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SUMMARY

The work described in this thesis is concerned with the development 

of a computer software package to simulate the behaviour of hydraulic 

systems and their associated electronic and mechanical components. 

The primary requirement was that the package should be suitable for 

use by engineers with little or no computing background. It should 

attract users who would not otherwise come into contact with 

computers, but who often stand to gain the most from their use. The 

second requirement was that it should be able to simulate the steady 

state and dynamic behaviour of as wide a range of circuits as 

possible.

The resulting CAD package is known as HASP (the Hydraulic Automatic 

Simulation Package). The user of the package need not produce any 

computer code. All that is necessary is to define the components in 

the circuit and indicate the manner in which they are connected. 

This differs from simulation languages which require the user to 

become familiar with a vocabulary of mnemonics representing the 

mathematical components of an algorithm rather than the hydraulic 

components of a circuit.

A significant amount of programming had already been carried out at 

the commencement of the current work. However, at that time, the 

software failed to meet the fundamental requirements. It was the 

author’s intention to examine the package from two different 

viewpoints:

t



1. fron the point of view of the user and

2. fron that of the progran developer.

To the target user, the original package appeared unfriendly and 

complex, and required a detailed knowledge of the conputer operating 

system. The author has erradicated these problems by developing a 

new command interpreter, together with other enhancements such as 

simultaneous simulation and graphical display of results.

The structure of the package is such that it can continue to expand 

and broaden its areas of application. However, this growth was 

hindered by' cumbersome modelling methods, which lacked any 

classification. These vague methods have been critically examined 

and developed. The author has defined a classification scheme for 

modelling methods with firm guidelines for future modellers. In 

addition, modelling tools such as valve port area calculations and 

polynomial regression algorithms have been developed.

On completion of this work, the simulation package presents itself to 

the user as a syntactically simple system, but provides sufficient 

growth paths for the program developer.
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CHAPTER 1

INTRODUCTION 

THE SIMULATION OF HYDRAULIC SYSTEMS

100. The design of fluid power systems, along with the requirements 

of most other technologies, has become more demanding. The systems 

must be both efficient and reliable in order to reduce the running

and maintenance costs to a minimum. Also, the systems must provide

the often demanding level of control required. Nowadays, designs 

must be practicable and competitive if the contracter is to stay in 

business.

101. The designer of hydraulic systems may be required to perform 

dynamic as well as steady state analyses on the systems he considers

to be feasible. The options open to the designer are to perform

classical paper calculations or to employ a computer to perform a 

simulation of the response of the circuit in either the time or the 

frequency domain. In the past, the use of digital computers has been 

neglected for two main reasons, these being firstly, the fact that 

computers were expensive items of equipment and secondly, that a 

great deal of specialist knowledge and fami1iaristaion was required 

in order to use them.

102. With the advent of the micro-electronic chip, the cost of 

computers reduced dramatically. Conversely, their power has become
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significantly greater. However, even with inexpensive computing 

facilities, it is still difficult to use the computer efficiently due 

to the experience and time required in the production of a simulation 

program for a particular hydraulic circuit.

103. The purpose of this work, is to develop some aspects of a 

computer software package which allows both experienced and 

inexperienced computer users to produce pertinent simulation programs 

economically in both time and effort.

THE HISTORY OF COMPUTER SIMULATION

104. At this point, it is useful to examine the wealth of experience 

that has been gained over the years in the use of the computer in 

simulating physical systems. Computer simulation began over thirty 

five years ago following the advent of the analogue computer. When 

using such a device, the mathematical model describing the system to 

be simulated is depicted as a block diagram. The diagram consists of 

symbols which represent mathematical functions to be simulated by 

electrical components. For example, rectangles represent arithmetic 

functions and the circles represent generators.

105. In 1955, following the introduction of the digital computer, 

R.6. Selfridge produced the first of a large number of so-called 

digital analogue simulators. These were programs written for digital 

computers, or more specifically, they were digital representations of 

sets of analogue elements. The elements normally appeared as
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subroutines or functions. In the case of an analogue simulation, the 

elements of the circuit were normally connected using a patch-board. 

Similarly, users of a digital analogue simulator would be expected to 

write main segments linking the subroutines and functions in the 

required manner. The simulators that followed developed in terms of 

the complexity of systems that could be simulated and also in terms 

of the integration method employed. For example, the first simulator 

used Simpson’s rule to perform the integration, whilst by the early 

1SGO5 , fourth-order Runge-Kutta and fifth-order predictor-corrector 

methods were being employed by packages such as DYSAC (Digitally 

Simulated Analog Computer) and HYBLOC [13.

10G. In 19G5, a compiler called MIMIC was written which was closely 

related to its predecessor MIDAS (Modified Integration Digital Analog 

Simulation). They differed in two respects. Firstly, MIDAS was an 

interpreter which translated the user-defined commands into a 

language called FAP (an IBM assembly language), whereas MIMIC was a 

compiler which translated the commands directly into machine code. 

Secondly and more importantly, MIMIC allowed its own commands to be 

interspersed with Fortran-like algebraic statements. MIMIC was 

closely followed by DSL/90 (Digital Simulation Language) which not 

only allowed mixing of DSL and Fortran 10 statements but also 

provided a facility for automatically sorting the statements. The 

DSL compiler translated the statements into Fortran 10 subroutines 

which are then compiled.

107. The general philosophy of simulation languages has remained
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largely unaltered fron this tine, more recent effort being placed in 

ease of use, scope of application and the development of efficient 

integration routines with particular emphasis on step-control.

However, since the appearance of SIMULA in 1967, simulation languages 

have been split into two broad but distinct groups: methods to 

simulate continuous systems and methods to simulate discrete event 

systems.

108. A continuous system consists of components which have the 

ability to interact in a continuous fashion due to an internal or an

external excitation. The continuity is generally with respect to

time but may also be a function of other system features.

Mathematical representation of continuous systems is done with the 

aid of time (and other) dependent differential equations. Examples 

of the simulation of continuous systems are the representation of the 

time (and possibly displacement) dependent pressure transients of an 

hydraulic circuit as an actuator encounters a sudden increase in

load, and the changing stability of an aircraft as it passes through 

its stalling condition. Since the digital simulation of continuous 

systems inevitably involves numerical integration and lengthy 

algebraic manipulation, simulation languages and packages such as 

those mentioned above tend to be based upon the most popular high 

level scientific language, Fortran.

109. A discrete event system, as the name suggests, consists of

components which interact in a discontinuous or discrete fashion. If

an event occurs, the operation of the system may be altered in some
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respect. However, the transient behaviour, i.e. the manner in the 

system moves between states is of no interest. The simulation of 

discrete event systems generally involves logical decisions and 

optimisation based upon statistical data. Examples of the simulation 

of these systems are the response of say a traffic system to a bus 

breaking down in the rush hour, and the analysis of the cause of an 

hydraulic actuator sticking using failure mode analysis. Since the 

digital simulation of discrete event systems often involves logical 

decisions, simulation programs and packages tend to be based upon 

high level languages which support rich Boolean algebra features such 

as Algol and more recently Pascal (e.g. the simulation language 

Simula 121). It has been found that the literature concerned with 

discrete event simulation has little relevance to the development of 

a dynamic simulation package and an extensive appraisal of past work 

in this field has not been carried out.

110. The basic problem with simulation languages is that the user 

must still perform a large amount of mathematical modelling in order 

to adequately describe his system. This is inevitable if such a 

general purpose tool is to be used. However, if the package is to be 

used in limited applications, then it is possible to produce 

simulation packages which reduce the need for mathematical modelling.

111. The McDonnel Aircraft Corporation released an important package* 

for simulating hydraulic systems in 1977. The package consists of 

several programs which simulate different aspects of several 

generalised hydraulic systems. For example, the program HYTRAN 131
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analyses hydraulic transients and the program SSFAN C4] analyses the 

steady state behaviour of a system. The programs are supplied with 

additional modules which may be added by the user with few amendments 

to the coding of the main program. Two problems with these programs 

have been identified. Firstly, it is necessary to understand the

complex structure of the program in order to include additional 

blocks, a necessary task if the program is to be used to simulate a 

wide range of systems. Secondly, the data the user must define in 

order to run the programs is often difficult to obtain. McDonnel 

Douglas suggest that this is not a burden since the components which 

require the attention are common to many systems, e.g. DC-10 pumps 

are used on the Boeing 747, the Lockheed L—1011 and the Airbus A300 

[53. However, the dimensions and characteristics of this pump are 

unlikely to be applicable to pumps in fields of interest outside 

aeronaut ics.

112. In West Germany, a package called DSH (Digital Simulation of 

Hydraulics) has been developed by Backe et al CB3. This package is 

intended to have the versatility and a degree of user-friendliness 

which allows an inexperienced computer user to simulate any hydraulic 

system. The set of programs which form DSH can be run on relatively 

small computers (less than 64k bytes of core). The user of the

package defines his circuit in terms of ’macro’ or ’micro' words.

The macro word defines a mathematical model which already exists in 

the package. A micro word defines a single mathematical operation. 

By defining a sequence of micro words, it is possible to represent a
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model not catered for by the basic package. The package consists of 

five programs controlled by a coordinating program.

113. The major drawbacks of this package lie in two distinct areas. 

Firstly, the static nature of the programs which constitute DSH tends 

to limit the types of models which one can write. Secondly, the user 

interface is extremely basic; users having to define information in 

terms of data fields. To quote Gordon and Riesenfeld C7], ’In order 

to be successful, a (CAD) system must have appeal to the designer - 

it must be simple, intuitive and easy to use. Ideally, an 

interactive design system makes no demands on the user other than 

those to which he has been formerly accustomed through ... design 

experience’. It would be unreasonable to suggest that a system which 

requires a user to define a great deal of information in terms of 

data fields can ever be considered as simple, intuitive and easy to 

use. The current work aims to provide' a system which satisfies the 

requirements quoted above.

THE HYDRAULIC AUTOMATIC SIMULATION PACKAGE 

The aims

114. A package known as the Hydraulic Automatic Simulation Package 

has been developed at the University of Bath over a period of years. 

Its aim is to allow a user to produce computer programs which will 

perform a dynamic simulation of any hydraulic system of his choice. 

Furthermore, it is desirable that the user need not learn a great 

deal of the skills normally associated with the use of digital
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computers. In particular it is intended that the package should:

(i) not require the user to have any previous knowledge of 

comput ing;

(ii) not require the user to spend a great deal of time learning 

the procedures to be adopted;

(iii) allow a user to produce a simulation program and obtain 

results in a matter of hours;

(iv) provide a library of components sufficient to build a large 

number of practical circuits;

(v) provide a standard method of modelling such that if a new 

component is required, the construction of that model is 

neither laborious nor error'-prone.

A description of the package

115. The manner in which the first three aims were achieved was to 

produce a program generator together with a comprehensive libarary of 

models. The program generator creates a set of controlling routines 

for a simulation program and is subsequently attached to the 

necessary routines from the model library. Having used the program 

generator, the user is left with a unique simulation program 

corresponding to his unique hydraulic circuit. The simulation 

programs are considered as temporary whereas the program generator is 

permanent'"and is the most important program of the package.

116. There is one principal difference between this package and the 

multitude of other packages that are available. In general, the user
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of simulation packages must perform a large amount of mathematical 

modelling in order to describe his system, a task which is normally 

unnecessary when using HASP. Accordingly, almost all other 

simulation packages are actually simulation languages C8,91. It 

should be emphasised that HASP is not what one would normally

consider a language: it is a complete package of programs, data­

bases, libraries and command procedures and requires nothing of the 

user other than a definition of the layout of his circuit. 

Therefore, the user need never learn a language and need never 

directly produce a file* all necessary files being produced by the

programs following an interactive session.

117. Since HASP relies upon a fixed library of hydraulic components, 

an inexperienced user is restricted to simulating circuits described 

by the components that have already been modelled. (However, the 

structure of the package and the standardisation of modelling 

techniques would allow more advanced users to include their own

models into the library). Therefore, at the user level, HASP is not

as versatile as simulation languages which require the user to

develop his own complete mathematical algorithms. However, that is 

not to say that HASP cannot be adapted to simulate other continuous 

systems. In fact, it could be adapted to simulate any physical 

system which can be described in terms of discrete mathematical

models. A proviso is of course that these models should be of a form 

where they may be considered constituent parts of many different 

configurations of the overall system.
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118. It is useful to consider the tasks the user of HASP must carry 

out, from the initial conception of a hydraulic circuit configuration 

to being able to examine the behaviour of that circuit. At the same 

time, it is worthwhile introducing some of the software that has been 

designed to achieve these aims.

119. Initially, the user must produce a proposal for the hydraulic 

circuit to be designed. His use of HASP begins with a search through- 

the component model library to find models which suitably represent

the components which constitute his circuit. This may be done by

consulting the documentation which exists or perhaps more easily by 

using the online help facility provided by the package. To use this 

facility, the user must be operating within the package. To enter 

the package, the user simply types HASP. The online help facility is 

offered when the user issues the command to generate a new simulation 

program.

120. Whichever method the user adopts in determining the required 

components (i.e. online information, written reports or experience), 

he must produce a description of his circuit in terms of HASP

component models and interconnecting links. An example of a simple

hydraulic circuit that one might wish to simulate is given in 

figure 1.1 and the corresponding linking diagram is shown in 

figure 1.2. The blocks represent component models, the HASP code 

name of the components being inserted in the blocks. The inter­

connecting links indicate information transfer between models and 

should be arbitrarily numbered for reference.
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121. The user is now ready to generate the controlling segments of 

the simulation program. This is done by invoking the program 

generator (assuming it has not already been invoked to give advice on 

component model selection), then answering the questions posed. The 

questions issued by the generator are entirely concerned with the

definition of the linking diagram produced by the user and the

production of a file to store that information for possible 

retrieval, amending and regenerating in the future. The program 

generator employs an efficient method of user-error diagnosis.

122. Assuming the circuit configuration data defined by the user is 

acceptable, several routines (mostly written in Fortran) ar& 

generated. They are then compiled and linked with other necessary

routines. These routines are the selected component models, the

fluid properties definition routine and the standard integrator. The 

integrator employed by the simulation program is based on a method 

developed by Gear C101. The method is particularly useful in the 

solution of the differential equations produced in the analysis of 

hydraulic systems due to its ability to select the most efficient 

combination of order and integration timestep.

123. The user is now ready to run the simulation program that has 

been produced. The simulation is best considered as being split into 

two. The first section is concerned with the definition of the 

parametric data required by the component models. Again, this 

process is carried out completely interactively, posing questions 

relevant to the size and performance characteristics of the hydraulic
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components. The information is again stored in a data file which, on 

subsequent runs of the simulation program, may be retrieved and 

amended. The first section also calculates all the parameters that 

will remain constant throughout the simulation. The second section 

of the simulation program is concerned with the calculation of all 

time dependent variables. These results are collected in another 

data file.

124. Finally, the results are viewed graphically using one of the 

graphics programs associated with HASP. Based on these results, the 

user can then decide whether or not it is worth considering 

components with different dimensions. If so, he simply reruns the 

simulation program, retrieves and amends the parametric data then 

repeats the simulation process. Alternatively, he may wish to alter 

the basic configuration of his circuit in which case he returns to 

the program generator. He retrieves and amends the circuit 

configuration data and generates a new simulation program with which 

he can investigate further.

125. It should be emphasised that the time scale involved in 

carrying out the process above can vary greatly depending on the size 

of the circuit, the relative values of certain system parameters and 

of course, the experience of the user. However, at most, the whole 

process may be carried out in a matter of hours.

The user of the package

126. The hypothetical user that has been described in the preceeding
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paragraphs is seen as being at best, inexperienced, and at worst, 

totally ignorant of computing. However, it must be emphasised that 

this ignorance should not extend to the design of hydraulic systems. 

The computer will not carry out the creative thought required in 

engineering. It is merely a tool to examine the possible solutions 

quickly and as accurately as the known parametric data will allow. 

With the aid of HASP, it should be possible to produce a good 

prototype design, but the prototype and the experimental work should 

not be cast aside. However, with diligent use, HASP has in the past, 

and will in the future prove to be a useful and potent tool in the 

design and trouble-shooting of hydraulic systems.

AN QUERUIEW OF THE AUTHOR’S CONTRIBUTION

127. The aim of the current work is to ensure that the package meets 

the aims set out in para.114. Put rather more simply, these aims are 

to present a package which can be used to both produce simulation 

programs by engineers with no knowledge of computing, and to ensure 

that modellers may produce new component models as quickly and 

effectively as possible. To this end, the author has produced 

several versions of the program generator and also written many 

component models and standard modelling utilities intended not only 

to enhance the component model library, but also to indicate new 

techniques and provide tools for modellers in the future. Also, a 

command interpreter has been written in order to provide an interface 

between the user and the computer operating system.
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128. Chapter 2 includes a description of this command interpreter as

it provides a useful vehicle with which to describe the overall

structure of the package in more detail. Its primary purpose is, of

course, to explain what the user of HASP will see. Its secondary 

purpose is to show the interaction of the different programs and 

files which collectively form the package.

129. Chapter 3 describes the structure of the program generator in 

more detail, this being the first part of HASP a user will 

experience. Chapter 4 logically continues with a description of the 

simulation program. This involves a description of all its

constituent parts and therefore covers component models, modelling

aids (the special utility routines) and the general structure of the 

program. Chapter 5 describes how the package was used to simulate a 

large practical hydraulic circuit. Chapter G looks at the management 

of such a large software package. This includes information on 

computer file and directory structure, documentation, portability and 

also mentions certain legal aspects. Finally, chapters 7 and 8

present a discussion and a conclusion of the work carried out.

130. The appendices present additional details on the command

interpreter, a selection of component models, the special utility

routines, integrator control from component models and several ideas 

for future work.

Computer operating systems

131. The package was initially developed on a DIGITAL PDP-11
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computer operating under the RSX-11M, version 4.0 operating system. 

Originally, it was attempted to employ standard Fortran IV C t T D 

throughout. However, more recently, the use of Fortran 77 [123 has 

been encouraged due to its wide acceptance. This has allowed the use 

of a more structured approach to the development of the code. 

Nevertheless, certain parts of the package are necessarily system 

dependent. One important part of the package that is totally system 

dependent is the routines which write the component selector file. 

Under RSX, this file takes the form of an overlay descriptor file 

written in DIGITAL’s overlay descriptor language (ODL), obviously 

incompatible with other operating systems. Also, much of the

directory organisation and file manipulation is carried out by

command files which issue system commands.

132. Recently, the whole package has been transported to a DIGITAL

VAX 11/750 operating under VMS. The transition from one system to 

the other was trouble free and although these systems are produced by 

the same manufacturer, it does indicate that transporting the package 

to any other system is feasible.

133. A special note is made if any part of the software described in 

the text is peculiar to a particular operating system.

134. The manuscript of the thesis has been prepared using the text 

formatters DSR operating under VMS and mm/nroff operating under UNIX. 

It was printed on a Hewlett-Packard ThinkJet printer using a courier 

12 type-face.
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CHAPTER 2 

THE HASP ENVIRONMENT

INTRODUCTION

200. The acronym HASP has heen used to describe the software 

designed to simulate the response of hydraulic systems. However, if 

we examine the construction of this package in terms of its 

constituent parts, a host of files are found, each with its own 

particular role. The software consists of files containing source, 

object code, executable task images, data and commands. Some of the 

files are accessible by all users, others are stored in secure 

directories. Some of the files must always exist, others are 

transient. Some of the programs must be used on specific terminals, 

others are terminal independent.

201. In the early development of HASP, it was necessary for the user 

to acquaint himself fully with this vast array of files. He would 

have to learn all the commands required by the operating system in 

order to control the creation and storage of files. Also, there

would be no safeguard against him accidentally misusing the system.

202. It became obvious that, in order to produce a system which is 

inviting to the computer-layman, a user interface was highly

desirable. It was decided that such an interface should remove the

necessity of the user becoming directly involved in issuing system
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commands. The commands required to operate HASP should be single 

words reminiscent of English. This interface has been designed, 

written and implemented by the author on the VAX-11/750 operating 

under VMS. It is an interpreter which takes a user-defined high 

level command such as "SIMULATE'' or "DRAW" and translates the 

requirement into a series of commands native to the operating system. 

The interface is written in a language known as DDL (Digital Command 

Language). With this interface, the user is led through HASP and, if 

required, he is given guidance and advice. The command interpreter 

controls the constituent parts of HASP to present a structurally 

cohesive, but more importantly, a practicable package.

203. The general architecture of HASP is shown in figure 2.1. The 

figure is split into two distinct sections: one section shows the 

tasks a user must carry out in order to simulate a circuit, the other 

shows the corresponding tasks the computer must carry out. A 

description of the structure of the command interpreter is a 

convenient manner in which to* introduce the various tasks and 

procedures which are collectively known as HASP. Figure 2.1 will be 

found of use throughout the following description.

THE HASP COMMAND INTERPRETER

204. The HASP command interpreter (HASP-CI) has been implemented 

using the command procedures known collectively as the Digital 

Command Language (DCL). Therefore, it must be understood that 

references to specific system commands apply only to operating
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systems which support DCL (i.e. VMS and more recent versions of RSX- 

11). However, it is possible to emulate HASP-CI on most other modern 

operating systems.

205. Two levels of commands exist under HASP-CI. Having typed a 

level 1 command, it may be possible to type subsequent commands in 

order to complete the instruction. The commands available under the 

first level of the interpreter are as follows:

GENERATE Generate the source of the simulation program

LINK Produce the simulation task

SIMULATE Run the simulation program

DRAW View the simulation results

EXIT Exit from the HASP command interpreter

BATCH Submit a simulation program to run on batch

HELP Obtain more information about these commands

VMS Have the ability to type VMS commands

In all cases, it is merely necessary for the user to type sufficient 

characters to make the command unambiguous. For the commands shown 

above, this means that only the first character need be typed.

The GENERATE command

206. The command GENERATE invokes the current standard HASP program 

generator. (The term standard is used since more than one program 

generator exists. Non-standard generators have been written for 

specific applications, further details of which are given in 

Chapter 3.) In order to use the program generator, the user must have
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available sufficient information to describe the hydraulic circuit he 

wishes to simulate. This data takes the form of a list of HASP 

component model names together with link numbers defining the

connections between these models. The program generator produces

several files which will form the basis of the simulation program. 

Both the program generator and the simulation program are described 

in detail in the following chapters.

The LINK command

207. In simple terms, the command LINK takes the generated segments 

and creates a simulation program from them. Specifically, the tasks 

carried out are as follows:

1. Files created by previous generations are deleted and 

parametric and results data files are maintained for the

three most recent versions.

2. The generated source of the simulation program is compiled.

3. The compiled version of the generated source is linked with 

the required component models from the library and the 

standard integrator to form the executable task image of the 

simulation program.

The SIMULATE command

208. The command SIMULATE runs the most recently produced simulation 

program. If it is the first time a simulation program has been run, 

then the user will be required to interactively define the parametric 

data for every component in the simulation. On completion of the
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first run, this data is stored in a file on disc. On subsequent 

runs, the data nay be retrieved and amended by the user as required. 

Furtther information on the simulation program is given in Chapter 4.

The DRAW command

209. The command DRAW allows the user to run a graphics program in 

order to view the results of simulation runs. The user effectively 

enters another level of HASP-CI commands. He now has the option of 

running one of four different graphics programs. These programs, 

together with the commands associated with each, are displayed every 

time the user enters the command DRAW and are listed below.

1. ONE Plots any item of information from the latest results

file against time.

2. XY Plots any item of information against any other item

of information, both from the latest simulation.

3. TWO Plots any two items of information from the latest

results file against time.

4. UPDATE Plots the same item of information from two

consecutive simulations against time.

The EXIT command

2t0. The command EXIT returns the user to the normal operating 

system.

The BATCH command

211. The command BATCH invokes a further command procedure which 

allows the user to run a simulation program as a background task. By
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doing so, the issuing terminal is left free. This command is useful 

when a simulation program has been tried and tested and one or more

sets of results are required.

212. The procedure requires the user to define the job to be

submitted to the batch queue. This entails the definition of the

total time for which the simulation is to be carried out and the 

print interval. The user is also given the options to set a CPU time

limit of one hour on the job (useful in the case of a logical error)

and to request that the job be held until after 1700 hrs, i.e. 

outside the period of maximum usage of a multi-user operating system. 

(The latter option is obviously not given if it is already after 

1700 hrs. >

The HELP command

213. The command HELP gives on-line assistance to the user by 

producing a list of possible commands and describing any selected

command in detail. Each description consists of a general overview

of what the command does and also details of the system commands 

which will be issued by that particular HASP command.

The UMS command

214. The command UMS allows the user to type standard operating 

system commands without leaving the HASP-CI. This is useful for more 

experienced users who wish to carry out functions not catered for 

under the interpreter.
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CHAPTER 3 

THE PROGRAM GENERATOR

AN INTRODUCTION AND AN EXAMPLE

300. The program generator is a program which takes a user defined 

hydraulic circuit and using this information, produces a 

corresponding simulation program. Specifically, it produces four 

Fortran source files which form the main segment and three 

controlling subroutines of the simulation program together with a 

selector file which, in effect, instructs the component library which 

models are to be attached to the controlling segments. The form of 

this selector file is totally dependent upon the computer operating 

system being used. It will be described in detail in paras. 315 to

342.

301. As an example, consider the simple open loop transmission 

system shown in figure 1.1. The first step the user must take is to 

select appropriate HASP component models. These models normally 

represent their hydraulic counterparts on a one-to-one basis. The 

schematic block diagram of the circuit in terms of these component 

models may then be constructed as shown in figure 1.2, the 

interconnecting links being numbered arbitrarily. It should be 

emphasised that the links in no way represent physical components 

such as pipes or shafts but merely indicate an exchange of 

information between two models.
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302. Until recently, the development of this linking diagram was 

carried out manually i.e. the user would have to search for suitable 

components by reading the literature associated with the model 

library and then draw his own diagram. However, the author has added 

a "help" routine to the program generator where lists of components 

of a given type are presented in the form of a menu and additional 

information subsequently presented for any particular model should it 

be required (to be described in para.311).

303. The final task the user must complete in the manual method of 

linking, is to convert the linking diagram into a table of 

information in a format acceptable to the program generator. The 

table of data corresponding to figure 1.2 is shown below.

09
TK0001 01 
PU0001 01 02 03 
PM0001 03 
PI0501 02 04 05 
PC0101 04 06 
TK0002 06 
MO0001 05 07 08 
LR0001*08 
TK0003 07

304. The first line indicates that there are nine component models 

in the circuit. The remaining lines list the component models in an 

arbitrary order and define the links, between them. Each line 

consists of the four character mnemonic for the component model, the 

two digit identifier to indicate multiple occurrences of the same 

model, and the external links in the form of two digit numbers 

separated by single blank spaces. The asterisk next to the LR00
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entry indicates that this model is experimental and will be found in 

the user’s own directory rather than in the standard component model 

library (directory structure is described in detail in paras.604 to 

620).

305. At this stage, the user is ready to employ the program 

generator. The information outlined above is defined in a simple 

interactive manner, the user being given the chance to correct typing 

and logical errors. The generator employs a sophisticated algorithm 

to check the validity of defined data and displays diagnostic error 

messages as necessary. A file produced by the developers of 

component models , termed the component model attributes file, is 

interrogated at various stages of the generation procedure in order 

to aid in checking the validity of the data and also to set up the 

order and form of call statements to the component model subroutines. 

Provided the defined data is acceptable, four Fortran files and one 

component selector file are produced. At this point, the program 

generator has completed its task and it is now necessary to link the 

generated segments to selected segments from the component model 

library.

THE STRUCTURE QF THE PROGRAM GENERATOR

*
30B. In total, the program generator alone consists of some three 

thousand lines. It is unnecessary to give a complete listing of the 

program generator in this thesis. However, it is worthwhile to list 

just one of the segments as an example. A routine known as P6HELP



- 25 -

has been chosen since it was written using the structured approach

allowed by the language Fortran-77 and also due to its brevity 

(Table 3.1). It will be noticed that comments in the coding tend to 

be placed to the right of the statements rather than being 

interspersed with them. Although this is not allowed under 

ANSI X3.9-1978 [123, it is recommended that all future program

generator software contain this type of commenting since it allows 

the graphic nature of the indented coding to show through. Should it 

be necessary to transfer the software in source form to a computer 

with a compiler which does not allow this form of commenting, then it 

can be readily removed with the aid of a screen editor or a simple 

specially written editing tool.

307. The program generator consists of three levels of segments 

(figure 3.1). The highest is the main segment, its only purpose 

being to call all five segments of the second level (figure 3.2).

The second level of segments make up the primary logic of the

generator. The lowest level of segments carry out single specific 

tasks such as character manipulation, interrogation of the component 

model attributes file and variable type conversion. Third level 

segments form a set of thirteen utilities which may be employed by 

one or more of the second level segments.

308. It is useful to restrict the description of segments to those 

in the second level since, as mentioned, it is here that the primary 

logic is based. The tasks of the third level segments are given in 

Appendix F.100. The second level can be broadly divided into three
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funct ions:

t. The function of the routines known as PGIN and PGHELP is to

allow the user to describe his circuit.

2. The function of the routine known as PGCOMP is to check the

validity of the circuit so described and to set up an 

acceptable call sequence.

3. The function of the routines known as PGOUT and PGSEL (or

PGODL under RSX) is to write the five files which constitute 

the control and selector segments of the program generator.

The specific tasks of each of the five second level segments are

briefly described below.

Seament PGIN - Definition of the hydraulic circuit

309. The segment PGIN is the first routine to be employed when 

running the generator. PGIN is essentially the user/generator 

interface in that the majority of questions and replies are

controlled in this segment. Its primary purpose is to obtain all the 

information necessary to produce the simulation program. The user is 

allowed to define his circuit interactively or to recall his circuit 

from an existing data file. If he chooses to define his circuit 

interactively, then he is given the option of storing the data in a 

file for further use or reference. If he chooses to retrieve his

data from a file, then he is given the option of interactively 

editing his circuit data and storing in either a new data file or the 

initial file.
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310. There is a great deal of interaction between this routine and a 

routine PGHELP (para.311 ) which gives the user aid in selection of 

appropriate component models. There may also be interaction between 

this routine and a sorting routine PGCOMP (para.312) should the user 

have defined an unacceptable circuit. A flow chart for PGIN is shown 

in figure 3.3 from which this interaction may be better appreciated.

Seament PGHELP - Aid in component selection

311. The segment PGHELP is employed if the user requires information 

about a single component or a group of components. The purpose of 

the file is to access the component model attributes file and the 

information text file called INF0RM.DAT. The latter should contain a 

written introduction to every model in the component model library. 

It is suggested that this text should be the introduction given in 

the model report together with the relevant model assumptions. When 

a developer has completed a new model, he is expected to insert 

entries into both C0MP0N.DAT and INF0RM.DAT. Figure 3.4 is a flow 

chart for segment PGHELP. At present , PGHELP is included in the 

program generator. However, it is feasible to extract this utility 

and merge it with a program which allows the graphical definition of 

the circuit (to be described in para.711 and Appendix E.200).

Seament PGCQliP - The sortino routine

312. The segment PGCOMP serves two purposes. Firstly, it examines 

the attributes of the models with the aid of a utility subroutine, 

LOOKUP. If the user has defined a circuit which is unacceptable, 

then it produces a diagnostic error message then returns control to
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PGIN to allow the user to reconsider (possibly with the aid of 

PGHELP). Secondly, PGCOMP uses the information gained from

C0MP0N.DAT to set up an acceptable component model call sequence. 

The algorithm of this routine has remained unchanged since the 

original development of HASP. Minor alterations have been carried 

out by the author in order to maintain compatibility with revised and 

new routines. A flow chart of PGCOMP is included for completeness 

and is shown in figure 3.5.

Seoment PGOUT - Write the simulation proaram source files

313. Though the largest of all the generator routines, the segment 

PGOUT has perhaps the simplest and certainly the most mechanical 

task. Its sole purpose is to write the four Fortran routines which 

will control the simulation program ultimately produced, using the 

information already gained by PGIN and PGCOMP. The coding is

completely sequential and, as such, does not require a flow chart.

This routine has been substantially altered by the author in order to 

introduce the simulation program corrections and modifications

mentioned in Chapter 4.

Seoment PGQDL/PGSEL - Urite the component selector file

314. This is the part of the generator which is dependent upon the 

operating system being used. PGSEL is used in the generator which 

operates under UMS and PGODL is used in the generator which operates 

under RSX. Their primary objective is to create a selector file for 

the linker. Under UMS, this takes the form of a simple options file 

(called CAD.OPT) which merely lists the names of the object files to



- 29 -

be included in the simulation task. However, under RSX, the purpose 

of the selector (called CAD.ODL) is twofold. Firstly, it carries out 

the same function as the VMS options file. Additionally, it

describes to the linker (called the taskbuilder under RSX) the method 

by which the simulation program is to be overlaid. CAD.ODL is 

written in a form of assembler called the Overlay Descriptor 

Language. Due to the rather complex nature of the routine PGODL and 

the fact that this routine is system dependent, a complete section is 

devoted to its structure (paras.315 to 342). This section also 

serves to introduce the structure of the simulation program 

(Chapter 4).

THE COMPONENT SELECTOR FILE (RSX)

315. This section describes the selector file written for RSX

(i.e. the file written by the generator segment PGODL) since this

description also covers the rather more trivial task of writing the 

selector file for VMS (i.e. the file written by segment PGSEL).

31G. The primary addressing mechanism of the PDP 11 is the IB bit 

word. The maximum physical address space that the PDP 11 can 

reference at any one time is 177777 bits (in octal) i.e. the maximum 

virtual address of a task must be less than 177777. This effectively 

means that the size of any task or any segments of a task in memory

at any one time must be less than 32k words.

317. A simulation program produced by the program generation and
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subsequent linking pocedures consists of a large number of 

subroutines and therefore requires a large amount of computer memory. 

The amount of memory required is evidently a function of the 

complexity of the hydraulic circuit to be simulated. However, the 

space required would almost inevitably exceed the 32k words of 

virtual address space available. This problem is overcome using the 

principle of overlays.

318. Using overlays saves memory space by reducing the size of the 

executing section of the task. The task must be carefully designed 

to have discrete sections which can execute independently of the 

other sections. These sections reside on disc until they are 

required thereby saving memory space.

319. An example of where overlaying may be used is given below. 

Consider a main segment which calls a subroutine which we shall call 

subroutine A. Subroutine A carries out its function then returns to 

the main segment. The main segment subsequently calls another 

subroutine, B. It is evident that subroutine A and subroutine B need 

not both be in memory at the same time. They are said to be 

logically independent. A task consisting of this main segment and 

the two subroutines could be overlaid so that either the main segment

and subroutine A or the main segment and subroutine B is in memory.

However, had the program been written such that the main segment

called subroutine A which in turn called subroutine B, then the task

could not have been overlaid.
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320. For clarity, this section is divided into two. The first part

describes the nature of the overlaying employed by the simulation

program and the second describes the structure of the subroutine 

PGODL, i.e. that part of the program generator which writes the 

overlay descriptor file. A far more detailed description of the

principle of overlaying is given in the RSX—11M task-builder

manual C13].

Memory resident and disc resident overlays

321 . A principle of overlaying is that any segment which calls other 

segments must be resident in memory whilst the other segments are

being used. It follows that the main segment must always be in

memory. This common part of the tasj<. is called the root.

322. The RSX-11M computer operating system provides two types of 

overlaying. One type of overlaid task reads in segments of the

program from disc as and when required, overwriting segments

previously in memory. This procedure is termed "disc-resident"

overlaying. Segments which use the same memory address space must be 

logically independent. Because segments of a disc resident overlaid 

task can occupy the same memory space, the overall task size will be 

smaller than if the task was not overlaid. However, the task may

take longer to execute than tasks which are not overlaid since more

disc input/output transfers are required.

323. The other type of overlaid task reads in segments of the 

program from disc as and when required, appending them sequentially
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to the root of the task. This procedure is termed "memory-resident" 

overlaying. A memory-resident overlaid task will take up more memory 

than a disc-resident overlaid task but will execute faster due to the 

fact that there are fewer disc input/output transfers.

324. We will now turn to the problem of overlaying the HASP 

simulation program. The simulation program may be divided into two 

primary sections. One section must ensure that all the parametric 

data has been defined either by reading this information from a data 

file or by asking the user to type in this data interactively. The 

other section must perform the mathematical simulation of the 

hydraulic circuit thus defined. These two sections are logically 

independent provided the parametric data may be transferred from the 

input segments to the calculation segments via a root. In the case 

of HASP, disc-resident overlaying is employed since the disc transfer 

will occur only twice during a standard simulation run (once 

following the completion of the input section, then once following 

the completion of the mathematical simulation). Therefore, a great 

deal of memory space has been saved without making the run time 

measurably greater.

325. Considering each section in detail, it is found that the root 

together with only the input routines are often collectively greater 

than 32k words. Therefore overlaying must also be incorporated 

within the input section of the simulation program. Again, disc- 

resident overlays are employed since the additionall time taken to 

carry out the disc transfers are of little significance when compared
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to the reaction tine of the user. On the other hand, due partly to 

efficient progranning, the root together with the calculation 

segnents have never been found to be greater than 32k words. 

Therefore, no overlaying seens to be required within this section.

The overlay tree and nenorv diaaran

32G. An overlay tree is a diagrannatic representation of the nanner 

in which a task is overlaid. At the base of the tree is the root 

segnent of the task. Each branch of the tree represents a segnent of 

the task. Parallel branches denote segnents which overlay one 

another and nust therefore be logically independent. A path is a 

continuous vertical route fron the root to the end of a series of 

branches. Any nodule nay call any other nodules that exist in the 

sane path.

327. Figure 3.G shows an overlay tree for a sinulation progran. The 

sections are arbitrarily called INPUT and CALCS. The segnents 

contained in these two sections are listed below.

Subroutine NAME

(i > INPUT CONTRL 
MESAGE 
FPROP

Collectively called IPERM

Overlaid in groups of up to 3 
(Groups called IA,IB,..etc - up to IJ)

****IN
General 
input 
ut i1ity

Single input subroutine with the 
required general utility 
(Collectively called IREG1 ,IREG2 , etc )

(i i > CALCS AUX
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OUT
GEAR4
6EAR5
GEARG
6eneral
calculat ion
ut ility

Collect ively
called
CGEAR

Collect ively 
called 
CPERM

* * * * In groups of G but not overlaid
(Groups called C1,C2,..etc - up C5)

Note: **** represents the four character mnemonics of the 

model subroutines.

