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Abstract  
 

Oral delivery of therapeutic peptides has been a continuous target for the 

pharmaceutical industry, as most of these drugs are currently administered by 

parenteral routes. However, a major challenge limiting the success of oral 

delivery of these drugs is their poor permeability across the intestinal epithelial 

barrier. Extensive research efforts have investigated different strategies to 

overcome the epithelial barrier and enhance the oral bioavailability of 

therapeutic peptides. One of the most widely used strategies is the application 

of permeability enhancer (PE) agents that are co-administered with peptide 

drugs to facilitate their permeability across the intestinal epithelial barrier. The 

safety of most of the available PE agents, however, has always been 

questioned, because most PE agents act non-specifically in altering intestinal 

epithelial permeability which in many cases has been associated with epithelial 

damage. 

 

The work presented here investigates a novel strategy to overcome the 

intestinal epithelial barrier challenge and enhance the oral bioavailability of 

therapeutic peptides. This is by manipulating an endogenous mechanism that 

is used by the intestinal epithelial cells to dynamically regulate the permeability 

across the tight junction (TJ) structures by increasing myosin light chain 

phosphorylation at serine 19 (MLC-pS19), which is regulated by MLC kinase 

(MLCK) and MLC phosphatase (MLCP). A small membrane-permeant peptide 

inhibitor for MLCP, called PIP 640 peptide, was rationally designed to 

selectively alter MLCP activity in a manner that increases MLC-pS19 to 

transiently enhance TJ permeability for therapeutic peptides. The PIP 640 

peptide was designed to be relatively stable in the intestinal lumen, as it is 

intended to be co-administered orally with therapeutic peptides. It was initially 

examined for enhanced TJ permeability of fluorescent dextran and for toxicity 

induction in vitro. Accordingly, efforts were devoted to explore potential 

modifications of the peptide sequence that might optimize the PIP 640 peptide 

function. Moreover, studies were performed to examine the biochemical 

changes of TJ protein structures associated with the permeability 
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enhancement function of the PIP 640 peptide. Finally, we investigated different 

aspects of the PIP 640 peptide permeability enhancement function in vivo. An 

overall outcome of these studies was that the PIP 640 peptide can enhance TJ 

permeability in vitro and in vivo without causing apparent damage to the 

epithelial barrier. This outcome suggest that the PIP 640 peptide has the 

potential to be used as a PE for therapeutic peptides.   
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1.1. Gastrointestinal (GI) tract of the digestive system anatomy 
and physiology   

 
The human digestive system is a multi-organ system that extends from the 

mouth to the anus (1). This system mainly consists of an alimentary tube, called 

the GI tract, and accessory organs. The alimentary tube includes the oral 

cavity, pharynx, esophagus, stomach, small intestine, large intestine, and 

rectum (1). The alimentary tube is functionally linked to several accessory 

organs, such as the salivary glands, the gallbladder, the liver, and the 

pancreas (Figure 1.1) (1). Food digestion, nutrient absorption, and waste 

elimination are the main functions of the GI tract (1). Food digestion occurs in 

different places within the GI tract in a functionally coordinated manner.  

Beginning in the mouth, food is mechanically broken down by chewing and 

exposure to salivary fluid containing digestive enzymes such as salivary 

amylase that function to break down sugars (1). Macerated food then reaches 

the stomach where digestion continues by the actions of digestive enzymes, 

such as pepsin, that is particularly well-suited to function in harsh acidic 

conditions (~ pH 1-2) that facilitates protein unfolding (1). Food processed by 

the stomach, now known as chyme, then passes through the pyloric sphincter 

to enter the duodenum where it is mixed with a bicarbonate-based, alkaline (~ 

pH 8), buffer containing enzymatic cocktail produced in the pancreas (1, 3). Via 

this mixing, the pH of the luminal contents of the duodenum is typically brought 

to ~ pH 5-6 (3). As chyme moves along the subsequent segments of the small 

intestine, the jejunum followed by the ileum where the pH of the luminal 

contents is brought to ~ 7.4, although the pH at the epithelial cell surface can 

be slightly acidic (3-5). Enzymes present at the beginning of the small intestine 

are focused on degrading large materials (such as proteins) while later in the 

GI tract appear to facilitate digestive events of smaller materials (such as 

peptidases) (1, 4). The ultimate goal of this digestive juggernaut is to breakdown 

complex food stuff, through a serious coordinated enzymatic actions, to 

release individual nutrient components (amino acids, nucleotides, lipids, etc.), 

that can be readily absorbed via selective uptake mechanisms for located at 

the luminal surface of the intestinal (1). The remaining unabsorbed materials 
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Figure 1.1: Diagram showing the recognized regions of the GI tract. Components that 

comprise the alimentary tube are in bold. This image was adopted from Scanlon et 

al.,2014  (1) with permission of F. A. Davis publications. 

are transported to the large intestine before being execrated from the body 

through the anus (1).  

 

 
 

 

 

 

 

 

 

 

 

 

The small intestine is ~ 7 m in length with a mucosal surface that is 

increased dramatically by plica circulares folds (Figure 1.2 A) (1, 6). These folds 

in the mucosal layer establish projections in the luminal surface of the small 

intestine called villi; the base of these villi called crypts that the surface area 

for molecule diffusion (1). The small intestine consist of four major layers; 

mucosa, submucosa, external muscular layers that provide intestinal 

movement, and an outer layer of connective tissues called serosa (Figure 1.2 

B)  (1).  

 

 

The mucosa is composed of a single layer of columnar epithelial cells. 

Enterocytes are the most prominent of these cell types in terms of number (2). 

In addition to the villi arrangements of the small intestine, the absorptive 
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surface area generated by enterocytes is further increased by specialized 

apical membrane projections known as microvilli (1, 2). The specialized apical 

surface environment established by microvilli, called the epithelial brush 

border, contains a variety of digestive enzymes that function to complete the 

digestion of food into nutrients that can be readily absorbed by transporters 

that specifically recognize distinct nutrients by their physicochemical properties 
(7).  

 

 

Immediately beneath the monolayer of cells that comprise the intestinal 

epithelium is a non-cellular matrix of proteins and glycoproteins known as the 

basement membrane. And immediately beneath the basement membrane is a 

network of blood capillaries and lymphatic vessels that are themselves 

followed by thin layer of muscle (Figure 1.2 B) (1, 6). The submucosal layer 

contains more blood and lymphatic vessels in addition to nerve fibres (Figure 

1.2 B). Due to large luminal surface area of the small intestine and its high 

content of blood vessels in both mucosal and submucosal layers (1, 6), the 

small intestine is not only the main site of nutrient uptake, but has also been 

considered as a promising site for drug absorption, as most marketed drugs 

are formulated and administrated for absorption at this tissue (8).    

	

	

1.2. Small intestinal epithelium composition and maintenance   
 

There are a variety of cell types in the small intestine, many of which are 

regionally restricted to crypt and villus structures that characterize this region 

of the alimentary tract (Figure 1.3) (1, 2). These cells contribute in various ways 

to the many functions of the intestinal epithelia. Enterocytes are the most 

common cells, performing both digestive and absorptive functions (2). The 

remaining cells, representing only a fraction of the small intestinal epithelium 

are involved in functions that include secretion and protection (2, 9, 10). 

Enteroendocrine cells produce  a varierty of different hormones that have not 

only important locally, but also have sysemic physiological actions (11). For 
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Figure 1.2: Diagram illustrating the cellular organization of the small intestine. A) 

Cross-section of the intestine showing the gross appearance of the luminal surface. 

B) A magnified segment of the small intestine showing the four layers of the small 

intestine described in the text. This image was modified from Scanlon et al.,2014 (1) 

with permission of F. A. Davis publications. 

. 

example, enteroendocrine cells secrete glucagon-like peptides (GLP) that are 

essential for maintaining glucose homeostasis (11). Goblet cells produce and 

secrete mucus at the luminal intestinal surface to establish an important 

barrier to pathogen entry; Paneth cells have a protective role by the secretion 

of antimicrobial peptides (AMPs) (9, 10). The small intestinal epithelium also 

contains microfold cells (M cells) that mediate luminal antigens transport to 

subepithelial concentrations of immune cells (Peyer’s patch) for presentation 

to the immune system (Figure 1.3) (1, 2).    
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       The intestinal epithelial layer establishes a biological barrier against 

luminal toxins and microorganisms, which is important for health (2, 12). The 

integrity of the intestinal epithelial barrier is maintained by various 

mechanisms. Initially, the epithelial cells undergo a continuous renewal 

process that can compensate for damage resulting from the exposure to 

different substances from the external environment, such as alcohol and drugs 
(2, 13). This renewal process is regulated by both intestinal epithelial stem cells 

(IESCs) and stromal stem cells (Figure 1.3) (2). Another protective mechanism 

is provided by goblet cells that secrete mucin proteins.  In addition, other 

molecules such as trefoil factor 3 (TFF3) that can cross-link with mucins to 

further enhance its protective function (Figure 1.3) (2, 10). Paneth epithelial cells 

produce additional AMPs, such as defensin proteins, that can be secreted into 

the intestinal lumen in response to exposure to viable bacteria or their 

endotoxins (9). This function of Paneth cells beside the luminal secretory 

immunoglobulin A (sIgA), which secreted from the immune cells located 

beneath the epithelial cells, provide a further protective function against 

luminal pathogens (Figure 1.3) (2).  
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Figure 1.3: Components of the intestinal epithelium. It contains different epithelial 

cells; enterocytes, enteroendocrine cells, goblet cells and Paneth cells. Microfold cells 

(M cells) localized in the follicle-associated epithelium that cover the lymphatic follicles 

that contain immune cells. The intestinal epithelial stem cell (IESC) and stromal stem 

cells regulate the continuous renewal of the epithelial cell layer. Migration of 

differentiated epithelial cells occurs from crypt to villus, as indicated by the dashed 

arrows. Goblet cells and Paneth cells secrete mucus and antimicrobial peptides 

(AMPs), respectively, which provide protection to the intestinal epithelium. 

Subepithelial immune cell, such as dendritic cells (DCs) macrophages are responsible 

for sampling luminal antigens and presenting them to the immune system. This figure 

was obtained from Peterson et al.,2014 (2) with permission of Nature publishing group. 
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1.3. Small intestinal epithelial barrier function 
 

Intestinal epithelial cells are polarized, meaning that they are organized in 

a way where there are distinct apical and basolateral compartments (14). This 

polarized organization is stabilized by different cell-cell contacts on the lateral 

membranes between adjacent epithelial cells, called junctions (12, 14). These 

junctions include gap junctions, desmosomes and the apical junctional 

complex (AJC) (14, 15). Gap junctions function as cell-cell channels that allow 

communication between adjacent cells via the exchange of ions and signalling 

molecules (15). Desmosomes are transmembrane adhesive proteins that are 

linked to intermediate cytoskeletal filaments, which stabilize cell-cell contacts 
(14). The AJC is the most apical of these cell-cell contacts, consisting of tight 

junction (TJ) and adhesion junction structures, which work together to 

establish a close approximation of adjacent cell membranes at the apical neck 

of neighbouring epithelial cells (14). 

  

 

This organisation of intestinal epithelial cells establishes two possible 

pathways for molecules to pass across polarized small intestinal epithelial 

cells; transcellularly, through the cell membrane, or paracellularly, between 

adjacent cells (12) . The TJ is a protein complex that functions to seal and 

control transport of solutes and ions through the paracellular route (14). This 

controlled permeability across the intestinal epithelium that is mediated by the 

function of the TJ is referred to as barrier function (Figure 1.4) (12).  
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Figure 1.4: Permeability pathways across the intestinal epithelial barrier. 

Transcellular permeability is mediated by specific transporters. Paracellular 

permeability is controlled by TJ protein complex.  

   

 

 

 

 

 

 

 

1.4. Transcellular permeability across the small intestinal epithelial 
barrier  
  

 The transcellular route is primarily restricted by the hydrophobic properties 

of the lipids that make up the epithelial cell membrane, which allows the 

passive transport of small, lipophilic molecules (16), but not large hydrophilic 

molecules, such as therapeutic peptides (5). Various mechanisms can faciliate 

the transcellular transport of hydrophilic molecules across the intestinal 

epithelial barrier (16, 17). This can occur via transporters that are molecule-

specific, such as the Na+-dependent glucose transporter (SGLT1) that 

mediates glucose absorption across the small intestinal epithelium (16). The 

movement of hydrophilic molecules that are too large to engage transporters 

that function to absorb nutrients can traverse small intestinal enterocytes via 

mechanisms involving endocytosis and vesicular trafficking, termed 

transcytosis. The efficiency of transcytosis for the oral delivery of large 

hydrophilic molecules, such as therapeutic peptides, is typically very poor. 

While uptake from the luminal surface via receptor-mediated endocytosis 

involving clathrin or caveolin or non-selective entry via pinocytosis usually 
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results in destruction of vesicle contents after intracellular trafficking to 

lysosomes (16-18). 

 

 

1.5. TJ components and their role in intestinal epithelial barrier 
 

The way in which the molecular architecture of TJ elements is involved in 

the regulation of TJ function is still poorly understood. However, remarkable 

progress has been made towards understanding the ultrastructural 

arrangement of TJ components. In the early 1960’s, TJs were described as a 

fusion of cell membranes of neighbouring cells that reduces the distance 

between cells and regulates the diffusion of molecules (19). A few years later, 

electron microscopy studies revealed that TJ contains a network of 

transmembrane strands that were observed to be organized differently within 

various epithelial tissues (20). Subsequently, many integral and peripheral 

membrane proteins were discovered and found to be important in regulating 

TJ function.  

 

 

1.5.1. Transmembrane proteins (integral membrane proteins) 
 

1.5.1.1. Claudins 
 

 Claudins are ~20 kDa transmembrane proteins that exist in approximately 

27 isoforms in the human body (21). Most claudins have a similar 

transmembrane tetra-spanning structure with a short N-terminal region, two 

extracellular loops (ECLs) and a C-terminal tail (Figure 1.5) (22). The 

cytoplasmic tail of claudins has a PDZ binding domain to facilitate interactions 

with TJ scaffolding proteins, primarily to the zonula occludens (ZO) protein 

family, to provide a connection to the actomyosin cytoskeleton (22, 23). Claudin 

proteins are able to associate with each other in the same cell membrane (cis-

interaction) or between adjacent cell membranes (trans-interaction) (22, 24). 

These interactions could occur between the same claudin isoforms, which is 
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called homophilic interaction, or between different claudin isoforms, which is 

called heterophilic interaction (Figure 1.5) (22, 24).  

 

Claudin proteins have different functional properties. Several claudins, so 

called sealing claudins, have been found to tighten the paracellular barrier, 

e.g. claudin-1, claudin-3 (25, 26). Pore-forming claudins, e.g. claudin-2 and 

claudin-15, create paracellular channels that allow charge- and size-selective 

permeability to ions and small molecules (27, 28). This is supported by the 

observation that overexpression of pore-forming claudins, e.g. claudin-2, a 

cationic-selective claudin, enhanced the TJ permeability of cations but not 

macromolecules, such as 4 kDa dextran (27). Claudin pore charge selectivity is 

determined by an electrostatic force generated by the presence of charged 

amino acids on the first extracellular loop (ECL) (29, 30). The first ECL contains 

two conserved cysteine residues believed to stabilize the ECL folding by a 

disulfide bond to position specific amino acids that function in this perm-

selective function (Figure 1.5) (30, 31).  

 

 

Disrupting this disulfide bond has been associated with losing claudin 

function. This was observed when mutating either of the cysteines in claudin-

5, a sealing claudin, reduced the trans-epithelial electrical resistance (TEER) 

and induced mannitol flux in vitro (31). Moreover, Na+ flux was significantly 

reduced by mutating the two conserved cysteine residues in claudin-2, a 

cation-selective claudin (32). These studies demonstrate that the first ECL 

regulates the pore- and charge-selectivity properties of claudins. However, the 

second ECL was found to play a part in connecting claudins of adjacent cells, 

or trans-interaction. For example, the second ECL has been shown to 

contribute to the barrier function of claudin-5 (33, 34). Thus, it has been 

concluded that both ECLs are necessary for optimum claudin functions.  
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Figure 1.5: Diagram illustrating the structural components of claudin proteins and 

possible forms of interaction between claudin proteins. As shown, the tetra-span 

transmembrane structure has a short N-terminus, two extracellular loops (ECL-1, 

ECL-2) and a C-terminal tail. Homophilic trans-interaction and homophilic cis-

interaction, which are indicated with green and black arrows, respectively, occur 

between the same claudin isoform. Heterophilic trans-interaction and heterophilic cis-

interaction, which are indicated with red and violet arrows, respectively, occur 

between different claudin isoforms. S-S is disulfide bridge that stabilizes ECL-1.   
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Accumulated data has suggested that claudins are critical elements for TJ 

protein assembly. Initially, expressing either claudin-1 or claudin-2 in mouse 

fibroblasts that lack of TJs was sufficient to produce TJ-like cell contacts (35). 

Furthermore, TJ-associated MARVEL proteins (TAMPs, which include 

occludin, tricellulin and MARVELD3) were only recruited into TJ in fibroblasts 

when co-expressed with claudin-1 (35, 36). This observation might be explained 

by the cis-interactions found between claudin-1 and TAMPs (37). These studies 

emphasise the fundamental role of claudin family members in TJ protein 

assembly but do not suggest an absolute role. Co-expression of TAMPs with 

claudin-1 in TJ-free human embryonic kidney cells, (HEK)-293, has been 

shown to modify the morphology of claudin-1 strands to a more physiological 

shape (37). Hence, collaboration between claudins and other TJ proteins seems 

to be essential for their proper, coordinated, function in TJ structure 

development. 

 

 

Though the direct role of claudins in TJ macromolecule permeability is still 

being evaluated (38), many studies have provided strong evidence for the 

involvement of claudins in macromolecule permeability. An observation 

derived from intestinal biopsies from patients with early diagnosed Crohn’s 

disease, an intestinal disease characterized by an impairment in epithelial 

barrier function, has supported the idea that claudins might play an early 

regulatory role in inducing leaky gut (39), as changes in the expression and 

distribution of different claudin proteins was detected in patients’ samples at 

an early disease state and before the development of severe epithelial 

damage (39). In addition, claudin-1 knock-out mice present with severe defects 

in the epidermal barrier of the skin, which enhanced the flux of membrane 

impermeable tracers (26). Recent studies have shown that a peptide mimicking 

the ECL-1 of claudin-1 induced a TJ opening to large molecules preferentially 

by reorganisation of claudin-1 and claudin-5 (40). Together, this suggests that 

claudins can regulate TJ macromolecule permeability.   
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Figure 1.6: Structural similarities between TJ-associated MARVEL proteins (TAMPs); 

occludin, tricellulin and MARVELD3. All TAMPs contain the MARVEL domain, a four-

transmembrane helix structure, highlighted in black. The C-terminal tails of both 

occludin and tricellulin contain a coiled-coil ELL domain. 

 

1.5.1.2. TJ-associated MARVEL proteins (TAMPs) 
 

TAMPs contain a MARVEL domain (MAL and related proteins for vesicle 

trafficking and membrane link), a four-transmembrane helix structure that is 

essential for their cell membrane localization (Figure 1.6) (41). TAMPs comprise 

three proteins: occludin (MARVELD1), tricellulin (MARVELD2) and 

MARVELD3 (36, 41). The association of the tetra-spanning structure of the 

MARVEL domain of all TAMPs generates two ECLs and one cytoplasmic loop 
(36). This leaves both the N- and the C-terminal tails of TAMPs in the 

cytoplasm, where they play roles in both interacting with and recruiting other 

TJ proteins for TJ barrier function. The growing knowledge about TAMPs 

suggests that TAMP family members work as partners with overlapped 

contributions in regulating TJ function (36).   
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Occludin was the first integral protein discovered at the bi-cellular 

interfaces of epithelial cells (42), and since then many studies have been 

conducted to define its structural basis that contributes to TJ function. The C-

terminal tail of occludin has a coiled-coil structure that shows a similar 

sequence to the ELL domain of RNA polymerase II elongation factor-ELL 

(Figure 1.6) (43, 44). This domain connects occludin to the GUK domain of the 

ZO-1 scaffolding protein to mediate occludin binding to actin microfilaments (23, 

44). The occludin C-terminus is susceptible to many phosphorylation events, 

many of which are linked with regulating occludin function (45). In Caco-2 

monolayers, the inhibition of casein kinase 2 (CK2), which mediates 

phosphorylation of serine 408 (S408) within the C-terminal tail of occludin, 

stabilized interactions of ZO-1 and claudin-2 with occludin at TJs (46). This 

resulted in an increase in the TEER of the monolayers and a reduction in the 

TJ permeability of ions, reflecting the essential role of occludin, particularly the 

C-terminal end, in regulating TJ protein function (46). It has been suggested that 

both ECLs of occludin are essential for its TJ localization, as the application of 

synthetic peptides mimicking the ECLs of occludin interferes with TJ 

localization of occludin (47, 48). However, the expression of truncated versions of 

occludin, with either or both ECL1 and ECL2 removed, in MDCK cells has 

shown that ECL2 alone was able to recruit occludin to TJs (49).  

 

 

 Early studies based on reduced occludin expression argued against the 

importance of occludin for TJ barrier function, as occludin knock-out mice 

showed normal TJ morphology and did not demonstrate enhanced intestinal 

permeability (50, 51). However, occludin knock-out mice do developed significant 

and a complex series of multi-organ pathologies (51). It has been suggested 

that the non-significant effect on barrier function of occludin knock-out was 

because other TAMP members compensated for the lack of occludin in the 

mouse (52). Supporting this idea is the observation that knockdown of occludin 

in MDCK cells showed redistribution of tricellulin protein to bi-cellular junctions, 

a member of the TAMPs family that is normally restricted to tricellular junctions 
(52). However, many studies have also suggested a direct role of occludin in 

regulating barrier function. For example, occludin downregulation has been 
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suggested as a central cause in inflammatory bowel diseases (IBD)-

associated TJ barrier dysfunction (45, 53). Moreover, occludin knockdown 

induced leaky TJs with perm-selective profiles showing solutes with a diameter 

of up to 62 Å being transported (54). This enhanced transport was associated 

with increased claudin-4 and claudin-15 expression at the TJs and 

redistributed tricellulin to bi-cellular interfaces (54). Thus, claudins might have 

also contributed to compensating for occludin loss. All together, these findings 

indicate that the role of occludin is still unclear but it appears to play a critical 

role in normal events of TJ assembly and barrier function. 

 

Tricellulin was the first TJ-related protein normally restricted to tri-cellular 

junctions (55). Similar to occludin, tricellulin possesses the tetra-spanning 

MARVEL domain required for membrane association (41). A sequence 

comparison between occludin and tricellulin has shown strong similarities (36). 

The C-terminus of tricellulin has a ELL-domain similar to that of occludin, by 

which the latter uses to bind ZO-1 (Figure 1.6) (23, 56). Moreover, it was found 

that in vitro binding of tricellulin to ZO-1 was attenuated by an ELL-domain 

mutation of tricellulin (56). Therefore, it has been suggested that tricellulin binds 

to ZO-1 via the same C-terminal domain as occludin (56). However, binding to 

ZO-1 seems to be unnecessary for tricellulin cell membrane association, as 

tricellulin located at cell contacts in the absence of ZO-1 when co-expressed 

with claudin-3 in fibroblasts (52). This does not reflect the ability of tricellulin to 

self-associate at cell-cell contacts, as claudins can recruit TAMPs to cell 

contacts (36). In addition, claudin-3 has a cis-connection to tricellulin (37).  

 

 

Many studies have demonstrated that both tricellulin and occludin functions 

are closely related. Occludin knockdown in mouse EpH4 epithelial cells alter 

the distribution of tricellulin to bi-cellular junctions. Moreover, suppressing 

tricellulin expression in the same cell line increased occludin levels at 

tricellular contacts (55). Although the reduction of tricellulin levels was replaced 

by occludin at tri-cellular locations, this redistribution of occludin to tri-cellular 

locations failed to provide sealing outcomes at these locations. This was 

supported by the observation that tricellulin knockdown of EpH4 cells showed 
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lower TEER compared to a wild-type cells. Moreover, the cells were 

permeable to large molecules, such as 4 kDa dextran (55). Consistent with the 

data obtained in EpH4, overexpression of tricellulin in the low-TEER cell line, 

MDCK II cells with low endogenous tricellulin expression, reduces the 

permeability to 4 and 10 kDa dextrans (57). These findings support the 

conclusion that tricellulin limits macromolecule permeability at tri-cellular 

junctions (57). Like occludin, tricellulin is known to be multiply phosphorylated. 

However, less is known about the role of phosphorylation in tricellulin function 
(58). In studies using a human pancreatic cancer cell line, HPAC, a 

phosphorylation event was detected in tricellulin in response to depletion of 

the cellular level of Ca2+ that was associated with the redistribution of tricellulin 

to the cytoplasm. This effect was reversed when the cellular Ca2+ was restored 
(58). This study suggests that phosphorylation events might play a role in 

tricellulin membrane integration.      

MARVELD3 was subsequently defined as a member of the TAMP family 

that contains the four transmembrane helixes of the MARVEL domain (36, 59). 

Unlike occludin and tricellulin, MARVELD3 has a shorter C-terminus that lacks 

the coiled-coil component of the C-terminus tail (Figure 1.6). This observation 

has suggested that MARVELD3 does not bind to ZO-1 (36, 59). Co-

immunoprecipitation studies using Caco-2 cell lysates revealed that 

MARVELD3 can associate with both occludin and tricellulin (36). Moreover, 

fluorescent imaging showed co-localization of MARVELD3 with other TAMP 

members and ZO-1 at the TJ both in vitro and in vivo (36). MARVELD3 

knockdown in Caco-2 cells increased the time required for the cells to develop 

normal TEER (36). However, no changes were detected in the overall 

distribution or expression of other TJ proteins (59). Taken together, MARVELD3 

seems to be less essential for TJ assembly, but still contributes to regulating 

TJ barrier function.  

      

 

1.5.1.3. Other membrane integral proteins 
 

Blood vessel epicardial substance (BVES) is a tri-spanning transmembrane 

domain protein defined in various epithelial cells TJs (60, 61). Pull-down 
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experiments showed that the C-terminus of BVES interacts with ZO-1 (60). 

BVES knockdown in human corneal epithelial HCE cells has been associated 

with a decrease in the monolayer TEER values and disrupted barrier integrity 
(60). Accordingly, an essential role of BVES in TJ assembly has been 

suggested; however, less is known about the role of BVES in TJ permeability.  

 

 

Another type of TJ integral membrane protein are those with a single-span 

transmembrane domain, which include junctional adhesion molecules (JAMs), 

crumbs homologue 3 (CRB3), and the angulin protein family. A few years after 

the discovery of occludin as the first integral membrane protein, the JAM 

family was identified and shown to be concentrated at TJs of both endothelial 

and epithelial cells (62). JAMs are part of immunoglobulin superfamily (IgSF), as 

they contain two extracellular immunoglobulin (Ig)-like domains (62). The JAM 

family encompasses three homologous proteins: JAM-A, JAM-B and JAM-C, 

which are widely distributed in the human body (63). Additionally, proteins that 

are structurally related to the JAM family have been identified, such as the 

Coxsackie and adenovirus receptor (CAR), which has a lesser role in 

regulating barrier (63). Depletion of CAR in the mouse intestine does not 

interfere with epithelial integrity (63). While the length of the cytoplasmic C-

terminus of all JAMs and their related proteins varies, all bind to the PDZ 

domain of the ZO-1 scaffolding protein (64). It is been suggested that the JAM 

family has a role in regulating barrier function, since JAM-A -deficient mice 

have shown a deficiency in the intestinal barrier function that was permeable 

to 4 kDa dextran (65). JAM proteins are also expressed in the circulating 

leukocytes (66, 67). Therefore, they have been linked with the trans-epithelial 

and endothelial migration of leukocytes and the induction of various mucosal 

inflammations (63, 65). These data support the role of JAM in regulating 

paracellular permeability. However, JAM proteins do not seem to have an 

essential role in the assembly of TJ proteins, since overexpression of JAMs in 

fibroblasts failed to reconstitute TJ strand-like structures (68). This data 

suggests that JAM proteins are recruited to cell-cell contacts by other TJ 

proteins.  
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The CRB3 protein is the mammalian homologue of the Drosophila  

transmembrane protein Crumbs, a protein that is expressed in the marginal 

zone of invertebrate epithelial cells and is essential for cell polarity (69). CRB3 

was found to be associated with the TJs in vitro in both Caco-2 and MDCK 

cells and in many organs in vivo (70, 71). It is been reported that the CRB3 

intracellular C-terminus forms complexes with different scaffolding proteins, 

e.g. protein associated to TJ (PATJ) and protein associated with Lin-7 

(PALS1), that play roles in TJ development (70, 71). Modulating the expression 

of these proteins has shown some disorganization of TJ proteins without 

disrupting overall TJ integrity (70, 71). Although less is known about the role of 

CRB3 in regulating TJ permeability, these findings suggest that CRB3 does 

not seem to be a critical player in determining TJ permeability compared to 

other TJ transmembrane proteins.   

 

         

The angulin protein family consists of three proteins: lipolysis-stimulated 

lipoprotein receptor (LSR/ angulin 1), immunoglobulin-like domain-containing 

receptor 1 (ILDR 1/ angulin 2) and ILDR 2 (angulin 3) (72, 73). All angulin 

proteins have closely related structures, and all possess an extracellular 

immunoglobulin-like domain (72, 73). The angulin family along with tricellulin 

have been known to be the protein components of the tricellular junctions (55, 

72, 73). Studies in mice showed that angulin protein expression varies within 

tissues; however, at least one protein of the angulin family was found in each 

epithelial tissue (73). Angulin-1 knockdown in EpH4 cells was associated with 

tricellulin redistribution (72). This observation led to the demonstration that the 

C-termini of angulin proteins bind to tricellulin (72, 73). Downregulation of 

angulin-1 in EpH4 reduced the monolayer TEER and increased permeability of 

40 kDa dextran (73). Despite the small surface of the tricellular junctions 

compared to that of the bi-cellular junctions, the function revealed for angulin 

proteins and tricellulin shows how essential tricellular proteins are to 

maintaining the epithelial barrier integrity.  
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1.5.2. Cytosolic scaffolding proteins 
 

A network of cytoplasmic proteins is located peripherally to TJ proteins. 

These scaffolding proteins generally bind to each other and connect 

transcellular proteins to the cell’s cytoskeleton (74). ZO-1, was the first TJ 

protein to be discovered in both epithelial and endothelial cells (75). ZO-2 and 

ZO-3 are two proteins that are structurally related to ZO-1 that were found to 

bind to ZO-1 (76, 77). Among all TJ scaffolding proteins, the ZO protein family is 

believed to be a central component within the TJ scaffolding network, 

mediating TJ transmembrane proteins binding to the cytoskeleton (23). The N-

terminus of all members of the ZO protein family members contains three 

protein binding domains: three PDZ domains (postsynaptic density 95/discs 

large/zona occludens-1), Src homology 3 domain (SH3) and an apparently 

inactive guanylate kinase homology domain (GUK) where the TJ proteins 

associate with ZO proteins (Figure 1.7) (78). The C-terminal ends of ZO 

proteins vary in length; however, they are all associated with the F-actin 

cytoskeleton either directly through an actin-binding region (ABR), such as 

ZO-1 and ZO-2, or indirectly via other scaffolding proteins such as cortactin 

and cingulin, such as ZO-3 (79). Many other TJ scaffolding proteins have been 

identified, such as membrane-associated guanylated kinase inverted proteins 

(MAGI), the multi-PDZ domain proteins (MUPP1), and cingulin proteins; all 

have similarities in their protein binding domains to the ZO protein family (23). 

These proteins were found to play a supportive role to the ZO protein family in 

TJ assembly; but specific functions of these proteins have not been fully 

defined (23).  

 

 

Single knock-out or knockdown studies of scaffolding proteins have 

produced various outcomes. ZO-3 deficiency in mice and in the F9 

teratocarcinoma cell line have shown normal overall TJ structure and epithelial 

appearance (80). Similarly, mice lacking of cingulin show no significant effect on 

TJ assembly or barrier function (81). These findings might suggest that either 

some scaffolding proteins are not essential for TJ formation or that the 

presence of many other scaffolding proteins can compensate for any protein 
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Figure 1.7: Schematic representation of cytoplasmic zonula occludens (ZO) 

scaffolding proteins showing their binding domains to TJ membrane integral proteins, 

such as occludin and claudins. The N-terminus of ZO proteins contains three protein 

binding domains: three PDZ domains (postsynaptic density 95/discs large/zona 

occludens-1), Src homology 3 domain (SH3) and a guanylate kinase homology 

domain (GUK). The C-terminus of ZO proteins is connected to F-actin.  

loss. For example, ZO-3-deficient mice have increased ZO-2 localization in 

their TJs (80). On the other hand, ZO-1 and ZO-2 are known to have a vital role 

in TJ assembly and barrier function. In vivo, lethality was observed in mice 

embryos lacking either ZO-1 or ZO-2.(82, 83) Consistently, ZO-1 knockdown was 

shown to weaken the barrier function for macromolecule permeability in both 

MDCK and EpH4 epithelial cells (84, 85).  
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Figure 1.8: Schematic representation of the endogenous mechanism that regulates TJ 

permeability through alteration of myosin light chain (MLC) phosphorylation status.  

