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Abstract 

Lightning is the strongest natural electromagnetic radiation source, emitting 

electromagnetic energy in the frequency range from ~4 Hz to ~300 MHz or more. The 

location of lightning is calculated based on the received electromagnetic waves. The 

received electromagnetic waves, or lightning sferics, propagate from the lightning 

radiation source to the receiver along the ground path and reflections by the ionosphere 

named sky waves. Particularly for a long-baseline (>400 km) lightning receiver array, the 

received electromagnetic waves are usually a mixture of the ground wave and sky waves, 

which easily introduce a certain level of location uncertainty. Lightning sferics and the 

wave propagation velocity are analysed in order to mitigate the interference from long 

distance wave propagation. The complex lightning sferics are calculated by the Hilbert 

transform, which provides additional information regarding the instantaneous phase and 

frequency. The time differences calculated from the instantaneous phases are closer to the 

phase delay time introduced by the speed of light when compared to other possible signal 

processing methods. It is also found that the instantaneous frequencies at maximum 

amplitudes in the waveform bank are distance dependent, which has a potential 

application, i.e., to determine the distance between the lightning location and the receiver. 

The radio waves from two submarine communication transmitters at 20.9 kHz and 23.4 

kHz exhibit phase propagation velocities that are ~0.51% slower and ~0.64% faster than 

the speed of light as a result of sky wave contributions and ground effects. Therefore, a 

novel technique with a variable phase propagation velocity is implemented for the first 

time using arrival time differences. The lightning locations inferred from variable 

velocities improve the accuracy of locations inferred from a fixed velocity by ~0.89–1.06 

km when compared to the lightning locations reported by the UK MetOffice. The velocity 

map inferred from the calculated phase propagation velocities reflects the impact of sky 

waves and ground effects on the calculation of lightning locations as a result of the 

network configuration. Overall, the wave propagation issues are mitigated by analysis of 

the complex waveform and the variable phase propagation velocity. Finally, three 

interferometric methods, 2D lightning mapping, cross-correlation with a short time 
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window, and lightning locations inferred from each sample, are proposed here in order to 

take advantage of the greater number of samples and information from the recordings.  
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Chapter 1 Introduction 

1.1 Background 

Lightning and thunder are common weather phenomena and have both been respected 

and feared by humans throughout history. It was present on earth before human life 

evolved, and it may have been crucial to the evolution of life on this planet. In 1752, 

Franklin’s kite experiment demonstrated that clouds are electrically charged and that 

lightning is the discharge between the clouds and the ground. Lightning is the strongest 

natural source of electromagnetic radiation in the atmosphere. A number of techniques 

from spectroscopy to photography and many other new techniques are being used to 

further the understanding of these phenomena [e.g. Schonland, 1964; Uman, 1971; Rakov 

and Uman, 2003]. 

Lightning can be defined as a transient electric discharge in air with a high current. The 

whole length of lightning is observed to be a few kilometres. The whole lightning 

discharge channel is composed of plasma. Its peak temperature is typically 30,000 K, 

which is about five times higher than the temperature of the sun’s surface. A ‘lightning 

flash’ is always determined as a lightning discharge whether it strikes the ground or not. 

The ‘lightning strike’ means the lightning that involves an object on the ground or in the 

atmosphere. The lightning is the transient electric discharge between the clouds or the 

ground in two forms: cloud-to-cloud lightning, and cloud-to-ground lightning [Rakov and 

Uman, 2003]. 

Cloud-to-cloud lightning has a discharge path between different parts of clouds. Inter-

cloud lightning happens between two different clouds. Intra-cloud lightning happens 

between different regions of electric potential within one cloud. Over 50% of all lightning 

is intra-cloud lightning. The cloud-to-cloud lightning has less effect on human life, but is 

important in the atmosphere. The cloud-to-ground lightning always refers to a lightning 

stroke. Each stroke has the following process: a downward leader and an upward return 
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stroke, which has an extremely high voltage and current, and probably a relatively low 

level continuing current after the return stroke (Section 2.1). The continuing current is the 

most damaging part of lightning, because the continuing high current and heat may easily 

cause a forest or building fire. The stepped leader initiates the lightning. As a result, the 

cloud-to-cloud lightning is divided into four kinds depending on the property and 

direction of the stepped leader, as shown in Figure 1.1. 

 

Figure 1.1 Categorization of cloud-to-ground lightning 

Negative downward lightning (Figure.1.1, a) is the most common cloud-to-ground 

lightning, which accounts for over 90% of global cloud-to-ground lightning. A downward 

moving negatively charged leader initiates this type of lightning. The least common 

lightning is the negative upward lightning (Figure.1.1, d), which is initiated by an upward 

moving negatively charged leader. The discharge channel can be formed between the 

ground with the lowering of a positive cloud, or with a downward moving positively 

charged leader. 

The transferred charge and peak current of positive lightning is stronger than normal 

negative lightning. Positive lightning normally has the highest current and largest 

electrical discharge. It mostly occurs during the cold season and in the dissipating stage of 

any thunderstorm. Ten percent or less of global cloud-to-ground lightning is the 

downward positive lightning flash (Figure.1.1, b). The upward positive lightning 
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(Figure.1.1, c) always occurs from tall buildings or mountain tops during a summer 

thunderstorm, which is initiated by an upward moving positive leader. 

Natural weather phenomena tend to have both positive and negative effects. Lightning 

had a positive effect on human evolution by inspiring people to discover fire [Rakov and 

Uman, 2003]. The hot temperature and ionization around discharge channels produces 

chemicals including fixed nitrogen, which helps improve crop yields [Fowler et al., 2013]. 

As part of the global environmental balance, lightning maintains the electric field 

between the atmosphere and the ground of earth [e.g. Noxon, 1976; Levine et al., 1984; 

Uman, 1974]. One negative effect of lightning is the powerful destruction it can cause. It 

has caused death and injury to people and animals, and has also ignited forest fires. It 

leads to the strike of airplanes on average once a year, tall buildings and some sensitive 

electronic components in power systems and communication systems. Over 30% of all 

electric power line failures are lightning related [e.g. Cooper, 1980, Rakov, 2013]. It is a 

disaster if lightning strikes an unprotected object. 

1.2 Aim and Objectives 

In order to prevent lightning damage and to investigate more knowledge about lightning, 

the development of lightning location systems is crucial. Early detection of lightning 

discharges gives people an alert to protect assets from powerful lightning, because most 

thunderstorms generate many lightning strikes within a nearby area. Depending on the 

distance between lightning receivers, existing lightning location systems are divided into: 

short-baseline (<100 km), median–baseline (100–400 km), long-baseline (400–1000 km) 

and extreme-long-baseline (>1000 km). They operate at different frequency ranges, and 

lightning is located by analysing the electromagnetic waves received at different receivers. 

Received electromagnetic waves propagate from the lightning radiation source to the 

receiver. Wave propagation is complicated, and consists of the wave propagated along the 

ground path (ground wave), and the ionosphere reflected wave (sky wave). Especially for 

a long-baseline lightning receiver array, received electromagnetic waves are usually a 

mixture of ground waves and sky waves, which easily introduces a certain level of 

location uncertainty if they are treated as a pulse signal propagated in a vacuum. The term 
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‘long-range lightning location’ represents the lightning location inferred from a long-

baseline lightning receiver array. As a result, the main aim of this research is to 

investigate the electromagnetic waves for mitigation of the interference from ground and 

sky waves, especially for long-baseline receiver arrays. 

Two main interference sources associated with long distance electromagnetic wave 

propagation are the received lightning waveforms and the wave propagation velocity. The 

received lightning waveforms are variable due to attenuation, ground conductivity and the 

proportion of ground waves and sky waves. The average lightning waveforms at different 

distances are calculated to characterize the electromagnetic wave propagation (Chapter 5). 

The corresponding wave propagation velocity is also variable because of the frequency 

ranges, ground conductivity, and ionosphere conditions. Details of the wave propagation 

velocity are discussed in Chapter 6. 

There are three popular methods commonly used in ground-based lightning location 

systems: Magnetic Direction Finding (MDF) [e.g., Horner, 1954, 1957; Krider et al., 

1976], Arrival Time Differences (ATD) [e.g., Lee, 1986; Fullekrug et al., 2000; Dowden 

et al., 2002], and interferometry [e.g., Mardiana et al., 1997; Mazur et al., 1997; Stock et 

al., 2010; Rison et al., 2016] (Section 2.3). The application of these methods is driven by 

the development of novel technology. The MDF technique was upgraded to ATD as a 

supplementary by the availability of GPS timing [Cummins et al., 1998]. The 

interferometric method was recently developed for Very High Frequency (VHF) and Low 

Frequency (LF) near-field radio waves as a result of the advancement of digital 

processing technology [e.g., Lyu et al., 2014; Stock et al., 2015]. Most long-baseline 

lightning location systems use the ATD method. In order to achieve this main aim, an 

experimental long-baseline receiver array was deployed in Western Europe for this 

research (Chapter 3), and the ATD method was developed as the fundamental location 

calculation algorithm for this receiver array (Chapter 4). The benefit of developing the 

interferometry technique is to use more samples and information from the original 

recording rather than just using a time stamp for the calculation of time differences. As a 

result, an attempt is made to apply the interferometry method to this long-baseline 

lightning receiver array (Chapter 7). 
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1.3 Outline of Thesis 

The chapters of this thesis are organised as below. 

Chapter 2 introduces basic knowledge about lightning physics, and reviews the different 

methods of space-based and ground-based lightning location systems. A better 

understanding of lightning processes and lightning electromagnetic signatures provides an 

overview of the research objectives. Some of the described lightning location methods are 

used with the following experimental lightning receiver array through this thesis. 

Chapter 3 describes the deployment of the experimental lightning receiver array and the 

recorded data. This long-baseline receiver array consists of four novel LF radio receivers 

separated by 400–500 km in Western Europe. High quality data is presented. 

Chapter 4 explains the detailed steps of using the ATD algorithm in this experimental 

network. The application of ATD algorithms is reviewed. A detailed description of the 

whole methodology contributes to a better understanding of the research aim and 

lightning location systems. 

Chapter 5 introduces the analysis of the instantaneous phase and frequency inferred from 

complex waveforms for the characterization of lightning sferics. A complex waveform 

bank and a spectral waveform bank have been produced from lightning sferics. Sub-

sampling time accuracy has been achieved using the instantaneous phase of complex 

lightning waveforms. It is found that the inferred instantaneous frequencies at maximum 

amplitude are distance dependent. This work will be published in journal Radio Science. 

Chapter 6 is the analysis of lightning electromagnetic wave propagation velocity. It is 

found that the phase propagation velocity can be slower or faster than the speed of light 

for two VLF transmissions. Therefore, a novel technique with a variable phase 

propagation velocity is implemented for the first time using the ATD method, and the 

result is improved by comparisons with locations reported by the UK MetOffice. The 

velocity map is produced over central France, based on the calculated phase propagation 

velocities, which reflects the impact of sky waves and ground effects on the calculation of 
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lightning locations as a result of the network configuration. This work has been published 

in journal Radio Science in 2016. 

Chapter 7 presents the application of the interferometry technique in the long-baseline 

receiver array. Three methods, 2D lightning mapping, cross-correlation with a short time 

window, and lightning location for each sample, are proposed here in order to take 

advantage of the greater number of samples and information from the recordings. 

Chapter 8 concludes this thesis with a summary of the contributions and suggestions 

regarding future investigation. 
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Chapter 2 Lightning and Lightning 

Location Systems 

2.1 Lightning Physics 

2.1.1 Lightning Processes 

As described in chapter 1, lightning activities are classified into cloud-to-cloud lightning, 

and cloud-to-ground lightning. Most of the time, cloud-to-ground lightning causes more 

damage. In terms of transferring charge to the ground, several modes are proposed for 

lightning discharge. Here we discuss the physical processes of cloud-to-ground lightning 

events. A better understanding of lightning physical processes can contribute to more 

precise lightning location. 

 

Figure 2.1 The luminosity of a three-stroke flash and corresponding current at the 

channel base. a. Still camera image; b. streak camera image; and c. channel base current. 

SL is stepped leader, DL is dart leader, and RS is return stroke. Taken from Rakov (2013). 
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As described in chapter 1, ninety percent or more of global cloud-to-ground lightning is 

negative downward lightning. This type of lightning effectively transports negative 

charge to the ground, as discussed here. Many negative flash contains 3–5 strokes, with 

26 strokes being observed in extreme cases, but the flash multiplicity is ~2 stroke per 

flash. Half of these lightning discharges strike the ground at different points, kilometres 

apart. A sketch of the three-stoke case is drawn in Figure 2.1.  

 

Figure 2.2 Drawing illustrating various processes of a two-stroke negative lightning flash. 

Taken from Rakov and Uman (2003). 

In Figure 2.1, time advances from left to right, though the time scale is not continuous. 

These strokes are normally separated by tens of milliseconds. This figure is simplified 

with two major lightning processes: a downward-moving process, termed a leader, and an 

upward-moving process, termed a return stroke. The leader creates a conduction path and 

distributes negative charge from the cloud to the ground. The return stroke traverses the 

path from the ground to the cloud and neutralizes the negative charge of the leader. 
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Therefore, the leader and return stroke compose an effective negative charge transport 

from the cloud to the ground. As seen in Figure 2.1b, the leaders of different strokes are 

slightly different. The leader that initiates the first return stroke appears as an intermittent 

process, named a stepped leader, and then leaders of subsequent strokes follow the 

preconditioned path, named dart leaders. A drawing illustrating various processes is 

shown in Figure 2.2. 

The detailed lightning processes of negative lightning are presented in detail in Figure 2.1 

and Figure 2.2. As shown in Figure 2.3, dart-leader-return stoke sequences are an 

effective negative charge transport from the cloud to the ground. The lightning continuing 

current is normally tens to hundreds of amperes over hundreds of milliseconds. The 

continuing current can be understood as a quasi-stationary arc between the cloud and 

ground. Lightning M-components can be understood as the perturbations in the 

continuing current and its associated luminosity, appearing to be a superposition of two 

waves propagating in opposite directions. Overall, there are three possible modes of 

charge transfer in this type of lightning: dart-leader-return stroke sequences, continuing 

current, and M-components (Figure 2.3). 

 

Figure 2.3 Schematic representation of lightning current and the three modes of charge 

transfer in negative lightning subsequent strokes. Taken from Rakov et al. (2001). 
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2.1.2 Lightning Electromagnetic Signature 

Many processes of both cloud-to-cloud lightning and cloud-to-ground lightning produce 

electromagnetic signatures in the range from a few hertz (long continuing currents) to 

1020 Hz (hard X-rays) [Rakov, 2008]. Cummer et al. (2005, 2011) observed that terrestrial 

gamma-ray flashes emit gamma ray emissions associated with lightning. The peak 

electromagnetic radiation from lightning is expected to be about 10 kHz, decreasing with 

increasing frequency [e.g., Cummins and Murphy, 2009; Fullekrug et al., 2013]. Most 

identifiable lightning radiation signatures are summarized in Table 2.1, as recorded at the 

ground [Rakov, 1999]. 

Different lightning processes produce electromagnetic signatures at different frequency 

ranges [e.g., Nag et al., 2015]. For example, energy with a wide range from Very Low 

Frequency (VLF), e.g. 3–30 kHz, to Medium Frequency (MF), e.g. 300–3000 kHz, are 

produced by lightning return strokes. This type of signal is normally propagated through 

ground and earth-ionosphere waveguides, and is captured by a ground-based lightning 

location system. Lightning signals at High Frequency (HF), e.g. 3–30 MHz, and Very 

High Frequency (VHF), e.g. 30–300 MHz, are normally produced by leader processes 

and cloud-to-cloud lightning. This frequency range can be used for short-baseline 

lightning location systems. The signal near the infrared/optical (30–3000 THz) can be 

observed by space-based lightning detection systems, which are produced by hot current-

carrying channels. Lightning-produced electromagnetic signatures can thus be used for 

lightning location from space and at the ground over different frequency ranges. 

Table 2.1 Characterization of wideband electric field pulses associated with various 

lightning processes 

Type of pulses Dominant 
polarity  

Typical 
total pulse 

duration, µs 

Time interval 
between 

pulses, µs 
Comments 

Return stroke in negative 
ground flashes Positive 

30–90 
(zero-

crossing 
time) 

60 × 103 
3–5 pulses per 
flash and ~2 in 

average 



PHD THESIS UNIVERSITY OF BATH CHAPTER 2 

11	
  
	
  

Stepped leader in 
negative ground flashes Positive 1–2 15–25 

Within 200 µs 
just prior to a 
return stroke 

Dart-stepped leader in 
negative ground flashes Positive 1–2 6–8 

Within 200 µs 
just prior to a 
return stroke 

Initial breakdown in 
negative ground flashes Positive 20–40 70–130 

milliseconds to 
some tens of 
milliseconds 

before the first 
return stroke 

Initial breakdown in 
cloud flashes Negative 50–80 600–800 The largest 

pulses in a flash 
Regular pulse burst in 

both cloud and negative 
ground flashes 

Both polarities 
are about 

equally probable 
1–2 5–7 

Occur later in a 
flash; 20–40 

pulses per burst 

Compact intracloud 
discharge (narrow 

bipolar event) 

Both polarities 
occur with 

negative being 
more frequent 

10–30 – 

Typically not 
preceded or 

followed by any 
other lightning 
process within 

hundreds of 
milliseconds 

Taken from Rakov (1999). 

2.2 Space-based Lightning Location 

Lightning can not only damage instrumentation and the lives of humans and animals, but 

also poses a threat to the normal operation of spacecraft and aircraft. Lightning has 

caused accidents for the National Aeronautics and Space Administration (NASA). For 

instance, vital spacecraft electronics were knocked out by lightning which struck during 

the launch of the Apollo 12 mission in 1969 [e.g. Finke, 2007]. Many lightning forecast 

instruments in space have been developed by a number of research institutes (e.g. NASA) 

in order to avoid the negative impact of lightning. Figure 2.4 shows the scene observed by 

one of these instruments. 
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Figure 2.4 Image of lightning observed from above the clouds (red circle). Taken from 

Anderson (2011). 

