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Abstract


The chemokine receptor CXCR3 and its agonists CXCL9/Mig, CXCL10/IP-10 and 

CXCL11/I-TAC are involved in a variety of inflammatory disorders including multiple 

sclerosis, rheumatoid arthritis, psoriasis and sarcoidosis. CXCL11 has also been 

reported to bind to an additional receptor, namely CXCR7, which also interacts with 

CXCL12. Two alternatively spliced variants of the human CXCR3 receptor have been 

described, namely CXCR3-B and CXCR3-alt. The human CXCR3-B has been found 

to bind CXCL9, CXCL10, CXCL11 as well as an additional agonist CXCL4/PF4. In 

contrast, CXCR3-alt only binds CXCL11. This work demonstrates that CXCL4 like the 

original CXCR3 agonists is capable of inducing biochemical signalling, namely intra-

cellular calcium elevation, and activation of p44/p42 MAPK and PI3K/Akt pathways in 

activated human T lymphocytes. Phosphorylation of p44/p42 MAPK and Akt was 

inhibited by pertussis toxin, suggesting coupling to Gαi protein. In contrast CXCR3 

antagonists blocked CXCR3 agonists but not CXCL4-mediated responses. 

Surprisingly, stimulation of T cells with CXCL4 failed to elicit migratory responses of 

these cells and did not lead to loss of surface CXCR3 expression. Collectively our 

evidence shows that although CXCL4 is coupled to downstream biochemical 

machinery, its function in T cells is distinct from the function of CXCR3 agonists. The 

work presented in this thesis also indicates that despite considerably lower surface 

expression in comparison to the full length CXCR3, CXCR3-B and CXCR3-alt 

transduce biochemical signals in response to CXCL11 in transfected cells. 

According to previous reports the role of CXCR7 in signalling and chemotaxis in T 

cells could not be detected. In T cells and transfected cells system CXCR7 was 

localised at the plasma membrane and was efficiently internalized in response to 

CXCL11 and CXCL12. 

Studies of the involvement of methylation in T cell chemotaxis suggest that this 

modification may be required in this process as it was partially inhibited by 

methylation inhibitor- MTA. Moreover T cell co-stimulation caused increased levels of 

arginine mono-methylated proteins suggesting the importance of methylation in T 

lymphocyte signalling. 
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A Korniejewska, 2009 Chapter One Introduction


Chapter One 

Introduction 

1.1 Human immune system 

Infectious microorganisms are able to reproduce and evolve more rapidly than 

their human host. In order to protect against these organisms, the human body 

has developed a variety of complicated mechanisms and cells with highly specified 

functions in defence, which form the immune system. There are two types of 

responses to the invasion of the foreign organism; innate immune response 

(innate immunity) and adaptive immune response (adaptive immunity, Figure 1.1). 

The first type of immune response is always present and can be triggered rapidly 

in response to infection. When the innate immune response is not enough to 

eliminate infection, the more powerful forces of the adaptive immunity are required 

(Parham, 2000). The adaptive immune response in contrast to innate immunity is 

highly specific and improves with each successive encounter with the same 

pathogen. The adaptive immune system ‘remembers’ the infectious agents and 

this provides long – lived protection (Roitt et al., 2001). 

1.1.1 Innate immunity 

The innate immune response provides the first line of defence and its main aim is 

to limit the infection while the slower, adaptive response is activated. There are 

several mechanisms of innate immunity: the physical barriers which prevent the 

entry of a pathogen, such as skin and mucosal surfaces; physiological barriers 

such as temperature or pH which cause denaturation of pathogen; and chemical 

barriers such as interferons and complement proteins, responsible for inhibition 

and destruction of foreign organisms. Cells of the innate immune system are 

phagocytes which belong to the two major lineages – monocytes / macrophages 

and polymorphonuclear granulocytes, whose role is to remove particulate 

antigens. The innate immune system utilizes germline-encoded receptors for 

recognition of infectious microorganisms, known as pattern recognition receptors 
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(PRRs). These receptors bind and recognize targets containing particular patterns 

called PAMPs for pathogen-associated molecular patterns. 

Figure 1.1 The components of adaptive (acquired) immunity. There are two types of 
adaptive immune defense: humoral, mediated by antibodies secreted by B lymphocytes, 
and cell-mediated, controlled by T lymphocytes and dendritic cells (involved in antigen 
presentation). Humoral immunity provides defense against extracellular pathogens, whilst 
cell-mediated immunity protects body from intracellular pathogens and involves activation 
of macrophages, antigen-specific cytotoxic T cells and releasing of variety of cytokines 
which alter the milieu around them. T helper cells also provide a support to B cells during 
humoral response (Rabb, 2002). 

For example the general structure for lipopolysaccharide (LPS) is shared for all 

gram-negative bacteria and receptors such as Toll-like receptors (TLRs) that 

recognize conserved sequences of LPS will be able to detect any gram-negative 

bacterium (Medzhitov and Janeway, 1997; Schulz et al., 2005). The family of 

mammalian TLRs consists of 12 membrane proteins that induce innate responses 

through nuclear factor- B (NF- B)-dependent and interferon (IFN)-regulatory factor 

(IRF)-dependent signalling. These receptors recognize bacteria, viruses, fungi and 

protozoa. In addition to TLR family, which are the important players in microbial 
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sensing, there are other PRRs which participate in this process (Trinchieri and 

Sher, 2007). Bacterial and viral components that reach the inside of the cell are 

recognized by the cytosolic receptors, inducing cytokine production and cell 

activation. These receptors are categorized into two main families, namely the 

nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR 

family), members of which are either NOD receptors or NALPS (NACHT-, LRR-

and pyrin-domain-containing proteins); and a family of receptors that have an 

RNA-helicase domain joined to two caspase-recruitment domains (CARDs), for 

example retinoic-acid-inducible gene I (RIG-I)’ and are named the RIG-I-like 

receptors (RLR). NLRs recognize bacteria and RLRs detect viral particles (Creagh 

and O'Neill, 2006; Trinchieri and Sher, 2007). Interplay between these families of 

receptors provides the efficient functionality of the innate immune system (Figure 

1.2) (Creagh and O'Neill, 2006). 

Figure 1.2 Three families of microbes sensors. TLRs recognize multiple pathogens 
and induce gene expression by the specific recruitment of the adaptors MyD88, Mal, TRIF 
and TRAM. The downstream activators include NF-kB and mitogen activated protein 
(MAP) kinases, and, in the case of anti-viral TLRs, IRFs. TLRs induce production of pro-
IL-1b and pro-IL-18. NLRs activate NFκB -and caspase-1, which acts on pro-IL-1b and 
pro-IL-18, resulting in the production of mature bioactive forms whose receptors, in turn, 
signal through MyD88. RLRs detect viral RNA and recruit the adaptor IPS-1 in order to 
activate IRFs, NF-kB and MAPKs, resulting in the induction of anti-viral proteins, 
complimenting the activity of anti-viral TLRs. Adapted from Creagh and O'Neill, 2006. 
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1.1.2 Acquired (adaptive) immunity 

There are two types of adaptive immunity: humoral (mediated by B cells) and cell-

mediated (mediated by T cells). Humoral immunity consists of soluble antibodies 

that are produced in large amounts by plasma cells. These cells (also known as 

plasmocytes or plasma B cells) are derived from B cells upon stimulation by CD4+ 

T lymphocytes. The main role of humoral immunity is defence against extracellular 

pathogens and their toxins due to production of specific antibodies that asist in 

their elimination. 

T lymphocytes are crucial players in cell-mediated immune defense. They can act 

through the activation of macrophages (to kill phagocytosed pathogens), direct 

destruction of infected cells or production of cytokines that alter milieu around 

them. T lymphocyte biology and function will be discussed in further detail later in 

this chapter. 

Another important component of cell-mediated immunity are dendritic cells (DC), 

which are involved in the process of antigen presentation. Immature DCs bind 

conserved sequences within pathogens, which in turn initiates their maturation and 

surface expression of TLRs (Akira et al., 2001) and co-stimulation molecules, such 

as CD80/CD86 (Schwartz et al., 2001; Vestweber, 2003). 

Proper and complex function of the immune system is possible due to the dynamic 

and effective cooperation between innate and adaptive defenses and is achieved 

by an array of strictly specialized cells that form this system. Communication 

between immune cells is controlled by secretion of variety of molecules (cytokines, 

chemokines) which induce processes like cell differentiation or directed migration, 

and by regulation of expression of specific receptors on these cells. 

1.2 T lymphocytes development in the thymus 

Similarly to B lymphocytes, T cells (Thymus-dependent lymphocytes or T 

lymphocytes) also derive from bone marrow stem cells. They must then undergo 

gene rearrangements to generate specific antigen receptors (Figure 1.3). The 

immature T lymphocytes have to leave the bone marrow and enter the thymus 
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(where they become thymocytes) to mature and rearrange their T cell receptors 

(TCRs) genes (Parham, 2000). Two lineages of T lymphocytes can develop in the 

thymus; the majority develop into αβ T cells and minority (only 5%) into γδ T cells 

(Hayday, 2000). These cells develop from a common precursor (Figure 1.3). 

Despite the fact that only a low number of T cells express γδ TCR, this cell type 

shows a distinct receptor profile and has been suggested to play a role in immune 

defense against infection particularly within the gut (Glatzel et al., 2002). Immature 

cells entering the thymus do not express any of the T cell receptor complex 

glycoproteins or the T cell co-receptors CD4 and CD8. Due to lack of expression 

of both CD4 and CD8, they are called ‘double negative’ thymocytes. During 

maturation within the thymus, ‘double negative’ lymphocytes undergo expansion 

and differentiation to CD4 and CD8 double positive cells. This process is promoted 

by IL-7. Only a small subpopulation of double positive thymocytes (1-2% of total) 

have receptors that can interact with one of the MHC molecules expressed by an 

individual APC and will be able to respond to antigens presented by these 

molecules on the surface of APCs. Thymocytes that can recognize self-MHC 

molecules on the epithelial cells (in the cortex of the thymus) are positively 

selected. Positive selection is also instrumental in determining whether double 

positive thymocytes will become CD4 or CD8 expressing T cell (‘single positive’), 

which is related to further effector function of T lymphocytes. An additional 

mechanism which takes place within the thymus is called ‘negative selection’ and 

serves to deplete developing T cells which bind too strongly to self-peptides 

presented on MHC molecules by dendritic cells or macrophages in the thymus. 

These potentially autoreactive cells are signalled to undergo apoptosis (Parham, 

2000). During processes of positive and negative selection during T cell 

development within the thymus, large number of cells die and a comparatively low 

number of cells form a circulating pool of T lymphocytes. 
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Figure 1.3 Pathways of thymocytes development. Common precursors develop into 
‘double negative’ cells with low levels of TCR αβ expression. These lymphocytes undergo 
expansion and differentiation to CD4 and CD8 double positive cells. The small number of 
thymocytes that can recognize self-MHC molecules on the epithelial cells (in the cortex of 
the thymus) are positively selected. This process is followed by the ‘negative selection’ 
which serves to deplete developing T cells which bind too strongly to self-peptides 
presented on MHC molecules by dendritic cells or macrophages in the thymus. These 
potentially autoreactive cells are signalled to undergo apoptosis (Adapted from Roitt et al 
2001). 

As demonstrated in detail in Figure1.4, T lymphocyte development within the 

thymus is characterised by the surface expression of well-defined markers, 

including the previously discussed CD4 and CD8, as well as CD44 (or CD117) and 

CD25, together with the status of the T-cell receptor (TCR). Interactions between 

Notch receptor that is present on the thymocytes and Notch ligands expressed on 

the thymic stromal cells induce a complex programme of T cell maturation in the 

thymus, which leads to the generation of self-tolerant CD4+ helper T cells and 

CD8+ cytotoxic T cells, which migrate from the thymus to the periphery to form the 

T cell pool (Zuniga-Pflucker, 2004). 
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Figure 1.4 T cell development within the thymus. Development of T cells within the 
thymus can be characterised by the surface expression of well-defined markers, such as 
CD4, CD8, CD44 (or CD117) and CD25, as well as the status of the TCR. Interactions 
between Notch receptors and Notch ligands expressed on the thymic stromal cells induce 
a process of T cell maturation in the thymus, which leads to the generation of a small 
population of self-tolerant CD4+ helper T cells and CD8+ cytotoxic T cells. These cells 
migrate from the thymus to form peripheral T cell pool (Zuniga-Pflucker, 2004). 

1.3 Antigen presentation and T cell activation 

After leaving the thymus, T cells join the population of cells circulating through the 

lymph - naïve T lymphocytes. To become effective within the immune system, 

naïve T cells have to achieve an activation stage, clonal expansion by cell division 

and differentiation into effector cells. Naïve T cells become activated and 

differentiated into corresponding mature effector cells after encounter with antigen 
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during their recirculation through secondary lymphoid organs. The process of 

antigen presentation subsequently leading to T cell activation will be discussed 

below. 

1.4 Homing of naïve T cells to secondary lymphoid tissues 

T lymphocyte trafficking is a highly regulated and complex process that involves 

expression of a variety of adhesion molecules and chemokines (Figure 1.5A). 

These signals allow naïve T lymphocytes to enter the secondary lymphoid tissues 

such as lymph nodes or Payer’s patch through the blood vessels (e.g. HEV - high 

endothelial venules in lymph nodes), supplying these tissues with oxygen and 

nutrients (Medoff et al., 2008; von Andrian and Mackay, 2000). This process, also 

termed extravasation or diapedesis, will be discussed in more detail at a later 

stage in the chapter. 

T lymphocytes passing through the lymphoid tissue are constantly monitoring 

antigen peptides displayed on MHC molecules expressed on antigen presenting 

cells using their TCRs (Figure 1.5). Only T cells that encounter a specific antigen 

stay within the lymph node and start proliferation and differentiation into effector 

cells. Differentiated, effector T cells leave the lymph node through efferent lymph 

and then are carried with the blood to the sites of infection, where they perform 

their specific functions (Figure 1.5B) (Parham, 2000). 
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A


B


Figure 1.5 Patterns of T cells trafficking. PTO for the figure legend
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Figure 1.5 Patterns of T cell trafficking. (A), Homeostatic T cell homing. Specific 
chemokine receptors such as CCR7 have been associated with T cell homing and 
migration into lymphoid tissue. “Central” memory CCR7+ T cells have to lose CCR7 
expression and gain tissue-specific chemokine receptors in order to home to tissue-
specific locations. It has been proposed that CCR7 defines T cells with lymph node– 
homing potential despite the fact that CCR7+ memory T cells have been found in the 
tissue. In addition, CCR10 is enriched on CLA+ skin homing T cells (S), whereas CCR9 is 
enriched on α4β7high gut (G) homing T cells. These receptors are proposed to define T 
cells with either skin- or gut-homing potential. No such chemokine receptor has yet been 
found for lung-specific T cell homing (L). (B), Inflammation-driven migration of effector T 
cells. Inflammation driven by CD4 expressing T cells is characterised by the hallmark 
cytokines produced by each type of infiltrating T cells. Th1 cells mainly secrete IFN-γ, Th2 
cells produce IL-4, IL-5 and IL-13 and Th17 cells IL-17. Secretion of these cytokines leads 
to production of inducible chemokines at the site of inflammation and in turn recruitment of 
T cells expressing the specific receptors for these chemokines (Medoff et al., 2008). 

1.5 The T cell antigen receptor 

The antigen receptor on T cells, commonly called T cell receptor (TCR), is 

composed of two different polypeptide subunits termed TCR α chain (TCRα) and 

TCR β chain (TCRβ). As a consequence of gene rearrangement during T cell 

development there is amino acid sequence variability within the N-terminal 

domains of TCR chains and complementary-determining regions (CDR). There are 

many millions of different TCRs and each of them define clones of T cells and 

single antigen-binding specificity (Parham, 2000). The two types of TCR, namely 

αβ and γδ, associate with a series of polypeptides that form the CD3 complex. This 

is required for expression of the TCR complex on the surface. In contrast to TCR, 

CD3 does not show amino acid variability and cannot generate diversity but is 

required for signal transduction after antigen binding by TCR heterodimer. The 

CD3 complex consists of four polypeptides namely, γ, δ,ζ and its alternatively 

spliced form, η (Figure 1.6). The intracytoplasmic section of the CD3 chain 

contains specific amino acid sequences known as ITAMs (immuno-receptor 

tyrosine activation motifs). The ITAM motifs are defined by two tyrosine residues 

contained within a consensus sequence YxxI/L x(6-12) YxxI/L (where x is any 

amino acid) (Underhill and Goodridge, 2007). These motifs become 

phosphorylated by protein kineses during activation of TCR in response to binding 

of antigen-MHC complexes (Roitt et al., 2001). ITAM motifs are often found in 

multimers. This multimerisation is believed to amplify signalling due to increasing 

of the local concentration of signalling molecules. For example TCR complex has 
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up to ten ITAMs distributed on its CD3 γ, δ, ε and ζ chains (Underhill and 

Goodridge, 2007). 

Figure 1.6 The T cell Receptor. Each of the TCR chains (α and β or γ and δ) contain an 
external V (immunoglobulin (Ig)-variable) and C (Ig-constant) domain, a transmembrane 
segment and a short cytoplasmic tail. The CD3 γ, δ and ε chains comprise an external 
immunoglobulin-like C domain, a transmembrane segment and a longer cytoplasmic tail. 
A dimmer, ζζ (or ζη), is also associated with the complex. Glycoproteins CD4 or CD8 are 
located near to TCR complexes.(Roitt et al., 2001). 

1.6 Antigen presentation 

The process of antigen presentation can be subdivided into four different stages: 

adhesion, antigen-specific activation, costimulation and cytokine signalling. Each 

stage of this process requires specific interaction between a T cell and an APC 

and involves multiple cell-surface molecules. The key receptor interactions 

involved in antigen presentation are described below and summarized in Figure 

1.7. 
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Figure 1.7 The key receptors involved in T cells activation. Initial contact between a T 
cell and an APC is achieved by interactions through adhesion molecules such as LFA-1 
and ICAM. Recognition of antigen peptide bound to MHC molecule by TCR leads to 
prolonged cell-cell contact. Costimulatory signal is necessary for efficient response of the 
activated T cell. Activation results in upregulation of cytokines and their receptors which 
provides additional signals regulating the cell fate (Roitt et al., 2001). Figure adapted from 
Roit et al., 2001. 

1.6.1 Adhesion 

Intracellular adhesion molecules (ICAMs), members of the Ig family, are essential 

in initial contact of T cells with APCs. Transient and non-specific interactions 

particularly between the integrin, lymphocyte functional antigen-1 (LFA-1 or 

CD11a/CD18), on the T cell and ICAM-1 (CD54) and ICAM-3 (CD50) on the APC 

allow the T cell to encounter a large number of different MHC-antigen 

combinations on different APCs. Encountering the appropriate MHC-antigen, 

results in conformational changes in LFA-1 leading to tighter cell-cell contact. 

1.6.2 Antigenspecific activation 

The initial signal required for T lymphocyte activation is generated by the ligation 

of the TCR with the MHC-antigen complex on the surface of an APC (e.g. dendritic 

cell) (Davis and van der Merwe, 2006). The signal generated through these 

interactions subsequently leads to activation of Src family of the kinases such as 

Lck (associated with CD4 and CD8), ITK and Fyn. Fyn kinase phosphorylates 

target sequences found in the ζ-chain, ITAMs (previously described in section 
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1.5), which leads to activation of ζ-chain associate protein kinase (ZAP-70). This 

initiates recruitment and activation of multiple adaptor proteins such as SH2-

containing Leukocyte Protein of 76 kDa and Linker for activation in T cells (LAT) 

and induces a series of biochemical events by bringing together different 

intracellular molecules. Activation of signalling molecules such as PLC, PKC and 

Ras finally leads to activation of transcription factors including activator protein-1 

(AP-1), nuclear factor of activated T cells (NFAT) and nuclear factor κB (NFκB) 

which, in consequence increases expression of CD25, IL-2 and IL-2 receptor. 

Figure 1.8 Signals involved in TCRmediated T cell function. Upon T cell activation, 
SRC protein kinases (PTKs) Lck and Fyn induce phosphorylation of the ζ and ε chains of 
the TCR at tyrosine residues within ITAM motifs (indicated as the blue bars). Upon 
phosphorylation, the ITAM motifs in the ζ chain act as docking sites for the ZAP70 (ζ-
chain associated protein kinase of 70 kDa), which leads to phosphorylation of following 
substrates: LAT (linker for activation of T cells), SLP76 (SRC homology 2 (SH2)-domain-
containing leukocyte protein of 76 kDa) and PLCγ1 (phospholipase C γ1). These 
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phosphorylated proteins lead to recruitment of various molecules- Vav, GADS (growth 
factor receptor bound protein2 (GRB2)-related adaptor protein) and NCK (non-catalytic 
region of tyrosine kinase). These proteins induce a variety of signalling pathways which 
leads to activation of Ras, calcium mobilisation, the activation of PKC and polarisation of 
the actin filaments. Complete activation of T lymphocytes is achieved upon activation of 
transcription factors NFκB and NFAT, induction of the expression of cytokine genes, 
secretion of cytokines, T cell proliferation and interaction of various immune cells. CBL, 
(Casitas B-lineage lymphoma); PTPs, protein tyrosine phosphatases; SHP1 and SHP2, 
(SH2-domain containing PTP1) (Baniyash, 2004). 

1.6.3 Costimulation 

MHC/antigen-TCR interactions, although necessary, are not sufficient for full T cell 

activation. In order to become fully activated the T cell requires a secondary 

signal, also referred to as costimulation (Bromley et al., 2001). The most potent 

costimulatory molecules which belong to family of Ig superfamily, are B7 proteins, 

namely B7-1 (CD80) and B7-2 (CD86). B7 molecules are constitutively expressed 

on DC but can be upregulated on monocytes and possibly other APCs. B7-1 and 

B7-2 act as ligands for other members of the Ig superfamily - CD28 and its 

homologue CTLA-4. Stimulation via CD28 leads to augmented production of IL-2 

and expression of IL-2R, entry of the T cell into the cell cycle and enhanced 

survival. An additional member of the CD28 family, namely inducible costimulatory 

receptor (ICOS), plays an important role in this process. ICOS is upregulated 

following T cell activation and functions to maintain T cell-mediated responses 

(Coyle et al., 2000). CTLA-4 has a higher affinity for B7.1 and B7.2 and is an 

inhibitory receptor which functions to limit T cell activation, resulting in limitation of 

IL-2 production (Egen et al., 2002). The discovery of at least two new co-inhibitory 

molecules, programmed death-1 (PD-1, also known as CD279) and B and T 

lymphocyte attenuator (BTLA, also known as CD272) (Watanabe et al., 2003), in 

addition to the unknown ligands that mediate inhibitory actions of B7-H3 (Prasad 

et al., 2004) and B7-H4 (Suh et al., 2006), has added several layers of complexity 

to the process of costimulation (Parry et al., 2003). 
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1.7 Differentiation of effector T cells 

In order to perform their specific functions within the immune system, naïve T cells 

become activated and differentiated into corresponding mature effector cells. CD4 

T cells give rise to Th1 or Th2 helper cells whilst mature CD8 T cells are already 

committed to perform cytotoxic functions (Figure 1.9). 

Figure 1.9 T Cell Development and Functions. Immature T cells can display two types 
of TCR on their surface: first, the commonly expressed αβ and second, present on 
minority of cells (5%), γδ. Depending on received signals, CD4 T cells give rise to Th1, 
Th2, Th17 helper cells or Treg cells, whilst mature CD8 T cells are directed to perform 
cytotoxic functions. Different subsets of CD4 cells are characterised by activation of 
‘hallmark’ transcription factors, secretion of specific cytokines and distinct functions in 
immune responses. 

CD4 T cells become committed to a particular function after the first stimulation by 

antigen. However most immune responses require a contribution of both Th1 and 

Th2 T cell types (Hunter, 2005; Hibbert et al., 2003). A decision on which type of 

CD4 T cell it will differentiate into depends on factors that are not completely 

understood. One of these is a repertoire of cytokines produced by APC that are 

already present as a result of an innate system action. It is well known that action 

of cytokines such as IL-12, IFN-γ, IL-18 (Barbulescu et al., 1998) and IL-23 

promote differentiation to Th1 subtype (Oppmann et al., 2000). In addition 

activation of T-bet transcription factor has been found to be crucial in Th1 

regulation. However recent reports also revealed the importance of T-bet 
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independent pathways (Afkarian et al., 2002; Djuretic et al., 2007; Way and 

Wilson, 2004). 

CD4 T cells give rise to Th2 type upon action of IL-4 which upregulates STAT6, 

which in turn activates GATA-3, the ‘master’ transcription factor in Th2 regulation 

(Lund et al., 2005; Zhu et al., 2001; Ouyang et al., 1998; Ouyang et al., 2000). 

The function of effector CD4 T cells (T helper cells) is the secretion of cytokines, 

which activate and recruit other cell types into sites of immune response. The 

cytokines secreted by Th1 cells (Figure 1.9) support activation of macrophages 

which leads to inflammation and a cell-mediated immunity (Figure 1.1). In contrast 

cytokines produced by Th2 cells (Figure 1.9) are involved in B cell differentiation 

and antibody production, which forms the humoral immune response (Figure 1.1). 

The activation of CD8 T cells to cytotoxic T cells requires stronger costimulatory 

signals than is needed for CD4 activation. Thus CD8 T cells are activated only 

when infection is clearly defined (Roitt et al., 2001). Under some circumstances 

CD4 T cells can help to activate CD8 T cells by secretion of cytokines which 

upregulate expression of costimulatory molecules on the APCs (Simpson and 

Gordon, 1977; Bennett et al., 1997; Keene and Forman, 1982). It has also been 

reported that signalling through CD40 can replace CD4+ T-helper cells in priming 

of helper-dependent CD8+ CTL responses (Schoenberger et al., 1998). Cytotoxic 

T cells are involved in cell-mediated immunity and their main role is fighting viral 

infections (Maggi et al., 1997). 

1.8 CD4+ and CD8+ memory T cells 

Both CD4 and CD8 expressing T cells are part of immunological memory due to 

the production of central memory and effector memory T cells which retain 

immunological memory of particular antigens. After infection has been overcome 

some of these cells remain available for restimulation, and if the antigen is ever 

encountered again they provide rapid and specific response. Central memory T 

cells are maintained within lymphoid circulation in a similar way to naïve T cells. 

Effector memory T cells can enter peripheral lymphoid tissues and they seem to 

play a role in the first line of defence upon subsequent exposure to the pathogen. 

After recognition of the specific antigen, effector memory T cells can rapidly 

proliferate and respond to this antigen (Sallusto et al., 2004). 
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Different subsets of T lymphocytes can be also distinguished by the surface 

expression of surface markers such as hallmark chemokine receptors. The 

differential expression pattern of chemokine receptors on different types of T cells 

will be discussed later. 

1.9 Th17 

IL-17 producing T helper cells have recently been identified as a subset of CD4 

expressing cells, derived from the same precursor as Th1 and Th2 cells. Th17 are 

distinct from Th1 and Th2 subset in their gene expression and biological function. 

In vitro differentiation of Th17 cells is induced by a ‘cocktail’ of cytokines including 

IL-6, transforming growth factor-β (TGF-β), TNF, IL-1β and IL-23, together with the 

neutralisation of the Th1 and Th2 products IFN-γ and IL-4, respectively (Veldhoen 

et al., 2006; Bettelli et al., 2006; Mangan et al., 2006; Harrington et al., 2005). IL-6 

and TGF-β are crucial in differentiation of naïve T cells into Th17 lineage, whereas 

TNF and IL-1β enhance this pathway and IL-23 stabilizes the Th17 phenotype. 

RORγt has been found to be the transcription factor important in Th17 

development. 

Th17 cells are characterised by secretion of proinflammatory cytokine IL-17. 

Cooperation between the cytokines TGF-β (transforming growth factor-) and IL-6 

in vitro induces development of Th17 cells in mouse (Dong, 2008; Veldhoen et al., 

2006; Weaver et al., 2007; Bettelli et al., 2006; Mangan et al., 2006) and human 

(O'Garra et al., 2008) systems, whereas IL-23 supports expansion of these cells 

(Veldhoen et al., 2006; Bettelli et al., 2006; Mangan et al., 2006). 

There is evidence to support the involvement of Th17 cells rather then Th1 in 

autoimmune inflammatory conditions such as experimental autoimmune 

encephalomyelitis (EAE) or an animal model of multiple sclerosis (Langrish et al., 

2005). Moreover, IL-17 has been associated with many other diseases, such as 

rheumatoid arthritis, asthma, systemic lupus erythematosus (SLE) and allograft 

rejection (Kolls and Linden, 2004; Moseley et al., 2003). 
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1.10 Regulatory T cells 

Naturally occurring regulatory T cells (Tregs) are additional to effector T cells. 

Tregs are a subset of CD4+ cells and are derived from the same precursor as Th1, 

Th2 and Th17. Following their development in the thymus, these cells migrate to 

periphery, where they control T cell responses to self-antigens (Shevach, 2002; 

Poitrasson-Riviere et al., 2008). Tregs have been shown to play a role in the 

suppression of effector T cell responses and prevention of various autoimmune 

and inflammatory diseases such as inflammatory bowel disease (IBD), gastritis 

and type I diabetes (Shevach, 2000; Sakaguchi, 2000; Roncarolo and Levings, 

2000). 10% of peripheral CD4+ T cells have been found to be Tregs with 

downregulated expression of CD45RB and upregulated CTLA-4, GITR and LFA-1 

expression in comparison to conventional CD4+ T cells (Sakaguchi, 2004; Wing et 

al., 2008). Their hallmark transcription factor is Foxp3, which is mainly restricted to 

this subset and is critical for development and function of regulatory T cells. 

1.11 Th22 

Lately two studies have described a population of previously uncharacterised IL-

22- producing human helper T cells (Duhen et al., 2009; Trifari et al., 2009). These 

cells have been shown to be distinct from Th1 and Th17 helper cells as they 

secrete IL-22 but neither IFN-γ nor IL-17. Moreover this subset of IL-22 producing 

cells has been demonstrated to coexpress CCR6 and skin homing chemokine 

receptors CCR4 and CCR10 (Kupper and Fuhlbrigge, 2004), and has been 

implicated in skin homeostasis and pathology (Duhen et al., 2009; Trifari et al., 

2009). 

1.12 Immune cell migration 

Immune cell motility and ability to migrate from the circulation to the sites of 

functional recruitment (a process directed by chemoattractants) are crucial for 

correct function of the immune system (Figure 1.5 A and B). This is important 

during immunosurveillance when T cells recirculate from the blood through 

secondary lymphoid organs (such as lymph nodes and Peyer's patches), and 

during immune response (e.g. injury or inflammation), when following activation 

and differentiation, cells migrate to the sites of inflammation. Another important 
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process which forms part of the innate immune response is leukocyte 

extravasation - the movement of leukocytes out of the circulatory system, through 

the blood vessels towards the site of tissue damage or infection. This process is 

tightly regulated in order to prevent destructive effects of migration of immune cells 

into healthy tissues. Moreover, the immune cell that is crossing the endothelium 

must undergo a complex series of steps including tethering and rolling which allow 

it to initiate interactions with the endothelial cell, firm adhesion and transmigration 

which will be described in more detail below. 

Figure 1.10 Steps of the leukocyte adhesion. Three original steps; rolling, activation 
and arrest (shown in bold) are mediated by selectins, chemokines and integrins, 
respectively. Additional steps have been recently defined: capture (tethering), slow rolling, 
adhesion and strengthening and spreading, intravascular crawling, and paracellular and 
transcellular tramsmigration. Blue boxes show the key molecules involved in each step. 
ESAM, endothelial cell-selective adhesion molecule; ICAM1, intercellular adhesion 
molecule 1; JAM, junctional adhesion molecule; LFA1, lymphocyte function-associated 
antigen 1 (also known as αLβ2-integrin); MAC1, macrophage antigen 1; MADCAM1, 
mucosal vascular addressin cell-adhesion molecule 1; PSGL1, P-selectin glycoprotein 
ligand 1; PECAM1, platelet/endothelial-cell adhesion molecule 1; PI3K, phosphoinositide 
3‑kinase; VCAM1, vascular cell-adhesion molecule 1; VLA4, very late antigen 4 (also 
known as α4β1-integrin) (Ley et al., 2007). 
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1.12.1 Tethering and rolling


Figure 1.11 Summary of T cell surface molecules involved in the trafficking of T 
cells. Surface receptors of naїve, memory (TCM and TEM) and TEFF cells are shown, 
together with their cognate endothelial cell-expressed ligands (indicated in brackets). 
CNS, central nervous system; HEV, high endothelial venule; LN, lymph nodes; PNAd, 
peripheral-node addressin; PSGL-1, P-selectin glycoprotein ligand-1 (taken from (Ward 
and Marelli-Berg, 2009). 

Tethering and rolling on the endothelial surface starts the cascade-like process of 

immune cell extravasation by establishing contact between leukocytes and 

endothelial cells lining the blood vessel. Under conditions of sheer flow, these 

interactions are initially transient but eventually allow the cell to ‘tether and roll’ 

along the endothelium, leading to the slowing the speed of the passing leukocyte. 

Molecules that are involved in this process include selectins (e.g. L-selectin), 

which mediate transient, weak adhesive interactions that result in rolling and 

integrins sharing α4 subunit (e.g. VLA-4, Very late antigen-4), which mediate 

lymphocyte rolling mainly in the absence of selectin contribution (Pribila et al., 

2004). α4β1 integrin-mediated lymphocyte rolling does not require high affinity 
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interactions with VCAM-1 (Chen et al., 1999). Another member of the integrin 

family, LFA-1 (Lymphocyte function-associated antigen-1), despite not being 

involved in initial tethering of the leukocyte, appears to optimize L-selectin-

mediated rolling by reducing leukocyte rolling velocities via its interactions with 

ICAM-1 (Kadono et al., 2002). During the rolling on the endothelium, receptors on 

the leukocyte interact with endothelial cell- or tissue-derived chemokines 

immobilized on the endothelial cell surface. Chemokine binding to GPCRs (Han et 

al., 2005) expressed by migrating leukocytes trigger conformational changes, 

leading to increased affinity of leukocyte integrins for their cognate endothelial-cell 

adhesion molecules, which, in turn, mediate their firm adhesion to the endothelium 

(Rot and von Andrian, 2004; Ward and Marelli-Berg, 2009). The key surface 

molecules involved in T cell trafficking events are summarized in Figure 1.11. 

1.12.2 Activation and adhesion 

Based on weak and transient interactions with endothelium, tethering and rolling of 

lymphocytes enhances the possibility of sufficient activation and firm adhesion of 

lymphocyte. Generally, firm adhesion of leukocyte to the endothelium is mediated 

by ICAM-1 (intracellular adhesion molecule) and VCAM-1 (vascular cell adhesion 

molecule), which bind β2 and β1integrins on leukocytes (Dejana, 2006). In 

addition, chemokines displayed on the surface of the endothelial cells stimulate 

lymphocyte rolling via interactions with proteoglycans, causing a rapid, but 

transient, increase in integrin adhesiveness. 

In addition, chemokines modulate integrin functionality by promoting 

conformational changes of integrins that alter ligand binding affinity and changes 

in integrin mobility, resulting in integrin clustering and increased avidity of 

leukocyte adhesion (Pribila et al., 2004). 

Most β2 integrins expressed on the surface of unstimulated leukocytes are in their 

inactive state in which they do not bind ligands and do not signal. Only a small 

number of integrins present on the cell surface are in an active, high affinity state 

and these integrins are necessary for spontaneous lymphocyte arrest on the 

endothelium (Chen et al., 1999; Hynes, 2002). Upon cell activation for example 

by cytokines, the β2 integrins become activated allowing binding to the receptors. 
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In this case these are Ig superfamily molecules such as ICAMs present on the 

endothelial cells. 

1.12.3 Transmigration (diapedesis) 

To reach the site of infection, following firm adhesion to the endothelium, 

leukocytes migrate across the vessel wall to infiltrate the underlying tissues, a 

process known as diapedesis, extravasation and transmigration (Muller, 2003). In 

contrast to leukocyte rolling, arrest and adhesion, the precise mechanism of 

diapedesis through endothelium is still poorly defined. The most accepted 

mechanism of leukocyte transmigration is through interendothelial junctions 

(paracellular mechanism, Figure 1.6), which open and close rapidly allowing the 

passage of the cell and maintaining integrity of endothelium, respectively (Muller, 

2003; Johnson-Leger et al., 2000). However this model has been challenged by 

other studies supporting an alternative mechanism of leukocyte diapedesis 

through individual endothelial cells by penetrating the cell cytoplasm (transcellular 

pathway). It has also been suggested that these two pathways coexist and are 

equally possible during leukocyte transmigration (Engelhardt and Wolburg, 2004). 

Although the exact mechanisms of extravasation are yet to be fully explored, there 

are some proteins already identified that are thought to be crucial in this process 

(Figure 1.10). Studies using antibodies blocking endothelial junctional proteins, 

revealed the importance of molecules such as JAMs (junctional adhesion 

molecules) e.g. JAM-1 and PECAM-1 (platelet endothelial adhesion molecule) in 

leukocyte transmigration (Muller, 2003; Johnson-Leger et al., 2000; (Bird et al., 

1993). In addition the process of diapedesis involves interactions of LFA-1 with 

ICAM-1 (Bird et al., 1993). 

1.12.4 Integrin –independent migration 

As was discussed above, the role of integrin-mediated adhesion in leukocyte 

extravasation (two-dimensional migration) is well established. However recent 

findings by Lämmermann et al demonstrate that integrin-mediated adhesion is 

only necessary to overcome tissue barriers such as the endothelial layer, while 

interstitial migration is independent from the molecular composition of the 

extracellular environment. The autonomy from adhesion molecule interaction 
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allows leukocyte to achieve fast and flexible navigation through any organ without 

a need to adapt to extracellular ligands (Lammermann et al., 2008). 

1.12.5 The role of TCR and costimulatory molecules in regulation of T cell 

trafficking 

To recognise tissue-selective integrins and chemokine-chemokine receptor 

interactions, an additional level of specificity for T cell trafficking into the tissue is 

provided by specific recognition of antigen displayed by the endothelium (reviewed 

in Ward and Marelli-Berg, 2009). Within secondary lymphoid organs, antigen-

displaying dendritic cells present antigen–peptide–MHC complexes to the TCR on 

the surface of clone-specific T cells. Co-stimulatory signals delivered to T cells 

together with TCR engagement are well known to sustain T cell proliferation, 

differentiation and survival. Moreover, co-stimulators (such as CTLA-4) counteract 

these effects, thus promoting homoeostatic mechanisms and tolerance induction 

(Alegre et al., 2001; Parry et al., 2007; Ward and Marelli-Berg, 2009). 

1.12.6 Chemotaxis 

Immune cells are able to migrate in several different ways. In addition to random 

motile response (chemokinesis), leukocytes are capable of directional movement 

either towards a soluble extracellular gradient of chemoattractant (chemotaxis) or 

when immobilised on tissue structures such as interstitial collagens or a stromal 

cell network (haptotaxis). 

Chemoattractants are substances that are able to induce directed cell migration 

(or chemotaxis) in motile cells. There are several types of chemoattractants 

including the most notable large family of chemokines (described in detail within 

this chapter). Some other molecules namely sphingosine-1-phosphate (S1P) 

(Sallusto and Mackay, 2004), leukotriene B4 (LTB4) (Funk, 2001; Kamohara et al., 

2000) or a member of the complement system C5a (Marder et al., 1985) have also 

been shown to have chemoattracting properties, attracting T cells out of the 

thymus, mediation of neutrophils chemotaxis, monocytes and macrophages, 

respectively. 
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The process of chemotaxis involves thee distinct features of a migrating cell; 

establishment of a polarised morphology, formation and extension of protrusions 

at the leading edge and directional movement. Chemoattractants and the 

processes required in chemotaxis are described in more detail below. 

Extension of pseudopodia 

During random migration, cytoplasm protrusions (pseudopodia) form over the 

whole surface of the cell. Directional migration (e.g. towards chemokine gradient) 

requires formation of protrusions at the front or leading edge of the cell. This is 

achieved due the to accumulation of some signalling molecules such as 

PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-trisphosphate, or PIP3). This particular 

molecule will be discussed in more detail later as this is a vital step in the initiation 

of chemotaxis. 

Polarisation 

In order to migrate towards a chemoattractant gradient, the cell must establish 

polarised morphology, which means formation of the front (leading edge) and back 

(uropod) (Figure 1.12). Establishment and maintenance of the migrating cell 

polarity is dependent on molecular events and a set of positive-feedback loops 

involving PI3K, the Rho family of small GTPases, integrins, microtubules and 

vesicular transport. The contribution of various signals differs between cell types 

and depends on specific chemoattractant (Ridley et al., 2003; Ward, 2006). The 

initial step leading to polarisation and consequently to migration is the activation of 

surface G-protein coupled receptors (GPCR, e.g. chemokine receptors) by 

chemoattractants. During polarisation, GPCR are evenly distributed on the cell 

surface (Servant et al., 1999). Moreover, heterotrimeric G proteins show low 

preference for the leading edge (Jin et al., 2000). In contrast further downstream 

effectors exhibit highly asymmetrical distribution. The first detectable molecular 

event of cell polarisation is accumulation of PI3K lipid products PtdIns(3,4,5)P3 

(PIP3) at the leading edge of the cell. Studies in neutrophils and dictyostelium 

provided a body of evidence which indicated that PIP3 dependent signals were 

part of a compass mechanism, sensing and responding to extracellular gradients 

of chemoattractants (Funamoto et al., 2002; Iijima and Devreotes, 2002; Wang et 

al., 2002; Weiner et al., 2002). Studies using PI3K inhibitors or the genetic loss of 
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PI3Ks demonstrated a reduction in the chemotactic responses of neutrophils and 

amoebae in a variety of in vitro and in vivo migration experiments (Fergus et al., 

2007; Funamoto et al., 2002; Hannigan et al., 2002; Hirsch et al., 2000; Iijima and 

Devreotes, 2002; Weiner et al., 2002). Additional studies using GFP-tagged PH 

domains selectively reacting with PtdIns(3,4,5)P3 and PtdIns(3,4)P2, and using 

PtdIns(3,4,5)P3 –specific antibodies revealed that the levels of PI(3,4,5)P3 become 

highly polarized in amoebae, neutrophils and neutrophil-like cell lines, with high 

levels closest to the leading edge (Funamoto et al., 2002; Iijima and Devreotes, 

2002; Wang et al., 2002; Weiner et al., 2002). The asymmetric distribution of PIP3 

in migrating leukocytes is thought to be maintained via spatially and temporally 

regulated positive and negative feedback loops (Barber and Welch, 2006). 

Positive feedback seems to function through PIP3, stimulating further production of 

PIP3. This mechanism is thought to involve Rho GTPases, most likely Rac (Niggli, 

2000; Weiner et al., 2002). In addition to positive regulation, asymmetric 

localization of PIP3 is also maintained by excluding it from the rear end of the cell 

by action of phosphatases PTEN and SHIP which catalyse the conversion of PIP3 

to PtdIns(4,5)P2 and PtdIns(3,4)P, respectively. The role of PI3K in leukocyte 

migration will be addressed in greater detail in a later part of the chapter. 

Figure 1.12 Signalling events leading to leukocyte polarisation during chemotaxis. 
Activation of G-protein coupled chemokine receptors by chemokines leads to stimulation 
of a dedicator of cytokinesis 2 (DOCK2)-Rac pathway (localized at the leading edge), and 
actin reorganisation. PI3K is localized mainly at the front of the cell while PTEN 
phosphatase is distributed to the rear edge of migrating cell. Activated ERM (Ezrin, 
Radixin and moesin) proteins are recruited to the rear edge, where they stimulate cell 
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contraction by regulation of myosin light chain (MLC) phosphorylation, propably through 
the Ras-homologue-gene-family-member-A – Rho associated-coiled-coil-containing-
protein-kinase (RhoA-ROCK) cascade (Viola and Gupta, 2007) 

Another downstream signal of activated GPCR is the DOCK (dedicator of 

cytokinesis 2)-Rac-dependent pathway which initiates actin rearrangements within 

the cell (Viola and Gupta, 2007). Actin plays a fundamental role in motile cells by 

being continually polymerised and depolymerised allowing for dynamic movement. 

Actin exists as a globular protein known as G-actin, molecules of which bind 

together in an ATP-dependent manner, generating filamentous actin (F-actin). 

Extension of the actin filament (polymerization) occurs at the one end known as 

the ‘barbed end’ while depolymerisation takes place at the opposite or ‘pointed 

end’ (Figure 1.13). During chemotaxis the generation of new filaments occurs 

mostly at the leading edge of the cell and pushes the plasma membrane forward, 

resulting in the protrusion of the cell. Growth of F-actin continues until halted by 

the binding of capping protein on the barbed end. The role of capping proteins is to 

maintain and stabilize the filament or to induce its depolymerisation. Capping 

proteins can be located at the pointed end, where they inhibit dephosphorylation of 

the filament or at the barbed end preventing addition of further G-actin subunits. 

During the process of treadmilling the rates of polymerization and 

depolymerisation are equal thus the length of filament remains constant (Revenu 

et al., 2004; Vicente-Manzanares et al., 2005). 
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Figure 1.13 Structure and dynamics of actin filaments. Actin exists as a monomeric, 
globular protein known as G-actin, and as a filamentous actin (F-actin). G-actin subunits 
bind together upon action of ATP in a process of actin polymerization. Extension of the 
actin filament occurs at the ‘barbed end’ while depolymerisation takes place at the 
opposite ‘pointed end’. During the process of treadmilling the rates of the polymerization 
and depolymerisation are equal, and the length of filament remains unchanged. Capping 
proteins can bind to the barbed end and prevent addition of further actin monomers. 
Several other proteins have been shown to bind actin filaments. Some of them act as 
crosslinking proteins, which stabilize and allow actin filaments to bind together. 

1.13 Chemokines and chemokine receptors 

1.13.1 Nomenclature and structural characteristics of chemokines 

Chemokines are members of a large family of small 8-10 kDa proteins and, to 

date, at least 50 chemokines and 19 functional receptors have been described. 

Chemokines show a relatively low level of sequence identity. However their three-

dimensional structures exhibit high homology in monomeric fold (Proudfoot, 2002; 

Schwarz and Wells, 1999). Chemokines are subdivided into four sub-families 

based on the number and position of highly conserved cysteine residues in the 

amino terminal end of their primary amino acid sequence, namely C, CC, CXC and 

CX3C (Rollins, 1997; Sallusto et al., 1998; Zlotnik and Yoshie, 2000). The division 
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of the chemokines according to their structure represents a new nomenclature (the 

new versus old nomenclature of chemokines is shown in Figure 7.6 in Appendix). 