MLC kinase (MLCK) increases MLC phosphorylation at serine 19 (MLC-pS19) that 

enhances TJ permeability. This process is reversed by MLC phosphatase (MLCP). 

1.5.3. Cytoskeletal elements 
 

A direct association between perijunctional actomyosin filaments and the 

junctional protein complexes has been revealed with the aid of electron 

microscopy (86). Since then, more efforts have been devoted to understanding 

the influence of the cytoskeleton on TJ structure and function. Disruption of 

actin filaments is associated with occludin internalization and loss of barrier 

function (87), an observation that has suggested the potential role of the 

perijunctional actin filaments in providing stability to TJ structures. In addition, 

a mechanism mediating actomyosin filaments contraction, triggered by 

increasing myosin light chain phosphorylation at serine 19 (MLC-pS19) via 

MLC kinase (MLCK) (Figure 1.8), was found to play a key role in inducing TJ 

permeability in response to various physiological and pathological stimuli (53, 

88). The MLCK-dependent alteration of TJ permeability was linked to changes 

in the distribution of selected TJ proteins that occurred secondarily to the 

induction of MLC-pS19 (53, 89). This function of MLCK is reversed by the action 

of MLC phosphatase (MLCP) (90, 91) (Figure 1.8). In addition, endogenous 

inhibition of MLCP by a specific protein inhibitor called C-kinase potentiated 

protein phosphatase-1 inhibitor-17 kDa (CPI-17) was found to increase MLC-

pS19 levels and enhance TJ permeability (92). Overall, these studies suggest 

that the perijunctional cytoskeleton is essential for regulation of TJ barrier 

function.   
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1.6. Protein remodelling associated with intestinal TJ permeability  
 

As described above, many proteins have been discovered as components 

of endothelial and epithelial TJs. The expression of these proteins varies 

between different tissue barriers, helping to define their distinct profiles of 

paracellular permeability. In the intestinal epithelia, several intracellular 

mechanisms could trigger the dynamic modulation of TJ proteins that either 

promotes regulated permeability or induces barrier dysfunction, outcomes 

associated with physiological and pathological TJ permeability, respectively. 

This section will review the current knowledge of TJ protein modulation 

associated with paracellular permeability in the intestine.  

 

 

1.6.1. Nutrients regulating TJ permeability 
 

Over the years, studies have improved our understanding of how nutrients 

alter TJ permeability. Initially, it was reported that high luminal sugar content 

transiently enhanced the TJ permeability of small hydrophilic molecules (93). 

This phenomenon appears to function as a physiological strategy to alter TJ 

permeability, which could transiently increase nutrient uptake by providing a 

secondary uptake route through the paracellular space. Examination of this 

hypothesis led to the discovery that MLCK was activated as a consequence of 

increased Na+-glucose co-transport; events that led to increased glucose-

mediated TJ permeability (88). Freeze-fracture electron microscopy of TJ during 

glucose-mediated TJ permeability showed dilations in TJ structures lacking the 

ZO-1 protein without affecting the total ZO-1 cellular levels (94). As ZO-1 is a 

central scaffolding element holding transmembrane proteins at TJs, this 

finding suggested that the reduction of ZO-1 linked to the TJs might be 

responsible for inducing TJ permeability during the activation of Na+-glucose. 

An analysis of fluorescence recovery after photobleaching (FRAP) in Caco-2 

cells that stably express fluorescent TJ proteins has defined the kinetic 

behaviour of TJ proteins associated with active Na+-glucose cotransport (95). 

ZO-1 assembly at TJs reduced during Na+-glucose co-transport activity, an 

effect reversed by MLCK inhibition that stabilized ZO-1 at TJs (95). No 
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significant changes were observed on other TJ proteins, such as claudin-1, 

occludin and actin (95). This reorganization required the ZO-1 ABR domain that 

is involved in binding to actin cytoskeleton (95). Moreover, expression of the 

ABR domain in Caco-2 cells disrupted the function of ZO-1 and prevented 

MLCK-mediated barrier regulation (45, 95). 

 
 

Other diet-derived substances that are found in low concentrations in the 

diet, such as the medium chain fatty acid, capric acid, are well known to 

induce TJ permeability via intracellular pathways (96). Hence, sodium caprate, 

in millimolar concentrations, has been used as a permeability enhancer of 

poorly absorbed drugs. This will be discussed in great detail in another 

section. Dietary minerals such as Zn2+, a trace element, have been reported to 

be essential for maintaining TJ barrier integrity. Thereby, Zn2+ depletion was 

found to play a causative role in the development of IBD in vivo (97). This was 

investigated in detail in vitro using Caco-2 cell monolayers grown in medium 

lacking Zn2+; TEER was reduced and paracellular permeability was enhanced 
(98). This effect was shown to be due to downregulation of occludin and ZO-1 

levels at TJs that induced a leaky epithelium permeable to neutrophils, which 

induced inflammation and subsequently damaged the epithelium (98). In 

contrast to Zn2+ reduction in the outer environment, minimizing intracellular 

Zn2+ in both Caco-2 cells and mouse colon by using cell-permeable Zn2+ 

chelator resulted in TJ barrier deficiency but with different changes to TJ 

protein composition (99). Reducing the intracellular Zn2+ was associated with 

depletion in the cellular levels of occludin and claudin-3, a sealing claudin, with 

no effect on ZO-1. Although both extracellular and intracellular Zn2+ depletion 

was associated with a leaky epithelium, Zn2+ supplementation induced barrier 

function in in vitro models and reduced colitis-associated colon damage in 

mice (97, 98).  
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1.6.2. Intestinal disorder-induced TJ barrier dysfunction  
 

The intestinal lumen contains a variety of microbial colonies that play an 

essential role in gut physiology, e.g., in improving digestion (100). Nevertheless, 

this microbial community also produces toxins that could cause serious 

problems when translocated into the blood circulation. Thus, gut epithelia with 

sealed TJs perform a critical task in preventing the passage of luminal 

pathogens into mucosal tissues while permitting selective permeability of other 

substances, such as nutrients (45). Under certain conditions, toxins and 

pathogens from the lumen could leak through the epithelial TJs leading to the 

induction of local tissue inflammation that subsequently could lead to systemic 

complications (101). This phenomenon is associated with intestinal inflammatory 

diseases such as Crohn’s disease and ulcerative colitis, which together are 

called IBD and characterized by leaky intestinal epithelia (45).  

 

 

1.6.2.1. TJ permeability associated with inflammatory mediators 
 

Accumulated evidence from both in vivo and in vitro studies have refined 

the role of the molecular remodelling of TJ proteins in determining TJ 

permeability behaviour in response to different cytokines during IBD. Similar to 

the physiological TJ opening mentioned above, MLCK activation was reported 

to be an essential process for the induction of IBD-associated TJ permeability 
(53, 102). This barrier defect was shown to be reversed by inhibiting MLCK (53, 

103). Intracellular signalling induced by TNF-α and INF-γ, defined as the main 

inflammatory mediators of TJ barrier defects in Crohn’s disease, can activate 

MLCK, which in turn induces occludin endocytosis leading to changes in the 

TJ protein complex sufficient to enhance macromolecule permeability (45, 53, 54). 

This so called leaky pathway has been detailed through a series of in vitro 

studies that have suggested that the time of exposure to pro-inflammatory 

cytokines is a critical factor defining the changes to TJ protein complexes. 

Short (~ 4 h) exposure to TNF-α and INF-γ was enough to induce only 

occludin endocytosis that resulted in enhanced TJ permeability to molecules 

with a diameter of up to ~60 Å, in a non-charge selective manner (53, 54, 103). 
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Treating Caco-2 monolayers with TNF-α and INF-γ for ~ 48 h up-regulated 

claudin-2 and down-regulated claudin-4 at TJs, claudins demonstrated to 

enhance TJ permeability and sealing, respectively (104). Accordingly, it has 

been concluded that these changes to claudin proteins might play a role in 

disrupting the epithelial barrier function in IBD (104). However, less is known 

about whether these changes to claudin proteins in response to long exposure 

to TNF-α and INF-γ have an influence on TJ permeability profiles in terms of 

size and charge compared to a shorter exposure. 

 

 

 Unlike the type of barrier defect mediated by TNF-α and INF-γ, interleukin-

13 (IL-13), a cytokine associated with ulcerative colitis, reduces TEER with no 

effect on macromolecule permeability (102, 105). This was accompanied by 

increasing claudin-2 expression at TJs, resulting in increased charge-selective 

permeability to cations (102). Although the intracellular signalling pathway(s) 

responsible for reorganizing TJ protein complexes is presumed to be different 

in each of these cases, these studies have demonstrated that TJ protein 

remodelling is critical for determining TJ permeability behaviour. 

 

 

1.6.2.2. Life style factors mediate TJ reorganization 
 

Several studies in the literature have established a role of life style-related 

factors, such as alcohol consumption and stress, in inducing TJ protein 

reorganization and the enhancement of luminal endotoxin permeability. 

Chronic alcohol consumption was found to enhance the translocation of 

endotoxins into blood circulation, which was linked to alcoholic liver disease 
(106). Studies investigating the mechanism of action of ethanol and its 

metabolite, acetaldehyde, have shown that they induce TJ permeability 

through the reorganization of occludin and ZO1 (107). Treating Caco-2 cell 

monolayers with acetaldehyde reduced TEER and enhanced the TJ 

permeability to macromolecules, FITC-inulin (~11 Å) (107); both changes in TJ 

structures and altered interactions between occludin and ZO-1 were observed 
(107, 108). A recent in vivo study provided evidence for TNF-α involvement and 
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MLCK activation in generating TJ leakage associated with chronic alcohol 

consumption (109), a similar scenario to leaky TJs associated with IBD. 

However, changes in TJ protein complexes produced by alcohol are distinct 

from those occurring with IBD. These studies suggested that similar cellular 

signalling pathways could induce macromolecule permeability by developing 

TJ complexes with distinctive features.   

 

 

Psychological stress was reported to increase the level of endotoxin 

permeability to the blood stream that could result in disease initiation or 

progression (110). Both physiological and pathological stimuli were found to play 

a role in stress induced TJ permeability. Under acute stressful conditions, the 

body requires a higher level of energy. Therefore, a wide array of stress-

related signalling hormones, e.g. glucocorticoids, are released in different 

organs to provide and maintain energy supplies, nutrients and minerals, by 

reducing wastage and increasing absorption (110). In this case, the intestine 

responds by activating the epithelial Na+-glucose pathway, a physiological 

pathway, which enhances TJ permeability, a transient event that ends by 

removing the cause of stress (88, 110). Mechanistic studies using HT-29 cell 

monolayers and mice showed that chronic stress-induced TJ permeability is 

associated with up reglation of claudin-2, which was mediated by 

overexpression of the endotoxin-sensitive protein toll-like receptor-4 (TLR-4) 
(111). Furthermore, it was found that the TLR-4 activation resulted in the 

activation of the NF-κB pathway, which is involved in production of various 

cytokines, and is also correlated with stress-induced barrier dysfunction 

involving increased claudin-2 expression (111). Therefore, it is been suggested 

that cytokine production is involved in chronic stress-induced TJ protein 

reorganization (110). 
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1.6.3. Studies clarifying the dynamic organization of TJ proteins 
 

The knowledge that is currently available about TJ dynamic remodelling 

was not fully realized by only studying TJ regulation induced by naturally 

existing mechanisms, e.g., physiological and pathological pathways. 

Monitoring the influence of artificial techniques on the regulation of TJ function 

has also contributed to a better understanding of TJ organization. These 

techniques can be categorized into two main groups: synthetic tools that can 

be used to target specific TJ proteins, such as synthetic peptidomimetics and 

RNA interference techniques, and the application of permeability enhancers 

primarily used to improve the permeability of drugs across the TJ barrier, 

which occurs through the reorganization of TJ proteins. This part will focus on 

summarizing studies involving peptidomimetics and permeability enhancers 

that induce transient modulation of TJ proteins. 

 

 

1.6.3.1. Peptides targeting TJ proteins. 
 

In polarized epithelial cells, TJ integral membrane proteins establish 

extracellular associations with neighbouring cells that regulate paracellular 

permeability. Amongst the known TJ integral membrane proteins, claudins and 

occludin have a fundamental role in generating these interacting complexes 

that regulate TJ barrier properties. Structural studies of claudins and occludin 

have revealed that both ECLs are important determinants of the function of 

these proteins at TJs. Peptides designed to emulate the ECLs of claudins and 

occludin have been used to define the role of these protein domains in 

modulating TJ protein assembly. Such a strategy has not only contributed 

valuable knowledge on the organization of TJ structure and function, but has 

also provided promising tools to enhance drug permeability. 

 

 

Several studies have concluded that the ECL2 of occludin is essential for 

its TJ recruitment (47, 49, 112). Application of 18-mer peptide mimicking residues 

210-228 of the ECL2 of occludin on human intestinal epithelial T84 cell 
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monolayers, prevented TJ barrier re-establishment on T84 cells after Ca2+ 

repletion (112). This was suggested to occur by disrupting the organization of 

claudin-1, occludin and JAM-A in forming TJ structures (112). Consistent with 

this, a study investigating the role of claudin-1 ECLs in determining TJ function 

has shown that a 27-mer peptide related to residues 53-80 of claudin-1 ECL1 

reduced barrier function and increased macromolecule permeability in both 

T84 cell monolayers and in rats in vivo (113). This was accompanied by the 

rearrangement of claudin-1, occludin, JAM-A, and ZO-1 proteins. Although 

several studies performed on different epithelial barriers, have reported that 

disruption of claudin-1 or occludin can induce distinct changes to TJ protein 

complexes associated with TJ barrier dysfunction, both peptides, which target 

ECL-1 and ECL-2 of claudin-1 and occludin, respectively, have been shown to 

induce similar modulations to TJ proteins in intestinal epithelia (112, 113). This 

might suggest that in intestinal epithelia, claudin-1, a sealing claudin, and 

occludin have a communication by which they regulate TJ permeability when 

exposed to an external stimulus targeting their extracellular domains. 

Therefore, claudin-1 and occludin might be considered markers to monitor 

intestinal epithelial TJ permeability function.  

 

 

Another example of peptides modulating TJ barrier function is a peptide-

related to claudin-1 ECL-1 residues 53-81, similar to the previously mentioned 

peptide mimicking ECL-1 of claudin-1, but Cys54 and Cys64 mutated to serine 

residues, called C1C2 peptide (114). This peptide was designed to enhance the 

permeability of hydrophilic drugs across tissue barriers by modulating claudin-

1 sealing properties at the TJs (114). The C1C2 peptide was first tested for its 

capacity to enhance the permeability of nerve fibres towards analgesics within 

the peripheral nervous system that are surrounded by the perineurium barrier. 

Within 2 days of pre-treatment of C1C2, claudin-1 levels were reduced in the 

inner perineurium layer of rats sciatic nerve, and accordingly, an enhancement 

in the effect of membrane-impermeable analgesics was achieved, indicating 

an increase in the analgesics permeability (114).  
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A further study to confirm the mode of action of the C1C2 peptide was 

performed in different epithelial and endothelial cell monolayers, including the 

following: Caco-2, MDCK-II and primary mouse microvascular endothelial cells 

(pMBMECs). These cell lines have distinct barrier properties due to their 

different claudin expression patterns. This study has revealed consistent 

changes in TJ protein complexes that mediate a reversible reduction of TEER 

and the enhancement of macromolecule permeability 4- 6 h after treating 

these monolayers with the C1C2 peptide (40). Immunofluorescent staining has 

shown that the permeability enhancement induced by C1C2 peptide was 

associated with the redistribution of claudin-1, claudin-2, claudin-3, claudin-4, 

claudin-5 and occludin in both MDCK-II and Caco-2 monolayers and claudin-3, 

claudin-5 and occludin in pMBMECs monolayers (40). An observation 

suggested a direct disruption of TJ proteins by the C1C2 peptide (40, 114). 

However, investigating the direct interference of C1C2 peptide upon the 

distribution of different claudins using HEK-293 cells transfected with one 

claudin at a time revealed that the C1C2 peptide only disrupted claudin-1- and 

claudin-5-based TJs (40). This finding suggested that the C1C2-induced 

modulation of TJ proteins, apart from claudin-1 and claudin-5, might be 

mediated by a heterophilic trans- or cis-interaction with claudin-1 and claudin-5 
(40).  

 

Exposure to a peptide related to claudin-2 ECL1 called C2C2 for 24 h 

neither altered TJ protein distribution nor affected TJ barrier function in all cell 

culture models studies (40, 114). This was particularly surprising for the intestinal 

epithelial cell model, Caco-2, since many studies have shown that interference 

with claudin-2 changes the TJ barrier function in the intestine (28, 115). 

Moreover, TJ barrier dysfunction associated with some intestinal diseases has 

been linked with modifying claudin-2 expression (104). This might suggest that 

unlike claudin-1 and claudin-5, which have sealing functions, claudin-2-

mediated TJ permeability is more strongly regulated by intracellular signalling.   
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1.6.3.2. Permeability enhancers inducing TJ permeability 
 

Oral delivery of protein and peptide therapeutics is limited by the intestinal 

epithelial barrier (5). Therefore, many delivery strategies, e.g., mucoadhesives 

and nanoparticles, have been examined for their ability to enable oral delivery 

of these biopharmaceuticals (116). Over ~ 250 permeability enhancers (PEs) 

have been used to improve drug permeability across intestinal epithelia either 

transcellularly via enhancing the drugs diffusion through the plasma 

membrane or paracellularly by modulating TJ proteins (5). In general, a number 

of these PEs for delivering biopharmaceutics have been shown to be safe, 

although their capacity to enhance their uptake has been less than efficacious 

or inconsistent (5, 96).  

 

 

Sodium caprate is an example of a well-studied PE that exists in dietary 

products, e.g., milk, and is one of the most promising PEs for enhancing oral 

drug delivery (5, 117). The mechanism of action by which sodium caprate 

modulates intestinal epithelial TJ proteins and enhances permeability has 

been investigated in different tissue barrier models. In each model, sodium 

caprate was shown to induce different modifications to TJ proteins that 

enhanced permeability (118). These changes in TJ modulation have been 

suggested to be due to differences in TJ protein composition between tissue 

barriers (119).  

 

 

Many reports have agreed on the role of cytoskeleton contraction mediated 

by MLCK as a primary cause of paracellular permeability induced by sodium 

caprate in Caco-2 cells (96, 120-122). Treating Caco-2 cells with 10 mM of sodium 

caprate induced a rapid, time-dependent reduction of TEER and induction of 

large molecule permeability, up to 10 kDa dextran (121, 122). A study reported 

that changes to TJ protein organization was only observed after extended 

exposure times to sodium caprate of > 60 min (121). Exposure to 10 mM of 

sodium caprate for 60 min reduced ZO-1 and occludin abundance at TJs in 

Caco-2 cell monolayers (121). Studies have shown that MLCK activation is 
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correlated with rapid changes to ZO-1 cell distribution (94, 95). Moreover, 

extended activation times for MLCK result in a constant effect on ZO-1 that 

could induce multiple changes to TJ proteins and TJ barrier function (54, 95). 

This might be the case with a long exposure to sodium caprate, as long-lasting 

activation of MLCK reorganized ZO-1 and occludin to form larger pores that 

were responsible for dramatic changes of permeability profile at the beginning 

and after a long exposure to sodium caprate.  

 

 

A brief sodium caprate exposure (~ 30 min) to enhance TJ permeability 

was associated with the activation of cytoskeleton contraction and claudin-1 

displacement from TJs (122). Monolayers of the human colon cell line, HT-

29/B6, have a higher TEER value than Caco-2 cells; exposure of HT-29/B6 

monolayers to ≥ 10 mM sodium caprate induced a similar time-dependent 

reduction profile of TEER reduction and TJ permeability (118). 

Immunofluorescent microscopy studies demonstrated tricellulin and claudin-5 

redistribution from tri-cellular and bi-cellular TJs after ~ 30 min, with no effect 

on other TJ proteins (118). None of these responses involved the activation of 

MLCK as observed in Caco-2 cell monolayers, suggesting a direct interference 

with tricellulin and claudin-5 (118). Comparison of findings obtained with HT-

29/B6 cells Caco-2 cells, regardless of variations between their barrier 

properties, suggest that the fast onset of TJ permeability induced by sodium 

caprate in intestinal epithelia involves regulation of claudins and tricellulin. This 

observation may reflect structure/function features of the TJ that enable their 

rapid dissociation from the plasma membrane. For example, claudins are 

palmitoylated proteins, a post-translational modification found to facilitate 

certain aspects of membrane trafficking (123). 

 

 

1.7. Therapeutic peptides and issues that hinder their oral delivery 
 

Since the discovery of human insulin as the first therapeutic peptide for the 

treatment of diabetes, production of therapeutic proteins and peptides has 

increased over the years to represent currently ~ 10 % of all the 
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pharmaceutical products in the global market, a figure which is also expected 

to increase in the future (117, 124). This is because proteins, in general, can 

control specific functions in the human body mediated via discrete membrane 

receptors that generate selective cell signalling process (125). Among all the 

marketed peptides, which are mostly delivered by parenteral routes, only a few 

can be delivered by the oral route (Table.1)	 (5, 117). Developing oral peptide 

formulations has been an ongoing target for the pharmaceutical industry for 

many reasons (5, 117). Oral peptide formulations might enhance patient 

compliance to treatment, as patients prefer oral administration of drugs over 

injection (5, 117). Moreover, oral administration of peptides would reduce the 

cost associated with the production and application of injectable dosage forms, 

which include sterilization, needle disposal and staff/patient training in some 

instances (5). In addition, oral delivery for some therapeutic peptides can mimic 

their physiological release in the body. For example, insulin uptake from the 

intestine results in direct hepatic delivery via the portal vein, which mimics its 

natural release from the pancreas which also goes directly to the liver (5).    

 

 
Table 1.1: Commercially available oral therapeutic peptides (5, 117).  

MW: molecular weight     

 

 

 

 

Peptide drug MW (Da) Applications 

Cyclosporine 1202 Immunosuppressant 

Desmopressin 1069 Diabetes Insipidus 

Taltirelin 477 Spinocerebellar degeneration 

Glutathione 307 Acquired immune deficiency syndrome (AIDS)-

related cachexia/ cystic fibrosis 

Linaclotide 1526 Irritable bowel syndrome 

Vancomycin 1449 Pseudomembranous colitis 

Colistin 1155 Multi drug resistant bacterial infections 

Tyrothricin 1228 Pharyngitis. 
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There are many challenges to oral delivery of peptide therapeutics. First of 

all, these drugs are water soluble and too large to readily transport across the 

intestinal epithelial cells (5). Moreover, peptide therapeutics are typically 

susceptible to degradation by GI tract digestive enzymes including the gastric 

enzyme pepsin and intestinal enzymes secreted by the pancreas or 

enterocytes, such as trypsin and chymotrypsin (5, 126). In addition, drug 

absorption in the intestine, generally, requires its complete dissolution and 

solubility that can be pH-dependent (5). This could be an issue for some 

peptide drugs, such insulin, which has better solubility in mild acidic medium 

than the neutral medium of the intestine (5). However, most of these problems 

can be solved with the aid of existing pharmaceutical technologies. For 

example, the stability of peptide drugs in the GI tract can be improved by 

enteric coating or an oral dosage form and/or application of drug excipients, 

such as protease inhibitors, while solubility of insulin can be enhanced by 

acidifying agents (5, 117). This leaves poor permeability across the intestinal 

epithelial barrier as the main challenge for the oral delivery of peptide 

therapeutics (5, 117).     
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1.8. Aims of this project 
 

This project represents an extension to previous work aimed at developing 

a novel strategy to enhance the oral permeability of therapeutic peptides 

across the TJ of intestinal epithelial cells by manipulating an endogenous 

pathway. This strategy involved examining the ability of rationally designed 

membrane permeant peptide inhibitors of MLCP, PIP peptides, to alter the 

activity of MLCP resulting in a transient induction of MLC-pS19 that could 

enhance the permeability of therapeutic peptides through TJ structures. 

Previous work on PIP peptides has suggested that these peptides can 

enhance TJ permeability by enhancing MLC-pS19, as anticipated (127). 

However, much less was known about how these peptides alter the activity of 

MLCP or how their effect was associated with TJ structure. The current project 

focused on improving our understanding of the mechanism of action (MoA) of 

one of the lead PIP peptides: PIP 640 peptide.  

 

Specific aims of the current project: 

• Validate and optimize the permeability enhancement function of PIP 

640 peptide and evaluate its safety in vitro. 

 

• Characterize the biochemical changes associated with TJ proteins 

induced by the actions of the PIP 640 peptide in vitro. 

 

• Investigate different aspects of the PIP 640 peptide-induced 

permeability enhancement in vivo. 
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2.1. Reagents and materials 
	

Solvents and reagents for peptide synthesis and characterisation were 

purchased from Novabiochem, Sigma-Aldrich, and Rathburn Chemicals. 

Reagents and materials for cell biology studies were purchased from Sigma-

Aldrich, Fisher Scientific, Invitrogen, Phoenix Pharmaceuticals, Novabiochem, 

Tocris Bioscience, 2B Scientific, Sartorius, Promega, BIO-RAD, and Santa 

Cruz Biotech unless otherwise stated. All primary and secondary antibodies 

were obtained from Santa Cruz Biotech, Abcam, Invitrogen, Cell Signalling 

Technologies and LI-COR. All reagents, materials, and antibodies that were 

used to perform all experiments are listed in Table 2.4, Table 2.5, Table 2.6 

and Table 2.7. 

 
           

2.2. Solution preparation 
	

Solutions and media that were used for cell biology studies were 

commercially prepared and sterilised unless otherwise stated. Solutions which 

were prepared in the lab, were made by dissolving the required materials in 

Milli-Q water (18.2 MΩ.cm at 25 °C) followed by adjusting the pH as 

appropriate with HCl before making up to the final volume. The pH values of 

solutions were adjusted using a ceramic junction reference electrode that is 

connected to a Thermo Orion model 420 pH meter (Thermo Scientific, UK). 

The pH meter was calibrated by measuring different commercially obtained 

reference standard solutions (pH buffers) that have known pH values at room 

temperature (Thermo Scientific, UK). The calibration process was performed 

by placing the electrode in two pH buffers that bracket the desired sample pH; 

the first buffer usually has pH 7 and the second buffer should be near the 

expected sample pH, pH 10. All solutions that were prepared in the lab were 

sterilised by autoclaving at 121 °C for 15 minutes or by filtration using a 0.2 µm 

filter. 
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 2.3. Peptide synthesis and characterization 
 

2.3.1. Peptide synthesis and biotinylation protocols   
 

All peptides were synthesized by 9-fluorenylmethyloxycarbonyl (Fmoc) 

solid phase peptide synthesis (SPPS) strategy using D-amino acids. Peptides 

were generally synthesised on 0.25 g of Rink amide methyl benzhydrylamine 

(MBHA) resin (0.6 mmol/g loading) to obtain peptides with an amidated C-

terminus (128, 129). For the synthesis of a C-terminally biotinylated peptide, 0.25 

g of biotin-PEG Nova TagTM resin (0.34 mmol/g loading) was used to produce 

a C-terminally biotinylated peptide with PEG spacer between the peptide and 

the biotin (130, 131). Removal of the Fmoc group was performed with 20 % (v/v) 

piperidine in dimethylformamide (DMF) (128, 132). The first coupling process was 

performed manually in a disposable plastic vessel with diisopropylcarbodiimide 

(DIC) and hydroxybenzotriazole (HOBt) as coupling agents in the presence of 

diisopropylethylamine (DIEA). Successful manual removal of Fmoc from the 

resin and coupling of the first amino acid were confirmed by Kaiser colour test 

(Kaiser reagents composed of 100 mM ninhydrin in ethanol (EtOH), 2.1 M 

phenol in EtOH, and 0.02 mM potassium cyanide in pyridine) (133). A few drops 

of each Kaiser reagents were added to a sample of the Fmoc de-protected 

resin prior to heating to ~100 °C for 1 minute. Appearance of a dark blue 

colour in the resin sample indicated the presence of free amino functions 

capable of reacting with ninhydrin. Upon completion of the first amino acid 

coupling, the remaining coupling processes were performed on an automated 

Symphony Quartet peptide synthesizer (Gyros Protein Technologies, USA) 

with (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate 

(PyBOP) as coupling reagent with DIEA. N-terminal biotinylation of peptides 

was performed during the automated process using a biotin-p-nitrophenyl 

ester (biotin-ONp) reagent (134). Quantities of all D-amino acids, biotin-ONp, 

and coupling reagents used were equal to 3 equivalents of the resin. The 

amount of DIEA used during all coupling steps was equal to 6 equivalents of 

the resin. All peptides were cleaved from the resin and side chain protection 

groups removed by treatment with 1mL of a mixture of 95% of trifluoroacetic 
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acid (TFA), 2.5% water, and 2.5% triisopropylsilane (TIPS) per 1g resin and 

incubating at room temperature for 3 h(132).  

 

2.3.2. Peptides purification and characterization by HPLC and mass 
spectrometry  

 
All cleaved peptides were purified by reversed-phase semi-preparative 

high performance liquid chromatography (RP-HPLC), and purified materials 

were characterized by analytical RP-HPLC with electrospray mass 

spectrometry being used to verify peptide identity. Semi-preparative RP-HPLC 

was performed on a Dionex HPLC system, using a Phenomenex Gemini 5µm 

C-18 (250 x 10 mm) column, and a flow rate of 2.5 mL/min. Analytical RP-

HPLC was performed using a Dionex UltiMate 3000 HPLC system (Dionex, 

UK), using a Phenomenex Gemini 5µm C-18 (150 x 4.6 mm, Phenomenex, 

UK) column, and a flow rate of 1 mL/min. Mobile phase for both analytical and 

semi-preparative HPLCs was: A)  0.1% (v/v) of TFA in water and B) 0.1% (v/v) 

TFA in acetonitrile. The semi-preparative RP-HPLC gradient used was T = 0 

min, B = 5%; T = 25 min, B = 95%; T = 35 min, B = 95%; T = 35.1 min, B = 

5%; T = 40 min, B = 5%. The analytical RP-HPLC gradient used was T = 0 

min, B = 5%; T = 10 min, B = 95%; T = 15 min, B = 95%; T = 15.1 min, B = 

5%; T = 18 min, B = 5%. Mass spectrometry analysis of all peptides was 

performed using a microTOF instrument from Bruker Daltonics run in positive 

ion mode (Bremen, Germany). 

 

 

2.4. Cell culture handling and maintenance  
 

2.4.1. General methodology 
 

The human colorectal adenocarcinoma (Caco-2) cell line (American Type 

Culture Collection, ATCC, USA) was used to perform all in vitro cell-based 

studies. All plastic-ware, which was used to culture and maintain cells, was 

purchased pre-sterilised. For general cell maintenance, cells were cultured in 

75 cm2 flasks using Dulbecco’s modified Eagle’s medium (DMEM) 
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supplemented with 10% (v/v) of foetal bovine serum (FBS) and 1% (v/v) of an 

antibiotic mixture (P/S) containing penicillin (100 unit/mL) and streptomycin 

(100 µg/mL); known as complete DMEM. Cells were maintained in 5% CO2 at 

37 °C in a humidified incubator. All cell culture work was performed in a 

biosafety tissue culture hood applying the required aseptic techniques to keep 

cell cultures free from contamination by microorganisms. This included use of 

sterile cell culture tools and cleaning the working area using 70 % (v/v) EtOH 

in water and/or a UV lamp. For further sub-culturing or seeding onto semi-

permeable membrane supports, cells were split at a point of ~80 % confluence 

in T75 flasks. To split cells, spent media was removed and cells were washed 

once with pre-warmed phosphate buffered saline (PBS). Washed cells were 

then treated with 10 mL/flask of trypsin/ethylenediaminetetraacetic acid 

(EDTA) solution for ~ 5 min or until cell detachment was completed. An equal 

volume of pre-warmed complete DMEM was then added to the flask to 

inactivate the trypsin. Cells were then transferred to centrifuge tubes and 

pelleted at 125 x g for 10 min using AccuSpin™ 400 (Fisher scientific, UK). 

After removal of the media, pelleted cells were suspended with 1 mL of 

complete DMEM prior to further dilution with the same medium to achieve a 

split ratio of ~ 1:10. Cells were then either placed in fresh culture flasks or 

seeded on semi-permeable membrane supports to perform in vitro studies. 

 

 

Trypsin/EDTA solution was prepared as follows: 2% (w/v) of EDTA stock 

solution was prepared by dissolving 0.5 g in 25 mL PBS prior to passing 

through a 0.2 µm filter. Then, 100 mL of 10x trypsin (2.5%, v/v) was mixed with 

10 ml of 2% EDTA stock in 890 ml of sterile PBS to give a working 

concentration of 0.25% Trypsin/0.02% EDTA solution. The trypsinization 

solution was stored in aliquots at - 20°C.       
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2.4.2. Cells storing and reconstituting protocols 
 

Reconstitution of frozen cells was performed by placing a vial retrieved 

from the liquid nitrogen dewar in a pre-warmed water bath at 37 °C. Thawed 

cells were transferred to a 15 mL tube containing pre-warmed cell medium and 

centrifuged for 10 min at 125 x g. After discarding the supernatant, pelleted 

cells were suspended with fresh medium of sufficient volume to produce the 

desired cell concentration for growth as mentioned in Section 2.4.1.        

