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Summary

In this thesis I attempt to gather together a wide range of cladistic analysis of fossil and 

extant taxa representing a diverse array of phylogenetic groups. I use this data to 

quantitatively compare the effect of fossil taxa relative to extant taxa in terms of support for 

relationships, number of most parsimonious trees (MPTs) and leaf stability. In line with 

previous studies I find that the effects of fossil taxa are seldom different to extant taxa – 

although I highlight some interesting exceptions. I also use this data to compare the 

phylogenetic signal within vertebrate morphological data sets, by choosing to compare 

cranial data to postcranial data.

Comparisons between molecular data and morphological data have been previously 

well explored, as have signals between different molecular loci. But comparative signal 

within morphological data sets is much less commonly characterized and certainly not 

across a wide array of clades. With this analysis I show that there are many studies in 

which the evidence provided by cranial data appears to be be significantly incongruent 

with the postcranial data – more than one would expect to see just by the effect of chance 

and noise alone. 

I devise and implement a modification to a rarely used measure of homoplasy that will 

hopefully encourage its wider usage. Previously it had some undesirable bias associated 

with the distribution of missing data in a dataset, but my modification controls for this. I 

also take an in-depth and extensive review of the ILD test, noting it is often misused or 

reported poorly, even in recent studies.

Finally, in attempting to collect data and metadata on a large scale, I uncovered 

inefficiencies in the research publication system that obstruct re-use of data and scientific 

progress. I highlight the importance of replication and reproducibility – even simple re-

analysis of high profile papers can turn up some very different results. Data is highly 

valuable and thus it must be retained and made available for further re-use to maximize 

the overall return on research investment. 
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Chapter 1: Introduction

Fossils provide a special 'window' through which we can glimpse the breadth and 

diversity of past morphological forms of life. More than 99% of all species that have ever 

existed are extinct (Novacek & Wheeler 1992; Nee & May 1997). Thus if we are to truly 

understand evolution we need to include extinct as well as extant forms. Through this 

window we have observed countless remarkable specimens of past organisms that can 

defy at-a-glance placement within our established schemes of classification and phylogeny 

for known lifeforms (e.g. Hallucigenia that was first described by Conway Morris [1977] in 

phylum “unknown”; see also Anomalocaris, Fig. 1). To better understand both what fossil 

specimens are, and to infer their relationships to other extant and extinct species, 

specimens are frequently compared on the basis of their morphological characteristics. 

These characteristics are coded into a matrix which can then be used to compare the 

morphological character scorings of similar organisms using numerical analyses to create 

a testable hypothesis of their relations – frequently expressed as a dendrogram that 

represents an estimate of the relations of the organisms studied.  

Figure 1.1 An example of a remarkable fossil form. Anomalocaris from the Mt Stephen Trilobite 

Beds, Middle Cambrian, near Field, British Colombia, Canada. Credit: photo by Mark A. Wilson / 

Public Domain. 
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1.1 Overview of Inferring Evolutionary Relationships in Palaeontology

“There are parts of the palaeontological community where cladistic drums do not reach; there are nooks and 

crannies, fault lines, sink holes and caves where the words synapomorphy, paraphyly and parsimony have 

never been heard”  Peter Forey recounting the words of his Editor (Palaeontology Newsletter), 2005

The history of classification in biological systematics can be traced back millennia to early 

scholars such as Aristotle, who produced one of the first recorded biological classifications. 

In his works such as Historia Animalium and De Historia Plantarum he grouped organisms 

on the basis of similarity. This system was not an evolutionary classification but it was 

nevertheless a noteworthy contribution. Aristotle also saw partial similarity between fossil 

shells and their modern counterparts but he misattributed their existence and formation as 

'dry vapour exhalation' (Eichholz, 1949; Mayor, 2000).  In the 18th century Linnaeus 

furthered the cause with his system of Linnaean taxonomy, separating nomenclature from 

description – a system which in essence we still use today. Linnaeus recognised three 

kingdoms: animal, vegetable and mineral. Although more widely-known for neontological 

contributions, Linnaeus also made significant contributions to palaeontology – some fossil 

corals still bear the same names as when he first described them after fieldwork in Gotland 

and elsewhere (Linnaeus, 1745; Linnaeus, 1758). 

Post-Darwin, the history of classification and evolutionary relationships in palaeontology 

was spurred-on by George Gaylord Simpson who unlike most of his palaeontological 

colleagues (Olson, 1991) recognized the importance of genetics in evolutionary studies – 

in support of the 'modern evolutionary synthesis'. Papers such as 'Patterns of phylectic 

evolution' (Simpson, 1937) and his opus Tempo and Mode in Evolution (Simpson, 1944) 

used quantitative statistical reasoning to support his arguments of fossil mammal 

relationships and species delimitation. His work placed palaeontology as a more objective 

science because of this quantitative, statistical reasoning. In the 1960's, two distinct 

schools of quantitative methods for inferring evolutionary relationships arose – that of 

numerical taxonomy and that of phylogenetic systematics (cladistics). Numerical taxonomy 

again worked on the basis of just similarity. Sokal & Sneath (1963) in their book Principles 

of Numerical Taxonomy define numerical taxonomy as  “the grouping by numerical 

methods of taxonomic units into taxa on the basis of their character states” (p4). Their 

explicit preference for similarity as the optimal criterion is made clear as early as page 6 
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where they write “Similarities among taxonomic entities can be represented geometrically 

by points in a space... The distances between the points can be regarded as taxonomic 

distances”. Today, few systematists, palaeontologists or otherwise use similarity as an 

optimality criterion for inferring phylogeny. Instead, the other major branch, phylogenetic 

systematics (cladistics) as it was called then and sometimes still is now, dominates as the 

preferred method with which to infer relationships.

  These cladistic methods that we now use to infer phylogeny were first devised by a 

German neontologist; Willi Hennig (1950) who studied true flies (Diptera). But it wasn't 

until the publication of an English translation of a modified version of this book (Hennig, 

1966), and various popularisers (e.g. Brundin, 1966), that his methods gained widespread 

recognition.

For a time after this, most of palaeontology seemed slow and even reticent to adopt these 

new methods on fossils. Looking back on it, commentators such as Siddall (1998) 

explained this resistance as attributable to “the follies of ancestor worship” - using the 

temporal sequence of fossils to assert ancestor-desendent relationships between fossils, 

rather than testing relationships of common ancestry. Hennig's 'phylogenetic systematics' 

(which we now refer to as cladistics) was met with “distrust” by some palaeontologists and 

viewed as a threat to the primacy of palaeontology's role in tracing phylogenetic pathways 

(Forey 2004). Prior to the Hennigian revolution, palaeontological data had been 

considered “both necessary and sufficient” for phylogeny reconstruction (Forey 2004), 

cladistics challenged this. A notable early exception to the distrust was a chapter by 

Schaeffer et al. (1972); three palaeontologists that clearly advocated the use of cladistic 

principles in palaeontology: 

“...we agree that (1) the degree of relationship (as defined by recency of common ancestry) should be 

determined initially on the basis of morphology alone...” 

Even then though, there was still a hesitance as to whether one could or should mix recent 

and fossil taxa in the same analysis. Among those who helped make it clear that recent & 

fossil taxa could in fact be used in the same analysis together was Farris (1976): 

“Fossil species – when they are sufficiently well known to be classified at all – should therefore be treated 

exactly as are recent species in a phylogenetic classification”. 

Patterson's (1981) review of the significance of fossils in determining evolutionary 
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relationships represents a turning point in palaeontological thinking:

“before the development of the cladistic method paleontology was a hindrance rather than a help, stifling 

progress towards the goal of determining evolutionary relationships”

But in his review Patterson (1981) also peculiarly (considering he was a palaeontologist) 

belittles the role of fossils with his oft-cited conclusion that it is rare or unknown for fossils 

to overthrow theories of relationship primarily based on Recent forms (p.219). This has 

been convincingly refuted many times since (e.g. Gauthier et al. 1988; Donoghue et al 

1989; Eernisse and Kluge 1993; Cobbett et al 2007). Patterson (1981) also noted that the 

incompleteness of fossils specimens relative to Recent specimens makes them inherently 

less informative (but as was shown later it is not what is missing that counts per se but 

instead what information is present that most affects phylogenetic inferences e.g. 

Huelsenbeck 1991; Wiens 2003a,b; Edgecombe 2010).

The schism between palaeontological and neontological approaches to phylogenetic 

reconstruction was so fascinating that it even drew the attention of philosophers of 

science. Grantham (2004) expounded at great length on this matter evaluating a number 

of hypotheses as to the root cause of the integration difficulty, and concludes that it is a 

relatively unique phenomenon relative to other fields. For a more complete history in the 

fuller context of systematics read Forey (2004).

1.2 Why not just use molecular data?

Morphology for most fossil specimens is all the evidence we have. Whilst for Recent 

organisms we nearly always additionally or solely use molecular sequence evidence, this 

cannot be obtained from most fossils for a variety of reasons (aside from issues of 

'difficulty' or 'expense'). In the field of ancient DNA studies, the oldest fossil from which a 

genome has been extracted is a ~700,000 year old horse (Orlando et al., 2013). For the 

age of the oldest successfully extracted DNA fragments there is great controversy over the 

repeatability and validity of claims. Cano et al (1993) reported extracting DNA from an 

amber-entombed weevil that is 120-135 million-years-old. Many others have also claimed 

DNA extraction from geologically ancient fossil specimens (reviewed in Hebsgaard et al 

2005). Yet subsequent attempts to repeat these feats have cast significant doubt on the 

validity of these claims (e.g. Austin et al 1997; Gutierrez & Marin 1998). Moreover, well-

parameterized models estimate that the half-life of mitochondrial DNA (typically better 

15



preserved than nuclear DNA because there is ~1,000 times more of it) is 521 years and 

thus even in optimal preservational conditions no mitochondrial sequence of greater than 

one base pair should remain after 6.8 million years (Allentoft et al 2012). Thus for fossils 

older than this, hard physio-biogeochemical constraints mean it is likely we will never be 

able to extract geologically ancient DNA samples from most fossils and hence must 

continue to use morphology-based methods of phylogenetic inference for the forseeable 

future with these taxa. 

1.3 Is Morphology Actually Useful for Reconstructing Phylogeny?

In much of my introduction so far I have not addressed the very use of morphology itself 

(whether neontological or palaeontological) in reconstructing phylogeny. The use of 

morphology to infer phylogeny is not without its critics. Papers such as Scotland et al. 

(2003) have argued that fewer (but more rigorous) morphological characters should be 

used for phylogenetic inference. One of the points that Scotland et al (2003; hereinafter 

SEA ) make is that the same observed morphological characters states can often be 

coded in very different ways. The choice of character coding method for most 

morphological character states is thus subjective and the use of these different methods 

alone can cause real differences in the resulting phylogeny. This is not such a problem for 

molecular sequence data where are mostly always just 4 states, but the inference of 

alignment gaps and their treatment somewhat complicates this. Another point made by 

SEA was that the conceptualization of morphological characters themselves is also 

subjective. 

“Different workers will perceive and define characters in different ways” (Smith 1994, p34)

Simply put – using DNA sequence data is more objective than using morphological data 

because DNA offers large numbers of relatively unambiguous characters and character 

states. SEA concludes that: 

“morphology is being superseded by DNA data for phylogenetic studies because much of the useful 

morphological diversity has already been scrutinized... We disagree that morphology offers any hope for the 

future to resolve phylogeny at lower or higher taxonomic levels” 

Needless to say, this controversial paper provoked some very direct responses (Jenner 
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2004a; Wiens 2004; Smith & Turner 2005). Jenner (2004a) dismisses SEA's points about 

the subjectivity of morphological homology assessment and character coding as a “straw 

man” argument. In contrast Jenner (2004a) instead predicts that the application of new 

analytical techniques will help further and improve, refine and expand our assessments of 

morphology for use in phylogenetic reconstruction. The application of new 3-dimensional 

imaging methods to help assess morphology certainly seems to support this point (e.g. 

Ragsdale and Baldwin, 2010). Another important counter-point from Jenner (2004a, p 337) 

is that there is no evidence to suggest that morphology generally performs more poorly 

than molecular data in fair comparisons. Jenner (2004a) cites examples where different 

molecular analyses conflict with each other, and where morphology appears to be more 

reliably than molecular data. Clearly there is no a priori general rule as to what type of data 

is 'better' for phylogenetic accuracy.

Wiens (2004) makes some subtly different points to Jenner (2004a), expanding upon the 

importance of fossils and hence the necessity of morphology. Wiens (2004) conveys that 

fossils help not just in determining phylogenetic relationships, but also in our 

understanding of the timing and rate of evolutionary processes – such uses of 'fossil 

calibration' points (reviewed in Donoghue and Benton 2007) are commonplace now. Wiens 

(2004) points out that SEA's argument against morphology because of its frequently 

incomplete nature is also irrelevant. Previous studies by Wiens (2003a,b) show that highly 

incomplete taxa can be placed with 100% 'accuracy' relative to simulated data, and that 

incompleteness may limit but does not outright prevent such incomplete taxa overturning 

the relationships of more complete taxa. Wiens (2004) also points out that for many taxa 

we have very few precious specimens for them, and that we cannot extract DNA from 

these owing to their rarity and sometimes the way in which they have been preserved – 

these also may require morphology-based assessment to determine phylogenetic 

placement. Wiens (2004) presents morphological data as a best “reality-check” for 

molecular studies and brushes away the criticisms presented by SEA, in that although 

some are problematic, the benefits of using morphology should outweigh the negatives. 

Wiens (2004) rejects SEA's claim that all the 'good' morphological characters have been 

found already and that there are few good ones left to add based on his own experience 

and publications. I must say that at a glance of any volume of Journal of Vertebrate 

Palaeontology you will clearly find studies that are finding new morphological characters, 

even in extremely well studied groups. High profile examples that have massively 
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expanded the suite of morphological characters for well studied groups include (squamata 

– Conrad 2008; post-Paleozoic echinoids – Kroh & Smith 2010; arthropods - Legg et al. 

2012;  placental mammals - O'Leary et al 2013). 

Wiens (2004) repeatedly points to his study of congruence (Poe & Wiens 2000) which 

provides empirical evidence against some of SEA's points. Wiens (2004) conclusion is that 

instead of abandoning morphological phylogenetics we should instead work on extending 

and refining our morphological characters and characters states to address some of the 

problems that SEA point out.

The last of the direct critiques of SEA was published a little later (Smith & Turner, 2005). 

They claim that SEA misinterpreted some of the previous studies that SEA cited in support 

of their claims. In particular Smith & Turner (2005) rightly point out that Hillis (1996; 1998) 

used models of evolution and molecular data and that the conclusions from these analyses 

may not necessarily be transferable to morphological data which typically has very 

different properties. As Smith & Turner (2005) are both qualified systematic 

palaeontologists themselves they are well placed to rebutt SEA's assertion that most new 

morphological characters will be more homoplastic. They rightly point out that SEA provide 

no evidence for this, and helpfully suggest ways in which this could be formally tested. 

Smith & Turner (2005) similarly uphold the importance of fossils and morphology in 

phylogenetic analyses.

SEA's paper is far from the only one to criticize the very use of morphology but it is a 

rather obvious one on which to focus because it draws out many of the arguments for and 

against. Alternative philosophical approaches such as that of consilience (Wilson, 1998; 

Pisani, 2002) also support the use of both molecular and morphological data. I hope this 

short synopsis demonstrates that although questioned, the exclusion of morphology and 

fossils from phylogenetic analysis “is neither theoretically nor empirically defensible” 

(Edgecombe, 2010). 

18



1.4 Aims of this thesis

This thesis is first and foremost, a synthesis of morphology-based phylogenetic literature. 

In each of these chapters I perform various comparative cladistic analyses with 

appropriate statistical power with which to test hypotheses that one couldn't otherwise 

attempt to answer with just a handful of data sets. The discovery, sampling, 

standardisation and assembly of evidence of these chapters is more rigorous and 

systematic than many similar comparative cladistic analyses that have been attempted 

before. 

Chapter 2 is an examination of the congruence of phylogenetic signal within vertebrate 

morphological data sets. I compare the congruence of signal between cranial and 

postcranial partitions of data sets to answer questions over the levels of homoplasy in 

each and the significance of difference between the two if any. I also explore the 

performance of a new statistical test of congruence of relationships inferred from data, as 

proposed by MAW called the Incongruence Relationship Difference (IRD) test. 

Chapter 3 is a re-examination of the impact of fossil taxa in mixed phylogenetic analyses 

that include both extinct and extant taxa, using newer, larger data matrices. In this chapter 

I re-implement pre-existing methods in a new more computationally-efficient pipeline that 

should encourage other systematists to use these methods to explore their own data.

Chapter 4 is a critical systematic review of the usage of the ILD test in the recent literature. 

In this chapter I observe a number of worrying trends in the usage of the ILD test that are 

inappropriate and unsupported by published evidence. I hypothesise how these usages 

took hold in the literature and conclude with clear guidelines at the end which should 

hopefully ameliorate any confusion.

Chapter 5 is the introduction of a modification to Archie's (1989) Homoplasy Excess Ratio 

that improves the statistic when in the presence of significant amounts of non-randomly 

distributed missing data (as it typical of many palaeomorphological data sets). I 

demonstrate the improvement to estimates of homoplasy that this modification gives, and I 

implement it with a script in TNT so that other investigators can also use it. 

Chapter 6 is a critical examination of the fragmentation, discoverability and accessibility of 

phylogenetic knowledge in the modern age. I compare traditional literature search engines 
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such as Web of Knowledge that only search titles, abstracts and keywords, with local 

desktop full-text search methods over tens of thousands of papers. The findings in this 

chapter raise significant questions as to our ability to effectively synthesise data from 

thousands of papers

Chapter 7 provides my overall conclusions on what I have found with respect to the 

importance of fossils in phylogenetic reconstruction. But in this chapter I also take the 

opportunity to reflect the on some emergent themes in my thesis, namely; data availability, 

analysis replicatability, and how the way in which we choose to publish our research 

affects our ability to re-use data. 
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Chapter 2: 

The Congruence of Cranial & Postcranial 
Characters in Vertebrate Phylogeny

Based on a manuscript co-authored with Matthew A. Wills

2.1 Abstract 

Morphological data matrices frequently contain significantly more characters from some 

anatomical regions than others. Such preferential sampling is seldom considered 

problematic because homogeneity of phylogenetic signal across anatomical regions is 

almost invariably assumed. For this reason, signals within logical or anatomical partitions 

of morphological data sets are rarely compared. In vertebrate systematics, the cranium 

has often been afforded particular focus; either because it is believed to yield characters 

containing less homoplasy, or because morphological variation therein is more readily 

atomized. An analysis of 62 vertebrate data sets published between 2000 and 2010 

confirms that characters of the cranium account for the significant majority, but finds 

equivocal evidence that they contain less homoplasy. We caution that neither partition 

ensemble consistency indices (CI) for partitions, nor mean per character consistency 

indices (ci) within partitions should be interpreted uncritically. Surprisingly, partition 

homogeneity (ILD) tests of the signal in cranial and postcranial characters reveals 

significant incongruence in a large minority of cases. Similarly, the trees inferred from the 

partitions are more different (Robinson Foulds and maximum agreement subtree 

distances) than expected about one time out of three (new randomization tests are 

proposed). This may reflect different selective pressures in particular body regions, allied 

with different localized patterns of homoplasy. In many cases, therefore, concentrating 

upon cranial characters at the expense of others (or vice versa) is quite likely to yield a 

phylogeny significantly different from that which would be obtained from a more holistic 

approach. We show that the broadest possible sampling of characters in the total evidence 

analysis of all aspects of morphology is most optimal, and caution against the assumption 

of signal homogeneity across all body regions. 
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2.2 Introduction

Phylogenies are typically inferred from morphological data by applying maximum 

parsimony to all coded characters. While studies often focus upon characters of particular 

types or from particular organ systems, it is rare that trees are inferred explicitly from 

subsets of these data (but see O'Leary et al., 2003, Poyato-Ariza, 2003, Farke et al., 

2011), or that the signals from non-overlapping data sets (e.g., osteology and musculature) 

are compared. The practice of what is effectively a default total evidence analysis for 

morphology contrasts with the more qualified approach often adopted with molecular data. 

This is partly because sequence data are readily partitioned into logically distinct classes 

and sub-classes: nuclear genes, mitchondrial genes (plastid genes in plants), coding and 

non-coding sequences as well as codon positions (Bull et al., 1993). It is widely 

understood that the signals from different types of molecular data (or indeed, from any two 

loci) can conflict (Felsenstein, 1988; Pamilo & Nei, 1988; Maddison, 1997; Nichols, 2001). 

This has been referred to as the ‘gene tree discordance’ problem (Degnan & Rosenberg, 

2009), although we note that such discordance is not necessarily a result of different gene 

histories. In trees derived from modest numbers of molecular markers, signals may be 

variously tested for homogeneity prior to combination. At the other extreme, where the 

products of next-generation sequencing are assembled for phylogenomic analysis, it is 

common to apply filters of varying complexity to ensure a signal of some specified quality 

or homogeneity (Leigh et al., 2011; von Reumont et al., 2012).

Incongruence between partitions of molecular data can be attributed to a variety of 

causes: non-vertical inheritance affecting one or both partitions (e.g., gene 

loss/duplication, horizontal transfer, hybridisation or recombination), deep genetic 

divergence that does not reflect species phylogeny (also known as ‘hemiplasy’ or 

‘incomplete lineage sorting’; Avise & Robinson, 2008; Degnan & Rosenberg, 2009), or to a 

difference in the rate of evolution between partitions (Planet, 2006). Incongruence is also 

commonly observed between morphological and molecular data partitions (e.g., Mickevich 

& Farris, 1981; Bremer, 1996; Poe, 1996; Baker et al., 1998; Jenner, 2004b; Draper et al., 

2007; Springer et al., 2007; Near 2009). Occasionally, this is attributed uncritically and a 

priori to a spurious morphological tree, with little specific justification (e.g., Hedges & 

Sibley, 1994; Hedges & Maxson, 1996; D’Erchia et al., 1996). More often, however, 

authors acknowledge the value of both classes of data, and cede that incongruence may 
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actually be informative. In all but the most exceptional circumstances (such as in artificial 

selection experiments or where cladogenesis has occurred in recorded history) one can 

never be sure that any analytical result matches the ‘correct’ species tree. Moreover, 

perfectly bifurcating cladograms may be an oversimplification of actual evolutionary history 

(Doolittle & Bapteste, 2007; Lopez & Bapteste, 2009; Ragan et al., 2009).

2.2.1 Congruence between Partitions of Morphological Data

While the congruence of signals from different loci is routinely investigated for molecular 

sequence data, morphological data sets are rarely partitioned explicitly, still less subjected 

to tests of congruence (although see Smith, 2010; Clarke, 2011; Bennett, 2013 for some 

recent exceptions). Homogeneity of the morphological signal has often been tacitly 

assumed (Mayr, 1953; Michener, 1953): the ‘hypothesis of nonspecificity’ (Sokal & Sneath, 

1963). Early attempts to test this assumption applied phenetic methods to data sets of 

modest dimensions, and yielded equivocal results. Sokal and Sneath (1963), who 

addressed the issue in the context of vertebrate systematics, stressed the similarity 

between dendrograms from different sources and concluded that nonspecificity was the 

rule. Farris (1971), by contrast, emphasised the detailed differences in such cases.  If 

anything, the ascendancy of cladism (sensu Hennig, 1966) appears to have further 

relegated the issue of character congruence for morphological partitions: only a handful of 

studies have addressed the issue directly (e.g., Sánchez-Villagra & Williams, 1998; Gould, 

2001; Song & Bucheli, 2010). With the rise of molecular data, the issue of morphological 

versus molecular incongruence has been much more to the fore (Kluge, 1989), possibly 

motivated by striking examples of conflict between molecular and morphological 

cladograms in some groups (Bledsoe & Raikow, 1990; Hillis & Wiens, 2000; Wiens & 

Hollingsworth, 2000; Pisani et al., 2007; Mayr, 2011a). In the face of these apparently 

much more invidious difficulties, seeking nuances of signal variation within (potential) 

partitions of the morphological data has been a low priority. Historically, the focus of 

research also shifted to taxonomic congruence (sensu Mickevich, 1978; Miyamoto & Fitch, 

1995) (differences in the implied relationships of taxa on alternative trees), rather than 

character congruence. 

When cladograms were predominantly generated manually, the processes of 

formulating and coding characters were intimately associated with those of tree 
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construction (Hull, 1990). Practical considerations limited the number of characters that 

could be analysed, and putative characters were iteratively tested against one another and 

the coalescing phylogeny (Kitching et al. 1998). This almost certainly had the effect of 

screening out ‘noisier’ characters, or those contributing greater amounts of homoplasy to 

the dataset. To the extent that operational definitions of homology are ultimately predicated 

on the distributions of other characters, it might be considered that this effectively made 

assessments of probable homology more stringent. With the appearance of faster 

computer hardware and parsimony programs (Farris et al., 1970), there were less 

computational restrictions on the size of datasets that could be processed and the 

complexity of character conflicts that could be resolved. Mooi & Gill (2010) argue that this, 

coupled with the desire to increase the ratio of characters to taxa, may have encouraged 

practitioners to incorporate as many characters as possible, with more relaxed ‘quality 

control’. At the same time, there is no imperative for authors to explore the congruence of 

their characters a priori (sensu Grant & Kluge, 2003), because computer algorithms will 

resolve the conflicts, however ‘noisy’. Cladistic analyses therefore have two temporally and 

logically distinct phases (Winther, 2009): character analysis (or the determination of 

homology: Pinna, 1991), and phylogenetic analysis. Mooi & Gill (2010, p1) contend that 

current practices are heavily skewed towards the latter, relying too heavily on “algorithms 

and statistics rather than biology to determine relationships”. We do not interpret this as an 

indictment of the value of methodological advances, but rather as highlighting the 

comparable dearth of work on evaluating homology prior to analysis. 

The concept of ‘character congruence’ is akin to Sneath & Sokal's (1963) 

‘nonspecificity’, but in an expressly cladistic context.  Characters are congruent if their 

character state trees (sensu Estabrook, 1968) are compatible (Le Quesne, 1969), in much 

the same way that entire cladograms are congruent in the absence of conflicting nodes 

(Wheeler, 1981). 

2.2.2 Previous Quantitative Studies

There is an extensive and mature literature on the use of morphological characters to infer 

the phylogeny of vertebrate groups, with studies having burgeoned in parallel with the 

development of modern cladistic methods (Hennig, 1950; Ashlock, 1974). Historically, the 

focus has been on osteological characters, but morphology also includes non-osteological 
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‘soft part’ characters such as those from the integument, internal organs, musculature, 

reproductive organs, gametes, tissue and cellular structures. Many other characters that 

are not observable morphologically are nonetheless grouped with them in most character 

lists (ostensibly because they are not conventional nucleotide or amino acid sequence 

data). These include karyotypes (Faivovich, 2002) , behavioural (Lee & Scanlon, 2002; 

Faivovich, 2002; Hill, 2005; Li et al., 2007; Spaulding et al., 2009), and ontogenetic 

sequence (Seiffert, 2007; Simmons et al., 2008) characters. Despite the increasing 

importance of molecular and genomic data over the last two decades, morphology still 

makes an invaluable contribution to vertebrate phylogenetics, and is indispensible for the 

analysis of fossil species. Levels of morphological homoplasy in vertebrate groups are 

generally lower than those amongst their invertebrate counterparts (Hoyal Cuthill et al. 

2010), suggesting that the signal quality for vertebrates is relatively high. Moreover, the 

inferred relationships within many vertebrate clades have altered little with the progression 

of research time or with the addition of molecular data (albeit with some spectacular 

exceptions: e.g., Asher et al. 2009).

Although cladists occasionally publish variations of trees derived from subsets of 

their character data (e.g., O'Leary et al., 2003; Poyato-Ariza, 2003; Diogo, 2004 p417-429; 

Young, 2005; Farke et al., 2011), very few studies have investigated the performance of 

character partitions quantitatively and systematically using homoplasy indices. The 

consistency index (CI) is calculated as the ratio of the minimum number of steps a 

character can exhibit on any cladogram to the minimum number of steps the same 

character can exhibit on the cladogram in question. The retention index (RI) is a measure 

of the level of synapomorphy of characters on a given cladogram. A handful of studies 

have previously compared distributions of consistency (Kluge & Farris, 1969) and retention 

(Farris, 1989a) indices across characters in two or more partitions. Most recently, Song & 

Bucheli (2010) inferred these indices for male genital and non-genital characters in insect 

systematics, finding genital characters to be statistically less homoplasious. Similarly, two 

other studies compared internal anatomical and external shell character partitions for 

brachiopods (Leighton & Maples, 2002) and gastropods (Vermeij and Carlson, 2000). The 

latter paper revealed that shell characters were significantly more homoplastic than 

internal anatomical characters: a disconcerting finding in a group whose fossils are studied 

almost exclusively with recourse to hard part characters. In a study of hedgehogs, Gould 

(2001) reported significantly higher consistency indices for dental characters compared 

with the remainder of his dataset. However, he also found that the optimal trees inferred 
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from the dental characters alone were seriously at odds with those implied by the other 

characters, and he cautioned against the uncritical use of the former. Most ambitiously, 

Sanchez-Villagra and Williams (1998) compared the consistency indices between dental, 

cranial and postcranial character partitions of eight mammalian data sets. These were of 

modest proportions (an average of eleven taxa), but they reported no significant 

differences for any of their comparisons. Unfortunately, this general approach is 

complicated by differences in the sizes of the dataset partitions, coupled with the inverse 

correlation between both consistency and retention indices and the number of taxa 

(Archie, 1989; Sanderson & Donoghue, 1989; Klassen et al., 1991; this paper). We 

therefore adopt a variety of allied methods in this study.

2.2.3 Why Examine the Congruence of Cranial and Postcranial 
Partitions?

Character analysis is often the least well explored aspect of systematic analyses (Pogue & 

Mickevich, 1990). Amongst vertebrate systematists, it is often asserted that cranial and 

postcranial characters convey signals of differing quality (Ward, 1997; Collard et al., 2001; 

Naylor & Adams, 2001; Finarelli & Clyde, 2004). However, the evidence for this is 

piecemeal and largely anecdotal, with few attempts to quantify putative differences. Many 

practitioners take a more or less even-handed approach to sampling characters (Sánchez-

Villagra & Williams, 1998), attempting to avoid describing a disproportionate number from 

any one anatomical region (Sokal & Sneath, 1963). However, even where potential 

characters are reasonably homogeneously distributed throughout the body, “certain body 

regions and organs still hold a considerable mystique for taxonomists as classificatory 

tools, while others are neglected” (Sokal & Sneath, 1963; page 85).  For example, Arratia 

(2009) notes that actinopterygian systematists focus their attention significantly toward 

cranial characters, despite rich seams of underexploited data within the fin rays and fulcra. 

In this study, we apply a variety of methods to explore differences in the strength and 

character of phylogenetic signals in cranial and postcranial partitions of 62 published 

vertebrate data sets. 

We address the following questions: 1. Is there a significant difference between the 

number of cranial and postcranial characters in our sampled data sets? Received wisdom 
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holds that the cranium is a richer source of phylogenetic data that the postcranium 

(Sanchez-Villagra & Williams, 1998). 2. Are levels of homoplasy in cranial character 

partitions lower than in postcranial character partitions (Sanchez-Villagra & Williams, 

1998), and are any observed differences more than simply a function of differing numbers 

of characters within these partitions? 3. Is there more conflict between cranial and 

postcranial characters than we would expect, and are the relationships inferred from them 

less similar than we might predict?

2.3 MATERIALS AND METHODS

Phylogenetic data sets published between 2000 ad 2010 were sourced from the peer-

reviewed literature. We restricted our focus to discrete character morphological matrices 

composed entirely of vertebrate taxa, and analysed using equal weights maximum 

parsimony. Matrices were initially garnered from Brian O'Meara's TreeBASE mirror 

(O’Meara, 2009), Graeme Lloyd's online collection of non-avian dinosaur matrices (Lloyd, 

2009), MorphoBank, (O’Leary & Kaufman, 2011) directly from authors, or from the original 

papers. We then filtered these by removing matrices with no cranial or postcranial 

characters, in addition to those with fewer then eight taxa or partitions with fewer than 

eight parsimony-informative characters (for reasons of statistical power). We interpret 

cranial characters here as those pertaining to the skull (cranium plus mandible and 

dentition) rather than as just those of the cranium. In cases of taxonomic overlap (or where 

one matrix was derived from an earlier one), we retained only the most inclusive (usually 

the most recent) dataset if the fraction of terminals in common was 50% or more of the 

size of the smaller matrix. A modest number of matrices were also excluded because they 

contained more than 200 taxa or more than 1,000 characters (e.g., for Squamata; Conrad, 

2008 and derivative papers).  These were highly atypical, and could not have been 

analysed with comparable rigour in a tractable time with our methods. 