CXC chemokines (or α chemokines) and CC (or β chemokines) are two major 

families of chemokines. The CXC chemokines contain a single non-conserved 

amino acid between the first two cysteines of this motif while CC chemokines have 

these residues juxtaposed. Two other minor chemokine families include CX3C 

chemokines, which contain three amino acids between the first two cysteins and C 

chemokines, in which one of these residues is lacking. The CXC chemokines are 

further subclassified according to the presence or absence of an ELR motif in the 

N-terminal: Glu-Leu-Arg (ELR)+ and Glu-Leu-Arg (ELR) -. ELR+ group of 

chemokines include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8 

and CXCL15 and this group has been shown to have angiogenic activity and 

attract mainly neutrophils and polymorphonuclear (PMN) leukocytes to the sites of 

inflammation. ELR - chemokines, to which CXCL4, CXCL9, CXCL10, CXCL11, 

CXCL12, CXCL13, CXCL14 and CXCL16 belong have mainly angiostatic 

properties and attract lymphocytes and monocytes with poor chemotactic ability for 

neutrophils (Laing and Secombes, 2004). Chemokines are also divided into 

‘homeostatic’ and ‘inflammatory‘ subfamilies depending whether they are 

constitutively expressed or whether their expression is upregulated upon 

inflammatory signals (Figure 1.14). 

Many chemokines are clustered in a certain chromosomal location (Figure 7.6 in 

Appendix). Two main clusters have been recognized. Many human CXC 

chemokines that mainly act on neutrophils are clustered at chromosome 4q12–13, 

while many CC chemokines that mainly act on monocytes are located in another 

cluster at 17q11.2. The CXC chemokines in the 4q21.21 mini-cluster act 

specifically as T cell chemoattractants (Murphy et al., 2000). Chemokines encoded 

by the more isolated genes tend to be constitutively produced and have 

homeostatic roles (Zlotnik and Yoshie, 2000). 
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Figure 1.14 Functional classifications of human chemokines. Chemokines can be 
categorized according to the function they play in immune cells trafficking. Homeostatic 
(constitutive) chemokines are responsible for trafficking and homing of leukocytes during 
immunosurveillance. These chemokines are constitutively expressed. Inflammatory 
(inducible) chemokines are crucial in the guiding of leukocyte migration during injury or 
disease and their expression is induced e.g. by cytokines. 

1.13.2 Gproteins coupled receptors 

G-protein coupled receptors or GPCRs are a large and diverse family of receptors 

and are capable of binding not only chemokines, but also hormones and lipid 

mediators. Surface GPCRs couple to heterotrimeric intracellular G proteins which 

mediate activation of downstream effectors including adenyl cyclase, 

phospholipases, protein kinases and ion channels (Armbruster and Roth, 2005). 

Figure 1.15A shows characteristic and unique structure of GPCRs: a hydrophobic 

core of seven transmembrane spanning domains creating three intracellular loops, 

an extracellular amino terminus and intracellular carboxyl terminus. Binding of the 

ligand to N-terminal end of the monomeric receptor leads to conformational 

changes within the receptor that are transduced through 7TM domains, and in 

consequence its activation. To convert agonist-induced conformational changes of 

receptor into a functional signal inside the cell, the receptor must undergo three 

stages of activation (Figure 1.15B). This is achieved by coupling to a 

heterotrimeric guanine-nucleotide binding protein (G protein) comprising of one 

each of α, β and γ subunits. Activation by a ligand binding receptor initiates the 

exchange of guanosine diphosphate (GDP) for guanosine triphosphate on the α 

subunit, leading to reduced affinity of Gα-GTP for Gβγ, and resulting in 

dissociation of both Gα-GTP and Gβγ from the receptor (Lambright et al., 1994). 
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Uncoupled G protein subunits are now able to act on their downstream effectors 

leading to their activation or inhibition. Termination of these actions occurs rapidly 

via hydrolysis of GTP through activity of intrinsic GTPases. G proteins are 

switched on and off by the GTPase activating proteins (GAPs) which stimulate 

their GTPase activity, leading to signal termination. This can be reversed by 

guanine nucleotide exchange factors (GEFs). Most GAP proteins which act on Gα 

subunits belong to family of multifunctional Regulators of G protein Signaling 

(RGSs) (Tesmer et al., 1997). 

A 

B


Figure 1.15 A schematic illustration of GPCR and its interactions with chemokine 
ligand. (A) A 2D representation of an unfolded 7 transmembrane GPCR within the cell 
membrane with labelled extracellular N- and intracellular C-termini as well as the 
intracellular (ICLs) loops. As discussed later ICL2 is essential for the activation of GPCRs. 
(B) Illustration of GPCR activation by its ligand. (B, left panel) inactive state of receptor 
with associated heterotrimeric G proteins (Gα stays GDP bound); (B, middle panel) 
receptor in its active state after ligand binding, dissociation of G proteins due to exchange 
of GDP to GTP, resulting in signal transduction; (B, right panel) signal termination due to 
hydrolysis of GTP, re-association of G proteins. RGS Regulators of G protein signaling. 
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1.13.3 Dimerization of GPCRs 

It has recently become apparent that interactions between ligand and its receptor 

are more complex, with these receptors forming homodimers and also 

heterodimers rather than involving monomeric receptor (Breitwieser, 2004). 

For example chemokine receptor CCR5, expressed on T lymphocytes has been 

reported to form homodimers, and this process was dependent on two residues 

present in transmembrane domain 1 and 4. Mutations of these residues prevented 

dimerization of CCR5 and blocked signalling through this receptor (Hernanz-

Falcon et al., 2004). 

Heterodimerization between CCR2 and CCR5 has been reported to occur and to 

have functional consequences as their ligands, CCL2/MCP-1 (monocyte 

chemotactic protein-1) and CCL5/RANTES (regulated upon activation, normal T 

cell-expressed and Secreted), cooperate to induce PTX-resistant calcium 

mobilization at concentrations 1- to 100-fold lower than the threshold for each 

chemokine alone. Heterodomerization, in addition to recruiting each receptor-

associated signalling complex, also has unique features such as promoting the 

specific recruitment of Gq/11, leading to PTX insensitive responses and different 

kinetics of PI3K activation. Therefore it is thought to promote cell adhesion rather 

than migration (Mellado et al., 2001b). 

Another example of chemokine receptor dimerization comes from studies on 

CXCR4 and CXCR7 which have been demonstrated to exist as homodimers in 

constitutive association with each other (Babcock et al., 2003; Lagane et al., 2008; 

Sierro et al., 2007; Toth et al., 2004; Wang et al., 2006; Vila-Coro et al., 1999). 

Furthermore, using a new firefly luciferase PCA to image dimeric complexes of 

chemokine receptors in intact cells and living mice, Luker et al validated previous 

findings of CXCR4/CXCR7 homo- and heterodimerization and demonstrated that 

CXCR7 also exists as preformed dimers (Luker et al., 2009). 

These results may have important consequences for T cell physiology. For 

example during leukocyte extravasation, chemokines are presented to rolling 

leukocytes by immobilization on heparin bearing proteoglycans on the vascular 

endothelium. Therefore due to the low concentration of chemokines, 
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heterodimerization of receptor could stop rolling and trigger cell adhesion and 

diapedesis through the vessel wall, and finally migration into the surrounding 

tissues (Rodriguez-Frade et al., 2001). 

Although heterologous expression studies suggest that most, possibly even all, 

GPCRs can form homo- and/or hetero-oligomers, these findings will require further 

individual case investigation in vivo at physiological level of GPCR expression 

(Breitwieser, 2004) and cannot be generalized to all chemokine receptors. During 

inflammation where a variety of soluble mediators are present, the possibility that 

different chemokine pairs could induce heteromerization of chemokine receptors 

may add to the complexity of chemokine system physiology (Rodriguez-Frade et 

al., 2001). 

1.13.4 Interactions of Gαααα and Gββββγγγγ with downstream effectors 

Activation of a large number of different downstream effectors is achieved by the 

existence of variable forms of G proteins. They are categorized into four families 

based on differences between their α subunits; Gs, G i/o, Gq, G12/13. 

Chemokine binding to their serpentine receptor cause dissociation of Gαi (the 

type of Gαi most commonly associated with chemokine receptors) and Gβγ 

subunits of heterotrimeric G proteins, leading to intracellular calcium flux, and 

activation of a variety of signalling pathways, such as PLC, phosphatidylinositol 3-

kinase (PI3K) and the small Rho GTPases (Mellado et al., 2001a). 

1.13.5 Regulation of GPCR signalling 

Expression of GPCR on the surface and its availability is a tightly controlled 

process and is a balance between the rate of endocytosis and the rate of 

replacement (recycling or synthesis of new protein) (Mueller et al 2002, CCR5). 

Newly synthesized receptors in the endoplasmic reticulum become glycosylated, 

packaged and transported to the surface where are they ready to interact with their 

agonists. Activation of GPCR by binding of its agonist turns on mechanisms to limit 

its own responses. Two processes have been shown to play a role in this 

phenomenon, namely receptor desensitization and receptor internalization. 

Desensitization is a very rapid response and leads a cell to be transiently 
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unresponsive to a subsequent stimulation via that receptor (Sauty et al., 2001; 

Chuang et al., 1996). This occurs due to phosphorylation of Ser and Thr residues 

in the intracellular loops and carboxyl-terminus of the receptor by G protein-

coupled receptor kinases (GRKs), which results in the uncoupling of G protein 

subunits from the receptor. Moreover, phosphorylation of these residues is 

important for the recruitment of adaptor proteins, such as adaptin 2 (AP-2) and 

β-arrestin which play an important role in receptor internalization (Neel et al., 

2005). Internalization is a process in which activated receptors are removed from 

the surface for degradation or recycling and this results in more prolonged cellular 

unresponsiveness to these receptor agonists (Signoret et al., 1998; Solari et al., 

1997; Aragay et al., 1998; Sauty et al., 2001). The process of chemokine receptor 

internalization will be presented in more detail later. 

1.13.6 Chemokine receptors 

Chemokines mediate their effects by binding to 7TM spanning GPCRs which are 

typical 7TM spanning receptors but with some characteristic features of 

chemokine receptors features (Smit et al., 2007) such as a D/ERYLAIVHA motif 

within the second intracellular loop domain (Figure 1.16). Mutation of the first 

residue of the E/DRY motif in numerous receptors leads to agonist-independent 

activation (i.e., constitutive activity) (Rasmussen et al., 1999; Scheer et al., 1997) 

whereas mutation of the R residue cause general impairment of G protein-

dependent signaling (Amara et al., 2003; Ballesteros et al., 1998; Chung et al., 

2002; Scheer et al., 2000). The interaction between R of the DRY motif, with its 

adjacent D/E residue at position 3.49 and an additional D/E at position 6.30 near 

the cytoplasmic end of TM6 is known as the ionic lock (Ballesteros et al., 2001). 

Charge-neutralizing mutation of D/E6.30 in TM6 results in increased constitutive 

activity (Ballesteros et al., 2001; Montanelli et al., 2004). Another characteristic 

feature of chemokine receptors is a highly conserved NPXXY motif found within 

TM7 in which the N residue acts as an on/of switch by adopting two active and 

inactive conformational stages (Govaerts et al., 2001; Urizar et al., 2005). 

Sequences of conserved NPXXY motifs of chemokine receptors are summarized 

in Figure 7.7 in Appendix. 
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There are about 50 human chemokines identified to date, with considerably fewer 

number of chemokine receptors described. Sequence identity for chemokine 

receptors varies from 36-77% for CXC chemokine receptors and 46±89% for CC 

chemokine receptors (Baggiolini et al., 1997). The chemokine - chemokine 

receptor system presents a high level of redundancy and versatility which is 

achieved by the promiscuous nature of chemokines, as they can bind to several 

receptors or each receptor may be activated by several different chemokines 

(Ward and Westwick, 1998). Chemokines binds their receptor with nanomolar 

affinity and this binding is class restricted, which means that CC receptors are only 

activated by CC chemokines and CXC receptors by CXC chemokines (Pease and 

Williams, 2006). The exception to this rule is the Duffy antigen receptor for 

chemokines (DARC) which binds both CC and CXC chemokines (Lu et al., 1995; 

Pease and Williams, 2006a). 

Figure 1.16 Sequences of conservative DRYLAIV motif of human chemokine 
receptors present in the Nterminus of the second intracellular loop of the protein. 
(Adapted from Thelen, 2008). 

As mentioned previously chemokines and chemokine receptors are classified into 

homeostatic and inflammatory subfamilies. This division however does not seem 

to be fully categorical. For example CCR10 is thought to be constitutively 

expressed but is involved in some inflammatory skin conditions (Reiss et al., 
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2001), whereas its ligand CCL27 is upregulated by pro-inflammatory cytokines 

(Homey et al., 2002). Figure 1.17 summarises the network of interactions between 

chemokines and their receptors. 

Figure 1.17 Chemokine and chemokine receptors. There are about 50 human 
chemokines identified in human until now, and 20 chemokine receptors described. The 
chemokine-chemokine receptor system presents a high level of redundancy and versatility 
which is achieved by the promiscuous nature of chemokines. Chemokine receptors can 
be divided into two classes; specific, which bind only one ligand; and shared which 
interact with more then one chemokine. 
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1.13.7 CXCR3 

CXCR3 is a chemokine receptor and contains structural motifs typical for GPCRs, 

such as conservative DRY (Figure 1.16) and NPXXY (Figure 7.7, Appendix) motifs 

at the cytoplasmic ends of transmembrane domains 3 and 7 respectively. 

The chemokine receptor CXCR3 is expressed on a wide variety of cells including 

activated T lymphocytes, NK cells, malignant B lymphocytes, endothelial cells, and 

thymocytes (Loetscher et al., 1996; Loetscher et al., 1998; Qin et al., 1998; 

Romagnani et al., 2001; Trentin et al., 1999; Van Der Meer et al., 2001). Three 

major CXCR3 ligands, CXCL9, CXCL10, and CXCL11, have been identified, all of 

which are induced by IFN-γ and are therefore thought to promote Th1 immune 

responses (Cole et al., 1998; Farber, 1990; Luster et al., 1985). Recent studies 

have shown that different CXCR3 ligands exhibit unique temporal and spatial 

expression patterns, suggesting that they have non-redundant functions in vivo. 

Moreover, the CXCR3 ligands share low sequence homology (around 40% amino 

acid identity) and exhibit differences in their potencies and efficacies at CXCR3, 

with CXCL11 being the dominant ligand in several assays (Cole et al., 1998; 

Xanthou et al., 2003). 

CXCR3 and its agonists have been implicated in the induction and perpetuation of 

several human inflammatory disorders (Qin et al., 1998) including atherosclerosis 

(Mach et al., 1999), autoimmune diseases (Sorensen et al., 1999), transplant 

rejection (Hancock et al., 2000; Hancock et al., 2001) and viral infections (Liu et 

al., 2000). These findings have made CXCR3 a popular target for the development 

of new potential anti-inflammatory strategies. 

In recent years, two main variants of CXCR3 receptor have been identified, 

namely CXCR3-B (Lasagni et al., 2003) and CXCR3-alt (Ehlert et al., 2004) 

(Figure 1.18 A and B). Both variants are generated via alternative splicing of 

mRNA encoding the original CXCR3 receptor (henceforth referred to as CXCR3-

A). In the case of CXCR3-B, alternative splicing resulted in extension of NH3 

terminus by 52 amino acids and this form of receptor has been shown to bind 

Platelet Factor 4 (PF4/CXCL4) in addition to the three original CXCR3 agonists. In 

contrast CXCR3-alt is a truncated version of CXCR3 (lacking 101 amino acids) 
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which consequently exhibits a dramatically altered C terminus and with a predicted 

4-5 transmembrane domain structure. Despite this drastically modified structure, 

CXCR3-alt has been shown to bind and respond to CXCL11 (Ehlert et al., 2004). 

A 

B 

Figure 1.18 Alternatively spliced variants of CXCR3 receptor. (A), Structure of CXCR3 

protein and (B), structure of CXCR3 gene. 

1.13.8 CXCR7 

CXCR7 has been recently identified as a new member of chemokine receptor 

family. Despite intensive studies, its function as a typical chemokine receptor 

(defined by characteristic chemokine receptor signalling) and mechanisms of 

action are not fully understood and are still to be elucidated. CXCR7 formerly 

known as RDC1 as its gene was originally cloned from dog cDNA library 

(Receptor Dog cDNA) (Libert et al., 1990) has been recently described as the 

second receptor for chemokine CXCL12 (SDF-1) and CXCL11 (I-TAC) 

(Balabanian et al., 2005; Burns et al., 2006). A connection between RDC1 and 

chemokine receptors was suggested due to its sequence similarity (43%) and its 

identity (32%) with CXCR2 and the close location of its gene to cxcr4, cxc2r, cxcr1 

on mouse chromosome 1 (Heesen et al., 1998; Moepps et al., 2006). The 

definition of RDC1 as a CXCR chemokine receptor 7 was based on its high affinity 

to CXCL12 and CXCL11. Balabanian et al first demonstrated that RDC1 is 
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expressed in T lymphocytes and that anti-RDC1 monoclonal antibody inhibits 

CXCL12-mediated migration of T cells. The same researchers have also shown 

CXCL12 -induced internalization and migratory responses in CXCR4-negative and 

CXCR7 expressing cells. In contrast Burns et al reported that CXCR7 binds with 

high affinity another chemokine, CXCL11, but these receptor-ligand interactions 

did not lead to Ca2+ mobilisation or cell migration. Moreover, the characteristic 

chemokine receptor coupling to PTX-sensitive Gi-proteins- could not be 

demonstrated for CXCR7 (Thelen, 2001). As described previously in section 

1.6.6, most chemokine receptors contain conserved DRYLAIV motif at the N-

terminus of the second intracellular loop that is thought to be necessary but not 

sufficient for coupling to Gi-proteins. The sequence of CXCR7 receptor is altered in 

two positions (A/S and V/T alterations, Figure 1.16). It is worth noting that these 

modifications are present in other receptors (lymphotactin receptor and CXCR6) 

which are shown to be coupled to Gi-protein (Chandrasekar et al., 2004; Yoshida 

et al., 1998). 

Results from other groups demonstrate that CXCR7 acts as a scavenger receptor 

during Zebrafish primordial germ cell (PMG) migration, were it is involved in 

forming a CXCL12 gradient by local scavenging of the chemokine. Initial studies 

also showed that regulated expression of CXCR4 and CXCR7 on migrating 

primodial cells, distributed on front and trailing cells, respectively (Dambly-

Chaudiere et al., 2007; Valentin et al., 2007). Recent studies also support decoy 

activities of CXCR7 but its expression was detected on stromal rather than germ 

cells (Boldajipour et al., 2008). 

A distinct role for CXCR7 was highlighted by Sierro et al who demonstrated 

expression of Cxcr7 transcripts on a restricted subset of leukocytes, some T cell 

subsets, NK cells, and particulary high levels of Cxcr7 in different subsets of B 

cells. Despite high expression of CXCR7 in B cells, Cxcr7 -deficient mice had 

normal B cell composition. However, Cxcr7 deficiency in these mice led to death at 

birth due to ventricular septal defects and semilunar heart valve malformation 

(Sierro et al., 2007). This study points towards a developmental role of 

evolutionary conserved CXCR7. 
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The potential role of CXCR7 in cancer was also proposed as the expression of 

CXCR7 has been shown to provide cells with growth and survival signals, and 

increased adhesion properties. In vivo tumor growth in animal models was 

abolished by high affinity CXCR7 antagonists, making this receptor a potential 

target for a novel cancer therapeutics (Burns et al., 2006). 

Although CXCR7 has not been fully accepted as a typical chemokine receptor and 

its role in T cells is still unclear, the inter-relationship between this receptor and 

CXCR3 and CXCR4 and their shared chemokines CXCL11 and CXCL12 is 

intriguing and may provide a new molecular link between inflammation and cancer. 

Further studies of interactions of CXCR7 with CXCL11 and CXCL12 would be 

desirable in order to understand the role it plays in T cells. 

1.13.9 Atypical chemokine receptors 

As well as conventional, signalling chemokine receptors controlling leukocyte 

recruitment during inflammation, there is a significant body of evidence suggesting 

that the chemokine receptor system includes ‘silent’ receptors possessing distinct 

specificity and tissue distribution. These ‘atypical’ receptors are unable to sustain 

signalling activities observed for typical chemokine receptors, such as calcium 

fluxes and chemotaxis, and are therefore referred to as ‘silent’ (Mantovani et al., 

2001). These modified GPCRs have also been termed ‘chemokine receptors’ for 

internalizing receptors. The atypical chemokine receptors display an alteration in 

the DRYLAIVHA motif that is critical for signalling (Figure 1.16). Two of the best 

characterised silent chemokine receptors include DARC (Duffy antigen receptor 

for chemokines) (Horuk et al., 1993) and D6 (Bonini et al., 1997; Horuk et al., 

1993; Nibbs et al., 1997) and these receptors will be discussed here together with 

another atypical chemokine receptor, CCX-CKR (Chemocentryx chemokine 

receptor) (Gosling et al., 2000). CXCR7 receptor should also be mentioned here 

as no signalling was detected through this receptor. 

D6 

The D6 molecule is typical of a chemokine receptor but, like DARC, it lacks the 

DRY motif (Figure 1.16) and TXP motif (in the second transmembrane domain). 

D6 binds a wide range of chemokines including inflammatory CC chemokines 
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(agonists of CCR1-CCR5) (Borroni et al., 2006). D6 is expressed at low levels by 

circulating leukocytes (Borroni et al., 2006), but high levels of D6 were found on 

endothelial cells of lymphatic afferent vessels in the skin, gut and lungs (Nibbs et 

al., 2001), and in the placenta (Bonini et al., 1997). D6 cannot couple with 

signalling pathways used by chemokines, but instead it posseses unusual 

intracellular trafficking properties to mediate repeated rounds of chemokine 

internalization (Fra et al., 2003; Weber et al., 2004; Bonecchi et al., 2004). D6 

undergoes rapid constitutive ligand-independent trafficking to and from the plasma 

membrane, utilizing a β-arrestin- and clathrin-dependent route of internalization. 

This feature is unique among mammalian chemokine receptors (Weber et al., 

2004). Chemokines which bind to D6 are also rapidly internalized, followed by 

dissociation from the receptor, remaining trapped within the cell for degradation. 

Meanwhile D6 recycles back to the plasma membrane for further ligand 

sequestration (Hansell et al., 2006). In vivo studies revealed that deletion of D6 

can result in increased susceptibility to skin cancer and an inflammatory condition 

similar to psoriasis (Nibbs et al., 1997). Anti-inflammatory tumour suppressor 

properties of D6 were also supported by in vivo studies using null mice (Bonecchi 

et al., 2004; Jamieson et al., 2005; Marquez de la Torre et al., 2005). 

DARC 

A growing body of evidence indicates that another ‘silent’ receptor DARC also 

uses chemokine sequestration to control the CC and CXC chemokines to which it 

binds (Nibbs et al., 2003; Rot, 2005; Du et al., 2002). This limits chemokine 

availability and regulates blood chemokine levels (Fukuma et al., 2003; Jilma-

Stohlawetz et al., 2001). Furthermore, it has been suggested that DARC promotes 

chemokine transcytosis across blood vessel endothelial cells. While chemokines 

internalized by D6 are degraded, the fate of chemokines internalized by DARC 

may be cell context-dependent and it is possible that they can maintain their 

biological activities. It has been assumed that DARC expressed on erythrocytes 

and vascular endothelial cells may act as either a biological sink or a transporter 

for both CC and CXC chemokines. This suggests that, in contrast to chemokine 

decoy/scavenger D6, DARC plays a more complex role in chemokine homeostasis 

(Pruenster and Rot, 2006). The modified DRYLAIVHA motif of DARC is shown in 
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Figure 1.16. Recent data also points towards a role of DARC in transporting of 

chemokines as well as potentiation of promigratory activities juxtrapolated 

leukocytes (Pruenster et al., 2009). 

Chemokine (CC motif) receptorlike 1(CCRL1) 

Recent work by Comerford et al suggests that along with D6 and DARC, CCRL1 

(other names CCX-CKR and CCR11) also shows biochemical properties of a 

chemokine-sequestrating atypical chemokine receptor (Comerford et al., 2006). In 

contrast to previously described ‘atypical’ receptors, CCX-CKR binds homeostatic 

chemokines, namely CCL19, CCL21 and CCL25, and also exhibits weak 

interactions with human CXCL13 (Gosling et al., 2000). Similarly to DARC and 

D6, CCX-CKR does not couple with typical signalling pathways and displays 

alterations within DRYLAIVHA motif (Figure 1.16). CCX-CKR has been shown to 

internalize and degrade CCL19 in vitro with high efficiency and in a β-arrestin 

independent manner, but in contrast to most chemokine receptors, this process 

was abolished through caveolin-1 manipulations. 

1.13.10 Chemokine receptor expression 

As already stated in this thesis, T lymphocytes can be subdivided according to 

expression of glycoprotein CD4 or CD8 and cytokine profile. They can also be 

categorized based on expression of characteristic chemokine receptors. 

Characterisation of expression profiles of chemokine receptors has been 

instrumental in defining subsets of human memory T cells with distinct migratory 

capacity and effector functions. For example, CCR7 expression discriminates 

between lymph node-homing central memory T cells and tissue-homing effector 

memory T cells (Sallusto et al., 1999). Equally CXCR3, CXCR6 and CCR5 

(Figure 1.19) are preferentially expressed on Th1 cells (Qin et al., 1998) while 

CCR3, CCR4 and CCR8 (along with the PGD2 receptor CRTH2) are expressed 

on Th2 cells (Nagata et al., 1999; Sallusto et al., 1998). More recently, CCR2, 

CCR6 and CCR9 have been reported to be expressed on Th17 cells (Acosta-

Rodriguez et al., 2007; Nagata et al., 1999; Sato et al., 2007; Singh et al., 2008; 

Webb et al., 2008). 
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Naïve T cells express a limited number of chemokine receptors. CCR7 and 

CXCR4 are chemokine receptors mostly present on the surface of naïve T 

lymphocytes. These receptors are involved, for example in naïve T cell 

recirculation between lymph nodes and blood (Sallusto et al., 1999). The number 

of chemokine receptors increases upon T cell activation, allowing them to migrate 

towards a chemokine gradient. These upregulated receptors for example CXCR3, 

are mostly involved in inflammatory responses. 

Figure 1.19 Examples of chemokine receptors expressed on Th1 and Th2 
lymphocytes. 

1.14 Chemokines and chemokine receptors as a potential therapeutic 

targets 

GPCRs, the family of receptors which includes chemokine receptors, are the most 

attractive and tractable class of receptors for drug design, and are direct targets of 

~ 30% of clinically prescribed small-molecule medicines (Milligan and Smith, 

2007). Despite the fact that GPCRs are a popular drug targets, no antagonist 

targeting any chemokine receptor reached the market except for HIV entry 

inhibitors (Wijtmans et al., 2008; Este and Telenti, 2007). Potential small-molecule 

chemokine receptor antagonists have been tested on human chemokine 

receptors, with some promising candidate compounds discovered. However these 

are often of low affinity (Pease and Williams, 2006b). Applicability of such 

antagonists has been widely discussed because of the redundancy of chemokine 

systems (Wijtmans et al., 2008). The fact that most chemokines bind to several 

chemokine receptors and most chemokine receptors bind more than one 

chemokine, makes the prediction of therapeutic effect of chemokine receptor 
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antagonists very complicated. It is of prime importance to establish the specific 

roles of various chemokine receptors in disease models (Power, 2003). Examples 

of diseases in which chemokine receptors are involved are shown in Figure 1.20. 

The detailed role of chemokines and their receptors in a variety of pathologies has 

been discussed in many reviews (Medina-Tato et al., 2006; Proudfoot, 2002; 

Ruffini et al., 2007). In view of the character of the presented work, this overview 

will focus on CXCR3 receptor and its agonists. 

Figure 1.20 Role of chemokine receptors in human pathophysiology. Receptors 
classified as constitutive do not play a major role in inflammatory diseases. The exception 
is CCR8, which is constitutively present in thymus but can be upregulated on Th2 cells 
and is thought to be involved in asthma. CXCR4 is the only constituvely expressed 
chemokine receptor that has been described to be involved in disease to date. CXCR4 is 
one of the main HIV co-receptors and plays a role in cancer metastasis (Proudfoot, 2002). 
IBD, inflammatory bowel disease; MS, multiple sclerosis; RA, rheumatoid arthritis. 

CXCR3 and the chemokines it binds CXCL9, CXCL10 and CXCL11, based on 

their upregulated expression, have been implicated in many inflammatory 

diseases (summarized in Table 1.1) (Wijtmans et al., 2008). Various pre-clinical 

approaches (reviewed by Wijtmans et al., 2008), including CXCR3 knockout (KO) 
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mice, targeting CXCR3 and its agonists by antibodies and targeting of CXCR3 by 

protein-based or small molecules antagonists, have been applied to confirm its 

therapeutic potential (Wijtmans et al., 2008). The following are some examples of 

findings obtained using these approaches. 

Studies using CXCR3-KO (CXCR3-/-) have shown delayed acute or chronic 

rejection of cardiac or pancreatic allograft in murine models of transplant rejection. 

In some cases, especially in combination with immuno-suppressive therapy, 

CXCR3-/- mice were able to chronically maintained allograft. In similar models, 

treatment with an antibody directed against either CXCR3 or CXCL10 significantly 

prolonged allograft survival. In addition, anti-CXCL10 antibodies inhibited chronic 

experimental colitis, and a Phase II clinical trial has been launched to further study 

the effect of the one of these antibodies, MDX1100, in the treatment of ulcerative 

colitis. The same antibody will also be tested in a Phase II trial for rheumatoid 

arthritis. 

Disease References 
Multiple sclerosis (Sorensen et al., 1999) 
Rheumatoid arthritis (Qin et al., 1998) 
Atherosclerosis (Mach et al., 1999) 
Chronic obstructive pulmonary disease (Saetta et al., 2002) 
Inflammatory bowel disease (Yuan et al., 2001) 
Psoriasis (Rottman et al., 2001) 
Hepatitis C (Shields et al., 1999) 
Sarcoidosis (Agostini et al., 1998) 
SARS (Glass et al., 2004; Danesh et al., 

2008) 
Transplant rejection (Hancock et al., 2000; Hancock et al., 

2001; Inston et al., 2007) 
Metastasis of melanoma and colon 
cancer cells to the lymph nodes 

(Kawada et al., 2004; Kawada et al., 
2007) 

Metastasis of breast cancer cells to the 
lungs 

(Walser et al., 2006) 

HIV (Hatse et al., 2007) 

Table 1.1 Involvement of CXCR3 receptor in human disease. (Reviewed by Wijtmans 
et al., 2008). 
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The use of protein-based CXCR3 antagonists also confirmed that blocking of this 

receptor helped reduce skin inflammation (Proudfoot and Kosco-Vilbois, 2003) and 

neuroinflammation in mouse model (Vergote et al., 2006). 

Small molecule CXCR3 antagonists 

A lot of potential small-molecule CXCR3 antagonists have been published and 

patented over recent years (Johnson et al., 2007; Medina et al., 2005). T487 

compound (AMG487), developed by companies Chemocentryx and Tularik (later 

acquired by Amgen) (Schall et al., 2001; Medina et al., 2002) is the most studied 

member of its class (Wijtmans et al., 2008). The T487 and its more active 

analogue NBI74330 (Medina et al., 2002) have been extensively studied in order 

to characterise their preclinical properties. Both T487 (Verzijl et al., 2008) and NBI-

74330 (Heise et al., 2005; Jopling et al., 2007; Verzijl et al., 2008) exhibit 

noncompetitive antagonism. T487 inhibited CXCR3 mediated chemotaxis 

(IC50=15 nM, CXCL11) and Ca2+ mobilisation (IC50=5 nM, CXCL11) (Johnson et 

al., 2007). The more potent derivative, NBI-74330, blocked CXCL11 mediated 

responses in a [35S]-GTPγ-S binding assay (IC50=10.8 nM), chemotaxis (IC50 = 3.9 

nM) and Ca2+ mobilisation (IC50=7 nM) (Heise et al., 2005). Figure 1.21 presents 

chemical structures of T487, NBI-74330 and its generated in vivo N-oxide 

metabolite, which efficiently binds CXCR3 (Johnson, 2006) and has also been 

patented (Collins et al., 2004). 

Figure 1.21 Chemical structures of CXCR3 antagonists.T487 belongs to the 
azaquinazolinone class of compounds. NBI-74330 is its more active 4-F, 3-CF3 analogue. 
Both ligands represent the best-characterised members of CXCR3 antagonists derived 
from the azaquinazolinone class. Metabolism of NBI-74330 in vivo leads to formation of N-
oxide metabolite. 

Studies on T487 and NBI-74330 using animal models have shown their great 

potential in terms of CXCR3 antagonism in many diseases (Wijtmans et al., 2008). 

The studies of T487 led to clinical studies in two inflammatory disorders: psoriasis 
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and rheumatoid arthritis. Unfortunately, this compound showed a lack of clinical 

efficacy in psoriasis and the Phase I trial was attenuated. The current status of the 

trials on patients with RA which was initiated in Phase II in 2004 is unknown. 

Work on further modifications of T487 antagonist towards increased efficacy has 

continued (Wijtmans et al., 2008). 

The pool of different classes of existing CXCR3 ligands exhibits high variability. 

Described here are examples of the most notable CXCR3 antagonists, which are 

also used as a research tool within the presented work. Despite the positive 

preclinical results which increased expectations for CXCR3 antagonism 

therapeutic targeting of CXCR3 in humans still remains an elusive goal. 

1.15 Chemokine receptor internalization and intracellular trafficking 

The expression of chemokine receptor on the cell surface is a balance between 

the rate of internalization and the rate of replacement (recycling or synthesis of 

new protein) (Mueller et al., 2002). Chemokine receptors undergo a basal level of 

internalization and degradation or recycling in the absence of agonist. Agonist 

binding can enhance the internalization and trafficking of these receptors, and can 

increase the rate of receptor sensitization versus desensitization, and recycling 

versus degradation (Neel et al., 2005). There are two major routes of receptor 

trafficking: clathrin mediated endocytosis and lipid raft/caveolae dependent 

internalization. Some receptors can internalise via both pathways while others may 

utilise one preferred pathway. The decision on which route (or routes) will be 

chosen by a particular receptor partially depends on the cell type and may be due 

to the different expression of specific adaptor proteins, membrane lipid 

composition in the proximity of the receptor, or other unknown factors (Neel et al., 

2005). 

1.15.1 Pathways for Internalization of Chemokine Receptors 

The internalization of receptor and its ligand by clathrin-coated pits is the best 

characterised endocytic process (Mukherjee et al., 1997). Binding of chemokine 

ligand to the receptor causes a phosphorylation of Ser and Thr residues in the 

intracellular loops and C-terminus of the receptor due to action of GRKs (G 

protein-coupled receptor kinases, which are activated by the kinase activity of 

second messengers such as PKC), leading to the uncoupling of the G protein from 
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the receptor and, in some cases, receptor desensitisation. Receptor 

phosphorylation and/or presence of a di-leucine motif in the C-terminus of 

chemokine receptor is crucial for the binding of adaptor proteins that link the 

receptor to a lattice of clathrin that facilitates receptor internalization (Neel et al., 

2005). Adaptin-1 and β-arrestin have been found to play an important role in 

chemokine receptor internalization. β-arrestin binding to receptor occurs through 

phosphorylated residues in the C-terminus but can also occur through the 

intracellular loops. It has been reported that β-arrestin binds to both carboxyl-

terminus and the third intracellular loop of CXCR4 (Cheng et al., 2000). AP-2 binds 

to some chemokine receptors, including CXCR2 and CXCR4, via highly conserved 

Leu-Leu, Ile-Leu and Leu-Ile motifs within the C-terminus (Heilker et al., 1996; Fan 

et al., 2001). Association of the adaptor proteins is required for the recruitment of 

clathrin, and through the action of dynamin, formation of clathrin-coated vesicles 

(Mousavi et al., 2004). Following receptor internalization, clathrin-coated vesicles 

are uncoated and receptor-ligand complexes are directed to the early endosomal 

compartment. The chemokine receptor can then be directed to the perinuclear 

recycling compartment and be recycled back to the plasma membrane, or can 

enter the late endosomal compartment and be directed to the lysosomal 

compartment for degradation. Schematic illustration of endocytic pathways is 

shown in Figure 1.22. 
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Figure 1.22 Schematic of endocytosis. Two pathways of endocytosis, namely clathrin-
dependent and caveola-dependent pathway are shown. 

An alternative pathway for internalization of chemokine receptor may occur via 

lipid rafts or through cholesterol-enriched structures called caveolae (Parton and 

Simons, 2007; Palade, 1953), Figure 1.22. Caveolae are stabilised by caveolin-1 

(CAV-1) and CAV-2 cholesterol binding proteins and form a characteristic flask-

shaped structure with no obvious coat (Stan, 2005). Once internalized, some 

receptors can enter the compartment known as caveosome and fuse with early 

endosomes also used in clathrin-dependent pathways (Sharma et al., 2003). 

Despite some reports that chemokine receptors, like CCR5 and CXCR4 (Manes et 

al., 1999; Manes et al., 2000; Nguyen and Taub, 2002) have been found to some 

degree in lipid rafts, coveolae/lipid raft dependent internalization does not appear 

to be a common feature of the chemokine receptors. 
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1.15.2 Regulation of chemokine receptor trafficking by Rab GTPases 

Rabs are small GTPases that are involved in regulation of variety of cellular 

trafficking events. The exchange of GDP for GTP, GTP hydrolysis, and GDP 

displacement are regulated by guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs) and GDP dissociation inhibitors (GDIs), 

respectively. 

Rab5 mediates early endocytic responses and is required for the fusion of early 

endosomes (Rybin et al., 1996). Rab5 interacts with class I PI3K and induces 

production of phosphatidylinositol 3-phosphate. Rab5 and PIP3 recruit EEA-1 

(early endosomal antigen) and other proteins involved in fusion with early 

endosomes. Internalization of CXCR2, CXCR4 and CCR5 requires activity of 

Rab5 and is significantly blocked by expression of Rab5 dominant negative mutant 

(Fan et al., 2003; Venkatesan et al., 2003). There are two types of endocytic 

recycling- rapid and slow pathway to which Rab4 and Rab11a contribute, 

respectively (Ullrich et al., 1996; Sheff et al., 1999; Sonnichsen et al., 2000). The 

slow recycling pathway, which involves the perinuclear compartment-localised 

protein Rab11a, seems to be important in intracellular trafficking of chemokine 

receptors. This was proven for CXCR2, which upon agonist induced internalization 

localizes to the Rab11a-containing compartment (Fan et al., 2003). Rapid 

recycling pathway through Rab4 positive endosomes by-passes the perinuclear 

endosomes and occurs in PI3K-dependent manner (Hunyady et al., 2002). It is not 

known what mechanisms regulate these different recycling pathways. 

Rab7 is involved in directing late endosomes to the lysosomal compartment. 

Prolonged exposure of chemokine receptors to ligand may result in their 

degradation in lysosomes, and Rab7 is thought to be important in the process of 

lysosomal sorting. Involvement of Rab7 was shown for CXCR2 receptor, where 

blocking of Rab7 activity resulted in decreased localisation of this receptor to the 

lysosomal compartment and its accumulation in early and recycling endosomes 

(Fan et al., 2003). 

1.15.3 Regulation and functional consequences of internalization 

Receptor internalization following ligand binding is the most likely reason for 

downregulation of most chemokine receptors. The rate of this process can be 
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dependent on multiple factors that involve the C-terminus of receptor, the type of 

ligand, cell type or phosphorylation status. 

Phosphorylation of Ser and Thr residues and the presence of a di-leucine motif in 

the carboxyl-terminus were shown to be required for internalization of some 

chemokine receptors. This has been exemplified in the CXCR4 receptor. In 

contrast, internalization of CXCR3 by any of its ligands is not affected by the 

mutation in the LLLRL motif located in the C-terminus. However mutational change 

of C-terminal Ser and Thr residues inhibited CXCL9 and CXCL10–induced 

internalization with no effect on CXCL11, the action of which was dependent on 

the third intracellular loop of CXCR3 in 300-19 cells (Colvin et al., 2004). The rate 

of internalization also depends on the type of ligand. As previously noted, most 

chemokine receptors bind with high affinity to more than one chemokine, and 

these chemokines may differentially induce internalization of the receptor. This 

situation was observed for CXCR2 which binds two ligands, CXCL6 and CXCL8, 

with high affinity. CXCL8 is, however, more efficacious in inducing internalization 

of CXCR2 (Feniger-Barish et al., 2000). Similar findings were reported for the 

CXCR3 receptor, which became internalized in response to CXCL9, CXCL10 and 

CXCL11, with CXCL11 being the principal chemokine responsible for CXCR3 

internalization (Sauty et al., 2001). Cell context may also affect the rate of 

internalization and the pathway through which a receptor becomes internalized. 

This may be due to the availability of different endocytic compartments like 

caveolae and the expression of various proteins such as β-arrestin and other 

adaptor proteins (reviewed by Neel et al., 2005). To illustrate, CXCL11 reduced 

the surface expression of endogenous CXCR3 in T cells to 20%, while in 

transfected L1.2 cells only 50% reduction of basal expression of surface CXCR3 

was detected. Internalization of some receptors like CCR5 have been reported to 

occur via both clathrin and caveolae-dependent pathways. In some cell types 

such as Chinese Hamster Ovary (CHO), CCR5 internalises mainly by clathrin-

dependent endocytosis (Signoret et al., 2005), while in other cell types, namely 

Human Embryonic Kidney cells (HEK293), the dominant pathway for CCR5 

internalization is via caveolae (Venkatesan et al., 2003). 
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Little is known regarding the factors which mediate the fate of internalized 

receptor. These factors possibly include duration and concentration of ligand 

stimulation and different sorting motifs present within intracellular domains of the 

receptor (reviewed by Neel et al., 2005). As is the case for CCR5 receptor, short 

stimulation with the ligand leads it in the direction of the recycling endosomes, 

while longer stimulation causes its localization to the late endosomal compartment 

(Signoret et al., 2000). Similarly, CXCR2 at the early time of enters recycling 

endosomes at early times during stimulation with CXCL8, while the extended 

stimulation time leads to its direction to the lysosomes (Fan et al., 2003). 

Intracellular trafficking is an important aspect of chemokine receptor function and 

has been studied for multiple receptors. Some findings have suggested a role for 

internalization of chemokine receptors in transendothelial migration (Sauty et al., 

2001). Whether internalization is required in chemotaxis and signalling remain 

controversial and these issues still need to be addressed. 

1.16 Signalling via chemokine receptors 

Binding of agonist to its serpentine receptor results in cellular responses such as 

integrin activation, actin reorganization and directional migration. In T 

lymphocytes, stimulation of CXCR3 by its agonists leads to elevation of 

intracellular calcium (Rabin et al., 1999), and activation of phosphoinositol-3-

kinase (PI3K) and Akt-dependent signalling, as well as the p42/44 mitogen-

activated protein kinase (MAPK) pathways (Smit et al., 2003). CXCR3 activation 

has also been shown to induce rapid tyrosine phosphorylation of several proteins 

including Zeta-associated protein of 70 000 MW (ZAP-70), linker for the activation 

of T cells (LAT) and phospholipase-C-γ1 (PLCγ1) (Dar and Knechtle, 2007). 

Illustrated below are some of the crucial signalling pathways triggered by 

chemokine receptors. 
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Figure 1.23 Schematic illustration of some signalling events triggered by activation 
of chemokine receptors. 

1.16.1 Phospholipase C/protein kinase C pathway 

The Phospholipase C/Protein Kinase C (PLC/PKC) signalling cascade has been 

demonstrated to be activated downstream of chemokine receptors and TCRs 

(Figure 1.23 and 1.24). PLC function involves the modulation of phosphoinositides 

at the plasma membrane. The PLC family comprises of six isoforms, namely β, γ, 

δ and recently identified ε, ζ and η (Harden and Sondek, 2006; Katan, 1998). 

Activation of chemokine receptor by ligand binding leads via activation of several 

protein kinases to the activation of PLCβ. The resulting hydrolysis of PtdIns(3,4)P2 

into two second messengers; Diacyloglycerol (DAG) and inositol triphosphate 

(IP3), leads to binding of IP3 to the IP3 receptor (IP3 R), which is itself a calcium-

permeable ion channel, and the release of Ca2+ from intracellular endoplasmic 

reticulum (ER) Ca2+ stores (Feske, 2007). Ca2+ released from the cellular stores 

causes only a moderate and transient increase in intracellular Ca2+ levels due to 

the small size of the ER in lymphocytes. The reduction of the Ca2+ concentration in 

the ER induces activation of a SOCE (store-operated Ca2+ entry) pathway, 

resulting in the opening of store-operated Ca2+ channels in the plasma membrane 

(Feske, 2007). In lymphocytes, SOCE through calcium-release-activated calcium 
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(CRAC) channels is the main mechanism to increase intracellular Ca2+ 

concentration, and is crucial for the activation of transcription and cytokine gene 

expression (Lewis, 2001; Parekh and Putney, 2005; Prakriya and Lewis, 2003). 

Two molecules are reported to be involved in this process; stromal interaction 

molecule 1 (STIM1), located within the ER calcium sensor and the ORAI1 (also 

known as CRACM1 or TMEM142A), a functional component of the CRAC channel 

(Feske et al., 2006; Prakriya et al., 2006; Luik et al., 2006). The Ca2+ binding EF 

hand motif of STIM1 is localized within the ER, facing the lumen, and therefore it is 

postulated that STIM1 proteins act as sensors of Ca2+ concentration in the ER. 

Depletion of Ca2+ from intracellular stores triggers redistribution of STIM1 from 

diffuse into discrete ‘puncta’ in close proximity to the plasma membrane, leading to 

the interaction with CRAC channels and refilling of the intracellular stores (Zhang 

et al., 2005; Liou et al., 2005). DAG is highly hydrophilic therefore remains 

associated within the membrane recruiting cytoplasmic PKC and activating both 

conventional PKC (cPKC) and novel PKC (nPKC). 

PLCβ, the most abundantly expressed within the immune system has been 

implicated in a variety of cellular functions in neutrophils (Rhee and Bae, 1997). 

