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Abstract 

In 14th August 2003, the Northeast USA suffered its worst power outage event in 

history. The power disturbance spreading through the system caused mal-trips of the 

distance relay remote back-up protections, which indeed contributed to the power 

outage cascading a wide area.  

The power outage in the Northeast USA was constrained by the presence of HVDC 

interconnections between the HVAC networks in Ontario and New York. The 

system collapse did not progress beyond the HVDC interconnection interface with 

Quebec. The HVDC link can regulate the voltage and current therefore impacts on 

the performance of the protection and system stability. 

The distance relay mal-operations were one of the main cause of the Northeast USA 

blackout as well as the other recent major large area blackouts which were pointed 

out by the previous papers.  

This thesis is focus on investigate how HVDC interconnections contribute to 

maintaining the power system stability. The research work investigated the 

performance of a distance relay to faults and disturbance on networks containing 

HVDC interconnection. 

The research work was carried out by modelling and testing a classic signal 

processing distance relay in a simple AC network which was based on Kunder’s two 

areas system using MATLAB/SIMULINK at first. Then the modeled distance 

relay’s performance was investigated by combining the distance relay and a simple 

HVDC link based on the Kunder’s two areas system. The research work firstly 

combined the signal processing distance relay and the HVDC link together to 

investigate the distance relay’s performance when the protected feeder containing 

DC link. The distance relay’s performance was investigated when the protected 

feeders containing HVDC link under fault conditions and power swing conditions. 

For comparison, a similar power system without HVDC link was also simulated. 
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1.1 Research Back Ground 

Modern power systems are driven by the growth of power demand to large 

interconnected and high voltage level complex networks [1]. The neighbouring 

power systems are interconnected together by HVAC interconnections in order to 

transport energy from areas with extra capacity to those with shortage and satisfy 

the continuing increase in demand [2]. The regional systems are interconnected 

together by national grids. These large highly integrated grids give opportunities to 

use larger and more economical power plants, utilize renewable energy resources 

and reduce the reserve capacity in the systems [1]. Furthermore, the interconnected 

power systems give savings in costs. It has been estimated that interconnections in 

North America saved about $20 billion in the 1990s [2].  

However, these HVAC interconnections are not as simple as a few connecting wires. 

Highly interconnected systems are complicated. These HVAC interconnections 

bring risks of large propagated disturbances [2]. The highly integrated power grids 

may lead to stability problems and raise the risks of uncontrollable cascading effects. 

Loehr [3] has been advocating the breaking up of the two gigantic interconnections 

or grids that straddle North America into a number of smaller ones since 1999. In 

his suggestion, these mini-grids can be interconnected by HVDC instead of current 

AC ties. As Loehr explained, “With ac ties, what happens in one place on the grid 

affects everywhere else. A major disturbance in Ontario is felt as far away as 

Oklahoma, Florida and Maine. This doesn’t happen with DC links – since they 

insulate one small grid from the others, but still permits power exchange [3].”  

An outage could occur in these highly interconnected grids which at first would seem 

of little importance but then spread through a wide area and cause large blackout [3]. 

Such situations have been reported in North America blackout. On 14th August 2003, 

Northeast U.S.A suffered a severe power outage event which affected a wide area 

and many millions of people [4-10]. According to [10], the 2003 Blackout was the 

worst outage event in the history of U.S. The blackout led to about 61.8GW power 

lost, which equates to approximately 11% of the total load served in the Eastern 

Interconnection of the North American system. It affected about 50 million people 

in Ontario and the eight states in U.S. Northeast. During the event, over 400 
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transmission lines and 531 generating units at 261 power plants tripped. The outage 

was caused by the failure of two 345kV transmission lines due to tree contact and 

the outage of a 597MW power plant [10]. The event started slowly but spread 

quickly. The outage then caused widespread voltage collapse in both Canada and the 

Northeast of the United States. Fig.1-1 shows the affected areas during the blackout. 

Detailed information of the 2003 blackout will be reviewed in next chapter. 

 

Figure 1-1 Affected areas during the 2003 blackout [4] 

The voltage collapse broke the balance of the power networks and resulted in a large 

power swing. The changing swing voltages and currents caused the apparent 

impedance detected by distance relays to enter the protection zones and therefore 

caused relays to trip. Many key lines were tripped by distance relays due to the power 

swing. These accelerated the blackout which spread to a wide area [11].  

However, during the 2003 blackout, the Quebec network was not affected by the 

disturbance [1, 7, 12]. The Quebec was interconnected to the U.S. system via HVDC 

interconnection. The HVDC link blocked the power swing and acted as a ‘firewall’ 

against the cascade [1, 3]. Quebec survived the blackout [1, 7, 12]. 

Such evidence that the HVDC interconnection prevented the voltage outage could 

also be found in recent blackouts listed below.  

 2003 Sweden and Denmark Blackout 

 2003 Italy Blackout 
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 2006 European Blackout 

 2010 Namibian and Zambian Eventual Blackout 

These recent blackouts are reviewed in next chapter. 

1.2 Research Motivation 

The growing need for high voltage electrical networks has raised concerns over the 

potential impacts of wide area blackouts. A catalogue of these events in the USA has 

highlighted the need for research into introducing new and novel solution to 

minimize such events. 

Studies of several wide area blackouts have suggested that inappropriate operation 

of the transmission line protection has a major impact on the propagation of such 

system collapse, principally the operation of distance protection. More recent 

blackouts have also suggested that including HVDC interconnections in 

predominately HVAC networks can constrain the collapse. 

These findings have prompted this research into the behaviour of classical distance 

relay system to events on networks containing both HVAC and HVDC lines. 

The work was prompted by question being raised in China over the expansion of 

their high voltage networks to transport power over long distances. It is however 

appropriate to many other areas of the world including the USA, Europe, the Middle-

East, Africa, etc. 

HVDC transmission technology has been introduced first half of last century. It 

offers new solutions for bulk power long distance delivery and power system 

interconnections. HVDC transmission was developed from transmitting a few 

hundreds MW up to 3-4 GW over long distance by just one bipolar line [13, 14]. 

HVDC transmission has become a mature and reliable technology. HVDC 

transmission systems are used worldwide, with about 50 GW capacity installed as 

shown in fig.1-2[13].  
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Figure 1-2 Worldwide installed capacities of HVDC systems[13] 

HVDC systems provide an alternative method of power system interconnection. 

HVAC interconnections are technically feasible and economically justified, but 

HVDC interconnections offer technical benefits and offer more economical 

solutions when compared to HVAC interconnections [13]. Hybrid interconnections, 

consisting of HVAC and HVDC links, are the further solutions. The HVDC links 

support the HVAC interconnections and improve the transmission reliability [2, 13]. 

The alternatives of the power system interconnections are shown in fig.1-3 [13].  

 

Figure 1-3 Alternatives of the power system interconnections[13] 
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A decade since 2003 Northeast Blackout, through the electric power industry has 

undergone great improvements to increase the power grid security and reduction in 

the risk of failure, HVAC systems still remain vulnerable to large blackouts [15].  

After the 2003 Northeast Blackout the North American Electric Reliability Council 

in its technical report suggested using HVDC transmission systems to improve a 

power networks’ reliability [5]. The use of HVDC interconnections together with 

HVAC feeders can prevent the propagation of disturbance passing through the 

network. Such cascades like several of the recent major blackouts could have been 

avoided if power was delivered via HVDC transmission technology [16]. Fast 

control of active and reactive power gives HVDC systems advantages that can 

improve power system dynamic performance under voltage disturbance. Together 

with power control, the use of HVDC interconnections can increase power grid 

stability and flexibility [3, 16-19]. 

As part of the South China power interconnected system, a HVDC interconnection 

was integrated into the network and operated in parallel with an AC interconnection 

as shown in fig.1-4 [13]. As shown, with only AC interconnection, the AC systems 

suffered severe power oscillations after AC system faults. The large power systems 

became unstable due to fault contingencies and lead to severe outages [13]. With a  

HVDC interconnection in constant power mode, after fault occurred, the oscillations 

were damped effectively and potential severe power oscillations were prevented [13].  

Figure 1-4 Comparison of System stability with AC interconnections and Hybrid AC/DC 

interconnections (a) System configurations (b) Dynamic results 
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HVDC transmission systems are playing a more and more important role in modern 

power systems and more are being constructed all over the world. There are deep 

interactions between AC and DC transmission systems [20]. Therefore the 

investigation of cascading failure and blackout should not only consider the HVAC 

interconnections but also the HVDC links in integrated HVAC/HVDC networks. 

Recent major blackouts have demonstrated that the mal-trips of the protective relays 

contributed to the spreading of the cascading failure and blackouts. Distance relays 

are the most widely used protection in modern power systems to protect transmission 

lines [21]. The distance relay compares the apparent impedance with the tripping 

impedance characteristic to determine fault. If the apparent impedance is within the 

trip characteristic, the distance relay trips. During power system dynamic conditions, 

the changing voltages and currents may cause the apparent impedances as seen by 

distance relays enter the protection zones and therefore cause unwanted tripping. 

During 2003 Northeast America blackout, one of the key 345kV lines, Sammis-Star, 

was tripped by the unwanted distance relay operation leading to widespread 

cascading in Ohio and beyond [4]. The apparent impedance seen by distance 

protection during the event is shown in fig.1-5 [7]. The apparent impedance moved 

from normal steady operation point into the protection zone due to cascading outage 

and caused the unwanted trip of distance relay. 

 

Figure 1-5 Sammis-Star 345 kV line trip [7] 
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During normal operation the apparent impedance is outside of the trip characteristic 

whereas during a fault condition it enters the characteristic [22]. Zone 3 protection 

provides remote back-up protection which covers a large area of the protected 

feeders. The apparent impedance seen by distance relay during fault moves from the 

load area into the protection zones causing the relay to trip. The apparent impedance 

seen by a relay during a power swing may move from the load area into the 

protection zone and cause unwanted relay tripping as shown in fig.1-6 [23, 24].  

During the cascading failure leading to blackout, the unwanted distance relay 

operations accelerated the cascading outages. Therefore, it is necessary to consider 

the distance relay operations during cascading outages. Furthermore, with the 

increasing use of HVDC systems all over the world, the distance relay’s behaviour 

when the protected feeders containing both HVAC and HVDC interconnections 

needs to be investigated.  

jX

R

Protected 

Line

Remote Back-up 

Protection Zone

Load Area

Impedance 

Trajectory during 

Fault

Impedance 

Trajectory during 

Power Swing

 

Figure 1-6 Impedance seen by distance relay during fault and power swing[23, 24] 

 

1.3 Research Objectives 

This project is to investigate the impact of power system performance on protection 

relays and the consequences of introducing HVDC interconnections into HVAC 

networks. The research objectives are summarized as follows: 
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 To study the HVDC operation during the fault conditions and power swing 

conditions and investigate the mechanisms by which a HVDC link acts as a 

‘firewall’ against the voltage outages and prevents the cascading outage 

developing throughout the HVAC networks. 

 To study the response of distance relay protection during the faults and 

voltage collapses in HVAC/HVDC and HVAC networks. Recent blackouts 

showed that the distance relay remote back-up protection mal-operation 

during power outages contributed cascading effect throughout a network.  

 To investigate the impact of HVDC interconnections in HVAC/HVDC 

networks on distance relay performance during fault conditions.  

 To investigate how the presence of a HVDC interconnection impacts on 

distance relay performance during a power swing.  

1.4 Outline of the thesis 

Chapter 2 reviews recent wide area blackouts. The distance relays operations during 

the blackouts are of particular interest as is the impact of HVDC interconnections in 

HVAC/HVDC networks. 

Chapter 3 provides a literature review of the HVDC technologies. It reviews the 

development of HVDC technologies, the basic control of HVDC, the advantages and 

disadvantages of the HVDC interconnections. 

Chapter 4 gives an overview of the operation of distance relays. The chapter reviews 

distance relay basic principles, the different types of fault impedance calculations 

and the distance relay’s Mho characteristic. This chapter also reviews the block-

average comparator and signals processing technologies. Furthermore, this chapter 

reviews the behaviour of a distance relay during a power swing. 

Chapter 5 presents simulation studies of a HVDC link’s response to fault conditions. 

The simulation work was carried out in MATLAB/SIMULINK. 

Chapter 6 presents simulation studies of a distance relay’s behaviour, together with 

that of a signal processing distance relay to test in a simple ac system.  
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Chapter 7 presents the results of simulation studies into distance relay operation 

when the protected system includes a HVDC link. The investigations were carried 

out in a basic HVAC power system, connected to an infinite bus and included both 

HVAC and HVDC interconnections. A comparison with a HVAC system was also 

simulated. The investigation was carried out by applying a selection of faults at 

different locations of the feeders and studying the distance relay’s operation. 

Chapter 8 presents the results of studies into the HVDC impacts on distance relay 

performance during power swings. The investigation was carried on a power system 

that included HVAC and HVDC interconnections to a load with local generation. 

The behaviour of a system with two main generators and two loads was investigated. 

Chapter 9 summarizes the key findings from the research and the major contributions 

of the work. Potential future work is given in this chapter. 
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2.1 2003 Northeast America Blackout 

Based on [5, 7, 12], on 14th August, the power system was running stable prior to 

the start of the blackout. Electricity demand was high due to the continual increasing 

using of air-conditioners. Such large air-conditioning loads lead to high reactive 

power demand in the Indiana and Ohio areas and were known to cause control and 

protection problems [4]. The investigators determined that the power system in 

Northeaster Ohio was near to voltage collapse due to low voltage and low reactive 

power margins [5].   

At 12:08EDT, several 345, 230 and 138kV transmission lines experienced a series 

of outages. At 13:31, a major source of reactive power support unit, Eastlake Unit 5, 

was tripped due to over-excitation problem. Loss of the Eastlake Unit 5 was the first 

major event during the blackout [1, 4].  

At 14:02, the Stuart-Atlanta 345kV line was tripped due to tree contact [7, 9, 12]. 

The report of the line failure was not communicated until 15:29 when the operators 

updated the status of the line being out of service. The Stuart-Atlanta 345kV line 

failure did not contribute to or lead to the blackout but caused co-operation failures 

between operators.  

From 15:05, within one hour, three 345kV transmission lines tripped due to 

independent tree contacts [4-7, 9]. Fig.2-1 gives locations of the three tripped lines 

[5]. 
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Figure 2-1 Location of three tripped lines [5] 

Fig.2-2 gives 345kV line flows [7]. At 15:05, the Chamberlin-Harding 345kV line 

tripped. The line was loaded at 43.5% of its normal ratings [5, 25]. At 15:32, the 

Hanna-Juniper 345kV line tripped with 88% of its summer emergency rating [4]. 

Loss of the Hanna-Juniper line led to a deficit of over 1,200 MVA of power flow to 

Cleveland, which led to Star-Juniper having to carry the bulk of the power [7]. At 

15:41 the Star-Canton 345kV line tripped with 93% of its normal rating [6].  

 

Figure 2-2 345-kV Line Flows [7] 
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Due to Energy Management System software failure at the control centres, 

corrective actions were not taken [4, 6]. The loss of these three lines pushed power 

to several 138kV lines and making these lines overloaded. The voltage began to 

degrade.  

At 16:05, the Sammis-Star 345kV line was tripped by the Zone 3 distance relay as 

it detected high current and voltage dip consistent with a distance fault [4-7, 9]. 

Fig.2-3 shows the relay’s operation characteristic and the seen impedance causing 

the Sammis-Star line to be tripped [7]. Fig.2-4 gives a time chart with the trip of the 

Sammis-Star line [7]. There was no fault or power swing but the system presented a 

low apparent impedance for the relay to trip the line. The relay could not discriminate 

a remote fault or high line-load condition. In addition, Sammis-Star carried ten times 

as much reactive power than its normal load. Loss of that line was a critical event 

leading to widespread cascading in Ohio [4, 6]. Soon after the Sammis-Star 345kV 

line tripped, many other 345kV lines which had remained in service were tripped. 

Losing these lines caused frequency in eastern interconnection increased by 0.02Hz 

[7, 12]. After the loss of the Sammis-Star line, the power network was temporarily 

stable.  

 

Figure 2-3 Sammis-Star 345-kV Relay Operation [7] 
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Figure 2-4 Time chart till 16:05 [7] 

Soon after the Sammis-Star line tripped, four 48 MW generating units tripped off-

line [7]. After the loss of the Sammis-Star at 16:09, the main energy path East Lima-

Fostoria Central that connects south and west to Cleveland and Toledo tripped. Loss 

of this path caused a significant power swing of about 500-700 MW from 

Pennsylvania and New York through Ontario to Michigan [5, 7]. Fig.2-5shows the 

power flow along the New York interface [7]. 

 

Figure 2-5 Power flow metered at New York interface [7] 

The full cascade started at16:10. After 16:10, more 345kV transmission lines and 

generating units tripped. Between 16:10:36 and 16:10:37 three 345kV transmission 

lines tripped and several generating units about 20 generators loaded at 2,174 MW 

tipped off-line [5, 7, 12]. Between 16:10:37 and 38, the Hampton-Pontiac and 

Thetford-Jewell 345kV lines tripped. Those two lines were the only lines connecting 
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Detroit to the grid. These trips separated the eastern high voltage transmission 

system from western Michigan [5]. Fig.2-6 describes some tripped transmission 

lines due to Zone 3 relay operation around Ohio and Michigan area from 16:05 to 

16:10 [7].  

Figure 2-6 Tripped transmission lines due to zone 3 relay operation [7] 

Around 16:10:38, another three 345kV transmission lines tripped including Perry-

Ashtabula line which was tripped by a zone 3 relay operation [5, 25]. The trip of this 

line was the point that the Northeast entered transient instability [7]. Loss of the line 

caused a large power swing that affected Ontario, Michigan, New York, and New 

England [7, 26]. The power swing caused a sudden increase in frequency from 

60.0Hz to 60.7Hz at Lambton and 60.4Hz at Niagara [5, 7]. Unbalanced demands 

and generation led to heavy power flows moving north through the remaining tie 

lines which accelerated the power swing. Heavy power flows moved from Ontario 

into Michigan, New York into Ontario, New York into New England and PJM into 

New York [5, 7, 26].  

As been described in [7], the power swing started at 16:10:38 because the loads of 

Cleveland, Toledo and Detroit were separated from Michigan and Ontario [7]. The 

power flow was forced to shift to meet the demands. The power flows from Ontario 

into Michigan increased from 1,000MW to around 3,700MW after the start of power 

swing. However, the flows reversed back from Michigan into Ontario by dropping 

from 3,700MW to around 2,100MW [7].   
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Between 16:10:39 and 16:10:42, several 345kV lines tripped resulting in the Toledo 

and Cleveland area becoming islanded from Detroit. The frequency around Detroit 

spiked to 61.7Hz then began to decay and the generators were in under-speed 

conditions [1, 5, 7, 12, 25, 26]. The Cleveland area was completely isolated after the 

Beaver-Davis Besse 345kV line tripped [7]. 

Pennsylvania was separated from New York due to Zone 1 relay operation on the 

345kV lines, Homer City-Watercure and Homer City-Stolle Road. There was a 

power swing into New York and PJM between 16:10:39 to 16:10:44 [5, 7, 12, 25, 

26]. These two 345-kV tie lines are long and thus have a high line impedance. High 

line impedance enlarges relay Zone 1 circle and makes it more likely to be tripped 

by a power swing [5, 7]. During the power swing, distance relays on these lines 

responded to the overloads and depressed voltage conditions rather than true faults 

[25].  

Soon after Pennsylvania separated from New York, the Eastern Interconnection was 

divided into two major parts: to the north and east  of the separation containing New 

York City, northern New Jersey, New York state, New England, the Canadian 

Maritimes provinces, eastern Michigan, the majority of Ontario, and the Quebec 

system [5, 7, 12, 25]. The rest of the Eastern Interconnection was not seriously 

affected by the blackout. After the separation of the Eastern Interconnection, the 

entire northeastern suffered large oscillations. 

The 2003 event became a race between the power surges and the protective relays 

[5]. The transmission lines that were tripped by the relays’ operation due to the 

power surge accelerated blackout. Longer lines that were having larger apparent 

impedance tripping zones made the relay prone to tripped during a power swing.  

The Quebec system however survived during the event. The Quebec system was 

connected to the Eastern Interconnection via a High-Voltage Direct Current (HVDC) 

link instead of AC transmission line [5, 7, 12]. The DC link acted as a ‘firewall’ 

against cascading events [1]. Moreover, the HVDC links connected to New York 

and New England helped stabilize these two islands and support the demand in these 

areas [1]. 
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2.2 Protection Relay Operation During Recent Blackouts 

Evidence has shown that the unwanted zone 3 relay operations contributed to the 

cascading outage that led to other blackouts like the 2003 Blackout.  

The U.S.-Canada Power System Outage Task Force Report [7] on the 2003 Blackout 

pointed out that some key 345-kV transmission lines that were tripped by zone 3 

impedance relays had accelerated the spread of the cascade outage. Horowitz and 

Phadke [27] argued that the unwanted operation of zone 3 has been identified as the 

most obvious protective relay characteristic since the 2003 North America Blackout. 

The same option is also given by Apostolov [11]. He added that combining the 

protection device with a wide area automatic control could offer the solution to 

prevent, slow down or reduce the impact of a large-scale disturbance. Suwannakarn 

and Hoonchareon [28] described the false tripping of the zone 3 activation of the 

distance relay as one of the main reasons for the 2003 Blackout. They also pointed 

out that load increase and voltage instability was primarily responsible for such a 

mis-operation. Richards and Tholomier [29] indicates that the relay settings for 

generators, transmission lines and under-frequency load-shedding in the Northeast 

America area may not be sufficient to reduce the effects of cascade. Hodaei et al [30] 

described the 2003 America Blackout as the most well known incident where zone 

3 relay unwanted trips occurred giving rise to the collapse. However, distance relay 

mis-operation contributing to cascading outage was not only seen in the 2003 North 

America Blackout but also could be found in many other major blackouts [31-34]. 

2.2.1 1965 Northeast America Blackout[31, 34] 

On 9th November 1965, the most severe power system blackout up to that time 

affected over 80,000 square miles including the cities of New York, Boston and 

Toronto and about 30 million people. The event was triggered by the operation of 

impedance relays due to overload. Five 230kV transmission lines connecting the 

Beck and Canadian Toronto area were tripped by distance relays sequentially due to 

heavy load conditions at the start of the cascade trips. Tripping of the lines led to left 

tie lines suffering from a massive power shortage. Increased power from the U.S. to 

Canada caused the 230kV tie lines to be tripped by overcurrent relays. After four 
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seconds the system separated into 5 islands. The cause of the event was identified as 

mis-operation of distance relays responding to heavy load condition rather than a 

fault. 

2.2.2 1996 North Western America Blackout [35-38] 

The July 2nd 1996 outage in the Western Electric Coordinating Council (WECC) 

system was another significant example of zone 3 mis-operation giving rise to 

system collapse. The outage resulted in an 11,743 MW load and 9,909 MW 

generation loss. The event was initiated by a 345kV transmission line which 

connected the Jim Bridger and Kinport fault. Shortly after the line tripped, the 

parallel 345kV transmission line connecting Jim Bridger and Goshen was tripped by 

the relay trip. These two lines were the connection between the 2,000 MW Jim 

Bridger power plant and the Pacific Northwest load centres. About 20 seconds later, 

a key 230kV line between Western Montana and South Idaho was tripped by the 

zone 3 relay operation due to overloading and voltage depression. The loss of the 

line caused a power swing through Eastern Washington and Eastern Oregon and 

further cascading led to the separation of the power system. 

2.2.3 2003 Sweden and Denmark Blackout [1, 4, 39-41] 

On September 23, 2003, Sweden and Denmark suffered a serious power failure. 

Over 4 million people were affected and about 6,550 MW load was disconnected. 

The event was started by the loss of a 1,200 MW nuclear power plant. Loss of the 

power plant resulted in a voltage drop of around 5 kV. Following two busbar faults 

in a nuclear power station, the power grid lost its transmission capacity along the 

west coast. The system suffered power oscillations. Tap-changer transformers’ 

operation dropped voltage on the 400kV grid to critical levels. During power 

oscillation, distance protection devices tripped due to low impedance criteria. 

Operation of distance protection devices contributed to the splitting. Finally the 

entire system collapsed. During the event, two HVDC links to Germany and Poland 

rated at 600 MW connected to the 400kV grid were out of service due to annual 

inspection.  Recommendations were made after the event. One of which suggested 
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that the protection system needed to be developed to detect a voltage collapse 

situation.  

2.2.4 2003 Italy Blackout [42-46] 

On September 28, 2003, Italy suffered the largest blackout in history. A cascade 

tripping of transmission lines separated Italy from the Europe grid. For economic 

reasons, Italy imported a large amount of power from European countries. The 

Italian system was connected to the European grid through six 400kV lines and nine 

220kV lines as shown in fig.2-7, during the event, these lines were lost [45]. 

 

Figure 2-7 Line of separation from Europe [45] 

On Sunday September 28, 2003, the Italian load was 27.7 GW and total imported 

power was 3,500 MW. Several power stations in Italy were off-line due to economic 

reasons.  

The first event occurred in the Swiss grid. A 380-kV transmission line was tripped 

due to tree contact. Several seconds later the protection device tripped the Airo 10-

Mettlen 220kV line because it was overloaded. The tripping of the lines left the 

220kV interconnection lines between Switzerland and Italy overloaded and hence 

they tripped. Loss of these lines led to frequency and voltage decrease. Due to the 

overload and the lower voltage conditions, local distance relays tripped several 

transmission lines around Italy and the surrounding countries. This led to the 
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complete separation of Italy from the European grid. During the event, the HVDC 

link connecting Italy and Greece was tripped after the collapse of the Italian Grid. 

2.2.5 2006 European Blackout [19, 47-51] 

On 4th November 2006, the Union for the Co-ordination of Transmission of 

Electricity (UCTE) suffered the most severe disturbance in its history. About 15 

million people in more than 10 countries were affected and a 14.5 GW load was 

interrupted. The event started from a scheduled disconnection of the double-circuit 

380kV Conneforde-Diele line. After switching off the line, the TSO network 

received several warning messages about high power flows.   

At 21:41, the Labdebergen-Wehrendorf line between the E.ON Netz and the RWE 

TSOs approached near its safe limit of 1795 A. The protection settings on the 

different sides of the line were different. At 22:00 the lines towards the west was 

over loaded. At 22:06, the current on Landesbergen-Wehrendorf increased to 1900A 

and exceeded its safety limit. At 22:10, the protection relay tripped the 

Landesbergen-Wehrendorf line due to overload rather than a true fault. Another two 

lines were tripped within five seconds and caused a cascading effect towards the 

south. The out-of -step conditions led to the tripping of another thirty 400, 380 and 

220 kV lines within one second. The UCTE grid was finally separated into three 

sub-grids with different frequencies, as shown in fig.2-8. 

 

Figure 2-8 Separation of UCTE grid into 3 sub-grids 
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Area 1 and 3 suffered under-frequency conditions while area2 suffered over-

frequency condition. The frequency in area 1 and 3 dropped to 49 Hz and 49.7 Hz 

respectively. The frequency in area 2 raised to 51.4 Hz. 

It should be noted that the area1 and 3 remained asynchronously connected through 

the HVDC link between Italy and Greece during the whole event. The power 

exchange on the HVDC link between Italy and Greece was 312 MW towards Greece. 

Four TSOs of North-East area and Nordel power systems were connected by 

submarine DC cables transferring total 2,200 MW power from UCTE to Nordel area. 

These DC cables were not disturbed when the UCTE system split and the available 

capacities of all these cables were almost fully used. The DC connections to Nordel 

systems helped to export the surplus of capacity from the UCTE over frequency area 

without disturbed Nordel system at all. 

2.2.62010 Namibian and Zambian eventual blackout 

On 3rd June 2010, the HVDC interconnection project was tested for the first time to 

transmit power from Namibia to Zambia [16, 52]. The project was a 300MW, 345kV 

monopole HVDC scheme that connects the Namibian and Zambian power systems 

through a 952 km overhead line [52]. There was a sudden trip of a 220kV line in 

Nampower’s 220kV bus zone because of an overload protection operation. Loss of 

the line led to an island condition and a large frequency dip in the Namibian power 

grid [16]. On emergency control at both converter stations, the Namibian grid was 

restored to stability about 1 second after the outage [16]. On 6th June 2010, a 

continuing test was carried on. When the power ramped up to about 30 MW on the 

HVDC link, a line in the Zambian grid was overloaded and tripped [16]. This again 

resulted in an island condition in the Zambian grid. The Zambezi converter station 

switched to voltage and frequency stabilization control mode. Within 500ms, the 

voltage and frequency resumed to pre-outage level [16]. An eventual blackout was 

avoided.  
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2.3 Chapter Summary 

This chapter reviewed recent major blackouts over the world. These recent blackouts 

demonstrated that protection devices play an important role during the event. The 

unwanted trip of protective relays when there was a voltage disturbance quickly 

contributed to the cascading outage. The setting of distance relays should ensure that 

the relays will not operate when no fault occurs. Zone 3 protection is applied for 

backup protection and has wide coverage. When a power swing occurs, a lower 

voltage level combines with higher load current results in the apparent impedance 

entered the Zone 3 protection characteristic, leading to tripping and accelerating the 

cascading outage. 

