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Abstract.

There is a growing interest in Term Rewriting Systems (TRS's), which are used as a conceptual
basis for new programming languages such as functional languages and algebraic specification
languages. TRS's serve as a computational model for (parallel) implementations of these languages.
They also form the foundation for a calculus for Graph Rewriting Systems (GRS's). In Rewriting
Systems reduction strategies play an important role because they control the actual rewriting process.
Strategies determine the order of the rewriting and the rules to apply. Hence they have a great influence
on the efficiency and the amount of parallelism in the computation. In ambiguous or non-deterministic
TRS's, they even influence the outcome of the computation. Some of the reduction strategies used in
TRS's are extremely complex algorithms. Unfortunately, there is no common formal specification
method for reduction strategies yet.

In this paper three formal methods for specifying reduction strategies in TRS's are presented. In the
first method the reduction strategy is encoded in the TRS itself. The original TRS is transformed to a so
called annotation TRS in which the strategy is encoded using functions. This annotation TRS itself
may use any normalizing reduction strategy. Unfortunately, compared with the number of rules of the
original TRS, the annotation TRS may contain an exponential number of additional rules. In the second
method this drawback is prevented, simply by using a priority TRS as annotation TRS. The desire to
specify a strategy uniformly for all TRS's leads to the third method. A new TRS system is introduced
that uses two basic primitives for matching and rewriting and that is build out of three separate TRS's.
The use of this abstract-interpretation TRS is shown to be the most promising method.

0. Introduction.

A Term Rewriting System (TRS) consists of a term τ to rewrite and a set ρ of rewrite rules.

A reduction strategy σ is an algorithm which determines in which order the rewritable subterms

of the term (the so called redexes i.e. reducable expressions) have to be rewritten and which

rules have to be applied. A TRS with a strategy will be called a term reducer or a term rewriter.

A redex is a subterm which matches the left-hand-side (LHS) of a rewrite rule. TRS's consist of

variables and symbols. Symbols start with an upper case character. All symbols that occur as

left-most symbol of a rewrite rule are functions, other symbols are constructors.
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 For instance when we have the following well-known set of rewrite rules:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z) (S)

Ap (Ap K x) y → x (K)

the term Ap (Ap (Ap K S) S) (Ap (Ap K K) K) can be rewritten to Ap S (Ap (Ap K K) K) and finally to

Ap S K by applying two times the rule (K). In this example Ap is a function, S and K are

constructors and x, y and z are variables.

A thorough introduction to TRS's is given in [KLO85]. TRS based languages like DACTL

[GLA85] and Lean [BAR86a] are used as a computational model for implementations of new

languages such as Miranda [TUR85] and OBJ [FUT84]. Currently  various attempts ([BAR86b]

based on [RAO84] and [BRO86] based on [EHR78]) are made to extend TRS's to a calculus for

Graph Rewriting Systems (GRS's), in order to make them serve as a computational model of

(parallel) graph reducing implementations.

A strategy in a TRS can be compared with the control flow in an ordinary imperative

programming language. In the example above the strategy recursively takes the left-most redex

in the term until the term after rewriting contains no redexes anymore and therefore it is in

normal form. The outcome of the rewriting process may depend on the strategy followed. In

particular this is the case if the TRS is ambiguous.

We distinguish the following forms of ambiguity:

- Non-deterministic type of rules, i.e. rules of which the LHS's match the same instance, such

as

 Choose x y → x

Choose x y → y

- Strongly ambiguous rules of which (an instance of) a subterm of a LHS is a redex, e.g.

 G (K n 1) → 1

K x y → x

 or, more subtle



 F (F x)  → ...

which is ambiguous with itself.

For TRS's like these the outcome is depending on the strategy that is followed. Non-

deterministic rules such as Choose might be useful but, of course, the strategy must support it by

making a non-deterministic choice between the rules. Another example of a useful ambiguous

definition is the following TRS which still has the Church-Rosser property (i.e. the system has

an unique normal form):

Or True x → True

Or x True → True

Or False False → False

Although in the case that the TRS is Church-Rosser, the outcome of the computation will not

depend on the order in which redexes are chosen, it can happen that depending on the strategy

followed the rewrite process may or may not terminate. Take for instance Berry's example

which has a unique normal form:

F x 0 1 → x

F 0 x 0 → x

F 1 1 x → x

Let's assume that of the actual arguments of F in the term there are two arguments which

reduce to the indicated normal form while the other argument has no normal form at all. The

most efficient strategy would not touch the latter. Unfortunately, on forehand we do not know

which argument that is. Forcing argument evaluation if a pattern is specified on the

corresponding position in a rule will start a non terminating computation. The only safe way to

reach the normal form is to reduce each argument of F once to see if the term has become a redex

(the parallel outermost strategy). This strategy is not always the most efficient one.

Another example which shows the importance of strategies is the following program with a

pretty familiar appearance:

 Fac 0 → 1                             (1)

Fac n → * n (Fac (- n 1))           (2)



It only has the obvious semantics if the right strategy is chosen. In general the rules are

ambiguous because Fac 0 matches both rules. Fac (- 1 1) even matches the wrong rule. However a

valid definition of Fac can be obtained if the argument of Fac is evaluated on forehand and the

first rule has priority over the second rule. Now Fac (- 1 1)  will be reduced to Fac 0 and the

priority of the rules guarantees that Fac 0 now matches only the first rule. The reduction strategies

in most functional languages are of this type.

Hence we must conclude that, unfortunately, there is no best strategy for all TRS's. Safe

strategies are not always in all cases efficient. Efficient strategies are not always in all cases safe.

Some algorithms can be expressed more conveniently in one strategy than another. Also one

could prefer some strategies for specific reasons, e.g. for a parallel architecture one would like to

reduce as much redexes as possible in parallel. One could also imagine, as is proposed in Lean,

that several strategies are mixed in one and the same TRS in order to optimize performance and

descriptive power. All this gives rise to complex strategies which cannot be explained anymore

in terms  like "take the left-most redex". Hence there is a need to specify strategies formally.