However no role in chemotaxis was demonstrated. In contrast PLC has been 

found to be involved in migration of T cells (Li et al., 2000; Cronshaw et al., 2006). 

The prominent role of PLCβ was demonstrated to be specifically dependent on the 

production of IP3 and the subsequent increase in intracellular calcium, and not the 

activation of PKC (Bach et al., 2007). 

The family of PKC serine/threonine kinases is composed of 9 members 

categorized according to their structure and function. Members of the conventional 

PKC family α, β and γ, exhibit DAG sensitive calcium responsiveness. Novel PKC 

isoforms δ, ε, η and θ, are DAG sensitive and calcium insensitive. Atypical PKCs ζ 

and λ contain altered C1 domains and are both DAG and calcium insensitive. In 

vitro PKC can be activated independently of plasma membrane receptors with the 

use of phorbol esters such as PMA, which does not distinguish between isoforms 

and results in a strong, robust activation of the signalling cascade (Kazanietz et 

al., 2000). 
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Figure 1.24 PLC/PKC pathway. Following T cell receptor (TCR) stimulation, a member of 
the Src family of protein tyrosine kinases, Lck phosphorylates immunoreceptor tyrosine-
based activation motifs (ITAMs) located within the cytoplasmic domains of the CD3 
complex. Subsequently, ZAP-70 (a member of the Syk family kinases) is recruited by its 
Src homology-2 (SH2) domains binding to the phosphorylated ITAMs sites. Activated 
ZAP-70 transduce signal through the phosphorylation of downstream effectors such as 
adaptors LAT and SLP-76, which in turn leads to the activation of PLCγ1. Following 
chemokine receptor stimulation, dissociated Gβγ subunits also stimulate PLCγ1. Activation 
of PLC results in cleavage of phosphatidylinositol 4,5-biphosphate [PI(4,5)P2] to inositol 
1,4,5-triphosphate (IP3) diacylglycerol (DAG). IP3 induces calcium mobilization, which 
activates NF-AT (nuclear factors of activated T cells). DAG leads to activation of RasGRP 
and PKCθ, which in turn stimulate the Ras-MAPK (Ras-mitogen-activated protein kinase) 
and NF-κB (nuclear factor of kappa-B) pathways, respectively. 

PKCδ has been implicated in cell motility and migratory responses of many non-

immune cells (Iwabu et al., 2004). Pharmacological interventions revealed the role 

of DAG-dependent PKC isoforms, in particular PKC δ, in the CCL4 migratory 

response. It is not well understood how PKC isoforms regulate cell 

motility/migration, although it is thought that PKC isoforms can have an effect on 

actin reorganization/polymerization (Hartwig et al., 1992; Sasahara et al., 2002). 

1.16.2 Phosphoinositide 3kinase 

Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes that catalyse the 

phosphorylation of the 3-OH position of inositol ring groups of phophoinositide (PI) 
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lipids, namely phosphatidylinositol (PtdIns), phosphatidylinositol(4)phosphate 

[PtdIns(4)P], and phosphatidylinositol(4,5)phosphate [PtdIns(4,5)P2]. This results 

in the formation of 3’-phosphoinositide lipids: PtdIns(3)P, PtdIns(3,4)P2 and 

PtdIns(3,4,5)P3, respectively (Figure 1.25) (Curnock et al., 2002; Vanhaesebroeck 

et al., 2001). PtdIns(3)P is the precursor to all phophoinositides and is 

constitutively present in cells. Its level remains unaltered upon cell stimulation and 

it is thought to be involved in the regulation of membrane trafficking 

(Vanhaesebroeck et al., 2001). PtdIns(3,4)P2 and PtdIns(3,4,5)P3 are not present 

in resting cells but their intracellular concentration increases rapidly upon cell 

stimulation via a variety of receptors, suggesting a likely function as second 

messengers (Sotsios and Ward, 2000). 

Figure 1.25 Generation of PtdIns(3,4,5)P3 by catalytic action of Phosphoinositide 3
kinase. PI3K phosphorylates the inositol ring of its substrate PtdIns(4,5)P2 converting it to 
PtdIns(3,4,5)P3. Action of PI3K is regulated by two phosphatases, namely PTEN and SHIP 
which convert PtdIns(3,4,5)P3 to PtdIns(4,5)P2 and PtdIns(3,4)P2, respectively. 

PI3Ks can be subdivided into three main classes according to their in vitro lipid 

substrate specificity, structure and regulation (Figure 1.26). It was shown that in 

vitro class I PI3Ks can phosphorylate PtdIns, PtdIns(4)P and PtdIns(4,5)P2, 

however in vivo, PtdIns(4,5)P2 is thought to be their preferred substrate 

(Vanhaesebroeck and Waterfield, 1999). The members of this class interact with 

Ras and form heterodimeric complexes with adaptor proteins which link them to a 

variety of upstream signals. This class is further subdivided into two subfamilies, 

class IA and IB. The class IA PI3Ks are activated by Tyr kinases heterodimers, 

consisting of; p85 (85 kDa molecular weight); a regulatory/adaptor protein (p85α/β, 
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p55α/γ or p50α), responsible for protein-protein interactions via SH2 (Src 

homology) domain with phosphotyrosine residues of other proteins; and catalytic 

subunit p110 (110 kDa), which is encoded by 3 genes p110α, p110β and p110δ. 

The single member of class IB PI3K, PI3Kγ, associates with a unique adaptor 

protein, namely p101 and it is activated by GPCRs. In contrast to class IA PI3Ks, 

class IB do not interact with the SH2-containing adaptors. (Stephens et al., 1994; 

Stephens et al., 1997; Sotsios and Ward, 2000). 

The class II PI3Ks (e.g. PI3K-C2α) contain a characteristic C2 domain on their 

carboxy terminus (Figure 1.22), and their preferential substrates in vitro are PtdIns 

and PtdIns(4)P. They can also utilize PtdIns(4,5)P2, when presented with 

phosphatidylserine. In contrast to members of other classes of PI3K, PI3K-C2α is 

resistant to treatment from PI3K inhibitors, Wortmannin and LY294002 (Domin et 

al., 1997). 

The class III PI3Ks consists of only one member, the human homologue of the 

yeast vesicular sorting protein, Vps34 (vacuolar protein sorting 34). This enzyme 

catalyzes only one substrate, PtdIns, both in vitro and in vivo, and it has been 

suggested to have a role in intracellular trafficking (Yan and Backer, 2007). 
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Figure 1.26 Classification of phosphoinositide 3kinase family members. PI3Ks have 
been subdivided into three classes based on substrate specificity, structure and regulatory 
mechanisms. Class I is further subdivided into class I A and class I B according to 
association with specific regulatory/adapter subunit. The class IA and IB catalytic subunits 
consist of a Ras binding domain (Ras-BD) that mediates activation by the small GTPase 
Ras, and a Phosphatidylinositol kinase homology domain (PIK). Class II is similar to class 
Ie but its members lack Ras-BD and contain C2 domain at their C-termini. The catalytic 
subunit of the single member of class III Vps34 also lacks Ras-BD. The protein domains 
within adapter subunits are as follows, BCR, breakpoint-cluster region; P, proline-rich 
motif; SH2, src-homology domain 2; SH3, src-homology domain 3 (Adapted from Curnock 
et. al 2002). 

Regulation of PI3K by SHIP and PTEN 

Catalytic activity of PI3K is tightly regulated by the lipid phosphatases SHIP (SH2-

containing inositol phosphates) and tumour suppressor PTEN (phosphatase and 

tensin homologue deleted from chromosome 10) (Rohrschneider et al., 2000; 

Astoul et al., 2001; Cantley and Neel, 1999). Both enzymes act on PI3K activity by 

modulating its products via dephosphorylation. SHIP is a 5-phophoinositide 

phosphatase converting PtdIns(3,4,5)P3 to PtdIns(3,4)P2, while PTEN is a 3-

phophoinositide phosphatase and catalyse dephosphorylation of PtdIns(3,4,5)P3 

to PtdIns(4,5)P2. These regulatory components are crucial as their loss causes 

dysregulation of phosphoinositide 3-kinase-dependent signaling and function in 
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leukocytes, and has been implicated in many inflammatory and autoimmune 

diseases (Harris et al., 2008). The importance of SHIP and PTEN phosphatases is 

also supported by the fact that their function is commonly lost in many leukemias 

and leukemic cell lines (Cully et al., 2006). As will be discussed in more details 

below, PI3K has been involved in migratory responses of certain cell types. Its 

localization in resting cells is mainly cytoplasmic with minimal catalytic activity, 

while PTEN is located at the plasma membrane. Following chemokine stimulation, 

the cell became polarized and PI3K is translocated to the leading edge while 

PTEN is moved from this area to the sides and rear of the cell. This promotes 

generation and maintenance of lipid products on the front, dephosphorylation of 

PI3K products trailing edge, and further maintaining of polarized shape of the 

migrating cell (Figure 1.12). 

Figure 1.27 Signalling events following formation of phosphoinositide lipids by 
PI3K. Agonist stimulation of chemokine receptor activated class IB PI3K via action of Gβγ 
subunits and the Ras. This leads to accumulation of PI3K products PtdIns(3,4,5)P3, and 
indirectly PtdIns(3,4)P2, in the membrane and interaction with variety of effector proteins 
by binding to the PH domain. 
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PI3K in cell polarisation and migration 

Chemokines have been shown to stimulate accumulation of PtdIns(3,4,5)P3. PI3Kγ 

is a key isoform activated downstream of chemokine receptors. Several 

chemokine receptors however can activate other PI3K isoforms (Sotsios and 

Ward, 2000; Ward, 2004). 

The role of PI3K in chemotactic response has been established primarily in 

neutrophils (Fergus et al., 2007; Hannigan et al., 2002; Hirsch et al., 2000; Ridley 

et al., 2003; Wang et al., 2002). Contribution of PI3Kγ in directional migration has 

been also shown in murine T cells, (Nombela-Arrieta et al., 2004; Reif et al., 2004; 

Webb et al., 2005), although its role in primary human T lymphocytes has been 

harder to verify. 

For many years it was thought that PI3K was important for the directional 

migration of immune cells including T lymphocytes. Evidence from different groups 

have demonstrated PI3K-dependent CCL20, CCL2, CXCL8 and CXCL12-induced 

chemotaxis of eosinophils, THP-1 monocytic cell line, neutrophils and T 

lymphocytes, respectively (Knall et al., 1997; Sotsios et al., 1999; Sullivan et al., 

1999; Turner et al., 1998). The involvement of PI3K in directional migration 

towards chemokine gradient was also demonstrated for CCL5/RANTES 

(Regulated on Activation, Normal T cell Expressed and Secreted)-induced 

polarisation and chemotaxis of T lymphocytes using inhibitors such as LY294002 

and Wortmanin (Turner et al., 1995). 

In contrast, in experiments that more closely mimic the physiological conditions 

encountered by lymphocytes undergoing transendothelial migration, there is now a 

growing body of evidence suggesting that PI3K activation is a dispensable signal 

and is not crucial for chemokine-stimulated T cell chemotaxis. PI3K inhibition have 

minimal effect on in vivo T lymphocyte arrest, on adhesion to high endothelial 

venules in exteriorised Peyer’s patches (Sotsios et al., 1999), and on 

transendothelial migration in laminar flow chambers (Cinamon et al., 2001), in 

response to either CXCR4 and/or CCR7 ligation. In addition CCR4-agonist-

stimulated migration of human Th2 differentiated cells (Cronshaw et al., 2004), 
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and CXCR3 ligand-stimulated migration of PBLs (Smit et al., 2003) in transwell 

assays is also insensitive to PI3K inhibitors. 

Furthermore, several recent studies examining the effects of either the genetic 

loss of PI3Ks, or of selective PI3K inhibitors on the chemotactic efficiency of both 

neutrophils and Dictyostelium amoebae revealed no specific deficiencies (Andrew 

and Insall, 2007; Hoeller and Kay, 2007; Weiner et al., 2002). The genetic loss of 

PI3Kγ or selective PI3K inhibitors led to the reductions in the chemokinetic 

responses which could explain some of the apparent reductions in chemotactic 

migration reported previously (Fergus et al., 2007). . 

1.16.3 Downstream effectors of PI3K 

As already established, the stimulation of a chemokine receptor by ligand leads to 

the activation of PI3K. This activation triggers a range of T lymphocyte functions 

including growth, proliferation, cytokine secretion and survival (summarized in 

Figure 1.27). Multiple cellular proteins have been identified as downstream 

effectors of PI3K and some of them will be discussed below. Monitoring the 

phosphorylation of the downstream effectors such as Akt/PKB, Erk 1/2 MAPK or 

S6 can be an indirect readout of PI3K activity. 

Protein kinase B PKB/Akt 

Protein kinase B (PKB), also termed Akt, is a serine/threonine kinase that is the 

best characterised downstream effector of PI3Kγ and p85/p110. PKB is a key 

mediator in many cellular processes (summarized in Figure 1.28), including growth 

factor-induced cell survival and protection against c-myc induced cell death 

(Dudek et al., 1997; KauffmanZeh et al., 1997; Kulik et al., 1997). Modulation of 

PKB is dependent on recruitment to the plasma membrane via its PH domain by 

PtdIns(3,4,5)P3. Membrane bound PKB is then thought to be phophorylated in 

phosphoinositide-dependent kinase-1 (PDK-1)-mediated manner at Thr308, while 

the rictor-mTOR complex directly phosphorylates Ser473 in the hydrophobic 

region of PKB. PKB requires the phosphorylation of both of these residues to 

become fully activated. Upon activation PKB localises to the site of action within 

the cytoplasm and its activity is controlled by the dephosphorylation of 
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PtdIns(3,4,5)P3 by SHIP. A decrease in PtdIns(3,4,5)P3 levels at the membrane 

leads to the localisation of PKB in cytosol in an inactive state. 

Several chemokine receptors have been shown to activate PKB in a PI3K-

dependent manner. IL-8 is not able to activate PKB in PI3Kγ-deficient neutrophils. 

However in mammalian cells several cellular events such as cytoskeletal 

reorganization and lamellipodium formation have been demonstrated to be PI3K-

but not PKB-dependent. Furthermore, CXCR3-induced chemotaxis of T 

lymphocytes has been shown to occur in PKB independent manner (Smit et al., 

2003). A number of phosphorylation targets for PKB have been described (Figure 

1.28). These include proteins involved in the regulation of glucose metabolism and 

cell survival such as GSK-3 and several transcription factors. It has become 

apparent that PKB may be able to regulate activation of NF-κB but the exact 

mechanism remains controversial 

Figure 1.28 The role of PKB/Akt and proposed mechanism of activation of its 
downstream effectors. 
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S6 Ribosomal protein 

PI3K has been found to mediate activation of S6 kinase, which is a component of 

the PI3K/mTOR pathway (Martin et al., 2001). S6 kinase in turn induces the 

phosphorylation of the ribosomal protein. S6 kinases are tightly controlled by the 

mTOR (mammalian target of Rapamycin). There are several lines of evidence 

supporting the fact that S6 plays the a role in chemotaxis (Richardson et al., 

2004). Notably GM-CSF (granulocyte-macrophage colony-stimulating factor)– 

induced chemotaxis and chemokinesis of neutrophils is attenuated after pre-

treatment with immunosuppressant rapamycin, which blocks mTOR (Gomez-

Cambronero, 2003). Despite the clear role mTOR plays in neutrophil migration and 

chemokinesis, its role in T cells is still to be elucidated. 

1.16.4 Tyrosine kinases 

JAK/STAT pathway 

It has been demostrated that in addition to activating G-protein coupled signalling 

pathway, chemokines can also activate the Jak/STAT pathway (Janus kinase / 

signalling transducer and activator of transcription) (Mueller and Strange, 2004). 

The JAK family of non-receptor tyrosine kinases is comprised of four members, 

JAK1, JAK2, JAK3 and Tyk2 (Tyrosine kinase 2) (Schindler, 1999). These kinases 

together with STAT proteins form the so called JAK/STAT pathway. STAT 

monomeric proteins are present in the cytosol and become recruited to the plasma 

membrane. There they become activated and act as a substrates for JAK family 

members. Binding of the chemokine to its receptor promotes binding of specific 

Jak members which become rapidly activated and promote tyrosine 

phosphorylation of the receptor (Schindler, 1999). SH2-domain (Src homology 

domain)-containing STAT proteins are then recruited to the plasma membrane, 

where they are activated then released, homodimerized, and translocated to the 

nucleus where they can regulate gene expression. 

Several chemokines have been reported to signal via the Jak/STAT pathway, 

including CCL2, CCL5, CCL3 and CXCL12, (Wong et al., 2001; Zhang et al., 

2001; Mueller and Strange, 2004; Vila-Coro et al., 1999). Contrasting data 

suggests that CXCL12 signalling via CXCR4 is Jak independent (Muehlinghaus et 
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al., 2005). This, in turn, implies that the role of the Jak family members is still not 

as well established as previously thought. 

Tec Kinases 

TCR stimulation leads to the activation of a series of biochemical events resulting 

in the induction of gene expression in the activated cell. The initiating signals 

involve protein tyrosine kinases, such as members of the Src family, Syk/Zap-70 

family, and Tec family. The Tec kinase family are non-receptor tyrosine kinases 

widely expressed in T cells and essential in T cell signalling. Five members have 

been described within the Tec family; Tec, Btk, Itk, Rlk and Bmx, of which only 

Tec, Itk and Rlk are expressed in T cells (Mano et al., 1993; Miyazato et al., 1996; 

Yang et al., 1999). 

Over the last few years interest in Tec kinases has risen due to their role in T cell 

development, effector function and other processes such as regulation of actin 

adhesion (Berg et al., 2005). Tec kinases have also been observed to be activated 

downstream of chemokine receptors. Recruitment of Itk to the plasma membrane 

was demonstrated upon stimulation with CXCL12 (Fischer et al., 2004). These 

authors also showed impaired chemotaxis towards CXCL12 in Ikt deficient T cells. 

1.16.5 Ras superfamily of small GTPases 

Guanosine triphosphatases belong to the Ras superfamily of small GTPases and 

are downstream effectors of PI3K. Upon activation by a variety of extra-cellular 

stimuli, the members of this superfamily engage a wide range of multiple 

downstream effectors which control cellular processes such as re-arrangements of 

cytoskeleton and membrane involved in cell migration (Hawkins et al., 2006; Suire 

et al., 2006). The Ras superfamily is divided into 5 smaller families based on their 

sequence, similarity and functionality: namely Ras, Rho, Rab, Ran and Arf. These 

molecules are present in many signalling cascades within the cell and are known 

as cell switches. 

1.16.6 Ras family and mitogenactivated protein kinases 

The Ras Sarcoma oncoprotein family consists of four members; Rap, Ras, Ral 

and Rheb. They can be activated by GEFs (guanine-nucleotide-exchange factors), 
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which are divided into 3 main classes, namely SOS (Son of Sevenless), Ras-GRF 

(Ras guanyl releasing factor) and Ras-GRP (Ras guanyl releasing protein). The 

most studied and the best charcterised pathway within this family is the Ras 

GTPase pathway. Activation of this pathway leads to the subsequent activation of 

the MAPK signalling cascade. 

The Mitogen-activated protein kinase (MAP kinase) family of serine/threonine 

kinases comprises of multiple members among which the best characterised are 

ERK (extracellular signal-regulated kinase), JNK (c-jun-NH3-terminal kinase) and 

p38 MAPK. The activation of MAPK occurs via subsequent phosphorylation of the 

upstream kinases MAPK kinase kinase and MAPK kinase (Figure 1.29). There is a 

wide range of protein kinases involved in each step of this activation and each of 

them is differentially regulated by G-proteins, scaffold, adaptor, substrates and 

regulatory proteins. In resting cells MAPKs are localized in the cytoplasm and 

following activation they trigger phosphorylation of nuclear substrates including 

other protein kinases, regulators of cell cycle and transcription factors. Not 

surprisingly, MAP kinases are involved in multiple cellular processes such as 

proliferation and differentiation, development, inflammatory response and 

apoptosis (Weston and Davis, 2007). 

ERK 

Erk is the best characterised member of the MAPK family, activated downstream 

of receptor tyrosine kinases, GPCR, cytokine receptor and integrins. This signal 

initiates recruitment of the small GTPase Ras which, in turn, activates the 

serine/threonine kinase Raf (MAPKKK), followed by the phosphorylation of Erk1/2 

by its MAPKK, MEK1 or MEK2. Phosphorylation of Erk triggers its 

homodimerization and translocation to the nucleus where further activation of Erk 

downstream effectors occur. 

Various CC and CXC chemokines have been demonstrated to activate the Erk1/2 

pathway (Boehme et al., 1999; Knall et al., 1997; Lopez-Ilasaca et al., 1998; 

Sotsios et al., 1999; Turner et al., 1998). Inhibition of Erk activation by blocking 

MEK activity abrogated CXCL12, CCL20 and eotaxin – induced actin 

polymerization and/or cell migration of T lymphocytes and eosinophils, 

respectively (Boehme et al., 1999; Sotsios et al., 1999; Turner et al., 1998). In 

64 



A Korniejewska, 2009 Chapter One Introduction 

contrast, Erk1/2 activation appears not to be crucial for chemotaxis induced via all 

chemokine receptors, as it has been reported that CXCR3-mediated directional 

migration of T cells is insensitive to inhibition of MAPK pathway (Smit et al., 2003). 

Figure 1.29 Activation of MAPK members by their upstream kinases. 

1.17 Protein arginine methylation: a potential modification of signalling 

molecules 

The main transmethylation pathway involves methyltransferase-induced donation 

of methyl a group by S-adenosylmethionine and its conversion to S-adenosyl-L-

homocysteine (SAH), a potent feed-back inhibitor of methyltransferases (Yuan et 

al., 1999). This reaction is regulated by S-adenosyl-L-homocysteine hydrolase 

(SAHase), an enzyme that catalyzes the hydrolysis of SAH into adenosine and 

homocysteine. 

Protein arginine methylation is a post-translational modification resulting in the 

transfer of a methyl group from S-adenosylmethionine by protein arginine 

methyltransferases (PRMTs). This can lead to modifications in which arginine 

residues are either mono- or dimethylated. The dimethyl arginines can occur either 

symmetrically (sDMAs) or asymmetrically (aDMAs) (Figure 1.30). (Aleta et al., 
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1998; McBride and Silver, 2001). Two types of protein arginine methyltransferases 

have been described based on their final reaction product. Type I (PRMT1, 

PRMT3, CARM [PRMT4], PRMT6) and type II (PRMT5, PRMT7, PRMT 9). Both 

generate the MMA (monomethyl-arginine) as the intermediate product, but aDMAs 

are catalyzed specifically by type I PRMTs while type II PRMT activity leads to 

formation of sDMAs (Cook et al., 2006; Frankel et al., 2002; Mowen et al., 2004). 

Methylated arginine was detected on abundant proteins like histones, nuclealin, 

fibrillarin and heterogenous nuclear ribonucleoproteines (hnRNP) (Blanchet et al., 

2005). It has been shown that protein arginine methylation regulates subcellular 

localization and modulates protein-protein interactions and is involved in many 

cellular processes such as RNA processing, transcriptional regulation, signal 

transduction and DNA repair (Bedford and Richard, 2005; Cheng et al., 2005; 

Shen et al., 1998). Recent evidence points towards a role for protein arginine 

methylation in T cell antigen signaling and cytokine gene activation (Blanchet et 

al., 2005; Mowen et al., 2004). 

Figure 1.30 Schematic of PRMTs activity products 

1.17.1 Protein arginine methylation in lymphocyte signaling 

Two recent investigations present evidence of involvement of protein arginine 

methylation in T-cell activation, showing that TCR and CD28 signaling exploit this 

pathway (Blanchet et al., 2005; Mowen et al., 2004). 
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TCR signaling activates a cascade of post-translational events resulting in 

cytokine gene expression. Phosphorylation and ubiquitylation of specific proteins 

are known to be involved in this process. Results presented by Mowen et al 

provide evidence that arginine methylation is also involved in signalling via TCR 

and cytokine secretion. It has been shown that the NFAT co-activator NIP45 

(NFAT Interactin Protein 45 kDa) is arginine methylated by PRMT, and this 

modification is required for NFAT/NIP45 interaction (Mowen et al., 2004). It was 

also demonstrated previously that methylation of STAT proteins regulates 

interaction with its inhibitor Protein Inhibitor of Activated STAT (PIAS1) thus plays 

role in cytokine signaling (Mowen et al., 2004). 

Blanchet et al presented evidence in 2005 that CD28 ‘second signal’ increases 

PRMT activity and arginine methylation of several proteins including two key 

effectors of CD28 signaling: interleukin-2 tyrosine kinase (Itk) and GDP-GTP 

exchange factor (GEF) for Rho-family GTPases, Vav-1. Vav-1 plays a critical role 

in T cell development and activation, and is required in TCR-induced events like 

calcium flux, activation of the Erk MAP kinase pathway and activation of 

NF-κB transcription factors. The importance of Vav-1 methylation remains unclear 

but the fact that methylated Vav-1 protein was found in the nucleus may be 

significant for its putative function in the nucleus (Tybulewicz, 2005). 

It is well established that methylation of Escherichia coli chemotaxis receptors is 

crucial in allowing the organism to migrate towards chemoattractant gradients 

(Silverman and Simon, 1977; Parkinson et al., 2005). The role of protein 

methylation in mammalian lymphocyte migration is unexplored but there are some 

data which might suggest that this modification could be involved in chemotaxis of 

human T cells. The embryonic/perinatal lethality of PRMT1 and PRMT4 deficiency 

in mice may suggest that arginine methylation orchestrates directional cell 

migration during developmental processes (Pawlak et al., 2000; Yadav et al., 

2003). Further evidence suggests that increases in prenylcysteine carboxyl 

methylation of Ras-related proteins correlate with their activation in neutrophils 

following chemoattractant treatment whilst inhibitors of prenylcysteine methylation 

abrogate chemotaxis of endotoxin-activated macrophages (Philips et al., 1993; 

Volker et al., 1991). It has also been demonstrated that methylation of transducin γ 
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subunit correlates with enhanced PLC and PI3K activation (Volker et al., 1991). In 

addition, selective antibodies specific for sDMA and aDMA recognise several 

cytoskeletal proteins (Boisvert et al., 2003). 

1.18 Aims of the Study 

Chemokine-directed migration of immune cells plays a significant role in immune 

surveillance and in disease. T lymphocytes are crucial players in cell-mediated 

adaptive immune defence. The chemokine receptor CXCR3 has been identified 

infiltrating effector T cells in a variety of inflammatory conditions including 

arteriosclerosis, rheumatoid arthritis, multiple sclerosis and psoriasis. Similarly 

CXCR3-binding ligands are highly expressed and secreted by cells within the 

same lesions. Therefore CXCR3 is a potential target for anti-inflammatory agents. 

There is a growing body of evidence for the existence of modified CXCR3 

receptors, which may present a major limitation for developing CXCR3-specific 

inhibitors. Until now two alternatively spliced variants of the human CXCR3 

receptor have been described, namely CXCR3-B and CXCR3-alt. These atypical 

CXCR3 receptors have not been completely investigated in terms of expression, 

ligand-induced signalling heterogeneity or functionality. Commercially available 

antibodies do not distinguish between CXCR3 and its variants and, as such, 

expression of CXCR3-B and CXCR3-alt at protein level, their internalization in 

response to chemokines, or signalling is still not fully characterised. 

CXCR7 has been demonstrated to share ligands both with CXCR3 and the 

homeostatic receptor CXCR4. However, despite binding CXCL12 and CXCL11 

with high affinity, its role in typical chemokine receptor signalling and functional 

responses is controversial, with a number of conflicting reports published. 

The aims of the first part of this project were as follows: 

�	 To characterise agonist-induced responses mediated via CXCR3 and its 

spliced variants CXCR3-B and CXCR3-alt in T lymphocytes and in 

transfected cell lines. 

�	 To investigate the role of CXCR7 in T cell signalling and examine agonist-

induced responses in CXCR7-expressing transfectants. 
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Hence, the following hypotheses were proposed: 

�	 CXCL4, similarly to CXCR3, is involved in T lymphocyte signalling and 

functional responses such as chemotactic activity. Moreover CXCR3-B and 

CXCR3-alt localize to the plasma membrane and are responsive to 

CXCL11, and, in case of CXCR3-B, CXCL4. 

�	 CXCR7 is involved in T lymphocyte signalling and chemotaxis. CXCL11 

and CXCL12 induce down-regulation and biochemical signalling in CXCR7 

transfectants. 

The following objectives were established in order to test these hypotheses: 

�	 Examine the expression, chemotaxis and signalling mediated by CXCR3 

and CXCR3-B in human T lymphocytes. 

�	 Investigate the mechanisms of CXCL11-induced down-regulation of surface 

CXCR3. 

�	 Utilize small-molecule CXCR3 antagonists to explore the role of CXCR3 in 

human T cells. 

�	 Analyze CXCL4-mediated responses in T cells to address the role of 

CXCR3-B. 

�	 Construct hCXCR3-A (full length), CXCR3-B and CXCR3-alt receptors 

tagged on their C terminus with the EGFP protein (Enhanced Green 

Fluorescent Protein) in a mammalian expression vector. Expression of 

these DNA constructs in mammalian cells to compare internalization and 

biochemical signalling of CXCR3-A versus CXCR3-B and CXCR3-alt after 

ligand binding. 

�	 Verify if currently available anti-human CXCR3 antibodies are able to bind 

to spliced variants of the CXCR3 receptor. 

�	 Investigate the expression of endogenous CXCR7 in human T lymphocytes. 

�	 Examine the involvement of CXCR7 on CXCL11- and CXCL12-mediated 

signalling and chemotaxis. 

�	 Analyze expression and agonists-induced internalization of surface CXCR7 

in transfected cells. 

�	 Examine signalling via CXCR7 in transfected cells. 
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As discussed in this introduction, there is a growing body of evidence that 

methylation is involved in lymphocyte function. Hence, the aim of the second part 

of the study was to characterise the role of protein arginine methylation in T cell 

signalling and migration. In order to test the hypothesis that protein arginine 

methylation is up-regulated following stimulation of T lymphocytes, and that this is 

important in chemokine-induced directional migration of T cells, the following 

objectives were proposed: 

�	 Examine the effect of T cell stimulation on levels of protein arginine 

methylation. 

�	 Investigate the effect of methyltransferase inhibitors on in vitro migration of 

activated T lymphocytes. 
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Chapter Two 

Materials and Methods 

2.1 Materials 

2.1.1 Antibodies and secondary reagents 

Flow cytometry 

1.	 Fluorescein Isothiocyanate (FITC)-conjugated mouse anti-human CD3 

antibody (isotype IgG1κ, clone WT31) (BD Biosciences, Oxford, UK). 

2.	 FITC-conjugated mouse anti-human CD4 (isotype IgG1κ, clone 11830) (BD 

Biosciences, Oxford, UK). 

3.	 FITC-conjugated mouse anti-human CD8 (isotype IgG2B, clone 37006) (R&D 

Systems, Abingdon, UK). 

4.	 Phycoerythrin (PE) / Allophycocyanin (APC) / FITC-conjugated mouse 

monoclonal anti-human CXCR3 (isotype IgG1, clone 49801) all at 

concentration of 25 µg/mL (R&D Systems, Abingdon, UK). 

5.	 PE-conjugated mouse monoclonal anti-human RDC1/CXCR7 antibody (clone 

358426) (R&D Systems, Abingdon, UK). 

6.	 PE / APC / FITC-conjugated mouse IgG1 (R&D Systems, Abingdon, UK). 

7.	 PE-conjugated mouse IgG2A (R&D Systems, Abingdon, UK). 

8.	 FITC-conjugated mouse IgG2B (R&D Systems, Abingdon, UK). 

9. FITC-conjugated mouse IgG1κ isotype control (BD Biosciences, Oxford, UK).


10.Rabbit IgG control (Sigma-Aldrich, Poole, UK).


11.FITC conjugated anti-Rabbit IgG (whole molecule) antibody produced in


sheep (Sigma-Aldrich, Poole, UK). 

Immunoblotting 

1.	 Polyclonal anti- phospho-S6 Ribosomal Protein (Ser235/236) Antibody (cat. 

no. 2211) produced in rabbit (Cell Signaling Technology, (NEB), Hitchin, UK). 

2.	 Polyclonal anti- phospho-p44/42 Map Kinase (Thr202/Tyr204) Antibody 

produced in rabbit (Cell Signaling Technology, (NEB), Hitchin, UK). 
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3.	 Polyclonal anti- phospho-Akt (Ser473) Antibody produced in rabbit (Cell 

Signaling Technology, (NEB), Hitchin, UK). 

4.	 Polyclonal anti- phospho-GSK3β (Ser9) Antibody produced in rabbit (Cell 

Signaling Technology, (NEB), Hitchin, UK). 

5.	 Akt1 (C-20) antibody (Santa Cruz, (Insight Biotechnology), Wembley, UK). 

6.	 Erk1 (C-16) antibody (Santa Cruz, (Insight Biotechnology), Wembley, UK). 

7.	 Mouse monoclonal anti-human CXCR3 antibody clone 49801 (R&D 

Systems, Abingdon, UK). 

8.	 Polyclonal goat anti-rabbit immunoglobulins (Dako, UK Ltd, Cambridge). 

9. Polyclonal rabbit anti-goat immunoglobulins (Dako, UK Ltd, Cambridge). 

10.Polyclonal rabbit anti-mouse immunoglobulins (Dako, UK Ltd, Cambridge). 

11. Monoclonal mouse anti-mono- and dimethyl arginine antibody (clone 7E6), 

(Abcam, Cambridge, UK). 

12. Monoclonal mouse anti-monomethyl arginine antibody (clone 5D1), (Abcam, 

Cambridge, UK). 

13. Polyclonal rabbit anti-dimethyl-Arginine, asymmetric (Asym 24) antibody, 

(Upstate (Milipore), Watford, UK). 

14. Polyclonal rabbit Anti-dimethyl-Arginine, symmetric (SYM11) antibody, 

(Upstate (Milipore), Watford, UK). 

2.1.2 Bacteriology 

1.	 90mm bacteriological petri dishes (Sterilin, Caerphilly, UK) 

2.	 Ampicillin (Sigma-Aldrich, Poole, UK) 

3.	 Escherichia coli DH5α competent cells (Invitrogen, Paisley, UK) 

4.	 One Shot® TOP10 competent Escherichia coli (Invitrogen, Paisley, UK) 

5.	 Kanamycin (Sigma-Aldrich, Poole, UK) 

6.	 Difco LB (Luria Bertani) Broth Miller medium and Difco LB (Luria Bertani) 

Agar Miller medium (BD Biosciences, Oxford, UK) 

7.	 S.O.C. medium (Invitrogen, Paisley, UK) 

2.1.3 Buffers and Solutions 

1.	 Etotal buffer (147 mM NaCl, 2 mM KCl, 10 mM HEPES, 12 mM glucose, 1 mM 

MgCl2, 2 mM CaCl2, pH 7.3 with NaOH, MQ water) 
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2.	 FACS buffer (5% of FBS in PBS, optional 0.1% of sodium azide) 

3.	 MACS buffer (0.5% FBS, 2 mM EDTA pH 7.2 in PBS) 

4.	 SDSPAGE 4 X resolving buffer (1.5 M Trizma base pH 8.8, 0.4% (w/v) SDS, 

MQ water) 

5.	 SDSPAGE running buffer (25mM Tris-HCl, 192 mM glycine, 0.1% (w/v) SDS) 

6.	 SDSPAGE 5 X sample buffer (10% SDS, 50% glycerol, 200mM Tris HCL pH 

6.8, Bromophenol blue, 5% 2-Mercaptoethanol) 

7.	 SDSPAGE 4 X stacking buffer (0.5 M Trizma base pH 6.8, 0.4% (w/v) SDS, 

MQ water) 

8.	 Semidry transfer buffer (39mM glycine, 48nM Tris-HCl, 0.0375% SDS, 20% 

(v/v) methanol) 

9.	 Solubilization buffer (1% (v/v Nonidet P-40, 150 nM NaCl, 50 mM Tris pH 7.5, 

5mM EDTA, 10 mM sodium fluoride*, 1 mM sodium molybdate*, 1 mM sodium 

orthovanadate*, 1 mM phenylmethylsufonyl fluoride*, 10 µg/mL leupeptin*, 

10 µg/mL aprotinin,1 µg/mL soybean trypsin inhibitor*, 1 µg/mL pepstatin A*, 

MQ water) 

10.Stripping buffer 5x concentrate (100mM 2-Mercaptoethanol, 2% SDS, 62.5nM 

Tris-HCl pH 6.7) 

11.TAE Buffer (TrisAcetateEDTA) 50x concentrate (242g Tris base, 57.1ml 

Acetic acid, 100ml 0.5M EDTA, dH2O to 1 litre, pH 8.5) 

12.TBS buffer (Trisbuffered saline) 10x concentrate (20mM Tris-HCl, 150mM 

NaCl, pH 7.5) 

* denotes added on the day of use 

2.1.4 Cell culture and T cells isolation and expansion 

Cell lines: 

Chinese Hamster Ovary Cells (CHOK1) 

Human Embryonic Kidney Cells (HEK293) 

Jurkat T Cell line 

1.	 10 mL plastic pipettes (Greiner Bio-One, UK) 
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2. 25 mL plastic pipettes (Greiner Bio-One, UK) 

3. 3 mL sterile Pasteur-Plast pipettes (Fisher Scientific, UK). 

4. 6 well tissue culture dishes (Nunc, UK) 

5. 75 and 175 cm3 tissue culture flasks (Nunc TM, UK) 

6. 50 mL transparent polypropylene centrifuge tubes (Greiner Bio One, UK) 

7. Cryotubes (Nunc, UK) 

8. Sterile plastic bijoux and universal containers (Greiner Bio One, UK) 

9. Accutase (Innovative Cell Technologies)


10.0.25% Trypsin-EDTA (Gibco®/Invitrogen, Paisley, UK)


11.200mM L-glutamine (Gibco®/Invitrogen, Paisley, UK)


12.Lipofectamine™ 2000 (Invitrogen, Paisley, UK)


13.Lymphoprep (Ficoll-paque1.077 g/mL density) (Axis-Shield, Cambridgeshire,


UK)


14.TransIT®-LT1 Transfection Reagent (Mirus Bio, UK)


15.Mowiol (Calbiochem, Merk Chemicals, (VWR), Leicestershire, UK, UK)


16. Non-Essential Amino Acids Solution 10 mM (100X) (Gibco®/Invitrogen,


Paisley, UK)


17.Phosphate buffer saline (PBS) (Gibco®/Invitrogen, UK)


18.Poly-L-lysine 0.01%, mol wt 70,000-150,000, sterile-filtered (Sigma-Aldrich,


Poole, UK)


19.RPMI-1640 and DMEM tissue culture medium (Gibco®/Invitrogen, Paisley, UK)


20.Heat inactivated Foetal Bovine Serum (FBS) (Gibco®/Invitrogen, Paisley, UK)


21.Streptomycin (50 mg/mL) and Penicillin (50 U/mL) solution (Gibco®/Invitrogen,


Paisley, UK)


22.Heparin (500 U/mL in H2O) (Sigma-Aldrich, Gillingham, UK)


23.Staphylococcal enterotoxin B (SEB) (Sigma-Aldrich, Gillingham, UK)


24. Trypan Blue (Gibco®/Invitrogen, Paisley, UK)


25.Phytohemagglutinin (PHA) (Sigma-Aldrich, Gilingham, UK)


26.Dynabeads® CD3/CD28 T cell expander (Invitrogen, Dynal AS, Oslo, Norway)


27.Interleukin -2 (IL-2) (Peprotech, London, UK)


28. Human T lymphocyte isolation kits: pan-T cell isolation kit, CD8+ T cell


isolation kit II, CD4+ T cell isolation kit II (Miltenyi Biotec GmbH)


29. 75 and 175 cm3 tissue culture flasks (Nunc TM, UK) 
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30. 50 mL transparent polypropylene centrifuge tubes (Greiner Bio One, UK) 

31. MACS magnetic cell separator or Dynal magnetic particle concentrator 

2.1.5 Chemicals 

1. 30% Acrylamide/Bis solution, 37.5:1 (Bio-Rad, Hemel Hempsted, UK) 

2. Agarose (electrophoresis grade) (Sigma-Aldrich, Poole, UK) 

3. Ammonium persulfate for electrophoresis >=98% (Sigma-Aldrich, Poole, UK) 

4. Aprotinin (Sigma-Aldrich, Poole, UK) 

5. Bromophenol blue (Sigma-Aldrich, Poole, UK) 

6. Chloroform (Fisher Scientific, UK) 

7. ECL (Amersham Bioscience, Little Chalfont, UK) 

8. Enhanced Chemiluminescent reagent (ECL) (Amersham Biosciences, UK) 

9. Ethanol (Fisher Scientific, UK)


10.Ethidium bromide (BioRad, Hemel Hempsted , UK)


11.Glycine for electrophoresis ≥99% (Sigma-Aldrich, Poole, UK)


12.Glycerol (Sigma-Aldrich, Poole, UK)


13. Leupeptin (Sigma-Aldrich, Poole, UK)


14.2-Mercaptoethanol, >=99% (Sigma-Aldrich, Poole, UK)


15.Methanol (Fisher Scientific, UK)


16.Methylthioadenosine (MTA), (Sigma-Aldrich, Poole, UK)


17.Nonidet P40 (BDH, (VWR), Leicestershire, UK)


18.Pepstatin (Sigma-Aldrich, Poole, UK)


19.Pertussis toxin (Calbiochem, Merk Chemicals, (VWR), Leicestershire, UK)


20.Phenylmethylsulphonyl fluoride, (Sigma-Aldrich, Poole, UK)


2 .Propan-2-ol (isopropyl alcohol) (Fisher Scientific, UK)


2.Protein Assay Dye reagent concentrate (Bio-Rad, Hemel Hempsted, UK) 

2 . Soybe trypsin inhibitor (Sigma-Aldrich, Poole, UK)


2 .Sodium azide (BDH, (VWR), Leicestershire UK)


2 .Sodium chloride, ACS reagent, >=99.0% (Sigma-Aldrich, Poole, UK)


2 .Sodium fluoride (BDH, (VWR), Leicestershire, UK)


2 .Sodium molybdate (BDH, (VWR), Leicestershire, UK)


2 .Sodium vanadate (BDH, (VWR), Leicestershire, UK)


2 .TEMED for electrophoresis, approx. 99% (Sigma-Aldrich, Poole, UK)


30.Tris-base (Sigma-Aldrich, Poole, UK)
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31.Triton X (Sigma-Aldrich, Poole, UK) 

32.TRIzol® reagent (Invitrogen, Paisley, UK) 

33.Tween 20 (Sigma-Aldrich, Poole, UK) 

2.1.6 Chemokines 

1.	 Human recombinant chemokines CXCL4, CXCL9, CXCL10, CXCL11 and 

CXCL12 (Peprotech, London, UK) 

2.	 Biotinylated chemokines CXCL10 and CXCL11 were chemically synthesised 

and then refolded (Almac, Elphinstone, UK) 

2.1.7 Assay systems, kits and molecular biology reagents 

1.	 DNA 1kb Ladder (New England BioLabs, UK; Promega, Southampton, UK, 

UK) 

2.	 Easy-A High Fidelity PCR Master Mix (2x, 0.1 U/µl) (Stratagene, Cheshire, UK) 

3.	 6 x gel loading buffer (Sigma-Aldrich, Poole, UK) 

4.	 TransIT-LT1 –lipid based transfection reagent (Mirus, (Cambridge Bioscience), 

UK) 

5.	 Oligo (dT) (Promega, Southampton, UK) 

6.	 Oligonucleotides designed to binds specifically to the gene of interest 

(synthesized by Sigma-Aldrich, Poole, UK or Invitrogen, Paisley, UK) 

7.	 Omniscript RT kit containing 10 x buffers, 5 mM dNTP mix, Omniscript RT 

(Qiagen, Crawley, UK) 

8.	 Plasmid purification Mini and Maxi Prep kits (Qiagen, Crawley, UK)


9. Pre-Aliquoted ReddyMix PCR Master Mix (ABgene, Epsom, UK)


10.QIAQuick Gel Extraction Kit and QIAQuick PCR purification Kit (Qiagen,


Crawley, UK) 

11.Quantum Prep Plasmid Miniprep Kit (Bio-Rad, Hemel Hempsted, UK) 

12.Rapid DNA Ligation Kit (Roche, Hertfordshire, UK) 

13.RNAse inhibitor, RNAsin Plus (Promega, Southampton, UK) 

14.Restriction enzymes: HindIII, KpnI, NotI, AgeI/PinAI (New England BioLabs, 

UK) 

15.Strips of 8 Thermo Tubes (ABgene, Epsom, UK) 

16.	0.5 mL Thermo Tubes (Sigma-Aldrich, Poole, UK) 
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17.Topo TA Cloning System (Invitrogen, Paisley, UK) 

2.1.8 Plasmids used for Molecular Cloning 

pCR®2.1-TOPO® 3.7kb (Invitrogen, Paisley, UK) 

pEGFP 3.4 kb vector encoding EGFP (Clontech, UK) 

pcDNA 3 5.4 kb expression vector (Invitrogen, Paisley, UK) 

pIRES neo 5.2 kb exression vector (Clontech, UK) 

2.1.9 Primers 

With the exception of the T7 and PS6 oligonucleotides (purchased from Promega, 

Southampton, UK), all primers were supplied by Sigma. 