Our resulting sample comprised 62 matrices, spanning all major vertebrate groups, 

and sampled at a variety of taxonomic levels. A minority of these data sets contained a 

small number of characters that were not strictly morphological (e.g., character 618 

relating to habitat choice in the matrix of Spaulding et al., 2009). These were removed 

prior to any further analysis. We also removed phylogenetically uninformative taxa within 

partitions using the principles of safe taxonomic reduction implemented in TAXEQ3 

(Wilkinson, 1995b). Additionally, parsimony-uninformative characters were removed 
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because they have undesirable effects on many of the tests that we subsequently 

performed (Carpenter, 1988; Sanderson & Donoghue, 1989; Bryant, 1995; Lee, 2001b). 

The number and percentage of cranial and postcranial characters in each matrix were 

recorded. Wilcoxon signed-rank tests were used to assess the significance of differences 

between these means in different groups.

2.3.1 Do Cranial and Postcranial Characters Imply Different Levels of 
Homoplasy?

Consistency and retention index comparisons. – All phylogenetic analyses were performed 

using PAUP* 4.0b10 (Swofford, 2002), using equally weighted parsimony analysis. We 

also reproduced any preferred assumptions concerning character order, as well as 

assumptions concerning character polarity and rooting. Empirically, we determined that 20 

random addition sequence replicates followed by TBR branch swapping holding up to 

1000 trees at each cycle (and limited to retaining a maximum of 10,000 trees overall) were 

effective at recovering the set of MPTs reported by the original authors in each case. We 

therefore used these settings for all subsequent analyses. Such heuristic searches were a 

necessary compromise given constraints of computational time and memory. Cranial and 

postcranial character partitions were specified using charset commands. There are two 

obvious ways in which to calculate differences in mean/median consistency indices (ci; 

Kluge & Farris, 1969) and retention indices (ri; Farris, 1989) for characters in partitions of a 

dataset, but there are drawbacks to both. The first (and usual) approach is to find the 

optimal tree or trees for all characters simultaneously (the global MPT(s) on the principle 

of total evidence; Kluge, 1989) and to take mean values for characters reconstructed on 

this/these (Sánchez-Villagra & Williams, 1998; Song & Bucheli, 2010).  Where characters 

in the two partitions contain different levels of homoplasy but support the same tree(s), this 

approach is relatively straightforward. However, the situation is more complex when the 

partitions support different trees, and especially when these partitions are also of different 

sizes. In this case, with no differences in the levels of character conflict within partitions 

(and all other things being equal), the larger partition is more likely to determine the overall 

pattern of relationships.

28



Figure 2.1 a & b) A theoretical example. Characters sampled from different anatomical regions can 

yield radically different most parsimonious trees (MPT) when analysed in isolation. In both cases, 

there is no homoplasy within either region (characters 1-3 or characters 4-6), and a single MPT 

results in each case. c) Combining the data from both partitions (characters 1-6) yields four MPTs, 

the strict consensus of which (illustrated) is entirely unresolved. Character statistics have been 

averaged over the four trees. d) Two additional characters (5’ and 6’) are sampled from the same 

region as ‘b’, and these have the same distribution as 5 and 6 respectively. Analysis of all characters 

now reveals a single MPT with relationships identical to those in ‘b’ (characters 4-6). Characters 4-

6 , 5’ and 6’ contain no homoplasy: all conflicts are resolved with a cost to characters 1-3. In this 

case, the MPT is identical to the result that would be obtained by a clique analysis (sensu Le 

Quesne 1969). 

 This also means that the characters in the larger partition are likely to have higher ci 

values on average (Fig. 2.1). Notwithstanding, evaluating and resolving differences in 

numbers of characters supporting incompatible hypotheses is an integral part of total 

evidence analysis (and of parsimony in general). However, another part of the rationale is 

to combine all available data, or at least to sample in an unbiased manner from the 

universe of possible characters. Because systematists tend to concentrate on particular 

body regions, there is the potential for self-reinforcement: the undersampled characters 

will actually have lower ci values upon inspection (because other body regions dominate 

the overall phylogenetic signal), and therefore may be less likely to receive attention in 

future analyses. Mean partition ci calculated in this way therefore has the potential to 
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reflect sampling intensity. The second approach to measuring homoplasy is to investigate 

the performance of the characters within each partition analysed independently. While this 

will reveal information about homoplasy within partitions (rather than in one partition 

relative to the entire sample), the ensemble CI and ensemble RI  (and therefore ci and ri 

for individual characters) are known to be influenced by data set dimensions (Archie & 

Felsenstein, 1993; Archie, 1996). This effect is particularly pronounced for the number of 

taxa, where the correlation is strong and negative. This is not a problem for comparisons 

within data sets (as here), because the number of taxa is always constant. However, the 

number of characters also has a much less marked but negative impact: one character 

cannot conflict with itself, while two are less likely to conflict than twenty (Fig. 2.2). This 

bias (for CI) operates in the opposite direction to that observed above (for mean ci in a 

global optimization). 
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Figure 2.2 The number of characters in a data matrix influences probable indices of homoplasy. a) 

The ensemble Consistency Index (CI).  b) The ensemble Retention Index (RI).  Simulations for the 

trivial case of 10 taxa, with between 1 and 20 characters. All states were randomly assigned 0 or 1 

with equal probability. Box and whisker plots summarise 100 replications for each number of 

characters. 
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There are three ways in which differences between these indices can be tested. For 

individual data matrices, Mann-Whitney or t-tests can be applied to character ci and ri 

values, with the null that these have a similar median or mean in the two partitions. For the 

more general comparison across all 62 matrices simultaneously, Wilcoxon signed ranks or 

paired t-tests can be used to test the nulls that (either) the median/mean ci or ri in cranial 

and postcranial partitions were similar, or that the median/mean CI and RI indices for the 

two partitions were similar. As discussed above, however, we note that all of these 

outcomes are differently and undesirably influenced by partition size. 

We also note the potential for a test based on the distributions of values obtained 

from bootstrapped samples, controlling for differences in character number by repeatedly 

subsampling both/all partitions at the size of the smallest. We have not implemented such 

a test here. 

Homoplasy Excess Ratio (HER) indices. – The homoplasy excess ratio (HER; Archie & 

Felsenstein, 1993) was proposed as an adjunct to the ensemble consistency index (CI), 

and argued to be relatively immune to its worst shortcomings. Central to the calculation of 

the index is a randomisation procedure that operates by repeatedly permuting the 

assignment of character states within characters but across taxa, thereby disrupting any 

phylogenetic signal. A large number of randomised matrices are then analysed under 

maximum parsimony in order to obtain a distribution of tree lengths. This is similar to the 

procedure implemented by the permutation tail probability test (PTP; Faith & Cranston, 

1991). The limitations of the latter test have been rehearsed at length elsewhere  (Wills 

1999). However, the HER differs fundamentally from the PTP, because it does not use this 

distribution as the means to test a null. Rather, the mean value for randomised matrices 

(MEANNS) is used as an estimate of the expected tree length for matrices of the same 

dimensions and with identical frequency distributions of states as the original. The HER is 

then calculated as:

HER = (MEANNS – L) / (MEANNS – MINL)

where L is the optimal length of the original dataset and, MINL is the minimum possible 

length of the dataset. MINL was calculated as the total number of character states in the 

entire matrix, minus the number of characters. MEANNS was estimated in PAUP* using 

the permute command with 999 replicates and the search parameters used on the original 

dataset. 
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The HER is calculated as a single value for a given block of data: there is no 

formally-proposed analogue of the index for individual characters (as the ci is a an 

analogue of the CI). We note that such a test would be possible by permuting the state 

assignments for individual characters, but we do not explore this here. The HER has 

therefore been calculated for the cranial and postcranial halves of each matrix when 

analysed in isolation. The properties of the HER mean that differences in the sizes of 

partitions are largely controlled for. We then tested for differences in partitions across all 

62 data sets using the Wilcoxon signed ranks test.   

2.3.2 Is there More Conflict Between Cranial and Postcranial Characters 
than we Might Expect?

Incongruence Length Difference (ILD) test. – To assess the significance of congruence 

between whole character partitions as measured by optimal tree length, the ILD test 

(Mickevich & Farris, 1981; Farris et al., 1995a; Farris et al., 1995b; Barker and Lutzoni, 

2002) was applied to the matrices in PAUP* using the hompart command, with 999 

replicates (Allard et al., 1999a,b). Heuristic search settings were specified using tree 

bisection-reconnection (TBR), 10 random addition sequence replicates, holding up to 1000 

trees at each cycle, limited to holding a maximum of 10,000 trees overall. These tests 

were run on a high performance computing cluster (Bioportal; Kumar et al., 2009).

The ILD score is given by LAB  –  (LA  +  LB) / LAB  where  LAB is the optimal tree length (in 

steps) of the simultaneous analysis of both partitions together (the total evidence analysis). 

LA is the optimal tree length of an analysis of just partition A, and likewise LB is the optimal 

tree length of an analysis of just partition B (Fig. 3). To determine the significance of the 

observed ILD score, random partitions of the same size (number of characters) as the 

specified partitions are also generated to yield a distribution of randomized ILD scores. 

Thus, the ILD test is a randomization test (sensu Kempthorne, 1952), that compares the 

significance of a particular score relative to the scores of a set of randomly permuted 

replicates of the same dataset. Given the nature of phylogenetic data, the suitability of this 

test has been questioned on a variety of grounds (Dolphin et al. 2000; Hipp et al. 2004; 

Ramirez 2006; reviewed in Planet 2006). Despite this, the ILD test remains commonly 

used to compare the congruence of data partitions). We did not apply the arcsine 
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transformation suggested by Quicke et al. (2007) because they justified their correction on 

the basis of empirical and simulated molecular data, whilst here we use morphological 

data which has different statistical properties. Morphological data matrices are mostly 

composed of binary or three-state characters and contain ordered characters, whilst 

molecular data is typically of four-state characters (e.g. GTCA) and these are never 

ordered in linear sequence between states. To investigate the robustness of the ILD test to 

taxonomic sampling, we also performed first-order taxon jack-knife ILD tests (cf. Planet & 

Sarkar, 2005, but not using their scripts) on a selection of the smaller taxon data sets. This 

enabled global partition incongruence (all or most taxa) to be distinguished from local 

incongruence (caused by individually highly incongruent taxa).

Figure 2.3 Calculation of two inhomogeneity metrics for ‘cranial’ and ‘postcranial’ partitions of a 

hypothetical data set. In this example there are equal numbers of cranial (1-9) and postcranial (10-

18) characters, but this need not be the case. For the Incongruence Length Difference (ILD) 

measure, maximally parsimonious trees (MPTs) are inferred from the cranial and postcranial 

partitions of the data independently. The summed lengths of these trees (11 steps + 12 steps) is the 

sum of partition lengths (23 steps). In parallel with this, an MPT is inferred from both partitions 

analysed simultaneously. This tree is longer (25 steps) than the sum of partition lengths (23 steps), 

and the difference between them is the ILD (25 – 23 = 2). The ILD represents the reduction in 

homoplasy afforded by the isolation of the two partitions (two extra steps are needed when the 

partitions are combined). For the Incongruence Relationship Difference (IRD) measure, the 
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branching structure of the cranial and postcranial partition MPTs are compared (rather than their 

lengths) using one of several possible tree-to-tree distance metrics. Here, we illustrate the 

symmetric difference distance (RF) of Robinson and Foulds (1981) (so the metric is the IRDRF). 

Open circles mark branches in either the cranial or postcranial MPT that are absent from the other. 

The tally of these unique branches on both trees is the RF (2 + 2 = 4). Some background level of 

ILD or IRD is anticipated wherever a data set contains homoplasy. In order to interpret these 

observed metrics, therefore, we need to know what values would be expected for partitions of 

similar data sets in similar proportions. Random character partitions are used to generate null 

distributions for both the ILD and IRD, and observed valued deemed significantly different from 

the null if they lie in some specified fraction of the tails. 

Do Cranial and Postcranial Characters Support Different Trees?

Templeton, winning sites and Kishino-Hasegawa tests. – All of these tests can be used to 

assess whether a given matrix offers significantly more support for one tree compared with 

another. In order to interpret the statistics that they generate straightforwardly, the 

alternative trees should be specified a priori rather than from an analysis of the matrix. In 

many applications, however, it is common to compare an optimal tree with an alternative to 

determine whether the latter is significantly worse. In this context, the trees inferred from 

the cranial and postcranial partitions were the suboptimal alternatives to MPTs from the 

postcranial and cranial partitions respectively. We also tested trees from individual 

partitions against the entire dataset. We note that these applications of the tests may be 

problematic (with a high type I error rate) because we are comparing an optimal with a 

suboptimal tree by definition (rather than two alternative trees derived independently from 

our data) (Goldman et al., 2000). 

The Templeton test operates by calculating the length of each character on both the 

optimal and the alternative tree (Templeton, 1983). These paired values are then subjected 

to a one-tailed Wilcoxon test (Siegel & Castellan, 1988). A one-tailed test was used 

because although the steps contributed by an individual character can be fewer on the 

suboptimal than the optimal tree, the contributions summed over all characters can only be 

greater. The winning-sites test (Prager & Wilson, 1988) is very similar to the Templeton 

test, except that it ignores the magnitude of differences and uses only counts of 'winning-

sites' (parsimony-informative characters that fit more parsimoniously on one tree-topology 

than the other). These two sums were then analysed with a one-tailed binomial test. 
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Finally, the Kishino-Hasegawa (KH) test (Kishino & Hasegawa, 1989; more specifically 

‘test priNPncs’ according to Goldman et al. 2000, p658) also computes site-wise 

differences between trees, but makes the additional assumption that differences between 

sites are normally distributed. These site-wise differences of fit were then tested with a 

one-tailed, paired t-test: as such the KH test is effectively a parametric analogue of the 

Templeton test. 

The KH test has a related family of variants (Swofford et al., 1996; Shimodaira & 

Hasegawa, 1999; Buckley et al., 2001; Shimodaira, 2002) commonly used to compare 

trees generated in a Maximum Likelihood framework. The Shimodaira-Hasegawa test is 

designed for the particular case where an optimal tree is compared with a sub-optimal 

alternative. Although this can be applied in a parsimony context (Near et al., 2003) we are 

not aware of a straightforward implementation.

In practice, many partitioned and entire data sets yield more than one MPT. Where 

numbers are small, it would be feasible to test all alternatives. However, in many cases the 

numbers preclude this. We have therefore used majority rule consensus trees (including 

only compatible groupings with greater than 50% support). We are aware of the limitations 

of this approach; specifically that majority rule consensus trees need not lie at the centre 

of the ‘tree spaces’ defined by their fundamentals (see Fig. 2.3). We also note that when 

applied to comparisons of trees from partitions versus those from entire data sets (and all 

other things being equal) the ‘entire’ tree is more likely to be similar to that from the 

partition with the greater number of characters. All tests were implemented in PAUP* 

(Swofford, 2002).

Topological Incongruence Length Difference (TILD). – The TILD test (Wheeler, 1999) 

operates in a manner analogous to the ILD test, but is applied to a matrix representation of 

the branching structure of the optimal trees from the data partitions (rather than to the 

partitioned character data itself). Cranial and postcranial partitions are analysed 

independently, and a majority-rule (>50%) consensus tree is generated for each of them. 

Each consensus is then translated into a matrix of group inclusion characters (GIC; Farris, 

1973; also known as MRP coding, Baum, 1992; Ragan, 1992) that convey the same 

information as the cladogram branching structure. The GIC matrices for the partitioned 

analyses A and B are re-combined and subjected to a conventional ILD test. 
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The Incongruence Relationship Difference test (IRD); a new test of the congruence of 

relationships (Wills pers. comm)

Figure 2.4 Most parsimonious trees derived from the 103 cranial and 139 postcranial characters in 

the mammalian data of Beck (2008). Four cranial and eight postcranial trees are summarized here as 

majority rule consensuses. Nodes labeled with circles are unique to one or other tree (those 

unlabelled are common to both). The Robinson Folds (RF) distance between the two is simply the 

sum of unique nodes (15+15=30). The tanglegram was computed using Dendroscope (Huson and 

Scornavacca, 2012). In this case, the incongruence length difference (ILD) test for partition 

homogeneity returned a highly significant result (p=0.004) whereas all tested variants of our 

incongruence relationship difference (IRD) test were not significant (p≥0.11). See text for further 

explanation. 
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Much like the ILD test, this is a randomisation-based test (Fig. 2.3). However, partitions 

are compared via the distances between the optimal trees that result from them, rather 

than via tree length (ILD) or a matrix-representation of topology (TILD). There are many 

possible tree-to-tree distance measures including symmetric difference (RF; Bourque, 

1978; Robinson & Foulds, 1981) quartets distance (QD; Estabrook et al., 1985), nearest 

neighbour interchange distance (NNID; Waterman & Smith, 1978), nodal distance (Bluis & 

Shin, 2003), maximum agreement subtree distance (Goddard et al., 1994; de Vienne et 

al., 2007), transposition distance (Rossello & Valiente, 2006) subtree prune and regraft 

distance (SPR; Goloboff, 2008), and path-length difference (PLD; Zaretskii, 1965; Williams 

& Clifford, 1971). For reasons of familiarity (they are among the most well characterised; 

e.g. Steel & Penny, 1993) and ease of use (they are already implemented in PAUP*) we 

chose to use both the symmetric difference (RF) (Fig. 2.4) and the agreement subtree 

metric (AgD1) as our measures of tree-to-tree distance. We note that all other 

implementations are possible

Briefly, a heuristic search on each partition was specified using tree bisection-

reconnection (TBR), holding up to 500 trees at each cycle, and limited to holding a 

maximum of 10,000 trees overall. All MPTs from the analysis of each partition were saved 

and then compared to each other in two different ways. (1) ‘Nearest neighbours’ (IRDNND) 

for up to 1,000 trees in each partition: the mean of the minimum distance between each 

tree in one set, compared with the trees in the other (and vice versa) (Cobbett et al., 

2007). (2) The distance between the 50% majority-rule consensus trees (from up to 

10,000 fundamentals) for each partition (IRDMR) (Fig. 2.5). We then generated random 

partitions of the original data in the original proportions, and repeated the above exercises 

in order to yield a distribution of randomized partition tree-to-tree distances. Distances for 

the original partitions were deemed significantly different from this distribution when they 

lay in its 5% tail. We implemented nearest neighbour and majority rule variants using 

symmetrical difference distances (IRDNND+RF and IRDMR+RF respectively) and the majority 

rule variant with maximum agreement subtree distance (IRDMR+AgD1); three statistics in total. 

Most of our p-values were derived from just 99 replicates (in contrast to the 999 used for 

ILD and TILD) because of time and computational constraints.
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Figure 2.5 Tree-to-tree distances for cranial and postcranial partitions of the mammalian data of 

Pujos (2007).  Distance matrices have been plotted in two dimensions using non-metric 

multidimensional scaling (NMDS), and rotated using principal components analysis (PCA). Circles 

indicate cranial trees and squares indicate postcranial trees. Open symbols denote original MPTs, 

filled symbols (black) denote majority rule trees. a) Robinson Foulds (RF) distances. b) Maximum 

agreement subtree distances (AgD1). 
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Tests not performed in this study. –  Rodrigo et al. (1993) proposed three interrelated tests 

to investigate differences in relationships directly. The first of these determines whether the 

symmetrical difference distance (RF: Robinson & Foulds, 1981) between sets of MPTs 

from independent analyses of the two data set partitions is distinguishable from the 

distribution of RF distances between a large sample of pairs of random trees. At face 

value, this is an extremely easy test to pass. It requires only weak congruence between 

the two data set partitions, and does not assess directly whether the partitions behave as 

though they are randomly sampled from the same universe of characters.  Rodrigo et al’s 

second test does compare the partitions directly (rather than with reference to random 

trees), and determines if there is any overlap between the MPTs derived from the two 

partitions upon perturbation of those partitions. Specifically, both partitions are subject to a 

bootstrapping analysis, and the MPTs obtained are compared. The null hypothesis is that 

the two data partitions result from the same phylogenetic history, and that there should 

therefore be “significant” overlap between the two sets (although this is not defined). The 

protocol is unclear, but suggests that if there are no trees common to both sets then the 

null can be rejected.  Conversely, even one tree common to both sets leads to acceptance 

of the null. As noted by Lutzoni (1997), this is problematic because the probability of 

encountering common trees changes with the bootstrap parameters, especially the 

number of replicates (Page, 1996). The third test is allied to the second, but is more 

robust. If both partitions of the data set are sampled randomly from the same universe of 

characters (the null expectation), then the symmetric difference distances between pairs of 

MPTs from the two partitions should be similar to the distances between pairs of trees 

obtained by bootstrapping individual partitions. Although a useful test, it may have 

limitations, particularly where the partitions of the data set are of very different sizes, and 

especially where the number of characters in the smaller partition is also small relative to 

the number of terminals. In such cases, bootstraps of the smaller partition may 

consistently yield poor resolution and low RF distances between trees within this partition 

(Page, 1996).  The IRD test proposed above controls this partition size difference.
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2.4 Results

Table 2.1 Meta-summary table classified into significant and non-significant results, for 

comparisons of cladistic data matrices partitioned into cranial and postcranial. See 

Appendix 2.1 and online materials for fuller supplementary data.

No. Datasets Significantly Different 

Between Partitions (<0.05)

Exemplars

ILD 18 (29%) Choristodera (Matsumoto et al, 

2009) ILD = 0.002

TILD 50 (81%) Amniota (Hill, 2005) 

TILD = 0.001

IRDNND+RF 20 (32%) Ankylosauria (Osi et al, 2009)

IRDNND+RF = 0.010

IRDMR+RF 18 (29%) Plateosauria (Smith & Pol, 2007)

IRDMR+RF = 0.020

Significance of difference across all 62 

datasets, between partitions

Inference

CI Significant  

(paired t = -2.2278, p = 0.0296)

Postcranial significantly higher 

CI than cranial

RI Not Significant

(paired t = 1.0489, p = 0.2984)

Cranial higher RI on average, but 

not significant

Mean ci Not Significant

(paired t = -1.3422, p = 0.185)

Postcranial per character ci 

higher but not significant

Mean ri Significant

(paired t = 4.7324, p =1.36e-05)

Cranial per character ri 

significantly higher

HER Significant

(paired t = 2.042, p = 0.0455)

Cranial HER significantly higher 

than postcranial HER
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2.4.1 Homoplasy and Resolution in Cranial and Postcranial Data 
Partitions

Across our sample of 62 data sets, cranial partitions had significantly more characters 

(median = 66) than postcranial partitions (median = 54.5) (Wilcoxon signed ranks; V = 

1398, p = 0.0032) (Appendix 2.1). This difference would have been more marked were it 

not for the inclusion of multiple ornithological studies (e.g., Bourdon et al., 2009; Ksepka, 

2009; Worthy, 2009) that are counter biased towards greater numbers of postcranial 

characters. We also selected matrices containing relatively balanced numbers of 

characters a priori, making a significant difference less likely. 

Differences in numbers of characters across partitions mean that it is not 

straightforward to compare ensemble consistency indices (CI) and retention indices (RI). 

Nonetheless, we observe that the mean CIs for cranial and postcranial characters across 

all 62 data sets were significantly different (paired t = -2.2278, p = 0.0296), with postcranial 

partitions ( x̄  = 0.549) having slightly higher self-consistency than cranial partitions ( x̄  = 

0.512) overall.  This difference may, in part, be a function of the smaller average number of 

characters within postcranial partitions. Indeed, using the mean partition (per character) ci 

index across all matrices revealed a difference in the same direction ( x̄  = 0.560 and 

0.540 for postcranial and cranial partitions respectively), but this was not significant (paired 

t = -1.3422, p = 0.185). Mann-Whitney tests of cranial and postcranial ci values within our 

62 data sets yielded fourteen significant (p < 0.05) results (three or four might be 

expected). Ten of these fourteen had higher means (less homoplasy) for postcranial 

partitions; an insignificant bias (binomial test, p = 0.180) that was nonetheless in general 

agreement with the other ways of expressing differences in CI and ci. 

No significant difference was found in the test of cranial versus postcranial 

ensemble retention indices (RI) across data sets (t = 1.0489, p-value = 0.2984) but per 

character retention indices (ri) showed a highly significant difference (t = 4.7324, p = 

1.36e-05) in the opposite direction (higher values in cranial partitions) from the CI and ci. 

Higher Homoplasy Excess Ratio (HER) values were also found in the cranium; the mean 

value for cranial partitions (0.5675) was significantly higher than that for postcranial 

partitions (0.5207) (t = 2.042, p = 0.0455). Our results are equivocal, therefore, depending 

upon precisely how homoplasy is measured.  

The strict consensus fork index (CFI; Colless 1980; Table 2.1) also demonstrated 

that the number of nodes resolved in cranial partitions is greater than that in postcranial 
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partitions. Only 16 cranial partitions resulted in a strict consensus with no resolution (CFI = 

0), compared with 25 postcranial partitions. All partitions for all data sets had a CFI greater 

than zero for their majority-rule (>50%) consensuses. A comparison of majority-rule CFIs 

between cranial and postcranial partitions reveals that the former give significantly better 

resolution (paired Wilcoxon; V = 1190.5, p=0.004).

2.4.2 Congruence between Cranial and Postcranial Signals (ILD tests)

When originally described, the ILD test was used with a standard significance level of 5% 

(0.05). At this level, 19 of our 62 data sets had significant character incongruence between 

cranial and postcranial partitions (Table 2.1). Whilst this significance level remains the 

most widely quoted, some have suggested more stringent significance levels should be 

used (e.g., Cunningham, 1997a). Applying stricter significance levels, we reject the null for 

just 16 (p < 0.010) and 8 (p < 0.001) of our data sets.

The Similarity of Relationships Implied by Cranial and Postcranial Partitions

TILD and IRD tests. – 50 of our data sets (>80%) had partitions for which majority-rule 

trees yielded significant TILD tests results (p ≤ 0.05); 39 of these also had p = 0.001. We 

used 100 replications for our IRD tests because of time constraints. Using the nearest 

neighbour procedure with symmetrical difference distances (IRDNND+RF), 20 of our data sets 

(32%) had significantly incongruent relationships implied by cranial and postcranial 

partitions (p ≤ 0.05) (Table 1). Using majority rule trees and symmetrical difference 

distances (IRDMR+RF) yielded highly similar but not identical results (r = 0.80, p = 6.21x10-

15); 18 data sets (29%) had significantly incongruent relationships. There are two reasons 

for the differences. Firstly, majority rule trees embody most frequent relationships rather 

than ‘average’ relationships (Fig. 3), so the two tests address different questions. 

Secondly, the IRDNND+SR was calculated using up to 1,000 trees from each partition (a 

maximum of 499,000 tree-to-tree distances for each replicate), but these may not offer 

representative samples of all islands of MPTs where the latter are very numerous. 

The analogous tests using maximum agreement subtree distances (AgD1) were 

only implemented for majority rule trees, since these distance computations were very 

much slower in PAUP*, encountered segmentation faults (in beta 10) and became 
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prohibitively time consuming for thousands of neighbour comparisons.  The IRDMR+AgD1 test 

revealed significantly different (p ≤ 0.05) majority rule trees for seventeen data sets. 

Correlation with p-values from the IRDMR+RF test were significant but not especially high 

(Kendall’s  = 0.1895, p = 0.0350) because the two metrics address different aspects of 

tree-to-tree distance.

Partitioning data sets into four broad taxonomic groups (Mammalia, 

Avemetatarsales/Ornithodira, fishes and ‘other tetrapods’) revealed some striking 

differences, albeit with modest sample sizes. In particular, fishes were more likely to have 

congruent cranial and postcranial partitions than the tetrapod groups. 

Templeton, winning sites and KH tests. – These tests are not straightforward to interpret, 

because rather than comparing two alternative trees with an independent data set, we 

were here comparing the optimal tree from a given data set with an alternative (suboptimal 

by definition). This will yield a high rate of type I errors (Planet, 2006). Moreover, these 

comparisons were necessarily mediated via consensus trees, which may not be included 

in the set of fundamentals and may therefore also be suboptimal. Unsurprisingly, therefore, 

the majority of the tests reported significant differences (see online Appendix 1). Results 

using majority rule and strict consensus trees were very similar. We summarize these here 

as the tally of data sets for which optimization of both partitions and the entire data set 

onto the cranial and postcranial trees yielded significant p-values (i.e., where all three 

comparisons yielded p ≤ 0.05).  For both Templeton and KH tests (both using the 

magnitude of step differences per character), 38 data sets (61%) had a maximum p ≤ 0.05 

using majority rule trees, while 41 (66%) had a maximum p ≤ 0.05 using strict consensus 

trees. The winning sites test (utilizing only the direction of the step differences) was a little 

more conservative, reporting a maximum p ≤ 0.05 for 31 data sets using the majority rule 

and 38 using strict consensus trees. 

As above, these statistics consistently reported more congruent cranial and postcranial 

partitions for fishes than for the terrestrial groups. However, these differences were not 

significant with the possible exception of the winning sites test with majority rule trees, 

which was marginal (G = 6.8299, -squared df = 3, p-value = 0.0775). 
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2.5 Discussion

Cranial and Postcranial Partitions Contain Similar Levels of Homoplasy

We are cautious when interpreting consistency indices in data set partitions, because 

these partitions seldom comprise identical numbers of characters. Moreover, there is a 

significant bias toward higher numbers of cranial characters across our sample of data 

sets. On one hand, the ensemble CI for a partition optimized parsimoniously in isolation is 

‘biased’ by the number of characters (Fig. 2.2); larger partitions can be shown to have a 

lower CI in random simulations (cf. Sanchez-Villagra & Williams, 1998; Song & Bucheli, 

2010). We did, indeed, find a significant difference in ensemble CI between our partitions 

(paired t = -2.2278, p = 0.0296), with postcranial partitions having higher values overall. 

On the other hand, if both partitions are analysed simultaneously, then mean or median 

per character ci values are likely to be higher in the larger partition; at least in the 

hypothetical case where the partitions contain conflicting signals of similar strength per 

character (Fig. 1). We did not find a bias in this direction; indeed, there was no significant 

difference between the cranial and postcranial per character ci values. 

We produced a simple linear model expressing partition CI in terms of the log of the 

number of taxa and the log of the number of characters across all 124 partitions. All terms 

were highly significant (multiple R2 = 0.4965, p = 2.2e-16). A subsequent paired t-test of 

the residual CI values from this model revealed no significant difference (t = -0.5535, p = 

0.5820) between cranial and postcranial partitions.  We note that other variables have 

been demonstrated empirically to influence CI (Donoghue & Ree, 2000; Hoyal Cuthill et 

al., 2010), but our simple model was sufficient to remove the apparent discrepancy 

between cranial and postcranial CI values in this case.  

There was a highly significant difference between cranial and postcranial partition 

RI values (Wilcoxon test: V = 1613, p = 1.660e-06); more homoplasy in the latter, and the 

opposite pattern to partition CI and mean per character ci. The RI was only marginally 

influenced by the log of the number of characters in a simple linear model (multiple R2 = 

0.0290, p = 0.1682), and the residual RIs from this model were highly significantly different 

too (V = 1615, p = 7.71e-06). Homoplasy Excess Ratio (HER) values were also 

significantly different (t = 2.042, p = 0.0455), with cranial partitions having a higher mean 

(0.5675) than postcranial partitions (0.5207); more homoplasy in the latter. However, when 

the (admittedly non-significant) effects of matrix dimensions were modelled out (multiple R2 
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= 0.0042, p = 0.7758), there was no significant difference in residual HER (t = 1.8519, p = 

0.0689). Levels of homoplasy in cranial and postcranial partitions appear to be broadly 

similar, therefore, with differences detected in opposite directions for the partition CI and 

mean per character ci on one hand, and the RI and HER on the other hand (prior to 

controlling for matrix dimensions). 

We strongly advocate the use of the HER rather than the ensemble CI as an index 

of homoplasy and data quality. However, we note a possible complication in the calculation 

of the HER with respect to the distribution of missing values in a matrix. In particular, the 

procedure does not distinguish between known states (the data) and missing entries 

(which are not data). The effects of missing entries are strongly dependent upon their 

distribution. A taxon for which all characters code ‘?’ can resolve anywhere in the network 

with no cost. This will obfuscate the search for MPTs and will obliterate any resolution in 

the strict consensus. When these same missing entries are randomly redistributed across 

all taxa, it becomes highly unlikely that individual terminals will bear such a high 

concentration of ‘?’s, and resolution becomes more probable. As such, the precise 

distribution of missing entries may more properly be regarded as an intrinsic property of 

the matrix (one that should be held constant, along with the frequency distribution of states 

across characters) rather than as data to be permuted along with the known states. An 

allied problem is the treatment of additive binary codings and contingent characters. In the 

former case, the permutation of codes in successive linked columns may yield 

meaningless combinations, but this is easily overcome with the use of multistate ordered 

coding. In the latter case, however, the position of an inapplicable code is contingent upon 

the state of some other character. For example, one character codes for the presence (1) 

or absence (0) of some feature and the second codes for the form of that feature (coded 

‘?’ if the first character codes ‘0’): permutation again yields meaningless combinations. 

