
        

University of Bath

PHD

The development and testing of a new integration method for the solution of stiff
differential equations arising in the digital simulation of fluid power systems

Caplen, Mark J. S.

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



THE DEVELOPMENT AND TESTING OF A NEW 

INTEGRATION M ETHOD FO R  THE SOLUTION OF STIFF 

D IFFERENTIAL EQUATIONS ARISING IN THE DIGITAL 

SIMULATION OF FLUID POW ER SYSTEMS

Submitted by 

Mark J. S. Caplen 

for the degree of Ph.D. 

of the University of Bath 

1988

CO PY R IG H T

Attention is drawn to the fact that copyright of this thesis rests with its author. 

This copy of the thesis has been supplied on condition that anyone who consults it 

is understood to recognise that its copyright rests with its author and that no 

quotation from the thesis and no information derived from it may be published 

without the prior written consent of the author.

This thesis may be made available for consultation within the University Library 

and may be photocopied or lent to other libraries for the purpose of consultation.



UMI Number: U009784

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U009784
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



8 FEB 1989

i _ / ^



SUM MARY

The main portion of the work presented in this thesis is concerned with the 

development and testing of a new integration method, which is specifically aimed at 

solving stiff ordinary differential equations arising in the digital simulation of Fluid 

Power systems. The method has been tested on a variety of problems arising from 

hydraulic systems, and has been satisfactorily incorporated as an alternative 

integration method in the Hydraulic Automatic Simulation Package (HASP), a 

package designed within the School of Engineering at the University of Bath, 

specifically for the simulation of Fluid Power systems. The performance of the 

package using this new integrator, with selected Fluid Power circuits, is 

investigated.

The thesis highlights the mathematical difficulties that occur in Fluid Power 

simulation, and discusses in detail the ways in which these problems are overcome. 

Mathematical stiffness is the major problem that arises, and is the main reason for 

studying the new integration method. The method developed to cope with this 

problem has shown improved performance over conventional integration methods in 

certain application areas, and the advantages and disadvantages of the integrator are 

identified in detail. The analysis of the method shows that it possesses good 

stability properties, which are essential if a method is to be used for solving stiff 

differential equations. The method is particularly suited for some types of problems, 

an example being diagonally dominant systems, and these arise in the discretisation 

of parabolic partial differential equations. This application of the method is also 

investigated.



In general, the integration method provides an alternative to conventional 

integration methods, and is worth considering for the simulation of Fluid Power 

systems. The work presented has also helped to clarify the direction in which 

numerical integration methods should be headed, particularly when implemented as 

general purpose, automatic differential equation solvers. The latter portion of this 

thesis studies the idea of using methods which are particularly suited to individual 

problems, and examines the potential of an expert systems approach to the automatic 

selection of methods within a numerical integration algorithm.



A ck n o w led g em en ts

The author would like to thank Professor D. E. Bowns and Dr. R. E. Dorey for their 

supervision and guidance throughout the project, and to M r K. Blackmore for his 

valuable advice. The financial support given by the Science and Engineering 

Research Council is gratefully acknowledged. Finally, the author would like to 

thank his family for their support and encouragement throughout the duration of the 

work.



CO N TEN TS

Title and copyright. 

Summary. 

Acknowledgements. 

List o f Tables.

List of Figures. 

Notation. 

CHAPTER 1. 

CHAPTER 2.

CHAPTER 3. 

CHAPTER 4. 

CHAPTER 5.

CHAPTER 6.

CHAPTER 7.

CHAPTER 8. 

CHAPTER 9. 

APPENDIX A. 

APPENDIX B. 

APPENDIX C.

APPENDIX D. 

References.

Introduction.

Mathematical background to the simulation of Fluid Power 

systems.

Initial development and testing of a new integration method. 

Mathematical analysis and further testing of the new method. 

Implementation and testing of the new integration method with 

the Hydraulic Automatic Simulation Package.

DETEST - A FORTRAN package for assessing Initial Value 

methods.

Application of the new method for the solution of Partial 

Differential Equations.

Runge-Kutta and switching methods.

Conclusions.

Code for the initial testing of the new method.

Details of the time step control.

Examples of changed computer coding for the implementation 

of the new method in HASP.

User-written code and test problems for the DETEST package.



L is t  O f Tables

1.1 Integration methods used in simulation

3.1 Data values used for problem 3 (oscillatory problem)

3 .2  Data values used for problem 3 (non-oscillatory problem)

3.3 Data values used for problem 4

3 .4  Data values used for problem 5

3.5 Additional data values used for problem 5

3.6  Comparative run times for the solution of problems 1 and 2

3.7 Comparative run times for the solution of problems 3, 4 and 5

4.1 C.P.U. times for problems 1 and 2 using a time step control

4 .2  Data values for accumulator-actuator circuit

4.3 Data values for orifice-motor circuit

4 .4  Performance of new method on stability example 3

4.5 Performance of method from Hall & Watt on stability example 3

5.1 Data values used in example 1

5.2 Additional data values used in example 1

5.3 Data values used in example 2

5.4 Additional data values used in example 2

5.5 C.P.U. times for the new method inside of HASP

7.1 Pade approximants to e0, 0 real

8.1 Maximum possible order of accuracy obtained with R-stage Runge-Kutta

methods for R = 1 - 8

8.2 Test results for DIRK methods found by Alexander

8.3 Further test results for DIRK methods found by Alexander

8.4 Further test results for DIRK methods found by Alexander



L ist O f F igures

2.1 Simple hydrostatic transmission system

2.2 Linear actuator circuit with meter-in orifice

2.3 Simplified linear actuator circuit

2.4 Direction fields for y' = 2ty with I.C. y(0) = 1

2.5 Solution of y' = 2ty with I.C. y(0) = 1

2.6 Geometric interpretation of Euler's method

2.7 Stability region for Euler’s method

2.8 Stability region for the backward Euler method

2.9 Stability regions for Adam's methods

2.10 Stability regions for the Gear's methods

2.11 General form of solution curves for stiff problem

2.12 Components of solution curves for typical non-stiff and stiff problems

2.13 Demonstrating instability when using an unsuitable method to solve 

a stiff problem

2.14 Actuator velocity when an end stop discontinuity is encountered

2.15 Actuator displacement when an end stop discontinuity is encountered

2.16 Discontinuity in flow rate as the differential pressure across a relief

valve exceeds the cracking pressure

2.17 Time derivative of flow rate through a relief valve as the differential 

pressure exceeds the cracking pressure

2.18 Newton's method to solve F(x) = 0

3.1 Flow chart illustrating program action for the new method

3.2 Hydraulic actuator circuit

3.3 Comparisons of exact solution with results obtained using the explicit 

method for test problem 1

3.4 Comparisons of exact solution with results obtained using the second

implicit method for test problem 1



3.5 System reponse of a second order equation using the new method

3.6 True solution for the second order equation

3.7 Solution found by method for problem 2 case B

3.8 Solution to problem 2 found by Leung using new method

3.9 Flow diagram illustrating the action of the iteration scheme

3; 10 Circuit diagram for test problem 3 - linear actuator circuit

3.11 A typical response of the third order actuator circuit for the 

non-oscillatory problem

3.12 Responses of the actuator circuit for the oscillatory problem

3.13 Circuit diagram for problem 4 - non-linear problem

3.14 Solution of problem 4 using new method

3.15 Solution of problem 4 using Gear's method

3.16 Linear actuator circuit for problem 5

3.17 Position of the directional control valve

3.18 Simulated piston pressure

3.19 Simulated actuator displacement

3.20 Experimental results from the laboratory

3.21 Piston pressure with changed data for problem 5

3.22 Actuator displacement with changed data

3.23 Piston pressure found using Gear's method

3.24 Actuator displacement found using Gear's method

4.1 Stability region for the new implicit method

4.2 Stability region for the new explicit method

4.3 Variation of step size and number of steps in solution of problem 1 

with time step control

4.4 Accumulator-actuator circuit for stability example 1

4.5 Orifice-motor circuit for stability example 2

4.6 Stiffness ratio S(t) and time constants x(t) of stability example 3

4.7 Variation of step size and number of steps in solution of example 3

using explicit method



I
f
\

4..8 Variation of step size and number of steps in solution of example 3

using implicit method 

4 .9  Variation of step size and number of steps in solution of example 3 using 

method suggested by Hall & Watt

5.1 The structure of HASP

5-2 Hydraulic actuator circuit

5-3 Computer block diagram of actuator circuit

5 .4  Link diagram for PI05, a frictionless pipe model

5.5 The integration process inside of HASP

5-6 The algorithm adopted in implementing the new integration method

5-7 A typical HASP simulation program, highlighting the main features

5.8 Linear actuator with load

5.9 Operating charactersistic of a typical component model to demonstrate 

discontinuities

5.10 Action taken by HASP to ensure GEARKC has no difficulties in 

solving this problem

5.11 Flow rate v differential pressure for an orifice model

5.12 Circuit diagram for second problem

5.13 Power bond diagram for second problem

5.14 Simulated piston pressure for example 1 found using new method

5.15 Simulated actuator displacement for example 1 found using new method

5.16 Simulated piston pressure for example 1 found using Gear’s method

5.17 Simulated actuator displacement for example 1 found using Gear's method

5.18 Simulated piston pressure for example 2 found using new method

5.19 Simulated actuator displacement for example 2 found using new method

5.20 Simulated piston pressure for example 2 found using Gear's method

5.21 Simulated actuator displacement for example 2 found using Gear's method

6.1 The overall working structure of the DETEST package

6.2 Standard statistics from the testing package



6.3 Statistics corresponding to OPTION = 2

6.4 Statistics for the new method when applied to problem A1

6.5 Statistics for the new method when applied to problem A2

6.6 Statistics for the new method when applied to problem A3

6.7 Statistics for the SECDER method when applied to problem A1

6.8 Statistics for the SECDER method when applied to problem A2

6.9 Statistics for the SECDER method when applied to problem A3

7.1 Solution of Ut = Uxx at t = 0.25 secs

7.2 Solution of Ut = Uxx at t = 0.25 secs using the new explicit method

with 5x = 0.025

7.3 Solution of Ut = Uxx at t = 0.25 secs using the new explicit method 

with 5x = 0.05

7.4 Solution of Ut = Uxx at t = 0.25 secs using the method of extrapolation 

with 8x = 0.025

7.5 Solution of Ut = Uxx at t = 0.25 secs using the second approach 

with 5x = 0.025

8.1 Stability regions for explicit Runge-Kutta methods of order 1, 2, 3 and 4



N o ta t io n

a(t)

an

a in

a i n + l

A

A i

a 2

b(t)

bn

b in

b in + 1

B

det

D

Df

E n+ l

f

f(t,y)

coefficient of the differential equation y1 = a(t)y + b(t) 

value of coefficient a(t) at time ln

value of coefficient ai at time tn 

value of coefficient ai at time t ^ i  

system matrix

area of an actuator - piston end 

area of an actuator - rod end

forcing function of the differential equation y1 = a(t)y + b(t)

value of coefficient b(t) at time *n

value of coefficient bi at time

value of coefficient bi at time tn+ i 

bulk modulus of hydraulic oil

fraction of air dissolved in hydraulic oil at S.T.P.

determinant

diagonal matrix

finite region

global error of a numerical scheme at time

local error made in one step of a numerical scheme

viscous friction coefficient

derivative of variable y at time t

windage loss coefficient

force

coulomb friction force

matrix governing the error propogation of the solution obtained by 

the new method



h - integration time step

I - identity matrix

J - moment of inertia

^ac - Jacobian matrix

k - spring rate

- flow coefficient of a relief valve

ko - flow coefficient of an orifice

K 1,2,3 - coefficients of a second order differential equation

L - Lipschitz constant

L l - local error function

M - mass of load

Me - error matrix

My - Lipschitz constant with respect to yn +k

n - polytropic index of a gas

P - order of accuracy of a numerical method

P - oil pressure in a pipe

- modal matrix

Q - flow rate

s - variable of integration

sup - supremum

S - stiffness ratio

Sgn(z) - sign function of z

t - independent variable

tn - integration time corresponding to step n

Ti - load torque

Tm - motor torque

u - velocity of an actuator piston



Vi volume of pipe i

X displacement of an actuator piston

y dependent variable

X vector notation for dependent variable

y ’ first derivative of the dependent variable with respect to time

y " second derivative of the dependent variable

y(tn) - true value of dependent variable at time

yn approximation to y(tn)

zn modified solution to a difference equation

A differential operator

£n vector matrix of errors at time tn

*k eigenvalue of the system matrix

viscosity of hydraulic oil

^ k real part of

P($) - first characteristic polynomial of a multi-step method

<*(£) - second characteristic polynomial of a multi-step method

<J>(t,y,h)- function defining a single step method

y (t,y ,h )- function defining new method

®k imaginary part of

CO angular velocity

[..1T - transposed matrix



CHAPTER 1

D ETA ILED  CONTENTS P ag e

The simulation of engineering systems 1

History of computer simulation 2

Fluid Power simulation 4

Hydraulic Automatic Simulation Package (HASP) 5

Mathematical problems in Fluid Power systems 6

A new integration method 7

Existing numerical methods 8

Runge-Kutta and switching methods 9

Programming and software 10

Plan and scope of thesis 

Table 1.1

11



CHAPTER 1

INTRODUCTION 

T h e  S im ulation  O f E ng ineering  System s

1.1 Many physical situations can be represented, after appropriate modification or 

simplification, by a set of algebraic or differential equations. The solution of these 

mathematical systems, either by analytical or numerical methods, accompanied by 

the appropriate analysis of the results, can give an accurate indication of the 

behaviour of the original system. Both the mathematical modelling and the solution 

of the resulting equations can be automated by the use of a digital computer, with 

software playing the role of both the modeller and solver. Consequently, it is 

possible to simulate on a digital computer the behaviour of an engineering system, 

without the actual construction of that system.

1.2 Simulation allows the accurate design and analysis of many engineering systems 

to be undertaken in the safe and relatively cheap environment of the computer. 

Consequently, a great deal of research has been carried out in the field of simulation, 

and at the centre of this work lies the problem of solving the equations that arise in 

the mathematical modelling of the system components. Most simulations are carried 

out in a tim e domain, and require the solution of sets of ordinary differential 

equations. Although algebraic equations can present difficulties in their solution, it 

is the difficulties that arise with the differential equations that are studied here. This 

thesis is concerned with the problems involved in solving the sets of differential 

equations that arise in the simulation of engineering, and in particular Fluid Power, 

systems. It presents a new numerical integration method aimed at dealing with these

1



difficulties. Some of the work that has preceeded this thesis [1] [2] [3] [4] provides 

a useful insight into the major problem areas that must be analysed and overcome.

H isto ry  O f C om pu ter S im ulation

1.3 Computer simulation began over 30 years ago, following the advent of the 

analogue computer. After the advent of the digital computer, a large number of 

digital analogue simulators were written, which were programs using digital 

representations of sets of analogue elements, with these elements appearing as 

subroutines or functions. The users of these simulators were expected to write main 

segments linking the subroutines and functions in a specified manner. As time 

progressed, the sophistication of these simulators increased, and the systems that 

could be simulated became more complex. The integration methods employed also 

had to be capable of solving the more complicated differential equations arising, and, 

whereas very early simulators employed single low order methods such as Simpson's 

rule [3], later packages such as DYSAC (Digitally Simulated Analog Computer) [2] 

and HYBLOC [5] used fourth order Runge-Kutta and fifth order predictor-corrector 

methods respectively.

1.4 Since digital simulations are repetitive in nature, the need for a general purpose 

simulation language arose. A number of these languages have been developed, and 

one of the first was termed MIMIC [6], which translates digital commands into 

appropriate m achine code. The language incorporates a translato r w hich 

automatically sorts the commands in a program into a particular calling sequence, 

suitable for the model subroutines which describe individual components of the 

system being simulated. FORTRAN statements are also acceptable in the language. 

MIMIC preceded other general purpose simulation languages which were created with

2



the same principles in mind. In the 1970's, I.B.M. developed CSMP (Continuous 

System  M odelling Program) [7] [8], which allows the user to enter coding 

statements for different operations such as numerical integration and differentiation. 

A specific example of one of these statements, termed a structure statement, is:

Y = INTGRL(IC,X)

which states that the output , Y, is obtained by integrating X, with Y at the initial 

time equal to IC. This name, INTGRL, defines the particular DEVICE, i.e. the 

particular function to be performed on the variable X, and is calling a specific 

subroutine. ACSL (Advanced Computer Simulation Language) [9] is similar to 

CSMP in its structure and operation, and both of these languages accept FORTRAN 

statements and employ a translator which sorts the calling statements for the 

complete simulation process. ACSL has a large library of subroutines which model 

commonly occurring engineering effects, with the user able to expand this library if 

this is necessary. These two languages also allow the user to decide which 

integration method is required, and a number of different algorithms are available. 

Table 1.1 presents an overview of the integration methods used by different 

simulation languages.

1.5 Although the integration and other stages are taken out of the hands of the user 

with these, and other simulation languages, such as CSSL [10] and ISIM [11], it is 

still necessary for the user to design and code the simulation programs. To do this 

skilfully requires a specialist knowledge of both the language and the area in which 

it is to be applied, which is undesirable if the language is to be implemented as a 

practical and convenient tool to aid the user. The generality of these simulation 

languages is partially to blame for this.

3



1.6 To take the computer programming and simulation coding out of the hands of 

the user, packages with automatic code generation facilities have been developed for 

particular industries. An example is a package that has been developed specifically 

for the simulation of chemical reactions which is called KISS (Kinetics Simulation 

System) [12]. This interactively running package requires no code to be written by 

the user, although he must naturally have a knowledge of chemical terminology. The 

integrator employed by the system is a modified form of a generalised Runge-Kutta 

method developed by Kaps and Pentrop [13].

F lu id  P ow er S im ulation

1.7 Since computer simulation can save considerable time and money in the design 

and development of engineering systems, it was soon adopted into the field of 

hydraulics. The McDonnel Aircraft Corporation released a package for simulating 

hydraulic systems in 1977. The package consists of several programs which simulate 

different aspects of several generalised hydraulic systems, e.g. the program HYTRAN 

[14] which analyses hydraulic transients. Although these programs give more 

flexibility to the user, in that it is not necessary to write actual coding, they still 

require a knowledge of the program structure if additional information is to be 

included. A program called DSH (Digital Simulation of Hydraulics) [15] has been 

developed in West Germany, which is intended to have the versatility and degree of 

user-friendliness which allows an inexperienced user to simulate any hydraulic 

system. The user of the package defines the circuit to be simulated in terms of 

'macro' or 'micro' words. The macro word defines a mathematical model which 

already exists in the package. A micro word defines a single mathematical operation. 

By defining a sequence of micro words, it is possible to represent a model not 

catered for by the basic package. The package consists of five programs controlled

4



by a co-ordinating program. However there are major drawbacks with this package, 

the main ones being the static nature of the programs which constitute DSH, which 

tend to limit the types of models that can be written, and the user interface; users 

have to define information in terms of data fields, and this can lead to a long and 

complicated procedure, particularly for sophisticated hydraulic circuits. The work in 

this thesis is concerned with another special purpose simulation package, called 

HASP (Hydraulic Automatic Simulation Package), which has been designed in the 

Fluid Power Centre at the University of Bath. This package requires the user to 

construct a circuit diagram of the hydraulic system which is being investigated, and 

convert this to a computer block diagram representing the individual models in the 

system. This diagram defines the component models to be used in the simulation and 

is subsequently used to provide simple alphanumeric input to a program generator to 

form a computer simulation of the system.

H y d rau lic  A utom atic  S im ulation  P ackage  (H A SP)

1.8 The Hydraulic Automatic Simulation Package has been developed to simulate 

the dynamic performance of hydraulic systems arising in the Fluid Power field. The 

package consists of a library of mathematical models, each representing discrete 

physical components of a Fluid Power system, together with a program generator. 

The component models form individual blocks that are placed in the required 

position by a program generator to represent a hydraulic circuit. The aims of HASP 

are to allow a user to specify an hydraulic circuit, and to simulate the system 

without any specialised knowledge of mathematical modelling, numerical methods, 

or of complex computational techniques. A detailed description of the HASP package 

is given in chapter 5

5



1.9 At present, HASP considers only the solution of ordinary differential equations 

where the independent variable is time. This is termed 'lumped parameter' theory, 

where the parameters computed in any model are assumed uniform throughout. 

Although work has been done with the consideration of spatial variance in such 

param eters as pressure, flow or velocity by Skarbeck-W azynski [16], partial 

differential equations present more problems than their o.d.e. counterparts. These 

problems generally lead to excessive computation times in the solution of the 

equations, and hence can severely restrict the use of a package modelling spatial 

variance.

M ath em atica l P rob lem s In  F lu id  Pow er S im ulation

1.10 Many difficulties arise in the simulation of Fluid Power systems, and the 

majority of these are mathematical in nature. In particular, difficulties are caused by 

four main branches of mathematical problems, these being:

i) Mathematical stiffness, where the eigenvalues determining the solution 
of the differential equations differ greatly in magnitude.

ii) Discontinuities, both in the solution variables and their derivatives.
iii) Non-linearities in the differential equations formulated to describe model 

behaviour.
iv) The oscillatory behaviour of the solution variables.

Physical non-linearities such as those presented by cavitation, stiction and actuators 

reaching the limits of their travel demonstrate how these problems can arise. Non

linear orifice equations and circuits with small pipe volumes can also lead to 

differential equations that must be dealt with carefully. A full investigation of the 

mathematical problems and some examples of when they arise are found in chapter 2.

6



1.11 This thesis approaches the problems arising in the simulation of Fluid Power 

systems from a mathematical viewpoint. The HASP package originally employed 

Gear's integration method [49] to solve the systems of differential equations arising 

from the mathematical models. This is a routine which can use any of several multi- 

step methods, and which uses an automatic time step control procedure. This method 

is adequate for solving the majority of equations, but does not prove to be suitable 

for coping with problem s that are either very stiff in their m athem atical 

formulation, discontinuous or highly oscillatory. When applied to these problems, 

the integrator reverts to a low order method, and a very small time step, leading to 

excessive com puter run-times, a factor that should be avoided with a viable 

interactive sim ulation package. A lso, special m odelling techniques m ust be 

em ployed in order to use Gear's method, when the difficiulties that have been 

outlined here arise. It is not only Gear's method that has difficulties with working 

in this enviroment; numerical methods are still being sought and developed that are 

better able to cope with the problems presented above. The failings of presently 

available numerical methods are discussed in detail in the next chapter.

A New In teg ra tio n  M ethod

1.12 The main work presented in this thesis is dedicated to the development and 

testing of a new integration method, and its subsequent implementation inside the 

HASP package as a versatile integrator. The new method is based on the analytical 

solution of a linear first order ordinary differential equation, an approach which was 

first suggested by Professor D.E. Bowns at the University of Bath [2]. It is a single 

step method, and differs from the classical integration techniques, such as Adam's- 

type methods. The new method was originally formulated as an explicit method, and 

from this followed an implicit form. Both the explicit and the implicit forms have

7



good stab ility1 properties, that make them im m ediately applicable to stiff 

systems of differential equations. These stability properties also ensure that the 

method enjoys considerable advantages over existing methods in solving problems 

which have diagonally dominant system matrices, a point which will be fully 

clarified. The implementation of the method inside of HASP is described, and this 

work involves special treatment of the mathematical models that describe the 

individual components of the hydraulic system being simulated. This is because the 

package has been designed for use with a classical integration method, and the 

inform ation that a classical method requires for the solution of a differential 

equation differs from the data that the new method needs; this will be investigated in 

chapter 5.

E x isting  N um erical M ethods

1.13 A large amount of research has been done in the field of numerical methods, 

particularly with regard to the solution of stiff ordinary differential equations. Some 

o f the relevant methods are investigated, since it is im portant that the main 

requirements of a robust and competitive integrator are known before attempting to 

develop a new integrator. These methods include Adam's methods, Euler’s method, 

Runge-Kutta methods and Gear's method. The necessary requirements, which will be 

discussed in chapter 2, include good stability properties and high accuracy. Also, an 

automatic time step control is essential. A package developed by Enright [17] also 

enables a user to compare constructively numerical methods, and work with this 

package has been undertaken in order to gain more information about the new method

1 The implication of a stable numerical method is that any error arising in the computed solution of an 

inherently stable system should decay as the solution advances in time. These errors inevitably arise, 

both from truncation error and round-off error, and so it is essential for a practical numerical method to 

have good stability properties.

8



being developed.

R unge-K u tta  A nd Sw itching M ethods

1.14 The study of the mathematical difficulties arising in Fluid Power simulation 

has led to several integration methods being used with the package, each of which is 

applied for a specific purpose. The application of Runge-Kutta methods to the HASP 

simulation package is studied in this thesis. In particular, various types of implicit 

Runge-Kutta methods are examined, since these are more applicable to stiff systems 

of differential equations. Work done by Butcher [18] and Norsett [19] has brought 

Runge-Kutta methods back to the forefront of modem numerical techniques, in the 

attem pt to solve problem s that require methods with very stringent stability 

properties, as well as high accuracy. The methods investigated have been termed 

diagonally implicit Runge-Kutta methods by Alexander [20]. Quite recently, work 

has been done by Petzold [21] with the automatic selection of methods for solving 

stiff and non-stiff systems of ordinary differential equations.

1 .15 The work presented by Petzold introduces the idea that a scheme which 

automatically determines whether to employ a class of methods suitable for non-stiff 

problem s, or a class of methods suitable for stiff problem s, throughout the 

integration of a problem, is more efficient in its implementation than simply using 

one single class of methods. The scheme that is discussed is able to switch from one 

class of methods to the other, depending on which it decides is the most suitable for 

the problem being solved. This idea has been used by Robertson [22] with explicit 

Runge-Kutta methods, and the ideas presented in chapter 8 suggest that it may be 

worthwhile to employ diagonally implicit Runge-Kutta methods as well.

9



I

1.16 The implementation of a suitable integration method is very important for the 

HASP package, and this integrator may not be in the form of one method, but of 

several methods, together with a decision making routine that decides which method 

is most applicable for each particular problem. For full flexibility, it should be 

possible to change integration methods during a simulation in order to ensure that 

the most efficient integration method is always being employed.

P rog ram m ing  A nd Softw are

1.17 As well as the mathematical issues, the development of good, well-structured 

and well-written software is of great importance. At this point it should be stated 

that the HASP package is written exclusively in FORTRAN, and so the new 

integrator is also, not just to homogenise the system, but because FORTRAN is a 

high-level language particularly well-suited to numerical computation. The software 

must also be transportable, and so no machine-dependent code should be used. 

Furthermore, it is essential to be familiar with the machine on which the work is 

carried out, to ensure that the computer is a tool aiding the work, and not a 

handicap.

1.18 It is important to emphasise further the way in which the programs are 

written. Since the integration method must be com putationally efficient, it is 

essential that the software written to implement the method is also efficient. 

Consequently, the algorithms for the software must be well-structured and designed, 

and the software comprehensively tested. The programs written for the work 

presented in this thesis have been produced by a 'top-down' design [23]. Coding 

requires great care, but is a natural progression from the design stage, whereas the

10



testing stage must ensure that the program is able to deal satisfactorily with all the 

data presented to it. Consequently, appropriate data must be devised in an attempt to 

ensure that all situations are handled correctly.

P lan  A nd Scope O f Thesis

The remainder of this chapter describes the course taken and the work covered by this 

thesis. The objectives of each chapter are presented, and a summary of the contents 

is given.

1.18 C h ap te r 2 describes in detail the mathematical difficulties that arise in 

hydraulic simulation, and analyses some of the numerical methods that have been 

developed to cope with these difficulties. A definition of mathematical stiffness is 

given, and the reasons why it presents problems to numerical integration methods 

are explained. The ideas presented are used and expanded upon throughout the thesis, 

particularly in the development of the new method. The object of the chapter is to 

present an overview of the mathematical background behind Fluid Power simulation.

1.19 C h ap te r 3 introduces the new integration method that is to be studied. The 

method is developed and subsequently tested on a set of test problems, each of which 

arises from a engineering circuit. The performance of the method in solving these 

problems is analysed, and compared with that of other numerical methods which have 

also been used to solve the same problems. The problems have been chosen since 

they demonstrate the mathematical difficulties described in chapter 2, and are hence 

useful examples on which to test a new numerical method.

11



f

1.20 C h ap te r 4 gives an analysis of the new method. The local error of the 

method is examined, and from this is constructed a time step control, which ensures 

the higher computational efficiency of the method. The stability properties of the

‘ method are also investigated. From this analysis, a more robust, general purpose

integration method is constructed. After performing the theoretical analysis, the 

method is applied to a set of problems, which have been chosen to illustrate the 

properties that are introduced earlier in the chapter.

1.21 C hap ter 5 introduces and explains the structure and workings of the HASP 

simulation package, with particular emphasis on the implementation of a numerical 

integration method inside the package. The evaluation of a Jacobian matrix using a 

perturbation technique is explained, and the generalisation of the method to allow its 

im plem entation is discussed. Having placed the integrator inside the package, 

dynamic simulations of Fluid Power systems are perform ed, and the method 

compared with the previous integrator employed by the package.

1.22 C h ap te r 6 describes a testing package which has been designed to aid in the 

assessm ent of Initial Value methods for stiff systems o f ordinary differential 

equations. The package has been used to test the new integration method, and has 

helped to determine the problem domain over which the method is suitable. The 

package consists of a collection of FORTRAN subroutines, com bined with a 

canonical set of test problems. The problems have been chosen from different fields 

of Science and Technology, and cover all the mathematical problem areas that have 

been discussed in the previous chapters of this thesis, with a particular emphasis on 

stiffness.

12



1.23 C hap ter 7 presents a particular application of the new method. Since the 

method has been found to have beneficial stability properties when used to solve 

problems which have diagonally dominant system matrices, one area which will lead 

to this type of problem is examined. When parabolic partial differential equations 

are discretised to form sets of ordinary differential equations, then the resultant 

system matrices are often diagonally dominant, and the equations themselves very 

stiff. Present numerical methods that are used to solve these equations are examined, 

and compared with the new method which is also applied to the problem. The 

possibility of extending the new method is also discussed.

1.24 C h ap te r 8 broadens the scope of the thesis, and introduces Runge-Kutta 

methods. These are an alternative set of single-step integration methods which have 

some desirable properties which may prove to be beneficial when used to solve the 

problems arising in Fluid Power. In particular, implicit Runge-Kutta methods are 

studied, and their potential in acting as an alternative integrator is discussed. As 

well as introducing Runge-Kutta methods, switching methods are also examined, and 

their possible application to the HASP package is contemplated. Suggestions are 

made which may prove to be rewarding if carried out. The work presented is a result 

of the author's study of Fluid Power simulation, and provides up to date methods 

which have been applied with some considerable success to certain problem areas 

similar to those found in hydraulics.

13



Y ear S im ulation  L anguage In te g ra tio n  M ethods

1961

1965

1969

1975

1976

1978

1981

1983

DYSAC FIXED STEP LENGTH: 
RUNGE-KUTTA 4th ORDER

MIMIC FIXED STEP LENGTH: 
RUNGE-KUTTA 4th ORDER

HYBLOC VARIABLE STEP LENGTH: 
ADAMS ( 1st ,3r d , 5th ORDER)

ACSL FIXED STEP LENGTH: 
RUNGE-KUTTA (1s t , 2nd, 4th ORDER) 

VARIABLE STEP LENGTH: 
ADAMS MOULTON, GEAR

CSSL FIXED STEP LENGTH:
EULER, TRAPEZOIDAL, ADAMS 

VARIABLE STEP LENGTH: 
RUNGE-KUTTA ( 4th ORDER), ADAMS

c s m p  m FIXED STEP LENGTH:
EULER, ADAMS, TRAPEZOIDAL, 

SIMPSON, RUNGE-KUTTA (4th ORDER) 
VARIABLE STEP LENGTH: 

RUNGE-KUTTA ( 4th ORDER ), GEAR

KISS VARIABLE STEP LENGTH: 
RUNGE-KUTTA ( 4th ORDER )

ISIM FIXED STEP LENGTH: 
RUNGE-KUTTA (2nd AND 4th ORDER) 

VARIABLE STEP LENGTH: 
RUNGE-KUTTA SARAFYAN

TABLE 1.1 INTEGRATION METHODS USED IN SIMULATION



C H A PTER 2

D ETA ILED  CONTENTS P ag e

Introduction 1

Mathematical stiffness 2

Practical stiffness 3

Two examples to show the occurrence of mathematical stiffness 4

Example 1 - Open loop transmission system 4

Example 2 - Hydraulic actuator circuit 8

Orifice restrictor 9

Numerical integration methods 11

Initial value problems for first order ordinary differential equations 12

Theorem 1 12

Lipschitz condition 12

Initial value problems for systems of first order differential equations 13

Reduction of high order differential equations to first order 15

Direction fields 15

Example to demonstrate the occurrence of direction fields 16

Numerical methods 17

Multi-step methods 17

The general linear multi-step method 17

Taylor's series expansions 20

Numerical integration 21

Convergence 22

Order and error constant for linear multi-step methods 22



Definition of order for a linear multi-step method 23

Zero-stability 24

Theorem 2 24

i Single-step methods 24
I

Theorem 3 26

Stability of numerical methods 27

Absolute stability 28

Systems of o.d.e.'s 28

Absolute stability of Euler's method 30

Systems of equations 31

Inherently stable systems 31

Implications o f stability 32

Further consideration of stiffness 34

Geometric interpretation of stiffness 35

Physical discontinuities 35

Examples showing the occurrence of discontinuities 36

Oscillatory problems 36

Example demonstrating oscillatory behaviour 37

Predictor-corrector pairs 38

Correcting to convergence 39

Limited application of the corrector 40

Example to illustrate predictor-corrector pair in PECE mode 41

Suitable iteration schemes for stiff systems 42

Conclusions 46

Figures 2.1 - 2.18 inclusive



CHAPTER 2

MATHEMATICAL BACKGROUND TO THE SIMULATION 

OF FLUID POWER SYSTEMS

In troduction

2.1 The objective of this chapter is to view in detail the possible mathematical 

difficulties that arise in hydraulic simulation, and to analyse some of the numerical 

methods that have been developed to cope with these difficulties in the HASP package, 

prior to the work covered by this thesis. The ideas met form a basis for the work 

covered in the subsequent chapters. In particular, an expository review of the problem 

of stiffness in the numerical solution of ordinary differential equations is presented, 

with special emphasis on stability aspects.

2.2 The work covered is as follows:

Mathematical stiffness is rigorously defined and two hydraulic circuits where stiffness 

occurs are examined. Some of the present numerical techniques that are available for 

solving stiff differential equations are discussed and an explanation of the derivation of 

m ulti-step and single-step methods is given. An accompanying analysis of the 

stability, consistency and accuracy of these methods is made, since this work will be 

relevant when developing the integration method described in chapters 3 and 4. A 

practical definition of stiffness is also shown and an explanation of the problems it 

causes is given. The difficulties caused by discontinuities, non-linearities and oscillatory 

problems are discussed and practical examples of their occurrences in Fluid Power 

systems are shown. Finally, the application of a predictor-corrector pair as a numerical 

integrator is explained, and the resultant iteration schemes suitable for stiff systems of 

equations are examined.



Mathematical Stiffness

2.3 At this stage, a mathematically stiff system is defined; later a more in-depth 

approach to the problems it causes will be taken. The problem of stiffness has been 

known for some time and was first investigated by Curtiss & Kirschfelder [24]. Briefly, 

a stiff system is one whose dynamic behaviour is described by a set of coupled 

differential equations which have solutions w ith widely differing decay rates. The rates 

a t which the solutions decay are determined by the eigenvalues of the appropriate 

system matrix.

Consequently, for the Initial Value Problem

y l= A x + b .( t )  yk(0) = j3k k=  1  m

where A is a constant (mxm) matrix with constant eigenvalues given by:

Xk = fik + jo>k k = l  m

and the solution, if the eigenvalues are distinct, is given by:

yk(t) = a lkeX,lt+ a 2|ieX2t+ • • * +ttmkeXn,t+Fk(t) k = l  m (2 .1)

then the system is said to be stiff if

i) (jLk <0  k= l,...,m

ii) maxk I /zk I »  mink I I

The stiffness ratio, S is defined by: 

s  =
mink I /zk I

2.4 The real parts of the eigenvalues are taken as it is these that govern the decay rate 

of the components. The imaginary parts of the eigenvalues are associated with the 

oscillatory (non-decaying) part of the solution. For the problem



y  ̂= A(t)y_ + b(t) Yk(°)= ^k k = l  m

where the eigenvalues of A(t) will be time-dependent, and the solution is given by a 

similar expression to that in eqn (2 .1), then the system is said to be stiff in a time 

interval, if both i) and ii) apply for t  in that interval.

2.5 Most stability requirements for numerical methods place constraints on a 

combination of the time step used and the eigenvalues involved, e.g. Euler’s method, 

dealt with later, requires that I 1 + hA I < 1  to ensure stability. As a consequence, for 

a stiff system, although interest may not be with the components in the system 

corresponding to the eigenvalues largest in magnitude, i.e. the smallest time-constants, 

in order to satisfy the stability requirements for a classical integration method, it may 

be imperative to choose a very small time step because of these large eigenvalues.

2.6 The temptation is to think that the time step need only be restricted to a small 

value whilst the component corresponding to the eigenvalue largest in magnitude is 

significant. This, however, is not the case, the stability restriction must be observed 

throughout the computation whilst using one particular integration method. It is this 

property that creates the problem with mathematical stiffness, the time steps required 

by classical methods for the solution of stiff systems can be extremely small, resulting 

in long computer execution times.

Practical Stiffness

2.7 Practically, stiffness occurs as a problem in the solution of a system of differential 

equations when less computational effort is required to use an implicit method than an 

explicit method. Implicit methods, which w ill in general allow a larger time step than 

explicit methods in order to ensure stability, normally require more work at each step

3



to form a solution than explicit methods. Explicit methods, however, require small 

time steps if the problem being solved is stiff, so as to satisfy the stability 

requirements. Mathematical stiffness occurs in the modelling of many areas of Science 

and Technology; Physics and Chemical Engineering being two such fields. Although in 

this present context the author is confining the study to Fluid Power systems, the work 

is applicable in many other areas.

Two practical examples are now given to illustrate how mathematical stiffness 

can occur in hydraulic system simulation.

Tw o Examples To Show The Occurrence Of M athem atical Stiffness

2.8 Example 1 - Open loop transm ission  system . Consider the open loop hydrostatic 

system, shown in Figure 2.1, in which the hydraulic motor is supplied with fluid to 

drive a rotational load comprising an inertia, with viscous friction and a constant 

applied force. There is a relief valve in the circuit that is used to limit the system 

pressure. The pump and motor are assumed to exhibit no slip flow or torque losses in 

order to simplify the analysis.

The differential equations governing the behaviour of the system are:

(2.3)

and

_ (Tm-f<«>m—T1}
(2.4)

dt J

where:

P is the fluid pressure in the pipe 
Qp is the pump flow rate

4



Qm is the motor flow rate
Qr is the relief valve flow rate
B is the effective bulk modulus of the system
v is the pipe volume
J is the moment of inertia
(om is the angular velocity of the motor
f is the viscous friction coefficient
Tm is the motor torque
Tj is the load torque

2.9 The pump flow rate is given by:

Qp = Dpo>p (2.5)

where:

Dp is the pump displacement
(op is the pump shaft angular velocity

The motor flow rate is given by:

Qm = DmGJm (2 .6 )

where Dm is the motor displacement

The torque developed by the hydraulic motor is given by :

Tm = DmP (2.7)

If the flow rate through the relief valve is non-zero, owing to the system pressure

exceeding the relief valve cracking pressure, then if the relief valve is assumed to open

instantaneously, the flow rate through the valve is given by:

Qr = kr(P -  Pc) (2.8)

where:

Pc is the cracking pressure
kr is the flow coefficient of the relief valve.

Consequently, the differential equations for the rates of change of pipe pressure and

5



angular velocity of the ro tary  load, can be written, with the relevant substitutions, as:

(2.9)

= i ( D mP - f 6>m - T , )  (2.10)

fjjl = —(Dptop -  k,(P -  Pc) -  DmG>J 
d t v

dco.
dt

which leads to the 2 x2 m atrix equation

_ BDr 
v 

Dm

dP
dt

dt

■ k lr v v
- f
J W,

— (D pO)p + k,Pc)
v v v

- T (2 .11)

This is a matrix differential equation for which the general form is 

X* = A x + _b 

where _b is the forcing function.

(2 .12)

2.10 In order to see how this system leads to the problem of mathematical stiffness it 

is necessary to examine the eigenvalues of the A matrix. The eigenvalues, the 

reciprocals of the time-constants in the real case, of the set of differential equations 

given by equation (2 .12 ), are the solutions of the equation

(A -A I )x  = 0 (2.13)

where I is the unit matrix. The eigenvalues can be evaluated from the determinant 

equation [25].

I A — XII = 0

The characteristic equation for the system given by equation (2.11) is:

6



det

—krB

Dr

- X
—BDr

= 0

which leads to a quadratic in X of the form:

= 0_ k 'B - \

’

- f - x + BDm Dm
V J A V J

which simplifies to:

_ f krB
X2 + 1  + —  

J v
X + J L  | d 2 + k rf

Applying the formula for the solution of a quadratic yields:

X = - f  + krB
2J 2v

which simplifies to:

X = -

If

+ 1 f , krB
2 J + V

-  i ? . ( D 2+k,f)
0.5

f krB + 1 krB
2J 2 v 2 V

-  £ ( 2 k , f  + 4D 2) + I I
0.5

S '
krB

»  + 4 D |)

(2.14)

(2.15)

(2.16)

(2.17)

or equivalently 

f2v . k,2B
J2B

»  ^ (2 k ,f  +  4D 2) 
V  J

and provided that

fI _  + —  
2J 2v

k 2B2
JL (2 k rf  + 4D 2) + £

0.5

(2.18)

then the eigenvalues of the system will be real, negative and widely separated in

7



magnitude. Consequently a stiff system is apparent, with the stifFness ratio S given by:

— f M  
2J 2v

1
2

k 2B2 b  f2
—  v j r j 2

0.5

— f , krB 
2J 2v

® ® (2 Jr f + 4D2) + ^  
v2 v J U  r m) J2

U.5

2.11  To further study this expression, the relative magnitudes of the quantities 

appearing in this expression for typical hydraulic circuits can be considered. The bulk 

modulus. B. and the inertia. J. are usually very large. The viscous friction, f , the 

motor displacement, Dm,and the pipe volume, v. are usually small quantities. Typical 

data are:

B = 1.4 x 109 N /m 2 
f = 1 N/sec/rad 
v = 1 x 10-4 m3 
Dm = 2.5 x 101 cc/rev 
J = 0.5 kgm2
kr = 5. x 10-11 m3/sec/N /m 2 

This will lead to a stiffness ratio of

S =5 4.0 x 103

2.12 Example 2 - H ydrau lic  ac tua to r c ircu it. The circuit shown in Figure 2.2 consists 

of a fixed displacement pump supplying fluid to a linear actuator by a ’ meter in ’ flow 

control orifice. The directional control valve is manually operated and allows the 

actuator to be extended, retracted or held stationary. When the valve is centred, flow 

returns to tank through a relief valve. Mathematical stiffness occurs in the circuit at 

the start of a simulation since the pressure differential across the orifice is small and 

there is a high flow gain of the orifice under this condition.

8



2.13 Orifice re s tr ic to r . The flow rate through an orifice with potential flow is given 

by the relationship :

Q0 = k0v/AP (2.20)

where:

k0 is the orifice flow coefficient
AP is the differential pressure across the orifice

The gradient of this function is : 

dQo
dAP

k0

2 n/aP
(2.21)

When the differential pressure is zero, the gradient of this function is infinite. As the 

orifice connects two sections of pipe, the zero differential pressure condition can give 

rise to infinite stiffness. No classical integration method can provide an adequate 

simulation of this condition as can be seen by considering the equation set for that part 

of the linear actuator circuit shown in Figure 2.3.

2.14 Considering the actuator system in this simplified form, the model relationships 

to describe the system may be w ritten as:

dpi -B k 0 ArB

dt vn/aP V

du Ar - f
dt" M M

BkoPs

Pi
vn/AP

+
u 0

(2 .22)

where:

9



Ar is the area of the actuator piston 
B is the effective bulk modulus of the system 
f is the viscous friction coefficient 
M is the mass of the load 
Px is the pressure downstream of the orifice 
Ps is a constant pressure upstream of the orifice 
u is the actuator velocity 
v is the volume

The eigenvalues of the system are given by:

det

-B k° _   ̂ —ArB
vn/aP v

Ar
M

= 0

which becomes:

Bk0

v\/AP 

X is given by:

X = -

If

+ X
M

+ X
Ar2B 

+ ^ r ~  =  0Mv

f + Bk0 + 1 f + Bk0
2

4B A ?+ kf
2M 2 vn/aP 2 M vVAP vM 1 JEp

0.5

{ + Bk0 2 »  4B
_ k0f 

A 2 +
M v \/aP vM n/a P

and

22M vvAP
f + Bko 

M vn/AP
2 . kOf

Ar + Vap

0.5

(2.23)

(2.24)

(2.25)

then the eigenvalues will be real, negative and widely separated in magnitude. The 

stiffness ratio. S. is given by:

10



—
f + Bk0 _ 1 

2
f + Bk0

2
4B A *+ ^

r TK p

0.5

2M 2vn/aP M vn/aP vM

— f + Bk0
+ 4

f + Bk0 

M vn/aP
4B A 2+ k°f

'  T ap

‘ 0.5

2M 2 vn/AP vM

For the data:

B= 1.4x 109 N /m 2 
f = 1 x 102 N/sec/m 
v = 1 x 10~2 m3 
M = 10 Kg
k0 = 5 x 10~2 m 3/sec/N /m 2 
AP = 1 x 10-6  N /m 2 
Ar = 5 x 10~2 m2

then the stiffness ratio is of the order 

S ^ l . O x  109

2.15 These two examples, each comprising of a (2x2) set of coupled differential 

equations, demonstrate how stiffness can be introduced into a system simulation. In 

these two examples it was introduced by the model of a hydraulic relief valve and the 

model of an orifice. Although this type of problem is a recurrent one. the modelling of 

the effects that can cause stiffness must be included to ensure that the equations 

accurately represent the hydraulic circuit.

N um erical In teg ra tion  M ethods

2.16 A brief explanation of currently available numerical integration methods and the 

mathematical theory behind them is now given, since the issues discussed will be 

relevant when developing a new integration method.

11



Initial Value Problems For First Order Ordinary Differential Equations

2.17 A first order differential equation y' = f(t,y ) can possess an infinite number of 

solutions. For example y (t) = CeXt is. for any value of the constant C. a solution of the 

differential equation y' = Xy. where X is a given constant. Under certain conditions, 

y' = f(t,y ) has a unique solution if an initial condition is specified. For example, w ith 

the problem y' = Xy. if y (a )  = j3, then the particular solution satisfying the initial 

condition is given by y (t) = /3ex(l-0^. The differential equation, together with an initial 

condition, is said to constitute an initial value problem, which is:

y' = f(t.y ) y W  = /3 (2.26)

The following theorem, the proof of which can be found in Henrici [26], states 

conditions on f(t.y ) which guarantee the existence of a unique solution of the initial 

value problem given in equation (2.26).

2.18 Theorem  1. Let f(t.y ) be defined and continuous for all points (t.y ) in the region 

Df defined by or ^  t ^  y  , —oo < y <  oo. a  and y  finite, and let there exist a constant 

L such that, for every t , y . y* such that (t,y) and (t.y*) are both in Df

I f(t.y ) -  f(t,y*) I <  L I y -  y* I (2.27)

Then, if /3 is any given number, there exists a unique solution y(t) of the initial value 

problem (2.26). where y (t)  is continuous and differentiable for all (t.y ) in Df

2.19 Lipschitz condition. The requirement in equation (2.27) is known as a 

Lipschitz condition, and the constant L as a Lipschitz constant. Two properties follow 

from f(t,y ) being continuously differentiable [27], viz:

f(t.y ) being continuously differentiable with respect to y for all (t,y) in Df 

implies that f(t,y ) satisfies a Lipschitz condition w.r.t. y for all (t.y) in Df

12



and this implies that f(t,y ) is continuous w .r.t. y for all (t.y) in Df

In particular, if f(t.y ) possesses a continuous derivative with respect to y for all (t.y) 

in Df, then, using the Mean Value theorem,

f(t.y) -  f(t.y') = M ^ Z l(y  -  y )  '
oy

where y is a point in the interior of the interval whose end points are y and y*. and 

(t.y ) and (t.y*) are both in Df. The Lipschitz condition in equation (2.27) is satisfied if 

L is chosen as

L = sup I a f i t>y) I for (t.y) in Df (2.28)
i 6 y i

Initial Value Problems For Systems Of First Order Differential Equations

2.20 In Fluid Power simulation, then, rather than a single differential equation arising,

systems of m simultaneous first order equations in m dependent variables

yi, y 2. y 3. Ya, •••» ym arise. If each of these variables satisfies a given condition at the 

same value a  of time, then an initial value problem for a first order system arises. This 

problem can be w ritten as:

y i = f i( t. yi. y2. y3 y m) yi(<*) = Pi

y 2 = f2(t. yi. y 2. y 3 ym) y 2(«) = P2

y 3 = f3(t. yi. y 2. y 3 ym) y3(«) = P3

y m = fm(t. yi. y2. y3 y m) ym(«) = Pm

13



Introducing the vector notation

x = tyi. y2, y 3 yJT

i = [  f1.f2.f3 U 1

02.03 0 J 1

then the I.V.P. can be written in the form:

(2.29)

The reason for looking at systems is to show how the theorem of uniqueness and 

existence extends from a scalar equation, through to a set of equations. In order for 

theorem 1 to be applicable and give the necessary conditions for the existence of unique 

solution to equation (2.29) then two changes to the conditions of the theorem m ust be 

made. These are:

i) The region Df m ust be defined by a  ^  t ^  y. —00 < < 00, i= l,2,...,m

ii) Condition (2.27) must be replaced by:

where (t.y. ) and (t.y*) are in Df. and 1 1 . 1 1  denotes a vector norm [47].

In the case where each of the fj(t,y 1X2X3 ym) . i = 1.2 m. possesses a continuous

derivative with respect to each of the yj. j = l ,2 ,...,m then, analogous to equation (2.28)

I l_L(t.y) ~  Jl(t.X*) I I ^  L I lx~X* * I (2.30)

L = sup I I I I for (t.x) in Dfax
Af

where - =  is the Jacobian of f  w ith respect to x  [29].ax

14



2.21 Reduction of high order d ifferen tia l equations to  first order. Frequently, the 

ordinary differential equations that are formulated to describe physical situations are 

of second order or higher. In this case, in their solution, either an integration method 

specifically designed for solving higher order equations must be used, or the differential 

equations must be reduced to a set of first order equations. This is done by making a 

substitution into the higher order set of equations, and solving for a new set of 

unknowns. To reduce the second order differential equation

+ K2y = K3 (2.31)
d t2 dt

to two first order differential equations, the substitution = r can be made, thenQL = T

equation (2.31) will become the system 

dy _

d *  "  r
f £ + K ir + K2y = K3

and now a classical integration technique can be applied . This method of reducing 

equations can be used on higher order differential equations.

D irection Fields

2.22 The function y(t). the solution to equation (2.26). is a curve in the ty-plane.and, 

although it may not be possible to find y (t) exactly, the slope of y (t) at every point on 

its solution curve is known. If the solution passes through the point (t.y). then since y' 

= f(t,y ). the slope of the tangent line to the curve y (t) at the point (t.y ) is given by 

f(t,y). Consequently, the direction of the solution curve y(t) at any point in the ty- 

plane is known. The set of all these directions in the plane is called the Direction Field 

of the differential equation y' = f(t.y). In many cases the solution to a differential

15



equation, although not computed, can be sketched via its direction field.

2.23 Example to  dem onstrate the  occurrence o f d irec tion  fields. Considering the 

initial value problem

y* = 2 ty  y (0 ) = 1

then

y '(t) > 0  if ty  > 0

and

y '(t) < 0  if ty  < 0

Hence y '(t) > 0  in the first and third quadrants, and y '(t)  < 0  in the second and 

fourth quadrants. The direction field is sketched in Figure 2.4 . Since t and y are 

positive in the first quadrant, the slopes of the tangent lines to any solution curve are 

positive, so that the solution curves increase and become steeper as t  and y become 

larger. Along the axes the solution is flat because the derivative is zero. In the second 

quadrant the slopes of the tangent lines are negative since y' < 0 . Similar conditions 

apply in the third and fourth quadrants.

2.24 The solution curve must satisfy the initial condition y(0) = 1 for the particular 

I.V.P. being considered and must consequently pass through the point (0,1). The sketch 

of the solution given in Figure 2.5 is indicative of the way in which the information is 

used to formulate an estimate of the solution. The problem being solved has the true 

solution y (t) = e*2. and the correlation between this and the sketched solution is easy to 

see.

16



Numerical Methods

2.25 Numerical methods use the direction fields of a differential equation in order to 

form  their approximation to the solution. Numerical techniques exist since, for the 

m ajority of differential equations, there is no known solution, i.e. it is impossible to 

express a solution in terms of elementary functions. They seek to find an 

approximation to y (t) for one or more values of the independent variable t, rather than 

looking for a function y (t) that solves the problem at every value of t. Numerical 

methods are also used, when techniques developed to find the analytical solution to 

differential equations, require significantly more effort to form an answer. An example 

of this is the computational labour involved in solving exactly a system of many 

simultaneous first order differential equations, which may be formidable [30].

2.26 The number of numerical methods available to solve differential equations is 

legion, and a comprehensive study is not made here. However, the most common 

methods that are used for solving differential equations fall into categories, and these 

will be briefly discussed. The two classes are:

1) Multi-step methods
2) Single-step methods

M ulti-step Methods

2.27 The general linear multi-step method. Considering the I.V.P. for a single first 

order differential equation

y' =  f(t.y ) y(a) = 8 (2.33)

A solution is required in the range a ^  t  ^  b, where a and b are finite. It is assumed

17



\

that f satisfies the conditions stated in theorem 1 on uniqueness and existence, and so 

the problem has a unique continuously differentiable solution described by y(t). 

Considering the sequence of points tn = a + nh. n= 0.1,2,... where the parameter h, 

which for the present will be regarded as constant, is called the steplength, then it is 

possible to discretize the interval [a.b]. As has been already mentioned, numerical 

methods seek to approximate the solution on this point set, and not on the continuous 

interval a <  t ^  b. Letting yn be an approximation to the true solution

y (tn), at t n and fn = f ( tn yn), then if a method for determining the sequence

y0,yi ,  y2i ' * is formed by a linear relationship between yn+j , fn+j, j = 0 , l ,2 ,...k it is

termed a linear k-step method [31].

2.28 The general linear multi-step method is written as:

Z«jYn+j =  h l ^ n + j  (2 .3 4 )
j=0 j=0

where Oj /3j are constants. a k ^  0 and at least one of a 0 and /30 are non-zero. 

Furthermore, a k = 1 . without loss of generality, and this ensures the uniqueness of the 

method.

