricks which can

reduce the number of factors to be lifted — we discuss these below.

- 7 . 3 -

Multivariate Hensel Lifting J Abbott

Comparison

The main difference is between Wang & Rothschild’s algorithm and the other two;

the distinction between the latter two being primarily a selection of devices to avoid

extraneous factors or to detect factors early. We start by weighing the pros and cons of

the two types of algorithm, then we talk about the various devices used in the EEZ

algorithm.

Firstly we look at Wang & Rothschild’s algorithm. It has a simpler structure than

Musser's: the lifting is just in powers of a single ideal, and all the variables are lifted at

once. The algorithm naturally works with polynomials as opposed to the apparent need

for rational functions in Musser’s approach. There are some disadvantages related to

the behaviour on sparse polynomials: for example, reduction of a polynomial modulo the

ideal J is hard unless all the a, are zero (and rewriting in terms of y-, := x/+a, will

normally generate a dense polynomial), and also the lifting process itself generates

dense intermediate results even when there are no extraneous factors (e.g. reducing

x2y2z 2+1 modulo J6, where J is the ideal (x -1 ,y-2,z-3), gives us

6x2y2z -9 x 2y2+4x2yz2-24x2yz+36x2y -4x2z 2+24x2z-36x2+2xy2z 2-12xy2z+18xy2

-8xyz2+48xyz-72xy+8xz2-48xz+72x-y2z 2+6y2z -9 y 2+4yz2-24yz+36y-4z2+24z-35

a completely dense polynomial of 26 terms with coefficients as large as 72). In general,

reducing the polynomial n / =1*yVl •rodulo produces a completely dense polynomial

with n* terms, where J is the ideal generated by (Xi -a1f. . . ,xt- a t }.

As we have just commented, Musser's approach appears to need rational function

arithmetic at first sight. Musser obviated this need by retaining ideal generators like

(xz-a2f 2, so that the rational functions are represented as polynomials modulo these

generators. He also introduced a numerical modulus p to avoid rational number

arithmetic — we shall shortly see a reason for us not to do this. The variables are lifted

one at a time, so we can take advantage of sparsity in the true factors: using the

example above we get

- 7 . 4 -

Multivariate Hensel Lifting J Abbott

x2y2z 2+1 s 7 mod ((x-1
mod ((x-1
mod ((x-1
mod ((x-1
mod ((x-1

, (y-2), (z-3))
2, (y-2), (z-3))S12x-5

= 6 x 2+1
3 36x2y-36x2+1
= 9xzyz+1 mod ((x-1
s 6x2y2z -9 x 2y2+1 mod ((x-1
s x2y2z2+1 mod ((x-1

from which it is clear that we avoid the excessive intermediate expression growth

inherent in Wang & Rothschild’s method. We comment that even with this lifting scheme

it is still possible for intermediate results to be denser than the factor we are lifting to,

but only by a factor of e-1 where e is the degree of the factor in the variable that is

currently being lifted. It should be noted that the sequence of ideals used as moduli in

this lifting scheme is totally different from the sequence J,J2,J3,

Musser uses quadratic lifting of the variables which is potentially hazardous

because any extraneous factors are almost always dense — in other words lifting

beyond the minimum necessary modulus could produce needlessly large intermediate

results. For example, in the worst case we would lift to a factorization modulo

2d 2 2d 2
(P>(x2~a2) r . • • • . (X f -a f) r) which could give coefficients each having

2r_1n (© y -1) terms. Of course, if none of the factors is extraneous (as is normally the

case) then such growth cannot occur if we lift too far.

Musser also suggests rewriting the polynomial to be factorised in terms of

y; := x/+a, on the grounds that the ideal then has a very simple form allowing rapid

calculation modulo the ideal. Again there is the risk that the substituted polynomial can

have a number of terms exponential in the number of variables: for example, rewriting

x2y2z2+1 in terms of X = x -1 , Y = y-2 , and Z = z -3 gives a completely dense

polynomial of 27 terms. Certainly, such a substitution would be infeasible if the input

polynomial has high degree in many variables since the substituted polynomial could

have as many as n (1+d * /) terms.

- 7 . 5 -

M u lt iv a r ia te H p n c p j L ifting J Abboii

Wang’s Tricks

Let us consider some of the tricks devised by Wang to expedite the lifting. Wang

points out that by trying several sets of randomly chosen values for the a, in step (2) [of

Musser’s algorithm] we can be almost certain that none of the factors is extraneous,

thereby avoiding both the potentially expensive step (7) and the highly dense lifted

factors — Wang suggests picking three sets of values as a good compromise between

performing many univariate factorizations and getting the correct splitting pattern. He

also observes that factors of low degree can be detected inexpensively at an early stage

of the lifting process by performing trial divisions. This idea is better suited to linear

lifting than to quadratic lifting because when quadratic lifting is used, each step performs

more lifting than all the earlier steps together i.e. “early detection” of a factor of degree

k, say, will only occur once all factors have been lifted to degree 2s where s is the least

integer such that 2s > k. Also the need to update the lifted correction factors when a

factor is removed is dissuasive though the relevant calculations are quite simple: if fj

can be removed then each ay for j * i must be multiplied by fj (and, of course, reduced

modulo f j) ’, also we replace f by f I f This explains Wang’s choice of linear lifting at

step (5.1).

Another significant contributor to the success of the EEZ algorithm is the

predetermination of the leading coefficients by a clever trick: the leading coefficient is

factorized, and then the values for the a, are chosen so that for each of the distinct

irreducible factors of the leading coefficient there is at least one prime dividing the image

of that factor and none of the others. The factors of the leading coefficient can then be

distributed correctly just by performing integer divisibility tests. When the factors are

sufficiently sparse other coefficients can be deduced directly, possibly doing away with

the need to lift at all.

The tricks just described could equally be applied to Wang & Rothschild’s

algorithm, but the “early detection" by trial divisions would not work out easily for

- 7 . 6 *

1

Multivariate Hensel Lifting J Abbott

Musser’s algorithm as the numerical modulus may be too small.

It should be pointed out that there is no use in lifting beyond half the maximum

degree (either total degree [for Wang & Rothschild] or degree in the variable being lifted

[for Musser]) since at most one of the factors has degree greater than half the

maximum. In other words we can safely replace step (4) in Musser’s algorithm by

(4) Let e-, be 1 +V2dx.{f).

Similarly in Wang & Rothschild’s algorithm the loop starting at step (3) need only

go as far as 1 +V2total_degree{f).

Factorization over Algebraic Number Fields

The discussion above was made under the assumption that the factorization was

happening over Z . The situation is a little different when the coefficient domain is a ring

of algebraic integers. Wang & Rothschild's algorithm works without modification (other

than the change in factorization domain in step (2)). Musser’s algorithm generalizes with

no problem, except for the use of a numerical modulus p; the problem being that we

cannot guarantee that the minimal polynomials of the extension generators remain

irreducible modulo p. Our options include ignoring p, using some sophisticated

conversion method from a finite field to an algebraic number field (e.g. Weinberger &

Rothschild’s, or Lenstra’s), and using a heuristic method such as that in [Langemyr87].

The last approach is particularly well suited to this application: only those primes dividing

the defect or a denominator in the canonical representation of the coefficients of the

correction factors cause difficulty, any other primes may be used.

Regrettably, Wang’s leading coefficient prediction trick generalises in a rather

complicated way. The reason for this is that there may not be unique factorization in the

ring of algebraic integers: for example in <D(V̂ 5) we have the distinct factorizations

6 = 2x3 = (1+V=5)x(1-V::5) yet all of 2, 3, (l+V ^) and (l-V 1̂) are irreducible. We do

have unique factorization into ideals in the ring of integers but it is not clear how to

- 7 . 7 -

Multivariate Hense! Lifting J Abbott

apply this facility here.

Davenport [private communication] suggested taking norms and then factorizing

the resulting integers. This neatly bypasses the non-unique factorization problem;

however we cannot necessarily find integer values for the a, such that the norms of the

images of the distinct factors of the leading coefficient each have a prime factor not

dividing any of the other norms; if the leading coefficient is x f + *1 and the field is <D(/)

then the leading coefficient factorizes into (x+iy){x-iy) and whatever integer values for

a2 and a3 we pick, the two factors have equal norms.

However, by employing the argument in [Trager76] we can show that if we allow

a2 to be a general algebraic integer then we can force each norm to have its own prime

factor as required by Wang’s trick. What we do is compute the square-free

decomposition of the leading coefficient and then pick integer values a3, . . . , at so that

the square-free components retain full degree in x2 and remain square-free — let g(x2)

denote the image of the leading coefficient. Form the product of the distinct irreducible

factors of g as h{x2) := P(x2)/gcd(g(x2), g'(x2)). Applying theorem 2.3 in [Trager76]

we can find an algebraic integer, p, such that h{x2~p) has a squarefree norm. We can

then pick an integer value M for x2 so that each of the factors of the norm of ^(x^P)

has a prime factor not dividing any other factor. Thus using the value M -p for a2

completes a suitable set of substitution values for permitting use of Wang’s prediction

technique. In practice, a random algebraic integer value for a2 should usually suffice.