Although this can be circumvented with the use of more inclusive multistate characters, 

these do not convey the same information and make different assumptions regarding 

homology. Blocks of contingent characters are more appropriately regarded as specifying 

particular types of character state trees. We therefore suggest that the HER permutation 

step might be modified in two ways; firstly by keeping the positions of missing entries static 

and secondly by permuting the codes for contingent characters as blocks (c.f. Wilkinson, 

2001). These undesirable missing data effects account for occasional estimates of the 

HER below zero (e.g., Gonzalez-Riga et al. 2009; postcranial partition).

We note that the absence of a clear difference between cranial and postcranial 
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levels of homoplasy does not necessarily imply that additional characters of equivalent 

phylogenetic informativeness can be garnered from the two partitions with comparable 

ease. For example, a dataset may contain 100 cranial and 100 postcranial characters with 

identical levels of homoplasy. However, the postcranial characters may have been 

selected from amongst many (potentially more homoplastic) candidates with enormous 

care (and represent all the practically extractable data), whereas all potential cranial 

characters could be of uniformly high quality and of much greater abundance. Our 

conclusions therefore necessarily relate to the coded data. 

2.5.1 A Significant Minority of Cranial and Postcranial Partitions have 
Incongruent Signals

Our ILD test results demonstrate that the majority of our 62 sampled data sets (69%) have 

congruent cranial and postcranial character partitions. However, this leaves 19 data sets in 

which there is significant incongruence (Allain & Aquesbi, 2008; Anderson et al., 2008; 

Asher et al., 2005; Asher, 2007; Beck et al., 2008; Ezcurra & Cuny 2007; Friedman et al., 

2007; Gaubert et al., 2005; Hill, 2005; Holland & Long, 2009; Li et al., 2007; Matsumoto et 

al., 2009; Ruta & Coates, 2007; Sanchez-Villagra et al., 2006; Spaulding et al., 2009; Sues 

& Reisz, 2008; Vallin & Laurin, 2004; Wiens et al., 2005; Worthy, 2009). Assuming a 

significance level (false positive rate) of 5%, one would expect three or four data sets to be 

significantly incongruent by chance alone (0.05 x 62 = 3.1). Our results therefore suggest 

that significant incongruence is being detected across our sample of data sets (binomial 

test p < 0.00001, assuming a 5% false positive error rate). We must stress that we make 

no inferences concerning the overall quality of individual data sets on the strength of these 

results. In each case, the original authors analysed all cranial and postcranial characters 

together; we imposed the partitions. One conclusion of this paper is that characters should 

be sampled from all aspects of morphology rather than focusing upon one region. This 

was the broad approach taken in the original publications (indeed, we selected examples 

where there was a reasonable balance of cranial and postcranial characters).  

It is reasonable to ask whether incongruence is a global phenomenon, or whether it 

is concentrated in particular taxa (Rodrigo et al. 1993). Hence, we explored the effects of 

removing single taxa in a series of first order taxon jack-knifing ILD tests (see online 

Appendix 3). These highlighted several terminals with marked effects. For example, the 
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global incongruence in Ezcurra & Cuny (2007) was attributable to just one taxon, 

Dilophosaurus wetherilli. Removing this species resulted in a p-value of 0.236 (rather than 

0.005), whereas removing any of the other 13 terminals still yielded p < 0.05. Similarly, the 

significant ILD result for Allain & Aquesbi (2008) (p = 0.005) was entirely contingent upon 

the inclusion of Rapetosaurus. Its removal yielded p = 0.168, whereas the exclusion of any 

of the other 23 taxa resulted in a maximum p-value of 0.015. In Sues & Reisz (2008), 

incongruence was caused largely by the inclusion of Scutosaurus (p increased to 0.719 

when it was deleted).  In this particular data set, the deletion of three other taxa 

(Lanthanosuchoidea, Owenetta kitchingorum and Sclerosaurus) also resulted in p < 0.05, 

although the effect was more marginal. Incongruence in the data of Holland & Long (2009) 

(p = 0.008) largely disappeared with the exclusion of Eusthenopteron (p = 0.578) and was 

significantly reduced with the exclusion of Gogonasus and Tiktaalik (p = 0.118 and 0.124 

respectively). Finally, the significant ILD incongruence detected in the data set from 

Sanchez-Villagra et al. (2006) was variously contingent upon taxon-sampling (median p = 

0.057, with a minimum of  0.010 and maximum of 0.303 for 20 single taxon deletion ILD 

tests). In contrast to these examples, the data sets of Anderson et al. (2008), Beck et al. 

(2008), Li et al. (2007) and Gaubert et al. (2005) remained significantly incongruent no 

matter which single taxa were deleted (the last of these retained p = 0.001 throughout). 

Time constraints prevented us from applying first order taxon jack-knifing ILD tests to all of 

the significantly ILD-incongruent data sets in this way.

We also applied the first order taxon jack-knifing ILD to data sets that passed the 

original partition homogeneity test (i.e., p > 0.05). For example, in the borderline case of 

the data from Pujos et al. (2007) (ILD p-value = 0.072), 17 single taxon jack-knifed variants 

yielded a median p-value of 0.072, with a minimum of 0.005 and maximum of 0.229. 

Again, although the precise taxon sample influenced the ILD result, the median and mean 

ILD p-values of first-order taxon jack-knifed variants were similar to those for the entire (all 

taxon) dataset. This was true in all of the 38 data sets we tested in this manner, 

suggesting that the ILD test generally offers a robust assessment of congruence despite 

the marked impact of particular taxa. 
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2.5.2 Cranial and Postcranial Partitions Imply Significantly Different 
Relationships in a Significant Minority of Cases

The vast majority of our topological incongruence length difference (TILD) tests reported 

significant differences for majority rule (>80%) trees of cranial and postcranial partitions. 

The TILD test, at least as interpreted here, appears very difficult to pass, and we suspect a 

high rate of Type I errors. Even data sets with comfortably high ILD test p-values (i.e., 

Beard et al., 2009; Gonzalez-Riga et al., 2009) yielded significant p-values from the TILD. 

Results from the variants of our incongruence relationship difference (IRD) test were 

much more similar (although not identical) to those from the ILD test.  For the symmetrical 

difference distance (Robinson & Foulds, 1981) based upon nearest neighbours (IRDNND+SR) 

and the majority rule consensus (IRDMR+SR), 37% and 36% of data sets respectively yielded 

significantly different trees from the two partitions. For the test based upon the maximum 

agreement subtree distances and majority rule trees (IRDMR+AgD1), 21% of data sets yielded 

significant differences (the nearest neighbour variant, IRDNND+AgD1, was not implemented). 

As with the ILD test, we would expect three or four data sets (5%) to reject our null of 

homogeneity by chance. Our results using this alternative test of partition homogeneity 

therefore indicate that a significant minority of cranial and postcranial partitions imply 

different phylogenies. Of the 19 dataset partitions determined to contain incongruent 

signals by the ILD test, 12 also implied incongruent relationships (p < 0.05) using the 

IRDNND+SR test, 10 using the IRDMR+SR test and 4 using the IRDMR+AgD1 test. Previous 

studies have suggested that the Robinson Foulds (RF) distance measure may be poor at 

discriminating between congruent and incongruent partitions. This is because the 

distribution of RF-distances between randomly generated trees (or between trees 

generated by a time-homogeneous birth-death model) is highly skewed and has a 

comparatively narrow range of sensitivity (Koperwas & Walczak, 2011; Lin et al., 2011). 

However our empirical results indicate that the (IRDNND+SR) test application of this measure 

not only generates a full-spectrum of values (between 0.910 and 0.01), but also tends to 

agree with the ILD test assessments of incongruence. We note that faster parsimony 

programs and more efficient algorithms for calculating tree-to-tree distance metrics (e.g., 

Goloboff et al., 2008; Pattengale et al., 2007) would increase the computational speed of 

these tests and allow nearest neighbour distances to be calculated between greater 

numbers of MPTs. Our cap at 1,000 trees in each partition mean that IRDNND+SR results 

must be treated with caution (although IRDMR+SR and IRDMR+AgD1 results were usually based 
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upon consensus representations of all MPTs). We also note that there are many other 

possible tree-to-tree distance metrics that could be implemented in such tests, several of 

which may have more desirable properties than RF and AgD1 (Lin et al., 2011). 

2.5.3 What do these Results Imply for Cladistic Analyses of 
Morphology?

In studying the evolution of form, it is now relatively common to recognize anatomical 

modules. These are regions of the body (or suites of landmarks) within which 

morphological changes are strongly correlated through evolutionary time, but between 

which there is significantly less coordination. Different selective forces may operate on 

these modules, and they may therefore exhibit different evolutionary trends (Mitteroecker 

& Bookstein, 2007; Klingenberg, 2008). In the context of phylogenetic characters, differing 

pressures on modules may favour particular patterns of convergence and homoplasy, and 

therefore suites of characters that imply different trees. The skull of many tetrapod groups 

has often been regarded as biomechanically and functionally somewhat independent of 

the rest of the skeleton (Ji et al., 1999; Koski, 2007; Mitteroecker & Bookstein, 2008) 

hence the difficulty of making many inferences about the one from the other. 

Does it matter, therefore, which morphological characters we choose to code when 

attempting to infer phylogeny? It is difficult to escape the conclusion that it does: whether 

because the a priori omission of characters believed to be analogous or strongly 

homoplastic is standard practice (although rarely documented explicitly), because 

alternative data sets for identical sets of taxa often yield radically different trees, because 

the tree(s) derived from a given data set can alter markedly with the omission or 

reweighting of characters (most obviously when bootstrapping), or because characters are 

subject to different selective pressures in different modules.  The usual approach in 

morphological phylogenetics is to combine all available data (Kluge et al., 1989). Although 

it is acknowledged that the patterns inferred from particular organ systems or suites of 

characters may be misleading (in the same way and for the same reasons that individual 

characters may merely introduce homoplasy and noise), it is hoped that the combined 

analysis of all available characters will allow the true phylogenetic signal to emerge from 

conflicting local homoplasy. How many characters are enough for the emergence of a 

reliable signal?  The issue, naturally, is one of scale, and concerns the quality of signal 
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typically encountered in character matrices of the dimensions actually generated in real 

vertebrate case studies, as well as how these characters are distributed across putative 

modules. What we can say, however, is that in studies of this type, an exclusive focus 

upon characters of either the cranium or postcranium (at the expense of those of the other 

partition: e.g., Fitzgerald (2010) (craniodental only) and Mayr & Mourer-Chauvire (2004) 

(postcranial only)) will significantly influence the resultant optimal tree(s) about one time 

out of three. This is above the baseline expected for merely sampling a smaller number of 

characters.  We suggest that such a practice is inadvisable, therefore, and strongly 

advocate garnering character data from all anatomical regions. Certainly, we find little 

evidence to suggest that cranial or postcranial characters contain different levels of 

homoplasy (once partition sizes are controlled). Hence, our sample of 62 case studies 

offers little justification for concentrating on, for example, characters of the skull, because 

these are believed a priori to be of greater value in attempting to infer phylogeny. However, 

where cranial and postcranial signals conflict, contain similar levels of noise and are of 

unequal size, then the mean per character consistency (ci) is likely to be lower for the 

smaller partition (Fig. 1). Such approaches to measuring character quality may give the 

misleading impression of a ‘cleaner’ phylogenetic signal in the more highly sampled 

partition. Because systematics (like all science) builds upon prior knowledge, this may 

account for the practice whereby successive studies of certain groups allocate increasingly 

intensive sampling efforts to particular anatomical regions (as explained by Arratia 2009, 

and also noted in Joyce & Sterli 2012): the process potentially becomes cyclical and self-

reinforcing. 

When coding fossils, we may not be able to sample across the same suite of 

characters that we would employ with extant species (Wiens, 2003a,b; Cobbett et al., 

2007). For example, in fossil crocodyliformes, the vast majority of characters necessarily 

come from the cranium (e.g., Hastings et al., 2011; Puertolas et al., 2011; Cau & Fanti, 

2011; Turner & Sertich, 2010; O'Connor et al., 2010) and it is difficult to be confident that 

we are not merely inferring a ‘cranial’ tree. The only (and indirect) way to answer this 

would be to conduct parallel tests upon the closest living representatives of the clade. 

However, the (quite possibly limited) utility of this approach depends upon the 

phylogenetic proximity of the extant exemplars, the presumed constancy of selective 

pressures on putative modules through time and across clades (a big assumption: Hunt, 

2008; Frazzetta 2012), and the similarity of the available coded data. Hence, while this 

may be a sensible approach for crocodiles, it offers little in groups whose closest extant 
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relatives are ecologically or morphologically very divergent from the fossils (e.g., non-avian 

dinosaurs, osteostracans), or which are entirely extinct.

A related issue in the context of fossil vertebrates is the preferential preservation of 

hard part characters (bones rather than muscles or other more volatile tissues). An 

analogous concern, therefore, is whether skeletal and soft-part characters convey an 

homogeneous phylogenetic signal (Diogo, 2004, p405-416). If not, this has implications for 

the manner in which fossil vertebrates are interpreted and analyzed (Sansom et al., 2010) 

and is an area in particular need of detailed future work.  

2.6 Conclusions

• Systematists typically abstract significantly more characters from the cranium than 

the postcranium. Tests for levels of homoplasy in the cranial and postcranial 

partitions of our data sets were equivocal, depending upon how homoplasy was 

assessed. Although postcranial partitions had a significantly higher mean ensemble 

consistency index (CI) than cranial partitions, this difference disappeared when 

dataset size parameters were modelled out. When all data were analysed 

simultaneously, mean per character consistency indices (ci) were also higher for 

postcranial than cranial partitions (although not significantly so). By contrast, the 

HER (which ameliorates the biasing affects of partition size imbalance using a 

randomisation test) reported the opposite trend: significantly higher levels of 

homoplasy in postcranial than cranial partitions.

• Whilst combined analyses using all the evidence available may be optimal for 

phylogenetic reconstruction, the relative congruence of constituent morphological 

data partitions has rarely been explored. We are the first to do this with a 

moderately large sample size (62 data sets), applying a consistent methodology 

and approach. Cranial and postcranial anatomy implied significantly different 

phylogenies in about a third of our data-sets. Focus on either source of character 

data to the exclusion of the other may therefore be inadvisable. We tentatively 

attribute observed incongruence to the operation of disparate selective pressures 

acting upon different regions of the body. These yield patterns of homoplasy that 

may mislead parsimony analyses in one or both cases. More generally, we argue 

that signals within subsets of morphological data should be examined more 
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routinely.

• Many different metrics of partition homogeneity and congruence are possible, and 

we have explored only a subset of them here. While the results from the ILD and 

the implemented variants of our new IRD test were in broad agreement, there were 

many detailed differences. These differences may help to illuminate the nature of 

incongruence by exploring several properties of a matrix (Planet, 2006). Similarly, 

first order taxon jack-knifing offers a means to localise any incongruence that is 

detected. 

• As measured by variants of our new IRD test, trees derived from cranial and 

postcranial characters of fishes were more similar to one another than were trees 

derived from partitions of other vertebrate groups. We tentatively suggest that this 

may reflect some greater degree of modularity in the cranium of tetrapods relative 

to fishes. There were no significant differences in ILD results between groups. 
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Chapter 3: An Updated Examination of the 

Impact of the Fossil Taxa in Parsimony 

Analyses of Morphology

3.1 Abstract

In a previously published comparative cladistic analysis (Cobbett et al.. 2007), forty-five 

different cladistic data sets were re-analysed to compare the relative contribution of fossil 

and extant taxa to the resolution, topology, leaf stability and homoplasy as inferred from 

parsimony analyses.  In this chapter I shall extend this work by using more data sets, 

newer data sets, data sets containing more characters, more taxa and data sets 

representing new previously unsampled groups such as plants, echinoids, wasps, chitons, 

and sea spiders. A quicker, more computationally-efficient pipeline to perform these 

analyses is introduced; using new technology searches in TNT, tree-to-tree distance 

comparisons in R, and leaf stability analyses in RogueNaRok (Aberer et al. 2013). 

Comparisons of topological distance based upon mean path difference, in addition to the 

mean Robinson-Foulds distance are used. On average there are barely any significant 

differences across all data sets found between fossil and extant taxa in these analyses. 

Within this, there are however some notable datasets, and notable taxa which we discuss 

further. Overall though, this further confirms and strengthens the findings reported by 

Cobbett et al. (2007) that fossil taxa are little different in their effect, on average in cladistic 

analyses of morphology. 
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3.2 Introduction

Traditionally, palaeontological and neontological approaches to phylogenetic inference 

were rather separate. It is only in the last 30 years or so that both fossils and extant taxa 

have regularly been analysed together in cladistic analyses. Fossils offer a unique 

snapshot view of past evolutionary morphologies along with approximate temporal and 

environmental information (Adrain et al. 2001). They may help break up long branches and 

provide sources information that our closer to splitting events (Chapter 1), and they allow 

provide an independent “reality check” on molecular phylogenetic hypothesis (Jenner 

2004; Wiens 2004; Smith & Turner 2004). 

But the empirical effect of fossil taxa relative to extant taxa across a broad range of taxa 

has rarely been tested. One robust effort came from Cobbett et al. (2007) who examined 

the difference in relationships when single taxa were deleted (first order jackknifing) from 

mixed analyses of extant and extinct taxa. By comparing 'whole' dataset statistics (MPTs, 

CI, RI, relationships, and leaf stability) to the same statistics from taxon-jackknifed 

variants, Cobbett et al. (2007) built a fair test in which we can observe, compare and 

isolate the properties of fossil and Recent taxa. Through their analyses they demonstrated 

that in some data sets e.g. Dong (2005) the exclusion of key fossil taxa such as Ottoia can 

have a dramatic affect on the resulting phylogenetic inference – in the case of Ottoia 

exclusion it  resulted in a significant loss of resolution as measured by the consensus fork 

index (CFI; Colless 1980), and a significant increase in MPTs. Even more remarkable is 

that Ottoia is scored 38% missing or inapplicable in Dong's (2005) matrix.

That example was one extreme, but across the entire sample of 45 data sets, fossil 

taxa and Recent taxa had statistically insignificant differences for most effects tested: 

homoplasy, number of MPTs, and relationships. Only in the case of leaf stability were there 

noticeably more data sets in which fossil taxa were significantly less stable than recent 

taxa. The computational constraints at the time mean't that leaf stability could not be 

calculated for all the data sets in the sample, so only 36 data sets were assessed for 

comparative leaf stability.

With the advent of MorphoBank (O'Leary & Kaufman, 2011), and Graeme Lloyd's (2009) 

online collection of matrices there is now more cladistic data online to choose from for this 
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type of comparative cladistic analysis. Whilst those archived matrices represent perhaps 

only 4% of the phylogenetic studies that have been published (Stoltzfus et al. 2012) – it 

certainly provides a good base to start from in an attempt to extend beyond the analyses 

of Cobbett et al (2007) to a more diverse range of fossil groups and to sample data that is 

newer, and larger in both taxa and characters. In this chapter I re-analyze data sets such 

as Legg et al (2012) with over twice as many taxa as the largest data set looked at 

Cobbett et al. (2007), to further examine the impact of fossil taxa in mixed analyses.

3.3 Methods

3.3.1 Finding Appropriate Published Data in the Literature

data sets were sourced either directly from the literature by myself, or sourced from 

phylogenetic data stores such as MorphoBank (O'Leary & Kaufman, 2011), TreeBASE 

(Piel et al., 2009) and Graeme Lloyd's collection of matrices (www.graemetlloyd.com). 

I also tried the literature search method given in Cobbett et al. (2007) but found it to be of 

limited value. For example, disappointingly few of the 14 articles in the Systematic 

Entomology virtual issue on 'Systematics of Fossil Insects' (2009) contained morphology-

based cladistic analyses with enough fossil taxa in them (N > 3)  to be of use for this study, 

despite many of them coming-up in the literature search. Limited access to journal articles 

as ever was also a significant problem in identifying suitable data sets for inclusion, as 

rather few of the titles and abstracts made it obvious that the published study contained a 

cladistic analysis of fossil and extant taxa. A lot of papers were sought that looked 

promising from the title and abstract but upon receipt of the full text (not always always via 

quick or easy means) were found to be lacking in usefulness for this particular study and 

its criteria. In this respect I must especially commend MorphoBank in particular for 

providing additional metadata that particularly aids the identification of mixed extant/extinct 

taxon data sets: the 'Taxa' page for each matrix e.g. this one corresponding to Spaulding & 

Flynn's (2012) analysis of Carnivoramorpha 

(http://www.morphobank.org/index.php/Projects/Taxa/project_id/367) can in many cases 

quickly and clearly identify which taxa are extinct and which taxa are extant, enabling easy 

discovery of data sets appropriate for re-use in this context. However, it must be noted that 

not all data uploaders have added this metadata (e.g Beutel et al.'s (2012) analysis of 
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Adephaga has only one item of marked-up taxonomic metadata 

(http://www.morphobank.org/index.php/Projects/Taxa/project_id/814)). Still, it is much 

appreciated that the authors uploaded their data in it's raw, immediately re-usable format 

to MorphoBank rather than not at all. The matrices I sourced directly from the literature 

were much more arduous to reformat back into re-usable data and validate. TreeBASE is 

ill-equipped and (to be fair) not designed to facilitate searching for proportions of 

palaeontological taxa. A search for “fossil” in the “All Text” field would seem to be the most 

valuable approach for this database, and this search currently yields over 200 items.

Due to all the above intricacies of appropriate data discoverability, I acknowledge that my 

sampling of the literature is thus inadvertently biased towards sampling:

1) studies that have deposited their cladistic data in MorphoBank or TreeBASE or are on 

Graeme Lloyd's site

2) studies published in journals I had legitimate, immediate full-text access to e.g. those in 

popular journals, Open Access journals, or where the author(s) have kindly made a freely 

available and discoverable full-text copy of the work on the internet ('green' Open Access).

3.) studies published more recently, from 2009-2013 that I am naturally more likely to be 

aware of as I was actively engaged in research during this time.

3.3.2 A new taxon-jackknifing analytical pipeline

Having tried using the DELBAT/DELSUM scripts from Cobbet et al. (2007) it became 

apparent that they were not going to scale well for some of the larger data sets I had 

collected e.g. Legg et al.'s (2012) analysis of arthropod phylogeny which is a matrix of 173 

taxa and 580 characters. Nevertheless I tried using them, and soon found additional 

problems: PAUP* 4.0b10 in particular has a known, reproducible and unsolved bug 

whereby the AgD1 and AgD tree-to-tree distance algorithms will cause PAUP* to crash if 

passed certain trees to compare. I have provided example data and scripts in Appendix 1 

to demonstrate this bug with a simple comparison of one valid MPT to one other valid MPT 

that consistently crashes PAUP*. There is also the considerable slowness of doing 

traditional searches in PAUP* relative to the New Technology search methods (Goloboff 

1999; Nixon 1999) now available in TNT.
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Thus after I had gone to the TNT workshop in California and received expert one-to-one 

tutelage in scripting TNT it seemed like I should attempt to create a brand-new modernised 

analysis pipeline to implement some of the taxon-deletion tests of Cobbett et al. (2007). A 

sketch of the new analytical pipeline is provided in Figure 1

Figure 3.1 Schematic diagram of the workflow that implements taxon deletion 

comparisons. In step 1 cladistic data matrices are analysed in TNT using New Technology 

searches (Nixon, 1999; Goloboff, 1999) to find all MPTs for the whole data sets, and all (non-root) 

single taxon jackknife variations. The results of these analyses, the matrices and the MPTs are 

exported to PAUP* for step 2 because R cannot directly import either of the tree export formats 

available natively in TNT. In step two the MPTs from the TNT analyses are simply converted to 

PHYLIP format with upto 10-character long taxon names. In step 3, the trees are loaded into R 

using the 'ape' package (Paradis et al. 2004) read.tree function and the mean minimum tree 

distances are found for each set of trees using the treedist function of the 'phangorn' package 

(Schliep 2011). Full code available online at: https://github.com/rossmounce/extinct_extant_chapter 

as well as on the CD that comes with the hard copy of this thesis.

This new analytical pipeline of first order taxon-jackknifing uses TNT (Goloboff et al., 2008) 

to perform all the maximum parsimony analyses using the original assumptions e.g. 

character ordering & weighting that the original authors used. 
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The output from R (R Development Team, 2013) from each dataset is a plaintext tab-

separated values file (.tsv) of the mean minimum RF (Robinson Foulds 1981) and PD  

distances (Zaretskii, 1965; Williams & Clifford, 1971) for each deleted taxon, which aids 

further programmatic access and further command-line manipulation (Figure 1.). To 

summarize across all the 75 .tsv files programmatically, whilst minimizing human-

transcription spreadsheet errors I made use of the 'ddply' function from the package plyr 

(Wickham, 2011) to help automate the process of creating the results summary Table 1.

3.3.3 Leaf Stability Analyses

Since Cobbett et al. (2007) significant computational advances have been made in both in 

tree searching (with TNT) and leaf stability calculation speed (with RogueNaRok; Aberer et 

al. 2013) allowing analyses to be performed on much larger data sets in reasonable times. 

Software now exists that can perform this type of analysis on trees of 116,334 taxa (Aberer 

et al 2013).  For the leaf stability analyses reported here I used 200 bootstrap replicates, 

generated from initial analyses using New Technology searches at level 10 – Tree-Drifting, 

Sectorial searches, Tree-fusing (Nixon, 1999; Goloboff, 1999) on 100 random addition 

replicates. The 200 standard bootstrap replicates were calculated with 10 random 

replicates each. RogueNaRok was then used to calculate the leaf stabilities for each 

taxon. Statistical analyses of leaf support within data sets were performed in R using 

Mann-Whitney U tests (MWU). Analyses across data sets were performed in R using 

Wilcoxon matched pair tests, assuming that the null hypothesis is that there is no 

difference between fossil and Recent taxa.
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Figure 3.2 Demonstrating a taxon with low leaf-stability. These are all six MPTs from an analysis 

of the Evanioidea dataset by Penalver et al (2010). The extinct higher taxon Cretocleistogastrinae 

(indicated with a black circle) appears in two very different positions between the six cladograms. 

This taxon's leaf stability is 0.340. If one excludes this taxon there is almost no difference between 

the leaf stability of the fossil (0.926) and extant (0.925) taxa in this dataset, on average. Fossil taxa 

are indicated by daggers (†).
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3.4 Results

All data, code and results are also available in a digitally re-usable form online under an 

OSI-approved open licence, to maximally enable re-use and re-analysis here on github: 

https://github.com/rossmounce/extinct_extant_chapter as well as on the CD which 

accompanies the hard copy deposit of this thesis.

Table 3.1 Summary statistics for the 75 morphological data sets analysed herein from vertebrate, invertebrate and 

botanical studies.  Number of Fossil Taxa is the number of non-outgroup fossil taxa in the data set. Likewise Number of 

Extant Taxa is the number of non-outgroup extant taxa in the data set. Mean RF, Fossil describes the mean minimum 

Robinson Foulds distance between the MPT(s) in the original analysis and the MPT(s) from the fossil taxon-jackknifed 

analyses. Mean RF, Extant is the same but instead for when extant taxa are removed. Mean PD, Fossil describes the 

mean of all the mean minimum path length distances between the MPT(s) in the original analysis and the MPT(s) from 

the fossil taxon-jackknifed analyses. Mean PD, Extant is the mean of all the mean minimum path length distances 

between the MPT(s) from the original analysis and the extant taxon-jackknifed analyses. Mean Difference in MPTs 

measures the average effect of removing each taxon type on the number of MPTs found – a negative indicates that after 

removal of that taxon-type less MPTs were found on average, relative to the number of MPTs found in the original 

analysis. Mean Leaf Stability describes the average leaf stability of that taxon-type in the data set. It ranges from 0 

which is unstable, to 1 is stable.

Dataset 1st Author, Year No. 

Fossil 

Taxa

No. of 

Extant 

Taxa

Mean RF Mean PD Mean Diff. 