Before we will specify reduction strategies we must first ask ourselves the question what the

properties must be of a good strategy specification. Of course it must specify which redexes are

to be rewritten in which order and which of the matching rules have to be applied. If we see the

specification as an algorithm, the execution of that algorithm must reduce exactly the same

redexes in exactly the same order as the original strategy does. There is however a problem in

the case of parallel reduction strategies which is caused by the concept time. The question arises

if two redexes, which according to the original strategy have to be reduced in parallel, also have

to be executed at the same time when we execute the corresponding specification.

This consideration leads to two views on parallel reduction: synchronous and asynchronous.

According to the synchronous view the strategy recursively determines one or more redexes

which have to be reduced in parallel after which these redexes are all rewritten in one step. This

view is often used in a theoretical framework but in practice there are only very few machines for

which this view is applicable (e.g. [MAG80]). In most distributed environments the strategy

algorithm is also implemented distributed and the asynchronous view is therefore more

appropriate. In the asynchronous view redexes which are reduced in parallel are actually reduced

in any (possibly parallel) order while the strategy may already have determined new redexes

although not all previously assigned redexes were rewritten. In the asynchronous view we

cannot state that the execution of the specification must rewrite all  redexes in the same order as

the original strategy would do. A specification can only model the dynamic behaviour. Though

in this paper the specifications are used mainly in a sequential context, they can be easily

extended to a parallel environment with the synchronous view as well as using the asynchronous

view.



There are many ways in which strategies can be specified. In this paper three methods are

introduced and a comparison between them is made. All methods create TRS's which can be

reduced with any normalizing strategy.

1. Specification of the strategy by transforming the TRS τ to another one annotation-τ; reducing

the latter induces the wanted strategy on τ.

2. Same as 1., but now in annotation-τ there is a priority in the rewrite rules (specificity).

3. The strategy is specified in a separate TRS on a different level.

For each method we will work out as a simple example the TRS consisting of the Curry

combinators K and S (notated with explicit application functions). The strategy to be specified

will be head reduction, i.e. left-most reduction to head normal form. A term is in head normal

form if no reduction can possibly lead to a rewrite of the head of the term. We will refer to the

example as Curry's example. For every method Curry's example will be proven correct. These

proofs will be using O'Donnell's definition of a TRS simulating another TRS [O'DO85]. The

methods are compared in terms of ease of correctness proving, ease of developing, ease of

expressing efficient strategies etcetera.

1. Transforming a TRS to an Annotation TRS.

1.1 Description of the Method.

The method is inspired by the use of strictness annotations in functional programming

languages (Miranda e.g.) which serve as compiler directives. The general idea is that we use

such annotations, for instance a shriek "!", for labeling those redex(es) in the term that should be

rewritten. Instead of directives we use functions. These functions have ordinary semantics

which enables us to use the full TRS semantics to reason about their meaning. Therefore the

original TRS is transformed to an annotation TRS. All rules in this annotation TRS start with

these functions and therefore only those redexes of the original TRS which are "annotated", are

also redexes in the annotation TRS. The annotation TRS itself can be reduced with any

normalizing reduction strategy.

A small example: if the rules of the original TRS are:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z) (S)

Ap (Ap K x) y → x (K)



Then these rules are transformed to:

! (Ap (Ap (Ap S x) y) z) → Ap (Ap x z) (Ap y z) (1)

! (Ap (Ap K x) y) → x (2)

This TRS has only one function; the function !. The transformation has as a consequence that

functions in the original TRS (Ap in the example) now become constructors in the annotation

TRS. Of course, also the term to reduce must be marked. For instance if Ap ((Ap (Ap K S) S) (Ap

(Ap K K) K) is transformed to Ap (! (Ap (Ap K S) S)) (Ap (Ap K K) K) it has only one redex in the

annotation TRS. Due to the applicative order reduction this redex will be reduced giving Ap S (Ap

(Ap K K) K) as result.

Hence only one of the redexes that is present in the original TRS, is reduced. This is the one

which was marked.

In order to continue this process one also has to insert new markings for those redexes which

have to be reduced next. When we specify a strategy in this way quite a lot of additional rules

have to be added to deal with markings in the right way. Also the outcome of the computation

must be the same as in the original TRS, i.e. all marking must disappear at the end. Let's try to

make clear what kind of additional rules are needed by looking at our example.

1.2 Expressing Head Reduction for Curry's Example.

We start off with the rules of the ordinary TRS:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z) (S)

Ap (Ap K x) y → x (K)

We add exclamation marks to the left-hand-side of the rules of the original TRS in order to

promote the original redexes to redexes in the new system.

! (Ap (Ap (Ap S x) y) z) → Ap (Ap x z) (Ap y z) (1)

! (Ap (Ap K x) y) → x (2)

Note that the function ! has only one argument, hence the parentheses around the argument will

be sometimes redundant. When there can be no confusion, we will leave them out.

We need a general propagation rule to achieve a left-most search for a redex.

! (Ap (Ap (Ap (Ap v w) x) y) z) → Ap (! (Ap (Ap (Ap v w) x) y)) z (3)



The propagation rule takes care of the propagation of the ! for the case that we have a pattern

with four Ap's on the left. We also have to specify what happens for all other cases, i.e. when

we have less than four Ap's. They can be divided in two classes:

1) The ! may have an argument which contains no redex at all. In this case the !-function must

reduce to its argument in order to get the same normal form as in the original TRS. For each

non-redex we have to add a rule. This gives us five additional rules.