If the above method is too complicated we can always resort to the simpler ways

of eliminating the leading coefficient problem. We can force the polynomial being

factorized to be monic by the obvious, though costly, substitution; or we can force all the

factors to have leading coefficient equal to that of the original (effectively multiplying the

original polynomial by a high power of its leading coefficient). These two ideas are

usually deemed too inefficient on account of the potential growth encumbent in raising

multivariate polynomials to high powers.

- 7 . 8 -

Multivariate Hensel Lifting J Abbott

More recently Kaltofen has pointed out that the method described in [Kaltofen85a]

for determining the leading coefficients applies (without modification) to our problem, and

is probably the most efficient method. We give a short overview of Kaltofen’s method.

From the univariate factorization f{xu a2, . . . , a() = f ^ x A) f 2{x 1) • • • M * i) lift to each

possible bivariate factorisation: let the factorisation involving x 1 and xk be

f \ k)fj>k) • • • f j k)- We assume that there are no extraneous factors and that the leading

coefficient of each of the bivariate factors is correct, i.e. the leading coefficient of f }k) is

the image of the leading coefficient of fj under the substitutions xr -> af V r * 1 or k.

Thus the list of leading coefficients from f , . . . , f£k) is a factorization of the image of

the leading coefficient of the original polynomial. Now we can recursively apply the

method to each of these factorisations of the leading coefficient to obtain the true

leading coefficients of f 1r. . . , / s, the factors of the original polynomial. Observe that

some gcd computations may be needed to satisfy the coprimeness condition for Hensel

lifting; and also observe that we may need to perform t- 1 lifting operations from the

univariate factorisation to yield all of the various bivariate factorizations because any

factor of the leading coefficient involving just one variable, xk say, can be correctly

distributed from information contained solely in the factors f \k), . . . , f j k) — such a

factor would merely map to a field element in all the other homomorphic images.

Summary

We conclude by describing our algorithm for lifting from a univariate factorization to

a multivariate one — selecting the best features of the methods we looked at. The

algorithm is very similar to the EEZ method.

- 7 . 9 -

Multivariate Hensel Lifting J Abbott

Our Algorithm

Input: a square-free primitive multivariate polynomial f (x1f . . . , xt) over Z ;

Output: a list of the irreducible factors of f over Z .

(1) Pick suitable substitution values a2, . . . , a f e Z i.e. satisfying

f{x^,a2, . - • ,at) has full degree and is square-free.

(2) Factorize the univariate polynomial f {xua2, . . . ,at) over Z to obtain factors

f 1f . . . , fs. In fact, we repeat steps (1) and (2) for three (following Wang’s

recommendation) sets of substitution values as a ploy to avoid extraneous

factors — see chapter 3.

(3) Determine the correct leading coefficients of the factors by Kaltofen’s method:

often we will need only a few of the bivariate lifts since, for example, if each

factor of the leading coefficient of f involves at least one of x2 or x3 then the

bivariate lifts for these two variables will be sufficient.

(4) Pick a suitable (large) prime p greater than twice the largest integer that may

occur in any factor once denominators have been cleared — such a bound

can be determined using Kronecker’s substitution and a univariate coefficient

bound for factors. An alternative is to use a heuristic bound, but this risks

producing reducible factors should the heuristic fail. Reduce the modulo p,

so we have f = f , - • • fs mod (p, X2~a2, . . . ,xt- a t) — note that the f\ may

be reducible modulo p, but they are all relatively prime.

(5) Let dj be dXj{f), and e,- be [vad/j.

(6) For j >= 2 , . . . , t do [lift the variables in succession]

(6.1) Linearly lift the factorization to be valid modulo

(p, {X2~a2)d2------,(x/_1-ay_1)d/-1,(xy-ay)^,(x/+1-a y+1) , . . . ,(*,-a ,)).

Perform trial divisions on each lifting step once the exponent of (xy-a y)

Multivariate Hensel. Lifting J Abbott

exceeds djls (average degree in xy of the factors).

(6.2) Possibly one factor may have to be computed by division if it contains xy to a

power greater than ey~ 1 . After this final determination we have a factorisation

correct modulo

(p, (x2- a 2)dz, . . . ,(*y-ayA(xy+1-ay+1)------

-7.11 -

8. Factorization over Algebraic

Function Fields

The aim of this chapter is to present and discuss a method for factorizing

polynomials over algebraic function fields: for example, if a2-4/7-1 = 0 then x2+x-n =

(x+1/2(1+a))(x+1/2(1-a)); and if a2-(n+1)3 = 0 then x2- n - 1 = (x+a/(n+1))(x-a/(n+1)).

The general paradigm will be to substitute suitable integer values for those

transcendentals upon which the algebraic functions depend — thus converting the

algebraic functions into algebraic numbers (possibly even rationals or integers). Then

factorize the resulting polynomial over the algebraic number field corresponding to the

original algebraic function field, and finally lift this factorization so that the true

factorization can be found.

Notation

We set up some notation here for the rest of the chapter. The polynomial we wish

to factorize is f. The field over which the factorization is to be made is

K := ©(Z! , . . . ,z t, a 1f. . . ,a r) where the z; are transcendentals and the ay are

algebraic. We assume the field has been built up via a succession of algebraic

extensions giving us a tower starting from K0 := ©(z^ . . . ,z T); for j > 0 Kj := K^{a.j).

Thus K = Kr. Let mi be the minimal polynomial for a, over the field — this places

an implicit ordering on the a,* as in the algebraic number case. We may also assume

-8.1 -

Factorization over Algebraic Function Fields J Abbott

without loss of generality that each m, is monic and has coefficients lying in the ring

Z [z u . . . , z x, a y , . . . , 01m] — thus each ay is an algebraic integer in a broader sense

of the phrase (so, for example, the product of two polynomials over Z in the ay- will not

contain any fractions).

There are two ways to view multivariate polynomials over algebraic function fields:

as an essentially multivariate polynomial, or as a univariate polynomial (with all the

variables except one absorbed into the algebraic function field). The latter view is the

simpler; however, such a view is more restrictive in that we cannot in general find the

content as an element of an algebraic function field: for example, over the field <D(z,a)

where a2- z = 0 we might say that the polynomial g(x) := (z2-z)x+(z - 1)(1—cx) has

content z-1 because g{x) = (z-1)(zx+1-a), but equally we could say that it has

content z - a because g(x) = (z-a)((z+a)x+z-1). In contrast, the former viewpoint

does allow us to find the content in terms of those variables not contained in the

algebraic function field. This extra capability lead us to choose the former view.

Having chosen the multivariate representation, we now explain how we can reduce

to the case of f being univariate over K. This is very simple: the lifting techniques of

chapter 7 apply even when the coefficient domain is an algebraic function field; that is,

we can choose integer substitution values for all except one of the variables to yield a

univariate polynomial which we factorise, then we deduce the multivariate factorization.

Hence, for the remainder of this chapter we shall take f (x) to be a univariate

polynomial in K[x]. We also make the simplifying assumption that f is monic — if it is

not, the best strategy appears to be to force all the factors to have leading coefficient

equal to that of f ; in this way we avoid the need to invert elements of K. The lack of

unique factorization in K makes it essentially impossible to find the “true” leading

coefficients of the factors (certainly Kaltofen’s method cannot work as it requires the

formation of a GCD-free basis).

- 8 . 2 -

Factorization over Algebraic Function Fields J Abbott

Bounds on Coefficients of Factors

As for the earlier algorithms we need to find how large coefficients can get so we

know how far to lift the modular factorization. The coefficients in an algebraic function

field have two measures of size: the size of the numerical coefficients as well as the

degree in the z,-.

Degree Bound

The first guess is a naive generalisation of the degree bound for factorization over

number fields: the degree in each zy of any factor is no larger than the degree in that

same zy- of (any coefficient of) the input polynomial or of any coefficient in any minimal

polynomial. Unfortunately there is a family of counter-examples to this guess: let p be

an odd prime greater than 9, and let q be the largest integer less than Vp (so in

particular, q > 3); now consider the algebraic function a defined by (z+a)p = 2+zq, then

the polynomial xp-(2+zq)q factorizes over <D(z, a) as

(x - (z -k x)p) (x p -1+ (z -kx) p x p-2+ • • • +(z+a)Q(p~1))

but (z+a)(?(p_1) = (z+a)p(<M)(z+a)p~C7 = zp+q2~2q+ • • • (lower powers of z). So we have

a factor which has degree in z almost twice the maximum of the degrees in z of f and

of the minimal polynomial of a — since q > 3 we have q2-2q > 0.