MPTs

Mean Leaf 

Stability

Fossil Extant Fossil Extant Fossil Extant Fossi

l

Extant

Acipenseriformes Hilton, 2009 5 12 2.333 3.621 5.767 9.217 -0.2 2.7 .900 .739

Adephaga Beutel, 2012 17 30 5.298 7.045 21.413 25.514 49.4 153.7 .996 .970

Amniota Hill, 2005 59 20 18.499 7.499 79.676 32.852 61.9 25.2 .999 1.0

Archostemata Beutel, 2008 8 16 6.333 6.219 13.948 15.496 1.3 0.7 .996 .991

Armadillos Babot, 2012 13 9 8.994 10.183 21.509 23.082 4.1 4.8 .996 .995

Arthropods Legg, 2012 98 74 7.380 8.053 52.794 49.599 0.39 0.2 1.0 1.0

Avian insectivores Mayr, 2005 6 12 0.306 1.799 1.164 4.761 -9.8 6.8 .941 .960

Bats Simmons, 2008 5 23 1.600 1.510 5.875 5.033 1.8 1.6 .992 .984

Carnivora Spaulding, 2012 35 15 7.968 8.394 39.135 33.594 44.3 207.3 .983 .988

Cetotheriidae Fordyce, 2013 15 7 2.267 2.524 5.847 7.200 0.8 0.7 .996 .983

Chitons Sigwart, 2007 26 7 15.153 21.238 40.054 52.821 64.8 119.6 .971 .960

Clawed lobsters Ahyong, 2006 12 15 4.275 4.542 12.012 13.387 11.3 1.1 .966 .983

Coliiform birds Ksepka, 2010 11 16 6.887 3.854 18.233 10.077 39 2.8 .974 .973

Crabs Karasawa, 2006 4 40 7.636 2.292 27.577 12.592 5.0 1.8 .997 .992

Crocodiles Puertolas, 2011 11 39 3.273 2.886 16.097 14.426 10.5 4.5 .994 .997
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Echinoids Mihaljevic, 2011 6 21 1.238 6.226 4.984 12.211 -0.9 12.2 .957 .979

Ensign scale insects Vea, 2012 8 38 3.663 3.785 15.215 15.713 680.9 187.5 .988 .986

Euarchonta Bloch, 2007 16 4 3.971 0.500 8.918 1.785 3.1 0.0 .963 .926

Evanioidea Penalver, 2010 16 5 4.841 1.800 11.329 4.495 7.4 4.8 .889 .929

Flatfish Friedman, 2008 5 13 3.133 3.388 7.375 7.637 0.4 3.8 .973 .950

Frogs Trueb, 2006 12 8 1.435 1.146 4.085 3.574 2.1 0.8 .975 .965

Gnoristinae Blagoderov, 2004 22 17 13.638 14.310 45.494 45.885 27.5 28.8 .958 .956

Gonorynchiforms Poyato-Ariza, 2010 17 9 4.177 7.092 11.046 16.272 21.2 99.3 .880 .892

Harvestmen Garwood, 2011 3 40 5.675 8.066 18.448 24.559 -57.7 -9.2 .870 .978

Horned Crocs Brochu, 2010 21 15 7.427 7.136 18.555 -61.762 -61.8 -4.5 .968 .966

Junglandaceae Manos, 2007 5 21 6.871 4.045 16.944 11.040 -10.0 2.7 .963 .958

Kangaroos Prideaux, 2010 17 17 2.094 2.853 11.221 14.713 0.3 0.5 .996 .990

Lagomorpha Asher, 2005 38 28 9.312 12.266 36.614 45.862 44.9 64.6 .992 .995

Lepidosauromorpha Li, 2007 10 23 2.600 2.186 7.922 7.215 0.6 2.8 .959 .971

Mancallinae Smith, 2011 6 52 7.347 9.910 30.602 44.865 7.0 54.8 .994 .994

Megalyridae wasps Vilhelmsen, 2010 14 14 1.730 3.428 4.816 11.621 -475.4 -189.6 .595 .564

Mysticetes Bisconti, 2008 22 12 3.018 2.779 11.454 10.424 1.3 -0.5 .957 .959

Mysticeti Bouetel, 2006 15 7 1.969 0.371 0.371 1.349 -6.5 -9.1 .975 .971

Neoteleosts Dietze, 2009 6 10 4.768 3.652 10.456 8.195 3.5 2.9 .961 .958

Odontoceti Lambert, 2013 21 6 4.584 7.079 12.715 19.018 2.8 22.5 .973 .990

Osteoglossomorpha Zhang, 2006 19 11 2.604 0.766 8.240 2.386 6.9 2.0 .994 .996

Osteoglossomorpha GuangHui, 2009 4 11 4.500 5.561 8.088 0.455 0.3 1.5 .981 .962

Pan-Apodiformes Ksepka, 2013 14 13 4.298 5.769 14.859 18.281 4.3 3.5 .992 .985

Pangolins Gaudin, 2009 8 8 3.000 2.583 6.315 5.460 0.6 -0.5 .965 .970

Papionin primates Gilbert, 2013 16 7 8.002 23.357 16.062 43.998 -2.8 -4.0 .957 .940

Pelagornithidae Mayr, 2011b 5 19 3.100 4.229 8.841 9.985 2.2 1.7 .881 .946

Pelecaniformes Smith, 2010 8 50 4.565 1.835 20.645 9.614 0.4 1.1 .999 .985

Penguins Hospitaleche, 2007 5 16 6.300 7.286 12.313 16.371 0.6 2.9 .990 .980

Percomorph fish Whitlock, 2010 4 22 3.558 2.346 10.972 7.429 2.8 0.8 .875 .838

Pinaceae Klymiuk, 2012 40 11 65.888 75.571 199.127 229.889 1458.2 2002.7 .826 .996

Pinnipeds Boessenecker, 2013 17 5 1.739 1.460 6.595 6.366 -7.8 -8.4 .922 .882

Placental Mammals O'Leary, 2013 39 46 10.195 8.401 45.343 36.985 0.8 1.13 .999 1.0

Placental Mammals Luo, 2011 59 11 8.360 18.960 37.783 71.396 14.5 18.1 .996 .998

Podocarpaceae Greenwood, 2013 5 21 6.765 9.183 17.416 21.079 13.0 8.5 .865 .904

Brachyura Karasawa, 2011 22 14 8.716 8.369 32.442 36.470 2.9 1.1 .996 .998

Polyphaga Fikacek, 2012 10 29 10.390 15.111 27.863 36.878 549.0 959.0 .910 .950

Porpoises Lambert, 2008 9 6 3.932 0.167 8.859 0.553 4.9 -0.8 .973 .990

Primates Beard, 2009 34 4 3.623 3.500 12.608 13.952 1.1 -4.0 .976 .975

Psittaciformes Mayr, 2010 4 29 18.611 18.460 44.349 46.074 644.2 895.5 .861 .948

Pycnogida Arango, 2007 4 65 38.272 24.975 173.951 96.312 1697.0 467.1 .937 .990

Ratites Bourdon, 2009 9 6 0.000 0.000 0.000 0.000 0.0 0.0 .972 .969

Ratites Worthy, 2012 11 14 1.916 0.143 5.999 0.655 0.3 -0.2 .979 .985

Rhinos Deng, 2008 26 5 2.123 1.257 7.903 3.483 -22.1 -21.6 .933 .874
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Rhizomyinae López Antoñanzas, 2013‐ 32 6 10.115 4.551 27.585 14.389 216.3 0.0 .911 .956

Salamanders Skutchas, 2012 11 10 9.101 6.313 16.210 12.567 12.1 5.7 .941 .920

Sciaroidea Blagoderov, 2009 7 10 0.714 1.117 2.176 2.791 0.3 -0.2 .926 .961

Sharks Klug, 2010 11 18 5.742 7.525 15.165 18.164 0.7 16.9 .909 .973

Sharks Pradel, 2011 15 3 2.513 0.333 6.267 0.943 0.8 0.3 .941 .941

Side-necked turtles Gaffney, 2011 27 9 2.309 2.900 10.663 13.472 0.4 0.8 .993 .987

Snakes Apesteguia, 2006 6 12 1.667 4.500 4.387 8.981 -0.5 1.7 .901 .904

Squaliform sharks Adnet, 2001 7 16 6.896 4.875 18.701 14.127 36.4 2.2 .979 .988

Squamata Hutchinson, 2012 11 24 1.431 2.349 5.455 6.863 -5.4 15.3 .953 .984

Stem Rollers Clarke, 2009 5 42 5.510 6.050 22.510 22.405 20.8 69.9 .956 .994

Stingrays Claeson, 2010 12 27 17.295 10.261 54.495 34.295 1114.5 255.3 .978 .969

Teleosts Diogo, 2008 5 64 2.333 3.700 11.623 18.355 0.0 9.7 .992 .993

Teleosts Hurley, 2007 22 6 1.496 1.805 5.995 6.523 -5.7 10.5 .923 .937

Tetrapods Diogo, 2007 7 73 1.683 4.242 12.416 21.768 18.3 77.4 .999 .999

Turtles Joyce, 2007 40 22 7.295 7.312 32.970 36.245 57.1 24.0 .973 .977

Wasps Perrichot, 2009 7 9 1.920 2.796 4.694 6.478 -3.7 -14.0 .856 .861

Waterfowl Worthy, 2009 10 51 5.224 7.845 18.021 29.677 26.8 61.6 .994 .994

3.4.1 On average Fossil and Extant Taxa have remarkably similar 
Topological Impact as judged by single-taxon deletions

Across the 75 data sets the mean of the mean minimum RF distances for fossil taxa is 

6.58, and 6.77 for extant taxa. The mean of the mean minimum PD distances for fossil 

taxa is 22.02 and 21.64 for extant taxa. Wilcoxon tests indicated that extant and fossil taxa 

are not significantly different in either mean minimum RF distance (P = 0.941, 5% 

significance level) or mean minimum PD distance (P = 0.9985, 5% significance level). Nor 

was there a difference in the standard deviation of their mean minimum distances, RF (P = 

0.5438, 5% significance level), PD (P = 0.6587, 5% significance level).

Subsequent examination of the within dataset differences using Mann Whitney U tests 

show that even where the two group means look different e.g. RF distances this tends to 

be caused by exceptional individual taxa rather than any general properties of each class 

of taxa (see data supplied online / on CD; figure 3.3). 
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Figure 3.3 Measuring the relationships impact of removing single taxa. Data from Rhinocerotidae 

(Deng, 2008). The tree on the left is the pruned strict consensus tree. Data set analyzed with 

Menoceras included, yields 37 MPTs. The location of Menoceras in the original tree is indicated by 

the dashed line. The tree on the right is the Searched tree from the same data matrix without 

Menoceras which yields just one MPT. The symmetric difference between these two trees is 6, 

whilst the path difference is 150.

3.4.2 Fossil Taxa on average do not increase the number of MPTs any 
more than Extant Taxa

Averaging across all the data sets for the difference in numbers of MPTs upon removal of 

fossil or extant taxa, there was no significant difference in change in the number of MPTs 

as assessed with a Wilcoxon matched-pairs test (P = 0.554, 5% significance level), 

similarly no significant difference between their standard deviations either (P = 0.8252, 5% 

significance level). There is a strong, and significant positive correlation between the 
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minimum meanRF and minimum meanPD distances (R=0.96, P = 2.2 x 10-16  , Pearson's 

Product-Moment Correlation Coefficient). Inclusion of fossil taxa demonstrated both 

negative (figure 3.3) and postive effects on the number of MPTs (figure 3.4). 

Figure 3.4 A demonstration of a fossil taxon that helps 'support' a phylogeny; in this case the 

removal of Liadytes causes deleterious effects on the resolution (data from Beutel et al. 2012). 

There are less fully resolved nodes on the right (the taxon deleted tree), than on the right (the 

original whole dataset analysis).
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3.4.3 Leaf Stability

30 data sets had a higher mean fossil leaf stability than the mean extant leaf stability. This 

proportion of trials (30/75) suggests there is no significant difference in leaf stability 

between fossils and extant taxa (binomial test, P = 0.1053, 5% significance level). It should 

be noted that the difference in mean leaf stability between extant and fossil was often very 

slight, with an average absolute difference between the means of just 0.021.

3.4.4 Extreme Taxa

For max.RF (see Appendix 3.2) extant taxa had the highest meanRF distance of all taxa in 

41 of the 75 data sets. For max.PD extant taxa had the highest meanPD distance of all 

taxa in just 37 of the 75 data sets. On an individual taxon-level, the removal of extant taxa 

caused the highest increase in MPTs in 38 out of the 75 data sets. Using a simple binomial 

test none of these 'winning' frequencies are significant (P = 0.488, P = 1 and P = 1 

respectively).

73 of the data sets had one or more taxa whose deletion increased the number of 

MPTs relative to an analysis of the 'full' dataset. Only Deng (2008; figure 3.3) and Bourdon 

(2009) had data whereby the deletion of any single non-root taxon resulted in either the 

same number or less than the original number of MPTs. 56 data sets had more than half of 

their non-root taxa cause an increase in MPTs if deleted – a binomial test shows this to be 

significant (P = 2.2 x 10-5). As a percentage of the total fossil taxa in a dataset, on average 

35.8% of fossil taxa caused an increase in MPTs. As a percentage of total extant taxa in a 

dataset, on average 36.1% of extant taxa caused an increase in MPTs (see Appendix 3.2).
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3.5 Discussion

These new results clearly support those first reported by Cobbett et al. (2007). Fossil and 

extant taxa on average have a similar per taxon impact on inferred relationships. These 

results also support the notion that fossil taxa are no more different in their effect on the 

resolution of the strict consensus that extant taxa, as also reported by Cobbett et al. 

(2007). However, in this study I obtained a rather different result with respect to leaf 

stability, than the results of Cobbett et al. (2007). In their sample of 36 datasets tested for 

leaf stability with RadCon (Thorley and Page, 2000) they detected a significant difference 

between fossil and extant taxa on leaf stability, with fossils tending to be significantly more 

unstable. In this analysis using RogueNaRok (Aberer et al. 2013) which calculates leaf 

stability slightly differently – using rooted triplets, I have found no significant difference 

between extant and fossil taxa for leaf stability although the p-value is quite low (P=0.105). 

The biggest advance this chapter offers however, is the code pipeline, which allows 

any investigator to test their own data sets for these properties. It is sufficiently generalised 

to accept most data, and uses the common tools that many systematists use, namely 

PAUP*, TNT and R. The new workflow is much quicker all in all relative to the 

DELBAT/DELSUM basic scripts of Cobbett et al. (2007) and offers easy flexibility and 

extensibility through the use of R. 

3.6 Conclusion

Based on the results presented here and in Cobbett et al. (2007), it should now be clear 

that there is no justification to a priori exclude fossils from parsimony analyses of 

morphology to infer phylogeny. There are a multitude of possible benefits from their 

inclusion, and multiple different tests available to help one decide a posteriori if 'rogue' or 

'wildcard' taxa are causing problems in an analysis (Wilkinson 1995b; Thorley and Page 

2000; Smith & Dunn, 2008; Pol and Escapa 2009; Mariadassou et al. 2012; Aberer et al. 

2013). There are two avenues of future research I would like to explore arising from this 

work. The first is a comparative methods review between all the various different tests of 

taxon stability & inclusion/exclusion criteria. It is unclear to me from the literature which 
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one of these might be optimal for parsimony analyses of morphology. What are the relative 

strengths and weaknesses of these methods? Do they all agree for all datasets? If they 

differ, on what basis do they differ – character evidence or relationship resolution 

evidence? The second is to extend the current analytical pipeline used in this chapter so 

that it tests a wider range of tree to tree distance measures. I have already been in contact 

with the lead author of TreeCmp (Bogdanowicz et al. 2012) to see how I can integrate his 

program into my workflow. Once integrated, I would be able to test additional metrics such 

as matching clusters, nodal splits, quartets, triplets and agreement subtrees.
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Chapter 4: A review of the ILD 

randomisation test: uses and abuses

4.1 Abstract

The incongruence length difference (ILD) randomisation test of Farris et al.. (1995a, 

1995b) is often applied to systematic data sets comprising qualitatively or logically distinct 

data partitions (e.g., molecules and morphology, different loci). It has variously been used 

to assess phylogenetic accuracy (1), ‘data combinability’ (2), difference in evolutionary 

history (3) and difference in evolutionary rate (4). Several authors have noted that the ILD 

test is not designed to address all of these issues, particularly the first two, and that the 

inferences drawn from test results are often questionable. Here, I quantitatively review the 

usage of the ILD test in over 250 papers published between 2009 and 2010 - an 

exhaustive sampling of the papers that I had automated harvesting access to. There 

appears to be very little consensus on how best to implement the ILD test appropriately. 

There is often no justification for the number of replications used, or for the search 

parameters specified. In many cases, the settings used are not reported at all, making it 

impossible to reproduce the results exactly. Where p-values are not reported, results 

cannot be re-validated. I conclude with a concise summary re-iterating what is already 

known about the proper usage of the test and suggest minor extensions that may reveal 

extra useful information from the test performed. 
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4.2 Introduction

In 1981, Mickevitch and Farris introduced a new quantitative measure of incongruence of 

phylogenetic signal between data partitions, which I shall refer to as the 'MF index' to avoid 

confusion. They were examining the difference in signal between allozyme data and 

morphometric characters for the phylogeny of Menidia and demonstrated that the within-

data partition incongruence was greater than the between-data partition incongruence (p 

366 – 367). The idea of examining incongruence between data partitions in this manner 

was then not improved upon until 1991 when Farris further developed the MF index into a 

proper statistical test with the addition of a randomisation process and an implementation 

in his arn program, presented at the Willi Hennig Society meeting that year (Farris et al. 

1995a). 

For two data partitions, A and B, the MF index is: LAB  –  (LA  +  LB)  where  LAB is the optimal 

tree length in steps of the simultaneous Maximum Parsimony (MP) analysis of both data 

sources together - the total evidence analysis, LA is the optimal tree length of an MP 

analysis of just data A, and likewise LB is the optimal tree length of an MP analysis of just 

data B. If the data partitions have low incongruence between each other then (LA  +  LB) will 

be expected to be only marginally smaller than LAB . Whereas if (LA  +  LB) is much smaller 

than LAB, then this difference in tree length must be caused by incongruence between A 

and B. The extra steps required to fit the combined AB data to the optimal tree LAB  are 

referred to as homoplasy and neither the ILD test, nor the MF index help distinguish further 

what type or cause of incongruence – just that to some extent (or not at all if no 

difference), that there is some incongruence of signal between the data partitions.

The difference between the MF index and the ILD test, is that the latter is an extension that 

critically examines the statistical significance of the MF index relative to a randomly 

sampled null distribution of possible MF indices for data partitions of the same matrix 

parameters and character-state composition as data A and data B. ILD test scores are 

thus much more comparable between different studies than simple MF indices alone.
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4.2.1 Historical Importance and Context

Any sensible discussion and interpretation of the history, development and usage of the 

ILD test must take account of the historical context in which it was developed – there are a 

number of background factors and themes of which I shall expand upon in this section that 

are of great relevance to the understanding of the usage of the ILD test.

The ILD test (Farris et al. 1995b) was introduced over a decade before the first conference 

on phylogenomics (in 2006; Philippe & Blanchette, 2007); at a time when the variety of 

molecular sequence data available simply wasn't anywhere near as bountiful as it is today. 

This was a time when good molecular phylogenetic papers published in respected 

phylogenetic journals presented data from just one or two loci (e.g. Jacobs et al 1995; 

Freeman & Zink 1995; Domanico & Phillips 1995; Myers et al 1995; Rosel et al 1995). It 

was also right in the midst of a long-running controversy and debate around the 

'combinability' of different data sources (Swofford, 1991, p327 “To Combine or Not to 

Combine”; Siddall 1997), sometimes played-out as taxonomic congruence (e.g. Miyamoto 

& Finch, 1995) “vs” the total evidence approach (Kluge, 1989; Eernisse & Kluge, 1993), 

and more specialised cases such as “morphology vs molecules” in phylogenetic inference 

(Wheeler, 1991; Swofford, 1991; Hedges & Maxson, 1996).

Early efforts such as Bull et al. (1993; fig. 2) used simulations to provide evidence that 

combining different data sets in an analysis can provide a 'worse' overall estimate of 

phylogeny than analyzing data sets separately. Thus many systematists were genuinely 

unsure of whether to combine or not to combine their data, despite the clear philosophical 

superiority of using as much relevant evidence as possible – the Total Evidence approach 

(Kluge, 1989). Even up to the present day both taxonomic congruence and total evidence 

approaches are still both being actively used, developed and debated: STEM (Kubatko et 

al, 2009) and *BEAST (Heled & Drummond, 2010) are popular programs that separately 

infer gene trees to help form a consensus estimate of the overarching species tree (a form 

of the taxonomic congruence approach). Simultaneously, many papers continue to pursue 

total evidence (concatenation) methods particularly those that choose to incorporate 

molecular and morphological data (e.g. Finarelli 2008; Jenner et al 2009; Pretti et al 2009; 

Schuh et al 2009; Zrzavy et al 2009; Pepato et al 2010; Prevosti 2010; Davis 2010; Fritz et 

al 2011; Lehtonen et al 2011; Lopardo et al 2011; Carasco et al 2012; Clennett et al 2012; 

Janssens et al 2012; Ronquist et al 2012; Wood et al 2012) 
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Thus in recent times the only thing that has changed is the terms by which the debate is 

framed; instead of taxonomic congruence versus total evidence, debate now centers upon 

'coalescence' versus 'concatenation' methods (e.g. sensu Kubatko & Degnan, 2007) which 

although slightly more specific, clearly has roots in this old debate.

4.2.2 Inappropriate usages of the ILD test

After publication of the ILD test procedure there appeared to be much confusion and 

uncertainty about what the ILD test could be used for. This led to a multitude of critiques of 

these various uses (Cunningham 1997b; Yoder et al. 2001; Barker & Lutzoni 2002; Dowton 

& Austin, 2002; Darlu & Lecointre 2002) and led some to question, particularly Barker & 

Lutzoni (2002) whether the ILD test had any valid use at all. 

Farris et al. (1995a) contains no discernable suggestion that the ILD test could be used to 

decide whether to combine or not to combine data – it merely describes the test as a 

measure of the significance of incongruence between data partitions. Yet after its 

publication some researchers started to use the ILD test for this very purpose – as a test of 

“combinability” (e.g. Johnson & Sorensen 1998; Vidal & Lecointre 1998; Carbonne et al 

1999; Hoot et al 1999; Spangler and Olmstead 1999), most probably because early 

versions of the popular PAUP software (versions before 3.1) by Swofford referred to the 

ILD test as a “combinability” test (Farris 1997; Yoder et al 2001). Other computational 

implementations of the ILD test such as Siddall's ARNIE and HARDARN, part of the 

Random Cladistics package (reviewed in Allard et al, 1999b) contain no such assertions 

about “combinability”. These implementations however, appear to have been much less 

used than PAUP and thus I speculate that the use of the ILD test to decide “combinability” 

probably originated from this early PAUP implementation. This incorrect usage of the ILD 

test as a measure of combinability is discussed and rightly dismissed in Yoder et al (2001) 

and Barker & Lutzoni (2002). However, neither Yoder et al (2001) nor Barker & Lutzoni 

(2002) cite Farris' much earlier denouncing of this usage in a conference talk (in 1996) & 

the subsequently published abstract of that talk (Farris, 1997) in which it is stated that: 

“incongruence and non-combinability are not the same thing. The idea of testing for non-

combinability seems questionable at best”.  

Similarly some researchers appear to have initially used the ILD test as a measure of 
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'phylogenetic accuracy' Cunningham (1997b), or 'topological congruence' (Barker & 

Lutzoni 2002). The logic behind these uses is difficult to understand given the construction 

of the test (Mickevitch & Farris 1981; Farris 1995a) – the ILD test is calculated using tree 

length and character congruence NOT tree topology or topological congruence (but see 

the Topological Incongruence Length Difference [TILD] of Wheeler, 1999 for a measure 

that does directly test topological congruence). Finally, despite some early criticism 

(Dowton & Austin 2002), some promise has been shown for using Wheeler's (1999) 

derivative of the ILD for data exploration (sensu Grant & Kluge 2003), specifically for use 

in mixed parameter sensitivity analyses (e.g. Sharma et al. 2011).

I agree with Hipp et al. (2004), contra Yoder et al (2001) and contra Barker & Lutzoni 

(2002) that the ILD remains a useful and valid test to assess global partition character 

congruence and that this is distinct from the inappropriate uses of measuring 'phylogenetic 

accuracy' or 'topological congruence'.  Planet's (2006) comprensive review appears to 

agree with such usage of the ILD test. 

4.2.3 Additional developments

Aside from the many different uses the ILD test was used for; there are a number of other 

short points about the ILD test that I should note here for the sake of completeness. 

Sullivan (1996), Cunningham (1997a) and others have suggested that 0.05 may be too 

liberal a significance threshold to use for the ILD test, hence in the literature sometimes 

smaller significance thresholds such as 0.01 have been used.

Cunningham (1997b) & Lee (2001) note that invariant and parsimony-uninformative 

characters should be excluded prior to ILD tests. Lee (2001) demonstrates that such 

phylogenetically-uniformative characters, if unevenly distributed between partitions can 

artificially decrease the ILD p-value, sometimes creating false 'significance' – entirely due 

to the presence of these uninformative characters. My only comment on this is that it is not 

really much of a “problem” as indicated by Ramirez (2006). Many other cladistic 

calculations e.g. the ensemble consistency index (CI; Kluge & Farris 1969) require 

uninformative characters to be excluded and thus this is a standard procedure in most 

analytical workflows.

Ramirez's (2006) paper contains novel criticisms of the ILD test, for example that localizing 

exactly where incongruence is with the ILD test is difficult; that the available “strategies are 
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only feasible for small data sets” - the computational power available now in 2013 makes 

ILD tests, and taxon-jackknife ILD tests quite feasible even for data sets comprising of 

many hundreds of terminals. Ramirez (2006) also notes that ILD test results can 'conflict' 

with partitioned Bremer support results – but this is because the two tests are measuring 

fundamentally different things; partitioned character support at nodes (local) versus the 

congruence of entire data partitions (global). These methods should be viewed as 

complementary and do not give exactly the same information.

Ramirez (2006) figure 2 shows that duplicating taxa lead to undesirable ILD test results. 

But I question if this is a realistic example. As with uninformative characters, if a cladistic 

matrix contains uninformative or completely duplicative taxa these are usually removed 

prior to analysis with 'Safe Taxonomic Reduction' as there is little point including them in 

the analysis if they include no new phylogenetic information (Wilkinson 1995).

Finally, the main novel critique that Ramirez (2006) presents: “hypercongruence” seems to 

me to confuse topological congruence and character congruence. Ramirez (2006) figure 4 

presents an excellent example of why character congruence and topological congruence 

are not the same thing. Whilst Ramirez (2006) presents this difference as a problem of the 

ILD test, I instead suggest interested readers carefully examine the character matrices to 

rationalize the ILD results therein presented.   

 Dolphin et al. (2000) present an interesting additional procedure that one can choose to 

perform to help disambiguate between the incongruence due to 'noise' and the 'real' 

incongruence due to conflicting phylogenetic signals. Despite being well-cited (over 200 

times according to Google Scholar), few researchers appear to have chosen to actually 

implement this additional procedure. Quicke et al (2007) boldly propose that such noise 

imbalances can be simply 'corrected' for, on the basis of the simulations they run in their 

paper. However, their arcsine-transformed ILD-metric does not convince me because I do 

not believe the simulated data matrices they analysed are biologically similar to real 

molecular or morphological character data. Their method of representing trees as 

unambiguous binary characters supporting each node, bears little relation to the 

complexity of empirical character data sets, and furthermore the calculation of RI depends 

on the number of states allowed per character (Hoyal Cuthill et al 2010) – this is much 

more variable than just binary in empirical data sets.  Thus I do not think their results are 

necessarily transferrable to real empirical data. Quicke et al (2007) has relatively few 

citations so far (about 24 according to Google Scholar), and of those almost none of these 
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actually implement the suggested arcsine-transformed ILD test.

4.2.4 Raison d'etre for this review of ILD test usage

Given the long and complicated history of the ILD test, the various debates and usages of 

it – I thought it might be instructive to see how people are using the ILD test now. Given 

how many papers all the salient info is spread across one can hardly blame authors for 

mis-applying or mis-reporting the ILD test, but prior to writing this chapter I had noticed a 

few odd ones, which partially spurred this review. In doing this review I hope to highlight 

common errors and misperceptions so that future usage of the ILD test by the research 

community can be improved, standardised and made more re-usable for comparative 

cladistic analyses e.g. (Fisher-Reid & Wiens 2011).

4.3 Methods

Literature Search

I performed a literature search for papers published in the year 2009 or 2010, which cite 

Farris et al. (1995b) using the Thompson Reuters Web of Science 'SCI-EXPANDED' 

database which returned 443 articles. I exported the bibliographic data corresponding to 

these 443 articles to a bibtex file which is available online for re-use & validation 

(https://github.com/rossmounce/thesis_ESM/blob/master/ILD_chapter/443_ILD_citing_pap

ers.bib). I then passed Paperpile (http://paperpile.com/) this bibtex file to help automatically 

harvest and download the corresponding full-text PDF files for as many of the 443 articles 

as I had legitimate access to through University of Bath journal subscriptions. After this 

process I had access to corresponding full-text for 278 of the 443 articles. I was thus 

apparently unable to access 37% (165) of the papers found by this particular literature 

search. Reasons for my inability to automatically harvest corresponding full-text for some 

articles included:

• lack of subscription access through my university (e.g. articles from subscription 

journals such as Taxon, Journal of Bryology, Auk, Invertebrate Systematics, etc...)

• poor / incomplete source bibiographic data from Web of Science that Paperpile 

could not automatically locate a corresponding article for
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• Articles from smaller, more unusual publishers for which Paperpile could not 

automatically harvest full-text articles from

For the purpose of this analysis 278 articles, whilst not the entire sample for the time 

period assessed, is certainly a large enough sample, from a representative variety of 

journals (84) and authors from which to draw conclusions from. It was thus not deemed 

worth manually trying to obtain full-text copies of the remaining 165 papers. The 278 

automatically harvested would suffice.

The distribution of the 278 full-text articles across the 84 different journals was remarkably 

non-random; over a third (101) of the full-text articles came from the journal Molecular 

Phylogeny and Evolution. Given the subject matter of the journal and the volume of articles 

its publishes (764 over that 2 year period), this distribution is perhaps to be expected.

4.4 Results

See electronic supplementary materials for the full table of evidence and assessment 

made from each of the 278 papers which the following statistics summarize:

The correlation between citation and usage of the ILD test

Of the 278 papers manually assessed, I could positively discern that an ILD test was 

performed and reported in 254 (92%) of them. In 17 papers (6%) the ILD test was merely 

discussed or cited, and explicitly not performed. In 5 papers (2%) the ILD test was 

mentioned in the methods section, but no further discussion or report of the result(s) of the 

test(s) was found  - it seems the author(s) in these cases may have simply forgotten to 

report the results of the ILD tests they refer to in their method sections.

Reporting ILD test p-values

Of the 259 papers that refer to the ILD test as if they had performed one or more tests, 207 

(80%) reported exact p-values as results of the test(s). 48 papers (18.5%) did not report p-

value result(s) of the ILD test(s) performed, mostly instead reporting either that the ILD test 

results were “significant” or “not significant”. 4 papers provided only information that the p-

value was less than or greater than a number, an inexact numerical answer. 
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Reporting ILD test reps

Replications ('reps') determine in part the robustness of the test applied, thus it is 

important to report the number of reps.

Of the 259 papers that refer to the ILD test as if they had performed one or more tests, 

only 131 (51%) reported the number of replications of the ILD test used to determine the 

null distribution. The number of replications used varied: 10, 100, 200, 500, 1000, 1100, 

2000, 5000, or 10000 reps were reportedly used. The majority of papers (77) that reported 

this parameter used 1000 replications. 14 papers reported using more than 1000 

replications, whilst 54 papers reported using less than 1000 replications.

Reporting ILD test search methods

Of the 259 papers that refer to the ILD test as if they had performed one or more tests, 175 

papers (68%) clearly specified the search methods used for their ILD tests. The vast 

majority reported using some form of heuristic random addition sequence + tree bisection 

reconnection (RAS + TBR) based search using PAUP*, however 5 papers are notable for 

claiming to have performed their ILD test searches using exhaustive “bandb” searches 

(Matter 2009; Moyer 2009; Saarma 2009; Meredith 2010; Wei 2010).

Reporting ILD test significance levels used

Of the 259 papers that refer to the ILD test as if they had performed one or more tests, 

only 61 papers (24%) explicitly state the significance threshold (or critical value) by which 

they judged the significance/non-significance of the ILD test(s) performed. The most 

commonly reported significance level used was 0.05, which 35 papers reported. But 26 

other papers reported using smaller significance levels in their determination, using either: 

0.0001, 0.001, 0.005, or 0.01 as their threshold.

Excluding parsimony-uninformative characters

Of the 259 papers that refer to the ILD test as if they had performed one or more tests, 

only 32 (12%) papers clearly indicated that parsimony-uninformative characters were 

removed prior to performing the ILD test. Perhaps a small minority of data sets analysed 

had no uninformative characters to remove, but this seems an unlikely explanation for all.

“Combinability”

It was much harder to identify this factor conclusively, but as a conservative estimate, of 

the 259 papers that refer to the ILD test as if they had performed one or more tests, at 
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least 82 (32%) appeared to have performed the test in order to assess the 'combinability' 

of their data. As an example of this I quote Bloech et al. (2009):

“The combinability of ITS and matK was tested using the Incongruence Length Difference 

(ILD) test (Farris et al.., 1994) implemented as partition-homogeneity test in PAUP...”

4.5 Discussion

Confusion still reigns over what the ILD test should be used for. Even though clearly 

inappropriate, a third of papers assessed here appear to mistakenly use the ILD test as an 

arbiter of combinability; a function for which the test was not designed. Several significant 

papers published subsequently also clearly indicate that it should not be used as such 

(Farris 1997; Yoder et al. 2001; Barker & Lutzoni 2002). Furthermore references to the ILD 

test as a measure of “phylogenetic accuracy”, “topological congruence” or “compatibility” 

can also be found in the modern usages sampled. It is unclear why this is so. 

Regardless of the reasoning behind why the tests are performed, there is also cause for 

concern with the standard of statistical reporting of the ILD test. As demonstrated, a variety 

of significance levels are being used. This is defensible given the remarks and suggestions 

of Cunningham (1997b) about the conservativeness of the test. However, from the 

standpoint of consistency of interpretation between studies, this is less desirable. For 

example, Ngamskulrungroj et al. (2009) chose a significance level of 0.0001, found a P-

value of 0.002 and therefore reported no significant incongruence (in most other papers 

this would have been judged significant). Fully 76% of papers did not explicitly report the 

significance level they used and 20% did not report an exact p-value which hampers 

scrutability and re-use of their results. This tallies with similar such studies in other fields 

e.g. psychology (Bakker & Wicherts 2011), psychiatry (Berle & Starcevic 2007) and 

conservation biology (Fidler et al 2006) that also show disappointing reporting standards 

and inconsistencies of null-hypothesis significance tests across papers.    

It would have been good to go through the thousands of papers that cite the ILD test and 

perform comparative cladistic analyses of the congruence of typical nuclear and 

mitochondrial genes found, extending and generalizing upon the initial investigation of 13 

different data sets by Fisher-Reid and Wiens (2011). But given how many studies in this 

sample don't report enough of the vital information (exact p-values, the exclusion of 
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invariant characters, the number of replications used, the search method) it appears that 

the approach of Fisher-Reid and Wiens (2011) (recalculating new ILD tests themselves) is 

justified.  

Although many implementations of the ILD test allow comparisons between three or more 

data partitions simultaneously, the single p-value result is difficult to interpret in these 

cases. Giribet (2010) makes this point well as have others. I would recommend always 

performing pairwise ILD tests between partitions ( (n2-n)/2 tests for n partitions) in order to 

identify the precise source(s) of the incongruence.

Finally, as reported in Allard et al. (1999a), I demonstrated that ILD tests performed on the 

exactly the same dataset, often appear to give significantly different results between the 

PAUP* 4.0b10 and TNT (Goloboff et al. 2008) implementations. As both are closed source 

programs I cannot examine the source code to definitively conclude which is 'wrong' or 

'right'.

4.6 Conclusion

The ILD test has had a long and tortuous history of development, critique, and usage. 

Debate has flipped back and forth between positions: useful or useless? Relevant facts 

and observations about it are scattered across many different papers, some of which are 

not well cited e.g. (Farris, 1997). Thus as I have demonstrated here the usage of the ILD is 

sometimes rather inconsistent and confused. In order to help the community better 

understand the test, and how it should be reported I will conclude with some clear 

recommendations and clarifications:

• The ILD test (Farris, 1995a) is a measure of the character congruence of data 

partitions in the context of parsimony analyses.

• It is NOT a measure of, or reliable proxy for; (1) the topological congruence 

between partitions, (2) phylogenetic accuracy, (3) the “combinability” of partitions, 

(4)  optimising model choice (but see a related derivative of the ILD in Sharma et al. 

2011). 