The HVDC systems acted as a ‘firewall’ against the system collapse can be found in 

2003 Northeast America blackout. During 2006 Europe blackout, the DC 

connections kept in service without disturbing the Nordel system operations. In 2010, 

the HVDC interconnection between Namibian and Zambian blocked the fault 

current and prevented the potential blackout. 
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The HVDC transmission system, High Voltage Direct Current transmission system 

has been widely used to transmit long distance bulk power and connect two separate 

AC systems since it was first introduced in 1950s[53]. 

3.1 History Background of HVDC 

Work on HVDC systems goes back to Thomas Alva Edison who established his 

research laboratory in 1876 at Menlo Park, New Jersey, USA [54]. It has been widely 

documented that the first commercial electricity generator designed by Thomas Alva 

Edison, was Direct Current (DC) electrical power as well as the first electricity 

transmission system was also the direct current system [53]. However, early DC 

power was at a low voltage and could not be transmitted over a long distance. 

Compared to DC transmission technologies, Alternating Current (AC) technologies 

offered better efficiency which led to the rise of Alternating Current (AC) 

technologies [54]. Though DC transmission systems lost out in the competition with 

AC transmission systems, there were still some attempts to improve the DC system. 

Engineers built a high-voltage transmission system with series connected dc 

generators and motors but this was unsuccessful commercially [54].  

The first attempts of transferring DC voltage to higher or lower levels relied on 

mechanical methods, which were not practical [55]. HVDC technologies were 

limited by materials, devices and construction issues. Engineers still carried on. 

Technical papers were also be found on HVDC technologies including the 

development of static converter theory for transferring ac to dc and vice versa, 

economy of dc transmission systems and converter systems [55].  

With the fast development of electronic devices, in the 1950s, the world’s first 

commercial HVDC line was installed successfully between Gotland and the Swedish 

mainland [55-59]. The HVDC transmission system was a 98kM long DC cable 

connection rating at 20 MW, 200 A and 100kV [54]. After the success of the Gotland 

and Swedish HVDC project, work had been continued on developing thyristor 

valves. Some earlier HVDC projects (1960-1970s) were spreading over the world, 

some of which are listed below [57, 59, 60]:  
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 1961 Cross Channel HVDC link between France and England. The system was 

operated at 100kV and 160 MW. 

 1964 Konti-Scan HVDC link between Denmark and Sweden, which was a 

250kV and 250 MW cable link. 

 1964 Voltogard-Donbass HVDC link in Russia. The scheme was a +/-400kV, 

750 MW long distance transmission project. 

 1965 Japan HVDC interconnection with 125kV and a capacity of 300 MW. The 

HVDC link connected two areas with different frequencies: 50Hz and 60Hz. 

 1970 Pacific DC Intertie in United States. The scheme was a 1,362 km long 

distance overhead line connecting hydro-electric power stations in Oregon and 

the load centre in Los Angeles that operated at 500kV and 3,100 MW. The 

project was also the world’s first transmission system controlled by a distributed 

computer system. 

 1971 Manitoba Hydro scheme in northern Canada, which was the first bipole 

scheme. 

 1972 Eel River scheme in Canada which was the first HVDC project using 

exclusively thyristors in converter stations. 

According to Carlsson [61], since 1990, HVDC technology development can be 

characterized as follows. The traditional ‘classical’ HVDC technology still 

dominates but with improved equipment and sub-systems (eg, valves, ac-filters, dc-

filters, etc); the new concept of Capacitor Commutated Converter (CCC), which 

significantly improves the performance of the traditional converter; using of Voltage 

Source Converter (VSC) with Insulated Gate Bipolar Transistors (IGBTs) in place 

of thyristors. According to [53], some of the important milestones in the earlier 

development of HVDC transmission technology are given below: 

 Hewitt’s mercury-vapour rectifier, which appeared in 1901. 

 Experiments with thyratrons in America and mercury arc valves in Europe 

before 1940. 
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 First commercial HVDC transmission, Gotland 1 in Sweden in 1954. 

 First solid state semiconductor valves in 1970. 

 First microcomputer based control equipment for HVDC in 1979. 

 Highest DC transmission voltage (+/- 600kV) in Brazil 1984. 

 First active DC filters for outstanding filtering performance in 1994. 

 First Capacitor Commutated Converter (CCC) in Argentina-Brazil 

interconnection 1998 

 First Voltage Source Converter for transmission in Gotland 1999. 

The rapid increase in voltage and capacity of the modern power system drew 

attentions to HVDC technology. With the rapid development of power electronics, 

there are growing numbers of HVDC projects over the world. Fig. 3-1 [55] shows 

the power that transmitted via HVDC systems in the world from 1950 to 2010. 

 

Figure 3-1 Power transmitted via HVDC from 1950 to 2010 [55] 

As can be seen in the fig.3-1, there was a significant increase in the power that has 

been transmitted via HVDC since 1990. Some research results have shown that 

800kV is a reliable voltage, for which suitable equipment can be made [59]. The 

world’s first  +/- 800kV HVDC project: Yunnan-Guangdong HVDC transmission 

system was commissioned in 2010 [62]. The project is a 1,418km long distance 
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HVDC link with a rated capacity of 5000 MW. Fig.3-2 gives the overview of the 

project. 

 

Figure 3-2The world’s first +/-800-kV HVDC system in South of China 

The growth in using offshore wind farms and other renewable power stations, 

including solar power and hydro power, that are located far from load centres gives 

the opportunity to use HVDC to meet these demands. Fig.3-3 [63] shows the future 

possible use of HVDC links interconnect large renewable energy resources in 

Europe. If all renewable energy would be used where they are best available around 

Europe, wind power from western coasts, solar energy would mainly come from the 

Mediterranean and hydro power from Scandinavia. Using these renewable energies 

gives significant benefit in Environments and reduction of CO2. 
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Figure 3-3 Future HVDC integrates renewable energy resource in Europe 

3.2 HVDC System 

The High Voltage Direct Current transmission system (HVDC) has now been widely 

used to transmit long distance bulk power and connect separate AC systems. 

ABB defines HVDC as follows [64]: 

“In a HVDC system, electricity is taken from an AC power network, converted to 

DC in a converter station and transmitted to the receiving point by a transmission 

line or cable. It is then converted back to AC in another converter station and injected 

into the receiving AC network. HVDC enables the power flow to be controlled 

rapidly and accurately, and improves the performance, efficiency and economy of 

the connected AC networks.” 

Siemens presents HVDC technology as follows [65]: 

“HVDC (High Voltage Direct Current) transmission systems connect two separate 

high voltage AC Systems via a DC link. The basic principle of the operation of an 

HVDC system is based on the conversion of AC to DC and vice-versa by means of 

converter valves comprising power thyristors, which are at the heart of a converter 

station.” 
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Fig.3-4 shows the basic HVDC system. The HVDC scheme connects two AC 

systems. At the sending end, AC power is fed into a converter operating as a rectifier 

following the power transformer. The output of the rectifier is DC power which will 

be transmitted through a conducting medium, an overhead line, cable or a short 

distance busbar, to a second converter which is operated as an inverter [66]. The 

inverter transfers DC power to AC power and sends it to the AC system through the 

power transformer at the receiving end.    

 

 

Figure 3-4The basic HVDC system 

In fig.3-4, the dc current is defied by Idc which can be calculated as: 

 Idc =
Ur−Ui

R
 (3.1) 

where: 

            Idc is the dc current along DC transmission line; 

            Ur is the voltage at the rectifier; 

            Ui is the voltage at the inverter; 

Ur Ui 
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            R is the resistance along the transmission line. 

The power transmitted through HVDC system can be calculated as: 

 P = Vd × Id (3.2) 

Where: 

           Vd is the dc voltage of the DC transmission line; 

            Id is the dc current along DC transmission line. 

The converter station could be used as either a rectifier or an inverter. When 

converting AC to DC, the converter is called a rectifier. When converting DC to AC, 

the converter is called an inverter. 

The power transmission direction could be bidirectional. When Ur>Ui, the power is 

transmitted from the rectifier side to the inverter side, while when Ur<Ui, the power 

transmission direction is in the other direction.  

3.2.1 Components of an HVDC system 

 

Figure 3-5 Classic bipolar HVDC system [58] 
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Fig.3-5 presents a classic bipolar HVDC system, which consists of ac filters, 

smoothing rectors, converters, converter transformers, dc filters and dc lines [67]. 

3.2.1.1 Converters 

The converter is the most important component in a HVDC transmission system. It 

performs the conversion from ac to dc (rectifier) and from dc to ac (inverter) [67]. 

The converter is connected to ac system by converter transformer including tap 

changers.  

The classic HVDC converter is current source converter (CSC) [67]. Under normal 

operation, the dc current is kept constant. Power flow is controlled by dc voltage. 

The converter consists of thyristor valve bridges and a converter transformer. 

Thyristor valve bridges consist of high-voltage valves connected in a 6-pulse or 12-

pulse arrangement which known as Graetz bridge [68]. Fig.3-6 gives a basic 6-pulse 

valve bridge. 

 

Figure 3-6 Basic 6-pulse valve bridge 

3.2.1.2 Converter Transformer 

The converter transformer, which always was a tap-changer transformer, connects 

ac system and converter. It transfers ac voltage on the rectifier terminal to a required 

level for the conversion process [69].  On the inverter terminal, it connects dc 

terminal and ac system. The converter transformer windings on ac system side are 

connected in star and on converter side are connected in delta for the converter. For 
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12-pulse converters, the 12 devices of the converter bridge are formed by a star and 

a delta connected transformers effectively providing six phase supply [67]. 

The converter transformer rating can be calculated as:  

 S = √2 × IdN × U (3.3) 

Where: 

           IdN is nominal DC current; 

           U is transformer secondary ac voltage (on Rectifier of Inverter side) 

3.2.1.3 Smoothing Reactors 

Smoothing reactors are large inductors having an inductance up to 1.0 H [68, 70]. 

These large inductors are connected in series on the dc side of converter. 

Siemens [71] lists the main functions of the smoothing reactors as bellow: 

 Prevention of intermittent current 

 Limitation of the DC fault currents 

 Prevention of resonance in the DC circuit 

 Reducing harmonic current including limitation of telephone interference 

3.2.1.4 AC side filters 

The converters generate harmonic voltages and currents on ac side. These harmonics 

cause overheating of capacitors and generators as well as radio interference[70]. 

Filters are installed to limit harmonics to an allowed level for connected networks. 

According to the Siemens Company [71], there are two main duties for ac side filters: 

 To absorb harmonic currents generated by HVDC converter and thus to 

reduce the impact of the harmonic on the connected ac systems 

 To supply reactive power for the converter station 

During conversion procession, the converter absorbs a large amount of reactive 

power, normal 50%-60% of the transmitted active power [70]. Under transient 
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conditions, the consumption of reactive power can be even higher. The ac filters are 

installed next to converter stations.  

3.2.1.5 DC filters 

The HVDC converter not only generates harmonics to connected ac networks but 

also a ripple voltage on dc line. This ripple voltage may cause interference to 

telephone circuits near the dc line [67]. DC filters are used to reduce the ripple. 

Usually, there is no need to use dc filters for pure cable transmission or back-to-back 

scheme, but, filters are needed when overhead lines are used in the HVDC 

transmission system [67].  

3.2.1.6 HVDC lines  

The DC transmission lines may be either overhead lines or cables [70]. HVDC cables 

are normal used for underground or submarine transmission. Compared to ac 

transmission lines, dc lines have advantages both in number of conductors and space. 

3.2.1.7 Circuit breakers 

Circuit breakers are used for clearing transformer faults and taking dc line out of 

service on the ac side [68, 70]. DC line faults can be cleared rapidly by controlling 

the converter system. ABB announced that they have successfully designed and 

developed a hybrid DC breaker that can interrupt power flows within 5 milliseconds 

[72]. 

3.2.2 Basic Configurations of HVDC System 

HVDC transmission system can be configured in many ways. The most common 

configurations are the back-to-back, bipolar and monopolar schemes [70].  

3.2.2.1 Back-to-Back HVDC System 

Back-to-back HVDC interconnection is the simplest HVDC configuration [73]. 

There no transmission lines or cables used in this scheme. These converters are 

connected directly next to each other. The two converter stations are located at the 

same site [67].  
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Back-to-Back scheme could be cheaper than the other schemes because it does not 

have long transmission lines [73]. The ac systems linked by the back-to-back HVDC 

system may have different frequencies, for example 50Hz and 60Hz [71]. Voltage 

levels are quite low normally between 50kV and 150kV. Fig.3-7 gives the overview 

of back-to-back HVDC scheme. 

Id

AC 

System

AC 

System

Figure 3-7 Back-to-back HVDC scheme [61] 

3.2.2.2 Monopolar HVDC Scheme 

The monopolar HVDC scheme consist two converters connected with a single 

conductor. Usually the ground or sea is used for return path [68, 70, 73]. The typical 

rating is up to 1500 MW [65]. The monopolar scheme is often used for very long 

distance particular very long sea cable transmissions. Fig.3-8 presents a classic 

monopolar HVDC scheme. 
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Figure 3-8 Monopolar HVDC scheme [61] 

3.2.2.3 Bipolar HVDC Scheme 

The bipolar HVDC link is the most widely used [70]. The bipolar scheme has two 

conductors, often overhead lines, one of which is positive and the other negative [68]. 

Each pole has two converters of equal rated voltage. The two terminals have equal 
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dc current under normal operation and have no ground current. Each terminal can be 

operated independently if both use a ground return, which contributes to reliability 

[67, 70]. The typical rating is up to 3000 MW [65]. Fig.3-9 shows a bipolar HVDC 

scheme. 
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Figure 3-9 Bipolar HVDC scheme [61] 

3.2.3 Converter Technologies 

Converters are the most important part of the HVDC transmission system. They are 

the key to convert ac into dc and vice-versa. Bahrman [74] described there are two 

basic converter technologies used in modern HVDC transmission systems,: 

 Line-commutated, current source converters (CSC) 

 Self-commutated, voltage source converters (VSC) 

3.2.3.1 Line-Commutated Current Source Converter, CSC 

These converters, based on mercury valves or thyristor valves, are called line-

commutated converters (LCCs) or current-source converters (CSCs) [75]. The basic 

block used in CSC converter is the three-phase, full wave bridge known as 6-pulse 

Graetz bridge which presented in fig.3-6[75-78]. Each bridge is formed using six 

thyristor valves. The Graetz Bridge can transmit power in either direction as it can 

be controlled in rectifier or inverter mode by changing the firing angle. If the firing 

angle is lower than 90°, the converter is operated as a rectifier and transmits ac power 

to dc power. If the firing angle is between 90° and 180°, the converter is operated as 
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an inverter and transmits dc power to ac power. The active power between two 

convertors is well controlled and gives some benefits including that voltage phase 

angle or frequency at the either end of the HVDC scheme does not need to be 

considered [78].  Fig.3-10 shows a typical CSC HVDC system. 

AC 

System

AC 

System
Reactive 

Power

Real 

Power

Reactive 

Power

Sending 

End
Receiving 

End

 

Figure 3-10 CSC HVDC transmission system 

The most modern CSC HVDC transmission systems use 12-pulse converters, which 

use two 6-pulse valves connected in series [77]. Using of 12-pulse converters gives 

the immediate benefit of reducing harmonics, especially the 5th and 7th on AC side 

and the 6th on dc side.  

The CSC converters need ac voltage to commutate and therefore CSC HVDC links 

can only operate to transfer power between two active AC systems [79]. The CSCs 

can only operate with the ac current lagging the voltage and hence they consume a 

large amount of reactive power during the conversion process, about 50%-60% of 

the transmitted power [75, 76, 78, 80]. The reactive power is provided by ac filters 

at the converter stations which results in increasing costs and the system occupies a 

large amount of space. CSC HVDC systems have common commutation failures, 

especially caused by inverter side ac system disturbance [75]. A number of serious 

commutation failures may force HVDC link to trip [75].  

3.2.3.2 Self-Commutated Voltage Source Converter, VSC 

The Voltage-source converter (VSC) utilizes self-commutating switches, such as 

gate turn off thyristors (GTOs) or insulated-gate bipolar transistors (IGBTs) [75]. 

GTOs and IGBTs can be turned on or off freely by gate signals. This is in contrast 

to the CSC converters, where the thyrstor valves can only be turned off by reversed 

voltages [75]. Diodes are needed to be connected in anti parallel mode because 
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IGBTs can only block voltage and conduct current in one direction [81]. The VSC 

converters are operated at high frequency, about 1 kHz to eliminate low order 

harmonics [78]. Fig.3-11 gives a diagram of VSC-HVDC transmission system. 
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Figure 3-11 VSC-HVDC system 

VSC converter technology can control both active and reactive power independently, 

and independent of dc voltage level [80]. This controllability gives VSC-HVDC 

transmission system flexibility to be placed anywhere in the connected AC systems. 

VSC-HVDC schemes give benefits in dynamic support of the ac voltage, improving 

voltage stability and increasing power transfer capability [76, 80]. Unlike 

conventional CSC HVDC systems, VSCs do not need reactive power support and 

can control reactive power to regulate the ac system voltage. The ability to control 

reactive power is the most significantly difference between a VSC-HVDC system 

and a CSC-HVDC system [78]. 

When connected to an ac system, the VSC-HVDC system is equivalent to a voltage 

source with an amplitude and phase angle determined by control system [81]. 

Compared with CSC-HVDC systems, VSCs can instantly reverse the active power. 

The VSC-HVDC systems have the potential to be connected to any kind of ac system 

with any number of links [75]. 

The main differences between CSC converter and VSC converter technologies are 

given in table.3-1 [82]. 

 CSC Converter VSC Converter 

 

 

 

Acts as a constant voltage 

source; 

Acts as a constant current 

source; 
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On AC Side 

Capacitor required for energy 

storage; 

Large AC filters required for 

harmonic elimination; 

Reactive power supply 

necessary for power factor 

correction 

Inductor needed for energy 

storage; 

Only a small AC filter needed 

for higher harmonics 

elimination; 

No reactive power supply 

needed 

 

 

 

On DC Side 

Acts as a constant current 

source; 

Inductor needed for energy 

storage; 

DC filters required; 

Provides inherent fault 

current limiting features; 

Act as a constant voltage 

source; 

Capacitor needed for energy 

storage; 

No need for DC filtering; 

Problems with DC line faults 

since the capacitor discharges 

into the fault; 

 

 

Switches 

Line commutated or force 

commutated with a series 

capacitor; 

Switching at line frequency; 

Lower switching losses 

Self-commutated; 

Switching at high frequency; 

Higher switching losses 

Table 3-1 Main differences between CSCs and VSCs 

3.3 Advantages of HVDC Systems 

HVDC Transmission is widely used for bulk power transmission over long distance 

today. HVDC becomes financially viable from around 1000MW and 600km upward 

[83]. The HVDC project under constructing in China, which will transmit at 800kV 

and 1400km long, will set a new record in the world. Compared to 765kV AC line, 

HVDC Transmission will save about 36% in costs over a 30-year service life [83]. 

Germany is planning to construct 2100 km of HVDC lines to transmit wind power 

from its north coast line to the mainland with minimal loss [83].  

ABB reviews the reason for using HVDC in two main groups [84], namely: 
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 HVDC is necessary and desirable from the technical point of view (i.e. 

controllability). 

 HVDC results in a lower total investment (including lower losses) and is 

environmentally superior. 

HVDC transmission systems offer the benefits of providing long-distance bulk 

power delivery, providing power transfer between asynchronous AC networks, 

limiting short circuit currents, economic transfers and benefits for the environment. 

HVDC transmission provides a complement to AC transmission networks. 

3.3.1 High Level of Power Transmitted Compared to AC 

Compared to AC transmission system, HVDC system can transmit more power per 

conductor per circuit [57].  

For the same insulation, dc voltage Vd is equal to the peak value of the alternating 

voltage, which can be presented as: 

 Vd = √2 × Va (3.4) 

Where: 

           Va is the rms value of alternating voltage 

For the same conductor size, without consideration of skin effect, the same current 

can be transmitted with both ac and dc can be presented as: 

 Id = Ia (3.5) 

Where: 

           Id is dc current while Ia is ac current 

Thus the dc power Pd and ac power Pa is presented as: 

 Pd = Vd × Id (3.6) 

 Pa = Va × Ia × cos Φ (3.7) 

Where: 
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           cosΦ is the power factor 

Comparing equation 3.6 and 3.7 can get dc power over ac power as: 

 
 Pd

Pa
=

√2

cos Φ
 (3.8) 

From equation 3.8, it can be determined that the power ratio would be 1.414 @ p.f 

equals unity or 1.768 @ p.f equals 0.8. 

From calculations above, it is shown that capacity of dc transmission is higher than 

that ac transmission under the similar conditions. 

3.3.2 HVDC Interconnections to Enhance AC Networks 

A major advantage of HVDC interconnection is that it can contribute in preventing 

cascading outage pass through the networks and therefore enhance power systems. 

This was clearly demonstrated in the 2003 North America Blackout, 2006 Europe 

Blackout and the 2010 Namibian and Zambian eventual blackout [76, 85].  

Carlsson [3] reported that HVDC provides a good control of the transmitted power. 

When using HVDC, the power direction can also be changed rapidly. With the 

ability to change the operating point instantaneously the HVDC link can feed/reduce 

active power into the receiving system to control the frequency much faster than a 

normally controlled generator [86]. Carlsson [3]reported that classical HVDC 

transmission can vary the power level from minimum load, which normally between 

5% and 10%, to max load 100% very quickly. He suggested that the DC 

interconnection could be designed to automatically adapt its power flow during a 

system disturbance. The power flow can be limited to protect the network. He also 

claimed that HVDC can help to reduce voltage oscillations by connecting capacitors 

to the network or by modulating the station’s reactive power using firing angle 

control.  

HVDC transmission link offers good performance when connected to AC system 

under fault conditions. Such specific actions, like normal power control, emergency 

power control and voltage control, can all help during disturbances. The most 

important feature of HVDC is that it cannot become overloaded [87].  
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Pan et al [17] claimed that by fast power run-up or run-back control functions, 

HVDC can help maintain power grid stability. With the ability to control both active 

power and reactive power, HVDC can provide an effective means of damping 

oscillations and improve voltage stability.  

According to Zhang [75], when one of the systems enters oscillation mode between 

two generator groups, HVDC has the best active power damping effect if the 

converter station is electrically close to one of the oscillating generator group. The 

best location for reactive power damping is the electrical middle point between the 

oscillating generator groups [75]. HVDC system is provided with power modulation 

features for stabilization of AC system [86]. With this function, the HVDC link can 

reduce power swings and stabilize the system in a minimal time. 

Fig.3-12 gives an example of how a power system can behave with and without 

HVDC power modulation function [17]. 

Figure 3-12 Results with and without DC modulation function [77] 

Several researchers are investigating how the HVDC can function a damper of 

oscillations as was proven in 2003 northeast American blackout. Hafner and 

Manchen in [88] used the Caprivi Link Interconnector HVDC Light project to study 

the strong voltage and frequency stabilization function of HVDC systems to avoid a 

blackout. Based on commissioning tests, they showed that the HVDC link had a 

good performance with islanded AC networks and normal AC faults. They suggested 

that HVDC systems are able to enhance the stability of extremely weak AC system 

and to prevent a blackout from cascading. Pan et al [89] examined enhancing power 
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system stability through controlling HVDC power flow. Ozerdem and Habboob [90] 

used a MATLAB simulation of the Turkey to TRNC HVDC submarine 

interconnection and by comparing VSC-based HVDC and CSC-based HVDC 

performance under the same applied AC fault, they found that VSC-based HVDC 

had a better performance than CSC-based HVDC.  

In 1993 Lee et al [91] suggested to use potential DC system support to enhance AC 

system in the western U.S.  

Corsi et al [92] discussed the Sardinia-Corsica HVDC link (SACOI) in Italy and the 

Italy-Greece HVDC link (GRITA) by simulation tests and commissioning results, 

they demonstrated that using HVDC power modulation can achieve high control 

flexibility and regulation performance, which could contribute to face unexpected 

contingencies.  

Arro and Silavwe [82] discussed what influence a line-to-ground fault occurring on 

HVDC line will bring to networks involving both AC and DC lines. In order to study 

the phenomenon, simulation studies were carried using PSCAD/EMTDC. A bipolar 

HVDC connection between the Swedish and Finnish power systems was simulated. 

Based on simulation work, there was no unwanted tripping in AC lines due to a line-

to-ground fault that occurred on HVDC lines[82].  

Paulinder [70] claimed that an HVDC link has an obvious contribution to power 

system’s stability during disturbance through modelling CIGRE Nordic 32 system.  

Du in [67] investigated the VSC-based HVDC control system’s operations under 

steady-state and different fault conditions. The HVDC link was used different 

control strategies and faults were injected at inverter side and converter side 

separately. He concluded that for unbalanced faults the voltage dips in the dc-

supplied ac system were less severe than in a pure ac system. 

HVDC and Flexible AC Transmission Systems (FACTS) were strongly advised to 

provide a secure and stable solution for power delivery [13, 80, 85, 93-97]. As 

described in [85] ‘FACTS, based on power electronics, have been developed to 

improve the performance of weak AC Systems and for long distance AC 

transmission. FACTS controllers can, however, also contribute to solve technical 
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problems in the interconnected power systems. FACTS are applicable in parallel 

connection, in series connection, or in combination of both to control load flow and 

to improve dynamic conditions. By these means, FACTS contributes to Blackout 

prevention too.’ They concluded that developing large hybrid transmission systems, 

consisting of HVDC and FACTS, offers many advantages. 

Fig.3-13 gives a brief view of such hybrid AC/DC system. The power exchange 

among the two nearby systems can be achieved by HVAC interconnections together 

with the FACTS equipment. The FACTS gives the additional support to HVAC 

interconnections in improving the dynamic conditions [93]. The Back-to-Back 

HVDC interconnections can be applied to avoid a spread of large disturbances 

through to whole system. HVDC transmission systems are utilized to transmit large 

power in long distance, for example, from the generation to load location [91]. The 

HVDC systems can also improve the HVAC systems’ performances to avoid 

possible dynamic problems [91-93]. Such hybrid transmission system offers 

significant advantages in system reliability [85, 93-95]. The performance of AC lines 

can be improved by FACTS both in transmission capability and reliability. Long-

distance bulk power can be transmitted by HVDC. With DC interconnections, high 

system security could be achieved. 

Figure 3-13 Hybrid AC/DC system [85] 
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3.3.3 Long Distance Bulk Power Delivery 

HVDC transmission system provides several advantages for long distance bulk 

power deliveries. This includes transporting power from remote generation to load 

centres and connection between major power networks. Remote bulk generation 

includes hydro power station, solar power stations and large offshore wind farms. 

HVDC can transmit more power in fewer lines than an AC transmission system in 

the same location [74]. In a long AC transmission system, the large cable capacitance 

causing reactive power flow will limit the maximum transmission distance. 

Furthermore, reactive power compensation is needed in ac transmission system for 

long distance power delivery in order to keep the voltage levels within normal 

operating limits [98]. HVDC systems offer lower line losses and economic benefits 

make HVDC an alternative choice for long-distance power delivery [74]. Fig.3-14 

shows a comparison of DC and AC transmission system losses at same distance [99]. 

As can be seen from the figure, the longer transmission lines are, higher power losses 

exist for AC systems.  

There are few technical limitations for HVDC cable transmission [100]. This gives 

HVDC immediate benefits in long distance power transmission especially for an 

under water cable transmission. DC submarine cables have lower inductances and 

higher capacitances than AC overhead lines and offer economical benefits. HVDC 

links are therefore chosen to connect large off-shore wind farms to load centres.  
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Figure 3-14 Loss comparison for DC and AC transmission systems 

3.3.4 Economical Benefits 

For the same transmission capacity, HVDC transmission lines cost less than HVAC 

systems above a certain distance. This is called the ‘break-even-distance’ [74, 100, 

101]. This is a result of the cost of the consider situations. Fig.3-15 shows the 

investment costs for overhead line transmission with AC and HVDC.  
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Figure 3-15 HVDC-HVAC cost comparison 
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As can be seen from the fig.3-15, above a certain distance, normally 600-800 km, 

the costs of HVDC transmission lines are smaller than AC transmission lines. A 

bipolar HVDC system has two lines compared to the three lines in an AC circuit. 

Savings also can be found in tower design which are shown in fig.3-16 and a reduced 

number of conductors [101]. Both electrical and mechanical considerations dictate 

a smaller tower which leads to a reduced cost.  

 

Figure 3-16 Typical transmission tower structures for approximately 1000 MW 

In the developing of the Three Gorges Project in China it was shown that it would 

require five 500 kV HVAC lines compared to two ±500 kV bipolar HVDC lines 

used [74]. 

