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SUMMARY

The main portion of the work presented in this thesis is concerned with the
development and testing of a new integration method, which is specifically aimed at
solving stiff ordinary differential equations arising in the digital simuiation of Fluid
Power systems. The method has been tested on a variety of problems arising from
hydraulic systems, and has been satisfactorily incorporated as an alternative
integration method in the Hydraulic Automatic Simulation Package (HASP), a
package designed within the School of Engineering at the University of Bath,
specifically for the simulation of Fluid Power systems. The performance of the
package using this new integrator, with selected Fluid Power circuits, is

investigated.

The thesis highlights the mathematical difficulties that occur in Fluid Power
simulation, and discusses in detail the ways in which these problems are overcome.
Mathematical stiffness is the major problem that arises, and is the main reason for
studying the new integration method. The method developed to cope with this
problem has shown improved performance over conventional integration methods in
certain application areas, and the advantages and disadvantages of the integrator are
identified in detail. The analysis of the method shows that it possesses good
stability properties, which are essential if a method is to be used for solving stiff
differential equations. The method is particularly suited for some types of problems,
an example being diagonally dominant systems, and these arise in the discretisation

of parabolic partial differential equations. This application of the method is also

investigated.



In general, the integration method provides an alternative to conventional
integration methods, and is worth considering for the simulation of Fluid Power
systems. The work presented has also helped to clarify the direction in which
numerical integration methods should be headed, particularly when implemented as
general purpose, automatic differential equation solvers. The latter portion of this
thesis studies the idea of using methods which are particularly suited to individual
problems, and examines the potential of an expert systems approach to the automatic

selection of methods within a numerical integration algorithm.
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Notation

a(t) - coefficient of the differential equation y' = a(t)y + b(t)
ap - value of coefficient a(t) at time t,

aj, - value of coefficient ai at time t;;

Ain+1 - value of coefficient ai at time t,,

A - system matrix

Aq - area of an actuator - piston end

Ay - area of an actuator - rod end

b(t) - forcing function of the differential equation y' = a(t)y + b(t)
bn - value of coefficient b(t) at time t,

bin - value of coefficient bi at time t,

bin+1 - value of coefficient bi at time t;,

B - bulk modulus of hydraulic oil

do - fraction of air dissolved in hydraulic oil at S.T.P.

det - determinant

D - diagonal matrix

Ds - finite region

en - global error of a numerical scheme at time ty,

Ep+y1 - local error made in one step of a numerical scheme

f - viscous friction coefficient

f(t,y) - derivative of variable y at time t

fw - windage loss coefficient

F - force

F¢ - coulomb friction force

G - matrix governing the error propogation of the solution obtained by

the new method



w

integration time step

identity matrix

moment of inertia

Jacobian matrix

spring rate

flow coefficient of a relief valve

flow coefficient of an orifice
coefficients of a second order differential equation
Lipschitz constant

local error function

mass of load

error matrix

Lipschitz constant with respect to yn4+k
polytropic index of a gas

order of accuracy of a numerical method
oil pressure in a pipe

modal matrix

flow rate

variable of integration

supremum

stiffness ratio

sign function of z

independent variable

integration time corresponding to step n
load torque

motor torque

velocity of an actuator piston
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volume of pipe i

displacement of an actuator piston

dependent variable
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second derivative of the dependent variable
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modified solution to a difference equation

differential operator
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eigenvalue of the system matrix

viscosity of hydraulic oil

real part of Ay

first characteristic polynomial of a multi-step method
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angular velocity

transposed matrix
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CHAPTER 1

INTRODUCTION

The Simulation Of Engineering Systems

1.1 Many physical situations can be represented, after appropriate modification or
simplification, by a set of algebraic or differential equations. The solution of these
mathematical systems, either by analytical or numerical methods, accompanied by
the appropriate analysis of the results, can give an accurate indication of the
behaviour of the original system. Both the mathematical modelling and the solution
of the resulting equations can be automated by the use of a digital computer, with
software playing the role of both the modeller and solver. Consequently, it is
possible to simulate on a digital computer the behaviour of an engineering system,

without the actual construction of that system.

1.2 Simulation allows the accurate design and analysis of many engineering systems
to be undertaken in the safe and relatively cheap environment of the computer.
Consequently, a great deal of research has been carried out in the field of simulation,
and at the centre of this work lies the problem of solving the equations that arise in
the mathematical modelling of the system components. Most simulations are carried
out in a time domain, and require the solution of sets of ordinary differential
equations. Although algebraic equations can present difficulties in their solution, it
is the difficulties that arise with the differential equations that are studied here. This
thesis is concerned with the problems involved in solving the sets of differential
equations that arise in the simulation of engineering, and in particular Fluid Power,

systems. It presents a new numerical integration method aimed at dealing with these



difficulties. Some of the work that has preceeded this thesis [1] [2] [3] [4] provides

a useful insight into the major problem areas that must be analysed and overcome.

History Of Computer Simulation

1.3 Computer simulation began over 30 years ago, following the advent of the
analogue computer. After the advent of the digital computer, a large number of
digital analogue simulators were written, which were programs using digital
representations of sets of analogue elements, with these elements appearing as
subroutines or functions. The users of these simulators were expected to write main
segments linking the subroutines and functions in a specified manner. As time
progressed, the sophistication of these simulators increased, and the systems that
could be simulated became more complex. The integration methods employed also
had to be capable of solving the more complicated differential equations arising, and,
whereas very early simulators employed single low order methods such as Simpson's
rule [3], later packages such as DYSAC (Digitally Simulated Analog Computer) [2]
and HYBLOC [5] used fourth order Runge-Kutta and fifth order predictor-corrector

methods respectively.

1.4 Since digital simulations are repetitive in nature, the need for a general purpose
simulation language arose. A number of these languages have been developed, and
one of the first was termed MIMIC [6], which translates digital commands into
appropriate machine code. The language incorporates a translator which
automatically sorts the commands in a program into a particular calling sequence,
suitable for the model subroutines which describe individual components of the
system being simulated. FORTRAN statements are also acceptable in the language.

MIMIC preceded other general purpose simulation languages which were created with



the same principles in mind. In the 1970's, .B.M. developed CSMP (Continuous
System Modelling Program) [7] [8], which allows the user to enter coding
statements for different operations such as numerical integration and differentiation.
A specific example of one of these statements, termed a structure statement, is:
Y = INTGRL{IC,X)

which states that the output , Y, is obtained by integrating X, with Y at the initial
time equal to IC. This name, INTGRL, defines the particular DEVICE, i.e. the
particular function to be performed on the variable X, and is calling a specific
subroutine. ACSL (Advanced Computer Simulation Language) [9] is similar to
CSMP in its structure and operation, and both of these languages accept FORTRAN
statements and employ a translator which sorts the calling statements for the
complete simulation process. ACSL has a large library of subroutines which model
commonly occurring engineering effects, with the user able to expand this library if
this is necessary. These two languages also allow the user to decide which
integration method is required, and a number of different algorithms are available.
Table 1.1 presents an overview of the integration methods used by different

simulation languages.

1.5 Although the integration and other stages are taken out of the hands of the user
with these, and other simulation languages, such as CSSL [10] and ISIM [11], it is
still necessary for the user to design and code the simulation programs. To do this
skilfully requires a specialist knowledge of both the language and the area in which
it is to be applied, which is undesirable if the language is to be implemented as a
practical and convenient tool to aid the user. The generality of these simulation

languages is partially to blame for this.



1.6 To take the computer programming and simulation coding out of the hands of
the user, packages with automatic code generation facilities have been developed for
particular industries. An example is a package that has been developed specifically
for the simulation of chemical reactions which is called KISS (Klnetics Simulation
System) [12]. This interactively running package requires no code to be written by
the user, although he must naturally have a knowledge of chemical terminology. The
integrator employed by the system is a modified form of a generalised Runge-Kutta

method developed by Kaps and Pentrop [13].

Fluid Power Simulation

1.7 Since computer simulation can save considerable time and money in the design
and development of engineering systems, it was soon adopted into the field of
hydraulics. The McDonnel Aircraft Corporation released a package for simulating
hydraulic systems in 1977. The package consists of several programs which simulate
different aspects of several generalised hydraulic systems, e.g. the program HYTRAN
[14] which analyses hydraulic transients. Although these programs give more
flexibility to the user, in that it is not necessary to write actual coding, they still
require a knowledge of the program structure if additional information is to be
included. A program called DSH (Digital Simulation of Hydraulics) [15] has been
developed in West Germany, which is intended to have the versatility and degree of
user-friendliness which allows an inexperienced user to simulate any hydraulic
system. The user of the package defines the circuit to be simulated in terms of
'macro’ or 'micro’ words. The macro word defines a mathematical model which
already exists in the package. A micro word defines a single mathematical operation.
By defining a sequence of micro words, it is possible to represent a model not

catered for by the basic package. The package consists of five programs controlled



by a co-ordinating program. However there are major drawbacks with this package,
the main ones being the static nature of the programs which constitute DSH, which
tend to limit the types of models that can be written, and the user interface; users
have to define information in terms of data fields, and this can lead to a long and
complicated procedure, particularly for sophisticated hydraulic circuits. The work in
this thesis is concerned with another special purpose simulation package, called
HASP (Hydraulic Automatic Simulation Package), which has been designed in the
Fluid Power Centre at the University of Bath. This package requires the user to
construct a circuit diagram of the hydraulic system which is being investigated, and
convert this to a computer block diagram representing the individual models in the
system. This diagram defines the component models to be used in the simulation and
is subsequently used to provide simple alphanumeric input to a program generator to

form a computer simulation of the system.

Hydraulic Automatic Simulation Package (HASP)

1.8 The Hydraulic Automatic Simulation Package has been developed to simulate
the dynamic performance of hydraulic systems arising in the Fluid Power field. The
package consists of a library of mathematical models, each representing discrete
physical components of a Fluid Power system, together with a program generator.
The component models form individual blocks that are placed in the required
position by a program generator to represent a hydraulic circuit. The aims of HASP
are to allow a user to specify an hydraulic circuit, and to simulate the system
without any specialised knowledge of mathematical modelling, numerical methods,
or of complex computational techniques. A detailed description of the HASP package

is given in chapter 5



1.9 At present, HASP considers only the solution of ordinary differential equations
where the independent variable is time. This is termed 'lumped parameter' theory,
where the parameters computed in any model are assumed uniform throughout.
Although work has been done with the consideration of spatial variance in such
parameters as pressure, fiow or velocity by Skarbeck-Wazynski [16], partial
differential equations present more problems than their o.d.e. counterparts. These
problems generally lead to excessive computation times in the solution of the
equations, and hence can severely restrict the use of a package modelling spatial

variance.

Mathematical Problems In Fluid Power Simulation
1.10 Many difficulties arise in the simulation of Fluid Power systems, and the
majority of these are mathematical in nature. In particular, difficulties are caused by

four main branches of mathematical problems, these being:

i) Mathematical stiffness, where the eigenvalues determining the solution
of the differential equations differ greatly in magnitude.

ii) Discontinuities, both in the solution variables and their derivatives.

iii) Non-linearities in the differential equations formulated to describe model
behaviour.

iv) The oscillatory behaviour of the solution variables.

Physical non-linearities such as those presented by cavitation, stiction and actuators
reaching the limits of their travel demonstrate how these problems can arise. Non-
linear orifice equations and circuits with small pipe volumes can also lead to
differential equations that must be dealt with carefully. A full investigation of the

mathematical problems and some examples of when they arise are found in chapter 2.



1.11 This thesis approaches the problems arising in the simulation of Fluid Power
systems from a mathematical viewpoint. The HASP package originally employed
Gear's integration method [49] to solve the systems of differential equations arising
from the mathematical models. This is a routine which can use any of several multi-
step methods, and which uses an automatic time step control procedure. This method
is adequate for solving the majority of equations, but does not prove to be suitable
for coping with problems that are either very stiff in their mathematical
formulation, discontinuous or highly oscillatory. When applied to these problems,
the integrator reverts to a low order method, and a very small time step, leading to
excessive computer run-times, a factor that should be avoided with a viable
interactive simulation package. Also, special modelling techniques must be
employed in order to use Gear's method, when the difficiulties that have been
outlined here arise. It is not only Gear's method that has difficulties with working
in this enviroment; numerical methods are still being sought and developed that are
better able to cope with the problems presented above. The failings of presently

available numerical methods are discussed in detail in the next chapter.

A New Integration Method

1.12 The main work presented in this thesis is dedicated to the development and
testing of a new integration method, and its subsequent implementation inside the
HASP package as a versatile integrator. The new method is based on the analytical
solution of a linear first order ordinary differential equation, an approach which was
first suggested by Professor D.E. Bowns at the University of Bath [2]. It is a single
step method, and differs from the classical integration techniques, such as Adam's-
type methods. The new method was originally formulated as an explicit method, and

from this followed an implicit form. Both the explicit and the implicit forms have



good stabili\‘.y1 properties, that make them immediately applicable to stiff
systems of differential equations. These stability properties also ensure that the
method enjoys considerable advantages over existing methods in solving problems
which have diagonally dominant system matrices, a point which will be fully
clarified. The implementation of the method inside of HASP is described, and this
work involves special treatment of the mathematical models that describe the
individual components of the hydraulic system being simulated. This is because the
package has been designed for use with a classical integration method, and the
information that a classical method requires for the solution of a differential
equation differs from the data that the new method needs; this will be investigated in

chapter 5.

Existing Numerical Methods

1.13 A large amount of research has been done in the field of numerical methods,
particularly with regard to the solution of stiff ordinary differential equations. Some
of the relevant methods are investigated, since it is important that the main
requirements of a robust and competitive integrator are known before attempting to
develop a new integrator. These methods include Adam's methods, Euler's method,
Runge-Kutta methods and Gear's method. The necessary requirements, which will be
discussed in chapter 2, include good stability properties and high accuracy. Also, an
automatic time step control is essential. A package developed by Enright [17] also
enables a user to compare constructively numerical methods, and work with this

package has been undertaken in order to gain more information about the new method

1 The implication of a stable numerical method is that any error arising in the computed solution of an
inherently stable system should decay as the solution advances in time. These errors inevitably arise,
both from truncation error and round-off error, and so it is essential for a practical numerical method to

have good stability properties.



being developed.

Runge-Kutta And Switching Methods

1.14 The study of the mathematical difficulties arising in Fluid Power simulation
has led to several integration methods being used with the package, each of which is
applied for a specific purpose. The application of Runge-Kutta inethods to the HASP
simulation package is studied in this thesis. In particular, various types of implicit
Runge-Kutta methods are examined, since these are more applicable to stiff systems
of differential equations. Work done by Butcher [18] and Norsett [19] has brought
Runge-Kutta methods back to the forefront of modermn numerical techniques, in the
attempt to solve problems that require methods with very stringent stability
properties, as well as high accuracy. The methods investigated have been termed
diagonally implicit Runge-Kutta methods by Alexander [20]. Quite recently, work
has been done by Petzold [21] with the automatic selection of methods for solving

stiff and non-stiff systems of ordinary differential equations.