Arguing along the lines of Trager’s algorithm [Trager76] we can find upper bounds

on the possible degrees in the zy as follows. We define the degree in zy of an algebraic

function, a, with minimal polynomial ma{y) = £ 5 fijy' to be

dZia := max”
m-i

m

/=o ’

We extend dz. to K by defining the degree of a product to be the sum of the degrees of

the terms, and the degree of a sum to be the maximum of the degrees of the

summands. For example, if a has minimal polynomial ma{y) = y2- z and p has minimal

polynomial mp(y) = y2-a z then 3za = 1/2 and 3zp = 3/4. This definition of degree is just

- 8 . 3 -

Factorization over Algebraic Function Fields J Abbott

a simple upper bound on the order of the pole (or the zero, if negative) in a as zy tends

to infinity. The following example shows that dZj can be different from the order at

infinity. Let a2-z -1 = 0, and p2-z -2 = 0. So dz(a) = 3Z(P) = 1/2. Then according to the

definition 9*(a-p) = 1/2, yet our conventions lead us to think that a-p has a zero of

order 1/2 at infinity (i.e. a pole of order -1/2). This definition of degree takes the

maximum over all possible choices of roots — both a and - a are square-roots of z+1.

Note that with the restrictions placed on the minimal polynomials of the algebraic

functions our degree function is always non-negative on algebraic kernels.

Now we can work through Trager's method to find our bound: we may have to

make a linear substitution (x -> x+5) in f{x) := a/x' to obtain a polynomial which

has a square-free norm. The degree in each zy of the linear shift, 8, is at most the

maximum of the degrees in zy of the algebraic functions au . . . , a f since 5 is only a

Z-linear combination of the algebraic generators. So we find that an upper bound for

the degree of any coefficient of the shifted polynomial is

Finally, this quantity must be multiplied by the extension degree to produce a bound on

the degree of the square-free norm. Unfortunately this is often far too large: in the

counter-example above the bound turns out to be p2 which is much larger than

2p > p+q2-2q.

A good heuristic bound for the degree in Zj of the factors seems to be

dZjf + 2/3^ym/' This 9ives the more reasonable figure of p+q2 in the counter-example

above. We should explain that we have no justification for the validity of this bound in

the general case; however, we are unaware of any situations where it is invalid.

Wang's idea of using early detection is still to be recommended because even the

heuristic bound may be far too large.

dz,{f{x+$)) < max J/9,5 + dza

- 8 . 4 -

Factorization over Algebraic Function Fields J Abbott

Numerical Bounds

Again we can follow through Trager’s algorithm estimating the largest possible

integers that may occur: let n be the degree of f , and cf, be the degree of m, (i.e. d, is

the extension degree [Kj-.K^]), then from the proof of theorem 2.3 in [Trager76] we find

that the shift 8=: s ^ -i- • • +s,ar can be constrained to have \sk \ z V 2d 2n2. This

gives sufficient information for us to compute an upper bound on the sizes of numerical

coefficients in the square-free norm from which we can derive upper bounds on the

sizes of coefficients of the factors of the norm. Finally we must compute a bound on

the sizes of the coefficients in the factors of the original polynomial, and this we do by

estimating coefficient sizes during a polynomial remainder sequence. Note that the

factors of the norm must have degree divisible by the extension degree [Kr:K0] (since

the factors of the norm are themselves norms), and this may help lower the bound.

Unfortunately, this method gives bounds that are far too large: for example, if

f(x) = x2+ x -z and a2-4z-1=0 then we know the true factors are x+1/2(1+a) and

x+1/2(1-a) but the bounding process gives Is ^ <8 , so the square-free norm has

coefficients with magnitude at most 256, and Gel’fond’s bound (e.g. [Wang75]) for the

factors of the norm is almost 281000; lastly we simulate a polynomial remainder

sequence estimating degree and numerical bounds to get the bound for the factors of f

to be greater than 5000000.

Strictly we have no need for a numerical bound as the lifting can be performed

without numerical modulus, but as observed in [Musser75] this leads to calculations with

rational numbers, thereby incurring the cost of integer gcd computations. In spite of this,

it seems best not to use a numerical modulus until there is a significant improvement in

the tightness of the coefficient bound. We can decide whether to use rationals or

modular numbers based on the tightness of our bound: suppose computing the gcd of

two n -digit integers takes as much time as k multiplications of n -digit integers then if

our multiplication algorithm is quadratic then it is better to use modular arithmetic only if

- 8 . 5 -

Factorization over Algebraic Function Fields J Abbott

our bound has length at most about Vk+2 times the size of the numbers appearing in

the rational number computation.

Substitution Values

We consider two attitudes to selecting the integers, a,, we shall be substituting for

the transcendentals z,-. One is to have fairly weak restrictions on the permitted values

but then have to work hard during the reconstruction of the true factors from the

modular ones. The other attitude is to place stringent conditions on the permitted values

which lead to a less onerous reconstruction.

Stringent Case

Let us first look at the case where we are more restrictive in our choice of

substitution values. Ideally, we want values which would lead to a trivial reconstruction.

We begin by making some definitions. Let a 1f. . . , a Te Z be the chosen

substitution values for z 1f. . . ,z t respectively. We observe that the algebraic functions

become algebraic integers under this substitution: the minimal polynomial for maps to

a monic polynomial with integer coefficients, and the minimal polynomials for the other

a / inductively are monic and have algebraic integer coefficients. Let (3, be the algebraic

integer to which a/ maps. We can show this situation neatly in a diagram:

Kr = Kr_i(ar.,) -> Mr = Mr_,{pr_,)
T T

T T

K ^ K 0(a,) - > Mi = M 0(P 1)
T T

K0 = Q {Z i zx) -> M0 = Q

where the Kt are the elements of the original tower, and the Mj are their images under

the substitution Zy-»ay.

- 8 . 6 -

Factorization over Algebraic Function Fields J Abbott

A good starting point is to consider the images, py, of the algebraic functions ay.

To make the reconstruction trivial it would be advantageous if each algebraic integer py

had the same degree as its pre-image ay — i.e. we want the image of the minimal

polynomial of each ay to be irreducible over so that Py is defined as a root of the

image of my(y) in Mj[y]. Note that with this restriction the M, are uniquely determined

by the ay. Also, we want to be certain that the substitution produces no extraneous

factors.

Luckily, we can meet all these conditions: hardly surprising since we have a lot of

freedom to choose the a,. In fact, by picking random values for the a, from a sufficiently

wide range we can be almost certain that the conditions will be satisfied. To show this

we employ a primitive element for K — the theorem of the primitive element guarantees

its existence, and [Trager76] presents an algorithm for computing one (we do not

actually need to compute a primitive element but we shall refer to the algorithm). Let a

be any primitive element for K over K0, and let ma be its minimal polynomial over K0.

So K = K0(a) and we may apply the factQrisation algorithm in [Trager76] which

proceeds by computing a square-free norm and then showing that this has a

factorisation over K0 which corresponds directly to the factorisation of the original

polynomial over the original field. Our argument uses this fact to show that there is a

choice of substitution values with the required properties.

We can apply Trager’s square-free norm algorithm to produce a polynomial in

g{x)e <D[z1#. . . , z x][x] whose factorization over <D corresponds to the true factorization

of f. An effective version of Hilbert’s irreducibility theorem presented in [Kaltofen84]

enables us to reduce to a bivariate polynomial easily: it says that a random vector

(a3, . . . ,af)e Z r_2 with |a, | < M will (with controllably high probability, 1-482s/M m

where 8 is the total degree of f) keep the factors of g irreducible over Q under the

homomorphism V /> 3 zy-»ay. Then the last step to a univariate polynomial can be

achieved by, say, a result in [Fried74]; i.e. we can almost certainly ensure the complete

- 8 . 7 -

Factorization over Algebraic Function Fields J Abbott

absence of extraneous factors. Any such set of substitution values will automatically

keep ma irreducible because otherwise extraneous factors would appear — recall that

norms can be calculated using resultants and that res{fg, h) = res(f , h)res{g, h), so

if one of the minimal polynomials mapped to a reducible polynomial then all the

irreducible factors of the square-free norm would map to reducible factors.

We assume that at least one suitable set of substitution values can be found —

picking random values for a3, . . . , af (the range 0 to 224-1 as supplied in Cambridge

LISP is fine for all practical purposes) and then computing a suitable value for a2 will

probably find a valid set straightaway, if not we just pick another random set. Indeed,

Kaltofen privately suggested we use random values (e.g. between 0 and 224-1) for the

a,- and then assume that all the conditions were met without bothering to check them,

and thus saving a great deal of effort. In the unlikely event that one of the conditions be

violated (e.g. minimal polynomials of some of the algebraic functions mapping to

reducible polynomials) we will discover it during the factorization process and only then

pick a new random set.

The rigorous alternative is to check for each / that the image of the minimal

polynomial m, remains irreducible over and that the image of f is square-free.