2.2.1 Lightning Investigation by High-altitude Instruments 

The closer lightning is observed, the more detailed the data which can be obtained. Since 

lightning is normally unpredictable, scientists have developed methods to create lightning 

discharge under controlled conditions. Rockets, spacecraft and high-altitude airplanes are 

usually used as high-altitude instruments.  

In order to investigate lightning from close-up, many researchers focus on the 

measurements in the cloud. In order to obtain more detailed data, a small sounding rocket 

is used, especially during lightning occurrence. The principle of a sounding rocket is 

similar to Franklin’s kite.  The key part of the kite is the electronic sensor, which can 

measure the electrical charge of the cloud in a thunderstorm. However, sounding rockets 

have been replaced by high-altitude airplanes with the development of technology that 

can overcome the effect of water droplets in the cloud, which affects the electrical 

measurement due to the water conductivity [e.g. Christian, et al., 1998]. 
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Figure 2.5 The configuration of ER-2. Taken from Christian and McCook (1998) 

The ER-2 and U-2 high-altitude airplanes are two high-altitude plans that carry 

instruments to make optical measurements from space. High-altitude airplanes have 

promoted research into the optical and electrical features of lightning discharges in the 

cloud, proving a number of assumptive theories. Severe thunderstorms can be observed 

by the ER-2, shown in Figure 2.5, using multiple sensors, including visible spectrometers, 

lasers, microwave scanner, infrared and electric field antennas, which can obtain key data 

from the lightning. 

2.2.2 Lightning Detection by Satellite 

Observation by satellites can prove the development of science and technology. Satellite 

lightning observation uses optical sensors and high-speed cameras operating from low-

earth orbit focusing on the top of the cloud. For example, Optical Transient Detector 

(OTD) was launched into low earth orbit on April 1995 on the Orbview-1 (formerly 

Microlab-1) spacecraft, and Lightning Imaging Sensor (LIS) is aboard NASA's Earth 

Observing System (EOS) Tropical Rainfall Measuring Mission (TRMM) satellite and 

International Space Station (ISS), which records the time of occurrence of a lightning 

event, measures the radiant energy and estimates the location. For another example, the 
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Geostationary Operational Environmental Satellite (GOES) system is a fundamental and 

huge environmental satellite network. GOES-1 was launched in 1974, and GOES-15 has 

already been developed. Monitoring and forecasting weather is the main function of this 

environmental satellite network [Goodman, et al., 2013]. The Geostationary Operational 

Environmental Satellite R-series (GOES-R) has been developed and launched following 

the existing GOES network. 

 

Figure 2.6 The GOES-R spacecraft and instruments. Taken from Goodman et al. (2013) 

Figure 2.6 presents the 3-axis stabilized GOES-R spacecraft and instruments, which are 

composed of instruments, an auxiliary communication payload, and the launch vehicle 

and spacecraft bus. The Geostationary Lightning Mapper (GLM) and the 16-channel 

Advanced Baseline Imager (ABI) can promote the function of total lightning detection of 

GOES-R. The GLM is able to monitor and detect the activity of thunderstorms very well. 

GLM maps lightning activity continuously so that aircraft can be kept safe and efficient 

when crossing the clouds. Using ABI and other instruments, GOES-R is able to make the 

forecast and warning system for lightning more efficient and accurate. 
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2.3 Ground-based Lightning Location 

Electric and magnetic field fluctuations can be generated by physical processes in cloud-

to-ground lightning and cloud-to-cloud lightning. Lightning in the thunderstorm gives 

radiation with a significant electromagnetic wave (1 Hz–300 MHz). The frequency 

spectrum’s peak value is ~5–10 kHz at the distance of about 50 km from the lightning. 

Lightning detection and location can use visible transient emissions, electromagnetic 

radiation, and acoustic signals from a lightning discharge. The first return stroke emits the 

largest current value of the electromagnetic wave. The flash magnitude and polarity can 

be detected over a long distance by analysing data from the first return stroke [e.g. Rakov 

and Uman, 2003; Rakov, 2013].  

In the past, flash counters could be used to determine the density of lightning strikes. This 

method cannot work over a wide range or distinguish between different lightning types. 

Electromagnetic radiofrequency techniques which are useful for detecting lightning 

mainly include Magnetic Direction Finding (MDF), interferometry, and Arrival Time 

Differences (ATD). The most important information derived from these three techniques 

is the wavelength (λ) and frequency (ƒ) of the radiation detected. The wavelength, as a 

crucial part of the lightning channel length, varies inversely with the frequency (ƒ) [e.g. 

Ibrahim and Ghazali, 2012]. 

The detection efficiency can be influenced by seven factors: the distance between the 

thunderstorm and the network, the waveform strength, the unique features of the 

thunderstorm, the network configuration, sensor status, local sensor interference, and 

geography. The fact that many researchers contribute essential novel results in the field of 

lightning location indicates that the improvement of lightning location system accuracy 

and detection efficiency is an important  and active research area [e.g., Rodger et al., 

2004; Said et al., 2010; Diendorfer et al., 2009; Mallick et al., 2014; Wang et al., 2016; 

Sun et al., 2016].  
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2.3.1 Magnetic Direction Finding 

The magnetic direction finding theory locates lightning by identifying the direction of the 

point of the strike. The electromagnetic fields are measured by the magnetic direction 

finding system from a lightning flash. Waves can be detected in the wideband MDF 

network in two vertical and orthogonal loops, which are used to detect the current 

induced by the radiated magnetic fields of lightning orientated to north-south and east-

west. The strength of the magnetic field by the cosine of the angle between the loop and 

the direction from the lightning leads to the difference between the voltage signals 

measured using two loop antennas.  As a result, the direction of the station can be 

determined by comparing and calculating the voltage difference between the two-loop 

antennas. Therefore, one lightning strike can be located using two MDF devices [e.g. 

Sonnadara, et al., 2001]. 

The return stroke of cloud-to-ground lightning leads to a dramatic rise in voltage after the 

stepped leader reaches the ground. This kind of lightning can be distinguished from other 

lightning by magnetic direction finding. It can be assumed that the electromagnetic 

fluctuation in the raw data of the MDF sensors within 25 ms is from the same lightning. 

Within 400 km, the system efficiency of MDF can reach up to 80% [e.g. Sonnadara, et 

al., 1999]. 

Three major errors of the MDF technique are: random errors, systematic errors, and site 

errors. The typical random error of this system is within 0.5° azimuthal angle. The 

systematic error is related to the environment of the antennas, and can be reduced by 2° 

azimuthal angle with comparison to prior data. The site error has an influence on the 

accurate angle from the loops, caused by huge conductive objects near the sensor. This 

site error can be estimated by determining a correction function for each MDF or by using 

redundant locations, and can be eliminated by determining the parameters of a sinusoidal 

correction function using a least squares analysis [e.g. Ortega, 2007].  
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Figure 2.7 Commercial MDF sensor used for the National Lightning Detection Network. 

Taken from Anderson (2011). 

Figure 2.7 presents a commercial MDF used for the National Lightning Detection 

Network from the company Lightning Location and Protection, Inc. (LLP). Several errors 

in lightning detection are resolved by the MDF computers and network which are used for 

processing the data and errors. The MDFs from LLP were not used for the US National 

Lightning Detection Network until it was reorganized in 1989 [e.g. Orville, 1991, 2008]. 

2.3.2 Arrival Time Differences 

The electromagnetic field signals of a given portion of the lightning arrive at separated 

sensors differently. The key to the ATD system is the time difference when sensing the 

arrival of the electric pulse at different stations. There are at least three stations in the 

ATD system. They are used to define intersecting hyperbolas that locate the lightning 

flash. The principle of the ATD technique using two receivers is shown in Figure 2.8. An 

ATD station consists of two antennas, with one receiving the electrical field produced by 

the lightning, and the other receiving the signal produced by geo-stationary satellites or a 

GPS system.  Therefore, a station can not only generate information on lightning-

generated electric fields but also provides the relative arrival time of peak amplitude [e.g. 

Oetzel and Pierce, 1969; Dowden et al., 2002]. The hyperbola of the possible stroke 

locations can be finalized by comparing the time that the peak values of the electric field 

arriving at two receivers. 
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Figure 2.8 Detection of a lightning strike by two ATD receivers. Taken from Holle and 

Lopez (1993) 

Since the lightning electromagnetic signature can be observed at different frequency 

ranges (see Section 2.1.2), the ATD system consists of three main types: very-short-

baseline (tens to hundreds of metres), short-baseline (tens of kilometres), and long-

baseline (hundreds to thousands of kilometres). The very-short-baseline and short-

baseline always operate in the VHF and HF, normally in the ranges of about 30–300 MHz 

while the long-baseline systems always operate in VLF and LF, generally in the range of 

3–300 kHz. The VHF radiation is associated with the process of air breakdown while the 

VLF signal is related to the current flow through existing lightning channels. 

In the ATD system, there are two errors that affect the accuracy of lightning detection: 

propagation error and synchronization error. The propagation error is due to signal 

deformation, which means the signal propagating from the strike point to the antennas 

may be deformed. Since the ground conductivity is different during wave propagation, it 

is difficult to correct this error. There may be a few microseconds of error over 

propagation of tens of kilometres or a few hundreds of kilometres, depending on the 

difference in ground conductivity. The other error is synchronization error. The ATD 

system receives the signal produced by a GPS system or geo-stationary satellites almost 

at the same time. The synchronization error means that there may be error in the clock 

signals to the order of 2 µs due to the movements of the telecommunication satellites [e.g. 

Chen and Du, 2011]. 
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The ATD technique has been used most widely for lightning detection systems in recent 

years. Some of these systems will be discussed in Section 2.3.4. The long- baseline ATD 

technique is also the fundamental algorithm for this PhD.  

2.3.3 Interferometry 

Due to the fact that lightning also emits noise-like bursts of electromagnetic radiation 

which last 10–100 𝜇s, it is difficult for the ATD technique to identify the different 

individual pulses in some circumstances. Since the interferometer gives measurements of 

the phase difference between the noise-like bursts corresponding to narrowband signals, 

identification of the individual pulses can be avoided. There are at least two antennas 

several metres apart as the simplest interferometers, connected to a narrowband filter. 

After outputs from the two receivers are received, the phase detector generates the phase 

difference in proportional voltage. The ATD detectors determine the location of the flash 

by comparing the time difference, while the interferometers determine the direction to the 

VHF source by comparing the phase difference. At least three receiving antennas and two 

orthogonal baselines are needed to detect the source’s azimuth and elevation. Two or 

more synchronized interferometers separated by more than 10 km are needed to locate the 

source in three dimensions, and each of them act as a direction finder (Figure 2.9). 

 

Figure 2.9 VHF impulse source location in three-dimensions by an interferometer site. 

Taken from Morimoto et al. (2005) 
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Narrow-band interferometers show significant achievement in explaining the progression 

of cloud-to-cloud and cloud-to-ground lightning, and imaging the lightning channel in 

two dimensions [Maridiana et al., 2002]. By making two or more synchronized 

interferometers 10 km apart, the lightning source can be located in three dimensions. The 

SAFIR (Surveillance et Alerte Foudre par Interférométrie Radioélectrique), as a 

commercial lightning interferometer system, is used for locating lightning radiation 

sources in three dimensions. The SAFIR, working as a VHF direction finder, normally 

has three stations 10–100 km apart [e.g. Richard et al., 1986, 1988].  

 

Figure 2.10 The interferometry observations of a bilevel intra-cloud flash 8–10 km 

distant from the interferometer site. (a) Elevation angle versus time, (b) azimuth versus 

elevation angle during the first 200 ms, (c) azimuth versus elevation angle for entire flash. 

Taken from Stock et al.(2014) 

As a result of the advancement of digital processing technology and affordable 

electronics, more research towards using broadband interferometry using LF signals have 

been developed [e.g. Akita et al., 2011; Sun et al., 2013; Stock, et al., 2014]. 50000–

80000 radiation sources are located for a typical lightning flash by the VHF broadband 

digital interferometer developed by Osaka University [Stock, et al., 2014]. The 

measurements from 20–80 MHz provide angular uncertainty less than 1° and time 

resolution better than 1 µs using a generalized cross-correlation algorithm. The 
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interferometer observations are combined with a 3D Lightning Mapping Array (LMA) to 

produce a quasi 3D map of lightning activity.  

Mazur et al. (1997) compared the output result from a VHF ATD system and a VHF 

interferometry system, indicating that the result of the interferometry system seems to be 

discrete while that of the ATD system looks continuous during the lightning. The ATD 

system is good at dealing with impulsive radiation, while the interferometer system does 

well in locating long-duration noise-like radiation bursts. Since the observation of these 

two location systems covers different aspects of lightning discharge, the two techniques 

can be combined together when used in lightning research. Lyu et al. (2014) attempted to 

apply the interferometric cross-correlation technique combined with the ATD technique 

to an LF near-field array. This array of five stations can detect the signal from stepped 

and dart leaders and intra-cloud lightning. This result illustrates that the electromagnetic 

signatures from weak lightning processes can be detected in LF. It also proves the 

possibility of applying the combination of ATD and interferometry to a VLF lightning 

location system. This innovative method is the final aim of this thesis.  

2.3.4 Examples of Lightning Location Systems 

Due to the damage caused by lightning events, all continents and most of the oceans are 

covered by multiple lightning location systems. Some of them are operated by 

governmental meteorological institutes, and some of them are run by commercial 

companies. According to the different service aims, these systems are operated with 

different baseline and different frequency ranges. As discussed in Section 2.1.2, the 

network baseline decreases with a higher operation frequency range, but is more sensitive 

to the weak pulses. Some typical lightning location systems are briefly reviewed below. 

The World Wide Lightning Location Network (WWLLN) and Global Lightning Dataset 

(GLD360) are two well-known ground-based global VLF lightning location systems 

(Figure 2.11). The WWLLN has employed 57 sensors (6–18 kHz) on all continents since 

March 2012, each thousands kilometres apart [e.g. Rodger et al., 2004, 2005], named the 

extreme-long-baseline network. The Time Of Group Arrival method (TOGA) is used so 

that 10 sensors can cover lightning location globally [Dowden et al., 2002]. The cloud-to-
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ground lightning Detection Efficiency (DE) increased from 3.88% in 2006–2007 to 10.3% 

in 2008–2009, and 35% of lightning events stronger than 130 kA throughout the 

contiguous United States, with respect to the lightning location as reported by the 

National Lightning Detection Network (NLDN) [e.g. Abarca et al., 2010; Hutchins et al., 

2012a]. GLD360 uses both ATD and MDF techniques in conjunction with a lightning 

waveform recognition algorithm [e.g. Said et al., 2010]. The cloud-to-ground lightning 

DE was 86–92% with a median location error of 10.8 km with reference to NLDN data 

[Demetriades et al., 2010], but the DE was 16% and mean location error was 12.5 km 

when compared to data from the Brazilian lightning detection network [Naccarato et al., 

2010]. It illuminates that the disadvantage of a global lightning location system is the 

difficulty in covering all the weak lightning events.  

 

Figure 2.11 The annual global stroke density based on the WWLLN continuous 

monitoring. Taken from Hutchins et al. (2012b) 

A short-baseline lightning location network can locate nearby lightning very precisely in 

three dimensions. One of the most typical short-baseline lightning location systems is the 

LMA, which can locate pulses from different lightning processes. The New Mexico LMA 

network consists of 10–15 sensors separated by 15–20 km, which receive electromagnetic 
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waves at 60–66 MHz [Rison et al., 1999; Thomas et al., 2004]. The network has been 

validated using a sounding balloon carrying a VHF transmitter as a known lightning 

simulator. The location error is less than 100 m for 3D lightning location. As a result, 

most networks are compared with the LMA result as the ‘ground truth’ [e.g. Enno et al., 

2016].  

The medium (<400 km) and long (>400 km) baseline lightning location systems consist 

of sensors separated by hundreds of kilometres. This kind of network is most common in 

VLF/LF for a country or a continent, such as NLDN, Lightning Detection NETwork 

(LINET), European Cooperation for Lightning Detection (EUCLID), UK MetOffice 

ATDnet. Few exceptional median baseline networks can service globally but with many 

sensors, such as, Earth Networks Total Lightning Network (ENTLN) that consist of over 

1200 broadband sensors [e.g. Mallick et al., 2013; Zhu et al., 2016]. NLDN is one of the 

earliest digital lightning location systems, which consist of more than 100 stations 

separated by 300–350 km and covering the whole US [e.g. Rakov and Uman, 2003; 

Orville, 2008; Cummins and Murphy, 2009]. The MDF technique was employed at the 

beginning, and the ATD technique was combined later. Both cloud-to-cloud lightning and 

cloud-to-ground lightning can be located with high detection efficiency and location 

accuracy. The peak current of NLDN has been referenced to directly measure current at 

the triggered lightning channel base [Nag et al., 2011]. LINET employs ATD as the basic 

location method, and the MDF provides arrival-angle information for plausibility 

checking. Height information is calculated from the arrival time at the nearest reporting 

sensor, so that cloud-to-cloud lightning and cloud-to-ground lightning can be 

distinguished [e.g. Betz et al., 2009].  

In summary, the MDF method has completely updated or replaced by ATD technique due 

to its large location error. The ATD technique is widely used in lightning location 

systems with different baseline because of the high GPS resolution. The results from 

different lightning location systems proves that network with smaller baseline has a 

higher detection efficiency and higher location accuracy, but covers smaller area with 

consistent receiver number. In order to balance these effects, a medium and long baseline 

lightning location system is proposed in this thesis. One of the most challenging aspects 

to improve performance in a long-baseline lightning location system is wave propagation. 
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The received electromagnetic waves are propagated through the ionosphere reflection for 

extreme-long-baseline networks, as the waves propagated along the ground, i.e. ground 

waves, are normally attenuated over such a long distance. The waves received from a 

closed short/medium baseline network are mainly ground waves, because the ionosphere 

reflected waves, i.e. sky waves, arrive with a long time delay, while the electromagnetic 

waves received from a long-baseline network are a mixture of both propagation modes. 

