

University of Bath

PHD

Economic Algorithms for the Management of Resources in Computer Systems

Gradwell, Peter

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

ECONOMIC ALGORITHMS FOR THE

MANAGEMENT OF RESOURCES IN

COMPUTER SYSTEMS

Submitted by Peter Gradwell

for the degree of

Doctor of Philosophy

of the University of Bath

Department of Computer Science

2009

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on condition that anyone who consults it is under
stood to recognise that its copyright rests with its author and no information derived
from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University library and
may be photocopied or lent to other libraries for the purposes of consultation.

Abstract

Cloud computing and distributed Grid computations in the e-science and commercial
spheres are beginning to make accessible huge amounts of computing power with “just
in time” availability. However, the economic models surrounding these systems are
static and uniform, with charging models that, for web-based cloud systems work on
a price per unit per hour basis, whilst for educational type resources, fixed contractual
arrangements and multi-year projects are more prevalent.

The common place practice of using just-in-time capacity planning and variable pric
ing algorithms, such as those pioneered by airlines like EasyJet, tells us that the cost
of delivering these services and the price that should be paid for them is a much more
complex beast. Future Grid and Cloud Computing computations will be enabled by
participants trading resources in order to construct bundles of goods or services in
both new commercial arenas and the more well established “e-science” experiments in
science, engineering and, now emerging, social sciences.

A combinatorial auction (CA) is a natural choice for determining the optimal allocation
for a bundle of required goods and services, but the space and time dimensions that
characterise a Grid compute cloud would appear to indicate they are incompatible.

This thesis proposes that an analogue of a physical commodities market is more appro
priate for distributed resource allocation and that there is a class of bundling problems
whose complexity properties appear to make the utilisation of a CA impractical. We
therefore compare the two techniques for resource bundling and investigate the cross
over point, to enrich our understanding of how combinatorial auctions and distributed
markets may be used together to improve distributed resource allocation practices.

1

Acknowledgements

While the work described here is all my own, its completion owes a great deal to many
people.

Richard Male at the Southwest RDA was kind enough to recycle my tax dollars into
an industrial grant for the first three years of my studies, offsetting my fees and getting
me started.

The preliminary implementation of the MDA system was completed as a final year
degree project by Gislin Kamda and I am grateful to him for giving our ideas an early
breath of life as code.

Much later, I was lucky to work with Michel Oey and Reinier Timmer at VU Uni
versity, maintainers of the Agentscape project. In addition to kind hospitality, helping
re-code my algorithms in the Agentscape framework and working on a joint paper,
Michel went beyond the call of duty in analysing my work for correctness. It was only
through answering his questions that I felt confident in my work.

In their book “How to get a PhD” Phillips and Pugh suggest that it is fatal for a student
to enter employment whilst writing up their thesis. Having already started a small
business in December 1998 I decided that warning would not apply—I already had a
job!

Since that time the business has grown substantially, multiple millions of pounds have
been earned and spent in the local economy and I have directly employed over 40
people, to serve over 14,000 customers. The business has provided a unique set of
challenges and diverted me from my studies, both physically and mentally, sometimes
welcome, frequently delaying, but importantly it provided the context (and funding)
that enabled me to stay the course.

I could not have managed two full time endeavours without the support of my excellent
staff, management team and customers who fought the fine line between hiding me
from the detail of the business and needing my input to drive them forward. I look
forward to being able to focus on you properly.

2

My family has also done their best to keep me on track and it is a privilege to come from
a family that values education so highly. My parents have understood, encouraged and
proofread every step of the way. I am glad to beat my middle brother to becoming a
medical doctor, whilst the mental bibliography of Philip, my second brother reading
Politics, Philosophy and Economics at Oxford has saved me hours of research.

The real reason I wanted to achieve a PhD was to prove to myself that I could solve
a difficult, intellectual problem; that I could be as capable as all those whom I admire
that already have this qualification. My selfish pursuit has come at great cost to my
closest supporters, whom I cannot repay: (i) Julian, my supervisor, for I missed every
deadline, (ii) Kate, whom I ignored and could not speak to for my mind was exhausted
and (iii) my Grandfather, who did not live to see the conclusions written.

I sincerely thank you all.

3

Contents

1 Introduction to the Problem Space 12

1.1 Context and Motivation . 12

1.2 Introduction to the Problem Space 13

1.2.1 The Combinatorial Auction 15

1.2.2 Problems with Combinatorial Auctions 17

1.2.3 Distributed Market . 19

1.2.4 Dependencies between Goods 21

1.3 Review of Potential Solutions . 22

1.3.1 Ensuring Comparability . 25

1.3.2 Thesis Contribution . 26

1.4 Thesis Structure . 27

1.5 Related Publications . 29

2 Review of Literature 32

2.1 The Computer Science View . 33

2.1.1 Distributed Market Simulation Engines 33

2.1.2 Centralised Approaches . 34

2.1.3 Rational Choice and Market Design 37

4

2.1.4 Implementation of Auctions and Markets 39

2.1.5 Grid Resource Management	 43

2.1.6 Methods for distributed resource allocation 46

2.2 Economics view . 50

2.3 Conclusions from the literature	 . 52

3 Market Models	 55

3.1 Introduction to Market Models and Approaches 55

3.2 Auctions and clearing techniques . 56

3.2.1 Key Economic Principles . 56

3.2.2 Vickrey-Clarkes-Groves Mechanism 62

3.3 Distributed Market Models . 65

3.4 Brickworld - Initial design concepts 66

3.4.1 Brickworld Development . 67

3.4.2 Auction closing and Settlement 68

3.4.3 Evaluation Strategies . 70

3.4.4 Conclusions from Brickworld	 72

4 Multiple Distributed Auctions	 74

4.1 MDA Trading System Architecture 74

4.2 Overview of MDA . 76

4.2.1 Use of JASA . 80

4.3 Trading Strategy . 81

4.3.1 Social Welfare in Trading 82

4.4	 Algorithms in Pseudo Code . 83

5

4.5 Conclusions from the MDA System 84

4.6 MDA Re-factoring in AgentScape 85

4.6.1 Using AgentScape for distributed auctions 87

4.6.2 MDA Distributed Architecture	 88

4.6.3 Re-factoring for asynchronous operation 89

4.6.4 Initial set-up of the market 89

4.6.5 Startup and Bootstrap Process	 90

4.6.6 Auction Clearing Process . 91

4.6.7 Returning bundles . 91

4.6.8 Market stop condition . 92

4.6.9 CDA clear conditions . 92

4.6.10 Messaging Overhead . 93

4.6.11 Synchronisation Coordination Overhead 94

4.6.12 Evaluation of Agentscape-MDA 95

4.7 Conclusion - the MDA System	 . 99

5 Experimental Approach	 100

5.1 Comparison Problem . 100

5.2 Factors for comparison . 101

5.3 Construction of Experiments . 103

5.4 Structure of Test Data . 104

5.5 Calibration of timings . 106

5.6 Verification of accuracy of CASS . 106

5.7	 Conclusions . 107

6

6 Experimental Results 108

6.1 Introduction . 108

6.2 Examining Hardness . 109

6.3 Time . 113

6.4 Financial . 114

6.5 Efficiency . 117

6.6 Completion . 120

6.6.1 Number of Bundles . 120

6.6.2 Individual Bundle Completion 122

6.6.3 Which Bundles are traded? 124

6.7 Satisfaction . 127

6.8 Conclusions . 129

7 Further Experiments 133

7.1 Introduction to Further Experiments 133

7.2 Hardness . 135

7.3 Number of Goods/Bundles . 136

7.4 Actual Spend . 139

7.5 Efficiency . 140

7.6 Satisfaction . 141

8 Conclusions 149

8.1 Review of Contribution . 149

8.2 Grounded in Economics . 150

8.2.1 Thought Experiment - Fiscal Markets 151

7

8.2.2 MDA for real world problems 152

8.3 Economics provides the rationale . 153

9 Future 155

9.1 Capability or Capacity? . 155

9.2 Other NP-Hard Problems . 158

9.3 Review of the MDA System . 160

9.3.1 Intelligence of the Traders 160

9.3.2 Market Structure . 162

9.4 Conclusions on Future Work . 163

References 164

8

List of Figures

1.1 Hypothetical Projection of Complexity Model 16

1.2 Sample CA Bundle Data . 16

1.3 Solution Search Tree . 17

1.4 Schematic of MDA market structure 20

3.1 Visualisation of Pareto and Social Optimality converging 60

4.1 MDA Instantiation Flow . 78

4.2 Sample CATS Data File . 79

4.3 Model of AgentScape middleware environment 87

4.4 Visualisation of MDA bundle flow 89

4.5	 MDA Bundles Traded - Repast and AgentScape 97

6.1	 Gross Hardness, 1000 Bids/256 Goods, Graph by KLB 109

6.2	 CASS and CPLEX Gross Hardness for L2 and Scheduling (KLB Re

sults Only) . 111

6.3	 Gross Hardness of L2 and Scheduling Distributions 112

6.4	 CASS and MDA Time vs Number of Goods Sold 113

6.5	 CASS and MDA Actual Spend vs Number of Goods Sold 115

6.6	 CASS/MDA runs - Number of Goods Sold 116

9

6.7 MDA Budget Spent vs Number of Goods Sold 117

6.8 CASS and MDA Efficiency for Scheduling data 118

6.9 CASS and MDA Efficiency for L2 data 119

6.10 Number of Touched Bundles per Solution 121

6.11 Standard Deviation and Variance for L2 122

6.12 Standard Deviation and Variance for Scheduling 123

6.13 Completion vs Selected Bundles for L2 Tests 125

6.14 Completion vs Selected Bundles for MDA-L2 Tests 126

6.15 Completion vs Selected Bundles for Scheduling Tests 127

6.16 CASS and MDA Time vs Number of Bundles in Solution 128

6.17 CASS and MDA Time vs Number of Goods Sold 129

6.18 Budget Spent vs Satisfaction . 130

7.1 Gross Hardness Distributions . 136

7.2 CASS Gross Hardness (KLB Results Only) 137

7.3 CPLEX Gross Hardness (KLB Results Only) 138

7.4 CASS Time vs Number of Goods Sold 139

7.5 CASS Time vs Number of Bundles in Solution 140

7.6 MDA Time vs Number of Goods Sold 141

7.7 MDA Time vs Number of Bundles in Solution 142

7.8 CASS Actual Spend vs Number of Goods Sold 143

7.9 MDA Actual Spend vs Number of Goods Sold 144

7.10 CASS Efficiency vs Number of Goods Sold 145

7.11 MDA Efficiency vs Number of Goods Sold 146

10

7.12 CASS Solution Spent vs Satisfaction 147

7.13 MDA Solution Spent vs Satisfaction 148

9.1 Break Down of Time Spent in Decentralised System 161

11

Chapter 1

Introduction to the Problem Space

1.1 Context and Motivation

Alice and Bob are physics researchers looking to submit a large quantity of compu
tations, perhaps processing recent experimental results. Each has different budgets,
priorities and resource requirements and given the limited capacity of their local com
puting cluster a decision about how to allocate the resources must be made. Ideally,
the optimal allocation should be chosen.

This problem arises in many resource management and procurement applications. We
are specifically interested in Cloud computing and distributed Grid computations be
cause new developments in the e-science and commercial spheres are making huge
amounts of computing power accessible with “just in time” availability. However,
the economic models surrounding these systems are static and uniform, with charging
models that, for web-based cloud systemsi, work on a price per unit per hour basis,
whilst for educational type resources, fixed contractual arrangements and multi-year
projects are more prevalent.

The common place practise of using just-in-time capacity planning and variable pric
ing algorithms, such as those pioneered by airlines like EasyJet, tells us that the cost
of delivering these services and the price that should be paid for them is a much more
complex beast. Future Grid and Cloud Computing computations will be enabled by
participants trading resources in order to construct bundles of goods or services in both

12

new commercial arenas and the more well established “e-science” experiments in sci
ence, engineering and, now emerging, social sciences. What mechanism should we
use to support the trading and resource allocation?

A combinatorial auction (CA) is a natural choice for determining the optimal alloca
tion for a bundle of required goods and services, because it guarantees to give the best
economic outcome (Pareto optimal) for parties concerned. However, whilst the al
gorithms have been refined through significant research the mode of problem solving
is fundamentally NP-Hard and requires both a centralised mechanism and complete
revelation of the participants preferences and valuations to work.

An alternative solution would be to distribute the problem. With multiple auctions and
trading agents we can remove the inherent single point of failure and concurrently solv
ing a larger number of simpler, linear problems, in a predicable time-frame. However,
distributed markets have their own failings and typically do not produce Pareto-optimal
allocations which does make them unsuitable for some applications.

In order to understand what makes an outcome optimal and come to an informed de
cision as to what the appropriate solution is for a given resource allocation problem
a greater understanding of their workings, outcomes and the relative performance of
each is required.

Through an empirical analysis this thesis compares the two techniques for resource
bundling and investigate the cross-over point, to enrich our understanding of how com
binatorial auctions and distributed markets may be used together to improve distributed
resource allocation practises and to enable the reader to understand the parameters that
define which technique is appropriate for a particular class of resource allocation prob
lems.

1.2 Introduction to the Problem Space

We wish to determine which method should be used in order to compute the most
appropriate allocation of a generic set of resources for a given set of circumstances
and develop an understanding of how the different approaches available relate to one
another. Consider three scenarios:

13

1. We have complete information about the preferences of the mechanism partici
pants; we have a single point of centralised decision making; we wait an infinite
amount of time; we produce an optimal outcome. This is known as the combi
natorial auction solution.

2. We have incomplete preference information; decentralised decision making, a
known (linear to problem size) amount of time to wait and we produce a subop
timal outcome, but one which is useful because it is built out of the preferences
expressed by market participants. This would be the problem solved by our
distributed market, implemented as the “Multiple Distributed Auctions” (MDA)
system.

3. We have the trivial problem. Consider a situation of needing to allocate 30 goods
to 10 participants. By rolling a 30 sided dice, we can, through a centralised
decision making process allocate the resources to the participants. We have zero
preference information, it is a very quick process and we have no information
about the quality or usefulness of the outcome.

There are, therefore, a number of axes, or scales:

1. Centralised vs Decentralised Decision Making

2. Complete preference information vs Incomplete preference information

3. Time available / expended on determining the solution

4. Optimal vs Suboptimal allocations (for profit or utilisation)

Not all the axes are sliding, linear scales. Decision making is either centralised or
decentralised, with no degrees of variance between, but preferences can be incremen
tally revealed. Time is a linear scale and we can measure the proximity and quality of
solutions through their varying degrees of separation.

These four axes allow us to define our problem space, give relative position to each of
our example problems and to highlight the difference between the options.

Consider the question of centralised vs decentralised first: Is a financially driven auc
tion the best choice or should a trading market be used? Grid computing networks are

14

potentially a major user of distributed resource allocation systems, but the problem is
certainly not limited to that domain and there is much literature on the subject out
side the Grid computing sphere particularly with respect to distributed algorithms. By
way of example, the seminal 1980’s paper, “A Micro-economic Approach to Optimal
Resource Allocation in Distributed Computer Systems” by Kurose and Simha [KS89]
considers the benefits of using an economy-based decentralised algorithm for file sys
tem allocation. They argue that price is the ideal valuation function for a distributed
market for two reasons:

1. Price can ultimately be seen as a projection function from a multi-dimensional
vector of “values” — both quantitative and qualitative — to a single value and;

2. Secondly, in a free market, over the longer term, the price, cost and the marginal
value that a user assigns to a good, will all converge as competition drives down
price and makes a number of good alternatives available.

Work on similar problems in other related areas (parallel computing, file system schedul
ing, etc.) [ASGH95, FBK96, SH80] typically seems to focus on a simplified environ
mental model where a significant weakness is a lack of a free market or “real world”
aggressiveness and competition that a financially-based allocation environment (auc
tion, trading floor, etc.) should emulate and we describe in our MDA implementation
in Chapter 4.

In our introduction, we considered three approaches to resource allocation. Of these,
the dice throwing approach is unsatisfactory as it is neither optimal nor inclusive of
preferences (although in some circumstances it is arguably viewed as “fair”). There are
two relevant approaches to solving a resource allocation problem, the Combinatorial
Auction and a Distributed Market.

1.2.1 The Combinatorial Auction

A combinatorial auction is an auction in which bidders can place bids on combinations
or “bundles” of items, rather than just individual goods. They have wide applications
for use, in auctions for logistics, radio spectrum and many other procurement scenar
ios.

15

Most computational resource allocation problems are resolved through the use of a
centralised combinatorial auction. However, this is an NP-Hard compute problem
which has scalability limits and which runs in unpredictable time, as illustrated in
Figure 1.1. Most solutions to this problem combine tree search with heuristics, so
if the heuristics are insufficient to prune the search tree and make the problem space
“small enough” the algorithm might not be able to complete the search in the given
amount of time.

B
un

dl
e

C
om

pl
ex

ity

Time

Perfect Allocation

CA

Figure 1.1: Hypothetical Projection of Complexity Model

Looking at a simple set of bundles, we can begin to determine the possible outcomes.
For example in Figure 1.2 each line represents a bundle, with the first line showing that
agent A will bid 2426 for elements 0, 2 and 3.

Agent Budget Requirements
A 2426 0, 2, 3
B 1969 0, 1, 2
C 32 0
D 781 1, 3
E 370 0, 1, 4

Figure 1.2: Sample CA Bundle Data

A CA solver will build a search tree, similar to Figure 1.3 and use it to determine the
answer which will provide the most value for the goods on sale. It does this using a
combination of heuristics to prune the tree and various tree search algorithms. In our
simple example we can see that selling bundle A, comprising goods 0,2,3 for a value
of 2426 achieves the maximum value possible for this auction.

16

Solution

A B C D E
0,2,3 0,1,2 0 1,3 0,1,4

D C
2426 1969 32 781 3701,3 0

813 813

Figure 1.3: Solution Search Tree

1.2.2 Problems with Combinatorial Auctions

When trying to solve the described resource allocation problem, using a centralised
market, a number of problems arise:

Robustness: Distributed computer systems inherently have built in redundancy and
scalability, as can increasingly be seen in today’s cloud computing services. As
well as redundancy of the platform, one of the key attractions of scalable com
puting resources is the ability to quickly increase and reduce usage through the
advanced management tools provided. Therefore if we are to provide a robust
environment for the execution of applications then we must equally implement
management mechanisms which are rapid and robust. Relying on a single, cen
tralised auctioneer to make all the resource management decisions about a plat
form would not be a sensible or viable solution.

Complete Information: In order to compute the solution to any combinatorial auc
tion, the auctioneer needs to have complete information about all of the prefer
ences for all parties (buyers and sellers) in the market. In a distributed network
there are two constraints: (i) Communication between nodes may mean that in
formation for all the potential buyers and sellers is not available at any single
point in time. (ii) The structure of a distributed system means that it will encour
age participation from buyers and sellers across multiple distributed domains.

17

This means that for reasons of security and privacy, individual traders may not
wish to make their full preferences known to the auctioneer. This is particularly
true in a supplier-customer relationship, because the parties will naturally have
different motivations and objectives in their negotiations. Note that whilst pa
pers such as those by Sandholm [SG06] do investigate the potential for solving
centralised problems with minimal preferences they do not achieve optimal solu
tions and the proximity of the derived utility to the optimal depends on a number
of variables including the number of bids in the auction.

By way of example, the D-CIS Lab at Thales has identified two areas of work which
demonstrate applications in which agent based systems are being used to address NP-
Hard problems in the real world where a combinatorial approach is infeasible. This is a
paradigm they call “Actor-Agent Communities”. Firstly, they have provided decision
support software to help manage interruptions to train schedules in the Netherlands
railway system and secondly to environmental impact decision making in Rotterdam
Harbour.

Railway scheduling is a subject that has been long studied and with recent advances in
computing power, heuristic development and search algorithms it is common place to
find computer systems utilised in the production of initial railway schedules. However,
the problem of effectively managing the railway schedule in the event of a disruption
to the network is currently unsolved. How could our work on multiple distributed
auctions help further the developments of the D-CIS lab in refining their solution to
this problem? Firstly, the train rescheduling problem can be characterised as an NP-
Hard problem with complex heuristics which requires search to produce a solution.
However, when managing the crisis of train schedule interruption it is potentially more
important to provide a workable solution quickly than to provide the optimum solution
(i.e. one with zero knock on effects to the schedule) because a single knock on effect
in the future can be easily managed, where as a current disruption may generate much
larger, immediate effects in the network. In an application where the optimal outcome
is not necessary, a satisficing [Sim55] solution can be obtained through the use of
distributed auctions which may provide a speedy and useful solution.

The question of environmental decision support in Rotterdam Harbour is a similar
problem to which we can lend our expertise. The challenge in environmental manage
ment is the coordination of response across a very large number of different govern
mental agencies, all of whom have differing priorities and responsibilities, but whom

18

must play a coordinated role in responding to an environmental accident.

Representing the available agency resources and desired actions as goods in the Trad
ing Agents model we can package their tasks as bundles and use markets to determine
effective strategies for collaborative team working, whilst taking into account a greater
number of different constraints and trade offs that are imposed in such a situation, than
would be possible if we used a centralised planning solution.

1.2.3 Distributed Market

In order to address these challenges and develop an empirical understanding of the
dynamics of decentralised resource allocation systems we built a distributed market,
called the Multiple Distributed Auction (MDA)—see Figure 1.4. Initially this was a
uni-processor simulation of the MDA using the JASA [PMPM06] and Repast [NCV06]
toolkits. The system begins with an ‘Oracle’ that is boot-strapped from a datafile pro
duced by the “Combinatorial Auction Test Suite” software (CATS) [LBPS00] that pro
vides the goods and bundles needed to run the market. From this the Repast simulator
is used to manage a multitude of Agents which participate in a number of continuous
double auctions to buy and sell the goods in order to complete their desired bundles.

We do not claim that the concept of distributed markets to be a new or novel idea
and the contribution of this thesis is the comparison of centralised and decentralised
markets.

Researchers such as Parkes [PS04] have looked extensively at auctions and resource
allocation mechanisms with systems such as ICE (Iterative Combinatorial Exchange)
[LJC+08], a fully expressive iterative combinatorial auction, and Bellagio [ABC+09] a
distributed market scheduler implemented for the Planet Lab grid computing environ
ment. The difficulty that both of these works found however, highlighted in the review
of Bellagios effectiveness [ABC+09], was that whilst having a distributed market did
increase allocation efficiency there was a real problem of replicating the market’s input
data because workloads from scheduling environments are, by nature, entirely random
and therefore it is difficult to identify the relative performance of the distributed system
with the known body of work on centralised systems.

We have additionally argued that it is infeasible to accurately predict the run-time

19

Trader1 · · · Traderi · · · Traderm

CDAj · · · · · · CDA1 CDAn

MDA Manager Oracle

CATS File Loader

Figure 1.4: Schematic of MDA market structure

behaviour of distributed systems theoretically and in order to make that comparison
and hence understand which system is appropriate for the problem the user wishes
to solve, it is necessary to have an implementation of both systems, supplied with a
consistent set of input data, which is what we have done.

Although authors such as Parkes have published papers on the design and output of
their systems, source code is not available and therefore it has been necessary to im
plement our own system of distributed auctions.

The market comprises an Oracle, many Traders, an MDA manager and many CDAs
(Continuous Double Auctions):

Oracle: responsible for handing out bundles to traders on demand. Consequently,
varying the Oracle’s output rate constrains supply and demand in the market.
Bundles can be requested from the Oracle and also later returned to it, if they
cannot be purchased/sold. All transactions are reported to the Oracle, so it main
tains information and history about the market participants.

20

Trader: responsible for retrieving bundles from the Oracle and trading them. Traders
that fail to trade their bundle within a given number of rounds must return them
to the Oracle—ensuring the market does not contain too many extra-marginal
traders1. At anyone one time, anyone can be buyers or sellers depending on the
type of the bundle received from the Oracle. Traders may also switch state—
from buying to selling—which might happen, for example, if they decided that
they could not acquire sufficient goods to complete a bundle’s requirements
given current time or budget constraints.

CDA (continuous double auction): CDAs are market-places where traders can trade
a single type of resource. The seller reduces their ask-price at each round, the
buyer increases their bid-price at each round and an adjudicator determines when
a sale has been agreed and at what price. Traders may withdraw from a CDA at
any time. An MDA is a collection of CDAs.

MDA: responsible for telling the traders which CDAs they can use to trade the re
sources in their bundles. The MDA stores a reference to all CDAs and if a CDA
is requested for a good type which does not already exist the MDA will instanti
ate it.

We have run the distributed system using the same CATS input files as used in the
CASS [LB03] simulations and compared the output from two sets of experiments,
which has enabled us to draw a number of useful conclusions about the operation of
our markets.

1.2.4 Dependencies between Goods

If Alice wishes to purchase three goods from a market, such as a flight, a hotel and an
airport to hotel transfer she will likely wish to purchase all three goods simultaneously,
because arguably one has no value without the other two complementary activities.
However, representing the complementarities and dependencies between goods imme
diately makes the problem of resource allocation significantly more complex, indeed
this is the problem that a Combinatorial Auction solves and we have highlighted the
pros and cons of such an approach in Section 1.2.2.

1Buyers who have paid less than the equilibrium price and sellers who are selling for more than the
equilibrium price.

21

With our distributed market mechanism, in which each type of good has its own contin
uous double auction there is no support for describing dependencies within the market
mechanism. However, bundles of goods are passed by the Oracle to the Traders, whose
role it is to assemble the relevant bundle of goods, through participating in multiple,
but unrelated, auctions.

It is therefore very likely that a Trader will purchase the goods in series and given the
limited supply of goods, they may not be able to complete the bundle. We consider the
impact of bundle completion in our results (Section 6.6, page 120) as it forms one of
our key measures for the success of distributed markets.

There are pros and cons to ensuring that complete sets of goods are assembled. It is
a more complex problem, which increases compute time and artificially imposing a
restriction to purchase a complete set may mean that consumers are denied the oppor
tunity to purchase partial bundles of goods—there are many instances where owning
some of the goods required is satisfactory. For example, Alice may find she can hire a
taxi locally for less money than a pre-arranged hotel transfer, we would describe this
as a complementary solution, but which is available outside of our system of markets.
Whilst the dependencies between goods is an important factor and one which has been
well researched, (for example in the Trading Agent Competition, described in Section
2.1.6, page 47) we do not think it is essential for systems to support dependencies be
tween goods, there are advantages not too doing so and we evaluate “completeness” as
part of this work.

1.3 Review of Potential Solutions

Given sufficient time, the CA will find the Pareto efficient solution (defined in Sec
tion 3.2.1, page 58) to the bundling problem which provides the maximum amount of
revenue to the sellers/providers of goods in the auction. However, we have found (as
described in Section 6.8, page 129) that a decentralised market will trade more goods
with greater concurrency and solve more problems in linear time, but at the expense of
finding non-optimal solutions.

We consider that non-optimal solutions are not necessarily a problem and we would
characterise our solutions as “satisficing”, a decision-making strategy which is dis

22

cussed in detail in Section 3.2.1 and defined as [Sim55]:

“Attempting to meet criteria for adequacy, rather than to identify an opti
mal solution. A satisficing strategy may often, in fact, be (near) optimal if
the costs of the decision-making process itself, such as the cost of obtain
ing complete information, are considered in the outcome calculus.”

Can we therefore solve distributed resource allocation problems, in linear time with
greater predictability, using a distributed system of markets? There are a number of
questions:

1. If we use a distributed market, what is the variance of the outcome between it
and a centralised markets?

2. How good or bad is the result, with respect to the completeness of bundles,
financial value and spend, time to complete and efficiency of the market? Are
the results acceptable?

3. What affects the overlap of goods selected to complete bundles produced by the
different markets?

4. Can we increase the market concurrency and/or the number of goods which are
traded in the market, thus reducing social welfare deprivation?

As we have discussed there are additional fringe benefits associated with conducting
resource allocation decisions in a distributed system, but ultimately, the question is can
we define a menu of criteria which set out the best resource allocation mechanism for
the task?

We have chosen an empirical analysis approach for two reasons:

1. An analytical approach to comparison seems infeasible — at least, given cur
rent understandings of the problem — because for complexity analysis purposes
a combinatorial auction is equivalent to a weighted set-packing problem and
hence can be solved analytically but it is not yet possible to perform a simi
lar (theoretical) analysis of a system of distributed software agents — with all

23

the interactions and overheads that communication and distributed intelligence
brings. Therefore empirical techniques offer a practical route to the evaluation of
the market system and allow analysis of financial outcomes, market efficiency,
bundle completion and participant satisfaction within a reasonable time frame.

2. The literature is full of examples [DJ03, WPBB01] of theoretical performance
analysis that inevitably use simplified models. The use of such models then
distorts any understanding of the benefit proposed by a system, particularly in the
real world. Large distributed systems of autonomous objects are too complicated
to model theoretically, but it is a desire to understand these systems that provides
impetus and rationale for this thesis, hence we have chosen to analyse them
empirically.

To carry out the comparison we identify three key attributes:

1.	 Optimality, or solution quality, whether we are maximising for buyer, seller
or intermediary; are the participants getting the best solution that meets their
needs?

2.	 Time, or how long it takes to produce the solutions.

3.	 Cost, or how “expensive” the approach is, in terms of items sold and bids com
pleted, which may be evaluated through the economic surplus and social welfare
produced in the system.

We will revisit these themes throughout the discussion as we build a comparison of
different methods for bundling resources and evaluate their pros and cons. The ap
proaches considered are as follows:

1. Firstly, Combinatorial Auction solver (CA), CASS, a system described and im
plemented by Kevin Leyton-Brown[LB03]. CAs are a type of multiple-item
market and the solver takes a set of m indivisible non-identical items for sale
and n bids. Each bid is a pair made up of (i) a subset of the m items and (ii) a
numeric value representing the value a bidder will pay for the bundle. The CA
solver will attempt to optimise the outcome of the problem such that the alloca
tion of m items across the n bids maximises the total social welfare (sum of the
buyer and seller profit) in the system.

24

This problem is known to be NP-complete and CA solvers search for the optimal
allocation using a single, centralised auction, with complete information about
all available bids, bidders and items.

2. Secondly, a Multiple Distributed Auction (MDA) is a distributed system of many
single item continuous double auctions, that is many auctions take place concur
rently, one for each type of good being traded. A MDA distributes the bundling
operation to the “traders” in the market, who subscribe to multiple markets and
buy individual items with the motive of grouping them to satisfy bundle requests.

In doing so, the MDA shifts the system objective from achieving the maximum
valuation for the sellers (the CA objective) to maximising the number of ele
ments traded and achieving the best price for the buyer.

3. Thirdly, we re-factored the uni-processor MDA into a fully distributed and asyn
chronous market where Traders may buy and sell goods across multiple Continu
ous Double Auctions (CDAs). This was built using the AgentScape [OB06] mid
dleware, a framework for heterogeneous, mobile agents. The use of AgentScape
shifts the paradigm so that the agents are not tied to execute in sequence which
enables them to act with greater autonomy increasing the competitive environ
ment of the market.

1.3.1 Ensuring Comparability

Comparing a centralised system with a decentralised one is to some extent, an apples
and oranges comparison. Both are different systems and take different approaches to
solving the problem. However, in this context, they are both solving the same problem.

We took two approaches to ensuring that we had a fair basis for comparing the two sys
tems. (i) Firstly, we used the same test data as an input to all our experiments, taking
previously published distributions from the Combinatorial Auction Test Suite [LBPS00]
by Leyton-Brown. This provides a large set of test data with 1000 goods and 256 bids
in 500 test instances for multiple distributions spanning a wide spectrum of difficulty.
Included are results from two Combinatorial Auction type solvers, CPLEX and CASS.
We utilised all of the distributions in our experiments, but focus our detailed results on

25

the “L2” and “Scheduling” data types.

(ii) Secondly, we applied two economic tests to the systems to ensure that they pro
duced consistent outputs. These were that the results produced are Pareto Optimal
(described in Section 3.2.1) and that the mechanisms are Incentive Compatible (Sec
tion 3.2.1).