1.15 The work presented by Petzold introduces the idea that a scheme which
automatically determines whether to employ a class of methods suitable for non-stiff
problems, or a class of methods suitable for stiff problems, throughout the
integration of a problem, is more efficient in its implementation than simply using
one single class of methods. The scheme that is discussed is able to switch from one
class of methods to the other, depending on which it decides is the most suitable for
the problem being solved. This idea has been used by Robertson [22] with explicit
Runge-Kutta methods, and the ideas presented in chapter 8 suggest that it may be

worthwhile to employ diagonally implicit Runge-Kutta methods as well.




1.16 The implementation of a suitable integration method is very important for the
HASP package, and this integrator may not be in the form of one method, but of
several methods, together with a decision making routine that decides which method
is most applicable for each particular problem. For full flexibility, it should be
possible to change integration methods during a simulation in order to ensure that

the most efficient integration method is always being employed.

Programming And Software

1.17 As well as the mathematical issues, the development of good, well-structured
and well-written software is of great importance. At this point it should be stated
that the HASP package is written exclusively in FORTRAN, and so the new
integrator is also, not just to homogenise the system, but because FORTRAN is a
high-level language particularly well-suited to numerical computation. The software
must also be transportable, and so no machine-dependent code should be used.
Furthermore, it is essential to be familiar with the machine on which the work is
carried out, to ensure that the computer is a tool aiding the work, and not a

handicap.

1.18 It is important to emphasise further the way in which the programs are
written. Since the integration method must be computationally efficient, it is
essential that the software written to implement the method is also efficient.
Consequently, the algorithms for the software must be well-structured and designed,
and the software comprehensively tested. The programs written for the work
presented in this thesis have been produced by a 'top-down' design [23]. Coding

requires great care, but is a natural progression from the design stage, whereas the

10




testing stage must ensure that the program is able to deal satisfactorily with all the
data presented to it. Consequently, appropriate data must be devised in an attempt to

ensure that all situations are handled correctly.

Plan And Scope Of Thesis
The remainder of this chapter describes the course taken and the work covered by this

thesis. The objectives of each chapter are presented, and a summary of the contents

is given.

1.18 Chapter 2 describes in detail the mathematical difficulties that arise in
hydraulic simulation, and analyses some of the numerical methods that have been
developed to cope with these difficulties. A definition of mathematical stiffness is
given, and the reasons why it presents problems to numerical integration methods
are explained. The ideas presented are used and expanded upon throughout the thesis,
particularly in the development of the new method. The object of the chapter is to

present an overview of the mathematical background behind Fluid Power simulation.

1.19 Chapter 3 introduces the new integration method that is to be studied. The
method is developed and subsequently tested on a set of test problems, each of which
arises from a engineering circuit. The performance of the method in solving these
problems is analysed, and compared with that of other numerical methods which have
also been used to solve the same problems. The problems have been chosen since
they demonstrate the mathematical difficulties described in chapter 2, and are hence

useful examples on which to test a new numerical method.

11



1.20 Chapter 4 gives an analysis of the new method. The local error of the
method is examined, and from this is constructed a time step control, which ensures
the higher computational efficiency of the method. The stability properties of the
method are also investigated. From this analysis, a more robust, general purpose
integration method is constructed. Aﬂér performing the theoretical analysis, the
method is applied to a set of problems, which have been chosen to illustrate the

properties that are introduced earlier in the chapter.

1.21 Chapter 5 introduces and explains the structure and workings of the HASP
simulation package, with particular emphasis on the implementation of a numerical
integration method inside the package. The evaluation of a Jacobian matrix using a
perturbation technique is explained, and the generalisation of the method to allow its
implementation is discussed. Having placed the integrator inside the package,
dynamic simulations of Fluid Power systems are performed, and the method

compared with the previous integrator employed by the package.

1.22 Chapter 6 describes a testing package which has been designed to aid in the
assessment of Initial Value methods for stiff systems of ordinary differential
equations. The package has been used to test the new integration method, and has
helped to determine the problem domain over which the method is suitable. The
package consists of a collection of FORTRAN subroutines, combined with a
canonical set of test problems. The problems have been chosen from different fields
of Science and Technology, and cover all the mathematical problem areas that have

been discussed in the previous chapters of this thesis, with a particular emphasis on

stiffness.

12



1.23 Chapter 7 presents a particular application of the new method. Since the
method has been found to have beneficial stability properties when used to solve
problems which have diagonally dominant system matrices, one area which will lead
to this type of problem is examined. When parabolic partial differential equations
are discretised to form sets of ordinary differential equations, then the resultant
system matrices are often diagonally dominant, and the equations themselves very
stiff. Present numerical methods that are used to solve these equations are examined,
and compared with the new method which is also applied to the problem. The

possibility of extending the new method is also discussed.

1.24 Chapter 8 broadens the scope of the thesis, and introduces Runge-Kutta
methods. These are an alternative set of single-step integration methods which have
some desirable properties which may prove to be beneficial when used to solve the
problems arising in Fluid Power. In particular, implicit Runge-Kutta methods are
studied, and their potential in acting as an alternative integrator is discussed. As
well as introducing Runge-Kutta methods, switching methods are also examined, and
their possible application to the HASP package is contemplated. Suggestions are
made which may prove to be rewarding if carried out. The work presented is a result
of the author's study of Fluid Power simulation, and provides up to date methods
which have been applied with some considerable success to certain problem areas

similar to those found in hydraulics.

13



Year Simulation Language Integration Methods

1961 DYSAC FIXED STEP LENGTH:
RUNGE-KUTTA 4™ ORDER

1965 MIMIC FIXED STEP LENGTH:
RUNGE-KUTTA 4TH ORDER

1969 HYBLOC VARIABLE STEP LENGTH:
ADAMS ( 15T 3RD, 5TH ORDER)

1975 ACSL FIXED STEP LENGTH:
RUNGE-KUTTA (15T, 2ND_4TH ORDER)

VARIABLE STEP LENGTH:

ADAMS MOULTON, GEAR

1976 CSSL FIXED STEP LENGTH:
EULER, TRAPEZOIDAL, ADAMS
VARIABLE STEP LENGTH:
RUNGE-KUTTA (4™ ORDER), ADAMS

1978 CSMP III FIXED STEP LENGTH:
EULER, ADAMS, TRAPEZOIDAL,
SIMPSON, RUNGE-KUTTA (4TH ORDER)
VARIABLE STEP LENGTH:
RUNGE-KUTTA (4™ ORDER ), GEAR

1981 KISS VARIABLE STEP LENGTH:
RUNGE-KUTTA ( 4™ ORDER )

1983 IsIM FIXED STEP LENGTH:
RUNGE-KUTTA (2NP AND 4TH ORDER)
VARIABLE STEP LENGTH:
RUNGE-KUTTA SARAFYAN

TABLE 1.1 INTEGRATION METHODS USED IN SIMULATION
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CHAPTER 2
MATHEMATICAL BACKGROUND TO THE SIMULATION

OF FLUID POWER SYSTEMS

Introduction

2.1 The objective of this chapter is to view in detail the possible mathematical
difficulties that arise in hydraulic simulation, and to analyse some of the numerical
methods that have been developed to cope with these difficulties in the HASP package,
prior to the work covered by this thesis. The ideas met form a basis for the work
covered in the subsequent chapters. In particular, an expository review of the problem
of stiffness in the numerical solution of ordinary differential equations is presented,

with special emphasis on stability aspects.

2.2 The work covered is as follows:

Mathematical stiffness is rigorously defined and two hydraulic circuits where stiffness
occurs are examined. Some of the present numerical techniques that are available for
solving stiff differential equations are discussed and an explanation of the derivation of
multi-step and single-step metfxods is given. An accompanying analysis of the
stability, consistency and accuracy of these methods is made, since this work will be
relevant when developing the integration method described in chapters 3 and 4. A
practical definition of stiffness is also shown and an explanation of the problems it
causes is given. The difficulties caused by discontinuities, non-linearities and oscillatory
problems are discussed and practical examples of their occurrences in Fluid Power
systems are shown. Finally, the application of a predictor-corrector pair as a numerical
integrator is explained, and the resultant iteration schemes suitable for stiff systems of

equations are examined.



Mathematical Stiffness

2.3 At this stage, a mathematically stiff system is defined; later a more in-depth
approach to the problems it causes will be taken. The problem of stiffness has been
known for some time and was first investigated by Curtiss & Kirschfelder [24]. Briefly,
a stiff system is one whose dynamic behaviour is described by a set of coupled
differential equations which have solutions with widely differing decay rates. The rates
at which the solutions decay are determined by the eigenvalues of the appropriate

system matrix.

Consequently, for the Initial Value Problem
y'= Ay +b(t) y(0)=8, k=1l..m

where A is a constant (mxm) matrix with constant eigenvalues given by:
Ap = u i, k=1...m

and the solution, if the eigenvalues are distinct, is given by:

t

y(t) = <J|r1ke)“‘+<:af2ke)‘2 + - +amkex"‘t+Fk(t) k=1,...m (2.1)

then the system is said to be stiff if

ii) maxg Il | >> ming Iy
The stiffness ratio, S is defined by:

_ maxy Ly | 2.2)
mink 'Il.k | ]

2.4 The real parts of the eigenvalues are taken as it is these that govern the decay rate
of the components. The imaginary parts of the eigenvalues are associated with the

oscillatory (non-decaying) part of the solution. For the problem



y' = A(y +b(t) y, (0)=B, k=1...m

where the eigenvalues of A(t) will be time-dependent, and the solution is given by a
similar expression to that in eqn (2.1), then the system is said to be stiff in a time

interval, if both i) and ii) apply for t in that interval.

2.5 Most stability requirements for numerical methods place constraints on a
combination of the time step used and the eigenvalues involved, e.g. Euler’s method,
dealt with later, requires that |1 + hA| < 1 to ensure stability. As a consequence, for
a stiff system, although interest may not be with the components in the system
corresponding to the eigenvalues largest in magnitude, i.e. the smallest time-constants,
in order to satisfy the stability requirements for a classical integration method, it may

be imperative to choose a very small time step because of these large eigenvalues.

2.6 The temptation is to think that the time step need only be restricted to a small
value whilst the component corresponding to the eigenvalue largest in magnitude is
significant. This, however, is not the case, the stability restriction must be observed
throughout the computation whilst using one particular integration method. It is this
property that creates the problem with mathematical stiffness, the time steps required
by classical methods for the solution of stiff systems can be extremely small, resulting

in long computer execution times.

Practical Stiffness

2.7 Practically, stiffness occurs as a problem in the solution of a system of differential
equations when less computational effort is required to use an implicit method than an
explicit method. Implicit methods, which will in general allow a larger time step than

explicit methods in order to ensure stability, normally require more work at each step



to form a solution than explicit methods. Explicit methods, however, require small
time steps if the problem being solved is stiff, so as to satisfy the stability
requirements. Mathematical stiffness occurs in the modelling of many areas of Science
and Technology: Physics and Chemical Engineering being two such fields. Although in
this present context the author is confining the study to Fiuid Power systems, the work

is applicable in many other areas.

Two practical examples are now given to illustrate how mathematical stiffness

can occur in hydraulic system simulation.

Two Examples To Show The Occurrence Of Mathematical Stiffness

2.8 Example 1 - Open loop transmission system. Consider the open loop hydrostatic
system, shown in Figure 2.1, in which the hydraulic motor is supplied with fluid to
drive a rotational load comprising an inertia, with viscous friction and a constant
applied force. There is a relief valve in the circuit that is used to limit the system
pressure. The pump and motor are assumed to exhibit no slip flow or torque losses in

order to simplify the analysis.

The differential equations governing the behaviour of the system are:

dP _ B

L - Bo-a-0w @3
and
do, _ (Tp—fo, T, (2.4)
dt J
where:

P is the fluid pressure in the pipe
Qg is the pump flow rate



Q; is the motor flow rate

Q, is the relief valve flow rate

B is the effective bulk modulus of the system
v is the pipe volume

J is the moment of inertia

© ., is the angular velocity of the motor

f is the viscous friction coefficient

T, is the motor torque

T, is the load torque

2.9 The pump flow rate is given by:
Q, = Dyw, (2.5)
where:

D, is the pump displacement
w, is the pump shaft angular velocity

The motor flow rate is given by:
Qn = Dnm (2.6)

where Dy, is the motor displacement

The torque developed by the hydraulic motor is given by :
T, = D, P ' (2.7)

If the flow rate through the relief valve is non-zero, owing to the system pressure
exceeding the relief valve cracking pressure, then if the relief valve is assumed to open

instantaneously, the flow rate through the valve is given by:
Q, = k,(P—P) (2.8)
where:

P, is the cracking pressure
k, is the flow coefficient of the relief valve.

Consequently, the differential equations for the rates of change of pipe pressure and



angular velocity of the rotary load. can be written, with the relevant substitutions, as:

% = lj.(me,, —k(P—P,) — D ) 2.9
do, 1
n = (DP —fwy— T (2.10)

which leads to the 2x2 matrix equation

—BD,
dap —x B m [ p BDw, +kpP,)
S B v 2.11)
don |~ | Dm  —f + T, '
dt TT || ]
This is a matrix differential equation for which the general form is
Yy =Ay+b (2.12)

where b is the forcing function.

2.10 In order to see how this system leads to the problem of mathematical stiffness it
is necessary to examine the eigenvalues of the A matrix. The eigenvalues, the
reciprocals of the time-constants in the real case, of the set of differential equations

given by equation (2.12), are the solutions of the equation
(A=XDx=0 (2.13)

where I is the unit matrix. The eigenvalues can be evaluated from the determinant

equation [25].
Il A=Al =0

The characteristic equation for the system given by equation (2.11) is:



—k.B BD, { D
Ca|-Ial+ 2| =0
v J v J
which simplifies to:
2, |f L kB B [ 2 4 ]
A+ F + A+ i Dg + k,f

Applying the formula for the solution of a quadratic yields:

2 0.5
f  kB|+ 1||f kB 4B
=]+ |- |+ —ZZ(D2+k.f
A 2] 2v 2 1|7 vJ( m+k.f)
which simplifies to:
2 0.5
f kB |+ 1||kB B f2
=—|__ + | ||} - 2Qkf+4D2) +
A 2] 2v 2 v vJ( k.f ) J2
If
f2 kB | B
r 2
= + >> ﬁ(2k,f +4D2)

or equivalently

f2y . kB v
A S - + 4D2
7B + . >> J(2k,f D2)

and provided that

0.5
f ., kB 1|k’B* B £2
e+ | > = | — =2 2k f +4D2) + —
2] 2v 2| 2 vJ( r m) ]2

then the eigenvalues of the system will be real, negative and widely

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

separated in



magnitude. Consequently a stiff system is apparent, with the stiffness ratio S given by:

kB Kk 2B? 2 |
Py T B orr+ap2) + £
27 T 2v 2 v2 VI e
f . 1|k B f ‘
-+ 2= - — —(2k.f +4D2) + —
37 v 2 | V2 o7 ks m) 72

2,11 To further study this expression, the relative magnitudes of the quantities
appearing in this expression for typical hydraulic circuits can be considered. The bulk
modulus, B, and the inertia, J, are usually very large. The viscous friction, f, the

motor displacement, D,,,and the pipe volume, v, are usually small quantities. Typical

data are:
B=1.4x10°N/m?
f =1 N/sec/rad
v=1x10"*m3
D, =2.5 x 10! cc/rev
J=0.5 kgm?
kK, = 5. x 107! m3/sec/N/m?