[Musser78] suggests that we can check irreducibility with short expected time just by

factorising in a few finite fields and performing a degree compatibility check, with the

possibility of having to perform a complete factorization in unlucky cases [KMS83]. Of

course, checking f for square-freeness is not hard.

Once we have a valid set of a,- and a factorization of the homomorphic image of f ,

we have only to lift the factors. The factors are assumed all to lift to true factors so we

need not worry about extraneous factors (nor leading coefficients as these are all forced

equal to that of f). However, we do still have to worry about denominators appearing in

the coefficients, as in the example given near the start of this chapter. The arguments

in chapter 4 giving a couple of denominator bounds apply equally to algebraic function

- 8 . 8 -

Factorization over Algebraic Function Fields J Abbott

fields: the square of the common denominator appearing in the representation of any

algebraic integer with respect to a particular basis divides the discriminant of that basis

(the discriminant formula is valid for algebraic function fields too); alternatively, we can

compute an integral basis to get an exact result (this involves even lengthier

computations than for algebraic number fields). Either way, we get an integer and a

polynomial in Z [z u . . . , z t] which can be used to clear all denominators.

The Hensel lifting proceeds much as for normal multivariate lifting (chapter 7)

except that the minimal polynomials of each py must be lifted along with the factors.

Once the Hensel lifting has been completed, we just replace each J3y by ay to obtain the

factorization of f over K. We illustrate this with a short example:

to factorise f (x) := x2- z 4+2z2a -z over K := <D(a) where ma{a) := a2- z = 0; we might

pick the substitution value 2 for z (any non-square integer will do);

a maps to p with minimal polynomial mp(x) := x2-2 = 0, thus

K maps to <Q(P), and

f maps to g{x) = x2-18+8p.

g factorizes into (x+4-P)(x-4+P) over Q(P);

we regard this as a factorization modulo (z-2), and lift the factorization in powers of this

ideal:

f (x) = (x +4z-4~P)(x-4z+4+P) mod (z-2)2,

ma(P) = p2- z mod (z -2)2;

f (x) = (x+z2-p)(x -z 2+p) mod (z-2)3,

ma(P) = p2- z mod (z -2)3.

Hence 1 (x) = (x+z2-a) (x -z 2+a) is the factorization of f into irreducibles over K.

In summary, we can probably reduce the algebraic function field factorization

problem to an algebraic number field one with very little effort. The algebraic number

- 8 . 9 -

Factorization over Algebraic Function Fields J Abbott

field factorization has to be over a field of the same extension degree as the original

algebraic function field was over K0; the coefficients of the image polynomial tend to be

large because the images of the z-, have to be chosen from such a wide range. Like the

reduction, the lifting process and reconstruction of the factors is quite simple. Clearly,

the running time is dominated by the factorization for all but the smallest extensions.

Now we turn to another method.

Lax Case

Here we investigate the possibility of allowing choices for the a,- which do not keep

the minimal polynomials, m;, irreducible. We still insist that f and all the m,- remain

square-free so that we can apply Hensel lifting later on — recall that f and the m,- are

all assumed to be monic, so no extra conditions about non-vanishing leading coefficients

are needed. The purpose behind looking at this more complicated variant is to avoid the

need to factorize over a field of such high extension degree; instead the lifting stage has

to work harder to make up for the “lost” algebraic extensions.

When any image (modulo the evaluation ideal) of a minimal polynomial, my,

becomes reducible we can apply generalizations of the methods used with algebraic

number fields where a generator has a minimal polynomial which factorises modulo the

chosen prime. There we had two possible approaches: one was Weinberger &

Rothschild’s which used the Chinese Remainder Theorem to recover the true answer,

the other was Lenstra’s which deduced the true answer from a factorization derived by

using just one of the factors of the minimal polynomial to generate the finite field. The

disadvantages of possibly super-exponential behaviour (see chapter 3) inherent in

Weinberger & Rothschild’s approach still remain for this application, so we adopt a

method akin to Lenstra’s.

We pick one of the irreducible factors, my, of the image of my to use as the

minimal polynomial of py, the algebraic integer which will correspond to ay. The new

-8 .10-

Factorization over Algebraic Function Fields J Abbott

tower of extensions can be represented with a similar diagram to that used for the

stringent case:

Kr - /Cr_i(ar_i) -> Mr = Mr_̂ {$r_<)
T T < dr extensions

T T < d 2 extensions
K, = K0(a,) -» Mi = M0(Pi)

t T < d i extensions
Kq = <D(Zi, . . . , zz) —> Mq — (D

Note that in this situation the Mi are not necessarily uniquely determined, so we make

some consistent set of choices.

Using methods from our stringent case, we can factorize the homomorphic image

of f over Mr = Q(p1f . . . ,%), and then lift the factors to be correct modulo

/ := {{zz-azf2, . . . , (zz- a z)0x). To be able to deduce the coefficients of the true factors

we must lift far enough that

S := {Z22 • • • z{*a f 1 • • • a *' : 0 ^ js < Bs and 0 <*ks < 9as}

maps to a (D-lineariy independent set modulo /, where Bs is a degree bound for zs in

any coefficient of any factor. Clearly e, > max{B/, 3z./77y } but we have not yet been able

to determine a sufficient value. Observe that S is a Q-basis for our field K.

If a sufficient value for each ef can be found then the coefficients of the true

factors can be found by solving the system of linear equations derived from the images

of the elements of S. We give the same example as we did for the stringent case to

show how the method works.

To factorize f (x) := x2- z 4+2z2a -z over K := <D(a) where ma(a) := a2- z = 0; we

might pick the substitution value 4 for z (we allow square integers now); ma{x) maps to

x2-4 which is reducible over <D: x2-4 = (x-2)(x+2). We must choose one of these

factors as the minimal polynomial for p (the image of a). Let us pick mp(x) = x -2 — in

Factorization over Algebraic Function Fields J Abbott

effect a maps to 2. So f maps to g{x) := x2-196 and K maps to Q. We can factorize

the image of f over the image of K : g{x) = (x-14)(x+14). In this case there are no

extraneous factors of g, and we have already commented that a random choice of

substitution values almost certainly avoids them in general.

We find how far we must lift the factorization by estimating the maximum degree in

z of any coefficient of any factor: in this example we use the crystal ball algorithm to

estimate the degree bound at 2. So each coefficient will be a (D-linear combination of 1,

z, z2, a, az, az2. Hence we must lift far enough to get at least 6 degrees of freedom

(where degrees of freedom is extension degree of algebraic number field times the

product of the powers of the ideal generators). In this case we lift to (z-4)6 and can

easily verify that the Q-basis for coefficients remains linearly independent modulo

(z -4)6. We also find that

q 7z 5- 180z 4+201 6z 3-1 3440z 2+80640z +6451 2 _ 6
P ------------------------------*3^072-------------------------- (Z- 4)

and

7z 5-1 80z 4+201 6z 3-1 4451 2z 2+80640z +64512
9{*) = x+-

X —

131072

7z 5-1 80z 4+201 6z 3-1 4451 2z 2+80640z +64512 mod (z-4)6.
131072

From this we immediately spot the true factorisation: f (x) = {x -z2+a){x+z2-a),

though in general it would have to be deduced by inverting the linear map.

It can be seen from this example that we needed to factorize only over Q even

though the ultimate factorization was over an algebraic field. We can also see there are

some definite disadvantages to this method. In particular, whenever the image of my is

reducible my is necessarily an extraneous factor and so will lead to increasingly dense

intermediate results (the lifts of my modulo high powers of the ideal) if standard Hensel

lifting is used. This behaviour was becoming apparent even in the small example above:

-8 .12-

Factorization over Algebraic Function Fields J Abbott

just look at the image of a modulo (z-4)6! Also if there are many zy then then the linear

system to be inverted will be exceedingly large — this fact alone precludes application

of a “lax” method to moderately large problems.

Conclusion

We have presented two ways of achieving what we set out to do. One is a

probabilistic method with the drawback of requiring the factorization of a polynomial with

large coefficients over an algebraic number field with extension degree equal to that of

the algebraic function field. The other lacks a proof of how far the Hensel lifting must

go, but requires a factorization over an algebraic number field of much lower extension

degree than the algebraic function field. Also the latter allows smaller substitution values

which will help expedite the factorization. Neither algorithm seems at first sight to be

superior to the other; the second method will need more space since it necessarily

suffers from intermediate expression growth during the lifting stage.

The two methods considered in this chapter are of little practical value as they

stand because both of them are too slow when solving anything but the very smallest of

factorization problems. Thus there is plenty of scope here for further work, and

development of efficient algorithms: for example, determination of tighter bounds on the

coefficients would be very worthwhile. A fast deterministic method of picking small

substitution values suitable for the first method would give a truly viable algorithm for

factorization over algebraic function fields. Even better would be an algorithm that could

reduce the algebraic function field factorization to a relatively easy factorization over an

algebraic number field of small extension degree over <D, and then retrieve the factors of

the original polynomial possibly using a modified lattice reduction algorithm.