! S → S (4)

! K → K (5)

! (Ap K x) → Ap K x (6)

! (Ap S x) → Ap S x (7)

! (Ap (Ap S x) y) → Ap (Ap S x) y (8)

Note that we could not write a more general rule like

! (Ap x y) →  Ap x y

because this rule is ambiguous with the K rule. This would introduce the danger that ! (Ap (Ap K

K) K) is reduced to Ap (Ap K K) K instead of being reduced to K.

2) The ! may have an argument of which a subterm is a redex. We call rules that are

introduced to handle these cases envelope-rules. In this example only one envelope-rule is

needed:

! (Ap (Ap (Ap K x) y) z) →  Ap x z (9)

The nine rules we have given so far, model exactly one step of the head reduction strategy.

In order to model the complete reduction to head normal form, the exclamation mark has to be

created over and over in a driver rule like

* term →  * (! term)

In order to let this reduction stop we must encode in the term whether or not a rewrite (according

to the strategy on the original TRS) was done. We use a success constructor '+' to denote that a

rewrite was done and a failure constructor '-' to denote that it wasn't. We add the following

'driver' rules



* (- term) →  term (10)

* (+ term) →  * (! term) (11)

The strategy stops if on the term no rewrite was done (10). Of course we must also change all the

other rules to make them produce a result with the proper success or failure constructor (+/-).

Furthermore we must also propagate these constructors back to the beginning of the term  so that

we can make the decision whether or not to stop the strategy. This is done by adding the

following rules:

~ (Ap (- x) y) →  - (Ap x y) (12)

~ (Ap (+ x) y) →  + (Ap x y) (13)

and by changing the propagation rule to:

! (Ap (Ap (Ap (Ap v w) x) y) z) → ~ (Ap (! (Ap (Ap (Ap v w) x) y)) z) (3)

Finally the complete set of rules is:

! (Ap (Ap (Ap  S x) y) z) → + (Ap (Ap x z) (Ap y z)) (1)

! (Ap (Ap K x) y) → + x (2)

! (Ap (Ap (Ap (Ap v w) x) y) z) → ~ (Ap (! (Ap (Ap (Ap v w) x) y)) z) (3)

! S →  - S (4)

! K →  - K (5)

! (Ap K x) →  - (Ap K x) (6)

! (Ap S x) →  - (Ap S x) (7)

! (Ap (Ap S x) y) →  - (Ap (Ap S x) y) (8)

! (Ap (Ap (Ap K x) y) z) →  + (Ap x z) (9)

* (- term) →  term (10)

* (+ term) →  * (! term) (11)

~ (Ap (- x) y) → - (Ap x y) (12)

~ (Ap (+ x) y) → + (Ap x y) (13)

The initial term is

* (! term).

Note that it was also possible to achieve the same result using only one annotation function in

stead of three different functions. This was not done for reasons of clarity.



1.3 Correctness Proof.

In this section we first formally define what it means for a strategy to specify another

strategy. This definition will also be used in the proofs of the other methods. Then we proof that

Curry's example, as it was specified with this method, satisfies the corresponding conditions

and we finish this section with some general remarks on proving specifications that are

constructed with this method. We also introduce some new terminology for a special kind of

TRS that we encounter.

1.3.1 Definition of Specification.

In his excellent book [O'DO85] Michael O'Donnell defines what it means for a TRS to simulate

another TRS. When one considers a strategy of a TRS to be giving a restriction on the reduction

relation, then restricting the reduction relation to what is specified by the strategy, his definition

can be used directly as the definition for one term rewriter specifying another. This results in the

following definition:

Let <το, →σ> and <τs, →π> be reducers where →σ and →π are the reduction relations of

τo (the original TRS) and τs (the specification TRS) restricted to the strategies σ and π, then τsπ
specifies τoσ if there exist

an encoding set E Ÿ τs,

a decoding function d: τs → τo ‹ {nil} with nil ‡ τo,

a computation relation →c Ÿ →s,

such that

1. d[E] = τo & d-1[Nτoσ] ¤ E Ÿ Nτsπ
where Nτxψ is the set of normal forms of a TRS τx with respect to the strategy ψ,

2. ∀α, β ¶ τs  α →c β  ⇒  d(α) →o d(β),

3. ∀α, β ¶ τs  α (→sπ-→c) β  ⇒  d(α) = d(β)

where →sπ-→c stands for any sπ reduction that is not a c reduction,

4. ∀α ¶ E, β ¶ τo  d(α) →oσ β  ⇒  ∃δ ¶ E  α (→sπ-→c)* →c (→sπ-→c)* δ & d(δ) = β,
5. ∀α ¶ Nτsπ  d(α) ¶ Nτoσ ‹ {nil},

6. There is no infinite (→sπ-→c) reduction path and moreover there exists a bounded function b

: τo → » such that ∀α, β ¶ E  α (→sπ-→c)m →c (→sπ-→c)n β  ⇒ m < b(d(α)) & n <

b(d(α)).



The specification is called effective if b, →c, d and E are all total computable.

Intuitively, this means that we encode terms into another TRS allowing multiple encodings.

The first condition requires that decoding respect normal forms. The specifying TRS has

computational reductions which mirror a rewrite in the original TRS and non-computational

reductions which are internal book-keeping steps. Conditions 2,3 and 4 require that every

original reduction is simulated by any number of book-keeping steps which do not change the

encoded expression, followed by exactly one computational reduction to effect the change in the

encoded expression. This reduction may again be followed by book-keeping steps. Condition 5

prevents dead ends in the specification. Condition 6 states that the number of book-keeping steps

is not allowed to grow without bound, otherwise e.g. all possible original reduction sequences

could be simulated before officially choosing one of them, which clearly is not what we want.

All conditions together mean that we really simulate the steps of the original TRS and not only

return the appropriate normal forms as a result.