The detailed analysis of the receiving lightning waveform and wave propagation in a 

long-baseline lightning location system is discussed in Chapters 5 and 6. The 

interferometry technique has strong application for short baseline lightning location 

system, which reports accurate 3D lightning pulses from near field recording. The 

detailed proposal about the methods to apply interferometry technique in long baseline 

lightning location system is discussed in Chapter 7. 

2.4 Lightning Protection 

Lightning causes death and injury to people and animals, ignites forest fires, and also has 

led to the destruction of airplanes, tall buildings and some sensitive electronic 

components in power and communication systems. The amount and type of lightning 

damage depends on the properties of the lightning discharge and characteristics of the 

object. The main properties of lightning associated with producing damage are the current 

waveform and the radio frequency electromagnetic fields, which can be analyzed from 

the data recorded [e.g. Rakov and Uman, 2003]. 

The lightning current waveform has four significant characteristics that are important to 

producing damage: the peak current, the maximum rate of change of the current, the 

cumulative current, and the action integral.  The peak current presents essential resistive 

impedance in certain circumstances. The maximum rate of change of the current 

represents the essential inductive impedance under some conditions. The cumulative 

current is the sum of the current over time, and always refers to the charge transfer. The 

action integral means the integral of the current square over time. 

The electromagnetic field from the lightning is also evidence of lightning damage, 

because it has a connection to the lightning current and voltage. The two significant 
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properties of the electromagnetic field that are always associated with the destruction of 

electronic components are the peak values of the electric and magnetic field, and the 

maximum of change of these fields. These two values are very easy to detected using a 

lightning detection system, which can give the relative power of each lightning strike. 

The absolute energy of the lightning can be deduced by reference to a measured value 

from triggered lightning. 

Lightning protection design is always divided into two aspects. The first area is diversion 

and shielding. This protects the structure and reduces the magnetic and electric field 

induced within the structure. The lightning current is diverted to the connected vertical 

lightning rods or down conductors to the ground terminal. The second aspect is the effect 

of currents and voltages on communication, electronic and power systems, which are 

mainly protected through surge protection. Some techniques and devices are used to 

minimize the damage caused by peak values: voltage crowbar devices, voltage clamps, 

circuit filters and isolating devices. Protection designs have been developed thoroughly in 

recent years. 

Lightning detection for lightning protection is the application of this research. The early 

streamer emission system is based on the detection result, which launches an upward 

connecting leader early to avoid a direct connection between lightning and protected 

items. For some sensitive electronic devices, the temporary turnoff is an urgent method 

after it is known that there are some thunderstorms that will threaten the devices. The 

statistics of lightning detection can provide annual and monthly lightning distribution 

prediction, which can at least help to set the lightning protection standard. If the lightning 

detection system reports extremely hazardous thunderstorms, emergency evacuation will 

also be an alternative lightning protection plan.  
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Chapter 3 Instrument and Experiments 

3.1 LF Radio Receiver 

The newly developed wideband digital low-frequency radio receivers will be used for this 

PhD project. This kind of radio receiver can record the electrical field between 1 m 

altitude and the ground, as shown in Figure 3.1. It can record the electromagnetic wave 

over a large frequency range from ~4 Hz to ~400 kHz per microsecond.  The highest 

time resolution achievable is ~12 ns by the GPS clock, and the amplitude resolution is ~ 

35 µV. The device is powered by a battery, which can avoid the 50 Hz noise caused by 

AC power [Fullekrug, 2010]. This radio receiver was originally designed for sprite and 

lightning research [e.g., Fullekrug et al., 2006; Fullekrug et al. 2014; Mezentsev et al., 

2013; Soula et al., 2014]. The high timing accuracy enables the array to locate lightning 

sources and to study the recorded radio signals with high temporal resolution.  

 

Figure 3.1 The research device: the low-frequency radio receiver. Taken from Fullekrug 

(2010) 

This instrument is made up of a data acquisition unit, a precise clock for timing the data 

acquisition, a vertical electric field sensor, an analogue signal conditioning circuit, a mass 

storage medium and a data processing unit. The radio receivers can be upgraded for 
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specific purposes. For example, the receivers can be developed into an interferometry 

network to map the low-frequency radio sky by synchronizing individual instruments. 

A radio frequency survey is always conducted at the possible location before the 

instruments are fixed permanently. The radio frequency survey is a preliminary 

experimental test to detect the radio environment, which is focussed on nearby 

transmitters and power transmission lines to avoid their effects. The data recorded in the 

feasible location can be read the first time to determine the quality of the data. The 

location also needs to be considered in light of four aspects: people, animals, nearby 

power lines, and nearby transmitters. This is because human activity, animal activity or 

some transmitters affect the quality of electromagnetic wave detection. 

The principle of recording data from this novel radio receiver is the same irrespective 

whether it is used permanently, or temporarily as part of the radio frequency survey. The 

sensor measures the electrical field over one meter measured between the flat plane 

antenna and the ground. The antenna is connected to the amplifier to make the data large 

enough to be visible. Then the data is transmitted to the computer through the data 

acquisition instrument, which can transfer the data and also combine the time signal from 

the GPS clock. The whole process is shown in Figure 3.2. 

 

Figure 3.2 The processes of recording data. 
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The software used for the radio frequency survey is LabVIEW (Laboratory Virtual 

Instrumentation Engineering Workbench) from National Instruments, which can read the 

binary data in C language. The advantage of using this software in a radio frequency 

survey is that the measurement can be read whilst recording. The software used for the 

analysis of the lightning data afterwards is Matlab, which has the advantage of large size 

data processing.  

3.2 Experimental Lightning Receiver Array Deployment 

The purpose of this PhD project is to improve the performance of the long baseline 

lightning network. According to the cooperation with UK MetOffice ATDnet, the 

baseline of the experimental lightning receiver array is designed to be 400–500 km. The 

sensors of the network are required to be homogeneously distributed in order to locate 

lightning precisely. The sensitivity of the network is low, if the sensors are linearly 

deployed (Figure 3.3). The sensitivity map is calculated from the average of the arrival 

time change if the source location shifts 1° to north, south, east and west direction 

(latitude and longitude). In theory, the arrival time varies more for a 1° source shift if the 

sensitivity of the network is higher. 

 

Figure 3.3 The sensitivity map of a four-station linear distributed network with resolution 

of 20 km. 



PHD THESIS UNIVERSITY OF BATH CHAPTER 3 

29	
  
	
  

 

Figure 3.4 The sensitivity map of a four-station star distributed network with resolution of 

20 km. 

By comparing different network geometry with 4 sensors, such as, linear, square and star, 

it is found that the network sensitivity is much higher with a star geometry (Figure 3.4). 

The unsymmetrical sensitivity of this map may due to the different distances for the same 

latitude difference in different directions. With the practical consideration, such as, the 

availability of places to site the equipment, the four radio receivers used in this project are 

located in Bath (UK), Orleans (France), Lannemezan (France) and Rustrel (France). The 

map of the network is shown in Figure 3.5, where the yellow points are the device 

locations. The processing centre is the computer at the University of Bath, which receives 

the data from four stations each hour automatically. The low frequency electromagnetic 

waveform data from different sites can be analysed in different aspects for different 

purposes. In this thesis, the data from the different radio receivers can be compared to 

find the time differences and phase differences, which, by using the ATD technique and 

interferometry technique, can be used to locate lightning. This reliable device is thus 

popular in the atmospheric research area, and the sensors of the network may be increased 

in future. There are two more future stations that will be introduced into this network, 

which have already been installed at the red points on the map.  
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Figure 3.5 The network of radio receivers for sprite and lightning detection. 

The sensitivity of the receiver network was tested to ensure the best experimental area 

(Figure 3.6). It illustrates that lightning events occurring in France can be located more 

accurately with the same level of time accuracy. As a result, most of the analysis in this 

PhD is based on data collected when thunderstorms occurred in France. In ideal 

circumstances, the sensitivity map can be transferred to a resolution map with known time 

accuracy. In this instance, the highest theoretical time resolution is ~12 ns, so that the best 

theoretical location resolution for this network is 4 m, i.e. 12  𝑛𝑠/3  (𝜇 𝑠 𝑘𝑚). However, 

the time resolution cannot achieve ~12 ns in most cases. The theoretical location 

resolution would be expected to be <400m, considering an error even 100 times larger.  
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Figure 3.6 The sensitivity of the network deployment. France is the most sensitive area 

for this experimental lightning receiver array.  

3.3 Recording and Simple Data Processing 

A signal is a kind of physical phenomenon or information transmission function. 

Analogue signals and digital signals are the two expression functions of a signal. An 

analogue signal is a signal that has continuous time and amplitude. A digital signal is a 

signal that has discrete time and amplitude. A digital signal can be converted to the binary 

system, which is suitable for computer processing. In order to record the continuous 

analogue signals existing in the real world, digital signal processing is used to convert the 

signal into the digital domain by the novel radio receiver.  

Two seconds of raw data with sampling frequency at 1 MHz as recorded by the radio 

receiver is shown in Figure 3.7. Each pulse represents one lightning event. More than 20 

events can be easily observed during this two second period. More than one events 

initiate transient luminous phenomena in the middle and upper atmosphere, such as sprite. 

The observed sprite was triggered by a strong positive lightning event. According to the 
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observation, the lightning signal always has a large amplitude but for no longer than half 

a millisecond. Conversely, a sprite (1.002~1.004s) has a smaller amplitude but lasts for a 

few milliseconds. These characteristics can be observed directly from the data, and more 

information is extracted by more signal processing strategies.  

 

Figure 3.7 A 2-seconds raw data recorded by the LF radio receivers, including a sprite 

(~1.003s) triggered by a positive lightning (~1s). 

3.3.1 Filtered Data 

The instrument used in this project can receive electromagnetic waves from 4 Hz to 400 

kHz. Most energy from lightning discharge is distributed in the 5–15 kHz range [e.g. 

Fullekrug, 2013b]. In order to extract the selected information from the raw data, a box 

filter can be applied over a certain frequency range to produce filtered data. The basic 

principle of the filter strategy is applying a Fast Fourier Transform (FFT), firstly to 

transfer the data into frequency domain, and then to set the data outside the selected 

frequency range to be zero while the data within the selected frequency range remains 

unaltered. The final result in the time domain is subsequently calculated by an Inverse 

Fourier Transform.  
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A frequency filter applied to the data between 5–15 kHz excludes the noise from other 

radio sources (Figure 3.8, top). More weak lightning events can then be observed. The 

intensity of lightning discharges differs, and the emitted electromagnetic waves attenuate 

with the distance as they propagate. A signal with a small amplitude may thus be emitted 

either by a weak lightning discharge or a very distant strong event. Therefore, the 

observed amplitudes of different lightning are diverse, and they cannot be directly 

inferred as an indicator of lightning intensity.  

 

Figure3.8 Filtered signal of lightning and sprite sources from 5–15 kHz (top) and 500–

1500 Hz (bottom). 

Similar to the filtered data over the lightning frequency range, the Signal to Noise Ratio 

(SNR) of the data over sprite observation frequency range, i.e. 500–1500 Hz, is increased, 

which proves that no transmitter or other noise source is involved in this frequency range 

(Figure 3.8, bottom). The lightning data and sprite data can be compared in the time 

domain, which can show that sprites are always triggered by lightning. The lightning 

events that trigger sprites are mainly positive lightning, which always occurs a few 

milliseconds before sprites. The signal of some lightning or sprites may extend to other 

frequency ranges. For example, we can find some events show in both sets of filtered data. 
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The research in the frequency domain will help to understand this. The filtered data 

solves the low signal to noise ratio problem and simplifies the processing procedure for 

the lightning location calculation, which can be directly used in other lightning 

application research. 

3.3.2 Spectrum and Dynamic Spectrum 

The word ‘spectrum’ was first used in the optical area to describe the separated colours of 

light. Now, it is also used for an electromagnetic field to represent the amplitude or the 

phase information in the frequency domain. The Fourier Transform is the pivotal 

technique in generating the spectrum, which can convert the data from the time domain to 

the frequency domain. The Fast Fourier Transform is the practical tool for this application, 

which can reduce the time taken compared to the Discrete Fourier Transform. 

The spectrum generated in this field includes the amplitude and phase information at each 

sampling frequency. In some situations the phase information can be ignored, which 

shows the amplitude at different frequencies. Sometimes the amplitude will be ignored, 

with the spectrum showing only the corresponding phase information in the frequency 

domain. Electromagnetic waves can be comprehended by different waves at each 

harmonic frequency. For each sinusoid wave, the amplitude and phase information can be 

extracted separately. The amplitude spectrum and phase spectrum are both important in 

lightning research. The following figure presents the amplitude spectrum to show the 

signal intensity at different frequencies.  

Figure 3.9 shows the spectrum of a 2-second data, which presents the amplitude value 

from 1 Hz to 500 kHz. Due to the large difference between different frequencies, taking 

the logarithm to base 10 is a normal strategy to solve this problem. The pulses in the 

processed amplitude spectrum become obvious to select. Each of these frequency pulses 

represents one radio source, e.g. lightning, sprites, radio transmission, or local noise. 

Most of these pulses can be observed all the time, not only during these two seconds. 

Understanding these frequency performances is basic and important to analysing radio 

wave propagation. 
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Figure 3.9 The spectrum of a 2-second data. The x-axis shows the sampling frequency 

and the y-axis shows the logarithm to base 10 of the amplitude. 

Some narrow pulses are verified to broadcast transmission frequencies, for example, 198 

kHz is the central frequency of BBC Radio Four, and 162 kHz is the central frequency of 

France International. The research device is a high quality radio receiver, which records 

data meticulously each microsecond. These data can be well retrieved and listened to 

through a signal processing strategy. The LORAN (LOng RAnge Navigation) system 

operates at around 100 kHz. This system is an old ground-based radio navigation system, 

which helps ships and airplanes to detect their location. Although GPS is the most 

common navigation technique now, the LORAN system still works as the alternative and 

ground-based backup for GPS. LORAN-C is the most recent version, developed in the 

1970s. The working frequency is from 90 to 110 kHz. At present there are nine LORAN 

stations around the UK, which can be used in radio science.  

Electromagnetic waves at high frequency are easy to attenuate, especially in salty water. 

As a result, submarine communication under water always takes place at a low frequency. 

The central frequency of several submarine communications transmissions is around 20 
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kHz, and most lightning energy is distributed at 5–15 kHz. As a result, the submarine 

communication frequency is very close to the lightning frequency range. Considering 

known operation regulations and known locations, research into submarine 

communications can contribute to the study of wave propagation issues of lightning 

signals (See Chapter 6).  

 

Figure 3.10 The dynamic spectrum of a 2-second data. The x-axis is the time domain. The 

y-axis is the frequency domain, and the colour is related to the logarithm to base 10 of the 

amplitude frequency.  

The amplitude spectrum cannot present the frequency variance during recording, and so 

the dynamic spectrum is produced in both the time domain and the frequency domain 

(Figure 3.10). The two second period of data consists of two million samples. The first 

step is to reshape all the data into 2000 bins, each of which contains the data of one 

millisecond. The dynamic spectrum can be generated by Fourier Transferring this 

2000*1000 matrix. The dynamic spectrum reduces the frequency resolution, but provides 

information about the frequency variance by time. 
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The frequency variance is obvious during recording. Reading the results horizontally, the 

waves from submarine communications, LORAN, and broadcast transmissions can be 

directly distinguished, which perform like Morse code. Reading the result vertically, the 

signals from some powerful lightning and sprites are obvious, for example at 0.7, 1.0 and 

1.4 second. It corroborates the literature that strong lightning events produce 

electromagnetic signatures over a large frequency range (Section 2.1.2). 



PHD THESIS UNIVERSITY OF BATH CHAPTER 4 

38	
  
	
  

Chapter 4 Engineering Development of 

Experimental ATD Lightning Location 

Network  

4.1 The Design Idea 

As discussed in Chapter 2, most of the lightning location systems utilise the ATD 

technique. The principle of the ATD network is to use time differences to locate lightning, 

as described in the literature review. All of the commercial lightning location systems 

have their own unique calculation algorithm, but few of these systems publish their 

detailed program settings. As a result, a novel fundamental algorithm for lightning 

location using the ATD technique was developed for the experimental long baseline 

lightning receiver array. The design idea and the detailed processing steps are described 

below. The data recorded on 24th August 2013 at 20:12:05 has been used as the example 

to present the network performance. Several sprites and lightning events, especially three 

intense lightning events, were observed by human eyes and recorded within this three-

second period of data. Three sprites triggered by the three most intense lightning are 

speculated to be dancing sprite. 

The basic concept of an ATD lightning location network is to find the location that has 

the same arrival time differences to receivers as the measured time differences. A better 

understanding of the recording and possible arrival time differences is preliminary to 

designing the location calculation program. The raw data contains the full recorded 

information, but it is complicated to select useful information directly out of the noise 

(Figure 4.1).  

In order from top to bottom, the data of the sky blue line was recorded by the receiver in 

Rustrel. The data for the red line was recorded by the receiver in Lannemezan. The data 
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from the green line was recorded by the receiver in Orleans, and the data from the blue 

line is recorded by the receiver in Bath. The signal to noise ratio of the recording from 

Rustrel station is the highest, because this station is located on a mountaintop. The noise 

of other three receivers seems larger because of the nearby human activities. Even so, the 

main objectives of this Chapter, the three strong events around 1 second, are clearly 

observed. In order to increase the signal to noise ratio and get the pure lightning 

information, the data from 5 kHz to 15 kHz is filtered for better observation (e.g. Figure 

4.3, b).  

 

Figure 4.1 Three seconds of raw data recorded by the experimental lightning location 

network on 24rd August 2013 at 20:12:05.  