-8 .13 -

9. Conclusion

We now reflect on what has been discussed in chapters 2 to 8; we summarize our

findings, and suggest areas for further study. The broadest conclusion is that, using a

“classical” approach like ours, one can implement a suite of routines for the factorisation

of a polynomial over an algebraic number field. The package will be fast enough to

factorize polynomials of degree up to about 20 over algebraic number fields of extension

degree (over Q) up to about 10 in a reasonable time on a machine with the power of a

Sun 3/160, say. The results in appendix F demonstrate our algorithm is definitely

superior to Trager’s [Trager76]; and according to [Lenstra82], Weinberger & Rothschild’s

method is inferior to the algorithm from which we developed ours—also the MACSYMA

group at MIT found Trager’s method to be superior to Weinberger and Rothschild’s.

The extensions to factorization over algebraic function fields are still too slow to be

useful. A sparse lifting method is required to achieve the conversion from a factorization

over an algebraic number field to one over an algebraic function field.

These are succinct statements of what we have discovered:

• It is worth computing the optimal denominator bound (via integral bases).

• We have tightened the numerator bound, but there is room for further

improvement.

• The “block” version of Lovasz’s algorithm is consistently quick. We have

subsequently extended the rational number recovery method [WGD82] to

algebraic number fields; this uses Lovasz’s algorithm.

-9.1 -

Conclusion J AbbOtt

• Choice of prime: the finite field factorization and lattice basis algorithms have

opposing requirements. The decision should be determined by estimating the

total factorization time for each choice.

• Univariate factor lifting is best achieved by our own truncated quadratic

method.

• Trial divisions during the recombination of univariate factors should use an

“early abort’' scheme

• Multivariate lifting should be performed with a sparse algorithm, but this does

not generalise easily to determination of factorizations over algebraic function

fields.

The next few paragraphs expand on these succinct statements.

In chapter 4, we observed the importance of determining good coefficient bounds,

and saw to our surprise that it is worth expending the effort of finding the optimal

denominator bound by computing an integral basis. The effect of using a tight

numerator bound (using foresight) can be even more dramatic (see the table on page

4.13), but the bound we currently use is far too large. So a method of obtaining a

tighter numerator bound will enable factorizations to be found much faster because of

the consequent reduction in both Hensel lifting time and basis reduction time. A

possible avenue is to use approximations to the images in € of the algebraic numbers

involved, though this can be ill-conditioned. Recently a promising new result has

appeared in [CMP87].

The importance of good bounds is re-emphasised in chapter 8 where we the

bounds for factorisation over algebraic function fields are especially poor. There we were

forced to use trial divisions (over an algebraic function field) during the lifting process.

We also showed that to employ a numerical modulus to our advantage during the lifting

- 9 .2 -

Conclusion J Abbott

process needs quite a tight upper bound on the numerical size of possible factors—we

know of no suitable bound.

The next centre of attention was the lattice basis reduction algorithm: the keystone

of the entire algorithm. We saw in chapter 5 that for factorizations over large (degree >

3) algebraic number fields most of the time is spent in this algorithm. We also developed

some improvements to the reduction algorithm making it significantly faster: indeed, the

clear-cut superiority over Trager's algorithm depends on these improvements. Even so,

whenever the minimal polynomial(s) become reducible mod p the basis reduction is still

a highly time-consuming step during a factorization. Thus further improvements to the

basis reduction algorithm would certainly have a sizeable impact on the overall

efficiency. Consequently, there ought to be an investigation into how to adapt the basis

reduction algorithm so that it takes advantage of the special structure of the bases that

occur in our applications.

Subsequently to the work for this thesis we have found an extension of the rational

number reconstruction algorithm (e.g. [WGD82]) to algebraic number fields. This

permits use of an upper bound on the denominator which is not a multiple of the true

denominator: for example, the square-root of the discriminant. The algorithm is very

similar to Lenstra’s reconstruction; this suggests it would still be quicker to compute an

integral basis.

We can explain qualitatively why a finite field favourable for the lattice reduction is

unfavourable for the finite factorization, and vice versa. It is easier to compute

factorizations over smaller finite fields but the reconstruction (i.e. lattice reduction)

always has to “lift” to the full extension degree — this manifests itself as smaller finite

fields giving rise to initial bases with larger orthogonality defect. So the choice of finite

field is a compromise, which is best determined by computing an estimate of the total

factorization time for a few candidate fields and then picking the most promising of

those. Unfortunately, this will be depend on the details of the finite field factorization,

Conclusion J Abbott

basis reduction and Hensel lifting routines. However, we have an empirical complexity

formula for the basis reduction routine.

The remaining sections of the factorizer which consume a significant amount of

processing time are the lifting stages. Our algorithms for lifting the univariate

factorization appear to be as fast as possible, but the algorithm for lifting from a

univariate factorization to a multivariate one is based on an “old” method. The principal

disadvantage of this general scheme is that it suffers from “fill-in” (i.e. it produces dense

intermediate results even though the input and final output may both be sparse): in

chapter 8 we saw that the method can generate excessively large intermediate results

even when there are no extraneous factors, and worse still, if the “lax” viewpoint was

taken (when the minimal polynomials map to reducible images; page 8.10), then this

pathological behaviour is guaranteed to occur!

Certainly the more modern sparse lifting methods can readily be adapted to

operate over algebraic number fields; however, the necessary modifications to allow

them to lift from a factorization over an algebraic number field to the corresponding

factorization over an algebraic function field are far from obvious. Development of the

necessary modifications seems a fruitful area for continued research, and would

certainly lead to a viable factorization algorithm for algebraic function fields.

Theoretically the most time-consuming stage of our factorization process is the

part where combinations of modular factors are multiplied together and then converted

to putative true factors which are then verified or discarded. Under the worst conditions

this has exponential complexity, though under normal circumstances only a small

proportion of the total time is spent trying combinations. Our intention was to produce a

useful tool for finding factorizations over algebraic fields rather than to construct an

asymptotically fast algorithm. By applying sparse lifting techniques to the problem of

chapter 8, one may be able to build a polynomial time algorithm based on a published

polynomial time univariate factorization algorithm. This looks like an area worthy of

- 9 . 4 -

Conclusion J Abbott

further research.

Before summarising our algorithm we return to one of our original motivations:

symbolic integration. We find that our algorithm has somewhat limited applicability

because even quite small integration problems can lead to huge factorization problems:

e.g. to integrate a univariate rational function with quintic denominator is infeasible since

in general it requires the factorization of a quadratic over an extension field of degree

60. This enormous growth is inherent in the integration problem because a splitting field

will normally have extension degree equal to the factorial of the degree of the

polynomial we wish to split (i.e. the extension degree can be super-exponential in the

degree of the polynomial).

Recent papers have proposed ways of solving larger integration problems by

permitting the solution to contain expressions of the form:

£ g(a)log/?(x,a)
/(a)=0

where the factorization over a splitting field is implicit. Of course, we can obtain an

explicit answer only by factorizing over the splitting field.

One area that stands to gain considerably from the development of an efficient

factorizer is that of computing a GrObner basis. Davenport has reported [Davenport87]

some extremely encouraging results from performing factorizations during the

determination of a GrObner basis. GrObner bases have lately become highly important in

computer algebra where many problems (e.g. ideal membership, robot kinematics and

geometrical theorem proving) can be solved quite simply given an algorithm to calculate

a Grdbner basis.

Conclusion J Abbott

Our Recommended Algorithm

We give just the algorithm for factorization over algebraic number fields.

Multivariate Factorization

Input: a multivariate polynomial f (xu . . . , x n) e K [x ^ , . . . , x n] where K is an

algebraic number field.

Output: the irreducible factors of f over K.

(1) perform content and square-free decompositions on f , then apply the following

steps to each component.

(2) map down to a univariate factorization problem by picking suitable substitution

values a2, . . . ,an for x2, . . . ,xn.

(3) compute the univariate factorization using the algorithm below.

(4) determine leading coefficients using Kaltofen’s method (see page 7.9), and

use a sparse lifting method to complete the factorization (e.g. [Zippel79] or

[Zippel81]).

Univariate Factorization

Input: a univariate polynomial f (x) e K[x] where K is an algebraic number field

Output: the irreducible actors of f over K.

(1) Form the monic square-free components of f \ do the following to each

component.

(2) Compute an integral basis for K and thus obtain the optimal denominator

bound (see page 4.5).

- 9 .6 -

Conclusion J Abbott

(3) Compute a numerator bound: bound the magnitude of roots of f in C using rb

(page 4.9); use the binomial theorem (page 4.11) to get an upper bound on

the magnitude of the coefficients of any factor; take the smaller of the

Hadamard and Landau-Mignotte bounds (page 4.12).