We believe that through maintaining consistency of the test environment and ensuring
that all environments individually provide consistent economic properties, we have
successfully provided a platform for the comparison.

1.3.2 Thesis Contribution

Typically researchers in the Combinatorial Auction space take the stance that nothing
less than optimal is sufficient and look for algorithmic improvements to their heuristics
and search logic. On the other side of the coin, those in Grid and Cloud Computing
look to make resource allocation decisions that maximise the utility of their clusters
whilst the economic properties of those allocation decisions and whether or not they
could be improved upon become a secondary concern.

In deciding whether to use a centralised or decentralised system for conducting re
source management activities users need to balance the trade off between utilisation,
economic and social welfare of the system and compute time for the allocation process
itself.

We do not re-invent the distributed market, but propose that a distributed market pro
vides an approach for solving more difficult problems such as the job shop scheduling
task simulated in our Scheduling distribution, because it shifts the responsibility for
assembling a bundle of goods onto a distributed set of software agents that can grow
linearly with demand, all of whom are focused on achieving maximum utilisation for
their specific bundle requirement.

Uniquely, we have developed a meaningful comparison of both approaches with a view
to answering the question “what is the right technique for solving my resource allo
cation problem” and we have conducted empirical experiments with both approaches
using identical, repeatable test data..

26

This ensures that resources are maximised to the fullest extent possible, with good ef
ficiency, revenue and in a predicable time frame . Combinatorial solutions will always
produce a Pareto efficient option and maximise revenue for the sellers of goods, but
their run times vary unpredictably based on both the algorithm used and the complexity
structure of the problem, and they often sacrifice resource utilisation.

1.4 Thesis Structure

We have begun with a review of the problem, rationale and overview of the contribu
tion that this work provides. The work is then placed in perspective in Chapter 2 (page
32), considering both the Computer Science (Section 2.1, page 33) and the Economics
(Section 2.2, page 50) view. Discussion as to what the key economic properties for
a distributed market might be continues in Chapter 3 (page 55), including the intro
duction of the game theory concepts of “Dominant Strategy”, “Nash Equilibrium”,
“Satisficing” and “Incentive Compatibility”. Finally we examine Social Welfare, a
concept which can be applied to aid in decision making between multiple points on a
Pareto optimal plane.

We then begin to look at our implementations. Brickworld, described in Section 3.4
(page 66) was the initial prototype, followed by the MDA system (which is used for
most of our computation) and an experiment running MDA in the AgentScape envi
ronment. Although the Brickworld implementation fell short of our initial ambitions
it provided a useful learning experience for the later MDA development enabling us
to focus on specific areas of functionality (for example resale of surplus goods and
adoption of ZI+ trading strategy, identified in Section 2.1.6, page 49).

Chapter 4 (page 74) examines the Multiple Distributed Auction system in detail, set
ting out the component parts (oracle, traders, auctions), the roles and responsibilities
for each and gives examples to demonstrate how traders complete purchases of goods
to form bundles. MDA was built using the Repast simulator and the JASA auction
libraries and runs on a single machine using a stepwise approach to managing all the
trader agents. It is therefore not fully synchronous and we were keen to understand
what would happen if we ran the system in such a scenario. We re-factored MDA
using the AgentScape framework, discussed in Section 4.6 (page 85) but found that
the addition of a distributed platform meant that the large quantity of messages being

27

passed between Traders caused an enormously large overhead and severely impacted
performance. In this section we identify a number of mechanisms to further improve
MDA in a fully synchronous environment and the rationale for doing so.

Chapter 5 (page 100) looks at the problem of comparing the centralised (CASS) and a
decentralised (MDA) systems and examines our approach to ensuring consistent inputs
and test environments which enable a valid comparison. Importantly, we have iden
tified a number of factors for comparison: hardness, time, financial, completion and
satisfaction and we outline those in detail. We consider what tests are appropriate and
the source of the test data (which comes from the Combinatorial Auction Test Suite).

To complete these experiments, we ran over 2000 test instances, each taking up to 2
hours and from the raw data we draw some conclusions in Chapter 6 (page 108). The
original author of the test data we use, Kevin Leyton-Brown, published run-time and
solution values for all datasets using the “CASS” algorithm which he developed, but
also the “CPLEX” solver, and initially we are able to draw performance comparisons
of the four sets of experiments (MDA, our CASS, KLB’s CASS, KLB’s CPLEX) and
look at the results in terms of runtime order of magnitude. Following on from the
runtime experiments we examine each dataset for each of our key attributes: hardness,
financial, completion and satisfaction.

We conclude that a distributed market provides an approach for solving more difficult
problems, such as the job shop scheduling task simulated in our Scheduling distribu
tion, which ensures that resources are maximised to the fullest extent possible, with
good efficiency, revenue and in a predicable time frame. Combinatorial solutions will
always produce a Pareto efficient option and maximise revenue for the sellers of goods,
but their run times vary unpredictably based on both the algorithm used and the com
plexity structure of the problem, and they often sacrifice resource utilisation.

Having concluded the experimentation, in Chapter 8 (page 149) we return to the
debate—which resource allocation technique is best, centralised or decentralised—and
draw conclusions? We know from the literature that many problems can be resolved
optimally using centralised approaches alone and some would say there is no call for
decentralised ones given the problems of ensuring an optimal solution.

In Chapter 9 (page 155) we look to the future and consider a number of scenarios
in which not only the technology behind distributed resource scheduling but also the

28

knowledge of when to use it will be of benefit. We also examine a number of improve
ments for our MDA system that we feel would improve its robustness and usefulness
in further work.

This thesis shows, uniquely through empirical analysis, that distributed resource
allocation systems work and that whilst there are trade offs, most notably with
regards the fiscal performance of the market, there are significant gains to be
had, over centralised systems, in improved resource utilisation, throughput, pre
dictable execution time and better social welfare.

Why would we want to make those trade offs? Firstly, “best technique” is a term that
will be appropriate only for a specific set of circumstances and whilst this is a Com
puter Science thesis and therefore math related concepts such as maximising revenue
might be important for some scenarios, it is important to bear in mind as we begin the
journey that it is the wider economic properties of the markets and their participants
which drive the need for resources. It is only within the context of human economic
behaviour across distributed systems that we can truly understand the challenges that
Computer Science looks to provide solutions for.

1.5 Related Publications

The following list includes all papers published by the author which are related to this
dissertation. In each case my contribution to the paper is stated in accordance with
regulation 16.1 subsection 3.v of the University of Bath regulations.

[GOT+08] Engineering Large-scale Distributed Auctions (Short Paper) Gradwell,
P.; Oey, M. A.; Timmer, R. J.; Brazier, F. M. T. and Padget, J. Proceedings of
the Seventh Int. Conference on Autonomous Agents and Multiagent Systems
(AAMAS), ACM 2008

We believed that the functional characteristics of market-based solutions are
typically best observed through the medium of simulation, data-gathering and
subsequent visualisation. We previously developed a simulation of multiple dis
tributed auctions to handle resource allocation (in fact, bundles of unspecified
goods) and in this paper we wanted to deploy an equivalent system as a dis

29

tributed application. We worked with the AgentScape platform and colleagues
in the AgentScape development team at VU University, Amsterdam.

There are two notable problems with the simulation-first, application-second ap
proach: (i) the simulation cannot reasonably take account of network effects, and
(ii) how to recreate in a distributed application the characteristics demonstrated
by the mechanism in the simulation. We describe: (i) the refactoring employed
in the process of transforming a uni-processor lock-step simulation into a mul
tiprocessor asynchronous system, (ii) some preliminary performance indicators,
and (iii) some reflections on our experience which may be useful in building
MAS in general.

The AgentScape reimplementation work described in the paper was completed
by Michel Oey, Reinier Timmer and myself. My focus was on the MDA design
and implementation whilst Michel and Renier focused on replacing the Repast
engine with the AgentScape framework. The paper was jointly written under the
supervision of Francis Brazier and Julian Padget.

[GP07] A comparison of distributed and centralised agent based bundling sys
tems Gradwell, P. and Padget, J. ICEC ’07: Proceedings of the ninth interna
tional conference on Electronic commerce, ACM Press, 2007, pages 25-34

In our ICEC paper we argued that the use of trading agents to manage the alloca
tion and bundling of resources across computer networks is well established and
literature to date has focused on a variety of auction and distributed market type
mechanisms that use economic principles to determine the ”best” allocation.

Having conducted an early empirical analysis of a number of solver algorithms,
principally the Centralised Combinatorial Auction Solver (CASS), we had shown
that those using bounded search techniques are typically able to solve a majority
of cases in linear time, while there remain a number of outlier cases that are
computationally problematic. In contrast, distributed mechanisms are intrinsi
cally less than optimal for sellers, but demonstrate significantly less variance in
computation time.

A proper understanding of the different performance properties and suitability
of the different techniques is necessary in order to make an informed choice
between a distributed market and a centralised auction. Consequently, we have
completed an empirical evaluation of CASS, a centralised mechanism, against
two distributed mechanisms: (i) Multiple Distributed Auctions (MDAs) and (ii)
Quote Driven Markets (QDMs). Uniquely, we carry out simulations of all three
mechanisms using a common dataset, generated by the Combinatorial Auction

30

Test Suite (CATS), providing a real basis for comparison. The main results
presented are that distributed mechanisms deliver (i) increases in the number of
items traded (ii) a greater proportion of bidder requirements being satisfied, but
(iii) potentially less optimal bundle solutions and (iv) consistent run times with
low overall variance when compared with centralised algorithms.

This paper contained the first results from our CASS and centralised MDA ex
periments and later versions of these experiments form the bulk of results pre
sented in this thesis.

The work described in the paper was completed by myself and the paper was
edited by Julian Padget.

[GP05] Markets vs auctions: Approaches to distributed combinatorial resource
scheduling Gradwell, P. and Padget, J. In journal “Multiagent and Grid Sys
tems”, 2005, 251-262

In this initial paper we introduced the concept of Grid computations and argued
that they will be enabled by participants trading resources in order to construct
bundles of goods or services that constitute experiments in science, engineering
and now emerging, social sciences. A combinatorial auction (CA) is a natural
choice for optimal resource allocation, but the space and time dimensions that
characterise a Grid would appear to indicate they are incompatible. This paper
proposes that an analogue of a physical commodities market seems more appro
priate and that there is a class of bundling problem whose complexity properties
appear to make the utilisation of a CA impractical.

We describe our simulation environment, BrickWorld, which comprises a dis
tributed tier of ”TraderAgents” and multiple distributed single item auctions
(MDAs). The issues associated with the complexity of bundling are evaluated,
in particular those arising when attempting to provide useful combinations of
items in situations when the multi-dimensionality of the bundle would make it
impractical to finish the NP-complete optimisation successfully in the soft real-
time setting that is the Grid.

Finally, the evaluation strategy presented helps demonstrate that for small bundling
problems, a single CA continues to provide a high level of performance, but as
the complexity level of the problem increases and the problem becomes dis
tributed a system of MDAs may prove more effective.

The work described in the paper was completed by myself and the paper was
edited by Julian Padget.

31

Chapter 2

Review of Literature

Computational markets and associated topics are studied and discussed across both the
Computer Science and Economics literature and this thesis draws comparisons across
that range, specifically evaluating the problem in light of both Computer Science
Grids, Agents, Distributed Computing and Resource Management and Economics
Pareto Efficiency, Social Choice, Social Welfare and Market Based Control. Multi-
Agent Resource Allocation (MARA) is one name given to research which spans the
work of Computer Sciences’ Intelligent Agents and the Economics topics of mecha
nism design and game theory. In a comprehensive survey paper on the subject [CDE+06],
Chevaleyre et. al. suggest that Computer scientists often take the procedural view
“how do we find an allocation?”, whilst economists are more likely to concentrate on
the qualitative “what makes a good allocation?”.

The literature is wide ranging and in order to understand the state of the art in resource
allocation and markets we need to consider work on topics including: (i) Preferences,
(ii) Social Welfare, (iii) Complexity, (iv) Negotiation (v) Algorithm Design, (vi) Mech
anism Design, (vii) Implementation (viii) Simulation and Experimentation and (ix) the
interplay of theory and applications.

In this review we found that there is a large body of work which describes both the
design and attempted implementations of market simulations, usually with a specific
focus. Frustratingly, there is little concrete discussion as to how these simulations
were assembled, or what their actual performance was and therefore it is subsequently
impossible to build comparisons or benchmarks of either their system or ours.

32

Secondly, authors appear to fall into one of two camps, those for centralised markets
and those for decentralise and there does not appear to be a body of work devoted to
comparing and contrasting the two viewpoints, which is a void we seek to address in
this thesis.

2.1 The Computer Science View

It is important to understand the current state of the art so that this thesis may be placed
in context and the gaps in research identified. Taking the Computer Science perspec
tive, we have chosen to group the literature into (i) work done on market simulations,
(ii) discussions on centralised and (iii) decentralised approaches to resource manage
ment, (iv) market design and (v) the Trading Agent Competition; this last because it
serves to illustrate a number of plausible solutions for distributed resource allocation.

Empirical modelling of markets has proven to be a difficult task, due to the complexity
of defining the rules for the market, the number of parties involved and the volume
of data and trading that occurs. Attempting controlled scientific experiments in these
areas is very challenging and Market Simulation literature shows us that a number of
different approaches have been taken.

Within the market modelling community there is a divide between the centralised and
decentralised proponents. The former is characterised by an optimal, but NP-Hard
solution whilst the latter offers a more pragmatic approach with useful (although not
optimal) results in linear time. It is necessary for us to understand the algorithmic state
of the art in both sectors so that we can demonstrate how our system compares.

Finally, we consider the Trading Agent Competition (TAC) as it has provided the major
forum for empirical research into agent and market strategies.

2.1.1 Distributed Market Simulation Engines

Apart from TAC and its associated toolkits there are few documented simulations of
distributed market systems. Nimrod [ASGH95], a tool for building a specialised para

33

metric modelling system using distributed workstations is one such system that incor
porates a distributed scheduling component. The system is interesting in that it can
manage the scheduling of individual experiments to idle computers in a local area net
work. The Nimrod scheduler has been used for modelling power grids, drug design
and computer networks. However, Nimrod has not been subjected to any performance
comparisons or analysis of the relative benefits of the system when compared to others.

Looking specifically for software agent driven approaches we are interested in Cao’s
explanation of his PhD thesis, an Agent-based Resource Management System for grid
computing (ARMS) in [CJS+02b, CKN01]. ARMS follows the traditional pattern of
using agents to provide service advertisement and discovery for application scheduling
on the Grid. One of the interesting aspects of Cao’s work is the use of a toolkit called
“PACE” [NKP+00, CJS+02a]. The PACE environment provides a quantitatively based
evaluation of a distributed systems performance but it is focused on the evaluation of
parallel systems and supercomputers (e.g. those using high-speed message-passing
interfaces for communication). Cao’s simulation was completed on a cluster of nine
multi-processor Sun Ultra 1 workstations. The interesting highlight of this work is that
optimal run time performance appears to be obtained at approximately 16 processors,
although the reason for this is not discussed in detail. At a superficial level, this is
similar to our experiences with the AgentScape Platform [GOT+08].

2.1.2 Centralised Approaches

The objective of a resource allocation procedure is either (i) to find an allocation that
is feasible (e.g. to find any allocation of tasks to production units such that all tasks
will be completed in time) or (ii) to find an allocation that is optimal.

As a good introduction Biswas describes the detail of an iterative Dutch combinatorial
auction in [BN05]. This paper gives some useful background on how CAs may be
modelled as a weighted set-packing problem and uses generalised Vickrey auctions,
as described in [CSS05, Ch.1], to derive worst-case bounds for the algorithms. This
paper is helpful in shaping our understanding of the structure of a CA and its worst-
case performance.

Like other authors in papers such as [SCG07], Biswas supports the notion that the
primary measure of agent performance should be total profit over a simulated period

34

of activity. This is an important theme we develop later when considering how to
measure our distributed markets.

Sandholm has authored a great many papers on different aspects of centralised ap
proaches to scheduling and resource allocation problems and much of his research
builds on real world experience gained through CombineNet, a company founded to
exploit his various algorithmic patents. Unfortunately the commercialisation of his
work has meant that there is little detail of its practical applications. However, in his
keynote talk at the International Conference on Electronic Commerce in 2007 [San07]
he outlined how they have developed a new paradigm called “expressive commerce”
and applied it to industrial procurement. The concept is that they capture a huge
amount of heuristic information from buyers and sellers so that buy and sell require
ments are much more expressively defined using a wide range of quantitative factors
than in previous attempts. Buy and sell requirements are algorithmically cleared using
a centralised combinatorial auction—but in reasonable time frames, with qualitative
factors used to prune the results. A number of developments have lead to this point.
Early work on the CABOB algorithm [SSGL01, SSGL05] demonstrated a mechanism
for applying pruning heuristics to give an algorithm which could solve most prob
lems in polynomial time. Subsequently Sandholm published [San02] an “Algorithm
for optimal winner determination in combinatorial auctions” which refined the work
by: (i) provably finding the optimal solution, (ii) searching a graph whilst completely
avoiding loops and redundant generation of vertices’s, and (iii) took advantage of the
sparseness of bids by focusing on tree-segments which are most likely to be relevant.

These strategies meant that they produced an algorithm with provably polynomial
run times that is arguably still the pre-eminent approach to solving resource alloca
tion problems through a centralised decision process. However, since the system is
commercialised we have been unable to perform any quantitative comparisons of our
work against it, although others have demonstrated algorithms which are both prov
ably optimal and which operate within a bound of optimality, such as Dang [DJ03]
who presented new clearing algorithms for multi-unit single-item and multi-unit com
binatorial auctions with piecewise linear demand/supply functions. Following a com
plexity analysis of the algorithms (where the complexity function of the algorithm is
O(n − (K + 1)n)) where K is the upper bound on the number of segments of price
available) the authors were able to prove that they are guaranteed to find the optimal
allocation.

35

Finally, Sandholm has always taken the view, reiterated in [San02, San06] that the
approach of compromising optimality to achieve a polynomial time solution is futile
because one may end up with worst-case approximations and in many situations those
would represent disastrous outcomes for the participators in the market (for example,
a Government might auction radio spectrum at a massive discount if they did not prov
ably have the optimal outcome, thus denying tax payers of significant revenue streams
and leaving the door open for allegations of corruption and incompetence). However,
we would argue that whilst there are some scenarios where this is indeed the case,
there are others for which the need to determine a solution to a complicated problem
will quickly outweigh the benefits of achieving the optimal solution some time in the
future.

Our view is echoed in work by Wolski, Plank et al [WPBB01] in their paper “Analyz
ing Market-Based Resource Allocation Strategies for the Computational Grid” where
they compare market strategies in terms of price stability, market equilibrium, con
sumer efficiency and producer efficiency and find that using a commodities market for
controlling Grid resources gives greater price stability, market equilibrium, consumer
efficiency and producer efficiency than previous auction based approaches. They im
plement a number of simulations using the following constraints, which differentiate
their work from our MDA simulations: [WPBB01]

1. All entities except the market-maker act individually in their respective self-
interests.

2. Producers consider long-term profit and past performance when deciding to sell.

3. Consumers are given periodic budget replenishment and spend opportunistically.

4. Consumers introduce workloads in bulk at the beginning of each simulated day
and randomly throughout the day.

Having implemented the theoretical work of Smale [Sma76] as well as their own
“Bank of G” strategy they found that an auction was inferior for resource allocation for
all their simulations and that a commodities market offered better price stability and
equilibrium as well as increased resource utilisation (for example, the average percent
age of time that a CPU resource on the grid is occupied is higher under the distributed
mechanism). Whilst the constraints they have applied to the simulation make the work

36

different to MDA, it is useful to note that others have formed similar conclusions to us
with regards the best way to conduct distributed resource allocation.

Parkes [Par03] has also surveyed the problem of distributed bundling and how it could
be achieved with a multi-agent system, suggesting that the best way forward is to tackle
the combinatorial complexity problem by distributing the processing load imposed by
the issue across a network of agents. Rather than attempting to perfect a solution to the
full NP-complete problem, the network solution would provide as good an approxima
tion as could be developed in the amount of time available for completing the search
of the problem space, in effect an anytime approach, and utilising that outcome would
give the user a “best-efforts” allocation of resources which would have greater utility
for them than no allocation at all.

2.1.3 Rational Choice and Market Design

Our work uses software agents, which are computer programs that emulate partici
pants in a trading market with objectives to buy and sell bundles of goods. In order
to complete these trades, the agents must make decisions, hold preferences and fol
low a strategy to ensure that they complete sufficient trades at the right price so that
they successfully deliver complete bundles. The strategic behaviour of the software is
modelled on human, social and economic behaviours and the development of formal
models of this behaviour is called Rational Choice theory.

If Rational Choice theory is the modelling and development of the Agents, then “Mar
ket Design” or “Mechanism Design” is describing research into the design of market
strategies and the preference elicitation of participants in those markets. Research in
these two areas of work provides the foundation for the different mechanisms we con
sider in this thesis.

Herbert Simon introduces the concept of rational choice in his paper on Satisficing
[Sim55] and Shneidman and Parkes have co-authored a number of papers [SP03, SP04]
discussing rational choice in the context of mechanism design in networks of peer to
peer devices. Rational choice is the basis of fair decision making and it is an issue that
occurs in theoretical economics, practical market design and grid resource scheduling.
Shneidman and Parkes’ concern is that agents in a peer to peer trading network are not
likely to act rationally (they may gain some advantage by not doing so) and therefore

37

we need to incentivise them to follow protocols that provide the system as a whole with
good performance. In [SP03] they put forward a number of principles from Mechanism
Design as a methodology to use when designing the protocols.

The concept of nudge economics is related, and the subject became popular with the
publication in April 2008 of a book “Nudge” [TS08] by Richard Thaler and Cass
Sunstein. The concept behind Nudge Economics is that humans are not inherently ra
tional beings and sometimes need a little guidance—gentle nudges—in order to make
the best choices in a given situation or behave in the most appropriate way. From
an economics standpoint what they say about human nature is controversial because
this brand of economic thinking sometimes referred to as “behavioural” or “new”
economics goes against more neoclassical economics and the economic man theory
which claims that individuals always act rationally. It is our view that humans do make
rational decisions (although occasionally they make a rational decision about an irra
tional subject) and that therefore, because software agents might not, it is important
that our market encourages (or nudges) rational behaviour.

In the context of future Grid network technology a rational choice is one of the prob
lems faced in developing efficient mechanisms for provisioning services to clients by
a scalable and dynamic resource allocation (matching) mechanism. The CATNETS
project considered this in their evaluation of the Catallaxy paradigm for decentralised
operation of dynamic application networks. Catallactics is the science behind self
organising free market systems and the way in which there is an exchange of values
and price negotiation and a catallaxy is a self-organising market mechanism originally
described by Friedrich August von Hayek [vH76]. A catallaxy differs from a tradi
tional “economy” in that the agents in the system will not have shared goals. Eymann
et al [ERS+05] outlined the Catallactic approach to resource allocation: Firstly, a ser
vice market in which complex services are traded on the basis of price and availability,
whilst secondly, there is an allocation layer which assigns the purchased resources to
specific jobs. The paper provides a helpful description of other work undertaken in the
area of distributed markets, but the major contribution is to introduce this concept of a
Catallaxy into Grid computing.

The different treatments of rational choice across computational economics show that
in designing markets one needs to be careful to ensure that we do not encourage nega
tive behaviour when building our own markets.

38

2.1.4 Implementation of Auctions and Markets

We have discussed previously that it is difficult to build empirical simulations of mar
kets and the following papers provide examples of previous implementations, identi
fying some of the pitfalls and successes for us to be aware of. In addition, we have
identified a number of desirable properties for our MDA market: (i) Mobility of agents
and (ii) fair and stable pricing, and we can look to these example implementations and
analytic tools to discover best practise.

The SPAWN system [WHH+92] is the earliest known market-based computational
system which utilised idle computing resources in a distributed network of computers
that showed that high communication overheads lead to unstable market pricing, a
scenario we should seek to avoid. The objective was to increase utilisation of computer
processors, though a set of sealed-bid, second-price auctions but the project discovered
that whilst their mechanism scaled there were price fluctuations across the markets as
the number of participants grew, due to the limited communication of information
between SPAWN systems, which were configured only to talk to their neighbour and
not in a full mesh. The authors recommend that this be investigated in further work
and indeed this is something we report on later as we have been able to investigate
the impact of communication between a large number of trading agents in our MDA-
AgentScape work. SPAWN identified two further deficiencies: (i) It existed as a user-
space C application and was therefore unable to offer security to the host operating
system or the ability for processes to migrate between machines, (ii) it did not provide
applications with robust recovery in the event of failure (e.g. due to machine failure or
early termination of jobs due to insufficient resources).

Bredin tackled the problem of mobility [BKR98]—where agents move from one ma
chine to another—and described a system in which mobile agents purchase resource
access rights from host machines thereby establishing a market for computational re
sources. The use of a market mechanism allowed precise communication about the
quantitative utilisation of resources which gives a metric to the agents allowing them to
distribute themselves evenly throughout the network. Through simulation they showed
that it was possible for resource suppliers to react to agent demand and calculate an
optimal pricing strategy and hence a profitable allocation. Similarly, agents were able
to plan their expenditure and maximise their utility.

Chaun and Culler introduced [CC02] the concept of a performance analysis for market

39

based batched scheduling of jobs on grids using clusters of commodity work stations
in 2002. Their modelling relied on “user-centric” performance metrics as their basis
for system evaluation with each user having a utility function which measured value
delivered as a function of execution time. Chaun and Culler define their utility function
using two methods. Firstly, they ask all users to assign a utility value to each job using
a common medium of expression (they use currency, which is convenient for a market
based system). Secondly, they assume that a valuation is a piecewise-linear function
which will decay linearly over time after the predicted completion time has passed (i.e.:
the users value remains constant until the amount of time that their job would have
taken to complete on dedicated resources has passed). The sum of these two functions
then defines the user’s utility and is used as part of an aggregate utility calculation to
quantify overall value delivered to end users. Through the use of modified scheduling
software which used end-user value as their utility function Chaun and Culler were
able to observe performance improvements of 2-5x for sequential workloads and up to
14x for highly parallel workloads. Their work shows us that understanding end-user
utility enables us to make more informed resource allocation decisions and increase
throughput in our market mechanisms.

There are two further papers of note covering this topic which add weight to the notion
that empirical analysis of markets is feasible. Firstly, RECO: “Representation and
Evaluation of Configurable Offers” [BKL03] describes a mechanism for representing
bids using propositional logic and then a decision support tool helping the buyer to
procure an optimal configuration for a single good. Its limitation appears to be that it is
restricted to the context of one buyer and multiple sellers, for a single good. Secondly,
Rachel Bourne’s 2003 paper [BBP] described the need for intermediaries in continuous
markets. This provided the inspiration for our Quote Driven Market (QDM) model and
our subsequent empirical analysis of the QDM.

The work done by Bredin, Chaun and Culler and Bourne all give us a strong basis for
our assertion that an empirical approach to resource allocation with the objective of
producing a “statisficing” outcome is a viable and tested objective.

Our distributed market was initially implemented both in the Repast [NCV06] simu
lation engine and subsequently in AgentScape [OB06], a distributed agent simulation
environment. Repast is a free and open source agent-based modelling toolkit that offers
users the ability to create their agents as independent Java objects which will then ex
ecute for a number of steps until completion. We used Repast as it provided an easy to

40

use simulation environment and allowed detailed step by step analysis and debugging
of our distributed market system. AgentScape is a full agent platform, providing the
kernel, security, mobility and message passing environment needed to excecute agents
across a number of distributed nodes. Our implementation of a distributed auction was
the first for AgentScape and we discuss our refactoring of the Repast implementation
into AgentScape in Section 4.6. There are alternative agent platforms which could
have been used to support our development, including JADE [BPR99] and Cougaar
[MT04]. Primarily we selected AgentScape for it’s truely distributed nature but practi
cal factors, including existing relationships and availablity of technical support played
guiding roles. We also found a number of indepth evaluations of different agent plat
forms very useful, including work by Railsback [RLJ06] and an evaluation of the freely
available java simulation libraries by Tobias [TH04], which highlighted the Repast en
gine as a high performing environment, ideally matching our objectives for running
simulations with large quantities of traders and auctions. Finally, a more recent survey
by Nikolai [NM09] provides an updated (2009) overview of agent platforms.

Security and Integrity in Markets

Markets are susceptible to a number of attacks and interruptions, both malicious, such
as false name bidding (impersonating other bidders) and unintentional, e.g. corruption
of bid/shout messages during transmission between participants. In our MDA work,
we have sought not to focus on security because this is an area that has been compre
hensively researched and simply ensuring our markets are secure systems does not add
useful benefit to our comparison. However, it is helpful to know that in the event of
production usage, we could implement the techniques considered below:

Transactional Integrity: [FR95] Franklin and Reiter have designed a secure auction
service, which is of merit because it provides a distributed platform for running
sealed-bid auctions. The secure function of their market comes from the devel
opment of a novel cryptographic technique that can ensure that (i) the bids of
correct bidders are not revealed until after the bidding period has ended, (ii) the
auction house collects payment for the winning bid (iii) losing bidders forfeit
no money and (iv) only the winning bidder can collect the item they bid upon.
However, they do not give much detail on their auction mechanism or its dis
tributed properties and as a result this paper is only useful to state that such
security mechanisms could be integrated if required.

41

Identification of parties and protection against impersonation: In this early paper
[SS99] from 1999 Stubblebine and Syverson considered the problem of imper
sonation attacks on on-line auctions and the affect these have on fair negotiation.
Using a process of notaries and a certified delivery service (but in this case there
is no need to trust the auctioneer) they are able to present an on-line English
auction in which bids are processed and the auction is cleared fairly.

Secure Message Passing: If one was to consider developing a message passing sys
tem, there are a number of plausible solutions for dealing with issues of message
corruption, fraud, interception. There are three obvious approaches: (i) Lam-
port’s “Byzantine Generals” Paper [LSP82], (ii) Leader election style [PB99,
RNSP97], and (iii) Chaining solutions [SP04, SP03].

The Byzantine Generals’ problem defends against Byzantine failure in which
a component in the market would not only behave erronously, but also incon
sistently. Fault tolerance in this scenario is ensured by duplicating their mes
sages and ensuring that the different agents participating in the market execute
an unanimous decision.

In an agent based system a leader election is the process of designating a single
agent as the organiser of a distributed task. The algorithm was invented for
managing the control token in a token ring network, where all nodes need to
communicate between themselves in order to decide which is the “leader”. The
agents use a domain—specific algorithm to break the symmetry among identical
nodes.

Shneidman has done work on the rationality of self interested agents, which
creates a potential problem of message passing:

Imagine running an auction over a large peer to peer network. You
are the auctioneer and have three directly connected neighbours. You
send out an announcement advertising the auction and ask that it
be globally propagated. You then sit back, expecting many bids,
and are surprised when you only receive three bids one from each
neighbour.[SP04]

In this peer to peer scenario, Shneidman defines a mechanism where it is ben
eficial for the agents to pass the message onwards to their peers in such away
that it continues to be passed from one agent to the next, until all agents have
participated. The mechanism should be designed such that there is no gain from
cheating and so that cheating can be detected where possible, with the use of

42

sanctions in the event that members do cheat. Parkes has developed this work
[PS04] to ensure that messages are not corrupted in transmission by propos
ing a message passing structure, in which each agent passes its bid to the next
agent, along a chain (or tree), with the agent at each step determining the current
winning bid by comparing the bid they receive with their own until the result
reaches the seller. This mechanism also has the benefit of linearly distributing
the processing overhead of the allocation decision across multiple agents so that
NP-Hard computations are replaced with a set of sorting functions, which miti
gates one of the further problems seen with combinatorial auctions.