This will lead to a stiffness ratio of
S= 40x10°

2.12 Example 2 - Hydraulic actuator circuit. The circuit shown in Figure 2.2 consists
of a fixed displacement pump supplying fluid to a linear actuator by a " meter in * flow
control orifice. The directional contro! valve is manually operated and allows the
actuator to be extended, retracted or held stationary. When the valve is centred, flow
returns to tank through a relief valve. Mathematical stiffness occurs in the circuit at
the start of a simulation since the pressure differential across the orifice is small and

there is a high flow gain of the orifice under this condition.



2.13 Orifice restrictor. The flow rate through an orifice with potential flow is given

by the relationship :
Qo = koVAP (2.20)

where:

K, is the orifice flow coefficient
AP is the differential pressure across the orifice

The gradient of this function is :

dQo ko
— 2.21
dAP 2VAP (221)

When the differential pressure is zero, the gradient of this function is infinite. As the
orifice connects two sections of pipe, the zero differential pressure condition can give
rise to infinite stiffness. No classical integration method can provide an adequate
simulation of this condition as can be seen by considering the equation set for that part

of the linear actuator circuit shown in Figure 2.3.

2.14 Considering the actuator system in this simplified form, the model relationships

to describe the system may be written as:

Bk,P;
dpl —Bko - AI'B P VJAP .
a | _|v/aP v ! (2.22)
du [T A ¥
dt ™M ™M u 0

where:



A, is the area of the actuator piston

B is the effective bulk modulus of the system

f is the viscous friction coefficient

M is the mass of the load

P, is the pressure downstream of the orifice

P; is a constant pressure upstream of the orifice
u is the actuator velocity

v is the volume

The eigenvalues of the system are given by:

—Bk, N —A,B
vVaP Vol 2 (2.23)
det 0
A _f
M M
which becomes:
Bk, £ A.’B
+A||—+A]|+ =0 (2.24)
vVAP M Mv
A is given by:
A= | f 4 PR |+ 1|1, B z—iB_ 2q Ko ||™ (2.25)
2M 2y JAP 2 | |M yJap vM |7 /AP ’
If
2
f Bk, 4B Kof
— + >> 2 A2+
lM vVAP vM |77 VAP
and
0.5
|y B nfff Bk |° 4Byl o, Kof
2M  JAP 2| |M /AP " VAP

then the eigenvalues will be real, negative and widely separated in magnitude. The

stiff ness ratio, S, is given by:

10



e, B |_af[r, Bk | 4B |, ., kef ||¥
g= 2M 2vW/AP | 2 |[|M VAP vM |77 " VAP
e, Bko [ 1]]f, Bk i a2y Kof >
2M - 2vJaP | 2 ||M /AP vM |77 AP
For the data:

B=1.4x10°N/m?

f=1x 10?2 N/sec/m
v=1x102m?
M=10Kg

ko = 5 x 1072 m3/sec/N/m?
AP =1 x 107% N/m?

A, =5x10"%m?

then the stiffness ratio is of the order

S=1.0x10°

2.15 These two examples, each comprising of a (2x2) set of coupled differential
equations, demonstrate how stiffness can be introduced into a system simulation. In
these two examples it was introduced by the model of a hydraulic relief valve and the
model of an orifice. Although this type of problem is a recurrent one, the modelling of
the effects that can cause stiffness must be included to ensure that the equations

accurately represent the hydraulic circuit.

Numerical Integration Methods

2.16 A brief explanation of currently available numerical integration methods and the
mathematical theory behind them is now given, since the issues discussed will be

relevant when developing a new integration method.

11



Initial Value Problems For First Order Ordinary Differential Equations

2.17 A first order differential equation y’' = f(t,y) can possess an infinite number of
solutions. For example y(t) = Ce*! is, for any value of the constant C, a solution of the
differential equation y' = Ay, where A is a given constant. Under certain conditions,
y' = f(t.y) has a unique solution if an initial condition is specified. For example, with
the problem y' = Ay, if y(a) = B, then the particular solution satisfying thg initial
condition is given by y(t) = Be**). The differential equation, together with an initial

condition, is said to constitute an initial value problem, which is:
y=1ty) yla)=8 (2.26)

The following theorem, the proof of which can be found in Henrici [26], states
conditions on f(t,y) which guarantee the existence of a unique solution of the initial

value problem given in equation (2.26).

2.18 Theorem 1. Let f(t.y) be defined and continuous for all points (t,y) in the region
D; defined by a« £t £ y, —0 < y < oo, a and Y finite, and let there exist a constant

L such that, for every t.y .y such that (t.y) and (t.y") are both in D,
I f(t.y) — f(t.y)! SLly—y'l (2.27)
Then, if B is any given number, there exists a unique solution y(t) of the initial value

problem (2.26), where y(t) is continuous and differentiable for all (t.y) in Dy

2.19 Lipschitz condition. The requirement in equation (2.27) is known as a

Lipschitz condition, and the constant L as a Lipschitz constant. Two properties follow

from f(t.y) being continuously differentiable [27], viz:

f(t.y) being continuously differentiable with respect to y for all (t.y) in D¢

implies that f(t.y) satisfies a Lipschitz condition w.r.t. y for all (t.y) in Dy

12



and this implies that f(t.y) is continuous w.r.t. y for all (t.y) in Dy

In particular, if f(t.y) possesses a continuous derivative with respect to y for all (t.y)

in Dy, then, using the Mean Value theorem,

LA af(t,y) *
) _f ) - ?
f(ty) (ty) =L L (y-y)

where § is a point in the interior of the interval whbse end points are y and y’, and
(t.y) and (t,y") are both in D;. The Lipschitz condition in equation (2.27) is satisfied if

L is chosen as

| |
L = sup :ifé‘TYl : for (t.y) in Dy (2.28)

Initial Value Problems For Systems Of First Order Differential Equations

2.20 In Fluid Power simulation, then, rather than a single differential equation arising,
systems of m simultaneous first order equations in m dependent variables
Y1, Y2 Y3, Y4 ---- Ym arise. If each of these variables satisfies a given condition at the
same value a of time, then an initial value problem for a first order system arises. This

problem can be written as:

1=t y) Y2, ¥3.. ¥m)  yi(a) =B,
y2= (L. y1 ¥2 V3. ¥m)  y2a) =8,

y3=f3(t.y1, Y2 ¥5...¥m) y3(a) = B;

Ym = fult. ¥1 Y2, ¥3... Ym)  Ym(a) = By

13



Introducing the vector notation

y=Iys,y2 ys. yml"

.....

8= [Bl, Bz, 53,..., Bm]T
then the I.V.P. can be written in the form:
y=£f(ty yla)=8 (2.29)

The reason for looking at systems is to show how the theorem of uniqueness and
existence extends from a scalar equation, through to a set of equations. In order for
theorem 1 to be applicable and give the necessary conditions for the existence of unique
solution to equation (2.29) then two changes to the conditions of the theorem must be

made. These are:

i) The region D; must be defined by a St Sy, —o0 <y; <00, i=12,.m

ii) Condition (2.27) must be replaced by:
PIf(ty) —f(ty) 11 SLI1y—y'|| (2.30)

where (t,y ) and (t,y’) arein D;,and || . | | denotes a vector norm [47].

derivative with respect to each of the y;, j = 1,2,....m then, analogous to equation (2.28)

f .
L = supl I-gs—zl I for (t.y) in Dy

where % is the Jacobian of f with respect to y [29].

14



2.21 Reduction of high order differential equations to first order. Frequently, the
ordinary differential equations that are formulated to describe physical situations are
of second order or higher. In this case, in their solution, either an integration method
specifically designed for solving higher order equations must be used, or the differential
equations must be reduced to a set of first order equations. This is done by making a
substitution into the higher order set of equations, and solving for a new set of

unknowns. To reduce the second order differential equation

d’y dy _
= + K‘d_t + Ky = K, (2.31)

to two first order differential equations, the substitution %% = r can be made, then

equation (2.31) will become the system

dy = r
4 dt (2.32)
d_lt- + Kll' + sz = K3

and now a classical integration technique can be applied . This method of reducing

equations can be used on higher order differential equations.

Direction Fields

2.22 The function y(t). the solution to equation (2.26), is a curve in the ty-plane,and,
although it may not be possible to find y(t) exactly, the slope of y(t) at every point on
its solution curve is known. If the solution passes through the point (t,y). then since y’
= f(t.y). the slope of the tangent line to the curve y(t) at the point (t.y) is given by
f(t.y). Consequently, the direction of the solution curve y(t) at any point in the ty-
plane is known. The set of all these directions in the plane is called the Direction Field

of the differential equation y' = f(t.y). In many cases the solution to a differential

15



equation, although not computed, can be sketched via its direction field.

2.23 Example to demonstrate the occurrence of direction fields. Considering the
initial value problem

y' =2ty y(0)=1
then

y'(t) > 0ifty > 0

and
y'(t) < 0if ty <0

Hence y'(t) > O in the first and third quadrants, and y'(t) < 0 in the second and
fourth quadrants. The direction field is sketched in Figure 2.4 . Since t and y are
positive in the first quadrant, the slopes of the tangent lines to any solution curve are
positive, so that the solution curves increase and become steeper as t and y become
larger. Along the axes the solution is flat because the derivative is zero. In the second
quadrant the slopes of the tangent lines are negative since y' < 0 . Similar conditions

apply in the third and fourth quadrants.

2.24 The solution curve must satisfy the initial condition y(0) = 1 for the particular
L.V.P. being considered and must consequently pass through the point (0,1). The sketch
of the solution given in Figure 2.5 is indicative of the way in which the information is
used to formulate an estimate of the solution. The problem being solved has the true
solution y(t) = e¥, and the correlation between this and the sketched solution is easy to

see.
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Numerical Methods

2.25 Numerical methods use the direction fields of a differential equation in order to
form their approximation to the solution. Numerical techniques exist since, for the
majority of differential equations, there is no known solution, i.e. it is impossible to
express a solution in terms of elementary functions. They seek to find an
approximation to y(t) for one or more values of the independent variable t, rather than
looking for a function y(1) that solves the problem at every value of t. Numerical
methods are also used. when techniques developed to find the analytical solution to
differential equations, require significantly more effort to form an answer. An example
of this is the computational labour involved in solving exactly a system -of many

simultaneous first order differential equations, which may be formidable [30].

2.26 The number of numerical methods available to solve differential equations is
legion, and a comprehensive study is not made here. However, the most common
methods that are used for solving differential equations fall into categories, and these

will be briefly discussed. The two classes are:

1) Multi-step methods
2) Single-step methods

Multi-step Methods

2.27 The general linear multi-step method. Considering the L.V.P. for a single first

order differential equation
y' =f(ty) y@@=38 (2.33)

A solution is required in the range a £ t € b, where a and b are finite. It is assumed

17



that f satisfies the conditions stated in theorem 1 on uniqueness and existence, and so
the problem has a unique continuously differentiable solution described by y(t).
Considering the sequence of points t, = a + nh, n= 0.1,2,... where the parameter h,
which for the present will be regarded as constant, is called the steplength, then it is
possible to discretize the interval {a,b]. As has been already mentioned, numerical
methods seek to approximate the solution on this point set, and not on the continuous
interval a £t <b. Letting y, be an approximation to the true solution
y(t,). at t,and f, = f(t,y,). then if a method for determining the sequence
Yo, Y1, ¥2: - - - is formed by a linear relationship between y,4;, fo4) j = 0,1.2,..k it is

termed a linear k-step method [31].

2.28 The general linear multi-step method is written as:
K k
zannﬂ' = h23jfn+j (234)
=0 =0

where a; Bj are constants, o, # O and at least one of apand B, are non-zero.

Furthermore, o = 1, without loss of generality, and this ensures the uniqueness of the

method.

2.29 Hence the problem is to find the sequence y,,y;,y2, - - that satisfies the
difference equation (2.34). Since f, is. in general, a non-linear function of y,, equation
(2.34) is a non-linear difference equation. The sequence yo, Yy, ¥z, - - - is computed
numerically, and in order to do this, a set of starting values y,, ¥, Y2, ---» Yx—1 must be
supplied. Methods for obtaining starting values are explained by Hall & Watt [32]. The
method given by equation (2.34) is explicit if B, = 0, and implicit if B, # 0. For an
explicit method, equation (2.34) gives the current value y,,, directly in terms of Yo+jr
fa+j J = 0.1....k-1 which are already known. However, for an implicit method, to find

Yn+x Will require at each step the solution of the equation
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Yo+k = hBfpy +K (2.35)

where

k-1
K= z (thfn+j - ajyn+j)
=0

is a known function of previously calculated values.

2.30 When the original differential equation is linear, then equation (2.35) is also
linear in y, .. and is easy to solve. If f is non-linear, then equation (2.35) must be
solved by an iterative technique, and a typical fixed-point iteration scheme is of the

form:
yistD = nB f(ty e ysk) + K s=0,1.2,... (2.36)

This process will only converge to the unique true solution for

Ya+k if the right-hand side of equation (2.36) satisfies a Lipschitz condition, i.e.
IhB,f(t.y) — hBf(t.y) | S Myly—y'I 0SM,<1 2.37)

where My is the Lipschitz constant W.r.to yu4-

2.31 If the Lipschitz constant of f with respect to y is L, then My will have the value
LhlB, |, and so a unique solution for y,, exists. and the above iteration converges to
it, if

1

h< — 2
LB

Obviously if L is very large. then this requirement can impose a severe restricition on
the size of the steplength. Stiff systems can lead to very large values of L, so the reason
for examining iteration schemes that are suitable for stiff problems is seen. The ideas
here follow through to a system of simultaneous non-linear equations. These, in the

case of an implicit method, can also be solved by iteration, by forming a series of
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vector iterates. In order tc ensure the convergence of the iteration scheme, the absolute

values of scalars are replaced by the norms of the corresponding vectors [33].

2.32 The coefficients a;,B; in equation (2.34) can be derived in various ways
depending on the requirements placed on the method that will formed. Two such

approaches are via Taylor's Expansions and numerical integration.