For the function d we basically need to describe which term is encoded for all reducts of the

elements of the encoding set, but we also have to define which terms are not reducts of elements

of E and are therefore decoded to nil. Maybe it is possible to give a precise definition of a TRS

simulating another one using a decoding function which is only defined on reducts of elements

of E. In the future we would like to do research along this line to find out whether for our

purposes it is possible to simplify this definition.

1.3.2 Proof of Curry's Example.

We define the encoding set E as Nτoσ ‹ { * (! t) | t ¶ τo-Nτoσ}, where τo-Nτoσ stands for

the set of all terms of τo that are not terms of Nτoσ. The set of constructors *,+,-,!,~ is called A.

The decoding function d is defined as follows:

x ¶ Nτoσ › d(x)  = x

x matches one of the rules of τs and

the subterms matching variables do

not contain elements of A › d(x) = x with all applications of elements of A skipped

in all other cases d(x) = nil.

The computation relation c is given by rules (1), (2) and (9). This leaves us to proof that all
conditions are satisfied. When we are not interested in the strategy π of τsπ (i.e. the statement

holds for any normalizing strategy of τs), we will leave out the strategy suffix π.



1a. d[E] = τo

Clear from the definitions.

1b. d-1[Nτoσ] ¤ E Ÿ Nτs

Suppose we have α ¶ E and β ¶ Nτoσ with d(α) = β, then α = β and because α does not

contain any elements of A, α ¶ Nτs.

2. ∀α, β ¶ τs  α →c β  ⇒  d(α) →o d(β)

Reductions according to the rules (1), (2) and (9) decode into S and K reductions.

3. ∀α, β ¶ τs  α (→s-→c) β  ⇒  d(α) = d(β)

Follows directly from the definition of d.

4. ∀α ¶ E, β ¶ τo  d(α) →oσ β  ⇒  ∃δ ¶ E  α (→s-→c)* →c (→s-→c)* δ & d(δ) = β

Suppose we have α ¶ E, d(α) →oσ β; then d(α) ‡ Nτoσ, hence α is of the form * (! t) with t ‡

Nτoσ. So d(α) = t and t reduces in τoσ to β. We have to find a δ ¶ τs such that d(δ) = β and α
(→s-→c)* →c (→s-→c)* δ; t ‡ Nτoσ, so t has a head-redex r in τo, hence t is of the form Ap1

( ...

Apn (Ap ( Ap (Ap S x) y) z) argn) ... arg1 or Ap1 ( ...Apn (Ap (Ap K x) y) argn) ... arg1. Consequently, the

form of β is also known (apply S or K rule). Take δ = * (! β) then trivially d(δ) = β.

Let us first assume that r is a S redex. If n > 0 then the only rule that is applicable on α is rule (3)

which is not a computational rule. After one step this reduces to ~ ( Ap1 ( ! (Ap2 (... Apn ( Ap ( Ap

(Ap S x) y) z) argn) ... arg1)  and again if n-1 > 0 only rule (3) is applicable. So after n steps the

result is ~ (Ap1 ( ~ (Ap2 (... ~ (Apn (! ( Ap ( Ap (Ap S x) y) z)) argn) ... arg1). These n steps are the

internal steps of τs preceding the computational step which is applying rule (1), resulting into ~

(Ap1 ( ~ (Ap2 (... ~ (Apn (+ ( Ap ( Ap x y) (Ap x z)) argn) ... arg1). Now the only possible reductions are

n applications of rule (13), which gives us * (+ β), which can only reduce to * (! β) = δ.

The other case we look at, is r being a K redex. We now have to be careful because there can be

two computational rules corresponding to a K reduction. If n ≥ 1, then we can follow the same

reasoning as in the S case. We have n-1 applications of rule (3) on application of rule (9) and n-1

applications of rule (13), followed by one application of rule (11); if n=0, then we can only apply

directly the computational rule (2) and we have only one internal step from * (+ β) to * (! β).



5. ∀α ¶ Nτs  d(α) ¶ Nτoσ ‹ {nil}

Take α ¶ Nτs then either α is also a term of Nτoσ and then d(α) = α and d(α) ¶ Nτoσ or α is

not a term of Nτoσ and then d(α) is nil because α is not a redex in τs.

6. There is no infinite (→s-→c) reduction path and moreover there exists a bounded function b :

τo → » such that ∀α, β ¶ E  α (→s-→c)m →c (→s-→c)n β  ⇒ m < b(d(α)) & n < b(d(α)).

In the proof of 4 it is shown implicitly that there is no infinite internal reduction path. We define

b as b(t) = 3 * (the number of Ap's on the spine) + 1.  Take α, β ¶ E then β can be an element

of Noσ or not:  β ‡ Nτoσ ⇒ β = * (! d(β)) and in the proof of 4 we saw that both m and n are

less than the number of Ap's on the spine in respectively α and β. So certainly m < b(d(α)) and

n < b(d(β)); analogously to the reasoning in 4 one can easily show that β ¶ Nτoσ ⇒ α (→s-

→c)m1 →c (→s-→c)n1 (* (+ β))  (→s-→c)m2 γ (→s-→c)n2 (* (- β)) where γ is a term not

containing ! and n1, n2, m1 and m2 are all less or equal to the number of Ap's on the spine of α, β
and γ respectively. Proving this we use the fact that rules (1), (2), (3), (4), (5), (6) and (9) cover all

possible terms ! t with t ¶ τoσ.

The specification is effective because b, →c, d and E are all total computable.

1.3.3 Remarks

Several parts of the proof heavily relied on the specific rules, the specific structure of the term

and of course on the specific strategy. We see no way to easily extend these proofs to other

reducers.