2.1.5 Grid Resource Management

The aim in Grid Resource Management is to examine how multi-agent systems may
be used to develop a market place for the trading of computational grid resources such
that grid scheduling is completed without the limitations of the top down approach
(direct, centralised control, complete information, etc).

Newly available cloud computing infrastructures, such as those by Amazon, are begin
ning to make accessible huge amounts of computing power on a “just in time“ basis.
However, the economic models surrounding these systems are static and uniform, with
charging models that, for web-based cloud systems work on a price per unit per hour
basis. Is there work being done to look at the linkage between pricing and resource
availability?

All grid scheduling systems work on the basis that the new task to be executed has
to make itself known to a resource selector. In current systems, the resource selector
acts as a gateway to the grid. It will select resources from a global directory (e.g. the
Globus MetaDirectory Service[Pro]) and then allocate the job to one of the available
grid nodes. Typically, job allocation is done in two stages. Firstly a job is allocated to
a particular node on the grid and then within that node, the job will be scheduled onto
a processor.

Typically in grid scheduling literature the first practise is called resource allocation
and the second is job scheduling. Both approaches have been investigated in the litera
ture, under the term “meta scheduling”, for example in the AppLeS project, discussed
in [BW96] and [BW97]. AppLeS looked at “application-centric” scheduling, a con

43

cept born out of the needs of users of modern distributed Grids, where the use of
fast networks to aggregate distributed CPU, memory, storage and data meant that a
large meta-computer could be used, but equally, users were finding it difficult to har
ness that power because of conflicting end-user requirements. In the AppLeS system,
each user of the cluster has an intelligent Application Level Scheduler (AppLeS) agent
which implements an application specific schedule. This promotes the performance of
the application by evaluating every resource allocation decision in terms of its impact
on the application’s resource requirement. The AppLeS project is now finished, but
Berman continued the research themes with the GrADS project [BCC+01] provided a
Grid Application Development Software set, a set of software libraries to support the
execution, monitoring and development of Grid aware applications. They developed a
number of tools, including a simulator “MicroGrid” which allowed the emulation of a
Grid computing environment.

Buyya made a major contribution in his thesis [Buy02] by introducing economic tech
niques, outlining the concept of a Grid Architecture for a Computational Economy
(GRACE). This work also produced GridSim, a simulator for global Grid environ
ments, Libra [SAL+04], an economy based job scheduling plug-in for GridBus and
the GridBus project which fosters research on Grid management tools and applications
of Grids in areas of e-Science and a taxonomy of market-based resource management
systems [YB06] in which he comprehensively considers all of the available resource
management systems for economy based Grid computing systems including the dis
tributed, management control domain. His work helps us understand the deficiencies
in the traditional models of grid resource management (which we seek to correct) that
are best understood through public sector grid computing systems, which typically op
erate on a zero settlement basis. Users give their resources for free and researchers
connect across their networks to utilise them. Within a closed user-group, for example
a research facility’s own “mini-grid” of computing resources, scheduling policies may
differ but they are typically still managed by a system (e.g: Globus, GridBus) that exe
cutes jobs on a first-come, first-served basis or which prioritises jobs according to local
circumstances. Consequently, availability of computational resources is systematically
unpredictable and the various methods employed, outlined in Buyya’s description of
Libra [SAL+04] (an economy based grid scheduler) such as first-come, first-served,
time slot, priority or availability-based scheduling of jobs on a grid cluster all operate
in a top-down manner and require knowledge and direct control of all the jobs on the
grid.

44

A system in which there are multiple entities all attempting to acquire part of one
entity is always going to experience concurrency problems. According to [VD02],
the meta scheduler architecture devised in the GrADS system [BCC+01] suffers from
a deficiency in that if two jobs are submitted to the grid at the same time then they
will both be processed without regard to whether the demand can be met. Leinberger
et al., proposed a solution [LKK99] but observed that the approach is an inefficient
scheduling method for the type of computing infrastructure in which clusters have
multiple types of independently allocatable resources such as shared memory, large
disk farms and distinct I/O channels. Many schedulers, designed for use in single
resource pool environments use a technique known as “back-filling” to select jobs from
farther down the queue for immediate execution, resulting in a lower average response
time for smaller jobs whilst guaranteeing a level of progress to larger jobs. However,
back-filling is still subject to a phenomenon known as resource depletion when used
in environment with multiple resource types because back-fill methods typically use
a greedy first-fit criteria in job selection. This can result in a scenario of jobs that
have consecutive high levels of requirement for specific resources, leaving other types
of resource under-utilised. The essence of Leinberger et al’s argument [LKK99] is
that by developing the back-filling algorithm so that it becomes aware of the multiple
different pools of resources, such that it keeps their utilisation balanced then it is likely
that more jobs will fit into the system overall as there will be no need to delay jobs
if a specific resource pool is over-utilised. Leinberger showed that as the number of
resource pools increased their “back-filled-balanced” heuristic maintained significant
performance gains (in general outperforming by up to 50%) over a simple back-filling
approach.

This shows us that when building a resource allocation model for distributed markets,
which by their nature contain a number of pools of different resources, it will be impor
tant for us to ensure that all of the pools are as equally balanced as possible to mitigate
against uneven resource demands. This collision problem, of goods potentially being
sold twice, remains a characteristic of a trading based resource allocation system. A
trader might deliberately oversell or under-price. The problem of double-booking at
the resource allocation level should be dealt with by market forces, that is Traders
should be able to oversell, but, if they do so and their clients suffer they will rate the
trader badly and therefore the trader would not do so well next time, as happens with
airline seat reservations.

45

2.1.6 Methods for distributed resource allocation

When faced with a specific allocation problem it is helpful to be able to determine the
most appropriate method to be used in order to compute the optimal allocation. Is a
financially driven auction the best choice or should a trading market be used? Dis
tributed resource allocation is not a problem limited to grid computing networks and
there is much literature on the subject outside the Grid computing sphere particularly
with respect to distributed algorithms.

In their seminal 1980’s paper, “A Micro-economic Approach to Optimal Resource
Allocation in Distributed Computer Systems” Kurose and Simha [KS89] consider the
benefits of using an economy-based decentralised algorithm for file system allocation.

Kurose and Simha argue that there are two possible classes of resource allocation
mechanisms: price-directed and resource-directed. Many existing resource allocations
operate using a resource-directed approach. Whilst, in a closed and trusted system this
may work effectively, it is not suitable for an open competitive environment. This is
because, when a system is dependent on all parties developing a common valuation
scale all valuations rely on trust and cooperation between all the participants seeking
resources. This is in contrast to finance-based systems which can perhaps be more
easily measured and are more widely understood.

Price is the ideal valuation function for this setting for two reasons: (i) price can ul
timately be seen as a projection function from a multi-dimensional vector of “values”
— both quantitative and qualitative — to a single value and (ii) secondly, in a free
market, over the longer term the price, cost and the marginal value that a user assigns
to a good will all converge as competition drives down price and makes a number of
good alternatives available.

Work on similar problems in other related areas (parallel computing, file system schedul
ing, etc.) [ASGH95, FBK96, SH80] typically seems to focus on a simplified environ
mental model. A key weakness is that it lacks the free market or “real world” aggres
siveness and competition which a monetary based allocation environment (auction,
trading floor, etc.) should seek to emulate.

46

Trading Agent Competition

The Trading Agent Competition succeeds in illustrating the essence of the distributed
resource allocation problem as it deals with distributed resource bundling through auc
tions. The competition has run in various guises since 2002 and has provided a fo
rum for the development and discussion of many trading agent scenarios. There are
presently three games:

TAC Classic: The Classic game is a “travel agent” type scenario based on a complex
procurement requirement of flights, hotels and entertainment events.

TAC SCM: The Supply Chain Management game is a Personal Computer (PC) man
ufacturer scenario based upon the sourcing of components, manufacturing of
PCs and sales to customers.

TAC Market Design: The Market Design game (or CAT) is a reverse of the classic
game. The software trading agents are created by the organisers of the competi
tion, and entrants compete by defining rules for matching buyers and sellers and
setting commission fees for providing this service. Entrants succeed by attract
ing buyers, sellers and making profits.

The classic Trading-Agent Competition (TAC Classic) and the supply chain scenario
(TAC SCM) were motivated by the desire to develop automated strategies for buyer and
seller software agents in marketplaces. The trading rules or interaction mechanisms are
fixed by the TAC Classic/TAC SCM organisers, and competition entrants compete with
one another by creating agents that seek to trade under these fixed rules. As mentioned,
CAT is the opposite game.

In addition, TAGA [ZFD+03b, ZFD+03a] is a redevelopment of TAC by the Agent lab
at UMBC and provided the initial inspiration for our MDA system. The key advance
of TAGA over TAC was that the TAGA team opened up the TAC interface and made
it a distributed agent based system which uses web services for communication.

TAC provides useful lessons in risk management because the travel agents must buy
the various components: hotels, flights and entertainment in separate auctions using
separate strategies for each. This creates the risk that they may for example acquire

47

a hotel, but not the corresponding flight, in which case the agent will fail. Signifi
cant work has been done on various strategies to cope with this uncertainty with the
SouthamptonTAC [HJ02] agent achieving the highest mean score and lowest standard
deviation in the Second International Trading Agent Competition (across 600 games).
In that paper the authors highlight those strengths which they perceive to have been
key. In the TAC competition, users purchase sets of flights, hotels and entertainment
activities and due to the uncertainty and unpredictability of resource availability, there
is no optimal strategy appropriate for all situations. For this reason, the Southamp
tonTAC agent works in “rounds” and re-calibrates the optimal distribution of goods
to customers for each round. It uses learning techniques to determine subsequent bid
ding actions and continues in a loop until all the rounds have been completed. One
of the interesting factors in the TAC competition was the approach to risk adopted by
the various agents. The authors found that risk-seeking agents would buy lots of flight
tickets early on and rarely changed their customers travel plans, which then meant that
they performed badly when prices of subsequent activities (e.g. hotels) were high. In
contrast, risk-averse agents do not bid, but are similarly unable to meet their customers
travel plan requirements.

SouthamptonTAC is broadly risk adverse and but can adapt its behaviour to take more
risks when it finds that games are not competitive and prices are fluctuating too much.
The key point from this learning is that when dealing in an agent-driven market the
authors argue that it is not feasible for the agent to have a single strategy and that they
must adapt through the life of the market.

TAC-SCM has also provided useful learning outcomes. Ketter et al [KCG+07b] present
a predictive empirical model for pricing and resource allocation decisions. They ar
gue that by improving the price prediction system we can build better decision sup
port systems which act rationally on behalf of their users and their approach was
based around a learning approach from previous work using a Markov prediction
process[KCG+07a], predicting market prices and price trends and estimating the prob
ability of receiving an order for a given offer price. This work, as demonstrated by its
effectiveness in the TAC-SCM games, is helpful to us in determining potential bidding
strategies.

One of the problems with empirical experiments in agent communities is that of eval
uating them. Market simulations, like the real-world are typically highly complex,
variable and traders frequently have incomplete information. This gives rise to a very

48

large potential set of strategies and market conditions, hence making empirical anal
ysis very difficult. In [SCG07] Sodomka, Collins and Gini propose a mechanism for
improving the statistical analysis of market simulations by controlling their complex
ity and allowing simulations to be run with a number of controlled variables. One of
the benefits of the TAC-SCM project is that all the different participant’s implemen
tations are made available and so it has been possible to re-run the experiments under
controlled conditions. From this work they showed that they could perform statistical
significance testing with fewer games than previously possible and the additional mar
ket control also enabled them to look at interactions in the game which previously had
been masked by variability and noise in the markets.

The team at Southampton have also been investigating a number of different bidding
strategies in order to support their work in the various TAC projects and Anthony also
looked at online auctions [AHDJ01, AJ03] focusing on how to make an agent which
could participate in multiple auctions making purchases on behalf of a consumer. Sim
ilarly to Sodomka, this paper discusses how they ran their agent in a simulated envi
ronment and gave an empirical evaluation of its performance.

Zero Intelligence Trading

Most of the work in TAC Classic and TAC SCM focuses on having intelligence in
the traders who are performing the buying and selling of resources. However, in his
1997 technical report [Cli97, CB98], Dave Cliff develops the concept of “Zero Intel
ligence Agents”, initially introduced by Gode and Sunder. The ZI Agent is one that
acts randomly within a structured market and Cliff uniquely demonstrated that average
transaction prices of ZI traders can vary significantly from the theoretical equilibrium
level when supply and demand are asymmetric, and that the degree of difference from
equilibrium is predictable from a priori statistical analysis. Cliff follows by introduc
ing “Zero-Intelligence-Plus” agents, whose performance is significantly closer to that
of humans than simple ZI traders could achieve.

49

2.2 Economics view

We need to draw from the economics literature on themes such as Pareto Efficiency,
Social Choice, Social Welfare and Market Based Control to fully understand the be
havioural foundations of computational markets and to avoid reinventing the wheel.
These themes identify both important behaviours that we should seek to encourage in
our markets and justifications for those less desirable behaviours that we may observe.
By briefly understanding the origins of a few pure economic concepts we can have a
more relevant understanding of Computational Economics which will assist us in our
later market design discussions.

Social Welfare was introduced by Bergson [Ber38] in a 1938 paper on Welfare Eco
nomics, which outlined the principles and gave a precise definition of the conditions
required to engineer the maximum economic welfare for a given scenario. The Mara
Survey [CDE+06] says that there are many different notions of social welfare. In the
context of an ecommerce application the aim may be to maximise the average profit
generated by the negotiating agents. However, if agents are trying to agree on some
thing less money-orientated, such as access to an Earth Observation satellite which
was jointly funded by its owners then the priority might be to ensure that each agents
gets their fair share of the common resource. We discuss Social Welfare in more detail
in Section 3.2.1 (61).

In 1950 Arrow developed a theorem which enables us to characterise social welfare
and gives a number of criteria which essentially shows that it is impossible to please
everybody. This “impossibility theorem” was introduced in [Arr50] and Arrow de
veloped this work to look at what happens if you have an economy characterised by
the presence of asymmetric information. In 1971 he showed [AH71] that you cannot
expect a competitive equilibrium unless you have symmetric information, giving us
a formal economic basis for the rationale behind requiring complete information in a
centralised decision making process.

Herbert Simon [Sim55] introduced the concept of “satisficing”, a decision-making
strategy which attempts to meet criteria for adequacy rather than to identify an op
timal solution. A satisficing strategy may often be (near) optimal if the costs of the
decision-making process itself, such as the cost of obtaining complete information, are
considered. Interestingly, the term was not initially promoted as an economic idea, but

50

comes instead from administrative theory and management science, although some of
the main concepts, e.g. the “economic man” were later refined as the concept gained
popularity.

The concepts of Social Choice and Social Welfare from the Economics literature, as
introduced by Arrow and Simon, are fundamental to the modern day idea of Computa
tional Social Choice, surveyed by Chevaleyre et al. [CELM07]. This paper focuses on
the cross over between computer science techniques which include complexity analy
sis, algorithm design and social choice mechanisms which include voting procedures
and fair division algorithms for combinatorial domains. Of most relevance is their
summary of how social choice is important in distributed resource allocation and ne
gotiation. They distinguish two types of criteria when assessing an allocation of re
sources (i) criteria pertaining to the efficiency of an allocation and (ii) those relating to
fairness considerations. These criteria make up a social welfare function which can be
used to determine a choice when traditional economic criteria do not provide a single
solution. The authors give some examples of efficiency and fairness criteria:

Pareto efficiency: An allocation Pareto dominates another allocation, if no agents
are worse off and some are better off in the former. A Pareto efficient allocation
is an allocation that is not Pareto dominated by any other allocation. This is the
weakest possible efficiency requirement.

Utilitarianism: The utilitarian social welfare of an allocation is the sum of the in
dividual utilities experienced by the members of society. Asking for maximal
utilitarian social welfare gives very strong efficiency.

Egalitarianism: The Egalitarianism social welfare of an allocation is given by the
individual utility of the poorest agent in the system. Maximising this value is a
basic requirement for fairness.

Envy-freeness: An agent is envious when it would rather get the bundle of resources
allocated to one of the other agents, an allocation being envy-free when no agent
in the set is envious.

As we know, in distributed resource allocation, allocations emerge as a consequence
of individual agents trading through a sequence of deals to exchange goods and form
allocations. The question is whether this set of actions can converge to give socially

51

optimal outcomes and this can only be determined by evaluating the fairness and effi
ciency properties of every outcome.

There is further interesting work in [GO96] where Greiner and Orponen look at a set
of satisficing strategies which aim to produce the optimal (minimum expected cost)
method of running a set of experiments. This paper is helpful because the authors have
developed previous work on satisficing strategies into a generalised approach such that
if a problem can be represented as an and-or search tree, then their algorithm “pao”
can produce an approximately optimal solution even when not all of the preferences /
weights in the tree are known.

Finally, Economics and Computer Science begin to merge again with Robert Axelrod’s
book “The Complexity of cooperation” [Axe97]. Axelrod looks beyond simple cases,
such as the Prisoner’s Dilemma to study a wide range of issues including how to cope
with errors in perception or implementation, how norms emerge, and how new political
actors and regions of shared culture can develop. Whilst this is a book aimed primarily
at social scientists, he focuses on using Agent based modelling to unearth some of the
emergent properties of the social systems described.

2.3 Conclusions from the literature

From the initial days of mainframe computing and the introduction of Social Wel
fare in the late 1930s, research into resource allocation, management and fairness for
both centralised and decentralised systems has been undertaken in a number of fields
throughout computer science and economics. In reviewing the literature we identified
a two major themes:

Firstly, there is a large body of work which describes both the design and attempted
implementations of market simulations, usually with a specific focus. For example, the
work by Dang [DJ03] focused on demonstrating a new clearing algorithm for multi
unit auctions that consistently performs within a bound of the optimal solution, whilst
a paper by Biswas [BN05] looks at worst case performance in Combinatorial Auc
tions. Frustratingly, there is little concrete discussion as to how these simulations were
assembled, or what their actual performance was and therefore it is subsequently im
possible to build comparisons or benchmarks of either their system or ours. Similarly,

52

many of the scheduler implementations also focus on only a single aspect of the mech
anism in hand. For example, ARMS [CJS+02b] focuses on service advertisement and
discovery, whilst Nimrod is concerned with management of spare resource on idle
workstations, again this makes comparison difficult.

Secondly, Authors appear to fall into one of two camps, those for centralised markets
and those for decentralised. There does not appear to be a body of work devoted to
comparing and contrasting the two viewpoints, such that each party is either content
for the other to exist, or, of the opinion that theirs is the only solution to the prob
lem at hand. Whilst it is true that for some types of problems a specific mechanism
is best (e.g. when governments auction radio spectrum a combinatorial auction is the
only sensible mechanism for doing so) there are others (financial markets, computer
resource scheduling, etc.) where both approaches have strong merits. We believe that
the two ideas (distributed resource allocation and CAs) can be further developed to
gether, because in a distributed system with few trust relationships between parties,
a single centralised auction does not present a good solution to solving complex dis
tributed resource allocation problems.

The literature reviewed covers a wide spectrum of knowledge. We firstlymarketmodels
considered the detail of both approaches, including papers on Centralised approaches
by authors such as Sandholm and on distributed markets in Section 2.1.2 and imple
mentations of both distributed markets and centralised ones. There are a number of
key themes for distributed markets, mobility, performance and the selection of an agent
platform to provide the development environment and we looked at relevant previous
work for each, which informs Chapter 4, where we detail our development work.

One of the aims of this thesis is to reintroduce some of the relevant economic the
ory into market design. We need to understand the theortical decisions that need to
be made in order to build a succesful distributed market, but also to enable a rational
basis for understanding when centralised and de-centralised systems should be used,
which is where our tour of economics demonstrates its importance. Papers cover
ing Social Welfare, Arrow’s Impossibility Theorem and Satisficing, three important
concepts in building our distributed system and the comparison thereof have been re
viewed in Section 2.1.3. We also identified some ”must have“ efficiency and fareness
criteria—because by using the same metrics that economists use we can be sure we
have developed an effective market. These are (i) Pareto efficiency, (ii) Utilitarianism,
(iii) Egalitarianism and (iv) Envy-freeness, discussed in Section 2.2 on page 50.

53

Having identified the economic concepts and the work that introduced them, in Chapter
3 we begin with a discussion of Models and Algorithms to to apply our knowledge to
the problem of resource allocation.

54

Chapter 3

Discussion of Models and Algorithms

3.1 Introduction to Market Models and Approaches

In this chapter we will explore the economic models we have used to structure our
approach for solving the bundling problem. This allowed us to develop a prototype
distributed auction with the same economic foundations as a centralised Combinatorial
Auction, ultimately implemented as our Multiple Distributed Auction (MDA) system,
which is explained fully in Chapter 4.

Comparing centralised and decentralised systems could be perceived as an apples and
oranges comparison. However, both types of market are solving the same problem—
that of how to produce a resource allocation according to specific criteria. We have
built a platform to support the comparison of these two techniques which uses a com
mon test data set from the CATS suite and derives a base line from the widely available
CASS solver. We consider why these two tools provide a sound basis for the genera
tion of data for comparing the two approaches.

We begin with a discussion of the economic properties necessary for a sound mar
ket and review the Vickrey-Clarkes-Groves mechanism as a template for our market
designs.

55

3.2 Auctions and clearing techniques

3.2.1 Key Economic Principles

There are a number of key economic principles which come together in market design
to ensure that all participants receive the optimal outcome from the market. We briefly
describe them as follows:

Dominant Strategy

A strategy for buying or selling goods is considered dominant if, regardless of what
any other players do, the strategy earns a player a larger payoff than any other. It
will therefore always be better than any other strategy for any profile of other players’
actions.

The concept of a Dominant Strategy is important in market design because it ensures
the participant is going to maximise their outcome from the mechanism. Therefore,
in developing our markets, we need to ensure we encourage use of the participant’s
Dominant Strategy.

Nash Equilibrium

The concept of Nash Equilibrium was proposed by John Nash in 1950 in his work
“Equilibrium Points in n-Person Games” [Nas50].

“The concept is an n-person game in which each player has a finite set of
pure strategies in which a definite set of payments to the n players corre
sponds to each n-tuple of pure strategies, one strategy being taken for each
player.”

i.e: Alice and Bob are in Nash Equilibrium if Alice is making the best decision she can,
taking into account Bob’s decision, and Bob is making the best decision he can, taking

56

into account Alice’s decision. However, to make the best possible decision each party
will need to understand the others preferences and strategy for their decision making
process; this is known as “full revelation”.

A Nash Equilibrium is important because it means that the expected average payoff for
the participants in a mechanism is at least as large as that which would be obtainable
by any other strategy.

Satisficing

Satisficing is a decision-making strategy which derives an adequate, rather than an
optimal solution. A satisficing strategy may often, in fact, be (near) optimal if the
costs of the decision-making process itself, such as the cost of obtaining complete
information, are considered in the overall cost calculations.

Herbert Simon combined the terms “satisfy” and “suffice” to promote the term “satis
ficing” [Sim55, Bro04]. He drew inspiration from humans, as we are usually able to
maximise the outcome of a decision: (i) we rarely know all the relevant probabilities
for different options/outcomes available to us, (ii) we are often unable to make deci
sions to a sufficient level of precision and (iii) humans become old and their memories
unreliable, corrupting our basis for decision making!

However, despite only being partially rational in their decision making, most humans
are relatively successful, and Simon concluded this was because we treat goals as
something not to be maximised, but as a constraint. We therefore always try to meet
the minimum level across a specific set of goals, but thereafter, we may arbitrarily
apply our focus to other goals, not necessarily that which will maximise our benefit
from the decision.

“The most common application of the concept in economics is in the be
havioural theory of the firm, which, unlike traditional accounts, postulates
that producers treat profit not as a goal to be maximised, but as a con
straint. Under these theories, a critical level of profit must be achieved
by firms; thereafter, priority is attached to the attainment of other goals.”
[Sim55]

57

Wikipedia states that “Simon, once explained satisficing to his students by describing a
mouse searching for cheese in a maze. The mouse might begin searching for a piece of
Gouda, but unable to find any would eventually be satisfied and could suffice with any
piece of cheese, such as cheddar.” (From http://en.wikipedia.org/wiki/

Satisficing 5-Apr-2009)

Incentive Compatiblity

When placing their buy or sell offers, we need to encourage participants to tell the
truth, so that the market maker, who makes the allocation decisions in the market, has
the best chance of making an economically sound decision. This property is defined
as being “incentive compatible”. Assuming there is no price collusion or false name
bidding in the market, a second price auction is an example of mechanism that is
incentive compatible (Chapter 1 of ”Combinatorial Auctions” [CSS05] provides an
excellent overview of auction types).

“In mechanism design, a process is said to be incentive compatible if all
of the participants fare best when they truthfully reveal any private infor
mation asked for by the mechanism.”

It is worth noting that there are different degrees of incentive compatibility. For ex
ample, in some games truth-telling can be considered a dominant strategy (as long as
everyone else will tell the truth).

Pareto Optimality: Optimal allocation for whom?

As Wellman, Walsh et. al discuss in [WWWMM98] “If there is some way to make
some agent(s) [economically] better off without harming others, it should be done. A
solution that cannot be improved in this way is called Pareto Optimal.”

“Pareto optimality, is an important concept in economics with broad
applications in game theory, engineering and the social sciences. The term

58

http://en.wikipedia.org/wiki/Satisficing
http://en.wikipedia.org/wiki/Satisficing

is named after Vilfredo Pareto, an Italian economist who used the concept
in his studies of economic efficiency and income distribution.

Given a set of alternative allocations of, say, goods or income for a set
of individuals, a movement from one allocation to another that can make at
least one individual better off without making any other individual worse
off is called a Pareto improvement. An allocation is Pareto efficient or
Pareto optimal when no further Pareto improvements can be made. This
is often called a strong Pareto optimum (SPO).

A weak Pareto optimum (WPO) satisfies a less stringent requirement,
in which a new allocation is only considered to be a Pareto improvement
if it is strictly preferred by all individuals (i.e., all must gain with the new
allocation). The set of SPO solutions is a subset of the set of WPO solu
tions, because an SPO satisfies the stronger requirement that there is no
allocation that is strictly preferred by one individual and weakly preferred
by the rest (i.e., no individual loses out, and at least one individual gains).

A common criticism of a state of Pareto efficiency is that it does
not necessarily result in a socially desirable distribution of resources, as
it may lead to unjust and inefficient inequities.” (From http://en.

wikipedia.org/wiki/Pareto_efficiency 17-Dec-2008)

Let us consider the attraction of Pareto optimality. Given the choice between optimal
and non-optimal allocation, the former is likely to be selected as more desirable, yet in
many real world situations optimal allocation is rarely achieved and it is often deemed
preferable to have some slack in the system.

Additionally, one problem with Pareto optimal solutions is that they may not be so
cially just. I.e. if Alice and Bob are in a market, the Pareto optimal solution may be to
give all the goods to Bob, but this may be socially unfair on Alice.

Why does this happen? The problem is that for the Alice and Bob market we are unable
to tell their true preferences exactly as they are expressed incompletely. This means
that the auctioneer making the allocation decision for Alice and Bob has an element of
his search space of possible solutions which is incomplete and may preclude him from
identifying the best possible allocation.

When considering the Pareto efficiency of the Alice and Bob market, we may find
that there are multiple Pareto efficient outcomes (all goods to Alice, all goods to Bob,

59

http://en.wikipedia.org/wiki/Pareto_efficiency
http://en.wikipedia.org/wiki/Pareto_efficiency

N

or share the goods) and this means that we have not found a sole Pareto superior
outcome—rather, we have a Pareto frontier.

How do we resolve this issue? In order to make a choice between the different Pareto
efficient outcomes the market will need a further ranking mechanism. The question
arises: “optimal for whom?” because in this instance, true Pareto optimality at any
social expense is not that which is required. A better solution would be one which is
Pareto optimal and which maximised the social welfare of the participants, the final
economic principle which we consider in Figure 3.2.1. We can visualise the problem
in Figure 3.1.

Good X

M

Z

N

D

E

SI

Good Y

Figure 3.1: Visualisation of Pareto and Social Optimality converging

The graph shows two lines. MN is a social utility frontier, that is the range of utility
values that are considered to be Pareto optimal. Point D indicates a scenario where
production and consumption are efficiently matched, whilst point E lies inside the
social utility frontier and indicates inefficiency. Although all the points on line MN are
Pareto efficient, only point Z identifies a scenario where social welfare is maximised,

60

with line SI representing the social injustice that the allocation might cause and point
Z lying at the intersection of a Pareto optimal solution and minimum social injustice.

We can relate this back to market design, by arguing that in the commercial auction
space the aim should be to achieve the outcome with the highest overall utility for the
seller, bearing in mind that on some days, a trader who makes one sale is better off than
one who makes none, and one of the problems presented by Combinatorial Auctions is
that they are unable to provide us with solutions to our markets without complete and
truthful information about all parties preferences, as we shall see in our discussion of
Vickrey Auctions in 3.2.2.

What happens if there is no interception of the pareto optimal and social welfare func
tions? In this case we have an allocation which is economically inefficient, similar to
point E and therefore the buyer or seller is unlikely to want to participate. If there are
multiple intersections to the two lines then we have defined a function that produces
multiple equivilent outcomes. This would not however be considered a well formed
social welfare function—in order to become well formed, the criteria used must en
sure that the system is able to make a selection between possible outcomes in order to
maximise the social welfare of the decision.

Social Welfare

Welfare Economics is concerned with understanding the social impact of economic
decisions and can be used to ensure that these decisions do not create unnecessary (or
unwanted) social injustice.

In our discussion of Pareto optimality, we concluded that we required a ranking func
tion which would permit our resource allocation algorithm to rank the outcomes such
that we would have optimal social welfare. This notion is described in the literature as
a Bergsonian Social Welfare Function, invented by Abram Bergson in 1938 with the
objective:

“to state in precise form the value judgements required for the derivation
of the conditions of maximum economic welfare” [Ber38]

61

However, we can observe that it is difficult to create Social Welfare Functions which
produce fair and qualitative rankings because the comparison of utility is an inexact
science. Consider the following problem: Alice and Bob both consider themselves to
be “happy”. Who is the most happy, or are they equally happy? We cannot tell be
cause happiness, or indeed utility, or indeed welfare/well-being does not have cardinal
properties (Is happiness an 8 or a 10?).

This thought-experiment is the basis of Arrow’s Impossibility Theorem[Arr50], which
provides four reasonable criteria that no consistent Social Welfare function can satisfy:

Unrestricted domain: This means that the Social Choice Rule must be able to incor
porate any pattern of individual preferences.

Pareto principle: This means that the chosen outcome must be Pareto efficient.

Independence of Irrelevant Alternatives: This means that no set of rankings is af
fected by a change in another set of rankings.

No dictator: This means that no single individual can decide the outcome.

Therefore, given incomplete information and a single point of decision making, it is
possible to determine a number of Pareto-efficient outcomes, but not a single Pareto-
optimal outcome. To determine that, we would have to have a Social Welfare function
to evaluate the various options, which is not possible in a single decision maker based
mechanism, as established by Arrow’s Impossibility theorem.

The ability to produce an allocation whilst adhering to the criteria given above is one
of the key benefits of using distributed markets, and it is important for us to revisit
these properties as we progress through the thesis.

3.2.2 Vickrey-Clarkes-Groves Mechanism

A Combinatorial Auction is essentially a weighted set packing problem [BN05] which
is known to be NP-hard. There are various ways of characterising and solving this
problem which we reviewed in detail in Section 2.1.2, but a key mechanism often
referred to as an architectural starting point is the Vickrey Auction.

62

The book “Combinatorial Auctions” has an intriguing chapter title: “The Lovely but
Lonely Vickrey Auction”[CSS05, Ch.1]. The Vickrey Auction is a sealed-bid auction
where bidders submit their bids without any knowledge of how the other participants
are bidding. It was invented by William Vickrey in 1961.