2.33 Taylor’s series expansions. For small h, y(t,+h) can be expanded by a Taylor’s
series about the point t, as ffollows:

2
",

y(t,#b) = y(t) + By'(t,) + 2y, + ‘;_!’y"'(z..) PO

where

) d " d?
y(tn) = E{- "‘="n .y (tn) = dtZ lt:"n s T °

Truncating the Taylor's series after two terms and substituting for y'(t,) from the

differential equation (2.33) gives:
y(t,+h) = y(t,) + hf(t, y(t,)) - (2.38)

The error involved in estimating the solution to y(t, + h) is given by:
2 3

Equation (2.38) gives a relation between the exact values of the solution of equation
(2.33). Replacing y(t,) by y, and y(1,+h) by y,,; leaves an exact relation between

approximate values of the solution of equation (2.33). and this is:
Yn+1 = ¥Yn + hfn (2.40)

This is known as Euler’s method, the error in evaluating one step is given by the

expression (2.39) and is called the local error. This error is of order h?, and will be zero
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if the solution of equation (2.33) is a polynomial of degree O or 1, since y",y™, - - -
will all be zero. Geometrically, the meaning of Euler's method is shown in Figure 2.6,
where the smooth curve is taken as the unknown exact solution of equation (2.33),
which is being approximated by the broken line. In order to ensure that Euler’s method
accurately follows the true solution curve, the value of the steplength h must be
restricted. This restriction is problem dependent. As a further note, Euler's method is a

useful method with which to illustrate stability, convergence and accuracy analysis.

2.34 Numerical integration. Considering the identity

L2

Y(tas2) = y(1) = [ y'(Ddt (2.41)

y'(t) may be replaced by f(t.y) using the differential equation (2.33). If a linear two-
step method is to be derived, then the data available will be f, f,,;. fo42. Letting P(1)
be the unique polynomial of degree two that passes through the three points
(tafa). (ta41.f041). (tas2.fas2). then using the Newton-Gregory interpolation formula
[34]. given by:

r(r—1)

2
5 At

P(t) = P(t,+rh) = f, + rAf, +

where:
Af, = fo4 — £y, A2fn =fo42 — 2fp 4y +1,

the integrand in equation (2.41) becomes:

1“2

2
[ y@adt = [If, + raf, +
. ()

l‘(l‘;‘l) Azfn]h dr

= n(2f, + 24Af, + %Azfn) (2.42)
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Expanding Af, and A%f, and substituting in equation (2.41) gives:
_h
Yo+2 " ¥Yn T —j(fn+2 +4fp 4 + fn)

which is know as Simpson’s rule. This method is used in chapter 7 in an attempt to

improve the accuracy of the new integration method that is developed in chapter 3.

2.35 Convergence. Many integration methods can be formulated by these approaches,
some of which will be discussed later. However, before a formula can be used it must
satisfy certain criteria. One of these is the property of convergence. which requires that
the solution Yy, Yy, y3,... generated by the method. converges to the theoretical

solution y(t) as the steplength h tends to zero. As a precise definition, then:
A method is said to convergent if, for all initial value problems of the form of
equation (2.26), subject to the hypothesis of theorem 1, then the condition

Yo = ¥(t,) ash = 0, nh=t—a

holds for all t in the interval [a.b]

2.36 Order and error constant for linear multi-step methods. For the linear

multi-step method given by equation (2.34), then an operator L can be defined by: [35]
x
Lly(t):b] = ¥ [ajy(t + jh) — bB;y'(t + jh)] (2.43)
=0

where y(t) is now an arbitrary function that is continuously differentiable on the
interval [a,b]. The order of accuracy of the operator and of the associated linear
multi-step method can now be defined. Expanding the test function y(t+jh) and its
derivative y'(t+jh) using Taylor's series about the point t, and collecting terms

together yields:
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Lly(t):h] = Coy(t) + C;hy'(1) + Coh?y"(1)+...4+Cqh%y D(1)+... (2.44)

where the C;. with q = 1,2,3,... are constants.

2.37 Definition of order for a linear multi-step method. The difference operator
given in equation (2.43) and the associated linear-multi step method in equation (2.34),
are said to be of order p. if in equation (2.44). Co=C,= 0 = ..=C,and C,4; = 0.
Since the coefficient values C,'s can be written in terms of the ajsand Bjs, it is
possible to construct a linear multi-step method of a given order by solving a set of
simultaneous equations. Also, the local error at t,,, of the method is defined by the
expression L [y(1) ; h], given by equation (2.43), where y(t) is the solution of the L.V.P.

(2.33).

2.38 Characteristic polynomials [36] can be formed from linear multi-step methods in
order to assess their stability properties. For example, from equation (2.33), the first

and second characteristic polynomials, defined as p(§) and o (§) respectively are given
by:
k .
p(&) = Lo
=0
k .
() = LB
=0
A linear multi-step method. defined by equation (2.34) is said to consistent if it has

order p2 1. As a consequence, for consistency, the method must satisfy the

conditions

Kk K X
zaj=0 and Zjozj= ZBj

j=0 j=0 =0
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2.39 Zero-stability. Zero-stability ensures that the solutions of the difference
equation for y,. which arise because the first order differential equation is being
replaced by a higher order difference equation, are damped out in the limit as h = 0.
These solutions are frequently called parasitic solutions and the linear multi-step
method given by equation (2.34) is said to be zero-stable if no root of the first
characteristic polynomial p(€) has modulus greater than one, and if every root with

modulus one is simple.

This leads to Dalquist’'s fundamental theorem [37], which is:

Theorem 2. A linear multi-step method is convergent if and only if it is both

consistent and zero-stable.

The proof of this theorem can again be found in Henrici [26] and it is an important
result. It is saying that both consistency, which controls the magnitude of the local
error arising at each stage of the solution, and zero-stability, which controls the
manner in which this error is propogated as the calculation proceeds. are essential if
convergence is required. For a one step method. an important result is immediately
forthcoming. Since the polynomial p(£) is of degree one. and a consistent method will
lead to a solitary root £ = 1, then consistency implies zero-stability. and hence only

consistency is required to ensure convergence.

Single-step Methods

2.40 Single-step methods are better able to cope with discontinuities and easier to
implement than multi-step methods which can invoke great difficulty in choosing the

starting values y; y» *-* Yg-1. particularly when discontinuities are met. It is at
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these points that multi-step methods require modifications in order to prevent them
from failing. This is normally done by using a smoothing function, or an integration
restart, both which will be discussed, but the smoothing function which can be used
does not represent the true solution, and so divergence from the theoretical solution is
possible. As a consequence, single-step methods are useful in these circumstances, since
they are self-starting, requiring only information at the last time step. It is possible
for a single-step method to finish at the point of discontinuity and resume- the
integration process at the new level. Multi-step methods. however, cannot easily do
this. and neither do they readily permit a change in steplength during the computation,
since they rely on information from preceeding integration steps. Finally, single-step
methods are generally far easier to implement and code than multi-step methods, since
they do not require the storage of back values, either in data or polynomial form.
Multi-step methods frequently lead to long and cumbersome computer programs

which are very difficult to modify to suit individual problems.

241 Linear multi-step methods achieve high order accuracy by sacrificing the
desirable one-step nature of numerical algorithms, but do retain linearity with respect
t0 Yn+j fasj §=0.1...k. Single-step methods can attain higher order accuracS( by
sacrificing linearity, and this is the idea behind the methods first proposed by Runge
[38] and subsequently developed by Kutta [39] and Heun [40). This leads to the class
of Runge-Kutta methods that are easy to implement, but require more effort in error
analysis than their multi-step counterparts. Explicit and implicit Runge-Kutta methods
exist, although explicit methods are the most common form. However, recent
development work with implicit Runge-Kutta methods has lead to several

breakthroughs, and this work will be discussed in a subsequent chapter.
2.42 A general single-step method, in explicit form, can be written as:
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Ya+1 = Yo = h®(ty y, h) (2.45)
This method is said to have order p. if p is the largest integer for which
y(t+h) — y(t) = h®(t.y(1) .h) = O(hP*1) (2.46)

bolds, where y(t) is the theoretical sclution of the I.V.P. given in equation (2.33).

The method is consistent with the I.V.P. if
&(1.y.0) = f(ty) (2.47)

Euler's method is the only linear multi-step method which falls within the class of

equation (2.47), and is obtained by setting
o(t.y.h) = f(ty)

It is consistent and has order one.

A theorem exists that gives conditions to ensure the convergence of single-step

methods, the proof can again be found in Henrici [26].

Theorem 3. i) Let the function ®(t.y.h) be continuous jointly as a function of its
three arguments, in the region D; defined by t in [a.b). y in (—o0,00) and h in
[0. ho). hy>0

ii) Let ®(t,y.h) satisfy a Lipschitz condition of the form
I &(t.y"h) — ®(t.y.h) | € Myly'—yl

for all points (t,y".h), (t.y.h) in Dy
Then the method given by equation (2.45) is convergent if and only if it is consistent.

2.43 The definitions and theorems follow through for systems of differential
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equations, with the necessary amendments from absolute values to vector norms.

They also apply to methods of the form:
Yn+1 = ¥n = h®(tas1.¥n41h) (2.48)

which will in general require the employment of an iteration scheme in their solution,
since they will form implicit relationships between variables. The requirements for the
convergence of an iteration scheme when applied to an implicit linear multi-step

method will extend simply to this method since it will be of the form:

v = h®(t,, .y $h) +y, s=012... (2.49)

Stability Of Numerical Methods

2.44 Besides the zero-stability,consistency and convergence of a numerical method.
there is another important property that determines its usefulness as an integrator.
Zero-stability ensures that the local inaccuracies caused by the method are not
propogated in an unwanted manner. However it deals with the case as
h = 0 and n = co, with nh con§Mnt. Consequently, it is necessary to know the way in
which errors propogate if h is fixed, or at least does not tend towards zero, and n still
tends towards infinity. The global error is de;ﬁned as the overall error that a numerical
method makes in forming a solution sequence from t, to t,: then, if e, denotes global
error

€ = Yo~ y(tn)
where y,, is the solution formed by the scheme and y(t,) is the theoretical solution to
the LV.P. given in equation (2.33) at the point t = t, . Since the local error determines

the error made by the scheme in taking one step, it must be limited in some way to

ensure that the global error is controlled also. The new requirement is a stability
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definition in which the steplength is fixed and the demand is that the error is
propogated in a stable manner as n — oo. this error will include round-off error, which
is formed by the computer in the calculated values at each step and can also create

difficulties in the generation of accurate solutions if it is not controlled.

2.45 Absolute stability. "A numerical method of the type given in equation (2.45) or
equation (2.48) is said to be absolutely stable for a given fixed steplength and for a
given LV.P. if the global error e, := y, — y(t,) remains bounded as n = oo. " [41]

This definition relies on the choice of the 1.V.P. and the problem that is generally used

is called the test equation and is given by:

y'=xy y0)=1 (2.50)

where A is a complex constant.

The way in which the absolute stability of a method is monitored is to consider the
effects of a single error e.g. in the initial condition, and then to apply the numerical
method to the test ordinary differential equation. Then the effect of the initial
perturbation can be seen and appropriate restrictions can be made, if possible, to ensure

that the global error is bounded.

2.46 Systems of o.d.e’s. The same stability analysis applies to a system of o.d.e.’s in
order to ensure control over the growth of the global error. Considering the test system

of m equations
y=Ay y(0)=8 (2.51)

then, assuming that the constant matrix A has m linearly independent eigenvectors

[42]. it is possible to pre and post multiply A so as to form:
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P;1AP, = A

where:

P,, is the modal mxm matrix consisting of the eigenvectors of A [43].
A is the diagonal mxm matrix with the eigenvalues of A on the diagonal

Now defining y = P_Z then equation (2.51) becomes:

PnZ' = AP, Z (2.52)
premultiplying by P! gives:

Z =P;'AP,Z (2.53)
and since P;1AP,, = A this leaves:

Z=AZ (2.54)
which uncouples into the equations

Zi' = )\izi Zi(o) = ﬁi i=1,...m
The analysis for each of these equations may be carried out in the same way as for a
normal scalar equation by applying the method to each equation in turn. after
perturbing each initial condition. The reason for having A as complex in the original
scalar test equation is now apparent since the eigenvalues of A may be complex. If

f(t.y) is differentiable with respect to y, then the local behaviour of the general L.V.P.

is determined, approximately, by the solution of the linearised equation

o of
Y=<y

where o is the Jacobian matrix of the system.This can be modelled by the linearised

equation y' = Ay which is of the same form as the test system. In general the Jacobian
for a problem is time-dependent, and in order to carry out stability analysis, the

values of the matrix must be ‘frozen’ at a value of time, so that the constant A matrix
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can be formed.

2.47 Absolute stability of Euler’s method. Euler's method applied to a scalar
equation is now considered to demonstrate how the stability region of the method is
determined. Applying Euler’s method then the test o.d.e. given in equation (2.50) will

lead to the computed sequence y, Y, Y2, ... from the difference equation given by:

Yoe1 = Yo+ BAy, yo=1 n=0,123,.. (2.55)
If y, is perturbed to y, + € = z,, then the sequence will become z, z, 2, .... from the
modified difference equation

Zpa1 =2, +hAz, zo,=14€e n=0123,.. (2.56)
Subtracting equation (2.55) from equation (2.56) will give:

Zns1 — Yoe1 = (1 + BAXz,—y,) n=0,123.. (2.57
and, recursively applied, this leads to:

zy — yo = (1+hA)(zg—y,) n=123,.. (2.58)

The requirement is that the effect of the initial perturbation will die away with

increasing n, i.e. that Iz, —y,| — Oasn — oo. this is only ensured if |1+hA! <1,

which leads to the conditions:

. 2
i) h<|)\_l AreaLA <O

2ul

ii)h <
[L2+(D2

Acomplex = u+iw, u <0
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2.48 Systems of equations. The analysis for the system of equations given in
equation (2.51) is as shown in section 2.46. The system is transformed to an uncoupled
set of equations, and Euler's method is applied to each of these in turn. For absolute

stability the requirement will become:
I1+hA\1 <1 i=1.23,..m

which will describe a region in the complex hA-plane since the eigenvalues of A could
be complex. The stability region for Euler's method is shown in Figure 2.7, and it can
be seen that for eigenvalues with large real or imaginary parts, the values of h required

for stability will be greatly restricted.

2.49 Inherently stable systems. In general, the equations arising in Fluid Power
simulation correspond to system eigenvalues with negative real parts. Systems which
comprise only eigenvalues with negative real parts are termed inherently stable. For
these cases the solution is either decreasing or non-increasing, and so it possible to
analyse the behaviour of numerical method as time increases, by the way in which
perturbations in the initial conditions are reflected throughout the solution computed
by the numerical scheme. This solution, for a stable method. should not diverge from

the true solution as time increases.