2.29 Hence the problem is to find the sequence yo, yi ,Y2/ ' ' '  tfiat satisfies the 

difference equation (2.34). Since fn is. in general, a non-linear function of y n. equation 

(2.34) is a non-linear difference equation. The sequence y0, yi jY2/ ' * * is computed 

numerically, and in order to do this, a set of starting values y0, yi, Y2, -v  Yk-i must be 

supplied. Methods for obtaining starting values are explained by Hall & W att [32]. The 

method given by equation (2.34) is explicit if j8k = 0. and implicit if j8k 0. For an 

explicit method, equation (2.34) gives the current value y n+k directly in terms of y n+j, 

fn+j* j = 0,1,....k-1 which are already known. However, for an implicit method, to find 

Yn+k w iH require at each step the solution of the equation

18



Yn+k ~ h/3kfn+k + K (2.35)

where

k—1
K =  £ ( h ^ j f n+j- a j y n+j)

j=0

is a known function of previously calculated values.

2.30 When the original differential equation is linear, then equation (2.35) is also 

linear in y n+k. and is easy to solve. If f is non-linear, then equation (2.35) must be 

solved by an iterative technique, and a typical fixed-point iteration scheme is of the 

form:

This process will only converge to the unique true solution for 

yn+k if the right-hand side of equation (2.36) satisfies a Lipschitz condition, i.e.

where My is the Lipschitz constant w .r.to yn+k*

2.31 If the Lipschitz constant of f w ith respect to y is L, then My will have the value 

Lh I /3k I . and so a unique solution for yn+k exists, and the above iteration converges to

Obviously if L is very large, then this requirement can impose a severe restriction on 

the size of the steplength. Stiff systems can lead to very large values of L. so the reason 

for examining iteration schemes that are suitable for stiff problems is seen. The ideas 

here follow through to a system of simultaneous non-linear equations. These, in the 

case of an implicit method, can also be solved by iteration, by forming a series of

yn+k1̂  = h/3kf(W ,yn(̂ k) + K s=0.1.2.... (2.36)

I h/3kf(t,y ) -  h|8kf(t.y*) I <  My I y -  y* I 0 ^  My < 1 (2.37)

it. if

19



vector iterates. In order tc ensure the convergence of the iteration scheme, the absolute 

values of scalars are replaced by the norms of the corresponding vectors [33].

2.32 The coefficients orj , /3j in equation (2.34) can be derived in various ways 

depending on the requirements placed on the method that will formed. Two such 

approaches are via Taylor’s Expansions and numerical integration.

2.33 T ay lo r 's  series expansions. For small h, y ( tn+h) can be expanded by a Taylor’s 

series about the point tn as follows:

Truncating the Taylor’s series after two terms and substituting for y ’( tn) from the 

differential equation (2.33) gives:

Equation (2.38) gives a relation between the exact values of the solution of equation

(2.33). Replacing y (tn) by y n and y(tn+h) by yn+1 leaves an exact relation between 

approximate values of the solution of equation (2.33), and this is:

This is known as Euler’s method, the error in evaluating one step is given by the 

expression (2.39) and is called the local error. This error is of order h2, and will be zero

y(t„+h) = y(t„) + hy"(t„) + ^ y " (t„ )  + - |£ y '" (0  + • - •

where

y (tn+h) *= y (tn) + h f(tn y ( tn)) (2.38)

The error involved in estimating the solution to y ( tn + h) is given by:

(2.39)

yn+i = yn + h fn (2.40)

20



if the solution of equation (2.33) is a polynomial of degree 0 or 1. since y" . y"' , • • • 

will all be zero. Geometrically, the meaning of Euler’s method is shown in Figure 2.6, 

where the smooth curve is taken as the unknown exact solution of equation (2.33), 

which is being approximated by the broken line. In order to ensure that Euler’s method 

accurately follows the true solution curve, the value of the steplength h must be 

restricted. This restriction is problem dependent. As a further note. Euler’s method is a 

useful method with which to illustrate stability, convergence and accuracy analysis.

2.34 N um erical in teg ration . Considering the identity

t n+2

y*(t) may be replaced by f(t.y ) using the differential equation (2.33). If a linear two- 

step method is to be derived, then the data available will be fn fn+i, fn+2- Letting P(t) 

be the unique polynomial of degree two that passes through the three points 

(tn/n)* (t-n+i’fn+i)’ (t-n+2’fn+2)' then using the Newton-Gregory interpolation formula 

[34], given by:

(2.41)
■n

PCt) = P(t„+rh) = f„ + rAf„ + r(r^  1} A2f„

where:

Afn = f„+i -  fn. A2fn = fn+2 -  2 fn+1 + fn

the integrand in equation (2.41) becomes:

/  y '(t)d t ~  / [ f „  + rAf„ + r(-r. - 12  A; f J h  dr 
o *

= h(2fn + 2Af„ + y A 2fn) (2.42)

21



Expanding Afn and A2fn and substituting in equation (2.41) gives:

which is know as Simpson's rule. This method is used in chapter 7 in an attem pt to 

improve the accuracy of the new integration method that is developed in chapter 3.

2.35 Convergence. Many integration methods can be formulated by these approaches, 

some of which will be discussed later. However, before a formula can be used it must 

satisfy certain criteria. One of these is the property of convergence, which requires that 

the solution yi, y2,y 3»—. generated by the method, converges to the theoretical 

solution y (t) as the steplength h tends to zero. As a precise definition, then:

A method is said to convergent if. for all initial value problems of the form of 

equation (2.26), subject to the hypothesis of theorem 1 , then the condition

y n -> y (tn) as h -♦ 0 . nh = t—a

holds for all t in the interval [a.b]

2.36 O rder and e rro r  constan t fo r  lin ear m ulti-step  m ethods. For the linear 

multi-step method given by equation (2.34), then an operator L can be defined by: [35]

k
L[y(t);h] = £ [a jy ( t  + jh) -  hj3jy'(t + jh)] (2.43)

j=0

where y (t)  is now an arbitrary function that is continuously differentiable on the 

interval [a.b]. The order of accuracy of the operator and of the associated linear 

multi-step method can now be defined. Expanding the test function y(t+jh) and its 

derivative y '(t+ jh) using Taylor’s series about the point t. and collecting terms 

together yields:

22



L[y(t);h] = C0y(t) + Cihy'Ct) + C2h2y"(t)+...+Cqhqy(q)(t)+. 

where the Cq, with q = 1,2,3,... are constants.

(2.44)

2.37 D efinition o f  o rder fo r  a lin ea r m ulti-step m ethod. The difference operator 

given in equation (2.43) and the associated linear-multi step method in equation (2.34), 

are said to be of order p. if in equation (2.44). 0 0  = ^ =  0 = ...= Cp and Cp+1 ^  0 . 

Since the coefficient values Cq's can be written in terms of the Qfj's and jSj's , it is 

possible to construct a linear m ulti-step method of a given order by solving a set of 

simultaneous equations. Also, the local error at tn+k of the method is defined by the 

expression L [y(t) ; h], given by equation (2.43). where y (t) is the solution of the I.V.P.

(2.33).

2.38 Characteristic polynomials [36] can be formed from linear multi-step methods in 

order to assess their stability properties. For example, from equation (2.33), the first 

and second characteristic polynomials, defined as p(£) and cr(£) respectively are given 

by:

P (!) = 2 > j0
j=0

<K£) = I 0 j l j
j=0

A linear multi-step method, defined by equation (2.34) is said to consistent if it has 

order p ^  1 . As a consequence, for consistency, the method must satisfy the 

conditions

k k k
£ « j = 0  and ~ Z 0 j
j=0 j=0 j=0

23



2.39 Z ero-stab ility . Zero-stability ensures that the solutions of the difference 

equation for yn. which arise because the first order differential equation is being 

replaced by a higher order difference equation, are damped out in the limit as h -» 0 . 

These solutions are frequently called parasitic solutions and the linear multi-step 

method given by equation (2.34) is said to be zero-stable if no root of the first 

characteristic polynomial p(£) has modulus greater than one. and if every root with 

modulus one is simple.

This leads to Dalquist's fundamental theorem [37], which is:

Theorem  2. A linear multi-step method is convergent if and only if it is both 

consistent and zero-stable.

The proof of this theorem can again be found in Henrici [26] and it is an important 

result. It is saying that both consistency, which controls the magnitude of the local 

error arising at each stage of the solution, and zero-stability, which controls the 

manner in which this error is propogated as the calculation proceeds, are essential if 

convergence is required. For a one step method, an important result is immediately 

forthcoming. Since the polynomial p(£) is of degree one. and a consistent method will 

lead to a solitary root £ = 1 , then consistency implies zero-stability, and hence only 

consistency is required to ensure convergence.

Single-step M ethods

2.40 Single-step methods are better able to cope with discontinuities and easier to 

implement than multi-step methods which can invoke great difficulty in choosing the 

starting values y J# y2, * ' * y^-i . particularly when discontinuities are met. It is at

24



these points that multi-step methods require modifications in order to prevent them 

from failing. This is normally done by using a smoothing function, or an integration 

restart, both which will be discussed, but the smoothing function which can be used 

does not represent the true solution, and so divergence from the theoretical solution is 

possible. As a consequence, single-step methods are useful in these circumstances, since 

they are self-starting, requiring only information at the last time step. It is possible 

for a single-step method to finish at the point of discontinuity and resume the 

integration process at the new level. Multi-step methods, however, cannot easily do 

this, and neither do they readily permit a change in steplength during the computation, 

since they rely on information from preceeding integration steps. Finally, single-step 

methods are generally far easier to implement and code than multi-step methods, since 

they do not require the storage of back values, either in data or polynomial form. 

Multi-step methods frequently lead to long and cumbersome computer programs 

which are very difficult to modify to suit individual problems.

2.41 Linear multi-step methods achieve high order accuracy by sacrificing the 

desirable one-step nature of numerical algorithms, but do retain linearity w ith respect 

to yn+j* fn+j j =0,1....k. Single-step methods can attain higher order accuracy by 

sacrificing linearity, and this is the idea behind the methods first proposed by Runge 

[38] and subsequently developed by Kutta [39] and Heun [40]. This leads to the class 

of Runge-Kutta methods that are easy to implement, but require more effort in error 

analysis than their multi-step counterparts. Explicit and implicit Runge-Kutta methods 

exist, although explicit methods are the most common form. However, recent 

development work with implicit Runge-Kutta methods has lead to several 

breakthroughs, and this work will be discussed in a subsequent chapter.

2.42 A general single-step method, in explicit form, can be written as:

25



yn+i -  yn = h<X>(tn,yn h) (2 .4 5 )

This method is said to have order p. if p is the largest integer for which

y (t+ h ) — y(t) = h<I>(t,y(t),h) = 0 (h p+l) (2.46)

bolds, where y (t) is the theoretical solution of the I.V.P. given in equation (2.33).

The method is consistent w ith the I.V.P. if

<J>(t,y,0) = f(t.y ) (2.47)

Euler’s method is the only linear m ulti-step method which falls within the class of

equation (2.47), and is obtained by setting

4>(t,y,h) = f(t.y)

It is consistent and has order one.

A theorem exists that gives conditions to ensure the convergence of single-step 

methods, the proof can again be found in Henrici [26].

Theorem  3. i) Let the function 4>(t.y,h) be continuous jointly as a function of its

three arguments, in the region Df defined by t in [a.b], y in (—oo.oo) and h in

[0 , ho], h0> 0

ii) Let <&(t.y.h) satisfy a Lipschitz condition of the form 

I 3>(t,y*h) — 4>(t.y.h) I ^  My I y*—y I 

for all points (t,y*,h), (t.y .h) in Df

Then the method given by equation (2.45) is convergent if and only if it is consistent.

2.43 The definitions and theorems follow through for systems of differential

26



equations, with the necessary amendments from absolute values to vector norms. 

They also apply to methods of the form:

Yn+i -  y n = h$>(tn+1.yn+1.h) (2.48)

which will in general require the employment of an iteration scheme in their solution, 

since they will form implicit relationships between variables. The requirements for the 

convergence of an iteration scheme when applied to an implicit linear multi-step 

method will extend simply to this method since it will be of the form:

yn+i1} = h^Ctn+i.yn+i.h) + yn s=0,l,2.... (2.49)

Stability  Of Numerical Methods

2.44 Besides the zero-stability, consistency and convergence of a numerical method, 

there is another important property that determines its usefulness as an integrator. 

Zero-stability ensures that the local inaccuracies caused by the method are not 

propogated in an unwanted manner. However it deals w ith the case as 

h -» 0  and n -» oo, with nh constant. Consequently, it is necessary to know the way in 

which errors propogate if h is fixed, or at least does not tend towards zero, and n still 

tends towards infinity. The global error is defined as the overall error that a numerical 

method makes in forming a solution sequence from t0 to tn: then, if en denotes global 

error

en = yn -  y(tn)

where yn is the solution formed by the scheme and y (tn) is the theoretical solution to 

the I.V.P. given in equation (2.33) at the point t = tn . Since the local error determines 

the error made by the scheme in taking one step, it must be limited in some w ay to 

ensure that the global error is controlled also. The new requirement is a stability

27



definition in which the steplength is fixed and the demand is that the error is 

propogated in a stable manner as n -* oo. this error w ill include round-off error, which 

is formed by the computer in the calculated values at each step and can also create 

difficulties in the generation of accurate solutions if it is not controlled.

2.45 Absolute s tab ility . "A numerical method of the type given in equation (2.45) or 

equation (2.48) is said to be absolutely stable for a given fixed steplength and for a 

given I.V.P. if the global error en := yn — y (tn) remains bounded as n -» oo. " [41]

This definition relies on the choice of the I.V.P. and the problem that is generally used 

is called the test equation and is given by:

where X is a complex constant.

The way in which the absolute stability of a method is monitored is to consider the 

effects of a single error e.g. in the initial condition, and then to apply the numerical 

method to the test ordinary differential equation. Then the effect of the initial 

perturbation can be seen and appropriate restrictions can be made, if possible, to ensure 

that the global error is bounded.

2.46 System s o f o.d.e/s. The same stability analysis applies to a system of o.d.e.*s in 

order to ensure control over the growth of the global error. Considering the test system 

of m equations

then, assuming that the constant matrix A has m linearly independent eigenvectors 

[42], it is possible to pre and post multiply A so as to form:

y' -  Xy y(0 ) = 1 (2.50)

y! = A x y (0 ) = £ (2.51)

28



P->APm = A

where:

Pm is the modal mxm matrix consisting of the eigenvectors of A [43].
A is the diagonal mxm matrix w ith the eigenvalues of A on the diagonal

Now defining x  = PmZ. then equation (2.51) becomes:

(2.52)

premultiplying by Pm1 gives:

(2.53)

and since Pm1APm = A this leaves:

Z' = AZ (2.54)

which uncouples into the equations

z/ = AjZj Zj(0) = i= l,...m

The analysis for each of these equations may be carried out in the same way as for a 

normal scalar equation by applying the method to each equation in turn, after 

perturbing each initial condition. The reason for having X as complex in the original 

scalar test equation is now apparent since the eigenvalues of A may be complex. If 

K t.y )  is differentiable with respect to x* then the local behaviour of the general I.V.P. 

is determined, approximately, by the solution of the linearised equation

t o
Af

where is the Jacobian matrix of the system.This can be modelled by the linearised

equation x* = A x which is of the same form as the test system. In general the Jacobian 

for a problem is time-dependent, and in order to carry out stability analysis, the 

values of the matrix must be ’frozen’ at a value of time, so that the constant A matrix

29



can be formed.

2.47 Absolute stability o f Euler’s method. Euler’s method applied to a scalar 

equation is now considered to demonstrate how the stability region of the method is 

determined. Applying Euler’s method then the test o.d.e. given in equation (2.50) will 

lead to the computed sequence y0, yi. y2, •••• from the difference equation given by:

yn+i = yn + h \y n y o = l  n = O.I.2.3.... (2.55)

If y 0 is perturbed to y0 + € = z0. then the sequence will become Z q  z x z 2> .... from the 

modified difference equation

Zn+1 =  zn + b \zn Zo = l+ €  n = 0,1,2,3,... (2.56)

Subtracting equation (2.55) from equation (2.56) will give:

zn+i -  yn+i = (1 + hX)(zn—yn) n = 0.1.2.3,... (2.57)

and. recursively applied, this leads to:

zn yn = (l+hX )n(zo-y0) n = 1.2,3,... (2.58)

The requirement is that the effect of the initial perturbation will die away with 

increasing n, i.e. that I zn — yn I -> 0  as n oo. this is only ensured if I 1+hX I < 1 , 

which leads to the conditions:

i) h < -py-p X real, X < 0
I A I

ii) h < ^   ̂ X complex =  n  + ict>, fi < 0
fJL2 + (0

30



2.48 Systems of equations. The analysis for the system of equations given in 

equation (2.51) is as shown in section 2.46. The system is transformed to an uncoupled 

set of equations, and Euler’s method is applied to each of these in turn. For absolute 

stability the requirement will become:

I 1 + hXjl < 1  i = l,2,3,...m

which will describe a region in the complex hX-plane since the eigenvalues of A could 

be complex. The stability region for Euler's method is shown in Figure 2.7, and it can 

be seen that for eigenvalues with large real or imaginary parts, the values of h required 

for stability will be greatly restricted.

2.49 In h e ren tly  stable system s. In general, the equations arising in Fluid Power 

simulation correspond to system eigenvalues with negative real parts. Systems which 

comprise only eigenvalues with negative real parts are termed inherently stable. For 

these cases the solution is either decreasing or non-increasing, and so it possible to 

analyse the behaviour of numerical method as time increases, by the way in which 

perturbations in the initial conditions are reflected throughout the solution computed 

by the numerical scheme. This solution, for a stable method, should not diverge from 

the true solution as time increases.

2.50 However, when the system eigenvalues are positive, this is termed instability of 

the original system. In this case the solution is either non-decreasing or increasing and 

consequently any initial error w ill be likely to grow as time increases. The stability 

property of a numerical method when it is applied to a non-inherently stable system 

must ensure tha t the inaccuracies caused by the numerical method are small in 

comparison to the errors amplified by the system itself. This concept has been dealt 

with by Gear [32] in his definition of a stiffly stable method.

31



2.51 Im plications o f s tab ility . Since the stability of a method is necessary to ensure 

that the global error is bounded, it is essential to ensure that integration methods 

employed by HASP have good stability properties. However, stability is a property 

that is only ensured with most methods if the steplength is limited [44], as has been 

demonstrated by Euler’s method. Mathematical stiffness creates a problem if stability 

is required since when X is large, the steplength used during the integration process 

must be very small. Consequently, when solving a highly stiff problem, it is generally 

more economical to use a method that needs a relatively large steplength in order to be 

stable, rather than one that places a stringent demand on the choice of time step, even 

though the first method may require more computational effort to find the solution at 

each step. In general, such methods are implicit, which in general do require more effort 

at each step to find the solution than explicit methods. Figure 2.8 shows the stability 

region for the Backward Euler method which is given by:

yn+i = yn + f i f ( w y n+i) <2-59)

and although there is no limitation on steplength in order to ensure stability for an 

inherently stable system, to solve a non-linear system the method requires the use of 

an iteration scheme. This can involve a great deal of computational effort, particularly 

when the system being solved is mathematically stiff [45].

2.52 Consequently, for the solution of inherently stable systems, the Backward Euler 

method is ideal from a stability point of view. If. however, the consistency and 

convergence of the method are also considered, it is found that Backward Euler has a 

local error of the form Cjh2, and although this ensures that the method is both 

consistent and hence convergent, the method is of low order accuracy and hence will 

require a small time step in order to ensure an accurate estimation of the true solution. 

Hence the difficulties that arise when choosing suitable numerical methods for different



classes of problems become apparent. If accuracy is required, a method with a high- 

order error expansion must be used if the steplength is not to be unrealistically small, 

but at the same time, if the problem to be solved is very stiff, or has eigenvalues with 

large magnitude, then a method with a low order error expansion must be used, else a 

prohibitively small time step will be needed to ensure the stability of the method. In 

general, high order methods have small stability regions, whether explicit or implicit, 

and so low-order methods must be used in the solution of stiff sets of equations, and a 

small steplength must be employed [46].

2.53 An example of methods commonly used are Adam’s-type methods which are 

m ulti-step, and the way in which these methods are derived can be found in [47]; the 

first characteristic polynomial of these methods is of the form p(£) = £k — £ k_1 for a 

k-step method, which ensures that the methods are zero-stable. Adam’s methods that 

are explicit are called Adams-Bashforth methods, whilst those that are implicit are 

called Adams-Moulton methods. Adam’s methods are implemented in many o.d.e.. 

solving packages and are particularly suitable for solving large, non-stiff systems [48]. 

Examples of the stability regions for Adam’s methods can be found in Figure 2.9. The 

diagram illustrates the decreasing stability regions for the methods with increasing 

accuracy.

2.54 At present the method used by HASP is Gear’s method [49], and this method is 

incorporated into a package which is both multi-step and multi-order. The stability 

regions for Gear's method are shown in Figure 2 .1 0  and it can be seen that these regions 

are larger than the stability regions for Adam’s methods for corresponding values of k. 

Consequently, these methods are advantageous in the solution of stiff systems of 

o.d.e.’s

33



2.55 Having discussed integration methods and the properties of stability, convergence 

and accuracy, a further consideration of mathematical stiffness is now made, this time 

from a stability viewpoint. Then, further problems that often arise in the simulation 

of Fluid Power systems are presented since the mathematical theory tha t m ust 

accompany their investigation has been covered.

F u rth er Consideration o f Stiffness

yi'
Y2

yi 1000.25 y i(0 ) 0

y2
+ 0 Y2«>) - 2

2.56 Considering the following example

-2000 999.75 
1 - 1

then the eigenvalues of the system are:

= -2000.5 
X2 = -0 .5

and the exact solution is given by:

y i(t ) = -1 .499875e-°5t + 0.4999875e-20005t + 1 

y2(t)  = -2.99975e"°5t -  0.0O025e-20O° 5t + 1

The general form of the solution curve is shown in Figure 2.11. The fast transient is 

negligible after t 22 0 .0 0 2  and the slow transient at around t = 10 . Integration in the 

interval 0 ^  t ^0.002 requires a very small steplength. However, if an 

inappropriate numerical method is used to integrate in the range t >  0 .0 0 2  then a 

small steplength must be used in order to avoid instability. For example, if a fourth- 

order Runge-Kutta method is used anywhere in the range t ^  0 . a steplength of less 

than 0.0014 must be used to avoid instability, resulting in over 7600 steps to reach the 

steady-state solution. A larger time step can be used if an implicit method is employed 

to solve this problem, but this w ill require much more computational effort at each

34



time step to form a solution, and so the classic problems with mathematical stiffness 

are apparent.

2.57 G eom etric in te rp re ta tio n  o f stiffness. Practically, it appears that stiffness 

occurs in a system when stability rather than accuracy dictates the choice of 

steplength. Geometrically, looking at the set of solution curves for stiff and non-stiff 

systems explains why stiffness causes a problem to integration methods. Figure 2.12 

shows both a component of the solution curve, and the components of the neighbouring 

integral curves, in heavy and lighter lines respectively, for typical non-stiff and stiff 

systems.

2.58 The broken line shows that in the stiff case there can exist a solution curve 

which has a com ponent with no fast transient, although the neighbouring 

components may all have fast transients: stiffness is not related to the geometry of 

the solution curve, but to the geometry of the family of solution curves. If  an 

unsuitable method is used to solve a stiff problem, then the wrong components are 

often approximated by the method. Looking at Figure 2.13 shows how an unsuitable 

method such as Euler’s method, can become unstable when used to integrate a stiff 

system , even when the fast transient is dead. A further interpretation of 

mathematical stiffness is given by Lambert [50].

Physical D iscontinuities

2.59 A discontinuous function is defined by a mathematically instantaneous change in 

the values of that function as the value of the independent variable increases, and 

m ust be taken into consideration, along with mathematical stiffness, when selecting an 

integration method to solve the differential equations representing the dynamic 

behaviour of a Fluid Power system. When the equations that represent the behaviour 

of the system are of a discontinuous nature, many classical integration methods for the 

solution of the equations are prone to failure at the points of discontinuity.

35



¥

In Fluid Power systems, discontinuities fall into two main categories:

i) Discontinuities that occur at known times* taking as an example the case of a 
duty cycle where a variable changes its value to a pre-determined level

ii) Discontinuities that occur because of a variable reaching a particular 
value, taking as an example the velocity of a linear actuator when it 
hits an end-stop, causing the velocity to change abruptly.

Since discontinuities present difficulties to numerical methods, it is necessary to design 

an adequate way with which to deal with this problem, and this will be discussed in 

chapter 5.

2.60 Examples show ing the  occurrence o f discontinuities. The hydraulic actuator 

circuit in Figure 2.2 can be used to demonstrate how discontinuities may arise. When 

the actuator hits the end-stop then the velocity trace is discontinuous. Typical 

responses for velocity and displacement are shown in Figures 2.14 and 2.15. The 

velocity is an example of a discontinuous time derivative, and another example of this 

is given by the operation of a relief valve. As the differential pressure across the relief 

valve rises to the cracking pressure, the flow rate increases from zero to some finite 

value as shown in Figure 2.16. The discontinuity in the time derivative is shown in 

Figure 2.17.

O scillatory  Problem s

2.61 Another class of I.V.P.’s which arises in Fluid Power simulation consists of 

problems whose solutions are periodic, or oscillate with a known or unknown 

frequency. If the frequency were known in advance then a class of methods based on 

trigonometrical polynomials, developed by Gautshi [51], is particularly appropriate. 

However, generally in HASP, the frequency of the problems that have oscillatory

36



solutions are not known, and consequently standard numerical methods m ust be used. 

Oscillatory problems do not necessarily cause problems to integration methods, and, in 

general, only do so when the frequency of the oscillations is high, particularly if the 

amplitude of the solution curve is large as well. In this instance, then numerical 

methods can require a very small time step in order to pick up the trace of the 

solution; this is likely to be a problem for all numerical techniques.

2.62 Example dem onstrating  oscilla to ry  behaviour. Referring back to the 

hydrostatic transmission system in section 2 .8 . demonstrating how stiffness can arise, 

then the equationsdescribing the behaviour of the system can lead to an oscillatory 

solution. If the net load torque is sufficiently small, then the system pressure w ill not 

exceed the relief valve cracking pressure and the flow rate through the relief valve will 

be zero. Consequently, the differential equations for the rates of change of pipe 

pressure and angular velocity of the rotary load can be w ritten as:

do>„
d t

(2.60)

(2.61)

which can be written as the matrix equation;

-BD„dP
dt

dt

0

Dm
v

- f
J

—(Dpa>p)
V  v v

- T ,
(2.62)

The eigenvalues of the system matrix will be the roots of the quadratic equation:

X2 +  i-X +
J vJ

The solutions will be:

= 0

37



X = - f  + 1 
2J 2

£
J2

4BDm2

vJ

i.e.

x = z L ±  
2J

_f^_
4J2

BDm2

vJ
(2.63)

The term:

£
J2

4BDm2

Jv

will determine the nature of the eigenvalues and consequently the transient behaviour 

of the system. If it is positive, the eigenvalues are real and not normally widely 

separated for practical hydraulic circuits. Oscillations in the pressure and angular 

velocity w ill not occur as the system will be overdamped forcing these variables to 

attain steady state. If. however, the term is negative, which is the case when there is 

low friction in the system, then the eigenvalues will be complex conjugates and the 

system will behave in an oscillatory manner. The real part of the eigenvalues will 

determine the damping coefficient and the complex part will determine the frequency 

of the oscillations of the solution. When steady state has been reached, the solutions 

will be:

( o m = d pwp
D„

and

P = + T,)

P redictor-C orrector P airs

2.63 When solving stiff systems of differential equations, the time step restriction 

placed on an explicit method to ensure the stability of the solution is normally so

38



excessive that it prohibits the use of the method. In this case, an implicit method must 

be used since the time step restrictions are often much more lenient. However in order 

to use an implicit method, it is necessary to form predicted values, and this is done by 

using an explicit method. Predictor-Corrector pairs are now discussed and the 

necessary iteration schemes that must be used with stiff systems are explained.

2.64 If an implicit k-step method is to be used to solve an I.V.P. in preference to an 

explicit method, then, referring to section 2.30, at each step the solution of the 

equation (2.36) must be found, which is:

k—1 k—1

Y n+k iC ^ jY n + j  — h ^ k f ^ n + k 'Y n + k )  ^  ^  ^j^n+j 
j= 0  j= 0

For a non-linear problem, this equation will require an iterative procedure to 

determine an accurate value for yn+k- Although convergence is guaranteed if

h <  —- -3 — , it is desirable to take as few iterations as possible before a suitably L I p k I

accurate value for yn+k is found, particularly since the evaluation of f at given values 

of its arguments can be time-consuming. Consequently, the initial estimation should be 

as close to the true solution as possible. To do this, a separate explicit method is used to 

estimate yn+k . and the value determined by this method is termed y^+£ . The explicit 

method is called the predictor, and the implicit method the corrector.

2.65 C orrecting  to  convergence. Once a predictor-corrector pair has been established 

there are two possible routes which can be taken to determine an estimation to yn+k- 

The first of these is to continue the iterative procedure given by equation (2.36) until 

the iterates have converged, which in practice means until some criteria such as 

I yn+k1* ~  Yn+k I <  € , where € is a pre-assigned tolerance, is satisfied. The way in 

which to determine € is difficult to generalise, but the solution obtained, yn+t1*. is an

39



acceptable approximation to the exact solution y ( tn+k) of the original scheme. This 

mode of operation, where each iteration corresponds to one application of the corrector, 

is termed correcting to convergence. In this mode, the number of iterations needed 

cannot be calculated in advance; or, alternatively, the number of function evaluations 

that will be required at each step can not be foretold. However, since the accepted 

value yn(+k1) be independent of the value y,J+£ estimated by the predictor, then the 

local error and stability characteristics of the combined method are those of the 

corrector alone; the properties of the predictor not being important [52]. Hence, h must 

be chosen so that Xh lies within the stability interval of the corrector, it is of no 

concern if the value of Xh does not lie within the stability interval of the predictor.

2.66 Lim ited application o f th e  corrector. The alternative approach is to stipulate 

in advance the number of times, m, that the corrector is applied at each time step. This 

approach is motivated by the desire to restrict the number of function evaluations per 

step. However, the local error and stability characteristics ae no longer those of the 

corrector alone, but are dependent on both of the methods used. Hull and Cremer [53] 

have introduced a standard notation which describes the mode in which a predictor- 

corrector pair is applied, and also tells immediately how many function evaluations per 

step are required.

2.67 Letting P denote an application of the predictor, C a single application of the 

corrector, and E an evaluation of f in terms of known values of its arguments; then if 

y n(+£ is computed by the predictor, the evaluation of f^+i =  f ( tn+k«yn+]c) 1S made, and 

the corrector is applied once to obtain yn(+£, then the calculation made so far can be 

represented by the expression PEC. A further evaluation of f„(U =  f( t n+k* 

followed by a second application of the corrector yields yn+£. and the overall

40



calculation is now denoted by PECEC, or P(EC)2. Applying the corrector m times is 

similarly denoted by P(EC)m. Because m is fixed beforehand, the value y ^  is 

accepted as the numerical solution at tn+k.

2.68 It is advantageous if the predictor and corrector are separately of the same order, 

and the following result is indicative of the reasons for this [54]. If the predictor- 

corrector method for which the predictor has order p* and the corrector has order p, is 

applied in P(EC)m mode, where p , p* ,m are integers and p’ ^ O . p ^ l . m ^ l ,  then, 

if p* ^  p, the principal local error of the algorithm is that of the corrector alone. If p* 

= p-q. 0  < q ^  p. then the principal local error term of the algorithm is:

i) That of the corrector alone, when m ^  q + 1
ii) Of the same order as that of the corrector, but not identical with it. 

when m = q.

In the mode of correcting to convergence, the principal local error term of the 

predictor-corrector pair is that of the corrector alone, no matter what the order of the 

predictor.

2.69 Example to  illustrate predictor-corrector pair in PECE mode. Using two 

Adam's second order methods will illustrate the technique of the PECE mode and 

demonstrate that the local error of the combined pair is equivalent to the local error of 

the corrector alone. The methods are:

y„+i = y„ + y [3 f„  -  f„_,] Local T.E. is -^ -h 3y»'" + (Xh4)

y„+i = y„ + y [ fn+i + f J  Local Error is —J L y n“  + CXh4)

If the explicit method is applied to the I.V.P. first then this will yield:

41



Yn+1 = Yn + y t 3fn “  fn- l l  

and the true solution would satisfy

(2.64)

y (tn+,) = y(t„) + y [3 f(t„ ) -  f(t„_,)] + ~ h 3y"'(tn) + (Xh4) (2.65)

Subtracting equation (2.64) from (2.65) and applying the assumption of exact baclc 

values will give:

y(t„+1) -  y„(5i = ~ h 3y'"(tn) + 0(h4) (2.66)

Applying the implicit method will give:

y„+i = y„ + j [ f „ (J i + f  J  (2.67)

and the true solution will satisfy:

y(t„+i) = y(t„) + £ [f(tn+1) + f(tn)] - |iy '" ( t„ )  + (Xh4) (2.68)

Subtracting equation (2.67) from (2.68) and applying the Mean Value Theorem, and 

the assumption of exact back values, will lead to:

y (tn+i) -  yn+i = y  1 (y(tn+l).w (y(tn+i) -  yn(+D -  72 y",(tn)+ °<h4) <2*69)h3  I / /. x vl V1T . - I — V 'Y'. 1 ---
dy

where

r)n+1 is in (y ( tn+1). yn(J l)

With the substitution of equation (2.66), equation (2.69) reduces to:

y(tn+i) -  yn+i = --£2 y'"(tn) + o (h 4) (2.70)

Hence the local error of the combined pair is that of the corrector alone.

Suitable I te ra tio n  Schemes For S tiff System s

2.70 If the problem

42



X' --L(t.y) ys(0) = Ofj i = 1,2,...m 

is considered, then applying the predictor-corrector pair of forward Euler and

backward Euler will give:

If the predictor-corrector pair is applied in a correcting to convergence mode, then the 

natural iterative technique would appear to be a fixed point method of the form:

By formulating the Jacobian of the original system, the Lipschitz constant can be 

found, this being the spectral radius [55] of the Jacobian matrix, that is, the eigenvalue 

of largest modulus, where the elements of the Jacobian are given by:

A contraction mapping on the reals is present if hL < 1. which w ill ensure the 

convergence of the iteration scheme. However, for a stiff system. L will be large and 

hence the "convergence of iterations " restrictions is of the kind that must be avoided: 

since using an implicit method allows a larger time step for stability, but the iteration 

scheme demands a small time step h in order to guarantee convergence.

2.71 However, Newton-Raphson’s method [56] for the iterative solution of equation 

(2.71) does not rely on the value of h. The method is :

2.72 A graphical representation of the way in which Newton-Raphson’s method finds

Xii+1 = X + hKtnXJ 

xi-fi = X + WCtn+LXxSl)

Xn+I1} = X + hf_(tn+1.xi+i) s = 1.2,3,... (2.71)

afiJac = ----- i = 1 ,2 ,...m j = l,2....m
ac,J A v; J

Xn+t1} =  Xn+1 ~  [I ~  hJacCYn+l^lYn+l ~  Xn “  h K W j.X x!^ )] (2.72)

where

43



the roots of the function F(x) = 0 is shown in Figure 2.18. The method works by 

advancing down the tangent of F (x). for a particular value of x, until it crosses the x- 

axis. It then advances down the tangent of F(x) corresponding to this crossover value 

of x, and proceeds recursively until a root is located. Newton-Raphson’s method does 

not demand a restriction on h to guarantee that the iterates converge. However, it does 

require that the original estimation made by the predictor be accurate, else the method 

can 'wander’ and fix onto a false root, or alternatively not find a root at all. Precise 

requirements to ensure convergence are given by Churchhouse [57].

2.73 Besides the stipulation of an accurate starting value. Newton-Raphson’s method 

also requires the evaluation of a Jacobian at each time step that it is applied, and the 

consequent solution of a set of simultaneous equations. If a full Jacobian is evaluated, 

then equation (2.72) can be rew ritten in the following form so as to allow LU 

decompositon rather than matrix inversion to be carried out when solving the 

equations.

2.74 There are alternative forms of Newton’s method, and the structure of these is 

different from Newton-Raphson because a fu ll Jacobian is not necessarily evaluated. 

An example is the Newton-Jacobi method [58], in which only the diagonal elements of 

the Jacobian matrix are considered in the equation

The result of this is that the effort required to solve the sets of simultaneous equations 

is substantially reduced. Once the diagonal elements of the Jacobian have been 

evaluated, then the inverse of the matrix given in equation (2.74) is simple to find. The 

inverse is in turn a diagonal matrix, whose elements are the reciprocals of the elements

(2.73)

(2.74)

44



of the diagonal matrix, which equation (2.74) will lead to. For example the inverse of 

the (5x5) diagonal matrix given by:

an  0 0 0 0
0  322 0  0  0

A = 0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 a55

is easily evaluated.

2.75 The rate of convergence of the iteration scheme for this different method is 

dependent on the nature of the original full Jacobian. If the diagonal elements are large 

in modulus compared with the sum of the off-diagonal elements in the same row, then 

convergence is fast and the method is efficient. It is when the off-diagonal elements 

‘swamp' the diagonal elements that care must be taken, since the rate of conergence 

may be considerably reduced. However, since there is now no need for LU- 

decomposition or matrix inversion, the computational work required to find a solution 

at each time step has been considerably reduced.

2.76 Some numerical methods do not require the re-evaluation of the Jacobian matrix 

at every iteration, or even at every time step. Methods such as Gear’s keep the same 

Jacobian matrix for as long as the iteration scheme is converging rapidly. Not 

evaluating the Jacobian often makes little difference to the accuracy of the results 

obtained, but makes a large difference to the computational time spent by the method 

w hilst solving a problem.

45



Conclusions

2.77 The issues raised in this chapter are applied when developing and testing the new 

integration method that is introduced in chapter 3, and further investigated in the 

subsequent chapters. In particular, the considerations of stability, covergence and 

accuracy are particularly relevant when solving the stiff systems of ordinary 

differential equations that are studied to test the new method. The test problems have 

been chosen to ensure that the new method to be developed can cope with the typical 

mathematical difficulties that are met inside the HASP package, such as discontinuous 

and oscillatory problems, as well as highly stiff systems.

46



PRIME
MOVER

< > r

ROTATIONAL 
LOAD

'M |N

PUMP I_______ MOTOR

FIGURE 2.1 SIMPLE HYDROSTATIC TRANSMISSION SYSTEM



I_____

FIGURE 2.2 LINEAR ACTUATOR CIRCUIT WITH METER-IN ORIFICE



u

FIGURE 2 3  SIMPLIFIED LINEAR ACTUATOR CIRCUIT



V

FIGURE 2.4 DIRECTION HELD FOR y* = 2ty WITH I.C y(0) = 1

y(x)

FIGURE 2.5 SOLUTION OF y* = 2ty WITH I.C. y(0) = 1



y i t )

FIGURE 2.6 GEOMETRIC INTERPRETATION OF EULER'S METHOD



kh

Imaginary

UNSTABLE

STABLE

kh

Rea]

FIGURE 2.7 STABILITY REGION FOR EULER'S METHOD



\ h

Imaginary

STABLE

UNSTABLE

FIGURE 2.8 STABILITY REGION FOR THE BACKWARD EULER METHOD



( IMAGI FARY)

- 2

(REAL)

- 3

Stability regions for Adams-Bashforth methods. The method of order k is stable 
inside the region indicated.

(IMAGIIARY)

(REAL)- 2- 4- 6- 8

-1

- 3

Stability regions for Adams-M oulton methods. The method of order k is stable inside 
region indicated.

FIGURE 2.9 STABILITY REGIONS FOR ADAM’S METHODS



UNSTABLESTABLE
-6 -4

-2

-4

AX ploot

STA8LE f  UNSTABLE
-2

- 3

FIGURE 2.10 STABILITY REGIONS FOR THE GEAR’S METHODS



y(t)

1

-1

-2

FIGURE 2.11 GENERAL FORM OF SOLUTION CURVES FOR STIFF PROBLEM



NON-STIFF PROBLEM

STIFF PROBLEM

FIGURE 2.12 COMPONENTS OF SOLUTION CURVES FOR TYPICAL NON-STIFF 

AND STIFF PROBLEMS



y(t)

FIGURE 2.13 DEMONSTRATING INSTABILITY WHEN USING AN UNSUITABLE 

METHOD TO SOLVE A STIFF PROBLEM



END STOP

TIME

FIGURE 2.14 ACTUATOR VELOCITY WHEN AN END STOP 

DISCONTINUITY IS ENCOUNTERED

X

TIM E

FIGURE 2.15 ACTUATOR DISPLACEMENT WHEN AN END STOP 

DISCONTINUITY IS ENCOUNTERED



car

TIME

FIGURE 2.16 DISCONTINUITY IN FLOW RATE AS THE DIFFERENTIAL PRESSURE 
ACROSS A RELIEF VALVE EXCEEDS THE CRACKING PRESSURE

TJ

TIME

FIGURE 2.17 TIME DERIVATIVE OF FLOW RATE THROUGH A RELIEF VALVE AS 

THE DIFFERENTIAL PRESSURE EXCEEDS THE CRACKING PRESSURE



-TANGENTS 
TO F ix )

FIGURE 2.18 NEWTON’S METHOD TO SOLVE F(X) -  0



CH A PTER 3

D ETA ILED  CONTENTS P ag e

Introduction 1

A new integration method 1

Explicit formulation of the new integration method 3

Implicit formulation of the new integration method 4

An alternative implicit formulation of the new integration method 5

Introduction to the test problems 7

Software consideration and C.P.U. timing 8

Measurement of C.P.U. time 9

Application of the method to test problem 1 - hydraulic actuator circuit 11

The explicit method applied to problem 1 12

The second implicit method applied to problem 1 13

Results 14

Application of the method to test problem 2 - second order system 15

Results 17

Convergence criterion for the iteration scheme 18

Application of the method to test problem 3 - hydraulic actuator circuit 19

Forming the coefficients for the method 20

Results 23

Application of the method to test problem 4 - hydraulic actuator 24

Forming the coefficients for the method 26

Forming the Jacobian matrix 27

Results 28



Application of the method to test problem 5 - linear actuator

operated by a directional control valve 28

System equations 29

Stiction logic and cavitation 31

Application of the new method to solve the fifth order system 32

Evaluation of the Jacobian matrix 33

Results and discussion 34

C.P.U. time used by the new method 35

Conclusions 36

Tables 3.1 - 3.7 inclusive 

Figures 3.1 - 3.24 inclusive



CHAPTER 3 

INITIAL DEVELOPMENT AND TESTING OF 

A NEW INTEGRATION METHOD

Introduction

3.1 This chapter introduces a new method that w ill be investigated. The method is 

developed and subsequently tested on several systems of differential equations, each of 

which arises from a practical engineering problem.

First, three methods are formulated, one of which is explicit and the other two 

implicit, and considerations that m ust be dealt with when programming these methods 

are discussed. This includes the software that is w ritten. C.P.U. timing and the 

convergence of iterations when using the implicit method. Then the method is applied 

to a range of test problems which include: a linear actuator circuit: a second order 

oscillatory system: a non-linear hydraulic actuator circuit and a discontinuous and 

mathematically stiff hydraulic actuator system. These problems have been chosen since 

they lead to systems of equations which demonstrate the mathematical difficulties 

discussed in chapter 2. The performance of the method is compared w ith other 

numerical methods such as Gear’s method and the Backward Euler method, which have 

been used to solve the same problems, and conclusions are drawn concerning the merits 

of the new integration method.

A New In teg ra tion  M ethod

3.2 The new method being investigated is a numerical scheme based on the formula 

for the true solution of a first order linear ordinary differential equation. The method 

was suggested by Professor D.E. Bowns of the Engineering Department at the



University of Bath and was originally studied by P.S. Leung [2], although the methods 

studied by Leung were formulated using a less general approach. A similar approach to 

tha t taken by Leung has also been adopted by Keener and Meyer [59], although their 

work was not extensive. The mathematical analysis of the method yields desirable 

results from a stability viewpoint for certain types of problems, which are discussed in 

chapter 4, and as a consequence the method has been studied in more detail, since the 

benefits it enjoys may be extended to ensure its w orthw hile application to certain 

problem areas.

2



Explicit Formulation Of The New Integration Method

3.3 For the linear first order differential equation

y' = a(t)y  + b(t) y (t0) = or (3.1)

then the true solution [60] is given by the following equation:

t  S

f a(z)dz t - f »(x)dx

y(t) = e*0 [y(t0) + f  b(s) e ‘° ds]
*0

An integration method can be formulated by considering, at first. a(t) and b(t) as 

constant functions. Provided that neither function is discontinuous and that the 

interval [t0. t] is small, this is not an unreasonable assumption. Consequently, the 

integrals in equation (3.2) can be now be evaluated and y (t) can be written as:

y (t)  = e" " t°)a(y (t0) + b j V ^ 'd s )  (3.3)
*0

which becomes:

(t0-s)a
y ( t ) = e <” '“)a(y (t0) - b e

t
) (3.4)

Simplifying equation (3.4) and replacing (t — to) by h will leave:

y(t) = e»1y ( t o ) - - ( l - e a6) a
which simplifies to:

y (t) = — (e’h -  1) + y ( t0)eah (3.5)
a

Consequently,. this can be generalised into a numerical scheme that w ill give an 

estimation to y (tn+1), having been given an initial condition. y (tn). and the values of 

the functions a(t) and b(t) at time t = tn. This scheme, which is explicit, w ill be given

3



by:

y (t„+i) = - ^ - ( ea<'",h -  + y(t„)ea(,")h (3.6)

and this is the explicit formulation of the new integration method. From this approach, 

several methods can be developed, and it is these methods that are studied in the work 

presented in this thesis.

Implicit Formulation Of the New Integration Method

3.4 The scheme in equation (3.6) will give the exact solution for y (t) if a(t) and b(t) 

are both constant functions. Alternatively, since a(t) and b(t) will not generally be 

constant, a more accurate representation of the solution may be made if these functions 

are considered as variable and the values of a(t) and b(t) are taken at t  = tn+1, rather 

than at t = tn, and replaced in the scheme to give:

y(t„+1) = _  1) + y ( t0)el(,- ' )h (3.7)
aUn+1-J

This is not an implicit scheme for a linear ordinary differential equation. However, if 

the equation to be solved is non-linear, then an iteration scheme will be needed for the 

solution of the method at each time step. As an example, for the O.D.E.

y* = y2 + 3t y(0) = 1

then a(t) = y(t) and b(t) = 3t. and. since y (t)  is not known at t  = tn+1. an iteration 

scheme will be required if the scheme given in equation (3.7) is to be applied.

4



An A lternative  Im plicit Formulation Of The New Integration Method

3.5 Since the method has been formed by approximating the integrals in the formula 

for the true solution of a first order differential equation, other methods are apparent if 

these integrals are approximated differently. An example is when the forcing function 

b(t) is assumed to vary linearly with time, with aCt) still being considered as a 

constant function. Equation (3.3) will then become:

y (t) = e(t_t°)a[y(t0) + /b ( s ) e (to_s)ads] (3.8)
l0

and the integral

f  b(s)e(to_s)ads (3.9)
lo

can be evaluated using integration by parts, since

y*b(s)ds = (b (t) — b(t0) ) ^  l°^
»o 2

and also

b(t) — b(t0)
b (s) = ------- ---------h

Equation (3.9) then becomes

etoa/b ( s ) e - sads =  -e ~ ah^ -  + -  ^ - e - ,b + -^5. (3.10)
io a a ha2 ha2

where h = t  — t0 and Ab = b(t) — b(t0)

and so the numerical scheme will be, on substituting equation (3.10) into equation 

(3.8), and simplifying the resultant expression:

(* \  — f  a ( t  )b  1 ^ 1  (  e  ̂ —1 1  ̂ » ( * A a n h . . x

y (t“+ l ) - ^ j (e ‘ 1} + '  0  + y ( t >  ( 3 n )

where now, Abn = b (tn+1) — b(tn)



Alternatively. a (tn) could be replaced with a(tn+1) in this scheme, since a(t) is being 

considered as a constant function.

Many numerical schemes can be constructed using this approach, but those already 

formulated provide an adequate starting set to apply to the following test problems. 

The ideas met here are discussed again when seeking to increase the accuracy of the 

new method, when the new method is used for solving partial differential equations, in 

chapter 7.

6



Introduction To The Test Problems

3.6 The following test problems have been chosen to ensure that the new method is 

exposed to the mathematical difficulties which were raised in chapter 2.

3.7 The first problem, a hydraulic actuator circuit, which is a linear and moderately 

stiff example, is solved by the explicit method given in equation (3.6), and then by the 

second of the implicit methods, given by equation (3.11). Since the problem being 

solved is linear, the implicit scheme will reduce to an explicit relationship, and will 

hence not require an iterative procedure to form the solution at each time step.

3.8 The second problem, a second order differential equation typical of the type that 

describes the behaviour of a hydraulic actuator, has two sets of data values; one set 

which leads to a stiff and non-oscillatory problem and another set which leads to a 

non-stiff and oscillatory problem. The ordinary differential equation is solved by the 

explicit method alone, and to employ the method a particular strategy must be used to 

prevent a division by zero. This is fu lly  discussed later.

3.9 The third and fourth problems are hydraulic actuator circuits; one where the 

actuator is supplied with an input flow through an orifice, and the other where a flow 

is taken off of the main input flow to the actuator, through an orifice, and back to tank. 

For both circuits, the hydraulic oil is discharged through an orifice to tank. With the 

third problem, the orifice flow characteristics are assumed to be linear, and for the 

fourth problem this assumption is dropped, which leads to a non-linear problem. For 

both of these problems, the explicit method, and the first implicit method, given by 

equations (3.6) and (3.7) respectively, are implemented as a predictor-corrector pair. 

The first implicit method has been chosen because of the ease of implementation in 

comparison w ith the second implicit method, particularly when an iterative scheme is



employed which will require the evaluation of a Jacoban matrix. Also, because of the 

sim ilarity of this method to the explicit method, it appjars sensible to choose these two 

methods to work together. To use this pair, a suitable iteration scheme must be found, 

since these problems, w ith the data used, lead to matlematically stiff and oscillatory 

problems. This iteration scheme has been discussed in section 2.70.

3.10 The final problem that is solved is a fifth order system extracted from a working 

simulation inside the HASP package. As well as being stiff, oscillatory and non-linear, 

the problem also encounters discontinuities and so provides an opportunity to examine 

the method when it used to solve a problem which has all of these difficulties together. 

This problem is again solved by the predictor-corrector pair discussed above, and the 

evaluation of the Jacobian to be used with the iteration scheme is explained in some 

detail.

3.11 Before solving these problems, some aspects of the computer programming 

involved are discussed so as to highlight important areas which must be considered.

Softw are Consideration And C.P.U. Timing

3.12 All of the programs presented and discussed in this thesis were written in 

FORTRAN 77 and run on the Vax 750 computer within the School of Engineering. The 

new method has been programmed in the form of a general purpose integration 

method, w ith separate routines handling the explicit and the implicit methods. By 

using function routines for the coefficient evaluations, it is possible to solve different 

problems without rewriting the the main structure of the program .Theflow chart given 

in Figure 3.1 illustrates the action of the program. The user has the choice of:

8



i) which fixed-step method is to be used
ii) the final time, until which the integration proceeds
iii) the value of the time step used throughout the integration
iv) the time step used throughout the integration
v) graphical or screen output
vi) w hether to re-run the program with a different time step.

A fu lly  commented version of a program implementing the new method can be found 

in Appendix A.

3.13 M easurem ent o f C.P.U. tim e. Since the amount of C.P.U. time used by the 

integration method to solve stiff problems is paramount in this work, the method used 

for measuring the C.P.U. time on the computer system that the work was conducted 

upon is discussed.

3.14 A system timing function has been used, and a commented version of the coding 

for this function can be found in Appendix A. The function, called TIM. when it is 

called, records the C.P.U. clock measurement at a designated instant and is accurate to 

w ithin microseconds [61]. Consequently, if the function is invoked either side of a call 

statement to a routine, it is possible, by the subtraction of the value returned the first 

time that the function is used from the value returned the second time that it is used, 

to record the C.P.U. time spent in the routine. For example, if the subroutine 

FSTORM(X.Y.T) is called, and the amount of C.P.U. time used by this routine is 

required, then the following coding would provide the necessary information.

ATIME = TIM(TIME)

CALL FSTORM(X.Y.T)

BTIME = TIM(TIME)

TTIME = BTIME -  ATIME

TTIME will hold the total C.P.U. time spent in the routine FSTORM, measured in

9



microseconds. This measurement of time will also include a measurement of the 

duration of the calling process, which is assumed to be insignificant in relation to the 

time spent in the routine. TTIME is converted, using another function called CONVER, 

from microseconds into days, hours, minutes, seconds, tenths of seconds and 

hundredths of seconds. This is the form that is presented to the user.

10



Application Of The Method To Test Problem 1 - Hydraulic Actuator Circuit

3.15 The diagram describing this circuit is shown in Figure 3.2. The actuator is 

assumed to be moving initially at a constant velocity, and then encounters a step 

increase in force opposing the load. This causes the actuator to decelerate and the 

system pressure to subsequently rise. Further assuming, both that the increase in 

pressure causes the relief valve to operate, and that there is a viscous friction 

associated with the load; then to describe the behaviour of the system mathematically, 

the following equations are needed:

Ar is the area of the actuator piston 
B is the bulk modulus of the hydraulic oil 
f is the viscous friction coefficient 
F is the force opposing the load 
M is the mass of the load
P is the pressure of the oil on the piston side of the actuator, 

the pressure on the rod side is taken to be negligible 
Qa is the actuator flow rate 
Qp is the pump flow rate 
Qr is the relief valve flow rate 
u is the velocity of the actuator piston
v is the combined pipe and actuator volume, on the piston side

(3-12)

(3.13)
d t M M M

where:

Taking

Qa =  A rU

and the flow discharged through the relief valve to be

(3.14a)

Q r = kr(P -  Pc) (3.14b)
where:

kr is the flow coefficient of the relief valve

11



Pc is the relief valve cracking pressure

then, substituting equations(3.14a)and (3.14b)into equation (3.12), and rearranging the 

resultant equation gives:

For the data:

Ar = 0.0015 m2 
B = 1.4 x 109 N /m 2 
f = 800 N/m/sec 
F stepped from 14.6 x 103 N 

to 15.6 x 103 N 
kr = 1.667 x 10_9m3 /sec/N /m 2 
M = 1000 Kg 
Qp = 7.5 x 10-4 m3/sec 
v = 1 x 10-3 m3
P - initial value = 1 x 107 N /m 2 
u - initial value = 0.5 m/sec

then the problem is stiff and non-oscillatory. with the eigenvalues corresponding to the 

problem being real and negative, and differing widely in magnitude.