Fig.3-17 gives cost comparisons between AC and DC transmission systems [99]. 

HVDC has a cost advantage for 400 mile lines and beyond.  
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Figure 3-17 Cost comparisons between AC and DC systems [90] 

3.3.5 Environmental Benefits 

HVDC lines have also been shown to have a lower impact on the surrounding 

environment than HVAC lines [98]. Many HVDC links have been installed to 

connect existing power plants to load centres. These links not only improve power 

system capacity and efficiency but also give benefit to the environment by 

considering the need to build new power stations. CO2 generation can therefore be 

reduced.  

Using HVDC to connect hydro generation is another environmental benefit. 

Behrman [74] highlighted that there is no induction or alternating electro-magnetic 

fields from HVDC transmission lines. No skin effects, effective cable transmission 

and lower power losses ensure that there are less environmental impacts. 

3.4 Challenges of HVDC Transmission System 

HVDC transmission technology is playing an important role in modern power 

systems. However, there are a number of challenges when combining HVDC and 

HVAC networks.  
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3.4.1 Costs 

The cost for an HVDC transmission system is high. The HVDC system needs filters, 

converters, power electronics and other equipment at both terminals to the line. It is 

hard to estimate the HVDC costs as it depends on many factors such as power 

capacity, type of transmission medium and environmental conditions [69]. A typical 

converter station cost structure can be found in fig.3-18. The highest cost is spent on 

converter stations. 

To build a converter station is much more expensive than an ordinary ac substation 

of similar rating because the greater sophistication of an HVDC needs more 

components [78].  

 

Figure 3-18 Cost structure [60] 

3.4.2 Harmonics 

All power converters produce harmonics during the converter process. These 

harmonics affect both the dc and ac sides. If not filtered, these harmonics will create 

many concerns including neutral circuit overloading in three phase circuit, motor 

and transformer overheating, metering inaccuracies and control system malfunctions 

[86]. Usually filters and smoothing reactors are used to reduce these harmonics but 

these result in additional costs.  
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Some studies show that even after filtering, some harmonics still enter into the 

system, typically 3rd and 5th order harmonics [86]. 

With an increasing number of converters connected to ac networks, the difficulty of 

reducing harmonics increases the construction costs [78]. 

3.4.3 Integration of HVDC scheme in AC network 

Connecting an HVDC system to an HVAC system is challenging and needs highly 

trained engineers. An HVDC system, especially an CSC HVDC system, needs large 

ac harmonic filters to be installed at both ends of the terminals, which makes the 

system more complex.  These large ac filters can cause over-voltages during fault 

recovery [78].  

An HVDC scheme is complicated to maintain. The converter stations consist of a 

series of connected thyristors, transformers, filters and monitors. It is hard to find 

internal faults quickly. What is more, the reactive power support devices, such as 

filters and shunt capacitors connected in ac system, complicate the power networks. 

3.5 Chapter Summary 

This chapter reviews the HVDC general information including HVDC components, 

basic HVDC configurations and converter technologies. Furthermore, the 

advantages and disadvantages were also reviewed. 

Since the world’s first commercial HVDC line was installed successfully between 

Gotland and the Swedish mainland in 1950’s, the HVDC transmission system draw 

engineers attentions in large power long distance transmission and systems 

interconnection. The HVDC transmission system offers benefits in long distance 

power delivery, system interconnection, economics and environments. However, the 

HVDC system has its disadvantages in constructing cost, harmonics and integration 

of HVDC scheme in AC networks. 

The HVDC interconnection acts as a ‘firewall’ against the voltage disturbance and 

presents the cascading outage pass through therefore avoid the potential wide area 
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blackout. This was clearly demonstrated in 2003 North America block and other 

recent major blackouts.  The HVDC links combine with HVAC interconnections can 

offer significant improvements in power system reliability and stability. Such hybrid 

AC/DC system satisfies the modern power systems in secure power delivery. The 

HVDC interconnection that constrains the fault current and voltage will be 

investigated in the following chapters. 
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Modern power systems involve power plants, transmission networks, distribution 

networks, loads and customers. The purpose of an electric power system is to 

provide energy from power plants to customers in a reliable, secure, constant and 

economic manner. The power system is growing in voltage levels, transmission 

capacity and complexity; therefore, faults increasingly occur in power systems. One 

of the most important equipment that keeps power systems working in order is the 

protection system. When faults occur, the protection systems are needed to remove 

the faults as speedily as possible. If faults remain connected without being cleared 

speedily, the power system may suffer three main effects which are named below 

[102]: 

1. a risk of damage to the affected power plant; 

2. a risk of damage to a healthy plant;  

3. a risk of the power system falling out of step with consequent splitting. 

The power system protections are sets of equipment that detect faults in the protected 

power systems, disconnect the faulted plant and re-establishes the service [21]. The 

main functions of protection systems are [103]: 

1. automatically, speedily remove faults from the faulted power system and ensure 

the remaining parts operation correctly; 

2. monitor the abnormal operation in the power system; 

3. ensure the power system operates in a stable manner. 

The operation of protection schemes occasionally causes wide area blackouts. 

Inappropriate tripping of the protection schemes contributed and accelerated the 

disturbance. This chapter will mainly investigated the operation principles of 

protection relays. 

4.1 Protective Relays 

The protective relays are the most important equipment in the protection systems. 

The Institute of Electrical and Electronic Engineers (IEEE) defines a relay as “an 

electric device that is designed to respond to input conditions in a prescribed manner 

and, after specified conditions are met, to cause contact operation or similar abrupt 
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change in associated electric control circuits.” [104] IEEE defines protective relay 

as “a relay whose function is to detect defective lines or apparatus or other power 

conditions of an abnormal or dangerous nature and to initiate appropriate control 

circuit action.” [104] 

4.2Basic Objectives of Protective Relays 

The main purpose of protective relays is to detect and clear a fault as reliably and 

quickly as possible. Protective relays minimize damage to the power network and 

maintain the quality of delivering electrical energy supplies. The performance of the 

protective relay must satisfy the following requirements: reliability, selectivity, 

speed and sensitivity [103, 105-108]. 

4.2.1 Reliability 

Reliability has two aspects which are dependability and security [103, 108]. 

Dependability means the protective relay operates correctly when required, that is, 

no mal-operation when not necessary. Security indicates that the protective relay can 

avoid unnecessary operations when faults or problems are outside protecting zones. 

There may be tolerable transients when the power system is under normal operation. 

The protective relays should not operate on these tolerable transients but trip when 

there are intolerable transients and permanent faults [108]. 

4.2.2 Selectivity 

Protective relays are designed to operate when faults occur inside a protection zone. 

However, protective relays may respond to conditions outside a protection zone. 

When protective relays need to operate, they should disconnect the faulted line 

correctly and ensure that the remainder of the power system continues its operation. 

If the protection relay cannot isolate a fault correctly, this may affect power system 

stability and result in widespread blackouts [105]. 
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4.2.3 Speed 

Faults should be isolated or cleared as quickly as possible by protective relays. Rapid 

operation can minimise damage to a power system. If faults are not cleared rapidly, 

this may result in serious consequences; for example, a whole power system may 

lose synchronization or a wide area blackout may occur. Normally, operating time 

for protective relays are measured in milliseconds [103]. A high-speed relay operates 

in 50ms or even less [108]. In a distribution system, protective relays are not required 

to operate within 50ms. The operating time will be slower, typically between 0.2-

1.5s [108]. 

4.2.4 Sensitivity 

Sensitivity is the ability that protective relays’ response capability to faults inside 

the protection zone. The protective relays can detect system conditions and initiate 

successful protective action when there is a fault.   

4.3 Distance Relay 

Distance relay is the most widely protection relay used to protect transmission lines 

because of its reliability, selectivity, simplicity, suitability and economy [21]. The 

distance relay uses the impedance between the relay point and the fault location to 

determine operation. If the fault impedance is within the protection characteristic, 

the relay will trip. If the fault impedance is outside the protection characteristic, it 

will not trip.  

4.3.1 Principle of Distance Relay 

A distance relay uses the apparent impedance derived from the measured voltage 

and current at the relay point. The distance from relay point to the fault point is 

proportional to the apparent impedance seen by the distance relay[109]. During 

normal operation the apparent impedance is large whereas during fault condition the 

apparent impedance is small [22]. Fig.4-1 shows a typical distance relay protecting 

a transmission line AB. The generator G is supplying power to load L via AB. The 
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distance relay is set to protect line AB at point A. The distance relay has a pre-set 

protecting distance Lset. When the fault is inside a pre-set zone, the relay will trip. 

As can be seen from fig.4-1, if a fault occurs at f1, the distance from A to f1 Lf1 is 

smaller than Lset, relay trips. When a fault occurs at f2, due to Lf2 being larger than 

Lset, the relay does not trip. 

BA

R

f1 f2Lset

Um

Lf1

Lf2

G L

Im

 

Figure 4-1 Typical distance relay protecting line 

The Voltage Transformer (VT) and Current Transformer (CT) are used to transfer 

primary voltage and current from transmission line to relay for calculating the 

apparent impedance. The apparent impedance is then calculated as [103]: 

 𝑍𝑚 = (
𝑈𝑚

𝑉𝑇𝑟𝑎𝑡𝑖𝑜
) (

𝐼𝑚

𝐶𝑇𝑟𝑎𝑡𝑖𝑜
)⁄  (4.1) 

 𝑍𝑚 = (
𝑈𝑚

𝐼𝑚
) × (

𝐶𝑇𝑟𝑎𝑡𝑖𝑜

𝑉𝑇𝑟𝑎𝑡𝑖𝑜
) (4.2) 

Where:  

           Zm is the apparent impedance; 

           Um is the measured voltage; 

            Im is the measured current; 

            VTratio is the voltage ratio between VT primary and secondary; 

            CTratio is the current ratio between CT primary and secondary. 
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The apparent impedance is a vector, and it can be represented as [103, 106]:  

 𝑍𝑚 = |𝑍𝑚|∠𝜑𝑚 = 𝑅𝑚 + 𝑗𝑋𝑚 (4.3) 

Where: 

            │Zm│ is the apparent impedance magnitude value; 

             φm is the apparent impedance phase angle; 

             Rm is the measured resistance; 

             Xm is the measured reactance. 

│Zm│and φm can be represented as [106]: 

 |𝑍𝑚| = √𝑅𝑚
2 + 𝑋𝑚

2 (4.4) 

 𝜑𝑚 = 𝑡𝑎𝑛−1 𝑋𝑚

𝑅𝑚
 (4.5) 

The apparent impedance Zm can be presented in rectangular coordinate system as 

shown in fig.4-2. 

 

Figure 4-2 RX-diagram for apparent impedance 

Similarly, the line impedances and load impedance of fig.4-1 can also be presented 

in RX-diagram, as shown in fig.4-3. When the power system is under steady 
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operation, the voltage and current at the relay is rated voltage and current. The 

apparent impedance seen by distance relay is the load impedance Zload as shown in 

fig.4-3. The load impedance phase angle is generally small due to high power factor. 

Usually, the power factor is greater than 0.9 and the impedance phase angle is less 

than 25.8° [103]. When a fault occurs on the protected transmission line AB, the 

distance relay measured voltage decreases and current increases. The apparent 

impedance seen by distance relay becomes the line impedance from the distance 

relay to the fault location. The relationship of fault impedance and fault location can 

be presented as [103]: 

 𝑍𝑚 = 𝑍𝑓 = 𝑧1 × 𝐿𝑓 = (𝑟1 + 𝑗𝑥1) × 𝐿𝑘 (4.6) 

Where: 

           Zm is the apparent impedance; 

           Zf is the fault impedance; 

           z1 is the line impedance in unit length; 

           r1 is the line resistance in unit length; 

           x1 is the line reactance in unit length; 

           Lk is the line length from distance relay to fault location. 

Zf2

Zset

Zf1

R

jX

Zload

 

Figure 4-3 Load impedance and line Impedance seen by distance relay 
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Fig.4-3 also shows the line impedance seen by distance relay when fault occurs. Zf1 

is the fault impedance seen by distance relay when fault occurs at F1 while Zf2 is the 

fault impedance when fault occurs at F2. Zset presents the pre-setting impedance at 

distance relay. By comparing Zf1, Zf2 and Zset the distance relay determines where 

the fault location is. If Zf<Zset, the relay trips. When Zf>Zset, as for fault F2, the relay 

does not trip. The fault impedance phase angle is equivalent to transmission line 

phase angle. For the transmission line at 220kV and above, the phase angle is usually 

greater than 75° [103]. 

The pre-set impedance Zset depends on the protected line length Lset, and is normal 

equal to 80% of the protected line [22, 103, 109]. Zset can be presented as: 

 𝑍𝑠𝑒𝑡 = 𝑧1 × 𝐿𝑠𝑒𝑡 (4.7) 

Where: 

           Lset is the setting protected distance. 

The distance relay comparing Zm and Zset means comparing Lk and Lset. If Zm<Zset, 

means Lk<Lset, relay trips. If Zm>Zset, means Lk>Lset, the relay does not trip. The 80% 

setting ensures that a fault beyond the end of the line will not cause tripping. 

4.3.2 Protection Zones 

jX

R

Zone3

Zone2

Zone1

Protected 

Line

 

Figure 4-4 Three protection zones 
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A typical configuration for a distance relay has three protection zones: zone 1, zone 

2 and zone 3, as shown in fig.4-4. Zone 1 is usually set up to 80% of the protected 

line impedance. Zone 2 should be at least 120% of the protected line impedance or 

the protected feeder plus 50% of the shortest following line impedance. Zone 3 is 

set up to the protected feeder plus the longest following feeder plus 25% of the 

shortest subsequent feeder or 120% of the protected feeder plus the longest following 

feeder [21, 22, 106, 110].  

The Zone 1 setting of 80% of the protected line, leaves the remaining 20% of the 

line impedance as a safety margin. The safety margin prevents the errors introduced 

by current and voltage transformers and processes in calculating fault impedances 

[21]. Zone 1 is required to operate instantaneously, without time delay, when a fault 

occurs.  

The Zone 2 setting is 120% of the protected line. It covers not only the protected line 

but also 20% of next line, which ensures the fault clearing for any fault on the line. 

To ensure the selectivity of distance relay and avoid unnecessary operation, Zone 2 

is given a time delay, normally between 0.2s-0.5s [111]. As shown in fig.4-5, if a 

fault occurs on BC line at 10%, the fault is covered both by R1 Zone 2 and R2 Zone 

1. Time delay △t1 of Zone 2 avoids unnecessary operation of R1 Zone 2.  

Zone 3 is set as remote back-up protection for faults on adjacent lines. It covers at 

least 1.2 times the longest adjacent line [22, 106]. There is a typical 1.0s-2.5s time 

delay for Zone 3 [111]. When a fault occurs on BC line at 90%, it covers by R1 Zone 

3 protection and R2 Zone 2 protection. If R2 fails to trip the fault the R1 will operate 

as remote back-up protection.  

Fig.4-5 demonstrates how a transmission line network is protected and shows the 

reach of each zones and time delay for each zone. Zone 1 and Zone 2 are mainly 

used to clear local faults. Zone 3 is mainly used for remote back-up protection. 
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Figure 4-5 The reach of each zones and time delays of each zones 

The faults occurring on a three phase transmission line are characterised as: single 

phase to ground fault (A-G, B-G, C-G), phase to phase fault (A-B, B-C, C-A), phase 

to phase to ground fault (A-B-G, B-C-G, C-A-G) and three phases fault (A-B-C, A-

B-C-G). In order to discriminate between the different fault types, a full scheme 

distance relay combining zones and time delay settings is shown in fig.4-6. 

 

Figure 4-6 Full scheme distance relay 
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4.4 Fault Impedance Calculation 

As shown in fig.4-7, the distance relay at busbar M is used to protect transmission 

line MN. When a fault occurs at location k, it uses the voltages and currents to 

determine what action is required. 

M N

Ik

U

R

k

Uk

Lk

Zk=z1Lk

 

Figure 4-7 Transmission line protected by distance relay 

The distance relay calculates the apparent impedance as below: 

 𝑈𝑚 = 𝐼𝑚𝑍𝑚 = 𝐼𝑚𝑍𝑓 = 𝐼𝑚𝑧1𝐿𝑓 (4.8) 

Where: 

            Um, Im and Zm are the measured voltage, current and impedance at the relay 

separately; 

             Zf is the fault impedance; 

             z1 is the positive sequence impedance of the protected line; 

             Lf is the distance from relay location to fault location. 

The distance relay has different parts to protect each type of faults. For single phase 

to ground fault, it is protected by phase-to-ground relay: A-G, B-G and C-G. For 

phase to phase fault, it is covered by phase-to-phase relay: A-B, B-C and C-A.  
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The power system has three phases: A, B and C. Using symmetrical components 

where [21, 22, 106, 112]: 

                          𝐼𝑎 = 𝐼1 + 𝐼2 + 𝐼0  

 𝐼𝑏 = 𝑎2𝐼1 + 𝑎𝐼2 + 𝐼0  

         𝐼𝑐 = 𝑎𝐼1 + 𝑎2𝐼2 + 𝐼0 (4.9) 

and: 

                         𝑉𝑎 = 𝑉1 + 𝑉2 + 𝑉0  

 𝑉𝑏 = 𝑎2𝑉1 + 𝑎𝑉2 + 𝑉0  

           𝑉𝑐 = 𝑎𝑉1 + 𝑎2𝑉2 + 𝑉0 (4.10) 

Where: 

            Ia, Ib and Ic are the phase current at relay location; 

            Va, Vb and Vc are the phase voltage at relay location; 

            I1 is the positive-sequence current at relay location;  

            I2 is the negative-sequence current at relay location; 

            I0 is the zero-sequence current at relay location; 

            V1 is the positive-sequence voltage at relay location; 

            V2 is the negative-sequence voltage at relay location; 

            V0 is the zero-sequence voltage at relay location. 

In fig.4-7, the phase a voltage at relay location can be calculated as [21]: 

 𝑈𝑎 = 𝐼𝑎1𝑧1𝐿𝑘 + 𝐼𝑎2𝑧2𝐿𝑘 + 𝐼𝑎0𝑧0𝐿𝑘 + 𝑈𝑘𝑎 (4.11) 

Where: 

            Ua is the phase A voltage at relay location; 

            Uka is the voltage at fault location; 
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Ia1, Ia2, Ia0 are the phase a positive-sequence current, negative-sequence 

current and    zero-sequence current at relay location separately; 

z1, z2, z0 are the protected line positive-sequence impedance, negative-

sequence impedance and zero-sequence impedance per unit length separately; 

            Lk is the line distance from relay location to fault location. 

Because z1=z2[103], therefore equation 4.11 equals: 

  𝑈𝑎 = [(𝐼𝑎1 + 𝐼𝑎2)𝑧1𝐿𝑘 + 𝐼𝑎0𝑧0𝐿𝑘] + 𝑈𝑘𝑎  

 = [(𝐼𝑎1 + 𝐼𝑎2 + 𝐼𝑎0)𝑧1𝐿𝑘 + 𝐼𝑎0(𝑧0 − 𝑧1)𝐿𝑘] + 𝑈𝑘𝑎 

                = [(𝐼𝑎1+𝐼𝑎2+𝐼𝑎0) + 3𝐼𝑎0 (
𝑧0−𝑧1

3𝑧1
)] 𝑧1𝐿𝑘 + 𝑈𝑘𝑎 (4.12) 

Because Ia=Ia1+Ia2+Ia0 and letting k=
𝑧0−𝑧1

3𝑧1
, then equation 4.12 becomes[103]: 

 𝑈𝑎 = (𝐼𝑎 + 3𝑘𝐼0)𝑧1𝐿𝑘 + 𝑈𝑘𝑎 (4.13) 

Similarly, phase b and c  voltage can be presented as [103]: 

 𝑈𝑏 = (𝐼𝑏 + 3𝑘𝐼0)𝑧1𝐿𝑘 + 𝑈𝑘𝑏 (4.14) 

 𝑈𝑐 = (𝐼𝑐 + 3𝑘𝐼0)𝑧1𝐿𝑘 + 𝑈𝑘𝑐 (4.15) 

 Where: 

            Ub,Uc are the phase b and phase c voltage at relay location; 

            Ukb, Ukc are the phase b and phase c voltage at fault location; 

             Ib, Icare the phase b and phase c current at relay location. 

4.4.1 Impedance seen during single-phase-to-ground fault 

Assuming a-to-ground fault occurred in fig.4-7 at k, Uka=0, then equation 4.13 

becomes[103]: 

 𝑈𝑎 = (𝐼𝑎 + 3𝑘𝐼0)𝑧1𝐿𝑘 (4.16) 

Letting za=z1Lk, equation 4.16 could be: 
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 𝑈𝑎 = (𝐼𝑎 + 3𝑘𝐼0)𝑧𝑎 (4.17) 

Therefore [21, 22, 103, 106, 112]: 

 𝑧𝑎 =
𝑈𝑎

𝐼𝑎+3𝑘𝐼0
 (4.18) 

za is the fault impedance seen by distance relay when there was a a-to-ground fault 

at k. 

Similarly, the fault impedance seen by distance relay when b-to-ground and c-to-

ground fault is [21, 22, 103, 106, 112]: 

 𝑧𝑏 =
𝑈𝑏

𝐼𝑏+3𝑘𝐼0
 (4.19) 

 𝑧𝑐 =
𝑈𝑐

𝐼𝑐+3𝑘𝐼0
 (4.20) 

zb and zc are the fault impedance seen by distance relay. 

The fault phase voltage and current may lead to the corresponding phase relays see 

the fault impedance [112]. For example, A-G fault may lead to the A-B and C-A 

impedances moving to the area that near to the protection characteristic zones or 

inside the zones as shown in fig.4-8[112]. 

jX

R

Zl

Zca

Zab

 

Figure 4-8 Possible A-B and C-A impedances settling areas during A-G fault 
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4.4.2 Impedance seen when phase-to-phase fault 

When a phase-to-phase fault occurs, the phase fault voltages at fault location are 

equal but not zero [103]. Take phase b and c for example. At the fault location, Uka 

= Ukb, the fault phase voltages are the same as equation 4.13 and 4.14. Letting 

zab=z1Lk, then the fault impedance seen by distance relay is[103, [112]: 

 𝑧𝑏𝑐 =
𝑈𝑏−𝑈𝑐

𝐼𝑏−𝐼𝑐
=

𝑈𝑏𝑐

𝐼𝑏−𝐼𝑐
 (4.21) 

The fault impedances seen by distance relay during A-B fault and C-A fault are the 

same asequation4.21 as shown below. 

 𝑧𝑎𝑏 =
𝑈𝑎−𝑈𝑏

𝐼𝑎−𝐼𝑏
=

𝑈𝑎𝑏

𝐼𝑎−𝐼𝑏
 (4.22) 

 𝑧𝑐𝑎 =
𝑈𝑐−𝑈𝑎

𝐼𝑐−𝐼𝑎
=

𝑈𝑐𝑎

𝐼𝑐−𝐼𝑎
 (4.23) 

During B-C fault, the B-G, C-G, A-B and C-A impedances may enter the protection 

zones or settle near to the protection zones as shown in fig.4-9 [112]. 

jX

R

Zl

Zab

Zca

Zc

Zb

 

Figure 4-9 Possible B-G, C-G, A-B and C-A impedance seen by distance relay during B-C fault 

4.4.3Impedance seen during phase-to-phase-to-ground fault 

In the case of phase-to-phase-to-ground fault, the fault phase voltages at fault 

location are zero. Assuming B-C-G fault at k, then Ukb=Ukc=0, equation 4.14 and 

4.15 becomes[103]: 



Chapter 4 Overview of Distance Relay 
 
 
 

Page | 67 

 

 𝑈𝑏 = (𝐼𝑏 + 3𝑘𝐼0)𝑧1𝐿𝑘 (4.24) 

 𝑈𝑐 = (𝐼𝑐 + 3𝑘𝐼0)𝑧1𝐿𝑘 (4.25) 

Letting zbc=z1Lk, the distance relay computes fault impedance as [21, 22, 103, 106, 

112]: 

 𝑧𝑏𝑐 =
𝑈𝑏𝑐

𝐼𝑏−𝐼𝑐
 (4.26) 

zbc is the fault impedance seen by distance relay when there was a B-C-G fault. 

Similarly, A-B-G and C-A-G fault impedance seen by distance relay are[21, 22, 103, 

106, 112]: 

 𝑧𝑎𝑏 =
𝑈𝑎𝑏

𝐼𝑎−𝐼𝑏
 (4.27) 

 𝑧𝑐𝑎 =
𝑈𝑐𝑎

𝐼𝑐−𝐼𝑎
 (4.28) 

zab and zca are the fault impedance seen by distance relay in the event of A-B-G and 

C-A-G fault. 

During phase-to-phase-to ground fault, for example B-C-G fault, the possible A-B 

and C-A impedances seen by distance relay are shown in fig.4-10 [112]. Since 

during B-G-G fault, Ia=0, the A-G impedance is infinite [112]. 

jX

R

Zl

Zab

Zca

 

Figure 4-10 Possible A-B and C-A impedance seen by distance relay during B-C-G fault 
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4.4.4 Impedance seen when three phases fault 

During three-phase fault or three-phases-to-ground fault, each phase voltage at fault 

location are equal, the simulation equals zero [103]. The fault impedance seen by 

distance relay can be expressed by using any phase voltage and current or phase-to-

phase voltage and current. 

Table 4-1 summarized the fault impedance calculating equations for each type of 

faults. 

Fault Type Calculating Equations 

A-G Ua/(Ia+3kI0) 

B-G Ub/(Ib+3kI0) 

C-G Uc/(Ib+3kI0) 

A-B or A-B-G Uab/(Ia-Ib) 

B-C or B-C-G Ubc/(Ib-Ic) 

C-A or C-A-G Uca/(Ic-Ia) 

Table 4-1 Fault impedance calculating equations for each type of faults 

4.5 MHO characteristic 

The Mho characteristic distance relay was first introduced in 1930s and is still the 

most widely used protection characteristic [113]. It uses the voltage Ur and current 

Ir measured at the relay location to determine the apparent impedance as shown in 

fig.4-11. The mho characteristic is adjusted by setting Zset, the pre-set impedance 

along the diameter of the circle and φ the angle of displacement of the diameter from 

the R-axis [106, 114]. The angle φ is known as relay characteristic angle [106, 114]. 

The distance relay trips when fault impedance is inside the mho characteristic and 

does not trip if the fault impedance is outside. The mho function is directional and 

only operates for faults in the forward direction along the protected line.  
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Figure 4-11 The Mho characteristic of distance relay 

The mho characteristic distance relay uses an IZ signal rather than I signal, where Z 

is referred to as ‘replica impedance’ or ‘mimic impedance’ [115]. The replica 

impedance is ideally the represented equivalent of the protected line. The IZ signal 

is used to produce the distance relay operating signal IZ-V. The signal IZ-V and V 

are the two inputs for relay’s comparator. The distance relay uses a phase comparator 

to make decisions [116]. The phase comparator compares phase angle difference 

between the input signals and operates when this is between pre-set limits. The phase 

comparator uses signal S1 and S2 to produce the characteristic. The signals are 

defined as the following [21, 112, 114, 116-118]: 

𝑆1 = 𝐼𝑓 · 𝑍𝑠𝑒𝑡∠𝜑 − 𝑉𝑓 

 𝑆2 = 𝑉𝑓 (4.29) 

Where: 

           S1, S2 are the phase comparator input signals; 

           Vf is the voltage applied to the distance relay; 

            If is the current applied to the distance relay; 

            Zset∠φ is the setting impedance reach of the distance relay. 

The phase comparator compares the angle argument of S1 and S2 and operates when 

[21, 112, 114, 116-118]: 
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 −90° ≤ 𝑎𝑟𝑔
𝑆1

𝑆2
≤ 90° (4.30) 

If the angle is less than or equal to 90°, the fault impedance Zf lies inside the mho 

characteristic and the relay will trip. If the angle is greater than 90°, Zf plots outside 

of mho characteristic and the relay will not trip. The mho characteristic defined by 

phase comparator is shown in fig.4-12 below: 

IR

IX

IfZset

S2=Vf

φ 

S1=IfZset-Vf

∠S1-∠S2

IR

IX

IfZset

S2=Vf

φ 

S1=IfZset-Vf

∠S1-∠S2

A B

Figure 4-12 Mho characteristic defined by phase comparator 

4.6 Block-average Comparator 

The block average comparator is the classical comparator used in distance relays 

[119]. First introduced in the 1960s, it has been the basis for several successful 

distance relay design and is still used today [112]. The block average comparator 

measures the duration of polarity coincidence on both half-cycles of the input signals. 