The Vickrey Auction focused on auctions which sold a single, indivisible good. It is
a second-price sealed-bid auction, where the winner pays the amount of the second
highest winning bid. It is said to be “incentive compatible” in Mechanism Design if
all of the participants fare best when they truthfully reveal their private information—
typically the value of the good to them to bid truthfully. However, if the bidder has a
demand for more than one of the good, then this approach will cause them not to bid
their true valuations for the goods.

A modification to the Vickrey Auction to support multiple goods and to maintain the
incentive compatibility of the market was therefore needed. Two further mechanisms
by Clarke and Groves can be combined to provide these features and make a system
known as the Vickrey-Clarke-Groves (VCG) mechanism in which the winner pays the
second highest price bid.

The key elements of the VCG mechanism are:

Dominant Strategy: In a VCG, reporting their true valuation is a dominant strategy
for a bidder. This means that they will get the best (most profitable) outcome by
following that strategy. It also means that the cost of running the auction is less
(for the bidders) because they no longer have to invest energy into determining
the strategies of other bidders and working out how to compete with them.

Scope of Application: It is possible in a VCG to set filters and rules without affecting
the economic properties.

Average Revenues: The VCG mechanism guarantees that the average revenues from
the system shall not be less than any other efficient mechanism. This means that
it has been designed so as to ensure there are no drawbacks to using it for the
buyers and/or sellers.

The key downsides to the mechanism are:

63

Low Seller Revenues: Non-Monotonicity: “better” bids don’t entail higher revenues
because the seller’s revenues are non-monotonic with regard to the sets of bid
ders and offers. Consider bidders A, B, and C, and two goods, Y and Z. A bids
£2 for the package of Y and Z. B and C both bid £2 each for a single item (bid £2
for Y or Z), as they really want one item but don’t care if they have the second.
Now, Y and Z are allocated to B and C, but the price is £0, as can be found by
removing either B or C. If C bid £0 instead of £2, then the seller would make
£2 instead of £0. Because the seller’s revenue can also go up when bids are
increased, the seller’s revenues are non-monotonic with respect to bids.

Collusion: Losing bidders can collude to force pricing down and reduce profit.

False-name bidding: A bidder can bid multiple times, using different aliases, in order
to get better pricing and increase their chance of success.

The VCG is important for solving resource allocation problems because it is the ma
jor market mechanism in use which gives the relevant economic and game-theoretic
properties for a market that is Pareto-optimal and maximises social welfare. However,
it has some serious limitations which impact its usefulness in the purest form, as we
now explain:

Ausubel and Milgrom [CSS05, Ch.1] characterise the VCG as a “lovely and elegant
reference point—but not as a likely real-world auction design. Better, more practical
procedures are needed.” They propose further designs to tackle the deficiencies stated
above, including an iterative auction procedure combined with an ascending proxy
bidding procedure known as the “Clock-Proxy Auction” [CSS05, Ch.5]. This process
is very similar to the one currently adopted by the EBay auction house.

In order for our comparison to be valid, we need our MDA mechanisms to exhibit
identical economic properties and we review our compliance in Chapter 4.

With regards the CASS solution, it is provably optimal: It finds a solution that max
imises the social welfare as do the widely known BidTree and CPLEX solvers. How
ever, there are no published verifications of the algorithm but we judge its accuracy
from the wide publication of papers which reference it and from private communica
tion with the author, Leyton-Brown, on this subject:

It’s possible that there will exist solutions that tie (i.e., that yield the same

64

SW with different bids); in this case, the different methods could find
different sets of bids. I’ve done experiments confirming that CASS really
does find the optimum, checking against CPLEX (I’ve never been given
code for BidTree or CABOB). So have others, e.g., Craig Boutilier. As far
as I know these results haven’t been published. (Source: Email received
August 6, 2008)

3.3 Distributed Market Models

There are many algorithms for solving combinatorial auction type problems in the
literature, where it is generally accepted that the optimal solution to a resource alloca
tion problem may be found using a combinatorial auction and although the theoretical
cost is NP-hard, even relatively naı̈ve solvers like CASS [LB03] can handle many
problems quite rapidly, while the most sophisticated services like those available from
CombineNet [San07] can process most problems quickly thanks to a combination of
a range of clever heuristic techniques and specialised bidding languages that help to
reveal more about bidder preferences.

However, this line of research poses a new problem, that of comparison, and it is this
that Kevin Leyton-Brown set out to solve when he created the Combinatorial Auction
Test Suite (CATS) in 2000.

Given that in this work we are building a comparison of a centralised auction system
and a decentralised market system, if one conceptualises a discrete space of algorithm
complexity then there are a number of steps available as we shift in the market on
an axis of complete information held in the auctioneer to minimal information and
a second axis from one auctioneer to many, comprising of: (i) Entirely centralised
combinatorial auction, then (ii) An agent based distributed market, with synchronous
rounds, and finally (iii) An agent based market with asynchronous trades.

We believe it is necessary to consider these axes of resource allocation techniques
because there are three reasons to dissent from the view that combinatorial auctions
are the only solution required for resource allocation and that it is therefore a solved
problem:

65

1. In many practical situations, the resources and the bidders are distributed, so
that the centralised mechanism that is the necessary property of a combinatorial
auction is inappropriate [PS04].

2. Runtime: An anytime (sub-optimal) algorithm with predictable runtime may be
preferable to an optimal algorithm with an unpredictable runtime. One approach
to this is [DJ03], which describes an anytime polynomial algorithm that guar
antees to be within a bound of the optimal, such that each step of the algorithm
reduces the bound.

3. Finally, for the sake of resilience (another aspect of timely delivery) the potential
single-point-of-failure that is intrinsic in CAs may also be undesirable.

In order to complete a valid comparison, our experimental approach has been to use
a common dataset, produced by the CATS algorithm, as the input into all of the sim
ulations. We have also sought to maintain a comparable execution platform, with
comparability of processor type and execution environment.

Throughout the period of this work, we have considered a number of different frame
works, test platforms and simulation systems and document them in detail in the fol
lowing pages. They are:

1. Brickworld - our initial simulation

2. MDA - Multiple Distributed Auctions, implemented in Repast

3. MDA AgentScape - The MDA system, implemented in AgentScape

3.4 Brickworld - Initial design concepts

BrickWorld was an exploratory prototype model of a distributed combinatorial pur
chasing system which utilises multiple distributed single item auctions (MDAs). Whilst
the particular method of implementation was ultimately unsatisfactory, it provided
helpful insights into the implementation of markets and was a key part of the evolution
of our designs.

66

Inspired by Lego Bricks which usually have a high level of (multi) dimensionality, in
terms of colour, shape, dimension and applicability to different situations we coined
the term “BrickWorld” to represent a market that traded “Bricks” which act as tokens
representing the many different and complex selection criteria that both a Combinato
rial Auction (CA) and a distributed bundling system should be able to handle.

Where real world traders are able to purchase goods for resale from a wide variety of
markets they are often able to increase margins by providing value-added services or
combinations of goods otherwise previously unthought-of, or which may be tricky for
an individual to acquire. The TraderAgents in BrickWorld took on a similar role in
that they assemble bundles to order and speculatively.

We investigated a number of issues:

•	 Where do traders get their budget from? Can they go into deficit?

•	 Can traders take positions on their goods?

•	 How do traders make decisions about what to buy or sell?

•	 How to manage message passing in a distributed environment—would the over
head kill the efficiency gains of the system?

•	 Longevity of goods in the market place and how to handle perishable goods.

3.4.1 Brickworld Development

We developed a Java Remote Method Invocation (RMI) based AuctionServer to which
AuctionClients connect. An AuctionClient can either be a BrickFactory (which gener
ates Bricks available for sale) or a Participant, who will attempt to purchase bricks.

The design and implementation was such that any number of auctions could be held
concurrently and a single “Auction” would handle the sale of a single Brick. Thus a
Participant in the market would have to participate in a reasonably large number of
auctions in order to assemble a collection of different bricks. The system facilitated
the synchronous updates of all the traders who were monitoring an auction.

67

Traditional search systems attempt to provide solutions through the use of heuristics to
prune their search trees. One mechanism for pruning is to filter elements based on their
attributes. A key improvement of BrickWorld over other trading systems is that it was
designed such that the multi-dimensionality, (i.e. number of attributes) of the objects
being traded is not a significant factor in the time taken for the optimum allocation to
be made. This benefit arises because Brickworld is a distributed market and solutions
are not determined using a centralised search algorithm. Bricks had many attributes,
initially having Colour, Weight, Height, Length and Width.

We focused on two types of auction, the Sealed Bid and the Open Cry auction. Brick-
World was structured so that an Auction has to implement a number of key elements of
functionality (as defined in the BrickAuction interface). This means that any number
of different types of auction mechanisms can be implemented and simply “slotted in”
to the BrickWorld system as required.

The Sealed Bid auction is one which implements a first price sealed bid auction, such
that the item is put up for sale, all bids are received before a fixed (pre-announced)
point in time and then the highest bid is determined and announced as the winner.
The Sealed Bid auction was used as a simple harness to test the code and so the next
development was the more complex OpenCryAuction.

The OpenCryAuction class is designed to run continually. Clients connect to the auc
tion at any time and begin to observe the auction item. The auction runs for a set
amount of time and every observer is notified if the auction item changes (i.e. typi
cally if the value changes). At the end of the auction the winner is computed (i.e. the
highest bidder) and the auction closes.

3.4.2 Auction closing and Settlement

We were keen map to the experience of traditional human led markets and auctions
to our simulation as much as possible and a big issue was that of when to close the
auction.

In a real world auction the auctioneer is able to observe the auction room and all the
potential bidders nearly simultaneously. Even if the auctioneer has to handle telephone
bids, a human has sufficient sensory input that they can (with a small margin of error)

68

determine if there will be any “last minute” bids either in person or via other means
and thus execute the classic “going going gone” auction ending.

In electronic computer driven auction mechanisms that discretion is not available and
there needs to be a firm fixed end point. However, this leads to a syndrome of gazump
ing in which many bids are submitted in the final and closing stages of the auction, with
bidders attempting to ensure that they do not expose any of their internal valuations to
the competition. Ebay exhibits excellent examples of this behaviour.

From initial implementations of fixed markets with defined closings, we chose to refine
the implementation of BrickWorld and our subsequent MDA implementation so they
operated as series of multiple continuous double auctions, each dealing with a single
type of good. Rather than closing at a specific time the markets continue to make the
good available until sold, with buy and sell shouts being made until pricing converges
and a successful trade is completed.

Our simulations are implemented using electronic tokens that represent actual goods.
As such it is envisaged that in a real implementation, an authorisation message would
be passed back to the Grid Scheduler which can then complete the service delivery. A
separate system is required for the passing of goods, or authorising access to services
following from the auction.

This focus on “tokens” also helps deal with market liquidity issues, as in an MDA sys
tem a trader can become insolvent and there is potential for value to become “locked”.
In the absence of a Bona Vacantia 1 system for the gathering of assets of the deceased,
suppliers with sold, but unredeemed vouchers may decide to resell them after an ap
propriate period.

We also briefly evaluated the issues surrounding the security and robustness of the
market and how these issues might be mitigated. For example in a computer system
one bidder might launch a denial of service attack on another to stop their bids being
received, or indeed, the auctioneering software may be hijacked and replaced with a
“corrupt” auctioneer whom favoured one particular bidder. Whilst these things can
happen in real life, a computer network makes it much easier for them to occur and
much harder to observe. We look at various related works in Section 2.1.4, page 41, of

1Bona Vacantia literally means vacant goods and is the legal name for owner-less property in the
UK which passes to the Crown.

69

our literature review and feel that in order to ensure integrity in the market mechanism
it would be important to ensure such strategies are implemented in any production
system.

3.4.3 Evaluation Strategies

A number of derivative works from this thesis have been published and we are contin
ually challenged on the question of comparing the effectiveness of two very different
approaches.

On the one hand CA is a single auction with complete knowledge that, given enough
time will compute the optimal allocation given the bidders’ preferences and a small
enough problem. On the other the MDA is a system of distributed auctions that are
connected indirectly by the simultaneous participation of bidders in more than one
auction and that will result in the creation of many bundles that the trading agents view
as saleable. CA appears to offer mathematical certainties while MDA offers possible
solutions, although MDA has an undeniable advantage in one aspect in that it appears
to be scalable. In figure 1.4 there is a point at which it is no longer feasible to compute
the outcome of a bundling problem using a CA, but where it would be possible still
to determine an outcome through the use of a distributed trading system. Below that
point, the use of perfect information would mean that a CA could determine the Pareto
Optimal solution and therefore the trading system should be expected to achieve a
similar result. Beyond that point, an allocation can be achieved, but may not be Pareto
Optimal.

An analytical approach to comparison seems infeasible, at least, given current un
derstandings of the problem so empirical techniques must be adopted to evaluate the
performance of the system in terms of the optimality and speed with which it bundles
but also the allocations achieved.

By using identical request feeds to a CA and MDA (through the use of CATS), from
which they will produce bundles, a cluster analysis to observe the proximity of the
solutions may be achieved. The results should be useful even with ZIP-style agents
[CB98] because the structure of the resource allocation process (i.e. centralised or
decentralised) will have significant impact on the bundles assembled.

70

The first step in evaluating the two techniques was to compute a base line performance
model of the currently available solvers, such as LPSolve 2, CASS [LB03] and those
implemented by Dang [DJ03]. This empirical analysis produced some interesting re
sults, in that, whilst the performance model for a CA is anticipated to be NP-Hard, we
actually find that through improved use of search heuristics, many of the computations
are able to complete in linear time, whilst a few problems take a very long time to
compute.

Secondly, we developed the need to understand the performance model of a distributed
agent scheduling system, which resulted in the implementation of our MDA system.

In moving toward the use of empirical evaluation techniques our results will become
subject to the vagaries of the computational environment that is being used. To this end
the agent based systems are being measured using not only auction rounds and time,
but also clock ticks, as suggested in work on comparisons of distributed constraint
optimisation problems (DCOPs) by Mailler [Mai05].

In evaluating MDAs, the following metrics were adopted:

•	 Firstly, the performance model of the agents bidding for items is considered.
From previous work by TAC participants and others [DF03, HJ02, AHDJ01,
KKD+04, TDTY04] shows that the performance of the auctions can be improved
by heuristics and domain specific knowledge. However MDAs operate in multi-
domain environments and it is important to understand the performance of a
suitably non-domain specific agent and measure its ability to join and monitor
auctions, manage spending and assemble bundles of goods for which there is a
market within a specific time frame, so that we can understand generic trading
performance.

•	 Secondly, monitoring the auction and following a number of important metrics,
such as (i) number of nodes, (ii) auctions, (iii) bids, (iv) bidders, (v) time for
auctions to complete (vi) and length of queues for items awaiting auction.

•	 Thirdly, determining the quality of the result obtained by the trading system
allows us to determine the level of effectiveness of the process which is particu
larly useful when the complexity of the bundling problem lies above the level of
results achievable with a CA.

2LPSolve is available at http://lpsolve.sourceforge.net/ 24-04-2009

71

http://lpsolve.sourceforge.net/

Finally there is a need for a CA to complete in “reasonable time” because one of our
objectives is to produce resource allocations which are not just good quality, but are
also relevant to their requestors. To define reasonable, the bundle request data has a
range of simulated deadlines against which the bundling system’s speed can be tested.

3.4.4 Conclusions from Brickworld

The Brickworld implementation fell short because it was not feasible, with a single
developer, to develop a complete and robust auction system from the ground up in
the time available and we felt that it would be more advantageous to utilise existing
similation frameworks, such as Repast and AgentScape so that our development time
could focus on the auction logic.

However we were able to identify a number of elements in our development which
allowed us to build a more successful MDA system. These included (i) the market
closure, settlement and handover process, (ii) integrity of the market and (iii) an evalu
ation strategy.We also identified a number of areas for further investigation, including:

•	 Whilst BrickWorld would work effectively on the basis of “just-in-time” or
dering it is also intended to investigate pre-emptive purchasing strategies. It is
clearly desirable for a TraderAgent to be able to deliver resources required with
minimal delay, whilst undesirable for the agent to purchase too many advance
resources without customer commitment for their purchase. In the MDA system,
we adopted the ZIP trading strategy to manage this process, implemented in the
JASA libraries [PMPM06].

•	 If a TraderAgent ends up with surplus capacity then it would make sense for the
trader to be able to sell their surpluses to other traders in the same set of auctions,
a function we implemented in the MDA architecture.

•	 There is no reason to restrict resale as there is no motive to hoard resources, nor
to sell them at a loss. Feedback and re-entry mechanisms for an MDA system
need to be considered in future work.

•	 We could increase the robustness and security frameworks in the BrickWorld
system, for example, to include protocols and architectures derived from work by

72

Franklin and Reiter [FR95], Stubblebine and Syverson [SS99], and we propose
that this be considered in future work.

Finally, we have identified that there needs to be consideration of an optimisation tech
nique which would be borrowed from functional programming: memoization [Mic68].
Consequently, instead of computing the optimal allocation each time it would be possi
ble, over time, to look it up. It might even be acceptable to return a previous allocation
if the preferences were close enough to an earlier case (subject to some proximity
bound on the distance from optimality and to analytical continuity). At this point it
becomes apparent that the CA has acquired some market memory too and that within
acceptable deviation from the optimal solution the results of the two approaches could
be largely indistinguishable — except that the MDA approach will continue to function
as the complexity of the bundling problem increases, whilst a CA will not.

73

Chapter 4

The MDA, or Multiple Distributed
Auction system

We have developed a resource allocation system that uses Multiple Distributed Auc
tions (MDA). We will outline the simulation system and test models and describe the
economic and algorithmic properties of the systems and software used. For MDAs
we consider both the centralised (MDA) and decentralised (MDA-AgentScape (MDA
AS)) implementations in the context of these economic properties and demonstrate
how they provide a sound basis for comparison.

4.1 MDA Trading System Architecture

It is well known that clearing a CA over bundles of heterogeneous items is an NP-Hard
task. In contrast, trader agents in an MDA operate in multiple single-item auctions, to
achieve resource allocation, even under circumstances of incomplete preference infor
mation.

The MDA vision, as shown earlier in Figure 1.4, is that a user (ClientAgent) composes
their request for computing resources, specifying a number of different components
that will be needed (for example, a data set, a software package and an amount/type of
CPU). The request will probably also contain other restrictions, such as cost, quality of
service, time to delivery and the level of completeness required, for example whether a

74

partial answer is acceptable. The request is then handled by the following components,
which communicate with each other through Remote Method Invocation (RMI) and
Web Service interfaces:

•	 The ClientAgent issues a call for tenders, using an order-board style mechanism,
which is met by a number of TraderAgents. As well as considering the quotation
responses on the basis of price, ClientAgents may also consider the ability of the
TraderAgent to deliver the necessary requirements (E.g. on the basis of a rep
utation model managed by the Auction house.). The ResourceAuction contains
a reputation model for the resource providers, which could then be used by the
TraderAgents to present an indication of their ability to deliver.

•	 In order to meet the requirements of the ClientAgents, TraderAgents purchase
items from a collection of continuous double auctions (CDAs) that take place
on several MDA system nodes. Nodes are interconnected and Traders are free
to monitor and enter auction processes, placing bids as required to meet their
clients requirements.

•	 The TraderAgents are profit-motivated and their objective is simply to acquire
resources, combine them and sell them to ClientAgents. TraderAgents will be
limited in that they may not trade insolvently overall (if they do become insol
vent, they have failed and will die), but they will inevitably acquire resources
that they cannot then sell.

•	 Traders can adopt different fulfilment models, either speculating on client de
mands and purchasing in advance or waiting for a requirement to arise, and then
attempting to create a suitable bundle to match.

•	 When the MDA environment is running, the Seller will take resources for sale
and feed them to the auctions. They can then monitor the resources absorbed
by the market and report those back to such as operate in multiple single-item
auctions to achieve effective resource allocation without any of the optimality
guarantees of a CA.

The MDA system should be completely distributed and traders discover, monitor and
purchase items from a large number of different auctions. Each node in the sys
tem therefore supports the necessary functionality to support self-registration by other

75

nodes, so that a web of nodes can be deployed and then navigated via Traders and
Clients.

We set out to create a distributed market mechanism for solving bundling problems.
That is, given a requirement for a number of Buyers Bn, to purchase multiple tuples of
goods from the overlapping set X,Y,Z,P,Q can we successfully provide a mechanism
that allows the buyers to make their purchases within a Socially Optimal manner?

Recall also that a key objective for us is to be able to compare MDA critically with
the centralised system. Consequently, the MDA is derived from the same problem
specification and operates on the same datasets.

Finally, we sought to build a resource allocation system which could handle scenarios
with (i) incomplete data and (ii) communication complexity in a more robust manner.
This specifically meant that we required a solution which was completely decentralised
with no single points of control or decision making, hence a system of distributed
auctions.

4.2 Overview of MDA

For simulation purposes our implementation builds a centralised source of knowledge,
the “Oracle”, that processes the bid request files produced by CATS [LBPS00]. We are
utilising two CATS datasets (L2, Scheduling) in our work and each distribution is used
to produce a set of available bids and items which are distributed to the traders. From
a random starting position, the agents (implemented using JASA) then buy and sell the
goods, through many rounds, until the market stabilises and the level of trade tends to
zero, indicating that none of the available items matches the bids being requested.

In our development, we observed that the market environment initially experienced a
high level of activity as buyers had complete budgets and full procurement require
ments whilst similarly, sellers had complete stocks and therefore there was a high
degree of requirements matching. As time passed the ratio of trades per time incre
ment was reduced, the market stabilised and we observed that after all of the goods
had been traded approximately twice there was minimal new trade. Therefore, after
ensuring that the market has stabilised by ensuring all goods have passed through the

76

market once, the simulation then continues for as many ticks again as have already
passed before we close the market.

We developed the MDA as a distributed type of multiple item auction, whereby the
system runs one continuous double auction for every class of good (thus eliminating
the need to bid for combinations of goods in a single auction and greatly simplifying
the market for both traders and auction managers). An MDA has the following core
components, shown diagrammatically in Figure 4.1:

MDA Manager: The MDA manages the auctions and is responsible for telling traders
where (i.e. which CDA) they can trade their resources. It holds pointers to all
CDAs and if a CDA is requested that is not available then it will be created by
the MDA.

CDAs: A continuous double auction where a resource is traded. Only one type of re
source can be traded by a CDA and for every CDA there will be a corresponding
resource type. CDAs are created by the MDA Manager.

Goods: These are the units that are traded. They are simply an identifiable reference
to a resource, and the corresponding price information.

Oracle: Responsible for handing out bundles to traders on demand. As such, vary
ing the Oracle’s output defines the supply (and demand) in the market. Bun
dles can be both requested from the Oracle and returned to it (if they cannot
be purchased/sold). All transactions are reported to the Oracle, so it maintains
information and history about the market participants.

Trader: Responsible for retrieving bundles from the Oracle and trading them. Traders
who fail to trade their bundle within a given number of rounds must return them
to the Oracle and request a new bundle — ensuring the market does not contain
too many extra-marginal traders.1 At any one time, Traders can be buyers or
sellers depending on the type of the bundle received from the Oracle. Traders
can switch state (from buying to selling) and each time a trader receives the next
bundle to process from the Oracle it determines which role it should play, based
on the quantities specified in the bundle (positive quantities indicates a need to
sell, negative a need to buy). A Trader does not intentionally speculate on goods
and they will not purchase more goods than they need to complete a bundle.

1Buyers who have paid less than the equilibrium price and sellers who are selling for more than the
equilibrium price.

77

System Instantiation
(Oracle, Lookup Server, Market Servers all run as the basic platform)

CATS file loader reads
file and feeds Buy and
Sell Requirements to

the Oracle Oracle locates all
Market Servers

Oracle Waits for
Buyers/Sellers to Join

Market Server
receives request

to trade good

CDA Market is
created by Market

server, if not
already available

Is there
already a
market for
this good

type

Yes

Is there a
market
server
with

capacity?

Yes

No – request
needs to
loop until

we have a
market

available.

CDA Market
begins trading

good

Buy/Sell Orders
arrive in Oracle

Notification to/from Buyers

Notification to/from Sellers

Trade
Complete,

Buyer reports
to Oracle

Has Buyer
purchased
all required

goods?

No –
further

bids
submitted

Report completed bundle
operation to Oracle and

close down Buyer

Yes

Close down CDA Market

Trade Complete, Seller reports
to Oracle, Closes down

Are there
any traders
left in the
market

Trading
continues

No

Figure 4.1: MDA Instantiation Flow

78

SubTraders: A Trader is responsible for assembling a bundle of goods. To do this,
it participates in many CDAs, through a mechanism of SubTraders. These are
agents that have the task of buying or selling a single good within a specific price
range.

The combination of one Oracle, one MDA and an array of traders and CDAs makes up
an MDA market. These components come together to create a Repast Model, which
enables the collection and management of statistics and the control of the simulation.
The input into the model is the common dataset generated by the Combinatorial Auc
tion Test Suite (CATS). CATS generates a set of goods, and a price, for each bundle.
A sample data file is reproduced in Figure 4.2:

goods 5
bids 15
dummy 0

0 1211656 0 3 #
1 851593 2 #
2 3927158 0 1 2 3 #
3 665147 3 #
4 2957271 0 1 3 #
5 2077835 1 2 3 #
6 4026591 0 1 2 3 4 #
7 660628 0 1 #
8 1580815 0 3 4 #
9 2052298 0 1 2 #
10 996370 3 4 #
11 2806870 0 1 4 #
12 2810633 1 2 3 4 #
13 2752827 0 2 3 #
14 334974 0 #

Figure 4.2: Sample CATS Data File

Each row show in Figure 4.2 describes a bundle. The first field is an integer serial
number, the second the value bid for it, and the remaining fields are then the actual
elements of the bid. For example, line 6 gives a bid value of 4026591 for the bundle
of elements 0,1,2,3,4.

Each good can only be sold once, and therefore we can simply determine that the
maximum value achievable from this set of bundles would be bids 1, 3 and 11, for
total revenue 4323610 selling all of the available goods (0,1,2,3,4).

79

From this, you can see that for each bid, only each bidder’s public valuation is ex
pressed. CATS does not give us any indication of the bidder’s private valuation, or
indeed, any reference to public or private valuation from the seller of the goods. This
is understandable, because for a combinatorial auction all the auctioneer must do is
maximise the monies earned from selling the bundles, which it does by choosing the
maximum public valuations from the buyers

However, for a continuous market, such as the MDA, there will be many rounds of
bidding and the opportunity for both buyers and sellers to vary the price. Therefore,
we must construct the public and private valuations required for buyers and sellers,
and our approach for doing this has been as follows:

•	 Open the file, and loop through the lines until we find the first line that has a
bundle description.

•	 Loop through the line. Get the bid value and all the elements in the bundle.

•	 For the buy bundles, the budget price for the goods is set to be the total buy value
for the bundle, divided by the number of goods (i.e. it is shared equally.)

Then create the sales bundles. Get all the resources from the resourcesRe•

quired.keySet(). Create a new bundle, and give it one single item. Set the private
valuation of the sell bundle to be the average maximum budget available (i.e:
set it arbitrarily high, so it can be negotiated down, but not too high that the
negotiation process takes for ever).

Once the bundles have been read from the file and the different valuations have been
computed, they are boot-strapped into an “Oracle”. The Oracle class is then responsi
ble for instantiating the auctions, traders and keeping track of which goods have been
sold.

4.2.1 Use of JASA

JASA [PMPM06] is an auction simulator developed by Steve Phelps. It allows re
searchers in agent-based computational economics to run trading simulations using a

80

number of different auction mechanisms. JASA provides base classes for implement
ing simple adaptive trading agents and is extensible, so that new auction rules can
easily be implemented.

JASA is implemented as a set of extensions to Repast [NCV06] which is an agent
based modelling environment, designed for running simulations of a large number of
agents. Repast is implemented as a single Java Virtual Machine, in which each agent
is represented as an object, with each object having a step function that is called se
quentially by the master Repast process. Agents are synchronised through an artificial
time mechanism and complete one “round” or action per call of the step function.

Our MDA works on a system of Shouts, which can either be Asks, or Bids. Ask
messages come from Sellers, whilst Bids come from Buyers and we made use of JASA
in two ways:

•	 Our CDAAgent class is an extension of JASA’s RandomRobinAuction class and
has the KContinuousDoubleAuctioneer as a class attribute. The RandomRobin-
Auction class provides infrastructure needed for managing the auction, such as
(de)registering new traders, notification and requesting of bids and asks, etc.
The KContinuousDoubleAuctioneer class implements the rules for the CDA,
i.e. matching the bids and asks and deciding which shouts should be cleared.

•	 Our SubTraders, are subclasses of JASA’s ZITraderAgent class. The traders
“intelligence” level is defined by the strategy they use and we have chosen to
use the Zero Intelligence Plus strategy.

4.3 Trading Strategy

JASA provides a choice of two trading strategies: (i) Random Constrained Strategy
(often referred to as Zero Intelligence Constrained (ZI-C) in the literature[GS93]),
which is a trading strategy in which the agent bids a different random markup on our
agent’s private value in each auction round; and (ii) Zero Intelligence (ZI) strategy,
as outlined in work by Cliff and Bruten [Cli97, CB98]. Agents of this type have a
finite trade entitlement, which determines how many units they are able to trade in
a given trading period. As our objective was to utilise as simple and widely accepted

81

strategy as possible, ensuring our focus was on the market structure, we evaluated both
but focused on the ZI strategy. In our implementation, we developed ZITraderAgents
who become inactive once their intitial trade entitlement is used up, with their trade
entitlement being restored at the end of each day.

There is a disadvantage to using ZIP agents, which is that they must know what the
current bid or offers are before they can decide whether or not to raise or lower their
price. This presents an inherent scalability problem because an agent must track all
the transactions for the auctions they are a participant in. However, in any distributed
system where there is a common auction system this will be a necessary bottleneck. In
our MDA implementation, we found that there was significant overhead in the transfer
of messages between Agents in a distributed system, but that these could be mitigated
by intelligent message routing, which we considered in detail in Section 4.6.10

4.3.1 Social Welfare in Trading

We considered in Section 2.2 that Social Welfare—the process by which we consider
factors beyond moneytary value—was important in our trading process as it provides a
mechanism where by traders may determine between two equal bids. Recall if a trader
wishes to sell good X to Alice or Bob and both place bids on the same pareto efficient
plane, then the trader will use a social welfare function to determine whether to sell to
Alice or Bob.

In our implementation,having adopted the ZI traders the focus is on using that strategy
and multiple rounds of bidding to try and ensure that all bids received are different.
However, if they are not then we have limited information from our CATS data to
differentiate buyers and determine which buyer to select. Therefore, in our Trader-
AgentImpl and ZIPTraderAgentImpl classes we use a simple algorithm to select the
buyer based upon historic trades and the number of rounds taken to complete trades (a
buyer would be prefered if they have traded with greater quantity and less rounds).

82

4.4 Algorithms in Pseudo Code

Expressed in pseudo-code, the buyer and seller processes are specified in algorithms 1
and 2.

Algorithm 1 processbuyer

1:	 Trader buyTrader = Oracle.get next trader()
2:	 Bundle bundleToBuy = Oracle.get buy bundle()
3:	 for good in bundleToBuy do
4: cda = Oracle.get cda(good)
5: while good.is not sold() do
6: good.set price(bundleToBuy.get Budget()/bundleToBuy.get num goods())
7: cda.place bid(buyTrader(good))
8: while buyTrader.offer(good) = cda.get counter offer() do
9: if good.get price() = buyTrader.offer(good) then

10: cda.clear auction(good)
11: end if
12: end while
13: end while
14:	 end for
15:	 Oracle.return bundle(bundleToBuy)
16:	 Oracle.update success(bundleToBuy, self)

The Repast based MDA simulation uses a synchronous step model and at every step
(or round) the following three sub-steps are performed sequentially:

1. All Traders check the status of their current bundle. If the bundle has not yet
been fully assembled and trades are ongoing, nothing is done. If the bundle has
been fulfilled or has failed (the Trader has given up), they acquire a new bundle
from the Oracle.