3.16 The exp licit m ethod applied to  problem  1. Rewriting equations (3.13) and

(3.15) in a form suitable for the new method, namely:

The coefficients can now be formulated in order to use the explicit method given in 

equation (3.6). These are, at time t = tn:

~  °  (QP + k,(P. -  P) -  Aru) (3.15)

(3.17)

(3.16)

—krB
bln = ^(Q p + M ’c -  ArU„) (3.18)

V

12



*2„ =  -jjf b2„ = ^-(PnA r “  F) 

where the subscript n denotes the state variable value at time t = tn.

(3.19)

3.17 Hence the scheme which will give the numerical solution at advancing time steps 

is:

using the explicit method, it was then solved using the implicit method given in 

equation (3.11). This method was chosen since the problem, when written in the form 

y' = ay + b as in equations (3.1) and (3.2), w ill have a variable b term. The coefficients 

for the implicit method will remain the same as in equations (3.18) and (3.19) and the 

scheme w ill reduce to give a linear relationship, since the problem being solved is 

linear. The solution scheme for pressure is given by:

(3.20)

(3.21)

where the subscript n+1 denotes the state variable value at time t = tn+1.

3.18 The second im plic it m ethod applied to  problem  1. After solving the problem

pn+i = [ i  + vMa,„a2„ a2nh
Ar2B ( e ^ - l ) f«a2nh _  1 ^

-  —  V  -  d ^ [Z j  + z 2 + z 3 + z 4]
amb

where:

13



ArBF (e"!"h -  1) _  j (e*'"h -  1) _  ,
v a lna2nM a2nh ainh

The solution scheme for velocity is represented by a simihr expression.

3.19 Results. The two methods have been applied to the problem in a single-step form 

using a variety of different time steps. The corresponding results for each of these time 

steps has been monitored. Figure 3.3 shows the results obtained by applying the 

explicit method with two different fixed integration step sizes. The figure shows the 

velocity and pressure response curves, and in each case the exact solution determined 

by analytical means [2]. There is a decrease in accuracy as the step size increases, which 

is characteristic of all numerical methods. However, solutions accurate to two decimal 

places have been gained using a steplength of 0.05 seconds. Gear’s method, when 

applied to the same problem, works with a low order integrator and uses step sizes in 

the region of 10-3 and 10-4 seconds in order to obtain results of a similar accuracy [2]. 

The Backward Euler method required 4000 steps to solve the problem on the interval 

t = [0 , 4] seconds, whereas the new explicit method took only 80 steps to solve the 

problem on the same interval.

3.20 Figure 3.4 shows the results for the same problem obtained by applying the 

implicit method with a fixed integration step size of 0.5 seconds. As is shown, a larger 

step size is used w ith the implicit method than with the explicit method in order to 

obtain a higher degree of accuracy. This indicates that the implicit form of the method 

is more accurate than the explicit form, and the local error for each of the methods is 

compared in chapter 4 in an attem pt to understand these findings.

3.21 Given the data values in section 3.15, then the initial stiffness ratio of the system 

was calculated to be 2:5 1.4 x 103, which indicates a moderately stiff problem, and

14



hence a good initial test for the method. W ith the final values taken at t = 4 seconds, 

then the explicit method took 0.12 seconds of C.P.U. time to run. operating with a step 

size of 0.05 seconds. The implicit method took 0.13 seconds of C.P.U. time to run. 

operating with a step size of 0.05 seconds, but only took 0.02 seconds of C.P.U. time to 

run with a step size of 0.5 seconds, which gave a more accurate solution than the 

explicit method gave using a step size of 0.05 seconds. As a comparison, the Backward 

Euler method took over 14 seconds to solve the same problem.

A pplication Of The M ethod To Test Problem  2 - Second O rder System

3.22 The behaviour of a linear actuator can be described by a second order differential 

equation of the form:

+ + = K3 (3.22)
d t2 dt

where:

x is displacement 
—- is velocity 
d x— — is acceleration 
d t2

For this problem ,K2 and K3 are considered as being constant. By changing their 

values, the solution to the problem can be made oscillatory or hon-oscillatory, and it is 

possible to obtain a stiff system also, thus providing a useful test for the new method. 

The data values are:

Problem  A

Kj = 1. K2 = 50. K3 = 10 

W ith Initial Conditions

15



x = 100 m, —  = 0 m/sec 
dt

Problem  B

K2 = 200, K2 = 10. K3 = 0

W ith Initial Conditions

x = 100 m. —  -  0 m/sec 
d t

Equation (3.22) m ust be reduced to two first order differential equations in order 

to be in form suitable for solution by the new method. This technique was shown in 

section 2.21.

The transformation

dx _ 
dt" U

will allow equation (3.22) to be rewritten as the system

The new method can be applied straightforw ardly to equation (3.24), but the "a"

coefficient in equation (3.23) is zero, and since the method uses the term —,
a

manipulation is required before the new method can be used, to avoid a division by 

zero. One easily applicable solution is to add and subtract x to the right-hand side of 

equation (3.23). viz.

Consequently, the coefficients can be formulated in order to use the explicit method,

dx
dt"

= u (3.23)

= - K lU -  K 2x +  K3 (3.24)

(3.25)

16



given by equation (3.6) .These coefficients are. at time t = tn:

am = “ I bln = un + xn (3.26)

a2n -  — Ki b2n -  ~K 2xn + K3 (3.27)

The scheme giving the numerical solution at advancing time steps will then be:

(3.29)

(3.28)

3.23 Results. The data values given in section 3.11 lead to an oscillatory problem for 

case A, and a stiff and non-oscillatory problem for case B. The results obtained for 

displacement and velocity in problem A are shown in Figure 3.5. The results obtained 

are of the same form as the true solution for displacement and velocity shown in 

Figure 3.6. The new method gives results within 0.05 % of the true solution using a 

steplength of 0.1 seconds, and the C.P.U. time taken to solve the problem on the 

interval t = [0 , 2] seconds was 0.10 seconds.

3.24 The results found for problem B are shown in Figure 3.7. The displacement, x. is 

shown, and this gives a good indication of the results found by the new method. The 

stiffness ratio of the system for problem B is 255 4 x 103. Using the explicit method 

once again, results agreeing with the true solution to within 0.25 % were found using a 

step size of 0.01 seconds. The C.P.U. time taken to solve the problem over the interval 

t  = [0 . 2] seconds was 0.7 seconds.

3.25 A similar problem was solved by Leung [2]. He however, did not use the idea 

given in equation (3.25). He solved the problem using the new method to solve 

equation (3.24), coupled with the Backward Euler method to solve equation (3.23).

17



The results he found for problem A are shown in Figure 3.8 for two different time 

steps, and are not satisfactory, since the trace of the solution is represented by a series 

of straight lines rather than a smooth curve. Also the results he found are very 

inaccurate.

Convergence Criterion For The Iteration Scheme

3.26 Before solving the problems using a predictor-corrector pair, it is important to 

discuss the convergence of the iteration scheme employed by the corrector. This section 

demonstrates the convergence criterion that have been used in conjunction with the 

Newton iteration scheme, which has been used in problems 3. 4 and 5. The predictor- 

corrector pair has been applied in a iteration to convergence mode. When trying to find 

the roots of F(x) = 0.. then the Newton-Raphson iteration scheme given by equation 

(2.72) is used. Equation (2.72) is:

i i + i1* = Xxf+i “  )]-1[FCx̂ +)i )] s = 0,1,2,...

For problem 3. for example, F 'C x ^) is a (3x3) matrix, is the previous estimate to 

the root of JF(x) = Q.- and is the initial estimation provided by the explicit method.

is evaluated, which gives a (3x l) column vector. In the corrector subroutine, 

whilst the iterations are being performed, there is a set of FORTRAN IF statements 

that determines whether the iterations have converged, and if not. how they must 

proceed. Figure 3.9 illustrates the action of iterations inside the corrector subroutine.

3.27 When F(xi+i) has been evaluated, then if all the elements of the vector are less 

than a pre-given tolerance, the iterations will cease, since these elements are considered 

not to contribute towards a significant change in the estimated solution. If this 

condition is not satisfied, then the elements of F(x^+\) are multipied by the inverse of

18



the Jacobian matrix, and the resultant column vector subtracted from to give a 

new estimate to the solution, xJ+V^- The inverse of the Jacobian is determined by a 

routine from the NAG library, namely F01AAF [62], and is found to w ithin a set 

tolerance defined by the use, although alternatively, the set of equations formed could 

have been solved.

3.28 A mixed error test is now performed on the iterates to see if convergence has

| I xJ+'J1) — An(+1 I I
occurred. This error test takes the form of evaluating --------------- ^ ---------. where

S 1 + I I JSn'i’l I I

11. 11 is the max norm, and checking to see if this is less than a pre-set tolerance. If 

this error test is satisfied, then the last iterate x^+V^ 1S taken as the estimate to the 

solution. If the test is not satisfied, then the iterations continue, and a new F '(li+ i) is 

evaluated with s being updated by one. A new Jacobian is also evaluated for a non

linear problem if the iterations do not converge with the old Jacobian values. The 

Jacobian is not updated at every iteration since this requires more computational effort, 

and the solution obtained by doing so is not necessarily any more accurate [63].

A pplication O f The M ethod To Test Problem  3 - H ydraulic  A ctuator C ircu it

3.29 The circuit for this problem is given in Figure 3.10. The actuator is supplied with 

a constant input flow, and the hydraulic oil is discharged through the orifices to tanks. 

The assumption is made that the orifice flow characteristics are linear since this will 

lead to a linear problem. Considering the behaviour of the individual components, it is 

possible to represent the system w ith the following set of equations:

dPi B , ,~  = — (Qi -  kiP! -  Aru) (3.30)
d t Vj

19



(3.32)

(3.31)

where:

Ar is the cross-sectional area of the actuator piston 
B is the bulk modulus of the hydraulic oil 
f is the viscous friction coefficient 
kj is the pressure-flow coefficient of orifice 1 
k2 is the pressure-flow coefficient of orifice 2 
M is the mass to be moved by the actuator 

is the pressure in pipe 1 
P2 is the pressure in pipe 2 
Qi is the input flow rate 
u is the velocity of the actuator piston 
v t is the combined volume of the actuator and pipe 1 
v2 is the combined volume of the actuator and pipe 2

For the data shown in table 3.1. then the problem is oscillatory. However, for the data 

shown in table 3.2 then the problem is initially mathematically stiff, with a stiffness 

ratio of 1 x 103

3.30 Form ing th e  coefficients fo r  the m ethod. Rewriting equations (3.30), (3.31) 

and (3.32) into a form suitable for solution by the new method gives:

3.31 This problem has been solved by the first of the implicit methods, given by

coefficients, given below, are constant, the method was applied directly, and so both a 

predictor and an iteration scheme are needed. The explicit method given by equation

(3.35)

(3.34)

(3.33)

equation (3.7). Although the method could be applied in an explicit way. since the "a"

20



(3.6) was chosen as the predictor, and the coefficients needed by both the explicit and 

the implicit method are given by. at time t = tn:

am =

a 2n

kjB B ,
bln = — (<

Vl Vl

k2B
b2n = i t

v 2 V2

f
M b̂ n A ( pM ln

3.32 The schemes that provide the predicted values are:

ai„hPj , = —  (eainb -  1) + Px e*ln 
n+1 aln

P2 . = _i!L(ea2"h -  1) + P2 eao„h
a 2n

un+1 = ^ L ( e a3nh -  1) + une
a 3n

a 3nh

with the schemes that provide the corrected values being:

' l n + l  /  a , n . ih

a l n + l
(e ln+1 ~  1) + ?! e ln+1

P = (ea2n+lh -  1) + P2 ea2n+lh
n+ l

a 2 n + l

^ 3 n + l  /  a3n+1h \  . a3n. ,hUn+1 =  (e 3n+1 -  1) + une 3n+1
a 3 n + l

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Considering equations (3.42), (3.43) and (3.44), and putting them into matrix form in 

order to establish a Newton scheme for this system, then the resultant equation will be

P,
1n + l

?2̂n + l
=

un+i

; a l n + l h  o  o

0 ea2n+lh 0

0 0 ea 3 n + l h

p>.

P*.

U„

21



e*ln+ih - 1 0  0 b ln + l

a ln + l

0 ea2n+lh -1  0 t>2n+l

a 2 n + l

0 o ea3n+lh -1 ^ 3 n + l

a 3 n + l

For this problem, then ain+1 = ain i = 1,2.3

To use the Newton Raphson iteration scheme. F(x) = 0. must be defined, where 

x_= [Pin+1* P2n+,' un+i]T* Hence, if _F(x) is defined as:

eain+lh 0 0 P ln

P 2 n+1 0  ea2n+lh 0 P 2 „

un+i 0  0 e a 3 n + lh un

ea,n+ib -  1 0 0 t>ln + l

a ln + l

0 ea2n+lh -1  0 t>2n+l

a 2 n + l

0 0 ea3n+lh- l t>3n+l

a 3n + l

then F(x) = 0.

Referring to equation (2.72), Newton's iteration scheme is of the form 

i f c t 1’ =  S .%  -  s = 0.1 .2 ....

or

- i f i ’iJ = - B i H )

It is necessary to form  the Jacobian

22



ECs&’i) = a t i i ? ,
a2L

in order to apply the iteration scheme. This Jacobian will be given by the expression:

1  0 0 0 0 0

0  1 0 0 0 0

0  0 1 0 0 0

e a m + i h - 1 0 0

and so

a 2 n - t - lh  _ 1 0

0 e83n+lh - 1

0

0

Ar

0

0

Ar
Ma3n+l Ma

ArB
Viain+1
ArB

v 2^2n+l

0
3n+l

(3.47)

0 1

(e>3n+lb — 1 )Ar (e“3"-,h -  l)A r
Ma3n+l Ma

(eain+lb -  l)A rB
v la ln+l 

( ea2n+ih _  i ) ArB

v 2a2n+l

1
3n+l

(3.48)

Consequently, the predictor-corrector pair can now be used as a complete method to 

formulate the solution at ascending time-levels for problem 3.

3.33 Results. Figures 3.11 and 3.12 show the results obtained using the predictor- 

corrector pair applied to problem 3. Figure 3.11 shows the results for pressure in pipe 1 

for the non-oscillatory problem, whereas Figure 3.12 shows the full results for the 

oscillatory problem. For both problems, a step size of 0.001 seconds was used. Leung

23



[2] encountered trouble at this point in his work because of the iteration technique he

was using, which is not suitable for stiff problems.

3.34 However, Newton's method gives no trouble for this type of equations, and the 

time taken to solve the oscillatory problem on the interval t  = [0 , 5] seconds using the 

Newton iteration technique w ith the corrector was 8.5 seconds. The C.P.U. time taken 

for the non-oscillatory problem on the same interval was 8.2 seconds. As a comparison, 

on the same two problems, Gear’s method took 21 seconds and 24 seconds respectively 

[2], to complete the simulation. Gear’s method does encorporate a time step control 

which monitors the local error at each step, unlike a fixed time step method where the 

local error may be excessively large during the computation. With a fixed step method, 

although it is possible to check on the accuracy of the results by successively reducing 

the time step until consecutive sets of solutions show no significant change, stability 

criteria may not be satisfied throughout the integration process for all the values of the 

time step that are used.

A pplication Of The M ethod To Test Problem  4 - H ydraulic A ctuator

3.35 The circuit for this problem is shown in Figure 3.13. A pump is assumed to 

operate at a constant pressure and supply hydraulic oil to the actuator via an orifice.' 

The oil is then discharged to tank through another orifice. The major difference 

between this problem and the last one is that the pressure-flow characteristics of the 

orifices are not assumed to linear. Considering the behaviour of each individual 

component, it is possible to represent the system with the following set of equations:

^  = — (Qoi -  AlU) (3.49)dt Vj

24



=  — ( A 2u  -  Q 02)  
dt v2

§ - ^ ( P lA l- P 2A2) - ^

where:

Aj is the cross-sectional area of the piston side of the actuator
A2 is the cross-sectional area of the rod side of the actuator
B is the bulk modulus of the hydraulic oil
f is the viscous friction coefficient
M is the mass to be moved by the actuator
Px is the pressure in pipe 1
P2 is the pressure in pipe 2
Q01 is the input flow rate
Qo2 is the output flow rate
u is the velocity of the actuator piston
v2 is the combined volume of the actuator and pipe 1
v2 is the combined volume of the actuator and pipe 2

The flow rates are given by:

koi
Q°> =  " Z rn  n  \ ( P s  -  p i>

V (P S -  P i)

and

k01
Qo2 “  ~ J ( p j P2

where:

Ps is the supply pressure 
k01 and k02 are constants

Equations (3.52) and (3.53) can be rewritten as:

Q01 =  k a(P s — P i )

Qo2 =  ^ bP 2 

where:

ka is the pressure-flow coefficient of the piston-side orifice 
kb is the pressure-flow coefficient of the annulus-side orifice

and ka and kb are given by:

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

25



ka'  V(p*°- p,y (3-56)

k b = w 2 ( 357 )

Substituting equation (3.52) into equation (3.49) will transform the differential 

equation for pressure, Pj, into:

= — ( / ■ k0- — (Ps -  P .) -  A ,u) (3.58)d t v 2 > /(p 5 -  Pj)

Similarly, by substituting equation (3.53) into equation (3.50), the equation for 

pressure, P2, w ill become:

~ d f  = ^ 7 (A2 “  ~^f2) (359)

with the third differential equation, describing the actuator velocity, being:

^ ^ ( P . A . - P ^ - ^ u  (3.60)

This problem is the first non-linear problem on which the new method has been tested. 

For the parametric values given in table 3.3 then the initial eigenvalues for the 

problem are -0.576 x 106. -0.649 x 102 + 0.567 x 102 j : hence giving a very stiff, 

oscillatory problem, w ith an initial stiffness ratio of 551 1 x 104.

3.36 Formulating the coefficients for the method. ’ Rewriting equations (3.58), 

(3.59) and (3.60) into a form suitable for solution by the new method will give:

dP i B k0i d j. B (  k°lPs a \ — —-------  Pi + — (—T-------------~ Aiu) (3 61)
dt v, V(PS -  Pl) v, n/(Ps -  Pi)

dP2 B ko2 D , B , A n
- a r  = + ^ 7  2 (362)

w  =  +  ( 3 6 3 )

26



This problem has been solved using a predictor-corrector pair, with the explicit method 

given by equation (3.6) acting as the predictor, and the implicit method given by 

equation (3.7) acting as the corrector. Again, a Newton-Raphson iteration scheme is 

used to solve the corrector. .

3.37 The coefficients needed by both the explicit and the implicit method are given by, 

at time t = tn:

In this example, and a2 are non-constant coefficients, but a3n+1 = a3n for all values of 

n. The schemes that provide the predicted values are identical to those in equations 

(3.39), (3.40) and (3.41), and the schemes that provide the corrected values are 

identical to those given in equations (3.42), (3.43) and (3.44). Again the matrix form

necessary to define JF(x) = 0. where x.= [Pin+1. P2n+,« Un+JT

3.38 Form ing the  Jacobian m a trix . F(x) is defined identically to F(x) in equation

equation (2.72). The difference between this problem and the last is that the Jacobian 

matrix is non-constant for this problem. When forming the Jacobian at any time step.

to a ’local’ derivative, or ’local’ form of the Jacobian, which is applicable during that 

time step. This idea is dealt w ith in some depth by Richmeyer and Morton [64]. The

(3.64)

B k02
(3.65)

f
b3n “  M (P l"Al ~  P2nA2) (3.66)

found in equation (3.45) can be established, and in order to use Newton’s method, it is

(3.46), and the Newton’s iteration method used is of the same form as tha t shown in

the variable coefficients are "frozen" and assumed to be constant, which in effect leads

27



Jacobian for problem 4 is:

1+ (e3|n4lh- l ) A 1un+1 
2k01-^/(Ps—P in+1)

0
_ ( ea,n+ib_ j  )Aj^/(Ps—P i„+i)

0 1 x (e‘^ |h- l ) A 2un^

ZK02Vr 2n+1

(e,3n+lh- l ) A 2

2k02 V P2,

(ea3n+,h- l ) A
f f

1

3.39 Results. Figure 3.14 shows the results obtained by using the predictor-corrector 

pair applied to problem 4. This was the first non-linear problem to be solved by the 

new method, and a satisfactory set of results was found. The results found using the 

new method with a fixed step size of 0.001 seconds are those shown in the figure. The 

solution curves are smoother than those found by using Gear's method, which are 

shown in Figure 3.15. Gear's method sank to a step size of 1 x 10-10 seconds and 

reverted to a first order method. The new method took 7.8 seconds of C.P.U. time to 

solve the problem over the interval t = [0 . 0.6] seconds, whereas Gear's method took 

14.8 seconds to solve the problem over the same interval, and the solution given was 

not totally satisfactory, in the sense that reducing the tolerance value used in the 

iteration scheme increased the accuracy of the results.

A pplication Of The M ethod To Test Problem  5 - L inear A ctuator 

O perated By A D irectional C ontrol Valve

3.40 The circuit for this problem, shown in Figure 3.16, consists of a fixed 

displacement pump supplying fluid to a linear actuator by means of a directional 

control valve. The directional control valve is manually operated, and is a three 

position, four way closed centre type. When the directional control valve is centred, 

flow returns to tank through a relief valve. The actuator is extended by manual

28



application of the directional control valve to a positon approximately one half of its 

stroke. It is held stationary for a time and then partially retracted to a position 

approximately one quarter of its stroke, where it is again held stationary.

3.41 System  equations. The set of equations modelling the above circuit can be 

w ritten as three first order ordinary differential equations; each describing pressure, 

and one second order ordinary differential equation describing the behaviour of the 

linear actuator. These equations will be:

Aj is the cross-sectional area of the piston side of the actuator 
A2 is the cross-sectional area of the rod side of the actuator 
Bj B2,B3 is the bulk modulus of the hydraulic oil 

in each of the three pipes 
f is the viscous friction coefficient 
M is the mass to be moved by the actuator 
Px is the pressure in pipe 1 
P2 is the pressure in pipe 2 
P3 is the pressure in pipe 3 
Qpu is the pump flow 
Qr is the relief valve flow 
QdcVl is the directional control valve flow 
x is the displacement of the actuator piston 
u is the velocity of the actuator piston 
k is the spring stiffness 
F is the force opposing the load 
v t is the volume of pipe 1
v2 is the combined volume of the actuator and pipe 2 
v3 is the combined volume of the actuator and pipe 3

(3.68)

= -^(Sgn(z)Q dcVj -  SgnCzMju) (3.69)

= ^ 3-(Sgn(z)A2u -  Sgn(z)QdcVj)

= M (f>2A‘ "  PsA2 - fu "  kx “  F) (3.71)

(3.70)

where:

29



Sgn(z) is a function of z, where z describes the behaviour of the 
directional control valve (d.c.v.)

z = 0 d.c.v. closed 
z = 1 d.c.v. fu lly  up 
z = -1 d.c.v. fu lly  down

The pump flow is given by:

CsPiDp
Qp» =  “ Dp -

r

where:

a> is the angular speed of the pump
Dp is the pump displacement
fx is the viscosity of the hydraulic oil
Cs is the slip loss due to differential pressure

and the relief valve flow is given by:

Q, = kr(P, -  Pc) if P, >  Pt

Qr = 0 if P, <  P,

where:

kr is the relief valve coefficient
Pc is the cracking pressure of the relief valve

Also, when the directional control valve is open in the upward direction, then

Qdcvj =  Qdcv2 =  k E jV C P l -  P 2)

and

Qdcv3 =

and when it is fu lly  down, then 

Qdcv, =  Qdcvj =  k E 2V ( P l  “  P3)

and

Qdcv2 =  

where:

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

30



kElf kE2 are the flow coefficients of the d.c.v.

Substituting equations (3.72), (3.73) and (3.75) into equation (3.68) w ill give, when 

the relief valve cracking pressure has been exceeded, and the d.c.v. is fu lly  up:

3.42 S tiction logic and cav ita tio n . The way in which stiction of the load has been 

modelled is via the use of FORTRAN IF statements. Using equation (3.71), then taking 

FNEt — P2-A1 — P3A2. the following logic has been used. If the velocity, u. is zero, then 

if I Fnex I > Fs. the value used for stiction, the force opposing the motion has been 

taken as a coulomb friction value. Fc. If, however, I FNET I < Fs, then the acceleration 

has been taken as zero. Once the velocity, u. is non-zero, then F is taken as Fc. Taking 

the band about zero allows stiction to be accurately modelled, i.e. if I u I > € then 

F = Fc. but € must be carefully chosen [65].

3.43 The pipework in the system has been modelled almost entirely as flexible hose. 

The equations used to represent the pressurein the system take into account air release 

if the system pressure falls below atmospheric pressure. This is done by use of work 

established by Dugdale [l]. The bulk modulus of the pipe system is changed if 

cavitation occurs. The equation describing the change in the effective bulk modulus is:

(3.79)

Similarly, equations (3.69) and (3.70), for the same case, will become:

dP2 B2 r .------------------   .
* = _ i ( k E 1V ( P i - P 2) ~  AlU)d t v2

(3.80)

dP3 B3 r —.
— — =  — (A 2u -  kE2VP3) 
d t v3

(3.81)

1
1 +  d o ( P s a t - P i )

B n(Pj + l )2
(3.82)

31



where:

Pi is the pressure in pipe i. i = 1,2,3 
n is the polytropic index of air
d0 is the fraction of air dissolved in the hydraulic fluid at S.T.P.
Be is the effective bulk modulus of the pipe material

In the system being modelled, no spring force exists, and the gravitational force acting 

is zero since the actuator is horizontally mounted. The motion of the directional 

control valve is idealised as a series of discrete steps as shawn in Figure 3.17. The data 

values used are given in tables 3.4 and 3.5. The spring stiffness has been taken as zero.

3.44 A pplication o f the new  m ethod to  solve the  fifth order system . The new

method has again been applied in a fixed time step predictor-corrector form to solve 

this problem. The predicted values will be given by the schemes:

P i , = —  (ea‘"h -  1) + P i ea,nh i = 1.2.3 (3.83)
*n+l n  n

a in

Un+1 = -  1) + une*""h (3.84)
a 4n

xn+1 = ^ L ( e asnh -  1) + xneasnh (3.85)
a 5n

The schemes giving the corrected values are similar, but the ain and the bjQ. i = 

1.2.3,4,5, are replaced by ain+1 and bin+1 respectively. The coefficient values, when the 

directional control valve is fu lly  up. are given by:

aln = - ^ L ( ^ g p +k + - -  ) bln = . - ) (3.86)
v«. /* V(P.„ -  V

B-> . kEi
(3.87)

b3“ = ^ A2U° (3 8 8 )

Pi. ~  A ,un)
v2b V ( P i - P 2n) V2n V (Pl - P 2 )

B3 kEo

32



a 4n 

a 5n ~  — 1

_f_
M b4n = ^ ( P 2 Ai -  P3 A2 -  F) 

b5n = (un + xn)

(3.89)

(3.90)

The coefficient values require appropriate modification when the directional control 

valve is fully  down or shut, but an exhaustive set is not given here. At time t = tn+1, 

the coefficient values are the same, w ith n replaced by n+1 in each of the formula in 

equations (3.86) - (3.90), apart from  v lnv2n and v3|), which can only be updated at the 

end of each set of state variable evaluations.

3.45 Evaluation o f th e  Jacobian m atrix . When the corrector is applied to this 

problem, it is again used in conjunction with a Newton-Raphson iteration scheme, and 

so a Jacobian matrix must be evaluated. This, by analogy to equation (3.47), will be:

I - D y  (3.91)

where I is the (5x5) identity m atrix.

D =

0 0 0 0
0 ea2n+lh- l 0 0 0
0 0 ea3n+lh- l 0 0
0 0 0 ea4n-Hh_ l 0
0 0 0 0 easn+,h

and for each of the three positions of the directional control valve, since there are 

different coefficient values, there w ill be a different matrix, y. For the directional 

control valve fu lly  up, then

33



y -

a

Aiun A iun

2kE, V(Pi„ ~P2.) 2kE ,V (P77-P2n)
0

0

.Ai_
f

0

kEj

A2Un _  A2V ^  
2kE2-^/P3n

A, '  
f
0 - 1  - 1

kE2

0

0

0

where

—kEi
a=

2 ( P , - P , ) 2

Cs kE,P2
— + kr+ — --------!!—
M V(P, - P 2 .An n̂)

-1
kElP2 C D kElP2

1 —(o> Dp+krPc+ —j.--------—  )( —L_L+kr+—-j-------  —  )-1
^CPi.-P>.) "  ^ P u - P a .)

and

9 = -2(P1„ - P 2„)[l + I r F r ^ 7 l«

and consequently, the Jacobian matrix can be evaluated for this case using equation 

(3.91). The corrector has been applied in an iteration to convergence mode as in the last 

two problems.

3.46 Results and  discussion. Several sets of results were obtained by varying the 

data values, the integration time step and the final limit of the real simulation time. 

Figure 3.18 shows the simulated response of piston pressure w ith respect to time and 

Figure 3.19 the actuator displacement with respect to time. Figure 3.20 is a 

reproduction of experimental results obtained in the laboratory [4]. This shows the 

actuator piston pressure and displacement responses with respect to time.

3.47 The results found by the method compare accurately with the experimental 

results and the results obtained using Gear's method, which has also been used to solve

34



this problem. The piston pressure initially rises and after a period of oscillation during 

which cavitation occurs, settles out to a constant level. When the flow to the actuator 

is shut off by the directional control valve, the actuator settles at a steady level after a 

severe period of oscillation. The simulated and experimental actuator displacements 

show favourable agreement. The only real differences occur with the peak following an 

initial fall in piston pressure.

3.48 C.P.U. tim e used by  th e  new  m ethod. The method performed well in 

comparison with Gear’s method. For the standard data given in tables 3.4 and 3.5 the 

highest stiffness ratio for the problem is 22 1 x 103. This was found by analysing the 

Jacobian matrix for the problem, and numerically extracting the eigenvalues 

throughout the simulation. However, the problem was also oscillatory and 

discontinuous, and the single step method coped adequately with these difficulties. To 

complete the simulation on the interval t = [0 . 6] seconds, then the new method took 8 

minutes and 42 seconds C.P.U. time, using a fixed time step of 5 x 10-5. Gear’s method 

took 3 minutes and 41.2 seconds to solve the problem on the same interval. When the 

data was changed, in order to both increase the highest stiffness ratio to 25 1 x 105 and 

the frequency of the oscillations, then the new method gave the results shown in 

Figures 3.21 and 3.22. This time the new method completed the simulation in 1 hour 1 

minute and 36 seconds. Gear’s method became unstable and Figures 3.23 and 3.24 show 

the results given. With a reduced tolerance Gear’s method completed the simulation in 

30 minutes and 50 seconds, and gave similar results to those shown in Figures 3.21 and 

3.22.

3.49 Tables 3.6 and 3.7 give a comprehensive set of C.P.U. times for the five test 

problems. For test problems 1 and 2, the new method was much faster than the

35



Backward Euler method. For problems 3 and 4, the new method, as a predictor- 

corrector pair, proved to be faster than Gear’s method. The only problem for which the 

new method was slower than Gear’s method was number 5, and the C.P.U. times for 

both methods proved to be long, particularly when the stiffness ratio and the 

oscillatory behaviour is increased. The new method would benefit from  a time step 

control when it is used to solve this problem.

Conclusions

3.50 A fixed time step algorithm now exists for an explicit and implicit form of the 

new integration method. When applied to a set of test equations designed to analyse 

the method, encouraging and satisfactory results have been forthcoming. However, the 

results found when applying the method to a stiff system must be taken into 

perspective. Firstly, the stiffness ratios quoted for the problems solved are only the 

ratios at a given time, and it must be appreciated that they vary since they are 

functions of time. Secondly, comparisons of the method do not take into account that 

Gear’s method is a variable time step algorithm, which ensures that local error criteria 

are not violated. When applying the method in fixed step form, the accuracy of the 

results is hard to analyse. Also, the theoretical stability criteria may not be satisfied. 

The fast C.P.U. times recorded by the method, in comparison w ith other methods, in 

the test problems prior to problem 5, may not fu lly  illustrate the qualities of the 

method, since The method may be bordering on the verge of instability throughout the 

integration. Similarly, the C.P.U. times from problem 5, for the new method, although 

slower than the times recorded for Gear’s method, may be due to the small time step 

that must be taken throughout the computation to ensure that the method does not 

become unstable, during very stiff or osillatory portions of the integration. This small

36



time step may be much smaller than the time step needed throughout other parts of 

the simulation, but as it must be stipulated at the beginning, and cannot be changed 

throughout the computation, it presents a drawback to the method.

3.51 Consequently, to test thoroughly the new method and study its potential as a 

competitive numerical integration algorithm inside of the HASP package, it is necessary 

to:

i) construct a reliable time step control that monitors the local error
ii) establish the stability properties of the method
iii) generalise the algorithm for the method completely, which will 

include the numerical estimation of the Jacobian matrix
iv) apply the method to a comprehensive set of differential equations

These issues form the basis of the work presented in the following chapters.

37



Symbol Description Value

Ar Area of the actuator piston 2 x 10-3 m2

B Bulk modulus of the hydraulic oil 1.8 x 109 N /m 2

f Viscous friction coefficient 8 x 102 N/m/sec

ki Flow coefficient for orifice 1 3.2 x 10*10 m3/sec/N/m 2

k2 Flow coefficient for orifice 2 3.2 x 10"10 m3/sec/N /m 2

M Mass to be moved by the actuator 1 x 103 Kg

Qi Input flow rate 3 x 10“3m3/sec

Vl

Initial combined 

volume of actuator and pipe 1 1 x 10-3m3

v2

Initial combined 

volume of actuator and pipe 2 1 x 10-3m3

Pi Oil pressure in pipe 1 - initial value O N/m 2

P2 Oil pressure in pipe 2 - initial value O N/m 2

u Velocity of the piston - initial value 0 m/sec

TABLE 3.1 DATA VALUES USED FOR PROBLEM 3 (OSCILLATORY PROBLEM)



Symbol Description Value

Ar Area of the actuator piston 2 x 10-3 m2

B Bulk modulus of the hydraulic oil 1.8 x 109 N/m 2

f Viscous friction coefficient 8 x 102 N/m/sec

ki Flow coefficient for orifice 1 3.2 x 10~7 m3/sec/N /m 2

Flow coefficient for orifice 2 1.6 x 10“7 m3/sec/N /m 2

M Mass to be moved by the actuator 1 x 103Kg

Q, Input flow rate 3 x 10_3m3/sec

Vl

Initial combined 

volume of actuator and pipe 1 1 x 10-3m3

v2

Initial combined 

volume of actuator and pipe 2 1 x 10-3m3

Pi Oil pressure in pipe 1 - initial value 0 N /m 2

P2 Oil pressure in pipe 2 -  initial value O N /m 2

u Velocity of the piston - initial value 0 m/sec

TABLE 3.2 DATA VALUES USED FOR PROBLEM 3 (NON-OSCILLATORY PROBLEM)



Symbol Description Value

Ai Area of the actuator piston - piston side 19.6 x 10-4m2

a 2 Area of the actuator piston - rod side 14.7 x 10“<m2

B Bulk modulus of the hydraulic oil 1.8 x 109 N /m 2

f Viscous friction coefficient 4 x K^N/m/sec

koi Flow coefficient for orifice 1 3.2 x 10-12 m3/sec/N /m 2

^02 Flow coefficient for orifice 2 3.2 x 10~12 m3/sec/N /m 2

M Mass to be moved by the actuator 1 x 103 Kg

Vl

Initial combined 

volume of actuator and pipe 1 1 x 10_3m3

v2

Initial combined 

volume of actuator and pipe 2 1 x 10~3m3

Pi Oil pressure in pipe 1 - initial value O N /m 2

P2 Oil pressure in pipe 2 - initial value O N /m 2

u Actuator velocity - initial value 0 m/sec

TABLE 3.3 DATA VALUES USED FOR PROBLEM 4



Symbol Description Value

Ai Area of the actuator piston - piston side 2.03 x 10"3m2

A2 Area of the actuator piston - rod side 1.54 x 10-3m2

Bulk modulus of the hydraulic oil in pipe 1 1.2 x 109 N/m 2

b2 Bulk modulus of the hydraulic oil in pipe 1 7 x 108 N/m 2

b3 Bulk modulus of the hydraulic oil in pipe 1 7 x 108 N/m 2

f Viscous friction coefficient 5 x lO ^ /m /sec

kEj discharge coefficient for d.c.v. 4.24 x 10-7 m3/sec/N /m 2

kE2 discharge coefficient for d.c.v. 4.30 x 10~7 m3/sec/N /m 2

M Mass to be moved by the actuator 8.7 x 102 Kg

V l Volume of pipe 1 1.7 x 10_3m3

v2

Initial combined 

volume of actuator and pipe 2 4.62 x lO ^m 3

V 3

Initial combined 

volume of actuator and pipe 3 1.94 x 10~3m3

TABLE 3.4 DATA VALUES USED FOR PROBLEM 5



Symbol Description Value

Pi Oil pressure in pipe 1 - initial value 7 x 106 N /m 2

P2 Oil pressure in pipe 2 - initial value 1.7 x 106 N /m 2

P3 Oil pressure in pipe 3 - initial value 2.1 x 106 N /m 2

X actuator displacement - initial value 0 m

u actuator velocity - initial value 0 m/sec

(0 Angular speed of the pump 1.57 x 102 rads/sec

D Pump displacement 3.5 x 10"* m3/rad

Viscosity of the hydraulic oil 6.974 x 10"2 Nsec/m2

cA Slip loss due to differential pressure 7 x 10"9

n Polytropic index of air 1.4

d0 Fraction of air dissolved in the hydraulic fluid at S.T.P 0.1

K Relief valve coefficient 5 x 10"11 m3/sec/N/m 2

Pc Relief valve cracking pressure 7 x 106 N /m 2

TABLE 3.5 ADDITIONAL DATA VALUES FOR PROBLEM 5



Explicit Method Implicit Method Backward Euler Method

Test

Problem

Step size 

(secs)

C.P.U.

(secs)

Step size 

(secs)

C P U .

(secs)

Step size 

(secs)

C.P.U.

(secs)

Maximum 

Stiffness Ratio

Problem 1 

t=[0.4] secs

0.05 0.12 0.05

0.5

0.13

0.02

1 x 10"3 14.08 1 x 103

Problem 2 

Case A 

t=[0,2] secs

0.1 0.10 — — 1 x 10"3 8.4 1

Problem 2 

Case B 

t=[0,2] secs

0.01 0.70 — — 1 x 10~3 10.8 4 x 103

TABLE 3.6 COMPARATIVE RUN TIMES FOR THE SOLUTION OF PROBLEMS 1 AND 2



Predictor-Corrector Pair Gear's Method

Test Problem Step size 

(secs)

C.P.U.

(secs)

Min. Step size 

(secs)

C.P.U

(secs)

Maximum 

Stiffness Ratio

Problem 3 

Case A 

t=[0.5] secs

1 x KT3 8.5 i x lc r6 21 1 x 103

Problem 3 

Case B 

t=[0,5] secs

1 x 10-3 8.2 1 x K T7 24 1.8

Problem 4 

t=[0,0.6]secs

1 x KT3 7.8 1 x 1C)-10 14.8 1 x 104

Problem 5 

Case A 

t=[0,6] secs

5 x KT5 5.22 x 102 1 x 10-7 2.212 x 102 1 x 103

Problem 5 

Case B 

t=[0,6] secs

1 x KT6 3.696 x 103 1 x K T11 1.849 x 103 1 x 105

TABLE 3.7 COMPARATIVE RUN TIMES FOR THE SOLUTION OF PROBLEMS 3 ,4  AND 5



Program Starts

Input System Data

Initialisation Of Data

Call Functions 
Evaluating Coefficients

Call Explicit Method

Explicit x  
Method 

Only 1 y

No
Call Implicit MethodAdvance Time Step

Yes

Recall Functions • 
Evaluating Coefficients

No

Form Solution At Present 
Time StepLast tim e step T y*

Yes

END
FIGURE 3.1 FLOW CHART ILLUSTRATING PROGRAM 

ACTION FOR THE NEW METHOD



u
■>

MASS

r  ^

PUMP

7777777777“

FIGURE 3.2 HYDRAULIC ACTUATOR CIRCUIT



PRESSURE (bar)

105

104

103

EXACT SOLUTION

102
STEP SIZE = 0.05 secs

STEP SIZE = 0.2 secs
101

100
430 1 2 TIME (secs)

VELOCITY (m/sec)

0.4-

0 3 EXACT SOLUTION

STEP SIZE = 0.05 secs
0.2

STEP SIZE * 0.2 secs

0.1

430 21 TIME (secs)

FIGURE 3.3 COMPARISON OF EXACT SOLUTION WITH RESULTS OBTAINED 

USING THE EXPLICIT METHOD FOR TEST PROBLEM 1



PRESSURE (bar)

105 ■

104-

103
EXACT SOLUTION

102 STEP SIZE * 0.5 secs

101

100
0 1 2 3 4 TIME (secs)

VELOCITY (m/sec)

0.4

STEP SIZE = 0.5 secs03

EXACT SOLUTION
0.2

0.1

0
0  1 2 3 4 TIME (secs)

FIGURE 3.4 COMPARISON OF EXACT SOLUTION WITH RESULTS OBTAINED 

USING THE SECOND IMPLICIT METHOD FOR TEST PROBLEM 1



vcl (m/s) disp (m)

100

At = 0.1 SECS

0
Time (secs)

FIGURE 3.5 SYSTEM RESPONSE OF A SECOND ORDER EQUATION 
USING THE NEW METHOD

vel(m /s)

10

dis(m /s)
l 100

Time (secs)

FIGURE 3.6 TRUE SOLUTION FOR THE SECOND ORDER EQUATION



DISPLACEMENT (m)

100

210

FIGURE 3.7 SOLUTION FOUND BY NEW METHOD FOR PROBLEM 2 CASE B



vel (m/s) disp (m)

100

0
Time (secs)

At = 0.05 SECS

vel(m/s) dis(m/s)

100

Time (secs)

At = 0.1 SECS

FIGURE 3.8 SOLUTION TO PROBLEM 2 FOUND BY LEUNG 
USING THE NEW METHOD



Yes
Are vector elements

< TOL?

No

No Yes

END

Does new solution 
satisfy relative

v error test ? /

Advance s 
by 1

Accept previous 
iterate

Form new solution .xn(i?’1)

Form vector F ( i , (+} )

FIGURE 3.9 FLOW DIAGRAM ILLUSTRATING THE ACTION 
OF THE ITERATION SCHEME



Qi PIPEl

ORIFICE 1

MASS

OIL FLOW

ORIFICE 2

7777777777*

PIPE 2

OIL FLOW

FIGURE 3.10 CIRCUIT DIAGRAM FOR TEST PROBLEM 3 
- LINEAR ACTUATOR CIRCUIT



PRESSURE (bar)

100 -

(PIPE 1)

TIME

FIGURE 3.11 A TYPICAL RESPONSE OF THE THIRD ORDER ACTUATOR 
CIRCUIT FOR THE NON-OSCDLLATORY PROBLEM



Pressure Pressure
bar bar

100 - 1 0 -

 ̂ Time05 Time secs

Pipe 1 Pipe 2

Piston velocity
x XQr^m/s

secs
5 Time secs

ENLARGEMENT

FIGURE 3.12 RESPONSES OF THE ACTUATOR CIRCUIT
FOR THE OSCILLATORY PROBLEM



01

ORIFICE 1

I
MASS

7777777777"

ORIFICE 2 ) ( Q02
\ v

FIGURE 3.13 CIRCUIT DIAGRAM FOR PROBLEM 4 - NON-LINEAR PROBLEM



Pressure

bar

170

Pipe 1

Piston velocity

x 10 1 m /s

5 TIME0TIME

secs secs

Pressure Displacement

bar

Pipe 2

9

0
5 TIME0

m

5

0
0 5 TIME

x 10 1 secs x 10"1 secs

FIGURE 3.14 SOLUTION OF PROBLEM 4 USING NEW METHOD



Pressure Velocity

bar

170

TIME

7

0
5 TIME

Pressure Displacement
b a r

Pipe 2

9

5

00
5  TIME0 TIME

x 10”1secs x  1secs

FIGURE 3.15 SOLUTION OF PROBLEM 4 USING GEAR'S METHOD



X

I_____

FIGURE 3.16 LINEAR ACTUATOR CIRCUIT FOR PROBLEM 5



x 1 0  1 0

T i m e  ( s e c )

- 10*-

l-'IGURE 3.17 PO SITIO N  O F TH E  D IRECTIO N A L C O N TR O L VALVE



* 1 0

Pressure (bar)
1

s321 Time (sec)

FIGURE 3.18 SIMULATED PISTON PRESSURE

*10
3

Displacement (m)

2

1

62 3 S1 4
Time (sec)

F I G U R E  3 .19  S I M U L A T E D  A C T U A T O R  D I S P L A C E M E N T



Piston pressure

140

120

Time

1 second

Time

r iG U R E  3.20 EX PER IM EN TA L RESULTS FROM  TH E  LA BORATORY



Pressure (bar)

j!l

Time (seel

FIGURE 3.21 PISTON PRESSURE WITH CHANGED DATA FOR PROBLEM 5

- 1
x l  0

3

Displacement (m)

2

1

3 5 61
Time (sec)

F I G U R E  3 . 2 2  A C T U A T O R  D I S P L A C E M E N T  W I T H  C H A N G E D  D A T A



Time (sec)

FIGURE 3.23 PISTON PRESSURE FOUND USING GEAR’S METHOD

x ! 0

3

Displacement (m)

2

1

65321
Time (sec)

FIGURE 3.24 ACTUATOR DISPLACEMENT FOUND USING GEAR’S METHOD



C H A P T E R  4

DETAILED CONTENTS Page

Introduction 1

The order of the local error of the explicit method 2

The order of the local error of the first implicit method 3

The order of the local error of the second implicit method 4

Time step control for the new method 4

Richardson's extrapolation 5

Local error estimation for the predictor-corrector method 6

Time step control for the predictor-corrector method 7

Stability analysis of the first order method 9

System stability analysis 10

Stability of the explicit method 11

Diagonally dominant systems 14

General stability properties of the new method 15

Stability properties of the implicit method 16

Counter-example 22

Introduction to illustrative examples 25

Time step control 26

Example 1 - Linear actuator circuit 26

Example 2 - Fifth order system 27

Stability properties 29

Example 1 - Diagonally dominant system - Accumulator-actuator circuit 29

System equations 29



Example 2 - Non-diagonally dominant system - Orifice-motor circuit 32

Example 3 34

Applying the new integration method 35

Results for the two methods 36

Example 4 - Non-diagonally dominant system 38

Example 5 - Symmetric matrix 39

Example 6 - Lower triangular matrix 40

Conclusions 42

Tables 4.1 - 4.5 inclusive 

Figures 4.1 - 4.9 inclusive



CHAPTER 4

MATHEMATICAL ANALYSIS AND FURTHER TESTING 

OF THE NEW METHOD

In troduction

4.1 This chapter analyses in some depth the method that has been developed, and from 

this analysis a more robust, general purpose integration method is constructed. The 

chapter is split into two main areas; the first deals with the theoretical aspects of the 

analysis, and the second examines practical problems which are used to demonstrate 

the ideas introduced in the first half of the chapter.

4.2 Firstly, the local error of the method, which is defined in section 2.33, is 

investigated. Then, a time step control for both the explicit method, and the 

predictor-corrector pair derived in chapter 3. is developed. Finally, the stability 

properties of the explicit method and the first implicit method, given by equation 3.7, 

are analysed, and the resultant stability  regions are discussed. The results found from 

the stability analysis and the development of the time step control assist in deciding in 

which way the method is to be generalised so as to be suitable for solving non-specific 

sets of differential equations.

4.3 After performing the theoretical analysis, problems which illustrate the ideas that 

have been introduced are studied. A selection of the problems previously met in the 

last chapter are solved again by the new method, this time with a time step control 

operating w ithin the method. Systems which display the necessary properties required 

by the new method to ensure stability  are studied, and this will demonstrate that the 

ideas met in the earlier part of the chapter have a practical application.



The Order Of The Local E rror Of The Explicit Method

4.4 Referring to section 2.33, the local error of the method was found by comparing 

the method w ith a Taylor’s series expansion made about the solution point. If the 

explicit method given by equation (3.6) is applied to the initial value problem

y' = a(t)y  + b(t) y (a ) = /3 (4.1)

where a and b are both time variant, then the numerical method is given by:

bn , a_h \ . a_h
Yn+1 = — (e n -  1) + yne

Assuming that y (t) is a sufficiently smooth function, i.e. it is continuously 

differentiable several times, and applying the scheme: then assuming exact values at 

t = tn, the method will satisfy

y„t l  =  -  1) + y (tn)e,<t")h (4.2)

although the true solution will satisfy

y(t„+1) = -  1) +  y ( t > i(,">i + E„+1 (4.3)

where a(tn), b (tn) and y (tn) denote the exact values at t = tn, y (tn+1) denotes the true 

solution at time t  = tn+1 and yn+1 denotes the approximation to the solution at t  = tn+1. 

En+1 is the local error, the error occuring in one step of the scheme.

4.5 Forming a Taylor’s series expansion about y (tn+i) gives:

yCtn+i) = y ( tn) + hy '(tn) + -|j-y ''(tn) + - ||-y " '(l)  tn < £ < tn+i (4.4)

Comparing equation (4.4) with (4.3) and subtracting will leave an expression for the 

local error, viz:

2



E„+i = y(t„) + hy'(t„) + -^-y"(t„) + 0 (h 3) -

^ 4 ( e ,<’»)b -  1) -  y (tI1)ea<,,’)l1 (4.5)

Now substituting equation (4.1) into the second term on the right hand side of 

equation (4.5) and expanding the exponential terms will give:

E n+i =  y(tn) + h(a(tn)y (tn) + b(tn)) + A _y"(tn) + 0 (h3) +

b(ln^ i  n x  (* ) u , (a ( t^ h )2 (a(tn)h )3 a(t )h +- ^ - y ( l  -  ( l+ a ( tn)h +   ----- + -----   + ••• )) — y (tn)e (4.6)

which, when rearranged, w ill leave:

p _  h2 , , n r . 3. b(tn)a(tn)h2
E n + l =  ~2-y  ( tn )  +  0 (h3) -  ------- - -------  -

b(tn)a(tn)2h3 _  y ( tn)a(tn)2h2 _  y (tn)a(tn)3h3 ^  ^

i.e.

En+l = -^-(y‘'(tn) “  b (tn)a(tn) -  y (tn)a(tn)2) + 0 (h3) (4.8)

Again, using equation (4.1), this will reduce to:

En+i = -£ (y "(t„ ) -  a (t„ )y tt„ )) + 0 (h 3) (4.9)

This gives an estimation to the local error of the explicit method, and referring to

section 2.37, then the method is first order accurate, i.e. the error expansion includes

terms involving h2.

The O rder Of The Local E rro r Of The F irs t Im plicit Method

4.6 Using an analysis similar to that in section 4.4, then the local error of the implicit 

method given by equation 3.7 can be shown to be: [6 6 ]



En+i =  -  y" (t„ )) +  0 ( h 3) (4.10)

and this again indicates a first order method.

The Order Of The Local Error Of The Second Implicit Method

4.7 The local error of the implicit method given by equation(3.l l )c a n  also be shown 

to be:

E„+i = -j-W tnVCt,) -  y"(t„)) + 0(h3) (4.11)

and so this method and the others are first order accurate. Consequently, referring to 

section 2.42, these three methods are both consistent and zero-stable, and so 

convergence of the numerical scheme will follow as h -» 0 .

Time Step Control For The New Method

4.8 The most difficult problem in the application of an integration method is that of 

choosing an appropriate value for the steplength. A bound for the global error does not. 

in general, provide an adequate basis for choosing the step size. h. Instead, it is 

necessary to turn to the idea of finding an interval for h which ensures that the global 

error does not grow in a certain sense. It is essential to choose h such that the local 

error is acceptably small, but the application of a bound for the local error is hindered 

by the practical difficulty of finding a bound for I y (p)(t)  I and I y^p+1̂ (t) I . where in 

the case of the new method, p = 1 . the order of accuracy of the method.

4.9 However, when using a predictor-corrector method in an appropriate mode, it is 

possible to avoid estimating higher derivatives by using a combination of the solution 

given by the predictor and the corrector. The principal local error term of the combined

4



scheme, which is accepted as as an approximation of the true local error, can be 

estimated using this strategy. Consequently, the steplength, h. w ill be chosen such 

that the estimated principal local error remains at each step less than a pre-assigned 

tolerance. Also, h must be chosen to ensure that the iteration scheme, used in 

conjunction with the corrector, w ill converge.

4,10 R ichardson’s ex trapo lation . With the application of the explicit method alone, 

it is not possible to form a readily computed estimate of the local error similar to the 

one that can be obtained with a predictor-corrector pair. However, there are alternative 

ways of estimating the error, and the one used with the explicit method arises from an 

application of the deferred approach to the limit, alternatively called Richardson’s 

extrapolation [67]. Under the usual localising assumption that no previous errors have 

been made, the local error made in advancing the scheme from t = tn to t = t n+1 can be 

written as:

y(tn+i) “  Y n + i  = <Ktn. y ( tn))h2 + 0 (h 3) (4.12)

Now computing yn*+i. a second approximation to y (tn+1). obtained by applying the 

same method at tn_j with steplength 2 h, then using the same localising assumption it 

follows that:

y (tn+i) “  Yn+i = y ( tn_i))(2h )2 + 0 (h 3) (4.13)

which becomes:

y(tn+i) ~  Yn+1 = '/'(tn. y ( tn))(2h )2 + 0 (h 3) (4.14)

on expanding ^(t,,-!. y ( tn- i) )  about ( tn, y (tn)). Subtracting equation (4.12) from (4.14) 

will give:

5



y„+i -  y„'+i = (22 -  l Wt„. y(t„))h2 + o(h3) (4.15)

and so the principal local error term, which is taken as an estimate for the local error, 

may be w ritten as:

Hence, to apply Richardson’s extrapolation, the solution is computed over two 

successive steps using steplength h, and then recomputed over the double step using 

steplength 2h. The difference between the values for the y (tn+1) so obtained, when 

divided by three, is then an estimate to the local error. This estimate is usually quite 

adequate for step control purposes, but it involves a considerable increase in 

computational effort, and thus may not be as beneficial as would be hoped.

4.11 Since an approximate value for the principal local error term can now be 

evaluated, a strategy can easily be adopted to control the steplength during the 

integration of a problem. This strategy is explained in section 4.14. However, because 

of the computational inefficiency which this method of estimating the local error leads 

to, since excessive work is required at each step to form an estimate, an efficient time 

step control mechanism has only been implemented w ith the predictor-corrector pair. 

As is demonstrated in the next section, w ith this pair, there is an economical and 

simple way of estimating the local error at each step, w ithout repeating the integration 

at any point.

4.12 Local e r ro r  estim ation  fo r  the p red ic to r-co rrecto r m ethod. Since the 

principal local error term for the explicit method is given by:

0 (t„ .y (t„ ))h 2=  y^ ‘; (4.16)

I V c O - a C O y 'C O )  = h2L,

6



where Lj is the local error function

and the principal local error term for either of the implicit methods is given by:

then the explicit and either of the implicit methods make an ideal predictor-corrector 

pair. Not only is the order of accuracy of each method the same, which, as described in 

section 2 .6 8 , ensures that the local error of the combined pair is the same as that of the 

corrector alone: but it is easy to devise a strategy for estimating the local error of the 

corrector.