328. An alternative method of visualising the manner in which the 

overlaying is carried out is to construct a memory diagram.

Figure 3.7 is a memory diagram of a particular simulation program. 

The rectangle represents the virtual address space available to a 

task, the base being address zero and the top of the rectangle being 

address 177777 (32k words). Segments shown vertically above each

other reside in memory at the same time. Segments shown beside other 

segments are overlaid and are logically independent. It can be seen 

that for this particular simulation program which incorporates ten 

different component models, the maximum virtual address space 

required is 2G7S0 words. If the task were not overlaid, over 42k of 

virtual address space would be required, i.e. a reduction in size of 

approximately 40% has been obtained using the principle of overlays.

The Overlay Descriptor Lanouaoe (QDL)

329. The overlay descriptor language is a form of assembly code. 

Its purpose is to describe to the taskbuilder (the system software
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which links segnents of a progran> the nanner in which the overlaying 

is to be carried out.

330. The first line of the file nust be a line terned .ROOT which 

inforns the conputer of the general structure of the overlay. It 

nust start with a nain section which is always in nenory and nust 

list the renaining sections of the task. These nay be either progran 

file nanes or arbitrary nanes (terned factors) which are defined in 

terns of file nanes later in the overlay descriptor file. The first 

line of the overlay descriptor file written by the progran generator 

is always

.ROOT MAIN-*( INPUT ,CALCS 5*

A hyphen neans that the following factors will be stacked above the 

preceding segnent. The asterisk neans that the following factors 

will be overlaid in a disc resident fashion. The conna neans that 

the two factors INPUT and CALCS will overlay each other.

331 . The files or factors which nake up INPUT and CALCS are defined 

on naned lines which nust contain the tern .FCTR following the nane. 

Therefore, for the overlay descriptor file to define CALCS, the 

following lines nust exist:

(i) The group of files which nake up the integrator.

CGEAR: .FCTR GEAR4-GEAR5-GEARG
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(ii) The group of calculation subroutines whose nanes are independent 

of the particular hydraulic circuit to be simulated, including those 

named in the factor above.

CPERM: .FCTR AUX-OUT-CGEAR

If any of the models require the standard port area subroutines 

PTI/PTC (to be described in paras.437 to 438) then -PTC is appended 

to CPERM.

(iii) The groups of model calculation subroutines. Each factor 

contains up to six model file names and the overlay descriptor file 

will include only as many factors as are necessary.

e.g.
Cl: .FCTR AB01-AB02-AB03-AB04-AB05-AB06 
C2: .FCTR AB07-AB08-AB09...etc

where AB0n refers to a model mnemonic.

(iv ) Finally,the line which describes the whole calculation section 

of the task.

CALCS: .FCTR CPERM-C1-C2...etc

332. Similarly in order to define the input section of the task, the

following lines must exist:

(i> The subroutines which control the model input subroutines,

i.e. CONTRL and MESAGE (to be described in paras.434 to 436)

IPERM: .FCTR CONTRl-MESAGE
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(ii) The groups of model input subroutines. Each factor contains up 

to three model file names and the overlay descriptor file will 

include only as many factors as are necessary, 

e.g.
IA: .FCTR AB01IN-AB02IN-AB03IN 
IB: .FCTR AB04IN-AB05IN-AB06IN 
IC: .FCTR AB07IN...etc

However, if any model requires the use of certain general purpose 

subroutines, then this model input file name would be extracted from 

its position shown above.

e.g. Model input subroutines AB05IN requires the use of the 

regression subroutines RE6R and SIMUL (to be described in para.439). 

The factor IB above now becomes,

IB: .FCTR AB04IN- AB0GIN

The file name AB05IN together with the general purpose subroutines 

would be inserted below the model input factors as shown below.

IRE61: .FCTR AB05IN-REGR-SIMUL

At present, a maximum of four component models may use these general 

purpose subroutines in any one simulation.

The reason for extracting this routine from its position in the 

factor is that three input routines plus up to three general routines 

in the same factor may cause the task to attempt to address more than 

the 32k words allowed.

(iv) The following factor groups together the fluid properties



definition section and all the model input factors.

IMOD: .FCTR (FPROP ,IA ,IB ,IC etc)

(v) Finally, the line which describes the whole input section of the 

task.

INPUT: .FCTR IPERM-(IMOD .IREGl...etc>

333. The end of the description roust be defined by an end line 

(.END).

334. An example of a complete overlay descriptor file is shown 

below. The simulation for which this file was written has eight 

different component models, one of them requiring the general purpose 

regression subroutines. The simulation is in fact described in 

paras.516 to 518.

.ROOT MAIN-*<INPUT,CALCS)

CGEAR: .FCTR GEAR4-GEAR5-GEARG
CPERM: .FCTR AUX-OUT-CGEAR
Cl : .FCTR TK00-PI2Z-OD1Z-DE01-AL3Z
C2: .FCTR PI05-PI06
CALCS: .FCTR CPERM-C1-C2

IPERM: .FCTR CONTRL-MESAGE
IA: .FCTR TK00IN-PI2ZIN-QD1ZIN
IB: .FCTR DE01IN -FC3ZIN
IC: .FCTR PI05IN-PI06IN
IREG1: .FCTR AL3ZIN-REGR-SIMUL
IMOD: .FCTR (FPROP,IA,IB,IC )
INPUT: .FCTR IPERM-(IMOD,IREG1 )

.END

335. The names used and the layout incorporated is largely 

arbitrary, being chosen merely for clarity.
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336. The format of the overlay descriptor file is slightly changed 

if the computer library version of the package is used (a version 

where all component model object code is contained in a single object 

module library). There are two features which must be revised.

(i) Previously, the terms subroutine name and file name have been 

interchangeable since, in general, they are the same. The names 

which appear in th overlay descriptor file shown above inform the 

taskbuilder which models must be found in the disc, i.e. They are 

file names. However, if an object module library is used to store 

the object code of component model subroutines, then the taskbuilder

must be informed of the filename of the object model’1ibrary and the

names of the object modules required, i.e. The subroutine names.

(ii) For subroutines contained in an object module library, the

hyphen separator is replaced by a colon (:).

The structure of the prooram generator segment PGQDL

337. The subroutine P60DL described in this chapter automatically

writes the overlay descriptor file outlined previously for any 

hydraulic circuit during the program generation stage. The component

model subroutines required to form the simulation program are, in 

this case, assumed to be resident in their own files on disc and not 

in an object model library. The version of PGODL which writes 

overlay descriptor files for use with an object model library differs 

only in minor details from the version described here. Only a

general explanation of the algorithm of the subroutine is necessary

rather than a line by line account.
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338. Careful inspection of the example of an overlay descriptor file

given above shows that a substantial proportion of the file always

exists, no matter what the configuration of the hydraulic circuit to 

be simulated may be. Therefore, this portion of the file may be 

written simply using Hollerith or literal strings. The remainder of 

the file is stored in a series of arrays of type L0GICAL*1 

i.e. arrays containing short integers where one element of the array 

contains one byte (representing characters).

339. The general structure is best understood with the aid of the 

flow diagram shown in figure 3.8. An explanation of the flow diagram 

is given below.

(i) The number of different component models, NOCDS, must be

calculated from COMP(N), which contains all the components 

required for the particular hydraulic circuit to be

simulated.

(ii) If the total number of components is greater than 30, then

write an error message on the terminal. Also, the flag NBIG 

initialised as zero in the main segment PGMN is set to 1.

Control is then returned to the main segment and the program

generation is aborted.

(iii) If any model requires the use of the general subroutines 

PTI/PTC (port area routines, to be described in paras.437 to 

438), set IPT to 1.

(iv) If a model CQMP(I) requires the use of the general

subroutines REGR/SIMUL (regression routines, to be described
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in para.439), set IREG(I) to 1.

(v) If more than four different component models require the use 

of the regression routines, then write an error message on 

the terminal. As in the case outlined in step 2 above, the 

flag NBIG is set to 1 and the program generation is aborted.

(vi) The LOGICAL arrays are cleared and counters set to zero.

<vii) Set the variable NFCTR (number of components still to be

dealt with) equal to NOCOS.

(viii) Define the LOGICAL arrays for up to 6 components. (This 

operation is discussed more fully later).

( ix ) Calculate the number of components still to be dealt with by 

subtracting G from NFCTR.

(x) If NFCTR is less than or eqTial to zero, then the overlay

list is completed.

(xi) If NFCTR is positive, return to step 8. and repeat the

process for the next set of up to G components.

(xii) When all components have been inserted into the LOGICAL

arrays, then write literal strings and these arrays into 

logical unit 12 (CAD.ODL).

340. The majority of this subroutine is self-explanatory. However, 

step 8 above (definition of the LOGICAL arrays) is an important 

feature of the program and will therefore be explained in more depth. 

Figure 3.9 shows a flow diagram for this section of the subroutine. 

It must be emphasised that the diagram arbitrarily shows the 

definition of the LOGICAL arrays for the second set of six

components. For the third set, for example, NL00P2 becomes NL00P3,
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C2 becomes C3 and so on. The flow diagram is described in detail 

below.

(i> The variable NL00P2 is set to NFCTR, the number of

components left to be dealt with.

(ii) However, if NFCTR is greater than G, then NL00P2 equals G.

The excess components will be dealt with by the sections

which define C3 etc.

(iii) Insert C2 into the array CALCS and insert IC into the array

INPUT.

(iv) If NL00P2 is greater than 3, then also insert, ID into the

array INPUT.

(v) Call subroutine XTRACT(X). This subroutine extracts the

name of a particular component from the array COMP defined 

elsewhere in the program generator. This name is assigned 

to the four element L0GICAL*1 array X.

(vi) Call subroutine CNAME(C2,X,1). This subroutine inserts the

current array X into the correct position in array C2 

together with the required hyphen.

(vii) Call subroutine INAME(IC ,X ,1 ). Similarly, this subroutine

inserts the current array X into the correct position in

array IC together with a hyphen preceding the entry and "IN"

following the entry. (The characters "IN" indicate that the 

file thus named contains an input subroutine). However, if 

the current component is the fourth, fifth or sixth of the

current set of G, then call subroutine INAME <ID,X,J) where

J=I-3. This will insert the array X into the correct
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position in array ID.

(viii) Repeat the procedure from step 5. above for all components

in the current group i.e. for 1=1, to I=NL00P2.

Limits on number of components

34t. At present.the maximum number of different components that can 

be dealt with by P60DL is thirty and the maximum number requiring the 

use of regression subroutines, four. These limits are completely 

arbitrary and either limit may be extended relatively simply. 

However, it should be remembered that the total number of components 

which make up the circuit being simulated cannot exceed fifty.

Increasing this limit would require changes not only to subroutine

PGODL, but also to the other subroutines of the program generator.

342. Whenever the overlaying procedure is altered for any reason, it 

is advisable to examine the structure of a simulation program with 

the aid of a map file (called CAD.MAP). The map file is created 

during the taskbuild procedure C13I. With the aid of a map file, one 

can construct a memory diagram for the simulation program and 

therefore ensure that the desired refinement has been successfully 

incorporated.

THE COMPONENT MODEL OBJECT MODULE LIBRARY

343. The reason for producing a version of the program generator 

which is compatible with a software library of component object 

modules (called COMPON.OLB) is concerned with the management of the
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package. It is sufficient to note that this version of the program 

generator does exist and the difference between this and the standard 

generator is solely in the format of the overlay descriptor file 

(CAD.QDL). An example of an overlay descriptor file created by this 

non-standard version is given below. (This file would build an 

identical simulation task to that formed by the example given in 

para.334 above.>

.ROOT MAIN-*<INPUT.CALCS)

C6EAR: .FCTR COMPON/LB:GEAR4:6EAR5:GEARS
CPERM: .FCTR AUX-OUT-CGEAR
Cl : .FCTR COMPON/LB:TK00:P12Z:OD1Z:DE01:AL3Z:FC3Z
C2: .FCTR COMPON/LB:PI05:PI0G
CALCS: .FCTR CPERM-C1-C2

IPERM: .FCTR CONTRL-COMPON/LB:MESAGE
IA: .FCTR COMPON/LB:TK00IN:PI2ZIN:ODtZIN
IB: .FCTR COMPQN/LB:DE01IN :FC3ZIN
IC: .FCTR COMPON/LB:PI05IN:PI0GIN
IREG1: .FCTR COMPON/LB:AL3ZIN:REGR :SIMUL
IMOD: .FCTR (FPROP,IA,IB,IC )
INPUT .FCTR IPERM-(IMOD ,IREG1 >

.END

THE COMPONENT MODEL ATTRIBUTES FILE AND ITS EDITOR

The attributes file CQMPQN.DAT

344. The component model attributes file COMPQN.DAT is the keystone 

to the program generator. It is a database which contains 

information about every model in the component model library. It 

describes the manner in which a model hay be permissibly linked to 

other models, it notes the derivatives and state variables of the 

model (if applicable) and it describes the form of the argument list
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of the nodel. Every tine a new nodel is produced, its developer must 

insert a corresponding entry into C0MP0N.DAT.

The COMPQN.DAT editor

345. During the developnent phase of a nodel, the conponent 

attributes file is continually being anended naking this inportant 

file open to accidental corruption. In a nulti-user systen, such 

corruption can be catastrophic leading to incorrectly linked 

sinulations (often affecting nodels other than the one whose entry

contains the error). Therefore, it was seen as necessary to

safeguard the database by ensuring that all entries are vetted by a

utility. This was achieved by the developnent of an interactive

editor.

34G. The heirarchical structure of the COMPQN.DAT editor (CDE) is 

sinilar to the progran generator. There are three levels of segnents 

as shown in figure 3.10. The first level is the nain segnent which 

sinply deternines the user requirenents and calls the appropriate 

segnent accordingly as shown in the flow diagran in figure 3.11. The 

second level controls all prinary functions. The third level is a 

set of five utilities which are used by level two segnents. Unlike 

the generator, it is useful to describe both level 2 and level 3 

segnents in sone detail.

The seanent CDEX

347. The routine CDEX exanines an entry in the database C0MP0N.DAT 

and t writes this infornation to the screen (figure 3.12). Initially,
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it enquires which component is required and checks the validity of 

the mnemonic and if necessary, calls the error diagnostic utility 

CDERR. Having set the locate flag, it moves the pointer to the 

required entry with the aid of the utility CDLOC. Finally, it 

displays the information contained in C0MP0N.DAT on the screen in a 

readable form with the aid of the utility CDOUT.

The segment CDED

348. The routine CDED edits an existing entry in COMPQN.DAT 

(figure 3.13). Having determined the name of the component and 

checked its existence, CDOUT is employed to list the information on 

the screen. The user is invited to change specific items of data in 

an interactive manner, calling the utility CDQES to ask. specific 

questions as necessary. Finally, the utility routine CDCOM is called 

in order to write the updated version of C0MP0N.DAT to disc.

The segment CDAD

349. The routine CDAD adds a new entry to C0MP0N.DAT (figure 3.14). 

It is similar in construction to CDED except that the utility CDQES 

asks all questions rather than a selection. Again, the utility CDCOM 

is called in order to write the updated version of C0MP0N.DAT to 

disc.

The segment CDDEL

350. The routine CDDEL simply deletes an existing entry in 

C0MP0N.DAT. The only utility routine used is CDLOC in order to 

locate the required entry. Due to its simplicity, a flow diagram for



- 47 -

CDDEL is not required.

The segment CDCQM

351. The routine CDCOM is a level three routine which writes an

updated version of C0MP0N.DAT and it is employed by any level two 

routine that requires a change be made to the existing database. 

Again, a flow diagram is unnecessary.

The segment CDLOC

352. The routine CDLOC locates an entry in C0MP0N.DAT (figure 3.15) 

and is employed by every level two routine. If the required 

component is found, it sets the locate flag. Otherwise, the locate 

flag remains unchanged and the level two routine acts accordingly.

The segment CDOUT

353. The routine CDOUT writes an entry onto the screen in a readable

form. It is employed by the level two routines CDEX, CDED and CDAD.

The segment CDQES

354. The routine CDQES carries out an interactive session with the

user in order to determine the new or updated C0MP0N.DAT entry 

required. It is employed by the level two routines CDED and CDAD. 

If the user is editing an existing entry, then specific questions 

will be posed as dictated by the routine CDED. If a new entry is 

being added, CDQES poses all questions that are necessary (some being 

dictated by the user’s response to previous questions).
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The segment CDIN

355. The routine CDIN writes a complete entry into COMPQN.DAT. This 

routine is only used by the level three utility CDCOM when creating a 

new version of C0MP0N.DAT.

The segment CDERR

35G. The routine CDERR is used universally to display an error 

diagnostic. The utility is called from any routine where the user 

may have made an unacceptable reply. A flag is transferred to CDERR 

in order to point to the particular diagnostic message required.

The form of the file COMPQN.DAT

357. The type of file used to store the component attributes has 

traditionally been a formatted sequential file since the file was 

constructed using the standard operating system editor. Now that 

access to the file has been automated by the development of CDE, a 

better form for C0MP0N.DAT would be the indexed type of file 

structure. This allows data to be stored in formatted "pockets" and 

also allows specific records of these pockets to be designated as

keywords. A file of this type is obviously the most suitable for our

application. Unfortunately, this type of file is not standard though 

it is available under UMS and also under later versions of RSX 

(provided the Record Management Services utility, .RMS-11, has been 

built into the operating system during the system generation). Due 

to the non-standard nature of this file, its use has been regretfully 

avoided.
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358. COMPON.DAT, at present, is still in the form of the simple 

formatted sequential file. This means that every time a change is 

made via CDE, a new version of COMPON.DAT must be created, an 

annoying and time consuming process.

359. A more efficient method of storing this information would be to 

use two direct access files where the information is stored in 

binary. The first file would contain the names of all the models in

the library together with a pointer. This pointer is the record

number of the second file where the attributes of the model may be 

found. This is effectively creating a simple indexed file using 

standard file structure. Figure 3.16 is a schematic of this proposed 

file structure.

A REUIEU OF THE WORK CARRIED OUT BY THE AUTHOR

360. In the case of the C0MP0N.DAT editor, the requirement was 

identified and the software developed solely by the author. The same 

is true for the object library software described in para.343. 

However, in the case of the standard program generator, matters are 

not that simple. It must be appreciated that when several people 

work on the same project (albeit different aspects of that project), 

it is difficult to accurately quantify the overall effect of any 

single developer. One could simply look at how much of the software

can be contributed to a particular member of the team but that would

be to ignore the influence, that and other work might have on the 

remainder of the package. Since the author is evidently unable to
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give a totally objective view of the impact of the work, it will have 

to be sufficient to simply examine the coding developed.

Program generator level one segments

361. The main segment has been rewritten in order to accommodate 

modifications to the remainder of the generator. However, its basic 

function has remained (and should always remain) unchanged. That is, 

to simply arrange the calling of level two segments with the aid of 

error and user requirement flags.

Program generator level two segments

362. This is certainly the area where the most important work has 

been carried out. The segments are listed below together with a 

description of the amendments or reconstruct ions made.

The segment PGIN has been completely rewritten.

The segment PGHELP is a new addition.

The segment PGOUT has been significantly amended in order to

introduce the modifications outlined in Chapter 4.

The segment PGCOMP has remained largely untouched, the only changes 

being to maintain compatibility between this routine and other

rewritten routines or new additions.

The segment PGODL has been completely rewritten.

The segment PGSEL is a new addition and was written to allow HASP to 

be used under VMS. It is similar in structure to its RSX 

counterpart, PGODL.
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Proaram generator level three segments

3G3. Like the main segment , the thirteen level three segments have 

remained unchanged, other than for minor amendments to utilites such 

as LOOKUP to cater for the changing form of COMPON.DAT. As stated 

previously, these routines are merely "tools" for the level two 

segments and their development should not be contributed to the 

author.
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CHAPTER 4 

THE SIMULATION PROGRAM

THE STRUCTURE OF THE SIMULATION PROGRAM

400. Having described the basic principles of the program generator, 

it is now useful to look in more depth at the simulation program it 

produces. This section looks at the program from two different 

angles. Firstly, it is examined from the user’s viewpoint.

Secondly, it is worthwhile to examine the different segments of the 

program.

401. Figure 4.1 shows the interaction between the user, the

simulation program and the associated data files. When a user runs a 

particular simulation program for the first time, it is necessary for 

him to define a great deal of data relating to the construction 

and/or operation of each component model in his circuit. Whenever it 

is thought likely that a user would not be able to supply a 

particular item of important information, the simulation program

gives advice and, in some cases, is able to retrieve parametric

information from a database. Figure 4.2 shows a typical set of

questions the user may be asked together with his response shown

underlined. At the end of this first simulation run, the parametric 

data is stored in a sequential data file called PARAM.DAT 

(PARAMetric DATa). On subsequent runs of the simulation, this 

information is retrieved and the user given the option of changing
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any item(s) of data.

402. The simulation also produces a great deal of numerical data 

with which the user may examine the response of any item of 

information which appears on the links. The information is stored in 

a direct access file called CADRES.DAT (CAD RESults DATa). The user 

may examine the information either in numerical form or with the aid 

of one of the graphics programs (see para.209).

403. The reason that CADRES.DAT is termed a direct access file, is 

that it resides in memory until completion of the simulation (the 

information being stored in binary form). This type of access is 

much more efficient than a that with a sequential file since the data 

is held in memory and no translation into ASCII code is required.

404. A further option developed by the author is to view the

simulation results as they are being produced. This allows the user 

to gain some feedback by interrupting the simulation in order to

investigate the results. He may then choose to continue or abandon 

the simulation. This graphics/simulation interaction facility is

considered an important part of a simulation package. However, the 

structure of its software is complex. As such, a complete section is 

devoted to its description (paras.446 to 455).

405. From the structural point of view, the standard simulation

program is not especially complicated. Figure 4.3 is a schematic of 

the standard simulation program. As can be seen, the program is 

broadly divided into two. One half of the program is concerned with
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the definition of the parametric data, the other with the production 

of the results. The program has been structured in this manner in 

order to trim the calculation coding to a minimum. It is desirable 

that the whole of the calculation coding be resident in memory 

continuously, i.e. there should be no overlaying of the calculation 

segments. Therefore, all coding not directly concerned with the 

calculation must be overlaid. Under UMS , this structuring is less 

critical since overlaying is not required. However, this structure 

still minimises the degree of page swapping necessary.

40G. For the reasons stated above, the parametric definition section 

is heavily overlaid. Unlike the calculation section where any 

particular routine may be called tens of thousands of times, routines 

in the parametric definition section are only called once or twice. 

Also, the time taken to perform a disc transfer (necessary in the 

case of disc resident overlays - paras.322 to 325) is of little 

significance when compared to the reaction of the user.

407. The heirarchy of the simulation program is not as clear cut as 

the programs described in Chapter 3. The main segment only calls two 

routines. Firstly it calls routine CONTRL which controls the 

parametric definition process. It then calls the integrator GEARKC 

which controls the calculation process. When the calculation is 

complete, CONTRL is again called in order to determine if there are 

any further user requirements. Figures 4.4 and 4.5 are flow diagrams 

for the parameter definition process and the calculation process of 

the simulation program respectively.
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408. An important group of subroutines are the standard utilities. 

These are a set of routines which may be employed by any of the 

models and carry out a calculation of a general nature. These 

routines are described in more depth in paras.433 to 445.

COMPONENT MODELS

409. Once the structure of a simulation package has been finalised, 

then there still remains the mathematical models that simulate the 

real system. It could be argued that the mathematical models are the 

mainstay of the package. If they are considered incorrect or 

ineffiecient, then no matter how efficient the structure of the 

software which manipulates these models may be, the package as a 

whole is worthless. In the case of HASP, the mathematical models are 

subroutines which simulate the behaviour (dynamic or instantaneous) 

of the physical components. Each mathematical model consists of two 

subroutines; one concerned with the definition of parametric data and 

the calculation of associated constants, the other concerned with the 

actual time varying calculation.

4t0. The author has attempted to categorise the component models as 

shown in table 4.1. It is possible to model a component, say a 

pressure relief valve, in any of the four methods outlined. It is 

important to choose a model which adequately represents the operation 

of the valve in the particular case being simulated. For example, it 

may be realistic to assume that the dynamic response of the valve is 

such that it is unimportant compared to other dynamic effects .within
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the circuit. If this is the case, then the user nay opt for an 

instantaneous model in order to reduce the computational overheads 

associated with simulations described by a large number of 

differential equations. On the other hand, the speed at which the 

valve opens may be of prime importance in which case the user will be 

forced to use a model which includes differential equations to 

describe the dynamic behaviour of the valve. Use of this type of 

model will undoubtedly cause the simulation program to take longer to 

execute. The other choice open to the user is between characteristic 

and first principle models. The main question here is "what 

information about the component is available?". The engineer using 

HASP to aid initial design is unlikely to know any more information 

than is available from a manufacturer’s catalogue. In this case, a 

model requiring operating characteristics may be used to good effect. 

However, an engineer using HASP to aid in the trouble-shooting of an 

existing circuit may suspect a particular component as being the 

cause of a problem. In this case, he will require a component model 

which employs a highly sophisticated analysis of the behaviour of the 

component accepting the fact that this makes his simulation program 

relatively bulky and slow running.

411. Many reasearchers have created HASP models during its existence 

and Tomlinson C141 has produced information on the standard modelling 

techniques that have evolved. In this thesis, the description of 

component models is restricted to a selection of those developed by 

the author and these have been chosen to show important new modelling
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techniques. These models are discussed below and a more complete 

mathematical description may be found in Appendix B.

Actuator/mechanical linkage models AL2Z and AL5Z

412. AL2Z models the behaviour of a double acting linear actuator 

which operates a mechanical linkage. This model has been included 

merely as an introduction to another actuator/linkage model, AL3Z. 

AL3Z models the behaviour of the actuator/linkage shown in

figure 4.G. The mathematical model representing the motion of the

actuator is identical to the standard HASP actuator model C141. 

However, the interest in this model lies in the representation of the 

mechanical load.

413. The actuator model consists of two first order differential 

equations which describe the motion of the piston and effectively 

solve Newton’s second law. These are

V
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Special care must be taken with the frictional terms in order to

account for the difference between the level of stiction and that of

coulomb friction. These equations require that the mechanical load 

be calculated in terms of force and mass reflected to the actuator 

piston. This calculation, though not complex as far as an 

engineering principle is concerned, is extremely lengthy in terms of

doc.
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algebra. The corresponding Fortran coding requires the use of a

large number of the standard trigonometric functions. When one

considers that in a typical simulation, the calculation routines may
4-be called in the order of 10 to 10 times, then it follows that the

£  6trigonometric functions will be called in the order of 10 to 10

414. The manner in which this problem was overcome, is of general

interest. The information required by the calculation routine was

simply the variation of effective mass and external force with 

respect to piston rod displacement. Therefore, it was decided to 

calculate these functions before entering the calculation routine and 

represent them approximately by a polynomial. The function was

calculated at one hundred equally spaced postions of rod displacement 

and these points used in a regression analysis to find a polynomial 

of a suitable order. The calculation was carried out in the 

calculation section of the parameter definition routine and a 

function segment called in order to carry out the regression 

analysis. The regression analysis is carried out ten times, for

polynomial order one to ten inclusive. The two equations describing 

the applied force and effective mass now become simply

t imes

n

Fr
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where n and m are the orders of the polynomials chosen by the user. 

The sum of the absolute values of the residuals is also calculated. 

These residuals are displayed in order that the user may select the 

order of the polynomials which best suit the functions.

415. It is considered that this technique of fitting polynomials to 

complex functions in order to simplify the simulation may be of use 

to other models which may be developed. Therefore, the regression 

function (REGR) and its associated function which solves the sets of 

normal equations by the Gauss-Jordan elimination method (SIMUL) have 

been incorporated into the general structure of HASP so that they may 

be easily employed by future model developers. The two routines are 

based on algorithms presented by Carnighan et al C151. Further 

details of these functions may be found in Appendix C.300 and a 

complete description of AL3Z is given in Appendix B.100.

Directional control valve model DC4Z

416. DC4Z models the behaviour of a three way, four port directional 

control valve. This model has been chosen in order to illustrate the 

principle of generalising a model which may be required for a 

specific purpose. A model of a tandem centre directional control 

valve was required but at the time, such a model did not exist in the 

component model library. Models of a closed centre valve and an open 

centre valve do exist and normal practice had been to simply amend 

the coding of one of these models in order to produce the required 

central configuration. It was decided to adopt a rather more general 

approach and to write a model which accounts for any possible
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configuration of the centre position.

417. The wanner in which this generalisation is achieved is by 

always assuming that all six possible flow paths exist (ports: S to 

A, S to B, S to R, A to B, A to R and B to R). The flows are 

calculated for all paths but are subsequently factored by 0 or 1 

depending upon whether that particular flow path actually exists in 

the configuration chosen by the user. This factor is set in the 

parametric definition routine of the model. The flows are then 

summed algebraically to give net port flows. This method allows the 

calculation routine to be completely free from decisions even though 

the model offers thirteen possible configurations. It does, of 

course, mean that unnecessary calculations are carried out. However, 

in this case, this is a small price to pay for the generality 

offered. A complete description of DC4Z is given in Appendix B.200.

Pressure compensated flow control valve model FC8Z

418. FC8Z models the dynamic behaviour of a pressure compensated 

flow control valve fitted with an orifice in parallel with the 

compensating orifice which eliminates the possibility of hunting at 

high differential pressures.

419. As stated earlier, four methods of modelling components exist. 

FC8Z is an example of perhaps the most unusual of these methods - the 

dynamic characteristic model. This model is based on FC3Z which is 

an instantaneous version of the pressure compensated flow control 

valve. FC8Z calculates this instantaneous flowrate in an identical
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fashion to FC3Z. The differential pressure/flow characteristic is

defined in the parametric definition routine leaving the calculation 

routine to merely compare the differential pressure defined by 

adjacent models to the characteristic. However, the dynamic model 

then calculates the "dynamic" flowrate by comparing the current 

condition of the valve to its previous condition then considering 

these variables as a demand and assuming the response is a first 

order lag. The differential equation used is

d.Q _ (AFn - APn-Q  fiQ

where A H - A P  . is the change in differential pressure during the time 
o fl*1

interval bn — '

420. Of course, the user is unlikely to know the values of the two 

coefficients A and B or even what their effect is in physical terms. 

Therefore, a chart has been developed which allows the user to read 

values of A and B given physical information concerning the transient 

response. A further step would be to code this chart such that the 

user need never know the existence of the coefficients A and B.

421. When developing a model of this kind, a great deal of care must 

be exercised in developing the algorithm and it is difficult to make 

rules that are water-tight. Evidently, this idea of calculating the 

intantaneous response of a component and then superimposing a first 

or second order transfer function, is sensible if the instantaneous 

variable being calculated is displacement (since it is the



- 62 -

differential equation with respect to displacement with which we are 

attempting to approximate). However, when the instantaneous variahle 

is a co-ordinate of a pressure/flow characteristic, then it is 

difficult to know what to use as the forcing function of the 

differential equation.

422. In the case of the pressure compensated flow control valve, a 

change in differential pressure causes the compensating spool to 

change position. Therefore, differential pressure is taken as the 

disturbing parameter which causes a transient response of the flow 

rate. If.one considers a pressure compensated flow control valve 

which has a perfectly flat characteristic, then an increase in 

differential pressure would cause the compensating orifice to close. 

Looking at the instantaneous characteristic, there is no change in 

flowrate. However, the dynamic response is likely to show an initial 

increase in' flowrate, returning to the instantaneous characteristic 

as the compenstaing spool takes up its new position. Conversely, if 

there is a decrease in differential pressure, then the flowrate would 

show an initial decrease, again returning to the set value when the 

compensating spool takes up its new position. A more detailed 

description of FC8Z is given in Appendix B.300.

Synchronous electric motor model GE1Z

423. GE1Z models the dynamic behaviour of a synchronous electric 

motor. The reason for using this model as an example is to 

demonstrate a method of writing first principle dynamic models which 

are not defined by the simple second order equation of motion or the
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first order fluid compressibility equation. The model is described 

in terms of a control block diagram employing the s-operator 

(figure 4.7). The model may be used as a motor or a generator since 

the algorithm is valid for a lead or lag condition of the rotor. The 

model also accounts for the effect of damper windings, friction and 

rotor and shaft inertia.

424. The algorithm in general terms is as follows:

Determine the difference between the synchronous speed (the 

demand) and the current generator speed (the response).

Integrate this error to get the lead/lag angle, and thus the 

generated electrical torque due to rotor slip.

- Also calculate the effect of the damper windings. The damping 

torque produced is a linear function of speed error C1B1.

- Sum these two torques to give the total electrical torque.

This electrical torque is then used, together with the applied 

torque (for example from an hydraulic motor) and the frictional 

torque, in the normal inertia equation to provide the generator speed 

at the next time step.

A complete description of GE1Z is given in Appendix B.40Q.

Meter In Pressure Compensator

425. PCDZ models the instantaneous behaviour of a meter in pressure 

compensator (for example, the Rexroth ZDC pressure compensator). 

This model calculates the flowrate through the valve algebraically. 

It does not employ differential equations. However, it does employ a
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simple iteration process to calculate intermediate parameters. In 

many ways, this type of model is often the most complex

algebraically.

426. It is intended that the component be used in conjunction with a 

4-way proportional valve (such as the Rexroth 4WRZ16). The purpose 

of the compensator is to maintain a constant pressure drop across the 

proportional valve thus maintaining a constant flow for a given

proportional valve position. Used in this manner,, the combination 

forms a pressure compensated flow control valve with an electrically 

variable flow setting.

427. The interest in this model lies in the method for performing 

the force balance on the spool. Firstly, the spool position is

calculated assuming static equilibrium and ignoring the effects of

momentum force. This defines that the valve is acting in a certain 

mode. The momentum force can now be included into the force balance 

and a new position of spool displacement calculated. The valve may 

still be acting in the same mode (though with a different spool

displacement), in which case, the latest spool displacement

calculated is acceptable. However, alternatively, the valve may now 

be acting in a different mode, with the result that an incorrect 

equation for the equilibrium has been used. The momentum force as

defined by this latest operating mode is then included into the force 

balance and a new spool position calculated. This process continues 

until the equation used and the result obtained both correspond to 

the same operational mode. PCDZ is described fully in
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Appendix B.500.

Diesel enaine model PM3Z

428. PM3Z models the dynamic behaviour of a diesel engine. Like 

GE1Z, the mathematical model is represented by a control block 

diagram. The model uses certain equations (such as the equation of 

motion) which would dictate that this reside in the dynamic first 

principle category. However, In order to calculate the applied 

torque, the algorithm requires the definition of a speed torque 

characteristic (accounting for normal speed droop, maximum torque and 

motoring). Therefore, PM3Z may be considered a "hybrid model". The 

differential equation employed is

where eT is the difference between the developed engine torque (from 

the torque/speed characteristic) and the applied pump torque.

429. The model is also included in order to illustrate the manner in 

which to produce the most versatile linking arrangement. The engine 

was intended for use in driving a hydrostatic transmission system 

which incorporated an electronic control system. The control system 

compared a demand signal to an engine feedback signal controlling the 

hydraulic motor swash accordingly. It was possible that the control 

circuit would require angular speed, angular acceleration or torque 

feedback (or any combination of these). Therefore, PM3Z was 

developed such that these three items of information were available,

dt
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but need not necessarily be connected to the electronic control 

models.

430. A further feature of PM3Z is that the engine governor setting 

is variable with respect to time. The governor setting is required 

as an external input and in general, the model would be connected to 

an external duty source. Further details of PM3Z may be found in 

Appendix B.600.

PUQZ Diesel enaine/hvdraulic pump

431. PU0Z models the instantaneous behaviour of a diesel engine and 

fixed displacement hydraulic pump combination. If an instantaneous 

model of a diesel engine were developed and connected to an 

instantaneous model of a hydrauluc pump, then an implicit 

relationship between the two models would exist. Therefore, to avoid 

introducing differential equations, the two components are combined 

into one model and the equations for hydraulic torque and angular 

velocity solved simultaneously.

432. However, a problem occurs in the attempt to reduce the 

equations. The torque speed characteristic incorporates extremely 

small smoothing regions in order to avoid a discontinuity between 

operating regions such as the speed droop and the maximum torque 

characteristics (This technique is applied generally and will be 

discussed in paras. 440 to 443 and Appendix C). These smoothing 

polynomials are cubics and, as such, are difficult to work with 

algebraically. Therefore, an iterative scheme is employed in order
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to calculate the position on the speed/torque characteristic at which 

the engine is operating. PU0Z is described in more detail in 

Appendix B.700.

STANDARD UTILITIES

433. It was realised by the author that a set of routines was 

required in order to carry out procedures which occur in several 

Models. These routines, for which the name standard utilities is 

suggested, eliminate the need for a modeller to develop coding which 

has been developed in a similar form previously. For example, many 

first principle valve models calculate the flow area of a port. If 

the standard routines did not exist, a modeller would be tempted to 

extract the necessary parts of coding from an existing model - an 

unnecessary and dangerous process. There are at present, four sets 

of utility routines available to the HASP modeller.

Unreasonable input data

434. A subroutine MESAGE has been developed to give a warning to 

users who define parametric data considered to be "unreasonable”. 

The routine has since been employed by all parametric definition 

subroutines. Whenever a user defines a parameter, then its value 

should be checked at two levels. Firstly, it should be determined if 

the value of the parameter would cause a fatal error. This is 

normally achieved with a simple IF statement. However, a check 

should also be made to ensure that the value of the parameter is not 

unreasonable. This might be due to the user not reading the question
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correctly or simply due to ignorance.

435. To cite an example, a user was once found entering a value of 

500 for the stroke of an actuator thinking that the variable was 

required in mm. In fact, the question clearly stated that the 

actuator stroke should be in metres! (This would not be a fatal error 

but defining an actuator as being 500m long is certainly 

unreasonable.) In a case such as this, the user should be warned that 

the defined value is outside normal working limits and he should be 

given the chance to redefine. However, since the limits specified in 

the program are somewhat arbitrary, the user should be allowed to 

continue if he defines the same value twice. If the redefined value

is different and still outside these limits, then the value should

again be queried.

436. Due to its structured nature, the coding required to carry out

this logic is best contained in a subroutine which may be called

after each question. The upper and lower limits of the parameter may 

be defined explicitly in the argument list. A detailed description 

of MESA6E is given in Appendix C.100.