The filtered data is much clearer than the raw data, and extracting lightning information is 

easier. The essential calculation of the ATD technique is to find the intersecting 

hyperbolas (Section 2.3.2), so determining hyperbolas between four stations is the 

minimum requirement. Most strong lightning discharges can be observed at all four 

stations, and can thus be located in this network. However, this experimental lightning 

location network is not available for lightning discharges only observed at fewer stations. 
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A lightning location network using the ATD technique carries out calculations based on 

the measured arrival time difference. As a result, the designed ATD programme can be 

divided into three steps (Figure 4.2). The first step is extracting the time stamp of events 

and detecting the valid time differences of the first return stroke. The second step is 

finding the best matching location to the measured time differences using an optimization 

method. The third step is evaluation of the network results using rigorous self-assessment 

and comparison with other operating lightning detection systems to determine the system 

error and to identify areas of improvement. 

 

Figure 4.2 Developed ATD detection programme 

4.2 Measurement of Arrival Time Differences 

The lightning location is calculated based on the measured arrival time differences. There 

are two stages to extracting useful time differences from the recording. The first step is 

finding lightning events from a given amount of digital data and extracting the time stamp 

of it for retrieval. The second step is detecting the valid and accurate time differences 

from the retrieved lightning waveforms. 

For the first stage, most lightning location systems set the amplitude thresholds, so that 

the signal above the threshold value is treated as the lightning events. However, some 

weak lightning or distant lightning fails to be detected if the signal to noise ratio is low. 

The threshold of phase coherency around the receivers is a novel and sensitive method for 

a short-baseline lightning receiver array [Fullekrug, 2016]. There is no reliable trigger 

algorithm for this experimental network, and the reported time by other networks has 

been used for most cases.  
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The second stage is to measure the valid and accurate time differences from lightning 

recordings. In ideal circumstances, the lightning recording is a strong pulse signal with 

certain time delay at different stations. In reality, the received electromagnetic recording 

may have unpredictable issues, such as wave transformation with propagation (discussed 

in detail in Chapter 5) and saturation, which limits the veracity of ATD detection. Signal 

processing strategies and time tracking methods are discussed and compared below in 

order to measure the most accurate time differences. The signal processing strategy 

means the method of processing the data to extract time more accurately and easily. The 

time tracking method means the way of measuring the arrival time differences from the 

processed data. 

Four kinds of processed lightning data, raw data, filtered data, smoothed filtered data, and 

complex trace data, are compared using the example lightning shown in Figure 4.1 at 1 

second (Figure 4.3). The raw data contains whole electromagnetic information from 4 Hz 

to 400 kHz, but is too noisy to extract time stamps from the low SNR. The filtered data is 

filtered from 5–15 kHz, where most of the energy of the lightning return stroke is 

distributed. The smoothed filtered data is produced by a moving average of the signal 

excluding some powerful transmitters, such as 100 kHz and 198 kHz, so that it is clearer 

than the raw data and contains more information than the filtered data. The complex trace 

data is the amplitude envelope of the complex lightning waveforms (See Chapter 5), for 

which it is extremely easily to define amplitude maxima. 

The time tracking methods are methods for extracting time differences from the processed 

data. Three time tracking methods: maximum amplitude, zero crossing, and cross 

correlation, are discussed here. Maximum amplitude is normally a minimum value or 

maximum value, which is always associated with the first return stroke. The disadvantage 

of selecting the maximum amplitude is that the peak value sometimes causes saturation, 

which may result in error of a few microseconds. Zero crossing is selected from the zero 

crossing point before or after the maximum amplitude, which can avoid the saturation 

peaks. The zero crossing is normally associated with the initiation of stepped leaders or 

the rising of the return stroke, but this signature is easily affected by large noise. Cross 

correlation is an automatic method which uses the similarity of waveforms to detect time 

differences. It records the time shifted when waveforms get the best matching. However, 
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waveforms propagated from different distances are different, and noise outside the 

lightning period also contributes to the cross correlation result.  

 

Figure 4.3 Four kinds of processed lightning data of the lightning at 0.97s. a. raw data; b. 

filtered data; c. smoothed filtered data; and d. complex trace data. 

The combinations of different signal processing strategies and time tracking methods 

were tested and compared using three strong lightning events, as shown in Figure 4.1 at 

0.97, 1.0, and 1.13 seconds (Table 4.1). The measured time differences are directly used 

to calculate lightning locations for comparison, which were also compared with locations 

reported by other lightning location systems, such as the UK MetOffice and Meteorage. 

This experimental lightning location network is simplified as ‘UoB’ in the table. The chi-

square value (See Section 4.3), error distance (𝛥𝑋), and two error percentage (See Section 

4.4) are the elements to represent the quality of the location calculation and the accuracy 

of the arrival time measurements.  
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Table 4.1 Comparison between the different methods of arrival time measurement.  

24/08/2013 20:12:05.832715 Latitude 

° 

Longitude 

° 

𝑋!!! 

µs2 

UoB-

UKMO 

km 

UoB-

Meteorage 

km 

UKMO-

Meteorage 

km 

𝑃!" 

% 

𝛥𝑋 

km 

𝑃!" 

% 

1Maximum amplitude & Raw data 44.0234 8.0255 2.3422 32.4267 - 
 

2.15% 0.52 0.69% 

1Maximum amplitude in Filtered data 44.0234 8.0255 2.3422 32.4267 -  2.15% 0.52 0.69% 

1Zero Crossing & Filtered data 43.9337 8.3775 7.8697 2.5325 
  

1.45% 1.03 0.25% 

1Zero Crossing & Smoothed filtered data 43.9462 8.6337 20.2854 18.1368 
  

5.60% 2.24 4.21% 

1Cross correlation & Raw data 44.1415 7.0452 64.8225 111.778 -  15.12% 8.55 32.40% 

1Cross correlation & Filtered data 44.1451 7.0178 133.968 114.006 - 
 

17.65% 16.76 35.77% 

1Cross correlation & Complex trace data 44.2695 6.834 24.8975 131.5866 
  

9.00% 3.60 8% 

Meteorage company - - - - - - 
   

UK MetOffice 43.9309 8.4088 
 

R - - 
   

2Maximum amplitude & Raw data 44.7244 9.5575 11.6075 63.7526 11.0377 
 

0.61% 1.46 0.03% 

2Maximum amplitude & Filtered data 44.7244 9.5575 12.6075 63.7526 11.0377  0.61% 1.46 0.03% 

2Zero Crossing & Filtered data 44.7584 9.4193 7.233 74.9306 22.047 
 

0.36% 0.98 0.01% 

2Zero Crossing & Smoothed filtered data 44.7635 9.5022 8.1759 68.1947 15.6426 
 

0.41% 1.09 0.01% 

2Cross correlation & Raw data 44.6567 9.0567 67.1801 103.817 51.423  5.99% 8.90 4.22% 

2Cross correlation & Filtered data 44.5654 9.5147 140.161 69.7319 23.7819 
 

8.54% 17.34 6.02% 

2Cross correlation & Complex trace data 44.8114 8.707 23.8707 131.319 78.7259 
 

0.20% 3.47 1.70% 

Meteorage company 44.7359 9.6959 
 

- R 52.7798 
   

UK MetOffice 44.732 10.3622 
 

R - 52.7798 
   

3Maximum amplitude & Raw data 44.9422 10.3629 6.8609 32.3328 12.195 
 

0.37% 1.08 0.01% 

3Maximum amplitude & Filtered data 44.8585 10.6929 7.1674 7.1995 15.6771  0.36% 1.08 0.01% 

3Zero Crossing & Filtered data 44.8991 10.5273 7.3861 18.5573 2.5154 
 

0.30% 0.93 0.00% 

3Zero Crossing & Smoothed filtered data 44.9221 10.4584 5.8362 24.1662 4.4059 
 

0.26% 0.76 0.00% 

3Cross correlation & Raw data 44.8729 10.7633 7.0969 2.5855 20.3595  0.33% 1.00 0.01% 

3Cross correlation & Filtered data 44.865 10.7006 7.5608 6.2895 15.9373 
 

0.32% 1.00 0.01% 

3Cross correlation & Complex trace data 45.1866 8.5182 78.3419 179.7241 159.9938 
 

2.00% 11.50 5.00% 

Meteorage company 44.9197 10.5141 
 

- R 20.1609 
   

UK MetOffice 44.896 10.7672 
 

R 
 

20.1609 
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The time difference extracted from cross correlation with any processed data is 

convenient to calculate, but the accuracy in these cases is unsatisfactory. Considering 

consistency and accuracy, the most accurate combination is measuring time differences 

from the amplitude maximum of raw data. The difficulty in programming this 

combination to measure arrival time differences automatically is that there are several 

maximum peaks in one lightning recording. The maxima may not be at the same peak in 

the recordings at different stations. It was fortunately found that the maximum in complex 

trace data is always located between the first peak and second peak in the raw data. As a 

result, the same peaks in the recording at different stations can be selected from the 

maxima or minima before the maximum in complex trace data. This method has been 

tested and examined for many cases, and was used for this PhD project. 

4.3 Location Calculation Based on the Measured Time 

4.3.1 Chi-square Value 

The lightning location can be calculated in two ways once the arrival time differences are 

known. The forward thinking is to draw hyperbolas between the receivers based on the 

time differences, and then calculate the superposition of these hyperbolas. However, the 

earth is not perfectly spherical, and propagation of electromagnetic waves is complicated, 

which makes the mathematical procedure unrealistic. The inverse thinking is to find the 

location that matches the measured time differences. 

The match degree of locations is determined by the chi-square value: 

𝑋!!! = ∆𝑡! −
∆𝑑!
𝑣

!

,
!

!!!

                                                        (4.1) 

where 𝑋!!!  is the chi-square value, 𝑁  is the number of receiver pairs, ∆𝑡!  are the 

measured time differences between receivers, ∆𝑑! are the distance differences from the 

possible lightning location to the receivers, and 𝑣 is the wave propagation velocity which 
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defaults to c, i.e. the speed of light, in many lightning detection systems. The chi-square 

value is some direct proportion of the Root Mean Square (RMS) value 

𝑋!"# =
𝑋!!!
𝑁 .                                                                                            (4.2)   

The chi-square value is an indicator of the match degree between the measured time 

differences and the possible location. A smaller chi-square value means that this 

theoretical location is closer to the true location. While this chi-square value will never be 

zero, because the propagation speed is not identical to the speed of light (See Chapter 6), 

and due to the error of the extracted time difference. As a result, the theoretical location 

with the smallest chi-square value is the calculated location.  

Actually, the calculation result should be an area rather than a certain accurate location 

because of the uncertainty and error in the time differences. In theory, there are N-1 

independent time differences for N receivers. For easier understanding, These N-1 time 

differences are imagined to be a point in an N-1 dimensional space of all possible time 

differences, named the multi-dimension time difference model. The time differences of 

all geo-locations on earth make up an earth surface in this N-1 dimensional space. The 

point would be on this earth surface if the chi-square value is zero. However, the wave 

propagation velocity varies depending on different frequencies and different propagation 

paths. In addition, the time may have a certain level of error. As a result, the measured 

time differences will be stereoscopic rather than a point, which adds to the uncertainty in 

each direction from the measured point in this multi-dimension time difference model. 

Therefore, the calculation result should be an area, which may be achieved using the 

interferometry idea (See Chapter 7). In the case of current ATD calculations, the 

calculated location is the point on the Earth’s surface that is closest to the measured point 

in the multi-dimension time difference model, and the distance between these two points 

is the square root of the minimum chi-square value.  
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Figure 4.4 Chi-square sensitivity tests with a varying velocity (left) and time shift at the 

receiver in Bath (right).  

 In order to test the sensitivity of the chi-square value and minimize the distance between 

the measured point and the earth surface in the multi-dimension time difference model, 

the minimum chi-square value is calculated in different circumstances, such as different 

wave propagation velocities and different time accuracies of the receiver (Figure 4.4). It 

was found that the smallest minimum chi-square value is observed with a velocity smaller 

than c, and a delayed arrival time at one receiver. It illustrates that the wave propagation 

velocity for this network is not at the speed of light. This is also a possible reason for the 

smallest minimum chi-square value with an arrival time delay. Further study about the 

wave propagation velocity is described in Chapter 6. Overall, the chi-square value is a 

sensible and sensitive index for lightning location. 

4.3.2 Determine Lightning location 

The next step is to find the location that has the smallest chi-square value. There will be 

too many calculations if we search the entire map with certain accuracy. For example, 
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there will be one million times the calculations if we search the whole Europe to 0.01 

degree accuracy in latitude and longitude. It is a waste of computational effect for a single 

lightning calculation. The idea of loops searching is shown in Figure 4.5. 

 

Figure 4.5 Searching loops for lightning detection. 

The basic idea of loops searching is to find the minimum value within a large area with a 

large step, and to repeat the same process in the surrounding area with a smaller step. The 

example in Figure 4.5 uses 4 loops with the step from 1° to 0.001°. The final location 

resolution is ~1 km. The benefit of using loops searching is to avoid the ambiguity of 

global and local minima. One example of the chi-square value distribution in different 

searching loops is presented in Figure 4.6. The same feature is observed here and in 

numbers of other examples even with higher resolution that there is only one minimum 

when searching loops. It indicates that it is sensible to calculate lightning location by 

minimization of the chi-square value directly based on the gradient descend technique, 

which decreases the amount of computational time and effort needed.   
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Figure 4.6 The chi-square value distribution in different searching loops with the 

searching unit from 1° to 0.001°. 

4.4 Evaluation of the Result 

The reliability of the result is as important as the result itself, and can determine the 

system error and identify areas of improvement. Results evaluation has two aspects: 

inside and outside (Table 4.1). Outside evaluation is the comparison of the result with 

other operational lightning detection systems, such as the MetOffice and Meteorage 

Company. Inside evaluation is rigorous self-assessment, which is the difference between 

the measured time differences and the time differences from the calculated location to the 

receivers.  
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The chi-square value and RMS value are two self-assessment methods. There are also 

several other equations that have the similar effect of result evaluation, such as the mean 

absolute percentage deviation: 

𝑃!" =
!
!

1− !!!
!!!∗!

!
!!! ,                                                          (4.3) 

and the square percentage deviation: 

𝑃!" = (1−!
!!!

!!!
!!!∗!

)!,                                                            (4.4) 

and the distance between the theoretical location and the ideal true location: 

𝛥𝑋 = 𝑣 ∆!!
!
− Δ𝑡!

!
!
!!!   .                                                     (4.5) 

These self-assessment equations can prove whether a result is reliable or not. Evaluation 

of some examples shows that the results of the lightning detection network are quite 

reliable (e.g. Table 4.1) and useful in determining the best time difference selection 

methods.  

This developed experimental ATD lightning location program has been used as the 

fundamental algorithm for lightning analysis in this PhD project. The calculated results 

are precise even with only four receivers. Further research based on this program is 

described in the following Chapters. 
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Chapter 5 Lightning Sferics: Analysis of 

the Instantaneous Phase and Frequency 

Inferred from Complex Waveforms 

5.1 Introduction 

Ground-based lightning location systems are essentially based on received 

electromagnetic waves and subsequent signal processing [e.g., Dowden et al., 2002; 

Holler et al., 2009; Bitzer et al., 2013; Rakov, 2013; Stock et al., 2014; Lyu et al., 2014; 

Nag et al., 2015; Wang et al., 2016; Sun et al., 2016]. In the most commonly used 

lightning location method, Arrival Time Differences (ATD) are extracted by different 

signal processing techniques from the lightning waveforms recorded at different radio 

receiver stations [e.g. Lee, 1986, 1990; Cummins et al., 1998, 2009]. The different signal 

processing techniques used result in slightly different arrival times with different 

corresponding lightning locations [Liu et al., 2016]. Using a different time extraction 

point, e.g. the waveform peak or rising edge, and different data pre-processing, e.g. wide 

or narrow bandwidth or complex envelopes, can all introduce slightly varying time 

differences. As a result, a better understanding of the sferic, i.e. the received broadband 

lightning waveform, is a prerequisite for improving the accuracy of lightning location. 

Much research into ionosphere perturbations and atmospheric chemistry uses broadband 

VLF waveforms, in particular lightning waveforms [e.g. Cheng et al., 2007; Shao et al., 

2013]. The sferic is a broadband electromagnetic impulse generated by a lightning 

discharge, which propagates through the earth-ionosphere waveguide. The perturbations 

in the D-region caused by the variation of electron densities changes the received sferic in 

the time and frequency domains. A collection of average lightning waveforms at different 

distances, named a waveform bank, was introduced by Said et al. [2010]. This method 

offers an opportunity to characterize sferics and to estimate arrival time. This idea has 
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been adopted and is extended in this work to produce a new type of waveform bank for 

further analysis. 

A time-dependent sferic signal is treated as an analytic signal, or complex trace, and the 

received signal is processed to determine the instantaneous phase and frequency at each 

sample in the time series [e.g. Taner et al., 1979]. This method will be applied to a new 

lightning waveform bank (<1000 km) produced from data collected by the long-baseline 

lightning receiver array described below. The timing accuracy of the instantaneous phase 

is compared with other methods using the speed of light as a reference. The derivative of 

the instantaneous phase is the instantaneous frequency, which is used here to study the 

relationship between the real frequency of the sferic and its spectrum. The observed 

instantaneous frequency changes in the complex waveform bank are discussed and related 

to the radio wave propagation with distance.  

5.2 The Complex Waveform Bank 

5.2.1 The Waveform Bank 

Previous research associated with sferic waveform characteristics, including polarity 

estimation, cycle errors, and peak current, has shown that received lightning waveforms 

that originate from a certain storm cluster exhibit similar features [Said et al., 2010, 

Figure 1]. Thus, a small deviation of lightning waveform shape indicates propagation 

over similar distances. A representative waveform is calculated by averaging each of the 

lightning waveforms in one distance bin to reduce the noise in each average waveform 

and to acquire a more pure lightning waveform that includes subtle propagation effects. 

Comparing the representative waveforms at different distances is an effective method to 

study the propagation effects on lightning sferics. 