NO OLIGO NAME SEQUENCE 5’ TO 3’ 

1. CXCR3-A /CXCR3-
alt 

(hCXCR3 PRI2S) 

CCAAGTGCTAAATGACGCCG 

2. CXCR3-A 
(hCXCR3 PRI3A) 

CAAAGGCCACCACGACCACCACCA 

3. CXCR3-alt * 
(hCXCR3 PRI4A) 

CTCCCGGAACTTGACCCCTGTG 

4. CXCR3-B ATGGAGTTGAGGAAGTACGGCCCTGGAAG 

5. CXCR3-A/B AAGTTGATGTTGAAGAGGGCACCT 
GCCAC 

6. hCXCR3-A-alt 
H3+Kozak 

TAGTAGAAGCTTCCGCCACCATGGTCCTTGAG 
GTGAGTGACCACC 

7. hCXCR3-B 
H3+Kozak 

TAGTAGAAGCTTCCGCCACCATGGAGTTGAG 
GAAGTACGGCCCTGGAAG 

8. hCXCR3-A–B stop 
Kpn1 

TAGTAGGGTACCGCCAAGCCCGAGTAGGAGG 
CCTCTGAGGTC 

9. hCXCR3-alt stop 
Kpn1 

TAGTAGGGTACCGCGACTGTGGGCGAAAGGG 
GAGCCCGGATTC 

10. hCXCR3-A/B stop 
Not1 

TAGTAGGCGGCCGCTCACAAGCCCGAGTAGG 
AGGCCTCTGAGGTC 

11. hCXCR3-alt stop 
Not1 

TAGTAGGCGGCCGCTCAGACTGTGGGCGAAA 
GGGGAGCCCGGATTC 

12. hCXCR7 -S CCAGGGAACTTCTCGGACATCAGC 
13. hCXCR7 -A TGTGCTCGGGGTAGAAGGACCGGC 
14. M13R CAGGAAACAGCTATGAC 
15. T7 promoter primer TAATACGACTCACTATAGGG 
16 BGH TAGAAGGCACAGTCGAGG 

17. PS6 ATTTAGGTGACACTATAG 
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18. EGFP-seq1 CACTTTATGCTTCCGGCTCGTATG 

19. EGFP-seq2 TGCAGCGGCAGGTCGAGCTGGTCC 

20. EGFP-seq3 CAGCTTGCCGTAGGTGGCATCGCC 

Table 2.1 Sequences of oligonucleotides used in the study. 

*primer bind within positions 692-695 and 1039-1049. 

2.2Methods 

2.2.1 Cell culture and cell culture conditions 

Cell culture was performed using aseptic techniques in a Medical Air Technology 

LTD Class II Microbiological Cabinet laminar flow hood. All cell types used in the 

present study were cultured in the humidified, 37°C, 5% (v/v) CO2 incubator. 

2.2.2 Chinese Hamster Ovary Cells 

Chinese Hamster Ovary (CHO) cells were maintained in 175cm2 tissue culture 

flasks in DMEM medium supplemented with 10% foetal bovine serum (FBS), 1% 

NeAA (Non essential Amino Acids), 1% L-glutamine and 50 U/mL of penicillin and 

50 µg/mL of streptomycin. Cultures were monitored for density, and maintained 

until achieving confluence up to about 95%. At that point used culture medium 

wash removed and cells were washed once in 30 mL of PBS, followed by 

trypsinisation for 3-5 mins at 37°C with 5 mL of Trypsin:EDTA or 5mins 37°C with 

5 mL of Accutase. Cells were then vigorously dislodged from flask, and reaction 

was stopped by addition 25 mL of growth DMEM medium, ensuring complete 

mixing with detached cells. Fresh flasks were seeded with about 3 mLs of stock 

cells and 40 mL of growth medium. CHO cells were maintained until 35 passages. 

For seeding a day before transfection, detached cells were counted, diluted to 6x 

105 per mL in growth medium and 2 mL of cell suspension was placed per well in 

6-well plate. 

2.2.3 Human Embryonic Kidney Cells 

Human Embryonic Kidney (HEK293) cells were maintained in 175cm2 tissue 

culture flasks in RPMI-1640 medium supplemented with 10% of FBS, and 50 U/mL 
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of penicillin and 50 µg/mL of streptomycin. Cultures were monitored for density, 

and maintained until achieving confluence up to about 95%. Cell were then 

harvested and seeded as described previously in 2.2.2. 

2.2.4 Freshly Isolated and Activated T Lymphocytes 

Routinely in the present study PBMCs were isolated from human blood and 

activated in vitro using bacterial superantigens or lectins, and cultured up to 12 

days. Alternatively freshly isolated pan T cells were obtained from PBMCs, used 

on the day of isolation or cultured in vitro in the presence of antibodies. Activated T 

lymphocytes were utilized in experimental procedures between 9-12 days post-

isolation and activation. 

2.2.5 Isolation of PBMCs by gradient centrifugation 

T cell isolation from freshly donated human peripheral blood and their ex vivo 

expansion provides a useful protocol for studying biochemical and functional 

events in T lymphocytes. After separation from peripheral blood, the mononuclear 

cells (a mixure of monocytes and lymphocytes) are activated and kept in culture 

up to 12 days under conditions which promote T lymphocyte proliferation, 

activation and up-regulation of CXCR3. 

Whole blood donated by healthy human volunteers* was collected in heparinized 

syringe (500 U per 50ml of blood), diluted 1:1 in a sterile175 cm3 tissue culture 

flask with RPMI- 1640 medium and mixed gently. 35ml of blood/medium mix was 

carefully overlaid on 15mL of Lymphoprep in 50mL transparent conical centrifuge 

tubes (e.g. Falcon tubes) and centrifuged at 400g at 20oC with the brake off for 30 

minutes. Following centrifugation, the PBMCs fraction containing lymphocytes and 

monocytes, seen as a ‘milky’ layer on a top of higher density Lymphoprep (Figure 

2.1) was carefully removed and transfer to fresh 50mL tube. 

Removed cells (representing PBMCs) ware washed three times in 50 mL of RPMI-

1640 medium and resuspended in a volume of RPMI-1640 containing 10% FBS 

and 50 U/mL of penicillin and 50 µg/mL of streptomycin equivalent to the volume 

of blood from which they were isolated. 

* Procedures for the use of human blood was carried out under University and Departmental safety 

and ethical guidelines for the use of human tissue. 
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A


B


Figure 2.1 Isolation and in vitro expansion of PBMC. Steps of isolation and culture of 
peripheral blood-derived human T lymphocytes, (A). Schematic illustration of PBMC 
separation with Lymphoprep after centrifugatio, (B). The diagram is representative of the 
separated cell layers observed after centrifugation with Lymphoprep. 

2.2.6 Isolation and purification of Pan T cells 

An alternative model of the activated T cell system was the utilization of purified, 

freshly isolated T cells. These cells were obtained from PBMCs fraction using Pan 

T cell Isolation Kit. This is an indirect magnetic labelling system, in which unbound 

cells pass through the magnetic column (negative selection) and can be utilized 

within experimental procedures. The protocol was followed as per manufacturer 

instructions. Briefly, PBMCs were isolated as described in section 2.2.5, washed 

three times in MACS buffer, resuspended in 40 µL of buffer with 10 µL of specific 
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Biotin-Antibody Cocktail (biotin-conjugated antibodies against CD14, CD16, CD19, 

CD36, CD56, CD123 and Glycophorin A) per 107 total cells and incubated at 4°C 

for 10 minutes. 30 µL of buffer and 20 µL of Anti-Biotin-Micro Beads per 107 total 

cells were added and incubated for a further 15 minutes. Cell were then washed 

once in 10 mL of MACS buffer and resuspended in 500 µL of the same buffer. Cell 

suspension was then applied to the LS MACS Separator column and column was 

washed three times with 3 mL of buffer. The eluted, enriched T cell fraction was 

collected, washed in RPMI-1640 medium and resuspended in FACS buffer for use 

in surface receptor expression study or resuspended in complete RPMI-1640 and 

activated as described below. 

2.2.7 Exvivo activation and clonal expansion of T lymphocytes 

Ex-vivo activation of T cells and subsequent expansion mimics processes of in 

vivo activation of T cells in response to antigen presentations. Described here are 

the methods of in vitro activation used within presented study. 

One of the most commonly used activators of human T cells is PHA, a lectin 

isolated from plants that acts as a mitogen which induces activation of T cells by 

cross linking to glycoproteins on the cell surface. PHA will yield activated T 

lymphocytes that are predominantly CD8+. Alternatively, SEB is one of the best 

known superantigens, which function by binding to MHC class II molecules 

expressed on the surface of professional antigen presenting cells (APC) present 

within the PBMC population. SEB acts then as cross linker subsequently binding 

to α chain of T cell receptor (TCR), stimulating robust activation of T lymphocytes. 

SEB will yield activated T lymphocytes that are predominantly CD4+. 

Isolated PBMCs were stimulated with either 5 µg/mL of PHA with addition of 20 

ng/mL of IL-2 or 1 µg/mL SEB. Three days post isolation, the non-adherent cells 

were removed, washed once in RPMI-1640 media (50 mL) and re-suspended in 

complete RPMI-1640 complete medium (containing 10% FBS, 1% Penicillin-

Streptomycin solution) and supplemented with IL-2 (20 ng/mL). T lymphocytes 

were then kept in culture up to 12 days, fresh medium was added and cells were 

supplemented with 20 ng/mL of IL-2 every 2-3 days. 

For the rapid expansion of freshly isolated T cells anti-CD3/CD28 mAb-coated 

Dynabeads were used (approximately 1 bead per T cell). This method of 
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stimulation more accurately mimics the in vivo presentation of antigen to T cells, 

but avoids engagement/activation of the co-inhibitory receptors such as CTLA-4 

(34). Furthermore this method does not require large numbers of autologous/ MHC 

matched APC and antigen or allogenic mononuclear cells and mitogen. The T 

lymphocyte population should first be purified by negative selection using pan-T 

cell isolation kits (as described in section 2.2.6). T lymphocytes are not 

contaminated with monocyte/macrophages and the antibody-coated beads are 

simply removed using a magnet. T lymphocytes can be sustained and expanded 

in culture for several weeks. 

2.2.8 Cell count 

To prepare an appropriate concentrations of cell suspension, cells were counted 

using haemocytometer. Briefly, 20 µL of well mixed cell suspension was 

transferred in to the eppendorf tube and mixed with 20 µL of trypan blue. 10 µL of 

the mixture was then carefully transferred to one side of a haemocytometer and 

the number of cells in two opposite corner squares was counted under light 

microscope. Cell which appeared as non-viable (stained blue with trypan) were 

excluded. The cell concentration was calculated using the following formula: 

Cells/mL= (Average cell count per square) x dilution factor x 104 

2.2.9 Freezing/thawing of cells 

For storage, 5-10 x 106 cells/mL in exponential growth were resuspended in freeze 

medium containing 10% dimethylsulphoxide (DMSO), and 90% of foetal bovine 

serum. The cell suspension was transferred to cryotubes (1mL/tube) and placed 

into freezing down container filled with 250 mL of propan-2-ol. The container was 

placed into -80°C over night and cells were cooled down at 1°C / minute before 

being transferred to liquid nitrogen for long-term storage. For resuscitation of cells 

of cells from liquid nitrogen, cells were rapidly defrosted for one minute in a 37°C 

water bath, washed once in RPMI or other appropriate medium and resuspended 

in 20 mLs of complete medium and cultured as stated previously. 
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2.2.10 Transfection of CHOK1 cells 

24 hours before transfection cells were seeded into CHOK1 culture medium (see 

2.2.2 for details) at 6x105 per mL. 2 mL of cell suspension loaded into each well in 

6-well plate. On the day of transfection the cell confluency was >95%. 4 µg of DNA 

was diluted into 250 µL of serum free DMEM medium in polycarbonate tube. 12.5 

µL of Lipofectamine 2000 was diluted into 250 µL of DMEM as before. Both 

dilutions were combined immediately and incubated for 20 minutes at room 

temperature to establish DNA-Lipofectamine complexes. During incubation time, 

cells were washed once in DMEM medium which was aspirated off before adding 

complexes. 0.5 mL of DMEM was added to 0.5 mL of DNA-Lipofectamine 

solutions and cells were carefully overlaid with 1 mL per well of mixture. 

Complexes were aspirated off after 5 hours incubation at 37°C and replaced with 3 

mL of CHO growth medium. Cells were analysed 48 hours post-transfection. 

2.2.11 Transfection of HEK293 cells 

24 hours before transfection HEK293 cells were seeded into RPMI-1640 culture 

medium (see 2.2.3 for details) at 6x105 per mL. 2 mL of cell suspension loaded 

into each well in 6-well plate for confluency of >95% on the day of transfection. 2 

µg of DNA was diluted into 250 µL of RPMI-1640 medium followed by addition of 4 

µL of TransIT®-LT1 transfection reagent. Obtained mixture was then incubated for 

20 minutes at room temperature to establish complexes between DNA and lipid-

based transfection reagent. After incubation, 250 µL solutions were added drop 

wise to each well containing cells prepared day before kept in culture medium. 

Cells were analysed 48 hours post-transfection. 

2.2.12 Molecular biology 

2.2.12.1 Nucleic acid preparation 

RNA extraction 

The commercially available anti-CXCR3 antibodies are unable to distinguish 

between CXCR3-A, CXCR3-B or CXCR3-alt, while reported CXCR3-B antibodies 
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are either not widely available or have limited specificity. In addition, there are no 

reported antibodies to CXCR3-alt. So, the most accurate way of assessing 

expression of CXCR3 isoforms in human T lymphocytes is to monitor the mRNA 

expression for the individual forms of CXCR3 as described below. 

RNA extraction using TRIzol reagent was performed according to manufacturer 

instructions, briefly. Approximately 9 days post-isolation and initial activation, 

human T lymphocytes (5-10x106 cells) were removed from culture, pelleted and 

lysed in 1ml of TRIzol reagent and incubated for 5 minutes at room temperature. 

This step allowed to complete dissociation of nucleoprotein complexes. 0.2 ml of 

chloroform is added per 1 mL of TRIzol used and samples are agitated by hand for 

15 seconds and incubated for 2-3 minutes at room temperature followed by 

centrifugation for 15 minutes at 4°C and at no more than 12,000g. After 

centrifugation, the mixture separated into different phases: lower red phenol-

chloroform phase, an interphase and upper aqueous phase containing RNA. The 

aqueous phase was carefully collected from each sample and transferred to a 

fresh eppendorf tube and RNA was precipitated by mixing with 0.5 mL of isopropyl 

alcohol. Samples were then incubated for 10 minutes at room temperature and 

centrifuged for 10 minutes at 4°C at no more than 12,000g. Precipitated RNA was 

seen as gel-like pellet on the side and the bottom of the tube. Supernatants were 

carefully discarded and RNA was washed in at least 1 mL of 75% ethanol. 

Samples were mixed by vortexing and centrifuged for 5 minutes at 4°C at no more 

than 7,500g. Washed RNA pellets were briefly dried by air or vacuum dry for 

approximately 10 minutes and dissolved in RNase free water of 0.5% SDS 

solution by passing a few times through a 1 mL pipette tip and incubation for 10 

minutes at 55-60°C. The concentration of RNA was determined by measuring the 

absorbance at 260 nm (A260) in spectrophotometer. RNA dilutions (e.g. 1:50) 

were prepared in RNAse free water. The same water in which the RNA was diluted 

was used to calibrate the spectrophotometer. Purity of RNA was estimated by the 

ratio of the readings at 260 nm and 280 nm (A260/A280). Partially dissolved RNA 

solutions have an A260/280<1.6, which exclude contamination with contaminants 

such as protein and phenol. 
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Plasmid DNA preparation (Mini/Maxipreps) 

Single bacterial colonies were carefully picked from agar Petri dish and incubated 

over night with shaking at 37°C in 5 mL of LB medium containing 50 µg/mL of 

ampicillin or 50 µg/mL of kanamycin. Next day cultures were pelleted by 

centrifugation (10 min, 6000g) and DNA was purified using QIAGEN Mini Kit 

according to the manufacturer’s instructions. DNA from larger volumes of over 

night cultures (100-200 mL) was purified using Qiaquick QIAGEN Maxiprep Kit 

following manufacturer protocol. 

Synthesis of cDNA from RNA 

The cDNA was prepared by reverse transcription of cellular RNA using Oligo (dT)


as the primers (binding to poly (A) tail at the 3’ end of messenger RNA) and


Omniscript RT kit, according to manufacturer protocol.


Briefly, approximately 1µg of each RNA sample was mixed with 0.5 µL of


Oligo(dT) and 0.5 µL RNAsin Plus and incubated for 5 minutes at 65°C followed by


incubation on ice ~ 1 min. This step helps opening secondary structures of RNA


and binding primers. The rest of reagents including 1 µL of Reverse Transcriptase


(RT) enzyme, 2 µL of 10x buffer and 2 µL of 5 mM dNTP mix was added and


incubated for 60’ at 40°C and 10’ at 70°C.


The RT-PCR Reaction mix was as follow: 10x buffer (2 µL), 5 mM dNTP mix (2µl),


oligo (dT) (0.5 µL), RNAsin Plus (0.5µL), Omniscript RT (1 µL, 4 units per


reaction), 50 ng-2 µg RNA template (1 µg), dH2O (up to 20 µL volume).


2.2.12.2 Polymerase chair reaction (PCR) 

PCR for most applications was performed using Easy-A High Fidelity PCR Master 

Mix (Stratagene, Cheshire, UK). Alternatively for performing PCR using bacterial 

colonies as a template, Pre-Aliquoted ReddyMix PCR Master Mix (ABgene) was 

used. Reaction mix for PCR was as follows: 2x Easy-A High Fidelity PCR Master 

Mix (12.5 µL), 10µM 5’ primer (2 µL), 10µM 3’ primer (2 µL), approximately 1 µg 

cDNA and distilled water (up to 25 µL volume) or alternatively Pre-Aliquoted 

ReddyMix PCR Master Mix (45 µL), 5’ and 3’ primers (2 µL each), single bacterial 
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colony collected from Petri dish. All reactions were mixed well by pipetting before


being placed in a thermocycler.


Appropriate thermocycler programs were used according to the application and


are detailed below:


Amplification of cDNA and expression constructs: Initial denaturation: 94°C 5 

mins, (denaturation: 94°C 1 min, annealing: 60°C 30 sec, extension: 72°C 1 min) x 

35, final extension: 72°C 10 min, final hold: 4°C; 

Amplification of full length CXCR3: 94°C 5 mins, (94°C 1 min, 60°C 30 sec, 

72°C 2 min) x 35, 72°C 10 min, 4°C; 

Colony PCR: 94°C 10 mins, (94°C 1 min, 50°C 30 sec, 72°C 1 min) x 35, 72°C 10 

mins, 4°C. 

PCR products were then analysed by agarose gel electrophoresis as described 

below. If required, PCR products were purified as stated in 2.2.1ed2.5. 

2.2.12.3 Agarose gel electrophoresis 

1.2% of agarose was prepared in 100 ml of 1xTAE buffer and melted by heating in 

a microwave for 2 minutes, followed by gentle mixing until completely dissolved. 

2 µL of ethidium bromide (10 mg/mL) was added to 100 mL of cooled agarose 

solution, mixed and slowly poured in an appropriate tank. Required combs were 

placed into the gel and any air bubbles were removed. Gel was left to set for 30-60 

minutes. 1x TAE buffer (running buffer) was added to an appropriate gel running 

tank. The gel was then placed in the tank and the comb removed. PCR products 

were mixed with 6 x gel loading buffer (not if Pre-Aliquoted ReddyMix PCR Master 

Mix was used with loading buffer already included) and loaded on to the gel 

alongside with DNA ladder. Gel was run at 90V in the TAE running buffer until 

bromophenol blue (from the loading buffer) has run 3/4 the length of the gel. After 

that point gel (preferably within its holder) was carefully transferred to visualise 

and photograph PCR products on the UV transluminator with photo camera build. 
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2.2.12.4 Restriction enzyme digest 

Unless otherwise stated, restriction enzyme digest was performed in 30-50 µL 

volume in reaction mix which included appropriate to the enzyme 10 X buffer; 

enzyme, between 5-10 units per 1 µg of DNA (volume of enzyme was no more 

than 10% of final volume of reaction mix); dH2O; DNA; 1% of BSA (if required). 

Reactions were carried out for 3 hours at 37°C. Digested DNA was then purified 

as described below, and analysed on agarose gel before being used in ligation 

reactions. 

2.2.12.5 Gel purification of DNA fragments 

Appropriate DNA bands were excised from agarose gel using a scalpel and 

purified using QIAGEN QIAquick Gel Extraction Kit according to manufacturer’s 

protocol. DNA bound to the column was eluted using 30-50 µL of elution buffer 

(included in the kit) and concentration was determined by spectrophotometry. In 

order to confirm the purity and size of nucleic acid, 5 µL of DNA was run on an 

agarose gel alongside with DNA ladder marker. Purified DNA of known 

concentration was then used in ligation reactions as stated below. 

2.2.12.6 DNA ligation 

Ligation reactions were performed using Rapid DNA Ligation Kit according to 

manufacturer’s protocol. Briefly, vector DNA and insert DNA were dissolved in 1 x 

DNA Dilution Buffer to the final volume 10 µL followed by addition of 10 µL of T4 

DNA Ligation Buffer and 1 µL of T4 DNA Ligase. Ligation mix was then incubated 

at the room temperature for 5 minutes before being used to transform E. Coli 

DH5α or TOP 10 competent bacteria. The amount of vector and insert used in 

ligations was calculated using formula: 

((ng of vector) x (kb size of insert) / (kb size of vector)) x (molar ratio of (insert/vector)) 

= (ng insert) 

Generally, the ratio of insert to vector used was 4:1. 
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2.2.12.7 Transformation of competent bacteria 

The tubes of 50 µL of E. Coli DH5α or TOP 10 competent bacteria was thawed on 

ice. 5µL of ligation mix was added to each sample and cells were mixed gently 

and incubated for 30 min on ice. Competent cells were then transferred in to the 

water bath set up for 42°C and incubated for 30 sec (heat shock) and immediately 

transfer on ice. After 2 min of incubation on ice, 250 µL of RT SOC medium was 

added to each sample and cells were placed into the 37°C incubator with vigorous 

shaking (250 rpm) for 1h. 100 µL of bacterial suspension was then placed on LB-

agar plates containing 50 µg/mL of required selection agent, ampicillin or 

kanamycin. Plates were inverted and incubated at 37°C over night in order to 

allow colony growth. 

2.2.12.8 Analysis of transformants 

The presence of an insert and its size was determined by growing bacteria from 

each colony in liquid culture (using LB broth medium) at 37°C with shaking (200 

rpm) over night. Plasmid DNA was then purified using Mini Prep Kit as stated in 

2.2.12.1 and analysed by restriction digest using enzymes that excise the insert 

(see 2.2.12.4) followed by separation on agarose gel electrophoresis. 

Alternatively, in order to quickly screen for plasmid inserts directly from E. coli, 

colony, PCR protocol was used. PCR reaction mix was prepared as stated in 

2.2.12.2. The small amount of each colony picked up gently from appropriate plate 

using yellow pipette tip was added to each PCR reaction. Samples were mixed by 

pipetting and placed in thermocycler using program detailed in 2.2.12.2. PCR 

products were then analysed by agarose gel electrophoresis for the presence of 

insert. 

2.2.12.9 DNA sequencing 

DNA sequencing was performed using dideoxy method (Sanger method). 

Reaction requires appropriate primer, polymerase enzyme, normal nucleotide 

mixture and DNA template. Critical role in this method play dideoxy nucleotides 

that lack the -OH at the 3′ carbon atom. These nucleotides are also added to the 

growing DNA and cause the chain elongation to stop. Therefore products of this 

reaction are different length DNA fragments, which are then separated from 
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longest to shortest. Each of the four dideoxynucleotides is labelled with a different 

‘tag’ and fluoresces in different colours. Fragments are then separated by length 

from longest to shortest. A difference of one nucleotide is enough to separate one 

strand from another. Labelled bands appear at each location where the 

dideoxynucleotide was added and terminated elongation reaction. 

Briefly, region of DNA to be sequenced was amplified by PCR using primers 

binding to sequence upstream or downstream of the region of interest (primers are 

listed in Table 2.1 in section 2.1.9). Reaction mix was as follow: buffer (2 µL), 

primer (1µL, 3.2 pmoles), enzyme mix (1 µL), DNA (1.5 µL, 0.5 µg), H2O up to 7.5 

µL. Reaction was performed using thermocycler program detailed below: 

96°C 30 sec, (96°C 10 sec, 50°C 5sec, 60°C 4 mins) x 24, 4°C. 

In some instances DNA was sequenced by Gene Service (Oxford). 

2.2.12.10 Cloning of PCR products for sequencing 

PCR products were prepared as described in 2.2.12.2 using cDNA obtained from 

Human Immune System MTC™ Panel as a template and oligonucleotides specific 

to bind to each variant of CXCR3 receptor (CXCR3-A, -B and –alt, detailed in 

Table 2.1). Products were then gel purified and cloned into pCR®2.1-TOPO® 

vector using Topo TA cloning system according to manufacturer protocol. Cloned 

fragments were verified by DNA sequencing using M13R oligonucleotide (see 

Table 2.1 for sequence). 

2.2.12.11 Generation of constructs encoding EGFPtagged hCXCR3A, 

hCXCR3B and hCXCR3alt receptors 

Full length hCXCR3-A, CXCR3-B and CXCR3-alt were amplified by PCR using 

cDNA obtained from Human Immune System MTC™ Panel as a template (cDNA 

from spleens and leukocytes) and following oligonucleotides: ‘hCXCR3-A-alt 

H3+Kozak’ and ‘hCXCR3-A–B stop KpnI’ to amplified CXCR3-A; ‘hCXCR3-B 

H3+Kozak’ and ‘hCXCR3-A–B stop KpnI’ to amplified CXCR3-B and ‘hCXCR3-A-

alt H3+Kozak’ and ‘hCXCR3-alt stop KpnI’ to amplified CXCR3-alt. Thermocycler 

conditions: ‘Amplification of full length CXCR3’ were as detailed in section 

2.2.12.2. Fragments ~1kb, were then purified from agarose gel, digested using 
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HindIII and KpnI enzymes and subcloned into pEGFP vector previously digested 

using the same enzymes. Plasmid DNA was then purified using Quantum Plasmid 

Miniprep Kit and the presence of insert was confirmed by HindIII and AgeI/PinAI 

digest. DNA from each miniprep containing insert was then again resolved and 

extracted from agarose gel and digested using HindIII and NotI enzymes which 

allowed cutting fragments encoding CXCR3 with the EGFP tag on its C terminus. 

Fragments were then cloned into pcDNA3.1 expression vector which has been cut 

with the same enzymes. Presence of the insert was verified by PCR using 

bacterial colonies as a template and primers complementary to upstream (T7 

promoter primer, see Table 2.1 in section 2.1.9) and downstream (BGH primer, 

see Table 2.1) of cloned fragment. To confirm that C-terminal EGFP tag was 

correctly inserted, DNA sequencing was performed using following 

oligonucleotides: T7, EGFP-seq1, EGFP-seq2 and EGFP-seq3. 

2.2.12.12 Generation of constructs encoding hCXCR3A, hCXCR3B and 

hCXCR3alt receptors 

Full length hCXCR3-A, CXCR3-B and CXCR3-alt were amplified by PCR using 

pcDNA3.1-hCXCR3-A, pcDNA3.1-hCXCR3-B and pcDNA3.1-hCXCR3-alt, as the 

template, respectively. Follow oligonucleotides were used: ‘hCXCR3-A-alt 

H3+Kozak’ and ‘hCXCR3-A–B stop NotI’ to amplified CXCR3-A; ‘hCXCR3-B 

H3+Kozak’ and ‘hCXCR3-A–B stop NotI’ to amplified CXCR3-B and ‘hCXCR3-A-

alt H3+Kozak’ and ‘hCXCR3-alt stop NotI’ to amplified CXCR3-alt. Thermocycler 

conditions used were as above. Amplified fragments were prepared and cloned 

into pcDNA3.1 expression vector as detailed in 2.2.12.11. To verify presence of 

correctly inserted fragment, colony PCR and sequencing was performed. 

2.2.13 Immunoblotting 

Immunoblotting also known as Western blotting provides useful tool in the study of 

expression and/or posttranslational modifications of protein of interest. Within 

presented work, Western blotting technique was mainly utilized in order to study 

changes in protein phosphorylation occurring due to cell stimulation with agonist. 

This was obtained by using anti-phospho-protein specific antibodies as primary the 

antibodies within immunoblotting procedures as described below. 
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2.2.13.1 Cell stimulation and preparation of cell lysates 

Cells were washed three times by centrifugation at 300 g in RPMI 1640 medium, 

re-suspended to concentration 1x106 / 500µL and placed in eppendorf tubes. Cells 

were then incubated for 1 hour in a 37°C water bath. During that time inhibitors 

were added (if required). Cells were stimulated for indicated periods of time with 

appropriate concentration of agonist diluted in RPMI 1640 medium. Stimulation 

was terminated by quick centrifugation for 15-30 seconds at no more than 6,000g 

at room temperature, aspiration of supernatant and addition of 100 µL of 

solubilisation buffer (see Materials 2.1.3.). To the control sample RPMI 1640 was 

added instead of a stimulant. The samples were mixed and rotated at 4°C for 20 

minutes followed by centrifugation at 10,000 g for 10 minutes. The protein-

containing supernatants were transferred to the fresh tubes and samples were 

diluted with 2x SDS containing sample buffer (see 2.1.3.) and boiled for 5 minutes 

at 95°C before being loaded in to the gel or stored at -20°C. 

2.2.13.2 Protein determination by Bradford assay 

In order to determine the concentration of proteins, a colorimetric protein assay (a 

Bradford assay) was performed. The assay is based on an absorbance change in 

the dye coomassie when it stabilizes into coomassie blue from the previously red 

form after binding to proteins. Bradford reagent was diluted 1 in 5 in volume of 

PBS and transferred to the fresh eppendorf tubes (1 mL per tube). 5 µL of the 

protein sample of the unknown concentration was added to the 1 mL of Bradford 

reagent, mixed thoroughly and left for 5 minutes. In the meantime protein 

standards were prepared by addition 0, 1, 2, 4, 8 or 16 µg of BSA to 1 mL of the 

protein reagent. The absorbance of the standards and the samples was 

measured using the spectrophotometer at 595 nm wave length. 

2.2.13.3 SDSPAGE and Western blotting 

Protein lysates were resolved in one dimensional 10% SDS-polyacrylamide gel 

(SDS-PAGE) using the Bio-Rad Mini Protein II System (Bio-Rad Labs, UK). 

Appropriate concentrations of resolving and stacking polyacrylamide gels were 

prepared, poured between glass plates and left to polymerize. 10% APS and 

TEMED were used to catalyze polymerization reaction. 20 µL of each sample was 
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loaded into the wells in stacking gel along side with protein standards and run at 

80V current in running buffer (see 2.1.3.). Upon reaching the resolving gel, the 

current was increased to 180V. Proteins were electro-transferred for 60 minutes at 

40 mA per gel onto the 0.45 µm nitrocellulose membrane soaked in semi-dry 

buffer. After being transferred proteins were dyed red by putting the membranes 

into the Ponceau S in order to confirm successful transfer and washed once for 5 

minutes in 1x TBST buffer. Membranes were then incubated for 60 minutes in 

blocking buffer containing 5% non-fat milk in TBST with slight agilation and rinsed 

once for 5 minutes in TBST. Membranes were incubated overnight in 10 mL of 

specified primary antibody solution (diluted 1:1,000 in TBST, supplemented with 

0.1% sodium azide and 5% BSA) at 4°C with gentle agitation. The next day 

membranes were washed three times in TBST and incubated with secondary 

antibody conjugated to horse radish peroxidase (HRP) diluted 1:10,000 in TBST 

supplemented with 0.1% of milk for 1-2 hours at room temperature and washed 

three times for 5 minutes in TBST. Visualization of the protein bands was due to 

incubation of the membranes in 4 mL of Enhanced Chemiluminescent reagent 

(ECL) for 1 minute and exposure to X-ray film. 

2.2.13.4 Membrane stripping and reprobing 

In order to verify protein transfer and equal loading into the gel, pan antibodies 

which recognize all posttranslational forms of particular protein were used. 

Membranes were first rehydrated in 1x TBST and then incubated at 60°C for 20 

minutes in 20 mL of stripping buffer to remove bound antibody. After extensive 

washing, 3 times for 5 minutes in TBST, membranes were incubated in blocking 

buffer for one hour at room temperature. After incubation time blots were rinsed 

once in TBST and primary antibody was added for overnight incubation. Next day 

the immunoblotting procedures were carried out as described above. 

2.2.14 Flow cytometry 

Flow cytometry technology measures and analyzes multiple physical features of 

single cells, as they flow in a fluid stream through a laser. These measured 

characteristics include a relative cell size, granularity or internal complexity, and 

fluorescence intensity. Flow cytometry has found a multiple implications in cell 
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biology study. In present work this technique was utilized in several different ways, 

to determine purity of isolated cell populations and expression of surface markers 

and receptors of interest, to monitor expression of fluorescent reporters such as 

GFP, and finally to determine the numbers of migrated cells following a 

chemotaxis assays. 

2.2.14.1 Setting up the flow cytometer 

To adjust the instrument ‘negative sample’ representing unstained cells was used. 

Cells were gated using forward scatter (FSC) and side scatter (SSC) (Figure 2.2A, 

left and middle panel). Gated events were considered as viable cells and were 

used for subsequent analysis. The instrument was set up that >95% of negative 

population of the cells (M1) was between 100 and 101 on the FL-1 (for FITC or 

EGFP) or FL-2 (for PE) channels (Figure 2.2A, right panel). For double staining 

two additional, single stained controls are required to set up compensation. These 

samples represented FITC and PE positive controls (Figure 2.2B). Each sample, 

including negative control, was analysed with at least 10,000 gated events 

counted per sample. 

Figure 2.2 Setting up the Flow Cytometer for Single and Two Colour Analyses. (A) 
Events within region R1 (left and middle panels) are considered viable cells and only 
these cells are used for analysis. Instrument is adjusted the way so that >95% of gated, 
negative control cell fall within M1 region between fluorescence intensity 100 and 101 (right 
panel). (B) Controls required for setting up compensation for two colour analysis. That 
include unstained, negative cells (bottom left quartile on the left panel), and single stained 
cells representing positive controls labelled with FITC (top left quartile on the middle 
panel), and PE (bottom right quartile on the right panel). 
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2.2.14.2 Analysis of cell surface receptors expression 

Freshly isolated or activated T cells (alternatively other cell types if required) were 

washed twice in RPMI 1640 medium and resuspended at 1x106 cells per sample 

in 90 µL of ice cold FACS buffer (see 2.1.3.). 10 µL of required fluorescently-

labelled anti-human antibody against the receptor of interest or appropriate 

isotype-matched immunoglobulin controls (typical concentration 2.5-5 µg/mL) was 

added to cell suspensions and samples were incubated for 30 minutes at 4°C in 

the darkness. Cells were washed once in 1 mL of pre-chilled FACS buffer and 

resuspended in 300 µL of the same buffer for flow cytometry analysis using Becton 

Dickinson FACSCanto system. The same protocol was used to determine purity of 

T cell populations by analysing expression of surface markers (e.g. CD3). In order 

to characterize expression of a receptor present on only the sub-population of 

interest, a double staining with antibodies conjugated to two different fluorophores 

was used. Obtained data was analyzed using FACSDiva or CellQuest software. 

2.2.14.3 Internalization assay 

In order to perform receptor internalization study, cells were prepared and 

stimulated as described in section 2.2.13.1. Stimulations were terminated by 

addition of 90 µL of ice cold FACS buffer. 10 µL of required fluorescently-labelled 

anti-human antibody against the receptor of interest or appropriate isotype-

matched immunoglobulin controls (typical concentration 2.5-5 µ/mL) was added to 

cell suspensions and samples were incubated for 30 minutes at 4°C in the 

darkness. Following incubation time, cells were washed and analysed using 

FACSCanto flow cytometer as above. Obtained data was analyzed using 

FACSDiva or CellQuest software. Mean fluorescence intensity (MFI) values were 

obtained by subtracting the MFI of the isotype control from the MFI of the 

positively stained sample. Decrease in CXCR3 surface expression was expressed 

as a percent of baseline expression. Following formula was used: MFI of 

stimulated cells/MFI of untreated cells *100. 

2.2.14.4 Actin polymerisation assay 

In order to perform actin polymerisation study, cells were prepared and stimulated 

as described in section 2.2.13.1. Stimulations were terminated by adding 500 µL of 
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fixing solution (methanol free 4% para-formaldehyde in PBS) at RT. After 10 

minutes incubation, samples were washed with PBS (350g, 5 minutes), 

resuspended in 100 µL / tube of 1% para-formaldehyde / 1% FCS in PBS and 

permeabilised with addition of another 100 µL / tube of 0.1% Triton-X solution with 

0.3 µM TRITC phalloidin in PBS. Cells were left to stain at 4°C for 30 minutes. 

After incubation, cells were washed twice in PBS, resuspended in 300 µL of 1% 

para-formaldehyde / 1% FCS solution and analyzed immediately or stored at 4°C 

in dark. Analysis was performed using FACSCanto flow cytometer and FACSDiva 

or CellQuest software. 

2.2.14.5 Analysis of transfection efficiency using EGFP reporter 

Within presented work, flow cytometry analysis was also used to evaluate 

expression of EGFP-tagged CXCR3 receptor in transfected HEK293 cells. 48 

hours post-transfection HEK293 cells were harvested, washed and resuspended 

in pre-chilled FACS buffer. Expression of EGFP reporter was analysed using 

FACSCanto system. 

2.2.15 Fluorescent/confocal microscopy 

2.2.15.1 Suspension cells 

Cells were stimulated, fixed and stained with TRITC-conjugated phalloidin as 

detailed in sections 2.2.13.1 and 2.2.14.4, respectively. After two washes (in 

cooled PBS), cells were resuspended in 200 µL of PBS. Microscope slides 

mounted with the paper pad and the cytospin cuvette in the metal holder. Cell 

suspensions were loaded in to each cuvette and centrifuged using cytospin on to 

the cover slides at 500 rpm for 10 minutes at room temperature. Slides, paper and 

cuvette were then carefully extracted and cover slice was gently placed on the 

drop (around 15 µL) of Mowiol containing 10 µg/mL of 4, 6-diamidino-2-

phenylindole (DAPI) aliquoted on the microscope slide. Slides were dried in the 

dark and stored at 4°C until analysed. 
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2.2.15.2 Adherent cells 

22-25 mm diameter glass cover slips were placed in to each well of a 6 well tissue 

culture plate. 1 mL of sterile 0.01% poly-L-lysine was added to each well and 

plate was incubated at 37°C overnight. The poly-L-lysine was then aspirated off 

and wells were rinsed once with sterile MilliQ water. 2x105 cells in 2 mL of 

complete RPMI-1640 medium was added into each well and cultured for 24 hours. 

Cells were then transfected as detailed in 2.2.11 and kept in culture for additional 

48 hours. Following protocol, cell were rinsed gently in PBS and fixed with 4% 

paraformaldehyde (PFA) for 10 minutes at room temperature. Cells were again 

washed in PBS and incubated with 1 mL of conjugated antibody solution (10 

µg/mL of antibody in PBS containing 5% FBS) at 4°C for 30 minutes in the 

darkness with gentle agitation. After incubation cells were rinsed twice with PBS 

and cover slides were carefully removed from the wells, air-dried and mounted on 

to glass microscope slides in Mowiol containing 10 µg/mL of DAPI. Slides were 

dried in the dark and stored at 4°C until analysed. 

2.2.16 Neuroprobe In vitro migration assay 

To study directional migration of T lymphocytes in vitro in the presented study, we 

used the Neuroprobe ChemoTx® System 96-well chemotaxis chamber which 

permits rapid, sensitive and consistent measurement of T lymphocyte migrational 

responses to chemoattractants. Before performing cell migration assays, T 

lymphocytes were washed twice in RPMI-1640 and re-suspend at 3.2 x 106 

cells/mL in RPMI-1640 medium containing 0.1% BSA. Cells were then left to rest 

for 30 minutes in water bath set up at 37°C and during that time inhibitors were 

added (if required). Appropriate concentrations of chemokines were prepared in 

RPMI-1640 medium containing 0.1% BSA. Each well of the plate was filled with 29 

µL of chemokine dilutions or media aolone. Each point was prepared in triplicates. 

Plate was the carefully overlaid with filter. 25 µL of previously prepared cell 

suspension was loaded on the top of the filter, as explained in Figure 2.3. 

Chemotaxis plate was then placed in the humidified incubator set up at 37°C, 5 % 

CO2 for 3 hours. After incubation non-migrated cells were removed from the top of 

the filter by carefully wiping surface twice with a piece of Whatmann paper and 

plate was centrifuged for 10 minutes at 400 g with brake off. 
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Filter was then carefully removed and cells that had migrated into wells (bottom 

chamber) were transferred to polystyrene tubes containing 300 µL of ice cold PBS. 

Migrated cells were then counted using FACS Canto system for 30 seconds. 

Figure 2.3 Schematic illustration of Neuroprobe ChemoTx®®®® System 96well 
chemotaxis plate. (A), 5 µm pore filter with hydrophobic surface surrounding area above 
each well. (B), Schematic illustration of single well loaded with chemokine solution, 
overlaid with filter and cell suspension loaded on the top. 

2.2.17 Calcium mobilisation assay 

Previously activated T cells were washed twice in RPMI-1640 medium and 

resuspended in Etotal buffer at the concentration 1x106 cells/mL. HEK293 cells 

were washed twice, harvested and resuspended as above. Cells were loaded with 

Flou4 – calcium binding fluorescent dye (excited at 485) at the final concentration 

5 µM, and incubated at the room temperature for 30 min in the dark. Following 

incubation, cells were washed twice resuspended at 1x106 cells/mL and 

transferred to 96-well plate. Appropriate concentration of chemokines was added 

and real-time fluorescence was recorded at 520 nm every 3-10 s using a 

multimode platereader (Fluostar Optima, BMG Labtech, UK). 

2.2.18 Biotinylated ligand uptake assay 

Previously activated T cells were washed twice in RPMI-1640 medium and 

resuspended at the concentration 1x106 cells/mL and incubated at 37°C for 30 

minutes. Biotinylated-CXCL11 (or –CXCL10), was mixed with 5µL of streptavidin-

conjugated to appropriated flourophore ( for example FITC) in a final volume of 

10µL (made up in PBS), and incubated at room temperature for an hour to 

generate biotinylated-chemokine/FITC complexes. T cells were stimulated with 
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FITC labelled chemokine for 30-45 minutes at 37°C (control cells were stimulated 

with PBS containing only FITC streptavidine), washed in PBS, fixed in 

4%PFA/PBS and washed again. T cells were then resuspended in 200 µL of PBS 

and microscope slides were prepared as described in 2.2.15.1. 

2.2.19 Data Analysis 

All statistical analyses were performed using GraphPad Prism version 4 software 

by ANOVA test with Dunnett’s corrections. If not applicable, data sets were 

analysed with Student t-test. Results with p values<0.05 were considered to be 

statistically significant. 
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Chapter Three


Results & Discussion


3. Characterisation of the CXCR3 receptor in human T lymphocytes and 

CXCR3 transfected cells 

3.1 Characterisation of CXCR3 receptor expression and its atypical variants 

in human T lymphocytes 

The transition from bone marrow-resident hematopoietic stem cells, to 

development as T cell precursors in the thymus, migration into secondary 

lymphoid organs for immune response initiation and maturation into circulating 

memory and effector T cells, involves sequentially co-ordinated changes in the 

profiles of chemokine receptor expression to guide cells into the appropriate 

microenvironment. Characterisation of expression profiles of chemokine receptors 

has been instrumental in defining subsets of human memory T cells with distinct 

migratory capacity and effector functions. For example, CCR7 expression 

discriminates between lymph node-homing central memory T cells and tissue-

homing effector memory T cells. In addition, CXCR3, CXCR6 and CCR5 are 

preferentially expressed on Th1 cells, while CCR3, CCR4 and CCR8 (along with 

the PGD2 receptor CRTH2) are expressed on Th2 cells (Sallusto et al., 1998). 

More recently, CCR2, CCR6 and CCR9 have been reported to be expressed on 

Th17 cells (Sato et al., 2007; Singh et al., 2008). 

Chemokines and their receptors have been divided into two classes depending on 

whether their expression is constitutive or inducible. Naïve T cells express a 

limited number of chemokine receptors. Following T cell activation, the number of 

chemokine receptors present on the surface increases, allowing the cells to 

respond to chemokine gradients. For example, CXCR3 receptors become up 

regulated on the surface of activated Th1 cells. CXCR3 has been linked to many 

inflammatory disorders including atherosclerosis (Mach et al., 1999), autoimmune 

diseases (Sorensen et al., 1999), transplant rejection (Hancock et al., 2000; 

Hancock et al., 2001), and viral infections (Liu et al., 2000). These findings have 

made CXCR3 and its agonists CXCL9, CXCL10 and CXCL11 a popular target for 

the development of new potential anti-inflammatory strategies. In recent years 
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however, two main variants of the CXCR3 receptor have been identified, namely 

CXCR3-B (Lasagni et al., 2003) and CXCR3-alt (Ehlert et al., 2004). Both variants 

are generated via alternative splicing of mRNA encoding the original CXCR3 

receptor (henceforth referred to as CXCR3-A). In the case of CXCR3-B, 

alternative splicing resulted in extension of the NH3 terminus by 52 amino acids 

and this form of receptor has been shown to bind Platelet Factor 4 (PF4/CXCL4) in 

addition to the three classical CXCR3 agonists (Lasagni et al., 2003). In contrast, 

CXCR3-alt is a truncated form of CXCR3 (lacking 101 amino acids) with a 

drastically changed COOH terminus and 4-5 transmembrane domain protein 

structure (Ehlert et al., 2004). 

Expression of the CXCR3 receptor has been mainly associated with T 

lymphocytes, preferentially with Th1 phenotype. Freshly isolated T cells have been 

shown to have low levels of CXCR3 expression on the surface, and this 

expression is highly up-regulated during T cell activation. In the present study, we 

evaluate surface expression of the CXCR3 receptor on human T lymphocytes by 

flow cytometry, using fluorescently labelled anti-human CXCR3 antibodies (clone 

49801). This antibody, similarly to other commonly used anti-human CXCR3 

antibodies, does not distinguish between existing spliced variants of CXCR3. 

Therefore, we investigated the presence of RNA transcripts of each of the known 

isoforms of CXCR3 in human T lymphocytes by reverse transcription (RT) PCR. 

RT PCR analysis was also used to determine expression of CXCR3 and its 

atypical isoforms in other human blood cells and tissues. 