2.50 However, when the system eigenvalues are positive, this is termed instability of
the original system. In this case the solution is either non-decreasing or increasing and
consequently any initial error will be likely to grow as time increases. The stability
property of a numerical method when it is applied to a non-inherently stable system
must ensure that the inaccuracies caused by the numerical method are small in

comparison to the errors amplified by the system itself. This concept has been dealt

with by Gear [32] in his definition of a stiffly stable method.
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2.51 Implications of stability. Since the stability of a method is necessary to ensure
that the global error is bounded. it is essential to ensure that integration methods
employed by HASP have good stability properties. However, stability is a property
that is only ensured with most methods if the steplength is limited [44], as has been
demonstrated by Euler's method. Mathematical stiffness creates a problem if stability
is required since when A is large, tﬁe steplength used during the integration process
must be very small. Consequently, when solving a highly stiff problem, it is generally
more economical to use a method that needs a relatively large steplength in order to be
stable, rather than one that places a stringent demand on the choice of time step, even
though the first method may require more computational effort to find the solution at
each step. In general, such methods are implicit. which in general do require more effort
at each step to find the solution than explicit methods. Figure 2.8 shows the stability

region for the Backward Euler method which is given by:
Yo+1 = Yo + hf(tas1.¥ne1) (2.59)

and although there is no limitation on steplength in order to ensure stability for an
inherently stable system, to solve a non-linear system the method requires the use of
an iteration scheme. This can involve a great deal of computational effort, particularly

when the system being solved is mathematically stiff [45].

252 Consequently, for the solution of inherently stable systems, the Backward Euler
method is ideal from a stability point of view. If, however, the consistency and
convergence of the method are also considered. it is found that Backward Euler has a
local error of the form C;h?, and although this ensures that the method is both
consistent and hence convergent, the method is of low order accuracy and hence will
require a small time step in order to ensure an accurate estimation of the true solution.

Hence the difficulties that arise when choosing suitable numerical methods for different
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classes of problems become apparent. If accuracy is required, a method with a high-
order error expansion must be used if the steplength is not to be unrealistically small,
but at the same time, if the problem to be solved is very stiff, or has eigenvalues with
large magnitude, then a method with a low order error expansion must be used, else a
prohibitively small time step will be needed to ensure the stability of the method. In
general, high order methods have small stability regions, whether explicit or implicit,
and so low-order methods must be used in the solution of stiff sets of equations, and a

small steplength must be employed [46].

2.53 An example of methods commonly used are Adam’s-type methods which are
multi-step. and the way in which these methods are derived can be found in [47]; the
first characteristic polynomial of these methods is of the form p(§¢) = £ — £ for a
k-step method, which ensures that the methods are zero-stable. Adam’s methods that
are explicit are called Adams-Bashforth methods. whilst those that are implicit are
called Adams-Moulton methods. Adam’s methods are implemented in many o.d.e..
solving packages and are particularly suitable for solving large, non-stiff systems [48].
Examples of the stability regions for Adam’s methods can be found in Figure 2.9. The
diagram illustrates the decreasing stability regions for the methods with increasing

accuracy.

2.54 At present the method used by HASP is Gear’s method [49)], and this method is
incorporated into a package which is both multi-step and multi-order. The stability
regions for Gear’s method areshown in Figure 2.10 and it can be seen that these regions
are larger than the stability regions for Adam’s methods for corresponding values of k.
Consequently. these methods are advantageous in the solution of stiff systems of

ode.’s
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2.55 Having discussed integration methods and the properties of stability. convergence
and accuracy, a further consideration of mathematical stiffness is now made, this time
from a stability viewpoint. Then. further problems that often arise in the simulation
of Fluid Power systems are presented since the mathematical theory that must

accompany their investigation has been covered.

Further Consideration of Stiffness

2.56 Considering the following example

vy

Y2

Y1(0)
)’2(0)

0
-2

1000.25
0

—2000 999.75
1 -1

ya
Y2

then the eigenvalues of the system are:

A, = —2000.5
Az = —-0.5

and the exact solution is given by:

y1(t) = —1.499875e 05t + 0.4999875e2000:3t 4 1

y2(t) = —2.99975¢705t — 0.00025¢~2000-5t 4 1

The general form of the solution curve is shown in Figure 2.11. The fast transient is
negligible after t = 0.002 and the slow transient at around t = 10. Integration in the
interval 0 <t £0.002 requires a very small steplength. However, if an
inappropriate numerical method is used to integrate in the range t > 0.002 then a
small steplength must be used in order to avoid instability. For example, if a fourth-
order Runge-Kutta method is used anywhere in the range t 2 0, a steplength of less
than 0.0014 must be used to avoid instability, resulting in over 7600 steps to reach the
steady-state solution. A larger time step can be used if an implicit method is employed

to solve this problem, but this will require much more computational effort at each
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time step to form a solution, and so the classic problems with mathematical stiffness

are apparent.

2.57 Geometric interpretation of stiffmess. Practically, it appears that stiffness
occurs in a system when stability rather than accuracy dictates the choice of
steplength. Geometrically, looking at the set of solution curves for stiff and non-stiff
systems explains why stiffness causes a problem to integration methods. Figure 2.12
shows both a component of the solution curve, and the components of the neighbouring
integral curves, in heavy and lighter lines respectively, for typical non-stiff and stiff

systems.

2.58 The broken line shows that in the stiff case there can exist a solution curve
which ha‘s a component with no fast transient, although the neighbouring
components may all have fast transients: stiffness is not related to the geometry of
the solution curve, but to the geometry of the family of solution curves. If an
unsuitable method is used to solve a stiff problem, then the wrong components are
often approximated by the method. Looking at Figure 2.13 shows how an unsuitable
method such as Euler's method, can become unstable when used to integrate a stiff
system, even when the fast transient is dead. A further interpretation of

mathematical stiffness is given by Lambert [50].

Physical Discontinuities

2.59 A discontinuous function is defined by a mathematically instantaneous change in
the values of that function as the value of the independent variable increases, and
must be taken into consideration, along with mathematical stiffness, when selecting an
integration method to solve the differential equations representing the dynamic
behaviour of a Fluid Power system. When the equations that represent the behaviour
of the system are of a discontinuous nature, many classical integration methods for the

solution of the equations are prone to failure at the points of discontinuity.

35



In Fluid Power systems, discontinuities fall into two main categories:

i) Discontinuities that occur at known times, taking as an example the case of a
duty cycle where a variable changes its value to a pre-determined level

ii) Discontinuities that occur because of a variable reaching a particular

value, taking as an example the velocity of a linear actuator when it
hits an end-stop, causing the velocity to change abruptly.

Since discontinuities present difficulties to numerical methods, it is necessary to design
an adequate way with which to deal with this problem, and this will be discussed in

chapter 3.

2.60 Examples showing the occurrence of discontinuities. The hydraulic actuator
circuit in Figure 2.2 can be used to demonstrate how discontinuities may arise. When
the actuator hits the end-stop then the velocity trace is discontinuous. Typical
responses for velocity and displacement are shown in Figures 2.14 and 2.15. The
velocity is an example of a discontinuous time derivative, and another example of this
is given by the operation of a relief valve. As the differential pressure across the relief
valve rises to the cracking pressure, the flow rate increases from zero to some finite
value as shown in Figure 2.16. The discontinuity in the time derivative is shown in

Figure 2.17.

Oscillatory Problems

2.61 Another class of L.V.P.'s which arises in Fluid Power simulation consists of
problems whose solutions are periodic, or oscillate with a known or unknown
frequency. If the frequency were known in advance then a class of methods based on
trigonometrical polynomials, developed by Gautshi [51], is particularly appropriate.

However, generally in HASP, the frequency of the problems that have oscillatory
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solutions are not known, and consequently standard numerical methods must be used.
Oscillatory problems do not necessarily cause problems to integration methods, and, in
general, only do so when the frequency of the oscillations is high, particularly if the
amplitude of the solution curve is large as well. In this instance. then numerical
methods can require a very small time step in order to pick up the trace of the

solution; this is likely to be a problem for all numerical techniques.

2.62 Example demonstrating oscillatory behaviour. Referring back to the
hydrostatic transmission system in section 2.8, demonstrating how stiffness can arise,
then the equationsdescribing the behaviour of the system can lead to an oscillatory
solution. If the net load torque is sufficiently small, then the system pressure will not
exceed the relief valve cracking pressure and the flow rate through the relief valve will
be zero. Consequently, the differential equations for the rates of change of pipe

pressure and angular velocity of the rotary load can be written as:

dw,,
R %(DmP — fwgn—T) (2.61)

which can be written as the matrix equation:

—BD
dP 0 Z1llp B-(D,,wp)
a1 v M (2.62)
dog |~ Dy, —f + -T; )
dt TT || J

The eigenvalues of the system matrix will be the roots of the quadratic equation:

f, , BDy?
A+ =
7A+ — 0

The solutions will be:
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_ —f+1
M a2 |
i.e.
=—f+ |
21 |42
The term:
f2  4BD_?
72 Jv

f2 4BD,?

BD,?
v]

vJ

2

(2.63)

will determine the nature of the eigenvalues and consequently the transient behaviour

of the system. If it is positive, the eigenvalues are real and not normally widely

separated for practical hydraulic circuits. Oscillations in the pressure and angular

velocity will not occur as the system will be overdamped forcing these variables to

attain steady state. If, however, the term is negative. which is the case when there is

low friction in the system, then the eigenvalues will be complex conjugates and the

system will behave in an oscillatory manner. The real part of the eigenvalues will

determine the damping coefficient and the complex part will determine the frequency

of the oscillations of the solution. When steady state has been reached. the solutions

will be:

and

1
P= _D;(fwm +T)

Predictor-Corrector Pairs

2.63 When solving stiff systems of differential equations. the time step restriction

placed on an explicit method to ensure the stability of the solution is normally so



excessive that it prohibits the use of the method. In this case, an implicit method must
be used since the time step restrictions are often much more lenient. However in order
to use an implicit method, it is necessary to form predicted values, and this is done by
using an explicit method. Predictor-Corrector pairs are now discussed and the

necessary iteration schemes that must be used with stiff systems are explained.

2.64 If an implicit k-step method is to be used to solve an I.V.P. in preference to an
explicit method, then, referring to section 2.30, at each step the solution of the

equation (2.36) must be found, which is:
k-1 k—1
Yok + L ¥nsj = hBf(thsp.Yas) + h X Bifny
=0 =0

For a non-linear problem, this equation will require an iterative procedure to

determine an accurate value for y.4. Although convergence is guaranteed if

1

TTaT " it is desirable to take as few iterations as possible before a suitably
k

h <

accurate value for y,4; is found, particularly since the evaluation of f at given values
of its arguments can be time-consuming. Consequently, the initial estimation should be
as close to the true solution as possible. To do this, a separate explicit method is used to
estimate Yy, . and the value determined by this method is termed y[$} . The explicit

method is called the predictor, and the implicit method the corrector.

2.65 Correcting to convergence. Once a predictor-corrector pair has been established
there are two possible routes which can be taken to determine an estimation to yy4¢-
The first of these is to continue the iterative procedure given by equation (2.36) until
the iterates have converged, which in practice means until some criteria such as
ly{stD —y8) 1 < €. where € is a pre-assigned tolerance, is satisfied. The way in

which to determine € is difficult to generalise, but the solution obtained. y 5V, is an
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acceptable approximation to the exact solution y(t,;;) of the original scheme. This
mode of operation, where each iteration corresponds to one application of the corrector,
is termed correcting to convergence. In this mode, the number of iterations needed
cannot be calculated in advance; or, alternatively, the number of function evaluations
that will be required at each step can not be foretold. However, since the accepted
value y 511 will be independent of the value y$} estimated by the predictor. then the
local error and stability cha;'acteristics of the combined method are those of the
corrector alone; the properties of the predictor not being important [52]. Hence, h must
be chosen so that Ah lies within the stability interval of the corrector, it is of no

concern if the value of Ah does not lie within the stability interval of the predictor.

2.66 Limited application of the corrector. The alternative approach is to stipulate
in advance the number of times, m, that the corrector is applied at each time step. This
approach is motivated by the desire to restrict the number of function evaluations per
step. However, the local error and stability characteristics ae no longer those of the
corrector alone, but are dependent on both of the methods used. Hull and Cremer [53]
have introduced a standard notation which describes the mode in which a predictor-
corrector pair is applied, and also tells immediately how many functionevaluations per

Step are required.

2.67 Letting P denote an application of the predictor, C a single application of the
corrector, and E an evaluation of f in terms of known values of its arguments; then if
y{9 is computed by the predictor, the evaluation of f{$} = f(t,4.y %) is made, and
the corrector is applied once to obtain y{!}, then the calculation made so far can be
represented by the expression PEC. A further evaluation of f{1} = f(t,4r.Vasx'?)

followed by a second application of the corrector yields yS2}. and the overall
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calculation is now denoted by PECEC, or P(EC)?. Applying the corrector m times is
similarly denoted by P(EC)™. Because m is fixed beforehand, the value y T is

accepted as the numerical solution at t,,.

2.68 It is advantageous if the predictor and corrector are separately of the same order,
and the following result is indicative of the reasons for this [54]. If the predictor-
corrector method »for which the predictor has order p’ and the corrector has order p. is
applied in P(EC)™ mode, where p , p’ .m are integersand p' 2 0,p 2 1, m 2 1, then,
if p° 2 p. the principal local error of the algorithm is that of the corrector alone. If p°

=p-q. 0 < q € p. then the principal local error term of the algorithm is:

i) That of the corrector alone, whenm 2 q + 1
ii) Of the same order as that of the corrector, but not identical with it,

when m =q.

In the mode of correcting to convergence, the principal local error term of the

predictor-corrector pair is that of the corrector alone, no matter what the order of the

predictor.

2.69 Example to illustrate predictor-corrector pair in PECE mode. Using two
Adam’s second order methods will illustrate the technique of the PECE mode and
demonstrate that the local error of the combined pair is equivalent to the local error of

the corrector alone. The methods are:

Vo+1 = ¥Ya + %[3f,, —f,_1] :~Local TE.is _1§2_h3y,,"' + O(h*)

3
Vos1 = Yo + %[fnﬂ + f,] :~Local Error is —?—2yn'" + O(h*)

If the explicit method is applied to the I.V.P. first then this will yield:
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Y% = v + 21360 = fomi) (2.64)

and the true solution would satisfy

y(taer) = y(t,) + %[3f(tn)-f(tn—1)] + —%h3y"'(tn) + O(b%) (2.65)

Subtracting equation (2.64) from (2.65) and applying the assumption of exact back

values will give:

Y(toeg) — v = —1§2—h3y"'(tn) +0(h) (2.66)

Applying the implicit method will give:

Yorr = Yo + DS + £,] (2.67)
2 X

and the true solution will satisfy:
-_ h h3 " 4
y(tas) = y(t,) + 7[f(t,,,q) + £(t)] > (ty) + O(nY) (2.68)

Subtracting equation (2.67) from (2.68) and applying the Mean Value Theorem, and

the assumption of exact back values, will lead to:

h of b
y("n-l»l) “ Y1 = i‘g—y l(y(tM_l),an)(Y(tn+1) - y;fg)l) - ﬁy (T-n) + O(h*) (2.69)

where

Mh+1 is in (y(tni-l)' YIQ%)
With the substitution of equation (2.66), equation (2.69) reduces to:

Y(tas1) = Y41 = ——113;— “(t,) + O(h*) (2.70)

Hence the local error of the combined pair is that of the corrector alone.