Then the average value is determined in an integrating circuit. A trip signal is 

produced if a specified average value is maintained for more than a prescribed 

duration and delayed by the averaging function [120]. A detailed diagram of block 

average comparator is shown is fig.4-13.  
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Figure 4-13 Block-average comparator 

4.6.1 Basic principles of block average comparator 

Two input signals S1 and S2 are derived from the input three phase voltage and 

current measured at distance relay location and processed by the mixing circuit. The 

S1 and S2 are defined as follows: 

    𝑆1 = 𝐼 · 𝑍𝑠𝑒𝑡 − 𝑉 

 𝑆2 = 𝑉 (4.31) 

Zset is the replica impedance which ideally represents the line impedance of protected 

line. The signals used in the comparator S1 and S2 are on the polarities of the outputs 

from the mixing circuit. When the polarity of the input signal is positive, the S is 

positive and has a value of ‘1’. When the polarity of the input signal is negative or 

zero, S is ‘0’[112]. 

 S1 and S2 are then input into a polarity coincidence circuit. The polarity coincidence 

is achieved by an ‘exclusive OR’ gate [112]. This compares the two input signals 

and generates an output pulse. When the polarity of the two signals is same, the 

output is positive ‘1’; however, when the polarity of the two signals are different, 

the output is ‘0’ [119]. 

The generated pulse signal is then applied into an integrator, the output of which 

increases linearly when the input pulse is positive and decreases linearly when the 

input signal is zero. The outputs form the integrator increases and decreases at the 

same rate. 

Finally the signal is input into a level detector, which by using pre-set levels provides 

the trip signal or the reset signal. If the input signal from the integrator ramps up 

beyond a pre-set trip limit, the level detector generates a trip signal. If the input 
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signal from the integrator falls below the pre-set reset limit, then the level detector 

generates a reset signal. In order to prevent the level detector output trip at twice the 

power system frequency, the trip value must be exceed the level which the integrator 

could reach in a quarter of the power frequency period [112, 119, 120]. The reset 

value must be the same value of distance from the trip level. An upper limit must be 

set in case of integrator signal increasing infinitely and must give a reasonable reset 

time [119]. 

4.6.2 The waveform in block average comparator 

The block average comparator compares the phase difference of the two input 

signals. The comparator generates a trip signal when [112, 119, 120]: 

 −90° ≤ 𝜃 = (𝑎𝑟𝑔
𝑆1

𝑆2
) ≤ 90° (4.32) 

When Ɵ<90°, the waveforms in comparator is shown in fig.4-14 [112, 119, 120]. 

 

Figure 4-14 Waveforms in block average comparator when Ɵ<90° 

Ɵ < 90° 
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When Ɵ<90°, the period of coincidence is greater than the period of non-coincidence. 

The period of the coincidence is greater than a quarter of the power frequency [112]. 

The ramping up period is greater than ramping down period in integrator. The output 

reaches the trip level in a very short period. When the phase angle is 0°, the tripping 

time is half a power system period, i.e.10ms [112, 121]. 

When Ɵ>90°, the waveforms in comparator is shown in fig.4-15[112, 119, 120]. 

 

Figure 4-15 Waveforms in block average comparator when Ɵ>90° 

When Ɵ>90°, the period of coincidence is less than the period of non-coincidence. 

The period of the coincidence is less than a quarter of the power frequency [112]. 

The integrator output increases during coincidence period and decreases and returns 

to its zero limit during non-coincidence. The pulse duration is not long enough to 

produce increasing linear signal. The comparator therefore restrains. 

When Ɵ≈90°, the waveforms in comparator is shown in fig.4-16 [112, 119, 120]. 

When Ɵ≈90°, the period of the coincidence is equal to a quarter of the power 

frequency [112]. The integrator output ramps up during coincidence period and 

Ɵ> 90° 



Chapter 4 Overview of Distance Relay 
 
 
 

Page | 74 

 

ramps down during the non-coincidence period. If the phase angle is just less than 

90°, the integrator output increasing duration would just exceed its decreasing period. 

There would be a very small increase in the integrator output signal for each power 

cycle and the integrator output would eventually cross the trip level [112, 119, 120]. 

 

Figure 4-16 Waveforms in block average comparator when Ɵ≈90° 

Because of the popularity of the Block Average relay, it has been used to 

demonstrate the operation of the protection for HVAC lines connected to HVDC 

ones. 

4.7 Signal processing in distance relay 

The Discrete Fourier Transformer (DFT) is the most widely used method to extract 

fundamental frequency component from measured voltage and current waveforms 

[121-125]. When the power system suffers from fault conditions, the fault voltage 

and current signals often contain dc components, a large amount of unwanted 

harmonics, high frequency oscillation quantities, etc [122-124]. These unwanted 

components affect the DFT accuracy and delay the DFT calculating time. The 

≈ Ɵ≈ 90° 
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relative error caused by these unwanted components may reach 20% from the DFT 

algorithm [123, 124]. The DFT algorithm may need a few cycles for decaying DC 

components to obtain the accurate fundamental phasors [123, 124]. Fig.4-17 shows 

a fault current with DC offset plotted against its unfiltered phasor magnitude [116]. 

Therefore, the signals need to be filtered before being used in the distance relay 

processor.   

Low-pass anti-aliasing filters with appropriate cut-off frequency can be used to 

eliminate the high frequency components [122], and can remove any frequencies 

existing on the input signals that are greater than half the sampling frequency [110]. 

The steady-state power system frequency is generally 50 Hz or 60 Hz. Therefore, 

the low-pass filter must preserve the 50Hz or 60Hz components and reject the others. 

Normally the lower-pass filters used in distance protection are of third to fifth order 

with a cut-off frequency of 90Hz [110]. Reference [122] used low-pass filters with 

a cut-off frequency of 360Hz to remove the effects caused by travelling waves as 

well as high frequency components. In practice, the sampling rate must be at least 

four samples per cycle, that is, 240Hz for 60Hz system and 200Hz for 50 Hz system 

[110]. 

 

Figure 4-17 Comparing of a fault current with and without filtered phasor magnitude [116] 

Low-pass filters cannot remove the dc components, therefore the DFT is used. The 

DFT is a digital filtering algorithm to compute the magnitude and phase at discrete 



Chapter 4 Overview of Distance Relay 
 
 
 

Page | 76 

 

frequencies and extract wanted frequency components [110, 126]. For a sinusoidal 

voltage, this is represented as: 

 𝑣(𝑡) = 𝑉𝑝𝑒𝑎𝑘 · 𝑠𝑖𝑛(𝓌𝑡 + Ɵ𝑣) (4.33) 

The discrete fourier transform calculation of the fundamental components can be 

calculated as [116]: 

 𝑉𝑟𝑒𝑎𝑙 =
2

𝑁
· ∑ [𝑆𝑘 · 𝑠𝑖𝑛 (2𝜋

𝑘

𝑁
)]𝑁

𝑘=1   

          𝑉𝑖𝑚𝑎𝑔 =
2

𝑁
· ∑ [𝑆𝑘 · 𝑐𝑜𝑠 (2𝜋

𝑘

𝑁
)]𝑁

𝑘=1  (4.34) 

Where: 

            Vreal is the real part of the fundamental V; 

            Vimag is the imaginary of the fundamental V; 

            Sk is the sample values of v(t); 

            N is the samples per cycle of sinusoidal voltage; 

The fundamental components of the voltage and current could be extracted by using 

DFT to calculate the impedance. 

4.8 Power swing to distance relay 

When a power system is under its steady-state conditions, there is an equilibrium 

between the input mechanical torque and the output electrical torque of each of the 

generators that are connected to that power system [127]. Under steady-state 

condition, the system frequency and voltage on a 60Hz system normally varies by 

less than ±0.02Hz and ±5% of nominal voltage [128, 129]. All synchronous 

machines are operated at the same constant speed. There is a balance between the 

generated power and consumed power, both active and reactive.  

A sudden change in the power system, such as power system transmission line fault, 

line switching, generator disconnection and the loss of load may result in breaking 

the balance and causing a system disturbance [127-129]. These disturbances can 
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cause oscillations in machine rotor angles and result in power flow swings. These 

power swings affect transmission distance relays and lead to changes in the relay 

measuring voltage and current. The apparent impedance seen by distance relay, may 

in extreme conditions enter the protection zones and cause the relay to trip rather 

than true fault as shown in fig.4-18 [130]. 

 

Figure 4-18 Typical fault impedance seen by distance relay during power swing [130] 

Fig.4-19represents a two machine power system used to analyse the impedance seen 

by distance relay during power swing [127, 128, 131, 132]. 

ES∠δ ER∠0

ZS ZL ZR

IL

VA VB

R

Figure 4-19 Two machine power system 

ES and ER are the internal voltages of the two machines. ZS and ZR are the transient 

impedances. ZL is the transmission line impedance. A distance relay is set at bus A 
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to protect line AB. As can be found from fig.4-19, the current at relay can be 

calculated as:  

 𝐼𝐿 =
𝐸𝑆∠𝛿−𝐸𝑅∠0

𝑍𝑇
 (4.35) 

The impedance seen by relay is: 

 𝑍 =
𝑉𝐴

𝐼𝐿
=

𝐸𝑆∠𝛿−𝐼𝐿𝑍𝑆

𝐼𝐿
=

𝐸𝑆∠𝛿

𝐼𝐿
− 𝑍𝑆 (4.36) 

Combining equation 4.35 and 4.36 can get: 

 𝑍 =
𝐸𝑆∠𝛿

𝐸𝑆∠𝛿−𝐸𝑅∠0
𝑍𝑇 − 𝑍𝑆 (4.37) 

Define: 

 𝑘 = |
𝐸𝑆

𝐸𝑅
| (4.38) 

Then equation 4.37 becomes: 

 𝑍 = (
1

1−𝑘∠−𝛿
) 𝑍𝑇 − 𝑍𝑆 (4.39) 

When k=1, equation 4.39 finally becomes: 

 𝑍 = −𝑍𝑆 +
𝑍𝑇

2
(1 − 𝑗𝑐𝑜𝑡

𝛿

2
) (4.40) 

When δ=180°, cot(δ/2) equals 0, therefore Z=-ZS+ZT/2. Z is at the mid-point of line 

AB which is called the electrical centre, as shown in fig.4-20 (a) [128]. For a stable 

power swing, the impedance trajectory shifts direction when δ increases/decreases 

to maximum/minimum value [131, 132]. When k=1, the impedance trajectory is a 

straight line. If k≠1, the impedance trajectory follows an arc of circle as shown in 

fig.4-20 (b).  
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Figure 4-20 Impedance trajectories during power swing [128] 

The impedances along this trajectory may pass through the protection characteristic 

leading to relay tripping. 

4.9 Chapter Summary 

This chapter first described protective relays and their objectives. It then reviewed 

the distance relay technologies in detail including the principle of distance relay and 

protection zones.  

The distance relay compares the apparent impedances to the pre-set protection 

characteristic to determine whether a fault exists on the protected feeder or not. The 

distance relay trips when the fault is within the protection zones, otherwise does not 

trip.  

The distance relay typically has three zones, normally set to 80%, 120% and 250% 

of the protected lines. Each protection zone is associated with time delay: 0ms for 

zone1, 200-500ms for zone2, and 1.0-2.5s for zone3 

The calculations of single phase to ground fault, phase to phase to ground fault, 

phase to phase fault and three phases fault were described in detail. For single phase 
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to ground fault, the fault impedance is calculated by the fault phase voltage and 

current plus the zero-sequence current compensation. The phases fault impedance is 

calculated by the fault phases voltages and currents. 

The Mho characteristic distance relay uses the representation impedance of the line 

to set the diameter of the circle and the angle of displacement of the diameter from 

the R-axis to create the protection zones. The Mho characteristic distance relay 

compares the angle between the two inputs signals, which are V and IZ-V. The 

distance relay operates when the angle is between -90° and 90°. 

Block-average comparators are used in distance relay to measure the coincidence of 

the input signals. The polarity coincidence of the inputs signals causes the block-

average comparators to trip when between -90° and 90°. 

The measured fault voltage and current signals must be filtered before they input 

into the distance relay. The fault voltage and current contain the dc components, a 

large amount of unwanted harmonics, high frequency oscillation quantities, etc. 

These unwanted components may affect the distance calculating algorithms 

accuracy and delay the calculating time and lead to false tripping. DFT is used to 

obtain the fundamental phasor’s information. Low-pass filters are used to remove 

any unwanted high frequency components. Although the relay is designed to detect 

fault conditions, disturbances may also cause tripping. 

A sudden change, such as power system transmission line fault, line switching, 

generator disconnection and the loss of load in balanced power system, may result 

in breaking the balance and causing major system disturbances. During power 

system dynamic conditions, the measured voltage and current at relay location 

changes. These voltage and current changes may cause the apparent impedance enter 

the distance relay protection zones and lead to the distance relay trip. Any unwanted 

trip accelerates the system disturbance and may cause major blackout.  
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The HVDC system was studied and simulated in this chapter using 

MATLAB/SIMULINK. 

5.1 CSC HVDC Control System 

In a HVDC system, the primary functions of the dc control are to [133]: 

 Control power flow between the terminals; 

 Protect the equipment against the voltage/current stresses caused by faults; 

 Stabilize the attached ac systems against undesirable operational mode of the 

dc link. 

Each converter has its own local controllers. The master control communicates to 

each terminal and has the responsibility to coordinate the control functions of the dc 

link [133]. Besides the primary control functions, the HVDC control system should 

satisfy the following features [82, 133]: 

 Limitation of the maximum DC current to protect the thyristor valves; 

 Maintaining maximum DC voltage in the link to reduce transmission losses; 

 Minimization of reactive power consumption by operating the converters at a 

low firing/extinction angle; 

 Cope with steady-state and dynamic requirements of DC link. 

5.1.1 Basic Control Principles 

Fig.5-1 (a) presents a monopolar HVDC scheme or one pole of a bipolar HVDC 

link [68, 70]. The corresponding equivalent circuit and voltage profile are presented 

in fig.5-1 (b) and (c) respectively. The basic control principles are based on a six-

pulse Garetz Bridge as discussed below. 

The DC current, Id, following from rectifier side to inverter side can be calculated 

as [68, 70, 82, 134]: 
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 𝐼𝑑 =
𝑈𝑑0𝑟 cos 𝛼− 𝑈𝑑0𝑖 cos 𝛾

𝑅𝑐𝑟+𝑅𝐿−𝑅𝑐𝑖
 (5.1) 

Where: 

           Id is the direct current; 

           Ud0r is the ideal no-load direct voltage at the rectifier; 

           Ud0i is the ideal no-load direct voltage at the inverter; 

           α and γ is ignition angle at rectifier and extinction angle at inverter; 

           Rcr and Rciis commutating resistances of rectifier and inverter respectively; 

           RL is the DC line resistance. 

Figure 5-1 HVDC transmission link [59, 61] 

(a) the HVDC scheme; (b) the equivalent circuit; (c) the voltage profile 

The power transmitted at rectifier terminal is given by [68]: 

 𝑃𝑑𝑟 = 𝑉𝑑𝑟𝐼𝑑 (5.2) 
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And at the inverter terminal is: 

 𝑃𝑑𝑖 = 𝑉𝑑𝑖𝐼𝑑 = 𝑃𝑑𝑟 − 𝑅𝐿𝐼𝑑
2 (5.3) 

The ideal no-load DC voltage, Vd0, can be calculated as [68]: 

𝑉𝑑0 =
3√2

𝜋
𝐸𝐿𝐿 = 1.35𝐸𝐿𝐿 

            =
3√6

𝜋
𝐸𝐿𝑁 = 2.34𝐸𝐿𝑁 

                                                      =
3√3

𝜋
𝐸𝑚 = 1.65𝐸𝑚 (5.4) 

Where: 

           ELL is the AC RMS value of Line-to-Line voltage; 

           ELN is the AC RMS value of Line-to-Neutral voltage; 

           Em is the AC Peak Value of Line-to-Neutral voltage          

From equation 5.1, it is found that the only way to change the DC line current is by 

changing no-load voltages Vd0r or Vd0i and via changing valve angles α at rectifier 

or γ at inverter. A voltage change could be achieved by a converter transformer tap 

changer, which is usually a slow process as by a valve angle change which is very 

fast, normally within one-half cycle, and achieved by controlling the electronics [82, 

133]. Control of the valve angle is used for rapid action and is then followed by tap 

changing to restore the converter quantities to their normal range [70]. Because the 

line and converter resistances are small and therefore, a small change in Vd0r or Vd0i 

results in a large change in Id [68]. For instance, a 25% change in voltage could lead 

to current change as much as 100% [68].  

The relations between average DC voltage when firing delay angle is equal to α, Vd, 

and ideal no-load voltage can be presented as [68]: 

 𝑉𝑑 = 𝑉𝑑0 cos 𝛼 (5.5) 

Since α ranges from 0° to 180°, Vd can range from Vd0 to –Vd0. Vd0 represents 

rectification while –Vd0 represents inversion [68]. 



Chapter 5 HVDC Modelling and Testing 
 
 
 

Page | 85 

 

The DC current Id and ac line current RMS value IL can be related as: 

 𝐼𝐿 =
√6

𝜋
𝐼𝑑 = 0.78𝐼𝑑 (5.6) 

5.1.2. Rectifier Operation 

During the converter process, the phase currents cannot change instantly due to the 

inductance Lc of the ac source. There is commutation time or overlap time when 

transferring current from one phase to another [68, 135]. The overlap or 

commutation angle, μ, is in range of 15° to 25° under normal operation [68]. Fig.5-

2 gives the rectifier equivalent circuit. Rcr is the equivalent commutating resistance. 

Vd0cosα Vdr 

Rcr

Id

 

Figure 5-2 Rectifier equivalent circuit 

    The voltage drop caused by overlap in the rectifier is presented as: 

 ∆𝑉𝑑 =  𝑅𝑐𝑟𝐼𝑑 (5.7) 

Rcr can be calculated as: 

 𝑅𝑐𝑟 =
3

𝜋
𝜔𝐿𝑐𝑟 =

3

𝜋
𝑋𝑐𝑟 (5.8) 

Where Xc is the commutation reactance. 

The voltage drop can also be represented by the corresponding overlap angle, 

which is [68]: 

 ∆𝑉 =
𝑉𝑑0

2
 (cos 𝛼 − cos 𝛿) (5.9) 

Where: 
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           α is the ignition delay angle; 

           δ is the extinction delay angle  which equals α+μ. 

From fig.5-2, the direct voltage output from rectifier with commutation overlap 

and ignition delay is represented by [57, 68, 73, 133, 135]: 

 𝑉𝑑 = 𝑉𝑑0 cos 𝛼 − ∆𝑉𝑑  

                    =  𝑉𝑑0 cos 𝛼 − 𝑅𝑐𝑟𝐼𝑑 (5.10) 

                  = 𝑉𝑑0
cos 𝛼+cos 𝛿

2
 

5.1.3. Inverter Operation 

Without commutation overlap, Vd reverses when α=90°. 

With overlap, 𝑉𝑑 = 𝑉𝑑0 cos 𝛼 − ∆𝑉𝑑.  

When describing the inverter, the same angles as presented in the rectifier but 

between 90° and 180° are used [68]. 

 β is the ignition advance angle which equals π-α, 

 γ is the extinction advance angle which equals π-δ, 

 μ is the overlap angle which equals δ-α or β-γ. 

Equation 5.10 then can be described as [68, 73, 133, 136]: 

 𝑉𝑑 = 𝑉𝑑0 cos 𝛾 − 𝑅𝑐𝑖𝐼𝑑 (5.11) 

Where Rci is the inverter equivalent commutating resistance, which is: 

 𝑅𝑐𝑖 =
3

𝜋
𝜔𝐿𝑐𝑖 =

3

𝜋
𝑋𝑐𝑖 (5.12) 

Fig.5-3 gives the equivalent inverter circuit [68, 133]. 
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Vd0cosγ  
Vdi 

-Rcr

Id

 

Figure 5-3 Equivalent inverter circuit 

5.1.4. Power Factor 

Neglecting the power loss in converter station, the ac power is equal to dc power, 

therefore, 

 3𝐸𝐿𝑁𝐼𝐿 cos 𝛷 = 𝑉𝑑𝐼𝑑 (5.13) 

Where: 

           ELN is the RMS value of the line-to-neutral voltage; 

           IL is the RMS fundamental frequency current; 

           Φ is the angle where the fundamental line current lags the line-to-neutral                     

source voltage 

Combining equation 5.4, 5.10 and 5.13 gives: 

 3𝐸𝐿𝑁𝐼𝐿 cos 𝛷 =
3√6

𝜋

cos 𝛼+cos 𝛿

2
𝐸𝐿𝑁𝐼𝑑 (5.14) 

Equations 5.6 and 5.14 together can get: 

 (3𝐸𝐿𝑁
√6

𝜋
𝐼𝑑) cos 𝛷 = (

3√6

𝜋
𝐸𝐿𝑁𝐼𝑑)

cos 𝛼+cos 𝛿

2
 (5.15) 

Hence the power factor of the fundamental wave is: 

 cos 𝛷 =
cos 𝛼+cos 𝛿

2
 (5.16) 

From equation 5.9, 5.10 and 5.16 can get: 
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 cos 𝛷 =
𝑉𝑑

𝑉𝑑0
 (5.17) 

The reactive power consumed by converter is then given by[73, 134]: 

 𝑄 = 𝑃 tan 𝛷 (5.18) 

The power factor should be kept high to minimize reactive power consumption. To 

achieve a high power factor, α and γ should be kept as low as possible accepting 

that α has a minimum limit of 5° [68, 70]. Normally the rectifier operates at α 

between 15° to 20° in order to leave some room for increasing rectifier voltage to 

control the dc power flow [68]. The inverter’s γ angle operates within an acceptable 

margin, typically 15° for 50Hz system and 18° for 60Hz system [68]. Normally the 

reactive power consumed by converters is 50%-60% of transmitted DC power [68, 

73]. 

5.1.5. Multiple Bridge Converters 

In practice, two or more bridges are connected to achieve a high direct voltage. 

Normally two bridges are connected in series to form a 12-pulse converter. The 

equivalent circuit is shown in fig.5-4 [68]. 

3-phase 

ac 

system

Converter 

transformer

Ratio 1:T
Series 

connected 

bridges

+

-

DC

 

Figure 5-4 Equivalent circuit of multiple connected bridges HVDC 

According to [68, 137], the ideal no-load voltage is: 

 𝑉𝑑0 =
3√2

𝜋
𝑁𝑇𝐸𝐿𝐿 (5.19) 

Where: 

           N is the number of connected bridges in series; 

           T is the converter transformer ratio 



Chapter 5 HVDC Modelling and Testing 
 
 
 

Page | 89 

 

Corresponding to equation 5.10, the DC voltage is: 

 𝑉𝑑 = 𝑉𝑑0 cos 𝛼 − 𝑁𝑅𝑐𝑟𝐼𝑑 (5.20) 

at the rectifier or, 

 𝑉𝑑 = 𝑉𝑑0 cos 𝛾 − 𝑁𝑅𝑐𝑖𝐼𝑑 (5.21) 

at the inverter. 

5.2Control Characteristic 

The control philosophy can be analysed in Voltage-Current (V-I) coordinate 

diagram formed by voltage Vd and current Id [68, 137]. Fig.5-5 shows the ideal 

steady state V-I characteristics measured at the rectifier where the rectifier is in CC 

control mode and the inverter is in CEA control mode. The operating point E is the 

intersection between the rectifier characteristic (CC) and the inverter characteristic 

(CEA). The voltage drop is due to line resistance. 

Vd

Id

Rectifier 

(CC)

Operating Point E

Inverter 

(CEA)

C

D

A

B

 

Figure 5-5 Ideal V-I characteristics 

From fig.5-1 (b), if the rectifier maintains constant current, and the direct voltage 

is: 

 𝑉𝑑 = 𝑉𝑑0𝑖 cos 𝛾 + (𝑅𝐿 − 𝑅𝑐𝑖)𝐼𝑑 (5.22) 
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If Rci> RL, the characteristic, as shown in fig.5-5, has a small negative slope due to 

voltage drop across the line.  The operating point has to satisfy both the rectifier and 

inverter.  

The actual control characteristic is shown in fig.5-6 [68, 70, 133]. In actual operation, 

the rectifier keeps a constant current (CC) by varying α as shown in fig.5-6 AB. The 

inverter operates in a constant extinction angle mode (CEA) to maintain voltage as 

shown in fig.5-6. The normal operating point E in fig.5-6 is an intersection between 

the rectifier characteristic (CC) and the inverter characteristic (CEA).   

Under normal operation, the rectifier variesα to keep the current constant (CC 

control mode). When α is hitting its minimum limitation, the direct voltage cannot 

increase further. Then the rectifier changes to a constant ignition angle mode (CIA). 

In fig.5-6, AB represents the CC mode and FA represents the CIA mode. Similarly, 

the inverter maintains direct voltage under a constant extinction angle mode (CEA) 

during normal operation. 

 

Figure 5-6 Actual operation characteristic [59, 61, 125] 

The inverter CEA characteristic intersects the rectifier characteristic at E during 

normal operation. However, the inverter CEA characteristic does not intersect the 

rectifier characteristic when the voltage decreases, shown as F’A’ in fig.5-6. 

Therefore, the inverter is also provided with a current controller. The inverter current 
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controller is set at a lower value than that set in the rectifier. Under the situation that 

the voltage is decreasing, the operating point E may not reach the point as shown in 

fig.5-6 F’A’. In this situation, the inverter changes from a constant current mode to 

a controlled current mode as shown in fig.5-6 GH. Thus the inverter control 

characteristic has two modes: CEA and CC.  

There is current margin Im, as shown in fig.5-6 which presents the different current 

order between the rectifier and the inverter: normally Im is 10% -15% of the rated 

direct current [68, 70, 73, 82, 133]. At a reduced voltage situation, the rectifier shifts 

to voltage control. The new operating point is then represented as point E’ in fig.5-

6.  

The control characteristic can be summarised in the following stages. Under steady-

state operation, when there is a voltage drop on the rectifier side of the ac bus, FA 

moves down to F’A’. The operating point changes from E to E’. The inverter shifts 

to current control while the rectifier controls voltage. The current transmitted would 

be reduced to 0.9 pu due to the current margin. The power transmission would be 

maintained to 0.9 pu of its original value. 

HVDC systems are required to be able to reverse the power flow, which means both 

converters should be able to operate either as a rectifier or an inverter [70, 73]. Fig.5-

7 shows the combined rectifier-inverter characteristics. Fig.5-7 (a) shows the power 

flow from converter 1 to converter 2 while (b) shows the power flow from converter 

2 to converter 1. 
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Figure 5-7 Combined rectifier-inverter characteristics [61, 63] 

5.3 Current Order 

There are three current limits that need to be considered in an HVDC control system.  

They are: maximum current limits, minimum current limits and Voltage Dependent 

Current Order Limit (VDCOL) [68, 70, 73, 133, 137, 138]. 

5.3.1. Maximum Current Limits 

The allowed maximum current is limited to 1.2 to 1.3 times normal full-load current 

Id. If the current is higher than the maximum current value will lead to the damaging 

of the converter valves. 

5.3.2. Minimum Current Limits 

If the current is too low it may result in the current becoming discontinuous. It is 

unacceptable due to high voltage induced in transformer windings and dc reactors 

caused by their inherent inductance and a high rate of current changes. Low values 

of direct current will also cause small overlaps and extra stress on the valves. 
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5.3.3. Voltage Dependent Current Order Limit (VDCOL) 

Under low voltage conditions, it is difficult to maintain the rated direct current and 

power. Voltage drops will lead to an increase in current. When the voltage at one 

converter drops over 0.3 pu, the reactive power demand will increase due to a higher 

α or γ needed to control the current. Voltage drops can also result in commutation 

failure and voltage instability. The VDCOL is used to prevent such issues. VDCOL 

limits the maximum allowable direct current when the voltage drops below a 

specified value based on piecewise-linear characteristic [68]. Fig.5-8 gives the 

VDCOL characteristic through the converter V-I characteristic diagram. VDCOL 

could be a function of either the dc voltage or the ac commutating voltage. 

Figure 5-8 VDCOL characteristic [68] 

The HVDC control system characteristic combining with VDCOL, CC, CEA and 

CIA characteristics can be presented in fig.5-9. 
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Figure 5-9 Combine HVDC control characteristic [128] 

5.4 AC and DC Interaction 

The strength of the AC-DC system is expressed by the Short-Circuit Ratio (SCR). 

It is defined as [68, 73, 138-142]: 

 𝑆𝐶𝑅 =
𝑠ℎ𝑜𝑟𝑡−𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑀𝑉𝐴𝑜𝑓𝑎𝑐𝑠𝑦𝑠𝑡𝑒𝑚

𝑑𝑐𝑟𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟
 (5.23) 

According to [73, 138], three levels of system strength could be defined by SCR 

value: 

 Strong system when SCR>3, 

 Weak system when SCR is between 2-3, 

 Very weak system when SCR<2 

When considering the reactive power compensation, the Effective Short Circuit 

Ratio (ESCR) is used, where [73, 138, 140, 142]: 

 𝐸𝑆𝐶𝑅 =
𝑆−𝑄𝑐

𝑃𝑑𝑐
 (5.24) 
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Where: 

          S is the short-circuit MVA of ac system; 

          Qc is the reactive compensation for HVDC system; 

          Pdc is the rated dc power. 