2. All auctions perform one round.	 A round consists of asking all participating
traders to send in a shout. Any matches will be reported to the corresponding
traders in the next sub-step.

3. All Traders receive any trade results and the data on fulfilled or failed bundles is
collected.

83

Algorithm 2 processseller

1:	 Trader sellTrader = Oracle.get next trader()
2:	 Bundle bundleToSell = Oracle.get buy bundle()
3:	 for good in bundleToSell do
4: cda = Oracle.get cda(good)
5: while good.is not bought() do
6: good.set min price(bundleToSell.get Budget()/bundleToSell.get num goods())

7: cda.place shout(sellTrader(good))
8: while sellTrader.offer(good) = cda.get counter offer() do
9: if good.get price() = sellTrader.offer(good) then

10: cda.clear auction(good)
11: end if
12: end while
13: end while
14: end for
15: Oracle.return bundle(bundleToSell)
16: Oracle.update success(bundleToSell, self)

4.5 Conclusions from the MDA System

From our initial implementation of the MDA system, we learned the following lessons:

•	 Repast is a good choice for building a uni-processor simulation of a multi-agent
environment. It provides an excellent framework and supporting infrastructure
which allowed us to quickly implement a lock-step simulation with good tools
for tracking auctions, statistics gathering and visual progress monitoring.

•	 We built a system which was able to complete a large number of trades and
assemble bundles in linear time. However, our initial experiments focused on
bid-throughput and trading, without evaluating the bundle allocations proximity
to optimal. In further experiments, we needed to develop an understanding of
the bundles produced.

The MDA system is not without limitations, the most significant being the original
implementation was built with a number of the Repast concepts deeply embedded,
most significantly the “step” function and therefore the simulation was built on a cycle
of (i) execute market, (ii) collect data. This approach has no impact on the market
operation, but it massively increases the run time of the overall system because after

84

each round of the market we sequentially poll all of the agents in the system to col
lect market data and statistics and in doing so, pause the market. In completing our
experiments, we found that the largest amount of elapsed time for the MDA system
was taken up with datafile loading, preprocessing and statistics gathering and that the
distributed markets did not require very much time (proportionally to overall run time)
to execute). Thus our measurements of end-to-end run time contain a large amount
of non-auction time (note that a similar issue is present for measurement of combina
torial auctions, so the comparison remains valid) which would potentially confuse a
comparison of the core allocation systems.

4.6 MDA Re-factoring in AgentScape

Having developed the MDA simulation in Repast, we wanted to expand the investiga
tion and implement a fully asynchronous mechanism in which the traders and markets
were not controlled by an iterative step cycle and could act according to independent
market events. We identified a number of limitations in the Repast approach and areas
for additional investigation:

•	 Speed: In doing our Repast-MDA experiments, we found that a lot of the end
to end run time was being absorbed by the “system” processing of reading files,
enumerating over agents and logging results. A much smaller proportion of it
was spent in the market mechanism. We wanted to improve the platform so that
it was lighter weight and agents could spend more time in the market and auction
states and less time reporting performance.

•	 Concurrency: We wanted to introduce just enough concurrency, so that more
than one agent could make trading decisions at once.

•	 Communication: Distributed systems embody significant communication over
heads, and with the Repast stepped approach, agents spent most of their time
waiting to be called. In a distributed system where agents operated continuously,
the relative placement of processes and resources would acquire a significance
that was not present in the Repast simulation. We needed to understand how
much time was spent in communication, synchronisation and trading respec
tively.

85

We have therefore re-factored the Repast simulation to constrain the concurrency. We
introduced the AgentScape [OB06] platform to build the asynchronous system.

Agent Platforms such as Jade 2 are focused on the development of many agents within
a single environment. In this work, we have focused on a comparison of distributed and
centralised systems (with the agent based system being the distributed component) and
hence the distributed features and support for inter-host migration within AgentScape
caused it to be a highly attractive agent platform for us to adopt.

The major benefit of AgentScape is that it allows us to take advantage of the mobility
platform it provides to enable agents to migrate to the host they do most processing
on, so that the majority of communication messages are local, reducing the impact of
additional messaging overhead required to facilitate a distributed architecture.

AgentScape was initiated in early 2000 and consists of a “kernel” layer, on-top of
which AgentScape agents can be launched. The system of middleware then facilitates
communication, mobility, security, fault tolerance, distributed resource and service
management. Initial versions of the AgentScape kernel were implemented in C, but it
has since been reimplemented in Java, which is what we used for our developments.

In the Java implementation, an AgentScape kernel is invoked on each host computer,
in a separate Java Virtual Machine (JVM). Each kernel environment is registered with
the LookupServer, which tracks the location of all AgentScape Kernels and the Agents
located within them. AgentScape has a number of key concepts as show in Figure
4.33: Firstly, Agents and Objects are the two basic entities. These reside at a Location.
Agents can pass messages between each other through the kernel, typically serialised
Java objects to support a form of Remote Method Invocation (RMI). Additionally,
AgentScape supports migration of agents from one AgentScape kernel to another. To
support this, agents are serialised down the kernel communication path and unpacked
at the other end, before being re-invoked. A more detailed description of AgentScape
can be found in [OB06]

2Jade is available at http://jade.tilab.com.

3With thanks for Benno J. Overeinder for the figure.

86

http://jade.tilab.com

AgentScape
middleware

AgentScape
middlewaremiddleware

AgentScape AgentScape
middleware

Mac OS X

AgentScape
middleware

Solaris

Lo
ca

tio
n

B

service

agent

W2K/XPLinux Solaris

Lo
ca

tio
n

A

Figure 4.3: Model of AgentScape middleware environment

4.6.1 Using AgentScape for distributed auctions

AgentScape is ideally suited to the development of a distributed environment, such as
our auction platform. It contains a number of building blocks (i) agents, which are the
active entities of the system, containing the “business logic” for the application. These
are hosted at (ii) locations which provide the environment for them to exist and can
be found via the lookup service. Finally, AgentScape provides (iii) services which are
external software systems hosted by the AgentScape middleware that provide access
to things like external web services which are wrapped and presented as Web services,
using SOAP/WSDL generated dynamic interfaces.

Agents in AgentScape are defined according to the weak notion of agency (as defined
by Genesereth and Ketchpel in [GK94]) and have the following characteristics: (i) Au
tonomy: agents control their own processes; (ii) Social ability: ability to communicate
and cooperate; (iii) Reactiveness: ability to receive information and respond; (iv) Pro-
activeness: ability to take the initiative. Through the kernel, they may (i) communicate
with other agents, (ii) migrate from one location to another location, (iii) create and
delete agents and (iv) control service access. We should note that all operations of
agents are modulo authorisation and security precautions, a framework for which is
provided by the Agentscape middleware e.g., an agent is allowed to start a service if it
has the appropriate credentials (ownership, authorization, access to resources, etc.).

Finally, a location is a place in which agents and services can reside. More precisely
stated, agents and services are supported by agent servers and (Web) service gateways
(respectively) which belong to a location. From the perspective of agents, agent servers
give exclusive access to the AgentScape middleware. Similarly, service gateways pro
vide access to services external to AgentScape.

This suite of components provided by the Agentscape middleware made it ideal for
our implementation of a distributed version of the MDA.

87

4.6.2 MDA Distributed Architecture

As described in Section 4.2, the centralised MDA implementation runs the simulation
sequentially. In each round, all auctions run in a single thread of execution. How
ever, in a distributed system, all processes that have no direct effect on each other
can often be executed in parallel. In the case of the MDA model, each auction could
in principle run in parallel which would lead to both improvements in the fluidity of
the market (with a greater volume of transactions being completed) as well as gen
eral performance improvements, with a significant reduction in the amount of time
spent on synchronisation of and data capture from the trader agents. The move to this
architecture also allows us to reflect on the actual intended deployment scenario and
demonstrate scalability and the impact that physical distribution has on the operation
of the MDA.

However, just distributing the application does not automatically mean that it will nat
urally scale and benefit from running on multiple hosts. The application has to be
carefully divided into agents so that these can perform most of their work without re
quiring too much coordination. If agents can do most of their processing independent
of others, a lot of work can be done in parallel.

In order for the results of the distributed MDA to be comparable with the centralised
one, the notion of rounds as described at the end of section 4.4 must still be kept.
However within each round the autonomy of the agents, which are now able to bid in
parallel, lead to improved performance.

In the distributed MDA, the three steps done during each round in the synchronous
step model from section 4.4 will still be used, and are executed sequentially. However,
within each step, the actions can be done in parallel. In other words, in step 1, all
Traders can check their progress simultaneously; in step 2, all auctions can run one
round in parallel; and in step 3, all Traders can process the trade results in parallel.

This combination of constrained asynchronous execution has the advantage that the
simulation still has the notion of ‘rounds’, and thus producing results that are compara
ble to the sequential version, while allowing for the maximum amount of concurrency
within each round.

In an agent system, typically the work is divided among several agents, which all

88

perform a part of the work. By using Agentscape to distribute agents over multiple
hosts we were able to spread the load of the application across multiple servers.

4.6.3 Re-factoring for asynchronous operation

Our initial Repast based simulation operated on a “clock-tick” basis, with Repast call-
ing a “step” function on every object at every tick, which in turn caused the agent’s
logic to advance, for example by placing another bid in the market.

However, in the Agentscape model, there are many different agents operating across a
number of hosts and this requires an asynchronous approach to operation, with every
agent acting independently, therefore we re-factored the framework so that the actual
Trader code from our Repast implementation could operate effectively in the new en-
vironment.

Oracle Bundle Trader

Buy Sell

CDA

Success Failure

Unwind Trade

Log
Profit

Log
Loss

Figure 4.4: Visualisation of MDA bundle flow

We highlight below, for the purposes of ensuring a valid comparison, how the MDA
system works in both a synchronous and asynchronous environment.

4.6.4 Initial set-up of the market

The overall flow of bundles is visualised in Figure 4.4 on page 89. The MDA-Agentscape
system starts by loading the Agentscape environment in all the relevant machine in-

89

stances and setting up the initial bundles, traders and CDAs. The first action is to read
in the CATs data file, using the BundleReader and this is a centralised process for both
the AgentScape and AgentScape-MDA operations.

The BundleReader reads each line of the CATs file containing the list of resources
and the funds for the complete bundle. Identical Java objects are used for goods to
be bought and sold, with negative quantities indicating a buy request for a good and
positive quantities indicating a good for sale. The bundles of requests to buy are created
first, with the quantity for each resource being set at -1, subsequently a new sell bundle
is created with quantity +1. A Buy request bundle will contain multiple good elements,
whilst a sell good “bundle” will only contain a single good. These bundles are then
added to the Oracle and the price is calculated. The price for sell bundles are initially
set to be the average maximum price available (total budget/number of goods for sale)
as the price can then be negotiated down.

4.6.5 Startup and Bootstrap Process

Having read the bundle, the market is started up:

AgentScape: The ZIPTraders are started by the Oracle with an initial bundle (to buy)
or good (to sell). They then run for a fixed maximum number of rounds. If no
trade has been made in that time frame, the ZIP agent returns the bundle to the
Oracle who can make it available to the market at a later point in time.

AgentScape-MDA: In the asynchronous market, the Market Manager mechanism and
Oracle are instantiated during initial setup and remain resident whilst the system
waits for traders. When a trader joins, it requests a bundle and will then request
the location of the relevant CDA market for that good. Having joined the mar
ket, the trader can begin trading as soon as the counter trading party becomes
available in the CDA.

90

4.6.6 Auction Clearing Process

Once trading has commenced the auctions will begin to match buy and sell shouts and
clear goods.

AgentScape: Buyers enter auctions and place “bid” shouts for the goods that they
want in the relevant CDAs. Similarly, sellers place “ask” shouts for the available
goods. A parent trader agent is responsible for managing the (dis)assembly of
the whole bundle and will dispatch sub-traders to negotiate for a specific good
in the relevant auction. Traders will try for up-to 20 rounds to complete the
purchase or sale, before giving up and returning the bundle to the Oracle. If an
“ask” shout matches the “bid” then the Oracle is informed of the successful trade
and the sub-traders close down and report success to their parent trader agent.

When there is a matching buy and sell shout, the auctioneer will clear the auction
round. If they do not match, then everyone monitoring the auction is told, and
participants may submit a lower/higher ask/bid respectively.

AgentScape-MDA: The asynchronous process is similar, except that whilst the buy
ers will continue to try for 20 rounds (tests in Gislin Kamda’s MSc report showed
this to be the optimal number) the sellers will keep selling until they have sold
the item. The CDA remains open for as long as the AgentScape platform is
running (although there may be no items available to buy).

4.6.7 Returning bundles

In a distributed system of continuous double auctions where each sub-trader was as
signed a single good it would be possible for that sub-trader to continue attempting
to trade until the end of the market process. However, in the Repast model, as imple
mented, sub-traders cannot keep their good beyond the end of each “step” and therefore
all goods need to be returned to parent traders.

AgentScape: The sub-traders keep their bundles for 20 rounds, which is the length
of time each step in the market lasts for. Partial bundles are generally only buy
bundles (sell bundles have a single resource only so they either trade completely
or not at all).

91

AgentScape-MDA: Buyers seek to produce whole bundles and when a buyer cannot
complete the purchase of all the goods in a bundle after a given number of rounds
(20, as in the synchronous market), the Bundle should be returned to the Oracle
and the funds associated with it will also be returned and subtracted from the
trader’s balance. As implemented, we do not penalise the trader for this, beyond
reversing the trades and decrementing the profit gained, but this remains an op
tion for future work. Every time the Oracle gets a good to sell from the return
process (i.e. one which was purchased in a partial bundle), the Oracle will go
through the bundle again and invoke a new seller agent to resell the good.

4.6.8 Market stop condition

AgentScape: The Repast simulation continues to poll all traders until all of the goods
have been taken at least once. It then continues to run the market for the same
number of ticks again, to give the market time to process any outstanding bids
or partial bundles.

AgentScape-MDA: The asynchronous market does not run for a specific number of
ticks or time intervals, therefore, the market mechanism is instantiated and runs
perpetually. Traders can join and leave the market as required. A CDA continues
to operate for the life of the AgentScape platform.

4.6.9 CDA clear conditions

AgentScape: At every Repast step, the CDA attempts to clear the market and deter
mine if there are matching bids.

AgentScape-MDA: At every shout in the market, the CDA will look to see if there
are matching bids and attempt to clear the market. The CDA can only begin the
process if there is at least one buy and one sell bid in the market (with corre
sponding buyer and seller trading agents).

Once the auction clears ZIPTraders who monitor but are not successful are notified
and they can then submit fresh bids.

92

4.6.10 Messaging Overhead

Two key issues arose during our implementation of the MDA market in AgentScape:

(i) The high overhead of AgentScape messaging between nodes.

(ii) The inefficiency of the sequential processing model in Repast which meant that
the relative concurrency available in Agentscape could not be fully exploited.

In order to make a smooth transition from the existing application to the distributed
MDA version, all distributed objects are encapsulated in an agent class. The objects
are then accessed by the Agent Proxy, meaning that every single method call between
auctions and (sub) traders is translated into a remote method invocation, so method
invocations are sent using the AgentScape messaging service. The original application
is not really aware of any distribution of the objects, because this is done transparently.

Even though the proxies help to distribute the objects, it makes the entire application a
lot slower, because all invocations are now sent over messages. In the sequential MDA,
the cost of a method call can be neglected, but for a distributed system this is much
more costly, because sending an invocation request and waiting for a message with the
result has a much higher latency. This is especially noticeable for a high number of
invocations.

Analyzing this message traffic provided insight into which agents communicate the
most, and offered a first means to improve performance. It is possible to reduce mes
sage traffic by caching method results whenever possible. Another approach is to
group method invocations that are often used subsequently, as a single invocation is
more efficient than multiple invocations. These optimisations generally do not require
restructuring of the application and as such are easy to apply.

Other attempts at reducing the number of messages involves more structural changes.
For example, in the MDA application it can be observed that certain agents commu
nicate only with certain others. For example, each resource (sub) trader mostly only
communicates with a single auction object. Moving the resource trader to the same
node as the auction is executing on, allowing it to perform its work locally to the auc
tion saves a lot of network based messaging.

93

Another issue that involves a lot of messaging is polling. In the sequential MDA,
traders poll the auctions for results of their sub-traders on every round. A notification
scheme, where the auction notifies the traders whenever results are available removes
a significant proportion of messages.

4.6.11 Synchronisation Coordination Overhead

In order to ensure comparability of results from both the centralised and decentralised
systems both use a single manager for keeping track of rounds. On each round, every
agent runs its part of the round, after which it waits for the next round.

This means that in the distributed MDA a large amount of time is spent waiting. Even
though auctions can run in parallel, they cannot continue working on a new round until
all others are finished with the previous round.

Having to synchronise is not problematic if the costs of doing so are relatively small
compared to the amount of work that has to be done by the agents. In this application,
however, the average time for an auction to process shouts is less than the time it
takes to send and receive a message. For example, when running an auction with a
lot of agents, each time a bid is received a message is sent to the agents participating
informing them of the new bid and giving them the opportunity to update theirs.

A larger grain size (i.e. if the messages contained more information/work) would
reduce the impact of the messaging. This could be obtained by allowing traders and
auctions to perform multiple steps at once. However, in the current design traders
check the status of their bids in all of the auctions they participate in for every round.
This operation allows them to maintain accurate control of funds, but it restricts the
auctions and traders to performing only a single round at a time.

If the amount of work done by each individual agent is what demands most of the
processing time, then distribution would be more successful. However, in the MDA
simulation the cost comes from having to perform work for many individual agents.
All agents have to be coordinated, though each individual agent performs relatively
little work.

94

4.6.12 Evaluation of Agentscape-MDA

The software engineering challenge we faced in our Agentscape-MDA system lies in
how to scale that demonstrator up into a system comprising many more agents running
over multiple machines. We took an incremental approach, re-factoring the MDA
system into a distributed system, but it is clear that we did not go far enough in our
work because it seems that whilst increasing the size of the agent platform does not
impact on the market dynamic in the system, it does impact massively on the runtime.

Testing Objectives

In our experiments there are two variables. Firstly, we can expand the number of
servers running the Agentscape environment, to test the effect of the inter-environment
communication. Secondly we have run multiple datasets on both environments, to
determine the runtime performance of the systems relative to each other.

Our objectives in testing were to consider the impact of the overhead imposed by the
communication between nodes, which we can demonistrate by increasing the number
of nodes in the system and monitoring runtimes and market throughput.

We would anticipate that increasing the number of processor nodes would increase the
CPU available for the system, but that adding more nodes will distribute the problem
more sparsely and hence increase the amount of inter-node communication.

The second objective was to run a number of simulations using the L2 dataset, to com
pare both the overall runtimes and market throughput of the Agentscape and Repast
simulations.

In our AgentScape simulations the experiments used 400 trading agents.

Initial AgentScape Results

Our AgentScape simulations were run on both a single computer and on multiple com
puters. When communicating locally, the inter-agent method calls pass directly be

95

tween Java objects. When the agent is remote, AgentScape uses the custom RMI mech
anism to faciliate communication between agents running on different AgentScape
platforms.

(Bid Throughput is defined as the total number of bids traded in the market simulation.)

Run A — 1,2 and 4 AgentScape Environments:
No of Environments Runtime (min:sec) Bid Throughput

1 20:46 18469

2 50:53 17015

4 74:08 16253

Run B — 2,4,8,16 AgentScape Environments:

No of Environments Runtime (min:sec) Bid Throughput

2 43:52 18469

4 61:18 19202

8 72:33 17368

16 81:26 16232

Run C — a single Repast Environment
No of Environments Runtime (min:sec) Bid Throughput

1 0:59 18354

We are also able to show equivalence, across both the four AgentScape environments
and the Repast environment, as the number of bundles traded, completed and unful
filled across the market are consistent for all iterations of the experiments, as shown in
4.5.

It can be seen from these tables that all experiments produce similar market throughput.
Additionally, all experiments run to completion within the same number of “ticks”
(clock cycles).

The key difference between all our runs is that the runtime in AgentScape is much
greater than the Repast runtime, and that the AgentScape runtime is greatly extended
as the number of processors increases.

96

Figure 4.5: MDA Bundles Traded - Repast and AgentScape

AgentScape Implementation Evaluation

MAS software development is characteristically evolutionary and a common starting
point is a proof-of-concept system running on a single machine utilizing an agent plat
form or even a simulation framework. The software engineering challenge lies in how
to scale that demonstrator up into a system comprising many more agents running over
multiple machines. A large-budget solution might throw away the demonstrator and
rewrite from the ground up, but there are many risks with this approach as well as
high costs. An alternative approach, that is the subject of this paper, is to refactor the
demonstrator into a large-scale system, taking advantage of the incremental nature of
the changes applied and regression testing to create confidence in the process and the
outcome.

We have pursued this approach and developed a system to support large numbers of
agents participating in large numbers of auctions on geographically distributed ma
chines. However, from our initial experiments, it seems that whilst increasing the size
of the agent platform does not impact on the market dynamic in the system, it does
impact massively on the runtime.

This dramatic increase in runtimes is due to the large number of messages that are
passed between trader agents, all of which need to be serialised and sent through the
AgentScape message system. The amount of communication that is required to keep

97

the agents busy is simply too much with respect to the amount work that each individ
ual agent needs to perform. The CPUs sit idle for too long while waiting for messages.

In this particular simulation, it would have been better to utilize multiple CPUs on
a shared-memory memory machine (such as a single multi-core machine), thereby
reducing the latency from message sending whilst still distributing the work over mul
tiple processing units.

However, the choice to constrain the asynchronous nature of the distributed simulation
by keeping the notion of rounds, did make it possible to compare the results with the
centralized simulation. Unfortunately, this choice also meant that a lot of synchro
nization was necessary among traders and auctions, which lowered the overall perfor
mance. A fully asynchronous simulation would probably show better performance.

Another lesson learned was that placing agents on hosts must be done with care. Plac
ing agents that communicate a lot close together (i.e., on the same host) improves the
performance of the simulation considerably. For example, sub-traders, that try to ac
quire a single resource at an auction on behalf of a trader, should be placed on the same
host as the auction. Unfortunately, there are also agents that cannot be easily placed
together. For example, the traders themselves cannot be placed at auction’s location, as
the trader has to interact with many different auctions to acquire a bundle of resources,
and auctions are best placed at different hosts to take advantage of parallellism.

In conclusion, it has proved to be difficult to optimise the speed of the MDA market
simulation by distributing over multiple hosts, while still respecting the synchronisa
tion contraints from the original Repast simulation. Synchronising agents is very time
consuming due to the amount of messaging involved.

An alternative approach to reduce the communication overhead, without the need to
change the structure and algorithm of the simulation, is to use a shared address space
for all agents. For example, running the simulation with multiple threads on a single
(multi-core) host would not require RMI communications but would still benefit from
running auctions and traders in parallel.

98

4.7 Conclusion - the MDA System

The MDA system has been built to provide a distributed market mechanism for per
forming resource allocation. It takes input from CATs generated test datafiles, extrapo
lates them and uses intelligent agents to trade in a series of continuous double auctions
to complete a resource allocation.

As well as using an approach of distributed decision making to resource allocation, we
have implemented MDA using both the single-host repast simulator and a multi-host
Agentscape based simulator and shown that there are significant engineering chal
lenges to be considered when running a multi-agent system with a high volume of
transactions in a networked environment.

However, the use of a distributed market mechanism has provided us with a reliable
way to simulate resource allocation in an environment with no centralised single point
of control and that allows us to begin looking at the question of which resource man
agement technique is the most appropriate for any given situation and how the out
comes produced by centralised and decentralised systems compare.

99

Chapter 5

Experimental Approach

In evaluating our experimental approach we need to consider a number of areas. Firstly,
we must address and understand the differences and similarities in the centralised and
decentralised system and subsequently confirm that there is a sound basis for compar
ison. With that established we then identify four metrics which provide measures for
comparison. Next, we consider the structure of our experiments and the make up and
selection of test data, before concluding with a discussion on the structural integrity
and validity of the two software algorithms, CASS and MDA.

Having evaluated the approach, we turn to the actual experiments and describe the
specific simulations completed and results captured.

5.1 Comparison Problem

We have previously discussed the problem of comparing two systems—one centralised,
one decentralised, but it is beneficial to recap on why the comparison is both valid and
useful in the context of discovering the most appropriate resource allocation mecha
nism for a given set of circumstances.

We achieved our comparison using a common set of inputs (from CATS datafiles) and
then producing the same outputs—a list of which bidders had ’won’ their goods and
the corresponding costs and values.

100

Some will argue that a centralised system is not solving the same problem as a decen
tralised system but we disagree. Whilst they do use entirely different methods, they
begin with the same data and objectives and end with outcomes that are objectively the
same, in that an allocation formed from preferences is completed.

It is accepted that to achieve a Pareto optimal allocation you must have complete pref
erence information for all market participants, which is the situation with a centralised
mechanism. With a distributed system, participants will only release as much pref
erence information as is necessary. In this scenario, the market will achieve a set of
outcomes each of which is Pareto efficient (no goods can be reallocated to make any
one better off, without disadvantaging others) however, it is impossible to know which,
if any of these are the Pareto optimal solution. However, as discussed in Section 3.2.1
(page 58) we do reach a point on a Pareto frontier and in a market mechanism, all
further optimisations must optimise on the basis of social welfare.

5.2 Factors for comparison

We have identified the following factors for comparison:

Hardness: In “Combinatorial Auctions” [LBS05], KLB presents “Gross hardness”
figures for a range of CATs distributions and we reproduce that graph, of runtime
orders of magnitude, in Figure 6.1. We are able to perform a similar analysis of
our own data, along with that from KLB’s CPLEX and CASS simulators.

Time: The Combinatorial Auction runs as a single-shot process and has a defined
end point. We are therefore able to easily determine the amount of actual time
(which can be scaled relative to different CPU speeds) taken to compute so
lutions. In the MDA, run time measurement happens differently, because the
market mechanism runs continually, however, there is a specific amount of time
between starting with a fresh dataset of goods and bundles in the market and the
point at which the traders in the market will have either (a) successfully com
pleted their bundles or (b) concluded that they will not be successful and will
have ”given up”. In our MDA simulations, we looked at the completion rates
after 500 rounds, as after that point we determined that the market was largely
inactive.

101

Financial: Each bundle has an assigned value and the object of the Combinatorial
Auction is to maximise the revenue earned by the sellers through the sale of
bundles which obtain the highest set of purchase prices. For the MDA, we ex
trapolate the CATS bundle prices to give individual goods a buy/sell price (by
uniformly splitting the available overall price) and so for each bundle we can
measure the distance between the total sale price of all goods sold (potentially
for sets of incomplete bundles) and the total available budget. This allows us to
determine the “under-spend” incurred through only purchasing partial bundles.

Efficiency: Building on our discussion of the behavioural properties of computation
markets in Section 2.2 (page 50), in which we considered that a combination
of pareto optimality and social welfare maximisation defined “efficiency” we
shall specifically define market efficiency for this analysis as being the total
value of trades undertaken. In the CASS environment many of the bids are not
met because they do not represent a Pareto optimal solution, however, that also
means that there is value available to sellers which is not “unlocked”. Poten
tially it would be possible to generate more value for sellers by complementing
the complete bundles sold as part of a Pareto optimal outcome with the sale of
goods from partial bundles, thus giving us a social welfare benefit in our “value
of trades” measurement.

Completion: In the Combinatorial Auction, the mechanism is such that it finds the
optimum solution for complete bundles. Bidders either receive all of their re
quested goods, or none of them. The MDA on the other hand is a linear process
and bidders buy their goods sequentially with no certainty that they can com
plete the bundle. Therefore at the specific point in time when the mechanism is
stopped there will be a mixture of partial and complete bundles. In our model,
each good within the bundle has equal value and no preference is attached to
any specific good. Therefore we propose to measure completion as a percentage
score of the number of goods out of the total desired bundle obtained at the point
the market snapshot is taken.

Satisfaction: We have presented criteria which allow us to make quantitative com
parisons of the solutions we have computed from our CASS and MDA solvers.
In order to provide a statistical comparison it would be helpful to have a sin
gle, combined metric by which we can measure the relative performance of the
different approaches. We have defined this parameter as “satisfaction” and con
sider it to be the product of underspend and the completion ratio for the bundle.
Expressed algorithmically, we say:

102

$satisfaction = $underSpend ∗ $completionPercentage

The rationale for this is as follows:

•	 If I complete my bundle, I am happy. If I purchase it cheaply, I will be
happier than if it has a high cost. If I get 100 percent completion for a high
underspend value, then I will have a high satisfaction rating.

•	 If I get 50 percent of the goods desired for lots of money, I will have a very
low underspend value which will be divided by 50 percent, giving me a
very low satisfaction ratio.

•	 If I get 50 percent of goods desired for little money, I will be reasonably
satisfied, so my high underspend value will be divided by two thus taking
the downside of an incomplete bundle into account.

Through the use of these variables we will be able to develop a quantitative analysis of
the relative merits of the centralised and decentralised approaches and we shall explore
these themes in more detail when considering the results of our experiments.

5.3 Construction of Experiments

We used the Combinatorial Auction Test Suite (CATS) for the generation of test data,
and in particular, data published by Kevin Leyton-Brown (KLB) [LBPS00], as the
basis for our comparison.

KLB produced “empirical hardness-models” as researchers find it very useful to be
able to predict how long an algorithm will take to solve a particular problem instance.
This will allow the user to decide how to allocate computation resources and whether
a complete or approximate algorithm should be used.

KLB published test data for a number of different hardness models from two different
sources. The first, published along with the initial wave of algorithms for solving the
Winner Determination Problem (WDP) are known as L1 (and L2) through L7. These
were criticised in several ways, perhaps most of all for lacking economic justification,
a significant criticism because a combinatorial auction is a weighted set packing prob
lem and if the data upon which algorithms lacks any connection to the combinatorial

103

auction domain it is reasonable to ask whether the algorithms also have any connec
tion.

On the other hand, these datasets do have published work associated with them and
given that a core principle of our comparison is that we are able to compare our results
against work by others, we are keen to include them.

Therefore, we selected the L2 dataset, produced using the Weighted Random distri
bution from Sandholm [1999], which chooses a number of goods g from [1,m] and
assigns the bid a price drawn uniformly from [0,1]. We made the selection based
on recommendations by KLB in [LBNS02] in which he considered the percentage of
dominant bids generated over a number of runs and was able to identify which dis
tributions were trivially easy (L1 and L5). L2 was less trivial and hence we adopted
it.

Concerns the original datasets (L1 to L5) were trivially easy to solve lead KLB to
develop a new version of his CATS systems which consisted of a number of distri
butions paths, regions, arbitrary, matching and scheduling. These seek to model real
world situations, for example Paths models an auction of transportation links between
cities, whilst Regions models an auction of real estate. We choose to work with the
Scheduling distribution as that models a distributed job-shop scheduling domain, with
bidders requesting an XOR’ed set of resource-time slots to satisfy their specific dead
lines. The scheduling distribution, therefore, had the most in common with our dis
tributed market problem. We were also interested to determine how our model fared
with a harder distribution and so we have conducted limited experiments with the
Arbitrary dataset, but we lacked sufficient computing power to develop a complete set
of a results.

5.4 Structure of Test Data

We also need to consider how big our test dataset should be. Most researchers fix their
problems in terms of the number goods and the number of bids and indeed, problem
size is a reasonably well understood parameter of hardness. However, KLB showed
that whilst it was easy to fix the number of goods, it is much more difficult to keep the
number of bids constant. One of the main problems is the need to ensure that there are

104

no dominant bids in the test data. KLB defines the concept of dominant bids as being:

Bid i is dominated by Bid j if the goods requested by i are the same or a
superset of goods requested by j and the price-offered by i is smaller or
equal to the price offered by j.[LBNS02]

One can see that if a set of bids contains those which are offering less money for
more goods, then they should be automatically excluded as they do not contribute to
the hardness of the dataset in any way. Indeed, most solvers (e.g. CPLEX) employ a
polynomial-time reprocessing step to filter them out first.