Suitable Iteration Schemes For Stiff Systems

2.70 If the problem
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Yy =1ty y0)=q i=12,..m

is considered. then applying the predictor-corrector pair of forward FEuler and

backward Euler will give:

Y =y + hi(t,y,)
Yot = ¥ + bf(ta.yd8))
If the predictor—corrector pair is applied in a correcting to convergence mode. then the

natural iterative technique would appear to be a fixed point method of the form:
y&W =y + hf(t . x5) s=1.23... (2.71)

By formulating the Jacobian of the original system, the Lipschitz constant can be
found, this being the spectral radius [55] of the Jacobian matrix. that is, the eigenvalue

of largest modulus, where the elements of the Jacobian are given by:
_ Of;

ac;; - 6Yj

A contraction mapping on the reals is present if hL < 1, which will ensure the

i=12.m j=12..m

convergence of the iteration scheme. However, for a stiff system, L will be large and
hence the "convergence of iterations " restrictions is of the kind that must be avoided;
since using an implicit method allows a larger time step for stability, but the iteration

scheme demands a small time step h in order to guarantee convergence.

2.71 However, Newton-Raphson's method [56] for the iterative solution of equation

(2.71) does not rely on the value of h. The method is :

¥ = &) - 1= b DS — yo — b (4.2 50)] 2.72)

where
f
L. (y$) = §=a Iy,

2.72 A graphical representation of the way in which Newton-Raphson’s method finds
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the roots of the function F(x) = O is shown in Figure 2.18. The method works by
advancing down the tangent of F (x), for a particular value of x, until it crosses the x-
axis. It then advances down the tangent of F(x) corresponding to this crossover value
of x, and proceeds recursively until a root is located. Newton-Raphson's method does
not demand a restriction on h to guarantee that the iterates converge. However, it does
require that the original estimation made by the predictor be accurate, else the method
can 'wander’ and fix onto a false root, or alternatively not find a root at all. Precise

requirements to ensure convergence are given by Churchhouse [57].

2.73 Besides the stipulation of an accurate starting value, Newton-Raphson's method
also requires the evaluation of a Jacobian at each time step that it is applied. and the
consequent solution of a set of simultaneous equations. If a full Jacobian is evaluated.
then equation (2.72) can be rewritten in the following form so as to allow LU
decompositon rather than matrix inversion to be carried out when solving the

equations.
LRl ANCALY) (2 2 By PAUEE A SICNRRTZ:LD) (2.73)

2.74 There are alternative forms of Newton's method. and the structure of these is
different from Newton-Raphson because a full Jacobian is not necessarily evaluated.
An example is the Newton-Jacobi method [58], in which only the diagonal elements of

the Jacobian matrix are considered in the equation
1 ANCALY) (2.74)

The result of this is that the effort required to solve the sets of simultaneous equations
is substantially reduced. Once the diagonal elements of the Jacobian have been
evaluated, then the inverse of the matrix given in equation (2.74) is simple to find. The

inverse is in turn a diagonal matrix, whose elements are the reciprocals of the elements
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of the diagonal matrix, which equation (2.74) will lead to. For example the inverse of

the (5x5) diagonal matrix given by:

a; 0 0 0 O
0 a,, 0 0 O
A=|0 0 a5 0 0
0 0 0 a, O
0 0 0 0 ag

is easily evaluated.

2.75 The rate of convergence of the iteration scheme for this different method is
dependent on the nature of the original full Jacobian. If the diagonal elements are large
in modulus compared with the sum of the off-diagonal elements in the same row, then
convergence is fast and the method is efficient. It is when the off-diagonal elements
‘swamp’ the diagonal elements that care must be taken, since the rate of conergence
may be considerably reduced. However, since there is now no need for LU-
decomposition or matrix inversion, the computational work required to find a solution

at each time step has been considerably reduced.

2.76 Some numerical methods do not require the re-evaluation of the Jacobian matrix
at every iteratiqn. or even at every time step. Methods such as Gear's keep the same
Jacobian matrix for as long as the iteration scheme is converging rapidly. Not
evaluating the Jacobian often makes little difference to the accuracy of the rwults'
obtained, but makes a large difference to the computational time spent by the method

whilst solving a problem.
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Conclusions

2.77 The issues raised in this chapter are applied when developing and testing the new
integration method that is introduced in chapter 3, and further investigated in the
subsequent chapters. In particular, the considerations of stability, covergence and
accuracy are particularly relevant when solving the stiff systems of ordinary
differential equations that are studied to test the new method. The test problems have
been chosen to ensure that the new method to be developed can cope with the typical

mathematical difficulties that are met inside the HASP package, such as discontinuous

and oscillatory problems, as well as highly stiff systems.
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CHAPTER 3
INITIAL DEVELOPMENT AND TESTING OF

A NEW INTEGRATION METHOD

Introduction

3.1 This chapter introduces a new method that will be investigated. The method is
developed and subsequently tested on several systems of differential equations, each of

which arises from a practical engineering problem.

First, three methods are formulated, one of which is explicit and the other two
implicit, and considerations that must be dealt with when programming these methods
are discussed. This includes the software that is written, C.P.U. timing and the
convergence of iterations when using the implicit method. Then the method is applied
to a range of test problems which include: a linear actuator circuit; a second order
oscillatory system: a non-linear hydraulic actuator circuit and a discontinuous and
mathematically stiff hydraulic actuator system. These problems have been chosen since
they lead to systems of equations which demonstrate the mathematical difficulties
discussed in chapter 2. The performance of the method is compared with other
numerical methods such as Gear’s method and the Backward Euler method, which have
been used to solve the same problems, and conclusions are drawn concerning the merits

of the new integration method.

A New Integration Method

3.2 The new method being investigated is a numerical scheme based on the formula
for the true solution of a first order linear ordinary differential equation. The method

was suggested by Professor D.E. Bowns of the Engineering Department at the



University of Bath and was originally studied by P.S. Leung [2]. although the methods
studied by Leung were formulated using a less general approach. A similar approach to
that taken by Leung has also been adopted by Keener and Meyer [59], although their
work was not extensive. The mathematical analysis of the method yields desirable
results from a stability viewpoint for certain types of problems, which are discussed in
chapter 4, and as a consequence the method has been studied in more detail, since the
benefits it enjoys may be extended to ensure its worthwhile application to certain

problem areas.



Explicit Formulation Of The New Integration Method

3.3 For the linear first order differential equation
y'=a()y +b(t) y(ty) = « 3.1)

then the true solution [60] is given by the following equation:
1 H

fa(z)dz — { a(x)dx

t
yW=e® [yt)+ fols)e ®  ds] (3.2)
to

An integration method can be formulated by considering, at first, a(t) and b(t) as
constant functions. Provided that neither function is discontinuous and that the
interval [to. t] is small, this is not an unreasonable assumption. Consequently, the

integrals in equation (3.2) can be now be evaluated and y(t) can be written as:

y(©) = e T (y(10) + b [ ds) (3.3)
to

which becomes:

(t—tpa et |
y(t)=e ~(y(ty) — b ) (3.4)
Simplifying equation (3.4) and replacing (t — t,) by h will leave:
= aab b ah
y(1) = e*by(t,) — ;’(1 — )
which simplifies to:
Yy = 2@ = 1) + yltdeet (3.5)

Consequently, . this can be generalised into a numerical scheme that will give an
estimation to y(t,4,). having been given an initial condition, y(t,). and the values of

the functions a(t) and b(t) at time t = t,. This scheme, which is explicit. will be given



by:

b(t,)

y(ta) = m(ea“"’“ —1) + y(z,)e " (3.6)

and this is the explicit formulation of the new integration method. From this approach,
several methods can be developed, and it is these methods that are studied in the work

presented in this thesis.

Implicit Formulation Of the New Integration Method

3.4 The scheme in equation (3.6) will give the exact solution for y(t) if a(t) and b(t)
are both constant functions. Alternatively. since a(t) and b(t) will not generally be
constant, a more accurate representation of the solution may be made if these functions
are considered as variable and the values of a(t) and b(t) are taken at t = t,,,, rather

than at t = t,, and replaced in the scheme to give:

b(tn.'.l)

Y(tosr) = m(ea('“*’)h — 1) + y(t)e 0" 3.7)
n+1

This is not an implicit scheme for a linear ordinary differential equation. However, if
the equation to be solved is non-linear, then an iteration scheme will be needed for the
solution of the method at each time step. As an example, for the O.D.E.

y=y?+3t y0)=1

then a(t) = y(t) and b(t) = 3t, and. since y(t) is not known at t = t,,,, an iteration

scheme will be required if the scheme given in equation (3.7) is to be applied.



An Alternative Implicit Formulation Of The New Integration Method

3.5 Since the method has been formed by approximating the integrals in the formula
for the true solution of a first order differential equation, other methods are apparent if
these integrals are approximated diﬂ’erently. An example is when the forcing function
b(t) is assumed to vary linearly with time, with a(t) still being considered as a

constant function. Equation (3.3) will then become:

y(t) = el “[y(ty) + f b(s)e!'" ™ ds] (3.8)
Y

and the integral

t .
f b(s)e "™ ds (3.9
o

can be evaluated using integration by parts, since

{ b(s)ds = (b(t) — b(to))(t—-z-l(ﬁ

and also

b(t) — b(ty)

b'(s) = 5

Equation (3.9) then becomes

b(t :
___e—ah b(t') + (0) —_ Ab e—‘h + Ab (310)

t
1g2 —s —
e [b(s)e™S3ds =
1{ a a ha? ha?

where h =t — tgand Ab = b(t) — b(t,)

and so the numerical scheme will be, on substituting equation (3.10) into equation

(3.8). and simplifying the resultant expression:

a(ty)h__
y(ta41) = ;%)_(e"““"‘ -1+ aA(:’% ( em )hl — 1) + y(t)e™" (3.11)

where now, Ab, = b(t,+;) — b(t,)



Alternatively, a(t,) could be replaced with a(t,;) in this scheme, since a(t) is being

considered as a constant function.

Many numerical schemes can be constructed using this approach, but those already
formulated provide an adequate starting set to apply to the following test problems.
The ideas met here are discussed again when seeking to increase the accuracy of the
new method, when the new method is used for solving partial differential equations, in

chapter 7.



Introduction To The Test Problems

3.6 The following test problems have been chosen to ensure that the new method is

exposed to the mathematical difficulties which were raised in chapter 2.

3.7 The first problem, a hydraulic actuator circuit, which is a linear and moderately
stiff example, is solved by the explicit method given in equation (3.6), and then by the
second of the implicit methods, given by equation (3.11). Since the problem being
solved is linear, the implicit scheme will reduce to an explicit relationship, and will

hence not require an iterative procedure to form the solution at each time step.

3.8 The second problem, a second order differential equation typical of the type that
describes the behaviour of a hydraulic actuator, has two sets of data values: one set
which leads to a stiff and non-oscillatory problem and another set which leads to a
non-stiff and oscillat;ory problem. The ordinary differential equation is solved by the
explicit method alone, and to employ the method a particular strategy must be used to

prevent a division by zero. This is fully discussed later.

3.9 The third and fourth problems are hydraulic actuator circuits; one where the
actuator is supplied with an input flow through an orifice, and the other where a flow
is taken off of the main-input flow to the actuator. through an orifice, and back to tank.
For both circuits. the hydraulic oil is discharged through an orifice to tank. With the
third problem, the orifice flow characteristics are assumed to be linear, and for the
fourth problem this assumption is dropped. which leads to a non-linear problem. For
both of these problems, the explicit method, and the first implicit method, given by
equations (3.6) and (3.7) respectively, are implemented as a predictor-corrector pair.
The first implicit method has been chosen because of the ease of implementation in

comparison with the second implicit method, particularly when an iterative scheme is



employed which will require the evaluation of a Jacotian matrix. Also, because of the
similarity of this method to the explicit method, it app:ars sensible to choose these two
methods to work together. To use this pair, a suitable iteration scheme must be found.
since these problems, with the data used. lead to matlematically stiff and oscillatory

problems. This iteration scheme has been discussed in section 2.70.

3.10 The final problem that is solved is a fifth order system extracted from a working
simulation inside the HASP package. As well as being stiff, oscillatory and non-linear,
the problem also encounters discontinuities and so provides an opportunity to examine
the method when it used to solve a problem which has all of these difficulties together.
This problem is again solved by the predictor-corrector pair discussed above, and the
evaluation of the Jacobian to be used with the iteration scheme is explained in some

detail.

3.11 Before solving these problems, some aspects of the computer programming

involved are discussed so as to highlight important areas which must be considered.

Software Consideration And C.P.U. Timing

3.12 All of the programs presented and discussed in this thesis were written in
FORTRAN 77 and run on the Vax 750 computer within the School of Engineering. The
new method has been programmed in the form of a general purpose integration
method, with separate routines handling the explicit and the implicit methods. By
using function routines for the coefficient evaluations, it is possible to solve different
problems without rewriting the the main structure of the program.Theflow chart given

in Figure 3.1 illustrates the action of the program. The user has the choice of:



i) which fixed-step method is to be used

ii) the final time, until which the integration proceeds

iii) the value of the time step used throughout the integration
iv) the time step used throughout the integration

v) graphical or screen output

vi) whether to re-run the program with a different time step.

A fully commented version of a program implementing the new method can be found

in Appendix A.

3.13 Measurement of C.P.U. time. Since the amount of C.P.U. time used by the
integration method to solve stiff problems is paramount in this work, the method used
for measuring the C.P.U. time on the computer system that the work was conducted

upon is discussed.

3.14 A system timing function has been used, and a commented version of the coding
for this function can be found in Appendix A. The function, called TIM, when it is
called, records the C.P.U. clock measurement at a designated instant and is accurate to
within microseconds [61]. Consequently, if the function is invoked either side of a call
Statement to a routine, it is possible, by the subtraction of the value returned the first
time that the function is used from the value returned the second time that it is used.
to record the C.P.U. time spent in the routine. For example, if the subroutine
FSTORM(X.Y.T) is called. and the amount of C.P.U. time used by this routine is

required, then the following coding would provide the necessary information.