3.1.1 Determination of surface expression of CXCR3 in freshly isolated and 

activated human T lymphocytes 

As shown in Figure 3.1A, freshly isolated pan T cells, separated using the MACS 

system, represent a pure population of CD3 positive cells. These cells exhibit 

moderate levels of CXCR3 on the surface, which was significantly increased 

following activation with CD3/CD28 antibody-coated micro beads and culture in 

the presence of IL-2 (Figure 3.1C). High expression of surface CXCR3 was also 

detected on day 9 PBMCs, activated with SEB and IL-2 (Figure 3.1B). In addition, 

the presence of CXCR3 was detected on CD3+ cells and subsequently on both 

CD4+ and CD8+ populations (Figure 3.1D). 
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Figure 3.1 Surface expression of the CXCR3 receptor on freshly isolated and activated 
human T lymphocytes. (A) T cells purified on the MACS column using the Pan T cells 
isolation kit, represent a pure population of CD3+ 

cells. (B) Surface expression of CXCR3 on 
day 9, SEB/IL-2 activated PBMCs. (C) Surface expression of CXCR3 on freshly isolated (left 
histogram) and CD3/CD28 and IL-2 activated, day 5 and 10 T cells (middle and right 
histogram, respectively). (D) Representative staining for CXCR3 on CD3+, CD4+ 

and CD8+ 

cells activated with SEB and IL-2 (day 9) is shown in the upper panel, staining with suitable 
isotype control is below. Staining with anti-CD3 or anti CXCR3 antibodies is shown as open 
histograms (red line), staining with isotype controls is presented as filled histograms (blue). 
Presented data are representative for at least four independent experiments using blood from 
different donors. 
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3.1.2 Determination of expression of different variants of CXCR3 in T 

lymphocytes at mRNA level 

This data shows that at the mRNA level, three spliced variants of CXCR3, namely 

CXCR3-A, CXCR3-B and CXCR3-alt are expressed on SEB/IL-2 activated T 

lymphocytes. Primers designed to specifically bind to CXCR3-A and CXCR3-B 

gave 770 and 545bp products, respectively (Figure 3.2). We were also able to 

detect the presence of an additional variant of CXCR3, namely CXCR3-alt. This is 

a truncated version of CXCR3, generated by alternative splicing via exon skipping, 

with an altered C terminus and predicted to have only 4-5 transmembrane 

domains (Ehlert et al., 2004). 

Figure 3.2 Expression of CXCR3 and its atypical variants at mRNA level in human 
activated T lymphocytes. PCR analysis was performed using cDNA from day 9-12 SEB/IL-2 
stimulated T cells as template and specific primers sets. Arrows point out bands 
corresponding to mRNA expression of each of CXCR3 variants, CXCR3-A, CXCR3-alt, 
CXCR3-B and β-actin. RT +/- indicates presence or absence of Reverse Transcriptase. 
Presented data are representative for at least 3 independent experiment using blood from 
different donors. 
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3.1.3 Determination of the expression of different variants of CXCR3 in 

other blood cells and human tissues 

In order to determine expression of CXCR3-A and its two splice variants, CXCR3-

B and CXCR3-alt in other blood cells and tissues, PCR analysis using first strand 

cDNA preparations from RNA from various tissues/cells (MTC Panels, Clontech) 

as templates and primers specific to CXCR3-A, CXCR3-B and CXCR3-alt genes 

(the same primers set which was used in section 3.1.2) was performed. G3PDH 

PCR primers (Clontech) were used as a control. 

According to PCR results, mRNA encoding CXCR3 and its variants was present in 

different types of human blood cells. That includes both resting and activated 

CD4+ and CD8+ T cells, B cells and monocytes (Figure 3.3 upper case). PCR 

analysis revealed expression of CXCR3-A mRNA in samples obtained from 

human spleen, lymph node, thymus leukocytes and at low levels in samples from 

tonsil, bone marrow and foetal liver. CXCR3-B was found in all samples apart from 

bone marrow and foetal liver. These results should be carefully interpreted 

because a contamination of templates with genomic DNA cannot be excluded. The 

commercial sources of cDNA used lacked the appropriate RT- controls which 

would be required in order to confirm the presence of mRNA for CXCR3 variants 

and absence of genomic DNA in the sample. To overcome this problem, primers 

should be designed to bind within different exons as was done for CXCR3-alt. 

PCR using primers specific for CXCR3-alt, apart from band predicted for this 

variant (detected in all samples apart from bone marrow and foetal liver), gave an 

additional product of 1000bp (pointed out by the large arrow). Presence of this 

band suggests that samples may be contaminated, as it is the correct size to be a 

product amplified from genomic DNA. 
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Figure 3.3 PCR analysis of CXCR3 expression and its atypical variants in human 
blood cells and the human immune system. PCR analysis was performed using cDNA 
preparations from the Human Blood Fractions MTC™ Panel (upper case) or Human 
Immune System MTC™ Panel (lower case) (MTC Panels, Clontech) as template and 
specific primers sets. Arrows indicate bands corresponding to mRNA expression of each 
of the CXCR3 variants; CXCR3-A, CXCR3-alt, CXCR3-B and G3PDH. Large arrows 
indicate an additional band (size around 1000bp) appearing after using primers binding to 
CXCR3-alt cDNAHuman Blood Fractions MTC™ Panel 

1. mononuclear cells (B & T-lymphocytes and monocytes) 
2. resting CD8+ cells (T-supressor/cytotoxic) 
3. resting CD4+ cells 
4. resting CD14+ cells (monocytes) 
5. resting CD19+ cells 
6. activated CD19+ cells 
7. activated mononuclear cells 
8. activated CD4+ cells 
9. activated CD8+ cells 
10. control (dH20) 

Human Immune System MTC™ Panel 
11. spleen 
12. lymph node 
13. thymus 
14. tonsil 
15. leukocyte, peripheral blood 
16. bone marrow 
17. foetal liver 
18. control (dH20) 
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3.2 Agonistinduced downregulation of CXCR3 surface expression in 

human T lymphocytes 

Prolonged agonist stimulation leads to receptor desensitisation, which in many 

cases leads to receptor internalization. This provides a regulatory mechanism for 

intracellular responses by reducing the number of surface-expressed receptors. 

Following ligand binding, there are two major routes whereby GPCRs are 

internalized into cells. The first and most well-defined route involves the binding of 

arrestin to the phosphorylated receptor, which leads to clathrin binding. The 

receptor-arrestin complex is then sequestered in clathrin-coated pits. This pathway 

is often considered a default system for degradation and recycling of receptors 

(Pelchen-Matthews et al., 1999; Shenoy and Lefkowitz, 2003). The second 

pathway involves invaginations of the cell membrane known as caveolae and 

functions independently of clathrin-coated pits (Mueller et al., 2002; Orlandi and 

Fishman, 1998). 

Within this study, down regulation of CXCR3 receptor surface expression upon 

exposure to its agonists CXCL9, CXCL10, CXCL11 and CXCL4 in human SEB/IL-

2 activated T cells was investigated. The effect of small noncompetitive CXCR3 

antagonists on CXCL11 induced internalization was also examined. Furthermore, 

mechanisms of CXCL11-mediated CXCR3 internalization using a variety of 

inhibitors blocking distinct endocytosis pathways and cell signaling pathways 

including PI3K, PLC and PKC were re-evaluated (Sauty et al., 2001). 

Internalized receptors can face two potential fates. Firstly, the receptor can be 

recycled back to plasma membrane though rapid or slow recycling pathways (Neel 

et al., 2005). Another potential fate is that receptors pass through the endosomal 

system followed by direction to lysosomes for degradation. This may lead to down-

regulation of receptor expression (Neel et al., 2005). 

3.2.1 Concentration and time dependent internalization of CXCR3 in 

response to CXCL9, CXCL10, CXCL11 and CXCL4 

To examine the effect of agonist stimulation on down regulation of CXCR3 surface 

expression, we performed a concentration-dependence study. Day 9-12 SEB/IL-2 

activated T lymphocytes were exposed to various concentrations of each CXCR3 

105 



Anna Korniejewska, 2009 Chapter Three Results & Discussion 

agonist, CXCL9, CXCL10, CXCL11 over 30 minutes (Figure 3.4A) and then 

analysed by FACS for CXCR3 surface expression. Incubation with the highest 

(300 nM) concentrations of CXCL9 and CXCL10 led to a 50-60% reduction in 

surface expression of CXCR3 respectively. Similar to published data, results have 

shown that CXCL11 is the most potent and efficient inducer of CXCR3 

internalization. Maximum loss of CXCR3 from the surface in response to CXCL11 

(85% reduction) was observed after stimulation with 300 nM of the agonist. In 

contrast, no loss of surface CXCR3 was observed in response to CXCL4. In a 

kinetic analysis of loss of surface receptor expression it was observed that in the 

case of all three agonists: (CXCL9, 10 and 11), maximum receptor internalization 

occurred within the first 5 minutes of stimulation with 100 nM of agonist (Figure 

3.4B). This detected loss of CXCR3 surface expression was a ~75% reduction 

with CXCL9, ~60% with CXCL10 and ~20% with CXCL11. Again it was not 

possible to observe any effect with CXCL4. In order to examine any reappearance 

of CXCR3 to the surface in the presence of agonist, T cells were exposed to 

CXCL9, CXCL10 and CXCL11 for up to 3 hours and CXCR3 expression was 

analysed as before (Figure 3.4C). Results showed that at longer time points in the 

presence of agonist, there was a sustained slow down-regulation of CXCR3 with 

little or no recovery of surface expression. 

In order to visualize the internalized agonist, biotin-labelled recombinant CXCL11 

was incubated with FITC-streptavidin to form complexes, and used to stimulate T 

cells. A biotinylated agonist uptake assay was performed as described in Materials 

and Methods. Analysis using fluorescent microscopy revealed the presence of 

fluorescent puncta and aggregates in the cell cytoplasm indicating a possible 

uptake of labelled CXCL11 (Figure 3.4D). Stimulated cells exhibited different 

levels of chemokine uptake and in some cases uptake was difficult to detect. 

Therefore in order to compare the abilities of biotinylated and native CXCL11 to 

induce down-regulation of CXCR3, T cells were stimulated in the presence of each 

agonist (100 nM) and flow cytometry analysis was performed as before. Obtained 

results indicated an impaired ability of biotinylated CXCL11 to internalize surface 

CXCR3 suggesting that the addition of biotin affects its interaction with CXCR3 

(Figure 3.4E). 
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Figure 3.4 Concentration and time dependent agonistinduced downregulation of 
surface expression of CXCR3 receptors on human activated T lymphocytes. PTO 
for figure legend. 
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Figure 3.4 Concentration and time dependent agonistinduced downregulation of 
surface expression of CXCR3 receptors on human activated T lymphocytes. (A), 
Day 9-12, SEB/IL-2 activated T cells were stimulated with increasing concentrations of 
CXCL11, CXCL10, CXCL9 or CXCL4 over 30 minutes or (B) with 100 nM of each agonist 
over various periods of time, up to 60 minutes or 3 hours (C). All incubations were done at 
37°C. Agonists were then washed off and cells were incubated with an anti-CXCR3 
antibody or isotype control at 4°C followed by FACS analysis as described in Materials 
and Methods. Decrease in CXCR3 surface expression is expressed as a percentage of 
baseline surface expression using following formula: MFI (Mean Fluorescence Intensity) 
of stimulated cells/MFI of untreated cells *100. Shown data represents an average +/-
SEM of at least 3 independent experiments using blood from different donors.(D), Uptake 
of biotin-streptavidin-FITC labelled CXCL11. Day 9-12, SEB/IL-2 activated T cells were 
incubated for 30 minutes in the presence of 100 nM biotin-streptavidin-FITC labelled 

108 



Anna Korniejewska, 2009 Chapter Three Results & Discussion 

CXCL11. Cells were then washed, incubated with DAPI at a concentration of 10µg/ml 
(blue), centrifuged and mounted onto microscope cover slips using non-fluorescent 
mounting solution. Samples were then left O/N and analyzed by fluorescence microscopy. 
(E), Comparison of abilities of native, recombinant CXCL11 versus biotinylated CXCL11 to 
induce CXCR3 down-regulation. 

3.2.5 3.2.2 Effect of CXCR3 antagonists on CXCR3 agonistinduced 

internalization of CXCR3 

For further analysis of agonist-mediated down-regulation of CXCR3 surface 

expression on T cells, we used three small non-competitive CXCR3 antagonists 

namely, T487, its derivative, NBI-74330 and the N-oxide metabolite of NBI-74330 

(Jopling et al., 2007; Medina et al., 2002; Medina et al., 2005; Schall et al., 2001; 

Wijtmans et al., 2008; Johnson et al., 2007). Within presented work an effect of 

increasing concentrations of CXCR3 antagonists against CXCL11 mediated 

responses was addressed. We choose this chemokine because it was found to be 

the most potent and efficient inducer of CXCR3 internalization in our previous 

experiments. 

Pre-incubation of T cells with various concentrations of each antagonist (0.001 nM 

-10 µM) for 30 minutes followed by stimulation with agonist led to a concentration 

dependent inhibition of CXCL11-induced internalization of CXCR3 (Figure 3.5A). 

T487 was less potent than both NBI-74330 and N-oxide-NBI-74330 which 

presented similar potency (IC50s can be found in Chapter Seven, Section 7.5). 

100 nM of T487 decreased the CXCL11-induced effect on CXCR3 surface 

expression significantly, whereas NBI-74330 and its oxidised metabolite showed a 

similar effect at 0.1 nM. At the highest concentration (10 µM) all three antagonists 

have shown comparable potency, however maximal inhibition was achieved with 

100 nM of NBI-74330. Total inhibition of CXCL11 mediated internalization was not 

achieved after treatment with the compounds. The maximum effect was observed 

after using 100 nM - 10 µM concentration of antagonists and led to an 80% 

inhibition of CXCL11 induced internalization. 

After examination of the effect of CXCR3 antagonists on CXCR3 surface down-

regulation mediated by CXCL11, the ability of NBI-74330 to inhibit CXCL9 and 

CXCL10-induced down-regulation of CXCR3 was investigated (Figure 3.5B). In 

this experiment, T cells were pre-treated with a single, 100 nM concentration of the 
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compound followed by stimulation with 100 nM of each agonist for 30 min. Higher 

concentrations of CXCL9 and CXCL10 (in comparison to CXCL11) were chosen 

due to their lower efficiency and potency in previous internalization assays. Upon 

treatment with CXCL9 and CXCL10, expression of CXCR3 was reduced by 20 and 

45%, respectively. NBI-74330 had an effect on this loss of surface expression of 

CXCR3 however it was not able to block it completely (Figure 3.5B). Similar to our 

previous results using CXCL11, some level of agonist-induced CXCR3 

internalization seems to occur despite the presence of antagonist. 

110 



Anna Korniejewska, 2009 Chapter Three Results & Discussion


A.


B. 

Figure 3.5 receptors in T lymphocytes. (A), Effect of CXCR3 antagonists on CXCL11-
induced internalization of CXCR3. Day 9-12, SEB/IL-2 activated T lymphocytes were 
incubated in the presence or absence (DMSO only, open bars) of various concentrations 
of one of the compounds: T487 (0.1 nM-10 µM) (top left panel), NBI-74330 (0.001 nM-10 
µM) (top right panel) or N-oxide-metabolite, followed by stimulation with 30 nM CXCL11 
for 5 mins. The percentage inhibition by all three CXCR3 antagonists is depicted in bottom 
right panel. White bars indicate cells stimulated by CXCL11, without antagonists 
treatment. (B), Effect NBI-74330 on CXCL9 and CXCL10 induced internalization of 
CXCR3 in T lymphocytes. Day 9-12, SEB/IL-2 activated T cells were incubated in the 
presence or absence of of NBI-74330 (100 nM) compound for 30 min before being 
stimulated for 30 mins with CXCL9 or CXCL10 (100 nM). All incubations were done at 
37°C. Agonists were then washed off and cells were incubated with anti-CXCR3 antibody 
or isotype control at 4°C followed by analysis on FACS as described in Materials and 
Methods. Decrease in CXCR3 surface expression was expressed as a percentage of 
baseline surface expression. Shown data represent average +/- SEM of at least 3 
independent experiments using blood from different donors. Data was analysed using 
One-way Anova with repeated measures followed by Dunnett’s correction.* p<0.05, 
**p<0.01 compared with CXCL11 treatment alone. 

111 



Anna Korniejewska, 2009 Chapter Three Results & Discussion 

3.2.3 Mechanisms and regulation of CXCL11–induced internalization of 

CXCR3 in human T cells 

Examination of endocytic pathways involved in agonistinduced surface 

downregulation of CXCR3 receptor 

To examine which of the endocytic pathways are involved in CXCL11-induced 

CXCR3 internalization, the inhibitors which have been shown to abolish either 

clathrin or caveolae-dependent routes of endocytosis were utilized. Hypertonic 

sucrose and chlorpromazine have been demonstrated to inhibit the assembly of 

clathrin-coated pits, whereas nystatin and filipin can block internalization via 

caveolae (Harder et al., 1997; Okamoto et al., 2000). Filipin is a polyene antibiotic 

with antifungal properties, which binds selectively to cholesterol, forming 

complexes in the plasma membrane that sequester cholesterol and induce 

structural disorder (Bolard, 1986; Mcgookey et al., 1983; Ohtani et al., 1989; 

Robinson and Karnovsky, 1980). Methyl-β-cyclodextrin (MβCD) was also used to 

evaluate the involvement of cholesterol in CXCR3 internalization. MβCD is a 

membrane impermeable, small cyclic oligosaccharide with a hydrophobic core that 

selectively and rapidly extracts cholesterol from the plasma membrane (Kilsdonk 

et al., 1995; Ohtani et al., 1989). 

Incubation of T cells with 0.4 M sucrose did not have any effect on CXCR3 

internalization, in contrast to chlorpromazine which, at 25 µg/mL, significantly 

inhibited internalization by 40% (Figure 3.6A). Treatment of cells with 5 µg/mL of 

filipin or 50 µg/mL of nystatin internalization led to minor inhibition of agonist-

induced loss of surface expression of CXCR3, however it did not reach statistical 

significance (Figure 3.6B). In contrast, cholesterol disruption using 10 mM MβCD 

resulted in significant inhibition of CXCR3 surface down-regulation by 40% (Figure 

3.6C). Similarly, no effect with either clathrin or caveolae-dependent pathway 

inhibitors was observed in HEK293 cells expressing CXCR3 (Figure 3.6 C and D). 

In addition, it is important to notice that in transfected HEK293 cells, stimulation 

with CXCL11 led to down-regulation of surface CXCR3 to a lesser extend than it 

was observed in T cells (Figure 3.36D). 
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Figure 3.6 Mechanisms of CXCR3 internalization in human activated T cells and 
transfected HEK293 cells. The level of CXCR3 internalization in T cells in response to 
stimulation with 30 nM CXCL11 after pretreatment in the presence or absence of 0.4 M 
sucrose and 25 µg/mL chlorpromazine (A), 5 µg/mL filipin and 50 µg/mL nystatin (B), or 
up to 10 mM MβCD (C). CXCL11-induced down-regulation of surface CXCR3 in 
transiently transfected HEK293 cells (D). Effect of sucrose and chlorpromazine (E), 
nystatin and filipin (F) on CXCL11 (100nM) –induced CXCR3 internalization in CXCR3 
expressing HEK293 cells. All incubations were done at 37°C. Cell surface CXCR3 
expression was measured using flow cytometry as described in Materials and Methods. 
Decrease in CXCR3 surface expression is expressed as a percentage of baseline surface 
expression. Data was analysed using One-way Anova with repeated measures followed 
by Dunnett’s correction.* p<0.05, **p<0.01 compared with CXCL11 treatment alone. Data 
represent the mean +/- SEM of at least three different experiments for T cells or two 
different experiments for HEK293 cells. 
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Despite some negative results obtained using pharmacological interference with 

endocytic pathways, these data should be carefully interpreted considering the 

lack of positive controls showing pharmacological activity of compounds. 

Demonstration of the compounds activities in well known endocytic pathways for 

example transferrin endocytosis would be adviced in order to draw a definite 

conclusions from obtained results. 

In order to examine other mechanisms responsible for agonist-induced CXCR3 

internalization, we investigated the involvement of different intracellular signalling 

pathways using selective inhibitors and activators. Agonist binding to chemokine 

receptors leads to activation of variety of intracellular signal transduction 

pathways, including heterotrimeric G proteins, tyrosine kinases, PI3K and PKC 

(Neer, 1995; Ward et al., 1998). 

Effect of pertussis toxin on CXCL11induced CXCR3 surface down

regulation 

Gi has been described to be crucial for CXCR3-induced chemotaxis and elevation 

of extracellular calcium (Neer, 1995). To address the role of Gi in CXCR3 

internalisation, T cells were pre-treated with 10 ng/mL of PTX for 16h at 37°C prior 

to stimulation with 30 nM CXCL11 and the expression of CXCR3 analysed as 

above (Figure 3.7A). PTX, at the concentration that inhibited CXCR3-mediated Erk 

and Akt phosphorylation in previous experiments (shown in Figure 3.12), did not 

have any effect on down-regulation of surface CXCR3. This suggests that 

CXCL11 induced internalisation of CXCR3 in independent of Gαi activation. 

Effect of PI3K and PIKfyve inhibitors in CXCL11induced CXCR3 surface 

downregulation 

To evaluate the role of PI3K in mediating the CXCR3 internalisation signal, three 

broad spectrum PI3K inhibitors, namely LY294002, Wortmanin and ZSTK474 

(Figure 3.7 B,C,D) were utilized. 60 min incubation with increasing concentrations 

of LY294002 (3-30 µM), Wortmannin (30-300 nM) and ZSTK474 0.1-10 µM did not 

affect the loss of CXCR3 surface expression stimulated by CXCL11, suggesting 

that PI3K is not required for this biological process. 
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PIKfyve is the mammalian type III PtdInsP kinase that generates PtdIns(3,5)P2 

from PtdIns3P substrate (Mcewen et al., 1999). PIKfyve has been shown to be 

involved in maintaining endomembrane homeostasis in mammalian cells. 

Overexpression of a mutated form of PIKfyve or knockdown of PIKfyve using 

short interfering RNA siRNA in COS7 or human embryonic kidney 293 cells 

causes swelling of an endocytic vacuole-like compartment that resembles late 

endosomes (Ikonomov et al., 2003; Rutherford et al., 2006). PtdIns(3,5)P2 has 

also been shown to have a role in the retrieval of cargoes to the trans-Golgi 

network (TGN; Rutherford et al., 2006) and at the TGN (Ikonomov et al., 2003). 

In order to determine the role of PIKfyve in CXCR3 endocytosis, a 

pyridofuropyrimidine compound, YM201636, with high in vitro inhibitory activity 

against PIKfyve (IC50 of 33 nM) identified during a drug discovery programme 

directed at PI3K was introduced to the study (Hayakawa et al., 2006). T cells were 

incubated in the presence of 3, 10 or 30 µM of YM201636 and its effect on 

CXCL11-induced down-regulation of surface CXCR3 was assayed. We observed 

that only the highest concentration of YM201636 significantly blocked CXCL11-

mediated internalisation of CXCR3 (Figure 3.8A). Because the concentration used 

was approximately 1000 fold higher then the published half-maximal inhibitory 

concentration towards PIKfyve, observed inhibition may be explained as an off-

target effect. In parallel, an effect of YM201636 on CXCL11-induced 

phosphorylation of Akt and p44/p42 MAP kinase in T cells was tested and 

inhibitory effects of the compound using lower 1-10 µM concentrations was 

observed (Figure 3.8B). 30 minutes incubation with 1 µM YM201636 led to 

complete attenuation of the phospho- Akt signal and partial inhibition of phospho-

p44/p42 MAPK suggesting that unlike CXCR3 internalisation, PIKfyve may be 

involved in CXCR3- mediated signalling in T cells. 

Effect of PKC inhibitors on CXCL11induced CXCR3 surface downregulation 

It has been previously reported that activation of PKC leads to internalisation of 

CXCR4 and CCR3 chemokine receptors (Zimmermann et al., 1999; Signoret et 

al., 1997). Therefore in our study a known PKC activator – phorbol myristate 

acetate (PMA) was used to determine its ability to induce CXCR3 internalisation 
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(Figure 3.8C). Treatment of T cells with 1, 10 and 100 nM of PMA led to a 

concentration dependent down-regulation of CXCR3 surface expression, as 

assessed by FACS, by 50%. This suggests that global activation of PKC can lead 

to agonist independent CXCR3 internalisation and may also be important for 

internalisation in response to agonist binding. Therefore, cells were pre-treated 

with widely used PKC-delta inhibitors, Rottlerin and RO31-8220 which inhibit 

conventional (α, β, γ) and novel (δ, ε, η) PKC isoforms at relatively low 

concentrations (EC50s, approximately 20–100 nM) and the atypical PKC- at higher 

concentrations (EC50, 1–4 µM) (Standaert et al., 1997). Incubation with both 

inhibitors at the 30 µM concentration resulted in significant reduction of CXCL11-

induced internalisation of CXCR3 (Figure 3.8D, E). Therefore, PKC appears to be 

important in agonist independent and dependent down-regulation of surface 

CXCR3. 

Effect of PLC inhibition on CXCL11induced CXCR3 surface downregulation 

The effect of the selective PLC inhibitor U73122 and its inactive close analogue 

U73343 (Bleasdale et al., 1990) was tested. Incubation of T cells for 30 min with 3 

and 10 µM with both compounds did not have any effect on CXCL11-mediated 

down-regulation of surface CXCR3 (Figure 3.8F). In contrast increasing the 

concentration of U73122 to 30 µM had a dramatic effect and completely blocked 

CXCR3 down-regulation. No effect was observed using 30 µM U73343. These 

results suggest a potential involvement of PLC in agonist-induced down-regulation 

of CXCR3 in T cells. 
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Figure 3.7 Involvement of Gααααi and PI3K in CXCL11induced internalization of CXCR3 in 
human T cells. Internalization of CXCR3 in response to 30 nM CXCL11 in the presence or 
absence of PTX (1-100 ng/mL) (A), PI3K inhibitors: LY294002 (3-30 µM) (B), Wortmannin (30-
300 nM) (C) and ZSTK474 (0.1-10 µM) (D). Cells were incubated with appropriate 
concentrations of each inhibitor or vehicle control for 30 mins at 37°C before being stimulated 
with 30 nM CXCL11 for 5 mins at 37°C. Cell surface CXCR3 expression was measured using 
flow cytometry as described in Materials and Methods. Decrease in CXCR3 surface 
expression was expressed as a percentage of baseline surface expression. Data was 
analysed using One-way Anova with repeated measures followed by Dunnett’s correction, 
compared with CXCL11 treatment alone. Data represent the mean +/- SEM of at least three 
different experiments. 
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Figure 3.8 Involvement of PIKfyve, PKC and PLC in CXCL11induced internalization 
of CXCR3 in human T cells. Effect of PIKfyve inhibititor (3-30 µM) (A) PMA (1-100 
ng/mL) (C), Rottlerin (3-30 µM) (D), Ro31-8220 (1-30 µM) (E) and U73122 (3-30 µM) (F) 
on CXCL11 induced internalization of CXCR3 in T lymphocytes. Day 9-12 SEB/IL-2 
activated T cells were incubated with appropriate concentrations of each inhibitor or 
vehicle control for 30 mins at 37°C before being stimulated with 30 nM CXCL11 for 5 mins 
at 37°C. Cell surface expression of CXCR3 was measured using flow cytometry as 
described in Materials and Methods. Decrease in CXCR3 surface expression was 
expressed as a percentage of baseline surface expression. Panel (B) shows the effect of 
PIKfyve inhibition on CXCL11-induced Akt and Erk phosphorylation in T cells. Previously 
activated T cells were incubated with appropriate concentrations of each inhibitor or 
vehicle (DMSO) for 30 mins at 37°C before being stimulated with 1 nM of CXCL11 for the 
required period of time. Phosphorylation of p44/42 MAPK and Akt/PKB was determined by 
Western blot analysis using specific anti–phosho-p44/p42 MAP kinase (Thr202/Tyr204) 
and anti-phospho-Akt (Ser476) antibodies, respectively. To confirm equal loading, 
membranes were stripped and reprobed using anti-Erk1 antibody. Data were analysed 
using One-way Anova with repeated measures followed by Dunnett’s correction.*, p<0.05, 
**p<0.01 compared with CXCL11 treatment alone. Data represent the mean +/- SEM of at 
least three different experiments. 
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3.2.4 CXCR3 surface expression recovery following agonist exposure 

To determine CXCR3 cell surface replenishment after agonist stimulated 

internalization, receptor down-regulation was initiated as described above. After 

incubation with CXCL11 for 5 minutes, cells were washed three times with pre-

warmed Hank’s Buffered Salt Solution (HBSS) to remove unbound CXCL11. 

Surface expression of CXCR3 was assessed as described previously, after 30, 60, 

120 and 180 minutes incubation in serum free medium (Figure 3.9A). 

Reappearance of CXCR3 on the cell surface occurred relatively slowly, and only 

around 80% recovery of basal CXCR3 surface levels was observed within 180 

minutes incubation after stimulation with agonist. This slow rate of CXCR3 cell 

surface recovery may suggest involvement of slow recycling pathway as is the 

case for class B GPCR such as vasopressin type to receptor (Innamorati et al., 

2001; Le Gouill et al., 2002) or its degradation and reappearance to the membrane 

due to de novo synthesis receptor proteins. To examine if protein synthesis plays 

role in CXCR3 surface recovery in T cells, we preincubated cells with 10 µg/mL of 

cycloheximide for 1h prior to induction of internalization with CXCL11 and left them 

to recover in the presence of cycloheximide. Treatment of T cells with 

cycloheximide significantly inhibited CXCR3 cell surface replenishment suggesting 

that CXCR3 surface recovery occurs at least partially due to synthesis of the new 

receptor molecules. Alternatively involvement of a chaperon protein could be 

possible. This finding is opposite from these reported on other chemokine 

receptors such as CXCR6 and CCR5 (Mueller et. al 2002; Le Gouill et. al 2002). 

To address the involvement of endocytic recycling in CXCR3 surface recovery, we 

used the fungal metabolite Brefeldin A (BFA), a known PLD inhibitor, which has 

been shown to interfere with the function of Golgi apparatus therefore, to inhibit 

recycling. Internalization of CXCR3 was initiated as before and T cells were 

incubated for recovery, as described, in the presence or absence of BFA. This 

should allow normal internalization, and BFA should only affect the recovery 

phase. Due to inhibitory effect of BFA on surface CXCR3 reappearance (Figure 

3.9C), it was concluded that the recovery of the receptor is dependent of the Golgi 

function. 
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Figure 3.9 Recovery of CXCR3 surface expression on T lymphocytes after agonist 
stimulation. (A), Reappearance of CXCR3 surface expression after stimulation with 
agonist. (B), effect of protein synthesis inhibition on the surface CXCR3 recovery. (C), 
effect of BFA on CXCR3 surface recovery. Day 9-12 SEB/IL-2 activated T lymphocytes 
were exposed to 30 nM of CXCL11 for 5 min. Alternatively T cells were incubated with 10 
µg/mL of cycloheximide for 1 hour before exposure to agonist and also added during 
recovery period. BFA (10 µg/mL) was added during recovery phase. Samples were then 
washed 3 times in HBSS buffer prewarmed at 37°C to remove unbound chemokine and 
resuspended in serum free RPMI-1640 medium. CXCR3 surface expression was 
determined at times 0, 30, 60, 120 and 180 mins after chemokine removal by washing. 
Data represent the mean +/- SEM of at least three different experiments. Data was 
analysed using student t test. *, p<0.05 compared with time matched control. 
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3.3 Analysis of biochemical signals mediated via CXCR3 receptor 

Binding of agonist to CXCR3 results in cellular responses such as integrin 

activation, actin reorganization and directional migration. In T lymphocytes, 

stimulation of CXCR3 by its agonists leads to elevation of intracellular calcium 

(Rabin et al., 1999) and activation of phosphoinositol-3-kinase (PI3K) and Akt-

dependent signaling as well as the p44/p42 mitogen-activated protein kinase 

(MAPK) pathways (Smit et al., 2003). CXCR3 activation have also been shown to 

induce rapid tyrosine phosphorylation of several proteins including Zeta-

associated protein of 70 000 MW (ZAP-70), linker for the activation of T cells (LAT) 

and phospholipase-C-γ1 (PLCγ1) (Dar and Knechtle, 2007). In this study we 

focused on further examination of several aspects of cellular signalling via CXCR3, 

including intracellular calcium elevation and phosphorylation of certain 

downstream effectors including p44/p42 Mitogen Activated Protein Kinase (Erk1/2) 

and PI3K/Akt dependent pathways. 

The aim of this study was examine the role of CXCL4 and CXCR3-B in 

biochemical responses in previously activated T cells and to re-investigate the role 

of chemokines CXCL9, CXCL10 and CXCL11 in T cells signalling. To achieve this, 

the biochemical responses induced by CXCL4 such as calcium elevation and 

phosphorylation of chemokine receptor downstream effectors such as Akt or 

MAPK were examined and compared with responses mediated by CXCR3 

agonists. In order to further examine CXCL4-induced responses we utilized 

pertussis toxin to establish coupling of CXCR3-B to Gi protein and introduced to 

the study small CXCR3 antagonists to re-investigate the connection between 

CXCL4 and CXCR3. Finally we investigated the effect of CXCR3 and CXCL4 

chemokines stimulation on Akt downstream effector GSK3β protein and mTOR 

pathway compartment S6. Phosphorylation of S6 is also PI3K-dependent and 

therefore can be used as an indirect measurement of PI3K activity. 

Mitogen-activated protein kinases (MAP kinases) family of serine/threonine 

kinases comprises of multiple members among which the best characterized are 

ERK, JNK and the p38 MAPK. The activation of MAPK occurs via subsequent 

phosphorylation of upstream kinases which are differentially regulated by G-

proteins, scaffold, adaptor, substrates and regulator proteins. MAP kinases are 
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involved in multiple cellular processes such as proliferation and differentiation, 

development, inflammatory response and apoptosis (Weston and Davis, 2007). 

Protein kinase B (PKB/Akt), is a serine/threonine kinase that is the best 

characterized downstream effector of PI3Kγ and p85/p110 and therefore can be 

used as an indirect method of measuring of PI3K activity. Akt is a key mediator in 

many cellular processes including growth factor-induced cell survival and 

protection against c-myc induced cell death (Dudek et al., 1997; KauffmanZeh et 

al., 1997; Kulik et al., 1997). 

Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase implicated in 

cellular processes including determination of cell fate and differentiation and its 

action usually inhibits the target proteins (as is the case of glycogen synthase or 

NFAT) (Doble and Woodgett, 2003; Embi et al., 1980; Neal and Clipstone, 2001). 

GSK3 is inhibited by Akt phosphorylation, therefore acting as an activator of many 

signalling pathways blocked by GSK3 (such as dephosphorylation of NFAT). In 

addition GSK3 have been found to be phosphorylated in vitro by p70 S6 kinase 

which is directly activated by MAP kinases, therefore agonists of this cascade 

inhibit GSK3 function (Sutherland et al., 1993; Stambolic and Woodgett, 1994). 

The ribosomal protein S6 is phosphorylated by S6 kinases which are tightly 

controlled by the mTOR (mammalian target of Rapamycin). There are several 

lines of evidences supporting the fact that S6 plays the role in chemotaxis 

(Richardson et al., 2004) but despite the fact of clear role mTOR plays in 

neutrophil migration its role in T cell is still to be elucidated. 

3.3.1 CXCR3 agonists and CXCL4 stimulate elevation of intracellular 

calcium 

Due to the limitations of existing CXCR3-B antibodies, we utilized CXCL4 as a 

indirect marker to establish whether CXCR3-B was functionally expressed on T 

cells, since this has been reported to activate CXCR3-B but not other CXCR3 

isoforms. First the ability of CXCL4 to induce elevation of intracellular calcium in 

comparison with CXCL9, 10 and 11 responses was tested. Previously activated T 

lymphocytes were therefore stimulated with various concentrations of CXCR3 
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agonists or CXCL4 and maximal responses for each concentration were plotted to 

create concentration response curves (Figure 3.10A). High, micromolar 

concentration of CXCL4 was required to induce response comparable to CXCL9 

and CXCL10. In contrast CXCL11 mediated more robust response with the same 

as CXCL9 and CXCL10 concentrations. In kinetics study we stimulated T cells 

with 10 nM concentration of each CXCR3 antagonists and 1 µM of CXCL4. 

Responses induced by CXCL11 were about 2-fold higher than CXCL9, CXCL10 

and CXCL4 (Figure 3.10B). 

3.3.2 Activation of PI3K/Akt and p44/p42 Mitogen Activated Protein Kinase 

pathways by CXCR3 agonists and CXCL4 

It has been previously shown that CXCR3 agonists activate PI3K/Akt and p44/p42 

MAPK however the role of CXCL4 in stimulation of these pathways in T cells is to 

be elicited (Smit et al., 2003). Therefore to address this issue, further study of 

biochemical signals activated in response to these chemokines was performed. 

Previously activated with SEB and expanded in IL-2 day 9-12 T lymphocytes were 

stimulated with CXCR3 agonists and CXCL4, and effect each chemokine on 

PI3K/Akt and p44/p42 MAPK (Erk1/2) pathways was assessed by immunoblotting 

(Figure 3.11). Densitometry was also used to quantify detected responses. The 

CXCR3 agonists CXCL9, CXCL10 and CXCL11 (0.3-100 nM) as well as CXCL4 

(0.3-100 nM) stimulated PI3K/Akt-dependent signalling as measured by 

phosphorylation of Akt/PKB at Ser473. In addition, all agonists stimulated p44/p42 

MAPK phosphorylation at positions Thr 202 and Tyr 204. While the responses to 

CXCL9, CXCL10 and CXCL11 were concentration-dependent, the responses to 

CXCL4 were atypical and did not exhibit obvious concentration-dependency 

(Figure 3.11A). The Akt and p44/p42 MAPK phosphorylation responses to all 

agonists occurred rapidly and transiently with complete attenuation of responses 

after 10 minutes stimulation with each agonist. However, CXCL11-stimulated Akt 

and p44/p42 MAPK phosphorylation was detectable earlier (within 30 seconds) 

and exhibited more sustained kinetics in comparison to the other agonist 

responses (Figure 3.11 B). Furthermore, as shown by Figure 3.11C, 

phosphorylation of Akt induced by CXCL4 as well as CXCL11 (which was used as 

a positive control) was inhibited by pre-incubation with micromolar concentration of 

LY294002 (10 µM). Despite the ability of CXCL4 to induce phosphorylation of 
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p44/42 MAPK and Akt, these responses were generally at lower strength in 

comparison to CXCR3 agonist (blots required longer exposure time). Moreover 

there was noticeable variability in the results obtained with CXCL4. Examples of 

these variations are illustrated in Figure 3.11 (panels showing responses obtained 

for CXCL4- A, B and B’). These differences were exhibited in the strength of 

signal, and could result from variations between donors (e.g. differential 

expression of CXCR3-B). Further reasons for such variability will be highlighted in 

discussion. 
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Figure 3.10 Intracellular calcium flux obtained from activated T lymphocytes in 
response CXCL9, CXCL10, CXCL11 and CXCL4. (A) Concentration response of 
intracellular calcium flux induced in T cells. Day 9-12 SEB/IL-2 activated T cells were 
washed, resuspended in buffer containing calcium as described in Materials and Methods, 
and loaded with 5 µM Fluo-4. Cells were stimulated with different concentrations of each 
agonist (0.3-300 nM or 0.3-1 µM for CXCL4). Changes in fluorescence were measured 
using fluorescence reader. Peak response from each stimulation was taken to created a 
concentration-response curve. (B) Chemokine-induced time-dependent mobilisation of 
intracellular calcium in T cells. Activated T cell were assayed as above, stimulated with 
single concentration of CXCL4, CXCL9, CXCL10 and CXCL11, and induced responses 
were observed against time. Presented data are representative for three independent 
experiments. 
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Figure 3.11 CXCR3 agonists and CXCL4stimulated activation of PI3K/Akt and 
p44/p42 MAPK in human T cells. PTO for figure legend. 
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Figure 3.11 CXCR3 agonists and CXCL4stimulated activation of PI3K/Akt and 
p44/p42 MAPK in human T cells. (A), Concentration dependent and (B), time dependent 
phosphorylation of Akt and p44/p42 MAPK. (C), Effect of LY294002 (10 µM) on CXCL11 
and CXCL4 –induced Akt and p44/42 MAPK phosphorylation. Day 9-12 SEB/IL-2 
activated T cells were washed twice in RPMI-1640 media, resuspended at 2x106 cells/mL 
and stimulated with 0.3-100 nM concentration of CXCL9, 10, 11 or CXCL4 for 2 min or 
with 1 nM of each agonist for required period of time. Control samples were stimulated 
with media. Samples were lysed by centrifugation and addition of solubilisation buffer. 
Lysates containing 1x sample buffer were separated by electrophoresis in 10% SDS-
PAGE, transferred to nitrocellulose membranes, and immunoblotted with a phospho-
specific Akt ab with the affinity for the active Ser473-phosphorylated form of Akt or p44/p42 
MAPK ab with the affinity for the active Thr202/Tyr204 form of Erk. Proteins were visualized 
by ECL. The blots were stripped and reprobed with anti-Erk1 (or S6) antibody to verify 
equal loading and efficiency of the protein transfer. In concentration response study 
p44/p42 MAPK and Akt phosphorylation (from individual experiments) was quantified by 
chemiluminescence and corrected for total Erk 1 expression on stripped blots. Presented 
data are representative for at least three independent experiments using blood from 
different donors. 
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3.3.3 Effect of PTX on CXCR3mediated signalling 

The CXCR3 receptor has been previously shown to be coupled to pertussis toxin 

(PTX)-sensitive Gi protein, yet the CXCR3-B variant has been reported to be 

pertussis toxin-resistant and possibly Gs coupled (Lasagni et al., 2003). Therefore, 

for further investigation of signaling through CXCR3-A and CXCR3-B, T 

lymphocytes were pre-treated for 16 h with 10 ng/ml of pertussis toxin and its 

effect on Akt and Erk1/2 activation was determined. As expected, pre-treatment 

with pertussis toxin completely inhibited CXCL9-, CXCL10- and CXCL11-induced 

phosphorylation of both Akt as well as p44/p42 MAP kinases (Figure 3.12). Given 

the previous reports that CXCL4 mediated effects were via pertussis toxin-

resistant CXCR3-B, it was surprising to find that CXCL4-induced phosphorylation 

of Akt and p44/p42 was inhibited by pertussis toxin in our experimental system. 

3.3.4 Inhibition of CXCR3 signalling by small molecule CXCR3 

antagonists 

In order to further investigate whether the biochemical signalling elicited by CXCL4 

was indeed mediated by a CXCR3 receptor, we utilized the small non-peptide 

CXCR3 antagonists namely, T487 and NBI-74330 compounds. First, we verified 

that these inhibitors targeted CXCR3 by examining their effect on CXCL11-

induced phosphorylation of Akt and p44/p42 MAPK. Effect of oxidized metabolite 

of NBI-74330 was also tested (Figure 3.13A). 1 µM of T487 compound was 

required to completely inhibit CXCL11-triggered signals (Figure 3.13 A, left panel). 

In contrast, NBI-74330 and its metabolite were much more potent and 100 and 

1000 times lower concentrations, respectively were sufficient to blocked signal 

mediated by CXCL11 to basal level (Figure 3.13A, middle and right panels). We 

then examined the effects of single concentrations of CXCR3 antagonists on Akt 

and p44/p42 MAPK phosphorylation induced by CXCL9, CXCL10 and CXCL4 as 

well as CXCR4 agonist – CXCL12 (Figure 3.13 B and C). Both, T487 and NBI-

74330 at the respective concentrations 1 µM and 100 nM, inhibited biochemical 

signal mediated by CXCL9 and CXCL10. In contrast these antagonists had no 

effect on neither CXCL4 nor CXCL12- induced responses. 
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Figure 3.12 Signalling mediated by CXCR3 agonist and CXCL4 is pertussis toxin 
sensitive. Day 9-12 SEB/IL-2 activated T cells were incubated with 10 ng/mL of PTX for 
16 hours or left untreated and stimulated with 1 nM of each agonist for required periods of 
time. Control samples were stimulated with media. Samples were lysed by centrifugation 
and addition of solubilisation buffer. Lysates containing 1x sample buffer were separated 
by electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-specific Akt ab with the affinity for the active Ser473 -
phosphorylated form of Akt or Erk1/2 (p44/p42) ab with the affinity for the active 
Thr202/Tyr204 form of Erk. Proteins were visualized by ECL. The blots were stripped and 
reprobed with anti-Erk1 antibody to verify equal loading and efficiency of the protein 
transfer. Presented data are representative for at least three independent experiments 
using blood from different donors. 
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Figure 3.13 Biochemical signalling mediated by CXCR3 agonists but not CXCL4 is 
sensitive to treatment with small CXCR3 antagonists. Day 9-12 SEB/IL-2 activated T 
cells were pre-incubated for 30 min with (A), 0.1-1000 µM of T487, NBI-74330 or its N-
oxidised metabolite prior to stimulation with 1 nM CXCL11 or (B, C), 1 µM of T487 or 100 
nM of NBI-74330 prior to stimulation with 1 nM of CXCL10, -9, -4 or -12 or left untreated 
(control). Samples were lysed and lysates containing 1x sample buffer were separated by 
electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-specific Akt ab with the affinity for the active Ser473 -
phosphorylated form of Akt or Erk1/2 (p44/p42) ab with the affinity for the active 
Thr202/Tyr204 form of Erk. Proteins were visualized by ECL. The blots were stripped and 
reprobed with anti-Erk1 antibody to verify equal loading and efficiency of the protein 
transfer. Presented data are representative for at least three independent experiments 
using blood from different donors. 
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3.3.5 Phosphorylation of GSK3ββββ and S6 protein by CXCL4 and CXCR3 

chemokines 

In this part of the study another read-out of PI3K/Akt signalling pathway was 

assessed, namely the activation of its down stream effectors glycogen synthase 

kinase 3β (GSK3β) and ribosomal protein 6 (S6). The relative potencies of CXCL4 

and CXCR3 agonists CXCL9, CXCL10 and CXCL11 to phosphorylate GSK3β 

protein which results in its inhibition were examined. Exposure of previously 

activated human T cells to increasing concentrations of CXCL4 for 2 minutes led 

to the minor phosphorylation of endogenous GSK3β with maximum signal 

observed at 3 nM of the chemokine, as assessed using an antibody recognizing 

the phosphorylated form of GSK3β (Figure 3.14A). Stimulation with CXCR3 

chemokines induced concentration-dependent phosphorylation of GSK3β and the 

strongest signal was detected at the highest 100 nM concentration of CXCL9 and 

CXCL11 and 30 nM of CXCL10. Incubation of T cells with 1 nM concentration of 

each chemokine resulted in time-dependent increase in GSK3β phosphorylation. A 

maximal transient increase in phosphorylation of GSK3β was observed after 5 

minutes exposure with CXCL11 and after 2 minutes exposure with CXCL10 

(Figure 3.14B, right panel). The other CXCR3 agonist CXCL9 as well as CXCL4 

also induced time dependent increase in phosphorylation of GSK3β, and maximal 

response occurred after 1 minute of the stimulation (Figure 3.14B, left panel). 