79



• The ILD test is not appropriately cited as a justification for combining data from 

different sources prior to analysis (Siddall 1997). Rather, it is sufficient to invoke 

Kluge's observation that the strongest test of a hypothesis uses the maximum 

amount of relevant data (Requirement of Total Evidence; Kluge 1989)  

• The ILD test is a useful way to investigate the character congruence between data 

partitions. However, care should be taken not to overinterpret what the result means 

as there could be a variety of explanations for the level of incongruence found (e.g. 

heterotachy, noise, 'real' differences in evolutionary signal from hybridization).

• Parsimony-uninformative characters must be excluded before performing the ILD 

test (Cunningham, 1997b ; Lee 2001).

• Always perform the ILD test with a minimum of 1000 replications to be sure of a 

robust result, preferably using new technology searches to ensure the minimum 

length is found.

• Always report the exact p-value obtained, the number of replications, the 

significance level, the software implementation (e.g. PAUP* 4.0b10 ), and that you 

excluded invariant characters prior to testing.

• Preferably, perform pairwise tests between each partition as these are easier to 

interpret than multipartition ILD tests.
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Chapter 5: A modification of Archie's 

Homoplasy Excess Ratio in the 

presence of missing data

5.1 Abstract

In this short chapter, I demonstrate a problem with Archie's (1989) Homoplasy Excess 

Ratio measure, that arises when applied to matrices containing missing or inapplicable 

data. Sparsely-populated matrices are commonly encountered in 'supermatrix' studies, 

palaeontological studies, and studies that make heavy use of contingent character coding 

schemes. I proceed to demonstrate a logical solution to the problem as inspired by 

Wilkinson's use of selective character permutation, maintaining the position of 

missing/inapplicable states, in his Phylogenetic Inference by Compatibility Analysis (PICA) 

program. I implement this idea using TNT and compare this new modified-HER to other 

measures of homoplasy.

5.2 Introduction

The Homoplasy Excess Ratio (HER; Archie, 1989) was introduced as an alternative 

measure of homoplasy for cladistic data matrices. Existing measures of homoplasy such 

as the consistency index (CI; Kluge & Farris, 1969) are known to have several significant 

flaws. Central to the calculation of HER is a randomisation procedure that operates by 

permuting character states within characters for all characters in the matrix, thereby 

disrupting the phylogenetic signal in the original unpermuted state of the matrix. The HER 

is thus insensitive to the inclusion or exclusion of parsimony-uninformative characters from 

a matrix, unlike the CI. A large number of such permuted matrices are then analysed under 

maximum parsimony in order to obtain a distribution of optimal tree lengths corresponding 
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to permutations of the matrix. This is similar to the procedure implemented by the 

permutation tail probability test (PTP; Faith & Cranston 1991). The limitations of the latter 

test have been rehearsed at length elsewhere  (Wills 1999). However, the HER differs 

fundamentally from the PTP, because it does not use this distribution as the means to test 

a null. Rather, the mean value for randomly-permuted matrices (MEANNS) is used as an 

estimate of the expected tree length for matrices of the same dimensions and with 

identical frequency distributions of states as the original. The formula for it's calculation is 

given below: 

HER = (MEANNS – L) / (MEANNS – MINL)

where L is the optimal tree length of the original dataset and MINL is the total number of 

character states in the entire matrix, minus the number of characters – i.e. the minimum 

possible tree length to explain all the character transformations in the matrix.  

A worked example of the HER calculation using 34 unordered, equally-weighted, 

parsimony-informative, cranial characters from the pterosaur matrix of Andres et al. (2010) 

is demonstrated below. Matrix permutations and Maximum Parsimony optimizations for 

this chapter were all performed in TNT (Goloboff et al 2008) using New Technology 

searches (Nixon, 1999; Goloboff, 1999):

xperm; xmult=level10; rseed*;  /* permute matrix, get tree length, set new seed */

The above commands were used to generate 1000 matrix permutation randomisations, 

the optimal tree lengths of which are plotted in the histogram below. The optimal tree 

length of the original unpermuted matrix (L) is 59, whilst the mean optimal tree length of 

1000 permuted matrices is 99.419 (MEANNS). The minimum possible tree length for a 

matrix of these dimensions and state frequencies (MINL) is given in TNT by issuing the 

command minmax*. In this case MINL is 38.
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Figure 5.1: The distribution of permuted matrix tree lengths for 1000 permutations of the matrix in 

appendix 5.1

Thus for the Andres et al. (2010) cranial-only matrix; 

HER = (MEANNS – L) / (MEANNS – MINL)

HER = (99.419 – 59) / (99.419 – 38).

HER = 0.658

5.2.1 The Problem of Permuting Missing / Inapplicable Data in Matrices

During the course of my research I noticed some curious HER results for some matrices 

that did not match-up to my expectations. There were some very low <0.1 values, even 

some negative values coming from the calculation of HER on sparse matrices. Farris 

(1991, p85) correctly identified that HER could result in negative values but did not 

precisely describe the circumstances under which this occurs, nor attempt to provide a 

solution other than using his RI (Farris, 1989) measure instead. Incidentally, Farris was 
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incorrect in saying that “Negative HER might well be called typical of randomizations” 

(1991, p85) as I demonstrate in Table 5.1; few empirical cladistic matrices generate 

negative HER values. I demonstrate this undesirable behaviour with HER on an 

exaggerated sparsely-populated matrix – figure 5.2. This matrix is composed almost 

entirely of compatible characters except for character 10 which conflicts with characters 9 

& 11 (highlighted in bold). One would therefore expect a relatively low level of homoplasy 

to be indicated by homoplasy measures.

t1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1

t2 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1

t3 ? 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 ?

t4 ? ? 0 0 ? ? ? ? ? ? ? ? ? ? ? 1 1 ? ?

t5 ? ? ? 0 0 ? ? ? ? ? ? ? ? ? 1 1 ? ? ?

t6 ? ? ? ? 0 0 ? ? ? ? ? ? ? 1 1 ? ? ? ?

t7 ? ? ? ? ? 0 0 ? ? ? ? ? 1 1 ? ? ? ? ?

t8 ? ? ? ? ? ? 0 0 ? ? ? 1 1 ? ? ? ? ? ?

t9 ? ? ? ? ? ? ? 0 0 1 1 1 ? ? ? ? ? ? ?

t10 ? ? ? ? ? ? ? ? 0 0 1 ? ? ? ? ? ? ? ?

t11 ? ? ? ? ? ? ? ? 1 1 0 ? ? ? ? ? ? ? ?

t12 ? ? ? ? ? ? ? 1 1 0 0 0 ? ? ? ? ? ? ?

t13 ? ? ? ? ? ? 1 1 ? ? ? 0 0 ? ? ? ? ? ?

t14 ? ? ? ? ? 1 1 ? ? ? ? ? 0 0 ? ? ? ? ?

t15 ? ? ? ? 1 1 ? ? ? ? ? ? ? 0 0 ? ? ? ?

t16 ? ? ? 1 1 ? ? ? ? ? ? ? ? ? 0 0 ? ? ?

t17 ? ? 1 1 ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ?

t18 ? 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ?

t19 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0

t20 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0

Figure 5.2: A hypothetical sparse matrix of 19 parsimony-informative characters and 20 taxa.

Indeed the Consistency Index (CI) for this matrix is 0.950. But the HER is -24.

The problem with permuting the entirety of character columns, is that with sparsely-scored 

matrices such as in figure 5.2, character permutations are likely to artefactually decrease 

the probability of character conflict, resulting in lowered MEANNS values. Figure 5.3 

demonstrates one such permutation whereby the missing states get permuted in such a 

way that taxon 5 to taxon 20 become completely missing, and two pairs of taxa complete 
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with data, become identical (taxon 1 is identical in state composition to taxon 2; likewise 

for taxon 3 and taxon 4). 

The HER calculation for this sparse matrix is:  HER = (19.04 - 20) / (19.04 – 19), HER = 

-24. 

t1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

t4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

t5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t18 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

t20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 5.3: A possible permutation of the sparse matrix from figure 5.2

Thus I have identified that HER suffers from a missing data problem which has not been 

noticed until now. The HER aims to be a measure of the 'global' homoplasy across the 

known states of characters in a cladistic matrix. Yet clearly, the calculation is confounded 

by the introduction of many unknown states (missing data). A desirable measure of global 

homoplasy should measure purely the homoplasy of known character states, unaffected 

by the presence, quantity or distribution of missing data around the known data. Thus I 

propose here a novel modification to the calculation of HER that estimates MEANNS 

based-only upon the subset of all possible permutations that keep the unknown states 
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fixed in the same position as they are in the original unpermuted matrix. 

This modified-HER (MHER) reflects the level of homoplasy only in the known states of 

characters, unconfounded by missing data issues, or matrix parameter issues (e.g. the 

problems of CI; Sanderson and Donoghue 1989; Meier et al. 1991; Klassen et al 1991).

5.2.2 Time-Efficient Computational Implementation

Drawing inspiration from the implementation of selective-permutations in Wilkinson's PICA 

program for compatibility analyses, I reasoned that character column permutations 

restricted to permuting only information-containing states would help maintain the structure 

of informative-states in taxa, whilst still allowing permutations within that structure. In this 

new scheme of permutation, permutations such as that depicted in figure 6.3 would not be 

allowed. With the help of Pablo Goloboff I have implemented the character permutation of 

solely information-containing states in TNT (Goloboff et al. 2008). The script is given in 

Appendix 6.2. This enables MHER to be calculated for most morphology-based data sets 

with 1000 replications in a reasonable time (e.g. less than 2 hours to get MHER for Asher 

et al's (2005) matrix of 223 characters and 68 taxa running on a simple Phenom X3 

2.3Ghz desktop computer). Small data sets take just seconds to process.  

To make it easier to use this selective-permutation script, I have additionally written a bash 

script which when passed the name of a dataset in .tnt format, launches TNT, calls the 

script in appendix 6.2, calculates and reports L, MINL, and the modified-MEANNS value, 

as well as calculating and reporting the final MHER using awk for the final arithmetic 

operation (appendix 6.3).

The MHER of the sparse matrix in 6.2 is now calculated to give a more intuitive result: 

MHER = (25.4815 - 20) / (25.4815 – 19) = 0.845715

Of the informative data states that are in the data matrix, this relatively high value of 

MHER demonstrates that per character there is relatively little homoplasy in the matrix 

relative to the optimal cladogram.
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5.2.3 How many replications are needed for a robust MEANNS estimate?

Archie (1996, p162) states that “in most cases… with good precision... no more than 25” 

matrix permutation reps are needed to calculate MEANNS, without supporting evidence. 

Whilst I agree that there is relatively little variance, I observed it to be non-negligible. Thus 

here, I quantify the variance using the Carrano & Sampson (2008) dataset. Ten-thousand 

matrix permutations and their optimal lengths were recorded. The mean optimal length of 

these ten-thousand permutations was 365.57 (to 2 d.p.), the maximum value was 375, the 

minimum value was 353 and the standard deviation was 2.96.

Are parametric statistics really justified in this case? Most matrix permutation tree length 

distributions are significantly non-Normal according to tests such as Anderson-Darling's 

(data not shown, see also figure 5.1 for a graphical example). But with large sample sizes 

such tests of normality are often over-powered and give a 'significant' result even if 

deviation from normality is relatively small, thus I will continue to treat these tree lengths 

as if they were normally distributed. 

5.2.4 Is the HER missing data problem significant in real matrices?

It is all fine and well to demonstrate a problem that could happen in theory, but does the 

HER suffer missing data effects in practice? To assess the difference between HER, 

MHER and CI, on real empirical matrices from the published literature I tested 60 matrices. 

Some were garnered directly from the literature (PDFs) by myself, whilst others were 

gratefully obtained from Graeme Lloyd's excellent shared collection of matrices 

(http://www.graemetlloyd.com/matr.html), from MorphoBank (O'Leary & Kaufman 2011), or 

from TreeBASE (Piel et al. 2002). The results of these analyses are below in Table 5.1. 

Most were conducted with 1000 matrix permutation reps, except the 10 molecular 

supermatrices, which I calculated using only 100 matrix permutations. Admittedly 

parsimony may not be the best method for inferring phylogeny from molecular sequences 

but I have included these 10 matrices nonetheless to demonstrate the effect of very sparse 

matrices upon HER.

5.3 Method

All data sets were analysed in TNT (Goloboff et al. 2008) using New Technology searches 
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(Goloboff, 1999; Nixon 1999) xmult=level10 + bb as well as the scripts provided in the 

appendices for chapter 5. 

5.4 Results

Table 5.1 An empirical comparison of measures of homoplasy, sorted by missing data, for 60 

assorted data sets including 7 molecular data supermatrices which are indicated with an asterix*

1stAuthor Year Group #Chars #Taxa %Miss. HER MHER CI mean ci

Thomson 2010 Testudines* 3406 213 98.4 -INF 0.787 0.994 1.000

Csiki 2010 Theropoda 364 36 87.6 0.231 0.248 0.423 0.542

Kurochkin 1996 Enantiornithes 122 40 80.7 0.295 0.421 0.692 0.790

Hinchliff 2013 Cyperaceae* 16016 435 78.7 0.778 0.801 0.414 0.859

Wolsan 2010 Carnivora* 9753 52 76.6 0.207 0.229 0.517 0.855

VderLinde 2010 Drosophilidae* 14912 180 73.6 0.429 0.240 0.289 0.811

Springer 2012 Primates* 61199 372 68.6 0.775 0.832 0.358 0.863

Pirie 2008 Danthonioid grasses* 11810 298 68.1 0.846 0.878 0.577 0.940

Moore 2011 Angiosperms* 69513 246 64.6 0.879 0.899 0.214 0.584

Brusatte 2012 Theropoda 233 46 57.6 0.448 0.460 0.441 0.566

McDonald 2010 Iguanodontia 135 67 57.4 0.662 0.674 0.489 0.625

Carballido 2010 Sauropoda 104 19 51.7 0.642 0.659 0.703 0.820

Carrano 2008 Ceratosauria 151 18 48.1 0.712 0.724 0.732 0.829

Friedman 2007 Actinistia 195 39 44.6 0.567 0.573 0.456 0.587

Gonzalez-Riga 

2009

Titanosauria 102 23 42 0.478 0.484 0.617 0.751

Young 2009 Crocodylomorpha 166 86 40.7 0.792 0.793 0.447 0.646

Butler 2008 Ornithischia 221 46 39.9 0.619 0.624 0.505 0.649

Gaffney 2009 Bothremydidae 175 47 37.2 0.715 0.718 0.581 0.732

Skutchas 2012 Caudata 72 21 35.3 0.261 0.271 0.497 0.641

Sereno 2008 Carcharodontosaurids 60 9 30.9 0.559 0.565 0.738 0.822

Bloch 2007 Plesiadapiforms 173 21 29.6 0.338 0.341 0.448 0.539

Martinez 2009 Ictidosauria 98 12 29.4 0.317 0.326 0.561 0.683

Hospitaleche 2007 Sphenisciformes 70 29 27 0.521 0.524 0.474 0.598

Simmons 2008 Mormoopidae 202 29 27 0.463 0.465 0.408 0.518

Frobisch 2007 Dicynodontia 100 42 26.8 0.649 0.651 0.470 0.598

Lu 2009 Pterosauria 52 16 25.4 0.496 0.500 0.562 0.685

Anderson 2008 Batrachia 216 54 23.4 0.561 0.418 0.248 0.348

Ezcurra 2007 Coelophysoidea 136 13 22.7 0.591 0.593 0.633 0.714

Matsumoto 2009 Dinosauria 76 16 22 0.517 0.520 0.572 0.644

Asher 2005 Lagomorpha 223 68 18.2 0.467 0.562 0.239 0.326
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Holland 2009 Tetrapodomorpha 44 22 17.8 0.429 0.435 0.441 0.557

Asher 2006 Afrotheria 112 23 17.2 0.418 0.421 0.405 0.470

Mueller 2006 Choristodera 90 25 16.8 0.457 0.459 0.415 0.569

Weksler 2006 Oryzomyini 99 54 12.6 0.414 0.414 0.285 0.439

Sanchez-Villagra 

2006

Talpidae 157 21 12.4 0.528 0.529 0.452 0.568

Shimada 2005 Lamniformes 55 17 12.4 0.551 0.552 0.525 0.640

Cheng 2012 Eosauropterygia 139 35 12.4 0.548 0.549 0.389 0.491

Smith 2011 Alcidae 223 59 12.4 0.584 0.586 0.211 0.377

Friedman 2008 Pleuronectiformes 58 19 11.8 0.582 0.582 0.507 0.596

Asher 2007 Eutheria 190 53 10.3 0.338 0.338 0.227 0.359

Wiens 2005 Hylidae 140 81 8.3 0.373 0.374 0.184 0.269

Mayr 2011b Pelagornithidae 87 25 8.3 0.447 0.449 0.377 0.499

Pine 2012 Cricetidae 89 36 8.3 0.256 0.257 0.279 0.378

Worthy 2009 Anseriformes 150 62 8.1 0.429 0.429 0.201 0.297

Whitlock 2011 Diplodocidae 189 27 7.6 0.759 0.767 0.739 0.472

Bourdon 2009 Palaeognathae 129 17 6.9 0.936 0.936 0.876 0.922

Venczel 2008 Caudata 35 15 6.7 0.665 0.666 0.629 0.714

Hill 2005 Amniota 48 18 6.5 0.674 0.674 0.634 0.750

Jouve 2006 Crocodylomorpha 116 64 5.3 0.666 0.667 0.335 0.560

Parenti 2008 Ankylosauria 80 31 5 0.726 0.725 0.595 0.736

Mauricio 2012 Rhynocriptidae 90 38 3.8 0.722 0.722 0.485 0.664

Mayr 2010a Quercypsitta-Like 

Birds

93 32 3.7 0.371 0.372 0.343 0.484

Gaubert 2005 Pholidota 329 44 3.4 0.521 0.521 0.323 0.412

Smith 2010 Pelecaniformes 464 53 3.3 0.804 0.804 0.445 0.594

Sparks 2008 Etroplinae 80 25 3 0.912 0.912 0.737 0.853

Mayr 2010b Caprimulgiform Birds 69 10 2.3 0.570 0.570 0.649 0.762

DePietri 2011 Lari 40 12 1.7 0.459 0.460 0.695 0.800

Li 2007 Squamata 62 10 1.3 0.317 0.317 0.647 0.701

Manegold 2013 Picidae 67 27 0.8 0.803 0.803 0.490 0.696

Hurley 2007 Actinopterygii 31 8 0 0.425 0.425 0.653 0.737

Assuming normality, using the function power.t.test in R (R Development Core Team, 

2013), it can be shown that at the 1% significance level, for a two-tailed comparison 

between normal matrix permutation MEANNS (HER) and selective matrix permutation 

MEANNS (MHER), with 1000 replications each, a significant difference (delta) in sample 

mean of just 1 step in tree length can be detected with power >0.99.
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(Two-sample t test power calculation: n = 1000, delta = 1, sd = 2.96, sig.level = 0.01, 

alternative = two.sided).

A difference of one step in mean tree length between the two types of permutations for 

1000 reps in the case of the Carrano & Sampson (2008) dataset translates into a 

difference of approximately 0.0013 HER. Thus when comparing between HER & MHER 

results, even for those results that differ in ratio by only 0.001, this difference is statistically 

significant. Over half of the data sets tested in Table 5.1 thus display a statistically 

significant difference between their HER & MHER values. 

5.5 Discussion

MHER is a useful measure of the average ('global') homoplasy of a cladistic matrix, 

comparable between data sets of varying taxa, characters, and percentage completeness. 

Some claim that such 'global' measures are too crude to be of use; Phillippe et al. (1996) 

once asserted that “A good measure of homoplasy must look at the characters locally and 

not globally... we suggest that homoplasy should be measured locally” (p 1184). I would 

have to disagree with this. In the context of comparative cladistic analyses, controlled, 

standardised 'global' measures such as MHER provide useful information – measures of 

homoplasy that are local to a particular region of a cladogram cannot be compared 

between studies that do not contain those same taxa. Depending on the hypothesis to be 

tested either 'global' or 'local' or both approaches may be of utility.

Meier et al. (1991, p77) illustrated an apparent negative correlation between HER and the 

number of taxa in the matrix based upon an analysis of 27 different matrices. I do not 

dispute this observation but instead question if matrix parameters are the true cause of the 

correlation they observed. It is not inconceivable that the larger data sets they tested also 

contained more missing data, with an uneven distribution of it in the matrices. In my 

analyses (Table 5.1), excluding the supermatrices (n=53), there is a small positive 

correlation (r=+0.028) between HER & #Taxa but it is not significant (p=0.852), and is 

perhaps better explained by the percentage and distribution of missing/inapplicable data 

within matrices. In support of this, Archie (1996, p163) also asserts that HER is not 

affected by matrix parameters (but no evidence is given).  
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5.5.1 Why has HER seemingly been ignored for so long?

I identified just 75 papers that mention “Homoplasy Excess Ratio” in a Google Scholar 

search as of 2013-08-01. Many only mention it in passing. One of these hits was my own 

conference abstract (Mounce, 2011a). I tentatively suggest three factors that might have 

led to HER being relatively ignored as a measure of homoplasy since it was devised:

1. The computational complexity of the randomisations might have made it relatively 

unappealing to calculate, relative to other computationally simpler measures of 

homoplasy. Goloboff (1991) wrote that HER was “difficult to calculate” and Meier et 

al. (1991) said it was “computationally very expensive and for large analyses 

impractical”. Hence, undue focus was perhaps shifted to its inferior approximations; 

REHER and HERM (Archie, 1996). Likewise, Fu & Murphy (1999) later wrote that 

the “substantial computing time” required was “a major limit of the application of 

HER” back then.

2. Farris's (1991) paper strongly criticizes HER and argues throughout that RI could 

and should be used instead. Similarly Meier et al. (1991) observed an apparent 

negative correlation of HER with matrix parameters. Perhaps these papers deterred 

people?

3. Confusion between HER and HERM. As HERM was correctly shown to be identical 

to Farris' RI (Farris 1989; 1991) it is possible that some did not see the distinction 

between HERM & HER and thus discounted both when HERM was shown to be 

redundant. A putative example of this is given by Egan (2006) who mentioned only 

HERM in her discussion of “goodness of fit metrics”.

A new generation of academics are once again investigating important questions about 

homoplasy (e.g. Hoyal Cuthill et al.. 2010). I have no doubt that there are many further 

important studies to be done in this area. In future work, I will compare MHER with 

Goloboff's Data Decisiveness (1991) & Wilkinson's (1997) incompatibility excess ratio's – 

two other under-utilised descriptive statistics for cladistics.

91



Chapter 6: Optimal search strategies for 

finding phylogenetic data

6.1 Abstract

In the preceding chapters, I have repurposed data from published studies in order to 

perform comparative cladistic analyses and thereby to test hypotheses that single cladistic 

dataset studies alone could not adequately address. In order to re-use these data, I had to 

find relevant studies and transform the published data back into a digitally-usable form – 

neither of which are trivial tasks. In this chapter I explore and critically compare methods of 

digital literature search in the context of the task of finding morphology-based phylogenetic 

analyses. Traditional title-keyword-abstract searches with Web of Knowledge & Scopus, 

and modern full-text searches as provided by publishers like PLOS & BMC, as well as 

offline local desktop full-text searching are compared and discussed. I demonstrate that 

the popular traditional methods are significantly poorer at finding phylogenies (in terms of 

recall to known relevant papers) when compared to full-text search methods. I conclude 

that despite three and half years of looking for morphology-based phylogenetic analyses, I 

can only put a conservative minimum-bound estimate on the number of morphology-based 

phylogenetic studies that have been published in the 21st century because of inadequate 

bulk full-text access to journal literature.
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6.2 Introduction

Forty years ago a thorough literature search necessitated a trip to a library so that 

researchers could systematically examine all relevant journals and books page-by-page to 

scan for the desired concepts and items of interest. More recently, the ubiquitous 

electronic publication of research on the Internet has enabled less-manual, more 

computationally expedited methods of literature search using computer software to scan 

articles and books for relevant terms and concepts in text-form.  To help academics find 

relevant content (and to make a profit by charging for this commercial service) Thomson 

Reuters released the first version of Web of Knowledge (WoK) a 'research platform' for 

academic content discovery over a decade ago – it launched in 2002 (Thomson Reuters, 

2013).  Shortly afterwards, Elsevier launched a rival profit-making commercial service 

called Scopus (Fingerman, 2004). Both of these abstract & citation indexing services are 

now widely used by researchers in non-biomedical biological sciences. One of them; WoK 

only indexes the title, abstract, keywords and citations for each article or book chapter.

It is important to note here that I will not discuss PubMedCentral (PMC) as commonly used 

by biomedical researchers because on the whole it only indexes biomedical content – 

whilst morphology-based phylogenetic content can occasionally be found indexed in PMC, 

particularly if it appears in a 'general' journal like Nature, Science or PLOS ONE e.g. Eddy 

& Clarke (2011), most non-biomedical subject-specific journals e.g. Zootaxa, 

Palaeontology, and Journal of Vertebrate Paleontology... are not indexed in PMC. Thus 

PMC cannot be relied-upon for literature searches for non-biomedically relevant topics. As 

a further demonstration of this, if one searches for 'Zootaxa' in PMC, one can only find four 

articles from the journal Zootaxa in PMC that have been self-deposited by their authors as 

'author manuscripts' (context: Zootaxa has published over 12,500 articles as of 2013-07-

01). 

Other relevant digital search services that academics sometimes use include Google 

Scholar (GS; http://scholar.google.com/), Scirus (http://www.scirus.com/), Mendeley 

Search (MS; http://www.mendeley.com/research-papers/search/) and Microsoft Academic 

Search beta (MAS; http://academic.research.microsoft.com/). GS first launched nearly ten 
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years ago as beta in 2004 (Google, 2013). GS can notably achieve 100% recall for some 

searches (Gehanno et al. 2013)  and is thus often better than Scopus & WoK's recall (e.g. 

Beckmann & von Wehrden 2012). But the precision of GS is often very poor (Garcia-Perez 

2012), since it searches across a much wider body of grey literature: including some blogs, 

newsletters and non-peer reviewed material It also offers relatively few features with which 

to constrain or filter searches (other than simple 'by year/journal/author'). Moreover, there 

is no easy mechanism provided by which hundreds of search results can be exported in a 

standard format (e.g. bibtex). Thus some have pointed out before that GS is not useful for 

performing systematic literature searches (Giustini, 2013). Scirus (also known as Sciverse 

Hub: they are different interfaces to the same index [California Digital Library, 2013]) 

allows full text search of a limited subset of the research literature, as well as abstract-only 

search, and grey literature 'scientific web' searches. 

For the purposes of this chapter, when referring to Scirus I shall only be referring to the 

full text search subset of the capabilities of Scirus. MS is a relatively new academic search 

provider and claims to search across a crowd-sourced database of nearly 100 million 

documents (Mendeley, 2013). MAS is yet another new academic search provider and is 

still in active development, the service is self-described on their About page (Microsoft, 

2013). GS, Scirus and an earlier version of Microsoft Academic Search have previously 

been compared (Ford & O'Hara, 2008) for searches in 2006 during which GS retrieved the 

most citations, however the aim and methodology of that study is different to the one 

presented herein, and I anticipate that all of the databases have improved in performance 

since 2006.

6.2.1 Preliminary Investigation

Table 6.1 illustrates some of the complexity of digital literature searches. GS finds the most 

content overall for a simple keyword search over a defined period (2000-2012) but this 

includes many books and non-peer reviewed grey literature pieces that one would perhaps 

want to exclude (with no easy way provided to filter these out). GS also notably does not 

handle wildcards, so I could not perform a more conservative search for phylogeny-related 

articles with 'phylog*' to catch the words 'phylogeography', 'phylogram', 'phylogenies' etc... 

For general searches, in agreement with the findings of Chadegani et al. (2013), Scopus 

appeared to find more content than WoK but in specific cases (e.g. the searches for 

Winclada:Table 6.1) WoK occasionally appears to outperform Scopus in raw hits. 
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Table 6.1 A comparison of simple search results for the term “phylogeny” and “winclada” in 

scholarly documents published between the years 2000 – 2012 inclusive, all searches performed 

2013-07-15.

Search 

Service

Term Exact Repeatable Search Terms Used Hits

Google 

Scholar

phylogeny http://scholar.google.co.uk/scholar?

as_q=phylogeny&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=&as_pu

blication=&as_ylo=2000&as_yhi=2012&btnG=&hl=en&as_sdt=1%2C5&as_vis=1 

(excluding citations, excluding patents)

~220,000

Scirus phylogeny http://www.scirus.com/srsapp/search?

sort=0&t=all&q=phylogeny&cn=all&co=AND&t=all&q=&cn=all&g=a&fdt=2000&tdt=

2012&dt=fta&ff=all&ds=jnl&sa=agr&sa=geo&sa=env&sa=life&sa=med&sa=neuro

&sa=pharma (articles only, exc. non-journal sources)

43,836

Scirus phylog* http://www.scirus.com/srsapp/search?

sort=0&t=all&q=phylog*&cn=all&co=AND&t=all&q=&cn=all&g=a&fdt=0&tdt=2014&

dt=fta&ff=all&ds=jnl&sa=agr&sa=geo&sa=env&sa=life&sa=med&sa=neuro&sa=ph

arma (articles only, exc. non-journal sources)

163,015

WoK phylogeny Topic=(phylogeny) Timespan=2000-2012. Databases=SCI-EXPANDED 44,946

WoK phylog* Topic=(phylog*) Timespan=2000-2012. Databases=SCI-EXPANDED 120,078

Scopus

phylogeny TITLE-ABS-KEY(phylogeny) AND SUBJAREA(mult OR agri OR bioc OR immu 

OR neur OR phar OR mult OR medi OR nurs OR vete OR dent OR heal) AND 

PUBYEAR > 1999 AND PUBYEAR < 2013

127,991

Scopus phylog* TITLE-ABS-KEY(phylog*) AND SUBJAREA(mult OR agri OR bioc OR immu OR 

neur OR phar OR mult OR medi OR nurs OR vete OR dent OR heal) AND 

PUBYEAR > 1999 AND PUBYEAR < 2013 

156,583

Google 

Scholar

winclada http://scholar.google.co.uk/scholar?

q=winclada&hl=en&as_sdt=1%2C5&as_vis=1&as_ylo=2000&as_yhi=2012 

(excluding citations, excluding patents)

~1,840

Scirus winclada http://www.scirus.com/srsapp/search?

sort=0&t=all&q=winclada&cn=all&co=AND&t=all&q=&cn=all&g=a&fdt=2000&tdt=2

012&dt=fta&ff=all&ds=jnl&sa=agr&sa=geo&sa=env&sa=life&sa=med&sa=neuro&

sa=pharma (articles only, exc. non-journal sources)

292

WoK winclada  Topic=(winclada) Timespan=2000-2012. Databases=SCI-EXPANDED 18

Scopus winclada TITLE-ABS-KEY(winclada) AND SUBJAREA(mult OR agri OR bioc OR 

immu OR neur OR phar OR mult OR medi OR nurs OR vete OR dent OR 

heal) AND PUBYEAR > 1999 AND PUBYEAR < 2013

12

However, relative to GS's fulltext search capability, WoK and Scopus have a markedly 

diminished ability to find methodological details that are not usually discussed in abstracts. 

This is why I am doing this chapter – I have noticed during my research that it is very 

difficult to accurately search for certain types of phylogenetic methods detail. I will use this 
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chapter to objectively test the performance of very search methods for finding papers with 

phylogenetic analyses in them.

It is known that Scopus and WoK have non-overlapping journal coverage (e.g. see 

Figure 1 of Chadegani et al. 2013). However, even in cases where journal coverage 

should overlap, the recall between Scopus and WoK varies, as can be seen in Table 6.1. 

Relative to the Scopus search, WoK has an additional six hits from articles in these 

journals: Acta Paleontologia Polonica, Apidologie, Coleopterists Bulletin, Geodiversitas, 

Journal of Biogeography, and Journal of Vertebrate Paleontology (full article bibliographic 

data for these Scopus and WoK 'winclada' searches are provided online (Mounce 2013c,d) 

and on the CD provided with the hard copy of this thesis. These six missing articles do 

contain the word 'winclada' in the abstract and all six journals are indexed in Scopus 

according to their list of indexed titles as of April 2013 (Sciverse, 2013). It is unclear why 

Scopus cannot find the word winclada in these six article abstracts and thus does not 

return them in its results, which it should be able to find. Thus for the winclada search 

Scopus has a recall of at best 66% (12/18) for abstract search, assuming perhaps unsafely 

that WoK finds all the relevant article abstracts that it indexes (?unknown). Scirus finds 

16% of what GS finds for the winclada search and this perhaps reflects the narrowness of 

the biological journal sources that Scirus restricts itself to – just ten relevant to biology: 

Elsevier, Wiley, Springer, BMC, the PMC OA full-text subset (which includes all PLOS 

journals), OUP, CUP, NPG, Royal Society & Hindawi. 