 

 

To store cells frozen in liquid nitrogen, cells that had reached ~80 % 

confluency on 75 cm2 flask were trypsinized and centrifuged as stated in 

Section 2.4.1.  After discarding the supernatant, pelleted cells were suspended 

with cryopreserving medium composed of 10 % (v/v) of dimethyl sulfoxide 

(DMSO) and 20 % (v/v) of FBS in DMEM. These cell suspensions were 

divided into cryotubes (1 mL/tube) and stored at -20 °C for 1 h prior to being 

placed in a -80 °C freezer overnight. On the next day, cell vials were 

transferred to liquid nitrogen for long-term storage.             

 

 

2.5. Analysis of barrier function 
	

2.5.1. Cell seeding 
 

Caco-2 cells were seeded into the apical chamber of a 1.2 cm2 (0.4 µm 

pore size) polyester membrane of 12-well Transwell® plates at a cell density 

of 7 x 104/well. Cells were left to grow for ~ three weeks to produce polarized 

monolayers. During this time cells were maintained in DMEM medium 

supplemented with 10 % (v/v) FBS and 1 % P/S with 400 µL in the apical 

chamber and 800 µL in the basolateral chamber. One well in each plate was 

left without cells for blank reading. Cell medium in each well was replaced with 

fresh medium every two days.  
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2.5.2. Transepithelial electrical resistance (TEER) measurement    
 

TEER measurements were used to monitor cell growth, formation, and 

changes in epithelial cell barrier function (88, 135). Caco-2 cell monolayer 

confluency is usually demonstrated by a TEER value of > ~ 300 Ω·cm2 (135). 

TEER measurement was performed using EVOM2TM epithelial voltmeter 

(World Precession Instruments, UK) using chopstick-like silver/silver-chloride 

electrodes that were 4 mm wide and 1 mm thick. Prior to each use, the 

electrodes were sterilized using 70 % (v/v) of ethanol in water then washed 

with and calibrated in Hanks' balanced salt buffer solution (HBSS). TEER 

values were obtained by placing one electrode in the apical chamber and the 

other in the basolateral chamber as per supplier’s instructions. Cell monolayer 

TEER values of each well were calculated by subtracting the blank well TEER 

value from the TEER value measured for each cell monolayer with that value 

then multiplied by the filter surface area.       

 

   

2.5.3. Fluorescent solutes used to study TJ permeability 
 

Evaluation of paracellular permeability of Caco-2 in vitro is commonly 

performed by measuring apical to basolateral transport of different poorly-

permeable solutes of different molecular weights, such as fluorescent dextrans 
(118, 135, 136). In our work, we assessed the extent of TJ opening by studying 

apical to basolateral transport of 4 kDa fluorescein isothiocyanate (FITC)-

dextran, 10 kDa FITC-dextran, and 70 kDa tetramethylrhodamine 

isothiocyanate (TRITC)-dextran across Caco-2 cell monolayers. In addition, 

the permeability of fluorescent dextran having different net charge across 

Caco-2 cell monolayers was also examined: positively-charged FITC-

diethylaminoethyl-dextran (FITC-DEAE-dextran) and negatively-charged FITC-

carboxymethyl-dextran (FITC-CM-dextran), both having a molecular weight of 

4 kDa. The listed molecular weights of all of these dextrans represent an 

approximate average of a pooled material collected by size-fractionation.  
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2.5.4. Time-course assessments of TEER change of monolayers and 
fluorescent dextran transport induced by PIP peptides 
 
Studies were performed on polarized Caco-2 cell monolayers as defined 

by the measured TEER value as defined in Section 2.5.2. Transport 

experiments were initiated by discarding cell medium and washing apical and 

basal monolayer surfaces once with 400 µL and 800 µL of HBSS, respectively. 

Subsequently, this buffer was removed and replaced with fresh HBSS in both 

apical and basolateral chambers and monolayers were left at 37 °C for 30 min 

to equilibrate. Upon completion of the equilibration period, a study baseline 

TEER measurement was performed and a background sample that served as 

the initial time point for the transport study was collected.  

 

 

To start a study, apical buffer was removed and replaced with 400 µL of 

fresh HBSS buffer containing the required fluorescent dextran for each test 

(each prepared at a stock working concentration of 1 mg/mL) with or without a 

PIP peptide; fresh HBSS (800 µL) was exchanged in the basal compartment. 

For each time point of a study, a TEER measurement was performed followed 

by collection of the basal media, which was then replaced with fresh HBSS 

medium to the basal chamber. The extent of transported dextran was 

determined by measuring the fluorescence present in the HBSS samples 

collected from the basal compartment over time (FITC; Ex 490 nm/ Em 520. 

TRITC; Ex 540 nm/ Em 610 nm) using FLUOstar® Omega Microplate Readers 

(BMG Labtech, Germany). 

 

 

2.5.5. Induction of TJ barrier loss by proinflammatory cytokines 
 

This was performed as described in the literature (54, 137, 138) to compare TJ 

barrier loss induced by proinflammatory cytokines with changes in TJ barrier 

properties induced by PIP peptides. A mixture of the human proinflammatory 

cytokines tumour necrosis factor alpha and interferon gamma (TNFα/INFγ) 

were added to the basal chamber medium of Caco-2 cell monolayers 
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containing DMEM medium without P/S antibiotic to induce TJ barrier loss. 

Specifically, Caco-2 cell monolayers were treated with 10 ng/mL INFγ 

overnight prior to addition of 5 ng/mL TNFα for 4 h. After induction of TJ barrier 

dysfunction, media containing proinflammatory cytokines was discarded and 

cell monolayers were washed once with HBSS, 400 µL in the apical chamber 

and 800 µL in the basal chamber. Subsequently, transport of different-sized 

fluorescent dextran molecules across Caco-2 cell monolayers was as 

described in Section 2.5.4. 

 

 

2.6. Protein characterization 
 

2.6.1. Protein extraction for immunoblotting (western blotting) 
 

Upon completion of an experiment, cell media in the apical and basal 

compartments was discarded prior to washing monolayers thrice with ice cold 

PBS. Cells were then lysed by adding 100 µL radioimmunoprecipitation assay 

buffer (RIPA) that contained a cocktail of protease and phosphatase inhibitors 

(25 µL/mL each), added to the apical surface of each Transwell® filter. Lysed 

cells were scraped into Eppendorf tubes and placed on ice for 10 min prior to 

centrifugation at 10,000 x g for 10 min at 4 °C using Heraeus™ Fresco™ 17 

Microcentrifuge (Fisher scientific, UK). Supernatants obtained from this 

centrifugation step were then diluted with electrophoresis sample buffer 

(composed of 500 µL/mL 4x NuPAGER® lithium dodecyl sulfate (LDS), 200 

µL/mL NuPAGER® reducing agent, and 300 µL/mL Milli-Q water) in a 1:1 ratio 

prior to separation by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) as described in Section 2.11. 
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2.6.2. Protein extraction for immunoprecipitation, native-
immunoblotting and pull-down assay with biotinylated PIP peptides 

 
Proteins were extracted using the same method as in Section 2.6.1. 

However, cells were harvested from 75 cm2 flasks and lysed using a 1 mL of 

lysis buffer composed of 50 mM Tris at pH 7.4, 200 mM NaCl, 10 mM EDTA, 

20% (v/v) of glycerol, and 1% (v/v) Nonidet P40. 

 

 

2.7. Determination of extracted protein  
 

2.7.1. Detergent-compatible Bradford assay 
 

The Bradford colorimetric assay is commonly used to determine the 

protein concentration of a solution (139). This assay uses the protein-binding 

capacity of Coomassie blue dye that results in an absorption maximum shift 

from 465 nm (un bound dye, green colour) to 595 nm (dye bound to protein, 

blue colour) (139). Unfortunately, the traditional Bradford reagent is incompatible 

with cell lysis buffers containing detergents (139). Thus, the Pierce™ detergent 

compatible Bradford reagent was used that is compatible with commonly used 

detergents. For these protein determinations, bovine serum albumin (BSA) 

was used as a standard protein.  

 

 

2.7.2. General methodology 
 

Protein determinations were performed in a 96-well plate using 10 µL of 

cell lysates and 300 µL of Pierce™ detergent-compatible Bradford reagent. 

Plates were incubated for 10 min at room temperature on a plate shaker. The 

intensity of Bradford dye converted to 595 nm emission was determined using 

a FLUOstar® Omega Microplate Reader. Protein concentrations were 

determined using a plotted BSA standard curve with the following 

concentrations: 25 µg/mL, 20 µg/mL, 15 µg/mL, 10 µg/mL, 5 µg/mL, 2.5 

µg/mL.  
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2.8. Immunoprecipitation protocol 
 

Immunoprecipitation of proteins was performed on confluent Caco-2 cells 

grown in 75 cm2 flasks. Separate flasks of cells were treated with the PIP 640 

peptide for set times. Untreated cells were used as controls. Treated cells 

were then washed with HBSS once and lysed as described in Section 2.6.2. 

Cell lysates containing ~ 500 µg of total protein were quantified as described 

in Section 2.7.2 and mixed with a primary antibody recognizing the protein of 

interest (Section 2.16, Table 2.6); this solution was incubated with rotation for 

1 h at 4 °C. Subsequently, 20 µL of agarose beads was added to each sample 

and the suspension was mixed by gentle rotation overnight at 4 °C. Agarose 

beads were then collected by centrifugation at 1,000 x g for 5 mins at 4 °C and 

washed thrice by centrifugation with 500 µL of the same lysis buffer for each 

wash. After the final wash, agarose beads were re-suspended with 50 µL of 

electrophoresis sample buffer (described in Section 2.6.1) and the agarose 

bead-associated proteins separated by SDS-PAGE prior to Western 

immunoblotting analysis (Section 2.11).  

 

 

2.9. Pull-down assay with biotinylated peptides  
 

Confluent Caco-2 cells grown in 75 cm2 flask were lysed as described in 

Section 2.6.2. Lysates were divided equally, with each being prepared from 

cells treated with a different concentration of biotinylated PIP 640 peptide and 

rotated slowly for 3 h at 4 °C, each then being combined with 50 µL of 

streptavidin magnetic beads that had been pre-equilibrated with 500 µL of lysis 

buffer. Samples were incubated with gentle rotation for 1 h at 4 °C. 

Biotinylated PIP 640 peptide-bound beads were pulled-down using a magnet 

and washed thrice with 500 µL lysis buffer, being captured each time using the 

magnet pull-down step as above. After the final wash, the streptavidin 

magnetic beads were suspended in 50 µL of electrophoresis sample buffer 

and proteins associated with these beads being separated by SDS-PAGE 

prior to Western immunoblotting analysis as described in Sections 2.6.1 and 

2.11. 
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2.10. Detection of myosin light chain phosphatase protein 
components interacting with PIP 640 peptide 

 
A 75 cm2 flask of Caco-2 cells was lysed as described in Section 2.6.2. An 

aliquot of the lysate was combined with each PIP peptide to be tested and 

then incubated by gentle rotation for 3 h at 4 °C. Subsequently, 10 µL of each 

lysate-PIP peptide sample was mixed with 40 µL of a non-denaturing sample 

buffer (Native sample gel buffer, Table 4). Proteins present in these 

preparations were separated by native gel electrophoresis (Section 2.11.1) 

prior to western immunoblotting analysis as described in Section 2.11.4. 

 

 

2.11. SDS-PAGE and native-PAGE immunoblotting  
 

2.11.1. Gel preparation for SDS-PAGE and native-PAGE 
immunoblotting 

 
The resolving element of the gels used in these studies was prepared by 

mixing the ingredients described in Table 2.1; the solution being poured into 8 

cassettes of 1 mm thickness each and allowed to polymerize at room 

temperature for 60 min. Ingredients of the stacking gel described in Table 2.2 

were mixed and immediately poured into the cassettes over the resolving gel 

prior to inserting a comb to form the desired number of wells where protein 

samples are loaded. 

 

 

2.11.2. Buffers for electrophoresis and immunoblotting  
	

Electrophoresis running buffer for both SDS-PAGE and native PAGE was 

prepared by combining 3 g of Tris and 14 g of glycine in 1 L of Milli-Q water; 

the SDS-PAGE running buffer also contained 1 g of SDS. Protein transfer onto 

polyvinylidene fluoride (PVDF) membranes was performed using a buffer that 

was composed of 1.5 g of Tris, 7 g glycine, and 200 mL methanol (MeOH) in 

800 mL Milli-Q water. Tris buffer saline (TBS) was composed of 5 mL of 2 M 
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Tris-HCl (pH 7.5) and 37 mL of 4 M NaCl in 957.5 mL Milli-Q water. TBS 

containing 0.1 % (v/v) of Tween®20 (TBS-T) was used for washing, BSA 

blocking, and antibody incubation of PVDF membranes.   

 

 
Table 2.1: Reagents used to prepare the resolving gel used for both SDS-PAGE and 
native-PAGE 

Reagent (resolving gel) SDS-PAGE Native-PAGE 

Milli-Q water 24 mL 24 mL 

40 % acrylamide/bis-acrylamide (29:1) 16.8 mL 16.8 mL 

Tris-HCl buffer (1.5 M, pH=8.8) 14 mL 14 mL 

10 % (w/v) of SDS in Milli-Q water 560 µL ---- 

10 % (w/v) of Ammonium Persulfate (APS) in 
Milli-Q water  

560 µL 560 µL 

Tetramethylethylenediamine (TEMED) 56 µL 56 µL 

 

 

Table 2.2: Reagents used to prepare the stacking gels used for both SDS-PAGE and 

native-PAGE 

Reagent (stacking gel) SDS-PAGE Native-PAGE 

Milli-Q water  11.6 mL 11.6 mL 

40 % acrylamide/bis-acrylamide (29:1) 3 mL 3 mL 

Tris-HCl buffer (0.5 M, pH=6.8) 5 mL 5 mL 

10 % (w/v) of SDS in Milli-Q water 200 µL ----- 

10 % (w/v) of APS in Milli-Q water 200 µL 200 µL 

Tetramethylethylenediamine (TEMED) 20 µL 20 µL 
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2.11.3. SDS-PAGE and electrophoretic transfer  
 

SDS-polyacrylamide gels were placed in an XCell™ Sure Lock Mini-cell 

electrophoresis box (Invitrogen, UK) with SDS-PAGE running buffer (Section 

2.11.2). Cell lysates were mixed with sample buffer, heated for 5 min at 95°C, 

and then loaded into wells generated by the removal of the comb (20 µL/well). 

Samples were electrophoresed at 160 V for ~ 2 h to separate proteins. Upon 

completion of proteins separated by gel electrophoresis were electro-

transferred onto PDVF membranes using an XCell™ Blot module (Invitrogen, 

UK) at 30 V for 90 min. Membranes were then blocked by 2% BSA (w/v) in 

TBS-T for 1h at room temperature prior to an overnight incubation at 4 °C with 

an appropriate primary antibody diluted in TBS-T (Section 2.16 Table 2.6). On 

the next day, membranes were washed with TBS-T thrice, for 5 min each, then 

incubated with infrared (IR) dye-labelled secondary antibody diluted in TBS-T 

(Section 2.16 Table 2.7). Afterwards, membranes were washed thrice with 

TBS-T and imaged using the Odyssey CLX imaging system (LI-COR, UK). 

Images were analyzed using the Image Studio Lite software, version 5.2.    

 

 

2.11.4. Native-PAGE immunoblotting protocol   
 

Native-PAGE immunoblotting was performed using a running buffer that 

does not include SDS, as mentioned in Section 2.11.2, following a similar 

method to that described in Section 2.11.3, except that protein electro-transfer 

onto PDVF membranes was carried out overnight with 30 V at 4 °C. 
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2.12. Confocal microscopy and immunofluorescent staining  
 

2.12.1. Confocal microscopy and image analysis 
 

All images were collected at 63x magnification using a Zeiss LSM 510 

META confocal microscope equipped with 3 laser lines: diode (Ex 405 nm), 

argon (Ex 488 nm) and helium-neon (Ex 543 nm). Filters with different ranges 

were used to collect the emitted fluorescence including: (Em 550-625 nm, 

red), (Em 420-480 nm, blue) and (Em 505-530 nm, green). Z-stacks were 

collected at 1 µm intervals to generate xz plan images. Collected images were 

analyzed using Zeiss LSM Image Browser software, version 4.2.0.121. 

Maximum excitation/emission wavelengths of fluorophores used in confocal 

images are described in Table 2.3. 

 

 

Table 2.3: Maximum excitation/emission wavelengths of fluorophores used in 

confocal microscopy. 

Fluorophores Ex (nm) Em (nm) 

Alexa 488 (Green) 495 519 

Alexa 546 (Red) 556 573 

Diamidinophenylindole (DAPI) (Blue) 358 461 

	

	

	

2.12.2. Immunofluorescent staining  
 

 2.12.2.1. Intracellular localization of biotinylated PIP peptides 
 

Caco-2 cell monolayers, incubated at 37 °C, 5% CO2, were treated 

apically with different analogues of biotinylated PIP peptides dissolved in 

HBSS buffer; HBSS was used as a control. Upon completion of the incubation 

period, cell monolayers were washed thrice with HBSS to remove extracellular 

peptides prior to fixing with 4 % (w/v) paraformaldehyde (PFA) in PBS for 20 

min. Fixed cell monolayers were washed thrice with 500 µL of PBS, each for 2 

min on a plate rocker and then incubated with 50 mM NH4Cl in PBS for 20 min 
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as a quenching reagent to reduce background fluorescence resulting from 

residual aldehyde groups generated by PFA fixation. Fixed cell monolayers 

were then permeabilized with 0.1 % (v/v) of Triton X-100 in PBS for 20 min 

and then washed thrice with PBS prior to blocking with 10 % of FBS (v/v) in 

PBS for 1 h with gentle rocking.  

 

Fixed, permeabilized cell monolayers were then treated with a primary 

antibody recognizing occludin (Section 2.16, Table 2.6) followed by a species-

specific secondary antibody-conjugated to Alexa 546 to highlight TJ structures 

(Section 2.16 Table 2.7). Subsequently, cell monolayers were washed, as 

described above, and biotinylated peptides were detected with 1µL/mL of Alex 

488-conjugated streptavidin in PBS for 40 min. Nuclei were stained with 1 

µL/mL of DAPI in PBS for 20 min. Finally, stained cell monolayer membranes 

were cut off the Transwell® inserts and placed on glass slides with cells facing 

up. After a one drop application of Vectashield® mounting medium a glass 

coverslip was positioned to allow examination by confocal microscopy, as 

described in Section 2.12.1. 

  

 

2.12.2.2. Assessment of TJ protein distribution 
 

Caco-2 cell monolayers were treated with the PIP 640 peptide in HBSS, or 

HBSS only (control), for set times at 37 °C. Subsequently, cell monolayers 

were washed thrice with 500 µL of HBSS to remove unincorporated peptide, 

then washed once with the same volume of ice-cold MeOH prior to placing in 

pre-cooled MeOH at -20 °C for 1 h. Cell monolayers were re-hydrated by 

incubation in PBS for 15 min before being blocked with 10 % (v/v) FBS in PBS 

for 1 h. Monolayers were then incubated with primary antibodies against 

different TJ proteins (Section 2.16, Table 2.6). This was followed by 3 washes 

with PBS before incubation with the appropriate fluorophore-conjugated 

secondary antibodies against the primary antibody being used (Section 2.16 

Table 2.7). Cell monolayers were then washed thrice with PBS and mounted, 

as described in Section 2.12.2.1. 
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2.13. In vivo studies 
 

All in vivo experiments were performed using male adult (7-8 weeks old) 

Wistar rats with an average weight ~250 g. All experiments were conducted 

using non-recovery protocol. Rats were anesthetized using inhaled isoflurane 

for all experiments and euthanized by inhaled CO2. 

 
 
 

2.13.1. Insulin subcutaneous administration or co-administration with 
PIP 640 peptide by intraluminal injection (ILI) and tissue collection 
protocols  

 
Rats were anesthetized with 5% inhaled isoflurane in combination with O2 

(induction rate) using a rodent anaesthesia system equipped with isoflurane 

vaporizer. A 4–5 cm midline abdominal incision was made to access the small 

intestine (mid-jejunum to proximal ileum regions). After performing the incision, 

isoflurane concentration was lowered to 2% (maintenance rate). A stock 

solution of human insulin (30 IU/kg) and (20 mM) PIP 640 peptide was 

prepared in PBS containing 10 mM citric acid. Using a 1 mL syringe connected 

to a 27-gauge needle, 50 µL of a prepared stock solution was injected into the 

rat intestinal lumen. Changes in blood glucose levels over time were 

measured using a glucometer (AccuChek,UK) in blood samples collected from 

the tail vein. Negative control treatment was performed by injecting insulin in 

PBS containing citric acid into the rat intestine. After the desired exposure 

times, rats were euthanized by CO2 asphyxiation. At that time, a ~ 1 cm 

section of rat intestine at the injection site was collected for biochemical 

studies. A subcutaneous (SC) insulin injection (3 IU/kg) as a positive control 

was performed in the mid-scapular region followed by assessment of blood 

glucose levels as described above. 
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2.13.2. Tissue preparation for immunoblotting  
	 

Collected rat tissues, as described in Section 2.13.1, were washed with 

ice-cold PBS and then maintained in ice-cold PBS for 10 min. Intestinal 

segments were then sliced into smaller pieces and placed into 5 mL 

Eppendorf tubes containing 2 mL of RIPA lysis buffer containing a cocktail of 

protease and phosphatase inhibitors (25 µL/mL, each) followed by a 10 min 

incubation on ice. Lysates were clarified by centrifugation at 10,000 x g at 4 

°C. Supernatants were aliquoted and stored at – 80 °C prior to their analysis in 

immunoblotting studies, as described in Section 2.11.3. 

 

 
 

2.13.3. Rat intestinal tissue processing for immunofluorescence 
staining  

 
Rat intestine sections were collected and washed with ice-cold PBS as 

described (Section 2.13.1). Tissues were then fixed overnight at 4 °C in ice-

cold PBS containing 4 % (w/v) PFA. On the next day, fixed intestinal sections 

were opened longitudinally, placed in marked tissue cassettes, and 

dehydrated using an automated Leica TP 1020 tissue processor (Leica 

Biosystems, UK) that used sequential immersions into 70 %, 80 %, 90 % and 

100 % (v/v) EtOH/water solutions for 2 h each. Dehydrated tissues were 

embedded in paraffin using a Leica EG 1160 tissue embedding device (Leica 

Biosystems, UK) and allowed to set at 4 °C overnight. Paraffin-embedded 

tissues were sectioned using a Leica RM 2155 microtome (Leica Biosynthesis, 

UK) to obtain 5 µm slices that were placed onto glass slides.   

 

 

The procedure of immunofluorescent staining of sectioned intestinal tissue 

on glass slides was initiated by rehydration that involved immersing slides first 

in Histo-clear™ solution for 10 min followed by 100%, 90 %, 80 %, and 70 % 

(v/v) EtOH/water solutions for 5 min each. Slides were then washed with PBS 
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thrice for 5 min before being subjected to an to antigen retrieval step that was 

performed by placing slides into a beaker containing boiling 10 mM sodium 

citrate buffer (pH=6) for 10 min. Subsequently, tissue slices were washed 

thrice with PBS for 5 min, permeabilized with 0.2 % (v/v) Triton X-100 in PBS 

for 30 min and blocked with 2% (w/v) BSA in PBS for 1 h. Tissues were then 

incubated with primary antibodies diluted in PBS containing 1% (w/v) BSA 

overnight at 4 °C (Section 2.16; Table 2.6). On the next day, slides were 

washed thrice with PBS then incubated with the required dilution of species-

specific secondary antibody in PBS (Section 2.16 Table 2.7) for 2 h at room 

temperature. Slides were then washed thrice with PBS and once with Milli-Q 

water for 5 min each. Finally, slides were dehydrated by sequential immersion 

into 70 %, 80 %, 90 % and 100 % (v/v) EtOH/water solutions for 5 min each 

followed by immersion into Histo-clear™ solution for 10 min prior to cover slip-

mounting the tissue with Vectashield® medium, as described in Section 

2.12.2.1. Slides were then imaged by confocal microscopy (Section 2.12.1). 

 

 

 

2.13.4. Assessment of enhanced calcitonin and exenatide 
permeability in rats in vivo  

 
Rats were anesthetized and their abdominal cavity accessed via surgical 

incision as described in Section 2.13.1, to allow ILI and blood sample 

collection from the portal vein. ILI (50 µL) injections were performed for 

solutions containing either calcitonin or exenatide (0.5 mg), 20 mM PIP 640 

and 1.5/mL soybean trypsin inhibitor (SBTI). Control injections were performed 

with either calcitonin or exenatide and SBTI, but no PIP 640 peptide. Blood 

samples (100 µL) were collected at set time points from the portal vein and 

placed into Eppendorf tubes containing 50 mM of EDTA and 0.6 IU/mL 

aprotinin to prevent blood coagulation and protein degradation, respectively. 

Blood samples were then centrifuged at 1,600 x g for 15 min at 4 °C and the 

isolated plasma was stored at -80 °C until use. Calcitonin and exenatide 
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content in plasma samples were measured by enzyme linked immunosorbent 

assay (ELISA) using commercially available kits.	

 
 
 

2.13.5. Assessment of blood endotoxin levels in vivo 
 

Plasma samples that were used to evaluate therapeutic peptide 

permeability enhancement (Section 2.13.4), were also examined for 

determining if PIP 640 also enhanced the trans-epithelial uptake of luminal 

endotoxin. This was performed using a commercial, semi-quantitative assay 

kit: E-Toxate™ Limulus amebocyte lysate (LAL). This kit uses as readout the 

formation of a gel-like clot with the reagent when reacted with endotoxin (140). 

Analysis using the LAL kit was performed on 50 µL of a plasma sample and 

endotoxin standards in separate sterile 10 x 75 mm glass test tubes. This was 

followed by adding 150 µL of LAL reagent into each tube and incubation for 1 

h at 37 °C in a water bath. Afterwards, tubes were inverted 180° to evaluate 

gel formation; generation of a hard gel, which was not disrupted by tube 

inversion, was considered a positive test. 
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2.13.6. Hydrodynamic radius calculation 
 

Hydrodynamic radius was approximated using the relationship established 

between the molecular weight (MW) and the hydrodynamic radius (RH) of a 

protein that assumes the protein have the simple shape of a sphere. (141):   

 

RH= ! !"
! !"!

!
! 

 

Where   RH in (cm) 

MW in (g/mol)  

ρ is the average density of a hydrated 

protein (0.99 g/cm3)(141) 

N is Avogadro’s number (6.02x1023 mol-1) 

 

 

 

 

2.14. Cell viability assay in vitro    
 

The extent of viable cells with active mitochondrial metabolism can be 

correlated with the amount of 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium (MTS) that can be 

converted to formazan (142). This conversion is presumably accomplished by 

NADPH- or NADH-dependent oxidoreductase and dehydrogenase enzymes in 

metabolically active cells (142). The colour intensity of formazan formed by this 

reaction can be measured at 490 nm. 
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Caco-2 cells were seeded in 96-well plates at a density of 2 x 104 in 100 

µL DMEM cell medium supplemented with 10% FBS and 1% P/S and 

incubated overnight at 37 °C under 5% CO2. On the next day, cells were 

treated with different PIP peptides dissolved in 100 µL of cell medium, as 

described above, for 12 h. Control cells were incubated with 100 µL of cell 

media that did not contain a PIP peptide. Upon completion of this 12 h 

incubation period, cells were treated with 20 µL of MTS reagent (at the 

concentration provided by the supplier) and incubated at 37 °C and 5% CO2 

for 3 h. Finally, absorbance was recorded at 490 nm using the plate reader 

described in Section 2.5.4.     

 

 

2.15. Statistical analysis  
 

All data are represented as values ± SEM of three independent 

experiments, unless otherwise specified. A two-tailed unpaired t test was used 

for comparison between two groups.  Potential differences between treatment 

groups were examined using one-way ANOVA; Tukey’s multiple comparison 

was used to test for experiments involving three or more treatments. All 

statistical analysis was performed using GraphPad Prism® software version 7.    
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2.16. Reagents and materials 
 
Table 2.4: Chemical reagents for peptide synthesis 

Reagent Catalogue number Supplier 

Biotin-ONp 851027 Novabiochem, UK 

biotin-PEG Nova TagTM 

resin 

855055 Novabiochem, UK 

DIC D125407 Sigma-Aldrich, UK 

DIEA D125806 Sigma-Aldrich, UK 

DMF RG2014 Rathburn chemicals, UK  

Fmoc-D-Ala-OH 852142 Novabiochem, UK 

Fmoc-D-Arg(Pbf)-OH 852165 Novabiochem, UK 

Fmoc-D-Asp(OtBu)-OH 852154 Novabiochem, UK 

Fmoc-D-Glu(OtBu)-OH 852155 Novabiochem, UK 

Fmoc-D-Lys(Boc)-OH 852146 Novabiochem, UK 

Fmoc-D-Tyr(tBu)-OH 852151 Novabiochem, UK 

Fmoc-D-Val-OH 852152 Novabiochem, UK 

HOBt 157260 Sigma-Aldrich, UK 

piperidine 411027 Sigma-Aldrich, UK 

PyBOP 851009 Novabiochem, UK 

Rink amide MBHA resin 855003 Novabiochem, UK 

TFA T62200 Sigma-Aldrich, UK 

TIPS 841359 Sigma-Aldrich, UK 

 

 

Table 2.5: Reagents and materials for cell biology studies 

Reagent Catalogue 

number 

Supplier 

Acrylamide/bis-acrylamide (29:1), 

40% solution 

A7802 Sigma-Aldrich, UK 

Aprotinin 10820 Sigma-Aldrich, UK 

APS 10744171 Fisher Scientific, UK 

Bolt™ empty mini gel cassette 

combs, 10-well 

NW3010 Invitrogen, UK 
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BSA A7906 Sigma-Aldrich, UK 

Calcitonin (Salmon) - ELISA Kit EK-014-09 Phoenix Pharmaceuticals, 

US 

Calcitonin, salmon 05-23-2401 Novabiochem, UK 

Cell culture flask, 75 cm2 156499 Fisher Scientific, UK 

Citric acid C1909 Sigma-Aldrich, UK 

DAPI D3571 Invitrogen, UK 

DMEM medium 41965039 Fisher Scientific, UK 

DMSO D8418 Sigma-Aldrich, UK 

EDTA BP118 Fisher Scientific, UK 

Empty mini 1.0 mm gel cassettes NC2010 Invitrogen, UK 

Ethanol 32221 Sigma-Aldrich, UK 

E-Toxate™ kit E8779 Sigma-Aldrich, UK 

Exenatide (Exendin-4) 1933 Tocris Bioscience, UK 

Exenatide (Exendin-4) ELISA Kit MBS031942 2B Scientific Ltd, UK 

FBS 10500064 Fisher Scientific, UK 

FITC-CM-dextran, 4 kDa 68059 Sigma-Aldrich, UK 

FITC-DEAE-dextran, 4 kDa 53557 Sigma-Aldrich, UK 

FITC–dextran, 10 kDa FD10S Sigma-Aldrich, UK 

FITC–dextran, 4 kDa FD4 Sigma-Aldrich, UK 

Gibco™ IFN-γ 10474733 Fisher Scientific, UK 

Gibco™ TNFα 10699920 Fisher Scientific, UK 

Glass square coverslip 12363138 Fisher Scientific, UK 

Glycerol BP229 Fisher Scientific, UK 

Glycine 10061073 Fisher Scientific, UK 

HBSS buffer 12352207 Fisher Scientific, UK 

Histo-clear™ 12358637 Fisher Scientific, UK 

Immobilon®-FL PVDF transfer 

membrane, 0.45 µm, 

IPFL00010 Novabiochem, UK 

Insulin, recombinant human 91077C Sigma-Aldrich, UK 

Methanol 34860 Sigma-Aldrich, UK 

Minisart® syringe filter, 0.2µm 16532 Sartorius, UK 

MTS reagent, CellTiter 96® one 

solution cell proliferation assay 

G358A Promega, UK 
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Nalgene™ cryogenic tubes 11375644 Fisher Scientific, UK 