Then the system strength levels are listed as: 

 Very strong system when ESCR>5, 

 Strong system when ESCR ranges from 2.5 – 5, 

 Weak system when ESCR ranges from 1.5- 2.5, 

 Very strong system when ESCR<1.5. 

A weak AC-DC system may have potential problems including harmonic resonance, 

voltage instability and frequent commutation failures.  

5.5 Response to Fault Conditions 

5.5.1 Rectifier side ac fault 

A fault at rectifier side will result in decreasing rectifier voltage and current. The 

current regulator in the rectifier reduces the value of α, to restore current. When α is 

at the αmin limit, the rectifier then switches to CIA control mode and transfers the 

current control to the inverter [68]. VDCOL will take part when the voltage drops 

low to regulate the current and power. If a three-phase fault is close to the rectifier, 

the dc system may shut down until the fault is cleared [68, 73]. An unbalanced fault 

does not usually cause shut down of dc link.  

5.5.2 Inverter side ac fault 

If the fault causes a small voltage dip at the inverter, the rectifier CC control and 

inverter CEA control respond to voltage dip and increase the voltage. If the voltage 

dip is significant, the reduction may lead to commutation failure at the inverter. For 
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example, a voltage reduction from 0.15pu to 0.1pu will cause commutation failure 

when the inverter operated at γ of 18° [68]. The rectifier decreases the direct voltage 

to match the reduction in the inverter voltage. An extremely low voltage condition 

caused by an ac fault will lead to commutation failures. 

5.6 HVDC system modelling 

5.6.1 Simulating Software 

The simulation work is done using MATLAB. MATLAB provides highly efficient 

programming tools for scientific research, engineering design and the other subjects 

that need valid numerical calculation [143]. MATLAB contains scientific 

calculation, automatic control, signal processing, neural networks, image processing, 

etc. It incorporates a large number of domain specific toolboxes such as fuzzy logic 

toolbox, neural network toolbox, control toolbox, real-time workshop, etc [144]. 

SIMULINK is an interactive tool for modelling, simulating, and analysing dynamic 

systems in MATLAB [143]. Its special component library contains Communications 

Block set, DSP Block set, Sim Power Systems, Neutral Network Block set and etc 

[145]. Within these it provides basic blocks from its built-in blocks library, which 

include continuous, discrete, nonlinear etc., for users to build specific systems. 

SIMULINK has some features that include modularization, overload, encapsulation, 

programme facing the structure diagram, and visualization [143]. These features 

make MATLAB/SIMULINK more efficient, reliable and more attractive for power 

systems-related research.  

The power system block (PSB) allows power system simulation in MATLAB. It 

targets the three-phase power system simulation[145]. PSB provides users the 

commonly used electrical models which include electrical sources, elements, power 

electronics, machines, connectors, measurements, extras, demos and powergui [144]. 

These models can be used directly to build up the target systems that users want and 

added to a required system for measurement and test. 
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5.6.2 HVDC modelling and study 

Kundur [68] describes a two area system consists an HVDC interconnection and an 

HVAC interconnection which is also discussed by Klein etc. [146] as shown in 

fig.5-10. The details of the two area system are shown in Appendix. A. 

Figure 5-10 The Kundur’s two area power system [68]m  

This HVDC link is a 200 MW monopolar dc link with a voltage rating of 56kV and 

a current rating of 3600 A. The dc line resistance is 1.5 Ω and inductance is 100 

mH.  The commutating reactance is 0.57 Ω associated with each converter. A 

smoothing reactor is used at each end of the line with the value of 50 mH. Reactive 

power support is 125 MVAr at both the rectifier and the inverter side.  

Under normal operation, the rectifier controls the current while the inverter controls 

voltage. The ignition delay angle α is limited between 5° to 180° at the rectifier. The 

extinction advance angle γ is limited between 17° to 70° at the inverter. Under 

normal conditions, the inverter is on constant extinction angle (CEA) control 

represented as: 

 cos 𝛼 =
6𝑋𝑐𝐼𝑑

𝜋𝑉𝑑0
− cos 𝛾 (5.25) 

Current order is limited by the VDCOL function shown in fig.5-11 below. 
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Figure 5-11VDCOL function 

From fig.5-11, AB represents rectifier CIA control. BC represents rectifier CC 

control. CDE represents VDCOL function in rectifier. OE represents inverter CEA 

control. GH represents inverter CC control. HIF represents the inverter VDCOL 

function. Im presents the current margin, which is set to 0.36 kA. 

The HVDC link has been simulated in MATLAB/SIMULINK based on the HVDC 

demo from [147, 148]. The HVDC link connects a 230 kV, 9000 MVA ac system 

to an infinite bus as shown in fig.5-12. The modelled system was based on the 

HVDC example in [68]. The AC line parameters are shown in table.5-1 [68]. 

System frequency was 60 Hz. 

r1 x1 

0.053Ω/km 0.531 Ω/km 

Table 5-1 AC Line Parameters [68] 



Chapter 5 HVDC Modelling and Testing 
 
 
 

Page | 99 
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Figure 5-12 Modelled system 

The results from a series of simulation tests are shown in figures 5-13 to 5-19. The 

DC voltage and current were measured in pu value and displayed against the time 

axis. 

5.6.3 HVDC Link Operated in Steady-state 

Fig.5-13 shows the steady-state dc voltage and current. At t=0.02s the HVDC link 

was started by ramping the reference current. The DC voltage and current then 

started to build. The HVDC link began charging. At t=0.4s the reference current 

ramped to 1 pu (3.6kA). The DC current reached 1 pu at t=0.6s and reached steady-

state at t=1.2s. DC voltage went steady-state at around t=1.0s. The system was 

simulated for 3 seconds. DC voltage and current are measured at the rectifier.  

 

Figure 5-13Steady-state DC voltage and current in pu 
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5.6.4 HVDC Response to DC Line Fault 

The response to a DC line fault which occurred at 50km from 1.5s-1.6s, is shown 

in fig.5-14 and 5-15.The DC voltage and current are measured at the rectifier. 

 

Figure 5-14 DC voltage and current response to a DC line fault at 50km from 1.5s-1.6s 

 

Figure 5-15 Rectifier and Inverter control mode during the DC line fault at 50km from 1.5s-1.6s 
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As shown in fig.5-14, at t=1.5s, the DC line voltage sudden decreased to zero. This 

corresponds to the inverter changing to CC control mode and attempting to maintain 

the DC power, as also seen in fig.5-15. There was a sudden increase in DC current 

due the converter operations. The current decreased to zero as the valves were 

blocked due to the fault.  

At t=1.6s, the fault cleared. The DC voltage and current increased to the rated power. 

At around t=2.0s, the DC voltage was restored to its rated value. The inverter 

changed back to voltage control mode at around t=1.9s while the rectifier changed 

to CIA mode giving a higher converter voltage. The rectifier changed back to 

normal current control mode at t=2.1s. Both the DC voltage and current were at the 

steady-stable state at t=2.5s. 

5.6.5 HVDC Response to Three-phase-to-ground Fault at Rectifier Side 

A three-phase-to-ground fault at the start point along the line from 1.5s to 1.6s on 

the rectifier side ac line at the start point, produced the response shown in fig.5-16 

and 5-17. The DC voltage and current are measured at the rectifier. 

 

Figure 5-16 DC voltage and current when rectifier side AC three-phase-to-ground fault from 1.5s-

1.6s 
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Figure 5-17 Converter control mode during rectifier side AC three-phase-to-ground fault from 1.5s-

1.6s 

As can be seen from fig.5-16 and 5-17, at t=1.5s when the three-phase-to-ground 

fault occurred, there was no input voltage or current for the conversion process. The 

rectifier changed from control mode 1 (CC) to control mode 3 (CIA) and the inverter 

changed from control mode 2 (Voltage Control) to control mode 1 (CC) and 

attempted to maintain the DC voltage and current. However, the DC voltage and 

current decreased to 0.  

At t=1.6s the fault was cleared. The conversion process was restored. The rectifier 

kept CIA control to restore dc voltage. The inverter maintained CC mode to restore 

the DC current order. At around t=1.8s, the DC power was restored to the pre-fault 

level. The inverter then changed back to voltage control mode. The rectifier kept 

CIA mode to ensure that the DC voltage level was restored. Around t=1.9s, the 

rectifier changed back to CC mode. At around t=2.2s, the DC link was stable. 

5.6.6 HVDC Response to Three-phase-to-ground Fault at Inverter Side 

When a three-phase-to-ground fault occurred from 1.5s-1.6s on the inverter side ac 

line at the end, the response was shown in fig.5-18 and 5-19.The DC voltage and 

current were measured at the rectifier. 
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Figure 5-18 DC voltage and current when inverter side AC three-phase-to-ground fault from 1.5s-

1.6s 

 

Figure 5-19 Rectifier and Inverter control mode during inverter side AC three-phase-to-ground fault 

from 1.5s-1.6s 

At t=1.5s, after the fault occurred, the DC voltage suddenly decreased to a negative 

value. The DC current suddenly increased to maintain DC power. Both rectifier and 

inverter changed to maximum α control mode then. The presence of the fault caused 

the conversion to be reversed. DC current then decreased to zero.  
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At t=1.6s, the fault was cleared. Both rectifier and inverter changed to current 

control mode to restore the voltage and current, and the DC voltage and current 

increased. The rectifier changed to CIA mode to restore DC line voltage at around 

t=1.9s. At around t=2.1s, the inverter changed back to voltage control mode. The 

rectifier changed back to the current control mode at around t=2.15s. The DC link 

was stable after t=2.5s. 

5.7 Chapter Summary 

The HVDC interconnection is connected to the AC system by converter 

transformers associated in the converter stations. The converter stations are installed 

at both ends of the HVDC terminal. Both converters could operate as a rectifier or 

an inverter.  

The converter stations perform the ac/dc/ac conversion and control the dc power 

flow through the HVDC link. The dc voltage at any point of the dc line and the dc 

current along the dc line are controlled by controlling the converter internal voltages 

Vd0cosαor Vd0cosγ. This is achieved by varying firing angle. 

Under normal operation, the rectifier is under constant current (CC) control and 

inverter is under constant extinction angle (CEA) control. The HVDC control 

system has maximum current limitation, minimum current limitation and VDCOL 

control in case there is an internal dc line fault or a fault on ac system.  

During DC line fault, the rectifier current increases while the inverter current 

decreases. The rectifier current control reduces the voltage and restores the current 

to its normal value. The inverter changes its control mode from CEA control to CC 

control to maintain the current.  

Under the situation that a fault on the ac network causes an ac voltage reduction on 

the rectifier side, the rectifier firing angle decreases until hits the αmin limit then the 

rectifier switches to αmin control. At this point, the inverter assumes the current 

control. 
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Under the situation the fault causes an ac voltage drop in ac system at inverter side, 

the DC voltage in inverter decreases. This decreasing the inverter DC voltage will 

lead to a reduction of rectifier direct voltage.  

A simple HVDC link from Kundur’s two area system was simulated and studied in 

this chapter [68]. The HVDC response to the fault at both side of the HVDC 

terminal on ac lines were studied as well as the dc line fault. The tested results were 

compared with previous works and were proofed that the modelled HVDC link 

worked as expected. In the following chapters, the HVDC link’s impacts on the 

distance relay will be investigated. 
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6.1 Modelling Distance Relay 

6.1.1 Measuring and mixing circuit 

The distance relay uses IZ and V to determine whether or not a fault exists in a 

section of the power system, where Z is the replica impedance that is ideally equal 

to the protected transmission line. Voltage Transformers (VT) and Current 

Transformers (CT) are used to obtain a replica of the primary voltages and currents 

with transformer ratios defining the secondary voltages and currents. VTs and CTs 

are modelled using the ideal transformers from SIMULINK with the ratios of 

500kV/110V and 2000A/1A. Fig.6-1 shows the block diagram of the current 

measuring and mixing circuit as well as the zero-sequence current compensation 

circuit.  

 

Figure 6-1 Current measuring, mixing circuit and zero-sequence current compensation circuit for a 

distance relay 

The connectors 1 and 2 in the primary of CT connect to transmission line A phase 

to measure the phase a current. The phase a secondary current is measured by a 
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current transformer. The positive output of CT secondary winding is connected to 

the replica impedance to produce IZr. A voltage measurement block is used to 

measure V=IZr. The negative output of CT secondary winding is connected to 

ground. Similarly to connectors 3,4 and 5,6. Connectors 3 and 4 are connected to the 

transmission line B phase to export phase b current. Connectors 5 and 6 are 

connected to the transmission line C phase to export phase c current. The phase b 

and c secondary currents are measured by current transformers. The a, b and c phase 

currents from the replica impedances are connected together to produce 3*I0. Then 

the current is put through neutral replica impedance to generate 3*I0*Zrn. A voltage 

measurement is used to measure Vn=3I0Zrn. The neutral compensation constant value, 

equals to (Z0-Z1)/3Z1, is used together with Vn to produce k*3*I0*Zrn.  

The voltage measuring circuit is shown in fig.6-2. Connectors 7, 8 and 9 are 

connected to transmission line A, B and C phase to measure phase a, b and c voltage 

separately. The secondary windings of the VTs are connected to voltage 

measurement directly to measure secondary voltages. 

 

Figure 6-2 Voltage measuring circuit 

The measured secondary voltages and currents are passed to the Goto block. The 

Goto block can pass its inputs to its corresponding From blocks [147, 148].  The 

inputs can be any data type. The From and Goto block can pass a signal from one 

block to another without actually connecting them [147, 148].  
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6.1.2 Simulation of Block-average Comparator 

MATLAB logical blocks have been used to simulate the block-average comparator. 

Fig.6-3 shows the modelled block-average comparator. 

Figure 6-3 Modelled block-average comparator 

The Relay block was used to converter sine wave to square wave for comparison in 

coincidence circuit. This allows its output to switch between two specified values 

which are set as ‘1’ and ‘0’.  A logical operation block ‘NXOR’ was used to simulate 

the coincidence circuit. It outputs a positive pulse when the two input signals are of 

the same polarity and negative pulse when the two input signals are of the different 

polarity. This is shown in fig.6-4 

 

Figure 6-4 Outputs of relay and ‘NXOR’ block 
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In fig.6-4, two sine waves @60Hz but 90° different phase angles were used to 

simulate the power system voltage or current. Simulation duration was 0.2s. 

A converter block was used as analogue to digital convertor. An integrator block 

was used to detect polarity difference and generate trip or reset output signals. The 

integrator block outputs an increasing linearize when inputting pulse is positive and 

falling at the same rate when inputting pulse is negative. The integrator’s up-limit 

was set at 0.015 to give a quick response to input pulses. The trip level would be 

0.01 and reset level would be 0.005. 

The level detector was simulated using the S-R Flip-Flop block. It has two inputs, S 

and R, and two outputs, Q and !Q. S stands for Set and R stands for Reset[148]. The 

truth logic of the block is shown in table.6-1 below [148]:  

S R Q !Q 

0 0 Qn-1 !Qn-1 

1 0 1 0 

0 1 0 1 

1 1 0 0 

Table 6-1The truth logic of S-R Flip-Flop block [140] 

The input signals to S and R were filtered by comparing to trip level (≥0.01) and 

reset level (≤0.005). When S is 1 and R is 0, the flip-flop goes to the set state (Q is 

1). When S is 0 and R is 1, the flip-flop goes to the reset state (Q is 0). When both S 

and R are 0, the flip-flop stays in the previous state (Qn-1 and !Qn-1). When both S 

and R are 1, the flip-flop outputs 0. 

The block-average comparator compares the phase difference of inputs signals and 

generates trip signals when -90°≤Ɵ≤90°. The modelled comparator was tested when 

Ɵ=90°, -90°≤Ɵ≤90° and Ɵ>90° separately. 

6.1.2.1 Trip (when -90°≤Ɵ≤90°) 

For Ɵ between any angle from -90° to 90°, the block-average comparator trips. Ɵ=45° 

was tested. Results are shown in fig.6-5 and fig.6-6. 
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Figure 6-5 Coincidence circuit output 

 

Figure 6-6 Integrator output and trip signal 

Fig.6-5 shows the coincidence circuit output while fig.6-6 shows the integrator 

output and trip signal. The trip level is set at 0.01. As can be seen from the fig.6-6, 

when integrator pulse increased upper than 0.01, level detector gave a trip signal 

immediately. 
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6.1.2.2Restrain (when Ɵ>90° and Ɵ <-90°) 

The block-average comparator will restrain not trip when Ɵ>90° and Ɵ<-90°. A test 

with Ɵ=120° was simulated. Results are shown in fig.6-7 and fig.6-8. 

 

Figure 6-7 Coincidence circuit output 

 

Figure 6-8 Integrator output and trip signal 
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As can be seen from fig.6-7 and fig.6-8, there was not enough polarity coincidence 

time for integrator pulse to climb. The increasing time was shorter than decreasing 

time. The integrator pulse stayed below reset level. Level detector did not trip. 

6.1.2.3 Boundary Fault (Ɵ≈90°) 

When the two input sine waves are at 90 degrees different phase angles, it is the 

boundary of the trip characteristic. The periods of the different polarity between the 

two sine waves were same. The output of the integrator will cross the trip level in 

infinite time. Level detector gave a trip signal. Results are shown in fig.6-9 and fig.6-

10. 

 

Figure 6-9 Coincidence circuit output 



Chapter 6 Distance Relay Modelling and Testing 
 

 

 

Page | 114 

 

 

Figure 6-10 Integrator output and trip signal 

The trip time characteristics of the block-average comparator based relay could be 

achieved by testing different phase angles between -90 º to 90 º randomly. Table 6-

2 gives the tested phase angles and corresponding tripping time. 

Phase angles (degree) Tripping time (ms) 

0 º 10 

±15 º 11.7 

±30 º 13.3 

±45 º 15.0 

±60 º 16.7 

±70 º 25.6 

±75 º 35.0 

±80 º 45.5 

±85 º 95.0 

Table 6-2 Tested phase angles and corresponding tripping time 
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According to the tested phase angles and corresponding tripping time, the tripping 

time characteristic from the simulation is drawn in fig.6-11. 

 

Figure 6-11 Trip time characteristics from simulation studies 

6.1.3 Zones setting 

The distance relay has three zones to protect the transmission lines, normally are: 

 Zone1: 80% of the protected line with no time delay; 

 Zone2: 120% of the protected line with time delay of 200ms; 

 Zone3: 250% of the protected line with time delay of 500ms. 

For zone1 simulated in MATLAB/SIMULINK using block-average comparator is 

shown in fig.6-12: 

Figure 6-12 Zone1 protection 
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The connector 1 and 2 are the IZ and V from measuring circuits. A subtraction block 

was used to produce IZ-V signal.  

Zone2 and Zone3 were performed by multiplying IZ with a constant value to adjust 

the protecting characteristic reach based on zone1 protection. The simulation block 

diagram for the distance relay’s three zones of protection is shown in fig.6-13. Zone2 

had 200ms time delay and Zone3 had 500ms time delay. The scope module was used 

to monitor the trip signal. 

Figure 6-13 Block-average comparator distance relay three zones protection 

6.1.4 Impedance trajectory plot circuit 

The impedance seen by the relay was calculated by current and voltage signals. The 

I and V signals were put through a digital filter to remove unwanted high frequency 

components. The digital filter was performed by a 2nd order low-pass filter with cut-

off frequency of 360Hz [110]. Then the signal was put through A/D converter which 

was performed by a Quantizer block. The Quantizer block passes its input signal 

through a stair-step function and use round-to-nearest method to produce a 

symmetric output about zero [110]. The sampled signal was input to DFT (Discrete 

Fourier Transformer) to remove DC offset and calculate the phasors values of the 

input signal. The output of DFT was input through the apparent impedance 
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computing algorithm and determine the apparent impedance seen at the relay point. 

The modelled circuit is shown in fig.6-14. 

V
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Figure 6-14 Modelled impedance trajectory circuit 

The magnitude outputs of two DFTs were passed through a divide block to produce 

magnitude value of V/I. The phase outputs of DFTs were passed through a subtract 

block to produce the phase angle argument of V and I. The magnitude value and 

phase angle argument were stored in workspace in MATLAB for computing 

algorithm to compute the impedance and plot the impedance trajectory. 

6.1.5 Modelled distance relay arrangement 

For phase-to-ground faults, the fault impedance measured by the distance relay is: 

 𝑧𝑚 =
𝑈

𝐼+3𝑘𝐼0
 (6.1) 

For phase-to-phase faults, the fault impedance measured by the distance relay is: 

 𝑧𝑚 =
𝑈𝐿𝐿

𝐼𝐿𝐿
 (6.2) 

Based on the simulation used for the block-average comparator, IZ and V were used 

for comparison. Fig.6-15 shows the simulated distance protection.   

For single phase to ground faults, the voltage and current were taken from the Goto 

block. The Add blocks were used to produce I+3kI0 signal. The voltage and current 

signal were put through the block-average comparators A-N, B-N and C-N. For 

phases faults, the subtract blocks were used to produce the phase voltages and 

currents. The phase voltages and currents were put through the block-average 

comparators A-B, B-C and C-A. 
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Similarly to the impedance trajectory plotting circuits, the impedance trajectory 

plotting circuits use V and I to compute the impedance. For single phase to ground 

faults, the plotting circuits used V and I+3kI0 for computing. For phase to phase 

faults, the plotting circuits use phase voltage VLL and current ILL to compute the 

impedance.  

The flow diagram used for the distance relay decision making process is shown in 

fig.6-16. 

Figure 6-15 Simulated distance protection 
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Figure 6-16 Distance relay decision making process to show relay tripping and the impedance 

trajectory 
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6.2 Test distance relay 

In order to validate the modelled distance relay, it was tested in a simple power 

system as shown in fig.6-17 below. The details are shown in Appendix. B. 

LoadR

100kM 100kM 100kM

Line1 Line2 Line3

Zone1

Zone2

Zone3

A B

230kV

9000MVA
230kV

250MVA

@0.95

Figure 6-17 A simple power system 

The modelled power system was taken from Kundur’s two area system [68]. A 

230kV, 9000MVA power system connected to a 230kV, 250MVA local load 

through three 100kM transmission lines. The distance relay was located at busbar A 

to protect line1. Zone1 was set to 80% of the line1. Zone2 was set to 120% of the 

line1. Zone3 was set to 250% of the line1. Time delay for zone1, zone2 and zone3 

were 0ms, 200ms and 500ms respectively. 

Transmission line parameters is shown in table.6-3 below [68]. 

Positive-sequence Zero-sequence 

r1 x1 r0 x0 

0.053Ω/km 0.531 Ω/km 1.638 Ω/km 2.312 Ω/km 

Table 6-3 Transmission line parameters 

To test the distance relay, different types of faults were applied including A-G, B-G, 

C-G, A-B, B-A, C-A, A-B-G, B-A-G, C-A-G, A-B-C and A-B-C-G. These were 

applied into the power system at different locations at 50km (zone1), 100km (zone2), 

200km (zone3) and 280km (outside of protection area) respectively. The fault 

duration was between 1.2s-2.0s.  The simulation time was 2.0s. 
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6.2.1 Faults in Zone1 

6.2.1.1Single phase to ground fault at 50km  

To test the distance relay response to single phase to ground fault covered by zone1 

protection, an A-G fault was applied to the system at 50km on line1 from 1.2s-2.0s. 

Fig.6-18 shows the A-G fault impedance trajectory as seen by the relay. 

 

Figure 6-18 A-G fault impedance trajectory during A-G fault 

As can be seen from the fig.6-18, the fault impedance locus hit at the protected line 

in zone1 area. The block-average comparator output is shown in fig.6-19. Fig.6-19 

shows the A-G distance protection block-average comparator output crossed the trip 

level (0.01) in a very short time after fault occurred. Fig.6-20 gives the distance relay 

trip signal. Zone1 tripped at 1.21s, 10ms after fault occurred. Zone2 tripped at 1.4s, 

200ms after fault occurred. Zone3 tripped at 1.7s, 500ms after fault occurred. 
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Figure 6-19 Block-average comparator output 

 

Figure 6-20 Distance relay trip signals 

 

The B-G, C-G, A-B, B-A, C-A fault impedance trajectories are shown in fig.6-21. 
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Figure 6-21 B-G, C-G, A-B, B-A, C-A fault impedance trajectories 

The B-G, C-G, A-B, B-A, C-A fault impedance trajectories did not enter the 

protection zones, and therefore the B-G, C-G, A-B, B-A, C-A distance protection 

comparators did not trip. 

For B-G and C-G fault, the results are similar to the A-G fault. The results are shown 

in appendix C.1 and C.2.   

6.2.1.2 Phase to phase fault at 50km 

To study distance relay response to phase to phase fault, an A-B fault was injected 

into the power system on 50km at line1 to test phase-phase protection. The fault was 

from 1.2s to 2.0s. Fig.6-22 gives the A-B fault impedance trajectory. The fault 

impedance entered the protection zone1 characteristic after fault occurred.  The A-

B protection block-average comparator output is shown in fig.6-23. The block-

average comparator output crossed the trip boundary after fault occurred in a short 

time. The trip signal is shown in fig.6-24. Zone1 tripped 10ms after the fault occurred. 

Zone2 tripped 200ms after the fault occurred. Zone3 tripped 500ms after the fault 

occurred. 
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Figure 6-22 A-B fault impedance trajectory 

 

Figure 6-23 Block-average comparator output 

 

Figure 6-24 Distance relay trip signals 
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The A-G, B-G, C-G, B-C and C-A impedance trajectories are shown in fig.6-25.  

The A-G, B-G fault impedance trajectories entered protection zone1 protection 

characteristics. The B-C and C-A fault impedance trajectories entered protection 

zone3 near the boundary. The A-G, B-G, B-C and C-A protection block-average 

comparator outputs are shown in fig.6-26 (a), (b), (c) and (d) respectively.  As can 

be seen from fig.6-26, the A-G, B-G protection block-average comparator zone1 

outputs crossed the trip level 50ms and 170ms after the fault. B-C protection block-

average comparator output did not trip. The C-A protection block-average 

comparator zone3 output did trip 100ms after the fault.  

The trip signals are given in fig.6-27 (a), (b), (c) and (d). Fig.6-27 (a) shows the A-

G protection trip signal. As can be seen from fig.6-27 (a), A-G protection Zone1 

tripped 50ms after fault occurred. A-G zone2 and zone3 tripped 200ms and 500ms 

after the fault respectively. Fig.6-27 (b) shows the B-G protection trip signal. Zone1 

tripped 170ms after fault occurred. Zone2 and zone3 tripped 200ms and 500ms after 

the fault. Fig.6-27 (c) gives the B-C protection trip signal. There was no trip signal 

from B-C protection. Fig.6-27 (d) shows the C-A protection signal. As can be seen 

from fig.6-27 (d) that the C-A protection zone3 tripped 500ms after the fault. 

The A-B protection responded to fault rapidly, about 10ms after the fault.  

 

Figure 6-25 A-G, B-G, C-G, B-C and C-A impedance trajectories 
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(a) A-G block-average 

comparator output 

(b) B-G block-average 

comparator output 

(c) B-C block-average 

comparator output 

(d) C-A block-average 

comparator output  

Figure 6-26 The Block-average comparator outputs 

(a) A-G relay trip signals (b) B-G relay trip signals 

(c) B-C relay trip signals (d) C-A trip signals 
 

Figure 6-27 Distance relay trip signals 
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The responses to B-C and C-A fault are similar to the A-B fault. Results are shown 

in appendix C.3 and C.4. 

6.2.1.3 Phase to phase to ground fault at 50km 

To study the distance relay response to phase to phase to ground fault, a B-C-G fault 

was applied to line1 at 50km. The fault was applied after 1.2s and maintained until 

2.0s. The B-G, C-G and B-C fault impedance trajectories are shown in fig.6-28. The 

B-G, C-G and B-C fault impedance trajectories all entered the zone1 characteristic 

tripping the relay. Fig.6-29 gives the B-G, C-G and B-C block-average comparator 

outputs in (a), (b) and (c) respectively. All outputs crossed the zone1 trip level 10ms 

after fault occurred.  

Fig.6-30 (a), (b) and (c) gives the distance relay trip signals from B-G, C-G and B-

C protection respectively. The B-G protection zone1 tripped at 1.21s, 10ms after 

fault occurred. The C-G protection zone1 and B-C protection zone1 tripped at the 

same time. All protection zone2 and zone3 tripped at 200ms and 500ms after the 

fault respectively. 