Lightning locations are reported by the French lightning detection network, Meteorage, 

which covers south-western Europe and the western Mediterranean Sea. The 

electromagnetic waveforms of lightning discharges were recorded from ~21:00 UT 8th to 

~03:00 UT on 9th August 2014 by four low-frequency radio receivers.  
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Figure 5.1 The average night-time waveforms of negative lightning discharges at 

distances from 10–1000 km. Each average waveform at a given distance was calculated 

from more than one hundred events. The time axis is referenced to t=0 corresponding to a 

propagation at the speed of light from the source to the receiver. A sequence of 

consecutive maxima resulting from the ionospheric reflections (or multi-hop sky waves) 

appear from ~100 km distance onwards, and the time differences between ground wave 

and sky waves are smaller for larger distances. 

During the 13 hour long recording, more than 150,000 cloud-to-ground lightning stroke 

waveforms from a mesoscale convective system over central France were recorded by the 

four sensors with peak currents ranging from -4 kA to -40 kA, which were located 0–

1000 km away from each radio receiver [Liu et al., 2016]. The lightning waveforms 

ranging from -1 ms to +4 ms around the occurrence of the lightning discharges were 

extracted from the digital recordings based on the lightning locations and time reported 

by Meteorage. The time t=0 of the lightning waveforms was referenced to the propagation 

time at the speed of light calculated from the great circle distance between the source and 

the receiver. This referencing procedure enables the calculation of one average waveform 

for each distance bin with a width of 10 km. Each distance bin consists of at least one 
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hundred lightning waveforms. The resulting 100 average waveforms comprise the 

lightning waveform bank, forming the basis for the subsequent data analysis (Figure 5.1). 

The difference between source currents and the interfering signals from the local noise 

environment, man-made noise and radio transmissions are thereby minimized. The 

ionosphere conditions are relative stable because all of these lightning waveforms 

propagated at night-time. 

 

Figure 5.2 The spectra of the average waveforms. Interfering signals from the local noise 

environment, man-made noise and radio transmissions are minimized. The sequence of 

consecutive modal maxima (yellow and red) is separated by distinct minima (black) 

which are characteristic of the distance between the radio receiver and the lightning 

discharge. The area of the blue square is used for the analysis of the instantaneous 

frequencies (compare to Figure 5.8). 

The waveform bank exhibits an initial pulse from the ground wave, and a sequence of 

subsequent maxima from ionospheric reflections or multi-hop sky waves. The first arrival 

sky wave can be observed after ~100 km propagation, and additional sky wave hops can 

be observed for longer distance propagation. The energy of the lightning signals 
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propagated along the ground path attenuate with distance due to ground conductivity, 

while the energy of lightning signals from the ionospheric reflections are attenuated by 

longer propagation distances and the ionospheric D-layer conductivity. The waveform 

bank shows distance-dependent arrival times of the ground wave and ionospheric 

reflections, which can be explained by ray theory [e.g. Schonland et al., 1940; Carvalho 

et al., 2017; Qin et al., 2017]. The waveform bank shows the ground wave arrival at 0 ms 

and the sky wave arrival at increasing time delays for shorter distances, which can be 

confirmed by theory using a flat-earth model and a spherical earth model.. 

A spectral waveform bank can be calculated by averaging the spectra of all waveforms at 

the same distance bin, or from the spectra of the average lightning waveforms at each 

distance bin, which produce same result (Figure 5.2). The spectral waveform bank 

exhibits a sequence of consecutive maxima in the frequency range up to 100 kHz. These 

consecutive relative maxima result from the constructive superposition of numerous wave 

propagation modes, named modal maxima in the following text. The modal maxima are 

separated from each other by distinct spectral minima that are characteristic for the 

distance between the lightning discharges and the radio receivers. These features of the 

spectral waveform bank result mainly from the lightning pulses and propagation effects, 

because averaging the waveforms eliminates the difference between source currents and 

most of the interfering noise. The spectral waveform bank is useful for understanding the 

propagation effects with distance, and can be used for theoretical modelling of radio wave 

propagation. 

5.2.2 Complex Waveforms 

The time dependent radio signal can be treated as an analytic signal or complex trace. 

This allows for the extraction of the envelope and instantaneous phase for each sample 

[e.g. Taner et al., 1979; Liu et al., 2016]. The complex trace can be obtained from the real 

valued recordings using the Hilbert transform. The Hilbert transform can be thought of as 

the convolution of the real signal with   1 (𝜋𝑡) , where 𝑡  is time. This convolution 

generates the Hilbert transform as an output of a linear time invariant system using the 

Cauchy principal value to avoid singularity. The Hilbert transform, 𝐻(𝑓 𝑡 ), of a real 

valued time dependent function, 𝑓 𝑡 , can also be understood as the effect of a phase shift 
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of the negative frequencies by +90° and positive frequencies by -90°, where using 

multiplication by an imaginary unit, 𝑗, to calculate the complex trace, 𝐹 𝑡 , shifts the 

negative frequencies by another +90° and restores the positive frequencies. 

In practice, the complex waveform can be calculated from the real signal by doubling the 

positive frequencies of 𝑓 𝑡 and by eliminating the negative frequency of the real signal. 

This complex waveform is subsequently down converted by multiplying with a frequency 

shift operator, 𝑒!!∆!", that centres the spectrum at zero frequency. The frequency shift 

operator has in-phase and quadrature components, so this step can alternatively be used 

for obtaining a complex signal. The shift frequency, ∆ω, is normally set as the harmonic 

frequency which contains most of the energy of the target signal. For example, the shift 

frequency of a radio transmission is normally the centre frequency of its modulation. The 

shift frequency of lightning can be set at 10 kHz, as the return stroke deposits most of its 

energy around this frequency [Fullekrug et al., 2013]. The final complex waveform can 

be determined after applying a low-pass filter to the down converted signal in order to 

increase the signal to noise ratio: 

𝐹 𝑡 = 𝑓 𝑡 + 𝑗𝐻 𝑓 𝑡 𝑒!!∆!" = 𝐴 𝑡 𝑒!" !                                                       (5.1) 

where 𝐴 𝑡  is the time dependent amplitude envelope, and 𝜑 𝑡  is the time dependent 

instantaneous phase, i.e. 𝜑 𝑡 = tan!![Imag(𝐹 𝑡 ) Real(𝐹 𝑡 )].  

Using this method, the complex waveform from 2–18 kHz of an average lightning signal 

at 300 km was calculated and is shown in Figure 5.3. This three-dimensional trace of a 

lightning waveform illustrates the amplitude envelope and instantaneous phase variation 

over time. In the beginning, the phase of the complex trace is chaotic and the amplitude is 

low when there is no lightning signal. The arrival of the ground wave and sky waves 

leads to large signals, which are well above the noise. These large signals result from a 

strong lightning discharge, so that the amplitude is increased and the phase is moved 

towards a specific value. In this example, the complex waveform rotates anticlockwise, 

which means that the instantaneous phase is decreasing during the pulse arrival. The 

signal returns to chaotic behaviour after the lightning event.  
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Figure 5.3. Isometric diagram of an average complex waveform of lightning at a distance 

of 300 km. The 3D trace of the complex lightning signal from 2 kHz to 18 kHz exhibits 

large amplitudes when the ground wave and sky waves are arriving. The rotation 

direction of the complex trace is anticlockwise, which means that the instantaneous 

frequency is smaller than the centre frequency. The blue lines show the real part, (Ar), 

and imaginary part, (Ai), of the complex lightning waveform. The thin red line is the 

amplitude envelope of the complex waveform. 

Different information can be extracted from the complex waveform than from the real-

valued signal, including the envelope of the complex trace and the instantaneous phase. 

The time differences calculated from the instantaneous phase between two lightning 

waveform peaks can be extracted by use of the transfer function calculated from the ratio 

between the two complex values at maximum amplitude. Normally, the time difference 

between two lightning waveforms is constrained by the sampling frequency. In order to 

achieve the sub-sample time difference  δ𝑡 = 𝛿𝜑/𝜔, the two waveforms are time shifted 

first in order to superpose the amplitude peaks. The instantaneous phase difference  𝛿𝜑 
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can then be extracted from the transfer function of the peak samples in the two 

waveforms. The time difference inferred from the instantaneous phase achieves sub-

sampling accuracy after taking into account cycle ambiguities, if any. 

 

Figure 5.4. The time offsets between different propagation distances with respect to a 

speed of light propagation. The average lightning waveforms from 310 km to 600 km are 

compared with the average lightning waveform at 300 km distance. The time offset δt is 

the measured time differences Δt minus the supposed time differences with propagation 

velocity at speed of light Δd/c, and the distance differences Δd in this case is compared to 

lightning waveform at 300 km distance, i.e., d-300. By comparing different signal 

processing methods, the average value of the absolute time offset by using the 

instantaneous phase of the complex lightning waveform (red) is less than just using the 

amplitude envelope (blue) or using the amplitude of the real signal (black) or cross 

correlating lightning waveforms (green). The corresponding average values of the 

absolute time offset are shown by the dashed lines.   

The propagation time delay relative to the speed of light using different signal processing 

methods can be compared by using the lightning waveform bank. The average lightning 
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waveforms from 310 km to 600 km are compared to the average waveform at 300 km 

using four different time extraction methods (Figure 5.4). The time offset δt is the 

measured time differences Δt minus the supposed time differences with propagation 

velocity at speed of light Δd/c, and the distance differences Δd in this case is compared to 

lightning waveform at 300 km distance, i.e., d-300. All these methods determine the time 

offset measured with reference to the propagation time between the source and the 

receiver at the speed of light. The first three methods extract time stamps by waveform 

cross correlation, and from the peak of the filtered data (5–15 kHz) and the envelope of 

the complex trace. The average values of the absolute time offsets over all distances differ 

from 10–300 km with respect to the speed of light using these three methods are ~2.33 

µs,~2.63 µs and ~4.23 µs, respectively, with corresponding ranges of [-3 6] µs , [-4, 5] µs 

and [-8, 11] µs. The average value of the absolute time offset using the instantaneous 

phase is only ~2.08 µs with a corresponding range [-2.78, 5.62] µs (Figure 5.4). In the 

case of a lightning location system measuring time differences with a propagation 

velocity of the speed of light, the time accuracy is therefore slightly improved by 

calculating the instantaneous phase from the complex waveform.  

5.3 Instantaneous Frequency 

The different rotation directions of complex waveforms may indicate a different elevation 

angle of the incident lightning sferic [Fullekrug et al., 2016, Figure 2, right]. The rotation 

direction is the polarity of the derivative of the instantaneous phase in a complex 

waveform. This time dependent derivative,   𝑓! = 𝑑𝜑/𝑑𝑡 , is called the instantaneous 

frequency [Taner et al., 1979]. The instantaneous frequency indicates the phase change 

for each sample with reference to the centre frequency of the signal. The rotation 

direction is anticlockwise when the instantaneous frequency is smaller than the centre 

frequency and it is clockwise when the instantaneous frequency is larger than the centre 

frequency. A convenient way of computing the instantaneous frequency, fi, from the 

complex trace, C, is to compute the derivative of the arctangent function:  

𝑓! =
1
2𝜋

𝑑
𝑑𝑡 𝑡𝑎𝑛

!! 𝐼𝑚(𝐶)
𝑅𝑒(𝐶) ,                                                                                                    (5.2) 
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which results in: 

𝑓! =
𝑅𝑒(𝐶)𝑑(𝐼𝑚 𝐶 )

𝑑𝑡 − 𝐼𝑚(𝐶)𝑑(𝑅𝑒 𝐶 )
𝑑𝑡

2𝜋(𝑅𝑒 𝐶 ! + 𝐼𝑚 𝐶 !)   .                                                                                         5.3  

A signal that consists of two frequency components, 𝑓! and  𝑓!, is analysed in order to 

explore the relationship between the instantaneous frequency and the two frequency 

components. Assuming that C1 and C2 are two single sinusoid complex signals, the 

instantaneous frequency of the superposed signal is: 

𝑓! =
1
2𝜋

𝑑
𝑑𝑡 𝑡𝑎𝑛

!! 𝐼𝑚(𝐶!)+ 𝐼𝑚(𝐶!)
𝑅𝑒(𝐶!)+ 𝑅𝑒(𝐶!)

,                                                                (5.4) 

which results in: 

𝑓! =
1
2𝜋

𝑑
𝑑𝑡 𝑡𝑎𝑛

!! 𝐴! sin𝛼 + 𝐴! sin𝛽
𝐴! cos𝛼 + 𝐴! cos𝛽

,                 5.5  

where A1 and A2 are the amplitudes of the two sinusoid signals, and 𝛼 and 𝛽 are the 

phases of the sinusoids C1 and C2. The derivatives of 𝛼 and 𝛽 are 𝑓! and  𝑓!. The explicit 

calculation of the derivative in equation 5.5 yields: 

𝑓! =
𝐴! cos𝛼 + 𝐴! cos𝛽 (𝐴!𝑓! cos𝛼 + 𝐴! 𝑓!cos𝛽) + (𝐴! 𝑓!sin𝛼 + 𝐴! 𝑓!sin𝛽)(𝐴! sin𝛼 + 𝐴! sin𝛽)

𝐴! cos𝛼 + 𝐴! cos𝛽 ! + (𝐴! sin𝛼 + 𝐴! sin𝛽)!
      (5.6) 

In order to simplify this result, we assume that 𝛼  = 𝛽  when the amplitude of the 

superposed signal is maximal. In this case, it follows that: 

𝑓! =
𝐴!𝑓! + 𝐴!𝑓!
𝐴! + 𝐴!

.                                                                    (5.7) 

Similarly, we assume that 𝛼 = 𝜋 + 𝛽 when the amplitude of the superposed signal is 

minimal. In this case, it follows that: 
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𝑓! =
𝐴!𝑓! − 𝐴!𝑓!
𝐴! − 𝐴!

.                                                                      (5.8) 

Consequently, the instantaneous frequency of a signal consists of N frequency 

components is 

𝑓! =
1
2𝜋

𝑑
𝑑𝑡 𝑡𝑎𝑛

!! 𝐴! 𝑠𝑖𝑛 𝛼!!
!

𝐴! 𝑐𝑜𝑠 𝛼!!
!

,                            (5.9) 

Which results in 

𝑓! =
𝐴!𝑓! cos𝛼!!

! 𝐴! cos𝛼!!
! + 𝐴! sin𝛼!!

! 𝐴!𝑓! sin𝛼!!
!

2𝜋 𝐴! cos𝛼!!
!

! + 𝐴! sin𝛼!!
!

! ,                          (5.10) 

Where 𝐴!  are the amplitudes of the sinusoid signals and 𝛼!  are the phases of these 

sinusoids The derivatives of 𝛼!   are the frequency of each sinusoids 𝑓!. If the phases of 

each sinusoids are same, i.e., 𝛼! = 𝛼∀𝑗, then 

𝑓! =
𝐴!𝑓!!

!

𝐴!!
!

.                                                            (5.11) 

These results show that the instantaneous frequency is equal to the amplitude-weighted 

frequency in the frequency domain when the amplitude of the complex signal is maximal. 

The instantaneous frequency may be singular when the amplitude difference is zero. 
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Figure 5.5 The instantaneous frequency of a simulated superposed signal that consists of 

two frequency components at 100 Hz and 120 Hz (black solid and dashed lines). The 

calculated instantaneous frequency of the averaged signal (blue line) is more stable, and 

is equal to the amplitude-weighted average value calculated by equation 5.7 when the 

amplitude is maximal (red line). 

The instantaneous frequency of two frequency components is confirmed by simulating a 

superposed signal 𝑦 = 𝑠𝑖𝑛 2𝜋×100𝑡 + 2𝑠𝑖𝑛(2𝜋×120𝑡)  (Figure 5.5). The signal is 

down converted by 110 Hz to compute the complex waveform. The instantaneous 

frequency is calculated directly from the derivative of the arctangent function (equation 

5.3). The instantaneous frequency of a single sinusoid signal is a real constant frequency. 

The instantaneous frequency of the superposed signal varies depending on the amplitude 

of the complex waveform. The instantaneous frequency is equal to the amplitude-

weighted average value calculated by equation 5.7 when the amplitude is maximal. The 

instantaneous frequency is not within the range of the two frequency components, and is 

equal to the result calculated by equation 5.8 when the amplitude is minimal. This 

simulation result confirms that the instantaneous frequency represents the amplitude-

weighted average of the true frequencies in each sample when the amplitude is maximal. 
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The instantaneous frequency provides no meaningful information about either of the two 

frequency components when the amplitude is minimal. Therefore, for a real wideband 

signal, such as lightning, the instantaneous frequency is only a reliable indicator of the 

true frequency spectrum when the amplitude is maximal. 

5.4 Instantaneous Frequencies of Lightning Waveforms 

The instantaneous frequency of the average lightning waveform at a distance of 300 km is 

calculated for different frequency bandwidths (Figure 5.6). At the beginning, the 

instantaneous frequency is chaotic due to the noise and large sensitivity of the 

instantaneous phase, and it is only relatively stable during the arrival of the lightning 

pulse, confirmed by the simulation result in the previous section. In order to emphasize 

the results during maximum amplitude, the amplitude weighted average instantaneous 

frequency was calculated by averaging n=20 samples of the dot product between the 

amplitudes and their instantaneous frequencies divided by the sum of all amplitudes. This 

amplitude-weighted average of the instantaneous frequency with empirically selected n 

smooths the original instantaneous frequency but remains most of the frequency variation. 

This amplitude-weighted average instantaneous frequency is likely to be of benefit for 

detailed monitoring of the frequency distribution during the lightning period. 

The instantaneous frequency of the average lightning waveform propagated over 300 km 

calculated from 2–18 kHz (Figure 5.3) shows that the instantaneous frequency is smaller 

than the centre frequency of 10 kHz when the amplitude is at a maximum (Figure 5.6, 

top). This explains why the rotation direction of the complex waveform during the 

lightning period is anticlockwise. The result means that the median value of the 

amplitude-weighted instantaneous frequency from 2–18 kHz during the lightning period 

is below 10 kHz according to the theoretical analysis explained in the previous section. 