4.13 In taking one step of the explicit and the implicit scheme, the relationships 

between the true value of the solution, the estimated values of the solution, and the 

local error are given by:

where (p) denotes the predicted value and (c) denotes the corrected value.

Subtracting equation (4.18) from (4.17) and rearranging will give an estimate to the 

local error, namely

^ - ( a ( tn)y '(tn) -  y"(tn)) = - h 2!^

y(tn+i) = y&\ + h2Li (4.17)

and

y (t„+ i) =  y„Vi -  h 2L, (4.18)

(4.19)

4.14 Tim e step co n tro l fo r  th e  p red ic to r-co rrecto r m ethod. Equation (4.19) will 

give an estimation of the local error at the first correction, and so it is possible to 

control the step size using this relationship. To do this the following strategy, which



can also be applied to the explicit method, is employed. 

To find an h such that

I h2Lj I = TOL

where TOL is a pre-set tolerance

then, defining h* as the present time step, with

111%  I = ERR

where ERR is the error made in one step

and dividing equation (4.20) by (4.21) leaves 

I h2Lj I

h ‘2L,
TOL
ERR

(4.20)

(4.21)

(4.22)

which will give the required h. with

2 =  h TOL 
ERR

and hence

h = h* TOL
ERR

(4.23)

The strategy used for controlling the time step, with the appropriate coding, can be 

found in Appendix B. The examples solved using the time step control can be found in 

sections 4.35 and 4.37.

8



S tability  Analysis Of The F irst Order Method

4.15 The stability properties of the method are very important as stability is the 

determining factor in deciding whether a method is suitable for solving stiff or 

oscillatory sets of differential equations. When applying the method to the scalar test 

equation described in section 2.45, which is:

since bn = 0 for all n. and an = X for all n

If y0 is perturbed to y0 + € = Zq. then the sequence will become Zq, Zj , z2, • • • from 

the modified difference equation

The requirement is that the effect of the the initial perturbation w ill die away with 

increasing n: this w ill be guaranteed if hX < 0. Hence, fo r an inherently stable scalar 

equation, i.e. where X < 0. then the explicit method is absolutely stable for all values

y' = Xy y(0) = 1

then using the scheme described by equation (3.6), viz:

will give:

= n = 0 . 1 . 2 . • (4.24)

(4.25)

Subtracting equation (4.24) from (4.25) will give:

z„+i -  y„+i = exh(z„ -  y„) n = 0 . 1 , 2 , • • • (4.26)

and recursively applied, this leads to:

z n “  Y n = eXnh(z0 -  y0) n = 0 , 1 . 2 . • • • (4.27)

9



of h. w ith h positive. This is a good result for an explicit method, and it is easy to see 

that the result can be extended to cover the implicit methods given by equation (3.7) 

and (3.11).

4.16 System  s tab ility  analysis. Referring to section 2.46. then to apply a similar 

stability analysis to a set of equations, it is necessary to consider the test system of m 

equations, given by:

x ' = A x x(o) = 1

where the constant matrix A is assumed to have m linearly independent eigenvectors, 

and so may be written as:

P ^ A P ,, = A

where:

Pm is the modal (mxm) matrix consisting of eigenvectors of A 
A is the diagonal (mxm) matrix with the eigenvalues of A on the diagonal

However, this path cannot be pursued to obtain stability criteria for the new method 

since the method will not be applied to the formula given by the equation above., but to 

the rew ritten form given by:

X' = P x  + (A -  D )x (4.28)

where D is the (mxm) matrix made up of the diagonal elements of A

4.17 All numerical methods will seek to estimate the exponential matrix eAb when 

used to solve the matrix equation given by equation (2.51) [6 8 ], since this will give the 

form of the true solution i.e. a method will try  to provide

X>+i = eAhx ( t n) (4 .29)

10



However, there is no easy way of finding the exponential of a matrix, since the series 

expansion given by:

eAh -  i + Ah + + • ' ' (4.30)

shows tha t high powers of the matrix Ah are required, which would be impractical to 

evaluate, and difficult to approximate, particularly for large order matrices. 

Consequently, since the new method has been derived from a scalar ordinary 

differential equation, it effectively requires the decoupling of the systems to which it is 

applied, when used to solve sets of differential equations. Hence, to investigate its 

stability properties when applied to a set of equations, a different approach is required.

4.18 S tab ility  o f th e  exp lic it m ethod. The approach taken here in examining the 

stability properties is to initially consider the case of the explicit method when applied 

to a mth order system of differential equations. This is then used as the base from 

which to establish the general stability properties, both for the explicit and the implicit 

method. Consider an mth order system of differential equations of the form

y 'i all a 12 a 13 alm y i bi

y '2 a21 a22 a23 a2m y2 b2

•
=

..................................................
+

•

y'm aml a m2 am3 • • amm y m

with initial conditions given by yjiO) — J3 where the coefficient V ’s and "b^s are time 

variant, but are assumed to be constant over one time step.

4.19 Applying the explicit method given in equation (3.6) yields

11



bmn +  amlny in +  am2ny2„ +  ' ' +  am m -ljm -l,

amm„

A similar process to that discussed in section 2.47 may now be used. To examine the 

way in which errors will propogate in the system of equations given above, it is 

necessary to introduce an error term into each of the equations, and then investigate 

the resultant behaviour of the solution as time advances.

4.20 Defining

Zj(0) = yj(0) + €i i = 1. 2 .............. m (4.32)

where €j is the error introduced into the solution

then the system of equations defined in the last section will become:

f  * n « h  ^  . * n » h(e ” — 1) + zlne ■

b2„ + a2inzln + a23nZ3B + •••  + a 2mnzmn 

a22„

12



b mn +  a m lnz l n +  a m 2nz 2„ +  ’ ' ‘ +  a m m -lnz m - ln a h a h
------------------------ (e " -  1) + zm e ■

Subtracting this set of equations from those in section 4.19 will leave expressions that 

describe the propagation of the error terms, viz:

a 12n€ 2n +  a 13B€ 3B +  • • • +  a lm n€ mll an  h an _h

a l l .

a21„€l» + + * • • + a2mii€mii aM

a 22.
(e ■ -  1) + €2

a22 h

+  a m2„€2„ +  • • +  »mm- i a b a b
----------------------------;--------------------------------- (e ” - D  +  «m„e

Expressing this last set of equations in matrix form will give:

(4.33)

where:

Me =

a n  h

a 22_

an  h a 12„
Ce "* - 1)—  

a» ,
a22 h

( ailnb i \ aim"(e " - 1).
an.

f  a 2 2 _ h  .  x a2m„
(e * - 1)-

a 22_

A stable solution to the problem will be ensured if the eigenvalues of the matrix Me all

13



have modulus less than 1 [64]. The problem lies in determining these eigenvalues, and 

in relating the matrix Me to the original system matrix.

4.21 Diagonally dominant systems. One important result is immediately 

forthcoming for the explicit method. Examining the stability matrix given by equation

(4.33), w ith h >  0, the following holds.

If

an <  0 i = 1, 2, 3, .... m (4.34)

and

m a ..
£  |_ ! i |  < 1 i=  1 ,2 .3  m (4.35)

j=lj^i aii

where the condition in equation (4.35) ensures that the system is strictly diagonally 

dominant, then, since

. . m a . .
I I Me I I = maxite3" + I ea“h -  1 I £  I —  I ] (4.36)

j=lj»*i aii

and

0  < eaiih < 1

the infinity norm of the stability m atrix will satisfy

1 I Me I I a, <  maXj[ea‘|h + (1 — ea,ih)] = 1 (4.37) 

Consequently, because

I I Me I I « <  1

the spectral radius of Me, i.e. the eigenvalue of Me with largest modulus, fulfils the 

inequality

14



p(Me) < 1 (4.38)

Hence, all the eigenvalues of Me have modulus less than unity; and consequently, for 

any system of ordinary differential equations which have a strictly  diagonally 

dominant system matrix, with the a^ negative for all i. the explicit method is 

absolutely stable for all step sizes h > 0. The same result will also hold for the 

implicit method given by equation (3.7).

4.22 G eneral s tab ility  properties o f th e  new  method. For the explicit method, 

stability is ensured if the original system matrix is strictly diagonally dominant w ith 

negative diagonal entries. These are not the onlycircumstances under which the method 

is stable, but they do provide sufficient conditions for stability. In general, it appears 

impossible to define the necessary conditions under which the method will behave 

satisfactorily, apart from stating that the eigenvalues of the stability matrix given in 

equation (4.33) must all have modulus less than unity. Most numerical methods, in 

monitoring the local error, also determine the way in which the global error is affected. 

The explicit method, with a time step control, is capable of solving most problems 

quite satisfactorily, but does tend to require a very small time step with some sets of 

equations, particularly mathematically stiff systems with large off-diagonal elements 

in the system stopping diagonal dominance.

4.23 Consequently, for the type of problem for which stability presents difficulties to 

the explicit method, it is worthwhile using a method with improved stability, and here 

the implicit method given by equation (3.7) is considered. It has been found that larger 

time steps can be used to solve a problem when the implicit method is implemented 

with the explicit method as the predictor, than by using the explicit method alone to 

solve the same problem. This will be verified experimentally later in the chapter.

15



4.24 S tab ility  properties o f th e  im plic it method. Referring to the stability analysis 

performed on the explicit method in section 4.18, then if the same analysis is carried 

out on the implicit method, the resultant matrix equation can be written as:

where

H =

(l-<
aii a lm

a l l
. (1 —e ,In+1 ) n+l

n+1 a l l n + l

( I - *22„+l\ a2 2 _ A  ^ mn+l

a22n+l

( | - eammn+lh) amln+l

( 1—e "+1 )
a 22.

and

C =

11n+1h 0 0 . . 0

0 e 322n+lh 0 0

0 0 e *33n+lh . 0

0 0 0 e a“ “ n+ ih

(4.39)

Provided that H is non-singular, equation (4.39) can be rewritten as

■£n+l = (4.40)

A stable solution will be obtained if the modulus of the eigenvalues of the (mxm) 

matrix H-1C are all less than unity. Unfortunately, there is no straightforward way of 

relating the eigenvalues of this error matrix to the original system eigenvalues, but 

further manipulation of the error matrix does lead to some important results.

16



4.25 Rewriting the matrix H for the general case in the form

H = N + C 

where:

N =

a l l n+l

a22n + l

a m m  a i T l l r

(1 —e n+1 )

al»n+l

( 1—e*H»+ih) a22- 1
a 22n + l

m r n n + l

( l _ ea,nmn+lh) am2n+1
a

m m n + l ammn+i

then the elements of the (mxm) matrix N are given by:

ai
N;; = - ^ 1 (1  — e "n+1 )

and the elements of the (mxm) matrix C are given by:

Cii =

0  i5*j

/" n + l i = J

4.26 Equation (4.39) can now be w ritten as:

(N + Ofin+j = C£n

and pre-multiplying by C-1, which exists since e“ ^  0 for all a, will lead to: 

(C -1N + I)£n+1 = i B

Hence:

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

17



^ +1 = (I + C_1N)_1j n (4.46)

Defining the matrix G as

G = - C ^ N  (4.47)

then equation (4.46) w ill become

£ n+1 = (I -  G)*1̂  (4.48)

The method will be stable provided that the errors decrease throughout the 

computation. The errors w ill decay if all the eigenvalues of G lie outside the circle of 

unit radius lying within the complex hX plane as shown in Figure 4.1. where X refers 

to the eigenvalues of G. The stability region of the implicit method, with reference to 

the G matrix, resembles the shape of the Backward Euler Method. The G matrix is 

given by:

G =

(l-<
an.

( 1—e~a22|" ‘6) a21"+1
a 22 n + l

—a,, b
(1—e )— =11

a” n+l 
- a22n+1*\ a22n̂ ,

( 1 - 1 )-
a 2 2  i“ n + l

( 1—€ “n + l
amlr

( 1 —e a"”nn+lh) am2«
m m n + l

ammn+i
. . ( 1 —e

ammIV+i

ammn+l

where the individual elements of G are defined by:

G^ = ^ L ( l  -  e"ai'n+lb) (4.49)
a**n+l

4.27 A similar expression can be formulated for the explicit method. Equation (4.33) 

can be w ritten as

18



€„+! = (G + I)j^ (4.50)

where the individual elements of this G matrix are given by:

(4.51)

Figure 4.2 shows the stability region for the explicit method in term s of the 

eigenvalues of the matrix G. This region is similar to the stability region for Euler’s 

method.

4.28 To investigate the stability properties of the implicit method, it is necessary to 

analyse the G m atrix which is defined for this method. One way is to use Gerschgorin’s 

theorem [69]. If the original system matrix A is assumed to be strictly diagonally 

dominant with negative diagonal entries, then the elements of -G are given by:

and applying Gerschgorin's theorem, the eigenvalues of -G lie in the union of the circles

positive real parts, and so G will have eigenvalues with negative real parts. 

Consequently, the implicit method will be stable for this case, since the eigenvalues of 

the G matrix lie w ithin the stability region. As an aside, w ith the diagonal entries all 

greater than zero, it can be shown that the eigenvalues of the G matrix all lie within 

the circle corresponding to instability. However, with the real parts of the eigenvalues 

of the G m atrix all greater than zero, it is unlikely that the system being solved is

(4.52)

—aii **with centre e n_tl — 1 ( > 0 ) and radius given by:

(e ai,"+,h-  1 ) £  I —

“ijj h
Since the radius of the circles is less than (e n+1 — 1), -G will have eigenvalues with

19



inherently stable, and so it is relative stability that should be sought [56].

4.29 For the implicit method, the required result is that, for all inherently stable 

engineering systems, then the G matrix w ill always have eigenvalues with negative 

real parts. Referring to Figure 4.1. this will ensure that the method is stable. At 

present, for a certain subsection of problems, inherent stability of the original problem 

will ensure the numerical stability of the method. The table below indicates the 

results found; the standard matrix theorems which are needed to substantiate the ideas 

can be found in Nering [25] and Varga [69].

4.30 First, it is necessary to rewrite the matrix G as 

G = DA

where A is the original system matrix and

ft _
D = diagldi, d2. d3. • • • . d j .  dj = — ----------L (h >  0)

It can be seen that

dj >  0  and I d, I -* 0  as I aiin+11 -» oo (4 .5 3 )

20



Cases For W hich The Im plicit Method Is Stable

Cases Do eigenvalues of A having negative real parts imply 

that eigenvalues of G have negative real parts?

dj all equal yes

a»n+i <  0 . i =  1.2 . 3........m

A strictly  diagonally dominant

yes

A symmetric yes

A triangular yes

m = 2 , no other 

restriction on A

yes

4.31 The one case proved here will be the last one. In order to ensure that the

quadratic equation X2 + SiX + S2 = 0  has roots with negative real parts it is necessary

to show that S2 > 0 and S2 > 0 . For the matrix A. this characteristic equation

yields:

SiA = “ (a iin+1 + a22n+1) (4 .5 4 )

and

S2a = detA (4.55)

So. if A has eigenvalues w ith negative real parts, then

(a ii^ , + a22j|+1) < 0 (4.56)

and

det A > 0 (4.57)

21



The same coefficients for the matrix G are given by:

SiG = ~ (d ia llfi+, + d2a22n+1) (4.58)

and

S2g = d jd2detA (4.59)

Referring to equations (4.53). (4.54) and (4.55) it can be seen tha t S® > 0 and

S G > 0  if S A > 0 and S2A > 0 . Hence the required result holds, i.e. the eigenvalues

of G have negative real parts.

4.32 C ounter-exam ple. For the case m = 3. then the necessary and sufficient 

conditions for the characteristic equation X3 + S ^ 2 + S2\  + S3 to have roots with 

negative real parts are:

Si >  0

s 3 > o

SjS2 ' S3 ^  0

(4.60)

(4.61)

(4.62)

For this case there exists a counter-example which proves that, in general, the inherent 

stability of the original system does not imply that the implicit method is stable for all 

values of h.

For the matrix A. given by

A =
—1 —1 a  

1 0  0  
1 0  - 1

then the characteristic equation is:

X3 +  2X2 +  (2  -  <x)X +  1 =  0

The S A's are given by the relations:

22



SlA -  +  a 22_, ,  +  a 33n . , )

an n+i a12n+, an n+i a i3n+1 a22n+i a23n+i
= det + det + det

a32n+i a33n+ja2i„+i 322„+i a3Vi a33n+j

(4.63)

(4.64)

(4.65)S3a = —det A

For a stable system, since S A = 2 > 0  and S3A = 1 > 0 . it is required that 

S!AS2A -  S3a > 0

i.e. that 2 (2  — a )  > 1 . or — > a

For the G matrix corresponding to the implicit method, then the coefficient values, the 

SjG's, are given by

S G = 2(eh -  1)

S2C = (eh -  1)2(1 -  a) + h(eh -  1)

S3C = h(eh -  l )2

For a stable system, since it is clear that the conditions given in equation (4.60) and 

(4.61) are satisfied, the requirement is that

(e>~ 1 ) ( i  - < * ) > - !h 2

i.e.

a  < 1 +
2 (eh -  1)

(4.66)

Hence there is a crucial range for a . which is [l , —] . and this will ensure that the

eigenvalues of G have negative real parts. Consequently, if a  is chosen so as not to 

satisfy the inequality (4.66) for a particular value of h. then conditions must be placed 

on h in order to ensure the stability of the implicit method. Therefore, the stability of

23



the original system in this case does not guarantee that the numerical scheme is stable. 

This result indicates that the implicit method has a finite stability region within the 

left hand side of the Xh plane.

24



Introduction To Illustrative Examples

The following examples have been chosen to illustrate the theoretical aspects of the 

new method that have been discussed.

4.33 To demonstrate the effectiveness of monitoring the local error, the two problems 

solved using the time step control have already been solved by the method, w ithout a 

time step control, in chapter 3. An explanation of the routine controlling the time step 

can be found in Appendix B.

4.34 To demonstrate the theoretical stability properties, the explicit method is applied 

to both a diagonally dominant, and a non-diagonally dominant system: the stability 

matrix for both of these problems is then studied. Then, the explicit method is applied 

to a stiff problem and compared with the explicit-implicit pair applied to the same 

problem, in order to show the improved stability properties of the implicit method. 

Finally, several examples are chosen to demonstrate further the stability properties of 

the implicit method.

25



Time Step Control

4.35 Exam ple 1 - L inear ac tua to r circu it. This problem is described in section 3.29, 

and the differential equations being solved are given by equations (3.30), (3.31) and 

(3.32). The data values remain the same and these are given in table 3.2. The problem 

being solved is moderately stiff and non-oscillatory and provides a good test, both for 

the new method, and for the time step control. The way in which the predictor- 

corrector pair is applied can also be found in sections 3.30 - 3.32. The results for the 

problem have been obtained by using two tolerances. 1 x 10-3  and 1 x 10-4. which 

control the integration time step by limiting the largest mixed local error per 

integration step. The initial time step is chosen as 1 x 10-3 so as to be of comparative 

order to the smallest time constant. Figure 4.3 shows the manner in which the step 

sizes change during the integration process. Once the fast transient has decayed, the 

step size increases to a value that gives an acceptable approximation to the slowly- 

varying transient. This value is larger than 1 x 10-3. the step size that the method 

needs when used as a fixed step method in order to ensure sufficiently accurate results.

4.36 The overall C.P.U. times taken by the variable time step method were 7.9 and 8.1 

seconds for the tolerances of 1 x 10-3  and 1 x 10-4  respectively. These values 

demonstrate that there is a saving to be made by using a time step control with the 

method. However, because the single step method does not monitor the local error, and 

is reliant only on the steplength input by the user, and the tolerance value used by the 

iteration scheme, it is possible to choose a step size for which the method is bordering 

on instability for some or all of the integration, but still provides reasonable results. 

This step size may give run times which over-amplify the true performance of the 

method.

26



4.37 Example 2 - F if th  o rder system . A full description for this problem can be 

found in section 3.40, w ith the system equations being given in section 3.41. The data 

values remain the same, and these are given in tables 3.4 and 3.5. The integration again 

takes place over 6  seconds of real time. For this problem, the number of steps used are 

too numerous to be represented graphically, and a discussion of the overall C.P.U. time 

used by the method will provide sufficient information. When solving the initial 

problem, to complete the simulation on the interval [0  . 6 ] seconds, then with a time 

step control, the new method took 5 minutes and 21.24 seconds, in comparison with 

Gear’s method which took 3 minutes and 41.2 seconds. The initial time step chosen for 

the new method was 1 x 10-5  and throughout the simulation, the largest time step 

used by the method was of the order 1 x 10-3, and the smallest of the order 1 x 10~7. 

Gear’s method also used a similar range of time steps.

4.38 For the problem which had a low viscous friction coefficient, a higher bulk 

modulus and smaller pipe volumes, leading to high mathematical stiffness and very 

oscillatory results, then the new variable step method proved to require less time than 

Gear’s method to provide identical results. These results are shown in Figures 3.21 and 

3.22. The C.P.U. time required was 28 minutes and 19.56 seconds in comparison with 

Gear’s method which took 30 minutes and 49.87 seconds to give reasonable results. 

For this problem, Gear’s method sank to a time step of the order 1 x 10-11. in 

comparison to the new method which only sank to a step of the order 1 x 10-8.

4.39 Table 4.1 shows the full set of C.P.U. timing results obtained by solving these 

two problems using the new method with a time step control. The results obtained 

show the merits of monitoring the local error at each time step, and the computational 

efficiency that is involved with doing so. A great deal of experimental work has been 

done with the time step control, in an effort to ensure that the optimal efficiency of the

27



method to which it is applied is achieved. This work is involved with the choosing of 

the tolerance that is used by the step control to monitor the local error, and in deciding 

the precise strategy for determining the time step to be used over the next integration 

step.

28



Stability  Properties

4.40 Example 1 - D iagonally  dom inant system  - A ccum ulator-actuator c ircu it. 

The circuit diagram for this problem is shown in Figure 4.4. The input flow to the 

system is assumed to be constant, w ith the accumulator providing a constant supply 

pressure to two small actuators. The actuators drive two masses. The control valves 

for the actuators are assumed to open suddenly, and to operate with negligible pressure 

drop. The flow taken by the two actuators is assumed to be small in comparison to the 

system flow.

4.41 System  equations. For the accumulator, then

Pvn = constant (4.67)

where:

P is the pressure in the system 
v is the volume of gas in the accumulator 
n is the polytropic index of the gas

Hence

P'vn + nvn_1v'P = 0

and so

D. _  nP ,P = —— v

Applying this to the system will give

p■ = - - ^ Q ,  (4.68)

where Qj is the main flow

29



The differential equations describing the acceleration of the masses are given by:

u ' = P —  -  1 ^ 1
2 M2 m 2

where:

Uj 2 are the velocities of mass 1 and 2 respectively
Mj 2 are the masses of the actuator loads
f 12 are the viscous friction coefficients for the two actuators

Writing the differential equations in matrix form will give:

P*
- v Q‘ 0 0

p

u'i Ai
m 7

_ fi 0
Ui

(4.71)

u '2 a 2
m 7

0 f2
m 2

u2

4.42 The data values for this problem are given in table 4.2, and when substituted into 

equation (4.71), they give the following system matrix:

-2 .76  x 10"2 0 0
4.91 x lO-6  -9 .8 2  x 101 0
2.46 x 10"5 0 -4 .91  x 102

This matrix is easily seen as being diagonally dominant. The eigenvalues of this m atrix 

are:

= -2.76 x 10~2 
X2 = -9.82 x 101 
\ 3 = -4.91 x 102

and the stiffness ratio is given by:

S =  1.78 x 104

(4.72)

(4.69)

(4.70)

30



which indicates a problem of moderate stiffness.

The error matrix for this problem, when the explicit method is applied, is:

Me =

an_h

- 1 ) ^ 1
a 22_

,  *11 h ^ 1 2  an  h ^13.
(e “ ■ -  1 )— 1 (e " -  1 )— - 

an - an„

*22 ^

( a” nh i ^ 31" ( *33nh ^ a32»(e n -  1)-----  (e n -  1)-----
a33_ a33_

where the a^ are given in equation (4.72)

(e’“ "h -  1) ^ .
a22n

a33 h

(4.73)

Taking a typically large value for h. for example h = 1, then M will become

9.73 x 10"1 0 0
5.0 x 10"8 2.25 x 10*43 0
5. x 10"8 0 e"491

(4.74)

which has the eigenvalues given by:

Hi = 9.73 x 10"1 
fi2 = 2.25 x 10-43
.. _  „-491/^3 -  e

Hence the modulus of all three eigenvalues is less than unity, ensuring that any error 

introduced will decay as the scheme marches forward in time. For other values of h 

the same result will hold. The problem was solved using the new method with various 

fixed time steps, to see if instability was demonstrated for any value of h. However, 

for the results obtained instability was not apparent for any value of h. although the 

accuracy of the results is affected because of the low order of the method.

31



4.43 Exam ple 2 - N on-diagonally dom inant system  - Orifice-motor c ircu it. This

example is a hydraulic circuit for which the system matrix of the differential equations 

that describe the behaviour of the circuit is non-diagonally dominant. The circuit 

diagram is shown in Figure 4.5. and the system equations are given below. A constant 

flow passes through an orifice restrictor and then drives a hydraulic motor. The pump 

and the motor are assumed to exhibit no slip flow or torque losses in order to simplify 

the analysis. The o.d.e.'s are:

(4.75)

(4.76)

—OH (4.77)

dpi
d t

=  — CQi
Vl

1 O K)

d P 2

d t =  —  ( q 2
V2

“ Qm)

da)m _  P 2Dm T i
d t J J

where:

Pj 2 are the oil pressures in the pipes either side of the orifice
Q i 2 are the oil flow rates in the pipes either side of the orifice
Qm is the motor flow rate
B is the bulk modulus of the hydraulic oil
Vj 2 are the volumes of the pipes either side of the orifice
J is the moment of inertia
6>m is the angular velocity of the motor
f  is the viscous friction coefficient
Dm is the motor displacement
T! is the load torque

The flow rates Q2 and Qm are given by:

Q2 = k0(P, -  P2) (4.78)

and

Qm = WmDm (4.79)

where k0 is the flow coefficient for the orifice

32



Substituting equations (4.78) and (4.79) into equations (4.75) and (4.76) will, on 

rearranging, give:

P, + —  (Qi + k0P2)d t Vj Vj (4.80)

and

dP
2 = P2 + — (koPi ~  oimD Jdt

Bkc
v2

_B
v2

(4.81)

Putting equations (4.80), (4.81) and (4.77) into matrix form will lead to

Pi*

p2*

^m'

Bk„ Bkf
Vl

Bk„
v2

0

Vl
Bk0

Dm

0

BDn
v 2

__f
J

Pi

P2

0>m

BQi
V l

0 (4.82)

The data values for this problem are given in table 4.3. Substituting these values into 

equation (4.82) will lead to the system matrix

-1 .24  1.24 0
1.24 x 102 -1 .24  x 102 - 4 .2  x 10* (4.83)

0 1.5 x 10"6 -2 .4  x 10"2

which is not diagonally dominant. The eigenvalues of the system are given by:

Xi = -2.07 
X2 = - 1-2 x 102 
X3 = -3.13

If the explicit method is used to solve this problem, then the stability matrix for the 

method is given by equation (4.73), where the coefficient values can be obtained from 

the matrix given in equation (4.83), and hence, taking a typically large h. e.g. h = 1, the 

stability matrix w ill become:

33



2.88 x 10"1 7.12 x 10” 1 0
1 1.00 x 10“54 -3 .3 8  x 106

0 1.48 x lO "6 9.76 x lO ’ 1

(4.84)

The eigenvalues for this matrix are given by:

Xj = 1.71 x 10” 1
X2 -  5.47 x 10"1 + 2.02 i
X3 = 5.47 x 10"1 - 2.02 i

I X2 I = I X3 I = 2.095, and since this is greater than one, a stable solution to the 

problem using the explicit method may not be possible, since errors could grow

throughout the integration. It is not possible to tell when the solution will become

unstable, but the deciding factor here is that the explicit method should not be used.

4.44 Exam ple 3. The next problem compares the performance of the explicit method 

w ith the predictor-corrector pair in solving a mathematically stiff problem. The 

example is a well known stiff test problem [32], and has been solved, first by the 

explicit method, and then by the explicit and implicit methods acting as a pair. It is a 

non-linear problem that comes from the field of chemical kinetics, and was originally 

published by Robertson [70]. It involves three equations, these being:

y {  + 0.04y1 -  104y 2y 3 = 0

y2' -  0.04yj + 104y2y3 + 3 x 107y22 = 0

y3* -  3 x 107y22 = 0

(4.85)

(4.86)

(4.87)

The initial conditions are

y j(0 ) = 1 . y2(0 ) = 0 , y3(0 ) = 0

Also,

Yi(t) + Y2( t)  + Y3(t) = 1. for all t (4.88)

34



The problem is solved between 0 and 100 seconds.

Writing equations (4.85), (4.86) and (4.87) as a system will give:

yi*
y2f =

ya*

-.04 104y 3 0

0.04 - 3  x 107y 2 -104 

0 3 x 107y 2 0

yi
Y2

ya

and the Jacobian matrix for the system is given by:

0.04 -1 0 4y 3 - 1 0 4y2

-.04 104y3 + 6 x 107y 2 104y2 

0  —6 x 107y2 0

(4.89)

(4.90)

This matrix has one zero eigenvalue and two real negative eigenvalues which are 

functions of time. Figure 4.6 shows the varying time constants given by:

T(t) = Re( xTU0

and the stiffness ratio. S(t), which varies from 0(104) to (XlO5).

4.45 A pplying the  new  in teg ra tio n  m ethod. Because of the relationship given by 

equation (4.88), it is possible to rewrite equations (4.85), (4.86) and (4.87) as two 

differential equations by substituting for y3 in equations (4.85) and (4.86). The new 

system will be:

y i'

y 2

—0.04—104y2 104—104y2

0.04-H104y2 -104+104y2—3 x 107y2
yi
y 2

(4.91)

and

y3(t)  = 1 -  y i(t)  -  y2(t)

The system matrix for this problem, given by equation (4.91), is initially non-

35



diagonally dominant, as is the system matrix of the original fu ll set of equations. 

Hence stability for the explicit method cannot be guaranteed. The coefficients for the 

new explicit method are:

a in = (-0 .0 4  -  104y 2„) bln = (104 -  104y 2n)y2n

a2n = 104 +  104y2n -  3 x 107y2n b2|) = (0.04 +  104y2n)yln

The coefficient values for the implicit method are similar to those for the explicit 

method, with the subscripts n replaced by subscripts n+l. on the right hand side of the 

equalities given in the equations above.

4.46 Results fo r  th e  tw o  methods. The results have been obtained using two 

tolerances. 1 x 10~3 and 1 x 10-4. This tolerance, for both the methods, is used to 

control the integration time step by limiting the largest relative error per integration 

step. The tolerance is also used by the Newton-Raphson iteration scheme in conjunction 

w ith the implicit method to ensure that the iterates have converged to an acceptably 

accurate value. The initial step size is chosen as h0 — 1 x 10-4 so as to be of comparable 

order to the smallest time constant. Figure 4.7 shows the manner in which the step size 

increases during the integration for the explicit method and Figure 4.8 shows the 

manner in which the step size increases for the implicit method. Over the range t = 

[0.1  x 10-3], then the rapidly varying transient is accurately approximated using a 

small step size. Once this transient has decayed sufficiently, the step size increases to a 

value that gives an acceptably accurate approximation to the slowly varying transient. 

The amount of computation used by the two methods in solving this problem is 

summarised in table 4.4. The explicit method does require smaller time steps in order 

to ensure that the local error criteria is satisfied, and this indicates that the stability 

properties of the method are a handicap for problems of this type. The results for the

36



predictor-corrector pair demonstrates the improved stability properties of the implicit 

method which holds with the theory developed earlier in the chapter.

4.47 As a comparison, this problem has also been solved by Hall and W att [32] using a 

weighted combination of the Forward Euler and the Backward Euler method. The 

method they used is:

Yn+i = Yn + h(0.55f(tn+1,yn+1) + 0.45f(tn,yn)) (4.92)

This method is A-stable. and leads to the formula

(1 + 0.45hA)
Yn+1 (1 — 0.55h\) Yn

when applied to the test equation

y' = Ay A < 0 y(0) = 1

Using L’hopital’s rule, it can be seen that

y n+i (1 + 0.45hA) _  - 9  . . . .  — -7-------------   —> ------ as I hA I oo
y n (1 — 0.55hA) 11

and so the method is A-stable for all h with A < 0. The order of the method is one 

w ith the principal error term  being J L h 2y(£)". Again, the problem was solved using

two values of the tolerance parameter, 1 x 10~3 and 1 x 10-4. Figure 4.9 shows how 

the step size changes over the integration and table 4.5 gives a summary of the amount 

of computation involved in solving the problem using the method given by equation 

(4.92). The method is better than the explicit form of the new method for solving this 

problem, but not as good as the predictor-corrector pair.

The next set of examples illustrate the stability properties of the implicit method. 

The first problem is the non-diagonally dominant system discussed in section 4.43.

37



4.48 Example 4 - Non-diagonally dom inan t system . The resultant system, with 

reference to equation (4.82), is given by:

Pi*

p2‘ II

p3'

_ Bk
Vl

Bk
v2

0

Bk
Vl
Bk
v2

0

0

BDn
V 2

_ £
J

Pi
BQi

p2 V l

+ 0

p3
T,
J

Substituting the data values given in table 4.4 will lead to the system matrix

-1 .24  1.24 0
1.24 x 102 -1 .24  x 102 -4 .2  x 108 

0 1.5 x 10-6  -2 .4  x lO "2

and the problem is inherently stable since the system eigenvalues are:

Ai = -2.07  
X2 = - 1.2 x 102 
X3 = -3.13

If the implicit method is used to solve this problem, then the stability matrix for the 

method is given by:

[I -  G]"1 (4.93)

where I is the (3x3) identity matrix, and

G =

( l - i
a“ r

"*22_ A

(1—e ail»-nh).ai2n+1 “ • l l - .  A  E l 3 n+1

a l l n + l

“*22_ A  a22n+1( 1—e "+1 ) . r 1. ( 1—e )

au,*i 
-*22_,h * 23^

a22n.. 

-a33_A a31„+l
(1 —e "+1 )-

a33
( 1-1

a22„+l

._asV i l“) a32"*>
n + l a33.

(1 —e )

( 1—e '“ B+r) 

( 1—e

a22n + l

-a33n+ih) a33n+1
a33n + l

A sufficient condition for the method to be stable is that all the eigenvalues of the G

38



matrix have negative real parts. This will ensure that the errors decrease throughout 

the integration process. Evaluating the G matrix, taking h = 1, w ill give:

G =
-2 .4 7  2.47 0

9.98 x 1053 -9 .98  x 1053 -3 .37  x 1060 

0 1.52 x KT6 -2 .4  x 10"2

(4.94)

The necessary and sufficient conditions for this matrix to have three eigenvalues with 

negative real parts are:

S f  > 0  

S3C >  0

SiGS2G -  S3g >  0  

where the Sj's are defined in section 4.32.

Now

S f  = 9.98 x 1053 > 0  

S2° = 5.14 x 1054 

S3C = 1.26 x 1055 > 0

SfSz0 -  S3C = 5.13 x 10108 -  1.26 x 1055 > 0

Consequently, the eigenvalues of the G matrix have negative real parts, and so the 

implicit method w ill be stable for h = 1 , although the explicit method is not stable for 

this same value of h.

and

4.49 Exam ple 5 - S ym m etric  m atrix . This example takes a symmetric system with 

negative eigenvalues and shows that this is enough to ensure that the G matrix has 

negative eigenvalues. If the system matrix is given by:

39



A =
- 2  -1  -1  
-1  - 3  - 2  
- 1  - 2  - 4

then the eigenvalues of this matrix are

Xj = -1.31 
X2 = -6.05 
X3 = -1.64

Taking h = 1, the G matrix for this problem is given by:

G =
-6 .3 9  -3 .1 9  -3 .19
-6 .36  -19 .09  -12.72 

-13 .40  -26 .80  -53 .60

and the eigenvalues of this matrix are:

XlG = -4.94 
X2C = -62.70 
X3° = -11.44

Hence the eigenvalues of the stability matrix for the implicit method are all less than 

one in modulus, and so the implicit method is suitable to be used to solve this problem, 

from the point of view of stability.

4.50 Example 6  - Low er tr ian g u la r  m a trix . This example presents a triangular 

system matrix, in this case a lower triangular matrix, with negative eigenvalues, and 

shows that for this system, the stability matrix of the implicit method has only 

eigenvalues with modulus less than one.

If the system matrix is given by:

A =
- 2  0 0 
- 3  - 3  0 
- 1  - 2  - 4

then the eigenvalues for the system are

40



=  - 2.0 
X2 = -3.0 
X3 = -4.0

If h is taken as 1, then the G matrix for the implicit method is given by:

G =
-6 .3 9  0 0

-1 9 .0 9  -1 9 .0 9  0
-1 3 .4 0  -2 6 .8 0  -5 3 .6 0

and the eigenvalues for this matrix are

\ p  = -6.39 X2C = -19.09 X3C = -53.60

This again illustrates the theoretical results obtained in section 4.30, and the last three 

examples highlight the cases for which the inherent stability of the original system 

will ensure the stability of the numerical method.

41



Conclusions

4.51 Although there are no general conclusions that can be drawn with regards to the 

stability properties of either of the methods with relation to the original system 

matrix, it is apparent that the stability properties of the implicit method are far 

superior to those of the explicit method, which is to be expected since implicit methods 

in general have much larger stability regions than corresponding explicit methods. 

Also, for the examples that have been chosen so far. numerical instability has not been 

demonstrated provided that a sufficiently small time step and error tolerance have been 

used when applying the methods. One important result that has been established is the 

numerical stability of the explicit method when it is applied to strictly diagonally 

dominant systems. This leads to an interesting branch of work that will be 

investigated in chapter 7. This work involves applying the explicit method to solve sets 

of partial differential equations which will reduce to diagonally dominant sets of stiff 

ordinary differential equations when discretised in both the time and the spatial 

directions.

4.52 The new method has been analysed, and a time step control has also been 

developed for use with both the explicit and implicit forms. Although the method is 

only first order accurate, it does have desirable stability properties, and consequently 

may prove to be a useful integration method for solving sets of differential equations 

that are mathematically stiff. Having tested and studied the new method, the next 

chapter looks at its implementation inside of the HASP package as a general purpose 

integrator.

42



Predictor-Corrector Pair Gear's Method

Test Problem Tolerance

(secs)

C.P.U.

(secs)

Tolerance

(secs)

C.P.U

(secs)

Maximum 

Stiffness Ratio

Problem 1 

t=[0,5] secs

1 x 10"3 

i  x l c r 4

7.9

8.1

1 x 10"5 21 1 x 103

Problem 2 

Case A 

t=[0,6] secs

1 x 10~4 3.41 x 102 1 x 10"5 2.212 x 102 1 x 103

Problem 2 

Case B 

t=[0,6] secs

1 x 10"4 1.700 x 103 1 x 10"6 1.849 x 103 1 x 105

TABLE 4.1 C.P.U. TIMES FOR PROBLEMS 1 AND 2 USING A TIME STEP CONTROL



Symbol Description Value

Ai Area of the piston in actuator 1 4.91 x lO ^m 2

a 2 Area of the piston in actuator 2 4.91 x lO ^m 2

Viscous friction coefficients 9.82 x lC^N/m/sec

Mass to be moved by actuator 1 1.0 x 102 Kg

m 2 Mass to be moved by actuator 2 2.0 x 101 Kg

V Gas volume 5.8 x 10~2m3

n polytropic index of gas 1.6

Qi Main flow 1 x 10-2 m3/sec

P Oil pressure in pipe - initial value 1 x 107 N /m 2

u1.2 actuator velocities - initial values 0 m/sec

TABLE 4.2 DATA VALUES USED FO R  TH E A CCUM U LA TO R-ACTUA TO R CIRCU IT



Symbol Description Value

B Bulk modulus of the hydraulic oil 1.4 x 109 N /m 2

f Viscous friction coefficient 4.8 x 10-1 Nm/rad/sec

k Orifice flow coefficient 1.315 x 10“14 m3/sec/N /m 2

T i Load torque 3 x 102 Nm

Q i Input flow rate 3.5 x 10~3 m3/sec

J The inertia of the load 2. x 101 Kgm2

Vl Volume of pipe 1 1 x 1<T2 m3

v2 Volume of pipe 2 1 x 10-4 m3

Dm Motor displacement 3. x 10“5 m3/rad

<t)~m Angular velocity of the motor - initial value 1. x 102 rads/sec

P i oil pressure in pipe 1 - initial value 5 x 106 N/m 2

P 2 oil pressure in pipe 2 - initial value 4 x 106 N/m 2

TABLE 4.3 DATA VALUES FOR ORIFICE-MOTOR CIRCUIT



Accuracy parameter € 10‘ 3 1 0 ^

Method Integration range 0-1 0-10 0-100 0-1 0-10 0-100

Explicit No. of successful steps 230 292 391 1606 2666 3613

No. of rejected steps 10 14 17 14 18 21

Method No. of times steps size doubled 6 8 9 6 8 11

Implicit No. of successf ul steps 31 34 43 140 180 203

No. of rejected steps 1 2 3 4 2 6

Method No. of times step size doubled 10 12 13 10 12 14

TABLE 4.4 PERFORMANCE OF NEW METHOD ON STABILITY EXAMPLE 3

Accuracy parameter € 10"3 1 0 -4

Integration range 0-1 0-10 0-100 0-1 0-10 0-100

No. of successful steps 41 55 65 111 160 214

No. of rejected steps 1 1 2 3 3 3

No. of times steps size doubled 12 15 20 12 15 18

TABLE 4.5 PERFORMANCE OF METHOD FROM HALL & WATT ON STABILITY EXAMPLE 3



XGh

Im aginary

STABLE

u n s t a b l e

XGh

Real

FIG U R E 4.1 STA BILITY  REGION FOR TH E NEW IM PL IC IT  M ETHO D



Imaginary

UNSTABLE

STABLE

- 2

FIG U R E 4.2 STA BILITY  REG IO N  FOR THE NEW E X P L IC IT  M ETH O D



In
te

gr
at

io
n 

ste
p 

siz
e 

h 
(S

ec
on

ds
)

10

10 Solid line, e=10 ■*; broken line, e=10—i n—4

io‘l l

10'21

10*31

10
-4 .

-5

20
160

260

600

43

950

400

460

10
10

-4 10
-2 -1

1 0 "  10 10 

Integration variable t (Seconds)

10

FIG U R E  4.3 V ARIATION OF STEP SIZE AND NUMBER O F STEPS IN 

SOLUTION  OF PROBLEM  1 W ITH TIM E STEP CO NTROL



Gas volume = v

Qi

LU z
valve 1

M i

777/ / / /

LU Z
valve 2

M2
V /7 /? / /

Actuator 1 Actuator 2

FIG U R E  4.4 ACCUM ULATOR-ACTUATOR C IR C U IT  FOR

STABILITY EXAM PLE 1



P R I M E R O T A T I O N A L

M O V E R

M O T O RP U M P

FIGURE 4.5 ORIFICE-MOTOR CIRCUIT FOR STABILITY EXAMPLE 2



Ti
me

 
co

ns
ta

nt
s 

Re 
(-

10 -

S(t) x 10'

Integration variable t (Seconds)

F I G U R E  4 .6  S T I F F N E S S  R A T I O  S(t) A N D  T IM E  C O N S T A N T S  x(t) O F

S T A B I L I T Y  E X A M P L E  3



In
te

gr
at

io
n 

ste
p 

siz
e 

h 
(S

ec
on

ds
)

Solid line, e=10 •*; broken line, e=10- 4

460
120 ;

30
67

460:
45 400

740
160 !

50
413

30 60

40 400
23320

100

Integration variable t (Seconds)

FIGURE 4.7 VARIATION OF STEP SIZE AND NUMBER OF STEPS IN 

SOLUTION OF EXAMPLE 3 USING EXPLICIT METHOD



In
te

gr
at

io
n 

ste
p 

siz
e 

h 
(S

ec
on

ds
)

Solid line, e=10 broken line, e=10 ^

10

0 26
10

10

1
10

202
10

20 r3
10

10 254
10

5
10 4 3 2 1 1 20

Integration variable t (Seconds)

FIGURE 4.8 VARIATION OF STEP SIZE AND NUMBER OF STEPS IN 

SOLUTION OF EXAMPLE 3 USING IMPLICIT METHOD



In
te

gr
at

io
n 

ste
p 

siz
e 

h 
(S

ec
on

ds
)

Solid line, e =10 •*; broken line, e=10 4

14

: 16

4 4

Integration variable t (Seconds)

FIGURE 4.9 VARIATION OF STEP SIZE AND NUMBER OF STEPS IN 

SOLUTION OF EXAMPLE 3 USING METHOD SUGGESTED 

IN HALL & WATT



C H A P T E R  5

D ETA ILED  CONTENTS P ag e

Introduction 1

Description of HASP 2

Program generator 4

The constituent parts of the HASP simulation package written by 

the program generator 7

Main program MAIN 7

Subroutine CONTRL 8

Subroutine AUX 8

Subroutine OUT 9

Component model selector file CAD.OPT 9

Numerical integrator inside HASP 10

Integer LIMIT 12

Generalisation and implementation of the new method 12

Perturbation technique for forming the Jacobian matrix 13

Linear interpolation 19

Modifications to the models and the program generator 20

Linear actuator model 23

Changes to the linear actuator model 24

Changes to the program generator 25

Implications for the implementation of the integrator 26

Modelling discontinuities and non-linearities 26



Application of the new method inside HASP 29

Results for test problem 1 30

Results for test problem 2 30

Conclusions 31

Tables 5.1 - 5.5 inclusive 

Figures 5.1 - 5.21 inclusive



CHAPTER 5

IM PLEM ENTATION AND TESTING OF THE NEW  

INTEGRATION METHOD W ITH THE HYDRAULIC 

AUTOMATIC SIMULATION PACKAGE

In tro d u c t io n

5.1 Having developed and analysed in detail the new method, the next step is to 

implement a generalised form of the integration routine inside the HASP package, 

and hence assess the behaviour of the method when it is used in this way. This 

chapter explains the structure and the workings of the HASP simulation package, 

and describes how a numerical integration method must be im plem ented. The 

generalisation of the predictor-corrector pair as a complete numerical integrator is 

discussed, as is the placing of the new method inside the package. The changes that 

must be made, to allow the use of the new method rather than Gear’s method, are 

explained, and examples of necessary changed computer coding within HASP are 

given. Finally, dynamic simulations of Fluid Power circuits have been performed, 

and the performance of the new method with these circuits is exam ined, and 

compared with the performance of Gear's algorithm, which has previously been used 

by the package. The simulation results obtained by the different methods are 

presented and discussed.

1



D escrip tion  O f HASP

5.2  The Hydraulic Automatic Simulation Package consists of a set of computer 

programs, and has been developed to aid the design of hydraulic systems. The 

package is intended for use by engineeers who do not have a high degree of 

computational skill, or expertise in mathematical modelling, and consequently the 

package is dependent on many automatic processes.

5.3 The package consists of a library of individual mathematical models, each 

written as a FORTRAN subroutine representing a discrete physical component of a 

Fluid Power system; together with a program generator and a numerical integration 

routine. An overall view of the HASP package is shown in Figure 5.1. The 

component models form individual blocks that are placed into position by the 

program  generator to represent a hydraulic circuit. Having used the program 

generator, the user is left with a unique simulation program corresponding to a 

unique hydraulic circuit. The simulation programs are considered as temporary, 

whereas the program generator is permanent, and with the integration routine, 

constitutes the most important part of the package. The integration routine is also 

permanent, and must be able to solve any differential equations that arise from 

describing the behaviour of a hydraulic circuit. To describe to the reader how the 

HASP simulation package operates, a hydraulic circuit will be considered, and the 

action taken by HASP in its solution will be studied.

2



5.4 In order to use the package, the user must initially construct a computer block 

diagram of the hydraulic circuit whose behaviour is being investigated. This block 

diagram approach was first developed by Rolfe [71] and is representative of the way 

in which individual models of hydraulic components are connected together in a 

circuit. Considering for example the hydraulic actuator circuit shown in Figure 5.2, 

that has been studied in a previous chapter. A computer block diagram, indicating 

the individual component models necessary to represent the system behaviour, is 

shown in Figure 5.3. The block diagram contains boxes, each representing a model, 

which are connected together by lines that are termed links [4]. These links do not 

represent physical components such as pipes or shafts, but describe an exchange of 

information between models. A four character name is used for each model and is 

written in the box. The first two letters of the model name represent a particular 

class of model, the second two, a particular model in that class. For example, a pipe 

model will commence with the characters PI and the remaining two characters will 

depend on which pipe model is required. An illustration of a pipe model is shown in 

Figure 5.4. This receives inputs from up to eight system components on eight links 

and outputs the pressure which will be needed by other component models for 

calculation purposes. A simulation program of the hydraulic circuit can now be 

produced since the model information and linking shown on the block diagram is 

subsequently entered into a simple data file for input to the program generator.

3



Program Generator

5.5  The program generator is the most important part of the package and exists 

alongside a comprehensive library of component models. Each model is an individual 

subroutine and the program generator automatically links together the necessary 

routines in order to create a unique simulation program for each individual hydraulic 

circuit. The program generation stage of the simulation will write a complete set of 

FORTRAN files, which are fully explained later in the chapter, and place them in 

the correct calling sequence. The only other permanent component in the completed 

program is the integration subroutine, which is written so as be to suitable for use 

with any circuit. This will be discussed in detail later in the chapter.

5.6 Once the block diagram has been constructed, then the controlling segments of 

the simulation can be generated by the user. The program generator is invoked and 

the questions posed are answered. The questions issued by the generator are entirely 

concerned with the definition of the block diagram produced by the user, and the 

production of a file to store that information for possible retrieval, amending and 

regenerating in the future. Assuming that the circuit data defined by the user is 

acceptable to the program generator, several routines are written. Specifically, four 

FORTRAN source files are produced, namely: MAIN, OUT, AUX and CONTRL, 

which form the main segment and three controlling subroutines of the simulation 

program, together with a selector file which effectively instructs the component 

library which models are to be attached to the controlling segments. These routines 

are introduced later.

4



5.7 Again, considering the example shown as a hydraulic circuit in Figure 5.2. The 

first step the user must take, having selected appropriate HASP component models 

and formed the schematic block diagram of the circuit, is to convert the linking 

diagram into a table of information acceptable to the program generator. The table of 

data corresponding to Figure 5.3 is shown below

10
PU0001 08 09 12
PM 0001 12
PI 0501 02 09 10
PC 0101 10 11
TK 0301 05 08 11
DC 1T01 01 02 03
PI 0601 03 06 01
AL 0001 06 07 13
PI 0602 04 07 02
DE 0101 01

5.8 The first line indicates that there are ten component models in the circuit. The 

remaining lines list the component models in an arbitrary order and define the links 

between them. Each line consists of a four character mnemonic for the component 

model, the two digit identifier to indicate multiple occurrences of the same model, 

and the external links in the form of the two digit numbers separated by single blank 

spaces.

5.9 At this stage the program generator is employed. Since the information outlined 

above is defined in a simple interactive manner, the user will have the chance to 

correct typing and logical errors. The generator employs a sophisticated algorithm to

5



check the validity of defined data and display diagnostic error messages if problems 

with the entered data are encountered. When each component model is written, the 

information required by that model as input is stored in a file called the 'component 

models attribute' file, and this is interrogated at various stages of the generation 

procedure in order to aid in checking the validity of the data, and also to set up the 

order and form of the call statements to the component model subroutines. Provided 

the defined data is acceptable, the four FORTRAN files and one component selector 

file are produced. At this point, the program generator has completed its task, and it 

is now necessary to link the generated segments to selected segments from the 

component model library.

5.10 When the routines written by the generator have been linked together, along 

with the integration routine, which is discussed later, then a complete simulation 

program is produced. This program is run interactively, and the user responds to 

questions posed by the computer. When a simulation is performed for the first time, 

all the dimensions and performance data must be supplied for each model in turn, and 

this is termed the input stage. The simulation is then performed for a period of real 

time specified by the user, after which the results may be examined. It is also 

possible to view the results during a simulation. Subsequent simulations of the 

same circuit can be performed by the user changing data information for selected 

items. The program generation stage is only repeated if the user wishes to change 

the structure of the circuit. The reader is again referred to the main features of the 

HASP system shown in Figure 5.1.

6



T he C o nstituen t P a rts  O f The HASP Sim ulation Package W ritten  

By The P rog ram  G enerato r

5.11 The action of the four FORTRAN files and the component model selector file 

which the program generator automatically writes, are now described. The overall 

simulation program is formed when the compiled versions of these files are linked to 

the compiled versions of the relevant component models and the integration 

subroutine, and is called CAD.TSK. The four FORTRAN files, mentioned earlier, 

form the body of the simulation program. MAIN is the main calling program, 

CONTRL is for the collection and transfer of data, AUX calls the integration 

subroutine and component models in a determined order, and OUT deals with the 

output from a simulation. The programs, written by the program generator for the 

example introduced earlier in the chapter, can be found in Appendix C.

5.12 M ain program  M AIN. When writing well structured FORTRAN programs, 

it is usual practice to have a main body of code which calls the constituent parts of 

the program in a direct manner. MAIN is the main body of the simulation program 

CAD.TSK which calls the other routines controlling the individual workings of the 

simulation program. In particular, MAIN calls two segments, each of which 

recursively calls other routines. Indirectly, one of these segments, CONTRL, is used 

to input the dimensional and performance data values, and the other segment is the 

integration subroutine required to perform the simulation.

7



5.13 S ub rou tine  CO N TRL. The subroutine CONTRL is called from the main 

segment MAIN and this routine allows each component model parameter input 

section to be accessed individually in order to supply the dim ensional and 

performance data details, which must be supplied by the user before the simulation 

commences. Data for each component in the hydraulic circuit being simulated are 

entered from the input routines of each individual model. For example, the piston 

area, initial displacement and velocity of the actuator are defined by the user 

inputting values to the actuator model input routine. The complete data for all 

components are then collated within CONTRL, and in turn transfered to the model 

calculation routines via MAIN.

5.14 S u b ro u tin e  AUX. During a sim ulation, the num erical in tegration 

subroutine does not call individual component models directly. To ensure the 

flexibility and general application of the integrator, a separate routine is called 

instead. This routine is called AUX, and is written by the program generator for each 

hydraulic circuit that is to be simulated. AUX contains the subroutine calls to the 

component model calculation routines in a specified order, pre-determined by the 

nature of the models and their position in the circuit. AUX enables algebraic 

inform ation to be exchanged between component models, derivatives of state 

variables to be transmitted from models to integrator, and state variables to be 

transmitted from the integrator to models requiring them. An integer flag, called 

LIMIT, which is explained in detail later, also operates inside of AUX, and this is 

passed to and from the integrator and the component models. Its values can change

8



the action of AUX.

