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SYNOPSIS

The purpose of the work described in this thesis is to 
investigate new techniques for the analysis of boxed 
mlcrostrlp discontinuities. This is aimed at improving 
the methods currently used in the computer aided design 
of boxed mlcrostrlp circuits. The culmination of the 
work described herein is the presentation of a new 
technique for the characterisation of cascades of 
strongly coupled step discontinuities in mlcrostrlp. In 
addition, an efficient method of calculating the 
complete mode spectrum of uniform planar transmission 
line; is presented together with many results. These 
Include "complex modes" in mlcrostrlp first reported as 
a result of this work. Computer programs of general 
application have been written and are described.
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CHAPTER 1

INTRODUCTION

Origins of Microetrip

The origins of mlcrostrlp* as a transmission line, can 
be traced back to the years following the second world 
war when people began to look for alternatives to the 
then ubiquitous rectangular waveguide. This search was 
motivated largely by the requirement to design 
components with a wider bandwidth than was possible in 
waveguide. A step In this direction was the development 
of ridged waveguide [1] which had a lower cut off 
frequency for the dominant mode, but this was not the 
complete answer.

Coaxial transmission line had the advantages of a wide 
bandwidth, due to the zero frequency cut-off of the 
dominant TEM mode. It also had the potential of being 
miniaturised. There were, however, difficulties In the 
fabrication of components using It. Ways of overcoming 
these difficulties led first to replacing the central 
cylindrical core of the coaxial line with a thin strip 
and the outer cylinder with a rectangular box.
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Subsequent development led to the removal of the side 
walls and extending the top and bottom walls of the box. 
Thus "stripline" was developed. At about the same time, 
the early 1950's, the structure was modified in that the 
top plate was omitted, and the strip was supported by a 
dielectric layer placed on the bottom plate forming a 
"microstripline". The waveguiding mechanism of 
microstrip was now complicated by the fact that the 
fields were shared between layers of different 
dielectric constants and was thus no longer TEM. This 
meant that the transmission line parameters were 
frequency dependent thereby complicating design 
procedures. For this reason microstrip was not popular 
and was to remain so for another decade.

Stripline and Microstripline remained in competition for 
some years with much progress being made in both leading 
to a symposium on "Microwave Strip Circuits" being held 
in 195^ and a special issue of IRE Microwave Theory and 
Techniques in March 1955.

Sometime in the mid 1960's mlcrostrlp returned to the 
scene in a modified form. The cross-section was 
substantially reduced and the term "micro" was stressed. 
This modification greatly reduced both the resistive and 
reactive aspects of discontinuities thereby removing one 
of the main objections for prefering stripline.
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Moreover the resulting mlni&tur&tlon offered a more 
compact circuitry and paved the way to microwave 
inteerated circuits in which mlcrostrlp is used today.

Other "planar" waveeuidlne structures have also been 
developed, each with their own advantages and 
disadvantases• largely with the aim of using higher 
frequencies and of easing the problem of fabricating 
microwave inteerated circuits. Mlcrostrlp can be used 
from very low frequencies to many tens of GHz. At hleher 
frequencies, particularly into the millimetre wave 
reeion, losses, includine radiation losses, increase 
greatly, hleher order modes become a problem and 
fabrication tolerances become difficult to meet. It is 
thought that a normal practical frequency limit for 
microstrip is 60GHz [2].

Inverted microstrip, is a variant on microstrip in which 
the electric field is concentrated in the air region 
rather than the dielectric layer. Thus the effective 
permittivity is lower and a wider strip can be used for 
a specified characteristic Impedance. This relaxes 
fabrication tolerance problems. In addition higher 
frequencies can be used. Manufacturing problems for this 
structure, and its variant trapped inverted microstrip 
are, however, severe.
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Coplanar waveguide is becoming of increasing importance 
as a means of constructing microwave integrated 
circuits. This structure can be used at somewhat lower 
frequencies than those at which microstrip is generally 
useful. In addition the earthed "side-planes" reduce the 
effects of coupling between neighbouring lines, and they 
facilitate the connection of active components such as 
diodes across the line without having to drill the 
substrate. A detailed treatment of coplanar waveguide is 
given by Gupta [3]•

Finline or ”E-plane" transmission line is used at higher 
frequencies and exhibits low loss, about three times 
better than microstrip. In addition fabrication is 
comparitively simple. Unlike the previous ’’planar” 
structures the dominant mode of finline is not quasl-TEM 
and has no propagating mode at zero frequency. It is 
similar in some respects to ridged waveguide.

For high frequency applications, into the optical 
region, structures such as Slotllne and Imageline have 
been developed. Whilst having some properties in common 
with the structures described above, they are, being 
dielectric waveguides, not considered in this thesis. It 
is interesting to note that the ’’rods” in the eye which 
convey optical signals are a form of dielectric 
waveguide.
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Theoretical Research on Microstrip prior to 198ft

Durine the 1950's when stripline dominated over 
microstrip, work was carried out to calculate the 
transmission line parameters, in particular the 
characteristic impedance. Being a pure TEM mode, the 
exact result could be derived using conformal mapping. 
Although exact, the result Involved the calculation of 
elliptic functions, and prior to the advent of high 
speed computers, this was laborious. A simple 
approximation was subsequently produced [4] for use in 
design. At this stage, the reactive effects associated 
with stripline discontinuities tended to be ignored 
either as being of little importance or purely because 
noone knew how to characterise them. Discontinuities in 
stripline began to be treated by means of equivalent 
circuit models, the rigorous Green's function analysis 
being avoided as being too formidable a problem.

After the rebirth of mlcrostrlp, the equivalent circuits 
developed for stripline were applied thereto. This, 
however, met with only limited success and in the late 
1960's and early 1970's much work was undertaken to 
produce new techniques which would be applicable to 
microstrip.
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In this latter period, work on mlcrostrlp split mainly 
Into three approaches. First there was the Quasl-statlc 
approximation In which the dominant mode was considered 
to be TEM or an approximation thereto. This work 
followed on from the work on stripline and made use both 
of exact conformal mapping techniques, or of numerical 
techniques to calculate the capacitance of various 
mlcrostrlp structures. Hence their static parameters 
such as the characteristic Impedance and propagation 
constant of uniform mlcrostrlp, and the capacitance and 
Inductance associated with discontinuities could be 
derived. A selection of references dealing with this 
approach is [7]-[33] and [89]-[106].

It soon became clear that the quasl-statlc approximation 
was inadequate at high frequencies and that a better 
model was needed. Various "equivalent waveguide" models 
were developed which were more amenable to exact 
analysis than the real thing. The most notable of these 
were the planar waveguide model [36] and the waveguide 
model of Oetsinger [373* The non-hybrid nature of the 
modes in the model could not, however, give an accurate 
representation of the real mlcrostrlp modes. This Is 
especially noticeable In the phase of the scattering 
parameters of a microstrip step discontinuity, some of 
which are of the wrong sign. As a result, empirical 
shifts in reference plane were Introduced Into the 
model.
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Using this method a large amount of data has been
produced concerning various mlcrostrlp structures* 
Including diverse filter configurations. A thorough 
treatment of this method is given in a book by Mehran 
[6]. A selection of references showing the development 
of the planar model is given below [36]-[4-2] and
[107]-[125].

The third approach is that of attempting to analyse the 
actual structure* rather than an approximation to it* 
and taking account of the actual field patterns 
associated therewith* instead of making a non-hybrid
approximation. Clearly this approach is more difficult 
and more demanding of computer power* but is capable* in 
principle, of producing an answer to any desired degree 
of accuracy. As time went on, the limitations of
approximate methods became more apparent and the 
cheapness of computer power increased. Both these trends 
made the rigorous approach more attractive.

Rigorous analysis has been attempted using a number of 
methods including Finite Difference methods [43]• Finite 
Element methods [47]» Singular Integral Equation methods 
[48], Transmission Line Matrix methods [55] and Spectral 
Domain methods [59]* The latter has recently become the 
most popular for microstrip. A selection of references 
making use of the rigorous approach is given in 
[43]-[88].
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The treatment of microstrip discontinuities has followed 
similar methods to those used for uniform microstrip. 
Due to the added difficulty in dealing with a structure 
with an extra dimension of Inhomogeneity, however, the 
movement from quasi-static to waveguide model to 
rigorous analysis has lagged behind the corresponding 
movement in uniform lines. By 19&4 we see relatively few 
treatments of the microstrip discontinuity by rigorous 
methods compared with either the planar waveguide model 
treatments or with the rigorous treatments of uniform 
microstrip. A selection of references is given 
[126]-[129].

Progress in microstrip research during 198A-1987

During this period, in which the work described in this 
thesis was carried out, research has continued mainly on 
the rigorous approach both to uniform microstrip and to 
various discontinuities therein. The former has moved 
into the area of unified treatments of generalised 
planar transmission lines with the Inclusion in various 
forms of Itoh's method of calculating the Green's 
functions [73]• In the latter various approaches can be 
identified.
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Jansen [125] and Sorrentlno [128] enclose the structure 
containing the discontinuity within metal walls to form 
a resonator. The resonant frequency of the structure is 
then calculated using variational methods leading to the 
characterisation of the discontinuity. In [125] the 
strip currents are expanded in a suitable* but 
unspecified, set of basis functions. Many results for 
the microstrip step discontinuity are given in [132] 
showing the success of the method. Much computer power 
is required, however, to obtain these accurate results.

Jackson and Pozar [131] also use a current expansion, 
but apply the method to open mlcrostrlp. Their basis 
functions consist of incident and reflected travelling 
waves and a set of piecewise sinusoidal functions near 
the discontinuity. Again the method is successful but 
requires much computer time.

Omar and Schunemann [130] and Uhde [133] have applied 
mode matching to the modes on each side of the 
discontinuity. This has the advantage over the above 
methods that cascades of discontinuities can easily be 
handled. This is because the amplitudes of the scattered 
higher modes are available during the course of 
calculation.
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The disadvantages of the method are that it is 
susceptable to the "relative convergence" phenomenon by 
which the solution may converge to the wrong answer, and 
that a large set of simultaneous equations must be 
solved.

Johns [135} has applied the Transmission Line Matrix 
method to the microstrip step discontinuity and obtained 
its dispersion characteristic. The strength of this 
method, however, appears to lie in more complex 
structures such as the helicopter shown at the end of 
[1353.

Also during this period the phenomenon of "complex 
modes" was first reported In finline [1293 and in 
microstrip [1363. The existence of these modes has 
implications in the treatment of discontinuities.

In this thesis the uniform mlcrostrlp, the microstrip 
step discontinuity and cascades of strongly coupled step 
discontinuities are treated using rigorous methods. The 
former is treated as a special case of a more general 
planar structure. The high order modes of mlcrostrlp are 
efficiently and accurately calculated for use in the 
step discontinuity problem. The method used to analyse 
the step attempts to maintain the ease of extension to 
the cascade of steps exhibited by [1303 and [1313, but 
without the disadvantages.
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This la achieved by expanding the transverse E field at 
the discontinuity In a suitable set of vector basis 
functions and applying a variational method. By this 
means the "relative convergence" phenomenon Is removed 
and the size of the set of simultaneous equations Is 
reduced. The amplitude of as many scattered higher order 
modes as are required are available from this 
formulation.

Structure of this Thesis

Chapter 2 considers the analysis of the general planar 
structure Including mlcrostrlp, finline and coplanar 
line. Resonators and antennas are also briefly 
considered. The Green's functions for these structures 
are derived, together with their assymptotlc limits and 
the location of their poles. The suitability of 
different basis functions for various cases of the 
general structure Is discussed, and a set of basis 
functions for mlcrostrlp is derived.
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In Chapter 3 the preceedine results are applied 
specifically to boxed microstrip and results for the 
mode spectrum thereof are presented. A discussion of the 
nature of these modes, including the recently reported 
"complex modes" is given. In addition some results for 
the characteristic Impedance of boxed microstrip are 
presented.

All these results are in agreement with other published 
results where they are available.

Chapter 4 describes the formulation of the single step 
and multiple step discontinuity in microstrip. Various 
practical aspects of the formulation are discussed 
including the convergence of the Green's function, the 
number and the nature of the basis functions required. 
The network formulation of the multiple step is 
described including the concept of "accessible" and 
"localised" modes, and results for the single and the 
double step are presented.
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In chapter 5 the results of chapter 2 are applied to a 
boxed mlcrostrlp resonator. The main aim of this* Is to 
provide a comparison between the method of chapter 4 for 
the analysis of step discontinuities In mlcrostrlp, and 
the methods used In [126] and [132]. It Is shown that 
while these are capable of producing accurate and stable 
numerical results, the computational effort Is large. In 
addition. If strongly coupled steps are to be analysed, 
the amount of computation required becomes prohibitive.

Chapter 6 presents a description of the computer 
programs developed during the course of this work.

Finally there Is a summary of the progress resulting 
from the work described herein and suggestions for 
future research.
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CHAPTER 2

THE ANALYSIS OF PLANAR WAVEGUIDE STRUCTURES

2.1. Introduction

The purpose of this chapter is to develop the theory for 
the analysis of general planar waveguide. Although 
mainly concerned with boxed microstrip, much of the 
theory Is so readily generalised that, with little extra 
effort. It Is possible to produce formulae and computer 
programs with much wider application.

After a brief resume7 of previous work of this nature, 
the general method of analysis Is described. After 
deriving the Green's function for the general slab 
loaded waveguide, and expanding the currents on the 
strips In terms of suitable known sets of basis 
functions, Galerkln's method Is applied. This transforms 
the problem to a set of algebraic simultaneous equations 
which can be solved to yield the solution to the 
problem. In the case of bound waveguide modes, these 
equations are homogeneous and the problem becomes that 
of finding the zeros of the characteristic determinant. 
In the case of an open structure we can also calculate 
Its response to an Incident field.
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In an appendix to this chapter Is provided the PASCAL 
procedure for calculating the Green'e functions for a 
general planar structure. It Is small and efficient 
enough to be used on a computer as small as the Sinclair 
Spectrum.

2.2. Background

The problem of characterising microstrip has been 
receiving attention fairly continuously since the second 
world war. Much of the early work treated the microstrip 
as a TEM transmission line and the methods used for 
calculating the propagation constants and characteristic 
Impedances were those of calculating the capacitance of 
the structure. As recently as 1984 we see such a 
solution [1] using a conformal mapping technique. This 
reference also contains a brief review of previous 
attempts at the problem.

The most well known example of this approach Is that of 
Wheeler [2], whose approximate analysis and synthesis 
formulae are quoted In the majority of books on 
microstrip circuit design. They still form the basis of 
much engineering calculation especially at low 
frequencies.

Page 2.2



As the frequencies at which microstrip was to be used
rose, however, it became apparant that the TEM
approximation was no lonser adequate. Due to the 
magnitude of the computation required for a rigourous 
analysis, and the limited amount of computer power 
available at the time, various "quasi-static*'
approximations made their appearance. The more
successful of these were based on replacing the
microstrip with simpler structures which were more 
readily analysed. Examples of this are the equivalent 
structures used by Getsinger [3] and Mehran [4].

Rigorous treatments of microstrip and finline were
carried out using various methods by Yamashita [53 f Itoh
and Mittra [6,7] . Jansen [8] and others. In particular, 
with the Introduction of the equivalent transmission 
line model of planar transmission lines by Itoh [9 3* it 
became a computationally simple matter to derive the 
Green's function for a planar transmission line with any 
number of layers. With a suitable choice of basis 
functions for the unknown fields or currents laminar 
structures with any metallisation pattern can be dealt 
with.
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2.3. General Theory

Consider a laminar structure consisting of layers of 
dielectric whose Interfaces are normal to the y 
direction and which extend to Infinity In the x-z plane. 
Initially we assume no current sources. In this case 
Maxwell's equations dictate that:

This means that we may express H and E as curls of 
vectors giving:

H - 0 (2.1)

E - 0 (2.2)

E - x (2.3)

or

H - x (2.4)

E ■ V x 7 x |[e
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JCe and are referred to as the electric and 
magnetic Hertzian potentials. Each of these satisfies 
the Helmholz equation. Solving this equation for the 
structure under consideration leads to two sets of 
solutions. In one set the y component of E Is zero 
(TE-to-y), In the other the y component of H is zero 
(TM-to-y). Examination of the above equations shows that 
these solutions can be derived from the y components of 
the Hertzian potentials* the other components being set 
to zero. The field components for each set of modes is 
given as follows [13]:

for TM-to-y modes:

(2.5)

H - x “ * 'dy'dz
-z. —————

for TE-to-y modes:

(2.6)
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The form of the Hertzian potentials will depend on the 
boundary conditions of the structure. For a boxed planar 
waveguide it will have the following form in each layers

A„ T(«„x) T(kvy) exp(-dliz) (2.7)
n

where An are arbitrary constants and T(x) stands for 
Cos(x) or Sin(x) as applicable.

We now wish to ascertain the fields in the structure due 
to current sources located at any of the interfaces. We 
can derive a formula for the fields at the Interfaces 
having the following forms

Eft(x.z) « ĵT < g&j (x. z |x'. z • ) . Ijtx'.z1) > (2.8)
d

where i,d«l..number of layers-l 
* njt/a 

a is the box width 
and the inner product is defined ass

< A , B > « [ [ A . B dx' dz'

In general since the E field produced by a source
current will not dust be parallel to that source
current, the Green's function g&j will be a dyadic 
(tensor of rank 2) quantity.

Page 2.6



The derivation of the Green’s dyadic will be given In 
the next section. In that section* use Is made of the 
fact that* for a special choice of coordinates In the 
x-z plane* g&j Is diagonal and a current directed 
alone one of these special coordinate axes results In a 
E field In that same direction.

We may also derive a formula for the currents at the 
Interfaces resulting from source fields at any of the 
Interfaces.

As will be seen later* It will be advantagous to use one 
or other of the above formulae depending on the geometry 
of the structure under consideration.

We now turn our attention to the question of Including 
conductors In the basic structure. We will restrict 
ourselves to Infinitely thin strips located at the 
dielectric Interfaces and with edges parallel to the x 
or to the z direction.