Each of the test datasets is generated as a bid-graph, and KLB built the distributions
using 30 features, which group into 5 broad feature areas: (i) Bid and Good node
statistical features for the links between bid and good nodes, (ii) Bid Graph structural
features, such as edge density, path length, (iii) Linear Programming based features
(these make it harder for the CPLEX solver), (iv) Price based features, and (v) Problem
Size features.

We choose a fixed problem size of 256 goods, 1000 non-dominated bids, with 500
instances of the problem as these were pre-produced by KLB along with associated
results computations. Based on KLB’s results the “L2” and “Scheduling” datasets
looked feasible but non-trivial to compute using the CASS and MDA systems. We
have also conducted limited investigation with the “Arbitrary” dataset, but this is a
much harder problem set to solve, containing problem instances between 2 and 5 orders
of magnitude harder, as shown in Figure 6.1.

For the majority of graphs therefore, we plotted 2000 test instances, 500 each for the
L2 and Scheduling distributions for both CASS and MDA systems. Each test instance
is a bid for a bundle of goods and each of these bundles has characteristics which
we examined, typically through aggregate measures (such as standard deviation and
variance).

105

5.5 Calibration of timings

During the course of the PhD a number of different computer systems were used to test
programs and calculate the solutions and many early results were computed using the
Oxford National Grid Service Cluster a set of 64 dual CPU Intel Xeon 3.06 GHz server
nodes and individual experiments were computed on two departmental workstations,
which contained high spec Xeon processors.

Subsequently all calculations were recomputed using the Aquilla cluster at University
of Bath, which provided 50 quad CPU Intel Xeon 2.8 GHz server nodes and graphs
shown in Section 6.3 are all computed consistently on this platform.

In order to calibrate early results to the final “aquilla” computations, timings were
converted via multiplication to the number of clock-ticks executed on the various CPU
models (according to CPU specification), such that the comparison was consistent
regardless of speed of actual execution.

5.6 Verification of accuracy of CASS

KLB initially used the commercially available CPLEX solver to determine his solu
tions, but then went on to propose his own solver, the Combinatorial Auction Solution
Solver (CASS). CASS is provably optimal: It finds a solution that maximises the so
cial welfare for a particular scenario and its answer can be compared directly to other
algorithms, such as BidTree [SSGL05] and CPLEX.

As we know from our earlier discussion on Pareto optimality and social welfare op
timisation, it is possible that a frontier might exist with a number of complementary
solutions (i.e.: that yield the same social welfare with different bids). In the published
literature there appears to be an implicit assumption that the solutions that CASS pro
duces are identical to the ones that, say, CPLEX or BidTree produced. Whilst there
can, of course, be only one answer, with respect to the value of the solution, a Pareto
frontier represents a number of different combinations of goods and there does not ap
pear to be any published work comparing the different combinations of outcomes for
centralised solvers.

106

In email correspondence with KLB (August 2008), he said

“CASS is provably optimal, so are BidTree and CPLEX. It’s possi
ble that there will exist solutions that tie (i.e., that yield the same Social
Welfare with different bids); in this case, the different methods could find
different sets of bids. I’ve done experiments confirming that CASS really
does find the optimum, checking against CPLEX (I’ve never been given
code for BidTree or CABOB). So have others, e.g., Craig Boutilier. As far
as I know these results haven’t been published.”

It is unfortunate that there is no published analysis of the possible different solution
sets, however on the basis that KLB’s work has been widely scrutinised, published and
produces the same fiscal (if not component) output as other solvers, such as CPLEX,
we feel confident that it provides an excellent basis for comparing the MDA solution.

One further disadvantage for the CASS is that whilst KLB has published raw test data
and his run times and optimum solution values (i.e. the amount CASS spends) for
the bid problems he presents, he has not published the solutions or details on which
bids won the process. CASS is deterministic and we assume, that our execution of the
CASS algorithm with the same data gives us the same optimal value (which we have
checked) from the same winning bundles (which we cannot check), but in faster time
(our CPUs are newer and run faster, so this is to be expected).

5.7 Conclusions

We have outlined the two market mechanisms that we wish to compare and given a
detailed overview as to how we will complete the comparison. Importantly, we have
identified our metrics hardness, financial, completion, efficiency, time and satisfaction
which allow us to highlight the relative performance of the two mechanisms.

Having developed a comparison framework, we then considered the test data, selecting
the L2 and Scheduling datasets. It is important to ensure that neither the test data nor
the models shall trivialise the problem. We examined MDA in detail in Chapter 4 and
here we have considered problem of dominant bids in the test data and the accuracy of
the CASS system.

107

Chapter 6

Experimental Results

6.1 Introduction

Through the use of our key metrics (i) Hardness, (ii) Time, (iii) Financial Performance,
(iv) Efficiency, (v) Completion and (vi) Satisfaction we are able to evaluate the differ
ent facets of market performance delivered by the two algorithms, CASS and MDA,
in an objective manner. We have already identified in our earlier discussion that both
algorithms are useful and perform well in different circumstances. Through drawing a
comparison we are able to identify the characteristics they exhibit that allow us to give
recommendations, based on empirical research, as to when the use of each mechanism
is more appropriate.

In examining the data we were able to observe patterns and characteristics that we
felt were unusual or inconsistent, but typically related to our preconceptions about the
“hardness” of the distribution sample set. Therefore, to ground our results in context,
we begin with an analysis of KLB’s previously published results using the CPLEX
combinatorial auction solver software.

108

Figure 6.1: Gross Hardness, 1000 Bids/256 Goods, Graph by KLB

6.2 Examining Hardness

In “Combinatorial Auctions” [LBS05], KLB presents “Gross hardness” figures for a
range of CATs distributions and we reproduce that graph in Figure 6.1. This figure
shows the results of the same 500 runs for each distribution on problems with 256
goods and 1,000 non dominated bids, indicating the number of instances with the
same order-of-magnitude runtime—that is log10(runtime). These experiments were
run on a cluster of Pentium III Xeon 550-Mhz machines and took over a CPU-year to
gather. Many of the distributions are shown to be easy for the CPLEX solver and the
first reaction might be to suggest that scheduling, with approximately 80% of outputs
having runtime that is one class faster than the L2 results shown, would be to suggest
that L2 is “harder” for CPLEX, and indeed, KLB confirms this:

109

“We can see that several of the CATS distributions are quite easy for
CPLEX, and that others vary from easy to hard. It is interesting that most
distributions had instances that varied in hardness by several orders of
magnitude, despite the fact that all instances had the same problem size.”

The test samples developed by KLB (matching, scheduling, paths, regions, arbitrary)
are considered realistic, so KLB goes on to consider whether the distributions that
are considered “easy” can be made harder and he concludes in [LBNS06] that this is
indeed possible.

However, problem hardness is not the only interesting property for a distribution and
KLB goes onto say

...this evidence suggests that realistic bidding patterns may often lead to
much more tractable winner determination problems than the hardest un
realistic distributions such as Uniform/L3. This is good news for those
who hope to run practical combinatorial auctions.

We agree with this analysis—and have gone further to suggest that real world problems
have different characteristics to the theoretical models typically used in combinatorial
auction analysis. But KLB’s work (Figure 6.1) might lead the casual reader to assume
that a problem which is hard for one solver (in this case CPLEX) is also hard for
others that try to solve the same problems in the same manner—we even went so far
in previous work [GP07] as to state that

In terms of difficulty, KLB has shown that the majority of L2 problems
have a runtime of approximately 1 order of magnitude greater than Schedul
ing, when computed using KLB’s CASS solver. We therefore consider L2
to be more difficult to solve.

In trying to understand our results we looked to see how our runtimes compared to
KLBs CASS experiments, but first, we realised the need to address a more fundamental
question—how do KLB’s CASS results compare to his CPLEX results?

Firstly, we wish to deal with the outcomes of CASS and CPLEX. Both algorithms
produce identical optimum solution values (the data is public and verification is trivial),

110

and although we cannot verify which bundles are selected (that data is not published)
we assume it is identical, given the identical solution values.

Figure 6.2: CASS and CPLEX Gross Hardness for L2 and Scheduling (KLB Results
Only)

In Figure 6.2 we extract KLB’s values for the runtime of the L2 and Scheduling
datasets using CPLEX and CASS algorithms. A visual comparison of this data in
3D form, as shown in Figure 6.3, shows that the CPLEX figures provide the same
order of magnitude as previously illustrated in Figure 6.1. This graph shows us that
CPLEX finds the Scheduling distribution (S-KLB-CPLEX) very easy, with all results
sitting within magnitude order zero. L2 (L2-K-CPLEX) is considered a little harder
for CPLEX, with nearly 90% of solutions sitting within order 1 and 10% in order 2.
However, when we compare KLB’s runtime results for the CASS algorithm they are
different and we see the CASS runtime for the Scheduling distribution (S-KLB-CASS)
is spread widely across orders 1,2,3 and 4 (whereas 100% of the results are in order
1 for CPLEX) suggesting that CASS finds the Scheduling distribution much harder to
solve than CPLEX, whilst, for L2 (L2-K-CASS), CASS finds it marginally easier to
solve than CPLEX, with 100% of results found in order 1 (CPLEX has only 80% of
results in order 1).

111

The difference in these results, such that we might consider them to produce “opposite”
results suggests the intriguing notion that different algorithms and approaches will find
different aspects of a distribution difficult. CPLEX employs a number of complex
preprocessing steps before initiating a branch and bound search whilst CASS uses an
approach of (i) structuring the search space to eliminate conflicting bids, (ii) pruning
the space to eliminate parts of the bid-tree that will not achieve more revenue than
the current best allocation, through use of an overestimate function and (iii) ordering
heuristics to capitalise on the structured approach and improve performance.

If we add in our MDA runtime results we can see that MDA, as one might expect,
demonstrates different characteristics. Figure 6.3 shows us the runtime, again using the
same log10(runtime) value, but now with the four datasets (CPLEX by KLB, CASS by
KLB and ourselves, MDA by ourselves) across both L2 and Scheduling distributions
for comparison.

Figure 6.3: Gross Hardness of L2 and Scheduling Distributions

We can draw several insights from this data. Firstly, our execution of the CASS envi
ronment is typically an order of magnitude faster than that of KLB, which is simply
an artifact of processor speed improvements. Secondly, we see that MDA finds L2
marginally harder than Scheduling, a pattern that is similar to CPLEX, but different to
CASS which as discussed, has a wide distribution of runtime orders of magnitude for
the CASS-Scheduling results.

112

6.3 Time

Figure 6.4: CASS and MDA Time vs Number of Goods Sold

With some understanding in place of the performance characteristics of the different
distributions and their relative runtimes we turn to evaluate actual values, shown in
Figure 6.4. This graph shows us the number of goods sold in the market, along with the
time taken to do so. Time is presented in seconds and all experiments were conducted
on the same hardware and operating system environment to ensure comparability.

The number of goods sold has been computed by calculating the composition of the
bundles which form part of the final solutions generated by each algorithm. There is
a maximum of 256 goods available. CASS runs either to completion, or until 10800
seconds, our “wall time”, whilst MDA runs for 500 rounds and we record its final
position at the 500 round mark.

Figure 6.4 has a logarithmic time scale of actual execution time, which shows us that
for the MDA algorithm the amount of time taken to complete 500 rounds is very much
a consistent result for all problems as the time elapsed is due to the market process,
rather than the size or complexity of the problem. Much more variable is the number

113

of goods sold showing us that it is the structure of the problem that defines whether or
not we can obtain a high level of goods sold. For CASS, figure 6.4 illuminates figure
6.3 showing that all of the L2 instances are solved very quickly, whilst most of the
Scheduling instances are actually unsolved and, for those which are, there is a large
variance on the number of goods used in the solutions.

Looking at runtimes in isolation has told us that our MDA system provides more pre
dictable run times (experimentation showed us that 500 rounds is a sensible number
and extending the runtime does not improve the solution) but the CASS algorithm is
much more variable. For some problems L2 is faster and uses a greater number of
goods. We need to consider these results in the context of the value and efficiency of
the result, to draw further conclusions.

6.4 Financial

In a Combinatorial Auction (implemented as CASS) each bundle has an assigned value
and the objective is to maximise the revenue earned by the sellers through selecting
combinations of goods into bundles that obtain the highest set of purchase prices.

For a Distributed Auction (implemented as MDA), buyers are in control of making
purchases and will tend toward their lowest price. (We extrapolate the CATS bundle
prices to give individual goods a buy/sell price through uniformly splitting the available
overall price) and so for each bundle we can measure the difference between the total
sale price of all goods sold (potentially for sets of incomplete bundles) and the total
available budget. This allows us to calculate the total spend for the bundles completed,
defined formally as the sum of buying prices for all goods bought in a bundle. Figure
6.5 can be compared with figure 6.4 and represents the total spend per problem for the
same set of data instances and number of goods sold. Unfortunately, it is very difficult
to meaningfully represent the three values, Spend, Time and Number of Goods Sold
in a single graph, however, we can see that spend increases with the number of goods
purchases and there are no instances in either algorithm where the entire budget is
being spent on a small number of goods. This creates some confidence in the correct
functioning of the algorithms.

Comparing MDA and CASS results, we see that MDA is spending less on goods (over

114

Figure 6.5: CASS and MDA Actual Spend vs Number of Goods Sold

all and per good) than CASS, particularly for the Scheduling distribution, but also for
the L2 distribution. This again is evidence of the two different strategies (markets
maximise for buyers, auctions for sellers) working effectively.

CASS utilises 100% of the available funds for a bundle because it simply looks for
bundle offers that will maximise the gross revenue to the sellers. However, there are
some problems where the optimum sellers revenue can be obtained without having to
purchase all of the available goods. We can see this in Figure 6.6, with the CASS
algorithm producing a high level of good utilisation for L2, but quite poor good utili
sation for the Scheduling results which hit the wall time (approximately 30%). MDA
has higher good utilisation for Scheduling, but fares worse for L2, consistent with the
results we saw in Figure 6.5.

We know that CASS will always spend 100% of the available budget for a bid, so
considering just the MDA results, we looked to see what percentage of the budget had
been spent on purchasing goods. We would consider an algorithm to be very successful
if lots of goods are bought for a low budgetary amount. Figure 6.7 shows that MDA is

115

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 G

oo
ds

 S
ol

d

data instance (ordered by Goods Sold)

CASS/MDA runs - Number of Goods Sold

CASS-L2

MDA-L2

CASS-Sched
MDA-Sched

CASS-L2 MDA-L2 CASS-Sched MDA-Sched

Figure 6.6: CASS/MDA runs - Number of Goods Sold

particularly successful for the Scheduling distribution with most of the test instances
having solutions using over 80% of available goods, for less than 35% of available
budget. With L2, the distribution of the goods sold value is much more widely spread
across the tests. Whilst this graph does leave open the question of why MDA on L2
achieves such a varied number of goods sold across such a varied amount of spend it
does show us that for the upper bound of results, MDA only increases the spend on
goods as the number of goods increases (i.e. it never pays large sums of money for
small numbers of goods).

By encouraging the traders to spending a low budgetary amount, we are encouraging
strong behaviour from Buyers and lower prices for Sellers than would be achieved in
a Combinatorial Auction. A distributed market where buyers are bidding for single
items will only be able to force higher prices if demand for goods outstrips supply.
If it did and prices rose then we would expect to see behaviour similar to the CASS
results shown in Figure 6.5 with higher unit prices and a concentrated total spend.

116

Figure 6.7: MDA Budget Spent vs Number of Goods Sold

6.5 Efficiency

This leads us to the question of market efficiency. In financial markets a market is
considered to be efficient if it channels funds to those firms and organisations with the
most promising investment opportunities, operating costs are as low as possible and
the price represents all new and relevant information. In this context the focus is on
the price of trades and specifically measures market efficiency as being the sum of
total value of trades undertaken. In the CASS environment many of the bids are not
met because they do not represent a Pareto optimal solution. However, that also means
that there is value available to sellers which is not “unlocked” and potentially it would
be possible to generate more value for sellers by complementing the complete bundles
sold as part of a Pareto optimal outcome with the sale of goods from partial bundles.
Considering Figures 6.8 and 6.9 we can see for both distributions, Scheduling and L2,
both MDA and CASS have nearly equal efficiency for very hard problems, with a direct
convergence in L2 (when sorted by Efficiency, we see that both datasets converge for
instance 500). However, in L2, MDA is shown to be much more efficient for a larger
proportion of the test data than CASS and it is important that we also consider run time,

117

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200 250 300 350 400 450 500

E
ffi

ci
en

cy
 R

at
io

 (
T

ot
al

 S
ol

ut
io

n
S

pe
nd

/N
um

be
r

of
 G

oo
ds

 B
ou

gh
t)

data instance (ordered by efficiency ratio)

CASS and MDA Efficiency for Scheduling data

CASS Scheduling MDA Scheduling

because whilst the efficiency does converge for both distributions, the MDA algorithm
achieves those results in much faster time, as we discussed in Figure 6.3.

Figure 6.8: CASS and MDA Efficiency for Scheduling data

We have defined efficiency as the total sum of monies spent on goods acquired, divided
by the number of goods acquired. Therefore, if the efficiency value is low, less money
is spent per good (and ultimately more money is available to purchase further goods).
When comparing CASS and MDA for the scheduling distribution (figure 6.8), we see
that overall, MDA is more efficient, but as efficiency becomes less (cost per good
increases) the results for CASS and MDA converge, showing that, for the worst case
scenario MDA does not spend more per good than CASS.

The result for L2 (Figure 6.9) is more striking, with CASS always having a fairly high
cost per good, but little variance in the average cost per good. The MDA solution
has fewer results, because there are some problems for which MDA has no solution
defined (as can be seen on the 0-50 results in Figure 6.9), but for many solutions, the
cost per good, or efficiency, is much less. The average cost per good grows steadily,
until MDA and CASS solutions converge for the final dataset, showing again that MDA
is certainly not less, and in many cases more efficient.

118

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300 350 400 450 500

E
ffi

ci
en

cy
 R

at
io

 (
T

ot
al

 S
ol

ut
io

n
S

pe
nd

/N
um

be
r

of
 G

oo
ds

 B
ou

gh
t)

data instance (ordered by efficiency ratio)

CASS and MDA Efficiency for L2 data

CASS L2 MDA L2

Figure 6.9: CASS and MDA Efficiency for L2 data

The efficiency figures are reinforced by a second set of results, those of the number of
goods sold. In Figure 6.5, our graph of the total spend vs number of goods sold; we see
that MDA is able to spend a significant fraction less than CASS. Interestingly, for the
Scheduling distribution, all of the solutions solved by MDA have a fairly high number
of goods sold (>200), whilst those solutions determined by CASS have a much wider
spread from 10-250. However, the L2 distribution reverses this trend, with MDA
results being spread widely, and CASS results being tightly clustered. Our runtime
results give a hint as to why this behaviour exists, with our Scheduling problems being
completed quickly by MDA, and L2 taking several orders of magnitude (as shown in
Figure 6.3) longer.

This suggests that when a problem can be solved quickly by MDA, it may not be done
so for significant extra savings on costs per good, but it will be solved with greater
efficiency than CASS achieves. On problems such as those in L2 which a solver like
CASS has traditionally found easy, MDA achieves better cost efficiencies but does take
longer. With CASS the spend is higher and the time is shorter.

119

6.6 Completion

We define “Completion” as the percentage of the goods in a specific bundle purchased
as part of the overall solution. Later, we can look at aggregate completion values,
where we statistically analyse all of the completion values per test instance and per
bundle.

To consider completion, we have looked at how many goods are traded, how many
bundles are traded and which goods form those bundles. Each of 500 datafiles for the
two distributions of CATS problem contains approximately 256 goods and 1000 bids
for those goods. We have computed these problems using both available algorithms,
CASS and MDA, which produces solutions, in the form of winning bids and a list of
goods that were successfully traded to make up the bids for bundles of goods.

CASS always solves problems by ensuring it can allocate 100% of the goods required
for those bundles that it wishes to trade, whereas MDA operates sequentially, with
many agents buying goods and therefore partially completing the bundles. Some bun
dles are completed to 100%, but on average the percentage of complete bundles is
much lower. We can observe that for the scheduling distribution, it is typically lower
than for the L2 distribution.

The second important factor is the extent to which there is overlap between the goods
that form the MDA and CASS solutions. This balance, of which goods, how many, for
how much (financial result) and in what time, are the factors that combine to complete
our understanding of the problem space.

6.6.1 Number of Bundles

We define the concept of a “touched bundle” which is a bundle that has some goods
(>1) completed by either the MDA or CASS solver algorithms. We can therefore look
at how many touched bundles there are per solution, what the percentage completion
of those touched bundles is, giving us a representation of how many goods are sold
and how many bundles are completed. Both MDA and CASS frequently complete
different bundles and with CASS the bundles touched are always 100% completed.

120

Figure 6.10: Number of Touched Bundles per Solution

Firstly, we wanted to look at the makeup of bundle completion for each of our 500
test instances, shown in Figure 6.10. For L2, we see that the majority of test instances
have only one bundle (475/500) in the CASS generated solutions, whilst the CASS
Scheduling solutions have a wider spread of completed bundles. For MDA, we find
that there is a wider spread of number of bundles per solution and even more so for
Scheduling, which has a very wide spread of bundles per solution. There are a maxi
mum possible 1000 bundles in every CATS data file (for 256 goods) and so it would
seem that if the algorithm is touching 250 bundles then the number of goods and the
associated bundle completion ratio will be quite low. This appears to be consistent
with Arrows Impossibility Theorem [AH71] as introduced in Section 2.2.

Whilst the bidders who seek those bundles find great satisfaction in that result, it is not
representative of the satisfaction levels from the whole system and additionally, it is
possible for MDA to trade a greater number of goods, across a wider range of bundles.
In order to draw a comparison therefore, we need to compare the two systems in respect
of the combined selection of bundles touched in their market processes.

121

6.6.2 Individual Bundle Completion

We have looked at how many bundles were touched for each solution which gives
us some sense of the results spread, but we must look deeper and consider how the
individual bundles are made up. Firstly, we consider the individual bundle completion
ratio. We have computed the percentage completion rate for each individual bundle.
For CASS, this is always 100%, as the CASS solver only produces solutions with
complete bundles. MDA gives us information on actual goods traded and which bundle
they were part of and by comparing those with the CATS datafile, we can count the
percentage of goods in the bundle purchased. All goods are considered equal.

Figure 6.11: Standard Deviation and Variance for L2

In Figure 6.11 for the L2 data and Figure 6.12 for Scheduling we have derived the
minimum, maximum, mean, standard deviation and variance for the set of completed
bundles for each data file in the two distributions. For both sets of the data the first
fifth of data has a much higher degree of variance and a much less consistent mean
and standard deviation, an artifact, we believe, of the distribution used by CATS to
generate the test data (each sample instance is computed through a separate run of the
algorithm, so this is not a “warm up” phenomenon).

122

Figure 6.12: Standard Deviation and Variance for Scheduling

Looking at the figures, we see that there is a very high maximum and very low min
imum, demonstrating that for all problems there are some bundles with near 100%
completion and some with 0%. On average (mean) we see that L2 has a higher com
pletion ratio than Scheduling data, however we also observe that for both we have
high variance and that our standard deviation value is very close to the mean value.
This shows a very wide spread of results and indeed, that none of the actual bundles
complete with the mean percentage. This is information is replicated in Figures 6.13
and 6.15 which show an almost wall-like effect illustrating a very wide, but consis
tent spread of bundle completion. Indeed, it seems that looking at average data can
be mis-leading. For example, we know that CATS source data is random, so it would
seems unlikely that the percentage bundle completion should be so similar. However,
we notice from the actual data (Figures 6.13 and 6.15) that there is simply a very wide
spread of results, which derives from the randomness of the CATS data.

123

6.6.3 Which Bundles are traded?

Looking at figures in aggregate is not actually that useful then, as it only serves to show
us that all datasets are consistently random! We need to consider the composition of
the actual raw data. For our L2 data, Figure 6.14 introduces completion into the mix
and shows us which of the touched bundles are included in the solution for each test
instance. Each point on the graph represents a specific bundle of goods (with the Z axis
representing the 1000 possible bundles). This is therefore a plot of the raw data behind
Figure 6.10 but it now includes the percentage of the goods that bundle completed.

Figure 6.13 allows us to compare CASS and MDA results, with the CASS results
forming a flat plane across the 100% completion level. For CASS we see a wide
distribution of which bundles are used in solutions, but note that the density of bundles
(represented by points on the graph) is reasonably sparse which correlates to our run
time (Figure 6.3)—all the solutions are solved quickly and with a small number of
bundles, indicating a quick, efficient search.

Figure 6.14 shows us, for each of the 500 L2 test instances computed by the MDA
algorithm, which bundles formed part of the solution (Z axis) and what percentage of
the goods requested in those bundles were successfully bought. The graph shows a
small number of bundles achieving 100% completion and a much narrower spread of
bundles per test instance.

For our Scheduling data Figure 6.15 again shows a similar wide spread of goods per
bundle, but in line with the difference in the distributions structure, we see that MDA
is able to increase the number of bundles utilised for some solutions and that CASS
too has a similar wide distribution of goods used across all of the test instances and an
increased density over L2. There is a much wider overlap of bundles in the solution
between MDA and CASS, which helps alleviate one of our concerns, which was that in
the L2 data, MDA is only handling the first 12 bundles for each solution, is potentially
an artifact of an algorithm deficiency. However, as the same algorithm with a different
data set behaves differently, we conclude that the limited range of L2 bundles used by
MDA in its solutions is an artifact of the data.

We need to recall our runtime figures to understand this behaviour and introduce a
Figure, 6.16 which compares the number of bundles touched in a solution, with the
runtime of the experiment. We can contrast this “number of bundles” figure, with a

124

Figure 6.13: Completion vs Selected Bundles for L2 Tests

reprint (shown to the right) of Figure 6.4 showing “number of goods”. Returning to
the question, why do we see a greater overlap in which bundles are “touched” by the
two trading processes for the Scheduling distribution but such a small cross over for
L2? We propose that this is related to the extent to which both algorithms spend time
examining all the bids—in the CASS model, this means the search space is relatively
small. We can see, in terms of run time that L2 solutions for CASS take a small and
concentrated amount of time, whilst CASS runs on the Scheduling data has a very wide
distribution of runtimes, with many searches having to stop at our wall time. This wider
spread of both run times, and the associated bundles touched and goods sold matches
the huge amount of variance we get with other CASS results (such as financial) and our
own MDA results. MDA run times are of course shorter, being related to the amount
of time it takes for 500 rounds of the market, but we see a wide distribution again of
the number of bundles touched for Scheduling, but not for L2. These graphs also show
that CASS-L2 completed all runs within a very short time scale, but found solutions
using a low number of bundles, illustrated with a low density of points in Figure 6.13,
whilst CASS-Scheduling is again, higher. Finally, recall from figure 6.2 that deriving
solutions for the problems takes longer in Scheduling than it does in L2. The greater

125

Figure 6.14: Completion vs Selected Bundles for MDA-L2 Tests

spread of solutions, for example, here make explicit reference to features of the plot
illustrated in Figure 6.15 for scheduling over L2 supports that theory and the higher
percentage completion suggests that MDA works well as a solver on more complex
problems because the overhead of the market process is outweighed by the complexity
of the problem.

It is argued that CASS produces optimum value and 100 percent completion, so there
fore we do not need to consider the other goods or bundles left over, making the con
cept of touched bundles meaningless. However, optimum seller revenue and high com
pletion rates for some bundles is not necessarily the best, or most suitable outcome for
a particular problem space and we can see that the other elements of our comparison,
such as speed, satisfaction and efficiency come into play depending on the properties
of the problem space.

126

Figure 6.15: Completion vs Selected Bundles for Scheduling Tests

6.7 Satisfaction

We have examined, in some depth a number of factors: (i) Hardness, (ii) Time, (iii) Fi
nancial, (iv) Efficiency and (v) Completion . Through looking at all of these elements
individually we have been able to draw correlations in data and understand the per
formance characteristics of the two algorithms, CASS and MDA and the two datasets,
L2 and Scheduling. However, whilst this analysis gives us a menu of criteria which is
helpful in making future choices over which algorithm to use for solving a particular
problem, it does not universally answer “which is best”?

In order to complete the statistical comparison it would be helpful to have a single,
combined metric by which we can measure the relative performance of the different
approaches. We suggest that parameter is “satisfaction” and consider it to be the mul
tiple of fiscal spend and the completion ratio for the bundle. The rationale can be
illustrated as follows:

127

Figure 6.16: CASS and MDA Time vs Number of Bundles in Solution

•	 If I complete my bundle, I am happy. If I purchase it cheaply, I will be happier
than if it has a high cost. If I get 100 percent completion for a high underspend
value, then I will have a high satisfaction rating.

•	 If I get 50 percent of the goods desired for lots of money, I will have a very low
underspend value which will be divided by 50 percent, giving me a very low
satisfaction ratio.

•	 If I get 50 percent of goods desired for little money, I will be reasonably satisfied,
so my high underspend value will be divided by two thus taking the downside of
an incomplete bundle into account.

In Figure 6.18 we show our satisfaction ratings against the spend on all bundles in
the final solution, for each test instance. The figure shows a number of interesting
elements, firstly, that for the CASS results, because we are essentially multiplying
the percentage of goods used in the sold bundles by 100%, the satisfaction increases
linearly as spend increases against the offset provided by the goods used value. We
see again, the tight-bounding of the L2 results and the wider spread of the Scheduling

128

Figure 6.17: CASS and MDA Time vs Number of Goods Sold

results.

For MDA satisfaction, the results are more interesting. We know that the percentage
of goods purchased (out of all requested purchases) is much more variable for MDA
solutions, but because, overall, the number of goods sold is greater than for CASS
solutions and the financial spend on goods is lower for the distributed market approach,
satisfaction ratings start higher and are not related directly to spend.

6.8 Conclusions

All measures of this sort are open to interpretation and arguably, the satisfaction graph
is an alternative representation of Figure 6.5, which shows CASS and MDA Actual
Spend vs Number of Goods Sold. However, this data, when taken in context with the
other aspects and assessments we have presented serve to illustrate that both distributed
markets and combinatorial auctions have valid uses and different properties which

129

Figure 6.18: Budget Spent vs Satisfaction

make them suitable for different applications.

The question of “what makes a distribution hard?” has much literature devoted to it,
and one of the obvious mechanisms, given that a combinatorial auction is an NP-Hard
problem, is to consider the timing requirements for solving individual problems. How
ever we discovered (Figure 6.3) that when comparing KLB’s published CPLEX and
CASS results CASS found the L2 distribution easier than CPLEX but the Scheduling
distribution was considerably harder (with a much wider spread of runtime magni
tudes). Our MDA results had more consistent run times, as the MDA algorithm ran
for 500 iterations of the distributed market and so for MDA, and increase or decrease
in time was only due to fluctuations in the volume of trades for each round and so
the different distributions have a much smaller effect on timings than can be seen on
CASS and CPLEX results. Returning to the question of hardness, it seems to us that
time itself is also not a strong measure of difficulty and that improvements and differ
ences in algorithms and test data distributions, even within two combinatorial auction
solvers, can lead to differences in reporting performance.

130

Unfortunately, despite exhausting many thousands of hours of compute time, we were
not able to run all the CASS experiments for our 1000 test results to completion. This
introduced a wall effect which we could see clearly in our runtime comparisons. The
effect of having a wall in the CASS algorithm is that it is unable to complete the
searching of its result tree and may produce suboptimal answers. Looking at runtimes
in isolation however, we concluded that MDA was more predictable.

The next test was that of the financial performance of the markets. Comparing MDA
and CASS results, we saw that MDA spent less on goods (both overall and per good).
This was markedly noticeable (Figure 6.6) for the Scheduling distribution, but was
also prevalent in L2 and is evidence of the two strategies (markets maximise for buy
ers, auctions for sellers) working effectively. Finally, we noted that MDA’s linear
approach to good purchasing means that it will never pay a large sum of money for
small numbers of goods—which can be important in situations where it is necessary
to purchase bundles with very large numbers of goods.