The flow area of valve oorts

437. The subroutines PTI and PTC calculate the flow area of a valve 

port. The subroutine PTI is called from the parametric definition 

subroutine of a model and determines the configuration of the port 

i.e. whether it is an annular port, a circular port or a triangular 

port and its relevant dimensions. The subroutine PTC is subsequently
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called from the calculation subroutine of a model and determines the

underlap of the valve) and also the spool displacement.

438. The use of these routines obviously reduces the time taken to 

develop, debug and test a model. However, the modeller should be 

aware of the fact that use of these subroutines (particularly PTC) 

often constitutes an inefficient use of cache memory (Cache memory is 

a small, high speed memory that maintains a copy of frequently 

selected portions of main memory for faster access to instructions 

and data). Therefore, a simulation program which incorporates a 

valve model using the logic of PTC will undoubtedly take longer to 

execute than the same simulation with the port area calculation 

included as inline coding. Furthermore, the whole principle of 

modular programming almost inevitably causes cache memory to be used 

inefficiently. It does, however, form a package which is manageable 

by users who do not have a large amount of programming experience and 

expertise. A complete description of these two subroutines is given 

in Appendix C.200.

The representation of functions bv polynomial regression

439. The fuctions REGR and SIMUL perform a two-dimensional 

regression analysis on a set of data points. The regression analysis 

is completely standard and produces a polynomial

actual flow area given the port dimensions (including the overlap or
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by minimising the sum of the squares of the errors

It is envisaged that these functions could be used for two different 

purposes. Firstly, they could be employed' by a parametric definition 

subroutine of a model which requires the definition of a 

characteristic available from test results. Secondly, they could be 

employed by a model where a complex calculation is required to define 

a function. This second case has been described in some detail in 

paragraph 413 (actuator/load model AL3Z). The arguments of efficient 

use of cache memory mentioned in paragraph 438 above does not really 

apply in this case since these functions are a part of the

interactive input section of the simulation program where speed of 

execution is less critical. The functions REGR and SIMUL are

described in Appendix C.300.

The smoothino of discontinuous functions

440. The integra’tor used in the simulation program is based on a 

method developed by Gear [101. The method is particularly useful in 

the solution of the differential equations produced in the analysis 

of hydraulic systems due to its ability to select the most efficient 

combination of order and integration timestep. However, the drawback

with this method is its inability to cope with derivatives which vary

discontinuously with time. The derivative would vary in such a 

manner if any of the coefficients varied with time. As an example,
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consider a simple pressure/flow characteristic of a single stage 

relief valve. When idealised to two straight lines, a discontinuity 

in the characteristic exists at the cracking pressure. Therefore, an 

adjacent pipe would find that the flowrate required in the

differential equation which describes the compressibility of the

fluid does not vary continuously with respect to time. The 

integrator logic becomes extremely inefficient at this discontinuity 

and may even fail [171.

441. The method used to overcome this problem consists of fitting an 

exact cubic polynomial through an extremely small region either side 

of the discontinuity. This allows the characteristic to be

continuous in function and first derivative. The modeller was

expected to calculate this cubic for every discontinuity in first 

derivative that existed in the characteristics of his models.

442. In order to simplify matters, a standard method of deriving the

cubic in terms of a non-dimensional parameter, z, (rather than the 

independent variable, x) was produced (see Appendix D.100 for the

derivation). The derivation of the coefficients of z is simpler than 

the derivation of the coefficients for a cubic expressed in terms

of x. In order to simplify matters further, it follows that a

standard routine for calculating these coefficients could be written. 

However, expressing the equation in terms z dictates that this non- 

dimensional parameter be calculated on every visit to the model

calculation routine and for every discontinuity. Since it was

decided to adopt a generalised routine called from the input section
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to calculate the coefficients, the extra algebra involved in 

calculating coefficients of x was irrelevant.

443. The routine CUBIC is called from the calculation section of the 

parametric definition routine of a model and calculates coefficients 

of a cubic polynomial which is expressed in terms of an independent 

variable, x. The routine requires the values of the function and its 

first derivatives at the limits of the smoothing region. A detailed 

derivation of the cubic polynomials is given in Appendix D.100 and a 

description of the routine CUBIC is given in Appendix C.400.

The method of invokino standard utilities

444. It is almost certain that the routines MESAGE and CUBIC will be 

used in every simulation program produced. Therefore, it was 

considered unnecessary to expect the modeller to inform the generator 

whenever the routines are included in a model. These routines are 

built automatically into every simulation program produced.

445. On the other hand, the routines REGR/SIMUL and PTI/PTC will be 

used only occasionally and are substantial in length. Therefore, it 

is necessary for the generator to discriminate between simulation 

programs which require these routines and programs which do not. 

This is achieved by the user adding an entry to the model attributes 

file C0MP0N.DAT. At present, any one model may use only four 

standard utilities. This is an arbitrary limit dictated by the logic 

of the overlay descriptor writer PGODL (see para.341 ) which may be 

easily overridden. However, at present, no models in the HASP
I
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library requires the use of more than one (set) of these optional 

utility routines.

GRAPHICS/SIMULATION INTERACTION

44G. A good CAD system allows the user to exercise his potential to 

the full. His creativity should not be hindered. An important facet 

of this requirement is that he must get feedback from his simulations 

as quickly as possible. It follows that it is necessary to write 

models as efficiently as possible and also to employ an efficient 

numerical integrator. Another important method is to give the user 

useful feedback during the running of a simulation. Due to the fact 

that a great deal of information is required from the simulation of a 

hydraulic circuit, it is insufficient to list the output in numerical 

form. The output must be graphical.

447. It may be thought that the simplest manner in which to plot 

graphs during a simulation would be to add several plotting routines 

to the end of the output subroutine (OUT). This is not the simple 

answer it appears since it would certainly require overlaying to be 

carried out during the calculation section of the simulation. 

Therefore, it was decided to write a separate graphics program which 

would lie dormant (in dynamic memory if available) until required. 

The graphs that are produced are any item of information appearing on 

an external link against time.

448. It was decided that the most useful graphics program would
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remain inactive until the user decided to investigate various system 

responses. This program was developed and called the ”interrupt" 

graphics program. When the simulation starts, the graphics program 

writes a prompt to the screen inviting the user to interrupt the 

simulation. The simulation continues unhindered until the user types 

the interrupt. At this point the simulation is temporarily halted 

and the user is able to investigate any of the system parameters. 

When he has obtained sufficient information, he is able either to 

allow the simulation to continue or to abort the simulation should 

the results show unsatisfactory behaviour.

449. The graphics program described above obviously requires a great 

deal of interaction between the user and the simulation. Therefore, 

a further graphics program was developed which automatically plots a 

single graph at user defined intervals of simulation time. To the 

user, this form of graphics output is identical to that which would 

be achieved by appending graphics routines to the output routine 

(OUT). This program is termed the "refresh" graphics program. At

the beginning of a simulation, the user is given the option of

choosing one of these graphics modes.

450. This form of programming structure requires that two separate

tasks should have the ability to communicate. This is achieved by 

using inter-task communication commands (often termed memory 

management directives). Important tools used in these programs are 

the event flags. Event flags are special addresses used by the 

system to determine whether or not a particular function should be
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carried oat. Different levels of event flags exist. The local event 

flags are known only to an individual task. The group global event 

flags are known to every task operating under user identification 

codes (UIC) of the sane group and are the flags used in the graphics 

prograns described in this section. The global event flags are known 

by every task in the system. The directives used in this application 

are those concerned with suspending and resuning tasks and reading,

clearing and setting event flags. The logic of the two options are

described below in more detail.

The interrupt graphics program

451. Figure 4.8 is a flow diagram of the logic of the interrupt 

graphics program and the relevant logic of the simulation program. 

At the start of a simulation, the group global event flags are

cleared. This is required in the event of a previous simulation 

being aborted via a monitor console routine. Assuming the interrupt 

graphics program is required, the user defines the terminal. At this 

point , the graphics program writes the prompt onto the screen 

inviting the user to interrupt or abort the simulation. The graphics 

program halts at this point waiting for a response. In this state, 

the program will lie dormant either in dynamic memory, or

checkpointed onto disc if many other tasks are active and the space 

in dynamic memory required.

452. Whilst the graphics program has been carrying out these 

functions, the simulation program has been active but has been 

sharing the processor. After every calculation step, the simulation
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program reads event flag 72 in order to ascertain whether or not the 

simulation is to be aborted. If this flag is set, the simulation 

program closes the results data file then stops. If the flag is 

still clear, then event flag 70 is read. This ascertains whether or 

not the user has requested that a graph be drawn. If it is set, then 

the data file is closed the graphics program resumed and the 

simulation suspends itself.

453. Whilst the simulation program had been active as described 

above, the graphics program had obviously set event flag 70, then 

read event flag 71 to find out if the simulation had finished. If 

the simulation had not finished, then the graphics program suspends 

itself until the simulation program has had chance to read event 

flag 70 and close the data file. When resumed, the data file is 

opened and the required data read. The simulation is then resumed 

and time shares until the graphics program is again dormant. The 

required graphs are then plotted. If the simulation is complete, the 

graphics then stops. Otherwise, the interrupt prompt is again 

displayed to the user and the graphics program suspended.

The refresh graphics program

454. Figure 4.9 is a flow diagram of the logic of the refresh 

graphics program and the relevant logic of the simulation program. 

In fact, this simulation program is identical to the one described 

with the interrupt graphics in paragraph 451 above. The logic of the 

refresh program is simpler than that for the interrupt program since 

there is only interaction between the two programs rather than the
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user creating the three way interaction described above. As for the 

interrupt program, at the start of a simulation, the group global 

event flags are cleared. Assuming the refresh graphics program is 

required, the user defines the terminal and also defines which 

particular parameter he requires. Whilst these functions are being 

carried out, the simulation has been suspended.

455. The simulation program is resumed and the graphics suspended.

The simulation continues until it reaches a time where the graph is 

to be refreshed. At this point, the simulation closes the data file, 

resumes the graphics then suspends itself. The graphics program 

plots the required graph then reads event flag 71 to ascertain 

whether or not the simulation is complete. If it is not, the 

graphics program resumes and the simulation then suspends itself 

until the next refresh interval occurs. If flag 71 is set, then the 

graphics simply stops.

A REVIEW QF THE WORK CARRIED OUT BY THE AUTHOR

45G. The most notable changes to the structure of the simulation

program carried out by the author have been the inclusion of the 

special purpose utility routines (both the optional and compulsory

variety) and the inclusion of the graphics interaction directives.

As with any change to the structure of the simulation program, 

corresponding changes to the program generator must be made. As far 

as component models are concerned, over sixty have been written, some 

of which are included in this thesis (Appendix B). The models
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included are intended to show new modelling techniques that have been 

developed during the course of this work, and also to show the use of 

the utility routines in practical applications.
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CHAPTER 5 

A PRACTICAL APPLICATION

INTRODUCTION

500. This chapter describes the simulation of a large hydraulic 

circuit intended to operate four actuators at different constant 

velocities. The circuit consists of a supply system and four sub­

systems. The supply system is common to six operating circuits 

(i.e. a total of 24 actuators). In order to simplify the simulation, 

an initial assumption was made. This assumption was that the dynamic 

response of any one of the four sub-systems had a negligible effect 

on any of the other sub-systems. In fact, these sub-systems 

certainly have some effect since the pressure level of the supply is 

dependent upon how many of the actutors operate at once. However, 

provided the effect on the supply pressure could be accounted for, 

then it was considered feasible to simulate the four sub-systems 

separately. Each of the four simulation programs produced 

incorporates the supply system together with flow sinks to simulate 

the remaining three sub-systems. The assumption that the sub-systems 

did not interact dynamically was subsequently borne out by 

investigating the dynamic response of the pipes connecting the sub­

systems.

501. The supply for the circuit is common to all the sub-systems and 

is therefore presented separately. In order to gain a complete
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picture of a particular sub-system, it is necessary to combine the 

hydraulic diagram and the computer linking diagram for the supply 

(figures 5.1 and 5.2) with those for the sub-system in question.

502. The names given to the sub-circuits are derived from the 

mechanical devices that they operate. They are termed the slide 

sub-circuit, the cap sub-circuit, the shutter sub-circuit and the 

catch sub-circuit.

SUPPLY SYSTEM

503. Figure 5.1 shows the supply system. The external hydraulic

supply consists of a fixed displacement hydraulic pump, a relief 

valve and two accumulators which may be supplying utilities other 

than the six circuits. Each particular operating circuit 

incorporates an accumulator which affects only the pressure levels in 

that circuit due to the inclusion of an anti-back flow check valve.

504. This complete supply delivers flow to the slide, cap, shutter

and catch sub-circuits. In addition, it supplies other utilities

within a particular circuit.

505. Figure 5.2 shows the computer linking diagram corresponding to

the supply system hydraulic circuit in figure 5.1. Brief

descriptions of the mathematical models are given below:

TK0B01 represents the two port hydraulic tank. It supplies 

a user-defined pressure to the adjacent models which is
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independent of both flowrate and tank volume.

PM0001 represents the prime mover. It supplies a user- 

defined angular velocity to the pump. The effects of speed 

droop, maximum torque and motoring are ignored.

PU0001 represents the fixed displacement hydraulic pump. 

The analysis of the behaviour of the pump is based upon the 

Wilson model. Pump dynamics are ignored.

PC0101 represents the supply system relief valve. The model 

supplies flowrate to the adjacent models based upon a user- 

defined pressure/flow characteristic. The characteristic is 

assumed linear and leakage, saturation and valve dynamics 

are ignored.

AC2R models the dynamic and steady state response of a 

bladder accumulator and pipe combination. AC2R01 represents 

the two large accumulators of the external hydraulic supply. 

AC2R02 represents the accumulator serving the particular 

operating circuit being examined.

DF0A models a flow source with up to six time dependent 

constant flow stages. In general, this model will be used 

as a flow sink rather than a flow source. Therefore, the 

user must define the flow as being negative. DF0A01 

represents the other utilities served by the external 

hydraulic supply, DF0A02 represents the five other operating
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circuits and DF0A03 represents other suh-circuits of the 

sane operating circuit. With correct use, these models will 

allow interaction between different hydraulic circuits to be 

examined.

GR3Z01 represents the flow limiting orifice.

PC0001 represents the anti-back flow check valve. 

Mathematically, PC00 is identical to the relief valve model 

PC01, the only difference being in the advice given 

concerning the user defined parameters.

PI0501 represents the length of pipe connecting the flow 

limiting orifice to the anti-back flow check valve. This 

dynamic model accounts for the effects of air release and 

cavitation.

506. Links 15 and 16 connect the supply circuit linking diagram to 

the sub-circuit linking diagram. The slide and cap circuits are both 

regenerative and as such, require both links 15 and 16. However, the 

shutter circuit requires only link 15. Therefore, link 16 is not 

present in the shutter program. The supply to the catch circuit is 

connected to the pipe which supplies the rod end of the slide 

actuator. However, the flow to the catch is extremely small and the 

supply is therefore assumed to remain at a constant level.
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SLIDE SUB-CIRCUIT

507. Figure 5.3 shows the slide sub-circuit. The sub-circuit is 

regenerative on extension of the actuator and employs meter out flow 

control on both extension and retraction. Situated on the supply 

port of the directional control valve is a sharp edged orifice, the 

purpose of which is to create an additional pressure drop whilst the 

actuator is extending, thus limiting the actuator annulus pressure to 

an acceptable level. Orifices also exist on the actuator ports, the 

purpose of these being to dampen the pressure transients in the 

connecting pipes.

508. The by-pass relief valves connected to the inlet ports of the 

pressure compensated flow control valves are not included in the 

simulation programs. The set cracking pressure of these valves is 

extremely high and they should not pass fluid except in the case of 

emergency. However, the pressure levels at the flow control valve 

inlets must be noted following each simulation to ensure that this 

cracking pressure has not been exceeded.

509. The interlock valve should remain in the position shown 

throughout the operation of the slide. Therefore, this valve is not 

included as a model in the simulation programs. However, its effect 

in terms of pressure loss should be noted and accounted for in an 

appropriate manner (see para.511).

510. It was required that it be possible to determine the effect of 

the sharp-edged orifice on the annulus side of the actuator to the

l
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extent of its removal from the circuit. It would be possible to 

include the orifice and in order to reduce its effect, the user could 

define an orifice diameter equal to the pipe diameter. 

Unfortunately, this would produce a system which was, mathematically, 

extremely stiff and would result in unacceptably long run times. 

Therefore, two simulation programs were produced: FC1A which does not 

include the orifice and FC1B which does.

SI 1. Figure 5.4 shows the computer linking diagram corresponding to 

the hydraulic circuit in figure 5.3. Brief descriptions of the 

mathematical models are given below:

DC3Z01 represents the slide "open" directional control 

valve. The model also incorporates the orifice on the 

supply port of the directional control valve. The dynamic 

response of the spool is ignored.

DE0101 is a valve controller which defines the fractional

displacement of the spool of the directional control valve

DC3Z01.

TK0001 represents the return tank.

PI05 models the dynamic response of a frictionless pipe. 

The model also accounts for the effects of air release and 

cavitation. PI0502 represents the fluid volume between the

directional control valve and the pressure compensated flow

control valve. PI0503 represents the pipe line between the
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pressure compensated flow control valve and the damping 

orifice. PI0504 exists only in task FC1B and represents the 

pipeline between this optional damping orifice and the

pressure compensated flow control valve. The pressure loss 

in these lines should be accounted for by adjusting the 

effective restriction of the adjacent orifices or valve 

models.

FC1V models the instantaneous response of a pressure

compensated flow control valve. The model includes the

effect of limiting the compensating spool travel. FC1V01 

represents the retraction flow control valve and FC1U02

represents the extension flow control valve.

0R3Z models a restrictor. OR3Z02 represents the damping 

orifice situated on the full bore side of the slide 

actuator. OR3Z03 exists only in task FC1B and represents 

the optional damping orifice situated on the rod side of the 

actuator.

PI0G is similar to PI05 the difference being that PI0G 

accounts for a variable effective pipe volume. In this 

case, the variation in volume is due to the motion of the 

actuator rod.

ALAT01 represents the slide actuator. ALAT models the 

dynamic response of the actuator rod and accounts for 

stiction, coulomb friction, viscous friction and windage.
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The level of these friction effects are user defined and so 

may be ignored if required. Internal leakage is also 

accounted for.

CAP SUB-CIRCUIT

512. Figure 5.5 shows the cap circuit. The basic design philosophy 

is the same as that of the slide circuit. However, an overcentre 

valve which also operates as a pilot operated reverse free flow check 

valve and a two stage pressure relief valve is also incorporated in 

the line connected to the piston side of the actuator. When the cap 

is to be kept fully retracted, the check valve is piloted open 

allowing the piston pressure to be maintained at tank pressure. 

Therefore, since the pressure on the annulus side of the actuator is 

always of the same order as the supply pressure, the cap will remain 

retracted even under high external acceleration forces. Furthermore, 

the differential area of the main stage poppet of the overcentre 

valve is such that if the actuator piston pressure increases, then 

the force holding the poppet on its seat also increases. Thus, if 

the cap is extended and the system is subjected to high acceleration 

forces, then only the fluid in the line connecting the overcentre 

valve to the actuator will be compressed. Therefore, any tendancy 

for the actuator to retract will be eliminated. However, this is 

only true provided this piston pressure does not exceed the cracking 

pressure of the second stage of the overcentre valve. The main 

overcentre pilot line is connected to the directional control valve.
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This pilot is connected to supply during retraction of the actuator, 

thus holding the valve open.

513. As in the slide simulation programs, the by-pass relief valves 

connected to the inlet ports of the pressure compensated flow control 

valves are not accounted for. Similarly, the tube sealed interlock 

valve is not included.

514. Also, as in the case of the slide simulations, two cap

simulation programs were produced: FC2A and FC2B (see para.510).

515. Figure 5.G shows the computer linking diagram corresponding to

the hydraulic circuit in figure 5.G. Brief descriptions of the

mathematical models are given below:

OR2Z01 represents the pressure reducing orifice. It is

intended that the orifice should affect the flow on

extension of the cap actuator but not on retraction. 

Therefore, a reverse free flow check valve was fitted in 

parallel with the orifice. It was decided to introduce the 

orifice model upstream of the supply port of the cap

directional control valve since this would have a similar 

overall effect and such a model already existed (OD0Z).

PI05 models the dynamic response of a frictionless pipe. 

PI0502 represents a non-existent pipe and is required solely 

for linking purposes. PI0503 represents the fluid volume

between the overcentre valve and the pressure compensated
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flow control valve. PI0504 represents the pipe line between 

the pressure compensated flow control valve and the damping 

orifice. PI0505 exists only in task FC2B and represents the 

pipe line between the optional damping orifice and the

pressure compensated flow control valve. The pressure loss 

in these lines should be accounted for by adjusting the 

effective restriction of the adjacent orifices or valve 

models.

OD0Z01 is an instantaneous combination model which 

represents the cap directional control valve and the

overcentre valve (latch cap open).

DE0101 is a valve controller which defines the fractional

displacement of the spool of the directional control valve.

TK0001 represents the return tank.

FC1U models the instantaneous response of a pressure 

compensated flow control valve. FC1V01 represents the

retraction flow control valve and FC1V02 represents the 

extension flow control valve.

0R3Z models a restrictor. OR3Z02 represents the damping 

orifice situated on the full bore side of the cap actuator. 

OR3Z03 exists only in task FC2B and represents the optional 

damping orifice situated on the rod side of the actuator.

PI0G is similar to PI05 the difference being that PI0G
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accounts for a variable effective pipe volume. In this

case, the variation in volume is due to the motion of the

actuator rod.

ALBT01 represents the cap actuator and its associated load. 

This load consists of the variable effective inertia of the 

cap and also of the direct force which exists when the

actuator is not horizontal.

SHUTTER SUB-CIRCUIT

516. Figure 5.7 shows the shutter circuit. The circuit is not

regenerative on extension or retraction. The circuit employs meter 

out flow control in both the extend and the retract strokes by 

switching the actuator outlet line to the pressure compensated flow 

control valve via the directional control valve. The two overcentre 

valves are similar to the overcentre valve of the cap circuit, the 

difference being that the reverse free flow checks are not pilot 

operated. The overcentre valves are held open when the external 

pilot pressure is greater than some fraction of the main inlet 

pressure. This has the effect of minimising the possibility of 

cavitation should the shutter tend to over-run. As in the case of 

the cap, the shutter is locked open by the overcentre valve connected 

to the piston side of the actuator. Furthermore, it is locked open 

by the overcentre valve connected to the annulus side of the 

actuator. The reason for there being two overcentre valves in the 

shutter circuit whilst in the cap circuit there is only one is that
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in the case of the cap, the line connectd to the rod end of the 

actuator is always connected to supply. However, in the case of the 

shutter, following retraction the line connected to the rod end of 

the actuator is exhausted to tank. Therefore, in order to ensure 

that the piston remains on its end stop when retracted, pressure must 

be trapped in the rod end of the actuator, a requirement achieved by 

the inclusion of the second overcentre valve.

517. As in the slide simulation programs, the by-pass relief valve

connected to the inlet port of the pressure compensated flow control 

valve is not accounted for. Similarly, the tube sealed interlock 

valve is not included.

518. Figure 5.8 shows the computer linking diagram corresponding to

the hydraulic circuit in figure 5.7. Brief descriptions of the

mathematical models are given below:

PI2Z01 is a dynamic model of a pipe. This model has been 

included since, in the case of the shutter simulation, there 

are no models which can account for pressure loss between

the accumulator (AC2R02) and the shutter directional control 

valve (OD1Z01). Great care had to be exercised to ensure 

that the friction loss along the pipe is significant since 

if a user defines parameters which result in an extremely 

low pressure loss, then he runs the risk of creating a 

simulation which is mathematically stiff and may therefore 

take an unusually long time to complete.
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OD1Z01 is an instantaneous combination model which 

represents the shutter directional control valve and the two 

overcentre valves (latch shutter open, latch shutter shut).

DE0101 is a valve controller which defines the fractional 

displacement of the spool of the directional control valve.

PI0G is similar to PI05 the difference being that PI0G 

accounts for a variable effective pipe volume. In this 

case, the variation in volume is due to the motion of the 

actuator rod.

AL3Z01 represents the shutter actuator and its associated 

load. This load consists of the variable effective inertia 

of the shutter and also of the direct force which exists on 

the shutter.

PI05 models the dynamic response of a frictionless pipe. 

PI0502 represents the fluid volume between the directional 

control valve and the pressure compensated flow control 

valve.

FC1V01 models the instantaneous response of the pressure 

compensated flow control valve used for both the extend and 

the retract strokes.

TK0001 represents the return tank.
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CATCH SUB-CIRCUIT

519. Figure 5.9 shows the catch circuit. Due to the low flowrates

and extension/retract ion tines of the catch actuator, the supply

pressure can be assumed constant. Therefore, the supply system is 

not modelled.

520. Neither the shutter open interlock valve nor the shuttle valve 

are required in the simulation. However they do restrict the flow 

and their effect must be accounted for in an adjacent model.

521. Figure 5.10 shows the computer linking diagram corresponding to 

the hydraulic circuit in figure 5.9. Brief descriptions of the 

mathematical models are given below:

DE00 models a pressure source, the level of which may vary

with respect to time as defined by the user. DE0001

represents the pressure source connected to the catch 

circuit via the slide, cap and shutter open interlock 

valves. DE0002 represents the pressure source connected to 

the circuit via the slide annulus pipe line.

PI2Z is a dynamic model of a pipe. The model accounts for 

pressure loss along the pipe due to friction. PI2Z01 

represents the pipe line connected to the circuit via the 

interlock valves. Pressure loss across these valves should 

be accounted for by increasing the effective length of the 

pipe represented by PI2Z01. PI2Z02 represents the pipe line
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connecting the circuit to the slide valve annulus pipe line. 

This pipe model should also account for the pressure loss 

due to the reverse flow through the pressure compensated 

flow control valve (figure 5.3). Great care should be 

exercised to ensure that the friction loss along the pipe is 

significant. If a user defines parameters which result in 

an extremely low pressure loss, then he runs the risk of 

creating a simulation which is mathematically stiff and may 

therefore take an unusually long time to complete.

OR3Z01 represents the catch lower flow controlling orifice.

PC0001 represents the reverse free flow check valve 

connected in parallel with the flow controlling orifice. 

The model supplies flowrate to the adjacent models based 

upon a user-defined pressure/flow characteristic. The 

characteristic is assumed linear and leakage, saturation and 

valve dynamics are ignored.

PI05 models the dynamic response of a frictionless pipe. 

PI0501 represents the fluid volume between the check valve, 

the flow limiting orifice and the catch actuator.

AL1V01 represents the catch actuator and its associated 

load. This load consists of the variable effective inertia 

of the gears, the top stop and the rear catch and also of 

the direct force which exists due to the weight of the top 

stop and rear catch.
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MODEL UALIDATION AND VERIFICATION

522. It is important to recognise that model verification and model 

validation are distinct processes. To verify a model, one must 

ensure that the equations developed to represent a component are 

correctly coded. When validating a model, one is in fact validating 

the equations that have been derived. This validation process may 

take a variety of forms depending upon the model(s) being validated.

523. All models developed are verified in isolation. Some models are 

also validated either in isolation or as a combination as required. 

The verification process consists of linking the model under test to 

a series of algebraic test models. These test models take the form 

of sources of pressure, flow, torque etc. With the aid of the test 

models, the model under test may, for example, be subjected to step 

changes in torque, or to a differential pressure which sweeps across 

a complete operating characteristic. Diagnostic write statements are 

occasionally included in a model to aid verification.

524. Provided a model has been adequately verified, it is not always 

necessary to carry out a lengthy validation process. For example, a 

model of a relief valve which consists of pressure/flow 

characteristics relies purely upon the information obtained from a 

manufacturer’5 catalogue. It can be argued that a model is valid in 

certain conditions and not in others, thus making its validity 

dependent, amongst other things, upon user defined parameters. 

Therefore, it is necessary to clearly state the assumptions upon
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which a model is based and place the onus upon the user to ensure 

that these operational limits are not violated. However, a certain

amount of validation is carried out, primarily on models where the

equations being used have lengthy derivations, or on combinations of

models which initially produce dubious results. For example, the

shutter model (AL3Z) includes a great deal of trigonometric formulae 

which tend to attract mistakes. Therefore, a graphical validation of 

the effective inertia of the shutter and the resultant force on the 

actuator rod was carried out (see Appendix B.100). This particular 

validation method also verified the coding. A further example of 

validation is given below in the form of a test rig to validate the 

slide valve simulation.

525. A small amount of test work was carried out in order to

validate the slide circuit with particular emphasis being given to 

the retraction stroke. The reason for this is that the retract 

stroke displays somewhat oscillatory behaviour. The parameters used 

in the simulation program were adjusted in order that they should

match the parameters of the test rig. Figure 5.11 shows the test 

circuit and figure 5.12 the test results. Comparing these test 

results with the simulation results to be decsribed in the next 

section, good aggreement is found.

THE RESULTS

52G. Figures 5.13 to 5.22 show selected results from a series of 

simulation runs of the circuits described. Not all results are shown
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since just one run of all four simulations would produce 

approximately 180 graphs. Many of these are, of course, of little 

interest and with experience, a user can select and view the relevant 

results quickly and easily.

Results of the Slide simulations

527. Figure 5.13 shows a selection of responses of the slide 

simulation. This was considered as a standard run since the data 

defined represented the proposed normal running of the circuit. 

Figure 5.13(a) shows the variation of the displacement of the

actuator with respect to time. The time taken for the actuator to 

reach maximum stroke is slightly, less than 0.75 seconds. The 

actuator is held open for only a fraction of a second before 

retraction. This time interval is kept short due to the fact that 

the simulation often runs at the same speed or even slightly slower

when actuators are at their end stops. The time interval between

extension and retraction is, of course, large enough to ensure any 

system transients have died away. Figure 5.13(b) shows the variation 

of actuator velocity with respect to time.

528. Figure 5.14(c) shows the variation of the actuator piston

pressure. These systems incorporate tanks which are pressurised at 1 

bar (gauge). Therefore, when the actuator is fully retracted, the 

pressure in the piston end is that of the tank (or the pressure in 

the return line should other sub-circuits be active). When the 

directional control valve is actuated, the pressure in the actuator
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rises until the stiction is overcome and the mass begins to move. 

Once the actuator piston is moving, the friction reduces to the 

normal level of coulomb friction <plus viscous friction if 

applicable) causing the pressure response to overshoot slightly. The 

pressure quickly reaches a stable value though it does slightly

decrease during the extension of the actuator. This is due to the

fact that, even though the system is regenerative, the flow required

from the supply system is large enough to cause the supply pressure

to reduce. After approximately 0.75 seconds, the actuator reaches 

its end stop and the pressure rises to that of the supply system 

(again assuming that no other systems are active). The pressure now 

rises slightly as the accumulators recharge. After a short length of 

time, the directional control valve is returned to its original 

position and the pressure reduces. Again, the response overshoots

due partly to the effects of stiction and inertia as mentioned above,

and partly due to the response of the flow control valve, the 

compensating spool having to move from an inactive state to a 

controlling state.

529. This is a region where a design engineer should pay particular

attention. A requirement of the system designers was that the system

should be reasonably quiet. The oscillation in the pressure level 

would almost certainly cause some vibrational noise and there is also 

the remote possibility of cavitation occurring. A system designer 

should recognise these facts and be aware of the parameters which 

affect the response. The simulation should be rerun, varying
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relevant parameters, in order to investigate the possible adverse 

consequences. It should be remembered that these parameters should 

be varied beyond what may be considered as reasonable for the 

particular components in order to account for the effect of modelling 

inadequacies.

530. Figure 5.13(d) shows the variation of flowrate into and out of 

the piston side of the actuator. It should be noted that a sign 

convention is applied to flowrate throughout the package. A flow is 

positive if it flows into a pipe such as PI05. The variation of 

flowrate is of course similar to that of actuator velocity, the only 

difference being due to acuator leakage ■ and the sign convention 

mentioned above.

531. Figure 5.13(e) shows the variation of pressure in the annulus 

side of the actuator. The only interesting feature of this response 

is the pressure intensification during extension of the actuator 

causing a pressure level of almost 300 bar. Again, the levels slowly 

increase and decrease due to the recharging and discharging of the 

supply system accumulators. The supply system pressure is shown in 

figure 5.13(f).

532. Figure 5.14 shows the effect of changing certain parameters 

from the standard set defined above.

533. Figure 5.14(a) shows the variation of actuator piston pressure 

for a circuit which includes the damping orifices on the actuator 

ports. As can be seen, the oscillatory response has been reduced
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without adversely affecting the ’steady state’ pressure levels.

534. Figures 5.14(b) to (e) show the effect of starting the 

simulation with a substantially lower system pressure. This is 

possible following a series of operations of the four circuits. In 

this case, the pressure in the actuator piston rises even during 

extension due to the rapid recharging of the accumulators. The 

pressure compensated flow control valves still operate normally, thus 

ensuring that the extension and retraction times of the actuator 

remain around 0.75 seconds. The only possible problem is in the 

level of piston pressure following commencement of actuator 

retraction. The pressure now reduces to approximately 10 bar warning 

of possible problems.

535. Figure 5.14(c) shows the effect of a low initial system 

pressure on the circuit including the damping orifices. It can be 

seen that the oscillatory response is reduced still further.

53B. These simulation runs have shown three important points. 

Firstly, the system behaves acceptably under normal conditions. 

Secondly, an initial pressure level of half the normal value does not 

have an adverse effect on the extension and actuation times of the 

actuator. Finally, a possible problem exists in the slightly 

oscillatory response of the actuator piston pressure warrenting 

further investigation.



- 100 -

Results of the Cap simulations

537. Figures 5.15 and 5.1G show a selection of responses of the cap 

simulation. Figure 5.15 shows the standard run. The design and 

operation of this circuit is similar to the Slide circuit and, as 

such, little detailed explanation is required. However, there are 

two important points to note. Firstly, due to the much lower 

velocity of the actuator piston on retraction, the worrying pressure 

oscillation present in the slide circuit results is not of an 

important magnitude in this simulation. Secondly, due to the design 

of the cap actuation mechanism, the effective mass of the cap is 

extremely high (approx. 1750 kg, figure 5.15(c)).

538. Figure 5.16 shows the results of two further simulation runs. 

Figures 5.16(a) and (b) show the actuator piston and annulus pressure 

(respectively) due to a low initial system pressure. The remaining 

two graphs also show these two pressures but due not only to low 

initial pressure, but also to an operational temperature of 0 C. As 

can be seen, the important features of .actuator extension and 

retraction times are not affected.

Results of the Shutter simulations

539. Figures 5.17 to 5.20 show a selection of responses of the 

shutter simulation. In this case, there is no standard run since the 

load on the shutter is not known sufficiently accurately. Therefore, 

the purpose of this simulation is to show the limits of operation.
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The four figures show the change in responses due to increasing

shutter loads.

540. Figure 5.17 shows the system response due to a shutter load

starting at IGkN when the shutter is closed (actuator retracted) and

reducing in a linear fashion with respect to shutter angle, becoming 

zero when the shutter is horizontal. Figure 5.17(a) shows the 

variation of actuator displacement. The extension and retraction 

times are significantly longer than those of the previous simulations 

(approx 5.5 and 8 seconds respectively).

541. Figure 5.17(b) shows the variation of force on the actuator rod 

due to the external shutter force with respect to actuator 

displacement. It can be seen that at approximately half stroke, the 

load of 5kN is intensified to approximately 30k.N at the actuator rod. 

Similarly, figure 5.17(c) shows the variation of shutter inertia

reflected to the actuator as an effective mass.

542. Figure 5.17(d) shows the variation of actuator piston pressure 

with respect to time. In this case, the effect of the external load 

can be seen on the pressure response. On extension, the pressure is 

that of the supply system, apart from a small pressure loss in the 

supply lines. However, on retraction, the pressure level reduces to 

compensate for the external load, becoming a minimum at approximately 

half the actuator stroke. It should be noted that this pressure is

approximately the inlet pressure of the pressure compensated flow

control valve. Therefore,.the compensating spool of the flow control
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valve is moving in order to attempt to maintain a constant pressure 

drop across its preset metering orifice.

543. The pressure transient present in both previous simulations 

exists also in the shutter simulation. In this case, due to the much 

lower velocities, the amplitude of the transient is smaller than in 

the slide or cap simulations. However, it does seem that the 

oscillation is less well damped. It was, in fact, this response 

which caused the dynamic pressure compensated flow control valve 

model (FC8Z) to be written. This simulation was carried out with an 

instantaneous version of the model (FC3Z) which implicitly assumes 

that the response of the compensating spool was instantaneous. By 

replacing FC3Z with FC8Z, this oscillation could no longer be 

detected on the simulation responses. This example emphasises the 

importance of the correct selection of models by the user, an ability 

relying upon hydraulics experience rather than computational ability.

544. Figure 5.17(e) shows the variation of the actuator annulus 

pressure. Again, the effect of the external load can be seen, this 

time as a pressure intensification during actuator extension. The 

pressure level reaches a maximum of approximately 335 bar and it 

sjtould be noted that the pressure/flow characteristic of the pressure 

compensated flow control valve begins to droop significantly at 

around 350 bar.

545. Figure 5.18 shows the effect of increasing the external load on 

the closed shutter to 35 kN. The remainder of the load definition
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remained the same. Qualitatively, the reponses are similar to those 

in the previous run described above. However, an important

difference exists. Firstly, due to the intensification of the

actuator annulus pressure causing pressure levels of around 460 bar, 

the pressure compensated flow control valve no longer controls at the 

set value and the actuator takes longer to extend. This can be seen 

in figure 5.18(e) which shows the flow through the valve (the set 

level being 0.25 l/s).

546. Figure 5.19 shows the effect of increasing the shutter load 

still further. In this case, the load on the closed shutter is 

defined as 40kN. Figure 5.19(a) shows a significant problem in the 

motion of the actuator. On retraction, the actuator slows for a time 

before returning to its original velocity. Figure 5.19(c) shows the 

cause of this problem. The differential pressure across the pressure 

compensated flow reaches an extremely low level and the valve no 

longer accuractely controls. The differential pressure is, in fact, 

lower than that required across the preset metering orifice of the 

valve. The valve has become a simple restriction.