< f14(x.z|x**z*), Ejtx'.z*) > (2.9)
8
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This Is consistent with mlerostrlp and other planar 
wavegulding structures. We seek solutions to Maxwell’s 
equations Tor this type of structure.

Essentially we use Galerkin's method with either the 
fields or the currents at each Interface as the unknown 
functions. Taking the case of unknown currents as an 
example, we start by expanding the currents at each 
Interface in terms of suitable basis functions and 
substituting In equation 2.9-

Ij(xtz) = a*" Ij,(x,z) (2.10)

Now multiply by each of the basis functions In turn and 
take the Inner product. By noting that the Inner product 
of current and total E field Is zero for a perfect 
conductor we get the following:

q

(2.11)

- < Et, > (2.12)

where El Is the Incident field
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This Is s set of simultaneous equations from which the 
coefficients a*^ may be obtained. Substitution In 
equations 2.10 and 2.11 then gives the currents on the 
metal and the fields in the aperture.

Equation 2.12 Is quite general, and Is applicable to a 
large number of problems. The following gives some 
examples of this.

1. Boxed mlerostrlp.

Here we place metal planes at x-a/2, x--a/2, y*-d, y«h to 
form a box. There are two layers whose Interface Is at
y-0, and there Is one strip of width w running In the z
direction. Because of the closed nature of the structure,
only bound modes exist therefore we seek solutions to
equation 2.12 with zero Incident field.

Thus

£  < l«(x,z) , G(x.z|xv,zv) , lm (x,,z,)> « 0 (2.13)
q
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Due to the feet that the structure is uniform in the z 
direction* we can set the z dependence of the currents 
and of the Green's function to exp(-l0z). This leads 
to the following set of homogeneous equations:

Solutions are found by setting the determinant of the 
quadratic form equal to zero.

11. Unilateral Fin-line and coplanar waveguide.

Here we have a situation similar to that of mlerostrlp 
but with two differences. Firstly there are three layers 
although only one interface has metallisation. Secondly 
there is normally greater than 50% metallisation on this 
interface. The latter makes it computationally more 
efficient to use aperture fields as the unknowns, the 
former affects only the calculation of the Green's 
function.

G(xlx') , I* (x')> = 0
q
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IF wet have metal only on interface 2 then the 
appropriate form of the equation Is as follows:

y' a*, < Ez«(x) , fzz(x I x * ) , Ezq (x*)> * 0 (2.15)
q

111. Mlerostrlp resonator

In this case we have a rectangular strip placed on the 
Interface between the two dielectric layers. Since the 
structure Is non-uniform In the z direction as well as 
the x and y directions, we must retain the unknown z 
dependence of the currents. The basis functions In which 
the unknown currents are to be expanded must be complete 
sets In (x,z).

For resonance we require a finite response for zero 
Incident field, therefore the appropriate form of 
equation 2.12 Is:

a* < l«(x,z) , g(x,z|x',z') , I* (x,,z*)> ■ 0 (2.16)
q
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Iv. Mlerostrlp antenna

Consider a mlerostrlp antenna consisting of an array of 
rectangular patches placed at the Interface between two 
dielectric layers. There may be several layers In the 
complete structure, the uppermost one being air.

The antenna Is analysed as a receiving antenna. By the 
principle of reciprocity this will also give Information 
about the antenna used as a transmitter. The antenna Is 
Illuminated by an Incident field E*.

The appropriate form of equation 2.12 In this case 1st 

£  a*,, < Ij%(x,z) , e4j(x,z|x',zt} , (x,.a,)>
q

- < El. > (2.17)

From this one can calculate the currents In the patches 
for any Incident field, this Information together with 
suitable feed modelling will give Information about 
antenna directivity.
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2.ft. Green’s Functions for a generalised planar 
waveguide

In this section is presented a systematic method of 
deriving the Green's functions for a planar structure 
with an arbitrary number of layers and with 
metallisation on any of the dielectric boundaries. The 
method is equally applicable to boxed or open 
structures, to waveguide, resonators or antennas. 
General impedance type boundary conditions may be
specified at the ground plane and other boundaries to 
the structure if they exist.

Recently, the computation of the generalised Green's 
functions for a planar structure has been reported [10] 
using a different method. In that case, however, only 
one metallised interface is catered for. The method 
described here is completely general, and simple to
program.

The method is based on the equivalent transmission line 
formulation described in [9] by Itoh. Here we consider 
the multilayer structure to be an lnhomogeneous 
transmission line in the y direction which is capable of
supporting TE and TM modes with respect to y.
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First, by means of the network theory of transmission 
lines, the relationship between the equivalent voltaees 
and currents at each dielectric interface is 
established. The actual hybrid modes are then resolved 
into their TE-to-y and TM-to-y components, the above 
relationships are applied to each component. Finally the 
components are recombined to form the hybrid mode.

The followlne describes this process in more detail.

The characteristic Impedances of the equivalent 
transmission lines formed by the 1*** dielectric layer 
for TE-to-y and TM-to- y modes are elven by:

y „ .  . <2.18)k*

v ™ .  - -£±—  (2.19)

where k* is the wave number in the y direction in 
layer 1 and is elven by:
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k* = ( € iko2 )*'* (2.20)

and
is the propagation coefficient In the x direction 

9 la the propagation coefficient In the z direction

Transmission line theory gives the admittances looking 
up from the i%* dielectric Interface, In other words 
from the boundary between layer 1+1 and layer 1 as 
follows:

1 Y t e i  T a n  k & d &  + Y h i uYttt — * * Y t e i     1 ■ 2..N (2.21)1 Y m i u  T a n  k td t + Y t e i

$ Ytmi Tan ktd* + YB iu= Y r m   — ---- — --  1 = 2..N (2.22)1 YK4- Tan kidi + Y m i

Similarly for the admittances looking down from the 
i*H Interface are given by:

1 Yt e i Tan kidi + Ym c i - ijYfl* - Ytei  r—  -------3— ---:—  -----    (2 .23 )1 Ym «* — x> Tan k«d& ♦ Yt e i

- v-------1 W  Tan >.«. (2>24)
1 Ye <i- i > Tan kidi + Yt m i

1 - 1..N-1
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The quantities Yt c n . Yt e o i Yti-im and Yt m o  are the 
admittances at the upper and lower boundaries. For an 
open boundary they would be zero, for a metal boundary 
they would be Infinite.

The total admittance seen at the 1*H dielectric 
Interface Is the sum of the admittances looking up and 
looking down:

Yc* * Yc «■ Ye*

Ym * * * YM1

(2.25)

The transfer admittances between boundaries is:

Ye** Ye*** /  Ye** Ye*~ (2.26)

re** Ye* * /  Yie* * re*
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Denotine Z e u  as iA b u  etc. we have for the 
components of the generalised Greens Impedance matrix 
relating EU i Ev on interface i to Ju« Jv on 
interface d the following dyadic quantities:

where u and v are the directions of the transverse-to-y 
E field for TE-to-y and TM-to-y modes respectively.

The zeros in the off diagonal positions of the dyadic 
imply that a current in the u ( or v ) direction gives 
rise to an E field in the u ( or v ) direction. In 
general, as stated above, this is the case only for this 
particular choice of directions.

In order to represent the hybrid modes of the actual 
transmission line we use the forms of equation 2.5 and 
2 .6 . leading to expressions such as the following:

(2.27)
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For the case of boxed waveguide we have:

E (x.O.z) ^  En T («„x) exp(-Jpz)
n*0

(2.28)

For the case of a totally enclosed resonator we have:

where T(x) represents Sln(x) or Cos(x) depending on the 
boundary conditions.

The corresponding Green's functions are also expressed 
as a single sum and double sum respectively, eg.

g(x,Z|x',2 ')sm

# «

For open structures the summations would be replaced by 
Integrals.

(2.29)
n*»0 m =0

I «'.*') T(«„x)T(f<i.z)T(«'„x')T(* z * )
(2.30)n«0 m «0
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For each component of equations 2.28 and 2.29 the 
directions u and v are at an angle T to the x and 2 
axes where:

In order to apply expression 2.27 fields expressed in x 

and z coordinates we to must post-multiply by:m

and pre-multlply by its inverse, (equal to its 
transpose). These are equivalent to rotations through 
the angles +/- T.

Each component of the dyadic Green's matrix expressed in 
terms of x and z is therefore:

(2.31)
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Thus we have the Green's matrix which relates Ex and Ez 
at any dielectric Interface to the currents Jx and Jz at 
each dielectric Interface.

Given the waveeuide geometry, the Green's matrix is 
computed in a systematic manner with the following 
steps:

1 . For each layer calculate k, k Tan kdv Ye and Yh
2. For the top Interface calculate the admittances 
looking up
3. For the bottom Interface calculate the admittances 
looking down
A. For Intermediate interfaces calculate the admittances 
using the recurrence formulae.
5- Calculate the matrix Ye and Yh  and form the 
matrix of dyadlcs Z.
6 . For each element of Z pre and post-multiply by the 
rotation matrix and its Inverse.

By this means the Green's function can be calculated for 
planar structures of arbitrary complexity with no 
Increase in the complexity of the method. The appendix 
to this chapter describes a simple PASCAL procedure 
utilising this method.
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2.5. Assymptotlc values of the Green,e function

As becomes large compered with $ the elements of 
the Green*8 matrix can be accurately approximated by 
much simpler expressions. By Judicious use of the 
derivatives of some field and current components. the 
assymptotlc limit of the elements of the characteristic 
determinant can be made to contain an Inverse square 
dependence on <K. This lends Itself to an accurate 
evaluation of the Infinite series. or Integral to 
Infinity. which Is required for evaluating the 
characteristic determinant.

In the limit we can make the following simplifications 
to the formulae presented above.

(2.33)

(2.3ft)

YH* = YH* = -J« / (2.35)

Y«* = - «€o€*♦* / (2.36)

Y£* »€©€* / ja (2.37)
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We can see that for large CC( the admittances depend 
only on the layers Immediately adjacent to the 
appropriate Interface. This Is expected since the y 
directed wave Is highly evanescent In this case and has 
negleglble amplitude at the next Interface.

2.6. Poles In the Green's Impedance functions

For computational reasons It Is necessary to be able to 
locate the poles of the Green's function. These are. In 
fact, located at the positions of the modes of the 
dielectrically loaded waveguide. In a boxed structure 
these are the box modes and In an open structure they 
are the surface wave modes. That this should be so can 
be seen If the Green's function Is expressed In terms of 
the eigenvectors of the structure [11,page 821].

where E*, Is the m%H eigenvector and Am la the 
corresponding eigenvalue. Clearly the Green's function 
has a simple pole at X s Am *

(2.38)
m
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Asaln we can consider a bound mode to be a resonance of 
the transverse equivalent circuit. In the resonant 
condition an Infinite response will be produced from any 
finite source, provided the structure Is lossless. This 
corresponds to a pole for the Green's function.

Poles In the dlasonal terms of the Green's matrix occur 
when:

Ye i u  = Yci« or Yh i u  * Yh i « (2.39)

To evaluate these requires the solution of another,
albeit simpler, transcendental equation. We can, 
however, take the process one step further and look for 
the poles In equation 2.39* These are elven as follows:

Tan k&d* = 0 Tan ki-*-idt^i = 0 (2. AO)

Cot ktdt = 0 Cot kft4-idi^i = 0 (2.41)

In other words when:

kid* = nK/2 or kt^tdi+i = nTC/2 (2.42)

for any Integer value of n.
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Thus we may find the roots of equation 2.40 and 2.41, 
search between these for the roots of equations 2 .39« 
these being the poles of the Green's function elements.

2.7. Special cases of the Green's matrix

The Green's matrices applicable to various planar 
transmission lines are now recovered from the general 
derivation.

For the case of boxed mlerostrlp the Green's matrix 
consists of one dyadic element.

-1 ( (€ x ko2 - |* ) k2n tan k2ndz
det

( €akoa - ) k m  tan kIndt)
det (2.43)

BsM = £MB 3 P ttr. kan tan kand2 
det

>gn k m  tan Rxwdx 
det (2.44)

1 ( (€ xkoa - «n* ) k2n tan kZn d2Cnm * det
( € ako2 “ ) kin tan kindi)

det (2.45)

where

det - »€o(X)(Y)

X - € xkasn tan k2nd2 + €z kxn tan kxndx

Y « kx« cot kxndx + kaer* cot k2ndz
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As AC -> # the aeeymptotlc forme are elven by:

e«« * / (€x * €a ) (2.46)

e«M / c - e„« / e - -p/ 2(€ x ♦ €2 )

eKK / «» - -l/2 (€x + €2 )

The poles of the function are elven by XY « 0

The correspondlne expressions for the Green*s functions,
for use where the mlerostrlp Is to be analysed uslne the
aperture fields as the unknown, are as follows:

(€ xkoa - )
kx«Tan kx*«dx

(€akoa - pa )
kaen Tan kzndx (2.47)

k2„ Tank2r«d2 
1 (2.48)

(€ X koa - «n2 ) (€* ko* - «n2 )........ 4- -----------------kxnTan kxndx k2n Tan k2nd2 (2.49)



For the case of a three layer structure consisting of a 
substrate layer between two air layers with metal on one 
of Its Interfaces such as unilateral flnllne or 
suspended mlerostrlp, the functions are given as 
follows.

fNN - Yx «* 0* Y= (2.50)

««0 ( Y* - Yt) 
♦ 0* (2.51)

Ya + 0a Yj 
+ 0* (2.52)

where:

^  f 1 €..♦€.-* T1/C2Yx = o ( - ♦ -------- --------I T3 T2 ■*■€»- T1

w  ( 1 * T2/C1C3L 1/C2 ♦ l/ci

Ti * k m  Tan ki„ d*

Cl - ktn Cot kin di
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2.8. Basle functions for the unknown currents

In the following* the basis functions for the unknown 
currents are discussed. For the case where the fields 
are taken as the unknown functions the following theory 
Is Immediately applicable If for currents* strips, and 
mlerostrlp read fields* apertures and fInline and vice 
versa. Also for I„* I*. E„. E. read E.* E„*
Im and In respectively.

In order to solve equation 2.12 for the structure under 
Investigation, It Is necessary to select a suitable set 
of basis functions. There are several constraints on 
this choice.

1. Each function must be non-zero only on the metal. 11. 
The set of functions must form a complete and minimal 
set In the space of functions which are non-zero only on 
the metal.

The first condition is a consequence of the fact that 
the current only exists where there Is a conductor. The 
second condition ensures that•the solution to equation
2.12 converges as the number of basis functions 
Increases [12]. In addition to these conditions It Is 
desirable that the basis functions should be as similar 
as possible to the actual current existing In the 
structure.
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This means that the higher* order basis functions can be 
neglected without losing significant accuracy, thus 
leading to a small set of equations and low 
computational effort. To this end we make use of the 
edge condition [13]. Namely that, in the vicinity of a 
metal edge, the current normal to the 180 degree edge 
varies as the square root of the distance from the edge 
and the transverse current varies as the reciprocal of 
this. If these conditions are incorporated into the 
basis functions, it has been shown that good results can 
be achieved using only a single term [14].

The Green's function for the structure has been derived 
in the form of an infinite series or integral of 
trigonometric terms, le. as a Fourier series or Fourier 
transform depending on whether the structure is boxed or 
open. The evaluation of the quadratic form of equation
2.12 is facilitated if the Fourier transform of the 
basis functions is available in a manageable form.

For a planar transmission line which is uniform in the z 
direction, we need consider only the cross-section 
normal to z and define a set of bases for each strip 
which are functions of x, and are non-zero only on that 
strip.
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We calculate the appropriate Fourier transforms for 
generalised boxed mlerostrlp

I«(n) = | l.(x) Sin <tn (x + a/2) dx 

1m(n) = j Im(x) Cos «„(x + a/2) dx

In the following manner:

Suppose that there are r strips and let the r*** strip 
stretch from cr to dr on one of the dielectric 
Interfaces.

(2.53)

(2.54)

Let
W  « x - ( e,- ♦ d*. ) /  2 (2.55)

So that:
w*~ wr—  < y,- < — —  2 2

Thus:
^ w*-/2
I*(n) « 5" f I. (y^)Sln «n (yr + (cP + d,-)/2 -»■ a/2 ) dy, 

r -wr/2

r-* Cr* + d«- ■♦a f) Sin *„( -----   ) J I*(y) Cos «„y dy

p  Cr- + dr- + a f) Cos *„(    ) j i*(y) sin «„y dy
r (2.56)
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And:

vfr/Z
I-(n> - Y. f I„(y,-)Co8 «„(yr + (cr + d^)/2 +a/2 ) dyr

r* cr ♦ dr + a r- 2^ Sin «„(-— ---^ ------) J IN (y) Sin «„y dy
r

y' cos «„< Cr + dP + a ) j I*«(y) Cos «„y dy2r
(2.57)

It can be seen that if I«(y) is an even function then 
the second term on the right hand side of equation 2.56
vanishes, likewise if I.(y) is an odd function then
the first term vanishes.

In a similar manner one or other of the terms on the
right hand side of equation 2.57 vanish depending on the 
parity of 1M .

We expand I.r and 1 Mr> • the currents on the r%H 
strip, in terms of known basis functions thus:

(2.58)
P

(2.59)
P
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By Integrating the second equation by parts and making 
use of the fact that IM *̂> Is zero at the edges of the 
strip we can show:

f Inrr(y) Cos «„y dy = - f —  sin «„y dy n > 0"n

« yi"»«^«-(y) dy n * o

(2.60)

f INrr(y) Sin «„y dy = f 1 ---  Cos «„y dy n > 0

* 0 n * 0
(2.61)

The advantage of this procedure Is that the edge 
singularity for Is Is the same as that for the 
derivative of Ix, thus the same basis functions can be 
used to expand both.