However, there are several modal maxima in the spectra within this frequency range 

(Figure 5.2). Each peak in the spectrum may vary differently during the lightning period. 

As a result, it is better to concentrate on one modal maximum in the spectrum, so that the 

small variations of each peak during the lightning period can be observed individually. 

The instantaneous frequency calculated from a narrowband frequency range around one 
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peak in the spectrum (See Figure 5.2, frequency range from 8.8–12.8 kHz) is much less 

variable (Figure 5.6, bottom). The instantaneous frequency around the lightning pulse is 

almost constant, indicating that the frequency distribution during the lightning period is 

stable.  

 

Figure 5.6 The instantaneous frequency (black dashed line) calculated from a lightning 

waveform with two frequency bandwidths, 2–18 kHz (top) and 8.8–12.8 kHz (bottom), 

confirms the theoretical result that the instantaneous frequency is more stable when the 

amplitude of the signal is maximal (blue line). The amplitude-weighted average 

instantaneous frequency (red line) smooths the original instantaneous frequency. The 

instantaneous frequency calculated from a 4 kHz bandwidth around one modal maximum 

in the spectrum is less variable than using a bandwidth from 2–18 kHz, which contains 

many modal maxima. 

As a result, the instantaneous frequency at the maximum amplitude is selected to 

represent the median frequency during the lightning period. The instantaneous 

frequencies at the maximum amplitudes of the lightning waveforms from similar 
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distances are compared to determine the differences between individual events (Figure 

5.7). As discussed above, a narrow frequency bandwidth of 4 kHz is chosen with a 

varying centre frequency, in order to constrain the target frequency range around the same 

modal maximum in the spectrum. These varying centre frequencies are selected from the 

maxima of the second modal peak, which always falls between 10–20 kHz in the 

spectrum, for example at 300 km, 350 km and 400 km distance. The instantaneous 

frequencies at the maximum amplitudes are calculated for all the waveforms recorded by 

one station, and the distribution of the instantaneous frequencies in the same distance bin 

shows a clearly peaked distribution (Figure 5.7). This indicates that the instantaneous 

frequencies within one distance bin are range limited. The centre frequencies associated 

with the main peaks of the distributions are clearly distance dependent as a result of radio 

wave propagation. In other words, the instantaneous frequency inferred from the average 

lightning waveform can be used to represent the source receiver distance. 

 

Figure 5.7 The distributions of the instantaneous frequencies at maximum amplitudes 

inferred from all the lightning waveforms recorded by one station at several distance bins 

are clearly peaked distributions. 
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This idea can be tested by extending the analysis to the average lightning waveforms from 

300–600 km in each distance bin separated by 10 km in the frequency range 10–20 kHz 

(Figure 5.8). The calculated instantaneous frequencies are obviously distance dependent 

and closely follow the second modal maximum in the spectra. This excellent result 

strongly suggests that instantaneous frequency has a promising potential application for 

determining the lightning distance from a single radio receiver. 

 

Figure 5.8 The instantaneous frequencies (red line) at maximum amplitudes of the 

average lightning waveforms at distances ranging from 300–600 km (blue square) follow 

the modal maximum in the spectra well.  

5.5 Discussion and Conclusion  

The lightning waveform bank produced for distances up to 1000 km with a spatial 

resolution of 10 km is well suited for use in studying long-baseline lightning location 

systems and electromagnetic wave propagation. For most lightning location systems, the 

baseline is smaller than 1000 km so we can simulate and examine a new location 

algorithm or new site deployment. For wave propagation and ionospheric research, this 

waveform bank is valuable as a reference for modelling [e.g. Pasko and Fullekrug, 2011]. 
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In particular, spectra have been calculated across a lightning waveform bank, to reveal a 

sequence of consecutive modal maxima depending on distance and frequency. This 

waveform bank is generated from lightning recordings of a thunderstorm in Europe, 

which may not be identical to waveform banks calculated for other geographical areas 

and which limits the propagation distance less than 1000 km. However, the general 

method of producing the waveform bank and the spectral waveform bank is applicable to 

other recordings and longer distance than 1000 km in the future. In addition, this method 

is also applicable to study other types of lightning, such as, IC events. 

To the best of our knowledge, the complex waveform bank analysis of lightning is used 

here for the first time, providing an opportunity to extract the instantaneous phase and 

instantaneous frequency. Determination of distance using the instantaneous frequency is 

just one potential application of this complex waveform bank. The instantaneous 

frequency may also, given more data, be determined by different arrival azimuths, 

elevation angle or different times of day. For example, it is observed that a different 

incident elevation angle indicates a different rotation direction in the complex waveform 

of the lightning, i.e., a different instantaneous frequency [Fullekrug et al., 2016, Figure 2, 

right]. By using the instantaneous frequency for distance determination, the lightning 

signal can be first approximated within <50 km, because the instantaneous frequency can 

vary, e.g. between 400 km and 450 km distance (Figure 5.8). This uncertainty is very 

likely due to the lack of data at these distances, which could be improved by collecting 

more data with longer recordings. On the other hand, the instantaneous frequency is 

calculated based on each lightning waveform that involves the interference from local 

noise environment of each station. It is proven that the distribution of instantaneous 

frequencies from lightning at similar distances shows a clearly peaked distribution if they 

are recorded at the same station (Figure 5.7). The distributions may differ slightly 

between different stations, most probably due to varying local radio environments and/or 

different propagation paths. As a result, determining distance using instantaneous 

frequency may be more accurate if the reference instantaneous frequencies are derived 

from each station separately. 

In summary, this study has offered several results: (1) The average lightning waveforms 

from different distances exhibit a sequence of consecutive maxima resulting from 
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ionospheric reflections, which can be used for radio propagation studies, lightning 

modelling, lightning detection simulation, etc. (2) In the spectral waveform bank, the 

sequence of consecutive modal maxima is separated by distinct minima at different 

frequencies and distances. (3) Long-baseline lightning location can achieve sub-sampling 

time accuracy using the instantaneous phase of the complex lightning waveform. (4) The 

instantaneous frequency calculated from average lightning waveforms has been shown to 

be distance dependent, and therefore has the potential to be used for determination of 

lightning distance. 
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Chapter 6 Variable Phase Propagation 

Velocity for Long-baseline Lightning 

Receiver Array 

6.1 Introduction 

All lightning location techniques are based on recording radio waves that propagate from 

lightning discharges to the receivers. Radio wave propagation depends on numerous 

factors such as the frequency, ionospheric height, terrain, and ground conductivity [e.g., 

Schonland et al., 1940; Barr et al., 2000]. This natural variability results in uncertainties 

for the computed lightning locations. An improved understanding of the underlying 

physics of lightning location uncertainties enables novel opportunities toward improving 

the ATD method [Cummins et al., 2010]. Correcting timing errors caused by propagation 

effects are important for each lightning detection sensor in a network [e.g. Honma et al., 

1998; Schulz et al., 2016]. There have been many studies of time delay and amplitude 

attenuation due to electromagnetic wave propagation over different ground conductivities 

[e.g. Cooray et al., 1983; Caligaris et al., 2008; Cooray et al., 2009;] and terrain [Li et 

al., 2015; Li et al., 2016 (a,b)]. These effects result in a wave propagation velocity that 

has direct influence on the determination of lightning locations, and might enable 

improvements to the geolocation accuracy of lightning discharges [e.g., Jean et al., 1960; 

Steele and Chilton, 1964; Chapman et al., 1966; Dowden et al., 2002]. 

Long range lightning location systems commonly use the group velocity, which is always 

less than or equal to the speed of light. The group velocity (Vg=δω/δk) is the velocity of a 

group of waves within an amplitude envelope. The phase velocity (Vp=ω/k) determines 

the change of phase at a given location of one radio frequency component. For long-

baseline lightning location systems (>400 km), the received radio waves are normally a 

mixture of ground wave and sky waves, i.e. ionosphere hops. The contribution of the sky 
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wave results in an elevation angle of the incident wave, which is seen by a receiver array 

as the slowness of the wave [e.g., Fullekrug et al., 2015]. The word ‘slowness’ is used in 

seismology, and it is suggested here to use the word ‘phase propagation velocity’ for 

radio waves. The phase propagation velocity is affected by the wave arrival elevation 

angle (θ) and the wave arrival velocity (Vg), which is influenced by the ground and 

ionospheric parameters. This phase propagation velocity (Vg/cosθ) is meant to be the 

velocity as it appears to a receiver array, considering the elevation angle of the incident 

wave. For example, the phase propagation velocity will be infinite if the wave arrives 

with a ~90° elevation angle at the receiver array. The phase propagation velocity will be 

the group velocity if the wave arrives horizontally with a 0° elevation angle. This velocity 

with a given elevation angle is suitable for 2D lightning location calculation because the 

propagation distances are normally inferred from ground paths.  

The scientific literature reports contradictory results on whether the phase velocity in 

Very Low Frequency (VLF) transmissions is larger or smaller than the speed of light in 

the Earth-ionosphere waveguide [e.g., Jean et al., 1960; Steele and Chilton, 1964]. To 

resolve this controversy, it would be helpful to investigate VLF transmissions with the 

aim of inferring the phase propagation velocity that results from the effects of sky and 

ground waves in a steady-state transmission. This contribution of sky waves and ground 

effects may also influence the performance of long-baseline lightning location systems, 

such as the UK MetOffice ATDnet [Bennett et al., 2011]. The experimental long-baseline 

lightning receiver array with >400 km receiver separation uses the frequency range from 

5 kHz to 15 kHz, which contains a significant portion of the electromagnetic energy 

deposited by lightning return strokes [Fullekrug, 2013b]. A novel technique using 

variable phase propagation velocity is proposed here to mitigate the impact of sky waves 

and ground effects on the determination of lightning locations and to study the spatial 

variability of the phase propagation velocity in the given frequency range over central 

France.  

An experimental long-baseline lightning receiver array was deployed in Western Europe 

(Chapter 3) and recorded electric field strengths continuously from 15:00 until 24:00 

(UTC) on August 8th, 2014, when a mesoscale convective system developed over central 

France.  
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Figure 6.1 The geometry of the experiment. The locations of the two VLF transmitters 

(red dots) and the long-baseline (>400 km) radio receivers (black dots) used in this study. 

The circle (blue line) that determines the inside and outside of the receiver array is 

centred on the sweet spot (blue dot) of the receivers. 

6.2 Phase Propagation Velocities of Radio Waves from 

VLF Communication Transmitters 

Low frequency radio waves are a mixture of ground waves and sky waves such that the 

waves arrive at a radio receiver with a certain elevation angle [e.g., Fullekrug et al., 

2015]. In order to assess the impact of the elevation angles of sky waves and ground 

effects, the phase propagation velocities of radio waves from well-known VLF submarine 

communication transmitters that operate near ~20 kHz were calculated for comparison 

with the previous conflicting results [e.g., Jean et al., 1960; Steele and Chilton, 1964]. 

The phase propagation velocities were inferred from the time delay of the radio signals 

received at different locations, and the corresponding distance differences between 

different propagation paths from the transmitters to the receivers. The main benefit from 
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studying VLF transmissions is their well-known transmission property [e.g., Thomson, 

2010] and the locations of the radio transmitters [e.g., Fullekrug et al., 2015, supplement]. 

In this study, transmissions from the French VLF transmitter in Sainte Assise (STA), 

operating at 20.9 kHz, and the German VLF transmitter (DHO) in Rhauderfehn, operating 

at 23.4 kHz, during a quiet period at night were used. These transmissions were chosen 

because their operating frequencies are close to the frequency range of the experimental 

lightning receiver array (5–15 kHz) and also because the transmitters are located inside 

and outside of the radio receiver array (Figure 6.1).  

The time dependent radio signal was treated as an analytic signal, or complex trace. This 

allowed for the determination of the instantaneous phase at each sample in the time series 

(Section 5.2.2). The calculated complex transmission signal was down converted to the 

base current, and a low-pass filter was applied to extract the target frequency band, which 

is normally 150 Hz single sided bandwidth for VLF transmitters. The instantaneous phase 

was then inferred. Cyclic ambiguities occur when comparing the instantaneous phase 

between different recordings when the propagation path is longer than the wavelength of 

the radio wave. To avoid such ambiguities, the recorded waveforms were shifted by the 

propagation time from the transmitter to the receiver with an assumed propagation 

velocity. The shifted waveforms were calculated by multiplication with the time shift 

operator,  𝑒!!"∆!, in the frequency domain, with ∆𝑡 as the propagation time. To a first 

order approximation, the propagation time is   ∆𝑡 = 𝑑/𝑐 , where 𝑑  is the propagation 

distance, and 𝑐 is the assumed propagation velocity at the speed of light.  

The phase propagation velocity is v=d/t, where d is distance and t is time. Assuming the 

velocities are the same for different propagation paths to a first order approximation, the 

velocity can be determined as v=∆𝑑/∆𝑡, where ∆𝑑 is the differences in distance between 

two propagation paths, d1-d2, and ∆t is the time difference that results from the wave 

propagation, ∆𝑑/𝑐 + δ𝑡. The phase propagation velocity,  𝑣, for one pair of receivers can 

then be inferred from: 

𝑣 =
∆𝑑

∆𝑑
𝑐 + δ𝑡

  ,                                                                                                                                 6.1  
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where δ𝑡 = 𝛿𝜑/𝜔 is the time residual calculated from the observed phase residual 𝛿𝜑 

measured with respect to the speed of light after shifting the two down converted complex 

traces, and ω is the angular carrier frequency of the radio wave. The signs of these 

differences need to be consistent. The time residual δ𝑡 of the shifted waveform between 

pairs of receivers will be zero if the radio waves propagate at exactly at the speed of light, 

i.e. v=𝑐. 

 

Figure 6.2 The measured phase velocities inferred from two VLF transmitters. The stable 

ratio of differences in distance and the measured time differences between the 

transmitters and the radio receiver pairs indicate a fixed phase propagation velocity that 

is larger than the speed of light for DHO (black) and smaller than the speed of light for 

STA (red). 

The time residuals between pairs of receivers for the two transmitters depend on the 

differences in distance between the transmitters and the receivers (Figure 6.2). Equation 

6.3 can be reformulated to determine the ratio between the distance and time differences 

∆𝑑 δ𝑡 = 𝑣 ∗ 𝑐/(𝑐 − 𝑣). A fixed ratio between ∆𝑑 and  δ𝑡 corresponds to a fixed velocity 

for the radio wave propagation. The slope of the linear relationship between ∆𝑑 and  δ𝑡 

showed that the averaged phase propagation velocities are practically constant for each of 
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the transmitters. The phase propagation velocities were ~0.64% faster and ~0.51% 

slower than the speed of light for the transmitters in Rhauderfehn (DHO) and Sainte 

Assise (STA), respectively. 

This result highlights that it is possible for the phase propagation velocity of a radio wave 

to be smaller or larger than the speed of light. For example, a phase propagation velocity 

larger than the speed of light can occur when the radio wave arrives at an array of radio 

receivers with a certain elevation angle [e.g., Fullekrug et al., 2015, Figure 2, right, Rost 

and Thomas, 2002, Figure 1]. In this case, the radio waves from Rhauderfehn would have 

a larger phase propagation velocity, possibly because the radio waves arrived from larger 

elevation angles compared to the transmitter at Sainte Assise which is located inside the 

radio receiver network. The received VLF transmission consisted of ground and sky 

waves as a result of waveguide propagation effects. This result strongly suggests that the 

ground wave is more attenuated for Rhauderfehn than Sainte Assise, since it is located at 

a larger distance from the network (compare to Figure 6.1, and Mezentsev and Fullekrug, 

JGR, 2013, Figure 8). It follows that the phase propagation velocity depends on the 

location of the radiation source and the ground parameters along the propagation paths to 

the radio receivers. This result compares well with results previously reported in the 

scientific literature [e.g., Jean et al., 1960; Steele and Chilton, 1964]. Thus, small 

lightning location uncertainties, caused by the mixture of ground wave and sky waves as 

a result of waveguide propagation effects, can be introduced if a fixed value for the wave 

propagation velocity is used in an ATD lightning location system.  

6.3 Lightning Location Method and Simulation 

The long-baseline lightning receiver array reported here uses an ATD approach in the 

frequency range 5–15 kHz. This frequency range was chosen because the return stroke 

deposits most of its energy there, such that the phase is well determined. The signatures 

from lightning discharges were identified in the recordings and the time differences 

between pairs of radio signals were determined to calculate the best possible lightning 

location. In theory, the lightning location is the intersection between the hyperbolas of 

constant differences in distance that define possible lightning locations. The hyperbola for 
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each pair of receivers can be determined from the differences in distance between two 

receivers by multiplication of the measured time of arrival differences with a pre-

determined fixed wave propagation velocity [Dowden et al., 2002].  

The arrival time of the lightning return stroke signal is defined by the first peak, i.e. the 

nearest local maximum that precedes the absolute maximum in the complex trace in the 

filtered data. Thus, the time differences between stations are taken as the difference 

between the corresponding arrival times of the return stroke. This method was used as it 

has been found to be the best compromise between location accuracy and computational 

effort. Using the first peak as the arrival time should, in theory, exclude the effect of the 

sky waves in the transient lightning signal. In practice, it was found that there are still 

some effects due to the digital filtering. For example, the average distance from the 

lightning to the receivers was about ~560 km over the recorded 9 hours. The time delay 

between the ground wave and sky wave was about 95 µs, making a simplified assumption 

that the ground was flat and the ionosphere was at 90 km in height. The rise time of the 

return stroke was ~5 µs and the decay time to the half-peak value was 70 to 80 µs [Rakov, 

2013]. The narrow-band filter broadened the two separate impulses in time such that they 

overlapped slightly and the peak from the ground wave contained some contribution from 

the sky wave. 

In practice, the ATD method finds the closest match between the measured time 

differences and the time differences associated with the best possible lightning location. 