Note that starting with terms * (! t) every possible reduct had at most one redex. We call a

term with such a property linear, because the reduction path is linear. A TRS where all terms are

linear is called a linear TRS. For those who think this is confusing considering the concept of

left-linearity, i.e. having repeated variables on the left-hand-side, we suggest left-comparing as a

possibly better name in stead of left-linear. It does not have the relation to polynomial terms

(linear, quadratic etc.) and moreover it names the essential aspect of left-linearity which is that

arguments have to be identical in order to be able to apply the rule. Linear TRS's have good

prospects for efficient sequential execution, and left-comparing TRS's can cause trouble during

execution when used with infinitely growing arguments.

1.4 Evaluation of the Method.



Although it is possible to convert the original TRS to an annotation TRS in which the strategy

is explicitly encoded, the method has severe drawbacks.

First of all our annotation TRS has many more rules than the original TRS. Unfortunately the

number of extra 'non-redex' rules per function can become exponential: the number of

constants, that can occur, to the power of the width of the pattern. This results in too many

rules. Some of these rules are very awkward such as the envelope rule. Furthermore the rules in

the annotation TRS not only depend on the strategy but also on the original TRS. Consequently

the correctness of the strategy can not be proven for all TRS's at once, but it must be proven for

every TRS separately. Furthermore it is rather tedious work to give such a proof.

Concluding we can state that though it is very well possible to express a strategy in an

annotation TRS, the number of rules and their complexity makes this method not very suitable

for practical use.

2. Transforming the TRS to an Annotation TRS with Priority Rules.

2.1 Description of the Method.

The method we will describe in this section is very closely related to the way strategies are

expressed in Dactl [GLA85]. It differs from the previous method in that we will use a different

kind of annotation TRS namely an annotation TRS with priority rules [BAE86], a so called

priority rewriting system (PRS). The difference with an ordinary TRS is that whenever a rule

matches a given redex, it may only be chosen if none of the rules with higher priority can ever be

applicable on the (internally rewritten) term.

2.2 Expressing Head Reduction for Curry's Example.

We start again with the rules of the ordinary TRS

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z) (A) Ap (

and we add exclamation marks to the rules

! (Ap (Ap (Ap S x) y) z) → Ap (Ap x z) (Ap y z) (1)

! (Ap (Ap K x) y) → x (2)



Our propagation rule is much simpler now:

! (Ap x y) → Ap (! x) y (3)

The reason for this is that if a redex matches the third rule and one of the other two rules, the

topmost rule (not rule 3) is taken because It has higher priority. We indicate this by putting an

arrow in front of rules with decreasing priority. Rules with the same priority are indicated by

adding a bar in front of them. Rules without any indication are not affected by the priority

mechanism.

The non-redex rules are extremely simple now:

! x → x (4)

Anything that does not match one of the other rules, is not a redex. That's it! The somewhat

strange envelope-rule of the previous section is also not necessary any more.

So we have elegantly modelled one step of this strategy. In order to model the strategy

completely we still must encode whether or not a subterm was successfully rewritten. This is

modelled by exactly the same changes and extra rules as in the previous section. Note that in

general we must be careful with adding rules because our PRS could cause that they will never

be applied. In this case we have no problems with that issue.

The complete set is now:

 | ! (Ap (Ap (Ap S x) y) z) → + (Ap (Ap x z) (Ap y z)) (1)

 | ! (Ap (Ap K x) y) → + x (2)

 ! (Ap x y) → ~ (Ap (! x) y) (3)

 ! x → - x (4)

* (- term) → term (5)

* (+ term) → * (! term) (6)

~ (Ap (- x) y) → - (Ap x y) (7)

~ (Ap (+ x) y) → + (Ap x y) (8)

Again, the initial term must be of the form



* (! term)

Note that only the third and the fourth rule really rely on the order in which rules are matched.

2.3 Correctness Proof.

In order to prove this specification we first define what the semantics of a PRS is. Then we

will show that in this case the semantics of the PRS is equivalent to the semantics of a TRS

without priority. This TRS will turn out to be equivalent to the one we constructed using the

previous method.

2.3.1 Semantics of a PRS.

A PRS has a unique semantics (is well-defined) if it has a unique sound and complete rewrite

set. Unfortunately our underlying TRS is not strongly normalizing nor bounded. So we have to

use the stabilization lemma formulated in [BAE86]. We have to prove that starting with R0 =
Rmax (Rmax being the set of all possible rewrites of τs i.e. all possible instances of all rules not

considering the priority), there exists a n for which Rn = Rn+1, where Rn+1 is defined as (Rn)c

with (R)c being the set of all rewrites that is correct with respect to R. A rewrite t →r s is correct

if there is no internal R-reduction t →* t' to an r'-rewrite t' →r' s' ¶ R with r' > r (r' has higher

priority than r). R is sound if all rewrites which are an element of R, are correct w.r.t. R. R is
complete if it contains all possible rewrites of Rmax which are correct w.r.t. R.

2.3.2 Proof.

Because this method resembles the previous one, we can take all definitions the same except

for the computation relation c which will be given by rules 1 and 2 only. But before we can even

start to say something about this solution, we must prove that this PRS has a unique semantics.

If we restrict ourselves to those terms t for which d(t) ≠ nil, then one can easily see that the

term has at most one redex for which several rules with different priorities can be applied. Of

course, the intended semantics is that the rule with the highest priority is applied. Since there is

always at most one redex, there are no internal reductions of more than zero steps. Yet there are

trivial zero-step reductions using other instantiations for the variables. So we start with the set
Rmax and compute (Rmax)c. We prove that it is sound and complete, hence ((Rmax)c)c =

(Rmax)c and (Rmax)c is the semantics of our PRS.