The ability of CXCL4 and CXCR3 agonists to induce the phosphorylation of 

ribosomal protein S6 was also examined. A maximal increase in S6 

phosphorylation was similar for all chemokines used in the experiment and was 

observed after 5 minutes stimulation (Figure 3.14C), suggesting that CXCR3 

agonists and CXCL4 exhibit similar abilities to activate this protein and in turn 

induce increase of translation. 
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Figure 3.14 CXCR3 agonists and CXCL4stimulated phosphorylation of GSK3ββββ and 
S6 in human T cells. Day 9-12 SEB/IL-2 activated T cells were washed twice in RPMI-
1640 media, resuspended at 2x106 cells/mL and stimulated (A), with 0.3-100 nM 
concentration of CXCL9, 10, 11 or CXCL4 for 2 min or (B and C), with 1 nM of each 
agonist for required periods of time. Control samples were stimulated with media. 
Samples were lysed by centrifugation and addition of solubilisation buffer. Lysates 
containing 1x sample buffer were separated by electrophoresis in 10% SDS-PAGE, 
transferred to nitrocellulose membranes, and immunoblotted with a phospho-specific 
GSK3-β ab with the affinity for the active Ser9 (A and B) or with a phospho-specific S6 ab 
with the affinity for the active Ser235/236-phosphorylated form of S6 (C). Proteins were 
visualized by ECL. The blots were stripped and reprobed with anti-Erk1 antibody to verify 
equal loading and efficiency of the protein transfer. Presented data are representative for 
three independent experiments using blood from different donors. 
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3.4 Analysis of CXCR3 – mediated chemotaxis in human T lymphocytes 

Chemokines are crucial components of immunosurveillence and the immune 

response against pathogens, coordinating directional leukocyte migration and 

trafficking of immune cells under homeostatic and inflammatory conditions. 

CXCL9, 10 and 11 are an inflammatory chemokines and their expression is up-

regulated during a variety of inflammatory disorders possibly due to increased 

secretion of interferon-γ. Similarly, CXCR3 expressing effector T cells has been 

localized in inflammatory lesions suggesting the importance of CXCR3 – CXCR3 

agonists interactions in the recruitment of effector T cells to the site of 

inflammation, resulting in T-cell-mediated inflammatory responses (D'Ambrosio et 

al., 2003; Proudfoot, 2002; Viola and Luster, 2008). 

CXCR3-B is an alternatively spliced variant of CXCR3 and it was found to mediate 

apoptotic but not chemotactic signal to micromolar concentrations of CXCL4 in 

microvascular endothelial cell (Lasagni et al., 2003). CXCL4, previously identified 

as a ligand binding to CXCR3-B – stored and released from platelets in 

micromolar concentrations upon platelets activation (Dawes et al., 1983; Files et 

al., 1981). Recent findings report the role of platelets and chemokines CCL5 and 

CXCL4 in stimulation of monocyte arrest upon atherosclerotic endothelium 

(Schober et al., 2002; von Hundelshausen et al., 2001; von Hundelshausen et al., 

2005). Moreover, a clinical study by Pitsilos at al presents evidence for the 

involvement of CXCL4 in early and symptomatic atherosclerosis (Pitsilos et al., 

2003). 

Excessive recruitment of leukocytes is a characteristic feature of inflammation. 

Most anti-inflammatory therapies target leukocytes which have already migrated to 

the site of inflammation. The example of such successful therapy may be the 

interferon-β treatment in patients with multiple sclerosis. Prevention of excessive 

migration of leukocytes by antagonizing chemokine receptors such as CXCR3 

might be a more successful therapeutic approach in treatment of inflammatory 

disorders (Proudfoot, 2002). Moreover the potential specificity of action of 

chemokine receptors makes this class of molecules particularly attractive as a 

drug targets. Therefore antagonism of a given chemokine receptor could have a 

specific action and avoid deleterious side effects (D'Ambrosio et al., 2003). As 
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stated previously, CXCR3 and its agonists are involved in variety of inflammatory 

diseases making this receptor an attractive target in designing of novel anti-

inflammatory therapeutics. It is important therefore, to study and better understand 

chemokine mediated migration of immune cells in vitro. Moreover, an in vitro 

model of lymphocyte migration can be a useful tool in characterization of an effect 

of chemokine receptor antagonism. 

The aim of this part of the project was to re-investigate chemotactic responses 

induced by CXCR3 agonists; CXCL9, CXCL10 and CXCL11 and clarify the role of 

CXCL4 in chemotaxis of previously activated T lymphocytes. 

3.4.1 CXCR3 agonist and CXCL4 induce actin polymerisation in activated T 

cells 

First, the ability of CXCL4 and CXCR3 agonists to induce F-actin polymerisation of 

activated T cells was tested. Flow cytometry technique was used to measure 

increase in TRITC-conjugated phalloidin binding, that stabilizes the filaments 

against depolymerization, following agonist stimulation. Exposure to 1 nM 

concentration of CXCL4 resulted in increase of actin polymerisation with 

maximum effect after 1-2 minute of incubation (Figure 3.15). Similarly rapid and 

transient effect on actin polymerisation was observed following 30-60 seconds 

stimulation with CXCR3 agonists. Longer, 5 minutes incubation with each agonist 

led to decrease of actin polymerisation below basal level. 

3.4.2 CXCR3 agonists but not CXCL4 stimulate migratory responses in 

activated T cells 

As we were able to induce F-actin polymerisation in response to CXCL4 in T cells 

and this induction was comparable to that induced by CXCR3 agonists, we chose 

to further investigate the role CXCL4 in mediating chemotaxis of T cells. All 

CXCR3 agonists induced migratory responses from T lymphocytes activated either 

with SEB/IL-2 or CD3/CD28 antibodies coated beads (Figure 3.16A and B left 

panels, respectively). CXCL11 appeared to be the most potent and efficacious 

chemoattractant and induced a typical bell-shaped migratory response with 

optimal chemotaxis at 1-10 nM. Other CXCR3 agonists, CXCL9 and CXCL10 were 

less efficacious and had lower potency with optimal chemotactic responses at 10-
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100 nM concentration. In contrast we were not able to detect any migratory 

response following stimulation with CXCL4 in activated T cells (Figure 3.16 A and 

B right panels) at the concentration range inducing biochemical signalling (1 nM – 

1 µ). 

Because of the lack of effect of CXCL4 on T cells chemotaxis we then decided to 

examine how CXCR3 antagonists affects chemotaxis mediated by CXCL9, 

CXCL10 and CXCL11. Experiments were started by examining the effect of T487, 

NBI-74330 and N-o-metabolite of NBI-74330 compounds on migratory responses 

using CXCL11 as a chemoattractant. All three antagonists inhibited directional 

migration to CXCL11 in a concentration-dependent manner (Figure 3.17A). T487 

exhibited the lowest potency with IC50’s of 69 nM whereas NBI-74330 and its 

oxidised metabolite were more potent with following IC50’s, 2.3 nM and 0.53 nM-

respectively (Table showing IC50 values is placed in Appendix chapter). We then 

tested the effects of single concentrations of CXCR3 antagonists on CXCL9 and 

CXCL10 – induced chemotaxis of T cells. Migratory responses to CXCL9 and 

CXCL10 were inhibited by both T487 and NBI-74330 at concentrations known to 

elicit close to maximum inhibition of CXCL11 responses (Figure 3.17B). Neither 

T487 nor NBI-74330 had any effect on responses to the CXCR4 agonist CXCL12 

which was used as negative control (Figure 3.17B). 

3.4.3 Effect of PIKfyve inhibition of CXCL11 and CXCL12mediated 

chemotaxis of T cells 

Due to previous observations that treatment with PIKfyve inhibitor had an effect 

on agonist-induced CXCR3 internalization and signalling, we decided to 

investigate its effect on CXCR3-mediated chemotaxis of activated T cells. 

Therefore prior to assaying chemotaxis towards CXCL11, T cells were incubated 

in the presence of 1 or 10 µM of PIKfyve inhibitor YM203616. Treatment with the 

higher concentration of the compound only partially inhibited CXCL11- induced 

directional migration of T cells however this effect did not reach statistical 

significance (Figure 3.18). Moreover YM203616 had no effect on chemotaxis 

towards CXCL12. These results indicate that activity of PIKfyve is not involved in T 

cell directional migration. 
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Figure 3.15 Agonistinduced Factin polymerisation in human T lymphocytes. Day 
9-12 SEB/IL-2 activated T cells were stimulated for 30 seconds, 1, 2 or 5 minutes with 10 
nM of CXCL4, 9, 10, or 11, fixed in 4% para-formaldehyde, permeabilized and stained 
with TRITC-labelled phalloidin. F-actin polymerization was monitored by FACS as 
described in Materials and Methods chapter. Data shown is representative for two other 
experiments using cells isolated from different donors. 
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Figure 3.16 Activated human T lymphocytes are migratory responsive to CXCR3 
agonists but not to CXCL4. (A), chemotaxis of day 10, SEB/IL-2 activated T cells to 
increasing concentrations of CXCL9 (♦), CXCL10 (▼) and CXCL11 (■) (left panel) or CXCL4 
(▲) (right panel). (B), chemotactic responses of day 10 T cells, activated with CD3/CD28 
antibodies-coated beads to CXCL9, 10 and 11 (left panel) or CXCL4 (right panel). Previously 
activated T cells were washed, resuspended at 3.2 x 106 

/ mL and placed (25µL per well) on 
the filter membrane above lower chambers containing chemokine solutions or media. 
Chemotaxis across 5 µm pore size membrane was determined after a 3 hour incubation at 
37°C in 5% CO2 as described in Materials and Methods. T cells migrated to increasing 
concentrations of chemokines (0.1-100 nM of CXCL9, 10 and 11 or 0.1- 3 µM of CXCL4). 
Presented data, expressed as number of migrated cell (mean +/- SD)is taken from a single 
experiment with triplicates and is representative to at least three different experiments using 
cells isolated from different donors. 
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Figure 3.17 CXCR3 antagonists inhibit CXCR3mediated chemotaxis of activated 
human T lymphocytes. Previously activated T cells were washed, resuspended at 3.2 x 
106 / mL and incubated with appropriate concentrations of CXCR3 antagonists. Cells were 
then placed (25µL per well) on the filter membrane above lower chambers containing 1 
nM of CXCL11 (A), indicated chemokine solutions (B) or media. Chemotaxis across 5 µm 
pore size membrane was determined after a 3 hour incubation at 37°C in 5% CO2 as 
described in Materials and Methods. Presented data, expressed as number of migrated 
cell (mean +/- SD)is taken from a single experiment with triplicates and is representative 
to at least three different experiments using cells isolated from different donors. 

138




Anna Korniejewska, 2009 Chapter Three Results & Discussion


Figure 3.18 Effect of PIKfyve inhibition on CXCL11 and CXCL12 mediated 
chemotaxis in T cells. Day 9-12 SEB/IL-2 activated T cells were washed, resuspended 
at 3.2 x 106 / mL and incubated with appropriate concentrations of PIKfyve inhibitor – 
YM203616 or DMSO. Cells were then placed (8 x 10 104 / 25µL per well) on the filter 
membrane above lower chambers containing chemokine solutions or media. Chemotaxis 
across 5 µm pore size membrane was determined after a 3 hour incubation at 37°C in 5% 
CO2 as described in Materials and Methods. Presented data, expressed as number of 
migrated cell (mean +/- SD)is taken from a single experiment with triplicates and is 
representative to at least three different experiments using cells isolated from different 
donors. 
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3.5 Analysis of human CXCR3A, CXCR3B and CXCR3alt in transfected cell 

model 

As described in the previous parts of presented work, there are three identified 

alternative CXCR3 protein isoforms encoded by a single human gene and 

generated via alternative splicing. Expression both of these ‘atypical’ variants of 

CXCR3 at mRNA level has been detected in some cell types including T 

lymphocytes (Lasagni et al., 2003). There are a small number of studies reporting 

on responses mediated via CXCR3-B (Petrai et al., 2008; Romagnani et al., 2004) 

and CXCR3-alt (Ehlert et al., 2004), thus functionality and biochemical analysis of 

these receptors is still to be fully elucidated. This is especially important due to the 

fact of CXCR3 being a potential drug candidate in targeting of inflammatory 

diseases, where existence of various isoforms of the target protein might be 

additional limitation and should be considered. 

As a part of this project it was planned to characterize biochemistry of two existing 

spliced variants of CXCR3 receptor, namely CXCR3-B and CXCR3-alt in 

comparison to original version of the receptor – renamed as CXCR3-A, using in 

vitro transfected cell system. Thus the aim of this part of presented work was to 

generate constructs encoding human CXCR3-A, CXCR3-B or CXCR3-alt (with or 

without EGFP tag); and their expression in cell lines for further analysis. Due to the 

lack of commercially-available antibodies specific to each variant of CXCR3, the 

constructs with C-terminal EGFP (Enhanced Green Fluorescent Protein) tag would 

allow us to monitor their location and detection where these receptors are 

expressed in the cell (intracellularly or on the cell surface), using fluorescent 

visualization. A schematic illustration of all generated CXCR3 constructs is 

presented in Figure 3.19B. 

3.5.1 Generation of constructs encoding human CXCR3A, B and –alt 

Full length fragments encoding CXCR3-A, -B and –alt were amplified by PCR 

using appropriate primers adding to each product required restriction sites at 5’ 

and 3’ end and Kozak sequence and codon STOP at 5’ and 3’ end, respectively 

(sequence of primers can be found in Table 2.1). 
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Figure 3.19 Generation of EGFPtagged variants of CXCR3 receptor. (A), PCR of full 
length human CXCR3-A, CXCR3-B and CXCR3-alt. PCR was performed using cDNA 
from spleens or leukocytes (Clontech), or pIRES-Neo plasmid encoding CXCR3 as a 
templates and primers specific for CXCR3-A, -B and alt. Sense and anti-sense primers 
contain sequences recognized by HindIII and KpnI restriction enzymes, respectively. 
Lanes 1 and 8 – 1 kilo base pair molecular marker; lanes 2, 9 and 12 – control (dH20); 
lane 3 - CXCR3 product amplified using cDNA from spleen, 4 – from leukocytes, lanes 5 
and 6 – from pIRES-Neo vector; lane 10 - CXCR3-B from spleen, lane 11 – from 
leukocytes; lanes 13 and 14 – CXCR3-alt from spleen. Arrows point out bands 
corresponding to specific CXCR3 PCR products. (B), Plasmids and tagged receptors used 
in the study. Schematic illustration of constructs on the left hand side with resulting 
proteins being expressed on the right hand side. Inserts were subcloned into pEGFP 
vector follow by cloning into pcDNA3.1 expression vector. 
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PCR was performed using commercially-available cDNA from spleens or 

leukocytes (Clontech) (Figure 3.19A). Prepared inserts were then cloned into 

expression vector pcDNA3.1 (as described in details in sections 2.2.12.11 and 

2.2.12.12 of Materials and Methods chapter) and verified by DNA sequencing. In 

order to generate CXCR3 constructs with C-terminal EGFP tag, fragments were 

subsequently cloned into pEGFP vector (Figure 3.19B). 

3.5.2 Expression of CXCR3A, B and –alt in CHOK1 and HEK293 cell lines 

Constructs obtained in 3.5.1 were transiently expressed in HEK293 and CHO cells 

(Figures 3.21 and 3.22). Both of these cell lines do not express any detectable 

endogenous chemokine receptors and have been shown to be capable to express 

high levels of chemokine receptors surface expression following transfection with 

similar constructs (Dagan-Berger et al., 2006; Proost et al., 2007). First expression 

of EGFP-CXCR3-A, -B and –alt was assessed by flow cytometry by the analysis of 

EGFP reporter. Transfection of HEK cells was optimised by using variable 

amounts of DNA and transfection reagent (Figure 3.20) while transfection of CHO 

cells was performed using previously optimised protocol (as described in Materials 

and Methods). Figure 3.21A shows the expression of 1 µg DNA encoding EGFP-

tagged CXCR3 variants in HEK293 cells. Mean fluorescence intensity in HEK293 

cells transfected with all three receptors was much higher compared with control 

cell, indicating expression of EGFP-tagged CXCR3. HEK-CXCR3-B-EGFP cells 

were less fluorescent then HEK-CXCR3-A-EGFP and HEK-CXCR3-alt-EGFP and 

expression of CXCR3-A form of receptor appeared to be at higher level then 

CXCR3-alt form (summarized in Figure 3.21B). Expression of CXCR3 variants 

was also assessed using mouse anti-human CXCR3 (clone 49801) to examine the 

amounts of each receptor present on the surface of the HEK cells (shown in 

Figure 3.21C and D). Figure 3.21B shown representative dot plot indicating 

expression of EGFP and anti-CXCR3 antibody staining. CXCR3-A transfectants 

represent two main populations of cells, one EGFP and PE positive, indicating 

expression of CXCR3-A-EGFP on the surface and EGFP positive and PE negative 

population of cells expressing transfected receptor intracellularly. 

Representative histogram of anti-CXCR3 staining of cells expressing each CXCR3 

variant (without a EGFP tag) is shown in Figure 3.21C and summarized in 3.21D 
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EGFP-tagged and non-tagged variants of CXCR3 are expressed at the similar 

levels (left and right panels of Figure 3.21E, respectively) suggesting that reporter 

tag does not affect the expression of the receptor on the surface. Consistently we 

observed relatively high surface expression of CXCR3-A, much lower expression 

of CXCR3-B and even lower expression of CXCR3-alt. 

The antibody 49801 used in FACS analysis also reacted in immunoblotting studies 

and we were able to detect the bands around 70 kDa corresponding to predicted 

EGFP-tagged CXCR3-A (43 for CXCR3 and 27 for EGFP), higher band for 

CXCR3-B and slightly lower for truncated CXCR3-alt, (Figure 3.21E). The visible 

smears above expected protein sizes (about 100 kDa in CXCR3 lines) may be due 

to post-translational modifications of receptors. Bands of high molecular weight 

visible on the top of the gel may suggest SDS-stable aggregates of CXCR3 

molecules. The lower molecular weight bands (between 37-50 kDa) may be result 

of degradation of receptor proteins. This is seen especially for CXCR3-alt which 

because of its dramatically altered structure may be less stable. Migration at 

different than predicted height in SDS-PAGE demonstrating posttranslational 

modification and aggregation of molecules was previously reported for D6 receptor 

(Blackburn et al., 2004). 

In order to analyze the distribution of CXCR3 variants within the cell we performed 

the confocal microscopy analysis. We examined EGFP localization as well as anti-

CXCR3 antibody staining in order to analyze surface expression of each CXCR3 

variant (Figure 3.21F). CXCR3-A-EGFP was found in intracellular stores as well as 

at the surface of transfected HEK cells. PE-signals corresponding to anti-CXCR3 

antibody staining were also found at the surface. CXCR3-B-EGFP was also 

expressed intracellularly (as indicated by expression of EGFP reporter) and some 

signal was also detected on the surface of the cell. However much fewer number 

of cells with PE staining at the surface was found suggesting lower expression 

levels or lower immunoreactivity of anti-CXCR3 antibody towards CXCR3-B 

variant. No reactivity of the same antibody was detected at the surface of CXCR3-

alt, despite of clear expression of CXCR3-alt-EGFP (Figure 3.21F lower panel). 
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Similar analysis was performed when the constructs were expressed in CHO cell 

line. FACS analysis revealed that in this cell line, each variant of CXCR3 was 

expressed at similar levels to those found in HEK293 cells (Figure 3.22A). EGFP-

tagged CXCR3-A, CXCR3-B and CXCR3-alt we expressed at the comparable 

levels however surface expression differed between each variant showing pattern 

found on HEK cells (CXCR3-A>CXCR3-B>CXCR3-alt). Two different antibodies 

gave comparable results in FACS analysis. Expression is CXCR3 isoforms was 

also detected by immunoblotting (Figure 3.22B). Analysis revealed presence of 

bands with predicted as well as higher molecular weight (their appearance was 

explained above). Bands about 37 kDa may be effect of non-specific imuno-

reactivity of the antibody as they are present in mock control. Lower bands (less 

than 30 kDa), seen especially in CXCR3-A and CXCR3-alt lanes may represent 

degradation products. Fluorescent microscopy using EGFP reporter and anti-

CXCR3 antibody revealed both intracellular and surface expression of CXCR3-A 

(Figure 3.22C). In contrast no surface expression CXCR3-B and CXCR3-alt was 

observed (data not shown). 
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Figure 3.20 Optimisation of transfection efficiency in HEK293 cell line. (A), HEK293 
cells were transfected with different amounts of DNA encoding CXCR-A, CXCR-B, 
CXCR3-alt or with empty vector and 48 hours post-transfection the expression of each 
receptor was assessed by FACS. 
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Figure 3.21 Expression of CXCR3A, CXCR3B and CXCR3alt in transfected 
HEK293 cells. PTO for figure continuation and figure legend. 
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Figure 3.21 Expression of CXCR3A, CXCR3B and CXCR3alt in transfected 
HEK293 cells. PTO for figure legend. 
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Figure 3.21 Expression of CXCR3A, CXCR3B and CXCR3alt in transfected 
HEK293 cells.HEK293 cells were transiently transfected with 1 µg plasmid encoding 
appropriate chemokine receptor; CXCR3-A, CXCR3-B or CXCR3-alt with or without EGFP 
tag as described in Materials and Methods. 48 hours post transfection expression of each 
of receptor was analyzed. (A), Flow cytometry analysis of expression of EGFP reporter; 
left panel shows representative histogram and right panel shows average of three 
independent experiments. (B), Flow cytometry analysis of CXCR3-A, -B and –alt 
expression by examination of EGFP reporter expression and surface staining with anti-
CXCR3 antibody conjugated with PE. Presented data are representative for at least five 
different experiments. (C), Analysis of surface expression of CXCR3-A, -B and –alt 
without EGFP tag assessed by FACS analysis using anti-CXCR3 antibody conjugated 
with PE. Experiment is representative for three other experiments. (D), Surface 
expression of CXCR3-A, -B and –alt assessed by FACS using anti-CXCR3-PE antibody 
staining, presented as an average of at least four different experiments; expression of 
receptors with or without EGFP tag is shown on right and left panel, respectively. (E), 
Western blot analysis of EGFP-tagged CXCR3-A, -B, and –alt expression. Briefly, lysates 
from 2x106 cells transfected HEK293 cells were resolved on SDS gel. Membranes were 
immunoblotted with mouse monoclonal anti-CXCR3 antibody. Arrow heads indicate the 
position of EFGP-CXCR3 receptors. The membranes were stripped and reprobed with 
anti-Erk1 antibody (lower panel) to demonstrate loading. Mock – control cells transfected 
with empty vector and/or transfection reagent only. (F), Confocal images of HEK293 cells 
expressing CXCR3-A (top panel), CXCR3-B (middle panel) and CXCR3-alt (bottom 
panel). HEK293 cells grown on poly-L-lysine-coatd coverslips, were transfected with 
constructs encoding CXCR3-A-EGFP and CXCR3-B-EGFP and 48 hours post-
transfection expression of both receptors was analysed by confocal microscopy. Briefly, 
cells were fixed, stained with anti-CXCR3-PE antibody and coverslips were mounted with 
Mowoil containing 10 µg/mL of DAPI (blue) for nuclear visualisation. Red represents PE, 
green- EGFP. 
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Figure 3.22 Expression of CXCR3A, CXCR3B and CXCR3alt in transfected CHO 
cells. PTO for figure legend. 
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Figure 3.22 Expression of CXCR3A, CXCR3B and CXCR3alt in transfected CHO 
cells. CHO cells were transiently transfected with 1 µg of DNA encoding appropriate 
chemokine receptor; CXCR3-A, CXCR3-B or CXCR3-alt C-terminally tagged with EGFP 
reporter as described in Materials and Methods. 48 hours post transfection expression of 
each of receptor was analyzed. For surface staining cells were incubated at 4°C with 
APC-conjugated appropriate anti-CXCR3 antibody or isotype control before FACS 
analysis. (A), Flow cytometry analysis of expression of EGFP reporter (left panels); 
surface staining with anti-CXCR3 clone 49801 antibody (central panels) or IC6 antibody 
(right panels). (B), Western blot analysis of EGFP-tagged CXCR3-A, -B, and –alt 
expression. Briefly, lysates from 2x106 cells transfected CHO cells were resolved on SDS 
gel. Membranes were immunoblotted with mouse monoclonal anti-CXCR3 antibody. 
Arrow indicate the position of EFGP-CXCR3 receptors. The membranes were stripped 
and reprobed with anti-Erk1 antibody (lower panel) to demonstrate loading. Mock – control 
cells transfected with empty vector and/or transfection reagent only. (C), Images of CHO 
cells expressing CXCR3-A receptor. Red represents staining with 49801 antibody and 
TRITC labelled secondary antibody, green- EGFP. Presented data are representative for 
3 other experiments. 
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3.5.3 Agonistsinduced downregulation of CXCR3A, B and –alt surface 

expression 

Stimulation of T cells with CXCR3 agonists led to decrease of surface expression 

of the receptor, in contrast no effect was observed following stimulation with 

CXCL4. In order to further study this issue, HEK293 transfectants expressing 

each variant of CXCR3, CXCR3-A, -B or –alt fused at their C termini with EGFP 

reporter were stimulated first with CXCL11 which was previously showed to be the 

most efficacious inducer of CXCR3 internalization (Figure 3.23A, left panel). 

However according to obtained results and previous reports (Lasagni et al., 2003; 

Mueller et al., 2008), consistently higher levels of expression were obtained for 

CXCR3-A transfectants compared with CXCR3-B, making direct comparison 

difficult. Basal surface expression of each receptor was normalised to 100% and 

any changes following chemokine stimulations were analyzed. Only low 

percentage (about 25%) of CXCR3-A and CXCR3-B become internalized upon 

stimulation with 100 nM CXCL11 and levels of CXCR3-alt increased following 

agonist treatment up to 125%. The possible explanation was that internalization 

can be impaired due to EGFP fusion at the C terminals of the CXCR3 variants 

which may prevent interaction with adaptors. Therefore, constructs encoding full 

length receptors without fusion protein were generated and experiments were 

repeated as previously (Figure 3.23A right panel). This time about 40% decrease 

in surface expression of CXCR3-A and CXCR3-B variants was observed following 

stimulation with 100 nM CXCL11 for 5 and 30 minutes suggesting that adding of 

EGFP to the C termini of the receptors partially affected their internalization. 

Moreover these results indicate that CXCL11 interact with both variants of CXCR3 

receptor. In contrast stimulation of CXCR3-alt expressing HEK293 cells resulted in 

increased expression of the receptor for about 20% (Figure 3.23A left panel) and 

further extension of incubation time to 120 minutes led to nearly 80% rise of 

CXCR3-alt surface levels in comparison to basal (Figure 3.23B). It was then 

examined if CXCL4 is able to induce any down-regulation of particular receptor 

variants. No obvious down-regulation of CXCR3-A and only 20% decrease of 

CXCR3-B surface was detected after incubation of CXCR3-A-HEK293 and 

CXCR3-B HEK293 cells, respectively with 100 nM CXCL4 (Figure 3.23C). 
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Figure 3.23 Effect of CXCL11 and CXCL4 on downregulation of surface expression 
of CXCR3A, CXCR3B and CXCR3alt in transfected HEK293 cells. HEK 293 cells 
previously transfected with constructs encoding EGFP-tagged CXCR3-A (■), CXCR3-B 
(▼)and CXCR3-alt (●) were harvested and exposed to 100 nM of CXCL11 for 1, 5 and 30 
mins. All incubations were done at 37°C. Agonists were then washed off and cells were 
incubated with anti-CXCR3 antibody or isotype control at 4°C followed by analysis on 
FACS as described in Materials and Methods. Decrease in CXCR3 surface expression 
was expressed as a percentage of baseline surface expression using following formula: 
MFI (Mean Fluorescence Intensity) of stimulated cells/MFI of untreated cells *100. Shown 
data represent average +/- SEM of at least 3 independent experiments. 
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Similarly as expected CXCL4 had no major effect on surface CXCR3-alt as this 

form of CXCR3 has been shown to bind and respond only to CXCL11. 

3.5.4 Intracellular calcium mobilisation induced by CXCL11 and CXCL4 in 

HEK293 cells transiently expressing CXCR3A, CXCR3B and CXCR3alt 

The ability of CXCL11 and CXCL4 to induce intracellular calcium mobilisation in 

HEK293 cells expressing different variants of CXCR3 was then assessed. 

Transfected HEK293 cell were stimulated with single concentrations of CXCL11 

and CXCL4 and response over time was observed. 30 nM concentration of 

CXCL11 was effective at inducing elevation of intracellular calcium levels in cells 

expressing each variants of CXCR3, as is shown by Figure 3.24A. CXCR3-A-

expressing cells gave the highest response (5 fold increase in fluorescence above 

basal level) in comparison with CXCR3-B and CXCR3-alt transfectants which 

responses were approximately 3 and 2 fold increase above basal fluorescence 

level, respectively. In keeping with the calcium mobilisation data in T cells, high 

(300 nM) concentration of CXCL4 was required to induce responses in transfected 

HEK cells (Figure 3.24B). Stimulation with CXCL4 led to approximately 3.5 fold 

increase in fluorescence levels in HEK293 expressing CXCR3-A similarly to 

response of CXCR3-B transfectants (3 fold increase). As expected, no response 

was detected in cells expressing CXCR3-alt. 

3.5.5 Activation of PI3K/Akt and p44/p42 MAPK pathways in cells 

expressing CXCR3A, CXCR3B or CXCR3alt receptors by chemokines 

It was demonstrated in Section I of presented work that stimulation of activated T 

cells with CXCR3 agonists as well as CXCL4, a reported agonists for CXCR3-B 

variant, resulted in increase of phosphorylation of Akt and p44/p42 MAPK 

indicating activation of these crucial signalling pathways. To further examine these 

responses, HEK293 cells transiently expressing one of each CXCR3 variants 

CXCR3-A, CXCR3-B or CXCR3-alt were first exposed to 10 nM of CXCL11 and 

changes in phosphorylation of Akt and Erk kinase were analysed by 

immunoblotting (Figure 3.25A). Stimulation of CXCR3-A-expressing HEK293 cells 

with CXCL11 resulted in small increase in p44/p42 MAPK phosphorylation as they 

exhibited high levels of basal phospho-MAPK. Moreover CXCL11 induced clear 
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phosphorylation of p44/p42 MAPK in cells expressing CXCR3-B and CXCR3-alt 

without any obvious effect on the cells transfected with the mock. HEK293 cell 

expressing either variant of CXCR3 as well as control cells exhibited high basal 

level of phosphorylated Akt and no obvious increase upon stimulation with 

CXCL11 was detected. CXCL11-triggered phosphorylation of Erk was also 

observed in CHO cells expressing CXCR3-B and CXCR3-alt but surprisingly again 

we were struggling to detect a clear signal in CXCR3-A transfected cells following 

stimulation with CXCL11. CHO cells expressing CXCR3-A and CXCR3-alt 

following stimulation with CXCL11, exhibited certain decrease in levels of 

phospho-Akt in comparison to untreated cells. In contrast in CHO cell expressing 

CXCR3-B stimulation with 10 nM CXCL11 resulted in Akt phosphorylation only at 

one time point. There were noticeable variations of the responses obtained within 

these experiments between basal levels of phosphorylation, and repeats of 

samples stimulated with chemokines (two examples are shown in Figure 3.2A and 

A’). These variations were possibly caused by differences in surface expression of 

CXCR3 variants between samples, as a result of transient transfection of the cells 

in individual wells and subsequent stimulation. 

Furthermore the ability of CXCL4 to induce activation of both Akt and 44/42 MAPK 

was tested. Upon stimulation with 100 nM of CXCL4 no increase in 

phosphorylation above basal levels of neither Akt nor p44/p42 MAPK could be 

observed in HEK293 cells expressing different CXCR3 variants in exception of 

CXCR3-A expressing cells which exhibited low level of Akt phosphorylation 

(Figure 3.25B). 
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Figure 3.24 Elevation of cytosolic calcium concentration obtained from HEK293 
cells expressing full length CXCR3A, B and –alt. 48 hours post-transfection, HEK293 
cells were harvested, washed, and resuspended in buffer containing calcium as described 
in Materials and Methods, prior by loading with 5 µM Fluo-4. Cells were then stimulated 
with 30 nM of CXCL11 (A) or 300 nM of CXCL4 (B) and changes in fluorescence were 
measured over time using fluorescence reader. Data shown are the mean of two separate 
experiments performed in duplicates. 
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Figure 3.25 Activation of Akt and p44/p42 MAPK in CXCR3A, CXCR3B or 
CXCR3altexpressing HEK293 and CHO cells. 48 hours post-transfection, HEK cells 
(A,A’ and B) or CHOK1 cells (C) were harvested, washed, and stimulated with 10 nM of 
CXCL11 (A,A’), 100 nM of CXCL4 (B) or 10 nM CXCL11 (C) for indicated periods of time. 
Samples were lysed by centrifugation and addition of solubilisation buffer. Lysates 
containing 1x sample buffer were separated by electrophoresis in 10% SDS-PAGE, 
transferred to nitrocellulose membranes, and immunoblotted with a phospho-specific Akt 
ab with the affinity for the active Ser473-phosphorylated form of Akt or p44/p42 MAPK ab 
with the affinity for the active Thr202/Tyr204 form of Erk. Proteins were visualized by ECL. 
The blots were stripped and reprobed with anti-Erk1 antibody to verify equal loading and 
efficiency of the protein transfer. Presented data are representative for at least two 
independent experiments. 
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3.6 Summary of Chapter Three 

In this chapter it was aimed to analyze expression and biochemical and functional 

responses mediated by CXCR3 receptor and its existing spliced variants – 

CXCR3-B and CXCR3-alt. CXCL4 chemokine which has been reported to bind 

and respond via CXCR3-B was utilized to study this atypical variant of CXCR3. 

The following observations were made: 

�	 Freshly isolated T lymphocytes express moderate levels of CXCR3 receptor 

on the surface and this expression is up-regulated following stimulation with 

either CD3/CD28 antibodies –coated microbeads or SEB, along with culture 

in the presence of IL-2. Moreover CXCR3 was present on both CD4 and 

CD8+ T cells. 

�	 SEB/IL-2 activated T lymphocytes express three known spliced variants of 

CXCR3 namely, CXCR3-A, CXCR3-B and CXCR3-alt at the mRNA level. 

�	 CXCR3 agonists, CXCL9, CXCL10 and CXCL11 but not CXCL4 induced 

concentration and time-dependent down-regulation of CXCR3 surface 

expression. Following functional hierarchy in terms of chemokine-induced 

receptor internalization was observed, CXCL11>CXCL10>CXCL9. 

�	 Small CXCR3 antagonists inhibited CXCL11-induced internalization of 

CXCR3 showing following potencies: T487- 380 nM, NBI-74330- 2.44 nM 

and N-oxidized metabolite of NBI-74330- 0.712 nM. 

Down-regulation of CXCR3 mediated by CXCL9 and CXCL10 was sensitive 

to NBI-74330 treatment. 

�	 CXCL11-induced CXCR3 internalization was insensitive to hypertonic 

sucrose treatment however was inhibited by chlorpromazine indicating a 

potential role of clathrin-dependent pathway of endocytosis. Moreover 

detected down-regulation of surface CXCR3 was not significantly inhibited 

by nystatin and filipin suggesting that CXCL11- induced CXCR3 

internalization does not utilize lipid rafts/caveolae. In contrast it was partially 

blocked by MβCD indicating a possible distinct cholesterol-dependent 

pathway. 

�	 CXCL11- mediated CXCR3 surface down-regulation did not appear to 

require Gαi and PI3K involvement as it was insensitive to pertussis toxin 

and PI3K inhibitors treatment, respectively. 
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�	 Stimulation of T cells with PKC activator – PMA led to significant down-

regulation of surface CXCR3, moreover treatment with PKC inhibitors 

rottlerin and RO31-8220 and PLC inhibitor U73122 but not its inactive 

analogue U73343 led to inhibition of agonist (CXCL11) triggered 

internlisation of CXCR3. 

�	 Pretreatment of T cells with PIKfyve inhibitor - YM201636 led to decrease 

of agonist-induced CXCR3 surface down-regulation, however due to high 

concentration used observed inhibition was possible off-target effect. 

�	 Following induction of down-regulation with CXCL11 the recovery of surface 

CXCR3 levels occurred relatively slowly with around 80-90% recovery of 

the basal CXCR3 surface levels detected 180 minutes after incubation with 

the agonist. 

�	 CXCR3-surface replenishment following agonist stimulation in T cells is 

dependent upon synthesis of a new receptor proteins as well as the Golgi 

function. 

�	 CXCL9, CXCL10, CXCL11 and CXCL4 induced phosphorylation of Akt and 

p44/p42 and these biochemical events involved PTX-sensitive Gi signalling. 

�	 Responses induced by CXCL4 were at lower strength in comparison to 

CXCR3 agonists and exhibited certain level of variability in order to the 

signal strength. 

�	 Small CXCR3 antagonists inhibited CXCL11-induced signalling showing 

different inhibitory activities: N-oxide-NBI-74330>NBI-74330>T487. T487 

and NBI-74330 also attenuated CXCL9 and CXCL10-mediated signalling 

but they had no effect on signals induced by neither CXCL4 nor CXCL12. 

�	 CXCL9, CXCL10, CXCL11 and CXCL4 induced phosphorylation of GSK3β 

and S6 phosphorylation in T cells. 

�	 CXCR3 agonists and CXCL4 induced actin polymerisation in activated T 

cells. 

�	 CXCR3 agonists stimulated chemotaxis of T cells with CXCL11 being the 

most potent and efficient chemoattractant. In contrast CXCL4 failed to 

induce a chemotactic response in activated T cells. 

�	 Small CXCR3 antagonists inhibited CXCL11-induced chemotaxis showing 

following inhibitory activities: T487, IC50 - 69 nM, NBI-74330, IC50 - 2.3 nM 

and oxidised metabolite of NBI-74330 - 0.53 nM. T487 and NBI-74330 also 
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had an inhibitory effects on CXCL9 and CXCL10 but not on CXCL12– 

induced chemotaxis. 

�	 PIKfyve inhibitor YM201636 partially blocked chemotaxis induced by 

CXCL11 and had no effect on CXCL12- mediated chemotaxis. 

Analysis of variants of human CXCR3 expressed in HEK293 and CHO cell lines 

led to the following observations: 

�	 In both, HEK293 as well as CHO cells, EFGP-tagged full length CXCR3 

receptor was highly localized to the cell surface however its expression was 

also detected in intracellular stores. 

�	 CXCR3-B-EGFP was expressed at lower levels in both cell lines. Moreover 

much lower proportion of this variant was found on the cell surface as 

indicated by pan isoform anti-CXCR3 antibody binding. 

�	 Truncated CXCR3-alt –EGFP was expressed as similar levels to full length 

CXCR3 however only small proportion of the receptor was present on the 

surface and recognized by anti-CXCR3 antibody in HEK293 and CHO cells. 

�	 EGFP-tagged variants of CXCR3 were not efficiently down-regulated from 

the cell surface of HEK293 cells following stimulation with CXCL11. In 

contrast expression of non-tagged versions of CXCR3-A and CXCR3-B was 

decreased for about 25% due to exposure to CXCL11 suggesting that 

EGFP tag affected internalization. Expression of surface CXCR3-alt was 

increased for about 25% prior stimulation with CXCL11 and extension of 

stimulation time up to 120 minutes led to further increase for approximately 

75%. 

�	 Stimulation with CXCL4 resulted in minor (approximately 25%) down-

regulation of CXCR3-B surface expression whereas levels of CXCR3-A and 

CXCR3-alt remained unaltered. 

�	 CXCL11 stimulated calcium mobilisation in HEK cell expressing all three 

isoforms of CXCR3 whereas CXCL4 triggered calcium influx in CXCR3-A 

and CXCR3-B-expressing cells. 

�	 CXCL11 induced phosphorylation of Erk in CXCR3-A, CXCR3-B and 

CXCR3-alt transfectants without obvious effect on Akt activation in both 

HEK and CHO cells lines with exception of CXCR3-B positive CHO cell 
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where we observed increase in phosphorylation of Akt. These results 

exhibited noticeable variability and would have to be improved. 

�	 Following stimulation with CXCL4 we were not able to detect any increase 

in levels of neither Erk nor Akt phosphorylation in HEK cell expressing with 

CXCR3-A and CXCR3-B. 

3.7 Discussion 

The first part of the presented thesis is focused on characterization of the CXCR3 

receptor present on human T cells. The work included examination of the 

expression of CXCR3 and its spliced variants in activated human T lymphocytes, 

loss of CXCR3 surface expression following agonist stimulation, signalling induced 

by CXCR3 agonists, and CXCR3-mediated chemotactic responses. Analysis of 

CXCR3 and its variants, namely CXCR3-B and CXCR3-alt, was also performed in 

transfected HEK293 cells. 

3.7.1 The culture conditions 

T cell isolation from freshly donated human peripheral blood and their ex vivo 

expansion provides a useful protocol for studying biochemical and functional 

events in T lymphocytes. After separation from peripheral blood, the mononuclear 

cells (a mixure of monocytes and lymphocytes) are activated and kept in culture 

up to 12 days under conditions which promote T lymphocyte proliferation, 

activation and up-regulation of CXCR3. Many factors can influence the number of 

chemokine receptors expressed on the cell surface. The age and health condition 

of the donor are contributing factors, similarly to the method of in vitro activation 

and cytokine milieu in cell environment such as the presence of IL-2. 

Different methods of T cells activation which were utilised within the presented 

work are discussed below. PHA is a lectin isolated from plants and acts as a 

mitogen which induces activation of T cells by cross linking to glycoproteins on the 

cell surface. PHA will yield activated T lymphocytes that are predominantly CD8+. 

Alternatively, SEB is one of the best known superantigens, which function by 

binding to MHC class II molecules expressed on the surface of professional 

antigen presenting cells (APC) present within the PBMC population. SEB acts then 
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as cross linker subsequently binding to α chain of the TCR, stimulating robust 

activation of T lymphocytes. SEB will yield activated T lymphocytes that are 

predominantly CD4+. This method of T cells activation was preferentially used 

within presented work. 

For the rapid expansion of freshly isolated T cells, stimulation with anti-CD3/CD28 

mAb-coated Dynabeads was used. This method of stimulation more accurately 

mimics the in vivo presentation of antigen to T cells, but avoids 

engagement/activation of the co-inhibitory receptors such as CTLA-4 (Parry et al., 

2003). Furthermore this method does not require large numbers of autologous/ 

MHC matched APC and antigen or allogenic mononuclear cells and mitogen. The 

T lymphocyte population should first be purified by negative selection using pan-T 

cell isolation kits. T lymphocytes are not contaminated with monocyte/ 

macrophages and the antibody-coated beads are simply removed using a magnet. 

T lymphocytes can be sustained and expanded in culture for several weeks. 

3.7.2 CXCR3 expression in freshly isolated and activated T cells 

It has been shown that freshly isolated, resting T cells show a certain level of 

inflammatory chemokine receptor CXCR3 which is dramatically up-regulated after 

activation (Mueller et al., 2008; Rabin et al., 1999). Data obtained within the study 

presented here correlates with these findings making activated and ex vivo 

expanded human T cells a good model for studying CXCR3. 

3.7.3 Responsiveness of T cells to CXCR3 agonists 

Naïve T lymphocytes expressed limited number of chemokine receptors. Following 

T cells activation, the number of chemokine receptors present on the surface 

increases, allowing the cell to respond to chemokine gradient. An interesting 

feature about CXCR3 is that approximately 40% of freshly isolated human T cells 

express this receptor without ability to respond to CXCR3 agonists (Loetscher et 

al., 1998). This responsiveness is gain during T cell activation with IL-2 and a 

mitogen such as PHA or Con A which leads to increasing receptor density 

(Loetscher et al., 1998). 
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3.7.4 Expression of CXCR3 variants in T cells 

The commercially available anti-CXCR3 antibodies are unable to distinguish 

between CXCR3-A, CXCR3-B or CXCR3-alt, while reported CXCR3-B antibodies 

are either not widely available or have limited specificity. In addition, there are 

currently no reported antibodies to CXCR3-alt. However, expression of individual 

CXCR3 isoform mRNA in human T lymphocytes can be monitored. Expression of 

CXCR3-B and CXCR3-alt mRNA in activated human T cells was previously 

reported (Ehlert et al., 2004; Lasagni et al., 2003). In addition to full length CXCR3 

(CXCR3-A), the expression of CXCR3-B and CXCR3-alt at mRNA was also 

detected within these investigations and it would therefore be tempting to surmise 

that all functional or signalling responses generated should be attributed to all 

variants of CXCR3 (in the case of CXCR3-alt that would include only responses 

induced by CXCL11). It appears that in T cells CXCR3-A is expressed at higher 

levels in comparison to the other two isoforms. However this was determined by 

semi quantitative PCR analysis, therefore it would be good practice to utilize 

several methods to detect the presence of these receptors, such as qPCR and 

immunoblotting or immunofluorescence using antibodies generated against 

specific epitopes of each receptor variants. In addition immunoblotting using pan 

isoform anti-CXCR3 antibody could be helpful in determination of endogenous 

expression of CXCR3 variants at the protein level which could be distinguish 

based on differences in weight. This approach was attempted to be used however 

had major limitations as the antibody resulted in variety of non-specific bands 

(some possible due to receptor aggregation) making identification of endogenous 

CXCR3 protein very difficult (data not shown). 

3.7.5 CXCR3 agonists CXCL9, CXCL10 and CXCL11 but not CXCL4 induce 

downregulation of CXCR3 surface expression in activated T cells 

Agonist-induced desensitisation and internalization of chemokine receptors is 

believed to be a crucial process allowing immune cells to maintain their capacity to 

respond to small changes in a chemotactic gradient (Murphy, 1994). 