 

Figure 6-28 B-G, C-G and B-C fault impedance trajectories 
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(a) B-G block-average 

comparator output

(b) C-G block-average 

comparator output

(c) B-C block-average 

comparator output  

Figure 6-29 B-G, C-G and B-C block-average comparator outputs 

(a) B-G relay trip 

signals

(b) C-G relay trip 

signals

(c) B-C relay trip 

signals  

Figure 6-30 B-G, C-G and B-C protection trip signals 
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Fig.6-31 shows the A-G, A-B and C-A fault impedance trajectories. The C-A and 

A-B impedance trajectories entered the protection zone3 characteristic. Although the 

C-A impedance trajectory entered the zone3 boundary, it did not cause the 

comparator to trip. This is a feature of the comparator filtering action and 

demonstrated that it was a boundary fault with an expected very high tripping time. 

Fig.6-32 (a), (b) and (c) gives the A-G, A-B and C-A protection block-average 

comparators’ outputs respectively. The A-B protection zone3 block-average 

comparator output tripped after 100ms. Fig.6-33 (a), (b) and (c) gives the A-G, A-B 

and C-A protection trip signals. A-B zone3 tripped at 500ms after fault occurred. 

 

Figure 6-31 A-G, A-B and C-A fault impedance trajectories 
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(a) A-G block-average 

comparator output

(c) C-A block-average 

comparator output

(b) A-B block-average 

comparator output

 

Figure 6-32 A-G, A-B and C-A block-average comparator outputs 

(a) A-G relay trip 

signals

(c) C-A relay trip 

signals

(b) A-B relay trip 

signals

 

Figure 6-33 A-G, A-B and C-A relay trip signals 
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 For A-B-G and C-A-G faults, the results are similar to the B-C-G fault. Results are 

shown in appendix C.5 and C.6. 

6.2.1.4 Three-phase fault  

For a balanced three-phase fault, only the positive sequence currents are considered, 

and both the zero-sequence and negative sequence current are zero. The fault 

impedance measured by distance relay is from the relay point to the fault location.  

All relays are required to and did trip. A three-phase fault was applied to the power 

system on line1 at 50km. The fault impedance trajectories are shown in fig.6-34. 

This shown that all impedance trajectories entered the protection zone1 

characteristic. The block-average comparators’ outputs are shown in fig.6-35 where 

(a), (b), (c), (d), (e), (f) present the A-G, B-G, C-G, A-B, B-C, C-A comparators’ 

outputs respectively. The trip signals are shown in fig.6-36. All relay zone1 

protection tripped 10ms after fault. 

The results of three-phase to ground comparators are similar to those of the phase-

to-phase comparators.  

 

Figure 6-34 A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(d) A-B block-average 

comparator output

(c) C-G block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output
 

Figure 6-35 The block-average comparators’ outputs 
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(a) A-G relay trip signals (b) B-G relay trip signals

(d) A-B relay trip signals(c) C-G relay trip signals

(e) B-C relay trip signals (f) C-A relay trip signals

 

Figure 6-36 Distance relay trip signals 
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6.2.2 Faults in Zone2 

When fault occur in zone2 area, it is not covered by zone1 protections and the zone1 

protection will not trip. 

6.2.2.1 Single phase to ground fault 

An A-G fault was applied to power system on line1 at 100km from 1.2s to 2.0s. A 

fault at 100km was covered by zone2 (120%) but not covered by zone1 (80%). The 

A-G fault impedance trajectory is shown in fig.6-37. The fault impedance trajectory 

entered the protection zone2 characteristic and settled on the protected line at 100km. 

Fig.6-38 shows the A-G clock-average comparator output. The zone2 and zone3 

output crossed the trip level after fault occurred. Zone1 was not because the fault 

location was out of its reach. Fig.6-39 shows the relay trip signal. Zone2 tripped 

200ms after fault and zone3 tripped 500ms after fault. 

 

Figure 6-37 A-G fault impedance trajectory 
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Figure 6-38 A-G block-average comparator output 

 

Figure 6-39 A-G relay trip signals 

Fig.6-40 shows the B-G, C-G, A-B, B-C, C-A impedance trajectories. None of the 

impedance trajectories entered the protection characteristics. 

 

Figure 6-40 B-G, C-G, A-B, B-C, C-A impedance trajectories 
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The results of B-G and C-G fault at 100km are similar to A-G fault. Results are 

shown in appendix D.1 and D.2. 

6.2.2.2 Phase to phase fault at 100km 

An A-B fault was applied to power system on line1 at 100km from. The fault location 

was out of zone1 reach but covered by zone2 and zone3. The A-B fault impedance 

trajectory is shown in fig.6-41. The impedance locus entered the protection zone2 

characteristic and settled on the protected line at 100km. The A-B block-average 

comparator output is shown in fig.6-42. The zone1 output did not trip. The zone2 

and zone3 outputs both tripped. Fig.6-43 gives the trip signal. Zone2 tripped 200ms 

after fault and zone3 tripped 500ms after fault. 

 

Figure 6-41 A-B fault impedance trajectory 
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Figure 6-42 A-B block-average comparator output 

 

Figure 6-43 A-B relay trip signals 

Fig.6-44 shows the A-G, B-G, C-G, B-C and C-A impedance trajectories. The A-G 

and B-G impedance trajectories entered the protection zone3 characteristic and were 

expected to result in tripping. The C-G, B-C and C-A impedance trajectories did not 

enter protection zones. Fig.6-45 gives the A-G, B-G comparators’ outputs and A-G, 

B-G trip signals in (a), (b), (c), (d) respectively. The A-G, B-G zone3 tripped 500ms 

after the fault. 
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Figure 6-44 A-G, B-G, C-G, B-A, C-A fault impedance trajectories 

(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) A-G relay trip signals (d) B-G relay trip signals

Figure 6-45 A-G, B-G comparators’ outputs and trip signals 
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The results of B-C and C-A faults are similar to A-B fault. Results are shown in 

appendix D.3 and D.4. 

6.2.2.3 Phase to phase to ground fault 

A B-C-G fault was applied to the power system on line1 at 100km from 1.2s to 2.0s. 

Fig.6-46 shows the B-G, C-G and B-C fault impedance trajectories. All three 

impedance trajectories entered the zone2 characteristic and settled on the protection 

line at 100km. Fig.6-47 (a), (b), (c) give the B-G, C-G and B-C block-average 

comparators’ outputs respectively. All comparators zone2 and zone3 outputs tripped. 

Fig.6-48 (a), (b), (c) show the B-G, C-G and B-C trip signals. B-G, C-G and B-C 

protection zone2 tripped 200ms after fault and zone3 tripped 500ms after fault. 

 

 

Figure 6-46 B-G, C-G, B-C fault impedance trajectories 
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(a) B-G block-average 

comparator output

(b) C-G block-average 

comparator output

(c) B-C block-average 

comparator output
 

Figure 6-47 B-G, C-G, B-C block-average comparators' outputs 

(a) B-G relay trip signals (b) C-G relay trip signals

(c) B-C relay trip signals

 

Figure 6-48 B-G, C-G, B-C relay trip signals 
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Fig.6-49 gives the A-G, A-B, C-A impedance trajectories. None of these three 

impedance trajectories entered the protection zones. 

 

Figure 6-49 A-G, A-B, C-A impedance trajectories 

Results of A-B-G, C-A-G faults are similar to B-C-G fault and shown in appendix 

D.5 and D.6. 

6.2.2.4 Three phase fault at 100km 

A three-phase fault was applied to the power system on line1 at 100km. The fault 

impedance trajectories are shown in fig.6-50. All impedance trajectories entered the 

protection zone2 characteristic. Fig.6-51 (a), (b), (c), (d), (e), (f) show the A-G, B-

G, C-G, A-B, B-A, C-A block-average comparators’ responses. All zone2 and zone3 

block-average comparators tripped. Fig.6-52 (a), (b), (c), (d), (e), (f) show the A-G, 

B-G, C-G, A-B, B-A, C-A trip signals. All protection zone2 tripped 200ms after fault 

and zone3 tripped 500ms after fault. 
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Figure 6-50 A-G, B-G, C-G, A-B, B-A, C-A fault impedance trajectories 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output
(f) C-A block-average 

comparator output  

Figure 6-51 A-G, B-G, C-G, A-B, B-A, C-A block-average comparators' outputs 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(e) B-C relay trip signals (f) C-A relay trip signals

 

Figure 6-52 A-G, B-G, C-G, A-B, B-A, C-A relay trip signals 

6.2.3 Faults in Zone3 

When a fault occurs at zone3 area, it is not covered by zone1 and zone2 protection 

and these should not trip. 

6.2.3.1 Single phase to ground fault at 200km  

An A-G fault was applied to the power system on line2 at 200km. The fault was out 

of zone1 and zone2 reach. Zone3 protection covered the fault and was expected to 

trip when fault occurred.  
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Fig.6-53 shows the A-G fault impedance trajectory. The A-G fault impedance 

trajectory entered the protection zone3 characteristic and settled at the fault point on 

the line. Fig.6-54 shows the A-G block-average comparator output. Fig.6-55 shows 

the A-G trip signal. Zone3 tripped 500ms after fault. 

 

Figure 6-53 A-G fault impedance trajectory 

 

 

Figure 6-54 A-G block-average comparator output 
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Figure 6-55 A-G relay trip signals 

 

The B-G, C-G, A-B, B-A, C-A fault impedance trajectories are shown in fig.6-56. 

As can be seen from the fig.6-56, no impedance trajectories entered the protection 

zones. 

 

Figure 6-56 B-G, C-G, A-B, B-A, C-A fault impedance trajectories 

 

The results of B-G and C-G faults are similar to A-G fault and shown in the appendix 

E.1 and E.2. 
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6.2.3.2 Phase to phase fault at 200km 

An A-B fault was applied to the power system on line2 at 200km. The fault was 

covered by the A-B zone3 protection. The A-B fault impedance trajectory is shown 

in fig.6-57. The impedance locus entered the protection zone3 characteristic. Fig.6-

58 shows the A-B block-average comparator output. Only zone3 output tripped. The 

trip signal is given in fig.6-59. A-B zone3 tripped 500ms after fault. 

 

Figure 6-57 A-B fault impedance trajectory 

 

Figure 6-58 A-B block-average comparator output 
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Figure 6-59 A-B relay trip signals 

 

The A-G, B-G, C-G, B-C, C-A impedance trajectories are shown in fig.6-60. As can 

be seen from the fig.6-60, only A-G impedance trajectories entered the protection 

zone3 characteristic. Fig.6-61 (a) and (b) show the A-G block-average comparator 

output and A-G protection trip signals.  

 

Figure 6-60 A-G, B-G, C-G, B-C, C-A impedance trajectories 
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(a) A-G block-average 

comparator output
(b) A-G relay trip signals

 

Figure 6-61 A-G block-average comparator output and trip signals 

The results of B-C and C-A faults are similar to A-B fault. Results are shown in 

appendix E.3 and E.4. 

6.2.3.3 Phase to phase to ground fault at 200km 

A B-C-G fault was applied to the power system on line2 at 200km. Fig.6-62 shows 

the B-G, C-G and B-C fault impedance trajectories. All three impedance trajectories 

entered protection zone3 characteristic and settled on the protection line at 200km. 

Fig.6-63 (a), (b), (c) show the B-G, C-G and B-C block-average comparators’ 

outputs. All three comparators’ zone3 outputs tripped. Fig.6-64 (a), (b), (c) show the 

B-G, C-G and B-C trip signals. All three relay zone3 tripped at 500ms after fault.  

 

Figure 6-62 B-G, C-G and B-C fault impedance trajectories 
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(a) B-G block-average 

comparator output

(b) C-G block-average 

comparator output

(c) B-C block-average 

comparator output

 

Figure 6-63 B-G, C-G and B-C block-average comparators' outputs 

(a) B-G relay trip signals (b) C-G relay trip signals

(c) B-C relay trip signals
 

Figure 6-64 B-G, C-G and B-C relay trip signals 
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The A-G, A-B and C-A impedance trajectories are shown in fig.6-65. None of these 

impedance trajectories entered the protection zones. 

 

Figure 6-65 A-G, A-B and C-A impedance trajectories 

The results of A-B-G, C-A-G faults are similar to B-C-G fault and shown in 

appendix E.5 and E.6. 

6.2.3.4 Three-phase at 200km 

A three-phase fault was applied to the power system on line2 at 200km. The fault 

impedance trajectories are shown in fig.6-66. All fault impedance trajectories 

entered the protection zone3 characteristic. Fig.6-67 (a), (b), (c), (d), (e), (f) show 

the A-G, B-G, C-G, A-B, B-A, C-A block-average comparators’ outputs. All zone3 

outputs crossed the trip level after fault. Fig.6-68 (a), (b), (c), (d), (e), (f) show the 

A-G, B-G, C-G, A-B, B-A, C-A protection trip signals. The relay’s zone3 protection 

tripped 500ms after fault. 
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Figure 6-66 A-G, B-G, C-G, A-B, B-A, C-A fault impedance trajectories 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output
 

Figure 6-67 A-G, B-G, C-G, A-B, B-A, C-A block-average comparators’ outputs 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(e) B-C relay trip signals (f) C-A relay trip signals

Figure 6-68 A-G, B-G, C-G, A-B, B-A, C-A relay trip signals 

6.2.4 Faults out protection zones 

The three-phase fault is the worst fault in the power system. All relays are required 

to operation during three phase fault. In order to test the distance relay’s response to 

faults outside of its protecting zones, a three-phase fault was applied to the power 

system on line3 at 280km. The fault was outside of the distance relay’s protection 

zones. The fault impedance trajectories are shown in fig.6-69. None of the 
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impedance trajectories entered the protection zones. They all settled on the protected 

line at 280km. There was no tripping in response to this fault. 

 

Figure 6-69 A-G, B-G, C-G, A-B, B-A, C-A fault impedance trajectories 

6.3 Chapter Summary 

This chapter introduced the modelled distance relay and explained how the relay 

would respond to a selection of fault conditions. The simulation work was carried 

on in MATLAB/SIMULINK. The modelled distance relay used the Mho 

characteristic. 

The interface between the distance relay and the protected ac lines was performed 

by ideal current transformers and voltage transformers.  

The current signals from CT were input to replica impedance circuits to generate IZ 

signals. The IZ signals were mixed with the V signals for block-average comparators 

to compare and generate trip signals when there was a fault. Different zones settings 

were achieved by changing zr. 

In order to plot the impedance trajectories, the measured voltage and current signals 

were filtered by low-pass filters to remove the unwanted high frequency components. 

The filtered signals were then input into DFT circuits to extract fundamental phasor 
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information. The outputs of the DFT were finally processed by the impedance 

computing algorithm and plot the apparent impedance.  

The modelled distance relay was tested using a simple AC power system based on 

the Kundur’s two areas system [68]. Different types of faults at different locations 

within distance relay protection zones and outside the protection zones were tested 

and studied. The distance relay block-average comparator outputs during faults were 

studied as well as the fault impedance trajectories. The results of the distance relay 

operations were compared with previous researcher’s work and the distance relay 

were proofed worked as expected. 

The modelled distance relay response to faults when the protected feeders containing 

HVDC lines will be investigated in the following chapter. 
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In this chapter, the response of distance relay to fault conditions on a network 

containing both HVDC and HVAC lines were investigated  

7.1 The impact of HVAC/HVDC circuit on distance relay during 

fault conditions 

To investigate the HVDC interconnection impact on distance relay during fault 

conditions, the previous simulated HVDC-HVAC interconnection system was 

studied when it was protected by set distance relay at busbar A. The modelled power 

system was developed from the system modelled by Kundur [68] and as shown in 

fig.7-1. 

Line1 Line2 Line3

R

100kM 100kM 100kM

Zone1

Zone2

Zone3

AC
Infinite

Bus

A
HVDCHVAC HVAC

Figure 7-1 Modelled HVDC interconnection system 

A 230kV, 9000MVA ac system was connected to 230kV infinite bus through two 

100km HVAC transmission lines and 100km HVDC link. The HVDC link had a 

rated voltage and current of 56kV and 3.6kA respectively. The DC line resistance 

was 1.5Ω and inductance is 100mH. A smoothing reactor of 50mH was used at each 

end of the line. The converter transformers were modelled as ideal transformers. 

The responses were compared to a simple HVAC interconnection system as shown 

in fig.7-2. These two systems were set up under similar conditions. The details of 

the model are shown in Appendix. F 
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Line1 Line2 Line3

R

100kM 100kM 100kM

Zone1

Zone2

Zone3

AC Infinite

Bus

A
HVACHVAC HVAC

 

Figure 7-2 The comparing HVAC system 

The AC line parameters are shown in table.7-1 [68]. 

Positive-sequence Zero-sequence 

r1 x1 r0 x0 

0.053Ω/km 0.531 Ω/km 1.638 Ω/km 2.312 Ω/km 

Table 7-1 AC line parameters [68] 

The distance relay was located at busbar A to protected line1. Zone1 was set to 80% 

of line1, Zone2 to 120% of line1 and Zone3 to 250% of line1. The time delays for 

zone1, zone2 and zone3 were 0ms, 200ms and 500ms respectively. The simulation 

duration was 2.5s. The fault duration was from 1.5s to 2.5s. 

The study was carried out by applying different types of faults at different locations 

into HVAC/HVDC system and HVAC system to investigate the distance relay’s 

response. The distance relay’s response to faults on the HVAC/HVDC system was 

compared to similar faults on the HVAC system. 
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7.1.1 Protection response to fault in zone1 

7.1.1.1 Protection response to A-G fault at 50km on line1  

An A-G fault was injected into both power systems at 50km on line1. The fault was 

covered by distance relay zone1 protection. Fig.7-3 (a), (b) shows the HVAC/HVDC 

and HVAC A-G fault impedance trajectories respectively. Both fault impedance 

trajectories entered the protection zone1 characteristic. Fig.7-4 (a), (b) gives the A-

G block-average comparator outputs in HVAC/HVDC and HVAC systems 

respectively. Both comparators tripped. Fig.7-5 (a), (b) gives the distance relay 

zone1 trip signals in both HVAC/HVDC system and HVAC system. Fig.7-5 (a) 

presents distance relay A-G trip signal in the HVAC/HVDC system. The distance 

relay zone1tripped 11ms after fault. Zone2 and Zone3 tripped 200ms after fault and 

500ms after fault. Fig.7-5 (b) shows the distance relay A-G trip signal in HVAC 

system. The distance relay zone1 tripped 10ms after fault. Zone2 and zone3 tripped 

200ms after fault and 500ms after fault respectively. 
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Figure 7-3 Fault impedance trajectories 
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(a) HVAC/HVDC (b) HVAC 

Figure 7-4 A-G block-average comparator output 

(a) HVAC/HVDC (b) HVAC 

Figure 7-5 Distance relay A-G trip signals 

7.1.1.2 Protection response to A-B-G fault at 50km on line1  

The A-B-G fault was applied to both the HVDC system and HVAC system at 50km 

on line1. The fault duration was from 1.5s to 2.5s. The fault was covered by distance 

relay zone1 protection. The A-G, B-G and A-B protection responded to the fault. 

Fig.7-6 (a), (b) give the A-G, B-G, A-B fault impedance trajectories in 

HVAC/HVDC system and HVAC system respectively. All the impedance 

trajectories entered the protection zone1 characteristic. Distance relays tripped for 

the faults. Fig.7-7 (a), (b), (c) show the distance relay A-G, B-G, A-B block-average 

comparators’ outputs in HVAC/HVDC system. All zone1, zone2 and zone3 outputs 

crossed the trip level. Fig.7-8 (a), (b), (c) give the distance relay A-G, B-G and A-B 

trip signals in HVAC/HVDC system. As can be seen from fig.7-8, the zone1 



Chapter 7   The HVAC/HVDCImpacts on Distance Relay During Fault 
Conditions 

 

 

 

Page | 162 

 

protection tripped 10ms after fault. Zone2 and zone3 protection tripped at 200ms 

after fault and 500ms after fault.  

(a) HVAC/HVDC (b) HVAC 
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Figure 7-6 A-G, B-G, A-B fault impedance trajectories 

(a) A-G block-average 

comparator output 

(b) B-G block-average 

comparator output 

(c) A-B block-average 

comparator output 
 

Figure 7-7 A-G, B-G, A-B block-average comparators’ outputs for the HVAC/HVDC transmission 

system 
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(a) A-G relay trip signals (b) B-G relay trip signals 

(c) A-B relay trip signals 

 

Figure 7-8 A-G, B-G, A-B trip signals for the HVAC/HVDC transmission system 

Fig.7-9 (a), (b), (c) give the distance relay A-G, B-G, A-B block-average 

comparators’ outputs in HVAC system. All the comparators tripped as expected. 

Fig.7-10 (a), (b), (c) show the distance relay A-G, B-G, A-B trip signals in HVAC 

system. The zone1 protection tripped 10ms after fault, zone2 protection tripped 

200ms after fault and zone3 protection tripped 500ms after fault respectively. 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) A-B block-average 

comparator output

 

Figure 7-9 A-G, B-G, A-B block-average comparators’ outputs for HVAC transmission system 

(a) A-G relay trip signals (b) B-G relay trip signals 

(c) A-B relay trip signals 

 

Figure 7-10 Distance relay trip signals for HVAC transmission system 
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From the results above, it is apparent that when fault occurred in zone1 area, the 

distance relays in both HVAC/HVDC system and HVAC system tripped as expected.  

7.1.2 Protection response to fault in zone2 

For a line to ground fault on the HVDC line as shown in fig.7-11 below, the 

connected ac system experiences the fault current and voltage in each phase. The 

distance relay including A-G, B-G, C-G, A-B, B-C, C-A protection which is set to 

protect the ac transmission line, will all detect the fault voltage and current. Due to 

HVDC converter station control strategy, the fault impedances seen by the array of 

distance relay comparators will be similar.  

HVDC

Iaf

Ibf

Icf

Vaf Vbf Vcf

Idf

Vdf

a

b

c

HVAC

 

Figure 7-11 Fault on DC line 

A DC line to ground fault was injected into the system on DC line at 10km from the 

converter station. The fault location therefore was 110km from the distance relay 

and covered by distance relay zone2 protection. The A-G, B-G, C-G, A-B, B-C, C-

A fault impedance trajectories are shown in fig.7-12 (a), (b), (c), (d), (e), (f). As can 

be found in fig.7-12, the impedance trajectories were similar.  

Considering the phase A-G fault impedance trajectory, the fault impedance 

trajectory started from the steady point and circled the protection characteristic zones. 

The fault impedance was higher than the set impedance and did not enter the 

protection zones. There was no possibility to trip since the fault impedance trajectory 

did not enter the protection zones during the fault. The fault impedance trajectory 

finally settled in negative reactance area at about -275Ω reactive after a few cycles. 
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This negative reactive impedance indicated that there was huge reactive power in 

the system, which was absorbed by HVDC converter station. The B-G, C-G, A-B, 

B-C, C-A fault impedance trajectories were similar. Fig.7-13 (a), (b), (c), (d), (e), (f) 

show the A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs. Since 

there was no fault impedance entering the protection zones, none of the comparator 

tripped. Fig.7-14 (a), (b), (c), (d), (e), (f) give the distance relay trip signals. There 

were no trips given that the HVDC link limited the values of fault voltage and current. 
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(a) A-G (b) B-G

(c) C-G (d) A-B

(e) B-C (f) C-A

 

Figure 7-12 The A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories for a zone2 fault in 

the HVAC/HVDC transmission system 
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(a) A-G block-average 

comparator output
(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output
(f) C-A block-average 

comparator output

 

Figure 7-13 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs for a zone2 fault 

in the HVAC/HVDC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(d) B-C relay trip signals (f) C-A relay trip signals

Figure 7-14 Distance relay trip signals for a zone2 fault in the HVAC/HVDC transmission system 

 

For comparison, an A-B-C-G fault was applied to the HVAC system on line2 at 

10km, the similar location to that applied to the HVAC/HVDC system. The fault 

was covered by distance relay zone2 protection. Fig.7-15 gives the fault impedance 

trajectories, and shows that all the fault impedance trajectories entered the protection 

zone2 characteristic and settled at set impedance at 110km.  Fig.7-16 (a), (b), (c), 
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(d), (e), (f) show the A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ 

outputs. All zone2 and zone3 comparators’ outputs tripped after fault.  Fig.7-17 

shows the distance relay trip signals, illustrating that zone2 tripped 200ms after fault. 

Zone3 tripped 500ms after fault. 

 

Figure 7-15 Fault impedance trajectories for a zone2 fault in the HVAC transmission system 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output

 

Figure 7-16 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs for a zone2 fault 

in the HVAC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(d) B-C relay trip signals (f) C-A relay trip signals

Figure 7-17 Distance relay trip signals for a zone2 fault in the HVAC transmission system 

From the results above it has been demonstrated that when a fault occurred on HVDC 

line of the HVAC/HVDC network, although it was covered by distance relay zone2 

protection, the distance relay did not trip. In comparison, when a fault occurred on 

HVAC line at the same location on the HVAC system, the distance relay tripped as 

expected.  

For the fault on HVDC line all of distance relay comparators detected the fault 

current and voltage. The fault impedances seen by distance relay when fault occurred 

on HVDC line were similar.  
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7.1.3 Protection response to fault in zone3 

7.1.3.1 Protection response to fault on DC line at 50km 

A DC line to ground fault was applied to the HVDC/HVAC system on the HVDC 

line at 50km from the converter station. The fault location was 150km from the 

distance relay, and therefore for an AC network would be covered by distance relay 

zone3 protection. The distance relay A-G, B-G, C-G, A-B, B-C, C-A protections’ 

fault impedance trajectories are shown in fig.7-18 (a), (b), (c), (d), (e), (f), and show 

that all the fault impedance trajectories are similar to each other. The fault impedance 

trajectories started from a steady point and circled the protection zones. The fault 

impedances were higher than the set impedance. None of the fault impedance 

trajectories entered the protection zones and therefore there were no trips. The 

impedance trajectories settled in negative reactance area at about -275Ω reactive 

after a few cycles. The negative reactance was due to the HVDC converter station 

absorbing reactive power during fault. Fig.7-19 (a), (b), (c), (d), (e), (f) show the A-

G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs. None of the 

comparator tripped. There were no trip signals output from distance relay as in fig.7-

20.  
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(a) A-G (b) B-G

(c) C-G (d) A-B

(e) B-C (f) C-A

 

Figure 7-18 A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories for a fault at 50km along 

the DC line in the HVAC/HVDC transmission system 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output

 

Figure 7-19 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputsa fault at 50km 

along the DC line in the HVAC/HVDC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(d) B-C relay trip signals (f) C-A relay trip signals

Figure 7-20 Distance relay trip signals a fault at 50km along the DC line in the HVAC/HVDC 

transmission system 

 

As a comparison, a A-B-C-G fault was injected into the HVAC system on line2 at 

50km. The fault was detected by all distance relay protections.  The fault location 

was 150km from distance relay and covered by distance relay zone3 protection.  

Fig.7-21 gives the fault impedance trajectories. All the fault impedance entered the 

protection zone3 characteristic and settled on the fault impedance at 150km.  Fig.7-



Chapter 7   The HVAC/HVDCImpacts on Distance Relay During Fault 
Conditions 

 

 

 

Page | 177 

 

22 (a), (b), (c), (d), (e), (f) show the A-G, B-G, C-G, A-B, B-C, C-A block-average 

comparators’ outputs.  All zone3 comparators tripped. Fig.7-23 gives the distance 

relay trip signals and demonstrates that all zone3 protections tripped 500ms after 

fault.  

 

Figure 7-21 Fault impedance trajectories for a fault 150km from the relay point in the HVAC 

transmission system 
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(a) A-G block-average 

comparator output
(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output

 

Figure 7-22 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs for a fault 150km 

from the relay point in the HVAC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(e) B-C relay trip signals (f) C-A relay trip signals

 

Figure 7-23 Distance relay trip signals for a fault 150km from the relay point in the HVAC 

transmission system 

 

From the results above, when fault occurred in zone3 area in the HVAC/HVDC 

system the distance relay did not trip while in the HVAC system the distance relay 

tripped. The fault impedances seen by distance relay in the HVAC/HVDC system 

were similar when the fault occurred in zone2 and zone3 areas. The fault locations 
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on DC line did not contribute to the distance relay protection response. The fault 

impedances started from the pre-fault load impedance, circled the distance relay 

protection zones and finally settled at a high impedance negative reactance point. 

This was a result of the reactive power absorbed by the HVDC converter stations 

during faults. The faults in the HVAC/HVDC system on DC line in protection zones 

did not cause distance relay trips. However, when faults occurred in the HVAC 

system at the same locations, the distance relay tripped. 

7.1.3.2 Protection response to faults in HVAC/HVDC system on ac line beyond 

HVDC interconnection 

HVDC

Iaf

Ibf

Icf

Vaf Vbf Vcf

Idf

Vdf

a

b

c

I`af

I`bf

I`cf

V`af V`bf V`cf

HVAC HVAC

Figure 7-24 Fault beyond DC link 

When the fault occurs beyond the dc links on the ac line as shown in fig.7-24, the 

protection at the feeder substation will see both fault voltage and current. Because 

the dc link does not contain three phase voltage and current elements, a single phase 

to ground fault, for example, an A-G fault occurs beyond the dc link on ac line, all 

of the comparators in the distance relay will see the fault. The dc link can regulate 

the fault voltage and current so the distance relay will not trip. In comparison, if an 

A-G fault occurs in HVAC system, the distance relay’s A-G comparators will detect 

the fault.  