547. Figure 5.20 shows the logical conclusion of this examination. 

The load on the closed shutter is increased to over 50kN. In this

case, the extension time of the actuator is affected, but on

retraction, the supply pressure is insufficient to close the shutter. 

This effect could obviously be obtained with a lower system pressure 

and a lower load.
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548. This simple series of simulation runs shows the important

facility of being able to examine the effects of various load

conditions. This is extremely important since it is the often the
•

load which is most difficult to define to any degree of confidence. 

Results of the Catch simulations

549. Figures 5.21 and 5.22 show a selection of responses of the

catch simulation. The extension of the catch actuator is extremely 

fast since there is no pressure compensated flow control valve 

present. In fact, there is little restriction of any kind. However, 

on retraction, the check valve closes and the flow is metered out of 

the actuator. Figure 5.21(a) shows the variation of actuator 

displacement and 5.22(b) the variation of the velocity of the

actuator rod. As can be seen, the response times are approximately 

0.05 seconds on extension and 0.2 seconds on retraction.

550. Figure 5.22 shows the effect of operating the circuit with a 

reduced system pressure and without recharging the accumulators of 

the supply system. The important point to note is the now much 

slower response of the actuator, requiring 0.2 seconds to extend and 

0.35 seconds to retract.

Conclusion of the results

551. With these results, it was the author’s intention to give the

reader an idea of what is possible. It was not intended that they
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should show the complete design process from initial concept to the 

tuning of components with the aid of the simulations, though the 

feasibilty of this process should be clear.

552. The results show how a user can investigate extremes of 

expected operating conditions (the effects of initial supply pressure 

and low temperatures in the slide, cap and catch simulations), or 

search for failure conditions (the external load on the shutter). In 

some cases, it was the dynamic response which of most interest (the 

transient response of the actuators when commencing retracting and 

the response of the pressure compensated flow control valve); in 

others, the steady state operation was important (the shutter 

simulation). In all cases, whatever system could be imagined by the 

user, can be simulated.
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CHAPTER 6 

MANAGERIAL ASPECTS

INTERNAL MANAGEMENT

GOO. The method of management of HASP that has been adopted, though 

a somewhat vague subject , is of general interest and may be found to 

be applicable to many other CAD packages. The.particular topics of 

interest are documentation, categorisation and standardisation.

Documentat ion

GOt. The production of detailed documentation is a generally 

accepted necessity. However, it is still considered a chore and the 

lesson is always learnt through experience (usually through bad 

experience). There are two types of HASP documents produced. The 

first is the manuals which describe the overall structure of HASP. 

The second type of document is the component model report. This 

consists of a detailed report of a component model and should contain 

an introduction, basic modelling assumptions, information on linking, 

the parameters to be defined by the user and finally a complete 

explanation of the equations which have been used to represent the 

behaviour of the component. These reports should contain sufficient 

information for any other modeller to enhance or debug the model. 

Due to the number of equations in these reports, it is impractical to 

employ a computer word processor to produce them. The onus is upon 

individual modellers to produce such a report and this documentation
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must be screened by all users before the corresponding model is 

accepted into the component model library.

Cateaorisat ion

G02. All new and updated software produced for HASP is categorised. 

In general, there are three categories. The lowest category contains 

experimental software. The second category contains software which 

has been employed by users other than the developer and to which some 

degree of confidence may be attached. The highest category contains 

software which has been used a great deal by a number of users and 

which seems to have no outstanding problems. Software from one 

category may be promoted to a higher category following a meeting of 

HASP users. Loss of integrity of the program generator is obviously 

very serious. Therefore, great care is exercised in replacing 

existing program generators by experimental generators and the 

retiring standard version is always archived. Though this method of 

categorisation applies to all HASP software, component models are the 

most usual to be dealt with.

Standardisat ion

603. Once a large program such as the generator or the graphics 

programs have been produced, then the general structure is set. 

However, component models are produced by many modellers and provided 

the link between these subroutines and the main simulation routines 

is in order, modellers are able to produce coding of any form. 

Unrestricted production of model coding would have two adverse 

consequences. Firstly, it would mean that any person attempting to
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debug or enhance a model of which he is not the author would be faced 

with unfamiliar coding making the model extremely difficult to amend. 

Secondly, there would be few guidelines for new modellers. It is 

obviously important to attempt to pass on any good or bad experience 

gained through modelling. Therefore, standard methods of 

mathematical modelling and coding have been developed C181. In fact, 

the methods have become so refined, that a component model generator 

now seems feasible (see para.711).

DIRECTORY STRUCTURE

804. An important but often neglected aspect of the installation of 

a CAD package is the location of the files and who should have access 

to them. Ultimately, this is obviously the decision of the system or 

group manager. However, certain elements of the package are tailored 

for the computer system employed at the University. An explanation 

of the directory structure adopted by the author will aid the 

adaptation of the package to other operating environments in the 

future.

605. Users of the UMS operating system are given the option of 

creating sub-directories. The use of sub-directories basically 

arranges the contents of the user directory into segments. 

Therefore, certain types of files may be grouped for easier access. 

An example of a user directory might be [HULL!. An example of a 

sub-directory associated with this user directory might be [HULL.PHD] 

(in fact, the sub-directory where the manuscript of this thesis was
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prepared).

GOG. HASP is contained in several user directories, each sectioned 

into several sub-directories. The program generator, the command 

line interpreter and the graphics programs should not require a great 

deal of access and furthermore, access other than that required for 

execution should not be granted to general users. These programs 

together with their source reside in.the directory [PG3. Figure G.1 

is a schematic of the sub-directories associated with CPGl.

G07. The sub-directory [PG.A] contains the source of the standard 

program generator PGA. It also contains the task image of this 

program generator and the system files required to produce it. The 

users known as group users and world users are only granted "execute" 

access.

608. The sub-directory IPG.Z] contains experimental versions of the 

program generator created by the author. Any new program generator 

resides in this directory until it is decided that it may be promoted 

to PGA. The file protection is as for [P6.A1.

609. The sub-directory CPG.ARK3 contains old versions of the 

standard program generator which have been superseded. Again, the 

file protection is as for CPG.A1.

610. The sub-directory [PG.GRAF3 contains the task images of the 

four graphics programs. It also contains the source of the main 

segments and certain controlling subroutines of the graphics programs
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and the system files required to produce them. There is also an 

associated sub-directory (a level 2 sub-directory) called 

[PG.GRAF.P10] which contains the Tektronix Plot-10 graphics source

and the corresponding object module library. These files have the

same protection as those mentioned above.

611. Finally, the sub-directory [P6.CLI] contains the HASP command 

line interpreter. This consists of several files containing command 

procedures. As such, the file protection must allow read access to

all users.

612. The second directory used is called [HASP]. Primarily, this 

directory contains the component models. Therefore, unlike CPG], the 

file protection associated with [HASP] is greatly relaxed. A 

schematic of its sub-directories is shown in figure 6.2.

613. By far the largest and also the most important sub-directory of 

[HASP] is [HASP.COMPON]. This sub-directory contains both the source 

and the object code of all the component models. It may be

considered as the library of components though the obect code exists 

as separate files rather than being accumulated in an object module 

library. This sub-directory also contains the component model

attributes file CQMPON.DAT. Modellers must have free access to

[HASP.COMPON] in order to add new models to the system and also to 

obtain copies of existing models upon which new models may be based.

614. The sub-directory [HASP.COMPONARK] is, as the name suggests, an 

archive for obsolete or superseded versions of a component model.
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Its file protection is identical to that for [HASP.COMPON].

61S. The sub-directory [HASP.MANUALS] contains the user manuals that 

have been produced to provide sufficient documentation for all levels 

of user. The manuals have been created using the word processor 

known as Digital Standard Runoff (DSR). In a working environment, 

all users should have online access to these manuals. Therefore, the 

file protection for this sub-directory must allow "read" access to 

all HASP users.

GIG. It is also useful to look at a typical user directory belonging 

to a HASP user as this details certain interesting features of the

program generator. Figure G.3 is a schematic of the directory

structure of a typical HASP user.

G17. The most important group of sub-directories are 

[HULL.HASP.SIMUL] and [HULL.HASP.TEST]. The former is the sub­

directory where all HASP simulations are carried out. The directory

contains all the data files describing the circuit layout, the 

component parameters and the simulation results. The directory may

also contain the source and object code of experimental component 

models. When a component model is being developed and undergoing 

trials, it would be extremely tiresome to continually copy files to 

and from the standard model library [HASP.COMPON], Therefore, a 

facility exists for the user to specify that a model is experimental 

and will be found in the user (default) directory rather than in the 

standard library. This is achieved by placing an asterisk (*) after
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the component name when defining the circuit data for the program 

generator (para.304). The generator segment PGIN then sets flags to 

indicate which components are experimental. The segment PGSEL reads 

these flags and duly acts upon them when writing the options file 

CAD.OPT.

G18. The sub-directory [HULL.HASP.TEST] was used to develop 

experimental versions of the program generator and to investigate 

structural changes to HASP without endangering the integrity of the 

standard version of HASP.

G19. The sub-directory [HULL.PAPERS] contains reports written using 

the word processor DSR, the sub-directory [HULL.PRIVATE] contains 

source, object code and other files not associated with HASP, and 

[HULL.SETUP] contains programs which setup terminal characteristics 

and also contains the log-in command procedure. The log-in command 

procedure is a useful file which sets characteristics when the user 

begins a session. It also sets up a large number of command

abbreviations. For example, a useful abbreviation might be to set 

WORK to represent the command SET DEFAULT [HULL.WORK.SIMUL].

G20. The file protection of the various sub-directories should be 

left largely to the user. However, it should be remembered to always 

allow the system access to all files. The same is obviously true

with respect to the owner’s access. Furthermore, it is important to 

ensure that the default protection set to files edited within the

same group is sufficiently relaxed. It is likely that the user would
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edit the component attributes data file [HASP.C0MP0N3C0MP0N.DAT from 

his own directory, thus forcing his own file protection on the new 

version (since he is in fact the owner of the new version).

METHODS QF USE

G21. An important consideration in the development of a CAD system 

is the method of implementation that is likely to be adopted. It is 

necessary to determine the type of personnel who are to use the 

system. If possible, it is desirable to produce a system which may 

be applied by different types of users, albeit to different levels of 

problems. It is worth considering the types of users likely to find 

HASP useful.

622. Firstly, there is the experienced user. He will have an 

understanding of the simulation program at the source level and will 

be able to amend existing models or create new models manually as

required. The package probably caters for this type of user better 

than any other. The user can assemble simulation programs in a 

matter of minutes and if necessary, produce new component models in a 

matter of hours provided he follows the standard methods of

modelling.

623. Secondly, there is the so-called "computei— naive" user. He 

cannot be expected to have any understanding of high level languages. 

In practice, he may be a hydraulics design engineer involved in

initial design or in system trouble-shooting. The package has been
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designed with this type of user in mind. However, at present he must 

suffer the restriction of only being able to employ component models 

which already exist in the component model library. The development 

of a model generator would greatly alleviate this problem (see 

para.711).

G24. Finally, there is the person who will require the simulation 

work to be carried out by others. He would not be directly involved 

with the package. The person carrying out the simulation work need 

not have an understanding of basic hydraulic principles as he would 

be directed and closely supervised by an experienced hydraulics 

engineer. This is a perfectly feasible method of use. However, the 

purpose of the package is to entice engineers to make use of the 

computer and to break away from the tradition where the engineer 

defines a problem and a programmer sets out to solve it. As such, 

this type of user has not shaped the development of the package in 

any way.

625. Furthermore, it is important that in all the categories 

outlined above, the user must thoroughly understand the engineering 

problem. In the development of HASP, the goal has always been to 

produce a package which allows the user to define problems in a very 

simple manner. However, it is possible to envisage this ease of use 

becoming counterproductive. The author has experience of users of 

the system who had badly thought out their problems; ones which 

create simulations of hydraulic circuits which are at best 

inapplicable and at worst unrealistic. The manner in which this
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problem can be overcome is not obvious since taking away the chore of 

computing necessarily allows the user to create a multitude of 

possibly useless simulations. However, the problem has been overcome 

to some degree by the inclusion of the warning routine MESAGE (see 

para.434 to 43G> which causes the user to think twice about data of 

"unusual" proportions. Furthermore, it should be stressed that the 

user should take as much care in preparation of the data and analysis 

of the results as would be taken if equivalent calculations had been 

carried out by hand.

INSTALLATION OF THE SYSTEM

G2G. An important question which should never be overlooked when

producing a CAD is system is ’what problems are there in transporting 

the package onto other computers?’. This introduces several aspects? 

computational portability, patents and copyright and legal liability.

Portability

627. The problem of portability, i.e. system dependence, is one of a

very mechanical nature. Firstly, it must be accepted that at best,

HASP will only work on a machine which has a Fortran compiler. When 

developing HASP, it had to be decided which level of Fortran should 

be used. The package was originally developed in Fortran IV (ANSI- 

X3.9 19GG) with few deviations. In the main, the rich library of 

functions available under DEC Fortran were ignored. However, when 

one considers the compilers available under other operating

systems C193, then some deviation is justified. An example of such a
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deviation is the use of quotes to denote literal strings in FORMAT 

and OPEN statements rather than the near obsolete Hollerith 

character. A more recent decision has been made to adopt Fortran-77 

(ANSI-X3.9 1978) as the standard language and to make use of its 

facilities such as the block IF and ELSE statements. This language 

is no more permissive than Fortran IV but does allow the programming 

to become more structured and also maintains a high degree of 

portability.

628. A further aspect when considering portability is the accessing 

of internal files (i.e. accessing files directly from a program). 

Internal files are used by both the program generator (system data 

file, component attributes file and the simulation program source) 

and the simulation program (parametric data and results data). Both 

sequential and direct access files are used, their structure being 

defined in the OPEN statements. The keywords used in the OPEN 

statements all conform to the Fortran-77 standard and should 

therefore be compatible with any Fortran-77 compiler. However, the 

file names defined by the FILE keyword often contain directory names 

and will therefore not be common to all operating systems.

629. A number of files associated with HASP are not (and cannot) be 

standard. All command procedures such as the command line 

interpreter can only be used on machines that support the Digital 

Command Language (DCL) (see para.204 and Appendix A). However, the 

basic structure of the procedures may be applied to other operating 

systems. The other important file which is system dependent is the
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component selector file produced by the program generator (see 

paras.315 to 342). Again, the structure of the routines designed to 

write the selector file (PGODL or PGSEL) may be adopted for use with 

other systems.

G30. If the package were to be transferred to a compatible user 

system where there would be no further modelling carried out, then 

the library version of HASP outlined in para.343 would be of use. 

The package would then merely consist of five permanent command 

procedures (HASP-CI), seven task images (the program generator and 

six graphics programs), one data file (the component attributes file) 

and one library (the component object module library); a total of 

thirteen files occupying approximately 0.8 mega-bytes of disc space 

(with a library of one hundred component models and the files 

compiled and linked under VMS). All other files are transient and 

are automatically kept in order by the interpreter.

Patents and coovriQht

G31. The legal problems associated with computer software have been 

investigated by several authors [20,211 and only a brief summary is 

required here. As far as ownership is concerned, the two main paths 

open to developers of goods is to attempt to patent them or to accept 

their copyright. If they are patented, then in return for their 

disclosure, the supplier is given a monopoly in their use for twenty 

years [22 para.3011. However, the United Kingdom Patents Act of 1977 

specifically states that computer software (together with 

mathematical methods and scientific theory) cannot be
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patented C22 para.5661. The possibilty of patenting, however, still 

exists if the software is associated with a piece of hardware in some 

way. For example, a read-only micro-electronic chip containing a 

program (often termed firmware) can be patented. The possibility of 

producing chips containing HASP is obviously remote and therefore the 

question of patenting the package is inapplicable.

632. A more effective method of asserting ownership of computer

software is through copyright laws. Copyrights do not provide a 

monopoly but they do protect the form in which an algorithm is coded. 

Copyright is not concerned with originality of ideas but with 

expression of thought [23 para.831]. The United Kingdom Copyright 

Act of 1956 states that all literary work is automatically

copyrighted from the time the work was produced even if it remains 

unpublished [23 para.8341. For the purposes of this Act, computer 

programs are considered literary works [23 para.8353. Further 

requirements of the Act are that the work should be original, should 

be documented and should be written by a "qualified 

person" [23 paras.830-8313. Therefore, HASP is automatically 

copyrighted under this Act.

L i a b i l i t y

633. The problem of liability is complex in comparison to those of

patenting and copyright and any conclusions that may be drawn from

the statutes are far more vague. The Acts which normally affect the 

legal rights of the two parties are concerned with contract law [233 

and misrepresentation [243. Liability is a problem which is of great
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importance to software developers since their product may be used in 

circumstances where undetected errors or unintentional 

misrepresentation by the developers may cause substantial loss to the 

user.

G34. It is useful to examine the two methods in which HASP may be 

used which are most affected by legal liability. Firstly, if the 

package were to be used in industry and the subject of cost was 

important, then as with the majority of software packages, it should 

be leased rather than sold. This allows the developers to retain a 

proprietary interest in the package since only object code need be 

supplied and no information concerning the design philosophy of the 

software need be revealed C201. Secondly, it is possible to supply 

only a set of programs which simulate hydraulic circuits specified 

explicitly by a customer. In this case, the customer would probably 

attempt to secure a fixed price contract since the estimation of the 

time and cost required to develop software is an extremely difficult 

task.

G35. In both these cases, it is possible to provide a contract with 

a general exemption clause which limits the liability of the 

developers to a sum such as the total cost of the contract. There 

can be no exemption from liability due to a breach of contract, but 

software developers can do their best to exempt themselves from 

liability due to accidental misrepresentation and undetected errors. 

However, exclusion clauses are now governed by the United Kingdom 

Unfair Contract Terms Act of 1977 C25 para.3663. This states that
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contracts nay include exclusion clauses but only if they satisfy 

certain tests of "reasonableness". For example, it is reasonable to 

write an exclusion clause if the software is known to be of an 

experimental nature [201. However, the most secure method of writing 

an exclusion clause is to involve an arbitrator since the Act states 

that a person with relevant experience is better able to decide what 

is reasonable than the Court [25 para.366A.23.
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CHAPTER 7 

DISCUSSION

AN QUERUIEW

700. The objective of this work was to take an existing CAD package 

and to examine and correct its downfalls. The package had to be 

looked at with the eye of a user, not a simple task when the complete 

structure of the package and its subsequent use has become second 

nature. Making the package usable necessarily entails correcting 

anything that might be construed as being detrimental to the smooth 

running of the package and also the development of new features to 

achieve the aim.

701. To quantify the work carried out by the author is not simple. 

It is insufficient to examine the state of the package as others have 

contributed to its advancement. It would be possible to merely list 

the work carried out but that would be to ignore the overall effect 

of this work. The magnitude of a particular task does not reflect 

its impact on the basic operation of the package. In this 

discussion, an attempt has been made to examine the effect of each of 

the advancements in terms of the overall philosophy of HASP, be it on 

the small scale of introducing a new modelling technique or on the 

somewhat larger scale of producing a new user interface. It must be 

accepted that the fact that some of the work has been involved with 

the further development or rewriting of existing software should not
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detract from the originality of achieving a similar effect in a new 

wanner. The remainder of this section discusses the work in the 

order it has been presented in the thesis.

The command interpreter

702. Having attained the original requirement of not requiring 

programming experience in order to use HASP, the user was still left 

to understand the complete structure of the package together with the 

an array of system commands. The command interpreter has made the 

package accessible by users with no experience of computer systems. 

With its use, the engineer need not learn any system commands other 

than those concerned with logging in and logging out.

The program generator

703. The program generator is the most important feature of the 

package and has required a great deal of attention. It is unique in 

the field of hydraulic simulation. Other simulation languages employ 

coding generators but these work from a description of the 

mathematical model in the syntax of that language. The HASP program 

generator produces coding which controls existing mathematical 

models.

704. During development of the package, changes to the basic 

structure of the simulation program usually necessitates larger 

changes in its creator, the program generator. In addition, the 

structure of the program generator itself has been substantially 

altered in order to correct , extend or make the generator more
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efficient. Four versions of the program generator have been produced 

by the author: Firstly, the standard version of the generator which 

operates under RSX; secondly, the version of the standard generator 

which is compatible with an object module library containing all the 

component models (para.343); thirdly, the version of the standard 

generator which produces a simulation program allowing graphics 

interaction (paras.44G to 455); and finally, the program generator 

which operates under VMS.

The object module library

705. Transferring the package from one installation to another can 

be a cumbersome and time-consuming process. This task is made worse 

by the fact that there are so many files. This problem can be 

alleviated to a great extent by employing an object module library to 

contain the object code of the complete set of component model 

subroutines and also the routines which constitute the integrator. 

Using a library reduces the number of files necessary to produce a 

running version of HASP from several hundred to approximately ten.

The attributes file editor

706. The component attributes data file C0MP0N.DAT is an important 

file. It is essential that its integrity is not violated if 

simulation programs are to be successfully generated. However, 

during the devlopment of component models, this file is extremely 

susceptible to errors in the form of erroneous components 

descriptions. These errors can be, difficult to detect. The 

C0MP0N.DAT editor alleviates this problem by providing an interface
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between the user and the data file.

New modelling techniques

707. Many models have been developed, a large number of which are 

mundane and show no new techniques. However, several of the models 

do bring forward new ideas in terms of HASP modelling. The most 

important of these are the use of the standard utilities in models 

such as AL3Z and PC1Z, the instantaneous characteristic model such as 

FC8Z, the use of iterative techniques as employed by PU0Z and LL1Z 

and the modelling of complex mechanisms as in AL2Z and AL3Z.

The standard utilities

708. The standard utilities provide a set of useful routines which

may be used in any number of new component models. The work required

to incorporate these tools into HASP included amendments to the 

program generator.

Graphics/simulation interaction

709. The online graphics facility now available is an important

feature of HASP. It employs an interrupt process which allow the 

user to interrogate the simulation whilst the calculation is in 

progress. This has proved a valuable asset in the day-to-day use of 

HASP.

The practical application

710. The practical application described in Chapter 6 shows the

package being used for a complex mechanical handling circuit. The 

example shows the manner in which the circuit may be segregated and
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the assumptions uihich may be made when a circuit is constructed. It 

shows how the onus of making assumptions rests with the user as much 

as with the modeller. The modeller provides a set of component 

models, often several versions of the same component, each having 

different assumptions. However, the user is left to connect these 

components as he will. Therefore, the complete set of assumptions 

for a simulation is dictated by the user.

THE FUTURE

71t. In terms of usability, the package would benefit from several 

further advancements. Firstly, the development of a model generator 

would alleviate the problems involved with users having to write 

their own models should they not exist in the standard library. The 

user would still be expected to define the fundamental equations of 

the model but would not be burdened with such tasks as editing, 

calculating smoothing polynomials or implementation of region 

indicator logic. Secondly, the manual method of producing linking 

diagrams could be superseded by an automated method. This would 

allow the user to produce diagrams on the computer terminal and to 

have this diagram automatically compiled into the data required by 

the program generator. Thirdly, it would be desirable to produce a 

large data base which contained dimensional and other parametric data 

for a large number of commonly used components. The data file would 

be produced by the component parameter definition routines which 

would insert all the user defined data together with the
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manufacturer’s name and component code number. Any user could then 

retrieve the data by simply stating the particular make and number of 

the the required component.

712. Feasibility studies have been carried out on the model 

generator and the graphical input program and are described in 

Appendix E. Sufficient work has been carried out to indicate the 

algorithms required and a possible structure for the software.
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CHAPTER 8 

CONCLUSION

800. The simulation package described provides a valuable tool for 

hydraulics engineers, including those with no previous experience of 

comput ing.

801. Firstly, the package goes further than simulation languages in 

that the user need not learn a vocabulary of mathematical mnemonics. 

This is achieved by the development of a program generator and the 

provision of a comprehensive library of component models. The author 

has structured a major portion of the program generator, developed 

the simulation program control segments and produced new modelling 

techniques which may be adopted by both users of HASP and others in 

the future.

802. Secondly, a package has been built around the coding generator 

and the simulation program. This package consists of all the 

necessary graphics programs and also an automatic editor which allows 

advanced users to carry out modelling more efficiently by reducing 

the possibility of logical errors. Further work on the graphics 

programs has given the user the important capability of interrupting 

simulations and examining results. The editor and the simulation 

interrupt logic were produced solely by the author.

803. Finally, a command interpreter was produced which is able to 

carry out a complete range of system operations following a simple
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high level command issued by the user. This interpreter is a shell 

around the whole package and means that the user need never 

explicitly issue a command to the computer operating system. The

interpreter allows efficient use of the rich capabilities of HASP by 

reducing the possibility of user-errors. An equally important facet 

of the interpreter is that it creates'a facade which is simple to 

understand, practicable and aesthetically pleasing.

8Q4. Gordon and Riesenfeld [71 have succinctly described the aim of 

all interactive design systems: ’In order to be successful, a system 

must have appeal to the designer - it must be simple, intuitive and 

easy to use. Ideally, an interactive design system makes no demands 

on the user other than those to which he has been formerly accustomed 

through ... design experience.' Though obvious, this aim is rarely 

seen so clearly.

805. Through the current work, a system has been developed which can 

be considered as the only package in the field of hydraulics

engineering to approach satisfying this criterion.
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FIG. 1.1 An example of an hydraulic circuit to be 
simulated

PM 00

FIG. 1.2 The circuit linking diagram corresponding 
to figure 1.1
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carry out 
sort proc

FIG. 3.2 Flow diagram for Program Generator main segment
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CALL

inDut
mode/
stop

YES NOstop?

STOP
NO YES

find out 
kfilename

NO YES

read
comp­onents

Cl it mode /stop i

YES NOStop?

STOP YES NOhelp?

amend
data?YES NO

new filef  END 'N ^tO PGHELPJ name

write
file

END 
to PGCOMP

set help 
indicator

redefine
component

DO i=l

FIG. 3.3 Flow diagram for subroutine PGIN
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CALL

define
mode

YES NOreturn

END 
to PGIN

YES NO

read
comp

YES NO

YES NO

YES NO
YES NO

prompt fo: V more / \ info /
write
error

YES NO

which
comp

read compy 
i in file/

YES correc- NO

list
info YES NO

write
error

r any 
input

correct' 
comp y

'end o: 
file

indiv
comp

r 20^
lines

tnd of 
file

skip
lines

skip
lines

FIG. 3.4 Flow diagram for subroutine PGHELP



CALL

YES NO

YES NO

NO

legative 
v links.

‘componeri’ 
v exist>

call
LOOKUP

YES

(implicit relationship)

\ write 7 
error /

( END to PGIN J

FIG. 3.5 Flow diagram for FGCOMP

zero
links NO

NO

\  retd 7
\linking /

z n L
^  RETURN J

YES'iink>'
i/o

match

/ airs, 
links 

atlsfl

do
J =1,ncomps

YES
~ J l
remove

component

Z' END 
V^tO PGOUT



INPUT
ODlZIN 
PI2ZIN FC3 

FPROP TK00IN DE0

SIMUL 
ZIN PI06IN REGR 
U N  PI05IN AL3ZIN

MES
COJi

AGE
TRL

MAIN

FIG. 3.6 An overlay tree for a simulation program

CALCS
PI06
PI05
FC3Z
AL3Z
DE01
0D1Z
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IGEAR6
GEAR5
GEAR4

’ IOUT
AUX
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■INPUT- CALCS-

2;
P=
£I

IREG1

IA

I
NCNi

<s
Jc

IB

■S

IC

vOo

8

.g

Qj

N
2*5

mesage

contrl

pi06 i
pi05

.fs.3z.
al3z

odTz
cffiL

pi2z __tkQJt
'o.J

gears

gear5

gearlt-

Q:

§ sJ
out
aux

MAIN

FIG. 3.7 A memory diagram for a simulation program
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calc no of diff comp nocds

> 30?

\
ipt=l ipt=0 RETURN

do
i=l,nocds

ireg (i) =1 ireg(i)=0

/\initialise 
arrays

RETURNicount=0
nfctr=nocds

define
arrays

1update 
icount 

& nfctr

Y E S v/nfctK.
C > 0 > H O

\ write j 
cad.odl /

" X L
^  RETURN ^

FIG. 3.8 Flow diagram for subroutine PGODL
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loop2 
> 3  ?

YES MO

YES NO

YES Noi >  3

X  is \  
ireg(i+6 
\  =0? >

insert 
group names

j=i-3 
call iname call iname

insert 2nd 
input title

array 
left blank

call xtracl 
call cname

nfctr
=nfctr-6

nloop2
=nfctr

if nfctr>6 
nloop2=6

FIG. 3.9 Flow diagram for the definition of the 
logical arrays in subroutine FGODL



CDMN LEVEL 1

CDLOC

CDEX CDED CDAD CDDEL CDRET CD COM LEVEL 2

CDERR CDOUT
—  LEVEL 3

CDLOC CDOUT CDERR CDQES CD IN

FIG. 3.10 The three levels of the component attributes file editor
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read
nctot
ncdel

NOYES CDEX

YES CDED NO

M lCD COM

STOP

call
CDEX

rewind

Q START ^

call
CDED

call
CDCOM

determine 
mode I

open 
compon.dat

FIG 3.11 Flow diagram for component attributes file 
editor main segment
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enter 
name of 
componen

YESNO

NO return

NO YES

display 
name etc

component 
v exist ^

acceptabl 
v input

call
CDERR

call
CDOUT

call
CDERR

call
CDLOC

YES

FIG. 3.12 Flow diagram for subroutine CDEX



name of 
components

see CDEX

CDOUT

changes
required

call
CDQES

rewind

\ locate EOFI 
(CDLOC) /

write new 
entry

FIG. 3.13 Flow diagram for subroutine CDED
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index
file

component

record
number

•H

file
E
0
* e 1
E E E
F F F
* E 3
* E 1 E 2 E 3
E £ F
f i F E
* E 1 E 2 F 1
E E E E e
F F F F
* 6 1 £ z E 3

.

FIG. 3.14 An example of an indexed file structure 
for the component attributes file
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USER

1st run

parametric 
data file 
PARAM.DAT

interactive 
definition 

of parameters •H

Subsequent runs -H

•H
interactive 
editing of 
parameters

parametric 
data file 
PARAM.DATV ‘

•H

results 
data files 
CADRES.DATAll runs

view
results

FIG. 4.1 A schematic of the interaction between the user
and the simulation program
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Type internal diameter of pipe in mm 
20
Type pipe length in m 
1000

*** value is outside normal working limits ***

Type pipe length in m 
1000
Type 0 to input effective bulk modulus

1 to calculate a value based on pipe dimensions
1
Select a pipe material from the following options:

FIG. 4.2 Typical question and answer sequence

U S E R

definition
section

calculation
section

results
data

perform
simulation

old
parametric

data

new
parametric

data
get time 
and print 
interval

get user 
defined 

parameters

calculate
simulation
constants

FIG. 4.3 A schematic of the standard simulation program
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GEARCONTRL

fileuser

yes no
edit

MAIN

model A

call
models

read
param.dat

get 
simulation 
times etc.

FIG. 4.4 Flow diagram of the parameter definition section

____! CONTRL !

MAIN

I

AUX
, CALL models

model A !

repeat for 
every 

integration 
step until 
complete

_CALL AUX
CALL OUT

OUT
write results

FIG. 4.5 Flow diagram of the calculation process
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from adjacent model

FIG. 4.7 Control block diagram of model GElZ
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START CAD

create
flags

\  input 7

\ define / 
\ output j*

MO g r a p h
invoke

CGR
continue

numerically STA R T CGR

s'  OGR 
Install* MO

\ allow to/ 
\ go back /

HOYESMOstop

STOP CAD

set event 
flag 72read event 

flag 72

lag • 
set NO

read event 
flag "70

close
files flag 70

read event
STOP CAD

flag 71YESNO f l a g  70
flag
setNO

close files 
RESUME SUSFEND

\open file/ V e a d  d a t a r * "

RESUMESUSPEND

\ plot 7\ graph jperform
calculatloi

N Olag 71 
set

'write'
dataYES NO

\ write /\ result /

StO]YES NO

NO YESflnishe<
S T O P  CGR

set event 
flag 71

STO P  CAD

FIG. 4.8 The simulation program with interrupt graphics
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START CAD

create
flags

NO YES

refresh j
J E J

continue
numerically

invoke
RCG

/̂ RCG\
installet NOYES

NO

STO P CAD

SUE FEND

perform
‘calculation

'write
data YESNO

Y write 7\  result J

/time > 
to plot YESNO

close file 
& RESUME

SUSPEND

NO YESilnisl

set event 
flag 71

-CO­

RES UME 
RCG

^  STO P C A D ^

STA R T RCG

whichgraph

RESUME
CAD

SUSPEND

open file 
read da-b

read event flag 71

flag 71 
set _

STO P RCG

RESUME
CADYES

D

FIG. 4.9 The simulation program with refresh graphics
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To Slide Vtilve, 
Bow Cap and 
Bow Shutter 
( Piston)

To Slide Valve 
and Bow Cap 
(Annulus)

To Rear Door 
Assembly etc.

O ' Anti-Back Flow 
Check Valve

To Other Tubes

) ( Flow Limiting 
Orifice

To Other Utilities

MAIN
HYDRAULIC
SUPPLY

I----

FIG, 5.1 The supply system
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To Slide Valve, 
Bow Cap and 
Bow Shutter 
Linking Diagrams

h 2124

To Slide Valve 
and Bow Cap 
Linking Diagrams

Other
Sub-circuits

Other
Tubes

Other
Utilities

PM 00

PI 05

FIG. 5.2 The linking diagram for the supply system
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Slide Valve Actuator

>
Restrictor

From Accumulator 
Assembly

< Restrictor > 
(Optional)

l C

)(

L _

< TL

To Bow Cap Shut 
Interlock Valve

Slide Valve Shut 
Interlock Valve

To Top Stop/Rear Catch

i----i
wv

By- Pass 
Reliefs

Slide Valve 
'Open1 Selector

AV
m

) (

To Bow Cap (Annul us)

i

l i

X L

Tube Sealed 
Interlock

u
I

<•>

s j

< b

t

To BC/BS 
(Supply)

From BC/BS 
(Return)

FIG. 5.3 The slide sub-circuit
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TASK NAMES-.X (E) 
V (F)

FC1B
ONLY

PI<J>6

From Supply System

FC1A 
FC1B

FIG. 5.4 The linking diagram for the slide sub-circuit
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Bow Cap Actuator

Restrict or>

From Slide Valve 
Shut Interlock 
Valve

To Slide Valve (Annulus)

Bj/-Pass Relief

i__r

From
Accumulator
Assembly

VW

r

t u

¥

Restrictorv
(OptionalK

i L

)(

T T

Bow Cap Shut 
Interlock Valve

By-Pass Reliefr
rp

<•>
To SV 

(Supply)

Overcentre 
Valve ( Latch 

; BC Open)

{Pressure)](
) [Reducing , Flow Limiting 

Orifice i Orifice

•W,

From SV 
(Return)

X Bow Cap Directional 
w Control Valve
H - j

To BS 
(Supply)

<2 X ± > <2 >
From BS 
(Return)

FIG. 5.5 The cap sub-circuit
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Fe (E) 
mE (F)

TASK NAMES ••

FC2B
ONLY

From Supply System

PI 06 
02

FC2A 
FC2B

FIG. 5.6 The linking diagram for the cap sub-circuit
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Bow Shutter Actuator

Overcentre 
Valve (Latch 
BS Open)

Overcentre 
Valve (Latch 
BS Shut)

To SV/BC 
(Annulus)

l_

Bow Shutter 
Directional Control 

— 2 .Vhlve
To BC 
(Supply)

To SV 
(Supply)

— i

I r J
By-Pass 
Relief

From SV/BC 
(Return)

FIG. 5.7 The shutter sub-circuit
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□
Ix

25

24

Z7I Fe IE) 
V I Me IF)

TASK NAME

ALCZ
01

26

Q

Q

rQ
PI06 PI06
01 02

Q

28
-P

DE 01 21 f 0 U1Z
01 01

17
P-

£ 1

29
PoPp

23 
IE) (F)

£ffi]

10 

Q

Pi

15

PI 2 Z P I05
01 02

Q 19

FC1V
0 1

20
TK OO 

01

tQ
From
Supply
System

FC3 «r

FIG. 5.8 The linking diagram for the shutter sub-circuit
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From Bow Cap 
Open Interlock 
Valve

>  Bow Shutter 
Open Interlock
Valve

Bow Shutter Actuator

Shuttle
Valve

j :
TS/RC 

Lower Flow 
Controlling 
Orifice

A

Q

From S.V. 
(Annulus)

A

L - O

TS/RC
Interlock
Valve

TS/RC 
Actuator

From Manual i 
Selector Valve

FIG. 5.9 The catch sub-circuit
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TASK NAME'- F U

PI2Z

AL1V

FIG. 5.10 The linking diagram for the catch sub-circuit
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; 890 Kg
— c H

'/Y////Y/7?

120 bar
i----

L_

FIG. 5.11 The test rig
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FIG. 5.12 The test results
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XII mm ■

zi

L/S

run

DC

1

■I

(c) Piston pressure (d) Piston flowrate

xu mm

z

I

■ zi TDC

2

I

Zt TDC

(e) Annulus pressure (f) Supply pressure
FIG. 5.13 Slide sub-circuit results - Standard run
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2

21 TIfC

2
x ie  a w

PRES
9LRE

1

0 21
TIME

SECOTCS

(a) Piston pressure (b) Piston pressure

e 2i

-»
X10 rv s  :3

2

1

e
■i

-2
■3

SECOOS

(c) Annulus pressure (d) Actuator velocity

2
X10 BRR

1

0 21
T i r t

1

0 21 SECOTCS

(e) Supply pressure (f) Piston pressure

FIG. 5.14 Slide sub-circuit results - Further runs
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T2 3 51 4 TOC scccrcs

-I
XI* H/S

-1 '

1 2  3 4 5 SI 7TDC

(a) Actuator displacement (b) Actuator velocity

i

2 3 3 74 S1 TDC scores

(c) Reflected mass in "kg (d) Piston pressure

2

1

2

I

(e) Annulus pressure (f) Supply pressure
FIG. 5.15 Cap sub-circuit results - Standard run
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2xie bpr
t

e 2 3 5 6 74I TIM

(a) Piston pressure

Tift

(b) Annulus pressure

2
xie BPR

1

=rr*5!e s 6 72 31 4 Tift

2
Xie BPR

1

e i 2 3 5 6 74

(c) Piston pressure (cO Annulus pressure

FIG. 5.16 Cap sub-circuit results - Further runs

scores
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-i
xie n

2I 2 Xie SECONDS

10 kN
2

FORCE

1

e l

(a) Actuator displacement (b) Applied force (vs. x)

2
xie bpr

9
e
7

6
5

4

3
2
1
e i -x

xie n

(c) Reflected mass in kg

xie bpr -

2

1

e i
Tire

2 Xie SECONDS

(d) Piston pressure

3

2

1

e i 2
Tire

2 x ie  SECoros

(e) Annulus pressure

FIG. 5.17 Shutter sub-circuit results - Run 1
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5xie m
2xie BPR

FORCE

1
35 kN

e i -l
x ie  n

(a) Applied force (vs. x)

2

1

e
2Tire 2 x ie  s ta re s

(b) Piston pressure

Xie BflR

4

3

2

1

e

2
Xie BRR

2 x ie  SECOTCS

(c) Annulus pressure

4

3

2

1

e

Tire 2 Xie SECONDS

(d) Pressure across F.C.V

-i
xie  L'S •

2

1

e
2 x ie  SECONDS

(e) Flowrate through F.C.V

FIG. 5.18 Shutter sub-circuit results - Run 2
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40 kN

i DISPLACDtXr

5
x ia  n

(b) Applied force (vs. x)(a) Actuator displacement

iXI0 SEOOTC6

XJB

4

3

2

1

1 Tilt

(c) Pressure across F.C.V.