We want to determine the set of rewrites that are correct w.r.t. Rmax. As was already stated,

the only internal redexes to be considered are other instantiations of variables. We know the

structure of the terms, so all instantiations of the left-hand-side of rule (4) are ruled out by rule (3)

except for the instantiations S and K. So the PRS is equivalent to another one where rule (4) is

substituted by the rules:

! S → - S  (4')

! K → - K (4'')

In the same way we can determine the patterns for which rule (3) is really applicable i.e. not ruled

out by rule (1) or rule (2), giving the following rules replacing rule (3):

! (Ap S y) → ~ (Ap (! S) y) (3')

! (Ap K y) → ~ (Ap (! K) y) (3'')

! (Ap (Ap S a) y) → ~ (Ap (! (Ap S a)) y) (3''')

! (Ap (Ap (Ap K a) b) y) → ~ (Ap (! (Ap (Ap K a) b)) y) (3'''')

! (Ap (Ap (Ap (Ap a b) c) d) y) → ~ (Ap (! (Ap (Ap (Ap a b) c) d)) y) (3''''')

So the set (Rmax)c is the set determined by this new TRS without priority. This set is sound

because evidently all rewrites in it are correct and it is complete because it also contains all

rewrites which are correct with respect to it. One easily checks that the resulting rules that

determine the semantics of the PRS, are equivalent to the rules of the previous example. So we

have proven that our PRS model specifies Curry's example correctly.

2.3.3 Remarks.

Note that this proof more or less included the proof for the previous method and that we

needed special analysis to determine the semantics of this PRS. In general there is not even

always a unique semantics and it is not known whether a semantics always exists [BAE86].

2.4 Evaluation of the Method.

Clearly this method is a lot better than the previous one. There are more rules in the

annotation TRS than in the original TRS, but the growth is no longer exponential because the

non redex case can now be expressed with one rule (4). Also the funny envelope rules have

disappeared.



Still this method has a severe disadvantage. The rules generated still heavily depend on the

original TRS so if we want the same strategy for other TRS's we still have to change the rules of

each one of them. The proof must be given for every TRS separately as was the case with the

previous method. The complexity of the proof is even worse than the complexity of the previous

proof because we also have to prove the well-definedness of the PRS. It would be better if we

could define a strategy in such a way that the same description is valid for all TRS's.

3. Defining the Strategy Separately in an Abstract-interpretation TRS.

3.1 Description of the Method.

In order to be able to specify strategies uniformly for all TRS's we will consider three

different conceptual levels of TRS's:

a) The first TRS is the user-defined TRS. This is the original TRS which now remains

unchanged. An example of such a TRS is the S-K TRS.

b) The reduction strategy for the user-defined TRS is specified in a separate TRS called the

interpretation TRS. Functions in the interpretation TRS may have a user-defined TRS or any

subterm of such a TRS as argument. For instance one may write:

HeadReduce S → S (I-a)

HeadReduce K → K (I-b)

The arguments of HeadReduce are written in italic style to indicate that they are part of a TRS on

another level. Instead of the rules above one can write a more general rule which is valid for all

combinators:

HeadReduce c : Combinator → c (I-c)

In this rule c is a variable which will be bound to a (sub)term of a TRS. The suffix Combinator

restricts the number of matching expressions. Such a suffix is called an abstraction .

c) These abstractions which are used as patterns in the interpretation TRS's, are defined by a

third TRS: the abstraction TRS.  This abstraction TRS is used to make an abstract syntax of the

user-defined TRS available to the interpretation TRS. An example of such an abstraction TRS is:



Combinator → S (A-a)

Combinator → K (A-b)

Now the extra restriction on c  imposed by the suffix Combinator  implies that the actual value of  c

must be a normal form of the term  Combinator  in the abstraction TRS. Hence only HeadReduce S

and HeadReduce K will match rule (I-c). The abstraction level can be seen as a preprocessing level

where things are done like syntactical categorizing, type checking, strictness analysis etcetera.

To make the specification of strategies really easy we introduce two primitive functions which

can be used in the interpretation TRS:

Match  term rules

which returns True if the term is a redex according to the rules and False otherwise.

Rewrite  term rules

which returns the term after one rewrite according to the rules if the term matches the rules and the

term itself otherwise.

The match function only checks whether or not the given term as a whole matches one of the

given rules. The rewrite function will make a non-deterministic choice out of the matching rules.

Although it is possible to define these primitive functions precisely in the interpretation TRS, the

formal definition is rather tedious.

3.2 Expressing Head Reduction for Curry's Example.

First we give the rules of the user-defined TRS.:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z) (U-S)

Ap (Ap K x) y → x (U-K)

Furthermore we have to define those abstractions of the TRS that we need at the interpretation

level. In this example these abstractions are extremely trivial. The abstraction TRS is:

Combinator → S (A-1)

Combinator → K (A-2)



Finally we have to define the interpretation TRS. We will  start with describing one step of the

strategy: we will call that OneStepHead.

When the term is a redex we rewrite it and otherwise we search in the function part of apply for a

redex (the propagation rule):

OneStepHead ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

( Rewrite ( Ap f a ) rules )

( Ap ( OneStepHead f rules ) a ) (I-1)

In this rule Cond has the ordinary meaning. The result of OneStepHead applied to a function Ap

with parameters is, if it matches as a whole, the rewrite of it, otherwise the result is the function

Ap with as new parameters the result of OneStepHead applied to the function part. This surely

terminates because of the next rule (I-2). Note that functions now also must have rules as

parameter in order to be able to use the matching and rewriting primitives.

Again S and K cannot be rewritten, which we can now express in one rule:

OneStepHead c:Combinator rules → c (I-2)

The result of OneStepHead applied to a single combinator is that combinator itself.

We will now extend the one-step strategy to a complete strategy by adding another function:

Head term rules → Cond ( ContainsAHeadRedex term rules )

( Head ( OneStepHead term rules ) rules )

term (I-3)

When our term contains a head-redex we do one left-most rewrite and continue, in the other

case we stop and the result is the term itself.

The definition of ContainsAHeadRedex is very similar to the definition of OneStepHead. When

there is a Rewrite in the definition of OneStepHead, we return True and when in OneStepHead we

return the parameter as a result, we return False in ContainsAHeadRedex. Of course, recursive calls

in OneStepHead are simply converted to recursive calls in ContainsAHeadRedex.