7.1.3.2.1 Protection response to A-G fault at 200km on line3 

An A-G fault was applied to the HVAC/HVDC system on line3 at 200km from the 

relay. The fault would be expected to be covered by distance relay zone3 protection. 

Fig.7-25 (a), (b), (c), (d), (e), (f) show the A-G, B-G, C-G, A-B, B-C, C-A fault 

impedance trajectories and show that a similar response, albeit modified by the shift 
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in the post-fault waveforms. The fault impedance trajectories started from steady 

points defined by the pre-fault load and moved around the distance relay protection 

zones. No fault impedances trajectories entered the protection zones. There were no 

trips. The fault impedances finally settled at a high value of negative reactance in 

several cycles. This was attributed to the HVDC converter station absorbing reactive 

power during fault. Fig.7-26 (a), (b), (c), (d), (e), (f) show the A-G, B-G, C-G, A-B, 

B-C, C-A block-average comparators’ outputs. No tripping occurred. Fig.7-27 gives 

the distance relay trip signals. 
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(a) A-G (b) B-G

(c) C-G (d) A-B

(e) B-C (f) C-A

Figure 7-25 A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories for an A-G fault on the 

HVAC line beyond the DC link in the HVAC/HVDC transmission system 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output

(f) C-A block-average 

comparator output

 

Figure 7-26 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputsfor an A-G fault on 

the HVAC line beyond the DC link in the HVAC/HVDC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(d) B-C relay trip signals (f) C-A relay trip signals

Figure 7-27 Distance relay trip signals for an A-G fault on the HVAC line beyond the DC link in 

the HVAC/HVDC transmission system 

To provide a comparison, an A-G fault was applied to the HVAC system on line3 at 

200km from the relay point. The fault was covered by distance relay zone3 

protection. Fig.7-28 (a) shows the A-G fault impedance trajectory. The fault 

impedance entered the protection zone3 characteristic after a few cycles and settled 

on the fault impedance at 200km. Fig.7-28 (b) shows the A-G block-average 



Chapter 7   The HVAC/HVDCImpacts on Distance Relay During Fault 
Conditions 

 

 

 

Page | 185 

 

comparator outputs. Fig.7-28 (c) shows the trip signal, highlighting that zone3 

tripped 500ms after fault. 

(a) A-G fault 

impedance trajectory

(b) A-G block-average 

comparator output

(c) A-G relay trip signals
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Figure 7-28 A-G fault on line3 in HVAC system 200km from the relay point on the HVAC system 
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7.1.3.2.2 Protection response to A-B-G fault at 200km on line3 

When an A-B-G fault was applied to the AC power system on the transmission line 

in zone3 area, the distance A-G, B-G, A-B protection were expected to respond to 

the fault.  The fault impedances seen by A-G, B-G, A-B relay should enter the 

protection zone3 characteristic and settle at the fault impedance. The C-G, B-C, C-

A relay will see fault impedances since they will be influenced by the fault voltages 

and currents.  

When the A-B-G fault occurs in HVDC/HVAC system on the ac line beyond DC 

link, the distance relay protection will experience fault voltages and currents, but due 

to the influence of the converter stations they are not expected to trip. 

An A-B-G fault was applied to the HVAC/HVDC system on line3 at 200km from 

the relay point. The fault was covered by distance relay zone3 protection. Fig.7-29 

(a), (b), (c), (d), (e), (f) show the A-G, B-G, C-G, A-B, B-C, C-A fault impedance 

trajectories. The distance relay all protections responded to the fault. The A-G, B-G, 

C-G, A-B, B-C, C-A fault impedances were similar to each other. All the fault 

impedance trajectories started from the pre-fault load impedances, circled the 

distance relay protection zones and settled at a high value of negative reactance. 

Because the fault impedances trajectories did not enter the trip characteristics, there 

were no trips. The post-fault impedance settled in negative reactance area was 

attributed to the HVDC converter stations absorbing the reactive power during fault. 

Fig.7-30 (a), (b), (c), (d), (e), (f) show the A-G, B-G, C-G, A-B, B-C, C-A block-

average comparators’ outputs. None of the comparators tripped. Fig.7-31 shows the 

distance relay trip signals with no tripping signals. 
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(a) A-G (b) B-G

(c) C-G (d) A-B

(e) B-C (f) C-A

Figure 7-29 A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories for fault at 200km from 

the relay point on the HVAC/HVDC transmission system 
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(a) A-G block-average 

comparator output
(b) B-G block-average 

comparator output

(c) C-G block-average 

comparator output

(d) A-B block-average 

comparator output

(e) B-C block-average 

comparator output
(f) C-A block-average 

comparator output

 

Figure 7-30 A-G, B-G, C-G, A-B, B-C, C-A block-average comparators’ outputs for fault at 200km 

from the relay point on the HVAC/HVDC transmission system 
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(a) A-G relay trip signals (b) B-G relay trip signals

(c) C-G relay trip signals (d) A-B relay trip signals

(d) B-C relay trip signals (f) C-A relay trip signals

Figure 7-31 Distance relay trip signals for fault at 200km from the relay point on the HVAC/HVDC 

transmission system 

 

For a comparison, an A-B-G fault was applied to the HVAC system on line3 at 

200km. The fault was detected by A-G, B-G and A-B zone3 protections. The A-G, 
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B-G, A-B fault impedances seen by distance relay are shown in fig.7-32, and show 

that the A-G, B-G, A-B fault impedances entered the distance relay zone3 

characteristic and settled on the fault impedance at 200km after a few cycles. Fig.7-

33 (a), (b), (c) show the A-G, B-G, A-B block-average comparators’ outputs, and 

reveal that zone3 outputs crossed the trip level in few cycles. Fig.7-34 gives the 

distance relay A-G, B-G, A-B protection trip signals. The distance relay A-G, B-G, 

A-B zone3 protection tripped 500ms after fault. 

 

Figure 7-32 A-G, B-G, A-B fault impedance trajectories for fault at 200km from the relay point on 

the HVAC transmission system 
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(a) A-G block-average 

comparator output

(b) B-G block-average 

comparator output

(c) A-B block-average 

comparator output

 

Figure 7-33 A-G, B-G, A-B block-average comparators’ outputs for fault at 200km from the relay 

point on the HVAC transmission system 

(a) A-G relay trip signals (b) B-G relay trip signals

(c) A-B relay trip signals
 

Figure 7-34 Distance relay A-G, B-G, A-B protection trip signals for fault at 200km from the relay 

point on the HVAC transmission system 
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From the results above, it has been shown that when fault occurred on ac line beyond 

the DC link, the distance relay did not trip for the fault. The dc link effectively 

isolated the faults on the other side of it. All distance relay protections detected the 

fault no matter the fault type. The fault impedances seen by the distance relay 

protection were similar to each other. In the comparison with the HVAC system, the 

similar faults at same locations caused the distance relay to trip. 

Comparing the fault impedances when the fault occurred on ac line beyond the dc 

link with the fault impedances when fault was on the dc link, it was shown that they 

all were similar. All the fault impedances started from steady points corresponding 

to the pre-fault load impedance, circled the distance relay protection zones and 

settled at a highly reactive impedance. All the fault impedances were outside the trip 

characteristics. There were no possibilities to trip. The post-fault negative reactive 

impedance was attributed to HVDC converter stations absorbing reactive power 

during the faults.  

7.1.4 Protection response to fault out of protection zones 

An A-B-C-G fault was applied to the HVAC/HVDC system on line3, 280km from 

the relay point. The fault was therefore outside the distance relay protection zones. 

Fig.7-35 (a), (b), (c), (d), (e), (f)show the A-G, B-G, C-G, A-B, B-C, C-A fault 

impedance trajectories, these were all similar to each other with minor differences 

associated with the different phase signals used. Comparing the fault impedance 

trajectories when the fault was inside protection zones on dc line and beyond dc link, 

the fault impedance trajectory was outside of the distance relay protection zones and 

there were no trips.  

Fig.7-36 shows the fault impedance trajectories when an A-B-C-G fault was applied 

to the HVAC system on line3 at 280km from the relay point. None of these fault 

impedances entered the protection zones. The trajectories started from the pro-fault 

load impedances and settled at the post-fault impedance. 
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(a) A-G (b) B-G

(c) C-G (d) A-B

(e) B-C (f) C-A

Figure 7-35 A-G, B-G, C-G, A-B, B-C, C-A fault impedance trajectories for fault at 280km from 

relay point on the HVAC/HVDC transmission system 
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Figure 7-36 Fault impedance trajectories for fault at 280km from relay point on the HVAC 

transmission system 
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7.2 Chapter Summary 

The modelled distance relay response to faults when the protected high voltage 

transmission system contained a HVDC link was investigated in this chapter. In 

comparison, the response to faults on a similar HVAC system was simulated as well.  

In both HVAC/HVDC and HVAC interconnection systems, the faults located in the 

zone1 area all caused the distance relay zone1 to trip as expected. The distance relay 

detected the fault impedance and tripped within a few cycles. The fault impedances 

seen by distance relay in the two systems were similar. 

In HVAC/HVDC system, when the fault was located in zone2 area on ac line, the 

distance relay detected the fault and tripped in the same manner as the fault in HVAC 

system at that location. When fault occurred on the dc line within zone2 and zone3 

area, the distance relay did not trip.  

For HVAC/HVDC system, when the fault occurred beyond dc terminal on ac line 

covered by zone3 protection, the distance relay did detect the fault and there were 

impedance trajectories but there were no tripping since none of the impedance 

trajectories entered the protection characteristics. In comparison, when the same 

fault occurred in HVAC system at the same location, the distance relay tripped. 

The distance relays did not trip in both HVAC/HVDC and HVAC systems when 

faults located outside of the protection zones. 
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In this chapter, the impact of the inclusion of HVDC lines in HVAC network on the 

performance of a distance relay during transient conditions is investigated 

8.1 The impact of HVAC/HVDC circuit on distance relay during 

power swing 

Several large scale blackouts have been caused by the operation of the distance 

relay’s remote back protection (zone3). This has resulted in cascading failures and 

domino effects. The distance relay zone3 protection can cover a very large area. 

During the steady state the power system is balanced and there is a match between 

generated power and consumed power. Any change in the power system - load 

change, transmission line faults, line switching and generator disconnection - can 

break the balance and result in major changes in power system voltages and currents. 

Such changes may lead to the measured impedances as seen by distance relay 

entering the protection zone3 characteristic. The distance relay zone3 will then trip 

in this situation as if there had been a fault.  

8.2 Distance relay operation in one generator system 

Distance relay operation has been investigated for HVAC networks which includes 

HVDC links during transient conditions. The investigation involved simulation work 

carried out in MATLAB/SIMULINK. In order to investigate the distance relay 

operation, a power system was simulated as shown in fig.8-1. The simulated power 

system was based on two area power systems as described by Kundur [68]. The 

system was used to investigate inter-area oscillations [68, 149, 150].  

The model involved a 230kV, 9000MVA power system connected to a 230kV 

900MVA load through two 100kM ac transmission lines and a 100kM HVDC link. 

The load included a local 20kV, 900MVA power station. The power station 

connected through a 20/230kV, 900MVA power transformer T and 10km ac line. 

The distance relay was located at busbar A to protect the ac line1. The distance relay 

zone1 was set to 80% of line1. Zone2 and zone3 was set to 120% and 250% of the 

line1. Time delays for zone1, zone2 and zone3 were 0ms, 200ms and 500ms 
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respectively. The AC transmission line parameters were set at the same levels as 

previous simulated power systems in section 7.1.  

Line1 Line2 Line3

R

100kM 100kM 100kM

Zone1

Zone2

Zone3

AC

A
HVDC

Line4

10kM

Load

B

230kV/20kV

T G

HVAC HVAC

Figure 8-1 Simulated HVAC/HVDC power system 

For comparison purposes, a similar network was also modelled, which was an ac 

system connected to the load through three 100km ac lines. The simulated HVAC 

power system is shown in fig.8-2 below. 

Line1 Line2 Line3

R

100kM 100kM 100kM

Zone1

Zone2

Zone3

AC

A
HVAC

Line4

10kM

B

230kV/20kV

T G

Load

HVAC HVAC

Figure 8-2 Simulated HVAC power system 

The two power systems were used similar parameters models and the simulation 

duration was 4 seconds. Simulations results are shown in following sections. The 

details of the models are shown in Appendix. F.  

Fig.8-3 (a) and (b) give the pre-fault impedance seen by distance relay in 

HVAC/HVDC system and HVAC system respectively. The impedance seen in 

HVAC/HVDC system was in negative reactance was due to the HVDC converter 

stations absorbing reactive power. 
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(a) Pre-fault load impedance 

seen by distance relay in 

HVAC/HVDC system

(b) Pre-fault load impedance 

seen by distance relay in 

HVAC system
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Figure 8-3 Pre-fault impedance seen by distance relay for the HVAC/HVDC and HVAC networks 

8.2.1 Protection response to an A-G fault on line3 at 300km from the relay 

location. 

An A-G fault was applied to HVAC/HVDC power system on line3 at 300km.The 

HVDC control strategies, after fault, maintained the power system stable and no 

power swing occurred.  The HVDC link prevented the power swing acting as a filter 

against such a disturbance. The A-G fault impedance trajectory is shown in fig.8-4. 

The fault impedance started from pre-fault load impedance and circled the distance 

relay protection zones for a few cycles. The impedance trajectory was outside the 

protection characteristics and did not enter the protection zones and therefore 

prevented the distance relay from tripping. The fault impedance presented 

irregularities during HVDC control strategies, although after removal of the fault, 

the impedance reverted to the pre-fault value. The fault impedance did not enter the 

protection zones with other distance relay protections having similar fault impedance.  
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Figure 8-4 The response to an A-G fault at 300km from the relay point on the HVAC/HVDC 

network 

In comparison, similar fault was applied to the HVAC system on line3 at 300km 

from the relay location. The fault caused power swing in the system. The A-G fault 

impedance trajectory as seen by distance relay is shown in fig.8-5. 
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Figure 8-5The A-G fault impedance trajectory in response to a fault at 300km from the relay point 

on the HVAC network 

As can be seen from fig.8-5, the A-G fault impedance trajectory first started from 

the pre-fault impedance, then moved to the fault impedance corresponding to a fault 

at 300km. When fault removed, power swing occurred in the system. After power 

swing occurred, the A-G fault impedance entered the distance relay zone3 protection 

characteristic at 2.92s and left the protection characteristic at 3.92s. The duration 

that impedance trajectory stayed inside protection zone3 was 900ms. The distance 

relay’s A-G zone3 comparator’s output is given in fig.8-6. The zone3 output crossed 

the trip level as per the distance relay trip signal is given in fig.8-7. Distance relay 

A-G zone3 protection tripped at 3.42s, corresponding to 2.92s+500ms time delay 

and reset at 3.82s when the fault impedance exited the zone3 characteristic. The 

power system fault did not cause distance relay to trip; however, the power swing 

did. 
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Figure 8-6 The A-G comparator output for the fault and subsequent power swing 

 

Figure 8-7 Distance relay trip signal for the fault and subsequent power swing 

8.2.2 Protection response to an A-B-C-G fault on line3 at 300kmfrom relay 

location 

The response to an A-B-C-G fault was simulated in the HVAC/HVDC system on 

line3 at 300km. The HVDC converter station affected the voltages and currents 

during the fault. After removal of the fault, the system maintained a stable state and 

the power swing did not occur. The HVDC link acted as a ‘firewall’ against the 
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power swing. All the distance relay protection had similar fault impedance 

trajectories. The response of the A-G fault impedance is shown in fig.8-8. The fault 

impedance trajectory circled the distance relay protection zones measurement 

starting at the pre-fault load impedance. The irregular part was caused by the HVDC 

converter stations control strategies. After removal of the fault, the fault impedance 

settled back to the steady point. The fault impedance did not enter the protection 

zones, so there was no trip.  
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Figure 8-8 The response to an A-G fault following a fault at 300km on the HVAC/HVDC system 

The same fault was applied in the HVAC system. After the fault was removed, a 

power swing occurred. All distance relay protection detected the fault and the fault 

impedances seen by distance relay comparators were similar. Fig.8-9shows the A-G 

fault impedance trajectory, which started at the pre-fault load impedance and settled 

on the fault impedance on the line during the fault. When the power swing occurred, 

the fault impedance followed a complex trajectory and entered the distance relay 

zone3 characteristic at 2.49s and exited at 2.95s. The duration was 0.46s which was 

shorter than zone3 time delay of 500ms. The distance relay zone3 protection 

therefore did not trip. Although in this case the power swing did not cause tripping, 
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it had the potential to cause distance relay zone3 trip. Fig.8-10 (a), (b) show the 

distance relay A-G block-average comparator output and relay trip signal. As can be 

seen from fig.8-10 (a), the A-G block-average comparator zone3 output crossed the 

trip level when fault impedance entered the zone3 characteristic and reset after fault 

impedance left the zone3 characteristic. The duration was shorter that zone3 time 

delay, therefore the distance relay did not trip.   
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Figure 8-9 The response to an A-G fault impedance trajectory for a 300km fault from the relay 

point on the HVAC transmission system 
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(a) A-G block-average 

comparator output

(b) A-G relay trip signals
 

Figure 8-10 The A-G block-average comparator output and relay trip signals for a 300km fault from 

the relay point on the HVAC transmission system 

 

8.2.3 Protection response to load changes 

Sudden load changes can result in power swings occurring in AC networks. This 

was demonstrated in a serious of simulation studies which examined the response of 

distance protection to these events. The distance relay’s response to load changes 

condition in the HVAC/HVDC system was investigated. The load disconnection 

caused sudden changes in system voltages and currents. The HVDC converter 

stations adjusted the voltages and currents. The power system finally maintained a 

stable state and the power swing did not occur. The HVDC link effectively acted as 
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a ‘firewall’ against the power swing. The apparent impedances seen by all distance 

relay protections were similar, and the A-G comparator’s apparent impedance 

trajectory is shown in fig.8-11. It circled the protection zones in a counter-clockwise 

direction from the pre-fault load impedance. The apparent impedance presented 

irregularities due to the HVDC converter stations control strategies. The apparent 

impedance returned the pre-fault load point when the system stabilised. The apparent 

impedance did not enter the protection zones, and therefore the distance relay did 

not trip due to the changes to the load. 
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Figure 8-11 The impedance trajectory of the A-G comparator seen by distance relay to a sudden 

load change on the HVDC/HVAC system 

The same situation was simulated in the HVAC system. All of the distance relay 

protections detected the power swing. The apparent impedances seen by the distance 

relay protections were similar. Fig.8-12 shows the A-G impedance seen by distance 

relay, and shows that the apparent impedance circled the distance relay protection 

zones. The apparent impedance went in a clockwise direction from the pre-fault load 

point and entered the protection zone3 characteristic at 2.7s. At 3.16s, the apparent 

impedance left the zone3 characteristic. This amounts to a total duration of 460ms 
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inside zone3, which was shorter than the zone3 time delay and hence would not 

result in tripping.  

The apparent impedance left the zone3 characteristic in a counter-clockwise 

direction and re-entered the zone3 characteristic a second time at 3.81s and remained 

there until the end of simulation. The durations when the apparent impedance was 

inside the zone3 characteristic were shorter than the zone3 time delays and the 

distance relay did not trip.  

Fig.8-13 (a) and (b) show the response of the distance relay’s A-G block-average 

comparator outputs and distance relay trip signal. As can be seen in fig.8-13 (a), the 

zone3 output crossed the trip level when apparent impedance entered the zone3 

characteristic for the first time. The block-average comparator zone3 output 

decreased below re-set level after the apparent impedance left the zone3 

characteristic. The block-average comparator zone3 output crossed the trip level 

second time when the apparent impedance entered the zone3 characteristic a second 

time. The durations were all shorter than the zone3 time delay, therefore distance 

relay did not trip, as shown in fig.8-13 (b). 
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Figure 8-12 The impedance trajectory of A-G comparator seen by distance relay to a sudden load 

change on the HVAC system 



Chapter 8   The HVAC/HVDC Impacts on Distance Relay During 
Power Swing Conditions 

 

 

 

Page | 209 

 

(a) A-G block-average 

comparator output

(b) A-G relay trip signals
 

Figure 8-13 The A-G block-average comparator output and relay trip signals for a sudden load 

change on the HVAC system 

8.3Distance relay response to disturbances in two generators system 

In the previous section, the load scheme included a small generator to examine the 

system’s behaviours to network disturbances. In this section, the systems behaviours 

of the two generators of a similar size in the sources and loads networks were 

investigated. 

The power system was simulated based on two areas power system described by 

Kundur [68] as shown in fig.8-14 (a) and (b). Fig.8-14 (a) presents the power system 

with a HVDC interconnection while fig.8-14 (b) shows the power system with 
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HVAC interconnection. Two 20kV, 900MVA generators G1 and G2 were connected 

to the power system through two 20/230kV, 900MVA power transformers T1 and 

T2. The generators were connected to two local loads through two 10kM AC 

transmission lines, line1 and line5. Load 1 was 230kV, 500MVA and Load 2 was 

230kV, 1000MVA. In fig.8-14 (a), the loads were connected by two 100kM AC 

transmission lines, line2 and line4 and one 100kM HVDC link line3. In fig.8-14 (b), 

the loads were connected by three 100kM AC transmission lines: line2, line3 and 

line4. The distance relay was located at busbar B to protect line2. Zone1 was set to 

80% of the line2, zone2 was set to 120% of line2, and zone3 was set to 250% of 

line2. The time delays set for zone1, zone2 and zone3 were 0ms, 200ms and 500ms 

respectively. The power generators’ parameters are as previously used for the 

simulated generator in section 8.2. The details of the models are shown in Appendix. 

F. 
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Figure 8-14 Simulated power systems 

Fig.8-15 (a) and (b) show the pre-fault impedance seen by distance relay in the 

HVAC/HVDC system and the HVAC system respectively. The impedance seen in 



Chapter 8   The HVAC/HVDC Impacts on Distance Relay During 
Power Swing Conditions 

 

 

 

Page | 211 

 

the HVAC/HVDC system had negative reactance was due to the HVDC converter 

station absorbing reactive power. 

(b) Steady impedance 

seen by distance relay in 

HVAC system
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Figure 8-15 Pre-fault impedance seen by distance relay for the HVAC/HVDC and HVAC networks 

8.3.1 Protection response to load1 disconnected and reconnection 

The distance relay’s response to a load change condition in the HVAC/HVDC system 

was investigated. The sudden load change caused changes in power system voltages 

and currents, but due to the HVDC converter control functions, the power swing did 

not occur when load 1 was disconnected and reconnected. The power system 

maintained a stable state. The HVDC link effectively acted as a ‘firewall’ against the 

power swing. All of the distance relay protection detected the variations in the voltages 

and currents during load change. The apparent impedances as seen by all distance relay 

protections were similar. The A-G apparent impedance is shown in fig.8-16, starting at 

the pre-fault load impedance and followed a series of circles during the load change. 

When the power system returned to the stable state, the apparent impedance returned 

back to the pre-fault load impedance. The apparent impedance did not enter the 

protection zones and distance relay did not trip. 
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Figure 8-16 The impedance trajectory of A-G comparator seen by distance relay for sudden load 

changes on the HVAC/HVDC system 

For comparison, the same condition was simulated in HVAC system. Sudden changes 

in load can cause the power swing occurred in HVAC power systems. All the distance 

relay protections detected the power swing. The apparent impedances seen by the 

distance relay protections were similar. Fig.8-17 shows the A-G impedance trajectory, 

which started at the pre-fault load impedance and moved towards the distance relay 

protection zones during the power swing. After 2.6s, the apparent impedance entered 

the protection zone3 characteristic, and then moved back leaving the trip characteristic. 

After 3.7s, the apparent impedance moved out the zone3 characteristic. The duration 

that apparent impedance stayed inside protection zone3 characteristic was 1.1s, which 

was long enough to cause a zone3 trip. Fig.8-18 (a), (b) show the distance relay’s A-G 

protection block-average comparator output and trip signal. The block-average 

comparator zone3 output crossed the trip level at about 2.6s when apparent impedance 

entered the protection zone3 characteristic and fall below the reset level at 3.75s. The 

trip signal was given at 3.1s, 2.6s+500ms time delay. The trip signal was reset after 

3.75s when comparator output returned back to reset level. Although there were no 

faults, the distance relay tripped due to the power swing. 
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Figure 8-17 The impedance trajectory of A-G comparator seen by distance relay for sudden load 

changes on the HVAC system 
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(a) A-G block-average 

comparator output

(b) A-G relay trip 

signals
 

Figure 8-18 A-G block-average comparator output and relay trip signals for sudden load changes on 

the HVAC system 

8.3.2 Protection response to load2 disconnected and reconnected 

The load2 was disconnected and reconnected in the HVAC/HVDC system in order 

to investigate the distance relay response to the load change. The load change 

resulted in voltage and current changes in the power system, but the HVDC control 

strategies ensured that the variations in the voltage and current did not result in a trip 

impedance. The HVDC link effectively acted as a ‘firewall’ against the power swing. 
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All the distance relay protections detected the voltage and current changes, and the 

apparent impedances seen by all distance relay protections were similar. The A-G 

apparent impedance trajectory is shown in fig.8-19. The apparent impedance started 

at the pre-fault impedance and circled in a clockwise direction. The apparent 

impedance returned to this pre-fault impedance when the power system returned to 

a stable state. The apparent impedance did not enter the distance relay protection 

zones, thus the distance relay did not trip. 
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Figure 8-19 The impedance trajectory of A-G comparator seen by distance relay for a sudden load 

change on the HVAC/HVDC system 

For comparison, the same situation was simulated in the HVAC system. This change 

to the load was important at the load end the HVAC transmission system. The load 

change caused the two generators to struggle with each other and a power swing 

occurred. All the distance relay protections detected the swing voltages and currents. 

The apparent impedances seen by the different distance relay protections were the 

similar. The A-G apparent impedance is shown in fig.8-20 (a) and (b). Fig.8-20 (a) 

shows the overview of the A-G impedance trajectory and fig.8-20 (b) shows the A-

G impedance trajectory that inside the protection zone3 characteristic. The 

impedance trajectory started at the pre-fault load impedance and circled the trip 
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characteristic in a clockwise direction. The apparent impedance changed its direction 

before it entered the protection zones.  Following that the apparent impedance circled 

in a counter-clockwise direction. After 3.23s the apparent impedance entered the 

protection zone3 characteristic. It moved out of the characteristic after 3.63s. The 

apparent impedance continued circling the protection zones in a counter-clockwise 

direction and stopped when simulation ended. The duration that apparent impedance 

stayed inside the protection zone3 characteristic was 400ms, which was shorter than 

zone3 time delay and would not cause the zone3 to trip. Fig.8-21 (a) and (b) show 

the distance relay A-G protection’s block-average comparator output and trip signals. 

The A-G block-average comparator zone3 output crossed the trip level when 

apparent impedance entered the zone3 characteristic. The output returned below 

reset level when apparent impedance moved out of zone3 characteristic. Because the 

duration that apparent impedance stayed inside protection zone3 was shorter than 

the zone3 time delay, the distance relay did not trip. 
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Figure 8-20 The impedance trajectory of A-G comparator seen by distance relay for a sudden load 

change on the HVAC system 
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(a) A-G block-average 

comparator output

(b) A-G relay trip signals

 

Figure 8-21 The A-G block-average comparator output and relay trip signals for a sudden load 

change on the HVAC system 

8.3.3 Protection response to an A-B-C-G fault on line5 at 5kM 

An A-B-C-G fault was applied to the HVAC/HVDC system at the mid-point of line5. 

The fault caused the power system voltages and currents to change as dictated by the 

HVDC system. The HVDC control strategies regulated the fault voltage and current 

and a power swing did not occur. The HVDC link effectively acted as a ‘firewall’ 

against the power swing. The distance relay detected the changes in the fault voltage 

and current, and the fault impedances seen by all of the distance relay protections 

were similar. The A-G fault impedance trajectory is shown in fig.8-22. The fault 
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impedance circled the protection zones in a counter-clockwise direction. When the 

power system returned to a stable state, the fault impedance trajectory returned to 

the pre-fault point. The fault impedance did not enter the protection zones and 

distance relay did not trip. 

Pre-fault 

impedance

 

Figure 8-22 The impedance trajectory of A-G comparator seen by distance relay for an A-B-C-G 

fault on 305km from the relay point on the HVAC/HVDC system 

For comparison, the same situation was simulated in the HVAC system. A power 

swing occurred after the fault was removed. When fault occurred on line5, the 

distance relay detected a fault. The fault impedances seen by all of the comparators 

in the distance relay were similar. The A-G fault impedance is shown in fig.8-23 (a) 

and (b). Fig.8-23 (a) shows the overview of the A-G impedance trajectory and fig.8-

23 (b) shows the A-G impedance trajectory that settled on the fault impedance and 

inside the protection zone3 characteristic. The impedance trajectory first moved 

towards to fault impedance and settled at the equivalent to 305km from the relay. 