FIG. 5.19 Shutter sub-circuit results - Run 3
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xie n
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xie h

2 xie secotcs
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2 Xie SECOfCS

(a) Actuator displacement (b) Applied force
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e 21

2Xie BBS

xie scows

5

4
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2

1

e 21 Tift 2 Xie SECONDS

(c) Piston pressure (d) Annulus pressure

Xie BBS -1xie l/S

2 xie secctos

2

1

e 21 Tift
2 Xie SECOTCS

(e) Pressure across F.C.V. (f) Flowrate through F.C.V,

FIG. 5.20 Shutter sub-circuit - Run 4
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-i
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*5t
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(a) Actuator displacement (b) Actuator velocity

■RR2
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I
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scccrcs

(c) Piston pressure (d) Piston flowrate
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1

■ 1
TTfC
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FIG. 5.21 Catch sub-circuit results - Standard run
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xie n

l
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l
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(a) Actuator displacement (b) Actuator velocity

2 Xie

1

1

2Xie BPF

SEC0K6
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I 1

(c) Piston pressure (d) Supply pressure

FIG. 5.22 Catch sub-circuit results - Further run
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PG

A Z ARK GRAF

pi JS

FIG. 6.1 Directory structure of directory PG

HPiSP

1
COMPON COMPONARK MANUALS

FIG. 6.2 Directory structure of directory HASP

HULL

HASP PAPERS PRIVATE SETUP

SIMUL TEST

CLI

FIG. 6.3 A sample directory structure of a 
user directory
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SUBROUTINE PGHELP
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAA SUBROUTINE TO SUPPLY USER WITH INFORMATION ABOUT ANY COMPONENT MODEL 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SCHOOL OF ENGINEERING 
UNIVERSITY OF BATH 
CLAVERTON DOWN 
BATH

developed: s. r. hull 02-03-84
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ARRAYS:
ELIN (8) 
ELOUT (8) 
INPUT2 (2) 
NAME2 (2)

EXTERNAL LINK INPUTS (E OR F) CHA1
EXTERNAL LINK OUTPUTS (E OR F) CHA1
INPUT FROM DATA FILE - 4 CHARACTERS IN 2 ELEMENTS CHA2
NAME REQUIRED - 4 CHARACTERS IN 2 ELEMENTS CHA2

VARIABLES:
DUMMY

ICOUNT
INFO
INPUT4
IPAGE
LAST
MAXEL
MINEL
MODE
NAME4
NIL
NLINES
NSIG
NSV
STRING

DUMMY CHARACTER VARIABLE - USED FOR BREAKS IN CHA1
OUTPUT OR TO SKIP UNWANTED LINES IN DATA FILES 
LOOP COUNTER IA4COUNTER TO KEEP TRACK OF NUMBER OF MODELS LISTED IA4
LINES OF INFORMATION FROM CHASP.COMPON3INFORM.DAT CHA80
INPUT FROM DATA FILE CHA4
COUNTER TO KEEP TRACK OF THE NUMBER OF PAGES OF IA4
MODELS LISTED
FINAL ENTRY IN INFORM.DAT AND COMPON.DAT CHA4
MAXIMUM NUMBER OF EXTERNAL LINKS IA4
MINIMUM NUMBER OF EXTERNAL LINKS IA4
USER MODE IA4
NAME REQUIRED CHA4
NUMBER OF INTERNAL LINKS IA4
NUMBER OF LINES OF DATA TO BE SKIPPED IA4NUMBER OF SIGNALS IA4
NUMBER OF STATE VARIABLES IA4
TITLE OF COMPONENT HELD IN COMPON.DAT CHA74

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA(
CHARACTERA1 DUMMY,EL IN(8),ELOUT<8)
CHARACTERA2 NAME2<2>,INPUT2<2>
CHARACTERA4 NAME4,INPUT4,LAST 
CHARACTERA74 STRING 
CHARACTERA80 INFO 
EQUIVALENCE (NAME2,NAME4)
EQUIVALENCE ( INPUT2, INPUT4)
DATA LAST/'LAST'/

SET UP CHARACTER 
VARIABLES AND ARRAYS.
EQUIVALENCE CERTAIN 
CHARACTER VARIABLES 
FOR EASE OF REFER­ENCE AND COMPARISON.

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA OPEN THE INFORMATION DATA FILE
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI

• OPEN THE COMPONENT
• INFORMATION DATA FILE!

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA USER OPTION
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

OPEN (UN IT = 6, FILE*'CHASP.COMPON3INFORM.DAT', 
STATUS='OLD', READONLY)

TABLE 3.1 Listing of Program Generator subroutine PGHELP
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i
10 UR ITE(5,20 > !
20 FORMAT < //, I

A ' TYPE 1 TO LIST CLASSES OF MODELS',/, !
* ' TYPE 2 TO LIST INFORMATION ABOUT A PARTICULAR MODEL',/,!A ' PRESS RETURN TO PROCEED WITH GENERATION') !I

READ(5,510,ERR»10)M0DE !
IFtMODE.NE.l.AND.M0DE.NE.2)M0DE=3 !
GOTO<100,300,500),MODE !i

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA LIST CLASSES OF MODELS IN GROUPS OF UP TO 19
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
100 URITE(S,110) !
110 FORMAK///, •

" A C "  REPRESENTS ACCUMULATORS',/, !

CHECK USER MODE AND 
CHANGE 0 TO 3 IN 
ORDER TO USE LOGICAL 
GO TO.

'AL" 
'AM" 
'DC" 
'DE' ' 
'DF" 
'FC" 
'HE' ' 
'HU"

ACTUATOR-LOADS',/, !
AMPLIFIERS',/, !
DIRECTIONAL CONTROL VALVES',/,! 
DUTY CYCLES - EFFORT SOURCES',/,! 
DUTY CYCLES - FLOW SOURCES',/,! 
FLOW CONTROL VALVES',/,
HEAT EXCHANGERS',/,
PUMP/MOTOR UNITS',/,
ROTARY LOADS')

EXTRA ENTRIES MAY BE 
INCLUDED BUT ONLY UP 
TO 19 CONTINUATION 
LINES ALLOWED, 
(DEFAULT).

120

130

' " L R "
UR ITE(5,120)
FORMAK 'OPRESS RETURN TO CONTINUE LISTING
READ(5,520)DUMMY
UR ITE(5,130)
FORMAT(' " M O "
' " O R "
' " P C "
' " P I "
' " P M "
' " P U "
' " S C "
' " T K "
' " T S "

)

HYDRAULIC MOTORS',/,
ORIFICE RESTR ICTORS',/, 
PRESSURE CONTROL VALVES',/, 
PIPES',/,
PRIME MOVERS',/,
HYDRAULIC PUMPS',/,SWASH CONTROLLERS',/, 
HYDRAULIC TANKS',/,
TEST SOURCE MODELS')

THEALLOW A BREAK IN 
LISTING TO STOP 
OPTIONS SCROLLING OFF 
SCREEN.
NOT YET REQUIRED 
THEREFORE COMMENTISED
FURTHER AMENDMENT:
PUT CLASS OPTIONS IN 
AN EXTERNAL FILE TO 
REMOVE NEED TO EDIT 
PROGRAM GENERATOR.

140

150

URITE(5,140)
FORMAK'OTYPE REQUIRED CODE') 
READ(5,530)NAME2(1)
UR ITE(5,150)
FORMAT(///)

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA LIST ALL MODELS IN CHASP.C0MP0N1C0MP0N.DAT BEGINNING WITH NAME2(1)C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

!
IC0UNT*0
IPAGE=0

200 REAIK7,540) INPUT2, NL INES, STRING
IF< INPUT2(1).EQ.NAME2(1))THEN 

IC0UNT=IC0UNK1 
IF< IC0UNT.EQ.21)THEN 

URITE(5,120) 
READ(5,520)DUMMY 
ICQUNT s ICOUNT-20

! SET COUNTERS TO ZERO. 
!
! READ ENTRY IN 
! COMPON.DAT.I
! IF REQ'D COMPONENT,
! UPDATE COUNTER.
! IF 21ST ENTRY, ALLOW 
! A BREAK IN LISTING,
! RESET COUNTER ICOUNT, 
! AND UPDATE PAGE

TABLE 3.1 Listing of Program Generator subroutine PGHELP
(continued)



210
220

230

ELSE

IPAGE= IPAGE+1
END IF
UR ITE(5r210)INPUT4,STRING 
FORMAK IX,A4,2X,A74 )
DO 220 IS1, NLINES 
READ(7,520)DUMMY 
GOTO 200
IF( INPUT4.EQ.LASDTHEN

IF <ICOUNT.EQ.O.AND.IPAGE. 
URITE(5,230)NAME2(1 
FORMAK
'OSORRY - NO MODELS 
REUIND 7 
GOTO 10

END IF 
GOTO 250

! COUNTER BY 1.i
• THEN WRITE MNEMONIC 
! AND DESCRIPTION.
I SKIP REQ'D NUMBER OF 
< LINES. GO BACK TO 
! READ NEXT ENTRY.

EQ.0)THEN
)
IN CLASS

ELSE
240

250
260

DO 240 1=1,NLINES 
READ<7,520)DUMMY 
GOTO 200

END IF
END IF 
REUIND 7
URITE(5,260)NAME2(1)
FORMAT <

A 'OCOMPLETE COMPONENT NAME FOR HELP ON A ' PRESS RETURN FOR MAIN HELP OPTIONS' 
A ' ',A2,*)

READ(5,530)NAME2<2)IF<NAME2<2).EQ.' ')GOTO 10

! IF COMPONENT NOT 
! REQ'D, CHECK IT'S 
! NOT LAST ENTRY. IF IT 
1 IS, AND NO MODELS 
"  ' , A2,' "  EXIST')!
! FOUND, WRITE ERROR
• MESSAGE AND GO BACK 
! TO INITIAL OPTION.
! OTHERWISE GO TO THIS
• PARTICULAR COMPONENT 
! OPTION.
• IF COMPONENT NOT
« REQ'D AND NOT LAST,
I SKIP REQUIRED
• NUMBER OF LINES AND
• READ NEXT ENTRY.
•

THAT COMPONENT',/,!,//, ! COMPLETE CLASS NAME
! FOR HELP ON PARTIC- 
! ULAR COMPONENT.
• IF RETURN, GO TO
• MAIN HELP OPTION.i

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA LIST INFORMATION ABOUT A PARTICULAR MODEL CONTAINED IN INFORM.DAT 
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!
300 IF(M0DE.EQ.2)THEN ! IF MODE IS 2, FIND
310 WR ITE(5,320) ! OUT COMPONENT NAME.
320 FORMAK///, !

A ' TYPE 4 CHARACTER MNEMONIC REPRESENTING COMPONENT',/,!

330

340

350

' PRESS RETURN FOR MAIN HELP OPTIONSREAD(5,550)NAME4
IF(NAME4.EQ.' ')GOTO 10

END IF
READ(7,560) INPUT4,NLINES
IF( INPUT4.EQ.NAME4)THEN

READ<7,570)MINEL,MAXEL,NIL,NSIG,NSVREAD(7,580)ELIN
READ(7,580)EL0UT
DO 340 1 = 4,NLINESREAD(7,520)DUMMY

ELSE
IF( INPUT4.EQ.LAST)THEN

WRITE(5,350) INPUT4 
FORMAK
'OSORRY - NO INFORMATION ON MODEL 
REUIND 7 
GOTO 250

IF RETURN, GO TO 
MAIN HELP OPTION.
LOCATE ENTRY IN 
COMPON.DAT AND READ 
COMPONENT ATTRIBUTES.

IF ENTRY IS NOT REQ'D 
AND IS LAST, THEN 
WRITE ERROR MESSAGE.

ELSE
DO 360 1=1,NLINES

' ,A4>!
!
I
• IF ENTRY IS NOT REO'D 
! BUT IS NOT LAST, THEN

TABLE 3.1 Listing of Program Generator subroutine PGHELP
(continued)
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360

370

380

390
400
410

R£AD(7f520)DUMMY 
GOTO 330

END IF
END IF
READ < 6, 560) INPUT4 , NL INES IF<INPUT4.EQ.NAME4)THEN

URITE<3,380>NAME4,STRING 
FORMAK ' 1 ' , A4 , 2X,A74)
DO 390 I31,NLINES 
READ(6,590)INFO 
UR ITE(51400)INFO 
FORMAT(1X t A80)
UR ITE<3,410)MINEL,MAXEL,EL IN,ELOUT 
FORMAT(
OEXTERNAL LINKS: MINIMUM NUMBER

MAXIMUM NUMBER 
INPUTS 
OUTPUTS

NUMBER OF INTERNAL LINKS 3 ',11 
NUMBER OF SIGNALS » ',11
NUMBER OF STATE VARIABLES « ',11 

OPRESS RETURN TO CONTINUE',♦> 
READ(5,520)DUMMY

.NIL

»/*

,NS IG,NSV!
;

II,/.!
II,/,!
8A1,/,I 
8 A1, / , !

!
I|
l

SKIP LINES AND READ 
NEXT ENTRY.

DO THE SAME SORT OF 
THING IN THE INFORM­
ATION DATA FILE. IF 
ENTRY FOUND, URITE THIS INFORMATION 10 
THE TERMINAL 
TOGETHER WITH THE 
ATTRIBUTES READ FROM 

COMPON.DAT

ELSE
IF(INPUT4.EQ.LAST)THEN

URITE(5,410)MINEL,MAXEL,ELIN
READ(5,520)DUMMY

! IF NO ENTRY IN INFO- 
• RMATION DATA FILE,

,ELOUT,NIL,NSIG,NSV!
THEN JUST URITE THE 
ATTRIBUTES READ IN

! COMPON.DAT.
ELSE

420
DO 420 1=1,NLINES 
READ<6,520)DUMHY 
GOTO 370

IF ENTRY NOT YET 
FOUND, SKIP REQUIRED 
NUMBER OF LINES AND 
READ NEXT ENTRY.

END IF
END IF REUIND 6 
REUIND 7 
GOTO 10

!I 
Il 
I i
! GO TO MAIN HELP 
• OPTION.II

C ***************************************************************************** 
C ***** PROCEED UITH SIMULATION
C *****************************************************************************
500 CLOSE (6) 

REUIND 7 RETURN
CLOSE THE INFORMATION 
DATA FILE - SAME LUN 
USED IN PGIN FOR 
SYSTEM DATA FILE. 
REUIND COMPON.DAT AND 
RETURN.

C ***************************************************************************** 
C ***** ALL INPUT FORMATS BUT NONE OF THE OUTPUT FORMATS
C *****************************************************************************
510 FORMAK 11 ) !
520 FORMAT < A1) !530 FORMAT < A2) !
540 FORMAT< 2A2,I2,A74> !
350 FORMAT(A4) I
560 FORMAT(A4,12) !
570 FORMAT < 5 11) I
580 FORMAT < 8A1) i
590 FORMAT(ASO > i

EUD

TABLE 3.1 Listing of Program Generator subroutine PGHELP
(continued)
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Type of model Advantages Disadvantages

Instantaneous 1. For accuarate 1 . Often very sensitive
first principle parametric data, to accuracy of input
model likely to give informat ion

reasonably accurate 2. Relies upon theory
results over all which is not always
operating ranges definitive

3. Difficult to program
4. Slow to execute
5. Assumes very fast

response

Instantaneous 1. Input information 1 . May not fully des­
characterist ic readily available cribe the behaviour
model 2. Easy to program of the model in all

3. Fast to ex_ecute its modes of oper-
at ion

2. Assumes very fast
response

Dynamic first A5 for instantaneous As for instantaneous
princ iple first principle first principle
model model model <1-4 ) but to a

greater degree

Dynamic As for instantaneous As for instantaneous
characterist ic characteri st ic characteri st ic
model model model (1 )! also it

may be necessary to
perform a test
simulation to define
the coefficients of
the differential eqn.

TABLE 3.2 A comparison of modelling methods
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APPENDIX A - THE INTERPRETER STRUCTURE 

A.1 INTRODUCTION

100. The purpose of the HASP command interpreter has heen discussed 

in Chapter 2. This Appendix gives a more detailed account of the

structure of the interpreter. Under the UMS operating system, the

interpreter takes the form of a command procedure, i.e., a procedure 

defined by the Digital Command Language (DCL). A complete listing of 

the procedure is given in table At. The information contained in 

this Appendix should be sufficient to produce a similar interpreter 

for an operating system other than UMS. In fact, the interpreter can 

be written in any language which supports logical if statements, 

character manipulation and the issuing of system commands. Special 

attention is given to the use of intrinsic system functions.

A.2 PRIMARY LOGIC

200. Figure A1 gives an outline of the interpreter structure.

Initially, an introductory message is displayed as shown in figure 

A2. A prompt is displayed inviting the user to type a command such 

as "GENERATE" or "SIMULATE" etc. A series of logical if statements 

direct control to the relevant program section. If none of the if 

statements are satisfied, then the user has typed an unacceptable 

command. In this case, a list of acceptable commands is displayed

followed by the prompt.

201. A facility of the' interpreter is that the user may opt to be
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taken through a standard sequence of tasks without specifying the 

commands explicitly. This sequence is GENERATE, LINK, SIMULATE,

DRAW, EXIT i.e. generate a new circuit, produce the simulation

program, run the simulation program, look at the results then stop.

The user is informed of the task that would automatically follow at 

each stage. This facility can of course be overridden by simply 

typing an acceptable command.

202. This facility is achieved by using a simple character flag.

The flag is initially set to "1". The command GENERATE transfers

control to the program section STAGE_1. At the end of the generation

process, the flag is set to "2U. Similarly, the command SIMULATE 

transfers control to the program section STAGE_2, the flag is

subsequently set to "3" and so on. If the user simply presses

<RETURN> rather than typing a command, then the statement

$ IF COMMAND .EQS. "" THEN GOTO STAGE_’FLAG’

will transfer control to the next command in the automatic sequence.

203. In detail, the statement compares the contents of the variable

COMMAND to the string contained between the double quotes. If they 

are the same (i.e. the user has not typed a command),then control is 

transferred to the program section whose name is made up of the

characters STAGE followed by the contents of the variable FLAG

(i.e. 1 , 2 , 3 etc. ).

204. A further facility of the interpreter is that the user need
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only type sufficient characters to make the command unambiguous. For 

example, in the case of GENERATE, then the command G is sufficient. 

However, the procedure compares all of the characters defined by the 

user to the relevant part of the acceptable ,commands. Therefore, 

commands such as GEN or GENER would be acceptable but GRAPH would 

not.

2Q5. When command procedures are invoked, the operating system 

assumes that the input required by programs is contained in the 

procedure. However, when a program such as the program generator is 

being run, then the input must obviously be provided by the user. 

Therefore, the input stream must be redefined. This is achieved in 

DCL by the command

$ DEFINE/USER_MODE SYS$INPUT SYSSCOMMAND:

This command applies only to the following executable task.

20G. Three of the options (GENERATE, SIMULATE and EXIT) are simple 

and require no further detail. For example, the command GENERATE 

causes the procedure to issue the DEFINE command shown above followed 

by the commands RUN CPG.AIPGA and FLAG="2". The commands which do 

require further description are LINK, DRAW, HELP, BATCH and UMS.

The LINK proaram section (STAGE 2)

207. The LINK command carries out four tasks. Firstly it deletes 

generated object code and simulation programs remaining from previous 

simulations. Secondly, it purges all related data files and
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generated simulation source. Thirdly, it compiles the newly

generated source and finally, it links all the necessary object 

modules to form the new simulation program. In simple terms, it is 

the link between the program generator and the simulation program.

The commands related to this process are contained in a separate 

command file called CAD.COM, a listing of which is given in table A2.

208. The feature which requires explanation is concerned with the

reassignment of the two streams SVS$ERR0R and SYS$QUTPUT. Whenever 

an attempt is made to delete files which do not exist, the system 

considers that a non-fatal error has occurred and duly transmits 

messages to this effect down ihe two streams mentioned above.

However, during the deleting and purging process carried out under

the LINK command, it is likely that a large number of the files 

catered for, will not actually exist. The resulting error messages 

are prolifically produced and are at best, of little interest, and at 

worst, annoying. Therefore, the messages are dumped in two temporary 

files. The stream SYS$ERR0R is assigned to the file SYSERR.TMP (the 

extension TMP to denote temporary) and the stream SYSSOUTPUT is 

assigned to the file SYSOUT.TMP. As soon as the deleting and purging 

process is complete, these two temporary files are deleted and the 

two streams are deassigned.

The DRAW program section (STAGE 4)

209. Figure A3 shows a flow diagram for the program sections

employed to produce graphs of simulation results. Four graphics 

programs are currently available:



- 189 -

GRF plots any item of information against time (default)

XYP plots any item of information against any other item

P2P plots two items of information against time

UPD plots the same item of information from two consecutive

simulations against time

In addition, the command EXIT may be typed.

210. The logic of this part of the procedure is similar to that 

employed to transfer control based upon the initial options as 

described above. However, the prompt now displayed is GRAPHICS: 

rather than HASP: indicating to the user the fact that control has 

passed to another part of the pro-cedure. Again, the first character 

of the command is sufficient to be unambiguous.

The HELP program section

211. The logic of the HELP preogram section is similar to the 

primary logic described above. However, a different prompt is 

displayed (HELP: ) and only the first character of the command need be

typed.
/

The BATCH program section

212. The VMS operating system does not allow more than one command 

issued from a given terminal to be active at any one time. 

Therefore, if a user wishes to run more than one simulation at once, 

then he must submit them to the batch queue. The batch processor 

will allow a number of jobs to be active but they will be run with a 

lower priority than the foreground jobs i.e. those run from a
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terminal. When a job is submitted to batch, all four streams 

normally taken as the terminal must now be reassigned to various 

files. These streams are given below.

SYS$COMMAND commands sent to the operating system 

SYSSINPUT interactive input required by a program

SYS$ERR0R messages from the operating system to the user

SYS$OUTPUT interactive output from a program

213. If a user of the HASP command interpreter issues the BATCH 

command, then the auxiliary command file CADBATCH.COM will be 

invoked, a listing of which is given in Table A3. This command file 

determines the nature of the job_to be submitted to the batch queue. 

It is also a form of coding generator since it writes the two files 

required to satisfy the input streams SYSSCOMMAND and SYS$INPUT. The 

commands are almost entirely sequential. Therefore, a step by step 

literary description is all that is required.

(i) The procedure determines the directory or sub-directory from 

which the job is to be run. When a job is submitted to batch, the 

user effectively logs in again (though the user is unaware of it). 

Therefore, a sub-directory from which the command interpreter is 

being run will not be the sub-directory from which the batch job will 

be run unless it is specifically stated as being so.

<ii) The procedure determines the name of the simulation program to 

be submitted. The default is CAD.EXE which resides in the directory 

or sub-directory defined above.
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(iii) The procedure determines the name of the data file containing 

the parametric data required by the simulation program. This is 

normally PAR.AM.DAT but if more than one job is to be submitted, then

the data files must be named differently to ensure that each job uses

the correct data file.

(iv) The procedure determines the name of the job to be submitted. 

This name is attached not only to the job entered in the batch queue, 

but also to all the four files satisfying the four streams. Again, 

if more than one job is to be submitted, then they must each have a 

unique job name.

(v)* If the procedure is being used before 1700 hrs , then the user is 

given the option to hold the job until after 1700 hr5 in order to 

avoid peak computer usage times.

(vi) The user is also given the option of attaching a CPU time limit

of one hour to the job. This is useful in the case of an

experimental simulation program where the integrity of the coding is 

uncertain. If a job is terminated due to this CPU limit being 

exceeded, the simulation results up to that point are saved.

(vii) The procedure then determines the simulation time and the 

print interval in seconds. This information is normally supplied by 

the user at run time but as stated previously, the SYSSINPUT stream 

must be satisfied by a file.

(viii) The files satisfying the SYS$CQMMAND and SYS$INPUT are then 

written using the information gained above. An example of these two 

files are given in Table A4.

<ix) Finally, an appropriate SUBMIT command is issued, again based
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upon the information gained above.

214. The two output streams are satisfied by the files 

jobnameOUT.TMP and jobname.LOG. The first contains all the 

simulation output normally seen at the terminal. The second contains 

all system messages including information about CPU time used etc. 

The two files satisfying the command and input streams, jobname.COM 

and jobnamelN.TMP are both deleted upon completion of the batch job.

The UMS program section

215. UMS is perhaps the most unusual of the commands, its purpose 

being to allow users to issue standard UMS instructions whilst 

operating in the procedure. In practise, VMS has proved to be a very 

useful command allowing the • user to quickly investigate without 

losing continuity in terms of his work within HASP.

21G. The program section concerned with UMS performs three

functions. Firstly, it gives a UMS: prompt and waits for a UMS

command. The command is stored in the variable called UMS_COMMAND. 

If the user presses <RETURN> , control is returned to the main option 

list. Secondly, a check is made to ensure the user has not typed the 

command MONITOR (or any part of the command). MONITOR is a UMS

utility which requires the use of an abort control character in order

to stop its operation. The abort control character also aborts the 

command interpreter and is therefore considered illegal within HASP. 

Finally, if the command is acceptable, the procedure simply issues 

the command to the system taking care to redefine the input stream in
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case the ensuing VMS operation requires user interaction.

217. Experienced users of both HASP and VMS will almost certainly 

find this feature a little cumbersome, preferring simply to leave the 

interpreter. However, it must be remembered that one of the

objectives of this package is to appeal to engineers who are not 

experienced with VMS. To these users, it must seem as if the

computer system is HASP with VMS simply providing a subset of

commands.

Intrinsic functions

218. A small number of intrinsic functions are used by the

interpreter. Although these rnpy not be available under other 

operating systems in the form shown, there should normally be some 

equivalent.

219. The first intrinsic function used is F$TIME. This function 

simply returns the current time and date. It is used for two 

reasons. Firstly, it is used in order to give a greeting when the 

procedure is first invoked. Secondly, it is used in batch mode in 

order to decide whether or not the question concerning holding jobs 

until after 1700 hrs should be asked (para.213>. This function is 

obviously superfluous to the basic running of the interpreter.

220. The second function used is F$LENGTH which returns the number 

of characters which constitute a given string. An example of the use 

of this function is given below.
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$ SIZE « F$LENGTH(COMMAND)

This line finds the number of characters in the string variable 

COMMAND and assigns it to the integer variable SIZE.

221. Finally, the third intrinsic function used is F$EXTRACT which 

extracts certain characters from a given string. An example of the 

use of this function is given below.

$ IF F$EXTRACT(0 .SIZE,"GENERATE"> .EQS. COMMAND THEN GOTO STAGE_t

This line extracts a number of characters from the string "GENERATE" 

and compares the resulting string to the string contained in the 

variable COMMAND. The first argument defines that the offset should 

be zero characters. The second argument defines the number of 

characters to be extracted from the string, i.e. the integer 

contained in the variable SIZE. In simple terms, the command checks 

to find if the contents of COMMAND is any portion of the string 

"GENERATE" and if it is, control is transferred to the program 

section which carries out the generation process.



- 195 -

START

YES NOgenerate
other options

YES NOexit
other options

STAGE_5
STOP

YES NOVMS

error
message

allow VMS 
commands

show
commands

prompt
HASP:

STAGE__1 ?
call

program
generator

FIG. A . 1 Flow diagram for the HASP Command Interpreter
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HASP Command Interpreter Version 1.0 University of Bath

Good morning

The commands you can enter are:

GENERATE Generate the source of a simulation program
LINK Produce the simulation task
SIMULATE Run the simulation program
DRAW View the simulation results (Tektronix only)
EXIT Exit from HASP Command Interpreter
BATCH Submit a simulation program to run on batch
HELP Obtain more information about these options
VMS Have the ability to type VMS commands

HASP;

FIG. A. 2 The introductory message

ONE
orn n

NOYES

NOYES XY
other options

NOYES EXIT

C STAGE_5
V  s t o p  y error

message

set 
stage flag

define 
SYSSINPUT start 

GRF

define 
SYSSINPUT 

start 
XYPLOT

FIG. A.3 Flow diagram for the GRAPHICS facility
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A AAAAAAAAAAAAA*AAA*AAAAAAAAAAAAAAAA 
COMMAND PROCEDURE FOR USERS OF HASP - a command line interpreter 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Fluid Power Group 
School of Engineering 
University of Bath 
England

Developed: S.R. Hull
Date*. 05-MA Y-84
Amended:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA String Variable Names:
User defined command in HASP mode 
Number of characters in COMMAND Dummy variable to allow a halt in write 
Counter to show next stage by default 
User defined command in GRAPHICS mode 
Number of characters in GRAPH.TYPE 
User defined command in HELP mode 
Number of character* in TOPIC 
User defined command in VMS mode 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Program sections:

Writes Good afternoon if between 1200 and 1700 
Submits a simulation run to batch 
Continue with remainder of introduction 
End of ST AGE... 4
Writes Good evening if between 1700 and 2400 
Runs CPG.GRAEDGRF.EXF 
List information about BATCH command 
List information about DRAW command 
List information about EXIT command 
List information about GENERATE command 
List information about LINK command 
Control section for major help routines 
Gives a short list of acceptable HASP commands 
List information about SIMULATE command 
List information about VMS command 
Variable VMS_C0MMAND is unacceptable 
Gives HASP prompt 
Runs CPG.GRAF3P2P.EXE 
Runs CPG.ADPQA.EXE 
Invokes CPG.HCIDCAD.COM 
Runs CdefaultDCAD.EXE
Controls which GRAPHICS program is to be used 
Exits from HASP1.HCI 
Runs CPG.GRAFDUPD.EXE 
Carries out user defined VMS command 
Gives VMS prompt 
Runs CPG.GRAFDXYP.EXE AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Associated system routines!
FtEXTRACT(a,bfc) Extracts the string b characters long starting 

1 with an offset a from input string c
! FtLBNGTH (a) Finds the length of string a
! FtTIME () Returns the time
!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
! Associated tasks:

COMMAND 
COMM AND__S IZE DUMMY 
FLAG
GRAPH TYPE
TYPE_SIZE
TOPIC
TOPIC... SIZE 
VMS COMMAND

AFTERNOON
BATCH
CONTINUE
END GRAPHICS
EVENING
GRFHELP BATCH 
HELP.. DRAW 
HELP.EX IT 
HELP GENERATE
helpIlink
HELP LONG
HELP SHORT
HELP SIMULATE
HELP VMS
ILLEGAL_VMSPROMPT
P2P
STAGE_1
STAGB„2
STAGE_3
STAGE_4
6TAGE_5
UPD
VMS..EXECUTE
VMS„M0DE
XYP

PGA Standard program generator
CAD Generated simulation program
GRF Graphics (y vs. T)
XYP Graphics (y vs. x>
P2P Graphics <ya,yb vs. T)

Location: 
CPG.AD CdefaultD 
CFG.GRAFD 
tPG.GRAF D 
CPG.GRAFD

TABLE Al(a) Listing of the command interpreter
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I UPD Graphics (yl,y2 vs. T) CPG.GRAF1
****************************************AAAAAAAAAAAAAAAA******************** 

Associated coaaand files: Location:
CAP.COM Produces CAD.EXE [HASP.C0MP0N1
CAPBATCH.COM 8ubaits a job to batch [PG.HCI!

**************************************************************************** 
Associated data files: Loc'n and type:

systea.DAT User naied file containing a [default!
description of the circuit (sequential)

C0MP0N.DAT File containing the attributes [HASP.COUPON]
of all coaponents (sequential)

PARAh.DAT File containing a paraaetric [default!
description of the coaponents (sequential)

CADRES.DAT File containing the siaulation [default!
results (direct access)****************************************************************************

AAA* Initialise FLAG
FLAG « *l*

AAA* Type Introduction
TYPE SYS*INPUT
HASP Coaaand Interpreter Version 1.0 University of Bath

i
***** Find out if it is aorning, afternoon or eveningi
h o r n i n g :IF FtEXTRACT(12,2,F*TIME<)) .GES. 12 THEN GOTO AFTERNOON 

WRITE SYStOUTPUT * Good aorning*
GOTO CONTINUE 

AFTERNOON:
IF FSEXTRACT<12,2,F*TIME<>> .GES. 17 THEN GOTO EVENING 
WRITE SYSSOUTPUT * Good afternoon*
GOTO CONTINUE 

EVENING:WRITE SYSSOUTPUT * Good evening*
I
***** Give a short suaaary of the HASP coaaandsi
CONTINUE:

GOTO HELP_6H0RTf
***** Give a HASP proapti
p r o m p t :

INQUIRE COMMAND *HASP*I
I**** Continue to next stage by defaulti

IF COMMAND .EOS. "  THEN GOTO STAGE_'FLAG'I
***** Find out length of coaaand i

C0MMAND_SIZE « FtLENGTH<COMMAND)
I
***** Check that the coaaand typed in is acceptable and if so, go to the 
!AAAA corresponding sectioni

IF F»EXTRACT(0,C0MMAND_SIZE,‘GENERATE*) .EQS. COMMAND -THEN GOTO STAQE_1 
IF FtEXTRACT(0,C0MMAHD_SIZE,*LINK*> .EOS. COMMAND -THEN GOTO STAGE.2 
IF FftEXTRACT(0,C0MMAND_SIZE,‘SIMULATE*) .EOS. COMMAND -

THEN GOTO STAGE_3 
IF FtEXTRACT(0,COHHAND_SIZE,* DRAW *) .EQS. COMMAND -THEN GOTO STAGE_4

TABLE A1(b) Listing of the command interpreter (continued)
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IF F*EXTRACT<0,COWMAND_SIZE,'EXIT*) .EQS. COMMAND -
THEN GOTO STA0E_5 

IF F*EXTRACT(0,C0MMAND„SIZE,‘BATCH*> .EQS. COMMAND -
THEN GOTO BATCH_MODE 

IF F*EXTRACT(0, COMMAND__SIZE,*HELP* > .EQS. COHHAND -
THEN GOTO HELP_LONG 

IF F*EXTRACT(0, COMMANDOS IZE,'VMS *) .EQS. COMMAND -
THEN GOTO VM5_MODEi

'AAAA Command is unacceptable - Write error message and give a short 
•AAAA list of acceptable commandsi

WRITE SYS*OUTPUT • Invalid coaaand*
GOTO HELP__SHORTi

•AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
I Stage 1: Run the prograa generator.
* Do not allow user to interrupt the prograa.
1 Update FLAG to allow user to continue with LINK by default.
•AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
STAGE_1:

DEFINE/USER MODE SYS*INPUT SYStCOMMAND:
RUN CPG.A1PGA 
FLAG = *2*
TYPE SYS*INPUT

rets <RETURN> to proceed with coapilation and linking 
GOTO PROMPTi

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
1 Stage 2: Tidy up default directory, compile new source and link
1 the simulation prograa.
! Update FLAG to allow user to continue with SIMULATE
' by default.IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA I
STAGE_2:

@CFG.HCnCAD 
FLAG = *3*
TYPE SYS*INPUT

ress <RETURN> to proceed with simulation 
GOTO PROMPTI

1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
! Stage 3: Run the simulation prograa.
! Update FLAG to allow user to continue with DRAW by default.
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl
STAGE 3:

DEFINE/USER_MODE SYS*INPUT SYStCOMMAND:
RUN CAD 
FLAG « *4'
TYPE SYS*INPUT

ress <RETURN> to produce graphical output (ONLY ON TEKTRONIX TERMINALS)
GOTO PROMPTI

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
I Stage 4: Run one of the graphics programs.
» Update FLAG to allow user to continue with EXIT by default.
! AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

TABLE A1(c) Listing of the command interpreter (continued)
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% !
♦ STAGE 4:
% TYPE SYS* INPUT

There is a choice of four graphics programs
GRF plots any item of information against time (default)
XYP plots any itea of inforaation against any other itea 
P2P plots any two iteas of inforaation against tiae 
UPD plots the same itea of inforaation froa two consecutive 

simulations against tiae
Type name of program required (or EXIT)

• AAAA Give GRAPHICS prompt and allow choice of GRF by defaulti
INQUIRE GRAPH TYPE ■GRAPHICS*
IF GRAPH„TYPE .EQS. THEN GOTO GRF 
TYPE SIZE = F*LENGTH(GRAPH TYPE)

•AAAAI

• AAAA 
■AAAA

Go to correct section if coaaand is valid
IF F*EXTRACT<0,TYPE SIZE,*GRF*> .EQS. GRAPH TYPE THEN GOTO GRF
IF F*EXTRACT(0,TYPE SIZEr*XYP*) .EQS. GRAPH_TYPE THEN GOTO XYP
IF F*EXTRACT(0,TYPE SIZE,*P2P*> .EOS. GRAPH TYPE THEN GOTO P2P
IF F*EXTRACT(OrTYPE SIZEr*UPD*) .EOS. GRAPH TYPE THEN GOTO UPD
IF F*EXTRACT(0,TYPE_SIZE,’EXIT*) .EQS. GRAPH_TYPE THEN GOTO STAGE..5
Command is unacceptable - Write error aessage and go back to 
beginning of Stage 4.