(4) Try a few primes (not diving the denominator bound) and pick the one giving

smallest factorization time estimate. Apply the Cantor-Zassenhaus algorithm

to find the factors mod p.

(5) Use truncated quadratic lifting (page 6.5) to get the factors mod pk for k

sufficiently large. Details of lifting algorithms are on pages 6.9 & 6.10

(6) Use the “block” variant (page 5.11) of Lovasz’s algorithm to compute the LLL-

reduced basis preparatory to conversion (page 5.4) of the modular factors.

(7) Recombine the factors in cardinality order (pages 3.8 & 3.9), using early abort

trial division (page 3.9)—we can also test the putative factors for sufficiently

small coefficients by modifying r and j on page 4.11

10. References

[Abbott&Davenport88] J A Abbott and J H Davenport, “A Note on a Paper by Wang:

Another Surprising Property of 42,” Math Comp 51(184), pp 837-839

[ABD85] J A Abbott, R J Bradford and J H Davenport, “A Remark on Factorization,”

SIGSAM Bulletin 19 (May 1985) pp 31-33 & 37

[ABD86] J A Abbott, R J Bradford and J H Davenport, “The Bath Algebraic Number

Package,” Proc SYMSAC 86 (Waterloo) pp 250-253

[ACP77] S K Abdali, B F Caviness and A Pridor, “Modular Polynomial Arithmetic in

Partial Fraction Decomposition,” Proc 1977 MACSYMA User’s Conf pp 253-261

[A&G84] L Afflerbach and H Grothe, “Calculation of Minkowski-Reduced Lattice Bases,”

Computing 35 pp 269-276

[Berlekamp67] E R Berlekamp, “Factoring Polynomial Over Finite Fields," Bell System

Technical Journal 46 pp 1853-1859

[Berlekamp70] E R Berlekamp, “Factoring Polynomials over Large Finite Fields,” Math

Comp 24(111) pp 713-735

[Bradford88] R J Bradford, “On the Computation Of Integral Bases and Defects of

Integrity,” PhD thesis, Univ of Bath

[Calmet&Loos82] J Calmet and R Loos, “Deterministic versus Probabilistic Factorization

of Integral Polynomials,” Proc EUROCAM 82 (Marseille) Springer LNCS 144 pp

117-125

[CZ81] D G Cantor and H Zassenhaus, “A New Algorithm for Factoring Polynomials

over Finite Fields,” Math Comp 36(154) pp 587-592

-10.1 -

References J Abbott

[CMP87] L Cerlienco, M Mignotte, and F Piras, “Computing the Measure of a

Polynomial,” JSC 4 pp 21-33

[Collins79] G E Collins, “Factoring Univariate Integral Polynomials in Polynomial

Average Time,” Proc EUROSAM 79 (Marseille) Springer LNCS 72 pp 317-329

[Coppersmith&Davenport85] D Coppersmith and J H Davenport, “An Application of

Factoring,” J Symb Comp 1 pp 241-243

[Davenport87] J H Davenport, “Looking at a Set of Equations,” Bath Computer Science

Technical Report 87-06

[D&T81] J H Davenport and B M Trager, “Factorization over Finitely Generated Fields,”

Proc SYMSAC 81 (Snowbird) pp 200-205

[Dieter75] U Dieter, “How to Calculate Shortest Vectors in a Lattice,” Math Comp

29(131) pp 827-833

[F&P85] U Fincke and M Pohst, “Improved Methods for Calculating Vectors of Short

Length in a Lattice, Including a Complexity Analysis,” Math Comp 44(170) pp

463-471

[Fried74] M Fried, “On Hilbert’s Irreducibility Theorem,” JNT6 (1974) pp 211-231

[G&T85] P Gianni and B Trager, “Gcds and Factoring Multivariate Polynomials Using

GrObner Bases,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp 409-410

[vzG&K85a] J von zur Gathen and E Kaltofen, “Factorization of Multivariate Polynomials

over Finite Fields,” Math Comp AS (Jul 1985) pp 251-261

[vzG&K85b] J von zur Gathen and E Kaltofen, “Factoring Sparse Multivariate

Polynomials,” J Comp & Sys Sc/31 (Oct 1985)

[Goebbels85] F Goebbels, “Factorization of Rational Polynomials in the Zassenhaus

Norm,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp 146-147

[G&A81] H Gunji and D Arnon, “On Polynomial Factorization over Finite Fields,” Math

Comp 36(153) pp 281-287

[Helfrich85] B Helfrich, “Algorithms to Construct Minkowski Reduced and Hermite

-10 .2 -

References J Abbott

Reduced Lattice Bases,” Theor Comp Sci 41 pp 125-139

[vdH&L85] M-P van der Hulst and A K Lenstra, “Factorization of Polynomials by

Transcendental Evaluation,” Proc EUROCAL 85 (Linz) Springer LNCS 204 pp

138-145

[Kaltofen82l E Kaltofen, “Factorization of Polynomials,” Computing, Suppl 4 pp 95-113

[Kaltofen83] E Kaltofen, “On the Complexity of Finding Short Vectors in Integer

Lattices," Proc EUROCAL 83 (London) Springer LNCS 162 pp 236-244

[Kaltofen84] E Kaltofen, “Effective Hilbert Irreducibility,” Proc EUROSAM 84 Springer

LNCS 174 pp 277-284

[Kaltofen85a] E Kaltofen, “Sparse Hensel Lifting,” Proc EUROCAL 85 (Linz) Springer

LNCS 204 pp 4-17

[Kaltofen85b] E Kaltofen, “Polynomial Time Reductions from Multivariate to Bi- and

Univariate Integer Polynomial Factorization,” SIAM J Comp 14 (May 1985)

[Kaltofen86] E kaltofen, “Polynomial Factorization 1982-1986,” presented at Computers

and Mathematics at Stanford University (Aug 1986)

[KMS83] E Kaltofen, D R Musser and B D Saunders, “A Generalized Class of

Polynomials that are Hard to Factor,” SIAM J Comp 12 (Aug 1983) pp 473-483;

see also Proc SYMSAC 81 (Snowbird) pp 188-194

[Knuth81] D E Knuth, “Seminumerical Algorithms,” Addison-Wesley 1981 (2nd ed)

[K&T77] H T Kung and D M Tong, “Fast Algorithms for Partial Fraction Decomposition,”

SIAM J Comp 6 (Sep 1977) pp 582-593

[Landau85] S Landau, “Factoring Polynomials over Algebraic Number Fields,” SIAM J

Comp 14 (Feb 1985) pp 184-195

[L&McC87] L Langemyr and S McCallum, ‘The Computation of Polynomial Greatest

Common Divisors over an Algebraic Number Field,” preprint to appear in Proc

EUROCAL 87 (Leipzig)

[Lauer83] M Lauer, “Generalized p-adic Constructions,” SIAM J Comp 12 (May 1983)

-10 .3 -

References J Abbott

pp 395-410

[Lazard82] D Lazard, “On Polynomial Factorization,” Proc EUROCAM 82 (Marseille)

Springer LNCS 144 pp 126-134

[Lenstra82a] A K Lenstra, “Lattices and Factorization of Polynomials over Algebraic

Number Fields,” Proc EUROCAM 82 (Marseille) Springer LNCS 144 pp 32-39;

see also A K Lenstra, “Lattices and Factorization of Polynomials,” SIGSAM

Bulletin 15(3) (Aug 1981) pp 15-16

[Lenstra82b] A K Lenstra, “Factorization of Polynomials,” Computational Methods in

Number Theory I (Mathematical Centre Tract 154) Mathematisch Centrum,

Amsterdam 1982 (eds Lenstra & Tijdeman)

[Lenstra83a] A K Lenstra, “Factoring Multivariate Polynomials over Finite Fields,” Proc

15* Symp Th of Comp 1983 pp 189-192

[Lenstra83b] A K Lenstra, “Factoring Polynomials over Algebraic Number Fields," Proc

EUROCAL 83 (London) Springer LNCS 162 pp 245-254

[Lenstra84] A K Lenstra, “Polynomial Factorization by Root Approximation," Proc

EUROSAM 84 (Cambridge) Springer LNCS 174 pp 272-276

[Lenstra87] A K Lenstra, “Factoring Multivariate Polynomials over Algebraic Number

Fields,” SIAM J. Comp 16 pp 591-598

[LLL82] A K Lenstra, H W Lenstra and L Lovdsz, “Factoring Polynomials with Rational

Coefficients,” Math Ann 261 pp 515-534

[Lucks86] M Lucks, “A Fast Implementation of Multivariate Polynomial Factorization,”

Proc SYMSAC 86 (Waterloo) pp 228-232

[Lugiez84] D Lugiez, “A New Lifting Process for the Multivariate Polynomial

Factorization,” Proc EUROSAM 84 (Cambridge) Springer LNCS 174 pp 297-309

[Lugiez85] D Lugiez, “Fast Hensel Lifting Implementation,” Discr Math 56 pp 214-225