6.2.2 Scirus does not cover many important natural history journals

This restricted range of sources used by Scirus search makes it unsuitable for phylogeny-

related searches. Relative to the range of sources searched by WoK (albeit abstract-only 

in this database), I find that at the article level – the unit that counts in these matters – the 

ten full-text sources searched by Scirus, listed above account for only ~61% of nearly 

10,000 phylogeny-related articles published in the year 2010, found and classified by 

publisher from a search of WoK that I performed as part of an international collaboration 

(Stoltzfus et al. 2012, detailed source data for this estimate in Mounce 2013e ]. 

Non-biomedical phylogenetic content included in WoK but likely to be outside of the Scirus 

full-text search capability includes: AAAS (Science), Academica Sinica (Botanical Studies, 
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Zoological Studies), Allen Press (Herpetologica, Journal of Mammology, Phycologia), 

AMNH press (Bulletin of the AMNH, AMNH Novitates), ASIH (Copeia), ASPT (Systematic 

Botany), CSIRO journals, Magnolia Press (Zootaxa, Phytotaxa), Taylor & Francis (Journal 

of Vertebrate Palaeontology, Journal of Systematic Palaeontology, Journal of Natural 

History). Thus Scirus lacks coverage of many key journals for morphology-based 

phylogenetic analyses.

6.2.3 The long-tail of phylogenetic content

The distribution of 21st century phylogeny-related articles across publishers and journals is 

remarkably long-tailed. Surprisingly, using the methods of Stoltzfus et al. (2012) one can 

infer that Zootaxa (a primarily taxonomic journal not especially known for phylogenetics), 

might now be the 6th largest container of 21st century phylogeny, just behind PLoS ONE 

(as shown in figure 6.1).

 

 

Figure 6.1 Illustrating the long-tail distribution of phylogeny-related articles across hundreds of 

different journal titles indexed in WoK, from 2000-2011. Full corresponding data is supplied in the 

supplementary materials and online (Mounce 2013f).
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There are two important things that figure 6.1 highlights: 

• Publishing trends have changed. Now a significant proportion of academics are 

choosing to publish in megajournals like PLOS ONE and Zootaxa instead of low-

volume traditional journals (this is no bad thing in my opinion).

• Aside from those 6 or 7 journals estimated to be publishing a lot of phylogenetic 

content – the distribution of the thousands of other phylogenetic articles published 

each year is remarkably long-tailed. Phylogenetic articles are scattered across at 

least 1000 journals at a minimum estimate (Stoltzfus et al. 2012 data) 

6.3 Methods

In order to rigorously examine the capabilities of traditional title-abstract-keyword 

databases WoK & Scopus for finding morphology-based phylogenetic analyses published 

this century, I compared their precision and recall to three different defined corpora of 

journal articles to which I have full text local desktop access: 

A) 'Zootaxa'. The entire set of articles published in the journal Zootaxa from 2001 up to 

Issue 3690 (1) [11th June 2013] inclusive, consisting of 12490 PDF files downloaded direct 

from the publisher website: http://mapress.com/zootaxa  /   . This set notably includes both 

large monographs and small erratum notices (see Figure 6.2 overleaf).

B) 'PLoS'. All articles published across seven PLoS journals: One, Biology, Computational 

Biology, Genetics, Medicine, Neglected Tropical Diseases, and Pathogens from 2003 to 

2010-06-04, consisting of 20694 articles obtained via BioTorrents (Langille & Eisen, 2010).

C) 'BMC'. A complete set of 7948 open access articles containing the stemword 

'phylogen*' from 166 journals that BioMed Central publish (2000-2011, full details of 

each and every article are provided [Mounce, 2013a])

The corresponding PDF's of each corpus were placed in separate self-contained folders. 

Within these folders I used basic unix command-line tools e.g. pdftotext & grep searches 

to identify articles that are very likely to contain relevant content, and then manually scan-

read the articles myself to classify each search hit. Thus I can be very confident of the 

actual word content of all the articles in these corpora, relative to the search results 

provided by the various academic search providers.
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Figure 6.2 Article PDF file size distribution of all articles in each of the corpora. Mean file size 

across all three corpora is almost exactly 1MB (Mounce 2013b).

6.3.1 Testing the computational efficiency of local full-text search 
options

I speed-tested three different command-line methods to determine which search methods 

were the quickest in terms of real time. Table 6.2 (overleaf) shows that of the methods that 

work from 'cold' - spawning embarrassingly parallel grep processes on each of the three 

cores available returned results in the quickest overall real time. GNU parallel [21] did not 

speed-up the process because the I/O rate of hard drive access was the limiting factor and 

this is limited to single-thread access [22]. If one scaled-up this experiment and searched 

across multiple different disk drives, or used solid state drives (SSD's) GNU parallel may 

well scale better. Using Recoll [23] returns search results across the entire corpus near 

instantaneously. But it requires many hours to index all the article content beforehand 

before searches are performed, so is not truly comparable. Recoll indexing only needs to 

be done once however to gain this speed benefit for all searches and comes with the 
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advantage of a simple GUI interface to perform searches and explore the results.

Table 6.2: A demonstration of different local desktop full text search methods, as performed on the 

Zootaxa corpus, searching for the term 'winclada' on a simple Phenom X3 2.3Ghz desktop 

computer, with all files placed on a single HDD. 

Method 

name

Real time (s) User time 

(s)

Sys time 

(s)

'Parallel grep' time find . -name "*.txt" -print0 | xargs -0 -n 1000 

-P 3 grep -iRl "winclada" > out.tzt

15.989 44.163 0.384

'Single 

process grep'

time grep -iRl 'winclada' . > out.tzt 42.993 42.803 0.180

using GNU 

parallel

find . -type f | time parallel -j+0  'grep -il winclada 

{}' > out.tzt

61.11 34.47 0.481

using Recoll (after indexing all the PDFs overnight) < 1 n/a n/a

6.3.2 Justification of search terms used, and the use-case

Phylogenetic analyses are computationally complex and thus almost always involve the 

use of a specialised computer program, of which there are few in existence: e.g. PAUP* 

(Swofford 2002), Winclada (Nixon 2002), NONA (Goloboff, 1999b), TNT (Goloboff et al 

2008), Hennig86, MEGA, POY, PHYLIP, Phyml, Garli, RAxML, MrBayes, PSODA. A well-

reported paper thus must make reference to one or more of these programs in the full text 

of the work – this offers a nicely constrained starting point for searches. For this chapter I 

ignored POY, Garli, MEGA, RAxML, Phyml, and MrBayes as they are never or rarely used 

in morphology-based analyses. PSODA (Carroll et al. 2007; Carroll et al. 2009) seems to 

have only been cited 3 times according to GS and thus can also be safely discarded. That 

leaves just six terms and their variants to search for in the quest for morphology- 

phylogenies: PAUP*, Winclada, NONA, TNT, Hennig86, and PHYLIP. 

I proceeded to use those same search terms (and more) to try and re-find the identified 

content in the three publisher-delimited corpora using many different academic search 

providers, benchmarking for recall against the known location of the searched-for terms, in 

articles, in the corpora.
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6.3.3 Distinguishing between morphology-based & molecular-only analyses

Some of the literature search complexity for morphology-based phylogenetic articles is 

caused by linguistic complications. Occasionally papers exclusively refer to such 

morphology-based analyses as cladistic analyses (this terminology is entirely correct, but it 

makes it difficult to find the paper if one is only searching for the word 'phylogeny' and its 

variants). Far from being a theoretical occurrence there are many easily documented 

occurrences of this in the Zootaxa corpus. One can automatically identify papers which 

mention 'cladist*' and NOT 'phylog*' with this simple grep:  

find . -name "*.txt" -print0 | grep -iR -l 'cladist' | xargs -n 1 grep -iL 'phylog' .

There are many papers which merely contain one but not the other stem-word (and no 

cladistic/phylogenetic analysis), but also more seriously there are papers such as Dimitrov 

& Ribera (2005) in which a morphology-based cladistic analysis is reported and nowhere 

in the paper; not in the title, keywords, abstract, main text, figure captions or reference list 

does any variant of the stem-word phylog* occur – quite an achievement really. The 

inverse condition is also true, there are many more papers in which morphology-based 

phylogenetic analyses are performed with no mention anywhere in the paper of either 

cladi* or cladogra* (at least 47 different papers in the Zootaxa corpus, in which 

morphology-based phylogenetic analyses are performed). This further justifies the 

approach of trying to find analyses by other means (e.g. the name of the software used).

For the purpose of this chapter “relevant content” and “morphology-based phylogenetic 

analyses” are defined as papers in which new (biological) morphological-character-based 

phylogenetic analyses are both calculated and reported in the paper – hypothesised 

figures (only), or reproduction of a phylogenetic tree(s) from previous studies, or 

'supertree' analyses, or phenetic analyses (e.g. UPGMA) of continuous measurements do 

not count. Analyses that combine morphological and molecular data to build the phylogeny 

are included in the count. Molecular (only) phylogenetic analyses are not defined as 

relevant content for the purpose of this exercise, which makes the task more difficult since 

molecular and morphology-based analyses often use the same methods, software and 

linguistic reporting style. Moreover there are far more published molecular-only papers 

which hampers the precision of any literature search for morphology-only phylogenetic 

papers.

101



6.4 Results

Based on the initial grep for just 'paup' it was determined one could safely exclude some 

false positives that kept appearing (i.e., the author name 'Paupy' (exclude -y) , the word 

depauperate (exclude -e), 'paupar-rash', 'paupal wing', 'Paupard' and 'Pauparding-Tritsch' 

(exclude -a) 'pAUPR' (exclude -r) 'Pauphalictus' (exclude -h)). Searches for ‘Winclada’ 

varied in their capitalization of the word but otherwise it was easy to find with 100% 

precision. 'Hennig86' was also referred to as 'Hennig 86' and that was easy to deal with. 

Some authors called TNT: 'TnT' or 'T.N.T.' thus these variations were incorporated into the 

search. Lots of other non-related concepts were unsurprisingly detected for 'TNT' so that 

search had low precision in the PLoS corpus. Finally NONA was also problematic for 

precision; some authors called it 'Nona' and this is harder to distinguish from the rice 

cultivar 'Nona Bokra' without special rules. Likewise, 'Nona' appeared as an author first 

name several times in PLoS papers, but I could not easily devise a safe general rule to 

exclude these false positives (Table 6.3).     

Table 6.3: Summary of local desktop full-text searches. Most searches find references to intended 

software with 100% precision (no false positives).

Base Term Corpus Essence of Method Total 
Hits 
(article)

Hits are 
intended 
concept 
(%)

Morph- 
based 
analyses

paup BMC grep -iR  -l  "paup[^ehyar]" 896 100 10

PLOS 293 100 8

Zootaxa 689 99.9 286

winclada BMC grep -iR -l  "winclada" 7 100 1

PLOS 3 100 0

Zootaxa 151 100 96

hennig86 BMC grep -iR -l  "hennig86\|hennig 86" 1 100 0

PLOS 0 n/a 0

Zootaxa 27 100 26

nona BMC grep -R -l  "Nona[^A-Za-z]\|NONA[^A-Za-
z]"

10 90 3

PLOS 12 16.6 0

Zootaxa 103 96.1 88

tnt BMC grep -iR -l  "tnt[^A-Za-z]\|t\.n\.t" 7 57.1 2

PLOS 190 7.9 5

Zootaxa 151 100 105
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phylip BMC grep -iR -l  "phylip[^A-Za-z]" 912 100 1

PLOS 241 100 0

Zootaxa 22 100 6

If desired one can combine all the search terms with the boolean operators e.g. OR which 

in grep syntax is \|  e.g. hennig86\|winclada. One can also print lines of context around the 

hit line to aid quick classification of the paper without having to open/read the original PDF. 

For example, with -A and -B in grep one can specify the number of lines of context to show 

above and below the line of interest. Samples of this output are given in Appendix 6.1.

Additional searches revealed that just looking in the reference list for references to the 

given software is not a safe, conservative strategy. For example: 

find . -name "*.txt" -print0 | xargs -0 -n 1000 -P 3 grep -iR  "goloboff" | grep -i "nixon" 

as applied to the PLoS corpus found only 11 reference variants to “Goloboff PA, Farris JS, 

Nixon K (2003) TNT...”, and the year given varied from 2000-2008. The more thorough full-

text search strategy for TNT given in Table6.3 gave many more false positives, but 

importantly it identified 15 instances in the PLoS corpus where TNT was used. Why the 

discrepancy? Manual examination of the four papers in which TNT was found but a citation 

including 'Goloboff' & 'Nixon' could not, demonstrated that:

• In Deo et al (2010) TNT was mis-cited as just “Goloboff PA (2000) TNT (Tree 

analysis using New Technology). 1.2 BETA ed. Tucuman, Argentina: By Authors.” 

Although primarily Goloboff's work, the official history of the program shows it has 

always been a collaborative work between Goloboff, Nixon & Farris. Also given the 

submission date of this paper (2009-11-24) I see no reason why (Goloboff et al. 

2008) describing TNT was not cited.

• In Wilson (2010) TNT was misattributed to another paper by Goloboff: “Goloboff PA, 

Catalano SA, Mirande JM, Szumik CA, Arias JS, et al. (2009) Phylogenetic 

analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics 25: 211–

230”

• In Dilernia et al 2008 TNT was just referred to in the main text as “available at 

http://www.zmuc.dk/public/phylogeny/TNT)” which does not give proper attribution 

(WoK only counts citations given in the reference list).

• In Phillips et al (2010), TNT was misattributed to another paper by Goloboff: 

“Goloboff PA, Farris JS, Källersjö M, Oxelman B, Ramírez MJ, et al.. (2003) 
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Improvements to resampling measures of group support. Cladistics 19: 324–332”.

Table 6.4 Comparison of recall between popular academic web literature search portals, to the 

known number of articles that contain the search term in the full text of the article.  

Journal Period (inclusive) Searched terms MAS 
hits

MS 
hits

WoK 
hits

Scopus 
hits

GS 
hits

Local 
grep hits

Zootaxa 2001 to 2013-06-11 hennig86 OR hennig 86 0 0 0 13 10 25

Zootaxa 2001 to 2013-06-11 paup 0 2 6 444 332 705

Zootaxa 2001 to 2013-06-11 Nona OR NoName 0 2 5 75 49 90

Zootaxa 2001 to 2013-06-11 TNT OR T.N.T. 0 3 8 108 61 148

Zootaxa 2001 to 2013-06-11 phylip 0 0 0 14 8 21

Zootaxa 2001 to 2013-06-11 winclada 0 0 0 105 51 140

Zootaxa 2001 to 2013-06-11 phylogeny 0 292 1650 3903 2420 4596

Zootaxa 2001 to 2013-06-11 phylogen* 0 n/a 2104 5561 n/a 6804

Zootaxa 2001 to 2013-06-11 phylog* 0 n/a 2136 5618 n/a 6884

PLOS 
ONE

2006 to 2009 hennig86 OR hennig 86 0 0 0 0 0 0

PLOS 
ONE

2006 to 2009 paup 50 0 0 33 130 131

PLOS 
ONE

2006 to 2009 Nona OR NoName 1 0 0 1 8 6

PLOS 
ONE

2006 to 2009 TNT OR T.N.T. 10 2 2 7 81 84

PLOS 
ONE

2006 to 2009 phylip 58 1 1 20 99 100

PLOS 
ONE

2006 to 2009 winclada 0 0 0 0 2 2

PLOS 
ONE

2006 to 2009 phylogeny 257 507 521 774 680 678

PLOS 
ONE

2006 to 2009 phylogen* 9 2647 618 1087 n/a 1385

PLOS 
ONE

2006 to 2009 phylog* 0 2768 624 1105 n/a 1399

Table 6.4 gives the results of the recall tests for term searches between various academic 

search providers, compared against the known number of relevant article hits for that term 

in each journal (known from the local full-text searches, manually evaluated as part of work 

shown in Table 6.3). Example queries for each academic search provider are given in 

Appendix 6.2 for the purpose of transparency and reproducibility.
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GS found most of the articles containing the searched-for terms in the open access journal 

PLoS One. In the case of the search for 'Nona' the discrepancy was caused by some 

false-positives returned: it finds three false-positive articles which have these words in 

them: “nona-L-arginine”, “nona-arginine” and “nonA”. My local full-text search for 

'Nona/NONA/NoName' (Table 6.3) used a more sophisticated case-sensitive search to 

provide more precise results. This level of sophistry of search is not provided by any of the 

web-based academic search providers. The GS search results for Zootaxa, on average 

less than 44% recall, are significantly different in recall relevant to its performance against 

PLoS One, which had near 100% recall. Closer examination of the returned results for the 

GS Zootaxa searches show that the results returned often correlated very significantly with 

if the full-text of the paper had been deposited freely online at an institutional web address 

(see Appendix 6.3 for an example). MAS also showed a similar pattern of recall against 

PLoS One articles, presumably because MAS operates similarly to GS by crawling the 

web. By raw volume of returned results Scopus appears to be the best search provider for 

searching Zootaxa, but I would urge caution in this assessment because I did not check 

the precision of returned results in most cases, so these numbers of returned results could 

represent many false positives, the extent to which I do not know.

WoK unsurprisingly given it searches just titles-abstracts-keywords, for the specific 

software/methodological terms, retrieved hardly any articles but fared a little better for 

more general terms such as 'phylogeny', averaging just above 30% 'recall' if one 

generously assumes that none of the returned results were false positives. For the same 

general 'phylogeny' search terms Scopus had a much higher 'recall' averaging above 80%, 

again assuming no false positives. 

  

6.5 Discussion

6.5.1 What exactly is WoK missing? Does it matter?

To determine the implications of WoK's apparent low recall against Zootaxa for general 

terms like phylogeny I sought to find and attempt to explain why it misses so many articles 

in which the word ‘phylogeny’ occured. To do this I manually examined the search results 

returned for the maximally-conservative search for 'phylog*' in Zootaxa by WoK for the 
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years 2005-2006 inclusive, which returned 172 articles (data in supplementary materials). I 

then scored if the term occurred in each of the articles in the abstract+title+keywords, main 

full text (excluding abs-title-key), and/or references.

Curiously, 45 of the WoK-found articles did not contain the search term phylog* in the 

abstract, title, or keywords (rather it was in the main text or references). Stranger still, of 

these 45, nine only had the searched-for term in the reference list at the end of the paper 

(Bray & Cribb  2005; Martin 2006; Samyn et al. 2006; Kajihara 2006; Sterrer 2006; Velez 

et al 2006; Dozsa-Farkas & Cech 2006; Winterton 2006; Craig et al 2006), which I would 

contend hardly makes the article of likely relevance to the initial search term.

I also checked the complement of articles that can be found to match 'phylog*' from a local 

desktop grep search, which returned 291 articles published in 2005, and 542 articles 

published in 2006. Of the 291 articles from 2005, 98 represented matches to a word or 

words in the reference-list only. This careful search of 291 articles published in 2005 

revealed six articles (Li et al. 2005; Betancur-R & Acero 2005 ;Edgecombe & Hollington 

2005; Sharkey 2005; Webb 2005; Ponder et al 2005)  which contained new phylogenetic 

analyses reported in the paper that were not found by WoK searches for phylog*, 

phylogen* or phylogeny. I did not have time to manually search all 542 of the articles from 

2006 that grep finds, but a cursory search also finds that WoK does not find Bravo (2006) 

because the language used in the abstract refers consistently to 'cladistics' rather than 

phylogenetics. An additional search for 'cladis*' in WoK only additionally finds Ponder et al 

(2005) and Bravo (2006), not the others.

This is highly significant as it demonstrates that a search strategy of relying on 'phylog*' 

OR 'cladis*' searches in WoK will not find at least 5 of the phylogenetic analyses (>10% of 

those published that year) that should be in the journal scope of WoK, let alone all the 

phylogenies ever published in all peer-reviewed journals. 

  

6.5.2 What about the non-journal data archives? Do they have the data?

What of the phylogenetic data archives Treebase, Morphobank, and the more general data 

archive provided by Dryad? Could they be of help in finding phylogenetic data? Treebase 
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has data for 27 phylogenetic studies published in Zootaxa (http://treebase.org/treebase-

web/search/studySearch.html?query=prism.publicationName==%22Zootaxa%22 data as 

accessed 2013-07-24 ). A simple grep of the Zootaxa corpus reveals 35 papers containing 

the string 'treebase' but interestingly these do not all match-up to the 27 in TreeBASE 

(data supplied in electronic supplementary materials: 

https://github.com/rossmounce/thesis_ESM/blob/master/lit_search_chapter/treebase_ther

e_and_not.csv ). One hit comes from the phrase 'treebased assessment'; nothing to do 

with TreeBASE. Another describes the TreeBASE project (Maddison et al. 2007). Another 

hit comes from Guayasamin et al. (2009) re-using published data in TreeBASE. In fact only 

17 of those 35 'treebase' mentions in Zootaxa actually deposited their primary data in 

TreeBASE. There are seven studies (Triapitsyn et al. 2006; Harmer & Framenau, 2008; 

Kerr, 2010; Nygren et al. 2010; Brix et al. 2011; Prentice & Redak, 2012; Ballantyne & 

Lambkin, 2013;) which claim in the paper to have deposited data in TreeBASE, for which 

no corresponding public data can be found actually in TreeBASE. I do not know the reason 

behind this discrepancy but I have sometimes stumbled upon examples of this before with 

other papers in other journals during my PhD (e.g. Peach & Rouse (2004) which also 

claims to have associated deposited data in TreeBASE).

6.5.3 Few morphology-using phylogenetic analyses in BMC journals

The entire output of BMC published/owned journals from 2000-2011 contain just thirteen 

phylogenetic analyses derived (entirely or in part) from morphological data (Wagele & Kolb 

2005; Asher 2007;Seiffert 2007;Haug et al. 2010; Zhao et al 2010;Struck 2007; Ahrens & 

Ribera 2009; Reidenbach et al 2009; Zrzavy et al 2009; Jenner et al 2009; Asher et al 

2010; Pepato et al 2010; Geisler et al 2011) (the last eight of these are combined 

morphology and molecular analyses). The articles in BMC Evolutionary Biology & Frontiers 

in Zoology often required manual examination to determine. There are other studies that 

are closely related but not quite what I was seeking (e.g. numerous supertree studies, the 

phenetic UPGMA analysis of morphological measurements in Froufe et al. (2008), and 

Puniamoorthy et al. (2010) who generated a discrete character matrix but choose to map it 

onto pre-existing phylogenetic hypotheses). These studies all warranted close 

examination.

Applying the same approach on the BMC corpus did not find much, but was certainly worth 

doing: BMC publishes several general biology journals (e.g. Biology Direct, Journal of 
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Biology, BMC Research Notes, BMC Biology). It is conceivable that a relevant study could 

have been published in these journals, even if I subsequently found that not to be the case 

– the negative is worth establishing as much as the positive. The exercise also gave me a 

chance to discover interesting uses of cladistic methods in other disciplines e.g. 

Anthropology (Lycett, 2009).

Having done this analysis it would be remiss of me to ignore the bigger picture. Even with 

these full text methods, searching method sections written in natural language is harder 

than it needs to be. I would suggest that these phylogenetic method sections could easily 

be supplied as machine-readable statements using a controlled vocabulary of terms 

according to a reference standard (e.g. MIAPA [Leebens-Mack 2006]). The phylogenetic 

programs themselves could export the method used in an unambiguous, fully-explicit (no 

unmentioned hidden parameters) machine-readable format along with (or separate from), 

the data analysed with that method. In fact many phylogenetic programs already can 

export the data together with the results and the method, but for various reasons 

journals/authors/editors choose not to publish these in a re-usable, machine-readable form 

most of the time (Stoltzfus et al. 2012). Workflow tools like Armadillo (Lord et al. 2012) 

have also tried to enable reproducibility in phylogenetics by allowing researchers to save & 

record their entire workflow for prosperity and transparency but it remains seldom used so 

far (GS: 1 citation). The printed page should not and need not restrict what we do with 

scientific data. A multitude of high-quality options are available to authors who wish to 

make their data more easily re-usable including Dryad, Figshare, MorphoBank, 

Morphbank, and TreeBASE.

6.6 Conclusions

Whilst in other academic domains, rigorous full-text searches are the norm (e.g. medical 

sciences, c.f. The Cochrane Reviews), in ecology, systematics and evolution, rigorous 

approaches to literature search are seldom applied. This is partly because there is not 

adequate infrastructure (e.g., PubMed) to facilitate full-text full-corpus searching for the 

entire literature of this domain. Also it is prevented by legal restrictions and download rate 

limits that certain subscription access publishers place on 'their' material, making it very 
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hard to download all of it (Mounce, 2013). However, there is huge potential for use of full-

text analysis in this area. 

There are no longer technical barriers to large-scale data synthesis/mining in this area. I 

estimate, using Thomson Reuters JCR data, that the average journal in the areas of 

systematics, ecology and evolution publishes approximately 60 papers each year 

(median), and that a representative random sample of 200 journals from this subject area 

published cumulatively 17,000 articles last year [see Appendix 6.4]. If one scales this up 

this estimate to a 1,000 journals, from 2000-2013, using the mean PDF size given in 6.2 

then the entire 'born-digital' literature for this area is likely to be well-less than 1.2 

Terabytes (for perspective: commercially-available 3TB hard drives cost less than £80 as 

of 2013, with prices almost certain to decrease over time). This can of course be 

minimized further by just utilizing a HTML, XML or plain-text version rather than the PDF, 

but it shows one could easily archive all of the data on a standard desktop computer.
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Chapter 7: Lost Branches in the Fossil 
Tree of Life

7.1 Introduction

In this concluding chapter I reflect-on and evaluate my experience of trying to find, re-

extract, validate, and re-use published palaeomorphological data from the published 

literature. As I quickly found out during my research this is not an easy task and as such I 

feel a duty to report these findings in my thesis because I think my conclusions here are of 

real importance to future research efforts. To reconstruct some data sets from the 

published literature, the effort required is akin to that of fossil preparator delicately 

removing matrix from fossil bone – data is often difficultly 'embedded' in old scanned-in 

PDFs – one cannot just lift data out from these at the click of a button. Likewise, as fossil 

specimens are commonly found in a disarticulated and fragmentary state; the same is also 

true of palaeomorphological data in the literature. To 'save space' in the printed version of 

research publications much data is still commonly omitted, with only the newly added data 

being shown (and this is often replicated in the electronic version of the article). Yet to re-

analyze or build on this data set one needs the complete data set. As I show in this 

chapter, this fragmented data availability is both unnecessary (the online version of the 

paper has no 'space' constraints other than file size, which the extra kilobytes of 

phylogenetic data should not trouble) and a significant hindrance. Emailing authors to ask 

them for a usable copy of their published data does not often result in a successful 

outcome. Drew et al. (2013) report that only 16% of 375 authors contacted, actually replied 

with the desired phylogenetic data. My own attempts at asking authors for their published 

data have had a similarly low success rate, although I did not care record the successes 

and failures in my inbox. However, I remain immensely grateful to those authors who do 

supply they published data upon request, or those who deposit their data online in an 

easily discoverable data repository like Dryad, TreeBASE or MorphoBank.
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7.2 How many morphology-based phylogenetic studies are there?

The question I ask in this sub-heading is extremely important to establish as a baseline. 

Given that fossils and morphology are important to include in phylogenetic research 

(Chapter 1, Chapter 3) – how much of that type of research is there? Work that I 

contributed to; specifically the literature search and analysis of Stoltzfus et al. (2012) 

crudely demonstrates that around two thirds of papers that have the stemword “phylogen*” 

in them, as found by Web of Knowledge, report a phylogenetic analysis. Extrapolating this 

two thirds proportion to other publication years demonstrates that there are as a 

conservative estimate, over 100,000 published phylogenetic analyses in the modern 21st 

century peer-reviewed literature (2000-2012). Whilst the proportion of these that are 

morphology-based, or morphology-using (in conjunction with molecular data) is likely to be 

low, even then it should be well into the thousands. As I show in chapter 6, reliably 

discriminating between molecular and morphology-based phylogenetic analyses using 

currently available literature search techniques is extremely difficult. However, more 

sophisticated approaches using text and data mining techniques on full-text literature 

corpora may prove useful in this regard and it is an avenue of research I am actively 

pursuing thanks to the Panton Fellowship awarded to me by the Open Knowledge 

Foundation (Newman, 2012).

Throughout the last 4 years, I have been tagging wholly morphology-based vertebrate and 

invertebrate phylogenetic studies online, so that I have openly available bibliographic 

records of when and where they occur (Mounce 2013g,h). Reconciliation between the 

bibliographic data I hold, and that of Graeme Lloyd's bibliographic data on phylogenetic 

studies (Lloyd, 2009) shows that at a bare minimum, for the period 2000-2012 inclusive 

there are more than 3,800 peer-reviewed, published, morphology-based phylogenetic 

studies (at a bare minimum, I expect there are perhaps more than 5,000 if one also 

includes botanical studies which neither I nor Graeme Lloyd cover in much depth).

7.3 How much data from morphology-based phylogenetic studies is 
publicly available?

Given my estimate of 3,800 to >5,000 studies out there somewhere in the literature, 
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scattered across many hundreds of different journals (figure 6.1), a question that is easier 

to answer more definitively is: how many morphology-based phylogenetic studies are there 

in publicly available data repositories for immediate re-use? Thanks to William Piel (pers. 

comm.) there is a TreeBASE (Piel et al. 2002) query one can run that shows all 

morphology-using studies in TreeBASE: 

http://treebase.org/treebase-web/search/matrixSearch.html?

query=tb.type.matrix=Morphological%20or%20tb.type.matrix=Combination%20or

%20tb.type.matrix=Behavior

Currently (2013-10-01) there are 784 matrices in TreeBASE found by this query, from 646 

individual studies. 433 of the studies were published between 2000-2012. 635 of these 

matrices are solely morphological, 147 are combined data sets of morphology and 

molecules, and 2 are matrices of behavioural data. Note that for some, there's more than 

one matrix in TreeBASE corresponding to a single study. 

Dryad (http://datadryad.org/) also archives phylogenetic data in a publicly available, re-

usable format. It can pass-on data initially submitted to Dryad, to TreeBASE, so there is 

some duplication of content between the two. It is harder to search for purely 

morphological phylogenetic data sets in Dryad as it is a generic datastore for all sorts of 

biological data, but nevertheless I identify just 12 data sets in Dryad that are not yet in 

TreeBASE. 

Morphobank (http://www.morphobank.org/ ; O'Leary and Kaufman, 2011) has 249 

publicly available projects available as of 2013-10-01 but not all of these projects have an 

associated morphology-based phylogenetic data matrix. 218 of these represent studies 

from 2000-2012.

Thus between the big three publicly-accessible databases suitable for this type of data 

have morphological data from approximately 663 individual studies (assuming no 

duplication between Morphobank & TreeBASE content which is perhaps an unsafe 

assumption), for studies from the period 2000-2012. As I estimate there are comfortably 

5000 such morphological studies in the literature from that time period – I estimate thus 

that we have programmatic access to data from just 13% of the studies from this recent 

period.
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But what of data provided in the article or the supplementary materials? This data is often 

error-prone (e.g. typesetting errors), ill-formatted, inextractable and difficult to re-use. Nor 

is it very discoverable (Chapter 6). It is difficult to explain on paper quite how much of a 

dumping ground supplementary materials files are, so I instead point to my Young 

Systematists' Forum talk on this very matter for further evidence (Mounce, 2010).    

 7.4 Replicating published cladistic analyses

Interestingly, I have observed many times during my work that the published dataset, and 

the published methodology of analysis e.g. parameters, character orderings and 

weightings, do NOT match the published results. Most of the time the differences are 

small, but for more than just a few papers the difference really is striking and significantly 

contradicts at least some of the conclusions of a paper.

One such example that I successfully challenged was that of the phylogeny published in a 

high-profile, front cover Nature article by Liu et al. (2011). The data simply didn't match the 

reported result no matter what parameters one applies, this was further confirmed by 

another research group who also independently noticed the analysis was not reproducible 

(Legg et al. 2011). I include my published article (Mounce & Wills, 2011) in full, in Appendix 

7.1 to further evidence this.

7.5 Comments on the Liu et al. reply

The authors of the original article wrote a formal reply (Liu et al. 2011b) to both our re-

analysis (Mounce & Wills 2011) and that of Legg et al. (2011). In this interesting reply they 

accept many of our criticisms but do not appear to readily admit the main point of Mounce 

& Wills (2011) and Legg et al. (2011) that the consensus tree supported by their data is 

significantly different from the one they initially reported. Figure 1 (Liu et al. 2011b) 

presents what they purport to be a bootstrap analysis of their data to “verify the stability” of 

their findings. Bootstrap analyses (Felsenstein 1985) resample characters with 

replacement. Given their data matrix only has 38 characters most of which are binary, for 

28 taxa – it's clear a priori that bootstrap support values are extremely unlikely to be 100 

for each and every node of the consensus tree. Alas, I report here that much like their 
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previous analyses (Liu et al. 2011a) I could not replicate their bootstrap analysis in either 

relationships depicted or strength of support for the optimal topology. I can only conclude 

the people who contributed to the data analysis of both Liu et al. (2011a,b) have a very 

different interpretation of cladistics and bootstrap analyses to most other people in the 

research in community. Similarly they called the PTP test they used the 'partitioning tail 

permutation' test, yet myself and most others know it as the permutation tail probability test 

(Faith & Cranston 1991).