Invalid program naae*
i
■ AAAAI
GRF:

WRITE SYS40UTPUT 
GOTO STAGE._4
RUN GRF

DEFINE/USER HODE SYS*INPUT SYS*C0MMAND: 
RUN CPG.GRAF3GRF 
GOTO END GRAPHICS

AAAA RUN GRF
XYP:

PEF INE/USER_M0DE SYSilNPUT SYS4C0MMAND: 
RUN CPG.GRAFDXYP 
GOTO ENDJ3RAPHICSI

■AAAA RUN GRF!
P2P:

DEFINE/USER MODE SYS*INPUT SYSfCOMMAND: 
RUN EPG.GPAFDP2P 
GOTO END_GRAPHICS

;
•AAAA RUN GRF|
u p d :

DEFINE/USER MODE SYSftlNPUT SYS*COHMAND: 
RUN CPG.GRAFDUPD 

END GRAPHICS:
FLAG = *5*
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* TYPE SYS*INPUT
Press <RETURN> to exit
* GOTO PROMPT$ i
* •A*AAAAAAAAAAAAAAAAAAA******AAAAAAAAAAAAA*AAAAAAAA*AAAAA**AAAA*AAAAAAAAAAAAAA
* ! Stage 5: Exit for* HASP Command Interpreter
*  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA % I
* STAGE 5:
* EXIT$ l
$ lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAA*AAAAAAAAAAAAAAAAAAA*
* ) Submit a simulation program to run on batch
* < AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAA$ I
* BATCH MODE:
* eCPG.HCI3CADBATCH.COM
« FLAG *= *5*
* TYPE SYS*INPUT
Press <RETURN> to exit
* GOTO PROMPT$ I
t IA A A A A A A A A A A A A A A A A A***************************AAAA**A**AAAAAA*******A*******A
* f Give a short list of acceptable commands under HASP* ! A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
% i
* HELP SHORT:
* TYPE SYS*INPUT

The commands you can enter are:
GENERATE Generate the source of a simulation program
LINK Produce the simulation task
SIMULATE Run the simulation program
DRAU View the simulation results (Tektronix only)
EXIT Exit fro* HASP Command Interpreter
BATCH Submit a simulation prograa to run on batch
HELP Obtain more inforaation about these options
UMS Have the ability to type VMS commands

* GOTO PROMPT
% i
* I A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

* I Give more information about a user selected command
* \ A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A  A A A A A A A A A A A A A A A A A A A A A A A$ i
* he l p_l o n g :
* TYPE SYS*INPUT

GENERATE 
LINK
SIMULATE 
DRAW 
EXIT 
BATCH 
VMS
Press <RETURN> to continue

* •
* (AAAA Display TOPIC prompt and return to HASP if-no command on line

Generate the source of a simulation program 
Produce the simulation task 
Run the simulation program
View the simulation results (Tektronix only) 
Exit from HASP Command Interpreter 
Submit a simulation program to run on batch 
Have the ability to type VMS commands
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INQUIRE TOPIC 'HELP*
IF TOPIC .EQS. ** THEN GOTO PROMPT 
TOPIC SIZE = FtLENGTH(TOPIC)
Go to correct section if topic is valid
IE FtEXTRACKO,TOPIC_SIZE,'GENERATE*) .EQS. TOPIC -

THEN GOTO HELP....GENERATE
IF F*EXTRACT(0,T0PIC„SIZE,*LINK*) .EQS. TOPIC -

THEN GOTO HELP.-LINKIF F$EXTRACT(0,TOPIC_SIZE,'SIMULATE') .EQS. TOPIC -
THEN GOTO HELP._S IMULATE

IF FtEXTRACKO, TOP IC__S IZE ,*DRAU’> .EQS. TOPIC -
THEN GOTO HELP...DRAWIF FtEXTRACT(0,T0P IC__S IZE , 'EXIT* > .EQS. TOPIC -
THEN GOTO HELP EXITIF FtEXTRACT(0,TOPIC„SIZE,'BATCH*) .EQS. TOPIC -
THEN GOTO HELP...BATCH

IF FtEXTRACKO,TOPIC..SIZE,'VMS' ) .EQS. TOPIC -
THEN GOTO HELP.-VMS

Coaaand is unacceptable - Urite error aessage and go back to
% I A*** beginning of HELP_LONG.
% i
* URITE SYS*OUTPUT 1 Invalid topic** GOTO HELP_LONG « I
% 1 **AA Inforaation on GENERATE coaaand$ i
* h e lp_g e n e r a t e:
* TYPE SYS* INPUT 
GENERATE:

The coaaand GENERATE invokes the standard HASP prograa generator.
This task iaage is called PGA.EXE and it resides in directory
IPG.A3 on the RA80 disc.
The input required by the prograa is a coaplete description of the
hydraulic circuit to be siaulated. This takes the fora of a list
of HASP coaponent naaes together with the links associated with 
each aodel.
The prograa generator produces several files which will, in part, 
fora a prograa to siaulate a hydraulic circuit. The naaes of the 
files are MAIN.FOR, AUX.FOR, OUT.FOR, CONTRL.FOR and CAD.OPT. 
These files will reside in the default directory.
The coaaand G is sufficient.
For sore inforaation, see HASP USERS GUIDE.

Press <RETURN>
t INQUIRE DUMMY 'HELP*
* GOTO HELP_L0NG
* I
% tAAAA Inforaation on LINK coaaand$ i
* h e l p_l i n k:
% TYPE SYStINPUT
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l i n k :
The coaaand LINK invokes the standard HASP coaaand procedure 
CAD.COM which takes the generated segments and creates a siaulation 
prograa from thea. CAD.COM resides in directory CPG.HCI1 on 
the RA80 disc.
The file carries out the following tasks:
1. It deletes files created by previous program generations in the 

default directory (data files are only purged).
2. It compiles the four FORTRAN files for the current siaulation.
3. It links these files with the integrator, standard utility 

routines and aodel routines to fora the siaulation program 
called CAD.EXE.

The command L is sufficient.
For more information, see HASP USERS GUIDE.

Press <RETURN>
♦ INQUIRE DUMMY ■HELP *
* GOTO HELP_L0NG* I
* 'AAAA Information on SIMULATE command$ i
♦ h e l p_s i m u l a t e:
« TYPE SYS* INPUT
s i m u l a t e:

The coaaand SIMULATE runs the most recently produced siaulation 
program. This program is called CAD.EXE and is resident in the 
default directory.
If it is the first time a siaulation prograa has been run, then 
the user will be required to interactively define the parametric 
data for every component in the simulation. On completion of the 
first run, these results are stored in a file called PARAM.DAT 
which is resident in the default directory. On subsequent runs, 
this data is retrieved and may be amended by the user as reuired.
The results produced by the simulation program are stored in a 
binary data file called CADRES.DAT which is resident in the 
default directory.
The command S is sufficient.
For more inforaation, see HASP USERS GUIDE.

Press <RETURN>
♦ INQUIRE DUMMY 'HELP*
« GOTO HELP LONG$ l
t !AAAA Inforaation on DRAU coaaand $ |
♦ h e l p_d r a u :
* TYPE SYS*INPUT
d r a w:

The command DRAU runs one of the four graphics programs which are 
are resident in directory CPG.GRAFD on the RA80 disc. The programs
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access the results data files CADRES.DAT which aust be resident in 
the default directory.
The four prograas which may be used are:
1. GRF which plots any itea of inforaation froa the latest results

file against time;
2. XYP which plots any itea of inforaation against any other itea of

inforaation, both froa the latest results file;
3. P2P which plots any two iteas of inforaation froa the latest

results file against tiae;
4. UPD which plots the saae itea of inforaation froa two consecutive

siaulations against tiae. In this case, the two results files 
aust be nuabered versions 1 and 2.

The coaaand D is sufficient.
For aore inforaation, see HASP USERS GUIDE

Press <RETURN>
4 INQUIRE DUMMY 'HELP*
♦ GOTO HELP_L0NG4 i
5 !AAAA Inforaation on EXIT coaaand4 i
* h e l p_e x i t :
t  TYPE SYS*INPUT
e x i t:

The coaaand EXIT exits froa the HASP coaaand Interpreter and returns 
the user to OCL level of UMS.
The coaaand E is sufficient.

Press <RETURN>
i  INQUIRE DUMMY * HELP *
4 GOTO HELP_L0NG4 i
$ 1AAAA Inforaation on GENERATE coaaand4 !
4 h e l p_b a t c h:
4 TYPE SYS4INPUT
b a t c h :

The coaaand BATCH invokes the coaaand procedure CADBATCH.COM which 
is resident in directory CPG.HCI3 on the RA80 disc.
The procedure requires the user to define the job to be submitted 
to batch. This entails the definition of the coaaand file which 
contains the RUN coaaand and the definition of the job name. The 
user is also given the option to set a CPU tiae limit on the job 
and also to request that the job be run after 1700 hrs.
The submitted job temporarily creates a file called (jobnaae).LOG 
which is resident in the default directory. This file contains 
all system and error messages (i.e. it is temporarily SYS4ERR0R).
Upon completion of the job, the file is resident in the default 
directory.
The coaaand B is sufficient.
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Press <RETURN>
* INQUIRE DUMMY # HELP *
* GOTO HELP_LONG$ I
$ 1AAAA Infor mation on VMS coaaand 
t !
$ HELP_VMS:
* TYPE SYStlNPUT 
VMS:

The coaaand VMS allows the user to type VMS coaaands without the need 
to exit froa the HASP Coaaand Interpreter.
All coaaands except MONITOR (and therfore ACT) are allowed. However, 
any VMS coaaand that requires user interaction will be unsuccessful.
It should also be noted that if "Y is typed to abort the VMS coaaand, 
then the coaaand interpreter will also be aborted.
The coaaand V is sufficient.

Press <RETURN>
* INQUIRE DUMMY •HELP *
* GOTO HELP.LONG$ f
t  < AAAAAAAA**********************AAAAAAAAAAAAAAAA****************************A*
* • VMS aode: Allow the user to type VMS coaaands
t I A*AAAAAAAAAAAA**AA*AAA*AAAAAAAAAAAAAAAAA**AA**AAAAAAAAAAAAAAAAAA**AAAAAAAAAA$ I
t  VMS_M0DE:% ;
* 'AAAA Display VMS proapt% j
* TYPE SYS*INPUT
Press <RETURN> to return to HASP Coaaand Interpreter 
t  INQUIRE VMS COMMAND * VMS *
t IF VMS_C0MMAND .EQS. "  THEN GOTO PROMPT% I
* 'AAAA Check that coaaand was not MONt i
* IF FtEXTRACT(0,3,VMS COMMAND) .NES. ’MON* THEN GOTO VMS_EXECUIE
* INVALID VMS:
$ TYPE SYStINPUT

Invalid coaaand - MONITOR is not allowed under HASP 
t GOTO VHS_M0DE% i
i 'AAAA Carry out coaaand as requiredI ;
t  vms_execute:
* DEFINE/USER_MODE SYStINPUT SYStCOMMAND:
t VMS COMMAND
t GOTO VMS MODE
t !
t !AAAA End of HASP Coaaand Interpreter
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♦ 1 AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A* A A AAAA AAAAAAAA AAAAAAAA A* AAAAAAAAAA
* ' COMMAND PROCEDURE TO PRODUCE CAD.EXE
$ 'AAAAAAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAAAA

! Fluid Power Group
• School of Engineering
> University of Path
! England

t ! Developed: S.R. Hull
$ ' Date: 07-MAY-84
t I Amended:
* 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
* I Associated files: Location:
t ! CAD.OPT Linker options file created by Cdefaultl
* • the program generator
t * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
* TYPE SYStINPUT
DELETING OR PURGING FILES REMAINING FROM PREVIOUS SIMULATIONS
% i
* •AAAA Redefine SYStERROR and SYStOUTPU? so that system messages do not
* !AAAA appear on the screen$ I
* DEFINE SYStERROR SYSERR.TMP
t DEFINE SYStOUTPUI SYSOUT.TMP% ;
$ ■AAAA Delete various simulation files % i
* DELETE MAIN.OBJ;A,AUX.OBJ;A,OUT.OBJ ; A,CONTRL.OBJ;A,CAD.EXE;A$ I
t 'AAAA Purge various siaulation files$ i
* PURGE PARAM.DAT/K-3,CADRES.DAT/K«3,-

MA IN.F0R/K = ltAUX.F0R/K*lfOUT.F0R/K=1.CONTRL.FOR/K=l,CAD.0PT/K = 1$ i
* !AAAA Deassign SYStERROR and SYStDUTPUT and delete the temporary files$ i
t DEASSIGN SYStERROR
t DEASSIGN SYStOUTPUT
t DELETE SYSERR.TMPJA
t DELETE SYSOUT.TMP;A$ i
t !AAAA Compile generated siaulation source$ i
t TYPE SYStlNPUT
COMPILING THE NEULY GENERATED SIMULATION SOURCE FILES 
t FORTRAN MAIN.AUX,OUTvCONTRL
t !
t ! AAAA Link CAD. EXE wit-h the aid of the linker options file CAD.OPT 
t I
t TYPE SYStlNPUT
LINKING ALL THE ROUTINES REQUIRED TO FORM THE SIMULATION PROGRAM 
t LINK CAD/OPT
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•A*************************************************************************** 
! COMMAND PROCEDURE TO RUN A BATCH SIMULATION JOB
!AAAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
! Fluid Power Group
! School of Engineering
I University of Beth
! England
! Developed: S.R. Hull
• Date: 06-MAY-84
! Amended:
***************************************************************************** 
! String variable naaes:
•' AFTER_TIME Flag to show if job to be held until 1700 CY/NJ
• CPU...LIMIT Flag to show if job has 1 hour CPU liait CY/NJ
! DIRECTORY User defined directory
! DIRECTORY_LENGTH Nuaber of characters in DIRECTORY
' FILE NAME Name of paraaetric data file
f JOB NAME Name of job to be inserted into SYStBATCH
• LENGTH. MINUS...1 Nuaber of characters in DIRECTORY ainus one
! PR INT.. INTERVAL Siaulation print interval in seconds
1 TASK_NAME Name of siaulation prograa to be subaitted
• T0TAL_TIME Total tiae to be simulated in seconds
I USERNAME Corrected fora of DIRECTORY
!****************************************************************************
• Prograa sections:
• AFTER„TIME Find out if job is to be held until 1700
! CHECK LENGTH Check that J0B..NAME is 6 characeters or less
f CONTINUE.n Duaay label
! CPU_LIMIT Find out if job has 1 hour CPU liait
• DATA NAME Find out naae of paraaetric data file
f DETERMINE_USERNAME Correct user defined DIRECTORY
! DIRECTORY Find out naae of directory to be used
! EXIT Exit from procedure
» FILE...NAME Find out naae of paraaetric data file
! JOB NAME Find out naae of job to be inserted into queue
! LOG'lN ..DIRECTORY Set USERNAME to SYStLOG IN
! PRINT .INTERVAL Find out the siaulation print interval
! SUBMITJ30T0 Go to the correct SUBMIT coaaand
! SUBMIT 1 Subait with /AFTER and /CPU LIMIT
! SUBM IT__2 Subait with /AFTER but without /CPU..L IM IT
! SUBMIT 3 Subait without /AFTER but with /CPU_LIMIT
• SUBMIT_4 Subait without /AFTER and without /CPUJ.IMIT
• TASK NAME Find out naae of siaulation program
! T00_LATE It is already after 1700 so no /AFTER
• TOT ALT IME Find out total tiae to be siaulated
! WRITE BATCH Urite the coaaand procedure to be subaitted
I WRITE_.INPUT Write the temporary data file C jobnaaeJ IN .IMP
1 ****************************************************************************
• Associated system routines:
• FtEXTRACT(a,b,c) Extracts the string b characters long starting
! with an offset a froa input string c
• FtLENGTH (a) Returns the nuaber of characters in string a
! FtTIME () Returns the time!**************************************************************************** 
I Associated coaaand file* Location:
! Cjobnaae3.C0M The batch job procedure SYStLOGIN
» (SYStCOMMAND)
'****************************************************************************
• Associated data files: Loc'n and type:
! CjobnaaeJIN.TMP File containing the input SYStLOGIN
I normally defined by user (sequential)
! ( SYStINPUI)
‘ CjobnaaeJOUT.TMP File containing the output SYStLOGIN
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* ‘ noraally sent to the terainal (sequential)
t » (SYS$0UTPUT >
$ * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
* > Associated log file: Location:
* • [jobnaae3.LOG Log of job SYStLOGIN
* ! (SYStERROR)
* !***********************A*AAAAAAAAAA***************************A************A
A I

* 'AAA* Find out name of directory froa which job is to be run
$ I
$ d i r e c t o r y:
* TYPE SYS* INPUT

Type directory or sub-directory froa which the job is to be run
[default * SYStLOGIN3

* INQUIRE DIRECTORY •RAICH'
$ I
* >AAAA Find out the naae of the root directoryI i
* DETERMINE...USERNAME:
* IF DIRECTORY .EQS. ■■ THEN GOTO LOGIN_D IRECTORY
* IF F*EXTRACT<0,1,DIRECTORY) .EQS. THEN GOTO C0NTINUE_1
* DIRECTORY = ■[' + DIRECTORY
* CONTINUE l:
* DIRECTORY.LENGTH » FtLENGTH<DIRECTORY)
* LENGTH MINUS 1 = DIRECTORY LENGTH - 1
* IF FtEXTRACT(LENGTH MINUS 1,1tDIRECTORY) .EQS. *3' THEN GOTO C0NTINUE_2
* DIRECTORY = DIRECTORY ♦ *3*
* CONTINUE 2:
* USERNAME *= DIRECTORY
* GOTO TASK_NAME 
% !
* !AAAA No directory has been defined - Usernaae is the default (SYStLOGIN)
* I
* LOGIN DIRECTORY:
t USERNAME ■ 'SYStLOGIN** f
t 'AAAA Find out naae of siaulation prograa to be subaitted% i
t t a s k_n a m e :
t TYPE SYStlNPUT

Type naae of siaulation prograa to be run [default * CAD.EXE! 
t INQUIRE TASK_NAME 'BATCH*
* IF TASK NAME .NES. "  THEN GOTO FILE_NAME
t TASK„NAME ■ 'CAD*
t !
t 'AAAA Find out naae of file containing paraaetric data 
t !
t f i l e.n a m e :
* TYPE SYStlNPUT

Type naae of the paraaetric data file [default ■ PARAM.DAT3
CAUTION

If aore than one job is being subaitted, the files should be 
named differently

t INQUIRE FILE NAME 'BATCH*
t •
t 'AAAA Allow a default of PARAM.DAT
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IF FILE NAME .NES. ■■ THEN GOTO JOB NAME 
F ILE__NAME = ’PARAM.DAT*i

* AAAA Find out naae of job to be inserted into queue SYStBATCHi
JOB NAME:

TYPE SYS* INPUT
Type n » e  of the batch job Caaxiaua 6 characters, default “ BATCH 1

CAUTION
A user should never subait aorc than one job of the saae naae 
INQUIRE J0B_NAME •BATCH*I

•AAAA Allow a default of BATCH!
IF JOB NAME .NES. a* THEN GOTO CHECK LENGTH 
J0B_NAM£ « ’BATCH*I

• AAAA Check that J0B__NAME is not aore than 6 characters longi
c h e c k  l e n g t h :

IF FtLENGTH(JOB NAME) .LE. 6 THEN GOTO AFTER_TIME 
WRITE SYStlNPUT
ERROR: Jobnaae aust be 6 characters or less 
GOTO J0B_NAMEi

•AAAA Allow job to be held in queue until after 1700 provided it is not 
!AAAA already after 1700i
a f t e r_t i m e :

IF F*EXTRACT(12,2,F*TIME<)> .GES. 17 THEN GOTO T00_LATE 
TYPE SYStlNPUT
Do you want the job to be held until after 1700 hrs 7 CY/NJ
INQUIRE AFTER TIME ’BATCH*
GOTO CPU..LIMITl

!AAAA Already after 1700i
TOO LATE:

AFTERJTIME * *N*!
(AAAA Allow a CPU tiae liait of 1 hour to be attached to the jobi
cpu l i m i t:

TYPE SYStlNPUT
Do you want to attach a 1 hour CPU tiae liait to the job 7 CY/NJ 
INQUIRE CPU_LIMIT ’BATCH*i

!AAAA Find out the total siaulation tiae - This inforaation is required 
!AAAA by the siaulation prograa but is noraally supplied interactively 
!AAAA by the useri
TOTAL_TIME:TYPE SYStlNPUT
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Type total simulation tine In seconds 
INQUIRE T0TAL_TIME ■BATCH*

AAAA Do not allow a negative value
IF F*EXTRACT (0,1, T0TAL_.T IME ) .EQS. •-* THEN GOTO T0TAL_TIMEl

'AAAA Similarly, find out the print interval requiredi
PRINT INTERVAL:

TYPE SYS*INPUT
Type print interval in seconds 
INQUIRE PRINT_INTERVAL 'BATCH*
IF F*EXTRACT<0,1, PRINT INTERVAL) .EQS. *-* THEN GOTO PR INT_INTERVAL 
IF F*EXTRACT<0,1 , T0IAL....T IME > .EQS. *0* THEN GOTO WRITE...BATCH 
IF F*EXTRACT<0,1,PRINT INTERVAL) .EQS. *0* THEN GOTO PRINT_INTERVALI

!AAAA Write the command procedure to be submitted to batch Cjobname.COM!i
w r i t e__b a t c h:

OPEN/WRITE OUTFILE 'JOB_NAME'.COM
WRITE OUTFILE ’* SET DEFAULT *,USERNAME
WRITE OUTFILE ** DEFINE SYS* INPUT *,JOB NAME,* IN.TMP*
WRITE OUTFILE ** DEFINE SYS*OUTPUT *,JOB NAME,*OUT.TMP*
IF FILE NAME .EQS. ‘PARAM.DAT* THEN GOTO C0NTINUEJ3 
WRITE OUTFILE *• COPY * f FILE NAME,* PARAM.DAT*

CONTINUE 3:
WRITE OUTFILE *♦ RUN *,TASK_NAMEWRITE OUTFILE ** DEASSIGN SYS*OUTPUT*
WRITE OUTFILE ** DEASSIGN SYS*INPUT*
WRITE OUTFILE ** DELETE *,JOB NAME,*.COM;A *WRITE OUTFILE ** DELETE * , JOB.I.NAME , * IN. TMP; A *
CLOSE OUTFILE

•
!AAAA Write the temporary data file CjobnamelIN.TMP which will contain the
!AAAA information normally defined interactivelyi
w r it e_i n p u t:

.OPEN/WRITE OUTFILE ' JOB__NAME ' IN. TMP 
WRITE OUTFILE *1*
WRITE OUTFILE *0*
WRITE OUTFILE TOTAL TIME 
WRITE OUTFILE PRINT_INTERVAL 
WRITE OUTFILE *2*
WRITE OUTFILE *0*
WRITE OUTFILE *3*CLOSE OUTFILE

!AAAA Write a warning onto the screenj
WARNING:

TYPE SYStlNPUT
The files CjobnameJOUT.TMP and Cjobname3.LOG will remain after 
completion of the job and will contain all output normally seen 
by the terminal
WARNING: Do not tamper with the following files until the job

is complete:
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C jobnaaeD . COM C jobnaae 3 IN . IMP C jobnaae 3 OUT . TMP Cjobnaae3.LOG

IAAAA Go to the appropriate SUBMIT coaaand
!AAAA AFTER_TIME = 'Y* and CPUJLIMIT = 'Y* are the defaults •
SUBMIT g o t o:

IF AFTER TIME .EOS. *N* .AND. CPU LIMIT .EQS. 'N* THEN GOTO SUBMIT 4
IF AFTER TIME .EOS. *N‘ .AND. CPUJLIMIT .NES. 'N' THEN GOTO SUBMIT~3
IF AFTER_TIME .NES. 'N' .AND. CPU LIMII .EQS. *N* THEN GOTO SUBMIT 2•

(AAAA Subait job after 1700 with a CPU liait of 1 houri
SUBMIT„.l:

SUBMIT/NOPRINTER/AFTER-17:00:00.00/CPUTIME=01:00:00.00- 
/NAME='JOB NAME' 'J0B_NAME' . COM

GOTO EXITi
■AAAA Subait the job after 1700 with no CPU liaiti
SUBMIT 2:

SUBMIT/N0PRINTER/AFTER*17:00:00.00/NAME='JOB NAME' 'JOB NAME'.COM 
GOTO EXITI

1AAAA Subait the job now with a CPU liait of 1 houri
SUBMIT J3:

SUBMIT/N0PRINTER/CPUTIME=01:00:00.00/NAME='J0B NAME' 'JOB NAME'.COM 
GOTO EXITi

■AAAA Subait the job now with no CPU liaiti
SUBMIT 4:

SUBMIT/NOPR INTER/NAME='JOB_NAME' 'JOB NAME'.COM
EXIT:

TABLE A3 (e) Listing of the BATCH command procedure (continued)



-  2 1 2  -

$ SET DEFAULT [ .HASP.SIMUL]
$ DEFINE SYSSINPUT BATCHIN.TMP 
$ DEFINE SYSSOUTPUT BATCH1OUT.TMP 
$ COPY NEtJDATA.DAT PARAM.DAT 
$ RUN SIMPRQG 
$ DEASSI6N SYSSOUTPUT 
$ DEASSIGN SYSSINPUT 
$ DELETE BATCH ) .COM;*
$ DELETE BATCH1IN.TMP?*

(a) Command file (jobname.COM)

1
0
2.5
0.01
2
0
3

(b) Input data (jobnamelN.TMP)

TABLE A. 4 The two files generated by the interpreter 
(user defined variables underlined)
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APPENDIX B - ft SELECTION OF COMPONENT MODELS

B . 1 AL2Z AND AL3Z ACTUATORS/MECHANICAL LINKAGES 

Actuator with cap mechanism: AL2Z

100. In this section, the external mass will be termed "the cap".

During extension and retraction of this actuator, the only 

significant external load is inertial provided the plane of motion of 

the mechanism is horizontal. However, because the motion of the cap 

is angular, its inertia will be experienced as a variable effective

mass by the linear actuator. In addition, the actuator will

experience a variable force due to the weight of the cap if the plane

of the mechanism is inclined to the horizontal (see figure B1.1). 

This model assumes that the friction effect of the hinges is 

negligible and that the mass of the connecting link is negligible 

compared to the combined mass of the cap and the attached bellcrank. 

Variation of the frictional force due to varying side load on the 

piston is also neglected.

Model linking

101. AL2Z has two external links, two internal links and two signals 

and its linking diagram is shown in figure B1.2.

SUBROUTINE INPUTS:

Pp Piston pressure in bar 

Annulus pressure in bar
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SUBROUTINE OUTPUTS:

Op Piston flow in 1/s

Q* Annulus flow in 1/s

V Piston fluid volume in 1

UA Annulus fluid volume in 1

X Displacement of the actuator rod in m

V Velocity of the actuator rod in m/s

F External force in N

"e Effective mass in kg

User defined parameters

102. The following user defined parameters are common to both the 

actuator and load models AL2Z and AL3Z.

Piston diameter in cm 

Rod diameter in cm 

Stiction in N

Coulomb friction as a fraction of the stiction level

Viscous friction coefficient in N/(m/s)
2.Windage loss coefficient in N/(m/s)

Actuator stroke in m

Initial displacement of the actuator rod in m 

Initial velocity of the actuator rod in m/s 

Spring stiffness in N/m 

Piston leakage coefficient in (l/s)/bar

103. For the cap actuator AL2Z , the following parameters are also
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required.

Mass of the cap in kg

Angle of inclination of the actuator to the horizontal 

Inertia of the cap in kg mz 

Length of the hinge link in m 

Length of the actuator link in m

Initial longitudinal distance from the end of the actuator rod the 

the hinge centre in m

Longitudinal distance between the hinge centre and the centre of mass 

of the cap when the actuator is fully retracted in m

Transverse distance between the hinge centre and the centre of mass

of the cap when the actuator is fully retracted in m

104. Nomenclature

F External force (positive if assisting extension) in N 

h Transverse distance - hinge to the line of action of the actuator 

in m

J Inertia of the cap about its hinge in kg m2

L̂ _ Distance from the hinge to the centre of mass of the cap in m

M Mass of the cap and its associated linkage in kg

M^ Effective mass of the cap as experienced by the actuator in kg

R Radius of the hinge arm in m

\) Linear velocity of the actuator in m/s

x Displacement of the actuator rod in m

xQ Initial distance - hinge to the rod end in m
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xcc, longitudinal distance - hinge to the centre of mass of

the cap in m

y Transverse distance - hinge to the centre of mass of the cap im m

y_r Initial transverse distance - hinge to the centre of mass of the

cap in m

^ Included angle of the bellcrank in radians

0 Angle of the bellcrank arm (actuator link) to the horizontal in

radians

10 Angular velocity of the cap in rad/s 

Model equations

105. The mathematical model incorporates two differential equations. 

The time derivative of the piston displacement is given by

c&C = V
dt

The time derivative of the piston velocity is given by

< i ) for 0

d v  _  P p A p - ? ft V - ( vy -  f ^ v a- (ai&nfr))

d t  rne

<ii) for D=0 and j ^ p A p >  | F j

a t

< iii > for V-0 and |Pp A p 'PA AA -k*X. +  ^  Fs

O
d t
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105. The flows into and out of the actuator are then calculated as 

shown below

107. When the piston reaches an end stop, special modelling 

techniques are required. The integrator may fail if the time 

derivative of any state variable is discontinuous. Therefore, it is 

assumed that the piston on reaching an end stop is brought smoothly 

to rest over some finite but extremely small distance. In this 

region, the reaction force of the end stop on the piston is assumed 

to increase with respect to its displacement, thus allowing the force 

system to reach static equilibrium. Additionally, in this region the 

viscous friction coefficient is increased smoothly in order to dampen 

the motion of the piston.

108. The terms of external force and mass must be defined relative 

to the line of motion of the actuator rod. The external force on the 

actuator rod is calculated by performing a force .balance on the 

bellcrank and the connecting rod. The calculated mass is variable 

with respect to piston displacement and is termed the referred or 

effective mass.

Q p  = ■"VAp'“U L(f p ' f ^  by convention

and
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Calculation of the external force on the actuator

109. The external force experienced by the actuator is caused by the 

gravitational force of the cap and its associated mechanism. This is 

only relevant if the actuator is inclined to the horizontal. From 

figure B1.3 it can be seen that the gravitational force is given by

110. With reference to figure B1.4, if the centre of the cap and its 

mechanism is forward of the hinge, xc^ is defined as being positive, 

otherwise x. is negative.

111. The included angle of the bellcrank, $  , is given by,

The angle between the axis of the piston and the smaller bellcrank 

arm, 0  , is calculated as follows.

9,

LAC. sin &.

Using the cosine rule,

9 = 9, + &z

112. The radius of the centre of mass of the cap about the bellcrank



-  219 -

hinge, L , is given by,

L C& -  ( + J  ot)
\.1

113. The transverse distance from the bellcrank hinge to the centre 

of mass of the cap, y, can now be calculated as

3 *  Lcb s m ( i f - 9 - X )

The distance h is constant and is given by

k = ( fc 1 -

114. Finally, taking moments about the bellcrank hinge and 

rearranging gives

Fe* t  =

Calculation of the effective mass of the cap

115. The effective mass is calculated using the following energy 

equat ion
. T 2.

U>

or rearranging

with reference to figure B1.4,

R . S m 0  —  L s m o £  =  h  

R.C0 3 &  -f L  cosoC =  ^  - 3 1
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Rearranging and squaring both sides gives, 

L^-SIA oC «  ^ ( 2S\r\ Q —

and

L ^ c o i V  = ((pC0 - X . ) - & C o £ > Q f

2 2.Adding, noting cos + sinoC = 1 gives

L1 = k*-2.RK sin © + (xo-*}1 - 2R(^0-=c) toi© ̂ r.1 (si.z)
Using the chain rule

i.e. d L  . <̂'X’ d t *  . A ®  =. o
dlac dt cLS dt

and rearranging

- i t *
W  _  d * .  /8 I ^ \

“  "  J U Z
die

Differentiate equation B1.2 with respect to ©  ,

—  =  -  2 . R V i c c 6  ©  + 2fc.(x»-a.).sin© (ei .4} 
d ©

Sinilarly ,differentiate equation B1.2 with respect to x,

=  - 2  Lsca -*.') +  Z & c - o $ &  ( 8 1 .s)
d a -

Substituting equations B1.4 and B1.5 into equation B1.3 and then into 

B1.1 gives

_ — / Z  (jc„-oc) -  2  R-Cos © _____ \
V 2(L0*e-*-)sift® ~  2 R > » e o & £ /
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Actuator with shutter mechanism: AL3Z

116. In this section, the external mass will be termed "the 

shutter". As in the case of the cap actuator described in paras.100 

to 115, the shutter actuator experiences the inertia of the shutter 

as a variable effective mass. The force exerted on the actuator rod 

by the linkage is due to both a component of the weight of the

shutter and an external load on the shutter. For ease of

understanding, the initial theory is developed for an actuator 

mounted horizontally with the plane of the mechanism being vertical. 

The more complex cases of the actuator being mounted at an angle to 

the horizontal and/or the plane of the mechanism being at some angle 

to the horizontal are considered in paragraphs 130 to 135. Since the

plane on motion of the shutter mechanism is not horizontal, a

component of the weight of the shutter will be experienced by the 

actuator at some displacements. The external load must be defined as 

a function type (e.g. linear, sinusoidal) together with the end

conditions of that function. Figure B1.5 shows the actuator, the 

shutter and its associated linkage. In writing this model, the same 

assumptions have been made as were made for AL2Z. Additionally, it

is assumed that the distributed force on the shutter may be

represented by a point load at a user defined centre of pressure.

Model linking

117. AL3Z has two external links, two internal links and two signals 

and its linking diagram is shown in figure B1.B.
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SUBROUTINE INPUTS?

Pp Piston pressure in bar 

P^ Annulus pressure in bar

SUBROUTINE OUTPUTS:

Piston flow in 1/s

Annulus flow in 1/s

Piston fluid volume in 1

VA Annulus fluid volume in 1

X Displacement of the actuator rod in m

V Velocity of the actuator rod in m/s

FExr External force in N

"e Effective mass in kg

User defined parameters

118. These parameters are required in addition to those mentioned in 

102.

Mass of the shutter in kg

Inertia of the shutter about its hinge in kg m

Length of the link connecting the rod to the bellcrank in m (AB)

Length of the lower bellcrank arm in m (BC>

Length of the upper bellcrank arm in m <CD>

Length of the mechanism/shutter connecting pin to the shutter hinge

in m (EF)

Initial longitudinal distance - bellcrank hinge to the rod end in m 

Longitudinal distance - bellcrank hinge to the shutter hinge in m
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Vertical distance - bellcrank hinge to the shutter hinge in m 

Included angle of the bellcrank in degrees

Initial longitudinal distance - shutter hinge to the centre of mass

of the shutter in m

Initial vertical distance - shutter hinge to the centre of mass of

the shutter in m

Angle of inclination of the pressure force to the horizontal in

degrees

Initial longitudinal distance - shutter hinge to the centre of

pressure in m

Initial vertical distance - shutter hinge to the centre of pressure 

in m

Form of the function defining the external pressure force with 

respect to the angular position of the shutter e.g. linear, 

sinusoidal , cubic.

External force on the shutter when horizontal in N

External force on the shutter when closed in N

Angle of the shutter to the horizontal when closed in degrees

Angle of the line EF to the horizontal when the shutter is closed in

degrees

Orientation of the axis of the actuator and of the plane of the 

mechanism relative to the horizontal and vertical planes

Note: For sign convention refer to figure B1.9. Positive as shown.
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119. Nomenclature

Fp External force on the shutter in N 

Fn Force in N (see figures 51.11 to B1.23)

Distances and lengths in mm (see figures B1 .7 to B1.15)

Effective inertia of the shutter about the bellcrank hinge in kgm

Jp Inertia of the shutter about its hinge in kg m 

m^ Effective mass of the shutter relative to the actuator in kg 

v Velocity of the actuator piston in m/s 

x Displacement of the actuator piston in m

oL Inclination of the external force to the horizontal in radians

(positive upwards)

Inclination of the actuator mounting plate to the horizontal in

radians (positive upwards)

Mechanism angles in radians (see figures B1.7 to B1.19)

<f> Included angle of the bellcrank in radians

u) Angular velocity of the bellcrank in rad/s c
cJp Angular velocity of the shutter in rad/s 

(n is a general subscript reference)

Model equations

120. As for the model AL2Z, the force applied to the piston rod by 

the external load and the effective mass of the shutter referred to
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the piston rod must be calculated for all displacements of the rod.

(a) Calculation of lengths and angles required in the following 

analysis

121. <i> The angle between the axis of the piston and the

smaller bellcrank arm, ̂ C8 , is calculated as follows:

Refer to figure B1.7

The distance h is constant and is given by

h = C l * - K - l O 2)*

ec6i =

L _ h
Ac s»o

Using the cosine rule,

v 2 L »t L -i /

(ii) The angles Sp , and 6^ are derived as follows: 

With reference to figures B1.8 and B1.9,

“  (j-CT + ^ c f ) 1

t ,  -  (-te)
Using the cosine rule

X p p  —  (_L 3 + - Z L j^ cf Cos£.©c -

= Cos
Z L s - ^ r

Fb ~  C o b  ' ~
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Using the definition of given in equation B1.6,

e c ~  <$> -

^CF “  L 3 ^»n^c +

»\ =. 5 inH  /  ̂ cf ~ L3  6 »* &C. +■ L 5  S*A
^ U  '

(iii) The dimensions X_ and Y,̂ 0 are calculated as follows :CA c-r
With reference to figure B1.10,

*  0 4  *  o 4

* w  - o *  * L « ) *

< i-v) The angles ^  and are calculated as follows:

With reference to figure B1-10,

« U  -  ‘ “ - ( ■ f e )

- w ( ± 2 . )

(v) Figure Bl.11 shows the shutter at some intermediate position. In 

order to calculate the reaction F^ on rod ED, it is necessary to 

calculate three moment arms, Xp^ , Xpp , and X .

With reference to figure B1-12,

©b, = \  -

e *  =  ±  -  » r
Z

^ e b  ^ e f  

oCPe. ~ S«n A
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With reference to figure B1-13,

Q 9\FP PI V FI F ;

iVp - ^  +  ® fp

DCrP = ^-cp •S'O'tVp

With reference to figure B 1.14,

®cc* ~ _  (®fi~  ̂ r)

'feck ~

“  ^osc ^  ̂ c a

(vi) In order to calculate F . the moment arm of F_ about C must beExt £
known.