[McEliece69] R J McEliece, “Factorization Of Polynomials over Finite Fields,” Math

Comp 23 pp 861 -867

-10 .4 -

References J Abbott

[Mignotte74] M Mignotte, “An Inequality about Factors of Polynomials,” Math Comp

28(128) pp 1153-1157

[Mignotte76] M Mignotte, “Some Problems about Polynomials,” Proc SYMSAC 76 pp

227-228

[Mignotte80] M Mignotte, “Factorization of Univariate Polynomials: a statistical study,”

SIGSAM Bulletin 14(4) (Nov 1980) pp 41-44

[Mignotte81] M Mignotte, “Some Inequalities about Univariate Polynomials," Proc

SYMSAC 81 (Snowbird) pp 195-199

[Mignotte82] M Mignotte, “Some Useful Bounds,” Computing, Suppl 4 pp 259-263 eds

Buchberger, Collins, Loos (Springer-Vertag)

[M&Y74] A Miola & D Y Y Yun, “The Computational Aspects of Hensel-type Univariate

Polynomial Greatest Common Divisor Algorithms," Proc EUROSAM 74 pp 46-54

[Moenck77] R T Moenck, “On the Efficiency of Algorithms for Polynomial Factoring,”

Math Comp 31(137) pp 235-250

[M&N81] P M A Moore and A C Norman, “Implementing a Polynomial Factorisation and

GCD Package," Proc SYMSAC 81 (Snowbird) pp 109-116

[Musser71] D R Musser, “Algorithms for Polynomial Factorization,” PhD thesis (Tech

Rep 134, Comp Sci Dept) Univ of Wisconsin, Sep 1971

[Musser75] D R Musser, “Multivariate Polynomial Factorization,” Journal ACM 22 (Apr

1975) pp 291-308

[Musser78] D R Musser, “On the Efficiency of a Polynomial Irreducibility Test,” Journal

ACM 25 (Apr 1978) pp 271-282

[Rabin80] M O Rabin, “Probabilistic Algorithms in Finite Fields,” SIAM J Comp 9 (May

1980) pp 273-280

[Rothstein77] M Rothstein, “A New Algorithm for the Integration of Exponential and

Logarithmic Functions,” Proc 1977 MACSYMA Users’ Conference pp 263-274;

and also see his PhD thesis “Aspects of Symbolic Integration and Simplification

-10 .5 -

References J Abbott

of Exponential and Primitive Functions,” Univ of Wisconsin, 1976.

[Schnorr85] C P Schnorr, “A More Efficient Algorithm for Lattice Basis Reduction,”

preprint for Proc ICALP 86

[Schnorr86] C P Schnorr, “A Hierarchy of Polynomial Time Lattice Basis Reduction

Algorithms,” preprint for Theory of Algebra, Coll Math Soc Janos Bolyai 44 (publ

North Holland)

[Sch0nhage84] A Schbnhage, “Factorization of Univariate Integer Polynomials by

Diophantine Approximation and an Improved Basis Reduction Algorithm,”

preprint to appear in Proc ICALP 84 (Antwerpen)

[Trager76] B M Trager, “Algebraic Factoring and Rational Function Integration,” Proc

SYMSAC 76 pp 219-226

[Vall6e87] B Vallbe, “An Affine Point of View on Minima Finding in Integer Lattices of

Lower Dimensions,” to appear in Proc EUROCAL 87

[Viry85] G Viry, “Polynomial Factorization over Z[x]," Proc AAECC-3 (Grenoble)

Springer LNCS 229 pp 326-332

[Wang75] P S Wang, “Factoring Multivariate Polynomials over the Integers,” Math

Comp 29(131) pp 935-950

[Wang76] P S Wang, “Factoring Multivariate Polynomials over Algebraic Number

Fields,” Math Comp 30(134) pp 324-336

[Wang77] P S Wang, “Preserving Sparseness in Multivariate Polynomial Factorization,”

Proc 1977 MACSYMA Users' Conf pp 55-64; see also [Wang78], and P S

Wang, “Factoring Larger Multivariate Polynomials," SIGSAM Bulletin 10(4) (Nov

1976) p 42

[Wang78] P S Wang, “An Improved Multivariate Polynomial Factoring Algorithm,” Math

Comp 32(144) pp 1215-1231; see also [Wang77], and P S Wang, “The EEZ-

GCD Algorithm,” SIGSAM Bulletin 14(2) (May 1980) pp 50-60

[Wang79a] P S Wang, “Analysis of the p-adic Construction of Multivariate Correction

-10 .6 -

References J Abbott

Coefficients in Polynomial Factorization: Iteration vs Recursion,” Proc

EUROSAM 79 (Marseille) Springer LNCS 72 pp 291 -300

[Wang79b] P S Wang, “Parallel p-adic Constructions in the Univariate Polynomial

Factoring Algorithm,” Proc 1979 MACSYMA Users’ Conf pp 310-318

[Wang83] P S Wang, “Early Detection of True Factors in Univariate Polynomial

Factorization," Proc EUROCAL 83 (London) Springer LNCS 162 pp 225-235

[WGD82] P S Wang, M J T Guy and J H Davenport, “P-adic Reconstruction of Rational

Numbers," SIGSAM Bulletin, (2) (May 1982).

[Wang&Rothschild75] P S Wang and L P Rothschild, “Factoring Multivariate

Polynomials over the Integers,” Math Comp 29(131) pp 935-950

[Wang&Trager79] P S Wang and B M Trager, “New Algorithms for Polynomial Square-

free Decomposition over the Integers,” SIAM J Comp 8 pp 300-305

[Weinberger&Rothschild76] P J Weinberger and L P Rothschild, “Factoring Polynomials

over Algebraic Number Fields," ACM ToMS2 (Dec 1976) pp 335-350

[Wilkinson59] J H Wilkinson, “The Evaluation of the Zeros of Ill-conditioned

Polynomials,” Num Math 1 pp 150-180

[Zassenhaus69] H Zassenhaus, “On Hensel Factorization, I,” J N 71 pp 291-311

[Zassenhaus78] H Zassenhaus, “A Remark on the Hensel Factorization Method,” Math

Comp 32(141) pp 287-292

[Zassenhaus81] H Zassenhaus, “Polynomial Time Factoring of Integral Polynomials,”

SIGSAM Bulletin 15(2) (May 1981) pp 6-7

[Zippel79] R Zippel, “Probabilistic Algorithms for Sparse Polynomials,” Proc EUROSAM

79 (Marseille) Springer LNCS 72 pp 216-226; see also Proc 1979 MACSYMA

Users’ Conf pp 308-309

[Zippel81] R Zippel, "Newton’s Iteration and the Sparse Hensel Algorithm,” Proc

SYMSAC 81 (Snowbird) pp 68-72

-10 .7 -

Appendix A. Notation

Symbol
Z
<D
R
<D
A
*<,
O(o)
Ok
Z n

* x f
da
dKa
g c d (f , g)
det{M)

x
{x}
II Mi­
ll MU
II a ||

(b j -M
\bj\
R<b , , . . . ,bn>
0{ f (n))
Q(f{n))
i x 2T^2> • • • >x n ~ 3 n)
(x2-a2, . . . , xn-an)
GLd{ Z)

Meaning
the ring of integers
the field of rationals
the field of real numbers
the field of complex numbers
the field of algebraic numbers
the finite field of size q
the extension of <D generated by a
the ring of integers in the algebraic number field K
the vector space over Z of dimension n
the unit vector in the j th direction (chapter 5 page 2)
the degree of f
the degree of f in x
the degree of the algebraic number a over the obvious field
the degree of a over the field K
the greatest common divisor of f and g
the determinant of M
the largest integer not exceeding x
the smallest integer not less than x
the integer closest to x, rounded down in ambiguous cases
height of f >=£a/x /- i.e. max{ | a01, . . . , | an \ }
the m-norm of f , i.e. | a-, \m)Vm
the maximum of the absolute values of the field conjugates of a

subintervals of the real line

inner product of vectors bj and bk (only In chapter 5)
Euclidean length of the vector bj (chapter 5)
the fl-module generated by d1f . . . ,bn
functions bounded above by a fixed multiple of f{n) for large n
functions bounded below by a fixed multiple of f (n) for large n
ideal generated by the polynomials x2-a 2 through xn-a n
km power of the ideal
the set of dxd invertible matrices with integer entries

Appendix B. Glossary

This is a list of brief definitions of terms as used in this thesis. Fuller definitions

are in chapter 2, “Fundamentals and Definitions”. The definitions are alphabetically

ordered (except for the first two).