5.15 S ubrou tine  OUT. OUT is a routine which is used to  store the simulation 

results. The results are automatically stored in a file called CADRES.DAT, and this 

file can be accessed by the user via HASP to obtain graphical results, or 

alternatively a numerical printout during the simulation. The graphics routine, 

although simple, does provide the basic information generally required by the user. 

The numerical output, in contrast, is particularly useful for a detailed examination 

of the results.

5.16 C om ponent m odel selector file CAD.OPT. Since M AIN calls either 

the model input routines via CONTRL, or the model calculation routines via the 

integration routine and AUX, a file has been written which automatically selects the 

required component model subroutines from the library when the linking process 

takes place to form the input and simulation portions of the simulation program. 

The program generator writes a unique CAD.OPT for each individual simulation, and 

this file is used to link the constituent parts that the generator has written, to the 

relevant routines from the model library and the integration routine.

9



N um erical In te g ra to r  In side  HASP

5.17  Figure 5.5 shows a schematic diagram of the integration process inside 

HASP. The integration method requires information from AUX, and in the case of a 

classical integration method, this will be in the form of state variable derivatives. 

When the numerical solution has been found at the next time step, or if more 

information is required, the integrator passes the latest state variable values back to 

AUX which then calls the model calculation subroutines in an appropriate order so 

as to collect new information for the integrator, and hence the process is repeated.

5.18 When Gear's method is called by MAIN, then the call statement is:

CALL GEARKC(X,XEND,Y^N,AUX,TOL,TEST,TAB ,OUT,F,DFDY,DIFJFAIL)

Gear's method was developed by C.W. Gear [63], and was adapted for use with the 

HASP package by K. Caney and W. Richards. It was devised specifically for solving 

stiff sets of differential equations. The integration method, which is variable order 

and variable step, effectively chooses the order of the method dependent on the 

complexity and stiffness of the problem being solved. The method employs a 

Newton-Raphson iteration scheme in the solution of its implicit corrector equations, 

but does not evaluate a new Jacobian at each time step provided the iterates converge 

within three iterations. Consequently, the method is efficient in its re-evaluation of 

this matrix. However Gear's method is not suitable for solving discontinuous 

problems [72], since it is a multi-step method, and special simulation techniques are 

employed at the points of discontinuity in the form of cubic smoothing. An



explanation of cubic smoothing is given later in the chapter, and a full description 

of the action of Gear's method inside HASP is given by Tomlinson [4].

5 .19 Here, a detailed explanation of the variables in the argument list of the call 

statement to GEARKC, and their action in the integrator, or in AUX, is given. 

These arguments are important since they are recognised by the models and the 

generated FORTRAN subroutines, and must be employed by each integration method 

that is implemented inside HASP.

X - the time in seconds that the simulation has reached 

XEND - overall simulation time defined by the user in seconds

Y - array that stores the state variables. Its size is dependent

on the number of system equations 

N - the number of state variables

TOL - the tolerance used for the time step control, and the

convergence criteria with the iteration scheme.

TEST - the variable used to define the type of error test that is 

used with the iteration scheme.

TAB - The print interval of the results in seconds

F, DIF - Dummy arguments used in the evaluation of the Jacobian

DFDY - contains the elements of the Jacobian

IFAIL - integer used to indicate a failure inside of the integrator

11



5.21 In teger L IM IT . Besides these arguments, there is another important integer 

variable called LIMIT. This variable aids in testing to ensure that no physical 

conditions have been violated by the integrator. Once an integration step has been 

completed by the integrator, in that both the convergence requirement and the local 

error criteria have been satisfied, one further test is necessary before the step can be 

accepted. The integrator is not able to decide whether it has violated a physical 

condition, such as when an actuator apparently extends beyond the limit of its 

travel, and so the models must check that no physical condition has been violated. 

LIMIT is used by the integrator in order to communicate with the component model 

subroutines, and takes several possible values depending on the stage of the 

integration. At the beginning of the simulation LIM IT is set to 0; during a 

prediction or correction stage, LIMIT is set to 1, and at the completion of an 

integration stage, LIMIT is set to 2. Having been set to 2, a final call is made to 

each of the model subroutines via AUX in order to ensure that no physical condition 

has been violated. If there is a violation, the integration step is rejected and LIMIT 

is set to 3 by the model that detects the violation. When LIMIT returns from the 

models, through AUX, and back to the integrator, and the integrator detects that the 

value of LIMIT is 3, then the integration step is repeated with the integration step 

length halved.

G eneralisation  A nd Im plem en ta tion  O f The New M ethod

5.22 The remainder of the chapter deals with the writing of the new method in a 

form suitable for use inside the HASP package. This will include the formulation of

12



a Jacobian matrix for the iteration scheme using a perturbation technique and other 

modifications that must be made to the method so as to ensure its trouble-free 

implementation. Besides the changes that must be made to the method, components 

of the HASP package must also be adapted for use with the new integrator. These 

adaptations, to the program generator and to the models, are discussed, and the 

resultant routines that are produced are presented.

5.23 P e r tu rb a tio n  technique fo r fo rm ulating  the Jacob ian  m a trix . W h e n  

applying the corrector form of the new method, the Newton iteration scheme that is 

needed to solve it will require the formulation of a Jacobian matrix. Unlike the 

examples found in chapter 3, where specific Jacobian matrices were evaluated for 

each of the problems, it is necessary to devise a means for approximating, in 

general, a Jacobian matrix regardless of the particular problem. The process that has 

been used to do this is derived from the first principles definition of a partial 

derivative, and this is now described

5.24 When applying the corrector, the form of the solution is given by the 

numerical scheme:

^ i n + 1  ,  ^ + 1 ^  a in + l^  .

>Wl =  ----- (e - 11 + y.ne 1 = 1-2'~'N <5-0
in+1

where N is the number of differential equations being solved. In matrix form, this is 

given by:

V .  = -  D*

13



where

T

X = [ y l ’y2’*"’yN ] f z =
bln+l b2n+l

aln+l a2n+l

Nn+1

W i

Di =

0 0 aNi+lh

0e -1

0  a2n+lh

d 2 =

o o aN»+lh

Forming E(y) = Q, then the Newton iterations will be given by:

V i }-= v i  -

Consequently, the Jacobian of F(y) is required, and this will be

Defining

X.. = d( m+1)/9y., evaluated at the point (ln+i»i^S+i)
1J ain+l 3

(5.3)

(5.4)

14



then the full Jacobian will become:

a liHlhHe -l)Xn  (1-e )X12

a2n+l̂ a2nflh(1-e )X21 He -1)X22

aN ttlh aNH-lh(1-e )XN1 (1-e )XN2

airv4-1 h
d-e )XIN

a2n+l*1
(1-e )X,2N

aMM.ih
l-(e -1)XNN

To form estimates to X„ it is necessary to return to the standard definition of a

partial derivative.

5 .25  For the function f^tj.t^t^,...,^), then the partial derivative in the 

direction is defined as:

df l _1im f l ( tl+ h»t2>t3>",,tn) " f l^tl >t2,t3,“,,tn̂  
dt^ h->0 h

and in general, the partial derivatives for this function are defined as

f̂ l ..  ' f l ^ l ’t2’t3’,”,tn̂—— = lim------------------------------------------------
oti h->0 h

The way in which num erical integration methods form an estim ate to these 

derivatives is to perturb the variable, with respect to which the partial derivative is 

required, and then evaluate the new function value with this perturbed variable. From 

this is subtracted the original value of the function, and the resultant is divided by

the perturbation made, i.e. to form an approximation to the partial derivative dfj/Stj,

15



then the process would be:

form

fjCnew) = fjC tj+ktpt^ tn)

f . (old) = f

then

df j fj(new) - fjCold) f^new) - f^old)

(tj+ktj) - tj ktjkt.1

and consequently, provided the perturbation is small enough, then a reliable 

estimation to the derivative can be formed.

5.26 For the Jacobian matrix, the partial derivatives are formed in a similar way to 

that described in the last section. Since both aj and bj, i= l,2,...,N , are functions of 

yj, then to form the Xy it is necessary to perturb the yj and then re-evaluate the 

function

bin+1

ain+l

In full, to formulate the partial derivative, Xy, then the process is to find 

bin+i(new) _
afa+1(new) ajn+1(y1.y2.....yj+ky.,...yN)

and

bin+l<°ld>  yN>

W ° ld) ain+l(-yl ’y2 yN>

16



from which can be formulated X.., since
ij

bin+l<new> _ bin+l<°1(P

W ° ew> '  W ° ld>
ky;'3

The value of k must be chosen carefully to ensure a sufficiently accurate estimation 

to the derivative.

5.27 The general integration algorithm for the new method is called from within 

MAIN. The call statement is:

CALL FOM (T,TEND ,Y,N,AUX,TOL,ITEST,TAB,OUT,IF AIL)

The arguments are identical to those described in section 5.20, although DIF, DFDY 

and F have been excluded as they were not deemed to be necessary in the argument 

list. Appendix C gives a complete documented listing and description of the 

generalised new method, and the following text describes the main considerations in 

the implementation of the method. When Gear's method makes a call to AUX, then 

the calling statement is of the form

CALL AUX (F,Y,T,N,LIMIT)

since the function values given by F are required to form the solution at the next

17



time step. However, for the new method, it is not the function values that are 

required, but coefficient values, which is explained in section 3.12. Consequently, 

from within the subroutine FOM, the call statements made to AUX are given by

CALL AUX (AAA,Y,T,N,LIMIT)

and the coefficient values can be passed back to the integrator from AUX in the array 

AAA(2N). This process is explained in detail later in the chapter, when the 

modifications that must be made to the program generator for the implementation of 

the method are discussed.

5.28 The following piece of code illustrates the formulation of a Jacobian matrix, 

when the coefficient values can be passed through AUX to the integrator

LIMIT = 1 

DO 10 I = 1,N

YY(I) = Y1(I) + EPS*Y1(I)
CALL AUX(BBB,YY,T,N,LIMIT)
A1(I) = BBB(I)

B1(I) = BBB(N+I)
YY(I) = Y1(I)

10 CONTINUE

This piece of code perturbs the predicted state variable values, Y1(N), and then calls 

AUX to determine the new coefficient values for each perturbed state variable. The 

array BBB(2N) will hold all the coefficient values on its return from AUX, and these 

are distributed to A1(N) and B1(N). The next piece of code is :

18



D O  2 0  I =  1JST

DIVIS1 = B(I)/A(I)
DIVIS2 = B ia )/A l(I)

DERTV(I) = (DIVIS2 - DIVIS 1 )/(EPS*Yl(I))
20 CONTINUE

The evaluated Jacobian is stored in DERIV(N). Precautions are taken, which this 

piece of code does not illustrate, to ensure that no divisions by zero are attempted, 

e.g. when A(I) = 0. These can be seen in the fully commented version of the 

program given in Appendix C, which also gives a complete description of the 

program action.

5.29 L in e a r  in te rp o la tio n . A linear interpolation process is employed by the 

subroutine implementing the new method, to ensure that no information is lost, 

whatever the value of the print interval input by the user. Since the method is 

variable step, it is unlikely that at each time step the differential equations have 

been integrated exactly on the print interval. Consequently, the process that is 

employed by GEARKC, and by the new method, is a decision making piece of code 

that determines when results should be transfered to OUT, and if this is not exactly 

on a print interval, then linear interpolation is employed to determine the result at 

the stipulated print interval point. The following algorithm further illustrates this 

idea.

The method has completed another integration step. The print interval is given

19



by TAB, the time when the results should be outputted is given by TTAB, and the 

time up to which the integration has been completed is given by T. The final 

simulation time is given by TEND

IF ( T = TTAB) THEN

OUTPUT RESULTS VIA HASP ROUTINE OUT 
TTAB = TTAB + TAB 

ENDIF

IF ( T > TTAB) THEN
USE LINEAR INTERPOLATION TO FORM AN ESTIMATE TO 

THE SOLUTION AT TTAB
OUTPUT RESULTS AT TTAB VIA HASP ROUTINE OUT 
TTAB = TTAB + TAB 

ENDIF
IF ( T .GE. TEND) THEN STOP 
ELSE CONTINUE WITH INTEGRATION

5.30 M od ifica tions  to th e  m odels an d  p rog ram  g e n e ra to r . O nce the 

method had been written in a general form suitable for use with HASP, its 

implementation inside the package was relatively trouble-free. The problems that 

remained were in the modification of the program generator and the models. The 

program generator must be modified to ensure that when the new method is used, 

rather than Gear's method, to solve a problem, then the necessary changes to the 

generated FORTRAN files, and the program selector file are made automatically. The 

changes to the models are made so that the necessary coefficient values are supplied 

to the integrator rather than derivative values. A flow chart describing the general 

structure of the algorithm adopted in implementing the new method is shown in 

Figure 5.6. This is given to complement the structure of the integration process in a

20



typical HASP simulation program which is shown in Figure 5.7. The component 

model calculation routines, shown in Figure 5.7, interfaced with AUX, are 

determined by the hydraulic circuit that is being simulated.

5.31 To illustrate best the way in which information must be passed from models 

to the new integrator, the example shown in Figure 5.2, for which the block 

com puter diagram appears in Figure 5.3, is again considered. After a brief 

description of the mathematical models involved in the simulation of this circuit, 

the actuator model will be isolated, and the formulation of the coefficient values for 

the new method from this model explained.

5.32 The mathematical models used in the circuit are as follows:

TK03 - represents the three port hydraulic tank. It supplies a user- 
defined pressure to the adjacent models which is independent of 
both flow rate and tank volume

PM00 - represents the prime mover. It supplies a user-defined angular 
velocity to the pump. The effects of speed droop, maximum 
torque and motoring are ignored

PUOO - represents the fixed displacement hydraulic pump. The analysis 
of the behaviour of the pump is based upon the Wilson model 

[3], Pump dynamics are ignored

PC01 - represents the supply system relief valve. The model supplies 

flowrate to the adjacent models based upon a user-defined 

pressure/flow characteristic. The characteristic is assumed to be 

linear, and leakage, saturation and valve dynamics are ignored

21



DE01 valve controller which defines the fractional displacement of 

the directional control valve DC1T

DC IT - represents a 4-way, 3-position directional control valve.
The model also incorporates the orifices on the supply and 

feed ports of the directional control valve

PI05 - represents the dynamic response of a frictionless pipe. The
model also accounts for the effects of air and cavitation

PI0601 - represents the length of pipe connecting the directional 

control valve to the linear actuator. This dynamic model 
accounts for the effects of air release and cavitation, and 

also accounts for volume change signalled by the 
movement of the actuator

PI0602 - represents the length of pipe returning from the actuator 
to the directional control valve

ALOO - represents a general purpose linear actuator model

5.33 When the hydraulic circuit is modelled, five first order ordinary differential 

equations are formed for the integrator to solve. This corresponds to five state 

variables and subsequently, the five derivative values are produced by the three pipe 

models and the actuator model. In the implementation of the new method, the output 

from these models must be reformed into the coefficient values that the method 

requires. The linear actuator is now considered and the necessary changes discussed.

5.34 L in ea r a c tu a to r  m odel. The linear actuator model has been developed in 

order to simulate the behaviour of a linear actuator with a constant load, and has

2 2



provision for end stops. The actuator may be inclined at any angle between plus and 

minus 90 degrees, and a schematic diagram of a linear actuator with load is shown 

in Figure 5.8. The model requires the solution of a second order ordinary differential 

equation representing the acceleration of the actuator. Consequently, two state 

variables are computed, one for actuator displacement, and the other for velocity. 

The model makes use of two signals to provide output of incremented volume change 

to pipes connected to the piston and rod ends of the actuator.

5.35 The equations that govern the behaviour of the actuator are given by:

j 1 2
—  = —  (P. A, - P A0 - fu - f  u - mgsinQ - kx - F sgn(u)) (5 5}^  jy{ ' m 1 out 2 w 0 c o w /

dx
(5.6)

where:

P jn - fluid pressure at piston end

Pout " fluid pressure at rod end
A i  - piston end area

A2  - rod end area
f  - viscous friction coefficient

fw - windage loss coefficient
u - velocity of piston
M - mass of piston and load
0 — angle of inclination of the actuator to the vertical

k - spring stiffness

x - displacement of piston
Fc - coulomb friction force

The equations of motion given here do not clarify the effects of stiction or explain

23



the end stop logic used in the model, but they are sufficient to explain how the 

information from the actuator is passed to the new integrator.

5.36 C hanges to the  lin ea r  a c tu a to r  m odel. For a classical integration 

method, such as Gear’s, the values of the derivatives given in equations (5.5) and

(5.6) are passed back to the method. Rewriting these equations into a form suitable 

for the new method will give:

= ~ ( -f  - fw»)u + - mgsine - lot - F sgn(u)) (5.7)
at M M

and

— = -x + (x+u) (5.8)
dt

E quation (5.8) is form ed using the technique described in section 3.22. 

Consequently, the coefficient values can be passed back to the integrator via AUX 

and these will be:

ACOEFF(l) = — (-f - f u)
M w

ACOEFF(2) = -1

BCOEFF(l) = - PQUtA2 - mgsin0 - kx - F.sgn(u))

BCOEFF(2) = x + u

and so the required information is now available for AUX to return to the new 

integration method.

24



5 .3 7  Sim ilar changes must also be made to the pipe models, but since the 

differential equations in these models rely on information from other models, it is 

necessary to ensure that the relevant data is exchanged before the coefficient values 

can be calculated. Once the models have been modified, the next step is to change 

certain portions of the coding in the program generator. The changes made in the 

generator itself are not discussed, since the explanation of massive portions of 

coding make this prohibitive. The changes can be found in the directory 

[CAPLEN.HASP.INHASP] on the VAX 750 in the School of Engineering [73]. The 

resultant programs due to these changes are now discussed.

5.38 C hanges to  the  p rog ram  gen era to r. When the system linking details 

have been entered, and the program generator has passed them as being acceptable, 

the user is asked which integration method is required to solve the problem. 

Originally, there was no choice, since the only method was Gear's method, but with 

the recent work carried out on the integrator, this choice has been extended to 

several methods. I f  the user has indicated that the required method is the new 

method, then the portion of the program generator that writes the segments MAIN, 

AUX, CONTRL, OUT, and CAD.OPT must ensure that the programs written allow 

the new method to be used. The modifications that are required have been carried out 

by the author, and, as a demonstration, then for the circuit that has been considered 

throughout this chapter, the resultant routines written by the generator for use with 

the new method can be found in Appendix C.

25



Im p lica tions F o r  T he Im plem entation  O f The In te g ra to r

5.39 The techniques used for modelling discontinuities and certain types of non- 

linearities are now discussed, since many Fluid Power systems demonstrate these 

mathematical problems, and the way in which they are dealt with is important in 

understanding the implications for the implementation of the integrator.

5.40 M odelling  d isc o n tin u itie s  an d  no n -lin earities . Since discontinuous 

problems provide difficulties for multi-step methods, special techniques have been 

developed in the component models to deal with the discontinuities that arise. 

Normally, at a discontinuity, a multi-step method, such as Gear's method, must stop 

and restart, so as not to violate the theoretical conditions that must be satisfied in 

order to ensure a unique solution. Unlike single-step methods, for a multi-step 

method, restarts are difficult since the method relies on information at previous time 

steps, both to form a solution at the new time step, and to control the integration 

time step. One way of overcoming the problem of discontinuities for multi-step 

methods is to "smooth” the discontinuous function, and this approach has been 

adopted in HASP. The technique employed in the models is to use a cubic smoothing 

polynom ial to connect the two branches of a discontinuous function in such a 

m anner that the function and its gradient are continuous across the region of 

transition. A full description of the formulation and implementation of the cubic 

smoothing polynomial function is given by Hull [3], but here, in illustration, a 

discontinuous exam ple is considered and the method of approach adopted is 

discussed.

26



5.41 Figure 5.9 shows the operating characteristic of a typical component model, 

e.g. the pressure/flow characteristic of a pressure relief valve. This type of function 

will create difficulties for Gear's integration method. Figure 5.10 demonstrates how 

the sharp comers of the function are smoothed to ensure that GEARKC can solve the 

problem adequately. The way in which a model must be written to encorporate cubic 

smoothing, and recognise when it is needed, is also discussed by Hull [3]. However 

it has been found by the author, and by Wang [74], that the problems which this 

present when writing some models exceed the usefulness of the process. Models are 

much easier to write when conditional IF statements in the models are used in 

conjunction with single-step methods to overcome the problem arising at points of 

discontinuity. As already discussed in chapter 2, since single-step methods are self- 

starting and require only information at the last time step, discontinuities present 

less difficulties when these methods are used to solve problems of this nature. 

Consequently, in terms of user friendliness, and time-saving, if the user has to write 

model subroutines, then to save the effort involved in including cubic smoothing 

logic, a single-step method should be employed by the package. As well as 

im plementing the new method, the author has been involved with implementing 

Runge-Kutta methods inside HASP, these being single-step methods. Runge-Kutta 

methods will be discussed in some detail in chapter 8

5.42 Besides discontinuities, there are many other models that can, in certain 

circum stances, provide severe difficulties to the integrator. An example is the 

simple orifice restrictor, where the relationship between flow rate Q, and differential

27



pressure AP is given by the parabolic law:

Q = kj yj  I AP I sgn(AP)

The gradient of this function is given by:

—  =0.5(| AP|)‘°'5 
dAP

Hence, when the differential pressure is zero, the gradient of this function is 

infinite, and as the orifice usually connects two sections of pipe, zero differential 

pressure can rise to infinite stiffness. Since no integration method can cope with 

such a condition, much work has been done to find the best way of overcoming this 

particular problem.

5.43 One way of overcoming the problem of the infinite gradient at the origin for 

the orifice law is achieved using a practical engineering consideration. The flow 

through the orifice is assumed to be potential flow, and as in practice, the

relationship is laminar in the region of the origin, then a linear variation of flow

rate with d ifferential pressure is used. Figure 5.11 shows graphically the

representation of this model, and the only problem remaining is to determine the

interval each side of the origin in which to apply the linearisation assumption.

5.44 Another way of approaching this difficulty has been studied by Bowns and 

Rolfe [75], and has proved to be successful. Their method has been to use an 

iterative technique to solve the continuity differential equation for the pressures in 

the sections of pipe either side of the orifice, in addition to using the integrator to

28



solve the system differential equations. This technique is similar to an approach 

adopted by Bowns and Wang [74], which has been found to be particularly useful for 

solving stiff problems.

A pplication  O f The New M ethod Inside HASP

5 .4 5  Having placed the new method successfully in the package, the results 

obtained by the method when applied to two test circuit are now presented. The first 

o f the test circuits is the circuit shown in Figure 5.2, which has already been 

discussed in chapter 3, and the second of the circuits is shown in Figure 5.12, with 

the computer block diagram for the problem being shown in Figure 5.13. A steady 

flow is fed through an orifice into the actuator from a fixed displacement pump, and 

the return flow to tank from the actuator is also made via an orifice. Here again, 

five state variables occur in the simulation. The data values for the second of the 

two problems are presented in the same form as to the user of the HASP package, 

and the data values for both problems are given in tables 5.1, 5.2, 5.3 and 5.4. It 

was felt that these two circuits would provide a good test for the new method, since 

they both lead to stiff, osillatory and non-linear problems

29



5.46 R esults fo r test c ircu it 1. Typical results for this problem found by the 

new method being tested are given in Figures 5.14 and 5.15. As a comparison, the 

same results given by Gear's method are shown in Figures 5.16 and 5.17. These 

results do not differ to any noticeable extent from the results given by the new 

method. One im portant factor in comparing the two methods is the C.P.U. time 

taken for the simulation of the problems, and the comparisons in C.P.U. time 

between the two methods are shown in table 5.5. The problem has also been solved 

using the Runge-Kutta Merson method, and the results were the same as those given 

by the new method, with the C.P.U. time required to solve the problem being 

similar to that required by the new method.

5.47 R esults fo r te st c ircu it 2. Typical results for this problem given by the 

new method are shown in Figures 5.18 and 5.19. The comparative results given by 

Gear’s method in the solution of the same problem are shown in Figures 5.20 and 

5.21, and prove to be identical to those given by the new method being tested. The 

C.P.U. time taken by the two methods in solving the problem is shown in table 

5.5. The new method does not prove to be as fast as Gear's method for solving this 

problem, or the last problem, and considering the modifications that must be made 

to the component models to allow the use of the first order method, it is worthwhile 

considering an alternative form of testing the new method to study its potential as a 

stiff solver.

30



C o n c lu s io n s

5.48 Now that the new method has been implemented inside of the HASP package, 

its performance in solving the Test problems, and other circuits that have been 

presented to it, has been good. However, as regards the C.P.U. time taken, the 

savings that were originally hoped for have not been made, and the main reason for 

this is the low order of accuracy of the method. When solving stiff or oscillatory 

sets of equations, then the method performs as well as, if  not better than, Gear's 

method; but when the solution has reached steady state, then the new method is not 

able to compete with the fifth or sixth order method, and the accompanying large 

time steps, that Gear uses. Another point to be made concerns the number of 

function calls and Jacobian evaluations made by each of the methods. These are 

important since they can highlight the difficulties that a method has with solving a 

problem , since, for example, continued Jacobian evaluations may be a result of 

numerical instability. However, no measurement of these processes has been made in 

the solution of a problem. Consequently, to finally test the methods suitability for 

solving stiff sets of differential equations, it was decided to employ a package 

developed specifically for that reason. The package has been developed by W.H. 

Enright and J.D. Pryce [17], and its principal objective is to provide testing tools 

which can be used in assessing the efficiency and reliability of a numerical method, 

w ithout requiring modifications to the method, and without the tools themselves 

affecting the performance of the method. The work involved in using this package is 

presented in the next chapter. Work has also been undertaken to improve the order of 

accuracy of the new method, and this is presented in chapter 7.

31



Symbol Description Value

Ai Area of the actuator piston - piston side 2.03 x 10-3m2

a 2 Area of the actuator piston - rod side 1.54 x 10"3m2

Bi Bulk modulus of the hydraulic oil in pipe 1 1.2 x 109 N /m 2

b2 Bulk modulus of the hydraulic oil in pipe 1 7 x 10* N /m 2

b3 Bulk modulus of the hydraulic oil in pipe 1 7 x 108 N/m 2

f Viscous friction coefficient 5 x 103N/m/sec

kE! discharge coefficient for d.c.v. 4.24 x 10-7 m3/sec/N /m 2

kE2 discharge coefficient for d.c.v. 4.30 x 10-7 m3/sec/N /m 2

M Mass to be moved by the actuator 8.7 x 102 Kg

V l Volume of pipe 1 1.7 x 10"3m3

v2

Initial combined 

volume of actuator and pipe 2 4.62 x 10“^m3

V 3

Initial combined 

volume of actuator and pipe 3 1.94 x 10~3m3

TABLE 5.1 DATA VALUES USED FOR EXAMPLE 1



Symbol Description Value

P i Oil pressure in pipe 1 - initial value 7 x 106 N /m 2

P 2 Oil pressure in pipe 2 - initial value 1.7 x 106 N /m 2

P 3 Oil pressure in pipe 3 - initial value 2.1 x 106 N /m 2

X actuator displacement - initial value 0 m

u actuator velocity - initial value 0 m/sec

0) Angular speed of the pump 1.57 x 102 rads/sec

D Pump displacement 3.5 x 10-6 m3/rad

Viscosity of the hydraulic oil 6.974 x 10-2 Nsec/m2

cA Slip loss due to differential pressure 7 x 10"9

n Polytropic index of air 1.4

do Fraction of air dissolved in the hydraulic fluid at S.T.P 0.1

K Relief valve coefficient 5 x 10”11 m3/sec/N /m 2

Pc Relief valve cracking pressure 7 x 106 N /m 2

TABLE 5.2 ADDITIONAL DATA VALUES FOR EXAMPLE 1



COMPONENT NUMBER 1
EFFORT DUTY CYCLE (DEDT) NUMBER 1

1 OUTPUT VARIABLE IS PRESSURE

2 NUMBER OF STAGES TO DUTY CYCLE = 1
3 STAGE 1 OUTPUT LEVEL AT BEGINNING OF STAGE = 2 .1000D+02
4 STAGE 1 OUTPUT LEVEL AT END OF STAGE = 2 .1000D+02
5 STAGE 1 TIME IN SECONDS AT WHICH STAGE ENDS = 1.0000D+02
6 TRANSITION INTERVAL = 1.0000D-02

COMPONENT NUMBER 2
ORIFICE RESTRICTOR (OR3Z) NUMBER 1

1 STATED FLOW IN L/S = 8.3333D+00
2 CORRESPONDING PRESSURE DROP IN BAR = 7.0000D+01
3 LAMINAR BOUNDARY IN BAR = 1.0000D+00

COMPONENT NUMBER 3
FRICTIONLESS PIPE (PI06) NUMBER 1

1 INTERNAL DIAMETER OF PIPE IN MM = 2.5230D+01
2 LENGTH OF PIPE IN M = 1.0000D+00
3 PIPE VOLUME IN LITRES = 4.9995D-01
4 BULK MODULUS OF PIPE SYSTEM IN BAR = 1.8000D+04
5 AIR SATURATION PRESSURE IN BAR = 0.0000D+00
6 PROPORTION OF DISSOLVED AIR = 1.0000D-01

7 INITIAL PRESSURE IN BAR = 0.0000D+00

C O M PO N EN T NUM BER 4

LINEAR ACTUATOR (ALOO) NUMBER 1

1 ACTUATOR DIAMETER IN MM = 5.0800D+01
2 ROD DIAMETER IN MM = 2.5000D+01

3 TOTAL MASS MOVED IN KG = 1.0000D+03
4 STTCTION IN N = 2.0000D+02

5 COULOMB FRICTION IN N = 1.0000D+02
6 VISCOUS FRICTION COEFFICIENT IN N/<M/S> = 4.0000D+03

TA BLE 5.3 DATA VALUES FO R  EX A M PLE 2



7 WINDAGE LOSS COEFFICICENT IN N/((M/S)**2) = 0.0000D+00

8 GRAVITATIONAL FORCE IN N = 7.0710D+03

9 ACTUATOR STROKE IN M = 5.9520D-01

10 INITIAL DISPLACEMENT IN M = 0.0000D+00

11 INITIAL VELOCITY IN M/S = 0.0000D+00

12 SPRING STIFFNESS IN M/S = 0.0000D+00

13 PISTON LEAKAGE COEFFICIENT IN <L/S>/BAR = 0.0000D+00

14 END STOP SPRING IN N/M = 1.0000D+05

15 DAMPING FACTOR (CRITICAL - 2) = 1.0000D+01

COMPONENT NUMBER 5
FRICTIONLESS PIPE (PI06) NUMBER 2

1 INTERNAL DIAMETER OF PIPE IN MM =
2 LENGTH OF PIPE IN M =

3 PIPE VOLUME IN LITRES =
4 BULK MODULUS OF PIPE SYSTEM IN BAR =
5 AIR SATURATION PRESSURE IN BAR =
6 PROPORTION OF DISSOLVED AIR =
7 INITIAL PRESSURE IN BAR =

COMPONENT NUMBER 6
ORIFICE RESTRICTOR (OR3Z) NUMBER 2

1 STATED FLOW IN L/S = 8.3333D+00

2 CORRESPONDING PRESSURE DROP IN BAR = 7.0000D+01
3 LAMINAR BOUNDARY IN BAR = 1.0000D+00

COMPONENT NUMBER 7
FIXED LEVEL TANK (TKOO) NUMBER 1 

1 PRESSURE IN BAR = 0.0000D+00

2.5230D+01
1.0000D+00

4.9995D-01
1.8000D+04

0.0000D+00
1.0000D-01
0.0000D+00

TA BLE 5.4 A D D ITIO NAL DATA VALUES FO R  EX A M PLE 2



New Method Gear's Method

Example Tolerance

(secs)

C.P.U.

(secs)

Tolerance

(secs)

C P U

(secs)

Maximum 

Stiffness Ratio

1

t=[0,6] secs

1 x 10"4 2.72 x 102 1 x 10~5 2.212 x 102 1 x 103

2

t=[0,0.2] secs

1 x 10"4 6.78 x 101 1 x 10-5 4.98 x 101 1 x 103

TABLE 5.5 C.P.U. TIMES FOR THE NEW METHOD INSIDE OF HASP



USER COMPUTER

HYDRAULIC
CIRCUIT

POWER BOND 
DIAGRAM

i
CIRCUIT 1 PROGRAM COMPONENT

DATA
1

GENERATOR ATTRIBUTES FILE

DIMENSIONAL & 
PERFORMANCE 

DATA FOR 
COMPONENTS

1
GRAPHICAL OR 

NUMERICAL 
OUTPUT

■

' \

OUTPUT
PROGRAM

SOURCE OF 
MAIN 

SEGMENTS

COMPONENT
SELECTOR

FILE

ICOMPONENT
MODEL

H
LIBRARY

1 SIMULATION PROGRAM

T '

PARAMETER DEFINITION 
(INPUT) SECTION

■

i

CALCULATION (SIMULATION) 
SECTION INTEGRATOR

I
RESULTS PARAMETRIC

DATA DATA

KEY >

INFORMATION
TRANSFER.

FILE OR 
PROGRAM 
PRODUCTION.

F IG U R E  5.1 T H E  STR U C TU R E O F HASP



X

F IG U R E  5.2 H Y D R A U L IC  A C TU A TO R  C IR C U IT



p10

P I  0 6D C  I TPI  0  5

T K 0 3

P M 0 0

FIGURE 5.3 COMPUTER BLOCK DIAGRAM OF ACTUATOR CIRCUIT



p  p  p  p

1 i 1 i

^Q1 V2 y3 

P I  0  5  

LQ5 k°6 kQ7 kQ8

P P P P

FIGURE 5.4 LINK DIAGRAM  FOR PI05, A 
FRICTIONLESS PIPE MODEL



DERIVATIVES OF STATE VARIABLES

STATE VARIABLES

DERIVATIVES OF STATE VARIABLES 
AND ALGEBRAIC VARIABLES

STATE VARIABLES AND 
ALGEBRAIC VARIABLES

INTEGRATION
SUBROUTINE

AUX

MODEL CALCULATION SUBROUTINES

FIGURE 5.5 T H E INTEGRATION PROCESS INSIDE O F  HASP



Yes NoPresent h 
okay?

No

Reevaluate Jacobian

Yes

Call AUX to check 
LIMIT Yes No

Yes
No

Simulation
finished?

I te ra tion*
converged
quickly?

End
Advance step

Iterate

Iterate

PredictionCall AUX for "a 
and Mb" values

Step start

Reduce step size

In i t i a l i sa t ion

Recall AUX for "a' 
and "b" values Correction

Evaluate optimal h

F IG U R E  5.6 T H E  A L G O R IT H M  ADOPTED  IN IM P L E M E N T IN G  
TH E  NEW  IN T E G R A T IO N  M ETH O D



M A I N

NTEGRATOR

AU X

Z R

PUMP MOTR LOAD PIPE

CALCULATION SUBROUTINES

FIGURE 5.7 A TYPICAL HASP SIMULATION PROGRAM, 
HIGHLIGHTING THE MAIN FEATURES



FIG U R E 5.8 L IN EA R  ACTUATOR W ITH  LOAD



X

FIGURE 5.9 O PERATING CHARACTERISTIC OF A TYPICAL COM PONENT 
M ODEL TO DEMONSTRATE DISCONTINUITIES



FIGURE 5.10 ACTION TAKEN BY HASP TO ENSURE GEARKC HAS 
NO D IFFICULTIES IN SOLVING THIS PROBLEM



FLOW RATE

LAMINAR REGION

AP

DIFFERENTIAL PRESSURE

FIGURE 5.11 FLOW  RATE V DIFFERENTIAL PRESSURE 
FOR AN ORIFICE MODEL



ORIFICE 1 

^ ------ * PIPE1

OIL FLOW MASS

7777777777

PIPE 2

OIL FLOW

ORIFICE 2

FIG U R E  5.12 C IR C U IT  DIAGRAM  FO R  SECOND PR O B LEM



1
_  -  «<• -

PI06 02

OR3Z 02TK00

A LOOOR3Z 01DEDT PI06 01

FIGURE 5.13 POW ER BOND DIAGRAM FOR SECOND PRO BLEM



2
*10  

Pressure (bar)
l  _

Time (sec)

FIGURE 5.14 SIMULATED PISTON PRESSURE FOR EXAM PLE 1 
FOUND USING NEW METHOD

-  1
10

Displacement (m)

3

2

1

3 521
Time (sec)

F I G U R E  5 .1 5  S I M U L A T E D  A C T U A T O R  D I S P L A C E M E N T  F O R

E X A M P L E  1 F O U N D  U SIN G  N E W  M E T H O D



* 1 0  

Pressure (bar)
l _

Time (sec)

FIG U RE 5.16 SIM ULATED PISTON PRESSURE FOR EXAM PLE 1 
FOUND USING GEAR'S METHOD

16
- 1

Displacement (m)

3

2

1

3 521
Time (sec!

F I G U R E  5 .1 7  S I M U L A T E D  A C T U A T O R  D I S P L A C E M E N T  F O R

E X A M P L E  1 F O U N D  U SIN G  G E A R ’S M E T H O D



x10*

Pressure (bar)

2

1

21
Time (sec)

FIGU RE 5.18 SIMULATED PISTON PRESSURE FOR EXAMPLE 2 
FOUND USING NEW METHOD

x ic r1

Displacement (m) 5

4

3

2

1

1 2
Time (sec)

FIG U RE 5.19 SIMULATED ACTUATOR DISPLACEM ENT FOR 
EXAM PLE 2 FOUND USING NEW M ETHOD



Pressure (bar)

Time (sec)

FIGU RE 5.20 SIMULATED PISTON PRESSURE FOR EXAMPLE 2 
FOUND USING GEAR'S METHOD

x1CT

Displacement (m)
5

4

3

2

1

2l

Time (sec)

FIG U RE 5.21 SIM ULATED ACTUATOR DISPLACEMENT FOR 
EXAMPLE 2 FOUND USING GEAR'S METHOD



C H A P T E R  6

D ETA ILED  CO N TEN TS P ag e

Introduction 1

O.d.e. solvers 2

Statistics generated and options available 4

The constituent programs in the DETEST package 7

Testing the new method 9

Results 10

Conclusions

Figures 6.1 - 6.9 inclusive

12



CHAPTER 6 

DETEST - A FORTRAN PACKAGE FOR 

ASSESSING INITIAL VALUE METHODS

In tro d u c t io n

6.1 The purpose of this chapter is to describe, and apply to the new method, a 

package designed to aid in the assessment of Initial Value methods for stiff systems 

o f ordinary d ifferen tial equations. This package consists of a collection of 

FORTRAN routines, combined with a canonical set of test problems, and was 

written by W.H. Enright and J.D. Pryce [17]. This collection of routines is intended 

to contribute to the determination of the problem domain over which a method is 

suitable, and to identify where possible weaknesses exist in the implementation. As 

such, these routines, combined with the test problems, can prove helpful in the 

development as well as the testing stage of a numerical method. Also, the package 

provides a wide range o f problems to supplement the Fluid Power problems that 

have already been considered.

6.2 It is assumed that the Initial Value method to be assessed can be applied to 

problems of the form:

y' = f(t,y) y(t0) = y0 on the interval [to, tf] (6.1)

All the test problems in the package are autonomous, where the right hand side of 

equation (6.1) depends only on y, i.e. y' = f(y).

6.3 Before describing the details of the package, the properties that a subroutine for 

solving stiff differential equations should possess are discussed, and these properties

1



motivate the statistics generated by the package. Then, an outline of how to use the 

package, and the options that are available to the user, is given. This outline is 

accompanied by a description of the statistics that are generated, and the error 

conditions that can arise. Next, the package design is described and an overview of 

the individual routines that com prise the package is given. Finally , the 

implementation of the package on the VAX 750 computer within the School of 

Engineering is discussed, and then the new method is tested with the package.

O.D.E. Solvers

6.4 Although many codes have been developed for either non-stiff or stiff systems 

of O.D.E.’s in recent years, and these differ in the way that they are implemented or 

used, there are some standard options that are provided by virtually all general 

purpose integration methods. One such option is that a method be able to handle a 

request to integrate between the initial point to, and the endpoint, tf, w ithin a 

presribed tolerance, TOL, which is set by the user. In addition, it is expected that 

this can be interpreted to mean that the method was designed with the aim of 

keeping the magnitude of the global error proportional to TOL. This was explained 

more fully in chapter 4.

6.5 The method to be assessed is implemented in a subroutine called SOLVER. The 

interface between SOLVER and the testing package is achieved by constructing a 

driver subroutine called METHOD, which is written by the user of the package. 

METHOD declares the workspace, initialises the parameters required by SOLVER, 

signals the appropriate options, invokes SOLVER, and then returns to the MAIN 

body of code. The calling sequence for METHOD is:

2



CALL METHOD (N, X, Y, XEND, TOL, HMAX, HSTART )

An example of the routine METHOD is given in Appendix D. The package assumes 

that the driver, METHOD, is written by the user so that, if  the integration is 

successful, METHOD will return with the value of the independent variable, X, 

equal to XEND, the final integration time, and the dependent variable values, Y, 

updated to the approximate solutions at XEND. N is the number of differential 

equations being solved. If  METHOD has not been successful, i.e. SOLVER has 

failed for some reason, it is assumed that the return to the calling program is made 

with X less than XEND. Consequently, for all of the test problems, the initial value 

of X is less than XEND. The parameters HMAX and HSTART are the maximum 

permitted step size and the initial starting step size, although these parameters may 

be ignored, or overwritten, by the method being assessed.

6.6 The subroutine of the testing package that evaluates the differential equation is 

called FCN, and is invoked by reference to FCN(X, Y, YP). This subroutine 

evaluates the differential equation at the point X, Y, and then returns the vector of 

derivatives in the vector YP. Similarly, the calling sequence of the subroutine 

PDERV which evaluates the Jacobian matrix of partial derivatives is:

CALL PDERV(X, Y, DY)

Figure 6.1 shows the overall structure of the Enright package; each of the routines 

in the diagram is explained in detail later in the chapter.

6.7 The testing program assesses a method by monitoring the method’s peformance 

in solving a designated set of test problems. The standard statistics generated by the 

package w ill allow the evaluation of an individual method. However, direct

3



comparisons of methods using the standard statistics is difficult, since different 

methods will be satifying the accuracy requirement differently. That is, the 'constant 

of proportionality1 relating the requested tolerance and the achieved accuracy, will be 

method, as well as problem, dependent. As a result, if comparisons are to be made, 

the efficiency statistics must first be 'normalised1. The testing package will, as an 

option, produce tables of normalised efficiency statistics.

S ta tis tic s  G en era ted  A nd O ptions A vailable

6.8 Each run of the testing package allows a user to test his or her method on a 

specified subset of the available problems using a prescribed set o f tolerances. 

Besides specifying the problems and the tolerances, the user must also specify: the 

name of the method, which is used in the output titles; whether the problem is to be 

solved in its scaled or unsealed form; the level of statistics required, and whether 

normalised efficiency statistics are desired.

6.9 The complete set of problems available to a user include the five classes of test 

problems introduced by Enright, Hull and Lindberg [76], as well as two additional 

groups, one consisting of chem ical kinetics problem s, and the other of 

discontinuous problems. These problems are specified in Appendix D. It is also 

possible to add problems to the available set, and this is explained by Enright and 

Pryce [17]. The package requires the user to specify either the scaled or unsealed 

version of each problem. The 'unsealed' version refers to the problem in its natural 

scaling as it was first encountered, while the 'scaled' version refers to the original 

problem scaled by a diagonal scaling matrix chosen so that the maximum magnitude 

of each component of the scaled problem is one, over the range of integration.

4



6.10 There are three levels of detail that are available, and the user selects the level 

he wishes by setting the option flag OPTION. The basic statistics available, 

corresponding to OPTION = 1, includes six measures of efficiency: TIME, OVHD, 

FCN CALLS, JAC CALLS, MAT FACT and NO OF STEPS; and two measures of 

reliability: END PNT GLB ERR and SMOOTHNESS measures. The standard table of 

statistics generated for each problem is illustrated in Figure 6.2. The definition of 

the efficiency measures are:

TIME - the total processor time in seconds required to solve the

problem

OVHD - the total time in seconds excluding the time used in
evaluating the derivatives, evaluating the Jacobian, and 
performing matrix factorisations 

FCN CALLS - the total number of derivative evaluations required to
solve the problem 

JAC CALLS - the number of Jacobian evaluations, i.e. calls to

PDERV, required to solve the problem 
MAT FACT - the number of equivalent matrix factorisations, i.e. L-U

decompositions, required to solve the problem 
NO OF STEPS - the total number of steps required to solve the problem

The definition of the reliability measures are:

END PNT GLB ERR - the global error at the endpoint, XEND, measured in

the max-norm, and expressed in units of TOL 
SMOOTHNESS - a measure of how well the method was able to keep

the magnitude of the global error at the end point 

proportional to the tolerance

More detailed levels of assessment, corresponding to OPTION = 2 and OPTION = 3,

5



are also available to the user, as well as the choice of normalised or standard 

efficiency statistics, and these are fully explained by Enright and Pryce [17]. 

However, in testing the new method, only the efficiency and reliability measures 

already mentioned have been used, apart from a further reliability measure, MAX 

GLB ERR, which records the maximum global error observed throughout the 

integration, measured in units of the tolerance, TOL. The statistics required to test 

the new method correspond to OPTION = 2, and the standard table of statistics 

generated for each problem when using this value of OPTION is illustrated in Figure 

6.3. No normalised statistics have been requested.

6.11 There are two types of error conditions that can arise whilst using the testing 

package. The first is a failure of the method being assessed to successfully reach the 

endpoint, XEND. When this occurs, partial statistics are output, reflecting the costs 

before the failure, but the timing statistics and endpoint error statistics are omitted. 

In addition to the line of partial results, a message is also printed indicating that the 

method has failed to reach the endpoint. If the method was unable to take any steps, 

no partial statistics are available, and only the message 'METHOD FAILED TO 

START’ is output. Summary statistics are only given over integrations that were 

successfully completed by the method being tested.

6.12 There is a second type of failure that can occur when detailed results of each 

step are being monitored, such as when OPTION = 2. In this case, the testing 

package must obtain the 'true' global solution on each step, and possibly the 'true' 

local solution as well. These 'true' solutions are accurately determined using a 

reliable method, namely the Addison-Enright second derivative method, operating

6



with an accuracy requirement more stringent than the TOL requested by the user. If 

this method is unable to obtain the solution, such as may happen when a very 

stringent tolerance has been specified, then the appropriate statistics assessing the 

maximum global error or local errors will not be complete. However, if the method 

being tested is still successful, the efficiency and endpoint accuracy results will be 

available and are reported. When this situation arises, a message is also output 

warning that a failure of the true solution has occurred.

T he C o nstituen t P ro g ram s In  The D ETEST Package

6.13 The package is made up of several subroutines which use labelled COMMON 

statements for the communication of results. Again the reader is referred to Figure 

6.1, which illustrates the overall working structure of the package. The main 

supervisory subroutine, STDTST, is called by the main program, which is written 

by the user. This subroutine supervises the output of the headings and the statistics, 

and processes all the problems selected by the user, ensuring that each problem is 

solved at the prescribed set of tolerances. The subroutine CONTRL is the routine 

that controls the integration of one problem at a specified tolerance. It does this by 

setting up the initial conditions for the problem, invoking the method being tested, 

and organising the collection of statistics. The subroutine STATS is called by the 

method being assessed at the completion of each successful step. Its purpose is to 

perform the required detailed analysis of the results of each step. The subroutines of 

the package which specify the information related to the individual test problems 

are:

IVALU - subroutine which specifies the initial conditions for each 

problem

7



FCN - subroutine which evaluates the derivative
PDERV - subroutine which evaluates the Jacocian matrix of partial

derivatives
EVALU - subroutine which specifies the true solution of each problem

evaluated at the endpoint

The subroutines IVALU, FCN, PDERV and EVALU are organised as case statements. 

A flag ID, which is passed through COMMON, identifies the problem being solved, 

and determines the appropriate block of code to be executed.

6.14 The user has to write a main program which must determine: which problems 

are required to be solved by the method being tested; a list of the tolerances, TOL, 

with which to solve these problems; the value of OPTION for the statistical 

information required; whether normalised statistics are needed and which title to 

print with the output. An example of this driving program is given in Appendix D. 

STDTST is called by the main routine using the calling statement:

CALL STDTST (TITLE, OPTION, NORMEF, TOL, IDLIST, FLAG) 

where the variables are defined by:

TITLE - integer variable containing the title to be printed over the
statistics

OPTION - integer variable containing the value corresponding to the

level of statistics required 
NORMEF - integer variable that determines whether normalised or

standard results are produced 
TOL - real array containing up to ten tolerances on each program run

IDLIST - integer array which holds a list of the groups of problems to

solved. Each problem is specified by a numeric code. If the 

problem code is given a negative sign, the system is 
integrated in unsealed form; if a positive sign, in scaled form

8



FLAG - an error flag which determines where an error has arisen, and
why, depending on the value that it returns

6.15 The subroutine CONTRL sets up the initial values and other problem 

dependent parameters for the test problems being integrated, and initiates one or 

more integrations of the problem. First, an appropriate starting stepsize is 

determined by invoking METHOD with a rough starting step size, and observing the 

choice of step size over the first two successful steps. This preliminary integration 

is aborted prematurely, and the appropriate starting stepsize, HSTART, is used in 

subsequent invocations. METHOD is then invoked again, and the appropriate 

statistics for the values of the variable OPTION gathered.

6 .1 6  O ther subroutines of the package include: COEFF, STEP, NEWSTP, 

DDCOMP and SOLVE, which together with TRUE comprise the SECDER method 

described in detail by Addison [77], and used in the package to generate the ’true' 

local and global solutions, when so required by the routine STATS; PARCHK, 

which is invoked by STDTST to check that the user has supplied meaningful and 

consistent parameter values; LSQFIT and EFSTAT which perform the linear least 

squares fit and determine the normalised efficiency statistics respectively.

T esting  T he New M ethod

6.17 Many difficulties were encountered when transporting the DETEST package 

onto the VAX 750 computer in the School of Engineering. The major problems 

arose with the amount of storage space and memory required when interactively 

running the package. Unfortunately, this severely limited the number of problems 

that could be used to test the new method. The timing clock that accompanied the

9



package also proved to be unsuitable, so a new routine had to be written to time the 

integration processes, based on the C.P.U. timer discussed in chapter 3. Finally, the 

word size on the VAX system only allows numbers, x, in the range 1 x 10'38 < x < 

1 x 1038, and the writers of DETEST have assumed that the machine on which it is 

run is able to store numbers which have much larger exponents.

6.18 Consequently, although the aims of the package are clear and constructive in 

testing a new integration method, in practice the package proved to very troublesome 

to implement. However, it was possible to test the new method on a limited set of 

test problems. To use the package, further modifications had to be made, since the 

general purpose predictor-corrector form of the new method being tested evaluates its 

own Jacobians using a perturbation technique, and also does not require function 

evaluations, but coefficient values, as explained in chapter 3. Consequently, it was 

necessary to write separate function routines for each problem  to give the new 

method the coefficient values at each time step, and to modify the counters in the 

package that record the number of Jacobian matrices that are evaluated, and the 

number of function calls that are made.

R e s u l t s

6 .19  Figures 6.4, 6.5 and 6.6 illustrate the results given by the package, when 

using the new method in comparison with Enright's and Addison's method SECDER, 

for some of the test problems given in Appendix D. Figures 6.7, 6.8 and 6.9 

illustrate the results given for SECDER in solving these same problems, which have 

all been solved in unsealed form. Problem A1 is a linear first order differential 

equation with constant coefficients, and the new method provides the exact solution

10



to this problem, since it is the solution to an equation of this form from which the 

original numerical scheme was derived in chapter 3. The problem was solved on the 

interval [0, 20] and the statistics corresponding to OPTION = 2 found for the new 

m ethod are shown in Figure 6.4. As is expected, the method shows a marked 

improvement over SECDER in solving this particular problem. Figure 6.5 shows 

the statistics found for problem A2, and again, this problem is linear. It can be seen 

that the statistics are much different to those found for the new method with 

problem A l. The number of function calls refers to the number of coefficient calls 

that were made during the integration of the problem, which was on the interval 

[0,120]. The smoothness fit of LOGIO(ERROR) VS LOGIO(TOL) indicates that the 

accuracy of the method is low, since the exponents of the global error formulae are 

much less than one, unlike the exponents for the same smoothness curves with 

SECDER, which are shown in Figure 6.8 for this problem, and prove to be close to 

one. Similarly, the mantissa values of the smoothness curves for the two methods 

demonstrate the difference in accuracy. Figure 6.6 shows the statistics found for the 

new method when applied to problem A3, and for this problem, which is solved on 

the interval [0, 20], the exponents of the smoothness curve for the new method are 

larger in magnitude. The corresponding statistics found for SECDER are shown in 

Figure 6.9. The reason that the number of MAT FACTs is zero in Figures 6.4, 6.5 

and 6.6 is because a Newton-Jacobi iteration scheme has been employed with the 

version of the new method tested by the Enright package, and this does not require 

matrix inversions or L-U decompositions, since only the diagonal elements of the 

Jacobian are considered. This was explained in chapter 2.

11



C o n c l u s i o n s

6.20 Unfortunately, the package did not prove to be as useful for testing the new 

method as had been originally hoped. The intention had been to use the package to 

compare various methods, such as Gear and Runge-Kutta, with the new method, over 

a range of test problems, without the testing being problem dependent. However, the 

difficulties encountered whilst implementing the package stopped any worthwhile 

comparisons being made. For most of the problems on which the method could be 

tested, it was found that the low order of the method was a handicap, and often, 

prohibitively small time steps resulted during the integration process which led to 

problems with the method evaluating the 'true' solution, and no constructive results 

were forthcoming. The only conclusion that can be drawn is that it would be 

advantageous to increase the accuracy of the new method, if it is to compare more 

favourably with SECDER, over the range of test problems on which it has been 

tested. Also, it was felt that the set of problems used by the package could 

profitably be extended by the inclusion of the typical problem s arising in 

hydraulics, which lead to systems that are both stiff and discontinuous.

6.21 From the results found in this and the previous chapter, to continue with the 

new method, and enable its use as a competitive integrator, it appears that the order 

of accuracy of the method must be increased, since first order accuracy is not good 

enough for a general purpose integration routine, only for a routine used for solving 

specific problems. In the next chapter, the possibility of extending the order of 

accuracy of the method is investigated.