It Is noted that the convergence of the summation In the 
Green's functions as n Increases Is Improved because of 
the factor of appearing In the denominator as a 
result of the Integration. This Is, In fact, offset by 
the fact that the basis functions for Ix diminish more 
rapidly than those for the derivative of Ix by a similar 
factor of «n .
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A set of functions satisfying the edee condition is the
following:

I«mr = I * Nmr Tm (2Xr/Wr)
✓ (1 - (2xT-/wir)a:) (2.62)

where:

XpsO is the position of the centre of the r*H strip 
wr is the width of the r** strip
Tm Cx ) are Tchebychev polynomials

These functions are appropriate for strips placed 
anywhere on the dielectric Interfaces and have the 
correct edge singularity. Their Fourier transforms are 
easily expressed in terms of Bessel functions. In 
addition only the first term contributes to the total 
longitudinal current.

The transforms defined by equations 2*56 and 2.57 can 
now be expressed as Bessel functions.

I« ( n ) * ^ ^ ‘ ZzprQzpm + a. > rR<2p+l > rn (2.63)
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Andx

■ h (tt) = ^ ^ ~ XaprQzprm "*■ XcZf»*-l > rRtZp* X » rm»

P r

Z w-/tt

n > 0 

m = 1 , n = O

otherwise

(2.6ft)
where:

Qr~r» * Sin ■— -—  > Jz- («nw/2)Cr*gd,~* *-- }
R ™  * Cos      I (tt„w/2)

end we have made use of the fact that 1*̂ *- and 
I*M r̂> are even or odd functions according to whether 
p Is an even or an odd number. Note that m starts at 1 
for I ’m rather than 0 because the zero'th term Is not 
zero at the edse as the boundary conditions require. 
Indeed the assumption made when carrying out the 
integration by parts above is not valid if the zero'th 
term is Included.
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For the case of finline or coplanar line, the first and 
last strips are effectively bisected by an electric 
wall. The appropriate transform for the first strip is 
the following:

e*
I*(n) * f I«(x) Coe (x a/2) dx (2.65)

-a/2

Ci ♦ a/2 f I«(yt) Cos (y* *#• a) dx 
o

* (-I)" Jw( M i ) p even

similarly for the last strips 

a/2
l*(n) * j I«(x) Cos «« (x ♦ a/2) dx (2.66)

dM

0
( l.(yn) Cos (yR + a) dx 
dm-a/2

* +/- (*nWi) p even

The slsn depending on the slen of EM (y)
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Note that If the stripe adjacent to the walls of the box 
are of the same width ie. a/2-d»* * c&« then the 
terms with even values of n will vanish if EM is an 
odd function of x. Similarly the terms with odd values 
of n will vanish if EM is an even function of x.

We can now substitute into the equation for the fields 
2.11 thus t

Et(x.z) ffu (n).Ij,(n) T(«„x)T(0«,z> (2.67)
j q n

where
i,j » 1 .. number of layers-1
q « 1 .. number of basis functions on each interface
n « 1 . . •

For microstrip this reduces to:

E«(x) - Y. 1 *-« ) sin «„ ( x * a/2) (2.68)
n "

Eh (x ) “  ̂ + Ik ) Cos ttn ( x + a/2) (2.69)
n ”

where the components of g are given by equations 2.43 - 
2.45.
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In order to confirm that the singularity Incorporated 
Into the basis functions Is the best one. It Is useful 
to be able to try basis functions containing any 
specified singularity. This Is done as follows: Let the 
basis functions for IK and I„' be:

KmCm(2xr/wr)
(1 - (2xr/wr )»)»- ^  (2-70)

where C£(x) Is the Gegenbauer polynomial

ftr(X)2*x
* 2 x+n

and X > 0 .
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The Sine and cosine transforms are then given by*

I* (n) * ^ ^ ̂ ZzprOzprn + Zca -̂«-1 >rRc2p+1 >rn ( 2 • 71 )
p r

And:

I m (n) * ^ ^ ' XayrQ2prw ■*" Xc2p<*-1 > rR<2p+l >t»i»»
P r

n > 0
Z Wr-Sl_’X■ ■ m  = 1 . n = O

4(i+A)r<x+i>

otherwise

(2.72)
where:

_ , „ f Cr+ dr+ a 1 JZp-*-X(Q„„ - Sin «„{_ 5 j _ _ _ _ _ w/2 )

Ri*n * COS ®( Cr+ <lr+ a \
2 i («„w/2

x(«ww/2) 
w/2) x

Note that If we set A B O In the above* we recover the 
original singularity.

Note also that when n«0 we need the following limit:

vx
Jx(x) 1

2x ra+x)

Page 2.37



By this means It is possible to examine the convereence 
of the method as the number of basis functions Is 
Increased with various singularities. The results of 
doing this on microstrip are presented In the next 
chapter.

2.9 Conclusion

The theory presented In this chapter makes possible the 
analysis of general planar structures including planar 
waveguide, resonators and antennas. By making use of 
variational methods• and basis functions incorporating 
the singularities of the currents and fields In the 
vicinity of the metal edges, good numerical efficiency 
Is achieved.
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Appendix - PASCAL procedure for calculating the
Green's functions of general planar structures

PROCEDURE SETN (G t GEOMTYPE ; BYCURRENT:BOOLEAN; 
ALPHA2,BETA21 REAL) ;

{Note that since all the lmpedence functions 
are pure real or pure Imaginary, the i's have 
been supressed. Thus:
GYZ, GXZ and GZX are real if BETA is real 
GZZ , GXX and GYX are imaginary.
>

VAR
K02, DETX, DETY, Tl. T2 : REAL ;
YPN, YGN : REAL;
KNSQ.TN, YHU,YHD,YEU,YED: ARRAY[1. .MAXLAYER] OF REAL; 
YE, YH: ARRAY [1. .MAX LAYER, 1. .MAXLAYER] OF REAL;
KN:ARRAY[1..MAXLAYER] OF COMP;
I,J:1..MAXLAYER;
BEGIN
K02:-SQR(KO) ;
WITH G DO BEGIN
FOR I:«l TO LAYERS DO BEGIN
KNSQ[I] :« ALPHA2 + BETA2 - EPSR[I] * SQR (KO) ;
IF KNSQCI] >- 0 THEN KN[I]•ARG :« 0 
ELSE K N [I].ARG PI2;
KN[I].V :« SQRT (ABS (KNSQ[I]>) ;
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TN[I]:=C1(KN[I].THXCK[I]);
{ Cl(Z.X) - Z * TAN ( Z * X ) }
END)
IF MAG[2] THEN BEGIN
{ True if the upper boundary la a magnetic wall) 
YHU[LAYERS-1] : — TN[ LAYERS] |
YEU [LAYERS-1) : «*-EPSR [LAYERS) *K02*TN [LAYERS]
/KNSQ[LAYERS])
END ELSE BEGIN
YHU[LAYERS-1]:«-KNSQ[LAYERS]/TN[LAYERS];
YEU[LAYERS-1])— EPSRfLAYERS]*K02/TN[LAYERS])
END;
IF MAG[1] THEN BEGIN
< True if the lower boundary is a magnetic wall ) 
YHD[ 1 ]I — TN[1) ;
YED Cl):— EPSR[1]*K02*TN[1]/KNSQ[1])
END ELSE BEGIN
YHDCl]I — KNSQ[1]/TN[1]?
YEDfl]s — EPSR[1]*K02/TN[1]|
END;
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IF LAYERS>2 THEN
FOR I:-2 TO LAYERS-1 DO BEGIN
YHD[I]:-(-TN[I]+YHD[I-1])/(1-TN[I]*YHD[I-1]/KNSQ[I]); 
YED[I]l«(-TN£l]*EPSR[I]*K02/KNSQ[I]+YED[I-l] ) 

/(1-TN[I]*YED[I-1)/(EPSR[I]*K02));
YHU[I-1]l-(-TN[I]+YHU[I])/(1-TN[I]*YHU[I]/KNSQ[I]); 
YEU[I-1] :-(-TN[l3*EPSR£l]*K02/KNSQ{l3«-YEU[I] ) 

/<l-TN£l]*YEU£l]/(EPSR£l]*K02));
END;
IF BYCURRENT THEN
FOR I:-1 TO LAYERS-1 DO BEGIN
YE[I,I]:«K02/(YEU[I]+YED[I]);
YH [1,1] : «K02/( YHU [ I ] +YHD £ I ] > ;
END
ELSE
FOR Ii-l TO LAYERS-1 DO BEGIN 
YE £ I»I ] s - YEU £ I ] ♦ YED [ I ] ;
Y H [1,1]:-YHU[I]♦YHD[I];
END;
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FOR I*=l TO LAYERS-1 DO FOR J:=l TO LAYERS-1 DO 
IF I>J THEN BEGIN
YE[I.J]*-YEUfJ]/(YE£J,J]*YEU[I]);
YH[I,J]:«YHU[J]/(YH[J,J]*YHU[I]);
END ELSE
IF J>I THEN BEGIN
YE[I,J]I«YED[J]/(YE[J v J ]♦YED[I]);
YH[I,J]:«YHD[J]/(YH[J,J]*YHD[I]);
END)
IF BYCURRENT THEN BEGIN

SORT(ABS(BETA2*ALPHA2))
(YE [1*1] + YH [ 1 • 1} )/( ALPHA2**-BETA2 ) ) 
(ALPHA2 * YH[ltl] - BETA2 
YE[lf1])/(ALPHA2+BETA2) ;
(-BETA2 * YH[1,1] + YE[1.1]
ALPHA2)/(ALPHA2+BETA2) J 

SE BEGIN 
-SORT(ABS(BETA2*ALPHA2))
(YE(1,1] ♦ YH[1,1])/(ALPHA2+BETA2) ; 
(ALPHA2 * Y E [1,1] - BETA2 
YH[1,1])/(ALPHA2+BETA2) )
(-BETA2 * YE [1,1] YH[1,1]
ALPHA2 )/( ALPHA2+BETA2 ). )

END;
END;
END ;

GZZ :

GXX t

END E 
GXZ ;

GZZ :

GXX :
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CHAPTER 3 

APPLICATION TO UNIFORM MICROSTRIP

3.1. Introduction

In this chapter the theory which has been developed for 
general planar structures Is applied to boxed 
microstrip. The mode spectrum, characteristic Impedance 
and field patterns are calculated and discussed.

The dispersion characteristics of the first 20 
non-complex modes of a microstrip are shown, and it is 
shown by direct evaluation of the overlap integrals that 
the calculated field patterns are orthogonal, as theory 
requires [10].

The field patterns of various modes are shown as contour 
plots and as isometric prolections showing clearly the 
singularity at the strip edge, and the concentration of 
field around the air-dielectric interface.

The behaviour of the propagation constant with strip 
width is shown, revealing the existence of "complex 
modes'* at certain strip widths.
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All of these results are required for the treatment of 
discontinuities in boxed microstrip described in chapter 
A.

Finally the characteristic impedance is calculated as a 
function of frequency for various strip widths and some 
properties of the dependence highlighted. It is seen 
that there is considerable disagreement with the 
quasi-static formulae at other than low frequencies.

3.2. Calculation of the Boxed Microstrip mode spectrum

In Chapter 2 it was shown that the field patterns 
existing in a layered structure could be found by 
solving the general equation (2.12). For the case of 
boxed mlcrostrlp which is uniform in the z direction and 
for which it is required to find only bound modes* 
equation (2.14) was derived.

All the modes for a uniform mlcrostrlp are given by 
finding roots of equations (2.14). To facilitate its 
solution* we substitute equations (2.43)-(2.45) and 
(2.63)-(2.64) to give explicitly*
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where the matrices A£4 ar>e fflven by:

Iiq SlJ Ij|
n

(3.2)

The Greens Impedances as calculated using the equivalent 
transmission line method are given In equation 
(2.ft3)-(2.ft5)• The same functions have been calculated
directly using the boundary conditions at the Interface
In Appendix 1. Expressions for all the field components
are also given In the appendix. Comparison of the 
appendix with the formulation presented In chapter 2
clearly demonstrates the elegance of the transmission 
line method, even for a comparltively simple structure 
such as mlcrostrlp.

At a given frequency there will be an Infinite number of 
values for the propagation constant, beta, which will 
satisfy condition 3.1. Because equation 2.70 Is at least 
a quadratic In g2 , there can be roots for which 
ft2 is complex. This gives rise to the phenomenon of 
"complex modes" which have previously been found In 
other waveguldlng structures [1] and which have recently 
been reported for the first time In mlcrostrlp [2]. In 
practice, however, by far the majority of the solutions 
are, either pure real or pure Imaginary.
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A re&l propagation constant represents & lossless 
propagating mode, an Imaginary propagation constant 
represents a lossless evanescent mode.

A complex propagation coefficient represents a 
propagating wave which either decays or grows depending 
on the sign of the Imaginary part. It would appear at 
first sight that, in a lossless medium with no energy 
sources, neither of the latter cases Is possible. Indeed 
they are not possible In Isolation. The possibility 
remains, however, that a pair of modes may exist having 
complex conjugate propagation coefficients.

The energy lost from one Is exactly balanced by the 
energy gained by the other. The total effect being that 
of a single evanescent mode. Such solutions have been 
found and are described In more detail In section 3*4. 
Such modes can be excited by discontinuities and the 
energy stored therein must be taken Into account In 
discontinuity analysis.

The energy stored by an evanescent mode can be either 
capacitive or Inductive. In other words the Integral of 
the Poynting vector over the mlcrostrlp cross section 
can be negative Imaginary or positive Imaginary. Por a 
pair of complex modes, the energy stored changes from 
being Inductive to capacitive In a cyclic manner with 
distance from the source of excitation.
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This Is In accordance with the fact that by changing the 
strip width* the complex modes can be resolved Into two 
modes with pure Imaginary propagation coefficients* one 
Inductive and one capacitive.

We now proceed to find the modes of boxed mlcrostrlp by 
finding the zeros of the characteristic determinants of 
equation 3.1. In finding these zeros* care must be taken 
to make sure none of the zeros are missed on the one 
hand* or to necessitate large amounts of computation on 
the other. A straight forward search Is lmpractlble due 
to the fact that the determinant contains a large number 
of poles* many of which are close to the searched for 
zeros. The method used In this work makes use of the 
fact that the poles of the characteristic equation can 
be found without difficulty using the technique 
described In section 2.6. By carrying out the search 
between the poles* the computational efficiency Is 
greatly Increased.

The search Is facilitated by the following property of 
the characteristic equation* namely that between any two 
poles there can be none* one or two roots. That this Is 
the case can be seen by examining the form of the 
characteristic determinant. For the formulation In terms 
of unknown aperture fields this can be expressed as 
follows:

Page 3*5



det (»*) = Y. ■»* < ** * »* > Y' Y"

where EM and E« are the Fourier transforms of the

x and z components of the E field In the 
aperture.

€ 2 Tan kidt * € * Tan kada 
kt k2

Y« = ki Tan kadi + ka Tan k2d;

ki5* - € i ko* - ■«* - »*

By expanding the tangents as Infinite series we set the 
following:

det(| = ) - Y R»* < ** * >
n

• fK1 y ___________i____________ * K , y _____________i___________\
I f-(2k-l>* -(2k»d,/lE)* L. (2k-l)= -(2k»<fa/JC)* J

where R Is a real number
K1 and K2 are linear functions of
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The denominators can be rearranged as follows:

where fn»« Is Independent of 0 and the poles of 
det(02 ) are located at J2 = fw*.

Now consider the behaviour of det(|*) In the 
Interval between two consecutive poles at %2 =
f m m  and = fnzka. This behaviour will be
dominated by the terms In the summation which give rise 
to the poles. Thus we express det(pz ) as follows:

Ml M2= — --------—  +     + T(p*)
fn lk l “ I  fnaka — |

where Ml and M2 are linear functions of 
F(0*) Is made up of the remaining 
terms of the summation.

All of the terms In F(|2 ) are either nonotonlcally 
Increasing or monotonlcally decreasing In the Interval 
under Investigation. This term cannot Introduce zeros 
Into the derivative of det(pz ), thus for the purpose 
of Investigating the number of possible zeros within the 
Interval, this term can be neglected.
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The two terms which are left form a quadratic In ft2 
and will, therefore, have two roots. Any or none of 
these may fall Inside the Interval between the poles.

Where there Is a single root between the poles a 
bisection algorithm will find It. Otherwise the minimum 
of the function Is searched for. If roots are present 
they can be quickly located. In addition, since there Is 
a one to one correspondence between the modes of the 
slab loaded guide and the quasi TE and quasi TM modes of 
the mlcrostrlp, the total number of roots will be one 
greater than the total number of poles. The extra root 
corresponds to the quasi TEM mode of mlcrostrlp. If 
during a search of the real axis of the complex plane it 
Is found that there are more poles than roots, then the 
existence of complex roots Is Indicated. Their 
approximate location can be ascertained by keeping a 
count of the number of poles minus the number of roots 
found as the search along the real axis proceeds. The 
exact positions of the roots can then be located by 
performing a search of the upper half of the complex 
plane. Once a root Is found. It Is known that Its 
complex conjugate Is also a root.
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3.3. Computation of Inner Products

In order to normalise the field patterns of the 
mlcrostrlp modes, to verify that the calculated modes 
are orthogonal as they theoretically should be, to 
calculate characteristic Impedance and to calculate the 
overlap Integrals of modes either side of a 
discontinuity. It Is necessary to calculate the Inner 
product of two mlcrostrlp modes. An efficient method of 
so doing Is described here.

< E I H > * [ [  ( E x H ) . z  dxdy

From the results of the previous analysis we have for 
each side of the step discontinuity, expressions for the 
E and H fields In the following form.

(3.3)

Cos «„( x + a/2) Sin k„ (h - y) % ZZ ---  (3.4)Sin kn hn
y > 0

Cos «„( x + a/2) Sin k„ (d •*• y)
Sin kndn

y < 0

and similarly for the other components.



xt la noted that lix and Ky are discontinuous at the 
Interface between air and substrate. Thus we must use the 
coefficients appropriate to the region. The superscript ♦ 
on the coefficients Indicates they apply to the air region 
( y > 0 ) whilst the superscript - indicates that they 
apply to the substrate region ( y < 0 ).

If we split the inner product Into two parts thus:

we set for each part an expression of the following form

< E I H > < E I H >„ < E | H >v (3.6)

where
< E I H >„ = [ [ Em Bv dxdy

< E I H >v = j [ EyHM dxdy

< E I H >4 (3.7)

U(k»*(h-y)) U(km*(h-y))dy 
U (kn "h ) U (Iw’h)

a 0 U(k„(d+y) ) U(k«,(d+y ) ) dy 
U (knd) U (k-d)

where T and U are either Sin or Cos depending on which 
field components are being used and A and B are the 
appropriate field coefficients.