7.5 Suggestions for the future of data publication and review

Research data is immensely valuable, including re-use value. Yet current publishing 

practices don't seem to me to be treating it as such – scarcely any data is made available 

for re-use as this chapter demonstrates. Most of the focus behind the publication and 

review process appears to go on the paper and the figures, not the code, data and 

analyses behind them. I have suggested we should change this (e.g. at the Systematics 

Association Biennial Meeting; Mounce, 2011b). In morphology-based phylogenetics where 

the analyses are typically computationally very simple – just seconds to find the consensus 

tree with TNT for most parsimony analyses – that reviewers should routinely re-run the 

data to independently check and validate the reported results in such papers. This would 

hopefully go some way to prevent problems of non-reproducibility like that reported in 

Mounce & Wills (2011). Furthermore, if the authors hand-over the raw re-usable data at 

review for the reviewers to access, it would seem relatively simple to me to ensure that 

once the article is accepted, that this raw data file also gets made publicly available in an 

appropriate data repository e.g. TreeBASE, Dryad or Morphobank. This would be a huge 

improvement on the current jumble of supplementary information files that are rarely 

immediately re-usable – it is a far cry from the simplicity and utility of Genbank for DNA 

sequence data. Usually supplementary files are PDF's mixing lots of different types of data 

in a long document, or a Word file, or even a spreadsheet. By putting data in a data 

repository it ensures scalable programmatic access and the chance to build rich 

searchable metadata on top of the data deposit (e.g. as TreeBASE does) to make the data 

more easily discoverable. Data buried on the 90th page of a supplementary file PDF is 

effectively lost to re-use to all but the most determined of data re-users.
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7.6 Positive reasons to share published data

I would like to end on a positive note. The scholarly publishing landscape is rapidly 

changing at the moment. The US, UK, Europe and countries around the world are now 

committed to moving towards open access publishing. Many journals have adopted a 

mandatory data archiving policy for all authors e.g Evolution (Fairbairn 2011). Research 

funders are explicitly recognising the value of data and code, not just publications 

(Piwowar, 2013). Research is demonstrating that data archiving is a worthwhile investment 

(Piwowar et al. 2011) and that sharing detailed research data is associated with an 

increased citation rate (Piwowar et al., 2007). The latest results show that papers with 

open data available with no legal restrictions on its usage receive approximately 9% more 

citations than similar studies in which data are not made available (Piwowar & Vision 

2013). I don't doubt that this apparent citation benefit is transferable to palaeontology, 

systematics, macroevolutionary studies and ecology – data re-use is a common facet of 

science. Instead of being mandated or 'forced' to share data, perhaps one day researchers 

will be eager to share data, to their own benefit as well as that of others (Poisot et al. 

2013). With publications such as White et al. (2013) providing clear advice and help on 

making data re-usable, I'm confident that in future we'll have less 'lost branches' (sensu 

Drew et al. 2013) on the Fossil Tree of Life.
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Appendices

Appendix 2.1 

(on next pages) Summary statistics for the 62 vertebrate morphological data sets analysed 

herein.  Data set dimensions (numbers of taxa and informative characters) refer to the pre-

processed matrices after applying safe taxonomic deletion rules (see text for details). ILD 

column reports the p-value resulting from an incongruence length difference test with 999 

random partitions. TILD column reports p-value resulting from a topological incongruence 

length difference test (999 random partitions). IRD columns report the p-values resulting 

from incongruence relationship difference tests with 99 random partitions. IRDNND+RF 

denotes the IRD test using the Robinson Foulds tree-to-tree distance for nearest 

neighbouring trees. IRDMR+RF denotes the IRD test using the Robinson Foulds tree-to-tree 

distance for majority rule trees. IRDMR+AgD1 denotes the IRD test using the maximum 

agreement subtree tree-to-tree distance for majority rule trees. CI and RI columns give 

ensemble consistency and retention indices respectively for entire data sets. pCI and pRI 

columns give ensemble consistency and retention indices (respectively) for partitions of 

the data set (cranial or postcranial). Mean ci and Mean ri give the mean per character 

consistency and retention indices (respectively) for partitions of the data set (cranial or 

postcranial). MWU p-value gives the p-value from a Mann-Whitney U test of cranial and 

postcranial per character ci values within each data set. pHER gives the homoplasy 

excess ratio for partitions of the data set (cranial or postcranial) derived from 999 

randomized matrices. 

145



First author Year Group Broad Group

2008 Sauropods 18 212 62 150 6 3 0.006 0.001 0.040 0.070 0.350 0.670 0.764 0.683 0.686 0.691 0.767 0.731 0.769 0.137 0.794 0.774 0.662 0.682

Anderson 2008 52 219 143 76 1052 54 0.001 0.001 0.100 0.240 0.110 0.254 0.581 0.254 0.285 0.351 0.372 0.525 0.556 0.195 0.595 0.622 0.407 0.379

Asher 2005 Mammals 29 228 170 58 2 1 0.001 0.001 0.020 0.010 0.210 0.349 0.610 0.373 0.331 0.449 0.401 0.588 0.572 0.232 0.640 0.652 0.501 0.429

Asher 2006 Mammals 23 126 96 30 1 >10000 0.781 0.001 0.190 0.210 0.160 0.402 0.611 0.406 0.441 0.479 0.439 0.573 0.572 0.888 0.614 0.600 0.404 0.325

Asher 2007 Mammals 46 196 121 75 191 1 0.001 0.001 0.020 0.070 0.470 0.242 0.527 0.223 0.275 0.309 0.413 0.483 0.621 0.017 0.522 0.614 0.286 0.384

Beard 2009 Mammals 39 326 252 64 7 >10000 0.845 0.001 0.160 0.010 0.010 0.306 0.547 0.305 0.569 0.400 0.639 0.491 0.636 0.000 0.545 0.564 0.426 0.427

Beck 2008 Mammals 27 245 103 139 4 8 0.004 0.001 0.220 0.110 0.290 0.378 0.651 0.432 0.400 0.543 0.508 0.650 0.656 0.349 0.696 0.633 0.543 0.477

Bloch 2007 Mammals 21 173 107 65 3 >10000 0.103 0.001 0.310 0.170 0.130 0.443 0.549 0.401 0.627 0.444 0.699 0.480 0.642 0.000 0.556 0.521 0.337 0.295

2009 17 129 35 94 3 2 1.000 1.000 0.660 0.880 0.570 0.882 0.951 0.956 0.855 0.743 0.821 0.753 0.855 0.593 0.983 0.938 0.975 0.921

Butler 2008 46 218 130 88 >10000 >10000 0.980 0.001 0.020 0.020 0.130 0.503 0.732 0.502 0.521 0.603 0.614 0.691 0.714 0.774 0.721 0.743 0.574 0.604

2008 21 151 71 80 >10000 7211 1.000 1.000 0.010 0.020 0.140 0.741 0.816 0.796 0.685 0.779 0.685 0.772 0.629 0.051 0.881 0.752 0.778 0.586

2007 11 136 62 74 1 6 0.011 0.080 0.010 0.010 0.140 0.663 0.720 0.610 0.731 0.678 0.728 0.684 0.735 0.216 0.698 0.785 0.617 0.668

Friedman 2007 Fishes 39 195 146 49 1320 >10000 0.005 0.001 0.650 0.140 0.290 0.453 0.709 0.464 0.523 0.569 0.583 0.706 0.715 0.422 0.716 0.689 0.580 0.511

Friedman 2008 Fishes 19 58 16 42 43 12 0.215 0.001 0.430 0.460 0.270 0.507 0.732 0.548 0.526 0.380 0.526 0.487 0.676 0.121 0.655 0.754 0.423 0.608

2007 42 99 86 13 30 >10000 0.869 0.001 0.180 0.040 0.040 0.492 0.764 0.468 0.567 0.572 0.462 0.748 0.631 0.567 0.769 0.712 0.659 0.078

2009 47 174 123 51 >10000 >10000 0.482 0.001 0.010 0.010 0.010 0.686 0.805 0.558 0.686 0.678 0.664 0.802 0.721 0.936 0.818 0.762 0.726 0.614

Gates 2007 15 120 61 34 4 8354 0.171 0.007 0.090 0.130 0.030 0.579 0.660 0.585 0.750 0.641 0.750 0.641 0.736 0.203 0.682 0.444 0.524 0.354

2009 Mammals 17 388 298 100 2 1922 0.540 0.014 0.010 0.100 0.200 0.515 0.646 0.339 0.325 0.570 0.678 0.589 0.655 0.001 0.637 0.685 0.522 0.532

2005 Mammals 39 329 229 100 28 27 0.001 0.001 0.010 0.010 0.460 0.343 0.619 0.356 0.335 0.454 0.381 0.561 0.626 0.059 0.620 0.666 0.497 0.519

2006 21 56 43 13 5 661 1.000 1.000 0.380 0.360 0.170 0.906 0.970 0.893 1.000 0.723 0.723 0.741 0.741 0.000 0.965 1.000 0.935 1.000

Gonzalez-Riga 2009 23 84 15 69 >10000 20 0.998 0.001 0.370 0.560 0.030 0.575 0.678 0.850 0.549 0.378 0.607 0.333 0.632 0.046 0.762 0.670 0.105 -0.207

Hill 2005 80 345 162 183 >10000 >10000 0.007 0.001 0.030 0.110 0.060 0.245 0.732 0.215 0.298 0.295 0.436 0.658 0.744 0.000 0.702 0.768 0.568 0.654

Hilton 2009 Fishes 16 48 31 17 2 46 0.664 0.001 0.200 0.050 0.430 0.634 0.790 0.634 0.724 0.661 0.529 0.644 0.413 0.257 0.780 0.839 0.670 0.739

Holland 2009 12 103 54 45 1 1 0.008 0.009 0.110 0.490 0.390 0.722 0.785 0.800 0.710 0.722 0.667 0.702 0.615 0.338 0.826 0.745 0.777 0.655

2007 22 44 20 23 25 >10000 0.935 0.035 0.820 0.300 0.280 0.436 0.670 0.442 0.467 0.439 0.525 0.607 0.605 0.295 0.706 0.626 0.447 0.270

Hurley 2007 Fishes 29 70 54 16 42 1136 0.586 0.001 0.910 0.870 0.630 0.470 0.702 0.483 0.509 0.603 0.579 0.704 0.748 0.977 0.725 0.640 0.531 0.359

2005 Fishes 8 44 23 21 2 3 0.405 0.001 0.250 0.980 0.580 0.660 0.667 0.640 0.700 0.469 0.738 0.302 0.643 0.052 0.542 0.778 0.390 0.601

2006 45 217 190 27 120 >10000 0.398 0.177 0.430 0.490 0.010 0.344 0.644 0.340 0.526 0.486 0.504 0.642 0.616 0.429 0.646 0.626 0.509 0.324

2009 64 120 28 89 >10000 8472 0.079 0.177 0.040 0.030 0.610 0.330 0.781 0.433 0.342 0.565 0.523 0.772 0.759 0.527 0.780 0.785 0.645 0.688

Lee 2002 23 263 204 57 3 32 0.629 0.001 0.660 0.040 0.130 0.471 0.670 0.485 0.529 0.600 0.545 0.655 0.632 0.700 0.669 0.669 0.538 0.490

Li 2007 23 399 263 136 1 12 0.099 0.005 0.450 0.530 0.410 0.555 0.672 0.523 0.538 0.627 0.638 0.638 0.650 0.650 0.672 0.669 0.567 0.548

Lister 2005 Mammals 10 62 21 41 6 4 0.206 0.001 0.350 0.370 0.250 0.647 0.544 0.750 0.623 0.504 0.580 0.353 0.417 0.914 0.605 0.519 0.418 0.261

Lu 2009 57 117 62 55 >10000 >10000 0.096 0.041 0.010 0.280 0.010 0.436 0.798 0.510 0.423 0.666 0.547 0.829 0.780 0.057 0.827 0.781 0.736 0.648

2009 16 54 34 19 43 >10000 0.990 0.001 0.320 0.010 0.520 0.558 0.688 0.550 0.655 0.543 0.500 0.589 0.500 1.000 0.686 0.744 0.504 0.354

2007 22 85 68 17 2 >10000 0.161 0.004 0.060 0.330 0.190 0.643 0.805 0.629 0.857 0.701 0.500 0.753 0.480 0.109 0.800 0.833 0.686 0.765

Martinez 2009 12 98 28 70 45 3 0.071 0.001 0.640 0.050 0.380 0.561 0.568 0.732 0.560 0.577 0.597 0.554 0.492 0.944 0.741 0.500 0.544 0.251

Matsumoto 2009 14 81 49 29 2 10 0.002 0.109 0.430 0.660 0.210 0.582 0.690 0.647 0.586 0.658 0.509 0.681 0.519 0.045 0.760 0.688 0.611 0.422

Muller 2006 25 90 71 19 3 >10000 0.189 0.146 0.050 0.670 0.080 0.415 0.649 0.429 0.468 0.555 0.474 0.661 0.600 0.808 0.657 0.624 0.467 0.345

2009 18 58 44 14 4 >10000 0.662 0.001 0.010 0.120 0.210 0.483 0.672 0.464 0.643 0.537 0.471 0.667 0.430 0.774 0.691 0.571 0.465 0.147

2008 Fishes 31 80 37 43 3818 8 0.588 0.001 0.010 0.090 0.180 0.595 0.814 0.677 0.584 0.576 0.549 0.666 0.590 0.781 0.867 0.789 0.778 0.688

Phillips 2009 Mammals 96 439 328 111 270 >10000 0.830 0.001 0.050 0.070 0.020 0.381 0.784 0.337 0.503 0.464 0.594 0.747 0.841 0.000 0.760 0.875 0.682 0.811

2007 Mammals 18 42 25 17 4 21 0.072 0.001 0.630 0.010 0.730 0.472 0.639 0.455 0.628 0.417 0.525 0.563 0.589 0.096 0.646 0.625 0.382 0.457

2007 46 333 233 100 12 240 0.001 0.001 0.090 0.130 0.010 0.343 0.624 0.320 0.367 0.450 0.481 0.550 0.650 0.918 0.630 0.672 0.460 0.463

2006 Mammals 17 157 74 83 4 1 0.003 0.008 0.070 0.120 0.180 0.515 0.674 0.495 0.551 0.587 0.598 0.596 0.668 0.690 0.629 0.730 0.445 0.609

2008 9 60 37 23 3 18 0.498 0.036 0.100 0.420 0.680 0.738 0.738 0.848 0.639 0.743 0.558 0.689 0.413 0.033 0.860 0.588 0.950 0.201

2005 Fishes 17 61 43 18 15 3 0.382 0.021 0.690 0.940 0.120 0.525 0.717 0.525 0.810 0.568 0.489 0.574 0.542 0.472 0.659 0.917 0.551 0.860

Simmons 2001 Mammals 17 209 103 106 2 419 1.000 0.262 0.270 0.820 0.990 0.622 0.751 0.650 0.659 0.656 0.704 0.673 0.753 0.357 0.758 0.746 0.679 0.685

Simmons 2008 Mammals 29 207 48 159 24 6 0.102 0.001 0.150 0.080 0.130 0.398 0.620 0.445 0.419 0.495 0.521 0.647 0.586 0.695 0.645 0.605 0.525 0.459

Smith 2007 47 361 117 244 >10000 >10000 0.810 0.001 0.020 0.030 0.200 0.376 0.695 0.461 0.362 0.536 0.468 0.627 0.640 0.859 0.681 0.690 0.563 0.581

Sparks 2008 Fishes 25 82 25 57 1 1 0.593 0.133 0.670 0.820 0.450 0.737 0.942 0.867 0.707 0.600 0.815 0.652 0.883 0.046 0.970 0.926 0.962 0.925

2009 Mammals 37 661 435 177 10 5 0.018 0.001 0.030 0.020 0.110 0.269 0.510 0.235 0.322 0.320 0.441 0.431 0.584 0.000 0.478 0.618 0.288 0.443

Sues 2008 12 51 34 15 1 117 0.030 0.007 0.010 0.010 0.280 0.691 0.792 0.731 0.750 0.716 0.500 0.703 0.333 0.161 0.843 0.500 0.738 0.631

Sues 2009 34 138 100 38 72 >10000 0.840 0.001 0.090 0.060 0.080 0.544 0.861 0.528 0.651 0.630 0.689 0.801 0.773 0.307 0.859 0.870 0.784 0.798

2004 49 159 99 60 52 448 0.001 0.001 0.030 0.030 0.010 0.359 0.710 0.355 0.417 0.447 0.527 0.706 0.716 0.094 0.718 0.701 0.584 0.544

2008 15 35 19 16 1 54 1.000 0.252 0.060 0.480 0.220 0.629 0.805 0.538 0.783 0.491 0.604 0.589 0.557 0.239 0.757 0.886 0.516 0.876

Vieira 2005 13 89 41 43 5 10 0.432 0.155 0.640 0.250 0.490 0.709 0.833 0.788 0.673 0.796 0.640 0.812 0.585 0.040 0.881 0.747 0.837 0.674

2006 Mammals 54 99 57 38 6 >10000 0.562 0.001 0.200 0.050 0.070 0.230 0.620 0.275 0.388 0.386 0.459 0.614 0.580 0.086 0.625 0.604 0.567 0.434

2009 Mammals 69 387 321 66 40 >10000 0.430 0.001 0.010 0.170 0.010 0.254 0.551 0.254 0.293 0.327 0.336 0.510 0.492 0.235 0.562 0.464 0.397 0.105

2005 63 140 64 76 >10000 1372 0.001 0.001 0.590 0.370 0.600 0.224 0.551 0.239 0.251 0.272 0.345 0.451 0.535 0.312 0.588 0.623 0.329 0.399

Worthy 2009 54 150 28 122 102 388 0.001 0.001 0.050 0.090 0.100 0.225 0.598 0.250 0.234 0.377 0.304 0.630 0.575 0.457 0.629 0.624 0.314 0.453

Young 2009 86 166 128 38 12 >10000 1.000 0.001 0.080 0.020 0.010 0.447 0.865 0.405 0.875 0.543 0.741 0.814 0.787 0.002 0.856 0.948 0.775 0.913

2009 76 348 90 258 >10000 >10000 0.215 0.001 0.030 0.010 0.010 0.354 0.701 0.380 0.362 0.463 0.475 0.684 0.682 0.714 0.708 0.699 0.528 0.570

Allain Ornithodira

Batrachia Other tetrapods

Lagomorpha

Afrotheria

Eutheria

Amphipithecidae

Marsupiala

Plesiadapiforms

Bourdon Palaeognathae Ornithodira

Ornithischia Ornithodira

Carrano Ceratosauria Ornithodira

Ezcurra Coelophysoidea Ornithodira

Actinistia

Pleuronectiformes

Frobisch Dicynodontia Other tetrapods

Gaffney Bothremydidae Other tetrapods

Hadrosaurinae Ornithodira

Gaudin Pholidota

Gaulbert Feliformia

Godefroit Titanosauria Ornithodira

Hadrosauridae Ornithodira

Amniota Other tetrapods

Acipenseriformes

Tetrapodomorpha Other tetrapods

Hospitaleche Sphenisciformes Ornithodira

Actinopterygii

Inamura Cottoidei

Jouve Crocodylomorpha Other tetrapods

Ksepka Galliformes Ornithodira

Serpentes Other tetrapods

Squamata Other tetrapods

Cervidae

Pterosauria Ornithodira

Lyson Baenidae Other tetrapods

Martinelli Ictidosauria Other tetrapods

Dinosauria Ornithodira

Choristodera Other tetrapods

Eureptiles Other tetrapods

Osi Ankylosauria Ornithodira

Parenti Adrianichthyidae

Monotremes

Pujos Pholidota

Ruta Lissamphibia Other tetrapods

Sanchez-Villagra Talpidae

Sereno Carcharodontosaurids Ornithodira

Shimada Lamniformes

Mormoopidae

Chiroptera

Plateosauria Ornithodira

Etroplinae

Spaulding Artiodactyla

Parareptilia Other tetrapods

Iguanodontidae Ornithodira

Vallin Stegocephalia Other tetrapods

Venczel Caudata Other tetrapods

Corytophanidae Other tetrapods

Weksler Oryzomyini

Wible Eutheria

Wiens Hylidae Other tetrapods

Anseriformes Ornithodira

Crocodylomorpha Other tetrapods

Zanno Therizinosauria Ornithodira
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Appendix 3.1 Data to reproduce PAUP bug

Comparing the two trees below in PAUP* version 4.0b10 for Unix (and Windows) will 

reliably crash the program every single time, if they are compared using the AgD1 or AgD 

metrics. The message given is “Segmentation fault (core dumped)”. Sometimes an 

'apparent' AgD1 tree distance is printed in output log files as an impossibly large number 

e.g.  4294967293

Further instruction, including the exact commands to input into PAUP* to recreate this bug 

are given along with the data and tree files needed to reproduce it online at: 

https://github.com/rossmounce/extinct_extant_chapter/tree/master/PAUP_bug

tree Strict = [&U] (Acanthostega,(Proterogyrinus,Seymouria_baylorensis),

((Balanerpeton,Dendrerpeton,Tuditanus,(Asaphestera,(Microbrachis,Adelogyrinus)),

(Hapsidoparion,Saxonerpeton),(Pantylus,Stegotretus),

((Cardiocephalus_peabodyi,Euryodus_primus),Euryodus_dalyae),

(Pelodosotis,Micraroter),Rhynchonkos,Eocaecilia,Batropetes,Utaherpeton,

((Sauropleura_scalaris,Urocordylus),Ptyonius),

(((Keraterpeton_galvani,Batrachiderpeton),Diceratosaurus,

(Diplocaulus_magnicornis,Diploceraspis)),Scincosaurus),Brachydectes,Oestocephalus,Phl

egethontia,Limnoscelis,Branchiosauridae,Micromelerpetontidae,

(Ecolsonia,Acheloma,Tambachia),Eryops,Doleserpeton,Salamanders,

(Frogs,Triadobatrachus),Albanerpetontidae,Micropholis,Eoscopus,Gerobatrachus,Platyrhin

ops,Amphibamus),Greererpeton));

tree Strict = [&U] (Acanthostega,(Proterogyrinus,

(((((((((((Tuditanus,Stegotretus),Pelodosotis),Saxonerpeton),Pantylus),Asaphestera),Batro

petes),((Cardiocephalus_peabodyi,Euryodus_primus),

(Rhynchonkos,Eocaecilia))),Micraroter),Euryodus_dalyae),Utaherpeton),

(Seymouria_baylorensis,Limnoscelis))),((Balanerpeton,Dendrerpeton),

((((((Hapsidoparion,Microbrachis),Brachydectes),Adelogyrinus),((Sauropleura_scalaris,

(Ptyonius,Urocordylus,Scincosaurus),((Keraterpeton_galvani,Diceratosaurus),

(Batrachiderpeton,(Diplocaulus_magnicornis,Diploceraspis)))),
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(Oestocephalus,Phlegethontia))),(Salamanders,Albanerpetontidae),

(Frogs,Triadobatrachus)),Doleserpeton,Gerobatrachus,Platyrhinops),Greererpeton,

(Branchiosauridae,Micromelerpetontidae),Ecolsonia,Acheloma,Eryops,Micropholis,Eoscop

us,Tambachia,Amphibamus));

Appendix 3.2  Extra Summary Data

Extra Summary Table for Fossil Taxa data

Identifier Tax
Mean 

RF
SD RF SE RF

Max 

RF

Min 

RF

Mean 

PD
SD PD SE PD Max PD Min PD

Mean diff 

MPTs

SD diff 

MPTs

SE diff 

MPTs

Max 

diff 

MPTs

Min 

diff 

MPTs

adephaga 17 5.298 5.479 1.329 23.808 2.417 21.413 18.668 4.528 89.471 10.994 49.412 180.000 43.656 736 -16

adnet 7 6.896 6.562 2.480 15.856 0.000 18.701 16.081 6.078 40.965 0.000 36.429 58.731 22.198 138 0

ahyong06 12 4.275 3.064 0.884 9.571 1.000 12.012 7.053 2.036 23.930 3.536 11.250 31.157 8.994 109 -2

apesteg 6 1.667 4.082 1.667 10.000 0.000 4.387 10.746 4.387 26.321 0.000 -0.500 0.548 0.224 0 -1

arango7 4 38.272 18.624 9.312 52.551 10.875 173.951 97.906 48.953 259.584 33.046 1697.000 1511.345 755.673 2968 -16

archostemata 8 6.333 4.113 1.454 11.667 2.000 13.948 7.137 2.523 23.373 6.633 1.250 1.753 0.620 5 0

asher03 39 9.312 15.193 2.433 57.387 0.000 36.614 50.947 8.158 176.385 0.000 44.923 123.377 19.756 660 -4

babot 13 10.183 5.342 1.482 17.143 2.000 23.082 9.838 2.729 37.740 6.325 4.846 6.135 1.702 20 0

beard 34 3.623 3.365 0.577 13.000 0.000 12.608 10.657 1.828 38.544 0.000 1.118 11.594 1.988 57 -7

bisconti 22 3.018 1.528 0.326 6.333 1.333 11.454 4.999 1.066 23.508 5.333 1.273 4.723 1.007 18 -4

blag9 7 0.714 1.496 0.565 4.000 0.000 2.176 4.661 1.762 12.490 0.000 0.286 0.756 0.286 2 0

blago4 22 13.638 14.382 3.066 44.421 0.000 45.494 46.696 9.956 155.664 0.000 27.455 55.340 11.799 195 -4

bloch 16 3.971 3.742 0.936 12.000 0.000 8.918 7.155 1.789 23.130 0.000 3.125 3.344 0.836 10 0

boess 17 1.739 1.197 0.290 5.250 0.000 6.595 3.486 0.846 13.477 0.000 -7.824 8.017 1.945 7 -18

bouetel 15 1.969 2.499 0.645 10.000 0.143 5.214 5.083 1.313 19.780 0.527 -6.467 13.384 3.456 24 -24

bourdon 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

brochu 21 7.427 0.721 0.157 8.907 6.125 18.555 1.262 0.275 20.927 16.199 -61.762 191.148 41.712 432 -384

claeson 12 15.089 11.019 3.181 28.121 2.667 53.429 35.243 10.174 95.104 12.894 1114.500 1417.954 409.328 4176 0

clarke9 5 5.510 7.173 3.208 18.216 1.333 22.510 22.580 10.098 62.308 8.743 20.800 48.757 21.805 108 -2

deng 26 2.123 5.808 1.139 30.000 0.000 7.903 18.704 3.668 94.446 0.000 -22.077 11.913 2.336 0 -36

dietz 6 4.768 4.267 1.742 10.857 0.000 10.456 8.185 3.341 20.672 0.000 3.500 5.394 2.202 13 0

diogo7 7 1.683 1.440 0.544 4.625 0.313 12.416 13.793 5.213 42.500 2.050 18.286 48.379 18.286 128 0

diogo8 5 2.333 0.816 0.365 3.333 1.500 11.623 2.530 1.132 14.566 8.890 0.000 0.000 0.000 0 0

evanidae 16 4.841 2.835 0.709 10.667 1.000 11.329 5.465 1.366 20.740 3.082 7.438 16.621 4.155 54 -4

fika 10 10.390 6.595 2.086 22.314 3.224 27.863 12.642 3.998 47.304 13.210 549.000 923.955 292.180 1932 -282

fordyce 15 2.267 1.580 0.408 5.000 0.000 5.847 3.531 0.912 10.816 0.000 0.800 1.320 0.341 5 0

fried08 5 3.133 4.134 1.849 10.000 0.000 7.375 9.232 4.129 22.450 0.000 0.400 2.074 0.927 4 -1

gaffney11 27 2.309 1.383 0.266 6.333 0.000 10.663 5.942 1.143 30.512 0.000 0.407 0.971 0.187 4 0

garwood 3 5.675 1.217 0.703 6.896 4.462 18.448 3.250 1.877 20.515 14.702 -57.667 50.063 28.904 0 -90

gaudin 8 2.583 3.445 1.218 8.000 0.000 5.460 7.114 2.515 15.362 0.000 -0.500 0.756 0.267 1 -1
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gilbert 16 8.002 8.630 2.157 26.000 0.000 16.062 16.582 4.145 57.649 0.000 -2.813 5.332 1.333 10 -8

greenwood 5 6.765 4.692 2.098 12.857 1.500 17.416 11.609 5.191 34.001 5.885 13.000 17.649 7.893 41 0

guanghui 4 4.500 3.786 1.893 10.000 2.000 8.088 4.676 2.338 14.941 5.099 0.250 0.500 0.250 1 0

hill 59 18.499 16.277 2.119 60.300 0.000 79.676 69.999 9.113 299.862 0.000 61.932 84.736 11.032 367 -4

hilton 5 2.333 2.285 1.022 6.000 0.000 5.767 3.678 1.645 8.515 0.000 -0.200 0.837 0.374 1 -1

hospital 5 6.300 3.384 1.513 11.500 4.000 12.313 6.475 2.896 22.130 7.874 0.600 1.342 0.600 3 0

hurley 22 1.496 0.912 0.194 4.452 0.000 5.995 3.454 0.736 16.473 0.000 -5.727 16.977 3.619 34 -24

hutchinson 11 1.431 2.660 0.802 7.385 0.000 5.455 9.627 2.903 27.293 0.000 -5.364 30.303 9.137 76 -33

joyce7 40 7.295 7.071 1.118 38.164 1.750 32.970 23.511 3.717 135.702 10.608 57.075 132.690 20.980 540 -18

kara11 22 8.716 7.155 1.526 26.100 2.000 32.442 27.660 5.897 101.945 8.246 2.909 5.318 1.134 19 0

karasawa 4 7.636 6.917 3.459 16.143 2.000 27.577 15.415 7.707 46.767 15.100 5.000 6.000 3.000 12 0

klug 11 5.742 1.430 0.431 7.617 4.000 15.165 2.311 0.697 18.937 12.374 0.727 11.909 3.591 31 -11

kparrots 11 6.887 4.761 1.435 15.857 1.000 18.233 10.367 3.126 32.413 3.536 39.000 49.520 14.931 132 -4

ksepka 14 4.298 2.366 0.632 8.667 0.000 14.859 7.491 2.002 28.648 0.000 0.429 0.938 0.251 3 0

lambert_seals 9 3.932 2.863 0.954 9.000 0.000 8.859 5.601 1.867 14.906 0.000 4.889 4.702 1.567 14 0

lambert13 21 4.584 4.220 0.921 13.700 1.000 12.715 10.627 2.319 36.816 3.536 2.810 5.354 1.168 16 -3

legg 98 7.380 4.850 0.490 28.667 1.333 52.794 31.540 3.186 173.264 16.147 0.388 1.842 0.186 12 -2

li07 10 2.600 4.018 1.271 14.000 0.667 7.922 4.956 1.567 19.131 5.055 0.600 4.006 1.267 8 -4

lopezRhizo 32 10.115 6.618 1.170 27.403 3.721 27.585 16.823 2.974 66.996 13.308 216.250 684.580 121.018 2838 -240

luo11 59 8.360 7.101 0.924 25.500 1.000 37.783 26.655 3.470 96.703 8.246 14.492 28.352 3.691 126 -4

manos 5 6.871 4.705 2.104 14.000 2.857 16.944 8.129 3.636 28.926 9.215 -10.000 5.385 2.408 -3 -15

mayr05 6 0.306 0.427 0.174 1.000 0.000 1.164 1.779 0.726 4.472 0.000 -9.833 4.215 1.721 -2 -13

mayr11 5 3.100 3.286 1.470 8.500 1.000 8.841 7.688 3.438 20.330 3.317 2.200 0.447 0.200 3 2

mayrea10 4 18.460 13.035 6.518 30.765 3.111 46.074 31.218 15.609 73.053 12.867 895.500 1227.092 613.546 2688 -12

mihalovic 7 1.238 1.007 0.381 2.500 0.000 4.984 4.002 1.513 9.659 0.000 -0.857 2.795 1.056 4 -4

oleary 39 10.195 10.996 1.761 37.000 0.000 45.343 49.768 7.969 168.820 0.000 0.795 1.128 0.181 4 0

perrichot09 7 1.920 0.780 0.295 2.889 0.444 4.694 1.644 0.621 6.118 1.412 -3.714 9.827 3.714 12 -17

pines 40 65.888 25.651 4.056 81.764 0.000 199.127 86.893 13.739 307.920 0.000 1458.150 1914.778 302.753 4999 0

poyato 17 4.177 2.197 0.533 9.793 1.889 11.046 4.294 1.042 21.906 7.038 21.176 81.791 19.837 330 -15

pradel 15 2.513 3.230 0.834 10.800 0.000 6.267 7.221 1.864 21.271 0.000 0.800 1.521 0.393 4 0

prideaux 17 2.094 2.225 0.540 7.600 0.000 11.221 11.124 2.698 39.202 0.000 0.294 0.985 0.239 4 0

puertolas 39 3.273 1.778 0.285 10.500 0.833 16.097 5.776 0.925 37.041 5.949 10.487 48.726 7.802 258 -24

sigwart 26 15.153 9.042 1.773 41.407 4.857 40.054 26.776 5.251 124.875 13.411 64.769 117.070 22.959 425 -12

simm08 5 1.600 1.673 0.748 4.000 0.000 5.875 5.817 2.601 13.126 0.000 1.800 1.643 0.735 3 0

skutchas 11 9.101 8.432 2.542 23.500 0.000 16.210 13.299 4.010 36.889 0.000 12.091 20.447 6.165 53 -5

smith10 8 4.565 8.422 2.978 25.000 0.000 20.645 29.108 10.291 85.157 0.000 0.375 6.232 2.203 15 -4

smith11 6 7.347 13.893 5.672 35.241 0.000 30.602 54.774 22.362 139.595 0.000 7.000 27.408 11.189 60 -21

spaul 35 7.968 6.010 1.016 20.776 1.250 39.135 29.098 4.918 91.198 7.814 44.286 89.303 15.095 497 -1

trueb 12 1.435 1.791 0.517 4.889 0.000 4.085 5.158 1.489 14.397 0.000 2.083 5.282 1.525 16 -1

vea 8 3.663 3.852 1.362 13.177 2.058 15.215 9.599 3.394 38.827 10.221 680.875 588.815 208.178 1550 -1

vlihel 14 1.730 3.390 0.906 12.185 0.000 4.816 6.921 1.850 22.691 0.000 -475.429 113.382 30.303 -240 -596

waterfowl 10 5.224 5.986 1.893 16.085 0.000 18.021 20.195 6.386 51.989 0.000 26.800 145.031 45.863 342 -112

whitlock10 4 3.558 1.064 0.532 5.143 2.889 10.972 2.735 1.367 14.832 8.674 2.750 2.217 1.109 5 0

worthy 11 1.916 1.987 0.599 6.000 0.000 5.999 5.545 1.672 16.108 0.000 0.273 1.849 0.557 4 -2

zhang6 19 2.604 3.187 0.731 9.259 0.000 8.240 9.455 2.169 26.174 0.000 6.895 10.060 2.308 31 -2
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Extra Summary Table for Extant Taxa Data