One of the trade-offs presented by the two approaches is whether or not to maximise
utilisation of goods, or revenue. We considered market efficiency, defined as the total
value of trades taken. For both distributions, Scheduling and L2, both MDA and CASS
have nearly equal efficiency for very hard problems, with a direct convergence in L2.
However, in L2, MDA is shown to be much more efficient for a larger proportion of the
test data than CASS and it is important that we also consider run time, because whilst
the efficiency does converge for both distributions, the MDA algorithm achieves those
results in much less time.

The notions of time, financial outcome and efficiency are all useful tests to help us
understand how our markets are performing, but ultimately, if the resource allocations
produced are of no use, the price and time taken does not matter. We therefore looked
at the issue of bundle completion and how many goods are traded, how many bundles
are traded and which goods form those bundles.

Looking at the spread of bundles per solution, we found that MDA traded a wider
quantity of bundles for both the L2 and Scheduling datasets and to a lower level of
bundle completion. We observed a completely random spread of bundle allocations
in both CASS and MDA solutions, reflecting the random nature of the good alloca
tions in the original CATS data. We also concluded that when dealing with a random
set of preferences, against which there is no standard distribution, we would find high

131

statistical variances for aggregate measures such as the mean percentage of goods pur
chased to complete a bundle. We found it more appropriate to consider the raw data
and look at which goods specifically were traded and for the Scheduling dataset we
found there was a considerable overlap between bundle selection by CASS and MDA,
whilst for L2, the MDA solutions all utilised the initial goods in the test data (elements
0-12) whilst CASS solutions were much more incomplete, again, the two mechanisms
showing different approaches to managing data, with CASS failing to compute solu
tions with many goods whilst MDA attempts to complete a larger number of bundle
requests, spreading goods resource thinly, but maintaining good utilisation.

These graphs also show that CASS-L2 completed all runs within a very short time
scale, but found solutions using a low number of bundles, illustrated with a low density
of points in Figure 6.13, whilst CASS-Scheduling is again, higher. Finally, recall from
Figure 6.2 that deriving solutions for the problems takes longer in Scheduling than it
does in L2. The greater spread of solutions illustrated in Figure 6.15 for scheduling
over L2 supports that theory and the higher percentage completion suggests that MDA
works well as a solver on more complex problems because the overhead of the market
process is outweighed by the complexity of the problem.

Finally, we utilised an aggregating metric which attempts to capture a potential buyers
satisfaction with a set of results. Through combining spend and completion measures
we showed that because, overall, the number of goods sold under MDA is greater than
for CASS solutions and the financial spend on goods is lower for the distributed market
approach, satisfaction ratings start higher and are not related directly to spend, which is
an important approach if, as a buyer, you are attempting to maximise your purchases.

Looking at our test data from the six dimensions we are conscious that, for any spe
cific measurement it is difficult to identify the pros and cons of our two approaches—
distributed markets and combinatorial auctions.

However taken together we contend that a distributed market provides an approach for
solving more difficult problems, for example the job shop scheduling task simulated by
our Scheduling distribution. They ensure that resource usage is maximised, with good
efficiency, revenue and in a predicable time frame. Combinatorial solutions will always
produce a Pareto efficient option and maximise revenue for the sellers of goods, but
their run times vary unpredictably based on both the algorithm used and the complexity
structure of the problem, the result being that resource utilisation is often sacrificed.

132

Chapter 7

Further Experiments

7.1 Introduction to Further Experiments

Kevin Leyton-Brown (KLB) saw that many researchers had proposed algorithms for
determining the winners of a combinatorial auction, which itself gives rise to the prob
lem of how to evaluate, compare and therefore improve the algorithms in an objective
manner. It is this problem that he sought to solve in his PhD thesis [LB03] and he
outlines the most recent version of the Combinatorial Auction Test Suite (CATS) in
[CSS05, Ch.18]. We selected the L2 and Scheduling distributions from the available
data in order to produce the comparisons and experimental results in this thesis, be
cause they most closely represented the structure of the resource allocation problem
genre that we were focused on providing solutions for.

CATS provides a number of legacy datasets, denoted by “L”. These were introduced for
comparability and are derived from work by Sandholm [San02], de Vries and Vohra
[dVV03], Anderson [ATY00], Boutilier [BGS99] and Fujishima [FLBS99]. These
legacy distributions had variances in the model used to calculate the number of goods
(is it uniform across samples, a normal distribution, a decaying distribution); which
goods are selected for the bundles (is it done randomly, or are all used); and how
are the prices for each bundle in the distribution set (randomly, linearly or normally)?
However, these distributions all suffer from weaknesses and particularly contain large
numbers of non-dominated bids which makes them empirically easy to solve and a

133

poor choice for computational benchmarking 1.

Leyton-Brown looked to tackle the weaknesses in the legacy distributions and pro
posed model distributions which were derived using a range of different techniques in
order to represent a number of sample problems:

Paths: Problems related to the purchase of a set of connecting points, such as lo
gistics or sales people routing, network bandwidth allocation, or railway track
scheduling.

Regions: A class of problems in which goods derive complementarity from their
adjacency, such as sale of real estate, drilling rights in oil fields or radio/telecom
spectrum auctions.

Scheduling: The scheduling distribution deals with the classic job-shop scheduling
problems, whether in factories or grid computing environments each user has a
job requiring some amount of machine time and a deadline by when it should be
completed.

Arbitrary: A general model of arbitrary relationships where the complementarity is
not as obvious as physical adjacency, but instead might be related to the pro
duction of a larger unit. Example problems would include the purchasing a
collection of electrical components, a set of collectible antiques or the right to
emit a quantity of industrial pollutants (carbon emissions trading).

Matching: There are a number of real world domains where complementarity be
tween goods arises because of time related considerations and therefore they
must be matched together. As an example, development of an effective mecha
nism to sell take off and landing slots in corresponding airports by combinatorial
auction is currently an unsolved problem.

We have attempted to compute the results for CASS and MDA for the extra four data
distributions discussed, but present them in summary, for discussion, rather than in any
detail or in support of the main arguments of this thesis. We do that for the following
reasons:

1We use L2 because it is the most widely examined legacy distribution and therefore provides a
recognisable distribution for comparison

134

(i) The structure, make up and “shape” of the distributions of goods is one of the
key factors that affects the complexity of computing the solution, for both the
MDA and CASS algorithms and it is not possible to fully understand their results
without in-depth reference to the explanation of each of the distributions given in
[CSS05, Ch.18], and it is not practical to reproduce that here.

(ii) Computing the additional data required months of computation time (signifi
cantly longer than estimated) and due to various practical problems in regards
access to facilities, the results arrived towards the end of the production of this
thesis document.

(iii) Trying to compare and contrast the results from six data distributions and two
algorithms presents significant data visualisation challenges that would require
significant effort to resolve, for which time was not available.

(iv) In the context of this thesis, where our objective has been to determine the most
appropriate method to be used in order to compute the best allocation of a generic
set of resources and to develop an under-standing of how the different approaches
available are related to one another, we feel that an in-depth analysis of the two
datasets (L2 and Scheduling) is more than sufficient to explore the characteris
tics of MDA and CASS and that whilst these results confirm and support the
discussion in Chapter 6 they do not enhance it.

Therefore, in the remainder of this Chapter, we present a range of information and
supporting notes for future discussion.

7.2 Hardness

Hardness of the distributions is considered to be related to the runtime order of mag
nitude and KLB produced his version, shown as figure 6.1 (page 109) which we have
emulated in Figure 7.1. This graph shows the runtime, by Log10 order of magnitude
for all distributions computed and shows us that CASS typically finds the new distri
butions take an order of runtime longer to compute (frequently hitting our wall clock
time) than they do with CPLEX. MDA still runs for it’s standard amount of runs.

The new distributions can be considered “hard”, particularly arbitrary, matching and

135

Figure 7.1: Gross Hardness Distributions

regions, as KLB’s own results shown in Figure 7.2 show, with a large percentage of
the solutions shown in the runtime class 5.

To repeat our previous analysis, we have reproduced KLB’s published CPLEX solu
tions in Figure 7.3, which in comparison to the CASS results 7.2 reinforces the point
that CPLEX and CASS have different performance characteristics (despite solving the
same problem).

7.3 Number of Goods/Bundles

For the runtime vs number of goods or bundles sold graphs we have split the visual
isation of the data and show CASS and MDA results separately. Additionally, when
reviewing the graphs in this section, the concentration of data points is an indicator of
the number of instances of a problem that were solved by the algorithm in the time
allowed. As with our main results, we computed 500 test solutions for each data dis
tribution.

136

Figure 7.2: CASS Gross Hardness (KLB Results Only)

(i) The CASS graph in Figure 7.4 shows a thin spread of results for arbitrary and
regions data, suggesting that for these there are few instances with good sold and
that many of the computations reached the wall clock time without completing.

(ii) The Paths data on figure 7.4 is shown to have a very narrow time spread. When
compared to figure 7.5 we see that whilst goods are traded, bundles are not com
pleted in the final solution, suggesting that CASS finds the problems hard to
compute.

(iii) The scheduling distribution has the widest distribution of solutions completed
across the time window showing the random nature of the problem.

(iv) The matching distribution is only present at the top level of the “wall column”
in both figure 7.4 and figure 7.5, suggesting that many goods and bundles are
utilised in these problems, but at the expense of a lot of computing time.

The two MDA figures compare number of goods sold (figure 7.6) and the number of
bundles in computed solutions (figure 7.7).

137

Figure 7.3: CPLEX Gross Hardness (KLB Results Only)

(i) L2 data shows a low number of bundles completed, a high number of goods sold,
suggesting good completion ratios.

(ii) Scheduling data shows a wide spread of bundles but a narrow time window, sug
gesting all problems are of similar hardness to solve. The vertical spread is sim
ilar for MDA and CASS.

(iii) Regions data shows a sparse number of bundles and no goods sold by MDA,
suggesting that the MDA algorithm is not suited to solving these problems in a
short number of rounds.

(iv) Matching data shows a high number of goods sold and bundles computed in
a short time frame, suggesting MDA is a good solution for solving Matching
problems.

(v) Paths, as with Regions, we do not have Paths data for goods/bundles sold.

(vi) Arbitrary data shows that a small number of problems did complete, but that
arbitrary problems take longer than the time available to compute, as can be seen
for the CPLEX and CASS hardness in Figure 7.1

138

Figure 7.4: CASS Time vs Number of Goods Sold

7.4 Actual Spend

The actual spend graphs in figures 7.8 and 7.9 illustrate the amount of monies spent
by the traders in buying the goods (for MDA) or the cost of the goods selected (for
CASS) in order to compose their bundles.

(i) For the spend graphs, being in the top left hand corner would be the optimum
position (high good utilisation, low spend)

(ii) The CASS graph (figure 7.8) shows that CASS is optimal fgor Paths and Arbi
trary, whilst the MDA results in Figure 7.9 suggest it can solve Matching and
Scheduling problems more easily. L2 is solved well on both, with marginal im
provements in the number of goods sold (but not spend) in CASS.

139

Figure 7.5: CASS Time vs Number of Bundles in Solution

7.5 Efficiency

The efficiency graphs use our calculated efficiency ratio, which is the solution spend
divided by the number of goods bought as a comparison factor.

(i) MDA did not produce results for the number of goods bought for Paths, Arbitrary
or Regions, and therefore does not have MDA efficiency values.

(ii) For Paths data, we see that efficiency increases in line with the number of goods
sold for CASS.

(iii) The CASS arbitrary data indicates that there is high efficiency, but for a small
number of problems—arbitrary problems are hard to solve!

(iv) Scheduling has a wide spread of efficiency values, but MDA appears to sell more
goods for similar efficiency than CASS.

(v) L2 has poor efficiency on CASS and is more efficient under MDA.

140

Figure 7.6: MDA Time vs Number of Goods Sold

(vi) The Matching distribution problems are solved with a high degree of good utili
sation by MDA, but there are minimal problems solved under CASS.

(vii) Regions data is not visible on either graph with the underlying data suggesting
that no regions goods were solved.

7.6 Satisfaction

Figure 7.12 and 7.13 show our satisfaction metric and solution spend.

(i) For all the CASS data sets, we see that satisfaction and spend rise linearly to
gether, against both logarithmic axis. This tells us that for all CASS based algo
rithms high levels of satisfaction can only be obtained with similarly high spends.

(ii) CASS finds the Paths and Scheduling distributions “easiest” to produce good
solutions for whilst regions and arbitrary are the most difficult.

141

Figure 7.7: MDA Time vs Number of Bundles in Solution

(iii) With the exception of L2, all MDA results have much tighter clustering and
a number of horizontal plateaus (on a logarithmic scale) suggesting that MDA
scales linearly with the complexity of the problem space being solved.

(iv) For the L2 distribution, MDA derives higher satisfaction for lower spend.

(v) For Matching distribution, the problems are clustered into two regions, but with
linear increase in spend for MDA, rather than logarithmic for CASS.

142

Figure 7.8: CASS Actual Spend vs Number of Goods Sold

143

Figure 7.9: MDA Actual Spend vs Number of Goods Sold

144

Figure 7.10: CASS Efficiency vs Number of Goods Sold

145

Figure 7.11: MDA Efficiency vs Number of Goods Sold

146

Figure 7.12: CASS Solution Spent vs Satisfaction

147

Figure 7.13: MDA Solution Spent vs Satisfaction

148

Chapter 8

Conclusions

8.1 Review of Contribution

Our objective has been to determine the most appropriate method to be used in order
to compute the best allocation of a generic set of resources and to develop an under
standing of how the different approaches available are related to one another.

Our motivation for this work stems from a need to make complex resource allocation
decisions for distributed environments in a predicable amount of time, a motivation
driven from needs we see illustrated in applications such as computer based Grid net
work management, response to train schedule disruptions and other multi-agent plan
ning scenarios.

We also sought to examine the perceived wisdom of the combinatorial auction liter
ature, in which many excellent theoretical papers have concluded that (almost to the
extent that other mechanisms are not required) virtually all resource allocation prob
lems can be solved using a centralised approach and that the NP-Hard characteristics
of the combinatorial auctioneer are, for all practical purposes, mitigated through the
use of careful development of heuristics and domain specific knowledge.

We believe that further advances in distributed computing and agent based technology
will continue to present challenges for centralised approaches, both because of the im
practicalities of encoding complete domain knowledge and perhaps more importantly,

149

we want to take advantage of the benefits of having a decentralised approach to deci
sion making with no single point of command and control. Future systems will need
the ability to perform useful resource allocations when only incomplete preferences
and domain knowledge are available or forthcoming.

We developed an empirical analysis of a distributed market system and uniquely com
pared it to a centralised combinatorial auction solver “CASS” developed by Kevin
Leyton-Brown in his thesis [LB03] using measures of hardness, financial, completion,
efficiency, time and satisfaction, that are described in detail in Section 5.2.

Overall, we demonstrated that a distributed market provides an approach for solving
more difficult problems, such as the job shop scheduling task simulated in our Schedul
ing distribution, and the distributed approach ensures that resource utilisation is greater
than that in a centralised system, with good efficiency, revenue and decisions gener
ated in a predicable time frame. Combinatorial solutions will always produce a Pareto
efficient option and maximise revenue for the sellers of goods, but their run times vary
unpredictably based on both the algorithm used and the complexity structure of the
problem, and they often sacrifice resource utilisation.

8.2 Grounded in Economics

A further important component of this thesis is that the rationale and market structure
for the decentralised mechanism is and should be, grounded in both Economic theory
and the reality of market economics. Writing this conclusion in early 2009, one cannot
but help observe that the real world experiences gained from living with markets has
demonstrated that they demonstrate what happens when a large decentralised group of
intelligent stock brokers utilise that uniquely human trait of making rational decisions
about irrational behaviour and cause previously unforeseen, even unthinkable, waves
of market disruption with massive knock-on effects, and the examples therein give a
great opportunity for a thought experiment based evaluation of MDA.

150

8.2.1 Thought Experiment - Fiscal Markets

The financial system crash of 2009 is a good example of both the need for and the
impact of decentralised markets. Previously, banks across the world lent money to
each other on the basis that (i) at any given point in time, in respect of cash flow,
some would be in surplus and some in deficit and (ii) banks with large cash deposits
needed to ensure they gained maximum possible returns for their clients and lending to
other secure banks who could lend on that money through products such as mortgages,
loans etc. that paid a reasonable rate of interest was a sensible way to ensure maximum
return.

In 2009 bankers began to understand that their colleagues had large and potentially
undefinable risks associated with their lending portfolios and that the inter-bank loans
may not be repaid. Suddenly banks were no longer considered “as safe as houses” and
this myth was compounded when the US Government declined to bail out Lehman
Brothers causing it to become bankrupt. Overnight there was a unanimous withdrawal
from the wholesale lending markets as it was now seemingly impossible to trust that
another bank was credit worthy and, as we know, the world’s supply of credit evapo
rated over night.

This is a fascinating story, but what is the relevance to MDAs? Firstly, the whole
sale credit market is made up of many autonomous players—banks, who join and exit
the market as they please and where each has their own set of criteria, objectives and
decision making processes. Secondly, there are many types of credit products, with
different values, lengths, credit scores, etc. Thirdly, market operation is now a contin
uous process operating across multiple jurisdictions. The wholesale credit market is,
therefore, very similar to our MDA and could be accurately modelled as one.

Could we use a series of Combinatorial Auctions to manage the wholesale credit mar
ket? Firstly, whilst it might be possible to run a continuous cycle of clearing operations
as the number of products and participants grew non-linearly we would find issues with
compute scalability and decision speed.

Secondly, consider the problem of ensuring all decisions were scrutinised by a single
impartial auctioneer. There would be significant political issues of ensuring impartial
ity in a global system and it would also be logistically complex (impossible?) to have
all participant revealing complete preference information about their purchase. The

151

logistics issue is worth further investigation. Whilst it is not beyond the bounds of
technology for ten or even twenty thousand banks to send electronic data into a single
reporting point it would be difficult for them to work out complete preference infor
mation without knowledge of the buying participants. Particularly because financial
lending has significant risks attached, it is often the case that the price of the deal is
easy to conclude and that the lenders view of the risk will improve during the negoti
ations as they increase familiarity with the buyer, a process which, in a market, would
be implemented through a number of rounds of bidding and negotiation. In an MDA,
both buyer and seller would be present in a single good-specific market with the po
tential for many rounds of one on one trading at which each can modify their position.
In a combinatorial auction all buyers and sellers would need to express preferences
centrally and await their outcome, a process that makes it impossible to express buyer
specific preferences, or conduct rapid negotiations with specific buyers. Finally, the
ability to alter preferences rapidly is of significant benefit, especially when third party
interactions (in this case, Government bailouts and press speculation) will have a direct
impact on lending availability and criteria.

Combinatorial Auctions do however have benefits in this scenario and there is sig
nificant attraction for the providers of credit to ensure that they receive the optimal
allocation (and hence maximum profit) for their funds, but a very important criteria in
financial lending is the social welfare factor understanding who the funds are sold to,
which cannot be guaranteed in a blind auction.

8.2.2 MDA for real world problems

How then would the credit markets have fared in 2009 with the use of an MDA type
mechanism? Well firstly, we can assert that they already do use a decentralised real-
time set of continuous markets, likely in part due to the original design goals of our
financial system that sought to protect us from systemic risk of having a centralised
decision process and the difficulty in having a politically impartial auctioneer in a
multi-national market. We believe that the flexibility of this structure did in some
part facilitate the safe, but rapid withdrawal of parties from the trading arena when
confidence collapsed and it has similarly allowed participants to re-enter on their own
terms (timescales, risk, etc.).

With regards performance, we know that MDA would not have produced optimal value

152

for the sellers of funds but we demonstrated in Figure 6.4 that it would have facili
tated an increase in the number of contracts sold, with a corresponding increase in our
market efficiency measure. Note that most of the fees for sellers in fiscal markets are
transactional and therefore related to volume, so potentially, earning more money from
fees and less from interest is more beneficial to the sellers of this market. This is an
interesting example of a scenario in which the producers of product who trade in the
market have different objectives to the manufacturers of the goods they represent and
highlights the difficulty of designing the correct market structure so that it incentivises
the most desirable behaviour.

How would the system have worked if decision making was centralised? Assuming,
given the constraints we have outlined, that it was indeed possible to build such a
mechanism with good performance then a continuous cycle of combinatorial auctions
would enable high quality lending to occur against well defined criteria. However there
are two characteristics of the centralised market system that would potentially cause
difficulty in the recent turbulent times. Firstly, a combinatorial auctioneer requires
complete information about parties preferences in order to determine the optimal out
come and as mentioned, often negotiations for financial products require both parties
to increase their preference revelation as the negotiation completes. Under a combi
natorial auction mechanism, the auctioneer would attempt to bind all parties at each
stage, thus denying each both the opportunity to revise their offers but also to adjust
their preferences, for example about who they will deal with.

8.3 Economics provides the rationale

Returning to our discussion of desirable economic parameters from section 2.2, we
see that our financial market requires us to take not only well defined concepts such as
Pareto optimality into account when performing resource allocation but also the need
for Social Welfare functions to be taken into account (in this case, the social welfare
preferences for a banker would be trustworthiness and credit rating of the other party),
and in this application context, these social welfare functions, and the ability to vary
them rapidly, is potentially more important than some of the fiscal elements of the deal.

It is these fundamental economic characteristics of markets, such as Arrow’s impossi
bility theorem [Arr50], a theorem which enables us to characterise social welfare and

153

gives a number of criteria which essentially shows that it is impossible to please every
body, that give us properties that mean a centralised combinatorial auction approach
will not meet all of the future resource allocation needs and that an MDA approach to
resource allocation is necessary for solving many of the example real world problems
discussed from financial markets to train schedule exception handling.

We have shown, through a unique empirical analysis, that it will work and that whilst
there are trade offs, most notably with regards the fiscal performance of the market,
there are significant gains to be had from the use of a decentralised system with im
proved utilisation, throughput and time.

Whilst this is a Computer Science thesis, it is only when we set this work in the context
of economic markets that we can truly understand the challenge that we will need to
provide solutions for, with the next set of our computing technologies.

154

Chapter 9

Future Work and Directions

Our work has produced a comparison of two methods of performing bundle-oriented
resource allocation with a view to understanding which approach is suitable for a given
set of circumstances. This leads us to consider firstly, the approaches applicability for
other, alternate situations and secondly, how we might improve our MDA implemen
tation to maximise its utility in future.

9.1 Capability or Capacity?

Our objective in this thesis has been to answer the question: “Given a specific set of
resources, allocation needs and network topology/geography (i.e centralised or decen
tralised) what is the most appropriate way to process the data and produce a set of
resource allocations?” In the context of computer grid resource management, there is
a supplementary question—Do we want capability or capacity computing?

Capability computing is defined as the provision of extremely high performance com
puting resources in order to handle the most difficult number crunching problems.
Capacity computing deals with situations that have less extreme technical challenges
but which require great quantities of computation resources.

The question posed above is still asked today by many users of large computing re
sources as we have not yet found a ubiquitous solution. Most large computing infras

155

tructures are still built for specific purposes, whether they are simple AMD/Intel based
clusters such as the University of Bath’s Aquila system or most of the entrants on
the Top500 list (e.g. IBM PowerCell or BlueGene systems and the Cray XT4 series).
We see long commissioning times, leading edge processing developments and large
budgets, with such systems usually seen installed in Universities, Research Centres
and National Government computing facilities. The scheduling for large computing
clusters is often done by hand, or using simple schedulers like PBS that divide jobs
up on a first come first served basis, but the approach is problematic as it does not
handle contention well with (i) an insufficient mix of capability and capacity users,
(ii) management of resources at insufficient levels of granularity (e.g. operating in
whole compute nodes) and (iii) failing to permit a very wide range of users concurrent
access.

As an example of the problems seen on a low end cluster, the Aquila service is de
signed so that each job is assigned to one single CPU node (a quad-core processor
with 8 GB of RAM). However, there are few nodes (approximately 80) and as a sys
tem used by many as their first interaction with cluster computing users find it difficult
to program an algorithm that can continually exploit a full compute node. Therefore,
the Aquila system rarely runs at full capacity and a review of usage on clusters such
as the National Grid Service (a capacity service), or the HecTor Super Computer (a
capability service) shows that achieving 100% utilisation can be difficult.

More commercially available clusters provide a different approach to the capacity
computing need. Systems such as Amazon’s EC2 system, RackSpace’s Mosso or the
3Tera Applogic System allow users to purchase CPU hours on demand and operate
clusters of virtual machines in the US and Europe. These work on a flat pricing basis
but use service level controls to ensure that they can provision sufficient CPU units to
cope with all possible demands.

We also find that the commercial clusters provide different approaches to service provi
sion, allowing users to deploy entire virtual machines with custom software, where as
most academically led clusters provide specific software running directly on physical
computers optimised for the task. The former approach provides capacity computing,
the latter focuses more on capability.

The mixture of controls, usage and over-provisioning of these systems has ensured
that administrators have not yet discovered the need to implement just in time pric

156

ing, however it is self evident that this will become necessary in the future. The move
in the internet hosting industry towards virtualisation and cloud computing has ab
stracted the operating system environment from the computer’s physical metal so that
virtual machines can be moved around supported by hypervisors with resources real
located as required. New versions of various opensource and commercial tools, in
cluding Xen, VMware and others are providing the ability for a service provider to
deliver a virtualised computational resource service, where the user pays for what they
use, rather than what they reserve. This just-in-time CPU resource delivery paradigm
cannot infinitely be satisfied through provisioning large datacentres in the American
mid-west and as globalisation continues to progress operators will begin to see sig
nificant peaks in capacity during business hours and the corresponding under usage
overnight that will cause them to want to incentivise customers to spread their usage
out more linearly. Similarly, the use of large amounts of computing power in academic
and research circles will become normal, with undergraduate classes in physical and
life sciences producing ever more complex models and whether the currency used is
one with fiscal value or not, the need for a common metric for job scheduling and
prioritisation cannot be under-estimated.

Our work has shown that the two approaches considered, the Combinatorial Auction
and the Multiple Distributed Auction system are able to provide solutions to these
challenges. The Combinatorial Auction, with its complete information about all pref
erences and single-shot allocation solver seems ideal for capability computing environ
ments where workloads (particularly for super-computers) can be planned in advance
and are not frequently changed. The MDA, on the other hand, is more suited to man
aging resources on capacity computing clusters, where loads change frequently with a
continual stream of previously unknown jobs arriving and a much wider range of user
and usage types.

In order to build and evaluate these two approaches to solving the problem of resource
allocation in the thesis we necessarily focused on economic theories and the challenges
of performing an empirical analysis. It is therefore appropriate to ask the question of
how would we adapt this work so that it can be used in the scenarios described and
what would be the areas of work to focus on next?

157

9.2 Other NP-Hard Problems

The D-CIS Lab at Thales has identified two areas of work which demonstrate applica
tions of Agent systems being used to help NP-Hard problems in the real world, they
call this paradigm “Actor-Agent Communities”. Firstly, they have provided decision
support software to help manage interruptions to train schedules in the Netherlands
railway system and secondly to environmental impact decision making in Rotterdam
Harbour.

Railway scheduling is a subject that has been long studied and with recent advances
in computing power, heuristic development and search algorithms it is common place
to find computer systems utilised in the production of initial railway schedules. How
ever, the problem of managing the railway schedule in the event of a disruption to the
network is currently unsolved. The Dutch railway system has over 5000 trains daily
and 1000 driver duties per day, with an average of 10 disruptions per route, per day,
equating to 450 trains a day with delays, of which 10 are cancelled.

The major issue is that time tables are typically developed to maximise usage of staff
and rolling stock resources and that in the event of a blockage or disruption we find
that drivers and their rolling stock are subsequently not available (in the right place at
the right time) to begin the next service they are scheduled to operate. In most railway
networks there is often surplus rolling stock and delivery of trains to support schedule
interruptions is often not a great problem. Drivers however are in much shorter supply
and it is rarely possible to arrange an entirely spare driver at short notice. Therefore,
problems can only be resolved by rescheduling drivers, often swapping duties and
requesting that overtime is worked. This work is currently completed by humans but
researchers at D-CIS have observed that the human response often fixes the current
problem but does not fully manage the knock on effects of the disruption, a situation
which the D-CIS team have begun to address through their use of intelligent systems
and prototype solutions have indicated that they can provide decision support tools to
allow the problem to be resolved in a marginally faster time frame than that which was
achieved by human planners, but additionally, they are able to ensure that the solution
does not create knock on effects later in the schedule.

How could our work on multiple distributed auctions help further the developments of
the D-CIS lab in refining their solution to this problem? Firstly, the train rescheduling

158

problem can be characterised as an NP-Hard problem with complex heuristics which
requires search to produce a solution. However, when managing the crisis of train
schedule interruption it is potentially more important to provide a workable solution
quickly than to provide the optimum solution (i.e. one with zero knock on effects to
the schedule) because a single knock on effect in the future can be easily managed,
where as a current disruption may generate much larger, immediate effects in the net
work. Additionally, train drivers are known to be flexible and can be incentivised to
implement sub-optimal solutions quickly, for example, through incentives in their pay
and working conditions. Our work has shown that in applications where the optimal
outcome is not necessary, a satisficing solution can be obtained through the use of
MDAs and given further work it would be possible to identify the specific characteris
tics of different types of service interruptions such that the train scheduling tool could
choose between using (i) previously memoised solutions, (ii) optimal rescheduling so
lutions, potentially determinable for small disruption problems, or (iii) a less optimal,
but satisfactory solution, determined through market based agent negotiation.

The question of environmental decision support in Rotterdam Harbour is a problem to
which we can similarly lend our expertise to improve the solution. The challenge in
environmental management is the coordination of response across a very large number
of different governmental agencies, all of whom have differing priorities and respon
sibilities, but whom must play a coordinated role in responding to an environmental
accident. The Rotterdam Harbour presents an excellent case study in the management
of these types of problems as it is one of the worlds busiest shipping environments,
with a thriving petrochemical industry, that is geographically situated in close prox
imity to an area of high population density. The DIADEM system that the team at
D-CIS have developed is an early prototype which begins to integrate the currently
available sensor networks and human incident reports together with agent based logic
to improve the distribution of information to the relevant authorities and enabling them
to make higher quality decision in shorter times.

The MDA approach to resource allocation contains a number of concepts which are
likely to be relevant to the future development of this project. Most importantly, given
an element of information, or an identified need for action, there will be considerable
coordination effort required across the many involved agencies. By representing the
available agency resources and desired actions using the Trading Agents model we can
effectively encourage teams to work together through the use of our bundling technol
ogy, recommending strategies for effective working which take into account and trade

159

off the many different constraints that will be imposed.

9.3 Review of the MDA System

We have outlined our implementation of a system of Multiple Distributed Auctions
and the process of experiment and review has given us the opportunity to identify a
number of areas where the system could be further improved.

We adopted a stepwise approach to re-factoring our Repast based simulation into the
distributed Agentscape environment. The benefits of this approach were twofold,
firstly, it was a fast process and secondly it allowed us to maintain the structural in
tegrity of the market algorithms, thus ensuring that we had a valid basis for compari
son.

The major downside is that the original implementation was built with a number of the
Repast concepts deeply embedded, most significantly the “step” function and there
fore the simulation was built on a cycle of (i) execute market, (ii) collect data. This
approach has no impact on the market operation, but it massively increases the run
time of the overall system because after each round of the market we sequentially poll
all of the agents in the system to collect market data and statistics and in doing so,
pause the market.

We propose that the efficiency of the MDA system could be greatly improved through
modification so that statistical and accounting data is transmitted asynchronously to
the Oracle outside of the regular trading process because then the markets could run
continuously without interruption.