This becomes:

ASB£ Ia
U(k„»’h)U(k„* n

where
0

la ■ f Cos (kr,a - kn 2 )(d+y) -/+ Cos(k„i + 
-d

h
la ■ j Cos (k„»* - k„a’)(h-y) -/+ Cos(kn i* ♦ 1 

0

where Tn * a If n=0

■ a/2 If n>0

and the first signs are taken If U is Sin, 
signs are taken if U Is Cos.

S > { An Br»
U(kr*ad)U(kv,2d) T o - }  (3-a>

kr,a)(d+y) dy

;na’ ) (h -y )  dy

the second
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The results of doing the integrals 1st

Sin (kni - k„ar)d Sin (kni ♦ kna)d- ---- ------- ---------  _/♦ —;---- ------------ (3.9)kn I kn2 kr» % kn2

2 «. Sin (kni1 - kna^h Sin (knr  ♦ k„a " )h
k n X  k n 2  k n l  +  k n 2

By expanding the Sin terms and substituting into 3*8 we 
find that the inner product is:

If U is Sin:

   kn2Cot knad - kniCot k m dA n K  Tn ---------- :---  ;---   (3.10)knl - k„2a

V* knae’COt kn2*h - knl ’Cot knl "h*■ / AnBnTn \ »  ‘ _ 'knl ” kna»2

If U is Cos:

Z .  _ k n a T a n  knzd  - k n i T a n  k n i d  .
T« ---------k >  ■_ V  ,»-----------  (3.11)

■vn 2 Kn2

_ kni * Tan knae* h - kn i’Tan kni’h
**** T" ---------k - k ---------Knl Kn2*
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We define the functions P ( Z1.Z2.X ) and Q ( Z1.Z2.X )
as follows!

Z2 Cot Z2.X - Z1 Cot Zl.XP(Z1.Z2,X) - --------— ----- — =------------Zl* - Z2*

Zls

l{ X  1______
Sin* Zl.X Z1 Tan Zl.X

Zls

Z1 Tan Z2.X - Z2 Tan Zl.XQ(Zlt Z2* X) » --------------------------------Zl* - Z2*

Zl3

H X 1
Cos* Zl.X * Zl Cot Zl.X

Zl3

Then the Inner product < E I H > Is equal to:
a T «  ^  ' EitnHyn P  ( k n l  • k n 2  # h  )

n

a T n  ^  ̂ EiinHyn P  ( k n l  • k n 2  » d  ) 
n

a T n  y * E y n H n n  Q  ( k n l  • k n 2  # h  ) 
n

a T n  y ^  E y n H n n  Q  ( k n l  • k « *  « d  ) 
n

(3.12) 
/ Z2*

}
= Z2*

(3.13) 

ft Z2*

}
= Z2*

(3.1ft)
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3.6. CHARACTERISTIC IMPEDANCE OF MICROSTRIP

In the literature es. [ 3 - 8 ]  a great deal of discussion 
has taken place In resard to the definition of
characteristic Impedance for mlcrostrlp. Given the
values of total transported power, total lonsltudlnal 
current, and the potential difference between the box
and the strip, three separate definitions of
characteristic Impedance are possible. In addition we 
have the "reflection definition" [93 where the 
reflection at a discontinuity of mlcrostrlp with a 
waveguide of known characteristic Impedance Is
calculated and this Is used to define the characteristic 
Impedance of mlcrostrlp.

Unfortunately, except In the limit of zero frequency, 
all these methods slve different answers. Moreover as a 
function of frequency, some of these answers Increase 
and some decrease.

This ambiguity Is the direct result of the hybrid nature 
of the mlcrostrlp mode and the attempt to apply concepts 
appropriate to TEM lines to a quasi-TEM mlcrostrlp. Thus 
for a mlcrostrlp the concept of characteristic Impedance 
Is an approximate one. It Is generally accepted that the 
most physically meaningful definition Is that based on 
total transported power and total longitudinal current.
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This definition has been used In the following 
formulation.

Denotine the characteristic impedance by Zo we have

Zo (3.15)

Because of the form of the basis functions chosen for 
the longitudinal current in equation (2.62), the 
integral in the denominator of equation (3*15) becomes 
8implyi

Wr-/2 f dx
30 J ~77Z-------- 7---xax (3.16)J" ^2/(1 - (2xr/wr )*)

where ao is the coefficient of the first term in the 
current eigenvector derived in the solution of equation 
2.14. Due to the orthogonality properties of Tchebychev 
polynomials, this is the only term in the expansion of 

to contribute to the integral.

The inner product in the numerator can be reduced, by
applying Parseval's theorem, to a summation of the 
products of field terms, the derivation of which is
given in section 3.3.
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3.5 Computational Considerations

In calculating the parameters of mlcrostrlp* we are at 
liberty to choose the number of basis functions we wish
to use and whether to use strip currents or aperture
fields as the unknown functions In the formulation. 
Clearly there will be a trade off between accuracy and
computer time. Trials have been carried out using 
various numbers of basis functions* using currents and
fields* and containing the edge singularity and not
containing this singularity. In the latter case the 
basis functions used were Gegenbaur polynomials with a 
singularity of aero. This Is equivalent to using 
Legendre polynomials. The results are shown In Figs 
3.1-3.2 for both a narrow strip and for a wide strip. It 
can be seen that two basis functions are required for
accurate solutions when the singularity Is Included and 
currents are used. In the other cases about 5 functions 
are required. This again highlights the Importance of a 
good choice of basis functions.

3.6 Results for The High order modes

The dispersion characteristics of the first 20 modes of 
the mlcrostrlp whose geometry Is shown In Figure 3*3* Is 
shown In Figure 3.4. These were calculated using a 
modest amount of computer power.
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In F±£B 3.5 and 3.6. we have & plot of the effective 
permittivity of the mlcrostrlp versus strip width. Also 
shown are the corresponding results for the slab loaded 
sulde with no strip. It can be seen that, as would be 
expected, at very small strip widths, there Is not much 
difference between the mlcrostrlp and the slab loaded 
sulde. Some of the modes perturb the effective 
permittivity upwards while some perturb It downwards 
dependlns on whether the energy In the vicinity of the 
strip Is predominantly masnetlc or predominantly 
electric.

As the strip width Is Increased, the loci of the 
effective permittivity behave In several distinct ways 
dependlns on the mode. For some the locus remains very 
close to the correspondlns slab sulde mode, this Is true 
for all the low order modes. For some the locus moves 
from belns asymptotic to one slab sulde mode at low 
strip widths to belns asymptotic to the next slab sulde 
mode at hlsh strip widths, an example of this Is between 
effective permittivities of -302 and -320. Here the 
variation of effective permittivity with strip width Is 
considerable.
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For a few modes this variation is so large that the 
locus approaches the next slab guide mode and appears to 
cross it and continue on the other side. In fact, as can 
be seen in the figure, this does not happen. Rather the 
locus reaches a maximum where the variation of effective 
permittlty with strip width is zero, and then becomes 
negative. An example of this appears at effective 
permittivities between -332 and -3*15* Here we have the 
situation where, for strip widths between 0.3mm and
0.9mm there appears to be no mlcrostrlp mode 
corresponding to the slab guide modes with effective 
permittivities of -331.5* -338.3 and possibly -3&3* A 
closer examination reveals that for the strip widths 
where the modes appear to be missing, they in fact exist 
with complex conjugate propagation coefficients.

Figure 3.7* shows the locus of these modes as the strip 
width varies. Also shown are the adjacent modes, the 
17th and 20th, and the modes of a slab loaded guide 
formed by removing the strip, the latter are the 
vertical lines. It can be seen that the phase of the 
propagation constant becomes large where the locus 
crosses the position of a slab guide mode. Higher order 
complex modes exhibit this same property. Since complex 
modes occur as low as the 18th, it is necessary to 
Include them in a discontinuity calculation.
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It can be said that where the dependence of the 
propagation coefficient of a mode on strip width is so 
strong so as to cause it to cross the neighbouring pole, 
the root splits into two and "straddles'* the pole.

Another example of complex modes occurs at an effective 
permittivity of around -250. This time, however, the 
mode becomes complex for narrow strip widths.

The field patterns versus x at y*0 for an effective 
permittivity of around -335 are plotted in Pigs 3*8 to 
3*12. These show how the patterns change from looking 
like a perturbation of one slab guide mode to the 
perturbation of another slab guide mode as the strip 
width varies.

The same effect at an effective permittivity of around 
-265 is shown in Figs. 3-13 and 3*15* As the strip width 
is Increased from very small to 2.75cm, the two distinct 
modes shown in 3*13 become more alike until they are 
indistinguishable as in Fig 3*15.

At even larger strip widths the modulus of the modes 
remain indistinguishable but the phase relationship 
between the field components is different. Eventually, 
when the modes have crossed the pole, they again become 
distinct.
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The E field Intensity over the box cross-section for the
dominant mode and for mode 20 are shown In an Isometric
projection In Figure 3*16. It can be seen that the 
expected singularity exists at the strip edge. It can 
also be seen that the field Is concentrated at the 
air-dlelectrlc Interface.

Figures 3.16 - 3.22 show Isometric projections and
contour plots of the transverse E field for various 
modes. These give a pictorial Impression of the modes.

It is expected from theoretical considerations [10] that 
the mlcrostrlp modes will form a complete orthogonal set 
of functions whose domain is the guide cross section and 
which satisfy the boundary conditions. The following 
orthogonality condition applies:

^ En (x,y) | Hm (x,y) > — Kni nm

where n and m are the mode numbers of the strip.
kn Is a complex number
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The above Inner product has been calculated using the 
method described in section 3 of chapter 3 for the first 
non-complex modes of a mlcrostrlp. The results, which 
show that the calculated modes are indeed orthogonal, 
are shown in Table 3*1*

This contrasts with the situation recently reported for 
Flnline [11] where a large number of basis functions are 
required when using the spectral domain method to 
calculate accurate field patterns.

3.6 Results for the Characteristic Impedance of 
Microstrip

Figure 3*23 shows the calculated characteristic 
Impedance of the mlcrostrlp whose geometry is given in
Figure 3.3. It can be seen that after an initial 
reduction of Impedance with frequency, the Impedance 
steadily increases with frequency. This is in agreement 
with other published rigorous results [3] and does not 
agree with quasi-static formulas [12] except in the low 
frequency limit. Figure 3*24 shows the characteristic
Impedance for various strip widths, normalised to their
values at zero frequency. It can be seen that the
general shape is much the same, especially at low 
frequencies. It is also noted that the position of the 
minimum Impedance appears to be Independent of the strip 
width.
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3.7 Variation of field pattern with frequency

Figures 3*25-3*28 show how the variation of the shape of 
the field pattern of the dominant mode of a mlcrostrlp 
as the frequency changes. It can be seen that the eero 
of the function moves closer to the strip as the 
frequency Increases. This variation is a feature of the 
hybrid mode and contrasts with the situation in normal 
waveguide in which the modal function does not depend on 
frequency.

This feature has implications when modelling a 
discontinuity using an equivalent circuit. A waveguide 
discontinuity can be modelled by a transformer, 
representing the overlap between modes and by a 
reactance representing the stored energy in the mode. 
This has proved very successful in providing a frequency 
dependent model [133* The fact that the mlcrostrlp modes 
are hybrid means that if this model were applied 
thereto, the transformer ratio would be frequency 
dependent. This severely complicates the application of 
this model to mlcrostrlp.
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3.8 Conclusion

In this chapter the general Green’s function method of 
analysis has been applied to boxed mlcrostrlp. By this 
means the complete mode spectrum of mlcrostrlp has been 
efficiently calculated. This Includes "complex modes*'. 
By calculating the overlap. Integral between different 
modes It has been demonstrated that the calculated modes 
are genuinely orthogonal as theory requires. Also the 
characteristic Impedance has been calculated for various 
mlcrostrlp geometries and shown to agree with other 
rigorous calculations but to disagree with quasl-statlc 
formulae.
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Appendix 3.1.

Derivation of the Mlcrostrlp Greene Impedance 
using the Interface boundary conditions

We expand the fields In a shielded planar transmission 
line In terms of y directed Hertzian potentials as 
f 0II0W8 1

E - x |Ch + k2 |Ce + VV. 25= (A31.1)

H « k3 A** + VV- Em + x 25= (A31.2)

where

£-» = (x, y ) e_J*“

E= * J'tc (x,y) e“J*M

V* Sin kn ( h + y ) , , , ,= ) Ct,- — --— — ----  Cos (x+a/2 ) y<0 (A31.3)sin k„hn«0

n«# .r ’ Sin k„( h - y )  _  ̂%*m = / D"- 7TZ--rrr:--- Cos (x+a/2) y>0 (A31.4)
Sill Knnn«0
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n-» Cos kw ( h + y ) 
Cos knhn-0

Sin ®n (x+a/2) y<0 (A31*5)

Cos kA( h" - y ) 
Cos kAh* Sin «„ (x+a/2) y>0 (A31.6)

n-0

«n = njt/a

and kn, kA are constrained by the relationship, 

k* = € r-k? - ** - «g

kA* * kS - f* - «*

We can write the fields in the substrate as follows:
(A1.7)

Em(x) ■ ̂  (-A,,kn®n tan kwh * C„»PoP )COS «c„(x «► a/2)

Ev(x) * £  An (€ rk o 2 - kn* ) Sin «n ( x + a/2 )

E. (x) « ̂  ( Anknll tan k„h + Cnl*Po«n)Sln «n(x ♦ a/2)

HM (x) = (-An^of w-t - C„k„«ncot k„h)Sin «„(x + a/2)

Hy(x) = ̂  Cn(€ rko2 - kn* ) Cos «„( x ♦ a/2 )

H. (x)= ̂jT (An l»€o€r.ffn - C„ jflknCOt knh) COS «„(X a/2)
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Similarly In air: (A31.6)

E„(x) = ^(Br,kn’ttn Tan kn’h* ♦ Dn*l*off ) Cos «n(x a/2) 

Ev(x) * £  Br, (ko2 - kA* ) Sin «„( x + a/2 )

E* (x) a (-B„kr,’ i% Tan kn’h* D„j»Po«n )Sln «„(x a/2)

Hm (x ) * £ ( - B t,«€©| + Dnkn’ttnCot k„ * h ’ )Sln *n(x + a/2)

Hv (x) a D„(k©* - kA* ) Cos «„( x ♦ a/2 )

H*(x)a B„ j*€ ©«„ 4- Dn J $ k„ * Cotkn * h • ) Cos ««(x a/2)

Applying the boundary conditions at the alr-dlelectrlc 
Interface we can obtain the following solutions for A B 
C and D .

Cr, = D„ (A31.9)
kA tan kAh*An * “Bn " " ' ' (A31» 10)k„ tan knh

( f J* + d®n Jm ) kn tan knh 
* («„* ♦ I*) (X) •€© (A31.12)
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where

X - € r-KA tan kAh* + kn tan k„h (A31.13)

Y ■ kn cot knh * kA cot kAh* (A31.1ft)

J«(n) = [ J«(x) sin Kn (x + a/2) dx (A31.15)

J»t(n) = [ JM (x) Cos «n(x + a/2) dx

The integrals belns taken over the strips since no 
current flows where there Is no strip.

We now substitute Into the equations for the x and z 
components of the fields and set an expanded version of 
(1) thuss

E. (x) = ^  ( £.. J« ♦ Jk ) Sin «„ ( x + a/2) (A31.16)
n "

Em (x ) - £  ( ) Cos «„ ( x + a/2) (A31-17)
n "
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where

S*M = Sh . =

-J ( (€ rko2 - >z ) K n 1 tan kn 'h
det

( koz - ) kn tan knd)
det

0*«(kn' tan kn vh + k„ tan knd)
det

$ ( (€ rko2 - ) kr, * tan k„* h
■ ait

( koz - «wa ) k„ tan knd) 
det

where

det - »€o(X)(Y)

X « € rkn ’ tan kn 'h + kn tan knd 

Y « kn eot knd + k„* cot kn 'h

Ae CC -> e the aaaymptotic forms are eiven by: 

e »  s J|* / (C» ♦ i)
g«» / « - Emm /  * « «#/ 2(€n 1 )
gNM / «* = -d/2(€n ♦ 1 )

This Is in agreement with the results obtained using the 
equivalent transmission line method.
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Appendix 3.2 - Summations of the products of two basis
functions - Application to uniform microstrip

In order to accurately calculate series such as that 
which appears in the characteristic equation of a 
microstrip eg. equations 2.1ft, an asymptotic function 
for the terms of the series as n goes to infinity is 
desirable. Together with an analytic expression for the 
sum to Infinity of this function, this has the twofold 
benefit of reducing the number of terms which need be 
evaluated and of producing a more accurate answer.

This technique is used with great success in [2] for 
Schwlnger functions as applied to microstrip with a 
centrally placed strip for even modes. In the following 
this technique is applied to the basis functions whose 
Fourier transforms contain Bessel functions for any 
mlcrostrlp or any pair of mlcrostrlps with no 
restriction of size or position of the strip.

The series in question is of the following form:
(A32.1).