Identifier Tax
Mean 

RF
SD RF SE RF

Max 

RF

Min 

RF

Mean 

PD
SD PD SE PD Max PD Min PD

Mean 

diff 

MPTs

SD diff 

MPTs

SE diff 

MPTs

Max 

diff 

MPTs

Min 

diff 

MPTs

adephaga 30 7.045 5.787 1.057 24.051 2.167 25.514 14.276 2.606 60.912 10.908 153.733 421.752 77.001 1664 -12

adnet 16 4.875 4.641 1.160 16.000 0.000 14.127 10.616 2.654 36.056 0.000 2.188 3.834 0.958 14 0

ahyong06 15 4.542 2.906 0.750 12.444 0.000 13.387 6.395 1.651 26.712 0.000 1.133 4.051 1.046 10 -3

apesteg 12 4.500 5.402 1.559 16.000 0.000 8.981 8.328 2.404 24.844 0.000 1.667 2.640 0.762 7 -1

arango7 64 24.975 20.035 2.504 70.400 6.875 96.312 88.748 11.093 280.286 24.409 467.125 850.837 106.355 2968 -16

archostemata 16 6.219 3.167 0.792 13.000 2.000 15.496 6.827 1.707 33.246 6.633 0.688 1.740 0.435 7 0

asher03 28 12.266 15.075 2.849 45.564 0.000 45.862 53.586 10.127 162.240 0.000 64.607 149.796 28.309 724 -4

babot 9 8.994 4.196 1.399 18.000 4.000 21.509 9.498 3.166 41.399 11.662 4.111 3.756 1.252 11 0

beard 4 3.500 5.030 2.515 10.667 0.000 13.952 19.317 9.658 40.958 0.000 -4.000 1.414 0.707 -2 -5

bisconti 12 2.779 1.045 0.302 5.000 1.333 10.424 3.346 0.966 18.163 4.634 -0.500 3.631 1.048 8 -4

blag9 10 1.117 1.863 0.589 5.000 0.000 2.791 4.411 1.395 11.263 0.000 -0.200 1.033 0.327 2 -1

blago4 17 14.310 15.082 3.658 44.800 0.000 45.885 47.384 11.492 149.478 0.000 28.824 68.521 16.619 244 -7

bloch 4 0.500 1.000 0.500 2.000 0.000 1.785 3.571 1.785 7.141 0.000 0.000 0.000 0.000 0 0

boess 5 1.460 0.464 0.207 2.000 0.857 6.366 2.716 1.215 10.569 3.527 -8.400 7.503 3.356 0 -18

bouetel 7 0.371 0.277 0.105 0.714 0.000 1.349 1.003 0.379 2.589 0.000 -9.143 8.859 3.348 0 -20

bourdon 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

brochu10hornedcrocs 15 7.136 1.951 0.504 12.331 5.519 18.843 4.887 1.262 31.891 15.484 -4.533 264.445 68.279 640 -324

claeson 27 9.242 8.462 1.628 29.925 2.556 33.036 26.077 5.019 99.569 12.003 255.296 680.699 131.001 2304 -15

clarke9 42 6.050 5.338 0.824 19.090 0.667 22.405 14.845 2.291 54.801 5.228 69.857 144.314 22.268 456 0

deng 5 1.257 1.745 0.780 4.000 0.000 3.483 4.675 2.091 10.770 0.000 -21.600 13.428 6.005 -7 -34

dietz 10 3.652 3.049 0.964 7.667 0.000 8.195 6.560 2.074 15.095 0.000 2.900 3.213 1.016 9 0

diogo7 73 4.242 4.357 0.510 19.725 1.125 21.768 16.817 1.968 67.758 6.914 77.370 201.753 23.613 864 -112

diogo8 64 3.700 2.339 0.292 12.712 0.667 18.355 10.482 1.310 52.145 3.859 9.656 22.716 2.839 120 -8

evanidae 5 1.800 1.804 0.807 4.667 0.000 4.495 3.665 1.639 9.774 0.000 0.000 0.000 0.000 0 0

fordyce 7 2.524 0.766 0.290 4.000 2.000 7.200 1.008 0.381 8.944 6.325 0.714 0.756 0.286 2 0

fried08 13 3.388 2.850 0.790 7.429 0.000 7.637 5.819 1.614 15.227 0.000 3.846 7.570 2.100 26 -1

gaffney11 9 2.900 1.347 0.449 5.500 1.000 13.472 5.968 1.989 23.436 4.123 0.778 1.302 0.434 3 -1

garwood 40 8.066 2.306 0.365 15.514 4.688 24.559 3.341 0.528 34.005 18.076 -9.175 47.148 7.455 192 -83

gaudin 8 3.000 2.765 0.977 7.000 0.000 6.315 5.828 2.061 13.982 0.000 0.625 1.188 0.420 2 -1

gilbert 7 23.357 9.949 3.760 28.500 1.000 43.998 18.807 7.109 58.436 3.240 -4.000 4.690 1.773 6 -8

greenwood 21 9.183 5.522 1.205 17.434 1.500 21.079 12.170 2.656 46.658 5.885 8.476 15.683 3.422 49 -2

guanghui 11 3.091 4.425 1.334 13.333 0.000 5.561 6.754 2.036 18.646 0.000 0.455 0.820 0.247 2 0

hill 20 7.499 11.536 2.580 35.632 0.333 32.852 44.493 9.949 135.448 2.068 25.150 52.797 11.806 209 0

hilton 12 3.621 3.065 0.885 9.333 0.000 9.217 7.232 2.088 21.325 0.000 2.667 4.979 1.437 17 0

hospital 16 7.286 4.061 1.015 13.556 2.000 16.371 8.055 2.014 29.643 6.164 2.938 3.991 0.998 12 0

hurley 6 1.805 0.744 0.304 3.000 0.929 6.523 2.007 0.819 9.436 4.080 10.500 13.323 5.439 28 -8

hutchinson 24 2.349 5.117 1.044 19.692 0.000 6.863 12.137 2.477 43.543 0.000 15.250 52.715 10.760 251 -20

joyce7 22 7.312 6.217 1.326 20.333 2.000 36.245 28.383 6.051 105.489 11.356 24.000 67.012 14.287 291 -18

kara11 14 8.369 7.292 1.949 21.000 2.000 36.470 36.022 9.627 108.595 9.950 1.071 1.817 0.486 6 0

karasawa 40 2.292 2.627 0.415 14.840 0.000 12.592 11.104 1.756 52.299 0.000 1.750 7.605 1.202 48 -1

klug 18 7.525 1.521 0.359 10.688 5.750 18.164 2.373 0.559 22.776 15.145 16.889 13.962 3.291 48 0

kparrots 16 3.854 4.493 1.123 14.500 0.667 10.077 8.611 2.153 30.219 2.357 2.813 5.741 1.435 18 -3
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ksepka 13 5.769 3.510 0.974 15.333 2.000 18.281 8.816 2.445 43.205 7.071 2.462 6.359 1.764 23 0

lambert13 6 7.079 5.667 2.313 13.714 1.500 19.018 13.836 5.648 36.879 6.036 22.500 39.348 16.064 101 0

lambert_seals 6 0.167 0.408 0.167 1.000 0.000 0.553 1.354 0.553 3.317 0.000 -0.833 0.753 0.307 0 -2

legg 74 8.053 4.707 0.547 27.556 3.333 49.599 27.917 3.245 226.456 27.113 0.162 0.844 0.098 6 0

li07 23 2.186 4.233 0.883 21.000 0.000 7.215 7.565 1.577 34.970 0.000 2.783 6.842 1.427 24 -4

lopezRhizo 6 4.551 0.629 0.257 5.758 3.902 14.389 0.959 0.392 16.234 13.415 0.000 0.000 0.000 0 0

luo11 11 18.960 9.871 2.976 31.778 2.667 71.396 31.215 9.412 99.665 15.500 18.091 19.917 6.005 54 0

manos 21 4.045 1.443 0.315 7.333 1.556 11.040 3.578 0.781 22.880 5.967 2.714 13.020 2.841 35 -15

mayr05 12 1.799 1.969 0.568 5.419 0.000 4.761 4.794 1.384 13.213 0.000 6.750 26.465 7.640 72 -12

mayr11 19 4.229 6.859 1.574 19.273 0.000 9.985 15.240 3.496 45.562 0.000 1.684 3.233 0.742 11 -1

mayrea10 29 18.611 13.443 2.496 33.566 0.286 44.349 29.790 5.532 79.076 1.278 644.207 1225.175 227.509 4979 -18

mihalovic 19 6.226 5.183 1.189 13.783 0.000 16.063 12.769 2.929 39.738 0.000 12.211 17.164 3.938 46 -6

perrichot09 9 2.796 0.947 0.316 4.667 1.733 6.478 1.527 0.509 8.860 4.647 -14.000 6.384 2.128 -2 -22

pines 11 75.571 6.258 1.887 82.254 60.137 229.889 33.181 10.004 273.850 181.537 2001.727 2386.223 719.473 4999 4

poyato 9 7.092 4.558 1.519 15.277 3.333 16.272 9.425 3.142 35.570 9.825 99.333 205.256 68.419 624 0

pradel 3 0.333 0.577 0.333 1.000 0.000 0.943 1.633 0.943 2.828 0.000 0.333 0.577 0.333 1 0

prideaux 17 2.853 2.691 0.653 8.000 0.000 14.713 12.342 2.993 37.108 0.000 0.471 1.007 0.244 3 0

puertolas 11 2.886 0.539 0.163 4.343 2.333 14.426 1.645 0.496 18.609 12.575 4.545 12.136 3.659 40 0

sigwart 7 21.238 9.876 3.733 35.921 10.160 52.821 27.872 10.534 98.741 20.346 119.571 97.872 36.992 274 4

simm08 23 1.510 1.928 0.402 5.200 0.000 5.033 6.184 1.289 16.305 0.000 1.609 2.311 0.482 7 0

skutchas 10 6.313 5.460 1.727 14.647 0.000 12.567 8.702 2.752 23.604 0.000 5.700 12.230 3.867 28 -4

smith10 50 1.835 3.057 0.432 17.333 0.000 9.614 14.681 2.076 76.286 0.000 1.080 6.321 0.894 36 -3

smith11 52 9.910 10.409 1.444 32.141 0.000 44.865 46.427 6.438 132.136 0.000 54.769 115.507 16.018 514 -24

spaul 15 8.394 7.719 1.993 27.796 1.250 33.594 28.931 7.470 96.556 8.376 207.267 699.942 180.724 2734 0

trueb 8 1.146 2.274 0.804 6.500 0.000 3.574 6.723 2.377 19.276 0.000 0.750 2.188 0.773 6 -1

vea 38 3.785 1.982 0.322 8.745 1.082 15.713 6.108 0.991 32.166 5.627 187.526 648.861 105.259 2532 -167

vlihel 14 3.428 3.701 0.989 9.294 0.333 11.621 11.653 3.114 29.687 1.227 -189.571 602.219 160.950 1182 -598

waterfowl 48 8.018 8.902 1.285 35.000 0.000 30.385 31.152 4.496 114.952 0.000 65.875 200.718 28.971 704 -121

whitlock10 22 2.346 1.885 0.402 7.333 0.000 7.429 5.177 1.104 20.478 0.000 0.773 4.859 1.036 15 -4

worthy 14 0.143 0.363 0.097 1.000 0.000 0.655 1.664 0.445 4.583 0.000 -0.214 1.626 0.434 3 -2

zhang6 11 0.766 2.230 0.672 7.429 0.000 2.386 6.113 1.843 19.902 0.000 2.000 7.746 2.335 25 -2

fika 29 15.111 11.370 2.111 50.118 2.327 36.878 27.963 5.193 155.221 10.111 958.966 928.837 172.481 1932 -376

oleary 46 8.401 11.029 1.626 53.333 0.000 36.985 44.349 6.539 167.573 0.000 1.130 1.881 0.277 8 0
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Appendix 5.1  The data matrix used for figure 5.1 

xread 'Data derived from Andres et al 2010 JVP' 
34 18
Ornithosuchus_longidens 00000?000?000000000??0000000000000
Herrerasaurus_ischigualastensis 0000000010000000000000000000000000
Scleromochlus_taylori ??0?0??0?11????0000000?00?00????0?
Preondactylus_buffarinii 0000?01000?100?0??0000010010010000
Eudimorphodon_ranzii 00000010001001?00?0012010011110001
Austriadactytlus_cristatus 0?000010001000?0??????01011011000?
Peteinosaurus_zambelli ??????????????????0?1?0100??010???
Dimorphodon_macronyx 10000010000100?00?0010000010001000
Campylognathoides_liasicus 0000101000100100010012100000001101
Rhamphorhynchus_muensteri 0100111011100111011111101101221111
Dorygnathus_banthensis 0100111011100110011011101101021111
Scaphognathus_crassirostris 0100101010100100011010100100021110
Sordes_pilosus 0100101000101100011010100000031110
Jeholopterus_ningchengensis 1?211001?01????01000?0?00000031110
Dendrorhynchoides_curvidentatus 1?21?00?????????1????0?0000?031???
Batrachognathus_volans 1?211001?01????0100010?00000031110
Anurognathus_ammoni 1?21100???1?1?00100010?00000031110
Pterodactyloidea 01001011?10?1101011110100000031100
; 
proc/;

Appendix 5.2 Script to implement selective-permutations ' mher.run '

macro= ;

resettime ; 

if ( argnumber )

   if ( eqstring [ %1 start ] ) 

      macro - ; /* turn off macro in order to setup enough memory below */

      macro *10 (1000 + (4*root) + ( root*(nchar+1) )) ;

      macro [ 60000 ; 

      macro=; 

      var:
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         started 

         matrix [ root (nchar+1) ] i ; /* store in memory current matrix */

      set started 773 * nchar * ntax ; 

      loop 0 ntax

         loop 0 nchar

            set matrix[ #1 #2] states[ #2 #1] ;

            stop

         stop

      set i time ; 

      quote Initialization took '/.0i' sec.; 

      proc/; 

      end 

   end 

var:

  started matrix [ root (nchar+1) ] i j k

  nonmiss[ root ] rlist [ root ] cur seen reverse[ root ] ;

if ( 'started' != ( 773 * nchar * ntax ) )

   errmsg You havent initialized!!;  /* Sincere thanks to Pablo Goloboff */

   end 

report - ; 

loop 0 nchar 

   progress #1 nchar Scrambling ; 

   set j 0 ;

   loop 0 ntax
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      if ( states[ #1 #2] == missing ) continue ; end

      set nonmiss[ 'j' ] #2 ;

      set reverse [ #2 ] 'j' ; 

      set j ++ ;

      stop

   if ( !'j' ) continue ; end  /* if matrix has no non-missing data */

   set rlist randomlist [ 'j' ] ;

   set j -- ;

   loop 0 'j'

      set cur 'matrix [ 'nonmiss [ 'rlist [ #2 ]' ]' #1 ]' ;

      xread =! #1

         'nonmiss [ #2 ]' $bitset 'cur' ;

      stop

   stop

progress/;

set j time ; 

quote Permuting took '/.0j' sec.; 

report= ;

xread == ;

proc/;
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Appendix 5.3 Script to calculate MHER in one command  'get-mher.sh'

Pre-requisites: 

• a unix operating system (Linux/Mac), 

• a reasonably new version of TNT installed that can be called from the terminal by typing 'tnt'. The 

script relies on it being called tnt, so if it is named anything different it will NOT work. 'mher.run' 
utilizes some of the newer features in TNT so it will NOT work with older pre-2011 versions of TNT. 

Instructions for use: 

• place 'get-mher.sh' , 'reps.txt' , and 'mher.run' in the same directory as the .tnt formatted cladistic 

data matrix you would like to test. 

• Make sure your .tnt data file ends with procedure /; Anything else like proc /; or p /; 

despite being 'valid' TNT shorthand will NOT work with this get-mher.sh bash script.

• 'reps.txt' contains instructions to perform 1000 selective-permutations, which are needed to calculate 

the modified-MEANNS. I have deliberately hardcoded-in 1000 replications, to prevent people from 
being tempted to perform a statistically insufficient number of replications e.g. 10 or 100. However, if 
you do want to change the number of replications to more or less, this is the file that needs to be 
changed. 

• For ease-of-use and forking, this bundle of files ( 'reps.txt' , 'mher.run' & 'get-mher.sh' ) used to 

calculate MHER are provided online on github at:  

https://github.com/rossmounce/thesis_ESM/tree/master/MHER

The bash script itself including license notice and comments:

#!/bin/bash

#This is a bash script to perform the modified Homoplasy Excess Ratio
#on a dataset of your choice passed to this script as an argument
#You also need the files 'mher.run' AND 'reps.txt' in the same dir

#The MIT License (MIT)

#Copyright (C) 2013 Ross Mounce

#Permission is hereby granted, free of charge, to any person obtaining a copy of 
this software and associated documentation files (the "Software"), to deal in 
the Software without restriction, including without limitation the rights to 
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 
the Software, and to permit persons to whom the Software is furnished to do so, 
subject to the following conditions:

#The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
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CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#DATA FILE TO BE TESTED MUST END with 'procedure /;'
#this makes a copy of the data file with 
#additional instructions appended to tmp.tnt
sed 's@procedure \/;@log temp1.log; minmax\*; sect:slack 40; xmult=level10; 
log\/; log output_reps.log; mher start; proc reps.txt; quit;@' $1 > tmp.tnt

#ensure that all inapplicables have been converted to ? marks
sed -i 's/-/?/g' tmp.tnt;
#put back hyphens in ccode block if they were taken out by the above command

sed -i 's/?\[\//-\[\//g' tmp.tnt;

#this will do everything then quit. output hardcoded to output_reps.log
#this step may take a LONG time 
#perhaps hours depending on the size of your data
tnt proc tmp.tnt; 

printf "MEANNS calculations in TNT are complete \n"

#hacky shorter way of gettings the modified-MEANNS
grep 'Best score:' output_reps.log | awk '{sum+=$3} END { print sum/NR}' > 
mns.tmp

#get MINL, temp1 is the first logfile output from TNT
head -1 temp1.log | sed 's/\// /g' | cut -d ' ' -f 8 > minl.tmp
#get L, L=tmp3.tmp, MINL=tmp2.tmp
tail -1 temp1.log | sed 's/\./ /g' | cut -d ' ' -f 3 > l.tmp

#print results
printf "MINL = `cat minl.tmp` \n"
printf "L = `cat l.tmp` \n"
printf "Modified-MEANNS = `cat mns.tmp` \n"
paste mns.tmp minl.tmp l.tmp | awk '{o = ($1-$3)/($1-$2)} END { print "Modified-
HER = " o }'

#clean up temporary files but leave behind permuted matrix log file
rm temp1.log;
rm tmp.tnt; 
rm minl.tmp; 
rm l.tmp;
rm mns.tmp;

Appendix 6.1 Demonstrating grep

Sample output from the command 

find . -name "*.txt" -print0 | xargs -0 -n 1000 -P 3 grep -iR -m1 -A 4 -B 4 "paup[^heary]" 

as applied to the Zootaxa corpus. The four lines of additional context above and below 

make it very easy to classify the usage of PAUP* with certainty in 99% of cases as either 

in the context of a molecular study, or a morphological study. The first two given here are 

clearly molecular whilst the third is clearly morphology-based.
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./2011/zt02768p031.txt-Phylogenetic analysis. Divergence and polymorphism in cox1 sequences

./2011/zt02768p031.txt-Cox1 sequences from complete mitochondrial genomes of Halisarca harmelini (this 
study) Halisarca dujardini

./2011/zt02768p031.txt-from White Sea (NC_010212) and Chondrilla aff. nucula (NC_010208) were aligned 
with partial cox1 sequences

./2011/zt02768p031.txt-of Halisarca dujardini from North Sea (this study) and Chondrilla nucula (Duran & 
Rützler 2006) using ClustalW

./2011/zt02768p031.txt:2.0.11 (Larkin et al. 2007). The alignment was trimmed manually to remove terminal 
gaps associated with incomplete sequences. PAUP*v.4b10 was used to build a neighbor-joining tree based 
on uncorrected “p” distances.

./2011/zt02768p031.txt-Phylogenetic analysis of demosponge relationships. Amino-acid sequences for 
Cantharellus cibarius

./2011/zt02768p031.txt-mtDNA were downloaded from 
http://megasun.bch.umontreal.ca/People/lang/FMGP/proteins.html; those for Capsaspora owczarzaki mtDNA 
were provided by Franz Lang (Université de Montréal). Other sequences were derived

./2011/zt02768p031.txt-from the GenBank files: Agelas schmidti EU237475, Amphimedon compressa 
NC_010201, Amphimedon queenslandica NC_008944, Aplysina fulva NC_010203, Axinella corrugata 
NC_006894, Chondrilla aff. nucula

./2011/zt02768p031.txt-NC_010208, Callyspongia plicifera NC_010206, Cinachyrella kuekenthali EU237479, 
Ectyoplasia ferox

--

./2011/zt02767p040.txt-observed among the O. ishikawae taxa. Gap sites between the 16S units of O. 
ishikawae and the other taxa were

./2011/zt02767p040.txt-treated as missing data in the following analyses. Uncorrected p values (nucleotide 
changes per compared sequence

./2011/zt02767p040.txt-length) between taxa were calculated from the resultant alignments. The phylogeny 
was analyzed by the maximum

./2011/zt02767p040.txt-likelihood (ML) and maximum parsimony (MP) methods. ML and MP analyses were 
performed using

./2011/zt02767p040.txt:TREEFINDER ver. Oct. 2008 (Jobb 2008) and PAUP 4.10b (Swofford 2003), 
respectively. For the ML analysis,

./2011/zt02767p040.txt-we applied the J2 (Rodriguez et al. 1990) + gamma (8 categories and shape 
parameter = 0.32) substitution model,

./2011/zt02767p040.txt-which was estimated using Akaike’s information criterion (AIC) implemented in 
KAKUSAN3 software (Tanabe

./2011/zt02767p040.txt-2007). The robustness of the resultant ML and MP trees were evaluated using 
bootstrap probabilities calculated

./2011/zt02767p040.txt-from nonparametric bootstrap analyses with 500 pseudoreplications.

--

./2011/zt02923p047.txt-The character matrix was edited (Table 2) employing the software Nexus Data Editor 

157



v0.5.0 (Page 2001a). All

./2011/zt02923p047.txt-characters (35 binary and 5 multistate) were set as unordered and equally weighted; 
the multistate characters were

./2011/zt02923p047.txt-interpreted as “uncertainty”, and the gaps were treated as “missing”. Trees were 
rooted by the outgroup method.

./2011/zt02923p047.txt:We carried out a parsimony analysis (Exhaustive Search) in PAUP 4.0b.10 (Swofford 
1998–2002), using the

./2011/zt02923p047.txt-default settings of the software. The MaxTrees limit was set to automatically increase 
from the initial setting. The

./2011/zt02923p047.txt-resulting trees were examined with TreeView 1.6.6 (Page 2001b) and TreeGraph2 
(Stöver & Müller 2010).

./2011/zt02923p047.txt-

./2011/zt02923p047.txt-30 · Zootaxa 2923 2011 Magnolia Press

Appendix 6.2 Demonstrating search queries

Search terms and corresponding URLs used to generate the results presented in Table 4:

MAS:  PLOS ONE, 2006-2009, phylip

http://academic.research.microsoft.com/Detail?searchtype=4&query=year%3E
%3d2006%20year%3C%3d2009%20jour%3a%28plos%20one%29%20phylip

MS:  Zootaxa, (all years), phylogeny  

[hits published later than 2013-07-11, outside the corpus scope were manually removed 
from the count after the search results were returned]

http://www.mendeley.com/research-papers/search/?query=phylogeny+AND+published_in
%3AZootaxa

WoK:  Topic=(phylogen*) AND Publication Name=(plos one) Timespan=2006-2009. 
Search language=Auto 

http://apps.webofknowledge.com/summary.do?
SID=T2FmvrZ1heYnZ9rNrlG&product=UA&qid=1&search_mode=GeneralSearch

Scopus:  query:   ALL(phylogeny) AND SRCTITLE(plos one) AND PUBYEAR > 2005 AND 
PUBYEAR < 2010

http://www.scopus.com/results/results.url?sort=plf-
f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3f%21%22*
%24&sid=7053A17CC766D7A14AC3E36512AC1E40.ZmAySxCHIBxxTXbnsoe5w
%3a80&sot=b&sdt=b&sl=75&s=ALL%28phylogeny%29+AND+SRCTITLE%28PLOS+ONE
%29+AND+PUBYEAR+%3E+2005+AND+PUBYEAR+
%3C+2010&origin=searchbasic&txGid=7053A17CC766D7A14AC3E36512AC1E40.ZmAy
SxCHIBxxTXbnsoe5w%3a8 
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http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3F!
http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3F!
http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3F!
http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3F!
http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=phylogeny&searchTerms=PLOS+ONE%3F!
http://apps.webofknowledge.com/summary.do?SID=T2FmvrZ1heYnZ9rNrlG%E2%88%8Fuct=UA&qid=1&search_mode=GeneralSearch
http://apps.webofknowledge.com/summary.do?SID=T2FmvrZ1heYnZ9rNrlG%E2%88%8Fuct=UA&qid=1&search_mode=GeneralSearch
http://www.mendeley.com/research-papers/search/?query=phylogeny+AND+published_in%3AZootaxa
http://www.mendeley.com/research-papers/search/?query=phylogeny+AND+published_in%3AZootaxa
http://academic.research.microsoft.com/Detail?searchtype=4&query=year%3E%3D2006%20year%3C%3D2009%20jour%3A(plos%20one)%20phylip
http://academic.research.microsoft.com/Detail?searchtype=4&query=year%3E%3D2006%20year%3C%3D2009%20jour%3A(plos%20one)%20phylip


GS: with all of the words: phylogeny , Return articles published in: PLOS ONE, Return 
articles dated between: 2006 - 2009

http://scholar.google.co.uk/scholar?
as_q=phylogeny&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=&as_publication
=PLOS+ONE&as_ylo=2006&as_yhi=2009&btnG=&hl=en&as_sdt=0%2C5

Appendix 6.3 Google Scholar finds IR copies

Screenshot of the search results returned by GS for the 'nona' search which anecdotally 
provide evidence that GS generally only finds terms in the full-text of the paper if the full-
text of the paper has been optionally and additionally deposited by the authors on 
'academic web addresses' that are crawled by Google. In this example we can see many 
examples of this e.g. Huber's 2007 Zootaxa paper which is freely available from the 
University of Bonn repository here: http://www.uni-
bonn.de/~bhuber1/PDFs/Huber_2007_Anansus_Nyikoa.pdf  
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Appendix 7.1 Phylogenetic position of Diania challenged

This section was co-authored with Matthew A. Wills and published (Mounce & Wills, 2011)  

Formatting has been changed to avoid copyright infringement with the published version

Liu et al. (2011a) describe a new and remarkable fossil, Diania cactiformis. This animal 

apparently combined the soft trunk of lobopodians (a group including the extant velvet 

worms in addition to many Palaeozoic genera) with the jointed limbs that typify arthropods.

They go on to promote Diania as the immediate sister group to the arthropods, and 

conjecture that sclerotized and jointed limbs may therefore have evolved before articulated 

trunk tergites in the immediate arthropod stem. The data published by Liu et al. (2011a) do 

not unambiguously support these conclusions; rather, we believe that Diania probably 

belongs within an unresolved clade or paraphyletic grade of lobopodians.  Without taking 

issue with the interpretation of Diania offered by Liu et al. (2011a), or of the manner in 

which they coded their characters, we were nonetheless unable to derive their cladogram 

optimally from the data published. Moreover, we could not 

replicate their results using any other plausible optimality 

criteria, or by varying additional parameters not specified by 

the authors. Liu et al. (2011a) report analysing their data in 

PAUP* under maximum parsimony and with implied weights 

using k = 2 (a rather arbitrary choice), but do not mention 

any other assumptions (for example, the imposition of 

character order). They obtained three most parsimonious 

trees, each of 130 steps. Straightforward replication of their 

stated settings yields 13 trees of just 90 steps each, the 

strict consensus of which is illustrated (Fig. 7.1). 

Figure 7.1 The strict consensus of 13 most parsimonious trees (L=90) obtained from the published 

data and settings specified by the authors.

Why such a difference? Several of their characters contained inapplicable or gap codings.
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 These appear where a ‘daughter’ character is logically contingent upon the state of a 

‘parent’, and cannot be coded when the parent is absent. For example, character 6 

(position of frontal appendage) can only be coded in taxa that possess a frontal 

appendage (character 5) in the first instance (such that a ‘‘0’’ for character 5 necessitates a 

‘‘-’’ for character 6). In morphological analyses such as this, inapplicable states are usually 

assumed to have no bearing on the analysis, being reconstructed passively in the light of 

known states. In analyses of nucleotide data, by contrast, gaps may alternatively be 

construed as a fifth and novel state, because shared deletions from some ancestral 

sequence may actually be informative. If this assumption is made with morphological data, 

however, all the logically uncodable states in a character are initially assumed to be 

homologous, and a legitimate basis for recognizing clades. At best, this assigns double 

weight a priori to absences in the ‘parent’ character (because the daughter is always 

contingent), and at worst is positively misleading. This is the approach that we believe Liu 

et al. (2011a) may have taken. Reanalysis of their data using ‘gapmode = newstate’ 

combined with ‘collapse 5= MinBrLen’ settings in PAUP* produced some optimal trees of 

130 steps. However, we were still unable to replicate the relationships shown in their Fig. 

4, even when varying k between 0 and 10. Rather we either resolved Diania in a basal 

polytomy, or slightly higher in the tree but separated from the arthropods by at least five 

nodes. At best, therefore, the position of Diania is highly labile and extremely sensitive to 

the precise methods used. We certainly feel that it is premature to draw conclusions 

regarding its supposedly pivotal position in the evolution of arthropods. However, our 

reanalyses do not challenge the more general conclusions of Liu et al. (2011a): namely 

that the full complement of arthropod characters were probably acquired piecemeal and 

possibly convergently. Many closely allied groups exploited successfully some but not all 

of the characters that typify the arthropod crown group. Only in retrospect do we discern a 

single, ladder-like trajectory through what was really a much more eccentrically branching 

bush.
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