Native sample gel buffer 1610738 BIO-RAD, UK 

NH4Cl 09718 Sigma-Aldrich, UK 

NP-40 detergent 85124 Invitrogen, UK 

Nunc™ 96-well microplates 10212811 Fisher Scientific, UK 

4X NuPAGE™ LDS sample buffer NP0007 Invitrogen, UK 

10 X NuPAGE™ sample reducing 

agent material 

NP0009 Invitrogen, UK 

P/S antibiotics P0781 Sigma-Aldrich, UK 

Paraffin wax SA4523 Science Services, 

Germany 

PBS tablets BR0014G Fisher Scientific, UK 

PFA P6148 Sigma-Aldrich, UK 

Phosphatase inhibitor cocktail IV 12851650 Fisher Scientific, UK 

Pierce™ detergent compatible 

Bradford assay kit 

23246 Invitrogen, UK 

Polysine adhesion slides 10219280 Fisher Scientific, UK 

Protease inhibitor cocktail III 12841640 Fisher Scientific, UK 

Protein A/G plus agarose beads sc-2003 Santa Cruz Biotech, UK 

RIPA buffer R0278 Sigma-Aldrich, UK 

SBTI T9128 Sigma-Aldrich, UK 

SDS 10090490 Fisher Scientific, UK 

Sodium chloride S9625 Sigma-Aldrich, UK 

Sodium citrate dihydrate W302600 Sigma-Aldrich, UK 

Streptavidin Sepharose™ 

magnetic bead 

11791456 Fisher Scientific, UK 

Streptavidin, Alexa Fluor™ 488 

conjugate 

S11223 Invitrogen, UK 

TEMED 10549960 Fisher Scientific, UK 

Tissue cassette 12026839 Fisher Scientific, UK 

Tissue cassette lid 12096829 Fisher Scientific, UK 

Transwell® polyester membrane, 

0.4 µm, cell culture inserts 

3460 Sigma-Aldrich, UK 

TRITC-dextran, 4 kDa T1037 Sigma-Aldrich, UK 

TRITC-dextran, 70 kDa T1162 Sigma-Aldrich, UK 
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Triton™ X-100 X100 Sigma-Aldrich, UK 

Trizma® (Tris) base T6066 Sigma-Aldrich, UK 

Trypsin 10x SV30037.01 Fisher Scientific, UK 

Tween®-20 P1379 Sigma-Aldrich, UK 

Vectashield® mounting medium H-1000 Vector Laboratories, UK 

 

 

 

Table 2.6: List of primary antibodies used for western blotting (WB), 

immunofluorescence (IF), and Immunoprecipitation (IP) studies   

Protein target 

of primary 

antibody 

Host species Application  

concentration 

Catalogue 

number 

Supplier 

Actin Goat 

(polyclonal) 

WB: 1 µg/mL 

 

Sc-1615 Santa Cruz 

Biotech, UK 

Claudin-1 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 1 µg/mL 

Ab15098 Abcam, UK 

Claudin-15 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

 

Sc-25712 Santa Cruz 

Biotech, UK 

Claudin-2 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 5 µg/mL 

Ab125293 Abcam, UK 

Claudin-2 Rabbit 

(polyclonal) 

IP: 2 µg/mL 

 

Sc-133464 Santa Cruz 

Biotech, UK 

Claudin-3 Rabbit 

(polyclonal) 

WB: 1 µg/mL Ab15102 Abcam, UK 

Claudin-4 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 1 µg/mL 

Ab15104 Abcam, UK 

Claudin-5 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

 

Sc-28670 Santa Cruz 

Biotech, UK 

Claudin-7 Rabbit 

(polyclonal) 

WB: 5 µg/mL 

IF: 5 µg/mL 

Ab27487 Abcam, UK 

Claudin-8 Rabbit 

(polyclonal) 

WB: 2 µg/mL 

 

Ab110050 Abcam, UK 
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MARVELD3 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 2 µg/mL 

Sc-102018 Santa Cruz 

Biotech, UK 

MYPT1 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

 

Sc-25618 Santa Cruz 

Biotech, UK 

Occludin Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 5 µg/mL 

Ab31721 Abcam, UK 

Occludin Mouse 

(monoclonal) 

IF: 2 µg/mL Sc-133255 Santa Cruz 

Biotech, UK 

Phospho-MLC 

(Ser19) 

Rabbit 

(polyclonal) 

WB: 1 µg/mL 3671 Cell Signalling 

Technologies, 

UK 

PP1β Mouse 

(monoclonal) 

WB: 1 µg/mL 

 

sc-365678 Santa Cruz 

Biotech, UK 

Total MLC Rabbit 

(polyclonal) 

WB: 1 µg/mL Ab79935 Abcam, UK 

Tricellulin Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 2 µg/mL 

48-8400 Invitrogen, UK 

ZO-1 Rabbit 

(polyclonal) 

WB: 1 µg/mL 

IF: 2 µg/mL 

40-2200 Invitrogen, UK 

	

	

Table 2.7: List of primary antibodies used for western blot (WB), immunofluorescence 

(IF) studies 

Secondary 

antibody 

Host 

species 

Application  

concentration 

Catalogue 

number 

Supplier 

Alexa Fluor® 

488-conjugated 

anti-rabbit IgG 

Goat 

(polyclonal) 

IF: 4 µg/mL A-11008 Invitrogen, UK 

Alexa Fluor® 

546-conjugated 

anti-mouse IgG 

Donkey 

(polyclonal) 

IF: 4 µg/mL A-10036 Invitrogen, UK 

IRDye® 

800CW anti-

goat  IgG 

Donkey 

(polyclonal) 

WB: 1 µg/mL 926-32214 

 

LI-COR, UK 
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IRDye® 680CW 

anti-rabbit  IgG 

Donkey 

(polyclonal) 

WB: 1 µg/mL 926-68073 LI-COR, UK 

IRDye® 680CW 

anti-mouse  IgG 

Donkey 

(polyclonal) 

WB: 1 µg/mL 

 

926-68072 LI-COR, UK 
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3.1. Background 
 

Peptide therapeutics have become an increasingly popular type of 

medication because of their efficient target selectivity and potency (143). 

Therefore, the development of peptide-based medications has increased in 

the global drug market over the last decade (143, 144). Currently, most of the 

available peptide therapeutics are only administered parentally by injection 
(143). This route of administration usually requires frequent and high dosing with 

expensive materials and is considered inconvenient for patients (145). Hence, 

enabling other routes of administrating therapeutic peptides, such as oral, 

pulmonary and intranasal, would provide more options to improve the 

medication’s targeting efficiency and patient acceptability. The pharmaceutical 

industry considers the oral route of administration the desired method for 

peptide therapeutics (116, 145). This is probably because of the remarkable 

acceptance and preference for oral dosage forms. Methods to improve 

outcomes of such oral dosage forms have benefited from enteric coatings that 

would provide protection of therapeutic peptides during transit through the 

harsh environment of the stomach to allow biologically active materials to 

reach the intestinal lumen where they might be absorbed (13, 116). However, 

such oral dosage form-related strategies do not address the ultimate barrier to 

oral delivery of a peptide therapeutic: restriction of these materials to cross the 

single layer of epithelial cells that line the intestinal lumen (146).  

 

 

Most previous efforts to overcome this epithelial barrier were focused on 

developing or modifying the functional properties of the intestinal epithelium. 

For example, agents known to enhance drug permeability, such as sodium 

caprate that function by altering the intestinal epithelial cell-cell contacts, have 

been co-administered with peptide drugs. The main challenge with this 

approach is that, in such cases, there is a great deal of uncertainty as to the 

mechanism of action (MoA) for such permeation enhancing agents (5). 

Moreover, the application of some technologies, for example, nanoparticles, 

have shown benefit for protecting peptide therapeutics from gastric and 
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intestinal degradation and improving the ability to cross the intestinal epithelial 

cells (116). However, the safety of this delivery technology is still controversial 

and appears to again lack a clear MoA (116). Therefore, it seems essential to 

focus on approaches to improve the absorption of peptide therapeutics that 

might be facilitated by known MoA for alteration of epithelial barrier properties. 

By taking such an approach where a specific MoA is used, a clear strategy or 

safety assessment can be planned to optimize a rapid and logical strategy to 

clinical studies.   

 

 

Under certain physiological and pathological conditions, TJ structure and 

thus barrier properties can be modulated to increase paracellular permeability 
(147). This is primarily mediated by the reversible phosphorylation of myosin 

light chain (MLC) protein at the serine 19 of the protein (MLC-pS19); a 

phosphorylation state controlled by the interplay of a specific kinase (MLCK) 

and a specific phosphatase (MLCP) (147, 148). MLCK enzyme contains a 

pseudosubstrate region that acts as an auto-inhibitory domain, with activation 

of kinase in epithelial cells being induced by the action of the Ca2+ binding 

protein calmodulin (CaM) (149). Increased cytosolic Ca2+ levels lead to the 

formation of Ca2+/CaM complexes, which in turn bind to MLCK and interrupt 

the auto-inhibition caused by its pseudosubstrate domain. As a result, 

Ca2+/CaM binding causes MLCK activation, allows it to selectively induce 

MLC-pS19 and trigger contraction of TJ-associated actomyosin filaments and 

enhance TJ permeability (147, 149). This process is reversed by MLCP, a trimeric 

protein complex composed of protein phosphatase 1-δ (PP1-δ), a myosin -

targeting subunit-1 (MYPT-1) and a 20 kDa accessory subunit (91, 150). 

Dephosphorylation of MLC-pS19 by MLCP is strictly dependent on the binding 

of PP1-δ to the MYPT1 subunit, because PP1 is a ubiquitous enzyme that has 

various functions determined by its binding to different regulatory proteins (151-

153). In addition to MLCP components, a protein kinase-C (PKC) dependent 

protein inhibitor called C-kinase potentiated protein phosphatase-1 inhibitor- 

17 kDa (CPI-17) has been identified as a specific inhibitor of MLCP (148, 154).  
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Previous data have shown that reducing the level of MLC-pS19 with a 

membrane-permeant peptide, called PIK peptide that was designed to mimic 

the inhibitory domain of MLCK, repaired TJ barrier dysfunction associated with 

some intestinal inflammatory diseases by closing TJs opened by the action of 

pro-inflammatory cytokines (53, 103, 129). By adopting a similar principle to PIK 

peptide design, membrane permeant peptide inhibitors of MLCP (PIP) were 

designed to selectively inhibit MLCP to transiently increase MLC-pS19 levels to 

enhance paracellular permeability so that the transient permeability of 

therapeutic peptide could be briefly increased across intestinal epithelial cells 
(127). This was done by synthesizing small peptides targeting interfacial 

surfaces where PP1 interacts with the MLCP regulatory subunits MYPT-1 or 

CPI-17 (91, 155, 156).  

 

 

Two candidates for PIP peptides were identified; PIP 250 (rrfkvktkkrk-NH2) 

and PIP 640 (rrdykvevrrkkr-NH2), which were designed to emulate binding 

events between PP1 to MYPT1 and interactions between CPI-17 and the 

MLCP holoenzyme, respectively (127). Both PIP peptides were able to increase 

4 kDa dextran flux across Caco-2 monolayers in vitro and also enhance insulin 

permeability into blood circulation in vivo (with bioavailability of 3-4%), as 

detected in a rat portal vein after direct intestinal loop injection (127). The PIP 

640 peptide induced a more dynamic response (rapid onset and fast recovery 

of TJ permeability) on Caco-2 cell monolayers in vitro compared to the PIP 

250 peptide (127). These results of PIP peptide-mediated enhancement of 

solute permeability were consistent with the time course observed for 

increased MLC-pS19 levels (127).  

 

 

Manipulation of MLC-pS19 levels is a mechanism used in intestinal 

epithelial cells to transiently enhance TJ permeability. Work performed in this 

chapter was focused on increasing our understanding of MoA of the PIP 640 
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peptide with regard to this endogenous pathway. Moreover, the work in this 

chapter aimed to characterize the functional properties of the PIP 640 peptide 

and examine the impact of amino acid changes to the peptide on its action in 

vitro. Finally, toxicity associated with the PIP 640 peptide was examined in 

vitro to estimate the safe application of PIP peptides as a permeability 

enhancer for poorly absorbed peptide drugs.  
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3.2. Results 
 

3.2.1. Rationale for PIP 640 peptide design 
 

Abundant data support the role of PKC-mediated phosphorylation of a 

threonine residue at amino acid position 38 (pT38) of CPI-17 in converting this 

protein into a potent inhibitor selective for MLCP (90, 148). Both in-silico 

simulation and in-vitro binding assessments indicate that pT38-CPI-17 binds to 

both MLCP elements PP1:MYPT1 (156, 157). This binding of pT38-CPI-17 to 

MLCP, which is responsible for the inhibitory function of CPI-17, is mediated 

by the sequence R36V(pT)VKYDRR44 of CPI-17 (148, 155). Therefore, a peptide 

mimicking this CPI-17 sequence was designed to inhibit MLCP and, in turn, 

increase MLC-pS19 levels to enhance TJ permeability, since MLCP inhibition 

by CPI-17 enhances MLC-pS19 (92). Because the ultimate application of this 

peptide will involve delivery to the intestinal lumen, some strategies to limit its 

rapid digestion are required to provide a reasonable chance of it working in an 

in vivo setting. This was achieved by using the D-retro inverso strategy (158). 

The carboxylic acid at the peptide C-terminus was replaced with a primary 

amide for two reasons: to stabilize the peptide against carboxypeptidase (129), 

and to mask the negative charge on the C-terminus carboxylic acid for better 

permeability enhancement. Moreover, an additional basic amino acid, arginine 

(R), was added at the N-terminus of the PIP 640 peptide to enhance its 

potential cell-penetrating peptide (CPP)-like properties (159). The pT38 was 

substituted with glutamic acid (E) as a stable phosphomimetic analogue of 

pT38 (148). Accordingly, a lead candidate, PIP 640 peptide = H2N-rrdykvevrr-NH2, 

was identified (a summary of modifications on the PIP 640 peptide design are 

in Table 3.1).  
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Table 3.1:  A summary of the cumulative modifications on the emulated pT38-CPI-17 

sequence, R36V(pT)VKYDRR44, are highlighted in red. Lower case letters indicate the 

use of D-amino acids. (v = D-valine: k = D-lysine: y = D-tyrosine: d = D-aspartic acid). 

 
Modification 

 
Sequence 

 
Original emulated sequence 

 
NH2-RVpTVKYDRR-OH 

 
 

Introducing stable 
phosphomimetic analogues 

 
NH2-RVEVKYDRR-OH 

 
 

Integrating basic amino acids 
 

NH2-RRVEVKYDRR-OH 
 

 
D-retro inverso strategy 

 
NH2-rrdykvevrr-OH 

 
 

C-terminus amidation 
 

NH2-rrdykvevrr-NH2 
 

 
Parent PIP 640 peptide 

 

 
NH2-rrdykvevrr-NH2 

 
	

	

	

3.2.2. Experimental design to explore the PIP 640 peptide MoA in vitro   
 

The PIP 640 peptide was designed to selectively emulate the protein-

protein interactions between CPI-17, and the MLCP protein complex, PP1-δ: 

MYPT-1, with the ultimate aim of inhibiting MLCP to transiently enhance TJ 

permeability. Because our previous work involved an in vivo investigation of 

PIP 640 peptide-induced permeability enhancement across rat intestinal 

epithelia, a longer version of PIP 640 peptide with three additional basic 

resides on the C-terminus, sequence: rrdykvevrrkkr-NH2, was used to ensure 

faster cell permeability because the peptide residence time in the intestinal 

lumen is variable (127). Therefore, in the current work several lines of effort 

were made to further refine our understanding of the MoA of the parent PIP 

640 peptide, sequence (Table 3.1).  
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First, an optimal PIP 640 peptide concentration for modulation of epithelial 

barrier function was determined using the human colorectal adenocarcinoma 

cell line, Caco-2, grown as confluent monolayers on a semi-permeable support 

in vitro. The PIP 640 peptide was applied to the apical surface, and the 

change in trans-epithelial electrical resistance (TEER) was monitored over 

time. As a measure of the change in solute permeability, the apical to basal 

movement of 4 kDa and 70 kDa fluorescent dextrans was also followed over 

the same 60 min time course. Caco-2 monolayer recovery from the actions of 

the PIP 640 peptide was determined by replacement of the apical media with 

fresh DMEM medium, then measurement of TEER values once again after an 

overnight incubation.  

 

These studies showed that exposure of Caco-2 monolayers to 10 mM of 

PIP 640 peptide caused a rapid, significant decrease in TEER values to 

approximately 20 % of their original value (Figure 3.1 A). This response was 

dose-dependent, with 5 mM peptide showing a lesser effect on Caco-2 

monolayer TEER values compared to 10 mM (Figure 3.1 A). With both 5 mM 

and 10 mM concentrations, PIP 640 peptide significantly enhanced the flux of 

both 4 and 70 kDa fluorescent dextrans, the extent of 70 kDa fluorescent 

dextran transport enhancement by 5 mM peptide being less that that observed 

for 10 mM treatment (Figure 3.1 B). PIP 640 peptide at a 1 mM apical 

concentration induced about a 30% reduction in TEER of Caco-2 monolayers 

upon 60 min exposure (Figure 3.1 A). This reduction in TEER was enough to 

increase the cumulative flux of only the 4 kDa dextran over 60 min (Figure 3.1 

B).  

 

Overnight recovery after 60 min of apical exposure to different 

concentrations of PIP 640 peptide showed a dose-dependent outcome with 

monolayers treated with 10 mM and 5 mM showing incomplete TEER 

recovery, whereas cell monolayers treated with 1 mM achieved almost 

complete TEER recovery (Figure 3.1 A). Since the basolateral levels of the 

PIP 640 peptide after 60 min were not measured, it is possible that a reservoir 
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Figure 3.1: Dose-dependent effect of PIP 640 peptide on Caco-2 cell monolayer trans-

epithelial electrical resistance (TEER) and permeability properties. A) PIP 640 peptide 

was applied apically at the concentration shown for 60 min, at which time the apical 

media was replaced with fresh DMEM media lacking PIP 640 peptide (arrow). TEER 

values were continued to be monitored over the next 12 h to assess functional recovery 

of the epithelium. B) Cumulative apical to basal flux rate of fluorescent dextran (4 and 70 

kDa) across Caco-2 cell monolayers measured over 60 min of apical exposure at 

different concentrations of PIP 640 peptide. For both experiments, values represent 

means ± SEM of 3 independent experiments; n= 9 for control and 10 mM PIP 640 

peptide; n= 6 for PIP 640 peptide at both 5 and 1 mM (*p value< 0.05, **p value< 0.01, 

***p value<0.001 and ****p value<0.0001).    

of PIP 640 peptide could have remained in the Caco-2 monolayers treated 

with 5 mM and 10 mM after apical media replacement that remained above 

the concentration to reduce TEER values after an overnight ‘washout’ that 

occurred by the same MoA as the initial actions occurring after apical addition. 

These results supported the use of 1 mM in future in vitro studies using Caco-

2 cell monolayers to assess the reversible function of PIP 640 peptide and 

supported the use of changes in the permeability of 4 kDa dextran to 

characterize its action.  
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3.2.3. Validation of PIP 640 peptide functional properties in vitro   
 

Studies examining the concentration-dependent effect of PIP 640 peptide 

suggested that 1 mM of this peptide was sufficient to induce reversible 

permeation-enhancing actions. The second question that was now asked 

involved variation of amino acids in the peptide to look for potential 

modifications to the peptide sequence that might optimize PIP 640 peptide 

function. To do this, different analogues of PIP 640 peptide were synthesised 

that replaced specific amino acids with the D-isomer of alanine (a). Sites for 

this amino acid exchange were selected to ask specific question regarding the 

cell penetration and CPI-17-mediated actions of the PIP 640 peptide (Table 

3.2). These PIP 640 peptide analogues were examined in vitro using Caco-2 

cell monolayers for their ability to increase MLC-pS19 levels, decrease TEER, 

and enhance the permeability of 4 and 70 kDa dextrans. Studies examined the 

actions of these PIP 640 peptide analogues after a 60 min exposure and 

functional recovery overnight after washout of the apical compartment.  

 

 

Table 3.2:	Summary of PIP 640 peptide analogue sequences and the aspect being 

tested. Modifications to the original PIP 640 peptide sequence are shown in red. 

Peptide 
analogues 

Sequence  Tested aspect Analytical 
characterization  

PIP 640 peptide 
(original) 

rrdykvevrr-NH2 -------- Appendices 
 (Section 7.1 A) 

PIP 641 peptide rrdykvavrr-NH2 Phosphomimetic  Appendices 
 (Section 7.1 B) 

PIP 642 peptide rrdakvevrr-NH2 Tyr role  Appendices 
 (Section 7.1 C) 

PIP 643 peptide rraykvevrr-NH2 Asp role Appendices 
 (Section 7.1 D) 

PIP 644 peptide rrrykvevrr-NH2 Increase in +ve charge Appendices 
 (Section 7.1 E) 
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The parent PIP 640 peptide was designed rationally based upon published 

structural information regarding binding of CPI-17 to MLCP, an interface that 

include a threonine at position 38 that must be phosphorylated (pT38) for 

optimal CPI-17 inhibitory function (154, 156, 157). To test the phosphomimetic role 

of D-glutamic acid (e) residue to replace (pT38) in the PIP 640 peptide, the e 

residue was replaced with a D-alanine (a), resulting in a peptide termed PIP 

641 (Table 3.2). An apical exposure to 1 mM of PIP 641 peptide for 60 min 

showed no significant effect on TEER or dextran flux (Figure 3.2 A and B). 

These findings validated the role of glutamic acid as a phosphomimetic 

analogue for pT, and was consistent with the essential role of this structural 

feature in the PIP 640 peptide.  

 

 

A previous study showed that certain amino acid residues surrounding the 

pT38, primarily a tyrosine three residues away, are essential for pT38-CPI-17 

targeting to MLCP because replacement of this residue with alanine in the 

CPI-17 protein eliminated its inhibitory effect (155). Hence, the PIP 642 peptide 

where the tyrosine residue (y) was replaced with alanine (a) was synthesized 

to study the impact of this change on PIP 640 peptide function (Table 3.2). 

Consistent with the previous study performed on the full-length CPI-17 (155), 

this substitution eliminated peptide-mediated effects on TEER and dextran flux 

(Figure 3.2 A and B). 

 

 

 Since the PIP 640 peptide must cross the plasma membrane to reach its 

intracellular target of MLCP for its desired actions on epithelium to occur, we 

wished to examine the potential role of specific positive charges in the peptide 

that had been included to increase its CPP-like character. Exchange of 

negatively-charged aspartic acid (d) in the PIP 640 peptide with alanine (a) 

resulted in the PIP 643 peptide (Table 3.2). Apical exposure of Caco-2 

monolayers to 1 mM of PIP 643 peptide showed a significant reduction of 

TEER value, but although this analogue appeared to be slightly less potent 
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compared to the PIP 640 peptide at the same concentration (Figure 3.2 A). 

The difference in TEER reduction was not statistically significant (Figure 3.2 

A). However, the effect of the PIP 643 peptide on the flux of 4 kDa dextran 

was only about 50 % of that induced by PIP 640 peptide (Figure 3.2 B). 

Despite the reduced flux rate observed with the PIP 643 peptide, these results 

indicated that PIP 640 peptide could function to some extent in the absence of 

the aspartic acid residue.  

 

 

After demonstrating that the aspartic acid residue of the PIP 640 peptide 

was not absolutely required for its actions on Caco-2 cell monolayers, the 

question of whether this residue in the peptide could be replaced with a 

positive charge was investigated. The goal here was to determine whether 

increasing the net positive charge of the PIP 640 peptide could improve its cell 

penetration properties and hence lower the concentration needed. The PIP 

644 peptide was therefore synthesized where the d residue of the PIP 640 

peptide was replaced with the D-isomer of arginine (r) (Table 3.2). Apical 

application of 1 mM PIP 644 peptide to Caco-2 monolayers showed a stronger 

effect on TEER reduction and a reduced overnight recovery compared to the 

PIP 640 peptide (Figure 3.2 A). PIP 644 peptide also produced an 

approximately 3-fold increase in 4 kDa flux rate compared to the PIP 640 

peptide, and a significant increase in the cumulative flux of 70 kDa dextran 

over 60 min, an action that was not observed with the rest of the PIP 640 

peptide analogues (Figure 3.2 B).  
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Figure 3.2:	Effect of selected amino acid replacement on PIP 640 peptide actions. A) 

Caco-2 cell monolayers TEER change induced by 1 mM of PIP 640 peptide were 

compared to that induced by a series of analogues. Apical media was replaced with 

fresh DMEM medium after 60 min to allow examination of TEER recovery (arrow). B) 

Cumulative apical to basal flux rate of fluorescent 4 and 70 kDa dextran across Caco-

2 cell monolayers after 60 min of apical exposure of the PIP 640 peptide and the 

analogues noted in (A). All peptides were tested in 3 independent experiments, with 

all analogues being tested in parallel with the PIP 640 peptide and control (untreated 

cells). Data are means ± SEM; n= 24 for control, n=18 for PIP 640 peptide; n= 8 for 

PIP 643 peptide; and n= 6 for PIP 641, PIP 642 and PIP 644 peptides. (*p value< 

0.05, **p value< 0.01, ***p value<0.001 and ****p value< 0.0001). n.s: not significant.  
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     The data on in vitro examination of different PIP 640 peptide analogues 

presented above probed the role of selected amino acids on the PIP 640 

peptide sequence with respect to its presumed function in emulating the 

actions of the CPI-17 protein. The action of this peptide is based upon its 

potential to mimic the properties of pT38-CPI-17. If this were true, the decrease 

in TEER and increase in solute permeability induced by the PIP 640 peptide 

should correlate with increased MLC-pS19 levels that would lead to TJ barrier 

relaxation by inhibiting MLCP (160, 161). To address this hypothesis, a time 

course immunoblotting analysis was conducted to monitor the change in MLC-

pS19 levels induced by PIP 640 peptide analogues on Caco-2 monolayers. 

Apical addition of 1 mM PIP 640 peptide showed that the MLC-pS19 level 

relative to total MLC increased within 15 min and remained at an increased 

level at 45 min (Figure 3.3 A and B). This observation correlated well with the 

previously described effect of PIP 640 peptide on Caco-2 monolayers TEER 

(Figure 3.2 A).  

 

 

      Neither the PIP 641 peptide nor the PIP 642 peptide, when tested at 1 mM 

concentration showed any significant effect on MLC-pS19 relative to total MLC 

(Figure 3.3 A and B), consistent with their lack of effect on TEER (Figure 3.2 

A). Although, TEER changes observed for Caco-2 monolayers treated apically 

with 1 mM of either PIP 640 peptide or PIP 643 peptides were statistically 

similar (Figure 3.2 A), there was a slower onset of action in changing MLC-

pS19 relative to total MLC for the PIP 643 peptide compared to the PIP 640 

peptide (Figure 3.3 A and B). This delay in the change of the MLC-pS19 levels 

might explain the reduced dextran flux rate obtained with the PIP 643 peptide 

(Figure 3.2 B). Interestingly, both the PIP 644 and PIP 640 peptides showed a 

similar onset and intensity of the increase in MLC-pS19 compared to total MLC 

(Figure 3.3 A and B). Assuming that the actions of both peptides are 

comparable for mimicking CPI-17 function and there is a maximal response in 

this Caco-2 monolayers system for inducing MLC-pS19 relative to total MLC, 

this finding with the PIP 644 peptide could be explained by improved CPP-like 
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properties that allows more peptide to enter the cells more rapidly and to be 

retained in the cell longer compared to the PIP 640 peptide. Thus, its effective 

activity may look more like 10 mM PIP 640 peptide. Alternately, the activity of 

the PIP 644 peptide could reflect effects on other cellular pathways that are 

additional to its presumed inhibitory action on MLCP.   

 

 

 

 

 

 

 

 
 

 
 

 

Figure 3.3: Effect of the PIP 640 peptide and selected peptide analogues on MLC-

pS19 levels in Caco-2 monolayers 15 and 45 min after 1 mM apical addition. A) 

Immunoblot assessment of MLC-pS19 compared to total MLC levels. B) 

Quantitative analysis of MLC-pS19 and MLC levels for immunoblots shown in A). 

Data represent means ± SEM of independent experiments; PIP 640 peptide (n=4); 

all PIP 640 peptide analogues (n= 3). (*p value< 0.05, **p value< 0.01). 
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3.2.4. Intracellular fate of PIP 640 peptide analogues 
 

PIP 640 peptide analogues induced reduction of Caco-2 monolayer TEER 

values and enhanced paracellular flux of dextran in a manner that correlated 

with increased MLC-pS19 levels. These actions are presumed to occur by 

inhibiting MLCP that, in turn, alters the function of the actomyosin 

microfilaments surrounding TJs. A critical aspect in the design of the PIP 640 

peptide was to integrate CPP-like elements that would allow it to pass across a 

cell membrane barrier to reach the cytoplasm and interact with MLCP involved 

in regulating TJ function. The data described above, showing enhanced levels 

of MLC-pS19 is consistent with this hypothesis. In order to explore this issue 

further, the PIP 640 peptide and the selected PIP peptide analogues 641, 642, 

643, and 644 were synthesized with a N-terminal biotin residue to allow 

microscopic investigation of these peptides’ ability to cross the cell membrane 

and distribute within the cell at perijunctional actomyosin microfilaments where 

the phosphorylation of MLC at this location is known to regulate TJ 

permeability (103). Localization of biotin-labelled peptides (analytical 

characterization in Appendices Section 7.1 F-J) was assessed by 

immunofluorescence microscopy using fluorophore-labelled streptavidin. 

Cellular distribution of these N-terminally biotinylated peptides was coordinated 

with immunofluorescent labelling of TJ protein occludin.  

 

 

Cell penetration and intracellular distribution of the biotinylated PIP 

peptides was examined 45 min after the apical addition to Caco-2 monolayers 

after repeated washing to remove surface-associated peptide, fixation and 

membrane permeabilization (Figure 3.4 and Figure 3.5).  The 45 min time 

point was a time for which  all functional PIP peptides (PIP 640, PIP 643 and 

PIP 644) showed significant alteration of the amount of MLC-pS19 relative to 

MLC (Figure 3.3 A and B). Biotinylated PIP 640 peptide was located 

intracellularly and often in close proximity to membrane demonstrated by 

occludin labelling (Figure 3. 4). This observation is consistent with the 

hypothesis that the PIP 640 peptide acts on MLCP present at TJ structures to 
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increase levels of MLC-pS19 that then act to modify TJ permeability properties 

(Figure 3.3 A and B). Similar to biotinylated PIP 640 peptide, both biotinylated 

PIP 641 and PIP 642 peptides were detected intracellularly, suggesting that 

the integrated positive residues were sufficient to impart CPP-like activity for 

these peptides (Figure 3.4). However, both peptides showed random 

distribution within the cytoplasm rather than localization to the plasma 

membrane, supporting the premise that the glutamic acid (to emulate a pT 

residue) and adjacent tyrosine residue are both important for PIP 640 peptide 

targeting to plasma membrane. It should be noted that in a few cells, the 

biotinylated PIP 642 peptide aligned along the plasma membrane without co-

localization with TJ structures as identified by occludin immunofluorescence.  

 

 

Biotinylated PIP 643 peptide showed some similarity in cellular distribution 

to the PIP 640 peptide, but there seemed to be qualitatively less of this peptide 

associated with the perijunctional areas compared to biotinylated PIP 640 

peptide (Figure 3.4). This observation correlated nicely with the slower onset of 

increased MLC-pS19 levels observed with PIP 643 peptide after 15 min of 

exposure (Figure 3.3 A and B). Moreover, the observed distribution of 

biotinylated PIP 643 peptide indicated that replacing the aspartic acid residue 

with an alanine might have reduced the ability of the biotinylated peptide to 

efficiently engage with MLCP localized to TJ structures. Importantly, removal of 

the negative charge associated with this amino acid did not dramatically alter 

its ability to access the cytoplasm but did reduce its ability to target and/or be 

retained at TJ structures relative to the biotinylated PIP 640 peptide.  

 

 

Enhancing the net positive charge of the PIP 640 peptide was achieved by 

substituting the aspartic acid with an arginine in the biotinylated PIP 644 

peptide. This peptide showed an intracellular distribution that was distinct from 

all of the other biotinylated peptide examined: there was an alignment to the 

plasma membrane, but there was little if any co-localization with occludin that 
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defined TJ structures (Figure 3.4). Also, the biotinylated PIP 644 peptide was 

observed to localize at a distinct distance from the plasma membrane as 

occasionally observed for the biotinylated PIP 642 peptide. Uniquely, the 

biotinylated PIP 644 peptide was organized in what appeared to be aggregate 

clusters that were not observed for any of the other biotinylated peptides. This 

altered intracellular distribution may provide insights into the stronger action of 

the PIP 644 peptide on TEER reduction and enhanced 70 kDa dextran flux 

compared to the PIP 640 peptide (Figure 2 A and B). The results could 

suggest a more intense action on MLCP that results in disorganization of 

structures typically present at TJs, or that the PIP 644 peptide may engage 

some cellular structure that organizes at a discrete distance from the plasma 

membrane.  
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Figure 3.4: Confocal microscopy images of Caco-2 monolayers showing the intracellular 

distribution of N-terminally biotinylated PIP 640 peptide and analogues 45 min after apical 

exposure. The first column from the left represents the distribution of of the PIP 640 peptide 

analogues, as detected by Alexa 488-conjugated streptavidin (green). The second column 

shows cell distribution of the TJ-associated protein occludin stained with Alexa 546-

conjugated secondary antibody against a primary antibody (red). The third column 

represents merged images showing co-localization of the PIP 640 peptide and analogues 

with occludin. The last column to the right shows magnified images of the areas highlighted 

by the white boxes. The arrows show PIP peptide co-localization profile with TJs. Scale bar, 

10 µm. Images are representative of 3 independent experments, with n= 3 for all peptides. 
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Figure 3.5: Z-stack scan images of Caco-2 monolayers obtained by confocal 

micorscopy, showing surface and subcellular localization of N-terminally biotinylated 

PIP 640 peptide analogues after 45 min of apical exposure. PIP 640 peptide or an 

analogue was detected using by Alexa 488-conjugated streptavidin (green). TJs were 

stained with Alexa 546-conjugated secondary antibody against occludin primary 

antibody (red). Nuclei were stained with DAPI (blue). Scale bar, 20 µm. Images are 

representative of 3 independent experments with n=3 for all peptides. 