Sin(nbi+piJC/2)J^i (nxi) Sin(nba+PzJE/2) J»>z(nxz)
n

where J„(x) is the p%H order Bessel function of x.
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For laree arguments the Bessel function has the 
following asymptotic form:

S  2 C
~ 7TJK) I Cos (u) + ( l-ftp38) 

53c Sln(u) j (A32.2)

where u * nx - e 

e - (2p+l)K/b

Cos(u) « Cos(nx)Cos(e) + Sin(nx)Sln(e ) 
Sln(u) ■ Sin(nx)Cos(e) - Cos(nx)Sin(e)

We can express A32.1 as:

S ■ Sin(nbx+PiJt/2 ) Jpx (nx» ) Sin(nb2+p2JC/2 ) Jp 2 (nx2 )
S' - Sin (nbx+PiJC/2)7wx (nx» ) Sln(nb2+pz7C/2) 7p a (nx2 )

The first term will converge in fewer terms than the 
original summation given by eqn. A32.1. The second term 
can be evaluated as follows:

(A32.3)

where:
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S' -
£ Cob (ul )Cos (u2)Sin(nb1+PiJiy2 )Sin(nb2+p3JC/2)

Sin(ul )Sin (u2 )Sin (nbx+PiJC/2 )Sin(nb3B+p2]t/2 )+ — — —  . ■ . ■ ,6ft n* Xi Xz
Sin(ul )Cos (u2)Sin(nbx +VxK/2 )Sin(nb»+paJE/2)_____

Cos (ul )Sin(u2 )Sin(nbx +Pi JE/2 )Sin (nbz+paJT/2 )___

n*JC /(xi x2 )

We have:

2 Sin(nbx+plK/2)Sin(nbz+Pa)C/P2) ■

Sin(( px «■ Pa)m/2) Sin(n(bx ♦ bz)

♦ Cos(( px - Pz)JI/2) Cos(n(bi - b2 )

Cos(( px ♦ Pz)K/2) Cos(n(bx ♦ b2 )

- Sin(( px - P z)K/2) Sin(n(bx - b2 )

(A32.ft)

(A32.5)
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2 Cos( Ui) Cos( Uz) =
Sln( ei * ez) Sln(n(xi + Xz)
Cos( ex - e*) Cos(n(xi - Xz)

Cos( ei ez) Cos(n(xi 4 Xz)

Sln( ei - ez) Sln(n(xi - Xz) (A32.6)
) Cos ( Uz) *
Sin( et ♦ ez) Co8(n(xi ' 4 Xz)

Cos( ei - ez) Sln(n(xj - Xz)

Cos( ex + ez) Sln(n(xi 4 Xz)
Sin( Bi - ez) Sln(n(xi - Xz) (A32.7)

2 Sin( ui) Sin ( u2 ) =
- Sin( ei ♦ ez) Sln(n(xi ♦ Xz)

+ Cos ( ei ~ ez) Cos(n(xi “ Xz)
Cos ( ei ♦ ez) Cos(n(xi + Xz)

♦ Sin( et - ez) Sln(n(xi -  Xz) (A32.8)

We now expand each term In the large bracket so as to
cause all the terms to be of the form K Sln(nx) or K
Cos(nx) where K Is Independent of n. For example the
result for the first term Is:

Si =
Sln( (Px 4 Pae) JC/2 )Cos(ei 4 e2 )Sln(n(bi 4 bz 4 Xi 4 Xz

4 Sln( (Px 4 Pz )J^2)Coe(ei 4 e2 )Sln(n(bi 4 b2 - Xx - Xz
4 Sln( (Px 4 Pz)K/2)Sln(ei - e2 )Cos(n(bi 4 b2 - Xx 4 Xz
- Sln( (Px 4 Pz )JC/2)Sln(ei - e2 )Cos(n(bx 4 b2 4 Xi - Xz
- Sln( <Px - Pz ))t/2)Cos(ei 4 e2 )Sln(n(bi - b2 4 Xi 4 X2
- Sln( (Px - Pz )JE/2)Cos(ei 4 e2 )Sln(n(bj - b2 - Xx - Xz
- Sln( <Px - Pz )JC/2)Sln(ei - ez)Cos(n(bi - b2 - Xi 4 Xz
4 Sln( (Px - Pz )Jt/2)Sln(ei - e2 )Cos(n(bi - b2 4 Xi - Xz
- Cos( (Px 4* Pse ) % / 2.) Cos ( e 1 - e2 )Cos(n(bi 4 b2 4 Xi - Xz
- Cos ((Px 4 Pz )J£/2 )Cos(ex - e2 )Cos(n(bi 4 b2 - Xx 4 Xz
- Cos( (Px 4 Pz )K/2)Sln(ex ♦ e2 )Sln(n(bi 4 b2 4 Xx 4 Xz
4 Cos( (Px 4 Pz )Jt/2)Sln(ex 4 e2 )Sln(n(bi 4 b2 - Xx - Xz
4 Cos ((Px - Pz)JC/2)Cos(ei - e2 )Cos(n(bi - b2 4 Xx - Xz
4 Cos ((Px - Pz )Jt/2)Cos(ei - e2 )Cos(n(bi - b2 - Xx 4 Xz
4 Cos( (Px - Pz )JC/2)Sln(ei 4 e2 )Sln(n(bi - b2 4 Xx 4 Xz
- Cos( (Px - Pz )J£/2)Sln(ei 4 e2 )Sln(n(bi 4 b2 - Xx - Xz

(A32.9
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in order to produce an analytical formula for the sum of 
the above function we require formulae for the following 
summations.

Sin (nx)SUMS 2 Z Sin (nx) ^--- (A32.10)n3
V* Cos (nx)SUMC2 - ) ---- ^--- (A32.ll)t- n3

Sin (nx)SUMS3 - > ---- ---  (A32.12)n3
E Cos (nx) ^--  (A32.13)

n3
r- Sin (nx)SUMSU - > ---- f   (A32.14)

V' Cos (nx)SUMC4 - >      (A32.15)n*

These summations can be found using the Geometric Series 
method as outlined In Collin [10].

We obtain:

SUMC2 -  --------+ —  (A32.16)JC3 _ Kx. X3
6 2 * il
of both sides we get
JF*x JCx3 X3
6 4 + 12

ODt)3 _ JCx3 X*
12 12 ♦ 48

SUMS3 -    - —  +   (A32.17)

SUMC4 «  --  - —  ♦ —  (A32.18)
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Also we neve

B(2) 3B(A)SUMS2 - x Ln(x) - x(l -► x3— - (1 * x = »■■■■ U *12 5B(2).A.3.2
(2k-l )B(2k) (k-1) , .(A32.19)(2k+l)B(2k-2)2k(2k-l)k 

where B(k) Is the Kth Bernoullll Number.

By integrating both sides of the above we can obtain 
expressions for SUMC3 and SUMS4. Note that It Is 
necessary to take about 7 terms In the above infinite 
products to obtain sufficient accuracy.

For reference the Bernoullll numbers are:

B(0) 
B( 2 ) 
B(A) 
B ( 6 ) 
B( 8 )

1 
1/6 
- 1/30 
1/A 2 
- 1/30

B( 10 ) 
B( 12 ) 
B(lA) 
B(l6 ) 
B(l8 )

5/66
-691/2730
7/6
-3617/510
A3867/798

SUMS2 - xLn(x)-xf 1+—  f 1 +-  f 1L 72 L 200 L
5x3
AAl

SUMC3 - SN3 [ Ln(x) - | [ 1* £

(A32.20)

i l 6  i 1 * I k s  • • •  < * * * • " >

{ S K 3 ^  {SUMS A » x {SN3+-7 ( Ln(x)- ~  —  fl+ —  6 L 6 2A0 L 2100 ... (A32.22)
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The valus of the multipliers In the above series are 
as follows:

For SUMS2:

1/72 1/200 5/ftftl 7/ft80 2/121 7601/ft25880

For SUMC3:

1/300 15/176ft 7/600 10/726 7601/ft96860

For SUMSft:

5/2100 21/2200 5/ft29

Substituting back we obtain:

Coeff { S» + (1 - ftp?) ^  (A32.23)
8xii  ?  - {

■}
(l - ftp?) „ (l - ftp?)(l - ftp?)S3 --- — -------------------  s*8xz 6ft X * X 3

where coeff « -------  .JC/(x»X»)
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We e&n use the above result for calculation the 
asymptotic sums for the expression 3* 2 In the evaluation 
of uniform microstrip mode parameters. In this case we 
have from eqn 2.56:

JCw ,Xi = x2 = —  (A32.2A)2a
Jt(a ♦ 2 * offset)bx = ba = --------    (A32.25)2a

Asymptotic values for the Inner products of fields

We use the result to Improve the accuracy of the 
calculation of the Inner products described In section 
3.3* We restrict ourselves to the case of a microstrip 
step discontinuity of the type shown in Fie. A-l where 
the strips In regions (1) and (2) have widths and 
offsets of w & w2 offsetx and offsetz 
respectively.

The results are valid for any real values of p and q. 
They are therefore applicable to the case where we are 
calculating overlap Integrals between two microstrip 
modes such as the mode matching method and the 
variational method of Chapter ft when the basis functions 
are chosen to be microstrip modes.
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For the case of variational methods when we choose basis 
functions with a different singularity at the edge, 
since the Fourier transform of such a function contains 
fractional order Bessel functions, the required 
summation is obtained by replacing the denominator of 
equation A32.1 by where si and s2 are the
edge singularities for the two sets of basis functions, 
pi and p2 then take the values k+0.5~sl k+0.5-s2
respectively where k is an integer.

This means that in place of A32.10 - A32.15 the powers 
of n will be fractional and closed form results 
corresponding to A32.16 etc. are not available. They 
can, however, easily be evaluated on the computer.

We have, from equations 3*13 and 3.1&* for large values 
of nt

P - -l/2«„
Q - l/2«„
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In addition for microstrip we have for large ni 
EM (n) — SMmn^ n (n ) 4- SMmsiTb (n)
Hy(n) = SNy.J.(n)
HS(n) = H^(n)
Ev(n) * Ey(n)
SMhb * /(l+€ )
SM„„ * -i/(1*€v )
SMy- * -1/2
Jti is the i directed current in region j 

The n%*' term of 3.14 then becomesi

ftZ ENnHyn/n)[ 

m  a *  ( S N n b I b  x 4 S M m n 3 n & ) { S N y d s a  ) / n £  

the error is of the order l/n*
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Also for large n the current basis functions can be 
approximated by making use of the asymptotic limit for 
Bessel functions given In equation A32.2.

Itj a Sin a + offset
2a

where p Is the order of the Bessel function contained by 
the Fourier transform of the current I*j .

If we denote the sum given by equation A32.1 by:

SS(bi,b2.p*,Pa,Xi(xa )

then the asymptotic sum of equation 3*14 Is given by:

ZpxZq2SS(bi . bz 'P.q.Xi  ,X2 )

p q

Xpi Zq2SS (bi . bz • P+l • Q« Xj « Xz )

p q
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where p end a range over the orders of the 
functions contained by the Fourier transform 
current I.

£(a + offset*) bi = ----------------2a
JE(a + offset^)bz = ------- ---------2a

Jl-Wx
Xl *  ——2a

JCwzXa *  --2a

Zp± is the p*h coefficient of the basis 
expansion of I* In region 1

Xg,i Is the p** coefficient of the basis 
expansion of I„ In region 1

Bessel 
of the
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The summations depend on the geometry only And
thus they can be calculated once at the start of the 
solution of a discontinuity problem and used for all the 
Inner products which need to be evaluated.

The Inner product becomes:

I {af / \ Ekii Hyn P(Knl • kna • h)

+  E M n H y n  P ( k n l « k n 2 « d )

SNNfl SHyn—

EynHitn Q(knS i Kn2 »h)

- EynHmm Q(KnliKn2t d) J

SMm ■ SNy« ^ ~ ^ | Zy & Z^aSS ( ba • ba • P • Q • Xi « Xa )
P Q

SMm m SNya ^  ^ * Xy a Z^aSS ( ba • ba t P+1 iQiXai Xa )
P Q
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Fig 3.27 - Field pattern of mode 5 at 10 GHz
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Fig 3.28 - Field pattern of mode 5 at 15 GHz
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Fig 3.25 - Field pattern of mode 5 at 1 GHz

K I 0
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1 2 3 4 5 6 7 8 9 10 11 12
1 1 4e-4 3e-4 6e-4 le-4 5e-4 2e-4 4e-4 5o-4 le-3 2e-4 le-4
2 2e-4 1 2e-5 4e-5 7e-6 3e-5 le-5 3e-5 3e-5 8e-5 le-5 le-5
3 2e-4 2e-5 1 3e-5 6e-6 2e-5 le-5 2e-5 3o-5 6e-5 8e-6 8e-6
4 2e-3 2e-4 le-4 1 5e-5 2e-4 9e-5 2e-4 2e-4 5e-4 7e-5 6e-5
5 2e-4 2e-5 2e-5 4e-5 1 3e-5 le-5 3e-5 3e-5 7e-5 9e-6 9e-6
6 le-4 le-5 9e-6 2e-5 3e-6 1 7e-6 le-5 2e-5 4e-5 5e-6 5e-6
7 5e-4 5e-5 4e-5 9e-5 2e-5 7e-5 1 7e-5 8e-5 2e-4 2e-5 2e-5
8 2e-5 2e-6 2e-6 4e-6 7e-7 3e-6 le-6 1 4e-6 8e-6 le-6 le-6
9 2e-3 2e-4 2e-4 4e-4 7e-5 3e-4 le-4 3o-4 1 8e-4 le-4 le-4
10 5e-5 5e-6 4e-6 8e-6 le-6 7e-6 3e-6 6e-6 7e-6 1 2e-6 2e-6
11 3e-5 3e-6 2e-6 5e-6 9o-7 4e-6 2e-6 4e-6 4e-6 le-5 1 le-6
12 5e-4 5e-5 4e-5 9e-5 le-5 7e-5 3e-5 6e-5 7e-5 2e-4 2e-5 1
13 le-4 le-5 le-5 2e-5 4e-6 2e-5 8e-6 2e-5 2e-5 5e-5 6e-6 6e-6
14 2e-3 3e-4 2e-4 5e-4 8e-5 3e-4 le-4 3e-4 4e-4 9e-4 le-4 le-4
15 le-4 le-5 9e-6 2e-5 3e-6 le-5 7e-6 le-5 2e-5 4e-5 5e-6 5e-6
16 7e-4 7e-5 5e-5 le-4 2e-5 9e-5 4e-5 8e-5 le-4 2e-4 3e-5 3e-5
17 2e-4 2e-5 2e-5 4e-5 7e-6 3e-5 le-5 3o-5 4e-5 8e-5 le-5 le-5
18 5e-4 5e-5 4e-5 9e-5 2e-5 7e-5 3e-5 6e-5 7e-5 2e-4 2e-5 2e-5
19 9e-4 9e-5 7e-5 2e-4 3o-5 le-4 5e-5 le-4 le-4 3e-4 4e-5 4e-5
20 7e-4 6e-5 5e-5 le-4 2e-5 9e-5 4e-5 8e-5 9e-5 2e-4 3e-5 3e-5
21 5e-4 5e-5 4e-5 9e-5 le-5 7e-5 3e-5 6e-5 7e-5 2e-4 2e-5 2e-5
22 2e-4 2e-5 2e-5 4e-5 7e-6 3e-5 le-5 3e-5 3e-5 8e-5 le-5 le-5
23 4e-3 4e-5 3e-4 8e-4 le-4 6e-4 2e-4 5e-4 6e-4 le-3 2e-4 2e-4
24 5e-5 5e-6 4e-6 8e-6 le-6 7e-6 3e-6 6e-6 7e-6 2e-5 2e-6 2e-6
25 5e-4 5e-5 4e-5 8e-5 le-5 6e-5 3e-5 6e-5 7o-5 2e-4 2e-5 2e-5
Table 3.1. The modulus of the mode couplins integrals for the first 
25 modes of microstrip, a * 34mm d»3.175nun b=34mra € r- = 2.33 w = 
4.2mm frequency * 3GHz.



13 14 l£ 16 17 18 18 20 21 22 23 24 251 6e-4 4e-4 2e-3 5e-5 2e-3 2e-5 le-4 3e-4 2e-5 2e-3 4e-4 5e-5 4e-32 4e-5 3e-5 le-4 3e-6 le-4 le-6 9e-6 2e-5 le-6 le-6 2e-5 3e-6 2e-4
3 3e-5 2e-5 le-4 2e-6 9©-5 le-6 7e-6 le-5 le-6 8e-5 2e-5 3e-6 2e-4
4 3e~4 2e-4 8e-4 2e-5 7e-4 le-5 6e-5 le-4 8e-6 7e-4 2e-4 2e-5 2e-3
5 /le-5 3e-5 le-4 3e-6 le-4 le-6 8e-6 2e-5 le-6 le-6 2e-5 3e-6 2e-4
6 2e-5 le-5 6e-5 2e-6 6e-5 7e-7 4e-6 9e-6 6e-7 5e-5 le-5 2e-6 le-4
7 le-4 7e-5 3e-4 7e-6 2e-4 3e-6 2e-5 4e-5 3e-6 2e-4 6e-5 8e-6 6e-4
8 4e-6 3e-6 le-5 3e-7 le-5 le-7 9e-7 2e-6 le-7 le-5 2e-6 3e-7 3e-5
9 4e-4 3e-4 le-3 3e-5 le-3 le-5 9e-5 2e-4 le-5 le-3 2e-4 3e-5 3©-310 9e-6 6e-6 3e-5 7©-7 2e-5 3e-7 2e-6 4e-6 3e-7 2e-5 5e-6 7e-7 5e-511 6e-6 4e-6 2e-5 4e-7 le-5 2e-7 le-6 2e-6 2e-7 le-5 3e-6 4e-7 3e-512 9e-5 6e-5 3e-4 7e-6 2e-4 8e-4 3e-6 2e-5 4e-5 3e-6 2e-4 5e-5 5e-4
13 1 2e-5 7e-5 2e-6 6e-5 8e-7 5e-6 le-5 7e-7 6e-5 le-5 2e-6 le-4
14 5e-4 1 le-3 4e-5 le-3 2e-5 le-6 2e-4 le-5 le-3 3e-4 4e-5 3e-3
15 2e-5 le-5 1 2e-6 6e-5 7e-7 4e-6 9©-6 6e-7 5e-5 le-5 2e-6 le-4
16 le-4 8e-5 3e-4 1 3e-4 4e-6 2e-5 5e-5 3e-6 3e-4 7e-5 6e-6 7e-4
17 4e-5 3e-5 le-4 3e-6 1 le-6 9®-6 2e-5 le-6 le-4 2e-5 3©-6 3e-4
18 9e-5 6e-5 3e-4 7e-6 2e-4 1 2e-5 4e-5 3e-6 2e-4 5e-5 7e-6 5e-4
19 2e-4 le-4 5©-4 le-5 4e-4 6e-6 1 7e-5 5e-6 4e-4 9e-5 le-5 le-3
20 le-4 8e-5 3e-4 8e-6 3e-4 4e-6 2e-5 1 3e-6 3e-4 7e-5 9e-6 7e-4
21 9e-5 6e-5 3e-4 6e-6 2e-4 3e-6 2e-5 4e-5 1 2e-4 5e-5 7e-6 5e-4
22 4e-5 3e-5 le-4 3e-6 le-4 le-6 8e-6 2e-5 le-6 1 2e-5 3e-6 2e-4
23 8e-4 5e-4 2e-3 6e-5 2e-3 3©-5 2e-4 3e-4 2e-5 2e-3 1 6e-5 4e-3
24 8e-6 6e-6 2e-5 6e-7 2e-5 3e-7 2e-6 4e-6 2 e-7 2e-5 5e-6 1 5e-5
25 8e-5 6e-5 2e-4 6e-6 2e-4 3e-6 2e-5 4e-5 2e-6 2e-4 5e-5 7e-6 1
Table 3*1 continued. The modulus of the mode couplins integrals for 
the first 25 modes of microstrip, a » 34mm d«3.175mm b«34mm € r 
* 2.33 w «* 4.2mm frequency » 3GHz.
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Chapter A

The Analysis of Microstrip Discontinuities

A.I. Introduction

In this chapter the results for the uniform mlcrostrlp, 
are used in a rieorous analysis of single step 
discontinuities and cascades of strongly coupled 
multiple step discontinuities in mlcrostrlp. Use is made 
of a variational formulation Involving the expansion of 
the transverse E field at the step in terms of suitable 
basis functions. Strongly coupled steps are analysed 
making use of the concept of "localised” and 
"accessible" modes. Comparisons with other published 
formulations are made and the relative advantages and 
disadvantages of each are discussed.