With reference to figure B1.15,

7 C6 =  % - © c

2Ccr =- 6ir\ -  < 9 ^

<b )Calculation of the external force on the acutuator

122. The force on the shutter, Fp , is calculated using a function

defined by the user. Four options are available:

<i) Linear (figure B1.16)

Fp , t F,
(ii) Square Law (figure B1.17)

Fp = £ l l £ l W  + Fl
&SZ



(iii) Cubic Law (figure B1.18)

F. = «^Uf>?+F,

(iv> Sinusoidal (figure B1.19)

\ Slfl ̂ 6I/
123. Referring to figure B1.11 and taking moments about F,

=  FP ^ fP + < ^ ^ 3

124. Referring to figure B1.15 and taking moments about C,

F e*t =
k

(c) Calculation of the effective mass of the shutter referred to the 

actuator piston

125. The effective mass of the shutter relative to the line of 

action of the actuator must be calculated. This effective mass is a 

function of the inertia of the shutter about its hinge <F) and the 

geometry of the mechanism which changes with respect to actuator 

piston displacement, x.

126. In order to break the calculation down into equations of 

manageable proportions, the problem is considered in two sections. 

The effective inertia of the shutter about the bellcrank hinge (C) 

may be calculated using the energy relationship
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i.e.

127. Similarly, the effective mass of the shutter relative to the 

actuator may be calculated by,

i.e. MA

Calculation of as a function of J^

128. With reference to the calculation of the effective mass of the 

cap (paragraph 115) and figure B1.7,

— J / ^ Z____ -̂6_____ \
C -  7.LZV\ cos )

Calculation of Jc as a function of Jp.

129. With reference to figure B1.8,

LCf = L3Cofi>£e + -t LsC*s&p

co$& - L r̂ - 1-3cqsQ ~~ Ls Cc>$&F
* "  U

Similarly,

1̂\C P r  <>t/i +- —  L 5

5 ^  ̂  <9y
" “  1-4.

Using the identity cos 6^ + sin 6^ = 1, and rearranging gives,
2

L4. = ( .1-cF "  -

(BI.2)
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Differentiating equation B1.8 with respect to time,

2. (U p  -  Q^- La oas © F ^ £|_3 6<* Ls  s>*\

+ 2  - L ^ & ^ L s  s.* ^  +Ls ^&<§f ^ \ = 0dt dt /
or rearranging,

d&,

d6«

 ̂clfc *1-3 FSt*&c Q -cf - L5Cos - U>z>&c (j'VcF 4 ̂5 S** ̂jr)
t- [_Slv̂ p  (]-cp * l-i 1-CoS(9p — L3

(81.3)Combining equations B1 .7 and B1.9 gives,

& C  ()-cf ~ ̂ -s,Co&^ f )
£>[*&f ( L ^  — L3  0 x 3 +£e»*>^F£h^+L*iSw\&c^

130. Local to global system transformat ion

As previously stated, the theory covered in paragraphs 120 to 129 

applies only to a shutter mechanism which is mounted horizontally 

(i.e. Its plane of motion is vertical).

131. In practice, these mechanisms may be divided into two 

categories. Those mounted horizontally and those mounted vertically. 

In both cases it is necessary to calculate the component of weight 

relevant to the local system described in paragraphs 120 to 129 and 

to modify the angle .

(a) Mechanisms mounted horizontally

132. Suppose, the plane upon which the mechanism is mounted is at
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some angle to the horizontal,^ , and also that the actuator is 

mounted at some angle to the line of steepest descent of the plane 

upon which it is mounted,^ , then ^  must be corrected as described 

below.

133. is the modified version of the angle yS ■

With reference to figures B1.20 and B1.21,

OC. = r 

A A 1 =  r

By similar triangles,

! _ o c  sc c
a a * oA r

= cc' = rs\f\^cos^

Sxnfi! - .§§! - cos^

ft! = Sio/3) (81.lo)

The angle p  in the theory described in paragraphs 120 to 129 should 
/

be replaced by ^  for the general case.

134. The weight acting in the plane of motion of the shutter 

mechanism is no longer simply mg but is a component of the total 

weight.

135. With reference to figure B1.22 and comparison with equation 

B1.10,

-  &irT'
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i.e.
^  S\rtH (

Therefore

(rt̂  = ^ 3 ( s m - ' ^ o 5 s m y 3 ) )

Similarly, mg in the theory described previously should be replaced 

by (m g i n  the general case.

(b> Mechanisms mounted vertically

136. The angle &  in this case is simply given by,

With reference to figure B1.23, the effective weight is given by,

"  ^ 3  Sw6 /+ /3)
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B .2 DC4Z DIRECTIONAL CONTROL VALUE 

Introduct ion

200. DC4Z is an instantaneous model of a four way three position 

directional control valve. The configuration of the centre position 

is defined by the user during the parametric data input section. The 

user has thirteen configurations to choose from and these options are 

shown in figure B2.1 along with their code number.

201. The model does not account for dynamic behaviour of the valve. 

It is assumed that the valve is zero lapped.

Model linking

202. DC4Z has five external links and its linking diagram is shown 

in figure B2.2.

SUBROUTINE INPUTS:

Supply pressure in bar

P. Service A pressure in barA
P̂  Service B pressure in bar8
P_ Return pressure in barR
Xp Fractional displacement of valve

SUBROUTINE OUTPUTS:

Qs Supply flow in l/s

Service A flow in 1/s

Q Service B flow in 1/s6
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QR Return flow in 1/s

User defined parameters

203. Two modes of input exist for this model. These are,

a) To define 4 to 6 restriction constants for the 4 to G possible

b) To define flows in l/s and corresponding pressure drops in bar for 

each of the flow paths.

204. Data for paths A to B and S to R will only be required if these 

paths exist in the particular configuration chosen. It should be 

noted that there is no direct path from S to R in a valve such as 

No.1 though the fluid may pass from S to A and from A to R. The flow 

path in a valve such as No.10 is achieved by passing the fluid 

through the centre of the valve spool.

205. Nomenclature

C Linear restriction constant in (l/s)/bar

C Restriction constant in (l/s)/bar^

flow paths in (l/s)/bar^

! Flow factors

through the A,B,S and R ports

Flow across path XY in l/s

QXyj User defined nominal flow in l/s

Xp Fractional displacement of valve

PL Limit of linear pressure/flow characteristic in bar
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Differential pressure across XY in bar 

PXŷ  Differential pressure corresponding to the user defined nominal 

flow in bar

Model Equations

206. If the first mode of input is chosen, the restriction constants 

of the relevant flow paths must be calculated.

where XY denotes a particular flow path.

207. The pressure/flow characteristic for a particular flowpath 

through the valve is made up of the usual square law plus a linear 

region at low differential pressures.

208. If a flow was calculated by simply inputting a differential 

pressure into this characteristic, then this flow would only be 

correct when that path is fully open. Therefore, the flow must be 

multiplied by a flow factor to account for the gradual change in flow 

area as Xp varies as shown in figure B2.3.

I f  x F <1 - 1
k , = o ,

I f  - 1  ^  x P < o

I f  O  1

k\ - X p

l<2 ~  ~  ^

l<2 —

l-*P,
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if X F » 1
k A =1, K - ° >  k i =  °

209. The discontinuities in flow factors at the three valve 

positions cause the flow to be discontinuous. Therefore, the tine 

deerivative of pressure in an adjacent pipe model will also be 

discontinuous requiring a special modelling technique incorporating 

the use of a cubic polynomial. The method is shown below.

210. With reference to figure 2.4,

212. The actual flows may now be calculated using the information 

supplied by adjacent models.

211. The linearised restriction constants are calculated as shown

below

c,utv/
A P l



- 237 -

If

= ^iQxy O ^ x y O  'i,,C'r̂  Q^-'t)

&*iZ —  ^| A^ty |) A1 &f^ {Ap*i)

0 ^ 2  =  k3 c w  ( \ A & yl)

213. If a particular flow path does not exist for the configuration 

being considered, then that flow is set to zero.

214. These flows nay now be sunned to give the nett flows at the 

four ports as shown below.

Q <> “  ~  ̂ <,A1 “ -  &£>i«. ~ ̂ 5 6 3

<^A =  ^ ^ S A l  + ̂ A<3Z

Qfc =  —  *^^<s£2. *^Ag2. ^ g £ 2  + ^ S € 3

4- + ^A^3
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B .3 FC8Z PRESSURE COMPENSATED FLOW CONTROL VftLVE WITH ft 

REVERSE FLOtJ CHECK VALUE

Introduct ion

300. PC8Z models the dynamic and steady state behaviour of a 

pressure compensated flow control valve with a fixed orifice bypass. 

The instantaneous behaviour of a reverse free flow check valve 

operating in parallel with the flow control valve is also included. 

The ISO symbol for such a valve is shown in figure B3.1.

Model Assumptions

301. Dynamic behaviour of a pressure compensated flow control valve 

is relevant only when the compensating orifice is open. The 

differential equation defining the transient flow is therefore

employed only when the differential pressure is above the minimum

controlling pressure and is below the maximum working pressure of the 

valve. The dynamic behaviour of the valve is considered to be

adequately represented by a first order differential equation. The 

dynamic behaviour of the reverse free flow check valve is not

accounted for.

Model' linking

302. FC8Z both have 2 external links and one internal link and their 

linking diagram is shown in figure B3.2.

SUBROUTINE INPUTS:

Inlet pressure in bar
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P^-T Outlet pressure in bar

SUBROUTINE OUTPUTS:

Q jjj Inlet flow in 1/s

(3 Outlet flow in l/sOut
Q-|. Transient flow in 1/s

303. User defined parameters

Mininun controlling pressure in bar 

Maxinun controlling pressure in bar 

Noninal flow setting in l/s 

Bypass restriction constant in <l/s)/bar

Main valve restriction constant for reverse flow in (l/s)/bar^ 

Pressure at which conpensating orifice closes in bar 

Check valve cracking pressure in bar

Differential pressure at which saturation flow exists in the 

valve in bar

Corresponding flow through check valve in l/s 

Coefficient A of differential equation in (l/s )/bar 

Coefficient B of differential equation in s”'

Initial- transient fiow in l/s 

Initial differential pressure in bar.

304. Nomenclature

check

A Coefficient in differential equation in (l/s)/bar

B Coefficient in differential equation in s
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K Transient flow factor

Inlet pressure in bar

ôurr Outlet pressure in bar

Flow through the check valve in l/s

°FV Flow through the flow control valve in l/s

Net inlet flow in l/s

® OR Flow through the bypass orifice in l/s

Qouj Net outlet flow in l/s

QSET Set flow in l/s

Qx Transient flow in l/s

t Time in s

Response time to reach peak transient flow in s

t0.0 S Response time to reach set flow ± 5% measured from peak

transient flow in s

A P Differential pressure across the valve in bar

AP„Cu Differential pressure at which compensating orifice closes in

bar

A p 4K\A * Maximum controlling pressure in bar

A P Minimum controlling pressure in bar

n Subscript to signify current calculation step

n-1 Subscript to signify previous completed calculation step

Model equations

The differential equation

305. The model initially calculates the instantaneous outlet flow, 

» based upon the differential pressure across the valve. The
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model actually calculates the algebraic sum of three flows i.e. the 

flow through the main valve and the flow through the bypass orifice 

(figure B3.3) and the flow through the check valve (figure B3.4). 

Due to the large number of cubic smoothing regions, the program 

automatically derives the cubic function required.

Reoion 1 : Reverse flow ^  — o*©l

30B. The values of the function (F) at the boundaries of Region 2 

must be calculated.

307. Also the gradients (G) of the function at the boundaries must 

be calculated.

Differentiating equation B3.1,

Region 2: Cubic smoothing region ^  A P

Therefore, ______
’ ~ 2|o.o||"1

G  z. O
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Region 3: Cubic smoothing region ( O  A p  <  0»0|^

C? „ r  O  o(L

Again, the function and its derivatives at the boundaries must be 

calculated.

F, = O 

Fa. -  <>•<»» C 4

where

&, = O

Region 4: Coming onto control ^0*01 A P  <  A ^ ^ — o*o>^

®OK * o

Qp ^  -

smoothing region C  A P M|(J'

r o

Fi = C 4(Af>„,^ - O . O l )

!»

C*\ -

6rt - C 4
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where

Region 6: Controlling (a P , ^  ^  A p  <

Q o  (L = O

^  fy» ~ ^6 ( a P -  +■ O  no mn o m

Region 7: High A P  droop ^ A P MA ^  A P  <. A P

308. Due to the absence of any better information, it is assumed 

that the flow through the main section of the valve reduces as a 

cubic law at differential pressures higher than the maximum 

controlling pressure. Similarly, the flow through the bypass orifice 

increases as a cubic law.

(a) Flow through main valve:- The calculation may be treated as a 

cubic smoothing region.

f, = \,oi aMOM

G jl ~ o

< b ) Flow through bypass orifices-
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Differentiating equation B3.2 with respect to A P

2.

i.e.

&a.
X U ? ^

Reaion 8: Conoensatina orifice closed

O oe =, <^Ap’* (S3.2>

©FM = °

Reaion 9: Saturation flow (a P <  a P*s - o .©\)

© F< = - c J a W *

Region 10: Cubic smoothing region / a P  -0»0| A P  <. A P  ^

P, =  - ^ 3  I A^ _ 6 - o , o l | /a"

Cr, =  _ Z S 2 _
2.(a P|'^

6 J- “ C .|
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Region 11 : Check valve linear characteristic (A^ c* ̂  AP<^ Af^~0.©l}

-  C n (ptf— a P

Region 12: Cubic smoothing region (aPCc_-0 o1 tJP A  A p ^ )

Fj O'0\ O-ĵ

F* - O

= ^A-

G j _ -  O

Region 13: Check valve inoDerative ( a P;> a Po J)

0 ^  =  0

309. Having calculated the instantaneous value of the constituent 

parts of the outlet flow, it is corrected by adding a transient flow 

Qt . However, the sign of 0^ is dependent upon whether the

differential pressure is increasing or decreasing. Consider a

pressure compensated flow control valve controlling the outlet flow

in steady state. The valve is then subjected to a step increase in 

differential pressure. Initially, the flow through the valve will be 

significantly greater than the set value when the compensating spool 

takes up its new position.

310. Conversely, if the valve is subjected to a step decrease in
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differential pressure, the flow through the valve will initially be 

significantly lower than the set flow.

311. The differential equation is given by

The tern defines the change in differential pressure

condition of the state variable Q.T must be defined by the user. 

However, since the previous value of differential pressure, , is

also required in order to calculate the derivative » an initial

differential pressure must also be defined by the user.

312. Care must be taken when defining this initial differential 

pressure to ensure that the value typed in is in fact the true 

differential pressure defined by the surrounding models. The program 

cannot automatically check the user’s input.

313. As stated in paragraph 301, the transient flow need only be 

accounted for in regions B or 7. The transient flow is calculated 

for all regions but is, multiplied by a factor K. this factor is 

unity in region G and is cubically smoothed to zero in regions 5 and 

7. Figure B3.5 shows a plot of K against differential pressure.

Regions 1 to 4

across the valve during the time interval . The initial

lc= o
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Region 5

Z  =  Ca p  - a P M i>j - a P s )

t&e
k = -2z3 + 3 z2

Region 6

k -  I

Region 7

x  =  (a .P- a p max)

AP,
k = Z z - Z z 1

Region 8

k - o

314. The net outlet flow is given by,

OU-T - a FV ■f' +- <s>cv -  kO-j

By convention, the inlet flow is given by,

O..J - - O o u t  

The Coefficients A and B

315. Figure B3.6 is a carpet plot from which the coefficients 

B may be found knowing the dynamic response of the valve. It 

to derive this plot, the flow control valve was subjected to a

A and 

i order 

ramped
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increase in differential pressure from 0 to 120 bar in 10 ms. The 

user must know the peak flow when the valve is subjected to a

differential pressure ramp of this kind. He must also know the time 

taken before this transient flow decreases to within 5% of the set 

flow (see figure B3.7). Setting the ordinate of the graph to the 

transient flow and the abscissa of the graph to the response time, 

the user may simply interpolate between the contours of the 

coefficients A and B. These values of A and B are required during 

the input stage of the simulation.

Note

31B. The response time t Q  is measured from the peak of Q T and 

not from the initiation of the ramp. Table S.1 shows the variation in 

time taken to reach the peak transient flow measured from the 

initiation of the ramp with respect to the coefficient B. It should 

be noted that these response times are accurate to approximately

—  0,5" ms. The time interval t_ is independent of variation in

coefficient A within the limits of accuracy stated above.

B

<sH  )

t

(ms )

1000 7

800 7

B00 8

400 8

200 9

100 10

50 10
TABLE B .1
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B .4 GE1Z SYNCHRONOUS ELECTRIC MOTOR 

Introduct ion

400. Subroutine GE1Z models the dyanamic behaviour of an electrical 

synchronous motor/generator.

401. Mathematically, it would not be a difficult task to account for 

all the abnormal modes of behaviour a synchronous generator may 

exhibit. However, the parametric data defining a complete 

mathematical model would be difficult to obtain. Therefore, certain 

simplifying assumptions have been made. Parameters relevant to these 

assumptions are displayed to the user on two internal links. Should 

the values of these parameters exceed specified limits, then the 

results obtained from a simulation using this model should be viewed 

with some scepticism. This point is discussed more fully in 

paragraphs 409 to 421.

Model assumptions

402. It is assumed that the generator is of a non-salient design, 

i.e. the armature is cylindrical (see paragraphs 411 to 416).

403. It is also assumed that the magnitude opf the torque created by 

the damper windings increases linearly with respect to rotor slip 

which is an adequate assumption over the normal working range C26 3 -

see paragraph 417 for the definition of rotor slip.

404. Model linking 

SUBROUTINE INPUTS:
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T - Driving torque in Nm

SUBROUTINE OUTPUTS:

- Generator speed in rev/min.

9 - Rotor lead/lag angle in radians.

T^ - Electrical torque neglecting damping in Nm.

- Rotor slipr
L - Damping torque in Nm.

405. The model has one external link and two internal links and its 

linking diagram is shown in figure B4.1.

4QS. User defined parameters

Synchronous speed of generator in rev/min.

Initial speed of generator in rev/min.

Electrical torque constant in Nm 

Frictional torque constant in Nm (min/rev).

Moment of inertia of generator rotor in kg m1".

Damping torque constant in Nm.

Initial rotor lead angle in radians.

407. Nomenclature

J Moment of inertia of generator rotor in kg mx.

K| Electrical torque constant in Nm.

k2 Damping torque constant in Nm (min/rev >.

Frictional torque constant in Nm (min/rev).

sr Rotor slip (see paragraph 41 ff for definition)
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Tp Damping torque in Nm.

Electrical torque neglecting damping in Nm.

Net electrical torque in Nm.

Frictional torque in Nm.

Driving torque in Nm.

Ef Accelerating torque in Nm.

Speed error in rev/min.

0 Rotor lead/lag angle (leading - positive, generator mode) in 

radians.

w^ Rotor speed in rev/min. 

w^ Synchronous speed in rev/min.

Model eouations

408. Figure 4.7 in the main text shows a block diagram of the method 

used to calculate w given the driving torque and other constants. 

The calculation is considered in three sections.

409. Calculation of the electrical torque generated neglecting the 

effect of damper windings

Figure B4.2 shows the variation of electrical torque, , with

respect to rotor lead/lag angle, Q ,for a non-salient and a salient 

machine.

410. If the machine were of a salient design, i.e. one with an 

armature of a dumbell type cross section, the non-salient function 

shown in figure B4.2 would no longer be a sine curve and would peak 

at approximately ff/6 radians. In this case, the model may still be
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used provided 9 is always snail and Kj is factored by 1.5 to 

account for the different function. To summarise, this model should 

only be used to simulate a salient generator when the inaccuracies 

mentioned above are deemed acceptable. For the remainder of this 

section, it will be assumed that the generator is non-salient.

411. If B becomes greater than ^f/4 radians, then loss of

synchronisation will occur. When a synchronous machine pulls out of 

step with its synchronous system, damage to both the machine and to 

service units may occur. Damage to the generator may be in the form 

of overheating of the rotor core or damper windings, or of mechanical 

damage. Loss of synchronism may occur due to:

(1) An applied mechanical torque in excess of ,

(2) An abnormally low field current , or

(3) A decrease in applied voltage.

412. For this reason, relays are often incorporated in generators to 

signal an alarm some time before this undesirable condition is

reached C271.

413. Therefore, attention should be given to the absolute value of 

9 (displayed on an internal link) to ensure that it does not

approach 0.75 radians (0.5 radians for salient machines).

414. The speed error, £, is given by,^  *

The rotor lead angle, ©  , is calculated using the differential
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equat ion,

A e

6 0d t

The electrical torque is given by,

415. Calculation of the damping torque created by the damper 

windings

Figure B4.3 shows the variation of damping torque with respect to 

rotor slip, Sp , where Sp is defined as

416. The function shown in figure B4.3 is approximately linear for 

values of Sp between approximately -0.06 and 0.06 C271. These limits 

of linearity are in fact greater if the electrical resistance of the 

damper winding is high. Rotor slip is also displayed on an internal 

link and should be checked following every simulation in order to 

ensure the assumption of linearity holds good. If the assumption 

does not hold, then the results of the simulation will be erroneously 

overdamped.

417. The damping torque, T^ , is given by

418. Calculation of the generator speed,
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The net error in torque (i.e. the torque tending to accelerate or 

retard the generator) is given by,

£t  *  C T e -  T * )  - T ^  -  T,

419. Therefore, the generator speed, , nay be calculated using 

the differential equation

_ 6 o £ t 

dt 2-rfJ
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B.5 PCDZ METER-IN PRESSURE COMPENSATOR 

Introduct ion

500. PCDZ models the instantaneous behaviour of a meter-in pressure 

compensator such as the Rexroth ZDC compensator. Such compensators 

are intended for use with proportional valves in order to maintain a 

constant pressure drop across the valve, thus ensuring constant flow 

for a given proportional valve spool displacement. Figure B5.1 shows 

the standard use of the compensator.

Model assumptions

501. It is assumed that the frictional forces on the valve can be 

neglected. Furthermore, both cross-port and external leakages are 

neglected.

Model linking

502. The inputs and outputs of PCDZ are listed below.

SUBROUTINE INPUTS

Pp Supply pressure in bar

P<j Service pressure in bar

Pj_ Return pressure in bar

P External pilot pressure in bar 
x

SUBROUTINE OUTPUTS

Qp Supply flow in l/s 

Qf Service flow in l/s 

Qt Return flow in l/s
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External pilot flow in l/s

503. The model has four external links and its linking diagram is 

shown in figure B5.2. Figure B5.3 shows the complete linking diagram 

corresponding to figure B5.1.

504. User defined parameters 

Spool diameter in mm

Spool displacement when supply port closes in mm

Spool displacement when service port and return line port become 

connected in mm

Discharge coefficient of orifices 

Spring rate in N/m 

Spring preload force in N

505. Nomenclature 

A Flow area in m

Discharge coefficient 

d Spool diameter in m

F Momentum force on spool due to flow from supply to service in Nmp
F Momentum force on spool due to flow from service to return in N mT
Fp Force on spool due to differential pressure in N 

Fpgg Preload force in spring in N 

F$ Force on spool due to spring in N

k A combination of terms applicable to rectangular ports

in m (2C|Tf,dcos8> 

ks Spring rate in N/m
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1̂  Spool displacement when supply port closes in m

1T Spool displacement when service port and return line port become 

connected in m

Pi Service pressure in bar

Pp Supply pressure in bar

PT Return pressure in bar

Px External pilot pressure in bar

Q Flow through orifice in m3/s

°1 Servive flow in l/s

QP Supply flow in l/s

«T Return flow in l/s

0* External pilot flow in l/s

X Spool displacement in m

AP Differential pressure across orifice in N/m

9 Flow angle of orifice in degrees

p
%Fluid density in kg/m

Model equations

506. Figure B5.4 is a schematic of the compensator. It is shown in 

a condition when there is no flow through the valve and no pressure 

differential across the spool. The spool displacement x is defined 

as being zero in this condition. Therefore, at some displacement of 

the spool, the area of the metering orifice on the pressure port is 

given by

A = it'd (I,-x) >{ l,>=c



- 258 -

Similarly, the area of the metering orifice on the return line port 

is given by

507. The spool displacement is calculated assuming that the spool is 

in static equilibrium. However, the forces acting on the spool are 

dependent upon displacement not only in magnitude, but also in the 

form of the expression.

508. Three possible flow configurations exist:

- Supply port connected to service port

- Service port and return line port closed

- Service port connected to return line port

509. Initially, x is calculated assuming that no momentum forces 

exist, i.e. the second case above. If the value of x thus obtained 

defines the spool to be in a different flow configuration, then the 

displacement is recalculated accounting for the momentum force<s) 

relevant to that region. This process is repeated until the spool 

displacement obtained corresponds to the configuration defining the 

expression.

510. The derivation of the forces acting on the spool are shown 

below. Forces tending to compress the spring are defined as being 

positive.

<a) Pressure force

A » r̂fa(pc-iT) i{ .x, > lT



- 259 -

(b) Spring force

—  Ks'x -

(c) Monentum force

In general, the rcomentun force is given by

F = a O M  co(>&

where

a  =

and

V  =

Therefore

F -

Let

k. =■

Therefore, the momentum force caused by flow through the supply port 

is given by

 ̂A /z|*P|y*

Z C j A  | cos ©

it'd Cos 5* * - \ 0
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Similarly, the momentum force caused by flow through the return 

port is given by

Each configuration is dealt with separately.

Case .1. X  <. L,  ̂ C C C  lT

For static equilibrium,

fp + ^ = o

i.e.
~ t- k  (l, -^c ) | Pp - p, j s O

Rearranging gives

• k5 + k J P p - P . I

C3.53-2 L, ^=C, CC^L-r

f> + =  o

i.e.

line

pp -FpR£ -  Ks-*- -  o
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Rearranging gives

^  - Ffne

k s

Case 3 DC- >  L, , X- >  lT

Fp +- + Fm t  = o

i.e.

îp£E _ :>C - lc (ac Lt) j Pj —

Rearranging gives

_ »> + klT |p,-PTl=c =

k |P .-Pr |

511. The derivation of the flows is given below.

The flow through the metering orifice on the pressure port is given 

by

Q  = -  C ^ A ( l r x ) ( ^ ' ̂  ~ F| I •* to J s i ( P p - P , )  X  \o3

provided lj >-X.

Similarly, the flow through the metering orifice on the return line
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port is given by

. . 1-2 IP.-P-km^N , 3x\0

The flow through the service port is given by

Q  | —  — Q j

The external pilot is used only to sense pressure. Therefore,

CD* —  O
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B.6 PM3Z DIESEL ENGINE 

Introduct ion

BOO, Subroutine PM3Z nodels the dynamic behaviour of a diesel

engine.

601. The model accounts for the speed droop characteristic and

linearised maximum torque and motoring characteristcs. The governor 

speed is set by an adjacent model and PM3Z supplies speed, torque and 

acceleration as information to be used by an electronic control 

circuit. This information is supplied on signals. Therefore, any 

combination of of these three feedback variables may be used. 

However, since the information on signals is not stored as results 

data, the same information is available on an external link.

Model Assumptions

602. The characteristics representing maximum torque, speed droop

and motoring are assumed to be linear.

Model linking

603. PM3Z has two external links, one internal link and three

signals and its linking diagram is shown in figure B6.1.

SUBROUTINE INPUTS:

T^ hydraulic torque in Nm

^  governor setting in rev/min

SUBROUTINE OUTPUTS:

angular velocity in rev/min
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Tg engine torque in Nm (signal 1)

u>6 angular velocity in rad/sec (signal 2)
• iloe angular acceleration in rad/sec (signal 3)

User defined parameters

604. Reference speed at zero torque for which the engine torque/speed 

characateristic is known in rev/min

Torque at which the maximum torque characteristic intersects the 

speed droop characteristic in Nm

Torque at which the motoring characteristic intersects the speed 

droop characteristic in Nm

Gradient of the maximum torque characteristic in (Nm min)/rev 

Gradient of the speed droop characteristic in (Nm min)/rev 

Gradient of the motoring characteristic in (Nm min)/rev 

Initial speed in rev/min 

Moment of inertia of engine in kg m z

Model equations

605. Figure B6.2 shows a block diagram representation of the method 

used to calculate the engine speed

606. Since the model is dynamic, there must be an initial condition 

for U>£. Knowing the engine torque T^ may be found using the user 

defined speed/torque characteristic as shown in figure B6.3. This 

characteristic consists of three main operating regions. There are 

also two transition regions. The equations defining TE are given 

below.
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Reoicn I Maximum torque characteristic (/>*e ̂

The maximum torque characteristic is assumed to be linear. Thus, the 

torque is defined as

—  T 0 -^lcz u)E

Region 2 UpDer smoothing reoion ^  UiT -+■ u3

The maximum torque and the speed droop characteristics are connected 

by a cubic polynomial over a small range of speed. This cubic 

polynomial is set up such that the resulting characteristic is 

continuous in both function and derivative.

^ ^ iu 1p r._ 'T b r )
W f  - -  ------------— -----Vcx-W2.

2L —  - uJ t ) / uJcs

Te = kzz)
+  k,(to0 -*0T^

Region 5 Speed droop characterist ic (w-j- +uicS ^  ^  ^

The speed droop characteristic of the diesel engine is defined as

Tk -  k s(u*

Region 4 Lower smoothing region (c0 ^  £  cOg <<-

The speed droop and the motoring characteristics are smoothed in a 

similar manner to that described for region 2.
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Reaion 5 Motorina (_ U) <*■>« <  ^e.)

The motoring characteristic is assumed to be linear and is defined as

Te = 3̂*°|L + T*

B07. is now calculated using the following differential equation

which accounts for the inertial effects of the engine.

cJuOe ^ 6 o  d-r

dt J

where
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B .7 PU0Z DIESEL ENGINE/HYDRAULIC PUMP 

Introduct ion

700. Subroutine PU0Z models the characteristics of a fixed 

displacement hydraulic pump and a diesel engine exhibiting a linear 

speed droop with increasing torque and a linear torque droop with 

increasing speed. The model is instantaneous.

Model assumptions

701. The coefficients for slip, compressibility, and frictional 

lossed are assumed to be constant throughout the pump operating 

range.

702. Both the torque droop and the speed droop are assumed to be 

linear.

Model linking

703. The inputs and outputs of subroutine PU0Z are listed below.

SUBROUTINE INPUTS:

P^ - Inlet pressure in bar

P - Outlet pressure in bar Om t

SUBROUTINE OUTPUTS:

Qt|>j - Inlet flow in 1/s 

Qout- Outlet flow in 1/s 

Tp - Pump torque in Nm 

Wp - Pump speed in rev/min 

- Mechanical efficiency
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- Volumetric efficiency

704. The model has two external links and two internal links and its 

linking diagram is shown in figure B7.1.

705. User defined parameters

Type of pump - gear or piston unit 

Displacement of pump in 1/rev 

Swash fraction

Clearance volume as a fraction of full displacement (advice given) 

Overall slip loss coefficient (advice given)

Speed dependent viscous torque loss coefficient (advice given)

Overall pressure dependent torque loss coefficient (advice given)

Maximum engine torque in Nm

Torque fall off with naximum speed in Nm

Maximum engine speed in rev/min

Governor speed droop at maximum torque in %

Moment of inertia in kg m

706. Nomenclature

Cp Speed dependent viscous torque loss coefficient 

Cp Pressure dependent torque los coefficient 

Cs Slip loss coefficient 

0^ Pump displacement in 1/rev

Speed droop constant in rad/Nms 

Torque droop constant in rad/Nms
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T0 Net torque at zero speed in Nm

Torques at region boundaries in Nm

Tcs Cubic smoothing region in Nm

T Torque droop at maximum speed in Nm 

Tp Net pump torque in Nm

Tpj. Pressure dependent torque loss in Nm 

T Theoretical pump torque in Nm

Ty^ Viscous torque loss in Nm 

Clearance volume in 1 

X Swash fraction (fraction of full displacement) 

Z A variable in the cubic smoothing analysis

A* Fluid viscosity in Ns/m 

'b Mechanical efficiency 

Volumetric efficiency 

Pump speed at zero torque in rad/sec 

w ^  Speed droop at maximum torque in rad/sec 

Wp Pump speed in rad/sec

w calculation 

Model equations

707. Figure BS.3 shows the speed/torque characteristic for a typical 

engine.

w Succesive values of Wp in Newton-Raphson
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708. However, in order to find wQ , it is not possible merely to

calculate Tp then read Wp from the characteristic. The reason for

this is that Tp is dependent upon the viscous torque loss which is

in turn dependent upon Wp , i.e. the relationship between Tp and Wp 

is implicit. Figure BG.3 also shows that the characteristic is split 

into five regions. A cubic polynomial is fitted to regions 2 and 4 

in order that the characteristic may be made continuous.

709. Figure B7.2 is a flow diagram which shows the method adopted

for determing Tp and Wp .

710. Region 1 

From figure BB.3,

Wp * U)e - k.Tp (S7.0

The net torque required to drive the pump is given by

TP r Tth + Tvt -rTpT

The viscous torque loss is given by

T v t  *  C F / O p C 0 p  (S T S )

Equations B7.1 and B7.3 combine to give

tOp ^ ^  (Tth 4 Tft)

Tp is then calculated using equation B7.2 and B7.3 above.
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711. Region 2

In this region, the normal method for smoothing discontinuous 

functions is employed. However, the implicit cubic polynomial

obtained must be solved for Wp using an iterative method. The 

Newton- Raphson method for solving differentiable polynomials is 

used.

712. The lower boundary of the cubically smoothed region is given

by,

T,x = T„ -

713. The smoothing polynomial is derived in the standard manner 

(Appendix D>.

F, = W2 ( j0- -r iX)
Z- =  ( T p - T ^ / T c *

c 5 ( - 
A = 
&  -  ZTts

W p  may be expressed as,

Cdp ■=: F| (B7.4)

However, Z is a function of Wp ,

Z ~  Tp — ~̂TM ~T(2.
Tcs
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Therefore, rearranging equation B7.4,

^ -fO-v) = Ar3 + 6 z 2 + Q,z 4 F, ~u>p - o  (87. s)

714. Using the Newton-Raphson iterative formula, w p  is found to an
-S'acceptable degree of accuracy (1x10 rev/min).

715. Tp is again calculated using equations B7.2 and B7.3. It may 

be found that Tp actually lies outside region 2 and reassessment of 

Wp may be necessary (see figure B7.2).

715. Region 3

The calculations in region 3 are simialr to those in region 1. From 

figure B6.3,

Differentiating Z with respect to wp,

Differentiating f(Wp ) (equation B7.5) with respect to Wp ,

(Op —
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Combining equations B7.2, B7.3 and B7.B,

W p  ^ "^^-2 ( T t H ’F T p t ^
r

(j\ 4“

717. Region 4

The calculations in region 4 are similar to those in region 2.

The lower boundary of the cubically smoothed region is given by,

II+ T o - T ^

W XT«.

7L - (TTM ̂  ~^PT + J T c 5

= -  W , T «
11

8  =
giving

A ?L + S z 1 +  F, (^7*7)

Since A = - B = - Q 1 = Fj , rearranging B7.7 gives,

■ f ^ p ) =  k ( z i-Z?’-7-+ l) -  W p

Di fferent iat ing,

1 =  ( s x !- 2 ^ - i ) - I
T c s  '
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The Newton-Raphson iterative method is again used to calculate w

718. Region 5 

In this region, Wp ** 0

Therefore,

~  ^ t h + T p r
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FIG. Bl.l The cap actuator and associated mechanism

Part 3 Port 4
Signal 2Signal 1 AL2Z

Port 2Port

EFFORTS : ?? FE<r
FLOWS : Q A V
STATE VARIABLES : X  V

FIG, Bl.2 Linking diagram of AL2Z
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Horizontal

mg cos p
mg

FIG. Bl.3 Resolution of the weight of the cap

EXT c_>

FIG. B1.4 Geometry of the cap mechanism
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FIG. Bl.5 The shutter actuator and associated mechanism

PortPort

Signal 2Signal 1

EFFORTS: P,.?* *
FLOWS : Qp v 
STATE VARIABLES : x >/

FIG. Bl.6 Linking diagram of AL3Z
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FIG. B1.7 Shutter mechanism geometry -
Actuator rod to be11crank centre

CB

L c f

FIG. Bl.8 Shutter mechanism geometry -
Bellcrank centre to shutter hinge
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E

CF

Lcf

FIG, Bl.9 Shutter mechanism geometry -
Angle definition, bellcrank to hinge

Lpi

FIG. B1.10 Shutter mechanism geometry -
Definition of load on shutter
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FP

FIG. Bl.ll Shutter mechanism geometry -
Moment balance on shutter hinge

F

FIG. Bl.12 Shutter mechanism geometry -
Force of mechanism on shutter
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FP
FP

FIG, Bl.13 Shutter mechanism geometry - 
External force on shutter

FIG. B1.14 Shutter mechanism geometry - 
Weight of shutter
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FIG. Bl.15 Shutter mechanism geometry -
Moment balance on bellcrank pivot

FIG. Bl.16 Linear load FIG. B1.17 Square load
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FIG. Bl.18 Cubic load FIG. Bl.19 Sinusoidal load

OA

FIG. B1.20 Shutter mechanism geometry -
Definition of angles of inclination



FIG. Bl.21 Shutter mechanism geometry -
Resolution of angles of inclination

Resolution of weight

FIG. Bl.22 Shutter mechanism geometry
Definition of angles of inclination
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FIG. B2.1 Possible configurations for DC4Z



- 287 -
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R art2 f t  Port 3 ■Pb

D C U 1
Port 5

F Poi+1 PR' Port 4

'Os fQR

EFFORTS : fi Pr  Xf
FLOWS :
STATE VARIABLES: —  

FIG. B2.2 Linking diagram of DC4Z

k 2 -

FIG. B2.3 Vartiation of flow factor with position
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K, = X F 

dKi --i 
dXF 

X p

FIG. B2.4 Smoothing of flow factors
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i •

1 1 * P  »} Ii_ _ _ _ _ i
— wc>------------

FIG. B3.1 ISO symbol for model FC8Z

PORT 3

P o u t

o u t

EFFORTS •• P i n  P o u t

FLOWS '• Q i n  Q o u t  Q t

STATE VARIABLES : QT

FIG. B3.2 Linking diagram of FC8Z
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Net Flow

AP
(bar)

Region:

FIG. B3.3 Pressure/flow characteristic of main valve

290
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Region

AP
(bar)

FIG. B3.4 Pressure/flow charactersistic of the reverse 
fre-flow check valve

APmin

AP(bar)

REGION 1 to

FIG. B3.5 Variation of transient flow factor with pressure
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FIG. 3.5 The coefficients A and B
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Q o u t

(I/s)

1*05 Qset 
Q s e t

Time (ms)

FIG. B3.7 Definition of response times
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nn.t 9

Wg po

EFFORTS : 7*
FLOWS : ©•
STATE VARIABLES: uĴ  0

FIG. B4.1 Linking diagram of GE1Z

(Nm)

non-salient

9 (rad

salient

FIG. B4.2 Variation of electrical torque with angle
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(Nm)

-----
machine running backward

FIG. B4.3 Variation of damping torque with rotor slip
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f  s .

z r i

FIG. B5.1 An example of the use of the pressure 
compensator

p o rt 2 port 4

port 1 p o rt 3

EFFORTS : fp Pc Pt 
FLOWS:
STATE VARIABLES : —

FIG. B5.2 Linking diagram for PCDZ
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p m

PCDZ

P I03

DF9T

PI03

DE00

FIG. B5.3 The linking of models to form the example 
circuit of figure B5.1

pre

FIG. B5.4 A schematic of the pressure compensator



- 298 -

UJ,

PM3Z
port 3

UJc

Tp port f

EFFORTS : Tp 
FLOWS : uj0
STATE VARIABLES: uL

FIG. B6.1 Linking diagram of PM3Z

from adjacent model

*0 T
m £  / \ ? V e T 60

from — r z 2tTJs
adjacent m  
model

UJe

to
adjacent
model

FIG. B6.2 Block diagram of the algorithm of PM3Z
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YESNO

YESNO

YESNO

output \
\ warning 
\messag<a

count
20 .