Internalized CXCL11 was visualized using a fluorescently labeled (using FITC 

streptavidine) biotinylated version of the chemokine. Fluorescent microscopy 

analysis revealed FITC puncta within stimulated and fixed cells suggesting uptake 
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of labeled agonist. This technique was planned to be used to examine the fate of 

chemokine-chemokine receptor complexes after internalization. However further 

experiments revealed that the ability of biotinylated CXCL11 to induce down-

regulation of CXCR3 is highly impaired in comparison to unlabelled recombinant 

CXCL11. Moreover biotinylated CXCL11 induced phosphorylation of p44/p42 

MAPK and chemotaxis of SEB/IL-2 activated human T cells to much lesser extent 

that its ‘native’ analogue (Figure 7.8). Similar observations were found for 

biotinylated CXCL10. Possible explanation of the lack of bioactivity of biotinylated 

chemokines may be fact that they were chemically synthesised and then refolded 

in contrast to other chemokines used which are recombinant, produced in bacteria. 

As a part of the study, chemokine-induced endocytosis of CXCR3 in T 

lymphocytes was investigated. In agreement with similar receptor internalization 

studies CXCR3 agonists caused receptor down-regulation in a rapid, 

concentration- and time-dependent manner (Arai et al., 1997; Jopling et al., 2007; 

Sauty et al., 2001). CXCL11 appeared to be the most potent and efficacious 

agonist. Results of the study were similar to the findings by Sauty et al who shown 

that recombinant CXCL11 was a more potent inducer of CXCR3 internalization 

than CXCL10 and CXCL9, and that second, CXCL11 present at the surface of 

activated endothelial cells is responsible for inducing CXCR3 internalization 

despite higher expression of CXCL10 and CXCL9 (Sauty et al., 2001). A similar 

functional hierarchy has also been demonstrated for other chemokines such as 

CCR5, CCR3 and CXCR2 ligands (Mack et al., 1998; Zimmermann et al., 1999; 

Feniger-Barish et al., 2000). Moreover Colvin et al demonstrated that CXCR3 

utilize different intra- and extracellular domains for specific signalling and 

functional responses. The carboxyl terminus has been demonstrated to be 

required for CXCL9- and CXCL10- mediated internalization, while CXCL11 

appeared to required the third intracellular loop of CXCR3 to induce its 

internalization (Colvin et al., 2004). This phenomenon may therefore explain the 

differential effects of CXCL11 in comparison to other chemokines CXCL9 and 

CXCL10. In addition CXCL9 and CXCL10 has been demonstrated to act as full or 

partial agonists depending upon the assay system used (Clark-Lewis et al., 2003; 

Gonsiorek et al., 2003; Heise et al., 2005; Jopling et al., 2007). 
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In contrast to CXCR3 agonists, stimulation with CXCL4 (even at high nanomolar 

and micromolar concentrations) had no noticeable effect on CXCR3 expression. 

However from these experiments it is unclear if CXCR3-B surface expression has 

been altered because the antibody used in the study is not directed to a specific 

CXCR3 variant. Moreover it is unknown if the antibody binds to each variant with 

the same affinity. Therefore experiments to investigate an effect of CXCL4 on 

CXCR3 (CXCR3-A) and CXCR3-B surface expression were carried out in 

transfected HEK293 cells which do not express endogenous chemokine receptors 

and will be discussed further in this chapter. 

Agonist-induced CXCR3 internalization assay was previously described to be the 

useful and informative method of determining agonist potency and antagonist 

affinity measurements (Jopling et al., 2007). 

As a part of the CXCR3 internalization study, three small nonpeptidergic, 

noncompetitive CXCR3 antagonists developed by Chemocentryx and Tularik (later 

acquired by Amgen), namely T487 (AMG487) and its analogue NBI-74330 and N-

oxide metabolite were examined. An action of T487 and NBI-74330 has been 

extensively studied in variety of in vitro assays, including [35S]-GTPγS, elevation of 

intracellular free calcium and chemotaxis (Johnson et al., 2007). NBI-74330 has 

also been shown to inhibit CXCL11-induced internalization of endogenous CXCR3 

in murine splenocytes and its generated in vivo N-oxide metabolite exhibited 

antagonistic properties (Jopling et al., 2007). In these studies, all three antagonists 

were able to block, in a concentration dependent manner, internalization of 

CXCR3 induced by CXCL11. Both, NBI-74330 and its metabolite were more 

potent then T487 however total inhibition of surface receptor down-regulation was 

not achieved with either compound. 

3.7.6 Mechanisms of CXCL11–induced internalization of CXCR3 in human 

T cells 

Two main pathways have been reported for the internalization of chemokine 

receptors following ligand binding. The clathrin-mediated pathway of endocytosis 

is the best described route for receptor surface down-regulation. During this type 

of endocytosis the activated receptor become phosphorylated through the action 

of arrestins, and is directed to clathrin-coated pits. Receptor–agonist complexes 
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are then internalized in vesicles which are then released from the cell surface by 

dynamin and transported to endosomes. In endosomes receptors are 

dephosphorylated, resensitised and recycled back to the plasma membrane 

(Conner and Schmid, 2003). Certain CXC family chemokine receptors such as 

CXCR1 (Barlic et al., 1999), CXCR2 (Yang et al., 1999) and CXCR4 (Venkatesan 

et al., 2003) have been reported to utilize clathrin-dependent route for 

internalization. A second pathway of receptor internalization occurs via lipid rafts, 

also known as membrane rafts, which are a glycosphingolipid-enriched 

microdomains, or detergent-resistant microdomains, relatively resistant to 

solubilization with commonly used detergents such as Triton-X. They are believed 

to contribute to the structure and function of caveolae- cholesterol-enriched, highly 

organised membrane structures (Anderson, 1998). Despite being described in 

macrophages (Kiss and Geuze, 1997), it is still a debate whether T cells also 

contain caveolae (Fra et al., 1994; Fra et al., 1995). Caveolae-dependent pathway 

have been demonstrated for endocytosis of CCR4 and CCR5 (Mariani et al., 2004; 

Mueller et al., 2002). Studies on mechanisms of receptor internalization are 

usually carried out using a genetic approach (dominant negative constructs such 

as dynamin or clathrin mutants) or pharmacological compounds to interfere with a 

particular pathway (Marchese et al., 2003; Neel et al., 2005). 

Here, in the study of CXCR3 endocytosis, several inhibitors which have previously 

been shown to inhibit clathrin and caveolae –dependent pathways were utilised. 

Hypertonic sucrose and chlorpromazine have been demonstrated to inhibit the 

assembly of clathrin-coated pits, whereas cholesterol-binding agents such as 

polyene antimycotics nystatin and filipin can block internalization via caveolae 

(Harder et al., 1997; Okamoto et al., 2000). Methyl-β-cyclodextrin (MβCD), a 

specific cholesterol depleting agent, was also used to evaluate the involvement of 

cholesterol in CXCR3 internalization (Cardaba et al., 2008; Rodal et al., 1999). 

In both human SEB/IL-2 activated T cells and CXCR3-expressing transfected HEK 

293 cells the use of inhibitors suggested that the pathway mediating CXCL11-

induced internalization did not appear to require caveolae. These results are in 

agreement with studies carried out by Meiser et al using a similar approach and 

cell model to study CXCR3 (Meiser et al., 2008). Surprisingly treatment of T cells 
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with the cholesterol depleting agent MβCD had a noticeable effect (around 40% 

inhibition) on agonist-triggered loss of surface expression of CXCR3. It has been 

previously reported that filipin and cyclodextrin modify cholesterol-rich 

microdomains through different modes of action with different consequences on B 

cell receptor (BCR) signalling (Awasthi-Kalia et al., 2001). This may explain the 

differential effect they had on CXCR3 internalization observed in this study. 

Awasthi-Kalia et al concluded that MβCD, through extracting cholesterol without 

membrane binding, leads to dispersion of a large proportion of lipid rafts and 

prevents BCR translocation into rafts (Awasthi-Kalia et al., 2001). It is possible that 

this effect was also apparent for CXCR3, making it less available for agonist 

binding. Filipin does not cause cholesterol extraction but instead it inserts into the 

membrane and quenches cholesterol in situ (Elias et al., 1978; Mcgookey et al., 

1983; Robinson and Karnovsky, 1980). Therefore filipin causes partial dispersal of 

lipid rafts constituents and its effect may not be pronounced enough to inhibit 

internalization of CXCR3. In addition filipin has been shown to have a little effect 

on CXCL11 binding to CXCR3 (Meiser et al., 2008). 

In conclusion it is important to notice the existence of significant amount of 

apparently conflicting reports on the role of lipid rafts in chemokine receptor 

internalization (Neel et al., 2005). One of the reasons may be derived from similar 

studies using cholesterol depletion agents which may be too broad and may 

interfere with aspects of other trafficking pathways. Therefore in order to 

appropriately assess the importance of alternative endocytic pathways, more 

specific and targeted approaches need to be used. Moreover according to the 

results obtained it is unclear whether internalization of CXCR3 in T cell requires 

clathrin, as no effect of hypertonic sucrose was observed. In contrast, treatment 

with chlorpromazine caused significant inhibition of CXCL11-triggered 

internalization of CXCR3. An inhibition was also observed in HEK293 

transfectants, however the inhibitory effect of chlorpromazine did not reached 

statistical significance. It is possible that inhibition of CXCR3 internalization by 

chlorpromazine was an off-target effect and it requires further investigation. 

However another explanation may be due to a possible antagonizing effect of 

chlorpromazine on β-arrestin binding to the CXCR3 receptor, which has been 

previously reported for the dopamine D2 receptor (Masri et al., 2008). Moreover β-
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arrestin has been shown to be partially involved in CXCR3 internalization (Kohout 

et al., 2001; Meiser et al., 2008). Data shown in this thesis is partly consistent with 

findings reported by Meiser et al who found that agonist – induced CXCR3 

internalization in transfected L1.2 cells (but not in T cells) was blocked by inhibition 

of clathrin (Meiser et al., 2008). 

As a continuation of the study, considering the limitations of the pharmacological 

approach other more direct strategies, such as overexpression of a dominant-

negative mutants of important endocytic components or siRNA technique would 

need to be conducted. 

3.7.7 Signalling pathways involved in CXCL11–induced internalization of 

CXCR3 in human T cells 

Various pharmacological agents targeting well-described signalling cascades were 

used in this part of the presented work, to investigate the regulation of agonist-

induced down-regulation of surface CXCR3. 

Like most chemokine receptors, CXCR3 couples to PTX-sensitive Gi and CXCR3-

mediated chemotaxis of T cells is completely inhibited by PTX (Smit et al., 2003). 

In contrast internalization of CXCR3 is unaffected by PTX at the same (and higher) 

concentration which completely abolished chemokine – induced activation of 

p44/42 MAPK and PI3K/Akt pathways. These data indicate that CXCR3 

internalization is not dependent upon Gi-protein coupling or p44/p42 MAPK and 

PI3K/Akt activation. Insensitivity of CXCR3 internalization to PTX treatment has 

been previously reported by Sauty et al (Sauty et al., 2001). Similar findings have 

also been reported for other chemokine receptors such as CXCR4 (Forster et al., 

1998). 

Moreover no effect was observed by broad spectrum inhibitors of PI3K such as 

LY294002, Wortmannin or ZSTK474. Similar results for CXCR3 were previously 

observed by Sauty at el in human T cells (Sauty et al., 2001). 

The role of PIKfyve enzyme in vesicle trafficking has been well established 

(Rutherford et al., 2006; Jefferies et al., 2008). Here its role in CXCR3 endocytosis 

was examined using the selective PIKfyve inhibitor YM201636. This agent is 

reported to inhibit PIKfyve with an IC50 of 33 nM, and 3 µM for p110α (Jefferies et 
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al., 2008). Treatment of T cells with the PIKfyve inhibitor at micromolar 

concentrations up to 10 µM had a strong and moderate effect of Akt and p44/42 

MAPK phosphorylation, respectively, but no effect on CXCR3 internalization. 

However increasing the concentration of YM201636 to 30µM significantly inhibited 

the loss of CXCR3 surface expression suggesting the involvement of p110α. 

Therefore to confirm that result PI-103 (which has at least 10 fold higher affinity for 

p110α (IC50 8 nM) over other members of class I of PI3K) was used (Workman et 

al., 2006). No effect of PI-103 (0.3-30 µM) on CXCR3 internalization was detected 

supporting the results using broad spectrum PI3K inhibitors (Figure 7.9 in Chapter 

Seven). Therefore the effect of YM201636 on CXCR3 down-regulation observed 

at higher concentration is possibly due to a yet unidentified off-target effect. 

In the T cell model used in the study, PMA induced internalization of CXCR3 

suggesting that intracellular signal transduction pathways that activate PKC may 

induce agonist-independent down-regulation of surface CXCR3. These results 

were consistent with previous findings for CXCR3 (Sauty et al., 2001) as well as 

CXCR4 (Signoret et al., 1997) and CCR3 (Zimmermann et al., 1999) Similarly, the 

PKC-delta inhibitor Rottlerin, and RO31-8220 (which inhibits conventional (α, β, γ) 

and novel (δ, ε, η) PKC isoforms at relatively low concentrations (EC50s, 

approximately 20–100 nM) and the atypical PKC- at higher concentrations (EC50, 

1–4 µM) (Standaert et al., 1997) attenuated CXCR3 internalization at high 

concentration. Therefore PKC appears to be involved in agonist independent and 

dependent down-regulation of CXCR3 from the surface. In addition, treatment with 

the PLC-blocking compound U73122 but not with its inactive analogue U73343 

had an inhibitory effect on CXCR3 endocytosis. These studies contrast with the 

results of Sauty et al who observed no effect of PKC inhibition in CXCL11 – 

mediated CXCR3 internalization using staurosporin. 

3.7.8 CXCR3 surface expression recovery following agonist exposure 

Consistently with previous findings (Meiser et al., 2008) a slow rate of surface 

recovery of CXCR3 was observed suggesting slow recycling or degradation of 

CXCR3 following agonist stimulation. Treatment with cycloheximide confirmed that 

protein synthesis is important in CXCR3 surface replenishment. Therefore upon 
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agonist binding CXCR3 is possibly degraded and new receptor molecules are de 

novo synthesized in order to recover surface expression. CXCR3 surface 

expression recovery was also inhibited by disrupting of endoplasmic reticulum 

(ER) function suggesting that newly synthesized receptor needs to be efficiently 

transported through the ER to the Golgi. Similar results were obtained by Meiser et 

al who found that recovery of CXCR3 at the cell surface is dependent upon newly 

synthesized receptor trafficking through functional Golgi apparatus in the cell 

(Meiser et al., 2008). 

3.7.9 CXCR3 agonists and CXCL4 induce biochemical signalling in human 

activated T lymphocytes 

The focus of these studies was to investigate the biochemical signals induced by 

CXCR3 agonists CXCL9, CXCL10 and CXCL11 as well as CXCL4. First the ability 

all agonists to induce elevation of intracellular free calcium was assessed in 

SEB/IL-2 activated T cells. CXCL 11, 10, 9 and 4 induced calcium mobilization, 

although considerable differences between these chemokines were observed. 

CXCL11 was more potent and efficacious than other CXCR3 agonists. These 

results were in agreement with the reported reduced affinities for CXCL9 and 10 

compared with 11 for CXCR3, with CXCL11 being unique as it interacts with 2 

receptor states of CXCR3 (Cox et al., 2001; Smit et al., 2003). CXCL4 exhibited 

the lowest potency and micromolar concentrations were required to induce 

response, however its efficiency was comparable to CXCL9 and CXCL10. Similar 

findings have been reported for ConA activated T cells where high nanomolar 

concentration of CXCL4 had to be used in order to obtain intracellular calcium 

elevation (Mueller et al., 2008). 

In addition to calcium responses, CXCR3 agonists and CXCL4 triggered activation 

of p44/42 MAPK and PI3K/Akt signalling pathways in activated T cells. Again, it 

was observed that CXCL11 was the most potent in its action (especially at the 

earliest time points of p44/p42 MAPK and Akt phosphorylation). Signalling induced 

by stimulation with all four agonists exhibited similar patterns, showing peak 

response after 2 minutes of incubation followed by rapid attenuation after 5 

minutes of exposure. This may be explained by receptor desensitisation and/or 

internalization and possibly degradation. These data partially differ from results 
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obtained by Smit et al who detected a sustained Akt activation in response to low 

(1-10 nM) concentrations of CXCL11. In addition the same research group 

observed a maximum increase of p44/p42 MAPK and Akt phosphorylation at later 

time points of agonists stimulation in activated T cells in comparison to this study 

(Smit et al., 2003). 

Sustained activation of MAPK and Akt was previously reported for CXCL12 

binding to its receptor CXCR4 (Tilton et al., 2000). However in contrast to CXCR3, 

the CXCL12–CXCR4 couple is involved in homeostasis rather than inflammation, 

and both CXCL12 and CXCR4 have been reported to be required for 

embryogenesis (Tachibana et al., 1998; Zou et al., 1998). Rapid and transient 

phosphorylation of Akt and MAPK was also demonstrated for other chemokines 

such as CCL2, CCL5, CCL19 and CXCL10 which act through CCR2 (Charo et al., 

1994), CCR5 (Raport et al., 1996; Samson et al., 1996), CCR7 (Yoshida et al., 

1998) and CXCR3 (Loetscher et al., 1996; Yoshida et al., 1998), respectively 

(Tilton et al., 2000; Yoshida et al., 1998). 

In comparison to CXCR3-mediated responses, the signal detected due to 

activation of CXCR3-B by CXCL4 was generally of lower strength, which may be 

explained by lower expression of CXCR3-B on the cell surface as a consequence 

of lower expression levels of its transcript, or alternatively the modified amino 

terminus of CXCR3-B might promote changes in receptor conformation and affect 

agonist binding and subsequently signalling. Moreover there was a certain level of 

variability in the results obtained with CXCL4. One possible reason underlying 

these differences could be variations between donors caused by different levels of 

CXCR3-B expression between individuals. The levels of CXCR3-B expression 

may differ with donor age, gender (the gene of CXCR3-B is present on 

chromosome X) or race. CXCR3-B expression could also depend on general 

health of the individuals however this possibility seems rather unlikely because 

human blood was donated by healthy volunteers. This potential correlation was 

not investigated within presented thesis but would be interesting to study further. 

Another possible reason of observed inconsistency could be due to variations in 

batches of recombinant CXCL4 or difference in quality and purity of CXCL4 

purchased from different suppliers. 
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3.7.10 CXCL4 induces signalling in activated T cells in pertussis toxin

sensitive manner 

Coupling of CXCR3-B to Gi protein is unclear due to opposite findings previously 

reported by two groups (Lasagni et al., 2003; Mueller et al., 2008). One study 

demonstrated PTX insensitivity and the lack of calcium influx in response to 

ligands and suggests the coupling of CXCR3-B to other types of G proteins in 

CXCR3-B transfectants (Lasagni et al., 2003). In contrast study by Mueller et al 

(2008) reported that CXCL4-mediated responses in both activated T cells and in 

CXCR3-B -expressing L1.2 cells were inhibited by PTX (Mueller et al., 2008). 

According to the results obtained within this thesis, in activated T cells CXCR3 

agonists as well as CXCL4 couple to Gi protein as activation of both p44/42 MAPK 

and Akt pathways was abolished by PTX, suggesting that coupling to different Gα 

proteins may depend upon cell type. 

3.7.11 Effect of CXCR3 antagonists on CXCR3mediated responses 

CXCL11-induced activation of p44/p42 MAPK and Akt was sensitive to treatment 

with CXCR3 antagonists. Potencies of these compounds were similar to those 

demonstrated for CXCL11-mediated CXCR3 surface down-regulation. In contrast 

using the highest concentrations of inhibitors it was possible to decrease 

responses nearly to basal levels. The inhibitory effect of a single concentration of 

T487 and NBI-74330 was also detected in migration and signalling induced by 

CXCL9 and CXCL10, whilst CXCL12 responses mediated by CXCR4 were not 

affected. Surprisingly p44/p42 MAPK and Akt phosphorylation stimulated by 

CXCL4 was not affected by CXCR3 antagonists. This result was opposite from 

that found by Mueller et al (2008) who observed that CXCL4-mediated chemotaxis 

was significantly (but not completely) inhibited by the CXCR3 antagonist T487. 

That may be explained either by CXCL4 interactions with different receptors than 

the CXCR3-B receptor present on the surface of T lymphocytes or insensitivity of 

the CXCR3-B isoform to CXCR3 antagonists. It would be of interest to further 

study this issue in both T cells and CXCR3-A and CXCR3-B expressing 

transfected cells. For example the effect of the CXCR3 antagonists on other 

CXCL4-triggered responses such as intracellular calcium elevation in both 

proposed cell systems could make for an interesting study. 
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3.7.12 Phosphorylation of GSK3ββββ and S6 protein by CXCL4 and CXCR3 

chemokines 

As an alternative read-out of PI3K/Akt signalling pathway in addition to Akt 

activation, namely the phosphorylation of other down stream effectors such as 

GSK3β and ribosomal protein 6 S6 were assessed. This approach of PI3K 

pathway studying was previously used by others (Huang et al., 2007; Smith et al., 

2007). The abilities of CXCR3 agonists and CXCL4 to stimulate phosphorylation of 

these proteins were investigated by immunoblotting. In day 9-12 SEB/IL-2 

activated T cells CXCL9, CXCL10 and CXCL11 induced PI3K-dependent 

phosphorylation of both GSK3β and S6. Low levels of phosphorylation were also 

detected upon stimulation with CXCL4. Taken together with my earlier findings 

that demonstrate the ability of CXCL4 to induce p44/p42 MAPK and Akt in a PTX-

sensitive manner, these results suggest that signalling events initiated by CXCR3 

agonists and CXCL4 are similar. 

3.7.13 CXCR3 agonist and CXCL4 induce actin polymerisation in activated T 

cells 

Polymerization and a reorganization of the actin cytoskeleton is an early cellular 

event in the chemotactic response to chemokines. CXCR3-mediated actin 

rearrangements have been well studied (Dagan-Berger et al., 2006; Smith et al., 

2007). According to data presented here, CXCL4 is also capable to induce actin 

polymerization in activated human T cells. 

3.7.14 CXCR3 agonists but not CXCL4 induced chemotaxis in activated T 

lymphocytes 

The effects of CXCL4 on T cells previously demonstrated by different groups 

suggested a role of CXCL4 in immunomodulation. CXCL4 has been reported to 

have an inhibitory effect of T cell proliferation via an antigen-specific stimulation 

(Fleischer et al., 2002) and the ability of CXCL4 to induce CD4+CD25+ regulatory 

T cell proliferation and to inhibit CD4+CD25- T cell proliferation (Liu et al., 2005) 

has also been demonstrated. In addition another study has shown a potential 

ability of CXCL4 to modulate Th1/Th2 polarization via differential regulation of 

transcription factor T-bet and GATA-3 (Romagnani et al., 2005). Therefore, the 
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actions of CXCL4 are opposite to several other chemokines, which are reported to 

promote T cell functions (Bacon et al., 1995; Taub et al., 1996). 

Although CXCL4 was effective in inducing biochemical signalling (seen as 

phosphorylation of p44/p42 MAPK, Akt, GSK3-β and S6) and functional events 

(actin reorganisation) no chemotactic response of T cells was detected, even at 

high, micromolar concentrations. Data presented in this thesis opposite from the 

results described by Mueller et al, showing that CXCL4 induced directional 

migration of activated human T lymphocytes (Mueller et al., 2008). The possible 

explanation of this may be due to difference in responsiveness between SEB and 

ConA activated T cells. No chemotactic activity has been also detected in resting T 

cells (Fleischer et al., 2002) and previous reports have shown that even high 

concentrations of CXCL4 lack chemotactic activity for polymorphonuclear 

neutrophils (Petersen et al., 1996). Hence it would be interesting to further 

investigate how the method of T cells activation modulate their ability to respond to 

CXCL4 and determine the existence of possible distinct signalling pathway in 

differentially activated T lymphocytes. 

As was suggested previously (Fleischer et al., 2002), CXCL4 may play a role in 

maintaining peripheral tolerance and in suppressing of autoreactive T cell 

responses at the sites of inflammation where high amounts of proinflammatory 

cytokines are present. Thus, although CXCL4 induces biochemical signalling 

events similarly to other chemokines, it does not share a typical chemokine 

features such as an ability to induce chemotactic activity. 

3.7.15 Analysis of expression of human CXCR3A, CXCR3B and CXCR3alt 

in transfected cells 

Transfected cells systems are a commonly used model in chemokine receptors 

studies. Neither cell line used within this study (CHOK1 and HEK293) express any 

detectable endogenous chemokine receptors and have been shown to be capable 

of expressing high surface levels of chemokine receptors following transfection 

with constructs similar to these used here (Dagan-Berger et al., 2006; Proost et 

al., 2007). Thus in order to analyze three CXCR3 spliced variants the transfectants 

system was used. 
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Full length, C-terminal EFGP-tagged CXCR3 (referred to as CXCR3-A to 

distinguish it from other variants) CXCR3-B and CXCR3-alt were successfully 

expressed in HEK293 and CHOK1 cell lines. Flow cytometric analysis of the 

EGFP signal revealed comparable levels of CXCR3-A and CXCR3-alt expression 

whereas CXCR3-B was found to be expressed at a lower level. In addition 

analysis of surface expression of each receptor form demonstrated in either 

CHOK1 or HEK293 cells transiently transfected with either construct exhibited high 

expression of CXCR3-A (as shown by anti-CXCR3 antibody staining and EGFP 

expression) whilst CXCR3-B and CXCR3-alt surface expression appeared to be 

lower. This phenomenon may be a consequence of lower expression of their 

transcript (which was also observed in T cells). Moreover, due to alternative 

splicing of CXCR3 mRNA which results in extension of the CXCR3 protein by 52 

amino acids at its N terminus, the receptor expression and function may be 

affected as this region of CXCR3 has been shown to be important for activation 

(Xanthou et al., 2003). Similarly, low levels of CXCR3-B expression were 

previously reported in transfected L1.2 cell line (Mueller et al., 2008). In contrast to 

the extended protein of CXCR3-B, in case of CXCR-alt differentially processed 

mRNA results in a dramatically altered receptor with only four to five predicted 

TMD (Ehlert et al., 2004). This impact is more extensive compared with other 

chemokine receptors which exists in more than one alternatively transcribed 

variants (Gupta and Pillarisetti, 1999; Lasagni et al., 2003; Wong et al., 1997; Yu 

et al., 2000). The most similar situation has been reported for the genomic mutant 

of CCR5, CCR5Δ32, in which case transcription results in protein with predicted 

structure lacking three TMD (Liu et al., 1996). This altered mRNA was considered 

not to be translated into protein or if so not to be transported to cell surface leading 

to lack of biological activity. These properties may be partially true for CXCR3-alt 

as its surface expression appeared to be dramatically lower in comparison to full 

length receptor. A similar observation was reported by Ehlert et al who 

demonstrated a 15-fold lower expression of CXCR3-alt than the full-size receptor 

in transfected HEK293 cells, however it appeared to traffic as functional receptor 

to the cell surface (Ehlert et al., 2004). 

Difference in expression of spliced variants of CXCR3 (-B and –alt) in comparison 

to the original receptor may be also due to lower protein stability of these isoforms 

and faster degradation. It is not known if CXCR3 could form dimers with its other 
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isoforms but it would be interesting to examine if co-expression with CXCR3-A 

could improve stability of CXCR3-B and CXCR3-alt due to their aggregation. 

Finally high expression of some forms of CXCR3 (such as CXCR3-B) could lead to 

cell death. It is important to notice that cells expressing EGFP-tagged CXCR3-B 

exhibited different phenotype (round shape, less healthy look) comparing to cells 

expressing other variants (Figure 3.21F). 

Due to lack of specific commercially available antibodies which distinguish 

between different CXCR3 proteins, in the study of surface expression of CXCR3 

receptor and its variants, the mouse monoclonal pan anti-CXCR3 antibody (clone 

49801) was used. Another available anti-CXCR3 antibody (clone IC6) directed 

against the 37 N-terminal amino acid residues of human CXCR3, previously used 

by Ehlert et al to detect CXCR3-alt, gave the same results. However it needs to be 

addressed that the affinities of these antibodies towards CXCR3-B and CXCR3-alt 

may be different to CXCR3-A due to structural changes within the protein. 

Therefore it would be good practice to develop antibodies directed against 

epitopes specific for each variant of CXCR3. 

3.7.16 Agonistsinduced downregulation of CXCR3A, B and –alt surface 

expression 

Although expression of surface CXCR3 is rapidly and dramatically reduced upon 

stimulation with CXCL11 in T cells, this effect is not that pronounced in CXCR3-

expressing transfected cells. However a transfectant system expressing the 

human ortholog of CXCR3 is well established (Xanthou et al., 2003) and has been 

previously used in studies of CXCR3 internalization (Meiser et al., 2008). Despite 

that this model is useful in situation when more than one form of receptor exists. 

C-terminal fusion of EGFP to CXCR3 variants resulted in impaired internalization 

of CXCR3-A and CXCR3-B in response to CXCL11 in comparison to unlabelled 

receptors, suggesting that EGFP tag affects interaction with adaptors. In contrast 

for both EGFP-CXCR3-alt and non-tagged CXCR-alt an increase in surface 

following CXCL11 stimulation was observed. This up-regulation is possibly due to 

release of previously preformed and intracellularly stored proteins of CXCR3-alt. A 

similar observation was previously reported for CXCR3 receptor in CD4+ T cells 
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stimulated with PHA or exposed to the cyclooxygenase substrate arachidonic acid 

(Gasser et al., 2006). In comparison to the moderate effect CXCL11 of down-

regulation of CXCR3-A and CXCR3-B, an effect of CXCL4 was only marginal 

which is similar to my previously discussed observations in T cells that CXCL4 

failed to internalize surface CXCR3. 

3.7.17 Intracellular calcium mobilisation induced by CXCL11 and CXCL4 in 

HEK293 cells transiently expressing CXCR3A, CXCR3B and CXCR3alt 

A previous study by Lasagni et al reported that in transfected microvascular 

endothelial cells CXCR3-B, but not CXCR3-A, was able to bind CXCL4 with high 

affinity and that CXCR3-B was able to induce neither calcium responses nor 

chemotaxis (Lasagni et al., 2003). In contrast another study demonstrated that 

when expressed in the L1.2 cell line both CXCR3-A and -B variants bind and 

chemotacticly respond to CXCL4 (Mueller et al., 2008). Moreover as previously 

discussed the same group reported intracellular calcium flux and chemotaxis in T 

cells in response to CXCL4. As reported in this thesis, both CXCR3-A and 

CXCR3-B isoforms induce intracellular calcium elevation in transfected HEK293 

cells triggered by CXCL11 and CXCL4 suggesting that both receptors interact with 

CXCL4. In addition CXCR3-alt transfectants were capable of inducing calcium 

responses upon stimulation with CXCL11 although to a lesser extend. CXCR3-alt 

has been previously shown to be responsive to CXCL11 in transfected HEK293 

cells (Ehlert et al., 2004). 

3.7.18 Activation of PI3K/Akt and p44/42 MAPK pathways in cells expressing 

CXCR3A, CXCR3B or CXCR3alt receptors by chemokines 

Petrai et al has previously shown that p38MAPK is a downstream target of 

CXCR3-B activation. These results were obtained in CXCR3-B expressing HEK 

293 cell using CXCL10 or CXCL4 as a stimulus (Petrai et al., 2008). Here the 

effect of CXCR3-B activation on other members of the MAPK family, namely 

p44/42MAPK and Akt, was investigated. Surprisingly only CXCL11, but not 

CXCL4, induced phosphorylation of p44/p42 MAPK CXCR3-A and CXCR3-B 

transfectents. In contrast no obvious effect of either CXCL11 or CXCL4 on Akt 

activation in CXCR3-B expressing cells was observed. This results were 

unexpected as CXCL4 did induce calcium responses in previous, presented here 
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experiments in transfected HEK293 cells and activated T cells and was capable to 

induce both p44/p42 MAPK and Akt in T cells. Therefore re-evaluation of these 

results in other cell lines could prove useful. This study also demonstrates for the 

first time that CXCR3-alt is able to induce both p44/p42 MAPK and Akt activation 

in HEK293 and CHOK1 cell lines following stimulation with CXCL11. Despite the 

ability of CXCL11 to induce phosphorylation (at least of p44/p42 MAPK) in 

transfected cell lines, there were noticeable variations between control samples 

and repeats of agonist-stimulated samples. The possible reason underlying this 

variability may be the transient method of cell transfection, which could result in 

different levels of surface expression of CXCR3 variants, especially when cells 

were transfected and then stimulated in individual wells. In order to avoid this 

error it would be a good practice to develop a stable cell lines expressing CXCR3 

variants. That would allow a better reproducibility of results and help to avoid such 

variability between samples. 
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Chapter Four


4. Biochemical analysis of human CXCR7 

RDC1/CXCR7 is a recently identified new member of chemokine receptors family. 

Despite intensive studies, its function as a typical chemokine receptor and 

mechanisms of action are not fully understood and are still to be elicited. 

CXCR7 has been previously identified as a novel receptor for CXCL12. Moreover 

CXCL12 has been found to signal and promote chemotaxis of T cells through 

CXCR7 (Balabanian et al., 2005). Further studies by Burns et al also revealed 

additional ligand for CXCR7, namely CXCL11. Considering previous findings next 

part of presented work will focus on re-evaluation of the involvement of CXCR7 in 

CXCL12 and CXCL11-mediated chemotaxis and signaling of human T 

lymphocytes. CXCR7-expressing HEK293 cells will also be utilized to study 

CXCR7 internalization and biochemical signaling events in response to stimulation 

with agonist. 

4.1 Expression of CXCR7 in human T lymphocytes 

Expression of CXCR7 was investigated in human T lymphocytes activated by 

SEB/IL-2 and CD3/CD28 beads by semi-quantitative PCR and by flow cytometry, 

respectively. PCR analysis of revealed expression of CXCR7 at mRNA level 

(Figure 4.1, and Table 2.1 for primers sequences). Moreover, using flow cytometry 

analysis and 358426 mAb directed against CXCR7 we observed low levels 

(around 20%) of surface expression of CXCR7 in freshly isolated T cells and this 

expression was comparable to expression of CXCR3 in these cells (Figure 4.1 B 

and Figure 3.1C, respectively). Upon stimulation with CD3/CD28 antibodies-

coated beads, level of CXCR7 expression decreased slightly and reached 13% on 

day 10 post-isolation (Figure 4.1B), compared with high expression of surface 

CXCR3 (Figure 3.1C). Changes in CXCR7 expression shown as mean 

fluorescence are shown in Figure 4.1C). Freshly isolated T cells contained 

marginally higher proportion of CXCR7+ cells comparing to activated cells 

however mean fluorescence showing surface expression of CXCR7 was 

moderately lower. 
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A


B


Figure 4.1 Expression of CXCR7 in human T lymphocytes and other cell types. PTO 
for the figure legend. 
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Figure 4.1 Expression of CXCR7 in human T lymphocytes and other cell types. (A), 
expression of CXCR7 RNA in day 9 SEB/IL-2 activated human T cells. Arrows point out 
bands corresponding to mRNA expression of CXCR7 and β-actin. RT +/- indicates presence 
or absence of Reverse Transcriptase. (B), expression of surface CXCR7 on freshly isolated 
(day 0) and CD3/CD28 activated T cells. Staining with anti-CXCR7 antibody is shown as 
open histograms (red line), staining with isotype controls is presented as filled histograms 
(blue). (C), Expression of surface CXCR7 on resting and activated T cells presented as 
MF. Data derived from at least two experiments. (D), Expression of CXCR7 at mRNA 
Level in Human Blood Cells and Human Immune System. PCR analysis was performed 
using cDNA preparations from Human Blood Fractions MTC™ Panel (upper case) or 
Human Immune System MTC™ Panel (lower case) (Clontech) as template and specific 
primers sets. Arrows point out bands corresponding to mRNA expression of CXCR7 
(around 550 bp) and G3PDH (around 1000 bp). 
Human Blood Fractions MTC™ Panel 

1. mononuclear cells (B & T-lymphocytes and monocytes) 
2. resting CD8+ cells (T-supressor/cytotoxic) 
3. resting CD4+ cells 
4. resting CD14+ cells (monocytes) 
5. resting CD19+ cells 
6. activated CD19+ cells 
7. activated mononuclear cells 
8. activated CD4+ cells 
9. activated CD8+ cells 
10. control (dH20) 

Human Immune System MTC™ Panel 
11. spleen 
12. lymph node 
13. thymus 
14. tonsil 
15. leukocyte, peripheral blood 
16. bone marrow 
17. foetal liver 
18. control (dH20) 
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Similar expression of CXCR7 was detected on the surface of T cells activated with 

SEB. The expression of CXCR7 mRNA was also assessed in other leukocytes 

and different tissues, by using PCR analysis. We utilized CXCR7-specific primers 

(as above), and commercially available cDNA probes derived from different 

fractions of human blood and tissues from immune system (Figure 4.1D). 

Obtained results demonstrated that CXCR7 encoding mRNA was widely present 

in resting and activated T cells, B cells and monocytes, as well as spleen, lymph 

nodes, thymus, tonsils, bone marrow and foetal liver. These results however 

cannot exclude genomic contamination of used templates due to lack of RT-

controls. Therefore it would be useful to re-design primers which will bind within 

different exons as CXCR7 has predicted 4-exons containing gene structure 

(Broberg et al., 2002; Zhang et al., 2009). 

4.2 Effect of antiCXCR7 antibody on chemotaxis and signalling of human T 

lymphocytes 

Despite the high affinity of CXCR7 to CXCL12 and CXCL11, its role in CXCL12 

and CXCL11-dependent chemotaxis is currently controversial issue (Balabanian et 

al., 2005; Burns et al., 2006). One study suggests that CXCL12 signals through 

CXCR7 in primary T cells and that CXCR7 cooperate with CXCR4 in lymphocyte 

motility (Balabanian et al., 2005). In contrast, evidence from other group did not 

confirmed a contribution of CXCR7 in T cell migration (Burns et al., 2006). To 

further address this issue, the potential involvement of CXCR7 in directional 

migration of activated human T cells was investigated. According to obtained 

results, chemotaxis of T cells induced by CXCL11 and CXCL12 was insensitive to 

treatment with anti-CXCR7 mAb 358426 (Figure 4.2A). No significant effect was 

also observed on random T cells motility (Figure 4.2B). The effect of the same 

antibody was then tested on CXCL11 and CXCL12-triggered activation of the 

PI3K/Akt and p44/42 MAPK pathways. Treatment with anti-CXCR7 mAb had no 

noticeable effect on the degree or kinetics of CXCL11 and CXCL12 induced 

phosphorylation of Akt and p44/42 MAPK (Figure 4.2C). Taken together presented 

results argue against any role of CXCR7 in CXCL11 or CXCL12 driven or random 

migration and CXCR3 or CXCR4 mediated signalling events such as Akt and 

p44/42 MAPK activation in activated T cells. 
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Figure 4.2 CXCL11 and CXCL12 induced chemotaxis and signalling in activated T 
lymphocytes is insensitive to antiCXCR7 antibody treatment. (A), chemotaxis of day 
9-12 activated T cells to increasing concentrations (0.1-100 nM) of CXCL11 (left panel) 
and CXCL12 (right panel) in the presence or absence of anti-CXCR7 antibody. Previously 
activated T cells (3.2x106) were washed, incubated with 5 or 10 µg/mL of anti-CXCR7 
mAb for 30 minutes at 37°C and placed (25µL per well) above lower chambers containing 
chemokine solutions or media. Chemotaxis across 5 µm pore size membrane was 
determined after a 3 hour incubation at 37°C in 5% CO2 as described in Materials and 
Methods. Presented data, expressed as number of migrated cell (mean +/- SEM) is taken 
from a single experiment with triplicates and is representative to two different experiments 
using cells isolated from different donors. (B), Effect of anti-CXCR7 mAb on random 
migration (C), T cells were incubated with 10 µg/mL of anti-CXCR7 mAb for 30 min at 
37°C follow by stimulation with 1 nM of CXCL11 or CXCL12 for 1, 2 or 5 min. Control 
samples were stimulated with media. Lysates containing 1x sample buffer were separated 
by electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-Ser473specific Akt ab or anti-phospho- Thr202/Tyr204 Erk1/2 
(p44/42) ab. Proteins were visualized by ECL. The blots were stripped and reprobed with 
anti-Erk1 antibody to verify equal loading and efficiency of the protein transfer. Presented 
data is representative for two different experiments performed using blood from different 
donors. 
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4.3 Expression of CXCR7 in HEK293 cell line 

In order to further examine CXCR7 mediated responses a system consisting of 

HEK293 cells transiently transfected with constructs encoding human CXCR7 

receptor with YFP tag on its amino terminus or non-tagged version of the receptor 

(both were gifts from Marcus Thelen, Switzerland) was used. Efficiency of 

transfection was determined 48 hours after procedures by flow cytometry (Figure 

4.3). In the analysis, YFP reporter detection along side with anti-CXCR7 mAb 

clone 358426 was utilized in order to examine expression of tagged and non-

tagged CXCR7 receptor in HEK293 cells. Both FACS analysis (Figure 4.4A left 

and central panel) and confocal microscopy (Figure 4.4B) confirmed high 

expression of CXCR7 on the surface of transfectants as assessed by PE-

conjugated anti-CXCR7 mAb. This correlated with YFP expression in cells 

transfected with YFP-tagged construct, which also revealed robust intracellular 

expression of CXCR7 (Figure 4.4B). 

4.4 CXCL11 and CXCL12 induced downregulation of CXCR7 surface 

expression in HEK293 cells 

Agonist- induced chemokine receptors internalization is a widely studied cellular 

process (Thelen, 2001). Internalization of CXCR7 mediated by CXCL12 has been 

previously shown for pre-B 300.19 cells and dermal fibroblasts expressing 

hCXCR7 (Balabanian et al., 2005). Therefore having established a good 

expression system, we investigated the effect of CXCL11 and CXCL12 stimulation 

on CXCR7 surface expression in the HEK293 cells model. Treatment of HEK293 

cells expressing human CXCR7 or YFP-CXCR7 with increasing concentrations of 

either CXCL11 or CXCL12 induced a concentration-dependent internalization of 

CXCR7 (Figure 4.5A and B left panels). Maximum decrease in CXCR7 surface 

expression was observed from 100 to 30-40% after stimulation with 100nM of 

either CXCL11 or CXCL12 for non-tagged and YFP-tagged receptor. Time-course 

experiments revealed that CXCR7 surface expression decreased from 100 to 

around 40% within the first 5 min of incubation and after this time point we 

observed a small increase in expression, particularly in YFP-CXCR7-expressing 

cells (Figure 4.5A and B, right panel). 
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Figure 4.3 Optimisation of CXCR7 expression in HEK293 cell line. (A), HEK293 cells 
were transfected with different amounts of DNA encoding CXCR7-YFP or with empty 
vector and 48 hours post-transfection the expression of the receptor was assessed by 
FACS. 
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Figure 4.4 Expression of CXCR7 receptor in HEK293 cells. HEK293 cell were 
transiently transfected with CXCR7 chemokine receptor with or without YFP tag as 
described in Materials and Methods. 48 hours post transfection expression of CXCR7 was 
analyzed. (A), Flow cytometry analysis of CXCR7 expression by examination of surface 
staining with anti-CXCR7 mAb conjugated with PE (left and middle panels) and YFP 
reporter expression (right panel). (B), Confocal image of HEK293 cells expressing CXCR7 
HEK 293 cells grown on poly-L-lysine-coated coverslips, were transfected with constructs 
encoding YFP-CXCR7 and 48 hours post-transfection expression of the receptor was 
analysed by confocal microscopy. Briefly, cells were fixed and coverslips were mounted 
with Mowoil containing DAPI (blue) for nuclear visualisation. Presented data are 
representative for 3-5 independent experiments. 
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Figure 4.5 CXCR7 is downregulated in response to CXCL11 and CXCL12. 48 hours 
post-transfection CXCR7 (A), or YFP-CXCR7 (B)-expressing HEK293 were incubated for 
30 min at 37°C with the indicated concentrations of CXCL11 or CXCL12 (A and B left 
panels) or for the time indicated with 100 nM of each agonist (A and B, right panels) or left 
untreated. (C), Previously activated T cells were incubated with 100 nM of CXCL11 or 
CXCL12 for 5 or 30 minutes. Cell were then stained with the anti-CXCR7 mAb or IgG2A 
isotype control at 4°C and amount of receptors that remains at the cell surface after 
incubation with the chemokine was assessed by FACS. 100% corresponds to receptor 
expression at the surface of cell incubated in medium alone. Results represents the mean 
+/- SE of three independent experiments. 
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Despite of relatively low surface expression of CXCR7 in T lymphocytes an effect 

of CXCL11 and CXCL12 (Figure 4.5C) on this expression was also examined. A 

small decrease in CXCR7 surface expression for about 20% following stimulation 

with 100 nM of CXCL11 or CXCL12 for 30 or 5 minutes, respectively. In contrast 

shorter, 5 minutes exposure to CXCL11 and longer, 30 minutes exposure to 

CXCL12 led to increase of basal level of CXCR7 for about 20-40%. 

4.5 Mechanisms of CXCR7 Internalization 

Due to CXCR7 sharing agonists with CXCR3 and CXCR4, the effect of NBI-

74330 and AMD3100, which inhibit CXCR3 and CXCR4 respectively on CXCL11-

and CXC12- driven loss of surface of CXCR7 expression in transfected HEK293 

was examined (Figure 4.6A). Neither NBI-74330 nor AMD3100 had any effect of 

down-regulation of CXCR7 following stimulation with CXCL11 and CXCL12. This 

suggest that the antagonists are receptor and not agonist selective. 