ATIME = TIM(TIME)
CALL FSTORM(X,Y.T)
BTIME = TIM(TIME)

TTIME = BTIME - ATIME

TTIME will hold the total C.P.U. time spent in the routine FSTORM, measured in



microseconds. This measurement of time will also include a measurement of the
duration of the calling process, which is assumed to be insignificant in relation to the
time spent in the routine. TTIME is converted. using another function called CONVER,
from microseconds into days. hours, minutes, seconds, tenths of seconds and

hundredths of seconds. This is the form that is presented to the user.
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Application Of The Method To Test Problem 1 - Hydraulic Actuator Circuit

3.15 The diagram describing this circuit is shown in Figure 3.2. The actuator is
assumed to be moving initially at a constant velocity, and then encounters a step
increase in force opposing the load. This causes the actuator to decelerate and the
system pressure to subsequently rise. Further assuming, both that the increase in
pressure causes the relief valve to operate, and that there is a viscous friction
associated with the load; then to describe the behaviour of the system mathematically,

the following equations are needed:

dp B

L =50,-0-a (3.12)

%‘tl - p;;f _ %4{ _ % (3.13)
where:

A, is the area of the actuator piston

B is the bulk modulus of the hydraulic oil

f is the viscous friction coefficient

F is the force opposing the load

M is the mass of the load

P is the pressure of the oil on the piston side of the actuator,
the pressure on the rod side is taken to be negligible

Q. is the actuator flow rate

Q; is the pump flow rate

Q is the relief valve flow rate

u is the velocity of the actuator piston

v is the combined pipe and actuator volume, on the piston side

Taking

Q. = Anu (3.149)
and the flow discharged through the relief valve to be

Q= kr(P - Pc) (3.14b)

where:

k, is the flow coefficient of the relief valve

11



P is the relief valve cracking pressure

then, substituting equations (3.14a)and (3.14b)into equation (3.12), and rearranging the

resultant equation gives:

dP _ B oL
T = v @tk (P~ P) =~ Aw) (3.15)

For the data:

A, = 0.0015 m?

B=1.4x10°N/m?

f = 800 N/m/sec

F stepped from 14.6 x 103 N

to 156 x 103N

,=1.667 x 10~°m3 /sec/N/m?

M = 1000 Kg

Qp=7.5x107* m3/sec

v=1x103m?3

P - initial value = 1 x 107 N/m?

u - initial value = 0.5 m/sec

then the problem is stiff and non-oscillatory, with the eigenvalues corresponding to the

problem being real and negative, and differing widely in magnitude.

3.16 The explicit method applied to problem 1. Rewriting equations (3.13) and

(3.15) in a form suitable for the new method. namely:

dp _ kB B

a = had - 3.16
5t = P+ V(Qp +k,P.— Au) (3.16)
du _ —f 1 _

- wmet _M.(PA, F) (3.17)

The coefficients can now be formulated in order to use the explicit method given in

equation (3.6). These are, at time t = t,:

—k,B
ain =

" by, = %(Qp + kP — Au,) (3.18)
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am= 31 b= ur(PaA —F) (3.19)

where the subscript n denotes the state variable value at time t = t,.

3.17 Hence the scheme which will give the numerical solution at advancing time steps

is:
b
P, = _a.:_“_(e""h —1) + P e (3.20)
n
b
Upey = %’(eaznh —1) + ue™" (3.21)
n

where the subscript n+1 denotes the state variable value at time t = t,4,.

3.18 The second implicit method applied to problem 1. After solving the problem
using the explicit method, it was then solved using the implicit method given in
equation (3.11). This method was chosen since the problem, when written in the form
y' = ay + b as in equations (3.1) and (3.2), will have a variable b term. The coefficients
for the implicit method will remain the same as in equations (3.18) and (3.19) and the
scheme will reduce to give a linear relationship, since the problem being solved is

linear. The solution scheme for pressure is given by:

AZ2B (e‘2nh _ l) az,h 1)
Poaa=[1+4 i - -z, +2,+72,+Z
a1 [ VNlalnaZn aZnh alnh )] [ ! 2 3 4]

where:

b b _
Zl = 1In (ellnh _ (e 1)) + P a),h

aj, ajsh n€
A B In® s
22 - T [ (e 1) 1][ b2n (eaznh (e l) ) + uneaznh]
Vap, ajph az, 20h
B (e —1)
Zy= + kP 1
: Vaj, [Qp C][ alnh ]

13



A,BF
ValnaZnNI

(®™" - 1) 1
az,,h

(e""h -1) 1
alnh

The solution scheme for velocity is represented by a similir expression.

3.19 Results. The two methods have been applied to the problem in a single-step form
using a variety of different time steps. The corresponding results for each of these time
steps has been monitored. Figure 3.3 shows the results obtained by applying the
explicit method with two different fixed integration step sizes. The figure shows the
velocity and pressure response curves, and in each case the exact solution determined
by analytical means [2]. There is a decrease in accuracy as the step size increases, which
is characteristic of all numerical methods. However, solutions accurate to two decimal
places have been gained using a steplength of 0.05 seconds. Gear's method, when
applied to the same problem, works with a low order integrator and uses step sizes in
the region of 1073 and 107 seconds in order to obtain results of a similar accuracy [2].
The Backward Euler method required 4000 steps to solve the problem on the interval
t = [0, 4] seconds., whereas the new explicit method took only 80 steps to solve the

problem on the same interval.

3.20 Figure 3.4 shows the results for the same problem obtained by applying the
implicit method with a fixed integration step size of 0.5 seconds. As is showx;. a larger
step size is used with the implicit method than with the explicit method in order to
obtain a higher degree of accuracy. This indicates that the implicit form of the method
is more accurate than the explicit form. and the local error for each of the methods is

compared in chapter 4 in an attempt to understand these findings.

3.21 Given the data values in section 3.15, then the initial stiffness ratio of the system

was calculated to be = 1.4 x 103, which indicates a moderately stiff problem. and
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hence a good initial test for the method. With the final values taken at t = 4 seconds,
then the explicit method took 0.12 seconds of C.P.U. time to run, operating with a step
size of 0.05 seconds. The implicit method took 0.13 seconds of C.P.U. time to run,
operating with a step size of 0.05 seconds, but only took 0.02 seconds of C.P.U. time to
run with a step size of 0.5 seconds. which gave a more accurate solution than the
explicit method gave using a step size of 0.05 seconds. As a comparison, the Backward

Euler method took over 14 seconds to solve the same problem.

Application Of The Method To Test Problem 2 - Second Order System

3.22 The behaviour of a linear actuator can be described by a second order differential

equation of the form:

2
%’2‘_ + Kl_‘s_tx_ +Kyx = K, (3.22)

where:

x is displacement

dx . .

a is velocity

d*x . .

——= is acceleration

di?

For this problem K, .K; and K3 are considered as being constant. By changing their
values, the solution to the problem can be made oscillatory or non-oscillatory, and it is

possible to obtain a stiff system also, thus providing a useful test for the new method.

The data values are:

Problem A

Kl=1.K2=50.K3=10

With Initial Conditions
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- 100 m, 9% = 0 m/sec
dt

Problem B

K1=200,K2=10.K3=0 =
With Initial Conditions

x =100 m, 9X _ 0 m/sec
dt
Equation (3.22) must be reduced to two first order differential equations in order
to be in form suitable for solution by the new method. This technique was shown in
section 2.21.

The transformation

dx _
— =1u

dt
will allow equation (3.22) to be rewritten as the system

dx _
ar u (3.23)
du _
W = —Klu - sz + K3 . (324)

The new method can be applied straightforwardly to equation (3.24), but the "a"
coefficient in equation (3.23) is zero, and since the method uses the term ;.

manipulation is required before the new method can be used, to avoid a division by
zero. One easily applicable solution is to add and subtract x to the right-hand side of

equation (3.23), viz.
X oy +u+x) (3.25)
dt

Consequently, the coefficients can be formulated in order to use the explicit method,
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given by equation (3.6) .These coefficients are, at time t = t,:

a;, =—1 b, = u, + x, (3.26)

as, = _Kl b2n = ‘_szn + K3 (327)

The scheme giving the numerical solution at advancing time steps will then be:

b
Xp4 = et - 1)+ x,,ea"‘h (3.28)
ajn )
b
u,,, = az" (€ — 1) + u e™>" (3.29)
2n

3.23 Results. The data values given in section 3.11 lead to an oscillatory problem for
case A, and a stiff and non-oscillatory problem for case B. The results obtained for
displacement and velocity in problem A are shown in Figure 3.5. The results obtained
are of the same form as the true solution for displacement and velocity shown in
Figure 3.6. The new method gives results within 0.05 % of the true solution using a
steplength of 0.1 seconds, and the C.P.U. time taken to solve the problem on the

interval t = [0, 2] seconds was 0.10 seconds.

3.24 The results found for problem B are shown in Figure 3.7. The displacement, x, is
shown, and this gives a good indication of the results found by the new method. The
stiffness ratio of the system for problem B is = 4 x 103. Using the explicit method
once again, results agreeing with the true solution to within 0.25 % were found using a
step size of 0.01 seconds. The C.P.U. time taken to solve the problem over the interval

t = [0, 2] seconds was 0.7 seconds.

3.25 A similar problem was solved by Leung [2]. He however, did not use the idea
given in equation (3.25). He solved the problem using the new method to solve

equation (3.24), coupled with the Backward Fuler method to solve equation (3.23).

17



The results he found for problem A are shown in Figure 3.8 for two different time
steps. and are not satisfactory, since the trace of the solution is represented by a series
of straight lines rather than a smooth curve. Also the results he found are very

inaccurate.

Convergence Criterion For The Iteration Scheme

3.26 Before solving the problems using a predictor-corrector pair, it is important to
discuss the convergence of the iteration scheme employed by the corrector. This section
demonstrates the convergence criterion that have been used in conjunction with the
Newton iteration scheme. which has been used in problems 3, 4 and 5. The predictor-
corrector pair has been applied in a iteration to convergence mode. When trying to find
the roots of F(x) = 0, then the Newton-Raphson iteration scheme given by equation

(2.72) is used. Equation (2.72) is:
x5 = x§ - FGEEIIEGHE)D] s=01.2...

For problem 3, for example, F'(x§),) is a (3x3) matrix, x$, is the previous estimate to
the root of F(x) = 0, and gg{ is the initial estimation provided by the explicit method.
F(x(§} is evaluated. which gives a (3x1) column vector. In the corrector subroutine,
whilst the iterations are being performed. there is a set of FORTRAN IF statements
that determines whether the iterations have converged. and if not. how they must

proceed. Figure 3.9 illustrates the action of iterations inside the corrector subroutine.

3.27 When F(x,$),) has been evaluated. then if all the elements of the vector are less
than a pre-given tolerance, the iterations will cease, since these elements are considered
not to contribute towards a significant change in the estimated solution. If this

condition is not satisfied, then the elements of F(x{$}) are multipied by the inverse of
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the Jacobian matrix, and the resultant column vector subtracted from x(§ to give a
new estimate to the solution, x,(5%!. The inverse of the Jacobian is determined by a
routine from the NAG library, namely FO1AAF [62], and is found to within a set
tolerance defined by the use, although alternatively, the set of equations formed could

have been solved.

3.28 A mixed error test is now performed on the iterates to see if convergence has

(s+1) _ + (s)

I 1x x|
occurred. This error test takes the form of evaluating ~o+ (")" 1, where
1+ 1 1x3110

I 1.1l is the max norm, and checking to see if this is less than a pre-set tolerance. If
this error test is satisfied, then the last iterate x5}, is taken as the estimate to the
solution. If the test is not satisfied, then the iterations continue, and a new F'(x%)) is
evaluated with s being updated by one. A new Jacobian is also evaluated for a non-
linear problem if the iterations do not converge with the old Jacobian values. The
Jacobian is not updated at every iteration since this requires more computational effort,

and the solution obtained by doing so is not necessarily any more accurate [63].

Application Of The Method To Test Problem 3 - Hydraulic Actuator Circuit

3.29 The circuit for this problem is given in Figure 3.10. The actuator is supplied with
a constant input flow, and the hydraulic oil is discharged through the orifices to tanks.
The assumption is made that the orifice flow characteristics are linear since this will
lead to a linear problem. Considering the behaviour of the individual components, it is

possible to represent the system with the following set of equations:

dP,

= B - -
—a{— W(Q, klPI A,-u) (3.30)
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dpz B

_ = — kP .

dt v, (A,u 2 2) (3 31)

du f A,

bl _r - 3.32

dat M u+ M (Pl pz) ( )
where:

A, is the cross-sectional area of the actuator piston

B is the bulk modulus of the hydraulic oil

f is the viscous friction coefficient

k; is the pressure-flow coefficient of orifice 1

k, is the pressure-flow coefficient of orifice 2

M is the mass to be moved by the actuator

P, is the pressure in pipe 1

P, is the pressure in pipe 2

Q; is the input flow rate

u is the velocity of the actuator piston

v, is the combined volume of the actuator and pipe 1
v, is the combined volume of the actuator and pipe 2

For the data shown in table 3.1, then the problem is oscillatory. However, for the data
shown in table 3.2 then the problem is initially mathematically stiff, with a stiffness

ratio of = 1 x 10?

3.30 Forming the coefficients for the method. Rewriting equations (3.30), (3.31)

and (3.32) into a form suitable for solution by the new method gives:

dp, k,B B

= - _ 4+ . — A .
i vi P, v, (Q ) (3.33)
dpz sz B

= - _ — (A .
at v, P, + Vz( ) (3.34)
du f Ar
_—= - _— - 335
dt M u+ M (Pl Pz) ( )

3.31 This problem has been solved by the first of the implicit methods, given by
equation (3.7). Although the method could be applied in an explicit way, since the "a"
coefficients, given below, are constant, the method was applied directly, and so both a

predictor and an iteration scheme are needed. The explicit method given by equation
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(3.6) was chosen as the predictor, and the coefficients needed by both the explicit and

the implicit method are given by, at time t = t:

, k,B
a)p = __Vl

k,B
ax, = "—‘7;

A3 = T~

M

3.32 The schemes that provide the predicted values are:

bln
1n-*-l aln
2n+l a2n
- b3n

Upy =

as,

with the schemes that provide the corrected values being:

n+1

A1n+1

n+1

az2n+1

Up41 =
A3n+1

B N
b, = —(A.u
2n 2( T n)

= 12(" — 1) + P, e
= E(eaz“h —1) + P, "

(" —1) + u,,e%"h

B
bln = _(Qx - Arun)
Vi

b3n = %(Pln - pzn)

b
1 = In+1 (ealﬂ-v-lh — 1) + Plnealn-Hh
_ b2 (e32n+lh -1+ P, e‘2n+lh

b35+1 h a3, qb
n (eaSnﬁl — 1) + uye 3n+1

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Considering equations (3.42), (3.43) and (3.44), and putting them into matrix form in

order to establish a Newton scheme for this system, then the resultant equation will be

Py, St
P2n+l O
Up+1 0

0

a h
e 2n+1

0

a3n+1b
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e‘ln+lh -1 0

0 ea2n+1h —1 0

a h
e 3n+1 -1

For this problem, then a;,4; = 3;, i=1.2.3

bins1

A1n+1

bans1

a2n+1

b3n+l

83n41

(3.45)

To use the Newton Raphson iteration scheme, F(x) = 0 must be defined, where

x= [Plﬂ“. P .. u,+1JT. Hence, if F(x) is defined as:
1,41 ealn+lh ) 0 Pln
2p41 O eaz,,,”h 0 Pzn
Un41 O 0 e33n+lh U,
anerh _ 1 0 0
€ bin+1
A1n+1
0 an+1h —1 0 banes
A2n+1
) 0 e'-1]|u,,,
a3n+1
then F(x) = 0

Referring to equation (2.72), Newton's iteration scheme is of the form

s+1) —
l:f-rl )=

or

x& — [FEEIINFEGESD]

_E'Q&sﬂ)&n(ﬁl) —Ln(i)ll =

—F(x{$))

It is necessary to form the Jacobian
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f.’@&fi)l) = —g;t

in order to apply the iteration scheme.