A Z-stack analysis (XZ-plane) of Caco-2 cell monolayers treated with 

biotinylated PIP 640 peptide and its analogues confirmed their intracellular 

localization suggested in the xy-plane images (Figure 3.5).  
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A C-terminally biotinylated version of PIP 640 peptide was also prepared 

that contained a polyethylene glycol (PEG) spacer between the peptide and 

the biotin unit: PIP 640 peptide-PEG-biotin (analytical characterization in 

Appendices Section 7.1 K). Interestingly, PIP 640 peptide-PEG-biotin behaved 

differently from the N-terminally biotinylated version, and was associated 

predominantly with the cell membrane surface (appendices, Figure 7.2 A and 

B), unlike the N-terminally labelled 640 peptide (Figure 3.5). Moreover, PIP 

640-PEG-biotin produced no significant change in Caco-2 monolayers TEER 

(appendices, Figure 7.2 C). This behaviour supports the suggestion that PIP 

640 peptide-PEG-biotin was not able to access the cytoplasm. However, it was 

not clear whether the lack of cell permeability of PIP 640 peptide-PEG-biotin 

occurred as a result of changing the location of the biotin label from the N-

terminus to the C-terminus or because of changing the physiochemical 

properties of the peptide by adding a PEG spacer. 

 

 

3.2.5. PIP 640 peptide functions by blocking MLCP 
 

The studies described above validated the membrane permeability property 

of the PIP 640 peptide and showed its potential to selectively localize at TJ 

structures. Such outcomes are consistent with its proposed action on MLCP 

through a specific, physical association with regulatory subunits (PP1:MYPT1). 

We further examined this possible interaction using a pull-down protocol with 

the N-terminally biotinylated version of the PIP 640 peptide as bait under non-

denaturing conditions to capture protein binding partners from Caco-2 cell 

lysates using streptavidin beads. However, despite several attempts using 

slightly different conditions, neither PP1 nor MYPT1 could be shown to 

associate with biotinylated PIP 640 peptide (Figure 3.6 A).  
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Native polyacrylamide gel electrophoresis (PAGE) was employed next to 

assess the effect of the PIP 640 peptide on the MLCP complex, MYPT1:PP1. 

This technique has been used extensively to study changes in protein 

association within protein complexes (162, 163). In this study, the PIP 640 peptide 

was incubated with Caco-2 cell lysates under non-denaturing conditions for 60 

min prior to analysing with native PAGE. The intensity of detected protein 

bands on the native PAGE reflects the amount of non-associated MYPT1 and 

PP1, since under native PAGE conditions individual proteins migrate faster 

than when they are assembled into a complexes. Under native PAGE 

conditions, MYPT1 was observed to migrate faster in the gel than PP1 even 

though MYPT1 has a larger molecular weight than PP1. MYPT1 was detected 

at ~45 kDa, while PP1 was detected at ~75 kDa relative to protein standard 

markers (Figure 3.6 B). These findings were consistent with the surface charge 

properties of these proteins that would have greatly affected their mobility in an 

electric field (91). Incubating Caco-2 cell lysates with PIP 640 peptide showed a 

concentration-dependent reduction of the non-associated PP1 and MYPT1 

(Figure 3.6 B). This result supports the contention that PIP 640 peptide 

function involves binding to both MYPT1 and PP1, similar to the emulated 

binding site of pT38-CPI-17 that binds to both regulatory subunits of MLCP and 

blocks its function (90). 
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Figure 3.6:	A) SDS-immunoblot of MLCP protein components, PP1 and MYPT1, from 

Caco-2 cell lysates analyzed in a pull-down using  biotinylated PIP 640 peptide. No 

association of these MLCP components with PIP 640 peptide was observed. Actin 

loading controls were used from supernatants to normalise the amount of lysate 

probed. Control lanes are streptavidin beads incubated in Caco-2 cell lysates in the 

absence of biotinylated PIP 640 peptide. Data are representative of 3 independent 

experiments, n=3. B) Immunoblot of MLCP components present in Caco-2 cell lysates 

treated with different concentrations of PIP 640 peptide for 60 min. Under these native 

polyacrylamide gel electrophorisis conditions PP1, which has MW of 34 kDa, was 

detected at ~ 75 kDa and MYPT1, which has a MW of 130 kDa, was detected at ~45 

kDa. Data are representative of 2 independent experiments, n=2. 
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      As the anticipated function of the PIP 640 peptide appears to involve 

binding both regulatory subunits of MLCP, the same method involving native 

PAGE was applied to explore the impact of sequence modifications in the PIP 

640 peptide analoges on binding to MLCP subunits PP1 and MYPT1. Both PIP 

641 and 642 peptides failed to interact with either PP1 or MYPT1 under the 

conditions used (Figure 3.7 A and B), being consistant with their lack of effect 

on MLC-pS19 levels and random distribution in polarized Caco-2 cells. PIP 643 

peptide showed a slightly greater interaction with PP1, but a loss of interaction 

with MYPT1 compared to PIP 640 peptide (Figure 3.7 A and B). This shift in 

specificity for PP1 over MYPT1 was even greater in the case of PIP 644 

peptide (Figure 3.7 A and B). Data obtained with PIP 643 and PIP 644 

peptides demonstrated that the loss of negative charge presented by the 

aspartic acid residue was important for interaction with MYPT1 but supressed 

its interactions with PP1. Additionally, changing this residue in the peptide from 

a negative or neutral amino acid to a positively-charged amino acid further 

enhanced its activity towards PP1 without affecting the loss of MYPT1 

interactions. These observations were consistent with the changing in PIP 644 

peptide cellular localization from TJ structures to locations adjacent to the 

plasma membrane. Thus, while possibly improving the CPP-like 

characateristics for the PIP 643 and PIP 644 peptide, changes made to the 

PIP 640 peptide sequence to generate these analogues also resulted in loss of 

selectivity for MYPT1 and shifted it towards PP1, which would likely results in 

action not related to CPI-17-regulated processes. These studies demonstrated 

that only the PIP 640 peptide bound to both PP1 and MYPT1 (Figure 3.7 A 

and B), suggesting an ability to interact with MLCP.  
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Figure 3.7:	 Binding of PIP 640 peptide or PIP 640 peptide analogues with MLCP 

components. Peptides (0.8 mM) were incubated with Caco-2 cell lysates for 60 min 

prior to analysing using native PAGE. Quantitative determination of capture (depicted 

as removal from the lysate) for A) PP1 and B) MYPT1. Data are representative of 4 

independent experiments, n=4 for all data. Quantitative analysis of the immunoblots 

obtained in (A) induced by PIP 640 peptide analogues. Data are means ± SEM of 4 

independent experiments, n=4 for all data. (*p value< 0.05, **p value< 0.01, ****p 

value< 0.0001). 

 

 

 

 

 

 

 

 

 

 

 

 

	

	

	

	



Chapter 3 

	
	

95	
	

3.2.6. PIP 640 peptide effects on epithelial cell viability 
 

All in-vitro data presented above suggested that the PIP 640 peptide could 

regulate TEER and paracellular permeability properties of Caco-2 monolayers 

by enhancing MLC-pS19 through a blockadge of MLCP function. These effects 

were either eliminated or altered by mutating specific amino acids in the PIP 

640 peptide sequence. Washout of these peptides after 60 min of apical 

exposure showed that all tested PIP peptides that demonstrate these 

properties did so through a reversible mechanism (Figure 3.2 A). Such studies 

however, failed to address the question of whether these peptides and/or the 

actions they induce interfered with cell viability. To test this possibility, Caco-2 

cell viability was investigated by measuring 3-(4,5-dimethylthiazol-2-yl)-          

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium (MTS) dye 

conversion to formazan in viable cells. This so-called MTS assay reflects the 

integrity of the cells’ metabolic activity. The formazan that is formed has an 

intense purple colour, which is proportional to cell viability. All tested PIP 

peptides were incubated with Caco-2 cells for 12 h prior to adding the MTS 

reagent. Triton X-100 was used as a positive control to induce cell death, 

resulting in cell viability levels less than 10 % (Figure 3.8). PIP 640, PIP 641 

and PIP 642 peptides showed no significant interference with Caco-2 cell 

viability compared to untreated cells (Figure 3.8). This indicates that the 

permeability enhancement function of the PIP 640 peptide occurred without 

inducing cell toxicity. A lack of effect on cell viability also suggested that these 

PIP 640 peptide analogues, while retaining their ability to enter cells (Figure 

3.4 and Figure 3.5) but having lost their ability to affect Caco-2 cell monolayer 

TEER and permeability properties (Figure 3.2 A and B), are harmless to 

epithelial cells. In contrast, PIP 643 and PIP 644 peptides, which showed an 

ability to enhance permeability (Figure 3.2 A and B), reduced Caco-2 cell 

viability to approximately 50 % of control values (Figure 3.8). This might 

occurred in response to shifting the specificity of these two peptides toward 

PP1 (Figure 3.7 A and B), possibly resulting in the activation of signalling 

pathways involved in cell viability.    
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Figure 3.8: Colorimetric cell viability assessments of Caco-2 cells after 12 h exposure 

to 1 mM of each PIP 640 peptide or PIP 640 peptide analogues as evaluated by MTS 

dye conversion by cells. Here, Triton x-100 (0.01%) was used as a positive control. 

Data are means ± SEM of 3 independent experiments, n=9 for all data. (*p value< 

0.05, ****p value< 0.0001). 

Figure 3.8: Colorimetric cell viability assessments of Caco-2 cells after 12 h exposure 

to 1 mM of each PIP 640 peptide or PIP 640 peptide analogues as evaluated by MTS 

dye conversion by cells. Here, Triton x-100 (0.01%) was used as a positive control. 

Data are means ± SEM of 3 independent experiments, n=9 for all data. (*p value< 0.05, 

****p value< 0.0001). n.s: not significant. 
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3.3. Discussion 
 

Oral delivery of peptide therapeutics is typically limited by their sensitivity to 

intestinal digestive enzymes. Even when strategies are taken to limit this 

degradation, the physicochemical properties of these molecules restrict their 

ability to cross the intestinal epithelial barrier (164). Previous efforts to overcome 

these issues were mainly focused on the use of agents that alter the barrier 

function as a means to enhance intestinal permeability (5). Accordingly, several 

oral therapeutic peptide formulations have now reached clinical trial stages 
(117), however, most of these peptide therapeutic formulations failed to make it 

past the trial stages (117). In most of these permeability enhancers (PEs), this 

lack of clinical success is due to unacceptable safety concerns that can be 

linked to uncertainties regarding a lack of a selective and well-understood MoA 
(5). For example, sodium caprate, is a medium chain fatty acid that has been 

used as a PE in many therapeutic peptide formulations. Studies have 

proposed that sodium caprate enhances permeability through transcellular 

routes by general disruption of cell membranes (165). Other studies suggest that 

permeability enhancement associated with sodium caprate occurs through 

paracellular routes by activating MLCK (120), or by redistributing claudin-5 and 

tricellulin proteins (57).  The lack of clear MoA for sodium caprate could be the 

reason why its clinical use in a rectal ampicillin suppository was associated 

with non-specific damage to the rectal mucosa in humans (166).  

 

 

In the current approach, we have attempted to address the unmet need for 

the development of an efficient and safe strategy to enhance the permeability 

of therapeutic peptides across intestinal epithelium. This was done by utilizing 

rationally designed agents targeting an intracellular mechanism that is 

naturally involved in transiently regulating the TJ barrier function of the 

intestinal epithelium associated with enhancing nutrient uptake through 

paracellular routes (88, 167). This mechanism of enhancing paracellular 

permeability of nutrients is mediated by increasing MLC-pS19 levels that are 

induced by activating MLCK by Na+-nutrient co-transport (88, 168). It is well 
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established that manipulating MLC phosphorylation could regulate TJ barrier 

function. This was first observed with the application of a permeable inhibitor of 

MLCK (PIK) peptide that was reported to be effective in rectifying the defective 

TJ barrier function associated with chronic epithelial inflammations that are 

characterized by leaky epithelia generated by hyper-activation of MLCK (53, 103, 

129). Recently, we utilized an approach similar to that used to design the PIK 

peptide to design selective membrane permeant inhibitors for MLCP termed 

PIP, to transiently open intestinal TJs and enhance the uptake of therapeutic 

peptides (127). 

 

 

 Two PIP peptides, termed 250 and 640, were designed to target different 

protein-protein interfacial sites that regulate MLCP function. These two 

peptides were shown to enhance paracellular permeability of insulin in vivo 
(127). Their permeability enhancement effect was consistent with transient 

action induced by increasing MLC-pS19, as this effect was reversed within a 

few minutes (127). Because PIP 640 showed better onset and recovery of 

paracellular permeability enhancement compared to PIP 250 peptide (127), the 

work in this chapter was aimed at refining the understanding of the PIP 640 

peptide MoA in vitro and exploring the possibility of optimizing its permeability 

enhancement function.  

 

 

PIP 640 peptide was designed to mimic a phosphorylated binding site of 

CPI-17, R36V(pT)VKYDRR44, which is responsible for selective inhibition of 

MLCP (90, 148, 160). A D-retro inverso strategy was used to produce an 

enzymatically stable version of the PIP 640 peptide; the peptide was 

synthesised using D-amino acids in reverse order of sequence (158). Thus, 

orientation of the amino acid side chains of the D-sequences would be similar 

to the parent L-sequences, though the amide bonds are inverted. This strategy 

was validated previously for enhancing PIK peptide stability without affecting 

its targeting ability to MLCK (129). PIP 640 peptide was synthesized using 
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standard 9-fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis 

(SPPS) techniques (128). This technique involves repetitive coupling of amino 

acids to a growing polypeptide chain bound to a solid support. This solid 

support is typically composed of small polystyrene beads to which the peptide 

is attached during the repetitive washing and filtration steps of these 

processes. The first amino acid is generally bound to the resin through its α-

carboxylic acid function, via an ester or amide linkage, depending on the 

choice of the solid support and desired C-terminal functional group (128). For 

synthesis of PIP 640 peptide and its analogues, a Rink amide polystyrene 

resin was chosen in order to generate a C-terminal peptide amines upon 

removal of the final peptide from the solid support. In the Fmoc SPPS 

approach, the α-amino functions of the amino acids that are added 

successively to the N-terminus of the peptide are blocked by the base-sensitive 

Fmoc group, which is easily removed by a secondary amine (piperidine) (128). 

For synthesis of the PIP 640 peptide and analogues, any side chain amino 

acid functions were blocked by appropriate acid-labile protecting groups that 

are stable to the repetitive removal of Fmoc during each coupling cycle. Acid-

labile side chain protecting groups were used for lysine (Boc), arginine (Pbf), 

tyrosine (tBu), glutamic acid and aspartic acid (OtBu), which could all be 

removed under the same conditions as those required for cleaving the final 

peptide from the Rink Amide support with a strong acid (128). Introduction of a 

glutamic acid residue into the PIP 640 peptide was intended to serve as a 

stable phosphomimetic analogue of pT because the length of a glutamic acid 

side chain is similar to pT, allowing for a delocalized negative charge from the 

ionized carboxylic acid at about the same position as the phosphate group on 

the side chain of pT. Previous structural studies of pT38-CPI-17 have 

suggested that the flanking residues of pT38 within the R36V(pT)VKYDRR44 

sequence, except R36 and K40, of CPI-17 are involved in binding to MLCP (155-

157, 169). However, Y41 seemed to be critical for the inhibitory function of CPI-17, 

as single alanine substitution to Y41 was able to abolish pT38-CPI-17 inhibitory 

function. Therefore, a single arginine was introduced onto the N-terminus of 

the PIP 640 peptide sequence to enhance its cell permeability properties 
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because residues located N-terminally to R36 have been reported not to be 

involved in CPI-17 binding to MLCP (155).        

 

Previous in vivo studies of PIP 640 peptide functions were focused on 

proving the concept of the ability of the PIP 640 peptide to enhance 

paracellular permeability of therapeutic peptides by increasing MLC-pS19 levels 
(127). An essential consideration for successful in vivo application of the PIP 

640 peptide was the onset of peptide cell entry to rapidly increase MLC-pS19 

and enhance the permeability of a poorly absorbed therapeutic agent in the 

intestinal lumen. In order to potentially increase the rate of cell uptake of the 

PIP 640 peptide, a longer version with three additional basic amino acids on 

the C-terminus was used in vivo, sequence: rrdykvevrrkkr-NH2 
(127). This longer 

version of the PIP 640 peptide induced rapid paracellular permeability of 

insulin across intestinal epithelia by enhancing MLC-pS19 that started a few 

minutes after direct intraluminal injection. Since work in this chapter was to 

investigate PIP 640 peptide MoA, studies were performed using the parent 

sequence of PIP 640 peptide, rrdykvevrr-NH2, which has only one additional 

arginine at the N-terminus that is not present in the original emulated sequence 

of CPI-17, R36V(pT)VKYDRR44. This can be used for a more precise 

assessment of PIP 640 peptide target binding and to potentially reduce the 

ultimate cost of peptide production if this compound were to be used 

therapeutically.  

 

 

An initial step in exploring the MoA of PIP 640 peptide was to define the 

ideal concentration of the peptide that can induce a regulated TJ permeability 

to be used in the in vitro investigations. This eliminated the possibility that any 

activity observed with the PIP 640 peptide was due to exposure to high 

concentrations of the peptide. This was monitored by measuring TEER change 

and apical to basolateral transport of molecules across epithelial cell 

monolayers induced by different concentrations of the PIP 640 peptide. Varied 

sizes of fluorescent dextran, 4 kDa (hydrodynamic radius ~ 14 Å) and 70 kDa 
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(hydrodynamic radius ~ 60 Å), were used in the permeability assays to 

estimate the extent of TJ opening. In this regard, insulin has a hydrodynamic 

radius of ~11 Å, while leaky TJs associated with chronic intestinal inflammatory 

diseases have been shown to be permeable to macromolecules up to ~ 60 Å 
(53, 54). The data in (Figure 3.1 A and B) indicated that 1 mM of PIP 640 peptide 

seemed to be a realistic concentration for in vitro MoA investigations because 

the permeability of 70 kDa dextran that was observed with higher 

concentrations of PIP 640 peptide was eliminated at 1 mM. Moreover, a 

complete TEER recovery of Caco-2 monolayers was only obtained with an 

application of 1 mM of the PIP 640 peptide.  

 

 

Manipulating specific phosphatase complexes using small peptides has 

been a widely-used strategy to study the function of a variety of phosphatases, 

some of which can deliver therapeutic benefits (153, 170). It has been reported 

that pT38-CPI-17 can specifically inhibit MLCP and induce alteration of TJ 

function by enhancing MLC-pS19 (160, 161). Although the PIP 640 peptide at a low 

concentration induced a reversible reduction of TJ barrier in Caco-2 

monolayer, it was not clear whether the actions of this peptide were indeed 

achieved by mimicking pT38-CPI-17. The PIP 640 peptide was synthesised 

using a D-retro inverso strategy, which have shown limited success on some 

occasions at mimicking the functional properties of parent L-peptides (171). 

Therefore, a structure activity relationship (SAR) study was performed on the 

PIP 640 peptide sequence by substituting specific amino acids. The selection 

of the residues for these modifications was based on previous structural 

studies that identified critical residues within the emulated sequence of CPI-17, 

R36V(pT)VKYDRR44, which are essential for inhibiting MLCP. Accordingly, a 

limited set of PIP 640 peptide analogues were designed and examined in vitro 

to see if they could alter the function of the parent peptide.  
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PIP 641 peptide revealed the importance of a negative charge (provided by 

a glutamic acid) that could function as phosphomimetic analogue of pT. 

Similarly, the tyrosine residue in the PIP 640 peptide seems critical for 

permeability enhancement function of PIP 640 peptide, as demonstrated with 

the PIP 642 peptide. These findings are consistent with structural 

characterization of pT38-CPI-17 that showed the importance of these two 

positions for CPI-17 function (148, 155). Moreover, these outcomes indicated that 

the D-retro inverso version of the PIP 640 peptide was indeed able to emulate 

CPI-17 function. A key consideration in optimizing the PIP 640 peptide was to 

improve the cell penetration function of the peptide by enhancing its net 

positive charge; this was accomplished by maintaining basic acids and 

reducing non-essential acidic residues. In this context, in vitro permeability 

enhancement data for PIP 641, sequence: rrdykvavrr-NH2, and PIP 643, 

sequence: rraykvevrr-NH2, demonstrated that the role of the negatively charged 

glutamic acid residue in PIP 640 peptide is more critical than that of aspartic 

acid (Figure 3.2 A and B) (Figure 3.3 A and B). Exchange of the negative 

charge of the aspartic acid for a positive charge to possibly improve the cell 

permeability properties as in PIP 644 peptide increased the extent of MLC-

pS19 induction compared to the PIP 640 peptide, but it also dramatically altered 

the intracellular localization and altered its selectivity between PP1 and 

MYPT1. This may indicate the possible involvement of other cellular pathways 

being accessed by the PIP 644 peptide versus the PIP 640 peptide and refines 

our understanding of how to selectively inhibit MLCP to increase the intestinal 

paracellular permeability of therapeutic peptide drugs with these compounds.  

 

 

Since altering specific amino acids in the PIP 640 peptide sequence was 

associated with changes to permeability enhancement function, as 

represented by the tested PIP 640 peptide analogues, biotinylated versions of 

PIP 640 peptide analogues were used to explore the role of these specific 

mutations on PIP 640 peptide cell penetration properties and to see how the 

different functions of these peptides could be associated with their intracellular 
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distribution. Initially, biotin labelling was performed using Fmoc-PEG-biotin 

resin that produces a C-terminally biotinylated peptide with PEG spacer 

between the peptide and biotin unit. The use of this labelling technique was 

expected to be advantageous for a variety of reasons: having a hydrophilic 

spacer, the PEG chain, should enhance the peptide’s water solubility, improve 

its efficiency in binding assays by separating the biotin functionality from 

peptide residues that are involved in target binding and, more practically, 

simplify the synthesis because the biotinylated peptide would be obtained 

immediately after the cleavage from the solid phase resin (130, 131). Although this 

method of biotin labelling has been validated by previously studies involved the 

intracellular localization of peptides (130), C-terminally biotinylated PIP 640 

peptide, PIP 640-PEG-biotin peptide, seemed to be associated with the cell 

membrane surface instead of entering Caco-2 cells, resulting in an elimination 

of the permeability enhancement function of the PIP 640 peptide itself 

(Appendices, Figure 3.2 A-C). It has been reported previously that changing 

the coupling site of the same cargo may have a significant effect on the cell 

penetration properties of CPP peptides (172). Interestingly, when the PIP 640 

peptide and its analogues were biotinylated at the N-terminus, using the p-

nitrophenyl ester derivative of biotin, all the peptides obtained were able to 

cross cell membrane (Figures 3.4 and 3.5). The precise reason for the different 

behaviour of C- and N- terminally labelled PIP 640 peptide is not clear, 

however, the nature of the spacer between the biotin labels and the peptides in 

the two cases are quite different, and this may also be significant as well as 

the point of attachment.  

 

 

Immunofluorescent images showed that the PIP 640 peptide was localized 

at the perijunctional areas, an observation consistent with its action of 

enhancing MLC-pS19. Similar to the outcomes obtained in the previous SAR 

study, removal of either Glu or Tyr in PIP 641 and PIP 642 peptides, 

respectively, changed their cellular distribution. In an attempt to improve PIP 

640 peptide cell penetration properties to optimize its function, PIP 643 was 



Chapter 3 

	
	

104	
	

synthesized with less negatively charged residues, and this showed a 

substantial loss of the perijunctional distribution obtained with the PIP 640 

peptide. Increasing the net positive charge of the PIP 640 peptide by switching 

Asp to Arg in the PIP 644 peptide shifted the peptide distribution back toward 

the perijunctional areas in a cluster format that was less associated to TJ 

compared to the PIP 640 peptide. Overall, data from immunofluorescent 

images indicate that the probed residues within PIP 640 peptide including Glu, 

Tyr and Asp are essential for evoking PIP 640 peptide permeability 

enhancement function.  

 

 

MYPT1 binding to PP1 generates the MLCP holoenzyme that specifically 

functions to dephosphorylate MLC-pS19 (91, 153). Phosphorylation of CPI-17 at 

pT38 enables it to selectively form a complex with MLCP to block its 

phosphatase function (90). Studies characterizing the nature of pT38-CPI-17 

binding to MLCP have suggested that a minimal inhibitory domain within CP-

17 is essential for recognition of MLCP, which includes R36V(pT)VKYDRR44 
(155, 156, 169). Since PIP 640 was designed to mimic this sequence, we 

addressed the ability of PIP 640 peptide to bind MLCP. This was performed 

using native PAGE immunoblotting because it has been shown that native 

PAGE can be used to anticipate changes in protein complex bindings (162, 163). 

Unlike SDS-PAGE, protein migration in native PAGE depends on both 

hydrodynamic size and charge of the protein involved. This means that protein 

complexes would migrate slowly or not enter the native gel. Under the 

experimental conditions employed, the PIP 640 peptide showed a 

concentration-dependant association with both the MLCP components, 

MYPT1 and PP1 (Figure 3.6 B), which is consistent with the binding pattern of 

pT38-CPI-17 with MLCP. The intensity of the migrating bands of both MYPT1 

and PP1 did not change with either the PIP 641 or PIP 642 peptides indicating 

that these peptides did not bind to MLCP, an observation consistent with their 

inability to enhance MLC-pS19 (Figure 3.3 A and B). A previous study 

suggested that the emulated sequence of pT38-CPI-17, R36V(pT)VKYDRR44, 
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binds to the MYPT1 subunit of the MLCP complex via Arg44 (156). However, 

removal of the negatively charged Asp residue in PIP 643 peptide shifted its 

binding towards PP1, and the effect was further increased by introducing Arg 

in this position in the PIP 644 peptide (Figure 3.7 A and B). These findings 

show that Asp might be essential for PIP 640 peptide binding to the MYPT1 

subunit of MLCP complex; this probably applies to CPI-17. Although only the 

PIP 640 peptide seems to associate with both regulatory subunits of MLCP in 

native PAGE, it was not clear whether the data obtained from native gel 

experiments represent an absolute effect of the PIP 640 peptide on MLCP, as 

other cellular proteins present in the cell lysates still might contribute to PIP 

640 peptide binding to MLCP regulatory subunits under native PAGE 

conditions.  

 

 

Native PAGE immunoblotting data indicated that the different permeability 

enhancement profiles between the PIP 640 peptide and several analogues of 

this peptide (Figure 3.2 A and B) could be correlated to differences in binding 

nature to MLCP components (Figure 3.7 A and B). Indeed, loss of the ability to 

enhance TJ permeability by PIP 641 and PIP 642 peptides correlated with their 

inability to induce MLC-pS19 (Figure 3.3 A and B). PIP 643 and PIP 644 

peptides, however, both retained the ability to decrease TEER and enhance 

paracellular permeability and this was correlated with a retained ability to 

induce MLC-pS19 (Figure 3.3 A and B). There was no strong correlation 

between the ability of these peptides to alter TJ permeability and their binding 

pattern with MLCP compared to the PIP 640 peptide (Figure 3.2 A and B) 

(Figure 3.7 A and B), as the PIP 643 and PIP 644 peptides showed similar or 

stronger TEER reduction, respectively, compared to the PIP 640 peptide but 

showed more association to PP1 instead of MYPT1.  This shift in PIP 643 and 

PIP 644 binding towards PP1 suggested that they acquired greater non-

specific PP1 inhibitory function that might have involved MLC-pS19 increases in 

locations of the cell not directly involving TJs.  
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In essence, PIP 643 and PIP 644 peptides may have acquired greater non-

specific protein phosphatase inhibitory function. Such actions may be similar to 

okadaic acid (OA), a toxin produced by dinoflagellates that can inhibit multiple 

protein phosphatases including protein phosphatase 2 A (PP2A) and PP1, 

which is known to cause cell toxicity at high concentrations (173). It has been 

reported that OA is responsible for causing diarrhetic shellfish poisoning 

characterized by a leaky TJ barrier, which has been suggested to be induced 

by sustaining phosphorylation of various proteins, including MLC-pS19 (173, 174). 

Cell viability data of the PIP peptides tested in these studies support the idea 

that non-specific functions of both PIP 643 and PIP 644 peptides could be the 

cause of their associated cytotoxicity (Figure 3.8). This might suggest that PIP 

643 and PIP 644 peptides caused general protein phosphatase inhibition that 

is responsible for increasing MLC-pS19 associated with reducing cell viability 

and changing permeability enhancement profiles; in particularly, the enhanced 

permeability of 70 kDa dextran induced by the PIP 644 peptide. 

 

 

In conclusion, the present studies have provided a greater understanding of 

the MoA for a novel agent, PIP 640 peptide, which was designed to increase 

the intestinal absorption of protein therapeutics. PIP 640 peptide was designed 

to be stable in the intestinal lumen and access the cytoplasm of enterocytes to 

alter the phosphorylation state of MLC in order to transiently alter epithelial TJ 

barrier function. These studies characterized the permeability properties, 

recovery of TEER properties, intracellular localization, protein target selectivity 

and potential cytotoxicity for the PIP 640 peptide, but importantly examined 

these same properties for a selected series of PIP 640 peptide analogues. In 

doing so, a greater understanding has been acquired for how the PIP 640 

peptide functions as a relatively safe and effective agent by enhancing MLC-

pS19 to manipulate an endogenous mechanism regulating TJ permeability. 

Although the next logical step in the development of the PIP 640 peptide 

technology will likely be a large animal safety and efficacy study to improve the 

uptake of poorly absorbed peptide therapeutic, the data presented here have 
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characterized a series of peptides that could be used as tools by researchers 

interested in studying the role and function of MLCP in epithelial cells.  
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4.1. Background 
 

Functional integrity of the body’s epithelia is essential for their ability to 

allow the body to maintain its homeostasis and protect it from the casual entry 

of unwanted and potentially dangerous materials (14). This barrier function 

requires polarized epithelia to generate, maintain and regulate a set of 

structures organized between adjacent epithelial cells that are collectively 

known as the apical junctional complex (AJC) (14, 15). The tight junction (TJ) is 

the most apical structural element of the AJC and it consists of protein 

complexes that establish a size- and charge-selective barrier that can 

selectively restrict the transport of ions and small molecules ~< 4 Å through the 

paracellular space located between adjacent epithelial cells (14, 175). TJ 

structures contain many transcellular proteins that include the claudin protein 

family (35), junctional adhesion molecule (JAM) proteins (64) and TJ-associated 

Marvel proteins (TAMPs) members: occludin, tricellulin and MarvelD3 (36). 

These transmembrane TJ proteins are connected to a network of peripheral 

scaffolding proteins, which function as adaptors connecting transmembrane TJ 

proteins to adjacent elements of the cell’s cytoskeleton; zonula occluden (ZO) 

proteins represent a prominent family of these adaptor proteins (74). 

 

 

 Claudin proteins exist in at least 27 different isoforms that are naturally 

expressed in various patterns and combinations in different organs’ epithelia, 

which determine the distinct properties of TJ barrier demonstrated by each 

epithelium of the body (176). Distinct isoforms are primarily known to either seal 

(sealing claudins) or to function in the charge selective ion properties (pore-

forming claudin) of the different TJs (38). While most of the functions of claudin 

proteins are associated with altered permeability of ions and low molecular 

weight solutes. Some studies have also suggested that claudin proteins may 

be involved in regulating the paracellular permeability of macromolecules. It 

has been shown that knockout or disruption of some claudin proteins result in 

the enhanced passage of large solutes (26, 39, 40). In contrast, TAMPs and ZO 

proteins have been closely linked to enhancement of macromolecule 
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permeability through TJs (36, 53, 84, 118), while JAM proteins play a role in TJ 

stability and immune cell migration (65, 66).      

 

 

TJ proteins bind to each other through complicated interactions that have 

been studied using techniques such as fluorescence recovery after 

photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). FRAP 

and FLIP studies have revealed that TJ proteins are highly dynamic in the 

resting state, meaning that the TJ protein complex is subject to continuous 

remodelling. Moreover, different TJ proteins have distinct dynamic behaviours 

to provide a fence function that is essential for the separation of apical and 

basolateral domains of the plasma membrane. For example, claudin-1 was 

found to be less dynamic than occludin and zonula occluden-1 (ZO-1) (46, 95, 

177). The discovery that TJ proteins exist at AJC structures in a dynamic 

manner has led to the hypothesis that modulation of TJ protein components 

could be a mechanism by which TJ barrier function could be rapidly regulated 

in response to different stimuli.  

 

 

In intestinal epithelia, for example, it was found that TJ pore permeability is 

regulated by induction of the Na+-glucose co-transporter, which induces TJ 

permeability by activating myosin light chain kinase (MLCK) (88). These events 

were associated with increased ZO-1 mobility without altered expression at TJ 

structures through a mechanism that could be reversed by inhibiting MLCK (95). 