A .2. Background

It is becoming Increasingly Important to be able to 
accurately predict the behaviour of mlcrostrlp circuits 
before manufacture. This is especially true In the 
design of microwave integrated circuits where 
adjustments after fabrication are very difficult or 
Impossible to carry out.
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The currently available methods for use In the computer 
aided design of microwave components, ee [1-2] rely 
heavily on quasl-statlc approximations which are only 
correct in the limit of low frequency and which suffer 
significant error as the frequency Increases.

Cascades of step discontinuities constitute a basic 
configuration for the design of filters and Impedance 
transformers, and it is to these In particular that this 
chapter is addressed. Methods by which a more accurate 
frequency dependent solution have previously been 
attempted Includes the equivalent waveguide model eg. 
[3], the Transmission line matrix method eg [4], the 
Finite Element Method. The method of mode matching has 
been applied both directly to flnllne [53. mlcrostrlp 
[19] and also to the parallel plate waveguide model [6] 
although It Is well known that this method may suffer 
from the "relative convergence" problem [7].

More recently a rlgourous formulation of the single step 
discontinuity In mlcrostrlp, such as that shown in 
Figure 4.1, has been published [8] and a wide variety of 
results presented. In this method, the portion of 
mlcrostrlp including the step is enclosed by electric 
walls to form a resonant cavity. By varying the length 
of the cavity and evaluating the resonant frequencies, 
the S parameters of the step can be obtained.
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While this method elves eood results for the slnele 
step. It does not lend Itself readily to the treatment 
of cascades of stronely coupled discontinuities. This Is 
due to the fact that the amount of computation becomes 
very large when a complicated metallisation pattern Is 
analysed.

The formulation presented In this chapter makes use of 
variational principles for the generalised S parameters 
of a single step discontinuity. This lends Itself to the 
treatment of strongly Interacting discontinuities by 
means of the concept of accessible and localised modes 
[9]•[10],[11]• In this approach the higher order modes 
excited at the discontinuity are treated according to 
their effect at the neighbouring discontinuities. If 
they have a significant effect then they are deemed to 
be "accessible” otherwise they are deemed to be 
"localised". Since there Is no localised mode Incident 
at a discontinuity, these scattered modes are 
effectively terminated In their characteristic 
Impedances. Each discontinuity Is treated as a multiport 
device, each port corresponding to an accessible mode. 
Likewise the mlcrostrlp which connects neighbouring 
discontinuities Is modelled as a set of transmission 
lines, each carrying one accessible mode. In this way 
the coupling between the discontinuities can be 
accurately accounted for.

Page 4.3



The single step discontinuity is analysed using the 
Galerkin variational method. The E field at the 
discontinuity is expanded both in the set of mlcrostrlp 
modes each side of the step, and also in a suitable set 
of vector basis functions appropriate to the step 
Itself.

In order to analyse a mlcrostrlp discontinuity in this 
way, it is necessary to calculate the field patterns of 
a large number of mlcrostrlp modes, typically 100. An 
efficient method for achieving this has been presented 
in the previous chapter.

ft.3. General Theory of the Single Step Discontinuity

Most formulations of the mlcrostrlp step discontinuity 
make use of the equivalent circuit shown in Figure ft.2. 
This model, however, suffers from the disadvantages that 
it is only correct for microstrip in the limit of low 
frequency, and that as it stands it cannot be used to 
model strongly coupled steps.
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The fonuulAtlon presented here uses the model shown In 
Figure A.3. The step Is represented by a multi-port 
device with Frequency dependent S parameters. Each port 
on the model corresponds to an accessible mode, that Is 
a mode which does not decay to negligible levels by the 
time It reaches the next discontinuity. Combination of 
these S matrices, by standard network methods, makes 
possible the characterisation of cascades of strongly 
coupled discontinuities. In principle, the accuracy of 
the model can be systematically Improved by Increasing 
the number of modes which are treated as accessible. In 
practice, however, as the number of modes deemed to be 
accessible Is increased, the Increase in numerical error 
becomes greater than the Improvement from the formally 
more accurate representation.

Referring to the plan of Figure A.l we start from the 
continuity equations for the E and H fields.

£  ( aS»» ♦ t>Sl» ) ES»»- Y. < “*** * *>»“ * > ESa>
n n

£( r ) (A. 1)

Y < ■ * * *  - «>*** ) H S X >

( a . 2)
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where j
the coefficients "a*' represent the Incident wave 
amplitudes
the coefficients "bvv represent the scattered wave 
amplitudes
the superscripts (1) and (2) refer to the regions
defined in Figure ft.l.

Note that it is necessary to specify the £ field and the H 
field separately since it is not possible to define a 
unique wave impedance for mlcrostrlp.

We normalise the modes such that}

< E„ I fUm > * (ft.3)

and the Inner product Is defined as:

[ E„ x Hm . z dS

with the Integral taken over the box cross-section.
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By taking the inner products of each side of equation 
4.1 with each of the microstrip modes in turn we get:

c a > + h ti> =_______ < ^   ̂ - " C____^________ (4.5)< E„<x> I H„cx* >

^ I if (2) s« >  + h_.cz > =   1 —^    /ft 6 \
< E „ « >  | Hnca> > ‘

To proceed we choose the inputs to the ports to satisfy 
the following conditions:

a*«x> * 1
aRca> ■ 0 P / t (4.7)

« 0

substituting into equations 4.5 and 4.6 gives:

< £ I H*cl> >
1 * b-“ * - < I.(iT i h . - > > ' 1 * ■**

< £ I H„<1> >
** < E^cx> | H„cx> > ^ Sp% ( *9)

< P I H C2>v
bp<* > " < Ep <2> | H „ <3> > = Sc,% (4.10)
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We now substitute these expressions Into equation 4.2.

b. L < £„«*> I H„<»> > a"n/t
✓ P U (2>S> Hw<2> (ft.11)< E„«>1

Therefore:

|{ c m >  . V  <  £  > >  || < „
- L < E„<»» I H„<»» > -n “ ~

V' < £ I Hn<2> > H „ « >  (ft.12)

We now take Inner products of both sides of this 
equation with £ yielding:

< £. 1 > ■ < £ I G j  £ > (ft.13)

where the kernel g of the Integral operator Q Is given 
by:

HS»»(r) HS*»(r*)2g( r, r 1) - v
« < E<^> | H**> >n«l *

Hn**(r) HS*>(r-) ,fc . „ ,
-< E£*>" | H <S> >
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Making use of equations 4.8 to 4.10 and the 
normalisation given by equation 4.3 we set the following; 
expressions for the elements of the S matrix.

< £ I G | £ >
< £ I >< £ I H$x> > “ R,P% (4.15)

where =     —  p <= tt (4.16)

Rp.% = —    p > «Sp*

£ Is the number of accessible modes In region 1.

We expand the unknown function for the electric field at 
the discontinuity In terms of a complete set of two 
dimensional vector basis functions which satisfy the 
boundary conditions.

£ . Z  c. t,n (x.y) (4.17)
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Substituting these expressions into equation ft.15 and 
taking partial derivatives of each side of the equation 
with respect to c„ we obtain the following:

OCu *—q

5^ C, < t, | G | !„> (ft.18)
q

substituting for R,,* we get:

[ <  1« I H.«»» > - £  c, < 1. I G I £* >}

-Ip
+ < £% I Hp<x> > < £„ I H*cx> > * o (ft.19)uĈ f

from equation ft.12 we get:

< £« I H%cl> > » < 1« I G I £ > (ft.20)

which if we substitute into equation ft.19 we get the 
results:

3*^* « 0 (ft.21)oc„

< I H%<a> > B ^  Cf < t, I G I 1« > (ft.22)
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The first result shows that the expressions for the 
elements of the S matrix are stationary with respect to 
small changes in the trial field function and hence we 
have a variational principle. The second result has the 
form of an infinite set of simultaneous equations from 
which the coefficients c^ may be calculated. Hence the 
field may be found from equation ft. 17* and the left half 
of the S matrix can be found from equations ft.8-ft.10. 
The other half of the S matrix is found by means of a 
similar analysis with Inputs to the ports satisfying the 
conditions:

a„«‘> « 0
a * « >  = l
Sp cz> ■ O p ji t

instead of those specified in equation ft.7.

We note that equation ft.22 is the same as would have 
been obtained if Galerkln’s method had been applied to 
ft.12. This is a consequence of the fact that the 
operator G is self adlolnt which in turn is a 
consequence of the law of conservation of energy.
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In practice, of course, we approximate the field with a 
small number of basis functions, chosen to well 
approximate the actual field at the discontinuity. This 
leads to an efficient and accurate formulation. The form 
of the chosen basis functions Is discussed later.

It Is Interesting to note that the function g can be 
split Into two parts g« and g* where the sum In 
equation ft.14 Is taken over the capacitive and Inductive 
modes respectively. The corresponding operators G c and 
Gi are negative and positive definite respectively. 
From the theory of operators this means that the 
calculated values of R c and R* will form an • upper 
bound on the true value. Unfortunately because these 
quantities are summed, the stationary point In R will In 
general be neither a maximum or a minimum. This Is In 
contrast to the simpler situation which would exist If 
there were only capacitive or only Inductive modes 
excited. Then one could place bounds on the required 
functionals. Also, In the present case, the fact that 
equation ft.lft contains subtractions means that, to 
maintain accuracy In the solution, the field patterns 
must be calculated to a high degree of accuracy.
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ft. CHOICE OF BASIS FUNCTIONS FOR THE STEP

In equation ft.17 we made use of a set of basis functions 
In which to expand the transverse E field at the step. 
It Is crucial that a good choice Is made here. Otherwise 
the result will be Inaccurate. It Is this aspect of 
Galerkln's method* and other methods of a similar 
nature* which has attracted criticism [1ft]. Where It Is 
possible* from physical considerations, to know a priori 
the Important characteristics of the unknown function, 
then basis functions can be chosen which ensure fast 
convergence. Such a procedure has been used to good 
effect for the solution of the modes of continuous 
mlcrostrlp [12] and for flnllne [15] where the 
singularity of the fields at the edge of the Infinitely 
thin strip or fin are known exactly.

Unfortunately, for the case of the step discontinuity* 
It Is not obvious what the form of the field will be. 
There Is no simply applicable condition corresponding to 
the edge condition at a wedge* which can be used. 
Possible ways of deriving a suitable set of basis 
functions would be using numerical methods to solve the 
static problem [16]* or making the order of the 
singularity at the corner of the step a parameter In the 
variational formulation [171*
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Various sets of basis functions which satisfy the 
boundary conditions, but which Incorporate no beliefs 
concerning the form of the field at the step, have been 
tried. In most cases, however, the result has been a 
very 111 conditioned set of equations (ft.22) from which 
no satisfactory answer could be obtained.

A simple set of basis functions which can be used Is the 
wave patterns of Ex and Ey of the modes of the 
mlcrostrlp containing the wider of the two strips. These 
functions meet the boundary conditions, but do not have 
the correct singularity at the corner. From physical 
considerations, however, it Is likely that the field at 
the step will be similar to the field In the wider
continuous mlcrostrlp. The ratio of Ex to Ey Is left as 
a parameter to be found during the solution of the 
variational expression. If this were not done, then the 
higher order modes of the wider mlcrostrlp excited by 
the discontinuity, would be orthogonal to the basis
functions and would not, therefore, contribute to the 
sum In equation ft.12. Figure ft.5 shows the results of 
calculating the phase of S12 for a step discontinuity 
using different numbers of basis functions at 
frequencies up to 12GHz. It can be seen that convergence 
is achieved at various frequencies when 9 basis
functions are used and the ratio of the strip widths is 
ft:1. While not Ideal, this result means that only a 
moderately small matrix need be handled.
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This contrasts with the large matrices which result from 
employing mode matchlns methods such as [193-

In addition, numerical experiments have been carried out 
usins the modes of the wider strip multiplied by an 
expression of the form:

where a is the box width, w is the wider strip width, 
and p is a parameter which is chosen to achieve best 
convergence. The multiplication was carried out by 
taklns the convolution of the Fourier transform of the

functions, with the previously calculated Fourier 
components of the modal fields. By this means it was 
hoped to improve on the results obtained by usins the 
unchanged mlcrostrlp modes as basis functions by 
brlnslns the edge behaviour closer to what it really 
was. Results for various values of were obtained but 
the conversance showed no Improvement over that achieved 
usins the unmodified modes.

2

above expression, expressed in terms of Bessel
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5. COWVERGEWCE OF THE GREENS FUNCTION

The Green• s function ( equation A.14) is built up as an 
Infinite sum of the eigenmodes of the continuous 
mlcrostrlp. In practice, of course, it is necessary to 
truncate this sum after a finite number of terms. The 
effect of such a truncation on the calculated value of 
the equivalent circuit Impedance Zll is shown in Figure 
6. It can be seen here that for accurate results it is 
necessary to take into account about one hundred 
eisenmodes each side of the step. Examination of the 
geometry shows that this should be expected. We are 
essentially dealing with three complete sets of 
functions. Any transverse electric field pattern which 
satisfies the boundary conditions may be expressed as a 
linear combination of any of these sets. These are the 
mlcrostrlp modes for the continuous microstrip each side 
of the step, and the basis functions chosen to express 
the field at the step itself. Each of these sets contain 
singular functions where the singularities may occur at 
different places and have different strengths in each 
set. Clearly if we are to express a singular function as 
a linear combination of a set of singular functions, 
when the singularities do not coincide, we need many 
terms in order to obtain an accurate representation. 
Thus in expressing the Greens function in terms of a 
summation of eigenmodes, many eigenmodes must be 
Included.
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It Is interesting to compare the situation existing 
here, to that of the analysis of continuous microstrip 
[12]. In the latter case we also have a Green’s function 
expressed as a sum of eigenmodes, in this case they are 
the eigenmodes of a slab loaded waveguide. Unlike the 
present case these functions are not singular, but the 
mlcrostrlp modes which are to be expressed as a linear 
combination of them do contain a singularity. In that 
form, it would also be necessary to take a large number 
of terms in order to achieve convergence. It was 
possible, however, in that case to find an asymptotic 
form of the expression to be summed, with a consequent 
decrease in computer time. In the present case, however, 
no such asymptotic form has so far been found.

6. RESULTS FOR THE SINGLE STEP DISCONTINUITY

The S parameters for a step discontinuity calculated 
using the formulation described above, are shown in 
Figures A. 7 and (1.8. These show the modulus and the 
phase respectively. Also shown are the rlgourous results 
read from the graphs presented in [8] and results using 
published quasi-static approximations [1].

It can be seen that at low frequencies, the agreement 
between rlgourous methods and the quasi-static 
approximation is good, especially for the transmission 
coefficient.
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However as the frequency rises and we approach the 
cutoff frequency of the second mode, there Is 
considerable deviation.

In Figure 4.9 we see* the coupling between the dominant 
mode and the first two higher order modes at the step. 
It can be seen that the coupling increases almost 
linearly with frequency so long as we are well below the 
cut off of the higher order modes.

7. NETWORK FORMULATION OF MULTIPLE DISCONTINUITIES

In the conventional equivalent circuit model for a step 
discontinuity, the parasitic effects are represented by 
two series Inductors and a shunt capacitor ( see Fig 4.2 
)• This model has the following limitations. First the 
validity of the equivalent circuit presupposes that a 
characteristic impedance can be defined for mlcrostrlp. 
Because of the hybrid nature of the mlcrostrlp modes, 
such a definition is unambiguous only at zero frequency. 
Secondly, the values of the components are frequency 
dependent. This fact limits the usefulness of a simple 
equivalent circuit. Thirdly no account Is taken of the 
existence of higher order modes, excited by the 
discontinuity, other than as a means of energy storage. 
If we have closely spaced discontinuities, then the 
effect of these modes will be significant.
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In order to overcome these limitations, it is possible 
to model the discontinuity as a multi-port device with 
inbuilt storage elements. Such a model has previously 
been used for cascades of interacting irises and steps 
in rectangular waveguide £9] [10],[11].

The basic model is shown in Figure ft.3* We split the 
mode spectrum of the mlcrostrlp into "accessible” and 
"localised" modes. The former are considered to have a 
significant amplitude at the next discontinuity. These 
include all the propagating modes and the first few 
evanescent modes. The localised modes are considered to 
have decayed to negligible amplitude at the next 
discontinuity. The distinction i.s obviously dependent on 
the geometry. frequency of operation and the accuracy 
required.