/9oes\
iguess
v =2 /

set

assume a 
value for

L>Ja

set
igUess=2

make new 
estimate 
of

calculate

guess a 
value of

calculate 
new 

using N.R

set
counter

icount=0

set
iguess=l

calculate

FIG. B7.2 Flow chart of the algorithm of PUOZ
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APPENDIX C ~ GENERAL UTILITY ROUTINES

C.1 MESAGE ~ ERROR WARNING SUBROUTINE 

Introduct ion

100. If a user inputs a value which is outside normal working limits 

for the parameter concerned, a message to this effect should be 

displayed and the user allowed to reconsider. However, if he again 

inputs a value outside the normal limits then the calculation should 

proceed unless acceptance of this unusual value would cause a fatal 

error in either of the model subroutines.

Subroutine MESAGE

101. Subroutine MESAGE is not intended as a complete solution to the 

problem outlined above, but is as comprehensive as a general 

subroutine can be. It will inform the user that he has typed an 

unusual value and will allow him to reconsider. If he then types in 

the same unusual value the program will continue.

Callina subroutine MESAGE

102. Subroutine MESAGE is listed in Table C.1. MESAGE has 5 

arguments which are listed below.

N A multiple question identifier. In general,

N will correspond to the argument of C0N< ).

CON The value of the parameter typed by the 

user.
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ULOW The lower acceptance linit.

UUP The upper acceptance limit.

NPRE An integer variable required to inform the

input subroutine whether or not the

question should be repeated.

103. Firstly, an integer variable, say IERROR, must be initialized 

to zero at the beginning of the model input subroutine.

e.g. MR - NR
IERROR * 0

104. The example below is of a question and call statement.

1 WRITE(5,2 >
2 FORMATS TYPE IN CRACKING PRESSURE IN BARM

READ(5 ,3 ,ERR=1 )C0N(5>
3 FORMAT(F25.0 )

CALL ME5AGE< 5 ,CQN(5 ), 1.00 ,500.00.IERROR )
IF(IERROR.EQ.5 >GOTO 1 
Ip(MR.EQ.7 )G0T0 500

105. Occasionally, one of the acceptance limits may depend upon the

previous values inputed. In this case, the limit should be

calculated before the call statement.

e.g. ULOW=0.1D0*CON< 2 )
UUP *1.5D0*CON(2 )
CALL MESAGE(5 ,C0N(5),UL0U,UUP.IERROR )

10G. Table C.2 is an example of how MESAGE would look to the user.

Changes to the program generator

107. The only change required in the program generator is to 

PGODL/PGSEL, the subroutines which write the component selector 

files, where MESAGE is given the same status as FPROP.
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C.2 PTI/PTC ~ PORT AREA SUBROUTINES (Code No.1)

Introduct ion

200. Subroutine PTC is a general calculation segment which may be 

called from any model calculation subroutine where the area of flow 

through a valve port is required. PTC is valid for annular, circular 

or poppet type ports. PTI is the corresponding input subroutine and 

is called from the parameter definition subroutine of the model. Two 

additional features of PTI/PTC are (i) the valve may be normally open 

or normally closed, though PTI will not allow a normally open poppet 

type port, and (ii) in the case of annular and circular ports, 

underlap or overlap may exist.

201. Nomenclature 

(see figure C.2 )

Area triangle APC in m1"

A F Area of flow in m1*
xAmax Maximum possible area of flow in m 

A Area of sector APCF in m1*

A*-, Area of segment ACE in m£Eu
D Diameter of port in cm

d, Length of port in cm

d̂ p Diameter of spool in cm

Poppet travel when saturation flow is reached in m

X0 Amount of overlap or underlap in cm

. X Spool displacement in mv
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Z Constant in cubic smoothing analysis

Zj Line AB in cm

Z^ Line BP in cm

Q  Angle in degrees

f
Circular oort

202. Figure C.1 shows the elevation of the outlet port of a valve.

203. From figure C.2, 0E - X0 , OB * Xv , and EF = D. Therefore,

EB » X„ -X_ and BP = D/2 - X„ + XV O  O

204. Since Fortran does not contain the function cos”1 , &  must be

calculated in terms of tan * which does exist as a Fortran function.

Therefore, AB must be calculated.

205. By Pythagoras: A &  “ ( A P * -

AS = (0/2.)2"- (p/2. - x.v + DC.yf-
i  z V4.

i.e. AS = (pjc-v-l)a^0 -JC v -r ZsC^0Co

Let Z, - A& 

and Z i =

T  *  - " ( t )

0- =• Z t e w T ' ^ L ^

206. However, if 0B > OP, i.e. 0- > 180° , then BP becomes negative.
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207. Therefore, \ZA  must be used in the expression for S' and 

added, if S  should be greater than 180° .

and / V / "D
&  -  '» ^ >5<:o+' T

208.. Areas

x e  '7ft)2' d * s

” atr 4- = 2

A/xpc ~  Z (Z 2

^SE£. ~ ASECT ~  ̂ APC, =  - Z | "Z-z
Of

rv oIf S  >180 , Z is negative. Therefore, the expression for A isfc &£ G
true, even if 9 is reflex.

The flow area,

Af = A Sec>4-
i.e.

af = 1-) +z,z
d A F

a:;
when

=*-e = x v , m  =  o

Therefore, cubic smoothing is not required.
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209. Annular port

(i) Calculation of the flow area 

From figure C.3:

O E  - * v

OF ~
EGr = d,

Therefore,

E T  = _ X „

FGt — J  i ^

The flow area,

Ap =• (J| ■+ ̂ o-Tf)

<ii) Cubic smoothing of the function

210. From figure C.4 it can be seen that the variation of Ap with 

is of the form of a ramp function. Therefore cubic smoothing is

required in two regions.

211. The lower cubic smoothing region

~ A r*AX

A F * 4
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212. The upper cubic smoothing region

4 ^ 0  ” o o \

Z. =

A f =  c-.o\Am a x z 3 - o . o i a ma^2lz —  o.ol AMA)tz- +  O'Ol A

Poppet type  p o rt

213. Figure C.5 shows a schematic section of a poppet type port 

Figure C.G shows a plot of X y against .

(i) Calculation of flow area

214. The flow area is a conic frustum where

215. However, X^ is limited to allow for saturation flow. This

limit is reached when the flow area of the frustum is equal to the 

cross-sectional area of the port.

i.e.

Therefore,
=Ct =

216. Therefore, if Xv is calculated to be greater than X̂ _ , the 

flow area calculation is based upon X^ .

MAX
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<ii) Cubic smoothing region

217. The graph of Xy against A p  would show a discontinuity at 

Xy = X^ if a cubic polynomial was not fitted to this region.

Callino up subroutine PTI

218. PTI should be called from the model input subroutine during the 

interactive read section and the display and edit section.

219. PTI is called from the interactive read section as shown below. 

C ***** INTERACTIVE READ SECTION

IC0N<1 ) is the shape of the port 

C0N(1 ) is the port lap/

diameter if poppet type 

C0N<2) is the port size/

poppet angle if poppet type 

C0N<3> is the spool diameter/

limit in X if poppet type

— A MAx

(scv -  0 .9 9  / o o I  X-l 
'©•ol o.olA^Z1 + o .o \ AMAx-z- -t o '99A,

CALL PTI<1,MR,ICON<1 ) ,CON<1>,C0N(2 ),C0N(3))

where 1 is a multiple port identifier

MR is the read mode identifier

220. PTI is called from the display and edit section as shown below.
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C **** DISPLAY AND EDIT SECTION 
MR=7

499 CALL PTI (1 ,MR,ICON<1 ),CON(1 ) ,CON(2 ) ,CON(3 ))
500 WRITE ___

221. The only other unusual feature of the model input subroutine is 

in the "TRANSFER TO APPROPRIATE READ SECTION" where the following 

statement occurs.

IF(MR.EQ.7 )G0T0 499

Calling u p  subroutine PTC

222. PTC should be called up from the model calculation subroutine

after the spool displacement, Xy , has been evaluated and before the

flow area Ap , is required.

223. Using the variable names defined above, PTC is called as

follows.

CALL PTC(0,IC0N(1 >,C0N(1),C0N(2),C0N(3),XU,AF )

where the first argument indicates the type of port 

i.e. 0 for normally open,

1 for normally closed.

Changes to the program generator

224. The only change required in the program generator is to

PGODL/PGSEL, the subroutines which write the component selector
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files, where PTI and PTC are given the sane status as FPROP and 

MESAGE.

C.3 REGR/SIMUL - REGRESSION FUNCTIONS (Code No.2)

Introduct ion

300. In principle, the regression functions nay be used for two 

purposes. Firstly, they nay be used to fit polynonials to discrete 

data defined by the user. For exanple, the user could define several 

points of a punp torque loss characteristic during the paraneter 

definition section. The regression routines would then be enployed 

to fit a suitable curve which would subsequently be enployed by the 

nodel calculation routines.

301. However, the regression routines nay also be used to fit curves 

to functions which are conputationally very slow to evaluate. In 

this case, the function in question is evaluated at a nunber of 

points and these points used to derive the polynonial. It is 

inportant that the values of the independent variable should 

enconpass the possible range of operation. It is well known that the 

error between the polynonial and the supplied data points is greatest 

at the extrenes of the independent variable. Therefore, since the 

regression routines described do not apply extra weighting to the 

extrene points, points should ideally be defined well outside the 

nornal operating range. It was for this second nethod of use that 

the regression routines were originally developed.
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302. Nomenclature

a polynomial constant

polynonial coefficient of (i = t,n) 

c.. coefficient of the normal equations <i,j = 1,n)

n number of data points

n order of polynomial

s sum of the squares of the errors

x^ data point

y independent variable

Calling the regression routines

303. The regression routines are called from a model parameter 

definition subroutine. The function REGR is called by the model 

routine in order to set up the regression equations, and the function 

SIMUL is called by function REGR to solve the resulting matrix.

304. The component model must define the dependent and independent 

variables contained in the arrays x and y. It must also define the 

number of data points, m, and the order of polynomial required, n. 

In return, the regression function calculates the coeffcicients of 

the polynomial. The constant is defined as the variable a and the 

coefficients of the powers of x is contained in the array b. 

Additionally, the function returns the standard deviation of the 

defined points about the polynomial, s.

305. It is possible to write the order of polynomial required into 

the parameter definition subroutine at the time of its development.
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However, the order which gives the best fit Is often dictated by the 

relative Magnitude of various user defined parameters. Therefore, it 

is considered better practise to ensure that the order may be defined 

during the simulation process. This may be done by calculating a 

series of polynomials of differring order and using the polynomial 

which produces the lowest standard deviation.

30B. An example of a section of coding from a parameter definition

subroutine is given below. In this example, the polynomial of lowest

standard deviation is automatically selected.

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION X(50), Y<50), B(t0), S(10>

C ***** DEFINE THE ARRAYS X AND Y

C ***** DEFINE M TO INDICATE 50 DATA POINTS 
M = 50

C
C ***** INITIALISE THE FLAG TO INDICATE LOWEST S 

LOWEST = 1
C
C ***** CARRY OUT THE REGRESSION CALCULATION UP TO 10TH ORDER 

DO 100 N=1 ,10
C
C ***** CALL THE FUNCTION REGR FOR THE NTH ORDER POLYNOMIAL 

S(N) = REGR <M, X, Y, N, A, B>
C
C ***** UPDATE THE FLAG IF CURRENT S IS LESS THAN 1.05 x LOWEST SO FAR 

IF <N .GT. 1 .AND. S(N> .LT. 1.05D0*S(LOWEST)) LOWEST = N
C
C ***** END OF LOOP 
100 CONTINUE

C
C ***** INITIALISE THE COEFFICIENT ARRAY 

DO 200 N=1 ,10 
200 B(N) = 0.0D0

C
C ***** CALL FUNCTION REGR AGAIN FOR POLYNOMIAL WITH LOWEST S
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DUMMY = REGR (M, X, Y, LOWEST, A, B)

307. The regression function is called ten tines to calculate the 

coefficients for the corresponding orders. The flag LOWEST is

enployed to record the order of polynomial required. One would 

expect the standard deviation to rapidly reduce with increasing order 

until a good fit were obtained, then to possibly increase again as

the order increased further. In the coding above, the optimum order 

is defined as that which for the next higher order polynomial causes 

a 5% reduction in the standard deviation. The regression routine is 

then called again in order to re-calculate the coefficients for the 

chosen polynomial. The reason for this- duplication is one of 

minimising size at the expense of longer execution time. It would be 

possible to store the coefficients for every order of polynomial in A 

and B. However, A would be an array rather than a single variable 

and B would be a two-dimensional array rather than one-diemnsional. 

The execution time is subsequently increased but since the time

required to carry out the regression analysis is approximately one 

second, the extra time is unlikely to be noticed by the user.

Invoking the regression routines

308.- The functions REGR and SIMUL are incorporated in a simulation 

program provided the modeller has included an appropriate entry in 

the component attributes data file C0MP0N.DAT. This additional entry 

consists of single integer digits. The first digit states the number 

of optional utility routines that are required and the subsequent
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digits are code numbers which define those utilities. In the case of 

the regression functions, the code number is 2.

Function REGR

309. The function RE6R performs a polynomial regression analysis on 

a set of data points. The resulting equation is of the form

The requirement is to minimise the sum of the squares of the errors 

between the polynomial and the data points. The sum of the squares 

of the errors, s, is given by

The minimum is found by setting the partial derivatives of the

coefficients a and b^ to zero. The set of resulting equations are 

termed the normal equations and are shown below.

and also

a
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where the coeffcients c., , C'iLI and c ua are defined as

c tj = -

Clj  = -

r/1

Z a

, y  X & ? y
C a a  *  2 - m --------—

The standard deviation is calculated by

310. The function REGR initially computes the sums of the powers and 

the products in order to define the coeffcients c , c and c 

The function SIMUL is then called in order to solve the set of 

simultaneous equations. If the function SIMUL encounters a near 

singular matrix, then REGR returns a value of zero. Finally, REGR 

calculates the constant a and the standard deviation s.

Function SIMUL

311. The function SIMUL solves the set of n simultaneous normal 

equations by the Gauss-Jordan complete elimination method employing a 

maximum pivot strategy 1151.
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C.4 CUBIC ~ POLYNOMIAL SMOOTHING OF DISCONTINUITIES 

Introduction

400. Almost all HASP component models incorporate functions which 

cause derivatives to become discontinuous with respect to time. As 

mentioned in Chapter 4, discontinuous derivatives may cause failure 

of the integration routine. Therefore, almost all HASP component 

models incorporate cubic polynomials to smooth these discontinuous 

functions. Appendix D derives this cubic polynomial and expresses it 

in two different forms. The first is in terms of a non- 

dimensional ised parameter z, the second is in terms of the 

independent variable x. Traditionally, all HASP modellers adopted 

the first approach since the derivation of the coefficients of z is 

certainly simpler than the derivation of the coefficients of x. 

However, computationally, it is more efficient to use the second 

approach since the parameter z would no longer require evaluation.

401. The subroutine CUBIC calculates the coefficients of a cubic 

polynomial expressed in terms of the independent variable x. The 

routine is called from a model input routine and since it should be 

used universally, indication of its use need not be included in the 

component attributes file C0MP0N.DAT.

402. Nomenclature

a_ coefficient of x*1 
n

f dependent variable 

x independent variable
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Calling the subroutine CUBIC

403. CUBIC is called! from a parameter definition subroutine once the 

boundary conditions the cubi.c have been evaluated. The parameters 

required are the values of the independent variable, the function and 

the derivative of the function at the upper and lower boudaries of 

the range through wfraich the cubic is to be fitted. The subroutine 

returns the coefficiicenrts of the equation

In practise, the variables containing the coefficients of the cubic, 

A0 to A3, would be elements of the real array CON.

405. Since the subroutine is called during the parameter definition 

process of a simulation, the CALL statement has a negligible effect 

on the overall run-time of the simulation. However, the simulation 

program no longer calculates z and perhaps more importantly, the 

modeller no longer has to calculate polynomial coeffcients by hand.

3 2

404. The subroutine is called as shown below

XI * .. 
X2 = .. 
FI = .. 
F2 = .. 
FD1 * .. 
FD2 = ..

CALL CUBIC CXI. X2, FI, F2, FD1, FD2, A3, A2 , At, A0)
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V____

FIG. C.1 A circular outlet port

spool
position

FIG. C.2 The geometry of a partially open port
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\spool
'position

FIG. C.3 An annular outlet port

777 ax

grad ient ltd *

region:

FIG* C.4 The variation of flow area of an annular port
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#

FIG. C.5 A poppet port

1max

gradient

region:

FIG. C.6 The variation of the flow area of a poppet port
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SUBROUTINE MESAGE(N,CON,VLOU,UUP,NPRE>
IMPLICIT REALA8(A-H,0-Z>

C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
C AAAAA GENERAL SUBROUTINE TO OUTPUT POSSIBLE ERROR WARNINGS AAAAAAAAAAA 
C AAAAA DURING THE PARAMETER DEFINITION SECTION OF THE HASP. AAAAAAAAAAA C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

IF(CON.LI.VLOU.OR.CON.GT.UUP)GOTO 1 
C AAAAA CON IS UITHIN ACCEPTABLE LIMITS 

NPRE*0 
RETURN

C AAAAA CON MAY BE UNACCEPTABLE
1 IF(NPRE.NE.O)GOTO 2 

GOTO 3
C AAAAA IF QUESTION IS STILL THE SAME AS IN PREVIOUS CALL TO MESAGE 
C AAAAA AND THIS CON IS NUMERICALLY THE SAME AS THE LAST CON 
C AAAAA THEN ACCEPT THIS VALUE

2 IF<CON.LT.<CONPRE-1.D-5).OR.CON.GT.(C0NPRE+l.D-5))GOTO 3
NPRE=0
RETURN

C AAAAA OUTPUT WARNING MESAGE AND STORE CON AND N FOR POSSIBLE USE 
C AAAAA IN NEXT CALL TO MESAGE

3 WR ITE(6,4)
4 FORMAT<'OAAAAA VALUE IS OUTSIDE NORMAL WORKING LIMITS AAAAA'r/)

CONPRE*CON
NPRE=N
RETURN
END

TABLE c.l Listing of subroutine MESAGE

1 .  TYPE CRACKING PRFSSURF OF RF! TFF VAI VF IN PAR 
iE-2
***** VAi UE OUTSIDF NORMAI WORKING I TMITS *****
TYPE CRACKING PRESSURE OF RELIEF VALVE IN BAR 
0.1
***** VAIHF OUTSJPF NORMAL WORKING LIMITS *****
TYPE CRACKING PRESSURE OF RF! TF.F VALVE IN BAR

2 .  TYPE CRACKING PRFSSURF OF RFi TFF VAI VF IN BAR 
5000

***** VAIUF OUTSIDF NOR MAI WORKING I IMJTS ***** 
TYPE CRACKING PRESSURE OF RF! TF.F VALVE IN BAR
m i
TYPF MAXIMUM RATFB FI OW OF THF VAI VF IN 1 /S

FIG. C.2 A typical question and answer sequence 
(the user's response is underlined)
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APPENDIX D ~ INTEGRATOR CONTROL

D.1 THE SMOOTHING OF DISCONTINUOUS FUNCTIONS 

Derivation of the original cubic polynomial

100. The original form of the smoothing polynomial was developed 

using the method of exact interpolation developed by Hermite [28], 

itself an extension of Lagrange interpolation. The use of the 

Lagrange polynomial requires the definition of a function at discrete 

values of the independent variable. Definition of n points will 

result in an exact polynomial with n coefficients, i.e. of order n-1. 

In addition, Hermite interpolation requires the definition of the 

derivative of the function at these discrete points. The number of 

conditions to be met is now 2n. Therefore, the resulting polynomial 

is of order 2n-1. The most useful form of the Hermite interpolation 

formula for n points is given as,

^ = * z | j W W ^  “ 2 S  •

3 ^ ) V w .  ' M j
i*L

101. We merely require a polynomial which is continuous in both 

function and derivative at the boundaries of an extremely small 

transition region between two major operating regions (figure D.1>. 

Therefore, it follows that the polynomial we require will be of third
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order, i.e. a cubic. A polynonial of lower order could not be

guaranteed to satisfy our boundary conditions, and there are

insufficient conditions to define the coefficients of a higher order

polynonial. Expansion of the Hernite interpolation fornula for n=2

yields ,

In order to sinplify this lengthy equation, all values of x are 

substituted by the non-dinensional z where,

Also, let

These substitutions give,

2

Expanding and grouping orders of z gives,

fa) r
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This equation nay be readily included in a nodel calculation 

subroutine in the forn shown. However, the coeffcients can often be 

sinplified by the nodeller at the tine of nodel developnent.

Derivation of the revised cubic polynonial

102. Evidently, it is possible to expand equation D.1 and group 

orders of x rather than the non-dinensionalised z as given above.

This gives an equation of the forn

■+ a yoc -v a*

where,

a 3  =  - ^ ( 1 ^ 0 - ( ^ ) )  •+ ^ ( - f  fa) + fC**))

t*z) 0 '(*z) (2x̂ Xz))

Q -\ = _ j r ( f  ~  ■f +3C-1*)) +

“ I ‘ feW'C*,) (=V lacpĉ  {’&)£?+ 2

a 0 =  — +
In

In
103. Oefining the polynonial in this forn is certainly less elegant

than defining y as a function of the non-dinensional z. However,

elegance is not always the criterion for the production of the most

efficient conputer algorithn. The coefficients a to a^ nay be© 3
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calculated in the calculation section of a nodel parameter definition 

subroutine. Furthermore, it is possible to use a standard subroutine 

to calculate these coefficients (see Appendix C.400). This relieves 

the modeller of the task of calculating coeffcients and no longer

requires the model calculation routine to continually evaluate z.

Smoothing polynomials with variable boundary conditions

104. If the boundary conditions of the function to be smoothed can 

be defined at the parameter definition stage (e.g. a valve

pressure/flow characteristic), then the definition of the cubic 

polynomial presents no problems. However, occasionally it is not 

possible to define the boundary conditions of the cubic. This is 

normally due to the fact that the functions to be smoothed are

supplied by a different model. If this ' is the case, then the 

following method should be adopted.

105. Figure D.2 shows two arbitrary (i.e. externally defined)

functions which must be smoothed in the independent variable

range Cx ,x^l. The transition function is defined by factoring the 

difference of the two functions by a step cubic.

i.e.

f r  ~ { i  + 1X2.

where the end conditions of the cubic are given by,

K ai,) = 0
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10G. Check that the transition function satisfies the continuity 

requirement at the boundaries of the region.

Differentiating equation D.2,

f,'
At the boundaries of the transition region, the derivative of the 

step cubic is zero. Therefore,

C - ( , +  k ( U - C )

At the lower boundary of the transition region, the function the step 

cubic is zero. Therefore,

and,

At the upper boundary of the transition region, the function the step 

cubic is unity. Therefore,

fr f, + ( ( h
and,

Thus, the requirements of continuity have been satisfied.

D.2 OPERATING REGION INDICATORS

200. In order to enhance the performance of the integrator, it has 

been found useful to employ a method of operating region indication.
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A unique region indicator exists for every nodel which has more than 

one operating region. The component nodel checks to ensure that 

regions are not onitted between successive completed integration 

steps. If we allowed regions to be missed, the integrator would 

undoubtedly take longer to converge on the next integration step.

201. In general, a model will assign one of its integer 

constants (ICON) to represent the region indicator. Since the coding 

of the model will compare the current value of the region indicator 

to its previous value, it is evidently important that the region 

indicator is initialised on the first visit to the model calculation 

subroutine, i.e. time = 0.

202. Figure 0.3 shows an operating characteristic of a typical

component model (e.g. the pressure/flow characteristic of a pressure

relief valve). Figure D.4 is a flow diagram which shows the region

indication logic of the component model calculation subroutine. A 

section of the coding which represents this component is given in 

table D.1. It is recommended that this method of model construction 

and coding should be generally adopted (including the use of 

Fortran-77) due to its ease of understanding and also its brevity, 

two qualities rarely found in a single section of coding.
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FIG D.l A cubic transition function

f(x)

FIG. D.2 A high order transition function
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REGION-.

FIG. D.3 A typical operating characteristic
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FIG. D.4 Flow diagram for the region indication logic
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C ***** INITIALISE REGION INDICATOR IF FIRST VISIT 
IF<ICON<1 ) .EQ.0 )THEN 

ICON(1 >=1
IF< X.GE.XA )ICON(1 )*2 
IF(X.GE.XB )ICON(1 )-3 
IF(X.GE .XC )ICON(1 )*4 
IF(X.GE.XD )ICON(1 )“5

END IF 
C ***** REGION 1

IF(X.LT.XA)THEN 
IREG=1 
F=0.0D0 

C ***** REGION 2
ELSE IF (X.LT.XB )THEN 

IREG=2
F=CON(1 )*X*X*X+CON(2 )*X*X+CON(3 )*X+CON< 4 )

C ***** REGION 3
ELSE IF (X.LT.XC)THEN 

IREG=3
F=CON< 5 >*(X-XA )

C ***** REGION 4
ELSE IF (X.LT.XD)THEN 

IREG=4
F=CON(G >*X*X*X+CON(7 )*X*X+CON(8 )*X+CON< 9)

C ***** REGION 5 
ELSE

IREG=5
F=CON(10 )*DSQRT(X )

END IF
C ***** CHECK REGION HAS NOT BEEN OMITTED 

IF(LIMIT.EQ.2 JTHEN
IF(IREG.NE .ICQN(1 ) )THEN

IF(IREG+1.EQ.ICON(1 ).OR.IREG-1.EQ.ICON<1 ) )THEN 
ICON(1 ) = IREG

ELSE
LIMIT=3 

END IF
END IF

END IF

KEY: LIMIT Integer to define state of integrator
set to 2 for completed calculation step 
set to 3 if model requires interval halving 

IREG Temporary region indicator

TABLE D .1 THE CODING OF A CALCULATION SUBROUTINE REPRESENTING THE 
MODEL DESCRIBED BY FIGURE D.3
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APPENDIX E - FUTURE PROJECTS

E .1 THE MODEL GENERATOR

100. The remaining facet of HASP which does not conform to the 

overall requirement of the package is the component model library. 

An aim of the package is to allow the user to simulate any hydraulic 

circuit in a simple manner. Evidently, the number of components in 

the library can never be totally comprehensive. Manufacturers of 

hydraulic components continually design new hardware. Also, there is 

the problem of the definition of the load on the hydraulic circuit to 

be simulated. No models can ever account for all the possibilities 

likely to arise. Therefore, it follows that the user will be forced 

to write new component models. Having accepted this fact, the aim of 

the developers should be to ensure that this process is as painless 

as possible.

101. Standardisation of modelling techniques, albeit of a flexible 

nature, has already been introduced. Coding layout, operating region 

indication and the manner in which discontinuities are dealt with 

have all been described. Two resulting effects are observed. 

Firstly, the production of draft models is reasonably quick provided 

the modeller writes his coding using the techniques described. 

Secondly, techniques such as the derivation of the cubic polynomial, 

the writing of region indication logic and the writing of entries 

into the component attributes data file C0MP0N.DAT tend to be
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laborious and/or extremely error prone.

102. It is evident that an interface between the mathematical model 

and the computer coding is both required and feasible. The 

repetitive nature of the model coding lends itself to some automated 

procedure of coding production. Take, for example, an instantaneous 

characteristic model which has three primary operating regions. One 

would expect that the modellershould describe the nature of these 

three operating regions in terms of three simple equtaions. However, 

the modeller of HASP must also derive the cubic polynomials required 

as transitions between the three primary regions. He must also 

incorporate sufficient coding to ensure that no region is skipped on 

successive time steps. The resulting coding is thirty two lines long 

(if .it is written in Fortran-77, uses the region indication logic 

described in Appendix D.200 and uses the dtandard utility CUBIC). It 

is evident that a model generator could write twenty nine of those 

lines automatically.

103. Figure E.1 is a schematic of the general structure of a

feasible model generator. The figure shows the interaction between 

the user, the generator and the internal files. The generator would 

produce three files for every component model and would also

automatically include an entry in the component attributes file

C0MP0N.DAT using software similar to the C0MP0N.DAT editor described 

in Chapter 3, paras.352 to 3G7. As at present, a parametric 

definition subroutine and a calculation subroutine would be produced. 

In addition, a file called component.ATT would be produced to store
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all the attributes of the nodel. This file would contain sufficient 

infornation to allow the associated conponent nodel to be 

regenerated. This allows the user to edit existing nodels that had 

been created using the nodel generator.

104. Figure E.2 shows the structure of the nodel generator in terns 

of its constituent routines and table E.1 lists the tasks of each of 

these segnents.

E.2 ONLINE CIRCUIT DESCRIPTION

200. Preparation of the data to describe a circuit to be sinulated 

can also be a laborious and tine consuning task, a procedure which

nay be gain fron sone online assistance in addition to the HELP

utility described in Chapter 3, paras.311 to 312. The conputer can 

aid by allowing the user to construct linking diagrans on the screen. 

The user would sinply nove the cursor in order to position a

conponent on the screen. The facility would then analyse the diagran

that has been constructed, autonatically nunber the links and produce 

the systen description data file required by the progran generator.

201. It is likely that a progran of this kind would require a

specific type of terninal. The use of joysticks and light pens for 

cursor novenent should be avoided. Also the graphics facility

enployed should be of a widely available nature. The progran

developed to show the feasibility of the utility described above 

enploys the special character and line drawing set available on all
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computer terminals which emulate the capabilities of the popular and 

widely available Digital UT100 series.

202. Figures E.3 to E.11 show a typical entering and positioning 

process. Initially, the user is invited to select a component or to 

type ? if assistance on selection is required. Having done so, he is 

then instructed to position the cursor at some point on the screen 

then press <ENTER> (figure E.3>. The component attributes data file 

C0MP0N.DAT is interrogated in order to produce a block which 

represents the component required accounting for the number of 

external links, internal links and signals (Figure E.4). The user is 

again asked to enter a component name or ? for help. Having defined 

two or more component models, he is also given the option to type L 

in order to link adjacent models (figure E.5). Assuming he decides 

to link the two models shown, he must position the cursor near the 

two ports to be connected at press <ENTER> on each occasion 

(figure E.G). The component model blocks are then redrawn with the 

external link in position and automatically numbered (figure E.7).

This information is also stored in character and integer arrays which

will produce the system data.

203. Should the user type ? in order to summon assistance on model

selection, the program will list all classes of models and invite the 

user to select a particular class (figure E.8). Having done so, the 

component attributes data file C0MP0N.DAT is searched for all 

components in that particular class and this information listed on 

the terminal (figure E.9). The user may then select a specific
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component in order to display a short introduction and useful 

information such as the number and type of links (figure E.10). The 

coding used to complete this part of the graphical input utility is 

identical to the routine PGHELP described in paras.311 to 312.

204. Figure E.11 shows a typical completed linking diagram. With 

bigger circuits, the user must define sections (termed pages) of the

circuit at a time then assemble the pages to form a complete linking

diagram.

205. Figure E.12 shows a schematic of the structure of the graphical 

input utility. It should be emphasised that the program remains 

partly unwritten. The terminal setup and the setup of all US ASCII 

and DEC line drawing characters has been completed. Also, sections 

of the graphical construction and cursor movement routines are

complete. These routines do not produce a working package but

sufficient coding has been developed to indicate the feasibility of 

the program and the manner in which it should be written.
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FIG. E.l The structure of the Model Generator
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PAGE 1

PMOO

Move cursor to required position then press <ENTER)

FIG. E.3 Online circuit description ■ 
Positioning first component

PAGE 1

PMOO

HUIZi

Type mnemonic of component or ? for help

FIG. E.4 Online circuit description -
Definition of the second component
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PAGE 1

PMOO -  u Pi -  HUOT -  Po

LI

Type mnemonic of component, L to link or ? for help

FIG. E.5 Online circuit description -
Request linking of the two components

PAGE 1

APMOO -  w  Pi - HUOT - Po

Position cursor at both ends of link and press <ENTER>

FIG. E .6 Online circuit description -
Definition of component linking
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PAGE 1

HUOTPMOO

?»

Type mnemonic of component, L to link or ? for help

FIG. E.7 Online circuit description - 
Request for assistance

CLASS LIST: AC represents Accumulators HELP 1
AL Actuator/loads
AM Electronic amplifiers
DC Directional control valves
DE(F) Duty cycles - Effort (flow) sources
FC Flow control valves
HE Heat exchangers
HU Pump/motor units
LR Rotary loads
PC Pressure control valves
PI Pipes

CLASS: PU1
TK Hydraulic tanks

Type class for which information is required (press (RETURN) to proceed)

FIG. E.8 Online circuit description -
Request for information on pump models



- 342 -

PIPE COMPONENT MODELS: HELP 2
PI03 Frictionless pipe with cavitation - User defines total volume
PI05 Frictionless pipe with cavitation - User defines pipe dimensions
PI06 Frictionless pipe with cavitation and volume transfer
PI5T Experimental version of PI06
PI2Z Friction pipe - slightly modernised version of old PIP2
PIPE Frictionless pipe with cavitation - simplified version for demos.

PI05«

Type component for which information is required (press <RETURN> to proceed)

FIG. E.9 Online circuit description - 
Request for information on model PI05

HELP 3
PI05 Frictionless pipe with cavitation - User supplies pipe dimensions
PI05 is a dynamic pipe model which determines the fluid pressure level 
when provided with flowrates by adjacent models. The model accounts for 
air release when the pipe pressure is low by calculatina the proportion 
by volume of the air released from solution and the effect of this free 
air on the bulk modulus of the fluid. This effect will adequately 
represent cavitation in the majority of cases.

Number of external links» 1 to 8 Inputs: FFFFFFFF
Number of internal links: none Outputs: EEEEEEEE
Number of signals: none
Number of state variables: 1

Press <RETURN> to proceed

FIG. E.10 Online circuit description -
The information provided on model PI05
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FIG. E.ll Online circuit description - A completed linking diagram
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GIN

SETUP

USDEF LDDEF ESDEF TERMSU

RESET

CTRL

SAVELABELASSMBLTl

T2BOXl BUILD

BOX2

PAGEAMENDBOX2 MOVE LINKMENU

MOVABS MOVREL ERROR ESCSEQ

FIG, E.12 Call tree of the Graphical Input facility
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NAME TASK

MGCCD Create a new component attributes file C0MP0N.DAT

MGCIF Translates input strings into meaningful equations

M6CSP Defines simulation constants based on user defined
parameters

MGCTL Controls the utility routines

MGCSC Defines cubic smoothing and region indication

M6DLD Defines the model linking diagram

MGERR Writes error diagnostics

MGMNA The main segment

MGOAF Opens the information file ****.ATT

MGOCD Opens the compenent attibutes file C0MP0N.DAT

MGOCF Opens the calculation file ****.F0R

MGOPF Opens the parametric definition file ****IN.F0R

MGPCF Defines the calculation subroutine

MGPPF Defines the parametric definition subroutine

MGRCD Revises an existing entry in C0MP0N.DAT

MGSUP Controls the setup of the files

MGUDP Creates a list of user defined parameters

MGWAF Controls the writing of all files

MGWCF Writes the calculation subroutine

MGWDF Writes the component definition file

MGWPF Writes the parametric definition subroutine

MGXCC Extracts simulation constants from the algorithm

TABLE E.1 The tasks of the model generator routines
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NAME TASK

AMEND Amends an existing diagram

ASSMBL Assembles individual pages of the diagram

B0X1 Draws the large screen box

B0X2 Draws the small component box

BUILD Builds individual pages of the diagram

CTRL Controls the utility routines

ESCSEQ Writes an escape sequence to the terminal

ERROR Writes error diagnostics

ESDEF Defines the standard escape sequences

GIN The main segment

LABEL Labels the links

LDDEF Defines the DT100 special character set (line drawing)

LINK Links the models as requested by the user

MENU Gives component information and instructions

MGUABS Moves the current position by an absolute value

MOUE Moves the component to a user requested position

MOUREL Moves the current cursor position by a relative value

PAGE Sets up a new page for the diagram

RESET Resets the terminal to its normal mode

SAUE Creates linking data for the program generator

SETUP Controls the setup of constants and the terminal

TERMSU Sets up the terminal in line drawing mode

T1 Draws the title box

T2 Draws assembled pages of the diagram

USDEF Defines US ASCII characters

TABLE E.2 The tasks of the graphical input routines