Casein kinase-2 (CK2)-mediated phosphorylation of occludin at the serine 408 

(occludin-pS408) increased TJ pore permeability of cations by changing TJ 

protein organization and dynamic behaviour of TJ elements (46). CK2-mediated 

increases in occludin-pS408 enhanced occludin mobility at TJs and occludin 

dimerization, resulting in dissociation from ZO-1, claudin-1, and claudin-2 

proteins (46). These events coincide with the formation of claudin-2 pore 

channels between adjacent epithelial cells, which enhances TJ cation 

paracellular permeability (46). 
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Consistent with the role of altering TJ protein composition induced by 

different stimuli in determining barrier properties, proinflammatory cytokines 

such as tumour necrosis factor-α (TNF-α) and interferon-γ (INF-γ) are known 

to induce the loss of TJ barrier function and increase macromolecular solute 

permeability associated with intestinal inflammatory diseases, such as Crohn’s 

disease (53, 103, 137). Proinflammatory cytokine-induced TJ barrier loss is 

associated with occludin endocytosis induced by prolonged activation of MLCK 
(53, 103, 137). Sodium caprate has been shown to function as a TJ permeability-

enhancing (PE) agent, increasing paracellular permeability across the human 

intestinal cell line HT-29/B6 in vitro for dextran molecules up to 10 kDa (118). 

The action(s) of sodium caprate on epithelial TJ structure, similar to 

proinflammatory cytokines, also affected TAMP and claudin protein family 

members; in this case the redistribution of tricellulin and claudin-5 were 

observed without a striking alteration of their cellular expression (118).  

	

	

We have hypothesized that pharmacological activation of MLCK could 

increase TJ solute permeability to produce a transient state where paracellular 

permeability is sufficiently increased to provide an enhancement of therapeutic 

peptide absorption from the intestinal lumen. To achieve this, a membrane-

permeant peptide capable of regulating myosin light chain phosphatase 

(MLCP) activity to induce myosin light chain phosphorylation in the serine 19 

(MLC-pS19) was identified through a rational design process. The results 

presented in Chapter 1 showed that a membrane-permeant inhibitor of MLCP 

(PIP), termed the PIP 640 peptide, was able to enter Caco-2 cell monolayers, 

co-localize with TJ structures, increase cellular MLC-pS19 levels, and enhance 

the permeability of 4 kDa dextran through the TJ. The observed co-localization 

of PIP 640 peptide with the TJ structures, induction of MLC phosphorylation, 

and changes in paracellular solute permeability properties were all consistent 

with the anticipated MoA for this PIP peptide.  
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The studies performed in this chapter were aimed at providing a preliminary 

characterization of biochemical changes associated with TJ proteins induced 

by the actions of the PIP 640 peptide. With this information, we hope to 

increase our understanding of how TJ components involved in controlling TJ 

barrier function are affected by the PIP 640 peptide. Also, this work 

investigates the potential impact of alteration of TJ proteins induced by PIP 

640 peptide on the permeability enhancement properties of TJs.  
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4.2. Results  
 

4.2.1. Effect of PIP 640 peptide on TJ proteins 
 

TJ protein structures function as gates regulating the paracellular 

permeability of an epithelium (38). Studies have shown that the paracellular 

permeability of solutes through intestinal TJs in both physiological and 

pathological conditions are associated with reorganization of TJ protein 

complexes (53, 94, 95). The data discussed in Chapter 1 showed that PIP 640 

peptide-enhanced TJ permeability of 4 kDa dextran (hydrodynamic radius ~ 14 

Å), which is unable to cross epithelial cell TJs under baseline physiological 

conditions (88), moved across Caco-2 cell monolayers in vitro in a manner 

consistent with increased levels of MLC-pS19. However, it is not yet known 

whether the permeability enhancement induced by PIP 640 peptide involves 

alteration of TJ proteins. To address this, immunoblotting analysis of total cell 

lysates as well as immunofluorescent imaging of Caco-2 cell monolayers were 

performed to assess possible changes in the protein levels and cellular 

distribution of TJ protein elements in response to exposure to the PIP 640 

peptide.  
 
 
 
 
 
Initially, this work focused on studying the effect of PIP 640 peptide on the 

TAMP protein family and the scaffolding protein ZO-1, as these proteins are 

the most commonly studied TJ proteins for regulating large solute permeability 

through intestinal epithelial TJs (36, 53, 84, 118). Therefore, the effect of apical 

exposure to 1 mM of PIP 640 peptide for 60 min on TAMPs and ZO-1 was 

investigated. The results of immunoblotting showed no significant changes in 

the cellular levels of occludin, tricellulin, MarvelD3 and ZO-1 in association with 

increase in MLC-pS19 induced by PIP 640 peptide (Figure 4.1 A and B). 

Further, apical PIP 640 peptide treatment of these confluent monolayers of 

Caco-2 cell line in vitro failed to demonstrate any striking changes to the 

cellular distribution of TAMPs and ZO-1 proteins as assessed by 

immunofluorescent microscopy (Figure 4.1 C). These results indicate that the 
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PIP 640 peptide enhances the permeability of epithelial cells impermeable 

molecules, such as 4 kDa dextran, without interfering with TAMPs or ZO-1.    
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Figure 4.1: Evaluation of the changes in the cellular level and distribution of TAMPs 

(occludin, tricellulin, and MarvelD3) and the scaffolding protein ZO-1 induced by 1 

mM of PIP 640 peptide. A) Immunoblotting analysis showing the effect of MLC-pS19 

induction by an apical exposure to 1 mM of PIP 640 peptide for 60 min on the 

cellular level of TAMPs and ZO-1 in Caco-2 cell monolayers. B) Quantitative 

analysis of the immunoblots obtained in A). Data are means ± SEM of 3 

independent experiments, n=6 for control and treated monolayers. C) 

Immunofluorescent images of Caco-2 monolayers showing normal TJ localization of 

TAMPs and ZO-1 between monolayers treated with PIP 640 peptide and untreated 

monolayers. Images are representative of 3 independent experiments, n=3. Scale 

bar, 10 µm. n.s: not significant. 
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Although claudins have been recognised as paracellular ion channels (38), it is 

been observed in many cases that macromolecule permeability across TJ was 

associated with changes in the expression or distribution of distinct claudin 

family members (26, 39, 40). Therefore, it is possible that the permeability 

enhancment function induced by PIP 640 peptide might be corelated with 

changes in a specific set of claudins either through changes in cellular levels 

and/or distribution at the TJ. To test this hypothesis, we examined polarized 

Caco-2 monolayers in vitro following a 60 min apical treatment of 1 mM PIP 

640 peptide for biochemical changes and cellular distribution of claudin 

proteins present in human intestinal epithelial cells (176). It is important to note 

that some of the tested claudins have been reported to regulate the 

permeability of TJ solute permeability (25, 26, 39, 118). Examination of the total 

cellular protein levels of claudin-1, -2, -3, -4, -5, -7, -8 and -15 via 

immunoblotting analysis showed that only claudin-2 cellular levels were altered 

in response to the PIP 640 peptide and consistent with the increased MLC-

pS19 levels (Figure 4.2 A and B). The observed increase in total claudin-2 cell 

levels observed by western blot analysis were consistent with increased levels 

of this protein at the plasma membrane, presumably where it had integrated 

into the functional TJ structure (Figure 4.3).  

 

 

       The immunofluorescence microscopy studies of TJ protein elements in 

reponse to PIP 640 peptide were performed using a similar fixation process 

reported in a previous study (87). Application of the -20 °C methanol cell fixation 

method, which has been reported to effectively preserve intracellular 

localization of TJ proteins (87), provided a more refined prespective and 

revealed that, in untreated Caco-2 monolayers, intracellular claudin-2 was 

concentrated in specific regions of the cell cytoplasm, while claudin-2 was 

widely distributed in the cytoplasm of monolayers treated with PIP 640 peptide 

(Figure 4.3), an effect was not observed with TAMPs or ZO-1 (Figure 4.1 C). 

No significant differences were observed in the intracellular or TJ distributions 

of claudin-1, -4 and -7 between the treated and untreated Caco-2 cell 
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Figure 4.2: Effect of apical treatment of Caco-2 monolayers with 1 mM of PIP 640 

peptide for 60 min on different claudin proteins. A) Immunoblotting analysis showing 

the effect of MLC-pS19 induction by PIP 640 peptide on the cellular levels of claudin-

1, -2, -3, -4, -5, -7, -8 and -15. B) Quantitative analysis of the immunoblots obtained 

in A). Data are means ± SEM of 3 independent experiments, n=6 for the control and 

treated monolayers, (*p value< 0.05).  

monolayers with the same concentration of the PIP 640 peptide within the 

indicated time (Figure 4.3). This observation suggests that claudin-2 was 

redistributed from its intracellular locations to the plasma membrane and 

possibly into TJ structures in response to PIP 640 peptide exposure.           
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Figure 4.3: Immunofluorescent images of Caco-2 monolayers showing the cellular 

localization of claudin-1, -2, -4 and -7 before (top row) and after exposure to the PIP 

640 peptide (second row). PIP 640 peptide increased TJ localization of claudin-2. 

Areas highlighted as white boxes in the top and second rows are magnified areas 

shown in the third row. Intracellular locations of claudin-2 in untreated Caco-2 cell 

monolayers that changed after exposure to PIP 640 peptide is highlighted by red 

arrows (third row). Images are representative of 3 independent experiments, n=3. 

Scale bar, 10 µm. 
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4.2.2. PIP 640 peptide-induced enhancement of claudin-2 at the TJ 
correlates with the induction of MLC-pS19. 

 

Reduction of TJ barrier function that correlates with enhanced paracellular 

permeability is usually associated with the remodelling of TJ protein complexes 
(45). The mechanism of this remodelling can range from redistribution to 

changes in expression of TJ proteins (102, 118). Hence, changes in the cellular 

levels and distribution of different TJ proteins were examined after exposure to 

1 mM of PIP 640 peptide. The data presented above showed that only claudin-

2 of the TJ proteins examined was affected over a time-course that associated 

with changes in paracellular permeability and TEER of Caco-2 monolayers. 

Claudin-2 levels as determined by western blotting were significantly increased 

and the localization of claudin-2 at the TJ as determined by 

immunofluorescence microscopy was increased in response to exposure to 

PIP 640 peptide for 60 min (Figure 4.1 and Figure 4.2). Studies have shown 

that modulation of claudin-2 alone or in combination with other TJ proteins 

could result in changes to TJ permeability properties (39, 102, 178). Importantly, we 

observed that the PIP 640 peptide-enhanced TJ permeability also correlated 

with increased MLC-pS19 levels. Based on the current outcomes, it is unclear 

how increased claudin-2 levels are related to the increased MLC-pS19 in 

response to the PIP 640 peptide treatment.  

 

 

To examine a potential relationship between increased claudin-2 levels and 

the elevation of MLC-pS19 in response to the PIP 640 peptide, a time-course 

study that monitored these two parameters over time was performed. At 

different time points, the TEER of Caco-2 cell monolayers was measured after 

exposure to 1 mM of PIP 640 peptide to monitor changes in the TJ barrier 

function. Subsequently, immunoblotting and immunofluorescent analyses were 

used to evaluate changes in the total cellular level and distribution of claudin-2 

within cells. TEER reduction in response to apical exposure of the PIP 640 

peptide was found to be associated with a time-dependent increase in claudin-
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2 that was detectable by 10 min after exposure to the PIP 640 peptide, but it 

was only observed significantly after 20 min of treatment when compared to 

control cell monolayers (Figure 4.4 A, B and C). This time course for the 

increase in claudin-2 was correlated with an increase in MLC-pS19 levels over 

time, but MLC-pS19 seems to increase faster than claudin-2, as the increase of 

MLC-pS19 levels induced by the PIP 640 peptide was observed significantly 

after 10 min (Figure 4.4 B and C). Thus, time course studies are consistent 

with the hypothesis that increased levels of claudin-2 occur secondarily to 

increased levels in cellular MLC-pS19.  

 

 

A time-course immunofluorescent assessment of cellular claudin-2 

distribution in Caco-2 monolayers after exposure to PIP 640 peptide was also 

performed to determine whether the increase in claudin-2 levels observed by 

immunoblotting data correlated with increased claudin-2 at the TJ. The data 

showed that the claudin-2 localization at the TJ increased over time (Figure 

4.5). In addition, these changes in the intracellular distribution of claudin-2 

were observed a few minutes after PIP 640 peptide exposure (Figure 4.5). 

This rapid onset of changes in the intracellular organization of claudin-2 and an 

increase in its level at the TJ suggested that redistribution of intracellular 

claudin-2 to the TJs occurred in response to the PIP 640 peptide treatment 

rather than the synthesis of new proteins because stimuli-inducing protein 

synthesis, particularly that of claudin-2, should take longer than 10 minutes 
(102). Removal of PIP 640 peptide from Caco-2 monolayers after 60 min of 

apical treatment followed by overnight incubation with fresh medium led to 

complete recovery of both TEER and claudin-2 distribution (Figure 4.4 A and 

Figure 4.5). 
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Figure 4.4: Time-course assessment of changes in claudin-2 levels relative to 

changes of MLC-pS19 levels associated with changes in permeability properties 

induced by PIP 640 peptide. A) TEER changes in Caco-2 cell monolayers induced 

by 1 mM of PIP 640 for 60 min. Removal of apical PIP 640 peptide to initiate 

recovery of actions is highlighted with an arrow. B) Representative immunoblots 

showing correlation of MLC-pS19 levels and claudin-2 levels over time following 

apical application of 1 mM of PIP 640 peptide. C) Quantitative analysis of 

immunoblots obtained for MLC-pS19 and claudin-2 induced by PIP 640 peptide in B). 

Data points represent means ± SEM of 3 independent experiments with n=6 for 

TEER data, n= 3 for both MLC-pS19 and claudin-2 immunoblotting data at all time 

points, immunoblot data obtained for MLC-pS19 for 40 min exposure n=1 (*p value< 

0.05, **p value< 0.01 and ***p value<0.001). 
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Figure 4.5: Time-course assessments of cellular claudin-2 distribution as assessed 

by immunofluorescence microscopy following exposure to 1 mM of PIP 640 peptide. 

Images of Caco-2 monolayers suggest redistribution of claudin-2 to TJ structures in 

response to the PIP 640 peptide exposure for the indicated period of time. Images are 

representative of 3 independent experiments, n=3. Scale bar, 10 µm. 	
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							To verify that the increase in claudin-2 at the plasma membrane (possible 

at TJ structures) is a function of modulating MLCP activity by the PIP 640 

peptide, the action of a PIP peptide mutant was examined. PIP 644 peptide 

(sequence: rrrdykvevrr-NH2), as shown in Chapter 3, non-specifically induces 

an increase in MLC-pS19 via an association with PP1 instead of the MLCP 

complex (MYPT1:PP1) to produce a more pronounced reduction of TJ barrier 

function compared to the PIP 640 peptide. Caco-2 monolayers were treated 

with 1 mM of both the PIP 640 and the PIP 644 peptides for 10 and 60 

minutes. Consistent with the data discussed in Chapter 3, both peptides 

induced MLC-pS19 over time, but, only the PIP 640 peptide increased claudin-2 

levels (Figure 4.6 A and B). Additionally, the distribution of claudin-2 in Caco-2 

cell monolayers treated with the PIP 644 peptide was similar to that in the 

untreated cell monolayers, while the level of claudin-2 increased at TJs after 

exposure to the PIP 640 peptide (Figure 4. 5 C). Together, these data are 

consistent with the hypothesis that changes in claudin-2 associated with the 

inhibitory action of the PIP 640 peptide possibly involve the redistribution of 

claudin-2 to the TJs. 
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Figure 4.6:	PIP 640 but not PIP 644 peptides alters claudin-2 following induction of 

increased MLC-pS19 levels in Caco-2 cell monolayers. A) Immunoblots showing 

cellular levels of MLC-pS19 and claudin-2 levels over time following apical application 

of 1 mM of PIP 640 or PIP 644 peptides. B) Quantitative analysis of the 

immunoblots obtained for MLC-pS19 and claudin-2 induced by PIP 640 peptide in A). 

Data are means ± SEM of 3 independent experiments with n=3 for both MLC-pS19 

and claudin-2 immunoblotting data at all time points (**p value< 0.01). C) 

Immunofluorescent staining of claudin-2 in Caco-2 cell monolayers treated with PIP 

640 or PIP 644 peptide for 60 min. Images are representative of 3 independent 

experiments, n=3. Scale bar, 10 µm. 
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4.2.3. Effect of PIP 640 peptide on the phosphorylation of serine 
residues of claudin-2   

    

 Growing evidence suggests that the molecular organization of epithelial TJ 

proteins is subject to continuous remodelling that regulates TJ barrier and 

permeability functions in the resting state and in response to changes in the 

environment experienced by the epithelial cells (95, 175, 177). It has been reported 

that this dynamic function of TJ proteins could be modified by either altering 

expression or post-translational modifications, such as phosphorylation, of TJ 

proteins. For example, induction of interleukin-13 (IL-13) release by the 

intestinal mucosa is associated with intestinal inflammatory diseases and this 

event has been correlated with increased claudin-2 expression and enhanced 

TJ permeability (39, 102, 179). Additionally, TJ barrier function can be regulated by 

phosphorylation of serine residue at position 208 of claudin-2 (claudin-2-pS208), 

and this post-translational process has been suggested to reduce claudin-2 

trafficking to lysosomal degradation and increase its TJ localization (180, 181).  

 

Since PIP 640 peptide induced rapid redistribution of claudin-2 to TJs and 

phosphorylation of TJ proteins is often responsible for alteration of TJ barrier 

function (46, 180), we investigated the potential effect of PIP 640 peptide on the 

phosphorylation of serine residues of claudin-2. Immunoprecipitation of 

claudin-2 isolated from confluent Caco-2 cells grown in 75 cm2 flasks were 

assessed for the phosphorylation state of serine residues using an anti-

phosphoserine antibody following treatment with 1 mM of PIP 640 peptide for 

10 or 60 min. Under control conditions, claudin-2 was phosphorylated at the 

serine residues, but this level of phosphorylation was increased following the 

application of the PIP 640 peptide (Figure 4. 6). This observation was 

consistent with recent reports showing that increasing claudin-2-pS208 is 

associated with increased TJ localization of claudin-2 (180, 181). These results 

indicate that the PIP 640 peptide enhances claudin-2 recruitment to TJs by 

increasing its phosphorylation at serine residues, potentially the serine residue 

at position 208.     
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Figure 4.7: Effect of the PIP 640 peptide on phosphorylation of claudin-2 serine 

residues. A) Confluent Caco-2 cells seeded in 75 cm2 were treated with 1 mM of the 

PIP 640 peptide for the indicated period of time. Cell lysates were immunoprecipitated 

(IP) with anti-claudin-2 IgG or a control IgG and immunoblotted (IB) with anti-claudin-2 

IgG or anti-phosphoserine IgG. Arrows indicate the heavy chain (50 kDa) and the light 

chain (25 kDa) of the IgGs used. Claudin-2 and phosphoserine-claudin-2 bands are 

indicated by the star symbol (22 kDa). B) Levels of claudin-2 phosphorylation at 

serine residues in response to PIP 640 peptide over time were quantitated. Change in 

phosphorylation is expressed as a ratio of band intensity for phosphoserine-claudin-

2/claudin-2. Data represent means ± SEM of 5 independent experiments with n=5 

(***p value<0.001). 
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4.2.4. PIP 640 peptide induced a perm-selective TJ permeability 
 

Studies have shown that enhancement of intestinal TJ permeability is 

induced by different intestinal inflammatory disorders, such as inflammatory 

bowel diseases (IBD), and these changes have been demonstrated to involve 

MLC-pS19 induction by prolonged activation of MLCK. This process, in turn, 

results in rearrangement of TJ proteins, such as induction of occludin 

endocytosis and/or claudin-2 upregulation, which results in increased 

paracellular solute permeability (53, 102, 179, 182). The data presented above 

indicate that cellular changes induced by PIP 640 peptide were associated 

with increased levels of claudin-2 at the TJs that was correlated with increased 

levels of MLC-pS19 levels, similar to mechanisms demonstrated for TJ barrier 

dysfunction associated with IBD. Thus, it was important to compare the extent 

to which permeability was enhanced by the PIP 640 peptide in comparison to 

effects induced by pro-inflammatory cytokines that have been demonstrated to 

drive this increased permeability associated with IBD-like conditions. To do so, 

apical to basal permeability of different size fluorescent molecules, 4 kDa, 10 

kDa and 70 kDa dextran, across Caco-2 monolayers was assessed after 

exposure to either PIP 640 peptide or a mixture of pro-inflammatory cytokines, 

tumour necrosis factor-α and interferon-γ (TNF-α/INFγ), which have been 

identified as essential mediators of IBD (138, 183).  

 

 

Monolayers TEER changes and the cumulative flux of fluorescent dextrans 

were monitored for 60 min after apical PIP 640 peptide application to Caco-2 

monolayers and these parameters were compared to the action of basal 

treatment with TNF-α/INFγ after 4h to ensure induction of an inflammatory 

process (54). Exposure to PIP 640 peptide for 60 min reduced the TEER values 

of Caco-2 monolayers to ~ 70 % of the initial TEER values, whereas treating 

the monolayers with TNF-α/INFγ for the indicated time induced a decrease in 

TEER to ~ 55 % of the initial TEER values (Figure 4.8 A). Both PIP 640 

peptide and TNF-α/INFγ treatments induced MLC-pS19, but occludin down-

regulation was only observed following TNF-α/INFγ treatment (Figure 4.8 B). 
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This is consistent with studies showing occludin down-regulation is required for 

pro-inflammatory cytokine-induced TJ barrier dysfunction (54, 137). In response 

to TEER reduction induced by both PIP 640 peptide and TNF-α/INFγ, apical to 

basal flux of 4 kDa dextran was significantly increased compared to controls 

(Figure 4.9). However, TNF-α/INFγ allowed more 4 kDa dextran to cross the 

monolayers compared to PIP 640 peptide (Figure 4.9). Apical to basal flux of 

10 kDa and 70 kDa dextran across Caco-2 monolayers was enhanced in 

monolayers treated with TNF-α/INFγ but, not following PIP 640 peptide 

treatment (Figure 4.9).  
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Figure 4.8: Effect of TNF-α/INFγ or PIP 640 peptide on the barrier properties of 

Caco-2 cell monolayers. A) Change in the TEER of Caco-2 monolayers after 60 min 

of apical exposure to 1 mM of PIP 640 peptide and after 4 h of basal exposure to 

TNF-α (5 ng/mL)/ INF-γ (10 ng/mL). Data are means ± SEM of 3 independent 

experiments, with n=9 (**p value< 0.01 and ***p value< 0.001). B) Immunoblotting 

assessment of changes in MLC-pS19 and occludin levels induced by both PIP 640 

peptide and TNF-α/INF-γ treatment after time indicated in A). Data are 

representative of 4 independent experiments, n=4. Data are means ± SEM of 3 

independent experiments, with n=9 (**p value< 0.01 and ****p value<0.0001). 
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Figure 4.9: Cumulative apical to basolateral flux of fluorescent dextran (4 kDa, 10 

kDa and 70 kDa) across Caco-2 cell monolayers induced by basal TNF-α/INF-γ or 

apical PIP 640 peptide treatment. The extent of fluorescent dextran across 

monolayers was monitored for 60 min after induction of barrier dysfunction by pre-

treatment TNF-α/INF-γ while these values were similarly determined for PIP 640 

peptide added apically at the time of dextran application. Data are means ± SEM of 

3 independent experiments, with n=9 (**p value< 0.01 and ****p value<0.0001). 
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4.2.5. Perm-selectivity of PIP 640 peptide solute transport   
 

Claudin proteins are known to regulate ion flux through TJs between the 

apical and basolateral sides of epithelial cells (38, 45). At TJs, claudin-2 establish 

an ion channel that is selectively permeable to small cations and water (27, 184). 

Claudin-2 ion channels are involved in generating essential gradients that also 

mediate the paracellular permeability of molecules (38, 45). Studies have shown 

that claudin-2 regulation is involved in the induction of physiological gradient-

dependent paracellular flux of nutrient molecules (178). Increased levels of 

claudin-2 at TJ structure, however, have also been linked with many intestinal 

disorders characterized by a leaky epithelium (102, 179, 182). The data presented 

above showed that treatment of both the PIP 640 peptide and TNF-α/INF-γ 

increased MLC-pS19 levels and led to changes in the TJ permeability 

properties of Caco-2 cell monolayers. However, the PIP 640 peptide increased 

Caco-2 monolayers permeability to 4 kDa dextran but not 10 kDa dextran, 

while TNF-α/INF-γ enhanced the permeability of dextrans as large as 70 kDa 

(Figure 4.9). In addition, TNF-α/INF-γ-induced permeability changes to Caco-2 

monolayers were associated with occludin down-regulation (53), whereas TJ 

permeability induced by the PIP 640 peptide did not appear to alter occludin 

protein levels (Figure 4.8 B).  

 

 

PIP 640 peptide increased claudin-2 levels at TJ structures and also 

caused an increase in the permeability of a macromolecular solute, in this case 

4 kDa dextran. We next asked whether these PIP 640 peptide-mediated 

changes to TJ function also affected the charge selectivity of macromolecular 

solutes through the paracellular route in a manner consistent with the nature of 

claudin-2 perm-selectivity. To study this, TEER changes of Caco-2 cell 

monolayers and apical to basal transport of fluorescent dextrans with either an 

overall positive or negative charge were compared to that of neutral dextran in 

vitro. In separate monolayers, 4 kDa size forms of positively-charged 

diethylaminoethyl-dextran (DEAE-dextran; structure shown in Figure 4.10 A) or 

negatively-charged carboxymethyl-dextran (CM-dextran; structure shown in 
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Figure 4.10 B) were mixed with neutral 4 kDa dextran and applied apically to 

Caco-2 monolayers treated with 1 mM of the PIP 640 peptide. After 60 min the 

extent of apical to basal compartment transfer for the dextrans being tested 

were determined and the apical media was replaced with fresh media and 

TEER values for the Caco-2 cell monolayers were monitored over the next 5 h 

to ensure recovery of TJ function (Figure 4.10 C and D). These studies 

showed that Caco-2 monolayers treated with PIP 640 peptide were more 

permeable to 4 kDa positively-charged DEAE-dextran than neutral 4 kDa 

dextran, but that the permeability changes induced by PIP 640 peptide were 

similar for 4 kDa negatively-charged CM-dextran and 4 kDa neutral dextran 

(Figure 4.10 D). These findings might indicate that the positively charged 

molecule selectivity of claudin-2 might contribute to PIP 640 peptide 

permeability enhancement function to some extent, as Caco-2 monolayer were 

preferentially permeable to DEAE-dextran over neutral and negatively-charged 

dextran derivatives. 
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Figure 4.10: PIP 640 peptide enhances the permeability of positively-charged solutes 

relative to neutral or negatively-charged solutes. Chemical structures of the charged 

dextran derivatives used, A) Diethylaminoethyl-dextran (DEAE-dextran) and B) 

Carboxymethyl-dextran (CM-dextran). C) Change in TEER of Caco-2 cells 

monolayers induced by 640 peptide. Apical media containing PIP 640 peptide and 

dextrans was replaced with fresh DMEM medium after 60 min to allow examination of 

TEER recovery over a subsequent 5 h period. D) Cumulative apical to basal transport 

across Caco-2 monolayers treated with fluorescent DEAE-dextran or CM-dextran with 

neutral dextran (all 4 kDa in size) over 60 min. Data are means ± SEM (*P < 0.05 and 

**P < 0.01). 
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4.3. Discussion  
 

The intestinal epithelial barrier performs a critical task of protecting the 

human body from the invasion of harmful agents or pathogens that might 

induce systemic disorders and/or local inflammation to the intestine (45, 101). 

However, the barrier characteristics that grant this protection also hinder the 

absorption of therapeutic peptides (5). Accordingly, most of the available 

therapeutic peptides are limited to parenteral applications, which are 

considered inconvenient for patients that require long-term treatment. 

Therefore, various approaches have been investigated to enhance the oral 

delivery of such drugs across the intestinal epithelial barrier (5, 117). For 

example, many permeability enhancers (PEs) have shown to effectively 

enhance drug permeability across epithelial cells (5, 117), with most of them 

acting non-selectively on the epithelial barrier by disorganizing TJ proteins or 

generally disrupting the epithelial cell membrane (13, 119).        

 

 

The TJ barrier is comprised of complex protein structures that consist of 

many cell membrane integral proteins, organized as a network of membrane 

peripheral proteins linking to the TJ-associated actomyosin cytoskeleton (14). 

TJ proteins possess a distinct dynamic behaviour by which association of TJ 

integral membrane proteins and their organization within the TJ can be 

modulated (175, 177). The restricted transport of solutes across the TJ barrier is 

regulated by a wide array of intracellular signalling molecules that modulate TJ 

protein components (45). Application of agents to enhance the paracellular 

permeability of therapeutic peptides across the TJs of intestinal epithelial cells 

has gained wide acceptance as a drug delivery strategy (5, 117), as TJ routes 

are more suitable for hydrophilic medication that are unable to cross the lipid 

bilayers of epithelial cell membranes, being the mechanism used in the oral 

absorption of small molecule drugs (5). However, opening the TJs non-

specifically for drug delivery may lead to epithelial damage and/or inflammation 

that might occur as result of co-absorption of pathogens (13).    
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It is well established that induction of MLC-pS19 in the intestinal epithelium 

can trigger dynamic modulation of TJ protein structures that reversibly regulate 

the TJ barrier properties (88, 95, 103), an endogenous mechanism involved in the 

regulation of physiological uptake of molecules, such as nutrients, through 

paracellular routes (88, 167).  The main goal of the current project was to 

examine a strategy to improve oral delivery of therapeutic peptides by 

enhancing their ability to cross the intestinal epithelial barrier. Accordingly, we 

designed a small cell permeant peptide, PIP 640 peptide, to regulate MLCP 

activity, inducing MLC-pS19 levels that would result in the induction of a 

transient TJ opening to allow for enhanced therapeutic peptide absorption. The 

data presented in Chapter 1 showed that the PIP 640 peptide was able to 

reversibly reduce the TEER of Caco-2 cell monolayers and enhance the 

permeability of 4 kDa dextran through the TJ in vitro by the proposed MoA. 

However, it was not clear whether the permeability enhancement function of 

PIP 640 peptide was associated with changes in TJ protein elements. In 

addition, the studies presented in Chapter 1 that investigated intracellular 

distribution of PIP 640 peptide in Caco-2 cell monolayers showed that the 

peptide was closely associated with the TJ protein structure, as it was co-

localized with the integral membrane protein occludin. These observations led 

us to the hypothesis that PIP 640 peptide might induce TJ permeability by 

altering the structure of TJ proteins. Therefore, the studies performed in the 

current chapter were aimed to investigate biochemical changes in TJ proteins 

associated with the permeability enhancement function of the PIP 640 peptide.     

 

 

Major determinants of TJ barrier properties in different epithelial barriers 

are regulated by the composition of specific TJ proteins and their expression 

levels (21, 45). Hence, based upon such differences, TJ barrier of epithelial cells 

lining organs such as the intestine and kidney tubules are relatively more 

permeable than those covering the urinary bladder lumen (21, 45). Studies have 

determined that TJs are naturally permeable to ions and small solutes < 4 Å 
(175). The data presented in Chapter 1 showed that the PIP 640 peptide 
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enhanced the permeability of 4 kDa dextran (~ 14 Å radius) across Caco-2 

monolayers in vitro. It has been suggested that the permeability of 

macromolecules of this size through TJ routes is associated with the 

displacement of TJ proteins, especially TAMPs and ZO-1. For example, 

occludin endocytosis that is associated with TNF-induced MLCK hyperactivity 

in IBD that induces macromolecules permeability across epithelial TJs (53, 185). 

Similarly, disruption of tricellulin has been recognized as a pathway to enhance 

TJ permeability in cultured monolayers to molecules such as 10 kDa dextran 
(118). Knockdown of the third member of TAMP, MarvelD3, in Caco-2 cells was 

also associated with changing TJ barrier properties (59). The scaffolding protein 

ZO-1 has a major role in the assembly of TJ proteins, and it has been shown 

that ZO-1 down-regulation was associated with enhancement of the flux of 

large solutes across epithelial cells in vitro (186, 187). In addition, TAMPs and ZO-

1 were shown to be highly dynamic at the TJs compared to other TJ proteins 

such as claudin-1 that seems to be more stable at TJ (36, 177). Therefore, our 

initial thought was that the permeability enhancement induced by the PIP 640 

peptide might be regulated by modulating these TJ proteins. Accordingly, we 

investigated the potential effect of the PIP 640 peptide on TAMP family and 

ZO-1 proteins. Immunoblot analysis of total cell lysates of Caco-2 monolayers 

before and after treatment with PIP 640 peptide showed no significant 

difference on TAMPs and ZO-1 levels (Figure 4.1 A and B). Similarly, 

immunostaining of these proteins in Caco-2 monolayers treated with PIP 640 

peptide showed normal TJ localization and no marked difference compared to 

the control (Figure 4.1 C).   