This closest match was determined here by minimizing the Root Mean Square (RMS) 

value: 

𝑋!"# =
1
𝑁 ∆𝑡! −

∆𝑑!
𝑣

!!

!!!

,                                                                                                                  (6.2) 

where 𝑁 is the number of receiver pairs, ∆𝑡! are the measured time differences between 

receivers, ∆𝑑! are the differences in distance from the best possible lightning location to 

the receivers, and 𝑣 is the wave propagation velocity which defaults to the speed of light 

in many lightning detection systems. 
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The wave propagation velocity used in equation 6.2 influences the determination of the 

lightning locations. As a result, different lightning locations and their corresponding RMS 

values for several lightning events were calculated for different velocities. For example, 

one typical lightning discharge occurred inside the lightning receiver array in southern 

France [43.6929oN 0.6077oE] at 18:01:31 and 189486 µs on 8th August, 2014. The 

propagation velocity varied in steps of 0.01% within ±0.5% of the speed of light. The 

variation in the lightning location and RMS value demonstrates the importance of the 

propagation velocity in the lightning receiver array (Figure 6.3, inset). 

The lightning location shifted gradually from northwest to southeast with increasing 

propagation velocity. The velocity with the minimum RMS value was 0.17% slower than 

the speed of light. The distance between the location with the minimum RMS value and 

the location calculated with the speed of light was ~700 m. This suggests that a fixed 

wave propagation velocity can introduce hundreds to thousands of metres difference in 

the determined lightning location if the radio waves from lightning discharges do not 

propagate at the speed of light. 

6.4 Lightning Locations Inferred from Variable Phase 

Propagation Velocity  

Phase propagation velocities of VLF radio waves are slightly different from the speed of 

light, as demonstrated by the observed phase propagation velocities of the VLF 

transmissions for submarine communication. In order to reduce the location uncertainty 

caused by the use of a fixed velocity, a variable phase propagation velocity was 

implemented in the lightning receiver array. This step is based on the idea that the phase 

propagation velocities for different wave propagation paths vary as a result of sky wave 

contributions and ground effects. The calculated locations with variable phase 

propagation velocities were possibly closer to the real lightning location because real 

wave propagation is more complex than light travelling through a vacuum. The lightning 

locations inferred from variable phase propagation velocities and fixed velocities were 

compared for many events. 
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At least three independent time differences are necessary to enable the unique 

determination of three independent parameters, i.e. latitude, longitude, and the phase 

propagation velocity. This calculated phase propagation velocity represents an averaged 

phase propagation velocity for the 5–15 kHz frequency range along the propagation paths 

from that particular lightning location to all the radio receivers. The phase propagation 

velocity calculated from the optimization of the RMS function in equation 6.2 needs to be 

constrained because the propagation velocity cannot be largely different from the speed of 

light even if it differs slightly from the speed of light. The phase propagation velocities 

inferred from the radio waves of lightning discharges were calculated using the data 

recorded from 18:00 to 19:00 (UTC) on 8th August 2014. About ~68% (±1  𝜎)  of the 

calculated phase propagation velocities did not exceed ±1.5% of the speed of light. Thus, 

results with a phase propagation velocity outside this range were considered to be 

questionable, possibly as a result of interference, such that these phase propagation 

velocities were not used in further analysis. More than 80% of the calculated phase 

propagation velocities were slower than the speed of light, possibly because most of the 

contribution from sky waves was mitigated by the time difference selection method 

described in Section 4. The lightning locations inferred from fixed velocities and variable 

phase propagation velocities in France were roughly similar on a large scale (Figure 6.3). 

In order to assess the performance of this novel lightning location method, the locations 

calculated by the variable phase propagation velocity and the fixed velocity were 

compared to the lightning locations reported by the commercial lightning location system 

ATDnet of the UK MetOffice (Figure 6.4). ATDnet is the first lightning detection 

network used in Europe [Lee, 1986; Lewis, 1960]. It has more radio receivers, and the 

receivers are more evenly distributed across Europe than the experimental lightning 

receiver array investigated here, such that the results of ATDnet can be taken as ground 

truth. The distances between the lightning locations inferred from variable phase 

propagation velocities and the lightning locations reported by ATDnet were smaller than 

the distances between the locations inferred from the speed of light and the locations 

reported by ATDnet. The average improvement of the distances to ATDnet locations was 

~890 m, and the most likely improvement of the distances was ~1.06 km. A similar result 

was inferred from a comparison to the locations reported by the lightning location system 

Meteorage. Using variable phase propagation velocities the calculated results were ~0.78 
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km closer to Meteorage locations. Meteorage uses shorter distances between receivers 

such that the contributions of sky waves to the observed radio waves are negligible 

compared to long-baseline lightning detection networks. The improvement of the 

lightning locations by ~0.89–1.06 km therefore indicates that the use of variable phase 

propagation velocities for lightning location mitigates the effect of sky wave 

contributions and ground effects. 

 

Figure 6.3 The lightning locations inferred from variable phase propagation velocities. 

The lightning locations inferred from a variable phase propagation velocity (coloured 

circles) were compared to locations inferred from a fixed velocity (grey crosses) during 

one hour of recording. The deviations from propagation at the speed of light exhibited a 

smooth spatial change (colour). The thunderstorm moved north-eastwards where 

numerous lightning discharges occurred, which were used to map the phase propagation 

velocity (dashed area). (inset) The calculated lightning location moved from northwest to 

southeast when the propagation velocity varied from 0.995c to 1.005c, where the colour 

indicates the RMS value of the time differences. The location calculated with the speed of 

light (cross) was 700 m away from the location with the minimum RMS (circle). 
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Figure 6.4 The comparison between the lightning locations inferred from variable phase 

propagation velocities and ATDnet locations reported by the UK MetOffice. The lightning 

locations inferred from the variable velocity (blue line) and fixed velocity (black line) 

were compared with lightning locations reported by the UK MetOffice. The comparison 

indicates an improvement of the average location accuracy by ~890 m (red line) when 

using the variable phase propagation velocity. 

6.5 Velocity Map 

The calculated phase propagation velocities in the given frequency range were very 

similar in neighbouring areas, and exhibited a distinct smooth change over larger areas 

(Figure 6.3). This observation led to the idea of creating a velocity map to characterize 

the mitigation of sky wave contributions and ground effects over a larger area. The 

velocity map uses one representative phase propagation velocity over a small area if the 

observed phase propagation velocities in this area fit a normal distribution well.  

Radio signals from more than thirty thousand lightning discharges were recorded within 

~9 hours in an area extending from 0°–6°E and from 43°–46°N on 8th August, 2014. The 

area of interest was divided into grid cells of 0.5° in latitude and longitude for analysis. 

Note that the grid cells were not square in distance because the latitudes are not great 
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circles. This grid cell size was chosen as a trade-off between spatial resolution and getting 

large enough sample populations of lightning discharges in individual cells. 

The statistical stability of the phase propagation velocities in a grid cell was tested before 

calculation of the velocity map. The velocity distributions in two example grid cells fitted 

different normal distributions well (Figure 6.5, top). The mean velocities for these two 

grid cells were 0.9965c and 1.0033c, with standard deviations of 0.0044c and 0.0042c, 

respectively. The mean velocities therefore differed significantly from the speed of light. 

The distributions within the example grid cells demonstrated that the mean phase 

propagation velocity appropriately represents the distributions of phase propagation 

velocities in a small region.  

The mean phase propagation velocities for each individual grid cell were different (Figure 

6.5, bottom). A few grid cells (shown in white) contained fewer than forty events – too 

few to support a statistically meaningful result. For two grid cells with poor statistical 

distributions, i.e., grid cells from 44°–44.5° N, 5.5°–6° E and 44.5°–45° N, 1.5°–2° E, the 

median phase propagation velocities were unusually small and large, respectively, and 

were hence excluded from further analysis. For most grid cells, the phase propagation 

velocities were smaller than the speed of light by ~0.1–1%. There were also some 

locations that showed a mean phase propagation velocity larger than the speed of light. 

This observation indicates that these radio waves did not arrive from the horizon at zero 

elevation angles, similar to the radio transmissions described in Section 3. 

Assuming that the mean phase propagation velocity for each grid cell represents the phase 

propagation velocity in the given frequency range for the centre location, contour lines 

can be drawn between the centres to produce a smoothed velocity map (Figure 6.6, top). 

The phase propagation velocities in the two invalid grid cells are replaced by the mean 

values of their surrounding grid cells. The velocities of the grid cells with too few 

samples are filled by the median value of all the other phase propagation velocities. The 

final map shows a smooth variation of the phase propagation velocities across the studied 

area. 
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Figure 6.5 The velocity map and the distributions in two grid cells of the map. (top) The 

velocity distributions (solid lines) of two sample grid cells compare well to normal 

distributions with small standard deviations (dashed lines). One grid cell extends from 

44°–44.5° N and 1.5°–2° E (blue line) and the second grid cell extends from 43°–43.5° N 

and 0°–0.5° E (red line). (bottom) The velocity map is composed of individual grid cells 

that exhibit a smooth spatial gradient. The white grid cells have fewer than 40 lightning 

discharges and are therefore not shown. 
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6.6 Discussion and Conclusion 

A comparison of the inferred lightning locations with the lightning locations reported by 

ATDnet and Meteorage as ground truth strongly suggests that the lightning locations 

inferred from the variable phase propagation velocity are more accurate than the locations 

inferred from the fixed velocity in this VLF long-baseline lightning receiver array. This 

increase in accuracy is attributed to the ability of the variable phase propagation velocity 

to mitigate the influence of sky waves and ground effects on the calculation of the 

lightning location. It is interesting to note that ATDnet uses a fixed velocity for the 

calculation of their lightning locations. It therefore appears plausible that these lightning 

locations could also be improved by use of variable velocities to mitigate sky wave 

contributions, but perhaps to a smaller degree because ATDnet uses more radio receivers. 

For more resource intensive short-baseline lightning location networks that use mainly 

ground waves to determine lightning locations, variable velocities could only mitigate 

wave propagation effects associated with variations of the ground conductivity and 

terrain. The velocities inferred from the calculated velocity map are applicable to be 

integrated into this novel method for improving location accuracy. For example, these 

velocities can be used as the weight or the constraint by using the variable phase 

propagation velocity, which can deduce the computation time and improve the location 

accuracy. 

The velocity map shows a smooth spatial variation of the phase propagation velocities 

from radio waves of lightning discharges in central and southern France. This velocity 

map represents the propagation velocities of radio waves from lightning discharges as 

they appear to the lightning receiver array. The map of phase propagation velocities 

therefore reflects the average impact of sky waves and ground waves on the calculation of 

lightning locations as a result of the network configuration, i.e., the different propagation 

paths between the lightning locations and the radio receivers. It is conceivable that the 

map of phase propagation velocities is a combined product of ground wave propagation 

influenced by the ground conductivity and sky wave propagation influenced by 

ionospheric conductivity. 
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Figure 6.6 Comparison of the final velocity map with a map of the topographic elevation. 

(top) The final velocity map is calculated from the interpolated contours of the individual 

grid cells, and exhibits a smooth spatial change. (bottom) The topographic elevation map 

shows the Massif Central in the centre of France, and exhibits a similar pattern when 

compared to the final velocity map. The area of high elevation represents mountains and 

the area of negative elevation is the seabed of the Mediterranean south of France. 
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In this case, a phase propagation velocity map could be derived using a denser network of 

radio receivers and longer recordings to reflect other geophysical properties such as the 

topography and ground conductivities [ITU-R, 2015]. To elucidate this speculative 

possibility, the map of phase propagation velocities was compared to a terrain elevation 

map in France (Figure 6.6, bottom). Interestingly, the phase propagation velocities of 

lightning discharges at higher altitudes were smaller than at lower altitudes. For example, 

the phase propagation velocities over the mountainous area of the Massif Central were 

slightly slower than the speed of light, possibly because the mountain peaks disturb radio 

wave propagation. This result seems to confirm recent modelling work that suggests the 

time delay of lightning radiated electromagnetic fields can be significantly affected by the 

presence of mountainous terrain [Li et al., 2016 a, b]. The phase propagation velocity in 

the flatlands can occasionally exceed the speed of light, which indicates the arrival of the 

radio wave from an elevation angle. This result might possibly be due to the elevation 

profile or the dispersion caused by the ground conductivity profile along the propagation 

path, and needs further research. Note that the phase propagation velocity is inferred from 

differential measurements between receiver pairs, therefore the expectation is that the 

geophysical property around the source might not be a dominant factor, which possibly 

explains why the correlation is poor in some grid cells. Nevertheless, it is also possible 

that the properties of the propagation path near the source have a larger effect on the total 

phase delay than the properties far away from the source. This is suggested, for example, 

by the Sommerfeld-Norton attenuation function over a flat earth [e.g. Galejs, 1972, 

Figure 9.3] with a potential similar effect for inhomogeneous conductivity of the earth 

[e.g. King, 1966]. It therefore appears promising to compare various phase propagation 

velocity maps inferred from other lightning detection networks to identify the influence of 

geographic features on VLF radio wave propagation [Barr et al., 2000]. 

The relationship between the phase propagation velocity and ionospheric conditions is 

another promising area for future research. The observed phase propagation velocities of 

the transmissions were different when thunderstorms occurred along the propagation 

path. These ionospheric conditions also changed with time, e.g., the diurnal variability 

discussed in [Schonland et al., 1940]. The studied thunderstorm propagated eastward over 

9 hours from day to night. As a result, the characteristics of the wave propagation in 

different ionospheric conditions may be revealed by analysing the calculated phase 
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propagation velocities at different times of day (Figure 6.7). It was observed that the 

phase propagation velocities inferred from DHO increased from day time to night time, 

and the velocity variation mainly occurred during the day-night terminator across the 

receiver network. Variation in the phase propagation velocity was dominated by the 

change in sky waves, because the ground conductivity remained the same regardless of 

time. As a result, it is confirmed that variation in ionospheric conditions will result in a 

different phase propagation velocity. 

 

Figure 6.7. Time monitoring of the phase propagation velocities of two VLF 

transmissions. Green, yellow and black lines indicate the time of the network covered by 

civil (green), nautical (yellow) and astronomical (black) twilight. The phase propagation 

velocity of STA (red) is decreasing during the civil twilight passing network, while the 

velocity of DHO (blue) is increasing. 

In summary, this study enabled several results. (1) The phase propagation velocities 

inferred from radio waves emitted by VLF transmitters can be smaller or larger than the 

speed of light. (2) Simulations show that lightning locations calculated with different 

phase propagation velocities can cause deviations of the lightning location by hundreds to 
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thousands of metres when compared to the location inferred using the speed of light. (3) 

A long-baseline lightning receiver array that uses variable phase propagation velocities 

can improve the lightning location accuracy by ~0.89–1.06 km when compared to 

lightning locations inferred from an array with more radio receivers. (4) As a result of the 

network configuration, the phase propagation velocities were mapped over central and 

southern France to summarize the impact of sky waves and ground effects on the 

calculation of lightning locations. (5) Phase propagation velocities also vary with 

different ionospheric conditions, e.g. day—night differences. 
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Chapter 7 Application of Interferometry 

Technique in a VLF Long-baseline 

Lightning Receiver Array 

7.1 Introduction 

The basic ATD algorithm calculates lightning location based on the difference in two 

time stamps between recordings, and has been very efficient and popular because of 

limited data communication in the past. In order to investigate more lightning information, 

nowadays, the interferometry technique can be used due to the increasing capability of 

big data telecommunication and computational resources. This technique takes advantage 

of the whole lightning waveform rather than a few samples. 

The narrowband interferometer reconstructs the development of lightning discharges 

using a single station with a pair of antennas [e.g. Richard and Auffray, 1985; Rhodes et 

al., 1994; Shao et al., 1995]. Broadband interferometers, e.g. 40–350 MHz, 20–80 MHz, 

have subsequently been developed quickly [e.g. Shao et al., 1996; Ushio et al., 1997; 

Morimoto et al., 2005; Stock et al., 2014]. Three dimensional location of lightning 

sources is achieved with synchronised observations of electric field changes between a 

few nearby, i.e. ~10 km, sets of broadband interferometers. This broadband 

interferometry technique was firstly applied in VHF and developed to LF from near-field 

recordings [e.g. Stock et al., 2014; Lyu et al., 2014]. Different radiation sources 

associated with different lightning processes are located within different frequency ranges, 

which fits the research about lightning electromagnetic signatures.  

For the long-baseline lightning receiver array, the features of received lightning 

waveforms vary depending on the propagation distance, and most of the weak sources 

attenuated during a long distance wave propagation. While, the interferometry technique 

is superior to utilize diminutive differences between recordings for nearby events. 
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Therefore, the greater the distance between receivers, the more difficult it is to locate 

sources using the interferometry technique. To resolve this problem, methods to apply the 

interferometry technique to a long-baseline lightning receiver array are discussed in this 

work. 

The data recorded by an experimental long-baseline (>400 km) receiver array deployed in 

Western Europe is used for this research. Three possible methods using the interferometry 

technique are discussed: treating the whole lightning waveform as one signal and shifting 

the lightning waveforms to each map pixel detect the coincident signal (Section 2), cross-

correlating recordings within each short time window to detect coherent sources (Section 

3), and calculating lightning locations for each sample using instantaneous phase to 

specify a lightning area (Section 4). The interferometry techniques described here 

represent a method of using more samples and information from the original recordings 

rather than just a time stamp, which may differ from the previous research into 

interferometers. Different information, e.g. coherent weak sources and lightning location 

for each sample, can be retrieved using these interferometric methods with the long-

baseline receiver array. 

7.2 2D Lightning Mapping Calculation  

The benefit of developing the interferometry technique is to use the whole lightning 

waveform from the original recording rather than just a time stamp for calculation of time 

differences. This section proposes the idea of treating the whole lightning waveform as 

one signal and shifting the lightning waveforms to each map pixel to detect the coincident 

signal for a 2D lightning map. The waveforms are shifted by the propagation time from 

the receivers to each pixel of the earth map with an assumed propagation velocity of the 

speed of light. The shifted lightning waveforms overlap if the lightning occurs at this 

pixel. The average amplitude of these overlapping waveforms is maximal if the 

amplitudes are uniform for all receivers, and their phases are coherent in the ideal case. 