1 0 O 0O 0 0
0O 1 0 0O 0 O
0O 0 1 0O 0 ¢
e -1 0 0
0 ernt —q 0
0 0 e°3n+lh -1
and so
1
EGx$) = 0

at x$),

(e33n+1h — I)Ar (e‘:hwlh - I)A,

This Jacobian will be given by the expression:

AB

0 0 -
Vidin+l

AB

0 0
V22241
A, A 0
Maj, 4y Ma;, 4,y

(ealn-rlh —_ I)ArB

1
Vidn+1
. ("~ 1)AB
Vaa2n+1
1

Ma;,,,

Ma,, 4,

(3.47)

(3.48)

Consequently, the predictor-corrector pair can now be used as a complete method to

formulate the solution at ascending time-levels for problem 3.

3.33 Results.

Figures 3.11 and 3.12 show the results obtained using the predictor-

corrector pair applied to problem 3. Figure 3.11 shows the results for pressure in pipe 1

for the non-oscillatory problem, whereas Figure 3.12 shows the full results for the

oscillatory problem. For both problems, a step size of 0.001 seconds was used. Leung
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[2] encountered trouble at this point in his work because of the iteration technique he

was using, which is not suitable for stiff problems.

3.34 However, Newton's method gives no trouble for this type of equations, and the
time taken to solve the oscillatory problem on the interval t = [0 . 5] seconds using the
Newton iteration technique with the corrector was 8.5 seconds. The C.P.U. time taken
for the non-oscillatory problem on the same interval was 8.2 seconds. As a comparison,
on the same two problems, Gear’s method took 21 seconds and 24 seconds respectively
[2]. to complete the simulation. Gear’s method does encorporate a time step control
which monitors the local error at each step, unlike a fixed time step method where the
local error may be excessively large during the clomputation. With a fixed step method,
although it is possible to check on the accuracy of the results by successively reducing
the time step until consecutive sets of solutions show no significant change, stability
criteria may not be satisfied throughout the integration process for all the values of the

time step that are used.

Application Of The Method To Test Problem 4 - Hydraulic Actuator

3.35 The circuit for this problem is shown in Figure 3.13. A pump is assumed to
operafe at a constant pressure and supply hydraulic o0il to the actuator via an orifice.’
The oil is then discharged to tank through another orifice. The major difference
between this problem and the last one is that the pressure-flow characteristics of the
orifices are not assumed to linear. Considering the behaviour of each individual

component, it is possible to represent the system with the following set of equations:

dP,

5= _vf}l_(Q01 ~ Aqu) (3.49)
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dP

2 2 B (a,u-Qp) (3.50)
dt V2

f

M

du
dt

where:

(3.51)

1
= M(PIAI - P2A2) -

A, is the cross-sectional area of the piston side of the actuator
A, is the cross-sectional area of the rod side of the actuator
B is the bulk modulus of the hydraulic oil

f is the viscous friction coefficient

M is the mass to be moved by the actuator

P, is the pressure in pipe 1

P, is the pressure in pipe 2

Qq; is the input flow rate

Qo is the output flow rate

u is the velocity of the actuator piston

v) is the combined volume of the actuator and pipe 1

Vv, is the combined volume of the actuator and pipe 2

The flow rates are given by:

ko1
= Ps —P .
Qo1 = Pl)( ) (3.52)

and

Qo2 = K01 P, (3.53)
J(Pz) ’

where:

P, is the supply pressure
ko; and kg, are constants

Equations (3.52) and (3.53) can be rewritten as:

Qo1 = ko(P; — Py) (3.54)

Qo2 = kP> (3.55)

where:

k, is the pressure-flow coefficient of the piston-side orifice
Kk, is the pressure-flow coefficient of the annulus-side orifice

and k, and k, are given by:
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ko1

k, =
a 7(-Ps——P]) (3.56)
Ko2

k, =
b vg (3.57)

Substituting equation (3.52) into equation (3.49) will transform the differential

equation for pressure, P;, into:

dP; _ B Koy 5y
W = V;.(—V(];;———f’l—)(l)s P]) Aﬂl) (358)

Similarly, by substituting equation (3.53) into equation (3.50), the equation for

pressure, P,, will become:

dpP, B ko2
— L= _(Ay— P,) .
at v 2 71-;; 2 (3.59)

with the third differential equation, describing the actuator velocity, being:

d 1 f
Hl‘[l = W(PIAI - P2A2) - m—u (3-60)

This problem is the first non-linear problem on which the new method has been tested.
For the parametric values given in table 3.3 then the initial eigenvalues for the
problem are -0.576 x 10%, -0.649 x 10?2 + 0.567 x 10? j : hence giving a very stiff,

oscillatory problem, with an initial stiffness ratio of = 1 x 104

3.36 Formulating the coefficients for the method. ~ Rewriting equations (3.58),

(3.59) and (3.60) into a form suitable for solution by the new method will give:

dpP; B ko1 B ko1 Ps

—1=_2 P, + —( - A,u) 3.61
dt Vi (Ps - Pl) ! Vi (Ps - Pl) ' ( )
dpz B Koz B

— == P, + —(A

+ v Wz 2 Vz( ou) (3.62)
d f 1

d—l: = —ﬁu + —M—(PIAI - P2A2) (363)
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This problem has been solved using a predictor-corrector pair, with the explicit method
given by equation (3.6) acting as the predictor, and the implicit method given by
equation (3.7) acting as the corrector. Again, a Newton-Raphson iteration scheme is

used to solve the corrector. .

3.37 The coefficients needed by both the explicit and the implicit method are given by,

attimet = t,:

4 =_B ko1 b = B ko1 Ps —Aw) (3.6
1n Vln T—(Ps _ Pln) 1n Vln 7"‘—(])5 _ Pln) 1%n 3. 4)
B Koz B
N b2n . (Azu,) (3.65)
= _f =1
83 = — 31 bin = 37 (P1,A1 — P2,A2) (3.66)

In this example, a, and a, are non-constant coefficients, but az,,; = ai, for all values of
n. The schemes that provide the predicted values are identical to those in equations
(3.39). (3.40) and (3.41), and the schemes that provide the corrected values are
identical to those given in equations (3.42), (3.43) and (3.44). Again the matrix form
found in equation (3.45) can be established. and in order to use Newton's method., it is
P,

necessary to define F(x) = 0 where x = [P, L Upq )T

n+1’ ~ “n+1

3.38 Forming the Jacobian matrix. F(x) is defined identically to F(x) in equation
(3.46). and the Newton's iteration method used is of the same form as that shown in
equation (2.72). The difference between this problem and the last is that the Jacobian
matrix is non-constant for this problem. When forming the Jacobian at any time step.
the variable coefficients are "frozen" and assumed to be constant, which in effect leads
to a ‘local’ derivative, or ‘local’ form of the Jacobian, which is applicable during that

time step. This idea is dealt with in some depth by Richmeyer and Morton [64]). The
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Jacobian for problem 4 is:

" (™" ~1)Au, ., o —(e"™"~1)A,/(P~P, )
2ko;\/(Ps—Py ) Ko1
Aon+ h__
0 1 €T =DAu,,, e DA/, (3.67)
2k2/P2, ko2
(em1"-1)A, (e1"~1)A,
— 1 B 1

3.39 Results. Figure 3.14 shows the results obtained by using the predictor-corrector
pair applied to problem 4. This was the first non-linear problem to be solved by the
new method. and a satisfactory set of results was found. The results found using the
new method with a fixed step size of 0.001 seconds are those shown in the figure. The
solution curves are smoother than those found by using Gear's method. which are
shown in Figure 3.15. Gear's method sank to a step size of 1 x 107!° seconds and
reverted to a first order method. The new method took 7.8 seconds of C.P.U. time to
solve the problem over the interval t = [0, 0.6] seconds. whereas Gear's method took
14.8 seconds to solve the problem over the same interval. and the solution given was
not totally satisfactory, in the sense that reducing the tolerance value used in the
iteration scheme increased the accuracy of the results.

Application Of The Method To Test Problem 5 - Linear Actuator

Operated By A Directional Control Valve

3.40 The circuit for this problem, shown in Figure 3.16. consists of a fixed
displacement pump supplying fluid to a linear actuator by means of a directional
control valve. The directional control valve is manually operated. and is a three
position, four way closed centre type. When the directional control valve is centred.

flow returns to tank through a relief valve. The actuator is extended by manual
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application of the directional control valve to a positon approximately one half of its
stroke. It is held stationary for a time and then partially retracted to a position

approximately one quarter of its stroke, where it is again held stationary.

3.41 System equations. The set of equations modelling the above circuit can be
written as three first order ordinary differential equations; each describing pressure,
and one second order ordinary differential equation describing the behaviour of the

linear actuator. These equations will be:

dP,

_Bio _q_
E‘ - Vl_(qu Qr Qdcvl) (368)

dP,

B
L= V;’_(sgn(z)om2 — Sgn(z)Au) (3.69)

dP,

.B
e v_z(Sgn(z)Azu — Sgn(2)Qqcv,) (3.70)

du 1
TS = M.(PzAl —P;A, —fu—kx—F) (3.71)

where:

A, is the cross-sectional area of the piston side of the actuator
A, is the cross-sectional area of the rod side of the actuator
B, B,.B; is the bulk modulus of the hydraulic oil
in each of the three pipes
f is the viscous friction coefficient
M is the mass to be moved by the actuator
P, is the pressure in pipe 1
P, is the pressure in pipe 2
P; is the pressure in pipe 3
Qpu is the pump flow
Q; is the relief valve flow
Qdcvl’z_, is the directional control valve flow
x is the displacement of the actuator piston
u is the velocity of the actuator piston
k is the spring stiffness
F is the force opposing the load
vy is the volume of pipe 1
v, is the combined volume of the actuator and pipe 2
v3 is the combined volume of the actuator and pipe 3
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Sgn(z) is a function of z, where z describes the behaviour of the
directional control valve (d.c.v.)
z= 0d.c.v. closed
z= 1d.c.v. fully up
z=-1d.c.v. fully down

The pump flow is given by:

C.P,D
Qu=wD,— = 1P (3.72)
73
where:

o is the angular speed of the pump

D, is the pump displacement

M is the viscosity of the hydraulic oil

C; is the slip loss due to differential pressure

and the relief valve flow is given by:

Q =k/(P,—P) if P, > P, (3.73)
Q=0 if P, < P, (3.74)
where:

k, is the relief valve coefficient
P. is the cracking pressure of the relief valve

Also, when the directional control valve is open in the upward direction, then

Qdcv, = Qdcv2 = kE]'\/(Pl - Pz) (3.75)
- and

Qdcv3 = kEZ\/P_:’. (3.76)
and when it is fully down, then

Qdcvl = Qdcv:, = kEZ V(Pl - P3) (3.77)
and

Qdcv2 = kEl P2 (378)
where:
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kE,, kE, are the flow coefficients of the d.c.v.

Substituting equations (3.72), (3.73) and (3.75) into equation (3.68) will give, when

the relief valve cracking pressure has been exceeded, and the d.c.v. is fully up:

dP, B C,P;D
_dTl = ;1 oD, — ;41 P — k(P, —P,) —kE;/P, — P,) (3.79)
1

Similarly, equations (3.69) and (3.70), for the same case, will become:

dP, B

d_tz = VE(RE"/(P‘ —P,) — Aju) (3.80)
2

dP; B

—2 = 22 (Au — kE,/Py) (3.81)

dt V3

3.42 Stiction logic and cavitation. The way in which stiction of the load has been
modelled is via the use of FORTRAN IF statements. Using equation (3.71), then taking
Fner = P2A; — P3A;, the following logic has been used. If the velocity, u. is zero, then
if |Fygr! > Fs. the value used for stiction, the force opposing the motion has been
taken as a coulomb friction value, F¢. If. however, | Fygr| < Fjs, then the acceleration
has been taken as zero. Once the velocity, u. is non-zero, then F is taken as F¢. Taking
the band about zero allows stiction to be accurately modelled, i.e. if lul > € then

F = F¢, but € must be carefully chosen [65].

3.43 The pipework in the system has been modelled almost entirely as flexible hose.
The equations used to represent the pressurein the systemtake into account air release
if the system pressure falls below atmospheric pressure.‘This is done by use of work
established by Dugdale [1]. The bulk modulus of the pipe system is changed if

cavitation occurs. The equation describing the change in the effective bulk modulus is:

1
1, do(Pa —P) (3.82)
B n(P, + 1)?

B, =
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where:

P; is the pressure in pipe i, i= 12,3

n is the polytropic index of air

d, is the fraction of air dissolved in the hydraulic fluid at S.T.P.
B, is the effective bulk modulus of the pipe material

In the system being modelled. no spring force exists, and the gravitational force acting
is zero since the actuator is horizontally mounted. The motion of the directional
control valve is idealised as a series of discrete steps as shywn in Figure 3.17. The data

values used are given in tables 3.4 and 3.5. The spring stifiness has been taken as zero.

3.44 Application of the new method to solve the fifth order system. The new
method has again been applied in a fixed time step predictor-corrector form to solve

this problem. The predicted values will be given by the schemes:

b,
by = — (e — 1)+ P e i=123 (3.83)
in
b
Upsy = —2 (™" — 1) + u, e (3.84)
a4n
b
Xpe1 = —2 (€™ — 1) + x e’ (3.85)
asy .

The schemes giving the corrected values are similar. but the a;, and the by, i =
1,2,3,4,5, are replaced by a;;4; and by, respectively. The coefficient values, when the

directional control valve is fully up, are given by:

B, GD KE, B, KE,P,_
ajy =——(— L +k,+ ) by, =——(wDy,+kP+ ) 3.86
in Vi, K r '\/(Pln - Pzn) in vi, pT Kele (Pln—-Pzn) ( )
Bz kEl BZ kEl
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