 

 

Since data investigating the effect of the PIP 640 peptide on TJ proteins 

revealed that the peptide does not seem to interfere with TAMPs and ZO-1 

functions, we explored the status of other membrane integrated TJ proteins 

such as members of the claudin family, as disruption or reorganization of some 

claudin proteins have been shown to enhance the paracellular permeability of 

large solutes (26, 39, 40). In our investigation of PIP 640 peptide effect on 
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claudins, we focused on different claudin isoforms that are expressed in 

intestinal epithelium and contribute differently to TJ barrier function with the 

assumption that changes in these proteins might explain TJ permeability 

property changes induced by the PIP 640 peptide. These include claudins-1, -

3 and -5, which have been shown to act as sealing proteins to the paracellular 

routes to reduce paracellular permeability (25, 40). In addition, we explored the 

alterations to claudin-4, -7 and -8 that have been shown to contribute to the 

regulation of TJ permeability to negatively charged ions (29, 188). Also, we 

investigated changes to claudin-2 and -15 that promote the passage of 

positively charged ions (28, 115). Immunoblotting data showed that PIP 640 

peptide-induced MLC-pS19 was associated with an apparent increase in 

claudin-2 in Caco-2 monolayers and no effect was observed on the other 

tested claudins (Figure 4.2 A and B). This increase in claudin-2 was consistent 

with TJ localization (Figure 4.3). Moreover, claudin-2 was widely distributed 

intracellularly, which might suggest that the PIP 640 peptide induced claudin-2 

recruitment to TJ structures (Figure 4.3). 

 

 

 It is been shown that the pore size of claudin-2 permits the permeability to 

small cations but not larger molecules such as 4 kDa dextran (115). This might 

suggest that the permeability enhancement of 4 kDa dextran associated with 

PIP 640 peptide might be primarily mediated by other untested TJ proteins and 

claudin-2 likely contributes to charge selectivity of the permeability 

enhancement function of the PIP 640 peptide. In addition, imaging of fixed 

tissues and cell monolayers might not reveal some of the changes in the 

organization of TJ proteins that are associated with paracellular permeability. 

For example, paracellular permeability induced by activation of MLCK 

associated with Na+-glucose co-transport showed normal distribution of ZO-1 

protein at the TJs (94). However, application of FRAP techniques in living cells 

revealed that the dynamic behaviour of ZO-1 changes during Na+-glucose-

induced MLCK. This appeared as less ZO-1 protein was associated with the 

TJ (95). Therefore, live imaging using techniques such as FRAP might be 
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necessary in future for precise assessment of the action of the PIP 640 peptide 

on the organization of TJ proteins that mediate macromolecule permeability, 

such as occludin.  

PIP 640 peptide was designed to mimic the inhibitory function of CPI-17 

towards MLCP by emulating the binding properties of CPI-17 to MLCP 

components (MYPT1:PP1). This was done to increase MLC-pS19 levels, an 

intracellular mechanism that is known to regulate TJ barrier properties (88, 160, 

161), in order to enhance the paracellular permeability of peptide therapeutics. 

The data presented in chapter 1 suggest that PIP 640 peptide regulates MLCP 

activity by increasing MLC-pS19 levels. This induced reversible TJ permeability 

of molecules with a radius of ~ 14 Å. We then attempted to characterize 

changes to the TJ proteins associated with PIP 640 peptide-induced TJ 

permeability. The data showed that of the many TJ integral membrane proteins 

examined, only claudin-2 was significantly increased at the TJ. Analysis of the 

cellular levels and distribution of claudin-2 over time in response to exposure 

to the PIP 640 peptide revealed a time-dependent increase of claudin-2, 

reduction of TEER and increase in MLC-pS19 levels (Figure 4.3, and Figure 

4.4). However, the PIP 644 peptide, an analogue of PIP 640 peptide described 

in chapter 1 that increases MLC-pS19 levels by acting as a general 

phosphatase inhibitor instead of acting specifically on MLCP, had no 

significant effect on claudin-2 (Figure 4.6). These findings might indicate that 

the increase in claudin-2 induced by the PIP 640 peptide was due to regulation 

of MLCP activity and not by enhancing MLC-pS19 levels, as PIP 644 peptide 

did not change claudin-2 levels. Moreover, the delayed onset of claudin-2 

increases compared to MLC-pS19 increases observed in (Figure 4.3) might 

suggest that PIP 640 peptide-induced claudin-2 increase at the TJ is regulated 

by a secondary mechanism triggered by regulating MLCP activity. 

 

 

Various studies have defined mechanisms mediating TJ protein trafficking 

that are essential for modulating TJ barrier function. For example, TNF-

induced barrier loss was shown to occur due to occludin endocytosis that is 
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mediated by caveolin-1, a lipid raft protein that plays a role in protein 

endocytosis (189). Moreover, it was found that phosphorylation of occludin at 

threonine residues at positons 403 and 404 increases occludin recruitment to 

the TJs and accordingly enhances TJ barrier function (190). Our data showed 

that the PIP 640 peptide increased claudin-2 levels at the TJ significantly after 

20 min, an effect that seems to occur secondarily to the increase observed in 

MLC-pS19 levels (Figure 4.3, and Figure 4.4). Studies have shown that claudin-

2 expression increases in response to cytokines (39, 102, 179). This cytokine-

induced claudin-2 up-regulation appears to be a slower onset and more 

durable process compared to the more dynamic actions of the PIP 640 peptide 

on Caco-2 cell monolayers in vitro. Therefore, we excluded the possibility that 

the effect of PIP 640 peptide on claudin-2 levels was related to expression 

level. Instead PIP 640 peptide seems to redistribute claudin-2 to TJs.   

 

 

It is been established that the TJ proteins, including claudin-2, are found in 

a cholesterol-enriched glycolipids raft (lipid raft) of plasma membranes, which 

forms a tightly packed detergent-insoluble region (196). Studies have suggested 

that claudin-2 disassembled from TJ is rapidly targeted to lysosomal 

degradation (181, 191). Cellular trafficking of claudin-2 has been shown to be 

regulated by different signalling pathways. For example, Rab-14, a small 

guanosine triphosphatase (GTPase), has been shown to play a regulatory role 

in the delivery of claudin-2 to TJs and the internalization of claudin-2 (191). In 

addition, claudin-2-pS208 was found to be essential for the recruitment of 

claudin-2 to TJ structures (181). Also, phosphorylation of claudin-2 at this 

position was shown to enhance claudin-2 detergent solubility (181). These 

mechanisms were also found involved in regulating claudin-2 targeting to 

lysosomes (181, 191). Expression of mutated claudin-2 in the serine residue at 

position 208 in MDCK I cells caused claudin-2 down-regulation by lysosomal 

degradation (181). Similarly, knockdown of Rab-14 in MDCK II cells was 

associated with a reduction in claudin-2 and increase in the TJ barrier function, 

an effect that was reversed by re-expression of Rab-14 (191). The role of Rab-
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14 in regulating claudin-2 levels was linked to directing claudin-2 to lysosomes, 

as inhibiting lysosomal degradation in Rab-14 knock-down MDCK II cells 

resulted in maintenance of claudin-2 levels (191). In our investigation of the 

effect of PIP 640 peptide treatment of Caco-2 monolayers on TJ proteins, we 

observed a rapid time-dependent increase of claudin-2 localization at the TJ, 

an effect that was also detected in the immunoblot data using total cell lysates. 

This increase in claudin-2 was associated with a rapid enhancement of 

claudin-2-pS208 (Figure 4.7). Since the half-life of claudin proteins has been 

suggested to be ~ 6 h (181), such a rapid alteration in claudin-2 levels that was 

observed in the immunoblot data is unlikely to occur by reducing claudin-2 

degradation, a process that is regulated by claudin-2-pS208 as discussed earlier 
(180, 181). However, this increase in claudin-2 levels that was induced by the PIP 

640 peptide might resulted from enhancing claudin-2 detergent solubility from 

lipid raft, a function of enhanced claudin-2-pS208 (181). This can be confirmed by 

performing differential detergent extraction and sucrose density centrifugation.  

 

 

Increased intestinal TJ permeability is commonly associated with cytokine-

induced inflammatory disorders, such as IBD (53, 102, 179, 182).  Elevation of TNF-α 

in intestinal mucosa enhances MLCK activation and has been shown to be the 

major cause of leaky TJs, which are permeable to macromolecules in patients 

with Crohn’s disease (53, 103). Other cytokines, such as INF-γ, were found to 

have a boosting effect to the barrier dysfunction induced by TNF-α (138, 183). 

Short exposure to TNF-α/INF-γ was shown in the current studies to induce 

barrier dysfunction characterized by activation of MLCK-induced MLC-pS19 

levels and occludin endocytosis (53, 54, 103, 138, 183). Chronic exposure to these 

pro-inflammatory cytokines was shown to cause more changes to the TJ 

structure, such as increasing claudin-2 expression, and consequent epithelial 

cell damage (138, 192). The data presented above showed that PIP 640 peptide 

induced TJ permeability of 4 kDa dextran by enhancing MLC-pS19 levels, an 

effect that was associated with claudin-2 increase, although it is currently 

unclear if and how claudin-2 alone might affect such an outcomes in solute 
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transport. Thus, additional TJ modifications may be induced by PIP 640 

peptide. Since TNF-α/INF-γ-induced TJ permeability is activated by increasing 

MLC-pS19, the same endogenous mechanism that regulates TJ permeability 

induced by the PIP 640 peptide, it is particularly interesting to note that 

changes of TJ barrier properties induced by PIP 640 peptide were distinct from 

those induced by TNF-α/INF-γ. 

 

 

Our data showed that Caco-2 cell monolayers treated with either PIP 640 

peptide or TNF-α/INF-γ decreased TEER associated with elevated MLC-pS19 

levels (Figure 4.8 A and B). However, the pattern of TEER reduction is 

different for each treatment. TNF-α/INF-γ induced further TEER reduction than 

did the PIP 640 peptide. This might have occurred in response to occludin 

down-regulation that was only observed in Caco-2 monolayers treated with 

TNF-α/INF-γ (Figure 4.8 B). Data concerning the permeability of solutes of 

different sizes across Caco-2 monolayers revealed that the PIP 640 peptide 

induced perm-selective permeability of TJs that allowed the passage of 

molecules with ~ < 14 Å radius size (Figure 4.9). However, Caco-2 monolayers 

treated with TNF-α/INF-γ were also permeable to 70 kDa dextran (~60 Å 

radius) (Figure 4.9). This outcome was consistent with previous reports 

concerning TJ permeability associated with TNF-α/INF-γ (54). Another well-

defined characteristic of TJ barrier dysfunction associated with TNF-induced 

MLCK activation is the irregular, undulating distribution of the scaffolding 

protein ZO-1 at the TJ (53, 183). This was not observed for PIP 640 peptide 

treated Caco-2 monolayers (Figure 4.1 C). These data imply that PIP 640 

peptide and TNF-α/INF-γ enhance TJ permeability by distinct mechanisms, 

although they are both able to increase MLC-pS19.   

 

 

Claudin-2 is a tetraspan pore-forming TJ protein that is size- and charge-

selective (27, 32, 115). Similar to most claudin proteins, the charge-selectivity of 

claudin-2 is mediated by charged amino acids located on its extracellular loop-
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1 (ECL-1), which is stabilized by two cysteine residues (32). The charge-

selective property of paracellular routes in tissue epithelial barriers, which is 

dependent upon the type of claudin proteins expressed in that epithelium, is 

typically determined by studying the flow of ions across the epithelial cells (29, 

115, 188). In our in vitro investigations, we have determined that PIP 640 peptide 

induced a modification of TJs that resulted in an enhanced transport of small 

macromolecules in a perm-selective manner. Such changes are distinct from 

that observed for TJ changes induced by pro-inflammatory cytokines (Figure 

4.9). This means that the PIP 640 peptide changed the pore size-selectivity of 

TJ from being permeable to molecules with < 4 Å radius, such as mannitol (175, 

193), to molecules with < 14 Å radius, 4 kDa dextran.  

 

 

The TJs of Caco-2 cell monolayers are generally more permeable to 

positively charged and neutral molecules than negatively charged ones, all 

with < 5 Å radius (194). This preference was maintained for the same solutes 

after changing TJ pore size to ~ 15 Å by treating the monolayers with 

palmitoylcarnitine (194), a PE that was shown to non-specifically enhance TJ 

permeability (5). In agreement with this report of the charge preference of Caco-

2 cells, TJ permeability induced by sodium caprate across Caco-2 monolayers 

was higher for neutral 4 kDa dextran than negatively charged Lucifer yellow 

(LY) dye (122), although that the latter has a smaller radius ~ 5 Å (195) compared 

to 4 kDa dextran ~14 Å. However, sodium caprate has been shown to induce 

changes to different TJ proteins (118, 196). A study has shown that one such 

change is displacement of claudin-4 (196), which has been shown to contribute 

to the regulation of passage of negatively charged molecules (29, 197), from TJs. 

Thus, claudin-4 displacement induced by sodium caprate might be the reason 

for the reduced permeability of LY across Caco-2 monolayers. Our results 

show that charge-preferential paracellular permeability changes induced by 

PIP 640 peptide were only significant for DEAE-dextran (Figure 4.9 D). These 

findings suggest that claudin-2 might contribute to PIP 640 peptide-induced TJ 

permeability of positively charged molecules. However, it is not clear whether 
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claudin-2 is the only protein responsible for enhancing the TJ permeability 

function of PIP 640 peptide.  

 

 

In conclusion, in this Chapter we have studied biochemical changes to TJ 

protein associated with the permeability enhancement function of the PIP 640 

peptide, which is mediated by enhancing MLC-pS19 levels through the 

modulation of MLCP activity. Our results showed that PIP 640 peptide induced 

a time-dependent increase of claudin-2 cellular level that was correlated with 

increase of MLC-pS19, whereas no changes were observed for a wide range of 

other integral membrane TJ proteins that were examined. The PIP 640 

peptide-induced increase in claudin-2 correlated with an enhancement of 

claudin-2 phosphorylation at serine residues, potentially claudin-2-pS208, which 

could result in increased detergent extractability and enhancement of its 

cellular distribution at TJs. In addition, the PIP 640 peptide was shown to 

induce a perm-selective permeability increase in TJ pore size in a manner that 

differed from that induced by proinflammatory cytokines. Finally, this increase 

in claudin-2 at TJ structures induced by the PIP 640 peptide seems to 

contribute to regulating paracellular permeability of charged molecules, 

preferentially to positively charged molecules with a radius of at least 14 Å but 

less than 23 Å. 
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5.2. Background 
 

Most of the currently-known therapeutic peptides have poor oral 

bioavailability. This is due to their undesired physiochemical characteristics of 

being too large and hydrophilic to cross the intestinal epithelial barrier in a 

manner similar to small molecule drugs (117). Many strategies have been 

explored to improve the oral delivery of such therapeutics; some of these 

strategies have shown promising outcomes in terms of overcoming the 

intestinal epithelial barrier (5). For example, application of permeability 

enhancer (PE) agents that have been used to transiently enhance the 

transport of a co-administered peptide therapeutic across the intestinal 

epithelium. Previously described strategies to enhance the oral delivery of 

peptide therapeutics usually define their effectiveness in enhancing the 

permeability by using in vitro cell culture models of the intestinal epithelium or 

an excised intestinal tissue (5, 13, 135). This is typically is done by examining the 

transport of various stable solutes that have physicochemical properties similar 

to peptide therapeutics as a way to predict whether the strategy can enhance 

the permeability of a desired peptide drug in vivo (5, 135). In addition, in vitro 

models have been widely used in efforts to define the mechanism of action 

(MoA) by which a delivery strategy enhances the permeability of molecules. 

This information is critical to explore potential toxicity events associated with a 

given delivery strategy (5, 13).  
 

 

A human colorectal adenocarcinoma cell line, Caco-2 cells, is one of the 

intestinal epithelial cell models most frequently used to study drug permeability 

across the intestine because it is simple to use and can provide reproducible 

results (135, 198). These advantages have lowered the reliance on animal models 

for the initial examination of delivery strategies across the intestinal epithelium 
(198). Fully differentiated Caco-2 cells are able to show many features of the 

small intestine epithelial barrier, a status that can be achieved when these 

cells are grown on semi-permeable filters to form a single layer of polarized 

epithelial cells that develop functional tight junctions (TJs) (135). In addition, 
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these Caco-2 cell monolayers has been found to contain various membrane 

transporters and metabolic enzymes known to exist in human intestinal 

epithelium (135, 198). However, the Caco-2 cell model is not an optimum model to 

study drug permeability across the intestinal epithelial cells, as it does not 

exactly reflect how a drug permeability enhancement approach will behave in 

vivo (5). Importantly, Caco-2 cells lack some of the naturally existing elements 

in the intestine that have been suggested to affect the drug absorption 

process, such as the mucus layer, and these elements need to be considered 

when developing a strategy to enhance oral delivery of therapeutic peptides in 

vivo (199).  
 

 

The mucus layer consists of mucin glycoproteins that form a viscous gel-

like structure that covers intestinal epithelial cells, thereby providing a 

protective barrier against a spectrum of potential pathogens (199). While the 

mucus layer allows the transport of small molecules, such as nutrients, it has 

the potential to entrap poly-ionic macromolecules (199). Studies have shown 

that the intestinal mucus layer is a factor that could slow the diffusion of poly-

ionic macromolecules to the epithelial surface, thus reducing their absorption 

rate (10, 200). For example, chitosan, a PE agent that can improve the intestinal 

permeability of a poorly absorbed drug such as atenolol, was more effective 

when tested in vitro using Caco-2 cell monolayers that do not secrete a mucus 

layer versus HT-29 cell monolayers that do produce a mucus layer (200). This 

effect of the mucus layer has also been shown to influence the permeability of 

peptide therapeutics (5, 10, 199).  

 

 

The need to evaluate safety is one of the major concerns of using PE 

agents to enhance the intestinal permeability of a peptide therapeutic and this 

cannot be accomplished by only using in vitro models (13).These in vitro models 

can overestimate toxicity associated with PE agents as they lack elements and 

mechanisms that protect the intestine from damage such as the mucus layer, 

blood supply and intestinal transit time (13, 201). Moreover, in vitro models of 
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intestinal epithelium are usually unable to predict the effect of long-term 

(repeated) exposure to PE agents on the intestinal epithelium or the potential 

induction of co-permeability of harmful elements present in the intestinal lumen 
(13). Hence, it is important to address the limitations of in vitro models in a more 

complex animal model in vivo. 

 

 

In our work, we sought to develop a novel PE agent: a small membrane-

permeant peptide to regulate the activity of myosin light chain phosphatase 

(MCLP). This PE agent, known as the PIP 640 peptide, was designed to 

increase myosin light chain phosphorylation at the serine 19 (MLC-pS19) to 

alter TJ properties and enhance the intestinal epithelial TJs permeability of 

peptide therapeutics. PIP 640 peptide at a concentration of 1 mM, showed an 

ability to reversibly enhance TJ permeability properties of Caco-2 monolayers 

in vitro without affecting cell viability, as discussed in Chapters 1 and 2. The 

next logical step was to assess PIP 640 peptide efficacy and validate its MoA 

in an in vivo model in order to predict its possible actions in an ultimate clinical 

application. This is particularly important because, typically, both the 

performance and the effective concentration of a PE agent tend to vary 

between in vitro and in vivo models (118, 202). For example, the PE agent sodium 

caprate at a concentration of 10 mM was able to improve the permeability of 

dextran molecules with molecular weight of 4 kDa and 10 kDa in HT-29 cell 

monolayers in vitro (118), while a concentration of 100 mM was required to 

enhance in vivo bioavailability of 4 kDa dextran to ~2 % in a rat animal model 

after intra-jejunal loop injection (202).     
 

The current chapter examines different aspects of PIP 640 peptide-induced 

permeability enhancement in vivo by measuring the systemic bioavailability of 

different peptide therapeutics in a rat model following co-administration with 

the PIP 640 peptide by direct intraluminal intestine injection (ILI). Moreover, 

the experiments in this study examined whether the permeability enhancement 

induced by the PIP 640 peptide increases the permeability of other harmful 

substances in the intestinal lumen across the epithelial barrier, such as 
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lipopolysaccharide (LPS). This chapter also sought to validate the defined MoA 

of the PIP 640 peptide from in vitro studies in vivo. Such results could provide 

valuable information regarding the in vivo permeability enhancement 

performance and safety strategy for the translation of the PIP 640 peptide to 

clinical study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 
	
	

153	
	

5.3. Results  
 

5.3.1. Co-administration of the PIP 640 peptide with insulin lowered 
blood glucose level in vivo 

 
Our initial investigation of the PIP 640 peptide action in vivo involved using 

a longer version of the peptide that has three additional basic amino acids at 

the C-terminus of the peptide sequence, rrdykvevrrkkr-NH2, as it was thought 

that these additional amino acids would be important to increase the rate of 

intracellular uptake of the PIP 640 peptide in order to compensate for intestinal 

transit that could not be modelled in vitro (127). This longer version of the PIP 

640 peptide was tested to determine its ability to enhance insulin absorption in 

rat intestine following intraluminal intestinal injection (ILI). This peptide at a 

concentration of 20 mM showed an ability to enhance insulin transport to blood 

circulation and accordingly lowered blood glucose levels (127). In an effort to 

decrease the number of synthetic steps and lower the cost of peptide, as a 

part of the PIP 640 peptide optimization process, we tested the ability of the 

original PIP 640 peptide sequence: rrdykvevrr-NH2, to enhance the absorption 

of therapeutic peptides in vivo after validating its effectiveness and MoA in 

vitro, which was shown in Chapter 1 and 2. 

 

 

To explore the actions of the PIP 640 peptide in vivo, we applied the same 

conditions that were used to examine the in vivo actions of the longer version 

of the PIP 640 peptide (127). Rats were used because the intracellular protein 

targets of the PIP 640 peptide, MLCP components (MYPT1:PP1), are highly 

conserved between humans and rats (156, 203). Human insulin alone (control), or 

in combination with the PIP 640 peptide, was administered to non-diabetic rats 

by ILI with blood glucose level being monitored for the next 80 min. Citric acid 

at a concentration of 10 mM was used in the tested formulations to reduce 

intestinal proteolysis (204). A subcutaneous (SC) injection of insulin served as a 

positive control for changes in blood glucose levels. In our previous in vivo 

study, we found that human insulin alone showed comparable 
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pharmacodynamics (PD) outcomes in rats at a concentration of 3 IU/kg after 

SC injection and 30 IU/kg when co-administered with 20 mM of the longer 

version of the PIP 640 peptide via ILI (127). Thus, we used the same 

concentrations to explore the in vivo performance of the original PIP 640 

peptide. 

 

 

SC injection of 3 IU/kg of human insulin reduced the blood glucose level in 

these non-diabetic rats to ~50% of their initial value after 30 min (Figure 5.1 A). 

This hypoglycaemic effect started to recover after ~50 min and it reached 70 % 

of the initial values after ~80 min, the time of study termination. ILI co-

administration of 30 IU/kg of human insulin with 20 mM of the PIP 640 peptide 

showed slower action in reducing blood glucose levels in comparison to the 

SC injection of 3 IU/kg of insulin. The blood glucose levels started to decrease 

significantly after 20 min, and reached ~55 % of the initial value after 40 min 

(Figure 5.1 B). However, the recovery profile that was observed with the ILI co-

administration of insulin and the PIP 640 peptide was faster in comparison to 

the SC injection of insulin (Figure 5.1 B). As expected, insulin alone 

administered by ILI at a concentration of 30 IU/kg, had no effect on blood 

glucose levels (Figure 5.1 B).  

 

 

In vitro data presented in Chapter 1 and 2 demonstrated that the PIP 640 

peptide can enhance the TJ permeability of intestinal epithelial cells over a 

time course consistent with increased MLC-pS19 levels. Therefore, we 

performed a similar biochemical analysis with rat intestinal tissues exposed to 

PIP 640 in vivo. Toward that end, we measured MLC-pS19 levels in rat 

intestinal tissue at the site of ILI 40 min after insulin alone or insulin co-

administrated with the PIP 640 peptide. Immunoblotting data showed that the 

MLC-pS19 level was only increased in rat intestine exposed to the PIP 640 

peptide (Figure 5.1 C and D). Together, these in vivo data are consistent with 

outcomes observed in vitro and suggest that the PIP 640 peptide can enhance 
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Figure 5.1: Effect of co-administration the PIP 640 peptide and insulin on blood 

glucose levels and MLC-pS19 levels in rats in vivo. Blood samples from the tail vein 

were used to monitor glucose levels. A) Effect of subcutaneous (SC) injection of 3 

IU/kg insulin alone on blood glucose levels. B) Effect of co-administration of 30 IU/kg 

of insulin and 20 mM of the PIP 640 peptide by intraluminal intestinal injection (ILI) on 

blood glucose levels. C) Immunoblot of MLC-pS19 compared to total MLC levels 40 

min after ILI of insulin with or without PIP 640 peptide. D) Quantitative assessment of 

MLC-pS19 levels immunoblots shown in A). Data represent means ± SEM of 3 

independent experiments; n=3 (*p value< 0.05, **p value< 0.01, ***p value< 0.001). 

insulin absorption across intestinal epithelial TJs with a simultaneous increase 

in MLC-pS19 levels.            
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5.3.2. PIP 640 peptide enhanced claudin-2 localization at TJs in vivo 
 

Claudin-2 expression at TJ structures is associated with reduced barrier 

properties and enhanced epithelial permeability of small molecules with a 

radius < ~4 Å (27, 115). In the intestine, claudin-2 is highly expressed and was 

found to play an essential role in regulating intestinal physiological functions 

that include the regulation of Na+ transport from the submucosa to the lumen 

that seemed to be essential for nutrient absorption (178). In addition, increased 

claudin-2 levels are associated with many intestinal inflammatory disorders, 

such as Crohn’s disease (39, 102, 182). Data presented in Chapter 2 demonstrated 

that the PIP 640 peptide-mediated enhancement of the permeability across 

Caco-2 cell monolayers in vitro correlated with increased MLC-pS19 levels as 

well as an increase in total claudin-2 levels and increased levels of claudin-2 at 

TJ structures. Consistent with this possible MoA identified in vitro, the data 

presented above (Figure 5.1) suggests that the PIP 640 peptide also 

enhanced insulin permeability in vivo by enhancing MLC-pS19 levels. In order 

to fully compare the proposed MoA identified in vitro with in vivo outcomes, we 

sought to validate the PIP 640 peptide action on claudin-2 in rat intestine. 

 

 

Rat intestinal epithelial tissues were exposed to 20 mM of the PIP 640 

peptide by ILI for 40 min when the tissues were collected and analysed by 

immunoblotting and immunofluorescence microscopy to monitor the amount 

and cellular distribution of claudin-2. In agreement with our in vitro data, 

immunoblotting analysis detected an increase in claudin-2 that was correlated 

with an enhancement to MLC-pS19 level in vivo (Figure 5.2). We then 

examined the expression levels and distribution of claudin-2 using 

immunofluorescence staining. In un-treated (control) rat intestinal tissue, 

claudin-2 expression was observed to decrease in a crypt to villus tip direction 

(Figure 5.3 A); consistent with previous studies describing claudin-2 

expression in vivo (205-207). Claudin-2 expression was distributed at the TJs and 

the basolateral membranes of epithelial cells located in the middle of the villus 

(Figure 5.3 A), but it was restricted to the basolateral membrane of cells 
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located at the villus tips (Figure 5.3 A, arrowheads, control image). Claudin-2 

expression in rat intestinal tissues following exposure to the PIP 640 peptide 

for 40 min seemed similar to the control, with no striking change observed in 

the signal intensity. However, claudin-2 distribution at the TJ structures 

seemed to increase in cells located at the villus tips (Figure 5.3 A, arrowheads, 

PIP 640 peptide image). Epithelial cells located in the middle of the villus of 

control tissue showed that caludin-2 was distributed in both TJs and 

basolateral membranes, forming connected lines along some paracellular 

spaces. After exposure to the PIP 640 peptide, claudin-2 within these 

enterocytes was concentrated more at TJs than at the basolateral membrane 

(Figure 5.3 B). These results suggest that more claudin-2 was recruited to TJ 

structures in response to PIP 640 peptide exposure. No striking effect was 

observed on claudin-1 or occludin following exposure to the PIP 640 peptide 

(Figure 5. 3 B).                        
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Figure 5.2: Changes in MLC-pS19 and claudin-2 levels following ILI exposure to 20 mM 

of the PIP 640 peptide in non-diabetic rats in vivo. A) Immunoblots of rat intestine 

exposed to 20 mM of the PIP 640 peptide for 40 min showed an increase in both MLC-

pS19 and claudin-2 levels. B) Quantitative representation of the immunoblots obtained in 

A). Data are means ± SEM of 3 independent experiments; n= 3. (*p value< 0.05).    
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Figure 5.3: Immunofluorescence microscopy of rat jejunum epithelium showing the effect 

of the PIP 640 peptide on TJ proteins in vivo. A) Claudin-2 distribution in villi before and 

after exposure to 20 mM of the PIP 640 peptide for 40 min. Changes in claudin-2 

distribution in the villi tips are highlighted with arrowheads. B) Claudin-2 is predominantly 

located at the TJs of rat intestinal epithelium after exposure to the PIP 640 peptide, while it 

is located in both TJs and lateral membranes in the control tissues. Images show no 

significant effect on claudin-1 and occludin. Images are representative of 3 independent 

experiments, n=3. Scale bar, 20 µm. 
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5.3.3. Validation of the charge-preferential paracellular permeability 
induced by the PIP 640 peptide in vivo 

 

TJs are organized to restrict macromolecular flux but selectively permit the 

permeability of small and hydrophilic molecules between adjacent epithelial 

cells, known as the paracellular route (5). Transient alteration of TJ function by 

PE agents can increase the permeability of the paracellular route to peptide 

therapeutics (93). The permeability of peptide therapeutics through TJs is 

limited by molecular size and surface charge (208, 209). In our in vitro data 

presented in Chapter 2, we showed that the PIP 640 peptide induced a perm-

selective TJ permeability that was preferentially permeable to positively 

charged dextran with a molecular weight of 4 kDa (~14 Å radius). This was 

associated with an increase in claudin-2 at TJ structures of Caco-2 cell 

monolayers used for these in vitro studies. Since claudin-2 at TJ structures is 

known to correlate with increased flux of positively charged ions, we 

hypothesized that PIP 640 might affect a charge-preferential TJ permeability 

change that favoured positively charged molecules.  

 

 

To examine the possibility that PIP 640 produced a charge-preferential TJ 

permeability change in vivo, we measured the potential for enhanced uptake of 

either calcitonin (salmon) or exenatide. Both of these therapeutic peptides 

have a similar hydrodynamic size of ~11 Å radius, but they differ in their 

isoelectric point (pI) values. Since calcitonin has a pI value of 8.8 and 

exenatide has a pI values of 4.9, the net charge of these peptides at the 

physiological pH of the small intestine (i.e. jejunum; 5.7- 7.4) where they will be 

administered by ILI will be net positive and net negative, respectively (3, 210, 211). 

Unlike the previous study investigating insulin permeability enhancement that 

was discussed above (Figure 5.1), soybean trypsin inhibitor (SBTI) (1.5 

mg/mL) was used with both calcitonin and exenatide (0.5 mg) instead of citric 

acid to reduce local luminal proteolysis because it was shown that this 

concentration of SBTI increased the stability of therapeutic peptides without 
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inducing significant permeability enhancement (126). Additionally, the presence 

of 10 mM citric acid could significantly alter the local pH at the site of ILI, 

potentially negating the goal of this study. Additionally, uptake of exenatide or 

calcitonin following ILI was assessed in serum obtained from portal vein blood 

collections, and not tail vein as with the insulin studies, in order to eliminate the 

potential for unequal hepatic extraction.  

 

 

Injecting similar amounts exenatide or calcitonin with 20 mM of the PIP 640 

peptide into rat jejunum by ILI resulted in an enhancement of portal vein 

plasma concentrations in comparison to control animals that received an ILI of 

exenatide or calcitonin without PIP 640 (Figure 5.4 A and B). Examination of 

the portal vein concentration-time profiles suggested that calcitonin 

concentration after 30 min of exposure were slightly higher than exenatide, but 

the difference was not statistically significant (Figure 5.4 A and B). Both 

therapeutic peptides showed a similar maximum plasma concentration (Cmax) 

at 40 min of co-administration with PIP 640 (Figure 5.4 A and B) (Table 5.1). 

However, the data indicated that the area under the curve (AUC) value of 

calcitonin when co-administered with PIP 640 was elevated ~10-fold relative to 

control, while PIP 640 peptide enhancement of exenatide uptake had an 

increase in AUC value of ~5-fold in comparison to exenatide alone (Table 5.1). 