12



CNTROLSTDTST IV ALU

TRUESTATS

EVALU

FCN^PDERV

METHOD

PROGRAM

USER’S

(CODE BEING

TESTED)

'SOLVER

FIGURE 6.1 THE OVERALL WORKING STRUCTURE OF THE DETEST PACKAGE



STIFF DETEST PACKAGE OPTION = 1. NORMEF = 0

GROUP 1 SECDER ADDISON-ENRIGHT SECOND DERIVATIVE METHOD

E3 (SCALED)

LOGIO TIME OVHD FCN JAC MAT NO OF END PNT

TOL CALLS CALLS FACT STEPS GLB ERR

-2.00 0.027 0.026 91 32 24 22 0.05

-4.00 0.057 0.054 178 68 39 50 0.06

-6.00 0.160 0.153 507 192 111 133 0.52

-8.00 0.127 0.121 384 122 42 110 0.49

SMOOTHNESS FIT OF LOG 10(ERROR) VS LOGlO(TOL)

ENDPOINT GLOBAL ERROR

= 1.70E-02*(TOL**0.802) APPROX

FIGURE 6.2 STANDARD STATISTICS FROM THE TESTING PACKAGE



STIFF DETEST PACKAGE OPTION = 2, NORMEF = 0

GROUP 1 SECDER ADDISON-ENRIGHT SECOND DERIVATIVE METHOD

E3 (SCALED)

LOGIO TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 0.027 0.026 91 32 24 22 0.05 0.16

-4.00 0.057 0.054 178 68 39 50 0.06 0.28

-6.00 0.160 0.153 507 192 111 133 0.52 0.82

-8.00 0.127 0.121 384 122 42 110 0.49 1.33

SMOOTHNESS FIT OF LOG 10(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 1.70E-02*(TOL**0.802) APPROX

MAXIMUM GLOBAL ERROR

-  7.43E-02*(TOL**0.840) APPROX

FIGURE 6.3 STATISTICS CORRESPONDING TO OPTION = 2



STIFF DETEST PACKAGE OPTION = 2, NORMEF = 0

GROUP 1 FIRST ORDER METHOD

A1 (UNSCALED)

LOG 10 TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 0.002 0.002 3 0 0 1 0.00 0.00

-4.00 0.002 0.002 3 0 0 1 0.00 0.00

-6.00 0.002 0.002 3 0 0 1 0.00 0.00

SMOOTHNESS FIT OF LOGIO(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 1 .OOOE-02*(TOL**1.000) APPROX

MAXIMUM GLOBAL ERROR

= 1.000E-02*(TOL**1.000) APPROX

FIGURE 6.4 STATISTICS FOR THE NEW METHOD WHEN APPLIED TO PROBLEM A1



STIFF DETEST PACKAGE OPTION = 2. NORMEF = 0 

GROUP 1 FIRST ORDER METHOD

A2 (UNSCALED)

LOG 10 TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 2.421 2.102 84 54 0 62 0.14 0.21

-4.00 3.682 3.154 190 96 0 94 0.43 0.49

-6.00 5.790 4.987 286 108 0 126 0.65 0.74

SMOOTHNESS FIT OF LOGIO(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 4.765-02*(TOL**0.572) APPROX

MAXIMUM GLOBAL ERROR

= 5.8 72E-02*(TOL**0.463) APPROX

FIGURE 6.5 STATISTICS FOR THE NEW METHOD WHEN APPLIED TO PROBLEM A2



STIFF DETEST PACKAGE OPTION = 2, NORMEF = 0 

GROUP 1 FIRST ORDER METHOD

A3 (UNSCALED)

LOGIO TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 1.972 1.561 212 97 0 234 0.19 0.26

-4.00 2.683 2.136 341 156 0 316 0.45 0.53

-6.00 6.547 6.214 589 240 0 462 0.72 0.77

SMOOTHNESS FIT OF LOGIO(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 4.432E-02*(TOL**0.773) APPROX

MAXIMUM GLOBAL ERROR

= 5.217E-02*(TOL**0.654) APPROX

FIGURE 6.6 STATISTICS FOR THE NEW METHOD WHEN APPLIED TO PROBLEM A3



STIFF DETEST PACKAGE OPTION = 2, NORMEF = 0

GROUP 1 SECDER ADDISON-ENRIGHT SECOND DERIVATIVE METHOD

A1 (UNSCALED)

LOGIO TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 0.361 0.335 70 28 19 24 0.00 0.15

-4.00 0.641 0.606 110 45 22 43 0.00 0.31

-6.00 1.130 1.081 180 75 26 74 0.01 0.49

SMOOTHNESS FIT OF LOGIO(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 4.142-02*(TOL**0.985) APPROX

MAXIMUM GLOBAL ERROR

= 8.361E-02*(TOL**0.868) APPROX

FIGURE 6.7 STATISTICS FOR THE SECDER METHOD WHEN APPLIED TO PROBLEM A1



STIFF DETEST PACKAGE OPTION = 2. NORMEF = 0

GROUP 1 SECDER ADDISON-ENRIGHT SECOND DERIVATIVE METHOD

A2 (UNSCALED)

LOG 10 TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 1.638 1.404 81 32 25 28 0.00 0.05

-4.00 3.474 3.035 193 74 38 66 0.00 0.40

-6.00 4.720 4.201 279 107 40 97 0.0 0.42

SMOOTHNESS FIT OF LOGIO(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 6.615E-02*(TOL**0.946) APPROX

MAXIMUM GLOBAL ERROR

-  4.941 E-02*(TOL**0.85 7) APPROX

FIGURE 6.8 STATISTICS FOR THE SECDER METHOD WHEN APPLIED TO PROBLEM A2



STIFF DETEST PACKAGE OPTION = 2. NORMEF = 0

GROUP 1 SECDER ADDISON-ENRIGHT SECOND DERIVATIVE METHOD

A3 (UNSCALED)

LOGIO TIME OVHD FCN JAC MAT NO OF END PNT MAXIMUM

TOL (MINS) (MINS) CALLS CALLS FACT STEPS GLB ERR GLB ERR

-2.00 0.576 0.513 104 39 30 34 0.01 0.20

-4.00 1.096 0.992 200 75 36 69 0.00 0.82

-6.00 1.801 1.656 302 110 40 109 0.00 0.52

SMOOTHNESS FIT OF LOG10(ERROR) VS LOGIO(TOL)

ENDPOINT GLOBAL ERROR

= 1 .OOOE-02*(TOL**1.000) APPROX

MAXIMUM GLOBAL ERROR

= 0.222E-02*(TOL**0.931) APPROX

FIGURE 6.9 STATISTICS FOR THE SECDER METHOD WHEN APPLIED TO PROBLEM A3



CH A PTER 7

D E T A IL E D  CO N TEN TS P ag e

Introduction 1

Reduction to system of ordinary differential equations 1

System stiffness 4

Applying the new method 4

Forming a solution for V(t) 5

The solution of d/dfY.(t) = AYJX) +k(t) 5

Standard finite difference approximations 7

Pade approximations 7

The Crank-Nicolson method 9

The new method 10

Applying the new explicit method 10

Stability of the new method 12

Results 13

Discussion of results and improving the accuracy of the method 13

Extrapolation approach 14

Applying the method of extrapolation 17

Alternative approach to improve the accuracy of the method 18

Results 20

Conclusions 21

Table 7.1

Figures 7.1 - 7.5 inclusive



CHAPTER 7

A PPLICATION  OF THE NEW  M ETHOD FO R THE 

SOLUTION OF PARTIAL D IFFERENTIAL EQUATIONS

In tro d u c t io n

7.1 This chapter considers a particular application of the new method. Since the 

explicit method was found to be stable for diagonally dominant systems, and the 

discretisation of parabolic partial differential equations (p.d.e.'s) often leads to such 

systems, it was decided to apply the method to solve some of these equations. This 

chapter looks at parabolic p.d.e.'s and explains their reduction to a set of ordinary 

differential equations, the way in which they are usually solved, and the very stiff 

systems that often result. Then the new method is applied to solve the differential 

equations, and compared with traditional methods, such as the Crank-Nicolson 

method. Finally, the possibility  of extending the accuracy of the method is 

discussed, and two approaches that have been adopted are discussed.

R eduction  To A System  O f O rd in a ry  D ifferen tia l E quations

7.2 Here, a parabolic p.d.e. [68] is considered, and the way in which it can be 

reduced to a set of o.d.e.'s is explained. The equation considered is the heat equation, 

given by:

U , = kUxx

This is one of the simplest parabolic p.d.e.'s, and is derived from the theory of heat 

conduction. Its solution gives, for example, the temperature U at a distance x units 

of length from one end of a thermally heated bar after t seconds of heat conduction. 

For such a problem, the temperature at the ends of a bar of length 1 (say) are often

1



known for all time, i.e. the boundary conditions are known. It is also usual for the 

temperature distribution along the bar to be known at some particular instant. This 

instant is usually taken as zero time, and the temperature distribution is called the 

initial condition. The solution gives U for values of x between 0 and 1, and values 

of t from zero to infinity. To find the solution, finite difference schemes are 

normally applied directly to the parabolic equation, but it is also possible to reduce 

the equation to a system of o.d.e.'s and then apply standard o.d.e. solvers.

7.3 Consider the partial differential equation

3U=iL!I 0 < x < X , t > 0 
9‘ 9x2

where U(x,t) satisfies the inital condition 

U(x,0) = g(x) 0< x £ X 

and has known boundary values at x = 0 and x = X, for t > 0, i.e.

U(0,t) = a ( t)  t > 0 

U(X,t) = p(t) t > 0 

In this chapter, At is denoted as k, and Ax is denoted as h. Also, r  = k/h2.

If the right hand side of the p.d.e. is replaced at (x,t) by

2
^  = -L  { U(x-h, t) - 2U(x, t) + U(x+h, t) } + 0(h2) (7.1)
dx h

where the interval 0 < x < X is subdivided into N equal intervals by the grid lines 

xj = ih, i = 0, 1, ..., N  with Nh = X; and writing equation (7.1) at every mesh point 

xj = ih, i = 1, 2, ..., N -l along time level t, the values Vj(t) approximating U j(t) 

w ill be the exact solution values of the system of (N -l) ordinary differential

2



equations given by: 

dV (t) .
—  = - ( Vo - 2V1 + v 2 ) 

dV(t) .
_ . _ ( V l .2V2 + V ,)

dV,N-l 1—  = — ( VM 0 -2Vxt , +Vm) 2 N-2 N-l N J
h

where Vq and Vj^ are known boundary values for all t. These equations can be 

written in matrix form as:

" " V,' V1 '

V2
_ J _

2h

. V

-2 1 0
1 -2 1

0 0 0 1 -2 N-l

1

T0
0

N

i.e as
dV(t)

dt
= A Y(t) + b (7.2)

where V.(t) = [V j, V2 , V n - i ] t ,12. is a column vector of zeroes and known

boundary values, and matrix A, of order (N -l), is given by:

A = —  
h2

’-2 1 0 . . . o '
1 -2 1 . . . 0

0 0 0 . • 1 "2 .

(7 .3 )

3



S y stem  S tiffn e ss

7.4 The system being solved is now examined, to demonstrate the high stiffness 

ratios that can result from reducing a p.d.e. to a set of o.d.e.’s. The stiffness ratio 

of the eigenvalues of the system matrix A, for large N, is given by [68]:

. 2 , (N-l)n w  . 2, n  N 4N2 n  ^sin ( - ----— )/sm  (-£ ) « -----  V * )
2N 2N n2

If for example N  = 100, then the stiffness ratio of the system is given by 4.052 x 

103, and it can be seen that a stiff system can occur when an accurate solution to 

the p.d.e. in the x-direction is required. Consequently, to ensure the stability of the 

results, care must be taken when choosing which numerical scheme to apply.

A pply ing  T he New M ethod

7.5 Before applying the new method to the system of equations given by equation

(7.2), it is worthwhile examining this system and studying the way in which it is 

normally solved. Analagous to the true solution of the scalar version of equation

(7.2), found by separation of variables, the solution of the system of equations 

given in equation (7.2) will be of the same form, with the exponential of scalars 

replaced by the exponentials of matrices. Consequently, the numerical methods that 

are norm ally used to solve equation (7.2) w ill attem pt to approxim ate an 

exponentiated matrix, and the way in which this is done is important in determining 

the behaviour of the method. The new method was based on the true solution of the 

scalar form of equation (7.2), but when applied to systems of equations the method 

can also only attempt to approximate the exponential of a matrix. Most methods are 

formed by considering the Pade approximations to e®, with 0 real, which will be 

explained in detail.

4



F orm ing  A Solution F o r  V ft)

7.6 This section shows the form of the true solution for equation (7.2), under the 

conditions that are considered in this chapter. The formula presented will give the 

true solution at each time step. The solution of equation (7.2) satisfying the initial 

condition

Y.(0) = [gi* g2» •••» gN-1 ] T “  g» in the particular case where fc. is constant 

is shown in the next section to be

¥ (t)  = -A"1!* + {exp(tA))(g + A_11) ) (7.5)

hence

X(t+k) = -A_1b  + {exp(t+k)A)(g + A '1̂ )

= -A_1l2 + (exp(kA)) {exp(tA)}(g + A"1!*) 

where, as has already been defined, k = At 

This leads to, using equation (7.5),

Y(t+k) = -A-x]2 + (exp(kA)}(Y(t) + A '1!)) (7.6)

and if furthermore, all the boundary values are zero, then

Y (t+k)=  (exp(kA)}Y(t) (7.7)

T he S o lu tion  O f d/dt}L(t) = A3L(t) + k ( t )

7.7 This section derives the true solution for equation (7.2), under certain initial 

and boundary conditions. The exponential of the real (nxn) matrix P is defined by

2 3 oo m
p  P  P  V P

exp P = e =1 +P + —  + —  +..• —  (7.8)
n 2! 3! m=0 m!

where P° = 1  ̂ is the unit matrix of order n 

Since

epe~p = e"pep = e® 

and by equation (7.8)

5



then

(7.9)

Premultiplying both sides of equation (7.9) by the inverse (ep)_1 of ep , shows that

e"p = (ep)_1

Putting P =At into equation (7.8), where the matrix A is independent of t, and 

differentiating with respect to t, it follows that

Now considering Y(t) = eAtg, where g  is independent of time. This clearly satisfies 

the initial condition ¥.(0) = g. Differentiation w.r.t. t  gives that

AeAtg  = AY
dt

Hence, the solution of

f i t -  A Y  
dt

which satisfies Y(0) = g  is

d/dt(eAt) = AeAt = eAtA (7.10)

Y(t) = eAt g. (7.11)

Similarly, the vector function

Y(t) = -A"1]* + eAt( g  + A-1l2) (7.12)

which satisfies the initial condition Y(0) = g, is the solution of

dt

provided that vector b. and matrix A are independent of t.

6



S ta n d a rd  F in ite  D ifference A pprox im ations

7.8 This section examines the present numerical techniques that are employed in the 

solution of equation (7.2), by forming an estimate to equation (7.7). In order to 

derive a set of finite difference equations from equation (7.7), it is necessary to 

approximate the exponential of kA by a finite algebraic function of kA. Since 

exp(kA), by definition, is

1 2  2 1 3  3
I + kA + —k A + — k A + ...

2 6

then one immediate approximation is I + kA, with a leading error term of order k2.

The vector o f values n  = [u j, U2 , uj<f_i]T approximating V in equation (7.7) will

then be the solution of the finite difference equations

li(t+k) = (I + kA)n(t) (7.13)

If  t = tj = jk  and r = k/h2, these equations are, for zero boundary values

l-2r r 0 

r l-2r r
" U1 j+l '

U2.j+1
=

UN-l,j+l

. . . 0 ‘ u. . l.i

. . . 0
U2.j

. . r l-2r _UN-l,j_

and the approximation given above is Euler's method, applied to a system of 

equations. This method is also known as the simple explicit method when used in a 

p.d.e. context.

7.9 P ad e  approx im ations. This section defines Pade approximants to e0 , and 

demonstrates how most numerical methods, when applied to the scalar test equation

y'  = Xy  y(0) = 1

will attempt to approximate the solution e^1 by forming a Pade approximant to the 

exponential. Assume that e0 is to be approximated by

7



(1 +PJ0)

d + q ^ )

where p j and q j are constants. The Pade approximant is the rational function whose 

Maclaurin's series expansion agrees with that of e0 to as many terms as possible. 

The determination of and q j requires two equations, which will come from the

9 acoefficients of 0 and 0 , so the leading error term will be of the order 0 . Hence

0 1 + pl0  ̂ Xe =   + +c4©4 +...
1 + qj0

Therefore,

( l+ q i0 ) ( l+ 0 + l/2 0 2+ l/6 0 3 +...) = 1 + P j0  + ( l+ q i0 )(C3 0 3+C4 0 ^+...) 

and thus

(1 + q x - p x)0 + (1/2 + q x)02 + (1/6 - l/2qx - c3)03 + 0 (h 4) + ... = 0 

This equation is satisfied uniquely in terms of order three by

1 1 1 
Pl ~ 2 ’ ql " ' 2 ’ C3 " '  12

The rational approximation 

0 - £ »

is called the (1,1) Pade approximant of order 2 to e0, and has a leading error term of 

order 3. In general it is possible to approximate e0 by

e6 = i + P i e + p292+...+ps eS +c_ i9S+t+1 +o(eS+T+2) (7 14)

1 + q^0 +q2©2 + ... +qT0

where cs+t + j is a constant.

8



The rational function given by

i + P i B + p 0e2 +... +Po0s Po(0)
r ST = ------     V  = —  (7.15)

1 + q̂ 0 +q2©2 +... +qT0 Qj(0)

is called the (S,T) Pade approximant of order (S+T) to e0. Table 7.1 gives eight of 

the Pade approximants to e0, and their leading error terms.

7.10 The C rank-N icolson m ethod. The Pade approximants can be used to find 

many different numerical methods. For example, the (1,0) Pade approximant will 

replace equation (7.7), which is:

Y(t+k) = (exp(kA)}Y(t)

by
U(t+k) = (I + kA)u(t) 

which is the explicit method given by equation (7.13)

Similarly, the (1,1) Pade approximant replaces equation (7.7) by

U(t+k) = (I - l/2kA )_1(I + l/2kA)u(t) (7.16)

For numerical calculations, this needs to be written as 

(I - l/2kA)ii(t+k) = a  + l/2kA)u(t) 

and this gives the Crank-Nicolson scheme, which is

- ^ i - l j + l  + 2( 1+r)Ui,j+l - nii+ i,j+1 = r u j . j j  + 2 (l-r)Uij  + n ii+1 j  (7.17)

i = 1 N -l

This method is second order accurate in t, since its error term  via a Pade 

approximant is of order k3. It has better stability properties than the method given 

by equation (7.13) [68]. However, it can produce unwanted finite oscillations near

9



points of discontinuity, and this is demonstrated later in the chapter. The fully 

implicit method, given by:

U(t+k) = (I - kA)_1u(t) 

is only first order accurate, but does have improved stability properties over the 

Crank-Nicolson method, and does not demonstrate the same problems near points of 

discontinuity.

T he New M ethod

7.11 The new method does not form a Pade approximant to e^1 when applied to the 

scalar equation y’ = Xy, but actually forms the exponential e^1, i.e. the estimate to 

the solution it gives is

y n + ^ y n e * *  (7.18)

However, when solving systems of differential equations, the method does not form 

a Pade approxim ant to e ^ h ,  but w ill form a different approxim ation. The 

approximation it makes is first order accurate in t, but is different from the one 

given by equation (7.13). This idea is discussed further when trying to improve the 

accuracy of the method, where an attempt is made to combine solutions formed at 

the half tim e step and full time step by the new method, in order to form an 

approximation which is of higher order than one.

7.12 A pplying the  new explicit m ethod. Stability is guaranteed with the new 

explicit method if  the system matrix of the problem  to be solved is strictly 

diagonally dominant. In this section the stability matrix of the explicit method for 

the system given by equation (7.2) is examined to demonstrate that the eigenvalues 

o f this matrix all have magnitude less than, or equal to one. Besides the system 

exam ined here, there are several other parabolic p .d .e.’s which will lead to

10



diagonally dominant system matrices, if  they are reduced to a set of ordinary 

differential equations. One example is the equation given by:

U t = a U xx - p u  a  > 0, p > 0 

which will lead to a strictly diagonally dominant system matrix.

Applying the new method to each equation of the system given by (7.2) will lead to 

the set of equations

-2r
ln+1

U0n + U2 n ,-2 r
 ^  (e - 1>-*-ulne

Ul n +U3n ,-2r
2n+l -2

(e - l )  + u2ne
-2r

UN-2n + UNn , -2r
N-ln+1 (e - 1) + UN-lne

-2r

taking the boundary conditions as 

u0 = 0 = uN

will lead to the matrix equation

1
H+a2

Y 5 0 . . 0

U2n+1
5 Y 8 . 0

UN-ln+l
. 0 8 y 8

.0 0 0 . . 8 Y. .

In

l2n

N-ln

(7.19)

where

y = e-2r

8 =  ( l - e - 2r) /2

11



7.13 S tab ility  of th e  new m ethod. Referring to section 4.20, the stability 

matrix of the explicit method for this problem is given by:

,-2r - W 2r>

1 -2r O 1 -2r
—(■•e ) e'2r —(1-e )
2 e 2

-2r

which is of the form:

a b 0 . . . o"
c a b . . . 0
0 c a b . . 0

c a b
0 0 0 . o p L

-2r

1 -2r
)

1 -2r
)

-2r

(7.20)

(7.21)

and, since the N -l eigenvalues of the tridiagonal (N -l x N -l)  matrix given by 

equation (7.21) are:

Xs = a + 2b(c/b)°-5co s(sn /N ) s = 1, 2  N -l

then the eigenvalues of the (N -l x N -l) matrix in equation (7.20) are given by:

A,m  = e '2r + (1 - e_2r)cos(m n/N ) m = 1, 2, ..., N -l (7.22)

r  w ill always be positive, so the largest value that e"2r can take is less then 1. 

Substituting in some real numbers, then, since r  = k/h2, taking k = 0.01 and h = 

0.01 will give r = 100. The eigenvalues for the stability matrix are then given by:

^M e = 1-3B39 x 10-87 + (1 - 1.3839 x 10-87)cos(m n/N ) m= 1 N -l

Cos(x) lies between -1 and 1, and hence the modulus of < 1 for all m.

12



7.14 R esults. Figure 7.1 shows the analytical solution at t = 0.25 seconds to the 

problem

U t = Uxx 0 < x < 1, t > 0  

satisfying

U(0,t) = U (l,t) = 0 t > 0

U(x,0) = 1  0 < x < 1, t = 0

Also shown are the results given by the Crank-Nicolson method, and the unwanted 

oscillations near the points of discontinuity for this method are demonstrated. For 

the Crank-Nicolson method, then h = 0.025 and k = 0.025, giving r  = 40. The 

results given by the new method in solving the same problem are shown in Figures

7.2 and 7.3. The results shown in Figure 7.3 have been found with h = 0.05 and 

different vlaues of k. The explicit method given in equation (7.13) was also used to 

solve this problem, but the results proved to be graphically unpresentable if r > 1/2, 

since instability occurs. For very small values of k, needed to ensure that r <, 1/2, 

then the results were close to the true solution.

D iscussion O f R esults A nd Im prov ing  The A ccuracy O f T he M ethod

7.15 Although a small time step is needed to ensure high accuracy using the first 

order method, instability is not demonstrated for any value of k, and this is an 

interesting observation. For this method, the time step is not limited by stability 

considerations, but by accuracy, and this is a worthwhile point to notice. The 

inaccuracy of the method has led to efforts aimed at improving the order of the 

method, and this is the basis for the work presented in the remainder of the chapter. 

Before solving the systems of o.d.e.'s arising in this chapter, the poor accuracy of 

the new method, although it was known, was acceptable since the results given by

13



new method, for most hydraulic circuits studied in this thesis, were good in 

comparison to other low order, highly stable numerical methods. However, for the 

problems that it has been used to solve in this chapter, an increase in the accuracy 

of the method would certainly prove to be advantageous, and consequently, the rest 

of this chapter explains two approaches that have been taken to try and increase the 

order of the method. First, an extrapolation approach is adopted by considering the 

method when applied to the problem given by equation (7.2), and secondly, the 

construction of the method from first principles, as demonstrated in chapter 3, is 

reconsidered to see if there is a possibility of improving the accuracy in that way.

E x tra p o la tio n  A pproach

7.16 The true solution of equation (7.2), under the conditions considered in this 

chapter, is given by equation (7.7), which is:

Y (t+k)=  {exp(kA)}Y(0 

If  the exponential is approximated by the new method, then the solution vector 

found by the method will be:

U(t+k) = Meu(t) (7.23)

where Me is the matrix given in equation (7.20)

Over a time interval of 2k, this would be

H<1>(t+2k) = Mfu(t) (7.24)

where is of the same form as Me, with k replaced by 2k

Alternatively, the application of equation (7.23) twice, each over a time interval of 

k, leads to the equation

H<2)(t+2k) = MeMeu(t),

i.e

14



U<2)(t+2k) = (Me)2u(t) (7.25)

7.17 The Maclaurin expansion of exp(2kA) in 

Y(t+2k) = {exp(2kA)}Y(t)

gives

Y(t+2k) = {I + 2kA + 2k2A2 }Y(t) + 0 (k 3) (7.26)

and to form a more accurate solution, then it may be possible to combine the 

solutions given by equations (7.24) and (7.25) to create a formula that is accurate 

to terms of order k2. Unfortunately, there is no easy way of applying this idea, and 

so the term

{I + 2kA + 2k2A2) 

must be evaluated in full. This term, along with Mf and (Me)2, is:

I + 2kA + 2k2A2 =

'dl “2 <*3 0 • 0

"z d4 "s • •

«1 d4 "2 <>3 •

*

"3 “2 d4 “2

0 <>3 ^2

(7.27)

where d j = 1 - 4r + 10r2 

d2  = 2r - 8r2 

d3 = 2r2

d4 = 1 - 4r + 12r2

15



(MJ2 =

e l e2 e3

e2 e l e2 e3

e3 e2 e l e2 e3

e3 e2 e l e2

e3 e2 e l

(7 .2 8 )

where e j  = e"4r + lAKe-41" - 2r +1) 

e2 = -e-2r(e"2r - 1) 

e3 = l/4(e_4r - 2r + 1)

Mf =

fl f2 0 .

f2 f l f l •

0 2̂ *1 *2

0

f  f  fh  *i 2

f  f  • 2 n

(7.29)

where f j  = e-4r

f2 = 1/2(1 - e-4r)

Expanding the exponential terms in Mf and (Me)2 up to r2 will give the same 

matrices as those in equations (7.28) and (7.29), with the e ’̂s and the fj's now being 

given by:

f j  = 1 - 4r + 8r2 e j = 1 - 4r + 7r2 

f2 = 2r - 4r2 e2 = 2r - 6r2

e3 = -r2

16



7.18 To form a more accurate method, the matrices Mf and (Me)2 must be combined 

to form the matrix, or an estimate to the matrix, given in equation (7.27). The 

combination that has been used is given by 3Mf - 2(Me)2, and this is termed Mg. 

Mg is of the same form as the matrix given in equation (7.27), with the dj's now 

being given by

d i = 1 - 4r + 10r2 

d2 = 2r 

d3 = 2r2

d4  = 1 - 4r + 12r2

The elements of M g are identical to those in the matrix given by equation (7.27), 

apart from the off-diagonal elements given by:

M Si,i+l 1 = l f  N_1 

M gi+l,i 1 = 1» N_1

which are each missing a -8r2 term in comparison with the dj's given for equation 

(7.27). This may prove to be important when applying the method that the matrix 

M g corresponds to, which is:

3u(1)(t+2k) - 2u<2)(t+2k) (7.30)

7.19 A pplying the  m ethod of ex trapo lation . The method given by equation

(7.30) was applied to the problem defined in section 7.14, and the results at t = 0.25 

are shown in Figure 7.4, for h = 0.025, and different values of k. The accuracy of 

the extrapolated method is an improvement on the accuracy o f the explicit method 

alone, but still is not as accurate as would be hoped. This could be due to the 

missing terms of the elements of Mg. Consequently, a new approach was adopted in 

an attempt to improve the accuracy of the method, and this is explained in the next 

section.

17



A lternative A pproach To Im prove T he A ccuracy O f The M ethod

7.20 The approach studied here returns to the original formulation of the method.

The true solution of the linear first order differential equation

The new method was originally formulated by considering both a and b as constant 

functions. This section investigates the possibility of obtaining a higher order 

method by approximating the integrals in equation (3.2) by a more accurate process 

than has been previously adopted.

7.21 On the interval [ ^ , 1̂ + 1], then a half-point is introduced, and so the interval 

becomes [tn .tn+ ^L  [tn+i/Z’W ll-  The explicit method is then employed to obtain a 

solution at tn+ ^ 2  and t ^ j .  Equation (3.2) is now employed to produce new values 

at tn+j /2 and t ^ i ,  with the integrals being evaluated using the trapezoidal rule. 

Simpson’s rule, derived in section 2.34, is now used to estimate the integrals in 

equation (3.2), and so a third and final approximation will be made to the solution

7.22 Using the trapezoidal mle to find the solution at tn+i/2 requires equation (3.2) 

to be written as:

y’ = a(t)y + b(t) y(t0) = a

as given in equation (3.2) is:

Ja(z)dz

y(t) = e ds]

y(tn+l)-

Ja(z)dz Vi+W •/ aM dx

ds] (7.31)

18



with

tn+W
J a(z)dz

T W  + a< W )1
= e

and

(7.32)

s <D
1̂+1/2 -Ja(x)dx -J a(x)dx -Ja(x)dx

J b ^ e 1- = f [ b ( t n)e'- +b(tn+w)e’* ]

A - ) + a^+l/^ )
} ] <7-33>

Suppressing suffices, then equations (7.32) and (7.33) may be written as:

t»42
J  a(z)dz i
«. T 1̂ 1 ^ +1/2J (7.34)e = e

and

W  -J a(x)dx _A l
,  t At " 4 ^ + an+1̂
Jb(S)e  [bn + W e »  (7-35)
Vi

Substituting equations (7.34) and (7.35) into equation (7.31), and again suppressing 

suffices will give:

X K  + an+1/2] - y < a n + an+1/2)

yn+l/2 =e t>'n + T lb„ + b„+l/2(e >U (7'36)

which will reduce to:

y . , » - e  ( y + — b ) + — b (7.37)■'n+1/2 1 •'n 4 n J 4 n+1/2

19



Using a similar process to find the solution at t ^ i  leads to the scheme

7 t an + 2an+l/2 + V l ]  . * j f V / Z  + V l ]  A
y . i = e {y + — b }+ b 1A?e + (7.38)■'n+1 1 ■'n 4 n J 2 n+1/2 4 n+1

7.23 When Simpson's rule is used to find a further approximation to y(tn+j), then 

the resultant numerical scheme will be:

+ A 2At '  “■>' 5a"»i'2 ■ 2a"*l] At
V l  = e (yn+y bn )+ — bn+l/2e + 7 b n+l

and so the three numerical schemes that will be used in addition to the explicit 

method have been formed, and hence it is possible to find

(D (1) (2) (2) , O)
Vi/2- V r  yn+i/2- V i  and me fmal solunon at W1. V i

where the superscripts denote the successive estimations to the solution.

7.24 Results. Figure 7.5 shows the results obtained when applying the technique 

explained above to the problem defined in section 7.13. Again, the results at t = 

0.25 are given, for h = 0.025, and different values of k. Unfortunately, the results 

do not prove to be as accurate as had been hoped. When the method described in 

section 7.21 was analysed, where the integrals were approxim ated using the 

trapezium rule, then the local error was found to include a term involving Ur3, 

which is likely to be relatively large with comparison to the solution U(x,t). The 

local error expression is given by:



and it can be seen that the second term is undesirable. Consequently, this technique 

for improving the accuracy of the method has not been pursued, since it appears to 

introduce parasitic terms into the local error, which will stop the local error from 

being reduced in magnitude. This was not the required result.

C o n c l u s i o n s

7 .25  The work that has been described in this chapter did not prove to be as 

rewarding as had been hoped, although one interesting aspect of the work still 

provides a point of discussion. This aspect is the stability of the method, and when 

applied to solve the problem  in section 7.13, the explicit method did not 

demonstrate instability for any value of r, although a small time step was required 

in order to form a sufficiently accurate estimate to the true solution. For traditional 

explicit methods, when applied to stiff systems, the step size employed during the 

integration is determined by stability considerations. In the case of the new method, 

the step size is determined by the local error, i.e the accuracy of the method. This is 

an interesting and notable finding.

21



(S.T) Principal 

Error Term

(1.0) 1 + 0 >02

(2.0) 1 + 0 + i-0 2 
2 J 03

(0.1) 1
1 - 0 - J 02

(1.1)
i  + i e  

2

i - I e - W 03

(2,1)
i  + l e  + -*e2

3 6

1 - I 0
- J L e 4

72

(0.2) i

i  -  e + * 02
2

(1.2) 1 + J 9

, - |  + i.02
J _ 0 4
72

(2.2)
1 + i-0  + J - P  

2 12 1 05
i -  l e  + _L-02 

2 12
720

TABLE 7.1 PADE APPROXIMANTS TO e0 . 0 real



0.18

0.16

A nalytical solution of PAjc0.14

0.12

0.10

0.08

Crank-Nicolson solution0.06

0.04

0.02

0.00
1.0

FIGURE 7.1 SOLUTION OF U, = Uxx AT t -  0.25 sees



U (x,t)

0.40

k * 0.01
0 3 0 k = 0.005

0.20
k -  0.001

k = 0.0005

0.10

0.00
x1.0

FIGURE 7.2 SOLUTION OF U, = Uxx AT t = 0.25 secs USING
THE NEW EXPLICIT METHOD WITH 8x = 0.025



k = 0.005

k = 0.001

0.20
k = 0.0005

k= 0.0001

0.10

0.00
x1.0

FIGURE 7.3 SOLUTION OF Ut = Uxx AT t -  0.25 secs USING
THE NEW EXPLICIT METHOD WITH 5x -0 .0 5



U(x,t)

0.30-
k = 0.005

k = 0.001
0 . 2 0 -

k = 0.0005
0.10

0.00
x1.0

FIGURE 7 A  SOLUTION OF U, = AT t -  0.25 secs USING THE 

METHOD OF EXTRAPOLATION WITH 8x -  0.025



0.40

k = 0.005
0.30

k * 0.001

0.20

k = 0.0005

k= 0.0001
0.10

0.00
1.0 x

FIGURE 7.5 SOLUTION OF U, = AT t -  0.25 secs USING
THE SECOND APPROACH WITH Bx -0 .0 2 5



C H A PTER 8

D ETA ILED  CO N TEN TS P ag e

Introduction 1

Derivation of explicit Runge-Kutta methods 2

Derivation of two-stage Runge-Kutta methods 3

Stability of Runge-Kutta methods 4

Runge-Kutta Merson 6

Runge-Kutta Fehlberg 7

Implicit Runge-Kutta methods 9

S-stability 10

Definition 11

Diagonally implicit Runge-Kutta methods 11

Theorem 1 12

Theorem 2 13

Diagonally implicit Runge-Kutta methods with error estimates 14

Fourth order strongly S-stable formula 15

Estimating the local truncation error 16

Step-control 17

Implementation of DIRK methods in HASP 17

Automatic selection of methods for solving stiff and non-stiff

systems of o.d.e.’s 19

Motivation for switching methods 20

Basic strategy for choosing methods 20

Controlling the step size for each method 21



S ta b ility  con stra in ts 23

Decision-making criterion for determining which method to use 24

Implementation considerations 24

Switching methods with Runge-Kutta formulae 25

Decision-making criterion for determining which Runge-Kutta 

method to use 26

Conclusions 27

Tables 8.1 - 8.4 inclusive 

Figure 8.1



C H A P T E R  8

RUNGE-KUTTA AND SWITCHING METHODS

In tro d u c t io n

8.1 This chapter looks at Runge-Kutta methods, in particular implicit Runge-Kutta 

methods, and studies their potential as an alternative set of single-step methods for 

use as an integrator in the HASP package. First, Runge-Kutta methods are defined, 

and some of the many different formulae that arise, each with their particular 

application, are discussed. Both explicit and implicit Runge-Kutta methods are 

described, and then a particular class of implicit Runge-Kutta methods is discussed, 

namely diagonally implicit, and the merits of this class when applied to hydraulic 

simulation explained. The implementation of Runge-Kutta methods, both explicit 

and implicit, in HASP is discussed, and the potential benefits explored. Finally, the 

idea of switching methods [21] is investigated. This idea, which is at the forefront 

of research with integration methods for stiff systems, is presented in the form of 

strategic decision-making criteria that operate throughout the integration process; 

enabling the numerical method employed to be replaced by another method when the 

pre-set criteria so determine.

8.2 Runge-Kutta methods aim to produce equivalent accuracy to a Taylor's series 

method, without the need to compute high order derivatives. Instead, a combination 

of f(t,y) values taken at several points in the interval [ tn ^ + j]  is used. The methods 

obtain high order accuracy by sacrificing linearity, but they do retain the valuable 

one step nature of single-step methods. The methods were proposed by Runge [38] 

and subsequently developed by Kutta [39] and Heun [40]. Although the methods

1



retain the advantages of single-step methods, the loss of linearity leads to more 

difficult error analysis than in the case of linear multi-step methods.

D eriva tion  O f E xplicit R unge-K u tta  M ethods

8.3 The general explicit R-stage Runge-Kutta method is defined by:

Yn+l '  yn = 1̂<J>(tn»yn»h) (8.1)

where

<Kt,y,h) = X c k 8̂'2')
r=l r

k x = f(t,y)

r-1
k. = f(t+haf, y+hXbrsks), r = 2, 3, ..., R (8-3)

s=l

r-1
a = E b  , r = 2,3 R (8.4)

S = 1

and yn+i and yn are the respective numerical approximations to yO^+j) and yO^).

An R-stage Runge-Kutta method involves R function evaluations at each step. Each 

of the functions kj.(t,y,h), r = 1, 2, R, may be interpreted as an approximation 

to the derivative y'(t), and the function <j)(t,y,h) as a weighted mean of these 

approximations.

8.4 The true solution will satisfy

yC tn+l) = yCtn) + htKVyCtn),!!) + En+1 (8.5)

The idea is to find the a's, c's and b's, so that the Taylor's series expansion of 

equation (8.5) in ascending powers of h agrees with the Taylor expansion

2



y ttn + l) = y(tn) + hy'(tn) + (hV 'Ctn))/! + ... 

to as many terms as possible for a given value of R.

(8.6)

8 .5  The Taylor’s series expansion of equation (8.5) will involve the use of a 

Taylor’s series expansion in two dimensions, i.e.

f(t+ct,y+|3) = ea a /ax + Pa/ay f(t,y)

Introducing the notation

f  = f(t,y), ft = 3f(t,y)/3t, ftt = 32f(t,y)/3t2, fty = 32f(t,y)/3t3y, etc 

and noting that

y”(t,y) = d/dtf(t,y) = 3f/3t + 3f/3ydy/dt = ft + fyf 

then the general formula for R = 2 will now be developed.

8.6 D erivation  of tw o-stage R unge-K utta m ethods. This section derives the 

formula for two-stage Runge-Kutta methods and demonstrates the existence of an 

infinite num ber of two-stage, second order Runge-Kutta methods. The general 

formula for a two-stage Runge-Kutta method is given by:

yn+l = yn + h(c l k l + c2k2) (8.7)

where

k i = f(tn»yn)

k2 = f(tn+ha2,yn+b21h k 1)

The true solution will satisfy

y(tn+l> = y(tn) + hCcjKj + c2K 2) + En+1 (8.8)

where

K l = f(tn.y(tn»

K2 = f(tn+ha2,y(tn)+b2 jh K 1)

Expanding K2, using a Taylor's series expansion of two variables, will give:

3



^  = f + (ajhf, + b21hKlfy) + A- (4h2ftt + 2a2hb21hK1fty + b21h2K2fyy ) + 0(h3) (8.9)

where f and its derivatives are evaluated at (t^yO^)).

Substituting equation (8.9) into equation (8.8) will give:

yOn+l) = y(tn) + (c i+ c2)hf + h2c2a2ft + h2c2b21ffy + 0 ( h 3 ) (8.10)

This expansion is then compared with the Taylor's series expansion about yO^+i), 

given by:

y<*n+l> =  y (*n) +  h y '( t„ )  +  (h2y''(tn))/2! + (h3y”'<t„))/3! +  0 ( h 4 )

=  y d n )  +  h f  +  h 2 ( f t+ f f y ) / 2  +  h 3 ( f tt+ 2 f f ty + f 2 f y y + f tf y + f f y 2 ) / 6  +  0 ( h 4 ) ( 8 .1 1 )

The comparison of equation (8.11) with equation (8.10) shows that an agreement of 

terms in h°, h 1, h2 can be obtained with

c i+ c 2 = 1» c2a2 = 1/2, c2b2i = 1/2 (8.12)

There are three equations in four unknowns, and hence there is a free parameter. 

Except in trivial cases this parameter cannot be used to match terms in h3, and there 

is therefore an infinite number of two-stage, second order, Runge-Kutta methods. 

For R-stage explicit methods, with R > 1, there is always at least one free 

parameter. Table 8.1 shows the maximum possible order of accuracy obtained with 

R-stage methods for R < 8.

S tab ility  O f R ung e-K u tta  M ethods

8.7 To study the stability properties of Runge-Kutta methods, the test differential 

equation, y1 = Xy y(0) =1, first mentioned in section 2.45, can be used. When the 

two-stage Runge-Kutta method given by equation (8.7) is applied to the test o.d.e., 

then k j and k2 become:

4



k l = kyn

k2 = ^ (yn + t>2ih k i> 

and hence equation (8.7) can be rewritten as:

yn+i = yn + h(ci^yn + c2(^(yn + t>2ihXyn)»

i.e.

yn+l = yn + h(ci + c2)Xyn + h2c2X2b21yn 

Using the values given in equation (8.12) will reduce equation (8.13) to:

y n+ i = yn + h ^ y n + (h2x 2 yn ) / 2

Hence, for stability, the requirement is that

(8 .1 3 )

(8.14)

1 + hA, + h V < 1

i.e.

-2 < hA, < 0 (for X real) (8.15)

8.8 Figure 8.1 shows the stability regions for explicit Runge-Kutta methods of 

order 1, 2, 3 and 4. Unlike multi-step methods, the stability region increases for 

methods as the order of accuracy increases. Although the stability region for the 

methods of order four is larger than that for order one, a restriction on hX is still 

made, and this handicaps the methods when they are used to solve very stiff systems. 

However, the com putational efficiency involved in using explicit Runge-Kutta 

methods rather than im plicit m ulti-step methods often com pensates for this 

restriction in steplength.

5



R u n g e-K u tta  M erson

8.9  Because of the difficulty involved in forming theoretical error estimates for 

Runge-Kutta methods, it is also hard to construct reliable step control strategies. 

Often, the time step is controlled using an extrapolation process, explained in 

section 4.12. This however, is an inefficient means of monitoring the local error 

since each step must be repeated once, if not several times. Merson [78] proposed a 

means of estimating the local error for a five-stage, fourth order method that does 

not require the re-computation of the solution at any point during the integration. 

He showed that if f(t,y) = Lt + My + N, with L, M, N constant, i.e. f(t,y) is linear, 

with constant coefficients, then an error estimate can be formed at each time step 

using different weightings of the kj coefficients, i = 1, 2, 3, 4, 5. Merson’s method 

is given by:

k l = fC W n)

k2 = fOn+h/S.yn+hkj/S) 

k3 = f(tn+h/3,yn+hk1/6+hk2/6) 

k 4  = f(tn+h/2,yn+hk1/8+2hk3/8) 

k 5 =  f ( tn + h ,y n + h k j / 2 - 3 h k 3 / 2 + 2 h k 4 )

The local error for the two schemes, for a linear problem of the form quoted above, 

is given by using the following relations:

yn+ l = Yn + h(k l + 4k4 + k5 ) /6 (8.16)

where

and

zn+l = yn + h(k l - 3k3 + 4k4>/2 (8.17)

(8.18)

6



(8.19)

i.e. the local error of equation (8.16) is given by

720 5

■̂n+1 Zn+1
Hence, at each s te p ,  --------  is monitored. If it is too large, then h is reduced;

if  it is much smaller than the pre-defined tolerance, then h is increased.

8.10 Care must be taken when applying the linearity assumption in order to use 

Merson's method, since experiments have shown that the local error estimate found 

when using this assum ption often grossly overestim ates, and occasionally 

underestimates En+j [74]. The author has assisted with the implementation of the 

method in HASP, a full description of which is given by Wang [74]. Good results 

have been obtained with the circuits that do not give rise to constant high ratios of 

mathematical stiffness. An alternative form of step control that has also been 

implemented in the package, in use with other Runge-Kutta methods, has been 

developed by Fehlberg [79] [80].

R u n g e -K u tta  F eh lb e rg

8 .11  Fehlberg’s method of step control is to use 6 k's to produce a fifth order 

method, and a subset of these k’s to produce a fourth order method, the fifth order 

method being for error purposes. For the five-stage Runge-Kutta method given by:

5

yn+i = yn +
i=l

(8 .2 0 )

7



where the coefficients are chosen to give a fourth order method; then if a six-stage, 

fifth order method of the form

6
zn+l = y n + h£c*k. (8.21)

i= l1 1

is also used to form a solution, e= zn+l ’ ^n+1 can be taken as an estimate to the 

local error in forming yn + i using equation (8.20). This is because, if  the true 

solution satisfies

5
+ (8.22)

1=1

then, using the localising assumption of exact values at tn, and subtracting equation 

(8.20) from (8.22) and equation (8.21) from an equation similar to (8.22) to give: 

En+1 = y(tn+l> - yn+l En+l = ° ( h5) (8-23)

and

C l = - zn+l C l  = °<h6> (8'24)

the subtraction of equation (8.24) from (8.23) will lead to:

V i ' W  = E„+i -  C i  <8 25)

and so, the principal local error term for the fourth order method is given by:

zn+l - yn+l (8.26)

8



Im p lic it R u n g e-K u tta  M ethods

8.12 The chapter now goes on to discuss implicit Runge-Kutta methods. For non

stiff problems, and for oscillatory problems [88] explicit Runge-Kutta methods are 

generally suitable. However, the stability regions of the explicit methods indicate 

that it is not advantageous to use them when the problem being solved is likely to 

be stiff over a large proportion of the integration interval. Implicit Runge-Kutta 

methods are particularly applicable to stiff systems since it is possible to obtain A- 

stable implicit Runge-Kutta formulae of the type discussed by Butcher [18] [81] of

arbitrarily high order [82], whereas the order of an A-stable linear multi-step method

is limited to 2 [83]. Consequently, high order accuracy may be obtained, as well as 

the stability properties that will ensure that for an inherently stable system, the 

method is stable for any step size. Implicit Runge-Kutta methods can be written in 

the form [20]:

R

V l  = S',, + h^ .C,f(tr,+a1h'>'n.i) (8-27>
1=1

where

R

y . = y +hXb--f(t +a.h,y .) (8.28)■rn,i ■'n jT j ij n j J n,y

8.13 The formulae given by equations (8.27) and (8.28) can be characterised by 

displaying their coefficients as a Butcher matrix of the form

b l l  b 12 • • • b l R  a l

b 2 1  b 2 2  • • • b 2 R  a 2

....................................  (8.29)

bR l  hR2 • • • bRR aR

C1 c 2 • • • CR

9



It can be seen that equation (8.27) will lead to an explicit method if by = 0 for 

i < j. Equation (8.27) is said to give a semi-implicit method if by = 0 for i < j, and 

it w ill give an im plicit method if  b^j *  0 for either of these cases. The 

computational effort involved in using a semi-implicit Runge-Kutta method is in 

general considerably less than that which is required by a fully implicit Runge-Kutta 

formula [20]. A particularly efficient class of semi-implicit Runge-Kutta formulae 

was first suggested by Norsett [19] who considered the case where the bjj are all 

equal and non-zero. These formulae were further studied by Crouziex [84] and by 

A lexander [20]. They were termed Diagonally Im plicit Runge-K utta Formulae 

(DIRK) by Alexander. Before defining classes of sem i-im plicit Runge-Kutta 

methods, which is the purpose of this chapter, an additional stability requirement 

often needed by numerical methods for very stiff systems is defined.

S - S ta b i l i ty

8.14 A-stability, where the stability region of a method includes the whole of the 

left-hand A,h plane, is not the whole answer to the problem for stiff equations. In 

their work with large systems of stiff, non-linear equations, Prothero and Robinson 

[85] found that the A-stability of a method is no guarantee that it will give stable 

solutions, and that the accuracy of the solutions obtained often appears to be 

unrelated to the order of the method used. The problem lies in the choice of the test 

equation, and the standard test problem, first discussed in section 2.45, is not 

suitable for drawing decisive conclusions with some types of problem. The analysis 

by Prothero and Robinson has led to the introduction of a new stability concept.

10



D efinition [85] A Runge-Kutta method is S-stable, if  for any bounded function 

g:[0,T] —> having a bounded derivative, and any positive constant X,Q, there is a 

positive constant ho such that the numerical solution (yn) to the equation

y' = g'(t) + ^(y - g(t)) (8.30)

satisfies

y n + r ^ W

y.-8»n>
< ! (8.31)

provided yn *  gO^), for all 0 < h < hQ, and all complex X, with Re(-A,) > A,q.

A Runge-Kutta method is strongly S-stable if

y n+ l-^n+ l5
 r -;—  - * 0

yn-8<‘n>

as Re(-X,) —> <*» for all h such that [ t ^ t ^ i ]  is a subset of [0,T].

S-stability => A-stability, since if g is taken to be zero, equation (8.30) will reduce 

to the standard test equation, and equation (8.31) reduces to the normal conditions 

for A-stability. The converse does not hold.

D iagonally  Im p lic it R unge-K u tta  M ethods

8.15 To integrate a system of m differential equations, an implicit method with a 

full matrix given by equation (8.29) requires the solution of mR simultaneous, non

linear equations at each time step. One way to overcome this problem is to use a 

lower triangular matrix (b^) in equation (8.28). The formulae given by equation 

(8.28) may then be solved in R successive stages, with only an m-dimensional 

system to be solved at each stage. As has been already discussed already, such 

methods are termed semi-implicit. In solving equation (8.28) successively by a 

Newton-type iteration scheme, which is suitable for stiff systems due to there being 

no stipulation on a combination of the Lipschitz constants of the system, and the

11



tim e step, in order to ensure convergence, then a linear system is solved at each 

stage with a Jacobian matrix of the form I - hbjj 9£/9y. involved. If  all the bjj are 

equal, then the LU-factorisation of the single matrix can be stored and used 

repeatedly. Crouziex [84] has determined all the two-stage, third order and three- 

stage fourth order semi-implicit Runge-Kutta methods, and from his work the 

following theorems have been extracted by Alexander [20].

Theorem  1 [20] There is exactly one A-stable DIRK formula each of two-stage, 

third order and three-stage fourth order. These are given by:

Two-stage, third order

1/2 + 1/(2V3) 0

-1/V3 l/2+l/(2>/3)

1/2 1/2

Three-stage fourth order

(l+<x)/2 0 0 (l+ a)/2

-a/2 (l+a)/2  0 1/2

(1+a) -(l+2a) (l+a)/2 (l-a)/2  (8.33)

l/(6 a )2 1-1/3 a 2 l/(6a)2

where a  = 2cos{(7t/18)/V3]

1/2 + 1/(2V3)

1/2 - 1/(2V3) (8.32)

12



Theorem  2 There is no DIRK four-stage formula with fifth order accuracy.

8.16 The two methods given by equations (8.32) and (8.33) are also S-stable, the 

proof for this is given by Prothero and Robinson [85]. Alexander also presents two 

strongly S-stable DIRK formula of order two in two stages and one strongly S-stable 

DIRK formula of order three in three stages. These are:

a 0 a

1 -a a 1 where a  = 1 ± (V3)/2 (8.34)

1 -a a

a 0 0 a

a2-a a 0 *2 where a  is the root of

C1 c2 a 1 x3 - 3x2 + 3x/2 - 1 /6  = 0 (8.35)

c i c2 a lying in the interval (1/6, 1/2)

a2 = (1 + a ) /2

c i = -(6 a 2 - 16a + l)/4

c2 = (6 a 2 - 2 0 a  + 5)/4

8.17 Although Alexander developed the formulae for several diagonally implicit 

Runge-Kutta methods, he did not develop an efficient time step control to be used 

with the methods. The technique he employed was Richardson's extrapolation. 

However, Alexander did achieve good results when he applied the DIRK formulae 

given in equations (8.32) - (8.35) to several of the test problems devised by Enright 

and given in Appendix D. He compared the results he found using the DIRK 

formulae to those given by the Hindmarsh-Gear method [86]. Some of the results

13



that he found are given in tables 8.2, 8.3 and 8.4. It can be seen that, even when 

using a poor time step control, the DIRK methods display considerable advantage 

over an adapted version of Gear's method for the test problems selected.

8.18 D iagonally  im p lic it R unge-K u tta  form ulae w ith  e r r o r  es tim a tes.

Cash [87] developed a class of embedded diagonally im plicit strongly S-stable 

Runge-Kutta methods based on those formed by Alexander with an additional 

facility, a ready-formed estimate of the local error at each step that entails virtually 

no extra computational cost. These methods have been implemented in the HASP 

package, and a description of these methods and their application to hydraulic 

systems is now given

8.19 Cash's idea was to use the approach first proposed by Fehlberg, which has 

been discussed in section 8.11. He found embedded methods and from these could 

form an approximation to the local error at each step. For the coefficient values 

given in equation (8.35), leading to a three-stage third order method, there is an 

embedded two-stage, second order formula given by the coefficient values:

a  a  a

a2- a  0 a2 (8.36)

C1 c2

where a  and a2 are given in equation (8.35) 

ci  = (a2 - l/2)/(a2 - a )  

c2 = ( a  - l/2 )/(a  - a2)

The important point to note about these embedded formulae is that virtually no extra 

work is required to compute the second order solution once the third order solution

14



has been computed. This is because the quantities 

f(tn+ aih ,yn>i) i = 1, 2 

will already have been computed.

8.20 F o u rth  o rd e r  strongly  S-stable form ula It is a five-stage, fourth order 

method that has been implemented in HASP. The coefficient values for this method 

are given by:

a 0 0 0 0 al

b21 a 0 0 0 a2

b 31 b32 a 0 0 a3

b41 b42 b43 a 0 a4

C1 c2 c3 c4 a 1

Cl c2 c3 c4 a

where

a  = 0.4358665215 b2 1 = -1.1358665215
b3 1 = 1.085433307 b32 = -0.721299828

b41 = 0.416349502 b42 = 0.190984004

b43 = -0.118643265 a l = a
a2 = -0.7 a3 = 0.8
a4 = 0.924556762 ci = 0.896869653
c2 = 0.018272527 c3 = -0.0845900311
c4 = -0.266418671

8.21 The coefficient values for the embedded, third order formula which is used for 

the purposes of error estimation are:

15



a 0 0 0 al

b21 a 0 0 a2

b31 b32 a 0 a3 (8.38)

b41 b42 b43 a a4

C1 c2 c3 c4

where a ,  the aj's and the b coefficients are given above, and

Cj = 0.776691933 
c2 = 0.029747279 
c3 = -0.026744024 
c4 = 0.220304812

8.22 E stim ating  the local trunca tion  e rro r. A proceedure is now considered 

for estimating the local truncation error of the formula given by equation (8.37), and 

for controlling the steplength used by the method during the integration. Supposing 

that the finally accepted approximation yn to y(tn) has been computed, and the 

requirement is to compute an approximate solution at tn+i = 1  ̂ + h. Assuming that 

yn is exact, and denoting the solution obtained at t ^ j  using the embedded formula 

in equation (8.38) by 

1
yn+i

and that obtained at at tn+j using the formula given in equation (8.37) by 
2

yn+i

then an estimate E* to the local truncation error of the asymptotically less accurate 

*1+1 is:

E * =  V l - y L l  (8-39)

16



If IE*I is less than a prescribed tolerance, then the solution yn+1 is carried forward as 

the approximation to the true solution.