Conversely, the average amplitude of other pixels is relatively low and the phases are 

unrelated, because the lightning pulses recorded at different receivers are eliminated, or at 
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least reduced, because they do not coincide in time. The average amplitude is used as a 

reference for the electromagnetic energy. 

 

Figure 7.1 The waveforms shifted to an incorrect lightning location pixel (blue lines). The 

average amplitude of shifted waveforms (red line) present a lower maximum with time 

delay compared to the average amplitude inferred from the correct lightning location 

pixel (black line). 

These average amplitudes at different pixels make up an electromagnetic energy map at 

each time period, and form a movie presenting the electromagnetic energy distribution 

variation with time. Ideally, the radio transmitters can also be located because of the 

coherent transmission signal, even if the amplitude is much smaller than lightning signal. 

This ideally uses entire recordings, suitable for lightning and electromagnetic energy 

monitoring in a certain area. The average waveforms at different distances can be used for 

theoretical simulation (Section 5.2.1). The simulated lightning recordings at different 

receivers are selected according to the distance from the assumed lightning location to the 

receivers, and are separated by the corresponding propagation time. The assumed 

lightning for this simulation was randomly selected at [47°N 0°E]. In the pixel including 
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the correct location, all the waveforms are perfectly overlapped and the average 

amplitude presents an outstanding maximum at the assumed lightning time (Figure 7.1, 

black line). For comparison, the waveforms shifted to the pixel centred at [47°N 0.5°E] 

appear with certain time offsets (Figure 7.1, blue lines). The average amplitude of this 

pixel presents a lower maximum with a time delay (Figure 7.1, red line). This example 

illustrates that the average amplitude inferred from the correct lightning location pixel can 

be distinguished from the average amplitude of other pixels. 

The average amplitude of waveforms normally exhibits several maxima and a period of 

large amplitude. This is because the originally recorded lightning sferic waveform 

contains many peaks due to the effects of wave propagation and instrument filters. In 

theory, electromagnetic waves are emitted by the lightning discharge, which occurs with a 

short duration and large amplitude. To simplify the modelling, we assume that the 

lightning emitted waves are a pulsed signal. Therefore, the received lightning waveform 

can be understood as the response to the input of a pulsed signal: the Impulse Response 

(IR). The IR can be calculated by the division between the spectrum of the received 

lightning waveform and the spectrum of the pulsed input signal, 

𝐼𝑅 = ℱ 𝑦!"#(𝑡) ℱ 𝑦!"(𝑡) . Consequently, the input signal can be calculated by the 

inverse IR with a known received signal and known IR: 𝑦!" = ℱ!!(ℱ 𝑦!"# 𝑡 𝐼𝑅).  

The features of received lightning waveforms vary depending on the propagation distance 

according to the average waveform bank (Chapter 5). The impulse responses are 

calculated based on the average waveforms and hence varies with distance. As a result, 

the inverse IR can be used for distance estimation (Figure 7.2). The first 0.5 millisecond 

of the lightning waveform contains most of the information of the lightning, so this is set 

as the output signal (Figure 7.2, top, red line). The input signal is assumed to be the 

pulsed signal with a unity peak at ‘0’ time, which can be retrieved by the inverse IR at the 

corresponding distance (Figure 7.2, middle). The inferred input signal with the inverse IR 

at an inappropriate distance (e.g. 50 km longer) presents a much smaller peak and a noisy 

background (Figure 7.2, bottom). The peak amplitudes of the inferred input signals with 

the inverse IR at different distances are compared (Figure 7.3). It illustrates that the peak 

amplitude of the inferred input signal decreases with the inverse IR at larger distances 

from the actual distance. 



PHD THESIS UNIVERSITY OF BATH CHAPTER 7 

90	
  
	
  

 

Figure 7.2 Lightning signal analysis with inverse impulse response. (top) the received 

lightning waveform from a distance of 510 km, (middle) the inferred input signal with the 

inverse IR at 510 km, (bottom) the inferred input signal with the inverse IR at 560 km. 

 

Figure 7.3 The peak amplitude of the inferred input signals with the inverse IR at 

different distances. 
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The inverse IR method can be applied to the shifted waveforms to improve the average 

amplitude result in Figure 7.1. The average amplitude of the inferred input signal for the 

correct lightning location pixel is a unity impulse. The average amplitudes for other pixels 

decrease with a further distance to the correct lightning location pixel. As a result, the 

correct lightning location pixel is observed on this lightning map. It shows that this 

lightning mapping idea works for this simulation and is the subject for further study using 

real data. 

7.3 Interferometric-ATD Calculation  

The generalized cross-correlation algorithm is popular for use with interferometry in the 

broadband signal in VHF and LF [e.g. Stock et al., 2014; Lyu et al., 2014]. The cross-

correlation algorithm calculates the similarity between two signals as a function of the 

displacement of one relative to the other, and can be used to detect coherent radio sources. 

More sources associated with weak lightning processes are located for a better 

understanding of lightning physics from near-field recordings. Here, a similar analysis of 

cross-correlation is applied to the recordings from a long-baseline receiver array. This 

method is developed in order to detect weaker lightning sources. 

The cross-correlations between recordings from each pair of stations are calculated from a 

5 ms time window in steps of 2.5 ms. The window length is selected to be slightly larger 

than the maximum time difference between each pair of receivers, to involve all of the 

possible time intervals and to cover the least noise. The step length is selected to be half 

of the window length, in order to avoid omission and repetition. For each time window, a 

coherent source is identified when the maximum normalized cross-correlation coefficient 

of each receiver pair is larger than 0.35. This threshold is empirically selected from the 

distribution of the maximum normalized cross-correlation coefficient distribution, and it 

is much larger than coefficient inferred from uncorrelated signal by at least 0.05 from 

comparison.  

The cross-correlation coefficient is calculated between each pair of receivers at each time 

window. Numerous coherent sources are detected from 1-second recordings by this 

method (Figure 7.4). Normally, the arrival angle of the incident wave is calculated for 
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VHF interferometer. However, the incident waves to different receivers are entirely 

different in this case, due to the long distances between each receiver. As a result, the 

determination of the incident wave elevation angle is not available in this case. The ATD 

approach is used to calculate the lightning location from the measured time differences. 

Since the lightning is always far from the receivers, the altitude of these sources cannot be 

calculated, so it is not possible to define the detailed lightning process of each coherent 

source. Nevertheless, many of these sources are from weak signals in the original 

recordings. Most of the locations calculated from the measured time differences of these 

coherent sources are in central France, where a mesoscale convective system developed at 

the time of recording. Much fewer events were reported by the lightning location system 

Meteorage during this second, possibly due to the high amplitude threshold in the pure 

ATD method. It is also possibly that the fewer coherent events are identified when more 

stations are used. Nevertheless, it is still promising to apply this interferometric-ATD 

calculation for more coherent lightning sources. 

 

Figure 7.4 The coherent sources (red) determined by the cross-correlation of 1-second 

data (black) recoded using different receivers at 17:59:49 on 08-08-2014. 
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7.4 Lightning Location Calculation for Each Sample 

Due to the complication of electromagnetic wave propagation over long distances, the 

measured arrival time differences do not exactly fit the arrival time differences for one 

specific lightning location. As a result, most lightning location systems report an area 

using error ellipses, which are normally calculated by the differences between the 

measured arrival time differences and theoretical time differences from the calculated 

location. 

 

Figure 7.5 The instantaneous phase differences between different receivers of a lightning 

recording at 18:00:04 on 08-08-2014. The instantaneous phase differences are stable 

during the lightning arrival time (black square). The time axis is referenced to t=0 

corresponding to the peak of the complex envelope. 

To calculate this lightning area, a method of calculating the lightning location from each 

sample is proposed. It is assumed that the actual lightning strike point is within the range 

of all calculated valid locations for each sample. The instantaneous phase is extracted to 

achieve subsampling time accuracy for calculating one location for each sample (Chapter 
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5). In order to retrieve the correct corresponding samples, the lightning waveforms are 

shifted to ensure that the maximum amplitude of the complex trace from 5–15 kHz is 

superposed at t=0. The instantaneous phase differences are calculated between the shifted 

lightning waveform (Figure 7.5). The calculated unwrapped phase at t=0 is constrained to 

be within –π to π in order to avoid cycle ambiguity between waveforms. The 

instantaneous phase differences are relatively stable during the lightning amplitude peaks, 

and the derived time differences can be used for calculation of the lightning locations in 

each sample. 

The derived time difference ∆𝑡 is calculated from the instantaneous phase difference  ∆𝜑, 

and the number of the whole cycle is inferred from shifting the waveform by n cycles, i.e. 

∆𝑡 = ∆!
!
+ 𝑛 ∗ !

!!
, where fc is the centre frequency, e.g. 10 kHz, and 1 𝑓! is the full 

cycle length. The lightning location is then calculated for each sample based on these 

derived time differences (Figure 7.6). These locations are calculated using a fixed wave 

propagation velocity, and also using a variable phase propagation velocity for comparison 

[Liu et al., 2016]. The calculated locations make up a lightning trace, but some of them 

are unreliable because of the noisy instantaneous phase when the signal to noise ratio 

(SNR) is low. Valid sample locations are empirically selected by the root mean square 

(RMS) value (< 27.5 µs) for location inferred with a fixed wave propagation velocity, and 

the propagation velocity deviation from the speed of light (∆𝑐/𝑐) within ±1.5 % [Liu et 

al., 2016] for locations inferred with a variable phase propagation velocity. The 

instantaneous phase differences of these valid samples may be stable (Figure 7.5). There 

are 65 sample locations that fit both strict criteria. It is speculated that this 65-µs location 

trace may be the actual lightning movement. The circle consisting of these 65 locations is 

the most likely area of lightning occurrence, and this area is smaller when the calculation 

uses the variable phase propagation velocity. Overall, the lightning locations can be 

calculated for each sample with the instantaneous phase, and the calculated corresponding 

lightning area is smaller when using a variable phase propagation velocity for many 

examples. 
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Figure 7.6 Lightning locations calculated for each sample (black line) with a fixed 

velocity at the speed of light (top) and a variable phase propagation velocity (bottom). 65 

sample sources (colour dots) are selected depending on the strict constraint conditions, 

RMS and calculated phase propagation velocity, which constitute the most likely area of 

lightning occurrence (green circle). The calculated locations are very closed to the 

lightning location reported by Meteorage (black star). 
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7.5 Discussion and Conclusion 

The whole lightning waveform is treated as one signal and shifted to each pixel of the 

earth map for lightning and electromagnetic energy monitoring. The average waveforms 

at different distances are used in a simulation with the inverse IR. The inferred input 

signal differs significantly when using the inverse IR at correct or incorrect distances, 

which can be used for distance determination. The result inferred from the shifted 

waveforms to the appropriate and inappropriate lightning location pixels is different. As a 

result, there is potential for creating a 2D lightning mapping algorithm for local area 

lightning monitoring by shifting recording to each pixel of the earth map. However, this 

idea may not be applicable to individual waveforms. The distance determination of 

inverse IR may not perform well for real lightning waveforms, because the SNR of real 

recordings that are not averaged is relatively low. It is suggested to improve the SNR 

before applying the inverse IR. For example, the lightning waveform can be filtered by 

the bandwidth that consists of most lightning energy inferred from the average waveforms. 

The generalized cross-correlation algorithm can be used for a long-baseline receiver array. 

The coherent sources are identified by cross-correlation calculation in each short time 

window. Many weak lightning radiation sources can be found using this method. The 

combination of time shifting and cross-correlation algorithm has been attempted in a 

shorter time window. The recordings were shifted to an approximate location, and the 

maximum cross-correlation coefficient was calculated in order to detect weaker coherent 

sources. However, the whole cross-correlation coefficient increases with shorter 

recordings, and it may introduce numerous spurious coherent sources due to inappropriate 

selection criteria. It is expected that more and weaker lightning sources can be located 

using a proper identification mechanism by this method, which is worth further analysis. 

The lightning location area was determined by the locations calculated for each sample, 

assuming that the actual lightning strike point lies within the range of all these valid 

sample locations. Each location was calculated by the instantaneous phase differences 

between recordings. The most reliable locations within one lightning were selected based 

on the criteria for the RMS value and  ∆𝑐/𝑐, which may describe the propagation of a 
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lightning discharge. The circle around these sample locations was determined as the most 

likely area of lightning occurrence. The stable instantaneous phase differences during the 

lightning amplitude maxima are the key element for the calculation. Further analysis is 

suggested into the physical meaning of the location for each sample and the calculated 

lightning location area.  

In summary, this study enables the use of the interferometry technique with a VLF long-

baseline receiver array. Three methods, 2D lightning mapping, cross-correlation with a 

short time window, and lightning location for each sample, are proposed here in order to 

take advantage of the greater number of samples and phase information from recordings. 

It is expected that long-range lightning locations can be improved in the future by the use 

of interferometry technique. 

 



PHD THESIS UNIVERSITY OF BATH CHAPTER 8 

98	
  
	
  

Chapter 8 Conclusions 

8.1 Summary 

This thesis has investigated VLF electromagnetic waves to mitigate the interference from 

long distance wave propagation in two aspects: research regarding lightning sferics, and 

the wave propagation velocity. In addition, the interferometry technique has been 

preliminarily applied to an experimental long-baseline lightning receiver array in order to 

take advantage of the greater number of samples and information from the original 

recording. The results accomplished can be summarised as follows: 

• An ATD programme has been developed as the fundamental algorithm of an 

experimental long-baseline lightning receiver array deployed in Western Europe. 

• A waveform bank has been produced consisting of the average lightning 

waveforms from different distances. The waveform bank exhibits a sequence of 

consecutive maxima resulting from ionospheric reflections, which can be used for 

radio propagation studies, lightning modelling, lightning detection simulation, etc. 

• In the spectral waveform bank, the sequence of consecutive modal maxima is 

separated by distinct minima at different frequencies and distances. 

• Long-baseline lightning location can achieve sub-sampling time accuracy by using 

the instantaneous phase of the complex lightning waveform. 

• The instantaneous frequency calculated from average lightning waveforms has 

been shown to be distance dependent, and it therefore has the potential to be used 

for lightning distance determination. 

• Phase propagation velocities inferred from radio waves emitted by VLF 

transmitters can be smaller or larger than the speed of light. 
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• Simulations show that lightning locations calculated using different phase 

propagation velocities can cause deviations of the lightning location by hundreds 

to thousands of metres when compared to the locations inferred from the speed of 

light. 

• A long-baseline lightning receiver array that uses variable phase propagation 

velocities can improve the lightning location accuracy by ~0.89–1.06 km when 

compared to lightning locations inferred from an array with more radio receivers. 

• As a result of the network configuration, the phase propagation velocities have 

been mapped over central and southern France to summarize the impact of sky 

waves and ground effects on the calculation of lightning locations. 

• Phase propagation velocities also vary with different ionospheric conditions, e.g. 

day—night differences. 

• The whole lightning waveform is treated as one signal and shifted to each pixel of 

the earth map for lightning and electromagnetic energy monitoring using the 

inverse impulse response. 

• The generalized cross-correlation algorithm has been used with a long-baseline 

receiver array to detect weak coherent sources. 

• The lightning location area is determined by the locations calculated for each 

sample by the instantaneous phase differences between recordings. 

8.2 Further Work 

Some of the outcomes from this research, such as the complex waveform bank and 

velocity map, were generated from lightning recordings of a thunderstorm in Europe, 

which may not be identical to the results for other geographical areas. However, the 

general methods of generating these results are applicable to other locations. It is 

expected that using this algorithm with more data, will lead to greater knowledge about 
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lightning wave propagation characteristics. Similarly, many promising methods, such as 

lightning location calculation using the instantaneous phase, lightning distance 

determination using the instantaneous frequency, and using a variable phase propagation 

velocity, can be tested with other long-baseline lightning location systems. 

The determination of distances using the instantaneous frequency is just one potential 

application of the complex waveform bank. The instantaneous frequency may also, given 

more data, be determined by different arrival azimuths or different times of day. For 

example, a different incident elevation angle indicates a different rotation direction in the 

complex waveform of the lightning, i.e., a different instantaneous frequency [Fullekrug et 

al., 2016, Figure 2]. By using the instantaneous frequency for distance determination, the 

lightning signal can be first approximated within <50 km, because the instantaneous 

frequency can vary, e.g. between 400 km and 450 km distance (Figure 5.8). This 

uncertainty is very likely due to the lack of data at these distances, which could be 

improved by collecting more data with longer recordings. The distribution of 

instantaneous frequencies from lightning at similar distances shows a clearly peaked 

distribution if they are recorded at the same station (Figure 5.7). The distributions may 

differ slightly between different stations, most probably due to varying local radio 

environments and/or different propagation paths. As a result, determining distances using 

instantaneous frequency may be more accurate if the instantaneous frequencies are 

derived from each station separately. 

As discussed in Section 6.6, the inferred phase propagation velocity appears to have high 

correlation with geographic features near the source. However, the phase propagation 

velocity is inferred from differential measurements between receiver pairs, therefore the 

expectation is that geophysical properties around the source might not be a dominant 

factor. It is suggested to compare various phase propagation velocity maps inferred from 

other lightning location networks to identify the influence of other geographic features on 

VLF radio wave propagation.  

The three proposed methods for applying interferometric techniques with a VLF long-

baseline receiver array are feasible to use more samples and information from the original 

recording. It is speculated that a combination of these methods may work well, so that a 
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lightning location pixel can be inferred by shifting the waveforms. Weaker lightning 

sources can be detected by the cross-correlation algorithm, and the location area of these 

lightning sources can be calculated by inferring a location from each sample. However, 

the correlation between the lightning processes and the result inferred with these methods 

has not been analysed. Further analysis is strongly suggested into the long-baseline 

interferometric technique. 
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