For each accessible mode there exists an input/output 
port. The mlcrostrlp which connects successive 
discontinuities is then modelled as a set of 
transmission lines, one for each accessible mode, each 
with its own propagation coefficient. The localised 
modes which are excited propagate outwards from the 
discontinuity and do not see any reflection, therefore 
they can be treated as being terminated with a matched 
termination.
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The complete cascade can therefore be treated as a 
cascade of multi-port networks connected as shown In 
Figure 4. The first and last of these networks have all 
but the dominant modes terminated In their 
characteristic Impedances. Once the S matrices for each 
discontinuity are known and the propagation coefficients 
of the Intervening mlcrostrlp for each accessible mode 
Is known, then the overall S matrix can be calculated 
using standard methods (eg. [1] ).

8. RESULTS FOR THE DOUBLE STEP DISCONTINUITY

The above method has been applied to the double step 
discontinuity, the plan of which Is shown In Figure 4.1. 
For given frequencies of 3GHz and 7GHz the Input VSWR 
was calculated as a function of the length of the step. 
The results are shown In Figures 4.10 and 4.11. Here we 
have the results of taking lust one accessible mode, le. 
assuming the steps have negleglble coupling and the 
results of taking two accessible modes. In addition the 
results using quasl-statlc formulae are shown. It can be 
seen that at 7GHz the calculated resonant length Is 
notlcably changed when the second accessible mode Is 
Included, thus Indicating a significant amount of 
coupling. At 3GHz the results are almost 
indistinguishable Implying that there 1s no significant 
coupling. The quasl-statlc results are significantly 
different In both cases.
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9. APPLICATION TO A LOW PASS FILTER

A five section low pass filter made up of a cascade of 
mlcrostrlp step discontinuities has been analysed using 
the rigorous method. In order to see the effect of 
Including more than one accessible mode In the model. 
The geometry of the filter Is shown In Figure A.12. It 
has been designed using 50 ohm Input and output lines, 
25 ohm capacitive lines and 90 ohm Inductive lines. The 
cut off frequency Is 10GHz. In Figure 4.13 we see the 
calculated frequency response by means of taking one and 
two accessible modes into account. It can be seen that 
at high frequencies, the effect of the second accessible 
mode becomes noticeable, although not In fact 
significant.

To produce Figure 4.12, the steps were characterised at 
1GHz frequency Intervals and the parameters at 
Intervening frequencies were calculated using 
Interpolation. This produces accurate results except In 
the region of the cutoff of the higher order modes where 
the parameters and their derivatives vary rapidly.
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It is noted that there are only two different step
discontinuities contained in the filter, a step from 50 
ohms to 25 ohms and a step from 25 ohms to 90 ohms. Once 
these steps have been characterised, optimisation of the 
filter consists of varying only the lengths of the lines 
between each step. Thus for each iteration of an 
optimisation procedure, the only calculations involved 
are those of the S parameters of the lines and the
resulting network problem. The computationally more 
expensive rigorous analysis of the step need not be 
repeated.

CONCLUSION

In this chapter, a formulation for the solution of 
single and multiple strongly coupled step 
discontinuities has been developed. This network model 
used for the single step lends itself well to extension 
to cascades of discontinuities, while the use of 
previously computed mlcrostrlp modes leads to a 
reduction in computation. Results have been presented 
for the single step which show good agreement with other
published results, and for the double step which shows
the effect of coupling between the steps.
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CHAPTER 5

ANALYSIS OF BOXED MICROSTRIP RESONATORS

5.1 Introduction

In this chapter the general methods of chapter 2 are 
applied to the analysis of a boxed microstrip resonator. 
The resonator consists of a box bounded by perfect 
conductors and containing a number of rectangular metal 
patches on the Interface between air and substrate. The 
usefulness of this analysis is not only the calculation 
of the resonant frequencies for such structures, but 
also because it leads to methods of characterising 
mlcrostrlp discontinuities [1], [2]. Of the other
published rigorous formulations of the step 
discontinuity, the method described in [1] and [2] with 
their many accompanying results appeared to be the best 
formulation alternative and is the current 
state-of-the-art. The method which is used in the above 
references is essentially to apply Galerkln's method to 
equation 2.16. The basis functions are chosen such that, 
away from the discontinuity the current is that of a 
standing wave as would be found in continuous 
mlcrostrlp.
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Close to the discontinuity, where the currents are 
perturbed, a separate set of basis functions are used. 
This is explained for the case of an abrupt mlcrostrlp 
termination In [1].

Unfortunately, neither [1] or [2] state what basis 
functions have been used, thus making it impossible to 
duplicate the method. In [3] & similar technique is used 
for the open structure. Here the basis functions used 
are the incident and reflected dominant mlcrostrlp modes 
plus a set of piecewise sinusoidal functions near the 
discontinuity.

In order to get a feel for this method the abrupt 
termination was analysed using the geometry of Pigure 
5*1. The basis functions chosen were the same as those 
used for the continuous mlcrostrlp having the correct 
edge singularity. The singularity at the corners is not 
exactly represented, although, as the results show, 
convergence is achieved using dust two basis functions 
for each current component in each direction (a total of 
8 scalar functions). Apart from the basis functions 
chosen, the method is the same as [2]. It is also 
similar to [4] and [5] except that there the open 
structure is treated.
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In the Following, the formulation Is developed and some 
calculated results for a mlcrostrlp resonator are 
presented. Since the purpose of the work described In 
this chapter was to compare this method with that 
developed In chapter 4 for the analysis of the step 
discontinuity, no attempt was made to produce extensive 
numerical results.

5.2 The formulation

We start with equation 2.16, which as can be seen. Is a 
two dimensional version of equation 2.14 which has
already been examined In detail In chapter 3* It Is
possible to extend the derivation In that chapter to
make It applicable to the resonator case.

We use the Green's function In the form given In
equation 2.30, and the Fourier transforms of the
currents, the appropriate forms of which are:

pm) “ I f  Im (x , z )Co 8 (x+a/2)Sin p„(2+l/2) (5.1)

Pm) ■ f \ I*(x,s)Sln (x+a/2)Cos p„(z+l/2) (5.2)

where 1 Is the length and a Is the width of the cavity.
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These equations, which correspond to 2.53 and 2.5*1. are 
valid for metallisation of any shape placed on the 
air-dielectric interface. For the case of rectaneular 
patches which are not in contact with the cavity walls, 
the transformed current is given as:

I* = ^  j fI*(x^,Z^)Sin «n(Xr+X0r)C08 0 m (Zr+ZOP) dXrdZr
r

(5.3)

Im = y  f |l.(Xr.Zr)COB «„(xr+XOr)Sin 0m (Zr+ZOr) dXrdZr 
r

(5.ft)

where:

XOr  s
C^ + dr- ♦

ZOr

cr and dr- are the x coordinates of the edges of the 
r%H strip

er and fr are the z coordinates of the edges of the 
r%h strip
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By algebraic manipulation of these equations we can 
express the transformed currents in terms of the partial 
derivatives "dlas/dz and *dIM/dx. This 
manipulation is described in appendix 5*1*

We substitute these values into the field equations and 
set:

E* (x , Z ) = y y ( I n r ’ )
“  “  p in ” nn 9m r

Sin *„(x+a/2)Cos ^..(z+l^) (5.5)

e„(x .z)= y y ( )
n m

Cos ®r» (x+a/2 )Sin p«,(z+l/2) (5.6)

where the boundary conditions at z « +/- 1/2 have been
imposed, and the primes indicate partial
differentiation.

The Greens functions s u  are given by equations 2. <13 
etc.

We expand the currents in a set of basis functions as
follows:
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I*r C Xr • Er ) s ^ ‘ Zpr I«pr(Xr• Zr) (5*7)
P

I x r  { • 2r  ) *  ^ Xpr In p r (X r • Z r ) ( 5 *8 )

P

Now take the two dimensional inner products of the above 
equations with IKC(« and respectively for all q
and t yielding.

Z . r l i
n , m P. r*

( 5 . 9 )

P. r

y  y M „ ^
n , m P. r

ff ; *n z * .Pt r
0 (5.1 0)

where I is the p*H basis function of the i
directed current on the r*H patch.

If we use separable basis functions of the form:

I« p r (  * P m ) *  I*H p r  ( ) I ia p r  (P mi ) ( 5 • 11 )

(«n .0M.) = Ih k p t  («n)lK.pr(|iM)
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then the left hand aides of the above equations become:

and

n , m P. r

I t c t .  In, m P» r

<5.12)

y  ^ = _  y  M m K w r Z ,®nB mr—* (5.13)
n , m P. r

I  Z  w - W - I .n, m P. r

The solutions of this set of homogeneous equation are 
given by setting:

:)r A«" a*
A1"- 1 ’ ° (5.1ft)
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where the matrices are eiven by:

]T  Y  B* p‘ * i j  BJ*n m

and the column vector B 4** is given by:

Bf-P = IlKpr 11 rpr

There is a direct analogy with equations 3.1 and 3*2 for 
the case of boxed microstrip. In this case the 
computation is greatly Increased due to the double sum 
oceuring in the Green's function and the requirement for 
a two dimensional set of basis functions.

If we use basis functions of the same form as for boxed 
microstrip ( equation 2.62) we get corresponding to 
equation 2.64:

I* (n) = ^  y* ZzprQzp rn + Z(2;p^l » rR(Zp^l > «-r» ( 5 * 15)
P r
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Andt

k ( n) ® ^ ‘ ^XzprQzprn + X<Zp+i > r^C2p+l »rn (J

P r
n

Z  w-/# p ■ 1 . n

otherwise

where:

Qi-« ■ Sin «„{     J J2p (*«w/2)

R m  « Cos ffn nW/2 )

iM(m) * ^ ~ ^ * XzprQzp »-»•» + X(2p^l > rRcZp+l > v*«n
P X*

.16) 

> 0 

* o

5.17)
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Andt

■ (ill) * ^ ^ ' Zzpii-Qzpr*«w + Z(2p*’X>rR(2p*,l>rai 
P r

Z  w a

n > O 

p = 1 , n = O

otherwise

where:

( e*»+ fr+ & 1— -------  j  J*„(p«.l/2>

( er4 fr+ a 1—   j  (0...1/2)

We can now search for a solution of the characteristic 
equation to find the resonant frequency. Once we have 
obtained this result, and have also calculated the 
propagation coefficient of the uniform microstrip, we 
can Immediately calculate the effective length of the 
open circuited mlcrostrlp [1].
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5.3 Results for a mierostrlp peaonator

The resonant frequency for a mlcrostrlp resonator with 
the geometry shown In FIs* 5*1 was calculated using 
various numbers of basis functions. The convergence Is 
shown In Fig. 5«2 and can be seen to be very fast.

5.ft Computational Considerations

In order to evaluate the determinant In equation 5*20 
accurately a large number of terms must be taken In the 
double sum.

In addition as the number of basis functions Increase, 
the number of matrix elements Increases as the fourth 
power of the number of basis functions taken. In order 
to find the zero of the determinant, these functions 
must be calculated many times. It Is thus essential that 
this calculation be done as efficiently as possible.

The assymptotlc forms of the Green's function can be 
used In a similar manner to the way described In section 
3*5 for uniform mlcrostrlp. In this case, however, the 
assymptotlc limit is valid when * p2 is
large.
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We express each of the elements of the characteristic 
determinant as follows:

The second term has the following form

Y Y Ip(n,m) I,{nfm) 
/ + Jn,2 )n m

and is independent of frequency.

The first term converges much more rapidly than the 
unmodified expression so the summation can be truncated 
much sooner. The second term need be calculated only 
once for each geometry. Thus the total amount of 
computation is greatly reduced.
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Since( in practice, we must truncate all the summations 
at finite n and m, care must be taken that In so doing, 
we maintain numerical stability and avoid the 
possibility of convergence to an Incorrect answer. This 
Is achieved by using the values of n and m contained by 
the curve shown in Fig 5. 3* The constant k is chosen to 
achieve the desired degree of convergence. Here we 
maintain approximately equal spatial resolution in the X 
and Z directions and we recognise the fact that 
convergence is of the order (n* !»*)“ *'* (nm)_ i .

5.5 Comparison with the formulation of Chapter ft

Although the method described in 5*4 is capable of 
producing accurate, numerically stable, results, the 
amount of computation required Is large.

Page 5.13



This Is mainly due to the large number of terms required 
In the summation of equation (5>lft) for convergence to 
take place. Even using the assymptotlc forms of the 
Green's and basis functions, the amount of computer time 
required was very large. Moreover the amount of
computation Increases as the fourth power of the number 
of basis functions used for each current component. This 
appears to make analysis of a more complicated 
structure, such as the strongly coupled step, 
prohibitively expensive.

The method described In chapter A, by making use of the 
mlcrostrlp elgenmodes, can relatively quickly produce 
results In a form especially suitable for use In a 
network model of a mlcrostrlp circuit of high
complexity, and therefore has advantages as a basis for 
providing results for use In CAD.

Mainly for simplicity, the basis functions used here are 
the same as those used In the analysis of uniform 
mlcrostrlp In chapter 3. In practice, excellent 
convergence was obtained using these functions and It Is
doubtful whether a different choice of basis would lead
to a significant Improvement In this.
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5.6 Conclusion

In this chapter mlcrostrlp resonators have been analysed 
using the method of Chapter 2. The advantages and 
disadvantages of applying the results of this analysis 
to the problem of mlcrostrlp discontinuities Is 
discussed. This Is currently the state-of-the-art method 
of treating such problems. It Is shown that the method 
Is capable of producing accurate and stable results but 
at the cost of much greater computational effort than 
the method of Chapter 4. This Is especially true when 
strongly coupled discontinuities are analysed.
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Appendix 5.1
Transformation of the Basle Functions

We express the transformed currents as follows:

I« =
r
£  Sin («„XOr)COB (fmZOr )Ik c c (A51‘l)
r

^ ' Sin (®nXOr )Sin (j mZOr)Ik c « 
r

♦ ^  C o s  ( « „ X O r )COB (;fflZ O r )IE S C  
r

- ^  Cos («„xor )Sin (fn,zor.)IKSM

where:

= f f I*(Xr ,Zr) COS(«„X^)COS(|Jfl,Z¥.)dXr-dZr. (A51.2)
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Ikc« = f f (Xr * Zr ) COB (®nXr ) Sill ( 0 «n Zf- ) dXr tlZr

Ik • c S f f (Xri Zr ) Sill (®nXr ) COB ( finZr ) dXrdZr 

Ikcv s ^ ^ Ik (Xri Zr) COfi(®nXr)Sin(fmZr JflXr^Zr

We perform the integration of I**.* with respect to z 
and the integration of INid with respect to x by 
parts, making use of the fact that the current normal to 
the edge of a strip is zero at that edge. We get:

If m > 0

I.K. =

Ik k k  = “

Ik .. :

if n > 0 

In c c

Inc. = —

Ik . <

f Bl« C0 8 (^nXr)Sln(pmZr}dXrdZr> Bz 1 «"

r f Bl« COS(^nXr )COB(flllZr)dXrdZr
J > Bz 

r Bi. Sin(0C„x,- )Sin(|mZr)dXrdzr
J Bz 9 *
f Bl« Sln(C„Xr)C0 8 ((MZr)dXrdZr> Bz

f BIm Sin(<tnXr )€OB(|tmZr)dXrdZr
j Bx 

f Bl„ Sin ( ®n Xr )Sln(0 i.Zr )dXr^2 r

r

J Bx 

f BIm Cos(€nXr)COB(D mZr)dXrdZr

(A51.3)

(A51.t)

Bx
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Im ..

When n

I»» e c 

In «c

I.e.
!>«•»

When m 

I«««

B 

6 S
Ikb b

f f Bin COS( Xr)Sln(fmZr)dXrdZr
Bx «n

■ o we get

- f f Xr COS(0INZv.)dZr>dX,

= \  \ Xr- _ Sin(pmZr)dZpdX,Bx

0 we set

-f f - Bl.
Bz COS(*nXp)dZrdXr

-f f- Bl,
Bz Sin ( ft„ X,- ) dZrdXr

(A51.5)

(A51.6)
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CHAPTER 6

Computer Programs for Microstrip Analysis

6.1 Introduction

For the purpose of gaining understanding of planar 
structures and the analysis techniques and for the 
purpose of efficiently calculating the parameters of 
uniform mlcrostrlp and mlcrostrlp step discontinuities, 
several computer programs were written. Versions of 
these programs will run on almost any computer with a 
PASCAL compiler. Including the Sinclair Spectrum, IBM PC 
compatibles, Honeywell Multlcs and others. Throughout 
the development of these programs, the basic philosophy 
has been to make them general, expandable and readable. 
In addition, where a much used option In the programs 
could be made more efficient by using a special purpose 
routine, this has been Included. This design philosophy 
has been facilitated by using the PASCAL programming 
language In all but one of the programs. Use of the 
PASCAL programming language has meant that the programs 
are portable, structured for ease of modification and 
readability and less prone to programming error than.If 
they had been written In some of the more popular 
languages. The programs will perform the following 
tasks:
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1. rind the modes of a slab loaded w a v e g u i d e .

2. Find the modes of mlcrostrlp using the methods of
Chapter 2.
3. Find the modes of Flnllne using the methods of
Chapter 2.
ft. Calculate and display graphically In 2 or 3
dimensions the field patterns associated with any of the
above modes.
5* Calculate the S parameters of a single step
discontinuity in Microstrip using the methods of Chapter
ft.
6. Calculate the S parameters of a cascade of step
discontinuities.
7* Calculate the resonant modes of a boxed mlcrostrlp
resonator, and the end effect of a boxed mlcrostrlp open 
circuit.
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6.2 The Programs

For convenience, and in order to keep the size of the 
programs reasonably small, the above tasks are shared 
among several programs In the following manner:

EQUIDE Calculates the modes for a slab loaded waveguide 
with no strips. Since these modes coincide with 
the poles In the Qreen's function this 
Information enables MSTRIP to function faster. 
See sections 2.6 and 3.2.
Written In Pascal.