8.23 S tep-control. If a local error tolerance, TOL, is imposed at each step, and h

and h ’ are the current steplength and the next steplength to be chosen respectively,

then if E is set as

E = I V l - V l  I (8.40)

the steplength is controlled in the following way, although the algorithm discussed 

in chapter 4 can also be employed.

i) If  E > TOL, h’ = h/2 and start again from tn
ii) If  TOL/p. < E < TOL, h’ = h
iii) If  E < TOL/jx, h' = 2h

Here the factor p. is introduced, to make sure that the steplength is not doubled too 

often when it is not safe to do so. The choice of |X is somewhat arbitrary, but 

practical experience based on third and fourth order formulae have shown that for the 

cases where the order of the method, p, is 3 or 4, the choice ji = 2P + 2P+1 is 

adequate [87].

Im p lem en ta tion  o f D IR K  m ethods in HASP

8.24 Since the method has been formed to solve o.d.e.'s of the form 

JL’ =

the implementation inside of HASP is a straightforward procedure, since the package 

has been designed for a classical integration method, namely Gear’s method. The 

calling process from the main program MAIN to the Runge-Kutta method, which has 

been writen in FORTRAN as a subroutine called DIRK, is:

17



CALL DIRK(T, TEND, Y, N, AUX, TOL, ITEST, TAB, OUT, IFAIL) 

where the arguments are the same as those explained in some detail in chapter 5. The 

function values needed by DIRK are again returned by the subroutine AUX when the 

numerical integrator requires them. This method has been used to solve the fifth 

order linear actuator circuit which is described in secion 5.6. At present the method 

has only been used experimentally, although the results it has obtained compare 

favourably with the results given by Gear's method and the new method. Many tests 

remain if DIRK methods are to provide alternative integrators to be used within 

HASP. Some difficulties were encountered when using the DIRK methods, and the 

major one was choosing the starting values for yn j given in equation (8.28). The 

method of choice is not simple, since Newton's iteration technique requires an 

accurate starting value, and several approaches have been adopted. Originally, a 

linear extrapolation approach was used, but this did not prove to be very successful. 

The method used at present, which is not ideal, is to take as the starting values the 

final values calculated at the last time step. Although this process works 

satisfactorily, an improved method for determining the starting values of the yn^ 

coefficients would decrease the C.P.U. time needed by the method, since a large 

proportion o f the time spent in the integration routine is taken up with the 

evaluation of these coefficients. The DIRK method described here provides a realistic 

alternative method for solving the stiff systems of ordinary differential equations 

that arise in Fluid Power simulation because of its superior stability properties and 

its high order of accuracy. The work that is necessary before this method, or one 

similar, can be employed as a general purpose integration method by HASP, would 

provide an interesting topic of work for the future.

18



A utom atic  Selection O f M ethods For Solving S tiff A nd 

N on-S tiff System s O f O .D .E .'s

8 .25  The work undertaken with the HASP simulation package has identified 

particular problem areas. The main problem is mathematical stiffness, but this 

generally proves to present difficulties only throughout certain  parts of a 

simulation, i.e. only a small proportion of the total simulation time actually gives 

difficulty to the numerical integrator employed by the package. Recent work by 

Petzold [21], Robertson [22] and Richards, Wade and Everett [88] has explored the 

possibility of implementing a scheme, when solving o.d.e.'s, that automatically 

determines whether a problem can be solved more efficiently using a class of 

methods suited for non-stiff problems or a class of methods suited for stiff 

problems. This chapter now goes on to investigate the work undertaken with 

switching methods, which has been mostly involved with multi-step methods, and 

explains the possible application to the HASP package. The background behind the 

decision-making techniques is given, along with a suggestion for a possible 

extension of the idea to encorporate different Runge-Kutta formulae as the "stiff 

methods" and "non-stiff methods".

8.26 Petzold [21] has devised a technique that uses the information available at the 

end of each step during the integration for making the decision between employing 

one of two different types of method. If a problem changes character in the interval 

of integration, the solver automatically switches to the class of methods which is 

likely to be the most efficient for that part of the problem. The results she found, 

using a modified version of Enright's package, indicate that many problems can be 

solved more efficiently using this scheme than a single class of methods, and that 

the overhead of choosing the most efficient method is relatively small, in 

comparison to the complete run time for the problems solved.

19



8.27 M o tiva tion  fo r sw itching m ethods. A scheme that switches methods 

would be useful in several different situations. The user of an o.d.e. solver may not 

know whether the problem to be solved is stiff, or the solver may be called by 

another code, such as with HASP, where the character of the problem is not known 

in advance. Using a "switching5' technique, then the m ost effective family of 

methods is chosen automatically. Moreover, many stiff problems in Fluid Power 

sim ulation are often non-stiff after the initial phase, or transient. Integrating 

through the time period after the transient with a method designed for stiff problems 

is very expensive, whereas methods designed for non-stiff problems are much better 

suited for this purpose. As the problem becomes non-stiff, the code can eventually 

switch to "non-stiff methods". In general, a problem may be stiff in some intervals 

and non-stiff in others. A "switching" scheme selects the methods that are most 

efficient for each interval.

8.28 Shampine [89] [90] [91] originally undertook the work involved with detecting 

stiffness. He also outlined a scheme [92] for automatically altering the solution 

algorithm based on the stiffness of the problem for codes implementing A-stable 

formulae. However, the work undertaken recently has not restricted the automatic 

selection of a method to be necessarily A-stable, and this provides much more 

freedom when choosing the relevant sets of methods.

8.29 B asic s tra teg y  for choosing m ethods. As the integration proceeds, the 

objective is to choose the family of methods which will solve a given problem most 

efficiently. This decision was made by Petzold by comparing the method that is 

currently being used to the method that would be used if the code switched to the 

other family of methods. LSODE, an updated version of the GEAR package, written

20



by Hindmarsh [93], has been modified to switch automatically between Adam's 

methods and backward differentiation formulae depending on the nature of the 

problem being solved. This chapter presents the idea of using Runge-Kutta formulae 

for both the non-stiff and the stiff methods. To compare the methods, the step size 

that each method could use on the next step must be considered, and also the cost 

per step of each method. Since one step of a "non-stiff method" is typically much 

cheaper than one step of a "stiff method", it is favourable to use a "non-stiff 

method" as long as the step sizes it uses are not very much smaller than the step 

sizes that would be used by a "stiff method".

8.30 C o n tro llin g  th e  step  size fo r each m ethod . For the "non-stiff 

methods" several considerations will affect the step size. First, a step size must be 

chosen to ensure that the formula is accurate over the next step, i.e. so that the 

norm of the local truncation error is less than some constant e. If  the code uses 

functional iteration to solve the corrector equation, rather than Newton’s method, 

then the step size must be small enough so that the iteration will converge rapidly. 

Finally, the step size must be small enough to ensure that the method is stable. For 

the "stiff method", the step size is chosen so that the formula is accurate over the 

next step. Letting N be the "non-stiff method", and S the "stiff method", then if N 

and S are both linear multi-step methods of order p, for example, the requirement 

can be made that the principal part of the local truncation error is less than e. 

Suppose that method N is currently being used with step size h ^ , that N  is stable 

for the problem with this step size, and that | | EN | | is the estimate for the local 

truncation errror. Then, applying the technique described in chapter 4, h ^  and hg, 

the step sizes that the non-stiff and stiff methods could use on the next step, will 

satisfy

21



where Cj^ and Cs are constants depending on the methods N  and S.

8 .31 The step size of method N may also be affected by considerations such as 

stability and convergence of the functional iterations. Hence, what effects, if any, 

these conditions will have, must be found. To accomplish this, an estimation for 

I I 3f/3y I I , or an estimate of the spectral radius p(3£/3yj is required. When a "stiff 

method" is used, a Jacobian matrix is available and I I 3f/3x I I can be computed 

directly. The norm  can be computed cheaply, relative to the cost o f matrix 

factorisation, whenever a new Jacobian matrix is formed. Thus, the norm which is 

available at any given time may correspond to a time several steps back, but this is 

not likely to be too severely in error, since "stiff methods'* generally re-evaluate the 

Jacobian whenever it changes significantly. Shampine [91] gives a way of cheaply 

obtaining a lower bound for | | 3f/3y. | | during the corrector iteration when using 

the "non-stiff method". The basic idea is that if the iteration is written as:

X(s+D = h7f(x(s)) + S£ (8.43)



The maximum of the ratios

I I (s+1) (s) I |
(1 /hY)i U  L * _ I I  (8.45)
K ”  I I ( 8 )  ( 8 - 1 )  I I

II x - x  II

obtained over the current step, is a lower bound for | | df /dx  I I. These bounds are 

quite good, but can fluctuate when the dominant eigenvalues of df/dx  are complex.

8.32 Supposing a lower bound k  for | | df/dx  I I has been generated o r | | df /dx  I I 

has been computed directly. Referring to chapter 2, then hjsj must be small enough 

so that the functional iteration will converge at a sufficiently rapid rate r, with hj^ 

satisfying hj^y I I df /dx  I I ̂  1/2; so the requirement is that

hN < r/(2y I I df/dx  I I) (8'46)

8.33 S tab ility  co n s tra in ts . Stability also constrains the step size for the non

stiff method. If  rq is the radius of the largest half disc contained in the stability 

region of method N, then the condition

hNp(3f/3y) <; rq (8.47)

must be satisfied or the computation can become unstable. Hence the requirement is 

that hjyf satisfies

hN < (rqw f)/K (8.48)

where k  is the lower bound for | | d£/dx I I , and the factor Wf is included to be 

reasonably sure that h ^  will lead to stable computation since k  is only a lower 

bound.

23



8.34 D ecision -m ak ing  c rite rio n  fo r determ in ing  w hich m ethod  to  use.

Once the estimates for given by equation (8.41), (8.46) and (8.48) have been 

made, then the step size that the non-stiff method, N, could use on the next step, is 

the largest hjsj that satisfies these three conditions. The step size that the stiff 

method, S, could use is the largest hg that satisfies equation (8.42). Supposing that 

N  is cheaper per step than S, so that it is still more economical to take as many as 

M steps with N for each step that have to be taken with S, then, if the method 

currently being used is N, the shift to method S would be made if

hs  > MhN (8.49)

Since it is important to guard against changing families of methods too frequently, 

to avoid the possibility of unstable computation, it is necessary to stay with either 

method S or N longer than is really optimal. One way of doing this is to shift from 

method S to method N  if

hN > Mhs (8.50)

8.35 Im p lem en ta tion  considera tions. When practically implementing the ideas 

that have been described, it is important that the information upon which the code is 

basing its decision be reliable, and not misleading. The code should recognise 

situations where it is not possible to obtain reliable inform ation, and take 

appropriate action. Generally, the problems that occur are involved with finding a 

reliable estimate for the local truncation error, and a reasonable lower bound for 

I I 5£/3y. I I . Petzold describes in detail the considerations that must be made when 

using linear multi-step methods for both the "stiff methods" and the "non-stiff 

methods". Here, a description is given of the way in which Runge-Kutta methods 

could be used, and the advantages that they would provide.

24



Sw itching M ethods W ith R unge-K utta Form ulae

8.36 The proposals made here are that, instead of using linear multi-step methods 

within both the classes of stiff and non-stiff methods, Runge-Kutta formulae are 

considered instead. Runge-Kutta methods have immediate advantages over multi-step 

methods in that integration can commence with a high order method, and the code is 

compact, and hence suitable for microcomputers, where the saving of storage space 

is important. Richards, Wade and Everett [88] suggested using explicit Runge-Kutta 

methods of orders 2, 3, 4 and 5 as the "non-stiff methods". For the "stiff methods" 

they employed backward Runge-Kutta methods of orders 1, 2, 3, 4 and 5, which 

were developed by Cash [94]. However, the work they presented was not very 

productive, in part because, although for the explicit Runge-Kutta methods it was 

possible to use a Fehlberg-type error estimate, with the im plicit Runge-Kutta 

methods they employed a Richardson error estimation, which, as is discussed in 

chapter 4, is not an ideal method for the approximation of the local error of a 

method, because of the extra work involved.

8.37 Instead of using the Runge-Kutta methods suggested above, the proposal here 

is that the Runge-Kutta method described in section 8.11 is employed as a non-stiff 

solver along with other explicit methods such as that described in section 8.9; and 

the Runge-Kutta method described in section 8.20 is employed as a stiff solver, 

along with the other formulae suggested by Cash [87] that have ready-formed error 

estimates. Since a reliable approximation to the local error for each of the methods 

in both these classes can easily be made, there exists immediately a set of highly 

accurate methods for use as non-stiff and stiff methods. The proposals made here 

present a challenging branch of future work, with which the author is already 

involved.

25



8.38 Again, the decisions determining when to change from the non-stiff code to 

the stiff code and vice versa will be determined by consideration of the step size that 

each method would use on the next step. Since there exist reliable forms of 

controlling the local error, the optimal step size for each method could easily be 

evaluated using relations similar to those given in equations (8.41) and (8.42). 

Since DIRK methods can also be chosen that are strongly S-stable, there is no need 

to consider the stability region for this class of methods, when they are applied to 

inherently stable systems. However, the stability regions of the explicit methods are 

somewhat smaller, and hence a relation similar to that given in equation (8.48) must 

be used to determine an optimal h that will satisfy the stability requirements.

8.39 D ecis io n -m ak in g  c r ite r io n  fo r d e te rm in in g  w hich  R u n g e -K u tta  

m ethod to use. The largest h that the explicit method can use during the next step 

of the integration process can now be evaluated, and the largest step that the DIRK 

method requires will also be known. Now, it is necessary to determine, on average, 

how much cheaper per step the explicit method is to use than the implicit method. 

Then, equation (8.49) or (8.50) can be used to determine whether to shift from the 

non-stiff method to the stiff method, or vice versa. Since the explicit Runge-Kutta 

methods do not make use of an iteration scheme, the problems involved with 

iterating can be disregarded. When implementing the methods, it is essential to 

ensure that reliable information is given to the portions of code that decide what 

w ill happen next. One further consideration which may be useful when 

contemplating this is that, in general, when accuracy determines the length of time 

step, rather than stability, the problem is non-stiff; but, if stability determines the 

size of the time step rather than accuracy, the problem is stiff.

26



C o n c lu s io n s

8 .40  H aving studied both Runge-Kutta methods, and the idea of "switching 

methods", then the merits of their implementation inside the HASP package is 

apparent. Explicit Runge-Kutta methods have already been successfully transplanted 

into the simulation package, and with some further work, im plicit Runge-Kutta 

methods will soon be available as alternative integration methods for solving the 

stiff systems of differential equations arising in Fluid Power simulation. Hopefully, 

more work will be conducted with the package in the area of expert systems, in the 

sense that the subroutine solving the differential equations decides for itself which 

method is most suitable for an individual problem.

27



s 1 2 3 4 5 6 7 8

Max. Order 

attainable 1 2 3 4 4 5 6 6

TABLE 8.1 MAXIMUM POSSIBLE ORDER OF ACCURACY OBTAINED WITH R-STAGE

RUNGE-KUTTA METHODS FOR R = 1 - 8



Time Max.Err No. Steps NFE NJE

B1 e = 10"2 

DIRK(2,2) 1.956 8.433E-2 67 435 28

DIRK(2,3) 2.100 8.419E-2 59 391 29

DIRK(3,3) 1.737 6.301E-2 47 454 24

GEAR 6.013 4.525E-1 293 600 11

€ = 10~4 

DIRK(2,3) 6.628 2.390E-3 217 1.364 37

DIRK(3,3) 5.576 1.733E-3 163 1.521 33

DIRK(3,4) 5.986 1.740E-3 169 1.586 35

GEAR 7.588 5.884E-2 397 726 19

€ = 1CT6 

DIRK(3.3) 19.223 5.414E-5 542 4.956 41

DIRK(3.4) 18.230 4.252E-5 489 4.496 45

GEAR 13.410 7.598E-5 710 1.222 24

TABLE 8.2 TEST RESULTS FOR DIRK METHODS FOUND BY ALEXANDER



Time Max.Err No. Steps NFE NJE

B5 e = 10~2 

DIRK(2,2) 1.912 2.174E-2 52 342 15

DIRK(2,3) 2.097 1.947E-2 47 313 15

DIRK(3,3) 1.956 8.173E-3 39 376 14

GEAR 44.951 5.502E-2 2,387 4,753 6

€ = 1(T4 

DIRK(2,3) 8.175 3.757E-4 191 1,211 28

DIRK(3,3) 7.307 2.327E-4 148 1,393 27

DIRK(3.4) 8.174 2.406E-4 151 1,429 28

GEAR 48.029 4.191E-4 2,337 4,825 14

€ = lO-6 

DIRK(3.3) 23.674 1.363E-5 479 4,408 31

DIRK(3,4) 23.911 5.779E-6 457 4,219 32

GEAR 48.648 8.540E-6 2,577 4,198 16

TABLE 8.3 FURTHER TEST RESULTS FOR DIRK METHODS FOUND BY ALEXANDER



Time Max.Err No. Steps NFE NJE

Cl € = i<r2
DIRK(2.2) 0.656 2.394E-3 20 139 11

DIRK(2,3) 0.631 1.679E-3 20 143 10

DIRKC3.3) 0.751 3.143E-3 18 177 9

GEAR 1.034 6.074E-3 57 101 13

€ = 10~4 

DIRK(2,3) 1.941 3.25 7E-5 53 390 27

DIRK(3,3) 1.653 8.344E-5 40 454 20

DIRK(3.4) 1.716 6.783E-5 40 457 20

GEAR 2.131 1.166E-4 112 186 20

€ = 10-6 

DIRK(3,3) 4.802 4.073E-6 133 1,419 33

DIRK(3,4) 4.233 1.266E-6 109 1,259 37

GEAR 4.113 1.763E-6 206 289 27

TABLE 8.4 FURTHER TEST RESULTS FOR DIRK METHODS FOUND BY ALEXANDER



1- 2 /

FIGURE 8.1 STABILITY REGIONS FOR EXPLICIT RUNGE-KUTTA  
METHODS OF ORDER 1, 2, 3 AND 4



CHAPTER 9

D ETA ILED  CO NTEN TS P ag e

Introduction 1

The integrator 1

Analysis of the method 1

Implementation in HASP 2

Runge-Kutta and switching methods 3



CHAPTER 9

CONCLUSIONS

In tro d u c tio n

9.1 A new integration method has been developed and tested in this thesis, and its 

application as a competitive numerical integrator has been investigated. Also, a 

study has been made of the mathematical problems arising in Fluid Power 

simulation. This chapter draws together the material presented throughout the thesis 

and suggests possible future work

The In te g ra to r

9.2 The integrator plays a vital role within a simulation package, and the demand 

for efficiency increases as the systems being modelled become more sophisticated. 

The new method was originally studied in an attempt to improve the performance of 

the Hydraulic Automatic Simulation Package (HASP), when the hydraulic systems 

being simulated presented the problem of mathematical stiffness. The tests with the 

method on the particular problems described in chapter 3 led to favourable results in 

comparison with classical integration methods, and hence the method was studied in 

more detail.

A nalysis O f The M ethod

9.3 After the preliminary investigations, the method was seriously contemplated; a 

time step control was devised and the stability properties of the method were 

thoroughly examined. The explicit form of the method proved to have desirable 

stability properties for diagonally dominant systems, and this provided the basis for

1



the work presented in chapter 7. The implicit form of the method, which was 

studied, also demonstrated good stability properties, although it was not possible to 

form a general restraint on the integration time step in order to ensure the stability 

of the method. This was due to the difficulty in finding a relation between the 

eigenvalues of the system matrix, and the eigenvalues of the stability matrix formed 

for the method. However, the predictor-corrector pair, with a time step control, did 

provide encouraging results when applied to stiff and oscillatory problems, and so it 

was decided to implement the method inside the HASP package.

Im p lem en ta tio n  In  HASP

9.4 The method was successfully implemented inside the HASP package, with the 

appropriate modifications made to the program generator to allow the use of the 

method. However, there is a problem in implementing the new method, in that the 

integrator requires coefficient values and not derivative values. This means that for 

each test circuit studied, the component models had to be changed to provide the 

necessary information to the new integration method. For the test circuits examined, 

these m odifications have been made, so that the component models pass back 

coefficient values to the integrator. But to ensure the general use of the method as 

an alternative integrator with the package would require changes to be made to most 

of the models in the component model library, and this would provide a long and 

arduous task. Since the results with the test circuits examined did not prove to be as 

successful as had been expected, rather than modify an exhaustive set of models, a 

package designed specifically for testing stiff differential equation solvers was 

employed, which provided a large set of stiff problems. The tests carried out with 

this package provided the basis for the work presented in chapter 6.

2



9.5 The method proved to be competitive in comparison with classical integration 

methods, when the problem to be solved was stiff or oscillatory. However, because 

of the low order of accuracy of the method, it was not capable of competing against 

variable order methods, when the original fast transient of a problem is dead, and the 

system is approaching, or has reached, steady-state. In this case, variable order 

methods can increase their order of accuracy, and hence the integration time step 

used, and still satisfy stability constraints. Hence the order of accuracy of the 

method had to be improved, and several approaches were adopted, two of which are 

discussed in chapter 7. However, so far, none of the attempts made have proved to be 

successful, and the accuracy of the method remains too low to allow its use as a 

general purpose integration method.

9.6 The performance of the method is admirable for certain applications, and, if  a 

way were found to improve the order of accuracy of the method, it could still provide 

a viable alternative as a complete integration method, both for stiff and non-stiff 

problems. However, its applications at present are limited, and as such the future of 

the method is restricted, particularly in playing a role as an integrator within the 

HASP package. Ways of extending the accuracy of the method could provide an 

interesting field of research for future work.

R u n g e-K u tta  A nd Sw itching M ethods

9.7 The study of the mathematical problems arising in Fluid Power simulation 

during the course of this project has persuaded the author to write chapter 8. It is 

felt that the direction forward for numerical integration methods, particularly with 

regard to integrators within packages such as HASP, is to employ decision-making

3



criteria implemented within an algorithm deciding the integration method to be used. 

These criteria would ensure that the most suitable numerical method available is 

always used throughout the integration process. Since single-step methods are able 

to cope better with the commonly occurring mathematical difficulties, such as 

discontinuities, then in Fluid Power simulation the most suitable techniques with 

which to develop the idea of switching could be the Runge-Kutta methods. Recent 

work with these methods has provided numerical schemes with good stability 

properties and high accuracy. It is felt that this direction in future work, particularly 

with regard to the HASP package, is the way in which numerical integration should 

be headed.

4



APPENDIX A

CODE FOR THE INITIAL TESTING OF TH E NEW  M ETHOD

In tro d u c t io n

A .l The object of this appendix is to present the computer code implementing the 

new method. The commented code that is given is a code for the method operating 

with a fixed time step. Also included in the code are the program listings for the 

C.P.U. tim ing clock, and these are given in subroutines TIM and CONVER. The 

user of the code has the choice of whether to use the explicit form of the method, or 

the first implicit form of the method, which is combined with the explicit method to 

form a predictor-corrector pair. The functions that return the coefficient values for 

the method must be written individually for each problem, and those presented here 

are from the third order system discussed in section 3.35. This program also needs 

these functions to supply the Jacobian matrix, since a Jacobian matrix is formed 

specifically for each problem. In Appendix C, the code employs a perturbation 

technique to evaluate the Jacobian.

A lgorithm  A nd Basic S trategy  F o r The P rogram

A.2 The flow chart representing the program action is given in Figure 3.1. The 

basic algorithm, in list form, is as follows:

i) The program starts
ii) The system data is input
iii) The program data is initialised
iv) The functions evaluating the coefficients are called
v) The subroutine implementing the explicit method is called
vi) If  required, the subroutine implementing the implicit method is called

1



vii) If  the implicit method is used, the functions evaluating the coefficients 
are recalled

viii) The solution at the present time step is formed
ix) If  the time step is the last one then the program finishes, else the time step 

is advanced, and the program returns to iv)

C THIS PROGRAM IMPLEMENTS THE NEW METHOD, WHICH CAN BE
C APPLIED TO A VARIETY OF PROBLEMS. THE USER ENTERS THE TIME
C STEP CHOSEN, THE FINAL TIME, WHETHER THE EXPLICIT METHOD
C OR THE IMPLICIT METHOD IS REQUIRED AND WHETHER SCREEN
C OUTPUT IS REQUIRED AS WELL AS GRAPHICAL OUTPUT
£  s|c a|c % afe sjc 4* 4* 4< 4« 4* 4* %  ♦  ★  %  % %  % =► +  4* 4« % 4< »fc 4c 4* %  afc afc 4* % % 4* 4< 4* % % afc %  %  4*4* s|r 4c 4c 4* jfe 4c % %  %  4c 4c 4c 4c

c VARIABLES IN ARGUMENT LIST
c H INTEGRATION STEP LENGTH. SET BY THE USER.
c TEND - FINAL INTEGRATION TIME IN SECONDS
c PI ARRAY THAT HOLDS THE PISTON PRESSURE VALUES
c P2 ARRAY THAT HOLDS THE ROD PRESSURE VALUES
c U ARRAY THAT HOLDS THE PISTON VELOCITY VALUES
c TOL TOLERANCE USED BY THE ITERATION SCHEME
c KA,KB - ORIFICE FLOW COEFFICIENTS
c B BULK MODULUS OF THE HYDRAULIC OIL
c AR1 PISTON-SIDE AREA OF ACTUATOR PISTON
c AR2 ROD-SIDE AREA OF ACTUATOR PISTON
c EF VISCOUS FRICTION COEFFICIENT
c M MASS TO BE MOVED BY ACTUATOR
c PS SUPPLY PRESSURE
c VI INITIAL COMBINED VOLUME OF ACTUATOR AND PIPE 1
c V2 INITIAL COMBINED VOLUME OF ACTUATOR AND PIPE 2
c COUNT- INTEGER VARIABLE USED AS A COUNTER
c XX ARRAY USED TO STORE ’A " COEFFICIENT VALUES
c YY ARRAY USED TO STORE "B" COEFFICIENT VALUES
c ATTME, BTTME, TTIME AND TIM ARE INVOLVED IN  THE C.P.U.
c TIMING OF THE ROUTINE

C THE NEW METHOD APPLIED TO A NON-LINEAR, NON-OS CILLATORY
C AND STIFF PROBLEM

2



IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION Pl(0:2000), P2(0:2000), U(0:2000), XX(3), YY(3)
DOUBLE PRECISION KA, KB, M 
INTEGER FLAG1, FLAG2, FLAG3, COUNT 
INTEGER*4 ATIME, BTIME, TTIME, TIM 

C ENABLING GRAPfflCS, USING A SPECIFIC GRAPHICS PACKAGE
I CONTINUE

OPEN (1, F1LE=' CADRES.DAT ’, ACCESS=' DIRECT ’, STATUS =
1 ' NEW RECL=2)

C INITIALISING VARIABLES
DATA U(0), P1(0), P2(0), AR1, AR2 /  0.0, 0.0, 0.0, 1.96D-3, 1.47D-3 /  
DATA B, EF, KA, KB /  1.8D9, 4.D3, 3.2D-12, 3.2D-12 /
DATA M, PS, V I, V2 /  1.D3, 2.1D7, l.D-3, l.D-3 /
CO U N T= 0  
TTIME = 0 

C USER INPUT STAGE
WRITE(6, 10)

10 FORMAT(3X, 'ENTER H AND FINAL T VALUE'/)
READ(5,*)H,TEND

II  CONTINUE 
WRITE(6,12)

12 FORMAT(3X, ’ENTER 1 FOR EXPLICIT METHOD, 2 FOR IM PLIC IT/) 
READ(5,*)FLAG1
IF((FLAG1 .NE. 1) .AND. (FLAG1 .NE. 2»  GOTO 11

13 CONTINUE 
WRITE(6,14)

14 FORMAT(3X, 'PRESS 1 FOR GRAPHICAL OUTPUT, 2 FOR SCREEN’) 
READ(5,*)FLAG2
IF((FLAG2 .NE. 1) .AND. (FLAG2 .NE. 2)) GOTO 13 

C INCREMENTING COUNT AS THE EVALUATION BEGINS AT THE
C NEXT TIME STEP. AN ALTERNATIVE VERSION OF THE PROGRAM
C ALLOWS THE USER TO EVALUATE THE EIGENVALUES OF THE
C SYSTEM AT EACH TIME STEP IF THEY ARE REQUIRED
5 CONTINUE

COUNT = COUNT + 1 
C CALLING THE EXPLICIT METHOD AFTER FORMING THE COEFFICIENT
C VALUES BY INVOKING THE RELEVANT FUNCTIONS

BTIME = TTM(ATIME)
XX(1) = A 1 (B, V 1 ,K A ,PS ,P 1 (COUNT -1))
XX(2) = A2(B,V2,KB,P2(COUNT-l))

3



XX(3) = A3(EF,M)
YY(1) = Bl(ARl,Vl,B,PS,U(COUNT-l),KA,Pl(COUNT-l))
YY(2) = B 2(B, AR2,V 2,U(COUNT-1))
YY(3) = B3(ARl,AR2,M,Pl(COUNT-l),P2(COUNT-l))
CALL PREDIC(P1,P2,U,XX,YY,H,COUNT)

C IF FLAG1 = 2 THEN THE IMPLICIT METHOD IS NOW INVOKED,
C OTHERWISE, THE VALUES CALCULATED BY THE EXPLICIT METHOD
C ARE TAKEN AS THE SOLUTION

IF (FLAG1 .EQ. 1) GOTO 15
CALL CORREC(Pl,P2,U,ARl,AR2,B,EF,Vl,V2,PS,KA,KB,M,H,COUNT)

15 CONTINUE
A TIME = TIM(ATIME)
TTIME = TTIME + (ATIME- BTIME)

C CHANGING VOLUMES IN THE ACTUATOR AS NECESSARY
CHVOL1 = ARl*H*(U(COUNT) + U(COUNT-l))/2.
CHVOL2 = AR2*H*(U(COUNT) + U(COUNT-l))/2.
VI = V I + CHVOL1 
V2 = V2 - CHVOL2 

C THERE IS A CHECK HERE TO ENSURE THAT THE ACTUATOR
C HAS NOT REACHED THE LIMIT OF ITS TRAVEL

IF (V2 .LE. 0) THEN
TEMP = FLOAT(COUNT)*H
PRINT*,’ANNULUS VOLUME IS ZERO, RUN STOPPED AT T = \TEMP 
GOTO 20 

ENDIF
C CHECKING TO SEE IF THE INTEGRATION HAS FINISHED YET

IF(COUNT .LT. INT(TEND/H)) GOTO 5
C
20 CONTINUE
C WHEN THE SIMULATION HAS FINISHED, THE RESULTS ARE SENT
C TO THE OUTPUT ROUTINE

CALL CONVER(TTIME)
CALL WRITER(P1 ,P2,U,H,COUNT,FLAG2)
WRITE(6,21)

21 FORMAT(3X,' IF YOU REQUIRE A RE-RUN PRESS 1’)
READ(5,*)FLAG3
IF (FLAG3 .EQ. 1) GOTO 1
STOP
END

4



C THIS IS THE SUBROUTINE WHICH EVALUATES THE SOLUTION GIVEN
C BY THE EXPLICIT METHOD

SUBROUTINE PREDIC(P1,P2,U,XX,YY,H,COUNT)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION P I(0:2000), P2(0:2000), U(0:2000), XX(3), YY(3)
INTEGER COUNT 

C EVALUATING Pl(n+1), P2(n+1), U(n+1).
Pl(COUNT) = (YY(1 )/XX( 1))*(DEXP(XX( 1)*H) - 1.D0) + Pl(COUNT-l)*

1 DEXP(XX( 1) *H)
P2(COUNT) = (YY(2)/XX(2))*(DEXP(XX(2)*H) - 1.D0) + P2(COUNT-l)*

1 DEXP(XX(2)*H)
U(COUNT) = (YY(3)/XX(3))*(DEXP(XX(3)*H) - 1.D0) + U(COUNT-l)*

1 DEXP(XX(3) *H)
RETURN
END

C THIS IS THE ROUTINE THAT EVALUATES THE SOLUTION USING THE
C IMPLICIT METHOD. THIS ROUTINE EMPLOYS A NEWTON ITERATION
C SCHEME, AND INCORPORATES AN N.A.G. INVERSION ROUTINE
C F01AAF

SUBROUTINE CORREC(P 1 ,P2,U,AR 1 ,AR2,B,EF,VI,V2,
1 PS ,K A,KB ,M,H,COUNT)

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C AA IS A 2-D ARRAY THAT WILL CONTAIN THE JACOBIAN MATRIX,
C UNIT WILL CONTAIN TNE INVERSE OF THIS MATRIX AND WKSPCE
C IS AN ARRAY NEEDED BY THE NAG ROUTINE. DUM IS AN ARRAY
C THAT IS USED TO CHECK IF THE ITERATES ARE CONVERGING

DIMENSION Pl(0:2000), P2(0:2000), U(0:2000), AA(5,5), UNIT(5,5),
1 WKSPCE(7), DUM(3)

DOUBLE PRECISION KA, KB, M 
C IA, IFAIL, N AND IUNIT ARE ALL INTEGER VARIABLES THAT ARE
C NEEDED BY THE NAG ROUTINE. IA STORES THE DIMENSION OF
C AA, IUNIT STORES THE DIMENSION OF UNIT, AND IFAIL IS NEEDED
C TO LET THE USER KNOW IF THE ROUTINE FAILS

INTEGER COUNT, I, IA, IFAIL, IUNIT, N, INCREM 
C SETTING UP WORK SPACE AND DATA FOR THE NAG ROUTINE

DATA BLANK3/1 ’/, BLANK4/1 ’/
DO 101 JI = 1,6

WKSPCEQI) = BLANK4

5



101 CONTINUE
WKSPCE(7) = BLANK3 

IA = 5 
IFAIL = 1 
IUNIT = 5 
N = 3
TOL = 5.D-5 

C SETTING UP THE JACOBIAN MATRIX 
25 CONTINUE

VAL1 = A 1 (B, V1 ,K A ,PS ,P 1 (COUNT))
AA(1,1) = 1.D0 + (DEXP(VALl*H)-l.DO)*(ARl*U(COUNT))/

1 (2.DO*KA*DSQRT(PS-P1(COUNT)))
AA(1,2) = 0.D0
AA(1,3) = -(DEXP(VAL1 *H)-1 ,D0)*(AR1 *SQRT(PS - Pl(COUNT)))/KA

C
VAL2 = A2(B, V 2,KB ,P2(COUNT))
AA(2,1) = 0.D0
AA(2,2) = 1.D0 + ((DEXP(VAL2*H) - l.DO)*AR2*U(COUNT))/

1 (2.DO*KB*SQRT(P2(COUNT)))
AA(2,3) = (DEXP(VAL2*H) - l.DO)*(AR2*SQRT(P2(COUNT)))/KB

C
VAL3 = A3(EF,M)
AA(3,1) = (DEXP(VAL3*H) - 1.D0)*AR1/EF 
A A (3,2) = -(DEXP(VAL3*H) - l.D0)*AR2/EF 
AA(3,3) = 1.D0

C CALLING THE NAG ROUTINE TO INVERT THE JACOBIAN
CALL F01AAF(AA,IA,N,UNITJUNIT,WKSPCEJFAIL)

C IF IFAIL IS STILL EQUAL TO 1 THEN A PROBLEM HAS ARISEN
IF(IFAIL .EQ. 1) THEN 

PRINT*,’ TROUBLE IN INVERTING THE MATRIX ’
ENDIF

C SETTING THE COUNTER USED BY THE ITERATION SCHEME
INCREM = 0

C PERFORMING NEWTON ITERATIONS, HOLDING THE COEFFICIENT
C VALUES CONSTANT
30 CONTINUE
C IF THE ITERATION IS NOT CONVERGING, THEN THE COEFFICIENT
C VALUES ARE UPDATED, AND THE JACOBIAN IS RE-EVALUATED

IF (INCREM .GE. 5) THEN
IF( (DUM (l) .GE. 0.005).AND.(DUM(2) .GE. 0.005) .AND.

1 (DUM(3) .GE. 0.005)) GOTO 25

6



ENDIF
DUM (l) = PI (COUNT) - DEXP(VALl*H)*Pl(COUNT-l) - 

1 (DEXP( V AL 1*H)-1.D0)*B1 (AR1, V1 ,B ,PS ,U(COUNT) ,KA,
1 Pl(COUNT))/(VALl)

DUM(2) = P2COUNT) - DEXP(VAL2*H)*P2(COUNT-l) - 
1 (DEXP(V AL2*H) -1 .DO)*B2(B,AR2,V2,U(COUNT))/(VAL2)

DUM(3) = U(COUNT) - DEXP(VAL3*H)*U(COUNT-l) - 
1 (DEXP( V AL3 *H) -1. DO) *B 3 (AR 1 ,AR2,M,P 1 (COUNT),
1 P2(COUNT))/(VAL3)

C CHECKING TO SEE IF THE ITERATION HAS CONVERGED
IF ((DABS(DUM(1)) .LT. TOL) .AND. (DABS(DUM(2)) .LT. TOL) .AND.

1 (DABS(DUM(3)) .LT. TOL)) THEN 
GOTO 40 

ELSE
DUM (l) = UNIT( 1,1)*DUM( 1)+UNIT( 1,2)*DUM(2)+UNIT(1,3)*DUM(3) 
DUM(2) = UNIT(2,1)*DUM(1)+UNIT(2,2)*DUM(2)+UNIT(2,3)*DUM(3) 
DUM(2) = UNIT(3J)*DUM(1)+UNIT(3£)*DUM(2)+UNIT(3,3)*DUM(3) 
R1 = PI (COUNT)
R2 = P2(COUNT)
R3 = U(COUNT)
PI (COUNT) = Pl(COUNT) - DUM(l)
P2(COUNT) = P2(COUNT) - DUM(2)
U(COUNT) = U(COUNT) - DUM(3)
RATIO 1 = DABS((P1(COUNT)-R1)/(1.DO+DABS(R1))
RATI02 = D ABS((P2(COUNT)-R2)/( 1 .DO+D ABS(R2))
RATI03 = DABS((U(COUNT)-R3)/(1.DO+DABS(R3))
IF((RATI01 .LE. TOL) .AND. (RATI02 .LE. TOL) .AND.

1 (RATI03 .LE. TOL)) GOTO 40 
INCREM = INCREM + 1 

C A SECOND CHECK IS MADE ON THE INCREMENTS TO THE STATE
C VARIABLES TO SEE IF THE ITERATIONS HAVE CONVERGED

IF ((DABS(DUM(1)) .LT. TOL) .AND. (DABS(DUM(2)) .LT. TOL) 
1 .AND. (DABS(DUM(3)) .LT. TOL)) GOTO 40 

GOTO 30 
ENDIF 

40 CONTINUE 
RETURN 
END

7



C THE OUTPUT ROUTINE IS NOT LISTED HERE. THE ROUTINE
C COLLECTS THE DATA AND PUTS IT IN A FILE CALLED CADRES.DAT

C BELOW ARE THE FUNCTIONS USED THROUGH THE PROGRAM TO
C EVALUATE THE "A" AND "B" COEFFICIENTS. THE Zi’s ARE DUMMY
C VARIABLES USED TO HOLD THE PRESENT RELEVANT STATE
C VARIABLE VALUE THAT THE FUNCTION NEEDS

DOUBLE PRECISION FUNCTION A1(B,V1,KA,PS,Z1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION KA 

C THIS FUNCTION HAS A LAMINAR REGION, SO THAT WHEN PI AND
C PS (Z IS P I) ARE VERY CLOSE, THE COEFFICIENT DOES NOT TEND
C TOWARDS INFINITY

IF ( DABS(PS-Zl) .LE. 1.D0) THEN 
A1 = -B*KA/(V1*(1.D0))
GOTO 98 

ENDIF
A1 = -B*KA/(V1*DSQRT(DABS(PS-Z1)))

98 CONTINUE 
RETURN 
END

£  *  *  *  +  *  %  *  4C a|> afc +  *  +  *  *  %  %  He *  *  %  *  *|c *  %  *  *  *  %  *  %  %  *  %  *  %  %  *  )|t *  #  *  #  #  a|r %  4c *  %  i|c *  %  4c *  %  4c *  %  *  %  a|c %  *  *  *  a|t

DOUBLE PRECISION FUNCTION A2(B,V2,KB,Z2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION KB 

C THIS FUNCTION ALSO HAS A LAMINAR REGION, SO THAT WHEN
C P2 ( Z2 IS P2) IS VERY CLOSE TO ZERO, THE COEFFICIENT DOES
C NOT TEND TOWARDS INFINITY

IF ( DABS(Z2) .LE. 1.D0) THEN 
A2 = -B*KB/(V2*(1.D0))
GOTO 99 

ENDIF
A2 = -B *KB/( V2*DS QRT(DAB S(Z2)))

99 CONTINUE 
RETURN 
END

8



DOUBLE PRECISION FUNCTION A3(EF,M)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION M 
A3 = -EF/M 
RETURN 
END

DOUBLE PRECISION FUNCTION B1(AR1,V1,B,PS,Y3,KA,Z3) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION KA 

C THIS FUNCTION ALSO HAS A LAMINAR REGION, SO THAT WHEN
C PS IS VERY CLOSE TO P I, (Z3 IS PI), THE COEFFICIENT DOES
C NOT TEND TOWARDS INFINITY

IF ( DABS(PS-Z3) .LE. 1.D0) THEN 
B1 = B/V 1 *(KA*PS/( 1 .DO) - AR1*Y3)
GOTO 100 

ENDIF
B1 = B/V 1 *(KA *PS/DS QRT(DAB S (PS -Z3)) - AR1*Y3)

100 CONTINUE
RETURN 
END

£  * *  % *  *  * *  *  *  %  *  *  *  *  % *  ★  *  *  *  *  *  *  * *  ★  *  ★ *  *  *  *  *  *  *  4> *  ★  *  +  %  *  *  afc ifc aft %  j|t  i|c % jfc *  s|r s|c

DOUBLE PRECISION FUNCTION B2(B,AR2,V2,Y4)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
B2 = B*AR2*Y4/V2
RETURN
END

0  * * * * * * * % * * * * * % * * * % * * * * * * * 4e % % * 4c % 4c * * * * * * * * * * % * * * * »•« * * * * * * * * * >► % * * * * * >► «k

DOUBLE PRECISION FUNCTION B3(AR1,AR2,M,Z4,Z5)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION M 
B3 = (AR1*Z4 - AR2*Z5)/M 
RETURN 
END

9



C THE NEXT FUNCTION IS THE SYSTEM TIMING FUNCTION THAT
C HAS BEEN USED THROUGHOUT THE WORK TO TIME THE C.P.U.
C USED BY DIFFERENT PROGRAMS, ROUTINES AND METHODS

INTEGER FUNCTION TIM(ATLME)
IMPLICIT INTEGER*4(A-Z)
INCLUDE '($JPIDEF)'
IN TEG ERS ITEMLST(4)
INTEGER*2 ITEMWORD(8)
EQUIVALENCE (ITEMLST, ITEMWORD)
ITEM WORD (1) = 4 
ITEMWORD(2) = JPI$_CPUTIM 
ITEMLST(2) = %LOC(BUFFER)
ITEMLST(3) = %LOC(BUF_LEN)
STATUS = SYS$GETJPI(,„ITEMLST,„)
TIM = BUFFER
RETURN
END

^  4c %  s|< %  a)t: ( ( a(c 4c %  4c %  ift 3|> s|c %  %  a|( %  4c 4c %  %  %  4* %  4> >l> <i< 4* 4c >k 4 t  %  aft >k %  4 t  4c %  4> 4* 4 ( 4 t

C THIS ROUTINE CONVERTS THE TIME INTO DAYS, HOURS, MINS. 
C AND SECS

SUBROUTINE CONVER(TOME)
IMPLICIT ENTEGER*4(A-Z)
INTEGER*4 TEMP(2), DELTA_TIME(2), ZERO(2)
CHARACTER ASCH_TIME*23 
T = 100000
STATUS = LIB $EMUL(TTIME, T, 0, TEMP)
ZERO(l) = 0 
ZERO(2) = 0
STATUS = LIB$SUBX(ZERO, TEMP, DELTA_TIME, 2)
STATUS = SYS$ASCTIM(, ASCH_TIME, DELTA_TIME, )
TYPE*, ’ The elapsed C.P.U. time is ', ASCD_TIME
RETURN
END

10



APPENDIX B 

DETAILS OF THE TIM E STEP CO NTROL

In tro d u c tio n

B .l  The object of this appendix is to explain the time step control employed by the 

new method, and present the commented coding for this step control. The control of 

the time step is based on a monitor of the local error, which is discussed in detail in 

chapter 4. A time step control is essential for a numerical method if the method is 

to be used with a package such as HASP. Firstly, it takes away the problem for the 

user, of choosing which steplength to use for each integration, and secondly, a step 

control mechanism allows for a much higher level of computational efficiency, since 

the optimal time step can be used throughout the integration.

T im e Step C on tro l

B.2 Having found the optimal h for the current step by evaluating the norm of the 

local error, the step control mechanism is then employed. First the current time step 

is compared with the optimal time step, and if the current steplength is much less 

than the optimal value of h, then the time step is increased for the next step. It is 

not increased im m ediately since this will require re-evaluations that are not 

necessary, since the results will not be unstable, or inaccurate. How much less than 

the optimal h the time step is before it is increased has been determined by 

experiment, the constant factor being chosen so as to be suitable for most problems. 

If the time step is not increased, then it is again compared with the optimal value of 

h, this time to see if  it is too large. If the time step is determined as being too 

large, then it is reduced straight away, and the integration step is repeated. This is

1



necessary, since the results that would result from a time step that is too large could 

affect the following numerical solution. How large the time step can be before it is 

deemed too large is again determined by a pre-set constant. This constant, which is 

also determined by experiment, and the previous constant, which determines when 

the time step is too small, must be chosen to ensure that during an integration, the 

number of times that the time step is first increased, and then decreased, or vice 

versa, is kept to a minimum. A commented version of the coding which implements 

the time step control is now given; it includes the code that evaluates the optimal 

value of the time step for each step.

A lgorithm  F o r  Tim e Step C ontrol

B .3 The strategy for finding the optimal value of the time step is explained in 

detail in chapter 4. The algorithm for the step control is as follows:

i) If the optimal value of h has not already been found for the current step, then the 
local error for each variable is found

ii) The optimal value of the time step for the current step is found
iii) The current time step is compared with the optimal value of the time step
iv) The current time step is increased if it is less than Cl*HOPTIM, where C l is a 

pre-determined constant, and HOPTIM is the calculated optimal value of h
v) The current time step is decreased, and the step re-run, if it is greater than 

C2*HOPTIM, where C2 is another pre-determined constant
vi) If  neither iv) or v) apply, then the current step is unchanged, and the program 

continues

C THE LOCAL ERROR IS NOW EVALUATED, AND THE OPTIMAL TIME
C STEP FOR THIS STEP IS FOUND. THEN, THE CURRENT TIME STEP
C THAT HAS BEEN USED IS COMPARED WITH THE OPTIMAL TIME STEP
C AND THE NECESSARY CHANGES TO THE STEPLENGTH ARE MADE. IF
C THE TIME STEP IS TOO SMALL, THEN IT IS INCREASED ON THE
C NEXT STEP, BUT IF IT IS TOO LARGE, IT IS DECREASED STRAIGHT
C AWAY, AND THE STEP IS RE-EVALUATED. THE CONSTANTS CHOSEN

2



C WERE THE BEST ONES FOUND BY EXPERIMENT, THAT DID NOT
C LEAD TO CONSTANT INCREASING AND DECREASING OF THE TIME
C STEP. MORE EXPERIMENTAL VERIFICATION MAY STILL
C BE NECESSARY

C VARIABLES USED
C FAIL - INTEGER VARIABLE USED TO DETERMINE IF OPTIMAL
C TIME STEP HAS ALREADY BEEN EVALUATED FOR
C PRESENT STEP. IT IS SET TO 1 IF THE OPTIMAL H HAS
C ALREADY BEEN EVALUATED
C Y1 - ARRAY THAT HOLDS THE CORRECTED VALUES OF THE
C STATE VARIABLES
C STORE - ARRAY THAT HOLDS THE PREDICTED VALUES OF THE
C STATE VARIABLES
C N - NUMBER OF STATE VARIABLES
C ERROR - DOUBLE PRECISION ARRAY USED TO STORE THE
C VALUES FOR THE LOCAL ERROR
C ERRMAX- DOUBLE PRECISION VARIABLE THAT HOLDS THE NORM
C OF THE LOCAL ERROR
C HOPTIM - DOUBLE PRECISION VARIABLE THAT HOLDS THE
C OPTIMAL VALUE FOR H ON THE PRESENT STEP
C H - PRESENT TIME STEP EMPLOYED BY THE METHOD
C HNEXT - EVALUATED STEPLENGTH FOR THE NEXT STEP
C TOL - PRE-SET TOLERANCE; ALSO USED BY THE ITERATION
C SCHEME
C INCREM 1JNCREM2 - INTEGER VARIABLES USED BY THE ITERATION
C SCHEME TO ENSURE ITERATES ARE CONVERGING
£  *  *  ★  *  *  *  *  *  *  *  *  afr *  afc *  *  %  %  %  *  %  %  *  *  *  *  %  %  %  i |c  *  ifc *  *  %  *  %  afc %  %  %  %  %  %  s f r  9 k  i f t  4 c  *  %  j |c  4 c  %  >(« afc *  %  4 c  %  *  %  *  a f t *  >|c %

C CHECKING THAT OPTIMAL H HAS NOT ALREADY BEEN FOUND FOR 
C THIS STEP

IF (FAIL .EQ. 0) THEN
IF ((INCREM 1 .EQ. 0) .AND. (INCREM2 .EQ. 0))THEN 

C EVALUATING THE LOCAL ERROR FOR EACH VARIABLE
DO 15 I = 1,N

ERROR® = DABS(Y1(I) - STORE(I))/2.DO 
15 CONTINUE

ERRMAX = 0
C EVALUATING THE NORM OF THE LOCAL ERROR

DO 20 I = 1,N
ERRMAX = DM AX 1 (ERRMAX, ERROR(I))

3



20 CONTINUE
C EVALUATING THE OPTIMAL VALUE OF THE TIME STEP FOR
C THE PRESENT STEP

HOPTIM = H*DSQRT(TOL/ERRMAX)
C COMPARING THE PRESENT TIME STEP WITH OPTIMAL TIME STEP 

IF (H .LT. (2.5D-l*HOPTIM)) THEN 
C INCREASING STEPLENGTH FOR NEXT STEP

HNEXT = HOPTIM*2.DO/3.DO 
FAIL = 1 

ENDIF
C COMPARING THE PRESENT TIME STEP WITH OPTIMAL TIME STEP

IF (H .GT. (8.4D-1 *HOPTTM)) THEN 
C DECREASING STEPLENGTH FOR PRESENT STEP

HNEXT = HOPTIM/2.DO 
FAIL = 1 
GOTO 2 

ENDIF 
ENDIF 

ENDIF
£  4c  *  %  *  %  +  *  *  *  *  %  *  *  sft 4 c  %  *  >|c *  %  *  %  *  *  *  *  *  %  ★  *  ★  *  *  %  ★  *  *  *  *  *  *  ★  *  *  %  ★  *  %  *  %  N* »t* %  %  *  *  >► *  *  *  *  *  *  *  %

4



APPENDIX C

EXAMPLES OF CHANGED COMPUTER CODING FO R  TH E 

IM PLEM ENTATION OF THE NEW METHOD IN HASP

In tro d u c t io n

C .l The purpose of this appendix is twofold: one is to present a commented version 

of the general coding implementing the new method, and the other is to present the 

changed code within HASP that allows the use of the new method, rather than Gear's 

method, for the first example given in chapter 5. The code for the new method 

includes a perturbation technique for the formulation of the Jacobian matrix, and the 

particular code given here employs a Newton-Jacobi iteration scheme, where only the 

diagonal elements of the Jacobian matrix are used in the iteration scheme. This 

process was explained in detail in chapter 2. The examples of the changed code for 

the implementation of the method are three of the routines introduced in chapter 5 

that are written individually by the program generator for each simulation. The 

routines given are MAIN, AUX and CAD.OPT. No changes had to be made to 

CONTRL or OUT, so they are not presented here. An algorithm for the new method 

is given, but for a detailed explanation of the coding for the routines written by 

HASP, the reader is referred to [3] and [4],

C .2 The first code given is the general purpose version of the new method. This 

consists of two routines; one which sets up the necessary parameters and finds the 

initial coefficient values, and the other which employs the new method to give the 

numerical solution to the problem at the next time step. The algorithm describing 

the action taken by the program is as follows:

1



i) The variables are set up, e.g. maximum time step, starting time step
ii) The coefficient values are found, in this case from the relevant models
iii) The routine implementing the method is called
iv) The local variables for the routine implementing the method are set up,

initialised, etc.

v) The predicted values for the solution are made using the explicit method

vi) The Jacobian matrix is formed by a perturbation technique, explained in

chapter 5, and checks are carried out to ensure there is no division by zero. 