As discussed previously there are two major pathways by which chemokine 

receptor can be internalized; either via clathrin-coated vesicles and then clathrin-

mediated endocytosis or via cholesterol enriched structures-caveolae. To 

examined which pathway may be involved in agonist- triggered CXCR7 

internalization we used chlorpromazine and hypertonic sucrose medium which 

have been shown to block the assembly of clathrin (Mueller et al., 2002; Okamoto 

et al., 2000) and filipin and nystatin which can inhibit internalization via caveolae 

(Harder et al., 1997). We examined the effect of these inhibitors on CXCR7 down-

regulation in CXCR7-expressing HEK293 cells (Figure 4.6B). Sucrose and 

chlorpromazine had only a minimal effect of CXCL11- induced down-regulation of 

CXCR7 (5-15% of basal expression) suggesting that clathrin- mediated pathway 

may not play significant role in CXCR7 endocytosis. Similarly, no effect on 

CXCL12- triggered internalization of CXCR7 was observed. Neither filipin nor 

nystatin had any inhibitory effect on both CXCL11- and CXCL12- induced CXCR7 

down-regulation suggesting that caveolae are not involved in down- regulation of 

CXCR7 in transfected HEK293 cells. These inhibitors were also addressed in 

study of CXCR3 down-regulation in transfected HEK293 cells following incubation 

with 30 nM CXCL11. 
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Figure 4.6 Mechanisms of CXCR7 downregulation in HEK293 cells. (A), 48 hours 
post-transfection CXCR7 expressing HEK293 were incubated for 30 min at 37°C with 300 
nM of NBI-74330 or AMD3100 follow by stimulation with CXCL11 or CXCL12, 
respectively. (B), CXCR7-HEK293 cells or (C), CXCR3-HEK293 cells were treated with 
0.4M sucrose, 10 µg/mL of chlorpromazine (left panels), 50 µg/mL of nystatin or 5 µg/mL 
of filipin (right panels) follow by incubation with 100 nM of CXCL11 or CXCL12 (B) or 30 
nM of CXCL11 (C). Cell were then stained with the anti-CXCR7 mAb or IgG2A isotype 
control or alternatively anti-CXCR3 mAb and IgG1 control at 4°C and amount of receptors 
that remains at the cell surface after incubation with the chemokine was assessed by 
FACS. 100% corresponds to receptor expression at the surface of cell incubated in 
medium alone. Results represents the mean +/- SE of 3 (or 2 in panel C) independent 
experiments. 
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Similarly to CXCL11- induced down-regulation of CXCR7, CXCR3 internalization 

was partially but not significantly reduced by chlorpromazine but not by sucrose 

treatment and was insensitive to nystatin and filipin (Figure 4.6C). 

4.6 Analysis of biochemical signals mediated via CXCR7 receptor 

In this part of the study two signalling pathways, Akt/PI3K and p44/p42 MAPK of 

CXCL11 and CXCL12 were delineated. Despite the fact that both CXCL11 and 

CXCL12 appeared to be inducers of CXCR7 surface down-regulation in the 

previous experiment they were unable to trigger any notable activation of the 

Akt/PI3K and p44/p42 MAPK signalling pathways in CXCR7-transfected HEK293 

cells following stimulation with 100 nM concentration of each agonist (Figure 4.7). 

These data suggest that CXCR7 is not coupled to PI3K and p44/p42 MAPK 

signalling, at least in the transfected HEK293 cells model. 
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pp44/p42 

Erk1 

Figure 4.7 Effect of CXCL11 and CXCL12 stimulation on Akt and Erk 
phosphorylation in CXCR7 expressing HEK293 cells. 48 hours post-transfection HEK 
cells were stimulated with 100 nM concentration of CXCL 11 or CXCL12 for 1-5 min. 
Control samples were stimulated with media. Samples were lysed by centrifugation and 
addition of solubilisation buffer. Lysates containing 1x sample buffer were separated by 
electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-specific Akt ab with the affinity for the active Ser473 -
phosphorylated form of Akt or p44/p42 ab with the affinity for the active Thr202/Tyr204 form 
of Erk. Proteins were visualized by ECL. The blots were stripped and reprobed with anti-
Erk1 antibody to verify equal loading and efficiency of the protein transfer. In 
concentration response study p44/p42 MAPK and Akt phosphorylation was quantified by 
chemiluminescence and corrected for total Erk 1 expression on stripped blots. Presented 
data is representative for three independent experiments. 
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4.7 Summary of Chapter Four 

In this part of the study our aim was to analyse the expression of CXCR7 in T cells 

and its role in T cells chemotaxis and signalling. Moreover we analyzed the 

CXCR7-mediated responses such as agonist-induced down-regulation and 

biochemical signalling in CXCR7-expressing HEK293 cells. Our major findings are 

as follows: 

�	 CXCR7 in expressed in human T lymphocytes at mRNA level and low levels of 

CXCR7 are expressed on the surface of freshly isolated and activated T cells. 

Surface expression of CXCR7 was not dependent on the way of activation, 

similar levels of CXCR7 surface expression were detected on both CD3/CD28 

antibodies-coated beads– as well as SEB- stimulated T lymphocytes. 

�	 Treatment with anti-CXCR7 358426 mAb had no effect on neither CXCL11 and 

CXCL12 – mediated chemotaxis nor Akt and p44/p42 MAP kinase 

phosphorylation in T cells. 

�	 HEK293 cells transiently transfected with CXCR7 or YFP-CXCR7 – encoding 

constructs exhibited high levels of CXCR7 expression on the cell surface. 

�	 Surface CXCR7 and YFP-CXCR7 were down-regulated following CXCL11 and 

CXCL12 stimulation and this down-regulation was insensitive to CXCR3 and 

CXCR4 antagonists, NBI-74330 and AMD3100, respectively. Moreover 

endogenous CXCR7 expressed in T cells was partially internalized upon 

stimulation with both CXCL11 and CXCL12. 

�	 Down-regulation of CXCR7 appeared to occur in clathrin and caveolae-

independent manner. 

�	 No Akt phosphorylation and no obvious p44/p42 MAPK phosphorylation could 

be detected following stimulation with CXCL11 or CXCL12 in CXCR7 

transfectants. 
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4.8 Discussion 

4.8.1 Expression of chemokine receptor CXCR7 in Human T cells 

Formerly known as RDC1, chemokine receptor CXCR7, exhibits phylogenic 

relation to the chemokine receptor family and binds inflammatory and homing 

chemokines CXCL11 and CXCL12 (Balabanian et al., 2005). Despite that it has 

not yet found general acceptance as typical chemokine receptor as characteristic 

chemokine signaling could not be demonstrated (Burns et al., 2006). 

Study of CXCR7 expression revealed that CXCR7 gene is expressed in SEB/IL-2 

activated and in vitro expanded IL-2 T lymphocytes. mRNA encoding CXCR7 was 

previously detected in brain, heart, kidney, spleen, and PBLs (Balabanian et al., 

2005; Eva and Sprengel, 1993; Libert et al., 1990; Shimizu et al., 2000). However 

surface CXCR7 was mainly demonstrated on transformed tumor cells (Burns et 

al., 2006). Here, expression of surface CXCR7 was examined by 

immunofluorescence using mAb 358426. This antibody detected a relatively small 

(around 20%) population of CXCR7-expressing cells within freshly isolated CD3+ T 

cells and this number changed minimally upon T cell activation. In a study by 

Balabanian et al. surface CXCR7 was also detected on PBL and the A0.01 T-cells 

using different monoclonal antibodies directed against CXCR7 (clones 9C4 and 

12G5) (Balabanian et al., 2005). In contrast Hartmann et al. were not able to show 

any detectable surface expression of CXCR7 in freshly isolated T cells using three 

different antibodies (clones 9C4, 11G8 and 358426) and have reported CXCR7 to 

be present only intracellularly (Hartmann et al., 2008). 

4.8.2 CXCL11 and CXCL12 induced chemotaxis and signalling in activated T 

lymphocytes is insensitive to antiCXCR7 antibody treatment 

Despite its high affinity for CXCL11 and CXCL12, the role of CXCR7 in CXCL11 

and CXCL12-mediated chemotaxis and signaling is unclear (Balabanian et al., 

2005; Burns et al., 2006). In order to identify the potential involvement of CXCR7 

in CXCL11 and CXCL12-mediated responses in T cells, the effect of anti-CXCR7 

mAb 358426 on was investigated. The chemotactic effect of neither CXCL11 nor 

CXCL12 was inhibited in the presence of the antibody (5 and 10 µg/mL). In 

addition treatment of T cells with the same antibody did not affect phosphorylation 

of p44/p42 MAPK or Akt. These observations were in disagreement with results 
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obtained by Balabanian et al who, using the anti-CXCR7 antibody 9C4, were able 

to partially interfere with CXCL12-induced migration of T cells (Balabanian et al., 

2005). The lack of effect in these studies may be due to use of different antibodies 

and as the neutralizing abilities of anti-CXCR7 mAb 358426 has not been 

confirmed. However in another study, Hartmann et al reported that chemotaxis 

toward different doses of CXCL12 as well as Gi dependent signaling and motility 

of T lymphocytes and CD34+ cells was also insensitive to CXCR7-blocking mAb 

(9C4, 11G8) and to the small molecule CXCR7 antagonist CCX733 (Hartmann et 

al., 2008). Taken together, it appears that T cells do not utilize their CXCR7 to 

transduce CXCL12- and possibly CXCL11-dependent intracellular and functional 

responses. 

4.8.3 CXCL11 and CXCL12 induced downregulation of CXCR7 surface 

expression in HEK293 cells 

Because surface-receptor endocytosis is a well known process occurring upon 

chemokine stimulation, the effect of CXCL11 and CXC12 on CXCR7 

internalization was investigated. In these studies CXCR7-expressing transfected 

HEK293 cells was utilized. Both full length YFP-tagged and non-tagged human 

CXCR7 receptors were found to be expressed at high levels at the surface of 

these cell making them an appropriate system to study CXCR7, as previously 

reported (Hartmann et al., 2008). Treatment of CXCR7-HEK293 cells with 

CXCL12 induced time and concentration dependent down-regulation of surface 

CXCR7. Similar results were demonstrated by Balabanian et al in pre-B 300.19 

cells expressing human CXCR7, dermal fibroblasts, CHOK1 and A0.01 cells 

(Balabanian et al., 2005). In addition, transfected HEK293 cells were responsive 

CXCL11 as stimulation with this chemokine gave the same results. In contrast 

both CXCL11 and CXCL12 had only a minute effect on surface expression of 

endogenous CXCR7 in T cells. 
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4.8.4 Mechanisms of CXCR7 internalization 

Despite some reports that CXCR7 becomes internalized following agonist binding 

(Balabanian et al., 2005), the mechanisms of this process are unknown. In order to 

establish the pathway of agonist induced endocytosis of CXCR7, previously 

discussed pharmacological approach were addressed. Unfortunately, the results 

obtained were unclear as there was no obvious effect of inhibition of either clathrin 

or caveaolin-dependent pathways on CXCL11 or CXCL12-mediated surface 

down-regulation of CXCR7 in HEK293 cells. Moreover, lack of controls proving 

biological activities of used compounds, makes any conclusions difficult. 

Furthermore, considering the limitation of using the low selectivity 

pharmacological inhibitors such as filipin, further studies using more directed 

approaches such as dominant mutant strategy or RNA interference are required. 

4.8.5 Effect of CXCL11 and CXCL12 stimulation on Akt and Erk 

phosphorylation in CXCR7 expressing HEK293 cells 

Having established the effect of CXCL11 and CXCL12 on surface CXCR7 in 

transfected HEK293 cells, their ability to induce biochemical signaling was 

investigated. No Akt phosphorylation and no obvious p44/p42 MAPK 

phosphorylation could be detected following stimulation with CXCL11 or CXCL12 

in CXCR7 transfectants. As was proposed before in by Hartmann et al, the lack of 

signaling typical for chemokine receptor may be explained by alteration within its 

DRY motif similar to other atypical chemokine receptors such as Duffy antigen 

receptor for chemokines (Horuk et al., 1993), D6 (Bonini et al., 1997; Nibbs et al., 

1997), or CCXCKR (Gosling et al., 2000). Results obtained here support previous 

observations in other cellular systems, indicating that CXCL12 binding to CXCR7 

does not trigger calcium mobilization or chemotaxis (Burns et al., 2006; Sierro et 

al., 2007). Therefore as CXCR7 does not appear to be involved in typical signaling 

events, motility or chemotaxis, its role may be distinct to other chemokine 

receptors. One proposed possibility is that CXCR7 serves as an adaptor for a 

subset of CXCR4 molecules specialized in transducing rapid CXCL12-mediated 

integrin activation but is not essential for global CXCR4-mediated signaling 

implicated in cell motility or survival (Hartmann et al., 2008). In contrast a 

connection between CXCR7 and CXCR3 still remains unexplored and requires 

more attention. Moreover CXCR7 has been demonstrated to provide a 
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growth/survival signal and increased adhesiveness of cells and is suggested to be 

constitutively active in tumor cells, thus a role in tumor development has also been 

proposed (Burns et al., 2006). 

195 



Anna Korniejewska, 2009 Chapter Five Results & Discussion


Chapter Five


5. Role of protein arginine methylation in human T cells 

It is well established that protein phosphorylation initiates signal transduction that 

in turn leads to lymphocyte activation. However, it has been demonstrated that 

other posttranslational modifications such as protein methylation may contribute to 

this process. There are several studies providing evidence for involvement of 

protein arginine methylation in T-cell activation (Blanchet et al., 2005; Mowen et 

al., 2004). NFAT co-activator NIP45 (NFAT Interactin Protein 45 kDa) is arginine 

methylated by PRMT and this modification is required for NFAT/NIP45 interaction 

(Mowen et al., 2004). It was also demonstrated previously that methylation of 

STAT (Signal Transducer Activator Transcription) proteins regulates interaction 

with its inhibitor PIAS1 (Protein Inhibitor of Activated STAT) thus plays role in 

cytokine signaling (Mowen et al., 2004). Further evidence came from the study by 

Blanchet et al who demonstrated that CD28 stimulation increases PRMT activity 

and arginine methylation of several proteins including two key effectors of CD28 

signaling: interleukin-2 tyrosine kinase (Itk) and GDP-GTP exchange factor (GEF) 

for Rho-family GTPases – Vav-1. The importance of Vav-1 methylation remains 

unclear. However, the fact that methylated Vav-1 protein was found in the nucleus 

may be significant for its putative function in nucleus (Tybulewicz, 2005). 

5.1 Profiles of arginine methylated proteins in T cells 

Protein arginine methylation is a post-translational modification resulting in transfer 

of a methyl group from S-adenosylmethionine by protein arginine 

methyltransferases (PRMTs). This can lead to modifications in which arginine 

residues are either mono- (MMAs) or dimethylated (DMA). The dimethyl arginines 

can occur either symmetrically (sDMAs) or asymmetrically (aDMAs). In order to re-

evaluate the effect on T cell activation of arginine-methylation of cellular proteins 

commercially available antibodies 5D1, 7E6, Asym 24 and Sym 11 reacting with 

MMA, MMA and DMA, aDMA and sDMA, respectively were utilized in 

immunoblotting of lysates derived from unstimulated and stimulated PHA/IL-2 T 

cells (Figure 5.1 A-D). Anti-monomethyl-arginine antibody recognized small 

amount of proteins in unstimulated T lymphocyte. Upon stimulation with anti-CD28 
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antibody (a process which mimics T cell costimulation), the amount of bands 

detected by antibody gradually increased after 5 to 30 minutes (around 100, 75, 40 

and 30 kDa molecular weight Figure 5.1A). In addition, stimulation with CD28 A6 

together with anti-CD3 antibody UCHT1 (which mimics TCR stimulation by 

antigen) for 30 minutes led to further increase of protein methylation. 7E6 antibody 

which reacts with mono- as well as dimethylarginine-containing proteins detected 

several bands in unstimulated cells and stimulation with either anti-CD28 or CD3 

antibody resulted in increased levels of methylated proteins (Figure 5.1B). It 

appeared that additional bands (with molecular weights 60 and 25 kDa) were 

detected after CD28 then CD3 stimulation suggesting that co-stimulation might be 

more sufficient to trigger methylation of arginine residues. It is important to notice 

that protein bands detected at around 50 and 27-30 kDa correspond to the heavy 

and light chains of either CD28 or CD3 mouse antibodies, respectively. We then 

examined the effect of T cell stimulation on the levels of asymmetric and 

symmetric dimethyl-arginines-containing proteins. Asym24 and Sym 11 antibodies 

which react with aDMAs and sDMAs, respectively detected different patterns of 

protein bands in unstimulated T cells (Figure 5.1C and D). In contrast it was not 

possible to observe any increase in the levels of proteins containing dimethylated 

arginines neither asymmetrically or symmetrically methylated substrates following 

stimulation with anti-CD28 or both anti-CD28 and CD3 antibodies. The effect of 

the methyltransferases (MTases) inhibitor, methylthioadenosine (MTA) on the 

basal levels of protein arginine methylation was examined. The results revealed 

that both asymmetrical and symmetrical dimethylation of arginine decreased 

slightly after pretreatment with 1 mM of MTA for 30-60 minutes (MTA, Figure 

5.2A). 

To examine if MTA has an effect on cell viability, T cells were incubated in the 

presence of 1 mM MTA or DMSO (control cells) at 37°C for 5 hrs in serum free 

RPMI medium. Cells were then washed, resuspended in FACS buffer and 1µg/mL 

of propidium iodide (PI) was prior to flow cytometry analysis. PI binds to the DNA 

of the cell only when disruption of plasma membrane occurred, thus PI binding 

may be a marker of cell death. No difference of PI binding was found between 

MTA and DMSO treated samples suggesting that this compound has no obvious 

effect on cell viability (Figure 5.2B). 
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Figure 5.1 Profiles of protein arginine methylation in T cells. Day 9-12 PHA/IL-2 
activated T lymphocytes were stimulated with 10µg/mL of anti-CD28 (clone 9.3), anti-CD3 
(clone UCHT1) or both antibodies for times indicated. Control samples were stimulated 
with media. Samples were lysed by centrifugation and addition of solubilisation buffer. 
Lysates containing 1x sample buffer were separated by electrophoresis in 10% SDS-
PAGE, transferred to nitrocellulose membranes, and immunoblotted with (A), anti-MMA 
(clone 5D1) antibody; (B), anti-MMA and DMA (7E6) antibody; (C), anti-aDMA (Asym24); 
(D), anti sDMA (Sym11) antibody. Black arrow heads indicate bands induced by CD28 
stimulation. Red arrow heads indicate bands induced by additional CD3 activation. 
Asterisks indicate predicted weights of heavy and light chains of antibodies used for 
stimulation. The data is representative to two to three independent experiments using T 
cell isolated from different donors. 
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Figure 5.2 Effect of MTA of the basal levels of dimethylargininecontaining proteins 
in T cells. (A), Previously activated T cells were incubated with 1 mM of MTA for times 
indicated at 37°C. Samples were then lysed by centrifugation and addition of solubilisation 
buffer. Lysates containing 1x sample buffer were separated by electrophoresis in 10% 
SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted with antibodies: 
anti-aDMA (Asym24, left panel) or anti-sDMA (Sym11, right panel). (B), T cells were 
incubated with 1 mM of MTA or DMSO (control) for 5 hours at 37°C. After incubation 
samples were washed and 1 µg/mL of PI was added. Samples were the analysed by 
FACS, fluorescence was collected at FL-2. The data is representative to three 
independent experiments using T cell isolated from different donors. 
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5.2 Effect of okadaic acid on the PRMT activity 

Protein phosphorylation plays a key role in many cellular processes and is 

regulated by phosphatase activity. Thus, the balance of enzyme activity between 

kinases and phosphatases is critical in mediation of cell functional response. 

Duong et al showed the first evidence that PRMT1 activity is negatively regulated 

via direct interaction with serine/threonine phosphatase PP2A (protein 

phosphatase 2A) (Duong et al., 2005). To investigate its effect on PRMT1 in T 

cells, the incubation with known PP2A inhibitor okadaic acid (500nM for 30 

minutes) was performed follow by stimulation with anti-CD28 antibody. Okadaic 

acid alone had no effect on basal protein methylation profile (Figure 5.3C). 

Treatment of T cells with okadaic acid followed by activation with anti-CD28 

antibody resulted in shift in migration of certain protein bands in the gel (detected 

proteins had molecular weight around 75 and 60 kDa) and sDMAs (proteins 

around 50 kDa) (Figure 5.3A and B). This up-shift in gel migration of highlighted 

proteins could be wrongly interprete as an increase in the level of methylated 

protein however is more likely caused by higher level of phosphorylation, the result 

of phosphatase inhibition. This could also explain a decrease within dimethylated 

proteins either containing aDMAs (50kDa) and sDMAs (40, 60 and 70 kDa). This 

proteins are possibly ‘stuck’ within up-shifted bands discussed above therefore 

giving impression of increase or decrease in methylation of some proteins. It is 

also worth notice the effect of okadaic acid had on total Erk1 levels (shown in 

Figure 5.3A and B). Samples in which cells were treated with okadaic acid 

migrated further up the gel in comparison to untreated samples presumably due to 

higher levels of protein phosphorylation in these cells. 

In order to confirm the inhibitory effect of okadaic acid on PP2A, we examined its 

effect on Akt phosphorylation, which is down regulated by this phosphatase 

(Figure 5.3 E), (Valverde et al., 2000). 

The effect of okadaic acid was also examined on arginine monomethylation using 

the antibody directed against MMAs. Again level of monomethylarginine-

containing proteins raised in order to CD28 stimulation. Treatment with PP2A 

inhibitor had no detectable effect on MMAs-containing proteins level (Figure 5.3C). 

Antibody used in the experiment also detected a single band which appeared after 

10’ CD28 stimulation followed by treatment with okadaic acid however significance 

of that band is unknown. 
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Figure 5.3 Effect of okadaic acid on PRMT1 activity. Previously activated T cells were 
incubated with 500 nM of okadaic acid for 30 minutes at 37°C followed by stimulation with 
the anti-CD28 antibody. Samples in panel (C) were not stimulated. Samples were then 
lysed by centrifugation and addition of solubilisation buffer. Lysates containing 1x sample 
buffer were separated by electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose 
membranes, and immunoblotted with appropriate antibody: (A, C left panel), anti-aDMA 
(Asym24); (B, C right panel), anti-sDMA (Sym11); (D), anti-MMA (7E6); (E), anti-phospho-
Akt (Ser473). Bands changed after okadaic treatment are indicated by arrow heads. 
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5.3 The role of protein methylation in T cell migration 

Despite the well established role of methylation in chemotaxis of Escherichia coli 

(Silverman and Simon, 1977; Parkinson et al., 2005), the role of this modification 

in mammalian lymphocyte migration is unexplored. Some of exciting findings 

suggesting a potential role of protein methylation in migration of T cells are 

discussed in chapter 1.17 of Introduction. 

Considering described findings it was aimed to investigate the effect of inhibition of 

methylation in vitro migration of activated T lymphocytes. First the effect of 

methyltransferase inhibitor, methylthioadenosine (MTA) on CXCL12 stimulated 

actin polymerisation of T cells was examined. MTA (1 mM) pre-treatment 

abrogated F-actin activation to basal levels as shown by phalloidin binding (Figure 

5.4A). In order to determine the role of protein methylation in T cell migration, cells 

were pre-treated with increasing concentration of MTA (10-3000 µM) prior to 

performance of chemotaxis assay using 1 nM CXCL11 as a stimulus. Only the 

highest concentration significantly but not completely inhibited on the CXCL11-

trigered directional migration (Figure 5.4B). In contrast, in some cases MTA 

treatment had a much stronger effect on migration, suggesting that sensitivity to 

the inhibition of methylation may be donor dependent. As shown in Figure 5.4C 

directional migration of T cells towards rising concentrations of CXCL11 was 

completely abolished by 3 mM MTA. We also examined the effect of inhibition of 

methylation on chemotaxis of freshly isolated pan T lymphocytes. These cells 

exhibit moderate expression of CXCR3 but high levels of CXCR4 (Mueller, 2008; 

Sotsios et al., 1999) therefore CXCL12 was chosen to stimulate chemotaxis in the 

experiments. Pretreatment with 3 mM MTA had a partial effect on directional 

migration of T cells with the significant effect on peak response (towards 10 nM 

CXCL12, Figure 5.4D). 

In the further study the effect of other known inhibitors of protein methylation on T 

cells migration was also investigated. First the effect of sinefungin which is a 

natural nucleoside produced by Streptomyces incarnatus and Streptomyces 

griseolus was examined (Yebra et al., 1991). It is a structural analog of S-

adenosylmethionine (SAM), which is a known inhibitor of transmethylation 

reactions related to DNA proteins phospholipids and other molecules (Barbes et 
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al., 1990; Fuller and Nagarajan, 1978; Mccammon and Parks, 1981; 

Paolantonacci et al., 1985). As is shown in Figure 5.5A, 30 minutes incubation of T 

cells with 1, 10 and 100 µM of sinefungin did not affect neither chemotaxis towards 

1 nM of CXCL11 and 10 nM of CXCL12 nor random migration. We then 

proceeded to examine an effect AMI-1, small molecule that specifically inhibit 

protein arginine N-methyltransferase (PRMT) activity (Cheng et al., 2004). 

Treatment of T cells with 1-100 µM concentration of AMI-1 did not affect 

chemotaxis induced by CXCL11 and CXCL12 or random migration (left and right 

panels, respectively Figure 5.5B). 

203 



Anna Korniejewska, 2009 Chapter Five Results & Discussion


Figure 5.4 Effect of MTA on T lymphocyte migration. PTO for the figure legend.
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Figure 5.4 Effect of MTA on T lymphocyte migration. (A), Inhibition of actin 
polymerisation in T cells. Day 9-12 SEB/IL-2 activated T cells were incubated in the 
presence of 1 mM MTA and stimulated for 1 minute with 0.3 nM CXCL12. Cells were then 
fixed in 4% para-formaldehyde, permeabilized and stained with TRITC-labelled phalloidin. 
F-actin polymerization was monitored by FACS. Data is representative for three other 
experiments. (B), Inhibition of T cells chemotaxis towards 1 nM CXCL11 by increasing 
concentration of MTA. (C), Inhibition of T cell chemotaxis to increasing concentration of 
CXCL11 by 3 mM of MTA. (D), Inhibition of chemotaxis of freshly isolated pan T cells 
towards increasing concentrations of CXCL12 by 3 mM MTA. T cells were washed, 
incubated with appropriate concentrations of MTA for 30 minutes at 37°C and placed 
(25µL per well) above lower chambers containing chemokine solutions or media. 
Chemotaxis across 5 µm pore size membrane was determined after a 3 hour incubation at 
37°C in 5% CO2 as described in Materials and Methods. Presented data, expressed as 
number of migrated cell (mean +/- SEM) is taken from a single experiment with triplicates 
and is representative of two different experiments using cells isolated from different 
donors. 
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Figure 5.5 Effect of Sinefungin and AMI on T lymphocyte migration. Previously 
activated T cells were washed, incubated with appropriate concentrations of Sinefungin 
(A) or AMI-1 (B) for 30 minutes at 37°C and placed (25µL per well) above lower chambers 
containing chemokine solutions or media. Chemotaxis across 5 µm pore size membrane 
was determined after a 3 hour incubation at 37°C in 5% CO2 as described in Materials and 
Methods. Presented data, expressed as number of migrated cell (mean +/- SEM) is taken 
from a single experiment with triplicates and is representative of three different 
experiments using cells isolated from different donors. 
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5.4 Summary of Chapter Five 

In this section we aimed to re-investigate the effect of T cell stimulation on the 

levels of protein arginine methylation. Moreover we were interested in the possible 

effect of protein methylation in chemokine-induced directional migration of T cells. 

During study the following observation were made: 

�	 Using antibodies directed against MMA, aDMA and sDMA we were able to 

detect characteristic profiles of mono- and dimethylarginine-containing 

proteins in T cells, respectively. 

�	 Levels of monomethylarginie methylation increased upon CD28 stimulation 

and addition of both anti-CD3 along with anti-CD28 antibodies resulted in 

further increase. 

�	 No effect on dimethylation of arginines was observed following T cells 

stimulation with anti-CD28 or both-CD28 and CD3 antibodies. 

�	 Inhibition of PP2A with okadaic acid led to increased protein 

phosphorylation (slower migration in the gel of phosphorylated proteins) but 

no obvious effect on arginines methylation could be detected. 

�	 Treatment with broad spectrum methylation inhibitor MTA blocked CXCL12-

induced actin polymerisation. 

�	 MTA had a significant inhibitory effect on T cells chemotaxis induced to 

CXCL11. 

�	 Chemotaxis of freshly isolated pan T cells towards CXCL12 was also 

affected by MTA treatment. 

�	 No inhibition of chemotaxis was detected after treatment with sinefungin 

and AMI-1. 
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5.5 Discussion 

5.5.1 The role of protein arginine methylation in T cells activation 

Posttranslational modifications often determine a final molecular state and activity 

of the proteins. In addition to extensively studied phosphorylation, protein arginine 

methylation has recently begun to attract attention as it has been shown to 

contribute to many cellular processes by modifying proteins as well as nucleic 

acids and phospholipids (Banerjee, 1980; Chiang et al., 1996; Ueland et al., 1984). 

Methylation is particularly crucial in the function of the immune system. For 

example, interference with SAHase was associated with decreased Ig production 

and slower growth of lymphoblastoid cells (Tsuchiya et al., 1981) and impaired 

humoral and cell mediated immune responses (Fu et al., 2006; Wolos et al., 

1993a; Wolos et al., 1993b; Wu et al., 2005). Mice deficient in arginine 

methyltransferase CARM1 exhibited developmental arrest at the early stage of 

thymocyte progenitor differentiation (Kim et al., 2004). Moreover methylation 

reactions appear to be required more in lymphocytes than other cell types, 

particularly after activation (German et al., 1983; Kim et al., 2004). First, the role of 

this modification has been demonstrated in regulation of cytokine gene 

transcription in Th lymphocytes. Mowen and colleagues have shown that inhibition 

of arginine methylation affected the expression of several cytokine genes, 

including the hallmark T helper cell cytokines, IFN-γ, and IL-4 (Mowen et al., 

2004). Moreover the same group also reported that T cell receptor signalling 

enhanced expression of the protein arginine methyltransferase PRMT1, which in 

turn methylated the nuclear factor of activated T cells (NFAT) cofactor protein, 

NIP45 (Mowen et al., 2004). Another study demonstrated that CD28 co-stimulatory 

signal induced protein arginine methyltransferase activity and methylation on 

arginine of several proteins, including Vav1 (Blanchet et al., 2005). A different 

study by Lawson et al. performed in CD4+ T cells also reported that inhibition of 

transmethylation leads to immunosuppression by reducing phosphorylation of 

several key proteins involved in TCR signaling, including Akt, Erk1/2, and NF-κB 

and this effect is correlated with reduced methylation of Vav1. 
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In this study the effect of T cell activation on protein arginine methylation was 

examined using anti-CD28 and anti-CD3 antibodies, whose actions mimic the 

costimulatory signal and TCR activation respectively. In order to detect changes in 

arginine-methylation of cellular proteins commercially available antibodies 5D1, 

7E6, Asym 24 and Sym 11 reacting with MMA, MMA and DMA, aDMA and sDMA, 

respectively were utilized. Levels of monomethylarginie methylation increased 

upon CD28 stimulation and addition of both anti-CD3 along with anti-CD28 

antibodies resulted in further increase. No effect on dimethylation of arginine was 

observed following T cell stimulation with anti-CD28 or both-CD28 and CD3 

antibodies. This lack of effect may be due to limited reactivity of antibodies which 

would make detection of gentle changes impossible. Therefore in order to further 

investigate that issue a more sensitive method would be required. For example 

immunoprecipitation of methylated arginine-containing proteins followed by mass 

spectrometry analysis would be advised. This would be more specific than 

immunoblotting and it could reveal the identity of methylated proteins. 

It has been shown by Duong et al that PRMT1 activity is negatively regulated via 

direct interaction with the serine/threonine phosphatase PP2A (protein 

phosphatase 2A) (Duong et al., 2005). Here, in a T cell model, activity of PRMT1 

appeared to be up-regulated following inhibition of PP2A with okadaic acid as the 

increase in asymmetric dimethyl-containing proteins was increased. In contrast no 

increase was detected in symmetric dimethyl-containing proteins suggesting no 

effect of PP2A inhibition on type two PRMTs. Moreover as observed by up-shifted 

migration on SDS-PAGE, some of methylated proteins were also phosphorylated. 

This was observed in both symmetric and asymmetric dimethyl-containing 

proteins. 

5.5.2 Role of protein arginine methylation in cell migration 

Several studies point toward a role of methylation in the chemotactic activity of a 

cell. The first evidence was derived from study of Escherichia coli chemotaxis in 

which methylation was demonstrated to be crucial in allowing the organism to 

migrate towards chemoattractant gradients (Silverman and Simon, 1977; 

Parkinson et al., 2005). The role of protein methylation in mammalian lymphocyte 

migration is unexplored but there are some data which might suggest that this 
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modification might be involved in chemotaxis of human T cell. The 

embryonic/perinatal lethality of PRMT1 and PRMT4 deficiency in mice may 

suggest arginine methylation orchestrating directional cell migration during 

developmental processes (Pawlak et al., 2000; Yadav et al., 2003). There is also 

evidence that increases in prenylcysteine carboxyl methylation of Ras-related 

proteins correlates with their activation in neutrophils following chemoattractant 

treatment whilst inhibitors of prenylcysteine methylation abrogates chemotaxis of 

endotoxin-activated macrophages (Philips et al., 1993; Volker et al., 1991). Taking 

all these findings into consideration, it was aimed to investigate the role of 

methylation in T lymphocytes. Despite the fact that the broad spectrum 

methylation inhibitor MTA impaired directional migration of freshly isolated pan T 

cells and activated T cells, this effect was not consistent and appeared to be donor 

dependent. Moreover another known inhibitor of transmethylation reactions, 

namely structural analog of S-adenosylmethionine (SAM) – sinefungin (Yebra et 

al., 1991), did not interfere with CXCL11 and CXCL12 -induced chemotaxis. In 

addition AMI-1, small molecule that specifically inhibit protein arginine N-

methyltransferase (PRMT) activity (Cheng et al., 2004) had no effect on 

chemotaxis mediated by CXCR3 and CXCR4. These data suggest that 

methylation of residues other than arginine, such as lysine, may possibly be 

involved in chemokine driven T cell migration. It is also important to consider that 

effect of MTA may be an off-target effect due to the high concentration used in the 

experiments. Therefore to clarify this issue novel specific compounds which target 

arginine and lysine methylation would be required. Moreover introduction of siRNA 

in order to knock down the particular PRMT enzymes would allow a further 

investigation of the role of arginine methylation in T cell migration. 
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Chapter Six


Summary


6.1Summary 

The presented work characterises the role of chemokine receptor CXCR3 and its 

spliced variants, namely CXCR3-B and CXCR3-alt, in human T lymphocytes and 

transfected cell lines. Part of this study also examined the chemokine receptor 

CXCR7 as it has been reported to share the ligand CXCL11 with CXCR3. 

In the investigation of CXCR3 in T cells, responses mediated by CXCL9, CXCL10 

and CXCL11 and their ability to induce CXCR3 internalization, intracellular 

signalling or chemotaxis were re-examined. In comparison with CXCL9 and 

CXCL10, CXCL11 was a more potent and efficacious agonist in all assays 

performed. These observations are consistent with previous findings 

demonstrating full agonism of CXCL11 towards CXCR3 (Gonsiorek et al., 2003; 

Heise et al., 2005; Sauty et al., 1999). In contrast, CXCL9 and CXCL10 have been 

demonstrated to behave as full or partial agonists depending on the assay system 

used (Clark-Lewis et al., 2003; Gonsiorek et al., 2003; Heise et al., 2005). 

Furthermore CXCL9 and CXCL10 have been reported to interact with the carboxy-

terminus of CXCR3 to induce down-regulation of the receptor, whilst CXCL11 has 

been shown to preferentially activate a distinct, carboxy-terminal independent 

internalization pathway (Sauty et al., 2001). 

CXCL11-mediated surface down-regulation of CXCR3 was further investigated 

within the study in terms of mechanisms and signalling pathways involved. In 

conjunction with previous studies by Meiser et al. (Meiser et al., 2008), results 

obtained here in both human SEB/IL-2 activated T cells and CXCR3-expressing 

transfected HEK 293 cells suggest that the pathway mediating CXCL11-induced 

internalization does not appear to require caveolae. Surprisingly, the treatment of 

T cells with the cholesterol-depleting agent MβCD had a noticeable effect on the 

agonist-triggered loss of surface expression of CXCR3. This revelation indicates 

the involvement of another cholesterol-dependent pathway. In addition the role of 

clathrin in CXCL11-mediated internalization was unclear due to contrasting results 

using two inhibitors reported to block clathrin-dependent endocytosis. Based on 

results obtained in this study, showing that neither use of endocytosis blockers nor 
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CXCR3 antagonists was able to fully attenuate this process, it appears that 

internalization of CXCR3 in response to agonist binding may be important in the 

regulation of T cell recruitment in vivo due to prevention of amplification of CXCR3 

signalling. Moreover no complete surface recovery of CXCR3 was observed after 

CXCL11 stimulation suggesting receptor degradation and synthesis of new 

proteins as treatment with cycloheximide inhibited re-appearance of CXCR3. 

These observations compared closely to these reported by Meiser et al. who 

demonstrated constitutive and CXCL11-induced degradation of CXCR3 (Meiser et 

al., 2008). 

Studies on CXCR3 internalization also revealed that this process occurs 

independently of Gi and PI3K coupling but may require the involvement of PKC 

and PLC. A possible role of PIKfyve may also be considered, however additional 

approaches would be desired in order to confirm the effect of pharmacological 

inhibition. 

A recently identified spliced variant of CXCR3, CXCR3-B, in addition to binding of 

the three original agonists, has been reported to also interact with CXCL4 (Lasagni 

et al., 2003). This work demonstrates for the first time, that CXCL4 is effective 

in inducing biochemical signalling (seen as phosphorylation of p44/p42 MAPK, 

Akt, GSK3-β and S6) and functional events (actin reorganisation) in activated T 

cells. Similarly to studies conducted by Mueller et al., CXCL4 also induced 

intracellular calcium mobilisation in both activated T cells and CXCR3-A and 

CXCR3-B transfectants and exhibited lower potency in comparison to other 

CXCR3 agonists. The results presented here also indicate that CXCL4-stimulated 

p44/p42 MAPK and PI3K/Akt activation in T cells occurs via coupling to PTX 

sensitive Gi. Surprisingly these signals were not affected by treatment with CXCR3 

antagonists. A possible explanation may be differential interaction of CXCL4 with 

CXCR3 / CXCR3-B in comparison to its other ligands as shown by Mueller et al. 

The same research group also reported the inability of specific CXCR3 antagonist 

(identical to the compound T487 used here) to displace CXCL4 from either variant 

of CXCR3 (Mueller, 2008). 

Results obtain in this thesis also demonstrate that CXCR3-B expressing 

transfectants are responsive to CXCL11 as the treatment with this agonist induced 
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intracellular signalling such as phosphorylation of p44/p42 MAPK, Akt and 

elevation of intracellular calcium. 

Although Mueller and colleagues described a role of CXCL4 signalling 

chemotaxis of ConA activated T cells, the work presented in this thesis 

indicates that pathway is not involved in inducing of chemotactic activity of 

SEB-activated T lymphocytes. In addition CXCL4 did not have any effect on 

down-regulation of CXCR3 surface expression in activated T cells which may 

explain the lack of chemotaxis. Notably only a moderate decrease of surface 

CXCR3-B was detected in transfected HEK293 cells. 

Collectively these findings show that CXCL4 does not share functional properties 

with CXCR3 agonists. An ability to induce intracellular signalling together with a 

failure to induce T lymphocyte chemotaxis suggests distinct roles in T cell biology. 

A study by Ehlert et al., showed evidence of an additional spliced variant of 

CXCR3, namely CXCR3-alt. This particular variant has been detected in T cells 

and has been shown to bind and functionally respond to CXCL11 (Ehlert et al., 

2004). In contrast the role of this receptor in biochemical signalling and its ability 

to be internalized in response to agonist binding is unexplored. This thesis 

demonstrates, for the first time, that, despite low surface expression in 

transfected HEK293 cells, CXCR3-alt was able to induce an elevation of cytosolic 

calcium concentration and activate phosphorylation of p44/p42 MAPK and Akt 

following stimulation with CXCL11. However no internalization of CXCR3-alt was 

observed in response to CXCL11. 

Previously known as orphan receptor RDC-1, the chemokine receptor CXCR7 has 

been recently demonstrated to bind CXCL12 and CXCL11 (Balabanian et al., 

2005; Burns et al., 2006) but its role in typical chemokine receptor signalling is still 

unclear. Moreover CXCR7 has been highlighted to serve as an adaptor for CXCR4 

in transducing CXCL12-mediated integrin activation without being involved in 

CXCR4-mediated cell motility or survival (Hartmann et al., 2008). 

Within this thesis a partial characterisation of CXCR7 receptor was performed. As 

previously reported (Hartmann et al., 2008) it was not possible to observe any 
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effect of anti-CXCR7 antibody on CXCL12-mediated chemotaxis and signalling in 

T cells. In addition the same antibody did not affect responses induced by 

CXCL11. Moreover CXCL12 as well as CXCL11 induced internalization in both T 

cells and transfected cells but no biochemical signalling could be detected in 

CXCR7-expressing HEK293 cells. 

Initially in this thesis it was postulated that protein arginine methylation is up-

regulated following stimulation of T lymphocytes and that this is important in 

chemokine-induced directional migration of T cells. Based on the results obtained, 

levels of monomethylarginie methylation increased upon CD28 and CD3. In 

contrast no effect on dimethylation of arginine was observed following T cell 

stimulation with anti-CD28 or both-CD28 and CD3 antibodies. Notably studies of 

the involvement of methylation in T cell chemotaxis were inconclusive, as MTA, a 

broad spectrum inhibitor of methylation, partially blocked chemotactic activity but 

another compound, sinefungin, and the more specific protein-arginine methylation 

inhibitor AMI-1 gave negative results. 
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Chapter Seven 

Appendix 

7.1 The genetic code 
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7.2 The amino acids


Negatively charged amino acids are highlighted in blue, positively charged amino 
acids are shown in yellow. 
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7.3 The Greek alphabet 

7.2.1.1.1.1.1.1.1. 
7.2.1.1.1.1.1.1.2. 
7.2.1.1.1.1.1.1.3. 
7.2.1.1.1.1.1.1.4. 
7.2.1.1.1.1.1.1.5. 
7.2.1.1.1.1.1.1.6. 
7.2.1.1.1.1.1.1.7. 
7.2.1.1.1.1.1.1.8. 
7.2.1.1.1.1.1.1.9. 
7.2.1.1.1.1.1.1.10. 
7.2.1.1.1.1.1.1.11. 
7.2.1.1.1.1.1.1.12. 
7.2.1.1.1.1.1.1.13. 
7.2.1.1.1.1.1.1.14. 
7.2.1.1.1.1.1.1.15. 
7.2.1.1.1.1.1.1.16. 
7.2.1.1.1.1.1.1.17. 
7.2.1.1.1.1.1.1.18. 
7.2.1.1.1.1.1.1.19. 
7.2.1.1.1.1.1.1.20. 
7.2.1.1.1.1.1.1.21. 
7.2.1.1.1.1.1.1.22. 
7.2.1.1.1.1.1.1.23. 
7.2.1.1.1.1.1.1.24. 
7.2.1.1.1.1.1.1.25. 
7.2.1.1.1.1.1.1.26. 
7.2.1.1.1.1.1.1.27. 
7.2.1.1.1.1.1.1.28. 
7.2.1.1.1.1.1.1.29. 
7.2.1.1.1.1.1.1.30. 
7.2.1.1.1.1.1.1.31. 
7.2.1.1.1.1.1.1.32. 
7.2.1.1.1.1.1.1.33. 
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7.4 Recipes for SDSPAGE gels 

Resolving Gels Stacking Gel 

7.5% 10% 12% 4 X 

4 X Resolving/ 
Stacking Buffer 

(mL) 
5 5 5 3 

MilliQ Water 
(mL) 9.84 8.17 6.84 6.85 

Acrylamide 5 6.67 8 2 

APS 10% (µµµµL) 150 150 150 150 

TEMED (µµµµL) 15 15 15 15 
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7.5 Table showing IC50 of CXCR3 antagonists 

Compound 
IC50 (nM) 

CXCL11induced 
chemotaxis 

CXCL11induced 
internalization 

CXCL11induced 
chemotaxis 
(literature) 

T487 
(AMG487) 

NBI74330 

Noxide
NBI74330 

69 

2.3 

0.53 

380 

2.44 

0.712 

3.9 
(Heise et at., 

2005) 

15 
(Johnson et al., 

2007) 
-
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7.6 Families of human chemokines and chemokine receptors.


7.6 Human chemokine and chemokine receptor families. Many chemokines are 
clustered in certain chromosomal location. Two main clusters have been recognized. 
Many human CXC chemokines that mainly act on neutrophils are clustered at 
chromosome 4q12–13 (shown in red), while many CC chemokines that mainly act on 
monocytes are located in another cluster at 17q11.2 (purple). The CXC chemokines in the 
4q21.21 mini-cluster (blue) act specifically as T cell chemoattractants. Chemokines 
encoded by the more isolated genes tend to be constitutively produced and have mostly 
homeostatic roles (shown in black) (Adapted from Murphy et al, 2000). 
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7.7	 Sequences of conservative NPXXY motif of human chemokine 
receptors 
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7.8 Comparison of abilities of biotinylated versus ‘native’ agonists to 

induce signaling and chemotaxis of activated human T cells 

Figure 7.8 Comparison of abilities of biotinylated versus ‘native’ agonists to induce 
signaling and chemotaxis of activated T cells. Day 9, SEB/IL-2 treated T cells were 
stimulated with biotinylated or unlabelled CXCL10 or CXCL11 (100 nM). Control samples 
were treated with media. Samples were then lysed by centrifugation and addition of 
solubilisation buffer. Lysates containing 1x sample buffer were separated by 
electrophoresis in 10% SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with the p44/p42 MAPK ab with the affinity for the active Thr202/Tyr204 form 
of MAPK (A). Chemotaxis of day 9, SEB/IL-2 activated T cells to increasing 
concentrations of either biotinylated or ‘native’ CXCL10 or CXCL11 (0.1-100 nM). 
Previously activated T cells were washed, resuspended at 3.2 x 106 / mL and placed (8 x 
10 104 / 25µL per well) on the filter membrane above lower chambers containing 
chemokine solutions or media. Chemotaxis across 5 µm pore size membrane was 
determined after a 3 hour incubation at 37°C in 5% CO2 as described in Materials and 
Methods. 
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7.9 Effect of PI103 inhibitor on CXCL11induced downregulation of surface 

CXCR3 in T cells 

Figure 7.9 Effect of PI103 inhibititor on CXCL11 induced internalization of CXCR3 
in T lymphocytes. Day 9-12 SEB/IL-2 activated T cells were incubated with appropriate 
concentrations of each inhibitor (0.3-30 µM) or vehicle control (white bar) for 30 mins at 
37°C before being stimulated with 30 nM CXCL11 for 5 mins at 37°C. Cell surface 
expression of CXCR3 was measured using flow cytometry as described in Materials and 
Methods. Decrease in CXCR3 surface expression was expressed as a percentage of 
baseline surface expression. Data show average of two independent experiments. 
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