Phrase

Q-basis

Z-basis

algebraic closure

algebraic function

algebraic integer

algebraic kernel

algebraic number

BANP

conjugate

defect

Definition

A is a Q-basis for B if every element of 0 is a sum of rational

multiples of elements of A

A is a Z-basis for B if every element of B is a sum of integer

multiples of elements of A

of a field F is a field F containing all roots of all polynomials over

F

a root of a multivariate polynomial (rational numbers excluded)

a root of a monic polynomial with non-fractional coefficients

a symbol in the computer for an algebraic integer

a root of a univariate polynomial (rational numbers excluded)

the Bath Algebraic Number Package (also handles algebraic

functions)

see field conjugate

the biggest denominator in the representation of any algebraic

integer

- B-1 -

Appendix B J Abbott

degree

degree

discriminant

discriminant

embedding

extension

field conjugate

fundamental region

Hensel lifting

integral basis

Kronecker’s trick

lifting

minimal polynomial

monic

multivariate

norm

obvious basis

orthogonality defect

primitive element

of an algebraic symbol is the degree of its minimal polynomial

of an extension field is the product of the degrees of the

generators

the square of the determinant of the basis elements and all their

field conjugates

of a polynomial f is resultant{f, f')

a map allowing one field to be regarded as a subset of another

F(a) where F is a field and 3 f (x) e F[x] : f (a)=0

one of the images under an embedding into an algebraic closure

for a basis bu . . . t bp is the set of points

(P l£ l+ * * • +Pn£n : - 1/2 < p,• < Vz]

a way of obtaining solutions mod p n from one mod p

a Z-basis for the ring of algebraic integers

substituting high powers of one variable for all the others

see Hensel lifting

of a is the monic polynomial of least degree having a as a root

having leading coefficient 1

having several variables

product of all the field conjugates

0 0
for ©(c^, . . . ,a„) is {c ̂1 • • • ann : 0<e,<3a/}

ratio of the product of the lengths of the basis vectors to their

determinant

an element of a field which will generate the field on its own

- B-2 -

Appendix B J. Abbott

simple extension

Swinnerton-Dyer

tower

univariate

an extension by a single algebraic element

polynomials factorise into linears and quadratics modulo all

primes

a sequence of simple extensions

having only one variable

Appendix C. Program to Test a

Conjecture

Below is a listing of the FORTRAN 77 program used to test the conjecture in

chapter 4 (on bounds). We ran the program with input values for size being successively

1, 2, 4, 8 16, 32, 64, and 128 for each value of degree going from 3 to 9 inclusive. The

complete absence of output lends considerable support to the conjecture.

The Program

C This is a FORTRAN program to test a conjecture in my thesis,

complex a(10), b(10), shift, coeff, eye

integer i, j, k, degree, choose

real size, rb

C Set the variable ’eye’ to be the complex number i.

eye = (0.0,1.0)

C Ask for the degree of the polynomials to be tested, and also

C for a bound on their height.

print*, "Enter degree and height bound"

read*, degree, size

C Now do 1000 random tests of polynomials of degree ’degree’ and

-C-1 -

Appendix C J Abbott

C height at most ’size’

do 999 k= 1, 1000

do 10 i = 1, degree

10 a(i) = ((2.0*rand(0)-1.0)*size)*eye + ((2.0*rand(0)-1.0)*size)

a(degree+1) = 1

C The complex array ’a’ now holds a monic polynomial

C sum from i=1 to degree+1 (a(i)*x**(M)).

shift = -a(degree)/float(degree)

do 20 i = 1, degree+1

coeff = a(i)

do 50 j = i+1, degree+1

50 coeff=coeff + a(j)*choose(j-1 ,i-1)*shift**(j-i)

20 b(i) = coeff

C The complex array 'b' holds the monic polynomial derived from ’a’

C by making the linear substitution x -> x-a(degree)/degree

C which causes the term in x**(degree-1) to vanish.

C The conjecture is that rb(a) >= rb(b)+absolute_value(shift) always,

C where rb(a) and rb(b) represent the values calculated in the next

C two lines

rba = rb(a, degree)

rbb = rb(b, degree)

C "fudge factor" in the line below as rb may be too large by a

C factor of 1.0001 -- see the code for rb(). Print only if the conjecture fails.

if (rbb + cabs(shift) .ge. 1.0001*rba) print*, (rbb + cabs(shift))/rba, a

999 continue

end

-C - 2 -

Appendix G J Abbott

C This function takes a polynomial of degree ’degree’ held in ’poly*

C as sum from i=1 to degree+1 (poly(i)*x**(i-1)).

C The result is a real number close to the largest (and sole positive)

C real root of the derived polynomial:

C x**degree - sum from i=1 to degree (cabs(poly(i))*x**(i-1))

C where cabs() is the complex absolute value function

real function rb(poly, degree)

complex poly(10)

integer degree

real low, high, mid, val

C We assume the positive root lies between 0 and 9999, and search for

C it using a simple binary chop method,

low = 0.0

high = 9999.0

40 if (high - low .It. O.OOOrhigh) go to 987

mid = (low+high)/2

val = mid**degree

do 30 i = 1, degree

30 val = val - cabs(poly(i))*mid**(i-1)

if (val .gt. 0.0) then

high * mid

else

low = mid

endif

go to 40

987 rb = high

- C-3 -

Appendix C J Abbott

C

123

end

Below is the standard combinatorial ’choose’ function

integer function choose(n, r)

integer answer, i, r, n

answer = 1

if (n-r .It. r) r = n-r

do 123 i = 1, r

answer = (answer * (n-i+1))/i

choose = answer

end

- C-4 -

Appendix D. Lenstra’s Examples

At many points during this thesis the five examples given in [Lenstra82] are used

as test cases. The examples he gave are listed below in the order they appeared in the

original paper. In each case f is the polynomial to be factorized and m is the minimal

polynomial of the extension generator.

Example 1

f{x) = r(47x®+21 x5+598x4+1 561 x3+1198x2+261 x+47)
47

/77(a) = a2-a+3

Example 2

' = l 6 (16x8-1 ’

/77(a) = a3+2

Example 3

f (x) = x8-x 7- x 6+x4- x 2+x+1

m(a) = a4-a+1

- D-1 -

Appendix D J Abbott

Example 4

f (x) = x 3- 3

/77(a) = a6+3a5+6a4+a3-3 a 2+12a+16

Example 5

f (x) = x9+9x8+36x7+69x6+36x5-99x4-303x3-450x2-342x-226

m(a) = a9-15a6-87a3-1 25

Appendix F. Trager vs Lenstra

The table below compares our implementations of the factorization algorithms in

[Trager76] and [Lenstra82] on the examples given in [Lenstra82]. The entries in the

table are times in seconds for the complete factorization under REDUCE 3.3.

Trager versus Lenstra
Example Trager Lenstra

1 155 10.4
2 14.0 8.4
3 2720 39
4 299 92
5 >3000 2430

Notice that there is a very great variation in the ratios of the times. In our

experience, the “simpler” factorizations take about the same amount of time whereas

more difficult problems increasingly favour Lenstra’s algorithm — the figures in the table

bear this out after allowing for fluctuations in the running times.

Index.

algebraic function 1.5 Kaltofen’s leading coeffs 7.9
algebraic integer 2.2, 2.5 kernel 2.3
algebraic kernel 2.3 Kronecker’s trick 2.17
algebraic number 1.4, 2.1 Las Vegas 3.2
algebraic number field 2.2 leading coefficient problem 3.13
BANP 2.1 leading coefficient trick 7.6, 7.7
bad zero problem 3.14 Lehmer’s GCD algorithm 5.9
Berlekamp-Hensel 2.11 lifting, Hensel 2.15, 6, 7
binomial expansion 4.10 Lovasz’s algorithm 5.2
Cantor-Zassenhaus 2.12 minimal polynomial 2.2
correction factor 2.15, 6.2 modular-Hensel 2.11
Cramer’s rule 4.11 monic 2.2
defect (of a basis) 2.5 Newton’s method 2.17
degree 2.2, 8.3 norm 2.8
discriminant 2.8 obvious basis 2.4
distinct degree factors 2.12 order (of pole/zero) 8.4
embedding 2.7 orthogonality defect 5.2
extraneous factors 3.14 overshoot 6.3
EEZ 7.6, 7.7 polyalgorithm 1.2
Euclid’s algorithm 1.2 primitive element 2.4
Euler’s Identity 3.16 primitive idempotent 3.2, 6.1
field conjugate 2.8, 4.11 Swinnerton-Dyer 2.13, 3.4, 3.8
fundamental region 5.5 tower 2.7
Gauss’s lemma 4.3 trial divisions 3.9
Hadamard’s bound 4.12 Wang’s tricks 7.6, 7.7
Hensel lifting 2.15, 6, 7 Weinberger & Rothschild 3.7
— linear 2.16, 6
— quadratic 2.16,6
idempotent 3.2, 6.1
integral basis 2.5
integral unimodular matrix 5.2
irreducible 2.2

- lndex.1 -