This will require further coefficient evaluations

vii) The implicit method is applied, with Newton iterations being used to find the 
solution

viii) The local error is evaluated if necessary, and the optimal time step calculated

ix) The time step control mechanism is used, and either the step is re-run, or 
an error test is carried out on the iterates to see if they have converged

x) If necessary the iterations continue, either with the same Jacobian or a newly 
evaluated Jacobian

xi) If the iterates have not converged sufficiently quickly, then the time step is 
reduced and the step re-started

xii) When the iterates have converged, then a final check is made to the subroutine 
AUX to ensure that no physical conditions have been violated

xiii) The results at the present step are stored, and the step is incremented by the 
current value of the time step

xiv) If required, the results are output (linear interpolation may be necessary)
xv) If  the value of time is equal to the end time then the subroutine will finish,

if not, then the program returns to ii)

C SUBROUTINE FOM - GENERAL PURPOSE SOLVER

c MAIN VARIABLES USED
c T INDEPENDENT VARIABLE
c HT TIME STEP
c TEND FINAL INTEGRATION TIME
c Y ARRAY HOLDING STATE VARIABLE VALUES
c N NUMBER OF STATE VARIABLES
c TOL TOLERANCE USED BY THE ITERATION SCHEME, AND
c BY THE TIME STEP CONTROL MECHANISM

2



c ITEST -
c TAB -
c IFAIL -
c YY
c A,B -
c A1,A2 -
c
c BBB -
c YINT,YOLD
c HSTART
c HMAX -
c LIMIT -
c

HASP VARIABLE (UNUSED BY FOM)
USED-DEFINED PRINT INTERVAL 
INTEGER WARNING OF ERROR. UNUSED HERE 
ARRAY USED TO HOLD PRETURBED STATE VARIABLES 
ARRAYS HOLDING COEFFICIENT VALUES 
ARRAYS USED FOR HOLDING COEFFICIENT VALUES 
FOR THE EVALUATION OF THE JACOBIAN 
ALSO USED WHEN EVALUATING THE JACOBIAN 

YINT,YOLD USED IN THE LINEAR INTERPOLATION PROCESS
STARTING TIME STEP FOR INTEGRATION METHOD 
MAXIMUM TIME STEP ALLOWED
INTEGER VARIABLE USED TO RELAY INFORMATION 
FROM THE MODELS

SUBROUTINE FOM(T,TEND,Y,N,AUX,TOL,ITEST,TAB,OUTJFAIL) 
IMPLICIT DOUBLE PRECISION(A-H.O-Z)
DIMENSION YY(20),A(20),B(20),UNIT(20),Y(N),A1(20),B1(20),A2(20),B2(20) 
DIMENSION A A A(20) ,B B B (20), Y OLD (20), YINT (20)
COMMON /TSTEP/HT 
INTEGER LIMIT 
LIMIT = 0 
HSTART = l.D-6 
HMAX = l.D-2 

C OUTPUTTING INITIAL CONDITIONS
CALL OUT(T,Y,N,TAB,0)

C SETTING THE PETURBATION FACTOR FOR THE JACOBIAN
EPS = l.D-2 
HT = HSTART 
TTAB = T + TAB 

5 CONTINUE
LIMIT = 1

C FINDING COEFFICIENT VALUES FROM THE MODELS
CALL AUX(AAA,Y,T,N,LIMIT)
DO 10 I = 1,N 

A (I) = AAA(I)
B(I) = AAA(N+I)

10 CONTINUE
C CALLING THE ROUTINE IMPLEMENTING THE METHOD

CALL FSTORM(Y,YOLD,YY,A,Al,A2,B,Bl,B2,BBB,T,N,EPS,HMAX,
1 TOL,UNIT,LIMIT)

3



C CHECKING TO SEE IF LINEAR INTERPOLATION IS REQUIRED 
IF (T .EQ. TTAB) THEN 

C OUTPUTTING RESULTS
CALL OUT(T, Y,N,TAB, 1)
TTAB = TTAB + TAB 

ENDIF
IF (T .GT. TTAB) THEN 

DO 15 I = 1JST
YINT(I) = YOLD(I)*(1.DO - (TTAB - (T-HT))/HT) +

1 Y(I)*(TTAB - (T-HT))/HT
15 CONTINUE
C OUTPUTTING RESULTS

CALL OUT(TTAB, YINT,N,TAB, 1)
TTAB = TTAB + TAB 

ENDIF
IF (T .GE. TEND) GOTO 20 
GOTO 5 

20 CONTINUE 
RETURN 
END

£  afc jfc %  a|c jfr  4 r  aft s)e aft >fc afr sfc %  aft %  aft aft aft %  aft aft aft aft %  %  aft aft aft aft affc a#c %  aft aft aft afc aft aft aft aft %  aft aft afc aft aft %  aft %  aft afc aft %  aft afc afc aft a|c %  afc aft if* afc a|c afc

C A GENERAL PURPOSE SUBROUTINE TO SOLVE O.D.E.’S USING THE
C NEW FIRST ORDER METHOD
^I|c i|c9|c>|t3 |(aic]|c3 |c:|c9 |c ji<9|ci|c» |t]|(ii< )ic )ir3 fta |c> |c3i< :ft9 |<a|t:|< :ic :|c9 |ti|c i|c :fc> |t> |ta |c:ic :ica |<]ft9 |c3 ic :|c :|t:|t9 |t9 ic i|c :f(a |ta |t3 |ti|<> |c i|ri|c» |ca |ta |c4 t> l<> |t>f> ’i(>i<>i<>f'3i<>i'

SUBROUTINE FSTORM( Y,YOLD, Y Y, A, A 1,A2,B,B 1 ,B2,BBB,T,N,EPS,
1 HMAX,TOL,UNIT,LIMIT)

IMPLICIT DOUBLE PRECISI0N(A-H,0-Z)
DIMENSION Y(N),A(N),A 1 (N),A2(N),B(N),B 1(N),B2(N),STORE(20),YY(N), 

1 DUM(20), R(20), RATIO(20), UNIT(N), DERIV(20), BBB(2*N),
1 VALA(20), VALB(20), ERROR(20), Y l(20), CCC(20), YOLD(N)

COMMON /TSTEP/HT 
DOUBLE PRECISION MAXERR 
INTEGER INCREM1, INCREM2, FAIL, N, LIMIT 

C INITTALISING COUNTERS FOR THE ITERATION SCHEME
HNEXT = HT 
FAIL = 0 
ENCREM1 = 0 
ENCREM2 = 0 

25 CONTINUE
HT = HNEXT

4



C EVALUATING THE PREDICTED RESULTS AT EACH TIME STEP
DO 30 1 =  I N

C CHECKING TO SEE IF THE A COEFFICIENTS ARE ZERO
IF ((A(I) .EQ. 0.D0) .AND. (B(I) .EQ. 0.D0)) THEN 

Y1(I) = Y(I)
ELSEIF ((A(I) .EQ. 0.D0) .AND. (B(I) .NE. 0.D0)) THEN 

Y1(I) = B(I)*HT + Y(I)
ELSE

Y l®  = (B(I)/A(I))*(DEXP(A(I)*HT) - 1.D0) + Y(I)*DEXP(A(I)*HT) 
ENDIF
STORE(I) = Y 1(1)

30 CONTINUE 
40 CONTINUE
C PERTURBING THE STATE VARIABLE VALUES AND MODIFYING THE
C COEFFICIENT VALUES READY TO FORM THE JACOBIAN MATRIX

DO 45 I = I N  
YY(I) = Y1(I)

45 CONTINUE
CALL AUX(CCC, YY, T, N, LIMIT)
DO 50 I = 1,N 

A2(I) = CCC(I)
B2U) = CCC(N+I)

50 CONTINUE
DO 55 1 = I N  

Y Y ®  = Y1(I) + EPS*Y1(I)
CALL AUX(BBB, YY, T, N, LIMIT)
YY(I) = Y1(I)
A1(I) = BBB(I)
B1(I) = BBB(N+I)

55 CONTINUE
60 CONTINUE

CALL AUX(CCC, Y l, T, N, LIMIT)
DO 65 I = I N  

VALA(I) = CCC©
V ALB®  = CCCN+I)

65 CONTINUE
C THIS DO-LOOP EVALUATES THE ELEMENTS OF THE JACOBIAN USED
C BY THE ITERATION SCHEME, USING A PERTURBATION TECNIQUE.
C THE COEFFICIENTS CORRESPONDING TO THE PERTURBED STATE
C VARIABLES HAVE ALREADY BEEN EVALUATED

5



IF ( INCREM1 .EQ. 0 ) THEN 
DO 70 I = 1,N

IF (A2(I) .EQ. O.DO) THEN 
DIVIS1 = B2(I)*HT 

ELSE 
DIVIS1 = B2(I)/A2(I)

ENDIF
IF (A l©  -EQ. O.DO) THEN 

DIVIS2 = B 1® *H T 
ELSE 

DIVIS2 = B ia )/A l(I)
ENDIF
IF (Y(I) .LT. l.D-4) THEN 

DERIV(I) = (DIVIS2 - DIVISl)/(l.D-4)
ELSE

DERIV(I) = (DIVIS2 - DIVIS 1)/(Y 1 ®  *EPS)
ENDIF
IF (( A2(I) .EQ O.DO ) .AND. ( A1(I) .EQ. O.DO)) THEN 

U NIT® = l.DO/(l.DO - ((B l®  - B2(1))*HT)/( Y 1 ®  *EPS))
ELSE

UNIT® = l.DO/(l.DO - (DEXP(VALA®*HT) - l.DO)*DERTV®) 
ENDIF 

70 CONTINUE
C PERFORMING NEWTON ITERATIONS, HOLDING "A”
C COEFFICIENTS CONSTANT

DO 75 I = 1 ,N
IF (VALA® .EQ. O.DO) THEN 

DUM ®  = Y l®  - Y ®  - VALB®*HT 
ELSE

D UM ®  = Y l®  - DEXP(VALA®*HT)*Y® - 
1 (DEXP( V AL A ®  *HT) - l.DO)*VALB®/VALA®

ENDIF
DUM ®  = DUM* UNIT®
R ®  = Y l®
Y l®  = Y l®  - DUM ®

75 CONTINUE
C EVALUATING THE LOCAL ERROR AND THE OPTIMAL TIME STEP,
C AND COMPARING PRESENT TIME STEP WITH OPTIMAL TIME STEP

6



IF (FAIL .EQ. 0 ) THEN 
DO 80 I = 1,N 

ERROR(I) = DABS(Y 1(1) - STORE(I))/2.DO 
80 CONTINUE

ERRMAX = O.DO 
DO 85 I = 1 ,N 

ERRMAX = DM AX 1 (ERRM AX,ERROR(I))
85 CONTINUE

IF (ERRMAX .LE. l.D-15) GOTO 90 
HOPTIM = HT*DSQRT(TOL/ERRMAX)
IF (HT .LT. 2.5D-l*HOPTIM) THEN 

HNEXT = HOPTIM*(2.DO/3.DO)
IF ( HNEXT .GT. HMAX) THEN 

HNEXT = HMAX 
ENDIF 
FAIL = 1 

ENDIF
IF (HT .GT. 8.4D-1 *HOPTIM) THEN 

HNEXT = HOPTIM 
FAIL = 1 
GOTO 25 

ENDIF 
ENDIF 

90 CONTINUE
C PERFORMING A MIXED ERROR TEST ON THE ITERATES TO SEE IF
C THEY HAVE CONVERGED YET

DO 95 I = 1,N 
RATTO(I) = DABS((Y1(I) - R(I))/(1.D0 + DABS(R(I))))

95 CONTINUE
MAXERR = O.DO 
DO 100 I = 1,N 

MAXERR = DM AX 1 (MAXERR,RATIO(I))
100 CONTINUE

IF (MAXERR .LT. TOL) GOTO 105 
C CHECKING TO SEE HOW MANY ITERATIONS HAVE TAKEN PLACE. IF 
C MORE THAN 5, THEN THE JACOBIAN IS RE-EVALUATED. IF THE
C JACOBIAN HAS ALREADY BEEN RE-EVALUATED, THEN THE TIME
C STEP IS DECREASED AND THE STEP IS RE-RUN

INCREM1 = ENCREM1 + 1 

IF (INCREM1 .LE. 5) THEN 
GOTO 60

7



ELSE
IF (INCREM2 .EQ. 0) THEN 

INCREM2 = 1 
INCREM1 = 0 
GOTO 40 

ELSE 
HNEXT = HT/4.D0 
GOTO 25 

ENDIF 
ENDIF 

105 CONTINUE
C CALLING AUX TO CHECK NO PHYSICAL VIOLATIONS HAVE
C OCCURRED

LIMIT = 2
CALL AUX(CCC,Y1,T,N,LIMIT)
IF (( LIMIT .EQ. 3) .OR. ( LIMIT .EQ. 5)) THEN 

HNEXT = HT/4.D0 
GOTO 25 

ENDIF
DO 110 1=  1,N 

YOLD(I) = Y(I)
Y(I) = Y 1(I)

110 CONTINUE 
T = T + HT 
RETURN 
END

Q % * * * * * ★ * * % * * * * * * * * * * * * * * * * * * * * * * * * * * * % * % * % % * % * % 4c % * * % * + + * * 4c * * % % * % % * * %

8



C.3 The next pieces of code are generated by HASP for use with Gear's method. The

circuit for which this code has been written is shown in Figure 5.2. The code is

given in the same form as it is written by HASP.

C

C %%%%%SUBROUTESTE AUX - CALLS UP MODEL CALCULATION ROUTINES

c
SUBROUTINE AUX(DOT, Y, T, N, LIMIT)
IMPLICIT DOUBLE PRECISION(A-H, O-Y)
DIMENSION DOT( 5), Y( 5)
COMMON EFF(13), FLO(13), IWRITE, IPOS, NOL, IPTS, SIG( 2)

+ , CONl(13), IC O N l(l), CON2(l), CON3(12), ICON3(3), CON4(3), CON5(3) 
+ , CON6(10), CON7(12), ICON7(3), CON8(29), ICON8(4), CON9(12)
+ , ICON9(3), CON10(31), ICON10(3)

COMMON /TSTEP/HT
C
C %%%ASSIGN THE STATE VARIABLES CALCULATED BY THE INTEGRATOR 
C %%%TO THE APPROPRIATE LINKS 

EFF( 2)=Y( 1)
EFF( 9)=Y( 1)
EFF(10)=Y( 1)
EFF( 6)=Y( 2)
EFF( 3)=Y( 2)
EFF(13)=Y( 3)
FLO(13)=Y( 4)
EFF( 7)=Y( 5)
EFF( 4)=Y( 5)

C
C %%%CALL EACH MODEL CALCULATION SUBROUTINE IN THE ORDER 
C %% %DEFTNED BY THE CALLING SEQUENCE DETERMINED IN THE 
C %%%PROGRAM GENERATOR SEGMENT PGCMP 
C %%%IF LIMIT IS INCLUDED IN THE ARGUMENT LIST OF A MODEL 
C %%%AND IT IS SET TO 3 OR 5, THEN RETURN TO THE INTEGRATOR 
C %%%AND INTERVAL HALVE

CALL PMOO(FLO(12), CON2)
CALL TK03(EFF(8), E F F (ll), EFF(5), CON5)
CALL AL00(EFF(6), FLO(6 ), EFF(7), FLO(7), EFF(13), FLO(13),

+ SIG (l), SIG(2), LIMIT, CON8 , ICON8 , DOT(3), DOT(4))

9



IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
CALL DE01(EFF(1), T, LIMIT, CONIO, ICONIO)
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN
CALL PU00(EFF(8), EFF(9), FLO(12), FLO(8 ), FLO(9), EFF(12),

+ CON1, ICON1)
CALL PC01(EFF(10), E F F (ll), FLO(IO), F L O (ll), CON4)
CALL DC1T(EFF(5), EFF(l), EFF(2), EFF(3), EFF(4), FLO(5),

+ FLO (l), FLO(2), FLO(3), FLO(4), CON6 )
CALL PI06(EFF(6), FLO(6 ), FLO(3), O.DO, O.DO, O.DO, O.DO, O.DO,

+ SIG (l), LIMIT, CON7, ICON7, DOT(2»
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN
CALL PI06(EFF(7), FLO(7), FLO(4), O.DO, O.DO, O.DO, O.DO, O.DO,

+ SIG(2), LIMIT, CON9, ICON9, DOT(5»
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
CALL PI05(EFF(2), FLO(2), FLO(9), O.DO, O.DO, O.DO,

+ O.DO, O.DO, LIMIT, CON3, ICON3, D O T(l»
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
END

C

C %%%SIMULATION PROGRAM - MAIN SEGMENT

c
IMPLICIT DOUBLE PRECISION(A-H, O-Y)
DIMENSION DOT( 5,4), Y( 5), DFDY( 5, 5), DIF( 5,7,2)
COMMON EFF(13), FLO(13), IWRITE, IPOS, NOL, IPTS, SIG( 2)

+ , CONl(13), IC O N l(l), CON2(l), CON3(12), ICON3(3), CON4(3), CON5(3)
+ , CON6(10), CON7(12), ICON7(3), CON8(29), ICON8(4), CON9(12)
+ , ICON9(3), CON10(31), ICON10(3)

COMMON /TSTEP/HT 
EXTERNAL AUX, OUT 
PARAMETER (N= 5)
DATA ITEST, IF AIL, T /l, 0, O.DO/

C
C %%%SET INDICATOR IPASS TO 1 (REQUIRED IN CONTRL)
C %%%ALSO SET NUMBER OF DATA POINTS ALREADY CALCULATED TO 0 

IPASS=1 
IPTS=0

C

10



I
I

C %%%CALL CONTRL - USER INPUT SUBROUTINE 
1000 CALL CONTRL(Y, TOL, N, T, TEND, TAB, IP ASS, LAST)

C
C % % % INTEGRATOR CALLS SUBROUTINES AUX AND OUT 

CALL GEARKC(T, TEND, Y, N, AUX,
+ TOL, ITEST, TAB, OUT, DOT, DFDY, DIF, IF AIL) 

NPTS=(IPOS-2)/(2*NOL+l)+l 
LAST=IPOS

C
C %%%WRITE NUMBER OF POINTS AND NUMBER OF LINKS
C %%%INTO THE FIRST RECORD OF CADRES.DAT 

WRITE(11, REC=1)NPTS, NOL 
IPASS=2

C
C %%%SIMULATION COMPLETED - RETURN TO CONTRL 

GOTO 1000 
END

! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! %%%CAD.OPT - COMPONENT MODEL SELECTOR FILE
! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
j ♦ ♦♦♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦:}< ♦♦♦♦♦♦♦♦♦♦♦**♦♦♦♦♦♦♦♦♦♦♦♦
j ★♦’•‘’(‘♦GENERATED s e g m e n t s  ***♦♦♦♦ ♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦ ♦♦ ♦♦ ♦♦♦ ♦♦♦ ♦♦ ♦♦ ♦♦♦
• ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

MAIN, AUX, OUT, CONTRL

I ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ % ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

j ’•‘★’•‘’•‘’•‘STANDARD UTILITIES AND INTEGRATOR ★★★★★★★★*★*★★★★★★★★*★★★
f ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ ♦ ♦ ♦ ♦ ♦ * ♦ * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ $ ♦ $ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

[HASP.COMPON]MESAGE, PPROP, FPROP, GPROP, CUBIC,- 
[CAPLEN.INHAS P.INHASP1.INHASP2] GEAR4, GEAR5, GEAR6,-

j ★★★★★STANDARD INPUT ROUTINES ★★★*★*★*★★★**★★★★★★★★★★★★**★★★★★★*

[HASP.COMPON]PU00IN, PM00IN, PI05IN, PC01IN, TK03IN,- 
[HASP.COMPON]DC 1 TIN, PI06IN, AL00IN, DE01IN,-

11



| ******************************************%*********************** 

j *****STANDARD CALCULATION ROUTINES **************************
f 9f(afe% 4(% ai(4c% % ^c% ^^e»K % ^<»K 4(% ^e% 9)c9)tf% ^(% sfe% % % 9((% ^e% % 9|(^e% % % d{c9ic^e4c9f(4ed|e4<9(ca)c% 4r% 4(9|cs|c9k9|(9|(9|e9k4c4t^9fe9)(

[HASP.COMPON]PU00, PM00, PI05, PC01, TK03,- 
[HASP.COMPON]DClT, PI06, AL00, DE01
j
i j******************************************************************
i OF OPTIONS FILE ***************************************
|  ilcglc9)99!99)9* * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * *

C.4 The routines MAIN, AUX and CAD.OPT that have been written by HASP for 

use with Gear’s method have been changed to allow the successful implementation of 

the new method. These changes are a result of modifications made to the program 

generator and they allow the new method to be used with the test circuit given in 

Figure 5.2. The coding that is written by the HASP package when the new method is 

used is now given.

€%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C %%%%%SUBROUTLNE AUX - CALLS UP MODEL CALCULATION ROUTINES
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c

SUBROUTINE AUX(DOT, Y, T, N, LIMIT)
IMPLICIT DOUBLE PRECISION(A-H, O-Y)
DIMENSION DOT( 10), Y( 5), COEFF( 5)
COMMON EFF(13), FLO(13), IWRITE, IPOS, NOL, IPTS, SIG( 2)

+ , CONl(13), ICONIC 1), CON2(l), CON3(12), ICON3(3), CON4(3), CON5(3) 
+ , CON6(10), CON7(12), ICON7(3), CON8(29), ICON8(4), CON9(12)
+ , ICON9(3), CON10(31), ICON10(3)

COMMON /TSTEP/HT
C
C %%%ASSIGN THE STATE VARIABLES CALCULATED BY THE INTEGRATOR 
C %%%TO THE APPROPRIATE LINKS

12



EFF( 2)=Y( 1)
EFF( 9)=Y( 1)
EFF(10)=Y( 1)
EFF( 6 )=Y( 2)
EFF( 3)=Y( 2)
EFF(13)=Y( 3)
FLO(13)=Y( 4)
EFF( 7)=Y( 5)
EFF( 4)=Y( 5)

C
C %%%CALL EACH MODEL CALCULATION SUBROUTINE IN THE ORDER 
C % % %DEF1NED BY THE CALLING SEQUENCE DETERMINED IN THE 
C % % %PROGRAM GENERATOR SEGMENT PGCMP 
C %%%IF LIMIT IS INCLUDED IN THE ARGUMENT LIST OF A MODEL 
C %%%AND IT IS SET TO 3 OR 5, THEN RETURN TO THE INTEGRATOR 
C %%%AND INTERVAL HALVE

CALL PMOO(FLO(12), CON2)
CALL TK03(EFF(8), E F F (ll), EFF(5), CON5)
CALL AL00(EFF(6), FLO(6), EFF(7), FLO(7), EFF(13), FLO(13),

+ SIG(l), SIG(2), LIMIT, CON8 , ICON8 , DOT)
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
CALL DE01(EFF(1), T, LIMIT, CONIO, ICONIO)
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN
CALL PU00(EFF(8), EFF(9), FLO(12), FLO(8), FLO(9), EFF(12),

+ CON1, ICON1, COEFF(l))
CALL PC01(EFF(10), E F F (ll), FLO(IO), FL O (ll), CON4, COEFF(2» 
CALL DC1T(EFF(5), EFF(l), EFF(2), EFF(3), EFF(4), FLO(5),

+ FLO(l), FLO(2), FLO(3), FLO(4), CON6 , COEFF)
CALL PI06(EFF(6), FLO(6), FLO(3), O.DO, O.DO, O.DO, O.DO, O.DO,

+ SIG (l), LIMIT, CON7, ICON7, DOT(2), DOT(7), COEFF(4» 
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN
CALL PI06(EFF(7), FLO(7), FLO(4), O.DO, O.DO, O.DO, O.DO, O.DO,

+ SIG(2), LIMIT, CON9, ICON9, DOT(5), DOT(IO), COEFF(5»
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
CALL PI05(EFF(2), FLO(2), FLO(9), O.DO, O.DO, O.DO,

+ O.DO, O.DO, LIMIT, CON3, ICON3, DOT(l), DOT(6), COEFF) 
IF(LIMIT .EQ. 3 .OR. LIMIT .EQ. 5) RETURN 
END

13



c  
c  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C % % % SIMULATION PROGRAM - MAIN SEGMENT

c
IMPLICIT DOUBLE PRECISION(A-H, O-Y)
DIMENSION Y( 5)
COMMON EFF(13), FLO(13), IWRITE, IPOS, NOL, IPTS, SIG( 2)

+ , CONl(13), IC O N l(l), CON2(l), CON3(12), ICON3(3), CON4(3), CON5(3)
+ , CON6(10), CON7(12), ICON7(3), CON8(29), ICON8(4), CON9(12)
+ , ICON9(3), CON10(31), ICON10(3)

COMMON /TSTEP/HT 
EXTERNAL AUX, OUT 
PARAMETER (N= 5)
DATA ITEST, IF AIL, T /l, 0, O.DO/

C
C %%%SET INDICATOR IPASS TO 1 (REQUIRED IN CONTRL)
C %%%ALSO SET NUMBER OF DATA POINTS ALREADY CALCULATED TO 0 

IPASS=1 
IPTS=0

C
C %%%CALL CONTRL - USER INPUT SUBROUTINE 

1000 CALL CONTRL(Y, TOL, N, T, TEND, TAB, IPASS, LAST)
C
C % % % INTEGRATOR CALLS SUBROUTINES AUX AND OUT

CALL FOM(T, TEND, Y, N, AUX, TOL, ITEST, TAB, OUT, IFAIL)
NPTS=(IPOS-2)/(2*NOL+l)+l
LAST=IPOS

C
C %%%WRITE NUMBER OF POINTS AND NUMBER OF LINKS 
C %%%INTO THE FIRST RECORD OF CADRES.DAT 

WRITE(11, REC=1)NPTS, NOL 
IPASS=2

C
C %%%SIMULATION COMPLETED - RETURN TO CONTRL 

GOTO 1000 
END

14



\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! %%%CAD.OPT - COMPONENT MODEL SELECTOR FILE 
! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

j *****q e n ERATED SEGMENTS ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

J

MAIN, AUX, OUT, CONTRL
j

j *****STANDARD UTILITIES AND INTEGRATOR ***********************
| %%j|ca|c%%:|rj|c9|c9|ca^a|c%9lc^afe%9|c3|ca|c9|<9|(a)f%%?|c9|c^^^%9fc:ies|e4c9i(9ie9i*̂ c4*9|ca|r9fcaic4(%4t9jc)fca|t9fc4c9|ca|c»fc:i|c%:i|c4t4t4*9ic9ic4ra|t9|c

i

[HASP.COMPON]MESAGE, PPROP, FPROP, GPROP, CUBIC,- 
[CAPLEN.INHASP.INHASP1]MC,-
I
|  ^ ( ^ ^ ^ ^ ^ ^ ' ^ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ^ ' ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ' ( “ ( ' ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ’( ' ♦ ♦ ’(•♦ifc

j ★♦♦'•‘♦STANDARD in p u t  r o u t in e s  ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
|  afc a|c afr s|c sfc afc sfc s|c a|r s|c ♦  ♦  3 |c3 |caf(3 |(a fc> |e^3 ic^^^  sjc s|c^(^3fc3i€>{cs|(4cj{ca)r a|c 3|c s|c ♦* ♦  »l* >► »i* *(* *1* s|r ♦  a|c 9|c a|r a|c j|c ife afc afc afc a|c afc s|c af* a|c a|* a|r >|c ifc

|

[HASP.COMPON]PUOOIN, PMOOIN, PI05IN, PC01IN, TK03IN,- 
[HASP.COMPON]DClTTN, PI06IN, ALOOIN, DE01IN,- 
»

! ♦♦♦♦♦STANDARD CALCULATION ROUTINES ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
| J******************************************************************
I

[HASP.COMPON]PMOO, TK03, DE01-
[C APLEN.INH ASP.INH AS PI] PI05, PI06, ALOO, PUOO, PC01, D C1T
j

j Qp OPTIONS FILE ♦♦♦♦♦♦♦♦♦♦♦♦+♦♦♦♦+♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

C .5  The main problem with the implementation of the new method is that each 

model must be re-written so that it passes coefficient values back to AUX, rather 

than a derivative. This is a long and arduous task, and before it can be undertaken, 

the accuracy of the method must be improved, so as to make it worthwhile.

15



APPENDIX D 

USER-WRITTEN CODE AND TEST PROBLEMS 

FOR THE DETEST PACKAGE

In tro d u c tio n

D .l The purpose of this appendix is to provide an example of the routines needed to 

drive the DETEST package, discussed in chapter 6 , and to give the full set of stiff 

test problems that have been collected together by Enright, Hull et al [76]. Also 

included are a set of discontinuous test problems and a set of chemical kinetics 

problems. The FORTRAN code given below must be written by the user of the 

package, and this particular code will produce the results found in Figure 6.7. A 

more detailed explanation of the DETEST package, and the reasons for choosing the 

particular test problems, is given by Enright [17], and another set of test examples, 

which have been collected to test methods developed to solve non-stiff problems, are 

also included.

D.2 The user of the package must write the routines METHOD and SOLVER, plus 

the main driving program. SOLVER contains the code for the method to be tested, 

and the subroutine METHOD declares the workspace, initialises the parameters 

required by SOLVER, signals the appropriate options, invokes SOLVER, and then 

returns to the main body of code. The main program is used to define: which 

problems are to be solved; the required tolerances with which to solve these 

problems; the value of OPTION for the statistical information required; whether 

normalised statistics are needed and which title to print with the output. The code 

for the SOLVER routine can be found in Appendix C

1



M ain P ro g ram

D.3 An example of the main program which must be written is now given

C SAMPLE DRIVER FOR STDTST, WITH ONE GROUP CONSISTING ONLY
C OF PROBLEM A1 SOLVED IN UNSCALED FORM, AT THREE
C TOLERANCES AND WITH OPTION=2 AND NORMEF=0.
C IN THIS CASE THE ARRAYS IDLIST, TOL NEED NOT BE SO LONG.

INTEGER TTTLE(20), IDLIST(60)
REAL T O L (ll)
DATA TITLE /  ’ SECD ER 7 ADDI 7 SON- 7 ENRI 7 GHT

* ' SECO ', ND D 7  ERIV 7 ATIV 7 E ME 7  THOD ’,8 *’ 7
* ,TOL /l.E -2 , l.E-4, l.E -6 , 7*E0 /
* JD LIST /  11, 0, 58*0 /

CALL STDTST( TITLE, 2, 0, TOL, IDLIST, FLAG )
STOP
END

C

M ETHOD

D.4 An example of the routine, METHOD, is:

SUBROUTINE METHOD (N, X, Y, XEND, TOL, HMAX, HSTART)
C DRIVER FOR THE SECDER CODE WHICH IS PART OF THE PACKAGE. 
C IT IS SOMEWHAT LENGTHY BECAUSE ITS INTERRUPT MECHANISM 
C DOES NOT ALLOW INTERRUPT IMMEDIATELY AFTER ACCEPTING
C A STEP

IMPLICIT REAL*8 (A-H, O-Z)
REAL* 8 X, Y(N), XEND, TOL, HMAX, HSTART 
EXTERNAL FCN, PDERV
REAL*8  C(20), YP(20,11), W(400), P(400), WK(20, 11)
INTEGER INF (40)
COMMON /  STCOM6 /  NFCN, NJAC, NLUD 
DATA NDIM /20/
IND = 2 
DO 20 I = 1, 5 

INF(I) = 0 
C(I) = O.DO 

20 CONTINUE
C SET ABS. ERROR CONTROL .. INF (1), INTERRUPT NO. 2 .. INF(5),

2



C MIN, MAX & STARTING STEP SIZE .. C(2), C(4), C(5)
ENF(l) = 1 
INF(5) = 1 
C(2) = l.D-12 
C(4) = HMAX 
C(5) = HSTART

50 CALL TRUE(FCN,PDERV,NDIM^,X,Y,XEND,TOLJND,CJNF,YP,W,P,WK) 
IF ( IND .EQ. 6) GOTO 50 
IF ( IND .NE. 5 ) GOTO 60 

TEMP = C(13)
CALL STATS( C(13), WK(1,1), C(15), TOL)
IF (C(13) .NE. TEMP ) GOTO 70 

GOTO 50 
60 IF ( IND .NE. 3 ) GOTO 70 

X = XEND 
GOTO 80

C FAILURE EXIT OF SOME KIND 
70 X = C(13)
80 CONTINUE 

RETURN 
END

S pecifica tion  O f P rob lem s

D .5  The most valuable part of the DETEST package is the large set of test 

problems that it provides. These are now given

Problem Class A. Linear with real eigenvalues 

A l: y j' = -.5y! y i (0) =  1

y i  = -y i  y2(°> = 1

y 3' = -100y3 y3(0) = 1

y4 ' = -90y4 y4 (0) = i

xf = 2 0  h0 = 10"2

3



A2: y x’ = -1800yx + 900y2

yi* = y i-i - 2yi + yi+i 

y9' = 1 00 0y8 - 2 0 0 0y9 + 1000

Y l ( 0 )  =  0

yi(0) = 0  ( i = 2........ 8)

y9 (0 ) = o

A3: y x' = -104yx + 100y2 " 10y3 + y4

y2’ = -103y2 + 10y3 - 10y4

y3’ = -y3 + 10y4

y4' = --iy4

x f  = 2 0  h 0 = 10-5

y i(0) = 1 

y2 (0) = 1

y3 (0) = 1 

y4 (0) = 1

A4: yj’ = -i5yi

X f =  1

y i(0 ) =  1 ( i  =  1 ,2 ,

hn = 10-5

Problem class B. Linear with non-real eigenvalues 

B l: y j ' = -y i + y2 y i(0) = 1

y2’ = -lOOyf - y2 y2 (°) = 0

y3' = - l 0 0 y3 + y4  y3 (0 ) = l

y4’ = -1 0 000y3 - 100y4 y4 (0) = 0

xf = 20 h 0 = 7 x lO' 3

B2: y x' = -10yx + a y 2 y i(0 ) = 1

y2’ = - a y x - 10y2 y2 (0 ) = 1

LO
_ II 1 v; LO y3 (0) = 1

1II y4 (0) = 1

y5' = --5 y5 y5 (0) = 1

ye  = -* ^ 6 y6(°) = 1

4



Xf = 20 ho = 10"2 a  = 3 

B3: As in B2 with a  = 8

B4: As in B2 with a  = 25

B5: As in B2 with a  = 100

Problem Class C. Non-linear coupling

C l: y i ' = -yi + (y2) 2 + (y3) 2 + (y4) 2 y i(0 ) = 1

y2 = -10y2 + 10( (y3) 2 + (y4 ) 2 ) II8M

y3' = -40y3 + 40(y4)2 y3 (0 ) = i

y4' = -100y4  + 2 y4 (0 ) = i

xf = 2 0  h0 = 10"2

C l: y i ’ = -yi + 2 /—\
 

8
 ii

y 2 = -10y2 + (3(y i )2 y2 (0) = l

y 3 =  -40y3 + 4(3( (y x)2 + (y2)2 ) y3 (0 ) = i

y 4 = -100y4 + 10(3( (y f )2 + (y2)2 + (y3)2) 8 ii h-»

x f = 20 h0 = lO"2 (3 = 0.1

C3: As in C2 with [3 = 1

C4: As in C2 with (3 = 10

C5: As in C2 with (3 = 20

5



Problem Class D. Non-linear with real eigenvalues

D l: = .2( y2 - Yi )

y 2’ = 10y! - (60- .125y3)y2 + .125y3

Y3! = 1

Xf = 400 hg = 1.7 x 10"2

D2: y j ’ = ~.04yl + .01y2 y3

y2' = 400yi - 100y2y3 - 3000(y2)2 

y3' = 30(y2)2

xf = 40 h 0 = 10-5

D3: y ^  = -y3 + 100y1y 2

y2* = y3 + 2 Y4  - ! 0 ° y iy 2 - 2 x l04 (y2 )2

y 3 ' =  - y 3  +  1 0 0 y ! y 2

Y4’ = -y4 + ! 04 (y2>2

Xf = 2 0  h 0 = 2.5 x 10' 5

D4: y ^  = -,013yi - 1000yjy3 

y 2 ' = -2500y2y3

y3’ = -.013yi - 1000y!y3 - 2500y2y3 

Xf = 5 0  ho = 2.9 x 10‘4

D5: y f 1 = .01 - [l+ (y i+1000)(y i+ l)](.01+yi+ y2) 

y 2' = -01 - ( l+ C y ^ ^ C .O l+ y j+ y ^

xf = 1 0 0  h 0 = 10"4

Y l(0) =  0

y 2(°) = o 

y 3(0) = o

Yl(0 ) = 1

y 2(°) = o 

y3 (0) = o

Yl(O) = 1

y 2(°) = i  

y3 (0 ) = o 

y3(0 ) = o

Yl(O) = 1 

y2(0 ) = l  

y3(0 ) = o

y i(0 )  = o 

y 2(0) = o

6



Problem Class E. Non-linear with non-real eigenvalues

E l: y i  = y2 y i(0) = 0

y2 ' = y3 y2 (0 ) = 0

y3’ = y4  y3 (0 ) = 0

y4  = ( (y i) 2 - sinCyj) - ^ y j  + y4 (°) = 0

(y2Y3 (1/C(yi)2 + 1» - 4r3)y2 + 

(1 - 6 r 2)y3 + (10e-(y4>2 - 4 r )y 4 +  1 

Xf =  1 h0 =  6.8 x 10 '3 r  = 100

E2: y i ’ = y2 y f(0 ) = 2

y 2' = 5(1 - (yx) 2 )y2 - yx y2 (0) = 2

x f = l  h 0 =  l O- 3

E3: yx’ = -(55 + y3)yx + 65y2 yx(0 ) = 1

y2’ = .0785( yx - y2) y2 (0) = 1

y3’ = .lyx y3 (0 ) = 0

x f =  5 0 0  h 0 = 0 .02

’ -10 -10 0 0 ' 'o '

T 10 -10 0 0 -2
E4: y’ = -U

0 0 1000 0
Uy_+ G(y); y(0) = -1

0 0 0 .0 ! -1

7



\  2 2 '(Zj-z^ /2
’- i i  i r

1 - 1 1 1 T Z1Z2

1 1 - 1 1
; G(y) = U 2

Z3
1 1 1 - 1

2
Z4

X f  = 1000 h 0 = 10-3

E5: y i  = -7 .89xl0-10yx - l . lx l0 7y 1y3

y2' = -7.89xlO‘10yx - 1.13xl09y2y3

y 3' = -7.89xlO '10y 1 - l . lx l0 7y 1y3 +

1 .1 3 x l0 3y4 - 1.13xl09y2y3 

y4  = l . l x l 0 7 y fy 3 - 1.13xl03y4 

Xf = 1000 hg = 5 x 10-5

Problem Class F. Chemical kinetics

F I: y j ' = 1.3(y3 - yx) + 10400ky2 

y2‘ = 1880[y4 - y2( l  + k)] 

y3' = 1752 - 269y3 + 267yx 

y4 ' — .1 + 320y2 - 321y4

xf = 1000  h0 = 10"4  k = e<20-7 '

F2: yx' = -yx - yxy2 + 294y2

Y l = Yl C1 - y2)/98 - 3Y2

xf = 240 h 0 = 10"2

= Uy

yi(0) = 1.76x10-3 

y2 (0 ) = o 

y 3(0) = o

y4(0) =  o

yx(O) = 761

y 2(0) =  o 

y 3(0) =  o

y4(0) = 0.1 

1500/(yx> )

y i(0 )  =  i  

y 2(0) =  o

8



F3: y i ' = -107y2yi + 10y3 y i (0 ) = 4x l0 ' 6

y2’ = - 107 y2yi - 107 y2y5 + 10y3 + 10y4 y2(0) = lxlO ' 6

y3' = 107y2yf - 1.001xl04y3 + 10"3y4 s II o

y4  = 104 y3 - 10 .0 0 1 y4  + 107 y2y5

oIIS'w'

y5* = 10y4 - !0 7 y2y5 y5 (0 ) = 0

x f  = 100  h 0 = 1 0 '6

F4: y i ' = 77.27(y2-y1y2+y1-8.375xl0-6(y1)2 ) y i (0) = 4

y i  = (-y2-yiy2+y3)/77-27 y2(°) = 1-1

y3’ = .161(y i - y3) y3 (0 ) = 4

xf = 3 0 0  h 0 = 10"3

F5: y i * = 1011(-3y 1y2 + .0012y4  - 9y iy3) 

y2 = -3 x l0 11y 1y2  + 2x l07y4  

y3’ = 10n (-9y i y3 + .001y4) 

y4' = 1011(3 y 1y2 - .0012y4  + 9y iy3) 

xf = 1 0 0  h 0 = 1 0 '7

y i (0) = 3.365xlO"7 

y2 (0 ) = 8.261xl0-3 

y3 (0) = 1.624xl0"3 

y4 (0 ) = 9.38xlO"6

Problem Class G. Problems with discontinuities

G l: y i ' = y2 yi(0) = 0

2 ay2 - (7t2 +a2)y i +1 for [x] even

y 2 =  ̂ 0 0
2ay2 - (7t2 +a2)y i - 1 for [x] odd y2(0) = 0

Xf = 2 0  a = 0.1  [x] = largest integer < x

9



55 - 3yj/2  for [x] even
G2: Yi’ = i y i (0 )= 1 1 0

55 - y j /2  for [x] odd

X f =  20

G3: = y2 y i(0) = 0

y2' = .0 1 y2 ( l- (y i)2) - y i - I sin(rcx) | y2 (0 ) = 0

Xf =  2 0

-(2/21)-120(x-5)/[l+4(x-5 ) 2 ] 16 for x < 10 
G4: y i = i  y i(o> = i.o

~2 y i

X f =  20

G5: y i ' = c-1p '(x)y1 yjCO) = 1.0

where

19 19V , -x4/3 V  .4/3p(x) = Z /x - i)  and c = Zrf i 
i=l i=l

Xf s= 20

10



R e fe re n c e s

[1] Dugdale, S.K., Further Development of a C.A.D. Package for the Dynamic 

Simulation of Fluid Power Systems, M.Sc. thesis, University of Bath, 1981

[2] Leung, P.S., The Development and Testing of a N umerical Integration 

Method for the Digital Simulation of Fluid Power Systems, M.Sc. thesis, 

University of Bath, 1986

[3] Hull, S.R., The Improvement Of An Automatic Procedure For The Digital 

Simulation Of Hydraulic Systems, Ph.D. thesis, University of Bath, 1986

[4] Tomlinson, S.P., The Hydraulic Automatic Simulation Package (H.A.S.P.), 

Modelling And Simulation Aspects, Ph.D. thesis, University of Bath, 1987

[5] Chu, Y., ’Digital Simulation of Continuous Systems', McGraw Hill, 1969

[6 ] Anonymous, MIMIC Digital Simulation Language Reference Manual, Control 

Data Coporation, 1968

[7] Green, W.L., and F.H. Speckhart, 'CSMP (Continuous Systems Modelling 

Program )', Simulation (SCS), 34, 1980

[8 ] Anonymous, CSMP Program Reference Manual, IBM Corp. 1972

[9] Anonymous, ACSL User Guide/Reference Manual, M itchell and Gausthier 

Associate, 1975

[10] Anonymous, CSSL-IV Refence Manual, Simulation Services, 1984

[11] H ay, J.L ., and R.E. Crosbie, 'ISIM . A sim ulation language for 

microprocessors', Simulation (SCS), 43, 1984

[12] Gottwald, B.A., 'KISS. A digital simulation system for coupled chemical 

reactions', Simulation (SCS), 37, 1981

[13] Kays, P., and P. Rentrop, 'Generalised Runge-Kutta Methods of Order Four 

with Step size Control for Stiff Ordinary Differential Equations’, Numerische 

Mathematik, 33, 55-68, (1979)



[14] Amies, G., R. Levek, and D. Streussel, Aircraft Hydraulic System Dynamic 

Analysis, Volume II - Transient Analysis (HYTRAN), Computer Program 

Technical Description, McDonnel Douglas Corporation, Report AFAPL-TR-76- 

43, 1977

[15] Backe, W., 'The hydraulics simulation program DSH', Proc. Inst. Mech. Eng., 

199, 1985

[16] Skarbeck-W azynski, C.M., Hydraulic System Analysis by the Method of 

Characteristics, Ph.D. thesis, University of Bath, 1981

[17] Enright, W.H., and J.D. Pryce, 'Two Fortran Packages for Assessing Initial 

Value Methods', Technical Report No. 167/83, University of Toronto, 1983

[18] Butcher, J.C., 'Im plicit Runge-Kutta Processes', Math. Comp., 18, 50-54, 

(1964)

[19] N orsett, S.P., 'Sem i-explicit Runge-Kutta m ethods’, M athem atics and 

Computation, Report No. 6 , University of Trondheim, 1974

[20] Alexander, R., 'Diagonally Implicit Runge-Kutta Methods For Stiff O.D.E.'s', 

SIAM J. Numer. Anal., 1006-1022, (1977)

[21] Petzold, L., 'Automatic selection of Methods for solving Stiff and Non-Stiff 

Systems of Ordinary Differential Equations’, SIAM J. SCI. STAT. COMPUT 

4, 136-148, (1983)

[22] Robertson, B.C., 'Detecting Stiffness with Explicit Runge-Kutta Formulas’, 

Technical Report No. 193/87, Dept, of Computing Science, University of 

Toronto, 1986

[23] Balfour, A., and D.H. Marwick, Programming in Standard FORTRAN 77, 

Heinemann Educational Books, 1979

[24] Curtiss, C.F., and J.O. Hirschfelder, 'Integration of Stiff Equations', Proc. 

Nat. Acad. Sci. U.S.A., 38, 235-243, (1952)

[25] Nering, E.D., Linear Algebra and Matrix Theory, John Wiley & Sons, 1970



[26] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, 

John Wiley & Sons, 1962

[27] Gear, C.W., Numerical Initial Value Problems in Ordinary Differential 

Equations, Prentice-Hall Inc., 1971

[28] Johnson, L.W., and R.D. Reiss, Numerical Analysis, Second Edition, Addison 

Wesley, 1982

[29] Aiken, R.C., Stiff Computation, Oxford University Press, 1985

[30] Derrick, W.R., and S.I. Grossman, Elementary Differential Equations with 

Applications, Second Edition, Addison Wesley, 1981

[31] Lambert, J.D., and S.T. Sigurdson,'A Generisation of Multi-Step Methods for 

Ordinary Differential Equations', Numer. Maths., 8 , 250-263, (1966)

[32] Hall, G., and J.M. Watt, Modem Numerical Methods for Ordinary Differential 

Equations, Clarendon Press, 1976

[33] Atkinson, K.E., An Introduction to Numerical Analysis, John Wiley & Sons, 

1978

[34] Gerald, C.F., Applied Numerical Analysis, Second Edition, Addison Wesley, 

1978

[35] Lambert, J.D., Computational Methods in Ordinary differential Equations, John 

Wiley & Sons, 1973

[36] Lapidus, L., and J.H. Seinfeld, Numerical Solution of Ordinary Differential 

Equations, Academic Press Inc., 1971

[37] Dahlquist, G., 'Convergence and stability in the numerical integration of 

ordinary differential equations', Maths. Scand., 4, 33-53, (1956)

[38] Runge. C., 'U ter die numerische Auflosung von Differentialgleichungen’, 

Math. Ann., 46, 167-178, (1895)

[39] K u tta , W ., 'B eitrag  zur naherungsw eisen  In teg ra tio n  to ta le r  

Differentialgleichungen’, Z. Math. Phys., 46, 435-453, (1901)



[40] H eun, K ., 'N eue M ethods zur approx im atw en  In teg ra tio n  der 

Differentialgleichungen einer unabhangigen Veranderlichen', Z. Math. Phys., 

45, 23-38, (1900)

[41] Gourlay, A.R., 'A Note on Trapezoidal Mehtods for the Solution of Initial 

Value Problems', Maths. Comput., 24, 629-633, (1971)

[42] Aiken, A.C., Determinants and Matrices, University M athematical Texts, 

Oliver and Boyd Ltd., 1964

[43] Pipes, L.A., Matrix Methods for Engineering, Prentice-Hall Inc., 1963

[44] Watson, H.D.D., and A.R. Gourlay, 'Implicit Integration for CSM m  and the 

problem of Stiffness', Simulation, 72, 57-61, (1976)

[45] Gupta, G.K., R. Sacks-Davis, and P.E. Tischer, 'A Review of Recent 

Developments in solving Ordinary Differential Equations', Comput. Surv.,

17, 5-47, (1985)

[46] Cragie, J.A .I., 'A variable order m ulti-step method for the num erical 

solution of stiff systems of ordinary equations', M.Sc. thesis, University

of Manchester, 1975

[47] Ferziger, J.H., Numerical Methods for Engineering Application, John Wiley & 

Sons, 1981

[48] Hull, T.E., W.H. Enright, B.M. Fullen, and A.E. Sedwick, 'Comparing 

numerical methods for ordinary differential equations’, SIAM. Joum. Num. 

Anal., 9, 603-637, (1979)

[49] Gear, C.W., 'The automatic integration of ordinary differential equations', 

Comput. & Comput. Machin., 14, 176-179, (1971)

[50] Lambert, J.D., 'Non-linear methods for stiff systems of ordinary differential 

equations’, Proc. Conf. Numerical Solution of Differential Equations, ed. G.A. 

Watson, Springer Lecture Notes, 363, 75-88, (1973)



[51] Gautschi, W., 'Numerical integration of ordinary differential equations based on 

trigonometric polynomials', Numer. Math., 3, 381-397, (1961)

[52] Pizer, S.M., Numerical Computing and Mathematical Analysis, S.R.A., 1975

[53] Hull, T.E., and A.L. Creemer, 'Efficiency of predictor-corrector procedures’, J. 

Assoc. Comput. Mach., 10, 291-301, (1963)

[54] Milne, W.E., 'Numerical Integration of ordinary differential equations', Amer. 

Math. Monthly. 33, 455-460, (1926)

[55] Strang, G., Linear Algebra and Its Applications, Academic Press, 1976

[56] Carnahan, B., H.A. Luther, and J.O. Wilkes, Applied Numerical Methods, 

Wiley, 1969

[57] Churchhouse, R.F., Numerical Analysis, University College Cardiff Press, 

1978

[58] Ortega, J.M., and W.C. Rheinbolt, Iterative Solution of Non-Linear Equations 

in Several Variables, Academic Press, 1969

[59] Keener, M.E., and G.E. Meyer, 'Solving Differential Equations by First 

Order Explicit integration', Simulation, 38, 122 - 130, (1982)

[60] Spiegel, M.R., Mathematical Handbook of Formula and Tables, Schaun 

Outline Series, McGraw-Hill, 1968

[61] Anonymous, VAX/VMS System Services Reference Manual, Digital 

Equipment Corporation, 1982

[62] Anonymous, NAg Library Manual, Numerical Algorithm Group, 1981

[63] Gear, C.W., 'The Automatic Integration of Stiff Ordinary Differential 

Equations', I.F.I.P. Congress 68  North Holland, Information Processing 

187-193 (1969)

[64] Morton, K.W., and R.D. Richtmeyer, Difference Methods For Initial 

Value Problems, John Wiley & Sons, 1979



[65] Bowns, D.E., R.L. Ballard, and L. Stiles, ’The effect of seal friction on 

the dynamic performance of pneumatic actuators', 3rd International Fluid 

Power Symposium, Turin, Italy, 1973

[6 6 ] Caplen, M .J.S., 'Initial Development and Testing of a New Integration 

Method for the solution of Stiff Ordinary Differential Equations arising in the

Simulation of Fluid Power Systems', Report No. 865, School of Mechanical 

Engineering, University of Bath, 1986

[67] Richardson, L.F., 'The deferred approach to the limit, I - single lattice',

Trans. Roy. Soc. London, 226, 299-349 (1927)

[6 8 ] Smith, G.D., Numerical Solution of Partial Differential Equations: Finite 

Difference Methods, Third Edition, Clarendon Press, 1985

[69] Varga, R.S., Matrix Iterative Analysis, Prentice-Hall Inc. 1962

[70] Robertson, H.H., 'The solution of a set of reaction rate equations’, in 

Numerical Analysis: An Introduction, ed. J. Walsh., Academic Press, 1966

[71] Bowns, D.E. and A.C. Rolfe, 'Computer Simulation as a First Step Towards 

Computer Aided Design of Fluid Power Systems', 5th International Fluid 

Power Symposium, University of Durham, 1979

[72] Caney, K.C. 'Integration Across Discontinuities in Ordinary Differential

Equations using Gear's M ethod', Internal R eport No. 478, School of

Engineering, University of Bath, 1979

[73] Caplen, M .J.S. [CA PLEN .H ASP.IN H ASP], Subdirectory , VAX 750 

Computer, School of Engineering, University of Bath, 1986

[74] Wang, L.M., Untitled, Ph.D. thesis, to be published, University of Bath, 1988

[75] Bowns, D.E. and A.C. Rolfe, 'The Digital Computation of Pressures and 

Flows in Interconnected Fluid Volumes, using Lumped Parameter Theory',

4th International Fluid Power Symposium, B.H.R.A. Fluid Engineering, 

1975



[76] Enright, W.H., T.E. Hull, and B. Lindberg, 'Comparing Numerical Methods for 

Stiff Systems of O.D.E.’s ', B.I.T., 15, 10-48, (1975)

[77] Addison, C.A., 'Implementing a Stiff Method based upon the Second Derivative 

Formulas', Dept, of Computer Sc. Tech., Rep. No. 130, University of 

Toronto, 1980

[78] Merson, R.H., 'An operational method for the study of integration processes', 

Proc. Symp. Data processing, Weapons Research Establishment, Salisbury, S. 

Australia, 1957

[79] Fehlberg, E., 'Klassische Runge-Kutta- Formeln funfter und siebenter Ordnung 

m it Schrittw eiten-K ontrolle ', Com puting, 4, 93 106; Corrigendum : 

Computing, 5, 184, (1969)

[80] Fehlberg, E., 'Klassische Runge-Kutta- Formeln vierter und niedrigerer 

O rdnung m it S chrittw eiten -K on tro lle  und ih re A nw endung auf 

Warmeleitungsprobleme, Computing, 6 , 61-71, (1970)

[81] Butcher, J.C. 'Integration processes based on Radau quadrature formulas', Math. 

Comp. 18, 233-244, 1964

[82] Ehle, B., On Pade approximations to the exponential function and A-stable 

methods for the solution of initial value problems', Ph.D. thesis, University 

of Waterloo, Ontario, Canada, 1969

[83] Dahlquist, G., 'A special stability problem for linear multistep methods’, BIT, 

3, 27-43, (1963)

[84] Crouziex, M., Sur l'approximation des equations differentielles operationnelles 

lineaires par des methodes de Runge-Kutta, These presentee a l’Universite Paris 

VI, Paris, 1975

[85] Prothero, A., and A. Robinson, 'On the stability and accuracy of one-step 

methods for solving stiff systems of ordinary differential equations', Math. 

Comp., 28, 145-162, (1974)



[8 6 ] Hindmarsh, A.C., GEAR: Ordinary differential equation system solver, LRL 

Rep. UCID-30001, Revision 3, 1974

[87] Cash, J.R., 'Diagonally Implicit Runge-Kutta Formulae with Error Estimates', 

J. Inst. Maths Applies, 24, 293-301, 1979

[8 8 ] Richards, C.W., K. Wade, and M.G. Everett, 'SARK - a type-insensitive 

Runge-Kutta code', Internal report, Thames Polytechnic, 1987

[89] Shampine, L.F., and M.K. Gordon, Computer Solution of Ordinary Differential 

Equations, W.H. Freeman, San Francisco, 1975

[90] Shampine, L.F., 'Stiffness and non-stiff differential equation solvers, II: 

Detecting stiffness with Runge-Kutta methods', ACM Trans. Math.

Software, 3, 44-53, (1977)

[91] Shampine, L.F., 'Lipschitz constants and robust o.d.e. codes', Computational 

Methods in Nonlinear Mechanics, North-Holland, Amsterdam, 427-449, (1980)

[92] Shampine, L.F., 'Type-insensitive O.D.E. codes based on implicit A-stable 

formulas’, SAND79-244, Sandia National Laboratories, Livermore, CA, 1979

[93] Hindmarsh, A.C., LSODE and LSODI, two new initial value ordinary 

differential equation solvers, ACM SIGNUM Newsletter, 15, 4, 1980

[94] Cash, J.C., 'A class of im plicit Runge-Kutta methods for the numerical 

integration of stiff O.D.E.'s ', S. ACM., 22, 504-511, 1975



Correction Camera

D

Please film: Target Number 

Leave a space: then film

.........

At exposure setting

Finish with:
8spaces
16spaces

Date filmed Sig.