Inputs: The slab loaded guide geometry.

Outputs: A list of the slab loaded guide modes:

MSTRIP Solves the chacteristlc equation of a general 
planar structure, in particular mlcrostrlp and 
finline, to find the mode parameters and to 
calculate the field patterns for each mode. 
"Complex modes'* are not calculated here.
Written In Pascal.
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Inputs: The geometry of the structure.
Optionally a file of data from EQUIDE containing 
the poles of the Green's function.

Outputs: A list of the modes of the structure.

A file containing field Information.

MSTRIPC Calculates the "complex modes" of mlcrostrlp. 
Written In PASCAL.

Inputs: The mlcrostrlp geometry.
Optionally a file from MSTRIP containing the 
non-complex modes of the mlcrostrlp and a file 
from EGUIDE containing the modes of the slab 
guide.

Output: A list of the complex modes of the
mlcrostrlp.
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MDISC Calculates the generalised S or Z matrix for a
single step mlcrostrlp discontinuity.
Written In PASCAL

Inputss Two files from MSTRIP containing the 
field patterns for the mlcrostrlp each side of 
the. step.
Optionally a file containing a set of basis 
functions for the field at the discontinuity.

Output: A file contalng the generalised S matrix 
of the step.

MNET Calculates the S matrix for a cascade of
mlcrostrlp step discontinuities.
Written In PASCAL.

Inputs: Files from MDISC containing the S
matrices for each single step In the cascade. A 
text file specifying the geometry of the 
cascade.

Output: The S matrix of the cascade.
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RttSON

FFT

Calculates the resonant frequency of an enclosed 
mlcrostrlp structure. Makes use of this 
Information to calculate the parameters of 
mlcrostrlp open circuits and saps.

Input: The resonator teometry.

Output: The resonant frequency of the structure. 
Discontinuity parameters which can be derived 
'therefrom.

Sums the field components for a slven value of 
y. and produces a OXNO plot of the results 
Written In FORTRAN.

Inputs: A file produced by MSTRIP. The value(s)
of y at which the fields are to be calculated.

Output A QINO plot to screen or plotter.

This program allows plots of the E field versus 
x for a slven value of y. Also It Is possible to 
produce a contour plot of the E field versus x 
and y.
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The use of each of these programs will now be described 
In more detail.

6.3 EGUIDE

Upon being run this program will ask for the mlcrostrlp 
geometry, this may either be a "standard” geometry or 
all the dimensions may be entered.

The program then asks whether to calculate ALL modes or
dust EVEN or ODD modes ( In Ez ).

The program then asks whether the slab loaded guide
modes are required ( which can be used with MSTRIP when 
using a current expansion ) or whether output Is 
required which Is suitable for MSTRIP when using E field 
expansion.

Next the program asks whether to list the modes as: 1.
Effective Permittivities at a specified frequency or 2. 
Frequencies at a specified Effective Permittivity.

Finally the number of modes, which It Is required to
locate Is entered.
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EGUIDE produces a text file called *'empty roots" which 
contains the specified geometry, the specified frequency 
or effective permittivity* and a list of effective 
permittivities or frequencies. This file can be printed 
or used as input to MSTRIP.

6. ft MSTRIP

The program MSTRIP has the dual purpose of investigating 
the methods for analysing a general planar structure and 
of calculating* in an efficient manner, the 
characteristics of the mlcrostrlp modes. The latter 
Include field patterns* characteristic Impedances and 
propagation constants. The output of MSTRIP is suitable 
for use in programs to solve the mlcrostrlp 
discontinuity problem.

The higher order modes of Microstrip* Unilateral and 
Bi-lateral Flnllne of any specified geometry can be 
calculated. More general structures such as multi-layer 
and multi strip transmission lines can also be analysed.
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The program is written In PASCAL In a modular form so
that. If required, it would be a simple matter to
produce a smaller program with fewer options. Indeed 
most of the functions of the program have been
Implemented on the Sinclair Spectrum using the HISoft 
pascal compiler with little change to the Pascal code.

MSTRIP can either be used as a stand alone program or in 
conjunction with the programs EGUIDE, EFT, and MDISC. 
These provide information to enable mlcrostrlp modes to 
be found more quickly, provide a means to produce
graphical output of field patterns, and perform 
calculations on mlcrostrlp discontinuities respectively.

6.A.1 General MSTRIP options

The following general options are available within 
MSTRIP

a. Find Accurate Root

This option will calculate the value of effective 
permittivity for a mode to a specified accuracy, given a 
pair of values within which a root can be found.
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b. Evaluate characteristic Determinant

Simply prints the value of the characteristic 
determinant, this option is used to set a feel for the 
behaviour of the characteristic equation.

c. Find roots of characteristic equation

Finds all the roots and poles of the caracterlstlc 
equation within a specified range of frequency and 
effective permittivity using the "naive*' method le. 
searching step by step. This is a very slow method and 
will not normally be used. For mlcrostrlp this option 
has been superceeded by option "e". For other lines, 
however, option "e" has not yet been implemented. There 
is, however, no conceptual difficulty in doing; so should 
it be required.

d. Find root and calculate fields

As "a" but also calculates the field patterns and 
produces an output file for input to MDISC.
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e. Produce a list of accurate roots.

This is the means of efficiently producing a list of 
mlcrostrlp modes. It requires, as input* a file from 
EQU1DE, and produces a text file which contains 
optionally a list of effective permltivltles for a given 
frequency or a list of frequencies for a slven effective 
permittivity. This text file can be used as input for 
option f.

f. Produce field files

This option takes two files produced by option v,e,v and 
produces two binary files containing the field patterns 
for each mode. These files are used by MDISC for 
calculating discontinuity parameters.
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6.ft.2 Computation options

The program uses the methods described in chapter 2. 
Either strip currents or aperture fields can be used as 
the unknown quantity. A choice of basis functions in 
which to expand the unknown is given. This includes 
Schwinger's functions [1], the weighted Tchebychev 
functions of equation 2.62 and weighted Gegenbaur 
polynomials with any desired built-in singularity. See 
equation 2.70. Normally the Tchebychev functions of 
equation 2.62 are selected, the others being for 
investigating the convergence rate of different basis 
functions.

The number of functions in which the unknowns are 
approximated is selectable.

Depending on which of the options are selected some or 
all of the following information will be prompted for 
when the program is run.

1. Geometry information: Either a ’’standard" geometry
can be selected, or the physical dimensions of the 
structure to be analysed can be entered. One can select 
Mlcrostrlp, Unilateral flnllne or Bilateral flnllne or a 
General planar structure as the structure to be 
analysed.
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2. Baals information: The program gives the option of
which set of basis functions is to be used. The normal 
choice is the Tchebychev functions. Also available are 
the Schwinger functions [1] and weighted Gegenbaur 
functions. In the latter case the required singularity 
is prompted for. It is to be noted that the Schwinger 
functions are only available if lust the EVEN modes are 
to be calculated using a current expansion or the ODD 
modes using a field expansion. This corresponds to the 
dominant mode in Mlcrostrlp and Flnllne respectively.

The program then asks whether a current expansion or a 
field expansion Is required. Usually a current expansion 
Is used for mlcrostrlp and a field expansion for flnllne 
although this is not necessary. The number of functions 
to use Is then prompted for. Each component of the basis 
vector can be separately specified. Finally the parity 
of the modes under consideration is requested. Note that 
for an unsymmetrlcal structure, ALL modes must be 
specified.

The number of terms to take in the Green's function 
summation (See equation 2.30 ) before using the
assymptotic form ( See section 2.5) la optionally 
entered. If zero Is entered then the default is taken. 
This is a satisfactory compromise between accuracy and 
computer time.
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6.5 MSTRIPC

The program MSTRIPC has been developed from the program 
MSTRIP by making the following changes.

1. The program only considers microstrip, the facilities 
for finline are not implemented. This is not, however, a 
fundamental limitation and if required, the appropriate 
facilities for locating the complex modes of flnllne 
could be added.

2. The evaluation of the characteristic equation is done 
using complex arithmetic. Unlike in MSTRIP no attempt is 
made to speed up the program by assuming pure real or 
pure Imaginary propagation coefficients.

3* In place of the bisection algorithm for locating the 
roots of the characteristic equation on the real axis, a 
"quad search*' algorithm has been included for searching 
the complex plane.

MSTRIPC can be used as a stand alone program, or in 
conjunction with EGUIDE and MSTRIP. These provide 
information from which the complex modes can be more 
quickly found.

The following general options are available within 
MSTRIPC.
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6.5.1 Find Accurate Root.

This option will calculate the ( complex ) value of 
effective permittivity for a mode to a specified 
accuracy, slven a pair of complex numbers speclfylns a 
rectangle on the complex plane within which roots can be 
found.

6.5.2 Evaluate Characteristic Determinant

Simply prints the complex value of the characteristic 
equation. This option Is used to set a feel for the 
behaviour of the characteristic equation In the complex 
plane.

6.5.3 Produce list of Complex Roots.

This option takes as Input a file produced from EGUIDE 
contains the poles of the characteristic equation and a 
file produced by MSTRIP contains the "real" roots of the 
characterlctlc equation. MSTRIPC will compare the two, 
find the areas where complex modes are expected and 
locate them as In section 3.2. Also produced Is a list 
of current vectors for use In the discontinuity 
prosrams.
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As in MSTRIP a choice of basis functions is offered, but
only current expansions are allowed. In addition if
option 6.5*3 is selected the basis used is automatically 
the same as that selected when MSTRIP was run.

6.6 MDISC

The program MDISC has been written to implement the 
formulation described in chapter ft, and to produce 
thereby the S or Z matrix of the single step
discontinuity.

Provision is made to try various trial field basis 
functions. The following options are available:

1. The modal fields for the wider strip modified as
described in section ft.ft.

2. Weighted Gegenbauer polynomials with a specified 
corner singularity.

3* The convolution of the first modal function of the 
wider strip with weighted , Gegenbaur polynomials of 
specified singularity. See section ft. ft.

In addition the number of basis functions used can be 
specified. Details of basis functions and their effects 
are discussed in chapter ft.
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MDISC uses files of field patterns taken from MSTRIP. 
These consist of the Fourier transforms of Ex and Ez for
each mode. The other field components are calculated
from these. This means that the files are large even 
though they need only exist in workspace for the 
duration of the job.

An alternative version of MDISC has been written which 
accepts files from MSTRIP containing the current vectors 
for each mode*; and the basis functions used in MSTRIP. 
These files are much smaller and the possibility of 
using assymptotic forms of the field expansions is 
available. The disadvantage is that this version takes 
longer to run due to the extra arithmetic which is
performed. The results, of course, are identical from
each version.

6.6.1 Options within MDISC

a. Calculate discontinuity S matrix using mode matching:

This option uses the mode matching formulation to 
characterise the step discontinuity. It was Included for 
experimental reasons but is not as good a method as the 
variational methods of chapter ft.
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b. S Matrix formulation uslne combined basis

The varlatlonai method of chapter ft Is used together 
with the basis functions conslstlne of the modal 
functions of the mlcrostrlp with the wider strip. The 
ratio of Ex to Ey Is fixed.

c. Calculate overlap Inteerals

The overlap Inteerals of all combinations of the modes 
of two mlcrostrlps Is calculated. If the Input files are 
the same this elves a measure of the orthoeonallty In 
the calculated field patterns. This option was used to 
produce table 3*1*

d. Variational method using S parameter formulation

Calculates the S matrix of the slnele step using the 
methods of chapter ft.

e. Varlatlonai method uslne Z parameter formulation

Calculates the Z matrix of the slnele step uslne the 
methods of chapter ft.
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f. Dump field files.

Takes a file of field patterns from MSTRIP and produces 
a file in a form suitable for input to the display 
program FFT. In addition, for propagating modes, the 
characteristic Impedance of the mode is calculated using 
the three definitions of characteristic impedance, viz: 
Power-current, power-voltage, voltage-current.

With the exception of option wfM the following 
information is prompted for:

1. Number of modes: This is the number of terms to be 
taken in the summation in the Green's function for the 
discontinuity ( See equation ft.lft). This assumes that 
the specified number of modes is available in the input 
field files from MSTRIP. If not then the summation will 
be truncated when an end of the input file is reached.

;2. Basis Information: Three options are given, a. The 
modal functions of the wider strip with the ratio of Ex 
to Ey being left as a free parameter in the variational 
formulation. b. Calculated, functions consisting of 
weighted Gegenbaur polynomials, of any desired 
singularity, c. As "a" but with each function multiplied 
by a weighting function. A discussion of these basis 
functions and their properties is given in chapter ft.
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6.7 MNET.

This program takes a set of S parameters for single step 
discontinuities produced by MDISC and the lengths of the 
Interconnecting transmission lines and produces the 
overall S matrix. The method used follows that used In 
the MCAP program described In [2]. Each step 
discontinuity Is treated as a (N+M)-port where N and M 
are the numbers of accessible modes each side of the 
discontinuity. The transmission lines are treated as N 
or M separate transmission lines Independently 
connecting the discontinuities. See chapter ft. Once the 
lengths are specified, the electrical length Is 
available from the effective permittivities of the first 
few modes produced by MSTRIP.

As the single step S parameters from MDISC will be 
available only at spot frequencies, MNET uses linear 
Interpolation In order to produce a result for the 
overall S matrix at any frequency.
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6.a RESOW

This program makes use of the methods of Chapter 2 to 
calculate the resonant frequency of an enclosed
mlcrostrlp structure. Any number of strips may be 
specified ( up to the value of MAXSTR1P set within the 
program ) and they may be of any size and placed
anywhere on the air-dielectric interface. The same 
choice of basis functions is provided as in MSTRIP but 
two sets are required, one for the x direction and one 
for the z direction.

With this program the mlcrostrlp open circuit and 
mlcrostrlp gap may be investigated using the methods in 
[33* The basis functions in RESON are, however, 
different from those used in the above references.

Due to the large amount of computation required to 
produce the basis functions and their assymptotlc sums (
See chapter 5 )• these results are dumped to a file
BDATA from which they may subsequently be read.
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6.9 FFT

This program takes a file produced by MDISC containing 
the Fourier transforms of all the field components, and 
plots them either as a graph of amplitude versus 
position, or as a three dimensional contour or isometric 
projection of the transverse field intensity over the 
box cross-section.

When the 2 dimensional plot is selected, the results can 
be plotted on a linear scale or on a dB scale. The field 
pattern is plotted versus x for any specified value of y 
within the box. If y«0 is specified then 9 graphs are 
produced.

1. E field x component
2. E field y component above the Interface
3. E field y component below the Interface
U. H field x component above the Interface
5. H field x component below the interface
6. H field y component
7* E field z component
8. The difference between Dy above the Interface and Dy 
below
9* The difference between Hx above the Interface and Hx 
below
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The last two graphs, which should be zero in the 
aperture region, are Included In order to gain 
confidence that the fields are being calculated 
accurately.

If any other value of y Is specified then graphs 2 or 3, 
ft or 5 and 8 and 9 are not plotted since they are not 
applicable.

6.10 Conclusion

In this cahpter, a suite of computer programs for the 
analysis of mlcrostrlp and other planar transmission 
lines has been described. In addition, programs for the 
analysis of step discontinuities In mlcrostrlp and for 
the display of field patterns presented. These programs 
are portable, flexible and are applicable to a large 
number of problems.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.1 CONCLUSION

The work described in this thesis was undertaken for the 
purpose of investigating boxed mlcrostrlp and
characterising discontinuities therein with the aim of 
providing improved techniques and more accurate results
for use In the computer aided design of boxed mlcrostrlp
circuits. The culmination of the work so far is 
contained In Chapter A where a new technique for the
analysis of cascades of multiply coupled step
discontinuities In boxed mlcrostrlp Is presented. In the 
course of developing this technique several other useful 
results and techniques have emerged.
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1. The Green's function for a general multilayer 
dielectric structure was derived together with 
assymptotlc limits and a quick method of locating the 
poles thereof in Chapter 2. From these are recovered the 
Green's functions appropriate to the boxed mlcrostrlp. 
These are a pre-requisite to finding the mode spectrum 
of the structure. Because the derivation of the Green's 
functions is general, however, the complete mode 
spectrum of other structures such as flnline and 
coplanar transmission line follow immediately.

2. During the calculation of the mode spectrum it was 
realised that the quadratic nature of the characteristic 
equation made possible the existence of "complex modes". 
Such modes were Indeed found and reported at the 1986 
European Microwave Conference. This was the first time 
that complex modes had been reported in mlcrostrlp.

3. By making use of an efficient method of normalising 
the modes, and of calculating the overlap between them ( 
Section 3*3)« it was possible to prove that the 
calculated modes were orthogonal as theory requires. In 
addition the characteristic Impedance could be 
calculated using the widely accepted power/current 
definition. The results were at variance with the 
quasi-static predictions and in agreement with other 
published rigorous results.
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4. Results were obtained for the single step 
discontinuity in microstrip using the variational method 
described in Chapter 4. These results were in agreement 
with quasi-static results in the limit of low frequency.

5. Computer programs of general utility have written. 
These are described in detail in Chapter 6. They enable 
the calculation of the modes of general transmission 
lines, and the graphical display of the field patterns 
thereof. Also they enable the characterisation of step 
discontinuities in mlcrostrlp and allow the use of 
different basis functions in order to get the best 
result.

7.2 Further Work

The work described herein can be usefully continued in 
the following ways.

1. The derivation of basis functions for the vector E 
field at the step discontinuity which more precisely 
incorporate the characteristics of the field near the 90 
degree corner in the strip.
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2. Extension of the technique to other discontinuities 
such as the open end and the sap. This should present 
little problem and may be only a matter of using one set 
of empty guide fields and one set of mlcrostrlp fields 
in the Qreen's function for the discontinuity Instead of 
two sets of mlcrostrlp fields. The basis functions could 
be those described in section ft. ll. The mlcrostrlp gap 
would then be modelled as a cascade of two "open end** 
discontinuities.

3. Extension of the technique to other waveguldins 
structures. This would require consideration of the 
appropriate basis functions for the fields at the step. 
The modal functions for buildins the Green's function 
are available from the existing computer programs.
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