The definition of ContainsAHeadRedex is:

ContainsAHeadRedex c:Combinator rules → False (I-4)



ContainsAHeadRedex ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

True

( ContainsAHeadRedex f rules ) (I-5)

The complete set is now:

OneStepHead ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

( Rewrite ( Ap f a ) rules )

( Ap ( OneStepHead f rules ) a ) (I-1)

OneStepHead c:Combinator rules → c (I-2)

Head term rules → Cond ( ContainsAHeadRedex term rules )

( Head ( OneStepHead term rules ) rules )

term (I-3)

ContainsAHeadRedex c:Combinator rules → False (I-4)

ContainsAHeadRedex ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

True

( ContainsAHeadRedex f rules ) (I-5)

The initial term must be Head Term SKRules.

3.3 Correctness Proof.

In order to prove this specification we first define what the semantics of the abstract-

interpretation TRS is. We will proof that the conditions are satisfied after proving some simple

lemmas. These lemmas state general facts on the functions that are defined. These facts are easy

to find because they cover the intention with which we constructed the functions. It will be rather

simple to prove those lemmas.

3.3.1 Semantics of the Abstract-interpretation TRS.

We start with settling the semantics of c : Combinator in the rules for OneStepHead and

ContainsAHeadRedex. Because of the structure of the terms OneStepHead is equivalent to:

OneStepHead ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

( Rewrite ( Ap f a ) rules )

( Ap ( OneStepHead f rules ) a ) (I-1)

OneStepHead S  rules → S (I-2a)

OneStepHead K rules → K (I-2b)



For our semantics this eliminates the abstraction TRS. Furthermore the user-defined and the

interpretation TRS can be seen as one and the same TRS with restrictions on the construction of
terms, such as: the first argument of OneStepHead is an element of τo, the second argument are the

rules, etcetera. During reduction reducts of terms that meet these restrictions also meet these

restrictions. So we now have only one TRS with the ordinary meaning. However we do not deal

with the full reduction relation but only with those reductions that are allowed by normalizing

strategies. Strategies for this TRS are normalizing if they reduce the first argument of Cond and

the Cond itself without reducing the other arguments and if they reduce the argument of Head to a
term which is an element of τo, before applying the Head rule again (this restriction is a

consequence of uniting the two levels). So we simply remove those reductions out of the
reduction relation. The reducer we get this way is called τs again and we will prove the

specification following again O'Donnell's definitions.

3.3.2 Proof.

Before we proof that the specification satisfies O'Donnell's definitions we want to prove

some lemmas about the functions we have defined.  The formulation of these lemmas is simple

because of the way the functions were constructed.

Lemma The normal form of ContainsAHeadRedex x SKRules with x ¶ τo is True if x has a head-

redex in τo, False otherwise.

Proof: Recall the definitions:

Def: x contains a head-redex      fi x matches a S or K rule or else

if x = Ap a b, a contains a head-redex.

ContainsAHeadRedex S  rules → False (I-4a)

ContainsAHeadRedex K rules → False (I-4b)

ContainsAHeadRedex ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

True

( ContainsAHeadRedex f rules ) (I-5)

Suppose x ¶ τo contains a head-redex then x ≠ S and x≠ K (S and K themselves do not match

the S or K rule) so x = Ap a b. So ContainsAHeadRedex x SKRules reduces in τs to Cond (Match (Ap a b)

SKRules) True (ContainsAHeadRedex f SKRules). If x matches a S or K rule then obviously the normal

form is True because we restricted the reduction relation to safe strategies. If x does not match a S

or K rule then the left part of the application contains a head-redex which by induction and the



absence of terms with an infinite spine results in the correct normal form. Proceeding this way it

is very simple to prove the other parts of the lemma.

The following lemma is just as simple to proof :

Lemma OneStepHead x SKRules with x ¶ τo has as its normal form: if x has a head-redex in τo,

the reduct of x after reducing this head-redex and if x does not have a head-redex in τo, its

normal form is x.

We can use these lemmas in our proof of the specification. It will make everything very easy.
We define E as:  x ¶ Nτo › E(x) = x ; x ‡ Nτo › E(x) = Head x SKRules. The computational

relation is given by reductions of the primitive Rewrite. The definition of d is:

if x is an element of Nτo then d(x) = x;

if x can be reduced via non computational reductions to a x' which is an element of Nτo then

also d(x) = x;
if x is not an element of Nτo then we define d a bit special: if x can be reduced to x' via non

computational reductions until the only possible reduction is a computational one and x' is of the

form : Ap1 ( ..... Apn ( (Rewrite (Ap f a)) .....), perhaps surrounded by Head and SKRules then the

decoding of x is defined as x' with applications of Head, SKRules and Rewrite skipped.

In other cases the decoding of x is nil.

Because we are only interested in reducts of elements of E, we restrict τs to those reducts.

1a. d[E] = τo

Trivially true.

1b. d-1[Nτoσ] ¤ E Ÿ Nτs

Suppose α ¶ E and β ¶ Nτo with d(α) = β, then clearly α = β, and since Nτo Ÿ Nτs, α is an

element of Nτs.

2. ∀α, β ¶ τs  α →c β  ⇒  d(α) →o d(β)

Suppose α reduces to β via a reduction of Rewrite then if α and β are reducts of elements of E

then clearly the decodings also reduce to each other.



3. ∀α, β ¶ τs  α (→s-→c) β  ⇒  d(α) = d(β)

Analogously to 2.

4. ∀α ¶ E, β ¶ τo  d(α) →oσ β  ⇒  ∃δ ¶ E  α (→s-→c)* →c (→s-→c)* δ & d(δ) = β

Suppose α¶ E, d(α) →oσ β › α ‡ Nτo, so α = Head α' SKRules with α' ¶ τo. Furthermore

d(α) →oσ β, so α' has a head-redex. Then OneStepHead α' SKRules reduces to δ with d(δ) = β

and Head α' SKRules reduces to Head δ SKRules.