When power swing occurred, the fault impedance moved from this fault impedance 

and began to move in a circular manner in a clockwise direction. The seen impedance 

entered the protection zone3 characteristic at 3.15s and left it at 3.9s. The duration 
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that apparent impedance stayed inside protection zone3 characteristic was 750ms, 

which was greater than zone3 time delay and therefore would result in a trip. The 

fig.8-24 (a) and (b) show the distance relay A-G protection block-average 

comparator output and trip signal. The comparator output crossed the trip level after 

fault impedance entered the protection zone3 characteristic after 3.2s. Due to zone3 

time delay, the distance relay zone3 tripped after 3.7s. The distance relay did not trip 

because of the fault but tripped in response to the power swing. 
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Figure 8-23 The impedance trajectory of A-G comparator seen by distance relay for an A-B-C-G 

fault on 305km from the relay point on the HVAC system 
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(a) A-G block-average 

comparator output

(b) A-G relay trip signals

 

Figure 8-24 The A-G block-average comparator output and relay trip signals for an A-B-C-G fault 

at 305km from the relay point on the HVAC system 

8.3.4 Protection response to an A-B-C-G fault at load2 

An A-B-C-G fault was applied to the HVAC/HVDC system at load 2. The fault 

resulted in HVDC control actions to affect the fault voltages and currents. Following 

the fault, a power swing did not occur. Again the HVDC link acted as a ‘firewall’ 

against the power swing.  

The distance relay detected the fault voltage and current, and the fault impedances 

seen by all distance relay protections were similar. A-G fault impedance trajectory 
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is shown in fig.8-25. The impedance trajectory did not enter the protection zones, 

and hence the distance relay had no possibility to trip.  

Pre-fault 

impedance 

 

Figure 8-25 The impedance trajectory of A-G comparator seen by distance relay for an A-B-C-G 

fault on 300km from the relay point on the HVAC/HVDC system 

For comparison, the same scenario was simulated in the HVAC network. This 

caused a power swing which the distance relay detected. The fault impedance 

trajectories seen by all of the distance relay comparators were similar. The A-G fault 

impedance trajectory is shown in fig.8-26 (a) and (b). Fig.8-26 (a) shows the 

overview of the fault impedance trajectory and fig.8-26 (b) shows the fault 

impedance that settled on the fault impedance and inside the protection zone3 

characteristic. The fault impedance settled at the fault impedance at 300km while the 

fault was on the network. When it was removed, the power swing occurred, and the 

fault impedance circled the protection characteristics in a clockwise direction. The 

impedance trajectory entered the protection zone3 characteristic during power swing 

after 3.15s and left it after 4.0s. The period that the fault impedance stayed inside 

protection zone3 characteristic was 850ms, which was greater than zone3 time delay 

and therefore would cause the relay to trip. Fig.8-27 (a) and (b) show the distance 
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relay A-G protection block-average comparator output and trip signal. The 

comparator output began to climb when fault impedance entered the protection 

zone3 characteristic during fault. After 3.2s, the output crossed the trip level. 

Following the 500ms time delay of zone3 protection, the distance relay tripped after 

3.7s. The fault did not cause distance relay to trip because the fault was outside of 

the distance relay protection zone. The following power swing did caused the 

distance relay to trip.  
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Figure 8-26 The impedance trajectory of A-G comparator seen by distance relay for an A-B-C-G 

fault on 300km from the relay point on the HVAC system 
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(a) A-G block-average 

comparator output

(b) A-G relay trip 

signals

 

Figure 8-27 The A-G block-average comparator output and relay trip signals for an A-B-C-G fault 

at 300km from the relay point on the HVAC system 
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8.4 Chapter Summary 

This chapter investigated the impact of disturbance on a HVAC/HVDC system and 

subsequent on distance relay. The investigation was carried out based the Kundur’s 

two area system [68]. For comparison, a similar HVAC interconnection system was 

simulated to demonstrate its response to similar events. 

In the HVAC/HVDC system, where there was a disturbance to the system, the 

HVDC control system modified the power system’s voltages and currents. The 

distance relay apparent impedance trajectories did not enter the protection zones and 

therefore there was no tripping. Cascading failures or blackouts were therefore 

prevented.  

In the HVAC system, when a sudden change happened in the system became 

unstable and entered transient conditions. The changing voltage and current caused 

the distance relay impedance trajectories to enter the protection zones. The distance 

relay tripped when the apparent impedance duration stayed inside the protection 

zones for longer than the pre-set time delays. Although the relay did not trip due to 

the fault, it did trip for the following system disturbance. This could lead to a 

blackout. 
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9.1 Conclusions 

Worldwide, there is a growing need to transport electrical energy over large 

distances and within geographically large areas. Historically, North America has 

offered the greatest opportunities for these wide area systems, however increasingly 

opportunities are arising in China, Western Europe, Eastern Europe, the Middle-East 

and Africa. 

Unfortunately, the North America experiences with such systems have not been 

trouble free. Wide area blackouts occasionally occur with loss of power to large 

geographical areas and affecting large number of consumers. 

The trigger for several of these blackouts has been attributed to operation of the 

protection systems followed by system instability and further protection tripping. 

Recent major blackouts show that the operation of the distance relay caused by 

power swing accelerated system collapse. With HVAC networks, system instability 

led to cascade tripping and the blackout spread to large area affecting many 

consumers. 

The 2003 North America Blackout demonstrated that the inclusion of a HVDC 

interconnection in the HVAC/HVDC network acted as a ‘firewall’ against the power 

outage and prevented the system collapse propagating through the power networks. 

In this thesis, investigations were undertaken to study the behaviour of distance 

relays and the HVDC interconnection reactions during faults and transient 

conditions during a blackout.  

This thesis firstly combined the distance relay and the HVDC interconnection 

together to investigate the behaviour of the distance relay. By investigating the 

Block-average comparator operations and the fault impedance trajectories, the 

behaviour of the distance relay was demonstrated in the thesis when protected 

feeders containing HVDC link during fault conditions and power swing conditions. 

An HVAC system was also simulated under the similar conditions to give 

comparable results. These were modelled using HVAC/HVDC power systems based 

on Kundur’s two-area system using MATLAB/SIMULINK. 
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The thesis focused on the four main areas: 

 The distance relay study and modelling; 

 The HVDC study and modelling; 

 The distance relay operations when the protected network contained both  

HVDC and HVAC interconnections during fault without power swing 

conditions; 

 The distance relay operations when the protected network contained both 

HVDC and HVAC interconnections during fault with power swing 

conditions 

9.1.1 The Distance Relay Studies 

The distance relay uses the measured voltage and current to determine the apparent 

impedance. By comparing the apparent impedance and the relay’s trip characteristics, 

the distance relay determines whether there is a fault and generates trip signal.  

In a power system, the main purpose of the distance relay is to detect and enable 

clearing of a fault as reliably and quickly as possible. This minimizes the damage to 

the power network and maintains the system stability for delivering the electrical 

energy supplies. 

During normal operation, the apparent impedance as seen by the relay is large and 

located outside the distance relay protection zones. During fault, the decrease voltage 

and the increase current results in the apparent impedance entering the distance relay 

protection zones therefore the distance relay trips. 

The simulated distance relay in this thesis used a block-average comparator and a 

Mho characteristic. It used the V and IZ-V signals to generate the Mho circle. The 

Mho characteristic distance relay tripped when the angle argument between the V 

and IZ-V phasors was between -90° and 90°.  

The block-average comparator used in the simulation is widely recognised as the 

standard for distance protection. It measured the duration of polarity coincidence of 

the input signals. When the polarity coincidence differences were between -90° and 

90°, the block-average comparator with its trip integrator generated a trip signal. 
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The fault impedance trajectory plotting circuits used the measuring fault voltage, V, 

and current, I, to compute the fault impedance. The measured voltage and current 

signals must be filtered before inputs into the plotting circuits. The low-pass filters 

and DFTs were used to remove the unwanted high frequency components and extract 

the fundamental phasor information.  

The distance relay’s zone3 protection provides the remote back-up protection and 

covers a wide area along the transmission lines. During power system transient 

conditions, the voltage and current changes may cause the apparent impedances as 

seen by distance relay enter the zone3 protection area and lead to a trip. The 

inappropriate tripping of distance relay zone3 protection due to system instability 

contributes to the power outage spreading through the whole of the power network. 

9.1.2 The HVAC/HVDC Studies 

The HVAC/HVDC transmission system offers benefits in long distance power 

deliveries, in terms of HVAC facilities connections of asynchronous AC system 

interconnections, AC networks enhancement, economics and environments. 

The HVDC link consists of two converter stations operating as rectifier and inverter. 

These converter stations perform the ac/dc/ac conversion and control the power flow 

through the HVDC link.  

The rectifier is provided with a constant current control and was a constant ignition 

angle control which includes a minimum α-limit. The minimum firing angle ensures 

that there is enough voltage across the valves. The constant current control mode 

controls the dc current at the desired value by varying the α. When the direct current 

is smaller than a reference value, the α decreases.  

The inverter is provided with a constant extinction angle control mode and a constant 

current control mode. The constant extinction angle control mode maintains the 

direct voltage. 

Under normal operation, the rectifier is under constant current control mode (CC) 

and the inverter is under constant extinction angle (CEA) control mode. In the 

situation that the ac voltage decreases, the ignition angle α in rectifier decrease in 
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order to maintain the dc voltage. When the ignition angle hits its limit value, the 

rectifier switches to the constant ignition angle control (CIA) and inverter changes 

to the constant current control mode (CC). 

The HVDC control system is also provided with maximum/minimum current control 

and voltage dependent current order limit (VDCOL) control. The maximum current 

control limits the maximum direct current value in order to avoid the damaging of 

the converter valves. The minimum current control limits the minimum direct 

current value in order to keep the direct current being continuous. The VDCOL 

control limits the maximum allowable direct current when the voltage drops below 

a specified value. 

9.1.3 The Distance Relay and HVAC/HVDC System Reactions During Fault 

Conditions 

From the simulation studies, it was shown that when a fault occurred in zone1 area, 

the distance relays trip to the fault both in HVAC/HVDC and HVAC systems. The 

fault impedances seen by distance relay were similar. Different types of faults led to 

the distance relay protections tripping as required.  

When the fault occurred in zone2 area, the results were different. When fault 

occurred on HVDC line, the distance relay did not trip. The fault impedances seen 

by different distance relay comparators were similar. The HVDC line fault led to the 

voltages and currents in the HVAC feeder responding to the fault but did not result 

in a trip. When a similar fault occurred at the same location in the HVAC system, 

the distance relay tripped as expected.  

When faults occurred in zone3 area on the HVAC/HVDC network, both on the 

HVDC line and on the HVAC line beyond the HVDC line, the distance relay did not 

trip. Different types of faults resulted in similar fault impedances as seen by all of 

the relay comparators. The HVDC line effectively isolated the fault. When the same 

faults occurred on the comparable HVAC system, the distance relay tripped as 

expected. 
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When a fault occurred outside the protection zones, both distance relays in the 

HVAC/HVDC system and the HVAC system did not trip. Conversely, the fault 

impedances seen by the different comparators in the distance relay in HVAC/HVDC 

system were similar to the fault impedances when the faults occurred inside 

protection zones. 

The results also presented evidence that when faults occurred on the HVAC/HVDC 

network, and the fault location was on the HVDC line, distance relay did not trip.  

For HVAC/HVDC network, when faults occurred both on HVDC line and beyond 

HVDC link on HVAC line and inside the distance relay protection zones, the 

distance relay did not trip. The HVDC link isolated the fault. The fault impedances 

seen by the different comparators of the distance relay were similar irrespective of 

the fault types. All of the distance relay protection detected similar fault impedances. 

There were no further trips of the HVAC lines in HVAC/HVDC system. Distance 

protection tripping was constrained to the HVAC line before the HVDC 

interconnection and cascade tripping was prevented. 

9.1.4 The Distance Relay and HVAC/HVDC Reactions During Power Swing 

Conditions 

From the simulation studies, it was shown that, when a power swing occurred in the 

HVAC system caused by line faults, load change and load short circuits did not occur 

in the HVAC/HVDC system. The HVDC control schemes regulated the network 

voltages and currents and maintained the power system in a stable state.  

In the HVAC network, the power swing was shown to cause the distance relay to 

trip. During the power swing, the changes in system voltages and currents resulted 

in the apparent impedance detected by distance relay entering the protection relay’s 

zone3 protection characteristic causing the distance relay to trip. The distance relay 

tripped in response to power a swing conditions rather than true fault. When power 

swing occurred, the apparent impedances as seen by the different comparators in the 

distance relay were similar. 
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The HVDC link regulated the power swing voltage and current and helped to 

maintain the power system stable state. The distance relay in the HVAC/HVDC 

system can detect the power swing voltage and current. However, due to HVDC 

voltage and current regulation, the variations in the voltages and currents did not 

result in the distance relay tripping. The power system remained in a stable state.  

The HVDC acted as a ‘firewall’ against the power outages and prevented the 

potential large blackout. 

Use of a HVDC interconnection has been shown to provide a significant 

improvement in the performance of a high voltage power system. The fault on and 

beyond the HVDC terminal within distance relay protection zones does not trigger 

the distance relay to trip. The response to unbalance between load and generation 

does not cause the apparent impedance seen by distance relay to enter the protection 

zones with HVDC interconnections. The potential for a blackout does not happen in 

HVAC/HVDC system. Such hybrid AC/DC power system offers significant 

advantage in terms of power system stability and reliability.  
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9.2 Future work 

HVDC Converter Internal Faults 

In this thesis, the response to internal fault inside the HVDC converter has not been 

considered. The converter internal faults including valve misfire, backfire, 

commutation failure and short circuits within the converter station. The commutation 

failure is the most common disturbance during inverter operation. These internal 

faults affect the network’s voltage and current and will cause a disturbance to the 

nearby HVAC system. The ac voltage and current disturbance will cause the distance 

relay to respond and probably trip. A subsequent issue stemming from this is 

scenario in the co-ordination of the converter protection and the network’s protection. 

The zero-sequence current that caused by single phase to ground fault was not 

considered. These zero-sequence current may cause commutation failure in the 

converter stations especially on the inverter side AC system fault. 

VSC HVDC System 

The modelled and tested HVDC scheme in the thesis was CSC HVDC based on 

thyristor valves. It was a monopolar HVDC scheme which consisted of two 

converters connected with a single conductor. The return path used ground.  

Increasingly VSC HVDC control schemes which utilize self-commutating switches, 

such as gate turn off thyristors (GTOs) or insulated-gate bipolar transistors (IGBTs) 

are becoming more popular. The VSC HVDC scheme consists of two conductors, 

one of which is operated in positive voltage and the other in negative voltage. Since 

the VSC HVDC has two conductors, the fault types may vary depending on the 

faulted conductors. The fault types may include single line to ground fault, line to 

line fault, line to line to ground fault and line to line to ground fault at different 

locations. Future research should focus on the distance relay’s operations during 

these faults. 

The VSC HVDC can control both active and reactive power independently, and is 

independent of dc voltage level. The VSC HVDC can control reactive power to 

regulate the ac system voltage. The future studies should also focus on the distance 
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relay operations during power system dynamic conditions when interconnected by 

VSC controlled HVDC links.  

HVDC and HVAC Parallel  

The modelled power system used an HVDC interconnection and HVAC lines 

connected in series. The fault current was transmitted along the AC and DC lines. 

The simulation results show that when the fault was on the HVDC interconnection 

and beyond the HVDC link, it did not cause the distance relay to trip. The absence 

of power swing following a system unbalance did not result in the distance relay 

tripping with HVDC interconnection either. 

However, the situation where the HVDC interconnection operated in parallel with 

the HVAC interconnection was not considered in the thesis. The fault current 

blocked by the HVDC interconnection would be transmitted through the HVAC 

interconnection and the distance relay may trip. The further investigation should 

focus on the system where with HVDC interconnection operated parallel with the 

HVAC interconnection.  

Both the CSC and VSC controlled schemes for the HVDC interconnection should 

be considered.  

With CSC HVDC interconnection operated in parallel with HVAC interconnection, 

following conditions should take in consideration, faults on HVDC interconnection, 

different types of faults on HVAC interconnection and faults beyond the 

interconnections. The distance relay response to these faults will be investigated in 

the future research. 

With VSC HVDC interconnection operated in parallel with HVAC interconnection, 

the following conditions should also be considered with, different types of faults on 

VSC HVDC terminals, different types of faults on HVAC interconnection, and faults 

beyond these interconnections. The distance relay’s operations will be investigated 

in the future research. 

The voltage collapse can spread through an HVAC system but was constrained by a 

HVDC link. Under the situation that the power swing occurs, the swing voltage and 
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current would be blocked by HVDC interconnection, but would pass through the 

HVAC interconnection.  The future research should also focus on the distance relay 

operations during power swings when the system is interconnected by HVDC 

interconnection operated parallel with the HVAC interconnection.
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Appendix.A 

The Kundur’s two area system. 

 

Fig.A-1 The Kundur’s two area system 

The generator’s parameters: 

Rs 0.0025pu 

Xd 1.8pu 

Xq 1.7pu 

Xl 0.2pu 

Xd' 0.3 pu 

Xq' 0.55 pu 

Xd" 0.25 pu 

Xq" 0.25 pu 

Td0' 8.0s 

Tq0' 0.4s 

Td0" 0.03s 

Tq0" 0.05s 

H 6.5s 

Rating Power 900MVA 

Vrms 20kV 

fn 60Hz 
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The AC line parameters: 

Positive-sequence Zero-sequence 

r1 x1 r0 x0 

0.053Ω/km 0.531 Ω/km 1.638 Ω/km 2.312 Ω/km 

 

The HVDC link parameters: 

Rated Power 200MW 

Rated Voltage 56 kV 

Rated Current 3.6 kA 

AC side voltage 230 kV 

Commutating Reactance 0.57 Ω 

Reactive Power Support 125 MVAr 

 

The DC line parameters: 

DC line resistance 1.5 Ω 

DC line inductance 100 mH 

Smoothing Reactor 50 mH 
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Appendix.B 

Testing distance relay in a simple AC system 

 

The AC line parameters: 

Positive-sequence Zero-sequence 

r1 x1 r0 x0 

0.053Ω/km 0.531 Ω/km 1.638 Ω/km 2.312 Ω/km 

 

The distance relay settings: 

Zone1 1.87 Ω + j18.73 Ω 

Zone2 2.8 Ω + j28.1 Ω 

Zone3 5.84 Ω + j58.54 Ω 
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Appendix.C 

C.1 B-G Fault at 50 km 

 

Figure. C-1 The B-G fault impedance trajectory 

 

Figure. C-2 B-Gblock-average comparator output 
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Figure. C-3 Distance relay trip signal 

 

Figure. C-4 A-G, C-G, A-B, B-A, C-A fault impedance trajectories 
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C.2 C-G Fault at 50km 

 

Figure. C-5 C-G fault impedance trajectory 

 

Figure. C-6 C-G block-average comparator output 
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Figure. C-7 Distance relay trip signal 

 

Figure. C-8 A-G, B-G, A-B, B-C, C-A impedance trajectories 
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C.3 B-C Fault at 50km 

 

Figure. C-9 B-C fault impedance trajectory 

 

Figure. C-10 B-C block-average comparator output 
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Figure. C-11 Distance relay trip signal 

 

Figure. C-12 A-G, B-G, C-G, A-B, C-A impedance trajectories 
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Figure. C-13 Block-average comparator outputs 

(a) B-G block-average comparator output 

 (b) C-G block-average comparator output  

(c) A-B block-average comparator output  

(d) C-Ablock-average comparator output 
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Figure. C-14 Distance relay trip signals 

(a) B-G relay trip signals  

(b) C-Grelay trip signals 

 (c) A-Brelay trip signals 

 (d) C-Arelay trip signals 
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C.4 C-A Fault at 50km 

 

Figure. C-15 C-A fault impedance trajectory 

 

Figure. C-16 C-Ablock-average comparator output 
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Figure. C-17 Distance relay trip signal 

 

Figure. C-18 A-G, B-G, C-G, A-B, B-C impedance trajectories 
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Figure. C-19 Block-average comparator outputs 

(a) A-G block-average comparator output 

(b) C-Gblock-average comparator output 

(c) A-B block-average comparator output  

(d) B-Cblock-average comparator output 
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Figure. C-20 Distance relay trip signals 

(a) A-G relay trip signals  

(b) C-G relay trip signals  

(c) A-B relay trip signals  

(d) B-Crelay trip signals 
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C.5 C-A-G Fault at 50km 

 

Figure. C-21 A-G, C-G, C-A fault impedance trajectories 
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Figure. C-22Block-average comparator outputs 

(a) A-G block-average comparator output 

(b) C-G block-average comparator output  

(c) C-Ablock-average comparator output 
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Figure. C-23Distance relay trip signals 

(a) A-G relay trip signals  

(b) C-G relay trip signals  

(c) C-Arelay trip signals 
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Figure. C-24 B-G, A-B, B-C fault impedance trajectories 
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Figure. C-25 Block-average comparator outputs 

(a) B-G block-average comparator output 

(b) A-B block-average comparator output  

(c) B-Cblock-average comparator output 
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Figure. C-26 Distance relay trip signals 

(a) B-G relay trip signals  

(b) A-B relay trip signals  

(c) B-Crelay trip signals 
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C.6 A-B-G Fault at 50km 

 

Figure. C-27 A-G, B-G, A-B fault impedance trajectories 
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Figure. C-28 Block-average comparator outputs 

(a) A-G block-average comparator output  

(b) B-G block-average comparator output  

(c) A-Bblock-average comparator output 
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Figure. C-29 Distance relay trip signals 

(a) A-G relay trip signals  

(b) B-G relay trip signals  

(c) A-Brelay trip signals 
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Figure. C-30 C-G, B-C, C-A fault impedance trajectories 
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Figure. C-31 Block-average comparator outputs 

(a) C-G block-average comparator output  

(b) B-C block-average comparator output  

(c) C-Ablock-average comparator output 
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Figure. C-32 Distance relay trip signals 

(a) C-G relay trip signals  

(b) B-C relay trip signals  

(c) C-Arelay trip signals 
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Appendix.D 

D.1 B-G Fault at 100km 

 

Figure. D-1 B-G fault impedance trajectory 

 

Figure. D-2 B-GBlock-average comparator output 
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Figure. D-3Distance relay trip signals 

 

Figure. D-4 A-G, C-G, A-B, B-C, C-A impedance trajectories 
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D.2 C-G Fault at 100km 

 

Figure. D-5 C-G fault impedance trajectory 

 

Figure. D-6 C-G Block-average comparator output 
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Figure. D-7 Distance relay trip Signals 

 

Figure. D-8 A-G, B-G, A-B, B-C, C-A impedance trajectories 
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D.3 B-C Fault at 100km  

 

Figure. D-9 B-Cfault impedance trajectory 

 

Figure. D-10 B-C block-average comparator output 
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Figure. D-11 Distance relay trip signals 

 

Figure. D-12 A-G, B-G, C-G, A-B, C-A fault impedance trajectories 
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Figure. D-13 Block-average comparator outputs and distance relay trip signals 

(a) B-G Block-average comparator outputs  

(b) C-GBlock-average comparator outputs  

(c) B-G Distance relay trip signals 

(d) C-G Distance relay trip signals 
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D.4 C-A Fault at 100km  

 

Figure. D-14 C-Afault impedance trajectory 

 

Figure. D-15 C-ABlock-average comparator output 
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Figure. D-16 C-ADistance relay trip signals 

 

Figure. D-17 A-G, B-G, C-G, A-B, B-C fault impedance trajectories 
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Figure. D-18 Block-average comparator outputs and distance relay trip signals 

(a) A-G Block-average comparator outputs  

(b) C-GBlock-average comparator outputs  

(c) A-G Distance relay trip signals 

(d) C-G Distance relay trip signals 
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D.5 A-B-G Fault at 100km 

 

Figure. D-19 A-G, B-G, A-G fault impedance trajectories 
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Figure. D-20 Block-average comparator outputs 

(a) A-G block-average comparator output  

(b) B-G block-average comparator output  

(c) A-Bblock-average comparator output 
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Figure. D-21 Distance relay trip signals 

(a) A-G relay trip signals  

(b) B-G relay trip signals  

(c) A-Brelay trip signals 
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Figure. D-22 C-G, B-C, C-A fault impedance trajectories 
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D.6 C-A-G Fault at 100km 

 

Figure. D-23 A-G, C-G, C-A fault impedance trajectories 
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Figure. D-24 Block-average comparator outputs 

(a) A-G block-average comparator output  

(b) C-G block-average comparator output  

(c) C-Ablock-average comparator output 



Appendix 
 

 

 

Page | 278 

 

 

Figure. D-25 Distance relay trip signals 

(a) A-G relay trip signals  

(b) C-G relay trip signals  

(c) C-Arelay trip signals 
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Figure. D-26 B-G, A-G, B-C fault impedance trajectories 
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Appendix.E 

E.1 B-G Fault at 200km 

 

Figure. E-1 B-G fault impedance trajectory 

 

Figure. E-2 B-G Block-average comparator output 
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Figure. E-3 B-GDistance relay trip signals 

 

Figure. E-4 A-G, C-G, A-B, B-C, C-A fault impedance trajectories 
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E.2 C-G Fault at 200km 

 

Figure. E-5 C-GFault impedance trajectory 

 

Figure. E-6 C-G Block-average comparator output 
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Figure. E-7 C-G Distance relay trip signals 

 

Figure. E-8 A-G, B-G, A-B, B-C, C-Afault impedance trajectories 
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E.3 B-C Fault at 200km 

 

Figure. E-9 B-C Fault impedance trajectory 

 

Figure. E-10 B-C block-average comparator output and B-Cdistance relay trip signals 

(a) B-C block-average comparator output 

(b) B-C relay trip signals 
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Figure. E-11 A-G, B-G, C-G, A-B, C-A Fault impedance trajectories 

 

Figure. E-12 B-G Block-average comparator output and B-G distance relay trip signals 

(a) B-G block-average comparator output 

(b) B-G relay trip signals 
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E.4 C-A Fault at 200km 

 

Figure. E-13 C-A Fault impedance trajectory 

 

Figure. E-14 C-A Block-average comparator output and C-Adistance relay trip signals 

(a) C-A block-average comparator output 

(b) C-A relay trip signals 
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Figure. E-15 A-G, B-G, C-G, A-B, B-Cfault impedance trajectories 

 

Figure. E-16 C-G block-average comparator output and C-G distance relay trip signals 

(a) C-G block-average comparator output 

(b) C-G relay trip signals 
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E.5 A-B-G Fault at 200km 

 

Figure. E-17 A-G, B-G, A-B fault impedance trajectories 
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Figure. E-18 Block-average comparator outputs 

(a) A-G block-average comparator output 

(b) B-G block-average comparator output  

(c) A-Bblock-average comparator output 
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Figure. E-19 Distance relay trip signals 

(a) A-G relay trip signals  

(b) B-G relay trip signals  

(c) A-Brelay trip signals 
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Figure. E-20 C-G, B-C, C-A fault impedance trajectories 
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E.6 C-A-G Fault at 200km 

 

Figure. E-21 A-G, C-G, C-A fault impedance trajectories 
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Figure. E-22 Block-average comparator outputs 

(a) A-G block-average comparator output 

(b) C-G block-average comparator output  

(c) C-Ablock-average comparator output 
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Figure. E-23 Distance relay trip signals 

(a) A-G relay trip signals  

(b) C-G relay trip signals  

(c) C-Arelay trip signals 
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Figure. E-24 B-G, A-B, B-Cfault impedance trajectories 
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Appendix.F 

The HVDC interconnection connects AC network to an infinite bus: 

 

The HVAC interconnection connects AC network to an infinite bus: 

 

The HVDC interconnection connects AC network to Load 1: 
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The HVAC interconnection connects AC network to Load 1: 

 

The two area system with HVDC interconnection: 

 

The two area system with HVAC interconnection: 
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The line parameters and distance relay settings are the same as shown in Appendix. 

A and B. 
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Appendix.G 

List of Relevant Publications 

1.  H.L.Wang, M.A.Redfern, "The advantages and disadvantages of using HVDC to 

interconnect AC networks," Universities Power Engineering Conference (UPEC), 

2010 45th International, vol., no., pp.1,5, Aug. 31 2010-Sept. 3 2010 

2. H.L.Wang, M.A.Redfern, "Enhancing AC networks with HVDC 

interconnections," Electricity Distribution (CICED), 2010 China International 

Conference on, vol., no., pp.1,7, 13-16 Sept. 2010 

3.  H.L.Wang, M.A.Redfern, "HVDC to Constrain System Collapse Propagating 

Through the Power Transmission Networks," Universities' Power Engineering 

Conference (UPEC), Proceedings of 2011 46th International, vol., no., pp.1,6, 5-8 

Sept. 2011 
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