Although the complete pharmacokinetic (PK) parameters required to properly 

calculate bioavailability were not available, the AUC values presented here 

suggest that the PIP 640 peptide enhanced the bioavailability of positively-

charged calcitonin slightly more than negatively-charged exenatide. This 

finding is consistent with the observed charge-preferential TJ permeability 

function induced by the PIP 640 peptide in Caco-2 cell monolayer model in 

vitro.    
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Figure 5.4: Permeability enhancement of calcitonin or exenatide as measured in 

blood collected from the portal vein of rats after co-administeration with 20 mM of 

PIP 640 peptide by ILI. All injected formulations (including calcitonin or exenatide 

only; control) contained 1.5 mg/mL soybean trypsin inhibitor (SBTI). A) Portal vein 

concentration-time profiles of exenatide alone or in combination with PIP 640. B) 

Time-course measurements of the plasma concentration of calcitonin alone or in 

combination with the PIP 640 peptide. Data are means ± SEM of 3 independent 

experiments; n= 3. One-way ANOVA indicated a significant difference between the 

data sets (**p value< 0.01).   
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Table 5.1: Physicochemical properties and portal vein pharmacokinetics (PK) 

parameters following intraluminal injection of calcitonin and exenatide with and without 

PIP 640. 

 
MW = molecular weight, calculated hydrodynamic radius and pharmacokinetic (PK) 

parameters obtained from data in Figure 5.4. The hydrodynamic radius was estimated 

as described in Section 2.13.6. The area under the curve between 0-60 min (AUC t 0-

60) was calculated with the trapezoid rule using the PK-Solver tool in Microsoft Excel 
(212). 
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5.3.4. TJ permeability enhancement of therapeutic peptides induced 
by the PIP 640 peptide did not permit co-absorption of endotoxins 

 

Intestinal epithelium is normally exposed to different enteric bacteria that 

produce endotoxins, in particular lipopolysaccharide (LPS) (213, 214). LPS are 

small fragments of the gram-negative bacteria cell wall released by dead 

bacteria (214). Transport of LPS into systemic circulation is normally hindered by 

the epithelial cell barrier (13). Studies have shown that high LPS levels in blood 

is usually associated with both local and/or systemic inflammation (13). Thus, 

researchers have increased their focus on evaluating potential co-absorption 

of LPS when altering intestinal epithelial permeability for enhancing therapeutic 

peptides absorption when using PE agents (13, 215). The PIP 640 peptide was 

shown to enhance the uptake of therapeutic peptides following ILI into rat 

jejunum. We asked whether the PIP 640 peptide could also enhance intestinal 

permeability of endotoxins along with increasing the uptake of therapeutic 

peptides. To address this, we used a Limulus amebocyte lysate (LAL) assay to 

semi-quantitatively detect endotoxin levels in blood plasma samples collected 

from the portal vein of rats following administration of the PIP 640 peptide with 

a therapeutic peptide by ILI, as described above in Section 2.13.   

 

 

LAL reagent, which was obtained commercially, is prepared from a lysate 

of amebocytes of the horseshoe crab, Limulus polyphemus (140). When LAL is 

exposed to a sample containing Lipopolysaccharide (LPS) endotoxins for 1 h 

at 37 °C, the LAL reaction with endotoxin results in the formation of a gel-like 

clot (140). Depending on the endotoxin concentration in the sample, LAL 

reagent results could range from increasing the viscosity to formation of a hard 

gel; samples are only considered positive for endotoxin when the formed gel 

does not collapse after the sample tube is inverted 180° (140). Inverted test 

tubes are thus used to determine the endotoxin level are shown in Figure 5. 

Gel formation was not observed in any of the blood plasma samples collected 

before and after exposure to the PIP 640 peptide by ILI (Figure 5.5). The last 
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Figure 5.5: Semi-quantitative Limulus amebocyte lysate (LAL) assay measuring the 

endotoxin levels in the blood plasma samples collected from the portal veins of rats 

following administration of the PIP 640 peptide by ILI. Images show inverted test tubes 

of different endotoxin standard dilutions and tested blood plasma samples. The 

surface of the generated gels in the standard tubes (except 0.01 EU/mL) is highlighted 

with a black arrow. Images are representative of 2 independent experiments, n=2.  

endotoxin standard tube with a concentration of 0.01 EU/mL formed a softer 

gel-like clot that collapsed as soon as the tube was inverted, which is 

considered to be a negative result. This indicates that endotoxin levels in the 

exposure was < 0.01 EU/mL 
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5.4. Discussion  
 

The complexity of in vivo models used to study oral absorption has 

increased the reliance on in vitro models mainly because the latter provides an 

easier and faster way to predict the ability of a PE agent to effectively enhance 

oral bioavailability of poorly absorbed drugs (5, 135, 198). However, even if a PE 

agent enhanced the intestinal permeability of a poorly absorbed drug in an in 

vitro model, this does not ensure similar outcomes in vivo. Various epithelial 

cell lines have been developed to mimic the intestinal epithelium with each cell 

line emulating certain features of the intestinal epithelial barrier in vivo but 

failing to emulate other aspects (216). For example, Caco-2 cell monolayers can 

develop functional TJ structures as well as express a variety of metabolic 

enzymes and membrane transporters present in the intestinal epithelium in 

vivo (198, 216). However, polarized Caco-2 monolayers develop a TEER range of 

~ 250-400 Ω.cm2 (135, 217); this is higher than the physiological TEER value of 

intestinal epithelium in vivo, which is less than 100 Ω.cm2 (45, 135). In addition, 

use of these cell line-based in vitro models to evaluate the performance of a 

PE agent usually involves an apical application that remains at the cell’s 

surface for a period of time (often > 60 min) that is much greater than what 

might be expected in the intestine in vivo due to the movement of luminal 

contents resulting from complex muscular contractions (5, 13). These 

contractions mean that the intestinal transit in vivo can decrease the exposure 

time to a PE agent, altering its potential efficacy to enhance permeability of a 

poorly absorbed drug. Therefore, in our previous in vivo work we designed a 

longer version of the PIP 640 peptide with three additional positively charged 

amino acids: rrdykvevrrkkr-NH2, in an attempt to improve its rate of cell 

penetration to reach its intended intracellular target (127).  In vitro studies 

presented in Chapter 1 and 2 assessed the performance and defined a 

potential MoA of the original PIP 640 peptide: rrdykvevrr-NH2. Those studies 

demonstrated that the original PIP 640 peptide can enhance TJ permeability in 

Caco-2 cell monolayer in vitro. Therefore, the main aim of the current chapter 

was to validate our in vitro outcomes in a rat model in vivo. 
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First, we studied the ability of the original PIP 640 peptide, which does not 

have three additional basic amino acid residues, to overcome intestinal transit 

time and enhance the paracellular permeability of intestinal epithelial cells to 

therapeutic peptides following a direct ILI. This step was performed before 

tackling the formulation-related challenges associated with the oral delivery of 

therapeutic peptides, such as bypassing the stomach acidic environment and 

limiting the actions of pancreatic proteolytic enzymes, an issue that can be 

solved with existing pharmaceutical technologies such as use of an enteric 

coating (5). To do this, we studied the efficacy of the PIP 640 peptide to 

enhance human insulin permeability in rat intestine in vivo. Human insulin was 

used because it has rapid and easily measured pharmacodynamics (PD) once 

it is absorbed by simply monitoring the blood glucose levels (127). Moreover, 

insulin was chosen to compare the efficacy of the original PIP 640 peptide to 

the long version of the PIP 640 peptide because we already have defined the 

PK/PD profiles of insulin in vivo when co-administered with the longer version 

of the PIP 640 peptide (127). In addition, insulin has a hydrodynamic radius of 

~11 Å (218), which is consistent with the extent of TJ opening induced by the 

PIP 640 peptide; in Chapter 2 TJs were shown to be more permeable to 4 kDa 

dextran (~ 14 Å radius) but not larger dextrans. Citric acid was used as an 

acidifying agent in the injected formulation of insulin and PIP 640 peptide by 

ILI, as it has been shown to benefit therapeutic peptides by enhancing the 

stability of a peptide therapeutic against luminal proteolytic enzymes by 

lowering the luminal pH to < 6.5, which is below the optimal pH for the activity 

of these enzymes (204). In addition, application of an acidifying agent is 

beneficial particularly when studying the intestinal permeability of insulin, 

because insulin tends to have low solubility in a pH environment equal to or 

higher that its pI value of ~5.3, such as in the intestinal environment of pH 5.7-

7.4 (3, 5).  
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Success in enhancing the intestinal epithelial TJ permeability of a 

therapeutic peptide using a PE agent in vivo requires their simultaneous arrival 

at the site of absorption with effective concentrations (5, 13). The ability to meet 

this requirement can be limited by the intestinal transit time and large surface 

of the intestinal epithelium: there could be different spreading and/or dilution of 

a PE agent and therapeutic peptide after oral gavage (5). Therefore, we 

attempted to translate in vitro information to in vivo outcomes by co-

administration in an ILI format, such an approach might be most readily 

achieved by an oral dosage form. This approach, however, does not 

completely correlate in vitro to in vivo outcomes since the issues of movement 

and dilution within the intestinal lumen cannot be emulated in vitro. For 

example, sodium caprate can effectively function as a PE in vitro with a 

concentration ~10 mM (118), while it was used at a high concentration, up to 

100 mM, to enhance permeability in vivo (202). Hence, in the current study we 

used a higher concentration of the original PIP 640 peptide (20 mM) relative to 

the concentration tested in our in vitro studies (1 mM) in Chapters 1 and 2. The 

data presented above suggests that co-administration of the PIP 640 peptide 

with insulin enhanced the TJ permeability of the latter by increasing MLC-pS19 

levels. This action induced a hypoglycaemic effect similar to the one induced 

by SC administration of insulin (Figure 5.1 A and B). Since the PD profile of 

insulin achieved by the original PIP 640 peptide (Figure 5. 1 B) is similar to the 

one obtained in our previous results using the longer version of the PIP 640 

peptide (127), we assumed that the original PIP 640 peptide achieved 

enhancement of insulin bioavailability that was similar to the longer version of 

the peptide, which enhanced the bioavailability to ~1.5 % (127). Consequently, 

we concluded that the original PIP 640 peptide was as effective as the longer 

version of the PIP 640 peptide.  

 

 

One of the aims of the current work was to validate the role of the PIP 640 

peptide in enhancing clauidn-2 at TJ structures, which was observed in the in 

vitro data (Chapter 2). Claudin-2 is known to be a pore-forming TJ protein, 
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which is highly expressed in tissues with leaky epithelia such as the intestine 
(115, 206, 207). Consistent with our in vitro studies, immunoblotting data presented 

above showed that treating rat intestinal epithelium in vivo with the PIP 640 

peptide can increase claudin-2 levels over a time frame that correlated with 

increased MLC-pS19 levels (Figure 5. 2). This presumably occurred, as 

suggested in Chapter 2, by decreasing claudin-2 trafficking to lysosomes. 

Studies have shown that claudin-2 distribution pattern varies between the 

small intestine and colon in different species (178, 205-207). In both foetal and adult 

human small intestines, claudin-2 is expressed in epithelial cells located in 

both the villus and crypt of the intestinal mucosa, while claudin-2 in the colon is 

limited to crypt base (206). In contrast, claudin-2 expression in the small 

intestine in rats and mice was found to decrease from the crypt to the villus (178, 

207), while claudin-2 expression and distribution have been found to be similar 

in the colons of rodents and humans, where it occurs in the crypt (178, 207). 

Consistent with the findings reported in these studies, our immunofluorescence 

microscopy data suggest a crypt to villus decrease of claudin-2 expression in 

rat intestine as previously described (Figure 5.3 A). Treating rat intestine with 

the PIP 640 peptide seemed to induce recruitment of more claudin-2 to the TJs 

(Figure 5. 3 A and B). These data support our in vitro findings that suggested a 

potential contribution of claudin-2 in PIP 640 function.  

 

 

 Previous studies have suggested that diffusion of therapeutic peptides 

through aqueous pores, such as TJs, can be affected by their surface charge, 

which is determined by their pI values and the pH of the surrounding 

environment (5, 208, 209). One study has shown that the paracellular permeability 

of a positively charged hexapeptide across Caco-2 monolayers was higher 

than a negatively charged peptide with the same size (208). In Chapter 2, we 

showed that PIP 640 peptide-induced claudin-2 at TJs in Caco-2 cell 

monolayers was associated with greater TJ permeability to positively-charged 

4 kDa dextran relative to neutral or negatively-charge dextran of the same 

size. Therefore, we explored the potential effect of this charge-preferential 
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permeability induced by the PIP 640 peptide for therapeutic peptides. To test 

this hypothesis we measured the extent of permeability enhancement of both 

exenatide (pI=4.9) and calcitonin (pI=8.8) across rat intestinal epithelium 

following co-administration with the PIP 640 peptide by ILI. Based on pI values 

of these therapeutic peptides, exenatide and calcitonin should exhibit a net 

negative and positive charge, respectively, in the small intestine pH range (5.7- 

7.4) (3). To maintain the same pH of the intestine, we used SBTI to protect the 

therapeutic peptides used from luminal proteolysis instead of citric acid, which 

was used earlier to examine the permeability of insulin (Figure 5.1).  

 

 

Our data showed that the TJ opening induced by the PIP 640 peptide in 

vivo was more permeable to calcitonin than exenatide (Figure 5.4), based 

upon calculated PK parameters (Table.1) that suggested a 10-fold increase in 

the calculated calcitonin AUC compared to a 5-fold increase for the calculated 

AUC value of exenatide relative to controls (Figure 5.4). It is important to note 

that both control treatments, calcitonin and exenatide injected into rat intestine 

without the PIP 640 peptide, showed a slight increase in AUC values, which 

appeared to be higher with exenatide (Table.1). This is probably caused by 

SBTI because it was shown that application of SBTI at a concentration of 1.5 

mg/mL can enhance insulin absorption to small extent (126). These 

observations correlate well with our in vitro findings of the preferential TJ 

permeability of positively charged molecules induced by the PIP 640 peptide. 

Since the PIP 640 peptide enhanced claudin-2 localization at TJs, the data 

suggest that claudin-2 might play a role in the charge-preferential permeability 

obtained in vivo. This information could help define the appropriate 

physiochemical properties of a peptide drug that can benefit from our delivery 

strategy, such as being positively charged.  

 

 

An essential function of the intestinal epithelium is to prevent uncontrolled 

uptake of luminal contents into the blood circulation (13). Therefore, 
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pharmaceutically-acceptable PE agents to enhance drug permeability across 

the intestinal epithelium should not cause toxicity. In studies reporting the 

permeability enhancement effect of PE agents, it is common to evaluate their 

actions on cell viability, which only assesses epithelial cell integrity (5). 

However, less attention is paid to whether PE agents might enhance the 

permeability of toxic substances, such as endotoxins, which are present in the 

intestinal lumen; this has become one of the major safety concerns associated 

with PE agents (5, 13). Studies have shown that systemic endotoxin levels 

commonly range from 0 to < 2 EU/mL in healthy individuals (219, 220), while in 

patients with intestinal epithelial inflammatory disorders characterized by leaky 

epithelial barrier, such as Crohn’s disease, systemic endotoxin levels can be 

as high as 20-100 EU/mL (220). Therefore, we aimed to evaluate the potential 

enhancement of the intestinal luminal endotoxin permeability associated with 

PIP 640 peptide-induced TJ permeability. The LAL assay results showed that 

endotoxin uptake into the blood circulation was not enhanced in rats following 

induction of TJ permeability by the PIP 640 peptide. 

 

In conclusion, studies described in the current chapter validated the in vitro 

efficacy and MoA of the PIP 640 peptide in enhancing the intestinal epithelial 

TJ permeability of therapeutic peptides in vivo. In agreement with the in vitro 

studies demonstrated in Chapter 1 and 2, the results presented above showed 

that the PIP 640 peptide can effectively enhance intestinal TJ permeability of 

therapeutic peptides in vivo. This enhancement was associated with increased 

MLC-pS19 levels and increased localization of claudin-2 at TJs. Moreover, the 

data suggest that the TJ opening induced by the PIP 640 peptide was 

preferentially permeable to peptide drugs that are positively charged at the 

intestinal pH range, as the PIP 640 peptide enhanced the permeability of 

calcitonin more than exenatide. Finally, the PIP 640 peptide does not seem to 

induce co-absorption of intestinal endotoxin.         
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Chapter 6 : General conclusion 
and future work 
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TJ proteins of epithelial cells are subject to continuous remodelling events 

that provide a mechanism for dynamically altering their permeability properties 

through the paracellular pathway (89, 177, 221). The structural remodelling of TJ 

proteins are regulated by a wide array of intracellular signalling processes (89, 

221). One of the key players within these intracellular events in altering TJ 

permeability involves the phosphorylation status of myosin light chain at serine 

19 (MLC-pS19). The phosphorylation status of S19 in MLC is regulated by the 

reciprocal actions of MLC kinase (MLCK) and MLC phosphatase (MLCP), with 

MLC affecting the function of perijunctional actomyosin filaments (53, 88, 89, 92). 

MLCK activation by various stimuli increases MLC-pS19 levels and opens TJs, 

an event that is reversed by MLCP activation (53, 88, 89, 92). Identification of this 

intracellular pathway has led to the discovery of MLCK hyperactivation having 

a role in reducing TJ barrier function associated with intestinal epithelial 

inflammatory disorders, such as Crohn’s disease (53, 103). One of the tools used 

to study this role of MLCK was the application of a membrane permeant 

peptide inhibitor for MLCK, called PIK peptide. This peptide was shown to 

correct TJ barrier dysfunction induced by MLCK hyperactivation and 

suggested that modulation of MLCK function could represent a potential 

therapeutic strategy for diseases characterised by TJ barrier dysfunction (53, 

103).  

 

While studies have defined a role for MLCP in regulating MLC-pS19 levels 

and altering TJ permeability (92, 160, 161), nevertheless, there are still many 

questions about the precise role that MLCP plays in regulating TJ permeability. 

In this regard, the current studies focused on extending our previous work of 

developing specific membrane permeant peptide inhibitors for MLCP, PIP 

peptides, that were designed to enhance TJ permeability transiently by 

increasing MLC-pS19 levels via modulating MLCP activity (127). The current 

work was focused on the best PIP peptide candidates, PIP 640 peptide 

(rrdykvevrr-NH2), to explore potential modifications of its sequence to optimize 

its activity and to validate its intracellular target and mechanism of action 

(MoA) in vitro. Moreover, this work explored changes to TJ protein structure 

associated with increasing MLC-pS19 levels achieved by regulation of MLCP 

activity. Finally, we assessed the potential ability of the PIP 640 peptide to 
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regulate TJ permeability in vivo. The overall motivations behind this work were 

to develop a strategy to improve oral delivery of therapeutic peptides through 

intestinal epithelial TJs through a hypothesis-driven strategy of modulating TJ 

permeability properties, as opposed to previous approaches to identify 

permeation enhancer (PE) agents that have used an essentially stochastic 

process. In addition, this work would improve our knowledge of TJ biology and 

the role of MLCP in regulating TJ permeability.    

  

We designed the PIP 640 peptide to mimic the binding domain of CPI-17 

to MLCP, which contains a phosphorylated threonine residue (pT38), in the 

sequence R36V(pT)VKYDRR44. Several strategies were employed to identify a 

version of this peptide that allowed it to be more stable in the intestinal lumen 

and access the cytoplasm of intestinal epithelial cells; both of these properties 

were assumed essential for use of the peptide to alter MLCP activity and 

increase MLC-pS19 levels in order to transiently alter epithelial TJ permeability 

in vivo. Data presented in Chapter 3 showed that the peptide induced a 

reversible TJ permeability by increasing MLC-pS19 levels in Caco-2 cell 

monolayers without interfering with cell viability. In addition, both the 

intracellular distribution of the PIP 640 peptide and its binding profile to the 

regulatory subunits of MLCP, when compared to series mutants of the PIP 640 

peptide, suggested an intracellular action of the PIP 640 peptide that was 

specified by a few essential amino acids. Since the results in Chapter 3 

suggested the importance of the glutamic acid residue in the peptide sequence 

in mimicking the pT38 residue, we plan in the future to explore the potential 

optimization of PIP 640 peptide function by introducing a phosphatase stable-

phosphothreonine mimetic, such as the 2-amino-3-methyl-4-phosphonobutyric 

acid (222) (Figure 6.1). 
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Figure 6.1: Comparison of the structure of phosphothreonine with potential stable 

mimetics. A) Phosphothreonine, B) Glutamic acid, and C) Stable phosphothreonine. 

 
	

	

	

	

	

 

 

 

 

 

Studies discussed in Chapter 4, explored biochemical changes of TJ 

proteins associated with PIP 640 peptide-induced TJ permeability changes 

associated with increased MLC-pS19. Our results showed that, of the many TJ 

proteins evaluated, only claudin-2 protein levels were altered (increased) in 

response to the PIP 640 peptide and that there was an increase in the amount 

of claudin-2 at TJ structures. These modifications to claudin-2 correlated with 

an increased phosphorylation status, presumably at the serine residue in 

position 208, which has been shown to enhance claudin-2 detergent 

extractability and enhance its localization at TJs (181). These changes in TJ 

structure induced by the PIP 640 peptide were associated with opening of the 

TJ in a way that was preferentially permeable to positively charged molecules, 

suggesting a potential contribution of claudin-2 to the TJ permeability function 

of the PIP 640 peptide (Figure 6.2). In the future, live imaging studies using 

fluorescence microscopy could be performed to examine the actions of the PIP 

640 peptide on a Caco-2 cell line that constitutively expresses fluorescent TJ 

proteins, such as claudin-2 and occludin. Such a study would provide critical 

information regarding TJ structural changes associated with altered 

paracellular permeability induced by the PIP 640 peptide. In addition, more 

efforts could be focused on defining the intracellular signalling pathways 

involved in inducing claudin-2 localization at TJs induced by the PIP 640 

peptide.      
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 In Chapters 3 and 4, we showed that the PIP 640 peptide is able to 

induce TJ permeability by increasing MLC-pS19 levels that were associated 

with increased claudin-2 localization at TJs in Caco-2 cell monolayers in vitro. 

Thus, in Chapter 5, we aimed to test this presumed mechanism of action 

(MoA) in an in vivo model. In addition, we sought to ensure that the extent of 

TJ opening induced by the PIP 640 peptide observed in vitro, could effectively 

enhance permeability of a therapeutic peptide in vivo. The results obtained 

showed that the PIP 640 peptide can effectively enhance the intestinal TJ 

permeability of three therapeutic peptides in vivo: insulin, calcitonin, and 

exenatide. Increased uptake of these therapeutic peptides from the rat jejunum 

following intra-luminal injection was associated with enhancement of MLC-pS19 

levels and increased claudin-2 at TJ structures. Moreover, the PIP 640 peptide 

induced similar charge-preferential permeability changes to those observed in 

vitro. One next logical step would be to develop an appropriate oral dosage 

form of the PIP 640 peptide with a therapeutic peptide to evaluate its safety 

and efficacy in vivo after repeat exposure.  

 

Overall, we have evaluated a small cell-permeant peptide, PIP 640 peptide, 

for its ability to open TJs for the enhanced uptake of a therapeutic peptide. The 

hypothesis-driven strategy for this approach focused on altering permeability 

across the intestinal epithelial barrier by manipulating an endogenous 

mechanism controlled by the phosphorylation status of MLC. This approach 

represents an advantage over most of other permeation enhancement 

strategies, which can act non-selectively and without a defined MoA to 

enhance intestinal epithelial TJ permeability. Data presented in this thesis 

show that the PIP 640 peptide is capable of acting selectively on this 

endogenous mechanism and induces a perm-selective TJ permeability in vivo 

and in vitro. Accordingly, we believe that application of the PIP 640 peptide in 

combination with other pharmaceutical technologies could lead to the 

development of a new oral delivery strategy for therapeutic peptides.      
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Figure 6.2: Cartoon image summarizing changes in cellular signalling events 

associated with the TJ permeability enhancement induced by the PIP 640 peptide. A) 

Limited permeability of TJs occurring at steady state. B) Perm-selective increase in TJ 

permeability induced by the PIP 640 peptide. 
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7.1. PIP Peptides analytical characterization 
 

The following peptides were synthesized on a 0.15 mmol scale (0.25 g 
resin).  

A) PIP 640 peptide (157 mg, 44 % yield); HPLC: tR= 4.3 min; ESI-MS+ 

calculated for C58H102N24O15: m/z = 1375.80; found m/z = 1375.82 

[M+H]+. HPLC analysis (Figure 7.3) and MS analysis (Figure 7.14).   

 

B)  PIP 641 peptide (125 mg, 39 % yield); HPLC: tR = 4.1 min; ESI-MS+ 

calculated for C56H99N23O14: m/z = 1317.77; found m/z = 1317.77 

[M+H]+. HPLC analysis (Figure 7.4) and MS analysis (Figure 7.15).   

 

C) PIP 642 peptide (118 mg, 38 % yield); HPLC: tR = 3.8 min; ESI-MS+ 

calculated for C52H98N24O14: m/z = 1283.77; found m/z = 1283.78 

[M+H]+. HPLC analysis (Figure 7.5) and MS analysis (Figure 7.16).   

 

D) PIP 643 peptide (162 mg, 51 % yield); HPLC: tR = 4.1 min; ESI-MS+ 

calculated for C57H100N23O14: m/z = 1331.78; found m/z = 1331.80 

[M+H]+. HPLC analysis (Figure 7.6) and MS analysis (Figure 7.17).   

 
E) PIP 644 peptide (174 mg, 49 % yield); HPLC: tR = 4 min; ESI-MS+ 

calculated for C60H109N27O13: m/z = 1416.87; found m/z = 1416.89 

[M+H]+. HPLC analysis (Figure 7.7) and MS analysis (Figure 7.18).   

 
F) N-terminally biotinylated PIP 640 peptide (133 mg, 52 % yield); 

HPLC: tR = 4.4 min; ESI-MS+ calculated for C68H116N26O17S: m/z = 

1601.88; found m/z = 1601.88 [M+H]+.. HPLC analysis (Figure 7.8) and 

MS analysis (Figure 7.19).   

 

G) N-terminally biotinylated PIP 641 peptide (124 mg, 37 % yield); 

HPLC: tR = 4.4 min; ESI-MS+ calculated for C65H112N27O15S: m/z = 

1543.86; found m/z = 1543.87 [M+H]+. HPLC analysis (Figure 7.9) and 

MS analysis (Figure 7.20).   
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H) N-terminally biotinylated PIP 642 peptide (129 mg, 39 % yield); 

HPLC: tR = 4.2 min; ESI-MS+ calculated for C62H110N25O17S: m/z = 

755.41; found m/z = 755.44 [M+2H]2+. HPLC analysis (Figure 7.10) and 

MS analysis (Figure 7.21).   

 
I) N-terminally biotinylated PIP 643 peptide (118 mg, 47 % yield); 

HPLC: tR = 4.5 min; ESI-MS+ calculated for C67H116N26O15S: m/z = 

1557.89; found m/z = 1557.86 [M+H]+. HPLC analysis (Figure 7.11) and 

MS analysis (Figure 7.22).   

 
J) N-terminally biotinylated PIP 644 peptide (135 mg, 37 % yield); 

HPLC: tR = 4.3 min; ESI-MS+ calculated for C70H121N28O15S: m/z = 

821.96; found m/z = 821.99 [M+2H]2+. HPLC analysis (Figure 7.12) and 

MS analysis (Figure 7.23).   

The following peptide was synthesized on a 0.085 mmol scale (0.25 g 
resin) 

K) C-terminally biotinylated PIP 640 peptide (PIP 640-PEG-biotin) (93 

mg, 43 % yield); HPLC: tR = 4.9 min; ESI-MS+ calculated for 

C78H137N27O20S: m/z = 903.02; found m/z = 903.02 [M+2H]2+. HPLC 

analysis (Figure 7.13) and MS analysis (Figure 7.24).   
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Figure 7.1: Chemical structures of A) C-terminally biotinylated PIP 640 PIP peptide 

(PIP 640-PEG-Biotin) with an additional PEG spacer between the peptide and biotin. 

B) N-terminally biotinylated PIP 640 peptide that coupled directly to the biotin unit.  

7.2. Additional figures 
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Figure 7.2: A) Confocal microscopy images of Caco-2 monolayers showing 

distribution of C-terminally biotinylated PIP 640 peptide (PIP 640-PEG-biotin) after 45 

min of apical exposure. PIP 640-PEG-biotin was detected by Alexa 488-conjugated 

streptavidin (green). TJs are stained with Alexa 546-conjugated secondary antibody 

against occludin primary antibody (red). Scale bar, 10 µm. B) Z-stack scan image of 

Caco-2 monolayers obtained by confocal micrscopy showing surface and subcellular 

localization of PIP 640-PEG-biotin peptide after 45 min of apical exposure. Nuclei 

were stained with DAPI (blue). Scale bar, 20 µm. Images are repesentative of 3 

independent experiments with n=3 for all peptide. C) TEER change of Caco-2 cell 

monolayers induced by 1 mM of PIP 640-PEG-biotin. This data shows that PIP 640-

PEG-biotin peptide has no effect on the cell TEER. Data are means ± SEM of 3 

independent experiments, n= 6 for Control and PIP 640-PEG-biotin peptide. 
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7.3. HPLC and mass spectrometry characterization 
	

7.3.1.  HPLC analysis 
	

	

Figure 7.3: HPLC chromatogram of purified PIP 640 peptide, rrdykvevrr-NH2, 

detected at 220 nm 

	

	

Figure 7.4: HPLC chromatogram of purified PIP 641 peptide, rrdykvavrr-NH2, 

detected at 220 nm 
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Figure 7.5: HPLC chromatogram of purified PIP 642 peptide, rrdakvevrr-NH2, 

detected at 220 nm 

	

	

Figure 7.6: HPLC chromatogram of purified PIP 643 peptide, rraykvevrr-NH2, 

detected at 220 nm 
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Figure 7.7: HPLC chromatogram of purified PIP 644 peptide, rrrykvevrr-NH2, detected 

at 220 nm 

	

	

Figure 7.8: HPLC chromatogram of purified N-terminally biotinylated PIP 640 peptide, 

biotin-rrdykvevrr-NH2, detected at 220 nm 

	

	

	

	

	

	

	



	

190	
	

	

Figure 7.9: HPLC chromatogram of purified N-terminally biotinylated PIP 641 peptide, 

biotin-rrdykvavrr-NH2, detected at 220 nm 

	

	

Figure 7.10: HPLC chromatogram of purified N-terminally biotinylated PIP 642 

peptide, biotin-rrdakvevrr-NH2, detected at 220 nm 
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Figure 7.11: HPLC chromatogram of purified N-terminally biotinylated PIP 643 

peptide, biotin-rraykvevrr-NH2, detected at 220 nm 

	

	

Figure 7.12: HPLC chromatogram of purified N-terminally biotinylated PIP 644 

peptide, biotin-rrrykvevrr-NH2, detected at 220 nm 
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Figure 7.13: HPLC chromatogram of purified C-terminally biotinylated PIP 640 

peptide, rraykvevrr-PEG-biotin, detected at 220 nm	
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Figure 7.14: ESI-MS+ spectrum of the PIP 640 peptide. Inset, the experimental isotopic 

pattern (top) in comparison with the calculated isotopic pattern (bottom) for the [M+H]+ 

species. 

7.3.2. Mass spectrometry data 
 

 

 

 

 

 

 

 



	

194	
	

Figure 7.15: ESI-MS+ spectrum of the PIP 641 peptide. Inset, the experimental isotopic 

pattern (top) in comparison with the calculated isotopic pattern (bottom) for the [M+H]+ 

species. 
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Figure 7.16: ESI-MS+ spectrum of the PIP 642 peptide. Inset, the experimental isotopic 

pattern (top) in comparison with the calculated isotopic pattern (bottom) for the [M+H]+ 

species. 
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Figure 7.17: ESI-MS+ spectrum of the PIP 643 peptide. Inset, the experimental isotopic 

pattern (top) in comparison with the calculated isotopic pattern (bottom) for the [M+H]+ 

species. 
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Figure 7.18:	ESI-MS+ spectrum of the PIP 644 peptide. Inset, the experimental isotopic 

pattern (top) in comparison with the calculated isotopic pattern (bottom) for the [M+H]+ 

species. 
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Figure 7.19: ESI-MS+ spectrum of the N-terminally biotinylated PIP 640 peptide. Inset, 

the experimental isotopic pattern (top) in comparison with the calculated isotopic pattern 

(bottom) for the [M+H]+ species. 
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Figure 7.20: ESI-MS+ spectrum of the N-terminally biotinylated PIP 641 peptide. Inset, 

the experimental isotopic pattern (top) in comparison with the calculated isotopic 

pattern (bottom) for the [M+H]+ species. 
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Figure 7.21:	ESI-MS+ spectrum of the N-terminally biotinylated PIP 642 peptide. Inset, 

the experimental isotopic pattern (top) in comparison with the calculated isotopic pattern 

(bottom) for the [M+2H]2+ species. 
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Figure 7.22:	ESI-MS+ spectrum of the N-terminally biotinylated PIP 643 peptide. Inset, the 

experimental isotopic pattern (top) in comparison with the calculated isotopic pattern 

(bottom) for the [M+H]+ species. 
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Figure 7.23:	ESI-MS+ spectrum of the N-terminally biotinylated PIP 644 peptide. Inset, 

the experimental isotopic pattern (top) in comparison with the calculated isotopic pattern 

(bottom) for the [M+2H]2+ species. 
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Figure 7.24: ESI-MS+ spectrum of the C-terminally biotinylated PIP 640 peptide. Inset, 

the experimental isotopic pattern (top) in comparison with the calculated isotopic pattern 

(bottom) for the [M+2H]2+ species. 
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