5. ∀α ¶ Nτs  d(α) ¶ Nτoσ ‹ {nil}

If α is a normal form of an element of E then d(α) ¶ Nτoσ, d(α) is nil otherwise.

6. There is no infinite (→s-→c) reduction path and moreover there exists a bounded function b :

τo → » such that ∀α, β ¶ E  α (→s-→c)m →c (→s-→c)n β  ⇒ m < b(d(α)) & n < b(d(α)).

There is no infinite non computational path because we only use safe strategies. We define b to

be: b(x) = 3*( the number of Ap's on the spine of x) + 3. We notate sp(x) for the number of Ap's
on the spine of x. If x ¶ τo then ContainsAHeadRedex x SKRules has a number of non computational

reductions which is bound by 3*sp(x). OneStepHead x SKRules is bound by 3*sp(x) + 1 because it
has an extra Rewrite. So if β ‡ Nτs then m= 3*sp(α) + 1 and n = 1; if β ¶ Nτs then we may

need 3*sp(β) + 2 non computational reductions to discover that we have a normal form.

The specification is effective because b, →c, d and E are all total computable.

3.3.3 Remarks.

 The proof was easy because the most essential aspects were already covered by the lemmas

which were themselves simple and easy to proof. The use of the primitives Match and Rewrite

made it possible to reason easily about the TRS system.

3.4 Transformations of the Specification.

The description we have developed is a very nice one but operationally it is not the same as in

the other two sections, because a call of ContainsAHeadRedex will induce an extra sweep through

the term. If we want our description to mirror exactly the operations that were performed by the

other methods, then we must change the rules and make them deliver a composite result



consisting of the term and a boolean indicating whether the term was rewritten. The resulting

rules are:

OneStepHead ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

( Pair True ( Rewrite ( Ap f a ) rules ))

( Pair

       (First  ( OneStepHead f rules ))

       ( Ap (Second   ( OneStepHead f rules )) a )) (I-1')

OneStepHead c:Combinator rules → Pair False c (I-2')

Head (Pair False term) rules → term (I-3')

Head (Pair True term) rules → Head ( OneStepHead term rules ) rules (I-4')

with as initial term: Head (OneStepHead Term SKRules) SKRules.

Probably it will not be very difficult to prove this specification to be equivalent to the one

without the booleans. Though this specification can now be considered to be just as efficient as

the specifications in the other sections, it does not exactly mirror the same actions. In the other

sections annotation functions were used in stead of booleans. Of course it is also possible to give

a similar description with the abstract-interpretation method. We will rename Head to * and

OneStepHead to !. We will also introduce success and failure constructors +/- and a propagate

function called ~. The set of corresponding rules is:

! ( Ap f a ) rules → Cond ( Match ( Ap f a ) rules )

( + ( Rewrite ( Ap f a ) rules ))

( ~  ( Ap ( ! f rules ) a )) (I-1'')

! c:Combinator rules → - c (I-2'')

* ( - term ) rules → term (I-3'')

* ( + term ) rules → * ( ! term rules ) rules (I-4'')

~ ( Ap ( + x ) y ) rules →  + ( Ap x y ) (I-5'')

~ ( Ap ( - x ) y ) rules → - ( Ap x y ) (I-6'')

If this specification is compared with that of section 2.2 we see that the redex rules and the

propagation rule are now all covered by rule (I-1") thanks to the power of the match and rewrite

primitives. The non-redex rules are covered by rule (I-2"). The last four rules are the same.



We have shown that it is relatively easy to express a reduction strategy using the abstract-

interpretation TRS with several algorithms and that it is also simple to transform one

specification to another.

3.5 Evaluation of the Method.

This method enables us to write elegant strategy specifications. The non-redex cases are

easily handled using the Match and Rewrite primitives. The different actions for syntactically

different terms are conveniently dealt with using the abstraction mechanism. The fact that we

write our strategy description on another level helps us in specifying strategies more generally.

The abstract-interpretation TRS system makes it possible to specify strategies formally in

such a way that the specification holds for a large class of TRS's. For instance the description

given at the interpretation level in this section is a valid head reduction specification for all TRS's

using explicit application functions. Only a very trivial adaptation to the abstraction TRS is

necessary in order to summarize all combinators. The proof then also holds for this large class of

TRS's. Besides that, the proof was less tedious because we were led immediately to some

general lemmas which themselves were easy to proof using the properties of the primitives Match

and Rewrite. This specification is very short and readable and it appeals to our intuition. It enables

us to easily give transformations of one specification to other specifications which have specific

properties.

Concluding we can state that we have a promising facility with a great expressive power for

describing strategies independently of the TRS.

4. Conclusions and Further Research.

All of the three methods introduced in this paper are suitable for the specification of reduction

strategies. Using an ordinary TRS gives rise to an exponential number of rewrite rules. This

drawback disappears when a PRS is used. However the proof of the specification using this

PRS was even more difficult than the proof with an ordinary TRS.

The most readable and general specification can be obtained by using an abstract-

interpretation TRS extended with special primitives for matching and rewriting. The structure of

the specification made it possible to give a simple proof and to construct transformations of the

specifications in order to get alternative specifications with special desirable properties. Although

this new TRS system is specially designed for the specification of reduction strategies, we think



that its descriptive power is suitable for the specification of abstract interpretations [BUR85] in

general.

In the near future we will search for simplifications of the definition of specification and we

will investigate the use of the abstract-interpretation TRS in its full strength for the specification

of strategies in  graph rewriting systems, for giving correctness proofs of more complex

strategies and for the investigation of the descriptive power for other domains.
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