9.3.1 Intelligence of the Traders

The distributed market has a number of variables affecting its performance and un
fortunately we could not thoroughly investigate them all but a potentially important
factor is that of the intelligence and domain specific knowledge held by the market
place traders. We focused on using Zero Intelligence traders using Dave Cliff’s ZI

160

Figure 9.1: Break Down of Time Spent in Decentralised System

Plus strategy but work by participants in the Trading Agent Competition suggests that
agents with domain specific expertise can produce economically superior results. For
example, the MinneTAC agent participated in the Supply-Chain Trading Agent Com
petition (TAC-SCM). This competition involves participating in two concurrent games.
Firstly, agents must purchase raw goods before, secondly, selling their finished bundles
of goods. Participants in the game need to choose a strategy which typically involves
reacting to one market or the other and being customer or supply driven. The Min
neTac team developed a complex decision making process described as an “Evaluator
Chain” which encapsulated the logic used in reacting to the different market events.
They experimented with the two strategies and found that whilst the Customer-Driven
strategy was more profitable overall, it had some significant downsides, such as inabil
ity to adapt to price fluctuations in the supply market. The conclusion is that agents in
the game cannot adopt a single strategy and that balance is required—shifting priorities
as markets change.

Additionally, awareness and knowledge of other strategies deployed in the market
place, combined with a prediction model for customer demand was also found to be
helpful. In computing, memoization is an optimization technique used primarily to
speed up algorithms by remembering the answers to previously made function calls
for common inputs, thus avoiding the need to repeat the calculation of results. We
feel that this approach would allow traders to bid more quickly, with less computation
required, on bundles for which they have bid on previously, providing particular per
formance gains as the markets increase in size from thousands, to tens of thousands of

161

goods.

9.3.2 Market Structure

The TAC-Market Design Competition (TAC-MDC) looked at the effect of a more in
telligent market place, whilst maintaining fairly simple traders. In TAC-MDC the
competition organisers managed the traders and used well known strategies for trading
in continuous double auctions (ZI, ZIP, GD and RE (Roth-Erev [NPT01])) but they
allowed participants to develop the continuous double auctions in which traders im
plemented by the competition organisers then took part in. The market operators made
profits by charging traders transactional based fees for activities such as registering
in the market, placing shouts, requesting information on other traders and for mak
ing bid/ask transactions. The competition organisers surveyed the techniques for the
2007 game in [NCP+08] and concluded that variations in the pricing policy, as well
as the matching and shout acceptance policy, could improve the fees earned by market
managers and the profitability of the market.

Our MDA system uses a simple free-entry continuous double auction which matches
shouts on a first-come, first-served basis. We believe that given a more sophisticated
market model, we should be able to influence the behaviour of the MDA system and
further improve the market’s economic efficiencies.

“Market Structure” encompasses both the economic makeup of the market, but also
its linkages with the environment it controls and further work on MDA would need
to be completed in order to make it compatible with the major capacity computing
management systems Globus [Fos05] and GridBus [BB03]. In our MDA work we
effectively traded goods through tokens that then enabled access to external providers
of resources. In order to increase the future utility of MDA it would be beneficial
to implement direct links between the MDA system and the relevant grid computing
resource and accounting systems, such as the GridBus project “GridBank” and the
Globus project GRAM environment. Both of these projects adopt a similar application
programming interface based approach which allows third party products to be built
as “pluggable modules” that can then connect to the Grid management system and
provide support for allocation decisions and resource management.

162

9.4 Conclusions on Future Work

We believe that there is significant scope for the work done so that MDA can be utilised
in a number of practical resource allocation scenarios, such as decision support and
railroad planning and we have given examples for how this might be achieved, both
structurally, with improvements to the MDA and MDA-Agentscape environments and
further integration with capacity computing resource management systems but also at
the application level by looking at specific applications which have strong applicability
to the technology and ideas we have developed.

Central to the adoption of these ideas would also be the implementation of the iden
tified improvements to the MDA and MDA-Agentscape, analysed in detail in Section
4.6 which will bring further improvements in speed, efficiency and security of the
multiple distributed auctions system.

We are satisfied that the MDA system has the right balance between features and sim
plicity to enable us to fully investigate this thesis without it becoming a software en
gineering project. As the focus changed toward adoption, it would be important to
ensure that a robust system for providing oversight was in place, principally to ensure
traders acted within their financial means and did not hoard resources, or unnecessarily
sell them at a loss.

Finally, the system works on a uniform trust model and there is potential for damage to
be done if rogue agents were permitted to trade. We could increase the robustness and
security frameworks in the system, for example, to include protocols and architectures
derived from work by Franklin and Reiter [FR95] or Stubblebine and Syverson [SS99].

163

References

[ABC+09] Alvin AuYoung, Phil Buonadonna, Brent N. Chun, Chaki Ng,
David C. Parkes, Jeff Shneidman, Alex C. Snoeren, and Amin Vahdat.
Two auction-based resource allocation environments: Design and ex
perience. In Rajmukar Buyya and Kris Bubendorfer, editors, Market
Oriented Grid and Utility Computing, chapter 23. Wiley, 2009. (page
19, 19).

[AH71] Kenneth Arrow and F Hann. General Competitive Analysis. Pub
lished by North Holland, 1971. (pages 50, 121).

[AHDJ01] Patricia Anthony, W. Hall, Viet Dung Dang Dang, and Nicholas R.
Jennings. Autonomous agents for participating in multiple online
auctions. In Proc. of the IJCAI Workshop on EBusiness and the
Intelligent Web, Seattle WA, USA, 2001. (pages 49, 71).

[AJ03] Patricia Anthony and Nicholas R. Jennings. Developing a bidding
agent for multiple heterogeneous auctions. In ACM Trans on Internet
Technology, volume 3, pages 185–217, New York, NY, USA, 2003.
ACM. (page 49).

[Arr50] Kenneth J. Arrow. A difficulty in the concept of social welfare. The
Journal of Political Economy, 58(4):328–346, 1950. (pages 50, 62,
153).

[ASGH95] David Abramson, Rok Sosic, J. Giddy, and B. Hall. Nimrod: A tool
for performing parameterised simulations using distributed worksta
tions. In HPDC, pages 112–121, 1995. (pages 15, 33, 46).

[ATY00] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Inte
ger programming for combinatorial auction winner determination.

164

Multi-Agent Systems, International Conference on, 0:0039, 2000.
(page 133).

[Axe97] Robert M. Axelrod. The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration. Princeton University
Press, 1997. (page 52).

[BB03] A. Barmouta and Rajkumar Buyya. Gridbank: a grid accounting
services architecture (gasa) for distributed systems sharing and in
tegration. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 8 pp.+, 2003. (page 162).

[BBP] Rachel A. Bourne, John Bigham, and Stefan Poslad. Effect of market
type in continuous environments: The need for intermediaries. (page
40).

[BCC+01] Francine Berman, Andrew Chien, Keith Cooper, Jack Dongarra,
Ian Foster, Dennis Gannon, Lennart Johnsson, Ken Kennedy, Carl
Kesselman, John Mellor-Crummey, Dan Reed, Linda Torczon, and
Rich Wolski. The GrADS Project: Software support for high-
level Grid application development. The International Journal
of High Performance Computing Applications, 15(4):327–344,
2001. Available via http://www.cs.rice.edu/˜johnmc/

papers/GrADS-JHPCA-01.pdf. (pages 44, 45).

[Ber38] Abram Bergson. A reformulation of certain aspects of welfare eco
nomics. The Quarterly Journal of Economics, 52(2):310–334, 1938.
(pages 50, 61).

[BGS99] Craig Boutilier, Mois´ Sequenes Goldszmidt, and Bikash Sabata.
tial auctions for the allocation of resources with complementari
ties. In IJCAI ’99: Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pages 527–523. Morgan Kauf
mann Publishers Inc., 1999. (page 133).

[BKL03] Martin Bichler, Jayant R. Kalagnanam, and Ho Soo Lee. Reco: Rep
resentation and evaluation of configurable offers. In In Computational
Modeling and Problem Solving in the Networked World: Interfaces
in Computing and Optimization. Kluwer Academic Publishers, 2003.
(page 40).

165

http://www.cs.rice.edu/~johnmc/papers/GrADS-JHPCA-01.pdf
http://www.cs.rice.edu/~johnmc/papers/GrADS-JHPCA-01.pdf

[BKR98] Jonathan Bredin, David Kotz, and Daniela Rus. Utility driven mobile-
agent scheduling. Technical Report PCS-TR98-331, Dartmouth Col
lege, 1998. Available via http://www.cs.dartmouth.edu/

reports/abstracts/TR98-331/ 24-03-2009. (page 39).

[BN05] Shantanu Biswas and Y. Narahari. Iterative dutch combinatorial auc
tions. Annals of Mathematics and Artificial Intelligence, 44(3):185–
205, 2005. (pages 34, 52, 62).

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE
a FIPA-compliant agent framework. In Proceedings of the Practical
Applications of Intelligent Agents, 1999. (page 41).

[Bro04] Reva Brown. Consideration of the origin of herbert simon’s theory
of ”satisficing” (1933-1947). Management Decision, 42(10):1240–
1256, 2004. (page 57).

[Buy02] Rajkumar Buyya. Economic-based Distributed Resource
Management and Scheduling for Grid Computing. PhD thesis,
Monash University, Melbourne, Australia, 2002. Available via
http://www.buyya.com/thesis/ 25-04-2009. (page 44).

[BW96] Francine Berman and Richard Wolski. Scheduling from the per
spective of the application. In HPDC ’96: Proceedings of the 5th
IEEE International Symposium on High Performance Distributed
Computing, page 100, Washington, DC, USA, 1996. IEEE Computer
Society. (page 43).

[BW97] Francine Berman and Richard Wolski. The apples project: A status
report. In 8th NEC Research Symposium, Berlin, Germany, May
1997, 1997. (page 43).

[CB98] Dav Cliff and Janet Bruten. Zero is not enough: On the lower limit
of agent intelligence for continuous double auction markets. Tech.
Rep. no. HPL-97-141, Hewlett-Packard Laboratories., 1998. (pages
49, 70, 81).

[CC02] Brent N. Chun and David E. Culler. User-centric performance anal
ysis of market-based cluster batch schedulers. In CCGRID ’02:
Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, page 30, Washington, DC, USA,
2002. IEEE Computer Society. (page 39).

166

http://www.cs.dartmouth.edu/reports/abstracts/TR98-331/
http://www.cs.dartmouth.edu/reports/abstracts/TR98-331/
http://www.buyya.com/thesis/

[CDE+06] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, erˆ Lang,J´ ome
Michel Lemaı̂tre, Nicolas Maudet, Julian Padget, Steve Phelps, Juan
A. Rodrı́guez Aguilar, and Paulo Sousa. Issues in multiagent resource
allocation. Informatica, 30:3–31, 2006. (pages 32, 50).

[CELM07]	 Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet.
A short introduction to computational social choice. In Proceedings
of the 33rd Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM-2007), volume 4362 of LNCS, pages
51–69. Springer-Verlag, January 2007. (page 51).

[CJS+02a]	 Junwei Cao, S. Jarvis, D. Spooner, J. Turner, D. Kerbyson,
and G. Nudd. Performance prediction technology for agent-
based resource management in grid environments. In 16th
International Parallel and Distributed Processing Symposium (IPDPS
’02 (IPPS and SPDP)), page 86. IEEE, April 2002. Available
from http://www.dcs.warwick.ac.uk/˜hpsg/html/

downloads/public/docs/CaoJ.PPTARM.pdf 25-04-09.
(page 34).

[CJS+02b]	 Junwei Cao, Stephen A. Jarvis, Subhash Saini, et al. ARMS:
An agent-based resource management system for grid comput
ing. Scientific Programming, 10(2):135–148, 2002. Available
from http://www.dcs.warwick.ac.uk/˜saj/papers/

arms.pdf 25-04-2009. (pages 34, 53).

[CKN01]	 Junwei Cao, Darren J. Kerbyson, and Graham R. Nudd. Use of agent-
based service discovery for resource management in metacomputing
environment. Lecture Notes in Computer Science, 2150:882–886,
2001. (page 34).

[Cli97]	 Dave Cliff. Minimal-intelligence agents for bargaining behaviors in
market-based environments. Technical Report HP–97–91, Hewlett
Packard Laboratories, Bristol, England, 1997. http://www.

hpl.hp.com/techreports/97/HPL-97-91.html 25-04
2009. (pages 49, 81).

[CSS05]	 Peter Cramton, Yoav Shoham, and Richard Steinberg, editors.
Combinatorial Auctions. MIT Press, 2005. ISBN: 0-262-03342-9.
(pages 34, 58, 63, 64, 64, 133, 135).

167

http://www.dcs.warwick.ac.uk/~hpsg/html/downloads/public/docs/CaoJ.PPTARM.pdf
http://www.dcs.warwick.ac.uk/~hpsg/html/downloads/public/docs/CaoJ.PPTARM.pdf
http://www.dcs.warwick.ac.uk/~saj/papers/arms.pdf
http://www.dcs.warwick.ac.uk/~saj/papers/arms.pdf
http://www.hpl.hp.com/techreports/97/HPL-97-91.html
http://www.hpl.hp.com/techreports/97/HPL-97-91.html

[DF03] Li Ding and Tim Finin. Strategies and heuristics used by the um
bctac agent. In IJCAI-03 Workshop on Trading Agent Design
and Analysis, Acapulco, 2003. http://www.cs.umbc.edu/

˜finin/papers/ijcai03-umbctac.pdf 25-04-2009. (page
71).

[DJ03] Viet Dung Dang and Nicholas R. Jennings. Optimal clear
ing algorithms for multi-unit single-item and multi-unit combina
torial auctions with demand/supply function bidding. In ICEC
’03: Proceedings of the 5th international conference on Electronic
commerce, pages 25–30. ACM Press, 2003. (pages 24, 35, 52, 66,
71).

[dVV03] S. de Vries and R. V. Vohra. Combinatorial auctions: A survey.
INFORMS Journal on Computing, 15(3):284–309, 2003. (page 133).

[ERS+05] Torsten Eymann, Michael Reinicke, Werner Streitberger, Omer Rana,
Liviu Joita, Dirk Neumann, Björn Schnizler, Daniel Veit, Oscar Ar
daiz, Pablo Chacin, Isaac Chao, Felix Freitag, Leandro Navarro,
Michele Catalano, Mauro Gallegati, Gianfranco Giulioni, Ruben Car
vajal Schiaffino, and Floriano Zini. Catallaxy-based grid markets. In
Multiagent and Grid Systems, volume 1, pages 297–307. IOS Press,
2005. (page 38).

[FBK96] Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Flexible com
munication mechanisms for dynamic structured applications. In
IRREGULAR ’96: Proceedings of the Third International Workshop
on Parallel Algorithms for Irregularly Structured Problems, pages
203–215, London, UK, 1996. Springer-Verlag. (pages 15, 46).

[FLBS99] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Tam
ing the computational complexity of combinatorial auctions: Opti
mal and approximate approaches. In IJCAI ’99: Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence,
pages 548–553, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc. (page 133).

[Fos05] Ian T. Foster. Globus toolkit version 4: Software for service-oriented
systems. In Hai Jin, Daniel A. Reed, and Wenbin Jiang, editors, NPC,
volume 3779 of Lecture Notes in Computer Science, pages 2–13.
Springer, 2005. (page 162).

168

http://www.cs.umbc.edu/~finin/papers/ijcai03-umbctac.pdf
http://www.cs.umbc.edu/~finin/papers/ijcai03-umbctac.pdf

[FR95] M. Franklin and M. Reiter. The Design and Implementation of
a Secure Auction Service. In Proc. IEEE Symp. on Security and
Privacy, pages 2–14, Oakland, Ca, 1995. IEEE Computer Society
Press. (pages 41, 73, 163).

[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software agents.
Communications of the ACM, 37:48–53, 1994. (page 87).

[GO96] Russell Greiner and Pekka Orponen. Probably approximately optimal
satisficing strategies. Artificial Intelligence, 82(1–2):21–44, April
1996. (page 52).

[GOT+08] Peter Gradwell, Michel Oey, Reinier Timmer, Frances Brazier, and
Julian Padget. Engineering large-scale distributed auctions. In
AAMAS ’08: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems, pages 1311–1314, Rich
land, SC, 2008. International Foundation for Autonomous Agents and
Multiagent Systems. (pages 29, 34).

[GP05] Peter Gradwell and Julian Padget. Markets vs auctions: Approaches
to distributed combinatorial resource scheduling. In Multiagent and
Grid Systems, number 4/2005 in 1, pages 251–262. IOS Press, 2005.
(page 31).

[GP07] Peter Gradwell and Julian Padget. A comparison of distributed and
centralised agent based bundling systems. In ICEC ’07: Proceedings
of the ninth international conference on Electronic commerce, pages
25–34, New York, NY, USA, 2007. ACM Press. (pages 30, 110).

[GS93] Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of
markets with zero-intelligence traders: Market as a partial substitute
for individual rationality. In The Journal of Political Economy, vol
ume 101, pages 119–137. The University of Chicago Press, Feburary
1993. (page 81).

[HJ02] Minghua He and Nicholas R. Jennings. Southamptontac: Designing a
successful trading agent. In 15th European Conf. on AI (ECAI-2002),
pages 8–12, 2002. (pages 48, 71).

[KCG+07a] Wolfgang Ketter, John Collins, Maria Gini, Alok Gupta, and Paul
Schrater. Detecting and forecasting economic regimes in automated

169

exchanges. Technical Report 07-008, University of Minnesota, Dept
of Computer Scienceand Engineering, Minneapolis, MN, 2007. (page
48).

[KCG+07b] Wolfgang Ketter, John Collins, Maria Gini, Paul Schrater, and Alok
Gupta. A predictive empirical model for pricing and resource alloca
tion decisions. In ICEC ’07: Proceedings of the ninth international
conference on Electronic commerce, pages 449–458, New York, NY,
USA, 2007. ACM. (page 48).

[KKD+04] Wolfgang Ketter, Elena Kryzhnyaya, Steven Damer, Colin McMillen,
Amrudin Agovic, John Collins, and Maria L. Gini. Analysis and
design of supply-driven strategies in tac scm. In TADA Workshop
2004, AAMAS Conference, 2004. (page 71).

[KS89] James F Kurose and Rahul Simha. A microeconomic approach to
optimal resource allocation in distributed computer systems. In IEEE
Transactions On Computers Vol 38, pages 705–716, 1989. (pages 15,
46).

[LB03] Kevin Leyton-Brown. Resource Allocation in Competitive
Multiagent Systems. PhD thesis, Stanford University, August 2003.
(pages 21, 24, 65, 71, 133, 150).

[LBNS02] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learn
ing the empirical hardness of optimization problems: The case of
combinatorial auctions. In Constraint Programming (CP), pages 556–
572, 2002. (pages 104, 105).

[LBNS06] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham.
Empirical Hardness Models for Combinatorial Auctions, chapter 19.
MIT Press, 2006. (page 110).

[LBPS00] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a
universal test suite for combinatorial auction algorithms. In EC ’00:
Proceedings of the 2nd ACM conference on Electronic commerce,
pages 66–76, New York, NY, USA, 2000. ACM. (pages 19, 25, 76,
103).

[LBS05] Kevin Leyton-Brown and Yoav Shoham. A Test Suite for
Combinatorial Auctions, chapter 18, pages 452–478. MIT Press,
2005. (pages 101, 109).

170

[LJC+08]	 Benjamin Lubin, Adam Juda, Ruggiero Cavallo, Sébastien Lahaie,
Jeffrey Shneidman, and David C. Parkes. ICE: An Expressive It
erative Combinatorial Exchange. Journal of Artificial Intelligence
Research, 33:33–77, 2008. (page 19).

[LKK99]	 William Leinberger, George Karypis, and Vipin Kumar. Job
scheduling in the presence of multiple resource requirements.
In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE
conference on Supercomputing (CDROM), page 47. ACM, 1999.
(page 45, 45).

[LSP82]	 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, July 1982. (page 42).

[Mai05]	 Roger Mailler. Comparing two approaches to dynamic, distributed
constraint satisfaction. In AAMAS 2005: Proceedings of the 4th
International Conference on Autonomous Agents and Multi-Agent
Systems, pages 1049–1056, 2005. (page 71).

[Mic68]	 Donald Michie. Memo functions and machine learning. Nature, 218,
April 1968. (page 73).

[MT04]	 ToddWright Aaron Helsinger Michael Thome. Cougaar: A scal
able, distributed multi-agent architecture,. In IEEE International
Conference on Systems, Man and Cybernetics, pages 1910– 1917,
2004. (page 41).

[Nas50]	 John F. Nash. Equilibrium points in n-person games. Proceedings of
the National Academy of Sciences of the United States of America,
36(1):48–49, 1950. (page 56).

[NCP+08]	 Jinzhong Niu, Kai Cai, Simon Parsons, Enrico Gerding, and Peter
McBurney. Characterizing effective auction mechanisms: insights
from the 2007 tac market design competition. In AAMAS ’08:
Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems, pages 1079–1086. International Foun
dation for Autonomous Agents and Multiagent Systems, 2008. (page
162).

171

[NCV06] Michael J. North, Nicholson T. Collier, and Jerry R. Vos. Experiences
creating three implementations of the repast agent modeling toolkit.
ACM Trans. Model. Comput. Simul., 16(1):1–25, 2006. (pages 19,
40, 81).

[NKP+00] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S.
Harper, and D. V. Wilcox. Pace–a toolset for the performance predic
tion of parallel and distributed systems. Int. J. High Perform. Comput.
Appl., 14(3):228–251, 2000. (page 34).

[NM09] Cynthia Nikolai and Gregory Madey. Tools of the trade: A sur
vey of various agent based modeling platforms. Journal of Artificial
Societies and Social Simulation, 12(2):2, 2009. (page 41).

[NPT01] James Nicolaisen, Valentin Petrov, and Leigh Tesfatsion. Mar
ket power and efficiency in a computational electricity market
with discriminatory double-auction pricing. IEEE Transactions on
Evolutionary Computation, 5:504–523, 2001. (page 162).

[OB06] B. J. Overeinder and F. M. T. Brazier. Scalable middleware envi
ronment for agent-based Internet applications. In Applied Parallel
Computing, volume 3732 of Lecture Notes in Computer Science,
pages 675–679. Springer, Berlin, 2006. (pages 25, 40, 86, 86).

[Par03] David Parkes. Computational mechanism design - taming the strate
gic dragon without invoking the complexity monster, 2003. Talk
given at AAMAS03. (page 37).

[PB99] Julian Padget and Russell Bradford. A π-calculus model of the
spanish fishmarket. In Proceedings of AMET’98, volume 1571 of
Lecture Notes in Artificial Intelligence, pages 166–188. Springer Ver
lag, 1999. (page 42).

[PMPM06] S. Phelps, M. Marcinkewitz, S. Parsons, and P. McBurney. A
novel method for strategy acquisition in n-player games. Fifth
International Join Conference on Automous Agents and Multiagent
Systems, 2006. http://www.csc.liv.ac.uk/˜sphelps/

docs/pubs/aamas06.ps.gz 25-04-2009. (pages 19, 72, 80).

[Pro] Globus Project. http://www.globus.org/ Last accessed
March 2005. (page 43).

172

http://www.csc.liv.ac.uk/~sphelps/docs/pubs/aamas06.ps.gz
http://www.csc.liv.ac.uk/~sphelps/docs/pubs/aamas06.ps.gz
http://www.globus.org/

[PS04] David C. Parkes and Jeffrey Shneidman. Distributed implementations
of vickrey-clarke-groves mechanisms. In Proc. 3rd Int. Joint Conf. on
Autonomous Agents and Multi Agent Systems, pages 261–268, 2004.
(pages 19, 43, 66).

[RLJ06] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson.
Agent-based Simulation Platforms: Review and Development Rec
ommendations. SIMULATION, 82(9):609–623, 2006. (page 41).

[RNSP97] Joan-Antonı́ Rodrı́guez, Pablo Noriega, Carles Sierra, and Julian Pad-
get. Fm96.5 a java-based electronic auction house. In Proceedings of
2nd Conference on Practical Applications of Intelligent Agents and
MultiAgent Technology (PAAM’97), pages 207–224, London, UK,
April 1997. ISBN 0-9525554-6-8. (page 42).

[SAL+04] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat,
and Rajkumar Buyya. Libra: a computational economy-based job
scheduling system for clusters. Softw., Pract. Exper., 34(6):573–590,
2004. (page 44, 44).

[San02] Tuomas Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artif. Intell., 135(1-2):1–54, 2002. (pages
35, 36, 133).

[San06] Tuomas Sandholm. Optimal winner determination algorithms.
In Peter Cramton, Yoav Shoham, and Richard Steinberg, editors,
Combinatorial Auctions, chapter 14. MIT Press, 2006. (page 36).

[San07] Tuomas Sandholm. Expressive commerce and its application to
sourcing: how we conducted $35 billion of generalized combinato
rial auctions. In ICEC ’07: Proceedings of the ninth international
conference on Electronic commerce, pages 349–350, New York, NY,
USA, 2007. ACM Press. (pages 35, 65).

[SCG07] Eric Sodomka, John Collins, and Maria L. Gini. Efficient statistical
methods for evaluating trading agent performance. In AAAI, pages
770–775. AAAI Press, 2007. (pages 34, 49).

[SG06] Tuomas Sandholm and Andrew Gilpin. Sequences of take-it-or-leave
it offers: near-optimal auctions without full valuation revelation. In
AAMAS ’06: Proceedings of the fifth international joint conference

173

on Autonomous agents and multiagent systems, pages 1127–1134,
New York, NY, USA, 2006. ACM. (page 18).

[SH80] Rajan Suri and Yu-Chi Ho. Resource management for large systems:
Concepts, algorithms, and an application. In IEEE Transactions On
Automatic Control Vol 4, pages 651–662, 1980. (pages 15, 46).

[Sim55] Herbert A. Simon. A behavioral model of rational choice. The
Quarterly Journal of Economics, 69(1):99–118, 1955. (pages 18, 23,
37, 50, 57, 57).

[Sma76] Stephen Smale. Dynamics in general equilibrium theory. American
Economic Review, 66(2):288–94, May 1976. (page 36).

[SP03] Jeffrey Shneidman and David C. Parkes. Rationality and self-interest
in peer to peer networks. In In 2nd Int. Workshop on Peer-to-Peer
Systems (IPTPS03, pages 139–148, 2003. (pages 37, 38, 42).

[SP04] Jeffrey Shneidman and David C. Parkes. Specification faithfulness
in networks with rational nodes. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on Principles of distributed
computing, pages 88–97, New York, NY, USA, 2004. ACM. (pages
37, 42, 42).

[SS99] Stuart G. Stubblebine and Paul F. Syverson. Fair on-line auctions
without special trusted parties. In FC ’99: Proceedings of the Third
International Conference on Financial Cryptography, pages 230–240,
London, UK, 1999. Springer-Verlag. (pages 42, 73, 163).

[SSGL01] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine.
CABOB: A fast optimal algorithm for combinatorial auctions. In
IJCAI, pages 1102–1108, 2001. (page 35).

[SSGL05] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine.
CABOB: A fast optimal algorithm for combinatorial auctions. In
Management Science, Special Issue on Electronic Markets, 2005.
(pages 35, 106).

[TDTY04] Rui Dong Terry, Rui Dong, Terry Tai, and Wilfred Yeung. Hartac
the harvard tac scm ’03 agent. In Proceedings of the Trading Agent
Design and Analysis (TADA2004) Workshop, 2004. MAMS-PG 6.58
MAMS-PG-SS 7.45 TestAgent, pages 1–8, 2004. (page 71).

174

[TH04] Robert Tobias and Carole Hofmann. Evaluation of free java-libraries
for social-scientific agent based simulation. Journal of Artificial
Societies and Social Simulation, 7, 2004. (page 41).

[TS08] Richard H. Thaler and Cass R. Sunstein. Nudge : improving decisions
about health, wealth, and happiness. Yale University Press, 2008.
(page 38).

[VD02] Sathish S. Vadhiyar and Jack J. Dongarra. A metascheduler for the
grid. In HPDC ’02: Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing, page 343.
IEEE Computer Society, 2002. (page 45).

[vH76] Friedrich August von Hayek. Law, Legislation and Liberty - The
Mirage of Social Justice, volume 2. University of Chicago Press,
1976. (page 38).

[WHH+92] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O.
Kephart, and W. Scott Stornetta. Spawn: A distributed computational
economy. IEEE Trans. Softw. Eng., 18(2):103–117, 1992. (page 39).

[WPBB01] Rich Wolski, James S. Plank, John Brevik, and Todd Bryan. Analyz
ing market-based resource allocation strategies for the computational
Grid. The International Journal of High Performance Computing
Applications, 15(3):258–281, Fall 2001. (pages 24, 36, 36).

[WWWMM98] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and Jef
frey K. MacKie-Mason. Auction protocols for decentralized schedul
ing. In Games and Economic Behaviour, volume 35, pages 271–303,
1998. (page 58).

[YB06]	 Chee Shin Yeo and Rajkumar Buyya. A taxonomy of market-based
resource management systems for utility-driven cluster computing.
Softw. Pract. Exper., 36(13):1381–1419, 2006. (page 44).

[ZFD+03a]	 Y. Zou, T. Finin, L. Ding, H. Chen, and R. Pan. Taga: Trading agent
competition in agentcities. Draft submitted to the IJCAI Workshop
on Trading Agent Design and Analysis, 2003. (page 47).

[ZFD+03b]	 Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan. Using
semantic web technology in multi-agent systems: a case study in the

175

taga trading agent environment. In ICEC ’03: Proceedings of the
5th international conference on Electronic commerce, pages 95–101,
New York, NY, USA, 2003. ACM. (page 47).

176

	Introduction to the Problem Space
	Context and Motivation
	Introduction to the Problem Space
	The Combinatorial Auction
	Problems with Combinatorial Auctions
	Distributed Market
	Dependencies between Goods

	Review of Potential Solutions
	Ensuring Comparability
	Thesis Contribution

	Thesis Structure
	Related Publications

	Review of Literature
	The Computer Science View
	Distributed Market Simulation Engines
	Centralised Approaches
	Rational Choice and Market Design
	Implementation of Auctions and Markets
	Grid Resource Management
	Methods for distributed resource allocation

	Economics view
	Conclusions from the literature

	Market Models
	Introduction to Market Models and Approaches
	Auctions and clearing techniques
	Key Economic Principles
	Vickrey-Clarkes-Groves Mechanism

	Distributed Market Models
	Brickworld - Initial design concepts
	Brickworld Development
	Auction closing and Settlement
	Evaluation Strategies
	Conclusions from Brickworld

	Multiple Distributed Auctions
	MDA Trading System Architecture
	Overview of MDA
	Use of JASA

	Trading Strategy
	Social Welfare in Trading

	Algorithms in Pseudo Code
	Conclusions from the MDA System
	MDA Re-factoring in AgentScape
	Using AgentScape for distributed auctions
	MDA Distributed Architecture
	Re-factoring for asynchronous operation
	Initial set-up of the market
	Startup and Bootstrap Process
	Auction Clearing Process
	Returning bundles
	Market stop condition
	CDA clear conditions
	Messaging Overhead
	Synchronisation Coordination Overhead
	Evaluation of Agentscape-MDA

	Conclusion - the MDA System

	Experimental Approach
	Comparison Problem
	Factors for comparison
	Construction of Experiments
	Structure of Test Data
	Calibration of timings
	Verification of accuracy of CASS
	Conclusions

	Experimental Results
	Introduction
	Examining Hardness
	Time
	Financial
	Efficiency
	Completion
	Number of Bundles
	Individual Bundle Completion
	Which Bundles are traded?

	Satisfaction
	Conclusions

	Further Experiments
	Introduction to Further Experiments
	Hardness
	Number of Goods/Bundles
	Actual Spend
	Efficiency
	Satisfaction

	Conclusions
	Review of Contribution
	Grounded in Economics
	Thought Experiment - Fiscal Markets
	MDA for real world problems

	Economics provides the rationale

	Future
	Capability or Capacity?
	Other NP-Hard Problems
	Review of the MDA System
	Intelligence of the Traders
	Market Structure

	Conclusions on Future Work

	References

